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Abstract. Driven by climate change, rising environmental awareness,
and financial incentives, more and more logistics providers integrate elec-
tric commercial vehicles (ECVs) into their fleets. Here, challenges such
as limited availability of charging infrastructure, variable energy prices,
and battery degradation lead to an integrated planning problem dealing
with scheduling and charging decisions. We study this joint scheduling
and charging problem and propose an exact algorithm based on Branch-
and-Price. A comprehensive numerical study benchmarks our approach
against an equivalent flow-based mixed-integer formulation, showing that
the developed algorithm outperforms commercial solvers, and assesses
the algorithm’s scalability on larger instances. We show that problems
instances that reflect problem sizes encountered in practice can be solved
with computational times below an hour.

Keywords: Electric vehicle scheduling · Charge scheduling · Branch
and price

1 Introduction

Increasing societal and political environmental awareness, resulting from climate
change, as well as local and global emission problems, call for a paradigm change
towards sustainable transportation systems. Herein, ECVs are seen as a viable
option that promise up to 20% reduction in life-cycle greenhouse-gas emissions
compared to internal combustion engine vehicles (ICEVs)while also lowering oper-
ational costs. Launching and operating ECV fleets however, bears a new and unre-
solved planning problem. Long recharging times and limited availability of pub-
lic recharging infrastructure often require investments into private, on-premise
recharging stations. As these remain costly, the number of chargers available gener-
ally remains limited such that charging bottlenecks arise and day-ahead planning
of charging operations is necessary. Moreover, accelerated battery degradation,
caused by, high-voltage (fast) charging, may offset the otherwise lower operational
costs of ECVs such that sub-optimal charging patterns need to be avoided when
scheduling charging operations. Many operators are billed according to time-of-
use (TOU) energy tariffs, which charge varying electricity rates depending on the
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time of consumption. In such scenarios, it becomes necessary to schedule charg-
ing operations accordingly as this leads to a non-trivial trade-off between incur-
ring accelerated battery degradation and profiting from periods with low energy
prices. Clearly, the impact of charge-scheduling is limited by the service sched-
ules, such that operators who wish to remain cost-competitive should design vehi-
cle schedules with charge schedules in mind and vice versa. Addressing this joint
planning problem requires an integrated planning approach combining vehicle
scheduling problems (VSPs) with charge-scheduling. However, publications deal-
ing with VSPs have either focused on conventional vehicles and did not account
for charging-related concerns, such as battery health, station capacity and vari-
able energy prices (Adler and Mirchandani 2017; Yao et al. 2020), or remain com-
putationally intractable for problem sizes relevant in practice (van Kooten Niek-
erk et al. 2017). Publications focusing on (depot) charge-scheduling problems have
been limited in a similar fashion, either assuming a simplified model of the charg-
ing process (Sassi and Oulamara 2014, 2017), remaining heuristic, or proposing
algorithms that do not scale to problem sizes encountered in practice (Pelletier
et al. 2018). This work aims to close this gap by developing an exact branch and
price (B&P) algorithm for an integrated charge- and service operation scheduling
problem, accounting for battery degradation, TOU energy prices, limited avail-
ability of charging infrastructure, and non-linear battery behavior. For this pur-
pose, Sect. 2 outlines the problem setting and develops a set-covering based for-
mulation. Section 3 then summarizes our approach to solve this problem, followed
by an evaluation of the algorithm’s computational performance in Sect. 4. Finally,
Sect. 5 concludes this article.

2 Problem Setting

We consider a (depot) charge scheduling problem faced by logistics service
providers (LSPs) in the context of electric vehicle routing. Here, an electrified
fleet of vehicles K needs to service a set of customers over a planning horizon
of several days. We assume that routes have been pre-computed for each vehicle
such that tour assignment, consumption, and duration are known in advance.
Departure times are subject to scheduling, i.e., may be shifted in time, but
must be completed within a certain, tour-specific, time window. Vehicles may
be recharged at the depot using a set of (heterogeneous) charging stations. For
this purpose, each station f ∈ F is equipped with Cf chargers for parallel charg-
ing. Charging incurs costs according to the battery degradation caused and the
energy price at the time of charging. In this problem setting, the LSP’s aim is to
find a cost-minimal schedule of charging- and service-operations for each vehicle
k ∈ K such that i) battery capacity constraints are respected, ii) each tour is
serviced by its assigned vehicle, iii) departure time windows are met, and iv)
charger capacity is not violated. We model this optimization problem using a
set-covering formulation over the set of vehicle schedules. For this purpose, we
discretize the planning horizon into a set of equidistant periods p ∈ P. To ensure
the feasibility of the original problem, we pursue a conservative discretization



