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Preface

It is our strong belief that opportunities for mathematical research should be
available to all students with an interest in mathematics—not just to those who
already have expertise in the field. In our experience, engaging with research has
led students to discover a talent and passion for mathematics they didn’t even
know they had. In fact, studies show that students who participate in early-career
STEM research are more likely to remain in school, are more likely to remain in
a STEM major, perform better in upper division courses, and are more interested
in postgraduate STEM educational opportunities.1 Research experience is also a
desirable trait in private industry, as it illustrates an individual’s abilities to problem
solve.

Though there has been significant growth in research experiences in mathematics
for undergraduates at 4-year colleges and research universities, these opportunities
are often only available to upper-level students or those with significant back-
ground knowledge. Similar research experiences in mathematics for the beginning
student—that is, those in community college and early career college students—
are much rarer, even though this group stands to benefit significantly from such
opportunities.

Perhaps the biggest barrier faced by the beginning student and their faculty men-
tors is not knowing where to begin. Accessible topics for new student researchers are
often hard to find, even for experienced teachers, and finding unanswered questions
that are well suited to student projects is time consuming. Accordingly, the main
goal of these two volumes is to expand research opportunities in mathematics for
the beginning student by removing this significant hurdle. Specifically, we seek
to provide community college students, early college students, and perhaps even
advanced high school students everything they need to initiate research projects
with or without a faculty mentor, and to foster independence in research.

Each chapter in these two volumes is a self-contained, accessible article that
provides ample background material, recommendations for further reading, and
perhaps most importantly, specific projects that can be pursued immediately upon
reading the chapter. What makes these volumes different from other FURM volumes

1 Hewlett, James A. Broadening participation in undergraduate research experiences (UREs): The
expanding role of the community college. CBE-Life Sciences Education 17.3 (2018): es9.
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is that the chapters have been written for the beginning student by minimizing the
number of prerequisites. Indeed, many of the chapters require no prerequisites other
than a desire to pursue mathematics, and even the most ambitious chapters require
no more than linear algebra or introduction to proofs, both of which are typically
sophomore-level classes.

This volume is geared towards students with minimal experience beyond tradi-
tional high school mathematics. For the reader’s ease, we roughly order the chapters
by prerequisite. The first four chapters require only high school algebra, the fifth
chapter precalculus, the sixth a little probability and programming, the seventh and
eighth some exposure to calculus, and the ninth a brief introduction to proof.

In Chap. 1, “Games on Graphs,” Carlson, Harris, Hollander, and Insko introduce
three games on graphs: cops and robbers, hungry spiders, and broadcast domina-
tion. Each of these games allows for a multitude of research opportunities and
further generalizations; the games can be studied and analyzed from a variety of
perspectives, providing students an immediate area of research with very little need
for much technical or sophisticated mathematical background. Anyone who enjoys
playing board or video games should read this chapter and think about how their
favorite games can be modeled as a game on a graph.

In Chap. 2, “Mathematics for Sustainable Humanity—Population, Climate,
Energy, Economy, Policy, and Social Justice,” Wang takes the readers to confront
global challenges facing humanity and our planet. Through a sequence of
sustainability and mathematical concepts, exercises, and real-world projects, the
reader is brought along on this journey to develop an understanding of the complex
environmental, economic, and sociocultural interlinkages; to create powerful data
visualizations; to interpret and draw inferences from functions, equations, models,
and graphs; and to use the knowledge to shape competency and reach justified
decisions.

In Chap. 3, “Mosaics and Virtual Knots,” Ganzell introduces the mathematics of
knots. Of course, knots are important to sailors and rock climbers, but interesting
properties of knots can also be discovered from simple diagrams called mosaics,
formed by placing square tiles onto a grid. No mathematical knowledge other than
basic arithmetic is needed. After learning some of the notation for drawing and
describing knots, the reader will explore how to create these mosaics, trying to be
as efficient as possible. Then Ganzell introduces an abstraction known as a virtual
knot. Using mosaics to describe virtual knots is a relatively new idea with lots of
open questions to pursue.

In Chap. 4, “Graph Labelings: A Prime Area to Explore,” Donovan and
Wiglesworth introduce the reader to prime labelings of graphs. Research in prime
labelings asks the question, “Can the vertices of a graph be labeled in such a way
that the labels of adjacent vertices are relatively prime?” Several variations of prime
labelings are then introduced while the authors guide the reader through examples
and existing research. A variety of research questions for each modification, a few
of which have never been explored, are presented, thus allowing the reader to make
progress on new problems.
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In Chap. 5, “Acrobatics in a Parametric Arena,” Shelton, Henderson, and Geb-
hardt introduce parametric functions in an engaging and accessible way, examining
component graphs with single variable calculus, and indicating online resources to
complete some exercises. To illustrate, they analyze sinusoidal fits to original 2D
data from motion capture of actual acrobatic movements of juggling sticks. They
also analyze public data of cell phone subscriptions to juggle shares in a competitive
financial market, exploring various fits to the 3D data. A number of research projects
are proposed to inspire the reader to perform their own imaginative parametric
acrobatics.

In Chap. 6, “But Who Should Have Won? Simulating Outcomes of Judging
Protocols and Ranking Systems,” Lewis and Clifton introduce the mathematical
and computational skills needed to address the issues of fairness and bias in various
contests. A brief introduction to probability is provided, followed by instruction
for performing simulation experiments in R (other programming software can
easily be substituted). Detailed examples and code snippets provide the reader with
the skills needed to tackle any of the five suggested research projects, ranging
from discovering how likely it is that the two highest-ranked teams going into a
tournament end up in the championship playoff to investigating the stability and
fairness of three different voting schemes for an election. Each of the proposed
projects can be adapted to suit the interests of the reader.

In Chap. 7, “Modeling of Biological Systems: From Algebra to Calculus and
Computer Simulations,” Dimitrov et al. present an expansive view of mathematical
tools as used in modeling a variety of biological and biomedical systems. The
first two projects model a biological and a biomedical system and are accessi-
ble to anybody with knowledge of high school algebra. The final two projects
build on more advanced population and infectious disease models and require
some knowledge of calculus. The chapter introduces computational thinking and
computer-based simulations as important tools for approaching problems in modern
applied mathematics. Mathematical modelers leverage mathematical techniques
with those computational tools to tackle problems that are much more complex than
previously possible, allowing them to address more realistic and relevant societal
issues with their modeling efforts.

With the massive impact that COVID-19 has had on the lives of students,
mathematical epidemiology is a particularly timely subject. In Chap. 8, “Population
Dynamics of Infectious Diseases,” Ledder and Homp present an individual-based
epidemic model and a continuous-time SEIR epidemic model, using a presentation
that is accessible to students who have a strong background in algebra and functions,
with or without calculus. Projects focus primarily on extending the models to
novel situations, including more complicated disease histories and incorporation of
mitigating strategies such as isolation and vaccination. The projects are categorized
according to the levels of calculus and programming that are required.

In Chap. 9, “Playing with Knots,” readers will learn about how mathematicians
think about knots. Given two knots, how can you tell if they’re the same or
different? How hard is it to unknot certain knots, and how can we measure a knot’s
complexity? As if that weren’t intriguing enough, Henrich describes several games
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that can be played with knots. She reveals the winning strategies researchers have
uncovered to ensure that, when playing knot games against unwitting competitors,
they can always win. But researchers have only just scratched the surface of learning
about knot games. Can you discover winning strategies for games on knots that have
not yet been explored?

Portland, OR, USA Eli E. Goldwyn
St. Mary’s City, MD, USA Sandy Ganzell
Portland, OR, USA Aaron Wootton
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Games on Graphs: Cop and Robber, Hungry
Spiders, and Broadcast Domination

Joshua Carlson, Pamela E. Harris, Peter Hollander, and Erik Insko

Abstract

There are many types of games one can play on a graph. In this chapter, we
introduce three games on graphs: cops and robbers, hungry spiders, and broadcast
domination. Each of these games allows for a multitude of research opportunities
and further generalizations of the game, and the games can be studied and
analyzed from a variety of perspectives, providing for students an immediate area
of research with very little need for much technical or sophisticated mathematical
background. We end the chapter by describing some courses beyond calculus and
additional techniques they provide, which will allow for further study of these
games from new mathematical perspectives.

Suggested Prerequisites Curiosity and a love for games. A very basic background on graphs.
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1 Introduction

Since ancient times, humans have been fascinated with games. In fact, games
form an integral part of every human culture, and they provide us with a way to
both exercise our intellect and socialize with others. It is no surprise, then, that
mathematicians have studied ways to identify winning strategies, measure game
complexity, or determine the unsolvability of games and puzzles. Luckily for us,
there is absolutely no shortage of games in which such analyses can be performed.
Also, as most games are often simple enough to introduce, yet challenging enough
to analyze and/or solve mathematically, this setup allows a wide breadth of people
with varying mathematical backgrounds to enjoy both the play and the analysis.

In this chapter, we consider games of two types: two-player and single-player
games. In two-player games, two players alternate turns playing the game, and they
each want to figure out a way to win the game. Classical examples of two-player
games include tic-tac-toe, checkers, and chess. As expected, a single-player game
is one in which a single player is given some information or resources, and they
play a game to see if they can win by solving a task. The card game solitaire is
an example of a single-player game. Moreover, games can be played using cards,
tokens, or boards with pieces.

In our work, we focus on games we can play on a mathematical structure known
as a graph, which is made up of vertices (dots) and edges (line segments) connecting
the vertices. In order to make our approach concise, we delay all of the technical
definitions and background related to graphs until Sect. 6, and any further definitions
needed for a particular game are presented in their corresponding section. The three
games we present include a two-player game, a single-player game, and a game that
can be either.

Our first game is known as the cop and robber game. In this game, we place
a “cop” and a “robber” on the vertices of a graph. The game begins with the cop
moving from their starting vertex to an adjacent vertex (one connected via an edge),
which is followed by the robber moving to an adjacent vertex from where they
began. The goal of the game is to determine whether the cop can catch the robber,
which is when the game ends. The second game we present is called hungry spiders,
where one or more flies are stuck at fixed vertices in a web (a finite graph), and one
or more spiders try to capture them.1 Each round, the player who is trying to save the
flies, gets to choose one edge of the graph to delete in each round, and the game ends
when the player deletes enough edges to separate the spiders from the flies or when
the spiders capture a fly. The last game we present is a single-player game called
broadcast domination in which a single-player allocates “resources” on certain
vertices (called “towers”). These “resources” are then propagated to neighboring
vertices, and the ultimate goal of the game is to find an efficient placement of as
few “towers” as possible while spreading sufficient resources to every vertex on the
graph.

1 Our hungry spiders game is based on the Greedy Spiders mobile app game.
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Fig. 1 Cycle graph C6, wheel graph W6, and grid graph G2,3

Now that we know some initial information about our games, let our game
playing begin!

Game 1: Cops and Robbers Select a graph from Fig. 1, draw it large on a piece
of paper and grab a friend. Find two different tokens (coins or beads work great for
this).

Now, here are the rules: Player 1 places their token down on a vertex, and then
Player 2 places their token down on some other vertex. The players then alternate
moving their tokens along the edges to a vertex next to the vertex they are currently
on. Player 1 wins the game if there is ever a time when the tokens are on the same
vertex, and Player 2 wins the game if this can always be avoided. Who wins the
game? What if you try a different graph?

Game 2: Hungry Spiders Select a graph from Fig. 1, draw it large on a piece of
paper, grab a friend, and two or three different tokens. Now, here are the rules: Player
1 (the spider) places a token down on a vertex, and then Player 2 (the fly) places a
token down on some other vertex. The players then alternate turns, starting with the
fly. In each round of the game, the fly gets to remove one edge from the graph, and
the spider gets to move from the vertex they currently occupy along an edge to an
adjacent vertex. The spider wins the game if there is ever a time when the tokens are
on the same vertex, and the fly wins if there are no longer any paths that the spider
can follow to reach the fly. Who wins the game? What if you try a different graph?
Does the outcome depend on where the players start? What if Player 2 has to place
two flies on the graph at the start? What if Player 1 gets to place two spiders? As you
can see, there are many possible generalizations to make the game interesting, and
we believe that studying these variations could provide a wealth of undergraduate
research opportunities.

We remark that we provide Sect. 6 with a short primer on graph theory back-
ground. The reader can, as needed, refer to that section for more technical
background, and once the reader begins actively researching a topic, we recommend
reading the articles cited in this chapter (and conducting a literature review of the
articles they cite as well) to see examples of standard proof techniques in analyzing
games on graphs. We are now ready to formally introduce our games on graphs
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2 The Game of Cops and Robbers

The original game of cops and robbers on graphs was introduced independently by
Quilliot [9] and Nowakowski and Winkler [8]. The game of cops and robbers on a
simple connected graph G proceeds as follows. Begin the game at time 0 by placing
a cop and a robber on distinct vertices of G. At time 1, the robber moves from its
occupied vertex to a new vertex by walking across an edge of the graph G. At time
2, the cop moves in a similar fashion. As the cop and robber alternate turns moving
from vertex to adjacent vertex in V (G), the cop is trying to capture the robber, and
the robber is trying to elude the cop. The game comes to an end when the cop and
the robber occupy the same vertex, in which case the robber is caught. An example
of a sequence of moves (or turns) for a game of cops and robbers is illustrated in
Fig. 2.

Challenge Problem 1 Consider the game of cops and robbers on the path graph
with n vertices. If the robber and cop are placed on this graph, and the smallest
number of vertices between them is m (i.e., the distance between their respective
positions is m+ 1), then what is the maximum time the game will last when the cop
is playing optimally (always trying to reduce the distance between themselves and
the robber)?

The previous challenge problem may lead us to incorrectly assume that the cop
can always catch the robber. However, even when playing optimally this might not
be the case! Consider playing the game on the cycle graph with n ≥ 4 vertices. In
this case, so long as the starting distance between the cop and the robber is greater
than one, the cop will chase the robber around the graph forever and the game will
never end. We call such a graph a “robber win” graph.

Research Project 1 Consider graphs on at most 10 vertices (a list of many
interesting graphs is found here: https://www.graphclasses.org/smallgraphs.
html), and determine which are robber win graphs.

Fig. 2 A game of cops and robbers that ends at time 5 (cop is blue and robber is red)
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Challenge Problem 2 Consider a variation of the game of cops and robbers in
which the robber can choose to move or to remain on the same vertex each
turn, while the cop always moves on their turn trying to catch the robber. Using
this version of the game, consider again Challenge Problem 1, and determine the
maximum time the game will last under this new constraint.

In the remainder of the section, we consider a change to the way in which the
cop and robber can move as well as the game’s objective. In this variant, the initial
placements of the cop and robber occur as follows. First, the cop chooses an initial
vertex to occupy. Then, the robber can observe the initial placement of the cop
and use this information as they choose their initial vertex. For movement, suppose
the cop and the robber both are able to either remain on the same vertex or freely
move to any neighboring vertex on their respective turns. As for the objective, first,
consider the following notion of damage introduced by Cox and Sanaei in 2019 [3].

A vertex v is said to be damaged whenever the robber is able to make a move
from v (either staying on v or moving to a neighbor of v) without being caught
during the cop’s next turn. Once vertices are damaged, they cannot be undamaged.
Also note that from the robber’s perspective, simply moving to a vertex v is not
sufficient for damaging that vertex. The robber must be able to take a turn while
starting on v without immediately getting caught by the cop. For example, suppose
the cop and robber start at opposite ends of the path P10 as in Fig. 3. If the players
always move toward each other on each turn, only four vertices are damaged since
the robber is caught before they can make a move from v6.

The idea of the damage variant of the cops and robbers game is that, aside
from capturing the robber, minimizing damage might be the next best thing that
the cop can do. In this variant, optimal play for the cop minimizes the number of
damaged vertices, and optimal play for the robber maximizes that number. Note that
the initial placement step plays a role in considering optimal play since the wrong
initial placement could influence the number of damaged vertices. In [3], the authors
define the damage number of a graph G, denoted dmg(G), as the minimum number
of vertices damaged in G over all games played where the robber plays optimally.
In other words, dmg(G) is the exact number of vertices damaged in G when both
the cop and the robber play optimally. As a consequence, determining the damage
number does not always require capture of the robber.

Observe that for a given graph G and integer k, we can prove that dmg(G) = k in
two steps. First, we can prove dmg(G) ≤ k by producing a strategy for the cop that
guarantees that no more than k vertices can be damaged regardless of the robber’s
strategy. Second, we can prove dmg(G) ≥ k by producing a strategy for the robber
that guarantees that at least k vertices are damaged regardless of the cop’s strategy.

Fig. 3 The path P10 with cop (blue) and robber (red) starting at opposite endpoints
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Fig. 4 A graph G with
dmg(G) = 1

Challenge Problem 3 For each integer n ≥ 1, determine with proof dmg(Pn).

Challenge Problem 4 For each integer n ≥ 4, describe a strategy for the cop that
proves dmg(Cn) ≤ �n−1

2 �.

An interesting property of the damage variant of the cop and robber game is that
even though the cop may be able to catch the robber, this may not be optimal for
minimizing damage. For example, in the graph in Fig. 4, there is a strategy for the
cop that guarantees capture of the robber in which multiple vertices are damaged (try
to verify this). However, note that if the cop is initially placed on the blue vertex,
they can catch the robber whenever the robber moves to a white vertex. Therefore, if
the robber starts on a white vertex, no damage is done. Thus, the robber can choose
to start on a red vertex and remain there to achieve maximum damage. Either way,
the cop minimizes damage by staying in place rather than capturing the robber.

Note that by choosing a vertex of maximum degree and remaining on that vertex,
the cop can always protect �(G) + 1 vertices. This implies that for any graph G on
n vertices, dmg(G) ≤ |V (G)| − �(G) − 1 [3]. We leave it to the reader to verify
the following:

Challenge Problem 5 Graphs on n vertices with �(G) = n − 1 or �(G) = n − 2
satisfy dmg(G) = n − �(G) − 1.

In [2], the authors show that these are not the only graphs with damage number equal
to |V (G)| − �(G) − 1. This motivates the following research project (originally
posed in [3]).

Research Project 2 Give a complete characterization of all graphs G on n

vertices that satisfy dmg(G) = n − �(G) − 1.

We can also play the damage variant with k cops versus a single robber. In this
version, the objectives are the same, and the two teams (cop team and robber team)
alternate taking turns with all k cops moving simultaneously on their turn. The k-
damage number of a graph G, dmgk(G), is defined similarly to dmg(G) except k
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cops play against one robber. In [2], Carlson, Eagleton, Geneson, Petrucci, Reinhart,
and Sen define the k-damage number, but they do not determine this number exactly
for many families of graphs. This leads to the following project.

Research Project 3 Suppose we are given an arbitrary positive integer k. For
which graphs G, can we determine an exact formula for dmgk(G) in terms of
k and |V (G)|?

3 Hungry Spiders

The next set of projects concerns questions motivated by the Greedy Spiders game
created in 2011 by the indie game studio Blyts. Since we will be considering
variations, we call it the hungry spiders game. In this game, the graph G represents
a spider web where a set of flies are stuck at a subset of vertices F ⊆ V (G). The
spider(s) are allowed to move about the web following a rule or strategy, traversing
one edge at a time during their turn. In Blyts’ Greedy Spiders game, the spiders are
controlled by the computer, and each spider moves toward a nearest fly in each round
of the game. The player gets to remove one edge per turn in an effort to separate the
flies from the spider(s). The spider wins if it manages to reach any one of the flies,
and the flies win if the spider can no longer reach any of them.

Figure 5 shows a possible web and a sequence of moves in which the fly wins.
An interested reader may also watch the game in action in the official trailer using
the following link: https://youtu.be/qv0X-m1pbCw.

We now describe the game more formally in the language of graph theory. At
the start of the game, the player is presented with a simple graph G0 = (V ,E0).
The spiders are placed at some subset of vertices S0 ⊆ V , and the flies are stuck
at a subset F ⊆ V of vertices for the duration of the game. In the original version
of the game, the spiders’ moves follow a greedy rule, meaning they always move
to a vertex that decreases the distance between them and at least one of the nearest
flies. (As an aside, this particular greedy rule may not always be the optimal strategy
for the spiders to employ, and later in this section we ask what other strategies the
spiders might implement in different starting configurations.)

An instance of the game proceeds in rounds, and at the beginning of round i, we
call the current graph Gi = (V ,Ei) and the current location of the spiders Si . Each
round consists of the following two steps:

Fig. 5 A sequence of moves in which the fly wins (fly in blue and spider in red)
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1. The player picks an edge e ∈ Ei to delete from Gi = (V ,Ei), forming the new
graph Gi+1 = (V ,Ei+1)

2. The spiders jointly compute their next move according to the greedy rule, and
each spider moves to an adjacent vertex. Hence, their set of locations Si becomes
Si+1.

Throughout the game, the player’s goal is to find a sequence of edge deletions
which keep St from F for all t ≥ 0. In other words, the player wants to find a
sequence of edge deletions that disconnects the part of the graph containing the
spiders from the part of the graph containing the flies. If any spider ever reaches a
fly, the game on that graph is over, and the flies have to try again. Figure 6 shows
one such case.

While creating new levels, the game developers want to categorize the difficulty
level of various graphs and starting configurations, beginning with the ones that are
too easy. For instance, Blyts’ game starts with two warm-up levels containing a
single fly trapped on a web with a single spider.

Challenge Problem 6 Show that a single fly can win against a single spider on any
graph regardless of where the spider is placed.

We note that slight variations in a graph or the placement of the spider and flies
on the same graph can make the game much more challenging or change the game’s
outcome.

Challenge Problem 7 Determine which of the graphs in Fig. 7 are fly-win or
spider-win if both the spider and flies employ their optimal strategy.

After playing a few rounds, the reader will surely notice that if the spider can
reach a vertex that is adjacent to two or more flies, then the spider will win.

Challenge Problem 8 Construct a family of graphs and configurations of flies on
which the flies win when the spider employs a greedy rule that simply moves toward

Fig. 6 A sequence of moves on a graph in which spider wins (flies in blue and spider in red)

Fig. 7 Classify each game board as fly-win or spider-win given these starting configurations
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a nearest fly, but not if the spider employs a different strategy that moves toward the
nearest vertex that is adjacent to two or more flies. (One such example appears in
Fig. 7.)

Research Project 4 Is there a succinct classification of all graphs and con-
figurations of flies on which the flies win when the spider employs a greedy
rule that simply moves toward a nearest fly, but not if the spider employs a
different strategy that moves toward the nearest vertex that is adjacent to two
or more flies?

Finding examples of graphs with a certain property is often easy, but classifying
all graphs with that property usually takes a considerable amount of work.

Research Project 5 Classify families of fly configurations on graphs where
a set of flies win if they play optimally against a single spider.

We have already noted that a graph with only one fly is always a fly-win graph.
One sufficient condition in your classification might be configurations in which the
spider cannot reach any vertex of the graph that is adjacent to two or more flies.
Another sufficient condition might be configurations in which the flies can cut all of
the edges between their component and the spider’s before the spider can reach that
cut.

Research Project 6 Classify families of player configurations on graphs
where a set of flies win if they play optimally against two spiders.

For later levels, the game developers want graphs where the flies win, but only if
they make a series of carefully chosen edge deletions.

Challenge Problem 9 Construct a family of graphs on which the flies can win but
not without deleting at least four edges. Construct a family of graphs on which the
fly can win but not without deleting at least n edges.

Additionally, these types of questions can be explored regarding an even broader
set of graphs.
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Research Project 7 Tackle the previously stated challenge problems and
research projects on multi-graphs, i.e., graphs with multiple parallel edges
connecting vertices.

A search for greedy or hungry spiders on the https://arxiv.org2 turned up no
results, and as far as we know, there are no mathematical papers studying the hungry
spiders game. However, hungry spiders fits a larger category of graph problems
called edge deletion problems, which ask to transform an input graph into a graph
in a given, specific class of graphs by deleting a minimum number of edges. There
is a wealth of literature on edge deletion problems, and to start studying their
complexity, we recommend reading Yannakakis’ article from 1981 and any of the
many articles citing it on the SIAM website [10].

We remark that there are countless variations or additions one could make to the
game. In Blyts’ game, the player gets additional move types as the levels get more
challenging. For instance, the player can place a decoy fly that may lure the spiders
away from the real flies for a time period, or the player can delete a vertex and all
its incident edges from the graph. For further study, consider the following list of
possibilities or brainstorm your own:

• Change the spiders’ algorithm from a greedy rule or play against another person.
• Allow the player to delete one or more vertices as well as deleting an edge in

each turn.
• Place decoy flies to lure the spiders away from the real ones.
• Use a digraph as the web in which spiders must move in the direction of the arcs.
• Allow the flies the special option to teleport to a different vertex one time per

round.
• Rather than alternating turns, a coin-flip or a spinner could decide who gets to go

next. In this case, winning the game on a particular graph would also depend on
chance.

4 (t, r) Broadcast Domination

A known generalization of the process of graph domination is known as (t, r)

broadcast domination, and it is defined using the following analogy. Imagine some
vertices of a grid graph represent houses, some represent cell phone towers, and
we are allowed to freely choose which of the vertices are houses and which are the
towers. The towers all emit some signal of a known strength. The goal of this game

2 This is a repository of articles used by mathematicians to share their most recent results in a broad
range of mathematical areas.
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is to ensure that we can place towers so that all houses receive a minimum amount
of necessary signal using as few towers as possible.

In particular, we can say that each tower gives itself signal strength t (where t

is a positive integer), and its signal strength decays linearly outward from vertex to
vertex as it traverses the edges of the graph. More specifically, if a tower is located
on vertex u, then each vertex v ∈ V (G) receives signal strength t − dist(u, v) from
that tower. If there are multiple towers whose signal reaches a single house, we add
those signals together to determine the amount of signal the house receives. Given
a graph G and positive integers t and r , a (t, r) broadcast dominating set of G is a
set of vertices on which towers (with signal t) can be placed so that every vertex in
V (G) receives a total signal of at least r . The (t, r) broadcast domination number
of G , denoted γt,r (G), is the minimum size of a (t, r) broadcast dominating set in
G. Intuitively, this number is the fewest number of towers needed in G to ensure
that every vertex receives sufficient reception.

It is worth pointing out that (2, 1) broadcast domination is equivalent to the
standard notion of graph domination where each tower’s signal only reaches that
tower’s direct neighbor, and we only require that each vertex on the graph either is
a tower or is a house receiving signal from at least one tower. We refer the readers
interested in a comprehensive study in (classical) graph domination to consult the
text by Haynes, Hedetniemi, and Slater [7].

Figure 8 illustrates an example of a (3, 2) broadcast dominating set of a 3×5 grid
graph. In this example, note that the vertices of distance 2 from any tower receive
low signals (of strength 1) from each tower. However, the low signals from each
tower add together to give these vertices sufficient reception.

The study of (t, r) broadcast domination number of grid graphs originated with
the work of Blessing, Insko, Johnson, and Mauretour in 2015 [1]. In this paper, the
authors determined the broadcast domination number for various small values of t

and r for 2×n, 3×n, 4×n, and 5×n grid graphs. Consider the following challenge
problems for an opportunity to practice broadcast domination on grid graphs.

Challenge Problem 10 Show that the vertices of the 3 × 5 grid graph cannot all
receive minimum signal r = 2 from only two towers with strength t = 3.

Fig. 8 The 3 × 5 grid graph
with t = 3 towers (shown in
red) placed at positions (1, 1),
(3, 3), and (1, 5). The signal
receptions are shown on the
vertices
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Challenge Problem 11 Describe how to find a minimum (2, 2) dominating set on
a 3 × n grid graph for each n ≥ 3.

Challenge Problem 12 Describe how to find a minimum (2, 2) dominating set on
a 4 × n grid graph for each n ≥ 3. [Hint: it is known that the (2, 2) domination

number of G4,n is 2n −
⌈

n−6
4

⌉
.]

While exact formulas for some (t, r) broadcast domination numbers exist,
extending this work is still an open area of research, leading to the following
research project (originally posed in 2020 in [6]).

Research Project 8 Find formulas for the (t, r) broadcast domination num-
ber for grid graphs Gm,n with m ∈ {2, 3, 4, 5}, n ∈ N, and (t, r) different
from (2, 2), (3, 1), (3, 2), (3, 3).

We can even think of converting these grid graphs into cylinders by “gluing”
the right and left ends of the grids as follows: for every row, simply connect the
rightmost and leftmost vertices of that row by an edge. Now, we can consider the
following research project.

Research Project 9 Given a grid graph Gm,n and values t, r , connect the
vertices in the rightmost column of Gm,n to those in the leftmost column with
edges, and find formulas for the (t, r) broadcast domination number of the
resulting graph.

Another potentially fruitful area of research is to find patterns for efficient
broadcast domination in graph families which are altogether different from grid
graphs. Consider the following challenge problem to practice thinking about
broadcast domination for other graph families.

Challenge Problem 13 Let t > r ≥ 1. What is the (t, r) broadcast domination
number of a complete graph on n vertices?

There are many more families for which nothing is known about broadcast
domination. The following research project provides an opportunity for great
discovery.
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Research Project 10 Determine the (t, r) broadcast domination number of
various families of graphs. As a starting point, consider the Petersen graph,
cycles, trees, and complete graphs (see Sect. 6 for definitions of these graph
families).

It is also possible to study broadcast domination in the context of various
common graph operations. The following challenge problem highlights how the
(t, r) broadcast domination number may change after performing these operations.

Challenge Problem 14 Suppose t and r are integers with 1 ≤ r < t . Construct a
graph G for which deletion of any edge results in an increase of the (t, r) broadcast
domination number. Construct a graph G on which deletion of any edge does not
affect the broadcast domination number.

Further study of the intricacies of vertex and edge deletion (and other graph
operations) may lead to interesting findings and a greater understanding of the
changes in (t, r) broadcast domination number as one transitions from one graph
to another using those operations. This leads to the following research project.

Research Project 11 Study the effects of various graph operations on (t, r)

broadcast domination number of a graph. How does this number change when
an edge or a vertex is deleted? How does the (t, r) broadcast domination
number of a graph G compare to that of its complement G? How about when
an edge is subdivided (i.e., we add a vertex x to V (G) and replace an edge
(u, v) with edges (u, x), (x, v))?

A process that has just been proposed within the past year is that of directed
broadcast domination [5]. Given a graph G, orient each of its edges to create an
orientation �G of G. Now, the process of directed broadcast domination works in �G
much like in G, except we only allow signal to travel in one direction along the arcs
of �G.

Note that the directed (t, r) broadcast domination number of �G may change
depending on which orientation �G we choose. To this end, define the (t, r)

directed broadcast domination interval of a graph G, denoted (t, r) DBDI(G), to
be the smallest closed interval that contains all possible (t, r) directed broadcast
domination numbers of �G taken over all orientations of G.

Challenge Problem 15 What is the (3, 2) directed broadcast domination interval
of the cycle on six vertices?
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The following project in directed broadcast domination explores the bounds of
this interval for various families of graphs.

Research Project 12 Given values of t and r , what are the maximum and
minimum values in the (t, r) DBDI of various families of graphs?

Graphs may also be studied within a probabilistic context using randomness.
The following problem highlights (t, r) broadcast domination as a problem in
probability.

Challenge Problem 16 Let t = r = 2. For each x ∈ {1, 2, 3, 4, 5}, what is the
probability that a randomly selected set of vertices of size x is a (t, r) broadcast
dominating set of a path on 5 vertices?

One can imagine a real-life application of random (t, r) broadcast domination.
For example, in some computer networks, the network “hosts” may be shuffled
around randomly within a group from time to time with some arrangements more
optimal than others. This creates a very applicable area of research.

Research Project 13 Given an arbitrary graph G and fixed values t and r ,
what is the probability that a randomly selected set of vertices is a (t, r)

broadcast dominating set?

Lastly, there are many ways in which broadcast domination can be altered to
produce entirely new fields of research. One potential direction for study is to alter
the way in which signal decays over the edges of a graph. For example, consider the
following research project.

