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Abstract. We propose a relaxation to the definition of a well-structured
transition systems (WSTS) while retaining the decidability of bounded-
ness and termination. In this class, we ease the well-quasi-ordered (wqo)
condition to be applicable only between states that are reachable one
from another. Furthermore, we also relax the monotony condition in the
same way. While this retains the decidability of termination and bound-
edness, it appears that the coverability problem is undecidable. To this
end, we define a new notion of monotony, called cover-monotony, which is
strictly more general than the usual monotony and still allows to decide
a restricted form of the coverability problem.
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1 Introduction

Well-structured transition systems (WSTS) (initially called structured transition
systems in [10]) have decidable termination and boundedness problems. They
capture properties common to a wide range of formal models used in model-
checking, system verification and concurrent programming [13].

A WSTS is an infinite set X (of states) with a transition relation → ⊆ X×X.
The set X is quasi-ordered by ≤, and → fulfills one of various possible monotonies
with respect to ≤. The quasi-ordering of X is further assumed to be well, i.e. well-
founded and with no infinite antichains (see Sect. 2 for precise formal definitions).
These two properties lead to a general framework in which it is possible to
algorithmically decide verification problems like coverability, termination and
boundedness.

This class of systems includes Lossy Channel Systems, Petri Nets and their
extensions, among others [1,13]. More recently, the theory of WSTS has been
applied to study computational models resulting from a combination of differ-
ent types of systems like asynchronous systems defined by extending pushdown
systems with an external memory [5], cryptographic protocols [7], and others.

Various strengthenings and weakenings of the notion of monotony (of → with
respect to ≤) were introduced, to allow WSTS to capture more models [1,13].
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More recently, [3] showed that the wellness assumption in the definition of WSTS
can be relaxed while some decidabilities are retained (notably, the coverability
problem is decidable).

Our main contribution is to prove that the monotony and well-quasi-order
(wqo) assumptions can further be weakened while some problems remain decid-
able. More precisely, we introduce a notion of well-structured transition systems,
called branch-well-structured transition systems, where the monotony is only
applicable to states reachable one from another. Furthermore, we also relax the
wqo condition to such states. With this relaxation, it is still possible to retain the
decidability of termination and boundedness. Furthermore, for the coverability
problem, we introduce a notion of monotony, called cover-monotony, which still
allows deciding the coverability problem, even in the absence of strong (or strict
or transitive or reflexive) monotony. Indeed, while the usual backward algorithm
for coverability relies on well-foundedness, the forward algorithm described in
[3] does not require that property.
Outline. Sect. 2 introduces terminology and some well-known results concern-
ing well-quasi-orderings and well-structured transition systems. Section 3 defines
branch-WSTS, and shows that both the boundedness and the termination prob-
lems are decidable for such systems. Section 4 investigates the coverability prob-
lem for WSTS with relaxed conditions. We conclude in Sect. 5. Due to space
constraints, some proofs are omitted.

2 Preliminaries

Quasi-Orderings. Let X be a set and ≤ ⊆ X ×X be a binary relation over X,
which we also write as (X,≤). We call ≤ a quasi-ordering (qo) if it is reflexive and
transitive. As usual, we call ≤ a partial ordering if it is a qo and anti-symmetric
(if x ≤ y and y ≤ x, then x = y).

For the following definitions, we also use the terminology qo for the ordering
≤ and its associated set X, i.e. (X,≤).

We write x < y if x ≤ y and y �≤ x. If ≤ is a partial ordering, x < y is then
equivalent to x ≤ y and x �= y.

To any x ∈ X, we associate the sets ↑x
def= {y | x ≤ y} and ↓x

def= {y | y ≤ x}.
Moreover, for A ⊆ X, we let ↑A

def=
⋃

x∈A ↑x and ↓A
def=

⋃
x∈A ↓x. We say that A

is upward-closed if A = ↑A. Similarly, A is downward-closed if A = ↓A. A basis
of an upward-closed set A is a set B ⊆ X such that A = ↑B.

We call (X,≤) well-founded if there is no infinite strictly decreasing sequence
x0 > x1 > . . . of elements of X. An antichain is a subset A ⊆ X of pairwise
incomparable elements, i.e., for every distinct x, y ∈ A, we have x �≤ y and y �≤ x.
For example, consider the alphabet Σ = {a, b}. There exists an infinite antichain
{b, ab, aab, ...} with respect to the prefix ordering over Σ∗.

An ideal is a downward-closed set I ⊆ X that is also directed, i.e., it is
nonempty and, for every x, y ∈ I, there exists z ∈ I such that x ≤ z and y ≤ z.
The set of ideals is denoted by Ideals(X).
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Well-Quasi-Orderings. When a qo satisfies some additional property, we deal
with a well-quasi-ordering:

Definition 1. A well-quasi-ordering (wqo) is a qo (X,≤) such that every infi-
nite sequence x0, x1, x2, . . . over X contains an increasing pair, i.e., there are
i < j such that xi ≤ xj.

For example, the set of natural numbers N, along with the standard ordering
≤ is a wqo. Moreover, (Nk,≤), i.e. the set of vectors of k ≥ 1 natural numbers
with component-wise ordering, is a wqo [6]. On the other hand, the prefix order-
ing of words over an alphabet Σ, denoted by 
, is not a wqo since, in the infinite
sequence b, ab, a2b, a3b, ...anb, ..., we have aib �
 ajb for all i < j.