Integrated Service- and Charge-Scheduling for Electric Commercial Vehicles 17

approach for tour departure time windows and charging operations. More pre-
cisely, tour departure and arrival are shifted to the beginning and end of their
respective periods, and vehicles occupy chargers for entire periods at a time.
To maintain accuracy, we still allow time-continuous charging such that vehicles
may spend only a fraction of a period charging. We denote the set of all feasi-
ble vehicle schedules for vehicle k ∈ K as Ak and let A = ∪k∈KAk be the set
of all schedules. This distinction is necessary as charging schedules may not be
compatible with every vehicle due to different tour assignments. We further use
binary parameters yω,p,f to indicate if ω ∈ A schedules a charging operation at
f ∈ F in period p ∈ P. Finally, binary variables xk

ω assign schedules to vehicles.
We obtain the following optimization problem:

zMP = min
∑

k∈K

∑

ω∈Ak

xk
ωc(ω) (1a)

∑

k∈K

∑

ω∈Ak

xk
ω · yω,p,f ≤ Cf f ∈ F , p ∈ P (1b)

∑

ω∈Ak

xk
ω = 1 k ∈ K (1c)

xk
ω ∈ {0, 1} ω ∈ Ak (1d)

MIP 1 assembles a fleet schedule of minimal cost from the set of feasible vehicle
schedules Ak according to two sets of constraints. First, capacity constraints (1b)
enforce charger capacity limitations. Second, covering constraints (1c) ensure
that exactly one schedule is assigned to each vehicle. Constraints (1d) state the
decision variables’ domain.

3 Methodology

As A is huge for instances of reasonable size, solving MIP 1 using conventional,
i.e., LP-based, branch and bound (B&B) remains computationally intractable.
As a mitigation, we propose a B&P-based approach. Our algorithm essentially
solves a LP relaxation of MIP 1, the so-called master problem, using a column-
generation procedure at each node of the B&B tree. This procedure is outlined
in Sect. 3.1. We propose a problem-specific branching rule to ensure a balanced
B&B tree, detailed in Sect. 3.2. Finally, we utilize a primal heuristic, summarized
in Sect. 3.3, to find good upper bounds early during the search.

3.1 Column Generation

The fundamental idea of column generation is to approach MIP 1 with only a
small subset of schedules A, generated iteratively. For this purpose, each iteration
first solves a linear relaxation of MIP 1 to then generate a new schedule ω ∈ Ak

based on the dual variables of Constraints (1b) and (1c), denoted π
(1)
p,f and π

(2)
k ,

respectively. This corresponds to solving the so-called pricing problem (Eq. 2),
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which seeks to generate schedules with negative reduced costs, i.e., schedules
which would enter the basis of MIP 1 in the next iteration.

min
k∈K,ω∈Ak

c(ω) − π
(2)
k −

∑

p∈P

∑

f∈F
yω,p,f · π

(1)
p,f . (2)

The procedure terminates when (2) is positive, i.e., when the basis of MIP 1
is optimal. We express our pricing problem as a shortest path problem with
resource constraints (SPPRC) over a time-expanded network, which we solve by
using a problem-specific labeling algorithm. Here, we address non-linear charg-
ing, battery degradation, and variable energy prices with a novel label representa-
tion: instead of considering every reachable state of charge (SoC) when charging
at some charger f ∈ F , our labels capture charging trade-offs in so-called cost
profiles. These state the maximum SoC reachable at the end of a (partial) path
ρ when spending a total of c along ρ, potentially replenishing additional energy
at f . This allows to delay the decision on how much to charge at f until another
station or the network sink is reached. Here, the trade-off becomes explicit and
a finite subset of non-dominated charging decisions at f can be identified.