Research Project 14 Study (t, r) broadcast domination when signal decays
nonlinearly over edges. One example of this is to reduce the signal by half
across every edge. Note that when r = 1, this process resembles exponential
domination, described in detail in [4].
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5 Further Investigation

As we have seen, many problems in analyzing games on graphs, such as the ones
we presented in this chapter, can be pondered with relatively little mathematics
background. This makes games on graphs an incredibly accessible area of study for
students who are curious and willing to learn and play. Yet we have only presented
very few of the many ways in which these games can be studied. In fact, with
more background in probability, combinatorics, linear algebra, and abstract algebra,
students could continue exploring the games we presented with new techniques.
Such investigations could easily lead to research projects for undergraduate theses
or even lead to Ph.D. dissertation projects in mathematics. We encourage students to
continue in their mathematical journey, keep asking questions, but more importantly
have fun while playing games!

6 A Short Primer on Graph Theory

We begin by introducing some needed mathematical background and notation. A
graph G is defined by a set of vertices (dots), denoted by V (G), and a set of edges,
denoted by E(G), where an edge is drawn as a line segment connecting two vertices.
If the graph G is clear from context, we write V and E for the vertex and edge sets,
respectively. If an edge e connects vertex u to vertex v, we say that u and v are
endpoints of e, and we often write e = uv. Furthermore, every edge is said to be
incident to its endpoints. When we say a graph is finite, we mean that the number of
vertices is finite, and when we say the graph is simple, we mean that every edge must
have two distinct endpoints (no loops), and there can be at most one edge incident
to any pair of distinct vertices (no parallel edges). Throughout this chapter, we will
always assume that G is a finite simple graph. Table 1 illustrates some common
families of finite, simple graphs.

Note that the m×n grid graphGm,n has vertices arranged into an array consisting
of m rows and n columns. Therefore, the grid graph as drawn in Table 1 is denoted
as G2,3. Another simple graph that is particularly important in graph theory is
called the Petersen graph. The Petersen graph has 10 vertices and 15 edges and
is illustrated in Fig. 9.

If a graph G is not a member of a well-defined family, or if it does not already
have a special name, we can still describe G using a variety of terms and concepts
from graph theory. For instance, we say that a graph is connected if, given any two
vertices u and v, we can find a way to “walk” from u to v by traveling along the
edges of the graph to get from one vertex to another. Note that the graphs shown in
Table 1 and Fig. 9 are indeed connected. We say a graph contains a cycle of length n

if we can find a vertex u and a “walk” along n distinct edges of the graph that allows
us to begin and end at the vertex u. Note that the wheel graph W6 illustrated in
Table 1 contains many cycles of length three. Graphs that are connected and contain
no cycles are called trees. The path graph Pn and the star graph Sn are the only
graphs listed in Table 1 that are trees for each integer n ≥ 1. Do note that the grid



16 J. Carlson et al.

Table 1 Each row describes a family of finite, simple graphs and depicts an example on 6
vertices.

Name Notation Vertices Edges Example (on 6 vertices)

Path Pn n n − 1

Cycle Cn n n

Star Sn n n − 1

Wheel Wn n 2(n − 1)

Complete graph Kn n
n(n − 1)

2

Grid graph Gm,n mn (m − 1)n + (n − 1)m

Fig. 9 The Petersen graph
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graph Gm,n is a tree whenever m = 1 or n = 1, and this happens because then G1,n

is a path graph on n vertices and Gm,1 is a path graph on m vertices.
Graph connectedness is a binary property. In other words, for a graph to be

connected, there must exist at least one way to get from any vertex of the graph
to any other by traversing (“walking”) along the edges of the graph. If such is not
the case for merely one pair of vertices, then the graph is not connected. However,
there may actually be multiple ways to do a walk. In light of this, we might want to
be as efficient as possible in our “walking” and only traverse the minimum number
of edges required to get from vertex u to vertex v. This is the concept of distance
within a graph, which is defined as the minimum number of edges we can “walk”
along to get from vertex u to vertex v. The distance between u and v is denoted by
dist(u, v). By convention, if we cannot find a “walk” that allows us to go from u to
v, then dist(u, v) = ∞.

There are many other definitions that allow us to describe the structure of a graph.
We begin with the following. Two vertices that are both incident to the same edge
are said to be adjacent and are often called neighboring vertices or simply neighbors
for short. The degree of a vertex v in a simple graph, denoted deg(v), is the number
of vertices in V (G) that are adjacent to v. The maximum degree of a graph G,
denoted �(G), is the maximum value of deg(v) taken over all vertices v ∈ V (G).
Alternatively, the minimum such value, denoted δ(G), is the minimum degree of G.
For example, the Petersen graph G (in Fig. 9) satisfies that deg(v) = 3 for every
vertex v, so that means that δ(G) = �(G) = 3, whereas the star graph S6 has
5 vertices with degree one and one vertex with degree five, hence δ(S6) = 1 and
�(S6) = 5. In general, δ(Sn) = 1 and �(Sn) = n − 1 for n ≥ 1.

There are also many useful operations that we can perform on graphs. To delete
an edge from a graph G, we simply remove the edge from E(G). To delete a vertex
v from a graph G, we remove v from V (G), and we remove from E(G) any edge
that is incident to v. If S ⊆ V (G) ∪ E(G), the graph obtained from G by removing
the vertices and edges in S is denoted by G − S. For example, Fig. 10 illustrates
taking the complete graph on six vertices and deleting a vertex along with the edges
incident to it. The complement of a simple graph G, denoted G = K|V (G)| − E(G)

the graph obtained by deleting all the edges of G from the complete graph K|V (G)|.

Fig. 10 Deleting the vertex v from K6
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Fig. 11 In each subfigure, S is made up of the colored vertices. Left: a set S, which does not
dominate the Petersen graph. Center: a set S, which dominates the Petersen graph. Right: a set S,
which dominates the Petersen Graph with a minimum number of vertices

Fig. 12 An example of a digraph, which is an orientation of P6

Sometimes, we are interested in certain subsets of V (G) with special properties.
Given a graph G, a dominating set of G is a set of vertices such that any vertex in
the graph is either in the set or adjacent to a vertex in the set.

When S is a dominating set of graph G, we say that S dominates G. Note that
for any graph, selecting every vertex of the graph will always lead to a dominating
set. We might then ask how much smaller we could make the size of a dominating
set. That is the idea behind the domination number of a graph. The domination
number of G, γ (G) is the minimum size (order) of a dominating set of G. For
example, Fig. 11 illustrates a subset of vertices of the Petersen graph G which does
not dominate G, another which does, and a third which does so with a minimum
number of vertices possible.

In a directed graph (or digraph), the edges (also called arcs) are ordered pairs
of vertices. This gives a direction to the edges because in a digraph �, it is possible
that (u, v) ∈ E(�), yet (v, u) /∈ E(�). We can draw the arc (u, v) as an arrow that
points from u to v. In this case, u is called an in-neighbor of v and v is called an
out-neighbor of u. In Fig. 12, we orient the edges of the path graph P6 to create a
digraph. If � is a digraph and v ∈ V (�), the in-degree of v, denoted deg−(v), is
the number of in-neighbors of v in V (�). Likewise, the out-degree of v, denoted
deg+(v), is the number of out-neighbors of v in V (�). If we start with a simple
graph G and replace each edge uv ∈ E(G) with either the arc (u, v) or the arc
(v, u), the resulting digraph is called an orientation of G. Note that Fig. 12 is an
orientation of the path graph P6.
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1 Introduction

Every investigative journey begins with guiding questions, such as:

• Can economic growth last?
• How big is the inequality gap?
• Is renewable energy growing fast enough?
• Is our climate headed for a mathematical tipping point?
• How long can our biological systems remain diverse and productive?
• How much CO2 emissions result from consumption of bottled water and paper

coffee cups on your school campus each day?

These are sustainability questions. The concept of sustainability is born out of the
desire of humanity to continue to exist on planet Earth. It has evolved far beyond
the ecological context. Today, it addresses the idea of a global society founded
on respect for nature, universal human rights, economic justice, and a culture of
peace [9]. Sustainability is the ability of humanity to meet the needs of the present
generation without compromising the ability of future generations to meet their own
needs [6]. It is of vital importance and will affect everyone.

Sustainability is a highly interdisciplinary subject. It draws on diverse perspec-
tives, including scientific, technological, political, ethical, and religious. The three
dimensions (or pillars) of sustainability are environmental protection, economic
development, and social well-being, illustrated in Fig. 1. These three elements form
an integrated, cohesively interacting system.

Sustainability is becoming increasingly urgent. The immense and rising needs
of humanity have posed a threatening impact on the climate, biodiversity, and
freshwater supplies. The global assessment report on biodiversity and ecosystem
services, released in 2019 by the United Nations’ Intergovernmental Science-Policy
Platform on Biodiversity and Ecosystem Services (IPBES), assessed the status of
biodiversity and human impact on the environment [27]. Over the past 50 years,
the Earth’s biodiversity has suffered a catastrophic decline, and its ecosystems have
been degraded at rates unprecedented in human history.

The large net gains in economic development are achieved at substantial costs of
environmental destruction and loss of diversity of life on the Earth. This inevitably

Fig. 1 The three dimensions
of sustainability
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results in harmful consequences to human well-being, growing inequities, and
social conflict. Both the society and economy must be supported by a functioning
environment. Reversing the degradation of nature while meeting the increasing
demands will involve significant changes and enactment in policy, practice, and
institution. This is a fundamental challenge that we must collectively face and tackle.

Mathematics plays an important role in identifying, measuring, and analyzing the
issues. Mathematical models not only help us understand the natural phenomena but
also allow us to describe the changing process and predict the future. Mathematics
provides key tools to evaluate the evidence, quantify the effects, assess the risks, and
suggest hypotheses to inform science and public policy.

This chapter will introduce the essential concepts of sustainability and help
you gain the mathematical knowledge, so that you can apply it to address the
challenges facing our planet. Five real-world projects will lead you to examine the
impact brought to our society, economy, climate, and natural resources. Each project
is independent. Collectively, they cover the multifaceted nature of sustainability.
In addition, you will work with the latest wide range of data, create powerful
visualizations, interpret and draw inferences from functions, equations, models, and
graphs, as well as developing an understanding of how data can be used to make
different arguments. You will gain insights from the mathematics and science of
resilience and fold them into policy decisions.

This chapter aims to guide you to make a connection between mathematics
and real-life issues we care about, to engage in critical thinking and quantitative
reasoning, to develop step-by-step problem solving skills, to use the knowledge to
shape competency and reach justified decisions, and to empower yourself to become
an active citizen.

2 Quantifying Change

How big is the CO2 emission? What is the significance of the value? This naturally
leads to the question of metrics—how to measure and estimate?

2.1 Absolute and Relative Change and Rate of Change

Ratios and percentages are commonly used to measure the level of growth or decay.
They are unit-free measures. For example, the energy payback ratio of an electrical
power generating plant is the ratio of the electrical energy produced to the energy
costs of building, operating, and decommissioning the facility.

Energy payback ratio = electrical energy generated/energy consumed by facility
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Exercise 1 A natural gas-fired electrical plant produces 13,600,000 gigajoules of
electricity per year at a cost of 3,200,000 gigajoules of energy per year (giga = 109).
What is its energy payback ratio of this facility?

Coal and gas-fired power plants have energy payback ratios in the range of 3–5,
while wind-driven power plants have energy payback ratios in the range of 18–34
[5].

Percentage is a type of ratio. For example, the monthly average concentration
of CO2 in the atmosphere in April 2021 and April 2020 was 419.05 ppm and
416.45 ppm, respectively [41], with ppm standing for parts per million by volume.
We can express 419.05 ppm as a percentage:

419.05 ��m3 [CO2]
1,000,000 ��m3 [atmosphere]

= 0.041905

100
= 0.041905%

The April CO2 concentration has increased in one year by

419.05 ppm − 416.45 ppm = 2.60 ppm

This is the total change, or absolute change, which is the actual increase or
decrease amount of a quantity: Q1 − Q0. Another way to quantify change is to
use the percentage change, or relative change, which is the percentage by which
a quantity increases or decreases: (Q1 − Q0)/Q0 for nonzero Q0.

In the above example, the one-year percentage increase of CO2 concentration is

(419.05 − 416.45) ppm

416.45 ppm
= 2.60 ��ppm

416.45 ��ppm
≈ 0.0062 = 0.62%

We can further calculate the growth factor as 1 + percentage change, that is,

1 + 0.0062 = 1.0062

Observe: What do you notice?

This is exactly the ratio between the two amounts: Q1/Q0 (Q0 �= 0). This defines
the growth factor if Q1 > Q0, or if the percentage change is positive (increase),
and the decay factor if Q1 < Q0, or if the percentage change is negative (decrease).

Now that we have seen different ways change can be measured, can we get a
sense of how fast something is changing? For example, suppose a population grew
by 10%, is it growing fast or slow? That depends on how long it took. This rate
at which something changes can be quantified by the average rate of change, the
amount of change over one time unit: (Q1 − Q0)/

�
t . As opposed to ratio and

percentage, this measure has units.
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Exercise 2 What is the growth or decay factor and annual percentage change if a
population doubles each year? Triples each year?

Exercise 3 The table below gives the global temperature anomaly and September
Arctic sea ice extent in 1980 and 2020.

1980 2020

Global temperature anomaly 0.23 ◦C 0.92 ◦C

September Arctic sea ice extent 7.67 million square kilometers 3.93 million square kilometers

For the temperature anomaly and Arctic sea ice extent respectively,

(a) What is the growth/decay factor? Keep 4 decimal places.
(b) What is the total change?
(c) What is the percentage change? Specify increase or decrease.
(d) What is the average rate of change?

Include appropriate units when applicable.

Think What will happen to a quantity if the total change (absolute change)
remains constant over equal periods of time? What if the percentage change
(relative change) remains constant? What will happen to the rate of change?

With your thoughts in mind, let us explore these relationships and make
connections.

2.2 Linear and Exponential Change

Suppose a population group A starts with 100 people. It grows by 22 people during
any 2-year period. This means that the total change for population A is the same.
The population size over time is listed in the following table. Do a quick check
yourself.

Exercise 4 Plot the data. What do you observe? What would happen if the trend
continued? Find the average rate of change over each 2-year period (in units of
people per year). What do you notice in the rate of change?
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Current 2 years 4 years 6 years 8 years 10 years

Population A 100 122 144 166 188 210

0–2 years 2–4 years 4–6 years 6–8 years 8–10 years

Population A

Through this exercise, we see that if the total change remains constant over equal
periods of time, then the quantity follows a linear growth (or decay) and the rate of
change is a constant. We can express the change using a linear function and project
future values. Let x be the number of years since the starting year, and let y be the
corresponding number of people. Then, population A follows a linear function

y = 100 + 11x,

where 100 is the starting value and 11 is the constant rate of change. After 10 years,
we would have y = 210, as previously obtained in the table.

Suppose another population group B also starts with 100 people. It grows by 20%
during any 2-year period. This means that the percentage change for population B
is the same. The population size over time is listed below, with values rounded to
the nearest integers. You may calculate yourself.

Current 2 years 4 years 6 years 8 years 10 years

Population B 100 120 144 173 208 250

Exercise 5 Plot the data. What do you observe? What would happen if the trend
continued? Calculate the growth factor for population B. Find the average rate of
change over each 2-year period. What do you notice in the rate of change?

0–2 years 2–4 years 4–6 years 6–8 years 8–10 years

Population B

Through this exercise, we see that if the percentage change remains constant over
equal periods of time, then the quantity follows an exponential growth (or decay)
and the growth (or decay) factor is a constant, but the rate of change increases. We
can express the change using an exponential function for Population B,

y = 100 · (1.2)x/2
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Think Can you explain where the 1.2 comes from and why the exponent is
x/2?

Now, let us put the two populations together for comparison.

Current 2 years 4 years 6 years 8 years 10 years

Population A 100 122 144 166 188 210

Population B 100 120 144 173 208 250

Rate of change:

0–2 years 2–4 years 4–6 years 6–8 years 8–10 years

Population A

Population B

Exercise 6 What do you notice in the data? Plot the data together. What do you
observe? Predict the population sizes for A and B after 50 years using the linear and
exponential functions, respectively.

To summarize, a linear function takes the form

y = mx + b,

where m represents the constant total change of y for each 1-unit increase in x, and
b represents the initial amount of y at x = 0. The graph is a straight line with slope
m and y-intercept b. An exponential function takes the form

y = b · (c)x/n,

where b stands for the initial amount, c is the constant growth/decay factor, and n is
the time period for c. Exponential growth is much faster than linear growth.

Exercise 7 Which of the following scenarios describes a linearly changing quan-
tity? Which describes an exponentially changing quantity? Give a brief reason.

(a) The September Arctic sea ice is declining at a rate of 13% per decade.
(b) The New England herring gull population has been doubling every 15 years.
(c) The rain was falling about two inches every hour during hurricane Florence.
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Did YouKnow? Since the dawn of civilization, the wild mammal biomass has
fallen by 82%; natural ecosystems have lost about half their area. A million
species are currently threatened with extinction, including more than 40%
of amphibians, over a third of marine mammals, and nearly a third of reef-
forming corals [27].

2.3 Measuring and Estimating

Carbon footprint is the amount of emissions caused by an individual, organization,
or activity, expressed as carbon dioxide equivalent. US greenhouse gas emissions
totaled 6.6 billion metric tons of carbon dioxide equivalents in 2019 [17]. Carbon
dioxide (CO2) accounted for 80% of the total, among others including methane
(CH4), nitrous oxide (N2O), and fluorinated gases. The sources of greenhouse gas
emissions by economic sector in the USA are illustrated in Fig. 2. Transportation is
the largest sector, accounting for 29% of greenhouse gas emissions in 2019. Light-
duty vehicles contributed to 58% of the transportation sector emissions.

The average carbon footprint for a person in the USA was 16.1 tons in 2019,
one of the highest in the world. Globally, this average was 4.7 tons in 2019 [25].
Lowering individual carbon footprints from 16 to 5 tons does not happen overnight.
What percentage decrease is that? By making small changes to our actions, we can
start making a big difference. How do we calculate the carbon footprint? How can
one estimate the size, value, and significance of personal carbon emissions?

Exercise 8 How Big Is Your Breakfast Carbon Footprint?

In this simple exercise, you will take your everyday breakfast food items and
estimate the associated carbon footprints. We use the following formula [10]:

Greenhouse Gas Emissions = D × W × EF

D = The distance your shipment has traveled
W = The weight of the shipment
EF = The mode’s specific emissions factor
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Fig. 2 Top: 2019 US greenhouse gas emissions by economic sector, in pie chart. Bottom: US
transportation sector greenhouse gas emissions by source, in column chart. Totals may not add to
100% due to rounding. “Other” sources include buses, motorcycles, pipelines, and lubricants. Data
source: US Environmental Protection Agency (EPA) [18]

The average freight truck in the USA emits 161.8 grams of CO2 per short ton-
mile [11]. This is the emission factor (EF).

Note: the short ton is commonly used in the USA, known as “ton” or US ton.

1 US ton = 2,000 lb (or 907.2 kg)

It is distinguished from the metric ton, known as “tonne” or the long ton.

(continued)
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1 tonne = 1,000 kg (or 2,204.6 lb)

1 US ton = 0.9 tonne, 1 tonne = 1.1 US ton

Only three countries—Liberia, Myanmar (formerly, Burma), and the USA—
have not adopted the International System of Units (SI, or metric system) as
their official system of weights and measures. Liberia uses the US customary
system (USCS), and Myanmar uses the UK Imperial system.

Two examples of the unit factor method for unit conversions are demonstrated
below. You may refer to [2] for more examples and conversion factors between the
metric and US systems.

1 ton = 1 ��ton × 2000 �lb
1 ��ton

× 0.4536 kg

1�lb
= 907.2 kg

The second example demonstrates how to put the volume of fresh surface water
on the Earth [54] into perspective:

104,590 km3 = 104,590 ��km3 × 1 Lake Superior

12,000 ��km3
= 8.7 Lake Superiors

Use the following table to guide you through the calculations. Add more rows
if needed. For simplicity, we will only look at the fraction of carbon footprint
associated with transportation. Identify your breakfast item, its weight, and origin
(printed on the package) and obtain the mileage from the origin location to your
home (or a local store) with Google map. Then, use the greenhouse gas emissions
formula to calculate the carbon cost. Include all units in your calculations and be
careful with unit conversions.

Breakfast food item Origin Miles Weight (g) Carbon cost (g of CO2)

Here is an example for half-gallon milk, comparing two options in a local store.
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Tip We human beings are not always able to grasp very large or very small
numbers or units of measurement that do not relate to a familiar scale. If we
can express a measurement in terms of more familiar quantities, it can help
make sense. Keep this in mind when you try to understand or express the
significance of a quantity.

To make sense of the amount of CO2, let us convert gram to volume cm3, and
determine how many volleyballs can be filled. The calculation is similar to the
example of unit factor method for visualizing the amount of fresh surface water
on the Earth. The molecular weight of CO2 is 44 g per mol. One mol of ideal
gas occupies 22.4 liters at 1 atmosphere and room temperature. The diameter of
a volleyball is 8.15 in, or 20.7 cm, so the radius is 10.35 cm.

What is the volume of the volleyball? How many volleyballs can be filled by the
CO2 emissions from merely transporting your breakfast food items?

Breakfast food item Origin Miles Weight (g) Can fill # volleyballs

Now, we can get a better handle in comparing the carbon footprint of these two
milk options.

An infographic visualization is shown in Fig. 3, which is one simple yet powerful
way to present data. You have just reasoned yourself one of the many motivations
for buying local and why it is better for the planet.

For more information about carbon footprint reductions, visit EPA [16]: carbon
footprint calculator and greenhouse gas equivalencies calculator.
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Fig. 3 Volleyballs filled by CO2 emissions from transporting half-gallon local vs. nonlocal milk

Did You Know? The global disposable paper cups market reached a volume
of 263 billion units in 2020 [15]—enough to go to the moon and back 30 times
if placed end to end! Over 150 million disposable paper cups are thrown away
in the USA each day—enough to circle the equator once in less than 3 days!
The sheer number of cups is clearly staggering, but the real controversy is that
these cups are not being recycled—small paper cups, BIG plastic problem!

Most paper cups for consuming coffee, tea, soups, and soft drinks are lined with
a thin layer of plastic—polyethylene (PE). This not only prevents leaking but also
makes the cup non-recyclable, which comes as a surprise to many. It takes about 30
years for such a cup to decompose [60]. These cups must go to special recycling
facilities that can remove the plastic laminate from the exterior of the cup. Few
recycling facilities can process this. It is estimated that the manufacture of every 4
paper cups results in one lb of CO2 emissions. Just consuming one cup of coffee in
a disposable paper cup every day will end up creating about 23 lbs of waste in one
year.

It is not just the paper cup that is an environmental nightmare. Other plastic-
coated paper products include paper plates, milk cartons, and juice cartons. Studies
show conclusively that microplastic fragments (less than 5 millimeters in length, or
about the size of a sesame seed) shed from all plastic-coated samples in finished
compost, posing a significant risk to soil, freshwater, wildlife, and humans [3].
Microplastic was found in the gut of every single sea turtle examined from all seven
marine turtle species, across the Atlantic, Pacific, and Mediterranean [7].

Plastic is everywhere. Plastic bottles and bottle caps rank as the third and fourth
most collected plastic trash items in the Ocean Conservancy’s annual beach cleanups
in more than 100 countries [34]. Plastic bottles take at least 450 years to decompose.
Only 1 in 5 plastic bottles gets recycled. The energy required to produce and
transport plastic water bottles could fuel 1.5 million cars for a year [60].
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Exercise 9 How much CO2 emissions result from consumption of bottled
water and paper coffee cups on your school campus each day?

Suppose 200 cups of hot coffee and 125 bottles of water are sold on your school
campus each day (for a 2,200-student campus). You may obtain better estimates of
these numbers based on your school size. Similar to the method from Exercise 8,
estimate the amount of CO2 emissions from consumption of paper coffee cups and
bottled water on your school campus, assuming that bottled water transportation
is within 300 miles. For simplicity, you may consider only the fraction of CO2
emissions from paper coffee cup manufacture (0.25 lbs per cup) and bottled water
transportation (300 miles distance).

Photographer Chris Jordan uses large format photography to portray the extent
of our mass consumptions. His images confront the enormous power of humanity’s
collective will, calling for cultural self-inquiry and self-awareness. Among many
intriguing works, his “Paper Cups” (5 feet by 8 feet, 2008) [31] depicts 410,000
paper cups, equal to the number of disposable hot-beverage paper cups used in the
USA every 15 min (in 2008). The number of paper cup consumptions has more than
tripled since 2008. His “Blue” (5 feet by 5.8 feet, 2015) [32] depicts 78,000 plastic
water bottles, equal to 1/10, 000th of the estimated number of people in the world
who lack access to safe drinking water.

Takeaway Bring your own mug. Refill your water bottle. Small actions can
lead to a huge impact!

3 Population Growth and Ecological Footprint

The world population has grown rapidly, from approximately 2.6 billion in 1950 to
7.8 billion in 2020. The increase in population and resource consumption has put an
enormous amount of pressure on our planet, making it harder to sustain on a planet
that is after all finite. Humanity needs to embrace some significant actions to shrink
our ecological footprints.

What is an ecological footprint? The ecological footprint is the only metric that
measures how much nature we have (supply) and how much nature we use (demand)
[22]. It not only helps us understand our personal impact on the planet but also
gives us a better sense of the ecological impact of cities, nations, and the global
community.

On the demand side, the ecological footprint measures the ecological assets
required to produce the natural resources consumed (including food, fiber, livestock,
fish, timber, and space for urban infrastructure) and to absorb waste. On the supply
side, the biocapacity represents the productivity of its ecological assets (including
cropland, grazing land, forest land, fishing grounds, built-up land, and carbon uptake
land). This supply–demand balance is vital for sustainable development.
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Research Project 1
In this project, you will explore the demand on ecological resources and supply

available and gain an insight of how sustainably we are living.

Part 1. Population Projection
Obtain the latest population data (xlsx) from the United Nations, Department

of Economic and Social Affairs [51]. The data list the total population by region,
subregion, and country, annually from 1950 to present (in thousands). You may
examine the world population as a whole or choose a country, and work with Excel
(tutorial [21]) or Google Sheets (tutorial [26]). Here, we will use the population
of the USA as an example: from 158,804.397 in 1950 to 331,002.647 in 2020, in
thousands.

Part 1 Guiding Questions:

(a) What is the annual change and annual percentage change of the population for
the years 2015–2020?

(b) Create a scatter plot for the US population from 1950 to 2020. Add a linear
trendline and display the trendline equation (keep 3 decimal places). Insert your
graph here and write down your trendline equation. This is your model.

(c) You should observe that from 1950 to 2020, population growth in the USA has
been nearly linear, indicated by your graph. Use your trendline equation to find
the model population for the years 2000, 2010, and 2020.

(d) How good is the model? What is the error between actual population and model
population for 2000, 2010, and 2020, respectively? What is the percentage
error?

Error = model – actual

Percentage error = (model – actual)/actual

(e) From your model, when will the population of the USA first reach 400 million
people?

(f) Use your model to make population projections for the years 2050 and 2100.

Part 2. Ecological Footprint and Biocapacity
Recall that the ecological footprint represents the demand on our ecological

resources, whereas the biocapacity represents the supply available. They are
measured in the unit of “global hectare” (gha). A global hectare is a biologically
productive hectare with world average biological productivity for a given year.

The Global Footprint Network tracks the ecological footprint and biocapacity
of all countries since 1961 [24], using the United Nations data. The trends in the
USA between 1961 and 2017 are plotted in Fig. 4, for the total and per capita gha,
respectively. The USA is in a state referred to as overshoot.

Overshoot occurs when humanity’s demand on the ecosystem exceeds its
supply or regenerative capacity. This leads to a depletion of Earth’s life supporting
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Fig. 4 The ecological footprint and biocapacity of the USA from 1961 to 2017. Top: total gha in
billions and bottom: gha per capita. Data source: The Global Footprint Network 2021 [24]

natural resources and a buildup of waste. A country experiencing overshoot may
have to import goods, energy, or other products.

Part 2 Guiding Questions:

(a) The total biocapacity of the USA is seen increasing slightly (Fig. 4 top), but the
per capita biocapacity is declining (Fig. 4 bottom). Why?

(b) In 2017, the US per capita ecological footprint was approximately 8.0 gha per
person, while the per capita biocapacity was approximately 3.4 gha per person.
What was the biocapacity deficit? Include units.

Biocapacity Deficit (Reserve) = per capita biocapacity – per capita ecological

footprint, if negative (positive)

(c) A linear decreasing trendline is observed for the per capita biocapacity (Fig. 4
bottom). If this trend continues, what would happen?
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Fig. 5 US and world ecological footprint by land type from 1961 to 2017. Data source: The Global
Footprint Network 2021 [24]

(d) Visit the Global Footprint Network Map [24]. Find another country with
Biocapacity Deficit (−) and one country with Biocapacity Reserve (+) for 2017
(or the latest year available). Include units.

Biocapacity Ecological footprint Biocapacity deficit (–)

Country (per capita) (per capita) Biocapacity reserve (+)

Part 3. Carbon Footprint Reduction
The carbon footprint accounts for the majority of the ecological footprint in the

USA, being over 70% in recent decades, as shown in Fig. 5, along with the world



Mathematics for Sustainable Humanity 37

view. When the carbon footprint is reported within the context of total ecological
footprint, the tonnes of carbon dioxide emissions are expressed as the amount of
productive land area required to sequester those carbon dioxide emissions [23]. This
tells us how much biocapacity is necessary to neutralize the emissions from burning
fossil fuels. In 2017, the US per capita ecological footprint of consumption of carbon
uptake land was 5.74 gha per person, while the world average was 1.69 gha per
person [24].

How much carbon footprint in the USA needs to be reduced per decade with the
objective of ending overshoot by 2050? To approach this question, let us hypothesize
a policy scenario. For easier calculations, we will use the 2010 data instead of the
most recent 2017 data. The total carbon footprint in 2010 was 2.06 billion gha.

Part 3 Guiding Questions:

(a) Suppose policies had been adopted after 2010 that would require a reduction of
total carbon footprint by 18% every 10 years up to 2050. Would the total carbon
footprint decrease linearly or exponentially over time?

(b) What would be your projections for the total and per capita carbon footprint for
2050? You will need to use the 2050 population projection obtained in Part 1 for
the per capita estimation. Keep 2 decimal places.

(c) Assume that the per capita footprints for the rest land types are unchanged from
2010, the sum being 2.20 gha per person. What would the per capita ecological
footprint be in 2050?

(d) The linear decreasing trendline (Fig. 4 bottom) predicts a per capita biocapacity
of 2.52 gha per person in the USA in 2050. Compare this with your results from
(c). Is overshoot being eliminated?

(e) More aggressive reductions must be required. What would you propose for the
carbon footprint reduction, as well as other land types?

4 Climate Change

Carbon dioxide is the largest contributor of greenhouse gases, followed by methane.
Human activities are emitting carbon dioxide into the atmosphere faster than natural
processes can take it out. Over the past 170 years, the atmospheric concentration
of CO2 has been raised by 47% above the pre-industrial level found in 1850. The
CO2 levels today are higher than at any point in at least the past 800,000 years,
as shown in Fig. 6. The ocean absorbs about 30% of the CO2 that is released in
the atmosphere. Ocean acidification is already harming many ocean species. The
change is happening faster than at any time in geologic history.
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Fig. 6 Global atmospheric CO2 concentrations (in ppm) for the past 800,000 years [36]

The Intergovernmental Panel on Climate Change (IPCC) was established in 1988
to provide policymakers with regular scientific assessments on climate change, its
implications, and potential future risks, as well as to put forward adaptation and
mitigation options [28]. The IPCC has made five assessment reports, with the fifth
in 2014 [29]. The sixth report is to be released in 2022.

The Paris Climate Agreement, adopted by 196 countries on 12 December 2015,
represented a huge historic step in reimagining a fossil-free future for our planet
[50]. The treaty called for keeping global temperature rise well below 2 ◦C relative
to pre-industrial levels by 2100, as well as agreeing to pursue efforts to limit the
increase to 1.5 ◦C above pre-industrial levels. These bold moves suggest an end to
fossil fuel use well before 2050.

