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Abstract. We study the oriented vertex and arc coloring problem on
edge series-parallel digraphs which are related to the well known series-
parallel graphs. The oriented class of edge series-parallel digraphs is recur-
sively defined from pairs of vertices connected by a single arc and applying
the parallel and series composition, which leads to specific orientations of
undirected series-parallel graphs. We re-prove the known bound of 7 for
the oriented chromatic number and the oriented chromatic index of series-
parallel digraphs and we show that these bounds are tight even for edge
series-parallel digraphs. Further, we give linear time solutions for comput-
ing the oriented chromatic number and the oriented chromatic index of
minimal series-parallel digraphs and edge series-parallel digraphs.
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1 Introduction and Preliminaries

In this paper we consider graph colorings for oriented graphs, i.e. digraphs with
no loops and no opposite arcs.

Courcelle introduced oriented vertex colorings [2], in particular an oriented r-
vertex-coloring of an oriented graph G = (V,E) is a mapping c : V → {1, . . . , r}
such that:

– c(u) �= c(v) for every (u, v) ∈ E,
– c(u) �= c(y) for every (u, v) ∈ E and (x, y) ∈ E with c(v) = c(x).

The oriented chromatic number of G, denoted by χo(G), is the smallest r such
that there exists an oriented r-vertex-coloring for G.

An oriented r-vertex-coloring of an oriented graph G corresponds to an ori-
ented graph H on r vertices, such that there exists a homomorphism from G to
H. We then call H the color graph of G.

In the oriented chromatic number problem (OCN) there is given an oriented
graph G and an integer r and one has to decide whether there is an oriented
r-vertex-coloring for G. If r is not part of the input, we call the related problem
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the r-Oriented Chromatic Number (OCNr). If r ≤ 3, we can decide OCNr

in polynomial time, while OCN4 is still NP-complete [5]. Further, for every
transitive acyclic digraph and every minimal series-parallel digraph OCN can be
solved in linear time [3].

An oriented r-arc-coloring of an oriented graph G = (V,E) is a mapping
c : E → {1, . . . , r} such that:

– c((u, v)) �= c((v, w)) for every two arcs (u, v) ∈ E and (v, w) ∈ E
– c((u, v)) �= c((y, z)) for every four arcs (u, v) ∈ E, (v, w) ∈ E, (x, y) ∈ E, and

(y, z) ∈ E, with c((v, w)) = c((x, y)).

Moreover, the oriented chromatic index of G, denoted by χ′
o(G), is the smallest

r such that G has an oriented r-arc-coloring.
In the oriented chromatic index problem (OCI) we have an oriented graph G

and an integer r and we need to decide whether there is an oriented r-arc-coloring
for G. If r is not part of the input, we call the related problem the r-Oriented
Chromatic Index (OCIr). If r ≤ 3, then we can decide OCIr in polynomial time,
while OCI4 is NP-complete [6].

The line digraph LD(G) of digraph G has a vertex for every arc in G and an
arc from u to v if and only if u = (x, y) and v = (y, z) for vertices x, y, z from
G [4]. We call digraph G the root digraph of LD(G).

Observation 1 ([6]). Let G be an oriented graph. Then, it holds that

1. χ′
o(G) = χo(LD(G)) and

2. χ′
o(G) ≤ χo(G)

The definition of oriented vertex-coloring and oriented arc-coloring was often
used for undirected graphs, where the maximum value χo(G′) or χ′

o(G
′) of all

possible orientations G′ of a graph G is considered. In this sense it has been
shown in [8] that every series-parallel graph has oriented chromatic number at
most 7 and that this bound is tight. Further, due [7] every series-parallel graph
has oriented chromatic index at most 7, this bound is also tight. These results
lead to (not necessarily tight) upper bounds for the oriented chromatic number
and the oriented chromatic index of edge series-parallel digraphs.

In this paper we re-prove the bound of 7 for the oriented chromatic index
(Corollary 3) and the oriented chromatic number (Theorem 2) of edge series-
parallel digraphs and we show that these bounds are tight even for edge series-
parallel digraphs (Expressions X3 and X4). Furthermore, we give linear time
solutions for computing the oriented chromatic index (Theorem 1) and the ori-
ented chromatic number (Theorem 3) of edge series-parallel digraphs.

2 Minimal Vertex Series-Parallel Digraphs

We recall the definition of minimal vertex series-parallel digraphs.

Definition 1 (Minimal Vertex Series-Parallel Digraphs [9]). The class of
minimal vertex series-parallel digraphs, msp-digraphs for short, is recursively
defined as follows.
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(i) Every digraph on a single vertex ({v}, ∅), denoted by v, is a minimal vertex
series-parallel digraph.

(ii) If G1 = (V1, E1) and G2 = (V2, E2) are vertex-disjoint minimal vertex
series-parallel digraphs and O1 is the set of vertex of outdegree 0 (set of
sinks) in G1 and I2 is the set of vertices of indegree 0 (set of sources) in
G2, then
(a) the parallel composition G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2) is a minimal

vertex series-parallel digraph and
(b) the series composition G1 × G2 = (V1 ∪ V2, E1 ∪ E2 ∪ (O1 × I2)) is a

minimal vertex series-parallel digraph.