3.2 Branching

Column generation deals with the linear relaxation of MIP 1 and thus may ter-
minate with a fractional solution. We mitigate this issue by embedding our col-
umn generation procedure into a B&B algorithm. Here, our branching rule bases
on the following observation: In every fractional solution of MIP 1 it holds that
∃(p, f) ∈ P × F such that

∑
ω∈A xωyω,p,f = Cf . We resolve such conflicts by cre-

ating up and down branches based on the charger allocation yω,p,f . For this pur-
pose, we identify the vehicle k which relies most on charger f in period p, formally,
k = arg max

k′∈K

∑
ω∈Ak′ xω · yω,p,f , and create up and down-branches that cut off all

solutions where vehicle k uses/does not use charger f in period p, respectively.

3.3 Primal Heuristic

We propose a primal heuristic based on Sub-MIPing that works exclusively with
the variables of the master problem. Its fundamental idea is to remove a subset of
columns present in the current node’s (N) reduced column pool ÃN and resolve
the resulting problem using IP. We select schedules to remove from ÃN based on
quality (i.e., cost) and diversity. Here, diversity is measured through the number
of shared charger allocations. We execute this procedure before branching on
non-integral nodes unless an upper bound has already been found.

4 Numerical Experiments

We benchmark the performance of our B&P algorithm on two sets of randomly
generated instances. The first set comprises small instances (2 vehicles, 1 charger,
1 day) with varying numbers of tours (1, 2) and departure time window lengths
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(0%, 25%, 50%, given as a percentage of tour duration). Other parameters,
such as tour timing, duration, and charging speed are drawn randomly. We use
these to benchmark our algorithm against an equivalent IP. The second set
contains instances of varying sizes to demonstrate the scalability of our algo-
rithm. The reference setting spans a planning horizon of 3 days and comprises
a fleet of 6 vehicles, each operating 2 tours per day with 30% flexibility. The
depot is equipped with max(1, � |K|

2 �) fast and |K| slow chargers. We generate
instances with varying fleet sizes and planning horizon lengths based on this
setting. We used CPLEX 20.1 limited to a single thread and 3600 s of runtime on
a Intel(R) i9-9900, 3.1 GHz CPU with 16 GB of RAM for our computational
study. Table 1 shows the results of our benchmark on the small instances.

Table 1. Results of our experiments on small instances.

Parameters MIP Branch & Price #total

#tours flexibility runtime gap #infeas. #timeout runtime gap #infeas. #timeout

1 Static 2917.92 72.08 2 8 22.79 0.00 6 0 10

25% 3600.00 100.00 0 10 67.14 0.00 0 0 10

50% 3600.00 100.00 0 10 117.03 0.00 0 0 10

2 Static 1453.33 15.81 6 4 0.73 0.00 6 0 10

25% 2523.36 57.35 3 7 3.59 0.00 4 0 10

50% 3600.00 90.33 0 10 8.25 0.00 2 0 10

The first two columns state the parameter values used during instance generation. The total num-

ber of instances generated for each setting is reported in the last column. Columns runtime, gap,

#infeas. and #timeout state averages for the runtime [s], the relative gap between best upper and

lower bound [%], the number of infeasible instances, and the number of instances not solved within

the time limit.

As can be seen, our algorithm outperforms the mixed integer program (MIP)
formulation on all instance types, solving each generated instance in less than
500 s. Figures 1a and 1b show the scalability of our algorithm w.r.t. fleet size
and planning horizon length. Each dot corresponds to an individual instance.

(a) Varying fleet size. (b) Varying planning horizon
length.

Fig. 1. Runtimes on large instances
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The blue lines give the average runtime over all instances. As is illustrated, our
algorithm scales to a fleet size of 20 vehicles and manages to solve instances
spanning up to 5 days.

5 Conclusion

We presented a novel charge- and service operation scheduling problem where a
fleet of electric vehicles fulfills a set of service operations under the assumption
of limited charging station capacity, variable energy prices, battery degradation,
and non-linear charging behavior. We developed an exact algorithm based on
B&P to solve the proposed problem. A novel labeling algorithm, a state-of-the-
art primal heuristic, and problem-specific branching rules establish the efficiency
of our algorithm, which is demonstrated in an accompanying numerical study.
This study asserts the competitiveness of our algorithm through a benchmark
against an equivalent mixed-integer formulation, showing that our algorithm
significantly outperforms commercial solvers and scales to instances of larger
size, optimally solving instances with planning horizons of up to 5 days or 20
vehicles within one hour, allowing an application in practice.
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