An atmospheric concentration of greenhouse gases of 450 ppm carbon dioxide
equivalent in 2100 gives us a 66% chance to comply with the 2-degree goal [29].
How close are we to reach the temperature limits set forth in the Paris Agreement?
In 2020, we were already at 504 ppm carbon dioxide equivalent [40]. This sends an
alarming message that we need to rapidly end emitting carbon.

How much difference will half-a-degree really make? The difference is huge. It
means three times as many people exposed to extreme heatwaves and a massive
170% increase in flood risk compared to today, if a 2◦C warming is reached [59].
How will the Arctic be affected? What does this mean for humanity and nature?

The year 2020 shattered numerous records for wildfires, heatwaves, hurricanes,
droughts, and floods. The past six years were the hottest in the 170-year series.
September Arctic sea ice is now declining at a rate of 13.1% per decade, relative
to the 1981–2010 average [35]. The land ice sheets in Greenland have been losing
mass since 2002, declining at a rate of 279.0 billion metric tons per year [37].

Think Can you come up with ways to put this huge number—279.0 billion
metric tons—into perspective?
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As a consequence of global warming, the added water from melting ice sheets
and glaciers and expansion of sea water as it warms are the two primary factors
causing sea level rise. Since 1880, sea level has risen over 9 inches (about 23 cm),
with about three of those inches gained in the last 25 years [38].

Various possible future sea levels under several greenhouse gas emission and
socioeconomic scenarios are projected by the IPCC, and, for the first time, the
extensive data are made easily accessible to the public by NASA [39]. The high end
of the emission spectrum yields projections with the most rapid rise in sea level.
For example, the projected sea level rise under the “fossil-fueled development”
scenario for Boston would reach 0.9 to 2.8 meters (about 3 to 9 feet) by 2150, using
the 5th–95th percentile ranges. As sea level rises, many people, communities, and
cities worldwide are being threatened. The dire impact of sea level rise is vividly
illustrated in Fig. 7.

Research Project 2

Part 1. Rising of CO2 Level and Global Temperature
Obtain the monthly mean concentrations of atmospheric carbon dioxide data

measured at the Mauna Loa Observatory (1958 to present) from the Global Moni-
toring Laboratory (GML) of the National Oceanic and Atmospheric Administration
(NOAA) [41]. Obtain the global land and ocean temperature anomalies time series
(1880 to present) relative to the 1901–2000 global mean temperature from the
National Centers for Environmental Information (NCEI) of NOAA [42].

Fig. 7 Harvard (Cambridge, MA), the oldest university in the USA that has stood for almost four
centuries, would stand in water in the next century if high emissions continued. Visualization:
NOAA Sea Level Rise Viewer [43]
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Part 1 Guiding Questions:

(a) What are the lowest and highest CO2 concentrations? In which years did they
occur?

(b) Plot the CO2 dataset over time using a scatter plot. What is the annual rate of
increase of the CO2 concentration (the slope of the data)? At this rate, how long
will it take for the CO2 concentration to double from the present-day value?

(c) Plot the temperature anomalies dataset over time using a column chart. What are
the five warmest years? How much warming has occurred? How much warmer
will the Earth be in 100 years if this trend continues?

(d) Do you observe a relationship between the CO2 level and temperature? Compare
your data and plots over the same time period. Is there a strong correlation
between the CO2 level and temperature? You may use the CORREL function
(Excel or Google Sheets) to compute the correlation coefficient between two
variables.

Tip A combo chart is a good option for displaying two chart types (such as
column for temperature anomalies and line for CO2) on the same chart.

Pearson’s correlation is a statistical measure that expresses the extent to
which two variables are linearly related. The value ranges between −1 (strong
negative relationship) and +1 (strong positive relationship). The values at or
close to zero imply a weak or no linear relationship.

(e) You have examined data from the instrumented modern record. Investigate the
records from earlier times in history. How do they compare with modern levels
of CO2 and temperature?

Part 2. On Thin Ice: Climate Change in the Arctic
Arctic sea ice reaches its minimum each September. On September 15, 2020,

Arctic sea ice minimum set the second lowest on record, only after the record-low
extent observed on September 17, 2012 [44].

While reading news one day you notice that two newspapers are running
headlines on the decline of Arctic sea ice extent.
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The Daily Alarm

“Arctic Sea Ice Extent Declines By Over 20%!”

The Chill Out Weekly

“Arctic Sea Ice Extent Decreases By 4% A Year”

Think Which of the two headlines do you think indicates a faster decrease of
Arctic sea ice extent? Do they give you enough information to assess the rate
at which the ice cap is disappearing?

Let us analyze the data and quantify change. Obtain the latest sea ice data from
the National Snow & Ice Data Center (NSIDC) [44]. The Excel dataset (sea ice
extent and area organized by year) contains monthly average Arctic sea ice extent
(sheet 1) and area (sheet 2) for each year since 1979, in units of million square
kilometers. We will use sheet 1 and sheet 2 only.

Part 2 Guiding Questions:

(a) For Arctic sea ice extent (sheet 1) and area (sheet 2), respectively,
Compute the 1981–2010 average. This gives you the 30-year averaged data

from January to December. In the same graph, plot this average (using scatter
with smooth lines), along with data from the years 1979, 2012, 2014, 2019, and
2020. Add titles, axis labels, and legends. Include your graphs below. What do
you observe?

From now on, let us focus on the September Arctic sea ice extent (sheet 1).
(b) Plot the September data points from 1979 to 2020. Create a linear model by

adding a linear trendline showing the equation. Add title and axis labels. Include
your graph below. Write down the equation.

(c) What projection would you make for the future of Arctic ice cap? What does
your model predict for the Arctic sea ice extent in the years 2030 and 2050?
When would the Arctic sea ice disappear?

(d) What is the total change and percentage decrease of September Arctic sea ice
extent from 2014 to 2020?

(e) What are the year-on-year percentage changes from 2014 to 2020? For example,
2014 to 2015, 2015 to 2016, and so on. Indicate increase or decrease. What is
the average percentage change over this period?

(f) When did the most dramatic change occur during 2014 to 2020? How does this
change compare to the average annual decrease?
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(g) Revisit the two headlines. Were they wrong? Can you come up with a headline
that describes the decline of Arctic sea ice extent since 2014 more accurately?

(h) Based on your data analysis, write a paragraph that gives a proper representation
of the decline of Arctic sea ice extent since 2014.

5 Energy Production, Consumption, and Efficiency

The Lawrence Livermore National Laboratory (LLNL) has been maintaining the
US energy flow charts since 2010 [33]. A single energy flow chart represents vast
quantities of data, depicting resources, and their use. Energy resources include
solar, nuclear, hydroelectric, wind, geothermal, natural gas, coal, biomass, and
petroleum. The end-use sectors include residential, commercial, industrial, and
transportation. Some of the basic source energy is first converted to electricity before
it is transmitted to the end-use sectors. The energy flow diagram changes over time
as new technologies are developed and as priorities change.

A sample flow chart is shown in Fig. 8. Of note is the huge amount of rejected
energy, which is lost through waste heat. There is still much progress to be made in
energy efficiency from the generating plant to the facility or home.

The energy measurements for the chart use units of Quad, which is quadrillion
British thermal units (Btu). One quadrillion is 1015. One Btu is the quantity of heat
needed to raise the temperature of 1 lb of water by 1 ◦F at or near 39.2 ◦F. One barrel
(42 gallons) of crude oil equals 5.7 million Btu, and one cubic feet of natural gas
equals 1037 Btu [13].

Fig. 8 2019 US energy flow chart (LLNL) [33]
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Research Project 3
This project will guide you to examine the energy flows, productions, consump-

tions, efficiency, growth, and future of renewable energy sources.
Obtain the US energy flow charts for the year 2011 and 2019 from the LLNL

[33]. The numbers on the chart are listed using three significant digits. Because of
rounding, the total Quads listed for each production and end-use sector may not
exactly equal the sum of the individual components.

Part 1. Energy Production

(a) Read the charts and rank the ten energy production sources from the highest to
lowest in the following table. Create a bar chart to visualize the data. What do
you observe?

Energy sources 2011 2019

1. Petroleum

2. Natural gas

3. Coal

4. Nuclear

5. Biomass

6. Hydro

7. Wind

8. Solar

9. Geothermal

10. Electricity imports

Total quads 97.3 100.2

(b) Petroleum ranks the highest in production. Petroleum is also called crude oil
or just oil. It has mostly been recovered by oil drilling. How many quads of
petroleum were supplied in 2011 and 2019, respectively? What is the growth
(or decay) factor? What is the percentage change?

(c) The second highest is natural gas. Like petroleum, natural gas is obtained by
drilling into underground hydrocarbon reservoirs. Natural gas is a hydrocarbon
gas mixture consisting primarily of methane. What were the natural gas supplies
in 2011 and 2019, respectively? What is the growth (or decay) factor? What is
the percentage change?

(d) Which of the ten sectors of energy production are based on fossil fuels? Which
represent renewable energy sources?

(e) What percentage of the total energy produced is due to renewables in 2011 and
2019, respectively? What is the growth rate of renewable energy?
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Part 2. Energy Consumption and Efficiency

(a) Residential, commercial, industrial, and transportation are the four end-use
sectors. The residential sector consumes energy through five different direct
pathways. Rank them in the following table. Create a bar chart to visualize the
data. What do you observe?

Energy forms 2011 2019

Electricity

Natural gas

Petroleum

Biomass

Geothermal

Total quads 11.4 11.9

(b) The efficiency of an energy system is the percentage of the total energy used for
the intended purpose. Determine the efficiency of electricity generation in 2011
and 2019, respectively.

(c) Can you think of a practical reason why so little electricity is distributed to the
transportation sector?

(d) Most homes today are heated with electricity or natural gas. Electric heaters are
100% efficient since all of the energy that goes into the heater is turned into
heat. Natural gas furnaces vary in efficiency, ranging from 78% to 98% [1], in
turning the gas energy into heat, with 2%-22% wasted through furnace exhaust.
Comparing these numbers, do you think that electric heaters are better than even
the most efficient gas furnaces. Why or why not?

(e) What is the total energy rejected in 2011 and 2019, respectively? What is the
total useful energy consumed? What is the efficiency of the entire US energy
flow system?

(f) List one energy source that wastes (or rejects) the largest amount of energy—
this is the most inefficient. List one energy source that wastes the least amount
of energy—this is the most efficient. For the most inefficient, can you provide
one change to make that energy source more efficient?

Outlook Will we reach the 50% reduction in CO2 emissions by 2030 and
close to net zero in 2050 required for a 1.5 ◦C warming future?

The energy sector is responsible for nearly three-quarters of the emissions that
have already risen global temperature by 1.1◦C above pre-industrial levels [14].
The energy sector has to be at the heart of the solution to climate change. If
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Fig. 9 Projections of world primary energy consumption by source [14]. Despite a fast growth in
renewables, liquid fuels remain the largest energy source

current policy trends continue, global energy consumption and energy-related CO2
emissions will increase through 2050 as a result of population and economic growth.
The international energy outlook by the US Energy Information Administration
(EIA) projects a rapid growth in the renewable energy consumption, which more
than doubles between 2020 and 2050 and nearly equals liquid fuels consumption by
2050, as shown in Fig. 9.

The world is electrifying. Electricity demand will be more than double over the
next three decades, raising to 41% in the global energy mix in 2050. Electricity
demand in the transportation sector will grow 26-fold from 2020 [8]. Projections of
the world electricity generation by source are shown in Fig. 10. By 2050, more than
60% of the world’s electricity will come from renewable sources. Solar photovoltaic
(PV) will grow 12-fold and wind will grow fourfold from 2020; together they will
contribute to over 40% of the electricity generated by 2050 (data source: EIA [14]).

CO2 emissions from human activity peaked in 2019, which were brought forward
five years by the impact of the COVID-19 pandemic in 2020. Despite a growing
renewable share, the forecasted transition will not be fast enough for the world
to achieve the ambitions of the Paris Agreement. We urgently need to find more
sustainable and lasting ways to reduce CO2 emissions.

6 Economic Growth (and Collapse)

In economics, capital refers to assets that are used to generate income, for example,
a bridge that allows goods to flow to a new market, and a drug patent that allows
a company to make money from a new treatment. The process by which new
capital is created is called investment. The process by which capital wears out
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Fig. 10 Projections of world electricity generation by source [14]. Non-fossil sources will
contribute to almost three-quarters of electricity generation by 2050

or becomes obsolete is called depreciation [47]. There are three types of capital:
intellectual capital, social capital, and natural capital. Our natural capital is declining
dramatically at the rates currently being exploited, such as the melting of glaciers
and sea ice.

Economic prosperity is a very recent achievement of humanity. It can be
measured by GDP per capita, which is the gross domestic product divided by
midyear population. GDP is the sum of gross value added by all resident producers
in the economy plus any product taxes and minus any subsidies not included in the
value of the products [57]. Economic growth is the measure of the change of GDP.

In 1960, the global GDP per capita is estimated to be around $452 (current US$).
In 2019, this value raised to $11,442 (current US$) [57]—more than 25 times that
of 1960. This means that the output per person in one year in the past was about the
output of an average person in two weeks today. The adjusted net national income
per capita has grown from $695 (current US$) in 1970 to $9,290 (current US$) in
2018 [58]—the average person is 13 times richer than in 1970.

From Project 3, you have seen that the world population has increased threefold
since 1950. Population growth and rising prosperity often go together in economic
growth. Accompanying this economic growth is also the cost of environmental sus-
tainability and social well-being. The GDP (or macroeconomic forecasts in general)
ignores the degradation of natural capital and nature’s constraints. Human actions
are depleting Earth’s natural capital, putting enormous strain on the environment.
Humanity urgently needs to promote a sustainable pattern of economic and social
development.

Research Project 4
In this project, you will investigate the relationships between GDP per capita and

CO2 emissions, as well as energy developments in relation to CO2 emissions. We
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will revisit the concept of exponential growth and see how exponential processes
interact with accumulations, which led to the great
Part 1. GDP per Capita, CO2 Emissions, and Energy Consumption

Obtain the GDP per capita data (1960 to present) from the World Bank [57].
Obtain the energy and CO2 emissions data (1965 to present) from the bp Statistical
Review of World Energy [4].

(a) Plot world CO2 emissions (y) vs. world GDP per capita (x) form 1965 to present
(using a scatter plot). What do you observe?

(b) Create a linear regression (trendline). Compute the R-squared value (tutorial
[20]) and covariance (tutorial [19]). Do the data reflect a strong correlation?
You may display the R-squared value for the trendline.

R-squared is a statistical measure of fit that indicates how much variation of
a dependent variable is explained by the independent variables in a regression
model.

R2 = 1 − unexplained variation

total variation

Covariance evaluates how much two variables change together.

(c) Now, let us examine individual countries: China, the USA, and two countries
of your choice. Plot the “primary energy consumption” and “primary energy
consumption per capita” from 1965 to present. Some countries are small
compared to China and the USA, so you may need more than one graph for the
totals. One graph should work for per capita since it scales for population. What
do you observe? What is the percentage increase for each country compared to
1965?

(d) Create a bar chart showing the fuel sources of total primary energy consumption
of the most recent year for the two countries you selected, using sheet “Primary
Energy—Cons by fuel.” Which country has the highest reliance on renewables
in absolute terms? And which in relative terms?

(e) For these two countries, respectively, plot CO2 emissions (y) vs. total primary
energy consumptions (x). Label each point with the year of observation. From
the two graphs, which country appears to be better combatting CO2 emissions?
What factors might be contributing to success or failure?

Globally, primary energy consumption has been on the rise for at least half
a century. Of note is that the primary energy consumption data include only
commercially traded fuels (such as coal, gas, oil), nuclear and modern renewables
(i.e., biofuels, geothermal, hydro, solar, and wind) and do not include traditional
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Fig. 11 The per capita energy consumption across the world (2019), adapted from [45]

biomass (crop residues, wood, and other organic matter), which is often relied more
on by poorer nations. The global view of per capita energy consumption is shown in
Fig. 11. We see vast differences across the world. The largest energy consumers
include Iceland, Norway, Canada, the USA, and wealthy nations in the Middle
East such as Oman, Saudi Arabia, and Qatar. The average person in these countries
consumes as much as 100 times more than the average person in some of the poorest
countries [45].

Part 2. Case Study: Britain’s Coal Reserves
In 1865, economist William Stanley Jevons examined Britain’s coal supplies

[47]. He estimated that Britain’s mineable coal reserves were roughly 1011 tons
and annual consumption was about 108 tons. If consumed at this constant rate, the
reserves would last a thousand years. But Jevons noticed that annual consumption
was not constant; in fact, it was increasing at a rate of approximately 3.5% per
year—by now you should have recognized that this is an exponential increase. How
long could Britain’s reserves last if this exponential growth continued?

(a) The growth factor is 1 + 0.035 = 1.035. The coal consumption for each
successive year is thus 1.035 times that for the year before. Starting with 108

tons in 1865, what would the consumptions be in 1866, 1867, 1868, and in n

years?
(b) What is the total coal consumption after n years? Write down the summation.

Such a sum is called a geometric progression.
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Geometric Progression Formula

1 + x + x2 + · · · + xn−1 = xn − 1

x − 1
, x > 0 and x �= 1

(c) Compute the total coal consumption after n years using the formula.
(d) When will this total exceed 1011 tons? Set up an equation and solve for the value

of n. You will need to use a logarithm.

Jevons estimated that if the growth continued, Britain’s “thousand-year” coal
reserves would be exhausted in about a hundred years. He wrote “the check to our
progress must become perceptible within a century from the present time; . . . the
conclusion is inevitable, that our present happy progressive condition is a thing of
limited duration” [30].

Jevons’s work on coal reserves is one of the first known examples of calculation
of an exponential reserve index. The static reserve index of a nonrenewable
resource is the length of time it will last at the present rate of consumption.
This indicates a linear growth. The exponential reserve index of a nonrenewable
resource is the length of time it will last if consumption increases from year to year
at a fixed exponential rate [47].

Part 3. Case Study: The 2008 Economic Collapse
Your generation escaped the direct impacts of the economic meltdown of 2008.

Even decades later, the negative effects are still lingering. We will introduce the
Ponzi Scheme, named after Charles Ponzi (1882–1949), that contributed to the
downturn in the economy. Born and raised in Italy, Ponzi became notorious in the
early 1920s as a swindler in North America for his money-making scheme, in which
he offered his clients a 50% profit (or return) on certain “investments” within 45
days, or 100% within 90 days [56]. Let us understand the mathematical structure
behind it.

(a) Ponzi had an investment opportunity and recruited 10 people to invest with him
$1 each, which he guaranteed would become $1.50 in short order. How much
money does Ponzi have?

(b) Before Ponzi could repay each dollar with a dollar and a half, he recruited 100
new investors to send him $1 each, so they could take advantage of this great
deal. How much money does he have now?

(c) Ponzi had promised to send each of the 10 original investors $1.50. By doing
so, Ponzi would create 10 success stories that could be used to motivate new
investors. How much money does he have now? Let us call this “level 1.”

(d) Ponzi then put out a call for 1000 new investors, while widely advertising the
success of the original 10. The transactions kept going. If Ponzi honored the deal
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with both the first round of 10 and second round of 100 investors, what would
be his net take? Let us call this “level 2.”

(e) The next stage required 10,000 investors, but Ponzi now has 110 successful
investors to advertise. Assume the recruiting and repaying went smoothly. What
would be Ponzi’s net take? Let us call this “level 3.”

(f) This scheme continued to proceed. What pattern do you observe? Just about
this time, the investors realized that at some point the miracle of making 50%
profit would come to an end (where no new investors could be found to cover
the scheme), Ponzi could run away with billions of dollars.

(g) Calculate the total amount of money taken in by Ponzi after reaching “level n.”
[Hint: it is the difference between two geometric progressions.] How large can
this number become?

The mathematics allows us to make a powerful observation. The principal char-
acteristic of the scheme is that via mathematical trickery, Ponzi rapidly accumulated
large sums of money while doing nothing economically productive. Ponzi schemes
are fraud and illegal.

In the real world, the ideal Ponzi pyramid will have variations, but regardless of
the form, every Ponzi scheme exhibits growth of prodigious proportions. American
financier and one-time chair of the NASDAQ stock exchange, Bernard Madoff,
was able to run a Ponzi scheme for 15 or more years without interruption. He was
eventually caught and sentenced to 150 years in prison in June 2009. Upon his arrest,
$65 billion dollars was missing in his clients’ accounts, and at least $18 billion of
investors’ initial capital was missing [56].

7 Policy and Social Justice

Economic growth brings a mix of benefits and costs to sociocultural well-being.
Greenhouse gas emissions tend to increase with the level of economic activities.
The Stern Review on the Economics of Climate Change (a 700-page report com-
missioned by the British government in 2005) indicates that stabilizing atmospheric
concentrations of greenhouse gases at between 500 and 550 ppm of carbon-dioxide-
equivalent would cost the equivalent of about 1% of global GDP per year [48]. 10
years later, Stern [49] finds a stronger case for a low-carbon economy and calls for
a more demanding greenhouse gas target of no more than 500 ppm, in order to limit
global average temperature increase to 2 ◦C. Achieving this target would require
a gradual yet nearly complete transition away from today’s high-carbon energy
economy over the course of next several decades. A 1% reduction in economic
output would result in an annual cost of roughly $200 billion in the context of current
US economy, which is a substantial impact. Stern states [49]:

“The costs of inaction are much greater than the costs of action, on any sensible
examination. And the ‘greatest market failure the world has seen’ does require
strong policy.”
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The technological advances in renewables are remarkable. Electricity powered by
renewables is the main driver of accelerating efficiency gains in the global energy
system that will outpace both population and GDP growth [8].

Although associated, the climate problems are not caused by the economic
growth, but rather by the absence of effective public policies to regulate greenhouse
gas emissions. In the long run, the growth of material production and consumption
is limited by natural resource constraints. Achieving a sustainable future will require
policies and institutions that maintain the economy within bounds set by nature.

In today’s world, there is a vast inequality between and within countries and
societies, such as education, health, wealth, racial and gender differences. The
Human Development Index (HDI) was created to emphasize that people and
their capabilities should be the ultimate criteria for assessing the development of
a country, not economic growth alone [53]. The HDI is a composite index on a
scale from 0 to 1.0 that measures the average achievement in three key dimensions
of human development: a long and healthy life, being knowledgeable, and have a
decent standard of living. The HDI can be used to question national policy choices,
asking how two countries with the same level of gross national income per capita
can end up with different human development outcomes.

One powerful presentation is shown in Fig. 12 for the HDI vs. GDP per capita by
country. An HDI value above 0.8 is classified as very high, between 0.7 and 0.799
as high, 0.55 to 0.699 as medium, and below 0.55 as low. The size of the dot is
proportional to the population size. The purple dots at the lower left bottom, which
are countries with higher poverty rates and gender inequality, are mostly in Africa.
The best-off countries are mostly located in Europe and North America.

Figure 13 gives a global view of average years of schooling. The differences of
education across the world are very large, ranging from the highest values in North
America, Europe, Japan, and Oceania to the lowest in central Africa.

The most vulnerable nations to climate change are located primarily in Sub-
Saharan Africa and South Asia and among the Small Island Developing States [12].
Fast-growing African cities are facing worse climate risks. They have the highest
rates of urbanization and little to no environmental infrastructure and are set to pay
the highest price of the consequence. The cities at extreme risk already have highly
vulnerable populations and lack adequate healthcare services and disaster mitigation
systems. The scale of the risk could threaten the capital flows that have streamed into
these markets to take advantage of burgeoning economies, emerging consumers and
cheap labor [55].

Research Project 5
In this final project, you will dive into social justice issues on the local or global

scales. As indicated in Fig. 1, the three dimensions of sustainability—environmental
protection, economic development, and social well-being—are inseparably linked.
Social change and policy aimed at environmental stewardship and social equity
is achieved through the interaction of behavioral change and structural change. In
essence, the pathway to social justice and sustainability is to collectively confront
the challenges and consequences of uneven development, inequality, and disparity,
both in the political economic sense and in the environmental sense.
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Fig. 12 HDI vs. GDP per capita (international-$) in log scale (2017), adapted from [46]

You will develop a project plan through investigation, design, action, reflection,
and demonstration. You may gather data and create graphs, make analysis and
findings, and use mathematical reasoning to learn and discover.

Think about how to ask refined quantitative questions. Choose appropriate math-
ematical ideas and tools to answer your questions. Develop conceptual frameworks
to recognize, evaluate, and implement ways to challenge social sustainability. Be
creative and open-minded. Think globally, act locally. Consider how you can best
use your knowledge and voice to educate, inspire, and effect change.

Sample topics include:

• Educational access, funding, testing, achievement gap
• Food insecurity, hunger
• Gender discrimination, gender pay gap
• Health disparities, health care and insurance
• Housing, gentrification, homeownership
• Poverty, minimum/living wage, sweatshops
• Prisons, racial profiling, death penalty
• Privilege, power, social class
• Racism, segregation, stereotyping
• Welfare, civil rights, human rights
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Fig. 13 Average years of schooling across the world (2017), adapted from [46]

Fig. 14 United Nations Sustainable Development Goals [52]1

1 Reprinted with permission of the United Nations. The content of this publication has not been
approved by the United Nations and does not reflect the views of the United Nations or its officials
or Member States.
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We hope that through this project, you will increase global awareness and global
perspective of the interrelationship of human activities and the Earth’s natural
systems, as well as your willingness to involve and engage in local, global, and
intercultural sustainability problem solving.

In 2015, the United Nations set forth 17 global goals for a better world by 2030
[52]. They are known as the sustainable development goals, outlined in Fig. 14.
These goals have the power to end poverty, fight inequality, and stop climate change.
Guided by these goals, it is now up to all of us, governments, businesses, civil
society, and the general public to work together to build a better future for everyone.
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Mosaics and Virtual Knots

Sandy Ganzell

Abstract

This chapter begins with a brief introduction to the mathematical theory of knots.
We then describe Gauss codes, which are a way of encoding a knot without
drawing pictures. It turns out that even though every knot can be given a Gauss
code, not every Gauss code corresponds to a knot. A Gauss code that isn’t a knot
gives us a new kind of object called a virtual knot.

Both real knots and virtual knots can be studied by placing special square tiles
(which have pieces of knots drawn on them) onto a grid to create a drawing called
a mosaic. We will look at a new way of creating mosaics for virtual knots and
study some of their properties.

Suggested Prerequisites None. Really. This section sometimes requires visual imagination and
creative problem solving, but there are no formal mathematical prerequisites.

1 Math and Knots

Knots are familiar to anyone who has tied shoelaces, braided hair, or wrestled with
tangled earbuds. Physical properties of knots are important to sailors, anglers, and
rock climbers. The branch of mathematics known as Knot Theory studies questions
related to all these and has other surprising applications in chemistry, molecular
biology, and quantum physics. But you don’t have to know anything about any of
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(a) (b) (c) (d) (e)

Fig. 1 Mathematical knots

those things to get started. First, we will explain what we mean by mathematical
knots.

If you take a piece of rope and tie a knot in it, in principle (if you don’t pull it too
tight), you can always untie it. But if you glue the loose ends together, then probably
you can’t. When you glue the loose ends of a piece of rope together, you get a
mathematical knot. We say two mathematical knots are the same (or equivalent) if
you can manipulate one to look like the other without cutting and gluing.

Note: it’s a good idea when you start studying knot theory to keep some rope or
string handy, along with some tape for connecting the loose ends.

Exercise 1 Use string and tape to convince yourself that knots (a), (b), (c), and (d)
in Fig. 1 are all different, but knots (d) and (e) are the same. Pay close attention to
the pair (b) and (c), which really are different, and the pair (d) and (e), which really
are the same.

Before going further, we will need a few comments about notation and terminol-
ogy. When determining if two knots are the same or different, we ignore the length
of the rope. So, a small, unknotted circle and a big, unknotted circle are considered
equivalent. In Fig. 1, knot (a) is called the unknot or the trivial knot. Knots (b) and
(c) are both called trefoil knots. Since they aren’t equivalent, we sometimes call (b)
the left trefoil and (c) the right trefoil. Knot (d), which is equivalent to (e), is called
the figure-8 knot.

Knots (b) and (c) are mirror images of each other. Since the trefoil is different
from its mirror image, we say the trefoil is chiral. But the figure-8 is equivalent to its
mirror image, so we call it amphichiral. Chirality is important in applications of knot
theory to chemistry. Chemists often use the word achiral instead of amphichiral.

The drawings in Fig. 1 are called knot diagrams. The places where it looks like
one portion of the knot is going under another part are called crossings. The diagram
in Fig. 1b has three crossings, and diagram (d) has four. The smallest number of
crossings necessary to draw a particular knot is called the crossing number of that
knot. For example, the figure-8 can be drawn with 4 crossings but can’t be drawn
with fewer than 4, so its crossing number is 4. Similarly, the crossing number of
each trefoil is 3. The unknot has crossing number 0.

Exercise 2 Draw a diagram of the trefoil that has four crossings. Draw diagrams of
the unknot that have 1, 2, or 3 crossings.
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(a) (b)

Fig. 2 A 2-component link (the Hopf link) and a 3-component link (the Borromean rings)

Exercise 3 Explain why there are no knots with crossing number 1. (Suggestion:
draw a crossing, and then figure out how to connect the four loose ends without
creating any new crossings. Which knot do you always get?) Try to use the same
strategy to show that there are no nontrivial knots with exactly two crossings.

In the two-crossing part of Exercise 3, you may have found a diagram that looks
like the one in Fig. 2a. That object cannot be made out of a single piece of rope,
so it isn’t considered a knot. Instead, we call it a link. Each closed loop of rope is
called a component of the link. Sometimes, knots are considered links with only
one component. In Fig. 2, the 2-component link (a) is called the Hopf link. The 3-
component link (b) is called the Borromean rings.

Exercise 4 Convince yourself that the Borromean rings are in fact linked—you
can’t pull them apart.

Challenge Problem 1 An interesting property of the Borromean rings is that if
you remove any one of the components, the other two will come apart to form an
unlink. Try to find a 4-component link that has that property. In other words, find a
4-component link that really is linked, but if you remove any one of the components,
the remaining three will come apart to form a 3-component unlink. Notice that you
can’t just add a fourth component to the Borromean rings because if you removed
that fourth component, the remaining three will still be linked. If you can find a 4-
component link, try to generalize so that you can do it with a link of any number of
components.

To finish up this section, we will look at a way to combine two knots to get a new
knot. The process is called the connected sum. If we draw two knot diagrams next
to each other and then erase a small piece of each (not any of the crossings), we can
connect the two knots with parallel strands to form a new knot as in Fig. 3.

The symbol we use for this operation is #. So, if we label the trefoil K1 and the
figure-8 knot K2, then the connected sum would be written K1 # K2. Knots that are
formed by taking the connected sum of two nontrivial knots are called composite
knots. Knots that aren’t composite are called prime.
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Fig. 3 Taking the connected sum of the right trefoil and the figure-8

Exercise 5 What do you get if you take the connected sum of the trefoil and the
unknot?

There is a standard list of knots that mathematicians use for reference. It only
has the prime knots, and if a knot is chiral, it only lists one of the mirror images.
The list was mostly created by mathematicians Tait and Little in the 1890s, but it
wasn’t until the 1970s that it was rigorously shown to contain no duplicates and
no omissions. Nowadays, it is usually called Rolfsen’s table of knots, and it can’t
be found in many books and websites. Rolfsen’s table lists all prime knots up to
10 crossings, and computer-assisted searches have catalogued all knots up to 16
crossings.

Rolfsen’s table is organized by crossing number. So, the unknot comes first, then
the trefoil and figure-8 knots, then the 5-crossing knots, and so on. For each crossing
number, knots that have alternating diagrams (where the crossings alternate under
and over as you follow the knot around) come before the non-alternating knots. (It
turns out that some knots can’t be drawn with an alternating diagram.)

The notation in Rolfsen’s table is straightforward: 819 refers to the 19th 8-
crossing knot in the table. It just so happens that 819 is the first non-alternating
knot. The trefoil is 31, and the figure-8 is 41.

Exercise 6 Find a copy of Rolfsen’s table. Draw diagrams for 51 and 52. You will
get a lot better at drawing knots with some practice. Try 61, 62, and 63. Draw 819
and notice that the diagram is non-alternating. It isn’t easy to show, but it turns out
that every possible diagram of 819 is non-alternating.