In general, for qo, upward-closed sets do not necessarily have a finite basis.
However, from [14], we know that every upward-closed set in a wqo has a finite
basis.

We have the following equivalent characterization of wqos.

Proposition 1 ([9]). A qo (X,≤) is a wqo iff every infinite sequence in X has
an infinite increasing subsequence.

Moreover, one can prove that a qo is a wqo iff it is well-founded and contains
no infinite antichain.

The following proposition is useful to design the forward coverability algo-
rithm that enumerates finite subsets of ideals composing inductive invariants. It
shows that the wqo hypothesis is not necessary to decide coverability.

Proposition 2 ([9]). A qo (X,≤) contains no infinite antichain iff every down-
ward-closed set decomposes into a finite union of ideals.

Transition Systems. A transition system is a pair S = 〈X,→〉 where X is
the set of states and → ⊆ X × X is the transition relation. We write x −→ y
for (x, y) ∈ →. Moreover, we let ∗−→ be the transitive and reflexive closure of the
relation →, and +−→ be the transitive closure of →.

Given a state x ∈ X, we write PostS(x) = {y ∈ X | x −→ y} for the set of
immediate successors of x. Similarly, PreS(x) = {y ∈ X | y −→ x} denotes the
set of its immediate predecessors.

We call S finitely branching if, for all x ∈ X, the set PostS(x) is finite. The
reachability set of S from x ∈ X is defined as Post∗S(x) = {y ∈ X | x

∗−→ y}.
Note that, when S is clear from the context, we may drop the subscript and
write, e.g., Post∗(x). We say that a state y is reachable from x if y ∈ Post∗(x)
(resp. y ∈ ↓Post∗(x)).

A (well-)ordered transition system is a triple S = (X,→,≤) consisting of a
transition system 〈X,→〉 equipped with a qo (resp., wqo) (X,≤). An ordered
transition system S = (X,→,≤) is effective if ≤ and → are decidable. We say
that a state y is coverable from x if y ∈ ↓Post∗(x).
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Definition 2 ([10]). A well-structured transition system (WSTS) is a well-
ordered transition system S = (X,→,≤) that satisfies (general) monotony: for
all x, y, x′ ∈ X, we have: x ≤ y ∧ x → x′ =⇒ ∃y′ ∈ X: x′ ≤ y′ ∧ y

∗−→ y′.

We define other types of monotony. We say that a well-ordered transition
system S = (X,→,≤) satisfies strong monotony (resp., transitive monotony) if,
for all x, y, x′ ∈ X such that x ≤ y and x → x′, there is y′ ∈ X such that x′ ≤ y′

and y → y′ (resp., y
+−→ y′). The transition system S satisfies strict monotony

if, for all x, y, x′ ∈ X such that x < y and x → x′, there is y′ ∈ X such that
x′ < y′ and y → y′.

Definition 3. We define the following decision problems. Given an ordered
transition system S = (X,→,≤) and an initial state x0 ∈ X:

– The non-termination problem: Is there an infinite sequence of states x1, x2, . . .
such that x0 −→ x1 −→ x2 −→ . . . ?

– The boundedness problem: Is Post∗S(x0) finite?
– The coverability problem: Given states x, y ∈ X, is y coverable from x?

It is folklore [10,13] that termination is decidable for finitely branching WSTS
with transitive monotony and that boundedness is decidable for finitely branch-
ing WSTS S = (X,→,≤) where ≤ is a partial ordering and → is strictly mono-
tone; in both cases, we suppose that the WSTS are effective and that Post(x)
is computable, for all x ∈ X.

Recall that, in a wqo (X,≤), upward-closed sets have a finite basis. Cover-
ability is decidable for a large class of WSTS:

Theorem 1 ([1,13]). The coverability problem is decidable for effective WSTS
S = (X,→,≤) equipped with an algorithm that, for all finite sets I ⊆ X, com-
putes a finite basis pb(I) of ↑Pre(↑I).

Assume S = (X,−→,≤) is a WSTS and x ∈ X is a state. The backward
coverability algorithm involves computing (a finite basis of) Pre∗(↑x) as the
limit of the infinite increasing sequence ↑I0 ⊆ ↑I1 ⊆ . . . where I0 = {x} and
In+1

def= In ∪ pb(In). Since there exists an integer k such that ↑Ik+1 = ↑Ik, the
finite set Ik is computable (one may test, for all n, whether ↑In+1 = ↑In) and Ik

is then a finite basis of Pre∗(↑x) so one deduces that coverability is decidable.
Coverability can be also decided by using the forward coverability algorithm

that relies on two semi-decision procedures (as described below). It applies to the
class of well-behaved transition systems, which are more general than WSTS.
A well-behaved transition system (WBTS) is an ordered transition system S =
(X,−→,≤) with monotony such that (X,≤) contains no infinite antichain. We
describe effectiveness hypotheses that allow manipulating downward-closed sets
in WBTS.

