
Mohammad Reza Mousavi
Anna Philippou (Eds.)

LN
CS

 1
32

73

42nd IFIP WG 6.1 International Conference, FORTE 2022
Held as Part of the 17th International Federated Conference 
on Distributed Computing Techniques, DisCoTec 2022
Lucca, Italy, June 13–17, 2022, Proceedings

Formal Techniques 
for Distributed Objects, 
Components, and Systems



Lecture Notes in Computer Science 13273

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873


More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558


Mohammad Reza Mousavi ·
Anna Philippou (Eds.)

Formal Techniques
for Distributed Objects,
Components, and Systems
42nd IFIP WG 6.1 International Conference, FORTE 2022
Held as Part of the 17th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2022
Lucca, Italy, June 13–17, 2022
Proceedings



Editors
Mohammad Reza Mousavi
King’s College London
London, UK

Anna Philippou
University of Cyprus
Nicosia, Cyprus

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-08678-6 ISBN 978-3-031-08679-3 (eBook)
https://doi.org/10.1007/978-3-031-08679-3

© IFIP International Federation for Information Processing 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-4869-6794
https://doi.org/10.1007/978-3-031-08679-3


Foreword

The 17th International Federated Conference on Distributed Computing Techniques
(DisCoTec 2022) took place in Lucca from June 13 to June 17, 2022. It was organised by
the IMT School for Advanced Studies Lucca. The DisCoTec series is one of the major
events sponsored by the International Federation for Information Processing (IFIP),
the European Association for Programming Languages and Systems (EAPLS), and the
Microservices Community. DisCoTec 2022 comprised three conferences:

– COORDINATION, the IFIP WG 6.1 24th International Conference on Coordination
Models and Languages

– DAIS, the IFIP WG 6.1 22nd International Conference on Distributed Applications
and Interoperable Systems

– FORTE, the IFIP WG 6.1 42nd International Conference on Formal Techniques for
Distributed Objects, Components and Systems

Together, these conferences covered a broad spectrum of distributed computing sub-
jects, ranging from theoretical foundations and formal description techniques to systems
research issues. As is customary, the event also included several plenary sessions in addi-
tion to the individual sessions of each conference, which gathered attendants from the
three conferences. These included joint invited speaker sessions and a joint session for
the best papers from the three conferences.

The DisCoTec 2022 invited speakers were:

– Muffy Calder, University of Glasgow, UK
– Maarten van Steen, University of Twente, The Netherlands
– Luca Viganò, King’s College London, UK

Associated with the federated event, five satellite events took place:

– BlockTEE 2022: Workshop on Blockchain Technologies and Trusted Execution
Environments

– CoMinDs 2022: Workshop on Collaborative Mining for Distributed Systems
– FOCODILE 2022: Workshop on the Foundations of Consensus and Distributed
Ledgers

– ICE 2022: Workshop on Interaction and Concurrency Experience
– REMV 2022: Workshop on Robotics, Electronics and Machine Vision

Moreover, we also had a number of short tutorials on hot topics:

– An Introduction to Spatial Logics and Spatial Model Checking by Vincenzo Ciancia
– A Gentle Adventure Mechanising Message Passing Concurrency Systems by David
Castro-Perez, Francisco Ferreira, Lorenzo Gheri, and Martin Vassor
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– Smart Contracts in Bitcoin and BitML by Massimo Bartoletti and Roberto Zunino
– TheΔQ Systems Development Paradigm by Neil Davies, Seyed Hossein Haeri, Peter
Thompson, and Peter Van Roy

– ChorChain: AModel-driven Approach for Trusted Execution ofMulti-party Business
Processes on Blockchain by Alessandro Marcelletti

Of course, all of this could not be done without the precious work of the Program
Committees of the three main conferences and the five workshops, and of the Steering
Committee and Advisory Boards. Many thanks to all of them, they are too many to
mention. However, I would like to thank personally the Program Committee Chairs of
the main conferences, namely Maurice ter Beek and Marjan Sirjani (for Coordination),
David Eyers and Spyros Voulgaris (for DAIS), and Mohammad Mousavi and Anna
Philippou (for FORTE). They have managed to select an excellent set of research papers.

The organization of DisCoTec 2022 was only possible thanks to the dedicated work
of the Organizing Committee, including Marinella Petrocchi, Simone Soderi, Francesco
Tiezzi (Workshops and Tutorials Chair) and Giorgio Audrito (Publicity Chair). But a
special thanks has to go to Letterio Galletta, the Chair of the Local Organizing Commit-
tee, who, in many cases, because of my absence, acted also as General Chair. Finally, I
would like to thank IFIP WG 6.1, EAPLS, and the Microservices Community for spon-
soring this event, Springer’s Lecture Notes in Computer Science team for their support
and sponsorship, EasyChair for providing the reviewing framework, and the IMT School
for providing the support and the infrastructure to host the event.

June 2022 Rocco De Nicola



Preface

This volume contains the papers presented at the 42nd IFIPWG6.1 International Confer-
ence on Formal Techniques for Distributed Objects, Components, and Systems (FORTE
2022), held as one of three main conferences of the 17th International Federated Confer-
ence on Distributed Computing Techniques (DisCoTec 2022) during June 13–17, 2022.
The conference was organized by the IMT School for Advanced Studies Lucca.

FORTE is a well-established forum for fundamental research on theory, models,
tools, and applications for distributed systems, with special interest in

– Component- and model-based design
– Cyber-physical systems, autonomous systems, and AI-enabled systems design and
trustworthiness

– Object technology, modularity, software adaptation
– Self-stabilization and self-healing/organizing
– Software quality, reliability, availability, and safety
– Security, privacy, and trust in distributed and/or communicating systems
– Service-oriented, ubiquitous, and cloud computing systems
– Verification, validation, formal analysis, and testing of the above.

The Program Committee received a total of 28 submissions, written by authors from
19 different countries. Of these, 12 papers were selected for inclusion in the scientific
program. Each submission was reviewed by at least three Program Committee members
with the help of 18 external reviewers in selected cases. The selection of accepted sub-
missions was based on electronic discussions via the EasyChair conferencemanagement
system.

As program chairs of FORTE 2022, we actively contributed to the selection of the
keynote speakers for DisCoTec 2022:

– Muffy Calder, University of Glasgow, UK
– Maarten van Steen, University of Twente, The Netherlands
– Luca Viganò, King’s College London, UK

We are most grateful to Muffy Calder for accepting our invitation to be the FORTE-
related keynote speaker. This volume contains the abstract of her talk entitled “30+ years
of FORTE research: a personal perspective”.

Wewish to thank all the authors of submitted papers, all the members of the Program
Committee for their thorough evaluations of the submissions, and the external reviewers
who assisted the evaluation process. We would also like to express our appreciation to
the Steering Committee of FORTE for their advice and suggestions. Last but not least,
we thank the DisCoTec General Chair, Rocco De Nicola, and his organization team for
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their hard, effective work in providing an excellent environment for FORTE 2022 and
all other conferences and workshops.

June 2022 Mohammad Reza Mousavi
Anna Philippou
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30+ Years of FORTE Research: A Personal Perspective
(Abstract of Invited Talk)

Muffy Calder

University of Glasgow
muffy.calder@glasgow.ac.uk

I attended the first FORTE conference in Scotland in 1988, and have published in several
FORTE conferences since then. Over the past 34 years the field has changed, and so has
my own research.Using six example applications, from1989 to 2020, I reflect on howmy
own research in fundamental research on theory, models, tools for distributed systems
has evolved, and where we might focus research in the future.
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Monitoring Hyperproperties with Circuits

Luca Aceto1,3, Antonis Achilleos1, Elli Anastasiadi1(B),
and Adrian Francalanza2

1 ICE -TCS, Department of Computer Science, Reykjavik University, Reykjavik,
Iceland

{luca,antonios,elli19}@ru.is
2 Department of Computer Science, University of Malta, Msida, Malta

adrian.francalanza@um.edu.mt
3 Gran Sasso Science Institute, L’Aquila, Italy

luca.aceto@gssi.it

Abstract. This paper presents an extension of the safety fragment of
Hennessy-Milner Logic with recursion over sets of traces, in the spirit of
Hyper-LTL. It then introduces a novel monitoring setup that employs
circuit-like structures to combine verdicts from regular monitors. The
main contribution of this study is the definition of the monitors and
their semantics, as well as a monitor-synthesis procedure from formulae
in the logic that yields ‘circuit-like monitors’ that are sound and violation
complete over a finite set of infinite traces.

1 Introduction

The field of runtime verification concerns itself with providing methods for check-
ing whether a system satisfies its intended specification at runtime. This runtime
analysis is done through a computing device called a monitor that observes the
current run of a system in the form of a trace [4,12]. Runtime verification has
recently been extended to the setting of concurrent systems [1,5,7,16] with sev-
eral attempts to specify properties over sets of traces, and to introduce novel
monitoring setups [2,6,11]. A centerpiece in this line of work has been the spec-
ification logic Hyper-LTL [9]. Intuitively Hyper-LTL allows for existential and
universal quantification over a set of traces (which describes the set of observed
system runs). The properties over one trace are stated in LTL, with free trace
variables, and then made dependent on properties of other traces via the quan-
tification that binds the trace variables.

We define the linear-time specification logic Hyper-μHML, as a counter-
part to Hyper-LTL, building on previous studies of monitorability and monitor

The authors were supported by the projects ‘Open Problems in the Equational Logic of
Processes’ (OPEL) (grant No 196050–051) and ‘Mode(l)s of Verification and Monitora-
bility’ (MoVeMent) (grant No 217987) of the Icelandic Research Fund, and ‘Runtime
and Equational Verification of Concurrent Programs’ (ReVoCoP) (grant No 222021),
of the Reykjavik University Research Fund. Luca Aceto’s work was also partially sup-
ported by the Italian MIUR PRIN 2017 project FTXR7S IT MATTERS ‘Methods and
Tools for Trustworthy Smart Systems’.

c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
M. R. Mousavi and A. Philippou (Eds.): FORTE 2022, LNCS 13273, pp. 1–10, 2022.
https://doi.org/10.1007/978-3-031-08679-3_1
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2 L. Aceto et al.

synthesis for μHML [1,13], which are necessary for the kind of correctness and
complexity guarantees we aim to achieve in this work. However, just like Hyper-
LTL, Hyper-μHML can define dependencies over different traces, which intu-
itively causes extra delays in the processing of traces as the properties observed
on one of them can impact what is expected for another. For example, if a prop-
erty requires that an event of a trace is compared against an event occurring in
all other traces then the processing cost of this event becomes dependent on the
number of traces. In this approach, we keep the processing-at-runtime cost (as
defined in [17]) minimal by restricting the type of properties verified to a natural
fragment of Hyper-μHML, but applying no assumptions on the system under
scrutiny. This comes in contrast with the existing research, where the runtime
verification of such properties is dealt with via a plethora of modifications and
assumptions made over the monitoring setup, such as being able to restart an
execution or having access to all executions of a system.

Our monitor setup is engineered for the studied fragment of the specification
language, by utilizing circuit-like structures to combine verdicts over different
traces. The fragment of the logic restricts the amount of quantification that can
be applied to the properties of individual traces and thus limits the dependencies
between them. This naturally induces circuits with monitors from [1] as input
nodes and simple kinds of gates at the higher levels, with the resulting structure
having constant depth with respect to the corresponding formula, which is con-
sidered efficient in the field of parallel computation [14]. Thus, each step taken
by such a monitor in response to an event of the system under scrutiny takes
constant time, which makes the monitors ‘real time’ in the sense of [17].

2 The Logic

Our logic is defined in the style of Hyper-LTL as presented in [9]. The quantifica-
tion among traces remains the same, but the language in which local trace prop-
erties are stated is μHML. We consider the following restriction to a multi-trace
sHML logic (the safety fragment of μHML [1]), with no alternating quantifiers,
called Hyper1-sHML. We can similarly define the cHML (co-safety) fragment,
and the HML fragment.

Definition 1. Formulae in Hyper1-sHML are constructed by the following
grammar:

ϕ ∈ Hyper1-sHML :: = ∃πψ | ∀πψ | ϕ � ϕ | ϕ � ϕ

where ψ stands for a formula in sHML and π is a trace variable from an infinite
suppy of trace variables V. � and � stand for the regular ∨ and ∧ boolean con-
nectives, only usable at the top syntax level. Although the syntactic distinction
is cosmetic, it allows us to keep the synthesis function in Definition 4 clearer.

Semantics. The semantics of Hyper-μHML is given over a finite set of infinite
traces T over Act and it is a natural extension of the linear-time semantics
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of μHML. The existential and universal quantification happens via the trace
variable π which ranges over the traces in T . The extension of the μHML linear-
time semantics from [1] to the Hyper-μHML semantics is done in the style of
Hyper-LTL. This semantics applies to Hyper1-sHML, which is a fragment of
Hyper-μHML. We only consider closed formulae in Hyper1-sHML and for these
we use the standard notation T |= ϕ to mean that a set of traces T satisfies ϕ
(and similarly for T 	 |= ϕ).

Example 1. The Hyper1-sHML formula ∀π[a]ff�∃π[b](max x.([a]ff ∧ [b]x)),
over the set of actions {a, b}, states that for any set of traces T , none of the
traces in T start with a, and bω ∈ T .

3 The Monitors

The intuition behind our monitor design is the following (we recommend follow-
ing this intuition along with the example given in Fig. 1). Over a finite set of
traces T we instrument a circuit-like structure. Each trace t ∈ T is assigned a
fixed set of regular monitors that correspond to the properties in sHML to be
verified. These regular monitors are connected with simple gates which evaluate
to yes, no or end based on the verdicts produced by their associated regular
monitors. Once some of these gates start evaluating to verdicts, they communi-
cate with more complex gates, connected in a circuit-like graph, which propagate
input verdicts though logic operations until the root node of the circuit reaches
a verdict as well. The formal definition of a circuit monitor is given in the style
of computational complexity circuits [18, Definition 1.10].

Definition 2. The language Cmonk of k-ary monitors, for k > 0 is given
through the following grammar:

M ∈ Cmonk :: =
∨

[m]k |
∧

[m]k | M ∨ M | M ∧ M

m :: = yes | no | end | a.m, a ∈ Act | m + n | rec x.m | x

Cmon is the collection of infinite sequences (Mi)i∈N of terms that are generated
by substituting k = i,∀i ∈ N, in a term M in Cmonk .

We use M,M ′ . . . to denote the monitors (infinite sequences of terms gen-
erated by the first line of this grammar), and refer to them as circuit monitors,
and m1,m2 . . . to denote the regular monitors described by the second line. The
notation [m]k corresponds to the parallel dispatch of k identical regular monitors
m, where k = |T |, with T = {t1, . . . , tk}.

Given a monitor M ∈ Cmon, we will call each syntactic sub-monitor of M a
gate. For example, we have inductively that over the monitor M ′ ∨ M ′′ we have
the gates M ′ ∨ M ′′ and all gates contained in monitors M ′, and M ′′, while for
the monitor

∨
[m]k we have the gates

∨
[m]k and gates m[i] for i ∈ {1, . . . , k}.

For M ∈ Cmon we define a set of program variables GM , where one variable
gM ′ is assigned to each gate M ′ of M .



4 L. Aceto et al.

For readability purposes we will be omitting the naming g of the program
variables and call them by the name of the gate they represent. We use m[i]

to mean the regular monitor m instrumented over the trace ti. It is important
here to see that gm[i] will be the name of the gate assigned to one such monitor
and stays unchanged while the actual monitor advances its computation as trace
events are read. This will be clarified later, through the instrumentation rules.

A program variable related to gate M , can be assigned the following values:
yes, no, end, and j, with j ∈ {0, . . . , 2(�+1)−1}, � being the number of immediate
syntactical sub-monitors of gate M . Number j is encoded in binary, and is used
to carry the information of which sub-gates have given some verdict (this means
that the encoding of j has �+1 bits). The value of the �+1-th bit of j is reserved
to encode that one of the sub gates has outputted an end. The information that
j carries is very important for the evaluation of a gate, as often this evaluation
depends on the verdicts of more that one sub-gate, as well as what these verdicts
are (see Fig. 1). A variable gm can only take the values yes, no and end, produced
by the relevant monitor instrumented over a trace.

A configuration of monitor M is an array sM containing a value for all
program variables g of M . We denote the set of all configurations for a monitor
M as SM . We use the notation s[M\i] to denote the update of a configuration
s where gate M stores some value j to one where the i-th coordinate of j is 0,
while all other variables have the value they had in configuration s. Similarly, we
use the notation s[M\endi] to refer to a configuration where the update s[M\i]
has taken place and the value of the � + 1-th bit of j is set to 1, and we also use
the notation s[v/M] with v ∈ {yes, no, end}, to mean a configuration where the
value of the variable for gate M is updated to v,

All gate variables in a circuit monitor are initialized to 2� − 1 (a sequence
of �-many zeros), to represent that all sub-gates are waiting to give some output
and sMinit

stands for the initial configuration of M . Since M is a family of
circuits, we have that the initial configuration of each monitor Mi in the family
corresponds to a different initial configuration sMi−init

.
Example 2. In Fig. 1, we give an example of a circuit monitor and its evaluation.
Semantics. The semantics of a regular monitors is as presented in [1]. Each
regular monitor corresponds to an LTS, and a transition labeled with a ∈ Act
corresponds to a regular monitor observing the event a when instrumented with
a system p that produces it. The semantics of a circuit monitor is given as a
transition relation −→⊆ SM × SM and the instrumentation � takes place over a

set of regular monitors −→m instrumented over a set of traces T , denoted M(T ).
We define M(T ) := sM|T |−init

� −→m[i] � T , where −→m is the set of regular
monitors that occur in M , and −→m[i] is −→m, instrumented over the trace ti ∈ T.
When m is a regular monitor then � stands for the existing instrumentation
relation from [1]. The transition and instrumentation relations are defined as
the least ones that satisfy the axioms and rules in Fig. 2. Due to lack of space,
we only include the rules giving the semantics of the

∨
[m]k monitor. Those for

the other operators follow the same structure. The proof in Appendix A could
help with the understanding of the more intricate instrumentation rules.
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{11}
sM3−init −→∗

{111} {111}

m1,1 m2,1 m1,2 m2,2 m1,3 m2,3

aω b.a.bω
bω

no
{01}sM

no
{100} {011}

no no yes m2,2 yes m2,3

aω a.bω
bω

Fig. 1. The circuit monitor for the formula from Example 1, over T = {aω, b.a.bω, bω}.

Monitor semantics:

s[m[i]] = yes

s → s[yes/
∨

[m]k]
s[m[i]] = no

s → s[
∨

[m]k\i]

s[m[i]] = end

s → s[
∨

[m]k\endi]

s[
∨

[m]k] = 0

s → s[no/
∨

[m]k]

s[
∨

[m]k] = 2k

s → s[end/
∨

[m]k]

Instrumentation:

m
τ−→ m′

m � t
τ−→ m′ � t

m
a−→ m′

m � a.t
a−→ m′ � t

∀j ∈ {1, . . . r}, mj[i] � t
a−→ m′

j[i] � t′

s � (−→m � T ) → s � (−→m[m′
j[i]/mj[i], ∀j] � T [t′/t])

s −→ s′

s � (−→m � T ) → s′ � (−→m � T )
s � (−→m � T ) → s � (−→m[v/nj[i]] � T [t′/t])

s � (−→m � T ) → s[v/gmj[i] ] � (−→m[v/nj[i]] � T [t′/t])

Fig. 2. Operational semantics of processes in Cmon.

A monitor is required to be correct with respect to some specification for-
mula ϕ. The notions of correctness we use in this work are defined below.

Definition 3. Given a monitor M ∈ Cmon, and a set of traces T .

– M rejects T (resp. accepts T ) denoted rej(M,T ) (resp. acc(M,T )) iff
M(T ) →∗ s �−→n �T ′ for some s,−→n , T ′, where s[M ] = no (resp. s[M ] = yes).

– Given a formula ϕ ∈ Hyper-μHML, M is sound for ϕ if ∀T , acc(M,T ) =⇒
T |= ϕ, and rej(M,T ) =⇒ T 	 |= ϕ.

– M is violation complete for ϕ if ∀T , T 	 |= ϕ =⇒ rej(M,T ).

Synthesis: Given a formula ϕ in Hyper1-sHML, We synthesize a circuit monitor
M through the following recursive function Syn(−) : Hyper1-sHML → Cmon.
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Definition 4 (Circuit Monitor Synthesis).

Syn(∃πϕ) =
∨

[m(ϕ)]k Syn(∀πϕ) =
∧

[m(ϕ)]k

Syn(ϕ1 � ϕ2) = Syn(ϕ1) ∨ Syn(ϕ2) Syn(ϕ1 � ϕ2) = Syn(ϕ1) ∧ Syn(ϕ2)

Where m(−) is the monitor synthesis function for sHML defined in [1].

Proposition 1. Given a formula ϕ in Hyper1-sHML, we have Syn(ϕ) is a
sound and violation-complete monitor for ϕ.

Proof. The proof is by induction on the structure of ϕ. We present here a charac-
teristic case and give more details for some of them in the Appendix A. Assume
that ϕ = ∃πψ, with ψ ∈ sHML and that we have a set of traces T s.t. T 	 |= ϕ.
From the semantics of Hyper1-sHML, we have that ti 	 |= ψ, for all traces ti
in T . However ψ ∈ sHML and thus from [1] we get that mψ is a violation com-
plete monitor for ψ. This means that for all ti ∈ T , there exist t′i ∈ Act∗ and
t′′i ∈ Actω, such that ti = t′i.t

′′
i , such that the monitor mψ rejects t′i.

From the rules in Fig. 2 we see that each gate gmψ[i] will reach the value
no as enough events over the trace t′i will occur. I.e. sM � −−−→mψ[i] � T →∗ sM �
−→m[i][no/m[i]] � T [t′′

i /ti], witch propagates to the evaluation of gm[i] to no, for all
i. We now study the transitions sM [no/gmψ [i]] since those can be then composed
with this instrumentation via the fourth instrumentation rule. Applying the SOS
rules yields that the update \i takes place for all i at the gate

∨
[m]k which means

that the value of j stored in it becomes 0. This finally yields that the value of
the final gate

∨
[m]k becomes 0, i.e. sM [no/gm[i] ∀i] → sM [no/

∨
[m]k]. Since this

transition can be composed with the discussed instrumentation we have that
sM � −−−→mψ[i] � T → sM [no/g∨

[mψ ][i]
] � −→n � T ′ for some −→n and T and we are done. ��

3.1 Runtime Costs

The monitor synthesis in Definition 4 provides a family of circuits that can be
instrumented appropriately on an arbitrary set of traces to analyze the events
occurring in them. Ideally, the runtime cost of monitoring resulting from our
constructions should be bounded by a constant that does not depend on the
parameters of the system (such as the number of available traces, or of the
events observed so far) [17]. In this way, if a monitor is launched along with the
system components, it will only induce a feasible computational overhead.

We already know that the regular monitors instrumented with individual
traces analyze the system events they observe with a constant overhead [13].
Regarding the computational cost of the circuit part, since we are given k many
traces, it must be that the necessary computation performed from a circuit
monitor can be performed in parallel, distributed over the components that
produced the traces in the first place. This means that we can only concern
ourselves with the circuit complexity [18] of a given monitor, which encapsulates
the parallel processing power necessary for its evaluation.
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We now observe the synthesis function. There, a formula ϕ in Hyper1-
sHML will be turned into a family of circuit monitors where, for each connective
of the original formula ϕ, the output monitor increases in size based on the size
for the monitors of the sub-formulae of ϕ. However, for each connective of the
formula, the depth of the circuit is only increased by 1 which means that the
output circuit monitor has a depth bounded by the size of the formula ϕ. Since
the gates of the output monitor can have either a fixed amount of sub-gates
(∨,∧), or k many (

∨
,
∧

), we have that the output circuit is in the complexity
class AC0 [18]. Thus, the monitor only adds a constant computational overhead
when executed over the computational resources of the distributed components
of the system.

4 Conclusion and Future Work

We expect that the fragment Hyper1-sHML is maximal with respect to vio-
lation completeness, which means that any monitor in Cmon is monitoring for
a formula in Hyper1-sHML. However, the ultimate goal of this work is to
extend the collection of monitorable properties by allowing alternating quanti-
fiers in the syntax. This is a very important aspect of any work in this field, as
the more interesting hyperproperties, such as the property “at all times, if one
trace encounters the event p then all traces do so as well” which is a necessary
component for the expression of properties such as noninference [8,15], require
alternation of quantifiers.

A way to tackle this would be to project such properties into the Hyper1-
sHML fragment. However this procedure is not formally yet defined, or trivial
and one could argue that since every hyperproperty has been shown ([9]) to
be the intersection of a liveness and a safety hyperproperty, (and since liveness
and safety properties are widely accepted as independent [3]), an elimination of
alternating quantifiers can only take place in very few cases. Thus, our main
purpose is to extend the logic and the consequent monitors in order to express
and monitor for the most general class of such properties. The main objective of
the logical fragment we give here is to establish a formal baseline which we will
attempt to extend in future work.

Our approach to an extension would be to allow a notion of synchronization
rounds among the regular monitors (or equivalently a round of communication).
This would enable more complex dependencies between traces, as now the prop-
erties required of a given trace can be impacted by the state of the ones monitored
for on a different one. However, the analysis of communications among the mon-
itors is a complicated extension, as their exact content plays a significant role to
our insight over the system, as well as the processing at runtime cost. We plan
to implement this therefore by utilizing dynamic epistemic logic [10] in order to
perform this extension formally and soundly.
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A Appendix: Cases for the Proof of Violation
Completeness

Here we give some more insight on the remaining cases of the violation com-
pleteness proof. First we highlight that the second base case of our proof, for
formulae of the form ∀πψ is completely analogous to the one we give and thus
omitted.

We will here give an important lemma necessary for analyzing both remain-
ing cases, and then present the high level details for the case of �. The intuition of
the importance of the lemma is that the monitors Syn(ϕ1) and Syn(ϕ2) should
not have their computation affected from the fact that they are run in parallel
over a set of traces T .

Lemma 1. If

– sM1 � −→m1[i] � T → s′
M1

� −→m1[i]′ � T ′, and
– sM2 � −→m2[i] � T → s′

M2
� −→m2[i]′ � T ′

then

– sM1∨M2 � −−→m12[i] � T → s′
M1∧M2

� −−→m12[i]′ � T ′, and
– sM1∧M2 � −−→m12[i] � T → s′

M1∧M2
� −−→m12[i]′ � T ′,

where −−→m12 = −→m2 ∪ −→m2 and −−→m12
′ = −→m2

′ ∪ −→m2
′ respectively.

Proof. We note here that a configuration for sM1∨M2 is identical to one for
sM1∧M2 except the root variable, as all other variables they both contain are
s′

M1
∪ s′

M2
.

The key aspect of this proof is the third rule of the instrumentation relation.
There we can see that in order for a configuration instrumented over a set of
regular monitors, instrumented over a set of traces, can only advance its com-
putation, if all monitors instrumented over the same trace progress with their
computation synchronously by reading the next trace event.

Thus, form the assumptions of this lemma we get that for all j = {1, . . . r},
where r is the total amount of different regular monitors occurring in M1 and
M2 the premise of our rule is satisfied and thus the cumulative configuration of
variables amounting for the union of variables of the two circuit monitors M1

and M2 (including the root variable), can perform the necessary transition to
the new state, where all regular monitors (those both from M1 and M2) assigned
to trace ti have processed the event a, and we are done. ��

Having the above lemma streamlines our inductive step for the rest of the
cases. Assuming a non-base-case formula in Hyper1-sHML we can clearly see
that it must be of the form ϕ = ϕ1�ϕ2 or ϕ = ϕ1�ϕ2. We only analyze one of the
two cases as they are symmetrical. For any set of traces T , such that T 	 |= ϕ,
from the semantics of Hyper1-sHML, we have that T 	|= ϕ1 and T 	 |= ϕ2.
Since the synthesized monitor for ϕ1 � ϕ2 can reach a configuration where the
values of the gates for Syn(ϕ1) and Syn(ϕ2) are the same as they would be
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for the individual monitors instrumented over T , and by inductive hypothesis
(which guarantees that Syn(ϕ1) and Syn(ϕ2) are violation-complete) we have
necessary conclusion by combining the two negative verdicts of the individual
monitors via the semantics. ��
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Abstract. This paper proposes an approach to formally verify XACML
policies using the process algebra mCRL2. XACML (eXtensible Access
Control Markup Language) is an OASIS standard for access control sys-
tems that is much used in health care due to its fine-grained, attribute-
based policy definitions, useful in dynamic environments such as emer-
gency wards. A notorious problem in XACML is the detection of conflicts,
which arise especially when combining policies, such as when health insti-
tutions merge. Our formal translation of XACML policies into mCRL2,
using our automated tool XACML2mCRL2, enables us to verify the
above property, called consistency, as well as other policy properties such
as completeness and obligation enforcement. Verifying policy properties
statically allows us to resolve inconsistencies in advance, thus avoiding
situations where an access request is denied in a critical situation (e.g.,
in an ambulance, when lives may be put in danger) just because of incom-
plete or inconsistent policies. The mCRL2 toolset is especially useful for
modeling behaviors of interactive systems, where XACML would be only
one part. Therefore, we verify an access control system together with the
intended health care system that it is supposed to protect. For this, we
exemplify how to verify safety and liveness properties of an assisted living
and community care system.
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that only authorized users get access to resources of a system. One of the more
recent and expressive access control models is the Attribute-Based Access Con-
trol (ABAC) [18,24], which provides fine-grained protection based on attributes
of subject, object, and action. ABAC offers numerous advantages over conven-
tional access control models and has reached the maturity of OASIS standards
with the eXtensible Access Control Markup Language (XACML) [24] and the
Security Assertion Markup Language (SAML) [8].

In this paper we focus on e-Health, were ABAC is a popular choice due to the
flexibility given by the attributes and the way they cater for fine-grained access
control in emergencies [3,15,27]. ABAC can handle quite complex access poli-
cies, such as for collaborative access control, where multiple subjects are involved
(e.g., a doctor needs to be present/logged-in in order for a nurse to perform a
procedure). An important feature of the XACML standard architecture is the
use of obligations to perform actions before granting/denying access. For exam-
ple, detailed auditing of health-care processes (such as administering medicines,
preparing operation rooms, or home visits) can be done using obligations.

At the heart of ABAC are the access control policies, which can be specified
using the policy language provided by the XACML standard. However, devel-
oping XACML policies is complex and error-prone because the policies grow
in complexity at the same rate as the complexity (not the size) of the systems
they are intended to protect. This is exacerbated by the XML-based verbose
syntax and the extensive collection of features in XACML. The consistency and
completeness of policies are important properties, e.g., a doctor cannot access
the medical records of a patient due to inconsistent policies, or a caregiver can-
not open the door lock of an elderly in home-care scenarios due to incomplete
policies.

Resolving conflicts is currently done at runtime by employing one of the sev-
eral XACML combining algorithms. For example, the DenyOverrides combining
algorithm states that if several applicable rules result in both Permit and Deny,
the final decision would be Deny. Such strategies of defaulting to deny access
requests may be good for ensuring confidentiality, but they can be detrimental
to the availability of the system. In complex and dynamic systems as in e-Health
we wish to minimize the number of times that such conflicting situations appear,
so to increase the availability of systems where unavailability may put lives at
risk. This issue can be addressed by static analysis of access control policies,
since the static analysis allows the states to be explored before the system is
executed.

This paper presents an approach, and a tool, for verifying XACML policies
integrated into their e-Health processes. Our approach is based on a process
algebra, called mCRL2 [7,12,14], for modeling the behavior of distributed pro-
tocols and systems [1,10]. Using mCRL2 has the advantage of featuring time and
(custom) data types, which we use for specifying XACML policies. The mCRL2
process language is accompanied by a powerful toolset, enabling us to simulta-
neously model XACML policies and e-Health processes subject to such policies,
as well as specifying the properties we wish to verify.
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Our goal is to formally verify access control policies and resolve inconsis-
tencies in advance. Static analysis of policies helps to discover inconsistent and
incomplete policies before their actual use. Counterexamples generated by the
verifier can help security administrators to correct their policies. This paper pro-
vides also a tool for automatic transformation of XACML policies into mCRL2
specifications. Our tool, which we call XACML2mCRL2, can be added to the
mCRL2 toolset to make it possible to automatically verify XACML policies.

A second goal, which also motivated our choice of process algebra, is to not
only verify XACML policies independently, but together with the system that
these policies are supposed to control. Since process algebras, like mCRL2, are
particularly useful for modeling behaviours of distributed systems, the trans-
lations that our tool provides can be combined with models of, e.g., e-Health
systems. Formal verification of such systems enables us to prove properties such
as liveness or safety, which are relevant for the availability and confidentiality.

Structure of the Paper. Section 2 provides basic information about the XACML
policy language. Section 3 presents our approach for the specification and ver-
ification of XACML policies using mCRL2. It first describes the procedure for
mapping XACML policies into mCRL2 (Sect. 3.1), then it formulates the desired
properties of the XACML policies using the modal μ-calculus (Sect. 3.2), next it
explains how to verify the XACML policies (the mCRL2 specifications and prop-
erties) using the mCRL2 toolset, and finally, some example policies are analyzed
based on the proposed approach. Section 4 explains how to analyze the behav-
ior of the systems employing access control schemes using the same approach
explained in Sect. 3. Related work is discussed in Sect. 5.

2 Background on the XACML Policy Language

The XACML standard describes (besides other things such as a reference archi-
tecture) a policy specification language, which we will simply refer to as XACML
in this paper. As represented in Fig. 1, XACML has a hierarchical structure, with
the main elements being: PolicySet, which includes one or more Policies or
other PolicySets, and Policy, which includes one or more Rules.

Every PolicySet, Policy, and Rule has a Target, which determines the
requests to which they are applicable. A Target may include a conjunction of
AnyOf elements, each consisting of a disjunction of AllOf elements. An AllOf
element is a conjunction of pairs (attribute-name, attribute-value), as
XACML policies are based on the attributes of subjects, objects, actions, and the
environment. The Target of a Rule may be empty, making the Rule applicable
to all requests filtered based on the Targets of the PolicySet and Policy.

A Rule, normally meant to express a very simple access control policy, has
a Condition part as well as an Effect that is either Deny or Permit. If the
attributes provided in a request match those needed by the Target and the
Condition of a Rule, then the Effect of the Rule will be returned to the
parent Policy. In the case the attributes do not satisfy the Condition or if an
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Fig. 1. XACML policy language model [24]. As explained in Sect. 3.1, the proposed
approach does not translate gray boxes to mCRL2.

error occurs, NotApplicable or Indeterminate, respectively, will be returned
to the parent Policy. Conditions are more powerful than Targets because
XACML provides numerous functions (such as integer-greater-than, integer-less-
than-or-equal, n-of, not, anyURI-starts-with) that can be used inside conditions,
in addition to the OR/AND constructions that Targets are limited to.

Obligation or Advice expressions may be attached to every PolicySet,
Policy, and Rule in order to enforce extra constraints. For example, a Policy
may use an Obligation to require to log successful access to patients medi-
cal records. An Advice is the same as an Obligation with the difference that
the Advice is optional, i.e., the policy enforcement point (PEP) can ignore an
Advice, whereas it must always execute all Obligations.

Since multiple Rules (or Policies) with different Effects may be applica-
ble to the same request, conflicting rule Effects (or decisions) may be reached,
which indicates inconsistencies between Rules and Policies. The XACML stan-
dard does not offer any solution to detect such inconsistencies when authoring
access control policies. Instead, it provides several combining algorithms, i.e.,
Rule Combining Algorithms and Policy Combining Algorithms, to combine
contradictory decisions and reach a single decision.

3 Modeling and Analyzing XACML Policies

The mCRL2 toolset [7] can be used for analyzing software and concurrent sys-
tems [13]. Its main input language is an ACP-inspired process algebra that also
has built-in support for frequently-used data types and operations on these, as
well as facilities for users to specify their own data types. Properties of sys-
tems modeled in the mCRL2 language can be expressed in the first-order modal
μ-calculus. For a detailed account of the mCRL2 language and the property lan-
guage, we refer to [12–14]; in the remainder of this paper, we explain the relevant
syntax and concepts as we go along.

In this section we show how to specify and verify XACML policies using the
mCRL2 toolset (version 202106.0). We first explain how we map XACML policies
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into mCRL2 processes; this is the essence of our tool XACML2mCRL2 [4]. Then,
we formally define three desired properties for XACML policies and in the end
analyze three example policies.

3.1 Mapping XACML Policies into mCRL2

We encode the XACML components into mCRL2 concepts as follows. An
attribute can be considered as a name-value pair. A Rule can be considered
as a tuple 〈RuleID, Target, Condition, Effect, Obligation〉, where Target and
Condition are sets of attributes, and Effect can be either Permit or Deny. The
last element is abstracted as a pair of ObligationID and a FulfillOn element with
value either Permit or Deny, specifying the decision for which the obligation is
applicable. A Policy can be abstracted as 〈PolicyID, Target, Rules, Obligation〉,
and similarly a PolicySet as 〈PolicySetID, Target, Policies, Obligation〉, with
both Rules and Policies being sets. PolicySet, Policy, and Rule can also include
advices. However, since the policy enforcement point can ignore enforcing an
advice, it can be ignored when analyzing XACML policies.

An mCRL2 specification begins with a declaration of the required data types
and actions. We start by defining the following data types for the subject, object,
and action attributes:
1 sort SAtt = struct attribute(name:SAttName , value:SAttValue);
2 sort OAtt = struct attribute(name:OAttName , value:OAttValue);
3 sort AAtt = struct attribute(name:AAttName , value:AAttValue);

The keyword sort is used to define new data types. We use the keyword
struct because these are structured data types (functional data types), defined
using other data types for names and values. Normally, all attribute names and
values used in the policies that are going to be analyzed need to be listed in the
definitions of these sorts. For the sake of simplicity in the text here, we consider
the following values for these sorts.

1 sort SAttName = struct subjectid;
2 sort SAttValue = struct CareGiverA|Doctor;
3 sort OAttName = struct resourceid;
4 sort OAttValue = struct HealthData;
5 sort AAttName = struct actionid;
6 sort AAttValue = struct Read;

We define a data type Decision containing the two possible rule effects.

1 sort Decision = struct Permit|Deny;

The following sort lists obligation identifiers. Here we keep this list minimal,
but our tool populates this with all the obligations found in the XACML files.

1 sort ObgID = struct email|log;

We model the main elements of an XACML policy, i.e., PolicySet, Policy,
and Rule, as separate processes (starting with keyword proc). All the actions
performed by these processes need to be declared at the beginning of the mCRL2
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specification. If an action is parametrized by some data, then the type of the
parameter needs to be stated as well. Below, the Request action carries three sets
of attributes (i.e., subject, object, and action attributes), whereas a Response
action carries in addition also a decision. We use finite sets, defined with FSet,
with the type of the elements specified as parameter.
1 act Request:FSet(SAtt)#FSet(OAtt)#FSet(AAtt);
2 Obligation:FSet(SAtt)#FSet(OAtt)#FSet(AAtt)#ObgID;
3 Response:FSet(SAtt)#FSet(OAtt)#FSet(AAtt)#Decision;

The policy decision point evaluates an access request against the policies
and reaches a decision based on the values of attributes provided in the access
request. Hence, we define the above-mentioned processes as parametrized pro-
cesses, where a process carries a set of attributes provided in the request.

The PolicySet process checks whether the attributes that exist in the
received request match those requested by the target of the policies. If a pol-
icy is applicable to a request, the corresponding Policy process will be called
(i.e., the PolicySet process will behave as the corresponding Policy process).
For example, suppose that a PolicySet (e.g., PolicySet_PLS1) contains two
policies, e.g., Policy_PL1 and Policy_PL2, where the target of the first one is
applicable to the requests that contain a subject attribute attribute(A, B)
and the second one is applicable to the requests containing an object attribute
attribute(C, D) and an action attribute attribute(E, F).
1 proc PolicySet_PLS1(RS:FSet(SAtt), RO:FSet(OAtt), RA:FSet(AAtt))=
2 (( attribute(A, B) in RS) ->
3 Policy_PL1(RS, RO, RA))
4 + (( attribute(C, D) in RO && attribute(E, F) in RA) ->
5 Policy_PL2(RS, RO, RA));

In the above, the PolicySet process consists of non-deterministic choice
operator + and the ternary if-then-else construct c -> A <> B, where the eval-
uation of the Boolean condition c determines the behavior. If the condition c
holds, then the process behaves as the process A; otherwise, it behaves as the pro-
cess B. Note that c -> A is equivalent to c -> A <> delta, where delta denotes
a process that cannot perform any action. The in operator is used to check if an
attribute exists in the received request including sets of subject attributes, RS,
object attributes, RO, and action attributes, RA. Figure 2 shows how every ele-
ment of a simplified version of the corresponding XACML specification is trans-
formed to mCRL2 (please note shapes, colors, and labels). Our standard for nam-
ing mCRL2 processes is {PolicySet/Policy/Rule}_{PolicySetId/PolicyId/
RuleId}, where PolicySetId, PolicyId, and RuleId will be extracted from the
XACML specification. The red dashed lines box in Fig. 2-a represents a logi-
cal AND between two conditions; hence, it is transformed to && in mCRL2. In
XACML, access-subject, resource, action categories are for, respectively,
subject, object, and action attributes (RS, RO, and RA in our mCRL2 specifica-
tions).

A Policy process also checks the target of its rules to call the Rule pro-
cesses that are applicable to the received request. Suppose that Policy_PL1
has Rule_R1 and Rule_R2, where Rule_R1 and Rule_R2 are applicable to
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Fig. 2. A simplified piece of an XACML specification and corresponding mCRL2 spec-
ification.

the requests containing object attributes, respectively, attribute(G, H) and
attribute(I, J).

1 Policy_PL1(RS:FSet(SAtt), RO:FSet(OAtt), RA:FSet(AAtt)) =
2 (( attribute(G, H) in RO) -> Rule_R1(RS , RO , RA))
3 + (( attribute(I, J) in RO) -> Rule_R2(RS , RO , RA));

A Rule process checks whether the received request satisfies its condition.
If the request satisfies the condition of the rule, then the Rule performs the
Response action, which reflects the effect of the rule. However, if there is an
Obligation associated with the Rule, then the Rule performs the Obligation
action (which carries the request and the obligation ID) before the Response
action. In the XACML policy language, an Obligation might be included in
a PolicySet, a Policy, or a Rule. In our mapping, we move an Obligation
from the PolicySet and Policy levels to the Rule that activates them. For
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example, suppose Policy_PL1 has an obligation, which mandates writing a log
when an access is granted (Obligation ID = log, FulfillOn = Permit). The effect
of Rule_R1 and Rule_R2, which are included in Policy_PL1, is Permit and
Deny, respectively. Moreover, the condition of Rule_R1 and Rule_R2 includes
action attributes attribute(K, L) and attribute(M, N), respectively. In the
following specification, the symbol . denotes the sequential composition. Figure 3
also represents the relation between a simplified version of the corresponding
XACML specification and the generated mCRL2 specification (follow the shapes,
colors, and labels). As shown in Fig. 3, the log obligation of Policy_PL1 is moved
to the applicable rule, Rule_R1 (see the red box that is labeled with 7).
1 Rule_R1(RS:FSet(SAtt), RO:FSet(OAtt), RA:FSet(AAtt)) =
2 (( attribute(K, L) in RA) ->
3 (Obligation(RS , RO, RA, log).Response(RS, RO, RA, Permit)));
4
5 Rule_R2(RS:FSet(SAtt), RO:FSet(OAtt), RA:FSet(AAtt)) =
6 (( attribute(M, N) in RA) -> Response(RS, RO , RA, Deny));

An mCRL2 specification ends with the initialization of the system. The sys-
tem can be initialized by considering all possible combinations of attributes and
excluding empty sets for subject, object, and action attributes as follows.

1 i n i t sum RS:FSet(SAtt).sum RO:FSet(OAtt).sum RA:FSet(AAtt).
2 (RS !={} && RO !={} && RA !={}) ->
3 Request(RS , RO , RA).PolicySet_PLS1(RS , RO , RA);

In mCRL2 specifications, the initialization section starts with the init key-
word. The summation operator, sum, is used for considering all possible values
for attributes in RS, RO, and RA. In mCRL2, !, {}, and && denote the negation,
empty set, and logical AND, respectively.

We have implemented a prototype, XMACL2mCRL2, for automatic transfor-
mation of XACML policies into mCRL2 specification using Java. Since XACML
policies are in XML format, XMACL2mCRL2 uses the declarative eXtensible
Stylesheet Language Transformations (XSLT) (version 1.0) to define a set of tem-
plate rules specifying how XACML policies should be transformed into mCRL2.
XMACL2mCRL2 may further be integrated into the mCRL2 toolset as a new
tool for analyzing XACML policies. The completeness of our transformation
tool (and our proposed approach) can be evaluated in terms of the number of
XACML policy elements that are covered/supported in the translation from
XACML to mCRL2. Our transformation tool covers all elements of the XACML
policy model represented in Fig. 1 except Policy Combining Algorithm and
Rule Combining Algorithm. The combining algorithms are intentionally not
modeled because one of our goals is to find inconsistencies between policies and
fix them when authoring policies, i.e., statically before the access control system
is put into production.

The XACML standard offers several functions that can be used in the con-
dition part of rules to form more complex conditions. However, the current ver-
sion of our implementation may not cover all of them. For example, we can now
check whether or not the request contains attribute (Role, Doctor). However,
some policies may use other functions, such as greater-than or less-than, e.g.,
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Rule_R1(RS:FSet(SAtt), RO:FSet(OAtt), RA:FSet(AAtt)) = 

((attribute(K, L) in RA) ->

(Obligation(RS,RO,RA, log).Response(RS,RO,RA, Permit)));

Rule_R2(RS:FSet(SAtt), RO:FSet(OAtt), RA:FSet(AAtt)) = 

((attribute(M, N) in RA) -> 

Response(RS,RO,RA, Deny));

<Policy PolicyId="PL1">
<Target> ... </Target>

<Rule RuleId= "R1" Effect="Permit">
<Target> ... </Target>
<Condition>

<Apply FunctionId="function:string-equal">
<Apply FunctionId="function:string-one-and-only">

<AttributeValue> L </AttributeValue>
</Apply>
<AttributeDesignator Category="action" AttributeId="K"/>

</Apply>
</Condition>

</Rule>

<Rule RuleId= "R2" Effect="Deny">
<Target> ... </Target>
<Condition>

<Apply FunctionId="function:string-equal">
<Apply FunctionId="function:string-one-and-only">

<AttributeValue> N </AttributeValue>
</Apply>
<AttributeDesignator Category="action" AttributeId="M"/>

</Apply>
</Condition>

</Rule>

<ObligationExpressions>
<ObligationExpression FulfillOn="Permit" ObligationId="log">
</ObligationExpression>

</ObligationExpressions>
</Policy>

1

1

2

2

3

3

4

4

6

6

a) XACML

b) mCRL2

7

7

5

5

Fig. 3. a) A simplified XACML specification and; b) the corresponding mCRL2 spec-
ification.

a policy might be applicable to requests issued by adults (age > 18). Since all
the functions offered in the standard can be specified/modeled in mCRL2, the
current version of our transformation tool can be improved by considering the
remaining functions for the condition part of the rules.

3.2 Specifying the Properties of XACML Policies

This section formulates our desired properties of XACML policies using the first
order modal μ-calculus. The properties that we consider are policy-completeness,
policy-consistency, and obligation-safety as defined below.
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Property P1 (Policy-Completeness). A set of policies is complete if it covers
all the access requests.

More formally, for every Request action, the policy set will inevitably provide
a Response action. This can be formalized as follows.

forall rs:FSet(SAtt), ro:FSet(OAtt), ra:FSet(AAtt).
[Request(rs , ro , ra)]mu X.
([! exists d:Decision.Response(rs, ro, ra, d)]X && <true >true)

In the above formula, the symbols forall and && denote the conventional
first-order logic constructs and can be interpreted as usual. The modal operators
[_]_ and <_>_ allow to reason about the behavior of the process. A state satisfies
formula [A]φ if all states reached by an action taken from a set of actions
A, satisfy formula φ. Sets of actions are described using first-order logic; for
instance, true describes the set of all actions, exists denotes set union and
the ! operator denotes set complement. The subformula [Request(rs,ro,ra)
]φ captures exactly those states whose Request-successor states satisfy φ. The
operator <A>φ is dual, and holds true of a state if it has some a-transition (with
a taken from set A) leading to a state satisfying φ. Note that the state formula
true holds true in all states. A state therefore satisfies <true>true whenever
it can execute some action. Finally, the subformula shaped mu X.([!A]X &&<
true>true) describes exactly those states for which executing an action taken
from the set A is at some point unavoidable; in our case, A is the set of Response
actions with either a Deny or Permit decision, but attribute sets that match
those of the Request action.

Property P2 (Policy-Consistency). A set of policies is conflict-free if there is
no inconsistency between policies.

This property is important when integrating policies from different domains.
Stated more formally, this property requires that executing a Request action
(with concrete attributes) cannot lead to both a Deny and a Permit decision.
This can be expressed as follows:

forall rs:FSet(SAtt), ro:FSet(OAtt), ra:FSet(AAtt).
[Request(rs , ro , ra)]
!(<true∗.Response(rs , ro, ra , Deny)> true &&
<true∗.Response(rs , ro , ra , Permit)> true)

Here, the subformulas shaped <true∗.A>true, using the Kleene ∗ and having
the same meaning as mu X.(<true>X||<A>true), describe precisely those states
that, in a finite number of steps, can reach a state that can execute an action
from the set A. Our formula thus describes that after any Request action, it is
impossible to both reach a state that can execute a Response action with a Deny
decision and a state that can execute a Response action with a Permit decision.

Property P3 (Obligation-Safety). A concrete Request either will always yield
an Obligation, or it will never yield an Obligation.
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Intuitively, this means that executing a Request action cannot lead to a state
in which both an Obligation action and a non-Obligation action are enabled
at the same time.

forall rs:FSet(SAtt), ro:FSet(OAtt), ra:FSet(AAtt).
[Request(rs,ro ,ra)]!(< exists o:ObgID.Obligation(rs,ro,ra,o)>
true && <!exists o:ObgID.Obligation(rs, ro, ra, o)>true)

After translating XACML policies into mCRL2 using our XACML2mCRL2
tool and specifying the desired properties using the modal μ-calculus, the model
checker of the mCRL2 toolset can be used to do the verification as shown in
Fig. 4. If the policies satisfy the desired property, a true will be returned as the
result. However, if the property is violated, a false is returned, along with a
counterexample illustrating the violation.

Example 1. Consider a rule that allows Doctors to Read patients’ HealthData.1

Rule 1: ((resourceid = HealthData) ∧ (actionid = Read)
∧(subjectid = Doctor)) ⇒ Permit

Analyzing the corresponding mCRL2 specification shows that the Policy-
Completeness property is not held. The verification engine returns the coun-
terexample represented in Fig. 5a showing an access request that this rule does
not cover. Policy-Consistency holds because there is no other rule that can cause
conflicts, and the same for Obligation-Safety as the rule has no obligation expres-
sion.

Example 2. Consider adding to the policy in Example 1 a rule that allows Doc-
tors to Read everything and has an obligation for logging all successful accesses.

Fig. 4. Analyzing the specifications using the mCRL2 toolset

Rule 2: ((subjectid = Doctor) ∧ (actionid = Read) ⇒
〈Permit ,Obligation(log)〉

Analyzing the updated policy shows that only Policy-Consistency is held. The
counterexample in Fig. 6 shows that the Obligation-Safety property is violated
because there is a request that can be covered by Rule 2 but it is possible to get
a permit response for that (by Rule 1) without performing the log obligation.

1The XACML version of all the rules and the corresponding mCRL2 specifications
generated using our XACML2mCRL2 tool are available in [4].
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Fig. 5. (a) A counterexample violating the Policy-Completeness property in Exam-
ple 1. (b) A counterexample violating the Policy-Consistency property in Exam-
ple 3. Att = {attribute(subjectid, CareGiverA)}, {attribute(resourceid, HealthData)},
{attribute(actionid, Read)}.

Example 3. Consider adding to the policy in Example 1 another rule to deny
access requests to the HealthData of patients if the requester is not a Doctor.

Rule 3: ((resourceid = HealthData) ∧ (actionid = Read)
∧ NOT(subjectid = Doctor)) ⇒ Deny

Analyzing this updated policy shows that all our desired properties are held.

Example 4. Update the policy of Example 3 by adding a rule to allow Care-
GiverA (e.g., ambulance nurse) to Read the HealthData.

Rule 4: ((resourceid = HealthData) ∧ (actionid = Read)
∧ (subjectid = CareGiverA)) ⇒ Permit

We can verify that Policy-Completeness and Obligation-Safety hold, but for
Policy-Consistency we are shown the counterexample from Fig. 5b, which demon-
strates a conflict between Rule 3 and Rule 4.

Fig. 6. A counterexample violating the Obligation-Safety property in Exam-
ple 2. Att = {attribute(subjectid, Doctor)}, {attribute(resourceid, HealthData)},
{attribute(actionid, Read)}.
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Fig. 7. Architecture of the assisted living and community care system.

4 System Behavior in Presence of XACML Policies

This section demonstrates how we can use mCRL2 to formally specify and verify
also the system around the access control policies, thus allowing to perform
XACML policy verification in context.

Use Case Informal Description. Our use case is taken from a pilot called
Assisted Living and Community Care Systems (ALCCS) coordinated by Phillips
research in a European project called SCOTT1. The goal of the ALCCS pilot is
to develop a system for elderly home care with a simplified architecture depicted
in Fig. 7. Along the way we describe its formalization in mCRL2.

Bob is an elderly person living alone in a smart home equipped with a variety
of sensors, e.g., for measuring activity level or blood pressure. Important for us
is the panic button, which can be used to get help when needed, and the fall
detection sensors. Sensor readings are being sent to a storage and processing unit
called Elderly Context Derivation (ECD), which uses these to raise emergency
alerts (e.g., if Bob presses the panic button or has fallen).

When there is an emergency, a list of potential caregivers, who can be profes-
sionals or neighbors, will be notified. Once a caregiver receives the notification
from the ECD (i.e., CareService) and proceeds with the case, the caregiver will
be granted access to Bob’s house and medical records. In this scenario, it is
important that whenever Bob falls or presses the panic button, i.e., when there
is an alarm, then Bob should eventually get help from a caregiver, i.e., the alarm
should eventually be handled by a caregiver. Moreover, it is also important that
only a caregiver who has been assigned to an elderly can open the door lock of
the elderly’s house in the case of an emergency.

