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Abstract. This paper investigates the effects of rolling horizon fore-
cast updates on a production system relying on material requirements
planning (MRP). The underlying demand model is the MMFE (mar-
tingale model of forecast evolution) model extended by forecast biases
revealed certain periods before delivery, i.e. information quality is not
strictly increasing as assumed in MMFE. Simulation is applied to model
the MRP planning method and the shop floor behavior of a two stage
production system including a two level bill-of-materials with 8 finished
goods and 4 semi-finished materials. Several scenarios on the demand
model parameterization are tested and a finite solution space for the
MRP planning parameter safety stock is enumerated to minimize overall
costs. In this numerical study, preliminary results to identify the influ-
ence of forecast uncertainty on MRP planning parameter safety stock
are identified when rolling horizon forecast updates occur.

Keywords: Forecast errors · Production planning · Production order
accuracy · Forecast evolution · Simulations

1 Introduction

The MRP (material requirements planning) method is often applied in practice
for production planning, therefore, studying different effects on the optimal plan-
ning parameters of this method is a relevant field of research. Standard MRP is
a deterministic planning approach assuming that demand and shop floor behav-
ior have no stochastic effects. In practice, it is usually applied in a rolling horizon
manner to react on changes on the shop floor level and customer demand [1]. For
each MRP planning run, demand information is updated which leads to stochastic
effects in gross requirements. In general it can be observed, that customer demand
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information quality decreases for due dates further in the future. Customer fore-
casts can be biased, meaning an overbooking peak or underbooking trough several
periods before delivery, whereby forecast values then gradually (or steeply) move
back to the really needed amounts [2]. The martingale model of forecast evolu-
tion (MMFE) is a known modeling technique for evolving demand forecasts and
is applicable in industry and investigated in inventory theory [3–5]. In the MMFE
model, forecasts appear a certain time in advance and are gradually updated in a
rolling horizon manner until due date. MRP parameters are planned lead time, lot-
sizing rules and safety stock, all of which can be applied to counteract uncertainties
[6]. Safety stock and safety lead time (i.e. considering buffer lead times) are effective
ways to protect against stochastic demand. Some authors emphasize that lot-sizes
and safety stocks should always be computed together to minimize the costs [7].
Other researchers even claim that it is only useful to consider all parameters at the
same time [8]. Previous studies have shown the effects of demand uncertainty on
unit costs, but with greater focus on lot sizing rules [9]. Zhao et al. [10] evaluated
alternative methods of establishing the safety stock for the MPS under demand
uncertainties by using the measures of historical forecast accuracy but assume an
independent and identical distributed customer demand. Enns [11] discussed the
use of planned lead times and safety stocks to mitigate forecast bias and demand
uncertainty for a batch production system using MRP.

Multiple studies suggest that there is no analytical method to directly deter-
mine the safety stocks in an MRP environment with demand uncertainties [7],
therefore, simulation is applied in this study to mimic the MRP planned produc-
tion system with stochastic shop floor behavior and different stochastic demand
model parameterizations whereby inventory and backorder costs are evaluated.
Simulation is appropriate since the relation between MRP planning, stochastic
demand forecast updates, and shop floor uncertainties cannot be treated in an
analytical way. This paper presents preliminary results of optimal safety stock
related to demand forecasts. Forecasts are received directly from the customers
on a rolling horizon basis and evolve from a long-term forecast to the due date.
The effect of different forecast uncertainty levels on the optimal safety stock in a
rolling horizon forecast update system with and without forecast bias is studied.
After the introduction, the applied demand forecast model is described. Next
the production system used for the simulation study is introduced, followed by
a description of the simulation experiments, selected results and a conclusion.

2 Demand and Forecast Model Description

To model the forecast behavior of the customer we use the following model.
The demand model reflects the customer behavior of changing the amounts
with an upcoming due date. This introduces uncertainty into the production
system of the supplier. The forecast vector Fi,j defines the forecasts for all finish
goods (FG) at due date i for j periods before delivery. There also exists a long-
term forecast vector μ for all FG. H periods before the due date the customer
starts updating the forecast periodically based on a rolling horizon. The forecast
updates are then modeled as the follows:
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Fi,j = μ for j ∈ {H + 1, . . . ,∞} Fi,j = Fi,j−1 + εi,j for j ∈ {0, . . . , H} (1)

whereby εi,j is the forecast update vector for due date i observed j periods before
delivery (the updating period is period i-j ). In the standard MMFE modelling
this update vectors are identically disturbed multivariate normal random vectors
with mean 0 (see [4] for more details). To create different customer behavior,
the calculation of the update vector is varied. If the customer has unsystematic
behavior, the update vector is calculated similar to the standard MMFE. In
detail we simplify the stochastic updates to:

εi,j = Sj(μ, 0, α) ∼ N(0, αajμ) (2)

whereby Sj(μ, 0, α) is a vector of normal distributed random variables with
mean 0 and standard variation αμ. Note that if aj is constant for all j, all forecast
updates have the same variance, independent of the periods before delivery j, α
defines the level of uncertainty varied in the simulation study. If the customer
behavior is systematic, we assume that forecast is several periods before delivery,
on average, too high or too low. In this paper the forecast bias changes for periods
before delivery j. To realize this, we define the update vector as follows:

εi,j = Sj(μ, γ, α) ∼ N(γcjμ, αajμ) (3)

whereby γ is a scaling factor varied in the simulation study and cj is a shaping
factor. This allows us to create different biased customer behaviors like over- and
underbooking in different magnitudes with the same shape for each finish good.
Note that a biased forecast is also stochastic, the uncertainty depends on αaj ,
and that the biased information update does not necessarily increase information
quality. In conclusion: α describes the level of uncertainty, γ the level of bias, aj

the shaping of uncertainty, and cj the shaping of the bias.

