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Preface

This book contains a selection of refereed short papers presented at the
International Conference on Operations Research (OR 2021), jointly organized by
the Operations Research Societies of Switzerland (SVOR/ASRO), Germany (GOR
e.V.), and Austria (ÖGOR). Amid the global coronavirus pandemic, the OR 2021
was hosted online by the University of Bern from August 31 to September 3, 2021.
It was the first-ever virtual event in the OR conference series established in 1971.

Designed around its special theme Business Analytics for Data-Driven Decision
Making, the OR 2021 offered an excellent platform for academics and practitioners
to present their most recent research and discuss trends in the industry. We wel-
comed more than 500 participants from operations research, management science,
mathematics, data science, and analytics. The scientific program included 360 live
presentations via Zoom, 12 plenary and semi-plenary talks, and interactive sessions
with editors from leading journals and business partners.

This volume presents a selection of 63 papers–including contributions from the
winners of the GOR PhD Thesis Award and the GOR Master Thesis Award–that
have been carefully reviewed and accepted for publication by the stream chairs and
selected referees (acceptance rate of 80%). The topics of the chosen papers reflect
the broad spectrum of the OR discipline, ranging from new mathematical algo-
rithms to applications in areas such as energy and environment, healthcare man-
agement, finance, or mobility and traffic.

We would like to thank everyone who contributed to the success of the virtual
OR 2021 conference: the members of the Program and Organizing Committee, the
stream chairs, our incredible plenary and semi-plenary speakers, the generous
sponsors and partners, the event staff from the University of Bern and, last but not
least, the participants and presenters who joined us from all over the world. You all
made this event extraordinary.

Norbert TrautmannApril 2022
Mario Gnägi
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Operations Management in the Sharing
Economy: An Integrated Perspective
of Item-Sharing and Crowdshipping

Moritz Behrend(B)

Kiel University, 24098 Kiel, Germany
moritz.behrend@bwl.uni-kiel.de

https://www.scm.bwl.uni-kiel.de

Abstract. The uprising of the sharing economy yields a variety of new
concepts on how members of a community can provide services to each
other. Two of these concepts are item-sharing and crowdshipping. They
have been implemented in practice in isolation so far but seem to com-
plement each other well. We therefore propose the conceptual idea of an
integrated platform on which user requests of both concepts are han-
dled jointly. This paper revisits several studies that address the opera-
tions management of such a platform, including optimization models and
methods for the corresponding decision making, and managerial insights
derived from computational experiments. The results confirm that the
two concepts are mutually beneficial and that a well-designed operations
management allows to effectively serve demands announced on such a
platform.

Keywords: Sharing economy · Item-sharing · Crowdshipping ·
Operations management

1 Motivation

The sharing economy subsumes business models that provide services to a com-
munity as a whole rather than to an individual [1]. These services can differ
substantially in the needs they serve and their approach to do this, but it all
comes down to the coordination of resources. While some concepts such as shared
spaces (e.g. Airbnb) and shared mobility (e.g. Uber or ShareNow) are very suc-
cessful and/or popular already nowadays, others are developing rather slowly.
Two of these concepts are item-sharing and crowdshipping. In item-sharing,
members grant others a temporary access to the items they own, such as tools
or leisure equipment. In crowdshipping, private drivers offer to execute deliv-
ery jobs for other people on trips they would make anyway. These two con-
cepts are so far dealt with in practice on separate platforms that operate in
complete isolation. However, they could complement each other well when the
available transportation capacity in crowdshipping is utilized to support the

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Trautmann and M. Gnägi (Eds.): OR 2021, LNOR, pp. 3–8, 2022.
https://doi.org/10.1007/978-3-031-08623-6_1
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cumbersome peer-to-peer item exchanges in item-sharing. After all, the need-
based access to items in item-sharing necessitates frequent transports of small
shipments between requesting consumers.

This paper sheds light on possible benefits of integrating item-sharing and
crowdshipping on a single platform. To this end, we discuss the operations man-
agement of such a platform and we derive managerial insights from numerical
experiments. The following sections briefly summarize the main contributions
of the related studies [2–5] that I conducted in this context as part of my PhD
thesis.

2 Integrating Item-Sharing and Crowdshipping

The potential of item-sharing and the idea of a conceptual integration with
crowdshipping are formally analyzed for a first time in [2]. This paper employs
mathematical optimization to support the operator of an integrated platform in
assigning supplies to requests for item-sharing and, if applicable, also in assigning
a crowdshipper the task to conduct the delivery. To this end, an assignment
problem is formulated and two heuristics are proposed, one of which is based
on a problem decomposition and the other is based on finding a feasible set of
combinations within an incompatibility graph.

Computational experiments reveal that item-sharing exhibits strong
economies of density. The integration with crowdshipping increases both prof-
itability and service level of a platform. To achieve high service quality, two alter-
native ways are considered of how crowdshipping can facilitate item exchanges
between consumers. The inclusion of home deliveries, where a crowdshipper
delivers a package directly to a consumer’s home, has a stronger effect on prof-
itability, particularly because of the extra-service consumers may be willing to
pay for. In neighborhood deliveries, crowdshippers and consumers collaboratively
conduct the transport, which allows for further item exchanges. A sensitivity
analysis shows that home deliveries become less attractive if higher compen-
sations must be paid to crowdshippers, see Fig. 1. Furthermore, a platform’s
operational performance substantially depends on the willingness of consumers
and crowdshippers to invest time in item transportation.

3 How to Harness Crowdshippers’ Full Transportation
Capacity

The benefit of an integrated platform was investigated in [2] based on scenarios
where crowdshippers accept to conduct at most one delivery per trip. However,
crowdshippers may also accept to conduct multiple deliveries if they want to get
more involved in crowdshipping. The goal of [3] is to quantify the potential of
capacitated crowdshipping and to derive managerial insights on how a platform
shall incentivize crowdshippers to improve operational performance.

Crowdshipping with more than one delivery per trip requires a routing of
crowdshippers on their way from their origin to their destination via intermediate
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Fig. 1. The integration with crowdshipping allows for more profitable matchings [2].

pick-up and drop-off locations. Such a detour routing determines the travel time
increase due to crowdshipping, which allows to respect crowdshippers’ preferences
when assigning delivery jobs to trips. This is not possible through simply general-
izing the solution methods of [2] regarding the number of jobs that can be assigned
to a trip but rather requires dedicated solution methods. Therefore, [3] proposes a
new exact solution method in which first a label setting algorithm determines fea-
sible crowdshipping routes and then a set packing problem selects a combination
of those routes that maximizes profit. An excerpt of the algorithm’s mechanism is
depicted in Fig. 2. The final leg to the destination d(k1) is always implied. Items
that are taken home (ϑl > 0) can be assigned to consumers j1 or j2 through a
neighborhood delivery. For more details we refer to [3].

The proposed method is much faster for the case of single-capacitated crowd-
shipping than the assignment problem formulations of [2]. Furthermore, if crowd-
shippers accept to conduct multiple deliveries, higher profits are possible. How-
ever, the magnitude of this increase is strongly linked to crowdshipper’s will-
ingness to extent their trips since the execution of more deliveries also requires
more detouring. As crowdshippers accept longer detours and offer to conduct
multiple deliveries, the planning complexity increases substantially. [3] therefore
also shows how to turn the label setting procedure into a heuristic.

4 Conceptual Ideas for More Efficient Sharing Practices

Item-sharing is an inherently multi-periodic process as the same items are succes-
sively used by multiple consumers in the course of time. [4] therefore introduces
the multi-period variant of the integrated item-sharing and crowdshipping prob-
lem. In this context, it proposes the concept of request chaining in which items
are directly forwarded from one consumer to the next without returning the
items to intermediate storage locations in-between two requests. This interpre-
tation of item-sharing results in interdependencies between periods and it raises
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Fig. 2. An example for propagating labels [3].

the question to what extent a more foresighted planning outperforms previously
developed solution methods for a period-to-period decision making.

For this purpose, a binary program is proposed that supports the operational
planning of a platform operator in ‘routing’ items through a network of consumer
locations over time. It decides for every leg of an item’s route which request to
serve next and to whom to assign the responsibility of transportation. As the
considered time horizon increases in size, not all requests and crowdshipping trips
may be available at each planning point in time. To deal with these dynamics,
the binary program is also embedded into a rolling horizon framework.

Computational experiments show that a platform with request chaining can
substantially increase profits if the operational planning for the upcoming period
also considers information of subsequent periods. This is because a more fore-
sighted long-term planning makes it less likely that items are assigned to remote
request locations where they get stuck. Assignments like these occur frequently
in a period-to-period planning for scenarios with only a few consumers and
limited options to exchange items between them so that a multi-period plan-
ning is particularly beneficial in such cases. The planning complexity increases
quickly as the considered time horizon is extended. In a dynamic setting with
incomplete information, critical parameters are the lead-time of request and trip
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announcements prior to their realization and the number of periods consumers
and crowdshippers shall be notified in advance.

5 A Sustainability Comparison Between Buying
and Renting

Item-sharing may turn out as an environmental friendly form of consumption as
only a few, highly utilized items are required to serve overall customer demand.
However, a shared use of items also necessitates frequent transports between con-
sumers, which may counterbalance the positive environmental benefit of produc-
ing fewer items. Against this background, [5] compares the environmental impact
of sales-based and sharing-based business models. The sustainability compari-
son is based on carbon dioxide equivalents (CO2e) that are released during the
production of items and their repeated transportation between consumers.

The resulting eco-assessment of item production and transportation is
depicted in Fig. 3. The compared variants are the traditional selling of items
to consumers from stores (buy); station-based sharing (sb) and station-based
sharing with request pooling (sbp), where the latter allows for a better resource
management in times of high demand; and the free-floating sharing concept of
[4], once with crowdshipping (ffc) and once without (ff). The set W con-
tains the fixed locations for the variants buy, sb, and sbp at which the items
are supplied, e.g. stores or sharing stations. The results clearly show that total
emissions in ownership are much more sensitive to the life cycle emissions of
items (eitem) than those in the sharing-based business models, due to the need
for an additional n = 1000 − 75 = 925 items. At the same time, travel-related
emissions are higher when items are shared (see total emissions for the variants
at eitem = 0 kg CO2e). The intersection A marks the point where the additional
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Fig. 3. Total emissions per business model subject to the carbon footprint of items [5].
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traveling of 72,700 − 29,600 = 43,100 km in free-floating sharing (ff) is equiv-
alent to producing and selling 925 additional items with a carbon footprint of
eitem = 11.83 kg CO2e.

The combination of efficient direct item exchanges and the demand for only
a few items to serve requests in the free-floating sharing variants results in an
overall low environmental impact. They are therefore considered a very promising
approach to reduce consumption-based emissions for various item types with a
broad spectrum of carbon footprints.

6 Conclusion and Outlook

A major implication of this work for future research is that the operations man-
agement of item-sharing platforms constitutes a research domain on its own, next
to the well-studied operations management of other sharing economy concepts
such as car sharing, bike sharing, or ride-sharing. This work lays the foundation
for further analyses by providing benchmark results in the dimensions profit,
service level, and environmental impact. The results show that an effective oper-
ations management of item-sharing platforms shows great potential for serving
consumer requests with shared items, particularly in densely populated areas.
The results further demonstrate that crowdshipping is a promising logistics con-
cept to facilitate item exchanges.

Future research can particularly extend the free-floating concept as this one
raises many further open questions, both from an operations management per-
spective and from other disciplines such as behavioral research. Eventually, an
upscaling of item-sharing leads to a broad and interesting research area in which
not only platform operators but also other parties such as manufacturers of items
are affected.
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Abstract. Uncertainty in the input parameters is a major hurdle when
trying to directly apply classical results from combinatorial optimization
to real-word challenges. Hence, designing algorithms that handle incom-
plete knowledge provably well becomes a necessity. In view of the above,
the author’s thesis [5] focuses on scheduling and packing problems under
three models of uncertainty: stochastic, online, and dynamic. For this
report, we highlight the results in online throughput maximization as
well as dynamic multiple knapsack.
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1 Motivation

Incomplete information, e.g., frequently changing or a priori unknown problem
parameters, is a major challenge when translating combinatorial optimization
results to recommendations for real-world applications since. A particular solu-
tion may perform well on some specific input data or estimation thereof, but once
the data is slightly perturbed or new tasks need to be performed, the solution
may become arbitrarily bad or even infeasible. Thus, either solving the problem
under uncertainty or efficiently updating the solution becomes a necessity. The
author’s thesis explores several models for uncertainty in two fundamental fields
of combinatorial optimization: scheduling and packing.

Scheduling problems arise whenever scarce resources have to complete a set
of tasks while optimizing some objective. Possible applications range from the
industrial sector with production planning via the service sector with delivery
tasks to the information sector with data processing and cloud computing. Given
the undeniable effects of climate change we are facing today, efficient solutions
to any of these problems are paramount. Efficiency might refer to the minimal
necessary duration for which the system is running to process all tasks or the
maximal achievable throughput in a given time interval.

Packing problems typically appear whenever items have to be assigned to
resources with capacities. The most obvious applications are transportation pro-
cesses, e.g., loading of trucks, that take place at every stage of the manufacturing
process until the delivery to the client. Further, packing problems can also be
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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found in computing clusters and financial applications: Capacities have to be
obeyed and costs have to be minimized when assigning virtual machines to real
servers in computing clusters. Or, when making new investment decisions, cer-
tain aspects, such as risk or overall volume, have to be bounded while maximizing
profit. These examples are all packing problems as they require compliance with
capacity constraints while maximizing the total value of packed items.

Incomplete information may be caused by various reasons, such as the unpre-
dictable arrival of new tasks or having only estimates of input parameters at
hand. In any of these cases, we are interested in finding provably good solutions
in reasonable time, i.e., we would like to design algorithms that deal with incom-
plete information while performing sufficiently well. This article focuses on two
models of uncertainty in the input: online, where part of the input is revealed
only incrementally, and dynamic, where the input is subject to small changes.

Our Contribution. In Sect. 2, we investigate the problem of online through-
put maximization with and without commitment requirements. This chapter is
based on two publications, [4] and [6]. In Sect. 3, we investigate dynamic multiple
knapsack problems; this is based on an unpublished article [2].

2 Online Throughput Maximization

We investigate a scheduling problem where jobs with processing times pj arrive
online over time at their release dates rj and have to be processed by m identical
parallel machines before their respective deadlines dj . The goal is to preemptively
maximize the throughput, i.e., the number of jobs that complete before their
deadlines. Since the algorithm has to deal with incomplete information, we use
standard competitive analysis to evaluate our algorithms, where we bound the
ratio between the solution found by an online algorithm and the offline optimum.

Hard instances for online algorithms involve “tight” jobs, i.e., jobs that need
to be scheduled immediately and without interruption in order to complete on
time [1]. To circumvent these difficulties, we enforce some relative slack for each
job in the interval defined by its release date and its deadline. We assume that
each job’s interval has length at least (1 + ε)pj for some slackness parameter
ε > 0, which is given to the online algorithm. By setting ε = 1, we obtain
constant competitive ratios, and thus, we additionally assume ε ≤ 1.

2.1 Non-committed Scheduling

To gain some intuition for our algorithm, we describe the underlying design prin-
ciples: The threshold algorithm never migrates jobs between machines. Moreover,
a running job j can only be preempted by significantly smaller jobs j�, i.e.,
pj� < ε

4pj , and j cannot start when its remaining slack is less than ε
2pj .

The intelligence of the threshold algorithm lies in how it admits jobs. The actual
scheduling decision then is simple and independent of the admission of jobs: at
any point in time and on each machine, schedule the shortest job that has been
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Algorithm 1.1. Threshold algorithm

Scheduling routine: At any time τ and on any machine i, run the job with shortest
processing time that has been admitted to i and has not yet completed.

Event: Upon release of a new job at time τ :
Call threshold preemption routine.

Event: Upon completion of a job j at time τ :
Call threshold preemption routine.

Threshold preemption routine:
j� ← a shortest available job at τ , i.e.,

j� ∈ argmin{pj | j ∈ J , rj ≤ τ and dj − τ ≥ (1 + ε
2
)pj}

i ← 1
while j� is not admitted and i ≤ m do

j ← job processed on machine i at time τ
if j = ∅ do

admit job j� to machine i
call threshold preemption routine

else-if pj� < ε
4
pj do

admit job j� to machine i
call threshold preemption routine

else
i ← i + 1

admitted to this machine and has not completed its processing time. A formal
description is given in Algorithm 1.1. In [4], we show the following theorem.

Theorem 1. Let 0 < ε ≤ 1. The threshold algorithm is Θ
(
1
ε

)
-competitive for

online throughput maximization.

This result is in a sense best possible as we give a matching lower bound [4].

Theorem 2. Every deterministic online algorithm has a competitive ratio Ω
(
1
ε

)
.

2.2 Scheduling with Commitment

We now focus on the question how to handle commitment in online throughput
maximization. Modeling commitment addresses the issue that a high-throughput
schedule may abort jobs close to their deadlines in favor of many shorter and
more urgent tasks, which may not be acceptable for the job owner. We distinguish
three different models for scheduling with commitment: (i) commitment upon job
arrival, (ii) commitment upon job admission, and (iii) δ-commitment. In the first,
most restrictive model, an algorithm must decide immediately at a job’s release
date if the job will be completed or not. In the second model, an algorithm
may discard a job any time before its start, its admission. In the third model,
an online algorithm must commit to complete a job when its slack has reduced
from the original slack requirement of at least εpj to δpj for 0 < δ < ε, i.e., at
the latest at dj − (1 + δ)pj .
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For commitment upon arrival, we give the following strong lower bound,
which even holds for randomized algorithms [4].

Theorem 3. No randomized online algorithm has a bounded competitive ratio
for commitment upon arrival.

For the remaining two commitment models, we design an online algorithm
that matches the lower bound of Theorem 2 and show the following theorem.
The details of the algorithm and its analysis can be found in [6].

Theorem 4. Consider throughput maximization on parallel identical machines
with or without migration. There is an O(

1
ε−δ′

)
-competitive online algorithm

with commitment, where δ′ = ε
2 in the commitment-upon-admission model and

δ′ = max
{
δ, ε

2

}
in the δ-commitment model.

The challenge in online scheduling with commitment is that, once we commit
to complete a job, the remaining slack of this job has to be spent very carefully.
The high-level objectives of our admission scheme are:

(i) Never start a job for the first time if its remaining slack is too small,
(ii) during the processing of a job, admit only significantly shorter jobs, and
(iii) for each admitted shorter job, block some time period during which no other

jobs of similar size are accepted.

We have used the first two quite natural goals in Sect. 2.1, while the third goal
is crucial for our tight result when scheduling with commitment. The intuition
is the following: suppose we committed to complete a job with processing time 1
and have only a slack of O(ε) left before the deadline of this job. Suppose that c
substantially smaller jobs of size 1

c arrive, where c is the competitive ratio we
aim for. Without accepting any of them, we do not achieve c-competitiveness.
Conversely, accepting too many fills up the slack and, thus, leaves no room for
admitting even smaller jobs. The idea is to keep the flexibility for future small
jobs by only accepting a 1

c -fraction of jobs of similar size (within a factor 2).
More precisely, we distinguish two time periods with different regimes for

accepting jobs. During the scheduling interval of job j, a more restrictive accep-
tance scheme ensures the completion of j, whereas in the blocking period, we
guarantee the completion of previously accepted jobs. In contrast to the thresh-
old algorithm, where the processing time of the currently scheduled job provides
a uniform acceptance threshold, this distinction enables us to ensure the com-
pletion of every admitted job without being too conservative in accepting jobs.

3 Dynamic Knapsack

In the most basic variant, the Knapsack problem, we are given a knapsack with
capacity S ∈ N and a set J of n items, where J = [n], and each item j has a
size sj ∈ N and a value vj ∈ N. The goal is to find a subset of items, P ⊆ [n],
with maximal total value v(P ) =

∑
j∈P vj , and with total size s(P ) =

∑
j∈P sj ≤
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S. In the more general Multi-Knapsack problem, we are given m knapsacks with
capacities Si for i ∈ [m]. Here, the task is to select m disjoint subsets P1, . . . , Pm ⊆
J such that Pi satisfies s(Pi) ≤ Si and the total value

∑m
i=1 v(Pi) is maximized.

The Knapsack problem is NP-hard [9] while Multi-Knapsack is strongly NP-
hard, even for identical knapsack capacities [7]. As a consequence, knapsack vari-
ants have been extensively studied through the lens of approximation algorithms.
Of particular interest are approximation schemes, families of polynomial-time
algorithms that compute for any constant ε > 0 a (1 + ε)-approximate solution.
For Knapsack, there are approximation schemes with running time polynomial
in n and 1

ε [8]. For Multi-Knapsack, only an exponential dependency on 1
ε is

possible, unless P = NP [3]. All these algorithms are static, i.e., they have access
to the entire instance, and the instance is not subject to changes.

Given the dynamics of real-world instances, it is natural to ask for dynamic
algorithms that adapt to small changes in the instance while spending only little
computation time: During the execution of the algorithm, items and knapsacks
arrive and depart and the algorithm needs to maintain an approximate knapsack
solution with an update time polylogarithmic in the number of items in each step.
A dynamic algorithm can be seen as a data structure that implements these
updates efficiently and supports relevant query operations. We are the first to
analyze knapsack problems in the context of dynamic algorithms.

In [2], we present dynamic algorithms for maintaining approximate knapsack
solutions. Our algorithms are fully dynamic which means that in an update oper-
ation they can handle both, the arrival or departure of an item and the arrival or
departure of a knapsack. Further, we consider the query model, in which an algo-
rithm is not required to store the solution explicitly in memory such that the solu-
tion can be read in linear time. Instead, the algorithm may maintain the solution
implicitly with the guarantee that a query about the packing of an item can be
answered in poly-logarithmic time. Our main result is the following theorem.

Theorem 5. For each ε > 0, there is a dynamic (1 + ε)-approximate algorithm
for Multi-Knapsack with update time 2f(1/ε)

(
log n

ε

)O(1/ε)(log m)O(1), where f
(
1
ε

)

is quasi-linear. Item queries can be answered in time O(log m)
(
log n

ε

)O(1) and the

solution P can be output in time O(|P | + log m)
(
log n

ε

)O(1).

The high-level idea for Multi-Knapsack is to partition the given knapsacks
based on their capacity, creating two subproblems of Multi-Knapsack. This sep-
aration allows us to design algorithms that exploit the structural properties
specific to each subproblem. One subproblem consists of relatively few (though
not constantly many) knapsacks, but they are the largest of the instance. While
the small number of these special knapsacks offers more algorithmic freedom,
this freedom is necessary since great care has to be taken when computing a
solution: There may be items of high value that only fit into special knapsacks.

The second subproblem contains almost all remaining smaller knapsacks.
Here, the handling of the sheer number of these ordinary knapsacks is the major
challenge. On the upside, mistakes are forgiven more easily, allowing us to even
discard a small fraction of knapsacks entirely.
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Additionally, we create a third partition of knapsacks that lies in-between
the two subproblems (w.r.t. knapsack capacity). It consists of knapsacks that
contribute negligible value to an optimal solution. This property induces the
precise partitioning and allows us to consider the knapsacks as empty extra
knapsacks, which we use to place leftover items not packed in the subproblems.

A big challenge with this divide-and-conquer approach is to decide which item
is assigned to which of the two subproblems. Clearly, for some—special—items
this question is answered by their size as they only fit into special knapsacks, unlike
the remaining—ordinary—items. In fact, for them the allocation is so problematic
that we downright put a number of high-value ordinary items into extra knapsacks.
To handle the rest, we guess the total size of ordinary items put in special knapsacks
by an optimal solution, add a virtual knapsack with capacity equal to this guess
to the ordinary subproblem, and solve it with the not yet packed ordinary items
as input. The input for the special subproblem then consists of all special items
together with bundles of the ordinary items packed in the virtual knapsack.

Acknowledgments. I would like to thank my supervisor Nicole Megow for her con-
tinuous and excellent support and my colleagues and co-authors for many fruitful and
inspiring discussions.
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Abstract. Driven by climate change, rising environmental awareness,
and financial incentives, more and more logistics providers integrate elec-
tric commercial vehicles (ECVs) into their fleets. Here, challenges such
as limited availability of charging infrastructure, variable energy prices,
and battery degradation lead to an integrated planning problem dealing
with scheduling and charging decisions. We study this joint scheduling
and charging problem and propose an exact algorithm based on Branch-
and-Price. A comprehensive numerical study benchmarks our approach
against an equivalent flow-based mixed-integer formulation, showing that
the developed algorithm outperforms commercial solvers, and assesses
the algorithm’s scalability on larger instances. We show that problems
instances that reflect problem sizes encountered in practice can be solved
with computational times below an hour.

Keywords: Electric vehicle scheduling · Charge scheduling · Branch
and price

1 Introduction

Increasing societal and political environmental awareness, resulting from climate
change, as well as local and global emission problems, call for a paradigm change
towards sustainable transportation systems. Herein, ECVs are seen as a viable
option that promise up to 20% reduction in life-cycle greenhouse-gas emissions
compared to internal combustion engine vehicles (ICEVs)while also lowering oper-
ational costs. Launching and operating ECV fleets however, bears a new and unre-
solved planning problem. Long recharging times and limited availability of pub-
lic recharging infrastructure often require investments into private, on-premise
recharging stations. As these remain costly, the number of chargers available gener-
ally remains limited such that charging bottlenecks arise and day-ahead planning
of charging operations is necessary. Moreover, accelerated battery degradation,
caused by, high-voltage (fast) charging, may offset the otherwise lower operational
costs of ECVs such that sub-optimal charging patterns need to be avoided when
scheduling charging operations. Many operators are billed according to time-of-
use (TOU) energy tariffs, which charge varying electricity rates depending on the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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time of consumption. In such scenarios, it becomes necessary to schedule charg-
ing operations accordingly as this leads to a non-trivial trade-off between incur-
ring accelerated battery degradation and profiting from periods with low energy
prices. Clearly, the impact of charge-scheduling is limited by the service sched-
ules, such that operators who wish to remain cost-competitive should design vehi-
cle schedules with charge schedules in mind and vice versa. Addressing this joint
planning problem requires an integrated planning approach combining vehicle
scheduling problems (VSPs) with charge-scheduling. However, publications deal-
ing with VSPs have either focused on conventional vehicles and did not account
for charging-related concerns, such as battery health, station capacity and vari-
able energy prices (Adler and Mirchandani 2017; Yao et al. 2020), or remain com-
putationally intractable for problem sizes relevant in practice (van Kooten Niek-
erk et al. 2017). Publications focusing on (depot) charge-scheduling problems have
been limited in a similar fashion, either assuming a simplified model of the charg-
ing process (Sassi and Oulamara 2014, 2017), remaining heuristic, or proposing
algorithms that do not scale to problem sizes encountered in practice (Pelletier
et al. 2018). This work aims to close this gap by developing an exact branch and
price (B&P) algorithm for an integrated charge- and service operation scheduling
problem, accounting for battery degradation, TOU energy prices, limited avail-
ability of charging infrastructure, and non-linear battery behavior. For this pur-
pose, Sect. 2 outlines the problem setting and develops a set-covering based for-
mulation. Section 3 then summarizes our approach to solve this problem, followed
by an evaluation of the algorithm’s computational performance in Sect. 4. Finally,
Sect. 5 concludes this article.

2 Problem Setting

We consider a (depot) charge scheduling problem faced by logistics service
providers (LSPs) in the context of electric vehicle routing. Here, an electrified
fleet of vehicles K needs to service a set of customers over a planning horizon
of several days. We assume that routes have been pre-computed for each vehicle
such that tour assignment, consumption, and duration are known in advance.
Departure times are subject to scheduling, i.e., may be shifted in time, but
must be completed within a certain, tour-specific, time window. Vehicles may
be recharged at the depot using a set of (heterogeneous) charging stations. For
this purpose, each station f ∈ F is equipped with Cf chargers for parallel charg-
ing. Charging incurs costs according to the battery degradation caused and the
energy price at the time of charging. In this problem setting, the LSP’s aim is to
find a cost-minimal schedule of charging- and service-operations for each vehicle
k ∈ K such that i) battery capacity constraints are respected, ii) each tour is
serviced by its assigned vehicle, iii) departure time windows are met, and iv)
charger capacity is not violated. We model this optimization problem using a
set-covering formulation over the set of vehicle schedules. For this purpose, we
discretize the planning horizon into a set of equidistant periods p ∈ P. To ensure
the feasibility of the original problem, we pursue a conservative discretization
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approach for tour departure time windows and charging operations. More pre-
cisely, tour departure and arrival are shifted to the beginning and end of their
respective periods, and vehicles occupy chargers for entire periods at a time.
To maintain accuracy, we still allow time-continuous charging such that vehicles
may spend only a fraction of a period charging. We denote the set of all feasi-
ble vehicle schedules for vehicle k ∈ K as Ak and let A = ∪k∈KAk be the set
of all schedules. This distinction is necessary as charging schedules may not be
compatible with every vehicle due to different tour assignments. We further use
binary parameters yω,p,f to indicate if ω ∈ A schedules a charging operation at
f ∈ F in period p ∈ P. Finally, binary variables xk

ω assign schedules to vehicles.
We obtain the following optimization problem:

zMP = min
∑

k∈K

∑

ω∈Ak

xk
ωc(ω) (1a)

∑

k∈K

∑

ω∈Ak

xk
ω · yω,p,f ≤ Cf f ∈ F , p ∈ P (1b)

∑

ω∈Ak

xk
ω = 1 k ∈ K (1c)

xk
ω ∈ {0, 1} ω ∈ Ak (1d)

MIP 1 assembles a fleet schedule of minimal cost from the set of feasible vehicle
schedules Ak according to two sets of constraints. First, capacity constraints (1b)
enforce charger capacity limitations. Second, covering constraints (1c) ensure
that exactly one schedule is assigned to each vehicle. Constraints (1d) state the
decision variables’ domain.

3 Methodology

As A is huge for instances of reasonable size, solving MIP 1 using conventional,
i.e., LP-based, branch and bound (B&B) remains computationally intractable.
As a mitigation, we propose a B&P-based approach. Our algorithm essentially
solves a LP relaxation of MIP 1, the so-called master problem, using a column-
generation procedure at each node of the B&B tree. This procedure is outlined
in Sect. 3.1. We propose a problem-specific branching rule to ensure a balanced
B&B tree, detailed in Sect. 3.2. Finally, we utilize a primal heuristic, summarized
in Sect. 3.3, to find good upper bounds early during the search.

3.1 Column Generation

The fundamental idea of column generation is to approach MIP 1 with only a
small subset of schedules A, generated iteratively. For this purpose, each iteration
first solves a linear relaxation of MIP 1 to then generate a new schedule ω ∈ Ak

based on the dual variables of Constraints (1b) and (1c), denoted π
(1)
p,f and π

(2)
k ,

respectively. This corresponds to solving the so-called pricing problem (Eq. 2),
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which seeks to generate schedules with negative reduced costs, i.e., schedules
which would enter the basis of MIP 1 in the next iteration.

min
k∈K,ω∈Ak

c(ω) − π
(2)
k −

∑

p∈P

∑

f∈F
yω,p,f · π

(1)
p,f . (2)

The procedure terminates when (2) is positive, i.e., when the basis of MIP 1
is optimal. We express our pricing problem as a shortest path problem with
resource constraints (SPPRC) over a time-expanded network, which we solve by
using a problem-specific labeling algorithm. Here, we address non-linear charg-
ing, battery degradation, and variable energy prices with a novel label representa-
tion: instead of considering every reachable state of charge (SoC) when charging
at some charger f ∈ F , our labels capture charging trade-offs in so-called cost
profiles. These state the maximum SoC reachable at the end of a (partial) path
ρ when spending a total of c along ρ, potentially replenishing additional energy
at f . This allows to delay the decision on how much to charge at f until another
station or the network sink is reached. Here, the trade-off becomes explicit and
a finite subset of non-dominated charging decisions at f can be identified.

3.2 Branching

Column generation deals with the linear relaxation of MIP 1 and thus may ter-
minate with a fractional solution. We mitigate this issue by embedding our col-
umn generation procedure into a B&B algorithm. Here, our branching rule bases
on the following observation: In every fractional solution of MIP 1 it holds that
∃(p, f) ∈ P × F such that

∑
ω∈A xωyω,p,f = Cf . We resolve such conflicts by cre-

ating up and down branches based on the charger allocation yω,p,f . For this pur-
pose, we identify the vehicle k which relies most on charger f in period p, formally,
k = arg max

k′∈K

∑
ω∈Ak′ xω · yω,p,f , and create up and down-branches that cut off all

solutions where vehicle k uses/does not use charger f in period p, respectively.

3.3 Primal Heuristic

We propose a primal heuristic based on Sub-MIPing that works exclusively with
the variables of the master problem. Its fundamental idea is to remove a subset of
columns present in the current node’s (N) reduced column pool ÃN and resolve
the resulting problem using IP. We select schedules to remove from ÃN based on
quality (i.e., cost) and diversity. Here, diversity is measured through the number
of shared charger allocations. We execute this procedure before branching on
non-integral nodes unless an upper bound has already been found.

4 Numerical Experiments

We benchmark the performance of our B&P algorithm on two sets of randomly
generated instances. The first set comprises small instances (2 vehicles, 1 charger,
1 day) with varying numbers of tours (1, 2) and departure time window lengths
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(0%, 25%, 50%, given as a percentage of tour duration). Other parameters,
such as tour timing, duration, and charging speed are drawn randomly. We use
these to benchmark our algorithm against an equivalent IP. The second set
contains instances of varying sizes to demonstrate the scalability of our algo-
rithm. The reference setting spans a planning horizon of 3 days and comprises
a fleet of 6 vehicles, each operating 2 tours per day with 30% flexibility. The
depot is equipped with max(1, � |K|

2 �) fast and |K| slow chargers. We generate
instances with varying fleet sizes and planning horizon lengths based on this
setting. We used CPLEX 20.1 limited to a single thread and 3600 s of runtime on
a Intel(R) i9-9900, 3.1 GHz CPU with 16 GB of RAM for our computational
study. Table 1 shows the results of our benchmark on the small instances.

Table 1. Results of our experiments on small instances.

Parameters MIP Branch & Price #total

#tours flexibility runtime gap #infeas. #timeout runtime gap #infeas. #timeout

1 Static 2917.92 72.08 2 8 22.79 0.00 6 0 10

25% 3600.00 100.00 0 10 67.14 0.00 0 0 10

50% 3600.00 100.00 0 10 117.03 0.00 0 0 10

2 Static 1453.33 15.81 6 4 0.73 0.00 6 0 10

25% 2523.36 57.35 3 7 3.59 0.00 4 0 10

50% 3600.00 90.33 0 10 8.25 0.00 2 0 10

The first two columns state the parameter values used during instance generation. The total num-

ber of instances generated for each setting is reported in the last column. Columns runtime, gap,

#infeas. and #timeout state averages for the runtime [s], the relative gap between best upper and

lower bound [%], the number of infeasible instances, and the number of instances not solved within

the time limit.

As can be seen, our algorithm outperforms the mixed integer program (MIP)
formulation on all instance types, solving each generated instance in less than
500 s. Figures 1a and 1b show the scalability of our algorithm w.r.t. fleet size
and planning horizon length. Each dot corresponds to an individual instance.

(a) Varying fleet size. (b) Varying planning horizon
length.

Fig. 1. Runtimes on large instances
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The blue lines give the average runtime over all instances. As is illustrated, our
algorithm scales to a fleet size of 20 vehicles and manages to solve instances
spanning up to 5 days.

5 Conclusion

We presented a novel charge- and service operation scheduling problem where a
fleet of electric vehicles fulfills a set of service operations under the assumption
of limited charging station capacity, variable energy prices, battery degradation,
and non-linear charging behavior. We developed an exact algorithm based on
B&P to solve the proposed problem. A novel labeling algorithm, a state-of-the-
art primal heuristic, and problem-specific branching rules establish the efficiency
of our algorithm, which is demonstrated in an accompanying numerical study.
This study asserts the competitiveness of our algorithm through a benchmark
against an equivalent mixed-integer formulation, showing that our algorithm
significantly outperforms commercial solvers and scales to instances of larger
size, optimally solving instances with planning horizons of up to 5 days or 20
vehicles within one hour, allowing an application in practice.
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Abstract. Makespan minimization on identical parallel machines, or
machine scheduling for short, is a fundamental problem in combinatorial
optimization. In this problem, a set of jobs with processing times has to
be assigned to a set of machines with the goal of minimizing the latest
finishing time of the jobs, i.e., the makespan. While machine scheduling
in NP-hard and therefore does not admit a polynomial time algorithm
guaranteed to find an optimal solution (unless P=NP), there is a well-
known polynomial time approximation scheme (PTAS) for this problem,
i.e., a family of (1 + ε)-approximations for each ε > 0. The question of
whether there is a PTAS for a given problem is considered fundamental
in approximation theory. The author’s dissertation considers this ques-
tion for several variants of machine scheduling, and the present work
summarizes the dissertation.

Keywords: Scheduling · Parallel machines · Makespan ·
Approximation · PTAS

1 Introduction

Consider the problem of makespan minimization on identical parallel machines, or
machine scheduling for short. The input of this problem is a set M of m machines
and a set J of n jobs each with a processing time or size pj , and the goal is to find a
schedule σ : J → M minimizing the makespan Cmax(σ) = maxi∈M

∑
j∈σ1(i) pj .

Already in the 1960s Graham [4,5] proposed the simple list scheduling algorithm
for machine scheduling and showed that it is a 2-approximation, i.e., for any input
instance the objective value of the schedule produced by the algorithm is at most
twice as big as the optimal value. In this algorithm, the jobs are simply consid-
ered one after another in any order and assigned to a least loaded machine. Gra-
ham also showed that the algorithm is a 4

3 -approximation if the jobs are sorted by
non-increasing processing time. These results are considered to be among the first
approximation algorithms and have been achieved even before the term has been
coined by Johnson [12] in 1974. Since machine scheduling is known to be NP-hard,
a polynomial time algorithm guaranteed to solve any instance optimally cannot be

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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hoped for. However, in 1987 Hochbaum and Shmoys [6] presented the first poly-
nomial time approximation scheme (PTAS) for this problem and thereby showed
that any approximation ratio strictly greater than 1 can be achieved. Formally, a
PTAS is a family of approximation algorithms containing a (1+ε)-approximation
for each ε > 0. Since then, there have been a plethora of results concerning approx-
imation schemes for machine scheduling and variants thereof.

The author’s dissertation [14] seeks to deepen the understanding in this area
of research. For this purpose, several approximation schemes have been designed,
with new techniques introduced and working for a wide spectrum of variants of
machine scheduling. Furthermore, inapproximability results were designed that
rule out the existence of approximation schemes for certain cases under the
assumption that P�=NP. The corresponding results have been presented in the
papers [7–11,15], and the present work briefly summarizes these results.

Before the results are discussed in the following sections, we introduce some
concepts and notation regarding approximation schemes and variants of machine
scheduling. First, a PTAS is called efficient (EPTAS) if it has a running time
of the form f(1/ε)|I|O(1), where f is some computable function and |I| the
input length. Furthermore, an EPTAS is called fully polynomial (FPTAS) if the
function f is a polynomial.

The first problem variant is called unrelated scheduling. In this problem the
processing time of a job depends on the machine it is processed on, that is, the
input includes a processing time pij for each machine i and job j. Moreover,
uniform scheduling can be seen as a special case of unrelated scheduling where
each job j has a size pj , each machine i a speed si, and the processing time
of job j on machine i is given by pij = pj/si. Finally, restricted assignment is
another special case of unrelated scheduling with pij ∈ {pj ,∞}, i.e., each job j
has either a fixed processing time pj or cannot be processed by a given machine
at all. It is easy to see, that machine scheduling is a special case of both restricted
assignment and uniform scheduling.

2 Unrelated Scheduling with Few Types

In [7], the variant of unrelated scheduling with a constant number K of machine
types is considered. Two machines i and i′ have the same type if pij = pi′j
holds for each job j. In many application scenarios this setting is plausible, e.g.,
when considering computers which typically only have a very limited number of
different types of processing units. Note that for K = 1, we have the problem
of machine scheduling. For unrelated scheduling, there is a 2-approximation due
to Lenstra, Shmoys and Tardos [13] who also showed that there is no better
than 1.5-approximation for restricted assignment, unless P=NP. For machine
scheduling, on the other hand, an EPTAS is known [1]. The first PTAS for the
case with a constant number of types was presented by Bonifaci and Wiese [2].

In [7] the first EPTAS for unrelated scheduling with a constant number of
machine types is presented. For this result, the dual approximation approach
by Hochbaum and Shmoys [6] is employed to get a guess T of the optimal
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makespan. Then, the problem is further simplified via geometric rounding of the
processing times. Next, a mixed integer linear program (MILP) is formulated
based on the classical configuration ILP with a constant number of integral
variables that encodes a relaxed version of the problem. The fractional variables
of the MILP have to be rounded and this is achieved with a properly designed
flow network utilizing flow integrality and causing only a small error. With an
additional error, the obtained solution can be used to construct a schedule with
makespan (1+O(ε))T which in turn suffices to get an EPTAS. The running time
of the EPTAS can be further improved using techniques for configuration ILPs.
Furthermore, three other problem variants are studied and it is shown that the
result can be expanded to them as well.

3 Interval and Resource Restrictions

While we cannot hope for a PTAS for the restricted assignment problem, there is
a line of research focusing on types of restrictions that change this situation. One
example is the hierarchical case in which the machines are totally ordered and
each job is eligible on a set of consecutive machines including the first machine.
A PTAS for this case was presented by Ou, Leung and Li [16].

The paper [15] focuses on two arguably rather natural variants of restric-
tions, namely interval and resource restrictions. In the case of interval restrictions
the machines can be totally ordered such that jobs are eligible on consecutive
machines. The main result is that there is no PTAS for the interval case unless
P=NP. This result is achieved using a reduction from a hand-crafted satisfiability
problem with a particularly neat and symmetric structure. There are several gad-
gets in the reduction, but at its core there is a truth assignment and a clause gadget.
Roughly speaking, in the former, decisions regarding the truth assignments of the
variables are made, and in the latter, these decisions are evaluated with respect
to the clauses of the satisfiability instance. The main challenge is connecting these
two gadgets in a way that does not require encoding too much information into the
processing times of the jobs. In particular, an instance of the restricted assignment
problem with interval restrictions is constructed in which all processing times are
integral and upper bounded by some constant T such that the overall processing
time of the jobs equals |M|T . Then it is shown that there exists a schedule with
makespan T for the instance, if and only if the given instance of the satisfiability
problem is a yes-instance. This rules out the existence of an approximation algo-
rithm with rate smaller than (T + 1)/T and a PTAS in particular.

The variant with resource restrictions can be defined as follows: There is a
fixed number of (renewable) resources, each machine has a capacity, and each
job a demand for each resource. A job is eligible on a machine if its demand is at
most as big as the capacity of the machine for each resource. For one resource,
this is equivalent to the mentioned hierarchical case and it can be shown that the
variant with two resources contains the interval case. It is shown that there is no
polynomial time approximation algorithm with a rate smaller than 48/47 ≈ 1.02
or 1.5 for scheduling with resource restrictions with 2 or 4 resources, respectively,
unless P=NP.
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4 Structural Parameter Restrictions

The paper [11] also considers special types of assignment restrictions. In partic-
ular, a graph framework based on the restrictions is introduced. In the primal
graph, the jobs are the nodes and are adjacent if they share an eligible machine.
In the dual graph, on the other hand, the machines are the nodes and two
machines are adjacent if there is a job that is eligible on both of them. Lastly,
the incidence graph is a bipartite graph that includes both jobs and machines
as nodes, and a job node is adjacent to a machine node if the job is eligible on
the machine (see Fig. 1). Cases in which these graphs have certain structural
properties are studied.
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Fig. 1. Primal, dual and incidence graph for an instance with 6 jobs and 4 machines.

The main result of this paper is a PTAS for the case that the incidence graph
has a constant rank- or cliquewidth. Intuitively, the cliquewidth measures how far
a graph deviates from the simple structure of a complete graph. There are certain
graph decompositions associated with theses width parameters that enable the
design of a dynamic program. The dynamic program then can be combined with
rounding techniques to yield the PTAS result. Moreover, if the incidence graph
is a so-called bi-cograph, then the graph decomposition is particularly simple
and the bi-cograph case already generalizes most of the previously known PTAS
results. Furthermore, the more famous graph parameter treewidth is considered
with respect to the primal, dual, and incidence graph and used in the design of
further approximation schemes and exact algorithms.

5 Machine Scheduling with Setup Times

Integer linear programs of configurations, or configuration IPs, are a classical
tool in the design of algorithms for scheduling and packing problems where a set
of items has to be placed in multiple target locations. Herein, a configuration
describes a possible placement on one of the target locations, and the IP is
used to choose suitable configurations covering the items. In the paper [8], an
augmented IP formulation is presented, which is called the module configuration
IP. It can be described in the framework of n-fold integer programming, which has
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recently received a lot of attention with many new algorithmic results (see [3] for
an overview). As an application, variants of machine scheduling are considered
in which jobs can be split and scheduled on multiple machines. However, before
a part of a job can be processed, an uninterrupted setup time depending on
the job has to be paid. For both of the variants that jobs can be executed in
parallel or not, EPTAS results are obtained. Previously, only constant factor
approximations of 5/3 and 4/3 + ε, respectively, were known. Furthermore, an
EPTAS is presented for a problem where classes of (non-splittable) jobs are
given, and a setup has to be paid for each batch of jobs of each class of jobs
being executed on one machine. The results are based on rounding techniques,
a careful analysis of near-optimal solutions, and the mentioned new algorithms
for n-fold integer programming. Intuitively, the main idea is to perform two
steps simultaneously using the module configuration IP. The first step is to split
the jobs or form batches of jobs, respectively, and to combine them with the
respective setup times, and then covering the resulting so-called modules with
configurations in the second step. In a follow-up work [9] the non-splittable
problem on uniform machines is considered and a PTAS is achieved.

6 Machine Scheduling with a Shared Resource

In the last work [10], two related variants of machine scheduling are considered:
single resource constrained scheduling on identical parallel machines and a gen-
eralization with resource dependent processing times. In both problems, jobs
require a certain amount of an additional resource and have to be scheduled on
machines minimizing the makespan, while at every point in time a given resource
capacity is not exceeded. In the first variant of the problem, the processing times
and resource amounts are fixed, while, in the second, the former depends on the
latter. Both problems contain the problem of bin packing with cardinality con-
straints as a special case, and, therefore, they are strongly NP-complete even
for a constant number of machines larger than three, which can be proven by a
reduction from 3-Partition. Furthermore, if the number of machines is part of
the input, we cannot hope for an approximation algorithm with absolute ratio
smaller than 3/2. These problems arise naturally in different contexts, e.g., in
highly parallelized computing where simultaneously active jobs share common
memory, or in production logistics where additional personnel may speed up
certain tasks.

For both problems, asymptotic fully polynomial time approximation schemes
(AFPTAS) are presented: For any ε > 0 a schedule of length at most (1 + ε)
times the optimum plus an additive term of O(pmax log(1/ε)/ε) is provided, and
the running time is polynomially bounded in 1/ε and the input length. Up to
now, only approximation algorithms with absolute approximation ratios were
known. The results are achieved via intricate LP and rounding techniques and
the result for the second problem uses the first as a subroutine.



26 M. Maack

References

1. Alon, N., Azar, Y., Woeginger, G.J., Yadid, T.: Approximation schemes for schedul-
ing on parallel machines. J. Scheduling 1(1), 55–66 (1998)

2. Bonifaci, V., Wiese, A.: Scheduling unrelated machines of few different types.
CoRR abs/1205.0974 (2012)
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Abstract. In this work, we investigate the implications of commodity
price uncertainty for optimal procurement and inventory control deci-
sions. While the existing literature typically relies on the full information
paradigm, i.e., optimizing procurement and inventory decisions under
full information of the underlying stochastic price process, we develop
and test different data-driven approaches that optimize decisions under
very limited statistical model assumptions. Our results are data-driven
policies and decision rules that can support commodity procurement
managers, inventory managers as well as commodity merchants. We fur-
thermore test all optimization models based on real data from different
commodity classes (i.e., metals, energy and agricultural).

This paper is a summary of the author’s dissertation (Mandl C. (2019).
Optimal Procurement and Inventory Control in Volatile Commodity
Markets - Advances in Stochastic and Data-Driven Optimization, [1]).

Keywords: Price uncertainty · Procurement · Inventory control ·
Data-driven optimization · Machine learning

1 Motivation

During the COVID-19 pandemic, commodity prices increased significantly. A
prominent example was timber whose prices increased by more than 200%. But
also other commodities that are relevant for many industries such as aluminum
and copper were hit by price increases of more than 50%. Similar price explosions
were observable for agricultural commodities such as for example corn and wheat
(see [2]).

In practice, almost every company is affected by fluctuating commodity
prices: firms that purchase raw material for manufacturing as well as companies
demanding for packaging material or energy to run their production facilities
and transports. Depending on the industry, commodity purchasing cost make
up a proportion of 17 to 44% of the total cost of a company (see [3]).

Consequently, commodity price volatility constitutes a significant exogenous
risk factor for both commodity-processing and commodity-trading firms and ask
for appropriate decision-making in terms of procurement quantities, contracting
volumes and inventory levels.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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While commodity-processing firms try to hedge price risk through anticipa-
tive inventories (operational hedging) or contracting (financial hedging), com-
modity merchants try to take advance of price fluctuations through purchasing
at a rather low prices, storing over a certain period of time and selling at rather
high prices.

In any case, physical commodity procurement states a complex decision prob-
lem under uncertainty that is typically solved through stochastic dynamic pro-
gramming (SDP) in literature and practice (see, e.g., [7,8]). This requires to
select a prediction model upfront in order to model uncertainty in commodity
prices. The prediction model then serves as an input for the optimization model
(i.e., SDP) to derive optimal operating policies (e.g., procurement policies or
inventory control policies) under consideration of further operational constraints
(e.g., service level objectives or capacity restrictions).

However, the obtained operating policies are optimal only under the assump-
tion of full information about the prediction model and its parameters. In prac-
tice, however, prediction models are typically misspecified and can therefore lead
to adverse procurement and inventory control decisions.

In this work, we (i) quantify the effect of price model misspecification for
commodity operations and (ii) aim at relaxing the full information paradigm
through novel machine-learning-inspired data-driven optimization approaches
that either optimize commodity operations decisions based on raw data itself
with very limited statistical model assumptions (see [4,5] for newsvendor appli-
cations) or allow for switches between different prediction model specifications
(see [6] for theoretical foundation of Markov regime switching models).

Our developed models contribute to the emerging literature on data-driven
optimization and machine learning being capable to leverage internal and exter-
nal feature data that is increasingly available at companies - however focusing
on optimal operational decisions rather than predictions.

2 Problem Statement

In the light of the full information paradigm introduced in Sect. 1, we study
three fundamental optimization problems in physical commodity procurement
and merchant operations:

1. Optimal forward contracting of commodities from a procurement perspective.
2. Optimal inventory control under purchase price and demand uncertainty from

a procurement perspective.
3. Optimal storage operations from a commodity merchant’s perspective.

2.1 Problem Setting 1: Forward Contracting

The first setting [9] addresses the multi-period stochastic procurement problem
of optimizing the firm’s position in commodity forward markets. Forward (or
futures) contracts allow to fix a commodity price pτ

t at time t for delivery at a
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future date τ > t (e.g. front-month, two-months-ahead, etc.). The forward curve
�Ft = (pτ

t , τ > t) evolves stochastically over time. Therefore, even when relying on
the Rational Expectations Hypothesis that states that pτ

t = Et[p0τ ] with E[·] as the
expected value, the decision maker cannot be certain about the market’s expecta-
tion in period t + 1. Nonetheless, expectations in period t + 1 affect decisions in
period t+1, which again can affect the optimal here-and-now decision in period t.
Existing approaches solve the problem under the full information paradigm using
a pre-specified stochastic forward curve model as an input for a stochastic dynamic
program. These approaches suffer from two major problems: (i) The well-known
curse of dimensionality in dynamic programming and (ii) price model and gener-
alization errors. Therefore, we address the following research questions:

– How can firms efficiently operationalize feature data (i.e., potential price
drivers) for optimal commodity forward contracting decisions without full
information assumptions on the price models characterization?

– What is the economic value of feature data and prescriptive analytics for
commodity-purchasing firms?

2.2 Problem Setting 2: Storage (Procurement Perspective)

The second setting [10] addresses the multi-period stochastic inventory control
problem under purchase price and demand uncertainty. Commodity storage is an
appropriate price risk mitigation strategy in particular for storable commodities
without liquid forward markets. In order to derive optimal inventory control
policies, the existing literature assumes a stochastic price model that is well-
defined in class and parameters.

However, the price model and its parameters can change over time - e.g., due
to changes in price regimes after economic crashs or natural disasters. Ignoring
changes in the underlying price dynamics (i.e., regime switches) may lead to sig-
nificantly suboptimal procurement and inventory control decisions. We therefore
formulate the following research questions:

– How do price regime switches affect the structure of the optimal inventory
control policy?

– What are the cost implications of misspecifying the underlying price model?
– Can Bayesian learning based on information updates improve inventory con-

trol decisions for commodities?

2.3 Problem Setting 3: Storage (Merchant Perspective)

The third setting [11] addresses the multi-period inventory control problem from
a merchant’s perspective with purchase, storage and selling decisions aiming at
maximizing profits under random purchase and sales prices (purchase low, store,
sell high). Inventory trading plays a fundamental role in commodity industry and
asks for stochastic optimization approaches to optimally control inventory levels
of for instance gas storage caverns, grain silos or metal warehouses. In practice,
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storage decisions are typically optimized based on reoptimization heuristics that
use the forward price curve as deterministic best-estimates of future spot prices.
Reoptimization heuristics are computationally efficient and have been shown to
perform near-optimal under the full information paradigm. Motivated by the fact
that decision-makers in practice do not decide under full price model information,
we formulate the following research questions:

– How does the state-of-the-art reoptimization heuristic perform in backtesting
settings on real commodity price data?

– How to effectively solve the merchant’s storage problem in a data-driven and
learning-enabled way and what is the value of data-driven storage policies?

3 Results

3.1 Problem Setting 1: Forward Contracting

We show that the optimal procurement policy of problem setting 1 is character-
ized by a simple threshold structure that characterizes the optimal procurement
quantity yt:

yt =

{
[dt+τ − Iτ

t ]+ if pτ
t ≤ P τ

t

0 if pτ
t > P τ

t .
(1)

If the current forward (or futures) price pτ
t is less than or equal to a threshold

P τ
t , then one should hedge the corresponding future period’s demand dt+τ minus

the already hedged quantity Iτ
t , otherwise do nothing.

Rather than deriving price threshold P τ
t via dynamic programming under

price model assumptions, we train P τ
t based on price and feature data Xit of

features i = 1, ..., N over a historical data sample t = 1, ..., T :

P τ
t (X) = βτ

0 +
N∑

i=1

βτ
i Xit (2)

Feature coefficients βτ
i (including intercept βτ

0 ) are trained with mixed-
integer linear programming (MILP) models under the objective function of
purchase cost minimization rather than the minimization of price prediction
errors. The MILP models are extended by standard regularization functions
from machine learning in order to avoid overfitting. For further technical details,
we refer to [9].

Besides our numerical tests in a controlled simulation environment, we addi-
tionally back-tested the algorithms in a case study for the procurement of natu-
ral gas at the European TTF market under consideration of a large feature set
(e.g., related commodity prices, macroeconomic data and weather data). For the
period 2007–2017, we find that the data-driven procurement policy outperforms
several benchmarks in terms of out-of-sample purchase cost achieving a cost
performance of on average 5.68% above the perfect foresight cost, i.e., minimal
procurement cost if commodity price evolution would have been known prior to
decision-making.
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3.2 Problem Setting 2: Storage (Procurement Perspective)

By means of stochastic dynamic programming, we show that under switches in
the underlying price process, a regime belief-dependent base-stock policy fully
characterizes the optimal procurement quantity yt given the current inventory
level It:

yt =

{
[St(pt, �πt) − It if It < St

0 if It ≥ St.
(3)

The base-stock level St is a function of the current spot price pt and a regime
belief �πt. We introduce a Markov regime switching (MRS) approach that learns
switches in the underlying commodity price process parameters based on the
latest price observations. The approach is able to adjust inventory policy param-
eters accordingly based on a Bayesian learning scheme that updates the regime
belief �πt. For further technical details, we refer to [10].

Based on both simulation experiments and experiments on real commod-
ity price data (i.e., for corn and zinc), we show that ignoring regime switches
can lead to substantially suboptimal procurement and storage decisions with
cost deviations of up to 13%. The results show that a data-driven approach
that utilizes Bayesian statistics can significantly improve inventory control deci-
sions compared to traditional stochastic inventory optimization. We find that
the value of Bayesian learning is particularly high when unit inventory holding
cost and demand uncertainty are low. However, the computation of the optimal
base-stock level St(pt, �πt) suffers from the curse of dimensionality. Therefore, we
test several suboptimal control policies showing that certainty-equivalent control
(CEC) without permanent information updates can be a good approximation for
optimal control.

3.3 Problem Setting 3: Storage (Merchant Perspective)

Based on six major exchange-traded commodities (i.e., copper, gold, crude oil,
natural gas, corn and soybean), we run extensive performance backtests. We find
that the popular reoptimization heuristic (RH) that has been shown to perform
near-optimal relative to the full information SDP, can perform significantly sub-
optimal in backtests based on real data and can even lead to unprofitable storage
operations.

Motivated by this observation, we formulate MILP models to train inventory
policy parameters, i.e., price thresholds Pt and base-stock levels for injection Si

t

and base-stock levels for withdrawal So
t in a data-driven way as a function of

features (i.e., futures prices, spot price history and analyst forecasts). Our results
show that data-driven storage policies achieve a profit of 26.7% of the perfect
foresight solution, while RH achieves only 12.0%. However, we also show that
the performance of data-driven policies strongly depends on feature selection
and further input parameters (e.g., training set length) that need to be selected
carefully in a-priori backtest experiments.
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Introduction

Shared mobility systems or vehicle sharing schemes, such as carsharing and
ridesharing, gain global importance, as they help alleviating two major challenges
of today’s society: congestion and emissions. However, to be able to tackle these
challenges, customers must be able to find vehicles nearby within a short period
of time. Vehicles may be unavailable because they are currently rented out,
broken, or because of spatio-temporal demand imbalances, i.e., vehicles agglom-
erating in a part of the operating area while no vehicles are available elsewhere.
In the case of one-way and free-floating systems, users can rent vehicles at one
location, and return them elsewhere. For example, party-goers might use car-
sharing to get to a bar, but public transit on their return trip, or customers
may use public transportation to get to a shopping mall, but vehicles with suffi-
cient trunk-space for their return trip. Temporally, demand imbalances can for
example arise because of customers commuting to work. Multiple data-driven
studies show such demand imbalances throughout different cities and services,
two examples are [1,2]. Ignoring these demand imbalances would result in lower
profits, but also highly varying service levels [3]. Thus, operators rebalance their
fleet, i.e., they move vehicles from locations with an expected excess in supply to
locations with an expected excess in demand (operator-based rebalancing), or use
incentives and discounts such that users adapt their behavior (user-based rebal-
ancing). While user-based rebalancing has the potential to reduce the necessity
for operator-based rebalancing, operator-based rebalancing remains the method
of choice for very high and random demand imbalances (see, for example, [4,5]).
For a literature overview on the rebalancing problem, we refer to the recent liter-
ature review of [6], as well as the broader reviews in [7,8] which summarize the
operations management and transportation science literature on vehicle shar-
ing. The author’s thesis tackles three extensions of the operator-based rebalanc-
ing problem, namely competition, feature-based mode selection, and technology
choice [9]. In the following, we devote one section to each of the extensions.
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1 Competition in Rebalancing Shared Mobility Systems

In recent years, competition has between carsharing operators has been increas-
ing worldwide [10,11]. [12] investigates how much operational profit operators
can gain by considering the fact that they are competing in a city when rebalanc-
ing, and how much operational profit they loose due to competing. We also study
drivers of profit gains and losses. We model the rebalancing problem under com-
petition as a variant of a vehicle routing problem with profits, called the Compet-
itive Pickup and Delivery Orienteering Problem (C-PDOP). If multiple operators
place a vehicle at the same location, they share the profits. To solve the C-PDOP
for its pure-strategy Nash equilibria, we present two algorithms, namely Iterated
Best Response (IBR) and Potential Function Optimization (PFO). The latter is
only applicable in a restricted version of the C-PDOP, namely if all operators
receive the same payoff from a customer (homogeneous payoffs), customers do
not have preferences for either operator (indifferent customer choice), and if prof-
its of placing vehicles at nearby locations are not inter-dependent (unit-demand
stations). The former algorithm can find pure-strategy Nash equilibria even in
the more general case if they exist. Using the proposed model and algorithms,
and a large set of artificial instances as well as a case study, we answer three
research questions:
How much can operators gain from considering the presence of competition in
their rebalancing operations with regards to gross profits? Put differently, what
is the price of ignoring the presence of competition?

In experiments using artificial data, we observe profit gains of up to several
orders of magnitude. In a Munich, Germany, case study with two operators,
profit gains of 35% on average over both operators are achievable, if operators
ignore competition otherwise. Assuming that operators expect their competitors
to place vehicles at all locations, operators gain 12% of their profits on average
by considering competition.
How much is lost by competing in comparison to jointly optimizing fleet rebal-
ancing with regard to gross profits, and how do alternative business models under
competition compare to each other?

Welfare-maximization, i.e., the joint optimization of the routing, but keeping
the routes separate, does not substantially increase profits, compared to the Nash
equilibrium solution. Commonly, the small profit gains do not justify the addi-
tional coordination effort for the operators. Merging both fleets, or outsourcing
all rebalancing activities to a common third-party provider, on the other hand,
has the potential for substantial profit improvements compared to the Nash equi-
librium solution. We prove that under two minor restrictions, merging the fleets,
or outsourcing rebalancing operations to the same service increases profits. In
the Munich case study, operators lose approx. 10% by competing rather than
merging or outsourcing their rebalancing activities.
Which features drive the gains from considering competition, and the losses due
to the presence of competition?

If many customers have multiple memberships, and if a larger number of
operators offers their service in a city, i.e., if competition is fierce, profit gains
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due to considering competition increases while the profit loss due to consider-
ing competition decreases. If the imbalance is larger, i.e., if the operators must
rebalance more vehicles, the percentage profit loss due to considering compe-
tition decreases, while the absolute profit loss increases. Assuming marginally
decreasing payoffs of additional vehicles at a station, we show that larger sta-
tions decrease the potential profit gain. Also, profit gains due to considering
competition increase if operators receive different payoffs for serving the same
customer (under full competition), customers have preferences (only for the less
preferred operator).

2 Feature-Based Mode Selection in Rebalancing Shared
Mobility Systems

Most literature on rebalancing vehicle sharing systems assumes that vehicles
can be loaded onto a truck, or that workers of the operator drive the vehicles
themselves. If workers drive vehicles, they usually combine multiple rebalancing
operations, and thus have to continue to the next vehicle. They can use (foldable)
bikes or public transit, or hitch rides with colleagues. In [13] we study the mode
selection problem of carsharing operators. To understand which modes to use in
which city, and why, we first solve a large number of instances for their optimal
mode, or their optimal modal combination, and use this data to build classifiers
that predict the mode based on a large set of features such as velocity, cost,
and distances. These classifiers are linear regression for rebalancing costs per
mode, permitting to select the cost-minimal mode, logistic regression for the
probability a mode is optimal, and three decision trees using different subsets of
features to predict the best mode directly. The structure of the classifiers, i.e.,
the weights in the linear and logistic regression classifiers, and the decision rules
in the decision trees indicate the importance of the features in the modal choice.
This permits us two answer the following two research questions:
Can a good mode be selected a-priori based upon features of the fleet and city?

Linear regression, logistic regression, and one of the three suggested decision
trees determines the best mode with an accuracy of more than 90%. At the
same time, the excess cost of misclassification, i.e., the cost difference between
the best mode and the mode suggested by a classifier, is low with less than
10% of the total cost on average over all misclassified instances. This is because
misclassification commonly occurs if multiple modes are good choices. We show
that in most misclassified instances, multiple instances using the same features
result in different optimal modes, and in most instances, using multiple modes
simultaneously, i.e., hybridization, further reduces costs.
Which features drive the choice of the optimal rebalancing mode?

Most commonly, the optimal mode is bike or truck. Bike is preferred over
truck, if worker wages are not excessively high, and costs for vehicles (fuel, wear,
tear, deprecation) are not very low. Other modes, i.e., public transit and car,
only become the best mode, if both bike and truck restricted, e.g., by very low
accessibility by truck and very low velocities for the mode bike.
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3 Technology Choice in Rebalancing Shared Mobility
Systems

In addition to the revolutionary nature of the “sharing economy”, the mobility
market also faces the advent of driverless vehicle technology [14]. [15] focuses
on the strategic technology choice problem of shared mobility operators aris-
ing when driverless vehicles become available. We address the question of how
many driverless, and how many human-driven vehicles a shared mobility sys-
tem operator should procure, i.e., a fleet size and mix problem. Compared to
human-driven vehicles, driverless vehicles are more expensive to procure due to
the additional technology. On the other hand, they are more profitable opera-
tionally, due to lower rebalancing costs, and possibly higher contribution margins
if human-driven vehicles require a driver. We introduce a bound-and-enumerate
algorithm for the technology choice problem, and a semi-Markov decision process
as well as a fluidic approximation for the rebalancing problem, both of which
can be solved using linear programming. The fluidic approximation extends [16]
to the case with multiple vehicle types. Using the developed algorithms on both
artificial instances as well as two case studies using data of the New York taxi
commission and of Chinese ride-hailing provider DiDi, we answer four research
questions:
Should shared mobility operators use fleets with only one vehicle type, or mix
among driverless and human-driven vehicles?

In many instances, the possibility to introduce driverless vehicles in the fleet
mix increases profits. Particularly, operators benefit from driverless vehicles if
contribution margins differ between vehicle types; then, operators exclusively
use driverless vehicles. On small instances, mixed fleets are often not optimal,
since operators loose pooling benefits. For larger instances, however, mixed fleets
are commonly profitable if contribution margins are equal for both vehicle types,
including the case study using DiDi data.
In case mixed fleets are optimal, how does the optimal fleet structure look like?

If mixed fleets are profitable, the optimal fleet usually consists of more
human-driven than driverless vehicles. In artificial instances with mixed fleets,
the fraction of driverless vehicles is around 20%, and the fraction of driverless
vehicles increases if the instance has a high imbalance, e.g., due to different
arrival rates at different stations. The absolute number of driverless vehicles is
not too low in most instances with mixed fleets, since the availability of driverless
vehicles would be very low otherwise, reducing profits.
Under which circumstances can shared mobility operators benefit from introduc-
ing driverless vehicles in their fleet?

We observe that operators benefit from introducing driverless vehicles in
their fleet mix, unless operational profits, i.e., contribution margins minus costs,
as well as rebalancing costs are almost equal for driverless and human-driven
vehicles, and investment costs differ substantially. In a case study using NYC taxi
data, the imbalance is even so large, that the operator optimally only procures
driverless vehicles, while the lower imbalance and higher demand in the DiDi
case study results in the optimality of a mixed fleet.
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How much can operators gain with respect to total profits from using mixed fleets
containing driverless vehicles?

Operators should consider driverless vehicles even if their service was not
profitable with only human-driven vehicles, since the higher operational profits
can make the service profitable. If contribution margins differ and instances are
highly imbalanced, profit gains can be several orders of magnitude. The profit
gain due to mixed fleets compared to purely driverless fleets is lower, on average
around 2%. This is because mixed fleets are only optimal if contribution margins
are equal, i.e., profit differences are solely due to differences in investment and
rebalancing costs.

Acknowledgements. While working on this thesis, the author was a doctoral student
in the School of Management at the Technical University of Munich under the supervi-
sion of Prof. Stefan Minner who co-authored all papers. In addition to her supervisor,
she would also like to thank her further co-authors Diogo Poças and Andreas S. Schulz
(first paper), and Marco Pavone and Maximilian Schiffer (third paper). The author
gratefully acknowledges the support of Deutsche Forschungsgemeinschaft as part of
the research training group 2201 (Advanced Optimization in a Networked Economy).

References

1. Wagner, S., Brandt, T., Neumann, D.: In free float: developing business analytics
support for carsharing providers. Omega 59, 4–14 (2016)

2. Huang, K., de Almeida Correia, G., An, K.: Solving the station-based one-way car-
sharing network planning problem with relocations and non-linear demand. Transp.
Res. Part C Emerg. Technol. 90, 1–17 (2018)

3. Hao, W., Martin, L.: Prohibiting cherry-picking: Regulating vehicle sharing ser-
vices who determine fleet and service structure. Transp. Res. Part E: Logis-
tics Transp. Rev. 161 (2022). https://www.sciencedirect.com/science/article/pii/
S1366554522000849

4. Chen, L., Mislove, A., Wilson, C.: Peeking beneath the hood of Uber. In: Proceed-
ings of the 2015 Internet Measurement Conference, pp. 495–508 (2015)

5. Guda, H., Subramanian, U.: Your Uber is arriving: managing on-demand workers
through surge pricing, forecast communication, and worker incentives. Manag. Sci.
65(5), 1995–2014 (2019)
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Abstract. We formulate the line planning problem in public transport
as a mixed integer linear program (MILP ), which selects both passen-
ger and vehicle routes, such that travel demands are met with respect to
minimized travel times for both operators and users. We apply MILP
to the Parametric City, a generic city model developed by Fielbaum
et al. [2]. While the infrastructure graph and demand are entirely rota-
tion symmetric, asymmetric optimal line plans can occur. Using group
theory, we analyze the properties of symmetric solutions and introduce
a symmetry gap to measure their deviation of the optimum. We also

develop a 1 + 1+
√
2

g
-approximation algorithm, depending only on the

cost related parameter g. Supported by computational experiments, we
conclude that in practice symmetric line plans provide good solutions for
the line planning problem in the Parametric City.

Keywords: Line planning · City modelling · Symmetry · Mixed
integer programming · Approximation algorithm

1 Introduction

The goal of line planning is to determine the most efficient routes, as well as
frequencies of service in order to satisfy travel demands in a city. We do so with
the help of a mixed integer linear programming problem (MILP ) formulation,
whose objective is to minimize both operator as well as passenger travel times
combined by a scalarization parameter. It considers all circuits in a graph as
potential lines and all simple paths as passenger routes. Good line plans must
generally be computed—at great expense due to the model size—for each city
individually, their solutions are difficult to compare and cannot be applied to
other cities. Our approach is therefore use the Parametric City, a generic model
developed by Fielbaum et al. [2] for the purpose of designing transportation
services. It can be adjusted to represent the most characteristic aspects of the
city, such as its geography, as well as the degree of mono-, polycentricity and
dispersion. The Parametric City is entirely rotation symmetric—it is therefore
natural to assume that this symmetry is reflected in the optimal line plans.
However, there are cases, in which the optimal line plans are asymmetric. Our
main attention is on this influence of symmetry: On the optimal solutions and
how much a symmetric solution deviates from its optimum. We examine in which
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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cases optimal solutions must be symmetric, when they can be utilized as good
approximations and in which cases it is detrimental to assume symmetry in the
line plans.

2 The Parametric City

2.1 The Model

We choose the Parametric City [2] as city representative, since this model bal-
ances generality and simplicity – it can represent any city and its prominent
features, while remaining simple enough to be analyzable. It is comprised of a
infrastructure graph G = (V,A) (see Fig. 1) with 2n + 1 vertices and a demand
ds,t, (s, t) ∈ V × V (see Table 1). Table 2 gives an overview of the parameters.

CD SC0

SC1SC2

SC3

SC4 SC5

P0

P1P2

P3

P4 P5

T

Trn

Tg

Fig. 1. Graph G with n = 6

Table 1. Demand ds,t (not listed
vertex-pairs correspond to ds,t = 0)

s, t SCi SCj , j �= i CD

Pi
aY
n β aY

n(n−1)γ
aY
n α

SCi 0 (1−a)Y
n(n−1) γ̃

(1−a)Y
n α̃

Table 2. Parameters in the Parametric
City, f.o.t.= fraction of travelers ∈ [0, 1]

n no. of subcenters/peripheries
T arc length (SCi, CD)
g, rn factors for arc length

(SCi, Pi), (SCi, SCi±1)
Y total patronage
a f.o.t. from Pi

α (α̃) f.o.t. from Pi (SCi) to CD
β f.o.t. from Pi to SCi

γ (γ̃) f.o.t. from Pi (SCi) to SCj ,
i �= j
α + β + γ = 1, α̃ + γ̃ = 1,
α/γ = α̃/γ̃

2.2 Rotation Symmetry

The graph G is evidently rotation symmetric. While the demand matrix is not
symmetric in the usual sense, the demand itself is rotation symmetric as well:
E.g., the demand from a periphery Pi to the central business district CD is the
same as that of any other periphery Pj to CD. This notion of symmetry can be
precisely defined with the help of group actions:

The group G = Z/nZ acts on the vertices of G by rotation around CD. This
action extends to any tuple of vertices, in particular arcs, path, and lines. We
denote by G · x the group orbit of a vertex (tuple) x. E.g., G · SC0 corresponds
to the set of all subcenters, and G · CD = {CD}. With this group action, we
describe the rotation symmetry of the demand by the property of ds,t = ds′,t′

for all (s′, t′) ∈ G · (s, t) for any vertex tuple (s, t) ∈ V × V.
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3 The Line Planning Problem

We formulate the line planning problem (MILP ) as a mixed integer program
using two types of variables: yp ∈ R for the passenger flow on path p ∈ P , and
fl ∈ N for the frequency of line l ∈ L. P is the set of all simple paths, while L is
the line pool consisting of all simple directed cycles in G. We denote the sets Pa

and La as the set of paths and lines which use arc a ∈ A. Further, Ps→t is the
set of all s-t-paths. This follows [1], with a few minor changes: We restrict to
only one mode of transport, do not include line-activation costs, and expand the
line pool to include all circular, not only bidirectional lines.

(MILP ) (MILPA) (1)

min μ
∑

l∈L

clfl + (1 − μ)
∑

p∈P

cpyp min μ
∑

a∈A

caFa + (1 − μ)
∑

p∈P

cpyp (2)

s.t.
∑

p∈Ps→t

yp = ds,t s.t.
∑

p∈Ps→t

yp = ds,t ∀(s, t) ∈ V ×V

(3)
∑

p∈Pa

yp −
∑

l∈La

flK ≤ 0
∑

p∈Pa

yp − FaK ≤ 0 ∀a ∈ A (4)

∑

l∈La

fl ≤ Λ Fa ≤ Λ ∀a ∈ A (5)

∑

a∈δ+
v

Fa−
∑

a∈δ−
v

Fa = 0 ∀v ∈ V (6)

fl ∈ N ∀l ∈ L Fa ∈ N ∀a ∈ A (7)
yp ≥ 0 yp ≥ 0 ∀p ∈ P (8)

For a solution (f, y) of MILP, f = (fl)l∈L is called the line plan and y =
(yp)p∈P the passenger flow. A line l is part of the line plan if and only if fl > 0,
analogously for the passenger flow.

We refer to [5] for an explanation of the constraints. The objective is a com-
bination of operator and user costs respectively and are scalarized by parameter
μ ∈ [0, 1]. The larger μ, the more focus lies on the minimization of operator
costs, while a small μ aims at user-friendly line plans. We consider the running
and travel times as the total length of a line or path, i.e., cl =

∑
a∈l ca and

cp =
∑

a∈p ca, where ca is the length of arc a ∈ A as defined in the Parametric
City, cf. Fig. 1.

As costs depend on the arc-lengths of the routes only, we can reformulate
and hence reduce the model size significantly: Instead of considering the large
line pool as variables, one can consider the frequencies of all aggregated lines
traversing an arc, i.e., by considering Fa :=

∑
l∈La

fl. To model the circulations
of the lines, we can impose standard flow conservation constraints (6), where δ+v
and δ−

v denote the set of out- and incoming arcs at node v respectively. The entire
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arc-based mixed integer linear programming problem MILPA can be found on
the right of Definition 3. In fact, the following holds:

Lemma 1. MILP and MILPA are equivalent, in the sense that for a feasible
solution (F, y) to MILPA there exists a feasible solution (f, y) to MILP with
costA(F, y) = cost(f, y) and vice versa.

4 Symmetry

Definition 1 (Symmetric Solution). Consider a solution (f, y) to MILP
and the equivalent solution (F, y) to MILPA. Then

1. (f, y) is line-symmetric if fl = fl′ for all l′ ∈ G · l, l ∈ L,
2. (f, y) or (F, y) is path-symmetric if yp = yp′ for all p′ ∈ G · p, p ∈ P,
3. (f, y) is arc-symmetric if

∑
l∈La

fl =
∑

l∈La′ fl for all a′ ∈ G · a, a ∈ A,

4. (F, y) is arc-symmetric if Fa = Fa′ for all a′ ∈ G · a, a ∈ A.

The solution (f, y) is symmetric if it is line- and path-symmetric, while (F, y) is
symmetric if it is arc- and path-symmetric.

Proposition 1 (Sufficient condition for symmetry). A line-symmetric,
arc-symmetric or path-symmetric optimal solution is sufficient for the existence
of an entirely symmetric optimal solution.

Thus, to determine an optimal value of symmetric solutions, it is enough to
impose symmetric arc-frequency conditions (Definition 1, 4) on MILPA. We
denote the model as MILPsym. As we have only six orbits on the set of arcs
in the Parametric City, MILPsym reduces to a problem with a fixed number of
variables. Due to further geometric properties, this number gets reduced even
further to only three variables. This has significant consequences: As was proven
by Lenstra [4], a mixed integer programming problem with a fixed number of
variables can be solved in polynomial time. Hence:

Proposition 2. The symmetric line planning problem MILPsym is solvable in
polynomial time.

Given a feasible general solution (F, y), it is always possible to construct
a feasible symmetric solution (F s, ys) by taking (rounded) averages per orbit.
This allows for an estimate of how much the optimal solution deviates from a
symmetric one at most:

cost(F s, ys) − cost(F, y) ≤ μ2T (1 + rn)(n − 1). (9)

Consequently, if we optimize for user comfort only, i.e., if μ = 0, the existence of
a symmetric optimal line plan is guaranteed. However, for other values of μ we
introduce the symmetry gap Γ := OptV al(MILPsym)

OptV al(MILPA) . This gives us the means to
measure the quality of a symmetric solution compared to an asymmetric one.
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Proposition 3. The relative symmetry gap Γ is bound by:

Γ ≤ Cn(α, γ) ≤ Cn ≤ 1 +
(1 +

√
2)

g
.

The values of Cn(α, γ) and Cn can be computed efficiently by using the bound (9)
and the optimal value of the LP-relaxation, which can be computed analytically;
a detailed description can be found in [5]. Due to MILPsym being solvable in
polynomial time and in combination with Proposition 3, we can formulate the
following proposition:

Proposition 4. The algorithm that arises from restricting the line planning
problem to symmetric solutions is a 1 + (1+

√
2)

g -approximation algorithm for the
Parametric City if the cost related parameter g is fixed.

To ascertain how the gap behaves when g goes to 0, consider the following instance:
Set g = 1/n, μ = 1 and choose a very large capacity, e.g., set K = Y. In other
words, the entire patronage can fit into a single vehicle. Regardless of any other
parameter choice, the optimal frequency plans of MILPA and MILPsym are the
ones displayed in Fig. 2 on the left and right respectively. The corresponding gap
becomes arbitrarily large for n → ∞. However, this extreme example is con-
structed and does not reflect realistic input data. To assess whether and how often
in practice purely asymmetric solutions occur, and how large the gap becomes, we
solved multiple large batches of Parametric City instances for realistic parameter
choices.

Fig. 2. Optimal frequency plans: general vs. symmetric model

5 Computational Results

We performed multiple computations, choosing various geometry-related param-
eters in the Parametric City, as well as different values of μ. For each choice,
we computed the optimal solution for all demand parameters α, γ ∈ [0.025, 0.95]
and a step size of 0.025. Each problem was solved with Gurobi 9 [3] to optimal-
ity (with a tolerance of 10−4 in the relative MIP gap)in three variations: the
standard MILPA, its symmetric version MILPsym, as well as the restriction to
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both rotation and reflection symmetric solutions by imposing additional reflec-
tion symmetry constraints. See below a representative example for the choices
of n = 8, g = 1/3, Y = 24000,K = 100, μ = 1, a = 0.8. Surprisingly, even with
realistic results, purely asymmetric solutions can be found, as becomes evident
on the left of Fig. 3. When comparing different values of μ, one can also observe
that their number increases with μ. For a more in-depth comparison see [5]. Also
noticeable is the fact that reflection symmetry occurs in the rotation symmet-
ric solutions roughly as often as not. This observation is unexpected, since the
demand is also reflection symmetric. When looking at the symmetry gap Γ how-
ever, it becomes evident that the difference in costs is extremely small. For this
instance, the actually computed deviation of symmetric solutions from the opti-
mal is less than 2%, as becomes evident on the right of Fig. 3 and is significantly
smaller than the theoretical upper bounds also depicted (cf. Proposition 3).

Fig. 3. Realistic input data

We conclude that in practice, city planners are justified in assuming sym-
metric solutions: The line plans can either be considered as optimal, due to the
somewhat idealized underlying city model, or one can use them as good and
easy to compute approximations. With the exception of when operator costs are
ignored, the possibility of asymmetric solutions should be kept in mind however,
as unfortunate parameter choices can lead to a large deviation in costs.
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Abstract. This paper summarizes several results from the author’s
Master’s thesis. We propose a new semidefinite approach for the NP-
hard single row facility layout problem (SRFLP) which is the problem of
arranging n facilities of given lengths on a straight line, while minimizing
a weighted sum of distances between all facility pairs. We tighten existing
semidefinite relaxations with further inequalities and use an algorithmic
method not yet considered for the SRFLP. Our new approach outperforms
all other approaches in the literature and significantly reduces the best
known duality gaps for all unsolved benchmark instances with n ≤ 100.
Many instances with up to n = 81 are solved for the first time.

Keywords: Single row facility layout · Semidefinite optimization

1 The Single Row Facility Layout Problem

In the single row facility layout problem (SRFLP), n one-dimensional facilities
with positive integer lengths �i for each facility i ∈ [n] := {1, . . . , n} and pairwise
integer weights cij , i, j ∈ [n], i < j, are given. The task is to find a layout or
permutation π ∈ Πn of the facilities that minimizes the total weighted sum of
center-to-center distances between all facility pairs:

min
π∈Πn

∑

i,j∈[n], i<j

cijd
π
ij , (SRFLP)

where Πn denotes the set of all layouts of n facilities and dπ
ij denotes the distance

between facilities i and j with respect to their centroids in the layout π.
If all facilities have unit length and all weights cij have values in {0, 1}, the

SRFLP reduces to the minimum linear arrangement problem that is already NP-
hard in the strong sense [4]. An important practical application of this problem is
given by the optimal ordering of machines in flexible manufacturing systems [6].
The two best approaches in the literature use linear [1] and semidefinite [7,8]
programming relaxations. Instances with n ≤ 42 were solved in [7].

In Sect. 2, we outline the approaches in [1] and [8]. Based on these, we improve
existing semidefinite relaxations in Sect. 3 and propose to use an algorithmic
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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method not yet considered for the SRFLP. Finally, we summarize our numerical
results in Sect. 4.

2 The Most Successful Approaches for the SRFLP

An integer programming formulation (BTW) of the SRFLP is given in [1]:

min
∑

i,j∈[n], i<j

cij
∑

k∈[n]\{i,j}
�k bikj +

∑

i,j∈[n], i<j

cij
�i + �j

2
(1)

s.t. bijk + bikj + bjik = 1, i, j, k ∈ [n], i < j < k, (2)
bihj + bihk + bjhk ≤ 2, i, j, k, h ∈ [n], |{i, j, k, h}| = 4, i < j < k, (3)
− bihj + bihk + bjhk ≥ 0, i, j, k, h ∈ [n], |{i, j, k, h}| = 4, i < j < k, (4)
+ bihj − bihk + bjhk ≥ 0, i, j, k, h ∈ [n], |{i, j, k, h}| = 4, i < j < k, (5)
+ bihj + bihk − bjhk ≥ 0, i, j, k, h ∈ [n], |{i, j, k, h}| = 4, i < j < k, (6)
bijk ∈ {0, 1}, i, j, k ∈ [n], |{i, j, k}| = 3, i < k, (7)

where the so-called betweenness variables bijk ∈ {0, 1} have the meaning

bijk =

{
1, if facility j lies between i and k,

0, otherwise.
(8)

As shown in [1], the linear relaxation of (BTW) can be strengthened by a family
of inequalities containing inequalities (4)–(6): let β ≤ n be an even integer and
let R ⊆ [n] be such that |R| = β. Then for each r ∈ R, and for any partition
(S, T ) of R \ {r} such that |S| = β/2, the inequality

∑

p,q∈S, p<q

bprq +
∑

p,q∈T, p<q

bprq ≤
∑

p∈S, q∈T, p<q

bprq (9)

is valid [1] and facet-defining [11] for the betweenness polytope PBTW . We obtain
inequalities (4)–(6) for β = 4. Thus, inequalities (4)–(6) are also facet-defining,
whereas inequalities (3) do not define facets in general [11].

Lower bounds for the SRFLP were computed in [1] by solving the linear relax-
ation of (BTW) enhanced with inequalities (9) for β = 6 as cutting planes. These
lower bounds turned out to be the optimal values of all instances considered
in [1]. Instances with up to n = 35 were solved in several hours.

Despite these strong results, it is easy to find instances with n = 6 for which
the lower bounds do not coincide with the optimal values. One may wonder,
why no branch-and-cut approach was proposed in [1]. The reason is that the
(dual) simplex method shows a very poor performance when applied to (BTW).
Thus, the occurring linear programs in the cutting plane approach were solved
with interior-point methods. Indeed, our tests showed that interior-points meth-
ods would outperform the dual simplex method in a branch-and-cut approach,
although all linear programs have to be solved from scratch. However, the dual
bounds increase very slowly.
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The best approach for the SRFLP in the literature goes back to [8] and uses
semidefinite relaxations to compute tight lower bounds. To state these relax-
ations, we introduce bivalent ordering variables yij , i < j ∈ [n], i < j, with the
meaning

yij =

{
+1, if facility i lies to the left of facility j,

−1, otherwise.
(10)

We collect all ordering variables (10) in a vector y and consider the matrix

Y :=
(

1
y

)(
1
y

)�
=

(
1 y�

y yy�

)
=

(
1 y�

y Y

)
,

where Yij,kl = yijykl. The semidefinite relaxation in [8] then reads

min 〈C, Y 〉 + K

s.t. Yij,jk − Yij,ik − Yik,jk = −1, i, j, k ∈ [n], i < j < k, (11)

diag(Y ) = e, Y � 0,

Y ∈ M, Y ∈ LS. (12)

Here, the cost matrix C and the constant K have to be chosen appropriately,
and e denotes the vector of all ones. Moreover, M denotes the metric polytope
that is defined by the set of all triangle inequalities, known to be facet-defining
for the cut polytope [3]. For a subset {p1, p2, p3} of three rows (or columns) of a
symmetric matrix X ∈ R

p×p, the triangle inequalities can be written as
∑

1≤i<j≤3

δiδjXpi,pj
≥ −1, (13)

where δk ∈ {−1, 1} , k = 1, 2, 3. Thus, there are O(n6) triangle inequalities in
our case. The set LS contains O(n5) ‘matrix cuts’ that can be derived from
equations (11). The latter are also called 3-cycle-equations.

In [8], a partial Lagrangian approach is used to dualize the 3-cycle equations
(11), triangle inequalities (13), and the matrix cuts. This results in a convex but
non-smooth dual function that is optimized using a bundle method. The value of
the dual function and a subgradient are obtained by solving a max-cut problem
using interior-point methods. Using this approach, instances with n ≤ 42 were
solved in less than two hours in [7]. Tight lower bounds for instances with up to
n = 100 were obtained in several days of computing time.

3 A New Semidefinite Approach

Strengthened Relaxation. We exclude the matrix cuts Y ∈ LS (12) from our
relaxations, since they barely improve the lower bounds. Instead we strengthen
the semidefinite relaxations with the so-called pentagonal, hexagonal, and hep-
tagonal inequalities that are also facet-defining for the cut polytope [3].
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For a subset {p1, . . . , p5} of row indices of a symmetric matrix X ∈ R
p×p, all

choices δk ∈ {−1, 1} , k = 1, . . . , 5, the pentagonal inequalities can be written as
∑

1≤i<j≤5

δiδjXpi,pj
≥ −2.

There are O(n10) pentagonal inequalities for an SRFLP instance with n facilities.
Hence, exact separation by enumeration is not computationally feasible. How-
ever, there is one important subset of only O(n6) pentagonal inequalities that
greatly improves the semidefinite relaxations for large-scale instances.

Reconsider the inequalities (9) for β = 6: for any R = {i, j, k, l,m, r} ⊆ [n]
and any partition (S, T ) of R \ {r} with |S| = 3, the resulting inequality is
a pentagonal inequality on the facility pairs (i, r), (j, r), (k, r), (l, r), (m, r) if
the betweenness variables (8) are written as quadratic expressions (see [7]) of
the ordering variables (10). Interpreting the (unordered) pairs as the edge set
of an undirected graph yields a star with the six vertices {i, j, k, l,m, r} and
the center vertex r. Thus, we call all pentagonal inequalities with the above
structure starlike pentagonal inequalities and denote the set of all starlike pen-
tagonal inequalities by P∗. We propose the following semidefinite relaxation for
the SRFLP:

min 〈C, Y 〉 + K
s.t. Yij,jk − Yij,ik − Yik,jk = −1, i, j, k ∈ [n], i < j < k,

diag(Y ) = e, Y � 0,
Y ∈ M, Y ∈ P∗.

(SDPP∗)

Proposition 1. The optimal value of (SDPP∗) is greater than or equal to the
optimal value of the linear relaxation of model (BTW) enhanced by the cutting
planes (9) for β = 6.

Additionally, we also use generic pentagonal, hexagonal, and heptagonal
inequalities that are separated heuristically. For each type, we use two simple
separation routines that try to find highly violated inequalities. Both routines
are called several times until a prescribed time limit is reached. The first rou-
tine chooses a small random subset of row indices and enumerates all respective
inequalities on these row indices. The second routine implements a 1-opt local
search heuristic. It starts with a random inequality and swaps a single row index
until a local maximum of violation is found.

Primal Heuristics. In order to find good primal feasible solutions, i.e., a permuta-
tion of the facilities, we first apply the famous Goemans-Williamson hyperplane
rounding heuristic [5] to the (approximate) solution of our semidefinite relax-
ation. This gives us a vector y of ordering variables that might not represent a
permutation, i.e., y might violate the 3-cycle equations (11). Similar to [8], we
use two different strategies to make such a vector feasible and then apply a 2-opt
local search heuristic by swapping two facilities in each step.
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The first strategy borrows an idea from [2]. For each facility we assign to
it the number of other facilities that should lie on the left according to the
definition of the ordering variables (10). We then compute a feasible solution by
sorting the facilities in an ascending order, where ties can be broken arbitrarily.

The second strategy directly works on the 3-cycle equations (11). The idea is
that we use y to construct a new feasible vector y step-by-step. In each iteration
we choose an undetermined entry yij of y and assign the value yij to it. We then
check all 3-cycle-equations (11) and fix all entries in y that can only attain one
specific value, i.e., that are implicitly fixed by prior assignments. We iterate with
this procedure until all entries of y are fixed.

Algorithmic Approach. We compute tight lower bounds for the SRFLP by approx-
imately solving our semidefinite relaxations in a cutting plane approach. For
almost all benchmark instances in the literature, these lower bounds are suffi-
cient to prove the optimality of a feasible layout found by our primal heuristics.

Our semidefinite relaxations can be written in the more compact form:

min {〈C,X〉 : A(X) ≤ a, B(X) = b, X � 0} , (SDP)

where all inequalities are symbolically collected as A(X) ≤ a and all equations
as B(X) = b. We then use the family of semidefinite bounds presented in [10]
and adapt the algorithmic approach in [9] to solve (SDP) approximately, i.e., for
some decreasing penalty parameter α > 0 we approximately solve the regularized
dual problem

sup
{

−a�λ − b�μ − α
2 N2 − 1

2α

∥∥∥
[
C + A�(λ) + B�(μ)

]
−

∥∥∥
2

F

}

s.t. λ ≥ 0, μ free,
(DSDPα)

where N is the order of the matrix variable X, ‖ · ‖F denotes the Frobenius
norm, and [ · ]− is the projection onto the cone of negative semidefinite matrices.

(DSDPα) is a convex optimization problem with a differentiable objective
function [10] and is solved using a quasi-Newton method. For any triple (α,
λ, μ) with α > 0 and λ ≥ 0, the objective function of (DSDPα) yields a lower
bound on the optimal value of the SRFLP. Since strong duality holds in our SRFLP
setting [8], we can get arbitrarily close to the usual semidefinite bound of (SDP)
by approximately solving (DSDPα) for α > 0 small enough [10].