2 Gauss Codes

Sometimes, it is useful to talk about which direction we are headed around a knot
or a component of a link. We draw a small arrow on the knot (or several) to indicate
the direction we are going, as in Fig. 4. A knot or link with a chosen direction is said
to be oriented. Make sure when you draw your arrows they all point in a consistent
direction around the knot.

Once a knot is oriented, each crossing will have two arrows pointing away: one
on the strand that crosses over and one on the strand that crosses under. For each
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Fig. 4 An oriented figure-8
knot and an oriented Hopf
link

(a) (b)

Fig. 5 Crossing signs

+

(a)

−
(b)

crossing, you can rotate your head (or if it’s easier, rotate the paper) so that the over-
strand points to the right, as in Fig. 5. The under-strand must then either point up or
down. If it points up as in Fig. 5a, we say that the sign of the crossing is positive. If
the under-strand points down as in Fig. 5b, we say that the sign is negative.

Exercise 7 Go back to Fig. 1. Choose orientations for the two trefoils and the
figure-8 knot. Calculate the sign of each crossing. Now, reverse the orientation for
each knot. (Change the direction of the arrows.) Did the crossing signs change or
stay the same?

Exercise 8 Look at the oriented Hopf link in Fig. 4b. Find the crossing signs. Now,
reverse one arrow but not the other. What happened to the crossing signs? What if
you reverse both arrows?

It is often helpful to have a way to describe a knot without drawing a picture.
For example, if you are using a computer to study knots, an input method that
relies only on text can be advantageous. From a practical perspective, storing and
searching through images of knots become increasingly challenging as the knots
get more complicated. There are literally billions of different knots with 20 or fewer
crossings.1

There are several ways of describing knots without drawing diagrams. The one
we will describe here is called the Gauss code. Here is the procedure for finding a
Gauss code for a knot. Note: this only works for knots, not for links. First, draw an
oriented knot diagram, and label the crossings as in Fig. 6. It doesn’t matter which
crossing gets which label. You don’t even have to use numbers for the labels, but
most people do. Next, pick a starting point on the knot. In this example, we will
use the dot at the very top. Now, follow the orientation around the knot until you

1 Surprisingly, no one knows a formula for the exact number of knots with a given crossing number.
But I wouldn’t recommend spending too much time on that problem for now. It seems very hard.
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Fig. 6 Calculating a Gauss
code for the figure-8 knot 1 2

3

4

return to the starting point. Each time you pass a crossing, write down three things:
whether you went over or under, the label, and the sign.

So, in our example, starting at the dot, we would go left (following the arrows)
and go under crossing 1, which is a negative crossing. (Verify that crossing 1 is
indeed negative.) So, the beginning of our Gauss code would be U1−. After that,
we go over crossing 3, which is a positive crossing. So, we write O3+. Then, we go
under crossing 4 (positive) and then over crossing 1, which we already determined
is negative, then, under 2, over 4, under 3, and finally over 2. The complete Gauss
code is U1−O3+U4+O1−U2−O4+U3+O2−.

Exercise 9 Find Gauss codes for the left and right trefoil knots (Fig. 1).

Note that if you choose a different labeling, a different starting point, a different
orientation, or a different diagram, you will get different Gauss codes for the same
knot.

Exercise 10 Describe how the Gauss code changes if you choose a different
labeling. What if you choose a different starting point? What if you change the
orientation?

Let’s see how to reconstruct a knot from a Gauss code. We will use the example
of the figure-8 knot above. The Gauss code begins U1−, so we will pick a starting
point (marked with a dot) and draw an under-strand labeled 1.

1

Since crossing 1 is negative, the vertical segment (over-strand) must point upward.
(Verify this.) Next comes O3+, so we continue from 1 and draw an over-strand
labeled 3.

1 3
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Crossing 3 is positive, so the vertical under-strand must point up. (Again, verify.)
Continue the diagram with U4+.

1 3 4

After that, we have to go over 1, so loop around and follow the arrow. Then, continue
with U2−.

1 3 4 1 3 4

2

Finally, follow the arrows over 4, under 3, over 2, and back to the starting point.

1 3 4

2

Exercise 11 Verify that the diagram above is equivalent to the figure-8 knot.

It’s not easy to show, but it turns out that for a given Gauss code, there is only
one knot with that code.

Exercise 12 Draw the knot with the following Gauss code:

U1−U3−O4−O1−U2−U4−O3−O2−

Which knot is it?



64 S. Ganzell

Let’s point out two properties that Gauss codes must have.

1. Each label occurs exactly twice (once when we go over the crossing and once
when we go under it).

2. For each label, the signs must be the same in both occurrences.

These two properties are not enough to guarantee that a given code is the Gauss
code of a knot. Let us look at an example. We will attempt to draw a knot with
Gauss code O1−O2+U1−U3−U2+O3−. Start with O1−O2+:

1 2

Then, we have to loop around to go under 1. As soon as we do that, we can see
there is a problem.

1 2

At some point, we are going to have to go under crossing 2, and then we will
be trapped. We cannot add a crossing because there is nothing in the Gauss code
between O2 and U1. In the next section, we will introduce a new kind of crossing
that lets us escape from situations like this. The knot-like things we get will be called
virtual knots.

There is another kind of diagram (called a Gauss diagram) that is sometimes
helpful for studying knots when we have a Gauss code. To draw it, start by writing
the labels of the Gauss code around a circle as in Fig. 7a. It doesn’t matter where
you start or which direction you go. In this example, we will use the Gauss code we
saw earlier for the figure-8 knot: U1−O3+U4+O1−U2−O4+U3+O2−, starting
near the top and going counterclockwise.

Fig. 7 Drawing a Gauss
diagram for a knot

(a) 1

3

4

1 2

4

3

2 (b) 1

3

4

1 2

4

3

2

−
+

+
−
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Fig. 8 Two equivalent Gauss
diagrams (both for the
figure-8 knot)

(a)

−
+

+
−

(b)

−
+ +−

Fig. 9 Which knot is this?

+ +

− −
−

Connect each pair of labels by drawing arrows from the label representing the
over-strand to the label representing the under-strand, as in Fig. 7b. Finally, mark
each arrow with a + or − to indicate the sign of the crossing. Remember that, in a
Gauss diagram, the arrows represent the crossings of the knot—arrowheads are the
under-strands and arrowtails are the over-strands. It doesn’t matter precisely how
you draw the arrows, as long as they have the correct starting and ending points.

Looking back at Exercise 10, if you choose a different labeling, it won’t affect the
arrows in the Gauss diagram, so we often just omit the labels. Choosing a different
starting point for the Gauss code would just rotate the whole Gauss diagram. And
reversing the orientation of the knot would just make our labels go clockwise instead
of counterclockwise. Or you can just flip the Gauss diagram over like a pancake.

Exercise 13 The Gauss diagram in Fig. 8a is just the unlabeled Gauss diagram from
the previous example. How can (b) be labeled to see that it is the same knot?

Exercise 14 Draw Gauss diagrams for each trefoil knot.

Exercise 15 Which knot is the Gauss diagram pictured in Fig. 9?

Challenge Problem 2 Explain why every arrow in a Gauss diagram must cross an
even number of other arrows. Note that 0 is an even number, so the small arrow in
the lower left portion of Fig. 9 is ok.

We will see in the next section that Challenge Problem 2 only applies to “real”
knots—it is sometimes false for virtual knots.
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3 Virtual Knots

Let’s return to our attempt from the previous section to draw a knot with Gauss code
O1−O2−U1−U3−U2−O3−. We got as far as O1−O2−U1−:

1 2

Let us continue and see what happens. We need to go under crossing 3, which has
negative sign, and then under crossing 2.

1 2

3

The Gauss code tells us to go over crossing 3 next, but there is no way to do that
without adding another crossing. The way we get around this is by altering the
paper: we cut out two circles and attach a hollow tube (called a handle) that gets us
out of our trap. Then, it is easy to continue on to the O3 portion of the Gauss code.

1 2

3

1 2

3

We escaped without really crossing the horizontal portion of the knot. It is
important not to think of this as crossing over. In fact, you could have just as
easily attached the handle underneath the paper. Instead, think of this as a new kind
of crossing, neither over nor under. We call it a virtual crossing, and instead of
attaching handles to our paper, we just indicate the crossings that are virtual with a
small circle:
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1 2

3

1 2

3

Fig. 10 Two ways to draw
the same virtual knot

(a)

1 2

3

(b)

1 2

3

Remember that virtual crossings don’t appear in the Gauss code. They don’t get
labels, and they don’t have signs. It is like they aren’t really there at all. To make a
distinction, we sometimes call the “real” crossings classical crossings.

A subtle point here is that the paper we started with is a sort of three-
dimensional—we draw some strands passing over and others passing under. But
then the handles leave the dimension of the original paper. Here are two ways of
thinking about this:

1. Think of the paper (including the paper that makes the handles we added) as
having a little thickness—enough for one strand of the knot to pass over or under
another. But the knot cannot leave the thickened paper. That is why the horizontal
portion of the knot (O1−O2+) cannot be lifted up and over the virtual crossing.
It would require pulling the knot out of the paper to get to the other side of the
handle.

2. Think of virtual knots only as diagrams, not as objects that exist in three-
dimensional space. When deciding whether two diagrams represent the same
virtual knot, remember that the only changes you can make are (a) moves that
do not affect the Gauss code and (b) moves that could be made for ordinary knots
and do not involve the virtual crossings at all.

We will look more at these ideas after we finish the Gauss code from our example.
We have to get back to the starting point. To do that, we will need to add another

virtual crossing, as in Fig. 10a. Or if we take a different route, we can add two virtual
crossings as in Fig. 10b.
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Fig. 11 The virtual detour move does not affect the Gauss code, so the two virtual knots are
equivalent. It does not matter what is inside the box

←→ ←→

Fig. 12 These moves are forbidden. No, really. They’re called forbidden moves

To emphasize an important point: if two virtual knots have the same Gauss code,
then they are equivalent. This lets us manipulate virtual knot diagrams in a variety
of ways. See Fig. 11 for an example. Imagine that the box has some tangled mess
of virtual and/or classical crossings. If a strand of a virtual knot has only virtual
crossings (like the piece connecting the two dots), we can move it without affecting
the Gauss code if the new crossings are all virtual also. This is called a virtual detour
move. You can visualize the handle that connects the two dots—it can go above the
box or below it. But it does not matter what is inside the box since that part of the
virtual knot does not change when you do the virtual detour move.

There is one kind of move you have to avoid. You cannot move a strand with
classical crossings across a virtual crossing as in Fig. 12. These moves are actually
called forbidden moves. It turns out that if you allow the forbidden moves, and then
all virtual knots are equivalent to the unknot.

Exercise 16 Draw a few examples of virtual knots. What is the effect of each
forbidden move on the Gauss code? Draw the corresponding Gauss diagrams.

Exercise 17 Think about what forbidden moves would do to a virtual knot drawn
on paper with attached handles.

Exercise 18 The virtual knot in Fig. 13 isn’t the unknot. But show that you can
unknot it if you use a forbidden move.

One strange note about terminology: knots that can be drawn with no virtual
crossings are called classical knots. The term virtual knot is used for any Gauss
code, whether the knot is classical or non-classical. In other words, every classical
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Fig. 13 This virtual knot is
nontrivial. But it can be
unknotted using a forbidden
move

knot is virtual, but not every virtual knot is classical. A 3-crossing virtual knot has a
Gauss code with three classical crossings. There may be 0 or more virtual crossings.

Also, just like there is a standard table for classical knots, there is a table for
virtual knots. It’s called Jeremy Green’s table of Virtual Knots [5]. But there is
a catch. There are a lot of virtual knots. For classical knots, there is only one 3-
crossing knot (not counting mirror images) and only one 4-crossing knot. But there
are seven 3-crossing virtual knots and 108 different virtual knots with 4 crossings.
There are 2448 virtual knots with five crossings, but only two of them are classical.

Like Rolfsen’s table, the numbering system for virtual knots is also somewhat
arbitrary. (There is actually a good reason for the way they are organized, but it
is not especially illuminating for our purposes.) Virtual knots are named by their
crossing number (remember only count classical crossings) and by their position on
the list. So, 3.1 is the first 3-crossing knot, and 4.17 is the seventeenth 4-crossing
knot on the list. The classical trefoil happens to be the sixth 3-crossing virtual knot,
so 3.6 is the same knot as 31. Yes—it’s a bit unfortunate.

4 Mosaics

A knot mosaic is a square grid filled with any combination of the following eleven
tiles that forms a knot (or link) diagram:

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

If you prefer, you can say there are just 5 tiles (including the blank tile) and you
are allowed to rotate them. But in this chapter, we will refer to the eleven tiles as
numbered above. Some pictures will make this clear. Figure 14 illustrates mosaics
for the figure-8 knot and knot 72.

Note that in order for the mosaic to form a knot (or link) diagram, adjacent tiles
must have their loose ends match up. (We sometimes say the mosaic is suitably
connected if there are no loose strands.) So, for example, tiles T5 and T6 cannot be
adjacent. The crossing tiles T9 and T10 cannot be on an edge of the mosaic. The
top-left corner can only have tile T0 or T2.
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Fig. 14 Knot mosaics for
knots 41 and 72

Exercise 19 Show that the trefoil can be realized (drawn) on 4 × 4 mosaic but not
on a 3 × 3 mosaic. Repeat the exercise for the Hopf link.

Exercise 20 Explain why the figure-8 knot cannot be realized on a 4 × 4 mosaic.
Suggestion: since the crossing number for the figure-8 is 4, there must be at least 4
crossing tiles (T9 and T10). Where do they have to go? What happens next?

If a knot can be realized as an n × n mosaic, but not on any smaller square, we
say the mosaic number of the knot is n. So, considering Exercises 19 and 20, the
mosaic number for the trefoil is 4, and the mosaic number for the figure-8 is 5. The
mosaic number has been calculated for all knots with 8 crossings or fewer. See [9]
for details.

Research Project 1 Calculate the mosaic numbers for all 9-crossing knots.
Calculate the mosaic numbers for all 10-crossing knots. Some computer
assistance may be needed.

Research Project 2 The mosaic number for the trefoil is 4, and the mosaic
number for the connected sum of two trefoils is 5 (verify this). Can you find a
formula for the mosaic number of a connected sum of n trefoils? What about
a connected sum of n figure-8 knots?

If you know that the mosaic number of K1 is m, and the mosaic number
of K2 is n, can you find a formula for the mosaic number of K1 # K2? If not
an explicit formula, can you find an inequality? For example, it is not hard to
show that the mosaic number of K1 # K2 is less than or equal to m + n. How
much can you improve that?

The knot 61 is an interesting example. Its mosaic number is 5, but strangely, there
is no 5 × 5 mosaic of 61 with only six crossings. To get the smallest mosaic, you
need a diagram with seven crossings. See Fig. 15.
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Fig. 15 Knot 61 has mosaic
number 5, but we need to use
a diagram with seven
crossings

Exercise 21 Verify that the two knots in Fig. 15 are both 61.

There are other knots with this property: the smallest mosaic uses a diagram
where the number of crossings is not minimal. But in all known examples, if the
mosaic number of the knot is m, then the knot can fit on an (m + 1) × (m + 1)

mosaic with its minimal number of crossings. For example, knot 61 has mosaic
number 5, and a 6-crossing diagram for 61 fits on a 6 × 6 mosaic.

Research Project 3 Can you find a knot whose crossing number is c and
whose mosaic number is m, but the smallest mosaic for the knot with exactly
c crossing tiles is (m + 2) × (m + 2)? Or to say that another way, can you
find a c-crossing knot where you can reduce the minimal mosaic size by 2 (or
more) by using a diagram with more than c crossings?

We do not have to limit ourselves to square mosaics. Instead of considering only
n × n mosaics, let us allow m × n mosaics (where m and n may be different). Here
are a few questions about rectangular mosaics.

Exercise 22 We have already seen that the trefoil fits in a 4 × 4 mosaic. Can the
trefoil fit in a 3 × 5 mosaic? Such a mosaic would have smaller area than the 4 × 4
example.

Research Project 4 Using rectangular mosaics (not necessarily square), try
to minimize the area of a mosaic. Figure 16 has an example of a knot with
mosaic number 5 (area 25), which can be realized on a 4 × 6 mosaic (area
24).

• For each knot in Rolfsen’s table, find the minimum area of a rectangular
mosaic.

(continued)
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Fig. 16 The connected sum
of two trefoils has mosaic
number 5 but can be realized
on a mosaic with only 4 rows

• Which knots have their minimum area realized by a square mosaic?
• Can you find an infinite set of knots whose minimal-area rectangular

mosaics are squares?
• Can you find an infinite set of knots whose minimal-area rectangular

mosaics are not squares?

Exercise 23 Which knots can be realized on a mosaic with only 3 rows? (Any
number of columns is allowed.)

Research Project 5 Let us call the minimum number of rows required to
make a rectangular mosaic of a knot the minimal mosaic height of the knot.
So, for example, in Exercise 23, we saw that we cannot make a trefoil mosaic
with only 3 rows. But we can make one with 4 rows. So, the minimal mosaic
height of the trefoil is 4. Figure 16 has another example.

• Which other knots have minimal mosaic height 4? Which knots have
minimal mosaic height 5?

• Find the minimal mosaic height for each knot in Rolfsen’s table.
• Is there some number n where every knot has minimal mosaic height n or

less? Or can you find a set of knots whose minimal mosaic height keeps
getting bigger?

• For the trefoil, the mosaic number is 4 and the minimal mosaic height
is also 4. Which other knots have mosaic number equal to their minimal
mosaic height? Which knots have mosaic number exactly one more than
their minimal mosaic height? Exactly 2 more?

5 Virtual Mosaics

Time to put it all together. The goal of this section will be to understand virtual
mosaics. One way to do this would be to introduce a new tile with a virtual crossing:
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This has been studied before. (See Sect. 6.) But there is another way to create a
virtual mosaic that does not use any new tiles. Since virtual crossings are not “really”
there, they will not really be in the mosaics either. Instead, we will connect parts
of the mosaic to other parts like when we added handles. We will always connect
each edge of the mosaic to exactly one other edge of the mosaic and always on the
border. That way all the classical crossings will appear inside the mosaic, but the
virtual crossings won’t. See Fig. 17.

The labels on the border tell you how to connect the pieces of the mosaic to form
a virtual knot diagram. All crossings outside the mosaic will be virtual. It doesn’t
matter how you draw the strands outside the mosaic since the virtual knots will all
have the same Gauss code. So, they are the same knot. In fact, all the different ways
of connecting the labels are related by virtual detour moves.

Here is an example of how to make a virtual mosaic from a Gauss code. We will
make virtual knot 3.1, which has Gauss code O1−O2−U1−O3+U2−U3+. It is
pretty easy to do on a large mosaic, but like the mosaics for classical knots, we are
going to try to fit knot 3.1 onto as small a virtual mosaic as possible. Since there are
three crossings, the smallest square we could hope for would be 2 × 2.

Let us try putting crossing 1 in the top-left pointing downward. Since it is a
negative crossing, the horizontal portion must point to the left. (We will remove the
arrows and numbers later, but they will help as we’re building the mosaic.)

1 1

2

After that we have O2−, so we will put a T10 tile in the lower left and remind
ourselves that the horizontal strand points left.

←−

a b

b

a

cd

c

d
−→

Fig. 17 Virtual knot diagrams can be created by connecting edges of a virtual mosaic. No matter
how you connect the paired edges, you get the same virtual knot. Check the Gauss code if you are
not sure
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Next, we have to go under crossing 1. There are a few ways to do this, but we
have to leave the mosaic and loop around to another edge piece like we did in Fig. 17.
Since we need to follow the arrow at crossing 1, let us put a T4 tile in the upper right
corner and label the corresponding edges. Note: we could have tried a T5 tile there
and put the second “a” on the right edge (but see Exercise 24).

a

a

1

2

a

b

a

b
1

2 3

a

c

b

a

c

b
1

2 3

Looking at the next part of the Gauss code, after we go under crossing 1, we have
O3+U2−, so we will need to leave the mosaic again. Label the edge with a “b” and
reconnect at the lower right edge, crossing over 3. Since crossing 3 is positive, the
vertical strand must point downward. Continue under crossing 2.

To finish the virtual mosaic, we need to go under crossing 3 next. So, label the
“c” edges and change the T4 tile to a T8 tile (which doesn’t affect the “a” edge). The
completed virtual mosaic will include the “d” edges, and we remove the arrows and
crossing numbers as in Fig. 18.

Exercise 24 Can a 2 × 2 virtual mosaic for knot 3.1 contain a T5 tile?

Exercise 25 Find virtual mosaics for the rest of the 3-crossing virtual knots.

• 3.2: O1−O2+U1−O3−U2+U3−
• 3.3: O1−O2−U1−U3−U2−O3−
• 3.4: O1−O2+U1−U3−U2+O3−
• 3.5: O1−O2−O3−U1−U2−U3−
• 3.6: O1−U2−O3−U1−O2−U3− (Note: this is the classical trefoil knot.)
• 3.7: O1−U2−O3+U1−O2−U3+

All of them can be completed on 2 × 2 mosaics.

Fig. 18 A completed virtual
mosaic for virtual knot 3.1

d a

c

b

da

c

b
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f

f

Fig. 19 Knot 71 as a 7-crossing 4 × 4 mosaic and as a 9-crossing 3 × 3 mosaic

Exercise 26 Find a 3 × 3 virtual mosaic for the classical figure-8 knot.

Challenge Problem 3 Show that there is no 2 × 2 virtual mosaic for the figure-8
knot.

Exercise 27 Since a 2 × 2 virtual mosaic only has four tiles, you can’t make any
knots with more than four crossings. But you can make all the classical 5-, 6-, and
7-crossing knots from Rolfsen’s table on 3 × 3 virtual mosaics. Try 51, 52, 61, 62,
and 63. Some of the 7-crossing knots are tricky. We will talk about those next.

Classical knot 71 is especially interesting. There is no 3 × 3 virtual mosaic for 71
with only seven crossing tiles. But there is a 3 × 3 virtual mosaic for 71 with nine
crossings. See Fig. 19.

Exercise 28 Verify that both knots in Fig. 19 are knot 71. Notice that when
you connect the corresponding edges, you can do it without creating any virtual
crossings.

Knot 73 is similar. There is a 4 × 4 virtual mosaic with seven crossings, but there
is a 3 × 3 virtual mosaic with eight crossings.

Challenge Problem 4 Find 3 × 3 virtual mosaics for knots 72 through 77.

Research Project 6 Knots 71 and 73 are examples of knots where the
smallest virtual mosaic has more crossings than the crossing number of the
knot. Knots 87, 810, and 819 are also examples illustrating this phenomenon.
Can you find an infinite set of such examples?
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The smallest number n where there is an n × n virtual mosaic for the knot
K is called the virtual mosaic number of K . So, for example, the virtual mosaic
number of each 3-crossing virtual knot is 2, and the virtual mosaic number for each
7-crossing classical knot is 3.

A computer search of all the 3 × 3 virtual mosaics has shown that the only 8-
crossing classical knots with virtual mosaic number 3 are 85, 87, 88, 810, 812, 813,
814, 815, 819, 820, and 821. All the other 8-crossing classical knots have been verified
to have virtual mosaic number 4. For 9-crossing classical knots, only 916, 923, and
931 have virtual mosaic number 3.

Research Project 7 Do all the other 9-crossings knots in Rolfsen’s table
have virtual mosaic number 4? What about all the 10-crossing knots?

If we have a classical mosaic for a knot, we can make a virtual mosaic as in
the following example: Starting with a 6 × 6 mosaic for knot 72 (which happens to
be the smallest for that knot), we can remove the top and bottom rows, along with
the first and last columns, and then connect the loose ends in pairs, following the
original mosaic as in Fig. 20.

So, if the mosaic number of a classical knot is n, then the virtual mosaic number
is at most n − 2. But the virtual mosaic number could be even smaller. Even though
the (classical) mosaic number for 72 is 6, the virtual mosaic number is actually 3, as
shown in Fig. 21.

−→ −→

a a b

b

c

c

d

d

Fig. 20 Constructing a 4 × 4 virtual mosaic from a 6 × 6 classical mosaic

Fig. 21 Knot 72 has mosaic
number 6, but its virtual
mosaic number is 3
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f
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Research Project 8 Is there a knot with mosaic number n and virtual mosaic
number n − 4? What about n − 5? Is there an example with virtual mosaic
number n − k no matter what k is?

Mosaics (classical and virtual) can be made for links as well as knots. Here is a
virtual mosaic for the Hopf link:

a a

b

c

dd

c

b

Research Project 9 Which links have virtual mosaic number 2? Which links
have virtual mosaic number 3?

Look at the two virtual mosaics:

a a

b

b

cc

d

d

a b

b

c

cd

d

a

Both have the same pattern. In other words, the same tiles are used in the same
places. But because the labels are in different places, they aren’t the same knots.
The first one is actually a link. But the second is the unknot.

Research Project 10 For a given pattern, what percentage of labelings
produce the unknot? Which patterns have the highest percentage of unknots?
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6 Further Reading

Perhaps the reason Knot Theory is such a good subject for undergraduate research
is its accessibility. Beginning students can quickly understand open questions in the
subject without sacrificing rigor. As the student learns more mathematics, new tools
become available for studying the same questions, and more topics within Knot
Theory become accessible. Precalculus is enough to study polynomial invariants of
knots. After Calculus, students can study hyperbolic knots. Abstract Algebra leads
to important questions about knots and groups; topology opens the doors to higher
dimensional knot theory.

Two good introductory books on Knot Theory are The Knot Book by Colin
Adams [1] and An Interactive Introduction to Knot Theory by Allison Henrich
and Inga Johnson [6]. If you were able to understand this chapter, then you will
be able to get through most of the chapters in those two books. Both have lots of
accessible open questions. The Knot Book covers only classical knots but includes
an introduction to hyperbolic knots and applications to Biology, Chemistry, and
Physics. An Interactive Introduction to Knot Theory investigates both classical and
virtual knots and introduces a variety of combinatorial ideas suitable for continuing
research projects.

Knots and Links by Dale Rolfsen [13] is a classic textbook but is written for
advanced undergraduates or beginning graduate students. At the very least, the
student would need a course in Abstract Algebra before diving into it. But the hand-
drawn illustrations are wonderful, and many knot theorists have a battered old copy
on their shelf that (50 years later) still sheds new light on some old ideas. Rolfsen’s
table of knots is included as an appendix but is also available in many places online:

• http://katlas.org/wiki/The_Rolfsen_Knot_Table
• https://en.wikipedia.org/wiki/List_of_prime_knots

Jeremy Green’s table of virtual knots is available online as well:

• https://www.math.toronto.edu/drorbn/Students/GreenJ/

Virtual Knot Theory was first presented by Lou Kauffman in the European
Journal of Combinatorics [7]. Kauffman together with Sam Lomonaco developed
the original idea of a knot mosaic in the article Quantum knots and mosaics [10].
More accessible papers on classical mosaics include Knot mosaic tabulation [9],
which has significant contributions by undergraduates, Mosaic Number of Knots
[8], and the paper An infinite family of knots whose mosaic number is realized in
non-reduced projections [11], which solves the classical mosaic version of one of
the research projects in this chapter.

Two articles looking at virtual mosaics with an additional “virtual crossing tile”
are Virtual Mosaic Knots [4] and Bounds on Mosaic Knots [2]. More about the
virtual mosaics in this chapter can be found in the paper Virtual Mosaic Knot Theory
[3].
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Finally, Kyle Miller [12] has developed some very nice online tools for identify-
ing classical and virtual knots from drawings:

• https://kmill.github.io/knotfolio/
• http://tmp.esoteri.casa/virtual-knotfolio/
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Graph Labelings: A Prime Area to Explore
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Abstract

A graph labeling assigns integers to the vertices or edges (or both) of a graph,
subject to certain conditions. Labelings were first studied just over 50 years ago,
making them a relatively new area of mathematics to explore. There are hundreds
of different types of labelings, many of which are motivated by circuit design,
coding theory, and communication networks. In this chapter, we introduce the
reader to prime labelings, a labeling of the vertices in such a way that the labels
of adjacent vertices are relatively prime. We also introduce several variations of
prime labelings while guiding the reader through examples and existing research.
We present the reader with several research questions for each variation, a few
of which have never been explored, thus allowing the reader to make progress on
new problems.

Suggested Prerequisites Familiarity with set notation and a basic understanding of functions are
sufficient to get the reader started. No additional prerequisites are required, though prior exposure
to mathematical proofs and a basic understanding of modular arithmetic may be helpful.
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1 Introduction

Graph theory is a relatively new branch of mathematics. It was first introduced in the
1700s by Leonhard Euler, whose solution to the famous Königsberg bridge problem
is commonly considered the origin of graph theory. We present this problem as an
introductory exercise below.

Exercise 1 The city of Königsberg (presently Kaliningrad, Russia) was situated on
the Pregel River. The river runs through the town in such a way that two islands are
formed. The four bodies of land are connected by a total of seven bridges as seen
in Fig. 1. The question posed to Euler was whether it was possible to take a walk
through the town in such a way that every bridge was crossed over exactly once and
one could arrive back at the starting point?

Euler recognized that the relevant constraints were the four bodies of land and
the seven bridges that connected them. In other words, the size of land and its
location were not relevant. He then drew the first known visual representation of
a modern graph, shown in Fig. 2. Each piece of land is represented by a point, called
a vertex (plural: vertices), and each bridge is represented by a line, called an edge.
The problem posed to Euler was thus equivalent to whether the graph below could
be traced in such a way that every edge was traced over exactly once, starting and
finishing at the same vertex. This “tracing” is commonly referred to as an Euler
circuit.

Like Fig. 2, a graph is essentially a way of specifying relationships among a
collection of items. The items can be represented as the vertices and the relationships
as the edges. If an edge exists between two vertices, we say the vertices are adjacent
or the vertices are neighbors.

Graph theory is used to model and study many things that affect our lives such
as shipping and transportation routes, chemical molecular bonds, social networks,
integrated circuits, and much, much more! To learn more about graph theory and
its applications outside of the information given in this chapter, we recommend The

Fig. 1 A map of Königsberg
from [12]. The seven bridges
are highlighted in red
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Fig. 2 A graphical
representation of Königsberg.
Note that the four vertices
represent the four landmasses
while the seven edges
represent the seven bridges

a

b c

d e

(a)

a

b

c

d

e

(b)

Fig. 3 Two different visual representations of a graph G with vertex set V (G) = {a, b, c, d, e}
and edge set E(G) = {ab, ad, bc, bd, cc, cd, de}. Note that in (b) edges cd and de cross, but this
intersection does not form a vertex. Also since vertex c has a loop—an edge whose endpoints are
the same vertex—G is not a simple graph. (a) A representation of G. (b) A different representation
of G

Fascinating World of Graph Theory by Benjamin, Chartrand, and Zhang [4] as well
as Trudeau’s Introduction to Graph Theory [21]. For a more comprehensive text,
you may consider West’s Introduction to Graph Theory [24].

Unlike graphing a function, a graph G is a structure that does not only have one
visual representation. Since G really just consists of a set of objects (the vertices,
denoted V (G)) and a set of pairs (the edges, denoted E(G)), the only constraint
when drawing a graph is that the edge sets are the same. In Fig. 3, we can see two
different visualizations of the same graph as both graphs have the same vertex set
{a, b, c, d, e} and the same edge set {ab, ad, bc, bd, cc, cd, de}. (Note that while
an edge is actually a set of two vertices, {v1, v2}, this notation has been shortened,
for readability, to v1v2, for all v1v2 ∈ E(G).)

Notice the difference in the edges between the graph given in Figs. 2 and 3.
In Fig. 2, the graph contained multiple edges—more than one edge with the same
endpoints. In Fig. 3, there are no multiple edges (and no loops!) and so G is a simple
graph. We will only consider simple graphs—graphs without loops or multiple
edges—throughout the remainder of this chapter.