Definition 4 ([3, Definition 3.4]). A class C of WBTS is ideally effective if,
given S = (X,−→ ,≤) ∈ C,
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– the set of encodings of Ideals(X) is recursive,
– the function mapping the encoding of a state x ∈ X to the encoding of the

ideal ↓x ∈ Ideals(X) is computable;
– inclusion of ideals of X is decidable;
– the downward closure ↓Post(I) expressed as a finite union of ideals is com-

putable from the ideal I ∈ Ideals(X).

Theorem 2 ([3]). The coverability problem is decidable for ideally effective
WBTS.

The proof is done by two semi-decision procedures where downward-closed
sets are represented by their finite decomposition in ideals and this is effective.
Procedure 1 checks for coverability of y from x0, by recursively computing ↓x0,
↓(↓x0 ∪ Post(↓x0)) and so on. This procedure terminates only if y belongs to
one of these sets, hence it terminates if y is coverable. Hence, we deduce:

Proposition 3 ([3]). For an ideally effective WBTS S = (X,→,≤), an initial
state x0, and a state y, Procedure 1 terminates iff y is coverable from x0.

Procedure 1 : Checks for a coverability certificate of y from x0

input: S = (X, →, ≤) and x0, y

D := ↓x0

while y /∈ D do
D := ↓(D ∪ PostS(D))

end while
return “y is coverable from x0”

Procedure 2 enumerates all downward-closed subsets (by means of their finite
decomposition in ideals) in some fixed order D1,D2, . . . such that for all i, Di ⊆
X and ↓Post(Di) ⊆ Di. This enumeration is effective since S is ideally effective.
If such a set Di contains x0, it is an over-approximation of Post∗(x0). Hence, if
there is such a set Di such that x0 ∈ Di but y /∈ Di, it is a certificate of non-
coverability. Moreover, this procedure terminates if y is non-coverable because
↓Post∗(x0) is such a set, and hence, will eventually be found.

Proposition 4 ([3]). For a WBTS S = (X,→,≤), an initial state x0 and a
state y, Procedure 2 terminates iff y is not coverable from x0.

3 Termination and Boundedness

In this section, we generalize wqo and monotony such that these properties only
consider states along a branch in the reachability tree. To define these notions,
we use labels on the transitions, hence, we consider labeled transition systems.
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Procedure 2 : Checks for non-coverability
input: S = (X, →, ≤) and x0, y

enumerate D1, D2, . . .
i := 1
while ¬(↓Post(Di) ⊆ Di and x0 ∈ Di and y /∈ Di) do

i := i + 1
end while
return false

Labeled Transition Systems. A labeled transition system (LTS) is a tuple
S = (X,Σ,→, x0) where X is the set of states, Σ is the finite action alphabet,
−→ ⊆ X × Σ × X is the transition relation, and x0 ∈ X is the initial state.

Definition 5. An (quasi-)ordered labeled transition system (OLTS) is defined
as a tuple S = (X,Σ,→,≤, x0) where (X,Σ,→, x0) is an LTS and (X,≤) is a
qo.

In the case of an LTS or OLTS, we write x
a−→ x′ instead of (x, a, x′) ∈ →.

For σ ∈ Σ∗, x
σ−→ x′ is defined as expected. We also let x −→ x′ if (x, a, x′) ∈ →

for some a ∈ Σ, with closures ∗−→ and +−→.
We call an OLTS S effective if ≤ and, for all a ∈ Σ, a−→ are decidable.

Remark 1. We can similarly define a labeled WSTS as an OLTS such that the
ordering is well and it satisfies the general monotony condition (canonically
adapted to take care of the transition labels). Moreover, we lift the decision
problems from Definition 3 to OLTS in the obvious way.

Branch-WSTS. Consider an OLTS S = (X,Σ,→,≤, x0). A run (or branch)
of S is a finite or infinite sequence ρ = (x0 −→ x1)(x1 −→ x2)... simply written ρ =
x0 −→ x1 −→ x2 . . .. We say that ρ is branch-wqo if the set of states {x0, x1, x2, . . .}
visited along ρ is wqo w.r.t. ≤.

Definition 6. An OLTS S = (X,Σ,→,≤, x0) is branch-wqo if every run of S
is branch-wqo.

Example 1. Consider the FIFO machine (formally defined in Definition 10) M1

in Fig. 1 with one FIFO channel. In control-state q0, it makes a loop by sending
letter a to the channel. Then, we may go, non-deterministically, to control-state
q1 by sending letter b once, and then we stop. Let us consider the set of states
X1 = {q0, q1}×{a, b}∗ together with the ordering ≤p defined by (q, u) ≤p (q′, u′)
if q = q′ and u is a prefix of u′, i.e., u 
 u′. The reachability set of M1 from
(q0, ε) is equal to {(q0, w), (q1, w) | w ∈ a∗, w′ ∈ a∗b}. Note that ≤p is not a wqo
since elements of the set {(q1, w) | w ∈ a∗b} form an infinite antichain for ≤p.
However, the reachability tree of M1 is branch-wqo for the initial state (q0, ε).
Hence, there exist branch-wqo OLTS S = (X,Σ,→,≤, x0) such that (X,≤) is
not a wqo.
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q0 q1

!a

!b

(q0, ε)

(q1, b)(q0, a)

(q0, aa) (q1, ab)

...
(q1, aab)

Fig. 1. The FIFO machine M1 (left), and its corresponding (incomplete) infinite reach-
ability tree (right).