In each iteration of the cutting plane algorithm, (DSDPα) is optimized for
a fixed α > 0 until the primal variable X = − 1

α

[
C + A�(λ) + B�(μ)

]
− almost

satisfies all linear constraints, see also [9,10]. We then use the approximate solu-
tion to compute feasible layouts and to add a few thousand highly violated cuts.
For each value of the penalty parameter α, we first only separate triangle inequal-
ities. Later we also separate starlike pentagonal inequalities and finally also gen-
eral pentagonal, hexagonal, and heptagonal inequalities. We drop inequalities
whose Lagrange multipliers are close to zero.
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4 Results and Conclusion

The new semidefinite approach proposed in Sect. 3 has been tested on many
benchmark instances from the literature with up to n = 100. For the first time,
instances with n = 81 have been solved. While instances with n ≤ 70 were solved
in a couple of hours, computing the proof of optimality for even larger instances
can take more than two days. For each unsolved instance, the best known duality
gap in the literature is reduced by a factor of 10 to 1000.

A second version that only solves (SDPP∗) without further heuristically sep-
arated pentagonal, hexagonal, and heptagonal inequalities was also tested. It
uses slightly different settings of numerical parameters and was designed to be
more time efficient. It is much faster than any other approach in the literature,
but sometimes fails on solving instances with n ≥ 56. However, the duality gaps
are always close to zero.

We observed that adding the starlike pentagonal inequalities leads to a sig-
nificant improvement of the semidefinite relaxations. General pentagonal and
heptagonal inequalities also improve the lower bounds for large-scale instances,
but the inclusion of hexagonal inequalities does not pay off.

To conclude, semidefinite relaxations for the SRFLP were improved and a suit-
able algorithmic approach was used to solve the resulting large-scale semidefi-
nite programs. The algorithmic approach allows a good trade-off between tight
bounds and fast computation times. Using our semidefinite bounds in a branch-
and-bound approach could lead to further improvements in the future.
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Abstract. E-commerce led to drastic changes in end consumer behav-
ior over the last years. In consequence, today’s retailers often need to
provide online channels to stay attractive and competitive. The logistic
processes behind this online front-end, needed to smoothly ship small
orders, picked from a large assortment in little time, however, are com-
plex and differ from classical warehousing processes to a large extent. As
a result, novel warehousing systems have evolved. These can either be
adaptions of classical warehousing systems or novel warehousing systems,
often based on new technological developments. This paper summarizes
today’s challenges and describes some new planning problems in modern
e-commerce warehouses.
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1 Impact of E-commerce on Logistic Processes

Over the past years, online shopping has enjoyed growing popularity among
consumers worldwide. With the changing consumer habits, retailers are forced
to develop their supply chains in order to meet the new demand structures. This
change can be observed particularly impressively in the warehouses of retailers.

Modern e-commerce warehousing systems are designed to quickly assemble
small orders, often including only one or two items, from a large assortment. In
times of normal demand, this requirement must be met cost-effectively, whereas,
in times of high demand, e.g., in the pre-Christmas season or during Singles
Day, a high level of scalability of the systems is necessary to be able to offer the
customer a constant quality of service [1,8]. For traditional warehousing systems,
these requirements can only be met with massive use of resources - if at all.

The gap between traditional systems and increasing requirements is becoming
ever larger as e-commerce retailers are trying to improve their market position in
the competitive field of e-commerce retailing with ever new service offerings. For
example, with premium shipping programs, which guarantee delivery within the
next or even the same day. These programs massively increase the time pressure
on order processing. Exceptionally high time restrictions can often be observed
for grocery products, for which online retailers compete directly with a dense
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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network of branches of stationary retailers. The unicorn start-up Gorillas, for
example, promise delivery within 10 min after ordering [3].

Modern warehousing systems designed for picking e-commerce orders adapt
traditional systems by reorganizing critical processes or use hardware-based inno-
vations to eliminate bottlenecks. This new generation of warehousing systems
includes a variety of different solutions, each of which has new system-specific
planning problems. If processes are restructured, fundamental assumptions can
change, so that established solution procedures are no longer applicable. Further-
more, new planning problems can arise whenever new technical solutions need
to be controlled optimally. The paper gives examples of already established e-
commerce warehousing systems and illustrates altered and novel planning prob-
lems occurring in such systems.

2 Mixed Shelves Storage Systems

Mixed shelves storage warehouses are adaptions of classical picker-to-parts ware-
houses, where pickers, often equipped with some kind of picking cart, walk
through the warehouse collecting ordered products from person-high racks.
Other than in the traditional case, however, goods arriving at a mixed shelves
storage warehouse are depalletized and items of the same product, often referred
to as stock-keeping unit (SKU), are stowed in different positions of the ware-
house. This way, items of a SKU to be picked can be found close by, irrespec-
tive of the current position of the picker, and, therefore, unproductive walking
times of the pickers can be reduced when processing orders shaped like typical
e-commerce orders [6].

The organizational adaptions in such systems, compared to a classical ware-
house where items of the same SKU are not actively scattered, result in novel
variations of well-known planning problems. For example, new variations of the
storage assignment and picker routing problem.

2.1 Storage Assignment in Mixed Shelves Storage Warehouses

Classical storage assignment strategies (see, e.g., [2]) are most often based on the
concept of a central depot, where each picking tour starts and ends. In mixed
shelves warehouses, however, pickers constantly walk through the storage area
while picking orders in dynamic overlapping batches and continually handing off
single orders to a distributed network of depots. This results in picking tours
not being closed anymore. As, in consequence, a single starting point of each
tour, e.g., a central depot in classical warehouses, does not exist anymore, clas-
sical storage assignment strategies are not applicable in such systems and a new
problem variation of the storage assignment problem occurs [6].

In [6], the authors propose an approach that aims at maximizing the level
of scatter within the warehouse. This way, the main advantage of mixed shelves
storage, e.g., short travel distances of the pickers towards an item of a demanded
SKU irrespective of their current position, is exploited as far as possible.
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With this aim in mind, an optimization problem, minimizing the sum of maxi-
mum walking distances to reach the closest item of a SKU starting from a set of
so-called measuring points, is defined. Hereby, the measuring points can be seen
analogously to the depot in classical storage assignment. The difference, how-
ever, is that there are multiple measuring points and, further, the optimization
problem needs to assign each SKU to multiple storage positions.

2.2 Picker Routing in Mixed Shelves Storage Warehouses

Similar to the storage assignment problem, the picker routing problem in mixed
shelves storage warehouses is a new variation of a classical planning problem in
warehousing. Although the objective aimed at, e.g., finding a shortest feasible
picking tour, remains unchanged, organizational adaptions to the needs of e-
commerce warehousing alter the problem significantly for mixed shelves storage
systems.

In the vast majority of cases, the shelves within a warehouse are arranged in a
rectangular manner. The structured layout, hereby, leads to a likewise structured
distance matrix for the picker routing problem. In classical warehouses, with only
one storage position per SKU, the strong structure of the distance matrix can
be exploited to solve the picker routing problem in polynomial time depending
on the number of aisles [4].

The picker routing problem in mixed shelves storage warehouses with a rect-
angular layout, however, belongs to the class of NP-hard optimization problems,
although distance matrices for this setting do not differ from the classical case.
The increased problem complexity is caused by an additional selection compo-
nent, as in mixed shelves storage warehouses each SKU demanded by an order
is provided by several storage positions and not all of them need to be visited by
the picker during the tour [5]. The picker routing problem, therefore, is another
example of a changed problem structure caused by adapting a classical picker-
to-parts warehousing strategy to the needs of modern e-commerce warehousing.

3 Robotic Mobile Fulfillment Systems

Another way of avoiding unproductive walking times of pickers is realized by
so-called robotic mobile fulfillment systems. Here, the pickers stay within their
picking stations, and SKUs, stored in portable racks, are brought to them by
autonomously driving robots (see Fig. 1a). By utilizing a fleet of autonomously
driving robots in combination with basic warehousing equipment, a parts-to-
picker system is realized that overcomes major drawbacks of classical parts-to-
picker systems in e-commerce warehousing, as, for example, high investment
costs and inflexible hardware. As a result, these systems can be found in a
wide variety of e-commerce warehouses, manufactured by many different system
providers.

Novel systems, as robotic mobile fulfillment systems, of course, come with
new interesting planning problems. Details on the planning hierarchy in these
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(a) pod and robot (b) warehouse from an aerial view

Fig. 1. Sketches of two described decision problems

systems can be found in the appendix of [7]. A vivid example of new planning
problems within robotic mobile fulfillment systems is the storage assignment
decision. The SKUs are, comparable to picker-to-parts mixed shelves storage,
scattered over multiple portable racks, often denoted as pods. In consequence,
one aspect to consider during storage assignment is the number of pods a SKU
should be spread over. A further element of the storage assignment decision is
deciding which SKUs should share the same pod (at least once, see Fig. 1a),
because they might often be ordered together.

As pods are movable racks, however, the pods themselves need to be tem-
porarily assigned to buffer positions within the warehouse whenever they are
currently not needed at a picking station (see Fig. 1b), such that an additional
component of the problem arises. In conclusion, a multi-level storage assignment
problem with many components can be observed, substantially different from
classical storage assignment because of many novel aspects.

4 Conclusion

The examples in this paper show how online channels, meant to sell products
via the internet, have also had an impact on logistics processes, and in par-
ticular on warehousing. New warehousing systems have emerged and are still
emerging, coming with many interesting planning problems that are either vari-
ations of already known problems or completely novel. Although many efforts
have already been made to make those warehousing systems as performant as
possible, taking into account the needs associated with e-commerce warehous-
ing, they are continuously challenged by new trends. Important trends that are
likely to lead to interesting new approaches in the near future are extremely short
delivery times, the shipment of fresh food, and the simultaneous distribution of
goods across many sales channels, known as omnichannel strategies. Facing these
challenges, the field of warehousing will stay a vivid field of research.
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Abstract. The ML-Constructive heuristic is a recently presented
method and the first hybrid method capable of scaling up to real scale
traveling salesman problems. It combines machine learning techniques and
classic optimization techniques. In this paper we present improvements
to the computational weight of the original deep learning model. In addi-
tion, as simpler models reduce the execution time, the possibility of adding
a local-search phase is explored to further improve performance. Experi-
mental results corroborate the quality of the proposed improvements.
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1 Introduction

The Travelling Salesman Problem (TSP) is one of the most investigated problems
in the Combinatorial Optimization (CO) field. This is partly due to the fact
that it belongs to the set of NP-Hard problems, which makes it particularly
challenging. Moreover, the many practical problems that can be reduced to this
– such as in Kumar et al. [10] where models of the TSP are presented to be used
in the manufacture of microchips – make it even more attractive. At the same
time, the full potentials of Machine Learning (ML) and Deep Learning (DL)
techniques are becoming increasingly recognized in the CO field [2].
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N. Trautmann and M. Gnägi (Eds.): OR 2021, LNOR, pp. 59–65, 2022.
https://doi.org/10.1007/978-3-031-08623-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08623-6_10&domain=pdf
https://github.com/tommivitali/ML-Constructive_LS
https://doi.org/10.1007/978-3-031-08623-6_10


60 T. Vitali et al.

Mele et al. [17] recently introduced ML-Constructive, a promising construc-
tive approach that computes fast solutions in two separate phases. The first phase
uses ML to create a sub-solution with the most reliable edges. The second phase
employs a classic heuristic to complete the tour. Here we introduce an extension to
the original idea to enhance the performance of the ML-Constructive algorithm.

In Sect. 2, we formally state the Travelling Salesman Problem and present a
brief literature review. A high-level description of the plain method is presented
in Sect. 3. In Sect. 4, we present all the changes we made to improve the algo-
rithm, and this section contains the novelties of the present paper. Finally, in
Sect. 5, the results of the new approach we propose are shown and discussed.

2 Problem Description and Literature Review

2.1 The Travelling Salesman Problem

Let consider the complete graph G = (V,E), where V = {1, ..., n} is a set of
|V | = n nodes, and E = {eij : i, j ∈ V with i �= j} is a set of edges connecting
nodes to each other. Also, let cij be the cost for edge eij connecting node i
to node j. The objective of the Travelling Salesman Problem is to find the
shortest possible tour that visits each node exactly once, and then gets back
to the first node [1]. The NP-hard nature of the problem makes it fundamental
the development of algorithms that compute approximate solutions with a good
confidence even on large instances.

An effective way to heuristically reduce the complexity of a TSP is to consider
only subsets of edges when building a feasible tour. A Candidate List CLi for
node i is defined as the set of edges that contains the most likely edges to be
part of the optimal tour. There exist different methods to create candidate lists,
the simplest one of which is to consider only the edges connecting the k closest
nodes to each node i.

2.2 A Brief Literature Review

It is well known that an efficient way to solve large Combinatorial Optimization
problems is to employ the Divide-and-Conquer paradigm. Such a paradigm is
promising for addressing CO problems with Machine Learning as well. Since ML
models suffer from a intrinsic generalization problem trying to scale up to large
instances [6] due to well-known ML limits (e.g. imbalanced training) [13].

Valuable surveys describing recent approaches using ML to generate solutions
for CO problems are in [2,16]. Different approaches suggesting DL networks to
solve the TSP with end-to-end methodology have been presented among which
the studies carried out by Miki et al. [18], Kool et al. [9] and Mele et al. [15].

The best proposal at the moment is the ML-Constructive heuristic [17], which
focuses on the development of an efficient interaction between Machine Learning
and Combinatorial Optimization techniques. It uses candidate lists (CLs) as input
to the ML model, and is able to scale up with satisfactory results. Other approaches
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attempting to solve the scalability issue were introduce by Fu et al. [6] and by
Fitzpatrick et al. [5], where Machine Learning is used to construct CLs and then
classical heuristics for the tour construction are applied.

3 The Original ML-Constructive Heuristic

The ML-Constructive heuristic is a constructive hybrid algorithm composed by
two phases. The first phase exploits Machine Learning’s ability in detecting
specific patterns to create an initial partial solution. This solution comprises
the edges most likely to be part of an optimal tour according to the ML learnt
patterns. The second phase instead uses a well-known heuristic to complete the
solution. In fact, some difficulties may arise with ML where data is not adequate,
further details can be found in Mele et al. [17].

In order to initialize the problem, reduce the search space and create valid
inputs for the Machine Learning model, ML-Constructive initially computes a
candidate list for each node. Then, a list LP of promising edges is created, such
that it contains all the edges connecting the closest two vertices for each CL.
The Machine Learning is in charge of checking when an edge l ∈ LP has to
be used or not for the solution. To do so, it learns the probability that these
edges have of being optimal by considering just the CL of the considered l edge
as input. Initially the insertion feasibility of edge l is checked considering the
current partial solution, then the ML predicts the probability of l being an
optimal edge. If this probability is greater than a certain threshold, the edge will
be inserted in the current partial solution.

The order in which these requests are tackled is a fundamental choice. In
ML-Constructive, the list LP is sorted according to the positions in the CL and
the non-decreasing cost values. The edges connecting the nearest node in the CL
are placed before, then those which are second closest follow.

To complete the tour obtained during the Machine Learning phase, the
Clarke-Wright (CW) heuristic [4] was used. Note that no change is made to
the edges inserted during the first phase.

4 Improvements to ML-Constructive

The original algorithm uses a ResNet architecture [7] to confirm the addition
of an edge in the solution. Such an architecture carries a high computational
cost we would like to avoid. Our first contribution is to attempt to reduce it by
replacing the ResNet with a different ML model. Several alternative ML models
were examined. In addition, since ML-Constructive has some shortcomings in the
heuristic part too, a different CL constructor and a third phase are introduced
as well. The new CL constructor exploits the Delaunay triangolarization [11] to
speed up the creation of the lists. The third phase instead increases the quality
of the complete solution by introducing a local search on the most uncertain
edges since the CW solution can be largely improved. We point out that the
second phase is kept unchanged here from the original algorithm. As shown



62 T. Vitali et al.

Table 1. Performance of ML models.

Dataset Model Accuracy Balanced
accuracy

Precision TPR FPR

1st edge Baseline [17] 0,782 0,499 0,867 0,885 0,886

Linear [21] 0,436 0,650 0,975 0,359 0,059

ResNet [17] 0,715 0,694 0,915 0,762 0,339

SVM [8] 0,500 0,664 0,959 0,427 0,100

Ensemble [3,20] 0,525 0,679 0,962 0,456 0,099

2nd
edge

Baseline [17] 0,501 0,500 0,511 0,512 0,512

Linear [21] 0,560 0,620 0,839 0,341 0,101

ResNet [17] 0,504 0,538 0,816 0,104 0,028

SVM [8] 0,458 0,547 0,763 0,198 0,104

Ensemble [3,20] 0,411 0,514 0,722 0,075 0,047

by Mele et al. [17], even when the ML-Constructive is able to predict all the
optimal edges in LP , sometimes it does not reach the complete optimal solution
in the end. The methods are described in the remainder of this section, while
the implementation details can be found in the online compendium.

4.1 First Phase: Machine Learning Models

To find a ML model that works accurately and in a short time, several ML models
were tried out and tested. Their performances in terms of predictions quality
and tour construction are shown in Table 1 and 2, respectively. Five-thousand
instances were randomly generated to train these models, with 100 ≤ n ≤ 1000.
The points were sampled in the unit side square, and the optimal solutions were
computed with the Concorde solver [1]. The cost between each node in the CLi

of node i were employed as input of the ML, where the cost is the euclidean
distance between vertices. In addition, it is also provided a vector indicating
whether that edge is in the current partial solution or not. Given such vector
of dimension (k + 1) · k, the ML model is asked to predict if the first or second
neighbor in the CLi of node i is optimal.

With the aim of preserving a consistent balance between training and testing,
each CLi in the training set were filtered according to the partial optimal solution
found using ML-Constructive constraints and iterations [17].

To accomplish the task several approaches were engaged: the baseline predic-
tor which randomly predicts using the empirical probabilities of the CL positions
[17], the same ResNet architecture introduced by Mele et al. [17], a linear classi-
fier [21], a linear SVM [8], and finally an Ensemble [20] voting classifier including
also an XGBoost [3]. The latter shows the best performance on the test set. Since
the first edge occurrence is quite over-represented we applied an under-sampling
technique as well [12]. More details on the training settings can be found in the
online compendium.
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Table 2. Statistics computed on the results of the modified ML-Constructive heuristic
executed on 54 TSPLIB instances. Each column refers to a different ML model.

B [17] NN [17] Lin [21] SVM [8] ENS [20] ML-C [17] SVM+LS OPT [17] OPT+LS

avg 12,66 8,82 9,46 7,98 9,20 8,03 5,56 4,47 2,96

std 2,99 1,95 2,75 1,84 2,57 1,87 1,61 2,45 2,35

best 0/54 9/54 6/54 10/54 4/54 25/54 48/54 49/54 47/54

time 0,932 1,909 3,286 2,605 5,559 9,822 631,665 0,483 36,632

Several classic metrics are shown in Table 1, an higher True Positive Rate
(TPR) and a lower False Positive Rate (FPR) are preferable [17]. The ML-
Constructive was tested on 54 TSPLIB instances [19].

4.2 Third Phase: Local Search

The ML-Constructive provides good approximated tours, which can however
still be improved. These tours have some flaws, since it is possible to get some
crossing edges in them. To obtain better solutions we extend the heuristic with a
further step, which employs a 2-opt local search [14]. Generally, such local search
compares every possible couple of edges. However, since we assume the choices
made with the help of the network in the first phase are correct, here we try to
improve only the edges obtained during the second phase. The edges that have
been inserted by the ML models (first phase) will not be modified.

5 Results

To compare the results obtained by the original version of ML-Constructive from
[17] and what it is proposed in this work, preliminary experiments were carried
out on the same 54 instances selected by Mele et al. [17] from the TSPLIB library
[19], and reported in this paper. More instances should be considered to draw
more solid conclusions. The size of the instances considered varies between 100
and 1748. A brief recap of the results – with the heuristic executed using several
ML models in the first phase – is shown in Table 2. A more detailed version
of this table can be found in the online compendium, where the results of each
instance are shown and discussed.

The first column B is the baseline, while NN confirms an edge if it connects
the nearest node in the CL. The other columns show the performance using
some ML models; the column ML-C shows the results of the execution of the
original ML-Constructive algorithm [17]. On the two columns indicated by “LS”
is performed also the 2-opt local search as a third phase of the algorithm. Clearly,
this leads overall to better performance: 2-opt moves are applied only if they
bring a better tour length.

The introduction of new ML models has brought an improvement in terms
of computational burden for the first phase. In terms of quality, the use of SVM
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also brought an improvement (not significant) compared to ML-C from [17].
The result is attractive as it also leads to an improvement in speed of about 4x.
More work must be carried out to improve the accuracy of the Machine Learning
decision-taker, and we noticed that keeping low FPR is preferable to having high
TPR.

The local research introduced shows an improvement in terms of solution
quality as well, although more effort is required to bring the gap of the tour
established after the local search to zero. Overall, the changes we made led
to better performance with respect to the original ML-Constructive from [17],
apart from a few particular instances. The promising results obtained by the
“optimal” ML policy (OPT) suggest that there’s room for improvement along
this direction. Recall that the OPT policy is derived on the assumption that
the ML decision-taker can correctly predict all the optimal edges in LP without
making any mistakes.
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{ruether,chamurally,rieck}@bwl.uni-hildesheim.de

Abstract. Solving a pickup and delivery problem with, e. g., multi-
ple depots, time windows, and heterogeneous vehicles is a challenging
routing task. Due to the complexity, a meta-heuristic approach (e. g., a
genetic algorithm) with sufficiently good solution quality is recommended.
Genetic algorithms contain multiple operators such as the crossover and
mutation operators that are called with certain probabilities. However,
selecting appropriate probability values (parameters) for these operators
strongly depend on the data structure of the given instances. For each new
instance, the best parameter configuration must be found to enhance the
overall solution quality. In this paper, an a-priori parameter selection app-
roach based on classifying new instances to clusters is presented. Before-
hand, a bayesian optimization approach with gaussian processes is used
to find the best parameters for each cluster. The a-priori parameter selec-
tion is evaluated on four well-known pickup and delivery problem data
sets, each with 60 instances and different number of depots.

Keywords: Parameter selection · Grouping genetic algorithm ·
Bayesian optimization · Pickup and delivery problem

1 Problem Identification

In the context of pickup and delivery problems, transportation requests which
consist of shipping a quantity of goods from an origin (pickup location/customer)
to a destination (delivery location/customer) have to be executed. Goods of dif-
ferent requests can be carried together as long as the vehicles’ capacities are
not exceeded. The vehicles (e. g., with heterogeneous capacities) typically start
empty at a depot in the beginning of the time horizon, visit customers during
the day and return to the depot empty again, and in many problems several
depots are considered. At each location, the corresponding goods have to be
loaded/unloaded within a time window specified by the customer. Hence, the
resulting problem is a multi-depot pickup and delivery problem with time win-
dows and heterogeneous vehicle fleets (MDPDPTWHV). Due to the problem’s
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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complexity, an extensive solution approach (in particular a meta-heuristic) must
be applied to achieve a good solution quality (cf. [5,6]). In the following, the
promising grouping genetic algorithm (GGA) presented in [6] will be used. Con-
trary to a classical GA, the GGA is characterized by the fact that the repre-
sentation within the genotype is group-oriented such that a gene contains all
requests served by the corresponding vehicle. However, it should be noted that
the solution quality of the approach strongly depends on the chosen probabilities
(parameters) for the individual operators within the GGA. Moreover, it is impor-
tant to also consider the structure of the instance to be solved when choosing
a suitable parameter configuration [6]. In order to find appropriate parameters
automatically, the so-called parameter tuning problem (PTP) has to be solved,
which is done effectively in [6] by a bayesian optimization (BO) approach . How-
ever, solving the PTP is a very time-consuming task and thus it cannot be done
for each new problem instance individually. Thus, an a-priori parameter selec-
tion approach has to be developed in order to find a parameter configuration for
the GGA for a new instance efficiently beforehand.

The paper is structured as follows: In Sect. 2, a short overview of contri-
butions using machine learning techniques to improve meta-heuristics is given.
The a-priori selection approach is presented in Sect. 3 followed by the results in
Sect. 4. Finally, the paper closes with a short discussion in Sect. 5.

2 Related Work

During the last years, there has been a rise in interest for meta-heuristics in
the field of optimization and machine learning. Although it is evident that the
performance of a meta-heuristic depends on its configured parameters values, the
academic community has not formally addressed the PTP until the end of the
last century. For a detailed description of different parameter tuning approaches
for meta-heuristics, the interested reader is referred to [4].

In order to address the energy minimization vehicle routing problem, Cooray
and Rupasinghe [1] developed a genetic algorithm which was enhanced through
k-means clustering. The authors identified the mutation rate as particularly rel-
evant for parameter tuning. Using k-means clustering, they first clustered the
instances into three clusters. Different mutation rates were applied on each clus-
ter to calculate energy minimization percentages. The results showed that cer-
tain mutation rates work better on specific clusters. Based on this observation, in
this contribution, an a-priori parameter selection for new instances is developed,
where in contrast to [1] the parameters of a given cluster are chosen purposefully
through a BO approach (see [6] for a detailed description of the BO approach).

In the context of solving vehicle routing problems, Gutierrez-Rodŕıguez et al.
[3] studied the selection of proper meta-heuristics via meta-learning. The paper
defines two sets of meta-features that can be considered to characterize different
routing problem instances. In order to explore desirable structural characteristics
of good solutions, Arnold and Kenneth [2] argue that knowledge about a problem
is highly valuable when designing efficient heuristics. The authors showed how
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this knowledge can be generated based on data mining by defining several metrics
to measure an instance and a solution. They defined a set of metrics that can
be used to capture the characteristics of an instance.

Considering the MDPDPTWHV, Rüther and Rieck [6] developed an effective
BO approach with gaussian processes to improve GGA’s parameter configura-
tions for 12 pre-defined problem classes. By optimizing the probability parame-
ters of six mutation and five repair operator variants, it is shown that the BO is
able to enhance the solution quality of the GGA in each problem class and its
computational time. In addition, the authors argue that different data structures
require different parameter configurations to obtain a sufficient solution quality.

Although finding appropriate parameter configurations for improving meta-
heuristics is a well-known problem, an a-priori approach learning from known
data in order to select good parameters for new instances with machine learning
techniques has not been presented in the literature yet. In this paper, different
meta-features proposed in the literature are used to find the best parameter
settings for mutation and repair operators of a GGA solving the MDPDPTWHV.

3 Selecting Parameter Configuration for the Grouping
Genetic Algorithm

In order to select appropriate parameters a-priori, features describing the struc-
ture of MDPDPTWHV instances have to be developed (see Subsect. 3.1). Then,
these features are used to identify clusters of similar instances by using k-means
(see Subsect. 3.2) in order to learn good parameter configuration for the GGA
with which all instances of a cluster is to be solved. As the BO proposed in [6]
is a reasonable approach for tuning the parameters of the GGA, the procedure
is also used in this contribution in order to find parameter configurations (see
Subsect. 3.3). Finally, a classification approach is used to find a-priori the best
parameter configuration for new instances (see Subsect. 3.4).

3.1 Feature Selection

Most meta-heuristics expose operators that have strong impact on the perfor-
mance of the algorithm and on the quality of the solutions obtained. Often, the
meta-heuristic adaptation requires an instance-based calibration of the param-
eters of its operators, as a good initial parameter setting can vary considerably
from problem to problem and between problem instances. To discover charac-
teristics that are typical for an instance, the structure of an instance has to be
transformed into some quantitative metrics (features). Thus, a set of features
relevant to the MDPDPTWHV is extracted. Table 1 describes the 16 features
that are used in the approach at hand. In the following, the features based on
time windows are described.

Each customer i is associated with a time window (TW) [ei, li] in which the
service of loading/unloading goods has to be started. The feature average TW
is computed through the mean value of all TW lengths, where n is the respective
number of customers:
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Table 1. Feature definition

Feature Definition

Vehicles capacity/Cost Sum of all vehicle capacities/costs using all vehicles

Vehicle/Request count Number of vehicles available/requests

Service duration Sum of all service times

Total demand Sum of all customer demands

Total profit Sum of all gross profits

Average TW Avg. time window size

Average TW overlap Avg. of time window overlaps between customers

Max pickup-delivery distance Max. dist. between a pickup and it’s delivery node

Min pickup-delivery distance Min. dist. between a pickup and it’s delivery node

Avg pickup-delivery distance Avg. distance between a pickup node and it’s
corresponding delivery node

Variance pickup-delivery distance Var. of the dist. between each pickup node and it’s
corresponding delivery node

Degree of capacity utilization Deg. of cap. util. based on number of vehicles used

Avg. customer-depot distance Avg. dist. between the customers nodes and depots

Variance customer-depot distance Var. in the dist. between customer nodes and depots

1
n

n∑

i=1

(li − ei) . (1)

The average TW overlap is a measure of the relationships between the TWs of
all customers in an asymmetric instance:

1
(n − 1) · n

n∑

i=1

n∑

j=1,j �=i

max(li − ej , 0) . (2)

3.2 k-means Clustering

As an intuitive clustering approach, the k-means clustering is applied in order to
cluster the nI instances in each data set into k separate disjoint clusters C1, . . . , Ck

based on the nf features defined in Sect. 3.1. Typically, k-means clustering is car-
ried out such that the squared euclidean distance between each instance xi and the
center mj of the cluster Cj to which xi belongs is minimized, i.e.

nI∑

i=1

min
j=1,...,k

nf∑

f=1

(
xf

i − mf
j

)2

, (3)

where xf
i and mf

j are the evaluation of feature f in instance xi and in the center
of cluster Cj , respectively.
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3.3 Bayesian Optimization

Optimizing the parameters of meta-heuristics is a black-box problem, since the
relationship between the parameter configurations of the algorithm and its per-
formance cannot be measured metrically. Thus, BO which finds a global mini-
mum x∗ = arg minx∈X ϕ(x) of an unknown black-box function ϕ is a reasonable
approach. The method iteratively learns a probabilistic model of gaussian pro-
cesses that estimates ϕ by known function values ϕ(x) and a surrogate, called
acquisition function [6]. Here, function ϕ describes the GGA’s solution quality
depending on the parameters x of six mutation and five repair operator variants.
In order to determine the parameter configuration for a cluster, the BO approach
is applied on a random sample of instances of the cluster considered.

3.4 An a-priori Parameter Selection

The clusters found from the k-means clustering are used to classify existing
instances into k disjoint clusters upon which the BO finds a good parameter
configuration for each cluster. To find a good parameter configuration for a
new instance xi, first the set of features given in Subsect. 3.1 are extracted
for xi. Then, the corresponding cluster Ck for instance xi is specified by using
the nearest neighbor approach, i. e., the cluster Ck that is the closest to the
feature vector of xi regarding the center mk is chosen. Finally, the parameter
configuration found by the BO for cluster Ck is applied on xi.

4 Evaluation

In order to build the a-priori parameter selection approach, an extended version
of the data sets proposed by Rüther and Rieck [5] (training data), which are
created by an instance generator, is used. There are data sets with 4, 6, 8, and
9 depots (i. e., 4D, 6D, 8D, 9D instances) considered each consisting of 1,200
instances. Hence, the training data set contains 4,800 instances in total. The k-
means method is applied on each depot-wise training data set with respect to the
derived features. To find the optimal number of clusters k, the elbow method is
applied. The BO approach is used to find an appropriate parameter configuration
for all instances in each of the found clusters. A practical data set (evaluation
data) proposed by Rüther and Rieck [7] containing 60 instances per data set is
taken into account to evaluate the a-priori approach. For the instances coming
from the evaluation data, the corresponding clusters are determined and then
the GGA with the parameter configuration found by the BO for the respective
cluster is applied (optimized GGA). Since the initial parameter configuration of
the GGA in [6] showed promising results, this GGA configuration is used as
baseline method on the instances of the evaluation data (initial GGA).

Table 2 presents the results of this study. Here, με is the mean value and
σε is the standard deviation of the relative error which is determined through
comparing the initial and optimized GGA instance-wise to the best solution as
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Table 2. Mean value με and std. deviation σε of relative error for GGA’s configurations

Approach με σε μCPU #best

4D
Optimized GGA 0.35% 0.67% 693.78 s 40

Initial GGA 1.41% 1.50% 757.66 s 20

6D
Optimized GGA 0.20% 0.48% 1968.05 s 45

Initial GGA 2.20% 2.56% 2150.22 s 15

8D
Optimized GGA 0.30% 0.77% 3585.35 s 44

Initial GGA 1.81% 2.00% 3908.35 s 16

9D
Optimized GGA 0.20% 0.47% 3357.35 s 44

Initial GGA 1.58% 1.48% 3580.19 s 16

in [6]. The results in Table 2 show that the optimized GGA provides better results
than the initial GGA. In particular, the mean relative error in each data set is
smaller and the optimized GGA is more stable, since the standard deviations are
smaller (i. e., if the optimized GGA does not find the best solution for an instance,
the found solution is only slightly worse than the one by the initial GGA). In
addition, the number of best solutions found #best and computational time on
average μCPU have been improved through a-priori parameter selection.

5 Discussion

This paper presents an a-priori parameter selection approach based on k-means
clustering and bayesian optimization for selecting parameter configurations to
solve new problem instances. To do so, instances are represented into a vec-
tor of meaningful features upon which a machine learning method is applied
to improve parameter configurations. Using an evaluation over 240 multi-depot
instances, it is shown that appropriate parameter configurations can be found.
It is worth mentioning that the idea presented can be used with any machine
learning method to learn parameter configurations of a meta-heuristic based
on instance features, which is therefore supposed to be considered for future
research. Moreover, it should be examined whether the best parameter config-
uration of a cluster is also the best or under the top configurations for each
instance of the cluster.
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Abstract. The increasing pressure to innovate requires that products
are replaced by successor products at ever shorter intervals. Manufactur-
ing companies are therefore increasingly faced with the planning of prod-
uct phase-outs. A central question in the planning of phase-outs is how
many units of the discontinued products should still be manufactured
before their fabrication is ceased. At Leica Geosystems, a production
company in the surveying industry, this decision-making process takes
place in dedicated interdepartmental planning meetings. In this paper,
we describe a Decision Support System that enables the management
to develop different phase-out scenarios, compare them with each other,
and thus make informed planning decisions.

Keywords: Decision support systems · Production and inventory
systems · Mixed-integer programming

1 Introduction

Leica Geosystems is a leading provider in the high-end segment of the surveying
industry. In addition to the claim to meet the highest quality requirements,
the company is also particularly characterized by a high degree of innovation in
product development. For supply chain management, this results in the challenge
of carefully planning the replacement of product families. The first task here is
to determine the quantities of products still to be manufactured in such a way
that the residual value of the components and semi-finished products remaining
at the end is minimized [1]. For complex high-tech products, such as complete
solutions in the field of surveying, hundreds of components can be affected when
a product family is replaced. The bill of material (BOM) defines how many
components of each type are used in a product. A BOM-based comparison of
discontinued and successor products provides information about discontinued
components (see Fig. 1). Each discontinued component has a certain value and
a current inventory. The companies’ phase-out strategies are limited by a wide
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Fig. 1. Comparison of discontinued and successor product at BOM-level (own
illustration)

variety of purchase obligations such as lot sizes, minimum purchase quantities,
and quantity contracts, which should be considered in the analysis. Moreover,
estimates from the sales department on the opportunities to sell discontinued
products should be taken into account. Interesting in this context is a recent
study showing that domain experts make better phase-out demand forecasts
than the best performing forecast models [2].

Since today’s Enterprise Resource Planning (ERP) Systems do not offer ade-
quate support in these matters, manufacturing companies typically use rather
naive spreadsheet calculations. To address this need, we propose a Decision Sup-
port System (DSS) that combines mathematical optimization functionality with
scenario analysis to deal with sales scenarios to support decision-making in the
process of product phase-out control. The DSS will be used during live plan-
ning meetings. In order to determine the optimal production quantities, we have
developed a Mixed Integer Program (MIP).

Fig. 2. DSS support and information flow (own illustration based on Wagner [3])
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Figure 2 visualizes the preparations and the use of the DSS in the various
phase-out phases according to Wagner [3].

The problem discussed in this paper has some similarities to the well-known
Last Time Buy (LTB) problem. In both settings we have one last opportunity
to increase stock of components (and products) and the goal is to minimize total
cost while anticipating on future demand/sales. LTB models are in particular
relevant to spare parts logistics. In contrast to our proposed phase-out model,
LTB models usually consider single parts (thus no bill of materials), assume
known demand distributions and do not impose constraints on lot sizes. Some
more advanced LTB models consider alternative sourcing options, such as repair
of returned broken items. For a detailed discussion of LTB models, we refer to
Behfard et al. [4].

Our main contribution consists of two parts:

– We develop a MIP model for minimizing scrapping costs during product
phase-out for products with single-level BOM structures, subject to mini-
mum and maximum production quantities and a wide range of real-world
technical and operational constraints. We use an ILP solver to solve real-
istic problem instances and show that the MIP approach is responsive and
outperforms solutions constructed by human planners by up to 30%.

– We develop a DSS that contains a MIP model and a MIP solver for mini-
mizing scrapping costs for user-specified minimum and maximum production
quantities. In order to take into account difficult-to-quantify and case-specific
expert knowledge, the DSS also allows to calculate manually adjusted sce-
narios, to visualize the impacts on key performance indicators and to com-
pare the results with those from MIP-optimized solutions. The tool thus sup-
ports interactive decision making and empowers the purchasing department,
production department and marketing & sales department to determine an
implementable and coordinated phase-out strategy of high acceptance.

2 Problem Description and Model Formulation

The MIP presented in the following provides the optimization model of the DSS
and allows to determine the production quantities as well as the related order
quantities of the involved components to minimize the scrapping costs.

Sets and Indices
i: Product indices for identification of all products ∈ I = {1, ..., n}
j: Component indices for identification of all components ∈ J = {1, ...,m}

JK : Subset of all components with quantity contract
JK : Subset of all components without quantity contract

Parameters
Ai ∈ N0: Lower limit for production quantity of the product of type i
Bi ∈ N0: Upper limit for production quantity of the product of type i
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Kj ∈ N0: Number of components in stock of type j
Sij ∈ N0: Number of components of type j in product of type i
Cj ∈ R: Price of a component of type j
Rj ∈ N0: Service requirement for components of type j
Lj ∈ N: Lot size for orders of components of type j

Mj ∈ N0: Minimum purchase quantity for orders of components of type j
Nj ∈ N0: Quantity from quantity contract for components of type j
Q ∈ R: A large number (exceeding largest order quantity)

Decision Variables
Xi ∈ N0: Production quantity of products of type i
Gj ∈ N0: Order quantity of components of type j
Uj ∈ Z: Number of lots of components of type j

wj ∈ {0, 1}: 1, if Gj �= 0, 0 else
zj ∈ {0, 1}: 1, if Gj ≤ Mj , 0 else

min
∑

j∈J

Gj · Cj +
∑

j∈J

Kj · Cj −
∑

i∈I,j∈J

Xi · Sij · Cj −
∑

j∈J

Rj · Cj (1)

∀i ∈ I Ai ≤ Xi (2)

∀i ∈ I Bi ≥ Xi (3)

∀j ∈ J Gj ≥ Rj − Kj +
∑

i∈I

Xi · Sij (4)

∀j ∈ J Uj ≥ Gj

Lj
(5)

∀j ∈ JK Gj ≤ wj · Q (6)

∀j ∈ JK Gj ≥ −wj · Q (7)

∀j ∈ JK Gj ≥ Mj − (1 − wj) · Q (8)

∀j ∈ JK Gj ≤ Mj + (1 − zj) · Q (9)

∀j ∈ JK Gj ≥ Uj · Lj − zj · Q (10)

∀j ∈ JK Gj ≤ Uj · Lj + zj · Q (11)

∀j ∈ JK Gj = Nj (12)

The objective function (1) minimizes the overall scrapping costs: The value of
ordered components and components at stock is reduced by the components
consumed by production and the ones reserved for service work (spare parts).
Constraints (2) and (3) ensure that the production quantities are within the
permissible ranges. Constraint (4) guarantees that the components’ order quan-
tities together with their stocks cover the required component numbers claimed
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by the production quantities as well as the service needs, whereas constraint (5)
makes sure that the lot sizes are respected. The constraints (6) to (11) have
the effect that if components without a quantity contract are ordered, either
the minimum purchase quantity or a multiple of their lot size can be ordered.
Finally, constraint (12) guarantees that order quantity contracts are respected.

3 DSS-Based Phase-Out Negotiation

In order to determine a suitable phase-out scenario using the DSS, first, the
parameter values described above are collected from the ERP system. Then,
during an interdepartmental meeting, the experts determine the optimal produc-
tion quantities for each product as well as the minimal scrapping cost related to
that scenario. Thereafter, expert knowledge is taken into account from the pur-
chasing department, production department and marketing/sales department.
In this step, alternative viable phase-out scenarios are developed by modifying
the production quantities of the products within the allowed ranges. Based on
these negotiations, a common consensus is formed and a commitment to the
most appropriate and implementable scenario is created.

4 Numerical Experiments

The DSS has been tested on the basis of historical phase-outs. These cases
involved product families with two products and a few dozen components. It
could be shown that the scrapping costs could be reduced by 20–30% with the
help of the DSS presented here. For all historical cases, an optimal phase-out
configuration could be determined within less than 30 s, which is perfectly fine
for the intended application1.

5 Conclusions and Future Work

The DSS presented in this paper provides the company management with a
tool to interactively determine the production quantities and the related order
quantities of the involved components for the product phase-out during plan-
ning meetings. This way, expert knowledge from purchasing, production, and
marketing & sales can be taken into account in order to find the best applica-
ble phase-out scenario. A DSS based on the work presented here is currently in
use at Leica Geosystems AG, in Heerbrugg, Switzerland, where it supports the
planning of upcoming product phase-outs.

In the future we plan to expand the optimization model for handling hierar-
chical BOMs and to support more elaborate cost models. From a usability point
of view, an integration into an existing ERP system and the implementation
of an automated data acquisition would make the solution more efficient and
user-friendly.
1 Measured under Microsoft R© WindowsR© 10 using the MatlabR© 2020a MILP solver

on IntelR© Core TM i7 CPU@1.9GHz.
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Abstract. A facility location problem to place waste collection facilities
is introduced. We present two different strategies to deal with residents
whose access to the opened collection facilities is restricted (e.g., they are
too far away). First, we consider a penalty to be borne by the municipal-
ity for each resident bringing its waste to a location that is considered to
be unacceptable. Second, we provide a collection service performed by a
vehicle such that each resident is either served by a collection facility or a
vehicle collecting its waste. We compare both formulations with a simple
example that considers a small neighborhood of a Swiss municipality.

Keywords: Facility location · Mixed-integer linear programming ·
Waste collection · Outliers

1 Introduction

In most Swiss municipalities, a curbside system consisting of heavy trucks that
stop at almost each household is used for non-recoverable waste collection. Due
to the many stops of the trucks, this strategy causes high fuel consumption,
emissions and noise. These effects can be alleviated by requesting residents to
bring their waste to collection facilities comprising large containers that are
distributed throughout the municipality. When a container of a collection facility
is full, a truck transports an empty container from the disposal facility (depot) to
the collection facility and replaces it. The truck then transports the full container
back to the disposal facility and discharges it.

We formulate this optimization problem as a facility location problem (FLP,
e.g., [1,2]) with two particular features. First, for a facility to be placed at a
candidate location, its collected waste must be greater or equal than a minimum
workload that justifies its opening. Minimum required workloads are typically
used in the location of preventive health care facilities (e.g., [3]). In this appli-
cation, the workload at a facility needs to be greater than a certain threshold
to ensure the quality of services (accreditation) and to justify the allocation of
public funding.

Second, we take into account residents’ preferences when allocating them
to collection sites. This is modeled with a given list called preference list that
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Trautmann and M. Gnägi (Eds.): OR 2021, LNOR, pp. 81–86, 2022.
https://doi.org/10.1007/978-3-031-08623-6_13
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for each resident ranks the candidate locations according to some convenience
measure (e.g., walking distance, proximity to interesting points). The preference
list is divided in two parts based on a given threshold on the level of acceptability
of candidate locations (e.g., maximum walking distance). Residential buildings
might bring their waste to unacceptable locations. This is typically the case for
distant residential buildings, since allocating them to acceptable locations would
involve the placement of multiple collection sites, exerting a disproportionately
strong influence over the final solution. These residential buildings are known as
outliers, and the municipality needs to put in place a strategy to handle them.

Two variations of the FLP are formulated in [4] to handle outliers in a
meaningful way: the robust facility location problem (R-FLP), which consists
of placing facilities such that the service cost to any subset of at least p facilities
is minimized, and the facility location with penalties problem (FLP-P), which
decides for each resident to either service them and pay the service cost to its
nearest facility, or to pay the penalty. The FLP-P has been studied earlier for
the prize collecting traveling salesman problem (e.g., [5]) and will be considered
for our problem.

Another possibility is to provide an alternative service to outliers and visit
them with a vehicle, which has been recently referred to as location-or-routing
problem (LoRP, e.g., [6]). In this setting, a resident can be covered (served)
either by a collection facility or by a vehicle departing from an open facility
subject to maximum route length and vehicle capacity constraints. The objective
is to minimize the total weighted cost of opening facilities, vehicle routing and
residents coverage by open facilities. The LoRP is closely related to the location-
routing problem (LRP, e.g., [7]), which enables to model locational problems
while paying attention to the underlying issues of vehicle routing.

In this paper, we consider two strategies to deal with outliers in our problem
and propose a mixed-integer linear programming (MILP) formulation for each of
them. In the first strategy, we incorporate outliers in the formulation via penal-
ties. If a resident has to use a collection facility that is placed in an unacceptable
location, the municipality has to pay a penalty to compensate it. In contrast to
the FLP-P, our penalty costs depend on the convenience measure for residential
buildings to unacceptable locations, and service costs to acceptable locations are
not considered. We call this problem FLP with penalties and minimum workload
(FLP-PW). In the second strategy, we formulate our problem as a LoRP. A vehi-
cle located at the disposal facility performs routes to visit outliers and collect
their waste. As opposed to the classical LoRP, we do not start the routes at one
of the open facilities and do not consider maximum route length. For the sake of
simplicity, we assume that the collection facilities can gather as much waste as
needed and we ignore coverage cost in the objective. We call this problem LoRP
with minimum workload (LoRP-W).

This paper is organized as follows. In Sect. 2 we formally define the problem.
In Sects. 3 and 4 we present a MILP formulation for each of the two strategies,
respectively. In Sect. 5 we test both formulations and enumerate some avenues
for future research.
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2 Problem Description

Let F be a set of candidate locations for the collection facilities and V the set
of residential nodes. For each location j ∈ F , we need to decide whether or
not to place a collection facility there. Each node i ∈ V might refer to one
residential building or might aggregate several ones. We denote its waste by wi

and its non-empty preference list by V pref
i ⊆ F . We assume that V pref

i is totally
ordered, with pref(i, j) denoting the index of candidate location j in V pref

i . Hence,
pref(i, j) < pref(i, j′) indicates that location j is preferred over location j′ by
residential node i.

A collection facility can only be placed at a candidate location if it gathers
a minimum waste (minimum workload) Wmin. As pointed out in Sect. 1, for
each node i ∈ V , we split its preference list V pref

i into an acceptable V ac
i and

an unacceptable V unac
i sub-list of candidate locations, i.e., V pref

i = (V ac
i , V unac

i ).
This division meets an assumed threshold on the acceptability of locations. Thus,
it might be that one of the two sub-lists is empty, but not both. We consider
a fixed cost cj to place a collection facility at location j. The goal of both the
FLP-PW and LoRP-W is to find a subset S ⊆ F with minimum total cost as
defined in Sects. 3 and 4, respectively.

3 FLP-PW

In the FLP-PW, we assume a penalty cost rij associated with residential node
i bringing the waste to location j ∈ V unac

i to be borne by the municipality. Let
yj be a binary variable that is equal to 1 if a collection facility is placed at
location j ∈ F and xij be a binary variable that is equal to 1 if the waste wi

is allocated to the collection facility located at j. The FLP-PW is formulated
in (1). The objective function (1a) defines the goal of minimizing the total cost,
which is calculated as the sum of the opening costs of collection facilities and
the penalty costs associated with unacceptable locations. Constraints (1b) ensure
that the waste of each residential node is assigned to exactly one facility in its
preference list. Constraints (1c) impose that the residential node is allocated to
the first collection facility j ∈ V pref

i that is opened. Constraints (1d) enforce the
minimum workload Wmin on open collection facilities. Constraints (1e) ensure
that a residential node can be allocated to a collection facility only if it is opened.
Constraints (1f) define the domain of the decision variables.

min
∑

j∈F

cjyj +
∑

i∈V

∑

j∈V unac
i

rijxij (1a)

s.t.
∑

j∈V pref
i

xij = 1 ∀i ∈ V (1b)

∑

j′∈V pref
i :pref(i,j′)>pref(i,j)

xij′ ≤ 1 − yj ∀i ∈ V, j ∈ V pref
i (1c)
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∑

i∈V :j∈V pref
i

wixij ≥ Wminyj ∀j ∈ F (1d)

xij ≤ yj ∀i ∈ V, j ∈ F (1e)
xij , yj ∈ {0, 1} ∀i ∈ V, j ∈ F (1f)

4 LoRP-W

Let G = (V,A) be a directed graph with node set V and arc set A. Each arc (i, i′) ∈
A represents the shortest path between nodes i ∈ V and i′ ∈ V and has length �ii′ .
We consider a single vehicle with capacity Q to collect the waste. It can perform
as many routes as needed. The vehicle is located at a disposal facility σ, where it
departs and dumps the collected waste. Note that, for the sake of simplicity, we
do not allow for splits, i.e., the waste at each residential node cannot be split up
between multiple routes. To this end, we assume wi ≤ Q,∀i ∈ V .

Let yj and xij have the same meaning as in the FLP-PW. Furthermore, we
denote by uii′ the binary variable that is equal to 1 if the vehicle goes from resi-
dential node i to i′. To prevent subtours, we associate a non-negative continuous
variable fii′ with each arc (i, i′) that indicates the quantity of waste that tra-
verses such arc. The LoRP-W is formulated in (2). The total cost in the objective
function (2a) is calculated as the sum of the opening costs of collection facili-
ties and the driving costs associated with the performed routes. Constraints (2b)
ensure that a residential node is either served by a collection facility or visited in a
route. Constraints (2c), (2d) and (2e) have the same meaning as constraints (1c),
(1d) and (1e) in the FLP-PW, respectively. Constraints (2f) define the degree
constraints. Constraints (2g) ensure that the net flow out of any visited residen-
tial node must be the waste associated with that node. Constraints (2h) to (2j)
define the domain of the decision variables. Note that constraints (2j) link the
variables f with the variables u. If uii′ = 1, i.e., the vehicle visits both residential
nodes i and i′, then the flow passing through the arc connecting them cannot
exceed the vehicle’s capacity Q.

min
∑

j∈F

cjyj +
∑

i∈V ∪{σ}

∑

i′∈V ∪{σ}
�ii′uii′ (2a)

s.t.
∑

j∈V pref
i

xij +
∑

i′∈V ∪{σ}
uii′ = 1 ∀i ∈ V (2b)

∑

j′∈V pref
i :pref(i,j′)>pref(i,j)

xij′ ≤ 1 − yj ∀i ∈ V, j ∈ V pref
i (2c)

∑

i∈V :j∈V pref
i

wixij ≥ Wminyj ∀j ∈ F (2d)

xij ≤ yj ∀i ∈ V, j ∈ F (2e)
∑

i′∈V ∪{σ}
uii′ −

∑

i′∈V ∪{σ}
ui′i = 0 ∀i ∈ V (2f)
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∑

i′∈V ∪{σ}
fii′ −

∑

i′∈V ∪{σ}
fi′i = wiuii′ ∀i ∈ V (2g)

xij , yj ∈ {0, 1} ∀i ∈ V, j ∈ F (2h)
uii′ ∈ {0, 1} ∀i, i′ ∈ V ∪ {σ} (2i)
0 ≤ fii′ ≤ Quii′ ∀i, i′ ∈ V ∪ {σ} (2j)

5 Preliminary Results

We test both formulations on a dataset that represents a small neighborhood
of a Swiss municipality with 57 residential buildings, 411 inhabitants, an area
of 0.13 km2 and a total waste production of 727 waste units. Graph G contains
97 nodes, out of which 33 are residential nodes, and 307 arcs, out of which 172
are incident to the disposal facility.

In both formulations, we assume for the first part of the objective cj = 500
as the fixed cost for placing a collection facility at location j. To be able to
compare the two formulations, we define the variable costs for the second part of
the objective as follows. In FLP-PW, we assume that a resident i brings its waste
to an unacceptable location j ∈ V unac

i by a private car driving the following route
i − j − i. The penalty costs are then defined as rij = dij + dji, where dij is the
shortest path distance from residential node i to collection facility j calculated
from the underlying graph. In a similar way, we define the length of an arc
(i, i′) ∈ A in LoRP-W as �ii′ = dii′ , where dii′ is the shortest path distance
from residential node i to i′. Hence, the second objective is to minimize the total
distance driven by the private cars of the residents in FLP-PW or the collection
vehicle in LoRP-W. Given the total waste (727 units), we consider a minimum
workload Wmin = 100 and a vehicle capacity Q = 200. Finally, to generate
the preference lists, we test various values for the maximum walking distance
and sort the candidate locations for each residential node in increasing order
with respect to the walking distance. Thus, the unacceptable locations are those
placed at a walking distance larger than the maximum walking distance.

Table 1 includes the obtained results for the maximum walking distance
values of {50, 100, 150, 200}. Note that the outlier cost refers to the total dis-
tance driven by the vehicles (collection vehicle or private cars of the residents).
Together with the facility cost it adds up to the total cost which is represented
in the objective function value. Both formulations found optimal solutions for
all instances. As expected, the number of outliers substantially decreases as the
maximum walking distance increases. The same can be observed for the number
of open facilities. The FLP-PW is more expensive with respect to the total cost
and tends to open more facilities than the LoRP-W. Thus, the FLP-PW covers
more residents by facilities than its counterpart. The LoRP-W on the other hand
accepts more outliers. Overall, the results show that both strategies (formula-
tions) can be used for the presented problem and provide meaningful solutions
to the instances generated for this small example.

Note that the proposed formulations can be computationally too expensive.
For this small example, the results are obtained within seconds. For instances
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Table 1. Results of both formulations for maximum walking distance values of
{50, 100, 150, 200}.

Max. walk. dist. Formulation Obj. fun. Facilities Outliers

# Open fac. Facility cost # Outliers Outlier cost

50 FLP-PW 9647 6 3000 14 6647

50 LoRP-W 9088 3 1500 23 7588

100 FLP-PW 8349 6 3000 8 5349

100 LoRP-W 5917 3 1500 11 4417

150 FLP-PW 6521 3 1500 7 5021

150 LoRP-W 5013 3 1500 6 3513

200 FLP-PW 4726 2 1000 3 3726

200 LoRP-W 4024 2 1000 3 3024

with a larger number of nodes, additional methodologies that speed up the solu-
tion approach, such as decomposition techniques or other heuristics, might need
to be applied to efficiently produce good quality solutions. Furthermore, an
exhaustive calibration of the parameters of the model needs to be performed
to generate more realistic results and compare both strategies in greater detail.
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Abstract. We consider a configuration problem for high-performance
pumps, where the configurations that are technically possible are speci-
fied in restriction tables. For this problem we propose a Constraint Pro-
gramming based feasibility model and present an algorithm for deter-
mining and resolving conflicts. Computational results show that the app-
roach is very well suited for various use cases in practice.

Keywords: Constraint programming · Product model · Minimal
conflicts · Conflict resolution

1 Introduction

High-performance pumps and valves are often sold in markets with extremely
diverse customer requirements. Although they are assembled from a standardized
set of parts kept in stock, hardly any two orders are exactly the same. To be
able to fulfill the customer’s specification but ensure that the product can be
manufactured and that all the technical, pricing, lead time and business limits
are respected, a product configuration software is used.

The software is used by sales people to configure and quote the product and to
later automatically generate the parts lists and work plans needed in the factory.
Sometimes the configuration software will report that there is a conflict with the
choices made to satisfy the customer requirements. Due to the complexity of the
product model, it is practically impossible for the user to resolve these manually.
Automated assistance for conflict resolution is needed.

The project “Development of new methods, algorithms and software for configuration
and selection of complex product systems” is supported by a grant from the European
Union European Fund for Regional Development.
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2 The Configuration Problem

The product is described by a set of features F with finite domains. The goal
is to have a valid configuration with an assignment of a specific value to each
feature such that all the constraints are fulfilled. The constraints fall into two
categories, a consistent product model background that remains the same, and a
set of user decisions and domain restrictions that vary for each solution attempt.

The product structure is a tree-like maximal bill of materials (BOM). The
tree nodes can themselves also have sub-nodes, etc., but loops are not allowed
and the depth is of course finite. The nodes in the BOM are optional and may
or may not exist in a particular configuration depending on feature evaluations.

The main constraints are formulated using restriction tables and conditional
assignments. A restriction table lists allowed combinations of values for a set of
features. A combination of values not corresponding to a line in the table is not
allowed. The restriction tables are assigned to nodes and are only active if their
node exists. This can lead to nodes being rejected in a solution if the tables they
contain cannot be fulfilled due to other constraints. A conditional assignment is
a requirement that a feature take on a certain value if a condition holds.

A typical model has around 500 features with 4 values on average, 300 rele-
vant nodes, 150 conditional assignments and about 600 restriction tables with 1
to 10 columns each and containing 140,000 lines in total for all tables.

3 The CP Model

We model the configuration problem using a Constraint Programming (CP) app-
roach. The CP formulation is the basis for finding feasible configurations (using
a backtracking search based on feature and evaluation priorities) and for deter-
mining conflicts and resolutions. For the description of the model we use decision
variables and constraints provided by Google’s OR-Tools CP library (see [2]).

For each feature f ∈ F we define an integer decision variable xf with domain
{−1, 0, . . . , |f | − 1}, where |f | is the number of possible evaluations for f . The
value −1 is used to represent intentional nonevaluation of a feature. Furthermore,
for each node n in the set of all nodes N we define a binary decision variable xn

which is equal to 1 if n exists and 0 otherwise.
The most important constraints are the table restrictions. For each node

n ∈ N let Rn be the set of its restriction tables. The set of all restriction tables
is denoted by R =

⋃
n∈N Rn. A restriction table r ∈ R constrains the possible

combinations of values for pr features by a set Ar of qr vectors of length pr.
As the nodes are optional and for n ∈ N the restriction tables in Rn need

only to be satisfied if n exists, we introduce a local feature variable xn
f for each

feature f referenced in a restriction table in Rn. Each of these local variables xn
f

has the same domain as xf and we add the constraint

xn ≤ (
xf = xn

f

)
.Var() (1)
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to the CP formulation. In this constraint, (. . .).Var() is a binary decision vari-
able which is equal to 1 if the inner constraint is satisfied and 0 otherwise (see [2]).
Thus, (1) enforces that xf and xn

f are equal if node n exists.
Given the local feature variables, the restriction tables are then represented

in the CP formulation by the Google OR-Tools constraint

AllowedAssignment
((

xn
f1 , . . . , x

n
fpr

)
,Ar

)
, (2)

which ensures the vector of values assigned to
(
xn
f1
, . . . , xn

fpr

)
is an element of Ar.

In combination with (1) these constraints make sure that the restriction tables
are respected if node n exists. Note that the usage of the local feature variables is
necessary as (. . .).Var() is not available for AllowedAssignment(. . .) (see [2]).

Apart from the table restrictions, the nodal existences each depend on the val-
ues of certain features and some other feature’s values depend on the existence of
certain nodes. In the CP model this is reflected by conjunctions and disjunctions
of value assignments to feature and node existence variables. Furthermore, some
features f ∈ F must not take a certain set of values Vt

f if the feature OPRTN PLNTS,
which selects the production plant, is set to a certain value t:

max
v∈Vt

f

(xf = v) .Var() ≤ 1 − (xOPRTN PLNTS = t) .Var(). (3)

In addition to these constraints, which describe the feasible configurations of
the product in general, the CP model can be extended by explicit user requests.
The requests either lead to instantiations of decision variables (assignment of a
certain value to a feature or determination of node existence) or further domain
restrictions for feature variables.

4 Conflict Determination and Resolution

Especially in early stages of product modeling or when users specify many feature
assignments, the CP model may be infeasible. In these cases, the determination
of the minimal conflicts is crucial. They describe the core of the infeasibility and
thus form the basis for resolutions that fulfill the specifications as far as possible.

In the following we present a bottom-up approach combined with a binary
search for finding all minimal conflicts of a set of constraints. We use this app-
roach since the minimal conflicts are usually rather small. Other procedures
for determining all minimal conflicts can for example be found in [3] (top-down
approach) and [1] (simultaneous construction of maximal satisfiable and minimal
conflicting constraint sets).

Let C be a set of constraints. C is a conflict if not all constraints in C can
be fulfilled at the same time. C is minimal if no proper subset of C is a conflict.
Moreover, let S be a set of sets. Then H is a hitting set of S if S ′ ∩ H �= ∅ for all
S ′ ∈ S. H is minimal if no proper subset of H is a hitting set.

Let MinC be the set of minimal conflicts found so far and H be the set of min-
imal hitting sets of MinC. Then the bottom-up approach for finding all minimal
conflicts of a conflict C has the following steps:
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Algorithm 1: Determination of one minimal conflict.
Input: Conflict C′.
Result: Minimal conflict C∗.

1 if |C′| = 1 then
2 Return C′.
3 Set L := c1, . . . , cN (ordered constraints of C′), nmin = 0, nmax = N , C∗ = ∅.
4 while true do
5 while true do

6 Set n∗ = �(nmax − nmin)/2� and C̃ = C∗ ∪ {c1, . . . , cn∗}.
7 if C̃ is a conflict then
8 if n∗ = nmax then
9 C∗ = C∗ ∪ {cn∗} and Break.

10 else
11 Set nmax = n∗.
12 else
13 Set nmin = n∗.
14 if C∗ is a conflict then
15 Break.
16 else
17 Set nmin = 0, nmax = n∗ − 1.

18 Return C∗.

1. Set C′ = C.
2. Find a minimal conflict C∗ ⊆ C′ by Algorithm 1. MinC := MinC ∪ {C∗}.
3. Update H with respect to C∗.
4. For all H ∈ H:

– If C\H is a conflict: Set C′ = C\H, go to Step 2.
– Otherwise: Remove H from H.

5. Return MinC.

The update of H with respect to C∗ in Step 3 is done as follows:

– Extend each element of H by each element of C∗ : H := {H ∪ c : H ∈ H, c ∈ C∗}.
– Remove all duplicate and non minimal hitting sets from H.

In addition, note that C\H resolves all minimal conflicts of the current set MinC.
Therefore, if C\H is a conflict, this set contains a new minimal conflict and no
duplicates are generated. Finally, the approach guarantees that MinC is complete
(i.e. all minimal conflicts have been found) as in Step 5 the complements C\H
for all hitting sets H of MinC are feasible.

Given MinC, resolutions are determined by relaxing minimal hitting sets of
this set and applying the prioritized backtracking search.

5 Use Cases and Computational Results

5.1 Conflict Resolution

In this use case the end user would like to be informed which of the user decisions
cause conflicts with the product model and be given suggestions for changing
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Fig. 1. Solution time for conflict resolution use case

them to get a valid configuration. During product configuration a user proceeds
by selecting values for some of the features and the system is to return a valid
assignment for the rest of them or to determine that no valid solution exists and
return a number of suggestions on how to resolve the problem by changing some
of the decisions. Normally the user proceeds feature by feature with the system
responding after each choice, so a fast response is very important.

Since this is the same as the use case described in [4] the following variant of
this approach was implemented as a baseline. The user decisions were prioritized
based on the order in which they were made. Because of the step-by-step decision
procedure the QUICKXPLAIN algorithm in [4] simply reports “relax your last
decision” as resolution, rather unsatisfying for the end user. As the product
model is soluble without user decision constraints, and each feature value can
occur in at least one solution, there are always at least two possible conflict
resolutions, so the algorithm was extended to also find all relaxations of single
user decisions that resolve the conflict and if there are less than two, also a
general relaxation different than “relax your last decision”.

Figure 1 shows a comparison of the solution times for the algorithm devel-
oped here (Sect. 4) with the modified QUICKXPLAIN for about 6000 test cases
taken from actual and conflicting end user interactions. It can be seen that the
new algorithm usually completes in 25% of the time that the baseline required.
Further, in general it reports more possible conflict resolutions (potentially one
for each minimal hitting set). At the far right of the figure we see that there are
a few cases in which both algorithms required substantially more time or didn’t
complete, reminding us that the problem at hand remains NP-hard.

5.2 Conflict Analysis

In this use case the product modeler assigns values to some features and finds
that no solution is possible, although the feature assignment is intended to be
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Fig. 2. Running time for conflict analysis use case

a valid configuration. In this case, the product modeler needs to know which of
the constraints in the model prevent the assignments to check the formulation
of those constraints for errors. The response time is not so important, but the
completeness of the answer is. Manual analysis of the conflict usually takes days,
so if the system can automatically deliver a complete analysis in less time it is
a great benefit for the modeler looking for problems in the model.

The performance of the algorithms for conflict analysis was demonstrated
on 3700 test cases with conflicts, also taken from real end user interactions.
Figure 2 shows the processing time required vs. the number of minimal conflicts
discovered. The solution time of up to a few minutes is perfectly acceptable for
practical use. The large number of minimal conflicts appears surprising at first
but can be explained due to (necessary) redundancies in the restriction tables.

For the tests, a time limit of roughly 150 s was enforced. When the time limit
was reached, the algorithm had always reported some minimal conflicts. Since
every single minimal conflict needs to be addressed to resolve the overall conflict,
reporting even one minimal conflict is a help for the product modelers.
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Abstract. The knapsack problem is one of the best known and most fun-
damental NP-hard problems in combinatorial optimization. We consider
two knapsack problems which contain additional constraints in the form
of directed graphs whose vertex set corresponds to the item set. In the 1-
neighbor knapsack problem, an item can be chosen only if at least one of
its successors is chosen. In the all-neighbors knapsack problem, an item
can be chosen only if all of its successors are chosen. For both problems,
we consider uniform and general profits and weights. Since all these prob-
lems generalize the knapsack problem, they are NP-hard. This motivates
us to consider the problem on special graph classes. Therefore, we restrict
these problems to directed co-graphs, i.e., directed complement reducible
graphs, that are precisely those digraphs which can be defined from the
single vertex graph by applying the disjoint union, order and series com-
position. We show polynomial time solutions for the uniform problems on
directed co-graphs and pseudo-polynomial time solutions for the general
problems on directed co-graphs. These results improve known worst-case
runtimes in comparison to constraints given by unrestricted digraphs.

Keywords: Knapsack problem · Neighbor constraints · Directed
co-graphs

1 Introduction

In the last years, the interest in knapsack problems related to graphs has
grown strongly. These include, for example, the knapsack problem with con-
flict or forcing graphs, the subset sum problem with digraph restrictions, and
the partially ordered knapsack problem. A directed graph or digraph is a pair
G = (A,E), where A is a finite set of vertices (here the item set of a knap-
sack instance) and E ⊆ {(u, v) | u, v ∈ A, u �= v} is a finite set of ordered
pairs of distinct vertices, the directed edges or arcs. For a vertex u ∈ A, the set
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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N+
G (u) = {v ∈ A | (u, v) ∈ E} is called the set of all successors. We analyze the

knapsack problem with additional constraints based on a digraph G = (A,E)
from [1,2]. The all-neighbors constraint prescribes that an item u ∈ A can be
chosen into a feasible knapsack solution A′ ⊆ A only if all its successors in N+

G (u)
are also chosen, i.e.,

u ∈ A′ ⇒ N+
G (u) ⊆ A′. (1)

The 1-neighbor constraint prescribes that an item u ∈ A can be chosen into
A′ ⊆ A only if it does not have a successor or if at least one of its successors in
N+

G (u) is chosen, i.e.,
(
u ∈ A′ ∧ N+

G (u) �= ∅) ⇒ N+
G (u) ∩ A′ �= ∅. (2)

This allows us to state the following optimization problems given in [2].

Name: Knapsack with all-neighbor (1-neighbor) constraint, KPaN (KP1N)
Instance: A set A = {a1, . . . , an} of n ≥ 1 items, a capacity c ∈ N0 :=

{0, 1, 2, . . . }, and a digraph G = (A,E). Every item aj has a size sj ∈ N0,
sj ≤ c, and a profit pj ∈ N0.

Task: Find a subset A′ of A that maximizes p(A′) :=
∑

aj∈A′ pj subject to

s(A′) :=
∑

aj∈A′
sj ≤ c, (3)

and (1) (or (2), respectively).

The restriction of KPaN and KP1N to uniform sizes and profits (sj = pj = 1
for j = 1, . . . , n) is denoted by uniform KPaN and uniform KP1N, respectively.

Following [2], we consider the four problems {1-neighbor, all-neighbor} ×
{general,uniform}. For every instance of KPaN and KP1N, A′ = ∅ and, if
s(A) ≤ c, A′ = A are feasible solutions.

The class of directed co-graphs (di-co-graphs) is recursively defined as follows.

(i) Every digraph on a single vertex ({u}, ∅), is a di-co-graph.
(ii) If G1 = (V1, E1) and G2 = (V2, E2) are vertex-disjoint di-co-graphs, then

following graphs are also di-co-graphs:
(a) the disjoint union G1 ⊕G2, which is defined as the digraph with vertex

set V1 ∪ V2 and edge set E1 ∪ E2,
(b) the order composition G1  G2, defined by their disjoint union plus all

possible edges directed from V1 to V2, and
(c) the series composition G1 ⊗ G2 defined by their disjoint union plus all

possible edges between V1 and V2 in both directions.

Every expression X using these operations is called a di-co-expression and
digraph(X) is the defined digraph with |X| vertices. A tree structure for every
di-co-graph, denoted as di-co-tree, can be derived in linear time, see [4]. The
leaves of the di-co-tree represent the vertices of the digraph, and the inner nodes
of the di-co-tree correspond to the operations applied on the sub-expressions
defined by the subtrees.
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Table 1. Time complexity of knapsack problems with neighbor constraints on a digraph

All-neighbor constraint 1-neighbor constraint

Digraph Di-co-graph Digraph Di-co-graph

Uniform Strongly NP-hard, [2] O(n3) Strongly NP-hard, [2] O(n3)

General Strongly NP-hard, [2] O(n(P + 1) ·
max{n, P+1})

Strongly NP-hard, [2] O(nP 2 + n2)

Table 1 summarizes complexity results for unrestricted digraphs as well as for
di-co-graphs that are shown in subsequent sections. Some solutions are pseudo-
polynomial. Their running times depend on the profit sum P =

∑n
j=1 pj ≤

n · max1≤j≤n pj which is an upper bound for the profit of an optimal solution.
The runtime bounds O(n3) for uniform KPaN and KP1N on a di-co-graph follow
directly from the bounds of the general problems by setting pj = sj = 1 and
P = n.

2 General Problems on Directed Co-graphs

We consider an instance I of general KPaN on a di-co-graph G with n vertices
and m arcs. A binary di-co-expression X, that represents G, can be computed in
O(n+m) ⊆ O(n2) time, see [4]. For a subexpression X ′ of X let F (X ′, p) be the
minimum size of a feasible solution of KPaN on digraph(X ′) where we replace
c by ∞ in Eq. (3) while the profit is exactly p. We set F (X ′, p) to ∞, when-
ever there is no such feasible solution. Algorithm 1 shows how to use dynamic
programming to compute all values F (X ′, p′), p′ ∈ {0, . . . , P}, in O((P + 1)2n)
time when traversing the di-co-tree of X from the leaves to the root to find all
sub-expressions X ′ so that previously computed values of F can be used.

If one also considers the effort bounded by O(n2) for computing the di-co-tree
and O(n) to compute P , we find the optimum OPT(I) = max{p | F (X, p) ≤ c}
in O(n(P + 1)max{n, P + 1}) time.

A subset sum problem with digraph constraint (SSG) is defined in [6]. This
is a general KPaN problem on a digraph for which item sizes and profits are
equal. The bound for SSG on directed co-graphs given in [7] can be verified with
Algorithm 1. In fact, the dynamic program is structured similarly to the proof
techniques in [7].

A di-co-graph can possess cycles and does not necessarily contain sinks (ver-
tices without successors). Therefore, the induced digraph of a feasible, non-empty
KPaN or KP1N solution does not necessarily have sinks. Let L and R be di-co-
expressions. A feasible KP1N solution on digraph(L) without sinks of digraph(L)
is also a feasible solution with respect to digraph(LR) because every solution
vertex already has a successor in digraph(L) which belongs to the feasible solu-
tion. But this is not true for feasible KP1N solutions on digraph(L) that contain
at least one sink of digraph(L). To get useful information about the sinks within a
solution, we use an extended data structure. For some subexpression X ′ of X let
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Algorithm 1. General KPaN on di-co-graphs: Determine minimal solution size
F (X, p) for a given profit p from previously computed values for sub-expressions
of X.

F (X, p) := ∞, (V, E) := digraph(X)
if p = 0 then F (X, p) := 0
else if |X| = 1 then let ai ∈ V be the vertex of digraph(X).

if p = pi then F (X, p) := si

else if X = L ⊕ R then � no edges between vertices of digraph(L) and digraph(R)
for p′ := 0; p′ ≤ p; p′ := p′ + 1 do

S := F (L, p′) + F (R, p − p′)
if F (X, p) > S then F (X, p) := S

else
(VL, EL) := digraph(L), (VR, ER) := digraph(R)
PL :=

∑
ai∈VL

pi, PR :=
∑

ai∈VR
pi, SL :=

∑
ai∈VL

si, SR :=
∑

ai∈VR
si

if X = L � R then � all vertices in digraph(R) are successors of vertices in digraph(L)
if p ≤ PR then F (X, p) := F (R, p)
else F (X, p) := SR + F (L, p − PR)

if X = L ⊗ R then � no vertex or all vertices in a solution
if p = PL + PR then F (X, p) = SL + SR

if F (X, p) > c then F (X, p) := ∞

Algorithm 2 . This dynamic knapsack program computes the minimal size
F̂ (X, p) of a non-empty set of vertices (with sizes and profits) from the vertices
of digraph(X) such that their sum of profits equals p ∈ {0, . . . , P}.

if |X| = 1 then let ai ∈ V be the vertex of digraph(X).

if p = pi then F̂ (X, p) := si

else F̂ (X, p) := ∞
else � X = L ⊕ R or X = L � R or X = L ⊗ R

� we consider solutions that do not contain vertices of either digraph(L) or digraph(R):

F̂ (X, p) := min{F̂ (L, p), F̂ (R, p)}
� other solutions consist of vertices of digraph(L) and digraph(R):

for p′ = 1; p′ < p; p′ := p′ + 1 do
if F̂ (X, p) > F̂ (L, p′) + F̂ (R, p − p′) then F̂ (X, p) := F̂ (L, p′) + F̂ (R, p − p′)

F (X ′, p, k) be the minimum size of a feasible solution of KP1N on digraph(X ′)
where c is replaced by ∞ in Eq. (3) and the profit is exactly p. Additionally, the
feasible solution must contain at least one sink of digraph(X ′) if k = 1 and does
not include a sink of digraph(X ′) if k = 0. We set F (X ′, p, k) to ∞ whenever
there is no such feasible solution.

Profits (and sizes) of vertices ai are allowed to be zero. Thus, a zero profit can
be realized with either an empty solution or with non-empty solutions that only
contain vertices ai with zero profit pi = 0. In contrast to empty solutions, vertices
with zero profit can be used to fulfill neighbor constraints (see Algorithm 3, case
X = LR for p′′ = 0, and case X = L⊗R for p′ = 0 or p′ = p). To differentiate
between empty and non-empty zero profit solutions, we introduce function F̃
that is defined as F with the difference that now instead of feasible solutions
only non-empty feasible solutions are considered. If there are only empty feasible
solutions then F̃ (X ′, p, k) = ∞. Thus, we have

F (X, p, k) =
{
F̃ (X, p, k), if p > 0 ∨ k = 1,
0, else.
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Algorithm 3.General KP1N on di-co-graphs: Determine minimal size F̃ (X, p, k)
of a non-empty solution for a given profit p from previously computed values for
sub-expressions of X.

F̃ (X, p, k) := ∞
if |X| = 1 then let ai ∈ V be the only vertex.

if k = 1 ∧ p = pi then F̃ (X, p, k) := si

else if X = L ⊕ R then � no edges between vertices of digraph(L) and digraph(R)

F̃ (X, p, k) := F̃ (L, p, k) � solution restricted to vertices of digraph(R) has zero profit

if F̃ (X, p, k) > F̃ (R, p, k) then F̃ (X, p, k) := F̃ (R, p, k) � zero profit if restricted to L

for p′ = 1; p′ < p; p′ := p′ + 1 do � positive profit with respect to both L and R
if k = 0 then � there must be no sink

S := F̃ (L, p′, 0) + F̃ (R, p − p′, 0)
if F̃ (X, p, k) > S then F̃ (X, p, k) := S

else � there has to be at least one sink
S1 := F̃ (L, p′, 1) + F̃ (R, p − p′, 0), S2 := F̃ (L, p′, 0) + F̃ (R, p − p′, 1)
S3 := F̃ (L, p′, 1) + F̃ (R, p − p′, 1)
for i = 1; i ≤ 3; i := i + 1 do

if F̃ (X, p, k) > Si then F̃ (X, p, k) := Si

else if X = L � R then � all vertices in digraph(R) are successors of vertices in digraph(L)

if k = 0 then F̃ (X, p, k) := F̃ (L, p, k)

if F̃ (X, p, k) > F̃ (R, p, k) then F̃ (X, p, k) := F̃ (R, p, k)

for p′′ = 0; p′′ < p; p′′ := p′′ + 1 do
SR := F̃ (R, p′′, k)
if SR < ∞ then

SL := F̂ (L, p − p′′), see Algorithm 2

if F̃ (X, p, k) > SL + SR then F̃ (X, p, k) := SL + SR

else � X = L ⊗ R such that digraph(X) has no sinks
if k = 0 then

F̃ (X, p, k) := F̃ (L, p, 0), SR := F̃ (R, p, 0)

if SR < F̃ (X, p, k) then F̃ (X, p, k) := SR

� combine solutions with at least one vertex from both digraphs such
� that the neighbor constraint is fulfilled due to the series composition:

for p′ = 0; p′ ≤ p; p′ := p′ + 1 do
SL := F̂ (L, p′), see Algorithm 2

SR := F̂ (R, p − p′), see Algorithm 2

if SL + SR < F̃ (X, p, k) then F̃ (X, p, k) := SL + SR

While traversing vertices u of di-co-tree T with root r of di-co-graph G in a
bottom-up order, we compute F̃ (X(u), p, k) for expression X(u) representing a
subtree of T with root u and integers 0 ≤ p ≤ P , k ∈ {0, 1}, with Algorithm 3.
Within this algorithm, we solve a knapsack problem without graph restrictions.
This is done via Algorithm 2 which computes F̂ (X, p) as the smallest size of
a non-empty knapsack solution on vertices of digraph(X) without any graph
restrictions and without a capacity bound. This solution obtains exactly profit
p. We first compute all values of F̂ by also traversing di-co-tree T in bottom-up
order in O((P + 1)2n) time. Then, we apply Algorithm 3 in the same order to
also compute all values of F̃ (X, p, k) in O((P +1)2n) time. By considering O(n2)
time to get the di-co-tree and O(n) to compute P , the optimization problem

OPT(I) = max{p ∈ {0, . . . , P} | p = 0 ∨ ∃k∈{0,1}F̃ (X(r), p, k) ≤ c}

and thus, the general KP1N problem can be solved in O(P 2n + n2) time.
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3 Outlook

An extended version [5] of this paper, dealing also with other graph types, was
accepted during publishing time. Minimal series-parallel digraphs (msp-digraphs)
can be represented by a tree structure similar to di-co-graphs, and the tree
structure can be constructed in linear time, see [8]. This allows us to obtain the
same bounds as for di-co-graphs. The only difference is that we have to track
the existence of sources (vertices without predecessors) instead of dealing with
sinks.

A directed tree is a directed graph for which the underlying undirected graph
is a tree. In directed trees, we allow opposite edges. An out-rooted tree (in-
rooted tree) is an orientation of a tree with a distinguished root such that all
arcs are directed away from (to) the root. Whereas out- and in-rooted trees are
special cases of msp-digraphs, KPaN and KP1N problems on arbitrary directed
trees with n vertices can also be solved with dynamic programming to obtain
polynomial and pseudo-polynomial bounds, respectively. Uniform KPaN and
KP1N can be treated in O(n3) time, the same bound as for di-co-graphs and
msp-digraphs. The runtime of general KPaN on directed trees is bounded by
O(n(P + 1)(P + n)), and general KP1N can be solved in O(nP 2 + n) time.
These bounds are obtained by transforming the tree to a binary tree before
applying dynamic programming. Since directed trees, di-co-graphs and msp-
digraphs have bounded directed clique-width [3], it remains open whether the
results can be extended to constraints given by classes of digraphs of bounded
directed clique-width.
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Abstract. We study the oriented vertex and arc coloring problem on
edge series-parallel digraphs which are related to the well known series-
parallel graphs. The oriented class of edge series-parallel digraphs is recur-
sively defined from pairs of vertices connected by a single arc and applying
the parallel and series composition, which leads to specific orientations of
undirected series-parallel graphs. We re-prove the known bound of 7 for
the oriented chromatic number and the oriented chromatic index of series-
parallel digraphs and we show that these bounds are tight even for edge
series-parallel digraphs. Further, we give linear time solutions for comput-
ing the oriented chromatic number and the oriented chromatic index of
minimal series-parallel digraphs and edge series-parallel digraphs.

Keywords: Series-parallel digraphs · Oriented vertex-coloring ·
Oriented arc-coloring · Linear time solutions

1 Introduction and Preliminaries

In this paper we consider graph colorings for oriented graphs, i.e. digraphs with
no loops and no opposite arcs.

Courcelle introduced oriented vertex colorings [2], in particular an oriented r-
vertex-coloring of an oriented graph G = (V,E) is a mapping c : V → {1, . . . , r}
such that:

– c(u) �= c(v) for every (u, v) ∈ E,
– c(u) �= c(y) for every (u, v) ∈ E and (x, y) ∈ E with c(v) = c(x).

The oriented chromatic number of G, denoted by χo(G), is the smallest r such
that there exists an oriented r-vertex-coloring for G.

An oriented r-vertex-coloring of an oriented graph G corresponds to an ori-
ented graph H on r vertices, such that there exists a homomorphism from G to
H. We then call H the color graph of G.

In the oriented chromatic number problem (OCN) there is given an oriented
graph G and an integer r and one has to decide whether there is an oriented
r-vertex-coloring for G. If r is not part of the input, we call the related problem

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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the r-Oriented Chromatic Number (OCNr). If r ≤ 3, we can decide OCNr

in polynomial time, while OCN4 is still NP-complete [5]. Further, for every
transitive acyclic digraph and every minimal series-parallel digraph OCN can be
solved in linear time [3].

An oriented r-arc-coloring of an oriented graph G = (V,E) is a mapping
c : E → {1, . . . , r} such that:

– c((u, v)) �= c((v, w)) for every two arcs (u, v) ∈ E and (v, w) ∈ E
– c((u, v)) �= c((y, z)) for every four arcs (u, v) ∈ E, (v, w) ∈ E, (x, y) ∈ E, and

(y, z) ∈ E, with c((v, w)) = c((x, y)).

Moreover, the oriented chromatic index of G, denoted by χ′
o(G), is the smallest

r such that G has an oriented r-arc-coloring.
In the oriented chromatic index problem (OCI) we have an oriented graph G

and an integer r and we need to decide whether there is an oriented r-arc-coloring
for G. If r is not part of the input, we call the related problem the r-Oriented
Chromatic Index (OCIr). If r ≤ 3, then we can decide OCIr in polynomial time,
while OCI4 is NP-complete [6].

The line digraph LD(G) of digraph G has a vertex for every arc in G and an
arc from u to v if and only if u = (x, y) and v = (y, z) for vertices x, y, z from
G [4]. We call digraph G the root digraph of LD(G).

Observation 1 ([6]). Let G be an oriented graph. Then, it holds that

1. χ′
o(G) = χo(LD(G)) and

2. χ′
o(G) ≤ χo(G)

The definition of oriented vertex-coloring and oriented arc-coloring was often
used for undirected graphs, where the maximum value χo(G′) or χ′

o(G
′) of all

possible orientations G′ of a graph G is considered. In this sense it has been
shown in [8] that every series-parallel graph has oriented chromatic number at
most 7 and that this bound is tight. Further, due [7] every series-parallel graph
has oriented chromatic index at most 7, this bound is also tight. These results
lead to (not necessarily tight) upper bounds for the oriented chromatic number
and the oriented chromatic index of edge series-parallel digraphs.

In this paper we re-prove the bound of 7 for the oriented chromatic index
(Corollary 3) and the oriented chromatic number (Theorem 2) of edge series-
parallel digraphs and we show that these bounds are tight even for edge series-
parallel digraphs (Expressions X3 and X4). Furthermore, we give linear time
solutions for computing the oriented chromatic index (Theorem 1) and the ori-
ented chromatic number (Theorem 3) of edge series-parallel digraphs.

2 Minimal Vertex Series-Parallel Digraphs

We recall the definition of minimal vertex series-parallel digraphs.

Definition 1 (Minimal Vertex Series-Parallel Digraphs [9]). The class of
minimal vertex series-parallel digraphs, msp-digraphs for short, is recursively
defined as follows.
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(i) Every digraph on a single vertex ({v}, ∅), denoted by v, is a minimal vertex
series-parallel digraph.

(ii) If G1 = (V1, E1) and G2 = (V2, E2) are vertex-disjoint minimal vertex
series-parallel digraphs and O1 is the set of vertex of outdegree 0 (set of
sinks) in G1 and I2 is the set of vertices of indegree 0 (set of sources) in
G2, then
(a) the parallel composition G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2) is a minimal

vertex series-parallel digraph and
(b) the series composition G1 × G2 = (V1 ∪ V2, E1 ∪ E2 ∪ (O1 × I2)) is a

minimal vertex series-parallel digraph.

An expression X using the operations of Definition 1 is called an msp-
expression while digraph(X) is the digraph defined in X.

Using the recursive structure of msp-digraphs in [3] we show the following
bound.

Proposition 1 ([3]). Let G be an msp-digraph. Then, it holds that χo(G) ≤ 7.

We can also bound the oriented chromatic number of an msp-digraph G
using the corresponding root digraph G′ which is an esp-digraph (see Sect. 3).
By Lemma 1, Observation 1(1.), and Corollary 3 it holds that χo(G) =
χo(LD(G′)) = χ′

o(G
′) ≤ 7.

For the optimality of the shown bound, we recall from [3] the msp-expression

X1 = v1 × (v2 ∪ v3 × (v4 ∪ v5 × v6)) × (v7 ∪ (v8 ∪ v9 × v10)
×(v11 ∪ v12 × v13)) × (v14 ∪ (v15 ∪ (v16 ∪ v17 × v18)
×(v19 ∪ v20 × v21)) × (v22 ∪ (v23 ∪ v24 × v25) × v26)) × v27.

Since χo(digraph(X1)) = 7 the bound of Proposition 1 is best possible.

Proposition 2 ([3]). Let G be an msp-digraph. Then, the oriented chromatic
number of G can be computed in linear time.

By Proposition 1 and Observation 1(2.) we know the following bound.

Corollary 1. Let G be an msp-digraph. Then, it holds that χ′
o(G) ≤ 7.

For the optimality of the shown bound we recursively define msp-expressions
Yi. Y0 defines a single vertex graph and for i ≥ 1 we define Yi = (Y0∪Yi−1×Yi−1)
in order to define X2 = Y0×Y0×Y6×Y0×Y0. Since χ′

o(digraph(X2)) = 7, which
was computed by a computer program, we know that that the bound of Corollary
1 is best possible.

3 Edge Series-Parallel Digraphs

Undirected series-parallel graphs are graphs with two distinguished vertices
called terminals, formed recursively by parallel and series composition [1,
Section 11.2].
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Proposition 3 ([8]). Let G′ be an orientation of a series-parallel graph G.
Then, it holds that χo(G′) ≤ 7.

In [8] it was also shown that the bound is tight. For the chromatic index of
orientations of undirected series-parallel graphs Observation 1(2.) and Proposi-
tion 3 lead to the following bound.

Corollary 2. Let G′ be some orientation of a series-parallel graph G. Then, it
holds that χ′

o(G
′) ≤ 7.

In [7] it was shown that the bound is tight.
We recall the definition of edge series-parallel digraphs, originally defined as

edge series-parallel multidigraphs.

Definition 2 (Edge Series-Parallel Multidigraphs [9]). The class of edge
series-parallel multidigraphs, esp-digraphs for short, is recursively defined as
follows.

(i) Every digraph of two distinct vertices joined by a single arc ({u, v}, {(u, v)}),
denoted by (u, v), is an edge series-parallel multidigraph.

(ii) If G1 = (V1, A1) and G2 = (V2, A2) are vertex-disjoint minimal edge series-
parallel multidigraphs, then
(a) the parallel composition G1 ∪ G2, which identifies the source of G1 with

the source of G2 and the sink of G1 with the sink of G2, is an edge
series-parallel multidigraph and

(b) the series composition G1 × G2, which identifies the sink of G1 with the
source of G2, is an edge series-parallel multidigraph.

An expression X using the operations of Definition 2 is called an esp-
expression and digraph(X) the defined digraph.

Lemma 1 ([9]). An acyclic multidigraph G with a single source and a single
sink is an esp-digraph if and only if LD(G) is an msp-digraph.

Oriented Arc-Colorings. Since every esp-digraph is an orientation of a series-
parallel graph by Corollary 2 we get the following bound.

Corollary 3. Let G be an esp-digraph. Then, it holds that χ′
o(G) ≤ 7.

We can also bound the oriented chromatic index of an esp-digraph G using
the corresponding line digraph LD(G) which is an msp-digraph. Then, by Obser-
vation 1(1.), Lemma 1 and Proposition 1 it holds that χ′

o(G) = χo(LD(G)) ≤ 7.
The results of [7] even show that 7 is a tight upper bound for the ori-

ented chromatic index of every orientation of series-parallel graphs. In order
to show that this bound is also tight for the subclass of esp-digraphs, we use the
esp-expression

X3 = (v1, v2) × ((v2, v5) ∪ (v2, v3) × ((v3, v5) ∪ (v3, v4) × (v4, v5)))
× ((v5, v9) ∪ ((v5, v7) ∪ (v5, v6) × (v6, v7)) × ((v7, v9) ∪ (v7, v8)
× (v8, v9))) × ((v9, v16) ∪ ((v9, v13) ∪ ((v9, v11) ∪ (v9, v10)
× (v10, v11)) × ((v11, v13) ∪ (v11, v12) × (v12, v13))) × ((v13, v16)
∪ ((v13, v15) ∪ (v13, v14) × (v14, v15)) × (v15, v16))) × (v16, v17).
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Since χ′
o(digraph(X3)) = χo(LD(digraph(X3))) = χo(digraph(X1)) = 7, where

X1 is defined in Sect. 2, it holds that the bound of Corollary 3 is best possible.
By Proposition 2 and Observation 1(1.) we obtain the following result.

Theorem 1. Let G be an esp-digraph. Then, the oriented chromatic index of G
can be computed in linear time.

Oriented Vertex Colorings. Since every esp-digraph is an orientation of a
series-parallel graph by Proposition 3 we have the following bound.

Corollary 4. Let G be an esp-digraph. Then, it holds that χo(G) ≤ 7.

The proof of Proposition 3 given in [8] uses the color graph H = (VH , EH)
where VH = {1, 2, 3, 4, 5, 6, 7} and EH = {(i, j) | j − i ≡ 1, 2, or 4 (mod 7)}
which is built from the non-zero quadratic residues of 7. Next, we give an alter-
native proof of Corollary 4 using the recursive structure of esp-digraphs.

Theorem 2. Let G be some esp-digraph. Then, it holds that χo(G) ≤ 7.

Proof. Let G = (VG, EG) be some esp-digraph. We use the color graph H built
from the non-zero quadratic residues of 7 defined above to define an oriented
7-vertex-coloring c : VG → {1, . . . , 7} for G.

First, we color the source of G by 1 and the sink of G by 2. Next, we recur-
sively decompose G in order to color all vertices of G. In any step we keep the
invariant that (c(q), c(s)) ∈ EH , if q is the source of G and s is the sink of G.