Modeling and Verification of the ALCCS. The interacting components
represented in Fig. 7 are modeled as separate mCRL2 processes running in par-
allel. These processes are initialized below, where we restrict the allowed actions

1EU Horizon 2020 ECSEL Joint Undertaking project SCOTT – Secure COnnected
Trustable Things (https://scottproject.eu/).

https://scottproject.eu/
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to those in the list Act and define the synchronization pairs in the list Com (see
the full specification in [4]). An example of a pair of synchronizing actions is
SndReply|RcvReply -> Reply, resulting in the action Reply.
1 init allow(Act , comm(Com ,
2 rename({ Request ->RcvACRequest , Response ->SndACResponse},
3 Elderly||CareService ({CG1 , CG2})||Lock(false , false)||
4 AccessControl||CareGiver ({ attribute(subjectid , CareGiverA)},
5 {attribute(resourceid , HealthData)},
6 {attribute(actionid , Read)}))));

In the specification of these processes, the following data types and actions
are used, where EL represents elderly IDs (it is assumed that there are two
caregivers and two elderly patients). In the full specifications from [4] one can
see that we also add in the actions and sorts used in the processes related to the
access control policies from the previous section.

1 sort CareGivers = struct CG1 | CG2;
2 sort EL = struct EID1 | EID2;
3 act Fall , Panic , Read , Willing , Notwilling;
4 SndAlarm , RcvAlarm , Alarm:EL;
5 ...

We model a simplified version of the elderly patient, where an alarm is raised
by the Elderly process when either falling or pressing the panic button. We
define recursive processes, where the specified behavior continues indefinitely
(unless forced to wait indefinitely for their communicating parties).

1 proc Elderly =(Fall + Panic).sum E:EL.SndAlarm(E).Elderly;

The CareService receives an alarm and notifies caregivers. This has been
initialized above with a list of two caregivers {CG1, CG2}. The CareService
assigns a caregiver who is willing to handle the emergencies.

1 CareService(L:FSet(CareGivers)) = sum E:EL.RcvAlarm(E).
2 set_emergency(E, true).sum cg:CareGivers.(cg in L) ->
3 SndNotification(E, cg).set_assignment(E, cg , true).
4 RcvFinished(E, cg).set_emergency(E, false).
5 set_assignment(E, cg , false).CareService ();

The CareGiver process either accepts or rejects to be available for handling
the emergencies (notice the non-deterministic choice operator + on line 6). Recall
that CareGiver was initialized with three sets of attributes. After receiving the
assignment message from the CareService, the caregiver is supposed to enter
the elderly’s house, and thus the CareGiver process sends an OpenLock message
to the Lock process of the elderly’s house.
1 CareGiver(RS:FSet(SAtt), RO:FSet(OAtt), RA:FSet(AAtt)) =
2 Willing.sum E:EL ,CG:CareGivers.RcvNotification(E, CG).
3 SndOpenLock(E, CG).
4 (( SndACRequest(RS,RO,RA).sum D:Decision.RcvACResponse(RS,RO,RA,D).(D==

Permit)->Read.SndFinished(E, CG).CareGiver ())
5 + (SndFinished(E, CG).CareGiver ()))
6 + Notwilling.CareGiver ();
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The lock can be opened only if (i) there is an emergency for the elderly and
(ii) the requester is assigned as the caregiver for the elderly (notice the operator
&& inside the condition to the deterministic conditional choice operator).
1 Lock(ev, av:Bool) = sum E:EL,CG:CareGivers.RcvOpenLock(E,CG).
2 ((ev && av) -> LockOpened(E,CG)<>Rejected(E,CG)).Lock(ev, av)
3 + sum E:EL. sum ev ’:Bool.get_emergency(E,ev ’).Lock(ev’, av)
4 + sum E:EL , CG:CareGivers.sum av ’:Bool.
5 get_assignment(E, CG, av ’).Lock(ev, av ’);

After getting inside the elderly’s house, the caregiver may try (notice again
the non-deterministic choice on line 5 in the CareGiver process) to read the
HealthData of the elderly by sending an access request (on line 4). The access
request will be evaluated based on the existing access control policies through
the AccessControl process, which is defined to make the processes related to the
access control policies recursive. Here, Rule 4 from the previous section, is the
only policy that we used for evaluation of access requests (the full specification
in [4] contains all the policies that were introduced in Sect. 3).
1 AccessControl =
2 (sum RS:FSet(SAtt).sum RO:FSet(OAtt).sum RA:FSet(AAtt).
3 (RS !={} && RO !={} && RA !={}) ->
4 Request(RS ,RO,RA).PolicySet_root(RS, RO, RA)).AccessControl;
5
6 PolicySet_root(RS:FSet(SAtt), RO:FSet(OAtt), RA:FSet(AAtt)) =
7 Policy_Policy1(RS, RO, RA);
8
9 Policy_Policy1(RS:FSet(SAtt), RO:FSet(OAtt), RA:FSet(AAtt)) =

10 (( attribute(resourceid , HealthData) in RO) &&
11 (attribute(actionid , Read) in RA)) ->
12 Rule_Rule4(RS, RO, RA);
13
14 Rule_Rule4(RS:FSet(SAtt), RO:FSet(OAtt), RA:FSet(AAtt)) =
15 (attribute(subjectid , CareGiverA) in RS) ->
16 Response(RS , RO, RA, Permit);

After handling the emergency, the CareGiver informs the CareService that
the case is done, which in turn closes the emergency and unassigns the caregiver.

Specifying the System Properties. We exemplify two behavioral properties
that we desire of our system above. First we are interested in a form of conditional
liveness (i.e., some event will eventually happen under certain conditions), which
are sometimes called response properties.

Property S1 (Response). Invariantly, every alarm must eventually be handled
by some caregiver.

[true∗]forall e:EL.
[SndAlarm(e).(! exists cg:CareGivers.Finished(e,cg))∗]
<true∗.exists cg:CareGivers.Finished(e,cg)>true

Here, the subformula of the form [A∗]φ, which is shorthand for nu X.([A]X &
&φ), describes those states from which all states reachable by executing zero or
more actions from the set A, satisfy property φ.
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Property S2 (Safety). Opening the door lock (LockOpened action) is not per-
mitted, as long as there is no emergency for the elderly. Furthermore, only the
assigned caregiver can open the door lock.

This property can be split into the two following requirements:

Property S2-A. Only a caregiver assigned to an elderly can open the lock.

forall e:EL ,cg:CareGivers.nu X.([! assignment(e,cg,true)]X &&
[LockOpened(e, cg)]false && [assignment(e,cg,true)] nu Y.
([! assignment(e,cg ,false)]Y && [assignment(e,cg,false)]X))

In the above formula, the two alternating greatest fixed points are used to
characterize the situation that, along a path either no assignment has happened,
and so LockOpened should not be enabled, expressed by [LockOpened(e, cg)]
false, or an assignment has just happened. In the latter case we descend into
the fixed point Y, where any action is permitted so long as the caregiver is not
unassigned. By unassigning a caregiver we again recurse to X.

Property S2-B. An assignment for an emergency must be preceded by the
emergency, and is only ‘valid’ for as long as the emergency is ‘active’.

forall e:EL.nu X.([! emergency(e, true)]X &&
[exists cg:CareGivers.assignment(e, cg , true)]false &&
[emergency(e, true)]nu Y.
([! exists cg:CareGivers.assignment(e, cg , false)]Y &&
[exists cg:CareGivers.assignment(e, cg , false)] X))

Analyzing the model (with 212 states and 596 transitions) based on Property
S1 and Property S2 (both Property S2-A and Property S2-B) show that all the
properties are held.

5 Related Work

Bryans [5] used the CSP [16] and the FDR model-checking tool for analyzing
access control policies. They expressed RBAC policies in CSP and then used the
FDR to analyze the CSP specifications and compare policies (to check if two
policies are equivalent). However, Bryans did not consider different properties
and did not model the condition part of rules nor obligations.

Kolovski et al. [19] employed the Pellet description logic reasoner to find
equivalent, redundant, and incompatible XACML policies. However, Kolovski et
al. also did not take into account rule conditions nor obligations.

Ahn et al. [2] used Answer Set Programming (ASP) [20,22] and ASP solvers
for analyzing XACML-based RBAC policies. Ahn et al.’s approach does not
handle obligations nor complex conditions and attribute functions.

Fisler et al. [9] proposed a method for analyzing XACML-based RBAC poli-
cies by representing the policies using Multi-Terminal Binary Decision Diagrams
(MTBDD) [11]. However, the proposed method does not verify all the desired
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properties of policies and does not take into account all elements of XACML
policies. Rao et al. [26] proposed an algebra, called Fine-grained Integration
Algebra (FIA), for integration of XACML policies. FIA also uses MTBDDs for
representing XACML policies. Policies can be integrated by mapping opera-
tions on the policies onto operations on the MTBDDs, which represent policies.
After mapping operations, the resulted MRBDD can be traversed to generate an
XACML policy that is the result of the integration of two or more policies. Hu
et al. [17] proposed a policy-based segmentation method to detect and resolve
policy anomalies (conflicts and redundancies). Hu et al.’s method first repre-
sents (parses) policies using the Binary Decision Diagram (BDD) [6], then it
transfers rules into Boolean expressions. Next, it replaces Boolean expressions
with Boolean variables. After that, it identifies anomalies using two proprietary
algorithms. Morisset et al. [23] also employed BDDs to address the problem of
missing information in ABAC. They proposed a framework for efficient extended
evaluation of XACML policies, which checks all the possible outcomes of the
evaluation of a given request by considering all possible values for the hidden
attributes (i.e., by extending the initial request). Lin et al. [21] proposed a policy
analyzer through the combination of MTBDDs (to represent/parse policies) and
a SAT solver (to check if two representations are similar). The main goal was to
find the similarities between XACML policies.

Turkmen et al. [28] proposed a framework based on satisfiability modulo
theories (SMT) for the verification of XACML policies. The goal was to convert
policies into SMT formulas and verify the desired properties using SMT solvers.

Another relevant work is the formalization of XACML in terms of multi-
valued logics presented in [25]. Ramli et al. [25] provided an abstract syntax
for XACML and formalized combining algorithms as operators on a partially
ordered set of decisions.

In our proposed approach, mCRL2 is used for specifying all elements of
XACML policies (for ABAC), including obligations, and analyzing the most
important properties of access control policies. Furthermore, access control poli-
cies are also analyzed in context, i.e., together with the system that these policies
are supposed to protect. The system surrendering access control policies is also
specified and analyzed using mCRL2. The system and access control policies
are combined using the parallel composition offered by mCRL2. The use of par-
allel composition and analysis of access control policies in context distinguish
the approach presented in this paper from prior approaches and especially those
based on formal methods. It would be interesting for future work to verify the
soundness of our translation of XACML into mCRL2 with respect to the formal
semantics for XACML provided by Rameli et al. [25].

6 Conclusion

We have presented a methodology supported by a tool for formal verification of
access control policies, which is built on top of mCRL2. Our XACML2mCRL2
tool implements the mapping from XACML policies into mCRL2 specifications
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as described in Sect. 3. The mapping covers every element of XACML policies,
i.e., policy set, policy, and rule, and allows to formally verify the completeness
(Property P1) and consistency (Property P2) of the XACML policies using the
first-order modal μ-calculus. Moreover, in contrast to other related approaches
surveyed in Sect. 5, XACML2mCRL2 takes into account the obligation expres-
sions; for instance, Example 2 shows a violation of our Obligation-Safety property
(Property P3). The model checker provided by the mCRL2 toolset automatically
generates counterexamples, such as those shown in Fig. 3 and Fig. 6, useful for
detecting and resolving incomplete and inconsistent policies.

To analyze the XACML policies in context, i.e., together with the system that
these policies are supposed to protect, we have modeled an e-Health use case
represented in Fig. 7. We have integrated the mCRL2 specifications generated
by XACML2mCRL2 into the use case model, including the Elderly, CareGiver,
CareService, and Lock processes. We have formulated and verified liveness and
safety properties, Property S1 respectively Property S2, to make sure that an
elderly will always receive help in the case of an emergency, and respectively only
assigned caregivers can open the door lock of the elderly person’s house. There-
fore, we can conclude that our methodological approach to formal verification
of access control policies can potentially be used to avoid critical problems in,
for example, e-Health systems. Indeed, mCRL2 verifies automatically liveness
and safety properties for our use case having hundreds of states and transitions,
which would be difficult to analyze manually.

Our XMLACL2mCRL2 tool translates only XACML access control policies
to mCRL2 specifications. The P* formulas (i.e., Property P1, Property P2, and
Property P3) presented in the paper are generic formulas for XACML policies. In
other words, the provided formulas can be used in different environments for the
same properties, i.e., Policy-Completeness, Policy-Consistency, and Obligation-
Safety. Therefore, neither the specification of P* formulas needs to be automated
nor the user needs to understand the generated mCRL2 specifications (and the
provided formulas) for analyzing XACML access control policies.
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Abstract. Reversible debuggers help programmers to quickly find the
causes of misbehaviours in concurrent programs. These debuggers can
be founded on the well-studied theory of causal-consistent reversibility,
which allows one to undo any action provided that its consequences are
undone beforehand. Till now, causal-consistent reversibility never con-
sidered time, a key aspect in real world applications. Here, we study the
interplay between reversibility and time in concurrent systems via a pro-
cess algebra. The Temporal Process Language (TPL) by Hennessy and
Regan is a well-understood extension of CCS with discrete-time and a
timeout operator. We define revTPL, a reversible extension of TPL, and
we show that it satisfies the properties expected from a causal-consistent
reversible calculus. We show that, alternatively, revTPL can be inter-
preted as an extension of reversible CCS with time.

1 Introduction

Recent studies [6,30] show that reversible debuggers ease the debugging phase,
and help programmers to quickly find the causes of a misbehaviour. Reversible
debuggers can be built on top of a causal-consistent reversible semantics [9,12],
and this is particularly suited to deal with concurrency bugs, which are hard to
find using traditional debuggers. By exploiting causality information, causal-
consistent reversible debuggers allow one to undo just the steps which led
(are causally related) to a misbehaviour, reducing the number of steps/spu-
rious causes and helping to understand its root cause. In the last years several
reversible semantics for concurrency have been developed, see, e.g., [2,7,8,18,22].
However, none of them takes into account time1. Time-dependent behaviour is
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an intrinsic and important feature of real-world concurrent systems and has
many applications: from the engineering of highways [21], to the manufacturing
schedule [11] and to the scheduling problem for real-time operating systems [3].

Time is instrumental for the functioning of embedded systems where some
events are triggered by the system clock. Embedded systems are used for both
real-time and soft real-time applications, frequently in safety-critical scenarios.
Hence, before being deployed or massively produced, they have to be heavily
tested. The testing activity may trigger a debugging phase: if a test fails one
has to track down the source(s) of the failure and fix them. Actually, debug-
ging occurs not only upon testing, but in almost all the stages of the life-cycle
of a software system: from the early stages of prototyping to the post-release
maintenance (e.g., updates or security patches). Concurrency is important in
embedded systems [10], and concurrency bugs frequently happen in these sys-
tems as well [14]. To debug such systems, and deal with time-dependent bugs in
particular, it is crucial that debuggers can handle concurrency and time.

In this paper, we study the interplay of time and reversibility in a process
algebra for concurrency. There exists a variety of timed process algebras for
the analysis and specification of concurrent timed systems [27]. We build on
the Temporal Process Language (TPL) [13], a CCS-like process algebra featur-
ing an idling prefix (modelling a delay) and a timeout operator. The choice of
TPL is due to its simplicity and its well-understood theory. We define revTPL, a
reversible extension of TPL, and we show that it satisfies the properties expected
from a causal-consistent reversible calculus. Alternatively, revTPL can be inter-
preted as an extension of reversible CCS (in particular CCSK [29]) with time.

A reversible semantics in a concurrent setting is frequently defined follow-
ing the causal-consistent approach [8] (other approaches are also used, e.g., to
model biological systems [28]). Causal-consistent reversibility states that any
action can be undone, provided that its consequences are undone beforehand.
Hence, it strongly relies on a notion of causality. To prove the reversible seman-
tics of revTPL causal-consistent, we exploit the theory in [20], whereby causal-
consistency follows from three key properties: any action can be undone by a
corresponding backward action (Loop Lemma); concurrent actions can be exe-
cuted in any order (Square Property); backward computations do not introduce
new states (Parabolic Lemma).

The application of causal-consistent reversibility to timed systems is not
straightforward, since time heavily changes the causal semantics of the language.
In untimed systems, causal dependencies are either structural (e.g., via sequen-
tial composition) or determined by synchronisations. In timed systems further
dependencies between parallel processes can be introduced by time, even when
processes do not actually interact, as illustrated in Example 1.

Example 1 (Motivating example). Consider the following Erlang code.

1 process A ( ) −>
2 r e c e i v e
3 X −> handleMsg ( )
4 a f t e r 200 −>

5 handleTimeout ( )
6 end end .
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7 process B ( Pid ) −>
8 t imer : s l e e p (500) ,
9 Pid ! Msg end .

10 PidA=spawn (?MODULE, process A , [ ] ) ,
11 spawn (?MODULE, process B , [ PidA ] ) .

Two processes are supposed to communicate, but the timeout in process A
(line 4) triggers after 200 ms, while process B will only send the message after
500 ms (lines 8–9). In this example, the timeout is ruling out an execution that
would be possible in the untimed scenario (the communication between A and
B) and introduces a dependency without need of actual interactions. �
From a technical point of view, the semantics of TPL does not fit the formats for
which a causal-consistent reversible semantics can be built automatically [15,29],
and also the generalisation of the approaches developed in the literature for
untimed models [7,8,18] is not straightforward. Actually, we even need to change
the underlying formalisation of TPL to ensure that its reversible extension is
causal consistent (see Sect. 5.1).

The rest of the paper is structured as follows. Section 2 gives an informal
overview of TPL and reversibility. Section 3 introduces the syntax and semantics
of the reversible Temporal Process Language (revTPL). In Sect. 4, we relate
revTPL to TPL and CCSK, while Sect. 5 studies the reversibility properties of
revTPL. Section 6 concludes the paper. Proofs and additional technical details
are collected in the associated technical report [4].

2 Informal Overview of TPL and Reversibility

In this section we give an informal overview of Hennessy & Regan’s TPL (Tem-
poral Process Language) [13] and introduce a few basic concepts of causal-
consistent reversibility [8,20].

Overview of TPL. Process �pid.P �(Q) models a timeout: it can either imme-
diately do action pid followed by P or, in case of delay, continue as Q. In (1) the
timeout process is in parallel with co-party pid.0 that can immediately synchro-
nise with action pid, and hence the timeout process continues as P .

pid.0 ‖ �pid.P �(Q) τ−→ 0 ‖ P (1)

In (2), �pid.P �(Q) is in parallel with process σ.pid.0 that can synchronise only
after a delay of one time unit σ (σ is called a time action). Because of the delay,
the timeout process continues as Q:

σ.pid.0 ‖ �pid.P �(Q) σ−→ pid.0 ‖ Q (2)

The processes in (2) describe the interaction structures of the Erlang program
in Example 1. More precisely, the timeout of 200 time units in process A can be
encoded using nested timeouts:

A(0) = Q A(n + 1) = �pid.P �(A(n)) (n ∈ N)
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while process B can be modelled as the sequential composition of 500 actions σ
followed by action pid, as follows:

B(0) = pid B(n + 1) = σ.B(n) (n ∈ N)

Using the definition above, �pid.P �(A(200)) models a process that executes pid
and continues as P if a co-party is able to synchronise within 200 time units,
otherwise executes Q. Hence, Example 1 is rendered as follows:

�pid.P �(A(200)) ‖ B(500)

The design of TPL is based on (and enjoys) three properties [13]: time-determi-
nism, patience, and maximal progress. Time-determinism means that time
actions from one state can never reach distinct states, formally: if P

σ−→ Q and
P

σ−→ Q′ then Q = Q′. A consequence of time-determinism is that choices can
only be decided via communication actions and not by time actions, for example
α.P + β.Q can change state by action α or β, but not by time action σ. Process
α.P + β.Q can make an action σ, by a property called patience, but this action
would not change the state, as shown in (3).

α.P + β.Q
σ−→ α.P + β.Q (3)

Patience ensures that communication processes α.P can indefinitely delay com-
munication α with σ actions (without changing state) until a co-party is avail-
able. Maximal progress states that (internal/synchronisation) τ actions cannot
be delayed, formally: if P

τ−→ Q then P
σ−→ Q′ for no Q′. Namely, a delay can

only be attained via explicit σ prefixes or because synchronisation is not possible.
Basically, patience allows for time actions when communication is not possible,
and maximal progress disallows time actions when communication is possible:

α.P
σ−→ (by patience)

α.P ‖ α.Q � σ−→ because α.P ‖ α.Q
τ−→ (by maximal progress)

Overview of Causal-Consistent Reversibility. Before presenting revTPL,
we discuss the reversing technique we adopt. In the literature, two approaches
to define a causal-consistent extension of a given calculus or language have been
proposed: dynamic and static [16]. The dynamic approach (as in [7,8,18]) makes
explicit use of memories to keep track of past events and causality relations, while
the static approach (originally proposed in [29]) is based on two ideas: making
all the operators of the language static so that no information is lost and using
communication keys to keep track of which events have been executed. In the
dynamic approach, constructors of processes disappear upon reduction (as in
standard calculi).

For example, in the following CCS reduction:

a.P
a−→ P
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the action a disappears as effect of the reduction. The dynamic approach
prescribes to use a memory to keep track of the discarded items. In static
approaches, such as [29], actions are syntactically maintained, and process a.P
reduces as follows

a.P
a[i]−−→ a[i].P

where P is decorated with the executed action a and a unique key i. The term
a[i].P acts like P in forward reductions, while the coloured part decorating P is
used to define backward reductions, e.g.,

a[i].P
a[i]

↪−−→ a.P

Keys are important to correctly revert synchronisations. Consider the process
below. It can take two forward synchronisations with keys i and j, respectively:

a.P1 ‖ a.P2 ‖ a.Q1 ‖ a.Q2
τ [i]−−→ τ [j]−−→ a[i].P1 ‖ a[i].P2 ‖ a[j].Q1 ‖ a[j].Q2

From the reached state, there are two possible backward actions: τ [i] and τ [j].
The keys are used to ensure that a backward action, say τ [i], only involves
parallel components that have previously synchronised and not, for instance,
a[i].P1 and a[j].Q2. When looking at the choice operator, in the following CCS
reduction:

a.P + b.Q
a−→ P

both the choice operator “+” and the discarded branch b.Q disappear as effect
of the reduction. In static approaches, the choice operator and the discarded
branch are syntactically maintained, and process a.P + b.Q reduces as follows:

a.P + b.Q
a[i]−−→ a[i].P+b.Q

where a[i].P+b.Q acts like P in forward reductions, while the coloured part
allows one to undo a[i] and then possibly proceed forward with an action b[j].

In this paper, we adopt the static approach since it is simpler, while the
dynamic approach is more suitable to complex languages such as the π-calculus,
see the discussion in [16,19].

3 Reversible Temporal Process Language

In this section we define revTPL, an extension of TPL [13] with reversibility
following the static approach in the style of [29].

Syntax of revTPL. We denote with X the set of all the processes generated by
the grammar in Fig. 1.

Programs (P,Q, . . .) describe timed interactions following [13]. We let A be
the set of action names a, A the set of action conames a. We use α to range over
a, a and internal actions τ . We assume a = a. In program π.P , prefix π can be a
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Fig. 1. Syntax of revTPL

communication action α or a time action σ, and P is the continuation. Timeout
�P �(Q) executes either P (if possible) or Q (in case of timeout). P + Q, P ‖ Q,
P \ a, A, and 0 are the usual choice, parallel composition, name restriction,
recursive call, and terminated program from CCS. For each recursive call A we
assume a recursive definition A

def
= P .

Processes (X,Y, . . .) describe states via annotation of executed actions with
keys following the static approach. We let K be the set of all keys (k, i, j, . . .).
Processes are programs with (possibly) some computational history (i.e., prefixes
marked with keys): π[i].X is the process that has already executed π, and the
execution of such π is identified by key i. Process �X�[ i←−](Y ) is executing the
main branch X whereas �X�[ i−→](Y ) is executing Y .

A process can be thought of as a context with actions that have already been
executed, each associated to a key, containing a program P , with actions yet
to execute and hence with no keys. Notably, keys are distinct but for actions
happening together: an action and a co-action that synchronise, or the same
timed action traced by different processes, e.g., by two parallel delays. A program
P can be thought of as the initial state of a computation, where no action has
been executed yet. We call such processes standard. Definition 1 formalises this
notion via function keys(X) that returns the set of keys of a process.

Definition 1 (Standard process). The set of keys of a process X, written
keys(X), is inductively defined as follows:

keys(P ) = ∅ keys(π[i].X) = {i} ∪ keys(X) keys(X \ a) = keys(X)
keys(�Y �[ i−→](X)) = keys(�X�[ i←−](Y )) = {i} ∪ keys(X)
keys(X + Y ) = keys(X ‖ Y ) = keys(X) ∪ keys(Y )

A process X is standard, written std(X), if keys(X) = ∅.
Basically, a standard process is a program. To handle the delicate interplay
between time-determinism and reversibility of time actions, it is useful to distin-
guish the class of processes that have not executed any communication action
(but may have executed time actions). We call these processes not-acted and
characterise them formally using the predicate nact(·) below.

Definition 2 (Not-acted process). The not-acted predicate nact(·) is induc-
tively defined as:

nact(0) = nact(A) = nact(�X�(Y )) = nact(π.X) = tt
nact(α[i].X) = nact(�X�[ i←−](Y )) = ff

nact(σ[i].X) = nact(X \ a) = nact(�Y �[ i−→](X)) = nact(X)
nact(X ‖ Y ) = nact(X + Y ) = nact(X) ∧ nact(Y )
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A process X is not-acted (resp. acted) if nact(X) = tt (resp. nact(X) = ff).

Basic standard processes are always not-acted (first line of Definition 2). Indeed,
it is not possible to reach a process π.X where X is acted. In the second line,
a process that has executed communication actions is acted. In particular, we
will see that �X�[ i←−](Y ) is only reachable via a communication action. The
processes in the third line are not-acted if their continuations are not-acted. For
parallel composition and choice, nact(·) is defined as a conjunction. For example
nact(α[i].P ‖ β.Q) = ff and nact(α[i].P + β.Q) = ff. Note that in a choice
process X1 + X2, at most one between X1 and X2 can be not-acted. Whereas
std(X) implies nact(X), the opposite implication does not hold. For example,
std(σ[i].0) = ff but nact(σ[i].0) = tt.

Semantics of revTPL. We denote with At the set A∪A∪{τ, σ} of actions and let
π to range over the set At. We define the set of all the labels L = At × (K∪{�}).
The labels associate each π ∈ At to either a key i or a wildcard �. The key
is used to associate the forward occurrence of an action with its corresponding
reversal. Also, instances of actions occurring together (synchronising action and
co-action or the effect of time passing in different components of a process) have
the same key, otherwise keys are distinct. We introduce a wildcard � to label
time transitions that leave the state unchanged. We call transitions with key
i ∈ K recorded and transitions with � patient. We let u, v, w, . . . to range over
K ∪ {�}.

Definition 3 (Semantics). The operational semantics of revTPL is given by
two LTSs defined on the same set of all processes X , and the set of all labels L: a
forward LTS (X , L, −→) and a backward LTS (X , L, ↪−→). We define 
−→=−→ ∪ ↪−→,
where −→ and ↪−→ are the least transition relations induced by the rules in Fig. 2
and Fig. 3, respectively.

Given a relation R, we indicate with R∗ its transitive and reflexive closure. We

use notation X � τ−→ (resp. X � τ
↪−→) for X � τ [i]−−→ X ′ (resp. X � τ [i]

↪−−→ X ′) for any process
X ′ and key i.

We now discuss the rules of the forward semantics (Fig. 2). Rule [PAct]
describes patient actions: program α.P can make a time step to itself. This
kind of actions allows a process to wait indefinitely until it can communicate
(by patience [13]). Since [PAct] does not change the state of α.P , we do not
track this action by associating it to wildcard � rather than to a key. [RAct]
executes recorded actions α[i] or σ[i] on a prefix program. Observe that, unlike
patient time actions on α.P (which may or may not happen depending on the
context), a time action on σ.P corresponds to a deliberate and planned time
consuming action and is, therefore, recorded so that it may be later reversed.
[Act] lifts actions of the continuation X on processes where prefix π[i] has
already been executed. [STout] and [SWait] model timeouts. In [STout], if X
is not able to make τ actions then Y is executed; this rule models a timeout that
triggers only if the main process X is stuck. The negative premise on [Stout]
can be encoded into a decidable positive one as shown in the associated technical
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Fig. 2. revTPL forward LTS

report [4]. In rule [Tout] instead the main process can execute and the timeout
does not trigger. Rule [SWait] (resp. [Wait]) models transitions inside a timeout
process where the Y (resp. X) branch has been previously taken. The semantics
of timeout construct becomes clearer in the larger context of parallel processes,
when looking at rule [SynW]. Rule [SynW] models time passing for parallel
processes. The negative premise ensures that, in case X or Y is a timeout process,
timeout can trigger only if no synchronisation may occur, that is if the processes
are stuck. [SynW] requires time to pass in the same way (an action σ is taken
by both components) for the whole system. Note that u and v may or may not
be wildcards, depending on the form of X and Y . To determine w we use a
synchronisation function δ : (K ∪ {�} × K ∪ {�}) 
→ K ∪ {�} defined as follows,
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assuming i, j ∈ K:

δ(i, i) = i δ(i, �) = δ(�, i) = i δ(�, �) = � δ(i, j) = ⊥ (i �= j)

Basically, in rule [SynW], if either u or v needs to be recorded then w also
needs to be recorded, and if both u and v need to be recorded then we require
u = v. Rules [Par] (and symmetric) and [Syn] are as usual for communication
actions and allow parallel processes to either proceed independently or to syn-
chronise. Defining the semantics of choice process X1 + X2 requires special care
to ensure time-determinism (recall, choices are only decided via communication
actions). Also, we need to record time actions (unless they have a wildcard)
to be able to reverse them correctly (cfr. Loop Lemma, discussed later on in
Lemma 1). Rule [ChoW1] is for time actions when no choice between X1 and
X2 has been made yet (as enforced by premise nact(X1+X2)), and a time action
happens in both branches. As in rule [SynW], w is determined by the synchro-
nisation function δ(u, v). Rule [ChoW2] models a time action when branch X1

has already been chosen, as enforced by premise ¬nact(X1); the time action only
affects the ‘active’ branch X1. For example, in the process below, the premise
nact(β.Q) ∧ ¬nact(α[i].σ.P ) allows us to apply [ChoW2] obtaining:

α[i].σ.P + β.Q
σ[j]−−→ α[i].σ[j ].P + β.Q

Having rule [ChoW2], besides [ChoW1], for time actions on a chosen branch,
is justified by scenarios as the following:

α[i].σ.P + �Q�(R)

If we would model time transitions of the process above using [ChoW1] we
would obtain

α[i].σ.P + �Q�(R)
σ[j]−−→ α[i].σ[j ].P + �Q�[ j−→](R)

wrongly suggesting that the timeout on the right branch has evolved. Rule
[Cho] allows one to take one branch, or continue executing a previously taken
branch. The choice construct is syntactically preserved, to allow for reversibil-
ity, but the one branch that is not taken remains non-acted (i.e., nact(X2)).
This ensures that choices can be decided by a communication action only. Rules
[Idle], [Hide], and [Const] are standard, except that [Idle] only does patient
actions using wildcards, and [Hide] and [Const] may or may not use wildcards
depending on the form of X.

The rules of the backward semantics, in Fig. 3, undo actions previously
recorded via the forward semantics, and they allow for timed actions with wild-
card. Backward rules are symmetric to the forward ones.

Definition 4 (Initial and reachable processes). A process X is initial if
std(X). A process X is reachable if it can be derived by an initial process.

Basically, a process is initial if it has no computational history, and reachable if
it can be obtained via forward and backward actions from an initial process.
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Fig. 3. revTPL backward LTS

4 Properties

We now give some properties of revTPL. In Sect. 4.1 we introduce a syntac-
tic characterisation of the class of processes that can delay without changing
state. In Sect. 4.2 we show that revTPL extends both (non reversible) TPL and
(untimed) reversible CCS.

4.1 Idempatience and Properties of �

We introduce a class of processes, which we call idempatient, that can make
state-preserving patient actions. This class is key to define the causal-consistent
reversible semantics of revTPL (see Sect. 5.1).
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Definition 5 (Idempatience). We say that X is idempatient if IP(X) where:
IP(0) = IP(α.P ) = tt IP(�P �(Q)) = IP(σ.P ) = ff

IP(X1 ‖ X2) = IP(X1) ∧ IP(X2) ∧ X1 ‖ X2 � τ−→
IP(X1 + X2) = IP(X1) ∧ IP(X2)
IP(π[i].X) = IP(�Y �[ i−→](X)) = IP(�X�[ i←−](Y )) = IP(X \ a) = IP(X)

Proposition 1 shows that idempatience is a sound and complete characterisation
of processes that can make state-preserving patient actions.

Proposition 1 (Idempatience). IP(X) ⇔ X
σ[�]
−−→ X.

Next, we give a property of time actions, and show that patient actions are state
preserving.

Proposition 2 (Patient actions). X
σ[�]−−→ implies X � σ[i]−−→, and X

σ[i]−−→
implies X � σ[�]−−→. Moreover, if X

σ[�]−−→ Y then X = Y . The same for ↪−→.

4.2 Relations with TPL and Reversible CCS

We can consider revTPL as a reversible extension of TPL, but also as an extension
of reversible CCS (in particular CCSK [29]) with time. First, if we consider the
forward semantics only, then we have a tight correspondence with TPL. To show
this we define a forgetful map which discards the history information of a process.

Definition 6 (History forgetting map). The history forgetting map φh :
X → P is inductively defined as follows:

φh(P ) = P φh(π[i].X) = φh(X)

φh(�X�[ i←−](Y )) = φh(X) φh(�X�[ i−→](Y )) = φh(Y )

φh(X ‖ Y ) = φh(X) ‖ φh(Y ) φh(X \ a) = φh(X) \ a

φh(X1 + X2) =

⎧
⎨

⎩

φh(X1) if ¬nact(X1) ∧ nact(X2)
φh(X2) if ¬nact(X2) ∧ nact(X1)
φh(X1) + φh(X2) otherwise

In TPL time cannot decide choices. This is reflected into the definition of φh(X1+
X2), where a branch disappears only if the other did an untimed action.

Notably, the restriction of φh to untimed processes is a map from CCSK to
CCS. In the following we will indicate with →t the semantics of TPL [13] and
with 
→k the semantics of CCSK [29].

Proposition 3 (Embedding of TPL). Let X be a reachable revTPL process:

1. if X
π[u]−−−→ Y then φh(X) π−→t φh(Y );

2. if φh(X) π−→t Q then
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– either for any i ∈ K \ keys(X) there is Y such that X
π[i]−−→ Y or

– π = σ and there is Y such that X
π[�]−−→ Y

In both the cases φh(Y ) = Q.

Also, TPL is a conservative extension of CCS. This is stated in [13], even if
not formally proved. Hence, we can define a forgetful map which discards all the
temporal operators of a TPL term and get a CCS one. We can obtain a stronger
result and relate revTPL with CCSK [29]. That is, if we consider the untimed
part of revTPL what we get is a reversible CCS which is exactly CCSK. To this
end, we define a time forgetting map φt. We denote with X − the set of untimed
reversible processes of revTPL. The set inclusion X − ⊂ X holds.

Definition 7 (Time forgetting map). The time forgetting map φt : X → X −

is inductively defined as follows:

φt(0) = 0 φt(A) = A
φt(α.P ) = α.φt(P ) φt(α[i].X) = α[i].φt(X)
φt(X + Y ) = φt(X) + φt(Y ) φt(X ‖ Y ) = φt(X) ‖ φt(Y )
φt(X \ a) = φt(X) \ a φt(�X�(Y )) = φt(X) + φt(Y )
φt(σ.P ) = φt(P ) φt(σ[i].X) = φt(X)
φt(�X�[ i←−](Y )) = φt(X) + φt(Y ) φt(�X�[ i−→](Y )) = φt(X) + φt(Y )

Notably, the restriction of φt to standard processes is a map from TPL to CCS.
The most interesting aspect in the definition above is that the temporal

operator �X�(Y ) is rendered as a sum. This also happens for the decorated
processes �X�[ i←−](Y ) and �X�[ i−→](Y ). Also, since we are relating a temporal
semantics with an untimed one (CCSK), the σ actions performed by the timed
semantics are not reflected in CCSK.

Proposition 4 (Embedding of CCSK [29]). Let X be a reachable revTPL
process. We have:

1. if X
α[i]
−−→ Y then φt(X)

α[i]
−−→k φt(Y );

2. if X
σ[u]
−−−→ Y then φt(X) = φt(Y );

Notably, it is not always the case that transitions of the underlying untimed pro-
cess can be matched in a timed setting, think, e.g., to the process in Example 1
(and its formalisation in Sect. 2) for a counterexample.

Figure 4 summarises our results: if we remove the timed behaviour from a
revTPL process we get a CCSK term, thanks to Proposition 4. On the other
side, if from revTPL we remove reversibility we get a TPL term (thanks to
Proposition 3). Note that the same forgetful maps (and properties) justify the
arrows in the bottom part of the diagram, as discussed above. This is in line
with Theorem 5.21 of [29], showing that by removing reversibility and history
information from CCSK we get CCS.
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Fig. 4. Forgetting maps.

5 Reversibility in revTPL

In a fully reversible calculus any computation can be undone. This is a funda-
mental property of reversibility [8,20], and revTPL enjoys it. Formally:

Lemma 1 (Loop Lemma). If X is a reachable process, then X
π[u]−−−→ X ′ ⇐⇒

X ′ π[u]
↪−−→ X

Another fundamental property of causal-consistent reversibility is causal-
consitency [8,20], which essentially states that we store the correct amount of
causal information. In order to discuss it, we now borrow some definitions from

[8]. We use t, t′, s, s′ to range over transitions. In a transition t : X
π[u]
−−−→ Y we

call X the source of the transition, and Y the target of the transition. Two tran-
sitions are said to be coinitial if they have the same source, and cofinal if they
have the same target. Given a transition t, we indicate with t its opposite, that

is if t : X
π[u]−−−→ Y (resp., t : X

π[u]
↪−−→ Y ) then t : Y

π[u]
↪−−→ X (resp., t : Y

π[u]−−−→ X).
We let ρ, ω to range over sequences of transitions, which we call paths, and with
εX we indicate the empty sequence starting and ending in X.

Definition 8 (Causal Equivalence). Let � be the smallest equivalence on
paths closed under composition and satisfying:

1. if t : X
π1[u]
−−−→ Y1 and s : X

π2[v ]
−−−→ Y2 are independent, and s′ : Y1
π2[v ]
−−−→ Z,

t′ : Y2
π1[u]
−−−→ Z then ts′ � st′;

2. tt � ε and tt � ε

Intuitively, paths are causal equivalent if they differ only for swapping indepen-
dent transitions (we will discuss independence below) and for adding do-undo
or undo-redo pairs of transitions.

Definition 9 (Causal Consistency (CC)). If ρ and ω are coinitial and cofi-
nal paths then ρ � ω.

Intuitively, if coinitial paths are cofinal then they have the same causal informa-
tion and can reverse in the same ways: we want only causal equivalent paths to
reverse in the same ways.
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Unfortunately, causal consistency does not hold in revTPL as defined in the
previous sections (and this is not related to a specific definition of independence).
This is due to actions with label σ[�].

Example 2 (CC does not hold with σ[�]). Consider the path ρ : α.P
σ[�]−−→ α.P .

Trivially, ρ and εα.P are coinitial and cofinal, but not causal equivalent. Indeed,
the number of forward transitions minus the number of backward transitions is
invariant under causal equivalence, and this is not the same for the two paths.�

This leaves us two possibilities to enforce the property: either we change
the definition of causal equivalence (e.g., allowing one to freely add and remove
transitions with label σ[�]), or we change the semantics. We opt for the latter,
since it allows us to stay in the framework studied in [20] and exploit the theory
developped there to prove our results.

5.1 Revised Semantics

We change the semantics simply dropping all transitions with label σ[�]. Tech-
nically, this ensures that causal consistency (as well as other relevant properties)
holds. Conceptually, those transitions do not amount to actual actions of the
process (as shown in Proposition 2, they do not change the process) and are
mainly used to simplify a compositional definition of the semantics, see, e.g., rule
[SynW]. A compositional semantics could be defined by replacing premises of

the form X
σ[�]−−→ X with IP(X) thanks to Proposition 1. This option is discussed

in more detail in the companion technical report [4].
For simplicity, from now on we consider the semantics given by the labelled

transition system obtained by dropping all transitions with label σ[�]:

Definition 10 (Semantics with no self-loops). The operational semantics
with no self-loops of revTPL is given by the forward LTS (X , L, −→n) and the
backward LTS (X , L, ↪−→n), on the same sets X of processes and L of labels.
Transition relations −→n and ↪−→n are obtained by dropping from, respectively, −→
and ↪−→ the transitions with label σ[�].

Notably, the Loop Lemma holds also for the new semantics. Concerning embed-
dings, the embedding of TPL does not hold any more (a new operational corre-
spondence taking care of dropped transitions can be defined), while the one of
CCSK is unaffected.

We discuss below reversibility in revTPL using the semantics with no self-
loops. We first need to discuss the notion of independence.

5.2 Independence

We now define a notion of independence between revTPL transitions, based on
a causality preorder (inspired by [19]) on keys. Independence is useful to show
that reversibility never breaks causal links between actions.
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Definition 11 (Partial order on keys). The function po(·), that computes
the set of causal relations among the keys in a process, is inductively defined as:

po(P ) = ∅ po(X \ a) = po(X)
po(X ‖ Y ) = po(X + Y ) = po(�X�(Y )) = po(X) ∪ po(Y )
po(π[i].X) = po(�X�[ i←−](Y )) = po(�Y �[ i−→](X)) = {i < j | j ∈ keys(X)} ∪ po(X)

The partial order ≤X on keys(X) is the reflexive and transitive closure of po(X).

Let us note that function po computes a partial order relation, namely a set of
pairs (i, j), denoted i < j to stress that they form a partial order.

Definition 12 (Choice context). A choice context C is a process with a hole
• defined by the following grammar (we omit symmetric cases for + and ‖):
C = • | π[i].C | �C�(Y ) | �X�[ i−→](C) | �C�[ i←−](Y ) | X + C | X ‖ C | C \ a

Intuitively, a choice context may enclose an enabled (forward) choice. We now
define a notion of conflict, and independence as its negation. For simplicity of
formalisation, we assume that generation of fresh keys in forward transitions is
deterministic: the same redex in the same process cannot generate different keys.

Definition 13 (Conflict and independence). Given a reachable process X,

two coinititial transitions t : X
π1[i]
−−−→n Y and s : X

π2[j ]
−−−→n Z are conflicting,
written t # s, if and only if one of the following conditions holds:

1. X
σ[i]−−→n Y and X

α[j ]−−→n Z;

2. X
π1[i]−−−→n Y and X

π2[j ]
↪−−−→n Z with j ≤Y i;

3. X = C[Y ′ + Z ′], Y ′ π1[i]−−−→n Y ′′ and Z ′ π2[j ]−−−→n Z ′′.

Transitions t and s are independent, written t I s, if t �= s and they are not
conflicting.

The first clause tells us that a delay cannot be swapped with a communication
action. Consider process �b.0�(0):

�b.0�(0)
σ[i]

�����
���

���
�� b[j ]

  ��
���

���
���

�

�b.0�[ i−→](0) �b[j ].0�[ j←−](0)

Transitions σ[i] and b[j ] are in conflict: they cannot be swapped since action b
is no longer possible after action σ, and vice versa. The second clause dictates
that two transitions are in conflict when a reverse step eliminates some causes
of a forward step. E.g., process a[i].b.0 can do a forward step with label b[j ] or
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a backward one with label a[i]. Undoing a[i] disables the action on b. The last
case is the most intuitive: processes in different branches of a choice operator
are in conflict, e.g., a.0 + b.0 can do actions on a and b, but they can not be
swapped.

The Square Property tells that two coinitial independent transitions com-
mute, thus closing a diamond. Formally:

Property 1 (Square Property - SP) Given a reachable process X and two

coinititial transitions t : X
π1[i]
−−−→n Y and s : X

π2[j ]
−−−→n Z with t I s there exist

two cofinal transitions t′ : Y
π2[j ]
−−−→n W and s′ : Z

π1[i]
−−−→n W .

5.3 Causal Consistency

We can now prove causal consistency, using the theory in [20]. It ensures that
causal consistency follows from SP, already discussed, and two other properties,
stated below. BTI (Backward Transitions are Independent) generalises the con-
cept of backward determinism used for reversible sequential languages [31]. It
specifies that two backward transitions from a same process are always indepen-
dent.

Property 2 (Backward transition are independent - BTI) Given a reach-

able process X, any two distinct coinitial backward transitions t : X
π1[i]

↪−−−→n Y

and s : X
π2[j ]

↪−−−→n Z are independent.

The property trivially holds since by looking at the definition on conflicting
and independent transitions (Definition 13) there are no cases in which two
backward transitions are deemed as conflicting, hence two backward transitions
are always independent.

We now show that reachable processes have a finite past.

Property 3 (Well-Foundedness - WF) Let X0 be a reachable process. Then

there is no infinite sequence such that Xi

πn[jn ]
↪−−−−→n Xi+1 for all i = 0, 1, . . ..

WF follows since each backward transition removes a key.
The following lemma tells us that any path is causally equivalent to a path

made by only backward steps, followed by only forward steps. In other words, up
to causal equivalence, paths can be rearranged so as to first reach the maximum
freedom of choice, going only backwards, and then continuing only forwards.

Definition 14 (Parabolic Lemma). For any path ρ, there exist two forward-
only paths ω, ω′ such that ρ � ωω′ and |ω| + |ω′| ≤ |ρ|.

We can now prove our main results thanks to the proof schema of [20].

Theorem 1 (From [20]). Suppose BTI and SP hold, then PL holds. Suppose
WF and PL hold, then CC holds.
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6 Conclusions

The main contribution of this paper is the study of the interplay between
time and causal-consistent reversibility. A reversible semantics for TPL cannot
be automatically derived using well-established frameworks [15,29], since some
operator acts differently depending on whether the label is a communication or
a time action. For example, in TPL a choice cannot be decided by the passage of
time, making the + operator both static and dynamic, and the approach in [29]
not applicable. To faithfully capture patient actions in a reversible semantics
we introduced wildcards. However, as σ[�] actions violate causal consistency, to
recover it we had to refine the formalisation of the semantics. Another pecu-
liarity of TPL is the timeout operator �P �(Q), which can be seen as a choice
operator whose left branch has priority over the right one. Although we have
been able to use the static approach to reversibility [29], adapting it to our set-
ting has been challenging for the aforementioned reasons. Notably, our results
have a double interpretation: as an extension of CCSK [29] with time, and as a
reversible extension of TPL [13]. As a side result, by focusing on the two frag-
ments, we derive notions of independence and conflict for CCSK and TPL, which
were not available in the literature. We have just started to study the relations
among revTPL, CCSK and TPL. We leave as future work a further investigation
in terms of behavioural equivalences or simulations among the three calculi.

Maximal progress of TPL (as well as revTPL) has connections with Markov
chains [5], e.g., τ.P + (λ).Q (where λ is a rate) will not be delayed since τ
is instantaneously enabled. This resembles maximal progress for the timeout
operator. A deep comparison between deterministic time, used by TPL, and
stochastic time used by stochastic process algebras can be found in [1]. Further
investigation on the relation between our work and [2], studying reversibility in
Markov chains, is left for future work. The treatment of passage of time shares
some similarities with broadcast [24]: time actions affect parallel components
in the same way, and idempatience can be seen as unavailability of top-level
receivers.

We have just started our research quest towards a reversible timed semantics.
A further improvement would be to add an explicit rollback operator, as in [17],
that could be triggered, e.g., in reaction to a timeout. Also, asynchronous com-
munications (like in Erlang) could be taken into account. TPL is a conservative
timed extension of CCS. Due to its simplicity, it has a very clear behavioural
theory [13]. A further step could be to adapt such behavioural theory to account
for reversibility. Also, we could consider studying more complex temporal oper-
ators [27]. Timed Petri nets are a valid tool for analysing real-time systems. A
step towards the analysis of real-time systems would be to encode revTPL into
(reversible) timed Petri nets [32], by extending the encoding of reversible CCS
into reversible Petri nets [23]. Another possibility would be to study the exten-
sion of a monitored timed semantics for multiparty session types, as the one
of [26], with reversibility [25].
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Abstract. We propose a relaxation to the definition of a well-structured
transition systems (WSTS) while retaining the decidability of bounded-
ness and termination. In this class, we ease the well-quasi-ordered (wqo)
condition to be applicable only between states that are reachable one
from another. Furthermore, we also relax the monotony condition in the
same way. While this retains the decidability of termination and bound-
edness, it appears that the coverability problem is undecidable. To this
end, we define a new notion of monotony, called cover-monotony, which is
strictly more general than the usual monotony and still allows to decide
a restricted form of the coverability problem.

Keywords: Verification · Decidability · Coverability · Termination ·
Well-quasi-ordering

1 Introduction

Well-structured transition systems (WSTS) (initially called structured transition
systems in [10]) have decidable termination and boundedness problems. They
capture properties common to a wide range of formal models used in model-
checking, system verification and concurrent programming [13].

A WSTS is an infinite set X (of states) with a transition relation → ⊆ X×X.
The set X is quasi-ordered by ≤, and → fulfills one of various possible monotonies
with respect to ≤. The quasi-ordering of X is further assumed to be well, i.e. well-
founded and with no infinite antichains (see Sect. 2 for precise formal definitions).
These two properties lead to a general framework in which it is possible to
algorithmically decide verification problems like coverability, termination and
boundedness.

This class of systems includes Lossy Channel Systems, Petri Nets and their
extensions, among others [1,13]. More recently, the theory of WSTS has been
applied to study computational models resulting from a combination of differ-
ent types of systems like asynchronous systems defined by extending pushdown
systems with an external memory [5], cryptographic protocols [7], and others.

Various strengthenings and weakenings of the notion of monotony (of → with
respect to ≤) were introduced, to allow WSTS to capture more models [1,13].
c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
M. R. Mousavi and A. Philippou (Eds.): FORTE 2022, LNCS 13273, pp. 50–66, 2022.
https://doi.org/10.1007/978-3-031-08679-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08679-3_4&domain=pdf
http://orcid.org/0000-0003-0985-6115
http://orcid.org/0000-0003-0702-3232
http://orcid.org/0000-0001-6819-9093
https://doi.org/10.1007/978-3-031-08679-3_4


Branch-Well-Structured Transition Systems and Extensions 51

More recently, [3] showed that the wellness assumption in the definition of WSTS
can be relaxed while some decidabilities are retained (notably, the coverability
problem is decidable).

Our main contribution is to prove that the monotony and well-quasi-order
(wqo) assumptions can further be weakened while some problems remain decid-
able. More precisely, we introduce a notion of well-structured transition systems,
called branch-well-structured transition systems, where the monotony is only
applicable to states reachable one from another. Furthermore, we also relax the
wqo condition to such states. With this relaxation, it is still possible to retain the
decidability of termination and boundedness. Furthermore, for the coverability
problem, we introduce a notion of monotony, called cover-monotony, which still
allows deciding the coverability problem, even in the absence of strong (or strict
or transitive or reflexive) monotony. Indeed, while the usual backward algorithm
for coverability relies on well-foundedness, the forward algorithm described in
[3] does not require that property.
Outline. Sect. 2 introduces terminology and some well-known results concern-
ing well-quasi-orderings and well-structured transition systems. Section 3 defines
branch-WSTS, and shows that both the boundedness and the termination prob-
lems are decidable for such systems. Section 4 investigates the coverability prob-
lem for WSTS with relaxed conditions. We conclude in Sect. 5. Due to space
constraints, some proofs are omitted.

2 Preliminaries

Quasi-Orderings. Let X be a set and ≤ ⊆ X ×X be a binary relation over X,
which we also write as (X,≤). We call ≤ a quasi-ordering (qo) if it is reflexive and
transitive. As usual, we call ≤ a partial ordering if it is a qo and anti-symmetric
(if x ≤ y and y ≤ x, then x = y).

For the following definitions, we also use the terminology qo for the ordering
≤ and its associated set X, i.e. (X,≤).

We write x < y if x ≤ y and y �≤ x. If ≤ is a partial ordering, x < y is then
equivalent to x ≤ y and x �= y.

To any x ∈ X, we associate the sets ↑x
def= {y | x ≤ y} and ↓x

def= {y | y ≤ x}.
Moreover, for A ⊆ X, we let ↑A

def=
⋃

x∈A ↑x and ↓A
def=

⋃
x∈A ↓x. We say that A

is upward-closed if A = ↑A. Similarly, A is downward-closed if A = ↓A. A basis
of an upward-closed set A is a set B ⊆ X such that A = ↑B.

We call (X,≤) well-founded if there is no infinite strictly decreasing sequence
x0 > x1 > . . . of elements of X. An antichain is a subset A ⊆ X of pairwise
incomparable elements, i.e., for every distinct x, y ∈ A, we have x �≤ y and y �≤ x.
For example, consider the alphabet Σ = {a, b}. There exists an infinite antichain
{b, ab, aab, ...} with respect to the prefix ordering over Σ∗.

An ideal is a downward-closed set I ⊆ X that is also directed, i.e., it is
nonempty and, for every x, y ∈ I, there exists z ∈ I such that x ≤ z and y ≤ z.
The set of ideals is denoted by Ideals(X).
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Well-Quasi-Orderings. When a qo satisfies some additional property, we deal
with a well-quasi-ordering:

Definition 1. A well-quasi-ordering (wqo) is a qo (X,≤) such that every infi-
nite sequence x0, x1, x2, . . . over X contains an increasing pair, i.e., there are
i < j such that xi ≤ xj.

For example, the set of natural numbers N, along with the standard ordering
≤ is a wqo. Moreover, (Nk,≤), i.e. the set of vectors of k ≥ 1 natural numbers
with component-wise ordering, is a wqo [6]. On the other hand, the prefix order-
ing of words over an alphabet Σ, denoted by 
, is not a wqo since, in the infinite
sequence b, ab, a2b, a3b, ...anb, ..., we have aib �
 ajb for all i < j.

In general, for qo, upward-closed sets do not necessarily have a finite basis.
However, from [14], we know that every upward-closed set in a wqo has a finite
basis.

We have the following equivalent characterization of wqos.

Proposition 1 ([9]). A qo (X,≤) is a wqo iff every infinite sequence in X has
an infinite increasing subsequence.

Moreover, one can prove that a qo is a wqo iff it is well-founded and contains
no infinite antichain.

The following proposition is useful to design the forward coverability algo-
rithm that enumerates finite subsets of ideals composing inductive invariants. It
shows that the wqo hypothesis is not necessary to decide coverability.

Proposition 2 ([9]). A qo (X,≤) contains no infinite antichain iff every down-
ward-closed set decomposes into a finite union of ideals.