Remark 2. There exist a system S = (X,Σ,→,≤, x0) and x′
0 ∈ X such that S

is branch-wqo but (X,Σ,→,≤, x′
0) is not branch-wqo (cf. Figure 2).

q0 q1 q2

!a

!b
?c

!b

?b

?c !c

Fig. 2. The FIFO machine shown is branch-wqo if the initial control-state is q0. If the
initial control-state is q2, then it is not branch-wqo as the states in the set {(q1, w) |
w ∈ c+b}, which form an infinite antichain, are reachable from (q2, ε).

We now look at a generalization of strong monotony, which we will refer to
as branch-monotony.

Definition 7 (Branch-monotony). An OLTS S = (X,Σ, →,≤, x0) is
branch-monotone if, for all x, x′ ∈ X, σ ∈ Σ∗ such that x

σ−→ x′ and x ≤ x′,
there exists a state y such that x′ σ−→ y and x′ ≤ y.

Remark 3. Let S be a branch-monotone OLTS and let there be states x, x′ such
that x

σ−→ x′ and x ≤ x′, with σ ∈ Σ∗. Then, for any n ≥ 1, there exists yn ∈ X

such that x
σn

−−→ yn with x ≤ yn.

As in the case of general monotony, strict branch-monotony is defined using
strict inequalities in both cases.

Example 2. Consider M1 from Example 1 once again. Note M1 induces an
OLTS by considering the actions on the edges to be the labels. Moreover, M1

is branch-monotone. For every x
σ−→ x′ such that x ≤ x′ and σ ∈ Σ∗, it is

necessary that x = (q0, an), x′ = (q0, an+k), for some n, k ∈ N. Moreover, there
always exists a transition from x′ such that x′ σ−→ y = (q0, an+k+k). Hence,
x′ ≤ y. We deduce that M1 is branch-monotone.
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(q0, ε)

(q1, b)(q0, a)

dead

Fig. 3. The reduced reachability tree of M1 from (q0, ε). Note that (q0, a) is dead

because it is subsumed by state (q0, ε). As a matter of fact, we have (q0, ε)
∗−→ (q0, a)

and (q0, ε) ≤p (q0, a). State (q1, b) is also dead but it is not subsumed.

We are now ready to extend the definition of WSTS.

Definition 8 (Branch-WSTS). A branch-WSTS is an OLTS S = (X,Σ, →
,≤, x0) that is finitely branching, branch-monotone, and branch-wqo.

When we say, without ambiguity, that a machine M is branch-wqo, WSTS,
or branch-WSTS, we mean that the ordered transition system SM, associated
with machine M, is branch-wqo, WSTS, or branch-WSTS, resp.

Remark 4. Branch-WSTS is a strict superclass of labeled WSTS. For example,
machine M1 is branch-WSTS for the ordering ≤p but M1 is not WSTS for ≤p

since ≤p is not a wqo on {q0, q1} × {a, b}∗ or on the subset {(q1, w) | w ∈ a∗b}.

Let us recall the Reduced Reachability Tree (RRT), which was defined as
Finite Reachability Tree in [10,13]. Suppose that S = (X,Σ,→,≤, x0) is an
OLTS. Then, the Reduced Reachability Tree from x0, denoted by RRT (S, x0), is
a tree where nodes are labeled by states of X, and n(x) denotes that node n is
labeled by state x. Nodes are either dead or live. The root node n0(x0) is live.
A dead node has no child node. A live node n(y) has one child n′(y′) for each
successor y′ ∈ PostS(y). If there is a path in the tree n0(x0)

∗−→ n′(y′) +−→ n(y)
such that n′ �= n and y′ ≤ y, we say that n′ subsumes n, and then n is dead.
Otherwise n is live. See Fig. 3 for the RRT of M1.

Proposition 5. Let S = (X,Σ,→,≤, x0) be an OLTS that is finitely branching
and branch-wqo. Then, RRT (S, x0) is finite.

Proposition 6. Let S = (X,Σ, →,≤, x0) be a branch-WSTS, equipped with
strict branch-monotony and such that ≤ is a partial ordering. The reachability
set Post∗S(x0) is infinite iff there exists a branch n0(x0)

∗−→ n1(x1)
+−→ n2(x2) in

RRT (S, x0) such that x1 < x2.

We now need a notion of effectivity adapted to branch-WSTS.

Definition 9. A branch-WSTS S = (X,Σ, →,≤, x0) is branch-effective if S is
effective and PostS(x) is a (finite) computable set, for all x ∈ X.

Theorem 3. Boundedness is decidable for branch-effective branch-WSTS S =
(X,Σ, →,≤, x0) with strict branch-monotony such that ≤ is a partial ordering.
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Proof. Suppose S = (X,Σ, →,≤, x0) satisfies the above conditions. From Propo-
sition 5, we obtain that RRT (S, x0) is finite. By hypothesis, S is finitely branch-
ing and branch-effective. In particular, for all x, PostS(x) is a finite computable
set. As ≤ is decidable, we deduce that RRT (S, x0) is effectively computable.
From Proposition 6, we know that Post∗S(x0) is infinite iff there exists a finite
branch n0(x0)

∗−→ n1(x1)
+−→ n2(x2) such that x1 < x2. This last property can be

decided on RRT (S, x0), and so the boundedness property can be decided, too.
��

We also generalize the decidability of termination for WSTS [13] to branch-
WSTS.