– If G emerges from parallel composition G1 ∪G2, we proceed with coloring G1

and G2 on its own. Doing so, the color of the source and sink in G1 and G2

do not change.
– If G emerges from series composition G1 ×G2, let a be the color of the source

and c be the color of the sink in G. For the sink of G1 and the source of G2

we choose color b, such that the arcs (a, b) and (b, c) are in color graph H.
– If G consists of a pair of vertices connected by a single arc, the coloring is

given by our invariant. 
�
In order to verify the optimality of the shown bound, we consider the esp-

expression

X4 = ((v1, v4) ∪ ((v1, v2) × ((v2, v4) ∪ ((v2, v3) × (v3, v4)))))
× ((((v4, v6) ∪ ((v4, v5) × (v5, v6))) × (v6, v7)) ∪ (v4, v7)).

Since χo(digraph(X4)) = 7 the bound of Theorem 2 is best possible.
In order to compute the oriented chromatic number of an esp-digraph G =

(V,E) defined by an esp-expression X, we recursively compute the set F (X)
of all triples (H, �, r) such that H is a color graph for G, where � and r are
the colors of the source and sink, respectively, in G with respect to the coloring
by H. By Theorem 2 and also by Corollary 4 we can conclude that |F (X)| ≤
37(7−1)/2 · 7 · 7 ∈ O(1).

For two color graphs H1 = (V1, E1) and H2 = (V2, E2) we define H1 + H2 =
(V1 ∪ V2, E1 ∪ E2).
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Lemma 2. 1. For every (u, v) ∈ E it holds that F ((u, v)) = {(({i, j},
{(i, j)}), i, j) | 1 ≤ i, j ≤ 7, i �= j}.

2. For every two esp-expressions X1 and X2 we obtain F (X1 ∪X2) from F (X1)
and F (X2) as follows. For every (H1, �1, r1) ∈ F (X1) and every (H2, �2, r2) ∈
F (X2) such that graph H1 + H2 is oriented, �1 = �2, and r1 = r2, we put
(H1 + H2, �1, r1) into F (X1 ∪ X2).

3. For every two esp-expressions X1 and X2 we obtain F (X1 ×X2) from F (X1)
and F (X2) as follows. For every (H1, �1, r1) ∈ F (X1) and every (H2, �2, r2) ∈
F (X2) such that graph H1+H2 is oriented, and r1 = �2, we put ((V1∪V2, E1∪
E2), �1, r2) into F (X1 × X2).

After performing the rules given in Lemma 2 on every sub-expression of X,
we can solve our problem by χo(G) = min{|V | | ((V,E), �, r) ∈ F (X)}, which
leads to the following result.

Theorem 3. Let G be an esp-digraph. Then, the oriented chromatic number of
G can be computed in linear time.

4 Outlook

In our future work we want to analyze whether it is possible to compute oriented
chromatic index and oriented chromatic number of orientations of series-parallel
graphs efficiently in order to generalize Theorem 1 and Theorem 3.
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Abstract. This paper focusses on the student-project allocation prob-
lem (SPA) as part of the timetabling process for project-oriented schools.
The goal is to find an optimal allocation of students to project groups
in this specific learning environment. A multi-period integer linear pro-
gramming (ILP) model based on students preferences is formulated. We
compare the model with a decomposed formulation and examine the
impact on computation time and solution quality. Two different objec-
tive functions and five different problem sizes are tested. We show that
there is an incentive to use the decomposed version due to the signifi-
cantly lower computing time especially for large-sized problem instances
while maintaining acceptable solution quality.

Keywords: Integer linear programming · Student-project allocation

1 Introduction and Related Work

Timetabling in an educational context is a complex planning task and a well
studied field of research. Regarding the university course timetabling a distinc-
tion is mainly made between curriculum-based course timetabling (CB-CTT) [4]
and post-enrollment course timetabling (PE-CTT) [8]. The CB-CTT formula-
tion takes into account a curriculum that reflects the courses to be fulfilled by
the students and to which the constraints are oriented. In contrast, the PE-CTT
formulation requires students to enroll in courses before the actual timetabling
is done. In our case the decision which student participates in which project
is not predetermined but the result of the solution process. That is because in
this paper we focus especially on the isolated problem of allocating students to
projects based on their preferences, the so-called student-project allocation prob-
lem (SPA). Very few contributions from the literature have considered student
preferences in the context of timetabling at all (e.g. [6,10]). The SPA itself is
usually relevant at universities, but because of the similarities we can transfer it
to our case of project-oriented schools. In these schools there are no traditional
classes like in regular schools but the students learn in small project groups that
work together for several weeks. Two main variants of the SPA can be found
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in the literature: In the first variant, only preferences of students over projects
or courses are considered [2]. The other case involves also lecturer preferences
over students [1], projects [9], or both [5]. The SPA for our case can be stated as
a two-sided matching problem with only one-sided preferences because we only
consider student preferences [7]. It is based on the real-life application case of the
Universitätsschule Dresden, where such a concept of a project-oriented learning
environment is being tested and evaluated.

2 Problem Formulation

In our case students need to be allocated to projects and work for several weeks
in this constellation on their projects. This corresponds to one period in our
upcoming planning approach. After that, a new allocation has to be found for
the next period. The projects offered are divided into several categories in order
to simplify the room planning that takes place in a succeeding planning step. At
the beginning, each student expresses preferences for the projects offered. Since
we define a maximization problem, higher preference values are associated with

Table 1. Notation

Sets

C Set of all categories of projects J
fix
i Set of projects already allocated to student

i in previous iterations

I Set of all students Js Set of all projects of subject s

IF
i Set of all friends of student i S Set of all subjects

J Set of all projects T Set of all periods

J0
i Set of projects for which the demand for

the underlying subjects is met for student

i

Parameters

λF Friendship cost parameter Nproj Number of projects each student must

attend in a period

λP Preference cost parameter Nproj,max Maximum number of students allowed in a

project

λS Penalty cost parameter Nproj,min Minimum number of students required in a

project

a
fix
i Score of student i from previous iterations Nslot Number of remaining project allocation

slots for each student

ND
s Demand for projects from subject s for

each student

M
pref
ij Matrix with preferences of student i over

project j

N
fix
is Number of allocated projects to student i

of subject s in previous iterations

M
proj,ctg
jc Matrix with allocation of project j to

project category c

Nneed
is Number of projects of subject s that needs

to be allocated to student i to fulfill

demand

Variables

ai Score of student i calculated from

preference and friendship value

yjt 1, if project j is offered in period t, 0

otherwise

bis Penalty score of student i regarding

subject s

zifjt 1, if student i is allocated with friend f to

project j in period t, 0 otherwise

xijt 1, if student i is allocated to project j in

period t, 0 otherwise
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higher satisfaction. In addition, a certain number of friends can be specified by
the students, with whom they would like to be allocated to projects together.
A minimum and maximum number of students per project is relevant for the
allocation process. Each project has an underlying subject and over the entire
planning period and a certain demand related to these subjects must be met for
each student. This results in the special need for a multi-period approach which
is new in the context of SPA. Table 1 presents the used notation, followed by the
mathematical formulation of the optimization model.

Obj 1:
∑

i∈I

ai − λS ·
∑

i∈I

∑

s∈S

bis → max (1)

Obj 2: min
i∈I

(ai) − λS ·
∑

i∈I

∑

s∈S

bis → max (2)

subject to:

ai = a
fix
i + λP ·

∑

j∈J

∑

t∈T

M
pref
ij · xijt + λF ·

∑

f∈IF
i

∑

j∈J

∑

t∈T

zifjt ∀i ∈ I (3)

bis ≥ N
D
s − N

fix
is −

∑

j∈Js

∑

t∈T

xijt ∀i ∈ I, s ∈ S (4)

∑

j∈J0
i

xijt ≤ N
slot −

∑

s∈S

N
need
is ∀i ∈ I, t ∈ T (5)

∑

j∈Js

xijt ≤ N
slot −

∑

s∗∈S
s∗�=s

N
need
is∗ ∀i ∈ I, s ∈ S, t ∈ T (6)

∑

i∈I

xijt ≤ yjt · N
proj,max ∀j ∈ J, t ∈ T (7)

∑

i∈I

xijt ≥ yjt · N
proj,min ∀j ∈ J, t ∈ T (8)

∑

j∈J

xijt = N
proj ∀i ∈ I, t ∈ T (9)

∑

j∈J

xijt · M
proj,ctg
jc ≥ 1 ∀c ∈ C, i ∈ I, t ∈ T (10)

∑

t∈T

xijt ≤ 1 ∀i ∈ I, j ∈ J (11)

xijt = 0 ∀i ∈ I, j ∈ J
fix
i , t ∈ T (12)

zifjt ≤ xijt ∀i ∈ I, f ∈ I
F
i , j ∈ J, t ∈ T (13)

zifjt ≤ xfjt ∀i ∈ I, f ∈ I
F
i , j ∈ J, t ∈ T (14)

zifjt ≥ xijt + xfjt − 1 ∀i ∈ I, f ∈ I
F
i , j ∈ J, t ∈ T (15)

ai, bis ∈ N0 ∀i ∈ I, s ∈ S (16)
xijt, yjt, zifjt ∈ {0, 1} ∀i ∈ I, f ∈ I

F
i , j ∈ J, t ∈ T (17)

This ILP model can be used to solve the problem considering all periods of
the planning horizon at once (multi-period) or it can be solved iteratively to rep-
resent the decomposed version of connected single-periods (with each T = {1}).
Three different cases are tested, in reference to [3]: First, the overall satisfaction
(collective welfare) is tried to be maximized with objective (1). In the second case
we work with a maximin criterion to find an allocation where the worst score that
a student receives is as high as possible (individual welfare) to increase fairness.
Third, a lexicographic method is tested where the two criteria are combined in a
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multi-objective optimization. The model is solved with respect to the maximin cri-
terion and afterwards we try to maximize the overall satisfaction without decreas-
ing the objective value found in the first step. With constraints (3) the score for
each student is calculated. It consists of a term for the preference values of the
students over the projects and a term that reflects how often a student was allo-
cated to projects together with his or her indicated friends. These two compo-
nents are weighted by the integer factors λP (weight of student preferences) and
λF (weight of friendship). For the decomposed version, the determined score afix

i

is passed from one iteration to the next and thus accumulated. For the solution
of the multi-period version this parameter is set to zero. Constraints (4) calculate
how often the required demand for the subjects underlying the projects (ND

s ) is
violated. Again for each student the number of already allocated projects belong-
ing to subject s from previous iterations is stored in parameter Nfix

is while it is
set to zero for the multi-period perspective. The issue of fulfilling the demand for
underlying subjects is modeled as a soft constraint so the violation incurs a penalty
in the objective functions by using the calculated bis and an integer penalty cost
factor λS . This factor only has a positive value in the multi-period version or in
the last iteration of the decomposed version, otherwise it is zero. That is because
the demand for the underlying subjects covers the complete planning horizon so
for the decomposed version the calculation is only reasonable in the optimization
of the last period. To avoid excessive violation of this soft constraint in the decom-
posed version the complementary constraints (5) and (6) are added to the model.
Before each iteration the parameter Nneed

is is calculated for each individual stu-
dent, which results from the difference between the demand and already assigned
projects of the corresponding subject. This parameter limits in combination with
the remaining allocation slots the potential projects of the respective subjects allo-
cated to each student. So for constraints (5) a subset J0

i is used that contains all
the projects for which the demand for the respective underlying subject is already
met for student i by assignments in previous iterations. The constraints ensure
that any existing demands for all the other projects are taken into account and
that not too many slots are filled with projects for which the need is already met
anyway. Otherwise, the demands cannot be met over the entire planning period
for certain subjects. Additionally we formulate constraints (6) from a subject per-
spective. When assigning projects within an iteration, sometimes projects from a
particular subject must not be scheduled too often in that iteration because then
again the fulfillment of demands from projects with other underlying subjects
may be blocked. So the total demand for subjects to be completed and already
made allocations are taken into account during every iteration. In addition, there
are constraints (7) and (8) regarding the capacity of the projects. The projects
are only offered for an attendance between Nproj,min and Nproj,max students. In
each period, students should be allocated to a certain number of projects, which is
determined through constraints (9). The projects are also divided into categories
to simplify the subsequent room planning. Students should complete at least one
project from each category per planning period as stated in constraints (10).
Constraints (11) and (12) ensure that in both versions each project can only be
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allocated once to each student in the planning period. We need the constraints
(13)–(15) to linearize the product of the two decision variables xijt and xfjt to be
able to reflect the friendship relationships. Therefore we use a standard lineariza-
tion technique with which the product of two binary decision variables is replaced
by an auxiliary variable and the usage of constraints (13)–(15). The domains of
the decision variables are stated in constraints (16) and (17).

3 Computational Study

The presented solution approach is implemented in Python and all computa-
tional tests are carried out on an Intel(R) Xeon(R) Gold 6136 with 3.0 GHz
clock speed and 16 GB RAM. We use Gurobi 9.1.1 to solve the ILP-model.
We created five instance classes, each with five randomly generated instances,
to examine the effects of increasing problem size. The details about the different
used parameters for the five configurations and the respective computation time
limits are listed in Table 2. Apart from that, two parallel projects per student
and period from two available project categories, a group size between four and
six students, the possibility to specify one friend and three underlying subjects
were planned for all instances. For the cost parameters in the objective functions
we have chosen the weights λP = 1, λF = 1 and λS = 50.

Table 2. Design of problem instances

config1 config2 config3 config4 config5

Number students |I| 15 30 45 60 75

Number projects |J| 12 18 24 30 36

Number periods |T | 2 3 4 5 6

Demand ND
s {1, 1, 1} {2, 2, 2} {2, 2, 2} {3, 3, 3} {4, 4, 4}

Time limit [s] – 900 1800 2700 3600

Table 3 shows the results of the computational study. The figures given are
in each case the average of the five instances per configuration. For a better
comparison, the summed score over all periods and students as well as the lowest
individual score are shown. “MP” stands for multi-period, “cSP” for connected
single-periods (decomposed version).
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Table 3. Results

config1 config2 config3 config4 config5

MP cSP MP cSP MP cSP MP cSP MP cSP

Obj. 1
∑

i∈I ai 313 307 867 828 1693 1635 2657 2583 – 3741

mini∈I(ai) 17.2 16 21 21 28.4 28.2 32.2 33.8 – 39

Comp. time [s] 2.35 0.17 900 1.38 1800 6.11 2700 101.67 3600 332.40

Opt.-Gap [%] 0 0 2.15 0 3.10 0 5.47 0 – 0

Obj. 2
∑

i∈I ai 301 276 814 729 1575 1431 2450 2191 3315 3173

mini∈I(ai) 19 16.2 26.2 22.8 34.4 31.2 40 35.4 41.6 41.6

Comp. time [s] 11.52 0.45 900 3.01 1800 7.10 2700 15.32 3600 56.57

Opt.-Gap [%] 0 0 6.12 0 8.17 0 12.53 0 28.01 0

Obj. 3.1/3.2
∑

i∈I ai 308 297 857 819 1660 1622 2603 2528 3577 3691

mini∈I(ai) 19 17.8 25.4 23.2 34 32 35 37.6 36 42.2

Comp. time [s] 27.28 0.70 900 5.83 1800 16.93 2700 61.25 3600 442.17

Opt.-Gap [%] 0 0 6.90 0 7.33 0 21.91 0 46.50 0

For each instance, the required demand for the underlying subjects could be
met by means of the presented modeling, and therefore the term bis is not taken
into account in the results. We observe that the used computation time for the
multi-period approach is on average more than 100 times higher than for the
decomposed version. Nevertheless, it was not possible to solve the multi-period
instances optimally for config2 to config5 within the respective time limit. The
solution quality for the decomposed instances is on average 5% worse compared
to the multi-period approach, but for the largest generated instances even better
solutions are frequently found. The lexicographic optimization approach offers a
good compromise between collective and individual welfare across both modeling
variants and all problem classes. Within the periods of an instance, the score is
more evenly distributed in the multi-periodic view, as expected. In the decom-
posed version, it decreases from period to period. That’s because the periods are
optimized sequentially one after the other and the solver tries to allocate projects
with the highest preference values at the beginning of the planning horizon.

4 Conclusion

In this paper, a new model formulation for the SPA at project-oriented schools
is presented. It enables us to solve multi-period variants of this problem and
consider the fairness aspect and the present requirements over multiple allocation
processes. For a flexible use and to obtain a solution within acceptable time, the
decomposed version of the model is preferable. The next planning step would
be to integrate the student-project allocations into the timetabling process and
link them to the subsequent planning steps for space and personnel planning at
the project-oriented school.
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Abstract. In this paper a class of optimization problems with uncer-
tain objective function coefficients is considered. The uncertainty is spec-
ified by providing a scenario set containing a finite number of parameter
realizations, called scenarios. Additional knowledge about scenarios is
modeled by specifying a mass function, which defines a belief function in
scenario set. The generalized Hurwicz criterion is then used to compute a
solution. Various computational properties of the resulting optimization
problem are presented.

Keywords: Robust optimization · Belief function · Hurwicz criterion

1 Traditional Robust Problems with Scenarios

Consider the following deterministic optimization problem min{cccTxxx : xxx ∈ X},
where ccc ∈ R

n is a vector of objective function coefficients and X is a set of
feasible solutions. For example, X can be a polyhedron in R

n which leads to
the class of linear programming problems, or X ⊆ {0, 1}n, which results in the
class of combinatorial problems. In many applications the true realization of ccc
is unknown before a solution must be determined. Assume that ccc is only known
to belong to a given uncertainty (scenario) set U = {ccc1, . . . , cccK} ⊆ R

n. Each
vector ccci, i ∈ [K] = {1, . . . , K}, is called a scenario and represents a possible
realization of the objective function coefficients. This model of uncertainty is
called a discrete uncertainty representation [9]. One common method of solving
the problem with U is to apply the robust min-max criterion, which yields the
following min-max problem:

min max
k∈[K]

cccT
k xxx

xxx ∈ X.
(1)

A comprehensive description of computational properties of (1) for various
classes of problems can be found in [1,8,9]. The solutions to (1) are known
to be very conservative. Using the min-max criterion we assume an extreme
risk aversion of decision maker. In order to soften (1) one can use the Ordered
Weighted Averaging Aggregation (OWA) criterion, proposed in [14]. Let www be a
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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vector of nonnegative weights which sum up to 1. Given a solution xxx ∈ X, let σ
be a permutation of [K] such that cccT

σ(1)xxx ≥ cccT
σ(2)xxx ≥ · · · ≥ cccT

σ(K)xxx. Then

OWAwww(xxx) =
∑

k∈[K]

wkccc
T
σ(k)xxx.

It is easy to verify that choosing www = (1, 0, . . . , 0) we get the maximum crite-
rion. Hence, minimizing OWA generalizes the min-max problem (1). Choos-
ing www = (α, 0, . . . , 0, 1 − α) for some α ∈ [0, 1], leads to the Hurwicz pes-
simism/optimism criterion. In general, the weight vector www can be used to model
decision maker risk aversion. For a description of applications of OWA criterion
to various optimization problems we refer the reader to [2,7,11,15].

2 Robust Problem with Belief Functions

In the traditional discrete uncertainty representation no additional knowledge
in scenario set U is specified. This is equivalent to say that there is complete
uncertainty in U and no evidence supports the claim that any subset of scenarios
is more probable than other. In this section we propose a model of uncertainty
which allows us to take such an additional knowledge in U into account. We
will use some ideas from the Dempster and Shafer theory of evidence [4,12] and
distributionally robust approach (see, e.g. [3]). In order to simplify the notations,
we will identify each scenario ccck with its index k ∈ [K]

Let m : 2[K] → [0, 1] be a mapping, called a mass function, such that m(∅) =
0 and

∑
A⊆[K] m(A) = 1. The value of m(A) supports the claim that the true

scenario will belong to A. Set F ⊆ [K] such that m(F ) > 0 is called a focal set.
We will use F = {F1, . . . , F�} to denote the family of all focal sets in [K]. The
mass function m induces a belief function in 2[K] defined as follows:

B(A) =
∑

B⊆A

m(B), A ⊆ [K].

A probability distribution P in [K] is said to be compatible with m (see, e.g., [5])
if P(A) ≥ B(A) for each event A ⊆ [K]. We will denote by P(m) the set of all
probability distributions compatible with m. The set P(m) can be described by
the following system of linear constraints:

∑
k∈A pk ≥ B(A) A ⊆ [K]

p1 + · · · + pK = 1
pk ≥ 0 k ∈ [K],

(2)

where pk is a probability that scenario k ∈ [K] will occur. It is well known
that belief function B is supermodular (see, e.g., [10]). In this case, system (2)
describes the core of a convex cooperative game. Because the cores of such
games are nonempty [13], there is at least one probability distribution com-
patible with m, for any mass function m. Thus P(m) �= ∅.
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Let c̃cc be a random vector with support U and a probability distribution
P ∈ P(m). In this paper, we study the following problem:

min αEm[c̃ccTxxx] + (1 − α)Em[c̃ccTxxx],
xxx ∈ X

(3)

where
Em[c̃ccTxxx] = max

P∈P(m)
EP[c̃ccTxxx] =

∑

F∈F
m(F )max

k∈F
cccT

k xxx, (4)

Em[c̃ccTxxx] = min
P∈P(m)

EP[c̃ccTxxx] =
∑

F∈F
m(F )min

k∈F
cccT

k xxx (5)

are upper and lower expectations with respect to the mass function m (see,
e.g., [4,5]). The objective function of (3) is a generalized Hurwicz criterion and
the parameter α ∈ [0, 1] is the optimism/pessimism degree. In the following we
will use Hα(xxx) to denote the objective function of (3). In general, defining a
mass function requires providing up to 2K numbers. We will assume that the
size of (3) is polynomial in K. This assumption is satisfied, for example, when
|F| is bounded by a polynomial in K.

Let us now briefly describe some special cases of (3) which are well known
in literature. If m([K]) = 1, then (3) reduces to minimizing the traditional
Hurwicz criterion. In this case the mass equal to 1 is assigned to the whole
scenario set U , which can be interpreted as a complete uncertainty in U . If
additionally α = 1, then (3) becomes the robust minmax problem (1). If all
the focal sets are singletons, i.e. |Fi| = 1 for each Fi ∈ F , then (3) reduces
to minimizing the expected solution cost. Indeed, in this case P(m) contains
exactly one probability distribution such that pk = m({k}), k ∈ [K]. Let us
provide yet another interesting interpretation of (3). Suppose m(A) = 1/

(
K
l

)

for each A ⊆ [K] such that |A| = l ≤ K and m(A) = 0 otherwise. Then (4)
becomes the OWA criterion with nonincreasing weights wi =

(
K−i
l−1

)
/
(
K
l

)
for

i ≤ K − l + 1 and wi = 0 otherwise. Similarly, (5) is then the OWA criterion
with nondecreasing weights w′

i = wK−i+1, i ∈ [K]. So, this particular structure
of the mass function leads to OWA minimization.

Let us introduce binary variable δk(F ) for each focal set F ∈ F and k ∈ F .
Then (3) can be solved by using the following mixed integer program:

min
∑

F∈F
m(F )y(F )

y(F ) ≥ αcccT
k xxx + (1 − α)u(F ) F ∈ F , k ∈ F

u(F ) ≥ cccT
k xxx − M(1 − δk(F )) F ∈ F , k ∈ F∑

k∈F

δk(F ) = 1 F ∈ F

xxx ∈ X

δk(F ) ∈ {0, 1} F ∈ F , k ∈ F,

(6)

where M is a large constant. The problem can be easier to solve if α = 1.
Using (4) we can then represent (3) as the following program:
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min
∑

F∈F
m(F )y(F )

y(F ) ≥ cccT
k xxx k ∈ F

xxx ∈ X

(7)

Notice that (7) is linear programming problem if X is a polyhedron in R
n

described by a system of linear constraints. The next result demonstrates that
the case α = 0 can be much harder to solve.

Theorem 1 ([6]). Problem (3) is NP-hard and not approximable if α = 0 and
X is a polyhedron in [0, 1]n.

3 Application to Combinatorial Problems

In this section we will show some results for (3) if X ⊆ {0, 1}n, i.e. for the class
of combinatorial problems. We will assume that ccck ∈ R

n
+ for each k ∈ [K], so

the costs under all scenarios are nonnegative. Let us recall that (3) can be then
NP-hard even if m([K]) = 1 and α = 1, i.e. when (3) is the robust minmax
problem (1) (see, e.g., [8,9]). This is contrary to the class of linear programming
problems which can be solved by linear programming formulation (7). In the
following we will propose a general approximation algorithm for (3).

Fix r(F) = maxF∈F |F | and vk =
∑

F∈F :k∈F m(F ), k ∈ [K]. If {F ∈ F : k ∈
F} = ∅, then vk = 0. Define also ĉcc =

∑
k∈[K] vkccck ∈ R

n
+. We can assume that

r(F) ≥ 2. Indeed, the case r(F) = 1 is equivalent to solving the deterministic
problem with the cost vector ĉcc. We can also assume that |F | ≥ 2 for each focal set
F ∈ F . Indeed, if a positive mass is assigned to a single scenario ccck, then we add
a copy ccc′

k of this scenario to U and fix m({k, k′}) := m({k}) and m({k}) := 0.
This transformation does not change the values of Em[c̃ccTxxx] ad Em[c̃ccTxxx] (see
Eqs. (4) and (5)) and does not increase r(F).

Theorem 2. Assume that the deterministic problem min{ĉccTxxx : xxx ∈ X} is poly-
nomially solvable. Then problem (3) is approximable within r(F) for α ∈ [0.5, 1]
and within 1−α

α r(F) for α ∈ (0, 0.5].

Proof. Let xxx∗ be an optimal solution to (3) and x̂xx be an optimal solution to
the deterministic problem for the cost vector ĉcc. We will show first that for each
α ∈ [0, 1] the following inequality holds:

Hα(xxx∗) ≥ α

r(F)

∑

F∈F
m(F )

∑

k∈F

cccT
k x̂xx. (8)

Using Eqs. (4) and (5) we get

Hα(xxx∗) ≥ α
∑

F∈F
m(F )max

k∈F
cccT

k xxx∗ ≥ α
∑

F∈F
m(F )

1
|F |

∑

k∈F

cccT
k xxx∗

(a)

≥ α
∑

F∈F
m(F )

1
r(F)

∑

k∈F

cccT
k xxx∗ =

α

r(F)

∑

k∈[K]

∑

{F∈F :k∈F}
m(F )cccT

k xxx∗

=
α

r(F)

∑

k∈[K]

vkccc
T
k xxx∗ (b)

≥ α

r(F)

∑

k∈[K]

vkccc
T
k x̂xx =

α

r(F)

∑

F∈F
m(F )

∑

k∈F

cccT
k x̂xx.
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Inequality (a) follows from the fact that r(F) ≥ |F | for each F ∈ F . In the
inequality (b) we use the optimality of x̂xx under ĉcc =

∑
k∈[K] vkccck.

If α ∈ [0.5, 1] and |F | ≥ 2, then α
∑

k∈F cccT
k x̂xx ≥ α maxk∈F cccT

k x̂xx + (1 −
α)mink∈F cccT

k x̂xx and (8) implies Hα(xxx∗) ≥ 1
r(F)Hα(x̂xx). On the other hand, if α ∈

(0, 0.5] and |F | ≥ 2, then (1−α)
∑

k∈F cccT
k x̂xx ≥ α maxk∈F cccT

k x̂xx+(1−α)mink∈F cccT
k x̂xx

and (8) implies Hα(xxx∗) ≥ α
(1−α)r(F)Hα(x̂xx). 	


Observe that r(F) ≤ K for α = 1. Hence the approximation algorithm
generalizes the known approximation result for the robust minmax problem (see,
e.g., [1]). The result from Theorem 2 can also be applied when the deterministic
problem is NP-hard, but admits a ρ-approximation algorithm for some ρ ≥ 1. An
easy modification of the proof yields then ρr(F) and ρ 1−α

α r(F)-approximation
algorithms for the cases α ∈ [0.5, 1] and (0, 0.5], respectively. Observe that the
approximation ratio tends to infinity as α → 0. The next result shows that the
boundary case α = 0 is not at all approximable.

Theorem 3. If α = 0, then the problem is not at all approximable when X
′ =

{(xxx,xxx) ∈ {0, 1}2n : xi + xi = 1, i ∈ [n]}.
Proof. The proof is the same as the proof of [6, Theorem 1]). It is enough to
replace the polyhedron X in the proof of [6, Theorem 1]) with the set X

′.

The deterministic min{cccTxxx : xxx ∈ X
′} is a very simple selection problem,

which has a trivial O(n)-time algorithm. It is not difficult to show that it is
a special case of basic network problems such as the shortest path and the
minimum spanning tree. Let G = (V,A) be a chain composed of |V | = n nodes
and 2n arcs of the form ai = (i, i + 1) and ai = (i, i + 1) for i = 1, . . . , n − 1.
Then X

′ is the set of characteristic vectors of the simple paths from 1 to n and
the spanning trees in G. So, the negative result from Theorem 3 remains true
for many basic combinatorial problems.

4 Conclusions

The introduction of a mass function in scenario set U allows us to refine the
model of uncertainty. In many practical situations, we are able to identify subsets
of scenarios which are more probable to occur than others, even if the true
probability distribution in U is unknown. However, this additional information
restricts the set of possible probability distributions. We can then compute a
solution minimizing the total expected cost under a combination of the worst and
the best probability distribution which can occur. The general problem can be
hard to solve and also hard to approximate. In this paper we have described some
special cases which can be solved efficiently or for which efficient approximation
algorithms exists. Our results are general, so better algorithms can exist for
particular problems.
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Abstract. Choosing the right number, configurations, and locations of
tower cranes can significantly impact building schedules and reduce con-
struction cost. These decisions also depend on the choice of material
supply points where the material is stored before being lifted to the
given demand points. To ensure that the capacity of the cranes is not
exceeded, load charts that specify the maximum weight that can be lifted
at a certain boom radius need to be considered. We present a MILP
model implemented in GAMS that solves this decision problem minimiz-
ing the crane operating, installation and rental costs. In addition to the
optimization model, a heuristic in closed form is presented. For a realis-
tic case of a construction site of mid-rise buildings, we compare solution
quality, performance, and scalability of both approaches.

Keywords: Tower crane · Construction sites · Software · MILP

1 Introduction and Positioning in Related Literature

Tower cranes are widely used on construction sites to lift material from supply
to demand points. In this context, decisions on crane selection, crane location,
and lift planning have to be made [1].

Typically, a variety of cranes in different configurations is available to the
decision maker [10]. They differ for example in their mast/hook heights, jib
lengths, and hook speeds. The capacity of a tower crane needs to be considered
during its operation. In practice, it is given by load charts that specify the
maximum weight that can be lifted at a certain boom radius [11]. Different crane
configurations lead to significant differences in rental and operating costs [11].

For placing a tower crane, several factors need to be considered including the
geometric layout of the construction site, ground conditions, and existing site
obstacles [5,7]. Selecting the right supply areas to store material before lifting it
to the demand points is closely integrated with choosing crane locations [5,14].
The integrated planning of the crane configuration and locations as well as the
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locations of supply points may lead to significant savings in crane rental and
operating costs [3].

Publications relevant to this manuscript are presented in the following. Sev-
eral existing studies determine the location of a single tower crane and supply
locations [5,13,14]. [18] consider multiple tower cranes by determining disjunct
groups of tasks and applying a single tower crane location model to each task
group in isolation. They, however, only decide on the tower crane locations and
not on the supply point locations. [16] determine crane and supply point loca-
tions in a multi crane model with a given number of two cranes.

Another stream of literature integrates a decision on the crane configuration.
[6] present a heuristic to determine the number and configurations of cranes as
well as the crane locations in continuous space. [11] consider a single crane and
choose a crane configuration that does not exceed capacity for each possible
crane location before the optimization. Their capacity constraints are based on
load moments, i.e., the load weight multiplied with the maximum boom radius.
However, in practice load charts do not lead to constant load moments for dif-
ferent operation radii. [8] present a MILP model similar to ours, however, they
consider a fixed number of tower cranes and the objective function considers
operating costs and a penalty for increased height and reach of the cranes. [2]
and [3] decide on the number of cranes, their configurations, and the crane and
supply locations. Their objective is to minimize crane installation and rental
costs. [17] integrate decisions on the installation of tower cranes over the course
of the construction project and use simulated annealing to solve the problem.

The contribution of this manuscript is the development of a MILP model for
determining the optimal number of cranes, their configurations and locations,
as well as supply locations in an integrated way. The model considers capac-
ity of tower cranes via load charts and an objective function that includes the
operating, installation and rental costs.

2 Integrated Determination of the Number of Cranes,
Crane Locations, and Their Configurations

An a priori unknown number of tower cranes N c is to be placed at candidate
locations k ∈ K. The set K is determined by considering the factors described in
the last section, such as the geometric layout of the construction site or ground
conditions, see [7]. Tower crane configurations c ∈ C differ with respect to their
operating cost Co

c , their dimensions (height and boom reach), trolley velocities
in radial, angular, and vertical direction, and configuration-specific load charts.
Configuration-dependent installation and rental costs add up to the fixed costs
Cf

c. Eligible crane configurations for each crane location k are indicated by Ξkc.
As it is typically assumed in the literature, several supply points i ∈ I with

corresponding coordinates have been identified on the construction site. Demand
points j ∈ J are known and characterized by their coordinates, the quantity Qj

of demand units, and the weight of one demand unit (e.g., a concrete bucket)
Wj . Δjl indicates whether demand j is for material l ∈ L. All locations have
associated cartesian xyz coordinates with z being the vertical component.
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We implement load charts via the indicator Γijkc for feasible lift operations:
Γijkc = 1 if and only if the maximum lifting weight at a boom radius of the max-
imum distance between crane location k and supply point i and crane location
k and the demand point j is at least the weight of demand j.

A set of coordination factors determines simultaneous radial-angular and
vertical-horizontal hook travel, in addition to the hook control difficulty, see also
[8]. These factors are influenced by many aspects including crane operator skills
and experience, terrain, visibility, obstacles, and weather conditions. We follow
the formulation in [8] assuming all factors depend on the crane location.

3 Mixed-Integer Linear Programming Model

Each demand j needs to be fulfilled exactly once, tracked by binary variable δijkcl
which indicates whether material l is moved from supply point i to demand j
by a crane at location k in configuration c,

∑

ikcl

δijkcl = 1 ∀j . (1)

There will be no lift if demand j is not for material l (i.e., Δjl = 0) or if it is
infeasible (load chart violated, Γijkc = 0),

δijkcl ≤ Δjl ∀ijkcl , δijkcl ≤ Γijkc ∀ijkcl . (2)

The binary variable ξkc indicates whether a crane at location k is in configuration
c. There cannot be lift operations for non-utilized k − c combinations,

∑

c

ξkc ≤ 1 ∀k , δijkcl ≤ ξkc ∀ijkcl . (3)

Also, if there is a crane at location k, its configuration c will be unique and
chosen from the eligible configurations given by Ξkc,

ξkc ≤ Ξkc ∀kc . (4)

Another binary variable restricts material movement: χil = 1 if and only if
location i is a supply point for material l, subject to “at most one product per
supply point” and “on average, at most one material supply point per crane”,

∑

c

δijkcl ≤ χil ∀ijk,
∑

l

χil ≤ 1 ∀i,
∑

i

χil ≤
∑

kc

ξkc ∀l . (5)

Materials without demand will not have a supply point,

χil ≤
∑

j

Δjl ∀il . (6)

The objective function z sums the operating, installation and rental costs,

z =
∑

ijkcl

δijkclTijkcQjC
o
c +

∑

kc

Cf
cξkc . (7)
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To determine the total hook travel times Tijkc, we use the angular, radial, and
vertical trolley travel time components between supply and demand points. It
is based on [8] and extended by configuration-dependent trolley velocities. Note
that as pointed out in [15], due to a sign error in applying the law of cosines,
some other literature sources state incorrect expressions for the angular trolley
travel times.

4 Heuristic Approach

The problem described above consists of several decisions that depend on each
other. In the following, a heuristic is presented that can be applied in closed
form. Therefore, the individual decisions are made successively.

The number of cranes is investigated in the range N c = 1, 2, ...,min(|K|, |J |)
successively. For a fixed N c, the heuristic goes through the following steps:

1. Demand groups: We separate the demand locations into N c groups depending
on its coordinates, e.g., by using a KMeans clustering algorithm [9]. Hence,
the KMeans model is trained on the coordinates of the demand locations and,
subsequently, the demand location clusters are predicted which represent the
demand groups.

2. Crane locations: For each demand group, choose the crane location with the
lowest maximum distance to the demand points in the demand group. Only
consider crane locations that are not already used by another demand group
as there can only be one crane located at a specific crane location k ∈ K.

3. Supply points: For each demand group and material required in this demand
group, determine a supply point. Therefore, choose the supply point with the
lowest maximum distance to the crane location and the demand points that
require this material in the demand group. To fulfill the model constraints,
only consider supply points without any material assigned to it.

4. Crane configurations: For each demand group and its corresponding crane
and supply point location, choose the feasible crane configuration with the
lowest fixed crane costs Cf

c that can fulfill all the demands of the demand
group using the supply locations of the last step. Checking the feasibility of
a crane configuration consists of verifying that (i) the weight of the material
to be lifted at the distance between the crane location and the supply points
as well as the demand points is not exceeded, and (ii) the maximum height
and reach of the crane configuration is attained. It may occur that this step
does not find a feasible crane configuration to fulfill the demand.

Finally, from all feasible solutions generated for different values of N c, the solu-
tion with the lowest objective value (total cost) is chosen.

5 Realistic Test Case and Conclusion

We demonstrate the solution of the MILP model and the heuristic for a real
case of the construction of a mid-rise building complex. The demand, possible
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supply locations, and the crane data and operating cost are adopted from [8].
Figure 1a depicts the layout of the construction site. There are 18 demand points
for three materials (concrete, plywood, and rebar), each with a quantity Qj

between 10 and 20, corresponding to one level. The rental costs and installation
costs are adopted from [4] and [12], respectively. Note that the individual cost
structure will depend on the location, jurisdiction, and the specific project’s
details. The computations are performed on a Lenovo X1 Carbon with an Intel
Core i7-10510U and 16 GB RAM. The solver CPLEX 12.10 is used in GAMS,
the heuristic is implemented in Python 3.8.1

Fig. 1. a) Location map: crosses denote locations selected by the MILP model, circles
those selected by the heuristic. b) MILP model and heuristic performance scaling;
‘relative number of demands’ refers to multiples of the 18 ‘one level’ demands in (a).

The MILP model solves to optimality in 0.2 s and yields 106,151 $ total costs,
of which 351 $ are crane operating cost (‘opt’ solution). It selects two cranes.2

The heuristic yields total costs of 106,212 $ (+0.06% compared to ‘opt’) including
412 $ (+17.38%) operating cost. See Fig. 1a for the selected locations. Compared
to the ‘worst case’ (i.e., maximum cost) solution with two cranes, the ‘opt’
solution improves total costs by 6.67% and operating cost by 21.27%.

In the following, we investigate an increasing number of demand locations as
they occur on bigger construction sites for multi-level buildings. Therefore, we
assume that the same demand of the base case repeats on higher levels (larger z
coordinate values). We find that the optimization model always solves the model
to a proven optimal solution. The objective values of the heuristic are very close
to the objective values of the MILP model:
1 In the GAMS model, we implemented the bounds (2), (4), and (6) by directly restrict-

ing the domain of the affected variables to those combinations of ijkcl and its subsets
that are allowed by the values of Γijkc, Δjl, and Ξkc, respectively. While the result-
ing model is equivalent to the one defined in Sects. 2 and 3, it is smaller and in many
cases easier to solve.

2 Due to costs related to the number of cranes exceeding operating costs by >2 orders
of magnitude, this decision may be singled out in practical applications e.g., by
imposing a constraint on

∑
kc ξkc (cf. Sect. 3).
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#demand sets: 1 2 4 8 16 24 32 40 48

Gap opt-heur 0.06% 0.11% 0.19% 0.32% 0.47% 0.55% 0.6% ∞ ∞
Gap opt-worst 6.67% 6.78% 6.97% 7.23% 7.52% 7.67% 6.04% 6.16% 6.21%

For the investigated case, the ‘opt-heur’ gap increases with increasing
demand. Finally, the heuristic may lead to infeasible solutions for large demands
(high number of levels). This originates from the heuristic making the individ-
ual decisions sequentially as opposed to the integrated approach in the MILP
model. Figure 1b shows the computation times for the MILP and the heuristic.
While the heuristic executes orders of magnitude faster, execution times of the
optimization model are still in an acceptable range, even for larger numbers of
lifts.

To conclude, the MILP model was found to be accurate, robust in the number
of demand points, and delivered fast solutions. A heuristic that is based on closed
form solutions and, thus, can be applied without solving an optimization model,
delivered even faster solutions but may be infeasible, especially for a high number
of demand points.
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Abstract. Given the ever-increasing role of data centers in global
energy consumption, the problem of assigning jobs (items) to servers
(bins) in an energy-efficient manner has become more and more impor-
tant in recent years. In that respect, the temporal bin packing problem
with fire-ups (TBPP-FU) takes into account not only the number of
servers used but also the switch-on processes required to operate them.
Due to the challenging size of the resulting ILP models, various tailored
reduction strategies can be applied to obtain more tractable formula-
tions. In this article, we show how the information from a heuristic solu-
tion can be used to further improve these exact approaches, extending a
theoretical result that was previously proven only for some very restric-
tive cases in the literature. Finally, the benefits of this new reduction
procedure will be demonstrated based on computational tests.

Keywords: Cutting and packing · Temporal bin packing · Fire-ups ·
Heuristics · Reduction

1 Introduction and Preliminaries

The temporal bin packing problem (TBPP) extends the well-known bin packing
problem [7,11] with regard to an additional time dimension. Given n ∈ N items
(jobs), it requires to find the minimum number of bins (servers) of capacity C ∈
N needed to accommodate them. Here, each job is described by a size (resource
demand) ci ∈ N and a lifespan (activity interval) [si, ei), i ∈ I := {1, . . . , n},
and an allocation is feasible if and only if the capacity is respected at any instant
of time, see Fig. 1.
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Fig. 1. A feasible assignment of five jobs to two servers.

The TBPP owes its practical importance to the ever-growing energy demand
of the IT industry [1,8] and, accordingly, has been introduced in an application-
oriented article dealing with efficient workload management in data centers [5].
Besides, it naturally generalizes the temporal knapsack problem [3,4] and can
be solved by branch-and-price algorithms exploiting numerous heuristics [6].
Recent publications suggest to also include the operating mode of the servers
into the objective function leading to the temporal bin packing problem with
fire-ups (TBPP-FU) [2]. In that scenario, an inactive server can be temporarily
deactivated (to save energy), but must later be “awakened” again (causing a fire-
up) if required. Addressing the two objectives by a weighted-sum method (with
γ > 0 scaling the number of fire-ups), the resulting ILP formulations (called M1
and M2 in [2]) turn out to be challenging in size. To this end, in the same article, a
constructive look-ahead heuristic (CLH) was proposed which is able to strongly
support the ILP models with heuristic information whenever γ ≤ 1/n holds.
Very recently, in [9] a variety of variable and constraint reduction methods to
improve these ILP models (for arbitrary values of γ) has been derived, and they
were shown to lead to substantial performance gains of the exact approaches. As
a result, the “optimized” version of M1 has been identified as the (on average)
most competitive formulation.

In this article, we combine the two central ideas of the previous publications.
More precisely, we show how heuristic information for arbitrary (!) values of γ
can be used to further improve the already refined approaches from [9]. By that,
we close an open question in the field of cutting and packing and succeed in
solving several benchmark instances from the literature for the first time. Due
to limited space, we only consider model M1 here; further information and more
detailed explanations (also for M2) can be found in the full-length article [10].

2 The Basic Version of Model M1

In addition to the terminology mentioned in Sect. 1, let K := {1, . . . , n} denote
the set of servers and let T :=

⋃
i∈I{si, ei} and TS :=

⋃
i∈I{si} collect the

relevant instants of (starting) times. Moreover, we assume the items to be ordered
with respect to non-decreasing starting times (where ties are broken arbitrarily),
and we use It := {i ∈ I | t ∈ [si, ei)} to indicate active jobs at time t ∈ T . To
state M1, let us consider the following four types of binary variables: (i) zk = 1
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iff. server k ∈ K is used, (ii) xik = 1 iff. job i ∈ I runs on server k ∈ K, (iii)
ytk = 1 iff. server k ∈ K is active at time t ∈ T , (iv) wtk = 1 iff. server k ∈ K is
activated at time t ∈ TS . Following [2], we then obtain

Model 1 (M1)

∑

k∈K

(

zk + γ
∑

t∈TS

wtk

)

→ min

s.t. ytk ≤
∑

i∈It

cixik ≤ ytkC, k ∈ K, t ∈ T, (1)

∑

k∈K

xik = 1, i ∈ I, (2)

xik ≤ ysi,k, i ∈ I, k ∈ K, (3)
ytk ≤ zk, k ∈ K, t ∈ T, (4)
ytk − yt−1,k ≤ wtk, k ∈ K, t ∈ TS , (5)
xik ∈ {0, 1}, i ∈ I, k ∈ K, (6)
ytk ∈ {0, 1}, k ∈ K, t ∈ T, (7)
wtk ∈ {0, 1}, k ∈ K, t ∈ TS , (8)
zk ∈ {0, 1}, k ∈ K. (9)

The objective function minimizes a weighted sum of the number of servers used
and the fire-ups required to operate them. Constraints (1) ensure respecting the
server capacity (right hand side), and switch off empty servers (left hand side).
Conditions (2) demand that any job is assigned exactly once, while coupling the
different types of variables is done by Restrictions (3)–(5). In particular, (5) is
responsible for detecting a fire-up exactly in those cases where the server under
consideration is currently active but was inactive at the preceding time instant
(referred to as t − 1 in a symbolic way).

In [9], techniques for avoiding symmetry, introducing valid inequalities, and
lifting item sizes have already partly eliminated the assignment-based disadvan-
tageous properties of M1. However, the methods proposed so far have not yet
contributed to the reduction of the quantity |K|, which has a crucial impact on
the model size, since the index k occurs in each of the four variable types of M1.
Thus, tailoring the set K to the actual or approximate number of servers needed
in an optimal solution is an important preprocessing challenge.

3 A New Theoretical Result

To move to a more appropriate set K, heuristic information can be used. How-
ever, this has so far only been achieved for very small values of γ in the literature:

Theorem 1 ([2]). Let γ ≤ 1/n. Then, the number of servers required for the
TBPP-FU is equal to the number of servers in an optimal solution to the TBPP.
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The preceding result allows either to compute the optimal size of K beforehand
by solving a somewhat simpler auxiliary problem (i.e., the TBPP), or at least
to limit the number of servers to be considered to a reasonably small value
obtained by a heuristic solution. However, as reported in [2, Example 2.2], such
an approach cannot be extended in a straightforward way to arbitrary scaling
parameters γ. To address this deficiency, the following result provides a very
simple way of using heuristic information in the general case, too.

Theorem 2. Let zheu be the objective value obtained by any heuristic for the
TBPP-FU. Then, the number of servers required in an optimal solution is at
most k� := �zheu/(1 + γ)�.
Proof. If the assertion were false, we would need at least k� + 1 servers in an
optimal solution. Since each server is switched on at least once, this would lead
to an objective value of at least (k� +1)+ γ · (k� +1) = (1+ γ) · (k� +1) > zheu,
which yields the contradiction since the heuristic would have to be better than
the optimal solution. ��
This result permits to replace the set K = {1, . . . , n} at all positions in M1
by a (strongly) reduced set K� := {1, . . . , k�} leading to an improved model
hereinafter referred to as M1heu. For that purpose, we make use of the construc-
tive look-ahead heuristic (CLH) from [2], see also Algorithm 1. While in [2] the
look-ahead parameter was simply fixed to q = 3, we will study the influence of
this value in a bit more detail in the next section, to then pass the best possible
compromise between effort and benefit to M1.

Algorithm 1. CLH with look-ahead parameter q

Input: Item list ordered by non-decreasing starting times si, parameter q ∈ N.
1: Initialize the “empty” assignment A(0) := ∅.
2: for i ∈ I do
3: Assign item i to any open server of A(i − 1) that can accommodate it and

(as another alternative) also to a new empty server. By that we obtain the
assignments A1(i), . . . ,Ap(i).

4: Add the next q items to each of these allocations in a best-fit fashion and
obtain the (updated) assignments ˜A1(i), . . . , ˜Ap(i).

5: Choose one assignment (from ˜A1(i), . . . , ˜Ap(i)) with the lowest objective value
and define it as A(i), that is, the starting point of the next iteration.

6: end for
Output: heuristic solution with objective value zheu.

4 Computational Results

For our numerical calculations, we coded the M1 and M1heu in Python (version
3.9.2) and used its Gurobi (version 9.1.1) interface to solve the resulting ILP
formulations with default settings and a time limit of 30 minutes per instance.
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All the experiments were run on an AMD A10-5800K processor with 16 GB
RAM. We consider a benchmark set from [6] originally designed for the ordinary
TBPP (without fire-ups). However, possessing all the required input data, these
instances can easily be interpreted in the context of the TBPP-FU, too. Given
the somewhat more difficult scenario associated with adding fire-ups, we limit
our investigations to γ = 1 and a reasonable subset of the 1700 instances from
[6], that is, the moderate instance sizes with |T | ∈ {10, 20, . . . , 50} time steps, as
similarly suggested in [9]. Note that, for a fixed choice of |T |, the data set consists
of 100 instances that are divided into ten classes (numbered by I-X) of different
difficulty level. Due to limited space, we will not go into further detail about
these classes in our results and discussions, so that we just focus on complete
packages of 100 instances each.

Let us first consider the results of CLH for different choices of the look-ahead
parameter q in Table 1. Although there is no strict monotonicity, it can be seen
that looking further into the future tends to lead to better heuristic results. For
completeness, we also record the average of the respective best heuristic values
(column ‘best’) and that of the LP bounds (column ‘LP’) for each instance block.
The latter shows that the deviation of ‘best’ from the actual optimum is ≤15%
on average, but increases with the instance size. On average, we observe that
q = 20 leads to the best heuristic results, but larger look-ahead parameters can
be slightly better for specific values of |T |. In addition, the times required average
only 0.5 s for q = 20, while they are already about four to five times larger for
q ∈ {n/2, n}, but without providing any noticeable gains. Hence, we will use the
heuristic value obtained from q = 20 to define k� according to Theorem 2, and
pass the corresponding feasible solution to the solver to give it a warm start.

Table 1. Heuristic value for different look-ahead parameters q. (The column navg

states the average number of items in the respective subclass.)

|T | navg 1 2 3 5 10 20 n/2 n Best LP

10 54.90 40.9 40.0 39.8 39.1 38.1 37.5 37.3 37.0 36.6 34.8

20 88.39 46.9 45.8 45.4 44.2 42.4 41.4 41.2 41.1 39.9 36.7

30 121.43 52.3 50.9 50.5 48.5 46.1 44.9 44.7 45.0 43.2 37.6

40 154.10 57.5 55.9 55.1 52.7 49.6 47.8 48.0 48.8 46.2 38.2

50 186.70 62.9 60.9 59.9 57.0 53.4 51.2 52.8 53.4 50.0 39.0

Avg value 102.10 52.1 50.7 50.1 48.3 45.9 44.5 44.8 45.0 43.2 37.3

First of all, observe that using the heuristic information leads to ILP formula-
tions of much smaller size. Based on Table 2, the average savings are about 72%
for both, the numbers of variables and constraints. Remarkably, the percent-
age of reduction even increases for larger values of |T |. These observations also
translate to the number of instances solved exactly and the computation times
required. While for small values of |T | both models still show very similar perfor-
mance results, M1heu proves to be clearly superior for larger instances. Overall,
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the improved model was able to solve 17 additional benchmark instances and
required about a quarter less computation time on average.

Table 2. Comparison between M1 and M1heu in terms of model size (left table), as
well as instances solved to optimality and times required (right table).

#variables #constraints

|T | M1 M1heu M1 M1heu

10 2.7 1.4 3.7 1.8

20 7.2 2.7 9.8 3.6

30 13.8 4.2 18.7 5.6

40 22.3 5.8 30.1 7.9

50 33.0 7.6 44.3 10.4

Avg 15.8 4.3 21.3 5.9

M1 M1heu

|T | t opt t opt

10 28.1 (99) 22.7 (99)

20 244.8 (91) 239.5 (91)

30 483.7 (81) 399.4 (82)

40 711.2 (70) 499.8 (78)

50 858.5 (65) 596.7 (73)

Avg/Sum 465.3 (406) 351.6 (423)

5 Conclusions

In this article, we examined the TBPP-FU and, as a main contribution, showed
how the information of a heuristic solution can be used to reduce the model
size. On the one hand, this closed an open theoretical question, but at the same
time led to much more convincing numerical results. Among other things, the
number of variables and constraints could be reduced by about 72% leading
to 25% lower computation times on average. These beneficial properties also
enabled the optimal solution of 17 previously unsolved benchmark instances.
Future research will focus primarily on finding improved heuristics or alternative
modeling approaches.
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Abstract. We examine a structuring problem that arises in the first
phase of linear repetitive projects which can be found in the area of,
e.g., highway construction. The tasks are performed consecutively along
an elongated construction site which can be split into segments. This
leads to a repetitive project scheduling problem where the same tasks are
performed in a repetitive way in every segment. In this paper, we assume
the segmentation can be different for each task and that the split of a task
into task segments incurs costs for hiring more resources/subcontractors
as well as for handling the resulting communication overhead. The goal
is to optimize the tradeoff between the project’s makespan and total
cost. We develop a constraint programming model and use it to compute
pareto optimal solutions.

Keywords: Project scheduling · Repetetive scheduling · Constraint
programming

1 Introduction

In this paper we investigate a planning problem posed in the early phase of
linear construction projects. During this phase, decisions are made regarding
the structure of the construction activities and division of work among project
participants. The task of the planner(s) is to define segments and to structure
necessary construction steps into work packages executed on these segments.
Finally, these work packages are assigned to participating subcontractors.

Formally, assume there are n tasks T1, . . . , Tn with duration d1, . . . , dn ∈ N

that need to be executed in sequence along an elongated construction site (e.g.
highway construction). The total length of the construction site is L ∈ N. Let
0 = A0 < A1 < · · · < Am < Am+1 = L be equidistant points along the
construction site with A1, . . . , Am being the locations where segmentation of
tasks is possible. We set l = Aj+1 − Aj ∈ N, j = 0, . . . , m as the distance of two
points on the site which implies L/l = m + 1.

There is given a minimum delay ai ∈ N for consecutive tasks Ti and Ti+1,
i = 1, . . . , n − 1. For every point on the construction site, task Ti+1 has to be ai

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Trautmann and M. Gnägi (Eds.): OR 2021, LNOR, pp. 134–140, 2022.
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time units behind task Ti. Without segmentation, this is modelled by start-after-
start and end-after-end relations with delay of ai between consecutive tasks.

For execution of the tasks, subcontractors C1, . . . , Cd can be hired. Each
subcontractor Cu is specialized on a single task Ti and has several resource
crews Ru1, . . . , Ruru

, which can handle one segment of Ti in parallel. There
are three types of costs associated with hiring subcontractor Cu: the base cost
bu ∈ N paid once for hiring the subcontractor, the resource cost wu ∈ N paid
for every resource crew hired, and cost hu ∈ N for every l units of length the
subcontractor works on. Since splitting a task into smaller segments at a point
Aj leads to communication overhead between the participating project partners,
an additional cost zi ∈ N for every split of task Ti is introduced.

The goal is to simultaneously minimize the makespan M , i.e. the latest finish
time of any segment of task Tn, and the total cost Γ , i.e. the sum of all costs
incurred by hiring of resources and splitting of tasks. Since these are competing
objectives, our goal is to compute the tradeoff between the two objectives by enu-
merating all pareto-optimal solutions. To achieve this we construct a constraint
program which is repeatedly applied to compute the tradeoff in full.

To the best of our knowledge, simultaneous scheduling and task segmentation
has not been considered before in the literature. Mostly, segmentation of tasks is
either predefined or proposed in such a way that choosing the smallest possible
segmentation is always optimal. For a review see [6]. In [1] the authors consider
minimizing the interruption time of resource crews, i.e. the sum of idle times
scheduled between consecutive work parts assigned to the same crew. Minimizing
this interruption time leads to a reduction of segmentation, which makes it in
some way similar to our model. In [8], the authors study the tradeoff among
three dimensions, namely time, cost and quality in continuous repetitive projects
but they do not consider segmentation as a degree of freedom. Authors [10]
analyzed the time-cost tradeoff of continuous projects by developing a constraint
programming model, again assuming segmentation is fixed in advance.

2 Constraint Programming Model

In order to solve the optimization problem, we developed a constraint program-
ming model and implemented it using the SAT-Solver of Google OR Tools [4].

An optional interval variable X = (S,E, P ) is a tuple of three integer variables
S,E ∈ N, P ∈ {0, 1}, where S represents the start time of the interval, E the
end time, and P its presence, i.e. whether the interval is used in the solution. An
optional interval variable is given a duration d ∈ N and ensures that E = S + d if
P = 1, i.e. if the interval is present. For a collection of optional interval variables
X1, . . . , Xω the constraint noOverlap(X1, . . . , Xω) ensures no two present inter-
vals of the collection may intersect. Similar variables and constraints can be found
in other solvers, such as ILOG [7]. The noOverlap constraint is similar to the one
dimensional version of the diffn constraint and disjunctive constraint [2].

For an arbitrary given constraint Θ and boolean variables v1, . . . , vω, using
onlyEnforceIf(Θ | v1, . . . , vω) adds the constraint Θ with the additional condition
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that it is not enforced unless all variables v1, . . . , vω are true. For a more in
depth explanation on the propagation of such reified constraints, see [9]. The
term onlyEnforceIf(Θ | v1, . . . , vw) is equivalent to the conditional expression
¬(∧ω

i=1vi) ∨ (Θ is satisfied).
In what follows, we denote by [n] the set {1, 2, . . . , n} for some n ∈ N and

further use the notation [n]0 = [n] ∪ {0}. Moreover, we denote by C(Ti) the set
of subcontractors Cu specialized in task Ti. Finally, we denote by Tmax ∈ N the
largest allowed finish time of any task. Note that an upper bound is given by
Tmax =

∑n
i=1(di + ai).

Variables

Xij
uv =

(Sij
uv, E

ij
uv, P

ij
uv)

optional interval variable with duration di for i ∈ [n],
j ∈ [m]0, Cu ∈ C(Ti), v ∈ [ru]; present, if and only if
resource crew Ruv is used to perform task Ti between
points Aj and Aj+1

Fuv ∈ {0, 1} availability of the vth resource crew of subcontractor Cu

Zij ∈ {0, 1} segmentation of task Ti at Aj , j ∈ [m]

Bu ∈ {0, 1} hiring of subcontractor Cu

Wu ∈ [ru]0 # resource crews available from subcontractor Cu

Hu ∈ [m + 1]0 # parts of length l on which subcontractor Cu works on

Note that we introduce optional interval variables for every possible smallest
segment of every task. However, in the final solution, two consecutive intervals
belonging to the same task may still be seen as belonging to a common segment,
see the “task split constraints” (6) and (7) below. So, in the final solution, not
every present interval variable Xij

uv necessarily defines its own segment.
We denote the total cost variable, consisting of the resource cost and the

splitting cost, with

Γ =
d∑

u=1

(Bu · bu + Wu · wu + Hu · hu) +
n∑

i=1

zi ·
⎛

⎝
m∑

j=1

Zij

⎞

⎠ ,

and the makespan, equal to the maximum completion time of the segments of
the last task Tn, with

M = max
j∈[m]0,

Cu∈C(Tn),
v∈[ru]

Enj
uv .

Objective. We consider both the cost C and the makespan M , as defined above,
to be minimized simultaneously,

min(Γ,M),

and determine all pareto optimal solutions using the epsilon-constraint method
described in [3, p. 285].
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Constraints

Scheduling Constraints
We consider start-after-start and end-after-end precedences for consecutive tasks
with a time lag of ai. These need to be ensured for every start point and the
combination of resource crews which execute the associated tasks:

onlyEnforceIf
(
Sij

u1v1
+ ai ≤ S(i+1)j

u2v2
| P ij

u1v1
, P (i+1)j

u2v2

)
,

i ∈ [n − 1], j ∈ [m]0, Su1 ∈ C(Ti), Su2 ∈ C(Ti+1), v1 ∈ [ru1 ] , v2 ∈ [ru2 ] ,
(1)

onlyEnforceIf
(
Eij

u1v1
+ ai ≤ E(i+1)j

u2v2
| P ij

u1v1
, P (i+1)j

u2v2

)
,

i ∈ [n − 1], j ∈ [m]0, Su1 ∈ C(Ti), Su2 ∈ C(Ti+1), v1 ∈ [ru1 ] , v2 ∈ [ru2 ] .
(2)

We introduce no overlap constraints for the interval variables associated with
one resource crew:

noOverlap
(
Xi0

uv,Xi1
uv, . . . , Xim

uv

)
, i ∈ [n], Cu ∈ C(Ti), v ∈ [ru]. (3)

The following constraints set the end of every interval variable to zero, when it
is not present:

onlyEnforceIf
(
Eij

uv = 0 | ¬P ij
uv

)
, i ∈ [n], j ∈ [m]0, Cu ∈ C(Ti), v ∈ [ru]. (4)

We add exclusive constraints:
∑

Cu∈C(Ti)

∑ru

v=1
P ij

uv = 1, i ∈ [n], j ∈ [m]0. (5)

Task Split Constraints

In order to determine if a task Ti is split at a point Aj these constraints check if
the same resource crew is hired for the left and right task part of Ti at Aj and
if the completion and start time coincide:

onlyEnforceIf
(
P i(j−1)

uv = P ij
uv | ¬Zij

)
,

i ∈ [n], j ∈ [m]0, Cu ∈ C(Ti), v ∈ [ru] ,
(6)

onlyEnforceIf
(
Ei(j−1)

uv = Sij
uv | ¬Zij

)
,

i ∈ [n], j ∈ [m]0, Cu ∈ C(Ti) v ∈ [ru] .
(7)

Resource and Subcontractor Constraints

Since all resource crews of one subcontractor are interchangeable we impose an
order on the resource crew variables to break symmetries. Further, assuming a
resource crew is hired for a task segment, availability has to be ensured:

Fuv ≥ Fu(v+1), u ∈ [d], v ∈ [ru − 1], (8)

P ij
uv ≤ Fuv, i ∈ [n], j ∈ [m]0, Cu ∈ C(Ti), v ∈ [ru]. (9)
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We set the auxiliary variables associated with a subcontractor Cu. Since we fixed
the order for crew resources, checking the hiring status of a subcontractor sim-
plifies. The other two sets of constraints sum up the relevant boolean variables:

Bu = Fu0, u ∈ [d], (10)

Wu =
∑ru

v=1
Fuv, u ∈ [d], (11)

Hu =
∑ru

v=1

∑m

j=0
P ij

uv, i ∈ [n], Cu ∈ C(Ti). (12)

3 Results

We consider a highway construction project of the form introduced in [5]. Fur-
ther, we set the length of the construction site to be equal to 4 units of length.
We assume segmentation of tasks is possible at (A1, A2, A3) = (1, 2, 3). For
every task of the project, two subcontractors are available to complete it. Sub-
contractors differ only in the base cost, where the base cost is zero for the first
subcontractor and five for the second subcontractor. In order to introduce differ-
ent scenarios, we keep the number of resource crews per subcontractor variable.
The parameters are given by:

Task no. Task description di ai zi wu hu

1 Clearing and grubbing 20 1 1 0 2

2 Earth moving 24 3 2 5 5

3 Subbase 12 2 2 2 4

4 Base 8 1 2 2 4

5 Paving 24 3 5 7 8

6 Finish shoulders 16 – 1 0 3

We apply the introduced constraint programming model to the four scenar-
ios: 1. One subcontractor with one resource crew per task, 2. One subcontrac-
tor with two resource crews per task, 3. Two subcontractors with one and two
resource crews per task and, 4. Two subcontractors with two resource crews per
task.

We calculate the overlapping pareto frontiers for all scenarios which are shown
in Fig. 1. Given these solutions, it is interesting to note that increasing the num-
ber of resource crews does not decrease the makespan for previous cost bounds. It
is, however, usually possible to enlarge the front by finding solutions for smaller
makespan and higher cost bounds when more resource crews are available. The
only time this does not hold, is when the crew number is increased from two
to three, which can be observed in Fig. 1. This is due to the fact that having
only three resource crews available implies that there are always two task seg-
ments left, which cannot be performed in parallel. Note, however, that it may be
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beneficial to split tasks into more segments than resource crews available. See,
e.g., Fig. 2, which presents the lowest makespan solution of Scenario 2 where two
resources are considered.

Fig. 1. Pareto frontiers for all scenarios.

Fig. 2. Time minimized solution for Scenario 2.

4 Future Work

For future studies, a natural question to ask is how the proposed constraint
programming model can be applied to more complex projects. This includes
taking into consideration non-linear task graphs and including subcontractors
or resources which can handle more than one task. Furthermore, it is possible to
include additional optimization criteria such as the minimization of the idle time
of resource crews as in [1]. Finally, another interesting direction would be the
introduction of more (or even variable) splitting points, where splitting points
no longer need to be equidistant or where only a lower bound on the segment
length is given but splits can otherwise happen arbitrarily.
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Abstract. We present a distributed solver for mixed-integer problems.
Our aim is to offer an alternative to commercial solvers so that even
small companies come to the benefit of an optimization suite. The solver
utilizes the COIN-OR Branch-and-Cut solver (CBC) for solving sub-
problems. Interprocess communication is achieved by using the remote
procedure call library Thrift. Using ordinary office hardware, we eval-
uate our solution on instances from the MIPLIB and multidimensional
knapsack instances both in deterministic and non-deterministic mode.

1 Introduction

Parallel MIP solvers for distributed memory computing environments often use a
sequential MIP solver as a black box. Algorithmic improvements in the sequen-
tial solver can thereby be exploited directly. Examples of this approach are ParaS-
CIP by Shinano et al. [8] and GAMS in combination with Condor and CPLEX
by Bussieck et al. [2]. Such frameworks require much knowledge from the user and
adjustment of many parameters is needed in order to solve specific classes of prob-
lems efficiently. In contrast to thatwewould like to build a powerful, yet easy-to-use
solver by using open-source software running on ordinary office hardware.

In [4] a distributed MIP solver is presented in which a sequential solver based
on GLPK is used as a black box. The sequential solver carries out its own branch
and bound procedure on a subproblem for a limited amount of time. If it times
out, new subproblems are created.

We carry on this approach using CBC instead of GLPK. CBC is among
the fastest open source MIP solvers, see H.D. Mittelmann’s Web-Page. Using
CBC in the distributed setup leads to performance gains and we compare the
runtimes to those of Gurobi and multi-threaded CBC. Furthermore, we introduce
a mechanism for enforcing determinism and assess its impact on solver runtimes.

2 Branch and Bound

A MIP in standard form defines a problem in which a linear objective function
cTx is to be minimized subject to linear constraints Ax ≤ b, where some of the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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variables of x are required to take on integer values. The LP-relaxation of the
problem is given by dropping the integrality constraints. The solution to the LP
relaxation is a lower bound on the MIP solution, whereas a feasible solution is a
valid upper bound.

Most MIP solvers use branch and bound to recursively subdivide the MIP
problem into subproblems until either a solution is found or infeasibility is estab-
lished. The LP relaxation is usually employed to create subproblems. A common
approach is to select an integer variable xi with a fractional value x̃i in the LP
relaxation to define two new bounds: xi ≤ �x̃i� and xi ≥ �x̃i�. By adding these
bounds to the subproblem, two new subproblems are created.

In line with [4], we consider variables for branching in decreasing order of the
absolute value of their coefficients in the objective function vector. Moreover,
we branch on k variables at a time. All combinations of the new upper and
lower bounds of the variables are generated, leading to 2k new subproblems. The
parameter k scales with the number of processors in our distributed architecture
to prevent scalability issues.

By repeatedly branching on variables, a branching tree is created. The pur-
pose of the bounding operation in branch and bound is to constrain the size of
this branching tree. A subproblem may be fathomed, i.e. discarded, if its lower
bound is worse than any solution to the MIP.

An important ingredient of a branch and bound procedure is the search
strategy. It determines the order in which subproblems are processed. We use
a best-first search which chooses the candidate subproblem with the smallest
lower bound. While this strategy tends to minimize the number of subproblems
processed, incremental improvements to the upper bound are often few and far
between. This may reduce the effectiveness of the bounding operation [7]. We
rely on heuristics in the sequential solver to quickly find improvements to the
upper bound in the early phases of the algorithm.

3 Architecture

We use the farmer-worker architecture since load balancing and termination
detection are easy, and the architecture must not be high scalable, since in an
office of mid-sized companies there will be no more than a few tens of computers.

Farmer. The farmer loads the problems from file and first applies presolve reduc-
tions using CBC. The presolved problem is then passed to the workers. The
farmer then creates initial subproblems and maintains active subproblems in a
priority queue.

Worker. The worker receives the new variable bounds of a subproblem to solve
and, if available, the best optimum found so far. The bounds are applied to
the problem to reconstruct the subproblem. The best optimum is added to the
subproblem model as a cutoff. This often enables the CBC solver to establish
infeasibility quickly. CBC ships with a highly fine-tuned version of its solver.
Due to technical difficulties, we use a much simpler solver in our benchmarks.
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We let the CBC solver carry out its own branch and bound procedure for 25
seconds since this works well in our setup. If infeasibility is established by the
CBC solver, the subproblem is fathomed. In the case of a timeout, the worker
creates and returns new subproblems as well as the best solution found in the
timed out subproblem.

Determinism. Non-deterministic behaviour is the possibility that an algorithm
will follow different execution paths at different times on the same input due to
external effects, see [6]. As a result, solver times may vary and different solutions
may be reported. This type of behaviour is undesirable in practice.

A deterministic parallel branch and bound procedure comes at the cost of
reduced efficiency and scalability due to the synchronization required [6]. We use
a barrier synchronization scheme to realize a deterministic execution mode in
our distributed setup. In between two barrier synchronization points, the workers
finish a subset S of the active subproblems. The results of these problems, i.e.
new subproblems and upper bounds, are processed after all the problems of
subset S have been finished. The order in which the problems of a subset are
processed may still vary, but this does not affect the overarching search order.

The size of subset S is important in this synchronization scheme: While
increasing the size reduces the amount of idle time, it may reduce the number of
subproblems being fathomed, since the best upper bound is only updated after all
problems of a subset have been processed. The optimal subset size depends both
on the problem instance as well as the number of workers. We get satisfactory
results when the subset size is about twice the number of workers.

4 Computational Results and Evaluation

Benchmark Data. We evaluate our distributed CBC-solver on some multidi-
mensional knapsack instances from Chu and Beasley [3] and on some instances
from the MIPLIB 2003 [1] and 2010 [5].

Setup. Our solver is running on a small cluster of 12 machines, each equipped
with an Intel i7-8700 CPU, 16 GB RAM, running 4 worker processes. We use
CBC version 2.10.5, GLPK version 4.65, Thrift version 0.13.0 and Gurobi version
9.1.0. The benchmarks for Gurobi shown in Table 1 and 2 were carried out using
its default settings on a single machine equipped with an Intel i7-8700K CPU
and 16 GB RAM.

GLPK has presolving enabled and uses gomory, mixed integer rounding,
mixed cover and clique cuts. The feasibility pump is used as heuristic and hybrid
pseudo-cost branching is used as variable selection rule. In line with [4], GLPK
uses a timeout of 10 seconds in the benchmarks that follow. CBC is running
with gomory, probing, knapsack cover, clique, mixed integer rounding and flow
cover cuts. The feasibility pump, rounding and greedy heuristics are used.

Scalability. To assess the scalability of a parallel implementation, its speed-up is
often regarded. The speed-up SN := T1/TN is the ratio between the runtime T1

when using 1 worker and the runtime TN when using N workers. To empirically
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assess the speed-up, instances need to be solvable in a reasonable amount of time
with the sequential solver. Unfortunately, such instances may not be difficult
enough when using a large number of workers. We therefore use the speed-up
from 16 to 32 and 48 workers as a proxy for the actual speed-up in our setup.
To combat different sources of variability, we run each instance multiple times
and compute the average value of these runtimes.

Comparison to Distributed GLPK and Gurobi. Table 1 gives runtimes in
seconds on some multidimensional knapsack instances. Runtimes greater than
3600 s are indicated by a bar. Our distributed CBC-solver (labeled d-CBC)
consistently outperforms the distributed GLPK-solver on these instances, see
columns 2 and 3. Furthermore, using 32 workers, the distributed CBC-solver is
able to outperform Gurobi on the majority of instances, see columns 4 and 6.

Table 1. Runtimes on some multidimensional knapsack instances.

Instance Non-deterministic Gurobi Deterministic

GLPK d-CBC d-CBC

4× 4 4× 4 8× 4 12× 4 1× 12 4× 4 8× 4

10× 250–0.75 1 2633 273 136 95 209 346 (+27%) 253 (+86%)

10× 250–0.75 2 — 626 349 251 641 750 (+20%) 517 (+48%)

10× 250–0.75 3 2288 238 127 95 155 313 (+32%) 234 (+84%)

10× 250–0.75 4 1407 146 101 95 103 262 (+80%) 192 (+90%)

10× 250–0.75 5 3259 432 246 186 230 398 (–8%) 302 (+23%)

10× 250–0.75 9 1321 112 77 63 77 219 (+96%) 182 (+136%)

10× 250–0.25 6 — 326 178 127 278 465 (+43%) 315 (+77%)

30× 100–0.25 9 1954 376 169 149 237 387 (+3%) 303 (+79%)

30× 100–0.50 2 1024 191 108 77 118 356 (+86%) 250 (131%)

30× 100–0.50 3 1470 228 141 113 181 470 (+106%) 321 (128%)

Table 2 summarizes the runtimes on some instances from the MIPLIB. While
the distributed CBC-solver outperforms the distributed GLPK-solver on most
instances, see columns 2 and 3, Gurobi’s performance appears to be out of reach
on most instances, see columns 5 and 6.

Gurobi and CBC are not able to simplify the instances of OR-LIB in Table 1
using presolve reductions. Furthermore, the available cutting plane techniques
appear to be less effective on these instances. Such instances, which inevitably
require the exploration of a large number of subproblems, naturally favour our
distributed solution in which more computational power can be utilized.

Impact of Determinism. Tables 1 and 2 also summarize the results on the
impact of determinism. The numbers in parentheses indicate the slow-down due
to deterministic calculation.

Let us now evaluate the results by some comparisons to Gurobi and multi-
threaded CBC (labeled mt-CBC). We ran the above instances on these two
solvers with 4, 8, 12, and 16 threads, measured the runtimes and summarized
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Table 2. Runtimes in seconds on some MIPLIB instances.

Instance Non-deterministic Gurobi Deterministic

GLPK d-CBC d-CBC

4× 4 4× 4 8× 4 12× 4 1× 12 4× 4 8× 4

mas74 1915 106 61 54 73 235 (+122%) 204 (+234%)

danoint 530 747 403 275 309 1080 (+45%) 657 (+63%)

qiu 241 93 45 41 0 375 (+303%) 162 (+260%)

noswot 1023 756 346 251 13 1768 (+134%) 1331 (+285%)

neos-1616732 — 1757 920 625 347 2159 (+23%) 1263 (+37%)

ns1830653 — 677 326 250 30 1432 (+112%) 1155 (+254%)

pigeon-10 — — 2169 1970 0 — —

ran14× 18 1453 574 269 251 92 1084 (+83%) 776 (+189%)

ran14× 18-disj-8 — 958 494 381 398 1867 (+95%) 1325 (+168%)

reblock67 2687 740 277 323 34 1766 (+138%) 1142 (+312%)

rmine6 1413 501 243 234 61 845 (+69%) 753 (+201%)

zib54-UUE — 1306 656 567 109 — 1983 (+203%)

the geometric mean values for the different benchmark sets. The benchmarks
ran on a VM on a single machine.

Efficiency of Parallelization. Table 3 gives the results of a comparison
between workers in d-CBC and threads in mt-CBC, both in non-deterministic
mode using fixed parameterization. The table entries are calculated according to
runtime of d-CBC divided by runtime of mt-CBC. Our form of parallelism seems
to be effective for OR-LIB, on instances of MIPLIB it seems to be improvable.

Table 3. mt-CBC using threads versus d-CBC using workers.

Benchmark set 4W:4T 8W:8T 12W:12T 16W:16T

OR-LIB 1.35 1.14 1.28 1.25

MIPLIB 2.35 2.90 3.46 3.48

Scalability of CBC and Gurobi. Table 4 summarizes the results for the speed-
ups, where the values are calculated according to runtime using 4 threads divided
by runtime using n threads for values n = 8, 12, 16. Our type of parallelization
seems to scale well. Gurobi seems to scale slightly worse than multi-threaded
CBC, probably because the instances are not hard enough.

Table 4. Comparison of speed-ups on different solvers.

Instances Gurobi mt-CBC d-CBC

of set 4:8T 4:12T 4:16T 4: 8T 4:12T 4:16T 16:32W 16:48W

OR-LIB 1.82 2.23 2.10 1.94 2.49 2.84 1.76 2.27

MIPLIB 1.60 2.47 2.21 1.96 2.18 2.55 2.01 2.38
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Influence of Determinism. Table 5(a) summarizes the results for the slow-
down due to deterministic calculation according to runtime deterministic divided
by runtime non-deterministic. Since Gurobi is inherently deterministic, no com-
parison to Gurobi is possible. Our form of deterministic calculation by barrier
synchronization seems to be effective.

Table 5. Slow-down due to deterministic calculation and fixed parameterization.

(a)

instances mt-CBC d-CBC

of set 4T 8T 12T 16W 32W

OR-LIB 2.71 2.38 2.10 1.43 1.85

MIPLIB 1.84 1.83 2.26 1.96 2.74

(b)

instances mt-CBC

of set 4T 8T 12T 16T

OR-LIB 3.33 3.73 3.31 3.50

MIPLIB 2.44 2.73 2.74 3.10

Influence of Fixed Parameterization. Table 5(b) summarizes the results
for the slow-down due to fixed parameterization instead of a parameterization
specific to the problem instance using mt-CBC. The table entries are calculated
according to runtime fixed divided by runtime specific. The performance degra-
tion is remarkable.

5 Conclusion

Using CBC instead of GLPK yield significant performance gains in the dis-
tributed architecture. A deterministic mode for the distributed solver based on a
simple barrier synchronization scheme was introduced and shown to be effective.
We could show that our form of parallelism is effective, too. In a multi-threaded
environment, a lot of time can be lost due to synchronization and caching effects.
In such an environment, our distributed system may have advantages because
the worker processes can run truly in parallel. Although we had to choose a fixed
parameterization to make CBC run reliable, good results were achieved.
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Abstract. The balanced maximally diverse grouping problem with
attribute values and varying group sizes (BMDGPAVVG) searches for the
best balanced solution amongst all optimal solutions of the corresponding
instance of the maximally diverse grouping problem with attribute values
and varying group sizes (MDGPAVVG). We describe the set of optimal
solutions of MDGPAVVG which allows us to use a short integer program
presented in the literature to solve the BMDGPAVVG.

Keywords: Combinatorial optimization · Integer programming ·
Assignment · Grouping

1 Introduction

The maximally diverse grouping problem (MDGP) is a well-investigated combi-
natorial optimization problem, which is applied for example in the assignment
of students to learning groups. The MDGP is the problem of assigning items,
i, j ∈ I, to groups, g ∈ G, such that the sum of pairwise distances daij ≥ 0 of
item pairs which are assigned to the same group is maximized over all attributes
a ∈ A. The problem is either formulated with equal-sized groups or the number
of assigned items is required to be within a certain range for each group.

In the general variant, daij is arbitrary. However, in common applications,
e.g. the assignment of students to groups, distances are absolute differences of
attribute values avai , i.e. daij = |avai − avaj |. Assignments of students to groups
have been extensively investigated in the literature (e.g. assignment of students
to project groups [1], study groups [4], or work groups [2]). In the assignment
of students to learning groups, teachers usually aim at equally strong groups
with respect to the students’ academic achievements. Thus, avai can be the aver-
age grade of student i. It can also be the grade in a certain course or another
performance measure. Moreover, the teacher might also aim at well-balanced
groups regarding the gender or wishes that international students are equally
distributed over the groups. Then, avai is a zero-one attribute which indicates
whether the student is female/male and international, respectively.
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Recently, Schulz [5] investigated the MDGP with attribute values and found
that the set of optimal solutions can be described by a set of equalities, called
block constraints, if this set has a feasible solution. He proposed that it is desir-
able to search for the best balanced solution amongst all optimal solutions of the
MDGP and introduced the balanced maximally diverse grouping problem with
attribute values. However, the paper considers only the case with equal-sized
groups.

In this paper, we generalize the approach by Schulz [5] to a variant where
the number of items is required to be within a certain range for each group.
We adapt the construction of the block constraints proposed by Schulz [5] to
describe the set of optimal solutions of the MDGP with attribute values and
varying group sizes if the block constraints have a feasible solution.

The paper is constructed as follows: First, we give a formal introduction of
the problem setting and the prior work by Schulz [5] (Sect. 2). Then, we present
our adaptation for the variant with varying group sizes (Sect. 3). The paper
closes with a conclusion in Sect. 4.

2 Problem Description

We consider a set of items i ∈ I, a set of groups g ∈ G, and a set of attributes
a ∈ A as given. Each item has according to each attribute an attribute value
avai ∈ Q≥0. With them we define the distance among each item pair as daij =
|avai − avaj |. Each group must get at least lg and at most ug items assigned.

The MDGP is generally formulated as follows (compare e.g. [3,6]):

max
∑

a∈A

∑

g∈G

∑

i∈I

∑

j∈I:j>i

daijxigxjg (1)

with the constraints
∑

g∈G
xig = 1 ∀i ∈ I (2)

lg ≤
∑

i∈I
xig ≤ ug ∀g ∈ G, (3)

xig ∈ {0, 1} ∀i ∈ I, g ∈ G (4)

Thereby, xig is a binary variable which equals to one if item i is assigned to
group g and is zero otherwise. Objective function (1) maximizes the pairwise
differences between each pair of items assigned to the same group according to
all attributes. Constraints (2) ensure that each item is assigned to exactly one
group while Constraints (3) take care that all groups get at least lg and at most
ug items assigned. Constraints (4) are the binary constraints for the x variables.

Schulz [5] found another representation of the objective function (1). There-
fore, he introduced blocks k ∈ K with |K| = |I|/|G| (equal-sized groups) and
assigned the items for each attribute according to the following assumption to
the blocks:
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Assumption 1. Let |G| be the number of groups. Then, the |G| items with the
largest attribute values according to the considered attribute are assigned to the
first block, the |G| items with the next largest attribute values according to the
considered attribute are assigned to the second block, and so on.

The item to block assignment is depicted by a binary parameter baki which is one
if item i is according to attribute a in block k and zero else. Schulz [5] introduced
the block constraints

∑
i∈I:baki=1

xig = 1 ∀a ∈ A, g ∈ G, k ∈ K (5)

and proved that the set of optimal solutions for (1)–(2), (4) and
∑

i∈I

xig = |I|/|G| ∀g ∈ G,

equals the set of feasible solutions for (2), (4), and (5) if a feasible solution
exists, blocks are determined according to Assumption 1, and the assignment to
blocks is unique in the sense that no two items with identical attribute value are
assigned to different blocks regarding the corresponding attribute. If |A| = 1, it
is sufficient that the blocks are determined according to Assumption 1. By this,
we get ∑

a∈A

∑

g∈G

∑

i∈I

∑

j∈I:i<j

daijxigxjg =
∑

a∈A

∑

k∈K

∑

i∈I

bakickav
a
i (6)

with

ck =

{
c̄k if k ≤

⌈
|K|
2

⌉

−c̄k else,
(7)

where

c̄k = 2 · max
( |K|

2
− k, k − |K|

2
− 1

)
+ 1 (8)

if |K| is even and

c̄k = 2 ·
∣∣∣∣k −

⌈ |K|
2

⌉∣∣∣∣ (9)

if |K| is odd. Due to the page restriction, we refer the reader to [5] for a proof.
Since the set of all optimal solutions for the MDGP can be described in the case
with attribute values, the procedure by Schulz [5] searches for the best balanced
solution amongst them, i.e. minimizes

∑

a∈A

∑

g,g′∈G:g′>g

∣∣∣∣∣∣

∑

i∈I

∑

j∈I:i<j

daijxigxjg −
∑

i∈I

∑

j∈I:i<j

daijxig′xjg′

∣∣∣∣∣∣

with the constraints (2)–(5) and ug = lg = |I|/|G| for all g ∈ G. In the next
section, we use the structure of the right side of (6) to adapt this approach to
varying group sizes.
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3 Solution Approach for Varying Group Sizes

In this section, we present our solution approach. First, we consider fixed but not
necessarily equal group sizes, i.e. lg = ug for all g ∈ G (Subsect. 3.1). Afterwards,
we generalize the approach to the case lg ≤ ug for all g ∈ G but lg ≥ lg′ and
ug ≥ ug′ for all g < g′ (Subsect. 3.2). As the number of items per group varies,
we replace ck by cgk, whereat cgk = ck with |K| equal to the number of items in
group g in (7)–(9).

3.1 Fixed Group Sizes

If we know the group sizes, cgk values are fixed. Besides, avai is fixed. Hence,
we have to set baki values to one (each item is assigned to exactly one block per
attribute) such that the right side of (6) is maximized. The following theorem
sets baki values for each attribute such that the right side of (6) is maximized.

Theorem 1. Let a ∈ A be fixed. Let two lists with the cgk values as well as the
attribute values avai , both in decreasing order, be given. Let pi be the position of
avai in the list of attribute values. Then, the right side of (6) is maximized by
multiplying avai with the cgk value at position pi of the cgk-list and summing up
the products over all i ∈ I.

Proof. Let a, b, c, d ∈ Q with a ≥ b and c ≤ d. Then,

a · c + b · d ≤ a · c + b · d + (a − b) · (d − c)
= a · c + a · (d − c) + b · d − b · (d − c)
= a · d + b · c.

Thus, the sum over the products cgk · avai is maximized if the largest cgk value
is multiplied with the largest avai , the second largest cgk value with the second
largest avai , and so on, which proves the theorem.

Let K̄ = {cgk : g ∈ G, k ∈ K}. We repeat the procedure in Theorem 1 for
each attribute. Set ba

k̄i
= 1, k̄ ∈ K̄, if avai is matched with a cgk = k̄ for the

corresponding a ∈ A in Theorem 1 and introduce the new block constraints
∑

i∈I:ba
k̄i

=1
xig = 1 ∀a ∈ A, k̄ ∈ K̄, g ∈ G : ∃k ∈ K : cgk = k̄ (10)

Then, a feasible solution for (2), (4), and (10) maximizes the right side of (6) and
must therefore be optimal for (1)–(4) and we can search for the best balanced
optimal solution of the MDGP with attribute values with the procedure by
Schulz [5].
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3.2 Bounded Group Sizes

If lg < ug, cgk cannot be predetermined but are endogenous. Thus, we have to
choose the number of items per group ng with lg ≤ ng ≤ ug for all g ∈ G such
that cgk values are maximized. Since cgk values count the number of connections
between blocks k and |K| + 1 − k visiting at most one further block in between
(compare [5]), all cgk values of the group increase by one if a further item is
assigned to it. Thus, it is, if lg ≥ lg′ and ug ≥ ug′ for all g < g′, optimal
to assign a further item always to the group with the largest number of items
assigned but ng < ug, i.e. the group with the smallest index g for which ng < ug

holds.
The following procedure finds optimal cgk values: First, we set ng = lg for

all g ∈ G. If this is not possible, i.e.
∑

g∈G lg > |I|, (1)–(4) has no feasible
solution. Second, we increase n1 until either n1 = u1 or

∑
g∈G ng = |I|. If the

first criterion is reached first, we repeat the same with the next group (2, 3, 4, ...,
|G|) until the second criterion is reached. This procedure maximizes the counted
cgk values over all groups (remember that we assume lg ≥ lg′ and ug ≥ ug′ for
all g < g′) if

∑
g∈G lg ≤ |I| ≤ ∑

g∈G ug. Otherwise there is no feasible solution.
Algorithm 1 illustrates this procedure.

Algorithm 1
1: Set ng = lg for all g ∈ G and Ī = |I| − ∑

g lg
2: Set counter = 0
3: while Ī > 0 and counter < |G| do
4: Set counter = counter + 1
5: Set h = min(ucounter − ncounter, Ī)
6: Set ncounter = ncounter + h
7: Set Ī = Ī − h
8: end while

Apply Theorem 1 for all a ∈ A with the cgk values determined by the optimal
ng (Algorithm 1) and set K̄ and ba

k̄i
= 1 as described in Subsect. 3.1. Then, a

feasible solution for (2), (4), and (10) must be optimal for (1)–(4) and we can
search for the best balanced optimal solution of the MDGP with attribute values
with the procedure by Schulz [5].

Note that it is for general daij values not always optimal to assign a further
item to the group with the larger number of assigned items. Let g1 and g2 be two
groups whereat g1 has a higher number of items assigned than g2. Let further
item i be unassigned. With general daij values it is possible that

∑
j∈g1

daij <∑
j∈g2

daij although the first sum contains more addends.
The following example shows that lg ≥ lg′ and ug ≥ ug′ for all g < g′ is

a necessary restriction (beside symmetry). Consider four groups with l1 = 1,
l2 = l3 = l4 = 2, u1 = 4, and u2 = u3 = u4 = 3, and ten items. As seven items
have to be assigned to ensure that each group has at least lg items assigned,
three items are variable. If we assign them always to the group g with g =
argmaxg′∈G{ng : ng < ug}, we assign the remaining items to groups 2, 3, and 4.
Then, at most three items are assigned to the same group (i.e. largest three cgk
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values are 2). If we assign all three variable items to group 1, it contains four
items (i.e. largest cgk value is 3, the second and third largest is 1). Let further
|A| = 1, av11 = 1 and av1i = 0 for all i = 2, ..., 10. Then, the only non-zero addend
on the right side of (6) is 1 (av11) multiplied with the largest cgk value. Thus,
the second assignment is better. However, if instead av11 = av12 = av13 = 1 and
av1i = 0 for all i = 4, ..., 10, then the right side of (6) has three non-zero addends
each multiplying 1 (av values) with one of the three largest cgk values. So, the
first assignment is better.

4 Conclusion

The paper generalizes the findings by Schulz [5] for the balanced MDGP with
attribute values to groups with varying group sizes. The MDGP with attribute
values has many practical applications as shown in the introduction. Since it has
potentially a large number of optimal solutions, it is beneficial to search for the
best balanced one amongst them. This paper presents a way how to do this.

The block constraints (10) are always fulfilled if |A| = 1, as all block con-
straints are independent. Let n1 ≥ ng +2 for all 1 < g ∈ G. Then, the two items
with the smallest attribute values regarding the first attribute are assigned to
the first group. If they are in the same block regarding the second attribute,
there is no feasible solution for (2), (4), and (10). So, there is not necessarily a
feasible solution for |A| ≥ 2. Nonetheless, our findings lead to an upper bound
for the MDGP with attribute values, as Theorem 1 can still be applied to every
single attribute to compute the right side of (6), which is a relaxation of (10).
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Abstract. Balanced separators are node sets that split the graph into
size bounded components. They find applications in different theoretical
and practical problems. In this paper we discuss how to find a minimum
set of balanced separators in node weighted graphs. Our contribution is a
new and exact algorithm that solves Minimum Balanced Separators
by a sequence of Hitting Set problems. The only other exact method
appears to be a mixed-integer program (MIP) for the edge weighted
case. We adapt this model to node weighted graphs and compare it to
our approach on a set of instances, resembling transit networks. It shows
that our algorithm is far superior on almost all test instances.

Keywords: Node separators · Integer programming

1 Balanced Separators

The definition of balanced separators is not consistent in the literature. Here we
use the following:

Definition 1. Let G = (V,E) be a graph with node weights w ∈RV
≥0, X ⊆ V , and

α ∈ [0, 1]. We call X an α-balanced separator if any connected component C
in G −X satisfies w(C) ≤ α · w(G).

Other definitions only consider unit node weights or require that X separates G
into two disjoint vertex sets A,B ⊆ V such that no edge between a vertex in A
and B exists, V =A⊍B ⊍X, and |A|, |B| ≤α · |V |. In the latter definition we call
X an α-balanced biseparator. Note that for α ≥ 2

3 both definitions intersect. We
consider the problem of finding balanced separators of minimum cardinality.

Definition 2. Let G = (V,E) be graph with node weights w ∈ RV
≥0 and α ∈ [0, 1].

The Minimum Balanced Separators problem is to find a set X ⊆V such that
X is an α-balanced separator and |X| is minimum.

Observe that Minimum Balanced Separators is NP-hard. By setting w ≡ 1
and α = 1

|V | we basically search for a minimum vertex cover, which is one of the
classical NP-hard problems.

Solving Minimum Balanced Separators is usually done by approxima-
tion algorithms [3] or even pseudo approximation algorithms with relaxed upper
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Trautmann and M. Gnägi (Eds.): OR 2021, LNOR, pp. 154–159, 2022.
https://doi.org/10.1007/978-3-031-08623-6_24
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bounds [9]. In [5] the authors found kernels for unweighted graphs. The problem
is also studied for different graph classes like planar graphs [10] or graphs with
maximum degree 3 [4]. In [13] they propose an exact approach to find minimum
balanced biseparators.