Transition Systems. A transition system is a pair S = 〈X,→〉 where X is
the set of states and → ⊆ X × X is the transition relation. We write x −→ y
for (x, y) ∈ →. Moreover, we let ∗−→ be the transitive and reflexive closure of the
relation →, and +−→ be the transitive closure of →.

Given a state x ∈ X, we write PostS(x) = {y ∈ X | x −→ y} for the set of
immediate successors of x. Similarly, PreS(x) = {y ∈ X | y −→ x} denotes the
set of its immediate predecessors.

We call S finitely branching if, for all x ∈ X, the set PostS(x) is finite. The
reachability set of S from x ∈ X is defined as Post∗S(x) = {y ∈ X | x

∗−→ y}.
Note that, when S is clear from the context, we may drop the subscript and
write, e.g., Post∗(x). We say that a state y is reachable from x if y ∈ Post∗(x)
(resp. y ∈ ↓Post∗(x)).

A (well-)ordered transition system is a triple S = (X,→,≤) consisting of a
transition system 〈X,→〉 equipped with a qo (resp., wqo) (X,≤). An ordered
transition system S = (X,→,≤) is effective if ≤ and → are decidable. We say
that a state y is coverable from x if y ∈ ↓Post∗(x).
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Definition 2 ([10]). A well-structured transition system (WSTS) is a well-
ordered transition system S = (X,→,≤) that satisfies (general) monotony: for
all x, y, x′ ∈ X, we have: x ≤ y ∧ x → x′ =⇒ ∃y′ ∈ X: x′ ≤ y′ ∧ y

∗−→ y′.

We define other types of monotony. We say that a well-ordered transition
system S = (X,→,≤) satisfies strong monotony (resp., transitive monotony) if,
for all x, y, x′ ∈ X such that x ≤ y and x → x′, there is y′ ∈ X such that x′ ≤ y′

and y → y′ (resp., y
+−→ y′). The transition system S satisfies strict monotony

if, for all x, y, x′ ∈ X such that x < y and x → x′, there is y′ ∈ X such that
x′ < y′ and y → y′.

Definition 3. We define the following decision problems. Given an ordered
transition system S = (X,→,≤) and an initial state x0 ∈ X:

– The non-termination problem: Is there an infinite sequence of states x1, x2, . . .
such that x0 −→ x1 −→ x2 −→ . . . ?

– The boundedness problem: Is Post∗S(x0) finite?
– The coverability problem: Given states x, y ∈ X, is y coverable from x?

It is folklore [10,13] that termination is decidable for finitely branching WSTS
with transitive monotony and that boundedness is decidable for finitely branch-
ing WSTS S = (X,→,≤) where ≤ is a partial ordering and → is strictly mono-
tone; in both cases, we suppose that the WSTS are effective and that Post(x)
is computable, for all x ∈ X.

Recall that, in a wqo (X,≤), upward-closed sets have a finite basis. Cover-
ability is decidable for a large class of WSTS:

Theorem 1 ([1,13]). The coverability problem is decidable for effective WSTS
S = (X,→,≤) equipped with an algorithm that, for all finite sets I ⊆ X, com-
putes a finite basis pb(I) of ↑Pre(↑I).

Assume S = (X,−→,≤) is a WSTS and x ∈ X is a state. The backward
coverability algorithm involves computing (a finite basis of) Pre∗(↑x) as the
limit of the infinite increasing sequence ↑I0 ⊆ ↑I1 ⊆ . . . where I0 = {x} and
In+1

def= In ∪ pb(In). Since there exists an integer k such that ↑Ik+1 = ↑Ik, the
finite set Ik is computable (one may test, for all n, whether ↑In+1 = ↑In) and Ik

is then a finite basis of Pre∗(↑x) so one deduces that coverability is decidable.
Coverability can be also decided by using the forward coverability algorithm

that relies on two semi-decision procedures (as described below). It applies to the
class of well-behaved transition systems, which are more general than WSTS.
A well-behaved transition system (WBTS) is an ordered transition system S =
(X,−→,≤) with monotony such that (X,≤) contains no infinite antichain. We
describe effectiveness hypotheses that allow manipulating downward-closed sets
in WBTS.

Definition 4 ([3, Definition 3.4]). A class C of WBTS is ideally effective if,
given S = (X,−→ ,≤) ∈ C,
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– the set of encodings of Ideals(X) is recursive,
– the function mapping the encoding of a state x ∈ X to the encoding of the

ideal ↓x ∈ Ideals(X) is computable;
– inclusion of ideals of X is decidable;
– the downward closure ↓Post(I) expressed as a finite union of ideals is com-

putable from the ideal I ∈ Ideals(X).

Theorem 2 ([3]). The coverability problem is decidable for ideally effective
WBTS.

The proof is done by two semi-decision procedures where downward-closed
sets are represented by their finite decomposition in ideals and this is effective.
Procedure 1 checks for coverability of y from x0, by recursively computing ↓x0,
↓(↓x0 ∪ Post(↓x0)) and so on. This procedure terminates only if y belongs to
one of these sets, hence it terminates if y is coverable. Hence, we deduce:

Proposition 3 ([3]). For an ideally effective WBTS S = (X,→,≤), an initial
state x0, and a state y, Procedure 1 terminates iff y is coverable from x0.

Procedure 1 : Checks for a coverability certificate of y from x0

input: S = (X, →, ≤) and x0, y

D := ↓x0

while y /∈ D do
D := ↓(D ∪ PostS(D))

end while
return “y is coverable from x0”

Procedure 2 enumerates all downward-closed subsets (by means of their finite
decomposition in ideals) in some fixed order D1,D2, . . . such that for all i, Di ⊆
X and ↓Post(Di) ⊆ Di. This enumeration is effective since S is ideally effective.
If such a set Di contains x0, it is an over-approximation of Post∗(x0). Hence, if
there is such a set Di such that x0 ∈ Di but y /∈ Di, it is a certificate of non-
coverability. Moreover, this procedure terminates if y is non-coverable because
↓Post∗(x0) is such a set, and hence, will eventually be found.

Proposition 4 ([3]). For a WBTS S = (X,→,≤), an initial state x0 and a
state y, Procedure 2 terminates iff y is not coverable from x0.

3 Termination and Boundedness

In this section, we generalize wqo and monotony such that these properties only
consider states along a branch in the reachability tree. To define these notions,
we use labels on the transitions, hence, we consider labeled transition systems.
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Procedure 2 : Checks for non-coverability
input: S = (X, →, ≤) and x0, y

enumerate D1, D2, . . .
i := 1
while ¬(↓Post(Di) ⊆ Di and x0 ∈ Di and y /∈ Di) do

i := i + 1
end while
return false

Labeled Transition Systems. A labeled transition system (LTS) is a tuple
S = (X,Σ,→, x0) where X is the set of states, Σ is the finite action alphabet,
−→ ⊆ X × Σ × X is the transition relation, and x0 ∈ X is the initial state.

Definition 5. An (quasi-)ordered labeled transition system (OLTS) is defined
as a tuple S = (X,Σ,→,≤, x0) where (X,Σ,→, x0) is an LTS and (X,≤) is a
qo.

In the case of an LTS or OLTS, we write x
a−→ x′ instead of (x, a, x′) ∈ →.

For σ ∈ Σ∗, x
σ−→ x′ is defined as expected. We also let x −→ x′ if (x, a, x′) ∈ →

for some a ∈ Σ, with closures ∗−→ and +−→.
We call an OLTS S effective if ≤ and, for all a ∈ Σ, a−→ are decidable.

Remark 1. We can similarly define a labeled WSTS as an OLTS such that the
ordering is well and it satisfies the general monotony condition (canonically
adapted to take care of the transition labels). Moreover, we lift the decision
problems from Definition 3 to OLTS in the obvious way.

Branch-WSTS. Consider an OLTS S = (X,Σ,→,≤, x0). A run (or branch)
of S is a finite or infinite sequence ρ = (x0 −→ x1)(x1 −→ x2)... simply written ρ =
x0 −→ x1 −→ x2 . . .. We say that ρ is branch-wqo if the set of states {x0, x1, x2, . . .}
visited along ρ is wqo w.r.t. ≤.

Definition 6. An OLTS S = (X,Σ,→,≤, x0) is branch-wqo if every run of S
is branch-wqo.

Example 1. Consider the FIFO machine (formally defined in Definition 10) M1

in Fig. 1 with one FIFO channel. In control-state q0, it makes a loop by sending
letter a to the channel. Then, we may go, non-deterministically, to control-state
q1 by sending letter b once, and then we stop. Let us consider the set of states
X1 = {q0, q1}×{a, b}∗ together with the ordering ≤p defined by (q, u) ≤p (q′, u′)
if q = q′ and u is a prefix of u′, i.e., u 
 u′. The reachability set of M1 from
(q0, ε) is equal to {(q0, w), (q1, w) | w ∈ a∗, w′ ∈ a∗b}. Note that ≤p is not a wqo
since elements of the set {(q1, w) | w ∈ a∗b} form an infinite antichain for ≤p.
However, the reachability tree of M1 is branch-wqo for the initial state (q0, ε).
Hence, there exist branch-wqo OLTS S = (X,Σ,→,≤, x0) such that (X,≤) is
not a wqo.
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q0 q1

!a

!b

(q0, ε)

(q1, b)(q0, a)

(q0, aa) (q1, ab)

...
(q1, aab)

Fig. 1. The FIFO machine M1 (left), and its corresponding (incomplete) infinite reach-
ability tree (right).

Remark 2. There exist a system S = (X,Σ,→,≤, x0) and x′
0 ∈ X such that S

is branch-wqo but (X,Σ,→,≤, x′
0) is not branch-wqo (cf. Figure 2).

q0 q1 q2

!a

!b
?c

!b

?b

?c !c

Fig. 2. The FIFO machine shown is branch-wqo if the initial control-state is q0. If the
initial control-state is q2, then it is not branch-wqo as the states in the set {(q1, w) |
w ∈ c+b}, which form an infinite antichain, are reachable from (q2, ε).

We now look at a generalization of strong monotony, which we will refer to
as branch-monotony.

Definition 7 (Branch-monotony). An OLTS S = (X,Σ, →,≤, x0) is
branch-monotone if, for all x, x′ ∈ X, σ ∈ Σ∗ such that x

σ−→ x′ and x ≤ x′,
there exists a state y such that x′ σ−→ y and x′ ≤ y.

Remark 3. Let S be a branch-monotone OLTS and let there be states x, x′ such
that x

σ−→ x′ and x ≤ x′, with σ ∈ Σ∗. Then, for any n ≥ 1, there exists yn ∈ X

such that x
σn

−−→ yn with x ≤ yn.

As in the case of general monotony, strict branch-monotony is defined using
strict inequalities in both cases.

Example 2. Consider M1 from Example 1 once again. Note M1 induces an
OLTS by considering the actions on the edges to be the labels. Moreover, M1

is branch-monotone. For every x
σ−→ x′ such that x ≤ x′ and σ ∈ Σ∗, it is

necessary that x = (q0, an), x′ = (q0, an+k), for some n, k ∈ N. Moreover, there
always exists a transition from x′ such that x′ σ−→ y = (q0, an+k+k). Hence,
x′ ≤ y. We deduce that M1 is branch-monotone.
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(q0, ε)

(q1, b)(q0, a)

dead

Fig. 3. The reduced reachability tree of M1 from (q0, ε). Note that (q0, a) is dead

because it is subsumed by state (q0, ε). As a matter of fact, we have (q0, ε)
∗−→ (q0, a)

and (q0, ε) ≤p (q0, a). State (q1, b) is also dead but it is not subsumed.

We are now ready to extend the definition of WSTS.

Definition 8 (Branch-WSTS). A branch-WSTS is an OLTS S = (X,Σ, →
,≤, x0) that is finitely branching, branch-monotone, and branch-wqo.

When we say, without ambiguity, that a machine M is branch-wqo, WSTS,
or branch-WSTS, we mean that the ordered transition system SM, associated
with machine M, is branch-wqo, WSTS, or branch-WSTS, resp.

Remark 4. Branch-WSTS is a strict superclass of labeled WSTS. For example,
machine M1 is branch-WSTS for the ordering ≤p but M1 is not WSTS for ≤p

since ≤p is not a wqo on {q0, q1} × {a, b}∗ or on the subset {(q1, w) | w ∈ a∗b}.

Let us recall the Reduced Reachability Tree (RRT), which was defined as
Finite Reachability Tree in [10,13]. Suppose that S = (X,Σ,→,≤, x0) is an
OLTS. Then, the Reduced Reachability Tree from x0, denoted by RRT (S, x0), is
a tree where nodes are labeled by states of X, and n(x) denotes that node n is
labeled by state x. Nodes are either dead or live. The root node n0(x0) is live.
A dead node has no child node. A live node n(y) has one child n′(y′) for each
successor y′ ∈ PostS(y). If there is a path in the tree n0(x0)

∗−→ n′(y′) +−→ n(y)
such that n′ �= n and y′ ≤ y, we say that n′ subsumes n, and then n is dead.
Otherwise n is live. See Fig. 3 for the RRT of M1.

Proposition 5. Let S = (X,Σ,→,≤, x0) be an OLTS that is finitely branching
and branch-wqo. Then, RRT (S, x0) is finite.

Proposition 6. Let S = (X,Σ, →,≤, x0) be a branch-WSTS, equipped with
strict branch-monotony and such that ≤ is a partial ordering. The reachability
set Post∗S(x0) is infinite iff there exists a branch n0(x0)

∗−→ n1(x1)
+−→ n2(x2) in

RRT (S, x0) such that x1 < x2.

We now need a notion of effectivity adapted to branch-WSTS.

Definition 9. A branch-WSTS S = (X,Σ, →,≤, x0) is branch-effective if S is
effective and PostS(x) is a (finite) computable set, for all x ∈ X.

Theorem 3. Boundedness is decidable for branch-effective branch-WSTS S =
(X,Σ, →,≤, x0) with strict branch-monotony such that ≤ is a partial ordering.
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Proof. Suppose S = (X,Σ, →,≤, x0) satisfies the above conditions. From Propo-
sition 5, we obtain that RRT (S, x0) is finite. By hypothesis, S is finitely branch-
ing and branch-effective. In particular, for all x, PostS(x) is a finite computable
set. As ≤ is decidable, we deduce that RRT (S, x0) is effectively computable.
From Proposition 6, we know that Post∗S(x0) is infinite iff there exists a finite
branch n0(x0)

∗−→ n1(x1)
+−→ n2(x2) such that x1 < x2. This last property can be

decided on RRT (S, x0), and so the boundedness property can be decided, too.
��

We also generalize the decidability of termination for WSTS [13] to branch-
WSTS.

Proposition 7. A branch-WSTS S = (X,Σ, →,≤, x0) does not terminate from
state x0 iff there exists a subsumed node in RRT (S, x0).

Theorem 4. Termination is decidable for branch-effective branch-WSTS.

Proof. Given a branch-WSTS S = (X,Σ, →,≤, x0), we apply Proposition 7 so
that it is sufficient to build RRT (S, x0) and check if there exists a subsumed
node. Since S is branch-effective, we can effectively construct RRT (S, x0) and
verify the existence of a subsumed node. ��

Note that we can thus solve the termination and boundedness problems for
the example machine M1, and since there exists nodes n0(x0) and n1(x1) in the
RRT such that x0 = (q0, ε) and x1 = (q0, a) such that x0 < x1 and x0

+−→ x1,
the machine M1 is unbounded. Moreover, since n1(x1) is also a subsumed node,
it is non-terminating.

On the other hand, boundedness becomes undecidable if we relax the strict
monotony condition to general monotony (even when we strengthen the order
to be wqo). This is because boundedness is undecidable for Reset Petri nets [8].
Reset Petri nets are effective WSTS S = (X,Σ, →,≤, x0), hence branch-effective
WSTS, where ≤ is the wqo on vectors of integers. Hence, we deduce:

Proposition 8. Boundedness is undecidable for branch-effective branch-WSTS
S = (X,Σ,→,≤, x0) where ≤ is a wqo.

Counter Machines with Restricted Zero Tests. Now, we show an example
of a class that is branch-WSTS. We study counter machines with restricted zero
tests. In [4], it was shown that termination and boundedness (and moreover,
reachability) are decidable for this class of systems. However, using the alterna-
tive approach of branch-WSTS, we can verify that termination and boundedness
are decidable for this class without reducing these problems to reachability.

We recall that a counter machine (with zero tests) is a tuple C = (Q,V, T, q0).
Here, Q is the finite set of control states and q0 ∈ Q is the initial control state.
Moreover, V is a finite set of counters and T ⊆ Q × AC × Q is the transition
relation where AC = {inc(v), dec(v) | v ∈ V }×2V (an element of 2V will indicate
the set of counters to be tested to 0).
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The counter machine C induces an LTS SC = (XC , AC ,→C , x0) with set of
states XC = Q ×N

V . In (q, �) ∈ XC , the first component q is the current control
state and � = (�v)v∈V represents the counter values. The initial state is then
x0 = (q0, �) with all �v equal to 0.

For op ∈ {inc, dec}, v ∈ V , and Z ⊆ V (the counters tested for zero), there is

a transition (q, �)
op(v),Z−−−−−→C (q′,m) if (q, (op(v), Z), q′) ∈ T , �v′ = 0 for all v′ ∈ Z

(applies the zero tests), mv = �v + 1 if op = inc and mv = �v − 1 if op = dec,
and mv′ = �v′ for all v′ ∈ V \ {v}.

We define counter machines with restricted zero tests (CMRZ) imposing the
following requirement: Once a counter has been tested for zero, it cannot be incre-
mented or decremented anymore. Formally, we require that, for all valid transi-

tion sequences (q1, �1)
op(v1),Z1−−−−−−→C (q2, �2)

op(v2),Z2−−−−−−→C . . .
op(vn),Zn−−−−−−→C (qn+1, �n+1)

and every two positions 1 ≤ i ≤ j ≤ n, we have vj �∈ Zi.
Let us consider the wqo ≤ on Q × N

V where (q, �) ≤ (q′,m) if q = q′ and
� ≤ m. Note that this ordering is a partial ordering.

Proposition 9. CMRZs are branch-monotone and strictly branch-monotone for
the wqo ≤.

Therefore, since ≤ is a wqo:

Theorem 5. CMRZs are branch-WSTS.

Furthermore, since ≤ and −→C are decidable, and PostSC (x) is a finite, com-
putable set for all x ∈ XC , we have:

Proposition 10. CMRZs are branch-effective.

Hence, we deduce:

Theorem 6. Termination and boundedness are decidable for counter machines
with restricted zero tests.

Restrictions on FIFO Machines. Next, we consider FIFO machines.

Definition 10. A FIFO machine M with a unique channel over the finite mes-
sage alphabet A is a tuple M = (Q,A, T, q0) where Q is a finite set of control
states and q0 ∈ Q is an initial control state. Moreover, T ⊆ Q×{!, ?}×A×Q is
the transition relation, where {!}×A and {?}×A are the set of send and receive
actions, respectively.

The FIFO machine M induces the LTS SM = (XM, ΣM,→M, x0). Its set
of states is XM = Q × A∗. In (q, w) ∈ XM, the first component q denotes
the current control state and w ∈ A∗ denotes the contents of the channel. The
initial state is x0 = (q0, ε), where ε denotes the empty channel. Moreover, ΣM =
{!, ?} × A. The transitions are given as follows:

– (q, w) !a−→M (q′, w′) if (q, !a, q′) ∈ T and w′ = w · a.
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– (q, w) ?a−→M (q′, w′) if (q, ?a, q′) ∈ T and w = a · w′.

The index M may be omitted whenever M is clear from the context. When
there is no ambiguity, we confuse machines and their associated LTS.

The FIFO machine M1 from Fig. 1 is an example of a system that is branch-
WSTS but the underlying set of states is not well-quasi-ordered. We first try to
generalize a class of systems which are branch-wqo, and which includes M1.

Branch-Wqo FIFO Machines. We consider a restriction that has been stud-
ied in [4], which we go on to prove is branch-wqo. These systems are known as
input-bounded FIFO machines, which we formally define below. First, we recall
the definition of a bounded language.

Let w1, . . . , wn ∈ A+ be non-empty words where n ≥ 1. A bounded language
over (w1, . . . , wn) is a language L ⊆ w∗

1 . . . w∗
n. We let proj! : Σ∗

M → A∗ be the
homomorphism defined by proj!(!a) = a for all a ∈ A and proj!(β) = ε if β is
not of the form !a for some a ∈ A. We define proj? the same way. Using these
notions, the input language of M is defined as Linput(M) = {proj!(σ) | x0

σ−→M
x for some x ∈ XM}. Note that the input language is prefix-closed. Moreover,
the prefix language of a bounded language is a bounded language.

Definition 11. A FIFO machine M = (Q,A, T, q0) is input-bounded if its
input language Linput(M) is bounded.

Let us recall the extended prefix ordering on the states of a FIFO machine:
we let (q, w) ≤p (q′, w′) if q = q′ and w 
 w′.

Proposition 11. Input-bounded FIFO machines are branch-wqo for the prefix-
ordering ≤p.

It is clear that M1 belongs to this class of FIFO systems. But, we see that
this subclass is not branch-WSTS (cf. Figure 4). We have (q1, ε)

σ−→ (q1, a), where
σ =!b?b!a. Moreover, (q1, ε) ≤p (q1, a). However, there exists no (q1, w) such
that (q1, a) σ−→ (q1, w), and (q1, a) ≤p (q1, w). In fact, σ cannot be executed
from (q1, a). Therefore, the machine is not branch-monotone under the prefix
ordering.

Proposition 12. Input-bounded FIFO machines are, in general, not branch-
monotone for the prefix-ordering.

However, when we consider the normal form of input-bounded FIFO
machines, as defined in [4], we conjecture that they are branch-monotone for the
prefix-ordering. Furthermore, since they are input-bounded, this would imply
that they are branch-WSTS. Moreover, it was also shown in [4], that for every
input-bounded FIFO machine, one can construct an equivalent normal form
with an exponential blow-up. This would give us another method to verify if a
given machine is bounded or has a terminating run, which bypasses checking the
reachability of a state.
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q0 q1 q3 q2
!a!a

?a?a !b

?b

Fig. 4. The FIFO machine M2

q!a

!b

!(abab)?(ab)

Fig. 5. The FIFO machine M3.

Branch-Monotone FIFO Machines. We now modify the prefix-ordering fur-
ther, in order to construct another subclass of FIFO systems which are branch-
WSTS. This relation has been previously studied, notably in [12].

Definition 12. For two states (q, w) and (q′, w′) of a FIFO machine M, we
say that (q, w) R (q′, w′) if q = q′ and there exists a sequence σ ∈ Σ∗

M such that
(q, w) σ−→ (q′, w′) and

– proj?(σ) = ε, or
– w 
 w′ and (proj?(σ))ω = w.(proj!(σ))ω.

In fact, R is not a qo. It is reflexive, but not transitive:

Example 3. Consider the FIFO machine M3 in Fig. 5. Consider states x1 =
(q, a), x2 = (q, ab), and x3 = (q, abab). We represent the sequence of actions
!a!b!a!b by a single transition !abab in the figure, and omit the intermedi-
ate control-states for simplicity (and similarly, for ?ab). It is easy to see that
x1 R x2 and x2 R x3. When we consider x1 ≤p x3, we have x1

σ−→ x3, where
σ =!b(!abab)(?ab). However, (ab)ω �= a.(babab)ω, hence, x1 �R x3, and thus, the
relation is not transitive.

Earlier, we defined branch-monotony for transition systems equipped with a
quasi-ordering. We now extend the notion for transition systems with a relation.

Proposition 13. FIFO machines are branch-monotone for the relation R.

Remark 5. This monotony relation is equivalent to the one described in [15],
for FIFO systems. However, we have generalized the notion, and included it in
the framework. Hence, we can extend this notion to prove the decidability of
termination, something which was not shown earlier.

q0 q1
c=0?

Fig. 6. System M4 is branch-WSTS.

q0 q1 q2
c++ c=0?

Fig. 7. System M5 is branch-WSTS.
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4 Decidability of Coverability

Coverability Algorithms for Branch-WSTS. We show that the two existing
coverability algorithms for WSTS do not allow one to decide coverability for
branch-WSTS. Remark that, contrary to WSTS, Pre∗(↑x) is not necessarily
upward-closed. In fact, even with a single zero-test, this property is not satisfied.

In Fig. 6, let us consider the counter machine M4 with a single counter c.
Let x = (q1, 0). We see that Pre∗(↑x) = {(q1, n) | n ≥ 0} ∪ {(q0, 0)}. However,
↑Pre∗(↑x) = Pre∗(↑x) ∪ {(q0, n) | n ≥ 1}. Thus, we get:

Proposition 14. Given a branch-effective branch-WSTS S = (X,Σ,→,≤, x0)
and a state x ∈ X, the set Pre∗(↑x) is not necessarily upward-closed. Hence, we
cannot use the backward algorithm.

Let us consider using the forward algorithm instead. The second procedure
computes all sets X which satisfy the property ↓Post∗(X) ⊆ X. This is because
for WSTS, the set ↓Post∗(x) satisfies this property. However, we now show a
counter-example of a branch-WSTS which does not satisfy this property.

Consider the counter machine M5 from Fig. 7, with x0 = (q0, 0). We
compute ↓Post∗(x0). We see that Post∗(x0) = {(q0, 0), (q1, 1)}, hence, Y =
↓Post∗(x0) = {(q0, 0), (q1, 1), (q1, 0)}. However, ↓Post∗(Y ) �⊆ Y , as ↓Post∗(Y ) =
{(q0, 0), (q1, 1), (q1, 0), (q2, 0)}, which is strictly larger than Y . Hence:

Proposition 15. For branch-effective, branch-WSTS S = (X,Σ,→,≤, x0)
such that ↓Post(↓x) is computable for all x ∈ X, the set Y = ↓Post∗(x0)
does not necessarily satisfy the property ↓Post∗(Y ) ⊆ Y . Hence, the forward
coverability algorithm may not terminate.

We can deduce:

Proposition 16. For branch-WSTS, both the backward coverability algorithm
and the forward coverability algorithm do not terminate, in general.

Not only the two coverability algorithms do not terminate but we may prove
that coverability is undecidable.

Theorem 7. The coverability problem is undecidable for branch-effective
branch-WSTS S = (X,Σ,→,≤, x0) (even if S is strongly monotone and ≤ is
wqo).

Proof. We use the family of systems given in the proof of Theorem 4.3 [11]. Let
us denote by TM j the jth Turing Machine in some enumeration. Consider the
family of functions fj : N2 → N

2 defined by fj(n, k) = (n, 0) if k = 0 and TMj

runs for more than n steps, else fj(n, k) = (n, n + k). Let g : N2 → N
2 be the

function defined by g(n, k) = (n+1, k). The transition system Sj induced by the
two functions fj and g is strongly monotone hence it is also branch-monotone.
Moreover, system Sj is branch-effective and we observe that Post is computable
and ≤ is wqo. Now, we have (1, 1) is coverable from (0, 0) in Sj iff TM j halts.
This proves that coverability is undecidable. ��
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q0q1 q2q3
c=0?

c++
c−− c++

c++

Fig. 8. Machine M6 is cover-monotone. However, if we modify the system such that
the initial state (q0, 1), then it is not cover-monotone.

Decidability of Coverability. We show that coverability is decidable for a
class of systems with a wqo but with a restricted notion of monotony. We define
CoverS(x) = ↓Post∗S(x). Let us consider the following monotony condition.

Definition 13 (cover-monotony). Let S = (X,Σ,→,≤, x0) be a system. We
say that S is cover-monotone (resp. strongly cover-monotone) if, for all y1 ∈
CoverS(x0) and for all x1, x2 ∈ X such that x1 ≤ y1 and x1 −→ x2, there exists
a state y2 ∈ X such that y1

∗−→ y2 (resp. y1 −→ y2) and x2 ≤ y2.

Let us emphasize that cover-monotony of a system S = (X,Σ,→,≤, x0) is
a property that depends on the initial state x0 while the usual monotony does
not depend on any initial state (see Fig. 8).

Remark 6. The strong cover-monotony property is not trivially decidable for
general models while (usual) strong-monotony is decidable for many powerful
models like FIFO machines and counter machines. However, this notion is still of
theoretical interest, as it shows that we can relax the general monotony condition.

However, there is a link between general monotony and cover-monotony.

Proposition 17. A system S = (X,Σ,→,≤) is monotone iff for all x0 ∈ X,
(X,Σ,→,≤, x0) is cover-monotone.

We may now define cover-WSTS as follows.

Definition 14 (Cover-WSTS). A cover-WSTS is a finitely branching cover-
monotone system S = (X,Σ, →,≤, x0) such that (X,≤) is wqo.

For cover-WSTS, the backward algorithm fails. This is once again because
the presence of a single zero test removes the property of the set being upward-
closed. But we will now show that the forward coverability approach is possible.

Proposition 18. Given a system S = (X,Σ,−→,≤, x0) and a downward-closed
set D ⊆ X such that ↓Post(D) ⊆ D, then we have the inclusion ↓Post∗(D) ⊆ D.

Let us define a particular instance of the coverability problem in which we
verify if a state is coverable from the initial state.

Definition 15. Given a system S = (X,Σ,−→,≤, x0). The x0-coverability prob-
lem is: Given a state y ∈ X, do we have y ∈ ↓Post∗S(x0) ?

We show that x0-coverability is decidable for cover-WSTS:
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Theorem 8. Let S = (X,Σ,→,≤, x0) be an ideally effective cover-WSTS such
that Post is computable. Then, the x0-coverability problem is decidable.

Proof. Consider a system S = (X,Σ,→,≤, x0) that is cover-WSTS, and let us
consider a state y ∈ X. To find a certificate of coverability (if it exists), we
cannot use Procedure 1 since general monotony is not satisfied and then, in
general, ↓Post∗(x0) �= ↓Post∗(↓x0) but we can use a variation of Procedure 1,
where we iteratively compute x0, Post(x0), Post(Post(x0)), and so on, and at
each step check if y ≤ x for some x in the computed set. This can be done
because S is finitely branching and the sets Postk(x0) are computable for all
k ≥ 0. Hence, if there exists a state that can cover y reachable from x0, it will
eventually be found.

Now, let us prove that Procedure 2 terminates for input y iff y is not coverable
from x0. If Procedure 2 terminates, then at some point, the while condition
is not satisfied and there exists a set D such that y /∈ D and x0 ∈ D and
↓Post(D) ⊆ D. Moreover, ↓Post∗(I) ⊆ I for every inductive invariant I (see
Proposition 18). Hence, CoverS(x0) ⊆ D, therefore, since y /∈ D, we deduce
that y �∈ CoverS(x0) and then y is not coverable from x0.

Note that every downward-closed subset of X decomposes into finitely many
ideals since (X,≤) is wqo. Moreover, since S is ideally effective, ideals of X may
be effectively enumerated. By [2] and [3], for ideally effective systems, testing of
inclusion of downward-closed sets, and checking the membership of a state in a
downward-closed set, are both decidable.

To show the opposite direction, let us prove that if y is not coverable from
x0, the procedure terminates. It suffices to prove that CoverS(x0) is an induc-
tive invariant. Indeed, this implies that CoverS(x0) is eventually computed by
Procedure 2 when y is not coverable from x0.

Let us show ↓Post(CoverS(x0)) ⊆ CoverS(x0). Let b ∈ ↓Post(CoverS(x0)).
Then, there exists a′, a′, b′ such that x0

∗−→ a′, a′ ≥ a, a −→ b′ and b′ ≥ b.
Furthermore, a′, a ∈ Cover(x0). Hence, by cover-monotony, there exists b′′ ≥ b′

such that a′ ∗−→ b′′. Therefore, x0
∗−→ b′′ and b′′ ≥ b′ ≥ b, hence, b ∈ CoverS(x0).

Hence, the x0-coverability problem is decidable. ��
Theorem 9. The coverability problem is undecidable for cover-WSTS.

Proof. Given any counter machine C = (Q,V, T, q0), let SC = (X,AC ,−→,≤, x0)
be its transition system equipped with the natural order on counters. We can
construct a system S ′ = (X ′, AC ,→′,≤, x′

0) such that S ′ is cover-monotone, and
any state x ∈ X is coverable iff it is also coverable in X ′. The construction is
as follows. We add a new control state q from the initial state in the counter
machine (q0) reachable via an empty transition, therefore, X ′ = X ∪ {(q, 0)}.
This new control state is a sink state, i.e. there are no transitions from q to any
other control state (except itself). Moreover, we let x′

0 = (q, 0). Note that S ′ is
cover-monotone, because there is no state reachable from x′

0, hence, the prop-
erty is vacuously satisfied. However, for all other states, as we leave the system
unchanged, we see that a state x is coverable in S by a state y iff it is coverable in
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S ′. Hence, coverability for counter machines reduces to the coverability problem
for cover-WSTS, and coverability is therefore, undecidable for cover-WSTS. ��

5 Conclusion

We have tried to relax the notions of monotony and of the wellness of the quasi-
ordering which were traditionally used to define a WSTS. We observed that
we do not need the wellness of the quasi-ordering or monotony between all
states. By relaxing the conditions to only states reachable from one another,
thus defining what we call branch-WSTS, we are still able to decide termination
and boundedness. Furthermore, some systems that have been studied recently
have been shown to belong to this class, which adds interest to this relaxation.

However, as coverability is undecidable for branch-WSTS, the notion of cov-
erability seems to require a stricter condition than what we define for branch-
WSTS. This leads us to introduce a different class of systems, incomparable to
branch-WSTS, which we call cover-WSTS. These systems relax the condition
of monotony to only states within the coverability set, while still retaining the
decidability of a restricted form of coverability.

As future work, other systems that belong to these classes can be studied.
It would also be interesting to see if the branch-WSTS relaxation translates to
better hope for usability of WSTS and relaxations as a verification technique.
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FIFO machines. In: Konnov, I., Kovács, L. (eds.) 31st International Conference
on Concurrency Theory, CONCUR 2020, September 1–4, 2020, Vienna, Austria
(Virtual Conference). LIPIcs, vol. 171, pp. 49:1–49:17. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.CONCUR.2020.49

5. Chadha, R., Viswanathan, M.: Deciding branching time properties for asyn-
chronous programs. Theor. Comput. Sci. 410(42), 4169–4179 (2009). https://doi.
org/10.1016/j.tcs.2009.01.021

https://doi.org/10.1006/inco.1999.2843
https://doi.org/10.1006/inco.1999.2843
https://doi.org/10.1007/978-3-662-43951-7_2
https://doi.org/10.1007/978-3-662-43951-7_2
https://doi.org/10.23638/LMCS-13(3:24)2017
https://doi.org/10.4230/LIPIcs.CONCUR.2020.49
https://doi.org/10.1016/j.tcs.2009.01.021
https://doi.org/10.1016/j.tcs.2009.01.021


66 B. Bollig et al.

6. Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with
n distinct prime factors. Am. J. Math. 35(4), 413–422 (1913)

7. D’Osualdo, E., Stutz, F.: Decidable inductive invariants for verification of cryp-
tographic protocols with unbounded sessions. In: Konnov, I., Kovács, L. (eds.)
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Abstract. Monitoring the correctness of distributed cyber-physical sys-
tems is essential. We address the analysis of the log of a black-box cyber-
physical system. Detecting possible safety violations can be hard when
some samples are uncertain or missing. In this work, the log is made
of values known with some uncertainty; in addition, we make use of an
over-approximated yet expressive model, given by a non-linear exten-
sion of dynamical systems. Given an offline log, our approach is able to
monitor the log against safety specifications with a limited number of
false alarms. As a second contribution, we show that our approach can
be used online to minimize the number of sample triggers, with the aim
at energetic efficiency. We apply our approach to two benchmarks, an
anesthesia model and an adaptive cruise controller.

Keywords: Energy-aware monitoring · Cyber-physical systems ·
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1 Introduction

The pervasiveness of distributed cyber-physical systems is highly increasing,
accompanied by associated safety concerns. Formal verification techniques usu-
ally require a (white-box) model, which is not often available, because some
components are black-box, or because the entire system has no formal model. In
addition, formal verification techniques for cyber-physical systems are often sub-
ject to state space explosion, often preventing a satisfactory scalability. There-
fore, monitoring, as a lightweight yet feasible verification technique, can bring
practical results of high importance for larger models.

Monitoring aims at analyzing the log of a concrete system, so as to deduce
whether a specification (e.g., a safety property) is violated. Monitoring can be
done offline (i.e., after the system execution, assuming the knowledge of the
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entire log), or online (at runtime, assuming a partial log). When the log is an
aperiodic timed sequence of valuations of continuous variables, with a logging
not occurring at every discrete time step, and when the system under monitoring
is a black box, a major issue is: how to be certain that, in between two discrete
valuations, the specification was not violated at another discrete time step at
which no logging was performed? For example, consider a system for which
a logging at every discrete time step would yield the log depicted in Fig. 1a.
Assume the logging was done at only some time steps, given in Fig. 1b, due to
some sensor faults, or to save energy with only a sparse, scattered logging. How
to be certain that, in between two discrete samples, another discrete sample (not
recorded) did not violate the specification? For example, by just looking at the
discrete samples in Fig. 1b, there is no way to formally guarantee that the unsafe
zone (i.e., above the red, dashed line) was never reached by another discrete
sample which was not recorded. In many practical cases, a piecewise-constant or
linear approximation (see, e.g., Figs. 1c and 1d, where the large blue dots denote
actual samples, while the small green dots denote reconstructed samples using
some extrapolation) is arbitrary and not appropriate; even worse, it can yield a
“safe” answer, while the actual system could actually have been unsafe at some
of the missing time steps. On the contrary, assuming a completely arbitrary
dynamics will always yield “potentially unsafe”—thus removing the interest of
monitoring. For example, from the samples in Fig. 1b, without any knowledge
of the model, one can always envision the situation in Fig. 1e, which shows the
variable x crossing the unsafe region (dashed) at some unlogged discrete time
step—even though this is unlikely if the dynamics is known to vary “not very
fast”.

Fig. 1. Monitoring at discrete time steps

Contributions. In this work, we address the problem of performing monitoring
over a set of scattered and uncertain samples. First, we cope with uncertainties
from the sensors by allowing for uncertain samples, given by zonotopes over
the continuous variables; that is, at each logged timestamp, the log gives not
a constant value for the continuous variables, but a zonotope. A simple case
of an uncertain log over a single variable x is depicted in Fig. 1f in the form
of simple intervals. The timestamp at each discrete sample of the log is how-
ever supposed to be constant (i.e., a single point). Second, to over-approximate
the system behavior, and in the spirit of the “model-bounded monitoring” pro-
posed in [34], we use an extension of linear dynamical systems, extended with
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uncertainty, i.e., allowing uncertainty in the dynamics matrix [22]. Having some
over-approximated knowledge of the system is a natural assumption in practice:
when monitoring a car, one generally knows an upper-bound on its maximum
speed, or on its maximum acceleration (perhaps depending on its current speed).
To cope with the liberal dynamics of our extension of linear dynamical systems,
we use a recent technique [18], that performs an efficient reachability analysis for
such uncertain linear dynamical systems. The use of such an over-approximation
of the actual system is the crux of our approach, allowing us to discard unlikely
behaviors, such as the unlikely safety violation depicted in Fig. 1e.

Our first main contribution is to propose a new rigorous analysis technique for
offline monitoring of safety properties over scattered uncertain samples, using
uncertain linear systems as an over-approximation of the system. This over-
approximation allows us to extrapolate the behavior since the latest known
sample, and to rule out safety violations at some missing discrete samples. Note
that our approach uses some discrete analysis as underlying reachability compu-
tation technique, and will not however guarantee the absence of safety violations
at arbitrary (continuous) timestamps; its main advantage is to offer formal guar-
antees in the context of missing discrete samples for a given logging granularity.

Our second main contribution focuses on energy-efficient online monitoring.
For each recorded sample, we run a reachability analysis, and we derive the
smallest next discrete time step t in the future at which the safety property may
be violated depending on the latest known sample and the over-approximated
model dynamics. In a context in which monitoring simply observes the behavior
and does not lead to corrective actions, any sample before t is useless because we
know from the over-approximated model dynamics that no safety violation can
happen before t. Therefore, we can schedule the next sample at time t, which
reduces the number of discrete samples, and therefore the energy consumption
and bandwidth use. We show that our method is correct, i.e., we can safely
discard discrete samples without missing any unsafe behavior. We show the
practical applicability of our approach on two benchmarks: an anesthesia model,
and an adaptive cruise controler.

Outline. We review related works in Sect. 2. We recall uncertain linear dynamical
systems in Sect. 3. We introduce our (offline and online) monitoring frameworks
in Sect. 4, and run experiments in Sect. 5.

2 Related Works

Monitoring Monitoring complex systems, and notably cyber-physical systems,
drew a lot of attention in the last decades, e.g., [5,6,23,24,34]. In parallel to mon-
itoring specifications using signal temporal logics (see e.g., [13,20,29]), monitor-
ing using automata-based specifications drew recent attention. Complex, quan-
titative extensions of automata were studied in the recent years: after timed
pattern matching on timed regular expressions [31] was proposed by Ulus et
al., Waga et al. proposed a technique for timed pattern matching [32] (with an
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additional work by Bakhirkin et al. [4]) and then for parametric timed pattern
matching [3,33,35], with application to offline monitoring.

In [34], we proposed model-bounded monitoring : instead of monitoring a
black-box system against a sole specification, we use in addition a (limited, over-
approximated) knowledge of the system, to eliminate false positives. This over-
approximated knowledge is given in [34] in the form of a linear hybrid automa-
ton (LHA) [19], an extension of finite-state automata with continuous variables;
their flow in each location (“mode”) is given as a linear constraint over deriva-
tives; location invariants and transition guards are given by linear constraints
over the system variables. We use in [34] both an ad-hoc implementation, and
another one based on PHAVerLite [7]. In this work, we share with [34] the prin-
ciple of using an over-approximation of the model to rule out some violation of
the specification. However, we consider here a different formalism, and we work
on discrete samples. In terms of expressiveness of the over-approximated model:
i) our approach can be seen as less expressive than [34], in the sense that we have
a single (uncertain) dynamics, as opposed to LHAs, where a different dynamics
can be defined in each mode; this also allows us to propose a simpler (therefore
more efficient) analysis, as each new sample allows us to restart from an exact
basis, while in [34] at each new sample, the system (from an algorithmic point of
view) can be in “different modes at the same time”; ii) conversely, our dynamics
is also significantly more expressive than the LHA dynamics of [34]; we consider
not only the class of linear dynamical systems, but even fit into a special case of
non-linear systems, by allowing uncertainy in the model dynamics—this is what
makes our model an over-approximation of the actual behavior. In addition, we
also allow for uncertain logs, coping with sensor uncertainties—not considered
in [34]. We also propose a new ad-hoc implementation based on [18].

In [25,26], a monitor is constructed from a system model in differential
dynamic logic [28]. The main difference between [25,26] and our approach relies
in the system model: in [25,26], the compliance between the model and the
behavior is checked at runtime, while our model is assumed to be an over-
approximation of the behavior—which is by assumption compliant with the
model.

Reachability in Linear Dynamical Systems. In [2], given a continuous time lin-
ear system with input, the system is discretized and reachable sets for consec-
utive time intervals are computed. At each step, the state transition matrix is
expressed using the Peano-Baker series. The series is then numerically approx-
imated iteratively using Riemann sums. Then a zonotope-based convex hull is
computed over-approximating the result of all possible matrices in the uncertain
matrix. In [11], Combastel and Raka extend an existing algorithm based on zono-
topes so that it can efficiently propagate structured parametric uncertainties. As
a result, they provide an algorithm for computation of envelopes enclosing the
possible states and/or outputs of a class of uncertain linear dynamical systems.
In [22], given an uncertain linear dynamical system ẋ = Λux, Lal et al. provide
a sampling interval δ > 0, given an ε > 0, s.t. the piecewise bilinear function,
approximating the solution by interpolating at these sample values, is within ε
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of the original trajectory. [16] identifies a class of uncertainties by a set of suf-
ficient conditions on the structure of the dynamics matrix Λu. For such classes
of uncertainties, the exact reachable set of the linear dynamical system can be
computed very efficiently. But this method is not applicable for arbitrary classes
of uncertainties. In [18], given an uncertain linear dynamical system, we provide
two algorithms to compute reachable sets. The first method is based on pertur-
bation theory, and the second method leverages a property of linear systems with
inputs by representing them as Minkowski sums. In [17], given an uncertain lin-
ear dynamical system, we provide an algorithm to compute statistically correct
over-approximate reachable sets using Jeffries Bayes Factor. Note that uncer-
tain linear dynamical systems are a special subset of non-linear systems. Thus,
uncertain linear dynamical systems can also be modelled as a non-linear system.
Some additional works that deal with computing reachable sets of non-linear
systems are [1,8–10,14,21,30].

3 Preliminaries

Formal analysis of safety critical systems requires a precise mathematical model
of the system, such as linear dynamical systems. But in reality, the precise, exact
model is almost never available—parameter variations, sensor and measurement
errors, unaccounted parameters are few such causes that make the availability
of a precise model impossible. Presence of such uncertainties in the model makes
the safety analysis of these systems, using traditional methods, useless. Thus,
for the analysis to be indeed useful, the safety analysis must consider all possible
uncertainties. In [22], the authors provide a model, known as uncertain linear
dynamical systems, to capture such uncertainties. Consider the following example
of an uncertain linear dynamical system.

Example 1 ([16, Example 1.1]). Let a discrete linear dynamical system x+ =
Λx, where Λ =

[
1 α
0 2

]
and α represents either the modeling uncertainty or a

parameter, assuming 2 ≤ α ≤ 3. Note that any safety analysis assuming a fixed
value of α will render the analysis useless—for the safety analysis to be indeed
sound, it must consider all possible values of α, and they cannot be enumerated.

Intuitively, uncertain linear dynamical systems model the uncertainties in the
system by representing all possible dynamics matrices of the system—clearly,
this forms a special class of non-linear dynamical systems. To perform safety
analysis of uncertain linear dynamical systems, these works provide reachable
set computation techniques that account for all possible uncertainties.

Definition 1 (Uncertain linear dynamical systems ([16, Defini-
tion 2.4])). An uncertain linear dynamical system is denoted as

x+ = Λx (1)

where Λ ⊂ R
n×n is the uncertain dynamics matrix.
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Definition 2 (Reachable set of an uncertain linear dynamical systems
([16, Definitions 2.3 and 2.4])). Given an initial set θ0 and time step t ∈ Z,
the reachable set of an uncertain linear dynamical system is defined as:

RS(Λ, θ0, t) = θt = { θ | θ = ξA(θ0, t), A ∈ Λ}. (2)

where ξA(θ0, t) = Atθ0. An alternative definition is:

RS(Λ, θ0, t) = θt =
⋃

A∈Λ

ξA(θ0, t). (3)

Note that uncertain linear dynamical systems are capable of modelling sys-
tems with parameters or when the system dynamics is not perfectly known—the
system has modelling uncertainties. [16–18,22] propose various algorithms to
compute reachable sets of these systems that account for uncertainties. In this
work, we leverage a recently proposed reachable set computation technique, given
in [18], to propose our offline and online monitoring algorithm, primarily due to
its efficiency vis-à-vis our setting.

Given an initial set θ0 ⊂ R
n and given a time step t, we denote by θt ⊂ R

n

the reachable set of the system (given by Eq. (1)) at time step t. Next, we define
a log of the system with uncertainties.

Definition 3 (Log). Given an uncertain linear dynamical system as in Eq.
(1), a finite length (uncertain) log of the system is defined as follows: � =
{(θ̂t, t) | θt ⊆ θ̂t, t ≤ H} where H is a given time bound.

Each tuple (θ̂t, t) is called a sample. Observe that our samples are not neces-
sarily reduced to a point. The length of log �—number of samples in �—is given
by |�|. Given a log �, the k-th sample of � is given as �k = (θ̂tk , tk), where θ̂tk is
an over-approximation of the system at time step tk. Note that the length of a
log is not necessarily equal to H, but |�| ≤ H: therefore, our logs are scattered, in
the sense that they do not necessarily contain a sample for each t ∈ {1, . . . , H}.
We further note that the uncertainties in the logs, arising from the sensor uncer-
tainties of the logging system, are independent of the uncertainties in the system
modelling (Definition 1). We assume that each sample of the log contains the
true state of the system at a given time step. Note that this generally holds in
practice: the physical sensors (such as used in medical devices, cars, etc.) record
values within an error tolerance, thus giving a range of values containing the
actual value.

We call a log � accurate if it satisfies the following condition: ∀1 ≤ k ≤
|�| : θ̂tk = θtk . Given an uncertain linear dynamical system, x+ = Λx with an
initial set θ0 ⊂ R

n, an over-approximate reachable set of x+ at time step t is
overReach(Λ, θ0, t), such that θt ⊆ overReach(Λ, θ0, t). We use the technique
proposed in [18] to compute overReach(Λ, θ0, t) in this work.
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4 Monitoring Using Uncertain Linear Dynamical Systems
as Bounding Model

In this section, we propose the two main contributions of this work: 1) Offline
monitoring : Given a log with uncertainties, we propose an algorithm to infer
the safety of a system as given in Eq. (1). We prove our method’s soundness. 2)
Online monitoring : We propose a framework to infer safety of a system, as in Eq.
(1), that triggers the logging system to sample only when needed. Note that, as
we only consider the system at discrete time steps, the method cannot be sound
nor complete, i.e., there always exists a small possibility that the system might
violate the safety specification in between two concrete samples (this will be
discussed in Sect. 6). However, our online method is both sound and complete
at the discrete time stamps, and under the assumption that the samples are free
from uncertainties. That is, our method infers the system to be safe if and only
if the actual behavior of the system is safe at any discrete time stamp, when the
logging system can generate accurate samples of the system. Put it differently,
we guarantee that skipping some logging in the future using our method will not
remove any sample where a violation could have been observed.

Fig. 2. (2a): Offline Monitoring. Black: Two consecutive samples, k and k + 1, at
time steps t and t+5 respectively. Blue: The over-approximate reachable set computed
from sample k using overReach(.). (2b): Online Monitoring. Blue: Over-approximate
reachable set computed, at each step, using overReach(.).

4.1 Offline Monitoring

Our first contribution addresses offline monitoring: in this setting, we assume
full knowledge of the uncertain log, usually after an execution is completely over.
Before we propose our offline algorithm, we illustrate the approach in Fig. 2a.
Consider two consecutive samples k and k + 1, marked in black, at time steps t
and t+5 respectively. The reachable sets, in blue, represent the over-approximate
behaviors possible by the system between time steps t and t + 5. Consider the
case where at time step t+2 the over-approximate reachable set intersects with
the unsafe region. Once our algorithm detects a possible unsafe behavior, it
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Algorithm 1: Offline monitoring
input : An uncertain log � of a system x+ = Λx, and an unsafe set U .
output : Return safe (resp. unsafe) if the actual system behavior is safe (resp.

potentially unsafe).
1 for k ∈ {1, . . . , |�| − 1} do
2 (θ̂tk , tk) ← �k ; // current sample
3 (θ̂tk+1 , tk+1) ← �k+1 ; // next sample
4 tΔ = tk+1 − tk − 1 ; // time gap between two samples
5 for p ∈ {1, . . . , tΔ − 1} do
6 if θ̂tk+p ∩ U �= ∅ then
7 ψ ← θ̂tk+p ∩ U ; // compute the unsafe region of the system
8 td = tk+1 − (tk + p) ;
9 ϑ ← overReach(Λ, ψ, td) ;

/* Check if next sample is reachable from unsafe */
10 if ϑ ∩ θ̂tk+1 �= ∅ then
11 return unsafe ; // next sample is reachable from unsafe

12 θ̂tk+p+1 ← overReach(Λ, θ̂tk+p, 1) ;

13 return safe ;

computes the intersection between the over-approximate reachable set (here,
the reachable set at time-step t+ 2) and the unsafe set. Then it checks whether
the reachable set, given in the next sample (k +1), is reachable from the unsafe
region—if yes, it infers unsafe; if not, it infers safe. Now, we formally propose
our offline monitoring method in Algorithm 1 for a given log � with uncertainty.

Description. The for loop, starting in line 1, traverses through each sample,
and checks if the system can reach a possibly unsafe behavior between two con-
secutive samples (computed in lines 2 and 3), using over-approximate reachable
set computation. If the over-approximate reachable set between two consecutive
samples intersect with the unsafe set (line 6), we perform a refinement as follows
(line 7–line 11): We compute the unsafe region (intersection between unsafe set
and over-approximate reachable set) in line 7, then check if we can reach the next
sample from the unsafe region (line 9–line 11). If the next sample is reachable
from the unsafe behavior, we conclude the system is unsafe (line 10–line 11).

Soundness and Incompleteness. Our proposed offline monitoring approach is
sound at discrete time steps, but not complete—there might be cases where our
algorithm returns unsafe even though the actual system is safe. The primary
reason for its incompleteness is due to the fact that overReach(.) computes an
over-approximate reachable set. Formally:

Theorem 1 (soundness at discrete time steps). If the actual system is
unsafe at some discrete time step, then Algorithm 1 returns unsafe. Equivalently,
if Algorithm 1 returns safe, then the actual system is safe at every discrete step.
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Proof. Let the actual trajectory τ , between two samples k and k + 1, become
unsafe at time step tun. Therefore, the over-approximate reachable set, computed
by overReach(·) at time step tun, will also intersect with the unsafe set (due
to soundness of overReach(·)). Note that the actual trajectory τ , originating
from the sample k, intersects the unsafe region at time step tun, and reaches the
sample k + 1. The refinement module (Algorithm 1, line 7–line 11), using over-
approximate reachable sets will therefore infer the same, concluding the system
behavior to be unsafe.

4.2 Online Monitoring

Algorithm 2: Online monitoring
input : An uncertain system x+ = Λx, an unsafe set U , time bound H.
output : Return safe iff the actual system behavior is safe.

1 θ̂0 ← Sampling at time step 0 ; // initial behavior of the system.
/* Check whether the initial behavior is safe */

2 if θ̂0 ∩ U �= ∅ then return unsafe ;
3 for t ∈ {1, 2, . . . , H − 1} do
4 θ̂t+1 ← overReach(Λ, θ̂t, 1) ; // over-approximate reachable set

/* Check whether the over-approximate reachable set is unsafe */
5 if θ̂t+1 ∩ U �= ∅ then
6 �t+1 ← Sample at time step t + 1 ;

/* Check whether the actual reachable set is unsafe */
7 if �t+1 ∩ U �= ∅ then
8 return unsafe ;

9 θ̂t+1 = �t+1 ; // reset to actual behavior

10 return safe;

Given a time bound H, we propose our online monitoring method in Algo-
rithm 2. The online monitoring algorithm begins by sampling the system at the
initial time step, say 0, in line 1. As a sanity check, we confirm if the initial
behavior of the system is safe in line 2. The for loop starting in line 2—where
each iteration corresponds to the set of actions for a time step t—performs the
following: At a given time step t, we compute the over-approximate reachable set
at the next time step t+1 (line 6). If the computed over-approximate reachable
set intersects with the unsafe set, we sample the system at time step t + 1 to
check if the actual behavior is also unsafe (line 5–line 9). If safe, we reset the
behavior (line 9); if unsafe, we return unsafe (line 8). Intuitively, this method
samples the actual system only when the over-approximate reachable set, com-
puted by overReach(.), intersects the unsafe set. This process is illustrated in
Fig. 2b.
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Soundness and Completeness. Our online monitoring algorithm is correct (safe
and complete) at discrete time steps, provided the samples are accurate—it
returns safe if and only if the actual behavior of the system is safe at all dis-
crete time steps, when accurate samples are obtained. Intuitively, we get the
completeness from the fact that it returns unsafe if and only if the (accurate)
sample is unsafe. Formally:

Theorem 2 (correctness at discrete time steps). Algorithm 2 returns safe
iff the actual behavior at all discrete time steps is safe.