The number of edges incident to a vertex is the degree of that vertex. Notationally,
for any vertex v ∈ V (G), the degree of v is denoted as deg(v). A vertex of degree
one is called a pendant vertex , while a vertex of degree zero is an isolated vertex.
A graph H is shown in Fig. 4 where each vertex is labeled with its degree.
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Fig. 4 A graph H where
each vertex is labeled with its
degree

2

3

4

3

3

0

1

1.1 Families and Classes of Graphs

The structure of a graph can play a crucial role when studying graph theory. A
family, or class, of graphs is a group of graphs that all have some similar type of
structure. This structure is often characterized by one or more parameters: some
value(s), which along with the rules for the graph, uniquely define it.

There are a large number of families of graphs. Let us look at some of the more
common classes. Note that in graph theory, when discussing the number of vertices
or edges, we always assume these values are nonnegative integers. Also, when
talking about a “graph on n vertices,” we mean that the graph contains n vertices
(where n > 0).

A cycle graph on n > 2 vertices, denoted Cn, is a simple graph where every
vertex has degree 2: for all v in the vertex set, deg(v) = 2. It, as the name suggests,
forms a circuit or cycle when drawn. Figure 5a shows an example of C5.

The path graph on n vertices, denoted Pn, has two vertices of degree one and n−2
vertices of degree two. For n > 2, Pn can be constructed from Cn by removing one
edge. A path graph on four vertices is given in Fig. 5b.

If a vertex is added to a cycle graph with n vertices where each vertex in the
cycle is made adjacent to this new vertex, then we have a wheel graph. The n in
Wn denotes the number of vertices on the cycle; Wn has n + 1 total vertices—the n

vertices on the outer cycle, or rim, plus the center vertex, or hub. Formally, a wheel
graph on n > 2 vertices, Wn, is a simple graph on n + 1 vertices with one vertex of
degree n, called the hub, and n vertices of degree 3. An illustration of W5 is given
in Fig. 5c. We should note that some authors will choose to let Wn denote the wheel
graph with n vertices (a rim of n − 1 vertices), so make sure you check the notation
of the paper you are reading.

Another common class of graphs is the complete graphs, in which every vertex
is adjacent to every other vertex in the graph. A complete graph on n vertices, Kn,
has edge set E(Kn) = {uv | u, v ∈ V (Kn), u �= v}. That is, the edge set of Kn

consists of all distinct pairs of vertices. An example of K8 is given in Fig. 6.

Exercise 2 Determine the degree of each vertex, as well as the total number of
edges in terms of n, in the complete graph on n vertices, Kn.

To reiterate, n often represents the number of vertices in a graph. This is a
convention we will use throughout this chapter when it is clear from the context
that for some graph G, |V (G)| = n. However, there are some classes for which this
is an exception. In the next family of graphs introduced below, the context is not so
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(a) (b) (c)

Fig. 5 Examples of classes of graphs. Note P4 can be obtained from C5 by removing a vertex
and its incident edges, while W5 can be obtained from C5 by adding a central hub vertex that is
connected to the original five vertices. (a) The cycle graph on five vertices, C5. (b) The path graph
on four vertices, P4. (c) The wheel graph on six vertices, W5

Fig. 6 The complete graph
on eight vertices, K8

straightforward and so we clearly state the order, or the number of vertices, of the
graph.

A bipartite graph is a graph whose vertex set is composed of two disjoint sets
X and Y such that every edge in the graph is incident to one vertex in X and one
vertex in Y . In other words, no two vertices in X are adjacent, and no two vertices
in Y are adjacent. An example of a bipartite graph is given in Fig. 7a. Combining
the ideas of a bipartite graph with a complete graph, a complete bipartite graph on
n + m vertices is a graph whose vertex set consists of two disjoint set X and Y

with |X| = m and |Y | = n such that for any x ∈ X and for any y ∈ Y , xy is an
edge in the graph. We denote this complete bipartite graph as Km,n. The graph K3,6
is illustrated in Fig. 7b. Also, the family of graphs K1,n are commonly referred to
as star graphs and are also denoted as Sn−1. See Fig. 8b for a star on 10 vertices,
K1,9 = S10.

Exercise 3 How many edges are in the complete bipartite graph Km,n? Write your
answer in terms of m and n.

While a graph of the form K1,n is a star, it is also a tree. In graph theory, a tree
is a connected graph that has no cycles. That is, a tree is a graph where there is one
(and only one) path to travel from a vertex to any other vertex. A pendant vertex in
a tree is called a leaf. A graph with n vertices is a tree if and only if it has n − 1
edges.
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(a) (b)

Fig. 7 Two bipartite graphs. The graphs are drawn so that the two partitions X and Y are separated:
one at the top of the graph and one at the bottom. (a) A bipartite graph. (b) The complete bipartite
graph K3,6

(a) (b)

Fig. 8 Two different trees, each with 10 vertices. Like all trees, there are n − 1 = 9 edges, and in
either case, if another edge were added to either graph, it would no longer be a tree. (a) A tree of
order 10. (b) A star on 10 vertices

Exercise 4 Are the following graphs always, sometimes, or never trees? If the
graph is sometimes a tree, define the values of n and/or m for which they are trees.

(a) Cn

(b) Pn

(c) Wn

(d) Kn

(e) Km,n

One final class of graphs to introduce are those with Hamiltonian paths or
Hamiltonian cycles. A Hamiltonian path in a graph is a path that visits each vertex
exactly once. A Hamiltonian cycle (or Hamiltonian circuit) is a Hamiltonian path
that is a cycle, meaning the starting and ending vertices are the same. A Hamiltonian
graph is a graph which contains a Hamiltonian cycle. See Fig. 9 for examples.
Clearly, all cycle graphs are Hamiltonian, given their cyclic structure.

Exercise 5 Which of the following graphs are Hamiltonian?

(a) Wn

(b) Kn

(c) Sn

Exercise 6 For what values of m and n is Km,n Hamiltonian?
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(a) A Hamiltonian graph. A Hamiltonian cycle
is shown in red.

(b) The Petersen graph, an example of a non-
Hamiltonian graph.

Fig. 9 In (a), we see an example of a Hamiltonian graph, while the graph in (b) is not Hamiltonian.
However, the graph in (b) has a Hamiltonian path. Can you find one?

1.2 Graph Operations

As we saw in the descriptions of the class of path graphs and wheel graphs (or as we
saw in Fig. 5), we can take a graph and apply some type of operation to it to obtain a
different graph. In this section, we focus on taking two graphs and combining them
in different ways to form a new graph. A word of warning: while the names of the
operations are consistent throughout all graph theory literature, the notation is not!
Always make sure to check the type of operation in a paper by reading the words
and comparing it to the notation.

The disjoint union of two graphs G and H is created as the name suggests: form a
graph with one copy of G and one copy of H with no additional changes. Formally,
we have the definition below:

Definition 1 The disjoint union of graphs G and H , denoted G ∪ H , is the graph
with vertex set V (G∪H) = V (G)∪V (H) and edge set E(G∪H) = E(G)∪E(H).

Of course, we may take the disjoint union of more than two graphs. In this case,
we often use Gi to represent our graphs, where 1 ≤ i ≤ k, and we write G1 ∪ G2 ∪
. . . ∪ Gk for the disjoint union of these k graphs. If this union consists of k copies
of the same graph G, we will write kG instead of G ∪ G ∪ . . . ∪ G︸ ︷︷ ︸

k times

.

The join of two graphs G and H takes the opposite approach to adding edges
than the disjoint union does. This operation adds an edge between every pair of
vertices whose endpoints are in different graphs (Fig. 10).

Definition 2 The join of graphs G and H , G+H , is the disjoint union of G and H

along with all edges of the form {xy | x ∈ V (G), y ∈ V (H)}.

The join P4 + K4 is illustrated in Fig. 11.
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(a) K3,3 ∪P5 (b) 3W6

Fig. 10 Graphs that are disjoint union of several well-known graphs. In (a), this graph is
composed of a copy of K3,3 and a copy of P5. In (b), the graph is made up of three copies of
W6

Fig. 11 A representation of
P4 + K4. Here, P4 is
highlighted in blue at the top,
and K4 is drawn in red at the
bottom. The remaining edges
come from the join operation

Exercise 7 Given the above definition of the join of graphs:

(a) Redefine Wn in terms of the join of two graphs that were introduced in Sect. 1.1.
(b) What other classes of graphs (Cn, Pn, Kn, Km,n) can be defined using the join

operation? Give the new definition or explain why the join operation cannot be
used to define this family.

The last binary graph operation we will consider is the Cartesian product of two
graphs. Just like graphing a point in the Cartesian plane, each vertex will be assigned
a pair with the first coordinate from the first graph and the second coordinate from
the second graph. Edges will only appear in this graph if one of the components in
the pair is unchanged, but the other corresponded to an edge in either G or H .

Definition 3 The Cartesian product of G and H , written G × H , is the graph with
vertex set V (G×H) = V (G)×V (H), and (x, y) is adjacent to (x′, y′) if and only
if either x = x′ and yy′ ∈ E(H) or y = y′ and xx′ ∈ E(G).

An example of a Cartesian product involving two cycles is given in Fig. 12.
The m by n grid is the Cartesian product Pm ×Pn. If one of m, n equals two, say

n = 2, we have the n-ladder graph, Pn × P2. This graph is often denoted Ln.

Exercise 8 Determine the order and number of edges for Pm × Pn.

There are many other graph operations. However, the ones listed in this section
provide the foundation and terminology needed to begin research on graph label-
ings.
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Fig. 12 The Cartesian
product of two cycles, C3 and
C5. To better understand this
construction, G = C3 is
shown in red to the left, and
H = C5 is shown in blue
above G × H

a

b

c

G

v
w

x y
z

H

G×H =C3 ×C5

(a,v)

(b,z)

(c,x)

1.3 Introduction to Graph Labeling

A graph labeling is just an assignment of some set of symbols (usually positive
integers) to the vertices, edges, or both of a graph. More recently, labels on the
faces of planar graphs have also been explored (for more about planar graphs and
faces, see [24]). We have already seen a basic labeling in Fig. 4, which labeled
each vertex with its degree. Typically, however, the idea of graph labeling stretches
further than just assigning a defined value to the vertices and/or edges. The concept
of a graph labeling also draws in some other requirement that must be satisfied by
these assignments. For examples, perhaps adjacent vertices cannot have consecutive
numbers as labels or perhaps edges must be labeled with the sum of the labels of
their vertex endpoints. Satisfying these additional conditions is the key to creating
a proper graph labeling. In this chapter, we focus on variations of vertex graph
labelings, which, like outlined above, assign numerical values to only the vertices
of a graph, subject to certain constraints (Fig. 13).

Labelings were first introduced in the late 1960s by Rosa [17] and have
a broad range of applications, including communication networks, coding and
cryptography, and optimization problems. We have composed an overview of one
type of graph labeling that has many different questions: prime labelings. For all
the different variations of prime labelings, we guide the reader through examples,
provide exercises and challenge questions, and then present the reader with research
questions, many of which are accessible to advanced high school students and early
level undergraduate mathematics students. Though we have chosen to focus on
prime labelings here, there are hundreds of other variations of labelings that you
may explore. To learn more about the different types of graph labelings, consider
investigating [11].

2 Coprime and Prime Labelings

The idea of a prime labeling of a graph originated from Etringer’s work with
trees around 1980 [9], though this concept was not formally introduced until Tout,
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Fig. 13 Three different graphs with three different labeling rules. Note that (a) is asking to label
each vertex with its degree (see Fig. 4), while (c) is labeling both vertices and edges. Typically, a
rule is given as a definition, as we will see below. (a) A graph G labeled by the rule “each vertex is
labeled with how many neighbors it has.” (b) A graph H labeled with the rule “use 1 to 7 to label
the vertices so that no adjacent vertices have consecutive numbers.” (c) The graph S8 labeled with
the rule “label the vertices and edges with 1 to 15 so that the edges are labeled with the sum of the
incident vertices”

Dabboucy, and Howalla published a paper [20] in 1982. In order to understand
what a prime labeling is, we must first define what it means for two integers to
be relatively prime.

Definition 4 Two integers are relatively prime (or coprime) if 1 is the greatest
integer that divides them both.

In other words, two integers are relatively prime if and only if the greatest
common divisor between them is 1. Some examples of relatively prime integers
are 1 and 7; 28 and 29; and 24 and 49. However, 24 and 50 are not relatively
prime because they share at least one factor greater than 1 (in this case, just the
integer 2). Understanding when some integers are relatively prime is important in
understanding prime labelings.

Exercise 9 Provide an argument that gcd(1, n) = 1, where n is an arbitrary positive
integer.

Exercise 10 Above, we gave the example of 28 and 29 being relatively prime
integers. Determine, with explanation, whether two consecutive positive integers
are always relatively prime.

Though relatively prime is the most common term for two integers whose
greatest common divisor is 1, some may refer to these integers as coprime.

Definition 5 A coprime labeling of a graph G of order n is a labeling in which
adjacent vertices are given distinct relatively prime labels from the set {1, 2, . . . , k},
for some k ≥ n.
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Fig. 14 A graph G with a
coprime labeling from
{1, 2, . . . , 9}
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Fig. 15 A graph with a
prime labeling [6]
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An example of a coprime labeling is given in Fig. 14. Observe that no two vertices
have the same label, and the greatest common divisor of the labels of the endpoints
of edges is 1.

Exercise 11 Consider the graph G given in Fig. 14.

(a) Find a different coprime labeling of this graph using the same set {1, 2, . . . , 9}
or explain why no such labeling is possible.

(b) Find a coprime labeling using {1, 2, . . . , 8} or explain why no such labeling is
possible.

(c) Find a coprime labeling using {1, 2, . . . , 7} or explain why no such labeling is
possible.

Prime labelings are a special case of coprime labelings.

Definition 6 A graph has a prime labeling if the vertices of G can be labeled
distinctly with the integers {1, 2, . . . , n}, where n is the number of vertices, such
that any two adjacent vertices are relatively prime. A graph is said to be prime if it
has a prime labeling.

Notice that you are asked to find a prime labeling in part (b) of Exercise 11 above.
An example of a graph and its prime labeling appears in Fig. 15. The graph has

13 vertices, and each vertex is labeled with the integers between 1 and 13, inclusive.
Per the definition, the greatest common divisor of any two vertices that share an
edge is 1.

Exercise 12 Consider the graph G given in Fig. 16. Answer the questions below:
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Fig. 16 The graph G for
Exercise 12

a

b

c d

e

f

(a) Let the labels for vertices a, b, and c be 1, 2, and 3, respectively. Can you assign
the remaining labels so that G is prime? If so, give all possible such labelings,
otherwise explain why no such prime labeling is possible.

(b) Let the labels for vertices b, c, and d be 1, 2, and 3, respectively. Can you assign
the remaining labels so that G is prime? If so, give all possible such labelings,
otherwise explain why no such prime labeling is possible.

(c) Ignoring labelings that are the same under rotations and reflections, are there
any other ways to label G so that it is a prime graph? If so, list these labelings,
otherwise explain why no additional labelings exist.

After thinking about the definitions of a graph having a coprime and a prime
labeling, it may seem clear that if a graph has a prime labeling, then it has a coprime
labeling. We will formally state and prove this idea using a direct proof in the
following exercise. When beginning to construct a proof, it is important that you
always do a few things:

1. Begin by stating what you are assuming about the graph. This could be the
number of vertices, the number of edges, the type of graph that it is, or some
other defining information.

2. Refer or restate definitions as you use them, and then make sure you use them
properly.

3. Write in complete sentences and make sure each sentence follows logically from
the one before.

4. Conclude by stating the final result. In other words, say you did exactly what the
problem stated.

Exercise 13 For the proposition and proof below, fill in the blanks to create a solid,
logical argument.

Proposition 1 For a graph G on n vertices, if G has a labeling, then G has
a labeling.

Proof Let G be a graph of order . Assume G is a prime graph. That is,
assume G (use definition here) .
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For G to have a coprime labeling of G, we must label with the numbers
, for some k n. But we know G is prime, so we can label with
, and, since n ≤ k, we must have G can be labeled with the set .

Hence, G has a labeling, as we set out to show. ��

Proofs are the backbone of pure mathematics: they provide solid, logical
arguments for why a certain statement is true. For a quick guide of writing proofs,
we encourage you to refer to [13]. For a deeper understanding of logic and proofs,
consider reading Mathematical Reasoning: Writing and Proof [19], a free open
source textbook, or Mathematical Proofs: A Transition to Advanced Mathematics
[7]. Remember, to prove that a graph is prime, all you need to do is to find one
prime labeling. You can do this by providing a generic labeling that would work for
any graph in that family. We will guide you how to do this for paths and cycles in
the following exercises.

Exercise 14 We will prove that all paths are prime by answering the following
questions:

(a) First, convince yourself that Pn is prime and then find a prime labeling. Do this
by the following steps:
(i) Draw and label Pn for different values of n such as P3, P4, P5, . . . so that

Pn has a prime labeling. Focus on creating a pattern of label assignments.
(ii) Then, draw and label Pn, for an arbitrary n, so that Pn is prime. (Hint: for

each example in (a), write “n” instead of a number. How can you rewrite
other labels with the letter n?)

(b) Write your mathematical proof by doing the following:
(i) Write the statement we will prove. Be exact, making sure you include n in

the statement.
(ii) Begin the proof by writing what you know about the graph and the set of

allowable labels.
(iii) Argue your labeling.
(iv) Conclude by stating what has been proven.

Exercise 15 Adapt Exercise 14 to prove that all cycles are prime.

There are several different prime labelings for the paths and cycles. For the path
graph, Pn, you may have simply labeled the vertices along the path consecutively.
Because any two adjacent vertices will be labeled consecutively (and consecutive
integers are relatively prime), this would result in a prime labeling of the path. The
same labeling will also work for cycle graphs. The only two vertices that will not be
consecutively labeled are the first vertex (labeled 1) and the last vertex (labeled n).
Because 1 and n are relatively prime, this labeling is prime. Again, there are several
other labelings that would also work.

Exercise 16 Can you find another prime labeling for the graph in Fig. 15?
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Fig. 17 The graph
G = C5 ∪ C9

Recall, from Definition 1, that the disjoint union of graphs is an operation that
combines two or more graphs to form a larger graph by making the vertex set of
the result be the disjoint union of the vertex sets of the given graphs and by making
the edge set of the result be the disjoint union of the edge sets of the given graphs.
Figure 17 gives a disjoint union of the cycles C5 and C9.

Example 1 The graph C5 ∪ C9 is not prime.

This is the first time we have encountered a graph that is not prime. Oftentimes,
one will argue that a graph is not prime by contradiction—meaning that we explore
what would happen if it were prime and then finding a contradiction of something
we know to be true. (To learn more about proofs by contradiction, see [19] or [7]).

Exercise 17 Write a formal proof that the graph given in Fig. 17 is not prime by
filling in the blanks in Proposition 2 below.

Proposition 2 The graph is not prime.

. (Begin by stating what you are assuming) . Let us proceed by contradiction.
That is, assume G = is prime. Since G has a prime labeling, G

(insert definition here) .
Now, in the set of labels {1, 2, . . . , 14}, there are even integers. The cycle

C5 can be labeled with at most even integers in order for this cycle to have
a prime labeling. Similarly, can have at most even integers labels in
any prime labeling of this graph.

Since 2 + 3 = 5 and < , not all of the even integers from
{1, 2, . . . , 14} are used as labels. Thus, we have arrived at a contradiction to G

being prime, and our original assumption is .
Therefore, . ��

Essentially, if G = C5 ∪ C9 were prime, then the vertex labels must be integers
1 through 5 + 9 = 14. Therefore, the vertex labeling must use 14

2 = 7 even integers
as labels. This means that at least half of the vertices from one of the cycles, either
C5 or C9, must be labeled with even integers. Since each cycle has an odd length,
two adjacent vertices would be labeled with even integers, contradicting that these
two vertex labels are relatively prime.

Exercise 18 Prove 2C11 is not prime.
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In Exercise 18, mimic the ideas and structure from Exercise 17.

Challenge Problem 1 Let G = Cn1 ∪ Cn2 ∪ · · · ∪ Cnk
. Prove that G is not prime

when at least two ni are odd. (This is shown in Theorem 2.1 of [10].)

Exercise 19 Explain why the graph Kn is not prime when n ≥ 4. As a challenge,
write this as a proposition and prove it.

Other graphs have also been shown to be prime. Berliner et al. [5] studied the
prime labelings of ladder graphs and complete bipartite graphs. We have listed some
of their results as exercises below.

Exercise 20 Find a prime labeling for K3,n where n �= 7. (This is shown in
Proposition 20 of [5].)

Exercise 21 Prove that if n+ 1 is prime, then the ladder graph Pn ×P2 has a prime
labeling. (This is proven in Theorem 1 in [5].)

Challenge Problem 2 Prove that if n is even and the wheel graph Wn is prime, and
if n is odd, then Wn is not prime. (Combined these, prove that Wn is prime if and
only if n is even, which is shown in [14].)

The primeness of several other graphs formed from cycles, such as graphs known
as prisms and the generalized Petersen graph, was also explored in [18] (Fig. 18).

2.1 Minimal Coprime Labeling

As you showed earlier in this section, many graphs do not have prime labelings;
however, because there are infinitely many prime numbers, every finite graph must
have a coprime labeling because each vertex can simply be labeled with a different
prime number. Therefore, we define pr(G) to be the minimum value of k for which
graph G has a coprime labeling, and the corresponding labeling of G is called a
minimal coprime labeling of G. If G is prime, then pr(G) = n.

When showing pr(G) = k, you need to do two things: (1) find a coprime labeling
of G using integers from {1, 2, . . . , k} and (2) argue that there is not a coprime

Fig. 18 The ladder graph, P6 ×P2. Note that the solution to Exercise 21 will show that this graph
is prime
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labeling from {1, 2, . . . , k−1}. In other words, you must show that using the number
k to label a vertex is necessary.

Exercise 22 We know that when n is even pr(Wn) = n + 1 because in this case,
Wn is a prime graph. Show that, when n is odd, pr(Wn) = n + 2. (This is shown in
Proposition 2 of [2].)

Exercise 16 shows that prime labelings of graphs are not necessarily unique.
However, research has often centered around whether a graph is prime, and not in
the number of unique labelings, though enumerating these possibilities is certainly
a possible avenue for further research.

Research Project 1 How many unique prime labelings exist for a specific
class of prime graphs? To get started on this question, you may consider
exploring even and odd length cycles or other classes of graphs, such as
wheels and stars. If you cannot find an exact value, can you find a lower
bound?

3 Consecutive Cyclic Prime Labelings

The idea of a consecutive cyclic prime labeling was first introduced by Berliner et
al. in [5]. However, it was specifically defined for ladder graphs. The following is
Definition 2 in [5].

Definition 7 A consecutive cyclic prime labeling (CCPL) of a ladder Pn × P2 is
a prime labeling in which the labels on the vertices wrap around the ladder in a
consecutive way. In particular, if the label 1 is placed on vertex vi , then 2 will be
placed on vi+1, n − i + 1 on vn, n − i + 2 on un, 2n − i + 1 on u1, 2n − i + 2 on
v1, and 2n on vertex vi−1. A similar definition holds if 1 is placed on ui .

Exercise 23 Construct a CCPL of Pn × P2 for 2 ≤ n ≤ 6.

Now, to show a graph has a consecutive cyclic prime labeling (CCPL), we need
to show that (1) the vertices are labeled consecutively and (2) the labeling is prime.
Now, because ladder graphs have a Hamiltonian cycle that starts at vi and ends at
vi+1, then to show a ladder has this CCPL, we need to answer: does labeling the
vertices consecutively along this ladder yield a prime labeling? A characterization
for the ladders with consecutive cyclic prime labeling is provided in [5]. We divide
this characterization into two exercises for the reader below (Fig. 19).

Exercise 24 If Pn × P2 has a consecutive cyclic prime labeling with the value 1
assigned to vertex v1, then 2n + 1 is prime. (Hint: use contradiction.)
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v1 v2 v3 v4 vn−2 vn−1 vn

u1 u2 u3 u4 un−2 un−1 un

(a)

2n 1 2 3 n−3 n−2 n−1

2n−1 2n−2 2n−3 2n−4 n+2 n+1 n

(b)

n+2 n+1 n n−1 5 4 3

n+3 n+4 n+5 n+6 2n 1 2

(c)

Fig. 19 The ladder Pn ×P2 with the two consecutive cyclic prime labelings given in Definition 7.
(a) The ladder Pn ×P2 with vertices identified. (b) Pn ×P2 labeled as in Definition 7 with vi = v2
labeled as 1. (c) Pn × P2 labeled as in Definition 7 with un−1 labeled as 1

Now, you will consider the converse of Exercise 24. Note that when proving the
converse of a statement what you were assuming is what you now need to prove and
what you were proving is now your assumption at the start of the proof.

Exercise 25 If 2n+1 is prime, then Pn×P2 has a consecutive cyclic prime labeling
when the value 1 is assigned to vertex v1.

Putting the results of Exercises 24 and 25 together, what can we say about ladder
graphs with consecutive cyclic prime labelings?

Theorem 1 Pn × P2 has a consecutive cyclic prime labeling with the value 1
assigned to vertex v1 if and only if 2n + 1 is prime.

In [10], Donovan et al. adapted the definition of a cyclic prime labeling of ladders
and applied it to the disjoint union of cycles. When labeling the cycles, they label
each graph both consecutively (the labels appear in order) and cyclically (the labels
wrap around the cycle).

Definition 8 For a cycle on n vertices, v1, v2, . . . , vn, v1, the consecutive cyclic
labeling ϕ is defined as ϕ(vi+1) = ϕ(vi) + 1, where vn+1 := v1. Any consecutive
cyclic labeling resulting in a prime graph is then a consecutive cyclic prime labeling.

Definition 8 is illustrated in Fig. 20.
The work [10] focuses on the existence of consecutive cyclic prime labelings of

the disjoint union of cycle graphs. Recall from Definition 1 that the disjoint union
of two graphs is one copy of G and one copy of H with no additional changes.
The disjoint union of cycles therefore consists of several independent cycles. In this
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Fig. 20 A cycle on eight vertices as well as a consecutive cyclic labeling of this graph. Is the
labeling given in (b) prime? (a) C8 with vertices identified. (b) C8 with a consecutive cyclic
labeling. Note here that ϕ(v6) = 1
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Fig. 21 Two examples of disjoint unions of graphs. Could either of these labelings be extended
by adding a copy of C4? A copy of C5? (a) 2C4 with a CCPL. (b) C10 ∪ C7 ∪ C6 labeled with a
CCPL

case, the cycles are labeled consecutively and cyclically in the given order. From
Challenge Problem 2, the disjoint union of odd cycles is not prime. Thus, we know
it will not be consecutive cyclic prime. However, are there disjoint unions of cycles
that are consecutive cyclic prime? See Fig. 21 for two examples.

Perhaps we first consider the union of identical cycles, mCn. The question at
hand becomes: how large can m be so that a CCPL of mCn remains prime? Now, if
n is odd, we know mCn is prime only when m = 1. Because a consecutive cyclic
labeling of one odd cyclic is also prime, then, mCn is consecutive cyclic prime
only when m = 1 for odd n. However, how many copies of even cycles result in a
consecutive cyclic prime labeling?

Exercise 26 Show that 3C6 has a consecutive cyclic prime labeling.

Exercise 27 Is 4C6 consecutive cyclic prime? is 5C6? In either case, explain.

What we are discovering is the upper limit on the possible number of cycles
we may have in a disjoint union for which the graph is prime when labeled with
the consecutive cyclic labeling ϕ from Definition 8. In Exercises 26 and 27, we
observed that each pair of adjacent vertices in each cycle is consecutive integers
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with the exception of the first and last vertices labeled in the cycle. Recall that
consecutive integers are relatively prime; therefore, we only need to check the first
and last labeled vertices in each cycle for common factors.

Still focusing on mCn, the kth copy of Cn has its first vertex labeled with
(k − 1)n + 1 and its last is labeled with kn, as we move around the cycle. We need
the result of the following exercise to continue this discussion.

Exercise 28 Show that a common factor of two integers must also divide the
difference of those integers. That is, prove the following: for integers m and n with
gcd(m, n) = d, m − n is a multiple of d.

Thus, by Exercise 28, a common factor d of these labels must divide kn − ((k −
1)n + 1) = n − 1. This results in the following lemma, which appears in [10].

Lemma 1 Any common factor of two vertex labels in a cycle of length n labeled
via a consecutive cyclic labeling must be a factor of n − 1.

Lemma 1 is very useful when trying to determine whether the disjoint union of
cycles of the same length is consecutive cyclic prime. Use Lemma 1 to prove the
three statements in Exercise 29 that compose Theorem 2.2 in [10]. Recall that m is
the number of copies of Cn in the disjoint union of the cycles.

Exercise 29 Let G = mCn for some n ≥ 4, and let p be the smallest prime factor
of n − 1.

(a) There exists a consecutive cyclic prime labeling of mCn for 1 ≤ m ≤ p − 1.
(b) The maximum possible m for which G is prime with this labeling is m = p −1.
(c) For the special case where n − 1 is itself prime, m ≤ n − 2, and if n is odd,

m = 1.

Because consecutive cyclic prime labelings were first only introduced for ladder
graphs, we wonder whether this definition can be generalized for other graphs with
either Hamiltonian cycles or paths, similar to what was done in [10]. We adapt the
definition below.

Definition 9 Let G be a graph on n vertices with Hamiltonian cycle v1, v2, . . . , vn, v1.
Then, a consecutive cyclic labeling of G would label the ith vertex of the cycle with
the integer i. In other words, ϕ(vi) = i.

Research Project 2 Which Hamiltonian graphs are consecutively cyclic
prime?
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Fig. 22 A graph G consisting of a 5-cycle with an additional edge. Note the role the labeling plays
here: in (a), G is prime, but in (b) it is not

When answering this question, it is helpful to remember that any vertex in a
Hamiltonian cycle can be considered the first. For example, Fig. 22 shows two
consecutive cyclic prime labelings of the same graph. However, only the second
labeling is prime.

You may also consider the disjoint union of Hamiltonian graphs, as [10] did
with cycles. Since [5] showed which ladder graphs have consecutive cyclic prime
labelings, you may consider starting with disjoint unions of ladders, all of which
have the same size. Then, you can expand upon your results and consider other
graphs.

Research Project 3 If G is a Hamiltonian graph with a consecutive cyclic
prime labeling, what is the maximum m so that mG has a CCPL?

You can also adapt Definition 9 to be for graphs with Hamiltonian paths, not
Hamiltonian cycles, which may provide you with more flexibility.

Definition 10 Let G be a graph on n vertices with Hamiltonian path v1, v2, . . . , vn.
Then, a consecutive cyclic labeling of G would label the ith vertex of the path with
the integer i. In other words, ϕ(vi) = i.

Research Project 4 Which graphs with Hamiltonian paths are consecutively
cyclic prime?

Finally, perhaps you will consider adapting the definition of a coprime labeling to
cyclic coprime labelings. As we saw in Sect. 2, all graphs have a coprime labeling. A
cyclic coprime labeling would be a labeling that labels the vertices of a Hamiltonian
cycle with increasing integers, instead of (increasing) consecutive integers.
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Definition 11 Let G be a graph on n vertices with Hamiltonian cycle
v1, v2, . . . , vn, v1. Then a cyclic labeling of G would label the vertices of the
cycle with increasing integers. In other words, ϕ(vi+1) > ϕ(vi) where vn+1 := v1.

Research Project 5 What is the minimum value of k for which a Hamilto-
nian graph G has a cyclic coprime labeling?

You may also consider introducing the idea of a strongly consecutively cyclic
prime graph. To our knowledge, this has not yet been introduced, but it would be in
line with the idea of a strongly prime graph. A graph is a strongly prime graph if for
any vertex v of G there exists a prime labeling for which v is labeled with 1. The
idea of a strongly prime graph was introduced by Vaidya and Prajapati in [22].

Research Project 6 What graphs, if any, have a strongly consecutively
cyclic prime labeling? In other words, what graphs have a consecutively cyclic
prime labeling for which any vertex of G can be labeled with 1?

We know that the graph in Fig. 22 would not be strongly consecutively cyclic
prime. However, what graphs, other than cycles, would be?

These are not the only directions to take for future research. Remember that
mathematicians often adapt definitions or introduce new definitions when doing
research.