Balanced separators have a variety of applications. They are used in approx-
imation algorithms to find tree decompositions [7]. In many graph algorithms
based on the divide and conquer paradigm [11] finding balanced separators of
small size is important. Separators are also used to indicate bottlenecks in com-
munication systems [1].

Our work is motivated by covering or partitioning a graph with connected
subgraphs subject to lower and upper bounds. These problems occur in many
districting [12], waste collection [6] or toll control enforcement [2] problems and
can be solved by compact MIPs as presented in [8,14]. Enforcing connectivity
in MIPs is crucial and can be done by declaring vertices as roots from which
connected subgraphs are formed. A naive approach is to allow every vertex to
operate as a root. Since every considered root increases the number of variables
and constraints, we aim to minimize the set of roots. Here we can exploit the
lower weight bound L of each connected subgraph. If we set α = L−ε

w(G) (for ε

sufficiently small) then each connected subgraph S with w(S)≥L shares at least
one vertex with any α-balanced separator. Therefore, finding a minimum set of
roots reduces to Minimum Balanced Separators.

2 Compact Flow Formulation

Elijazyfer [8] proposes an exact method for finding α-balanced separators in edge
weighted graphs. For the sake of completeness we present the adapted version to
the node weighted case. The MIP is based on a flow formulation, which requires
directed graphs. To turn G into a directed graph we define A as the bidirected
arc set of the edges in E. The idea is to search for an arc partition such that
each component induces a connected subgraph and its cumulative weight does
not exceed α · w(G). The set of vertices occurring in more than one component
constitutes an α-balanced separator. Therefore, the objective is to minimize the
cardinality of this vertex set. We introduce variables x∈{0, 1}V for the indication
of the α-balanced separator, variables y∈{0, 1}V ×A for the arc partition, variables
q ∈ NV ×A

0 for flows ensuring connectivity of the components, and variables s ∈
{0, 1}V ×V and c ∈ {0, 1}V ×V to determine the weight of a component.

Constraints (1b) partition the arcs and (1c) force both directions of an arc
to be in the same component. In (1d) it is ensured that both endpoints of an arc
are in the same component as the arc. Lines (1e) and (1f) specify a flow to ensure
connectivity, for more details see [2]. If a vertex is in more than one subgraph
it has to be a separator, which is forced by (1g). The upper bound of each
component is set in (1h). The variable cr

v indicates if vertex v in the component
rooted at r is excluded in the cumulative weight. This is only possible if sr

v = 1
(1i) and v is a separator (1j).
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min
x,s,c,y,q

∑

v∈V

xv (1a)

s.t.
∑

r∈V

yr
a = 1 ∀ a ∈A, (1b)

yr
(u,v) = yr

(v,u) ∀ r ∈ V ∀ (u, v) ∈A, (1c)

2 · yr
(u,v) ≤ sr

u + sr
v ∀ r ∈ V ∀ (u, v) ∈A, (1d)

qr
a ≤ yr

a · (|V | − 1) ∀ r ∈ V ∀ a ∈A, (1e)
∑

v∈δ+(v)

qr
a −

∑

v∈δ−(v)

qr
a ≥ sr

v ∀ r ∈ V ∀ v ∈ V ∖ {r}, (1f)

1 + xv · (|V | − 1) ≥
∑

r∈V

sr
v ∀ v ∈ V, (1g)

∑

v∈V

(sr
v − cr

v) · wv ≤ α · w(G) ∀ r ∈ V. (1h)

cr
v ≤ sr

v ∀ r ∈ V ∀ v ∈ V, (1i)
cr
v ≤ xv ∀ r ∈ V ∀ v ∈ V. (1j)

We can see that the model contains a large number of variables and constraints
and uses many big M constraints. In particular, for the connectivity it considers
a flow emerging from every vertex, while our main motivation is to avoid this
necessity.

3 Exact Algorithm

We propose a different exact approach that circumvents these issues. While our
formulation still has a large number of constraints we present a separation routine
that dynamically generates necessary constraints. To this end, we define S as
the set of all connected subgraphs of G with a cumulative weight greater than
α · w(G). The master problem has the following form:

min
x

∑

v∈V

xv (2a)

s.t.
∑

v∈V (S)

xv ≥ 1 ∀ S ∈ S, (2b)

xv ∈ {0, 1} ∀ v ∈ V. (2c)

The variable xv indicates if v is part of the balanced separator. Our objective
is to minimize the cardinality of the balanced separator (2a). Constraints (2b)
ensure that each subgraph in S contains at least one separating vertex.

Model (2) solves Minimum Balanced Separators. Let X⊆V be a solution
of (2), then every connected component C in G − X fulfills w(C) ≤ α · w(G),
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otherwise X would not be feasible since C ∈S. Let X∗ be a solution of Minimum
Balanced Separators. Any subgraph S ∈S has to have a common vertex with
X∗, otherwise a connected component C ⊇ S in G − X∗ exists with w(C) > α ·
w(G). Therefore, model (2) is correct. Observe that this model is the well known
Hitting Set, which is defined as:

Definition 3. Let U be a set and S ⊆P(U). The Hitting Set problem is to find
a set X ⊆ U such that for any S ∈ S holds X ∩ S ≠ ∅ and |X| is minimum.

The algorithm starts by solving Hitting Set(V,∅) and adds iteratively
violated constraints, corresponding to the connected components exceeding the
upper bound.

Algorithm 1. Minimum Balanced Separators
Input: G = (V, E), w ∈ RV

≥0, α ∈ [0, 1]
Output: X ⊆ V s.t. X is an α-balanced separator and |X| is minimum.

1: S, X ← ∅
2: while in G −X exists a connected component C with w(C) > α · w(G) do
3: for all connected component C in G −X do
4: if w(C) > α · w(G) then
5: S ← S ∪ {V (C)}
6: X← Hitting Set(V, S)

7: return X

Proposition 1. Algorithm 1 is correct.

Proof. Let X∗ be a minimum α-balanced separator and X be a solution from
Algorithm 1. Since G −X contains no connected component C with w(C) > α ·
w(G), X is an α-balanced separator. If |X∗| < |X|, then X is not an optimal
solution of Hitting Set, because at any iteration X∗ is a feasible solution.

In each iteration one or more subgraphs from S are added to S, otherwise
we stop. Since at least one vertex of every subgraph in S is in X no subgraph
gets added twice. Therefore, and since |S| is finite, we conclude that Algorithm 1
terminates. ��
We have improved Algorithm 1 by only adding minimal connected subgraphs
that are violating the upper bound. Let S ′

⊆ S be the set of all connected sub-
graphs, such that no proper connected subgraph is in S as well. Let X ⊆V be the
current solution and C be a connected component in G−X with w(C)>α ·w(G).
We search for an arbitrary covering of C with subgraphs of S ′. This can be done
heuristically by a simple breadth first search (BFS) on C. Starting at any vertex
we construct a subgraph following the BFS. As soon as the current subgraph
violates the upper bound we start to construct a new subgraph from an uncov-
ered vertex. We achieve another improvement by bounding the objective value
of Hitting Set in each iteration. Let us say we are at the i-th iteration of the



158 W. Surau et al.

while loop. Let X ′
⊆V be the solution of Hitting Set in the previous iteration.

We know that the current solution X ⊆ V fulfills |X ′| ≤ |X|. Therefore, we can
add the constraint

∑
v∈V xv ≥ |X ′|.

4 Computational Study

We ran the experiments on machines equipped with Intel Xeon E3-1234 CPUs
with 3.7 GHz and 32 GB RAM. The code is written in Python 3.6 and to solve
MIPs Gurobi 9.1 is used. The time limit is set to 2 h.

(a) running time of RG (b) ratio between best objective from
MIP and RG

Fig. 1. Computational results of RG and MIP on tree lg (red), voronoi medium lg

(blue), and voronoi large lg (orange). The order of the instances is sorted indepen-
dently.

We consider test instances that resemble transit networks of different com-
plexity. All test instances are described and can be found in a GitHub repos-
itory1, and our instance-wise computational results in an online supplement2.
We only use the node weighted instances labeled with “ lg” (for line graph).
Inspired by a real world problem from [2], we set parameter α such that
α · w(G) = 100 − ε, where ε = 10−4. This leads to values of α ranging from 0.12 to
0.21. The instances are split into three groups, tree lg, voronoi medium lg, and
voronoi large lg. By MIP we denote model (1) and RG refers to Algorithm 1.

In Fig. 1a we see the running time of RG. The time limit is marked by a
horizontal dashed line. If an instance exceeds the time limit, the corresponding
bar ends with a dotted line. Our algorithm finds an optimal solution within
the time limit for all but 6 instances. Note that the scale is logarithmic and
the running times lie in a broad range, even within the same group. The MIP,
1 https://github.com/stephanschwartz/vertex covering with capacitated trees.
2 https://github.com/williamsurau/finding minimum balanced separators-an exact

approach.

https://github.com/stephanschwartz/vertex_covering_with_capacitated_trees
https://github.com/williamsurau/finding_minimum_balanced_separators-an_exact_approach
https://github.com/williamsurau/finding_minimum_balanced_separators-an_exact_approach
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on the other hand, exceeds the time limit on all 75 instances. Our algorithm
is not only much faster but also provides better solutions. In Fig. 1b we see
that the incumbent separator set in MIP after 2 h is significantly larger than
the optimal solution from RG. Again, the instances are ordered by ratio and
grouped. While MIP only finds an optimal solution for one instance it could not
find a corresponding dual bound better than 0. In fact, the dual bound for MIP
is still 0 on all instances after 7200 s. Moreover, we ran MIP on several selected
instances with a time limit of 24 h, and it was not able to close the gap for any
of those. Once again, this illustrates the superiority of the presented approach.
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Abstract. We present a linear programming approach based on a global
pricing function and feasible directions. It is embedded in the framework
of the simplex method through the use of external columns, which are
combinations of original columns. The global pricing function is com-
posed by the pricing function of the simplex method, which captures the
objective’s behaviour over the cone of feasible directions, and an exte-
rior penalty function that captures information about the topology of
the entire feasible set. Given a non-degenerate basic feasible solution,
a global pricing problem yields a non-edge improving feasible direction,
which is translated into an external column that enters the basis.

Preliminary computational results indicate that the global pricing
principle may have a significant advantage over the ordinary pricing of
the simplex method. Further, our new approach allows for several com-
putational strategies, which need to be investigated in future research in
order to explore its full potential.

Keywords: Linear program · Pricing · Feasible direction · External
pivoting

1 Derivation

Let the matrix A ∈ R
m×n, with n > m, have full rank, let the vectors b ∈ R

m

and c ∈ R
n, and consider the Linear Program (LP)

z� = min z = cTx

s.t. Ax = b

x ≥ 0.

Assume that LP is feasible and that a basic feasible solution is at hand. It
corresponds to a column partitioning A = (B,N), with B ∈ R

m×m being the
non-singular basis matrix and N ∈ R

m×(n−m) being the matrix of non-basic
columns. We further partition c = (cTB , cTN )T and x = (xT

B , xT
N )T. Then the basic

solution is xB = B−1b ≥ 0 and xN = 0, the complementary dual solution is
uT = cTBB−1, and the vector of reduced costs is c̄TN = cTN − uTN . Letting Im

denote the identity matrix of size m, problem LP is equivalent to
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Trautmann and M. Gnägi (Eds.): OR 2021, LNOR, pp. 160–166, 2022.
https://doi.org/10.1007/978-3-031-08623-6_25
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z� = min z(xN ) = cTBB−1b + c̄TNxN

s.t. ImxB + B−1NxN = B−1b

xB, xN ≥ 0,

or

z� = min z(xN ) = cTBB−1b + c̄TNxN (1)
s.t. xB(xN ), xN ≥ 0,

where xB(xN ) = B−1b − B−1NxN .
By further using the indicator function σ : Rm �→ R+ ∪{+∞}, with σ(ξ) = 0

if ξ ∈ R
m
+ and σ(ξ) = +∞ otherwise, problem LP can be equivalently stated as

z� = min
xN≥0

z(xN ) = cTBB−1b + c̄TNxN + σ(xB(xN )).

This problem is clearly computationally intractable. The indicator function is
therefore approximated with an exterior penalty function p : Rm �→ R+ which
is everywhere continuously differentiable and convex and takes values p(ξ) = 0
if ξ ∈ R

m
+ and p(ξ) > 0 otherwise. An example of such a function is the well-

known quadratic penalty function p(ξ) = ρ
2

∑m
i=1 (min {0, ξi})2, where ρ > 0 is

a penalty parameter.

Definition 1. Let u be the complementary dual solution to a basic feasible solu-
tion to LP and let p be a penalty function, as stated above. Then P : Rn−m �→ R

with P (xN ) = c̄TNxN + p(xB(xN )) is a global pricing function for LP. �	
The global pricing function includes the ordinary linear pricing function of the
simplex method, which captures the behaviour of the objective function over the
cone of feasible directions from the given extreme point of the feasible set, and
a nonlinear penalty function which captures approximate global information
about the topology of the feasible polyhedron of the problem. Based on the
global pricing function, we next define a pricing mechanism that takes global
information about the feasible set into account.

Definition 2. Let P be a global pricing function for LP. Then the global pricing
problem for LP is given by P ∗ = minxN≥0 P (xN ) = c̄TNxN + p(xB(xN )). �	
Note that P ∗ ≤ P (0) = 0. Further, since p(ξ) ≥ 0 for all ξ ∈ R

m and p(ξ) = 0
for all ξ ∈ R

m
+ , it follows that P ∗ = −∞ if and only if z∗ = −∞.

Our approach relies on four results. Their proofs are straightforward and
therefore omitted. We first establish that the global pricing problem is a relax-
ation of problem LP and that a non-degenerate basic feasible solution is optimal
in LP exactly when it also solves the global pricing problem.

Theorem 1. P ∗ + cTBB−1b ≤ z∗. �	
Theorem 2. A non-degenerate basic feasible solution to problem LP is optimal
if and only if 0 ∈ arg minxN≥0 P (xN ). �	
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Remark 1. In the non-degenerate case, optimality holds exactly when c̄N ≥ 0
and every optimal solution to the global pricing problem is non-zero exactly
when c̄N �≥ 0. In the degenerate case, optimality may hold even though c̄N �≥ 0
and the global pricing problem has a non-zero optimal solution. �	

The global pricing problem can be used to calculate a near-optimal solution
to problem LP, by using a sufficiently coercive penalty function, but we do not
consider this to be a viable computational strategy. It will instead be used for
computing a non-edge feasible direction of descent for LP. Such a direction can
be used within the framework of the simplex method by translating it into an
external column [2]; this is an auxiliary column that is a non-negative linear
combination of the original columns of LP. Our approach is related to the works
in [4] and [2], which both translate feasible non-edge descent directions into aux-
iliary variables. The feasible directions constructed in these works are however
not based on a direction-finding problem, but on ad hoc rules.

We next establish that, under non-degeneracy, any x∗
N ≥ 0 with P (x∗

N ) < 0
gives a feasible direction of descent for problem (1), and thus also for LP. We here
use the notation x(θ) = (xB(θ)T, xN (θ)T)T with xB(θ) = B−1b−θB−1Nx∗

N and
xN (θ) = θx∗

N for some given x∗
N ≥ 0.

Theorem 3. Let the basic feasible solution xB = B−1b and xN = 0 be non-
degenerate and non-optimal. Let x∗

N ≥ 0 be such that P (x∗
N ) < 0 and θ > 0. Then

c̄TNx∗
N < 0, the solution x(θ) has objective value cTBB−1b + θc̄TNx∗

N < cTBB−1b,
and it is feasible in LP if θ is sufficiently small. �	
Remark 2. Under degeneracy, a descent direction given by an x∗

N ≥ 0 with
P (x∗

N ) < 0 may be infeasible. Hence, in this case the situation is the same as in
the simplex method, where the direction corresponding to an entering variable
may be infeasible. �	
Theorem 4. Let the basic feasible solution xB = B−1b and xN = 0 be non-
degenerate and non-optimal, and let x∗

N ≥ 0 be such that P (x∗
N ) < 0. Assume

that
(
B−1Nx∗

N

)
i
> 0 holds for some i ∈ {1, . . . , m} and define

θ∗ = min
i∈{1,...,m}

{
(B−1b)i

(B−1Nx∗
N )i

:
(
B−1Nx∗

N

)
i
> 0

}

.

Then θ∗ > 0, x(θ) is feasible in LP if and only if θ ∈ [0, θ∗], θ∗ minimizes z(θx∗
N )

over θ ∈ [0, θ∗], and x(θ∗) is on the boundary of the feasible set of LP. �	
If P (x∗

N ) < 0 and
(
B−1Nx∗

N

)
i
≤ 0 holds for all i ∈ {1, . . . , m}, then LP clearly

has an unbounded optimal value. If the given basic feasible solution is non-
degenerate and non-optimal, and x∗

N is optimal in the global pricing problem,
then x∗

N is infeasible in LP and θ∗ < 1; this is because the penalty function p
is exterior and continuously differentiable. If the penalty function is sufficiently
coercive and the global pricing problem is solved to near-optimality, then θ∗ will
be close to one and the solution x(θ∗) will be near-optimal.
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The solution x(θ∗) is on the boundary of the feasible set but typically not
an extreme point of this set, and therefore not associated with a basic feasible
solution for LP. To be able to remain within the framework of the simplex
method, the feasible descent direction is therefore expressed as a non-negative
linear combination of the original columns in LP, called an external column [2].

For an x∗
N ≥ 0 with P (x∗

N ) < 0, the external column is given by cn+1 = cTNx∗
N

and an+1 = Nx∗
N , and LP is replaced by the augmented, but equivalent, problem

z� = min z = cTBB−1b + c̄TNxN + c̄n+1xn+1

s.t. ImxB + B−1NxN + B−1an+1xn+1 = B−1b

xB , xN , xn+1 ≥ 0,

where c̄n+1 = cn+1−uTan+1 = cTNx∗
N −uTNx∗

N = c̄TNx∗
N ≤ P (x∗

N ) < 0 and xn+1

is the external variable. Letting the external column enter the basis clearly cor-
responds to following the feasible direction in problem LP. Further, the external
variable will then take the value θ∗. If the external column is basic in an opti-
mal solution to the augmented problem, then an optimal solution to the original
problem can easily be recovered [2].

2 Numerical Illustrations

To make a first evaluation of the potential advantage of using global pricing
and external columns, we made a straightforward Matlab implementation of
the revised simplex method. Since pivots on external columns lead to solutions
that are not extreme points in the feasible set, such pivots are combined with
ordinary simplex pivots. We choose to simply generate a single external column
at the initial basic feasible solution, and thereafter use the standard simplex
method with the Dantzig entering variable criterion. The test problem instances
used are randomly generated as described in [2]; they are of maximization type,
have positive objective coefficients, and are inequality-constrained with positive
right-hand-sides. The simplex method is started with a slack basis.

The global pricing problem can produce external columns that are of high
quality compared to the non-basic columns, and thereby reduce the number
of simplex iterations, but it is computationally demanding. For larger problem
instances it should therefore be of interest to consider restricted versions of the
global pricing problem. Letting N be the index set of the non-basic columns, we
consider a J ⊆ N and define xJ = (xj)j∈J , c̄J = (c̄j)j∈J , and NJ = (aj)j∈J . The
restricted global pricing problem is minxJ≥0 P (xJ) = c̄TJ xJ + p(xB(xJ)), where
xB(xJ ) = B−1b − B−1NJxJ . (The restricted problem is clearly not certain to
provide a lower bound to the optimal value of problem LP; cf. Theorem 1).
The computational cost of finding the external column by solving the restricted
global pricing problem and the reduction in simplex computations that it may
lead to will clearly depend of the size of J and how it is generated.

The set J is selected in two ways, called Dantzig selection and steepest-edge
selection. Letting k = |J |, they select the k best non-basic columns accord-
ing to the Dantzig and the steepest-edge (e.g., [3]) entering variable criteria,
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respectively. The latter selection is more computationally expensive but should
provide the restricted global pricing problem with a better collection of non-basic
columns. The pricing problem is formulated as a quadratic program (by using
some auxiliary variables) and solved by the built-in Matlab solver quadprog.

We compare the standard simplex method and our global pricing strategy for
various values of k and the two selection criteria. Three instances, with 1000 con-
straints and 2000, 3000, and 4000 variables, respectively, are used. Their opti-
mal basic solutions include 335, 408, and 428 original variables, respectively. We
compare the number of iterations and the runtimes needed to reach optimality
for ρ ∈ {10−8, 10−6, 10−4}. (The values of ρ of interest are small because of the
uneven scalings of the objective and constraints in these test instances). Figure 1
shows convergence histories for the instance of size 1000 × 2000 for the choice
ρ = 10−6, when using the two selection criteria and different values of k, as per-
centages of the number of original columns. The results for the three instances,
for the same values of k as used above, are shown in Table 1. We have also tried
to use k > 0.50 × n, but the results then obtained are very close to those for
k = 0.50 × n.
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Fig. 1. Objective values versus simplex iterations and runtimes

We first note that the value of the penalty parameter is not very crucial
for the overall performance of the global pricing strategy; even relatively small
values yield external columns of sufficient quality to considerably reduce itera-
tions and runtimes. We further note that the steepest-edge criterion mostly gives
better performance than the Dantzig criterion, which is as expected, and that
the most important factor for the overall performance is the value of k. Exter-
nal columns with highest quality are typically obtained when using a relatively
large penalty parameter value, the steepest-edge selection criterion, and a large
enough restricted global pricing problem. Further, for external columns of high
quality the value of the maximal step θ∗ is very close to one, and such columns
remain in the basis until the late simplex iterations.
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Table 1. Simplex iterations and runtimes. Here, (m,n) is the test problem size and
eiter is the number of iterations with the external column in the basis

Size Std simplex Parameters Dantzig selection Steepest-edge selection

m n iterations time k/n (%) ρ iterations time eiter θ∗ iterations time eiter θ∗

1000 2000 35,181 410.2 5 10−8 15,811 173.5 1,869 0.742308 15,383 170.0 2,363 0.730709

5 10−6 17,386 192.3 2,291 0.989642 16,225 180.0 2,473 0.991153

5 10−4 19,380 217.6 2,528 0.999895 17,169 193.1 2,354 0.999914

10 10−8 14,961 167.2 2,225 0.750753 8,804 101.4 2,123 0.781021

10 10−6 12,907 146.4 2,483 0.991447 10,977 124.2 2,340 0.993612

10 10−4 11,832 137.8 2,285 0.999913 10,064 117.6 2,245 0.999935

25 10−8 5,628 66.7 1,869 0.829007 5,847 66.8 1,942 0.824768

25 10−6 3,978 47.0 1,970 0.995734 4,281 52.7 1,921 0.995644

25 10−4 4,306 52.1 2,079 0.999957 3,861 47.5 2,181 0.999956

50 10−8 5,536 77.2 1,895 0.829990 5,536 76.6 1,895 0.829990

50 10−6 2,125 38.5 1,622 0.996242 1,802 34.2 1,759 0.996211

50 10−4 2,313 40.0 1,840 0.999962 1,789 35.4 1,762 0.999962

1000 3000 47,647 762.1 5 10−8 20,154 300.9 3,175 0.585040 15,364 220.9 3,087 0.836747

5 10−6 20,471 304.5 3,117 0.997036 18,273 262.6 3,043 0.996217

5 10−4 18,385 271.3 2,707 0.999970 20,712 309.0 3,436 0.999961

10 10−8 13,318 194.2 2,951 0.874610 9,228 131.1 3,022 0.882759

10 10−6 12,944 188.2 3,367 0.997960 10,961 157.2 3,069 0.997723

10 10−4 13,286 195.3 3,028 0.999980 9,995 143.0 3,067 0.999977

25 10−8 4,514 65.8 2,418 0.914427 4,773 68.9 2,528 0.915966

25 10−6 4,222 63.2 2,567 0.998881 3,282 49.6 2,464 0.998833

25 10−4 4,141 62.7 2,824 0.999989 3,908 58.2 2,801 0.999988

50 10−8 4,199 68.8 2,430 0.918132 4,199 68.5 2,430 0.918132

50 10−6 2,349 45.2 2,334 0.998820 2,349 46.1 2,334 0.998820

50 10−4 2,337 46.9 2,336 0.999988 2,337 48.1 2,336 0.999988

1000 4000 57,572 1,126.7 5 10−8 23,919 435.8 3,928 0.912434 20,648 374.8 3,817 0.908613

5 10−6 25,337 464.1 3,930 0.998762 25,115 462.6 3,962 0.998729

5 10−4 26,017 477.1 3,997 0.999988 22,753 415.9 3,693 0.999987

10 10−8 11,928 211.4 3,431 0.929075 9,998 174.9 3,355 0.933425

10 10−6 12,960 211.6 3,848 0.998898 11,309 198.7 3,641 0.999058

10 10−4 15,180 267.7 4,167 0.999989 12,808 226.1 3,884 0.999991

25 10−8 5,379 97.4 2,921 0.947856 5,640 104.6 2,996 0.947902

25 10−6 4,243 80.4 3,222 0.999363 3,927 76.2 2,946 0.999365

25 10−4 4,074 77.8 3,033 0.999994 3,817 75.1 3,004 0.999993

50 10−8 5,834 112.9 3,175 0.948566 5,834 113.5 3,175 0.948566

50 10−6 2,810 60.4 2,793 0.999309 2,810 65.4 2,793 0.999309

50 10−4 2,880 64.4 2,879 0.999993 2,880 65.1 2,879 0.999993

3 Conclusions

Our results indicate that the use of the global pricing principle and external
columns have the potential to considerably improve the performance of the sim-
plex method with respect to both iterations and computing times; these findings
demand for continued research. This includes questions regarding how often
external columns should be generated, the choice of size of the restricted global
pricing problem, tailored algorithms for this problem (e.g. based on the projected
Newton method [1]), and the accuracy to which it should be solved. Further,
the global pricing problem must be modified to properly handle degeneracy.
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Finally, the strategy of using the global pricing function and external columns
should be generalized to a column generation setting.
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Abstract. We model the cardinality-constrained portfolio problem
using semidefinite matrices and investigate a relaxation using semidefi-
nite programming. Experimental results show that this relaxation gener-
ates tight lower bounds and even achieves optimality on many instances
from the literature. This underlines the modeling power of semidefinite
programming for mixed-integer quadratic problems.

Keywords: Semidefinite programming · Cardinality-constrained
problem · Mixed-integer nonlinear programming

1 Introduction

The cardinality-constrained optimization problem is widely applied in areas of
finance such as the portfolio optimization problem where the number of stocks
to be traded is bounded. It is even NP-complete to test the feasibility of an
optimization problem with cardinality constraints [1].

There are various previous studies about cardinality-constrained problems.
Frangioni and Gentile [4] and Zheng et al. [11] work with the approaches that
use diagonalizations and perspective cuts to improve the continuous relaxation
bound in order to deal with the cardinality-constrained problems with lower
bounds for nonzero stocks. Burdakov et al. [3] have proposed nonconvex relax-
ations that still have the same solutions (in the sense of global minima), and
then tools for minimization problems in continuous variables are applied to solve
the relaxations. This problem also lies in the family of quadratic programming
problems with complementary constraints, where Braun and Mitchell [2] have
introduced heuristics via semidefinite programming to generate upper bounds
for this problem.

Semidefinite programming belongs to the field of convex optimization. A
semidefinite programming (SDP) problem can be solved in polynomial time.
SDP has shown advantages in approximating integer or mixed-integer nonlinear
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innovation programme under the Marie Sk�lodowska-Curie grant agreement MINOA No
764759.
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programming problems. In particular, quadratic problems can be quite naturally
modeled by semidefinite programming. For quadratically constrained quadratic
programming (QCQP), the optimal solution of the SDP relaxation is tight when
the QCQP problem is convex [10]. Interior point methods (IPMs) are commonly
used to solve SDP problems and implemented in SDP solvers such as Mosek
[9]. IPMs can solve SDP problems to high precision as long as the number of
constraints and the size of the matrices is reasonable.

Notation. The notation [n] stands for the set of integers {1, . . . , n}. We denote
by Sn the set of symmetric n × n matrices. The operation diag(M) maps the
diagonal entries of matrix M to a vector. We denote by 〈·, ·〉 the trace inner
product. That is, for any M,N ∈ R

m×n, we define 〈M,N〉 := trace(N�M). We
write X � Y if matrix X − Y is positive semidefinite.

2 The Cardinality-Constrained Portfolio Optimization
Problem

Given n stocks and the covariance matrix Q, a profit vector μ and the minimum
expected return ρ. The objective is to find a portfolio that minimizes the risk
while a minimum expected return is achieved. A mathematical programming
formulation is as follows.

min x�Qx

s.t. μ�x ≥ ρ,

e�x = 1,

0 ≤ xi ≤ ui, ∀i ∈ [n],

(1)

where x indicates the weights for each stock of a portfolio which is nonnegative
and bounded by u, x�Qx is the standard deviation of the portfolio, which is
used to measure the risk of that portfolio, and μ�x is the expected return.

One commonly used constraint for a portfolio problem is the cardinality
constraint, in other words, the maximum number of stocks to be chosen.

min x�Qx

s.t. μ�x ≥ ρ,

e�x = 1,

0 ≤ xi ≤ ui, ∀i ∈ [n],
Card(x) ≤ ℵ,

(2)

where Card(x) indicates the number of nonzero components of x.
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Problem (2) can be formed as a mixed-integer nonlinear programming prob-
lem as follows [3].

min
x,y

x�Qx

s.t. μ�x ≥ ρ,

e�x ≤ 1,

e�y ≥ n − ℵ,

xiyi = 0, ∀i ∈ [n],
yi ∈ {0, 1}, ∀i ∈ [n],
0 ≤ xi ≤ ui, ∀i ∈ [n],

(3)

where the slack variables y ∈ {0, 1}n are integer and the complementary con-
straints xiyi = 0 relates x and y. Hence, xi and yi cannot be both positive, and
the constraint e�y ≥ n − ℵ requires that y has at least n − ℵ nonzero elements,
in return, then x has at most ℵ nonzero elements.

This problem is NP-hard [7]. When ℵ is small, an optimal solution can be
found easily by global search, while it gets more complicated to solve when ℵ
increases.

3 A Semidefinite Programming Relaxation

Before introducing a relaxation using semidefinite programming, note that in
problem (3) we have x�Qx = 〈x,Qx〉 = 〈Q,xx�〉. Moreover, yi ∈ {0, 1} implies
y2
i = yi and hence the diagonal of matrix yy� must be equal to y. The condition

xiyi = 0 translates to the diagonal of matrix xy� being 0.
We now introduce matrices X and Y , substitute the term xx� by the sym-

metric matrix X, i.e., X = xx�, and relax this condition to X � xx�. Similarly,
we relax Y = yy� to Y � yy�.

Then, with the Schur complement we have

X � xx�, Y � yy� ⇐⇒ ∃Z ∈ Sn s.t.

⎛
⎝

1 x� y�

x X Z
y Z� Y

⎞
⎠ � 0.

Hence, the final SDP relaxation is given as

min
X̄

〈Q,X〉
s.t. μ�x ≥ ρ,

e�x ≤ 1,

e�y ≥ n − ℵ,

diag(Z) = 0,

diag(Y ) = y,

0 ≤ xi ≤ ui, ∀i ∈ [n],
X̄ � 0,

(4)
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where X̄ =

⎛
⎝

1 x� y�

x X Z�

y Z Y

⎞
⎠. The positive semidefinite matrix in (4) is of dimen-

sion 2n + 1.
Madani et al. [8] proved that any polynomial optimization problem can be

reformulated as a quadratically constrained quadratic problem (with certain
sparsity properties) with a corresponding SDP relaxation having on optimal
solution with rank at most two. Therefore, we can expect that the SDP relax-
ation (4) will yield strong bounds. In the next section we will evaluate the quality
of the bounds of the SDP relaxation on problem (3).

4 Numerical Results

We performed numerical experiments in order to evaluate the quality of the lower
bounds that we obtain from the SDP relaxation (4). We used python and ran the
tests on a ThinkPad-X1-Carbon-6th with 8 Intel(R) Core(TM) i7-8550U CPU
@ 1.80 GHz.

The model data Q, μ, ρ, and upper bounds u are from the instances in the
paper of Frangioni and Gentile [4] and can be found at the website [5].

We use Gurobi 9.1.2 [6] to solve the MIQP problem (3). We report the gap
between the upper and lower bounds found by Gurobi after a time limit of 90 s.
The lower bounds from the SDP relaxation (4) are obtained by Mosek [9].

The code can be downloaded from https://github.com/shudianzhao/cardina
lity-SDP.

Table 1. Average results for Gurobi solving (3) within a time limit of 90 s and Mosek
for solving (4) on data with n ∈ {200, 300, 400}; 30 instances are tested for each pair
of n and ℵ

ℵ n Gap (MIQP (3)) Gap (SDP (4))

Min % Avg % Max % Min % Avg % Max % Time (s)

5 200 63.92 84.05 91.05 0.00 0.02 0.23 4.05

300 0.00 86004 93.55 0.00 0.03 0.48 13.27

400 58.81 91.62 95.09 0.00 0.00 0.03 30.11

10 200 63.40 75.78 83.98 0.00 0.02 0.15 4.53

300 13.71 80.30 88.25 0.00 0.02 0.47 12.30

400 56.62 85.83 90.57 0.00 0.01 0.05 27.92

20 200 4163 59.38 70.53 0.00 0.01 0.06 4.25

300 0.00 67.37 78.60 0.00 0.01 0.13 12.05

400 33.21 74.85 82.74 0.00 0.01 0.03 27.74

Table 1 shows the overall performance on instances orln-005- and pardn-005-
with n ∈ {200, 300, 400} and ℵ ∈ {5, 10, 20}. We test 30 instances for each pair
of n and ℵ.

https://github.com/shudianzhao/cardinality-SDP
https://github.com/shudianzhao/cardinality-SDP
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The optimality gap is measured as difference between the lower bound (lb)
and the best found upper bounds (ub). We compute the relative gap as (ub −
lb)/ub, where the upper bounds ub are found by Gurobi and the lower bounds
lb are obtained from relaxations solved in Gurobi and the SDP relaxation (4)
solved by Mosek.

When the time limit is reached, the gap for Gurobi solving (3) is typically
between 60% and 80%. There is only one instance, namely orl300-05-i, that can
be solved by Gurobi within 90 s for ℵ ∈ {5, 20}.

In contrast to that, the lower bounds from the SDP relaxation (4) are excep-
tional. The gaps between the SDP lower bounds and the best upper bounds
found by Gurobi are closed for most of the instances.

Actually, 96% of the SDP solutions have rank one, and hence the optimal
solutions for problem (3) can be built from it. The computation times for solving
the SDP problems are less than 40 s, even for large instances where n = 400 and
hence the size of the SDP matrix is 801.

These results are another evidence of the strong modeling power of semidef-
inite programming, in particular when quadratic functions and binary variables
are present.

5 Conclusion

Numerical results illustrate the strong modeling power of semidefinite program-
ming for solving the cardinality-constrained portfolio optimization problem. This
shows a promising direction for solving combinatorial optimization problems
arising from the area of finance.
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Abstract. As power generators shift from inert power plants to more
volatile renewable sources of electricity, variable loads allow energy inten-
sive businesses to monetize their flexibility in the electricity market. In
the aluminum industry, engineering innovations have enabled such flexi-
bility. A virtual battery can balance changing power inflows over a period
of a few days. We have modeled the optimization problem of when and
how to use this flexibility on the day-ahead energy market based on
hourly price forecasts as a linear program. Besides the expected rev-
enue, we also consider technical costs which occur in an unsteady energy
schedule. In order to account for realistic trading settings, we embed the
optimization problem in a daily rolling horizon planning framework. In
this work, we generalize the specific planning problem to a broader range
of applications and analyze the main influences on a profitable trading
strategy. For a typical parametrization, we present a constructive heuris-
tic that does not require an LP-Solver.

1 Introduction

In the past, the majority of power plants was inert and the variation of loads
was expensive. As a result, grid operators were keen for energy-intensive indus-
try to keep their load constant. However, due to the steady expansion of renew-
able energies as part of the energy transition, more volatile and uncontrollable
generators such as wind or solar power plants will dominate the power supply.
Industries that are able to flexibilize their loads according to price signals (which
is known as demand side management (DSM1)) assist the grid stability, which
is rewarded by yielding profits on the various energy markets.

While energy is traded on different future markets, in this work, we solely
focus on the German DA market at the European Power Exchange (EPEX SPOT
SE), which is a single auction with hourly products and a market clearing prices
that all successful bidders will pay or receive, respectively. While more complex
bids are possible (the detailed rule set can be found in [2]), for the rest of this

1 For a general introduction to DSM, we refer to a survey by Zhang and Grossmann [1].
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work, we only consider the common strategy of mere singular stepwise single-
contract orders2 bids in our model.

However, the optimal trading problem on the DA market is a complex prob-
lem, which is well-studied in its general form (e.g. see [3]).

The TRIMET Aluminium SE has successfully flexibilized their formerly
steady process by enabling the variation of loads: the virtual energy storage
allows for balancing loads to a certain extent [4]. However, calling this flexibility
comes at the price of higher maintenance costs and reduced process efficiency.
The trade optimization of this setting has been studied in an offline approach
in [5].

Unlike related research for this setting [5], we will explore the profit potential
of this setting in a rolling horizon approach, and, more importantly, we will
generalize the specific problem and perform a parameter study for alternative
industrial processes with similar conditions. For the sake of brevity, we neglect
the explicit consideration of price risks here, however, their existence plays a
major role in the long term profit, which is analyzed in the rolling horizon
framework.

2 Model

We consider a general process with a time-invariant baseline load of b, from
which the load may deviate by lt, ut within an interval [b − lt, b + ut] at hour t.
Whenever the actual load is above (below) the baseline value, the virtual storage
(also referred to as battery) is charged (discharged) proportionally. The battery
has a given capacity range of [κmin, κmax] which must not be exceeded. We
assume switching costs (emissions, maintenance fees, process complexity) csw

that are proportional to the absolute change in load. Further, the decrease in
efficiency is modeled via costs cef proportional to the absolute charging level
deviation of the battery w.r.t. to its balanced base level 0.

Given a price prognosis [pt]Tt=1 for a certain lookahead time of T hours, trans-
action costs proportional to the traded volume θ, and an initial battery load of κ0,
we model the deterministic problem by the linear program LP 1 (Fig. 1).

Here, vt is the volume of power that is bought (if positive) or sold (if negative)
at hour t. Since we assume a liquid market, prices for buying and selling are
symmetric. Equations (1c) model the loss or profit of the trades reduced by the
transaction costs. Equations (1d) ensure that the battery level remains within
the feasible capacity limits. Equations (1e) is the optional constraint to force
the battery level at the end of the planning time back to the base level (L = 0)
or another predefined level L. Equations (1f) model the efficiency cost induced
by hours where the battery is not on the base level. Equations (1g) model the
switching costs caused by changing load levels. In order to resolve the absolute
values, due to the structure of the equations, one can reformulate the equations
as linear inequalities with positive and negative parts.
2 In this way, bidding prices will be low/high enough in order to accept all reasonable

clearing prices with one price-invariant amount.
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min Ctrd + Ceff + Cswt (1a)

s.t. lt ≤ vt ≤ ut ∀t = 1, . . . , T (1b)
T∑

t=1

(ptvt + θ |vt|) ≤ Ctrd (1c)

κmin ≤ κ0 +
k∑

t=1

(vt − b) ≤ κmax ∀k = 1, . . . , T (1d)

[
T∑

t=1

(vt − b) = L

]
(1e)

T∑

t=1

(
cef

∣∣∣∣∣

t∑

k=1

(vk − b)

∣∣∣∣∣

)
≤ Ceff (1f)

csw

T−1∑

t=1

|vt − vt+1| ≤ Cswt (1g)

vt ∈ R (1h)

Fig. 1. Linear program LP 1 for the deterministic optimal trading problem for a fixed
lookahead.

3 Methods

In the basic approach, to which we restrict ourselves here, we solve problem LP 1
with an LP-solver3 on a rolling basis: every day, we calculate an optimal schedule
for a fixed planning period with a daily updated price forecast. However, only
the bids of the first day are actually set on the day-ahead market. The remaining
parts of the solution are discarded as they only serve as a preview of the relative
development of the price level to better evaluate the prices of the next day. Note
that the initial battery level gets updated every day with the first day’s final level.
Also note that in general there is no proof of optimality or competitiveness for
the resulting schedule after a number of iterations with respect to the ex post
offline schedule for the total timespan, even if the price forecasts never change.

3.1 Quantile Heuristic

In our setting, the trading profit dominates the technical costs. Note that oth-
erwise, remaining at the baseline and not trading at all would be a dominant
strategy. Analyzing the trading schedules in detail reveals a hence unsurpris-
ing pattern: although the trading amount is modeled as a continuous variable,
almost all equations (1b) become tight in an optimal solution.

We further observe that the optimal solution contains frequent intervals over
which a simple threshold price divides the hours into selling or buying hours.

3 We use Gurobi 9.0.
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Neglecting the technical costs, we exploit this behavior in the so-called quantile
heuristic. For this, let κ0 be the current battery level and rbat = κ0−κmin

κmax−κmin
the ratio of the battery fill level. As a threshold, we now use the rbat-quantile
of the hourly price forecasts over the next seven days. In an hour with price
forecast above the threshold, we buy the maximum possible volume (under the
given technical restrictions). If the forecast is below the threshold, we sell the
maximum feasible volume. The idea behind this approach is that if we already
are at a high battery level, we want to use the remaining capacity to buy in the
hours that yield highest expected profits. For example, if the battery is already
80% charged, we require our price forecast to be among the lowest 20% to buy.

3.2 Price Forecasts

In the present study, we use our own machine learning based forecast model
for the generation of electricity price prognosis. We train a neural network with
five years of electricity price data as well as forecasts of wind and solar energy
infeed. Analogous to meteorological forecasts, for each forecast, we evaluate the
model on a daily updated ensemble forecast of the renewable energy shares and
compute their mean value. For more details on our model see [6].

4 Results

In the following, we will give a brief idea on how the choice of parameters and
strategies influences the longterm profit on the German DA market. We first
specify a reference scenario as in Table 1. Note that the values are inspired by
the TRIMET use case, but do not reflect their real cost structure.

Table 1. Baseline scenario parameter settings.

Parameter Variable Value Unit

Flexibility [lt, ut] [68,112] MW

Initial battery level κ0 0 MWh

Battery capacity [κmin, κmax] [−1056,1056] MWh

Baseline load b 90 MW

Prognosis prices [[pi
t]
14
t=1]

n
i=1 forecast EUR

Efficiency costs csw 0.1 EUR

Switching costs cef 1 EUR

Transaction costs θ 0.05 EUR

Number of iterations n 182 -

We use the time period of 2020-01-01 until 2020-06-30 for the following
results. The evolution of profit for this scenario is plotted in Fig. 2 in com-
parison to the profits that are achieved by the quantile heuristic from Sect. 3.1.
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Fig. 2. Comparison of accumulated profit over six months for different algorithmic
approaches. The two scenarios with real prices only serve to estimate the theoretical
optimum, since these are not yet known at the time of the decision.

We evaluate the accumulated net profit as the sum of hourly trade profit reduced
by technical costs on the realized clearing prices. Analogously, the accumulated
predicted net profit is calculated on the first days of the respective price forecasts.
To simplify comparability, we state all profits relative to the realized profit of
the baseline scenario. Starting from this scenario, we vary one of the following

– the lookahead from 1 to 14 days in steps of 1 day.
– the flexibility from [89, 91] MW to [65, 115] MW in 1 MW steps.
– the battery size from [0, 0] MWh to [−1450, 1450] MWh in 50 MWh steps.
– the efficiency costs from 0 EUR to 1 EUR in steps of 0.02 EUR.
– the switching costs from 0 EUR to 10 EUR in steps of 0.2 EUR.

We also distinguish three battery strategies, namely AllDev, NoDev, and FixDev,
which refer to omitting the battery restrictions (1e), setting L = 0, or L = κ0,
respectively. Note that the value of κ0 changes in every iteration. Hence, for the
strategy FixDev, one always tries to return to the start level of the battery, while
in the NoDev scenario, one always aims for returning to the baseload level. The
results can be seen in Fig. 3. Note that the profit hardly differs for the individual
battery strategies for a lookahead of at least seven days. Since we keep the value
of 14 days as a fixed value in all other parameter studies, we restrict ourselves
only to the AllDev scenario there for the sake of clarity. The study shows that
the accumulated profit based on the solution evaluation on the realized prices
(darker blue) is not too far away from the ones evaluated on the concatenated
prognosis prices of the respective next day prognosis (lighter blue), but the latter
clearly tends to be too optimistic.

5 Discussion and Outlook

As displayed in Fig. 3, it is crucial to have a lookahead period that covers at least
a full week in order to account for weekly patterns. However, with very large
lookaheads, the profit will not increase anymore due to the inaccuracy of the
forecasts. Similarly, the battery capacity is only a bottleneck if it is very small
with respect to the flexibility. A further increase of battery capacity does not
help, since the process off the baseline is rather expensive due to the efficiency
costs. In the analyzed spectrum, the flexibility range has a linear effect on the
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Fig. 3. Analysis of the change in profitability for parameter variations (cet. par.), w.r.t.
the baseline scenario setting over six months.

profit. The technical cost parameters have different effects on the net profit.
Although the switch costs are much higher, the effect on the net profit is much
less. Due to the lack of space, we do not discuss the explicit consideration of
price risk due to incorrect forecasts nor the combined optimization on different
markets (cross-market optimization) nor the multi-objective optimization of the
individual cost factors here. However, we do currently study all of these aspects
in order to increase the practical value of the model.
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Abstract. In the transition towards a pure hydrogen infrastructure,
repurposing the existing natural gas infrastructure is considered. In
this study, the maximal technically feasible injection of hydrogen into
the existing German natural gas transmission network is analysed with
respect to regulatory limits regarding the gas quality. We propose a tran-
sient tracking model based on the general pooling problem including
linepack. The analysis is conducted using real-world hourly gas flow data
on a network of about 10,000 km length.
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1 Introduction

With its National Hydrogen Strategy (NHS) [1], the German government defines
a first general framework for a future hydrogen economy. In the transition phase
towards a pure hydrogen infrastructure, there is a growing interest in blending
hydrogen into the existing natural gas grid, ensuring a guaranteed outlet, and
incentivizing hydrogen production [2]. To determine the maximal feasible amount
of hydrogen that can be injected into the existing natural gas grid, we propose
a transient hydrogen propagation model based on the pooling problem [3], that
takes different regulatory and technical limits into account. The assessment is
performed a posteriori on measured hourly gas flow data of one of Europe’s
largest transmission network operators.

2 Hydrogen Propagation Model

Let G = (V,A) be a directed graph representing the gas network, where V
denotes the set of nodes and A the set of arcs. The set of nodes V consists of entry
nodes V +, exit nodes V −, and inner nodes V 0, i.e. V = V +∪̇V −∪̇ V 0. The set of
arcs A consists of the set of pipelines Api ⊆ A and the set of non-pipe elements
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Anp := A\Api. Moreover, we further distinguish the set of compressing arcs,
a subset of the non-pipe elements, i.e. Acs ⊆ Anp. For a discrete-time horizon
T := {t1, t2, . . . , tk}, where τt = tt − tt−1 denotes the elapsed time between two
subsequent time steps t and t − 1, measured gas flow data is provided for each
time step t ∈ T . In particular, each entry i ∈ V + has a given inflow si,t ∈ R≥0,
and each exit j ∈ V − has a given outflow dj,t ∈ R≥0 for each time step t ∈ T . For
each pipeline a = (l, r) ∈ Api, the flow into a at l and out of a at r is given and
denoted by f l

a,t, fr
a,t ∈ R at time t ∈ T , respectively. The amount of gas stored

in each pipeline a ∈ Api, also known as linepack, is denoted by Fa,t for each time
step t ∈ T . For each non-pipe element a ∈ Anp, a single flow value fa,t is given
at time t ∈ T . Let Aind

i be the set of arcs a ∈ A incident to node i. W.l.o.g, we
assume that each entry i ∈ V + has exactly one adjacent arc with flow greater or
equal than zero. Additionally, a subset of entry nodes V +

H2
⊆ V + is selected where

hydrogen injection is possible. The variable w̃i,t ∈ [0, qUB
i,t ] denotes the hydrogen

mass fraction for each node i ∈ V at time t ∈ T , where qUB
i,t ∈ [0, 1] represents an

upper bound on it. Additionally, let wa,t, w
l
a,t, w

r
a,t ∈ [0, 1] denote the hydrogen

mass fraction in the pipe, at l, and at r for each pipeline a = (l, r) ∈ Api at time
t ∈ T , respectively. Throughout this paper, the term fraction refers to the mass
fraction. However, it is easily translated to the volume fraction (vol.-%), which
is usually used to describe regulatory and technical limits, and vice versa.

2.1 Mixing in Nodes

The mixing process is described as follows: The hydrogen fraction at a node is
the amount of hydrogen flowing into the node divided by the total amount of
gas entering it. The amount of hydrogen flowing into a node i is given by the
product of the flow f in

i,a,t and its hydrogen fraction win
i,a,t into node i over arc a

at time step t. In particular, we formulate the mixing process as follows

w̃i,t

∑

a∈Aind
i

f in
i,a,t =

∑

a∈Aind
i

win
i,a,tf

in
i,a,t ∀i ∈ V \V +,∀t ∈ T (1)

f in
i,a,t =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

fa,t, a = (j, i) ∈ Anp ∧ fa,t > 0
−fa,t, a = (i, j) ∈ Anp ∧ fa,t < 0
f i

a,t, a = (j, i) ∈ Api ∧ f i
a,t > 0

−f i
a,t, a = (i, j) ∈ Api ∧ f i

a,t < 0
0, otherwise

∀a ∈ Aind
i (2)

win
i,a,t =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

w̃j,t, a = (j, i) ∈ Anp ∧ fa,t > 0
w̃j,t, a = (i, j) ∈ Anp ∧ fa,t < 0
wi

a,t, a = (j, i) ∈ Api ∧ f i
a,t > 0

wi
a,t, a = (i, j) ∈ Api ∧ f i

a,t < 0
0, otherwise.

∀a ∈ Aind
i (3)
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2.2 Mixing and Linepack in Pipelines

To keep track of the amount of hydrogen in the network over time, we need to
consider the amount of gas stored in each pipeline a = (l, r) ∈ Api, i.e., the
linepack. We assume instant mixing, i.e., the hydrogen fraction is always equal
over the whole length of the pipeline and adapts immediately. In particular, the
hydrogen fraction in the pipeline is described by

wa,tFa,t = wa,t−1Fa,t−1 + wl
a,tf

l
a,tτt − wr

a,tf
r
a,tτt ∀a = (l, r) ∈ Api,∀t ∈ T (4)

wr
a,t =

{
wa,t, fr

a,t ≥ 0
w̃r,t, fr

a,t < 0
∀a = (l, r) ∈ Api,∀t ∈ T (5)

wl
a,t =

{
w̃l,t, f l

a,t ≥ 0
wa,t, f l

a,t < 0
∀a = (l, r) ∈ Api,∀t ∈ T, (6)

where (4) describes the change of linepack over time as well as the mixing process
in the pipeline and (5) and (6) consider the flow direction w.r.t the hydrogen
fraction at l and r of pipe a = (l, r) ∈ Api.

2.3 Objective and Complete Model

As our goal is to assess the hydrogen capacity of the gas network, the objective
is to maximize the technically feasible hydrogen injection, i.e. hydrogen fraction
w̃ multiplied by the gas inflow s, for the given set of entry nodes V +

H2
⊆ V +

over the considered time horizon T . However, to obtain a smooth operation, we
introduce additional weights μi,t and penalize changes in the hydrogen fraction
at i ∈ V +

H2
between t−1 and t. Hence, our hydrogen propagation model is defined

as the following linear program

HPM: max
w̃,w

∑

t∈T

∑

i∈V +
H2

w̃i,tsi,t − μi,t|Δw̃i,t| (7)

s.t. (1) − (6)

0 ≤ w̃i,t ≤ 1 ∀i ∈ V +
H2

,∀t ∈ T (8)

0 ≤ w̃i,t ≤ qUB
i,t ∀i ∈ V \V +,∀t ∈ T (9)

w̃i,t = 0 ∀i ∈ V +\V +
H2

,∀t ∈ T, (10)

where |Δw̃i,t| = |w̃i,t − w̃i,t−1| can be linearized using common techniques. The
mixing process is represented by (1)–(6). At hydrogen entries 100% hydrogen is
allowed, see (8). For all non-entry nodes an hydrogen upper bound is defined in
(9), and for all non-hydrogen entries the hydrogen fraction is set to zero in (10).

3 Sequential Hydrogen Propagation Model

Even though the hydrogen propagation model in Subsect. 2.3 is an LP, difficul-
ties occur when the model is solved for large networks and long time periods.
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Thus, the time period and the input data are split into smaller overlapping time
horizons, which are solved iteratively. For each iteration, we define its starting
state based on the previous solution. However, hydrogen bounds may be violated
when multiple successive iterations are considered as future flows and bounds
are not available, e.g., constraints (9). Thus, to ensure feasibility across multiple
iterations, slack variables for the hydrogen limits on critical elements, i.e., exits
and compressor stations, are introduced. Let σd

i,t ∈ R≥0 be the slack variable
on the hydrogen upper bound of exit i ∈ V − at time t. As the hydrogen bound
of a compressor station a = (i, j) ∈ Acs is imposed on its outgoing node i, let
σa

i,t ∈ R≥0 be the slack variable on the hydrogen upper bound of this node i
at time t. To penalize the usage of slack variables, let κi,t and γi,t be penalty
weights for using slack σd

i,t on exit i ∈ V − and slack σa
i,t on the outgoing node i

of compressor a = (i, j) ∈ Acs at time t, respectively. Thus, HPM is extended to

sHPM: max
w̃,w,

σd,σa

∑

t∈T

⎛

⎝
∑

i∈E

w̃i,tsi,t − μi,t|Δw̃i,t| −
∑

i∈V −
κi,tσ

d
i,t −

∑

a=(i,j)∈Acs

γi,tσ
a
i,t

⎞

⎠

s.t. (1) − (6), (8), (10)

0 ≤ w̃i,t − σd
i,t ≤ qUB

i,t ∀i ∈ V −,∀t ∈ T

0 ≤ w̃i,t − σa
i,t ≤ qUB

i,t ∀a = (i, j) ∈ Acs,∀t ∈ T

Finally, as it is more critical to stay technically feasible at compressor stations
than at exit nodes1, a sequential hydrogen propagation algorithm is formulated,
taking this hierarchy into account. If no feasible solution is found for HPM,
sHPM is solved in the next stage where only exit slacks are allowed to be
nonzero. If still no feasible solution is found, sHPM is solved again with both
exit and compressor slacks in the final stage.

4 Case Study

Our analysis of the hydrogen capacity is conducted on a major part of the
German gas grid using hourly measured gas flow data from the time period
April to December 2020. There are frequent changes in the network’s topology
in this period, i.e., over 50 network configurations lasting from one hour up
to 30 days. Hence, we apply the sequential hydrogen propagation model from
Sect. 3 here. A three-day rolling horizon with a two-day overlap is chosen. The
network consists of 8600 nodes, with 56 entry and over 1000 exit nodes, and
10000 arcs. For hydrogen injection, 20 entries in Northwestern Germany are
chosen in consultation with experts at the TSO, taking the general location of
green hydrogen projects from the NEP Gas 2020–2030 [5] into account.

Besides technical restrictions regarding compressor stations, an important
measure is the gas interchangeability represented by the Wobbe-Index WI at
1 Compressor parts have to be replaced with hydrogen volume fraction above 10% [4].
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Fig. 1. Relative amount of hydrogen stored in the network for H2-10 (blue), H2-WI

(orange), H2-5 (green) for the time period April to December 2020

exit nodes. Based on regulatory limits for WI and its behaviour for hydrogen/gas
mixtures defined in [6,7], the permitted hydrogen volume fraction at exit nodes is
determined a priori and ranges between 7–18 vol.-%. In this study, an hydrogen
limit of 10 vol.-% is imposed on compressor stations, cf. [4]. For all inner nodes
not adjacent to a compressor station we set the hydrogen limit to 1.0. In the
following, we consider three scenarios, which differ in the hydrogen limit on exit
nodes. H2-10: At each exit i ∈ V − and time t, qUB

i,t is determined by the limits
on WI and must not be greater than 10 vol.-%. H2-WI: At each exit i ∈ V − and
time t, qUB

i,t is only based on WI. H2-5: Three groups of exits are introduced,
country borders with qUB

i,t = 10 vol.-%, industry-like exits with qUB
i,t = 5 vol.-%,

and all other exits with limits based on the WI.

5 Results and Conclusion

The amount of hydrogen injected into the network is 11.2, 12.2, and 5.7 TWh for
H2-10, H2-WI, and H2-5, respectively. As comparison, the amount of hydrogen
given by a constant injection of 10 vol.-% at each entry i ∈ V +

H2
in each time

step t ∈ T without respecting any bounds results in 12 TWh and the planned
capacity for green hydrogen in Germany is 14 TWh by 2030 according to [1].

The relative amount of hydrogen stored in the network at time t is shown
in Fig. 1. H2-WI shows the highest amount of hydrogen in the network peaked
in May with over 8 vol.-%, followed by a slightly smaller amount in H2-10. By
imposing the much smaller bounds on industry-like exits in H2-5, the overall
level of injection reduces by roughly 50% compared to the other two scenarios.
In September, the overall gas level increases with gas injection from Eastern
parts of the network. Therefore, the hydrogen level drops in all scenarios.

The distribution of the hydrogen fraction, shown in the left of Fig. 2, shows
that in H2-10 the H2 entries can inject 10 vol.-% hydrogen most of the time.
This is expected as this is the upper bound given for both exits and compressor
stations. By removing the 10 vol.-% limit in H2-WI, the distribution is shifted to
the right between 10 and 20 vol.-%. In H2-5, the distribution is centered at 5 vol.-
% hydrogen representing the tightest bound given by industry-like exits. The
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Active hydrogen entries Active exits

Fig. 2. Histogram of hydrogen fraction at active hydrogen entries (left) and active exits
(right) over the whole time period for all scenarios.

peaks at 0% hydrogen represent the time steps in which slack was needed forcing
hydrogen injection to zero. The bounds on the exits in these three scenarios are
recognized in the histogram of active exits, shown in the right of Fig. 2.

With the proposed hydrogen propagation model, the hydrogen capacity of
an existing gas network can be assessed. The analysis is performed on historical
gas flow data using several hydrogen injection locations and imposing different
bounds on exits and compressor stations.2 In the future, we plan to integrate
hydrogen tracking into the operation.
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Abstract. As a result of the legislation for gas markets introduced by
the European Union in 2005, separate independent companies have to
conduct the transport and trading of natural gas. The current gas mar-
ket of Germany, which has a market value of more than 54 billion USD,
consists of Transmission System Operators (TSO), network users, and
traders. Traders can nominate a certain amount of gas anytime and
anywhere in the network. Such unrestricted access for the traders, on
the other hand, increase the uncertainty in the gas supply management.
Some customers’ behaviors may cause abrupt structural changes in gas
flow time series. In particular, it is a challenging task for the TSO opera-
tors to predict gas nominations 6 to 10 h-ahead. In our study, we aim to
investigate the regime changes in time series of nominations to predict
the 6 to 10 h-ahead of gas nominations.

Keywords: Regime switching · Nonlinear time series · Gas
nomination forecast

1 Introduction

Natural gas plays as key energy source in Europe. Due to the legislation for gas
markets introduced by the European Union in 2005, gas traders can indepen-
dently nominate a certain amount of gas in any entry or exit point in the network.
The amount of gas, either input or off-take, can be recorded or changed by the
trader anytime up to 2 h before the realization. Such unrestricted access for the
traders increases the uncertainty in the gas network management [2]. In partic-
ular, abrupt pattern changes of some customers’ behaviors make it challenging
for the gas network operators to predict 6 to 10 h-ahead gas nominations.

From the point of view of our industry partner, one of Germany’s biggest
TSOs, Open Grid Europe [3], the objective is to accurately predict the final gas
nominations at 6am to 10am starting at midnight. It is the most challenging
period of prediction horizon in gas nomination forecast, as the final gas nomi-
nation for 6am can abruptly change around 2am or 3am. Autoregression based
time series models are popular in energy prediction due to its interpretability
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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and accurate forecasting compared to black-box machine learning methods [1,7].
In our study we apply Markov Switching Autoregression model with Exogenous
(MS-ARX) to study the regime changes in customer’s behaviour pattern and pre-
dict 6 to 10 h ahead final gas nominations. MS-ARX detects 3 regimes and shows
superior multi-step ahead prediction performance compared to the benchmark
and linear models. 93% of days in the out-of-sample period, MS-ARX provides
effective predictions for 6am to 10am predictions.

2 Data

We study the regime changes in gas nomination time series in the German
gas pipeline network. We consider the dataset of one customer nominating gas
amount in seven different entry points, which creates the most complex dynam-
ics for multi-step ahead prediction among others. The dataset covers 678 days
(22 months and 6 days) from March Y1 to January Y2 with 16,272 observations,
where Y1 and Y3 denotes the years of the dataset.

Figure 1a displays the aggregated final gas nomination time series of one
customer at 7 entry points. The dynamic pattern of the time series shows sudden
changes within the first 6 to 10 h from midnight. The short period of sudden
increases and drops in time series may challenge the modeling and multi-step-
ahead predictions of final gas nomination. It motivates us to consider regime
changes in the time series modeling, as the customer’s behaviour in nominating
gas may be dependent on the unobservable discrete state variables.

Gas nomination history is an additional time series dataset which contains
nomination history for every final hour in a day. Figure 1b illustrates the gas
nomination history up to 10 h of offset for daily final gas nominations for 6am
from March Y1 and January Y3. The graph shows the amount of the gas nom-
inated for 6am 1 to 10 h in advance every day. It also has abrupt time series
changes around three hours before 6am. Figure 2 shows the cross-dependence
between the final nominations at 24 h and their history up to 10 h of offset.
Although the cross-dependence between hourly final nominations and their his-
tory show high correlation, 6 am final nomination and its history start decreasing
after 4 h of offset, which is the nomination set at 2am. And similar pattern is
observed for 7am to 12pm.

3 Method

Let yt, t = 1, . . . , T denote a time series of T univariate observations. Observable
stochastic process yt is

yt = μSt
+ φSt

x + εt, εt ∼ N(0, σ2
St

), (1)

where x is a vector observed explanatory variables and μSt
is an intercept term,

φSt
is a parameter vector and σ2

St
is the variance of error terms, depending

on hidden discrete stochastic process St, [4,5]. The probability of moving from
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(a) Final gas nomination time series. (b) Gas nomination history for 6am.

Fig. 1. Final gas nomination (W) time series and gas nomination history between
March 2 Y1 and January 6 Y3, where Y1 and Y3 denotes the years of the dataset.

Fig. 2. Correlation between hourly final gas nomination and the gas nomination history
offset hours.

regime i to regime j: P (St = j|St−1 = i) = pij , i, j = 0, 1, . . . , K − 1 called
transition probabilities, with pi,0 + pi,1 + · · · + pi,K−1 = 1, i = 0, 1, . . . ,K − 1.
In this process the current regime depends only on the regime before and it is
called a Markov process.

With given past observations Ft−1 = {yt−1, yt−2, . . . }, we estimate the tran-
sition probabilities pij by maximizing the likelihood function with respect to the
unknown parameters θ = (pi,j , φSt

, μSt
, σ2

St
), i, j = 0, . . . , K − 1 and the transi-

tion probabilities pi,j . Taking the log of the likelihood function l(θ) = f(θ|Ft−1)
and using the chain rule for the conditional probability, we have the log-likelihood
function as follows,l(θ) =

∑T
t=1 lt(θ) =

∑T
t=1

(
ln

∑ms

St=0

∑ms

St−1=0 f(yt, St, St−1|
Ft−1)

)
=

∑T
t=1

(
ln

∑ms

St=0

∑ms

St−1=0 f(yt|St, St−1, Ft−1)P (St, St−1|Ft−1)
)
. The

conditional probability density function for the observations yt given the state
variables St, St−1 and the previous observations
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f(yt|St, St−1, Ft−1) =
1

√
2πσ2

St

exp

{

− [yt − μSt
− φSt

x]2

2σ2
St

}

,

as εt = yt − μSt
− φSt

x ∼ N(0, σ2
St

). Using the chain rule for conditional proba-
bilities and the Markov property P (St|St−1, Ft−1) = P (St|St−1), we rewrite the
conditional joint probability P (St, St−1|Ft−1) as

P (St, St−1|Ft−1) = P (St|St−1, Ft−1)P (St−1|Ft−1) = P (St|St−1)P (St−1|Ft−1).

The time dependent state probabilities P (St−1|Ft−1) are updated by Kim algo-
rithm [6]. Finally, with the estimated parameters, the h step-ahead predic-
tion is calculated as the weighted average of the predictions in each regime,
ŷt+h =

∑K−1
j=0 (μSt+h

+ φSt+h
x)P (St+h = j|Ft). P (St+h = j|Ft) is a smoothed

probability that observation at time t + h is in state j given the history
Ft = {yt, . . . , y1}.

4 Forecast Setup and Evaluation

We predict final gas nomination time series described in Sect. 2. We make 6 to
10 h-ahead out-of-sample forecast in real time starting from 00:00 on January
1 Y2 to January 6 Y3, a total of 373 days. In the training-validation sample
we choose the optimal hyperparameters for the training the model with sliding
window method. Then we estimate the model weights at each point in the out-
of-sample period.

For an h-step ahead forecast, where h = 6, 7, 8, 9, 10, we apply the MS-
ARX model with 3 regimes and 3 variables including the yt0 , yt0−24+h and xt0 ,
denoting the last observed gas nomination, 24 h before gas nomination and
history of gas nomination at time t0, respectively, where t0 is the last observed
point. Updating the model using the whole observed train sample, we move
forward predicting the rest of the test sample one period at a time.

As alternative models, we apply three benchmark methods namely, Base I
(yt0), Base II (yt0−24+h), and Reference (xt0). Furthermore, we consider Autore-
gression model with the exogenous (ARX) using the three variables. We train
the ARX model using the last 7 days of rolling window, as it gave the optimal
out-of-sample prediction results in the training-validation period.

We evaluate the relative forecast accuracy according to average root mean
squared error (RMSE), mean absolute error (MAE), and mean absolute per-
centage error (MAPE) for the h-step-ahead predictions. The smaller the aver-
age error, the better accuracy is obtained by the forecast model. We obtain
hourly h-step-ahead predicted gas flow series Ŷt+h. The h-step-ahead predic-
tion performance is evaluated over the forecasting period. The RMSE, MAE,
and MAPE are obtained as RMSE = [

∑
t∈T2

(ŷt+h − yt+h)2/|T2|]1/2,MAE =
∑

t∈T2
|ŷt+h − yt+h|/|T2|, and MAPE =

∑
t∈T2

∣
∣
∣(ŷt+h − yt+h)/yt+h

∣
∣
∣/|T2|, for

h = 6, · · · , 10, where |T2| is the length of forecasting period T2.
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Furthermore, we apply traffic light evaluation criteria. As discussed in Sect.
2, the extreme sudden changes in the final gas nomination time series occur
between 2am to 3am. It complicates predicting the 6am to 10am final gas nom-
inations using the observations only until 12am. The proportion of green days
are evaluated with MAE < 106W and MAPE < 0.1, yellow days with MAE
< 2 ∗ 106W or MAPE < 0.2, and red days with MAE > 106W and MAPE > 0.1
in predicting 6am to 10am final gas nominations trained with the time series
until 12am.

5 Forecast Results

We demonstrate the multi-step ahead forecasting results of final gas nomination
of a difficult customer in German gas transmission network. Table 1 shows the
average forecast errors, denoted as aRMSE, aMAE and aMAPE, by the MS-ARX
and the alternative models for the 6 to 10 h-ahead gas nomination prediction.
Table 1 compares the out-of-sample predictions done at 12am for 6am to 10am
using the traffic light criteria. Overall, the results demonstrate the advantages
of the regime changes assumption in improving the multi-step ahead final gas
nomination prediction. The MS-ARX performs as the most accurate forecast
model with the smallest average forecast errors for multi-step ahead predictions.
It illustrates that the assumption of the regime changes in the final gas nomi-
nation improves the forecast errors of the linear ARX model from aRMSE 5.18,
aMAE 2.35 and aMAPE 1.65 to aRMSE 3.85, aMAE 1.48 and aMAPE 0.67
for 6 to 10 h-ahead gas nomination forecast. Compared to the Reference (xt0),
which is the best performing model within the benchmark models, the MS-ARX
improves its prediction errors from aRMSE 5.88, aMAE 2.03 for 6 to 10 h-ahead
predictions. Table 1 shows the MS-ARX model outperforms all the alternative
models with the maximum percentage of green days (93.01%) and minimum
percentage of the red days (2.42%). It is worth mentioning that the MS-ARX
shows not only the accurate prediction results on overall h-step-ahead forecasts,
but its significant advantage is shown in predicting the final nomination in the
most difficult hours (6am to 10am). In summary, it is useful to consider the
regime changes assumption for accurate and stable multi-step ahead final gas
nominations forecasts.

Fig. 3. Aggregated hourly final gas nomination in 3 estimated regimes, regimes 1, 2
and 3 are shown in grey, blue, red, respectively.
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Table 1. Average forecast errors for h-step ahead forecast, h = 6, 7, 8, 9, 10, and traffic
light criteria for 6am to 10am nomination forecast in particular. Best forecast result is
marked in bold-face.

MS-ARX ARX Base I (yt0 ) Base II (yt0−24+h) Reference (xt0 )

aRMSE (106W) 3.85 5.18 7.66 11.86 5.88

aMAE (106W) 1.48 2.35 2.82 6.13 2.03

aMAPE 0.67 1.65 1.43 4.66 0.55

Green 93.01% 87.37% 82.26% 81.99% 72.31%

Yellow 4.57% 7.80% 10.48% 10.75% 20.70%

Red 2.42% 4.84% 7.26% 7.26% 6.99%

6 Conclusion

We apply the MS-ARX model to predict 6 to 10 h-ahead final gas nominations
in the German high-pressure gas pipeline network. It demonstrates the 3 regime
periods in the hourly gas nomination time series and shows a superior out-of-
sample forecast performance over linear and benchmark prediction models.
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Abstract. Microgrids are considered to be an effective measure for
resilience due to their ability to operate in island mode during a power
outage and to ensure continuity of supply. Current standard frameworks
for microgrid resilience evaluation overlook the economic parameters,
which are important for decision-making about investments in resilience
enhancement. To bridge this gap, a new methodology is proposed in
order to evaluate the economically optimal level of microgrid resilience.
An availability-based resilience evaluation framework is used for quan-
tification of the resilience using both a deterministic and a stochastic
approach. The quantified resilience values are monetized using the eco-
nomic indicator Value of Lost Load. The economically optimal resilience
level is evaluated using the Net Present Value capital budgeting method.

Keywords: Resilience · Microgrid · Economic evaluation

1 Introduction

Storms, hurricanes, floods, wildfires, and other natural disasters may result in
major disruptions to the power supply. The increased frequency and severity
of natural disasters in recent years have necessitated the enhancement of the
resilience of power grids. The losses due to electrical outages have a large negative
economic impact. Hence it is important to mitigate these impacts in the future
to a reasonable extent. In this context, the resilience of the power grid comes
into the picture. The resilience of power grids is the ability of a grid to adapt
and recover from extreme events.

Microgrids are considered to be one of the most effective measures to increase
resilience during natural disasters because of their ability to isolate themselves
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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from the main grid during the occurrence of an outage and to maintain conti-
nuity of supply to the local load [1]. Microgrids are a part of the power grid,
having their own local distributed generation resources and being able to operate
autonomously to supply local loads and thus reducing the impact of any disaster.
While planning a microgrid for resilience purposes, it is important to quantify
the level of resilience of the microgrid in order to evaluate its preparedness for
extreme events. Since the enhancement of microgrid resilience involves signifi-
cant capital investment, it is important to determine the economic value of the
resilience in order to decide about the optimal level of resilience that a microgrid
should possess. Currently, there is no standard to measure the economic value of
microgrid resilience, which is one of the challenges when designing a microgrid
for resilience enhancement purposes [2].

This study aims to propose a new methodology in order to evaluate the
economically optimal level of resilience for a microgrid. First, the concept of
availability-based resilience evaluation is discussed in Sect. 2. The quantifica-
tion of microgrid resilience using a deterministic versus a Markov-chain-based
stochastic approach is presented in Sect. 3. In Sect. 4, it is discussed how the
measured resilience value can be translated into an economic metric using the
Value of Lost Load (VoLL) [5]. A methodology is then proposed to evaluate
the optimal resilience enhancement option which justifies the cost of resilience
enhancement. In Sect. 5, the applicability of the proposed methodology is dis-
cussed, conclusions drawn, and some ideas for future research outlined.

The proposed methodology evaluates the resilience of a microgrid only dur-
ing its islanded operation and not in grid-connected mode. But the suggested
framework can easily be extended to include the grid-connected operation of the
microgrid as well. Also, it is assumed that during a disaster, the microgrid is not
physically damaged and that the microgrid resources are able to serve the load.
Partial supply of load is not considered yet in the proposed approach.

2 Resilience Evaluation Framework

This work uses the so-called availability-based resilience measurement frame-
work for measuring microgrid resilience, as proposed in [3]. US Presidential Pol-
icy Directive (2013) on Critical Infrastructure Security and Resilience defines
Resilience as ‘the ability to prepare for and adapt to changing conditions and
withstand and recover rapidly from disruptions’. According to the proposed
framework, the resilience of a microgrid can be measured as a quantity cor-
responding to the availability. Hence, the resilience level R of the microgrid can
be calculated as

R =
TU

TD + TU
, (1)

where TU is the uptime of the microgrid during the outage and TD is the down-
time. The sum of TD and TU denotes the total resilience evaluation time T . This
equation gives a suitable measure of resilience within the context of the defini-
tion provided above. The downtime TD is related to the recovery speed and is
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influenced by both the available infrastructure and to human-related activities
such as repairs and maintenance policies. The uptime TU is directly dependent
on the withstanding capability of the microgrid to the given event. Its value is
mostly related to infrastructure characteristics and grid design.

Although preparation/planning capacity and adaptation capability are not
directly reflected in the resilience measurement, they influence the resilience
metric indirectly. For example, they will be reflected in the resilience values of
two different scenarios. Scenarios may differ in the available generation capac-
ity or storage capacity of the microgrid and will give two different values for
resilience. This difference will indicate a change in resilience when adopting dif-
ferent technological or infrastructure improvements in the microgrid. A compar-
ison between the two resilience values will represent the planning capacity and
adaptability of scenarios. This quantifiable difference can be used in conjunction
with a cost analysis and a probabilistic evaluation to decide the priority, based
on the resilience level and the costs of implementing different scenarios.

3 Resilience Quantification

The uptime for the microgrid is considered to be the time when the microgrid
can satisfy the load demand by using its own resources. The downtime is the
rest of the time when the microgrid is not able to serve the loads. Let G[t] be
the fitness function indicating the ability of the microgrid to serve the loads. At
every time instance t, G[t] measures the total difference between the capacity of
the microgrid resources available (energy supply + energy storage) and the load
demand, i.e.

G[t] = X[t] + B[t] − L[t], (2)

where X[t] is the energy supplied by the source in time interval t, L[t] is the
energy load during time interval t, and B[t] is the energy in the battery storage
at time interval t. Function G[t] indicates the ability of the energy source and
the battery to serve the load at time interval t. Function G[t] > 0 indicates
that there is surplus energy in the grid, whereas G[t] < 0 indicates that there is
an energy deficiency. If fX [t] is the probability distribution of X[t], fL[t] is the
probability distribution of L[t], and fB [t] is the probability distribution of B[t]
at time t, then the probability distribution of G[t], i.e. fG[t], can be calculated
using Eq. (2). The resilience of the microgrid R[t] at time t is given as

R[t] = Pr(G[t] ≥ 0) =
∑

g≥0

fG[t], (3)

i.e. the resilience R[t] is equal to the probability that the microgrid resources can
satisfy the load demand at time instance t (probability of G[t] ≥ 0). To find the
probability distribution of G[t], i.e. fG[t], the probability distributions of fX [t],
fL[t] and fB [t] are required. The probability distribution of battery storage fB[t]
depends upon the probability distributions of the energy source and the load,
i.e. fX [t] and fL[t].
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Deterministic Computational Approach: The deterministic approach eval-
uates resilience by calculating the availability of the microgrid. This method can
be used to analyze the best- and the worst-case scenario. Figure 1 shows the
algorithm developed for an example microgrid having a PV system and Li-ion
battery storage as its only resources. This algorithm takes into account bidi-
rectional energy flows and maintains a minimum state of charge in the battery
during normal operation. The battery is allowed to discharge fully in the case of
an outage. Since the deterministic approach provides a range of resilience values
possessed by the microgrid (based on the best- and the worst-case scenario),
it has limitations and does not provide any generalized value that can be used
directly for resilience planning and investment decisions.

Fig. 1. Flowchart of the computational method adopted

Markov-Chain-Based Approach: The Markov-chain-based approach pro-
vides generalized value for resilience of the microgrid by calculating the prob-
ability of a microgrid being available to supply the load demand considering a
large amount of possible values of load and generation. The stochastic data is
generated using the Monte Carlo method to acquire more accurate availability
results. The Markov chain model is designed according to the model proposed
in [4]. The Markov chain model for microgrid resilience quantification is summa-
rized in a flowchart in Fig. 2. Once πE is known, the availability A and resilience
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Fig. 2. Summary of Markov-chain-based method

R can be calculated as
R = A = 1 − πE (4)

4 Economically Optimal Level of Resilience

The methodology for finding the optimal level of resilience considers the eco-
nomically optimal investment in resilience. To analyze the optimum investment
in resilience, it is important to figure out how much the resilience value is from
the consumer’s perspective. VoLL is a monetary indicator expressing the costs
associated with the interruption of electrical supply in e/kWh [5]. The resilience
values obtained can be translated into economic values using the VoLL specifi-
cation in Eq. (5), where h denotes the average duration of the outage.

V oLLTotal = h × (1 − R) × (V oLLPerUnit × Avg.Load) (5)

VoLL, as an economic metric to monetize resilience, is complementary to the
availability-based resilience measurement framework. The greater the availability
of the system, the less the economic impact due to the lost load is. The most
resilient case is the one resulting in the least V oLLTotal.

The investment needed to obtain a certain level of resilience and the economic
benefits due to resilience are compared with each other in order to find the
economically optimal level of resilience by using the Net Present Value approach.
The benefits G obtained from resilience are calculated as follows.

GResilience = V oLLTotal(BaseCase) − V oLLTotal(ResilientCase) (6)

The methodology is further detailed in [9] for the case of a stylized microgrid
(incl. results).
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5 Conclusion and Outlook

In this paper, we have presented a new methodology for evaluating the eco-
nomically optimal level of resilience in a microgrid using an availability-based
resilience framework. Deterministic and stochastic approaches for resilience mea-
surement are explained. The main aim of this work is to introduce an economic
evaluation framework which monetizes the resilience value in order to facilitate
the decision-makding process involved in the identification of optimum technolo-
gies for enhanced resilience.

The methodology proposed is also useful to evaluate different economic and
policy instruments, such as feed-in tariffs and subsidies, and to observe the
change in economic performance due to these interventions. In future research,
the methodology can be extended to take into account the stochastic nature
of the duration of an outage and change in load demand. This methodology
can also be used in conjunction with more sophisticated optimization techniques
with the objective of minimizing the total Value of Lost Load.
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Abstract. With annual consumption of approx. 95 billion cubic meters
and similar amounts of gas just transshipped through Germany to other
EU states, Germany’s gas transport system plays a vital role in European
energy supply. The complex, more than 40,000 km long high-pressure
transmission network is controlled by several transmission system oper-
ators (TSOs) whose main task is to provide security of supply in a cost-
efficient way. Given the slow speed of gas flows through the gas transmis-
sion network pipelines, it has been an essential task for the gas network
operators to enhance the forecast tools to build an accurate and effective
gas flow prediction model for the whole network. By incorporating the
recent progress in mathematical programming and time series modeling,
we aim to model natural gas network and predict gas in- and out-flows
at multiple supply and demand nodes for different forecasting horizons.
Our model is able to describe the dynamics in the network by detecting
the key nodes, which may help to build an optimal management strategy
for transmission system operators.

Keywords: Forecasting · Mathematical programming · Natural gas

1 Introduction

Germany is the largest market for natural gas in the European Union. Natu-
ral gas is the second most used energy source in Germany, with 25% share in
primary energy consumption [1] and plays an important role in the German
“Energiewende”, especially in the transition from fossil fuels to renewables in
the power sector. Recently, the natural gas market is becoming more and more
competitive and is moving towards more short-term planning, e.g., day-ahead
contracts, which makes the dispatch of natural gas even more challenging [4].
Despite these challenges, TSOs have to fulfill all transport demands in a cost-
efficient way. Since the average gas pipe velocity is only 25 km/h [3], a high-
accuracy and high-frequency forecasting of supplies and demands in natural gas
network is essential for efficient and safe operation of the complex natural gas
transmission networks and distribution systems.
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N. Trautmann and M. Gnägi (Eds.): OR 2021, LNOR, pp. 200–205, 2022.
https://doi.org/10.1007/978-3-031-08623-6_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08623-6_31&domain=pdf
https://doi.org/10.1007/978-3-031-08623-6_31


Modeling and Forecasting Gas Network Flows 201

This work is part of a joint project with one of Germany’s biggest transmis-
sion system operators, Open Grid Europe [2]. In order to provide a comprehen-
sive understanding of the network dynamic, together with OGE, we develop a
Network Autoregressive Linear model with Balance constraint (NAR-LB) model
that detects influential nodes in the network (the nodes that demonstrate a
strong effect on the future flows of other nodes and drive the movement of the
network over time) and provides high-precision, multi-step ahead hourly fore-
casts for more than 200 nodes in the gas network. These nodes have very dif-
ferent statistical characteristics, as they represent a variety of different source
and consumption points, ranging from connections to other gas networks or
countries over industrial consumers to storage facilities. By addressing the key
challenges with high dimensionality and balance constraint simultaneously as
in Chen et al. [3], we aim to enhance the computational efficiency of the high
dimensional constrained network problem by integrating recent advances in opti-
mization and statistical modeling techniques. As the size of the network grows,
the number of parameters is controlled by regularizing the only significant depen-
dencies, which highlights the influential nodes in the network. Compared to the
existing prediction models in machine learning and statistics, the NAR-LB model
provides more accurate prediction results for the whole network and interpret
the complex dynamics in the network to help reduce financial and technical risks.

2 Methodology

Let N denote the number of nodes in a large-scale complex gas transmission
network. We denote with qt,i the gas flow time series at node i, where t =
1, ..., T + 1 and i = 1, ..., N . Following the model proposed in Chen et al. [3] we
define Network Autoregressive Linear model with Balance constraint, to capture
the network effect of different nodes and determine influential nodes for each
node in the network, where the total gas in-flows and out-flows need to be
balanced, as follows:

qt,i =
∑N

j=1 qt−1,j · wj,i, i = 1, ..., N, t = 2, ..., T + 1
s.t.

∑N
i=1

∑N
j=1 qt−1,j · wj,i = 0, t = 2, ..., T + 1

(1)

The parameter wi,i model the autoregressive dependence for each node while
parameter wj,i when i �= j model the influence of j-th node to the i-th node i.e.
influence of the past value of the j-th node on the current value of the i-th node.
Let us define T ×N matrix Q = (q1, .., qN ) containing T previous flow values of N
network nodes qi = (q1,i, ..., qT,i)ᵀ, matrix X = (x1, ..., xN ) containing previous
values of Q and matrix W representing N × N matrix of unknown parameters
wi,j that mutually model the influence of the network nodes.

While autoregressive dependence is modeled by diagonal elements of W , the
non-diagonal elements define the weighted adjacency matrix where row vector
Wj = (wj,1, ..., wj,N ) represents the influence of the j-th node on the future
values of the other nodes in the network. We assume that the weighted adja-
cency matrix is sparse but we have no prior knowledge of the sparse structure in
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terms of number of significant elements and their location. To detect the influ-
ential nodes in the dynamic network, we adopt the Lasso type regularization
in estimation. Since in any point in time only a small number of nodes have
a significant effect to the network dynamic and each of influential nodes only
have an influence on the future flow of small number of nodes, we impose 2
layers of sparsity: groupwise and inner group sparsity on the weighted adjacency
matrix. We observe matrix W in N groups (Wj) and estimate the parameters
by applying Sparse-Group Lasso penalty [3].

min
W

|E| +
∑

j λg

∥
∥Wj

∥
∥
2

+ λ
∑

i�=j

∣
∣wi,j

∣
∣

s.t. E = Q − XW
XWI = 0

lb ≤ wi,j ≤ ub, i = 1, ..., N, j = 1, ..., N

(2)

where I is an N × N identity matrix, 0 ≤ λ ≤ 1 is a Lasso tuning parameter
for the individual weight wi,j when i �= j and λg =

√
Nλ is a tuning parameter

for group Wj . The tuning parameters are chosen to optimize the forecasting
performance via the rolling window technique [3]. In addition we set the lower
and upper bounds for the weights to lb = −2 and ub = 2, respectively.

We use the estimated weighted adjacency matrix to choose the most influ-
ential lagged flows for each node in the network as features for multi-step ahead
forecast. For each node i ∈ 1, .., N we select F features with the highest abso-
lute value of wj,i, j = 1, . . . , N. Further, we approximate future gas flow with
weighted sum of features:

q̂t,i =
F∑

j=1

qt−1,j · fj,i, i = 1, ..N (3)

where q̂t,i is the approximated gas flow for node i at the time t, qt−1,j , j =
1, . . . , F are previous flows of F nodes with the highest influence to node i and
fj,i are corresponding weights. If we define the error of approximation as:

et,i = qt,i −
F∑

j=1

qt−1,j · fj,i, i = 1, ..., N (4)

then the optimal weights are calculated by minimizing the sum of absolute errors:

min
f

∑N
i=1|et,i|

s.t. qt,i − ∑F
j=1 qt−1,j · fj,i = et,i, i = 1, ..., N, t = 2, ..., T + 1

∑N
i=1

∑F
j=1 qt−1,j · fj,i = 0, i = 1, ..., N, t = 2, ..., T + 1

lb ≤ fi,j ≤ ub, i = 1, ..., N, j = 1, ..., F

(5)

To optimize the forecasting performance we choose the tuning parameters
using the rolling window technique with window size of 120 h over the train-
ing set Ttrain. We minimize average mean square forecast error (MSE), MSE =
∑

t∈Ttrain

∑H−1
h=0 (qt+h − q̂t+h)2/(H ∗ |Ttrain|), for each node by performing the

grid search for λ ∈ {0, ..., 1}, where qt,h and q̂t,h are the real and forecasted
values of the natural gas flows at hour t and H is a forecasting horizon.
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3 Experimental Setup and Results

In this paper we investigate the dynamic patterns of natural gas flows in the
high-pressure gas pipeline network of OGE [2]. The dataset consists of demand
and supply flows with an hourly time resolution for a period of 21 months (625
days). The network contains 1029 nodes in total. We consider 210 nodes with
mean daily flow of more than 25 MW and less than 95% of zero flows. In the
observed data set we have 14 supply nodes (labeled S1–S14), 9 storages (can
change a behavior and have both positive and negative flows over time, labeled
ST1–ST9) and 187 demand nodes (labeled D1–D187). Furthermore, we add an
artificial node to the network to represent the contribution of the nodes that are
less important in terms of volume and active time.

All gas flow data are normalized with mean zero and unit variance. Figure
1 illustrates the temporal dependence among the observed 210 nodes. As it can
be seen in the diagonal, there is a strong positive autocorrelation of each node
with its own past values. Off the diagonal, the cross-correlations represent the
dynamic flow of gas from one node to another. While all of the supply nodes and
most of the demand nodes contain their own predictive information, the dynamic
dependence in the network is sparse and is driven by small number of nodes.
Among the supply nodes, only the 4 seem to be active, demonstrating a strong
positive cross-correlation within the supply group and strong negative cross-
correlation to some demand nodes and very limited dependence with the storage
nodes. This is also the case for the demand nodes. The temporal dependence
suggests that only a small number of nodes may have a significant effect on the
future gas flows in the network.

We use training-validation sample of 260 days (Ttrain) to choose optimal
hyperparameters for the sparsity estimation (see Sect. 2). Further, we use the
chosen parameters to estimate the large-scale weighted adjacency matrix W at
each point in the testing period Ttest consisting of 365 days (Ttest). With a rolling
window size of 120 h, we move forward one period at a time to update adjacency
matrix and calculate the forecast for three different forecasting horizons (1 h,
6 h and 12 h ahead), until we reach the end of the sample. We compare the
performance of NAR-LB model with several well-known benchmarks: Baseline
forecast (repeating last known value for the same hour in the day), ARIMA and
LSTM. We determine the best ARIMA models for a univariate time series of
210 nodes according to a Akaike information criterion (AIC) using 28 days of
rolling window. The LSTM is implemented using one LSTM hidden layer with
an optimized number of hidden neurons for each node (32–128) and learning
rate for each individual node (0.0001–0.001), a dropout of 0.1 followed by a
fully connected output layer with the number of neurons equal to the forecast
horizon and trained for 100 epochs. The parameters are optimized based on the
performance on the training set (Ttrain).

The performance of NAR-LB model is measured and quantified by cal-
culating the forecast accuracy for individual nodes, as well as the mean
for the entire network. We use root mean squared error (RMSE), as
well as normalized mean absolute percentage error (nMAPE) defined as:
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Fig. 1. Sample cross-correlation heatmap for 210 nodes in gas network.

RMSE = [
∑

t∈Ttest

∑H−1
h=0 (qt+h − q̂t+h)2/(H ∗ |Ttest|)]1/2 and nMAPE =

(
∑

t∈Ttest

∑H−1
h=0 |(qt+h − q̂t+h)/max(q)|)/(H ∗ |Ttest|), where qt,h and q̂t,h are

the real and forecasted values of the natural gas flows at hour t and H is a
forecasting horizon.

Table 1. Performance comparison

RMSE nMAPE

H NAR-LB BAS ARIMA LSTM NAR-LB BAS ARIMA LSTM

1 0.249 0.534 0.408 0.387 0.095 0.261 0.150 0.177

6 0.443 0.534 0.503 0.462 0.185 0.261 0.281 0.205

12 0.513 0.534 0.559 0.559 0.220 0.261 0.299 0.299

In Table 1 we report an average RMSE and nMAPE for three considered
forecasting horizons and comparing to three alternative benchmark models. The
results show that NAR-LB consistently outperforms all benchmark models. The
difference is most significant for the shorter horizons where mean nMAPE is
improved for 37% comparing to second best alternative model, while for the
longer horizon (12 h) NAR-LB perform similar to LSTM model with the improve-
ment of 7.6%. It is clear that the proposed model benefits from modeling tem-
poral dependencies in the network. Figure 2 illustrates the estimated weighted
adjacency matrix Ŵ in different periods of the year. It can be seen that during
the winter time there is much more dynamic in the network while during the
summer time, the number of influential nodes is significantly smaller.
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(a) Winter (b) Summer

Fig. 2. Illustration of the estimated weights matrix Ŵ in out-of-sample forecast

4 Conclusion

In this paper we propose the Network Autoregression Linear model with Bal-
ance constraint for identifying the influential nodes in the large-scale complex
gas transmission network and multi-step ahead forecasting of gas flows in the
network. The obtained results show that NAR-LB model consistently outper-
forms the alternative models by at least 7.6% giving accurate multi-step fore-
cast results for more than 200 nodes in gas network simultaneously providing
the information about temporal dynamic of the network flow.
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Abstract. In the intensive care unit (ICU), a common task for clinicians
is to choose patients who are ready-for-transfer to a lower ward in order to
make limited capacity available for new arrivals. To support this process,
we build three predictive models based on historical data from more than
25,000 ICU cases to evaluate patients according to their actual medical
state. The decision is modeled as a classification problem to predict the
chance of adverse patient outcome defined by ICU-readmission within
72 h or readmission with subsequent exitus. In addition to a screening
method based on critical criteria, we propose logistic regression models
relying on critical parameter counts and metrical features from mea-
surements, scores, and patient characteristics, respectively. Performance
testing using ICU data demonstrates the ability of our approach to assist
the process of patient selection for transfer.