Proof. The soundness proof—if the actual behavior is unsafe, Algorithm 2 infers
unsafe—is straightforward. Hence, we now argue the completeness—if the actual
behavior is safe, Algorithm 2 infers safe. Note that, Algorithm 2 infers the system
behavior as unsafe only when a sampled log (actual behavior) becomes unsafe:
therefore, if the samples are free from uncertainties (i.e., exact), Algorithm 2 is
complete.

Remark 1. While our aim is to consider continuous systems, note that, for
discrete-time systems, our approach is entirely correct (sound and complete),
without the restriction to “discrete time steps”, since we can find a granularity
small enough for the discrete-time evolution. This is notably the case for sys-
tems where the behavior does not change faster than a given frequency (e.g., the
processor clock).

5 Case Studies

We demonstrate the applicability and usability of our approach on two examples,
a medical device and an adaptive cruise control. We implemented our online and
offline monitoring algorithms in a Python-based prototype tool MoULDyS. Tool,
models and raw results are available through a GitHub repository1. All our
experiments were performed on a Lenovo ThinkPad Mobile Workstation with
i7-8750H CPU with 2.20GHz and 32GiB memory on Ubuntu 20.04 LTS (64 bit).
Our tool uses numpy, scipy, mpmath for matrix multiplications, [18] to compute
overReach(.), and the Gurobi engine for visualization of the reachable sets.

Implementation details vis-à-vis Algorithms 1 and 2. The intersection checking
between two sets in Algorithms 1 and 2 has been implemented as an optimization
formulation in Gurobi. That is, given two sets, our implementation of intersection
check returns true iff the two sets intersect. In other words, our intersection check
is exact. In contrast, computing the result of the intersection between two sets
adds an over-approximation in our implementation—given two sets, we compute
a box hull of the two sets and then compute intersection of the two box hulls.
Therefore, the only over-approximate operation we perform in Algorithm 1 and
2—apart from overReach(·)—is Algorithm 1 line 7.

1 https://github.com/bineet-coderep/MoULDyS.

https://github.com/bineet-coderep/MoULDyS
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Generating Scattered Uncertain Logs for Offline Monitoring. At each time step,
the logging system may take a snapshot of the system evolution at that time
step; the logging occurs with a probability p (given). In other words, at each time
step, it records the evolution of the system with probability p. Clearly, due to the
probabilistic logging, this logger is not guaranteed to generate periodic samples.
We also do not assume that the samples logged by the logging system, at each
time step, are accurate—the logging system, due to sensor uncertainties, logs an
over-approximate sample of the system at that time step. In our experiments,
each log was generated statically from our bounding model (the uncertain linear
dynamical system) by simulating its evolution from an uncertain initial set (i.e.,
not reduced to a point). In the end, we get an uncertain log (as in Definition 3).

Logging System for Online Monitoring. When the logging system is triggered,
at a time step, to generate a sample, the logging system records the evolution
of the system and sends it to the online monitoring algorithm. Similar to the
offline logging system, we do not assume that the samples logged by the logging
system are perfectly accurate. Here, all the generated logs are safe.

Research Questions. We consider the following research questions:

1. Effect of logging probability (number of log samples) on the rate of false
alarms raised by the offline monitoring—inferring a behavior as “potentially
unsafe” when the actual behavior is “safe”.

2. For offline monitoring, does the size of the samples (in other words, volume of
the set obtained as sample), gathered at each step, have an impact on the rate
of false alarms? Put it differently, what is the effect, vis-à-vis false alarms, of
the amount of the uncertainty in the log?

3. For online monitoring, how frequent is the logging system triggered to gener-
ate a sample?

4. For the same execution, how do the outcome (in terms of verdict on safety by
the monitoring algorithms) and the efficiency (in terms of number of samples
needed) of the offline and online monitoring algorithms compare?

5.1 First Benchmark: Anesthesia

We first demonstrate our approach on an automated anesthesia delivery
model [15]. The anesthetic drug considered in this model is propofol. Such safety
critical systems are extremely important to be verified formally before they are
deployed, as under or overdose of the anesthetic drug can be fatal to the patient.

Model: The model as in [15] has two components: 1) Pharmacokinetics (PK):
models the change in concentration of the drug as the body metabolizes it.
2) Pharmacodynamics (PD): models the effect of drug on the body. The PK
component is further divided into three compartments: i) first peripheral com-
partment c1, ii) second peripheral compartment c2, iii) plasma compartment cp.
The PD component has one compartment, called ce. The set of state variables
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Fig. 3. Offline monitoring : We plot the change in concentration level of cp with time.
The volume of the samples increase from left to right, and the probability of logging
increases from bottom to top. The blue regions are the reachable sets showing the over-
approximate reachable sets as computed by the offline monitoring, the black regions
are the samples from the log given to the offline monitoring algorithm, and the red
dotted line represents safe distance level. Note that although the top-row plots and
the bottom left plots’ reachable sets seem to intersect with the red line (unsafe set),
the refinement module infers them to be unreachable, therefore concluding the system
behavior as safe—unlike the bottom-right plot.

of this system is [ cp c1 c2 ce ]�. The input to the system is the infusion rate of
the drug (propofol) u. The complete state-space model of this system in given
in [15, Equation 5].

Model Parameters: The evolution of states—cp, c1, c2—is dependent on sev-
eral parameters, such as: the weight of the patient (weight), the first order rate
constants between the compartments k10, k12, k13, k21 and k31. The evolution of
the state ce is dependent on the parameter kd, the rate constant between plasma
and effect site.

Safety: The system is considered safe if the following concentration levels are
maintained at all time steps: cp ∈ [1, 6], c1 ∈ [1, 10], c2 ∈ [1, 10], ce ∈ [1, 8].

In this case study, we focus our attention on the effect of perturbation, in the
weight of the patient (weight), on the concentration level of plasma compart-
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Fig. 4. Online monitoring : We plot the change in concentration level of cp with time.
The blue regions are the reachable sets showing the over-approximate reachable sets as
computed by the online monitoring, the black regions are the samples generated when
the logging system was triggered by the online monitoring algorithm, and the red dotted
line represents safe concentration levels. Left : We apply our online monitoring to the
anesthesia model. Right : We compare our online and offline algorithms. The green
regions are the reachable sets showing the over-approximate reachable sets between
two consecutive samples from the offline logs, the magenta regions are the offline logs,
given as an input to the offline monitoring algorithm, generated by the logging system,
and the red dotted line represents safe concentration levels. The blue regions are the
reachable sets showing the over-approximate reachable sets as computed by the online
monitoring, the black regions are the samples generated when the logging system was
triggered by the online monitoring algorithm, and the red dotted line represents safe
concentration levels.

ment cp. We assume that the weight of the patient has an additive perturbation
of ±0.8 kg in this case study—at each time step, the weight of the patient is
weight + δw, δw ∈ [0, 0.8]. With perturbation in the weight, we want to infer
safety of this system using monitoring.

We now answer questions (1)–(4), using Figs. 3 and 4. In Fig. 3: i) the plots
in the bottom row have logging probability of 20%, and the plots in top row have
a logging probability of 40%; ii) the plots in left column and the right column
have been simulated with an initial set of [ [3,4] [3,4] [4,5] [3,4] ]�, u ∈ [2, 5] and
[ [2,4] [3,6] [3,6] [2,4] ]�, u ∈ [2, 10] respectively. That is, the volume of the samples
increases from left to right. In Fig. 4, we simulated the trajectory with an initial
set [ [3,4] [3,4] [4,5] [3,4] ]�, u ∈ [2, 5].

Answer to Question 1. We answer this question by comparing two sets figures
in the left column and the right column of Fig. 3. For the left column, i.e.,
with smaller sample size: the bottom-left plot took 51.40 s and concluded the
system to be safe. The analysis in this plot invoked the refinement module of the
offline algorithm. But increasing the probability of logging, i.e., more number of
samples, as in the top-left plot, resulted in not invoking the refinement module
at all, thus taking 32.92 s. For the right column, i.e., with larger sample size:
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this analysis, as shown in the bottom-right column, took 1.73 s to complete,
and concluded the system behavior to be unsafe. The behavior of the system,
shown in top-right plot with 40% probability of logging, results in inferring the
behavior of the system as safe, by invoking the refinement module several times.
Overall, this analysis, as shown in the top-right plot, took 35.93 s to complete,
and concluded the system behavior to be safe.

Answer to Question 2. We answer this question by comparing two sets figures in
the top row and the bottom row of Fig. 3. For the bottom row, i.e., with smaller
logging probability : Increasing the volume of the samples results in inferring the
behavior from safe (bottom-left plot) to unsafe (bottom-right plot), as per the
offline monitoring algorithm. For the top row, i.e., with higher logging probability:
Increasing the volume of the samples results in not invoking the refinement
module (top-left plot) to invoking the refinement module several times (top-
right plot), as per the offline monitoring algorithm.

Answer to Question 3. The result is given in Fig. 4 (left). Using our online
algorithm, we were able to prove safety of the system in 109.04 s. The online
algorithm triggered the logging system to generate samples for 83 time steps—
this is less than 5% of total time steps. We observe, as shown in Fig. 4 (left),
that the logging system is triggered more when the trajectory is closer to the
unsafe region.

Answer to Question 4. We compare our offline and online algorithms, for 2 000
time steps, on the same trajectory. The result is given in Fig. 4 (right). Note
that, using our online algorithm, we were able to prove safety of the system in
107.99 s. The online algorithm triggered the logging system to generate samples
only 84 times. In contrast, the offline algorithm, with a log size of 115 (5%
logging probability) stopped at the 35th sample, (wrongly) inferring the system
as unsafe, taking 71.37 s.

5.2 Second Benchmark: Adaptive Cruise Control

We now apply our algorithms to an adaptive cruise control (ACC) [27]. An ACC
behaves like an ordinary cruise control when there is no car in the sight of its
sensor, and when there is a car in its sight, it maintains a safe distance.

Model: The model as in [27] has the following state variables: i) velocity of the
vehicle v, ii) distance between the two vehicles h, and iii) velocity of the lead
vehicle vL. The state space of the system is given in [27, Equation 3]. The set of
state variables of this system is [ v h vL ]�.

Model Parameters: The model is dependent on two parameters: i) acceleration
of the lead vehicle aL, and ii) breaking force and torque applied to the wheels as
a lumped net force F . Note that the model is dependent of acceleration of the
vehicle aL, which is very hard to accurately measure due to sensor uncertainties.
Similarly the torque F applied to the wheels is also dependent of the coefficient of
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Fig. 5. Offline monitoring : We plot the change in distance h between the vehicles with
time. The volume of the samples increase from left to right, and the probability of
logging increases from bottom to top.

friction of the ground. To reflect such uncertainties, we consider aL ∈ [−0.9, 0.6]
and F ∈ [−0.6, 2.46].

Safety: The system is safe if the distance between vehicles h > 0.5.
Consider an event of a car crash, where the log stored by the car before

the crash, is the only data available to analyze the crash; such an analysis might
benefit police, insurance companies, vehicle manufacturers, etc. Using our offline
algorithm one can figure out if the car might have shown unsafe behavior or not.
Similarly, consider a vehicle on a highway with a lead vehicle in its sight. The
ACC in such a case needs to continuously read sensor values to track several
parameters, such as acceleration of the lead vehicle, braking force, etc.—this
results in wastage of energy. Using our online monitoring algorithm, the car reads
sensor values only when there is a potential unsafe behavior. This intermittent
behavior will result in saving energy without compromising safety of the system.

Next, we answer questions (1)–(4), using Figs. 5 and 6. In Fig. 5: i) the plots
in the bottom row have logging probability of 20%, and the plots in top row
have a logging probability of 40%; ii) the plots in left column and the right
column have been simulated with an initial set of [ [15,15.01] [3,3.03] [14.9,15] ]� and
[ [15,15.1] [3,3.5] [14.9,15.1] ]� respectively. In Fig. 4, we simulated the trajectory with
an initial set [ [15,15.01] [3,3.03] [14.9,15] ]�, u ∈ [2, 5].

Answer to Question 1. We answer this question by comparing two sets figures
in the left column and the right column of Fig. 5. For the left column, i.e.,
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Fig. 6. Online monitoring : We plot the change in distance between two vehicle h with
time. The color coding is same as Fig. 4. Left : We apply our online monitoring to the
ACC model. Right : We compare our online and offline algorithms.

with smaller sample size: the bottom-left plot took 19.08 s and concluded the
system to be safe. This analysis in this plot invoked the refinement module of
the offline algorithm. But increasing the probability of logging, i.e., more number
of samples, as in the top-left plot, resulted in not invoking the refinement module
at all, thus taking 16.5 s. For the right column, i.e., with larger sample size: The
analysis is similar to that of the left column. The bottom-right plot invoked the
refinement module several times, thus taking 20.84 s, while the top-right plot
took 17.5 s, as it invoked the refinement module a smaller number of times.

Answer to Question 2. We answer this question by comparing two sets figures
in the top row and the bottom row of Fig. 5. For the bottom row, i.e., with
smaller logging probability : Comparing the bottom-left and bottom-right shows
that increasing sample volume results in invoking the refinement module more
frequently. A very similar behavior is seen by comparing the top row (i.e., with
higher logging probability).

Answer to Question 3. Using our online algorithm, we were able to prove safety
of the system in 104.58 s. The online algorithm triggered the logging system to
generate samples for 53 time steps—this is less than 3% of total time steps. This
is shown in Fig. 6 (left).

Answer to Question 4. We compare our offline and online algorithm, for 2 000
time steps, on the same trajectory. The result is given in Fig. 6 (right). Note
that, using our online algorithm, we were able to prove safety of the system in
124.46 s. The online algorithm triggered the logging system to generate samples
only 50 times. In contrast, the offline algorithm, with a log size of 281 (14%
logging probability) took 28.54 s to infer that the system is safe.

5.3 General Observations

In this section, we provide general answers to questions (1)–(4):
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Answer to Question 1. Increasing the probability of logging reduces the chances
of inclusion of spurious behaviors due to over-approximate reachable set compu-
tation over longer time horizon. Therefore, it has a reduced chance of spuriously
inferring the system unsafe, also fewer chance of invoking the refinement module
(as there are less spurious behaviors).

Answer to Question 2. Increasing the size of samples (due to uncertainties or
inherent nature of the system) results in increasing chances of invoking the refine-
ment module more frequently. It also increases the chance of (wrongly) inferring
the system to be unsafe, as the refinement module can in itself add to the over-
approximation.

Answer to Question 3. We observed that our online algorithm is able to prove
the system’s safety very efficiently with very few samples.

Answer to Question 4. We observed that for a given random log, the offline
algorithm was unable to prove safety of the system, whereas our online algorithm
was able to prove safety of the system, using fewer samples, by intelligently
sampling the system only when needed. We also note that, though here we just
demonstrated the result for one random log, but our internal experiments showed
that the online algorithm always needed fewer samples to prove safety—which is
unsurprising, as it is designed to sample the system only when needed. This can
also result in energy saving, as sampling usually requires energy and bandwidth.

Reachable Sets Computation Using Flow* . As uncertain linear dynamical sys-
tems are a special type of non-linear systems, Flow* [8] would have been a
natural candidate to benchmark our offline and online monitoring implementa-
tion by comparing various methods to compute overReach(·). However, we ran
into the following issues: i) To the best of our understanding, Flow* expects the
model of the continuous dynamics to be given as input, along with a discretiza-
tion parameter. Therefore, trying to encode the time-varying uncertainties in
the system as state variables will lead to discretization of the variables encoding
uncertainties; such discretization leads to undesired behavior, as those uncertain
variables will fail to capture the actual range of values that are possible at any
time step. ii) However, Flow* does allow time varying uncertainties, but only
additive2. Unfortunately, our benchmark requires multiplicative uncertainties.
Still, we believe Flow* could be compared with our implementation when the
bounding model has a simpler dynamics than our uncertain linear dynamical
systems.

6 Conclusion

We presented a new approach for monitoring cyber-physical systems against
safety specifications, using the additional knowledge of an over-approximation
2 See example at https://flowstar.org/benchmarks/2-dimensional-ltv-system/.

https://flowstar.org/benchmarks/2-dimensional-ltv-system/
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of the system expressed using an uncertain linear dynamic system. Our approach
assumes as first input a log with exact (but scattered) timestamps and uncer-
tain variable samplings (in the form of zonotopes), and as second input an over-
approximated model, bounding the possible behaviors. The over-approximation
is modeled by uncertainty in the variables of the dynamics. In the offline setting,
we are thus able to detect possible violations of safety properties, by extrapo-
lating the known samples with the over-approximated dynamics, and if needed
using a second reachability analysis to check whether the next sample is “com-
patible” with the possible unsafe behavior, i.e., can be reached from the unsafe
zone. In the online setting, we are capable of decreasing the number of sam-
ples, triggering a sample only when there might be a safety violation in a near
future, based on the latest known sample and on the over-approximated model
dynamics—increasing the energetic efficiency. Our method is sound in the sense
that an absence of detection of violation by our method indeed guarantees the
absence of an actual violation at any discrete time step. In the online method,
provided the samples are accurate, our method is in addition complete, i.e., the
method outputs safe iff the actual system is safe at all discrete time steps. Put
it differently, we guarantee that not triggering a sample at some time steps is
harmless and will not lead to missing a safety violation.

Future Works. On the log side, we considered fixed timestamps, but uncertain
values for the continuous variables; in fact, the timestamps could also be uncer-
tain. This makes sense when the samples are triggered by sensors distributed
over a network, which can create delays and therefore timed uncertainty. This
was not considered in our approach, and is on our agenda.

A possible threat to validity remains the enumeration of time steps in both
our algorithms (line 5 in Algorithm 1 and line 3 in Algorithm 2), which could slow
down the analysis for very sparse logs—even though this did not seem critical
in our experiments. Using skipping methods could help improving the efficiency
of our approach.

Fig. 7. Incompleteness

Another future work consists in increasing our guarantees, notably due to
the continuous nature of cyber-physical systems under monitoring. Indeed, even
with a rather fine-grained sampling showing no specification violation (e.g., in
Fig. 7a), it can always happen that the actual continuous behavior violated the
specification (e.g., in Fig. 7b). While setting discrete time steps at a sufficiently
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fine-grained scale will help to increase the confidence in the results of our app-
roach, no absolutely formal guarantee can be derived. Therefore, one of our
future works is to propose some additional conditions for extrapolating (contin-
uous) behaviors between consecutive discrete samples. Also, improving the scope
of our guarantees (in the line of, e.g., [12]) is on our agenda.
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Abstract. In this journal-first paper, we present an overview of our
novel formalism of Attack-Fault-Maintenance Trees (AFMTs). Detailed
version of work is available in [3]. AFMTs enable practitioners to quan-
tify the disruption scenarios by answering several safety-security metrics.
Alongside, it provides an informed decision on optimal maintenance poli-
cies by suggesting preventive component repairs and inspection frequen-
cies. We answer the aforementioned metrics through “what-if” and “sce-
nario analysis”. The models are supported by a graphical friendly tool
of PASST. The tool’s front-end is a drawing canvas that provides the
different syntactic elements used to design a well-formed AFMT model.
The back-end of the tool is based on the statistical-model checking tech-
niques. From the practitioner perspective, once the AFMT is designed
and input parameters on component failure, detection rates, inspection
rates are provided, the entire analysis can be then done as push-button
technology using model-checking techniques

1 Context and Motivation

Broadly current risk analysis methods for critical infrastructures exclusively
focus either on safety/availability (ISO 262262, IEC 61508) or on information
security (ISO 27001, SA/IEC 62443). As a result, sub-optimal solutions are
implemented, or money is wasted, for instance, because proposed security mea-
sures interfere with safety. Increasingly, researchers have recognized the impor-
tance of threat analysis and quantitative scenario analysis to ensure safety and
security-by-design. Following, a number of papers, propose independent quanti-
tative modelling and analysis techniques, for example, fault trees in safety, attack
trees in security etc.

In this paper, we propose the Attack-Fault-Maintenance trees (AFMTs, [3]);
a model-based risk analysis to perform an integral safety-security risk analysis.
AFMTs take into account component deterioration, attack events, inspection and
complex maintenance policies. The output of the framework is an optimal main-
tenance/inspection frequency that balances repair/re-storage/inspection costs
against the disruption costs. Note, the disruption can be due to accidental loss
of component, attack-event or both attack event and accidental events occurring
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in tandem. Syntactically, AFMTs combine two popular graphical formalisms of
Attack-Fault trees (AFTs, [4]) and Fault-Maintenance trees [6]. Technically, each
AFMT element is translated into a stochastic timed automaton (STA) while the
metrics of interest are encoded in a variant of temporal logic. The usage of
STAs allows to formally capture the different system attributes of soft time con-
straints, hard time constraints, probabilistic choice and different cost structures.
The mathematical engine of AFMTs is based on the well-established technique
of Statistical Model-Checking (SMC, [5]). The model-checker of Uppaal SMC [1]
is used to answer the different metrics. AFMTs are supported with PASST, a
practitioner-friendly tool. The tool is available via a web-interface1 and as a
standalone collection of Uppaal models and scripts. To use the standalone col-
lection of Uppaal models, one needs to maintain a working Uppaal tool available
at Uppaal’s webpage2, which is free to use with an academic license.

2 AFMTs and Informal Semantics

AFMTs extend AFTs with predictive and reactive maintenance strategies. The
underlying model of AFTs has been discussed in the doctoral thesis of Kumar
et al. [2]. To familiarize the reader with the AFMTs, we discuss them with an
illustrative example.

Fig. 1. An example AFMT. Here, T1 and T2 are subtrees, which can be refined.

Figure 1 is an excerpt from [4]. The original model is extended with inspec-
tion and maintenance strategies. It models a disruption scenario of an industrial
pipeline carrying a toxic pollutant. The top event in the tree is Pollution. It

1 http://afmt-simulator.com.
2 https://uppaal.org/downloads/.

http://afmt-simulator.com
https://uppaal.org/downloads/
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represents the undesirable system state. This event can occur as a result of an
attack Attack or via Pipeline_break_&_protection_failure, hence the top event
is refined using an OR gate. An attack can execute the event Attack by exe-
cuting both the attack steps of Deactivate_SCADA and Waterhammer_attack,
however, it needs to be performed in order, where the execution of the rightmost
event Waterhammer_attack can only be started after the successful disruption of
its previous left event of Deactivate_SCADA. Hence, the event Attack is refined
using the SAND gate. Similarly, other subsystems are refined until we reach to
the leaf nodes, that indicate atomic events. Here, rectangular boxes, termed as
Extended Basic Attacker Actions (EBAS), represent attacker actions. Acci-
dental events, Extended basic component failures (EBCF) are represented
by oval boxes. Trapezoid boxes are special form of EBCF that represent com-
ponent disruption at start. Here, we assume the inspection frequency is of four
times/year.

An EBAS models attacker actions over time, put as exponential distribution.
Owning to preventive and deterrent measures, an attacker may caught by placing
preventive countermeasures. We model this uncertainty using a discrete proba-
bility distribution. We also assume that as the attack is underway, an inspection
may be carried out. The inspection acts as a check that may halt the attacker’s
progress if the ongoing attack-specific patches are placed during the inspections.
However, these inspections remain oblivious to the attacker, who may continue
with the ongoing attacks. Once the attacker has successfully compromised the
atomic step, its disruption is signalled to a repair box. Thereafter, the EBAS may
be repaired to its original “new” state, or no corrective action is taken, depending
on the criticality of the compromised component.

An EBCF model shows the component’s deterioration over time. We model
the component degradation behaviour as a hypoexponential distribution. In our
model, the degradation phenomenon is divided over n phases. After a component
reaches a threshold degradation phase, it sends out an inspection signal to its
corresponding inspection module. After a component is degraded over all its n
phases, it transitions to a disrupted state. Repairs and replacements restore the
component to its original, undamaged state.

AFT Gates. Gates are logical constructs that dictate how disruptions propagate
through the system. It also prescribes the operations on system attributes, for
example, how costs are to be computed from the children of a gate to their parent
node. AFMTs adopt all the gate behavior, namely AND, OR, FDEP and SAND
gates from both ATs and FTs. To keep the paper self-contained, its behaviour is
as described: we activate the AFMT by sending an activate signal that propa-
gates from the root of the tree to the leaf nodes adhering to the gate semantics.
For example, in an AND gate with two children, both are activated simultane-
ously, while in the SAND gate, which is used to model temporal dependencies
between the children, the leftmost child is activated first, with the activation of
the subsequent child depending on whether the previous one is disrupted/not
disrupted. The disrupt signal propagates from leaf nodes to the root node of the
AFMT, again adhering to the gate semantics. If the root node receives the dis-
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rupt signal, it implies that the disruption event described by the root of AFMT
has occurred.

Maintenance Models. We consider two types of maintenance activities: pre-
ventive maintenance and corrective maintenance. a) Preventive maintenance
aims at restoring the component to its original unwearied state through peri-
odic inspections and repairs before its complete loss. b) Corrective maintenance
aims at restoring the componentâĂŹs functionality after the component has
failed through replacement and reactive repairs.

Preventive maintenance in AFMTs. An inspection module (IM) enforces preven-
tive maintenance in EBAS and EBCF. The IM is programmed with an inspection
frequency, such as four times per year in our example. We allow the component
to be repaired for an extended BCF by signalling its degradation phase. When
a component reaches a certain level of deterioration, it is repaired in the next
inspection cycle. In the case of the EBAS, if the attack is in progress while an
inspection is taking place, the attacker may be forced to abort the attack or
restart it after the inspection.

Corrective maintenance in AFMTs. In EBAS and EBCF, corrective maintenance
is modelled by signalling their degradation behavior/attack success to a repair
box. The repair box initiates a component repair for EBCF when it reaches its
final phase. In the case of an EBAS, a decision on corrective maintenance is made
based on the extent of damage caused by an attack. In many practical scenarios,
for example, if the attacker is careful not to disrupt/tamper with component
functionality, no repairs are required. In other cases, information about a suc-
cessful compromise may not be widely disseminated or known right away. We
model the uncertainty associated with such contextual cases as a uniform distri-
bution, after which the disruption of the EBAS is communicated to the repair
box, which invokes its replacement. From the perspective of the repair box, it is
opaque to where the disruption signals have originated. Based on a repair policy,
the repair box restores the component to its completely “as-good-as-new” state.

Model checking of AFMTs using Uppaal SMC. To answer the safety-
security metrics through statistical model checking, we translate each AFMT
construct, i.e. EBAS, EBCF, and gates, to a stochastic timed automaton (STA)
template. Additionally, we constructed an STA template of an inspection module
and a repair box. These templates are then parameterized according to the
AFMT structure. The security metrics are encoded in the Uppaal SMC language.
For example, to obtain the probability of reaching the top node of the AFMT
within a mission time of 1 year (8800 h hours), we encode the property as Pr
[t<=8800] (<> top event.goal), where goal is a location in the STA top event,
indicating that the root node of the AFMT is reached. Here “t” is the global
clock. We use the popular toolbox of Uppaal SMC to derive the results.
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3 Conclusion

In this paper, we positioned AFMTs as an instrument to perform model based
safety-security risk analysis taking complex maintenance and repair policies into
account. Supported by PASST tool, it uses statistical model-checking (SMC)
techniques at its back-end. In future, we plan to extend our work with complex
cybernetics policies, realistic attackers personas and ways to work with categor-
ical input data.
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Abstract. Multiparty session types are designed to abstractly capture
the structure of communication protocols and verify behavioural proper-
ties. One important such property is progress, i.e., the absence of dead-
lock. Distributed algorithms often resemble multiparty communication
protocols. But proving their properties, in particular termination that is
closely related to progress, can be elaborate. Since distributed algorithms
are often designed to cope with faults, a first step towards using session
types to verify distributed algorithms is to integrate fault-tolerance.

We extend multiparty session types to cope with system failures such
as unreliable communication and process crashes. Moreover, we augment
the semantics of processes by failure patterns that can be used to rep-
resent system requirements (as, e.g., failure detectors). To illustrate our
approach we analyse a variant of the well-known rotating coordinator
algorithm by Chandra and Toueg.

1 Introduction

Multi-Party Session Types (MPST) are used to statically ensure correctly coor-
dinated behaviour in systems without global control [13,22]. One important such
property is progress, i.e., the absence of deadlock. Like with every other static
typing approach, the main advantage is their efficiency, i.e., they avoid the prob-
lem of state space explosion. MPST are designed to abstractly capture the struc-
ture of communication protocols. They describe global behaviours as sessions,
i.e., units of conversations [3,4,22]. The participants of such sessions are called
roles. Global types specify protocols from a global point of view. These types are
used to reason about processes formulated in a session calculus.

Distributed algorithms (DA) very much resemble multiparty communication
protocols. An essential behavioural property of DA is termination [26,33], despite
failures, but it is often elaborate to prove. It turns out that progress (as provided
by MPST) and termination (as required by DA) are closely related.

Many DA were designed in a fault-tolerant way, in order to work in envi-
ronments, where they have to cope with system failures—be it links dropping
messages or processes crashing. Gärtner [19] suggested four different forms of
fault-tolerance, depending on whether the safety and liveness requirements are
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met, or not. An algorithm is called masking in the (best) case that both proper-
ties hold while tolerating faults transparently, i.e., without further intervention
by the programmer. It is called non-masking, however, if faults are dealt with
explicitly in order to cope with unsafe states, while still guaranteeing liveness.
The fail-safe case then captures algorithms that remain safe, but not live. (The
fourth form is just there for completeness; here neither safety nor liveness is
guaranteed.) We focus on masking fault-tolerant algorithms.

While the detection of conceptual design errors is a standard property of type
systems, proving correctness of algorithms despite the occurrence of system fail-
ures is not. Likewise, traditional MPST do not cover fault tolerance or failure
handling. There are several approaches to integrate explicit failure handling in
MPST (e.g. [1,6,7,12,16,34]). These approaches are sometimes enhanced with
recovery mechanisms such as [8] or even provide algorithms to help find safe
states to recover from as in [29]. Many of these approaches introduce nested try-
and-catch-blocks and a challenge is to ensure that all participants are consis-
tently informed about concurrent throws of exceptions. Therefore, exceptions
are propagated within the system. Though explicit failure handling makes sense
for high-level applications, the required message overhead is too inefficient for
many low-level algorithms. Instead these low-level algorithms are often designed
to tolerate a certain amount of failures. Since we focus on the communication
structure of systems, additional messages as reaction to faults (e.g. to propa-
gate faults) are considered non-masking failure handling. In contrast, we expect
masking fault-tolerant algorithms to cope without messages triggered by faults.
We study how much unhandled failures a well-typed system can tolerate, while
maintaining the typical properties of MPST.

We propose a variant of MPST with unreliable interactions and augment the
semantics to also represent failures such as message loss and crashing processes,
as well as more abstract concepts of fault-tolerant algorithms such as the possi-
bility to suspect a process to be faulty. To guide the behaviour of unreliable com-
munication, the semantics of processes uses failure patterns that are not defined
but could be instantiated by an application. This allows us to cover requirements
on the system—as, e.g., a bound on the number of faulty processes—as well as
more abstract concepts like failure detectors. It is beyond the scope of this paper
to discuss how failure patterns could be implemented.

Related Work. Type systems are usually designed for failure-free scenarios. An
exception is [23] that introduces unreliable broadcast, where a transmission can
be received by multiple receivers but not necessarily all available receivers. In
the latter case, the receiver is deadlocked. In contrast, we consider fault-tolerant
interactions, where in the case of a failure the receiver is not deadlocked.

The already mentioned systems in [6,7,12,16,34] extend session types with
exceptions thrown by processes within try-and-catch-blocks, interrupts, or
similar syntax. They structurally and semantically encapsulate an unreliable
part of a protocol and provide some means to ‘detect’ a failure and ‘react’ to it.
For example [34] proposes a variant of MPST with the explicit handling of crash
failures. Therefore they coordinate asynchronous messages for run-time crash
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notifications using a coordinator. Processes in [34] have access to local failure
detectors which eventually detect all failed peers and do not falsely suspect
peers. In contrast we augment the semantics of the session calculus with failure
patterns that e.g. allow to implement failure detectors but may also be used
to implement system requirements. Exceptions may also describe, why a failure
occurred. Here we deliberately do not model causes of failures or how to ‘detect’
a failure. Different system architectures might provide different mechanisms to
do so, for example, by means of time-outs. As is standard for the analysis of
DA, our approach allows us to port the verified algorithms on different system
architectures that satisfy the necessary system requirements.

Another essential difference is how systems react to faults. In [6], throw-
messages are propagated among nested try-and-catch-blocks to ensure that all
participants are consistently informed about concurrent throws of exceptions.
Fault-tolerant DA, however, have to deal with the problem of inconsistency that
some part of a system may consider a process/link as crashed, while at the same
time the same process/link is regarded as correct by another part. (This is one
of the most challenging problems in the design and verification of fault-tolerant
DA.) The reason is that distributed processes usually cannot reliably observe an
error on another system part, unless they are informed by some system “device”
(like the “coordinator” of [34] or the “oracle” of [6]). Therefore, abstractions
like unreliable failure detectors are used to model this restricted observability
which can, for example, be implemented by time-outs. Failure detectors are
often considered to be local (see previous paragraph), but they cannot ensure
global consistency. Various degrees of consistency, or [un]reliability, of failure
detectors are often defined via constraints that are expressed as global temporal
properties [10] (see also Sect. 6). Abstract properties, like the communication
predicates in the Heard-Of model [11], can also be used to specify minimum
requirements on system behaviours at a global level of abstraction in order to
be able to guarantee correctness properties.

In previous work, we used the above-mentioned failure detector abstractions
in the context of (untyped) process calculi [27] to verify properties of several
algorithms for Distributed Consensus [24,28]. Key for the respective proofs was
the intricate reconstruction of global state information from process calculus
terms, as we later on formalized in [35]. We conjecture that MPST could pro-
vide proof support in this context, for example, for the methods that apply to
these global states. The work by Francalanza and Hennessy [17] also uses a pro-
cess calculus for the analysis of DA, but employs bisimulation proof techniques.
In order to do so, however, the intended properties need to be formulated via
some global wrapper code, which provides a level of indirection to proofs. This
approach suffers from the absence of clear global state information. In contrast,
MPST supply useful global (session type) information from scratch.

The missing proofs and some additional material can be found in [30].
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2 Fault-Tolerance in Distributed Algorithms

We consider three sources of failure in an unreliable communication (Fig. 1(a)):
(1) the sender may crash before it releases the message, (2) the receiver may
crash before it can consume the message, or (3) the communication medium
may lose the message. The design of a DA may allow it to handle some kinds
of failures better than others. Failures are unpredictable events that occur at
runtime. Since types consider only static and predictable information, we do
not distinguish between different kinds of failure or model their source in types.
Instead we allow types, i.e., the specifications of systems, to distinguish between
potentially faulty and reliable interactions.

(a) r1 r2

r1 r2 r1 r2 r1 r2

l v

l v l v

(1) (2) (3)

(b) r1 r2

r1 r2 r1 r2

l

l

(1) (2)

Fig. 1. Unreliable communication (a) and Weakly Reliable branching (b).

A fault-tolerant algorithm has to solve its task despite such failures. Remem-
ber that MPST analyse the communication structure. Accordingly, we need a
mechanism to tolerate faults in the communication structure. We want our type
system to ensure that a faulty interaction neither blocks the overall protocol nor
influences the communication structure of the system after this fault. We con-
sider an unreliable communication as fault-tolerant if a failure does not influence
the guarantees for the overall communication structure except for this particular
communication. Moreover, if a potentially unreliable communication is executed
successfully, then our type system ensures the same guarantees as for reliable
communication such as e.g. the absence of communication mismatches.

To ensure that a failure does not block the algorithm, both the receiver and
the sender need to be allowed to proceed without their unreliable communication
partner. Therefore, the receiver of an unreliable communication is required to
specify a default value that, in the case of failure, is used instead of the value
the process was supposed to receive. The type system ensures the existence
of such default values and checks their sort. Moreover, we augment unreliable
communication with labels that help us to avoid communication mismatches.

Branching in the context of failures is more difficult, because a branch marks a
decision point in a specification, i.e., the participants of the session are supposed
to behave differently w.r.t. this decision. In an unreliable setting it is difficult to
ensure that all participants are informed consistently about such a decision.

Consider a reliable branching that is decided by a process r1 and transmitted
to r2. If we try to execute such a branching despite failures, we observe that
there are again three ways in that this branching can go wrong (Fig. 1(b)): (1)
The sender may crash before it releases its decision. This will block r2, because it
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is missing the information about the branch it should move to. (2) The receiver
might crash. (3) The message of r1 is lost. Then again r2 is blocked.

Case (2) can be dealt with similar to unreliable communication, i.e., by mark-
ing the branching as potentially faulty and by ensuring that a crash of r2 will
not block another process. To deal with Case (1), we declare one of the offered
branches as default. If r1 has crashed, r2 moves to the default branch. Then r2
will not necessarily move to the branch that r1 had in mind before it crashed,
but to a valid/specified branch and, since r1 is crashed, no two processes move
to different branches. The main problem is in Case (3). Let r1 move to a non-
default branch and transmit its decision to r2, this message gets lost, and r2
moves to the default branch. Now both processes did move to branches that are
described by their types; but they are in different branches. This case violates
the specification in the type and we want to reject it. More precisely, we consider
three levels of failures in interactions:

Strongly Reliable (r): Neither the sender nor the receiver can crash as long
as they are involved in this interaction. The message cannot be lost by the
communication medium. This form corresponds to reliable communication as
it was described in [2] in the context of distributed algorithms. This is the
standard, failure-free case.

Weakly Reliable (w): Both the sender and the receiver might crash at every
possible point during this interaction. But the communication medium cannot
lose the message.

Unreliable (u): Both the sender and the receiver might crash at every possible
point during this interaction and the communication medium might lose the
message. There are no guarantees that this interaction—or any part of it—
takes place. Here, it is difficult to ensure interesting properties in branching.

3 Fault-Tolerant Types and Processes

We assume that the sets N of names a, s, x . . .; R of roles n, r, . . .; L of labels
l , ld, . . .; VT of type variables t ; and VP of process variables X are pairwise
distinct. To simplify the reduction semantics of our session calculus, we use
natural numbers as roles (compare to [22]). Sorts S range over B,N, . . .. The set
E of expressions e, v, b, . . . is constructed from the standard Boolean operations,
natural numbers, names, and (in)equalities.

Global types specify the desired communication structure from a global point
of view. In local types this global view is projected to the specification of a
single role/participant. We use standard MPST [21,22] extended by unreliable
communication and weakly reliable branching (highlighted in blue) in Fig. 2.

A new session s with n roles is initialised with a[n](s).P and a[r](s).P via
the shared channel a. We identify sessions with their unique session channel.

The type r1 →r r2:〈S〉.G specifies a strongly reliable communication from role
r1 to role r2 to transmit a value of the sort S and then continues with G. A system
with this type will be guaranteed to perform a corresponding action. In a session
s this communication is implemented by the sender s[r1, r2]!r〈e〉.P1 (specified as
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Fig. 2. Syntax of fault-tolerant MPST

[r2]!r〈S〉.T1) and the receiver s[r2, r1]?r(x ).P2 (specified as [r1]?r〈S〉.T2). As result,
the receiver instantiates x in its continuation P2 with the received value.

The type r1 →u r2:l〈S〉.G specifies an unreliable communication from r1 to
r2 transmitting (if successful) a label l and a value of type S and then continues
(regardless of the success of this communication) with G. The unreliable counter-
parts of senders and receivers are s[r1, r2]!ul〈e〉.P1 (specified as [r2]!ul〈S〉.T1) and
s[r2, r1]?ul〈v〉(x ).P2 (specified as [r1]?ul〈S〉.T2). The receiver s[r2, r1]?ul〈v〉(x ).P2

declares a default value v that is used instead of a received value to instantiate
x after a failure. Moreover, a label is communicated that helps us to ensure that
a faulty unreliable communication has no influence on later actions.

The strongly reliable branching r1 →r r2:{li.Gi}i∈I allows r1 to pick one
of the branches offered by r2. We identify the branches with their respective
label. Selection of a branch is by s[r1, r2]!rl .P (specified as [r2]!r{li.Ti}i∈I). Upon
receiving lj , s[r2, r1]?r{li.Pi}i∈I (specified as [r1]?r{li.Ti}i∈I) continues with Pj .

As discussed in the end of Sect. 1, the counterpart of branching is weakly reli-
able and not unreliable. It is implemented by r →w R:{li.Gi}i∈I,ld

, where R ⊆ R
and ld with d ∈ I is the default branch. We use a broadcast from r to all roles
in R to ensure that the sender can influence several participants consistently.
Splitting this action to inform the roles in R separately does not work, because
we cannot ensure consistency if the sender crashes while performing these sub-
sequent actions. The type system will ensure that no message is lost. Because of
that, all processes that are not crashed will move to the same branch. We often
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abbreviate branching w.r.t. to a small set of branches by omitting the set brack-
ets and instead separating the branches by ⊕, where the last branch is always the
default branch. In contrast to the strongly reliable cases, s[r,R]!wl .P (specified
as [R]!w{li.Ti}i∈I) allows to broadcast its decision to R and s[rj , r]?w{li.Pi}i∈I,ld
(specified as [r]?w{li.Ti}i∈I,ld

) defines a default label ld.
The ⊥ denotes a process that crashed. Similar to [22], we use message queues

to implement asynchrony in sessions. Therefore, session initialisation introduces
a directed and initially empty message queue sr1→r2 :[ ] for each pair of roles
r1 	= r2 of the session s. The separate message queues ensure that messages
with different sources or destinations are not ordered, but each message queue is
FIFO. Since the different forms of interaction might be implemented differently
(e.g. by TCP or UDP), it make sense to further split the message queues into
three message queues for each pair r1 	= r2 such that different kinds of messages
do not need to be ordered. To simplify the presentation of examples in this paper
and not to blow up the number of message queues, we stick to a single message
queue for each pair r1 	= r2, but the correctness of our type system does not
depend on this decision. We have five kinds of messages m and corresponding
message types mt in Fig. 2—one for each kind of interaction. In strongly reliable
communication a value v (of sort S) is transmitted in a message 〈v〉r of type
〈S〉r. In unreliable communication the message l〈v〉u (of type l〈S〉u) additionally
carries a label l . For branching only the picked label l is transmitted and we
add the kind of branching as superscript, i.e., message/type l r is for strongly
reliable branching and message/type lw for weakly reliable branching. Finally,
message/type s[r] is for session delegation. A message queue M is a queue of
messages m and MT is a queue of message types mt.

The remaining operators for independence G || G′; parallel composition P |
P ′; recursion (μt)G, (μX )P ; inaction end, 0; conditionals if b then P1 else P2;
session delegation r1 → r2:〈s ′[r]:T 〉.G, s[r1, r2]!〈〈s ′[r]〉〉.P , s[r2, r1]?((s ′[r])).P ; and
restriction (νx )P are all standard. As usual, we assume that recursion variables
are guarded and do not occur free in types or processes.

Local types are used as a mediator between the global specification and the
respective local end points. To ensure that the local types correspond to the
global type, they are projected from global types. We use a standard variant of
projection as introduced in [9,20,36], where the new unreliable and weakly reliab-
le cases are straightforwardly obtained from their strongly reliable counterparts.

A session channel and a role together uniquely identify a participant of a
session, called an actor. A process has an actor s[r] if it has an action prefix on
s that mentions r as its first role. Let A(P) be the set of actors of P .

Labels. We use labels for two purposes: they allow us to distinguish between
different branches, as usual in MPST-frameworks, and we assume that they
may carry additional runtime information such as timestamps. Of course, the
presented type system remains valid if we use labels without additional infor-
mation. In contrast to standard MPST and to support unreliable communica-
tion, our MPST variant will ensure that all occurrences of the same label are
associated with the same sort. We assume a predicate =̇ that compares two
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labels and is satisfied if the parts of the labels that do not refer to runtime
information correspond. If labels do not contain runtime information, =̇ can be
instantiated with equality. We require that =̇ is unambiguous on labels used in
types, i.e., given two labels of processes lP , l ′P and two labels of types lT , l ′T then
lP =̇ l ′P ∧ lP =̇ lT ⇒ l ′P =̇ lT and lP =̇ lT ∧ lT 	=̇ l ′T ⇒ lP 	=̇ l ′T .

One of the properties that our type system has to ensure even in the case of
failures is the absence of communication mismatches, i.e., the type of a trans-
mitted value has to be the type that the receiver expects. The global type
1 →u 2:l1〈N〉.1 →u 2:l2〈B〉.end specifies two subsequent unreliable communi-
cations in that values of different sorts are transmitted. If the first message with
its natural number is lost but the second message containing a Boolean value is
transmitted, 2 could wrongly receive a Boolean value although it still waits for
a natural number. To avoid this mismatch, we add a label to unreliable commu-
nication and ensure (by the typing rules) that the same label is never associated
with different types. Similarly, labels are used in [5] to avoid communication
errors. Since the type system ensures l1 	=̇ l2 and the reduction rules in Fig. 3
compare labels of messages and reception-prefixes, the Boolean message cannot
be consumed before 2 has reduced its first prefix.

We do that because we think of labels not only as identifiers for branching,
but also as some kind of meta data of messages as they can be often found in
communication media or as they are assumed by many distributed algorithms.
Our unreliable communication mechanism exploits such meta data to guarantee
strong properties about the communication structure including the described
absence of communication mismatches.

Examples. Consider the specification Gdice,r of a simple dice game in a bar

(μt)3 →r 1:〈N〉.3 →r 2:〈N〉.3 →r 1:{roll .3 →r 2:roll .t , exit .3 →r 2:exit .end}

where the dealer Role 3 continues to roll a dice and tell its value to player 1 and
then to roll another time for player 2 until the dealer decides to exit the game.

We can combine strongly reliable communication/branching and unreliable
communication, e.g. by ordering a drink before each round in Gdice,r.

(μt)3 →u 4:drink〈N〉.3 →r 1:〈N〉.3 →r 2:〈N〉.
3 →r 1:{roll .3 →r 2:roll .t , exit .3 →r 2:exit .end}

where role 4 represents the bar tender and the noise of the bar may swallow
these orders. Moreover, we can remove the branching and specify a variant of
the dice game in that 3 keeps on rolling the dice forever, but, e.g. due to a bar
fight, one of our three players might get knocked out at some point or the noise
of this fight might swallow the announcements of role 3:

Gdice,u = (μt)3 →u 1:roll〈N〉.3 →u 2:roll〈N〉.t
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To restore the branching despite the bar fight that causes failures, we need
the weakly reliable branching mechanism.

Gdice = (μt)3 →w {1, 2} :play .3 →u 1:roll〈N〉.3 →u 2:roll〈N〉.t ,
⊕ end .3 →u 1:win〈B〉.3 →u 2:win〈B〉.end

If 3 is knocked out by the fight, i.e., crashes, the game cannot continue. Then
1 and 2 move to the default branch end , have to skip the respective unreliable
communications, and terminate. But the game can continue as long as 3 and at
least one of the players 1, 2 participate.

Fig. 3. Selected reduction rules ( �−→) of fault-tolerant processes.

An implementation of Gdice is Pdice = P3 | P1 | P2, where for i ∈ {1, 2}:

P3 = a[3](s).(μX )if x1 ≤ 21 ∧ x2 ≤ 21

then s[3, {1, 2}]!wplay .s[3, 1]!uroll〈roll(x1)〉.s[3, 2]!uroll〈roll(x2)〉.X
else s[3, {1, 2}]!wend .s[3, 1]!uwin〈x1 ≤ 21〉.s[3, 2]!uwin〈x2 ≤ 21〉.0

Pi = a[i](s).(μX )s[i, 3]?wplay .s[i, 3]?uroll〈x 〉(x ).X ⊕ end .s[i, 3]?uwin〈f〉(w).0

Role 3 stores the sums of former dice rolls for the two players in its local variables
x1 and x2, and roll(xi) rolls a dice and adds its value to the respective xi. Role 3
keeps rolling dice until the sum xi for one of the players exceeds 21. If both sums
x1 and x2 exceed 21 in the same round, then 3 wins, i.e., both players receive
f; else, the player that stayed below 21 wins and receives t. The players 1 and
2 use their respective last known sum that is stored in x as default value for
the unreliable communication in the branch play and f as default value in the
branch end . The last branch, i.e., end , is the default branch.
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4 A Semantics with Failure Patterns

The application of a substitution {y/x} on a term A, denoted as A{y/x}, is defined
as the result of replacing all free occurrences of x in A by y , possibly applying
alpha-conversion to avoid capture or name clashes. For all names n ∈ N \ {x}
the substitution behaves as the identity mapping. We use substitution on types
as well as processes and naturally extend substitution to the substitution of vari-
ables by terms (to unfold recursions) and names by expressions (to instantiate
a bound name with a received value). We assume an evaluation function eval(·)
that evaluates expressions to values.

The reduction semantics of the session calculus is defined in Fig. 3 (the
remaining rules are given in [30]), where we follow [22]: session initialisation
is synchronous and communication within a session is asynchronous using mes-
sage queues. The rules are standard except for the five failure pattern and two
rules for system failures: (Crash) for crash failures and (ML) for message loss.
Failure patterns are predicates that we deliberately choose not to define here (see
below). They allow us to provide information about the underlying communica-
tion medium and the reliability of processes: FPuget could, e.g., be used to reject
messages that are too old. FPuskip tells us whether a reception can be skipped
(e.g. via failure detector). FPwskip allows a process to move to its default branch.
FPcrash can e.g. model immortal processes or global bounds on the number of
crashes. FPml allows, e.g., to implement safe channels that never lose messages
or a global bound on the number of lost messages.

We deliberately do not specify failure pattern, although we usually assume
that the failure patterns FPuget, FPuskip, and FPwskip use only local information,
whereas FPml and FPcrash may use global information of the system in the current
run. We provide these predicates to allow for the implementation of system
requirements or abstractions like failure detectors that are typical for distributed
algorithms. Directly including them in the semantics has the advantage that all
traces satisfy the corresponding requirements, i.e., all traces are valid w.r.t. the
assumed system requirements. An example for the instantiation of these patterns
is given implicitly via the Condition 1.1–1.6 in Sect. 5 and explicitly in Sect. 6.
If we instantiate the patterns FPuget with true and the patterns FPuskip, FPwskip,
FPcrash, FPml with false, then we obtain a system without failures. In contrast,
the instantiation of all five patterns with true results in a system where failures
can happen completely non-deterministically at any time.

Note that we keep the failure patterns abstract and do not model how to
check them in producing runs. Indeed system requirements such as bounds on
the number of processes that can crash usually cannot be checked, but result
from observations, i.e., system designers ensure that a violation of this bound is
very unlikely and algorithm designers are willing to ignore these unlikely events.
In particular, FPml and FPcrash are thus often implemented as oracles for verifica-
tion, whereas e.g. FPuskip and FPwskip are often implemented by system specific
time-outs. Note that we are talking about implementing these failure patterns
and not formalising them. Failure patterns are abstractions of real world system
requirements or software. We implement them by conditions providing the neces-



Fault-Tolerant Multiparty Session Types 103

sary guarantees that we need in general (i.e., for subject reduction and progress)
or for the verification of concrete algorithms. In practice, we expect that the
systems on which the verified algorithms are running satisfy the respective con-
ditions. Accordingly, the session channels, roles, labels, and processes mentioned
in Fig. 3 are not parameters of the failure patterns, but just a vehicle to more
formally specify the conditions on failure patterns in Sect. 5.

Similarly, strongly reliable and weakly reliable interactions in potentially
faulty systems are abstractions. They are usually implemented by handshakes
and redundancy; replicated servers against crash failures and retransmission of
late messages against message loss. Algorithm designers have to be aware of the
additional costs of these interactions.

Fig. 4. Selected typing rules.

5 Typing Fault-Tolerant Processes

A typed judgment is a triple Γ 
 P � Δ, where Δ ::= ∅ | Δ · s[r]:T | Δ ·
sr1→r2 :MT∗ and Γ ::= ∅ | Γ · x :S | Γ · a:G | Γ · l :S. Global environments
Γ relate variables to their sort, shared channels to the type of the session they
introduce, and connect labels with a sort. Session environments Δ collect the
local types of actors and the list of message types MT∗ of queues.

We write x �Γ and x �Δ if the name x does not occur in Γ and Δ, respec-
tively. We use · to add an assignment provided that the new assignment is
not in conflict with the type environment, i.e., Γ · A implies that the respective
name/variable/label in A is not contained in Γ and Δ ·A implies that the respec-
tive actor/queue in A is not contained in Δ. These conditions on · for global and
session environments are referred to as linearity. We restrict in the following our
attention to linear environments.
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We write nsr(Δ) if none of the prefixes in T is strongly reliable or for delega-
tion for all local types T in Δ and if Δ does not contain message queues. With
Γ � y:S we check that y is an expression of the sort S if all names x in y are
replaced by arbitrary values of sort Sx for x :Sx ∈ Γ . A complete set of typing
rules can be found in [30]. In Fig. 4 we concentrate on the interaction cases,
where we observe that all new cases are quite similar to their strongly reliab-
le counterparts. The unreliable and weakly reliable cases additionally check the
sorts assigned to labels in Γ , the sorts of default values, and the relation between
default labels of processes and their types. Figure 4 also gives the Rule (Crash)
for crashed processes. It only checks that nsr(Δ).

We have to prove that our extended type system satisfies the standard prop-
erties of MPST, i.e., subject reduction and progress. Because of the failure pat-
tern in the reduction semantics in Fig. 3, subject reduction and progress do not
hold in general. Instead we have to fix conditions on failure patterns that ensure
these properties. Subject reduction needs one condition on crashed processes and
progress requires that no part of the system is blocked. In fact, different instan-
tiations of these failure patterns may allow for progress. We leave it for future
work to determine what kind of conditions on failure patterns or requirements
on their interactions are necessary. Here, we consider only one such set.

Condition 1 (Failure Pattern)

1. If FPcrash(P), then nsr(P).
2. The failure pattern FPuget(s, r1, r2, l) is always valid.
3. The pattern FPml(s, r1, r2, l) is valid iff FPuskip(s, r2, r1, l) is valid.
4. If FPcrash(P) and s[r] ∈ A(P) then eventually FPuskip(s, r2, r, l) and also

FPwskip(s, r2, r, l) for all r2, l .
5. If FPcrash(P) and s[r] ∈ A(P) then eventually FPml(s, r1, r, l) for all r1, l .
6. If FPwskip(s, r1, r2) then s[r2] is crashed, i.e., the system does no longer contain

an actor s[r2] and the message queue sr2→r1 is empty.