An expression X using the operations of Definition 1 is called an msp-
expression while digraph(X) is the digraph defined in X.

Using the recursive structure of msp-digraphs in [3] we show the following
bound.

Proposition 1 ([3]). Let G be an msp-digraph. Then, it holds that χo(G) ≤ 7.

We can also bound the oriented chromatic number of an msp-digraph G
using the corresponding root digraph G′ which is an esp-digraph (see Sect. 3).
By Lemma 1, Observation 1(1.), and Corollary 3 it holds that χo(G) =
χo(LD(G′)) = χ′

o(G
′) ≤ 7.

For the optimality of the shown bound, we recall from [3] the msp-expression

X1 = v1 × (v2 ∪ v3 × (v4 ∪ v5 × v6)) × (v7 ∪ (v8 ∪ v9 × v10)
×(v11 ∪ v12 × v13)) × (v14 ∪ (v15 ∪ (v16 ∪ v17 × v18)
×(v19 ∪ v20 × v21)) × (v22 ∪ (v23 ∪ v24 × v25) × v26)) × v27.

Since χo(digraph(X1)) = 7 the bound of Proposition 1 is best possible.

Proposition 2 ([3]). Let G be an msp-digraph. Then, the oriented chromatic
number of G can be computed in linear time.

By Proposition 1 and Observation 1(2.) we know the following bound.

Corollary 1. Let G be an msp-digraph. Then, it holds that χ′
o(G) ≤ 7.

For the optimality of the shown bound we recursively define msp-expressions
Yi. Y0 defines a single vertex graph and for i ≥ 1 we define Yi = (Y0∪Yi−1×Yi−1)
in order to define X2 = Y0×Y0×Y6×Y0×Y0. Since χ′

o(digraph(X2)) = 7, which
was computed by a computer program, we know that that the bound of Corollary
1 is best possible.

3 Edge Series-Parallel Digraphs

Undirected series-parallel graphs are graphs with two distinguished vertices
called terminals, formed recursively by parallel and series composition [1,
Section 11.2].
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Proposition 3 ([8]). Let G′ be an orientation of a series-parallel graph G.
Then, it holds that χo(G′) ≤ 7.

In [8] it was also shown that the bound is tight. For the chromatic index of
orientations of undirected series-parallel graphs Observation 1(2.) and Proposi-
tion 3 lead to the following bound.

Corollary 2. Let G′ be some orientation of a series-parallel graph G. Then, it
holds that χ′

o(G
′) ≤ 7.

In [7] it was shown that the bound is tight.
We recall the definition of edge series-parallel digraphs, originally defined as

edge series-parallel multidigraphs.

Definition 2 (Edge Series-Parallel Multidigraphs [9]). The class of edge
series-parallel multidigraphs, esp-digraphs for short, is recursively defined as
follows.

(i) Every digraph of two distinct vertices joined by a single arc ({u, v}, {(u, v)}),
denoted by (u, v), is an edge series-parallel multidigraph.

(ii) If G1 = (V1, A1) and G2 = (V2, A2) are vertex-disjoint minimal edge series-
parallel multidigraphs, then
(a) the parallel composition G1 ∪ G2, which identifies the source of G1 with

the source of G2 and the sink of G1 with the sink of G2, is an edge
series-parallel multidigraph and

(b) the series composition G1 × G2, which identifies the sink of G1 with the
source of G2, is an edge series-parallel multidigraph.

An expression X using the operations of Definition 2 is called an esp-
expression and digraph(X) the defined digraph.

Lemma 1 ([9]). An acyclic multidigraph G with a single source and a single
sink is an esp-digraph if and only if LD(G) is an msp-digraph.

Oriented Arc-Colorings. Since every esp-digraph is an orientation of a series-
parallel graph by Corollary 2 we get the following bound.

Corollary 3. Let G be an esp-digraph. Then, it holds that χ′
o(G) ≤ 7.

We can also bound the oriented chromatic index of an esp-digraph G using
the corresponding line digraph LD(G) which is an msp-digraph. Then, by Obser-
vation 1(1.), Lemma 1 and Proposition 1 it holds that χ′

o(G) = χo(LD(G)) ≤ 7.
The results of [7] even show that 7 is a tight upper bound for the ori-

ented chromatic index of every orientation of series-parallel graphs. In order
to show that this bound is also tight for the subclass of esp-digraphs, we use the
esp-expression

X3 = (v1, v2) × ((v2, v5) ∪ (v2, v3) × ((v3, v5) ∪ (v3, v4) × (v4, v5)))
× ((v5, v9) ∪ ((v5, v7) ∪ (v5, v6) × (v6, v7)) × ((v7, v9) ∪ (v7, v8)
× (v8, v9))) × ((v9, v16) ∪ ((v9, v13) ∪ ((v9, v11) ∪ (v9, v10)
× (v10, v11)) × ((v11, v13) ∪ (v11, v12) × (v12, v13))) × ((v13, v16)
∪ ((v13, v15) ∪ (v13, v14) × (v14, v15)) × (v15, v16))) × (v16, v17).