Keywords: Intensive care · Patient transfer · Machine learning

1 Introduction

While the intensive care unit (ICU) is crucial to treat the most severely sick
patients its operation is expensive and resources are limited. In order to enable
new admissions to the ICU, clinicians have to regularly choose patients who are
ready for transfer to a lower ward. The decision is subject to a variety of medical
and operational factors compounded by uncertainty, stress or fatigue. Data-based
tools offer support to complement clinical expertise and existing guidelines on
discharge policies. In this paper, we propose three classification models to predict
a patients risk of subsequent readmission or mortality following transfer based
on historical ICU data. After discussing previous research on this topic in Sect. 2,
we describe the design of the proposed classifiers and analyze their performance
using data from a case study in Sect. 3. Conclusions are drawn in Sect. 4.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Table 1. Confusion matrix and accuracy metrics (RFT = 0, NRFT = 1)

Predicted 1 Predicted 0 n=25,179 n=24,051

Actual 1
True positive

(TP )
False negative

(FN)
Sensitivity = TP

TP+FN

w
/

ex
it

u
s

2,523

n
o

ex
it

u
s

1,395

Actual 0
False positive

(FP )
True negative

(TN)
Specificity = TN

TN+FP
22,656 22,656

Accuracy = TP+TN
TP+FP+TN+FN

2 Patient Classification for ICU Admission and Discharge

The relevance of sound admission and discharge decisions for ICU planning is
pointed out by Bai et al. [1]. The authors review operations research and man-
agement science in the context of ICU management. Classification models assist
in finding optimal admission or discharge policies. Kim et al. estimate patient
outcome based on physiological and operational variables [2]. Different models
for prediction of a patients discharge status from clinical information at the time
of admission were studied by Roumani et al. [3].

At the other end, several researchers proposed models to identify ready-
for-transfer patients by predicting patient outcome following discharge. Since
therapeutic benefit is generally hard to estimate (see [4]) readiness is indirectly
assessed by evaluating adverse patient outcome in the retrospective of an ICU
stay. McWilliams et al. defined patients as non-ready-for-discharge if they had
to be readmitted to ICU or died in hospital following transfer. Vital parameters
and patient data were used to design random forest tree and logistic regression
classifiers and compare against clinical guidelines [5]. In similar approaches, mul-
tivariate logistic regression [6], transfer learning models [7], and genetic feature
weighting [8] were proposed. Rosa et al. compared a variety of ICU related illness
scores to predict readmission within 48 h or death following discharge [9].

In this study, we deploy (N)RFT to denote patients as (non-)ready-for-
transfer. The label of interest, NRFT, is characterized by ‘readmission within
72 h’ and/or ‘readmission with subsequent death’ at ICU. Another issue is
whether or not patients who die during their current stay should be included in
the classification [6]. We consider both options by differentiating scenarios with
and without exitus. Table 1 displays relevant definitions and metrics to assess
predictive quality in binary classification. Accuracy metrics reflect the share of
predicted labels which are derived from the estimated class probabilities using
a cutoff value. As shown in Table 1, we face unbalanced data meaning positives
are relatively rare among the observed classes. Although false predictions within
this smaller part of data do not greatly compromise overall accuracy, the cost of
misjudging rare critical cases is substantial. This is a typical problem in medical
classification and can be addressed by shifting the cutoff point via a misclassifi-
cation cost ratio to emphasize true positives (TP) at the expense of false positive
predictions (FP) [3].



Classifying Patients in the Intensive Care Unit 211

3 Design and Comparison of Classifiers

3.1 ICU Data

Clinical data was extracted from Intensive Care Manager (ICM), a patient
data management software supplied by Dräger. For the considered anesthetic
ICU 25,552 cases were reported between 2003-05-15 and 2020-09-01. Each case
denotes an episode of stay at ICU, i.e. one patient might relate to multiple cases
in the event of readmission. Data was structured in separate sets that account for
transfer history and patient characteristics (Stays), vital and laboratory param-
eters (Measurements), categories in the “Simplified Acute Physiology Score”
(SAPS ) and other medication or therapy related information. In the course of
preprocessing, data was stripped from cases with missing, unrealistic or non-
conform entries. In some cases, data was replaced by imputing values from other
sources of information. Further elimination of cases was required to synchronize
differences in the availability and time-wise resolution of data. As shown in Fig. 1,
the final data sets for single- and multi-variate classification comprise 25,179 and
10,743 cases, respectively.1 Technically, classifiers rely on training data to esti-
mate model parameters and predict labels of unseen (test) data. Most studies
presented in Sect. 2 deployed k-fold cross validation to minimize statistic noise
by creating k split samples. We adopt this practice by using five folds to cross
validate our classifiers.

Fig. 1. Processing singlevariate (LR) and multivariate (MLR) feature data for 5-fold
cross validation with exitus cases included as NRFT and CEB count computed accord-
ing to the approach described in Sect. 3.2 (∗fewer cases with incomplete data after
feature selection, ∗∗missing values were considered as non-critical)

3.2 Clinical Expertise Based Classifier

Expert knowledge from physicians at Uniklinikum Dresden (UKD) is used to
establish a first classifier. This so called clinical expertise based (CEB) classifier
combines practical expertise and common clinical rules to form criteria for ICU
discharge. Aside from knock-out criteria (e.g. ventilation), CEB defines a set

1 This refers to the scenario with exitus cases included as NRFT.
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Table 2. CEB parameters by critical upper (UB), lower (LB) or two-sided bounds (2B)

IUB : Temperature, Lactat, C-reactive protein, Procalcitonin, Urea, Creatinin,
Bilirubin, FiO2, ALAT, ASAT, O2 (intake), red blood cells (intake)

ILB : Hemoglobin, arterial blood pressure, pH, Quick, GCS (score), Albumin,
PaO2, Extubation time

I2B : Heart rate, Kalium, Natrium, Glucose, Leucocytes, RASS (score)

of relevant parameters I which are considered critical if their values v exceed
certain upper (UB), lower (LB) or two-sided bounds (2B) as shown in Table 2.
We use the term CEB-t to denote a classifier which labels a case as NRFT or
y = 1 if the critical parameter count xCEB reaches a certain threshold t, i.e.

y = 1, if t ≤ xCEB :=
∑

i∈IUB∪I2B

||vi > UB|| +
∑

i∈ILB∪I2B

||vi < LB|| (1)

where vi is an aggregate measurement for parameter i 24 h prior to discharge.

3.3 Logistic Regression

Single-Variate Model: Logistic regression (LR) uses training data to fit an s-
shaped probability function to the binary classification data. In singlevariate LR
the estimate yprob is based on a single feature x. Binary labels ypred are derived
by applying a defined cutoff value ∈ [0, 1] to yprob. Time-wise aggregation of
data is required to synchronize resolution among parameters and was conducted
by computing daily min, max or avg. Using these aggregates, we can deter-
mine daily critical counts according to the CEB definitions mentioned above.2

To enable joint processing of all ICU cases regardless of their length of stay
(LOS), daily critical counts have to be further condensed into single features.
From the various possible combinations two feature definitions were chosen: 1)
total critical 0 which is equivalent to xCEB and 2) total critical weighted being
the sum of daily critical counts smoothed by a weigthing factor 1/(1+offset day).
This was done to reflect time progress without a change in criticality thereby
rewarding prolonged stays to “stabilize” non-critical patients with regard to clin-
ical application of the tool. The two resulting models LR-0 and LR-w are trained
using the ‘liblinear’ solver with l1 regularization from the scikit-learn library in
Python.

Multi-variate Model: Condensing variables into a single feature means valu-
able information of individual clinical parameters might be lost. The proposed
multivariate model (MLR) features an ensemble of 52 metrical variables mainly
derived from time-wise aggregates of 21 CEB parameters. For each parameter,

2 Time windows for aggregation were defined by offset-days, i.e. multiples of 24-h prior
to the date of discharge.
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we considered the average over LOS (avg los). We further included the reported
maximum (max 0 ) and/or minimum value (min 0 ) from the last 24 h prior to
discharge in accordance to the CEB bounds. The resulting 47 features were com-
plemented by SAPS values (saps avg los, saps 0 ) and patient characteristics:
gender, age, and body mass index. Feature selection was performed by backward
elimination of variables which 1) showed a low significance, i.e. p ≥ 0.05 or 2) a
high variance inflation factor, i.e. vif > 5 in any stage of repeated model fitting.
This way the number of variables in the model was narrowed down to 18 and 11
in the scenarios with and without exitus, respectively.

For the training of the MLR model we relied on the binomial ‘General Linear
Models’ solver from the StatsModels library in Python. Inconveniently, the use
of metrical variables means a significant amount of cases that has to be excluded
from analysis due to incomplete data. The MLR model could thus only be trained
and validated on respective subsets of the cross fold splits used for CEB and LR
as shown in Fig. 1. Still, feature selection allowed some of the previously dropped
cases to be reconsidered for final model training and testing.

Cutoff Variation: Predictive outcome of the (M)LR models is highly sensitive
to the choice of cutoff. Specificity increases with higher cutoff while sensitivity
decreases. In this study, we aim for the “sweet spot” between both measures by
varying the threshold probability until specificity reaches the level of sensitivity.

Table 3. Comparing performance metrics of classifiers: CEB with t = 1, 2, LR with
total critical 0, total critical weighted, and MLR using mean values (SD) from 5-fold
cross validation for NRFT with exitus

CEB-1 CEB-2 LR-0 LR-w MLR

AUROC 0.649 (n.a.) 0.600 (n.a.) 0.687 (0.018) 0.734 (0.020) 0.771 (0.018)

Accuracy 0.803 (n.a.) 0.891 (n.a.) 0.505 (0.024) 0.651 (0.039) 0.659 (0.047)

Sensitivity 0.457 (n.a.) 0.235 (n.a.) 0.752 (0.026) 0.694 (0.046) 0.702 (0.057)

Specificity 0.841 (n.a.) 0.964 (n.a.) 0.478 (0.027) 0.646 (0.046) 0.654 (0.057)

Cutoff 1.000 (n.a.) 1.000 (n.a.) 0.090 (0.000) 0.070 (0.000) 0.068 (0.004)

3.4 Classifier Performance

From the results in Table 3 we note CEB classifiers to show the highest accuracy
albeit at the cost of sensitivity. CEB with threshold t = 1 performs better than
t = 2. In contrast, (M)LR models yield reasonably high sensitivity which is
desired from a clinical perspective. This can be attributed to the sensitive choice
of relatively small cutoff values. It also confirms that accuracy is misleading
as a performance measure when facing imbalanced data. As illustrated by the
ROC curves in Fig. 2, the best predictive quality is achieved by MLR. At the
same time, LR-w outperforms any other single-variate classifier justifying the
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weighting method in the critical count definition. We also note that the inclusion
of exitus data makes for an easier distinction of labels. This result was also noted
in by Badawi/Breslow [6] and seems logical given the multimorbid condition of
near exitus patients.

Fig. 2. Receiver operating characteristic (ROC) curves for different classifiers with a)
exitus cases considered as NRFT, b) exitus cases excluded from analysis

4 Conclusions

In this study, three approaches were presented to classify ready-for-transfer
patients at the ICU. Results for NRFT w/o exitus suggest a bias in the data con-
sidering that historical transfer decisions were already taken by experts. We can
thus use the results to reflect on the effectiveness of previous clinical decisions
which seem to be in accordance with CEB definitions. Nevertheless, we note the
promising potential especially of the (M)LR models to assist in the identifica-
tion of RFT patients to minimize risk of adverse outcome. While MLR yields
the best overall performance LR-w represents a valid and robust alternative for
daily clinical use since it requires less complete data entries for classification.
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Abstract. The operating theater, as well as the intensive care unit, are
both one of the most expensive departments within a hospital but also
one of the largest revenue drivers. Extensive planning on multiple strategic
levels is necessary, to guarantee patient safety, workload leveling as well as
profitability of a hospital. Patients are scheduled for each department indi-
vidually but also jointly across departments when resources are shared. In
research, many papers focus on optimizing the utilization of each depart-
ment individually but also on the patient flow from one department to the
other. However, few papers focus on the development of scheduling heuris-
tics that can be used by operating theater managers without knowledge
of mathematical optimization. We present an operating theater quota sys-
tem for elective intensive care patients that minimizes the expected max-
imum bed demand in the intensive care unit. We develop a heuristic that
can be easily understood and applied by operating theater managers. We
use multiple instances to show that the heuristic can achieve near-optimal
results by comparing the heuristic with an optimal approach.

Keywords: Health care · Scheduling

1 Introduction

Scheduling surgeries in the operating theater (OT) is a challenging task for
physicians and OT managers. When scheduling, not only the capacity within
the OT needs to be considered, also the capacity of downstream units, e.g.,
the intensive care unit (ICU) or regular ward stations. Especially the ICU is
often seen as a bottleneck where poor planning can lead to canceled surgeries
or early discharges, which show a higher readmission rate compared to intended
discharges, all harming patient recovery [1].

In literature, many papers focus on surgery scheduling considering one or mul-
tiple up- or downstream units to adequately model the patient flow through the
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hospital. For a general overview of literature with a focus on multiple departments
including the OT and the ICU see [5], for a recent overview focused on OT schedul-
ing in general see [6]. [4] use a simulation model and show that the introduction of
ICU quotas for elective patients drastically reduces the number of last-minute can-
cellations of those patients. [3] use a combined optimization and simulation app-
roach to show that a central scheduling approach of ICU patients across depart-
ments can reduce ICU bed utilization variability by up to 17.5%.

Even though these works cover interesting conclusions for hospitals and OT
managers, practical applicability is limited, especially without mathematical opti-
mization knowledge. We present an easy-to-implement scheduling heuristic for
ICU quotas in the OT - a system that reduces the number of canceled elective ICU
surgeries and the bed utilization variability in the ICU (i.e., [2–4]) - aimed at OT
managers and practitioners in hospitals. The quota system determines ICU slots
in the OT to limit and control the daily number of ICU patients for each specialty
to implicitly level the average bed utilization. The quota system is in active use at
University Hospital of Augsburg, one of the largest hospitals in Germany [2]. We
use multiple instances of small, medium-sized, and large OTs with varying patient
demand and length of stay (LOS) distributions to show that our heuristic produces
near-optimal results compared to a mixed-integer program (MIP).

2 Data Preparation and Mathematical Model

The heuristic requires little data which can be determined using historical data.
For each day t ∈ T in the planning horizon, i.e. 7 or 14 days, we need to know
the maximum number of possible ICU patients or slots Cs,t for each specialty
s ∈ S. In practice, there are usually not more elective ICU patients than rooms
per specialty and day, which means Cs,t is equal to the number of rooms for
each specialty s on day t. The second part of data consists of the elective ICU
patient demand Ps for each specialty s in the planning horizon rounded to the
next integer. The last part of data is the convolved LOS distribution Ls,t for each
specialty s on day t in the planning horizon. This distribution depicts the proba-
bility that an ICU patient still needs a bed t days after surgery. Table 1 shows an
exemplary calculation of the convolved complementary cumulative distribution
function (convolved CCDF) for one specialty.

Table 1. Preprocessing of convolved cumulative distribution function

t 0 1 2 3 4 5 6 7 8 9 Sum

Historical observation [n] 35 229 49 28 26 19 6 11 8 4 415

PMF [%] 8.4 55.2 11.8 6.7 6.3 4.6 1.4 2.7 1.9 1.0 100

CCDF [%] 0.0 91.6 36.4 24.6 17.8 11.6 7.0 5.5 2.9 1.0

Convolved CCDF [%] 5.5 94.5 37.3 24.6 17.8 11.6 7.0 - - -
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In the first step, historically observed LOS values rounded to the next integer
need to be counted. In this example 229 patients stayed one day in the ICU, 415
patients were observed in total. The probability mass function (PMF) determines
the relative probability that a patient stayed exactly t days, in this case 229 out
of 415 patients or 55.2% for t = 1. The CCDF is the probability that a patient is
still in the ICU after t days, which can be calculated by the sum of the PMF of
day t to the last day. The CCDF of day 0 is an exception and is equal to 0, since
patients with a rounded LOS of 0 are neglected. Lastly, the convolved CCDF
is used to account for the cyclical approach of this model. This is necessary to
model LOS distribution in cases where the LOS exceeds the planning horizon.
The convolved LOS has to have the same length as the planning horizon - in this
case 7 days - and can be calculated by summing up all CCDF values that exceed
the planning horizon to the corresponding days. For example, the convolved
CCDF value for 1 day after surgery is the sum of the CCDF of day 1 and day 8
or 91.6% and 2.9%, respectively. Hereby we model the fact that if the quotas are
the same every week, there is a 2.9% probability that a patient from last week is
still in the ICU, resulting in 94.5% total. If the CCDF would exceed two weeks
in total, the convolved CCDF for day 1 would include the CCDF value of day
15 if the planning horizon is still 7 days.

The goal of the mathematical model is the minimization of the maximum
bed utilization bmax in the planning horizon by determining the number of ICU
slots xs,t for each specialty s on each day t and therefore to minimize the bed
utilization variability. The mathematical model is shown in the following.

Min bmax (1)
subject to: xs,t ≤ Cs,t ∀ s ∈ S, t ∈ T (2)

∑

t∈T

xs,t = Ps ∀ s ∈ S (3)

∑

s∈S

∑

k∈T

Ls,k · xs,(t−k)mod|T | ≤ bmax ∀ t ∈ T (4)

xs,t ∈ N0 ∀ s ∈ S, t ∈ T (5)
bmax ≥ 0 (6)

The objective function in (1) minimizes the maximum bed utilization determined
in (4). Constraints (2) limit the maximum number of ICU slots for each specialty
on each day. With Constraints (3) the number of slots that need to be distributed
for each specialty in the planning horizon is set. Constraints (4) determine the
resulting bed utilization resulting from the ICU slots in the OT and therefore
the maximum bed utilization in the planning horizon (see [3] for more details).
Constraints (5) and (6) determine the domain of the decision variables.
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3 ICU Quota System Heuristic

The goal of the heuristic is to have a close to optimal solution of the presented
mathematical model that is easy to understand for OT managers and requires
few steps. The developed heuristic can be executed with pen and paper but
implementation in a spreadsheet, e.g., Microsoft Excel is recommended. The
number of calculations depends on the planning horizon |T |, the number of ICU
slots I, and the number of days the OT is open O. The number of required
steps by hand is equal to |T | · I · O, which can be reduced to I · O if done with
formulas in a spreadsheet. The heuristic works similar to a bin packing heuristic
and we use four different sorting algorithms to determine which specialty should
be scheduled first: mean LOS - which is equal to the sum of all CCDF values -
of each specialty in ascending and descending order, as well as the mean LOS
multiplied by the number of ICU slots of each specialty also in ascending and
descending order. A pseudo code of the heuristic is shown in the following.

Procedure Heuristic
1 sort specialties defined by rule
2 for s = 1 → |S| do
3 for i = 1 → |Ps| do
4 for t = 1 → O do
5 if one additional slot is possible then
6 add LOS distribution to ICU utilization
7 save bmax of t
8 revert LOS distribution from ICU utilization
9 schedule ICU slot on day t where bmax is minimum

The central idea of the heuristic is to start with no slots and schedule one
additional ICU slot on each day in the planning horizon where possible and
save the resulting maximum utilization in the ICU for each day. The additional
slot should be added where the new maximum bed utilization in the planning
horizon bmax is minimum. To calculate the resulting bed utilization that results
from adding a new slot, the convolved CCDF has to be added to the current bed
utilization starting from day 0 of the convolved CCDF on the day of the added
slot. This means that if a new slot is added on a Wednesday in a 7-day planning
horizon, the convolved CCDF from 0 to 4 has to be added to Wednesday to
Sunday and the values of 5 and 6 to Monday and Tuesday, respectively.

4 Computational Study

To test if the developed heuristic is able to deliver good results in various envi-
ronments, we create multiple instances for this computational study. First, we
generate LOS distributions based on a lognormal (σ, μ) distribution with σ rang-
ing from 1 to 1.5 and μ ranging from 0 to 1, both incremented by 0.1, resulting
in 66 distributions in total. The distributions are truncated after 70 days and
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are convolved as previously explained. We calculate the mean LOS of every
distribution and build 3 clusters - short, medium, and long - containing 22 dis-
tributions each, grouped by the mean LOS. As a second step, we create different
OT setups. There are 3 criteria determining the OT instances: the number of
specialties, the number of operating rooms, and the allocation of specialties to
operating rooms. We use either 3, 6, or 9 specialties. The number of rooms is
either equal to the number of specialties or twice that number. If the allocation
of specialties to rooms is equally distributed, each specialty has the same num-
ber of rooms available in the planning horizon which is set to 7 days. Since we
only consider elective patients, there are no rooms available on weekend days.
If the allocation of specialties to rooms is not equally distributed, the available
total blocks, which is the number of rooms multiplied by the number of days the
OT is opened for elective patients, are assigned to the specialties in ascending
order. Each specialty gets assigned a random number between 0 and half of the
remaining blocks in the planning horizon. The last specialty in the assignment
process gets all remaining blocks. The block to day assignment follows in a sec-
ond step. Here, starting from the first specialty, every block of each specialty is
assigned in steps of one to the consecutive day. If specialty 1 would have 4 blocks
available, these blocks would be assigned from Monday to Thursday. Specialty
2 would then start with the first assigned block on Friday and all remaining
blocks would be assigned starting from Monday again. By assigning the blocks
in this way, the number of blocks per specialty each day is equally distributed
and results in a balanced workload for surgeons in the OT. Lastly, the total
number of ICU slots in the planning horizon is twice the number of specialties.
The number of ICU slots per specialty is set in relation to the number of blocks
per specialty. In total 12 different OT instances are generated. An excerpt of the
generated OT instances can be seen in Table 2.

Table 2. Excerpt of generated OT instances

Instance Specialties Rooms Equal OT ICU slots OT blocks ICU slots

S1 S2 S3 S1 S2 S3

1 3 3 No 6 4 2 9 2 1 3

2 3 3 Yes 6 5 5 5 2 2 2

3 3 6 No 12 6 2 22 2 1 9

4 3 6 Yes 12 10 10 10 4 4 4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In the final step, the generated LOS distributions and the OT instances are
combined. We use the 12 OT instances to generate a total of 48 instances divided
into 4 groups. 3 groups combine the 12 OT instances with randomly assigned
LOS distributions from only the short, medium, and long group, respectively.
The last group evenly distributes randomly picked LOS distributions from the
short, medium, and long group in relation to the number of specialties. Within
one instance, no LOS distribution is assigned twice. For the computational study,
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the mathematical model is implemented in IBM ILOG CPLEX 12.9 and all 48
instances are solved to optimality. The heuristic is implemented in Microsoft
Excel using Visual Basic for Applications (VBA). We compare the relative gap
to optimality of all instances using the four different sorting algorithms to test if
one algorithm outperforms others in some environments. The results are shown
in Table 3. In general, all four sorting algorithms perform very well with the
heuristic. The optimality gap ranges from 0.1% to 8.7%, the average optimality
gap over all instances from 1.3% to 1.6%. All heuristics perform slightly better
with longer LOS distributions compared to short LOS distributions. There is no
clear sign if equal or unequal distribution of blocks to specialties performs better
or not. In total, the ascending sorting algorithm where the LOS is multiplied with
the number of ICU slots performs best on average and has the smallest range
from worst to best optimality gap. Therefore, we recommend using this sorting
algorithm with the developed heuristic.

Table 3. Optimality gap of the heuristic for grouped instances - mean [min – max]

Instances LOS·n des % LOS·n asc % LOS des % LOS asc %

All 1.5 [0.3–5.4] 1.3 [0.1–3.6] 1.3 [0.1–5.5] 1.6 [0.2–8.7]

Unequal OT 1.9 [0.3–5.4] 1.3 [0.1–3.6] 1.5 [0.1–5.5] 1.9 [0.2–8.7]

Equal OT 1.1 [0.4–2.5] 1.3 [0.7–2.4] 1.1 [0.4–2.5] 1.3 [0.7–2.4]

Short 2.1 [0.3–5.4] 2.0 [0.5–3.6] 1.7 [0.1–3.7] 2.3 [0.9–5.1]

Unequal OT 2.6 [0.3–5.4] 2.2 [0.5–3.6] 1.9 [0.1–3.7] 2.7 [0.9–5.1]

Equal OT 1.6 [0.9–2.5] 1.8 [1.1–2.4] 1.6 [0.9–2.5] 1.8 [1.1–2.4]

Medium 1.1 [0.3–2.8] 0.9 [0.1–1.5] 1.4 [0.1–5.5] 1.8 [0.3–8.7]

Unequal OT 1.1 [0.3–2.8] 0.8 [0.1–1.2] 1.7 [0.1–5.5] 2.4 [0.3–8.7]

Equal OT 1.1 [0.4–1.8] 1.1 [0.7–1.5] 1.1 [0.4–1.8] 1.1 [0.7–1.5]

Long 0.9 [0.3–2.3] 0.9 [0.1–1.5] 0.8 [0.3–1.5] 0.9 [0.2–1.6]

Unequal OT 1.0 [0.3–2.3] 0.6 [0.1–1.3] 0.8 [0.3–1.2] 0.7 [0.2–1.6]

Equal OT 0.9 [0.6–1.5] 1.1 [0.9–1.5] 0.9 [0.6–1.5] 1.1 [0.9–1.5]

Mixed 1.9 [0.6–4.7] 1.4 [0.9–2.2] 1.2 [0.4–2.5] 1.5 [0.4–4.0]

Unequal OT 2.8 [1.5–4.7] 1.4 [1.0–2.2] 1.5 [0.4–2.5] 1.7 [0.4–4.0]

Equal OT 1.0 [0.6–1.3] 1.3 [0.9–1.7] 1.0 [0.6–1.3] 1.3 [0.9–1.7]
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Abstract. Growing patient volume combined with limited capacities
in emergency departments represents a challenge for hospital manage-
ment to maintain a high quality of work without an increase in waiting
times. Often patients cannot be directly admitted to the hospital after
treatment in an emergency department due to limited bed capacities
at the intensive care units or regular ward stations. Various approaches
to solving this problem were proposed in recent years including ideas
for active bed management within the emergency department or differ-
ent allocation rules for specific boarding areas. This study develops a
discrete-event simulation approach to simulate the patient flow of an
emergency department based on real data. Furthermore, the set up of
different patient boarding area systems are compared to other mecha-
nisms such as adding more treatment beds to evaluate the effects on
patients length of stay and waiting times in a scenario analysis.

Keywords: Discrete-event simulation · Healthcare · Emergency
department · Boarding area

1 Introduction

In the last decades, growing pressures on hospital emergency departments (EDs)
were creating major problems for hospital management. Overcrowded waiting
areas in an ED not only lead to a reduced quality of care but also patient
dissatisfaction [2]. The increasing demand from patients who need emergency
care, the temporary use of bed capacity for intensive care patients, or the lack
of response from regular wards for a fast and efficient admission after a patient
has received initial treatment intensify the underlying problem [3].

The last few years have seen a variety of comprehensive literature reviews
focusing on simulation modeling of EDs [5,8]. A particular field of simulation
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studies in the ED concerns discrete-event simulation (DES). Authors [1] present
a DES analysis study to investigate the effect of inpatient boarding on the ED
showing significant improvements by using inpatient boarding areas. A boarding
area is an area to hold patients due to the lack of free capacity of downstream
units accepting new patients. Authors [6] investigate how patient waiting time
can be reduced in the ED and conclude that only increasing the number of
treatment beds can (though it does not necessarily) reduce that time.

Even though these papers offer promising results, there are often gaps in
the data presented. As a consequence, more general assumptions are applied
which effect the overall conclusions significantly. We present a DES to support in
decision-making for a medium sized German hospital, located in South-Bavaria.
Hereby, we use a data set based on real data from that hospital and simulate one
week of patient flow throughout its ED. We also use different personnel resource
capacities in combination with a certain shift plan. Furthermore, we determine
the value of separate boarding areas for inpatients and outpatients. In particular,
we give advise on the number of additional resources that should be implemented
to provide a good patient care. We also determine the validation of the simulation
model based on statistical hypotheses testing. As a result, shifting resources and
establishing a boarding area for inpatients can be seen to have positive effects
on the average length of stay (LOS) and waiting time for each patient category,
whereas merely adding more treatment beds to the ED does not show significant
improvements.

2 Emergency Department Simulation Model

In the simulation study presented here, a DES is used to replicate the ED of a
medium sized German hospital, located in South-Bavaria, with 400 beds. After
arrival, each patient is triaged into a specific severity group with the help of the
Manchester Triage System (MTS). The MTS is a system that supports emer-
gency nurses to categorize patients into different groups based on their underlying
urgency levels [7]. Depending on the patient’s urgency level, the maximum allowed
waiting time differs among each group. Whereas the level immediate (red) means
a patient definitively needs isolation and direct treatment, the second level very
urgent (orange) allows a maximum waiting time of 10 min. Depending on the hos-
pital, the maximum time limits for the other three categories urgent (yellow), stan-
dard (green), and non-urgent (blue) may differ. In the data set provided, the limits
are set to 30, 90, and 120 min, respectively. Furthermore, patients are treated by a
specialized physician. We consider the three different medical specialties to be gen-
eral surgery, neurology, and internal medicine. The distribution for these values are
drawn out according to the provided data set. Besides the previously mentioned
physicians, nurses do also take care of the patients in the simulation model. These
two resource types work according to a predefined shift plan to simulate reality. A
simplified process flow can be seen in Fig. 1.

After triage, patients with the most urgent MTS group might use a shock
room, whereas the other patients move into the waiting room until further treat-
ment. The waiting room queue follows a strict priority-based order and depends
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Fig. 1. Simplified process flow of the underlying problem

on the patient’s urgency level. After the waiting room follows the first diag-
nosis/treatment block, in which a physician, nurse, and a treatment room are
assigned. Afterwards, the patient may need further nurse care which is imple-
mented by a second treatment block. After completion of the second care block,
the patient is either discharged from or admitted to the hospital. As highlighted
in Fig. 1, there is a waiting time after finishing the second treatment block until
the discharge or admission is executed. During that waiting time of a patient,
resources such as treatment bed or nurses are occupied. Afterwards, the treat-
ment bed is freed up once more to be used for another patient.

The available data set provides patient data for one complete year with
around 24,000 patient arrivals. During the day, the arrivals follow a specific
arrival schedule with individual arrival times for each hour of a day with a peak
of up to 5.2 patients between 10:00 am–11:00 am and the lowest arrival rate
of 0.59 patients between 04:00 am–05:00 am. Furthermore, the distributions of
the different MTS categories, medical specialties, and discharge or admission
probabilities can be obtained. Within the simulation, the treatment times are
stochastically derived from the data set. However, the exclusive physician treat-
ment time is not given. We have therefore approximated the treatment time using
a research study provided by [4] in combination with a triangular distribution
using the given mean value as the mode and ±15 min as the interval borders,
which enables to model a stochastic distribution for the physician treatment
times. Due to variations in the arrival rate during the day, the shift schedules
of the physicians and nurses are adapted accordingly based on real data. The
number of available nurses, physicians, and treatment rooms for any particular
patient volume is also provided by the data set.

3 Verification and Validation of the Simulation Model

The simulation model was implemented and verified using AnyLogic 8.7.5. One of
the main measurable output parameters to operationally validate the simulation
model is the average LOS for each patient urgency level. Figure 2 depicts this
validation procedure graphically. The pairwise comparison of the three largest
MTS groups for the real and simulated data shows similar interval borders. The
data set contains some extreme outliers. For the sake of clarity, the outliers are
not shown in the graphic. Furthermore, the two MTS groups immediate and
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not-urgent were not taken into account in the validation process since they only
amount to 3% of the total patient arrivals in the data set and the stochastic
inaccuracy arising from this might distort the results.

Fig. 2. Data distribution of the average LOS for three different MTS groups

In addition to the graphical validation, hypothesis testing can be used
as another technique to compare means, variances, or distributions [9]. The
Kol-mogorov-Smirnov test (or KS test) and the independent sample t-test are
applied.

The sample data presents a timespan of one week. Applying the arrival dis-
tributions of the data set it follows that 46, 273, and 129 samples are ran-
domly chosen representing the three largest MTS categories very urgent, urgent,
and standard. The real data contains more than 24,000 patient arrivals for one
year, the simulation generates 1,000 one-week (approx. 462 arrivals) replications.
Assuming a significance level (α) of 0.05, the p-values of the KS test for the three
MTS categories very urgent, urgent, and standard are 0.300, 0.579, 0.328, respec-
tively. The p-values for the independent sample t-test are 0.366, 0.598, and 0.200,
respectively. None of the H0 hypotheses of the KS test as well as the t-test can
be rejected. This underlines the successful operational validation [9,10].

4 Scenario Analysis

In this section, seven different scenarios are developed to discuss their effects
on the average LOS as well as the waiting time of the patients. These two
measurements are connected to each other. Hereby, Scenario 1 refers to the
original simulated data. The first adjustments are performed in Scenarios 2 and
3, in which one and two more treatment rooms, each offering one treatment
bed, are added to the DES. As showing in Fig. 3, the average LOS as well as
the percentile of patients treated within its MTS category threshold could be
slightly improved. Nevertheless, out of all scenarios, adding more treatment beds
has the lowest rate of improvement.

Based on the data set, the outpatients might also posses a certain boarding
time after completing treatment which is currently dismounted in the treatment
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(a) Average LOS

(b) Percentile waiting time threshold

Fig. 3. Results of the seven scenarios for the three MTS groups

room (Scenario 1). In the Scenarios 4 and 5, the newly generated room capacity is
now no longer used as single treatment beds anymore, but rather as a boarding
area for outpatients. Hereby, one newly built room can provide space for up
to three boarding beds. Since these outpatients do not require further care,
no additional nurse is required to be used for patient monitoring. Comparing
Scenarios 4 and 5 with Scenarios 2 and 3, shows a slight better result for the
waiting time and LOS using an outpatient boarding area.

An adaption of Scenario 5 is shown in Scenario 6 in which one of the two
boarding rooms is used as an boarding area for inpatients and the other one as a
boarding area for outpatients. Different from the outpatient boarding area, the
inpatient boarding does certainly require patient monitoring. Hereby, one nurse
from the early and late shift will be assigned from the current shift schedule to
work full time at this inpatient boarding area. Due to the low staffing at night,
a boarding area cannot be maintained during the night shift. Even though one
nurse is missing two out of three shifts a day, the results in Fig. 3 assume similar
treatment time as in Scenarios 3, 4, or 5.

In the final Scenario 7, the same concept as already introduced in Scenario 6
is employed. In addition to that, the monitoring of the inpatient boarding area
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does not require additional resources but are rather provided by the hospital
management. A reduction of the average LOS throughout all MTS groups is
noticeable and can be especially seen for less urgent MTS groups.

5 Conclusion

If management representatives plan to reconfigure EDs, they might also consider
adding more treatment beds (rooms) to the ED environment. Unfortunately,
merely adding more treatment rooms without personnel resource adaption, e.g.
one treatment bed per room, does not significantly alter the average LOS expe-
rienced by patients in the different categories of urgency (see Fig. 3). A better
approach is to establish a separate boarding area for outpatients and a separate
boarding area for inpatients full-time monitored by an extra nurse.
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Abstract. This research work introduces a solution approach for detect-
ing infectious diseases in modern laboratory diagnostics. It combines an
artificial intelligence (AI)-based data analysis by means of random forest
methods with decision support based on intuitive information display and
suitable planning functionality. The approach thereby bridges between
AI-based automation and human decision making. It is realized as a
prototypical diagnostic web service and demonstrated for the example of
Covid-19 and Influenza A/B detection.
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1 Introduction

Many diseases like cancer or viral infections cause early characteristic value
changes in blood counts. Laboratory medicine thus allows for an efficient screen-
ing and preliminary diagnosis [5], but also features high-throughput and widely
manual processing of blood counts. This research work introduces an approach
for efficient and reliable large-scale lab diagnostics featuring data analysis with
artificial intelligence (AI) and mathematical decision support. Section 2 explains
the underlying mathematics, Sect. 3 presents the corresponding web service and
obtained numerical results and Sect. 4 provides a conclusion for this work.

2 Material and Methods

2.1 Concept

Figure 1 depicts the concept of AI-based decision support in laboratory diag-
nostics. The existing lab diagnostics environment supports the manual workflow
of laboratory diagnostics. This workflow starts with the access to a blood count
administrated in a lab information system (LIS), continues with its manual diag-
nostic assessment and ends with a documentation of the diagnosis in the LIS.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Fig. 1. Workflows of laboratory diagnostics: classical workflow based on the existing
lab diagnostics environment and advanced workflow with AI-based decision support
based on an AI back end (Icons: banzaitokyo.com, icons8.com, www.iconsmind.com)

The advanced workflow uses a diagnostic web service featuring AI-based decision
support. Blood counts obtained from the LIS undergo a data preprocessing to
enable successful data analysis. The preprocessed data enters an AI-based data
analysis, which yields preliminary diagnoses for the blood counts. The results of
analysis are provided to the hematologist in a decision support module for diag-
nostic assessment. The diagnostic results are exported for further processing in
the LIS. The AI-based decision support builds upon an AI back end for training
the random forest (RF) method on reference data from the LIS.

2.2 AI-Based Decision Support and AI Back End

Data Preprocessing and Export: These steps connect the advanced AI-
based workflow to the existing environment. The data preprocessing comprises
the import of a blood count from the LIS, its reduction to the crucial parameter
values c(p) as determined in the AI training and a check for value consistency [1].
The data export provides the diagnostic results to the LIS for further processing.

AI-Based Data Analysis - Decision Trees: The AI-based data analysis
uses an RF binary classification method for assigning a positive or negative
preliminary diagnosis to a blood count [2]. The binary decision tree T can be
considered as a connected directed graph, which has a unique root vertex without
incoming edges and for each other vertex v exactly one incoming and either no
(for leafs) or two (for nodes) outgoing edges (v, v′), (v, v′′) leading into other
vertices. At each node, a decision is done which child vertex v′, v′′ the blood count
c is assigned to. A decision considers some parameter p and checks whether c(p)
exceeds some split value s(p) or not. Each leaf represents a preliminary diagnosis
for the blood count. The decision at v based on p for assigning c to v′ or v′′ is
evaluated with the Gini impurity

http://banzaitokyo.com/
http://icons8.com/
www.iconsmind.com
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GIp(v) = 1 − Prob2(c ∈ v′) − Prob2(c ∈ v′′) (1)

where Prob(c ∈ v′) denotes the probability for assigning c to v′. High GI indi-
cates high selectivity of the decision for separating positive from negative blood
counts. The Gini gain of a split at v based on p and leading to v′, v′′

GGp(v, v′, v′′) = GIp(v) − GIp(v′) · |{c ∈ v′}|−1 − GIp(v′′) · |{c ∈ v′′}|−1 (2)

quantifies the achieved improvement in separating positive from negative blood
counts on the way towards preliminary diagnoses [6]. High GG indicates major
benefit from a node split in the sense of a precise preliminary diagnosis.

AI-Based Data Analysis - Quality Measures: The decision tree used for AI-
based data analysis is created in the AI back end as described in the corresponding
section. The obtained decision tree imitates the approach of a hematologist as deci-
sion maker of considering parameter values one after the other in a suitable order
before formulating the medical diagnosis. The tree variable importance

Imp(p, T ) =
( ∑

v

GG2
p(v, v

′, v′′)
) 1

2 (3)

measures the impact of p in a decision tree T for classifying blood counts. The
quality of preliminary diagnostic decisions is measured with

TP(T ), TN(T ), F1(T ) (4)

The true-positive rate TP and true-negative rate TN are the percentages of cor-
rectly diagnosed positive and negative blood counts respectively. The F1 measure
is the harmonic mean of the true-positive rate and the percentage of positive
blood counts among the positively diagnosed blood counts. The defect of possi-
bly few available data can be dealt with k-fold cross-validation [7]. This approach
distributes the data into k equally sized parts, trains the AI method on k − 1 of
them, tests its on the renaming part and averages the test results over all parts.

AI-Based Data Analysis - Random Forest: In AI-based decision making,
single decision trees may turn out highly sensitive to the training data and
parameter selections. RF methods therefore create a forest T of multiple decision
trees and aggregate the single decisions to a majority decision of higher quality
[2]. Let Dec(c, T ) denote the majority decision of T for the blood count c. The
validity of a joint preliminary diagnostic decision is computed as

Val(Dec(c, T )) = |T |−1 · |{T ∈ T : Dec(c, T ) = Dec(c, T )}| (5)

The mean values of the measures (4) over T yield the average measures

TP(T ), TN(T ), F1(T ) (6)

The transparency of a single tree is lost with the use of multiple trees and
averaging of results. But the impact of a parameter p on the classification of blood
counts with the RF T can still be quantified with the RF variable importance
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Imp(p, T ) =
(|T |−1 ·

∑

T∈T
Imp2(p, T )

) 1
2 (7)

AI Back End: Creation of a single tree takes place on a training collection of
blood counts with known diagnoses. Training essentially comprises the iterative
addition of vertices to the tree with parameters p and split values s(p), which
provide maximal GG (2). This addition ends with in case of a small gain obtained
with a further split of a vertex or few blood counts contained in a vertex. The
multiple trees used by RF methods also make use of the training collection and
crucial parameters p. In order to obtain maximally uncorrelated trees, they are
created by randomization of the underlying training collection with bootstrapping
and selection of split parameters from random parameter subsets [2].

Diagnostic Assessment: This step presents the results of analysis to the hema-
tologist for formulating the final diagnostic decisions. The results of analysis con-
sist of the preliminary diagnostic results and the values for (5), (6) and (7). The
decision maker can exploit this context information for the diagnostic decision
with filtering and sorting features.

3 Results and Discussion

3.1 Blood Counts

Functionality and performance of the diagnostic web service were examined for
two collections of blood data with tests for Covid-19 or Influenza A/B infections.
For each collection, all cases with existing test results and sufficient homogeneity
in terms of documented parameters were selected. The publicly available collec-
tion [4] gave 105 cases with Covid-19 test results, which are described in terms
of 15 crucial parameters and have a positive test rate of 12.4%. The second col-
lection was provided by a commercial lab diagnostic service provider and thus
remains undisclosed. It gave 93 blood counts with Covid-19 test results, which
are described in terms of 8 crucial parameters and have a positive rate of 82.8%.
This collection also gave 407 cases with Influenza A/B test results, which are
described in terms of 8 crucial parameters and have a positive rate of 93.1%.

3.2 AI Training and Numerical Results

An RF method with 2000 trees was trained and tested on these blood counts
with 20 runs of a 5-fold cross-validation [8]. In case of the first collection with
Covid-19 test results, the obtained quality measures are

TP(T ) = 0.524, TN(T ) = 0.934, F1(T ) = 0.521 (8)

The comparably small number of available blood counts and the clear bias
towards negative test results yield a rather low TP and F1 measure and a very
good TN. Computation of the RF variable importance (7) gave values partly
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Table 1. AI training: crucial blood parameters with highest variable importance for
preliminary diagnosis of Covid-19 infections.

p Imp(p, T ) p Imp(p, T )

Leukocytes 0.25929131 Monocytes 0.10817097

Platelets 0.18836478 Lymphocytes 0.07070973

Eosinophils 0.12277543 Mean platelet volume 0.06415193

listed in Table 1. Indeed, the decision trees used the top ranked parameters with
high GG (2) prominently. Hence, (7) is a good means for adding transparency
to the RF method. The dependency on the available data is also reflected by the
results obtained for the second data collection with its very high positive test
rates. The Covid-19 cases from that collection gave a much higher TP(T ) = 0.975
and F1(T ) = 0.910 and a comparable TN(T ) = 0.837. The Influenza A/B cases
from that collection gave equally high TP(T ) = 0.944 and F1(T ) = 0.961, but
low TN(T ) = 0.235 because of the very few available negative test results.

3.3 Software Realization

The solution concept and underlying methods for AI-based data analysis and
decision support were implemented as a diagnostic web service, which can be
used in combination with an existing lab diagnostics environment like in Fig. 1.
The graphical user interface of this web service is shown in Fig. 2. The menu

Fig. 2. GUI of the diagnostic web service: menu bar with workflow steps and display
of analytic results with planning features
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bar in the upper part guides the hematologist through the main work steps of
data preprocessing, data analysis and data export. The lower part shows the
corresponding detailed information view, in this case during assessment of the
preliminary diagnoses.

AI-Based Decision Making: In this view, the hematologist first obtains basic
information about the reliability of the data analysis method in terms of the
quality measures (8). A click on that text line reveals the importance (7) of the
considered blood values partly listed in Table 1. The table of results contains a
column with the quality indices (5) for each preliminary diagnosis. These infor-
mation displays allow for a direct use of AI-based quality measures in human
decision making. The blood values as most detailed information can be accessed
with the functional icons to the right. The hematologist then takes all this infor-
mation into account for the final diagnostic decisions for the considered blood
counts and documents the results in the column to the right. The columns enable
a reordering in the sense of lexicographic optimization and are equipped with
filtering and sorting features [3]. In combination, these features allow for an
efficient use of AI results in human decision making. For example, they can be
used for quick access to all not yet diagnosed blood counts with strong positive
preliminary diagnostic decisions as shown in Fig. 2.

4 Conclusion

The solution approach presented herein combines AI methods for data analysis
and decision support concepts for software-assisted lab diagnostics. It thereby
allows for an efficient and reliable use of AI methods and results for human
decision making on a high quality level. The prototypical web service provides a
compatible amendment to existing lab diagnostics environments.

Acknowledgments. This work was funded by the Fraunhofer Innovation Hub pro-
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Abstract. With the rapid increase of digitization and desire for con-
tactless shopping during the COVID-19 pandemic, online grocery sales
keep growing fast. Correspondingly, optimized policies for order pick-
ing are nowadays central in omnichannel supply chains, not only within
dedicated warehouses but also in grocery stores while processing online
orders. In this work, we apply the Buy-Online-Pick-up-in-Store concept
and optimize the in-store picking and packing procedure.

The approach we propose, which is based on two mathematical pro-
gramming models, guides pickers on how to organize articles into bags
while collecting items. In this way bags are filled up evenly and they are
ready to be handled to the customers at the end of each picking task,
with no further rearrangement needed.

Keywords: In-store order picking and packing · Omnichannel grocery
retailing · Mathematical programming

1 Introduction

In the past decade we have witnessed a rapid increase of digitization, that has also
been transforming our behaviour as consumers. Online grocery purchases have
gradually entered our lives as a convenient option for shopping. This process has
been further accelerated by the restrictions and desire for contactless shopping
during the COVID-19 pandemic. In such a scenario, traditional brick-and-mortar
(B&M) retailers have been greatly incentivized to develop omnichannel solutions
[1]. Among the three classical ways for the design of an omnichannel model [2], we
are interested in the mode of grocery retailers using their existing B&M structures
to fulfill both online and offline demands. The corresponding Buy-Online-Pick-up-
in-Store concept (BOPS) is the focus of the remainder of this paper.

The BOPS model has been extensively studied in terms of market strategies
[3,4], but approaches for operations management of in-store order picking are
scarce. In the BOPS model, a picker travels through the store to pick all the items
on a given shopping list and checks out at the cashier like a regular customer.
From the information made available by retailers, these picking operations are
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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commonly not optimized. Employees who are not (yet) familiar with the store
may need to go back and forth for a picking task. Even skilled pickers may return
to the previously visited shelves, as a consequence of lack of correlation between
the articles’ order given on a shopping list and the layout of the supermarket.

Since human workforce is considered a major cost-driver in omnichannel
retailing, optimizing the picking and packing process is crucial in cost reduction.
An effective way to improve the efficiency of the picking would be reordering the
articles in the shopping list by a simple shortest route analysis [5]. The problem
is treated as a Travelling Salesman Problem (TSP): the picker follows the short-
est route to visit each zone of the store only once, and picks up all the articles
on the list at each zone. This is a very effective way to reduce the operating
time. However, the B&M stores layout are commonly designed to maximize rev-
enue [2,6] and customer satisfaction [7], and the main product attributes being
considered are visibility, variety, availability and position to maximize impulsive
purchases. Product attributes such as size and fragility are less considered, thus
picking the articles following the shortest path may lead to potential product
damaging and a substantial rearrangement overhead at the cashier. Since man-
power is consumed in the packing process as well, determining a good packaging
during the picking process would be a great benefit, especially in presence of
portable devices that can be used by the employees to produce the bill already
while picking. In a previous work [8], a scoring model that gives each product a
priority value defined by its characteristics has been proposed. By adding prece-
dence constraints on top of the shortest route analysis, the model is solved as a
Sequential Ordering Problem (SOP) [9]. In this paper, the solutions are devised
by the heuristic algorithms described in [10]. The picking route is then optimized
to reduce the time of moving back and forth in the store while not damaging the
articles due to the order in which they are placed. Such an approach provides
a good trade-off between efficiency and customer satisfaction. Nevertheless, this
model has a drawback considering actual situations. When more than one bag
is required for a given shopping list, there is a high probability that we will get
one full bag of heavy stuffs (e.g. beverages) and another bag full of light prod-
ucts (e.g. potato chips), since packing in multiple bags is not considered by the
optimizer.

To close the gap, in this work we propose a two-step process that estimates
the number of bags required for a given shopping list and prepares for the picker
an ordered list with each article associated with a certain bag. The articles are
conveniently arranged in bags concurrently. In such a way, multiple packages are
ready for the customers at the end of each picking task, that further improves
the overall efficiency of the BOPS model.

2 Problem Statement

The purpose of this paper is to expand and complete the research conducted in a
previous work [8], in which the in-store picking problem was optimized as a SOP
to find a trade-off between shorter route and safe pickings that avoid damages
to the articles.
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In this work, we further optimize the picking and packing process when mul-
tiple shopping bags are considered. When the picker uses an ordered list with
the previous solving method, it is impossible to put the articles in a reasonable
and even manner simultaneously in each bag, as it is difficult for a picker to
directly estimate the exact number of shopping bags needed by taking a look at
a list of products. To solve this issue, we further optimize the shopping list with
a mathematical model that estimates the minimum number of bags required for
a given shopping list, and assigns each article in a shopping list to a certain bag
in order to have also a balanced packing.

3 Methodology

First of all, we consider the basic problem (BASE) to determine the minimum
number of bags required bmin for a given shopping list.

BASE. We define P = {1, 2...,m} as the set of products and B = {1, 2..., n}
as the set of available homogeneous bags. vi is the volume of product i ∈ P , wi

is the weight of product i ∈ P . The maximum volume of a bag is Vmax and the
maximum weight of a bag is Wmax. In the model we define two binary variables:
xij and yj . If product i is in bag j, xij takes the value 1, otherwise xij = 0.
Similarly, yj = 1 if bag j is used, 0 otherwise. The basic problem can be written
as the following binary linear programming problem:

bmin = min
∑

j∈B

yj (1)

s.t
∑

i∈P

wixij ≤ Wmaxyj j ∈ B (2)

∑

i∈P

vixij ≤ Vmaxyj j ∈ B (3)

∑

j∈B

xij = 1 i ∈ P (4)

xij ∈ {0, 1} i ∈ P, j ∈ B (5)
yj ∈ {0, 1} j ∈ B (6)

The objective function (1) is to minimize the total number of bags. The
constraints (2) and (3) restricts the articles in each bag from exceeding the
maximum weight and volume. Constraints (4) enforce each article to be in one
and only one bag. The optimal solution to the base problem is the minimum
number of bags required bmin. If bmin = 1, the solution is equivalent to the SOP
solution discussed in [8] and no further optimization is required. When bmin > 1,
the next step is to look for the optimal solution that assign each product into
a shopping bag, based on some heuristically approximated characteristics of the
good, with the aim of having a balanced packing. To achieve this, we solve a
Min-Max problem that ensures that the total volume and weight of the contents
in each shopping bag are almost identical.
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Fig. 1. Example of a shopping list optimized by the two-step model

MIN-MAX. With respect to the basic problem, we define Bm = {1, ..., bmin}
as the set of bags, as calculated with problem BASE, z as the minmax variable,
d+w , d−

w , d+v and d−
v as the distance variables that are dummy variables required

to minimize the difference between the volume and weight of a pair of bags. The
problem can be written as follows:

min z (7)
s.t (2) − (6)

∑

i∈P

wixij −
∑

i∈P

vixik − d+w + d−
w = 0 j, k ∈ Bm, j < k (8)

∑

i∈P

vixij −
∑

i∈P

vixik − d+v + d−
v = 0 j, k ∈ Bm, j < k (9)

0 ≤ d+w , d
−
w , d

+
v , d

−
v ≤ z (10)

With constraint (8) and (9), each shopping bag contains products that sum
up to a similar volume and weight. The distance variables d+w ,d−

w ,d+v and d−
v are

non negative, and the minmax constraints for the distance variables are shown in
(10). An example of an optimized shopping list by the two-step model is shown
in Fig. 1. Volumes are expressed in litres (l) and weights in kilograms (kg).

4 Experimental Simulation

In this section we present the experimental results based on layout and orders
made available by a German retailer. Simulation experiments are conducted
on 10 real historical BOPS orders that contains 48 items on average with a
standard deviation of 5. All models were solved with the Excel Solver performed
on a Windows 10 virtual machine with dual-core Intel core i5 processor 2.3 GHz
and 4GB of RAM.
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Fig. 2. Simulation results for 10 order picking and packing tasks. For each bag used,
the volume (blue) and weight (red) are reported

By adopting the two-step model proposed in this work, the space of each pack-
aging bag should be used to the greatest extent and the articles are reasonably
stacked and will not be damaged. Therefore the articles can be directly scanned
during the picking process as they are ready-to-go at the end of a picking trip.
Consider that the reality picking is fast but rearranging and repacking articles at
the cashier is time consuming. We conducted a simulation for a comprehensive
understanding on the total manpower required by the picking, scanning, and
packing processes: the travel time for moving between the shelves are derived
from [8]. During the picking task, the time to pick up an item is estimated as
7 s if the optimization methods we propose, that adapt to the scan-as-you-pick
model is applied, and 5 s otherwise. At the cashier, the time to scan and place
the products in the final bag is estimated as 8 s per product when the scan-as-
you-pick protocol is not applied, of which 5 for the picker and 3 for the cashier
[11] (the picker loads the article and packs, the cashier scans).

The result shows a remarkable difference: an average time of 177 s is saved
when the optimization methods that adapt to the scan-as-you-pick model is
applied, that roughly equals to 23% of the total time required. Such an improve-
ment can be achieved only when the picker is completely free of distractions.
Deviations could exist in actual operation due to the number of articles, the
pickers’ experience, and even the articles’ attributes, therefore the estimation
is only marginal. Nevertheless, the optimization method proposed in this work
reduces the complexity of the task, thereby reduces the pressure on employees.

The solutions of the model are reported in Fig. 2. For each of the 10 orders,
we show the estimated number of bags and the total volume and weight of the
articles in each shopping bag. The maximum volume and weight of a shopping
bag are set to 12 l and 9 kg respectively.

In Fig. 2 we can observe that the articles are divided evenly in each shopping
bag (each pair of blue/red columns in the chart represents a bag). The maximum
difference in terms of volume and weight between all the shopping bags for a certain
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shopping list is 0.363 l and 0.315 kg. We can conclude that the model estimates the
number of shopping bags required correctly and allocates the articles in each bag
with respect to the attributes reasonably. In general, an significant advantage of
the optimization model in terms of manpower saving can be observed.

5 Conclusion

In this work we propose a two-step optimization approach to increase the overall
efficiency of the in-store picking and packing problem in BOPS retailing. Articles
are assigned into balanced shopping bags according to its characteristics. Such an
approach prevents the products from being damaged during the picking process,
and makes the packing task easier for pickers. It also reduces the time required
to process an order when packaging time is also considered.
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K. (eds.) Operations Research Proceedings 2011, pp. 355–360. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-29210-1 57

11. Bernard, S.: Cashiers work-time: between a productivity mentality and a service
mentality. Sociologie du travail 49, e129–e144 (2007)

https://doi.org/10.1007/978-3-030-86841-3_15
https://doi.org/10.1007/978-3-030-86841-3_15
https://doi.org/10.1007/978-3-030-85902-2_64
https://doi.org/10.1007/978-3-030-85902-2_64
https://doi.org/10.1007/978-3-642-29210-1_57


Logistics and Freight Transportation



Multi-start Heuristics for Unit-Capacity
Orienteering Problems

Alexander Beckmann(B) and Jürgen Zimmermann

Clausthal University of Technology, Clausthal-Zellerfeld, Germany
{alexander.beckmann,juergen.zimmermann}@tu-clausthal.de
https://www.wiwi.tu-clausthal.de/ueber-uns/abteilungen/

betriebswirtschaftslehre-und-unternehmensforschung

Abstract. We address a planning problem for the underground transit
of goods with containers in mining companies. A problem instance con-
tains tasks and capacities for their fulfillment. Tasks are transports of
containers from their current locations to given destinations and deliver-
ies and pickups of empty containers and materials. Besides, we address
combinations of those tasks with precedence constraints. Storage loca-
tions provide a stock of empty containers and materials and are desti-
nations for pickup containers and materials. Heterogeneous workers and
a fleet of heterogeneous vehicles are available for performing the tasks.
Each task has an assigned profit and can have a due date, which grants
additional profit on observance. The objective is to maximize the benefit
of fulfilled tasks and met due dates. We developed two heuristic solution
approaches, creating tours either sequentially or in parallel. Furthermore,
these constructive algorithms are extended to multi-start versions using
randomization of vehicle and worker selections, container-type selection,
and insertion criteria.

Keywords: Drayage problem · Orienteering problem · Unit-capacity

1 Introduction

The problem studied is motivated by a planning task in a German mine. In the
application, roll-off containers are used for transport activities. The problem is
based on the container drayage problem [4], which is also studied under different
names by, for example, [5] and [1], and extends it with numerous task types to
integrate activities of material delivery, pickup, and transposition. In addition,
the integration of heterogeneous vehicles and workers provides further practical
relevance. Finally, we assume that the available capacities cannot fully realize the
task volume. There is, therefore, no commitment to fulfill tasks, which makes
our problem an orienteering problem. Gunawan et al. [2] give an overview of
variants of the orienteering problem. Our problem thus extends and combines
problems from the literature to cover an orienteering problem in mines.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Section 2 contains a general description of the problem. In Sect. 3 the devel-
oped heuristic solution approaches are presented. Finally, Sect. 4 includes a per-
formance analysis, in which the results of our heuristic approaches are compared
to results obtained by Xpress using a mixed integer model.

2 Problem Description

In the orienteering problem under investigation the nodes represent logistic tasks.
Each task has a profit value assigned. Additionally, a subset of the tasks has a
due date that, if met, yields additional profit. The tasks comprise the delivery,
collection, or transport of containers and materials. Heterogeneous workers and
a heterogeneous fleet of vehicles are available to perform the tasks. The workers
differ in their competence to handle materials and drive vehicles while vehicles
have different speeds and can each use different containers. The number of tours
is limited by either the number of workers or vehicles. We also consider the
specification of a maximum number of tours, which can be relevant in practice
if workers are not exclusively deployed for transport activities. We assume that
the available capacities cannot fully realize the task volume. There is, therefore,
no commitment to fulfill tasks, and a selection of tasks is necessary. Since there
are generally several options for servicing a task, a decision must be made on
the execution option. Finally, the execution options must be distributed among
the tours and put in order.

Table 1 gives an overview of the considered task types and their required
information, marked ‘+’. In the case of container and material deliveries, one
or more container types can be used. The necessity for a decision about which
container type to use is signed ‘⊕’. A material specification can be omitted for
transports if and only if an empty container has to be moved. The task type
material pickup requires the material to be already loaded into a container.

Table 1. Basic tasks

Identifier Task Origin Destination Container Material

CT Transport + + + +

CD Container delivery + ⊕
CP Container pickup + +

MD Material delivery + ⊕ +

MP Material pickup + + +

Other activities can be mapped by connecting the task types listed above. A
sequence of tasks is referred to as a task chain. The tasks of a chain always con-
cern a container, which may have to be selected. If a decision about a container
type has to be made, this is done in the first task of a chain. In that case, the
container type of a succeeding task is unknown in advance and determined by
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the choice made for the first task. The tasks of a chain have to be performed by
one vehicle. Table 2 shows the considered activities, their required information,
and the resulting task chains. For example, the transposition of loose material is
mapped by a container delivery followed by a transport and an optional pickup
of the used container.

Table 2. Task chains

Activity Origin Dest. Container Material Task chain

Collection of loose material + ⊕ + CD → MP

Delivery of material
with container pickup

+ ⊕ + MD → CP

Transposition of loose material
(with container pickup)

+ + ⊕ + CD → CT
(→ CP

)

Transposition of material
with container pickup

+ + + + CT → CP

In general, there are several execution options for tasks, except for transports.
Container and material deliveries have a container demand, while container and
material pickups have a container supply. Material deliveries and pickups addi-
tionally have a material demand and a supply, respectively. Container locations
(CL) and material locations (ML) can provide a supply and take on the role of
demand by receiving containers or material. The execution options result from
matching supply and demand for containers and materials. They represent the
movement of a container, possibly extended by loading activities for material.
An overview of the considered execution options is given in Table 3.

Table 3. Execution options of basic tasks

Identifier Providing Sinks Sources Receiving

Task ML CL CL ML Task

CLCD + +

CPCL + +

CLMLMD + + +

MLMD + +

MPML + +

MPMLCL + + +

CPCD + +

MPMD + +

CPMLMD + + +

MPMLCD + + +

MPMLMLMD + + + +
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In the upper half of the table, execution options that only concern one single
task are listed. The execution options CLCD match the supply of a container
location with the demand of a container delivery. Execution options CLMLMD

and MLMD for material deliveries differ in the usage of a newly or already loaded
container. In one case, the execution option starts at a container location, in the
other case at a material location. The execution options for container and mate-
rial pickups are formed analogously in reverse order. The lower half of the table
shows the execution options that link two tasks. Inserting one or more material
locations between the tasks is necessary when material needs to be unloaded
or loaded. In execution option MPMLMLMD, the loaded material must first
be unloaded at a material location before the requested material is loaded at
another material location, if necessary. By linking two tasks, the compatible
container types of the connecting execution option result from the intersection
of the compatible container types of both tasks.

3 Constructive Heuristic

The heuristic solution approaches construct tours by composing execution
options. They are based on the approach H2 by [3]. An artificial execution option
represents the depot at the beginning and end of each tour. First, a sequential
approach for the generation of tours is described. Unless the specified maximum
number of tours is reached, a combination of a worker and a vehicle is chosen.
The choice is made according to the profit potential, i.e., the maximum profit
value that a combination can achieve, ignoring time and resource capacity. Tasks
already scheduled in other tours are not considered. As long as execution options
are available, the best insertion option, consisting of execution option and inser-
tion position, is determined. The profitability serves as an evaluation criterion,
as a quotient of benefit and insertion duration. The benefit includes tasks profit,
compliance of their due dates, and violation of due dates of subsequent tasks.
If the best insertion option has negative profitability, the construction of a tour
terminates. Otherwise, the best insertion option is implemented, and available
execution options and tasks are updated.

The determination of the best insertion option takes the direct predecessor
tasks into account. Thus, tasks can only be considered at positions of a tour
if their direct predecessor is scheduled at a previous position of the same tour.
If a task has a successor, the task’s execution options are also evaluated in
combination with the execution options of the subsequent task. First, the best
execution option for the considered task at the respective position is determined.
If the task includes a container decision, the best insertion option is stored
for every possible container type. In addition, for cross-task execution options
with transport as a preceding task, we consider the previous execution of the
transport as an option. This enables the use of containers that would otherwise
not be considered for implementation due to the low profit of the corresponding
transport task. Subsequently, the best execution option of the initial task is
determined for all available execution options of the subsequent task, taking
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into account container compatibility. For each usable container type, the best
execution option of the subsequent task is recorded, and finally, the combination
of the best execution options of the task and its successor is evaluated. If the
value of a combination exceeds the best value found so far, the insertion of the
combination’s first execution option is recorded as the best insertion option.
Considering only the first execution option allows a better evaluation of the
execution options of the successor task in subsequent iterations by taking into
account a possible further use of a container. Otherwise, containers could be
prematurely deposited at the container or material locations, and a possibly
good re-use option would be excluded.

Parallel tour planning is considered as a variant of the procedure. In contrast
to sequential trip planning, the parallel method determines vehicle-employee
pairs for trips at first. The specified maximum number of tours gives the num-
ber of tours. The set of available tasks and execution options are to be managed
for each tour. The best insertion option can be stored for each tour, and the
best option of all tours is realized. When scheduling an execution option, the
best insertion option of the tour in question must be re-determined. If the best
insertion option of another tour is no longer available, it must also be updated.
Finally, both constructive algorithms are extended to multi-start versions using
randomization of vehicle and worker selections, container-type selection, and
insertion criteria. A randomization factor r determines the degree of random-
ization of the insertion criteria. Each criteria value is modified by multiplication
with a uniformly distributed random number from the interval [1 − r, 1]. The
deterministic heuristics correspond to a randomization factor value r = 0.

4 Performance Analysis

In order to evaluate the performance of our two constructive solution approaches
and their multi-start variants we conducted a computational study. The study
was performed on an Intel Core i7-8700 CPU and 64 GB RAM under Windows
10. As a basis for comparison, a linear mixed-integer model was implemented
and solved using Xpress 8.11. Our constructive heuristics have been implemented
in C#. We used a self developed instance set consisting of 320 instances. The

Table 4. Results of the solver, deterministic heuristics and highly randomized heuristic
approaches

600 s Deterministic Multi start, r= 0.95, 600 s

#tours Xpress Sequential Parallel Sequential Parallel

1 37.1 11.7 0.2 0.4

2 49.2 13.1 20.8 0.3 1.8

4 59.7 9.8 22.2 0.2 2.3

8 85.5 6.6 21.7 0.3 1.5
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instances differ in the composition of task types, number of tasks and the avail-
able resources. The smallest instances contain 12 jobs, the largest instances con-
tain 96 jobs, with task chains considered as one job.

Table 4 shows the results for deterministic and multi-start test runs of the
two heuristic approaches, as well as the Xpress solver. The multi-start runs
were performed with randomization factor value r = 0.95 and a time limit of
ten minutes. Indicated are the results grouped by instance size. The results are
given as relative deviation between the objective function value found by the
respective heuristic and the best objective function value found by any of the
approaches, i.e. fbest−fH

fbest
. For example, the objective function values for instances

with one tour obtained by Xpress deviate on average 37.1% from the best objec-
tive function values found. Further results are shown in Table 5 for the heuristic
approaches with randomization factor values 0.15, 0.5 and 0.95 and time lim-
its one and sixty seconds. The randomization factor values leading to the best
results for a heuristic approach with a given time limit and instance size are
highlighted. The results show that the Xpress solver delivers only comparatively
poor results, even for small instances. The sequential approach dominates the
parallel approach over all instance sizes in both the deterministic and multi-start
versions. For a time limit of one second high randomization factors provide better
results in the smaller instance sizes due to the higher number of solutions gener-
ated within the time limit compared to larger instances. Over sixty seconds run
time the medium randomization factor provides the best results. Finally, after
one second, the sequential approach provides solutions that on average deviate
less than four percent from those obtained after sixty seconds.

Table 5. Results of the heuristic variants for 1 s and 60 s time limit

1 s 60 s

Sequential Parallel Sequential Parallel

#tours 0.15 0.5 0.95 0.15 0.5 0.95 0.15 0.5 0.95 0.15 0.5 0.95

1 5.9 2.3 1.3 6.2 2.6 1.7 4.1 0.1 0.7 4.5 0.4 1.0

2 4.7 3.4 3.7 5.9 4.9 4.7 2.6 0.2 1.2 3.8 1.7 2.5

4 3.2 3.5 4.0 5.3 5.2 5.4 0.6 0.6 1.5 3.0 2.7 3.3

8 2.6 3.0 3.5 4.1 3.9 4.3 0.5 0.6 1.2 2.1 1.9 2.3
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Abstract. Air freight is usually shipped in standardized unit load
devices (ULDs). The planning process for the consolidation of transit
cargo from inbound flights or locally emerging shipments into ULDs for
outbound flights is called build-up scheduling. More specifically, out-
bound ULDs must be assigned a time and a workstation subject to both
workstation capacity constraints and the availability of shipments which
in turn depends on break-down decisions for incoming ULDs. ULDs
scheduled for the same outbound flight should be built up in temporal
and spatial proximity. This serves both to minimize overhead in trans-
portation times and to allow workers to move freight between ULDs. We
propose to address this requirement by processing ULDs for the same
outbound flight in batches.

For the above build-up scheduling problem, we introduce a multi-
commodity network design model. Outbound flights are modeled as com-
modities; transit cargo is represented by cargo flow volume and unpack
and batch decisions are represented as design variables. The model is
solved with a standard MIP solver on a set of benchmark data. For
instances with a limited number of resource conflicts, near-optimal solu-
tions are found in under two hours for a whole week of operations.

Keywords: Logistics · Airline applications

1 Introduction

Air freight is usually shipped in standardized unit load devices (ULD). Often
these ULDs are routed through a hub airport. As they frequently contain freight
for multiple destinations, they need to be unpacked (break-down) and reconsoli-
dated (build-up). An intricate scheduling problem thus arises at the hub airport:
Outbound ULDs need to be scheduled for reconsolidation in time for their depar-
ture while respecting constraints imposed by the availability of workstations and
workforce. The amount of available shipments in turn is a function of break-down
decisions for inbound ULDs subject to similar resource constraints.

Since many shipments cannot be stacked arbitrarily and also often come in
odd shapes, it is desirable to build up multiple ULDs destined for the same
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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flight simultaneously and in spatial proximity in order to facilitate better pack-
ing options. An easy model of proximity is a partition of the workstations into
groups. We refer to a set of identical ULDs for the same flight scheduled at
the same time in the same workstation group as a batch. In general, it is not
allowed to keep shipments that do not fit into an ULD in the build-up area.
Instead, they have to be moved back to the warehouse. Hence, a welcome side
effect of build-up in batches is a reduction in the number of movements neces-
sary between the warehouse and the build-up area. From a modeling perspective,
considering batches instead of individual ULDs reduces the amount of variables
to consider, since outgoing ULDs of the same type (e.g. a container or pallet)
are indistinguishable and need no longer be represented individually. Inbound
ULDs, however, cannot be aggregated as they already contain freight. Addition-
ally, they do not benefit from being deconsolidated in batches and, hence, they
are not treated as such. We call the resulting scheduling problem the build-up
scheduling problem with dynamic batch building (BSP).

Build-up scheduling (without batches) is categorized as one step of the
sequential air cargo load planning problem in [3], which also contains a com-
prehensive literature review of related problems. The authors survey three mod-
eling approaches for the scheduling of personnel for ULD build-up [5–7]. Among
these, [6] also schedules workers for break-down operations. However, build-up
and break-down demand are parameters and not interdependent in their model.
All of these models only consider personnel scheduling and do not take individual
ULDs, batches or workstations into account. A variant of build-up scheduling
without batches is studied in [2]. The same author also introduced the benchmark
instances [8] on which we base our computational study. Recently, [4] studied
the problem of scheduling both personnel and batch build-ups under constraints
on the availability of workstations. Their model treats the creation of batches
from incoming cargo as a preprocessing step such that batches appear as jobs
with a definite release time, deadline and resource consumption. Here, worksta-
tions are not split into groups. Our approach differs from both [4] and [2] in
several key aspects. First, we do not consider explicit personnel constraints but
assume these to be implicitly given by the availability of workstations. Secondly,
we also consider break-down processes and, thirdly, we aim to maximize the size
of batches in workstation groups. To the best of our knowledge, this is the first
work to incorporate dynamic batch building and interdependent build-up and
break-down scheduling into a single model.

Despite the name, BSP is difficult to classify using classical scheduling nota-
tion (see e.g. [1]). BSP consists of two parallel processor scheduling problems
connected by cargo flow constraints. Here, the value of a build-up job in the
objective function depends on the amount of freight made available by finished
break-down jobs. Note however, that this is not a precedence relationship. In
fact, outbound ULDs might be constructed even if few or no relevant inbound
ULDs are unpacked and maximizing the amount of cargo placed in an outbound
ULD is part of the objective function.
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2 A Multi-commodity Network Design Model with Edge
Activity

BSP can be addressed using a network design approach. Let T = (t1, . . . , t|T |)
be a discretized time horizon for which ULD build-ups and break-downs need
to be scheduled. We are given a set of ULD types V with capacities cv ∈ N and
build-up times bv for all v ∈ V . We denote the set of departing flights by K.
Each departing flight k ∈ K has a departure time δk, a freight demand dk, a
(financial) cost of one unit of unshipped cargo lk and a number of pre-planned
ULDs pv,k for all v ∈ V . Each ULD requires a workstation for consolidation.
We aggregate workstations that are close to each other into disjoint workstation
groups W . The number of workstations in a group w ∈ W is its capacity cw.
Inbound ULDs I are already assigned a type and an inbound flight in the input
data. Therefore, we directly assign each of them a break-down duration βi, a
freight volume λi,k for all outgoing flights k ∈ K and an arrival time αi.

We define a candidate batch decision b ∈ B to be a five-tuple (tb, nb, kb, vb, wb)
where nb ∈ N is the number of ULDs in the batch, tb ∈ [0, δkb

− bvb
] ∩ T the

starting time of build-up, vb ∈ V the ULD type used, kb ∈ K the outgoing flight
and wb ∈ W the assigned workstation group. An ULD unpack decision u ∈ U is
a tuple (t, i) with i ∈ I and t ∈ [αi, t|T |] ∩ T .

Now, BSP can be formalized as finding a set of decisions D = B̄ ∪ Ū with
B̄ ⊂ B and Ū ⊂ U such that no flight k is assigned more ULDs of type v than
pk,v, no more than cw ULDs are scheduled for any workstation group w ∈ W at
any given point in time, the general storage capacity is never exceeded and no
inbound ULD i is unpacked more than once while both minimizing the amount
of unshipped cargo and maximizing the average batch size. Minimizing freight
losses is essential for customer satisfaction, while maximizing batch size has
organizational benefits. Hence, we treat the BSP as a single-objective problem
using a parametrization that prioritizes loss avoidance over batch building.

To solve BSP, we propose a time-expanded fixed-charge multi-commodity
network design model in which the arcs represent unpack and batch decisions
or the storage unit. Consider the network N = (I ∪ S ∪ K,A), where nodes in
S = {st1 , . . . , st|T |} represent the storage facility at various time points. Then,
we define the arc set A as follows. For each unpack decision u = (t, i) ∈ U
an arc (i, st+βi

) is created. For each batch decision b = (tb, nb, kb, vb, wb) ∈ B,
an arc (stb , kb) is created if tb + bvb

≤ δkb
. Note that this introduces multi-

arcs and that the multiarcs between st and k represent all possible batches one
can start building for k at time point t. Arcs (stj , stj+1) are introduced for all
tj ∈ {t1, . . . , t|T |−1} representing cargo kept in the storage facility during the
time interval [tj , tj+1]. Finally, arcs (i, k) are added for all i ∈ I, k ∈ K. Cargo
that is routed along these arcs is considered unscheduled and penalized with
high weights.

We write A ⊂ A with A := B ∪ U . The set A are the design arcs, while
arcs in A\A are always active. An example of the resulting network can be
found in Fig. 1. In our MIP formulation, all batches that differ only in their
size correspond to columns that are multiples of each other. To mitigate this
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k

Fig. 1. The time-expanded cargo flow network of the build-up scheduling problem
for two inbound ULDs and one departing flight. Here, i1 and i2 are sources and k is a
sink. The time horizon consists of five time points. Build-up, break-down durations and
departure and arrival times of flights are factored into the construction of the graph
and determine the presence of edges.

dual degeneracy, we introduce activity variables and reduce batches b ∈ B to
four-tuples b = (tb, kb, vb, wb) ∈ B.

Then, the build-up scheduling problem can be formulated as the following
MIP:

min
∑

a∈A waxa +
∑

k∈K

∑
a∈A

wk
afk

a (1)

s.t
∑

k∈K
dkfk

a ≤ ca ∀a ∈ A\A (2)
∑

k∈K
dkfk

a ≤ caya ∀a ∈ A (3)
∑

a∈δ+(v)
fk

a −
∑

a∈δ−(v)
fk

a = γk
v ∀k ∈ K ∀v ∈ V (4)

fk
a ≤ xa ∀k ∈ K ∀a ∈ A (5)

∑
a∈A αr

aya ≤ Lr ∀r ∈ R (6)

ya ≤ Maxa ∀a ∈ A (7)
xa ∈ {0, 1} ∀a ∈ A (8)
ya ∈ [0, Ma] ∩ Z ∀a ∈ A (9)
fk

a ∈ [0, 1] ∀a ∈ A ∀k ∈ K. (10)

Here, fk
a is the amount of cargo for flight k passed along an arc a ∈ A, xa indi-

cates whether a is active and ya represents the number of ULDs constructed on
a. Depending on the arc type, constraints (2) and (3) impose bounds on storage
or ULD capacity. Constraints (4) ensure flow conservation with γk

v := λi,k/dk if
v ∈ I, γk

v := 1 if v ∈ K and γk
v := 0 otherwise. Note that

∑
i∈I γi,k = 1∀k ∈ K.

Constraints (5) ensure that flow only passes through active arcs. Finally, con-
straints (6) summarize resource limits on active arcs. These are: Ensuring that
for each i ∈ I only one unpack arc is active, that batch activity for flight k ∈ K
and ULD type v ∈ V is smaller than pk,v and finally that for all t ∈ T and w ∈ W
the workstation utilization is at most cw. By introducing costs on the slack of the
second type of resource constraints, penalties for planned but offloaded ULDs
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can be introduced. Constraints (7) limit the activity of active arcs. Here, for a
batch arc b ∈ B we have Mb = min{cwb

, pvb,kb
, �dkb

cvb
	}. Note that Mu = 1 for all

u ∈ U . In the objective function, we set wk
a = dklk if a = (i, k) ∈ I × K and

wa = 0 otherwise. Also wa = 1 if a ∈ B and wa = 0 otherwise. Hence, we aim
to minimize the number of batches in order to maximize the average batch size.
As a consequence, late build-up is incentivized.

3 Computational Study

We based our computational study on the data set provided in [2,8]. The data
set consists of shipments extracted from anonymized real-world booking data
that is randomly assigned to a real flight schedule of one week with 82 outbound
flights. In cooperation with our industry partner Ab Ovo Germany GmbH, we
augmented this data as follows. We created 28 time horizons from the week con-
sisting of all possible combinations of between one and seven consecutive days.
In the original data set each shipment has a release time at which it becomes
available. We grouped shipments with similar arrival times together to form an
inbound ULD using a randomly drawn ULD type. The ULD’s arrival time is its
earliest shipment’s release time minus its break-down time. Workstation groups
are not part of the data set. We modeled these around settings which appeared
sensible to us and our industry partner. We created three different set-ups with
12, 24 and 48 workstations partitioned in groups of six. Hence, the testset con-
sists of 84 instances in total. We did not apply any storage capacity or other
restrictions to ULD break-down in this study. Thus, the problem is reduced to
a variant of the problem studied in [2] without personnel constraints but using
the additional batching objective and workstation groups. We investigated sce-
narios both with offload penalties for unscheduled outbound ULDs calculated
following [2] and without. In line with [2], we assumed that 66% of nominal
ULD capacity is available. As this resulted in severe overbooking of some flights,
we additionally investigated scenarios with 90% capacity. We implemented the
MIP model of Sect. 2 with (Activ) and without nonzero (Free) costs for batch
variables. Additionally, we implemented a standard network design formulation
without activity variables, where batch sizes are explicitly enumerated (Enum).
All implementations were carried out in Python3 using Gurobi 9.1.2. All tests
were conducted on a Dell PowerEdge M620v3. Results are reported in Table 1.
We found that BSP becomes easier when more workstations are available. If 48
workstations are present, this effect diminishes, most likely due to the increased
number of integer variables.
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Table 1. Computational results. Activ and Free refer to the formulation as defined in
Sect. 2 with and without batch costs, respectively. Enum refers to a standard network
design formulation with batch costs. For all 12 scenarios defined by the number of
workstations (#WS), offload penalties (Off ) and usable ULD capacity (Cap), we report
the number of instances solved to optimality (Opt), the average gap (Gap, %) and the
average run time (t) in seconds. Run times (of the MIP solver) were capped at 7200 s.

#WS Off Cap Free Enum Activ

Opt Gap t Opt Gap t Opt Gap t

12ws • 66 1 2.16 6943.85 0 13.12 7205.23 0 4.78 7201.80

24ws • 66 28 0.00 13.31 28 0.00 156.96 25 0.01 2229.53

48ws • 66 28 0.00 22.97 28 0.00 152.62 28 0.00 1501.74

12ws • 90 4 1.83 6174.67 0 13.17 7206.93 0 5.84 7202.44

24ws • 90 28 0.00 58.55 28 0.00 151.91 28 0.00 137.02

48ws • 90 28 0.00 202.59 28 0.00 129.86 28 0.00 117.86

12ws ◦ 66 7 4.29 5405.67 3 12.65 6447.57 3 7.28 6511.30

24ws ◦ 66 28 0.00 8.85 5 0.04 5926.12 8 0.03 5468.70

48ws ◦ 66 28 0.00 15.27 5 0.07 6011.70 7 0.05 5644.11

12ws ◦ 90 28 0.00 204.73 5 15.26 6128.94 4 8.72 6255.31

24ws ◦ 90 28 0.00 44.97 6 1.55 5966.61 5 1.53 5959.77

48ws ◦ 90 28 0.00 147.67 4 2.02 6444.38 4 1.87 6193.93

BSP is generally easier when minimizing the number of batches is not part
of the objective. This effect is distinctly more pronounced in scenarios without
offload penalties. In general, offload penalties result in more instances solved to
optimality and lower run times. We believe this to be due to a reduction in dual
degeneracy. Without penalties, scheduling additional empty ULDs has no effect
on the objective function, which can lead to the presence of a high number of
optimal solutions. Comparing Enum and Activ, we find that introducing activity
variables gives mixed results. Activ reports a lower gap in all but one scenario.
In scenarios without offload penalties, Activ solves three more instances to opti-
mality and reports lower run times in four out of six scenarios. When offload
penalties are applied, however, Activ reports significantly higher run times than
Enum for ULD capacities of 66% while being slightly faster for ULD capacities
of 90%. These scenarios differ mainly in the amount of offloaded freight. The
reason for this variation in performance is not yet well understood.

In conclusion, the BSP proves challenging especially when workstation
resources are scarce and offloads are not penalized. The uneven performance
of the activity-based formulation warrants further investigation. Future work
will also include the scheduling of break-down operations.
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Abstract. We take the perspective of an individual passenger and con-
sider the problem of choosing a route from a start point S to a target T
from a relatively small set of options. We assume that travel times are
not deterministic but subject to some stochastic mechanism/uncertainty.
For modeling and analyzing travel times, we use stochastic simulation
based on mixtures of gamma distributions. Instead of focusing on mean
travel times, we discuss multiple criteria for decision making. Our app-
roach is illustrated by an example from public transportation: traveling
from Göttingen to Cologne by ICE train. Furthermore, we discuss ways
how to extend our approach; e.g., by inferring model parameters from
historical data.

Keywords: Stochastic route planning · Public transport · Monte
Carlo simulation

1 Introduction

Route planning often tries to minimize the expected travel time (especially in
public transport). However, individuals might follow different objectives such
as on-time arrival, minimization of the risk of missing connections in public
transport, the price, or combinations of these. In a case study, we analyze how
these objectives interact. We consider the following real world problem: traveling
from Göttingen (train station) to Cologne Central by ICE train as shown in
Fig. 1. We restrict ourselves to two (plausible) options: A, via Hanover Central,
or B, via Frankfurt (Central and/or Airport). More generally speaking, however,
we consider the problem of choosing a route from a start point S to a target T
from a relatively small set of options. In case of railway systems, this decision
can, for instance, be made by selecting the option with minimum travel time
according to train schedules. Taking the perspective of an individual passenger
who is able/going to depart from Göttingen at 9 am, on a Thursday in March
2021, the default connection offered by Deutsche Bahn (DB) is:
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Trautmann and M. Gnägi (Eds.): OR 2021, LNOR, pp. 261–267, 2022.
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Cologne (Central Station)

Hanover (Central Station)

Göttingen (Train Station)

Frankfurt 
(Central Station)

Frankfurt (Airport)

Option B

Option A

Fig. 1. The case study considered: traveling from Göttingen to Cologne (central sta-
tion) by ICE train; note, when traveling via Frankfurt, you may change at Frankfurt
Central, Airport, or both (e.g., if missing a direct connecting train at Central).

– Depart from Göttingen at 9:53, arrive at Frankfurt Airport 11:51
– Depart from Frankfurt Airport at 12:09, arrive at Cologne Central 13:05

Without any discounts, the price (2nd class) is 106.70 Euro. However, we may
also choose to pay 83.90 Euro (full price, 2nd class) and:

– Depart from Göttingen at 9:40, arrive at Hanover Central 10:17
– Depart from Hanover Central at 10:31, arrive at Cologne Central 13:09

Furthermore, there are earlier trains from Göttingen to Frankfurt Airport or
Hanover (e.g., at 9:16 or 9:18, respectively), which would result in longer transit
times, according to schedule. In summary, there are a couple of options and it
is by no means clear which one to choose. In particular, departure and arrival
times are not deterministic but exhibit some stochastic behavior, compare [2].
For instance, if a passenger has to arrive at 2 pm (i.e., 14:00) the latest, it might
be advisable to take an earlier train in order to decrease the risk of missing a
connecting train. In general, we are not focusing on efficient algorithms here to
select the best option according to some criteria; compare, e.g., [4], but propose a
tool to provide passengers with additional information (in addition to schedules)
when planning a journey. The basic approach as presented and illustrated in
Sect. 2 is Monte Carlo simulation. Potential improvements and extensions using
historical and real time data are discussed in Sect. 3.

2 Stochastic Simulation

For modeling/simulating (relevant) departure and arrival times Dij and Aij of
train i from/at station j, respectively, we use

Dij = δij + Vij , Aij = αij + Wij + Uij ,
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Fig. 2. Mixture components (left) and resulting mixtures (right) for p = 0.5 (dotted
pink), p = 0.7 (dashed blue), and p = 0.9 (solid black).

where δij , αij is the departure/arrival time according to schedule. Wij = Di,j−1−
δi,j−1 − τ , if Di,j−1 > δi,j−1 + τ , and zero otherwise, is the delay at departure
from station j − 1 with soft threshold τ > 0. The latter takes into account
that small delays typically do not jeopardize the train’s schedule. Vij , Uij are iid
random variables following a distribution with density f . For both Vij and Uij we
assume a mixture of two gamma distributions, since the most simple, standard
approach of using a purely exponential distribution for modeling headway times
does not seem realistic; compare, e.g., [3]. That means,

f(x) = pg1(x) + (1 − p)g2(x), (1)

where g1 is the density of a gamma distribution with shape a1 and scale s1, g2
refers to a2 and s2; p ∈ [0, 1] is a weight parameter, which can be interpreted such
that an observation comes with probability p from a (latent) class with density
g1, and with probability 1 − p from a subpopulation with g2. More specifically,
for our case study, we assume that a1 = 1, s1 = 2.5, which gives an exponential
distribution with mean (delay) of 2.5 min, see the green density in Fig. 2 (left).
The interpretation is that a train comes with probability p from a ‘population’
without any major incidents (note, DB considers a train ‘on time’ if the delay is
less than 6 min), where a standard model holds. With probability 1−p, however,
a more serious issue occurs, leading to a gamma distribution with a2 = 2, s2 = 15
(the red curve in Fig. 2, left). The resulting mixture distribution, i.e., density f
from (1), for various p is shown in Fig. 2 (right). For our case study, we assume
p = 0.9 (the black curve in Fig. 2, right), which leads to an overall probability
of 82.5% for a delay of less than 6 min, and 92.7% for < 16 min. This appears
reasonable having the overall delay of DB long distance trains in 2021 (until
April) in mind as given in Table 1. For the soft threshold, we use τ = 3 minutes.
Furthermore, we assume walking times of 3 min if changing in Hanover, 2 min at
Frankfurt Airport, and 5 min at Frankfurt Central.
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Table 1. Delay (overall) of DB long distance trains between January and April 2021 [6]
and corresponding settings/numbers in the simulation study.

Delay January February March April Simulation

<6min 83.3% 74.9% 81.1% 81.4% 82.5%

<16min 92.7% 86.7% 91.9% 92.1% 92.7%

Figure 3 shows the realized travel times across 10,000 runs of the simula-
tion if starting at Göttingen train station at 9:00 (top left) or 9:30 (bottom
left), and taking the first train headed to Frankfurt or Hanover, respectively.
In addition, the relative frequency is given whether traveling via Frankfurt or
Hanover would have been faster (right). Please note, for calculating travel times,
we used 9:00/9:30 as the starting time point, since waiting at the station should
be considered part of the trip. The dotted lines (Fig. 3, left) indicate travel times
according to schedule/connection (via Frankfurt) proposed by the DB app (see
Sect. 1). It is seen that the route via Frankfurt, which is more expensive, was
faster about 75% of all trips. Overall, however, differences in travel times between
option A and B are rather small (see Fig. 3, left). Furthermore, we see that there
is some variation in travel times. In particular, if departing early and choosing to
go via Frankfurt, there is some chance of catching an earlier/delayed train there
which makes the passenger arrive at Cologne ahead of schedule. This is also seen
from Fig. 4, where actual arrival times are given (note, arrival time according to
schedule is 13:05/13:09, see Sect. 1). More importantly, however, the dashed line
marks the latest arrival time acceptable due to some pretended appointment at
14:00. For instance, if a passenger arrives at Göttingen train station at 9:30 with
a ticket via Hanover (compare the second connection given in Sect. 1), the proba-
bility/risk of missing the appointment is about 16% according to our simulation
(Fig. 4, bottom left). As we can see, this risk can be reduced by taking an earlier
train and/or choosing a connection via Frankfurt. Of course, one reason is that by
taking an earlier train the chance of catching a connecting train is increased. For
instance, when departing from Göttingen around 9:40 as suggested by the sched-
ule given in Sect. 1, the risk of missing the connecting train in Hanover is around
14% according to our model. By taking an ICE train already at 9:00 (or somewhat
later) in Göttingen, the risk is reduced to 4%. Generally speaking, our simulation
based approach provides, for instance, the means for a passenger who wants to buy
his/her ticket in advance to make an informed decision whether a higher price of
a specific connection is justified by a shorter, expected travel time, lower risk of
arriving late for an appointment, etc.
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Göttingen; the pretended appointment at Cologne Central at 2 pm (14:00) is marked
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3 Discussion and Outlook

Our simulation study already produced some interesting results. Of course, how-
ever, it should only be seen as a nucleus for larger and extended follow-up studies
and research. In particular, there are the following ways to go from here:

1. The parameters used for simulating departure/arrival times appear plausible
from a global perspective (compare Table 1). In practice, however, headway
distributions are not constant across time and space, but depend on various
factors such as time of the year, day of the week, hour of the day, weather
conditions, route characteristics, construction works, etc. Therefore historical
data has to be used to estimate crucial parameters of probability distributions
and to relate those parameters to covariates as mentioned above. Very impor-
tantly, this goes beyond simple parameters such as mean waiting time, but
also includes variance and shape, for instance by using advanced statistical
methods (distributional regression) such as GAMLSS [5].

2. Our framework should be adaptive in terms of using additional information
that comes in while traveling. In particular, real time data on train delays
etc. should be used to update (estimated) probability distributions and hence
the model used for simulation.

3. The framework should be open such that it can be extended to include aspects
such as the way to the train station, e.g., using public transportation, shared
ride services, etc. Also, it may be adapted for local public transport in general.

4. In cases like local public transport, however, the number of options to go from
S to T may become too large to simulate all potential routes. So the Monte
Carlo approach presented here needs to be incorporated in or combined with
intelligent algorithms for optimizing with respect to a specific criterion, or
multiple criteria.

5. Often enough, travelers can only collect data on travel time distributions
by travelling along these routes. Thus, when deciding on routes, there is a
tradeoff between expected travel time and future data accuracy. In economics,
such situations are called ‘Bandit Problems’ [1]. We are not aware of an
application to route planning so that this denotes an interesting direction of
future research.
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Abstract. We deal with robust yard crane scheduling inside a storage
block of a container terminal. We consider scenarios with high utilization
rates of the cranes, where uncertainties regarding the arrival of transport
vehicles at the sea and landside lead to uncertain schedules for the yard
cranes. If uncertainties are not incorporated in the scheduling process,
the resulting plans can quickly become suboptimal, leading to extended
overall completion times that result in delays and can incur penalty costs
as a consequence. We present a multistage robust optimization model
that allows us to minimize the worst-case objective value by taking into
account the uncertain arrival times. Furthermore, we compare our app-
roach with a deterministic model.

Keywords: Robust optimization · Uncertainty · Quantified
programming · Scheduling · Yard cranes · Container terminals

1 Introduction

As part of the international transport chains, container terminals contribute to the
global exchange of goods and must ensure efficient and on-time handling of high
quantities of containers. Container terminals may differ in their design and the
transport vehicles involved, but almost always have an area for temporary storage
of containers. These storage blocks are a central component and the scheduling
of the cranes within the blocks is particularly important, as their operations can
have a direct impact on the efficiency and therefore the costs of the entire terminal.
Due to the often relatively slow movements of the cranes within the storage blocks,
these can become the bottleneck of the terminal [5]. Further information regarding
the operations and components of a container terminal can be found in [6].