The crash of a process should not block strongly reliable actions, i.e., only
processes with nsr(P) can crash (Condition 1.1). Condition 1.2 requires that no
process can refuse to consume a message on its queue to prevent deadlocks that
may arise from refusing a message that is never dropped. Condition 1.3 requires
that if a message can be dropped from a message queue then the corresponding
receiver has to be able to skip this message and vice versa. Similarly, processes
that wait for messages from a crashed process have to be able to skip (Condi-
tion 1.4) and all messages of a queue towards a crashed receiver can be dropped
(Condition 1.5). Finally, weakly reliable branching requests should not be lost.
To ensure that the receiver of such a branching request can proceed if the sender
is crashed but is not allowed to skip the reception of the branching request before
the sender crashed, we require that FPwskip(s, r1, r2) is false as long as s[r2] is alive
or messages on the respective queue are still in transit (Condition 1.6).

The combination of these 6 conditions might appear quite restrictive on a
first glance. It is important to remember that they are minimal assumptions on
the system requirements and that system requirements are abstractions. Parts
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of them may be realised by actual software-code (which then allows to check
them), whereas other parts of the system requirements may not be realised at
all but rather observed (which then does not allow to verify them). Because of
that, it is an established method to verify the correctness of algorithms w.r.t.
given system requirements (e.g. in [10,25,32]), even if these system requirements
are not verified and often do not hold in all (but only nearly all) cases.

Coherence intuitively describes that a session environment captures all local
endpoints of a collection of global types. Since we capture all relevant global
types in the global environment, we define coherence on pairs of global and
session environments.

Definition 1 (Coherence). The type environments Γ,Δ are coherent if, for
all session channels s in Δ, there exists a global type G in Γ such that the restric-
tion of Δ on assignments with s is the set Δ′ such that {s[r]:G�r | r ∈ R(G)} ·
{sr→r′ :[ ] | r, r′ ∈ R(G)} s

�⇒ Δ′.

The relation s�→ describes how a session environment evolves alongside reduc-
tions of the system, i.e., it emulates the reduction steps of processes. As an exam-
ple consider the rule Δ·s[r1]:[r2]!r〈S〉.T ·sr1→r2 :MT s�→ Δ·s[r1]:T ·sr1→r2 :MT#〈S〉r
that emulates (RSend). Let s

�⇒ denote the reflexive and transitive closure of s�→.
We use s

�⇒ in the above definition to define coherence for systems that already
performed some steps. We can now prove subject reduction.

Theorem 1 (Subject Reduction). If Γ 
 P � Δ, Γ,Δ are coherent, and
P �−→ P ′, then there is some Δ′ such that Γ 
 P ′ � Δ′.

The proof is by induction on the derivation of P �−→ P ′ (see [30]). In every
case, we use the information about the structure of the processes to generate
partial proof trees for the respective typing judgement. Additionally, we use
Condition 1.1 to ensure that the type environment of a crashed process cannot
contain the types of reliable communication prefixes.

Progress states that no part of a well-typed system can block other parts, that
eventually all matching communication partners of strongly reliable and weakly
reliable communications (that are not crashed) are unguarded, and that there
are no communication mismatches. Subject reduction and progress together then
imply session fidelity, i.e., that processes behave as specified in their global types.

To ensure that the interleaving of sessions and session delegation cannot
introduce deadlocks, we assume an interaction type system as introduced in
[3,22]. For this type system it does not matter whether the considered actions
are strongly reliable, weakly reliable, or unreliable. More precisely, we can adapt
the interaction type system of [3] in a straightforward way to the above ses-
sion calculus, where unreliable communication and weakly reliable branching is
treated in exactly the same way as strongly reliable communication/branching.
We say that P is free of cyclic dependencies between sessions if this interaction
type system does not detect any cyclic dependencies. In this sense fault-tolerance
is more flexible than explicit failure handling, which requires a more substantial
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revision of the interaction type system to cover the additional dependencies that
are introduced e.g. by the propagation of faults.

In the literature there are different formulations of progress. We are interested
in a rather strict definition of progress that ensures that well-typed systems
cannot block. Therefore, we need an additional assumption on session requests
and acceptances. Coherence ensures the existence of communication partners
within sessions only. If we want to avoid blocking, we need to be sure, that no
participant of a session is missing during its initialisation. Note that without
action prefixes all participants either terminated or crashed.

Theorem 2 (Progress/Session Fidelity). Let Γ 
 P � Δ, Γ,Δ be coherent,
and let P be free of cyclic dependencies between sessions. Assume that in the
derivation of Γ 
 P � Δ, whenever a[n](s).Q or a[r](s).Q in P, then a:G ∈ Γ ,
|R(G)| = n, and there are a[n](s).Qn as well as a[ri](s).Qi in P for all 1 ≤ ri < n.

1. Then either P does not contain any action prefixes or P �−→ P ′.
2. If P does not contain recursion, then there exists P ′ such that P �−→∗ P ′ and

P ′ does not contain any action prefixes.

The proof of progress relies on the Condition 1.2–1.6 to ensure that failures
cannot block the system: in the failure-free case unreliable messages are even-
tually received (1.2), the receiver of a lost message can skip (1.3), no receiver
is blocked by a crashed sender (1.4), messages towards receivers that crashed
or skipped can be dropped (1.5 + 1.3), and branching requests cannot be
ignored (1.6).

6 The Rotating Coordinator Algorithm

To illustrate our approach we study a Consensus algorithm by Chandra and
Toueg (cf. [10,18]). This algorithm is small but not trivial. It was designed for
systems with crash failures, but the majority of the algorithm can be imple-
mented with unreliable communication.

As this algorithm models consensus, the goal is that every agent i eventually
decides on a proposed belief value, where no two agents decide on different values.
It is a round based algorithm, where each round consists of four phases. In each
round, one process acts as a coordinator decided by round robin, denoted by c.

In Phase 1 every agent i sends its current belief to the coordinator c.
In Phase 2 the coordinator waits until it has received at least half of the mes-

sages of the current round and then sends the best belief to all other agents.
In Phase 3 the agents either receive the message of the coordinator or sus-

pect the coordinator to have crashed and reply with ack or nack accordingly.
Suspicion can yield false positives.

In Phase 4 the coordinator waits, as in Phase 2, until it has received at least
half of the messages of the current round and then sends a weakly reliable
broadcast if at least half of the messages contained ack.
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It is possible for agents to skip rounds by suspecting the coordinator of the
current round and by proceeding to the next round. There are also no synchroni-
sation fences thus it is possible for the agents to be in different rounds and have
messages of different rounds in the system. Having agents in different rounds
makes proving correctness much more difficult.

Let
(⊙

1≤i≤n πi

)
.G abbreviate the sequence π1. . . . .πn.G to simplify the pre-

sentation, where G ∈ G is a global type and π1, . . . , πn are sequences of prefixes.
More precisely, each πi is of the form πi,1. . . . .πi,m and each πi,j is a type prefix
of the form r1 →u r2:l〈S〉 or r →w R:l1.T1 ⊕ . . . ⊕ ln.Tn ⊕ ld, where the latter case
represents a weakly reliable branching prefix with the branches l1, . . . , ln, ld, the
default branch ld, and where the next global type provides the missing specifica-
tion for the default case. We assume the sorts Sbelief = {0, 1} and Sack = {t, f}.
Let n be the number of agents. We start with the specification as a global type.

Grc(n) � (μt)
⊙

1≤c≤n

(( ⊙
1≤i≤n,i�=c

i →u c:p1〈Sbelief〉
)
.

( ⊙
1≤i≤n,i�=c

c →u i:p2〈Sbelief〉
)
.
( ⊙

1≤i≤n,i�=c

i →u c:p3〈Sack〉
)
.

c →w {i|1 ≤ i ≤ n, i 	= c} :Zero.end ⊕ One.end ⊕ ld
)
.t

It specifies a loop containing a collection of n rounds, where each process func-
tions as a coordinator once. This collection of n rounds is specified with the first⊙

, i.e., the continuation of ld in the end of the description is the specification
of round r + 1 for all rounds r < n whereas in the last round n we have ld.t .
By unfolding the recursion on t , Grc(n) starts the next n rounds. The following
three

⊙
specify the Phases 1–3 of the algorithm within one round. Phase 4 is

specified by a weakly reliable branching that does not need a
⊙

, since it is a
broadcast.

In Phase 1 all processes except the coordinator c transmit a belief to c using
label p1. In Phase 2 c transmits a belief to all other processes using label p2.
Then all processes transmit a value of type Sack to the coordinator using label
p3 in Phase 3. Finally, in Phase 4 the coordinator broadcasts one of the labels
Zero, One, or ld, where the first two labels represent a decision and terminate
the protocol, whereas the default label ld specifies the need for another round.
All interactions in the specification are unreliable or weakly reliable.

Let
(⊙

1≤i≤n πi

)
.P abbreviate the sequence π1. . . . .πn.P , where P ∈ P is a

process and π1, . . . , πn are sequences of prefixes.

Sys
(
n, �V 0

)
� a[n](s).P

(
n, n, �V 0

n

)
|

∏
1≤i<n

a[i](s).P
(
i, n, �V 0

i

)

P
(
i, n, �V

)
� (μX )

( ⊙
1≤c≤n

if i = c then PC
1

(
i, n, �V

)
else PNC

1

(
i, n, c, �V

))
.X
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Sys
(
n, �V 0

)
describes the session initialisation of a system with n participants

and the initial knowledge �V 0, where �V 0
i is a vector that contains only the initial

knowledge of role i. Let
∣∣∣�V

∣∣∣ � |{i | vi 	= ⊥}| return the number of non-empty

entries. P
(
i, n, �V

)
describes a process i in a set of n processes. Each process then

runs for at most n rounds and then loops.

PC
1

(
c, n, �V

)
�

( ⊙
1≤i≤n,i�=c

s[c, i]?up1〈⊥〉(vi)
)
.if

∣∣∣�V
∣∣∣ ≥

⌈
n − 1

2

⌉

then PC
2

(
c, n,best(�V )

)
else PC

2

(
c, n, �V 0

c

)

PNC
1

(
i, n, c, �V

)
� s[i, c]!up1〈vi〉.PNC

2

(
i, n, c, �V

)

Every non-coordinator PNC
1

(
i, n, c, �V

)
sends its own belief via unreliable com-

munication to the coordinator and proceeds to Phase 2. The coordinator receives
(some of) these messages and proceeds to Phase 2. If the reception of at least
half of the messages was successful, it is updating its belief using the function
best() that replaces all belief values with the best one. Otherwise, it discards all
beliefs except its own. We are using

⌈
n−1
2

⌉
to check for a majority, since in our

implementation processes do not transmit to themselves.

PC
2

(
c, n, �V

)
�

( ⊙
1≤i≤n,i�=c

s[c, i]!up2〈vi〉
)
.PC

3

(
c, n, �V

)

PNC
2

(
i, n, c, �V

)
� s[i, c]?up2〈⊥〉(x ).if x = ⊥ then PNC

3

(
i, n, c, �V , f

)

else PNC
3

(
i, n, c,update(�V , i, x ), t

)

In Phase 2, the coordinator sends its updated belief to all other processes via
unreliable communication and proceeds. Note that, vi is either ⊥ for all i 	= c
or the best belief identified in Phase 1. If a non-coordinator process successfully
receives a belief other than ⊥, it updates its own belief with the received value
and proceeds to Phase 3, where we use the Boolean value t for the acknowl-
edgement. If the coordinator is suspected to have crashed or ⊥ was received, the
process proceeds to Phase 3 with the Boolean value f, signalling nack.

PC
3

(
c, n, �V

)
�

( ⊙
1≤i≤n,i�=c

s[c, i]?up3〈⊥〉(vi)
)
.PC

4

(
c, n, �V

)

PNC
3

(
i, n, c, �V , b

)
� s[i, c]!up3〈b〉.PNC

4

(
i, n, c, �V

)

In Phase 3, every non-coordinator sends either ack or nack to the coordina-
tor. If the coordinator successfully receives the message, it writes the Boolean
value at the index of the sender into its knowledge vector. In case of fail-
ure, ⊥ is used as default. After that the processes continue with Phase 4. Let
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I = {i | 1 ≤ i ≤ n, i 	= c}.

PC
4

(
c, n, �V

)
� if ack(�V ) ≥

⌈
n − 1

2

⌉
then (if vc = 0 then s[c, I]!wZero.0

else s[c, I]!wOne.0) else s[c, I]!wld

PNC
4

(
i, n, c, �V

)
� s[i, n]?wZero.0 ⊕ One.0 ⊕ ld

In Phase 4 the coordinator checks if at least half of the non-coordinator roles
signalled acknowledgement, utilising the function ack to count. If it received
enough acknowledgements it transmits the decision via Zero or One and causes
all participants to terminate. Otherwise, the coordinator sends the default label
and continues with the next round. Remember that the missing continuation
after the default label ld for coordinators and non-coordinators is implemented
by the next round.

We use a weakly reliable branching mechanism in conjunction with unreliab-
le communication. The algorithm was modelled for systems with crash failures
but without message loss. However, as long as the branching mechanism (i.e.,
the specified broadcast of decisions) is weakly reliable, we can relax the system
requirements for the remainder of the algorithm. To ensure termination, however,
we have to further restrict the number of lost messages.

Failure Patterns. Chandra and Toueg introduce in [10] also the failure detec-
tor ♦S. The failure detector ♦S is called eventually strong, meaning that (1)
eventually every process that crashes is permanently suspected by every correct
process and (2) there is a time after which some correct process is never sus-
pected by any other process. We observe that the suspicion of senders is only
possible in Phase 3, where processes may suspect the coordinator of the round.
Accordingly, the failure pattern FPuskip implements this failure detector to allow
processes to suspect unreliable coordinators in Phase 2, i.e., with label p2. In
Phase 1 and Phase 3 FPuskip may allow to suspect processes that are not crashed
after the coordinator received enough messages. In all other cases these two pat-
terns eventually return true iff the respective sender is crashed. FPuget can be
used to reject outdated messages, since this is not important for this algorithm
we implement it with the constant true. To ensure that messages of wrongly
suspected coordinators in Phase 2 do not block the system, FPml is eventually
true for messages with label p2 that were suspected using ♦S or skipped p1/p3-
messages and otherwise returns false. By the system requirements in [10], no
messages get lost, but it is realistic to assume that receivers can drop messages
of skipped receptions on their incoming message queues. As there are at least
half of the processes required to be correct for this algorithm, we implement
FPcrash by false if only half of the processes are alive and true otherwise. For the
weakly reliable broadcast, FPwskip returns true if and only if the respective coor-
dinator is crashed, i.e., not suspected but indeed crashed. In [10] this broadcast,
which is called just reliable in [10], is used to announce the decision. Since we use
it for branching even before a decision was reached, our implementation is less
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efficient compared to [10]. We briefly discuss in the conclusions how to regain
the original algorithm. These failure patterns satisfy the Condition 1.1–1.6.

Termination, Agreement, and Validity. Following [26,33], a network of processes
solves Consensus if Termination: all non-failing participants eventually decide,
Agreement: all decision values are the same, and Validity: each decision value
is an initial value of some participant. By [18] the Rotating Coordinator algo-
rithm solves Consensus in the presence of crash-failures.

In the proof of termination well-typedness of the implementation and progress
in Theorem 2 are the main ingredients. Well-typedness ensures that the imple-
mentation follows its specification and progress ensures that it cannot get stuck.
Apart from that, we only need to deduce from the system requirements, i.e.,
the used failure detector, that the implementation will eventually exit the loop.
Validity can be checked by analysing the code of a single process and check
whether it uses (to decide and to transmit) only its own initial belief or the
belief it received from others. Session fidelity in Theorem 2 then ensures that
there are no communication mismatches and all steps preserve this property.
Agreement follows from the weakly reliable broadcast, because the decision is
broadcasted.

Theorem 3. The algorithm satisfies termination, validity, and agreement.

7 Conclusions

We present a fault-tolerant variant of MPST for systems that may suffer from
message loss or crash failures. We implemented unreliable communication and
weakly reliable branching. The failure patterns in the semantics allow to ver-
ify algorithms modulo system requirements. We prove subject reduction and
progress and present a small but relevant case study.

An open question is how to conveniently type unreliable recursive parts of
protocols. Distributed algorithms are often recursive and exit this recursion if a
result was successfully computed. We present a first attempt to solve this prob-
lem using a weakly reliable branching. In further research we want to analyse,
whether or in how far branching can be extended to the case of message loss.

Indeed our implementation of the rotating coordinator algorithm is not ideal.
It implements the decision making procedure correctly and also allows processes
to be in different rounds at the same time. So, it represents a non-trivial variant of
the rotating coordinator algorithm. But it does not allow the processes to diverge
in their rounds as freely as the original rotating coordinator algorithm, because
the weakly reliable branching implementation implies that the coordinator has
always to be the first process to leave a round. We can solve this problem by
wrapping each round in an unreliable sub-session (e.g. an unreliable variant of
the sub-sessions introduced in [14,15]). If we allow processes to skip such an
unreliable sub-session altogether, we obtain the intended behaviour.

We considered strongly reliable session delegation. Next we want to study
whether and in how far we can introduce weakly reliable or unreliable session
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delegation. Similarly, we want to study unreliable variants of session initialisation
including process crashes and lost messages during session initialisation.

In Sect. 5 we fix one set of conditions on failure patterns to prove subject
reduction, session fidelity, and progress. We can also think of other sets of condi-
tions. The failure pattern FPuget can be used to reject the reception of outdated
messages. Therefore, we drop Condition 1.2 and instead require for each mes-
sage m whose reception is refused that FPml ensures that m is eventually dropped
from the respective queue and that FPuskip allows to skip the reception of these
messages. An interesting question is to find minimal requirements and minimal
sets of conditions that allow to prove correctness in general.

It would be nice to also fully automate the remaining proofs for the dis-
tributed algorithm in Sect. 6. The approach in [31] sequentialises well-typed sys-
tems and gives the much simpler remaining verification problem to a model
checker. Interestingly, the main challenges to adopt this approach are not the
unreliable or weakly reliable prefixes but the failure patterns.
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20. van Glabbeek, R., Höfner, P., Horne, R.: Assuming just enough fairness to make
session types complete for lock-freedom. In: Proceedings of LICS, pp. 1–13. IEEE
(2021)

21. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Proceedings of POPL, vol. 43, pp. 273–284. ACM (2008). https://doi.org/10.1145/
1328438.1328472

22. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM 63(1) (2016). https://doi.org/10.1145/2827695

23. Kouzapas, D., Gutkovas, R., Gay, S.J.: Session types for broadcasting. In: Pro-
ceedings of PLACES. EPTCS, vol. 155, pp. 25–31 (2014). https://doi.org/10.4204/
EPTCS.155.4
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Abstract. We revisit the problem of reducing incompletely specified
Mealy machines with reactive synthesis in mind. We propose two tech-
niques: the former is inspired by the tool MeMin [1] and solves the mini-
mization problem, the latter is a novel approach derived from simulation-
based reductions but may not guarantee a minimized machine. However,
we argue that it offers a good enough compromise between the size of
the resulting Mealy machine and performance. The proposed methods
are benchmarked against MeMin on a large collection of test cases made
of well-known instances as well as new ones.

1 Introduction

Program synthesis is a well-established formal method: given a logical specifi-
cation of a system, it allows one to automatically generate a provably correct
implementation. It can be applied to reactive controllers (Fig. 1a): circuits that
produce for an input stream of Boolean valuations (here, over Boolean variables
a and b) a matching output stream (here, over x and y).

The techniques used to translate a specification (say, a Linear Time Logic
formula that relates input and output Boolean variables) into a circuit often
rely on automata-theoretic intermediate models such as Mealy machines. These
transducers are labeled graphs whose edges associate input valuations to a choice
of one or more output valuations, as shown in Fig. 1b.

Since Mealy machines with fewer states result in smaller circuits, reducing
and minimizing the size of Mealy machines are well-studied problems [2,12].

However, vague specifications may cause incompletely specified machines: for
some states (i.e., nodes of the graph) and inputs, there may not exist a unique,
explicitly defined output, but a set of valid outputs. Resolving those choices to
a single output (among those allowed) will produce a fully specified machine
that satisfies the initial specification, however those different choices may have
an impact on the minimization of the machine. While minimizing fully specified
machines is efficiently solvable [8], the problem is NP-complete for incompletely
specified machines [14]. Hence, it may also be worth exploring faster algorithms
that seek to reduce the number of states without achieving the optimal result.

Consider Fig. 1b: this machine is incompletely specified, as for instance state
0 allows multiple outputs for input ab (i.e., when both input variables a and b
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Fig. 1. Minimizing a Mealy machine that models a reactive controller

are true) and implicitly allows any output for input āb (i.e., only b is true) as
it isn’t constrained in any way by the specification. We can benefit from this
flexibility in unspecified outputs to help reduce the automaton. For instance if
we constrain state 2 to behave exactly as state 0 for inputs ab and ab̄, then these
two states can be merged. Adding further constraints can lead to the single-state
machine shown in Fig. 1c. These smaller machines are not equivalent, but they
are compatible: for any input stream, they can only produce output streams that
could also have been produced by the original machine.

We properly define Incompletely specified Generalized Mealy Machines in
Sect. 2 and provide a SAT-based minimization algorithm in Sect. 3. Since the
minimization of incompletely specified Mealy machines is desirable but not cru-
cial for reactive synthesis, we propose a faster reduction technique yielding “small
enough” machines in Sect. 4. Finally, in Sect. 5 we benchmark these techniques
against the state-of-the-art tool MeMin [1].

2 Definitions

Given a set of propositions (i.e., Boolean variables) X, let B
X be the set of all

possible valuations on X, and let 2B
X

be its set of subsets. Any element of 2B
X

can be expressed as a Boolean formula over X. The negation of proposition p
is denoted p̄. We use � to denote the Boolean formula that is always true, or
equivalently the set B

X , and assume that X is clear from the context. A cube
is a conjunction of propositions or their negations (i.e., literals). As an example,
given three propositions a, b and c, the cube a ∧ b̄, written ab̄, stands for the set
of all valuations such that a is true and b is false, i.e. {ab̄c, ab̄c̄}. Let KX stand for
the set of all cubes over X. KX contains the cube �, that stands for the set of all
possible valuations over X. Note that any set of valuations can be represented
as a disjunction of disjoint cubes (i.e., not sharing a common valuation).

Definition 1. An Incompletely specified Generalized Mealy Machine (IGMM)
is a tuple M = (I,O,Q, qinit , δ, λ), where I is a set of input propositions, O
a set of output propositions, Q a finite set of states, qinit an initial state,
δ :

(
Q,BI

) → Q a partial transition function, and λ :
(
Q,BI

) → 2B
O \ {∅} an

output function such that λ(q, i) = � when δ(q, i) is undefined. If δ is a total
function, we then say that M is input-complete.
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It is worth noting that the transition function is input-deterministic but
not complete with regards to Q as δ(q, i) could be undefined. Furthermore, the
output function may return many valuations for a given input valuation and
state. This is not an unexpected definition from a reactive synthesis point of
view, as a given specification may yield multiple compatible output valuations
for a given input.

Definition 2 (Semantics of IGMMs). Let M = (I,O,Q, qinit , δ, λ) be an

IGMM. For all u ∈ B
I and q ∈ Q, if δ(q, u) is defined, we write that q

u/v−−→ δ(q, u)
for all v ∈ λ(q, u). Given two infinite sequences of valuations ι = i0 · i1 · i2 · · · ∈
(BI)ω and o = o0 · o1 · o2 · · · ∈ (BO)ω, (ι, o) |= Mq if and only if:

– either there is an infinite sequence of states (qj)j≥0 ∈ Qω such that q = q0

and q0
i0/o0−−−→ q1

i1/o1−−−→ q2
i2/o2−−−→ · · · ;

– or there is a finite sequence of states (qj)0≤j≤k ∈ Qk+1 such that q = q0,

δ(qk, ik) is undefined, and q0
i0/o0−−−→ q1

i1/o1−−−→ · · · qk.

We then say that starting from state q, M produces output o given the input ι.

Note that if δ(qk, ik) is undefined, the machine is allowed to produce an
arbitrary output from then on. Furthermore, given an input word ι, there may
be several output words o such that (ι, o) |= Mq (in accordance with a lax
specification).

As an example, consider the input sequence ι = ab · āb̄ · ab · āb̄ · · · applied
to the initial state 0 of the machine shown in Fig. 1b. We have (ι, o) |= M0 if
and only if for all j ∈ N, o2j ∈ x and o2j+1 ∈ ȳ, where x and ȳ are cubes that
respectively represent {xy, xȳ} and {xȳ, x̄ȳ}.

Definition 3 (Variation and specialization). Let M = (I,O,Q, qinit , δ, λ)
and M ′ = (I,O,Q′, q′

init , δ
′, λ′) be two IGMMs. Given two states q ∈ Q, q′ ∈ Q′,

we say that q′ is a:

– variation of q if ∀ι ∈ (BI)ω,
{
o | (ι, o) |= M ′

q′
} ∩ {o | (ι, o) |= Mq} 	= ∅;

– specialization of q if ∀ι ∈ (BI)ω,
{
o | (ι, o) |= M ′

q′
} ⊆ {o | (ι, o) |= Mq}.

We say that M ′ is a variation (resp. specialization) of M if q′
init is a variation

(resp. specialization) of qinit .

Intuitively, all the input-output pairs accepted by a specialization q′ in M ′

are also accepted by q in M . Therefore, if all the outputs produced by state q in
M comply with the original specification, then so do the outputs produced by
state q′ in M ′. In order for two states to be a variation of one another, for all
possible inputs they must be able to agree on a common output behaviour.

We write q′ ≈ q (resp. q′ � q) if q′ is a variation (resp. specialization) of q.
Note that ≈ is a symmetric but non-transitive relation, while � is transitive (�
is a preorder).

Our goal in this article is to solve the following problems:
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Reducing an IGMM M : finding a specialization of M having at most the
same number of states, preferably fewer.

Minimizing an IGMM M : finding a specialization of M having the least
number of states.

Consider again the IGMM shown in Fig. 1b. The IGMM shown in Fig. 1c is
a specialization of this machine and has a minimal number of states.

Generalizing Inputs and Outputs. Note that the output function of an
IGMM returns a set of valuations, but it can be rewritten equivalently to output
a set of cubes as λ :

(
Q,BI

) → 2K
O

. As an example, consider I = {a} and
O = {x, y, z}; the set of valuations v = {x̄yz, x̄yz̄, xȳz, xȳz̄} ∈ 2B

O

is equivalent
to the set of cubes vc = {x̄y, xȳ} ∈ 2K

O

.
In the literature, a Mealy machine commonly maps a single input valua-

tion to a single output valuation: its output function is therefore of the form
λ :

(
Q,BI

) → B
O. The tool MeMin [1] uses a slight generalization by allowing

a single output cube, hence λ :
(
Q,BI

) → K
O. Thus, unlike our model, neither

the common definition nor the tool MeMin can feature an edge outputting the
aforementioned set v (or equivalently vc), as it cannot be represented by a single
cube or valuation. Our model is therefore strictly more expressive, although it
comes at a price for minimization.

Note that, in practice, edges with identical source state, output valuations,
and destination state can be merged into a single transition labeled by the set
of allowed inputs. Both our tool and MeMin feature this optimization. While it
does not change the expressiveness of the underlying model, this more succinct
representation of the machines does improve the efficiency of the algorithms
detailed in the next section, as they depend on the total number of transitions.

3 SAT-Based Minimization of IGMM

This section builds upon the approach presented by Abel and Reineke [1] for
machines with outputs constrained to cubes, and generalizes it to the IGMM
model (with more expressive outputs).

3.1 General Approach

Definition 4. Given an IGMM M = (I,O,Q, qinit , δ, λ), a variation class C ⊆
Q is a set of states such that all elements are pairwise variations, i.e. ∀q, q′ ∈ C,
q′ ≈ q. For any input i ∈ B

I , we define:

– the successor function Succ(C, i) =
⋃

q∈C {δ(q, i) | δ(q, i) is defined};
– the output function Out(C, i) =

⋂
q∈C λ(q, i).

Intuitively, the successor function returns the set of all states reachable from
a given class under a given input symbol. The output function returns the set
of all shared output valuations between the various states in the class.
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In the remainder of this section we will call a variation class simply a class, as
there is no ambiguity. We consider three important notions concerning classes,
or rather sets thereof, of the form S = {C0, . . . , Cn−1}.

Definition 5 (Cover condition). We say that a set of classes S covers the
machine M if every state of M appears in at least one of the classes.

Definition 6 (Closure condition). We say that a set of classes S is closed
if for all Cj ∈ S and for all inputs i ∈ B

I there exists a Ck ∈ S such that
Succ(Cj , i) ⊆ Ck.

Definition 7 (Nonemptiness condition). We say that a class C has a
nonempty output if Out(C, i) 	= ∅ for all inputs i ∈ B

I .

The astute reader might have observed that the nonempty output condition
is strictly stronger than the condition that all elements in a class have to be
pairwise variations of one another. We will see that this distinction is however
important, as it gives rise to a different set of clauses in the SAT problem,
reducing the total runtime.

Combining these conditions yields the main theorem for this approach. This
extends a similar theorem by Abel and Reineke [1, Thm 1] by adding the
nonemptiness condition to support the more expressive IGMM model.

Theorem 1. Let M = (I,O,Q, qinit , δ, λ) be an IGMM and S = {C0, . . . , Cn−1}
be a minimal (in terms of size) set of classes such that (1) S is closed, (2)
S covers every state of the machine M and (3) each of the classes Cj has a
nonempty output. Then the IGMM M ′ = (I,O, S, q′

init , δ
′, λ′) where:

– q′
init = C for some C ∈ S such that qinit ∈ C;

– δ′(Cj , i) =

{
Ck for some k s.t. Succ(Cj , i) ⊆ Ck if Succ(Cj , i) 	= ∅
undefined else;

– λ′(Cj , i) =

{
Out(Cj , i) if Succ(Cj , i) 	= ∅
� else;

is a specialization of minimal size (in terms of states) of M .

Figure 2a illustrates this construction on an example with a single input
proposition I = {a} (hence two input valuations B

I = {a, ā}), and three output
propositions O = {x, y, z}. To simplify notations, elements of 2B

O

are represented
as Boolean functions (happening to be cubes in this example) rather than sets.

States have been colored to indicate their possible membership to one of the
three variational classes. The SAT solver needs to associate each state to at least
one of them in order to satisfy the cover condition (5), while simultaneously
respecting Conditions (6)–(7). A possible choice would be: C0 = {0}, C1 =
{1, 3, 6}, and C2 = {2, 4, 5}. For this choice, the violet class C0 has only a single
state, so the closure Condition (6) is trivially satisfied. All transitions of the
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Fig. 2. Minimization example (Color figure online)

states in the orange class C1 go to states in C1, also satisfying the condition.
The same can be said of the green class C2.

Finally, we need to check the nonempty output Condition (7). Once again, it
is trivially satisfied for the violet class C0. For the orange and green classes, we
need to compute their respective output. We get Out(C1, a) = z̄, Out(C1, ā) = z,
Out(C2, a) = z̄ and Out(C2, ā) = z. None of the output sets is empty, thus
Condition (7) is satisfied as well. Note that, since the outgoing transitions of
states 4 and 6 are self-loops compatible with all possible output valuations,
another valid choice is: C0 = {0, 4, 6}, C1 = {1, 3, 4, 6}, and C2 = {2, 4, 5, 6}.

The corresponding specialization, constructed as described in Theorem 1, is
shown in Fig. 2b. Note that this machine is input-complete, so the incompleteness
of the specification only stems from the possible choices in the outputs.

3.2 Proposed SAT Encoding

We want to design an algorithm that finds a minimal specialization of a given
IGMM M . To do so, we will use the following approach, starting from n = 1:

– Posit that there are n classes, hence, n states in the minimal machine.
– Design SAT clauses ensuring cover, closure and nonempty outputs.
– Check if the resulting SAT problem is satisfiable.
– If so, construct the minimal machine described in Theorem 1.
– If not, increment n by one and apply the whole process again, unless n =

|Q| − 1, which serves as a proof that the original machine is already minimal.

Encoding the Cover and Closure Conditions. In order to guarantee that
the set of classes S = {C0, . . . , Cn−1} satisfies both the cover and closure condi-
tions and that each class Cj is a variation class, we need two types of literals:

– sq,j should be true if and only if state q belongs to the class Cj ;
– zi,k,j should be true if Succ(Ck, i) ⊆ Cj for i ∈ B

I .

The cover condition, encoded by Equation (1), guarantees that each state
belongs to at least one class.
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∧

q∈Q

∨

0≤j<n

sq,j (1)
∧

0≤j<n

∧

q,q′∈Q
q ≉q′

sq,j ∨ sq′,j (2)

Equation (2) ensures that each class is a variational class: two states q and
q′ that are not variations of each other cannot belong to the same class.

The closure condition must ensure that for every class Ci and every input
symbol i ∈ B

I , there exists at least one class that contains all the successor states:
∀k,∀i,∃j, Succ(Ck, i) ⊆ Cj . This is expressed by the constraints (3) and (4).

∧

0≤k<n

∧

i∈B
I

∨

0≤j<n

zi,k,j (3)
∧

0≤j,k<n

∧

q,q′∈Q,i∈B
I

q′=δ(q,i)

(zi,k,j ∧ sq,k) → sq′,j (4)

The constraint (3) ensures that at least one Cj contains Succ(Ck, i), while (4)
ensures this mapping of classes matches the transitions of M .

Encoding the Nonempty Output Condition. Each class in S being a varia-
tion class is necessary but not sufficient to satisfy the nonempty output condition.
We indeed want to guarantee that for any input i, all states in a given class can
agree on at least one common output valuation.

However it is possible to have three or more states (like 0 a/{xy, xȳ},
1 a/{x̄y, xȳ}, and 2 a/{xy, x̄y}) that are all variations of one another,

but still cannot agree on a common output.
This situation cannot occur in MeMin since their model uses cubes as out-

puts rather than arbitrary sets of valuations as in our model. A useful property
of cubes is that if the pairwise intersections of all cubes in a set are nonempty,
then the intersection of all cubes in the set is necessarily nonempty as well.

Since cubes are not expressive enough for our model, we will therefore gener-
alize the output as discussed earlier in Sect. 2: we represent the arbitrary set of
valuations produced by the output function λ as a set of cubes whose disjunction
yields the original set. For q ∈ Q and i ∈ B

I , we partition the set of valuations
λ(q, i) into cubes, relying on the Minato [11] algorithm, and denote the obtained
set of cubes as CS(λ(q, i)).

Our approach for ensuring that there exists a common output is to search
for disjoint cubes and exclude them from the possible outputs by selectively
deactivating them if necessary; an active cube is a set in which we will be looking
for an output valuation that the whole class can agree on. To express this, we
need two new types of literals:

– ac,q,i should be true iff the particular instance of the cube c ∈ CS(λ(q, i))
used in the output of state q when reading i is active;

– scq,q′ should be true iff ∃Cj ∈ S such that q ∈ Cj and q′ ∈ Cj

The selective deactivation of a cube can then be expressed by the following:
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∧

q,q′∈Q
0≤j<n

(sq,j ∧ sq′,j) → scq,q′ (5)
∧

q∈Q, i∈B
I

δ(q,i) is defined

∨

c∈CS(λ(q,i))

ac,q,i (6)

∧

q,q′∈Q, i∈B
I

δ(q,i) is defined
δ(q′,i) is defined

∧

c∈CS(λ(q,i))
c′∈CS(λ(q′,i))

c∩c′=∅

(ac,q,i ∧ ac′,q′,i) → scq,q′ . (7)

Constraint (5) ensures that scq,q′ is true if there exists a class containing
both q and q′, in accordance with the expected definition.

Constraint (6) guarantees that at least one of the cubes in the output λ(q, i)
is active, causing the restricted output to be nonempty.

Constraint (7) expresses selective deactivation and only needs to be added
for a given q, q′ ∈ Q and i ∈ B

I if δ(q, i) and δ(q′, i) are properly defined.
This formula guarantees that if there exists a class to which q and q′ belong to
(i.e., scq,q′ is true) but there also exist disjoint cubes in the partition of their
respective outputs, then we deactivate at least one of these: only cubes that
intersect can be both activated. Thus, this constraint guarantees the nonempty
output condition.

Since encoding an output set requires a number of cubes exponential in |O|,
the above encoding uses O(|Q|(2|I|+|O| + |Q|) + n2 · 2|I|) variables as well as
O(Q2(n+22|O|)+n2 ·2|I|+|δ|(2|O|+n2)) clauses. We use additional optimizations
to limit the number of clauses, and make the algorithm more practical despite
its frightening theoretical worst case. In particular the CEGAR approach of
Sect. 3.3 strives to avoid introducing constraints (5)–(7).

3.3 Adjustment of Prior Optimizations

Constructing the SAT problem iteratively starting from n = 1 would be grossly
inefficient. We can instead notice that two states that are not variations of each
other can never be in the same class. Thus, assuming we can find k states that
are not pairwise variations of one another, we can infer that we need at least as
many classes as there are states in this set, providing a lower bound for n. This
idea was first introduced in [1]; however, performing a more careful inspection
of the constraints with respect to this “partial solution” allows us to reduce the
number of constraints and literals needed.

The nonemptiness condition involves the creation of many literals and clauses
and necessitates an expensive preprocessing step to decompose the arbitrary out-
put sets returned by output function (λ :

(
Q,BI

) → 2B
O \ {∅}) into disjunctions

of cubes (λ :
(
Q,BI

) → 2K
O \{∅}). We avoid adding unnecessary nonempty out-

put clauses in a counter-example guided fashion. Violation of these conditions
can easily be detected before constructing the minimized machine. If detected, a
small set of these constraints is added to SAT problem excluding this particular
violation. In many cases, this optimization greatly reduces the number of literals
and constraints needed, to the extent we can often avoid their use altogether.
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From now on, we consider an IGMM with N states Q = {q0, q1, . . . , qN−1}.

Variation Matrix. We first need to determine which states are not pairwise
variations of one another in order to extract a partial solution and perform
simplifications on the constraints. We will compute a square matrix of size N×N
called mat such that mat[k][�] = 1 if and only if qk ≉ q� in the following fashion:

1. Initialize all entries of mat to 0.
2. Iterate over all pairs (k, �) with 0 ≤ k < � < N . If the entry mat[k][�] is 0,

check if ∃i ∈ B
I such that λ(qk, i) ∩ λ(ql, i) = ∅. If it exists, mat[k][�] ← 1.

3. For all pairs (k, �) whose associated value mat[k][�] changed from 0 to 1, set
all existing predecessor pairs (m,n) with m < n under the same input to 1
as well, that is, ∃i ∈ B

I such that δ(qm, i) = qk and δ(qn, n) = ql. Note that
we may need to propagate these changes to the predecessors of (m,n).

As “being a variation of” is a symmetric, reflexive relation, we only compute
the elements above the main diagonal of the matrix. The intuition behind this
algorithm is that two states q and q′ are not variations of one another if either:

– There exists an input symbol for which the output sets are disjoint.
– There exists a pair of states which are not variations of one another and that

can be reached from q and q′ under the same input sequence.

The complexity of this algorithm is O(|Q|2·2|I|) if we assume that the disjoint-
ness of the output sets can be checked in constant time; see [1]. This assumption
is not correct in general: testing disjointness for cubes has a complexity linear
in the number of input propositions. On the other hand, testing disjointness for
generalized Mealy machines that use arbitrary sets of valuations has a complex-
ity exponential in the number of input propositions. This increased complexity
is however counterbalanced by the succinctness the use of arbitrary sets allows.

As an example, given 2m output propositions o0, . . . , o2m−1, consider the
set of output valuations expressed as a disjunction of cubes

∨
0≤k<m o2k o2k+1 ∨

o2k o2k+1. Exponentially many disjoint cubes are needed to represent this set.
Thus, a non-deterministic Mealy machine labeled by output cubes will incur an
exponential number of computations performed in linear time, whereas a gener-
alized Mealy machine will only perform a single test with exponential runtime.

Computing a Partial Solution. The partial solution corresponds to a set of
states such that none of them is a variation of any other state in the set. Thus,
none of these states can belong to the same (variation) class. The size of this set
is therefore a lower bound for the number of states in the minimal machine.

Finding the largest partial solution is an NP-hard problem; we therefore use
the greedy heuristic described in [1]. For each state q of M , we count the number
of states q′ such that q is not a variation of q′; call this number nvcq. We then
successively add to the partial solution the states that have the highest nvcq but
are not variations of any state already inserted.

CEGAR Approach to Ensure the Nonempty Output Condition.
Assuming a solution satisfying the cover and closure constraints has already
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Data: a machine M = (I, O, Q, qinit , δ, λ)
Result: a minimal specialization M ′

/* Computing the variation matrix */

bool[][] mat ← isNotVariationOf(M);
/* Looking for a partial solution P */

set P ← extractPartialSol(mat);
clauses ← empty list;
/* Using the lower bound inferred from P */

for n ← |P | to |Q| − 1 do
addCoverCondition(clauses, M , P , mat, n);
addClosureCondition(clauses, M , P , mat, n);
/* Solving the cover and closure conditions */

(sat, solution) ← satSolver(clauses);
while sat do

if verifyNonEmpty(M , solution) then
return buildMachine(M , solution);

/* Adding the relevant nonemptiness clauses */

addNonemptinessCondition(clauses, M , solution);
(sat, solution) ← satSolver(clauses);

/* If no solution has been found, return M */

return copyMachine(M);
Algorithm 1: SAT-based minimization

been found, we then need to check if said solution satisfies the nonempty output
condition. If this is indeed the case, we can then construct and return a minimal
machine.

If the condition is not satisfied, we look for one or more combinations of
classes and input symbols such that Succ(Ck, i) = ∅. We add for the states in
Ck and the input symbol i the constraints described in Sect. 3.2, and for these
states and input symbols only. Then we check if the problem is still satisfiable.

If it is not, then we need to increase the number of classes to find a valid
solution. If it is, the solution either respects Condition (7) and we can return
a minimal machine, or it does not and the process of selectively adding con-
straints is repeated. Either way, this counter-example guided abstraction refine-
ment (CEGAR) scheme ensures termination, as the problem is either shown to
be unsatisfiable or solved through iterative exclusion of all violations of Condi-
tion (7).

3.4 Algorithm

The optimizations described previously yield Algorithm 1.

Further Optimizations and Comparison to MeMin. The proposed algo-
rithm relies on the general approach outline in [1], as well as the SAT encoding
for the cover and closure conditions. We find a partial solution by using a simi-
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lar heuristic and adapt some optimizations found in their source code, which are
neither detailed in their paper nor here due to a lack of space.

The main difference lies in the increased expressiveness of the input and
output symbols that causes some significant changes. In particular, we added
the nonemptiness condition to guarantee correctness, as well as a CEGAR-based
implementation to maintain performance. Other improvements mainly stem from
a better usage of the partial solution.

For instance, each state q of the partial solution is associated to “its own”
class Cj . Since the matching literal sq,j is trivially true, it can be omitted by
replacing all its occurrences by true. States belonging to the partial solution
have other peculiarities that can be leveraged to reduce the number of possible
successor classes, further reducing the amount of literals and clauses needed.

We therefore require fewer literals and clauses, trading a more complex con-
struction of the SAT problem for a reduced memory footprint. The impact of
these improvements is detailed in Sect. 5.

The Mealy machine described by [1] come in two flavors: One with an explicit
initial state and a second one where all states are considered to be possible initial
states. While our approach does explicit an initial state, it does not further
influence the resulting minimal machine when all original states are reachable.

4 Bisimulation with Output Assignment

We introduce in this section another approach tailored to our primary use case,
that is, efficient reduction of control strategies in the context of reactive synthesis.
This technique, based on the � specialization relation, yields non-minimal but
“relatively small” machines at significantly reduced runtimes.

Given two states q and q′ such that q′ � q, one idea is to restrict the possible
outputs of q to match those of q′. Concretely, for all inputs i ∈ B

I , we restrict
λ(q, i) to its subset λ(q′, i); q and q′ thus become bisimilar, allowing us to merge
them. In practice, rather than restricting the output first then reducing bisimilar
states to their quotient, we instead directly build a machine that is minimal with
respect to � where all transitions going to q are redirected to q′.

Note that if two states q and q′ are bisimilar, then necessarily q′ � q and
q � q′: therefore, both states will be merged by our approach. As a consequence,
the resulting machine is always smaller than the bisimulation quotient of the
original machine (as shown in Sect. 5).

4.1 Reducing Machines with �
Our algorithm builds upon the following theorem:

Theorem 2. Let M = (I,O,Q, qinit , δ, λ) be an IGMM, and r : Q → Q be a
mapping satisfying r(q) � q. Define M ′ = (I,O,Q′, q′

init , δ
′, λ) as an IGMM

where Q′ = r(Q), q′
init = r(qinit) and δ′(q, i) = r(δ(q, i)) for all states q and

input i. Then M ′ is a specialization of M .
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Fig. 3. Specialization graph of
the IGMM of Fig. 2a

Fig. 4. Chosen repre-
sentative mapping.

Fig. 5. IGMM obtained by
reducing that of Fig. 2a

Intuitively, if a state q is remapped to a state q′ � q, then the set of words w
that can be output for an input i is simply reduced to a subset of the original
output. The smaller the image r(Q), the more significant the reduction performed
on the machine. Thus, to find a suitable function r, we map each state q to one
of the minimal elements of the � preorder, also called the representative states.

Definition 8 (Specialization graph). A specialization graph of an IGMM
M = (I,O,Q, qinit , δ, λ) is the condensation graph of the directed graph repre-
senting the relation �: the vertices of the specialization graph are sets that form
a partition of Q such that two states q and q′ belong to the same vertex if q � q′

and q′ � q; there is an edge {q1, q2, ...} −→ {q′
1, q

′
2, ...} if and only if q′

i � qj for
some (or equivalently all) i, j. Note that this graph is necessarily acyclic.

Figure 3 shows the specialization graph associated to the machine of Fig. 2a.

Definition 9 (Representative of a state). Given two states q and q′ of an
IGMM, q′ is a representative of q if, in the specialization graph of M , q′ belongs
to a leaf that can be reached from the vertex containing q. In other words, q′ is
a representative of q if q′ � q and q′ is a minimal element of the � preorder.

Note that any state has at least one representative. In Fig. 3 we see that 0
represents 0, 3, 4, and 6. States 3, 4, and 6 can be represented by 0 or 1.

By picking one state in each leaf, we obtain a set of representative states
that cover all states of the IGMM. We then apply Theorem 2 to a function r
that maps each state to its representative in this cover. In Fig. 3, all leaves are
singletons, so the set {0, 1, 2, 5} contains representatives for all states. Applying
Theorem 2 using r from Fig. 4 yields the machine shown in Fig. 5. Note that
while this machine is smaller than the original, it is still bigger than the minimal
machine of Fig. 2b, as this approach does not appraise the variation relation ≈.
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4.2 Implementing �
We now introduce an effective decision procedure for q � q′. Note that � can be
defined recursively like a simulation relation. Assuming, without loss of general-
ity, that the IGMM is input-complete, � is the coarsest relation satisfying:

q′ � q =⇒ ∀i ∈ B
I ,

{
λ(q′, i) ⊆ λ(q, i)
δ(q′, i) � δ(q, i)

As a consequence, � can be decided using any technique that is suitable for
computing simulation relations [6,7]. Our implementation relies on a straight-
forward adaptation of the technique of signatures described by Babiak et al. [4,
Sec. 4.2]: for each state q, we compute its signature sig(q), that is, a Boolean
formula (represented as a BDD) encoding the outgoing transitions of that state
such that sig(q) ⇒ sig(q′) if and only if q�q′. Using these signatures, it becomes
easy to build the specialization graph and derive a remapping function r.

Note that, even if � can be computed like a simulation, we do not use it
to build a bisimulation quotient. The remapping applied in Thorem 2 does not
correspond to the quotient of M by the equivalence relation induced by �.

5 Benchmarks

The two approaches described in Sects. 3 and 4 have been implemented within
Spot 2.10 [5], a toolbox for ω-automata manipulation, and used in our Synt-
Comp’21 submission [15]. The following benchmarks are based on a development
version of Spot1 that features efficient variation checks (verifying whether q≈q′)
thanks to an improved representation of cubes.

We benchmark the two proposed approaches against MeMin, against a sim-
ple bisimulation-based approach, and against one another. The MeMin tool
has already been shown [1] to be superior to existing tools like Bica [13],
Stamina [16], and Cosme [3]; we are not aware of more recent contenders.
For this reason, we only compare our approaches to MeMin.

In a similar manner to Abel and Reineke [1], we use the ISM benchmarks [10]
as well as the MCNC benchmark suite [17]. These benchmarks share a severe
drawback: they only feature very small instances. MeMin is able to solve any of
these instances in less than a second. We therefore extend the set of benchmarks
with our main use-cases: Mealy machines corresponding to control strategies
obtained from SYNTCOMP LTL specifications [9].

As mentioned in Sect. 2, MeMin processes Mealy machines, encoded using
the KISS2 input format [17], whose output can be chosen from a cube. However,
the IGMM formalism we promote allows an arbitrary set of output valuations
instead. This is particularly relevant for the SYNTCOMP benchmark, as the
LTL specifications from which the sample’s Mealy machines are derived often
fail to fully specify the output. In order to (1) show the benefits of the generalized

1 For instructions to reproduce, see https://www.lrde.epita.fr/∼philipp/forte22/.

https://www.lrde.epita.fr/~philipp/forte22/


Effective Reductions of Mealy Machines 127

formalism while (2) still allowing comparisons with MeMin, we prepared two
versions of each SYNTCOMP input: the “full” version features arbitrary sets
of output valuations that cannot be processed by MeMin, while in the “cube”
version said sets have been replaced by the first cube produced by the Minato
algorithm [11] on the original output set. The ACM and MCNC benchmarks, on
the other hand, already use a single output cube in the first place.

Fig. 6. Log-log plot of runtimes. The
legend a/b stands for a cases above
diagonal, and b below.

Fig. 7. Comparison of the number of
literals and clauses in the encodings.

Figure 6 displays a log-log plot comparing our different methods to MeMin,
using only the “cube” instances.2. The label “bisim. w/ o.a.” refers to the app-
roach outlined in Sect. 4, “bisim.”, to a simple bisimulation quotient, and “SAT”,
to the approach of Sect. 3. Points on the black diagonal stand for cases where
MeMin and the method being tested had equal runtime; cases above this line
favor MeMin, while cases below favor the aforementioned methods. Points on
the dotted line at the edges of the figure represent timeouts. Only MeMin fails
this way, on 10 instances. Figure 7 compares the maximal number of literals
and clauses used to perform the SAT-based minimization by MeMin or by our
implementation. These two figures only describe “cube” instances, as MeMin
needs to be able to process the sample machines.

To study the benefits of our IGMM model’s generic outputs, Table 1 com-
pares the relative reduction ratios achieved by the various methods w.r.t. other
methods as well as the original and minimal size of the sample machines. We
use the “full” inputs everywhere with the exception of MeMin.

Interpretation. Reduction via bisimulation solves all instances and has been
proven to be by far the fastest method (Fig. 6), but also the coarsest, with a mere

2 A 30 min timeout was enforced for all instances. The benchmarks were run on an
Asus G14 with a Ryzen 4800HS CPU with 16GB of RAM and no swap.
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Table 1. Statistics about our three reduction algorithms. The leftmost pane counts
the number of instances where algorithm (y) yields a smaller result than algorithm
(x); as an example, bisimulation with output assignment (2) outperforms standard
bisimulation (1) in 249 cases. The middle pane presents mean (avg.) and median (md.)
size ratios relative to the original size and the minimal size of the sample machines.
The rightmost pane presents similar statistics while ignoring all instances that were
already minimal in the first place.

0.94 reduction ratio (Table 1). Bisimulation with output assignment achieves a
better reduction ratio of 0.83, very close to MeMin’s 0.81.

In most cases, the proposed SAT-based approaches remain significantly
slower than approaches based on bisimulation (Fig. 6). Our SAT-based algo-
rithm is sometimes slower than MeMin’s, as the model’s increased expressive-
ness requires a more complex method. However, improving the use of partial
solutions and increasing the expressiveness of the input symbols significantly
reduce the size of the encoding of the intermediate SAT problems featured in
our method (Fig. 7), hence, achieve a lower memory footprint. Points on the
horizontal line at the bottom of Fig. 7 correspond to instances that have already
been proven minimal, since the partial solution is equal to the entire set of states:
in these cases, no further reduction is required.

Finally, the increased expressiveness of our model results in significantly
smaller minimal machines, as shown by the 1.27 reduction ratio of MeMin’s
cube-based machines compared to the minimisation of generic IGMMs derived
from the same specification. There are also 74 cases where this superior expres-
siveness allows the bisimulation with output assignment to beat MeMin.

6 Conclusion

We introduced a generalized model for incompletely specified Mealy machines,
whose output is an arbitrary choice between multiple possible valuations. We
have presented two reduction techniques on this model, and compared them
against the state-of-the-art minimization tool MeMin (where the output choices
are restricted to a cube).
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The first technique is a SAT-based approach inspired by MeMin [1] that
yields a minimal machine. Thanks to this generalized model and an improved
use of the partial solution, we use substantially fewer clauses and literals.

The second technique yields a reduced yet not necessarily minimal machine
by relying on the notion of state specialization. Compared to the SAT-based
approach, this technique offers a good compromise between the time spent per-
forming the reduction, and the actual state-space reduction, especially for the
cases derived from SYNTCOMP from which our initial motivation originated.

Both techniques are implemented in Spot 2.10. They have been used in our
entry to the 2021 Synthesis Competition [15]. Spot comes with Python bindings
that make it possible to experiment with these techniques and compare their
respective effects3.
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Abstract. We demonstrate that traits are a natural way to sup-
port correctness-by-construction (CbC) in an existing programming lan-
guage in the presence of traditional post-hoc verification (PhV). With
Correctness-by-Construction, programs are constructed incrementally
along with a specification that is inherently guaranteed to be satisfied.
CbC is complex to use without specialized tool support, since it needs a
set of refinement rules of fixed granularity which are additional rules on
top of the programming language.

In this work, we propose TraitCbC, an incremental program con-
struction procedure that implements correctness-by-construction on the
basis of PhV by using traits. TraitCbC enables program construction
by trait composition instead of refinement rules. It provides a program-
ming guideline, which similar to CbC should lead to well-structured pro-
grams, and allows flexible reuse of verified program building blocks. We
introduce TraitCbC formally and prove the soundness of our verification
strategy. Additionally, we implement TraitCbC as a proof of concept.