Oriented Vertex and Arc Coloring of Edge Series-Parallel Digraphs 105

Since χ′
o(digraph(X3)) = χo(LD(digraph(X3))) = χo(digraph(X1)) = 7, where

X1 is defined in Sect. 2, it holds that the bound of Corollary 3 is best possible.
By Proposition 2 and Observation 1(1.) we obtain the following result.

Theorem 1. Let G be an esp-digraph. Then, the oriented chromatic index of G
can be computed in linear time.

Oriented Vertex Colorings. Since every esp-digraph is an orientation of a
series-parallel graph by Proposition 3 we have the following bound.

Corollary 4. Let G be an esp-digraph. Then, it holds that χo(G) ≤ 7.

The proof of Proposition 3 given in [8] uses the color graph H = (VH , EH)
where VH = {1, 2, 3, 4, 5, 6, 7} and EH = {(i, j) | j − i ≡ 1, 2, or 4 (mod 7)}
which is built from the non-zero quadratic residues of 7. Next, we give an alter-
native proof of Corollary 4 using the recursive structure of esp-digraphs.

Theorem 2. Let G be some esp-digraph. Then, it holds that χo(G) ≤ 7.

Proof. Let G = (VG, EG) be some esp-digraph. We use the color graph H built
from the non-zero quadratic residues of 7 defined above to define an oriented
7-vertex-coloring c : VG → {1, . . . , 7} for G.

First, we color the source of G by 1 and the sink of G by 2. Next, we recur-
sively decompose G in order to color all vertices of G. In any step we keep the
invariant that (c(q), c(s)) ∈ EH , if q is the source of G and s is the sink of G.

– If G emerges from parallel composition G1 ∪G2, we proceed with coloring G1

and G2 on its own. Doing so, the color of the source and sink in G1 and G2

do not change.
– If G emerges from series composition G1 ×G2, let a be the color of the source

and c be the color of the sink in G. For the sink of G1 and the source of G2

we choose color b, such that the arcs (a, b) and (b, c) are in color graph H.
– If G consists of a pair of vertices connected by a single arc, the coloring is

given by our invariant. 
�
In order to verify the optimality of the shown bound, we consider the esp-

expression

X4 = ((v1, v4) ∪ ((v1, v2) × ((v2, v4) ∪ ((v2, v3) × (v3, v4)))))
× ((((v4, v6) ∪ ((v4, v5) × (v5, v6))) × (v6, v7)) ∪ (v4, v7)).

Since χo(digraph(X4)) = 7 the bound of Theorem 2 is best possible.
In order to compute the oriented chromatic number of an esp-digraph G =

(V,E) defined by an esp-expression X, we recursively compute the set F (X)
of all triples (H, �, r) such that H is a color graph for G, where � and r are
the colors of the source and sink, respectively, in G with respect to the coloring
by H. By Theorem 2 and also by Corollary 4 we can conclude that |F (X)| ≤
37(7−1)/2 · 7 · 7 ∈ O(1).

For two color graphs H1 = (V1, E1) and H2 = (V2, E2) we define H1 + H2 =
(V1 ∪ V2, E1 ∪ E2).
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Lemma 2. 1. For every (u, v) ∈ E it holds that F ((u, v)) = {(({i, j},
{(i, j)}), i, j) | 1 ≤ i, j ≤ 7, i �= j}.

2. For every two esp-expressions X1 and X2 we obtain F (X1 ∪X2) from F (X1)
and F (X2) as follows. For every (H1, �1, r1) ∈ F (X1) and every (H2, �2, r2) ∈
F (X2) such that graph H1 + H2 is oriented, �1 = �2, and r1 = r2, we put
(H1 + H2, �1, r1) into F (X1 ∪ X2).

3. For every two esp-expressions X1 and X2 we obtain F (X1 ×X2) from F (X1)
and F (X2) as follows. For every (H1, �1, r1) ∈ F (X1) and every (H2, �2, r2) ∈
F (X2) such that graph H1+H2 is oriented, and r1 = �2, we put ((V1∪V2, E1∪
E2), �1, r2) into F (X1 × X2).

After performing the rules given in Lemma 2 on every sub-expression of X,
we can solve our problem by χo(G) = min{|V | | ((V,E), �, r) ∈ F (X)}, which
leads to the following result.

Theorem 3. Let G be an esp-digraph. Then, the oriented chromatic number of
G can be computed in linear time.

4 Outlook

In our future work we want to analyze whether it is possible to compute oriented
chromatic index and oriented chromatic number of orientations of series-parallel
graphs efficiently in order to generalize Theorem 1 and Theorem 3.
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