In our work we focus on the uncertain arrivals of containers in the transfer areas
of the storage blocks at seaports and the scheduling of yard cranes (YC) to move
the containers. The arrival of containers at the storage blocks depend on multiple
uncertain factors [4]. All transport vehicles involved, such as trucks, trains, ships
and horizontal transporters within the terminal, may experience delays due to, for
example, technical defects or environmental influences. However, predetermined
plans can quickly become suboptimal if these uncertain events are not taken into
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account during scheduling. This leads to an increased overall completion time and
further delays in the subsequent process, which can result in penalty costs.

We introduce a robust multistage scheduling model in Sect. 2. In Sect. 3, we
compare our model with a deterministic model before summarizing and conclud-
ing in Sect. 4.

2 Robust Multistage Scheduling

For the robust multistage optimization problem, we use a Quantified IntegerLin-
ear Programming (QIP) formulation. This is a formal extension of Linear Pro-
gramming (IP), where variables are either existentially or universally quantified.
The existentially quantified variables represent decisions made by the planner
and the universally quantified variables represent uncertain events. The vari-
ables are explicitly ordered, resulting in a multistage optimization model where
the solution is a strategy for assigning existentially quantified variables to react
optimally to any realization of the universally quantified variables. The objec-
tive value of a strategy is given by the worst-case realization of the universally
quantified variables. Further details can be found in [2]. In our approach we use
a decision-dependent uncertainty set, i.e. the domain of the universally quan-
tified variables depends on realizations of earlier existentially (and universally)
quantified variables [3].

Ourmodel aims atminimizing the job’s tardiness by finding a robust adjustable
job sequence, i.e. jobs are assigned and executed sequentially, incorporating new
information gained about actual release dates. We consider a container storage
block where container movements are handled by a single YC with two opposite
transfer areas. The job specifications for the YC are provided using a test data
generator [1] and include the starting and destination locations of the containers,
release and due dates for the jobs, and values for a potential delay in the release
date. In our case, the parameter values are subject to a uniform distribution. We
suppose that the movement along the bays and rows can occur simultaneously and
that during the lifting and lowering of the spreader for loading or unloading of the
containers no further crane movements are performed for safety considerations.

Within the storage blocks, different job types are possible, such as storage and
retrieval on the sea and landside or housekeeping operations. The determination
of job j in the processing sequence at time stage t by the existential variables
stj and the possible delay of the release date of job j by the universal decision
variables ξtj in stage t are carried out alternately, whereby the first job in the
sequence is not subject to any delay and only jobs in the subsequent decision
stages that have not already been processed may be delayed. The overall number
of delayed release dates is bounded by G. Therefore, the decision-dependent
uncertainty set Ξt in stage t is given by

Ξt(s0, ..., st−1, ξ1, ..., ξt−1) =

{
ξt ∈ {0, 1}J |∑t∈T

∑
j∈J ξtj ≤ G

∧ ξtj ≤ 1 − ∑t′<t
t′=0 st

′
j ∀j ∈ J

}
. (1)
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We will use Ξt and omit stating the dependencies when clear. In Tables 1 and 2
the remaining parameters and variables are introduced, respectively.

Table 1. Sets and Parameters

Symbol Description

J set of jobs {0, . . . , N} and existential decision stages

T set of universal decision stages {1, . . . , N}
G ∈ N overall limit for the number of release date delays

M ∈ N big M

A ∈ N Aj,k: crane travel time from destination of job k to starting slot of job j

L ∈ N Lj : crane transport time of container j from starting slot to destination

R ∈ N0 Rj : release date of job j

D ∈ N Dj : due date of job j

P ∈ N0 Pj : possible delay in release date

Table 2. Variables

Symbol Quantification Description

s ∈ {0, 1}T∪{0}×J (∃) stj : indicates whether job j is executed in stage t

ξ ∈ {0, 1}T×J (∀) ξtj : indicates whether the release date of job j is
delayed with announcement in stage t

x ∈ N
J
0 (∃) xj : tardiness of container j

c ∈ N
J (∃) cj : completion time of job j

min
∑
j∈J

xj (2)

s.t.∃s0j ∈ {0, 1}J (3)

∀ξ1j ∈ Ξ1 ∃s1j ∈ {0, 1}J
∀ξ2j ∈ Ξ2 ∃s2j ∈ {0, 1}J
...∀ξNj ∈ ΞN ∃sNj ∈ {0, 1}J x ∈ N

J
0 c ∈ N

J :∑
j∈J

stj = 1, ∀t ∈ T ∪ {0} (4)

∑
t∈T∪{0}

stj = 1, ∀j ∈ J (5)

Rj + Lj + (s0j − 1) ∗ M ≤ cj , ∀j ∈ J (6)

ck + Aj,k + Lj + (stj + st−1
k − 2) ∗ M ≤ cj (7)
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∀t ∈ T , j ∈ J , k ∈ J , k 	= j

Rj +
t∑

t′≥1

(ξt
′
j ∗ P ) + Aj,k + Lj + (stj + st−1

k − 2) ∗ M ≤ cj , (8)

∀t ∈ T , j ∈ J , k ∈ J , k 	= j

cj − Dj ≤ xj , ∀j ∈ J (9)

The objective function (2) aims at minimizing the overall tardiness. The
order and domains of the variables in the multistage model are defined in the
Quantification Sequence (3). At each existential decision stage, a job is assigned
to the job sequence (4) and each job may be executed only once across all stages
(5). The very first job performed by the YC is not affected by uncertainty (6).
There are two constraints for the subsequent jobs in the processing sequence,
as job j cannot start until both the previous job k is completed (7) and the
release date of job j (plus the possible delay) has occurred (8). Only tardiness is
considered and early submission cannot be utilized as compensation for tardiness
(9). We can solve such instances using a special solver for QIPs [3].

In Sect. 3 we will compare our robust multistage approach with an IP model,
that does not take uncertainty into account and aims for a deterministic, non-
adjustable job sequence. This IP is similar to the QIP to a major part, but
in particular does not incorporate the universally quantified variables. We do
not present the entire model, but rather discuss the components based on the
model presented above. The IP model has the same objective function (2) and
constraints (4), (5), (6), (7) and (9). Constraint (8) is adapted for the IP model
by neglecting the possible delays:

Rj + Aj,k + Lj + (stj + st−1
k − 2) ∗ M ≤ cj ∀t ∈ T , j ∈ J , k ∈ J , k 	= j

Thus, the job sequence is determined regardless of delays of the release dates.
However, the objective function also minimizes the tardiness relating to the com-
pletion times of the jobs. In order to compare the two models, the job sequence
from the IP model should be tested for scenarios.

3 Computational Experiments

We first discuss an illustrative example with six jobs, for which the job specifi-
cations are given in Table 3. Additionally the job sequence from the IP solution
and the worst-case realization of the optimal strategy from the QIP model are
shown. This example includes three storage operations each from the sea and the
landside of the storage block and is visualized in Fig. 1, with the blue lines repre-
senting the crane’s routes with loaded container which are invariant for each job
sequence. The routes of the unloaded crane between the individual jobs, which
are shown in red for the IP solution and green for the QIP solution, result from
the assignment of the jobs to the particular stage and thus the position in the
job sequence. The optimal sequence from the deterministic model starts with job
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4 in bay 21 and the optimal worst-case job sequence of the robust model starts
with job 1 in bay 0. Since we include release and due dates in our considerations
and, in the case of the QIP model, also potential delays of the release date, the
job sequence does not only result from the shortest paths between the individual
jobs. For our example, we set G = 1 so that only one release date is delayed.
Also note that in our model we only consider the required crane operating time
and not the exact path between two points. Hence, the exact travel paths in the
figure are suggestions and can also be represented differently.

Table 3. Job specifications and the optimal deterministic job sequence from the IP as
well as the optimal worst-case sequence from the QIP.

Start Destination Dates Stage

j bay row bay row Rj Dj ip qip

0 0 5 9 7 45 130 4 5
1 0 6 17 3 27 126 5 0
2 0 4 19 6 49 107 2 2
3 21 5 18 6 32 93 1 3
4 21 1 14 5 15 104 0 1
5 21 4 5 3 52 124 3 4

Fig. 1. Crane movements within the storage blocks.

We also conducted experiments on 100 instances consisting of 6 to 8 jobs
and similar job types as in the example above with G = 1. In order to be able
to compare the two models described, we applied the job sequences from the
solution of the IP model in a QIP model for each instance and computed the
solution for the worst-case scenario. Figure 2 displays the number of instances
with respect to their improvement in the objective value resulting from consid-
ering the uncertainty in a multistage manner. For 90% of all instances, the QIP
solution was at least 50% better in the given comparison.
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Fig. 2. Improvement in the objective value of the robust QIP solution compared to the
worst-case realization for the corresponding deterministic job sequence from the IP.

4 Conclusion

We introduced a quantified programming model for robust multistage scheduling
of a yard crane within a container storage block. We illustrated our model by
visualizing the crane movements of an instance with six storage operations split
between both sides of the storage block. By conducting experiments on 100
instances, we demonstrated the benefits of robust multistage scheduling. Future
work may focus, for example, on the integration of additional cranes in the
storage block or on special considerations of important scenarios in the robust
multistage approach.
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Abstract. Order picking is the warehouse process of consolidating
stored items according to customer orders. When designing a zoned order
picking system, two problems need to be solved in the light of perfor-
mance objectives: zoning and item-to-zone assignment. Usually, these
problems are tackled in such a way that assignment is done after the
zones were formed. Since both problems are interrelated, we propose an
integrative decision model and solve it by means of optimization software.
Based on a numerical study the suitability of the model and weaknesses
of the solution approach are pointed out.

Keywords: Warehouse design · Mixed-integer programming

1 Introduction

Zoning (ZG) and storage location assignment (SLA) are two important tasks of
warehouse operations management [11,12]. ZG divides the warehouse into several
sub-areas, such that in each sub-area a specific group of workers is responsible
for picking the items according to orders. SLA can refer to different aggregation
levels: bin location assignment [6] and assignment to zones [9]. The latter case
is relevant for this paper.

With respect to the objective of makespan minimization, the ZG and SLA
decisions are interdependent [12]. The path length within a zone increases with
the number of bin locations (zone size), since the dimensions of the zone increase
and the locations contained in a picking route are distributed over a larger area.
The strength of this effect is influenced by the item-to-zone assignment, which
is usually based on the items’ demand frequencies and cross-correlations. Both
reduces the inter-zone path length, but ZG unfolds an ambivalent impact: While
the effectiveness of frequency-based SLA decreases, that of correlation-based
SLA increases in the zone size. Performing ZG and SLA in an isolated way,
induces longer lead times than necessary and thus competitive disadvantages.

Most of the existing approaches solve the sub-problem of SLA in an isolated
way [4]. It is usually suggested to perform ZG at first and SLA afterwards [8,10].
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This decomposition saves computational effort, but may not lead to optimal solu-
tions as soon as the decisions are interdependent. A perfect coordination of such
decisions can be achieved by considering them in an integrative model [1,2].
However, additional decision variables increase the complexity of the model, so
that it is questionable whether it can be solved exactly with acceptable compu-
tational effort. There are few suggestions for integrative solution approaches to
the problem at hand [1,5]. The approach [5] is based on the assumption of an
evenly divided warehouse, which severely limits the scope for ZG. Hence, only
a few configurations are possible and can be compared in a simulation study. In
[1] a three-step solution approach is developed. At first, the best SLA is deter-
mined using simulation, second, the zone locations are optimized, and third,
the impact of uncertainty is analyzed by means of simulation. In contrast to
existing approaches, to the best of our knowledge, we are the first who derive
an optimization model that treats both decisions simultaneously without using
simulation studies. In this connection, we focus on pick&pass systems. These
are zoned systems in which each picker only works at one zone and each zone
only comprises a sub-set of items. Order-related containers are routed along a
sequence of zones to be filled up consecutively with the items needed for order
fulfillment [3].

In the remainder of this paper, we continue these considerations and propose
a decision model that simultaneously decides on ZG and SLA (Sect. 2). In order
to evaluate the proposed model in terms of solution quality and computational
effort and to identify regularities of the solutions found, we conduct a numerical
study and analyze the results by statistical means (Sect. 3). Finally, in Sect. 4,
the main findings and the next steps of our future research are pointed out.

2 Model

The warehouse comprises CL shelves of identical size at which the items k(k =
1, . . . ,K) are stored. The inventory of each item occupies exactly one shelf.
Hence, K ≤ CL holds. A maximum number of J zones can be formed. Each
zone j(j = 1, . . . , J) consists of at least C and at maximum C neighboring
shelves to which items can be assigned to. An order n(n = 1, . . . , N) is a bundle
of items with composition ynk ∈ {0, 1} and occurrence probability pn. Order
fulfillment is performed sequentially. Starting at the I-point (j = 0), the order-
related container is forwarded to the first relevant zone. After the container has
arrived in a zone, items relevant for both, order and zone, are taken out from
the shelves and placed in the container. Subsequently, the container is passed to
the next relevant zone. This process is continued up until all required items are
picked. Finally, the filled up container is forwarded to the O-point (j = J + 1).
Assuming that times for taking an item out of the shelf are identical for each item
and each shelf, decision-relevant makespancomponents are the inter-zone time
twjj′ and the intra-zone time tzj . Both are dependent on warehouse design as well as
basic decisions on the activation of zones uj and the assignment of items to zones
xkj . In addition, decisions on details refer to the routing of orders. Whether
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zone j is (not) relevant for order n is captured by the variable bnj . The route
of order n has to be determined by combining direct connections wjj′n between
the zones j and j′. As I- and O-point are relevant for each order, their activation
and relevance for routes are parameters (u0, uJ+1 = 1; bn0, bnJ+1 = 1∀n). Based
on these assumptions, a MILP model results:

Min
∑

j,n,k
pn · ynk · tzj · xkj +

∑J

j=0

∑J+1

j′=j+1

∑
n

pn · twjj′ · wjj′n (1)

∑
j
xkj = 1 ∀k (2)

∑
k
xkj ≤ uj · C ∀j = 1, . . . , J (3)

∑
k
xkj ≥ uj · C ∀j = 1, . . . , J (4)

bnj · M ≥
∑

k
ynk · xkj with M > K · CL ∀j = 1, . . . , J (5)

wjj′n = 0 ∀j ≥ j′, j′ = 1, . . . , J, n (6)

wjj′n ≤ uj ∀j < j′, j′ = 1, . . . , J, n (7)

wjj′n ≤ uj′ ∀j < j′, j′ = 1, . . . , J, n (8)

∑j−1

j′=0
wj′jn = bnj ∀n, j = 1 . . . , J (9)

∑J+1

j′=j+1
wjj′n = bnj ∀n, j = 1, . . . , J (10)

bnj ∈ {0, 1} ∀j = 1, . . . , J, n (11)

xkj ∈ {0, 1} ∀j = 1, . . . , J, k (12)

uj ∈ {0, 1} ∀j = 1, . . . , J (13)

wjj′n ∈ {0, 1} ∀j = 1, . . . , J, j′ = 1, . . . , J, n (14)

The objectivefunction (1) minimizes the expected makespan. The decisions
have to be made subject to restrictions: (2) Each item is assigned to exactly one
zone and articles can only be assigned to activated zones. The size of an acti-
vated zone is restricted from above and from below (3, 4). During fulfillment, an
order has to visit each zone, which at least stores one of the ordered items (5).
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The calculation of distances covered during order fulfillment is based on the
routes: (6) defines that an order visits the zones according to ascending zone
index. The route of an order is composed of connections between activated zones
only (7, 8). Furthermore, each zone contained in the route has exactly one pre-
decessor (9) and one successor (10).

The initial analyses are based on a simple warehouse design: Shelves of identi-
cal length l are arranged in a single row. I- and O-point are in the same location,
which is situated between two zones in the middle of the shelf row. In the left
and right halves of the shelf row, the zone index increases as the distance from
the I/O point increases. The flow of containers from I-point via zones to O-point
is bidirectional with constant speed vw. In each zone, the container stays at the
centered base as long as all relevant items are picked. Required items are picked
sequentially. Distances between base and shelves of a zone are covered with con-
stant speed vz. Based on these assumptions and calculating the zone size with
sj =

∑
k xkj , twjj′ and tzj are:

tw0j = twjJ+1 =
l

vw
·
{ ∑j−1

j′=1 sj′ + sj
2 : j ≤ J

2∑j−1

j′= J
2 +1

sj′ + sj
2 : j ≥ J

2 + 1
∀j = 1, . . . , J (15)

twjj´ =
l

vw
·

{ ∑j′−1
j′′=j+1 sj′′ + sj+sj′

2 : j + 1 ≤ j′ ∧ (
j, j′ ≤ J

2 ∨ j, j′ ≥ J
2 + 1

)
∑j−1

j′′=1 sj′′ +
∑j′−1

j′′= J
2 +1

sj′′ + sj+sj′
2 : j + 1 ≤ j′ ∧ j ≤ J

2 ∧ j′ ≥ J
2 + 1

∀j = 1, . . . , J − 1, j + 1 ≤ j′ ≤ J

(16)

tzj =
l

vz
· sj

2
∀j = 1, . . . , J (17)

In order to include these calculations in the model, the time components
are defined as variables (twjj′ ∈ R+

0 ∀j, j′; tzj ∈ R+
0 ∀j) and restricted by the time

calculation from below. The products tzj · xkj and twjj′ · wjj′n are replaced by
aggregate continuous variables using standard linearization techniques [7].

3 Numerical Study

The purpose of the full-factorial numerical study is to provide insights into the
model behavior in terms of solution time, quality and structure. Varied ware-
house parameters are the number of articles K ∈ {12; 20; 28} and the maximum
relative zone size c ∈ {0.25; 0.5; 0.75}, which is the ratio of C and K. The min-
imum zone size is fixed to C = 1. Varied order parameters are the number
N ∈ {20; 40; 60} and the heterogeneity η ∈ {0.2; 0.3; 0.4} of orders. The coef-
ficient η ∈ [0, 1] expresses the average dissimilarity of the orders regarding the
articles they contain: η =

∑N−1
n=1

∑N
n′=n+1

∑K
k=1 |ynk −yn′k|/(N · (N −1)/2 ·K).



278 R. Gössinger and R. Thelen

In the case of four parameters, a systematic variation of three specifications
per parameter leads to 81 combinations. Due to the randomly generated order
information, we consider 3 runs with different order information for each combi-
nation, so that 243 instances result, which are sufficient for meaningful statistical
analyses (R2 > 0.5; p < 0.01). We used CPLEX 20.1 for solving the instances on
a Windows PC (2.70 GHz Intel Core i7 CPU, 16 GB RAM) with a solution time
limit of 30 min. 177 instances are solved to optimality. For the other 66 instances,
intermediate results and integrality gaps (GAP) are recorded. To receive the
detailed statistical results, please send an email to pl.wiwi@tu-dortmund.de.

For analyzing the solution time (ST ) an exponential regression model is
estimated that explains 65% of variations by the varied factors with a high sig-
nificance. ST increases exponentially in K, N and η and decreases exponentially
in c, whereby K has the strongest impact. This underlines the necessity of alter-
native solution approaches when bigger instances need to be solved.

Regarding the solution quality, the frequency of solution process interrup-
tions (IN) and the variation of GAP can be explained by second-order poly-
nomial linear regressions with two-factor interactions. With a high significance,
more than 50% of the variations can be traced back to the examined factors. IN
indicates that the probability of reaching the solution time limit most strongly
depends on K, the impact of which is strengthened by N and η. The GAP analy-
sis reveals c as the main driver. Its impact is strengthened by both, K and N , and
weakened by η. Both results allow the conclusion that although the model can
be solved with a standard solver, a good solution quality can only be achieved
for small instances in acceptable time. Accordingly, heuristic approaches should
be used to solve instances of realistic size.

The analyses of the solution structure concentrate on the makespan Z and
the number of zones U . The procedure is analogous to the analyses of the solution
quality. At least 66% of variations are explained by the varied factors with a high
significance. The analyses reveal non-linear influences for all observed variables.
With respect to Z, the most important influencing factors are K and N . Their
extending impact is mainly weakened by c. The main factor influencing U is c,
while the relevance of other factors is neglectable. In contrast to K and N , c can
primarily be determined by the warehouse management. Hence, it is the central
parameter to control the solution structure. Due to the non-linear conditional
impact of c and its interactions with K and N , it needs to be carefully adjusted.

4 Conclusions

In this paper, a new optimization model is proposed that integratively decides
on zones and storage locations in a pick&pass system. It is structured in such
a way that the calculation of inter-zone and intra-zone times can be adapted
to specific warehouse designs without changing the main parts of the model.
Exact linearizations result in a MILP that can be solved by means of standard
solvers. Based on a numerical study, the model behavior is statistically evaluated
in terms of solution time, solution quality and solution structure. The analyses
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reveal that the model can be exactly solved for small instances in acceptable time.
Bigger instances often cannot be solved within a reasonable time limit and the
quality of “unfinished” solutions worsens with increasing instance dimensions. In
addition, the maximum relative zone size has been identified as a parameter that
unfolds significant impact on the solution quality and structure. These results
motivate four directions of subsequent research: (1) Heuristic approaches are to
be tested in order to achieve near-optimal solutions for bigger instances. (2) It
has to be explained how the “maximum relative zone size” parameter can be
advantageously set. (3) Both time components should be formally described for
other warehouse designs. (4) The drivers of interdependencies between ZG and
SLA need to be analyzed depending on warehouse design.
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Abstract. In the dial-a-ride problem, customers have to be transported
from different pickup to drop-off locations. Various constraints such as
time windows and a maximum ride time per passenger need to be con-
sidered. In the dynamic version of the problem, not all customer requests
are known in advance, but arrive during the operation time. Therefore,
the maximization of the number of served customers is usually set as the
optimization goal. Nevertheless, in the vast majority of known heuristics,
the total distance is used to guide the optimization. In this paper, we
present different metrics that should enable the evaluation of the inser-
tion potential of future customers and lead to a higher acceptance rate
through their use in solution procedures. We show that even a single met-
ric can provide better results than the distances and present a Markov
decision process-based approach to enable an agent trained by reinforce-
ment learning to perform even more anticipatory decision making by
considering multiple metrics simultaneously.

Keywords: Dynamic dial-a-ride problem · Metrics · Reinforcement
learning

1 Introduction

As a compromise between expensive cabs and unflexible public transport, on-
demand ridesharing services continue to gain in popularity. In order to model
sharing concepts, the dial-a-ride problem (DARP) as a variant of the vehicle
routing problem with time windows can be used. In this problem, a set of requests
is served by a fleet of vehicles. Each request consists of taking a customer from
a pickup to a drop-off point. The customers specify time windows for pickup or
drop-off as well as a maximum ride time (often a linear function depending on
the direct travel time).

The DARP combines a routing and a scheduling part. First, the routing has
to determine which vehicle serves which customer in what order. The subsequent
scheduling determines the exact timing so that time windows and the maximum
ride time are respected. The goal of the static problem, in which all requests
are known in advance, is usually to minimize the total travel distance. In a
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dynamic DARP, only some of the requests are known at the beginning of the
planning horizon, the remainder are received during the operation. How many
of the requests are dynamic is specified by the degree of dynamism. Due to the
consideration of requests arriving at short notice, it may not be possible to serve
all requests. Hence, the maximization of the number of requests that can be
accepted is typically chosen as the optimization goal.

There are well known approaches that adapt the scheduling part to be able to
respond to the dynamic aspect of the DARP (see, e.g., [1]). The idea is to generate
a schedule that facilitates the insertion of future requests. However, the routing
part is usually disregarded. Instead, the corresponding approaches focus on inser-
tion heuristics that may be followed by local search procedures. These are executed
for a certain number of iterations or until a new event (e.g., arrival of a new request)
occurs (see, e.g., [2]). Nevertheless, the respective insertion and local search meth-
ods only minimize distances, which leads to an efficient use of vehicles but does not
explicitly maximize the insertion potential for future requests.

In this contribution, we seek to find a metric whose optimization in the rout-
ing part of a solution procedure leads to a higher acceptance rate than just using
the distances. To this end, we evaluate different metrics for estimating the inser-
tion potential of future requests (cf. Sect. 2). In Sect. 3, we show the superiority
of one of the metrics over the previously used distances. In Sect. 4, we addi-
tionally present a reinforcement learning-based approach that could enable even
more anticipatory decision making. Section 5 contains a summary and provides
an outlook on future research.

2 Metrics for Estimating the Insertion Potential

The metrics used to guide the optimization are intended to reflect the potential
of a solution to allow future request insertions. According to the literature and
own preliminary experiments, primarily the time windows and secondarily the
maximum ride time are the critical constraints. Consequently, we incorporate
the subsequent four metrics (it is preferable if the metrics have high values):

Mean Waiting Time: For each arc 〈A,B〉 in the current solution (A and B
are customer nodes), it is determined how long the respective vehicle waits on
that arc. Thereby, the waiting time between end of service and departure at A
as well as between arrival and start of service at B are taken into account. To
evaluate the entire solution, the average waiting time is calculated over all arcs
that are still modifiable, i.e., have not yet been fully or partially traversed.

Ellipse Area: Let 〈A,B〉 again be an arc in the solution. In order to now
maximize the probability of being able to insert a random next request between
A and B, we calculate where the node to be inserted (pickup or drop-off) could be
located (assuming suitable time windows). We specify the earliest departure time
at node A (EDA) and the latest arrival time at node B (LAB). The difference
of LAB and EDA is the total available time (atAB) for the trip from A to B.
Determining all points C that can be reached within this time via the route
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A B

C

tAB

tAC tCB

ellipse area

C is a potential
insertion node;
it holds:

tAC + tCB atAB

Fig. 1. Example of the ellipse area metric

A → C → B results in an ellipse with focal points A and B (see Fig. 1). We take
the area of the ellipse as an indicator of the probability of inserting a random
request on 〈A,B〉. With (1), we obtain the area according to:

ellipse area =
π

4
· atAB ·

√
(atAB)2 − (tAB)2 (1)

with tAB being the direct travel time from A to B. To evaluate the entire solution,
a vehicle score Sk is determined by averaging the area of the ellipse over all arcs
still to be traversed by vehicle k. Formula (2) is then used to combine the scores
of each of the K existing vehicles into a joint score S:

S =

(
1
K

K∑
k=1

√
Sk

)2

(2)

Mean Ride Time Slack: We identify the average ride time slack (difference
between actual and maximum ride time per customer) as a measure of how strict
the current transportation plan is. The larger the average ride time slack of a
customer not yet visited, the larger detours are possible without violating the
customer’s maximum ride time.

Mean Time Window Slacks: In addition, we integrate the forward, central,
and backward slack times as proposed in [3]. These slack times consider the
average difference between the planned start of service at a node and the opening
(forward), center (central) or closing (backward) of the associated time window.

To evaluate how well these metrics can predict the insertion potential, we
collected different information from temporary solutions during the application
of a traditional distance-based solution procedure and noted whether a new
request could be inserted. We trained a random forest classifier by supervised
learning based on about 60,000 solutions to estimate whether the next request
can be added to the current transportation plan or not. Input parameters were
the current timestamp (as a measure of progress within the planning horizon),
the number of requests accepted so far, and one of the collected metrics. The
quality of the classification was measured by the area under the ROC curve
(AUC). All metrics except the mean ride time slack were able to predict the
insertion potential better than the pure distances. Particularly, the ellipse area
achieved the best AUC with 0.9456 (in contrast to the distances with 0.9284).
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3 Computational Study

Always taking the solution with the highest probability of inserting the next
request is a very short-term and greedy strategy. In order to check whether
this nevertheless leads to a higher acceptance rate in total, we have changed
the acceptance criterion at all points in our optimization procedure. Instead of
taking the solution with the shorter total distance, we choose the solution with
the higher value of the metric under consideration.

The solution procedure used for the routing part is designed as follows: The
initial insertion follows the ejection chain approach presented in [4]. All feasible
insertion positions for the new request r are examined and the best one (accord-
ing to the considered metric) is selected. If all insertion positions are infeasible, a
request whose time windows overlap with r is removed from the current solution,
the insertion procedure is repeated for r, and the removed request is reinserted
again. This is iterated for all eligible requests. In case that no feasible solution is
found, the request is rejected. Otherwise the best resulting solution is accepted
and improved by a local search phase. This process essentially follows the app-
roach in [5]. Neighborhood operators considered are the exchange of two requests,
the relocation of one request, a 2-opt operator applied to route segments that
do not have a customer in the vehicle at the beginning and end respectively, and
a restricted 4-opt operator, where four consecutive arcs are eliminated. Once an
improved solution is found, a simulated annealing criterion is applied to check
whether it should be accepted or not. For the scheduling part and the feasibility
check, the approach from [1] was used.

In the evaluation, we used 72 instances, which were generated based on real-
istic characteristics. The number of customer requests varied from 50 to 200, the
time windows were 10 or 20 min each, the degree of dynamism ranged from 20%
to 80%, and dynamic customers were known either 30 or 90 min before their
pickup time window opened. The number of vehicles varied from 2 to 6 depend-
ing on the number of customers, the service area was 15 × 15 distance units, the
duration of the planning horizon was 10 h, and the vehicles had a fixed capacity
of 4 requests and a uniform speed of one distance unit per minute. The procedure
was run 10 times with each metric and different durations of the local search for
all instances, considering the average value over all 10 runs.

The ellipse area was the only metric that produced better results than the
total distance. Table 1 shows the detailed results. While the first two columns
display the properties of the instances, columns 3–5 and 6–8 compare the accep-
tance rate and the number of accepted customers for the distance (D) and the
ellipse area (EA) metrics respectively, and provide the respective percentage dif-
ferences. Column 9 presents a comparison of the number of instances in which
the distance or the ellipse area led to a better solution as well as the number of
instances in which the same results were achieved.

It is clearly evident that, on average, the ellipse area metric gives better results
than the distances (regardless of the instance properties) and also solves most
instances better with respect to the objective function. Larger time windows seem
to amplify the difference due to the higher degree of freedom. How short-term the
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Table 1. Comparison of distance and ellipse area metrics for optimization guidance

Instance property Acceptance rate [%] Accepted customers InstComp

D EA Incr [%] D EA Incr[%] D/EA/=

Time windows 10min 90.88 91.79 1.00 129.30 130.46 0.90 32/70/6

20min 93.27 94.93 1.78 133.13 135.10 1.48 19/89/0

Booking in advance 30min 91.97 93.26 1.40 130.83 132.47 1.25 29/78/1

90min 92.19 93.46 1.38 131.60 133.09 1.13 22/81/5

# Requests 50 90.26 92.28 2.24 45.13 46.14 2.24 7/26/3

100 89.57 91.36 2.00 89.57 91.36 2.00 8/28/0

150 92.70 93.85 1.24 139.05 140.78 1.24 16/54/2

200 93.62 94.41 0.84 187.24 188.81 0.84 20/51/1

Degree of dynamism 20% 91.38 93.14 1.93 130.16 132.35 1.68 21/51/0

50% 91.62 92.38 0.83 130.91 131.54 0.48 21/49/2

80% 93.24 94.56 1.42 132.58 134.45 1.41 9/59/4

Local search duration 500 ms 91.92 93.03 1.21 130.94 132.24 0.99 21/50/1

1000 ms 92.14 93.42 1.39 131.32 132.89 1.20 15/54/3

2000 ms 92.18 93.63 1.57 131.38 133.20 1.39 15/55/2

requests become known does not seem to have a decisive influence. For smaller
instances, the advantage of the ellipse area is stronger than for larger instances.
Regarding the proportion of dynamic requests, the worst results are obtained when
the ratio of static and dynamic requests is balanced. When the degree of dynamism
is high, the optimization potential is greater and this obviously affects the results.
Please note that the advantage of the ellipse areametric becomesmore salientwhen
increasing the duration of the local search.

4 MDP-Based Approach

As a first step towards an approach that can also account for combinations of mul-
tiple metrics, we modeled the scenario as a Markov decision process (MDP). The
MDP serves as a basis for training a reinforcement learning (RL) agent. A decision
point occurs when a decision must be made whether to choose a new solution over
the previous one. The actions indicate which of the two solutions is chosen. The
states include for both solutions the current timestamp, the number of accepted
customers as well as the values of the metrics to be used. A unit reward is given
if the solution with more customers than the other is selected. In case that both
solutions have the same number of customers, no reward is given. The objective is
to maximize the sum of future rewards, i.e., the sum of requests to be accepted.
This is to enable the model to learn to make decisions that lead to states in which
a request can be integrated. The transition function is non-deterministic in that
the next state is formed from the chosen solution and the next solution found.

In a proof-of-concept, we used Q-learning and a classical Q-table to validate
the MDP-based approach for general functionality. Due to the use of Q-tables,
the state space had to be kept very small. We strongly discretized the time and
only used {−1, 0, 1} to indicate whether the first solution was worse, as good,
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or better than the second solution with respect to the considered metric. The
results show that in the case of different numbers of requests, the solution with
more requests should be chosen and otherwise the solution with the higher ellipse
area metric. This confirms the observations from Sect. 3. To exploit the full
potential of the approach, deep reinforcement learning should be used by replac-
ing the Q-table with a neural network so that the magnitude of the differences in
the metrics can also be taken into account. Alternatively, approximate dynamic
programming techniques can be used (see, e.g., [6]).

Please note that a complex MDP brings the following advantage: The com-
mon greedy approach of accepting a request whenever possible can be subopti-
mal. As long as the optimization goal is to maximize the number of accepted
requests and not, e.g., the revenue generated, short or “easy” requests are more
lucrative. An anticipatory RL-trained agent could accordingly identify a non-
lucrative request and reject it despite an insertion opportunity, thus maintaining
the possibility of accepting several more requests in the future instead.

5 Conclusion and Outlook

We developed different metrics and analyzed their suitability for predicting the
insertion potential of future requests in dynamic dial-a-ride problems. The com-
putational study showed that the presented ellipse area, which considers the
number of reachable points between two nodes, was able to increase the customer
acceptance rate by over 1.5% in the used method. In addition, we presented an
MDP-based approach that could enable an RL agent to learn a combination
of metrics and thus be even better to decide which solution actually leads to a
higher acceptance rate. Further research will address the difficulties of the MDP-
based approach (e.g., very similar Q-values for the states due to sparse reward
and non-deterministic transition function).
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Abstract. The Periodic Event Scheduling Problem (PESP) is the cen-
tral mathematical model behind the optimization of periodic timetables
in public transport. We apply Benders decomposition to the incidence-
based MIP formulation of PESP. The resulting formulation exhibits
particularly nice features: The subproblem is a minimum cost net-
work flow problem, and feasibility cuts are equivalent to the well-known
cycle inequalities by Odijk. We integrate the Benders approach into a
branch-and-cut framework, and assess the performance of this method
on instances derived from the benchmarking library PESPlib.

Keywords: Periodic timetabling · Periodic event scheduling problem ·
Benders decomposition · Mixed integer programming

1 Introduction

Public transport is an important pillar of everyday mobility, and its expansion
is indispensable in order to increase the share of climate-friendly traffic. A large
part of public transportation networks is operated in a periodic manner, and this
creates the need for periodic timetable optimization by mathematical methods.
The standard model for this purpose is the Periodic Event Scheduling Problem
(PESP), which is difficult to solve, both in theory and practice. We investigate
a Benders decomposition approach to PESP, providing a new mixed integer
programming formulation. We formally define our setting in Sect. 2. The Ben-
ders reformulation is presented and analyzed in Sect. 3. We evaluate the method
computationally in Sect. 4.

2 The Periodic Event Scheduling Problem

2.1 Problem Definition

The input to the Periodic Event Scheduling Problem is given by a 5-tuple
(G,T, �, u, w), where
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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– G = (V,E) is a directed graph,
– T ∈ N is a period time,
– � ∈ R

E
≥0 is a vector of lower bounds,

– u ∈ R
E
≥0 is a vector of upper bounds, u ≥ �,

– w ∈ R
E
≥0 is a vector of weights.

A periodic timetable is a vector π ∈ [0, T )V such that there exists a periodic
tension x ∈ R

E such that

∀(i, j) ∈ E : �ij ≤ xij ≤ uij and πj − πi ≡ xij mod T. (1)

A periodic timetable π assigns times in [0, T ) to the vertices in V , a periodic
tension x fixes arc durations within the bounds, and constraint (1) ensures the
compatibility of π and x modulo the period time T .

Definition 1 [12]. Given (G,T, �, u, w) as above, the Periodic Event Scheduling
Problem (PESP) is to find a periodic timetable π along with a periodic tension
x such that w�x is minimum.

Equivalently, one may minimize the weighted periodic slack w�(x−�). If π is
a periodic timetable, then a periodic tension x with minimum w�x compatible
to π can be computed by

xij := [πj − πi − �ij ]T + �ij , for all (i, j) ∈ E,

where [·]T denotes the modulo T operator taking values in [0, T ).
In the context of periodic timetabling in public transport, vertices often

model departure or arrival events of vehicles at stations. Arcs represent, e.g.,
driving or dwelling of vehicles, transfers for passengers, and safety conditions
[6]. The weights typically reflect the number of passengers making use of a vehi-
cle or a transfer, so that the PESP objective amounts to minimizing the total
travel time of all passengers.

2.2 Incidence-Based MIP Formulation

Let A ∈ {−1, 0, 1}V ×E denote the incidence matrix of G, i.e., the matrix whose
columns are the unit vector differences ej − ei for (i, j) ∈ E. By (1), a vector
x is a periodic tension for a periodic timetable π if and only if � ≤ x ≤ u and
A�π ≡ x mod T . In particular, we can write x = A�π + Tp for some integer
vector p ∈ Z

E . This allows to express PESP as the following mixed-integer linear
program (MIP), cf. [5,7,10]:

Minimize (Aw)�π + Tw�p

s.t. � ≤ A�π + Tp ≤ u

π ∈ R
V

p ∈ Z
E .

(2)
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The domain of π can be extended beyond [0, T ): for each feasible solution
(π, p) to (2), the vector [π]T is a periodic timetable in [0, T )V , π−[π]T ≡ 0 mod T ,
and ([π]T , p + A�(π − [π]T )/T ) has the same objective value as (π, p).

To make (2) even more compact, consider the digraph G = (V,E), where
E contains all arcs in E and additionally a reverse copy e for each arc e ∈ E.
Define c(p)e := ue − Tpe and c(p)e := −�e + Tpe for all e ∈ E. Then

� ≤ A�π + Tp ≤ u ⇔ A
�

π ≤ c(p), (3)

where A denotes the incidence matrix of G.

3 Benders Decomposition

We apply a classical Benders decomposition [1] to the MIP formulation (2),
considering as Benders subproblem the dual of the linear program (LP) that
arises for a fixed vector p ∈ Z

E .

3.1 Analysis of the Subproblem

Using (3), the Benders subproblem reads

Maximize − c(p)�f

s.t. Af = −Aw

f ≥ 0.

(4)

In this form, (4) is equivalent to an uncapacitated minimum cost flow problem
in the network G with balance −Aw and cost c(p). This has also been observed
in [8] in a different context. In particular, minimum cost flow algorithms can be
applied to solve the Benders subproblem rather than general-purpose LP solvers.

Lemma 1. The Benders subproblem (4) is always feasible.

Proof. By Gale’s theorem [3], (4) is feasible if and only if for every subset S ⊆ V
the sum of balances

∑
v∈S(−Aw)v is at most the capacity of all arcs leaving S.

As capacities are infinite, we only need to consider such S that do not admit
any leaving arc. However, as G contains for each arc a reverse copy, S can only
be a union of connected components of G and hence of G. But then the rows of
A corresponding to the vertices in S add to 0, so that

∑
v∈S(−Aw)v = 0.

We now turn to boundedness of (4). An oriented cycle in G is a vector
γ ∈ {−1, 0, 1}E such that {e ∈ E | γe 	= 0} becomes a cycle when undirecting G.
Any oriented cycle can be decomposed as γ = γ+ − γ−, where γ+ := max(γ, 0)
is the forward part, and γ− := max(−γ, 0) is the backward part of γ.

Lemma 2. For p ∈ Z
E, the following are equivalent:

a) The Benders subproblem (4) is bounded for p.
b) There is no directed cycle in G of negative cost w.r.t. c(p).
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c) For all oriented cycles γ in G holds

γ�p ≤
⌊

γ�
+u − γ�

−�

T

⌋

.

Proof. The equivalence of a) and b) is well-known for network flow problems.
By LP duality and Lemma 1, a) is equivalent to the feasibility of the LP arising
from (2) when fixing p. That the latter is in turn equivalent to b) resp. c) is
indicated in [9] and is explained in detail in the proof of Theorem 4.3 in [11].

Remark 1. In the PESP literature, the inequalities in Lemma 2c are known as
Odijk’s cycle inequalities [9], which are the base for a cutting plane algorithm
to construct a feasible, but not necessarily optimal, periodic timetable [10].

3.2 Master Problem

Having discussed the subproblem, we now turn to the master problem:

Theorem 1. The following mixed integer program solves PESP:

Minimize z

s.t. z − Tw�p ≥ −c(p)�f, f feasible for (4),

c(p)(C) ≥ 0, C directed cycle in G,

z ∈ R,

p ∈ Z
E .

(5)

An optimal periodic timetable π∗ can be recovered from an optimal solution
(z∗, p∗) by solving the LP that arises from (2) by fixing p to p∗.

The proof of Theorem 1 is straightforward using the standard Benders decom-
position technique [1]. The second line of constraints in (5) corresponds to the
Benders feasibility cuts, which, by Lemma 2, are equivalent to Odijk’s cycle
inequalities for each oriented cycle. The first line of constraints correspond to the
Benders optimality cuts. It is sufficient to consider these cuts only for vertices of
the polyhedron {f ≥ 0 | Af = −Aw}, i.e., extremal flows given by spanning tree
structures, i.e., flows f ≥ 0 that can be positive only on the arcs of a spanning
tree of G. This way, the MIP (5) is endowed with a finite description, however,
there will in general be exponentially many spanning trees, and exponentially
many cycles. When solving the Benders master problem with a MIP solver in
practice, it is therefore necessary to generate the constraints dynamically.

Remark 2. Any PESP instance can be preprocessed so that it is no restriction
to assume p ∈ {0, 1, 2}E [5]. This is useful for breaking symmetries in (5).

Remark 3. Spanning trees in G provide lower bounds on the optimal objec-
tive value by means of the Benders optimality cuts in (5). On the other hand,
spanning trees in G correspond to spanning trees in G with an additional mark-
ing of the tree arcs as either original or reversed. The latter is the combinatorial
structure behind the vertices of the periodic tension polytope [7]. In particular,
the value w�x of any such vertex x is an upper bound on the optimal value.
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4 Computational Results

We implemented a branch-and-cut algorithm to solve formulation (5) using the
generic callback framework of CPLEX 12.10. The subproblem is solved using the
network simplex implementation available in CPLEX. To stabilize and accelerate
the solution process, we use the method for cut loop stabilization described in [2].
The computations were carried out on a Dell Precision 7520 running Windows
10 with an Intel Core i7-7820HQ processor at 2.9 GHz and with 16 GB of RAM.

We test the Benders approach on sub-instances of R1L1, one of the instances
from the benchmark library PESPlib [4]. Table 1 presents the objective (weighted
slack), optimality gap and number of cuts, obtained with a computation time of
20 min. We find that the Benders approach terminates with a large optimality
gap for all instances. The resulting solution for instance R1L1-0.8 is known to be
optimal, but it appears that the Benders optimality cuts are not strong enough
to close the optimality gap. For the other instances, the found solutions are
worse than best known solutions, hence the Benders approach is not competitive
with other approaches, neither on the primal nor on the dual side. The number
of generated cuts for all instances is very large, indicating that the cuts are
relatively weak.

Table 1. Results of the branch-and-cut algorithm.

Instance Objective Optimality
gap (%)

Cuts

R1L1-0.8 1 032 021 44.1 3 743

R1L1-0.7 3 568 074 81.4 30 828

R1L1-0.6 9 080 015 82.8 23 925
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Fig. 1. Evolution of the lower and upper bound for instance R1L1-0.8.
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The typical behavior of the Benders approach is illustrated in Fig. 1, visu-
alizing the evolution of the lower and upper bounds on the instance R1L1-0.8.
We observe that the optimal solution is already found within 10 s. On the other
hand, there is a large gap between lower and upper bound, with the lower bound
increasing at a diminishing rate. This is rather disappointing, as the underlying
digraph G of R1L1-0.8 has only 23 nodes and 36 arcs, and the incidence-based
MIP formulation (2) can be solved to optimality by CPLEX within less than a
second.

We therefore conclude that Benders decomposition, despite its attractive
theoretical properties, does not seem to be beneficial compared to the well-
established solution methods for the PESP.
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Abstract. Line planning in public transport involves determining vehi-
cle routes and assigning frequencies of service such that travel demands
are satisfied. We evaluate how line plans, which are optimal with respect
to in-motion costs (IMC), the objective function depending purely on
arc-lengths for both user and operator costs, performs with respect to
the value of resources consumed (V RC). The latter is an elaborate,
socio-economic cost function which includes discomfort caused by delay,
boarding and alighting times, and transfers. Even though discomfort is
a large contributing factor to V RC and is entirely disregarded in IMC,
we observe that the two cost functions are qualitatively comparable.

Keywords: Line planning · Public transport · Mixed-integer
programming

1 Introduction

The goal of line planning in public transport is to find the best line plan, i.e.,
to determine vehicle routes and assigning frequencies of service in order to cover
travel demands. However, what constitutes the optimal solution depends on the
point of perspective: Operators’ main interest is in cost reduction, while good
solutions for users include short travel times, few transfers, and low waiting
times. We will consider two objective functions which are comprised of both
operator and user costs to address both viewpoints: The value of the resources
consumed (V RC), a socio-economic cost function, which puts a price to trav-
elers’ waiting times and transfers, and includes delays along the vehicle routes
due to passengers boarding and disembarking, etc. In contrast, the second cost
function considers only the in-motion costs (IMC) and disregards delay factors.
As the former is highly nonlinear, it cannot be applied to our mixed integer
programming formulation of the line planning problem. Instead, we solve the
problem with IMC as objective and analyze how the results obtained with the
much simpler version perform with respect to V RC.

2 Line Planning in the Parametric City

2.1 Line Planning

To describe the line planning problem, we choose the mixed integer linear pro-
gramming formulation (MILP ) introduced by Borndörfer et al. [1] with a few
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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adjustments. A solution (f, y) consists of an integral line plan f = (fl)l∈L indi-
cating with which frequency line l ∈ L is used, and a non-negative passenger
flow y = (yp)p∈P . A path p is used if and only if yp > 0, the analogue holds for
the lines. The set L of potential line candidates is given by all circulations in the
directed graph G = (V,A) representing the city. The set of admissible passenger
paths P consists of all simple paths in said graph. Let us further define the sets
La of all lines and Pa of all paths using arc a ∈ A. Let further Ps→t be the set
of all s − t-paths. With the parameters K > 0 as vehicle and Λ > 0 as street
capacity, the model formulation is then

(MILP ) min

cIo
︷ ︸︸ ︷
∑

l∈L

(cv + csK)τlfl +

cIu
︷ ︸︸ ︷
∑

p∈P

pvτpyp =: IMC (1)

s.t.
∑

p∈Ps→t

yp = dst ∀(s, t) ∈ V × V (2)

∑

p∈Pa

yp −
∑

l∈La

flK ≤ 0 ∀a ∈ A (3)

∑

l∈La

fl ≤ Λ ∀a ∈ A (4)

fl ∈ N ∀l ∈ L ∀l ∈ L (5)
yp ≥ 0 ∀p ∈ P. (6)

We refer to [4,5] for an explanation of all constraints and focus only on the
objective function here: IMC (1) is a sum of operator costs cIo and user costs
cIu. Operator costs depend on the total arc length of line l, i.e., τl =

∑

a∈l τa and
the costs per vehicle cv and per seat cs. The user costs only depend on the path-
lengths τp =

∑

a∈p τa and a price for in-vehicle time pv. This means that both
user satisfaction and operator costs are based on pure travel times; the number
of transfers or delay is not taken into account. In particular, line activation or
turnaround costs are not included. This allows us to restrict the line pool L to
the set of simple cycles in the directed graph, because the costs for line l with
frequency fl are simply

∑

a∈l(cv + csK)τafl which means that we can truncate
l into cycles and assign frequency fl to each of them. The costs of the sum of
these sub-cycles then correspond to the costs of l.

2.2 Parametric City

We choose the Parametric City [3] as city representative, since this model bal-
ances generality and simplicity: It is comprised of a helm graph G = (V,A)
of 2n + 1 nodes, as depicted in Fig. 1 for n = 6. Its geometric shape and the
associated demand ds,t, (s, t) ∈ V × V (cf. Table 1) represent the most promi-
nent features of the city, e.g., size, degree of mono- or polycentricity, economical
importance of districts. This can be controlled by a choice of parameters, an
overview is given in Table 2, a more detailed explanation can be found in [3,4].
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Fig. 1. Graph G with n = 6

Table 1. Demand ds,t (not listed vertex-
pairs correspond to ds,t = 0)

s, t SCi SCj , j �= i CD

Pi
aY
n β aY

n(n−1)γ
aY
n α

SCi 0 (1−a)Y
n(n−1) γ̃

(1−a)Y
n α̃

Table 2. Parameters in the Parametric
City, f.o.t.= fraction of travelers ∈ [0, 1]

n no. of subcenters/peripheries

T arc length (SCi, CD)

g, rn factors for arc length
(SCi, Pi), (SCi, SCi±1)

Y total patronage

a f.o.t. from Pi

α (α̃) f.o.t. from Pi (SCi) to CD
β f.o.t. from Pi to SCi

γ (γ̃) f.o.t. from Pi (SCi) to SCj ,

i �= j

α + β + γ = 1, α̃ + γ̃ = 1,

α/γ = α̃/γ̃

3 Value of the Resources Consumed

The value of resources consumed is the socioeconomic cost function introduced
by Fielbaum et al. [2]. Just like IMC, it combines operator costs Cv

o and user
costs Cv

u. However its aim is to include delay and other comfort-factors:

V RC =

Cv
o

︷ ︸︸ ︷
∑

l∈L

(cv + Kcs)t◦l fl +

Cv
u

︷ ︸︸ ︷

Y (pv t̄v + pw t̄w) + prR .

Here, t◦l denotes the cycle time of line l, which in addition to in-motion times,
includes the times for passengers to get on and off the vehicles, i.e.,

t◦l =
∑

a∈l

τa + (x+
a + x−

a )t,

where t is the time needed for one person to board or alight and x+
(v,w) resp. x−

(v,w)

is the expected number of people in a single vehicle on arc (v, w) that board at v
resp. leave at w. The values of x+

(v,w) and x−
(v,w) are computed with the following

assumptions in mind as stated by Fielbaum et al. [2, p. 302]: 1) “Buses operate
with a regular headway”, 2)“Passengers arrive at a constant rate”, 3) “In the
case of common lines passengers will be assigned proportional to frequency”. By
taking an arc-wise perspective, and considering the aggregated frequencies per
arc Fa :=

∑

l∈La
fl, we can compute
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X−
(v,w) :=

∑

l∈L(v,w)

∑

p∈P(v,w)\P(w,x)
for (w,x)∈l

ypfl
F(v,w)

, X+
(v,w) :=

∑

l∈L(v,w)

∑

p∈P(v,w)\P(u,v)
for (u,v)∈l

ypfl
F(v,w)

which corresponds to the total number of alighting passengers at w and boarding
at v along arc (v, w) respectively. This leads to x−

(v,w) := X−
(v,w)/F(v,w) and

x+
(v,w) := X+

(v,w)/F(v,w). For a more detailed explanation we refer to [4].
The user costs include costs for time spent in vehicles, waiting for an arriving

vehicle, as well as transfer penalties, each priced by parameters pv, pw and pr
respectively. Again, we make the same assumptions as Fielbaum et al., who
describe that in-vehicle “passengers are delayed by the boarding and alighting
process; the starting node, where this time is already incorporated as waiting
time; and the last node, where passengers alight such that the first alighting has
no delay and the last has full delay, making the average half of the total alighting
time.” [2, p. 303]. Since we only have a passenger-to-path description without
an explicit passenger-to-line assignment, we introduce P

p
w as the probability of

path p transferring lines at node w :

P
p
w :=

⎧

⎪
⎨

⎪
⎩

0 if w is the first or last node of p
∑

l∈L(v,w)\L(w,x)

fl
F(v,w)

if (v, w, x) are three consecutive nodes on p.

The average travel of one path p = (v0, v1, . . . , vq) can then be described by

tv(p) =
∑

(v,w)∈p
(v,w) �=(vq−1,vq)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(1 − P
p
w) t(x−

(v,w) + x+
(w,x))

︸ ︷︷ ︸

others boarding/
alighting on line

at w

+P
p
w

t

2

x−
(v,w)

F(v,w)
︸ ︷︷ ︸

own alighting
at w

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+
t

2

x−
(vq−1,vq)

F(vq−1,vq)
︸ ︷︷ ︸

own alighting
at endnode vq

+ τp
︸︷︷︸

total time in
motion

.

The average in-vehicle time per passenger is then t̄v =
(
∑

p∈P yptv(p)
)

/Y.

The “average waiting time [is] half of the headway” [2, p. 303] which allows
for the following description of average waiting times per path tw(p) and average
waiting time in total t̄w as

tw(p) =
∑

(v,w)∈p

P
p
v

2F(v,w)
, and t̄w =

∑

p∈P

tw(p)/Y.
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To stay consistent, we also compute the total number of transfers via the prob-
abilities by

R =
∑

p∈P

∑

(v,w)∈p

P
p
w.

4 Computational Results

As mentioned, we solved MILP with respect to in motion costs and evaluated
what V RC these solutions have. As input we fixed all parameters in the Para-
metric City as summarized in Table 3 and varied the demand: For each parameter
α, β, γ we chose all values between 0.025 and 0.0975 with a step size of 0.025 and
set the other two demand parameters equal. Figure 2 shows the components of
both cost functions, as well as how they performed in comparison. As expected,
the value of resources consumed is considerably larger than IMC as it incor-
porates IMC in addition to delay factors. We denote this by discomfort costs
disc. = V RC − IMC. It turns out, that discomfort costs make up 44% of the
V RC on average. What is surprising however, is that two cost functions behave
comparably: If IMC increases, so does V RC, and the same holds for both the
respective user and operator costs. In the figures on the right, this becomes more
evident: IMC relative to V RC are nearly constant. Even if user costs contribute
more to V RC than to IMC, the trend is comparable. This is a rather surpris-
ing result, since V RC differs from IMC in such a fundamental way, and which
is evident in the large fraction of discomfort costs; particularly in face of our
restriction of the line pool to cycle-like lines. The latter means that lines are
rather short – any bidirectional line uses only one arc in two directions, which
leads to many transfers. This does not contribute to in-motion costs, however
when considering discomfort costs as well, this line pool can be regarded as
a worst-case scenario. Despite this particularly ‘uncomfortable’ choice of lines,
both cost functions have a similar behavior. The great advantage of using IMC
as objective in MILP is that the problem can be solved to optimality, whose
results are in turn qualitatively comparable to V RC.

Table 3. Parameter choices of computational experiments (∗ in [$/h])

n = 8 T = 0.5 [h] g = 1/3 a = 0.8 K = 100 Y = 24000

cv = 10.65∗ cs = 0.204∗ pv = 1.48∗ pw = 4.44∗ pr = 0.59∗ t = 2.5 [s]
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(a) β = γ (b) β = γ

(c) α = γ (d) α = γ

(e) β = γ (f) β = γ

Fig. 2. V RC and IMC in absolute (left) and relative (right) values
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Abstract. Road safety is a major concern, as accidents kill on average
3,600 people per day. In order to reduce the number of road accidents,
the police or local authorities jointly implement actions and measures
to increase road safety. Therefore, it is necessary to analyze and predict
the different circumstances of accidents comprehensively. Only with the
knowledge, e.g., about the temporal pattern, locations, or road condi-
tions, meaningful actions can be derived and implemented. A framework
to support strategic planning of road safety measures is designed that
consists of several consecutive data mining stages, i.e., frequent itemset
mining, time series clustering, forecasting, and scoring. An informative
and comprehensible presentation of the results is necessary to make them
usable for the planning of measures. With a strategic road safety dash-
board, we enable police managers to identify accident blackspots and
especially their temporal pattern for different feature combinations.

Keywords: Descriptive accident analytics · Data mining · Road safety
dashbord

1 Introduction

For the planning and implementation of actions and measures to improve road
safety, police managers or local authorities must be equipped with adequate
tools (e.g., a dashboard). They need to know the circumstances that lead to
accidents in different locations and at different times in order to properly sched-
ule measures such as speed reductions, new stop signs or patrol routes. Accident
circumstances include many aspects that are recorded as data sets of attributes
(e.g., weather) and corresponding values (e.g., rain, snow etc.). A large number
of combinations of attributes and values (i. e., features) are possible and must be
considered in the strategic planning of police actions. By observing the temporal
pattern of the various accident circumstances, changes in certain feature combi-
nations can be detected. For example, if there is a steep increase in the frequency
of a combination or a change in the seasonality, then appropriate countermea-
sures must be initiated urgently. The actions typically cannot be implemented ad
hoc, but must be planned months in advance. Based on many years of experience,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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police managers might tend to investigate already known relationships between
accident features. This could easily leave unfamiliar feature combinations unde-
tected and thus unaddressed by road safety measures. In order to also detect
unknown relationships, we have developed a complex data mining framework.
By applying unsupervised, descriptive methods (e.g., frequent itemset mining),
it is possible to identify “interesting” feature combinations with, e.g., critical
changes in frequency in the corresponding time series. Forecasting methods may
be used to anticipate behavior in the future and initialize preventive measures
as soon as possible. Although advanced data mining methods can certainly pro-
vide good results, it is important, especially for road safety actions, that the
results of the methods are presented in a comprehensible way and can be easily
operationalized by police managers. For this purpose, we propose a web-based
interface providing an appropriate presentation for the expert audience.

2 Related Work on Road Safety Dashboards

In this section, we outline possible solutions for designing a road safety dashboard
depicting results from data mining studies. While dashboards typically aim to
visualize key performance indicators at an aggregate level in real time, decision
support systems are more often used for long-term planning and often provide
more in-depth data exploration. Road safety dashboards are usually situated
between the two poles, as effective planning rarely demands real-time data while
requiring descriptive visualizations.

Feng et al. [2] use a dashboard to display some predefined statistical reports of
certain attributes and a graph of daily accident counts over a selected time period.
In addition, they present an interactive map that provides a rough overview of
the accident situation in the UK with some filtering options for a more detailed
insight into the type of accidents. In their dashboard, Ait-Mlouk et al. [1] combine
different data mining approaches for analyzing accidents. By integrating multiple
criteria analysis within association rule mining, it is possible to present only the
most interesting rules according to the decision maker’s preferences. The tool also
displays a time series of predicted accident numbers and casualties. Jiang et al. [3]
use association rules to determine the key factors of fatal and non-fatal run-off-
road accidents and present a dashboard for spatial visualization of accidents that
belong to a certain rule. Byhighlighting the blackspots on themap, the user’s atten-
tion is particularly drawn to high-risk locations for the particular combination of
accident features. The European road safety decision support system [4] provides
existing knowledge about traffic risks and possible countermeasures. A literature
repository of studies and synopses allows for an overview of the estimated effects
for each road accident risk factor and corresponding measures. In addition, a tool
to evaluate the economic efficiency of actions in terms of cost and extent of road
safety increase is implemented.

The results of unsupervised methods are particularly interesting for visual-
ization in a dashboard, as they potentially point out new knowledge on circum-
stances and locations. The presented dashboards lack a method to properly select
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the “interesting” information from a large amount of data, because they do not
take the temporal patterns of the circumstances into account, as the prediction
of accident circumstances is not included in the selection process.

3 Strategic Planning Support Data Mining Framework

Here, we give a short overview of the underlying data mining methods in our
framework. The parameters for the methods were chosen by comparing the
results on three different datasets (i. e., London, Wales, and Scotland in the
UK). The primary objective of our planning support framework (see Fig. 1) is
to identify correlations within accident data that are either unknown to police
managers or have a particular temporal pattern that warrants a closer inspec-
tion. In [5], four consecutive data mining stages (a)–(d) are defined, the results
of which are displayed in the convenient dashboard introduced in this paper.

Fig. 1. Strategic planning support framework

(a) Frequent Itemset Mining and Time Series Generation: Frequent
itemset mining (FIM) enumerates all possible itemsets I (i. e., sets of accident
features) and determines their support values, reflecting the (relative) frequency
of each itemset. With this unsupervised approach, we are able to detect unknown
relationships within the data. In order to evaluate the temporal patterns of the
itemsets, we separate the accident data set D into T monthly sets Dt, such that
D = ∪tDt,∀t = 1, . . . , T . For each itemset I, we then determine the relative
support xI

t for each data set Dt and thereby generate a monthly time series XI .
(b) Time Series Clustering: Even with small data sets, step (a) generates

many itemsets and thus time series. To identify itemsets with an “interesting”
temporal pattern that might occur even if it has low overall frequency, we apply
time series clustering to group similar time series. This allows to identify one
suitable forecasting method for each cluster, rather than finding one for each of
the time series. Since clustering approaches depend on the underlying data, it
is crucial to find an appropriate parameter configuration consisting of a scaling
method, a distance measure, a clustering method, and a number of clusters.

(c) Time Series Forecasting: When all time series are grouped, we iden-
tify the most suitable forecasting method for each cluster by taking the corre-
sponding centroid time series into account. We consider simple (e.g., random
walk, näıve) and statistical methods (e.g., ARIMA, exp. smoothing) as well as
sophisticated approaches like neural networks. Well-known error measures like
root-mean-squared error help to identify a good approach per cluster.
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(d) Scoring: In order to identify the most interesting accident feature com-
binations, we employ a predictive scoring procedure based on three different
aspects of time series. A time series is interesting, e.g., if it shows an increasing
trend (1) compared to the mean of the previous period’s values. Consequently,
the feature combination occurs in a growing percentage of accidents and should
therefore be investigated in more detail. Another time series might be worth look-
ing at because it shows significant fluctuations (2) in the current period, i. e.,
deviations from the mean, which are not caused by regular seasonal fluctuations.
The information about seasonality results from the ratio of the variance of the
time series without and with seasonality. A third aspect is the root-mean-squared
error (3) introduced by the centroid-based forecasting method. If the prediction
is not reliable, the time series should be submitted to a user for review, as it is
possibly assigned to an inappropriate cluster. For the final score the three indi-
vidual aspects (1), (2), and (3) are summed while applying individual weights
γ1, γ2, γ3 to modify their influence on the selection of interesting feature combi-
nations. The time series with the highest scores are presented in the strategic
road safety dashboard, where the default weights (γ1, γ2, γ3) = (0.4, 0.4, 0.2) can
be adjusted based on the analyst’s interests. Please note that we only weakly
incorporate the forecasting error (3) into the resulting score. Unlike the other
two aspects, this one does not primarily assess “interestingness” in terms of road
accidents, but rather evaluates the goodness of the framework itself.

4 Strategic Road Safety Dashboard

Police managers need information on “interesting” accident feature combinations
in order to strategically plan road safety measures. Hence, the results are visual-
ized in a user-friendly and convenient dashboard, where we focus on descriptive
analytics and employ predictions only in the scoring process. On a landing page,
the region of interest can be selected and the weights of the score calculation are
adjusted according to individual needs. For example, one user wants to see those
itemsets that are very poorly predicted to ensure that the time series clustering
approach does not “hide” incorrectly grouped time series (increase γ3). Another
user might be interested in accident feature combinations that show high non-
seasonal fluctuation (increase γ2) or feature combinations that provide a high
increase in the relative number of accidents in the last period (increase γ1). The
ten most interesting itemsets are selected and displayed with their score values.

For a case study, we consider London as the region of interest and select
the itemset I = {2 vehicles, Urban, Junction controlled, Road class ‘A’}, as it
exhibits one of the highest score values. The spatial distribution of accidents
for this specific feature combination can be examined on two detail pages. The
page “Map and Time Series” (see Fig. 2a) displays the accidents for a pre-defined
period colored by their severity. The respective time series of relative support val-
ues is displayed as well. If some irregularities within the time series are detected,
it might be advisable to compare the accidents of different seasons and years. In
Fig. 2a, we can identify an unusually high support value in summer 2018 com-
pared to the same months in 2017. In order to investigate the corresponding
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(a) Page “Map and Time Series” (b) Page “Comparing two Seasons”

Fig. 2. Strategic road safety dashboard detail pages http://applications.wirtschafts
informatik-hildesheim.de:443/

accident locations, we provide two ways to drill down into the data. On the
page “Comparing two Seasons”, the user can define the years to be taken into
account and also select several months to compare. For both years, the acci-
dents of the chosen months are displayed on separate maps, as shown in Fig. 2b.
Here, it is also possible to observe accident blackspots instead of accident points.
Particularly for small geographical areas with many accidents, it is useful to con-
sider accident blackspots for the analysis to identify risky locations more easily.
The accidents in our selected itemset for London happened at controlled junc-
tions on major roads. Hence, the blackspots reflect the most important routes
coming out of London and we can clearly detect a shift in the blackspot loca-
tions towards the south-east between 2017 and 2018. At these spots, controlled
junctions should be closely inspected and accident prevention measures imple-
mented, such as changes in the control of the intersections or monitoring of red
light violations via safety cameras. In order to support the choice of appropriate
safety measures, we embed a link to the SafetyCube decision support system.
The repository of studies on safety measures can be searched with the accident
features of the itemset under consideration in order to plan actions accordingly.

The exemplary dashboard is not yet subject to a regular update routine, as
exemplified in Fig. 3. The dashboard data requires monthly updates to display
the accidents of the previous month on the map. For the new dataset Dt, the rel-
ative support values for all existing itemsets are calculated and forecasting and
scoring are applied to the now extended time series. After a few minutes, the
police manager can then analyze the updated results and begin planning appro-
priate road safety measures. In order to detect structural changes in the data

http://applications.wirtschaftsinformatik-hildesheim.de:443/
http://applications.wirtschaftsinformatik-hildesheim.de:443/
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Fig. 3. Update procedure for the strategic road safety dashboard

(e.g., new frequent itemsets or changes in time series clusters), the entire under-
lying framework from Fig. 1 should be updated about once a year, which should
also include re-evaluating and possibly adjusting the configuration parameters.

5 Conclusion and Future Work

We presented a strategic road safety dashboard based on accident data mining.
The underlying framework, consisting of unsupervised methods for detecting
unknown feature combinations and forecasting their temporal patterns, pro-
vides results that can help police managers to plan road safety measures. In
the dashboard, these results are presented in a comprehensible way. Thus, a
spatial analysis of accident circumstances and the accident numbers over time
in a given accident situation is facilitated. Thereby, it is possible to individually
adjust the weighting of the different aspects of “interestingness” and determine
temporal changes in accident blackspot locations.

So far, we have only analyzed accident circumstances. The next step it to
include vehicle and accident data to enrich the results with substantial insights.
Moreover, the forecasting accuracy could be enhanced by including external data
(e.g., weather forecasts or surrounding conditions like sport events). To establish
a productive system, the settings page should be extended to support updates
of the framework.
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Abstract. In this paper, we model an outsourcing problem as a specific
principal-agent relationship in which two-dimensional hidden character-
istics describe the agent’s type. Assuming that the principal knows the
joint probability distribution on the continuous type space, a standard
solution technique for the resulting contracting problem is stochastic
optimization on the set of incentive compatible menus of contracts from
which the agent can choose a single contract according to the take-it-
or-leave-it principle, respectively. In practice, however, the menu which
maximizes the expected utility for the principal generally consists of
infinitely many single contracts and cannot be determined analytically
for all kinds of probability distributions.

To address this issue, we present a novel two-step approach which,
in a first step, partitions the rectangular type space into a predefined
number of subsets and, in a second step, computes an optimal incen-
tive compatible menu of contracts containing a mutual contract for each
subset of pooled types by using quadratic programming. Within our com-
putational study we finally show that our method not solely bypasses the
above described solution difficulties but also guarantees small optimality
gaps by using only few contracts.

Keywords: Agent systems · Stochastic programming · Transportation

1 Introduction and Problem Description

Principal-agent models have various applications in the wide field of supply-
chain-management where they appear in various shapes [1]. Within this frame-
work the design of contracts between two parties is a common thread between
many approaches, where—from a practical standpoint—the amount of potential
contract constellations should be finite, even if the set of possible scenarios is
infinite [2]. Let us consider the following problem.

We want to process Q ∈ R
+ units of some good and have the opportunity

to outsource a partial quantity q ∈ [0;Q] to an external service provider while
the remaining quantity Q − q has to be handled by own resources. First of all,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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we give a general definition to express the performance of an outsourcing policy.
Based on this, we can define the utility of the principal in a general manner.

Definition 1 (Performance function). For an outsourced quantity q ∈ [0;Q]
we define the performance function

t(q;x) := min{t ∈ R
+ : at time t at least x units are available}.

Definition 2 (General utility function of the principal). Let φ : R+
0 → R,

ψ : [0;Q] → R and m : [0;Q] → R
+
0 with

∫ Q

0
m(x) dx = 1. We define the general

utility function of the principal as

U(q) := φ(τ(q)) + ψ(q) := φ

(∫ Q

0

m(x)t(q;x) dx

)

+ ψ(q).

Claim. Under the assumption of rational behavior, the principal will always
outsource the quantity q∗ := arg maxq∈[0;Q] U(q).

Example 1. The term ψ(q) can be used to depict costs. Considering linear cost
functions for both principal and agent where θp and θa monetary units arise to
process one quantity unit, respectively, allows us to write ψ(q) = −(θp(Q − q) +
θaq + Ua(q)), with θaq + Ua(q) monetary units being payed to the agent.

Example 2. The term τ(q) evaluates the outsourcing policy q by mapping the
performance function t(q; ·) to a real non-negative value. If principal and agent
have linear processing times where they need δp and δa time units to process one
quantity unit, respectively, one can show that choosing m = 1/Q · 1[0;Q] reveals

τ(q) =
1
Q

∫ Q

0

t(q;x) dx =
δp + δa

2Q
q2 − δp q +

δp

2
Q.

Example 3. Linear reward function φ(t) = R − c · t for some R, c > 0.

2 Incentive Compatibility on Continuous Type Spaces

In what follows let ψ be as in Example 1, τ as in Example 2 and φ as in Example
3. As the principal knows his own type, (δp, θp) is assumed to be fixed. On the
other hand, the agent’s true type (δa, θa) is generally not assumed to be known
to the principal but can be restricted to a compact set. Summarizing, we consider

Uδ,θ(q) = R − c ·
(

δp + δ

2Q
q2 − δp q +

δp

2
Q

)

− (θp(Q − q) + θq + Ua
δ,θ(q)) (1)

for some fixed (δ, θ) := (δa, θa) ∈ T := Δ × Θ :=
[
δ, δ

]
×

[
θ, θ

]
. Here, the term

Uδ,θ(q) is directly related to the agent’s utility as defined below.
We claim that a cooperation only happens on the basis of a contract C :=

(q, d, p) with some quantity q ∈ [0;Q], deadline d ∈ R
+ and payment of p ∈ R

+

monetary units. For (δ, θ) fixed we want to define the agent’s utility Ua
δ,θ(C) for

accepting contract C as a quasi-linear function of quantity q and payment p,
but only if deadline d can be satisfied. Otherwise, the contract should never be
chosen.
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Definition 3 (Utility of the agent). For a contract C := (q, d, p) we define

Ua
δ,θ(C) :=

{
p − θq, δq ≤ d,
−1, otherwise. (2)

In order to deal with uncertainty about the true type (δ, θ) it is an essential
approach to design contract alternatives for different possible scenarios and equip
them with specific incentives that rationally affect the agent in our interest [3].

Definition 4 (Incentive compatibility). A set of contracts {C(δ, θ), (δ, θ) ∈
T } is called incentive compatible if the following expression holds:

Ua
δ,θ(C(δ, θ)) ≥ 0 ∧ (δ, θ) ∈ arg max

(δ′,θ′)∈T
Ua

δ,θ(C(δ′, θ′)) ∀(δ, θ) ∈ T . (3)

Loosely speaking, only incentive compatible menus of contracts are controllable
for the principal. We are thus interested in the contract allocation which maxi-
mizes the principal’s utility subject to incentive compatibility—usually resulting
in a separate contract for each (δ, θ) ∈ T . Nevertheless, such menus of infinitely
many contracts are generally not only hard to compute [3] but also impractical
for real-live applications [2]. For these reasons, we will only state an upper bound
for the respective maximal utility in the following theorem.

Theorem 1 (Upper bound for the principal’s utilty). We assume that the
distribution of (δ, θ) is given by a density f : T → R

+
0 with

∫ ∫
f(δ, θ) dθ dδ = 1.

By using f(θ|δ) := f(δ, θ)/
∫ θ

θ
f(δ, θ) dθ, F (θ|δ) :=

∫ θ

θ
f(δ, ξ) dξ/

∫ θ

θ
f(δ, θ) dθ and

the principal’s utility (1), an upper bound for the utility of the optimal incentive
compatible menu of contracts is given by

∫ ∫
Uδ,θ(q∗(δ, θ)) dθdδ, where

q∗(δ, θ) = max
{

min
{

Q

c(δp + δ)

[

cδp + θp −
(

θ +
F (θ|δ)
f(θ|δ)

)]

;Q
}

; 0
}

(4)

is chosen as outsourcing policy and Ua
δ,θ(q(δ, θ)) =

∫ θ

θ
q(δ, ξ) dξ as agent’s utility.

Proof. The choice Ua
δ,θ(q(δ, θ)) =

∫ θ

θ
q(δ, ξ) dξ is necessary for incentive com-

patibility due to the investigation of the one-dimensional model (only consid-
ering costs) in [3]. We are interested in the function q(·, ·) which maximizes
the respective expected utility without involving further incentive compatibility
constraints. Assuming R− (cδp/2+θp)Q = 0 w.l.o.g. the expected utility writes

∫ δ

δ

∫ θ

θ

(
−c

δp+δ
2Q q(δ, θ)2 + (cδp + θp − θ)q(δ, θ) −

∫ θ

θ
q(δ, ξ) dξ

)
f(δ, θ) dθ dδ

=
∫ δ

δ

∫ θ

θ

(
−c

δp+δ
2Q q(δ, θ)2 +

(
cδp + θp −

(
θ + F (θ|δ)

f(θ|δ)

))
q(δ, θ)

)
f(δ, θ) dθ dδ

where the transformation follows from partial integration (compare [3]). Point-
wise optimization regarding 0 ≤ q ≤ Q finally leads to q∗(δ, θ) as in (4). We
remark that all deadlines are implicitly set sharp, i.e. d∗(δ, θ) = δq∗(δ, θ). �	
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3 Pooling of Contracts

In this section we want to present an alternative approach which propagates
menus of finitely many contracts. As a natural feature of this method whole
subsets of types (δ, θ) are depicted by only one single contract, in other words:
they are pooled [2]. In the last section we will show that we can often exploit
much of the optimal utility (estimated by the upper bound from Theorem 1)
with few contracts, but for a theoretical basis we will start with two definitions.

Definition 5 (Grid-wise partition). For Nδ, Nθ ∈ N define the grid points
δi := δ + i/Nδ(δ − δ), i = 0, ..., Nδ, and θj := θ + j/Nθ(θ − θ), j = 0, ..., Nθ. We
call a partition P = {P1, ..., PK} of T grid-wise (with respect to Nδ and Nθ) if

– Pk = ∪Nk

l=1Sil,jl
:= ∪Nk

l=1 ([δil−1; δil
] × [θjl−1; θjl

]) for all k = 1, ...,K,
– Pk is connected for all k = 1, ...,K.

We want to denote k(i, j) as that (unique) k ∈ {1, ...,K} with Si,j ∈ Pk.

Definition 6 (Well-shaped partition). A cell Pk ∈ P , where P is grid-wise,
is called well-shaped if there is a (δ(k), θ(k)) ∈ Pk with δ ≤ δ(k) and θ ≤ θ(k) for
all (δ, θ) ∈ Pk. A partition P is called well-shaped if all cells Pk are well-shaped.

Table 1. Well-shaped partitions with probabilities for uniform distribution on T

0.04 0.04 0.04 0.04 0.04

0.04 0.04 0.04 0.04 0.04

0.04 0.04 0.04 0.04 0.04

0.04 0.04 0.04 0.04 0.04

0.04 0.04 0.04 0.04 0.04

0.36 0.32

0.2

0.12

Examples for well-shaped partitions can be seen in Table 1. By computing the
probabilities pk of each cell Pk we get a discretisation of the density f . Based
on this, we want to determine the optimal menu of contracts that assigns a
single contract (qk, dk, pk) to each cell Pk of a given well-shaped partition. Drop-
ping the constant R − (cδp/2 + θp)Q in (1), setting pk = θ(k)qk + Uδ(k),θ(k)(qk)
and incorporating dk = δ(k)qk implicitly we consider the following quadratic
program.

Problem 1 (Optimal incentive compatible menu of contracts on given partition).

max
q1,...,qK
p1,...,pK

K∑

k=1

pk

(

−c(δp + δ(k))
2Q

q2k + (cδp + θp)qk − pk

)

(5)



Pooling of Contracts 315

s.t. pk(i,Nθ) − θNθ
qk(i,Nθ) ≥ 0 ∀i ∈ {1, ..., Nδ} (6)

pk(i,j) − θjqk(i,j) = pk(i,j+1) − θjqk(i,j+1) ∀k(i, j) �= k(i, j + 1) (7)

qk(i,j) ≥ qk(i,j+1) ∀k(i, j) �= k(i, j + 1) (8)

pk(i,j) − θj−1qk(i,j) ≥ pk(i+1,j) − θj−1qk(i+1,j) ∀k(i, j) �= k(i + 1, j) (9)

0 ≤ qk ≤ Q, pk ≥ 0 ∀k ∈ {1, ...,K} (10)

Theorem 2. Problem 1 computes the optimal incentive compatible menu of con-
tracts on a given well-shaped partition P = {P1, ..., PK}.

Proof. As an agent with type (δ, θ) ∈ Si,j ⊆ Pk never chooses a contract k′ �= k

with δ > δ(k
′) ((2) and (3)) we only have to consider the case δ ≤ δi ≤ δ(k

′). For
k′ = k(i′, j′), i′ ≥ i, fixed, l = k(i′, j) and λ = (θ − θj−1)/(θj − θj−1) we get

pk − θqk = λ(pk − θjqk) + (1 − λ)(pk − θj−1qk)
≥ λ(pl − θjql) + (1 − λ)(pl − θj−1ql) = pl − θql

due to (7) and (9). Furthermore the combination of (7) and (8) yields

pl − θql = pl − θ(l)ql + (θ(l) − θ)ql ≥ pk′ − θ(l)qk′ + (θ(l) − θ)qk′ = pk′ − θqk′

if j′ > j (the case j′ < j works similarly). All in all we get pk − θqk ≥ pk′ − θqk′

for all k′ �= k and pk − θqk ≥ 0, where the latter holds due to (6) and (7). This
means that incentive compatibility is ensured.

While the necessity of (6) and (9) for incentive compatibility is obvious, the
investigation of the one-dimensional setting in [3] directly enables the derivation
that (7) and (8) are essential as well. This proves our theorem. �	

As Problem 1 demands a predefined well-shaped partition P as input, the ques-
tion about a clever choice of P arises on a higher level. To address this issue we
propagate a heuristic approach given in Algorithm 1. The algorithm starts with
the optimal menu of contracts on a grid partition of given size and gradually
merges adjacent cells which promise the lowest utility loss. Relaxation of Prob-
lem 1 means that the monotonicity constraints (8) and (9) are deactivated. In
the end we compute the optimal menu of contracts on the final partition P .
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Algorithm 1. Pooling of Contracts
1: Inputs:

Parameters K, Q, c, δp, θp, type-space T , density f
2: Initialize:

Grid partition P with N := Nδ · Nθ > K cells, probabilities p1, ..., pN

Optimal incentive compatible menu of contracts on P (solve Problem 1)
3: while N > K do
4: Compute list L of cell pairs p := (k1, k2) such that k1 ∪ k2 is well-shaped
5: for p ∈ L do
6: Compute optimal hypothetic contract on Pnew := Pk1 ∪ Pk2 by optimizing

the relaxed Problem 1 on the remaining N − 1 cells in which the variables
for all other cells k �= k1, k2 are fixed to their current values

7: Compute the hypothetic utility loss pk1Uk1 + pk2Uk2 − (pk1 + pk2)Unew

8: end for
9: Merge cells Pk∗

1
and Pk∗

2
with minimal hypothetic utility loss computed in line

7 to P ∗
new := Pk∗

1
∪ Pk∗

2
and implement the respective contract from line 6

10: Update payments for all other cells Pk with Pk ∩ P ∗
new = ∅ due to (7)

11: Set N ← N − 1
12: end while
13: Compute optimal incentive compatible menu of contracts on P (solve Problem 1)

4 Computational Study and Conclusion

We test the performance of Algorithm 1 for different sizes K of the final menu of
contracts with parameters Q = 1000, c = 2, θp = δp = 40, T = [20; 60]2 and two
different densities f . Both densities are truncated bivariate normal distributions
on T with parameters as in Table 2, the first containing a strongly negative
correlation (� = −0.8) and the second a strongly positive correlation between
δ and θ (� = 0.8). We consider three different initial grid sizes for which we
state the relative gaps to the upper bound from Theorem 1 (%UB) and the total
computation times in seconds (SEC). All tests were made on a MacBook Pro
(3.1 GHz, 16 GB RAM) with Python 3.7.5 and CPLEX 12.7.1 as QP-Solver.

Table 2. μδ = μθ = σδ = 40; σθ = 10; LEFT: � = −0.8, RIGHT: � = 0.8

K
Init: 5 · 5 Init: 10 · 10 Init: 20 · 20

%UB Sec %UB Sec %UB Sec

3 79.5 0.0 84.6 0.6 69.7 15.7

5 88.0 0.0 89.6 0.6 79.5 15.7

10 92.5 0.0 93.8 0.6 92.8 15.6

20 93.1 0.0 96.0 0.6 96.1 15.7

50 - - 96.9 0.5 97.9 15.5

100 - - 97.0 0.1 98.4 15.3

200 - - - - 98.6 13.4

400 - - - - 98.6 1.2

K
Init: 5 · 5 Init: 10 · 10 Init: 20 · 20

%UB Sec %UB Sec %UB Sec

3 81.9 0.0 68.9 0.6 70.7 14.9

5 87.9 0.0 84.4 0.6 76.5 14.9

10 91.6 0.0 92.0 0.6 89.1 14.9

20 92.2 0.0 94.7 0.6 94.5 14.8

50 - - 95.6 0.5 96.6 14.7

100 - - 96.0 0.1 97.1 14.2

200 - - - - 97.4 12.6

400 - - - - 97.7 1.3
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Taking a look at Table 2 we observe a remarkable exploitation of the upper bound
with 50 contracts or more. However, the best trade-off between the amount of
contracts, solution quality and computation time seems to be a combination of
medium menu size (i.e. K ≈ 10) and medium initial grid size (i.e. ≈ 10 · 10)—a
choice that keeps down two important aspects: firstly, the size of the quadratic
program in the initialization step, and secondly, the number of heuristical (and
therefore error-prone) merging operations.

Summarizing, our pooling approach can be seen as an extension to the one-
dimensional case in [2] by enabling the computation of arbitrarily large incentive
compatible menus of contracts for the described two-dimensional setting.

References

1. Fayezi, S., O’Loughlin, A., Zutshi, A.: Agency theory and supply chain management:
a structured literature review. Supply Chain Manag. 17(5), 556–570 (2012). https://
doi.org/10.1108/13598541211258618

2. Kerkkamp, R.B.O., van den Heuvel, W., Wagelmans, A.P.M.: Robust pooling for
contracting models with asymmetric information. Eur. J. Oper. Res. 273(3), 1036–
1051. ISSN:0377-2217. https://doi.org/10.1016/j.ejor.2018.08.041

3. Laffont, J.J., Martimort, D.: The Theory of Incentives: The Principal-Agent Model.
Princeton University Press, Princeton (2002). https://doi.org/10.2307/j.ctv7h0rwr

https://doi.org/10.1108/13598541211258618
https://doi.org/10.1108/13598541211258618
https://doi.org/10.1016/j.ejor.2018.08.041
https://doi.org/10.2307/j.ctv7h0rwr


From Design to Operation: Mixed-Integer
Model Predictive Control Applied

to a Pumping System

Tim Moritz Müller, Christoph Knoche, and Peter Franz Pelz(B)

Chair of Fluid Systems, Technische Universität Darmstadt, Darmstadt, Germany
{tim.mueller,peter.pelz}@fst.tu-darmstadt.de

Abstract. The two most significant life cycle phases of products or sys-
tems are the design and operation phase. Both share their incredibly high
level of complexity due to the available diversity in components, operat-
ing settings and interconnection variants. In the design process, two-stage
stochastic optimisation problems have proven to be suitable, in which the
operation is anticipated by considering various demand scenarios. Since
the operation is characterised by uncertainty and fluctuation, it has to
be ensured that the operation is also realised in an optimal way. In this
contribution we show how the original planning problem is transformed
into a control problem using the example of a pumping system.

Keywords: Mixed-integer model predictive control · Optimal control ·
Experimental validation · Pumping system · Water distribution network

The task of engineers is to design and operate technical systems. Designing a
system is about finding a solution which ensures the function, fulfills all design
specifications while having the highest possible quality (e.g. long service life or
low costs). This corresponds to a constraint optimization problem [4]. The solu-
tion is the system design, i.e. system properties that can not be adjusted in the
future (e.g. pump type). During operation, the system responds to uncertainty
or fluctuations by adjusting the operating settings (e.g. pump speeds), aiming
at a fast and accurate fulfillment of the function and low operational costs.

In order to ensure function fulfillment for all operation points and to estimate
the influence of operation on quality (e.g. energy costs), the operation must be
anticipated during the design. This leads to a two-stage stochastic optimization
problem with recourse [5]. The first-stage problem, i.e. the design task, is defined
in problem (1) in which F second(x,W ) describes the optimal value of the second-
stage problem, i.e. the operation problem (2):

min
x

ffirst(x) + EW

[
F second(x,W )

]

subject to gfirst(x) ≤ 0.
(1)

min
y

f second(y,W )

subject to gsecond(x, y,W ) ≤ 0.
(2)

Here x are the first-stage variables, y the second-stage variables and W uncer-
tain parameters of the problem. The manifestation of the uncertainty can only
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Trautmann and M. Gnägi (Eds.): OR 2021, LNOR, pp. 318–324, 2022.
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be determined in operation - i.e. after the values of x have been fixed. The
two problems are coupled: the possible operation depends on the chosen design,
whereas the design anticipates the operation. Thus, for the operation, optimiza-
tion problem (2) is solved, where x becomes a previously determined parameter.
Moreover, W has a specific value, which is measured or estimated.

The outline of the paper is as follows: We first present the technical appli-
cation and corresponding optimization problems for the operation. Then, we
present the developed control approach and the obtained experimental results.

1 Application and Model

Pump systems, so-called booster stations, are used to provide sufficient water
pressure in high-rise buildings. Figure 1a) shows the down scaled test rig. Booster
stations use multiple pumps, usually speed controllable, to respond to fluctuating
demands. The crucial question for the design is which type of pumps to choose
and how to interconnect them in order to have the lowest possible life cycle costs
and sufficient functional performance. This has been investigated in previous
work [2,3]. State of the art are parallel pumps of the same type. More cost and
energy efficient are different pump types and topologies as well as decentrally
placed pumps to reduce throttling losses [3].

Fig. 1. In test rig a), the water flows from the tank via the booster station to 5 floors. In
each floor the volumeflow can be measured and a valve can be used to control it. Subse-
quently, the water flows back into the tank via a drainpipe. Any topologies of the pumps
can be realized. Pressure difference over the pumps and power consumption are mea-
sured. All pumps can be turned on and off and the speed can be controlled. Figure b)
shows the decentralized and c) the centralized system variant which is investigated.

For operation, the question of the on/off states as well as the speeds of the
pumps arises in order to achieve a low energy consumption. At the same time
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a minimum pressure must be ensured in the different floors, independent of the
volumeflow demand. By a simple hydraulic model of the building, the pressure-
volumeflow requirement at the pump or booster station outlet is calculated.

The planning problem considered in [2] corresponds to the Deterministic
Equivalent Program of problem (1) for the pump system design. This is trans-
formed into the control problem outlined above by dropping all constraints that
only refer to the first stage. In addition, the first stage variables are fixed, i.e.
the pump selection and topology become parameters and the investment costs
can be removed from the objective function. This results in the optimization
problem for the system adaptation (3). Overall, the optimization problem for
the system adaption evolves from the original second stage problem by solely
changing variable and parameter assignments.

The objective of the system adaptation is to minimize the power consumption
(5a) by adjusting the speeds ni ∈ [0, 1] and on/off states xi ∈ {0, 1} of all pumps
i ∈ P. Lower and upper bounds must be respected (3b). Moreover, the minimum
required power can be estimated to speed up the optimization (3c), cf. [2]. In
order to evaluate the power consumption and ensure functional performance, the
physical behavior must be taken into account (3d). A further description of the
variables, parameter, sets and constraints can be found in [2].

min
n,x,po,p,Δp,q

∑
i∈P poi (3a)

subject to

Δpi ≤ ΔPixi, pouti ≤ P , qi ≤ Qxi, N ixi ≤ ni ≤ N ixi, poi ≤ ΔPoixi ∀i ∈ P (3b)
∑

i∈P poi ≥ Pomin (3c)

system model (4a) - (4n) (3d)

In the system model (4) the volumeflow conservation and -fulfillment (4a)–
(4c) is ensured. Besides, the pressure propagation between nodes including pres-
sure losses of the connections is described (4d)–(4j). The pressure requirements
are defined directly at the pump outlet in the decentralized case (4k) and at the
booster station outlet in the centralized case (4l). The pumps are described by the
quadratic pressure-volumeflow characteristic (4m) and cubic power-volumeflow
characteristic (4n). For a more detailed description see [2].

qi =
∑

j∈P qj,i + qsourcei =
∑

j∈P qi,j + qsinki ∀i ∈ P (4a)

qi,j ≤ QTi,j , qsourcei ≤ QT source
i , qsinki ≤ QT sink

i ∀i, j ∈ P (4b)
∑

i∈P qsinki = Qbound (4c)

pini + Δpi − pouti
≤+
≥− (1 − xi)P ∀i ∈ P (4d)

pouti − Δpfrict,coni,j − ΔP geo,con − pinj
≤+
≥− P (1 − Ti,j) ∀i, j ∈ P (4e)

pini − Δpfrict,ini,j − ΔP geo,in − P source
i

≤+
≥− P (1 − T source

i,j ) ∀i ∈ P (4f)

pouti − Δpfrict,outi,j − ΔP geo,out − psinki
≤+
≥− P (1 − T sink

i,j xi) ∀i ∈ P (4g)
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Δpfrict,coni,j = 0.5�ζconi,j (qi,j/A)2 ∀i, j ∈ P (4h)

Δpfrict,ini = 0.5�ζ ini (qsourcei /A)2 ∀i ∈ P (4i)

Δpfrict,outi = 0.5�ζouti (qsinki /A)2 ∀i ∈ P (4j)

pouti ≥ P req
i ∀i ∈ P (4k)

psink ≥ P req ∀i ∈ P (4l)

Δp = (αi,0 − ζ inst) qi
2 +

∑2

m=1
αi,m qi

2−m ni
m ∀i ∈ P (4m)

poi = βi,4 +
∑3

m=0
βi,m qi

3−m ni
m ∀i ∈ P (4n)

Some of the system quantities are uncertain and the system requirements are
constantly changing due to the fluctuating demand. However, these quantities
cannot be measured directly for the most part, but must be estimated. For this
purpose, a similar optimization problem is used, where the control quantities of
the system n and x, which are variables of the system adaptation (3), become
fixed parameters. In turn, the uncertain model parameters α, β, ζ are now vari-
ables. These are optimized so that the model reflects as good as possible the
measured real values, which results in an NLP for the optimal system calibra-
tion (5). To do so, the sum of the squared, normalized deviation ε of measured
(upper case) and modeled (lower case) pressures and pump power is minimized
(5b). To stabilize the control and to prevent too aggressive optimization, the
correction of the system parameters between two time steps is integrated. Thus,
the character of the model shall be preserved and prevent that, for example,
cubic or quadratic components are set to zero. The correction is calculated from
the sum of the squared, normalized changes of the system parameters δ (5c).
The two parts are weighted by λε and λδ (5a). The system model (4), with the
described modifications of variables and parameters, is considered as well.

min
ζ,α,β,ε,δ,po,p,Δp,q

λεε + λδδ (5a)

subject to

ε =
∑

i∈P

(
pouti − P out,meas

i

P

)2

+

(
psinki − P sink,meas

i

P

)2

+

(
Δpi − Pmeas

i

ΔPi

)2

+

(
poi − Pomeas

i

ΔPoi

)2

(5b)

δ =
∑

i∈P

(
ζin,past
i − ζini

)2
+

(
ζinst,pasti − ζinsti

)2
+

∑

i,j∈P

[ (
ζcon,past
i,j − ζconi,j

)2

+
∑

m∈0,1,2

(
αpast

i,m − αi,m

αlit

)2

+
∑

m∈0,1,2,3

(
βpast

i,m − βi,m

βlit

)2]
(5c)

system model (4a) - (4n) (5d)
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2 Control Approach

In the following, we describe how the two optimization problems interact to
control the pumping system, cf. Fig. 2.