1 Introduction

Correctness-by-Construction (CbC) [19,22,30,37] is a methodology that incre-
mentally constructs correct programs guided by a pre-/postcondition specifica-
tion.1 CbC uses small tractable refinement rules where in each refinement step,
an abstract statement (i.e., a hole in the program) is refined to a more concrete
implementation that can still contain some nested abstract statements. While
1 The approach should not be confused with other CbC approaches such as CbyC of

Hall and Chapman [24]. CbyC is a software development process that uses formal
modeling techniques and analysis for various stages of development (architectural
design, detailed design, code) to detect and eliminate defects as early as possible [13].
We also exclude data refinement from abstract data types to concrete ones during
code generation as for example in Isabelle/HOL [23].
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refining the program, the correctness of the whole program is guaranteed through
the check of conditions in the refinement rules. The construction ends when no
abstract statement is left. Through the structured reasoning discipline that is
enforced by the refinement rules, it is claimed that program quality increases
and verification effort is reduced [30,50].

Despite these benefits, CbC has a drawback: the refinement rules extend the
programming language (i.e., refinements are an additional linguistic construct to
transform programs). Special tool support [42] is necessary to introduce the CbC
refinement process to a programming language. Additionally, the predefined rules
have a fine granularity such that for every new statement the programmer adds
to the program, an application of a refinement rule is necessary. Consequently,
the concepts of CbC (e.g., abstract statements and refinement rules) increase
the effort and necessary knowledge of the developer to construct programs.

Post-hoc verification (PhV) is another approach to develop correct programs.
A method is verified against its pre- and postconditions after implementation. In
practice, it often happens that a program is constructed first, with the objective
of verifying it later [50]. This can lead to tedious verification work if the program
is not well-structured. An example is the difficult search for the many reasons
preventing the verification of a method to be completed: an incorrect specifica-
tion, an incorrect method, or inadequate tool support. Therefore, a structured
programming approach is desirable to construct programs which are amenable
to software verification.

In this work, we use traits [20] to overcome the drawbacks of CbC (com-
plex programming style using external refinement rules) and introduce a pro-
gramming guideline for an incremental trait-based program construction app-
roach that guarantees that the resulting trait-based program is correct-by-
construction. TraitCbC is based on PhV. With TraitCbC, the same programs
can be verified as with PhV, but in addition, TraitCbC introduces an explicit
program construction approach. It utilizes the flexibility of traits, which is ben-
eficial for scenarios as incremental development [18] and the development of
software product lines [10,15].

Traits [20] are a flexible object-oriented language construct supporting a rich
form of modular code reuse orthogonal to inheritance. A trait contains a set
of concrete or abstract methods (i.e., the method has either a body or has no
body), independent of any class or inheritance hierarchy.2 Traits are independent
modules that can be composed into larger traits or classes. When traits are
composed, the resulting code contains all methods of all composed traits. To
verify traits, Damiani et al. [18] proposed a modular and incremental post-hoc
verification process. Each method in every trait is verified in isolation by showing
that the method satisfies its contract [35]. Then, during the composition of traits,
it has to be checked whether a method implemented in one trait is compatible
with the abstract method with the same signature in another trait. That means,

2 The term trait has been used by many programming languages: Java interfaces with
default methods are a good approximation for what has been called trait in the
literature, while Scala traits are mixins [21], and Rust traits are type classes [46].
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a concrete method has to satisfy the specification of the abstract method. A
concrete method with a weaker precondition and a stronger postcondition fulfills
the contract of the abstract method (cf. Liskov substitution principle [34]).

A developer using TraitCbC starts by implementing a method (e.g., a method
a) in a first trait. Similar to CbC, the method can contain holes that are refined
in subsequent steps. A hole in TraitCbC is an abstract method (e.g., an abstract
method b) that is called in method a; that is, a call to an abstract method
corresponds to an abstract statement in CbC. In the next step, one of these new
abstract methods (e.g., b) is implemented in a second trait, again more abstract
methods can be declared for the implementation. Similar to PhV, it must be
proven that the implemented methods satisfy their specifications. Afterwards,
the traits are composed; the composition operation checks that the contract
of the concrete method b in the second trait fulfills the contract of the abstract
method b in the first trait. This incremental process stops when the last abstract
method is implemented, and all traits are composed.

The main result of our work is the discovery that traits intrinsically enable
correctness-by-construction. This work is not about pushing verification forward
in the sense of adding more expressive power. TraitCbC realizes a refinement-
based program development approach using pre-/postcondition contracts and
method calls instead of refinement rules and abstract statements as in CbC.
Refinement rules in the form of trait composition exist as a direct concept of
the programming language instead of being a program transformation concept.
Additionally, each method implemented in the refinement process can be reused
by composing traits in different contexts (i.e., already proven methods can be
called by new methods under construction). This is advantageous compared
to the limited reuse potential of methods in class-based inheritance. Finally,
TraitCbC is parametric w.r.t. the specification logic. Thus, a language with
traits can adopt the proposed CbC methodology.

2 Motivating Example

In this section, we go through an example of how our development process
enables CbC using traits.

Incremental Construction of MaxElement. We use a sample object-oriented lan-
guage in the code examples. We construct a method maxElement that finds the
maximum element in a list of numbers. A list has a head and a tail. Only non-empty
lists have a maximum element. This is explicit in the precondition of our specification,
where we require that the list has at least one element. In the postcondition, we spec-
ify that the result is in the list and larger than or equal to every other element. A
method contains checks that the result is a member of the list. In the first step, we
create a trait MaxETrait1 that defines the abstract method maxElement. The method
maxElement is abstract, i.e., equivalent to an abstract statement in CbC.
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1 trait MaxETrait1 {

2 @Pre: list.size() > 0

3 @Post: list.contains(result) &

4 (forall Num n: list.contains(n) ==> result >= n)

5 abstract Num maxElement(List list);

6 }

In the second step in trait MaxETrait2, we implement the method maxElement using
two abstract methods. We introduce an if-elseif-else-expression where the branches
invoke abstract methods. The guards check whether the list has only one element or
whether the current element is larger than or equal to the maximum of the rest of the
list. The abstract method accessHead returns the current element, and the abstract
method maxTail returns the maximum in the remaining list. So, we recursively search
the list for the largest element by comparing the maximum element of the list tail with
the current element until we reach the end of the list.

1 trait MaxETrait2 {

2 @Pre: list.size() > 0

3 @Post: list.contains(result) &

4 (forall Num n: list.contains(n) ==> result >= n)

5 Num maxElement(List list) =

6 if (list.size() == 1) {accessHead(list)}

7 elseif (accessHead(list) >= maxTail(list))

8 {accessHead(list)}

9 else {maxTail(list)}

10
11 @Pre: list.size() > 0

12 @Post: result == list.element ()

13 abstract Num accessHead(List list);

14
15 @Pre: list.size() > 1

16 @Post: list.tail (). contains(result) &

17 (forall Num n: list.tail (). contains(n) ==> result >= n)

18 abstract Num maxTail(List list);

19 }

The correct implementation of the method maxElement can be guaranteed under
the assumptions that all introduced abstract methods are correctly implemented. Sim-
ilar to PhV, a program verifier conducts a proof of method maxElement and uses the
introduced specifications of the methods accessHead and maxTail. When the proof
succeeds, we know that the first method is correctly implemented. In our incremental
CbCTrait process, we verify each method implementation directly after construction;
and so we are able to reuse each implemented method in the following steps (e.g., by
calling the method in the body of other methods).

We now compose the developed traits to complete the first refinement step. To
perform the composition MaxETrait1 + MaxETrait2, we check that the specification
of the method maxElement fulfills the specification of the abstract method in the first
trait (cf. Liskov substitution principle [34]). In this case, this means checking that:
MaxETrait1.maxElement(..).pre ==> MaxETrait2.maxElement(..).pre as well as:
MaxETrait2.maxElement(..).post ==> MaxETrait1.maxElement(..).post.
When the composition of two verified traits is successful, the result is also a verified
trait. Note that the composed trait does not need to be verified directly by a program
verifier in TraitCbC because it is correct by construction. In this example, the specifi-
cations are the same, thus checking for a successful composition is trivial, but this is
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not generally the case. In particular, the logic needs to take into account ill-founded
specifications and recursion in the specification. We discuss the difficulties of handling
those cases in the technical report [41].

The methods accessHead and maxTail are implemented in the next two refinement
steps in traits MaxETrait3 and MaxETrait43. As we implement a recursive method, the
method maxTail calls the maxElement method, thus maxElement is introduced as an
abstract method in this trait. We have to verify that the method accessHead satisfies
its specification using a program verifier. Similarly, we have to verify the correctness
of the method maxTail.

1 trait MaxETrait3 {

2 @Pre: list.size() > 0

3 @Post: result == list.element ()

4 Num accessHead(List list) = list.element ()

5 }

1 trait MaxETrait4 {

2 @Pre: list.size() > 1

3 @Post: list.tail (). contains(result) &

4 (forall Num n: list.tail (). contains(n) ==> result >= n)

5 Num maxTail(List list) = maxElement(list.tail ())

6
7 @Pre: list.size() > 0

8 @Post: list.contains(result) &

9 (forall Num n: list.contains(n) ==> result >= n)

10 abstract Num maxElement(List list);

11 }

As before, all traits are composed, and it is checked that the specifications of
the concrete methods fulfill the specifications of the abstract ones. As we have no
contradicting specifications for the same methods, the composition is well-formed. The
final program MaxE is as follows.

1 class MaxE = MaxETrait1 + MaxETrait2 + MaxETrait3 + MaxETrait4

Advantages of TraitCbC. As shown in the example, TraitCbC enables the CbC pro-
gramming style without the need of external refinement rules. In classical CbC, when
designing a unit of code, the programmer has to proceed with atomic steps of a pre-
defined granularity. In contrast, in TraitCbC the programmer is free to divide a unit
of code in any granularity, by including as many auxiliary methods as needed to bring
the verification to an appropriate granularity. TraitCbC helps to construct code in
fine-grained steps which are more amenable for verification than single more complex
methods. If the programmer chooses to not include any auxiliary methods at all, this is
essentially the same as the traditional post-hoc verification style. In the example above,
we could implement the method maxElement in one step without the intermediate step
that introduces the two abstract methods accessHead and maxTail.

Additionally, the already proven auxiliary methods in traits can be reused. For
example, if we want to implement a minElement method, we could reuse already
implemented traits to reduce the programming and verification effort. The method
minElement is implemented in the following in trait MinE with one abstract method.

3 The methods could also be implemented in one trait.



136 T. Runge et al.

The specification of the method accessHead is the same as for the method accessHead

above, so MaxETrait3 can be reused. In this example, we show the flexible granular-
ity of TraitCbC by directly implementing the else branch, instead of introducing an
auxiliary method as for maxElement.

1 trait MinE {

2 @Pre: list.size() > 0

3 @Post: list.contains(result) &

4 (forall Num n: list.contains(n) ==> result <= n)

5 Num minElement(List list) =

6 if (list.size() == 1) {accessHead(list)}

7 elseif (accessHead(list) <= minElement(list.tail ()))

8 {accessHead(list)}

9 else {minElement(list.tail ())}

10
11 @Pre: list.size() > 0

12 @Post: result == list.element ()

13 abstract Num accessHead(List list);

14 }

The correctness of minElement is verified with the specifications of the method
accessHead. By composing MinE with MaxETrait3, we get a correct implementation
of minElement. Note how this verification process supports abstraction: as long as the
contracts are compatible, methods can be implemented in different styles by differ-
ent programmers to best meet non-functional requirements while preserving the spec-
ified observable behavior [9]. A completely different implementation of maxElement

can be used if it fulfills the specification of the abstract method maxElement in trait
MaxETrait1. This decoupling of specification and corresponding satisfying implemen-
tations facilitates an incremental development process where a specified code base is
extended with suitable implementations [18].

3 Object-Oriented Trait-Based Language

In this section, we formally introduce the syntax, type system, and flattening semantics
of a minimal core calculus for TraitCbC. We keep this calculus for TraitCbC parametric
in the specification logic so that it can be used with a suitable program verifier and
associated logic. The presented rules to compose traits are conventional. The focus of
our work is to enable a CbC approach using traits that programmers can easily adopt.
Therefore, we present the calculus to prove soundness of TraitCbC, but focus on the
presentation of the advantages of incremental trait-based programming in this paper.
Indeed, languages with traits and with a suitable specification language intrinsically
enable incremental program construction. For the sake of completeness, reduction rules
of TraitCbC are presented in the technical report [41].

3.1 Syntax

The concrete syntax of our core calculus for TraitCbC is shown in Fig. 1, where non-
terminals ending with ‘s’ are implicitly defined as a sequence of non-terminals, i.e.,
vs ::= v1 . . . vn. We use the metavariables t for trait names, C for class names and m
for method names. A program consists of trait and class definitions. Each definition
has a name and a trait expression E . The trait expression can be a Body , a trait name,
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a composition of two trait expressions E , or a trait expression E where a method is
made abstract, written as E[makeAbstract m]. A Body has a flag interface to define
an interface, a set of implemented interfaces Cs and a list of methods Ms. Methods
have a method header MH consisting of a specification S, the return type, a method
name, and a list of parameters. Methods have an optional method body. In the method
body, we have standard expressions, such as variable references, method calls, and
object initializations. For simplicity, we exclude updatable state. Field declarations are
emulated by method declarations, and field accesses are emulated by method calls.

The specification S in each method header is used to verify that methods are
correctly implemented. The specification is written in some logic. In our examples, we
will use first-order logic (cf. the example in Sect. 2). A well-formed program respects
the following conditions:

Every Name in Ds must be unique so that Ds can be seen as a map from names
to trait expressions. Trait expressions E can refer to trait names t. A well-formed Ds
does not have any circular trait definitions like t = t or t1 = t2 and t2 = t1. In a Body ,
all names of implemented interfaces must be unique and all method names must be
unique, so that Body is a map from method names to method definitions. In a method
header, parameters must have unique names, and no explicit parameter can be called
this.

3.2 Typing Rules

In our type system, we have a typing context Γ ::= x1 : C1 . . . xn : Cn which assigns
types Ci to variables xi. We define typing rules for our three kinds of expressions: x,
method calls, and object initialization. We combine typing and verification in our type
checking Γ � e : C � P0 |= P1. This judgment can be read as: under typing context
Γ , the expression e has type C, where under the knowledge P0 we need to prove P1.
The knowledge P0 is our collected information that we use to prove a method correct.
That means, in our typing rules, we collect the knowledge about the parameters and
expressions in a method body to verify that this method body fulfills the specification
defined in the method header. The verification obligation P1 should follow from the
knowledge P0.

We check if methods are well-typed with judgments of form Ds;Name � M : OK .
This judgment can be read as: in the definition table, the method M defined under
the definition Name is correct. The typing rules of Fig. 2 are explained in the technical
report [41] in detail. The first four rules type different expressions and collect the
information of these expressions to prove with rule MOK that a method fulfills its
specification. In the rule MOK with keyword verify, we call a verifier to prove each
method once. Abstract methods (AbsOK) are always correct. Rule BodyOK ensures
that all methods in a body are correctly typed.

3.3 Flattening Semantics

When we implement methods in several traits, we have to check that these traits are
compatible when they are composed. This process to derive a complete class from a
set of traits is called flattening. We follow the traditional flattening semantics [20]. A
class that is defined by composing several traits is obtained by flattening rules. All
methods are direct members of the class [20]. Overall, our flattening process works as



138 T. Runge et al.

Fig. 1. Syntax of the trait system

a big step reduction arrow, where we reduce a trait expression into a well-typed and
verified body.

To introduce our flattening rules in Fig. 3, we first define the helper functions. The
function allMeth collects all method headers with the same name as m in all input
bodies (Definition 1). When two Bodys are composed (Definition 2), the implemented
interfaces are united and the methods are composed. The composition of methods (Def-
inition 3) collects methods that are only defined in one of the input sets. If a method
is in both sets, it is composed (Definition 4). Here, we distinguish four cases. If one
method is abstract and the other is concrete, we have to show that the precondition
of the abstract method implies the precondition of the concrete method. Additionally,
the postcondition of the concrete one has to imply the postcondition of the abstract
one. This is similar to Liskov’s substitution principle [34]. The second case is the sym-
metric variant of the first case. In the third and fourth case, two abstract methods
are composed. Here, the specification of one abstract method has to imply the spec-
ification of the other abstract method such that an implementation can still satisfy
all specifications of abstract methods. If both method are concrete, the composition is
correctly left undefined. This composition error can be resolved by making one method
m abstract in the Body , as defined in Definition 5. The resulting Body is similar with
the difference that the implementation of the method m is omitted. The flattening
rules in Fig. 3 are explained in the following in detail. In these rules, a set of traits
is flattened to a declaration containing all methods. If abstract and concrete methods
with the same name are composed, Definitions 2–4 are used to guarantee correctness
of the composition.

Definition 1 (All Methods). allMeth(m, Bodys) =
{MH ; | Body ∈ Bodys, Body(m) = MH ; }

Definition 2 (Body Composition). Body1 + Body2 = Body
{interface? [Cs1] Ms1} + {interface? [Cs1] Ms1} =
{interface? [Cs1 ∪ Cs2] Ms1 + Ms2}
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Fig. 2. Expression typing rules

Definition 3 (Methods Composition). Ms1 + Ms2 = Ms
• (M Ms1) + Ms2 = M (Ms1 + Ms2)
if methName(M ) /∈ dom(Ms2 )

• (M1 Ms1) + (M2 Ms2) = M1 + M2 (Ms1 + Ms2)
if methName(M1 ) = methName(M2 )

• ∅ + Ms = Ms

Definition 4 (Method Composition). M1 + M2 = M
• S method C m(C1 x1 . . . Cn xn) e; + S′ method C m(C1 . . . Cn );

= S method C m(C1 x1 . . . Cn xn) e;
if Pre(S′) implies Pre(S) and Post(S) implies Post(S′)

• MH 1; + MH 2 e; = MH 2 e; + MH 1;
• S method C m(C1 x1 . . . Cn xn); + S′ method C m(C1 . . . Cn );

= S method C m(C1 x1 . . . Cn xn);
if Pre(S′) implies Pre(S) and Post(S) implies Post(S ′)

• S method C m(C1 x1 . . . Cn xn); + S′ method C m(C1 . . . Cn );
= S′ method C m(C1 x1 . . . Cn xn);
if (Pre(S) implies Pre(S ′) and Post(S ′) implies Post(S))
and not (Pre(S ′) implies Pre(S) and Post(S) impliesPost(S ′))

Definition 5 (Body Abstraction). Body [makeAbstract m]
{[Cs] Ms1 S method C m(Cxs) ; Ms2}[makeAbstract m]
= {[Cs] Ms1 S method C m(Cxs); Ms2}
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Fig. 3. Flattening rules

FlatTop. The first rule flattens a set of declarations D1 . . . Dn to a set D′
1 . . . D′

n.
We express this rule in a non-computational way: we assume to know the resulting
D′

1 . . . D′
n, and we use them as a guide to compute them. Note that if there is a resulting

D′
1 . . . D′

n then it is unique; flattening is a deterministic process and D′
1 . . . D′

n are used
only to type check the results. They are not used to compute the shape of the flattened
code.

Non computational rules like this are common with nominal type systems [27] where
the type signatures of all classes and methods can be extracted before the method
bodies are verified.

DFlat. This rule flattens an individual definition by flattening the trait expression.
When the flattening produces a class definition, we also check that the body denotes an
instantiable class; a class whose only abstract methods are valid getters. The function
abs(Body) returns the abstract methods.

BFlat. It may look surprising that the Body does not flatten to itself. This repre-
sents what happens in most programming languages, where implementing an interface
implicitly imports the abstract signature for all the methods of that interface. In the
context of verification also the specification of such interface methods is imported.
In concrete, Body ′ is like Body , but we add Ms by collecting all the methods of the
interfaces that are not already present in the Body .

Moreover, we check that all the methods defined in the class respect the typing
and the specification defined in the interfaces: if a class has S method Foo foo(); or S
method Foo foo() e; and there is a S′

method Foo foo(); in the interface, then S must
respect the specification S′. The system then checks that the Body is well-typed and
verified by calling Ds; Name � Mi : OK

TFlat. A trait t is flattened to its declaration Ds(t).
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+Flat. The composition of two expression E1 and E2, where both expressions are first
reduced to Body1 and Body2, results in the composition of these bodies as defined in
Definition 2.

AbsFlat. An expression E where one method m is made abstract flattens to a Body ′.
We know that E flattens to Body . The only difference between Body and Body ′ is
that the one method m is abstract in Body ′. In Body , the method can be abstract or
concrete.

3.4 Soundness of the Trait-based CbC Process

In this section, we formulate our main result of the TraitCbC process. We prove sound-
ness of the flattening process with a parametric logic. The proofs of the lemmas and
theorems are in the technical report [41]. We claim that if you have a language without
code reuse and with sound and modular PhV verification then the language supports
CbC simply by adding traits to the language. That is, traits intrinsically enable a CbC
program construction process.

To prove soundness of the refinement process of TraitCbC (Theorem 2: Sound CbC
Process) as exemplified in Sect. 2, we have to show that the flattening process is correct
(Theorem 1: General Soundness). In turn, to prove General Soundness, we need two
lemmas which state that the composition of traits is correct (Lemma 1) and that a
trait after the makeAbstract operation is still correct (Lemma 2).

In Lemma 1, we have well-typed definitions Ds, and two well-typed and verified
traits in Ds, and the resulting trait/class is also well-typed and verified.

Lemma 1 (Composition correct).
If Ds(t1) = Body1, Ds(t2) = Body2, Ds(Name) = Body, Ds; t1 � Body1 : OK,
Ds; t2 � Body2 : OK, and Body1 + Body2 = Body,
then Ds;Name � Body : OK

Lemma 2 shows that if we have a well-typed and verified trait, the operation
makeAbstract results in a trait/class that is also well-typed and verified.

Lemma 2 (MakeAbstract correct).
If Ds(t) = Body, Ds(Name) = Body ′, Ds; t � Body : OK,

and Body [makeAbstract m] = Body ′,
then Ds;Name � Body ′ : OK

With these Lemmas, we can prove Theorem 1. Given a sound and modular verifica-
tion language, then all programs that flatten are well-typed and verified. In a modular
verification language, a method can be fully verified using only the information con-
tained in the method declaration and the specification of any used method. Moreover,
our parametric logic must support at least a commutative and associative and (but
of course other ways to merge knowledge could work too) and a transitive implication
(but of course other forms of logical consequence could work too).

Theorem 1 (General Soundness).
For all programs Ds where Ds flattens to Ds ′, and Ds ′ is well-typed;
that is, forall Name = Body ∈ Ds ′, we have Ds ′; Name � Body : OK.

We now show that the TraitCbC process is sound. Theorem 2 states that starting
with one abstract method and a set of verified traits, the composed program is also
verified.



142 T. Runge et al.

Theorem 2 (Sound CbC Process).
Starting from a fully abstract specification t0, and some refinement steps t1 . . . tn, we
can write C = t0 + · · · + tn as our whole CbC refinement process; where t0 + t1 is the
application of the first refinement step. If we use CbC to construct programs, we can
start from verified atomic units and get a verified result. Formally, if t0 = {MH } t1 =
{Ms1} . . . tn = {Msn} are well-typed, and
t0 = {MH } t0 = {MH }
t1 = {Ms1} . . . tn = {Msn} ⇓ t1 = {Ms1} . . . tn = {Msn}
C = t0 + · · · + tn C = Body
then C = Body is well-typed.

Proof. This is a special case of Theorem 1.

Theorem 2 shows clearly that trait composition intrinsically enables a CbC refine-
ment process: A object-oriented programming language with traits and a corresponding
specification language supports an incremental CbC approach.

Table 1. Comparison of TraitCbC with classical CbC

Classic CbC TraitCbC

Language Additional rules for a
programming language.

Programming language with
traits. Needs specification
language.

Tool
support

Pen and paper. Some specialized
tools available.

Relies on prevalent PhV
verification tools.

Construction
Rules

Specific refinement rules. Refinement by composition of
traits.

Debugging Guarantees the correctness of
each refinement step. Only
refinements without abstract
statement are directly verified.

Guarantees the correctness of
each refinement step. Each
method is specified such that
each refinement can directly be
verified.

Proof
complexity

Many, but small proofs . Any granularity of proofs.

Reuse Refinement steps cannot be
reused; only fully implemented
methods can.

Each verified method in a trait
can be reused.

Applications Focuses on small but
correctness-critical algorithms.

As TraitCbC is based on PhV,
it can be used in areas of PhV.
Additionally, traits are
beneficial for incremental
development approaches and
development of software product
lines.
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4 Trait-Based Correctness-by-Construction
in Comparison to Classical CbC

In this section, we discuss the benefits of TraitCbC in comparison to classical CbC. To
do this, we describe classical CbC first.

Classical correctness-by-construction (CbC) [19,30,37] is an incremental approach
to construct programs. CbC uses a Hoare triple specification {P} S {Q} stating that if
the precondition P holds, and the statement S is executed, then the statement termi-
nates and postcondition Q holds. The CbC refinement process starts with a Hoare triple
where the statement S is abstract. This abstract statement can be seen as a hole in the
program that needs to be filled. With a set of refinement rules, an abstract statement
is replaced by more concrete statements (i.e., statements in the guarded command lan-
guage [19] that can contain further abstract statements). The process stops, when all
abstract statements are refined to concrete statements so that no holes remain in the
program. As each refinement rule is sound and each correct application of a refinement
rule guarantees to satisfy the starting Hoare triple, the resulting program is correct-
by-construction [30]. The CbC process is strictly tied to a set of predefined refinement
rules. A programmer cannot deviate from this concept. To apply a refinement rule, it
has to be checked that conditions of the rule application are satisfied. This is done by
pen-and-paper or with specialized tools [42].

In Table 1, we compare TraitCbC and classical CbC:

Language. The classical CbC approach is external to a programming language. It needs
the definition of refinement rules. TraitCbC is usable with languages that have traits,
a specification language, and a corresponding verification framework. In this work, we
focus on object-orientation, but the general TraitCbC programming guideline presented
in this paper is also suitable for functional programming environments using abstract
and concrete functions with specifications instead of traits and methods.

Tool Support. To use one of the approaches, tool support is desired. For classical CbC,
mostly pen and paper is used. There are a few specialized tools such as CorC [42],
tool support for ArcAngel [38], and SOCOS [4,5]. These tools force a certain program-
ming procedure on the user. This procedure can be in conflict with their preferred
programming style. For TraitCbC, tools for post-hoc verification can be reused. There
are tools for many languages such as Java [3], C [16], C# [7,8]. Other languages are
integrated with their verifier from the start, e.g., Spec# [8] and Dafny [32]. TraitCbC
as presented in this paper is a core calculus, designed to show the feasibility of the
concept. We believe that scaling up TraitCbC to a complete programming language
reusing existing verification techniques would be feasible and would result in a similarly
expressive verification process, but supporting more flexible program composition. In
Sect. 5, we show how a prototype can be constructed by using the KeY verifier [3].

Construction Rules. To construct a program, classical CbC has a strict concept of refine-
ment rules. A programmer cannot deviate from the granularity of the rules. In contrast,
PhV does not give a mandatory guideline how to construct programs. TraitCbC is a
bridge between both extremes. Programs can be constructed stepwise as with classical
CbC, but if desired, any number of refinement steps can be condensed up to PhV based
programming.

Debugging. If errors occur in the development process, TraitCbC gives early and
detailed information. By specifying the method under development and any abstract
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method that is called by this method, we can directly verify the correctness of the
method under development. We assume that the introduced abstract methods will be
correctly implemented in further refinement steps. With each step, the programmer
gets closer to the solution until finally all abstract methods are implemented. Classi-
cal CbC relies on the same process, but here the abstract statements (similar to our
abstract methods) are not explicitly specified by the programmer. Additional specifi-
cations in classical CbC are introduced only with some rules such as an intermediate
condition in the composition rule. Then, these specifications are propagated through
the program to be constructed. When arriving at a leaf in the refinement process, the
correctness of the statement can be guaranteed. The problem in classical CbC is that
all refinement steps where abstract statements occur cannot be verified directly. In the
worst case, a wrong specification is found only after a few refinement steps.

Proof Complexity. TraitCbC can have the same granularity and also the same proof
effort as classical CbC, since each method implementation can correspond to just one
refinement step. The advantage of TraitCbC is that programmers can freely implement
a method body. They must not stick to the same granularity as in the classical CbC
refinement rules. As in PhV, they can implement a complete method in one step. The
programmer can balance proof complexity against verifier calls.

Reuse. If we want to reuse developed methods or refinement steps, the approaches
differ. In classical CbC, no refinement steps can be reused. A fully refined method can
be reused in both approaches. For TraitCbC, we can easily reuse even very small units
of code, since they are represented as methods in the traits.

Applications. The classical CbC approach does not scale well to development proce-
dures for complete software system. Rather, individual algorithms can be developed
with CbC [50]. As soon as we scale TraitCbC to real languages, we have the same appli-
cation scenarios as PhV. As argued by Damiani et al. [18] traits enable an incremental
process of specifying and verifying software. Bettini et al. [10] proposed to use traits
for software product line development and highlighted the benefits of fine-grained reuse
mechanisms. Here, TraitCbC’s guideline is suitable for constructing new product lines
step by step from the beginning.

Summary. In summary, TraitCbC bridges the gap between PhV and CbC. It enables a
CbC process for trait-based languages without introducing refinement rules. The con-
crete realization of specifying and verifying methods is similar to PhV, but additionally
to PhV, TraitCbC provides an incremental development process. This development pro-
cess combined with the flexibility of traits allows correct methods to be developed in
small and reusable steps. Moreover, we have introduced a core calculus and proved
that the construction and composition of trait-based programs is correct.

5 Proof-of-Concept Implementation

In this section, we describe the implementation, which instantiates TraitCbC in Java
with JML [31] as specification language and KeY [3] as verifier for Java code. Our
trait implementation is based on interfaces with default implementation. Our open
source tool is implemented in Java and integrated as plug-in in the Eclipse IDE.4

4 Tool and evaluation at https://github.com/TUBS-ISF/CorC/tree/TraitCbC.

https://github.com/TUBS-ISF/CorC/tree/TraitCbC
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Besides this prototype, other languages with a suitable verifier, such as Dafny [32] and
OpenJML [17], can also be used to implement TraitCbC.

In Listing 1, we show the concrete syntax. Each method in a trait is specified with
JML with the keywords requires and ensures for the pre- and postcondition. To verify
the correctness of programs, we need two steps. First, we verify the correctness of a
method implemented in a trait w.r.t. its specification. Second, for trait composition,
our implementation checks the correct composition for all methods (cf. Definition 2).
It is verified that the specification of a concrete method satisfies the specification of
the abstract one with the same signature (cf. Definition 4). These verification goals
are sent to KeY, which starts an automatic verification attempt. The syntax of trait
composition is shown in line 24. In a separate tc-file, the name of the resulting trait is
given and the composed traits are connected with a plus operator.

1 public interface MaxElement1 {

2 /*@ requires list.size() > 0;

3 @ ensures (\forall int n; list.contains(n);

4 @ \result >= n) & list.contains(\result );

5 @*/

6 public default int maxElement(List list) {

7 if (list.size() == 1) return accessHead(list);

8 if (list.element () >= maxElement(list.tail ()))

9 { return accessHead(list) }

10 else { return maxTail(list) } }

11
12 /*@ requires list.size() > 0;

13 @ ensures \result == list.element ();

14 @*/

15 public int accessHead(List list);

16
17 /*@ requires list.size() > 1;

18 @ ensures (\forall int n; list.tail (). contains(n);

19 @ \result >= n) & list.tail (). contains(\result );

20 @*/

21 public int maxTail(List list);

22 }

23
24 ComposedMax = MaxElement1 + MaxElement2

Listing 1. Example in our implementation

Evaluation. We evaluate our implementation by a feasibility study. First, we reim-
plemented an already verified case study in our trait-based language. We used the
IntList [43] case study, which is a small software product line (SPL) with a common
code base and several features extending this code base. Here, we can show that our
trait-based language also facilitates reuse. The IntList case study implements func-
tionality to insert integers to a list in the base version. Extensions are the sorting of
the list and different insert options (e.g., front /back). We implement five methods
that exists in different variants with our trait-based CbC approach. We implement
the case study in different granularities. The coarse-grained version is similar to the
SPL implementation we started with [43], confirming that traits are also amenable to
implement SPLs as shown by Bettini et al. [10]. The fine-grained version implements
the five methods incrementally with 12 refinement steps. We can reuse 6 of these steps
during the construction of method variants.
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We also implement three more case studies BankAccount [48], Email [25], and
Elevator [39] with TraitCbC and CbC to show that it is feasible to implement object-
oriented programs with both approaches. We used CorC [42] as an instance of a CbC
tool. We were able to implement nine classes and verify 34 methods with a size of 1–20
lines of code. For future work, a user study is necessary to evaluate the usability of
TraitCbC in comparison to CbC to confirm our stated advantages.

6 Related Work

Traits are introduced in many languages to support clean design and reuse, for example
Smalltalk [20], Java [12] by utilizing default methods in interfaces, and other Java-
like languages [11,33,45]. The trait language TraitRecordJ was extended to support
post-hoc verification of traits [18]. The authors added specifications of methods in
traits for the verification of correct trait composition and proposed a modular and
incremental verification process. None of these trait languages were used to formulate
a refinement process to create correct programs. They only focus on code reuse or
post-hoc verification.

Automatic verification is widely used for different programming languages. The
object-oriented language Eiffel focuses on design-by-contract [35,36]. All methods in
classes are specified with pre-/postconditions and invariants for verification purposes.
The tool AutoProof [29,49] is used to verify the correctness of implemented methods.
It translates methods to logic formulas, and an SMT solver proves the correctness. For
C#, programs written in the similar language Spec# [8] are verified with Boogie. That
is, code and specification are translated to an intermediate language and verified [7].
For C, the tool VCC [16] reuses the Spec# tool chain to verify programs. The tool
VeriFast [28] is able to verify C and Java programs specified in separation logic. For
Java, KeY [3] and OpenJML [17] verify programs specified with JML. TraitCbC is
parametric in the specification language, meaning that a trait-based language with a
specification language and a corresponding program verifier can be used to instantiate
TraitCbC. In our implementation, we use KeY [3] to prove the correctness of methods
and trait composition.

Event-B [1] is a related correctness-by-construction approach. In Event-B,
automata-based systems are specified and refined to a concrete implementation. Event-
B is implemented in the Rodin platform [2]. In comparison to CbC by Kourie and
Watson [30] as used in this paper, Event-B works on a different abstraction level with
automata-based systems instead of program code. The CbC approaches of Back et
al. [6] and Morgan [37] are also related. Back et al. [6] start with explicit invariants
and pre-/postconditions to refine an abstract program to a concrete implementation,
while Kourie and Watson only start with a pre-/postcondition specification. These
refinement approaches use specific refinement rules to construct programs which are
external to the programming language. With TraitCbC, we propose a refinement pro-
cedure that is part of the language by using trait composition.

Abstract execution [47] verifies the correctness of methods with abstract, but for-
mally specified expressions. Abstract Execution is similar to our refinement procedure
where abstract methods are called in methods under construction. The difference is
that abstract execution extends a programming language to use any expression in the
abstract part, not only method calls. Therefore, abstract execution can better rea-
son about irregular termination (e.g., break/continue) of methods. In comparison to



Traits: Correctness-by-Construction for Free 147

TraitCbC, abstract execution is a verification-centric approach without a guideline on
how to construct programs.

Synthesis of function summaries is also related [14,26,44]. Here, verification tools
automatically synthesize pre-/postconditions from functions to achieve modular ver-
ification and speed up the verification time. In comparison, TraitCbC is a complete
software development approach where specification and code are developed simulta-
neously by a developer to achieve a correct solution. Function summaries are just a
verification technique.

7 Conclusion

In this work, we present TraitCbC that guides programmers to correct implementa-
tions. In comparison to classical CbC, TraitCbC uses method calls and trait composi-
tion instead of refinement rules to guarantee functional correctness. We formalize the
concept of a trait-based object-oriented language where the specification language is
parametric to allow a broader range of languages to adopt this concept. The main
advantage of TraitCbC is the simplicity of the refinement process that supports code
and proof reuse.

As future work, we want to investigate how TraitCbC can be used to construct
software product lines. As proposed by Bettini et al. [10], trait languages are able to
implement SPLs. We want to extend the guideline of TraitCbC to construct SPLs with
a refinement-based procedure that guarantees the correctness of the whole SPL. To
reduce specification effort in TraitCbC, inheritance of traits is useful. Another option is
to integrate the concept of Rebêlo et al. [40] which supports the design-by-contract app-
roach with AspectJML and integrates crosscutting contract modularization to reduce
redundant specifications.

Since TraitCbC is parametric in the specification logic, TraitCbC’s soundness only
holds if such logic is consistent when composed in the presented manner. In particular,
the logic needs to take into account ill-founded specifications and non-terminating
recursion. In verification, ill-founded specifications and termination issues are often
considered as a second step5, separately from the verification of individual methods, and
our prototype still does not yet take care of this second step. That means that methods
are verified under the assumption that all other methods respect their contracts. If ill-
founded specifications and non-terminating recursion are handled naively, verification
might be unsound because of ill-founded reasoning. The technical report [41] shows
that this problem is even more pervasive in the case of trait composition or any other
form of multiple inheritance: naive composition of correct traits may produce incorrect
results.
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Abstract. Quantum based systems are a relatively new research area
for that different modelling languages including process calculi are cur-
rently under development. Encodings are often used to compare process
calculi. Quality criteria are used then to rule out trivial or meaningless
encodings. In this new context of quantum based systems, it is necessary
to analyse the applicability of these quality criteria and to potentially
extend or adapt them. As a first step, we test the suitability of classical
criteria for encodings between quantum based languages and discuss new
criteria.

Concretely, we present an encoding, from a sublanguage of CQP
into qCCS. We show that this encoding satisfies compositionality, name
invariance (for channel and qubit names), operational correspondence,
divergence reflection, success sensitiveness, and that it preserves the size
of quantum registers. Then we show that there is no encoding from qCCS
into CQP (or its sublanguage) that is compositional, operationally cor-
responding, and success sensitive.

Keywords: Process calculi · Quantum based systems · Encodings

1 Introduction

The technological progress turns quantum based systems from theoretical models
to hopefully soon practicable realisations. This progress inspired research on
quantum algorithms and protocols. These algorithms and protocols in turn call
for verification methods that can deal with the new quantum based setting.

Among the various tools for such verifications, also several process calculi
for quantum based systems are developed [4,5,8,18]. To compare the expres-
sive power and suitability for different application areas, encodings have been
widely used for classical, i.e., not quantum based, systems. To rule out trivial or
meaningless encodings, they are required to satisfy quality criteria. In this new
context of quantum based systems, we have to analyse the applicability of these
quality criteria and potentially extend or adapt them.

Therefore, we start by considering a well-known framework of quality crite-
ria introduced by Gorla in [6] for the classical setting. As a case study we want
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to compare Communicating Quantum Processes (CQP) introduced in [5] and
the Algebra of Quantum Processes (qCCS) introduced in [18]. These two pro-
cess calculi are particularly interesting, because they model quantum registers
and the behaviour of quantum based systems in fundamentally different ways.
CQP considers closed systems, where qubits are manipulated by unitary trans-
formations and the behaviour is expressed by a probabilistic transition system.
In contrast, qCCS focuses on open systems and super-operators. Moreover, the
transition system of qCCS is non-probabilistic. (Unitary transformations and
super-operators are discussed in the next section).

Unfortunately, the languages also differ in classical aspects: CQP has pi-
calculus-like name passing but the CCS based qCCS does not allow to transfer
names; qCCS has operators for choice and recursion but CQP in [5] has not.
Therefore, comparing the languages directly would yield negative results in both
directions, that do not depend on their treatment of qubits. To avoid these obvi-
ous negative results and to concentrate on the treatment of qubits, we consider
CQP−, a sublanguage of CQP that removes name passing and simplifies the
syntax/semantics, but as we claim does treat qubits in the same way as CQP.

We then show that there exists an encoding from CQP− into qCCS that
satisfies the quality criteria of Gorla and thereby that the treatment of qubits
in qCCS is strong enough to emulate the treatment of qubits in CQP−. We also
show that the opposite direction is more difficult, even if we restrict the classical
operators in qCCS. In fact, the counterexample that we use to prove the non-
existence of an encoding considers the treatment of qubits only, i.e., relies on the
application of a specific super-operator that has no unitary equivalent.

These two results show that the quality criteria can still be applied in the
context of quantum based systems and are still meaningful in this setting. They
may, however, not be exhaustive. Therefore, we discuss directions of additional
quality criteria that might be relevant for quantum based systems.

Our encoding satisfies compositionality, name invariance w.r.t. channel names
and qubit names, strong operational correspondence, divergence reflection, suc-
cess sensitiveness, and that the encoding preserves the size of quantum registers.
We also show that there is no encoding from qCCS into CQP that satisfies
compositionality, operational correspondence, and success sensitiveness.

Summary. We need a number of preliminaries: Quantum based systems are
briefly discussed in Sect. 2, the considered process calculi are introduced in Sect.
3, and Sect. 4 presents the quality criteria of Gorla. Section 5 introduces the
encoding from CQP− into qCCS and comments on its correctness. The negative
result from qCCS into CQP is presented in Sect. 6. In Sect. 7 we discuss direc-
tions for criteria specific to quantum based systems. We conclude in Sect. 8. The
missing proofs are provided by a technical report in [17].

2 Quantum Based Systems

We briefly introduce the aspects of quantum based systems, which are needed
for the rest of the paper. For more details, we refer to the books by Nielsen and
Chuang [10], Gruska [7], and Rieffel and Polak [16].
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A quantum bit or qubit is a physical system which has the two base states
|0〉, |1〉. These states correspond to one-bit classical values. The general state
of a quantum system is a superposition or linear combination of base states,
concretely |ψ〉 = α|0〉 + β|1〉. Thereby, α and β are complex numbers such that
|α|2 + |β|2 = 1, e.g. |0〉 = 1|0〉 + 0|1〉. Further, a state can be represented by

column vectors |ψ〉 =
(

α
β

)
= α|0〉 + β|1〉, which sometimes for readability will

be written in the format (α, β)T . The vector space of these vectors is a Hilbert
space and is denoted by H. We consider finite-dimensional and countably infinite-
dimensional Hilbert spaces, where the latter are treated as tensor products of
countably infinitely many finite-dimensional Hilbert spaces.

The basis {|0〉, |1〉} is called standard basis or computational basis, but
sometimes there are other orthonormal bases of interest, especially the diag-
onal or Hadamard basis consisting of the vectors |+〉 = 1√

2
(|0〉 + |1〉) and

|−〉 = 1√
2
(|0〉 − |1〉). We assume the standard basis in the following.

The evolution of a closed quantum system can be described by unitary trans-
formations [10]. A unitary transformation U is represented by a complex-valued
matrix such that the effect of U onto a state of a qubit is calculated by matrix
multiplication. It holds that U†U = I, where U† is the adjoint of U and I is the
identity matrix. Thereby, I is one of the Pauli matrices together with X , Y, and
Z. Another important unitary transformation is the Hadamard transformation
H, as it creates the superpositions H|0〉 = |+〉 and H|1〉 = |−〉.

I =
(

1 0
0 1

)
X =

(
0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)
H =

1√
2

(
1 1
1 −1

)

Another key feature of quantum computing is the measurement. Measuring a
qubit q in state |ψ〉 = α|0〉 + β|1〉 results in 0 (leaving it in |0〉) with probability
|α|2 and in 1 (leaving it in |1〉) with probability |β|2.

By combining qubits, we create multi-qubit systems. Therefore the spaces
U and V with bases {u0, . . . , ui, . . .} and {v0, . . . , vj , . . .} are joined using the
tensor product into one space U ⊗ V with basis {u0 ⊗ v0, . . . , ui ⊗ vj , . . .}. So a
system consisting of n qubits has a 2n-dimensional space with standard bases
|00 . . . 0〉 . . . |11 . . . 1〉. Within these systems we can measure a single or multiple
qubits. Unitary transformations can be performed on single or several qubits.

The multi-qubit systems can exhibit entanglement, meaning that states of
qubits are correlated, e.g. 1√

2
(|00〉 + |11〉). A measurement of the first qubit in

the computational basis results in 0 (leaving the state |00〉) with probability 1
2

and in 1 (leaving the state |11〉) with probability 1
2 . In both cases a subsequent

measurement of the second qubit in the same basis gives the same result as
the first measurement with probability 1. The effect also occurs if the entangled
qubits are physically separated. Because of this, states with entangled qubits
cannot be written as a tensor product of single-qubit states.

States of quantum systems can also be described by density matrices. In
contrast to the vector description of states, density matrices allow to describe
the states of open systems. We further discuss density matrices in Sect. 3.2.
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3 Process Calculi

Assume two countably-infinite sets N of names and V of qubit variables. Let
τ /∈ V∪N . The semantics of a process calculus is given as a structural operational
semantics consisting of inference rules defined on the operators of the language
[14]. Thereby, a (reduction) step, written as C �−→ C ′, is a single application
of the reduction semantics where C ′ is called derivative. Let C �−→ denote the
existence of a step from C. We write C �−→ω if C has an infinite sequence of
steps and �=⇒ to denote the reflexive and transitive closure of �−→.

To reason about environments of terms, we use functions on process terms
called contexts. More precisely, a context C([·]1, . . . , [·]n) : Pn → P with n holes
is a function from n terms into one term, i.e., given P1, . . . , Pn ∈ P, the term
C(P1, . . . , Pn) is the result of inserting P1, . . . , Pn in the corresponding order into
the n holes of C.

We use {y/x} to denote the capture avoiding substitution of x by y on
either names or qubits. The definition of substitution on names in the respective
calculi is standard. Substitutions on qubits additionally have to be bijective, i.e.,
cannot translate different qubits to the same qubit, since this might violate the
no-cloning principle. More on substitutions of qubits can be found, e.g., in [18].
We equate terms and configurations modulo alpha conversion on (qubit) names.

For the last criterion of [6] in Sect. 4, we need a special constant �, called
success(ful termination), in both considered languages. Therefore, we add � to
the grammars of both languages without explicitly mentioning them. Success
is used as a barb, where P↓� if P has an unguarded occurrence of � and
P⇓� = ∃P ′. P �=⇒ P ′ ∧ P ′↓�, to implement some form of (fair) testing.

3.1 Communicating Quantum Processes

Communicating Quantum Processes (CQP) is introduced in [5]. We need a sub-
language CQP− of CQP without name passing. We simplify the definition of
CQP by removing contexts, the additional layer on expressions in the syntax and
semantics, do not allow to construct channel names from expressions (though
we allow to use the values obtained by measurement as channel names), and by
using a monadic version of communication in that only qubits can be transmit-
ted. CQP− is a strictly less expressive sublanguage of CQP. We claim, however
that the treatment of qubits, in particular the manipulations of the quantum
register as well as the communication of qubits, is the same as in CQP.

Definition 1 (CQP−). The CQP− terms, denoted by PC , are given by:

P ::= 0 | P | P | c?[x].P | c![q].P | {q̃ ∗= U}.P

| (x := measure q̃).P | (new x)P | (qbit x)P

CQP− configurations CC are given by (σ;φ;P ) or �0≤i<2rpi • (σi;φ;P{i/x}),
where σ, σi have the form q0, . . . , qn−1 = |ψ〉 with |ψ〉 =

∑2n−1
i=0 αi|ψi〉, r ≤ n, φ

is the list of channels in the system, and P ∈ PC .
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Fig. 1. Semantics of CQP−

The syntax of CQP− is pi-calculus like. It adds the term {q̃ ∗= U}.P to
apply the unitary transformation U to the qubits in sequence q̃ and the term
(qbit x)P to create a fresh qubit qn (for σ = q0, . . . , qn−1) which then proceeds as
P{qn/x}. The process (x := measure q̃).P measures the qubits in q̃ with |q̃| > 0
and saves the result in x. The configuration �0≤i<2rpi • Ci denotes a probabil-
ity distribution over configurations Ci = (σi;φ;P{i/x}), where

∑
i pi = 1 and

where the terms within the configurations Ci may differ only by instantiating
channel name x by i. It results from measuring the first r qubits, where pi is
the probability of obtaining result i from measuring the qubits q0, . . . , qr−1 and
Ci is the configuration of case i after the measurement. We may also write a
distribution as p1 • C1 � . . . � pj • Cj with j = 2r − 1. We equate (σ0;φ;P ) and
�0≤i<201 • (σi;φ;P{i/x}), i.e., if |q̃| = 0 then we assume that x is not free in P .
We naturally extend the definition of contexts to configurations, i.e., consider
also contexts C([·]1, . . . , [·]n) : Pn → C.

The variable x is bound in P by c?[x].P , (x := measure q̃).P , (new x)P , and
(qbit x)P . A variable is free if it is not bound. Let fq(P ) and fc(P ) denote the
sets of free qubits and free channels in P .

The state σ is represented by a list of qubits q0, . . . , qn−1 as well as a lin-
ear combination |ψ〉 =

∑2n−1
i=0 αi|ψi〉 which can also be rewritten by a vector

(α0, α1, . . . , α2n−1)T . As done in [5], we sometimes write as an abbreviated form
σ = q0, . . . , qn−1 or σ = |ψ〉.

The semantics of CQP− is defined by the reduction rules in Fig. 1. Rule (R-
MeasureCQP ) measures the first r qubits of σ, where σ = α0|ψ0〉 + · · · +
α2n−1|ψ2n−1〉, σ′

m =
αlm√
pm

|ψlm〉+· · ·+ αum√
pm

|ψum
〉, lm = 2n−rm, um = 2n−r(m+

1) − 1, and pm = |αlm |2 + · · · + |αum
|2. As a result a probability distribution

over the possible base vectors is generated, where σ′
m is the accordingly updated
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qubit vector. Rule (R-TransCQP ) applies the unitary operator U on the first r
qubits. In contrast to [5], we explicitly list in the subscript of I the qubits it is
applied to. As the rules (R-MeasureCQP ) and (R-TransCQP ) operate on the
first r qubits within σ, Rule (R-PermCQP ) allows to permute the qubits in σ.
Thereby, π is a permutation and

∏
is the corresponding unitary operator.

The Rule (R-ProbCQP ) reduces a probability distribution with r > 0 to a
single of its configurations (σj ;φ;P{j/x}) with non-zero probability pj . The
rules (R-NewCQP ) and (R-QbitCQP ) create new channels and qubits and
update the list of channel names or the qubit vector. Thereby, a new qubit
is initialised to |0〉 and |ψ〉⊗ |0〉 is reshaped into a

(
2n+1

)
-vector. The remaining

rules are standard pi-calculus rules and also structural congruence ≡ is standard.
We inherit the type system from [5]. It ensures that two parallel components

cannot share qubits, which is the realisation of the no-cloning property of qubits.
To illustrate this type system, we present the rules for parallel composition,
input, and output from [5]:

(T-Par)
Γ1 � P Γ2 � Q

Γ1 + Γ2 � P | Q
(T-In)

Γ � x : [̂T̃ ] Γ, ỹ : T̃ � P

Γ � x?[ỹ : T̃ ].P

(T-Out)
Γ � x : [̂T̃ , Q̃bit] ∀i. Ti �= Qbit ∀i. Γ � yi : Ti zi distinct Γ � P

Γ, z̃ : Q̃bit � x![ỹ, z̃].P

Rule (T-Par) ensures that parallel components cannot share qubits, where
Γ1 + Γ2 implies that Γ1 and Γ2 do not share assignments for the same qubit.
Rule (T-In) adds the types of the received values and qubits to the type environ-
ment for the continuation P such that P can use the received qubits. Therefore,
Rule (T-Out) removes the transmitted qubits from the type environment of the
continuation such that these qubits can no longer be used by the continuation.
For the remaining rules of the type system we refer to [5]. These rules straight-
forwardly implement the idea that parallel components cannot share qubits. To
adapt this type system to CQP− it suffices to adapt the multiplicity in com-
munication to the monadic case, where the message is always of type Qbit for
qubits.

As an example for a CQP− configuration and the application of the rules
in Fig. 1 consider Example 1. This example contains an implementation of the
quantum teleportation protocol as given in [1]. The quantum teleportation proto-
col is a procedure for transmitting a quantum state via a non-quantum medium.
This protocol is particularly important: not only is it a fundamental component
of several more complex protocols, but it is likely to be a key enabling technology
for the development of the quantum repeaters [15] which will be necessary in
large-scale quantum communication networks.
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Example 1. Consider the CQP−-configuration S

S =
(

q0, q1, q2 =
1√
2
|100〉 +

1√
2
|111〉; ∅;System (0, 1, 2, 3, q0, q1, q2)

)
where

System (0, 1, 2, 3, q0, q1, q2) =
(new 0)(new 1)(new 2)(new 3)(Alice (q0, q1, 0, 1, 2, 3) | Bob (q2, 0, 1, 2, 3))

Alice (q0, q1, 0, 1, 2, 3) =
{q0, q1 ∗= CNOT}.{q0 ∗= H}.(x := measure q0, q1).x![a].0

Bob (q2, 0, 1, 2, 3) = (0?[y].{q2 ∗= I}.�) | (1?[y].{q2 ∗= X}.�) |
(2?[y].{q2 ∗= Z}.�) | (3?[y].{q2 ∗= Y}.�)

Alice and Bob each possess one qubit (q1 for Alice and q2 for Bob) of an entangled
pair in state 1√

2
|00〉+ 1√

2
|11〉. q0 is the second qubit owned by Alice. Within this

example it is in state |0〉, but in general it can be in an arbitrary state. It is the
qubit whose state will be teleported to q2 and therefore to Bob.

By Fig. 1, S can do the following steps

S �−→4(|ψ0〉; 0, 1, 2, 3; (Alice (q0, 0, 1, 2, 3, q2) | Bob (q1, 0, 1, 2, 3)))
�−→(|ψ1〉; 0, 1, 2, 3; ({q0 ∗= H}.(x := measure q0, q1).x![a].0 |

Bob (q2, 0, 1, 2, 3)))
�−→(|ψ2〉; 0, 1, 2, 3; ((x := measure q0, q1).x![a].0 | Bob (q2, 0, 1, 2, 3)))

�−→1
4

• (q0, q1, q2 = |001〉; 0, 1, 2, 3; (0![a].0 | Bob (q2, 0, 1, 2, 3)))�
1
4

• (q0, q1, q2 = |010〉; 0, 1, 2, 3; (1![a].0 | Bob (q2, 0, 1, 2, 3)))�
1
4

• (q0, q1, q2 = |101〉; 0, 1, 2, 3; (2![a].0 | Bob (q2, 0, 1, 2, 3)))�
1
4

• (q0, q1, q2 = |110〉; 0, 1, 2, 3; (3![a].0 | Bob (q2, 0, 1, 2, 3))) = S∗,

with |ψ0〉 = q0, q1, q2 = 1√
2
|100〉+ 1√

2
|111〉, |ψ1〉 = q0, q1, q2 = 1√

2
|110〉+ 1√

2
|101〉,

and |ψ2〉 = q0, q1, q2 = 1
2 |001〉 + 1

2 |010〉 − 1
2 |101〉 − 1

2 |110〉.
All configurations within the probability distribution in S∗ have the same

probability. We can e.g. choose the first one by using Rule (R-ProbCQP ).