3 Production System Simulation Model

The simulation setting consists of a two-stage production system including a two-
level bill-of-materials (BOM) with eight FG and four semi-finished goods, whereby
every semi-finished good is converted into two different FGs. The FGs are pro-
duced on two different machines with the same processing time 0.002933 peri-
ods/piece and setup times of 0.00033 periods/piece for all materials, both times
are not deterministic during simulation runs. The long-term forecast vector μ is
defined as μ = (200, 400,. . . , 1600). Each semi-finished good consumes the same
raw material which is always available. The production system is continuously
available. To evaluate a production system which is under stress due to high cus-
tomer demand variability meaning irregular order times a low planned capacity
utilization is assumed. This allows the production system to mitigate uncertain-
ties with safety stock to hold service level. Therefore the system is designed for a
planned capacity utilization of 83.55%, including 8.75% for set-ups. As a result,
in 74.8% of the available time materials are produced. Fixed order Period (FOP)
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with a value of 3 is the selected lot sizing policy. The MRP run is calculated once
a period and the forecasts are as well updated once a period. We define the fol-
lowing parameters for the simulation run: The safety stock vector ST for all FG is
defined as:

ST = x ∗ μ, with x ∈ [0, 0.1, . . . , 2] (4)

We apply the same safety stock related to the long-term forecast for all FGs. For
semi-finished goods no safety stock is applied. The planned lead timed is defined
with three periods. The used simulation framework implements a discrete event
simulation model and uses a customer order agent to mimic the periodic order
behavior of updating the customer demand. Within the simulation framework,
the standard MRP logic with netting, lot-sizing, offsetting and BOM explosion
is applied [12]. The run-time for the iterations of the simulation experiments are
set to 1800 periods and 30 replications are used to observe the stochastic in the
production system. WIP costs of 0.5 CU/period, FGI costs of 1 CU/period and
two levels of backorder costs, i.e. b = 99 and b = 198 CU/period, are applied.

4 Numerical Study

A set of scenarios is defined to answer the research questions and derive
some managerial insights. The numerical study is conducted using the previous
described production system and customer behavior with varying lognormally
distributed interarrival times, that lead on average to 0.85 orders per product
and day. The customer behavior is unsystematic in scenarios A1 and A2, there-
fore, α varies from 0 to 2 with step-size 0.25. The customer behavior is systematic
in scenarios B1 and B2, therefore, γ varies from 0 to 2 with step-size 0.25. The
following detailed specifications are applied. A1: Basic Scenario aj = 0.1 for all j ;
γ = 0; H = 10. A2: Scenario with shorter forecast horizon aj = 0.1 for all j ; γ =
0; H = 5. B1: Biased forecast with overbooking α = 1; aj = 0.1 for all j ; cj =
[−0.05, −0.05, −0.1, 0.1, 0.05, 0.05] for j = [3, 4, 5, 6, 7, 8]; H = 10. B2: Biased
forecast with underbooking α = 1; aj = 0.1 for all j ; cj = [0.05, 0.05, 0.1, −0.1,
−0.05, −0.05] for j = [3, 4, 5, 6, 7, 8]; H = 10. The obtained simulation results
for the unsystematic customer behavior, i.e. A1 and A2, in Fig. 1 show a rising
trend for safety stock factor (ssf) for increasing alpha value for all backorder cost
rates and scenarios. Consequently more forecast introduced uncertainty in the
customer demand requires a higher safety stock to fulfill customer demand and
hold service level. Detailed results (omitted here due to space reasons) show that
with an increasing α value, the minimal overall costs (inventory + backorder)
represented by the ssf also tend to increase. The results of the biased scenarios,
see Fig. 2, show that for B1, i.e. overbooking, the optimal safety stock is rather
low with no clear trend related to the level of bias. However, for B2, i.e. under-
booking, the ssf is rapidly increasing with respect to level of bias. This shows that
overbooking implies a certain FGI buffer and, therefore, only few safety stock is
necessary and underbooking needs to be hedged by a higher safety stocks. This
finding is in line with [11], however, it extends his study since here also rolling
horizon forecast updates are investigated.
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Fig. 1. Optimal safety stock factor unsystematic scenarios A1 and A2.

Fig. 2. Optimal safety stock factor for biased scenarios B1 and B2.

5 Conclusion

In this paper the optimal safety stock of finished goods in an MRP planned
production system under different rolling horizon forecast update settings was
investigated and first preliminary results are shown. In detail, it is assumed that
customers update their long-term forecast ten or five periods before delivery with
unbiased or biased forecast errors. The MRP planning is conducted each period
applying the updated demand values. With a simple enumeration scheme, the
safety stock to minimize inventory+backorder costs is identified. The numerical
results show that for unbiased forecast updates, a higher uncertainty leads to
higher optimal safety stocks and higher overall costs. For biased updates, over-
booking already implies a certain buffer and only a low safety stock is necessary,
while underbooking needs to be hedged by higher safety stocks. In our study
several constraining assumptions were made that have to be relaxed in further
research. For example, further studies will investigate the interrelation of the
MRP parameters (lead time, lot-size and safety stock) in a broader solution
space.
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