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Abstract. In the dial-a-ride problem, customers have to be transported
from different pickup to drop-off locations. Various constraints such as
time windows and a maximum ride time per passenger need to be con-
sidered. In the dynamic version of the problem, not all customer requests
are known in advance, but arrive during the operation time. Therefore,
the maximization of the number of served customers is usually set as the
optimization goal. Nevertheless, in the vast majority of known heuristics,
the total distance is used to guide the optimization. In this paper, we
present different metrics that should enable the evaluation of the inser-
tion potential of future customers and lead to a higher acceptance rate
through their use in solution procedures. We show that even a single met-
ric can provide better results than the distances and present a Markov
decision process-based approach to enable an agent trained by reinforce-
ment learning to perform even more anticipatory decision making by
considering multiple metrics simultaneously.

Keywords: Dynamic dial-a-ride problem · Metrics · Reinforcement
learning

1 Introduction

As a compromise between expensive cabs and unflexible public transport, on-
demand ridesharing services continue to gain in popularity. In order to model
sharing concepts, the dial-a-ride problem (DARP) as a variant of the vehicle
routing problem with time windows can be used. In this problem, a set of requests
is served by a fleet of vehicles. Each request consists of taking a customer from
a pickup to a drop-off point. The customers specify time windows for pickup or
drop-off as well as a maximum ride time (often a linear function depending on
the direct travel time).

The DARP combines a routing and a scheduling part. First, the routing has
to determine which vehicle serves which customer in what order. The subsequent
scheduling determines the exact timing so that time windows and the maximum
ride time are respected. The goal of the static problem, in which all requests
are known in advance, is usually to minimize the total travel distance. In a
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dynamic DARP, only some of the requests are known at the beginning of the
planning horizon, the remainder are received during the operation. How many
of the requests are dynamic is specified by the degree of dynamism. Due to the
consideration of requests arriving at short notice, it may not be possible to serve
all requests. Hence, the maximization of the number of requests that can be
accepted is typically chosen as the optimization goal.

There are well known approaches that adapt the scheduling part to be able to
respond to the dynamic aspect of the DARP (see, e.g., [1]). The idea is to generate
a schedule that facilitates the insertion of future requests. However, the routing
part is usually disregarded. Instead, the corresponding approaches focus on inser-
tion heuristics that may be followed by local search procedures. These are executed
for a certain number of iterations or until a new event (e.g., arrival of a new request)
occurs (see, e.g., [2]). Nevertheless, the respective insertion and local search meth-
ods only minimize distances, which leads to an efficient use of vehicles but does not
explicitly maximize the insertion potential for future requests.

In this contribution, we seek to find a metric whose optimization in the rout-
ing part of a solution procedure leads to a higher acceptance rate than just using
the distances. To this end, we evaluate different metrics for estimating the inser-
tion potential of future requests (cf. Sect. 2). In Sect. 3, we show the superiority
of one of the metrics over the previously used distances. In Sect. 4, we addi-
tionally present a reinforcement learning-based approach that could enable even
more anticipatory decision making. Section 5 contains a summary and provides
an outlook on future research.

2 Metrics for Estimating the Insertion Potential

The metrics used to guide the optimization are intended to reflect the potential
of a solution to allow future request insertions. According to the literature and
own preliminary experiments, primarily the time windows and secondarily the
maximum ride time are the critical constraints. Consequently, we incorporate
the subsequent four metrics (it is preferable if the metrics have high values):

Mean Waiting Time: For each arc 〈A,B〉 in the current solution (A and B
are customer nodes), it is determined how long the respective vehicle waits on
that arc. Thereby, the waiting time between end of service and departure at A
as well as between arrival and start of service at B are taken into account. To
evaluate the entire solution, the average waiting time is calculated over all arcs
that are still modifiable, i.e., have not yet been fully or partially traversed.