S∗ �−→(q0, q1, q2 = |001〉; 0, 1, 2, 3; (0![a].0 | (0?[y].{q2 ∗= I}.�) |
(1?[y].{q2 ∗= X}.�) | (2?[y].{q2 ∗= Z}.�) | (3?[y].{q2 ∗= Y}.�)))

�−→(q0, q1, q2 = |001〉; 0, 1, 2, 3; (0 | ({q2 ∗= I}.�) |
(1?[y].{q2 ∗= X}.�) | (2?[y].{q2 ∗= Z}.�) | (3?[y].{q2 ∗= Y}.�)))

�−→(q0, q1, q2 = |001〉; 0, 1, 2, 3; (0 | � |
(1?[y].{q2 ∗= X}.�) | (2?[y].{q2 ∗= Z}.�) | (3?[y].{q2 ∗= Y}.�))) ��
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3.2 An Algebra of Quantum Processes

The algebra of quantum processes (qCCS) is introduced in [3,18] as a process
calculus for quantum based systems. As qCCS is designed to model open systems,
its states are described by density matrices or operators. A density operator in a
Hilbert space H is a linear operator ρ on it, such that |ψ〉†ρ|ψ〉 ≥ 0 for all |ψ〉 and
tr(ρ) = 1, where tr(ρ) is the sum of elements on the main diagonal of the matrix ρ.
A positive operator ρ is called a partial density operator if tr(ρ) ≤ 1. By slightly
abusing notation, we use V to denote the current set of qubit names of a given
density matrix ρ. We write D(H) for the set of partial density operators on H.
Every density matrix can be represented as

∑
i pi|ψi〉〈ψi|, i.e., by an ensemble of

pure states |ψi〉 with their probabilities pi ≥ 0. Accordingly, the density matrix
of a pure state |ψ〉 is |ψ〉〈ψ|.

The dynamics of open quantum systems cannot be described solely by unitary
transformations. Instead super-operators are used. Unitary transformations as
well as measurement can be transformed to super-operators on density matrices.
We illustrate this with the Hadamard transformation and measurement.

Example 2. Let X ⊆ V. The super-operator that represents the Hadamard trans-
formation on X is denoted as H[X], where its application to ρ is defined as
HX(ρ) = (H ⊗ IV−X) · ρ · (H ⊗ IV−X)†.

The super-operator to measure the qubits in X with the result of mea-
surement unknown is denoted as M[X]. Its application to ρ is defined as
MX(ρ) =

∑
m(Pm ⊗ IV−X)ρ(Pm ⊗ IV−X)†, where Pm is the outer product

of m as a base vector.
The super-operator to measure the qubits in X with the expected result i is

denoted as Ei[X]. Its application to ρ is defined as Ei,X(ρ) = (Pi ⊗ IV−X)ρ(Pi ⊗
IV−X)†. If X is empty, then Ei[X] is the identity operator IV . ��
Super-operators that go beyond the expressive power of unitary transformations
are e.g. the super-operators that are used to model the noise in quantum com-
munication. Intuitively, noise is a form of partial entanglement with an unkown
environment. Note that, as in CQP, the channels that are used to transfer qubit-
systems in qCCS, are modelled as noise-free channels, i.e., noise has to be added
explicitly by respective super-operators as discussed in [18].

Definition 2 (Super-Operator). Let X ⊆ V. A super-operator E [X] on a
Hilbert space H is a linear operator E (from the space of linear operators on
H into itself) which is defined as EX = E ⊗ IV−X and therefore EX(ρ) =
(E ⊗ IV−X) · ρ · (E ⊗ IV−X)†. Further, E is required to be completely positive
and satisfies tr(EX(ρ)) ≤ tr(ρ). For any extra Hilbert space HR, (IR ⊗ E) (A) is
positive provided A is a positive operator on HR ⊗ H, where IR is the identity
operation on HR.

The syntax of qCCS adds an operator to standard CCS to apply super-
operators and a standard conditional, where P is executed if b is true. Further,
it alters the communication prefixes such that only qubits can be transmitted
via standard channels [3,18].
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Fig. 2. Semantics of qCCS

Definition 3 (qCCS). The qCCS terms, denoted by Pq, are given by:

P :: = A(q̃) | nil | τ.P | E [X].P | c?x.P | c!q.P
| P + P | P ‖ P | P \ L | if b then P

The qCCS configurations Cq are given by 〈P, ρ〉, where P ∈ Pq and ρ ∈ D(H).

The variable x is bound in P by c?x.P and the channels in L are bound in
P by P \ L. A variable/channel is free if it is not bound. Let fc(P ) and fq(P )
denote the sets of free channels and free qubits in P , respectively. For each
process constant scheme A, a defining equation A(x̃)

def
= P with P ∈ Pq and

fq(P ) ⊆ x̃ is assumed. As done in [18], we require the following two conditions:

c!q.P ∈ PqCCS implies q /∈ fq(P ) (Cond1)

P ‖ Q ∈ PqCCS implies fq(P ) ∩ fq(Q) = ∅ (Cond2)

These conditions ensure the no-cloning principle of qubits within qCCS.
The semantics of qCCS is defined by the inference rules given in Fig. 2.

We start with a labelled variant of the semantics from [18] and then add the
Rule (CloseqCCS) to obtain a reduction semantics. We omit the symmetric
forms of the rules (ChoiceqCCS), (IntlqCCS), and (CommqCCS). Let cn(α)
return the possibly empty set of channels in the label α.

Rule (OperqCCS) implements the application of a super-operator. It updates
the state of the configuration as defined in Definition 2. To simplify the definition
of a reduction semantics, we use (in contrast to [18]) the label τ .

Rule (InputqCCS) ensures that the received qubits are fresh in the continua-
tion of the input. The rules (IntlqCCS) and (IntrqCCS) forbid to receive qubits
within parallel contexts that do posses this qubit. Rule (ResqCCS) allows to do
a step under a restriction. The other rules are self-explanatory.
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4 Encodings and Quality Criteria

Let LS = 〈CS, �−→S〉 and LT = 〈CT, �−→T〉 be two process calculi, denoted as
source and target language. An encoding from LS into LT is a function �·� : CS →
CT. We often use S, S′, . . . and T, T ′, . . . to range over CS and CT, respectively.

To analyse the quality of encodings and to rule out trivial or meaningless
encodings, they are augmented with a set of quality criteria. In order to pro-
vide a general framework, Gorla in [6] suggests five criteria well suited for lan-
guage comparison. We start with these criteria for classical systems, which are
described in more detail in [17].

Definition 4 (Quality Criteria, [6]). The encoding �·� is good, if it is

compositional: For every operator op with arity n of LS and for every sub-
set of names N , there exists a context CN

op([·]1, . . . , [·]n) such that, for all
S1, . . . , Sn with fv(S1) ∪ . . . ∪ fv(Sn) = N , it holds that �op (S1, . . . , Sn)� =
CN
op(�S1�, . . . , �Sn�).

name invariant: For every S ∈ CS and every substitution γ on names, it holds
that �Sγ� = �S�γ.

operational corresponding w.r.t. �:

Complete: For all S �=⇒ S′, there is T such that �S� �=⇒ T and �S′
� � T .

Sound: For all �S� �=⇒ T , there is S′, T ′ such that S �=⇒ S′, T �=⇒ T ′,
and �S′

� � T ′.
divergence reflecting: For every S, �S� �−→ω implies S �−→ω.
success sensitive: For every S, S⇓� iff �S�⇓�.

We use here a stricter variant of name invariance compared to [6], since
we translate names by themselves in our encoding. Operational correspondence
consists of a soundness and a completeness condition. Completeness requires
that every computation of a source term can be emulated by its translation.
Soundness requires that every computation of a target term corresponds to some
computation of the corresponding source term.

Note that a behavioural relation � on the target is assumed for operational
correspondence. Moreover, � needs to be success sensitive, i.e., T1 � T2 implies
T1⇓� iff T2⇓�. As discussed in [12], we pair operational correspondence as of [6]
with correspondence simulation.

Definition 5 (Correspondence Simulation, [12]). A relation R is a (weak)
labelled correspondence simulation if for each (T1, T2) ∈ R:

– For all T1
α−−→ T ′

1, there exists T ′
2 such that T2

α−−→ T ′
2 and (T ′

1, T
′
2) ∈ R.

– For all T2
α−−→ T ′

2, there exists T ′′
1 , T ′′

2 such that T1 �=⇒ α−−→ T ′′
1 , T ′

2 �=⇒ T ′′
2 ,

and (T ′′
1 , T ′′

2 ) ∈ R.
– T1⇓� iff T2⇓�.

T1 and T2 are correspondence similar, denoted as T1 � T2, if a correspondence
simulation relates them.
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There are several other criteria for classical systems that we could have con-
sidered (cf. [11]). Since CQP− is a typed language, we may consider a criterion
for types as discussed e.g. in [9]. As only one language is typed, it suffices to
require that the encoding is defined for all terms of the source language. We could
also consider a criterion for the preservation of distributability as discussed e.g.
in [13], since distribution and communication between distributed locations is of
interest. Indeed our encoding satisfies this criterion, because it translates the par-
allel operator homomorphically. However, already the basic framework of Gorla,
on that we rely here, suffices to observe principal design principles of quantum
based systems as we discuss with the no-cloning property in Sect. 7.

5 Encoding Quantum Based Systems

Our encoding, from well-typed CQP− configurations into qCCS-configurations
that satisfy the conditions Cond1 and Cond2, is given by Definition 6.

Definition 6 (Encoding �·� from CQP−into qCCS).
�(σ;φ;P )� = 〈�P � \ φ, ρσ〉
��0≤i<2rpi • (σi;φ;P{i/x})� = 〈D(q0, . . . , qr−1;x; �P �) \ φ, ρ�〉
�0� = nil
�P | Q� = �P � ‖ �Q�

�c?[x].P � = c?x.�P �

�c![q].P � = c!q.�P �

�{q̃ ∗= U}.P � = U [q̃].�P �

�(x := measure q̃).P � = M[q̃].D(q̃;x; �P �)
�(new x)P � = τ.(�P � \ {x})
�(qbit x)P � = E|0〉[V].

(
�P �{q|V|/x}

)
��� = �

where ρσ = |ψ〉〈ψ| for σ = |ψ〉, ρ� =
∑

i pi|ψi〉〈ψi| for σi = |ψi〉,

D(q̃;x;Q) = if tr(E0[q̃]) �= 0 then E0[q̃].Q{0/x} + . . . +

if tr(E2|q̃|−1[q̃]) �= 0 then E2|q̃|−1[q̃].Q{2|q̃| − 1/x},

E|0〉[V] adds a new qubit q|V| initialised with 0 to the current state ρ, M is mea-
surement with the result unkown, and the super-operator Ei[Y ] is measurement
of Y with the expected result i.

The translation of configurations maps the vector σ to the density matrix ρσ

(obtained by the outer product) and restricts all names in φ to the translation of
the sub-term. In the translation of probability distributions, the state ρ� is the
sum of the density matrices obtained from the σi multiplied with their respective
probability. Again, the names in φ are restricted in the translation. The nonde-
terminism in choosing one of the possible branches of the probability distribu-
tion in CQP− by (R-ProbCQP ) is translated into the qCCS-choice D(q̃;x; �P �)
with q̃ = q0, . . . , qr−1, where each case is guarded by a conditional which checks
whether the result of measurement is not zero, i.e., whether the respective case
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occurs with a non-zero probability, followed by a super-operator that adjusts
the state to the respective result of measurement. Note that, the translation of
a configuration (σ;φ;P ) is a special case of the second line with an additional
step to resolve the conditional, since |ψ〉〈ψ| =

∑
1|ψ〉〈ψ|, r = 0 implies that

q̃ = q0, . . . , qr−1 is empty, and thus D(q̃;x; �P �) = if tr(I[V]) �= 0 then I[V].�P �.
An encoding example using such a qCCS-choice is given in Example 5.

The application of unitary transformations and the creation of new qubits
are translated to the corresponding super-operators. Measurement is translated
into the super-operator for measurement with unkown result followed by the
choice D(q̃;x; �P �) over the branches of the possible outcomes of measurement,
i.e., after the first measurement the translation is similar to the translation of a
probability distribution in the second case. Note that we combine two kinds of
measurement in this translation. The outer measurement w.r.t. an unkown result
dissolves entanglement on the measured qubits and ensures that the density
matrix after this first measurement is the sum of the density matrices of the
respective cases in the distribution (compare with ρ� and Example 3). The
measurements w.r.t. 0 ≤ i < 2r within D(q̃;x; �P �) then check whether the
respective case i occurs with non-zero probability and adjust the density matrix
to this result of measurement if case i is picked. The creation of new channel
names is translated to restriction, where a τ -guard simulates the step that is
necessary in CQP− to create a new channel. The restriction ensures that this
new name cannot be confused with any other translated source term name. Since
in the derivative of a source term step creating a new channel the new channel
is added to φ in the configuration, we restrict all channels in φ. The remaining
translations are homomorphic.

Example 3. Consider S = (σ;φ; (x := measure q0).P ), where σ = q0, q1 =
1√
2
|00〉 + 1√

2
|11〉 = |ψ〉 consists of two entangled qubits. By Fig. 1, S �−→ S′ =

1
2 • (σ = q0, q1 = |00〉;φ;P{0/x}) � 1

2 • (σ = q0, q1 = |11〉;φ;P{1/x}). By Defi-
nition 6, �S� = 〈(M[q0].D(q0;x; �P �)) \ φ, ρ〉 with ρ = |ψ〉〈ψ|. By Fig. 2, then
�S� �−→ T = 〈D(q0;x; �P �) \ φ,Mq0(ρ)〉. Accordingly, the probability distribu-
tion in S′ is mapped on a choice in T . The outer measurement M[q0] resolves the
entanglement and yields a density matrix that is the sum of the density matrices
of the choice branches, i.e., Mq0(ρ) = (|0〉〈0| ⊗ Iq1)ρ(|0〉〈0| ⊗ Iq1)

† + (|1〉〈1| ⊗
Iq1)ρ(|1〉〈1| ⊗ Iq1)

†. ��

By analysing the encoding function, we observe that for all source terms the
type system of CQP− ensures that their literal translation satisfies the condi-
tions Cond1 and Cond2. Hence, the encoding is defined on all source terms.

Corollary 1. For all S ∈ CC the term �S� is defined.

Considering Fig. 1, we observe that in CQP− we have to permute the matrix
σ, in order to apply unitary transformations or measure qubits in the middle
of σ. Such permutations are not necessary in qCCS. More precisely, since these
steps only reorder qubits in σ, they do not change the state of the translated
system modulo correspondence simulation.
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Lemma 1. If S �−→ S′ is by (R-PermCQP ), then �S� � �S′
� and �S′

� � �S�.

In the literature, operational correspondence is often considered w.r.t. a
bisimulation on the target; simply because bisimilarity is a standard behavioural
equivalence in process calculi, whereas correspondence simulation is not. For our
encoding, we cannot use bisimilarity.

Example 4. Consider S = (σ; ∅; (x := measure q).P | Q), where S is a 1-qubit
system with σ = q = |+〉 and P,Q ∈ PC with fc(P ) ⊆ {x} and fc(Q) = ∅. By
the rules (R-MeasureCQP ) and (R-ParCQP ) of Fig. 1,

S �−→ S′ =
1
2

• (σ = q = |0〉; ∅;P{0/x} | Q) � 1
2

• (σ = q = |1〉; ∅;P{1/x} | Q),

i.e., (R-ParCQP ) pulls the parallel component Q into the probability distribu-
tion that results from measuring q. Since our encoding is compositional—and
indeed we require compositionality, the translation �S� behaves slightly differ-
ently. By Definition 6, �S� = 〈M[q].D(q;x; �P �) ‖ �Q�, ρ〉, where D(q;x; �P �) =
if tr(E0[q]) �= 0 then E0[q].�P �{0/x} + if tr(E1[q]) �= 0 then E1[q].�P �{1/x} and
ρ = |+〉〈+|, and �S′

� = 〈D(q;x; �P � ‖ �Q�), ρ′〉 with ρ′ = 1
2 |0〉〈0| + 1

2 |1〉〈1|. By
Fig. 2, �S� �−→ T = 〈D(q;x; �P �) ‖ �Q�, ρ′〉, because Mq(ρ) = ρ′. Unfortunately,
�S′

� and T are not bisimilar. As a counterexample consider P = x![q].0 and
Q = (new y)0?[z].�. The problem is, that a step on �Q� in �S′

� forces us to
immediately pick a case and resolve the choice, whereas after performing the
same step on �Q� in T all cases of the choice remain available. After emulat-
ing the first step of �Q� in �S′

�, either we reach a configuration that has to
reach success eventually or we reach a configuration that cannot reach success;
whereas there is just one way to do the respective step in T and in the resulting
configuration success may or may not be reached depending on the next step.
Fortunately, �S′

� and T are correspondence similar. ��
We also present the translation of the quantum teleportation protocol in

Example 1.

Example 5. By Definition 6

�S� = 〈(τ.(τ.(τ.(P ) \ 3) \ 2) \ 1) \ 0, ρ0〉, where
P = �Alice (q0, q1, 0, 1, 2, 3)� ‖ �Bob (q2, 0, 1, 2, 3)�,
�Alice (q0, q1, 0, 1, 2, 3)� = CNOT[q0, q1].H[q0].M[q0, q1].D(q0, q1;x;x!a.nil),
�Bob (q2, 0, 1, 2, 3)� =

(0?y.I[q2].�) ‖ (1?y.X [q2].�) ‖ (2?y.Z[q2].�) ‖ (3?y.Y[q2].�) , and
ρ0 = |ψ0〉〈ψ0|.

By Fig. 2, �S� can do the following steps

�S� �−→4 〈((((P ) \ 3) \ 2) \ 1) \ 0, ρ0〉
�−→ 〈(H[q0].M[q0, q1].D(q0, q1;x;x!a.nil)) ‖ �Bob (q2, 0, 1, 2, 3)�, ρ1〉
�−→ 〈(M[q0, q1].D(q0, q1;x;x!a.nil)) ‖ �Bob (q2, 0, 1, 2, 3)�, ρ2〉
�−→ 〈D(q0, q1;x;x!a.nil) ‖ �Bob (q2, 0, 1, 2, 3)�, ρ3〉 = T ∗,
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with ρ1 = CNOT q0,q1(ρ0), ρ2 = Hq0(ρ1), ρ3 = Mq0,q1(ρ2), and where the qCCS-
choice D(q0, q1;x;x!a.nil) is given by

D(q0, q1;x;x!a.nil) = if tr(E0[q0, q1]) �= 0 then E0[q0, q1]. ((x!a.nil) {0/x}) +
if tr(E1[q0, q1]) �= 0 then E1[q0, q1]. ((x!a.nil) {1/x}) +
if tr(E2[q0, q1]) �= 0 then E2[q0, q1]. ((x!a.nil) {2/x}) +
if tr(E3[q0, q1]) �= 0 then E3[q0, q1]. ((x!a.nil) {3/x}) .

To emulate the behaviour of S we choose again the first branch within
D(q0, q1;x;x!a.nil).

T ∗ �−→〈(0!a.nil) ‖ �Bob (q2, 0, 1, 2, 3)�, ρ4〉
�−→〈nil ‖ (I[q2].�) ‖ (1?y.X [q2].�) ‖ (2?y.Z[q2].�) ‖ (3?y.Y[q2].�) , ρ4〉
�−→〈nil ‖ � ‖ (1?y.X [q2].�) ‖ (2?y.Z[q2].�) ‖ (3?y.Y[q2].�) , ρ4〉,

with ρ4 = E0,q0,q1(ρ3). ��
Except for permutation, a source term step is translated by the encoding �·�

into exactly one target term step. In the other direction, every target term step
is translated by exactly one source term step possibly surrounded by two steps
on (R-PermCQP ) to permute qubits and put them back in the original order.
From that, we obtain operational correspondence. Compositionality holds by
definition and name invariance is trivially satisfied, because names are translated
by themselves and the encoding does not use names for any other purpose.
Divergence reflection results from operational soundness, since all source term
steps are translated to a finite number of target term steps. Finally, operational
correspondence and the homomorphic translation of success ensure that �·� is
success sensitive. With that, �·� satisfies all the criteria that we discussed in
Sect. 4. The corresponding proofs can be found in [17].

Theorem 1. The encoding �·� is good.

By [12], Theorem 1 implies that there is a correspondence simulation that
relates source terms S and their literal translations �S�. To refer to a more stan-
dard equivalence, this also implies that S and �S� are coupled similar (for the
relevance of coupled similarity see e.g. [2]). Proving operational correspondence
w.r.t. a bisimulation would not significantly tighten the connection between the
source and the target. To really tighten the connection such that S and �S�

are bisimilar, we need a stricter variant of operational correspondence and for
that a more direct translation of probability distributions to avoid the problem
discussed in Example 4. Indeed [3] introduces probability distributions to qCCS
and a corresponding alternative of measurement that allows to translate this
operator homomorphically. However, in this study we are more concerned about
the quality criteria. Hence using them to compare languages that treat qubits
fundamentally differently is more interesting here. Moreover, to tighten the con-
nection we would need a probabilistic version of operational correspondence and
accordingly a probabilistic version of bisimulation. We leave the study of these
probabilistic versions for future research.
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6 Separating Quantum Based Systems

Since super-operators are more expressive than unitary transformations, an
encoding from qCCS into CQP is more difficult.

Example 6. Consider the super-operator Qq(ρ) =
(

1 0
0

√
1 + p

)
ρ

(
1 0
0

√
1 + p

)
−(

0
√

p
0 0

)
ρ

(
0 0√
p 0

)
where p is a probability. With p = 1 we obtain Qq(ρ) =(

ρ00 − ρ11
√

2ρ01√
2ρ10 2ρ11

)
that sometimes behaves as identity, i.e., Qq(|0〉〈0|) = |0〉〈0|,

and sometimes changes the qubit, e.g. Qq(|1〉〈1|) =
(

−1 0
0 2

)
, Qq(|+〉〈+|) =(

0
√
2
2√

2
2 1

)
, and Qq(|−〉〈−|) =

(
0 −

√
2
2

−
√
2
2 1

)
. To observe this strange behaviour

of Q[q], we measure the resulting qubit using the qCCS-configuration

Sce(ρ) = 〈Q[q].if tr(E0[q]) �= 0 then τ.� + if tr(E1[q]) �= 0 then τ.nil, ρ〉

for the 1-qubit system ρ = q, where the choice allows to unguard success if 0
can be measured. We observe that Sce(|0〉〈0|) must reach success, Sce(|1〉〈1|) may
but not must reach success, and Sce(|+〉〈+|) as well as Sce(|−〉〈−|) cannot reach
success. ��

An encoding from qCCS into CQP needs to emulate the behaviour of Q[q],
which is inspired by an operator used for amplitude-damping (see e.g. [10]). Since
there is no unitary transformation with this behaviour and also measurement or
additional qubits do not help to emulate this behaviour on the state of the qubit
(see the proof of Theorem 2), there is no encoding from qCCS into CQP that
satisfies compositionality, operational correspondence, and success sensitiveness,
i.e., we can use Example 6 as a counterexample to prove that there is no good
encoding from qCCS into CQP. The proof of Theorem 2 is given in [17]. Note
that we reason here about CQP instead of CQP−, since even the full expressive
power of CQP does not help to correctly emulate this super-operator.

Theorem 2. There is no encoding from qCCS into CQP that satisfies compo-
sitionality, operational correspondence, and success sensitiveness.

7 Quality Criteria for Quantum Based Systems

Sections 5 and 6 show that the quality criteria of Gorla in [6] can be applied
to quantum based systems and are still meaningful in this setting. They might,
however, not be exhaustive, i.e., there might be aspects of quantum based sys-
tems that are relevant but not sufficiently covered by this set of criteria. To
obtain these criteria, Gorla studied a large number of encodings, i.e., this set of
criteria was built upon the experience of many researchers and years of work.
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Accordingly, we do not expect to answer the question ’what are good quality
criteria for quantum based systems’ now, but rather want to start the discussion.

A closer look at the criteria in Sect. 4 reveals a first candidate for an addi-
tional quality criterion. Name invariance ensures that encodings cannot cheat
by treating names differently. It requires that good encodings preserve substitu-
tions to some extend. CQP and qCCS model the dynamics of quantum registers
in fundamentally different ways, but both languages address qubits by qubit
names. It seems natural to extend name invariance to also cover qubit names.

As in [6], we let our definition of qubit invariance depend on a renaming
policy ϕ, where this renaming policy is for qubit names. The renaming policy
translates qubit names of the source to tuples of qubit names in the target, i.e.,
ϕ : V → Vn, where we require that ϕ(q) ∩ ϕ(q′) = ∅ whenever q �= q′.

The new criterion qubit invariance, then requires that encodings preserve and
reflect substitutions on qubits modulo the renaming policy on qubits.

Definition 7 (Qubit Invariance). The encoding �·� is qubit invariant if, for
every S ∈ CS and every substitution γ on qubit names, it holds that �Sγ� = �S�γ′,
where ϕ(γ(q)) = γ′(ϕ(q)) for every q ∈ V.

In [6], name invariance allows the slightly weaker condition �Sγ� � �S�γ′

for non-injective substitutions. In contrast, substitutions on qubits always have
to be injective such that they cannot violate the no-cloning principle. Since �·�
translates qubit names to themselves and introduces no other qubit names, it
satisfies qubit invariance for ϕ being the identity and γ′ = γ. The corresponding
proof is given in [17].

Lemma 2. The encoding �·� is qubit invariant.

Note that the qubits discussed so far are so-called logical qubits, i.e., they
are abstractions of the physical qubits. To implement a single logical qubit as
of today several physical qubits are necessary. These additional physical qubits
are used to ensure stability and fault-tolerance in the implementation of logical
qubits. Since the number of necessary physical qubits can be much larger than
the number of logical qubits, already a small increase in the number of logical
qubits might seriously limit the practicability of a system. Accordingly, one may
require that encodings preserve the number of logical qubits.

Definition 8 Size of Quantum Registers.) An encoding �·� preserves the
size of quantum registers, if for all S ∈ CS, the number of qubits in �S� is not
greater than in S.

Again, the encoding �·� in Definition 6 satisfies this criterion, which can be
verified easily by inspection of the encoding function. The full proof can be
found [17].

Lemma 3. The encoding �·� preserves the size of quantum registers.
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Similarly to success sensitiveness, requiring the preservation of the size of
quantum registers on literal encodings is not enough. To ensure that all reachable
target terms preserve the size of quantum registers, we again link this criterion
with the target term relation �. More precisely, we require that � is sensible to
the size of quantum registers, i.e., T1 � T2 implies that the quantum registers
in T1 and T2 have the same size. The correspondence simulation � that we
used as target relation for the encoding �·� is not sensible to the size of quantum
registers, but we can easily turn it into such a relation. Therefore, we simply add
the condition that |ρ| = |σ| whenever 〈P, ρ〉R〈Q,σ〉 to Definition 5. Fortunately,
all of the already shown results remain valid for the altered version of �.

In contrast to CQP−, the semantics of qCCS yields a non-probabilistic tran-
sition system, where probabilities are captured in the density matrices. The
encoding �·� translates probability distributions into non-deterministic choices.
Thereby, branches with zero probability are correctly eliminated, but all remain-
ing branches are treated similarly and their probabilities are forgotten. To check
also the probabilities of branches, we can strengthen operational correspondence
to a labelled variant, where labels capture the probability of a step. The chal-
lenge here is to create a meaningful criterion that correctly accumulates the
probabilities in sequences of steps as e.g. a single source term step might be
translated into a sequence of target term steps, but the product of the probabil-
ities contained in the sequence has to be equal to the probability of the single
source term step. We leave the derivation of a suitable probabilistic version of
operational correspondence to future work.

Another important aspect is in how far the quality criteria capture the fun-
damental principles of quantum based systems such as the no-cloning principle:
By the laws of quantum mechanics, it is not possible to exactly copy a qubit.
Technically, such a copying would require some form of interaction with the
qubit and this interaction would destroy its superposition, i.e., alter its state.
Interestingly, the criteria of Gorla are even strong enough to observe a violation
of this principle in the encoding from CQP− into qCCS, i.e., if we allow CQP− to
violate this principle but require that qCCS respects it, then we obtain a nega-
tive result. Therefore, we remove the type system from CQP−. Without this type
system, we can use the same qubit at different locations, violating the no-cloning
principle. As an example, consider S = (σ;φ; c![q].0 | c![q].0). Then the encoding
�·� in Definition 6 is not valid any more, because �S� = 〈(c!q.nil ‖ c!q.nil) \ φ, ρ〉
violates condition Cond2. Using S as counterexample, it should be possible to
show that there exists no encoding that satisfies compositionality, operational
correspondence, and success sensitiveness.

Of course, even if we succeed with this proof, this does not imply that the
criteria are strong enough to sufficiently capture the no-cloning principle. Indeed,
the other direction is more interesting, i.e., criteria that rule out encodings such
that the source language respects the no-cloning principle but not all literal
translations or their derivatives respect it. We believe that capturing the no-
cloning principle and the other fundamental principles of quantum based systems
is an interesting research challenge.
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8 Conclusions

We proved that CQP− can be encoded by qCCS w.r.t. the quality criteria com-
positionality, name invariance, operational correspondence, divergence reflection,
and success sensitiveness. Additionally, this encoding satisfies two new, quantum
specific criteria: it is invariant to qubit names and preserves the size of quantum
registers. We think that these new criteria are relevant for translations between
quantum based systems.

The encoding proves that the way in that qCCS treats qubits—using density
matrices and super-operators—can emulate the way in that CQP− treats qubits.
The other direction is more difficult. We showed that there exists no encoding
from qCCS into CQP that satisfies compositionality, operational correspondence,
and success sensitiveness.

The results themselves may not necessarily be very surprising. The unitary
transformations used in CQP−/CQP are a subset of the super-operators used
in qCCS and also density matrices can express more than the vectors used in
CQP−/CQP. What our case study proves is that the quality criteria that were
originally designed for classical systems are still meaningful in this quantum
based setting. They may, however, not be exhaustive. Accordingly, in Sect. 7 we
start the discussion on quality criteria for this new setting of quantum based
systems. The first two candidate criteria that we propose, namely qubit invari-
ance and preservation of quantum register sizes, are relevant, but rather basic.
Since the semantics of quantum based systems is often probabilistic, a variant of
operational correspondence that requires the preservation and reflection of prob-
abilities in the respective traces might be meaningful. Such a criterion would rule
out the encoding �·� presented above. More difficult and thus also more inter-
esting are criteria that capture the fundamental principles of quantum based
systems such as the no-cloning principle. Hereby, we pose the task of identifying
such criteria as research challenge.

As, to the best of our knowledge, there are no well-accepted probabilistic
versions of operational correspondence. As a first step we will study probabilistic
versions of operational correspondence and the nature of the relation between
source and target they imply.
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Abstract. Verification of properties expressed as ω-regular languages
such as LTL can benefit hugely from stutter insensitivity, using a diverse
set of reduction strategies. However properties that are not stutter invari-
ant, for instance due to the use of the neXt operator of LTL or to some
form of counting in the logic, are not covered by these techniques in gen-
eral.

We propose in this paper to study a weaker property than stutter
insensitivity. In a stutter insensitive language both adding and remov-
ing stutter to a word does not change its acceptance, any stuttering
can be abstracted away; by decomposing this equivalence relation into
two implications we obtain weaker conditions. We define a shortening
insensitive language where any word that stutters less than a word in
the language must also belong to the language. A lengthening insensi-
tive language has the dual property. A semi-decision procedure is then
introduced to reliably prove shortening insensitive properties or deny
lengthening insensitive properties while working with a reduction of a
system. A reduction has the property that it can only shorten runs. Lip-
ton’s transaction reductions or Petri net agglomerations are examples of
eligible structural reduction strategies.

An implementation and experimental evidence is provided showing
most non-random properties sensitive to stutter are actually shorten-
ing or lengthening insensitive. Performance of experiments on a large
(random) benchmark from the model-checking competition indicate that
despite being a semi-decision procedure, the approach can still improve
state of the art verification tools.

1 Introduction

Model checking is an automatic verification technique for proving the correctness
of systems that have finite state abstractions. Properties can be expressed using
the popular Linear-time Temporal Logic (LTL). To verify LTL properties, the
automata-theoretic approach [25] builds a product between a Büchi automaton
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representing the negation of the LTL formula and the reachable state graph of the
system (seen as a set of infinite runs). This approach has been used successfully
to verify both hardware and software components, but it suffers from the so
called “state explosion problem”: as the number of state variables in the system
increases, the size of the system state space grows exponentially.

One way to tackle this issue is to consider structural reductions. Structural
reductions take their roots in the work of Lipton [15] and Berthelot [1]. Nowa-
days, these reductions are still considered as an attractive way to alleviate the
state explosion problem [2,14]. Structural reductions strive to fuse structurally
“adjacent” events into a single atomic step, leading to less interleaving of inde-
pendent events and less observable behaviors in the resulting system. An example
of such a structural reduction is shown on Fig. 1a where actions are progressively
grouped (see Sect. 3.1 for a more detailed presentation). It can be observed that
the Kripke structure representing the state space of the program is significantly
simplified.

Traditionally structural reductions construct a smaller system that preserves
properties such as deadlock freedom, liveness, reachability [10], and stutter insen-
sitive temporal logic [20] such as LTL\X . The verification of a stutter insensitive
property on a given system does not depend on whether non observable events
(i.e. that do not update atomic propositions) are abstracted or not. On Fig. 1a
both instructions “z = 40;” and “chan.send(z)” of thread β are non observable.

This paper shows that structural reductions can in fact be used even for
fragments of LTL that are not stutter insensitive. We identify two fragments
that we call shortening insensitive (if a word is in the language, any version that
stutters less also) or lengthening insensitive (if a word is in the language, any
version that stutters more also). Based on this classification we introduce two
semi-decision procedures that provide a reliable verdict only in one direction: e.g.
presence of counter examples is reliable for lengthening insensitive properties,
but absence is not.

The paper is structured as follows, Sect. 2 presents the definitions and nota-
tions relevant to our setting in an abstract manner, focusing on the level of
description of a language. Section 3 instantiates these definitions in the more
concrete setting of LTL verification. Section 4 provides experimental evidence
supporting the claim that the method is both applicable to many formulae and
can significantly improve state of the art model-checkers. Some related work is
presented in Sect. 5 before concluding.

2 Definitions

In this section we first introduce in Sect. 2.1 a “shorter than” partial order rela-
tion on infinite words, based on the number of repetitions or stutter in the word.
This partial order gives us in Sect. 2.2 the notions of shortening and lengthening
insensitive language, which are shown to be weaker versions of classical stutter
insensitivity in Sect. 2.3. We then define in Sect. 2.4 the reduction of a language
which contains a shorter representative of each word in the original language.
Finally we show that we can use a semi-decision procedure to verify shortening
or lengthening insensitive properties using a reduction of a system.
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2.1 A “Shorter than” Relation for Infinite Words

Definition 1 (Word). : A word over a finite alphabet Σ is an infinite sequence
of symbols in Σ. We canonically denote a word r using one of the two forms:

– (plain word) r = an0
0 an1

1 an2
2 . . . with for all i ∈ N, ai ∈ Σ, ni ∈ N+ and ai � ai+1,

or
– (ω-word) r = an0

0 an1
1 . . . a

ω
k

with k ∈ N and for all 0 ≤ i ≤ k, ai ∈ Σ, and for
i < k, ni ∈ N+ and ai � ai+1. aω

k
represents an infinite stutter on the final

symbol ak of the word.

The set of all words over alphabet Σ is denoted Σω.

These notations using a power notation for repetitions of a symbol in a
word are introduced to highlight stuttering. We force the symbols to alternate
to ensure we have a canonical representation: with σ a suffix (not starting by
symbol b), the word aabσ must be represented as a2b1σ and not a1a1b1σ. To
represent a word of the form aabbcccccc . . . we use an ω-word: a2b2cω.

Definition 2 (Shorter than). : A plain word r = an0
0 an1

1 an2
2 . . . is shorter than

a plain word r ′ = a
n′0
0 a

n′1
1 a

n′2
2 . . . if and only if for all i ∈ N, 0 < ni ≤ n′i. For two

ω-words r = an0
0 . . . a

ω
k

and r ′ = a
n′0
0 . . . a

ω
k
, r is shorter than r ′ if and only if for

all i < k, ni ≤ n′i.
We denote this relation on words as r � r ′.

For instance, for any given suffix σ, abσ � a2bσ. Note that abσ � ab2σ as
well, but that a2bσ and ab2σ are incomparable. ω-words are incomparable with
plain words.

Property 1. The � relation is a partial order on words.

Proof. The relation is clearly reflexive (∀r ∈ Σω, r � r), anti-symmetric (∀r, r ′ ∈
Σω, r � r ′ ∧r ′ � r ⇒ r = r ′) and transitive (∀r, r ′, r ′′ ∈ Σω, r � r ′ ∧r ′ � r ′′ ⇒ r �
r ′′). The order is partial since some words (such as a2bσ and ab2σ presented
above) are incomparable. ��

Definition 3. [Stutter equivalence]: a word r is stutter equivalent to r ′, denoted
as r ∼ r ′ if and only if there exists a shorter word r ′′ such that r ′′ � r ∧ r ′′ � r ′.
This relation ∼ is an equivalence relation thus partitioning words of Σω into
equivalence classes.

We denote r̂ the equivalence class of a word r and denote
¯
r̂ the shortest word

in that equivalence class.

For any given word r = an0
0 an1

1 an2
2 . . . there is a shortest representative in r̂

that is the word
¯
r̂ = a0a1a2 . . . where no symbol is ever consecutively repeated

more than once (until the ω for an ω-word). By definition all words that are
comparable to

¯
r̂ are stutter equivalent to each other, since

¯
r̂ can play the role of

r ′′ in the definition of stutter equivalence, giving us an equivalence relation: it
is reflexive, symmetric and transitive.

For instance, with σ denoting a suffix,
¯
r̂ = abσ would be the shortest repre-

sentative of any word of r̂ of the form an0bn1σ. We can see by this definition that
despite being incomparable, a2bσ ∼ ab2σ since abσ � a2bσ and abσ � ab2σ.
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2.2 Sensitivity of a Language to the Length of Words

Definition 4 (Language). : a language L over a finite alphabet Σ is a set of
words over Σ, hence L ⊆ Σω. We denote L̄ = Σω \ L the complement of a
language L .

In the literature, most studies that exploit a form of stuttering are focused
on stutter insensitive languages [9,10,18,19,24]. In a stutter insensitive language
L , duplicating any letter (also called stuttering) or removing any duplicate letter
from a word of L must produce another word of L . In other words, all stutter
equivalent words in a class r̂ must be either in the language or outside of it. Let
us introduce weaker variants of this property, original in this paper.

Definition 5. [Shortening insensitive]: a language L is shortening insensitive
if and only if for any word r it contains, all shorter words r ′ such that r ′ � r are
also in L .

For instance, a shortening insensitive language L that contains the word
a3bσ must also contain shorter words a2bσ, and abσ. If it contains a2b2σ it
also contains a2bσ, ab2σ and abσ.

Definition 6. [Lengthening insensitive]: a language L is lengthening insensi-
tive if and only if for any word r it contains, all longer words r ′ such that r � r ′

are also in L .

For instance, a lengthening insensitive language L that contains the word
a2bσ must also contain all longer words a3bσ, a2b2σ . . . , and more generally
words of the form anbn

′

σ with n ≥ 2 and n′ ≥ 1. If it contains
¯
r̂ = abσ the

shortest representative of an equivalence class, it contains all words in the stutter
equivalence class.

While stutter insensitive languages have been heavily studied, there is to
our knowledge no study on what reductions are possible if only one direction
holds, i.e. the language is shortening or lengthening insensitive, but not both.
A shortening insensitive language is essentially asking for something to happen
before a certain deadline or stuttering “too much”. A lengthening insensitive
language is asking for something to happen at the earliest at a certain date or
after having stuttered at least a certain number of times. Figure 1b represents
these situations graphically.

2.3 Relationship to Stutter Insensitive Logic

A language is both shortening and lengthening insensitive if and only if it is
stutter insensitive (see Fig. 1b). This fact is already used in [16] to identify
such stutter insensitive languages using only their automaton. Furthermore since
stutter equivalent classes of runs are entirely inside or outside a stutter insensitive
language, a language L is stutter insensitive if and only if the complement
language L̄ is stutter insensitive.
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However, if we look at sensitivity to length and how it interacts with the
complement operation, we find a dual relationship where the complement of a
shortening insensitive language is lengthening insensitive and vice versa.

Property 2. A language L is shortening insensitive if and only if the complement
language L̄ is lengthening insensitive.

Proof. Let L be shortening insensitive. Let r ∈ L̄ be a word in the complement
of L . Any word r ′ such that r � r ′ must also belong to L̄ , since if it belonged to
the shortening insensitive L , r would also belong to L . Hence L̄ is lengthening
insensitive. The converse implication can be proved using the same reasoning. ��

If we look at Fig. 1b, the dual effect of complement on the sensitivity of the
language to length is apparent: if gray and white are switched we can see L̄b is
lengthening insensitive and L̄c shortening insensitive.

2.4 When Is Visiting Shorter Words Enough?

Definition 7. [Reduction] Let I be a reduction function Σω �→ Σω such that
∀r, I(r) � r. The reduction by I of a language L is RedI (L ) = {I(r) | r ∈ L }.

Note that the � partial order is not strict so that the image of a word may
be the word itself, hence identity is a reduction function. In most cases however
we expect the reduction function to map many words r of the original language
to a single shorter word r ′ of the reduced language. Note that given any two
reduction functions I and I ′, RedI (RedI ′ (L )) is still a reduction of L . Hence
chaining reduction rules still produces a reduction. As we will discuss in Sect. 3.1
structural reductions of a specification such as Lipton’s transaction reduction [14,
15] or Petri net agglomerations [1,23] induce a reduction at the language level.
In Fig. 1a fusing statements into a single atomic step in the program induces a
reduction of the language.

Theorem 1 (Reduced Emptiness Checks). Given two languages L
and L ′,

– if L is shortening insensitive, then L ∩ RedI (L ′) = ∅ ⇒ L ∩L ′ = ∅

– if L is lengthening insensitive, then L ∩ RedI (L ′) � ∅ ⇒ L ∩L ′ � ∅.

Proof. (Shortening insensitive L ) L ∩ RedI (L ′) = ∅ so there does not exists
r ′ ∈ L ∩ RedI (L ′). Because L is shortening insensitive, it is impossible that
any run r with r ′ ≺ r belongs to L ∩L ′. (Lengthening insensitive L ) At least
one word r ′ is in L and RedI (L ). Therefore the longer word r of L ′ that r ′

represents is also in L since the language is lengthening insensitive. ��

With this theorem original to this paper we now can build a semi-decision
procedure that is able to prove some lengthening or disprove some shortening
insensitive properties using a reduction of a system.
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3 Application to Verification

We now introduce the more concrete setting of LTL verification to exploit the
theoretical results on languages and their shortening/lengthening sensitivity
developed in Sect. 2.

3.1 Kripke Structure

From the point of view of LTL verification with a state-based logic, executions of
a system (also called runs) are seen as infinite words over the alphabet Σ = 2AP,
where AP is a set of atomic propositions that may be true or false in each state.
So each symbol in a run gives the truth value of all of the atomic propositions
in that state of the execution, and each time an action happens we progress
in the run to the next symbol. Some actions of the system update the truth
value of atomic propositions, but some actions can leave them unchanged which
corresponds to stuttering.

Definition 8 (Kripke Structure Syntax). Let AP designate a set of atomic
propositions. A Kripke structure KSAP = 〈S, R, λ, s0〉 over AP is a tuple where S
is the finite set of states, R ⊆ S × S is the transition relation, λ : S �→ 2AP is the
state labeling function, and s0 ∈ S is the initial state.

Definition 9 (Kripke Structure Semantics). The language L (KSAP) of a
Kripke structure KSAP is defined over the alphabet 2AP. It contains all runs of
the form r = λ(s0)λ(s1)λ(s2) . . . where s0 is the initial state of KSAP and ∀i ∈ N,
either (si, si+1) ∈ R, or if si is a deadlock state such that ∀s′ ∈ S, (si, s′) � R then
si+1 = si.

All system executions are considered maximal, so that they are represented
by infinite runs. If the system can deadlock or terminate in some way, we can
extend these finite words by an ω stutter on the last symbol of the run to obtain
a run.

Subfigure (1) of Fig. 1a depicts a program where each thread (α and β) has
three reachable positions (we consider that each instruction is atomic). In this
example we consider that the logic only observes two atomic propositions p (true
when x = 0) and q (true when y = 0). The variable z is not observed.

Subfigure (2) of Fig. 1a depicts the reachable states of this system as a Kripke
structure. Actions of thread β (which do not modify the value of p or q) are hor-
izontal while actions of thread α are vertical. While each thread has 3 reachable
positions, the emission of the message by β must precede the reception by α so
that some situations are unreachable. Based on Definition 9 that extends by an
infinite stutter runs that end in a deadlock, we can compute the language LA

of this system. It consists in three parts: when thread β goes first pq3 p̄q p̄q̄ω,
with an interleaving pq2 p̄q2 p̄q̄ω, and when thread α goes first pq p̄q3 p̄q̄ω.

In subfigure (3) of Fig. 1a, the actions “z = 40; chan.send(z);” of thread β are
fused into a single atomic operation. This is possible because action z = 40 of
thread β is stuttering (it cannot affect either p or q) and is non-interfering with
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other events (it neither enables nor disables any event other than subsequent
instruction “chan.send(z)”). The language of this smaller KS is a reduction of
the language of the original system. It contains two runs: thread α goes first pq
p̄q2 p̄q̄ω and thread β goes first pq2 p̄q p̄q̄ω.

In subfigure (4) of Fig. 1a, the already fused action “z = 40; chan.send(z);”
of thread β is further fused with the chan.recv(); action of thread α. This leads
to a smaller KS whose language is still a reduction of the original system now
containing a single run: pq p̄q p̄q̄ω. This simple example shows the power of
structural reductions when they are applicable, with a drastic reduction of the
initial language.

3.2 Automata Theoretic Verification

Let us consider the problem of model-checking of an ω-regular property ϕ (such
as LTL) on a system using the automata-theoretic approach [25]. In this app-
roach, we wish to answer the problem of language inclusion: do all runs of the
system L (KS) belong to the language of the property L (ϕ) ? To do this, when
the property ϕ is an omega-regular language (e.g. an LTL or PSL formula),
we first negate the property ¬ϕ, then build a (variant of) a Büchi automaton
A¬ϕ whose language1 consists of runs that are not in the property language
L (A¬ϕ) = Σω \ L (ϕ). We then perform a synchronized product between this
Büchi automaton and the Kripke structure KS corresponding to the system’s
state space A¬ϕ ⊗ KS (where ⊗ is defined to satisfy L (A ⊗ B) = L (A) ∩L (B)).
Either the language of the product is empty L (A¬ϕ ⊗KS) = ∅, and the property
ϕ is thus true of this system, or the product is non empty, and from any run in
the language of the product we can build a counter-example to the property.

We will consider in the rest of the paper that the shortening or lengthening
insensitive language of Definitions 5 and 6 is given as an omega-regular language
or Büchi automaton typically obtained from the negation of an LTL property,
and that the reduction of Definition 7 is applied to a language that corresponds
to all runs in a Kripke structure typically capturing the state space of a system.

LTL Verification with Reductions. With Theorem 1, a shortening insensi-
tive property shown to be true on the reduction (empty intersection with the
language of the negation of the property) is also true of the original system. A
lengthening insensitive property shown to be false on the reduction (non-empty
intersection with the language of the negation of the property, hence counter-
examples exist) is also false in the original system. Unfortunately, our procedure
cannot prove using a reduction that a shortening insensitive property is false, or
that a lengthening insensitive property is true. We offer a semi-decision proce-
dure.

1 Because computing the complement Ā of an automaton A is exponential in the worst
case, syntactically negating ϕ and producing an automaton A¬ϕ is preferable when
A is derived from e.g. an LTL formula.
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3.3 Detection of Language Sensitivity

We now present a strategy to decide if a given property expressed as a Büchi
automaton is shortening insensitive, lengthening insensitive, or both.

This section relies heavily on the operations introduced and discussed at
length in [16]. The authors define two syntactic transformations sl and cl of
a transition-based generalized Büchi automaton (TGBA) Aϕ that can be built
from any LTL formula ϕ to represent its language L (ϕ) = L (Aϕ) [3]. TGBA
are a variant of Büchi automata where the acceptance conditions are placed on
edges rather than states of the automaton.

The cl closure operation decreases stutter, it adds to the language any word
r ′ ∈ Σω that is shorter than a word r in the language. Informally, the strategy
consists in detecting when a sequence q1

a
−→ q2

a
−→ q3 is possible and adding an

edge q1
a
−→ q3, hence its name cl for “closure”. The sl self-loopization operation

increases stutter, it adds to the language any run r ′ ∈ Σω that is longer than a
run r in the language. Informally, the strategy consists in adding a self-loop to
any state labeled with all outgoing expressions so that we can always decide to
repeat a letter rather than progress in the automaton, hence its name sl for “self-
loop”. More formally L (cl(Aϕ)) = {r ′ | ∃r ∈ L (Aϕ), r ′ � r} and L (sl(Aϕ)) =

{r ′ | ∃r ∈ L (Aϕ), r � r ′}.
Using these operations [16] shows that there are several possible ways to

test if an omega-regular language (encoded as a Büchi automaton) is stutter
insensitive: essentially applying either of the operations cl or sl should leave
the language unchanged. This allows to recognize that a property is stutter
insensitive even though it syntactically contains e.g. the neXt operator of LTL.

For instance Aϕ is stutter insensitive if and only if L (sl(cl(Aϕ)) ⊗ A¬ϕ) = ∅.
The full test is thus simply reduced to a language emptiness check testing that
both sl and cl operations leave the language of the automaton unchanged.

Indeed for stutter insensitive languages, all or none of the runs belonging to a
given stutter equivalence class of runs r̂ must belong to the language L (Aϕ). In
other words, if shortening or lengthening a run can make it switch from belonging
to Aϕ to belonging to A¬ϕ , the language is stutter sensitive. This is apparent on
Fig. 1b

We want weaker conditions here, but we can reuse the sl and cl operations
developed for testing stutter insensitivity. Indeed for an automaton A encoding
a shortening insensitive language, L (cl(A)) = L (A) should hold. Conversely if
A encodes a lengthening insensitive language, L (sl(A)) = L (A) should hold. We
express these tests as emptiness checks on a product in the following way.

Theorem 2 (Testing sensitivity). Let A designate a Büchi automaton, and
Ā designate its complement.

L (cl(A) ⊗ Ā) = ∅, if and only if A defines a shortening insensitive language.
L (sl(A) ⊗ Ā) = ∅ if and only if A defines a lengthening insensitive language.

Proof. The expression L (cl(A) ⊗ Ā) = ∅ is equivalent to L (cl(A)) = L (A). The
lengthening insensitive case is similar. ��
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Thanks to Property 2, and in the spirit of [16] we could also test the
complement of a language for the dual property if that is more efficient, i.e.
L (sl(Ā) ⊗ A) = ∅ if and only if A defines a shortening insensitive language and
similarly L (cl(Ā)⊗A) = ∅ iff A is lengthening insensitive. We did not really inves-
tigate these alternatives as the complexity of the test was already negligible in
all of our experiments.

3.4 Agglomeration of Events Produces Shorter Runs

Among the possible strategies to reduce the complexity of analyzing a system
are structural reductions. Depending on the input formalism the terminology
used is different, but the main results remain stable.

In [15] transaction reduction consists in fusing two adjacent actions of a
thread (or even across threads in recent versions such as [14]). The first action
must not modify atomic properties and must be commutative with any action of
other threads. Fusing these actions leads to shorter runs, where a stutter is lost.
In the program of Fig. 1a, “z = 40” is enabled from the initial state and must
happen before “chan.send(z)”, but it commutes with instructions of thread α
and is not observable. Hence the language LB built with an atomic assumption
on “z = 40; chan.send(z)” is indeed a reduction of LA.

Let us reason at the level of a Kripke structure. The goal of such reduc-
tions is to structurally detect the following situation in language L : let r =

an0
0 an1

1 an2
2 . . . designate a run (not necessarily in the language), there must

exist two indexes i and j such that for any natural number k, i ≤ k ≤ j,
rk = an0

0 . . . a
ni
i . . . a

nk+1
k
. . . a

n j

j . . . is in the language. In other words, the set

of runs described as : {rk = an0
0 . . . a

ni
i . . . a

nk+1
k
. . . a

n j

j . . . | i ≤ k ≤ j} must
belong to the language. This corresponds to an event that does not impact the
truth value of atomic propositions (it stutters) and can be freely commuted with
any event that occurs between indexes i and j in the run. This event is simply
constrained to occur at the earliest at index i in the run and at the latest at
index j. In Fig. 1a the event “z = 40” can happen as early as in the initial state,
and must occur before “chan.send(z)” and thus matches this definition.

Note that these runs are all stutter equivalent, but are incomparable by the
shorter than relation (e.g. aabc, abbc, abcc are incomparable). In this situation, a
reduction can choose to only represent the run r instead of any of these runs. This
run was not originally in the language in general, but it is indeed shorter than
any of the rk runs so it matches Definition 7 for a reduction. Note that r̂ does
contain all these longer runs so that in a stutter insensitive context, examining
r is enough to conclude for any of these runs. This is why usage of structural
reductions is compatible with verification of a logic such as LTL\X and has been
proposed for that express purpose in the literature [10,14].

Thus transaction reductions [14,15] as well as both pre-agglomeration and
post-agglomeration of Petri nets [7,10,20,23] produce a system whose language
is a reduction of the language of the original system.

For lack of space, in this paper we decided not to provide proofs that these
structural transformation rules induce reductions at the language level. A formal
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definition involves a) introducing the syntax of a formalism and b) its semantics
in terms of language, then c) defining the reduction rule, and d) proving its effect
is a reduction at the language level. The exercise is not particularly difficult, and
the definition of reduction rules mostly fall into the category above, where a non
observable event that happens at the earliest at point a and at the latest at
point b is abstracted from the trace.

Our experimental Sect. 4.2 uses the rules of [23] for (potentially partial) pre
and post-agglomeration. That paper presents 22 structural reductions rules from
which we selected the rules valid in the context of LTL verification. Only one rule
preserving stutter insensitive LTL was not compatible with our approach since
it does not produce a reduction at the language level: rule 3 “Redundant tran-
sitions” proposes that if two transitions t1 and t2 have the same combined effect
as a transition t, and firing t1 enables t2, t can be discarded from the net. This
reduces the number of edges in the underlying KS representing the state space,
but does not affect reachability of states. However, it selects as representative a
run involving both t1 and t2 that is longer than the one using t in the original
net, it is thus not legitimate to use in our strategy (although it remains valid
for LTL\X). Rules 14 “Pre agglomeration” and 15 “Post agglomeration” are the
most powerful rules of [23] that we are able to apply in our context. They are
known to preserve LTL\X (but not full LTL) and their effect is a reduction at the
language level, hence we can use them when dealing with shortening/lengthening
insensitive formulae.