The minimum requested pressure in the floors, the system design, and the
water demand in the form of valve positions are inputs for the approach. The
system design (pump types and topology) origins from the design problem [2].
This is used to create the optimization models for operation.

The control algorithm is highlighted in gray. Based on the pressure demand
pmin and the measured flow demand of the building Qs, the pressure and flow
requirements of the booster system, P req, Qbound, are calculated in the prepro-
cessing (hydraulic model of the building, not considered in this paper). These
are used in the system adaptation together with the estimated model param-
eters of the previous iteration to calculate the optimal operating states, n, x,
which are then applied at the test rig. At the same time, the system calibration
is executed and the model parameters α, β, ζ are fitted based on the measured
quantities and the operating states of the previous iteration.

The algorithm runs continuously. This means that as soon as one control iter-
ation has been completed, the next one starts immediately. System adaptation
and calibration run in parallel, so that the system adaptation uses the adjusted
system parameters of the last iteration and vice versa.

Fig. 2. Control approach

Thus, in each time step, a mixed-integer nonlinear program (MINLP) for
the system adaptation (optimize the operation to achieve high efficiency) and a
continuous nonlinear program (NLP, i.e. without binary decision variables) for
system calibration (optimize the model to fit the real behavior) is solved. This
corresponds to a mixed-integer model predictive control, where one time step is
predicted and optimization and model are combined in one MINLP. In addition,
the model parameters are adaptively fine-tuned via an NLP.
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The approach is implemented using Labview for the test rig control, with
a link to Matlab used for optimization. The problems are modeled with
YALMIP [1] and solved with SCIP 7 [6].

3 Results

In addition to the variants shown in Fig. 1 (decentral (b) and series-parallel
(c)) a reference system with parallel pumps of the same type with conventional
control (ref) and the approach shown here (opt) has been investigated. The
energy consumption for a test case of 30 min, which is based on the random
water demand during the course of a day in a real building, is shown in Table 1.

Table 1. Experimentally obtained results for four different system variants

Parallel Series-parallel Decentral

Ref Opt

Energy consumption in Wh 42.5 38.25 35.69 28.44

in % 100 90 83.98 66.92

Median pressure
deviation in mbar

15.6 3.1 5.8 7.9

It can be clearly seen that the energy consumption decreases due to the opti-
mization in the parallel system. The other topologies also show lower energy
consumption. In [3] a energy saving of 19% have been predicted for the decen-
tralized system variant in the design phase based on five load demands. Those
are even exceeded. It is shown that energy-efficient control is possible even out-
side of the load demands anticipated in the design, provided the complexity is
managed with optimization techniques. The median pressure deviations are also
consistently small, so that it can be assumed that the minimum pressures are
sufficiently fulfilled.

4 Conclusion

We have shown how the approach of a two-stage stochastic optimization problem
for systems design can be adopted to realize a controller for the operation by
simply changing parameter and variable assignments. This shows the versatility
of optimization models and how they can be adapted for various purposes. Here,
two optimization programs interact to determine the optimal operating settings
on the one hand and to fit the model parameters to determine the uncertain
parameters on the other hand. The results are applied to a real-world pump
system showing that the functional requirements can be met and the power
consumption is reduced compared to a conventional approach. However, it should
be noted that the initial implementation and modeling effort is high and that a
central controller is required.
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Abstract. In wire-arc additive manufacturing (WAAM), the desired
workpiece is built layer-wise by a moving heat source depositing droplets
of molten wire on a substrate plate. To reduce material accumulations,
the trajectory of the weld source should be continuous, but transit moves
without welding, called deadheading, are possible. The enormous heat of
the weld source causes large temperature gradients, leading to a strain
distribution in the welded material which can lead even to cracks. In
summary, it can be concluded that the temperature gradient reduce the
quality of the workpiece. We consider the problem of finding a trajec-
tory of the weld source with minimal temperature deviation from a given
target temperature for one layer of a workpiece with welding segments
broader than the width of the weld pool. The temperature distribution is
modeled using the finite element method. We formulate this problem as a
mixed-integer linear programming model and demonstrate its solvability
by a standard mixed-integer solver.

Keywords: Additive manufacturing · Mixed-integer linear
programming · Finite element method · Heat equation · Path
optimization

1 Introduction

In the last decades, the field of additive manufacturing (AM) developed into
an advantageous alternative to common metal cutting manufacturing processes,
due to its ability to produce complex workpieces without substantial material
removal. One of these processes is the so-called wire-arc additive manufactur-
ing (WAAM). In this process, a wire is molten by an electrical arc or laser and
deposited in droplets on an underlying substrate plate building the workpiece
layer-wise. The weld source moves around freely and is capable of transiting
without welding, called deadheading. A crucial factor to the quality of the man-
ufactured workpiece is the trajectory of the weld source. Due to its enormous
heat, high thermal gradients can occur, leading to stress inside the material.
Possible results are distortions of the workpiece or even cracks. Controlling the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Trautmann and M. Gnägi (Eds.): OR 2021, LNOR, pp. 325–330, 2022.
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temperature gradients and aiming for a homogeneous temperature distribution
within the workpiece reduces these effects. Therefore, detailed planning of the
welding trajectory is advantageous. A review about the effect of the chosen weld
strategy to the process time and workpiece quality can be found in [3]. We tackle
the problem of finding a path of the weld source with minimal absolute devia-
tion to a given target temperature for a single layer of the workpiece. In [4], the
strain simulation for a given welding trajectory using a finite element method
is presented. For workpieces with wall strength as broad as the width of the
weld pool, the problem has been studied in [1]. Thus, we consider in this work
wall strengths broader than the width of the weld pool, motivated in [5]. A
mixed-integer linear problem is set up to compute the trajectory and track the
temperature during the process at the same time. The temperature distribution
within the workpiece is affected by the heat input of the weld source, heat con-
duction, and thermal radiation. These three aspects are combined in the heat
equation with a Robin boundary condition. It is discretized using the finite ele-
ment method and incorporated into the model. Its solvability by a standard
mixed-integer solver is demonstrated on a test instance.

2 Mathematical Model

Given the structure of the desired workpiece, the two-dimensional layers are
obtained by slicing it vertically, see Fig. 1. Each layer consists of segments that
have to be welded and intersection points between them. Thus, every layer can
be considered as an undirected graph G = (V,W), with nodes at the intersec-
tion points and the segments between them as edges. This graph has not to be
connected and can contain several components Gi = (Vi,Wi) (i = 1, . . . , n). Let
Vodd and Vodd

i denote the set of nodes with odd degree in G or its component
Gi, respectively.

Fig. 1. A prototypical workpiece (left) and a single layer of it (right)

In practical application, the heat source is much slower while welding than
during deadheading. Thus, we assume that transition moves are done immedi-
ately without consuming time. Since the movement speed vw of the heat source
while welding and the length li,j of each segment (i, j) ∈ W is known apriori, the
time to weld the complete layer is given by T =

∑
(i,j)∈W

li,j
vw

. Introducing the
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time step length Δt, the time horizon [0, T ] is discretized as a set of discrete time
steps T0 = {0, 1, . . . , Tmax}, with Tmax =

∑
(i,j)∈W τi,j =

∑
(i,j)∈W

⌈
li,j

vwΔt

⌉
and

τi,j describing the time to weld segment (i, j) ∈ W. As abbreviations we use
T = T0 \ {0}, T − = T \ {Tmax}, and T −

0 = T0 \ {Tmax}.

2.1 Path Generation

Modeling each layer as an undirected graph, the search for a welding trajectory
of the heat source becomes the problem of computing a continuous path for
the graph, a problem closely related to the Chinese Postman problem [2], where
the artificial edges are now the deadheading moves. The number of the necessary
artificial edges ω in the solution of the Chinese Postman problem for a connected
graph G is ω = |Vodd|

2 . In our setting, the start and the endpoint of the path
can be different. Thus, the number of necessary deadheading moves within each
component can be calculated by ωi = |Vodd

i |
2 − 1. Furthermore, there are n − 1

moves necessary to navigate between the components. In total, the number of
necessary deadheading moves for the whole graph G is given by

∑n
i=1 ωi +n−1.

Let U ⊆ V ×V denote the set of all possible deadheading moves. All segments
can be welded in arbitrary direction, thus the set W is extended to W = {(i, j) ∈
W | (i, j) ∈ W ∨ (j, i) ∈ W} and we introduce further sets W∗ = {(i, ti, j, tj) ∈
V ×T0 ×V ×T | (i, j) ∈ W, tj = ti +τi,j} and U∗ = {(i, j, t) ∈ U ×T −} to relate
all welding and deadheading moves to the time, respectively. Let wi,ti,j,tj ∈ W∗

be a binary variable indicating if segment (i, j) ∈ W is processed from time
step ti ∈ T0 to time step tj ∈ T and ui,j,t ∈ U∗ a binary variable indicating if
connection (i, j) ∈ U is used for deadheading at time step t ∈ T −. Then, the
problem of finding a welding path can be stated as

∑

i,j,tj :(i,0,j,tj)∈W∗
wi,0,j,tj = 1, (1)

∑

i,ti,j:(i,ti,j,Tmax)∈W∗
wi,ti,j,Tmax = 1, (2)

∑

ti,tj :(i,ti,j,tj)∈W∗
wi,ti,j,tj +

∑

tj ,ti:(j,tj ,i,ti)∈W∗
wj,tji,ti = 1 ∀ (i, j) ∈ W, (3)

∑

h,th:(h,th,i,t)∈W∗
wh,th,i,t +

∑

h:(h,i,t)∈U∗
uh,i,t

=
∑

j,tj :(i,t,j,tj)∈W∗
wi,t,j,tj +

∑

j:(i,j,t)∈U∗
ui,j,t ∀ i ∈ V, t ∈ T , (4)

∑

(i,j,t)∈U∗
ui,j,t = ω + n − 1, (5)

∑

i,j:(i,j,t)∈U∗
ui,j,t ≤ 1 ∀ t ∈ T . (6)

The weld source has to start and end its path somewhere (1), (2), while every
segment must be welded (3). The computed path has to be continuous (4) and
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the number of deadheading moves is limited (5). Equation (6) is not necessary,
but a valid inequality since every time there are two consecutive deadheading
moves (i, j, t), (j, k, t) ∈ U∗ in one time step, they can be merged to (i, k, t) ∈ U∗

reducing the traveled distance.

2.2 Temperature Distribution

Tomodel the temperature distribution within one layer of the workpiece during the
welding process, the heat input of the weld source, heat conduction, and thermal
radiation have to be taken into account. The two dimensional heat equation

∂θ

∂t
(x, y, t) = α

(
∂2θ

(∂x)2
(x, y, t) +

∂2θ

(∂y)2
(x, y, t)

)

+ q(x, y, t)

∀(x, y) ∈ Ω, t ∈ (0, T ] , (7.1)
∂θ

∂n
(x, y, t) = κe

(
θamb(t) − θ(x, y, t)

)
∀(x, y) ∈ ∂Ω, ∀t ∈ [0, T ] , (7.2)

θ(x, y, 0) = θinit(x, y) ∀(x, y) ∈ Ω, (7.3)

describes the heat conduction within an area Ω with initial temperature distri-
bution θinit and ambient temperature θamb. The Robin boundary condition (7.2)
allows a linear approximation of the thermal radiation [1].

To discretize the heat Eq. (7), τi,j −1 nodes are added equidistantly on every
segment (i, j) ∈ W and collected in the set Vint. To relate these interior nodes
to their corresponding segment, a function ξ : Vint �→ W × {1, . . . , τi,j − 1} is
introduced, reporting the respective segment and the nodes position along it for
every interior node. Furthermore, let the variable θi,t describe the temperature
of node i ∈ V := V∪Vint at time step t ∈ T0. We apply the finite element method
according to [6] with node set V, the segments (i, j) ∈ W as boundary of the
area Ω, and linear triangle elements. This yields the linear equation system

(M + ΔtK)�θt+1 = Δt(�qt+1
�fH + �fR) + M�θt, (8)

with mass matrix M = (mi,j)i,j , stiffness matrix K = (ki,j)i,j , load vectors �fH

and �fR, and �θt, �qt describing the vectors of the temperature and the heat input
of all nodes at time step t ∈ T −

0 , respectively.
The weld source is described by the piece-wise constant approximation of

the Goldak heat source model from [1] with coefficients κw
k , k = 1, . . . ,Kw and

intervals Pk. The temperature gain of a node at the center of the weld pool is
given by the parameter ϕw. To simplify notations, the binary variable wi,t with

wi,t =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑
h,th:(h,th,i,t)∈W∗ wh,th,i,t +

∑
h:(h,i,t)∈U∗ uh,i,t , i ∈ V, t ∈ T0,

∑
(h,th,j,tj)∈W∗

ξ(i)=(h,j,k)
t=th+k

wh,th,j,tj +
∑

(j,tj ,h,th)∈W∗

ξ(i)=(h,j,k)
t=th−k

wj,tj ,h,th , i ∈ Vint, t ∈ T ,

0 , i ∈ Vint, t = 0,

(9)
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is introduced, indicating above which node i ∈ V the weld source is positioned
at time step t ∈ T0. Note that the third case is necessary since the index sets of
the sums in (9) are empty for i ∈ Vint at t = 0. The temperature gain of the
nodes from the weld source is then given by

ϕi,t =
Kw
∑

k=1

∑

j∈V∪Vint

de
i,j∈Pk

κw
k ϕwwi,t ∀i ∈ V, ∀t ∈ T0, (10)

where de
i,j is the Euclidean distance between nodes i, j ∈ V. Let θinit

i denote the
initial temperature of node i ∈ V. Incorporating (10) into (8), the temperature
distribution within the workpiece is modeled by

θi,0 = θinit
i , ∀i ∈ V (11)

∑

j∈V

(mi,j + Δtki,j)θj,t =
∑

j∈V

mi,jθj,t−1 + Δt
(
ϕi,tf

H
i + fR

i

)
∀i ∈ V, t ∈ T .

(12)

The initial temperature of each node is set in (11) and then the linear equation
system (12) is solved for every time step.

To achieve a preferably homogeneous temperature distribution, we minimize
the absolute deviation of the temperature of the workpiece to a given target
temperature θtar. Introducing further variables θ+i,t, θ

−
i,t ∈ R+ to describe the

positive and negative portion of the absolute value function, the objective func-
tion is given by

min
∑

i∈V,t∈T0

θ+i,t + θ−
i,t (13)

with the additional constraint

θtar − θi,t = θ+i,t − θ−
i,t ∀i ∈ V, t ∈ T0. (14)

3 Computational Results and Conclusions

The mixed-integer model consisting of constraints (1)–(6), (11), (12), (14), and
objective (13) is implemented in AMPL using CPLEX 12.10 (default settings)
for its solution on a Mac Pro with an Intel Xeon W running 32 threads parallel
at 3.2 GHz clockspeed and 768 GB RAM. As an example instance, the layer
displayed in Fig. 1 is used with a side length of 16 mm and inner squares of
5 × 5 mm. The parameter values are chosen according to [1], except for κe = 0.5
and θtar = θamb(t) = 200 ◦C, which are estimated. After 172, 670 s, the optimal
solution was obtained. It is displayed in Fig. 2, together with the temperature
progression of node 12, where all aspects of heat transmission are observable.
In the beginning, its temperature increases due to heat conduction through the
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Fig. 2. Optimal welding path for the considered layer (left) and temperature progres-
sion of node 12 (right). The weld trajectory is given by the numbers next to each
segment. Dashed lines describe deadheading moves, the starting point of the path is
marked by a red circle, and node 12 by a blue square

material. The weld source reaches this node at time step 24, leading to a first
peak in its temperature progression. With this high temperature, the effect of
heat conduction is outperformed by the heat loss due to radiation. Later, there
is a significant temperature gain every time the node is within the area of effect
of the weld source.

In our future work, we formulate new objective functions providing better
solutions of the LP relaxation during the solution process. Furthermore, we con-
sider workpieces where the wall strength of every segment can be arbitrary and
extend the problem to several consecutive layers, where the chosen paths for each
layer should differ to increase the stability of the workpiece and avoid joints.
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Abstract. This contribution presents a method to find an optimal topol-
ogy and control for a hydrostatic transmission system that is equipped
with a hydraulic accumulator. The goal is to minimize wear in the system
while fulfilling a predefined load cycle given by speed and force require-
ments during the retraction and extension of a piston. The degrees of free-
dom of the design are the selection and the connection of valves with the
system’s piston, pressure source and tank as well as the sizing of the accu-
mulator. We derive a mixed-integer nonlinear program, which contains
continuous variables for the quasi-stationary flow, pressure and valve con-
ditions, as well as binary variables to include selection decisions and valve
circuits. Pressure and wear conditions are modeled by nonconvex nonlin-
ear functions. To solve the problem, we use a reformulation which approxi-
mates the valve wear by a quadratic polynomial depending on volume flow
and pressure difference and use a technique based on perspective cuts. Our
optimization results show that the inclusion of the accumulator reduces
the wear related material costs by one third.

Keywords: MINLP · Perspective cuts · Engineering optimization

1 Introduction

Hydraulic systems are required in a multitude of technical systems, e.g., in
construction and agricultural machinery. An important factor influencing the
availability of such systems is component wear. This motivates the search for
systematic design methods within the engineering design process that lead to a
reduced component wear. We present a system synthesis approach of a hydro-
static transmission system equipped with a hydraulic accumulator using a mixed-
integer nonlinear program (MINLP). In more detail, we optimize the connection
of valves, the sizing of an accumulator and the control of the valves such that
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tively.

Fig. 1. Illustration of the problem.

a given movement pattern of a piston can be realized under minimal material
wear, see Fig. 1a for a schematic depiction of the technical system.

Our model is an extension of the work [1], which considers this system without
an accumulator. The presented system design approach can also be used to derive
optimized digital hydraulic [6] systems. The integration of an accumulator has
multiple benefits for the system: for instance, as shown by [8, p. 249], the volume
flow demand can still be satisfied while having fluctuating requirements and
pressure peaks can be reduced.

In previous work [1], the complex nonlinear physics and wear constraints
necessitated the usage of linearization. In contrast, here we propose a reformula-
tion of these nonlinearities, which allows the solving of a more precise MINLP-
formulation. In the following we first introduce an optimization model for the
problem. Afterwards we present a reformulation and apply perspective cuts. We
then conclude with a presentation of the optimal solution for some test data.

2 Optimization Model

The function of the system is given by a load cycle L := {in, out} which controls
the velocity vin/vout, force F in/F out and time tin/tout of retracting and extending
the piston given by the points E and R in Fig. 1a. The needed pressure difference
for this movement can be generated by connecting these two points with the
pressure source P and/or the accumulator A via switch and proportional valves
as well as by the adjustment of the proportional valves’ lift.

The possible designs of the hydrostatic transmission system are represented
by the directed graph G = (V,A) depicted in Fig. 1b. The nodes V include the
nodes for the extension (E) and the retraction (R) input of the piston, the accu-
mulator (A), the pump (P ) and the tank (T ). Furthermore, there are two nodes
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for each of the eight valves. The set of arcs A contains an arc for each valve, where
the arcs for proportional and switch valves are collected in the subsets Ap and As,
respectively. There are two arcs for the piston and the connection of the pressure
source and the tank, respectively. Lastly, there are connections between all the
components with some restrictions, e.g., the accumulator can only be connected
to a proportional valve and switch valves can not be connected in series. These
arcs are collected in the set Ac ⊂ A.

The MINLP uses the following variables: Binary variables xa for a ∈ A signify
whether an arc/connection is used in the solution. The binary variables y�

a specify
whether a valve on the arc a ∈ Ap ∪ As is open or closed in load case � ∈ L. To
model quasi-stationary physical conditions for each load case � ∈ L, the volume
flow on each arc a ∈ A is given by q�

a. Furthermore, the pressure at a given
node v ∈ V is given by p�

v. For each proportional valve a ∈ Ap we have its valve
lift u�

a, its accumulated wear w�
a and the pressure loss Δp�

a. Lastly, we model the
hydraulic accumulator using preloading pressure p0 and volume V 0 as well as
the fluid volume V �.

min
∑

a∈As

Cs xa +
∑

a∈Ap

Cp xa +
∑

a∈Ap

Cp �N/�w/(win
a +wout

a )�� (1a)

s.t.
∑

a∈δ−(v)

q�
a −

∑

a∈δ+(v)

q�
a = 0, v ∈ V\{T,A}, � ∈ L, (1b)

q�
a (1 − xa) = 0, a ∈ Ac, � ∈ L, (1c)

q�
a (1 − y�

a) = 0, a ∈ Ap ∪ As, � ∈ L, (1d)

(p�
u − p�

v)xa = 0, a = (u, v) ∈ Ac, � ∈ L, (1e)

(p�
u − p�

v) y�
a = 0, a = (u, v) ∈ As, � ∈ L, (1f)

(p�
u − p�

v) y�
a = Δp�

a, a = (u, v) ∈ Ap, � ∈ L, (1g)

ρ q�
a|q�

a|= 2Δp�
a (ζ d u�

a)2, a ∈ Ap, � ∈ L, (1h)

w�
a ≥ K(u�

a, q�
a), a ∈ Ap, � ∈ L, (1i)

win
a + wout

a ≤ w, a ∈ Ap, � ∈ L, (1j)

u y�
a ≤ u�

a ≤ y�
a, a ∈ Ap, � ∈ L, (1k)

0 ≤ V � ≤ V 0, � ∈ L, (1l)

V � = V �−1 +
∑

a∈δ−(v)

q�−1
a −

∑

a∈δ+(v)

q�−1
a , � ∈ L, (1m)

pA,� = p0
(

V 0

V �

)n

, � ∈ L, (1n)

(p�
E − p�

R) = F �

Apist , q�
(E,R) = v� Apist, � ∈ L, (1o)

p�
T = 1, p�

P = ΔP + 1, � ∈ L, (1p)

q ∈ RA×L, p ∈ RV×L, Δp,w, u ∈ RAp×L,

p0, V 0, V in, V out ∈ R+, x ∈ {0, 1}A, y ∈ {0, 1}(Ap∪As)×L.
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The whole model is given by Eqs. (1a)–(1p). The objective is to minimize
the material costs given by the usage of the valves, weighted by Cs/Cp for the
respective type and the replacement of worn out proportional valves. We use N
maintenance intervals in which valves can be replaced. A valve is worn out,
if the wear exceeds the upper wear bound w. The number of replacements is
given by �w/(win

a +wout
a )�. The accumulator is not considered within the objective.

Constraints (1b)–(1g) enforce volume flow balance and pressure propagation
between built/active components. Here, δ−(v) and δ+(v) denote the incoming
and outgoing arcs of node v, respectively. Pressure loss only occurs for propor-
tional valves and is approximated by Constraints (1h) following [7]. Parameters
are the diameter d, the oil density ρ and the pressure loss coefficient ζ. The
wear of a used proportional valve is modeled by (1i) and (1j). Here, K(u�

a, q�
a)

is a nonlinear function depending on the lift and the volume flow of the consid-
ered valve and parameters like the maximum valve lift, the movement time and
further aspects. This wear model was derived by a dimensional analysis using
experimental data, see [7] and is depicted in Fig. 2a. We also bound the valve lift
in (1k). Constraints (1l)–(1n) cover boundary conditions, volume flow balance
and the pressure of the accumulator. The expression � − 1 is an abbreviation for
the opposite load case of �. The final constraints give boundary conditions on
several nodes and arcs in the graph. This includes the necessary pressure differ-
ence and volume flow for the piston movement (Apist is the area of the piston)
as well as the ambient pressure of 1 bar at the tank and the constant pressure
increase due to the pump of ΔP .
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(b) Using the quadratic polynomial f .

Fig. 2. Approximation of the wear w in terms of the valve lift u and volume flow q or
pressure difference Δp and volume flow q.

3 Solution Approach

To optimize the above MINLP using the solver SCIP [5], we use a reformulation
and separate tight valid inequalities based on perspective cuts, see [4].
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We first reformulate the wear part in the objective function, which forms a
piecewise linear function with arguments win

a +wout
a , as an aggregation of binary

variables. Furthermore, we compute bounds on the volume flow and pressure
variables to reformulate the bilinear constraints (1c)–(1g) with binary variables
as big-M constraints. To simplify the absolute value in Constraint (1h) we split
the volume flow and pressure increase variables into positive and negative parts
and add binary activation variables.

Preliminary tests showed computational difficulties with the optimization
of the interaction between volume flow, pressure difference, lift and wear of the
proportional valves. To handle this, we neglect the valve lift variable and approx-
imate the wear of a valve only in terms of volume flow and pressure difference
using a two-dimensional quadratic polynomial f . This function is depicted in
Fig. 2b. Thus, for nonnegative q�

a and Δp�
a we replace Constraints (1h)–(1k) by

the system

2Δp�
a (ζ d u)2 ≤ ρ (q�

a)2 ≤ 2Δp�
a (ζ d)2, a ∈ Ap, � ∈ L, (2a)

w�
a ≥ f(q�

a,Δp�
a), a ∈ Ap, � ∈ L. (2b)

To further speed up the solution process, an adaptation of perspective cuts
is used. These cuts use the model structure that a binary variable switches a
continuous variable on/off and that there exists a convex nonlinear relationship
between the continuous variables:

{(α, β, γ) ∈ {0, 1} × Rn × R : γ ≥ f(β), β α ≤ β ≤ β α}.

This structure is also given in our problem when linking wear (γ) with vol-
ume flow and pressure loss (β) depending on activation of the valve (α).
The quadratic approximation f is non-convex. However, the fixed convexity
behavior of quadratic functions makes it possible to generate linear underes-
timators f(β) ≥ a�β + b following [2]. In [3] it is shown, that the inequali-
ties γ ≥ a�β + b α are valid for the above set. We dynamically separate these
valid cutting planes within our optimization algorithm and significantly reduce
the solution time.

4 Example Design

Exemplified results for system designs with and without an accumulator and with
different valves and connections to ensure a given load-scenario are presented in
Fig. 3. The pictures show the valve configurations for the extension phase. The
retraction scenario is obtained by opening closed valves and closing open valves.
Here, proportional valves are considered to be twice as expensive as switching
valves. The load cases are determined by vin = 0.15 m/s, F in = 20 kN, tin = 20 s,
vout = 0.6 m/s, F out = 5kN, and tout = 5 s.

The use of the hydraulic accumulator reduces the wear and thus the material
costs based on the underlying model assumptions by one third. The optimized
solution configures the accumulator in such a way that it can handle the retrac-
tion cycle without the pump.
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(a) With accumulator. (b) Without accumulator.

Fig. 3. Optimal solution configuration for the extension scenario.

5 Conclusion and Outlook

We presented a more accurate nonlinear model of a hydrostatic transmission
system, which we solved using refined solution strategies. Further research could
focus on the combinatorial structure of the problem in order to solve models
involving more valves. Furthermore, the investigation of a cost model for the
accumulator sizing would be interesting.

Funding. This research was funded by Deutsche Forschungsgemeinschaft (DFG, Ger-

man Research Foundation) – project A9 within SFB 805 (Project Number 57157498).
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7. Vergé, A., Pöttgen, P., Altherr, L.C., Ederer, T., Pelz, P.F.: Lebensdauer als Opti-
mierungsziel – Algorithmische Struktursynthese am Beispiel eines hydrostatischen
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Abstract. We study the problem of scheduling construction or decon-
struction projects subject to temporal and renewable resource constraints
to minimize the makespan. Moreover, we take into account material flows
between activities of the project. Material flows can cause delays due to
the limited capacity of intermediate storage facilities. In construction
projects, material flows follow a convergent structure as materials are
supplied, pre-treated, and mounted throughout the project. In decon-
struction projects, materials are released, treated and removed from the
site, resulting in a divergent structure. An experimental performance
analysis with IBM ILOG CP Optimizer on generated test instances
reveals that solving the problem with converging material flows requires a
multiple of the computation time for solving the problem with diverging
material flows.

Keywords: Project scheduling · Material flows · Storage facilities

1 Introduction

There is a wide range of possible applications for the extensively studied
Resource-Constrained Project Scheduling Problem (RCPSP). The RCPSP deals
with determining the start times for project activities so that temporal relations
between activities and scarce renewable resources are taken into account, and
the makespan is minimized. Our work focuses on applications involving material
flows between activities, which can impose significant restrictions on the project
execution due to storage or processing bottlenecks. Construction and deconstruc-
tion projects are typical examples of such applications. In construction projects,
the material processing (e.g., supply, pre-treatment, pre-assembly, on-site trans-
port) occurs upstream of the assembly activities. In deconstruction projects,
however, the material processing (e.g., segmentation, conditioning, removal from
site) occurs downstream of the disassembly activities. In both cases, the storage
space on the (de-)construction site is often limited, e.g., if located in congested
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Trautmann and M. Gnägi (Eds.): OR 2021, LNOR, pp. 341–346, 2022.
https://doi.org/10.1007/978-3-031-08623-6_50

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08623-6_50&domain=pdf
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urban areas. The problem of scheduling a project with material flows at mini-
mal makespan can be considered as an extension of the RCPSP. It consists of
determining the start times for project activities subject to temporal relations,
scarce renewable resources and scarce storage resources.

Most of the scheduling literature on material flows and storage facilities
addresses production planning settings where materials are usually regarded as
a homogeneous resource that any activity can consume as soon as it is available
(e.g., [2–4]). In contrast, material flows in (de-)construction projects implicitly
prescribe a temporal order on the activities involved. For example, consider a case
where two different walls need to be deconstructed, but only one wall requires
special treatment due to a contamination. For modeling this case correctly, it
is imperative to maintain the link between the respective dismantling activity
and the material flow (i.e., the residual materials from the wall) released by it.
This can be achieved by introducing temporal relations with minimum time lags
between the dismantling activity and the subsequent activities responsible for
processing the material flow. An overlap is allowed as long as no activity must be
interrupted to wait for its materials. The case of constructing two different walls,
where one wall requires special pre-treatment, is modeled analogously. However,
the structure of the temporal relations differs depending on whether the wall is
constructed or deconstructed. In construction (deconstruction) projects where
material flows are located upstream (downstream), these temporal relations typ-
ically form a converging (diverging) structure. For convenience, we speak of con-
verging (diverging) material flows. However, it is essential to note that we observe
the material flows from a temporal perspective. Regardless of whether we refer
to converging or diverging material flows, the physical material units can always
flow together or apart when traversing storage facilities.

In project scheduling, there exist several well-known parameters which have
an effect on the solvability of instances, such as the resource strength or the
network complexity. When evaluating solution procedures, the observed perfor-
mance measures are usually presented specifically for these instance parameters.
In this work, we examine whether the material flow structure should be consid-
ered as an additional instance parameter. For this purpose, we experimentally
investigate how the off-the-shelf constraint programming solver IBM ILOG CP
Optimizer in IBM ILOG CPLEX Optimization Studio 12.9.0 performs at solving
generated test instances with converging or diverging material flows. Our find-
ings will lead to a better understanding and assessment of solution procedures
for scheduling problems with storage resources.

2 Problem Statement

We consider a project composed of i = 0, . . . , n + 1 activities with durations
d0, . . . , dn+1. Activities 0 and n + 1 are fictitious (i.e., d0 = dn+1 := 0) and rep-
resent the start and the end of the project, respectively. The project scheduling
problem (P) consists in determining a vector of start times S := (S0, . . . , Sn+1),
briefly referred to as schedule, so that the project makespan Sn+1 is minimized
and constraints (3) to (7) are satisfied:
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(P) (1)
min Sn+1 (2)

s. t. Sj ≥ Si + dmin
ij ((i, j) ∈ E); (3)

∑

i∈Aρ(S,t)

rρ
ik ≤ Rρ

k (k ∈ Rρ, t ≥ 0); (4)

0 ≤
∑

i∈Aγ+
k (S,t)

rγ
ik +

∑

i∈Aγ−
k (S,t)

rγ
ik ≤ Rγ

k (k ∈ Rγ , t ≥ 0); (5)

S0 = 0; (6)
Si ≥ 0 (i = 1, . . . , n + 1). (7)

Constraints (3) are temporal constraints, which are prescribed by a set of
temporal relations E ⊂ {0, . . . , n + 1}2 and a matrix of minimum time lags
(dmin

ij )i,j=0,...,n+1. If for two activities i, j, there exists a temporal relation (i, j) ∈
E, activity j must not start earlier than dmin

ij ∈ Z≥0 periods after the start
of activity i. Note that, for simplification, we restrict ourselves to minimum
time lags. The temporal constraints could be extended by maximum time lags
straight-forwardly. Constraints (4) are renewable resource constraints, which are
prescribed by a set of renewable resources Rρ, a maximum availability Rρ

k ∈ Z≥0

for each renewable resource k ∈ Rρ and a required amount rρ
ik ∈ Z≥0 of each

renewable resource k ∈ Rρ by each activity i. The active set Aρ(S, t) := {i | Si ≤
t < Si + di} comprises all activities executed at a time t, given a schedule S.
Constraints (5) are storage constraints (cf. [2–4]), which are prescribed by a
set of storage resources Rγ , a maximum inventory Rγ

k ∈ Z≥0 for each storage
resource k ∈ Rγ and a required amount rγ

ik ∈ Z of each storage resource k ∈ Rγ

by each activity i. If rγ
ik > 0 (rγ

ik < 0), activity i replenishes (depletes) rγ
ik

material units into (from) storage resource k. We assume that replenishments
(depletions) take place at the start (end) of each activity, blocking the required
upstream and downstream storage space during its entire execution time. Hence,
the active set comprising all activities that have replenished (depleted) material
into (from) k until a time t is defined as Aγ+

k (S, t) := {i | rγ
ik > 0 ∧ Si ≤ t}

(Aγ−
k (S, t) := {i | rγ

ik < 0 ∧ Si + di ≤ t}).
To describe material flows, we establish the following definitions:

An activity i is said to be replenishing (depleting) if and only if there exists at
least one storage resource k ∈ Rγ with rγ

ik > 0 (rγ
ik < 0).

The material flows are said to be converging (diverging) if and only if for each
replenishing (depleting) activity i there exists exactly one activity j �= i with

1. (i, j) ∈ E ((j, i) ∈ E), i.e., activity i has exactly one successor (predecessor)
j, and

2. rγ
jk +

∑
(lj)∈E rγ

lk = 0 (rγ
jk +

∑
(jl)∈E rγ

lk = 0) for each k ∈ Rγ with rγ
jk < 0

(rγ
jk > 0), i.e., each replenished material unit is also depleted and vice versa.

Hence, in-trees (out-trees) in the activity-on-node network associated with an
instance of (P) indicate that we are dealing with converging (diverging) material
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flows. On the left side of Fig. 1, an exemplary activity-on-node network for an
instance with converging material flows is depicted. We can mirror this network
to obtain an instance with diverging material flows, as shown on the right side.
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temporal relation forming a converging or diverging material flow

i activity and temporal relation not related to material flows

Fig. 1. Exemplary activity-on-node network for an instance with converging (left) and
an instance with diverging (right) material flows

3 Structural Properties

As a generalization of the RCPSP, solving (P) to optimality is NP-hard. Schwindt
and Trautmann [4] propose the following branch-and-bound algorithm: Initially,
a polynomial longest path algorithm solves the resource relaxation of (P) (i.e.,
relaxation of constraints (4) and (5)). If the maximum inventory Rγ

k of a storage
resource k ∈ Rγ is exceeded at a time t, replenishing activities are postponed
sufficiently so that the inventory falls below Rγ

k . For each possible combination
of replenishing activities, a new enumeration node is created.

Imagine an inventory excess at a time t before the end of activity 9 from
Fig. 1. Let us focus on the material flow processed in activity 9 and resolve
this inventory excess by postponing preceding activities of activity 9. In case
of diverging material flows, each depleting activity has exactly one predecessor.
Thus, we postpone preceding activity 1 to resolve our inventory excess (cf. right
network in Fig. 1). In case of converging material flows, each depleting activity
can have multiple predecessors. Thus, we can postpone preceding activity 6 or
7 or both to resolve our inventory excess (cf. left network in Fig. 1). Due to this
structural difference, we expect more enumeration nodes with converging mate-
rial flows. Therefore, we assume that solving instances with converging material
flows requires more computational effort than instances with diverging material
flows. In the following section, we experimentelly verify this assumption using
IBM ILOG CP Optimizer. We chose CP Optimizer since it is easily accessible
and achieved good results on similar problems.
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4 Experimental Performance Analysis

4.1 Instance Generation

To generate test instances of (P), we use instances with nPSPLIB = {30, 120}
activities from the PSPLIB [1] as a starting point. We randomly select a portion
PREL ∈ {0.25, 1} of all PSPLIB-activities and associate these activities with
material flows. To this end, we randomly simulate NREL ∈ {50, 200} directed
material flow paths through a flow network of five storage resources and eight
processing steps for each selected activity. Each material flow path describes the
material flow of one material unit. Next, we aggregate the material flow paths
for each selected activity so that the respective material units are described by a
common path as long as they pass through the same processing steps and storage
facilities. The aggregation results in a diverging material flow, where we derive
an activity for each of its processing steps. We link the activities by temporal
relations according to the structure of the simulated material flow. Since the
processing of materials may require renewable resources, we define a resource
factor RF ∈ {0, 0.5} which prescribes the average portion of PSPLIB-resources
for which the PSPLIB-activities and the activities derived from processing steps
compete. We set the maximum inventory Rγ

k := INV ∈ {200, 1000} for each
k ∈ Rγ . For each possible combination (nPSPLIB,PREL,NREL,RF , INV ) we
generate three instances with varying durations of the activities derived from
processing steps. Finally, we mirror the material flow structure of each generated
instance so that we obtain a corresponding instance with converging material
flows (such as depicted in Fig. 1). In total, we get 25 · 3 = 96 instance pairs,
where each instance comprises 106 to 2348 activities. Instances of one pair have
the same characteristics apart from the direction of the material flows.

4.2 Results and Evaluation

We modeled (P) using CP Optimizer’s “interval variables” for representing activ-
ities and “cumul functions” for representing renewable resource and storage
requirements. We carried out all experiments on an AMD Ryzen 9 (4.0 GHz, 12
cores) with 128 GB RAM using the automatic search and the default settings.
Table 1 shows the results for the different instance generation parameter levels.

The percentages and the average computation times confirm our assumption
that solving (P) requires more computational effort with converging material
flows than diverging material flows. For ten instances with converging flows, CP
Optimizer could not find a feasible solution within a time limit of one hour per
instance. These are mainly the instances with INV = 200 and NREL = 200,
i.e., with tight storage constraints. CP Optimizer could not prove infeasibility.
In contrast, CP Optimizer found a feasible solution for all instances with diverg-
ing material flows within less than one minute per instance. Concerning the
computation times, solving instances with converging material flows requires a
multiple of the time for solving instances with diverging material flows. Param-
eters nPSPLIB and PREL have the strongest impact on the computation times.
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Table 1. Percentage of feasible/optimal solutions and average computation times until
a feasible/optimal solution was found for converging (con.) and diverging (div.) mate-
rial flows within a time limit of one hour per instance

Parameter Level Feasible (%) Optimal (%) Feasible (s)a Optimal (s)a

con. div. con. div. con. div. con. div.

Overall - 89.58 100.00 86.46 96.88 25.16 4.12 128.19 27.69

nPSPLIB 30 95.83 100.00 91.67 95.83 4.23 0.40 49.72 6.97

120 83.33 100.00 81.25 97.92 49.23 8.41 214.71 50.53

PREL 0.25 95.83 100.00 93.75 100.00 4.96 1.13 22.17 11.07

1 83.33 100.00 79.17 93.75 48.38 7.56 257.14 47.90

NREL 50 100.00 100.00 93.75 95.83 23.18 3.83 71.10 41.73

200 79.17 100.00 79.17 97.92 27.66 4.50 194.30 11.42

RF 0 89.58 100.00 89.58 100.00 23.84 3.76 83.81 5.41

0.5 89.58 100.00 83.33 93.75 26.47 4.49 177.12 52.25

INV 200 79.17 100.00 77.08 93.75 21.77 4.30 137.89 42.06

1000 100.00 100.00 95.83 100.00 27.84 3.99 120.60 16.44
a Values averaged over the levels of all parameters except the one under consid-
eration; instance pairs were excluded if no feasible/optimal solution was found
for one of both instances.

5 Conclusion

We dealt with an extension of the RCPSP, which takes into account material
flows between activities and constraints on storage resources. Solving gener-
ated instances with CP Optimizer showed that the computational effort sig-
nificantly depends on whether we deal with converging or diverging material
flows. Although the compared instances have the same characteristics apart from
the direction of the material flows, optimizing instances with converging flows
required 128 s on average compared to 28 s for optimizing instances with diverg-
ing flows. This suggests that the structure of material flows should be considered
when designing and evaluating problem-specific models and solution procedures.
We suspect that CP Optimizer performs faster with diverging material flows
since this structure results in a smaller number of enumeration nodes.
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Abstract. Heating processes constitute costly manufacturing steps in
metalworking industries, where planning problems are challenging due
to heterogeneous furnaces and various product properties. A mathemat-
ical formulation for a real-world furnace scheduling problem described
by unrelated parallel machines with job families, sequence-dependent
setup times and job conflicts is presented. Model enhancements are dis-
cussed and a computational study comparing model variants is reported.
The results give insights into applicability and promising model enhance-
ments.
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1 Introduction

Heating activities in metalworking industries are usually operated continuously
and in parallel which leads to challenging scheduling tasks. Here, a real-world
setting of a hardening shop with doubled-lined pusher furnaces and chamber
ovens is considered. Typically, processing a job in a chamber furnace takes long
processing and short setup time, while it is vice versa in a pusher furnace. The
main goal is to determine an efficient heating schedule for a given set of jobs
with individual and furnace-dependent resident times.

Jobs requiring the same heating procedure form job families. However, the
jobs of one family may have rather different processing times. Further, setup
times occur between jobs of different families. Due to disproportionately long
heating times, certain job families are incompatible with the pusher furnaces.
Additionally, certain heating procedures are not allowed to be operated at the
same time by one pusher furnace. Thus, if certain job pairs of distinct families
are assigned to adjacent pusher furnace lines their processing may not overlap
in time. This is referred to as a job conflict. Generally, job family-dependent
characteristics are transferred to every single job. The resulting furnace schedul-
ing problem is modeled as scheduling tasks on unrelated parallel machines with
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sequence- and machine-dependent setup times, job conflicts and incompatibili-
ties. Desired is the minimization of the total completion time of all jobs.

Similar scheduling problems are investigated in application- as well as theory-
driven research areas. In [4], a furnace scheduling problem appearing in steel
production is discussed, while the authors point out that situations with dif-
ferent furnace types are barely studied. The process of reheating and consecu-
tive hot rolling is studied in [8], whereby energy-efficient schedules are obtained
for parallel pusher furnace lines. Parallel machine scheduling typically distin-
guishes between identical and unrelated machines. For scheduling jobs on unre-
lated machines with sequence-dependent setup times, a comprehensive study
on mixed-integer programming (MIP) formulations is reported in [1] and an
exact solution method for problems with additional machine availability is pro-
posed in [6]. The total completion time objective is heuristically approached in
a small computational study on randomly generated instances in [9]. A prob-
lem involving unrelated machines and family-sequence-dependent setup times
is tackled using different heuristic methods in [7]. Scheduling job families on
identical machines with setup times is studied by applying an exact solution
approach to different MIP formulations with total weighted completion time
in [5]. In [3], no overlap job conflicts occurring on all identical machines are
discussed and the performance of a commercial solver on three different MIP
models is evaluated. These models are not fully applicable here, since conflicts
are also machine-dependent in our case. This work extends existing models by
considering (i) furnaces with different working modes and (ii) job- and machine-
dependent conflicts.

Our contribution is a mathematical formulation of this scheduling problem
along with basic model enhancements (Sect. 2). A computational study based on
real-world data is conducted to evaluate schedules obtained by an out-of-the-box
MIP solver. The results (Sect. 3) indicate the appropriateness of our model. We
conclude with promising research opportunities in Sect. 4.

2 Mathematical Problem Formulation

2.1 Problem Description and Notation

The given furnace scheduling problem is modeled as scheduling a set of jobs
J = {1, . . . , n} on a set of machines M = {1, . . . ,m}. For every job j, a set Mj ⊆
M of compatible machines is given together with processing times pjk for all
machines k ∈ Mj . Setup times sijk are given for every job pair i, j processed on
a compatible machine k. To describe the job- and machine-dependent conflicts, a
set Jcon ⊆ {(j, h) | j, h ∈ J, j �= h} of ordered pairs of conflicting jobs is defined.
If the jobs h and j are conflicting, two ordered pairs (h, j) and (j, h) appear in
Jcon. Further, a set M con ⊆ {(k, l) | k, l ∈ M,k < l} of ordered pairs of machines
on which conflicts may occur is defined.

The goal is to find a feasible schedule which respects incompatibility and
conflicts and minimizes the sum of the completion times Cj of all jobs j ∈ J .
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2.2 Mixed-Integer Programming Model

In accordance with the literature (see e.g. [3]), we use binary sequencing vari-
ables. A variable xijk equals 1, if job i directly precedes job j on a machine
k (0, otherwise). Further, a variable zij = 1 forces job j to start after job i is
completed if i and j are conflicting jobs assigned to a machine pair (k, l) ∈ M con.
Note that a separation of assignment and sequencing as given in [3] is not rea-
sonable here, since setup times are job- and machine-related. We introduced a
dummy job 0 to describe the start of the job sequence on each machine. Let
J0 = J ∪ {0} and M0 = M .

∑

j∈J

Cj → min! (a)

s.t.
∑

i∈J0,i �=j

∑

k∈Mi∩Mj

xijk = 1 j ∈ J (b)

∑

j∈J,i �=j

∑

k∈Mi∩Mj

xijk ≤ 1 i ∈ J (c)

∑

j∈J,k∈Mj

x0jk ≤ 1 k ∈ M (d)

∑

h∈J0\{i,j},k∈Mh

xhik ≥ xijk i, j ∈ J, i �= j; k ∈ Mi ∩ Mj (e)

Ci + sijk + pjk − V f
ijk(1 − xijk) ≤ Cj

i ∈ J0, j ∈ J, i �= j;
k ∈ Mi ∩ Mj

(f)

∑

i∈J0,i �=j,
k∈Mi

xijk +
∑

i∈J0,i �=h,
l∈Mi

xihl − 1 ≤ zhj + zjh
(j, h) ∈ Jcon; (k, l) ∈ M con,

k ∈ Mj , l ∈ Mh

(g)

Ch + pjk

− V h
jk(2 − zhj −

∑

i∈J0,i �=j,
k∈Mi

xijk) ≤ Cj

(j, h) ∈ Jcon; k ∈ Mj :
∃(l1, l2) ∈ M con :
(l1 = k ∧ l2 ∈ Mh)∨
(l1 ∈ Mh ∧ l2 = k)

(h)

C0 = 0 (i)

xijk ∈ {0, 1} i ∈ J0, j ∈ J, i �= j;
k ∈ Mi ∩ Mj

(j)

zij ∈ {0, 1} (i, j) ∈ Jcon (k)

The minimization of the total completion time is defined in (a). Constraints
(b) and (c) form appropriate job sequences, while constraints (d) assure that
each machine is assigned at most one job sequence. Note that it is feasible to
leave machines empty if reasonable. Constraints (e) assure the connectedness
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of job sequences. Constraints (f) implement correct job completions times and
avoid cyclic orderings. If two conflicting jobs are assigned to a machine pair in
M con, these jobs are non-overlapping by constraints (g) and (h). Note that it is
sufficient to explicitly account for job j being processed on machine k, while the
assignment of job h is only indirectly involved through the sequencing variable
zhj . The decision variables are defined as binary in (j) and (k).

The constants V f
ijk and V h

jk are determined by approximating the worst-
case makespan of any job sequence on any machine. Assuming that all jobs are
processed on one machine realizing their longest setup and processing times, a
basic estimate is V =

∑
j∈J maxi∈J0,i �=j

(
maxk∈Mi∩Mj

(sijk + pjk)
)
. With this,

we define V f
ijk = V + (sijk + pjk) and V h

jk = V + pjk.

2.3 Model Enhancements

We consider the following additional constraints:

zjh + zhj ≤ 1 (j, h) ∈ Jcon (I)
∑

i∈J0,i �=j

∑

k∈Mi∩Mj

(sijk + pjk)xijk ≤ Cj j ∈ J (II)

Ci + min
k∈Mi∩Mj

(sijk + pjk)

− V III
ij (1 −

∑

k∈Mi∩Mj

xijk) ≤ Cj

i ∈ J0, j ∈ J :
i �= j,Mi ∩ Mj �= ∅ (III)

Ch + min
k∈Mj

pjk

− V IV
j (2 − zhj −

∑

i∈J0,i �=j

∑

k∈Mi∩Mj

xijk) ≤ Cj

(j, h) ∈ Jcon (IV)

While constraints (I) strengthen the sequencing of conflicting jobs by impos-
ing valid upper bounds on zjh-variables, inequalities (II) implement lower bounds
on the completion times. Constraints (III) and (IV) reinforce completion time
differences between ordered pairs of jobs. The constants V III

ij and V IV
j are calcu-

lated according to the scheme described above.
Symmetry breaking may be reasonable for problems with unrelated machines

that can be classified into homogeneous groups. A set of ordered pairs of identical
machines M sym ⊆ {(k, l) | k, l ∈ M,k < l}, on which symmetric schedules may
occur, is introduced. Given that jobs are indexed by positive integers, restrictions
on the indices of the first jobs on machines k and l can be raised, while an empty
sum is taking the value of 0.

∑

j∈{1,...,h−1},
k∈Mj

x0jk ≥ x0hl h ∈ J, (k, l) ∈ M sym, l ∈ Mh (V)

Note that concerning the other characteristics of the jobs, it needs to hold
that incompatibility is equivalent for identical machines.
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3 Computational Study

3.1 Experimental Setting

The instance data is randomly taken from a one-week production of more than
300 jobs in the hardening shop. There exist two pusher furnaces with two par-
allel furnace lines each (k = 1, 2, 3, 4) and four chamber furnaces (k = 5, 6, 7, 8).
Job conflicts may occur in the pusher furnaces, so that M con = {(1, 2), (3, 4)}.
The lines in each pusher furnace and furnaces of the same type behave identi-
cally, so that M sym = {(1, 2), (3, 4), (1, 3), (5, 6), (6, 7), (7, 8)}. For each instance,
Table 1 shows the number of jobs n, the conflict ratio (CR) 1

2n · |Jcon| and the
incompatibility ratio (IR) 1

n · (#jobs with incompatibility). Note that due to the
family-related job characteristics, the instances feature some specialties. Only job
types that are compatible to all furnaces may be conflicting. Thus, CR increases
over-proportionately to the number of jobs, when IR is constant. Contrarily, pro-
cessing and setup times vary greatly and their behavior is only furnace- and job-
but not family-dependent. In addition, processing times are shorter for pusher
furnaces so that the majority of the compatible jobs are scheduled on them while
chamber furnaces may be left empty.

The model is implemented in Java using Google OR-Tools and SCIP solver.
The code including instances can be found at [2]. With a time limit of 600 s,
the basic model (M) proposed in Sect. 2.2 and the enhanced versions using
combinations of (I)–(V) are solved on an Intel Core i7-8565U with 1.80 GHz and
16 GB RAM.

3.2 Computational Results

Table 1 summarizes the best total completion time values obtained by solving
the model variants. Optimal results are indicated by *, the minimal value per
instance by bold face printing and runs without feasible solution by ‘none’. Note
that the indicator constraints (f) and (h) lead to extremely weak lower bounds.
In our preliminary tests, the largest impact on lower bounds was found when

Table 1. Best objective function values obtained with different model variants

n CR IR M M+II MII+I MII+III MII+IV MII+V M+(I–IV) M+(I–V)

10 2,6 0,10 5704* 5704* 5704* 5704* 5704* 5704* 5704* 5704*

12 4,2 0 5359 4280 4212 4280 4212 4212 4212 4212

14 4,9 0,07 7651 2785 2785 2795 2805 2785 2825 2785

16 3,6 0 28467 9267 9146 8566 9940 10951 8822 10095

18 1,3 0 41514 20277 21947 21479 21687 24382 23676 22448

20 4,7 0 36365 16484 18248 16734 19998 16706 20022 18638

25 8,2 0,04 53055 18319 18611 22971 19768 21080 20120 21601

30 10,5 0 79180 48904 38122 56238 23633 None 29521 42309

40 5,9 0 335508 147642 182283 184708 None None 672253 None

60 14,4 0,17 488762 365597 None 408558 None 462772 607143 2407113

https://developers.google.com/optimization
https://www.scipopt.org/
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adding constraints (II) to M. Thus, we report experiments focusing on the other
enhancing constraints based on M with (II), referred to as (MII). Adding con-
straints (I), (III), (IV) and (V) to MII only slightly enhances the best schedules
found for some instances. M+II shows an overall good performance. In line with
the findings in [3], it can be stated that instances with more than 20 jobs are
very difficult to solve. Surprisingly, symmetry breaking constraints (V) do not
show a significant improvement.

4 Conclusions

This paper examines a real-world furnace scheduling problem. The problem
consists of heterogeneous furnaces, setup times, incompatibility, and job- and
machine-dependent job conflicts. We present a compact mathematical formula-
tion. A computational study based on real-world instances evaluates the model
and enhanced variants. The results generally support the appropriateness of the
formulation for smaller instances. The performance improvement caused by addi-
tional completion time bounding is to be highlighted. However, to solve instances
of practically relevant size, stronger enhancements of the model should be consid-
ered together with matheuristic approaches and the integration of human expert
knowledge. Also, broader studies with different machine settings, job character-
istics and real-world objective functions are necessary.
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Abstract. In this paper, we study a scheduling problem derived from
an application in the chemical processing industry. At the chemical plant
we consider, a single base reactor prepares different starting products for
several distinct production lines, each consisting of a number of further,
specialized reactors. Importantly, there are no buffers, so after completion
a job may block a reactor from processing further jobs, if no successor
reactor is ready to start it. First, we show how to model the scheduling
problem as a special version of the well-known flexible flow shop problem.
Then we prove that in the general version of the problem it is strongly
NP-hard to minimize the makespan. Towards a solution, we propose and
compare several different construction heuristics.

Keywords: Scheduling · Flexible flow shop · No-buffer

1 Introduction

Derived from an actual chemical plant, consider a production process, where a
single base machine preprocesses jobs for m distinct production lines, consisting
of several machines each (note that machines are also called reactors in our
application). Each production line processes one type of job. Jobs of the same
type are identical, with processing times depending only on the machines, not on
the individual jobs. Jobs of different types may have different processing times,
even on the common, single base machine.

For the purpose of this paper, each production line is only represented by
its bottleneck machine. This is not an oversimplification, since, as processing
times are deterministic and only dependent on the machines, preceding and
succeeding machines can always be scheduled in such a way, that processing
in the production line happens continuously for each job. Thus, formally, we
consider a two stage flexible flow shop, with a single, common base machine at
the first stage and a set of dedicated machines at the second stage. All jobs first
are processed by the base machine on the first stage and then transferred onto
the second stage machine representing their target production line.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Denote by MB the base machine and by Mi, i = 1, . . . , m, the machines
representing the production lines. The job set partitions into m job types J =
J1 ∪ . . .∪Jm, one for each second stage machine. Furthermore, denote by ni the
number of jobs of type Ji, i = 1, . . . , m, and by n =

∑m
i=1 ni the number of all

jobs. All jobs of the same type Ji, i = 1, . . . ,m, are identical, with processing
times pB

i on the base machine and pi on their dedicated second stage machine.
Scheduling models where processing times depend only on the machines and not
on the jobs are sometimes called proportionate [7]. We number the jobs of each
type and denote by Jij , i = 1, . . . ,m, j = 1, . . . , ni, the j-th job of type Ji.

Crucially, there are no buffers between the first and second stage. Thus, if
second stage machine Mi is not ready to start a new job Ji,j , i = 1, . . . ,m, j =
1, . . . , ni, once it is finished on the base machine MB , then job Ji,j stays on
machine MB blocking it from processing further jobs until machine Mi is ready.

For a given schedule S, the makespan is defined as the maximum completion
time of any job. Our goal is to find a schedule of minimum makespan. For brevity,
we denote this problem by PFFDNB(m) (proportionate flexible flow shop with
dedicated machines and no buffer).

2 Related Work

To the best of our knowledge, problem PFFDNB(m) has not been studied in the
literature before. However, there exists research considering the closely related
problem where buffers are unlimited and processing times are job-dependent by,
e.g., [5,6,8,11].

In particular, for the problem with two dedicated machines at the sec-
ond stage, denoted in the literature by FF2(1, 2), minimizing the makespan is
strongly NP-hard [5,6,11]. Interestingly, this remains true if buffers are removed.
The proof we present below for our setting can be adjusted to need only two job
types, if jobs from one job type are allowed to have different processing times.

Exact solution algorithms making use of dominance rules and branch and
bound are discussed in [3,4,10]. See also [6] for a survey. Towards approximation,
there is a (2 − 1

m )-approximation algorithm to minimize the makespan in the
FF2(1,m) setting. The performance bound is tight [5,6].

The results presented in this paper are part of a wider master thesis, see [9].
The practical application mentioned above is studied more closely in [1].

3 NP-Completeness of Problem PFFDNB(m)

In this section we prove that problem PFFDNB(m) is strongly NP-hard if the
number of machines m is part of the input. This can be shown via a polynomial
reduction from the well-known problem 3-PARTITION [2].

Theorem 1. There exists a polynomial reduction from Problem 3-PARTITION
to problem PFFDNB(m).
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Proof. Given an instance of 3-PARTITION with 3k integers ai and target value
b, construct the following instance of PFFDNB(m) with m = 3k + 1. For
each integer ai in the instance of 3-PARTITION add a dedicated machine Mi,
i = 1, . . . , 3k. Machine Mi process a job type with exactly one job Ji,1, with
processing times pB

i = ai on the base machine and pi = 1 on the dedicated Mi.
Furthermore, add a job type J0 consisting of k jobs J0,1, . . . , J0,k, with process-
ing times pB

0 = 1 on the base machine and p0 = b on the dedicated machine M0.
Using this construction, we show that a solution exists for the original instance
of 3-PARTITION, if and only if the constructed instance of PFFDNB(m) has a
schedule of makespan kb + k + 1. This can be seen by observing that the base
machine has a total load of kb + k and has to process continually, if a makespan
of kb + k + 1 is to be achieved. Details can be found in [9].

The reduction immediately yields the desired result.

Corollary 1. Problem PFFDNB(m) is strongly NP-hard if the number of job
types m is part of the input.

4 Heuristics

We now consider construction heuristics for problem PFFDNB(m). Note, that
since there is no gain in delaying jobs to be finished later, a schedule is fully
defined by the sequence of jobs on the base machine MB. Thus, at any decision
point, i.e., whenever the base machine becomes empty, the only decision is which
job to schedule next. In what follows, we propose three different heuristics and
then empirically compare their performances.

Note that, apart from knowledge of the number of jobs to be produced of
each type, all three algorithms proposed below can be used in an online setting,
with near instantaneous decision computation to decide the next job to process.
This makes them useful in a practical setting, where uncertainties in the job
processing times can lead to frequent re-scheduling. Indeed, in a practical study,
we successfully applied the ideas below (adjusted for special requirements of the
industrial setting) to support online shop floor dispatching [1].

In order to define the construction heuristics, we need the following additional
notation. Let J̄ ⊂ J be a subset of the job set and let S̄ be a schedule for J̄ .
Denote by Ci(S̄) the last finish time of any job Ji,j ∈ J̄ on machine Mi. Denote
by CB(S̄) the last start time of any job on a second stage machine, i.e., the
time when the base machine is ready to start the next chosen job Ji,j ∈ J \ J̄ .
Furthermore denote by n̄i(S̄) the number of jobs of type Ji which are already
scheduled in S̄, i.e., n̄i(S̄) = |Ji ∩ J̄ |. Also, denote by R(S̄) the set of indices
i = 1, . . . ,m such that jobs still remain to be scheduled for job type Ji, i.e.,
R(S̄) = {i = 1, . . . ,m | ni − n̄i > 0}.

Define the gap time Gi(S̄) of job type Ji as the idle time caused on the base
machine (due to blocking) by scheduling a job of type Ji at time CB(S̄), i.e.,

Gi(S̄) = max
{
0, CB(S̄) + pB

i − Ci(S̄)
}

.



356 H. Ackermann et al.

Finally, define the work load Wi(S̄) of job type Ji as the remaining processing
time needed for job type Ji on its dedicated second stage machine Mi, i.e.,

Wi(S̄) = (ni − n̄i) × pi.

4.1 Heuristic 1: MinGapMaxJobs

For our first heuristic, at any decision point we pick a job from job type Ji which
fulfills the following two properties:

1. there are still unscheduled jobs of job type Ji, i.e. i ∈ R(S̄), and
2. job type Ji causes the least amount of blocking on the base machine, i.e., job

type Ji minimizes Gi(S̄).

If there is a tie, in particular when several job types cause no blocking, then we
choose a job from the tied job type which still has the most jobs left to schedule,
i.e. which maximizes ni − n̄i amongst all tied job types. If there is still a tie, we
pick a job arbitrarily from any of the job types remaining tied.

4.2 Heuristic 2: MinGapMaxWorkLoad

The second heuristic is similar to the first, only with a different tie breaker.
In case of a tie, pick a job of the type which has the largest work load still to
schedule, i.e., the job type Ji which maximizes Wi(S̄) = (ni − n̄i(S̄)) × pi. If
there is still a tie, pick a job arbitrarily from any of the job types remaining tied.

4.3 Heuristic 3: Weighted MinGapMaxWorkLoad

The third heuristic is actually a class of heuristics, depending on a weight. It
is similar to the second heuristic, but instead of minimizing the gap first and
using the work load to break ties, we compare a weighted sum of both criteria.
In order to combine the two criteria, we first norm them onto the [0, 1] interval.
Let

rgap,i(S̄) =
Gi(S̄) − min

i∈R(S̄)
{Gi(S̄)}

max
i∈R(S̄)

{Gi(S̄)} − min
i∈R(S̄)

{Gi(S̄)} ,

such that rgap,i(S̄) = 1 if job type Ji maximizes Gi(S̄) and rgap,i(S̄) = 0 if
job type Ji minimizes Gi(S̄). If all job types produce the same gap, then set
rgap,i(S̄) = 0 for all job types. Similar, let

rwl,i(S̄) = 1 −
Wi(S̄) − min

i∈R(S̄)
{Wi(S̄)}

max
i∈R(S̄)

{Wi(S̄)} − min
i∈R(S̄)

{Wi(S̄)} ,

such that rwl,i(S̄) = 0 if job type Ji maximizes Wi(S̄) and rwl,i(S̄) = 1 if job
type Ji minimizes Wi(S̄). If all job types have the same remaining work load,
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then set rwl,i(S̄) = 0 for all job types. Note, that since we want to choose a job
which produces a gap as small as possible but has as large as possible remaining
work load, it is desirable to minimize both values rgap,i(S̄) and rwl,i(S̄). For a
given weight ω, 0 ≤ ω ≤ 1 then define

rω
gap+wl,i(S̄) = ωrgap,i(S̄) + (1 − ω)rwl,i(S̄).

Then, for the weighted version of MinGapMaxWorkLoad, at any decision
point we choose next a job from the job type which still has jobs left to schedule
and which minimizes rω

gap+wl,i(S̄). In case of a tie, we pick a job arbitrarily from
one of the tied job types. We denote this heuristic by MinGapMaxWorkLoad(ω).

5 Numerical Results

We performed computational experiments in order to test and compare the qual-
ity of our proposed heuristics. For this purpose, we randomly generated 720
problem instances, 240 each for the number of second-stage machines m = 2, 3,
and 5. For each number of machines, the 240 instances can be further divided
into three sets of 80 instances, with smaller to larger number of jobs. Again,
each set of 80 instances can be further divided into four sets of 20 instances
with shorter to longer processing times. For details see [9]. For each instance, an
optimal solution was pre-computed via an MIP.

First, we tested which weights for algorithm MinGapMaxWorkLoad(ω) pro-
duced the best results. It turns out that ω = 0.65 yields the best mean approxi-
mation over all instances as well as the best mean approximation for each indi-
vidual number of dedicated machines m = 2, 3, 5. Note that larger weights ω in
general seem to perform better for larger numbers of dedicated machines m.

Then, we compared MinGapMaxWorkLoad(0.65) to the other heuristics.
Maybe surprisingly, in terms of approximation over all instances, the MinGap-
MaxWorkLoad heuristic performs nearly as good as any of its weighted versions
MinGapMaxWorkLoad(ω). In fact, while it performs on average slightly worse
than MinGapMaxWorkLoad(0.65), (with an approximation factor of 1.027 to
1.026 over all instances), it matches the mean quality of the weighted version for
m = 2 and also produces a smaller spread of approximation factors for that set-
ting. When the number of machines increases, MinGapMaxWorkLoad(ω) with
ω = 0.65 starts to outperform its unweighted counter part.

The heuristic MinGapMaxJobs is outperformed by both other heuristics,
although it is close in performance for instances with m = 2 dedicated machines.

6 Conclusions and Future Work

In this paper we studied a proportionate, two-stage, flexible flow shop with
a common base machine at the first stage and m dedicated machines at the
second stage, one for each type of job. The problem is derived from an industrial
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application. Crucially, there are no buffers between the first and the second stage
of the flow shop.

We proved that minimizing the makespan for an instance of PFFDNB(m) is
NP-hard in the strong sense, if the number of job types m is part of the input.
Then we proposed several heuristics and compared them computationally. Addi-
tional details and results, including polynomially solvable special cases, exact
methods (MIPs), and additional heuristics can be found in [9].

The main open question for future work is to resolve the complexity status
of our problem when the number of dedicated machines m is fixed. To the best
of our knowledge, this is currently still open even for the special case of m = 2.

References

1. Ackermann, H., et al.: Dispatching for batch chemical processes using Monte-
Carlo simulations - a practical approach to scheduling in operations. In: Bortz,
M., Asprion, N. (eds.) Simulation and Optimization in Process Engineering, pp.
339–364. Elsevier (2022)

2. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1990)

3. Hadda, H., Dridi, N., Hajri-Gabouj, S.: A note on the two-stage hybrid flow shop
problem with dedicated machines. Optim. Lett. 6, 1731–1736 (2012)

4. Hadda, H., Dridi, N., Hajri-Gabouj. S.: Exact resolution of the two stage hybrid
flow shop with dedicated machines. Optim. Lett. 8, 2329–2339 (2014)

5. Herrmann, J.W., Lee, C.-Y.: Three-machine look-ahead scheduling problems.
Department of Industrial and Systems Engineering, University of Florida (1992)

6. Hwang, F.J., Lin, B.M.T.: Survey and extensions of manufacturing models in two-
stage flexible flow shops with dedicated machines. Comput. Oper. Res. 98, 103–112
(2018)

7. Panwalkar, S.S., Smith, M.L., Koulamas, C.: Review of the ordered and propor-
tionate flow shop scheduling research. Naval Res. Logist. 60(1), 46–55 (2013)

8. Riane, F., Artiba, A., Elmaghraby, S.: Sequencing hybrid two-stage flowshops with
dedicated machines. Int. J. Prod. Res. 40, 4353–4380 (2002)

9. Schwehm, L.: Two Staged Job-Shops with Shared Machines on the First and Ded-
icated Machines on the Second Stage. Master thesis, Dpt. of Mathematics, TU
Kaiserslautern (2020)

10. Wang, S., Liu, M.: A heuristic method for two-stage hybrid flow shop with dedi-
cated machines. Comput. Oper. Res. 40(1), 438–450 (2013)

11. Yang, J.: A new complexity proof for the two-stage hybrid flow shop scheduling
problem with dedicated machines. Int. J. Prod. Res. 48 (2010)



Revenue Management



Towards Transfer Learning for Revenue
and Pricing Management

Alexander Kastius and Rainer Schlosser(B)

Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
{alexander.kastius,rainer.schlosser}@hpi.de

Abstract. Reinforcement Learning (RL) has proven itself as a powerful
tool to optimize pricing processes. With the support of deep non-linear
function approximation tools, it can handle complex and continuous state
and action spaces. This ability can leverage the utility of pricing algo-
rithms in markets with a vast number of participants or in use cases
where additional product features should be considered in the pricing
system. One problem with those tools is their apparent demand for train-
ing data, which might not be available for a single market. We propose
to use techniques instead, that leverage the knowledge of different prob-
lems. Several similar algorithms have been proposed in the past years to
allow RL algorithms to operate efficiently on various processes simultane-
ously. DISTRAL continuously merges information from different decision
processes towards a distilled policy and uses the joint policy to update
the market-specific source policies. We will discuss the influence of such
regularization mechanisms. Multi-market pricing problems are used to
illustrate their impact.

1 Introduction

Dynamic pricing serves the purpose of finding optimal pricing policies given a
specified market situation. In many cases, the market under assessment can be
specified by static and dynamic features. A pricing algorithm then has to discover
the relationship between market parameters, price choice, and revenue.

Usually, the information about the relationship between those three compo-
nents is sparse, only consisting of past experience and possibly human domain
knowledge. Pricing algorithms aim at estimating this function based on experi-
ence.

The three major components of this challenge, parameters, price, and rev-
enue, closely resemble the three fundamental components of a reinforcement
learning problem. RL consists of algorithms and methods that aim to solve a
decision process formulated in three dimensions: state, action, and reward. The
state determines the current parameters of the process, the actions are the possi-
ble choices available at a specific state, and the reward signal provides feedback
to the algorithm, whether the chosen action was well suited given the state. The
agent faces a state, chooses an action, and receives a reward, which leads to a
trajectory starting from the initial state s0 to the current state sn:
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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(s0, a0, r0, s1, a1, r1, ..., sn, an, rn)

Those three components can be mapped to a pricing problem:

– State: Consists of static and dynamic market parameters. Static parame-
ters specify the properties of the market under assessment. Dynamic market
parameters resemble the current state of the market, for example, competi-
tors’ prices.

– Action: Consists of the agent’s price choice in the allowed price-span.
– Reward: Consists of the revenue achieved since the last pricing decision for

this market.

Many RL algorithms use function approximation with artificial neural net-
works (ANNs) to represent what a good action choice consists of [6]. This setup
demands noticeable amounts of data to find the optimal network configuration.
In many situations, real-world traders do not have those amounts of data avail-
able for a single product in a single market. As both the product and the market
determine the relationship between price choice and revenue, this becomes a
challenge.

To overcome this challenge, we propose to rely on transfer learning. The idea
of transfer learning is to use the information available for one problem and re-use
it for a related problem. In practice, this means that data collected either for
similar products or similar markets could be re-used to estimate the price-revenue
relationship. The influence of external information for a given problem has to
be balanced carefully, as the discrepancies between two problems are unknown,
and fitting to an unrelated problem can diminish an agent’s performance.

For this purpose, algorithms like DISTRAL have been proposed, which make
use of a set of trained agents that influence each other by exchanging information
via a central policy [7]. In the following sections, we introduce the fundamentals
of DISTRAL, explain the mapping of a multi-market pricing problem to the
core concepts of RL, and display possibilities to use tools like DISTRAL for
revenue management (RM). Some problems that arise when implementing such
a mapping will be displayed later on.

This paper is organized as follows. In Sect. 2, we discuss related work. In
Sect. 3, we provide a detailed introduction to RL and DISTRAL. Section 4 pro-
vides a detailed description of how we map a RM problem on multiple markets
to the RL setup. Section 5 concludes.

2 Related Work

While considering DISTRAL as an example in this paper, it is not the only
available algorithm designed explicitly for multi-task RL. In the near past, a
noticeable amount of alternative mechanisms have been presented. An overview
is available in [8]. DISTRAL is exemplary for a group of algorithms that the
authors group as policy transfer methods, in which a policy is copied from one
task to another either directly or indirectly. Instead of mapping concepts between
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several tasks to comparable domains manually, as described later, such mappings
can be learned automatically, see, for instance, the algorithm described in [1].

A related area of research in RM is omnichannel pricing. In omnichannel
pricing, the same product is sold over multiple channels, e.g., online and in-store.
While being more specific than the generic setup considered in this paper, the
omnichannel problem can be mapped to this setup by considering each channel a
different market. For example, [4] studies dynamic pricing for retailers which do
sell the same stock of products both in-store and online. Their model considers
cross-channel interactions. As their model considers inter-market dependencies,
this offers an advantage over the setup described here, which considers each
market independently.

3 Reinforcement Learning

The challenge in RL consists of finding the optimal policy to solve a Markov
decision process [6]. A policy π(at|st) determines the probability that the agent
chooses action at in state st. A policy is considered optimal if it yields the max-
imum discounted reward of all policies. Solving an RL problem consists of two
tasks: policy evaluation and policy improvement. Policy evaluation determines
the expected future reward of a specific policy or action given a specified state.
This information can then be used to improve the policy. If an action that is
different from the policy’s action choice in this state has a higher expected future
reward, the policy is changed to the action with the highest expected value in
this state.

This concept can be further extended to policy gradient algorithms, which
keep a parametric representation of the policy. The policy can then be imple-
mented using ANNs to map states to actions. The parameters of the policy are
adjusted by following the policy gradient theorem, which allows deriving a gra-
dient with regard to the parameters based on past experience and an additional
value estimator. There are several examples of this available, one of those algo-
rithms is Soft Actor-Critic (SAC) [3]. SAC was used by us for pricing problems
in the past and has shown exceptional performance but suffers from the dis-
advantage that it requires tremendous amounts of data to work successfully. A
detailed analysis of SAC’s results in duopolies and oligopolies is available in [5].

To overcome the demand for data, we consider using data from multiple
sources. This approach is equivalent to solving multiple RL problems at the same
time. Given the information from multiple markets, it is necessary to find the
optimal policy for each one. A well-performing algorithm is then able to exchange
information between all problems under consideration to improve learning per-
formance.

Training a single policy to work well on all problems under consideration
is difficult, as the policy has to encode differences of each problem. DISTRAL
chooses a different approach. Each problem under consideration has a specified
policy, which is influenced by two mechanisms. First, all problem-specific poli-
cies are distilled towards a unified policy. Then, every problem-specific policy
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is adjusted towards the unified policy. This way, information from one problem
can be stored in the unified policy if it is considered relevant for every problem.
Every problem can then re-use this by taking the unified policy into account.

While a detailed description of DISTRAL’s internals is available in [7], a brief
description will be given here. For a set of n problems, a set of n + 1 policies is
kept: π0, ..., πn. π0 is considered the distilled policy, while π1 to πn correspond
to a single one of the n problems. For each problem, a different reward function
Ri(at, st) and a state transition distribution are given, but can only be learned
by observation. All policies are optimized according to the following loss function
(via tuning parameters cKL, cEnt ≥ 0 and discount γ ∈ (0, 1)):

J(π0, {πi}n
i=1) =

n∑

i=1

Eπi [
∑

t≥0

γtRi(at, st) − cKLγt log
πi(at, st)

π0(at, st)
− cEntγ

t log πi(at, st)].

This loss function formulation achieves three goals:

– It aims to maximize the expected discounted reward of each task-specific
policy.

– It aims to minimize the difference between each task-specific policy and the
distilled policy π0 using the Kullback-Leibler divergence.

– Each policy incorporates an additional entropy-regularization term. Entropy
regularization aims at avoiding premature convergence in RL [3].

The solution algorithm is derived from this by reapplying the concept of
policy gradient algorithms. Given a parametric representation of the policies, a
gradient of the loss function can be computed with regard to those parameters.
This mechanism is implemented by using a combination of two ANNs. h repre-
sents the distilled policy, f represents the task-specific policy. For f , a different
set of parameters φi is kept for each task. The actual policies are then derived
from both networks:

π0(at|st) =
exp(hφ0(at|st))∑

a′∈A exp(hφ0(a′|st))

πi(at|st) =
exp(αhφ0(at|st) + βfφi

(at|st))∑
a′∈A exp(αhφ0(a′|st) + βfφi

(a′|st)

with α = cKL/(cKL + cEnt) and β = 1/(cKL + cEnt) and i = 1, ..., n. This archi-
tecture immediately applies changes in the distilled policy to all tasks without
requiring additional updates. The combination of this setup, the loss function,
and the policy gradient theorem allow simultaneous learning of several tasks.

4 Pricing on Multiple Markets with RL

DISTRAL can be used to solve multi-market pricing problems. Each market
forms a task. We consider a task as a unit of an action space, a state space,
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reward, and a state transition distribution. The latter maps a state and an action
to the respective following state and the reward achieved in that transition.

For multi-task RL with DISTRAL, we must consider some limitations regard-
ing both the action and the state space. The unified action space of all tasks has
to be chosen so that all price spans of all markets are covered. As we consider
different products with possibly different price ranges, the unified action space
might diverge from a reasonable price range for a single problem. To solve this
issue, we propose to transform all price ranges to the same bandwidth and apply
this transition whenever an action choice needs to be applied. When learning
occurs, this change has to be inverted. This means that, for each market i of
n markets, we define lower and upper limits for the market, p

(i)
l and p

(i)
u . As

DISTRAL in its natural form can only be applied to discrete action spaces due
to the necessary computation of the sums in the respective equations, the theo-
retically continuous price band has to be discretized, which then requires a step
size p

(i)
s as well. The step size has to be chosen in a way that (p(i)u − p

(i)
l )/p

(i)
s is

constant for all tasks i. This number then defines the number of actions in the
unified action space A. In practice, this might lead to a problem that requires
attention from the user: If the borders are not chosen well, the market-specific
adjustment from the task-specific policies has to be very strong, which hinders
information exchange between tasks.

This effect can be overcome by ensuring that similar actions do have similar
semantics in both markets. To achieve this goal, all problems must have similar
semantics in their respective state descriptions. To normalize the input accord-
ingly, a stringent data model is required. In previous evaluations by the authors,
the market features only consisted of competitor prices. It can be expected that
the amount of competitors in the market is different for each product. As the
ANNs used for previous experiments require equally shaped inputs, this requires
either a tool to process sequences or a unification of the input. Both alterna-
tives are possible, as there are specialized ANN structures available that allow
processing sequences efficiently, for example, recurrent neural networks, which
parse elements one by one and can remember the outputs of previous iterations
[2]. We propose a different encoding for simplicity: Each market participant is
represented by his price and a flag that indicates his presence in this market.

A unified setup, as suggested in the two-column setup of DISTRAL, might
struggle with this. Every policy needs to learn to incorporate the correct features
and ignore others explicitly. Specialized network setups that also incorporate L1
regularization might be of use in this case [2].

As previously indicated, even with this setup, further normalization of inputs
is required. The price range of the competitors might be different between all
markets. To allow easier input recognition, those have to be normalized as well.
A normalization with zero mean and a standard deviation of one is considered
desirable for applications using ANNs [2]. To achieve this goal, past market data
could be used. When past data is not available, the discretization parameters
can be used instead. Every competitor’s price of market i will be normalized
by p

(i)
u .
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The different markets will then be observed, and the initially randomized
policies will be applied. The learning can occur as specified by the algorithm,
including distillation of the centralized policy π0.

5 Conclusions

We have proposed a setup that allows DISTRAL to be used in multi-market
pricing problems to overcome data limitations when such tools are used with deep
ANNs. It consists of mapping concepts of a pricing problem to the fundamental
components of a Markov decision process and further additions to simplify the
problem. Furthermore, the problem has to be adjusted to take the limitations of
DISTRAL regarding the action and state space into account.

A detailed analysis of the issues raised by the adjustments mentioned in the
previous sections has to be performed. This analysis includes robustness regard-
ing different market setups, which can occur if either the demand model or the
competitor behavior does differ fundamentally between regions, trading places,
or products of a single company. Our model assumes independence of all markets
under consideration. As this does not hold in practice, further adjustments have
to be taken into account.
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Abstract. In practical applications, firms use data-driven dynamic pric-
ing strategies to increase their rewards in the presence of competition.
Merchants are forced to steadily adjust their strategies in response to
changing market environments caused by competitors that update their
pricing strategies over time. In this paper, we study mutual updates
of dynamic pricing strategies in an infinite horizon duopoly model with
stochastic demand. We use dynamic programming techniques to compute
strategies that take anticipated price reactions of the competitor into
account. We consider cases in which (i) strategies are mutually observ-
able and (ii) have to be identified from single price observations over time.
For both scenarios, we analyze and compare the long-term interaction of
competing self-adaptive strategies.

1 Introduction

Firms offering goods on online marketplaces have to face increasing competition
and steadily changing conditions. One reason for the increasing competition
is the rising application of automated repricing algorithms and the resulting
shortening of time spans between price updates. The time pressure and demand
stochasticity make it challenging for firms to determine prices fast and efficiently
(often for a large number of products) while still ensuring to employ prices
that maximize expected revenues. But at the same time, online marketplaces
also provide numerous advantages. Sellers are now able to observe the market
situation at any given point in time and set prices accordingly. Having historical
market data at hand also enables sellers to learn the demand over time and better
understand the consumers’ decision making. More interestingly for the context of
this paper, firms can learn the competitors’ strategies. Pricing strategies that use
demand knowledge and anticipate competitors’ actions will thus be of increasing
interest.

Nevertheless, revealing a competitor’s strategy is a highly challenging task
as price exploration can be costly and a competitor’s strategy may change.

The main contributions of this paper are the following:

– We analyze mutual strategy updates under duopoly competition.
– We identify examples of symmetric equilibrium feedback pricing strategies.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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– We compare settings with full and partial knowledge of the competitor’s
strategy.

This paper is organized as follows. In Sect. 2, we discuss related work.
In Sect. 3, we describe the stochastic dynamic duopoly model and show how
dynamic programming techniques can be used to determine price response strate-
gies. In Sect. 4, we study the long-term interaction when (i) strategies are mutu-
ally observable and (ii) have to be identified from single price observations over
time. Concluding remarks and ideas for future research are given in the final
Sect. 5.

2 Related Work

Dynamically selling products on online marketplaces is a classical application
of revenue management theory. The problem is closely related to the field of
dynamic pricing, which is summarized in the books by, e.g., [10]. The surveys [2]
and [1] provide an excellent overview of recent pricing models under competition.

In [7], different demand learning techniques are applied to estimate demand in
competitive real-life markets. However, in their model, neither price anticipations
nor equilibrium strategies are considered. [8] study adaptive learning strategies
of two competing competitors under reference price effects. [3] study similar
problems using reinforcement learning techniques (Deep Q-learning Networks
and Soft Actor Critic) abstaining from explicit demand and state dynamics.

The combined problem of (i) updating prices, (ii) learning demand probabili-
ties, and (iii) identifying strategy equilibria in competitive markets is challenging
as information is incomplete. For analyzing and evaluating the complex interplay
and long-term behavior of mutual self-adaptive pricing strategies usually simu-
lations have to be used [4,9]. Note, since dynamics are constantly changing in
multi-agent markets stability issues arise making it hard to identify equilibrium
strategies.

3 Model Description

We consider the scenario, in which two competing merchants sell goods on an
online marketplace. Motivated by practical applications, in which firms adjust
their prices subsequently at distinct points in time, in our model, time is split
into periods of fixed length, which start with firm 1’s price update a (out of the
set of prices A). After a certain share h of the period, h ∈ (0, 1), the competitor
(firm 2) reacts to firm 1’s action a and updates its old price p to p′ (cp. the setup
used in [8]).

In general, a firm’s strategy can be characterized by a probability distribution
of how to respond to a certain competitor price. In this context, in our model,
the probability that firm 2 reacts to firm 1’s price a ∈ A (after delay h) with the
price p′ ∈ A is denoted by

Preact(a, p′) ∈ [0, 1] with
∑

p′∈A
Preact(a, p′) = 1 ∀a ∈ A. (1)
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Further, we assume that arriving customers base their buying decision on the
two current competitors’ prices. As demand learning is not in focus, we assume
that the customer’s behavior is known or has already been estimated. In this
context, we use a logistic demand model to describe an example behavior of
customer’s demand, which is based on a real-world dataset, cf. [7]. It returns
the probability of having a sale within one unit of time (for a given price pair)
according to several features, including price rank or difference to the competi-
tor’s price. The overall customer behavior also reflects that lower price levels
increase sales. An overview of all features used is given in Table 1. Note, for the
price rank the indicator function 1{·} is used.

From firm 1’s perspective the probability that a customer buys a product
(within one period) is denoted by Pbuy(a, p) whereas firm 2’s sales probability
is Pbuy(p, a), a, p ∈ A. Note that in our model the sales probability (e.g., of
firm 1) depends on (i) the current competitor price (p) and (ii) the price a
chosen for one period. Further, it is also affected by (iii) the competitor’s price
reaction p′ and (iv) the reaction delay h (of firm 2). Hence, based on (1), i.e., if
p′ and h can be anticipated, for the first time span (t, t + h) for firm 1 we obtain
P̃

(h)
buy(a, p) := h · Pbuy(a, p), a, p ∈ A, and for the remaining share of the period,

i.e., (t+h, t+1), we have the sales probability P̃
(1−h)
buy (a, p′) := (1−h)·Pbuy(a, p′),

a, p′ ∈ A.
Finally, for each firm the objective is to maximize its expected discounted

total future rewards G (over an infinite horizon with discount factor δ < 1 and
unit costs c ≥ 0). Given a current competitor price, firm 1 looks for a response
strategy (at) that (in the presence of firm 2’s strategy (pt)) maximizes

E(G) =
∞∑

t=0

δt · (at − c) ·
⎛

⎝P̃
(h)
buy(at, pt−1+h) +

∑

pt+h∈A

Preact (at, pt+h) · P̃ (1−h)
buy (at, pt+h)

⎞

⎠

(2)
Taking firm 1’s perspective and using (i) the assumed buying probabilities

based on Pbuy, (ii) the reaction time h, and (iii) given price reaction probabilities
Preact for the competitor (firm 2), the associated value function V (p), p ∈ A, of

Table 1. Features for a logistic demand model (cp. [8]) to calibrate demand probabili-
ties for a period of length 1; a is the own price (firm 1), p is the price of the competitor
(firm 2).

Features Regressors x(a, p) Coefficients β

Constant/Intercept 1 −3.82

Price rank 1 + 0.5 · 1{a=p} + 1{a>p} −0.56

Price difference a − p −0.01

Average market price (p + a)/2 −0.02
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the considered duopoly problem, cf. (2), is determined by the Bellman equation,
p ∈ A,

V (p) = max
a∈A

{ ∑
p′∈A

Preact

(
a, p′) ·

(
(a − c) ·

(
P̃

(h)
buy(a, p) + P̃

(1−h)
buy (a, p′)

)
+ δV

(
p′))}

(3)
The system (3) can be solved using standard dynamic programming methods
(e.g., using value iteration or linear programming). The associated price reaction
policy a∗(p) (i.e., how to respond to price p) is determined by the arg max of
(3), p ∈ A.

4 Mutual Strategy Adjustments

In this section, we evaluate mutual strategy adjustments of both firms based
on (3) under full knowledge (Sect. 4.1) and partial knowledge from single price
observations (Sect. 4.2).

4.1 Iterating Mutual Observable Response Strategies

In the following, we let both firms optimally adjust their strategies (using (3)) in
order to identify equilibrium strategies. We use the framework described above
and consider the following example.

Example 1. Let c = 3, δ = 0.995, h = 0.5, and A := {1, 2, ..., 80}. We assume
demand Pbuy(a, p) = h · ex(a,p)

′β/(1 + ex(a,p)
′β ), cf. Table 1, to define P̃

(h)
buy and

P̃
(1−h)
buy .

To iterate (non-randomized) optimal mutual strategy adjustments between
both (symmetric) firms we use an initial starting strategy denoted by S(0)(p),
p ∈ A. Recall, in general, optimal pure response strategies do not have to con-
verge to mutual optimal strategies. Instead, we may obtain repeating cycles of
strategy adjustments [6]. However, if the initial strategy is not “too” aggressive,
i.e., composed by comparably high prices, the approach can lead to the identi-
fication of equilibria. In the context of Example 1, for S(0)(p) ≡ s0, s0 ≥ 45,
we observe that after 15 iterations the optimal response strategies converge to
a pure (symmetric) equilibrium strategy S∗, which is such that no firm has an
incentive to deviate from S∗. Figure 1a depicts the iteration process of strategy
adjustments. While early iterations are depicted in lighter shades of grey the
final equilibrium strategy S∗ is shown in green.

The equilibrium strategy is of the following structure. If the competitor’s
price is either below a certain low price pmin or a above a certain large price
pmax, it is best to react with the upper price level pmax. If the competitor’s
price is slightly under pmax, it is optimal to undercut that price by one price
unit as long as the competitor’s price is above a certain medium price pmed. If the
competitor’s price is below pmed, the strategy uses a strong price drop to pmin.
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Fig. 1. Comparison of the evolution of self-adapting strategies under full and partial
information. Taking firm 1’s perspective, the strategies a∗(p) (left window) and ã(p)
(right window) show how to respond to a given competitor price p, p ∈ A (lighter
shades of grey show earlier results).

Instead of restoring the price level oneself, the price drop forces the competitor
to raise the price again (cf. avoiding a race to the bottom). This shifts the price
range – in which the undercutting price battle takes place – to a higher level,
which is advantageous for both competitors.

4.2 Self-adjusting Strategies Based on Mutual Price Reactions

In this section, we assume that the competitors’ strategies are mutually not
observable and have to be revealed. We let both competitors play an adaptive
learning strategy that is based on mutually observed price reactions. We follow
the approach described in [8] refraining from reference price effects. The app-
roach balances price exploration and exploitation over time in an incentive-driven
framework using an optimistic initiation based on artificially added observations
of high price reactions of the competitor. Each firm regularly computes response
strategy updates according to (3) taking into account new realized price obser-
vations of both firms, i.e., own actions and observed competitor responses, which
characterize Preact, cf. (1).

To evaluate this approach, we again use the setup as described in Example
1 above. Figure 1b depicts the evolution of strategy adjustments of firm 1 over
1500 periods of time (due to the symmetric structure of the setup the results for
firm 2 are similar). Again, early iterations are depicted in lighter shades of grey;
the most mature strategy associated with time t = 1500 is shown in black.

Comparing Fig. 1b with 1a, we observe that while the evolution of adaptively
optimized response strategies is different in the beginning they have clear simi-
larities when looking at later iterations. We find that if the firms have gathered
a certain amount of observations, in the second model with less information,
cf. Fig. 1b, strategies occur that are of the same structure as the equilibrium
strategy S∗ of the first model with full information exchange, cf. Fig. 1a.
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5 Extensions and Future Work

We have studied subsequent strategy adaptions in a discrete time duopoly model
under different information schemes. In case of full knowledge, i.e., if the com-
petitors’ pricing strategies are mutually observable, we find that equilibrium
strategies can be identified using iterated optimal strategies adaptions. In case
the competitor’s current strategy is not observable, we showed that single mutual
price observations can be used to reveal and steadily update estimations of the
competitor’s current response behavior. We observe that based on this informa-
tion regular mutual strategy adjustments can lead to strategy evolutions that
are similar to equilibrium strategies under full knowledge, which are in line with
classic research for simpler models with deterministic demand, cf. [5].

In future research, we will look for equilibria in mixed strategies and analyze
whether it pays off for both firms to exchange information about their strate-
gies in order to identify equilibria earlier. Another direction to gain stability is
to extend the state space by including the observed strategy adaptions of the
competitor in response to certain own strategy amendments. This may allow
to foresee whether and in which way a competitor will change his/her behav-
ior making it possible to directly include these consequences in the firm’s own
decision-making.
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Abstract. Changing consumer preferences present a difficult challenge
to the brewing industry and hence necessitate adaptations of the produc-
tion system due to changed requirements. Beer manufacturing is subject
to restrictive dependencies, such as lead times, shelf life, multilevel pro-
cesses, and storage tank restrictions. Therefore, we propose a multilevel
capacitated lot-sizing problem (MLCLSP) that covers brewery-specific
constraints. The investigated brewing company produces 220 finished
and 100 semifinished products on 13 production and 8 storage resources
within 3 production levels. Since the brewery-specific MLCLSP cannot
be solved within reasonable computing time in the case at issue, we intro-
duce a priority-based fix-and-relax-and-optimize heuristic. We present a
computational study and managerial insights regarding changes in con-
sumer preferences (i.e., additional products with low demand). We prove
that the priority-based strategy dominates the standard strategy in solu-
tion quality and computation time. Furthermore, we demonstrate the
potential of the MLCLSP-based planning approach for strategic decision
making by revealing the impact on the entire production system.