Ellipse Area: Let 〈A,B〉 again be an arc in the solution. In order to now
maximize the probability of being able to insert a random next request between
A and B, we calculate where the node to be inserted (pickup or drop-off) could be
located (assuming suitable time windows). We specify the earliest departure time
at node A (EDA) and the latest arrival time at node B (LAB). The difference
of LAB and EDA is the total available time (atAB) for the trip from A to B.
Determining all points C that can be reached within this time via the route
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Fig. 1. Example of the ellipse area metric

A → C → B results in an ellipse with focal points A and B (see Fig. 1). We take
the area of the ellipse as an indicator of the probability of inserting a random
request on 〈A,B〉. With (1), we obtain the area according to:

ellipse area =
π

4
· atAB ·

√
(atAB)2 − (tAB)2 (1)

with tAB being the direct travel time from A to B. To evaluate the entire solution,
a vehicle score Sk is determined by averaging the area of the ellipse over all arcs
still to be traversed by vehicle k. Formula (2) is then used to combine the scores
of each of the K existing vehicles into a joint score S:

S =

(
1
K

K∑
k=1

√
Sk

)2

(2)

Mean Ride Time Slack: We identify the average ride time slack (difference
between actual and maximum ride time per customer) as a measure of how strict
the current transportation plan is. The larger the average ride time slack of a
customer not yet visited, the larger detours are possible without violating the
customer’s maximum ride time.

Mean Time Window Slacks: In addition, we integrate the forward, central,
and backward slack times as proposed in [3]. These slack times consider the
average difference between the planned start of service at a node and the opening
(forward), center (central) or closing (backward) of the associated time window.

To evaluate how well these metrics can predict the insertion potential, we
collected different information from temporary solutions during the application
of a traditional distance-based solution procedure and noted whether a new
request could be inserted. We trained a random forest classifier by supervised
learning based on about 60,000 solutions to estimate whether the next request
can be added to the current transportation plan or not. Input parameters were
the current timestamp (as a measure of progress within the planning horizon),
the number of requests accepted so far, and one of the collected metrics. The
quality of the classification was measured by the area under the ROC curve
(AUC). All metrics except the mean ride time slack were able to predict the
insertion potential better than the pure distances. Particularly, the ellipse area
achieved the best AUC with 0.9456 (in contrast to the distances with 0.9284).
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3 Computational Study

Always taking the solution with the highest probability of inserting the next
request is a very short-term and greedy strategy. In order to check whether
this nevertheless leads to a higher acceptance rate in total, we have changed
the acceptance criterion at all points in our optimization procedure. Instead of
taking the solution with the shorter total distance, we choose the solution with
the higher value of the metric under consideration.

The solution procedure used for the routing part is designed as follows: The
initial insertion follows the ejection chain approach presented in [4]. All feasible
insertion positions for the new request r are examined and the best one (accord-
ing to the considered metric) is selected. If all insertion positions are infeasible, a
request whose time windows overlap with r is removed from the current solution,
the insertion procedure is repeated for r, and the removed request is reinserted
again. This is iterated for all eligible requests. In case that no feasible solution is
found, the request is rejected. Otherwise the best resulting solution is accepted
and improved by a local search phase. This process essentially follows the app-
roach in [5]. Neighborhood operators considered are the exchange of two requests,
the relocation of one request, a 2-opt operator applied to route segments that
do not have a customer in the vehicle at the beginning and end respectively, and
a restricted 4-opt operator, where four consecutive arcs are eliminated. Once an
improved solution is found, a simulated annealing criterion is applied to check
whether it should be accepted or not. For the scheduling part and the feasibility
check, the approach from [1] was used.

In the evaluation, we used 72 instances, which were generated based on real-
istic characteristics. The number of customer requests varied from 50 to 200, the
time windows were 10 or 20 min each, the degree of dynamism ranged from 20%
to 80%, and dynamic customers were known either 30 or 90 min before their
pickup time window opened. The number of vehicles varied from 2 to 6 depend-
ing on the number of customers, the service area was 15 × 15 distance units, the
duration of the planning horizon was 10 h, and the vehicles had a fixed capacity
of 4 requests and a uniform speed of one distance unit per minute. The procedure
was run 10 times with each metric and different durations of the local search for
all instances, considering the average value over all 10 runs.

The ellipse area was the only metric that produced better results than the
total distance. Table 1 shows the detailed results. While the first two columns
display the properties of the instances, columns 3–5 and 6–8 compare the accep-
tance rate and the number of accepted customers for the distance (D) and the
ellipse area (EA) metrics respectively, and provide the respective percentage dif-
ferences. Column 9 presents a comparison of the number of instances in which
the distance or the ellipse area led to a better solution as well as the number of
instances in which the same results were achieved.