4 Neighborhood-Prime Labelings

What we have seen thus far is that interesting and significant mathematical results
have been made on various alterations of prime labelings. In this chapter, we discuss
our final variation—neighborhood-prime labelings. Neighborhood-prime labelings
were first introduced by Patel and Shrimali [16]. The neighborhood of a vertex is
the set of all vertices adjacent to that vertex. This set of neighbors does not contain
the vertex itself. If the vertices of a graph can be labeled with {1, 2, . . . , n} so that
for any given vertex with degree greater than 1 the greatest common divisor of the
neighborhood labels is 1, the graph is a neighborhood-prime graph. An example of
such a graph is given in Fig. 23.

Exercise 30 Repeat Exercise 12, replacing “prime” with “neighborhood-prime.”
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Fig. 23 An example of a graph with a neighborhood-prime labeling. Note that, for each vertex
with degree of 2 or more, we must check the labeling by finding the greatest common factor of all
the neighborhood labels; for the vertex labeled 1 with neighbors labels 2, 4, and 7, their greatest
common divisor is 1

235

4

1

(a)

2

35

4

1

6

(b)

Fig. 24 Neighborhood-prime graphs G and G′, where G is constructed by attaching the vertex
labeled 6 to the vertex labeled 3. Note that, with the exception of the pendant vertex, this new vertex
could be attached to any vertex and G′ would still be neighborhood-prime. (a) A neighborhood-
prime graph, G. (b) A neighborhood-prime graph, G′ constructed by adding a pendant vertex to a
vertex of degree 2

Exercise 31

(a) Let G be a graph with a neighborhood-prime labeling. Argue that the graph,
G′, resulting from attaching a pendent vertex to exactly one vertex of degree at
least 2 in G is also neighborhood-prime. An example of such a graph appears in
Fig. 24.

(b) Explain why the new vertex cannot necessarily be attached to a pendant vertex.
How can the statement in part (a) be adjusted to allow attachment to a pendant
vertex and have G′ be neighborhood-prime?

Exercise 31 shows one way we can build upon neighborhood-prime graphs to
create new neighborhood-prime graphs with more vertices. However, does the same
idea work for edges?

Exercise 32 Let G be a graph with a neighborhood-prime labeling. Consider the
graph G+e, the graph formed by adding an edge between two non-adjacent vertices,
u and v, in V (G). What must be true about u and v to guarantee that G + e is also
neighborhood-prime?
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As we established in Exercises 31 and 32, it is important that the vertices to
which we are adding have degree greater than or equal to 2 to guarantee that the
new, larger graph is also neighborhood-prime.

You may have been curious whether all prime labelings of graphs are also
neighborhood-prime labelings.

Exercise 33 Determine whether all prime labelings of a graph are also
neighborhood-prime labelings. Explain your reasoning.

There are several examples in this chapter thus far that show that the answer is
no. In Sect. 2, we discussed that labeling all vertices on a path consecutively yields
a prime labeling. However, this labeling is not a neighborhood-prime labeling for
paths with more than four vertices. This is because the vertex labeled with 3 will
be adjacent to vertices only labeled with 2 and 4, which are not relatively prime
integers. However, every path does have a neighborhood-prime labeling.

Exercise 34 Prove that path Pn has a neighborhood-prime labeling for every n.

Similar to paths, the consecutive labeling discussed in Sect. 2 does not work for
cycles. Can we find a variation for odd cycles?

Exercise 35 Prove that cycles of odd length, Cn, where n is odd, have a
neighborhood-prime labeling.

Before we continue, it will be helpful for us to establish a basic understanding
of modular arithmetic. The remainder when two integers are divided will be key in
understanding the results given below. Now, we know that 13/3 has a remainder of 1
(since 13 = 4∗3+1), so, using the idea of modular arithmetic, we can write 13 ≡ 1
(mod 3). Similarly, 11/3 can be written as 11 ≡ 2 (mod 3) since 11 = 3∗3+2. We
will briefly explore the idea of mods in Exercise 36 below. More detail can be found
in almost any discrete mathematics or number theory text. However, we recommend
first exploring Chapter 5 in [15], an open-source text.

Exercise 36

(a) What are the possible remainders when an integer is divided by 4? by 5? by k?
(b) List five numbers n that satisfy n ≡ i (mod 4) for i = 0, 1, 2, 3.
(c) What does it mean for a number k to be equivalent to 0 (mod n)?
(d) What is the smallest positive integer n such that n ≡ 0 (mod k), where k > 1?
(e) What is the smallest positive integer n such that n ≡ 1 (mod k), where k > 1?

Now, build on your results from Exercise 35 and use the ideas introduced above
to show the following:

Exercise 37 Show that the cycle Cn is neighborhood-prime if n �≡ 2 (mod 4).
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This leaves the question, “but what about Cn if n = 2 (mod 4)?” for example,
cycles of length 6, 10, 14, and so on. Well, it turns out that a neighborhood-prime
labeling for those graphs does not exist.

Challenge Problem 3 Prove that the cycle Cn is not neighborhood-prime when
n �≡ 2 (mod 4). (This is proven in Theorem 2.7 of [16].)

Putting the results of the exercises above together results in the following
theorem.

Theorem 2 The cycle Cn has a neighborhood-prime labeling if and only if n �≡ 2
(mod 4).

You can apply the result from Exercise 32 to Theorem 2 and obtain something
even more powerful, which was done in [3].

Theorem 3 Let G be a graph of order n such that n �≡ 2 (mod 4). If G is
Hamiltonian, then G has a neighborhood-prime labeling.

Exercise 38 Prove Theorem 3.

4.1 Building on Cycles

The results from Exercises 31 and 32, as well as Theorem 3, show that one can build
larger graphs from graphs that are known to be neighborhood-prime.

Much of the existing research in the field of neighborhood-prime graphs deals
with graphs containing cycles or that are constructed from graph operations with
cycles. Many results can be found in [3, 8], and [1]. In each of these papers, the
authors find new neighborhood-prime graphs by building on existing neighborhood-
prime graphs. We will choose to focus on the results on two classes of graphs, book
graphs, and stacked prisms, in the following exercises.

Let us first consider the family of book graphs. An m-book graph is a graph in
which m 4-cycles all share a common edge. This graph is the Cartesian product of
the star Sm+1 and P2. There are several variations of book graphs, but here we will
focus on the k-polygonal book graphs, a generalization of the m-book graph. The
k-polygonal book, denoted Bk

n , is formed by n copies of a k-polygon Ck , all sharing
a single edge called the spine. We denote the two endpoints of the spine as s1 and s2.
We refer to each k-polygon, Ck , as a page of the k-polygonal book graph. Figure 25
shows an example of B5

3 .

Exercise 39 Find a neighborhood-prime labeling of Bk
3 for k = 4, 5, 6. See Fig. 25

for an illustration of B5
3 .
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Fig. 25 The 5-polygonal
book, B5

3

s1 s2

Now, build on your results from the exercise above to do the following exercise.

Exercise 40 Prove that all 5-polygonal books are neighborhood-prime. (This is
done in Theorem 9 of [8]).

Now that we have generalized neighborhood-prime labelings of book graphs for
a specific size polygon (in this case, a polygon of size 5), let us consider generalizing
this type of labeling to a specific number of pages.

Exercise 41 Prove that all k-polygonal books with 3-pages, Bk
3 , are neighborhood-

prime.

Challenge Problem 4 Prove that all k-polygonal books Bk
n where k ≥ 3 and k ≡ 0

(mod 4) are neighborhood-prime. (This is proven in Theorem 4.1 of [1].)

Challenge Problem 5 Prove that if k ≡ 2 (mod 4), then Bk
n is not neighborhood-

prime. (This is proven in Theorem 4.2 of [1].)

A book graph is a special class of stacked prisms. Stacked prisms are the
Cartesian product of a cycle with a path of length n. More formally, the stacked
prism graph Ym,n is the graph Cartesian product Cm×Pn. These graphs can be drawn
as multiple concentric identical cycles where each vertex in a cycle is adjacent to
the equivalent vertices in the cycles immediately within it and immediately beyond
it. An example from [1] is shown in Fig. 26.

Exercise 42 Find a neighborhood-prime labeling of Y3,3.

Similar to how we did with book graphs, let us build on the above exercise and
obtain more general results.

Exercise 43 Prove that all stacked prisms of the form Y3,n are neighborhood-prime.

Now, let us see if we can generalize our results in the following challenge
problem.
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Fig. 26 The stacked prism
Y6,3, obtained by the
Cartesian product C6 × P3

Challenge Problem 6 Prove that all stacked prisms Ym,n are neighborhood-prime.
This is proven in Theorem 3.1 of [1].

If you are interested in research projects for neighborhood-prime labelings, we
encourage you to consider building other neighborhood-prime graphs through graph
operations (as we did above with some examples of Cartesian products). However,
choose your Cartesian products carefully so that your results do not directly follow
from Theorem 3. For example, the k-polygonal books are not Hamiltonian because
of the spine of length two. However, the stacked prism graphs are Hamiltonian.
However, Theorem 3 only tells us that Hamiltonian graphs of order n �≡ 2 (mod 4)

have a neighborhood-prime labeling, and it does not tell us about the case where
n ≡ 2 (mod 4). Thus, the result on all stacked prism graphs is original.

Research Project 7 What other neighborhood-prime graphs can be built
through graph operations. For example, when is the join of graphs
neighborhood-prime? When is the disjoint union of neighborhood-prime
graphs also neighborhood-prime?

You may also consider building upon the result of polygonal book graphs,
perhaps considering book graphs with a spine that contains more than one edge.

Research Project 8 Is there a general pattern for graphs to be neighborhood-
prime that contain many identical cycles with a shared path of any length?

Finally, because many of the graphs explored here are Cartesian products of
smaller graphs that are known to be neighborhood-prime, is the following true?
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Research Project 9 Determine whether the following conjecture from [1] is
true: if G and H both are neighborhood-prime graphs, then G × H is also
neighborhood-prime.

4.2 Building on Trees

The previous section focused on building neighborhood-prime graphs using results
on cycles. However, what if a graph does not contain a cycle? Recall that such graphs
(when connected) are called trees. Only a few classes of trees have been investigated.
The work [8] shows that all caterpillars, spiders, banana trees, firecrackers, and
bivalent-free trees are neighborhood prime. Let us explore a few of these below.

A caterpillar graph is a tree in which a single path (the spine) is incident to (or
contains) every edge. That is, a caterpillar graph is a tree where the removal of every
vertex of degree one leaves a path graph. An example of a caterpillar graph is given
in Fig. 27.

Exercise 44 Use Exercise 31 to argue that all caterpillars are neighborhood-prime.

A firecracker graph, Fn,k , is a graph obtained from a chain of n k-stars by linking
one leaf from each star along a path of length n. Two examples are shown below.
Note that F1,k is just the star Sk , and Fn,1 is just a path. Also, Fn,2 is a caterpillar
(Fig. 28).

Challenge Problem 7 Prove that Fn,k is neighborhood-prime for all positive n and
k. This is proven in Theorem 15 of [8]. Note: you only need to consider when k ≥ 3
since the cases where k = 1 or k = 2 are included in other classes known to be
neighborhood-prime.

A bivalent-free tree is a tree in which all vertices are leaves or have degree greater
than or equal to three. In other words, a bivalent-free tree has no vertices of degree
two (Fig. 29).

Challenge Problem 8 Prove that all bivalent-free trees are neighborhood-prime.

Cloys and Fox [8] showed that bivalent-free trees are neighborhood-prime in
Theorem 17 of their paper. An alternative labeling, using a breadth-first search,
is given in [1]. We bring up these two proofs because, as with prime labelings,

Fig. 27 A caterpillar whose
spine is of length six
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(a) (b)

Fig. 28 Two examples of firecracker graphs, F3,7 and F5,3. Recall that the first index in the
notation gives the length of the path, while the second gives the size of each star linked to this
path. (a) The firecracker graph F3,7. (b) The firecracker graph F5,3

Fig. 29 A bivalent-free tree.
Notice that each vertex has
degree 1 or degree greater
than or equal to 3

neighborhood-prime labelings are not necessarily unique. Oftentimes, one labeling
may be easier than another to build larger graphs that are neighborhood-prime
graphs, as was done in [1] with bivalent-free trees. The benefit of the breadth-first
labeling algorithm is that any non-leaf vertex can be the root and thus labeled 1.
This provides more flexibility than other labelings.

The work done on trees has led Cloys and Fox to conjecture that all trees are
neighborhood-prime. This seems like quite a lot to dive into! Therefore, what other
trees can we show are neighborhood-prime? Because we know bivalent-free trees
are neighborhood-prime, we need to focus on classes of trees that contain vertices
of degree two.

Research Project 10 What classes of trees that contain vertices of degree
two are neighborhood-prime? Perhaps you may first explore trees with exactly
one vertex of degree 2 and then build upon your work.

The work in [8] on caterpillars, which you also showed in Exercise 44, may
lead one to first investigate lobster graphs or trees for which every vertex is within
distance two of a central path. In other words, a lobster graph is a tree with the
property that the removal of leaf vertices leaves a caterpillar. (To learn more about
lobster graphs or to explore other classes of trees, we recommend exploring those
listed in [23].)
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Research Project 11 Are all lobster graphs neighborhood-prime?

We should note that we anticipate answering the question in Research Project 11
to be significantly more challenging than first exploring trees with a small number
of vertices of degree 2.

4.2.1 Further Projects on Neighborhood-Prime Labelings
Below we present the reader with more potential research projects in the area of
neighborhood-prime labelings. Remember that mathematicians often introduce their
own definitions or adapt definitions when they conduct research.

Research Project 12 As we saw in Sect. 2, all graphs have coprime label-
ings. Therefore, you may investigate the minimum value for k for which G

has a neighborhood-coprime labeling.

Akin to the idea of a strongly consecutively cyclic prime labeling defined in
Sect. 3, perhaps you may consider introducing the idea of a strongly neighborhood-
prime graph. While we do not think this idea has been previously introduced, it
would be another extension of a strongly prime graph. A graph is a strongly prime
graph if for any vertex v of G there exists a prime labeling for which v is labeled
with 1. The idea of a strongly prime graph was introduced by Vaidya and Prajapati
in [22].

Research Project 13 What graphs have a strongly neighborhood-prime
labeling? Begin by writing an argument showing that paths and cycles are
strongly neighborhood-prime, and then see what other results you find. Feel
free to build off results that are already in the literature.

5 Conclusion

There are a variety of research projects presented in this chapter that are accessible
for new mathematicians. Though several of these build off work that has already
been done, many of the research problems adapt existing mathematical definitions
to create new areas of research. If you wish to investigate research questions that
have not been explored in the existing literature, we recommend you dive into
Research Problems 2, 3, 4, 5, 6, 12, or 13. Moreover, for those who feel they need
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to strengthen their understanding of some concepts, we have referenced numerous
easily accessible open-source textbooks. However, feel free to find texts that are
better suited to your needs as you delve into the land of prime graphs. Happy label
hunting!
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Acrobatics in a Parametric Arena

Therese Shelton, Bonnie Henderson, and Michael Gebhardt

Abstract

Parametric functions model the motion of juggling sticks, changes across time
of socioeconomic factors, and more. We begin with math basics for readers who
have not yet experienced the joys of parametric functions, and we move on to
modeling from data sets, including some tricks with juggling “flower” sticks and
competition for cell phone subscribers. Data from the flower stick and hand sticks
was obtained using motion capture and digitization technologies. We note some
freely and commonly available graphing tools and data sources, provide some
examples and exercises, and suggest some project ideas.

Suggested Prerequisites Ideally, readers should have successfully completed a one semester
course in differential calculus, although some material is accessible to students with a solid back-
ground in pre-calculus. Polynomials, rational functions, logarithms, exponentials, and trigonomet-
ric functions are essential prerequisites.

1 Analogies to Motivate Parametric Thinking

Suppose a lovely snowfall covers the lawn of a flat college campus on a sleepy
Saturday, but the sidewalks are clear. You bundle up to go to delight in the snow, but
you pause at the window and watch another person walking in the snow, sometimes
going around in a square pattern, and sometimes even turning back around and
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retracing steps. Being the math whiz that you are, you think about the three variables
involved, with an x and y pair of coordinates for each footstep, and that these were
laid down in t , a time variable, according to some functions.

You head out to have some breakfast before playing in the snow, and when you
return, you see a new set of tracks. You see some individual footprints, and then an
oval shape of trampled snow. What you see is a static after-the-fact image that does
not tell the whole story. You know that the x and y coordinates were laid down in t ,
again, but you cannot tell what the actual path was.

A friend sees you and calls out, asking if you have something in your room to
help decorate a snow family that is being constructed. You dash to your room, and
while you look for worthy contributions, you keep running to the window to take
snapshots of your friend’s movements.

The first example that actually has motion can be modeled with parametric
functions to make an animation. We have a two-dimensional x−y plane, but each of
the variables x and y moves according to its dependence on a third variable t that is
a parameter. The second example that only shows a final path might be modeled in
all sorts of ways. With the right software, we can bring motion to the final path with
parametric functions to implement some ideas of how may have been trod. With the
third example, we can guesstimate some data from which to model the motion.

If you would prefer, think of tracks made in a flat, sandy beach instead of snow,
and making sandcastles instead of a snow family.

2 Overview

We have many goals in this chapter, including having fun with mathematics,
expanding the ways we think about math and its connections to the real world,
thinking in multiple dimensions and from multiple perspectives, and making sense
of data through analysis and modeling. Moreover, we do this especially from a
minimal background in mathematics and by building on some basic tools and
concepts. We hope to engage your interest and prepare you to explore some projects
of your own.

To equip and inspire you, we show some work in 2D—actual, though simple,
acrobatic movements of juggling sticks—and in 3D—juggling shares in a financial
market. In both of these, we track multiple quantities relating to each other while
changing in time. We indicate how to use some free, web-based graphing utilities,
although our computations and graphs are created primarily in Mathematica and
Microsoft Excel.

Working with parametric functions demonstrates the following definition of
acrobatics:

a spectacular, showy, or startling performance or demonstration involving great agility or
complexity[6]

So, let us propel ourselves into the parametric arena!
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3 Parametric Basics

We explore some simple introductory examples, especially for those who have
never dealt with parametric functions or for anyone who could use a refresher. See
the open educational resource (OER) [8] for this definition, a full development of
parametric functions, and more exercises. (See 1 for other OERs that can help with
the pre-requisite material.)

Definition 1 If x and y are continuous functions of t on an interval I, then the
equations

x = x(t) and y = y(t)

are called parametric equations in two dimensions, and t is called the parameter.
The set of points (x, y) obtained as t varies over the interval I is called the graph of
the parametric equations, or a parametric curve or plane curve.

3.1 Parametric Function 1

We know that the graph of

y = 2x + 1 (1)

is a line. Here, y is a function of x, and x can be any real number. We can easily
express this as a parametric function, just by letting x = t and re-expressing y;

x(t) = t, y(t) = 2t + 1 (2)

We can plot the image produced, say for −1 ≤ t ≤ 2, as we see in Fig. 1. On the
left we see the static result of graphing, and on the right we add an arrow to give the
direction dictated by the parameterization. Here, as t increases, we move up and to
the right on the line Eq. 1.

Fig. 1 Two views of Eq. 2
for −1 ≤ t ≤ 2
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Fig. 2 A sequence of views for Eq. 2 as t increases

Fig. 3 Graph of Eq. 3 for
−1 ≤ t ≤ 2

In Fig. 2, we show successive graphs for −1 ≤ t ≤ tmax where tmax =
0.2, 0.8, 1.4, 2., respectively. This is a way that we can indicate how an animation
would look. We use a dot to mark where we begin, that is for t0 = −1, and the arrow
to indicate our direction at a current value of t .

Parametric functions show motion in time.

3.2 Parametric Function 2

We can change the direction on the same line in Eq. 1 by changing the parameteri-
zation.

x(t) = −1

2
t, y(t) = −t + 1 (3)

We can solve x(t) for t , and then substitute that expression into y(t) and determine
that Eq. 3 also parameterizes the line Eq. 1. This process is called eliminating the
parameter; sometimes it is not easy, and sometimes it is not possible.

We can plot the parametric function in Eq. 3, and even still use −1 ≤ t ≤ 2, just
to see what happens, as in Fig. 3. If we let t run over all real numbers, we would
trace out the line y = 2x + 1, but the new parameterization traces out just a portion
of the line segment. This time, as t increases, we move down and to the left on the
line.
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Fig. 4 Graph of Eq. 4 for different stopping points within −2 ≤ t ≤ 4

3.3 Parametric Function 3

There are innumerable ways to parameterize the line Eq. 1 to obtain all or some of
the usual graph. Let us now consider

x(t) = 5
√

t2 + 1 − 4, y(t) = 10
√

t2 + 1 − 9 (4)

for −2 ≤ t ≤ 4.
You should verify that Eq. 4 also represents part of our line.
Each of the graphs in Fig. 4 begins at t = −10, near the point (7, 13), but the

upper value of t keeps increasing. Note that at first the parametric graph is moving
down and to the left, but then it reverses course and moves up and to the right along
the same line, passing the original starting point. We will soon look at Eq. 4 more
closely.

4 Function Concepts

Here, we review the definition of function and ensure that we are aware of where
the functions are, and how the idea is expanded, in the parametric arena.
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Fig. 5 Parameterization of
part of the unit circle

Fig. 6 Component graphs of Eq. 4 with corresponding points

4.1 Functions and Nonfunctions, Based on the Context

In our examples so far, the static 2D graph that is the end result of the parametric
function, meaning with y(t) graphed against x(t) has represented y as a function of
x as well. The graph passes the vertical line test, which is a visual way to think of the
definition: The rule y is a function of x provided for each value of the independent
variable x, the dependent variable y has at most one value.

With parametric functions, however, x and y are both dependent variables, and
t is the independent variable. That is, x and y are each functions of t , but we do not
always have y as a function of x in the resulting parametric graph.

A classic example of y not being a function of x in a parametric graph is given
in Eq. 5 and shown in Fig. 5.

x(t) = cost, y(t) = sint, 0 ≤ t ≤ 0.8π (5)

Parametric graphs are much more flexible than our more usual idea of functions.

4.2 Connecting Component Functions and the Parametric
Function

In each of the parametric graphs so far, the parameter t is “invisible” except
in providing a direction to the graph. However, when we defined the parametric
functions in Eq. 4, we defined two component functions. Let us graph each of these
as a function of t . The component x(t) = 5

√
t2 + 1 − 4 is on the left in blue in

Fig. 6, and y(t) = 10
√

t2 + 1 − 9 is on the right in red.
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Table 1 Some values for
Eq. 4

t x(t) y(t)

−2.0 7.2 13.4

−0.2 1.1 1.2

1.6 5.4 9.9

3.4 13.7 26.4

Fig. 7 Component Graphs of
Eq. 4 connecting
corresponding points for
t = −2

Points are indicated for t = −2.0,−0.2, 1.6, 3.4. These are tabulated in Table 1
and displayed prominently in Fig. 6. Such a table can help us know the direction for
a parametric curve, and more.

Now we relate the separate graphs in Fig. 6 to a parametric view. We rotate the
blue x(t) graph from the left of Fig. 6 and align its x-axis underneath the horizontal
axis for the parametric graph. We show the red y(t) graph from the right of Fig. 6
to the left of the parametric graph, and we align the vertical axis of each. See the
way we have “tumbled” our graphs from Fig. 6 with the parametric graph, shown in
purple in Fig. 7. We also connect points corresponding to t = −2.

In Fig. 8, we connect more of the points in Table 1.
In Figs. 6 and 7, we can see that at least for some negative values of t , as t

increases, x(t) decreases, and y(t) also decreases. For these values of t , the purple
parametric graph in Fig. 7 has movement down and to the left. At least for some
positive values of t , as t increases, x(t) increases, and y(t) also increases. This is
when the purple parametric graph has movement up and to the right. When does it
change behavior? There are multiple approaches we can take when answering this
question: guesstimate values from the component graphs, watch dynamic graphs,
build extensive tables of values, and we can use calculus.

For Eq. 4, we have

dx

dt
= 5t√

1 + t2
,

dy

dt
= 10t√

1 + t2
(6)
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Fig. 8 Component Graphs of
Eq. 4 with more
corresponding points

We see that dx
dt

is 0 for t = 0, negative for t < 0, and positive for t > 0. Therefore,
we see in Fig. 6 that x(t) decreases for t < 0 to its minimum value at t = 0, and
then increases for t > 0. We see a similar behavior for dy

dt
. Combining these, the

parametric curve moves down and to the left for t < 0, and then up and to the right
for t > 0.

Challenge Problem 1 What types of component functions lead to a parametric
function which also represents y as a function of x? What behaviors or charac-
teristics are needed? How can we determine those from component graphs? How
can we use calculus to identify possible intervals of the parameter for which this is
true?

5 Try Some Parametric Acrobatics Yourself

Now you can try a greater variety of parametric functions, including other param-
eterizations of the line we graphed previously. In this section we explore a freely
available online graphing tool that can be used to explore a rich variety of other
parametric functions, too; included exercises should help interested readers become
more familiar with both this computational tool and the underlying concepts.

5.1 General Desmos Graphing Instructions

We use a web-based tool that is, at the time of this writing, free and freely available:
https://www.desmos.com/calculator. Users may take some screenshots or download
a graph, and users may create a free account to save their graphs.

For any parametric graphing using the form
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x = f (t), y = g(t)

input the functions as an ordered pair into the first cell.

(f (t), g(t))

Under the ordered pair, set real number boundaries for t,

a ≤ t ≤ b

With this input you will get a segment of the graph that is between t = a and t = b

In the next cell, input the same ordered pair except swap t for a

(x, y) = (f (a), g(a))

Under the ordered pair, there will be an option to add a slider for a. Click this button
and use the same boundaries for a as you did t This will give you a point that will
trace the graph segment you have already graphed.

On the left of the second cell, push the play button and see the point trace the
line. Under the play/pause button, click the button with “loop” arrows to access
animation properties. Change the animation mode to the second option, with the
two arrows pointing the same direction. This makes it so the point repeats going in
the same direction (goes back to the beginning of interval after it reaches the upper
boundary). Indicate the endpoints and the step size for the animation.

Desmos also has tutorials, such as https://learn.desmos.com/parametric-
equations.

5.2 Exercises with some Desmos Instructions

1. Let x = 4t + 6 and y = 5t + 1. Graph the parametric function from t = −1 to
t = 1 and create a point that traces a recognizable curve.

– In the first cell input the ordered pair (4t + 6, 5t + 1)

– Set the interval to 1 ≤ t ≤ −1
– Adjust the window of the graph by pinching and dragging so that the full line

segment is in view
– For the point, go to the next cell and input (4a + 6, 5a + 1)

– Add a slider for a, using the interval −1 ≤ a ≤ 1
– Press the play icon and change the animation option “repeat in same direction”
– Observe the direction and speed of the point as it moves along the graph

2. Let x = t + 1 and y = 2t2. Graph the parametric function from t = −1 to t = 1
and create a point that traces a recognizable curve.
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– In the first cell input the ordered pair (t + 1, 2t2)

– Set the interval to 1 ≤ t ≤ −1
– Adjust the window of the graph by pinching and dragging so that the full

segment of the parabola is in view
– For the point, go to the next cell and input (a + 1, 2a2)

– Add a slider for a, using the interval −1 ≤ a ≤ 1
– Press the play icon and change the animation option “repeat in same direction”
– Observe the direction and speed of the point as it moves along the graph. When

does the point speed up or slow down? Why does it change speed? What does
it say about the function around the points at which it changes speed?

3. Using the same step as above, graph x = 5 cos(t), y = 2 sin(t) on the interval
t = 0 to t = 2π . Plot a point that traces a curve, and note where the point changes
speed.

4. Using the same step as above, graph x = sec(t), y = 3tan(t) on the interval
t = 0 to t = 2π . Plot a point that traces a curve, and note where the point changes
speed.

5.3 Experimentation

This problem will probably require multiple tools, one of which may be Desmos.

Challenge Problem 2 Analyze our classic example, Eq. 5 as we did in Sect. 4.2.
Create a table of values, graph the component functions, and relate them to the
parametric function. What other types of parameterizations of the unit circle could
there be? Experiment and state some. Write about your findings.

6 True Acrobatics: Parametric Modeling of a Flower Stick

Now we combine the physical tumbling of a flower stick with the mental acrobatics
of parametric functions.

6.1 Flower Sticks and DigitizedMotion

Flower sticks, also known as devil sticks (except for minor design differences), are
sticks that are, in a way, juggled. While traditional juggling includes keeping three
balls off the ground while only one can ever be in the hand, a flower stick is kept
in the air using two other sticks that are held in the right and left hands, which we
call hand sticks. (“Flower Sticks” can be used to describe all three sticks, but we try



Acrobatics in a Parametric Arena 123

Fig. 9 Flower stick trick presentation

Fig. 10 Processed flower stick and two hand sticks

to be clear.) The hand sticks then rotate the flower stick, and this motion keeps the
flower stick from hitting the ground.

We consider a basic trick known by the following names: a standard idle, a tick-
tock, or single sticking. In this trick, the flower stick is simply knocked back and
forth between the two hand sticks, and there are no extra turns or movements.
Author B. Henderson performed and analyzed this and other tricks while she was
an undergraduate student, supervised by author T. Shelton.

Figure 9 shows still shots taken from a video of the trick during an on-campus
presentation of the mathematical modeling.

In Fig. 10 we see a sequence of some of the processed digitized data. The line
connected by the red and blue dots is the flower stick, and the orange triangle and
green circle are the ends of the sticks in the left and right hands, respectively. The
video[1] is also available.

To obtain these digitized images, reflective markers were placed on both ends
of the flower stick as well as the ends of the two hand sticks closest to the video
camera. The performer was positioned against a wall, on which there were markers
to determine distance. An industrial light source was then directed at the sticks and
the performer. This light source highlighted the reflective markers, which allowed
the video camera and software to more easily recognize the markers. The resulting
spreadsheet data included the frame number, and the x and y coordinates of each
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Fig. 11 Digitization of
flower stick trick

Fig. 12 x-coordinate in time
of left end of the flower stick

marker. Dr. McLean conducted the digitization using equipment and software from
the Department of Kinesiology for analyzing movement. Figure 11 shows frames
from the video capture of the digitization process; the reflectors are clearly seen.
The low-resolution of these images was adequate for the motion analysis software.

Some minor modifications to the images were made in order to more clearly
highlight the trick being performed; a few initial frames were deleted and “frame
numbers” were converted to “time in seconds” based on a sampling rate of fifty
frames per second. Now we begin the analysis.

6.2 Modeling the Left End of the Flower Stick

The data for the x coordinate, shown in Fig. 12 looks sinusoidal. There are a number
of somewhat advanced techniques for fitting sines and cosines to data, which were
beyond the scope of this student modeling project. (The interested reader might read
about “Fourier Analysis.”) We simply estimated the period from the data, built a list
of sines and cosines based on this period, and then used Mathematica to determine
coefficients for a sinusoidal representation of the x position with respect to time t of
the left end of the flower stick. We omit detail of the modeling to maintain the focus
on the resulting parametric function,

xL(t) = −1460.00sin(16.30t) + 364.21sin(17.08t)+
6.00sin(17.48t) + ... + 115.09cos(17.082t) + 21.81cos(17.48t)

(omitting many terms.) From a pure modeling standpoint, we would balance the
complexity of the model with the closeness of the fit, but for this undergraduate
research project, the student was encouraged to explore freely.
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Fig. 13 x-coordinate in time
of left end of the flower stick

Fig. 14 Left end of the
flower stick

The resulting function xL(t) fits the data well for the x coordinate of the left end
of the flower stick, as we see in Fig. 13 (The modeling function is shown in red, and
the original data is blue).

Similarly, we fit a sinusoidal function yL(t) to the y coordinate of the left end of
the flower stick.

Now for the exciting part—we now have a parametric function (xL(t), yL(t)) for
the left end of the flower stick, which we graph in Fig. 14.

Looking back at Fig. 10, we can tell that the left end of the flower stick does,
indeed, travel back and forth across the top of our viewing window. So, what should
that mean for the right end of the flower stick? Think about this while you view
Fig. 15, the component and parametric graphs together for the left end of the flower
stick.