Proposition 7. A branch-WSTS S = (X,Σ, →,≤, x0) does not terminate from
state x0 iff there exists a subsumed node in RRT (S, x0).

Theorem 4. Termination is decidable for branch-effective branch-WSTS.

Proof. Given a branch-WSTS S = (X,Σ, →,≤, x0), we apply Proposition 7 so
that it is sufficient to build RRT (S, x0) and check if there exists a subsumed
node. Since S is branch-effective, we can effectively construct RRT (S, x0) and
verify the existence of a subsumed node. ��

Note that we can thus solve the termination and boundedness problems for
the example machine M1, and since there exists nodes n0(x0) and n1(x1) in the
RRT such that x0 = (q0, ε) and x1 = (q0, a) such that x0 < x1 and x0

+−→ x1,
the machine M1 is unbounded. Moreover, since n1(x1) is also a subsumed node,
it is non-terminating.

On the other hand, boundedness becomes undecidable if we relax the strict
monotony condition to general monotony (even when we strengthen the order
to be wqo). This is because boundedness is undecidable for Reset Petri nets [8].
Reset Petri nets are effective WSTS S = (X,Σ, →,≤, x0), hence branch-effective
WSTS, where ≤ is the wqo on vectors of integers. Hence, we deduce:

Proposition 8. Boundedness is undecidable for branch-effective branch-WSTS
S = (X,Σ,→,≤, x0) where ≤ is a wqo.

Counter Machines with Restricted Zero Tests. Now, we show an example
of a class that is branch-WSTS. We study counter machines with restricted zero
tests. In [4], it was shown that termination and boundedness (and moreover,
reachability) are decidable for this class of systems. However, using the alterna-
tive approach of branch-WSTS, we can verify that termination and boundedness
are decidable for this class without reducing these problems to reachability.

We recall that a counter machine (with zero tests) is a tuple C = (Q,V, T, q0).
Here, Q is the finite set of control states and q0 ∈ Q is the initial control state.
Moreover, V is a finite set of counters and T ⊆ Q × AC × Q is the transition
relation where AC = {inc(v), dec(v) | v ∈ V }×2V (an element of 2V will indicate
the set of counters to be tested to 0).
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The counter machine C induces an LTS SC = (XC , AC ,→C , x0) with set of
states XC = Q ×N

V . In (q, �) ∈ XC , the first component q is the current control
state and � = (�v)v∈V represents the counter values. The initial state is then
x0 = (q0, �) with all �v equal to 0.

For op ∈ {inc, dec}, v ∈ V , and Z ⊆ V (the counters tested for zero), there is

a transition (q, �)
op(v),Z−−−−−→C (q′,m) if (q, (op(v), Z), q′) ∈ T , �v′ = 0 for all v′ ∈ Z

(applies the zero tests), mv = �v + 1 if op = inc and mv = �v − 1 if op = dec,
and mv′ = �v′ for all v′ ∈ V \ {v}.

We define counter machines with restricted zero tests (CMRZ) imposing the
following requirement: Once a counter has been tested for zero, it cannot be incre-
mented or decremented anymore. Formally, we require that, for all valid transi-

tion sequences (q1, �1)
op(v1),Z1−−−−−−→C (q2, �2)

op(v2),Z2−−−−−−→C . . .
op(vn),Zn−−−−−−→C (qn+1, �n+1)

and every two positions 1 ≤ i ≤ j ≤ n, we have vj �∈ Zi.
Let us consider the wqo ≤ on Q × N

V where (q, �) ≤ (q′,m) if q = q′ and
� ≤ m. Note that this ordering is a partial ordering.

Proposition 9. CMRZs are branch-monotone and strictly branch-monotone for
the wqo ≤.

Therefore, since ≤ is a wqo:

Theorem 5. CMRZs are branch-WSTS.

Furthermore, since ≤ and −→C are decidable, and PostSC (x) is a finite, com-
putable set for all x ∈ XC , we have:

Proposition 10. CMRZs are branch-effective.

Hence, we deduce:

Theorem 6. Termination and boundedness are decidable for counter machines
with restricted zero tests.

Restrictions on FIFO Machines. Next, we consider FIFO machines.

Definition 10. A FIFO machine M with a unique channel over the finite mes-
sage alphabet A is a tuple M = (Q,A, T, q0) where Q is a finite set of control
states and q0 ∈ Q is an initial control state. Moreover, T ⊆ Q×{!, ?}×A×Q is
the transition relation, where {!}×A and {?}×A are the set of send and receive
actions, respectively.

The FIFO machine M induces the LTS SM = (XM, ΣM,→M, x0). Its set
of states is XM = Q × A∗. In (q, w) ∈ XM, the first component q denotes
the current control state and w ∈ A∗ denotes the contents of the channel. The
initial state is x0 = (q0, ε), where ε denotes the empty channel. Moreover, ΣM =
{!, ?} × A. The transitions are given as follows:

– (q, w) !a−→M (q′, w′) if (q, !a, q′) ∈ T and w′ = w · a.
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– (q, w) ?a−→M (q′, w′) if (q, ?a, q′) ∈ T and w = a · w′.