It is clearly evident that, on average, the ellipse area metric gives better results
than the distances (regardless of the instance properties) and also solves most
instances better with respect to the objective function. Larger time windows seem
to amplify the difference due to the higher degree of freedom. How short-term the
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Table 1. Comparison of distance and ellipse area metrics for optimization guidance

Instance property Acceptance rate [%] Accepted customers InstComp

D EA Incr [%] D EA Incr[%] D/EA/=

Time windows 10min 90.88 91.79 1.00 129.30 130.46 0.90 32/70/6

20min 93.27 94.93 1.78 133.13 135.10 1.48 19/89/0

Booking in advance 30min 91.97 93.26 1.40 130.83 132.47 1.25 29/78/1

90min 92.19 93.46 1.38 131.60 133.09 1.13 22/81/5

# Requests 50 90.26 92.28 2.24 45.13 46.14 2.24 7/26/3

100 89.57 91.36 2.00 89.57 91.36 2.00 8/28/0

150 92.70 93.85 1.24 139.05 140.78 1.24 16/54/2

200 93.62 94.41 0.84 187.24 188.81 0.84 20/51/1

Degree of dynamism 20% 91.38 93.14 1.93 130.16 132.35 1.68 21/51/0

50% 91.62 92.38 0.83 130.91 131.54 0.48 21/49/2

80% 93.24 94.56 1.42 132.58 134.45 1.41 9/59/4

Local search duration 500 ms 91.92 93.03 1.21 130.94 132.24 0.99 21/50/1

1000 ms 92.14 93.42 1.39 131.32 132.89 1.20 15/54/3

2000 ms 92.18 93.63 1.57 131.38 133.20 1.39 15/55/2

requests become known does not seem to have a decisive influence. For smaller
instances, the advantage of the ellipse area is stronger than for larger instances.
Regarding the proportion of dynamic requests, the worst results are obtained when
the ratio of static and dynamic requests is balanced. When the degree of dynamism
is high, the optimization potential is greater and this obviously affects the results.
Please note that the advantage of the ellipse areametric becomesmore salientwhen
increasing the duration of the local search.

4 MDP-Based Approach

As a first step towards an approach that can also account for combinations of mul-
tiple metrics, we modeled the scenario as a Markov decision process (MDP). The
MDP serves as a basis for training a reinforcement learning (RL) agent. A decision
point occurs when a decision must be made whether to choose a new solution over
the previous one. The actions indicate which of the two solutions is chosen. The
states include for both solutions the current timestamp, the number of accepted
customers as well as the values of the metrics to be used. A unit reward is given
if the solution with more customers than the other is selected. In case that both
solutions have the same number of customers, no reward is given. The objective is
to maximize the sum of future rewards, i.e., the sum of requests to be accepted.
This is to enable the model to learn to make decisions that lead to states in which
a request can be integrated. The transition function is non-deterministic in that
the next state is formed from the chosen solution and the next solution found.

In a proof-of-concept, we used Q-learning and a classical Q-table to validate
the MDP-based approach for general functionality. Due to the use of Q-tables,
the state space had to be kept very small. We strongly discretized the time and
only used {−1, 0, 1} to indicate whether the first solution was worse, as good,
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or better than the second solution with respect to the considered metric. The
results show that in the case of different numbers of requests, the solution with
more requests should be chosen and otherwise the solution with the higher ellipse
area metric. This confirms the observations from Sect. 3. To exploit the full
potential of the approach, deep reinforcement learning should be used by replac-
ing the Q-table with a neural network so that the magnitude of the differences in
the metrics can also be taken into account. Alternatively, approximate dynamic
programming techniques can be used (see, e.g., [6]).

Please note that a complex MDP brings the following advantage: The com-
mon greedy approach of accepting a request whenever possible can be subopti-
mal. As long as the optimization goal is to maximize the number of accepted
requests and not, e.g., the revenue generated, short or “easy” requests are more
lucrative. An anticipatory RL-trained agent could accordingly identify a non-
lucrative request and reject it despite an insertion opportunity, thus maintaining
the possibility of accepting several more requests in the future instead.

5 Conclusion and Outlook

We developed different metrics and analyzed their suitability for predicting the
insertion potential of future requests in dynamic dial-a-ride problems. The com-
putational study showed that the presented ellipse area, which considers the
number of reachable points between two nodes, was able to increase the customer
acceptance rate by over 1.5% in the used method. In addition, we presented an
MDP-based approach that could enable an RL agent to learn a combination
of metrics and thus be even better to decide which solution actually leads to a
higher acceptance rate. Further research will address the difficulties of the MDP-
based approach (e.g., very similar Q-values for the states due to sparse reward
and non-deterministic transition function).
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