Notice that in Fig. 14, y is not a function of x at all, and it is only by fitting curves
to the component functions that we are really able to model the full movement. The
view in Fig. 14 is the cumulative movement shown all together, like the analogy of
walking in the snow. We might actually see something like this if we were in the
dark, watching someone juggle a flower stick that had a small light source on the
left end, when our eyes continue to see some light after it has passed a point.

Using descriptive details like this can help us solidify the connections between a
model and reality.

6.3 More on the Flower Stick

Similarly, we fit functions xR(t) and yR(t) for the x and y coordinates of the right
end of the flower stick, respectively.
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Fig. 15 Left end component and parametric views

Fig. 16 Right end component and parametric views

From Fig. 16 it seems that there is a single cycle that was much more wobbly in
height than the other cycles, although the width of that wobble is consistent with
the widths of the other cycles. We can see the wobble both in the yR(t) graph and
the parametric plot, and we can see the greater consistency in the widths both in the
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xR(t) graph and the parametric plot. We encourage the reader to use the component
graph(s) to identify the time interval over which this wobble occurred.

We can also compare the movement of the left end and the right end. The right
end moves less consistently than the left end, although we note that the scales are
not exactly the same. This seems to make sense by examining the position of the
hand sticks, relative to the flower stick, in Fig. 10. The left end of the flower stick is
being batted back and forth by the two hand sticks, restricting its movements more,
while the right end can swing more.

6.4 YourWork

Challenge Problem 3 Analyze our classic example, Eq. 5 as we did in Sect. 4.2.
Create a table of values, graph the component functions, and relate them to the
parametric function. What other types of parameterizations of the unit circle could
there be? Experiment, and write about your findings.

Challenge Problem 4 Perhaps you have personal data, such as from a device that
monitors your movements, heart rate, sleep modes, etc. that you could analyze. You
need two sets of data linked to the same times.

Is your data periodic? if so, estimate the period, perhaps from peak to peak.
Where is the data increasing? decreasing? Does it have extrema?
Estimate the velocity.
Examine concavity and any changes, indicating where velocity increases or

decreases.
Interpret the functions and what they mean about your movements or health.
Depending upon how extensive your data and analysis are, this could develop

into more of a Research Project.

Research Project 1 Access and download the data for the digitization of
the Flower Stick trick from [1]. This includes the frame number, x and y

coordinate data for each end of the Flower Stick, and x and y coordinate data
for each hand stick. Perform your own analysis.

You might want to begin with the smaller data set provided.
Create component and parametric graphs for appropriate combinations

of the data. Can you use spreadsheet functions, graphs, or computations to
identify the period and amplitude for sinusoidal data?

Compute the average rate of change within a variable, and use that to
help identify local extrema of the variable, as well as intervals of increase
or decrease of the x and y components.

(continued)
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Pick an interval that has at least one full period for related x and y

components, and formulate a model for that time-section of the data. Can you
model that section? Graph your parameterization of that section for t values
beyond that time-section. If you repeat it, can you mimic the trick just with
this model?

Experiment, and write about your findings.

7 Financial Acrobatics: Modeling USWireless Subscribers

Increasing consumer reliance on cell phones is apparent in Table 2, as is increased
pressure on companies to construct new and innovative ideas. By predicting future
consumer numbers, a company is better prepared to set priorities and project the
number of people they might serve. We created models in 2015 for ATT, Verizon,
and T-Mobile from 2004–2014 in the USA. We show some of these, and compare
with a bit more current information. As with the Flower Sticks project, the focus at
the time was on mathematical modeling, details of which are omitted here. Author
M. Gebhardt gathered and analyzed the data while he was an undergraduate student,
supervised by author T. Shelton.

Table 2 US thirst for cell
phones

Subscriptions
per 100 Population Subscriptions

Year t people (millions) (millions)

2004 0 63.22 2928.05 185.10

2005 1 69.05 2955.17 204.06

2006 2 77.11 2983.80 230.08

2007 3 82.93 3012.31 249.82

2008 4 86.10 3040.94 261.82

2009 5 89.55 3067.72 274.70

2010 6 92.27 3093.22 285.40

2011 7 95.45 3115.57 297.38

2012 8 97.07 3138.31 304.63

2013 9 98.20 3159.94 310.30

2014 10 111.56 3183.01 355.08

2015 11 119.14 3206.35 382.02

2016 12 122.56 3229.41 395.79

2017 13 123.11 3249.86 400.08

2018 14 123.69 3266.88 404.07

2019 15 123.69 3282.40 405.99



Acrobatics in a Parametric Arena 129

7.1 About the Data

Some data came from online annual reports; some were recently obtained from [2]
and [7]. Data from [9] on overall population and density of cellphone subscriptions
was used in the original model and the current comparisons.

We simplify descriptions of some of the data, for instance, by using “cell phones,”
“mobile devices,” “subscribers,” “wireless subscriptions,” and “connections” inter-
changeably. We also ignore various distinctions, such as between “cell phone” and
“smart phone,” between “pre-paid” and “post-paid,” etc. Variations in the “who,
what, how, when, and why” of data collection and reporting leads to multiple
variations in data sets. Many of us have been made more aware of this phenomenon
from public reporting, such as on the COVID-19 pandemic: data was posted for
“cases” of those infected with the coronavirus, but this may or may not have
included “suspected cases,” and often there was a backlog of data. Often when we
seek data, as is the case with the cell phone data, we find that the latest is from years
ago, and we often need to cobble together data from multiple sources.

7.2 Views of the Data

These three companies had a large market share in 2015, encompassing most
cell phone users in the USA. Data is listed in Table 3, measured in millions of
subscriptions.

Both ATT and Verizon led the US cellphone market in wireless subscribers
by quite a large margin over T-Mobile. However, T-Mobile achieved a dramatic
increase from 2012 to 2013 from beginning to sell the iPhone and its acquisition
of MetroPCS. Improvements to T-Mobile’s network and customer experience
contributed to the first year of increases and also accounted for the second year
of increases revealed in the data.

We did not know in 2015 whether any of these companies would persist, nor
did we know that T-Mobile would acquire Sprint, a merger that was finalized in

Table 3 Cell phone
subscription data, in millions

Year t AT&T Verizon T-Mobile

2004 0 49.132 43.800 1.399

2005 1 52.144 51.300 1.925

2006 2 60.962 59.100 2.941

2007 3 70.052 65.700 3.963

2008 4 77.009 72.100 5.367

2009 0 85.120 85.445 6.640

2010 1 95.536 87.535 8.155

2011 2 103.247 92.167 9.347

2012 3 106.957 96.700 8.887

2013 4 110.400 102.600 43.000

2014 5 120.554 108.200 55.000
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Fig. 17 Cell phone
subscription data, in millions,
vs years since 2004

Fig. 18 Parametric view of
cell phone subscription data,
in millions with an axis per
company

April 2020 [3]. Sprint was also a key player, and for many years was comparable to
T-Mobile. We choose to focus on the three main companies.

The data from Table 3 for each company across time is visualized in Figs. 17
and 18. Figure 17 shows each company’s subscriber data separately as variables
dependent upon t , years since 2004.

The data is perfect to be displayed as a parametric graph because the parameter,
years since 2004, is the common parameter for the sets of subscriber data for the
companies. Here, we see a red arrow at the end to indicate increasing time t . The
view in in Fig. 18 focuses on relating the companies to each other. Compare the
scale for each company. T-Mobile stays on the “floor” until the last two years, and
even then does not even rise to half of the number of subscribers for either AT&T
or Verizon.

7.3 Data Projections

We briefly outline some of the models we created based on this data, meaning that
we leave out most of the detail of the modeling used. Our purpose is to encourage
experimentation and critical thinking. A spreadsheet can be implemented for at
least parts of most of these models. We show five-year projections of the modeled
equations to 2019, recalling that extrapolating beyond the data is always risky. We
include updated data from Table 4 in the graphs to evalluate our models.
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Table 4 Updates to cell
phone subscription data, in
millions

Year t AT&T Verizon T-Mobile

2015 11 128.68 140.92 63.28

2016 12 134.88 145.86 71.46

2017 13 141.20 150.46 72.59

Our mathematical models produce equations using the initial data from 2004
through 2014, which we graph through 2019. Rather than modeling with the
additional data from Table 4 through 2017, we demonstrate a methodology of
conjecture and validation. Moreover, we leave the task of modeling all (or most)
of the data to you. Our models may give you some ideas for your own analysis.

Research Project 2 Create component and parametric graphs for appropri-
ate combinations of the cell phone data. You may wish to find further updates
to the data, as well as to withhold the last year to validate your results. If the
data seems to change dramatically, you may wish to ignore some of the initial
years, or break the data into parts and find fits to the subsets.

Use spreadsheet functions, graphs, and computations to formulate models.
You may wish to compute rates of change within a variable, and use that

to help identify local extrema of the variable, as well as intervals of increase
or decrease of the x and y components.

Graph your parameterizations for t values beyond the data, though not too
far beyond.

Experiment, and write about your findings.

7.4 Linear Fits to 2004–2014 Data

The 2004–2014 data for AT&T and Verizon appear very linear, and data for T-
Mobile also appears linear through 2011. We see in Fig. 19 that the functions in Eq. 7
appear to fit reasonably well, although the linear model clearly does not capture the
dramatic rises for T-Mobile.

A(t) = 47.69 + 7.40t,

V (t) = 46.417 + 6.44t,

T (t) = −7.75 + 4.22t

(7)

For these linear fits to the 2004–2014 data, the coefficients of determination,
R2 values, are 0.99, 0.98, and 0.66, respectively. These may only be interpreted
meaningfully when a graph verifies that the data is reasonably linear. The values
close to 1 for AT&T and Verizon verify the good fit, with almost 100% of the
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Fig. 19 Data with linear model in component and parametric graphs

Table 5 Annual
proportional growth

t AT&T Verizon T-Mobile

1 1.06 1.17 1.38

2 1.17 1.15 1.53

3 1.15 1.11 1.35

4 1.10 1.10 1.35

5 1.11 1.19 1.24

6 1.12 1.02 1.23

7 1.08 1.05 1.15

8 1.04 1.05 0.95

9 1.03 1.06 4.84

10 1.09 1.05 1.28

Average 1.10 1.10 1.63

variability in the cell phone data accounted for by the model. The significantly lower
value for T-Mobile verifies the looser fit of the linear model, with only 66% of the
variability in the cell phone data accounted for by the model.

7.5 Proportional Growth

We see a pattern in the ratios of the number of subscribers in a subsequent year to
the number of subscribers in the current year, although the pattern breaks down for
T-Mobile.

The data from Table 5 suggests that we consider an exponential fit.

Challenge Problem 5 Can you explain, or compute, a relationship between pro-
portional growth and exponential functions?
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Fig. 20 Data with exponential model in component and parametric graphs

A(t) = 53.43 e0.085t ,

V (t) = 51.37 e0.079t ,

T (t) = 0.28 e0.053t

(8)

We have slightly improved fits for AT&T and Verizon, and a significantly
improved fit for T-Mobile, as seen in Fig. 20. For these exponential fits to the data
through 2014, the coefficients of determination are 0.998, 0.997, 0.952, respectively.
However, the extra data reveal that T-Mobile’s improvements do not continue in the
same manner as the extraordinary two years, which is reasonable. However, perhaps
such a model seems to “predict” the merger with Sprint.

8 GeoGebra to Practice 3D Parametric Equation

Here are a very brief set of instructions to get you started on a free graphing
tool, along with some problems to build, or examine, your ideas about parametric
functions.

• Go to the following parametric graphing website: https://www.geogebra.org/3d?
lang=en

• Label your x-axis, y-axis, and z-axis with the settings button in the top right
• You will be graphing a series of 3D functions. For the following examples, type

curve(x(t), y(t), z(t), t, a, b) into the input slot, where x(t), y(t), and z(t) are
components of the parametric function, and t is on the interval [a, b]

The following exercises can be used to build your understanding of GeoGebra
and 3D Parametric Equations.

1. Set up the following functions on the interval [−20, 20]


 21460 40626 a 21460 40626
a
 
https://www.geogebra.org/3d?lang=en
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x(t) = t2

y(t) = t

z(t) = t

a. Use your mouse to move the graph around, notice how it looks from different
angles. What 2D graph does it resemble in each plane?

2. Now try these on the interval [0, 2π ]

x(t) = 5 cos(t)

y(t) = 5 sin(t)

z(t) = 0

a. Notice the graph is only in 2 dimensions, why is this the case?
b. Try changing z(t) to a different number, what happens to the graph?
c. Now change it to z(t) = t , how did the graph change? Follow the flow of the

graph starting at t = 0, notice how each equation’s value matches up with the
graph’s location in each axis. Try increasing the upper bound to see the graph
travel all the way up the z-axis

3. Still on the Interval [0,2π ]

x(t) = t

y(t) = 5 cos(t)

z(t) = 5 sin(t)

a. Notice we only switched the equations around from example 2. How did this
change the graph? In what plane(s) is the new graph symmetric?

4. Lastly, on [0,6π ]. How do you think this graph will look, using examples 2 and
3 as reference?

x(t) = t cos(t)

y(t) = t sin(t)

z(t) = t

a. Explain the shape of the graph.

9 Your Project

There is a rich variety of topics to explore and model with parametric functions, and
you are encouraged to explore them!
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Research Project 3 Come up with your own project. Some ideas:

1. your own motion capture data, if you have access to some technology
2. pollen count data aligned with your own record of numerical scores to

indicate the severity of your allergy symptoms
3. tracking social justice data over time, such as comparing proportions of

subgroups in a population to proportions of those subgroups who receive
(or do not receive) services or retributions. This might include data from
the Covid-19 pandemic, perhaps from Johns Hopkins[5].

GapMinder[4] has marvelous animations of historical data shown in 2D, and the
data is downloadable. Exploring this site can spur numerous ideas.

We hope you will launch into some parametric investigations to learn more about
mathematics and about your world.
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Abstract

We all know the world loves an underdog. But who should have won? Simulation
models can give us a way to reproduce contest scenarios using computer power,
allowing us to simulate versions of reality numerous times and observe a wide
range of possible outcomes. Using basic probability calculations and a wide
range of programming tools, we can mimic real life and answer such questions
as “how likely is Team A to win the tournament?”, “how biased would Judge
B have to be in favor of an athlete for them to come out on top?”, or “is there
a particular voting structure that would allow for the emergence of Candidate C
as the winner?” In this chapter, we lay out the fundamental skills for pursuing
answers to questions like these via simulation, and leave the interested reader
with a set of potential research projects on the theme of evaluating fairness, bias,
and other issues relevant to ranking schemes and judging protocols.

Suggested Prerequisites A basic familiarity with programming software of choice (R, Python,
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1 Introduction

One of the most powerful tools in an applied mathematician’s or statistician’s
toolbox is simulation. What is simulation? Simulation is a method by which we
can exploit computer power to mimic some real-world behavior or data collection
indirectly. Furthermore, simulation allows us to generate huge numbers of samples
for analysis without the cost of performing the experiment manually. For example,
perhaps I want to count how many heads I’ll get if I flip a coin 1000 times. Rather
than spending my whole afternoon flipping and recording, I can write some quick
code in my favorite programming language and have the computer simulate 1000
flips of a coin in under a second, using just a few simple assumptions! Of course,
we can simulate far more complex scenarios than just coin flips—all we need are a
few basic tools.

Simulation also gives us the ability to analyze a scenario under a variety of
different conditions. In many cases, running an experiment multiple times in the
real world would be prohibitively expensive or even completely infeasible, but by
building a computer simulation that mimics that real-world experiment, we can still
gain insight into how the scenario might play out in reality. We can tweak key
parameters or change underlying assumptions, and make observations about what
kinds of impacts those perturbations would have on the system. Simulation is a
particularly powerful tool in support of the frequentist perspective of probability.
Frequentists define probability using the concept of relative frequency; that is, the
probability that an event will occur is measured by repeating an experiment many
times and observing the long-term frequency of that outcome. Thus, to use the
frequentist perspective, an experiment must be repeatable over a great many number
of trials. Even if the experiment can’t be easily repeated in real life, computer
simulation can still give us a way to estimate these probabilities.

Our initial goal for this chapter is to teach students the basic rules of probability,
to assist them in solving simple problems, and to help them develop intuition for
more complex scenarios. This foundation will be provided in Sect. 2, but can also
be gained from nearly any introductory statistics text which includes a probability
chapter—we specifically recommend [1, 6, 7, 11] for the beginning probability
student, and [2, 4] for more advanced students seeking a calculus-based approach
to probability. We’ll then proceed to the fundamentals of simulation via computer
programming in Sect. 3, allowing students to further explore more complicated
models. Throughout the chapter, we’ll build up to an investigation of relevant
applications on the theme of contests. Who wins, and under what conditions? What
happens if a judge is biased? Can two different ranking schemes result in two
different winners? How do you decide which scheme is fair? Section 4 lays out
several potential research projects on these themes, where students will be prompted
to explore a range of scenarios through the development of simulation code.

Students tackling this material should have access to programming software such
as R, Python, MATLAB, Java, or C++. Throughout this chapter, we’ll consistently
provide sample code for—and use the notation of—the open-access statistical
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software, R, though students can easily adapt our provided sample code to another
program of their choice. Students opting to use R can download the software at
https://www.r-project.org, or access it through a web browser at https://rstudio.
cloud. Though we will teach all necessary simulation tools within the chapter
itself, we do assume students will have basic familiarity with the setup and key
features of their chosen language (i.e., how to start a new script, define variables,
use basic calculator functions, etc.). For students looking for an additional resources
for getting started in R, we recommend [5, 12].

2 Fundamentals of Probability

Probability is the study of chance, randomness, and uncertainty. If you’ve ever
responded to a question by saying “Probably!” or “Most likely!”, then you’ve
already been using the language of probability! The study of probability began with
games of chance. The rolling of a standard six-sided die is a common example—in
the language of probability, we can refer to a single die roll as an experiment. In this
setting, an experiment is simply a process whose outcome is uncertain. Although
the outcome of a die roll is unknown prior to rolling, we do know that there are
only six possibilities that can occur. We often refer to this set of possible outcomes
as the sample space. Since this set lies at the foundation of all of our subsequent
probability calculations, we will begin our discussion with some relevant ideas from
set theory.

2.1 A Little Set Theory

When you roll a standard die, there are six possible outcomes. When you flip a coin,
there are two possible outcomes. When creating your course schedule, there may
be too many possible outcomes to easily count! In each of these cases, we think of
the possible outcomes as a set of objects. We can represent the set of outcomes—
or sample space—when rolling a standard six-sided die as S = {1, 2, 3, 4, 5, 6}.
Similarly, we could represent the set of outcomes for flipping a coin as S = {H, T },
where H stands for heads and T stands for tails. For some other examples, such as
designing a course schedule, the full set of possible outcomes is much more difficult
to list.

Each distinct object in a set is called an element. If a set does not contain any
elements, it is called the empty set and denoted ∅. A collection of elements of
interest is often referred to as an event. For instance, the event of obtaining an odd
number on a die roll could be denoted by A = {1, 3, 5}. An event, A, which is
entirely contained within another event B is said to be a subset of B, written A ⊂ B.
For example, we could say that the event A = obtaining an odd number when rolling
a die is a subset of event B = obtaining a prime number when rolling a die, since
{1, 3, 5} ⊂ {1, 2, 3, 5}. To allow for the possibility that the sets A and B are the
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same, we write A ⊆ B. Two sets A and B are said to be equal, A = B, if and only
if A ⊆ B and B ⊆ A.

We’re often interested in exploring what happens when we combine sets that
represent different events. For instance, how likely are we to get a number that is
both odd AND prime? How about a number that is odd OR a multiple of three? This
leads us to the following definitions:

Definition 1 The union of two sets A1 and A2 is the set that contains all outcomes
that belong to at least one of the two sets. It is denoted

A1 ∪ A2.

For example, in our die rolling experiment, if

A = rolling an odd number = {1, 3, 5}

and

C = rolling a multiple of three = {3, 6},

we would conclude that A ∪ C = {1, 3, 5, 6}. That is, we could observe the event
A∪C—the event of rolling an odd number OR a multiple of 3 OR both—by rolling
any of the numbers 1, 3, 5, or 6. Note that even though the number 3 is contained in
both sets A and C, it appears in the union set just once.

Definition 2 The intersection of two sets A1 and A2 is the set that contains the
outcomes common to both of the sets. It is denoted

A1 ∩ A2.

For example, in our die rolling experiment, if we return to

A = rolling an odd number = {1, 3, 5}

and

B = rolling a prime number = {1, 2, 3, 5},

then A∩B = {1, 3, 5}. This is because only the numbers 1, 3, and 5 are contained in
both sets. In other words, the intersection represents the set of all possible outcomes
that would satisfy events A and B simultaneously.

The definitions of union and intersection can be extended to n sets where n is any
natural number. We use the following notation:
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Fig. 1 Simple Venn diagrams showing relationship between two events A and B. On left, two
events A and B share some outcomes. On right, A and B are mutually exclusive events

n⋃
k=1

Ak = A1 ∪ A2 ∪ · · · ∪ An = elements in any set A1, A2, . . . , An

and

n⋂
k=1

Ak = A1 ∩ A2 ∩ · · · ∩ An = elements in all sets A1, A2, . . . , An

to denote the union and intersection of n sets, respectively.
It often helps to have a way to visualize the overlap between different events.

We can use Venn diagrams to achieve this. In Fig. 1, we show a standard two-event
Venn diagram. Events A and B are drawn as subsets of the sample space S, with
their overlap labeled as A ∩ B.

Exercise 1 For each of the following, shade in the corresponding area on a standard
two-event Venn diagram:

A ∪ Ba) Acb) Ac ∪ Bc)

Ac ∩ Bd) (A ∪ B)ce) (A ∩ B)cf)

Exercise 2 Let A be the event that you roll an odd number, B represent the event
that you roll a multiple of 3, and C be the event that you roll a prime number in a
single die roll. Show that the following properties hold:

A ∪ (B ∪ C) = (A ∪ B) ∪ Ca) A ∩ (B ∩ C) = (A ∩ B) ∩ Cb)

We call these properties the associative properties, and they hold for all sets A, B,
and C.

What happens if two sets have no elements in common? Sets with no overlapping
elements play a large role in the study of probability, and merit their own set of
definitions.
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Definition 3 Two sets A and B are said to be disjoint or mutually exclusive if they
do not share any common outcomes. That is, A and B are disjoint if A ∩ B = ∅,
where ∅ denotes the empty set.

For example, in our die rolling scenario, we would say that the sets P = rolling
a number less than 3 and Q = rolling a number greater than 4 are disjoint events,
since P = {1, 2} and Q = {5, 6} do not share any of the same outcomes.

Definition 4 Two sets are said to be complements, or complementary, if they are
disjoint and cover the entire sample space, S; that is, A ∩ Ac = ∅ and A ∪ Ac = S,
where Ac denotes the complement of A.

Exercise 3 Using the example of a die roll, construct two sets of outcomes that are
complementary.

Exercise 4 Is it possible for two sets A and B for which A ⊆ B to be disjoint?
Either construct an example in which this holds or explain why such a statement
cannot be true.

2.2 Computing Probability

Now that we’ve developed a foundation in working with sets and events, we’re
ready to discuss how we compute the probabilities with which certain events can be
expected to occur. Recall, we consider an event to be a subset of possible outcomes
of an experiment. We denote the number of outcomes in event E by |E|.

When an experiment contains n ≥ 1 possible outcomes for some natural number
n, and all outcomes are equally likely, we compute the probability of observing
event E by counting the total number of outcomes in E and dividing by the total
number of possible outcomes in the sample space, S; that is, we say

P(E) = |E|
|S| .

Since the sample space contains all of the possible outcomes, P(E) is necessarily
a value between 0 and 1, inclusive. For instance, the probability that a fair coin lands
on heads would be 1/2 since heads is one of two equally possible outcomes.

Many relative frequency probability problems come down to counting the
number of ways an event can occur. It can often be helpful to have a way of
organizing the experiment by what outcomes are possible at each step.

Suppose we flip a coin three times and want to determine the probability that
exactly two of the flips land on heads. We could start brainstorming a list of what
might happen on each of the tosses: HHT, THT, etc. However, if we haphazardly
make a list of whatever scenarios pop into our head, we can’t always be sure we’ve
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T

T

T → TTT

H → TTH

H

T → THT

H → THH

H

T

T → HTT

H → HTH

H

T → HHT

H → HHH

Fig. 2 Tree diagram for tossing a coin three times

thought of all the possibilities. It’s nice to have a methodical process; this is where
tree diagrams can be very helpful.

We start by thinking about the outcomes of the first flip; the coin can
come up heads or tails. Let’s suppose the coin lands on heads. On the
next flip, we will again observe either heads or tails. This gets us to the
second branch of our tree—see Fig. 2. Continuing in this way, we find that
there are 2 · 2 · 2 = 23 = 8 possible outcomes in our sample space. By
following the branches, we can list the outcomes in our sample space as
S = {HHH,HHT,HT H,HT T , T HH, T HT, T T H, T T T }. If we want event
E to be defined as the event that the coin lands on heads exactly twice, we would
say

E = {HHT,HT H, T HH }.

Since all outcomes in S are equally likely, and event E contains three of the eight
outcomes of S, the probability that we observe exactly two heads is

P(E) = |E|
|S| = 3

8
.

Exercise 5 Suppose there are three balls—one green, one red, and one blue—in a
bag. Use a tree diagram to find all the possible orders of drawing the balls one at
a time at random, without replacing the balls between draws. How does adding a



144 A. W. Clifton and A. L. Lewis

yellow ball to the bag change the total number of outcomes? Find an expression for
the number of ways to order n differently colored balls.

Exercise 6 Consider an experiment in which you roll two dice.

(a) What is the sample space for the experiment? Hint: list each possible outcome
as an ordered pair describing the result of each die. For example, the element
(2,4) represents an outcome in which we roll a 2 with the first die and a 4 with
the second.

(b) Let E represent the event that you roll two dice with a sum of 9 or greater. List
all of the outcomes from the sample space that are also contained in E.

(c) Compute P(E).

All of probability stems from three basic axioms, the first of which we have
already discussed:

1. For any event A, 0 ≤ P(A) ≤ 1.
2. P(S) = 1, where S denotes the sample space.
3. For any set of disjoint events, A1, A2, . . . , An,

P(A1 ∪ A2 ∪ · · · ∪ An) = P(A1) + P(A2) + · · · + P(An).

The second axiom is asserting that at least one of the possible outcomes in the
sample space, S, will occur. The third allows us a way to compute the probability
of the union of events that do not share common outcomes. From these three basic
axioms, we can derive everything else we need for computing probabilities. For
example, suppose we have two complementary events, A and Ac. Based on the
rules above, what can you say about P(Ac), assuming you know P(A)?

Exercise 7 It is a fact that for any two events A and B,

P(A ∪ B) = P(A) + P(B) − P(A ∩ B).

(a) Show that this statement holds by sketching the relevant quantities on a Venn
diagram.

(b) How can this statement be simplified if A and B are disjoint events? Hint:
consider how Axiom 3 above may be applied here.
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2.3 Conditional Probability

Now it’s time to introduce the concept of conditional probability. We denote the
conditional probability of A given B by P(A|B); by this, we mean to calculate how
likely event A is to occur given that B has been observed.

As an example, let’s consider a deck of cards. A standard deck of 52 cards is
comprised of four suits—hearts, diamonds, clubs, and spades—each with 13 cards.
The thirteen cards of each suit are ranked: Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen,
and King. We identify each card by its rank and suit. For instance, we could draw
an Ace of hearts or a 5 of spades. Note that the heart and diamond suits are colored
red, while the club and spade suits are black.

As an example, suppose I select a card at random from a standard deck. If I tell
you that the card I’ve chosen is black, can you tell me how likely it is to be a spade?
Put another way, what is the probability that I draw a spade, given that I draw a black
card? I’ve already restricted myself to considering black cards only, so I only need
to consider what proportion of the black cards are also spades. Put mathematically,

P(Spade|Black) = P(Spade ∩ Black)

P (Black)
.

Since P(Black) = 26/52 and P(Spade ∩ Black) = 13/52, we find that

P(Spade|Black) = 13/52

26/52
= 1

2
.

In fact, this rule works in general for any two events A and B, assuming P(B) �=
0. We say that

P(A|B) = P(A ∩ B)

P (B)
.

That is, in order to find the probability of A occurring once I know B has already
occurred, I just need to find what proportion of the set A also resides in B.

We can rearrange this statement to get the following:

P(A ∩ B) = P(B)P (A|B).

Intuitively, this makes sense; in order to observe both A and B, we must first observe
B; then, given that we’ve observed B, we must also observe A. Or, in the language
of tree diagrams: first we follow the branch that leads to A, and once we are at A,
we follow the sub-branch leading to B. Note that we can also write this in reverse:

P(A ∩ B) = P(A)P (B|A).
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This leads us to another interesting question. Are there any scenarios in which
P(B|A) = P(B)? That is, is it possible that knowing that A has occurred gives us
no additional information about the probability of B occurring? Yes! To investigate,
we need the concept of independence.

Definition 5 Assume that P(A) and P(B) are both nonzero. We say A and B are
independent if knowing that one has occurred does not change the probability of the
other occurring; that is, if P(B|A) = P(B), or equivalently, if P(A|B) = P(A). If
two events are not independent, we say that they are dependent.

Exercise 8 We previously determined that P(A ∩ B) = P(A)P (B|A). If A and B

are independent, how does this impact our rule?

Exercise 9 For each of the following scenarios, describe events A and B using the
appropriate terminology: independent/dependent, disjoint, complementary, etc.

(a) You roll two dice. Let A be the event that both are even and B be the event that
both are odd.

(b) You roll two dice. Let A be the event that both dice yield the same number and
B be the event that the dice differ in value.

(c) You roll a red die and a blue die simultaneously. Let A be the event that the red
die is a 3 and B be the event that the blue die is a 4.

(d) You roll two dice. Let A be the event that the sum of the dice is 7 and B be the
event that one die is a 6.

We can combine our discussion of conditional probabilities and our previous
work with tree diagrams to analyze a number of more complex scenarios. For
instance, you’ll likely take a number of diagnostic tests for various medical reasons
over the course of your life. If a test for some condition comes back positive, you
will be most interested in whether or not you actually have the disease, since false
positives are possible. Often we know the accuracy of the test in advance; that is,
we know how likely the test is to correctly identify the presence of the disease given
that we have the disease. In this scenario, our interest lies in finding the conditional
probability in the opposite direction; that is, given that we receive a positive test
result, what is the probability we actually have the disease?

Let’s get at this via a Venn diagram again. If we let A represent the event that
we have the disease, and B be the event that we receive a positive test result, we are
interested in finding P(A|B), and thus we can compute this by dividing P(A ∩ B)

by P(B). But how do we find P(B)? Note that there are only two options with
regards to our having the disease; either we have it or we don’t. That is, our sample
space can be divided into disjoint sets A and Ac as seen in Fig. 3. The event B,
representing a positive test result, can overlap with either space. When B overlaps
with A, this represents a correct test result. When B overlaps with Ac, we have a
false positive; that is, our test comes back positive even though we don’t have the
disease. Since all of B is contained in one of these two spaces, we can say that
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Fig. 3 Venn diagram
showing division of event B

over the sets A and Ac

P (B) = P(B|A)P (A)︸ ︷︷ ︸
True Positives

+P(B|Ac)P (Ac)︸ ︷︷ ︸
False Positives

,

since either B occurs given that A is true or B occurs given that Ac is true—there
are no other options assuming that B occurs. Substituting this into our conditional
probability denominator, we arrive at the following:

P(A|B) = P(A ∩ B)

P (B|A)P (A) + P(B|Ac)P (Ac)
.

Let’s make this less abstract and consider an example. Note that we are making
a variety of simplifying assumptions for the purpose of this example. Suppose 1 in
10,000 people have a rare disease and the diagnostic test for this disease has a 90%
accuracy rate. What does this mean? The accuracy rate reports the percentage of
time that the test returns the correct result. Thus, if a person has the disease, the
test should return a positive result 90% of the time and a negative result 10% of the
time. If a person does not have the disease, the test should correctly return a negative
result 90% of the time but return a false positive 10% of the time.