Keywords: Strategic planning and management · Production and
inventory systems · Decision support systems

1 Introduction

Strategic planning of complex production systems is difficult but of great impor-
tance for the brewing industry because of fast-changing consumer preferences.
Recently, consumers demand individual (i.e., innovative and unique) beers which
result in additional products with low demand. However, large breweries are
designed for high production volumes and hence require adaptations. Most mate-
rial requirement planning (MRP) tools within an enterprise resource planning
(ERP) system do not support strategic decision making. Therefore, we propose a
multilevel capacitated lot-sizing problem (MLCLSP) that covers brewery-specific
constraints. Since the proposed mathematical program cannot be solved within
reasonable computing time in the case at issue (i.e., 220 finished products, 100
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Fig. 1. Production process of a brewery

semifinished products, 13 production resources, 8 storage resources, 3 produc-
tion levels, and 52 weeks within the planning horizon), we introduce a priority-
based fix-and-relax-and-optimize (FRO) heuristic. The priority-based approach
first determines a basic production schedule for priority products and then sup-
plements it with secondary products. In this study, we investigate necessary
adaptations of the production system due to changed consumer preferences. Fur-
thermore, we demonstrate computational benefits of the priority-based solution
strategy for the FRO heuristic.

Figure 1 shows the brewery production process from base beer to finished
beer. The brewhouse brews the base beer. The fermentation and maturation
processes stay at least two weeks in the storage tanks. Next, the filtration removes
yeast and other particles from the base beer. Different recipes (e.g., mixing ratios)
result in several types of beer. Before filling, buffer tanks temporarily store the
semifinished beer. Finally, the warehouse stores the finished beer.

The MLCLSP has been extensively studied in the literature. However, only a
few studies address the brewery production planning problem. Förster et al. [1]
propose a capacitated lot-sizing problem that considers availability constraints
of reusable bottles in a brewing company. Baldo et al. [2] adopt the synchro-
nized and integrated two-level lot-sizing and scheduling problem (SITLSP) to
the brewing industry. Both studies focus on operational and tactical issues. In
contrast, our model approach supports strategic decision making, hence the peri-
ods are weeks instead of days or hours.

2 Brewery-Specific MLCLSP

Problem Statement

The proposed MLCLSP is based on the general formulation by [3] and the
brewery-specific extension by [4]. We take into account limited production and
storage capacity but allow the use of overtime and external warehousing. Each
product is allocated to one production and one storage resource. We aggregate
identical storage tanks to tank groups but assign each liquid to an individual
tank. The model takes into account lead times for fermentation and maturation.
The maximum permissible duration of advance production of semi-finished beer
is one week. We consider setup losses and assume setup times to be sequence-
independent. The model considers an initial and final inventory to guarantee
the production capability at the beginning of and beyond the planning horizon.
Base beer requires production in discrete batch sizes. Furthermore, demand fluc-
tuations necessitate to hold a safety stock to meet service level agreements. To
avoid spoilage of perishable goods, we consider the shelf life of finished beers.



Strategic Production Planning in a Brewing Company 377

Table 1. Set and parameter notation used for the brewery-specific MLCLSP

Indices and index sets Parameters

I,J Set of products with index i, j bi Batch size of product i, for i ∈ B
B Subset of base beer products, B ⊂ I ct,r Capacity of resource r in period t

S Subset of semifinished beer products,

S ⊂ I
dt,i Demand of product i in period t

R Set of resources with index r fi Production time for product i

M Subset of production resources,
M ⊂ R

gi Setup time for product i

N Subset of storage resources, N ⊂ R hi Holding cost of product i

H Subset of tank groups, H ⊂ N kt,i Given safety stock level of product i
in period t

T Set of periods with index t lt,i Permitted minimum production
quantity of product i in period t

Ir Set of products i assigned to resource
r

mt,i Given demand within shelf life of
product i in period t

Ji Set of products j that are direct
successors of product i

nr Number of tanks within tank group r,
for r ∈ H

or Overapacity cost of resource r

pi,j Quantity of product i required to
produce product j

si Setup cost of product i

ut,i Permitted maximum production
quantity of product i in period t

vi Specific tank volume of product i
(depending on assigned tank group)

wi Setup loss of product i

Model Formulation

The mathematical program optimizes inventories It,i, lot-sizes Qt,i, and setups
Xt,i for each period t and product i. In addition, the model determines discrete
batch sizes Mt,i and the number of used storage tanks Nt,i for each period t and
base beer product i ∈ B. Besides, the model calculates the overcapacity Ot,r for
each period t and resource r. Table 1 lists the used set and parameter notation.

min F =
∑

t∈T

∑

i∈I
hi · It,i +

∑

t∈T

∑

i∈I
si · Xt,i +

∑

t∈T

∑

r∈R
or · Ot,r (1)

s.t.

It−1,i + Qt−λi,i −
∑

j∈Ji

(pi,j · Qt,j + wj · Xt,j) − dt,i = It,i ∀i, t (2)

I0,i ≤ IT,i ∀i (3)
It,i ≤ Qt,i ∀i ∈ S, t (4)
Qt,i = bi · Mt,i ∀i ∈ B, t (5)
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Qt,i ≤ ut,i · Xt,i ∀i, t (6)
Qt,i ≥ lt,i · Xt,i ∀i, t (7)

It,i ≤ vi · Nt,i ∀i ∈ B, t (8)
∑

i∈Ir

Nt,i ≤ nr ∀r ∈ H, t (9)

∑

i∈Ir

It,i ≤ ct,r + Ot,r ∀r ∈ N , t (10)

∑

i∈Ir

(fi · Qt,i + gi · Xt,i) ≤ ct,r + Ot,r ∀r ∈ M, t (11)

It,i ∈ [kt,i,mt,i] ∀i, t (12)
Xt,i ∈ {0, 1} ∀i, t (13)
Ot,r, Qt,i ≥ 0 ∀r, i, t (14)
Mt,i, Nt,i ∈ N ∀i ∈ B, t (15)

The objective function (1) minimizes the inventory, setup, and overcapacity
costs. The inventory balance (2) requires the fulfillment of the demand in each
period from stock or actual production. The lead time λi takes into account
the fermentation and maturation for base beer. The cycle condition (3) requires
to produce the quantity demanded within the planning horizon. Equation (4)
ensures a maximum permitted advance production quantity of semifinished prod-
ucts. Equation (5) considers the production of base beer in discrete batch sizes.
Equation (6) ensures the setup condition. Equation (7) respects minimum lot
sizes. Equations (8) and (9) take the storage tank restrictions into account; (8)
determines the required number of tanks, and (9) respects the available num-
ber of tanks. The storage capacity constraint (10) considers the limited storage
capacity and allows external warehousing. The production capacity constraint
(11) includes the production and setup time and allows the use of worker over-
time. The variable declaration (12) defines a minimum and maximum inventory
level by a given safety stock and demand within shelf life.

3 Priority-Based Fix-and-Relax-and-Optimize Heuristic

To solve the brewery-specific MLCLSP within reasonable computing time, we
introduce the priority-based FRO heuristic. First, the fix-and-relax (FR) heuris-
tic generates an initial solution and, second, the fix-and-optimize (FO) heuristic
improves this solution [5]. Each subproblem of the FR heuristic considers the
integer condition for a small part of integer variables while neglecting the integer
condition for the remaining variables [6]. The FO approach decomposes the main
problem into smaller subproblems with fewer integer variables to be optimized
while fixing the previous solution of the remaining variables [7].

The priority-based solution strategy contains two phases. The first phase
determines a basic production schedule for prioritized products. The second
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Fig. 2. Procedure of the priority-based FRO heuristic

phase adds secondary products to this basic production schedule. Thereby, we
define products with relatively high demand as priority products. Figure 2 shows
the procedure of the priority-based FRO heuristic. The first FR subproblem
includes the periods one to five of the priority products. The variables within
this subproblem consider the integer condition while the remaining variables are
relaxed. The first FO subproblem includes the periods one to ten of the secondary
products. The variables within this subproblem are optimized again while the
remaining variables are fixed. As soon as each subproblem is optimized once,
the procedure ends. The given numerical example contains eight FR and three
FO subproblems. The priority-based solution strategy also applies to related
problems in which attributes can be prioritized.

4 Computational Study and Managerial Insights

We implement the mathematical program and solution approach in GAMS/
CPLEX (v32.1/ v12.10) running on a CPU with 64 cores (4.4 GHz) and 256 GB
of RAM.

We investigate the expected consumer preferences represented by four port-
folio scenarios. The scenarios differ in additional products (AP) and relative
share of additional demand (AD), e.g., in the first scenario, ten additional prod-
ucts lead to an increase in total demand of one percent. Table 2 displays the
objective values and computing times depending on the portfolio scenario and
solution strategy of the FRO heuristic (i.e., priority-based and standard). The

Table 2. Objective values and computing times depending on the portfolio scenario
and solution strategy

Scenario Parameter Results (priority strategy) Results (standard strategy)

AP/AD Obj. v. (Te) Com. t. (s.) Obj. v. (Te) Com. t. (s.)

#0 2,871 975 3,108 932

#1 10/1% 3,495 1,180 3,387 1,236

#2 20/1% 3,726 1,544 3,941 1,690

#3 10/5% 4,125 1,437 4,173 1,740

#4 20/5% 5,978 1,600 5,918 2,154
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Fig. 3. Capacity utilization for each resource within the multilevel production system

priority-based solution strategy achieved lower costs and computing times com-
pared to the standard solution strategy (i.e., time and product decomposition).
Thereby, greater resource scarcity increases the computing time. However, addi-
tional demand has a greater impact than additional products. Moreover, the
portfolio scenario 4 exhibits the highest costs due to an intensive use of overca-
pacity.

Figure 3 shows the capacity utilization for each resource within the multilevel
production system. The expected consumer preferences affect the entire produc-
tion system, especially the tank resources due to specific restrictions, e.g., single
occupancy. Portfolio scenarios 1 to 3 do not necessitate adaptations of the pro-
duction system. Therefore, we recommend to introduce those portfolios under
consideration of the additional operating costs. However, portfolio scenario 4
exceeds the available capacity of the filling line and warehouse. Nevertheless,
this scenario is feasible with acceptance of worker overtime and external ware-
housing.

5 Conclusion

In this study, we propose a brewery-specific MLCLSP and a priority-based FRO
heuristic. We demonstrate that the priority-based strategy dominates the stan-
dard strategy in solution quality and computation time. Furthermore, we show
that the MLCLSP-based planning approach supports strategic decision making
by revealing the impact on the entire production system. The results highlight
the importance of multilevel planning to avoid inefficient investments.
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Abstract. The repair kit problem is the problem of managing the spare
parts inventory of a field service technician. Contrary to most previous
contributions we acknowledge that fixed costs per delivery to the tech-
nician make up an important share of the total field repair costs. Thus,
we treat the replenishment frequency as a decision variable and suggest
to manage the content of the repair kit using individual (R, s, S)-policies
for each spare part with common review periods R for all parts sourced
from the same supplier. We derive a closed-form expression for the job-
fill-rate service level and suggest a heuristic to determine the length of the
review period(s) as well as the reorder and order-up-to-levels for spare
parts carried in the repair kit. Using a numerical experiment we show
that lowering the replenishment frequency can lead to a substantial cost
reduction. That is because delivery cost reductions outweigh the costs
for additional safety stock.

Keywords: Repair kit problem · Inventory management · Stochastic
models

1 Introduction

Manufacturers who offer on-site repair services to their customers must pro-
vide their service technicians with a set of spare parts called a repair kit. The
multiple-job repair kit problem (RKP) is the problem of managing the content of
a repair kit that can only be restocked after several customers have been visited
in a tour. This problem was first studied by [1–3], who trade off holding costs
for spare parts stocked in the repair kit against the service level that can be
achieved or against penalty costs incurred for failed repair attempts. [4] consider
additional part-specific fixed order costs that are associated with material han-
dling activities in a warehouse. Thus they apply individual (s, S)-policies rather
than base stock policies to manage the repair kit. Even though papers on the
RKP agree that repair kits are restocked from only one or very few suppliers
(e.g. a regional and a national warehouse), the opportunity to reduce delivery
costs for shipments from the supplier to the service technicians by means of coor-
dinated replenishment has been largely overlooked. So far the only contribution
that considers fixed costs per delivery is a deterministic-demand RKP studied
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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by [5]. In this paper, our contribution is to integrate fixed delivery costs into
the more realistic stochastic-demand RKP studied by [1–4]. Thus, our contribu-
tion is at the intersection of RKP and stochastic joint replenishment problem
(SJRP). What distinguishes our problem from papers on the SJRP is that we
consider a job-fill-rate service level that requires a more complex analysis than
the part-fill-rates used for backorder cost calculations in the SJRP literature
(for a review see [8]). We suggest to apply (R, s, S)-policies as introduced by
[7] for our RKP and derive closed-form expressions for expected costs and the
job-fill-rate service constraint for given policy parameters. Further, we introduce
a heuristic solution procedure for our RKP and present a numerical experiment
that demonstrates the cost savings potential of longer replenishment cycles. Our
work can be seen as an extension to [4], that allows for cycle times different from
one. For this reason, we follow their notation wherever possible.

2 Problem Description

There are N different parts in the repair kit. The number of repair jobs per repair
tour and the number of units of each part i = 1, . . . , N required for a single job
are stochastic. Let pc(l), cmin ≤ l ≤ cmax denote the probability for l customers
in one tour and pi(k), dmin ≤ k ≤ dmax define the probability that k units of
part i are required for a job. Demands for different parts are independent. By
P t
c (l) and P

J|j
i (k) we define the probability for l customers in t tours and the

probability for a demand of k items of part i in j jobs. We obtain

P t
c (l) =

∑

l1,...,lt
l1+···+lt=l

t∏

r=1

pc(lr) (1) P
J|j
i (k) =

∑

k1,...,kj

k1+···+kj=k

j∏

m=1

pi(km). (1)

The repair kit is replenished from G suppliers. Each part i = 1, . . . , N is
sourced from exactly one warehouse with w(i) = g ∈ {1, . . . , G} defining this
warehouse. To manage the content of the repair kit we suggest periodic (s, S)-
policies. That means the inventory positions (IPs) of all parts sourced from one
supplier g are reviewed every Rg tours and if the IP of a part i is at or below a
reorder level si at review time it is raised to an order-up-to level Si. All orders

s1
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S2

In
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y

R R
L L

Part 1
Net inventory level
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Part 2
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Fig. 1. Exemplary inventory development of two parts from the same supplier
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from the supplier are delivered together after a lead time of Lg tours. See Fig. 1.
for an example.

We define this policy by (R, s, S) with R = (R1, . . . , RG), s = (s1, . . . , sN )
and S = (S1, . . . , SN ). Let πIP

i (k) define the steady state distribution of part
i’s IP after order placement at review time. For a detailed derivation of πIP

i (k)
we refer to [4]. Let us refer to the point in time Lw(i) tours after review time as
potential delivery time. The net inventory level (IL) at potential delivery time
corresponds to the IP at review time minus demand during the lead time. With
a review period longer than one tour we need to explicitly consider the IL after
each tour within one review period. For a part i with w(i) = g let us denote the
steady state distribution of the IL r = 0, . . . , Rg −1 tours after the last potential
delivery time by π

IL|r
i (k). We obtain

π
IL|r
i (k) =

Si∑

l=max(si+1,k)

πIP
i (l) ×

(Lg+r)cmax∑

j=(Lg+r)·cmin

P
J|j
i (k) PLg+r

c (j). (2)

With hi defining the unit holding costs for part i per tour we can derive the
expected holding costs per tour as

EHC =
N∑

i=1

hi

Rw(i)−1∑
r=0

Si∑
k=1

k π
IL|r
i (k)

Rw(i)
. (3)

We incur fixed order costs fi for every order of part i and fixed delivery costs of
Fg for every shipment from supplier g. Let P o

i and P
o|j
i denote the probability

that an order for part i is placed at review time, regardless of the number of
customers during the last review period and given that j customers have been
visited respectively.

P
o|j
i =

Si∑

l=si+1

πIP
i (l) ×

j dmax∑

k=l−si

P
J|j
i (k) (4)

P o
i =

Rgcmax∑

j=Rgcmin

P
o|j
i ptc(j) (5)

Whenever at least one part sourced from supplier g needs to be replenished
at review time a delivery from that supplier to the service technician is initiated.
The chance PD

g that a delivery from supplier g is triggered at review time is

PD
g =

Rgcmax∑

j=Rgcmin

⎛

⎝1 −
∏

i|w(i)=g

(
1 − P

o|j
i

)
⎞

⎠ PRg
c (j). (6)
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Using (5)–(6) we can determine the expected fixed order costs and the expected
delivery costs per tour as follows

EOC =
N∑

i=1

fiP
o
i

Rw(i)
(7)

EDC =
G∑

g=1

FgP
D
g

Rg
. (8)

We aim to minimize the sum of holding, order, and delivery costs per tour
subject to a job-fill-rate (JFR) constraint. The JFR is defined as the average
probability that a repair job can be completed with the spare parts available in
the repair kit. As shown earlier the availability of different parts varies signifi-
cantly across tours within a review period. Let us again use the potential delivery
time as a reference point. Then the joint availability of multiple parts depends
on the combination of the number of tours that elapsed since the last poten-
tial delivery times for each part. The number of possible combinations is given
by the least common multiple of the different review periods Rg, g = 1, . . . , G.
Thus, we need to consider the average JFR across an observation period of
lcm(R1, . . . , RG) tours to cover all possible cases. Let us assume synchronized
potential deliveries at the start of the observation period. Then the chance that
job j = 1, . . . , cmax in tour T = 0, . . . lcm(R1, . . . , RG) – 1 is completed is

pc,Tj =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

N∏
i=1

[
pi(0) +

Si∑
l=1

π
IL|T mod Rw(i)
i (l)

l∑
k=0

pi(k)
]

, j = 1

N∏
i=1

[
pi(0) +

Si∑
l=1

Si−l∑
n=0

Si∑
m=l+n

pi(l)P
J|j−1
i (n)πIL|T mod Rw(i)

i (m)

]
, j > 1.

(9)

Dividing the expected number of completed jobs by the expected number of jobs
during the observation period we obtain the JFR.

JFR =

lcm(R1,...,RG)−1∑
T=0

J∑
j=1

pc,Tj

cmax∑
l=max(j,cmin)

pc(l)

lcm(R1, . . . , RG)
cmax∑

l=cmin

l pc(l)
. (10)

3 Heuristic Solution Approach

The multi-job RKP presented in Sect. 2 is an integer optimization problem with
2 ·N +G decision variables. Just like other multi-job problems [1–4] our problem
cannot be solved to optimality for real-life-sized repair kits. Even for a fixed com-
bination of review periods (R1, . . . , RG) optimal reorder and order-up-to-levels
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can only be determined for very small numbers of parts N . For larger problems,
the solution must be determined heuristically. To this end, we propose to adapt
[4]’s job heuristic (JH) to account for delivery costs and review periods differ-
ent from one. Their JH calculates reorder and order-up-to-levels jointly. That
means in a first step the differences Qi := Si − si, i = 1, . . . , N are determined.
Given these fixed differences a greedy algorithm is applied to iteratively increase
stock levels until the target JFR is reached. Differing from [4] we suggest to
determine the quantities Qi in the following way: Let us first assume constant
and continuous demand for each spare part. For a given review period of Rg the
time between to consecutive orders for each part with w(i) = g must be mi ·Rg,
where mi is an integer multiplier. Under these conditions [6] derives the optimal
integer multiplier as

m∗
i =

⌈
1
2

√
1 +

8fi
hiDiR2

g

− 1
2

⌉
, (11)

where Di is the demand for part i per time unit. Because demand is stochastic
in our case we consider E[Di]. We set the quantity Qi equal to the expected
demand during m∗

i · Rg tours, but at least 1 unit.

Qi = max(�m∗
i RgE[Di]�, 1) (12)

With the quantities Qi calculated as described above we apply [4]’s greedy algo-
rithm to determine s and S, obviously using the formulas for the JFR and the
expected holding costs derived in Sect. 2. That way we obtain a heuristic solu-
tion for a given combination of review periods. For small numbers of suppliers,
we can repeat this procedure for all reasonable combinations of review periods,
to identify the best one. For instances with 500 parts and 3 suppliers we were
able to run this procedure in less than 30 min on a Mac Pro 7.1 with an Intel
24-Core Xeon W-processor.

4 Numerical Experiment

The point of this experiment is to compare a situation in which orders are placed
after every tour (as considered by [4]) to situations in which the review period
is longer than just one day. We assume there is only one supplier from which all
spare parts are sourced. Orders are delivered after a lead time of 2 tours. We
consider a repair kit that consists of 500 parts. At most one unit of each part
may be required by one customer. The unit demand probabilities for each part
are drawn from a continuous uniform distribution on [0, 0.01408]. The number of
customers per tour ranges from 1 to 3 with the following probabilities: 1: 25%, 2:
70%, 3: 5%. The value of each part is drawn from a log-normal distribution with a
mean of 55e and a standard deviation of 154e. Both, demand and value scenario
have been designed to resemble the characteristics of the dataset described by
[4]. The fixed order costs are set to 1e for each part and each order. Using the
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algorithm described in Sect. 3, we determine reorder and order-up-to levels for
all review periods from 1 (daily) to 5 (weekly) given different combinations of
fixed delivery cost, holding cost rate, and target job fill rate.

Table 1 shows the review period lengths that yield the least total costs (in
brackets) and the corresponding relative cost decreases compared to situations
with daily reviews. For most combinations, weekly reviews perform best. Only
in case holding cost rates are high and delivery costs are low, it can be beneficial
to review the inventory more frequently. In these cases, longer review periods
would lead to an increase in holding costs that outweighs any further savings on
delivery costs. Across all scenarios, the average possible cost savings are 31.55%,
which shows that considering the review period length can lead to substantial
benefits. These savings can be attributed to lower delivery costs with longer
review periods. This is offset by only a slight increase in holding costs. We find
that it takes surprisingly little additional safety stock to counteract the increased
demand uncertainty caused by an extended review period. The average total
number and the average total value of all units in the repair kit increase by less
than 20%, when reviews are conducted weekly rather than daily in all cases.

Table 1. Relative cost savings in % comparing the best review period length (in
brackets) to the daily review option

Fixed delivery costs

5 10 20

Holding cost rate (in % per year)

5 10 20 5 10 20 5 10 20

JFR = 0.8 33 (5) 26 (5) 16 (5) 47 (5) 40 (5) 29 (5) 59 (5) 53 (5) 44 (5)

JFR = 0.95 26 (5) 17 (5) 9 (4) 40 (5) 31 (5) 20 (5) 54 (5) 45 (5) 34 (5)

JFR = 0.99 22 (5) 12 (4) 5 (3) 36 (5) 24 (5) 14 (4) 50 (5) 40 (5) 27 (5)

5 Conclusions

We presented an extension to the multi-job RKP that integrates fixed costs per
delivery and treats the review period length as a decision variable. With a numer-
ical experiment, we could demonstrate that in many cases weekly replenishments
should be favored over daily replenishments of a service technician. That way
delivery costs can be reduced significantly against only a small increase in safety
stocks. The latter increase is so moderate that most likely a van suitable for a
daily restocked repair kit will also fit the weekly replenished kit.
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Abstract. Against the background of scarce natural resources, the
recovery of components and materials from discarded products is increas-
ingly relevant. The disassembly of products, however, must be profitable
for the involved actors. Therefore, disassembly is frequently conducted
efficiently using disassembly lines. The balancing of such disassembly
lines and decisions on the disassembly depth of the affected products are
simultaneously considered to maximize profitability. Today, partial disas-
sembly dominates this industry. While this is economically advantageous,
a high ecological potential may remain unused. In recent years, collabo-
rative robots can support workers in the manual disassembly of products
to further enhance the disassembly processes’ efficiency and profitabil-
ity. However, the increase in efficiency due to the partial automation
of disassembly tasks may also result in a higher realized disassembly
depth and thus account for ecological advantages. In our contribution,
we investigate this effect for an illustrative example using a model-based
approach.

Keywords: Disassembly line balancing · Collaborative robots ·
Cobots · Profit-oriented

1 Introduction

In today’s societies, economic growth and wealth on a large scale remain based on
the physical production and distribution of goods. The resources required in the
production processes are predominantly non-renewable and finite. Therefore, the
establishment of a circular economy has become increasingly important in the
past years. The recycling of products, their remanufacturing, or alternative end-
of-life options may ensure industries’ future supply of (secondary) raw material
and components with significantly lower environmental impact than their pri-
mary equivalents. The disassembly of the products is frequently a prerequisite
for further end-of-life options.

Corporations pursuing disassembly activities have to tradeoff the costs of
their business (e.g., purchasing the goods to be recycled, employment of work-
ers, and procurement of machines and facilities) and the associated revenues
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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(e.g., selling the recovered materials or components) to achieve a profitable busi-
ness setting. If similar products are disassembled in a high quantity, the use of
disassembly lines is efficient. The recyclers simultaneously have to decide on the
disassembly depth, i.e., which materials or components to recover from the con-
sidered products, and the balancing of the disassembly line, i.e., the allocation
of the required disassembly tasks according to the considered disassembly depth
among the workers or machines in the available stations. In such settings, par-
tial disassembly might result as economically advantageous for certain products,
whereas the complete disassembly allows for recovery of all components and may
be ecologically beneficial.

In recent years, novel technologies have been developed to complement or
substitute human workers for particular tasks at relatively low costs. Therefore,
both economic and ecological criteria of disassembly lines may simultaneously
be enhanced. In this contribution, we investigate this effect on an illustrative
example considering collaborative robots (cobots) in manual disassembly lines.
Cobots can operate next to human workers without additional safety equipment
and thus provide a low-threshold means of partial automation. To this end, we
discuss the main problem characteristics and refer to the associated literature
in Sect. 2. Section 3 discusses our modeling approach. We provide insights by
an illustrative example in Sect. 4 and derive the cobots’ capabilities to enhance
economic and ecological indicators of the disassembly processes. The paper closes
with an outlook in Sect. 5.

2 Disassembly Line Balancing with Collaborative Robots

In this section, we describe the problem characteristics of balancing disassembly
lines with collaborative robots. Generally, the decisions of the disassembly line
balancing problem (DLBP) are similar to those of the assembly line balancing
problem (ALBP) [3]. Therefore, the required (dis-)assembly tasks have to be
allocated among the opened stations and assigned to deployed resources (e.g.,
workers or cobots) considering precedence relations restricting the tasks’ poten-
tial sequence and a given cycle time. The effect of cobots was already evaluated
for ALBP [9,10]. However, significant differences among ALBP and DLBP exist,
e.g., through an alternative representation of the precedence relations [6] and the
option of only partial disassembly [2]. Three main attributes further specify the
problem considered in the article at hand.

The first attribute refers to the problem of equipment selection. Generally,
contributions assume stations to be homogeneous, i.e., stations are equipped
with identical resources. This assumption has to be overcome to allow for alter-
native resources with different and potentially limited capabilities to be deployed
among the stations. In a recent literature review on DLBP, the authors postulate
the necessity to increasingly consider opportunities of disassembly automation
and identify a lack of research for this attribute [8]. Subsequently, researchers
increasingly consider this attribute [11].

The second attribute addresses the necessity of task scheduling within the
stations. As cobots can be deployed next to human workers, both worker and
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cobot can work at the same workpiece simultaneously, i.e., they conduct differ-
ent disassembly tasks in parallel. Therefore, precedence relations also have to be
respected within the stations, which requires scheduling the tasks. The schedul-
ing is generally required for approaches that consider more than one arbitrary
resource within a station. In the aforementioned literature review the authors
barely find two-sided or multi-manned stations in DLBP approaches [8]. Recent
approaches address this attribute [5].

The third attribute refers to the economic character of the problem suggesting
a profit-oriented objective [1,2]. To the best of author’s knowledge, however,
no previous contribution on DLBP investigates the link between economic and
ecological indicators and their interrelations with the availability of cobots.

3 Model

This section discusses the required sets, indices, decision variables, the objec-
tive function, and the constraints of our mathematical model. The considered
goods comprise a set of available disassembly tasks i, l ∈ I. Three types of prece-
dence relations between tasks may restrict the tasks’ executability and feasible
sequences. If a task has multiple AND-predecessors, each of those needs to be
finished before the considered task can start. Among the OR-predecessors of a
certain task, at least one has to be finished earlier. Among the OR-successors of a
task, only one can be conducted at all. A set of stations k, h ∈ K may be opened.
Each station offers e ∈ E workplaces, to each of which one resource type r ∈ R
can be assigned. There is a set of components j ∈ J which disassembly activities
can recover. The binary variables xikre are set to one, if task i is assigned to
station k and resource type r in workplace e. Analogously, the binary variables
ykre determine the resources allocated to stations and workplaces. The number
of opened stations is represented by continuous variable u. The number of recov-
ered components j is evaluated by continuous variables qj . Binary variables filk
are used to ensure consideration of precedence relations within stations. filk is
set to one if task i has to precede task j in station k. To this end, the start time
of task i in its respective station is depicted in continuous variables si.

The objective function (1) maximizes the achieved profit P total, consisting of
revenues, costs of resources, and costs of stations. The revenue per component
oj and the recovered quantities qj determine the overall revenue per cycle. The
costs for resources arise by their allocation among stations and workplaces ykre,
the respective cost rates cRr of resources r per time unit, and the cycle time ct.
The costs of stations are based on the number of opened stations u, the cost rate
of stations cMF per time unit, and the cycle time ct.

maxZ = P total =
∑

j∈J

oj · qj − ct ·
∑

k∈K

∑

r∈R

∑

e∈E

cRr · ykre − ct · cMF · u (1)

Overall, there are four categories of constraints. In the first category, the general
allocation of tasks and resources is described. To this end, constraints ensure that
each task is assigned upmost once and to a resource type capable of conducting
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the task. The number of opened stations is determined by coupling variables
u and xikre. By coupling variables xikre and ykre the assignment of required
resources is ensured. Further constraints ensure that upmost one resource is
assigned to each workplace. Finally, the number of recovered components of
each type is evaluated. In the second category, compliance of the allocation with
the precedence relations is ensured between the stations. To this end, AND-
predecessors of a task are forced to an upstream or the same station. Further-
more, it is enforced that at least one among several OR-predecessors is assigned
upstream or at the same station as the considered task. For the OR-successors
of a task, constraints ensure their allocation to a downstream or the same sta-
tion. Also, they enforce upmost one of the OR-successor to be assigned at all.
The third category comprises the scheduling constraints. One set of constraints
ensures that the cycle time is not exceeded. Further constraints enforce tasks
assigned to an identic station to be conducted after each other and not in par-
allel if these tasks are subject to precedence relations or assigned to the same
workplace. Finally, the domains of the decision variables are declared in the
fourth group.

The resulting model classifies as a mixed-integer linear programming model.
It was implemented in Java and solved using the Gurobi 9.1.2 Java API on a
standard machine with i7-1180G7 @ 1.30 GHz CPU and 16 GB RAM. For the
illustrative example reported in the next section, the models comprise of around
6,200 linear constraints and 1,200 variables. The models are solved optimally in
less than 3 s.

4 Illustrative Example

In this section, we modify the illustrative example of the disassembly of PCs.
We adopt the precedence relations, components, processing times, and the cycle
time as reported by [7] and [1]. As these contributions refer to manual disas-
sembly only, further assumptions have to be made. We assume worker costs of
0.67 EUR/min corresponding to the German wage level in the industrial sector
[4]. Based on an investment estimation conducted in [9], we derive costs of 0.26
EUR/min per cobot and 0.09 EUR/min per station. The revenues for the compo-
nents are based on careful market estimation. We assume the cobots to comprise
limited capabilities, i.e., they can only perform Tasks 1, 2, 3, and 4 autonomously,
while the human workers can conduct all tasks. Additionally, we assume the cobots
to require 1.5 times the workers’ processing time. The number of workplaces per
station is restricted to |E| = 2. The precedence graph of the product, the recov-
erable components, and their revenues are illustrated in Fig. 1.

We compute optimal line configurations for the manual and partially auto-
mated cases to evaluate the economic and ecological potential of the deploy-
ment of cobots. In the manual case, only human workers are available and can
be deployed among the stations. In the partially automated case, both human
workers and cobots are available. The aggregate results are given in Table 1.
Accordingly, a higher profit can be achieved in the partially automated case
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revenue
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Fig. 2. Illustration of the optimal line configurations with and without the availability
of cobots

(4.95 EUR per cycle) than in the manual case (4.79 EUR per cycle). Two work-
ers (# W) are utilized in the manual case at two stations (# S). If cobots (# C)
are available, three stations with one worker and three cobots are used. We con-
sider the disassembly depth as a provisional estimation of the ecological quality
of the disassembly activities. In the partially automated case, the disassembly
depth increases, leading to an economically and ecologically advantageous line
configuration compared to the corresponding manual disassembly line.

The resulting line configurations are illustrated in Fig. 2. In the manual case,
one worker is assigned to each of the two stations. Consequently, the disassembly
tasks are conducted sequentially. However, the Back Plane is not recovered from
the PCs since Task 4 is not completed. Opening another station and allocating
an additional worker to conduct this task is economically disadvantageous and
therefore omitted. Consequently, the disassembly depth remains at 89%. In the
partially automated case, cobots perform each of the tasks they are capable of

Table 1. Results of the illustrative example

Resources Profit Revenue Costs Dis. depth # W # C # S

Workers 4.79 EUR 5.80 EUR 1.01 EUR 89% 2 – 2

Workers & cobots 4.95 EUR 6.10 EUR 1.15 EUR 100% 1 3 3
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(Tasks 1–4), and a disassembly depth of 100% is achieved. At Station 2, worker
and cobot simultaneously work on the same workpiece. Please note that Tasks 3
and 6 can feasibly be conducted in parallel as Tasks 2 and 3 are OR-Predecessors
of Task 6. Therefore, only one the two tasks has to be finished before Task 6
can start. Task 0 serves as a dummy task to assure the purchase of the PCs
before recovering their components (not visualized in Fig. 2). In the considered
illustrative example cobots serve as an efficient means of partial automation,
enhancing economic and ecological indicators of disassembly lines.

5 Outlook

In future, we will develop a more suitable ecological indicator of disassembly
activities than the currently considered disassembly depth. Also, more recent
industrial examples in combination with a detailed estimation of the market
value of components will facilitate the application of our approach.
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Abstract. A system subject to multiple deterioration is studied. This
deterioration is represented through the arrival process and the growth
process. The degradation processes arrive at the system with stochastic
intensity following a Cox process and they grow according to a homoge-
neous gamma process. Analytic formulas are developed for the expected
intensity, the expected number of arrivals and the survival function.

Keywords: Condition-based maintenance · Cox process · Gamma
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1 Introduction

Condition based-maintenance (CBM) is one of the most widely used mainte-
nance strategies. It has many advantages in terms of lowering costs and avoiding
unnecessary maintenance tasks compared to maintenance based on the age or
use of the system. CBM is based on the system state, which is generally analysed
by direct observation or by periodic inspections of the system [5].

A system subject to multiple degradation processes is studied. Two stochas-
tic processes are involved: the arrival or initiation of the degradation processes
and the degradation growth process. We suppose that the starting times of the
degradation processes follow a Cox process with stochastic intensity λ∗(t). The
degradation paths of these processes grow according to a homogeneous gamma
process. The gamma distribution is a good and suitable probability distribu-
tion for modelling continuous and non-decreasing deterioration. This combined
model of stochastic Cox and gamma processes is quite realistic for the modelling
of real phenomena such as crime, stock market movements, earthquakes or even
in epidemics.
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2 Degradation Process

A subsequent external process with arrival times T1, T2, . . . Tn is necessary to be
defined for the shot-Cox noise process. Each arrival time has influence on the
arrival rate of new degradation processes. For example, supposing that t > T1,
The contribution of T1 to the process for the arrival of new degradation processes
at time T1 + t is

h(t) = e−δ(t−T1), with δ > 0. (1)

The same happens for the times T2, . . . , Tn. This degradation model is useful
to represent processes involving random shocks that continuously deteriorate
the system. For example, one can think of a pipe or sheet metal. The effects
of corrosion create small pits or cracks randomly distributed over the surface.
These cracks become larger and larger, a process that is modelled by gamma
decay. In addition, further deterioration of the system leads to the appearance
of new cracks, hence the Cox model is appropriate.

Let T1, T2, . . . , Tn be the arrival times of the subsequent Poisson process.
Then, the stochastic intensity of the shot-Cox noise process has the following
form:

λ∗(t) = λ0 +
N(t)∑

i=1

exp (−δ(t − Ti)). (2)

Since Ti, for i = 1, 2, . . . follow an homogeneous Poisson process, condition-
ing on {N(t) = n}, the sequence (T1, T2, . . . , Tn) has the same distribution as
sequence of uniform variables of size n on the interval (0, t). Hence, the intensity’s
expectation is easily obtained:

E[λ∗(t)] =
∞∑

n=0

E[λ∗(t)|N(t) = n]P (N(t) = n) = λ0 +
μ

δ
(1 − exp(−δt)). (3)

We recall a general result in stochastic processes, useful for calculating the
expected number of the process’ arrivals.

Theorem 1. Let λ∗(t) be the stochastic intensity function of a counting process
{N∗(t), t ≥ 0}, that fulfils N∗(0) = 0. Then,

E[N∗(t)] =
∫ t

0

E[λ∗(s)] ds. (4)

2.1 Description of the Model

The degradation processes initiate following a Cox process. The deterioration
level grow follow a gamma process with shape parameter α and scale parameter
β. The gamma process is a good choice for modelling the deterioration due it is a
continuous and non-decreasing stochastic process with independent increments.
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The density function of the gamma distribution with parameters α > 0 and
β > 0 is:

fα,β =
βα

Γ (α)
xα−1 exp (−βx), x > 0. (5)

In order to control the degradation level of the system, two thresholds are
included in the model: the preventive threshold, denoted by M , and the correc-
tive threshold, denoted by L. The system is considered to be failed if some of
the degradation processes exceed the corrective threshold.

The deterioration level at time t is denoted by X(t). Suppose that a degra-
dation process starts at time 0 and it grow according to an homogeneous gamma
process with parameters α and β.

The first time at which a degradation process exceeds L is defined as the
random variable σL:

σL = {inf t > 0 : X(t) ≥ L}, (6)

which follows the probability distribution

FσL
(t) = P (X(t) ≥ L) =

∫ ∞

L

fαt,β(x) =
Γ (αt, βL)

Γ (αt)
, t ≥ 0. (7)

Deterioration processes arrive at the system at times S1, S2, . . ., following
a shot-Cox noise process. The degradation of each process grow independently
following a homogeneous gamma process with parameters α and β. The degra-
dation level of the k-th process at time t is defined as:

Xk(t) = X(k)(t − Sk), t ≥ Sk, (8)

where X(k), k ∈ N are independent and identically distributed homogeneous
gamma processes with shape and scale parameters α and β.

The instant of time when the k-th process exceeds the corrective threshold
is the random variable Wk, defined as

Wk = Sk + σL (9)

With that, the number of degradation processes whose deterioration level
exceeds the threshold L at time t is given by

NL(t) =
∞∑

k=1

1{Wk≤t}. (10)

As Cox processes are generalizations of Poisson processes, most of the results
for Poisson processes can be applied to Cox processes, for example, the conser-
vation of basic operations in point processes [3].

Definition 1. Let {N∗(t), t ≥ 0} be a counting process with occurrence times
S1, S2, . . . and let {Di}i be, for i = 1, 2, . . . a sequence of non-negative, indepen-
dent and identically distributed random variables.

The point process {N(t), t ≥ 0} with occurrence times {Si + Di}, for
i = 1, 2, . . . is called the displaced process.
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A well-known result for point processes [4] is the following.

Lemma 1. If {N∗(t), t ≥ 0} is a Poisson process with intensity λ∗(t), then the
displaced process {N(t), t ≥ 0} with occurrence times {Ti+Di}i is also a Poisson
process with intensity

λ(t) =
∫ t

0

λ∗(t)f(t − u) du, t ≥ 0, (11)

where f is the density function of the variables Di.

This result can be generalize to Cox processes with the following Lemma.

Lemma 2. If {N∗(t), t ≥ 0} is a Cox process with stochastic intensity λ∗(t),
then the displaced process {N(t), t ≥ 0} with occurrence times given by {Ti+Di}
is also a Cox process with stochastic intensity

λ(t) =
∫ t

0

λ∗(u)f(t − u) du, t ≥ 0, (12)

where f is the density function of the variables Di.

Using the previous results, we have

Lemma 3. Let S1, S2, . . . be the occurrence times of the shot-Cox noise pro-
cess with intensity given by Eq. 2. The displaced process {NL(t), t ≥ 0} with
occurrence times {Si + σL} is also a Cox process with stochastic intensity

λL(t) =
∫ t

0

λ∗(u)fσL
(t − u) du, t ≥ 0, (13)

where fσL
is the density function of the variable σL, obtained from Eq. 7.

3 Time to the System Failure

We consider that the system has failed when, at least, one of the degradation
processes reaches its corresponding corrective threshold. We assume for the sake
of simplicity that Li = L for all i = 1, . . . , n.

Let W[1] be the instant of time at which, for the first time, the degradation
level of a process reaches the corrective threshold L:

W[1] = min
i=1,2,...

{Wi} (14)

Proposition 1. The survival function of the random variable W[1] is given by:

F̄W[1](t) = (15)

exp

(
−λ0

∫ t

0

FσL(u)du − μ

∫ t

0

(
1− exp

(
−

∫ u

0

e−δwFσL(u − w)dw

))
du

)
,

where FσL
is given by Eq. (7).
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Proof. Since {NL(t), t ≥ 0} is a Cox process with intensity λL(t). Then,

F̄W[1](t) = P (NL(t) = 0) = E

[
exp

{
−

∫ t

0

λ∗(u)FσL
(t − u) du

}]
(16)

Conditioning on N(t) = n, we can develop:

F̄W[1](t) =
∞∑

n=0

P (W[1] > t|N(t) = n)P (N(t = n))

= C1(t) exp(−μt) +
∞∑

n=1

P (W[1] > t)P (N(t = n))

= C1(t) exp(−μt) + C1(t) exp(−μt)
∞∑

n=1

A(t)n

tn
(μt)n

n!
, (17)

where A(t) and C1(t) are given by

A(t) =
∫ t

0

exp
(

−
∫ x

0

e−δwFσL
(x − w) dw

)
dx. (18)

C1(t) = exp
(

−λ0

∫ t

0

FσL
(u) du

)
, t ≥ 0. (19)

Substituting the terms of Eq. (18) and Eq. (19) in Eq. (17), the result holds.

4 A Numerical Example

Considering a system subject to multiple degradation processes that start
according to the following stochastic intensity:

λ(t) = 1 +
N(t)∑

i=1

e−0.5(t−Ti), t ≥ 0, (20)

where N(t) is a Poisson process with rate μ = 2 processes per unit time.
The processes’ degradation grows according to a gamma process with shape

parameter α = 1.1 and scale parameter β = 2.5. The failure threshold is L = 10.
A fail is supposed to occur when the degradation level of a process exceeds

the failure threshold. The system state is periodically inspected and each main-
tenance action has an associated cost.

A grid of size 10 is used to find numerically the optimal values for the time
between inspections and the preventive threshold that minimize the expected
cost rate [1]. The search intervals [0, 10] for the preventive threshold Mopt and
[0, 25] for the time between inspections Topt are considered. Through Monte-
Carlo simulation, with 10,000 iterations, the optimal values obtained are:

Topt = 8.53 Mopt = 2.85
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Figure 1 represents a realization of the intensity function of the shot-Cox noise
process, using a thinning algorithm. Note that the graph shows that the arrival
of new processes to the system causes the intensity for the following processes
to increase.

Fig. 1. Intensity function of the shot-Cox noise process.

5 Conclusions

A combined model has been applied to a system subject to multiple degradation
processes. The novelty of this work is the use of a stochastic intensity instead of
a deterministic one, modelled by a Cox type process introduced in [2].

Regarding to the numerical example, the optimal values for the time between
inspections T and the preventive threshold M for this stochastic degradation are
obtained. The realization of the intensity of the process is shown graphically. The
corrective threshold usually remains fixed to define the system failure.
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Abstract. We consider a forensic psychiatric hospital with multiple
wards and forensic commitment patients as well as emergency patients
arriving. Forensic commitment patients are awaiting their treatment out-
side the hospital, and are called in when a treatment place becomes avail-
able. Typically, forensic psychiatric hospitals have relatively few treat-
ment places leading to long waiting lists and significant waiting times.
Emergency patient arrivals arise due to crisis interventions and occur at
random points in time. Forensic psychiatric hospitals are faced with the
challenge of matching treatment programmes and security precautions
to patients’ psychosocial abilities and risk potential while maximizing
patient flow in order to cover costs. We develop a discrete event simula-
tion model and identify effective patient allocation strategies to optimize
patient flow, considering treatment adequacy, occupancy of all wards,
average waiting times inside and outside the hospital and rejection rates
of patient arrivals. Based on real-life data we evaluate various future
scenarios and provide valuable decision support.

Keywords: Decision support systems · Discrete event simulation ·
Queuing theory · Forensic psychiatry

1 Introduction

Forensic psychiatry is a subdiscipline of psychiatry and is related to criminology,
as it considers legal questions that arise in relation to mentally ill people. This
includes consultation with judges or public prosecutors e.g., on culpability or
criminal prognosis. A forensic psychiatric hospital offers treatment to diagnosed
mentally ill individuals who have come into conflict with the law. Since the
committed crime has been in direct relation to symptoms of a severe mental
illness, the risk of future delinquency will be reduced if the patient receives
adequate therapy. Since the treatment conditions in prison settings are in general
not suitable for severe mentally disturbed inmates, there is a general consent
that the capacities in specialized forensic clinical facilities in Switzerland must
be increased.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Forensic psychiatric hospitals face the challenge of finding an optimal trade-
off between quality of treatment and safety (captured in key performance indi-
cators such as average size of treatment groups, easing level homogeneity within
treatment groups, average waiting time until admission, and rejection rate) ver-
sus pure economic figures like occupancy rate and total cost.

A very well-known concept to increase occupancy, reduce waiting times and
rejection rates and thus reduce cost is to pool (i.e., aggregate) expensive or
scarce resources [1]. Pooling is especially beneficial for queuing systems with high
variability in arrivals and service times [2]. This implies that forensic psychiatric
hospitals can decrease waiting times and rejection rates by reducing the number
of wards. In this context, pooling also has a clear disadvantage: fewer wards lead
to bigger and more heterogeneous patient groups at each ward. This negatively
affects the security and the effectiveness of treatment [3].

Modeling and analysis of patient flow in healthcare systems has been studied
extensively. Most studies have applied Markov Decision Processes (MDP) or
Discrete Event Simulation (DES) [4]. In contrast to MDP, DES is better suited
to handle complex business rules and does not suffer from the so-called curse
of dimensionality (= exploding computation times) and is therefore popular in
real-life applications. Literature on patient flow in forensic psychiatric hospitals
is very scarce. In [5] the authors present a generic DES model for a prison to
forecast the composition of the prison population.

Our main contribution consists of three parts:

– We develop a DES model to support patient flow planning in forensic psychi-
atric hospitals. This is a new application of Operations Research in healthcare.
We discuss similarities and fundamental differences between patient flow in
forensic psychiatric hospitals and patient flow in the hospital settings.

– We apply the concept of hold back levels from the field of inventory control to
design smart patient allocation policies that allow to balance key performance
indicators across various subpopulations of forensic patients.

– We present an overview of open logistic challenges in forensic psychiatric
hospitals with big opportunities for Operations Research to provide valuable
decision support.

2 Problem Description and Model Formulation

A forensic psychiatric hospital accepts patients sentenced to a forensic com-
mitment (forensic commitment patients) and crisis interventions from prisons
(emergency patients). Forensic commitment patients are placed on the waiting
list after their registration and are admitted to the forensic psychiatric hospital
as soon as a place on a compatible ward becomes available.

Depending on the psychosocial skills and risk potential, forensic commitment
patients are assigned to easing levels. Each entering forensic commitment patient
starts at level 0, which corresponds to a maximum restriction of freedom.

During treatment, most patients make progress and thus climb the levels
step by step until they are finally allowed to be released at level 10. However,
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it also happens that due to bad behavior (drugs, violence, etc.) patients are
downgraded. To treat patients adequately, forensic psychiatric hospitals consist
of several wards, each exclusively dedicated to treat patients in a preferably
small range of predefined easing levels.

The second stream of patients consists of emergency patients. They are either
admitted immediately (and stay for a couple of days and then return to prison
after stabilization) or they are rejected if no place is available. There is no waiting
list and there are no easing levels for emergency patients.

Typically, requests for treatment places exceed available capacity, resulting
in long waiting times for forensic commitment patients and significant rejec-
tion rates for emergency patients. In some countries (e.g. Switzerland), forensic
psychiatric hospitals have contractual agreements with neighboring local gov-
ernments (Switzerland: “cantons”) that guarantee them a minimum number of
treatment places (contingents).

This large number of subpopulations of patients, combined with a high occu-
pancy rate make patient flow management extremely challenging. To reduce com-
plexity, forensic psychiatric hospitals often strictly divide total capacity among
all subpopulations in an ad-hoc manner.

Model Formulation
Complex business logic together with high randomness in patient arrival process,
sojourn times at easing levels and easing level transitions call for a DES approach.
The resulting simulator is used to evaluate scenarios defined by the hospital
board. The results were obtained with Simio 12 from Simio LLC. Figure 1 shows
a flow diagram for emergency and forensic commitment patients.

Fig. 1. Flow diagram of patient flow (own illustration)

Requests for emergency patients arrive via the push principle and the hospital
must decide whether to accept or reject a patient from a particular canton.
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Requests for a free place for forensic commitment patients, on the other hand,
are made according to the pull principle and the hospital must decide which
patient to call in when a place on a treatment ward becomes available.

Each ward has a waiting list for patients, who have reached an easing level
that would allow them to progress to the next ward but cannot be transferred
right now due to congestion. Those patients will be transferred as soon as a free
place becomes available. During this waiting time, treatment and easing levels
development continue, preventing system congestion from leading to increased
hospital sojourn times.

The phenomenon that forensic commitment patients waiting outside the hos-
pital for admission usually are removed from the waiting list after 6–18 months
for various reasons has been modelled by introducing a randomly generated max-
imum waiting time. Since no reliable historical information is currently available,
we rely on experts to estimate the maximum waiting time distribution. Arrival
rates, sojourn times at easing levels and easing level transition probabilities for
all subpopulations are estimated based on combination of historical data and
expert knowledge.

Although there are obvious similarities between patient flow in a forensic
psychiatric hospital and patient flow in a hospital, we also identify some funda-
mental differences. First, the waiting list with forensic commitment patients in
the forensic psychiatric hospital is never empty and occupancy rate is close to
100%. Second, the number of subpopulations of patients with own contractual
service agreements (not only emergency and forensic commitments, but also 12
cantons) and the number of easing level transitions is larger than in a regular
hospital.

3 Solution Approach

In the developed simulation model, the hospital board is able to test and evaluate
different (i) pooling strategies and (ii) admission policies by setting various con-
trol parameters such as patient interarrival time distribution, maximum waiting
time on waiting list, contingents for patients of a particular canton and treatment
time samples.

(i) To evaluate alternative pooling strategies, we include the policy variable
quality of treatment, which represents the allocation of specific ranges of
easing levels across wards.

(ii) While the admission of forensic commitment patients is based on a dynamic
prioritization rule predefined by the hospital board, considering the number
of free contingents, the admission of emergency patients is controlled using
canton-specific holdback levels. The holdback level of a canton specifies how
many emergency places must be free to allow a patient from that particular
canton to enter. Via holdback levels we can deal with maximum rejection
rate targets that differ per canton and optimize the occupancy rate of the
places reserved for emergency patients.
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The idea to use holdback levels for emergency patients originates from spare
parts logistics where holdback levels are used to differentiate between request
from various service contracts [6]. For each service contract i a holdback level
hi is specified, and requests underlying service contract i are only fulfilled if
the currently available stock exceeds hi. For the most expensive service contract
(usually the one with the fastest response time) hi = 0 (“send if available”).
For service contracts with relatively slow response times, holdback levels are set
higher such that parts are only sent if there is enough stock to fulfill future part
requests underlying expensive service contracts. This mechanism is also very well
suited for this problem setting to guarantee that each canton get its medically
desired/contractual agreed service.

4 Numerical Experiments

Strategic Planning
To identify the optimal future operating concept, the board of the forensic psy-
chiatric hospital developed several scenarios that differ in the pooling strategy.
All these scenarios have been simulated and evaluated based on waiting time,
rejection rate, sojourn times, annual admissions, and occupancy rate. By means
of a bottleneck analysis, we identified the most important levers for an optimal
patient flow and derived a new pooling scenario that slightly differs from the ones
proposed by the board. In this new scenario we assign different easing levels to
the wards. Thereby, rejection rates are halved and waiting times are reduced by
a quarter.

Operational Planning
Via testing of different holdback levels for emergency patients, we could derive a
strategy that maximizes the number of admitted emergency patients from neigh-
boring cantons without significantly compromising the ability to admit patients
from the home canton and without exceeding the target average occupancy rate
more than 10%.

5 Conclusion

Thanks to the application of DES, different admission strategies and pooling
strategies could be evaluated in terms of key performance indicators.

Overall, DES has proven to be a very suitable approach to model a complex
system such as a forensic psychiatric hospital, to validate it together with the
client and to derive optimal future scenarios.

With the help of the simulation model, we were able to provide the forensic
psychiatric hospital with a decision-making basis for the development of the
future operating concept. Thereby, we combine the strength of human experts
with the power of computers to make the best decisions in complex situations.

Using our decision support system, we were able to derive a better performing
pooling scenario than those proposed by the experts with respect to the trade-off
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between treatment quality and patient flow. Our proposed pooling scenario will
be integrated into the operating concept and implemented in the near future.
After 1–2 years, an evaluation will take place to review the improvements in
patient flow.

Future Work

– Extend DSS with optimization capabilities. User defines target values for the
key performance indicators and an optimizer automatically calculates optimal
capacities and optimal allocation policy.

– Monitor forensic psychiatric hospital when new facilities open and validate
simulation model.

– Recommend European forensic psychiatric hospitals what data and informa-
tion must be tracked to allow for better parameter estimates and thus more
precise simulation models.

– Extend model to capture networks of collaborating forensic psychiatric hos-
pitals.
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Abstract. With computers beating human players in challenging games
like Chess, Go, and StarCraft, Reinforcement Learning has gained much
attention recently. The growing field of this data-driven approach to
control theory has produced various promising algorithms that combine
simulation for data generation, optimization, and often bootstrapping.
However, underneath each of those lies the assumption that the prob-
lem can be cast as a Markov Decision Process, which extends the usual
Markov Chain by assigning controls and resulting rewards to each poten-
tial transition. This assumption implies that the underlying Markov Chain
and the reward, the data equivalent of an inverse cost function, form a
weighted network. Consequently, the optimization problem in Reinforce-
ment Learning can be translated to a routing problem in such possibly
immense and largely unknown networks. This paper analyzes this novel
interpretation and provides some first approaches to its solution.

Keywords: Reinforcement Learning · Routing

1 Introduction

After the big wave of research into deep learning, interest started to turn more
and more towards reinforcement learning (RL). The latter is next to supervised
and unsupervised learning one of the three areas of machine learning and stud-
ies primarily dynamic problems. Many of its applications and success stories
are focussed on solving games, like those on the atari consoles [6], Go [9,10],
and StarCraft [12]. However, also more serious applications to OR problems are
being studied. Some examples are: optimization of System Dynamics models [7],
Combinatorial Optimization [5], traveling salesman problem [4], and many more.
In this paper, we propose to turn this idea on its head and introduce a novel
approach to solving RL problems based on routing algorithms taken from the
toolkit of OR.

2 Background and Related Literature

In RL the agent usually navigates through a state space S ⊆ R
n in discrete time

steps t = 1, . . . , T by choosing an action at ∈ A ⊆ R
m in a given state st ∈ S.
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For this paper n is assumed to be arbitrary and m = 1. A given task consists of
a transition distribution

P(st+1, rt|st, at),

which gives the probability for reaching the next state st+1 and a reward signal
rt. The goal is then to find a policy π : S → A, which selects an action in each
state, that maximizes E

[∑T−1
t=1 γtrt

]
with γ ∈ (0, 1). It should be noted that the

transition distribution is assumed to be unknown. Furthermore, it satisfies the
Markov property, i.e., the next state and reward only depends on the current
state and the selected action. For this reason, this setting is known as Markov
decision process.

Approaches to RL can be split into two possible directions: model-based RL,
which tries to learn the distribution in some way and then perform planning
based on this information, and model-free RL, which tries to get around doing
this explicitly. Instead these methods usually try to find some form of approx-
imation to the expected sum of future rewards from a given state on. Finally,
there is the class of policy gradient methods, which parametrizes the policy func-
tion π directly and thus tries to choose better and better actions by adjusting
them. For more details on RL, the interested reader is referred to [11]. The
approach presented in the next section could be classified as model-based, as
it learns model-dynamics. However, it works quite differently from most such
approaches.

3 Routing in Markov Chains

Since the transition distribution satisfies the Markov Property, the RL problem
can also be viewed as moving through the underlying Markov chain. To turn
the search for the largest return into a shortest path problem, the inverse of
the reward between states is interpreted as distance between nodes. However,
usually the Markov chains are very large and largely not known.

This transformation is quite immediate as described above in the case of
deterministic transitions and discrete state and action spaces. For the continuous
setting, one option would be to discretize it first, which is a common approach in
RL [11]. In stochastic environments, the Markov chain has to be modified first,
depending on the exact nature of stochasticity. One example of such randomness
is that the probability for the next state depends on the action and previous
state, while the reward only depends on the latter deterministically. In this case,
each node in the chain needs to be split in two: The first one was an edge
leading outwards for each possible action, the end-nodes of which represent the
selected action. From these points on there can then be edges leading to nodes
representing various next states, which induces a stochastic jump, which depends
overall then on both the previous state and the action.

Thus, the problem of finding optimal behavior can be reduced to that of
routing in a large, partially known network. This problem, however, has been
studied in the literature and one possible solution is the PHA* algorithm [3],
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which can be found in Algorithm 1. The key idea, given a current node n, is to
split the total path cost, f(n), into costs up to n, g(n), and an estimate for costs
from n to the goal, h(n). Finding a good heuristic for this estimation is one of
the core challenges and needs to be somewhat tailored to the application.

Algorithm 1. PHA*
1: procedure PHA*
2: openList = Array[rootNode]
3: closedList = Array[]
4: while goalNode not expanded do
5: bestNode = node with lowest f-value from openList
6: remove bestNode from openList
7: add bestNode to closedList
8: travel to bestNode � with usage of navigation algorithm
9: expand bestNode � explore therefore the children

10: children = explored nodes with bestNode as parent
11: for c in children do
12: f(c) = g(c) + h(c)
13: if c not in closedList or f(cclosed list) > f(c) then
14: add c to openList

4 Experiments

In this section, some first experiments are being reported based on the mountain
car task [8] in the OpenAi Gym environment [1]. The goal is to drive a car up
a hill, see Fig. 1. However, the car is not strong enough to reach the hill top
directly. So, it first needs to drive back up the other slope to gain momentum.
The action space is here the discrete decision, which direction to drive in. It
should be noted, that the state space is continuous and was thus discretized
using 3 (7×7) tile encodings [11]. As mentioned in the last section, a key aspect
for the performance of PHA* is the heuristic chosen for h(n).

Here, results on four different choices will be presented: euclidean distance
p (position only), euclidean distance p+v (position and velocity), Q-learning,
constant heuristic. Using the euclidean distance as heuristic was suggested in
literature [2,3] and makes sense, given the physical exploration nature of PHA*.
The choice to include the velocity is justified, since building up the right speed is
integral to solving the task. The idea behind the Q-learning heuristic is to have
a comparison with more traditional RL approaches. It uses an estimate of the
expected sum of future rewards. It should be noted that for this first analysis,
these values are pre-computed. Finally, a constant heuristic with h(n) = 1 was
chosen for comparison. The results can be found in Table 1.
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Fig. 1. The mountain car task.

Path length denotes the number of nodes from root goal node, while
Euclidean path length sums the euclidean distances of all nodes along the path.
Nodes visited (whether total or different) are nodes that have been physically
visited during the algorithm, while nodes explored are those, that have been
explored, but not necessarily visited. The number of existing states is calculated
based on the tiling size and episodes states how many training epochs were used
to train the Q-values if needed.

It can be seen, that the final path length agrees between all of them. How-
ever, the heuristic using the Euclidean distance of both position and velocity
visits much fewer nodes. On the other hand, the simple heuristic needs roughly
three times as many visited nodes as the average of the other three. This is not
surprising, as other heuristics encode varying degrees of knowledge about the
task. In the case of the first two it is the knowledge of the final position (and
velocity). In the other case, assuming known Q-values is equivalent to having a
solution of the task. It is interesting to observe, that this still leads to more total
nodes visited. This is unexpected, since the Q-values already encode so much
information and warrants further investigation in the future.
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Table 1. Results for experiments

Feature Euclidean distance p

(position)

Euclidean distance p+v

(position, velocity)

Q-Values Simple

Path length 24 24 24 24

Euclidean path length 1.4241 1.4558 1.4558 1.4558

Total nodes visited 1010 762 1634 3560

Total nodes explored 390 345 357 711

Different nodes visited 131 116 120 238

Different nodes explored 149 132 141 252

Number of existing states 441 441 441 441

Episodes – – 5000 –

5 Conclusion and Outlook

In this paper some first explorations of a novel approach to RL based on routing
in the underlying, largely unknown Markov chain were presented. Initial findings
demonstrate that further exploration of this idea would be beneficial. Even to
the extent presented in this paper, the approach needs to be tested on a variety
of problems. Next, detailed studies of runtime and comparison with existing
methods need to be conducted. Particular attention should be payed to handling
different styles of tasks, such as various forms of stochasticity. Finally, there needs
to be a theoretical analysis of required run time, proportion of the network to
be explored and beneficial properties of possible reward structures.

In addition, various exploration approaches should be studied. Since the effi-
ciency of the algorithm depends partially on how quickly certain parts of the
graph are being explored, this could lead to significant performance increase.
This could include simple random walks as well as more complicated procedures
tailored to the RL problem. This could mean for example to retrace certain
high-return paths more often and to explore their surrounding.
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Abstract. This paper studies and compares various optimization
approaches ranging from classical optimization to machine learning to
respond swiftly and optimally in casualty incidents. Key points of inter-
est in the comparison are the solution quality and the speed of finding
it. In multiple-casualty scenarios knowing both is essential to choosing
the correct method. A set of 960 synthetic MCI scenarios of different
settings are being considered here to give an indication of scalability. For
these scenarios, the aim is to optimize the number of victims receiving
specialized treatments at the nearest available hospital.

Keywords: Disaster and crisis management · Mass casualty
incidents · Optimization · Casualty processing schedule

1 Introduction

The Emergency Medical Services resources, such as vehicles and personnel, are
often challenged in mass casualty incidents (MCI). In any MCI response, the
process of transporting injured persons to a hospital is the essential component.
First, when people are trapped (i.e., trapped in debris or damaged buildings)
and in an unstable condition, stabilizing treatment is required before they are
released from the trap. Second, the injured are collected and taken to a nearby
secure area called the triage area or casualty clearing station (CCS) [1]. In the
CCS, casualties are color-coded to place them in the proper categories: red for
immediate treatment needed, yellow for required urgent treatment, green can be
delayed, and black for dead or missing. Medical treatment (usually first-aid) is
often provided at CCS to stabilize injured persons during transport to hospitals.
In this paper, we explore three approaches: a mixed-integer linear programming
(MILP) formulation, an Iterated Greedy heuristic (IG), and a Genetic Algorithm
(GA) to mitigate the mortality rate in synthetic MCI scenarios. This is per-
formed by optimizing the number of casualties receiving specialized care at the
nearest available hospital with the required profile, e.g., trauma, pneumonology,
or surgery. Each casualty is assumed to be processed by the three operations
rescue, first-aid and transportation, before receiving a specialized treatment at
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hospitals. Forecasts and pre-allocation of resources from multiple hospitals in
near regions (i.e. less than 120 min for driving) are expected for a large number
of casualty requests. A large number of settings with regards to the number of
casualties and responding teams is expected to reveal the different strengths and
weaknesses of the investigated optimization algorithms.

2 Related Work

A casualty processing schedule problem (CPSP) is typically modeled as a Flex-
ible Job-Shop Schedule Problem (FJSSP), and is optimized by meta-heuristic
algorithms, such as GA and IG, to minimize makespan and mortality. In this
section, we will briefly discuss some recent studies on applying optimization
techniques for CPSP [2] and FJSSP [3–8].

Xiang et al. [2] proposed a triage scheduling optimization approach for MCI
response. In this approach, a Markov Chain model was employed to represent
the health levels and their stochastic transitions to estimate the probability of
death for casualties during the processing time. The authors modeled casualties,
the three processing tasks and medical groups as jobs, operations and machines
in FJSSP, respectively. A GA was then utilized to find an optimal schedule for
the CPSP minimizing mortality. The experimental results suggested that when
minimizing the mortality rate, we also achieve a good solution on makespan and
vice versa. Lately, Viana et al. [5] introduced the development of GAs for solving
JSSP. Traditional GAs can easily fall into local optimal. The authors developed
new crossover operators based on local search schemes for the standard GA. The
evaluation of 58 instances of literature showed that the developed GA performed
effectively on given JSSP scenarios. A comprehensive review on applying GAs
to JSSP can be found in [6].

Aqel et at. [7] proposed a modification of the Iterated Greedy (MIG) algo-
rithm in order to create a simple heuristic method for FJSSP. When applying IG
to FJSSP, the algorithm consists of two iterative phases: destruct some parts of
a current solution and then reconstruct these parts by using greedy techniques,
typically the NEH heuristics introduced in [9]. The authors made an MIG by
using dispatching rules (DRs) for the constructing phase instead of NEH. Their
evaluation showed that MIG could be able to find global optima in most cases.
Alternatively, mixed-integer linear programming and constraint programming
were applied to solving FJSSP concerning minimization of the total process-
ing time [8]. Based on numerical experiments, the authors suggested that the
approaches can deal with small-sized FJSSP and medium-sized ones when con-
sidering some constraints.

3 Optimization Approaches for CPSP

3.1 A MILP Formulation

One approach considered for the problem described above is a MILP formulation:
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min

n∑

i=1

zi (1)

si2 + di2 ≤ Wi +Mzi ∀i ∈ [n] (2)
K∑

k=1

xk
ij = 1 ∀i ∈ [n], j = 0, 1, 2 (3)

si(j+1) ≥ sij + dij ∀i ∈ [n], j = {0, 1, 2} (4)
ykijlm ≥ xk

ij + xk
lm − 1 ∀i, l ∈ [n], j,m = {0, 1, 2}, k ∈ [K] (5)

aijlm + bijlm ≤ 1 ∀i, l ∈ [n], j,m = {0, 1, 2} (6)
Makijlm + sij +M(1 − ykijlm) ≥ slm + dlm, ∀i, l ∈ [n], j,m = {0, 1, 2}, k ∈ [K] (7)
Mbkijlm + slm +M(1 − ykijlm) ≥ sij + dij , ∀i, l ∈ [n], j,m = {0, 1, 2}, k ∈ [K] (8)

sij ≥ 0 i ∈ [n], j = 0, 1, 2 (9)
zi ∈ {0, 1} ∀i ∈ [n] (10)

xk
ij ∈ {0, 1} ∀i ∈ [n], j = 0, 1, 2, k ∈ [K] (11)

aijlm, bijlm, ykijlm ∈ {0, 1} ∀i, l ∈ [n], j,m = 0, 1, 2, k ∈ [K] (12)

where sij ≥ 0 is the starting time of operation j on casualty i, zi ∈ {0, 1}
indicates the death of casualty i and xk

ij ∈ {0, 1} assigns team k to operation j on
casualty i. aijlm, bijlm, yk

ijlm ∈ {0, 1} are auxiliary variables, M is a large number
and [n] = {1, 2, . . . , n}. The objective function (1) simply counts the number of
deaths and thus minimizes it, as (2) forces zi = 1 if the last operation cannot
be completed before the waiting time. (3) assures that each operation for every
casualty is assigned to one team, while (4) makes sure that the next operation on
a casualty can only begin after completion of the previous one. Finally, equations
(5)–(8) ensure the same thing for operations of the same team. To this end, (5)
forces yk

ijlm = 1 if both operation j on casualty i and operation m on casualty l

are being performed by team k. If this is not the case, the M(1−yk
ijlm) term will

make both Eqs. 7, (8) trivially true. These two equations deal with performing
operation j on casualty i first or second respectively. Finally, (6) in conjunction
with the Maijlm,Mbijlm terms makes sure, that only one of those cases is non-
trivial. It should be noted, that a dependency on the team is not necessary here.

3.2 Genetic Algorithm Approach

GAs start with an initial population of individuals (solutions) in the first gener-
ation. At each iteration, a number of individuals is selected (parent) for creating
new solutions (children) by performing GA operators. “Good” children will be
selected to produce a new population in the next generation. The evolutionary
process is controlled by a fitness function until it reaches the optimal target.

In CPSP, GA individuals are designed to represent the casualty processing
schedules. A typical GA approach for CPSP can be found in [2].
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3.3 Iterated Greedy Approach

We employ the modification of an iterated greedy heuristic (MIG) introduced for
FJSSP in [7] for our CPSP scenarios. In this work, a sub set of DRs for selecting
responding teams presented in [7] is utilized such as the 2nd, 4th, 5th and 7th

rules. For re-sequencing operations, it is simple to insert an operation at the end
of the sequence on the selected responding teams instead of using DRs. At each
iteration, a candidate can be accepted as a new solution if its performance is
not worse than the current one with a ξ parameter. ξ is set to 1 in the case of
minimizing mortality.

4 Experiments

We generated 960 synthetic MCI scenarios for our experiments, details for which
can be found in Table 1. The processing time of the operations can be varied
on different casualties in pre-determined ranges of [5, 30], [5, 30] and [5, 120] in
minutes for rescue, first-aid and transport, respectively. We define four different
waiting intervals (120, 480, 600, and 720 in minutes) associated with their triage
levels that casualties can survive without any treatments.

Table 1. A synthetic dataset of 960 MCI scenarios

Cases of casualty 10 11 12 13 14 15 16 17 18 19 20 25 Total scenarios

Cases of team 2, 3 2, 3, 4, 5 960

No of scenarios 40 for each case 20 for each case

We evaluate the GA, IG and MILP models on the 960 MCI scenarios. The
performance of these models are measured on a metric of three features such
as makespan, the number of deaths and running time. When solving the MILP
models using CPLEX on the 80 scenarios of 10 casualties with 2 and 3 respond-
ing teams, the average, maximum and standard deviation of running time are
11.6, 874.3 and 97.1 min respectively. However, for a larger scenarios, 11 casu-
alties with 2 teams, we get 90.0, 590.8 and 168.6 min on average, maximum
and standard deviation of running time. In the two cases, This average and
standard deviation of running time are significantly high, particularly the max-
imum values are much higher than the maximum waiting intervals. Thus, the
MILP formulation is more likely to be unusable in its basic form for CPSP, and
its performance will not be presented in Sect. 5. However, it has the benefit of
demonstrating the optimal solution and some further techniques would have to
be investigate to reduce run-time. Due to the space limitation, we report only
the performance (average of deaths) of the best approach using GA model in
Table 2. The overall results and comparisons are illustrated in Fig. 1.
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5 Results and Discussion

Table 2. The average of deaths for 36 settings of MCI scenarios using GA

No of casualty 10 11 12 13 14 15 16 17 18 19 20 25

2 teams 2.15 2.68 4.38 5.45 6.50 7.73 8.50 10.05 11.25 12.40 13.85 19.25

3 teams 1.28 0.98 1.18 1.40 2.88 3.65 3.85 5.15 5.80 7.55 8.65 14.50

4 teams – – – – – – 2.10 1.90 3.05 3.90 4.20 9.85

5 teams – – – – – – 1.35 1.05 1.85 1.70 2.50 6.40

The Table 2 illustrates the average death counts as an aspect of GA performance
on the 960 scenarios. Overall, the average of deaths is gradually increasing as the
number of casualties increases. However, the mortality rate will fall down as the
number of responding teams increases. Both of these are to be expected in the
context of this application. To compare the performance between GA and IG
on the 960 MCI scenarios, visualizations are being used for better comprehen-
sion. Figure 1 shows different performance aspects of GA and IG on the given
scenarios. Firstly, two essential aspects of the MCI problem, makespan and the
number of deaths, are observed in Sub-figs. 1(a) and 1(b). The Sub-fig. 1(a)
shows a strong positive correlation between makespan and casualties for both
methods (GA and IG). The makespan produced from GA is slightly higher than
that of IG. On the contrary, the average number of deaths is plotted against the
responding team resource parameters as in Sub-fig. 1(b). The sub-fig illustrates
that the average number of deaths decreases sharply as the number of teams
increases. On this aspect, GA outperforms IG in all scenarios. In sub-fig. 1(c),
the average running time is then visualized against the MCI size (casualty size
* team size). The average running time of GA slightly increases as the MCI size
increases and is much higher than that of IG. Fortunately, GA is still considered
a promising optimization method for CPSP because its running time (around
300 s) can be acceptable. At the same time, its resulting schedule causes a lower
mortality rate than that of IG.

(a) Makespan (s) (b) Death vs team/casualty (c) Runtime (s) vs MCI size

Fig. 1. Different aspects of the performance of GA and IG on the 960 MCI scenarios
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6 Conclusion and Future Work

This paper presents a comparison of different optimization algorithms on the
problem of casualty processing schedules. In other words, three different perfor-
mance aspects of GA, IG and CPLEX are evaluated on the 960 synthetic MCI
scenarios. The experimental results suggest that GA can be considered a good
method for CPSP because its solution can yield the lowest mortality rate with
an acceptable running time.
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Abstract. This paper investigates the effects of rolling horizon fore-
cast updates on a production system relying on material requirements
planning (MRP). The underlying demand model is the MMFE (mar-
tingale model of forecast evolution) model extended by forecast biases
revealed certain periods before delivery, i.e. information quality is not
strictly increasing as assumed in MMFE. Simulation is applied to model
the MRP planning method and the shop floor behavior of a two stage
production system including a two level bill-of-materials with 8 finished
goods and 4 semi-finished materials. Several scenarios on the demand
model parameterization are tested and a finite solution space for the
MRP planning parameter safety stock is enumerated to minimize overall
costs. In this numerical study, preliminary results to identify the influ-
ence of forecast uncertainty on MRP planning parameter safety stock
are identified when rolling horizon forecast updates occur.

Keywords: Forecast errors · Production planning · Production order
accuracy · Forecast evolution · Simulations

1 Introduction

The MRP (material requirements planning) method is often applied in practice
for production planning, therefore, studying different effects on the optimal plan-
ning parameters of this method is a relevant field of research. Standard MRP is
a deterministic planning approach assuming that demand and shop floor behav-
ior have no stochastic effects. In practice, it is usually applied in a rolling horizon
manner to react on changes on the shop floor level and customer demand [1]. For
each MRP planning run, demand information is updated which leads to stochastic
effects in gross requirements. In general it can be observed, that customer demand
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information quality decreases for due dates further in the future. Customer fore-
casts can be biased, meaning an overbooking peak or underbooking trough several
periods before delivery, whereby forecast values then gradually (or steeply) move
back to the really needed amounts [2]. The martingale model of forecast evolu-
tion (MMFE) is a known modeling technique for evolving demand forecasts and
is applicable in industry and investigated in inventory theory [3–5]. In the MMFE
model, forecasts appear a certain time in advance and are gradually updated in a
rolling horizon manner until due date. MRP parameters are planned lead time, lot-
sizing rules and safety stock, all of which can be applied to counteract uncertainties
[6]. Safety stock and safety lead time (i.e. considering buffer lead times) are effective
ways to protect against stochastic demand. Some authors emphasize that lot-sizes
and safety stocks should always be computed together to minimize the costs [7].
Other researchers even claim that it is only useful to consider all parameters at the
same time [8]. Previous studies have shown the effects of demand uncertainty on
unit costs, but with greater focus on lot sizing rules [9]. Zhao et al. [10] evaluated
alternative methods of establishing the safety stock for the MPS under demand
uncertainties by using the measures of historical forecast accuracy but assume an
independent and identical distributed customer demand. Enns [11] discussed the
use of planned lead times and safety stocks to mitigate forecast bias and demand
uncertainty for a batch production system using MRP.

Multiple studies suggest that there is no analytical method to directly deter-
mine the safety stocks in an MRP environment with demand uncertainties [7],
therefore, simulation is applied in this study to mimic the MRP planned produc-
tion system with stochastic shop floor behavior and different stochastic demand
model parameterizations whereby inventory and backorder costs are evaluated.
Simulation is appropriate since the relation between MRP planning, stochastic
demand forecast updates, and shop floor uncertainties cannot be treated in an
analytical way. This paper presents preliminary results of optimal safety stock
related to demand forecasts. Forecasts are received directly from the customers
on a rolling horizon basis and evolve from a long-term forecast to the due date.
The effect of different forecast uncertainty levels on the optimal safety stock in a
rolling horizon forecast update system with and without forecast bias is studied.
After the introduction, the applied demand forecast model is described. Next
the production system used for the simulation study is introduced, followed by
a description of the simulation experiments, selected results and a conclusion.

2 Demand and Forecast Model Description

To model the forecast behavior of the customer we use the following model.
The demand model reflects the customer behavior of changing the amounts
with an upcoming due date. This introduces uncertainty into the production
system of the supplier. The forecast vector Fi,j defines the forecasts for all finish
goods (FG) at due date i for j periods before delivery. There also exists a long-
term forecast vector μ for all FG. H periods before the due date the customer
starts updating the forecast periodically based on a rolling horizon. The forecast
updates are then modeled as the follows:
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Fi,j = μ for j ∈ {H + 1, . . . ,∞} Fi,j = Fi,j−1 + εi,j for j ∈ {0, . . . , H} (1)

whereby εi,j is the forecast update vector for due date i observed j periods before
delivery (the updating period is period i-j ). In the standard MMFE modelling
this update vectors are identically disturbed multivariate normal random vectors
with mean 0 (see [4] for more details). To create different customer behavior,
the calculation of the update vector is varied. If the customer has unsystematic
behavior, the update vector is calculated similar to the standard MMFE. In
detail we simplify the stochastic updates to:

εi,j = Sj(μ, 0, α) ∼ N(0, αajμ) (2)

whereby Sj(μ, 0, α) is a vector of normal distributed random variables with
mean 0 and standard variation αμ. Note that if aj is constant for all j, all forecast
updates have the same variance, independent of the periods before delivery j, α
defines the level of uncertainty varied in the simulation study. If the customer
behavior is systematic, we assume that forecast is several periods before delivery,
on average, too high or too low. In this paper the forecast bias changes for periods
before delivery j. To realize this, we define the update vector as follows:

εi,j = Sj(μ, γ, α) ∼ N(γcjμ, αajμ) (3)

whereby γ is a scaling factor varied in the simulation study and cj is a shaping
factor. This allows us to create different biased customer behaviors like over- and
underbooking in different magnitudes with the same shape for each finish good.
Note that a biased forecast is also stochastic, the uncertainty depends on αaj ,
and that the biased information update does not necessarily increase information
quality. In conclusion: α describes the level of uncertainty, γ the level of bias, aj

the shaping of uncertainty, and cj the shaping of the bias.

3 Production System Simulation Model

The simulation setting consists of a two-stage production system including a two-
level bill-of-materials (BOM) with eight FG and four semi-finished goods, whereby
every semi-finished good is converted into two different FGs. The FGs are pro-
duced on two different machines with the same processing time 0.002933 peri-
ods/piece and setup times of 0.00033 periods/piece for all materials, both times
are not deterministic during simulation runs. The long-term forecast vector μ is
defined as μ = (200, 400,. . . , 1600). Each semi-finished good consumes the same
raw material which is always available. The production system is continuously
available. To evaluate a production system which is under stress due to high cus-
tomer demand variability meaning irregular order times a low planned capacity
utilization is assumed. This allows the production system to mitigate uncertain-
ties with safety stock to hold service level. Therefore the system is designed for a
planned capacity utilization of 83.55%, including 8.75% for set-ups. As a result,
in 74.8% of the available time materials are produced. Fixed order Period (FOP)



424 W. Seiringer et al.

with a value of 3 is the selected lot sizing policy. The MRP run is calculated once
a period and the forecasts are as well updated once a period. We define the fol-
lowing parameters for the simulation run: The safety stock vector ST for all FG is
defined as:

ST = x ∗ μ, with x ∈ [0, 0.1, . . . , 2] (4)

We apply the same safety stock related to the long-term forecast for all FGs. For
semi-finished goods no safety stock is applied. The planned lead timed is defined
with three periods. The used simulation framework implements a discrete event
simulation model and uses a customer order agent to mimic the periodic order
behavior of updating the customer demand. Within the simulation framework,
the standard MRP logic with netting, lot-sizing, offsetting and BOM explosion
is applied [12]. The run-time for the iterations of the simulation experiments are
set to 1800 periods and 30 replications are used to observe the stochastic in the
production system. WIP costs of 0.5 CU/period, FGI costs of 1 CU/period and
two levels of backorder costs, i.e. b = 99 and b = 198 CU/period, are applied.

4 Numerical Study

A set of scenarios is defined to answer the research questions and derive
some managerial insights. The numerical study is conducted using the previous
described production system and customer behavior with varying lognormally
distributed interarrival times, that lead on average to 0.85 orders per product
and day. The customer behavior is unsystematic in scenarios A1 and A2, there-
fore, α varies from 0 to 2 with step-size 0.25. The customer behavior is systematic
in scenarios B1 and B2, therefore, γ varies from 0 to 2 with step-size 0.25. The
following detailed specifications are applied. A1: Basic Scenario aj = 0.1 for all j ;
γ = 0; H = 10. A2: Scenario with shorter forecast horizon aj = 0.1 for all j ; γ =
0; H = 5. B1: Biased forecast with overbooking α = 1; aj = 0.1 for all j ; cj =
[−0.05, −0.05, −0.1, 0.1, 0.05, 0.05] for j = [3, 4, 5, 6, 7, 8]; H = 10. B2: Biased
forecast with underbooking α = 1; aj = 0.1 for all j ; cj = [0.05, 0.05, 0.1, −0.1,
−0.05, −0.05] for j = [3, 4, 5, 6, 7, 8]; H = 10. The obtained simulation results
for the unsystematic customer behavior, i.e. A1 and A2, in Fig. 1 show a rising
trend for safety stock factor (ssf) for increasing alpha value for all backorder cost
rates and scenarios. Consequently more forecast introduced uncertainty in the
customer demand requires a higher safety stock to fulfill customer demand and
hold service level. Detailed results (omitted here due to space reasons) show that
with an increasing α value, the minimal overall costs (inventory + backorder)
represented by the ssf also tend to increase. The results of the biased scenarios,
see Fig. 2, show that for B1, i.e. overbooking, the optimal safety stock is rather
low with no clear trend related to the level of bias. However, for B2, i.e. under-
booking, the ssf is rapidly increasing with respect to level of bias. This shows that
overbooking implies a certain FGI buffer and, therefore, only few safety stock is
necessary and underbooking needs to be hedged by a higher safety stocks. This
finding is in line with [11], however, it extends his study since here also rolling
horizon forecast updates are investigated.
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Fig. 1. Optimal safety stock factor unsystematic scenarios A1 and A2.

Fig. 2. Optimal safety stock factor for biased scenarios B1 and B2.

5 Conclusion

In this paper the optimal safety stock of finished goods in an MRP planned
production system under different rolling horizon forecast update settings was
investigated and first preliminary results are shown. In detail, it is assumed that
customers update their long-term forecast ten or five periods before delivery with
unbiased or biased forecast errors. The MRP planning is conducted each period
applying the updated demand values. With a simple enumeration scheme, the
safety stock to minimize inventory+backorder costs is identified. The numerical
results show that for unbiased forecast updates, a higher uncertainty leads to
higher optimal safety stocks and higher overall costs. For biased updates, over-
booking already implies a certain buffer and only a low safety stock is necessary,
while underbooking needs to be hedged by higher safety stocks. In our study
several constraining assumptions were made that have to be relaxed in further
research. For example, further studies will investigate the interrelation of the
MRP parameters (lead time, lot-size and safety stock) in a broader solution
space.
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Abstract. Structuring and exploring complex problems is still one of
the most significant challenges in strategic decision-making and man-
agement. On the one hand, we strive to add as much rigor as possible
to the analyses made, for example, through simulation models or data
analyses. On the other hand, we need to stay connected with all kinds
of stakeholders - an essential precondition for implementation.

Following up on our earlier research, we present an approach that
combines narratives, Causal Loop Diagrams, and Behavior-Over-Time
Graphs to illustrate the structure, dynamic patterns and quantitative
scale of the problem under study step-by-step, allowing exploration and
reflection by a broad audience.

Keywords: Strategic decision-making · Causal Loop Diagrams ·
Behavior-Over-Time Graphs · System Dynamics · Domain-Specific
Languages · R

1 Learning in and About Complex Problems

In a world of growing complexity, the understanding of complex systems is
increasingly relevant. Since its beginning [1], one of the key motivations of Sys-
tem Dynamics was to enhance learning in and about complex systems. Scholars
have repeatedly stated that flawed mental models, misunderstanding of feed-
back and the failure to take an endogenous perspective are the main reasons for
the misperception of complex systems [2,3]. Therefore, several tools and pro-
cesses aiming at making (flawed) mental models explicit - so they can be altered
towards a better understanding of the complex systems under study - have been
promoted. Among them are concepts of participatory modeling (Group Model
Building [3] and Community Based System Dynamics [4]). Within those concepts
(and generally within all kinds of projects including some participatory model
building), some tools are of undisputed value: Causal Loop Diagrams (CLDs)
and Behavior-Over-Time Graphs (BOTGs).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Trautmann and M. Gnägi (Eds.): OR 2021, LNOR, pp. 427–432, 2022.
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CLDs are a flexible and valuable tool for diagramming the feedback struc-
ture of systems. In strategic decision-making and management, CLDs are used
to structure and explore complex problems, to foster learning, as a basis for sim-
ulation models, and to communicate simulation results. Often we combine CLDs
with BOTGs as an initial step to understanding the dynamic patterns and the
quantitative scale of the problem under study [4].1 BOTGs are especially help-
ful in capturing dynamic, quantitative hypotheses about the problem at hand.
As BOTGs illustrate the dynamic and quantitative scale of a variable, feedback
loop, or a complete CLD, they help foster thinking about the structure-behavior
relationships relevant to the problem under study.

2 How Not to Lose Decision Makers

While those tools prove valuable to engage with stakeholders closely involved
in the modeling process [3,4], there is still the question of how we can transfer
the possible learnings beyond those core teams. Eric Wolstenholme argues that
those having the power to implement are not necessarily the same people that dig
their minds deep into mathematical simulation models. He, therefore, argues that
System Dynamics should not underestimate the power of qualitative results that
might better fit decision-makers mental models than simulation results [5]. He
further argues that although this situation might suggest that the quantitative
people (analysts) should help the non-quantitative, it is well established that
we cannot transfer insights quickly. The implication, therefore, is that we must
develop methods to involve everyone in the modeling process to learn these
insights for themselves [5]. One way to achieve this is through the usage of visual
boundary objects [6]. Visual boundary objects are visual representations that
capture the structure and behavior of the system under study. They represent
mental models and help participants to stay in touch with each other and the
modelers [4,6]. They further help to think differently about projects and serve as
what Donald Schön calls generative metaphors [7]. For a visual representation to
become a boundary object, the modeling process must find the evolving balance
between participants’ mental models, models under construction, models already
finished, and good System Dynamics practice [4].

3 Combining Causal Loop Diagrams, Behavior-Over-Time
Graphs, and Narratives

Following up on our earlier research [8], we thus present an approach that com-
bines Causal Loop Diagrams (CLDs), Behavior-Over-Time Graphs (BOTGs),
and narratives to structure and explore complex problems by generating visual
representations that are accessible to a broad audience and thus have the poten-
tial to become boundary objects. The approach is made accessible through a
1 Detailed instructions about how we can elicit BOTGs and CLDs in workshop settings

can be found on Scriptapedia; https://en.wikibooks.org/wiki/Scriptapedia.

https://en.wikibooks.org/wiki/Scriptapedia
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Domain-Specific Language (DSL) implemented in R.2 The DSL allows generating
visual representations of CLDs enriched with BOTGs and textual descriptions.
We use a combination of CLDs, BOTGs, and textual descriptions to generate
narratives. Narratives describe scenarios of how the system under study may
behave under certain circumstances. Those narratives illuminate the structure,
dynamic patterns, and quantitative scale of the problem under study step-by-
step and thus accessible to a broad audience - including senior decision-makers
not deeply involved in the modeling process.

4 Building Narratives Using the DSL

Fig. 1. A slightly simplified version of the worker burnout model [9]

In the current debate on the future and development of labor, maintaining work-
ers’ mental health is one of the most significant challenges. Nevertheless, there
is still little known about the dynamic interplay between occupational work-
loads, life situations, and individual coping strategies [10]. In a series of ongoing
research projects, we make that complex interplay accessible using the DSL
presented here.3 The target audience is diverse and includes affected individuals
and professionals working in the field: Social workers, human resource personnel,
psychologists, psychiatrists. The targeted use-cases are twofold: The narratives
can be used during one-to-one counseling, and they can be used for educational
purposes in classrooms or presentations.

Although this is not the place to discuss a complete example, we neverthe-
less want to show usage of the DSL by an example close to the domain. The
example we are going to discuss in the following is a classic model of the System
Dynamics community: Jack B. Homers’ worker burnout model [9]. The model
2 We described some underlying ideas in [8]. We host the code open-source on GitHub.

https://github.com/ims-fhs/cld.
3 Among them are i) a project funded by the Swiss National Science Foundation about

psychosocial risks at work; ii) a project funded by Innosuisse - Swiss Innovation
Agency aiming at improving ambulant mobile psychotherapy; and iii) a project about
common work-life-balance conflicts funded by the Swiss Federal Office for Gender
Equality.

https://github.com/ims-fhs/cld
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explores the dynamics of worker burnout, a process in which a hard-working
individual becomes increasingly exhausted, frustrated, and unproductive. The
slightly simplified version shown in Fig. 1 consists of one balancing loop and two
reinforcing mechanisms mediated through the variable energy level.

Start a Narrative. Assuming the cld has been imported to R, we can start a
narrative using the following DSL statement:4

cld %>%
link(‘perceived adequacy‘) %>%
describe(type = "text", "You (or your boss) are

unhappy with your accomplishments.") %>%
plot()

The first link statement highlights the variable perceived adequacy of accom-
plishments. The describe statement adds a textual description and thus adds
some context. The plot generated by the DSL is shown in Fig. 2.

Fig. 2. A first step in explaining the worker burnout model.

Continue the Narrative and Add a Behavior-Over-Time Graph. In a
second step we continue the narrative by including the reaction on the initial
situation:

cld %>%
link(‘perceived adequacy‘ %->% ‘hours worked‘) %>%
describe(type = "text", "As a reaction you start to work more

hours per week.") %>%
describe(type = "ref_mode", 0/.5 %)% .3/.7) %>%
plot()

4 See [8] for details about the DSL grammar and import options.
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Here, the first link statement highlights the causal chain. The describe
statements add a textual description and a BOTG.5 (Fig. 3)

Fig. 3. A second step in explaining the worker burnout model.

A Full Narrative. Adding more steps allows us to discuss the structure,
dynamic patterns, and quantitative scale of the CLD discussed in one or many
what-if scenarios.6

5 Conclusions

Even the most valuable learnings (from modeling projects) do not solve any
problems if they are not implemented. Implementation, however, might only
happen when stakeholders, from the ones deeply involved in the projects - often
not the senior decision-makers - to those only punctually involved - often includ-
ing the senior decision-makers - build trust in models, simulation results, and
identify themselves with those project results. Since qualitative results might
better fit decision-makers mental models than simulation results [5], we promote

5 Defined curve segments are: straight lines (%-%), upward (%(%) and downward (%)%)
bent segments, and s-curves (%s%). Details in code documentation.

6 An example of a complete narrative is accessible at https://fhsg.shinyapps.io/
burnout/.

https://fhsg.shinyapps.io/burnout/
https://fhsg.shinyapps.io/burnout/


432 A. Stämpfli

narratives to communicate with stakeholders of the non-quantitative kind. Our
approach combines the universality of the natural language with more formal
CLDs and BOTGs.

This allows communicating systemic complexity through three connected lay-
ers: (i) The CLD - visible in all graphics - is at the center. The CLD captures
the causal structure of the problem under study. It allows explaining the prob-
lematic systemic behavior that needs to be changed in a particular situation; (ii)
Through highlighting some aspects of the CLD and adding textual descriptions,
the CLD becomes understandable and accessible for a broad audience; and (iii)
By adding BOTGs to the visuals, the possible behavior and the quantitative
scale of the problem under study become accessible - even for stakeholders not
deeply involved.

In numerous client projects, the DSL turned out to be a very valuable
tool: (i) to develop a common problem understanding; (ii) to communicate that
understanding to stakeholders beyond the project team; (iii) to foster strategic
decision-making.

Future research is needed to (i) explore further possibilities enhancing the
DSL expressiveness; (ii) evaluate more formally what kind of learnings people
draw from CLDs visualized with the DSL; and (iii) how and to what extent the
DSL helps to bridge the gap between the people deeply involved in the project
and the ones only punctually involved.
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