The index M may be omitted whenever M is clear from the context. When
there is no ambiguity, we confuse machines and their associated LTS.

The FIFO machine M1 from Fig. 1 is an example of a system that is branch-
WSTS but the underlying set of states is not well-quasi-ordered. We first try to
generalize a class of systems which are branch-wqo, and which includes M1.

Branch-Wqo FIFO Machines. We consider a restriction that has been stud-
ied in [4], which we go on to prove is branch-wqo. These systems are known as
input-bounded FIFO machines, which we formally define below. First, we recall
the definition of a bounded language.

Let w1, . . . , wn ∈ A+ be non-empty words where n ≥ 1. A bounded language
over (w1, . . . , wn) is a language L ⊆ w∗

1 . . . w∗
n. We let proj! : Σ∗

M → A∗ be the
homomorphism defined by proj!(!a) = a for all a ∈ A and proj!(β) = ε if β is
not of the form !a for some a ∈ A. We define proj? the same way. Using these
notions, the input language of M is defined as Linput(M) = {proj!(σ) | x0

σ−→M
x for some x ∈ XM}. Note that the input language is prefix-closed. Moreover,
the prefix language of a bounded language is a bounded language.

Definition 11. A FIFO machine M = (Q,A, T, q0) is input-bounded if its
input language Linput(M) is bounded.

Let us recall the extended prefix ordering on the states of a FIFO machine:
we let (q, w) ≤p (q′, w′) if q = q′ and w 
 w′.

Proposition 11. Input-bounded FIFO machines are branch-wqo for the prefix-
ordering ≤p.

It is clear that M1 belongs to this class of FIFO systems. But, we see that
this subclass is not branch-WSTS (cf. Figure 4). We have (q1, ε)

σ−→ (q1, a), where
σ =!b?b!a. Moreover, (q1, ε) ≤p (q1, a). However, there exists no (q1, w) such
that (q1, a) σ−→ (q1, w), and (q1, a) ≤p (q1, w). In fact, σ cannot be executed
from (q1, a). Therefore, the machine is not branch-monotone under the prefix
ordering.

Proposition 12. Input-bounded FIFO machines are, in general, not branch-
monotone for the prefix-ordering.

However, when we consider the normal form of input-bounded FIFO
machines, as defined in [4], we conjecture that they are branch-monotone for the
prefix-ordering. Furthermore, since they are input-bounded, this would imply
that they are branch-WSTS. Moreover, it was also shown in [4], that for every
input-bounded FIFO machine, one can construct an equivalent normal form
with an exponential blow-up. This would give us another method to verify if a
given machine is bounded or has a terminating run, which bypasses checking the
reachability of a state.
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q0 q1 q3 q2
!a!a

?a?a !b

?b

Fig. 4. The FIFO machine M2

q!a

!b

!(abab)?(ab)

Fig. 5. The FIFO machine M3.

Branch-Monotone FIFO Machines. We now modify the prefix-ordering fur-
ther, in order to construct another subclass of FIFO systems which are branch-
WSTS. This relation has been previously studied, notably in [12].

Definition 12. For two states (q, w) and (q′, w′) of a FIFO machine M, we
say that (q, w) R (q′, w′) if q = q′ and there exists a sequence σ ∈ Σ∗

M such that
(q, w) σ−→ (q′, w′) and

– proj?(σ) = ε, or
– w 
 w′ and (proj?(σ))ω = w.(proj!(σ))ω.

In fact, R is not a qo. It is reflexive, but not transitive:

Example 3. Consider the FIFO machine M3 in Fig. 5. Consider states x1 =
(q, a), x2 = (q, ab), and x3 = (q, abab). We represent the sequence of actions
!a!b!a!b by a single transition !abab in the figure, and omit the intermedi-
ate control-states for simplicity (and similarly, for ?ab). It is easy to see that
x1 R x2 and x2 R x3. When we consider x1 ≤p x3, we have x1

σ−→ x3, where
σ =!b(!abab)(?ab). However, (ab)ω �= a.(babab)ω, hence, x1 �R x3, and thus, the
relation is not transitive.

Earlier, we defined branch-monotony for transition systems equipped with a
quasi-ordering. We now extend the notion for transition systems with a relation.

Proposition 13. FIFO machines are branch-monotone for the relation R.

Remark 5. This monotony relation is equivalent to the one described in [15],
for FIFO systems. However, we have generalized the notion, and included it in
the framework. Hence, we can extend this notion to prove the decidability of
termination, something which was not shown earlier.

q0 q1
c=0?

Fig. 6. System M4 is branch-WSTS.

q0 q1 q2
c++ c=0?

Fig. 7. System M5 is branch-WSTS.
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4 Decidability of Coverability

Coverability Algorithms for Branch-WSTS. We show that the two existing
coverability algorithms for WSTS do not allow one to decide coverability for
branch-WSTS. Remark that, contrary to WSTS, Pre∗(↑x) is not necessarily
upward-closed. In fact, even with a single zero-test, this property is not satisfied.