4 Experimentation

4.1 A Study of Properties

This section provides an empirical study of the applicability of the techniques
presented in this paper to LTL properties found in the literature. To achieve
this we explored several LTL benchmarks [5,6,11,13,21]. Some work [6,21] sum-
maries the typical properties that users express in LTL. The formulae of this
benchmark have been extracted directly from the literature. Dwyer et al. [5] pro-
poses property specification patterns, expressed in several logics including LTL.
These patterns have been extracted by analysing 447 formulae coming from real
world projects. The RERS challenge [11] presents generated formulae inspired
from real world reactive systems. The MCC [13] benchmark establishes a huge
database of 45152 LTL formulae in the form of 1411 Petri net models coming
from 114 origins with for each one 32 random LTL formulae. These formulae
use up to 5 state-based atomic propositions, limit the nesting depth of temporal
operators to 5 and are filtered in order to be non trivial. Since these formulae
come with a concrete system we were able to use this benchmark to also provide
performance results for our approach in Sect. 4.2. We retained 43989 model/for-
mula pairs from this benchmark, the missing 1163 were rejected due to parse
limitations of our tool when the model size is excessive (> 107 transitions). This
set of roughly 2200 human-like formulae and 44k random ones lets us evaluate
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if the fragment of LTL that we consider is common in practice. Table 1 sum-
marizes, for each benchmark, the number and percentage of formulae that are
either stuttering insensitive, lengthening insensitive, or shortening insensitive.
The sum of both shortening and lengthening formulae represents more than one
third (and up to 60%) of the formulae of these benchmarks.

Concerning the polarity, although lengthening insensitive formulae seem to
appear more frequently, most of these benchmarks actually contain each formula
in both positive and negative forms (we retained only one) so that the summed
percentage might be more relevant as a metric since lengthening insensitivity
of ϕ is equivalent to shortening insensitivity of ¬ϕ. Analysis of the human-
like Dwyer patterns [5] reveals that shortening/lengthening insensitive formu-
lae mostly come from the patterns precedence chain, response chain and con-
strained chain. These properties specify causal relation between events, that are
observable as causal relations between observably different states (that might be
required to strictly follow each other), but this causality chain is not impacted
by non observable events.

4.2 A Study of Performances

Benchmark Setup. Among the LTL benchmarks presented in Table 1, we opted
for the MCC benchmark to evaluate the techniques presented in this paper. This
benchmark seems relevant since (1) it contains both academic and industrial
models, (2) it has a huge set of (random) formulae and (3) includes models so
that we could measure the effect of the approach in a model-checking setting.
The model-checking competition (MCC) is an annual event in its 10th edition
in 2021 where competing tools are evaluated on a large benchmark. We use the
formulae and models from the latest 2021 edition of the contest, where Tapaal [4]
was awarded the gold medal and ITS-Tools [22] was silver in the LTL category
of the contest. We evaluate both of these tools in the following performance
measures, showing that our strategy is agnostic to the back-end analysis engine.
Our experimental setup consists in two steps.

1. Parse the model and formula pair, and analyze the sensitivity of the for-
mula. When the formula is shortening or lengthening insensitive (but not
both) output two model/formula pairs: reduced and original. The “original”
version does also benefit from reduction rules, but we apply only rules that
are compatible with full LTL. The “reduced” version additionally benefits
from rules that are reductions at the language level, i.e. mainly pre and post
agglomeration (but enacting these rules can cause further simplifications).
The original and reduced model/formula pairs that result from this proce-
dure are then exported in the same format the contest uses. This step was
implemented within ITS-tools.

2. Run an MCC compatible tool on both the reduced and original versions of
each model/formula pair and record the time performance and the verdict.

For the first step, using Spot [16], we detect that a formula is either shorten-
ing or lengthening insensitive for 99.81% of formulae in less than 1 s. After this
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Table 1. Sensitivity to length of properties measured using several LTL benchmarks.

Benchmark Stutter Insens. Length. Insens. Short. Insens. Others Total

Spot [5,6,21] 63 (67%) 17 (18%) 11 (1%) 3 (3%) 94

Dwyer et al. [5] 32 (58%) 13 (23%) 9 (16%) 1 (1.81%) 55

RERS [11] 714 (35%) 777 (38%) 559 (28%) 0 2050

MCC [13] 24462 (56%) 6837 (14%) 5390 (12%) 7300 (16%) 43989
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Fig. 1. Experiments on the MCC’2021 LTL benchmark using the two best tool of the
MCC contest: Tapaal and ITS-tools. Figures (a) and (c) contain the cases where the
verdict of the semi-decisions procedures is reliable, and distinguish cases where the
output is True (empty product) and False (non empty product). (b) and (d) display
the cases where the verdict is not reliable and distinguish cases where the output is
inconsistent with the ground truth from cases where they agree.
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analysis, we obtain 12 227 model/formula pairs where the formula is either short-
ening insensitive or lengthening insensitive (but not both). Among these pairs,
in 3005 cases (24.6%) the model was resistant to the structural reduction rules
we use. Since our strategy does not improve such cases, we retain the remain-
ing 9 222 (75.4%) model/formula pairs in the performance plots of Fig. 1. We
measured that on average 34.19% of places and 32.69% of the transitions of the
models were discarded by reduction rules with respect to the “original” model,
though the spread is high as there are models that are almost fully reducible and
some that are barely so. Application of reduction rules is in complexity related
to the size of the structure of the net and takes less than 20 s to compute in
95.5% of the models. We are able to treat 9222 examples (21% of the original
43989 model/formula pairs of the MCC) using reductions. All these formulae
until now could not be handled using reduction techniques.

For the second step, we measured the solution time for both reduced and
original model/formula pairs using the two best tools of the MCC’2021 contest.
A full tool using our strategy might optimistically first run on the reduced mod-
el/formula pair hoping for a definitive answer, but we recommend the use of a
portfolio approach where the first reliable answer is kept. In these experiments
we neutrally measured the time for taking a semi-decision on the reduced model
vs. the time for taking a (complete) decision on the original model. We then clas-
sify the results into two sets, decidable instances are shown on the left of Fig. 1
and instances that are not decidable (by our procedure) are on the right. On
“decidable instances” our semi-decision procedure could have concluded reliably
because the formula is true and the property shortening insensitive or the for-
mula is false and the property lengthening insensitive. Non decidable instances
shown on the right are those where the verdict on the reduced model is not to
be trusted (or both the original and reduced procedures timed out).

With this workflow we show that our approach is generic and can be easily
implemented on top of any MCC compatible model-checking tool. All experi-
ments were run with a 950 s timeout (close to 15 min, which is generous when
the contest offers 1 h for 16 properties). We used a heterogeneous cluster of
machines with four cores allocated to each experiment, and ensured that exper-
iments concerning reduced and original versions of a given model/formula are
comparable.

Figure 1 presents the results of these experiments. The results are all pre-
sented as log-log scatter plots opposing a run on the original to a run on the
reduced model/formula pair. Each dot represents an experiment on a model/-
formula pair; a dot below the diagonal indicates that the reduced version was
faster to solve, while a point above it indicates a case where the reduced model
actually took longer to solve than the original (fortunately there are relatively
few). Points that timeout for one (or both) of the approaches are plotted on
the line at 950 s, we also indicate the number of points that are in this line (or
corner) next to it.

The plots on the left (a) and (c) correspond to “decidable instances” while
those on the right are not decidable by our procedure. The two plots on the
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top correspond to the performance of ITS-tools, while those on the bottom give
the results with Tapaal. The general form of the results with both tools is quite
similar confirming that our strategy is indeed responsible for the measured gains
in performance and that they are reproducible. Reduced problems are generally
easier to solve than the original. This gain is in the best case exponential as is
visible through the existence of spread of points reaching out horizontally in this
log-log space (particularly on the Tapaal plots).

The colors on the decidable instances reflect whether the verdict was true
or false. For false properties a counter-example was found by both procedures
interrupting the search, and while the search space of a reduced model is a priori
smaller, heuristics and even luck can play a role in finding a counter-example
early. True answers on the other hand generally require a full exploration of
the state space so that the reductions should play a major role in reducing the
complexity of model-checking. The existence of True answers where the reduction
fails is surprising at first, but a smaller Kripke structure does not necessarily
induce a smaller product as happens sometimes in this large benchmark (and in
other reduction techniques such as stubborn sets [24]). On the other hand the
points aligned to the right of the plots a) and c) (189 for ITS-tools and 119 for
Tapaal) correspond to cases where our procedure improved these state of the art
tools, allowing to reach a conclusion when the original method fails.

The plots on the right use orange to denote cases where the verdict on the
reduced and original models were the same; on these points the procedures
had comparable behaviors (either exploring a whole state space or exhibiting
a counter-example). The blue color denotes points where the two procedures
disagree, with several blue points above the diagonal reflecting cases where the
reduced procedure explored the whole state space and thought the property was
true while the original procedure found a counter-example (this is the worst
case). Surprisingly, even though on these non decidable plots b) and d) our pro-
cedure should not be trusted, it mostly agrees (in 95% of the cases) with the
decision reached on the original.

Out of the 9222 experiments in total, for ITS-tools 5901 runs reached a
trusted decision (64 %), 2927 instances reached an untrusted verdict (32 %),
and the reduced procedure timed out in 394 instances (4 %). Tapaal reached a
trusted decision in 5866 instances (64 %), 2884 instances reached an untrusted
verdict (31 %), and the reduced procedure timed out in 472 instances (5 %). On
this benchmark of formulae we thus reached a trusted decision in almost two
thirds of the cases using the reduced procedure.

5 Related Work

Partial Order vs Structural Reductions. Partial order reduction (POR)
[9,18,19,24] is a very popular approach to combat state explosion for stutter
insensitive formulae. These approaches use diverse strategies (stubborn sets,
ample sets, sleep sets. . . ) to consider only a subset of events at each step of
the model-checking while still ensuring that at least one representative of each



LTL Under Reductions with Weaker Conditions Than Stutter Invariance 185

stutter equivalent class of runs is explored. Because the preservation criterion is
based on equivalence classes of runs, this family of approaches is limited only
to the stutter insensitive fragment of LTL (see Fig. 1b). However the structural
reduction rules used in this paper are compatible and can be stacked with POR
when the formula is stutter insensitive; this is the setting in which most structural
reduction rules were originally defined.

Structural Reductions in the Literature. The structural reductions rules
we used in the performance evaluation are defined on Petri nets where the liter-
ature on the subject is rich [1,2,7,10,20,23]. However there are other formalism
where similar reduction rules have been defined such as [17] using “atomic”
blocks in Promela, transaction reductions for the widely encompassing interme-
diate language PINS of LTSmin [14], and even in the context of multi-threaded
programs [8]. All these approaches are structural or syntactic, they are run prior
to model-checking per se.

Non Structural Reductions in the Literature. Other strategies have been
proposed that instead of structurally reducing the system, dynamically build
an abstraction of the Kripke structure where less observable stuttering occurs.
These strategies build a KS whose language is a reduction of the language of
the original KS (in the sense of Definition 7), that can then be presented to the
emptiness check algorithm with the negation of the formula. They are thus also
compatible with the approach proposed in this paper. Such strategies include the
Covering Step Graph (CSG) construction of [26] where a “step” is performed
(instead of firing a single event) that includes several independent transitions.
The Symbolic Observation Graph of [12] is another example where states of the
original KS are computed (using BDDs) and aggregated as long as the atomic
proposition values do not evolve; in practice it exhibits to the emptiness check
only shortest runs in each equivalence class hence it is a reduction.

6 Conclusion

To combat the state space explosion problem that LTL model-checking meets,
structural reductions have been proposed that syntactically compact the model
so that it exhibits less interleaving of non observable actions. Prior to this work,
all of these approaches were limited to the stutter insensitive fragment of the
logic. We bring a semi-decision procedure that widens the applicability of these
strategies to formulae which are shortening insensitive or lengthening insensi-
tive. The experimental evidence presented shows that the fragment of the logic
covered by these new categories is quite useful in practice. An extensive measure
using the models, formulae and the two best tools of the model-checking com-
petition 2021 shows that our strategy can improve the decision power of state
of the art tools, and confirm that in the best case an exponential speedup of the
decision procedure can be attained. We also identified several other strategies
that are compatible with our approach since they construct a reduced language.
In further work we are investigating how non trusted counter-examples of the
reduced model could be confirmed on the original model.
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Abstract. Message-passing concurrency is a popular computation
model that underlies several programming languages like, e.g., Erlang,
Akka, and (to some extent) Go and Rust. In particular, we consider
a message-passing concurrent language with dynamic process spawning
and selective receives, i.e., where messages can only be consumed by the
target process when they match a specific constraint (e.g., the case of
Erlang). In this work, we introduce a notion of trace that can be seen
as an abstraction of a class of causally equivalent executions (i.e., which
produce the same outcome). We then show that execution traces can
be used to identify message races. We provide constructive definitions
to compute message races as well as to produce so-called race variants,
which can then be used to drive new executions which are not causally
equivalent to the previous ones. This is an essential ingredient of state-
space exploration techniques for program verification.

1 Introduction

Software verification and debugging are recognized as essential tasks in the field
of software development. Not surprisingly, a recent study [27] points out that
26% of developer time is spent reproducing and fixing code bugs (which adds
up to $61 billion annually). The study also identifies reproducibility of bugs as
the biggest challenge to fix bugs faster. The situation is especially difficult for
concurrent and distributed applications because of nondeterminism. In this con-
text, traditional testing techniques often provide only a poor guarantee regarding
software correctness.

As an alternative, state-space exploration techniques constitute a well estab-
lished approach to the verification of concurrent software that basically consists
in exploring the reachable states of a program, checking whether a given property
holds (like some type of deadlock, a runtime error, etc.). This is the case, e.g.,
of model checking [7], where properties have been traditionally verified using a
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model of the program. More recently, several dynamic approaches to state-space
exploration have been introduced, which work directly with the implementation
of a program. Stateless model checking [12] and reachability testing [22,26] are
examples of this approach. In turn, reproducibility of bugs has been tackled
by so-called record-and-replay debuggers. In this case, a program is first instru-
mented so that its execution produces a log as a side-effect. If a problem occurs
during the execution of the program, one can use the generated log to play it
back in the debugger and try to locate the source of the misbehavior.

In this work, we focus on an asynchronous message-passing concurrent pro-
gramming language like, e.g., Erlang [9], Akka [2] and, to some extent, Go [13]
and Rust [25]. A running application consists of a number of processes, each with
an associated (private) mailbox. Here, processes can only interact through (asyn-
chronous) message sending and receiving, i.e., we do not consider shared-memory
operations. Typically, there is some degree of nondeterminism in concurrent exe-
cutions that may affect the outcome of a computation. For instance, when two
processes send messages to another process, these messages may sometimes arrive
in any order. These so-called message races play a key role in the execution of
message-passing concurrent programs, and exploring all feasible combinations of
message sending and receiving is an essential component of state-space explo-
ration techniques.

In particular, we consider a language with so-called selective receives, where
a process does not necessarily consume the messages in its mailbox in the same
order they were delivered, since receive statements may impose additional con-
straints. For instance, a receive statement in Erlang has the form

receive p1 [when g1] → t1; ...; pn [when gn] → tn end

In order to evaluate this statement, a process should look for the oldest mes-
sage in its mailbox that matches a pattern pi and the corresponding (optional)
guard gi holds (if any);1 in this case, the process continues with the evaluation
of expression ti. When no message matches any pattern, the execution of the
process is blocked until a matching message reaches its mailbox.

Considering a message-passing concurrent language with selective receives
is relevant in order to deal with a language like Erlang. Unfortunately, current
approaches either do not consider selective receives—the case of reachability
testing [21] which, in contrast, considers different ports for receive statements—
or have not formally defined the semantics of the language and its associated
happened-before relation—the case of Concuerror [5], which implements a state-
less model checker for Erlang that follows the approach in [1,3,4].

In this paper, we introduce a notion of trace that is tailored to message-
passing execution with dynamic process spawning and selective receives. Our
traces can be seen as an extension of the logs of [19,20], which were introduced
in the context of causal-consistent replay (reversible) debugging in Erlang. In
particular, the key extension consists in adding some additional information to
the events of a trace, namely the identifier of the target process of a message and
1 If the message matches several patterns, the first one is considered.
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its actual value for send events, and the actual constraints of a receive statement
for receive events. In this way, we can identify not only the communications
performed in a program execution but also its message races (see the discussion
in the next section).

In contrast to other notions of trace that represent a particular interleav-
ing, our traces (analogously to the logs of [19,20] and the SYN-sequences of
[21]) record the sequence of actions performed by each process in an execution,
ignoring the concrete scheduling of all processes’ actions. These traces can eas-
ily be obtained by instrumenting the source code so that each process keeps a
record of its own actions. The traces can be seen as an abstraction of a class
of executions which are causally equivalent. Roughly speaking, two executions
are causally equivalent when the executed actions and the final outcome are the
same but the particular scheduling might differ. We then introduce constructive
definitions for computing message races and race variants from a given trace.
Here, race variants are denoted by a (possibly partial) trace which can then be
used to drive a new program execution (as in the replay debugger CauDEr [10]).
Moreover, we prove that any execution that follows (and possibly goes beyond)
the computed race variant cannot give rise to an execution which is causally
equivalent to the previous one, an essential property of state-space exploration
techniques.

The paper is organized as follows. After some motivation in Sect. 2, we for-
malize the notions of interleaving and trace in Sect. 3, where we also provide a
declarative definition of message race and prove a number of properties. Then,
Sect. 4 provides constructive definitions for computing message races and race
variants, and proves that race variants indeed give rise to executions which are
not causally equivalent to the previous one. Finally, Sect. 5 presents some related
work and concludes.

2 Message Races and Selective Receives

In this section, we informally introduce the considered setting and motivate our
definition of trace. As mentioned before, we consider a message-passing (asyn-
chronous) concurrent language with selective receives. Essentially, concurrency
follows the actor model: at runtime, an application can be seen as a collection of
processes that interact through message sending and receiving. Each process has
an associated identifier, called pid (which stands for process identifier), that is
unique in the execution.2 Furthermore, we assume that processes can be spawned
dynamically at runtime.

As in other techniques where message races are computed, e.g., dynamic
partial order reduction (DPOR) [1,11] for stateless model checking [12], we dis-
tinguish local evaluations from global (or visible) actions. Examples of local eval-
uations are, e.g., a function call or the evaluation of a case expression. In turn,
global actions include the spawning of a new process as well as any event related

2 In the following, we often say “process p” to mean “process with pid p”.
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Fig. 1. A simple message-passing program

with message passing. In particular, we consider that sent messages are even-
tually stored in the mailbox of the target process. Then, the target process can
consume these messages using a receive statement, which we assume is selective,
i.e., it may impose some additional constraints on the receiving messages.

Example 1. Let us consider the simple code shown in Fig. 1 (we use a pseudocode
that resembles the syntax of Erlang [9]). Assume that the initial process (the one
that starts the execution) has pid p1 and that it begins with a call to function
proc1, which first spawns two new processes with pids p2 and p3 that will
evaluate the calls proc2() and proc3(P2), respectively. A call to spawn returns
the pid of the new process, so variables P2 and P3 are bound to pids p2 and p3,
respectively. The evaluation of proc1() ends by sending the message {val,1}
to process p2. Process spawning is denoted by a dashed arrow in the diagram,
while message sending is denoted by a solid arrow. Messages are tagged with a
unique identifier (e.g., �1).

Process p3 sends two messages, {val,0} and {val,2}, to process p2. Process
p2 initially blocks waiting for the arrival of a message that matches either the
pattern {val,M}, i.e., a tuple whose first component is the constant val and the
second component (denoted by variable M) is an integer greater than zero, or the
constant error. Note that message {val,0} does not match the constraints of
the receive statement since the integer value is not greater than zero. Thus, only
messages �1 and �3 can be consumed by the receive statement of process p2.

In principle, one could represent a program execution by means of a concrete
interleaving of its concurrent actions, i.e., a sequence of events of the form pid :
action. E.g., we could have the following interleaving for the program of Fig. 1:

(1) p1:spawn(proc2()) (4) p2:receive({val,1})
(2) p1:spawn(proc3(p2)) (5) p3:send({val,0},p2)
(3) p1:send({val,1},p2) (6) p3:send({val,2},p2)

This interleaving is graphically depicted in Fig. 2a, where process spawning
is omitted for clarity.

In this work, though, we opt for a different representation, which is similar
to the notion of log (in the context of replay debugging [19,20]) and that of
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Fig. 2. Alternative interleavings for the execution of the program of Fig. 1. We have
three processes, identified by pids p1, p2 and p3. Solid arrows denote the connection
between messages sent and received (similarly to the synchronization pairs of [21]),
while dotted arrows represent messages sent but not yet received. Time, represented
by dashed lines, flows from top to bottom.

SYN-sequence (in reachability testing [21]). In contrast to interleavings (as in,
e.g., stateless model checking [12] and DPOR techniques [1,11]), the advantage
of using logs is that they represent a partial order for the concurrent actions,
so that DPOR techniques are no longer needed. To be more precise, a log (as
defined in [19]) maps each process to a sequence of the following actions:

– process spawning, denoted by spawn(p), where p is the pid of the new process;
– message sending, denoted by send(�), where � is a message tag;
– and message reception, denoted by rec(�), where � is a message tag.

In contrast to the SYN-sequences of [21], synchronization pairs (connecting
message sending and receiving) are not explicitly considered but can easily be
inferred from send/receive actions with the same message tag. Furthermore, logs
include spawn actions because runtime processes are not statically fixed, which
is not considered by SYN-sequences. Logs are used by the reversible debugger
CauDEr [10] as part of an approach to record-and-replay debugging in Erlang (a
popular approach to deal with the problem of reproducibility of bugs).

In practice, logs can be obtained by using an instrumented semantics (as in
[19,20]) or by instrumenting the program so that its execution (in the standard
environment) produces a log as a side-effect (along the lines of the technique
presented in [15]). It is worthwhile to note that no centralised monitoring is
required; every process only needs to register its own actions independently. For
instance, a log associated with the execution shown in Fig. 1 is as follows:

[p1 �→ spawn(p2), spawn(p3), send(�1); p2 �→ rec(�1); p3 �→ send(�2), send(�3)]

Unfortunately, this log does not contain enough information for computing mes-
sage races. A first, obvious problem is that send events do not include the pid
of the target process. Hence, even if there is a (potential) race between messages
�1 and �2 to reach process p2, this cannot be determined from the log. Trivially,
one could solve this problem by adding the pid of the target process to every
send event, as follows (we omit spawn actions since they are not relevant for the
discussion):
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[p1 �→ . . . , send(�1, p2); p2 �→ rec(�1); p3 �→ send(�2, p2), send(�3, p2)] (*)

Now, in principle, one could say that messages �1 and �2 race for process p2 since
the target is the same (p2) and there are no dependencies among send(�1, p2)
and send(�2, p2) (s1 and s2 in Fig. 2a).

However, when we consider selective receives, the log (*) above can be
ambiguous. In particular, this log represents both interleavings represented by
the diagrams of Fig. 2a and Fig. 2b (where message �2 reaches first process p2
but its associated value, {val,0}, does not match the constraints of the receive
statement since the guard M > 0 does not hold for M = 0). However, the dia-
gram in Fig. 2a points out to a (potential) message race between messages �1
and �2, while the diagram in Fig. 2b suggests a (potential) message race between
messages �1 and �3 instead.

In order to distinguish the executions shown in Figs. 2a and 2b one could
add a new action, deliver(�), to explicitly account for the delivery of a message
with tag �. In this way, we would know the order in which messages are stored in
the process’ mailbox, which uniquely determines the order in which they can be
consumed by receive statements. E.g., the actions of process p2 in the execution
of Fig. 2a would be

[ . . . p2 �→ deliver(�1), rec(�1), deliver(�2), deliver(�3) . . . ] (∗∗)

while those of Fig. 2b would be as follows:

[ . . . p2 �→ deliver(�2), deliver(�1), rec(�1), deliver(�3) . . . ] (∗∗∗)

This approach is explored in [14], where a lightweight (but approximate) tech-
nique to computing message races is proposed. Unfortunately, making explicit
message delivery does not suffice to allow one to compute message races in gen-
eral. In particular, while it would allow us to distinguish the situation of Fig. 2a
from that of Fig. 2b, we could not still determine whether there is an actual race
between messages �1 and �2 or between messages �1 and �3. For instance, for
the program of Fig. 1, only the message race between �1 and �3 is feasible, as
explained above. For this purpose, we need to also include the actual values of
messages as well as the constraints of receive statements.

In the next section, we propose an appropriate definition of trace (an
extended log) that includes enough information for computing message races.

3 Execution Traces

In this section, we formalize an appropriate notion of trace that is adequate to
compute message races in a message-passing concurrent language with dynamic
process spawning and selective receives. Here, we do not consider a specific pro-
gramming language but formalize our developments in the context of a generic
language that includes the basic actions spawn, send, and receive.

As mentioned in the previous section, we consider that each process is
uniquely identified by a pid. A message takes a value v (from a given domain) and
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is uniquely identified by a tag �.3 We further require the domains of pids, values,
and tags to be disjoint. We also consider a generic domain of constraints and a
decidable function match so that, for all value v and constraint cs, match(v, cs)
returns true if the value matches the constraint cs and false otherwise. In
Erlang, for instance, a constraint is associated with the clauses of a receive
statement, i.e., it has the form (p1 [when g1]→ t1; ...;pn [when gn]→ tn),
and function match determines if a value v matches some pattern pi and the
associated guard gi (if any) evaluates to true.

In this work, events have the form p :a, where p is a pid and a is one of the
following actions:

– spawn(p′), which denotes the spawning of a new process with pid p′;
– send(�, v, p′), which denotes the sending of a message with tag � and value v

to process p′;
– rec(�, cs), which denotes the reception of a message with tag � by a receive

statement with a constraint cs.4

In the following, a (finite) sequence is denoted as follows: e1, e2, . . . , en, n ≥ 0,
where n is the length of the sequence. We often use set notation for sequences
and let e ∈ S denote that event e occurs in sequence S. Here, ε denotes an empty
sequence, while S;S′ denotes the concatenation of sequences S and S′; by abuse
of notation, we use the same operator when a sequence has only a single element,
i.e., e1; (e2, . . . , en) and (e1, . . . , en−1); en both denote the sequence e1, . . . , en.
Furthermore, given a sequence of events

S = (p1 :a1, p2 :a2, . . . , pn :an)

we let actions(p, S) denote the sequence of actions (a′
1, a

′
2, . . . , a

′
m) such that

p : a′
1, p : a′

2, . . . , p : a′
m are all and only the events of process p in S and in the

same order. Given a sequence S = (e1, . . . , en), we also say that ei precedes ej ,
in symbols ei ≺S ej , if i < j.

Now, we formalize the notions of interleaving and trace. Intuitively speaking,
an interleaving is a sequence of events that represents a linearization of the
actions of a concurrent execution, while a trace is a mapping from processes to
sequences of actions (so a trace only denotes a partial relation on events).

Definition 1 (interleaving). A sequence of events S = (p1 :a1, . . . , pn :an) is
an interleaving with initial pid p1 if the following conditions hold:

1. Each event (pj : aj) ∈ S is either preceded by an event (pi : spawn(pj)) ∈ S
with pi �= pj, 1 ≤ i < j ≤ n, or pj = p1.

3 Message tags were introduced in [18] to uniquely identify messages, since we might
have several messages with the same value and would be indistinguishable otherwise.

4 Note that receive actions represent the consumption of messages by receive state-
ments rather than their delivery to the process’ mailbox. Observe that the order of
message delivery and message reception might be different (see, e.g., messages �1
and �2 in Fig. 2b).
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2. Each event (pj : rec(�, cs)) ∈ S is preceded by an event (pi :send(�, v, pj)) ∈ S,
1 ≤ i < j ≤ n, such that match(v, cs) = true.

3. For each pair of events pi : send(�, v, pj), pj : rec(�, cs) ∈ S, we have that, for
all pi :send(�′, v′, pj) ∈ S that precedes pi :send(�, v, pj), in symbols

pi :send(�′, v′, pj) ≺S pi :send(�, v, pj)

either match(v′, cs) = false or there is an event pj : rec(�′, cs′) ∈ S such that
pj : rec(�′, cs′) ≺S pj : rec(�, cs).

4. Finally, for all event pi : spawn(pj), pj only occurs as the argument of spawn
in this event, and for all event pi :send(�, v, pj), � only occurs as the argument
of send in this event (uniqueness of pids and tags).

The first two conditions in the definition of interleaving are very intuitive: all
the actions of a process (except for those of the initial process, p1) must happen
after its spawning, and each reception of a message � must be preceded by a
sending of message � and, moreover, the message value should match the receive
constraint. The third condition is a bit more involved but can be explained as
follows: the messages sent between two given processes should be delivered in
the same order they were sent. Thus, if a process pj receives a message � from
process pi, all previous messages sent from pi to pj (if any) should have been
already received or their value should not match the constraint of the receive
statement. The last condition simply ensures that pids and tags are unique in
an interleaving, as mentioned before.

Example 2. Consider the program of Example 1. A possible interleaving is

p1 :spawn(p2), p1 :spawn(p3), p1 :send(�1, v1, p2), p2 : rec(�1, cs1),
p3 :send(�2, v2, p2), p3 :send(�3, v3, p2)

which can be graphically represented by the diagram of Fig. 2a.

An interleaving induces a happened-before relation [17] on events as follows:

Definition 2 (happened-before, independence). Let S = (e1, . . . , en) be
an interleaving. We say that ei = (pi : ai) happened before ej = (pj : aj), i < j,
in symbols ei �S ej, if one of the following conditions hold:

1. pi = pj (i.e., the actions of a given process cannot be swapped);
2. ai = spawn(pj) (i.e., a process cannot perform an action before it is spawned);
3. ai = send(�, v, pj) and aj = rec(�, cs) (i.e., a message cannot be received before

it is sent).

If ei �S ej and ej �S ek, then ei �S ek (transitivity). If neither ei �S ej nor
ej �S ei, we say that the two events are independent.

Given an interleaving S, the associated happened-before relation �S is clearly
a (strict) partial order since the following properties hold:
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– No event may happen before itself (irreflexivity) since ei �S ej requires i < j
by definition.5

– If ei �S ej we have i < j and, thus, ej �S ei is not possible (asymmetry).
– Finally, the relation �S is transitive by definition.

In the following, we say that two interleavings are causally equivalent if they
have the same events and only differ in the swapping of a number of independent
events. Formally,

Definition 3 (causal equivalence). Let S1 and S2 be interleavings with the
same initial pid. We say that S1 and S2 are causally equivalent, in symbols
S1 ≈ S2, if S2 can be obtained from S1 by a finite number of swaps of consecutive
independent events.

We note that our notion of causal equivalence is similar to that of trace equiva-
lence in [23] and that of causally equivalent derivations in [19,20].

The causal equivalence relation on interleavings is an equivalence relation
since it is trivially reflexive (S ≈ S holds for all interleavings), symmetric (S1 ≈
S2 implies S2 ≈ S1 by considering the same swaps in the reverse order), and
transitive (S1 ≈ S2 and S2 ≈ S3 implies S1 ≈ S3 by considering first the swaps
that produce S2 from S1 and, then, those that transform S2 into S3).

It is worthwhile to note that not all independent events can be swapped if
we want to produce a valid interleaving. Let us illustrate this point with an
example:

Example 3. Consider the interleaving shown in Example 2 that is graphically
represented in the diagram of Fig. 2a. Here, we might perform a number of
swaps of independent consecutive events so that we end up with the following
causally equivalent interleaving:

p1 :spawn(p2), p1 :spawn(p3), p3 :send(�2, v2, p2), p1 :send(�1, v1, p2),
p2 : rec(�1, cs1), p3 :send(�3, v3, p2)

which corresponds to the diagram of Fig. 2b. In this case, we were able to swap
the events p1 : send(�1, v1, p2) and p3 : send(�2, v2, p2) because they are indepen-
dent and, moreover, the resulting interleaving does not violate condition (3) in
Definition 1 since match(v2, cs1) = false.

In contrast, we could not swap p1 : send(�1, v1, p2) and p3 : send(�3, v2, p2)
since the resulting sequence of events

p1 :spawn(p2), p1 :spawn(p3), p3 :send(�2, v2, p2), p3 :send(�3, v3, p2),
p1 :send(�1, v1, p2), p2 : rec(�1, cs1)

would not be an interleaving because it would violate condition (3) in Defini-
tion 1; namely, we have match(v3, cs1) = true and, thus, event p2 : rec(�1, cs1)
would not be correct in this position (message �3 should be received instead).

5 Note that repeated events in an interleaving are not allowed by Definition 1.
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In general, we can easily prove that the swap of two independent events in
an interleaving always produces a valid interleaving (according to Definition 1)
except when the considered events are both send with the same source and target
pids. In this last case, it depends on the particular interleaving, as illustrated in
the previous example.

A straightforward property is the following: causally equivalent interleavings
induce the same happened-before relation, and vice versa.

Lemma 1. Let S, S′ be interleavings with the same initial pid. Then, we have
S ≈ S′ iff �S=�S′ .

While interleavings might be closer to an actual execution, it is often more
convenient to have a higher-level representation, one where all causally equivalent
interleavings have the same representation. For this purpose, we introduce the
notion of trace as a mapping from pids to sequences of actions. Here, the key
idea is to keep the actions of each process separated.

First, we introduce some notation. Let τ be a mapping from pids to sequences
of actions, which we denote by a finite mapping of the form

[p1 �→ A1; . . . ; pn �→ An]

Given an interleaving S, we let

tr(S) = [p1 �→ actions(p1, S); . . . ; pn �→ actions(pn, S)]

where p1, . . . , pn are the pids in S. We also let τ(p) denote the sequence of actions
associated with process p in τ . Also, τ [p �→ A] denotes that τ is an arbitrary
mapping such that τ(p) = A; we use this notation either as a condition on τ
or as a modification of τ . We also say that (p : a) ∈ τ if a ∈ τ(p). Moreover,
we say that p1 : a1 precedes p2 : a2 in τ , in symbols (p1 : a1) ≺τ (p2 : a2), if
p1 = p2, τ(p1) = A, and a1 precedes a2 in A; otherwise, the (partial) relation is
not defined.

Definition 4 (trace). A trace τ with initial pid p0 is a mapping from pids to
sequences of actions if tr(S) = τ for some interleaving S with initial pid p0.

One could give a more direct definition of trace by mimicking the conditions of
an interleaving, but the above, indirect definition is simpler.

A trace represents a so-called Mazurkiewicz trace [23], i.e., it represents a
partial order relation (using the terminology of model checking [12]), where all
linearizations of this partial order represent causally equivalent interleavings. In
particular, given a trace τ , we let sched(τ) denote the set of all causally equivalent
linearizations of the events in τ , which is formalized as follows:

Definition 5. Let τ be a trace with initial pid p0. We say that an interleaving S
with initial pid p0 is a linearization of τ , in symbols S ∈ sched(τ), if tr(S) = τ .

The following property is a trivial consequence of our definition of function sched:
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Lemma 2. Let S, S′ be interleavings with the same initial pid and such that
actions(p, S) = actions(p, S′) for all pid p in S, S′. Then, tr(S) = tr(S′).

Proof. The proof is a direct consequence of the definition of function tr, since
only the relative actions of each process are recorded in a trace.

The next result states that all the interleavings in sched(τ) are indeed causally
equivalent:

Theorem 1. Let τ be a trace. Then, S, S′ ∈ sched(τ) implies S ≈ S′.

Proof. Let us consider two different interleavings S, S′ ∈ sched(τ). By the defini-
tion of function tr and Definition 5, S and S′ have the same events and the same
initial pid. Also, both interleavings have the same relative order for the actions
of each process. Moreover, by definition of interleaving (Definition 1), we know
that all events p :a of a process (but the initial one) must be preceded by an event
p′ : spawn(p), and that all receive events p : rec(�, cs) must be preceded by a cor-
responding send event p′ : send(�, v, p). Therefore, the happened-before relation
induced from S and S′ must be the same and, thus, S ≈ S′ by Lemma 1. ��
Trivially, all interleavings in sched(τ) induce the same happened-before rela-
tion (since they are causally equivalent). We also say that τ induces the same
happened-before relation (i.e., �S for any S ∈ sched(τ)) and denote it with �τ .

The following result is also relevant to conclude that a trace represents all
and only the causally equivalent interleavings.

Theorem 2. Let τ be a trace and S ∈ sched(τ) an interleaving. Let S′ be an
interleaving with S′ �∈ sched(τ). Then, S �≈ S′.

Proof. Assume that S and S′ have the same events and that actions(p, S) =
actions(p, S′) for all pid p in S, S′ (otherwise, the claim follows trivially). Let
us proceed by contradiction. Assume that S′ �∈ sched(τ) and S ≈ S′. Since
actions(p, S) = actions(p, S′) for all pid p in S, S′, we have tr(S) = tr(S′) by
Lemma 2. Thus, S′ ∈ sched(τ), which contradicts our assumption. ��
Example 4. Consider the following trace τ , where we abbreviate send(�i, vi, pi)
as si and rec(�i, csi) as ri:

[ p1 �→ spawn(p3), spawn(p2), spawn(p4), spawn(p5), r5, s7; p2 �→ s2;
p3 �→ r1, s3, r2, r4, s5, r6; p4 �→ r3; p5 �→ s1, s4, s8 ]

A possible execution following this trace is graphically depicted in Fig. 3, where
spawn actions have been omitted for clarity. Moreover, we assume that arrow-
heads represent the point in time where messages are delivered to the target
process. Despite the simplicity of traces, we can extract some interesting conclu-
sions. For example, if we assume that τ is the trace of a terminating execution,
we might conclude that messages �7 and �8 are orphan messages (i.e., messages
that are sent but never received) since there are no corresponding events r7 and
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Fig. 3. Message-passing diagram. Processes (pi, i = 1, . . . , 5) are represented as vertical
dashed arrows, where time flows from top to bottom. Message sending is represented
by solid arrows labeled with a tag (�i), i = 1, . . . , 8. Note that all events associated
with a message �i have the same subscript i.

r8 in τ . A possible interleaving in sched(τ) that follows the diagram in Fig. 3 is
as follows:

p1 :spawn(p3), p1 :spawn(p2), p1 :spawn(p4), p1 :spawn(p5),
p5 :s1, p3 :r1, p2 :s2, p3 :s3, p3 :r2, p5 :s4, p3 :r4,
p4 :r3, p3 :s5, p4 :s6, p1 :r5, p3 :r6, p1 :s7, p5 :s8

By swapping, e.g., events p2 :s2 and p3 :s3 we get another interleaving in sched(τ),
and so forth. Note that p2 :s2 and p3 :s3 are independent since p3 :s3 ≺τ p3 :r2.

In the following, we assume that the actions of a process are uniquely determined
by the order of its receive events (equivalently, by the order in which messages
are delivered to this process). To be more precise, given a sequence of messages
delivered to a given process, the actions of this process are deterministic except
for the choice of fresh identifiers for the pids of spawned processes and the tags of
sent messages, which has no impact on the outcome of the execution. Therefore,
if we have two executions of a program where each process receives the same
messages and in the same order, and perform the same number of steps, then
the computations will be the same (identical, if we assume that the same process
identifiers and message tags are chosen).

The following notion of subtrace is essential to characterize message races:

Definition 6 (subtrace). Given traces τ, τ ′ with the same initial pid, we say
that τ ′ is a subtrace of τ , in symbols τ ′ 
 τ , iff for all pid p in τ, τ ′ we have
that the sequence τ ′(p) is a prefix of the sequence τ(p).

Intuitively speaking, we can obtain a subtrace by deleting the final actions of
some processes. However, note that actions cannot be arbitrarily removed since
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the resulting mapping must still be a trace (i.e., all linearizations must still
be interleavings according to Definition 1). For instance, this prevents us from
deleting the sending of a message whose corresponding receive is not deleted.

Let us conclude this section with a declarative notion of message race:

Definition 7 (message race). Let τ be a trace with τ(p) = a1, . . . , an and
ai = rec(�, cs), 1 ≤ i ≤ n. There exists a message race between � and �′ in
τ iff there is a subtrace τ ′ 
 τ such that τ ′(p) = a1, . . . , ai−1 and τ ′[p �→
a1, . . . , ai−1, rec(�′, cs)] is a trace.

Informally speaking, we have a message race whenever we have an execution
which is a prefix of the original one up to the point where a different message is
received.

Consider, e.g., the trace in Example 4. If we assume that the value of message
�4 matches the constraints cs2 of receive r2 = rec(�2, cs2), i.e., match(v4, cs2) =
true, we have a race between �2 and �4 since we have the following subtrace τ ′

[ p1 �→ spawn(p3), spawn(p2), spawn(p4), spawn(p5),��r5,��s7; p2 �→ s2;
p3 �→ r1, s3,��r2,��r4,��s5,��r6; p4 �→ r3; p5 �→ s1, s4, s8 ]

and τ ′[p3 �→ r1, s3, rec(�4, cs2)] is a trace according to Definition 4.

4 Computing Message Races and Race Variants

In this section, we introduce constructive definitions for computing message races
and race variants from a given execution trace. Intuitively speaking, once we
identify a message race, a race variant is a partial trace that can be used to
drive the execution of a program so that a new interleaving which is not causally
equivalent to the previous one is obtained. Computing message races and race
variants are essential ingredients of a systematic state-space exploration tool.

First, we introduce the notion of race set that, given a trace τ and a message
� that has been received in τ , computes all the messages that race with � in τ
for the same receive (if any). It is worthwhile to note that race sets are defined
on traces, i.e., message races do not depend on a particular interleaving but on
the class of causally equivalent interleavings represented by a trace.

Definition 8 (race set). Let τ be a trace with er = (p : rec(�, cs)) ∈ τ . Consider
a message �′ �= � with e′

s = (p′ :send(�′, v′, p)) ∈ τ such that match(v′, cs) = true.
We say that messages � and �′ race for er in τ if

– er does not happen before e′
s, i.e., er ��τ e′

s;
– for all event e′′

s = (p′ : send(�′′, v′′, p)) ∈ τ such that e′′
s ≺τ e′

s either
match(v′′, cs) = false or there exists an event (p : rec(�′′, cs′′)) ∈ τ with
(p : rec(�′′, cs′′)) ≺τ (p : rec(�, cs)).

We let race setτ (�) denote the set all messages that race with � in τ .
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Intuitively speaking, the definition above requires the following conditions for
messages � and �′ to race for a receive statement er:

1. The target of both messages must be the same (p) and their values should
match the constraint cs in er (note that we already know that the value of
message � matches the constraint of er since τ is a trace).

2. The original receive event, er, cannot happen before the sending event e′
s of

message �′. Otherwise, we had a dependency and removing er would prevent
e′
s to happen (in a well-formed trace).

3. Finally, we should check that there are no other messages sent by the same
process (and to the same target) that match the constraint cs and have not
been received before er (since, in this case, the first of such messages would
race with � instead).

Given a trace τ and a receive event p : rec(�, cs) ∈ τ , a naive algorithm for
computing the associated race set, race setτ (�), can proceed as follows:

– First, we identify the set of events of the form p′ : send(�′, v′, p) in τ with
�′ �= �, i.e., all send events where the target process is p and the message tag
is different from �.

– Now, we remove from this set each send event p′ : send(�′, v′, p) where p :
rec(�, cs) �τ p′ :send(�′, v′, p).

– We also remove the events p′ :send(�′, v′, p) where match(v′, cs) = false.
– Finally, for each subset of send events from the same process, we select (at

most) one of them as follows. We check for each send event (starting from the
oldest one) whether there is a corresponding receive event in p which precedes
p : rec(�, cs). The message tag of the first send event without a corresponding
receive (if any) belongs to the race set, and the remaining ones (from the
same process) can be discarded.

Example 5. Consider again the trace τ from Example 4. Let us focus on the
second receive event of process p3, denoted by r2. Here, we have five (other)
messages with the same target (p3): �1, �4, �6, �7 and �8. Let us further assume
that the values of all messages match the constraint of r2 except for message �4.
Let us analyze each message separately:

– Message �1 is excluded from the message race since there exists a correspond-
ing receive event, r1, and r1 ≺τ r2. Hence, �1 �∈ race setτ (�2).

– As for message �4, we trivially have r2 ��τ s4. Moreover, there is a previous
event, s1, from p5 to p3 but it has already been received (r1). However, we
assumed that the value of message �4 does not match the constraints of r2
and, thus, �4 �∈ race setτ (�2).

– Consider now message �6. At first sight, it may seem that there is a depen-
dency between r2 and the sending event s6 (since message �2 was delivered
before s3). However, this is not the case since event s3 happened before r2
and, thus, r3 �τ s6 but r2 ��τ r3. Moreover, there are no previous send
events in p4 and, thus, �6 ∈ race setτ (�2).
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– Regarding message �7, we have r2 �τ s7 since r2 �τ s5, s5 �τ r5 and r5 �τ

s7. Therefore, messages �2 and �7 cannot race for r2 and �7 �∈ race setτ (�2).
– Finally, consider message �8. Trivially, we have r2 ��τ s8. Now, we should

check that all previous sent messages (�1 and �4) have been previously received
or do not match the constraints of er, which is the case. Therefore, �8 ∈
race setτ (�2).

Hence, we have race setτ (�2) = {�6, �8}.

As mentioned before, computing message races can be useful to identify alterna-
tive executions which are not causally equivalent to the current one. Ideally, we
want to explore only one execution (interleaving) per equivalence class (trace).
For this purpose, we introduce the notion of race variant which returns a (typi-
cally partial) trace, as follows:

Definition 9 (race variant). Let τ [p �→ A; rec(�, cs);A′] be a trace with �′ ∈
race setτ (�). The race variant of τ w.r.t. � and �′, in symbols variantτ (�, �′), is
given by the (possibly partial) trace

rdep(A′, τ [p �→ A; rec(�′, cs)])

where the auxiliary function rdep is inductively defined as follows:

rdep(A, τ) =⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

τ if A = ε
rdep(A′, τ) if A = rec(�, cs);A′

rdep(A′;A′′, τ [p �→ ε]) if A = spawn(p);A′, τ(p) = A′′

rdep(A′;A∗, τ [p �→ A′′]) if A = send(�, v, p);A′, τ(p) = A′′; rec(�, cs);A∗

rdep(A′, τ) if A = send(�, v, p);A′, rec(�, cs) �∈ τ(p)

Intutively speaking, variantτ (�, �′) removes the original receive action rec(�, cs)
from τ as well as all the actions that depend on this one (according to the
happened-before relation). Then, it adds rec(�′, cs) in the position of the original
receive.

Example 6. Consider again the execution trace τ from Example 4, together
with the associated race set computed in Example 5: race setτ (�) = {�6, �8}.
Let us consider �6. Here, the race variant variantτ (�2, �6) is computed from
rdep((r4, s5, r6), τ [p3 �→ r1, s3, rec(�6, cs)]) as follows:

rdep((r4, s5, r6), τ [p3 �→ r1, s3, rec(�6, cs)])
= rdep((s5, r6), τ [p3 �→ r1, s3, rec(�6, cs)])
= rdep((r6, s7), τ [p1 �→ spawn(p3), spawn(p2), spawn(p4), spawn(p5);

p3 �→ r1, s3, rec(�6, cs)])
= rdep((s7), τ [p1 �→ spawn(p3), spawn(p2), spawn(p4), spawn(p5);

p3 �→ r1, s3, rec(�6, cs)])
= rdep(ε, τ [p1 �→ spawn(p3), spawn(p2), spawn(p4), spawn(p5);

p3 �→ r1, s3, rec(�6, cs)])
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Therefore, the computed race variant τ ′ is as follows:

[ p1 �→ spawn(p3), spawn(p2), spawn(p4), spawn(p5); p2 �→ s2;
p3 �→ r1, s3, rec(�6, cs); p4 �→ r3; p5 �→ s1, s4, s8 ]

In the following, given traces τ, τ ′, if τ is a subtrace of τ ′, i.e., τ 
 τ ′, we also
say that τ ′ extends τ . Let us consider a trace τ and one of its race variants τ ′.
The next result states that there is no interleaving in sched(τ ′′) that is causally
equivalent to any interleaving of sched(τ) for all traces τ ′′ that extend the race
variant τ ′. This is an easy but essential property to guarantee the optimality in
the number of variants considered by a state-space exploration algorithm.

Theorem 3. Let τ be a trace with er = (p : rec(�, cs)) ∈ τ and �′ ∈ race setτ (�).
Let τ ′ = variantτ (�, �′) be a race variant. Then, for all trace τ ′′ that extends τ ′

and for all interleavings S ∈ sched(τ) and S′′ ∈ sched(τ ′′), we have S �≈ S′′.

Proof. Consider first a (possibly partial) trace τ1 obtained from rdep(A′, τ [p �→
A; rec(�, cs)]), i.e., τ1 is equal to the race variant except for the fact that we have
not changed yet the considered receive event. Then, it is easy to see that τ1 is
a subtrace of τ , τ1 
 τ , since rdep just follows the happened-before relation
in order to consistently remove all dependences of er. Note that τ1 and τ ′ only
differ in the receive event (rec(�, cs) in τ1 and rec(�′, cs) in τ ′). Trivially, for
all interleavings S1 ∈ sched(τ1) and S′ ∈ sched(τ ′), we have S �≈ S′ since the
receive events rec(�, cs) and rec(�′, cs) can only happen in one of the interleavings
but not in both of them. Moreover, for all trace τ ′′ that extends τ ′, and for all
interleavings S′′ ∈ sched(τ ′′) and S ∈ sched(τ), we have S′′ �≈ S since they will
always differ in the receive events above. ��
The definitions of message race and race variant can be used as the kernel of a
state-space exploration technique that proceeds as follows:

1. First, a random execution of the program is considered, together with its
associated trace.

2. This trace is used to compute message races (if any) as well as the corre-
sponding race variants.

3. Then, each computed race variant is used to drive the execution of the pro-
gram up to a given point, then continuing the execution nondeterministically
according to the standard semantics. We gather the traces of these executions
and the process starts again until all possible executions have been explored.

A formalization of such an algorithm can be found in the context of reachability
testing [21] using SYN-sequences instead of traces.

On the other hand, the prefix-based tracing technique for Erlang introduced
in [15] could be useful to instrument programs with a (possibly partial) trace so
that their execution follows this trace and, then, continues nondeterministically,
eventually producing a trace of the complete execution (point 3 above). The
notion of trace in [15] is different to our notion of trace, though: message delivery
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is explicit and traces do not include message values nor receive constraints.
Nevertheless, adapting their developments to our traces would not be difficult.

The definitions of message race and race variant could also be useful in the
context of causal-consistent replay debugging [19,20]. First, we note that our
traces could be straightforwardly used for replay debugging since they contain
strictly more information than the logs of [19,20]. However, in contrast to the
original logs, our traces would allow the replay debugger CauDEr [10] to also
show the message races in a particular execution, and then let the user to replay
any selected race variant, thus improving the functionality of the debugger. Some
ongoing work along these lines can be found in [14]. However, the traces consid-
ered in [14] are similar to those in [15] (i.e., they have explicit events for message
delivery and skip message values and receive constraints). As a consequence,
the races considered in [14] are only potential races since there are no guaran-
tees that message values in these races actually match the corresponding receive
constraints. Nevertheless, an extension of CauDEr using our traces and the asso-
ciated definitions of message race and race variant could be defined following a
similar scheme.

5 Discussion and Future Work

The closest approach to our notion of trace are the logs of [19,20], which where
introduced in the context of causal-consistent replay debugging for a message-
passing concurrent language. In this work, we have extended the notion of log
with enough information so that message races can be computed. Indeed, this
work stemmed from the idea of improving causal-consistent replay debugging
[19,20] with the computation of message races, since this information might
be useful for the user in order to explore alternative execution paths. A first
implementation in this direction is described in [14], although the traces are
slightly different, as discussed above.

Another close approach is that of reachability testing, originally introduced
in [16] in the context of multithreaded programs that perform read/write opera-
tions. This approach was then extended to message-passing programs in [22,26]
and later improved and generalized in [21].6 The notion of SYN-sequence in
reachability testing (and, to some extend, the program executions of [8]) share
some similarities with our traces since both represent a partial order with the
actions performed by a number of processes running concurrently (i.e., they basi-
cally denote a Mazurkiewicz trace [23]). Nevertheless, our traces are tailored to a
language with selective receives by adding message values and receive constraints
([21], in contrast, considers different ports for receive statements). Moreover, to
the best of our knowledge, these works have not considered a language where
processes can be dynamically spawned, as we do.

Both reachability testing and our approach share some similarities with so-
called stateless model checking [12]. The main difference, though, is that state-
6 [24] also deals with message-passing concurrent programs, but only blocking send

and receive statements are considered.



Computing Race Variants in Message-Passing Concurrent Programming 205

less model checking works with interleavings. Then, since many interleavings
may boil down to the same Mazurkiewicz trace, dynamic partial order reduction
(DPOR) techniques are introduced (see, e.g., [1,11]). Intuitively speaking, DPOR
techniques aim at producing only one interleaving per Mazurkiewicz trace. Com-
puting message races is more natural in our context thanks to the use of traces,
since DPOR techniques are not needed. Concuerror [5] implements stateless
model checking for Erlang [1,4], and has been recently extended to also consider
observational equivalence [3], thus achieving a similar result as our technique
regarding the computation of message races, despite the fact that the techniques
are rather different (using traces vs using interleavings + DPOR).

Another, related approach is the detection of race conditions for Erlang pro-
grams presented in [6]. However, the author focuses on data races (that may
occur when using some shared-memory built-in operators of the language) rather
than message races. Moreover, the detection is based on a static analysis, while
we consider a dynamic approach to computing message races.

To conclude, we have introduced appropriate notions of interleaving and
trace that are useful to represent concurrent executions in a message-passing
concurrent language with dynamic process spawning and selective receives. In
particular, our notion of trace is essentially equivalent to a Mazurkiewicz trace,
thus allowing us to represent all causally equivalent interleavings in a compact
way. Despite the simplicity of traces, they contain enough information to analyze
some common error symptoms (e.g., orphan messages) and to compute message
races, which can then give rise to alternative executions (specified by so-called
race variants, i.e., partial traces).

As for future work, we will consider the computation of message races from
incomplete traces, since it is not uncommon that concurrent programs are exe-
cuted in an endless loop and, thus, the associated traces are in principle infinite.
We also plan to extend the traces with more events (like message deliver and
process exit) so that they can be used to detect more types of error symptoms
(like process deadlocks and lost or delayed messages).

Finally, another interesting line of research involves formalizing and imple-
menting an extension of the causal-consistent replay debugger CauDEr [10] for
Erlang in order to also show message races (our original motivation for this
work). A preliminary approach along these lines can be found in [14], though
the considered traces are slightly different, as mentioned above. In this context,
we also plan to analyze efficiency issues and investigate the definition of efficient
algorithms for computing race sets.
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