In Fig. 6, let us consider the counter machine M4 with a single counter c.
Let x = (q1, 0). We see that Pre∗(↑x) = {(q1, n) | n ≥ 0} ∪ {(q0, 0)}. However,
↑Pre∗(↑x) = Pre∗(↑x) ∪ {(q0, n) | n ≥ 1}. Thus, we get:

Proposition 14. Given a branch-effective branch-WSTS S = (X,Σ,→,≤, x0)
and a state x ∈ X, the set Pre∗(↑x) is not necessarily upward-closed. Hence, we
cannot use the backward algorithm.

Let us consider using the forward algorithm instead. The second procedure
computes all sets X which satisfy the property ↓Post∗(X) ⊆ X. This is because
for WSTS, the set ↓Post∗(x) satisfies this property. However, we now show a
counter-example of a branch-WSTS which does not satisfy this property.

Consider the counter machine M5 from Fig. 7, with x0 = (q0, 0). We
compute ↓Post∗(x0). We see that Post∗(x0) = {(q0, 0), (q1, 1)}, hence, Y =
↓Post∗(x0) = {(q0, 0), (q1, 1), (q1, 0)}. However, ↓Post∗(Y ) �⊆ Y , as ↓Post∗(Y ) =
{(q0, 0), (q1, 1), (q1, 0), (q2, 0)}, which is strictly larger than Y . Hence:

Proposition 15. For branch-effective, branch-WSTS S = (X,Σ,→,≤, x0)
such that ↓Post(↓x) is computable for all x ∈ X, the set Y = ↓Post∗(x0)
does not necessarily satisfy the property ↓Post∗(Y ) ⊆ Y . Hence, the forward
coverability algorithm may not terminate.

We can deduce:

Proposition 16. For branch-WSTS, both the backward coverability algorithm
and the forward coverability algorithm do not terminate, in general.

Not only the two coverability algorithms do not terminate but we may prove
that coverability is undecidable.

Theorem 7. The coverability problem is undecidable for branch-effective
branch-WSTS S = (X,Σ,→,≤, x0) (even if S is strongly monotone and ≤ is
wqo).

Proof. We use the family of systems given in the proof of Theorem 4.3 [11]. Let
us denote by TM j the jth Turing Machine in some enumeration. Consider the
family of functions fj : N2 → N

2 defined by fj(n, k) = (n, 0) if k = 0 and TMj

runs for more than n steps, else fj(n, k) = (n, n + k). Let g : N2 → N
2 be the

function defined by g(n, k) = (n+1, k). The transition system Sj induced by the
two functions fj and g is strongly monotone hence it is also branch-monotone.
Moreover, system Sj is branch-effective and we observe that Post is computable
and ≤ is wqo. Now, we have (1, 1) is coverable from (0, 0) in Sj iff TM j halts.
This proves that coverability is undecidable. ��
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q0q1 q2q3
c=0?

c++
c−− c++

c++

Fig. 8. Machine M6 is cover-monotone. However, if we modify the system such that
the initial state (q0, 1), then it is not cover-monotone.

Decidability of Coverability. We show that coverability is decidable for a
class of systems with a wqo but with a restricted notion of monotony. We define
CoverS(x) = ↓Post∗S(x). Let us consider the following monotony condition.

Definition 13 (cover-monotony). Let S = (X,Σ,→,≤, x0) be a system. We
say that S is cover-monotone (resp. strongly cover-monotone) if, for all y1 ∈
CoverS(x0) and for all x1, x2 ∈ X such that x1 ≤ y1 and x1 −→ x2, there exists
a state y2 ∈ X such that y1

∗−→ y2 (resp. y1 −→ y2) and x2 ≤ y2.

Let us emphasize that cover-monotony of a system S = (X,Σ,→,≤, x0) is
a property that depends on the initial state x0 while the usual monotony does
not depend on any initial state (see Fig. 8).

Remark 6. The strong cover-monotony property is not trivially decidable for
general models while (usual) strong-monotony is decidable for many powerful
models like FIFO machines and counter machines. However, this notion is still of
theoretical interest, as it shows that we can relax the general monotony condition.

However, there is a link between general monotony and cover-monotony.

Proposition 17. A system S = (X,Σ,→,≤) is monotone iff for all x0 ∈ X,
(X,Σ,→,≤, x0) is cover-monotone.

We may now define cover-WSTS as follows.

Definition 14 (Cover-WSTS). A cover-WSTS is a finitely branching cover-
monotone system S = (X,Σ, →,≤, x0) such that (X,≤) is wqo.

For cover-WSTS, the backward algorithm fails. This is once again because
the presence of a single zero test removes the property of the set being upward-
closed. But we will now show that the forward coverability approach is possible.

Proposition 18. Given a system S = (X,Σ,−→,≤, x0) and a downward-closed
set D ⊆ X such that ↓Post(D) ⊆ D, then we have the inclusion ↓Post∗(D) ⊆ D.

Let us define a particular instance of the coverability problem in which we
verify if a state is coverable from the initial state.

Definition 15. Given a system S = (X,Σ,−→,≤, x0). The x0-coverability prob-
lem is: Given a state y ∈ X, do we have y ∈ ↓Post∗S(x0) ?

We show that x0-coverability is decidable for cover-WSTS:
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Theorem 8. Let S = (X,Σ,→,≤, x0) be an ideally effective cover-WSTS such
that Post is computable. Then, the x0-coverability problem is decidable.

Proof. Consider a system S = (X,Σ,→,≤, x0) that is cover-WSTS, and let us
consider a state y ∈ X. To find a certificate of coverability (if it exists), we
cannot use Procedure 1 since general monotony is not satisfied and then, in
general, ↓Post∗(x0) �= ↓Post∗(↓x0) but we can use a variation of Procedure 1,
where we iteratively compute x0, Post(x0), Post(Post(x0)), and so on, and at
each step check if y ≤ x for some x in the computed set. This can be done
because S is finitely branching and the sets Postk(x0) are computable for all
k ≥ 0. Hence, if there exists a state that can cover y reachable from x0, it will
eventually be found.

Now, let us prove that Procedure 2 terminates for input y iff y is not coverable
from x0. If Procedure 2 terminates, then at some point, the while condition
is not satisfied and there exists a set D such that y /∈ D and x0 ∈ D and
↓Post(D) ⊆ D. Moreover, ↓Post∗(I) ⊆ I for every inductive invariant I (see
Proposition 18). Hence, CoverS(x0) ⊆ D, therefore, since y /∈ D, we deduce
that y �∈ CoverS(x0) and then y is not coverable from x0.

Note that every downward-closed subset of X decomposes into finitely many
ideals since (X,≤) is wqo. Moreover, since S is ideally effective, ideals of X may
be effectively enumerated. By [2] and [3], for ideally effective systems, testing of
inclusion of downward-closed sets, and checking the membership of a state in a
downward-closed set, are both decidable.

To show the opposite direction, let us prove that if y is not coverable from
x0, the procedure terminates. It suffices to prove that CoverS(x0) is an induc-
tive invariant. Indeed, this implies that CoverS(x0) is eventually computed by
Procedure 2 when y is not coverable from x0.

Let us show ↓Post(CoverS(x0)) ⊆ CoverS(x0). Let b ∈ ↓Post(CoverS(x0)).
Then, there exists a′, a′, b′ such that x0

∗−→ a′, a′ ≥ a, a −→ b′ and b′ ≥ b.
Furthermore, a′, a ∈ Cover(x0). Hence, by cover-monotony, there exists b′′ ≥ b′

such that a′ ∗−→ b′′. Therefore, x0
∗−→ b′′ and b′′ ≥ b′ ≥ b, hence, b ∈ CoverS(x0).

Hence, the x0-coverability problem is decidable. ��
Theorem 9. The coverability problem is undecidable for cover-WSTS.

Proof. Given any counter machine C = (Q,V, T, q0), let SC = (X,AC ,−→,≤, x0)
be its transition system equipped with the natural order on counters. We can
construct a system S ′ = (X ′, AC ,→′,≤, x′

0) such that S ′ is cover-monotone, and
any state x ∈ X is coverable iff it is also coverable in X ′. The construction is
as follows. We add a new control state q from the initial state in the counter
machine (q0) reachable via an empty transition, therefore, X ′ = X ∪ {(q, 0)}.
This new control state is a sink state, i.e. there are no transitions from q to any
other control state (except itself). Moreover, we let x′

0 = (q, 0). Note that S ′ is
cover-monotone, because there is no state reachable from x′

0, hence, the prop-
erty is vacuously satisfied. However, for all other states, as we leave the system
unchanged, we see that a state x is coverable in S by a state y iff it is coverable in
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S ′. Hence, coverability for counter machines reduces to the coverability problem
for cover-WSTS, and coverability is therefore, undecidable for cover-WSTS. ��

5 Conclusion

We have tried to relax the notions of monotony and of the wellness of the quasi-
ordering which were traditionally used to define a WSTS. We observed that
we do not need the wellness of the quasi-ordering or monotony between all
states. By relaxing the conditions to only states reachable from one another,
thus defining what we call branch-WSTS, we are still able to decide termination
and boundedness. Furthermore, some systems that have been studied recently
have been shown to belong to this class, which adds interest to this relaxation.

However, as coverability is undecidable for branch-WSTS, the notion of cov-
erability seems to require a stricter condition than what we define for branch-
WSTS. This leads us to introduce a different class of systems, incomparable to
branch-WSTS, which we call cover-WSTS. These systems relax the condition
of monotony to only states within the coverability set, while still retaining the
decidability of a restricted form of coverability.

As future work, other systems that belong to these classes can be studied.
It would also be interesting to see if the branch-WSTS relaxation translates to
better hope for usability of WSTS and relaxations as a verification technique.
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31st International Conference on Concurrency Theory, CONCUR 2020, Septem-
ber 1–4, 2020, Vienna, Austria (Virtual Conference). LIPIcs, vol. 171, pp. 31:1–
31:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/
10.4230/LIPIcs.CONCUR.2020.31

8. Dufourd, C., Finkel, A., Schnoebelen, P.: Reset nets between decidability and
undecidability. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998.
LNCS, vol. 1443, pp. 103–115. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0055044
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