We can use a tree diagram—see Fig. 4—to find the probability of actually having
the disease given a positive test result. Our first branch is based on the prevalence of
the disease. The probability that a person has the disease is 1/10,000, or 0.0001,
while the probability they do not is 9999/10,000, or 0.9999. Our second set of
branches outline our conditional probabilities. The conditional probability of getting
a positive test result given that our person actually has the disease is 0.90 while the
conditional probability of a negative result is 0.10. Assuming the person does not
have the disease, the conditional probability of receiving a positive test result is 0.10,
with a negative result probability of 0.90.

Suppose that you take the test and receive a positive result. You are now situated
in one of two possible scenarios: either you tested positive and have the disease,
which occurs with probability 0.0001 · 0.90 = 0.00009, or you tested positive but
don’t have the disease, which occurs with probability 0.9999 · 0.10 = 0.09999. To
find the probability that you have the disease given that you tested positive, we can
utilize our conditional probability formula derived above:
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Fig. 4 Tree diagram for
positive test results

Disease

Negative
Result

0.10

Positive
Result

0.90

0.0001

No
Disease

Negative
Result

0.90

Positive
Result

0.10

0.9
999

P(Disease|Pos.) = P(Disease ∩ Pos.)

P (Pos.|Disease)P (Disease) + P(Pos.|No Disease)P (No Disease)

= 0.90 · 0.0001

0.90 · 0.0001 + 0.10 · 0.9999

= 0.000899.

Thus, even if you receive a positive test result, there is only a 0.000899
probability that you actually have the disease—less than a 1% chance! This result is
often quite surprising, and may occur when the disease is particularly rare, lending
itself to a high number of false positives as compared to true positives. We have to
be careful when interpreting reported accuracy. A common misconception is that a
90% accuracy rate means that if you receive a positive test result, there is a 90%
chance you have the disease. That conclusion is off by a factor of over 10,000, in
this particular case!

When constructing a tree diagram to aid in computing the probability of a
sequence of events, note that the first set of branches are based on the random
circumstance with an unconditional probability while the second set of branches
contains the associated conditional probabilities. We find the probability of the
sequence of interest by multiplying the probabilities along the associated branches.

Exercise 10 Suppose your school’s bookstore orders textbooks from three different
suppliers. 30% of their books come from supplier A, 50% from supplier B, and the
final 20% from supplier C. Books from supplier A have a 2% chance of arriving in
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damaged condition. Books from suppliers B and C each arrive damaged only 1%
of the time.

(a) What is the probability that a randomly chosen book arrives in damaged
condition?

(b) Given that a book arrives in damaged condition, how likely is it that it came
from supplier A?

(Hint: Draw a tree diagram to outline all of the possible outcomes and associated
probabilities for each.)

2.4 RandomVariables and Probability Functions

We finish our treatment of basic probability with a brief discussion of random
variables. We note that the main purpose of this section is to motivate the use of
random sampling in Sect. 3.1. As such, we gloss over some details, but point the
interested reader to any of [1, 2, 4, 7, 11] for further information.

A random variable can be used to represent an as-yet-unknown outcome of an
experiment. For instance, when rolling a die, we can let X represent the value of
the die, and say that the possible values of X are {1, 2, 3, 4, 5, 6}. Alternatively, we
could let random variable Y represent the height of a randomly chosen fourth-grade
student in inches, where we say that Y can take on any real number value in the
continuous interval [46, 60]. (Note: we are making a large assumption here that no
fourth-grade students have heights outside of this interval. Often, such assumptions
must be made, and care must be taken to define the possible values of your random
variable to accurately represent reality to the greatest extent possible.) We are often
interested in determining the probability that a random variable takes on a certain
value or resides within a particular interval of values.

There are two types of random variables: those with a countable number of
distinct values (i.e., X = number rolled on a die) and those with an uncountable
number of possible values (i.e., Y = height of randomly chosen fourth-grader).
We call these discrete and continuous random variables, respectively. Note that
discrete random variables may have either finitely or infinitely many possible values,
so long as they are countable; that is, easily ordered according to some one-to-
one correspondence with the positive integers. Continuous random variables have
infinitely many possible values by definition.

2.4.1 Discrete RandomVariables
Our die rolling example is an example of a discrete random variable since there are
a countable number of possible values. If we assume the die is a fair six-sided die,
then each of the possible outcomes should be equally likely. Specifically, since there
are six equally likely outcomes, each outcome will occur with probability 1/6. We
can use a table to summarize our outcomes and their associated probabilities.
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Fig. 5 Probability mass
function for a roll of one die

k 1 2 3 4 5 6

P(X = k) 1
6

1
6

1
6

1
6

1
6

1
6

Additionally, we can graph a pmf as in Fig. 5, showing a discrete probability for
each of the possible outcomes.

The function—or mapping—that assigns probabilities to each possible value of
our random variable is called a probability mass function, or pmf. The pmf describes
how the total probability is allocated among each of the possible values of X. In the
case that each of the outcomes are equally likely, as in rolling a single die, the
distribution is called a discrete uniform distribution. Generalizing our results from
Sect. 2.2, we can make the following statements regarding pmfs for discrete random
variables:

1. The sum of the probabilities over all possible values of X equals 1; that is,

∑
k

P (X = k) = 1,

where k ranges over the possible values of X.
2. For each possible outcome k, 0 ≤ P(X = k) ≤ 1.

Let’s look at an example with a more complex pmf. Suppose you’re playing a
carnival game where you draw marbles out of a bag. There are two red marbles and
two blue marbles in the bag, and you draw three times, replacing your marble after
each draw. For each red marble that you draw, you win $1.00. Let X represent the
amount of money won.
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Exercise 11 For the marble game described above,

(a) What are the possible values of X?
(b) What are the probabilities associated with each of the possible outcomes? (Hint:

draw a tree diagram to list all the possible arrangements of the three marbles,
and use this to assign probabilities to each potential value of X.)

You might have noticed a similarity between your tree diagram from the previous
exercise and our coin flipping example from Sect. 2.2. In fact, they are the same
exact tree! Since red and blue marbles are equally likely to be drawn, this scenario
is mathematically equivalent to flipping a fair coin. The possible amounts of money
you can win are $0, $1, $2, and $3; your pmf should look something like this:

k 0 1 2 3

P(X = k) 1
8

3
8

3
8

1
8

In graphical form, the pmf for either the marble game or the three-coin-toss
example takes the form of Fig. 6.

Let’s take this a step further. Though you win $1.00 for every red marble drawn,
suppose it costs you $2.00 to play the game in the first place. Is it worth it to play?
To answer this question, we need the concept of expected value.

Definition 6 The expected value of a discrete random variable is given by the sum
of the k possible outcomes multiplied by their associated probabilities:

Expected Value =
∑

k

k · P(X = k).

This value represents the center of the probability mass function for X.

Fig. 6 Probability mass
function for the marble game
or a three-coin-toss scenario
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You can think of the expected value as a sort of weighted average. Since we
are more likely to observe values of $1 and $2 in our game, we should weight
those outcomes more heavily when trying to find the center of our distribution. Let’s
calculate our expected winnings:

∑
k

k · P(X = k) = 0 · P(X = 0) + 1 · P(X = 1) + 2 · P(X = 2) + 3 · P(X = 3)

= 0 · 1

8
+ 1 · 3

8
+ 2 · 3

8
+ 3 · 1

8

= 1.50.

Therefore, if we play the game many times, we expect to win $1.50 on average.
Since we have to pay $2.00 to play, this is not worth it to us; we might occasionally
get lucky, but on average, we’ll lose 50 cents.

Exercise 12 For the marble carnival game, suppose the prize money is $2 for one
red marble, $4 for two red marbles, and $8 for three red marbles. How much would
the carnival have to charge for game play in order to ensure that they would break
even in the long run?

2.4.2 Continuous RandomVariables
While a discrete random variable can only take on a countable number of values,
continuous random variables can take on any of the uncountably many values over
some specified interval.

The amount of time it takes to register for classes or the weight of a randomly
selected potato at the market are both examples of continuous random variables.
Since there are infinitely many values in an interval, it doesn’t make sense to talk
about the probability that a continuous random variable takes on a specific value.
Rather, we think about the probability that X falls within some range of interest. For
example, the probability that it takes at least 30 min to register for classes is denoted
P(X ≥ 30); the probability that a randomly selected potato weighs between 0.5
and 0.8 pounds is denoted P(0.5 ≤ X ≤ 0.8). These probabilities are computed by
measuring the relevant area under the curve of the probability density function, the
analogue to a pmf for continuous random variables.

The simplest continuous distribution is the continuous uniform distribution, the
continuous analogue to our discrete uniform distribution. In this case, each interval
of the same width has the same probability. Computing the area of interest under the
curve is as simple as finding the area of a rectangle since the curve is a horizontal
line! The shape of this distribution is completely specified by the endpoints of the
interval [a, b]; we say that a and b are the parameters of the distribution. Recall
that for discrete random variables, we required that

∑
P(X = k) = 1 over all k.

The continuous analogue of this rule states that the area under the curve must equal
1. Therefore, for the continuous uniform distribution, the wider the interval chosen,
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Fig. 7 Examples of continuous uniform distributions. The width and height of the distribution is
controlled by the endpoints of the interval—the total area of the rectangle must be 1

the shorter the height of the curve; for an interval of width b − a, the height of
the resulting pdf must be 1

b−a
. Therefore, the equation for the probability density

function of a continuous uniform random variable is given by

f (x | a, b) =

⎧⎪⎪⎨
⎪⎪⎩

1
b−a

, a ≤ x ≤ b

0, else.

Several continuous uniform curves are shown in Fig. 7 for varying choices of a

and b.
Another widely used model for continuous random variables is the normal

distribution. The normal curve is bell-shaped and symmetric about the average
(or mean) of the population, and is capable of describing a huge number of
population characteristics—heights, weights, IQs, etc. The more closely clustered
the data is about the mean, the narrower the bell. That is, the shape of the curve is
completely determined by the mean, denoted by μ, and the spread—or standard
deviation, denoted by σ—of the data. The probability density function for the
normal distribution with parameters μ and σ is given by

f (x | μ, σ) = 1√
2πσ 2

exp

(
−1

2

(
x − μ)

σ

)2
)

,

where x can take on any value on the interval (−∞,∞). This is not a particularly
simple function to work with. In fact, integrating this function requires numerical
techniques that are beyond the scope of this chapter—see [2,4] for additional details.
However, we need not work with this function directly—we’ll have R handle that
for us in Sect. 3. For now, all we need to know is that changing the value of μ shifts
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Fig. 8 Examples of normal curves. Changing the value of μ shifts the curve left or right; changing
the value of σ alters the spread of the distribution. Note that the area under each curve is 1

the curve to the left or right, while changing the value of σ causes the curve to
become either wider and shorter or narrower and taller, preserving the total area of
1. See Fig. 8 for several examples of normal curves with varying means and standard
deviations. Note that even though it looks like the curve “zeros out” as you move
out toward the extremes in either direction, the horizontal axis actually acts as an
asymptote: the curve gets closer and closer but never actually touches the axis. Since
the area beneath the curve corresponds to the total probability, it must be the case
that the total area under the curve is equal to 1 even though the curve never touches
the horizontal axis!

Recall, we said that P(a ≤ X ≤ b) could be computed by finding the area under
the curve between a and b. While this was easy to do for the continuous uniform
distribution, the underlying equations for the curves shown in Fig. 8 are actually
quite complicated, requiring advanced calculus to compute these areas. However,
our next section will focus on exploiting the power of programming software to get
everything we’ll need from these curves without needing to learn how to do these
computations.

Though the continuous uniform and normal distributions have a wide range of
applications when it comes to modeling data, we’ll use these primarily as a means
of simulating “noise”; that is, by overlaying a distribution atop a quantity of interest,
we can simulate how that quantity might deviate slightly from its expected value.
For instance, if 50 professors are asked to assess a paper and grade it on a 0–100
scale, they might return grades that are centered about 75 but range from 65 to 85
based on personal preference. Section 3.1 will describe how to sample numbers at
random from these distributions, and these tools will be used further in Sect. 4 to
investigate relevant applications.

3 Introduction to Simulation

In Sect. 2, you learned how to compute probabilities of occurrences of certain
events, investigated several popular probability distributions, and worked with more
advanced concepts like conditional probability and expected value. In order to
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incorporate all of those ideas into a computer simulation, we need tools that enable
us to do the following:

1. Draw a random number from a given distribution (Sect. 3.1)
2. Check to see if a criterion is satisfied (Sect. 3.2)
3. Continue a task as long as a criterion is met or for a pre-specified number of times

(Sect. 3.3)

Though the command names and notation may vary between programs, all
simulation software possesses the capability to perform these simple operations.
Throughout these sections, our default will be to use the notation and commands
of R. Before you proceed any further, you should make sure you have R or
another simulation software of choice installed on your computer, and that you have
some familiarity with starting new scripts, defining variables, using the calculator
functions, and other basic features. For students who choose to use the statistical
software, R, we point them to [5, 12] for additional resources for getting started.

Sections 3.1–3.3 will introduce you to a few of the most basic tools of simulation
and help you to practice your programming skills. Once you’re feeling comfortable
using these tools in isolation, you can move to Sect. 3.4 to practice putting it all
together.

3.1 RandomNumber Generation

In general, we want to be able to incorporate an element of “randomness”—
or stochasticity—into our simulations, to allow for observance of a variety of
different outcomes that occur with certain underlying probabilities. In Sect. 2.4,
you were introduced to several common probability distributions: discrete uniform,
continuous uniform, and normal. How can we randomly generate numbers from
each of these distributions for use in simulation?

3.1.1 Sampling fromDiscrete Distributions
Let’s return to our simple coin flip example. We can assign number “1” to
“heads,” and “0” to tails, and then ask R to select “1” or “0” at random (with
equal probability) to simulate a coin flip. The simplest way to do this is using
R’s sample command, which requires that you specify a vector from which it
should sample followed by the number of samples you want. For instance, the
command sample(x=c(0,1),size=1) will return either “0” or “1,” with
equal probability, representing the outcome of a single coin toss. (Note: the c()
command you see in the above code means “concatenate”; it creates a vector
out of the given values.) But what if we want to simulate 10 coin tosses? Using
sample(x=c(0,1),size=10) should do the trick, but we need to make one
more adjustment. We’ll add the option replace = TRUE in order to allow the
sample function to choose “0” or “1” more than once in the course of its 10 draws.
Here is one possible outcome:
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sample(x=c(0,1),size=10,replace=TRUE)

0 1 1 0 0 1 1 0 1 0

If we repeat this command a second time, we will almost certainly get a
different outcome. If you were to draw a tree diagram outlining all of the possible
combinations of heads and tails that could be observed in 10 flips of a coin, you
would find that there are 210 different outcomes that we could observe using this
single command! This is the beauty of simulation: by incorporating stochasticity
into our programs, we can observe a large variety of different outcomes almost
instantaneously.

Note: in R, if you want to see the documentation for a particular function—
for instance, if you need to look up the order in which the inputs should be
specified—you can use the “?” functionality. For example, typing “?sample” into
the console and hitting enter will bring up the complete documentation for the
sample function.

Exercise 13 Simulate 1000 coin flips. How many heads did you observe? (Hint:
assign the result of your toss simulation to a variable called “coinToss,” and use
the sum(coinToss) command to count the total number of heads.) Repeat your
experiment a second time. How many heads did you obtain this time?

Exercise 14 Set up a command to simulate 10 rolls of a six-sided die. How often
did you observe each number? (Hint: assign the result of your die rolls to a variable
called “dieRolls,” and use the table(dieRolls) command to observe how
many times each number occurred. Then, use the barplot() command to create
a barplot out of your table results.) Repeat your experiment again for 100, 1000, and
10,000 rolls. What do you notice about your bar plot as the number of simulated die
rolls increases?

Another useful option in sample is to alter the probability distribution cor-
responding to your sampling vector (though we stress that this is no longer a
uniform distribution!). For example, if we wanted to simulate a coin flip for
a biased coin that had a 70% chance of coming up heads, we could use the
command sample(x=c(0,1),size=1,prob=c(.3,.7)). This command
would return “1” roughly 70% of the time, and “0” the other 30%.

Exercise 15 Simulate 10,000 rolls of a biased die, where even numbers are twice
as likely to be rolled as odd numbers. Create a bar plot to visualize your results.
Does the plot look how you expected?

3.1.2 Sampling from Continuous Distributions
A second distribution that we commonly encounter in simulation exercises is
the continuous uniform distribution. Recall, this distribution assumes that all real
numbers in the interval [a, b] are equally likely to occur.
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In R, we can generate n random numbers from the uniform interval [a, b] using
the command runif(n,min,max). For example, to draw four random numbers
from the interval [2, 5], we can do the following:

runif(n=4,min=2,max=5)

2.501532 4.323880 2.781780 3.186522

Note that each time we run this command, we’ll get different results—try
it yourself! We may also be interested in where a randomly generated number
falls within the probability density function. Let’s take our first generated number
from above, 2.502, as an example. How likely are we to draw a number less
than that from the continuous uniform distribution on [2, 5]? The command
punif(q,min,max) can calculate this for us. The “p” stands for “percentile,”
and measures the percentage of the distribution that falls to the left of the value q.
Entering punif(q=2.502,min=2,max=5) returns “0.1671773”; that is, there
is a 16.72% chance that we will observe a number less than 2.502 when drawing
from the [2, 5] continuous uniform distribution. Figure 9 illustrates this visually
using the pdf curve.

We can also go the other direction. Perhaps you’re interested in knowing which
number represents the 75% mark in your distribution. Use qunif(p,min,max)
to find your answer. Here, “q” stands for “quantile”; it will return the
number that corresponds to the pth percentile in your uniform distribution.
For our uniform distribution on the interval [2, 5], running the command
qunif(p=.75,min=2,max=5) tells us that 4.25 is the number such that 75%
of our distribution lies to its left, and 25% of the distribution lies to its right—see
Fig. 9.

Fig. 9 Finding percentiles and quantiles on the continuous uniform distribution defined on the
interval [2, 5]. On the left, we find that 16.72% of the area under the curve lies to the left of 2.502,
leaving 83.28% of the distribution to the right of 2.502. On the right, we learn that 4.25 is the
number such that 75% of the distribution lies to its left, leaving 25% of the distribution to its right
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Just as we looked at runif, punif, and qunif for the continuous uniform
distribution, R has built-in functions rnorm, pnorm, and qnorm for the normal
distribution. In fact, R has built-in support for many different distributions (both con-
tinuous and discrete) under the same naming scheme; for instance, rexp, rgamma,
and rbinom are commands for generating random numbers from the exponential,
gamma, and binomial distributions, respectively. For students interested in exploring
other distributions such as those listed above, we recommend [2, 4]. In this chapter,
we will keep our focus on the normal distribution in addition to the discrete and
continuous uniform distributions.

In order to use these special distribution commands, we need to specify the
parameters of the distribution. For the continuous uniform distribution, this meant
specifying a and b, the bounds of your interval. For the normal distribution, we
need to specify a mean, μ, and a standard deviation, σ , so that R knows the shape
of the probability density function. Thus, the first three inputs in rnorm should be
the number of samples you want to produce followed by the mean and standard
deviation of your distribution, i.e., rnorm(n,mean,sd).

Exercise 16 Generate a random number from the standard normal distribution (the
normal distribution with mean 0 and standard deviation 1). Compute the percentage
of the distribution that lies to the left of your randomly generated number.

Exercise 17 Find the number that corresponds to the 25th percentile of the normal
distribution with mean 10 and standard deviation 3. Using this information—
and what you know about the normal distribution—can you find the number that
corresponds to the 75th percentile of the distribution without using R?

3.2 “If/Else” Statements

The next tool we need to develop is a way to check whether or not a certain
criterion is met or if a particular statement is true. We’ll do this using “if” and “else”
statements, but first we need to discuss some basic logic checks. Table 1 gives the
notation used in R to perform logic checks.

Table 1 Notation for logic
checks in R

Notation Meaning

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

== Equal to

! = Not equal to

& And

| Or
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As an example, consider the following code:

x = 12 #Store the value 12 in "x"
x >= 11 #Make a logic check on the value of x

R will return

TRUE

because the value stored in x satisfies the statement “x is greater than or equal to
11.”

The “if” statement asks R to run a logic check. If the logic check returns “TRUE,”
the next section of code will be run; otherwise, the code contained within the
statement will be ignored. The general structure of an if statement is as follows:

if( write logic check here ){
code to be run if logic check is true

}

Here’s a simple example of the “if” statement in action:

if ( x >= 11 ){
print("x is greater than or equal to 11")

}

If I set x = 12 and then run the above code, R will print the statement “x is greater
than or equal to 11.” If, instead, I set x=5 and then run the above code, nothing will
happen, because our logic condition was not satisfied.

Note that you can combine logic checks using & or |. For example:

if (x <= 12 & x>=11){
print("x is a number between 11 and 12, inclusive")

}

Note that the logic check in the if statement will only return “TRUE” if both the
first part (x<=12) and the second part (x>=11) are true. Similarly, if you use |, the
if statement will return “TRUE” if either the first part or the second part is true (or
both).

What if you want your code to perform one action if the logic check returns
“TRUE,” but do something else if it returns “FALSE”? We can use an “else”
statement to get this behavior. We’ll tack an extra request onto our code, sandwiched
inside an else statement; this line will only be read if the original logic check is false.
For example, if I set x = 5 and then run the code

if (x >= 11) {
print("x is greater than or equal to 11")

} else {
print("x is less than 11")

}

R will print “x is less than 11.”
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Exercise 18 Write a code snippet that will check if x is equal to 6. If it is, your
code should print “This number is 6”; if not, your code should print “This number
is not 6.”

Exercise 19 Write a code snippet that will (a) generate a random integer x from the
set {1, 2, . . . , 10}, and then (b) check if x is an even number. If x is even, divide x
by 2. If not, print “x is not divisible by 2.” (Hint: In R, x%%y returns the remainder
of x divided by y.)

3.3 “While” and “For” Loops

Another useful tool in our simulation toolbox is the ability to repeat a command
over and over using a loop. We’ll discuss two types of loops here: “while” loops,
which cycle for as long as a specified condition is met, and “for” loops, which run
for a pre-specified number of iterations.

3.3.1 “While” Loops
The “while” statement is very similar to the “if” statement. Like the “if” statement, it
will perform a logic check. However, unlike the “if” statement, it will keep running
the code in the brackets until the logic check returns “FALSE.” When this occurs,
the loop will break and the code will proceed to your next step. The general structure
is as follows:

while( write logic check here ){
code to be run as long as logic check remains true

}

Here’s an example of the “while” statement in action. What is the first negative
number in the sequence {100, 99, 97, 94, 90, 85, . . .}? The following code will find
it for us:

num = 100 #our starting value
subtract = 1 #starting subtraction
while(num > 0){

num = num - subtract #find the next value
subtract = subtract + 1 #increment subtraction

}
print(num)

In this code snippet, the while loop checks to see whether our number is still
positive. If it is, then the code subtracts the next deduction, before updating the
value to be subtracted next time. Once the variable num goes negative, the while
loop will break and we’ll be left with the current value (-5). Try this on your own to
confirm, before trying the next example on your own.
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Exercise 20 What is the first number in the sequence 1, 3, 9, 27, . . . that exceeds
1,000,000? What is the last number in this sequence that is less than 1,000,000?
How many numbers are in the sequence when the while loop breaks?

A final note of caution about using while loops: make sure that your condition
will eventually be false! A while loop will continue running until the condition is
satisfied, so it’s easy to accidentally get stuck in an infinite loop. For that reason, it’s
often preferable (though not always possible) to use a second type of loop where you
specify in advance exactly how many iterations you’d like to perform. This brings
us to our next tool.

3.3.2 “For Loops”
“While” loops can be useful tools for repeating a command over and over, but the
number of times that command is repeated is contingent upon the logic condition
you set in advance. What if you know exactly how many times you want to perform
an action? In this case, a “for” loop is more appropriate.

Unlike the “if” and “while” statements, the “for” statement does not perform
a logic check. Instead, it repeats the code in the brackets for the number of times
specified in the statement. The general structure is as follows:

for(statement indicating number of code iterations) {
code to be repeated

}

To specify the number of times for which you’d like to execute a given snippet of
code, you can use a statement like i in 1:1000, or some other vector of values.
Note: the notation 1:1000 specifies the list of all integers from 1 to 1000. On the
first run through the for loop, your program will set i=1. When it repeats for the
second time, the value of i will be 2. This will continue until the final iteration,
when i=1000. At this point, the program will exit the loop and continue on in your
code. Here’s an example of the “for” loop in action:

x = 10
for(i in 1:5){

x = x-2
}

Note that the value of i does not come into play in this code. Instead, we simply
take the value of x and subtract 2 five times, updating the value of x after each
reduction. However, we could take advantage of the value of i as well. For instance,
if I wanted to be able to print the value of x at each iteration of the previous loop
after completing the code, I could do the following:

xVals = NA #create an empty variable
x = 10
for(i in 1:5){

x = x-2
xVals[i] = x #save current value of x
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}
print(xVals)

Try this on your own. What happens?
Let’s try a few more exercises of varying complexity on your own to familiarize

yourself with this essential tool.

Exercise 21 Consider the following snippet of code:

b = 1
for(i in 1:8){

b = b + i*b + 1
}

(a) What is the final value of b after running the loop above?
(b) Amend the code above to check whether or not b is an even number at each

iteration. Create a counter that keeps track of how many times an even number
is obtained over the course of the loop.

Exercise 22 Start with the number 1. Use your simulation tools to add 2, then
subtract 3, then add 4, then subtract 5, etc. What is the 500th number in this
sequence? How many numbers must you add/subtract before you get a number that
exceeds 100?

Exercise 23 The Fibonacci series is a sequence of numbers such that each number
is the sum of the two numbers that immediately precede it. Typically, the sequence
starts with two 1’s, and thus takes the form “1, 1, 2, 3, 5, 8,. . . .” Write a piece of
code to generate the first 50 Fibonacci numbers. Then, determine which of those
numbers are divisible by both 2 and 3.

3.4 WritingMore Complex Simulation Code

It’s time to put everything together and build more complex simulation code that
can confirm the intuition that we develop by working through problems by hand.
A helpful way to get started on a complex set of code is through “pseudocode”:
diagramming the flow of your code without worrying yet about the notation and
small details.

Let’s use the popular game Yahtzee as an example. In Yahtzee, a player gets three
rolls of five dice per turn. After each of the first two rolls, the player may choose to
keep any number of dice and re-roll the rest. In the actual game, there are a number
of different outcomes a player hopes to collect over the course of the game (i.e.,
straight, full house, three-of-a-kind, etc.), but the real prize is a “Yahtzee,” or five-
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Estimating the Probability of Obtaining a Yahtzee via Simulation - Basic Version:

1. For each trial:

• Roll five dice.
• Set aside all dice belonging to biggest match set.
• Re-roll remaining dice.
• Set aside all dice belonging to biggest match set.
• Re-roll remaining dice.
• Check whether or not a Yahtzee was obtained.

2. Count how many Yahtzees were obtained across all trials.

Fig. 10 Basic pseudocode for Yahtzee example

of-a-kind. How likely is it that you roll a Yahtzee over the course of your three rolls?
Let’s investigate.

Exercise 24 Draw a tree diagram illustrating all the paths to a Yahtzee over the
course of your three rolls. (Hint: there are many different ways to define your
events of interest—we recommend tracking the “largest number of matches” at any
given roll. For example, using this as our metric, your first roll should result in five
different branches—“no matches,” “at most two matches,” “at most three matches,”
etc.)

Computing the probability of obtaining a Yahtzee over three rolls by hand
is actually very difficult and requires a solid foundation in a mathematical sub-
field called combinatorics—the interested reader may see [2, 4] for an introduction
to combinatorics usage in probability. However, by using simulation, we can
get a rough estimate of this probability without knowing the first thing about
combinatorics! Let’s write out some pseudocode to outline the steps that we’ll need
to incorporate into our code. We’ll show ours in Fig. 10, but you should feel free
to write your own, as there are many different ways to implement this task. Let’s
assume that we want to simulate many trials of three rolls each, so that we can
estimate a long-term frequency of obtaining a Yahtzee.

The pseudocode we wrote in Fig. 10 is very bare. We’ve outlined the basic steps,
but have not gone into very much detail about how we’ll accomplish them. For some
scenarios, this may be more than enough to get you started on your actual code. But
if you’re tackling a particularly difficult task—or if you’re a beginner programmer—
it may be helpful to refine your pseudocode a few times to hash out the details and
give yourself more guidance when it comes time to actually write the code. For
instance, in our first draft we had a sentence that read “Set aside all dice belonging
to biggest match set.” While that might be enough information if you’re explaining
game strategy to a new player, it tells us very little about how we’ll implement
it in the code. In fact, there are several sub-steps hiding within this one sentence!
How will we determine which number has the most matches? What if there are two
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Estimating the Probability of Obtaining a Yahtzee via Simulation - Refined Version:

1. Initialize a variable for keeping track of whether of not we get a Yahtzee each trial.
2. Fix the number of trials we want to run.
3. For each of the simulation trials:

• Roll five dice by sampling five values from the set {1,2, . . . ,6} with replacement.
• Find the mode (the most frequent value) in the sample. Count how many times it

was observed. If two or more modes exist, choose the smallest of the numbers.
Reserve all dice belonging to this mode.

• Re-roll all dice not belonging to the mode by sampling the difference of five and
the number in the mode from the set {1,2, . . . ,6} with replacement.

• Recombine the reserved dice and the newly sampled dice by concatenating the two
sets. This represents your second roll.

• Find the mode in the sample. Count how many times it was observed. If two or
more modes exist, choose the smallest of the numbers. Reserve all dice belonging
to this mode.

• Re-roll all dice not belonging to the mode by sampling the difference of five and
the number in the mode from the set {1,2, . . . ,6} with replacement.

• Recombine the reserved dice and the newly sampled dice by concatenating the two
sets. This represents your third roll.

• Check to see if a Yahtzee was obtained by finding the mode and seeing if it contains
five dice. If so, record a “1” in the variable that keeps track of Yahtzees. If not,
record a “0”.

4. Count how many Yahtzees were obtained in all trials by taking the sum of the vector
in which the Yahtzee results were recorded. Estimate the probability of obtaining a
Yahtzee by dividing this sum by the total number of trials.

Fig. 11 Refined pseudocode for Yahtzee example

numbers that have an equal number of dice? What does it mean to “set aside the
dice” in terms of code? If desired, we could greatly refine our pseudocode—as in
Fig. 11—to give ourselves more direction.

Now that we have some idea of what needs to be accomplished and in what
order, we can translate our pseudocode into actual code using our step outline to
structure our thinking. Our version of the Yahtzee code is shown in Fig. 12. This
is by no means the only way to set up this code (or even necessarily the most
efficient), but it is relatively simple to understand and follows easily from our
earlier outline in Fig. 11. (Note: to use the mfv() function in the given code, you’ll
need to first install the modeest package from the “Tools” menu and run the line
library(modeest) prior to running the code.)

Run this code, or develop your own. Repeat the simulation several times. What
do you notice? Do the results agree with your expectation? What happens if you
increase or decrease the number of trials? You’ll likely discover that there is a
dependence of accuracy/consistency upon the sample size used in your simulations.
This is a small peek into the field of statistical inference—using information
obtained about a sample statistic to make inferences about an unknown population
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Fig. 12 Simulation code for Yahtzee example. Code requires use of modeest package for R
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parameter. We point the interested reader to [1, 6, 7, 11] for additional information
about basic statistical inference, and to [2, 4] for a more theoretical discussion of
uncertainty and the construction of confidence intervals for estimating population
parameters.

By now, you’ve seen that simulation can be a useful tool for confirming your
intuition. Additionally, it can be extremely helpful for estimating results in scenarios
where we cannot work a problem by hand efficiently.

Let’s consider another scenario for practice. In Professor Lewis’ math modeling
class, a portion of the course grade comes from completing a series of extra activities
chosen by the student. These activities include writing reflections on guest lectures
(2 points per reflection), completing programming labs (each lab worth 2 points),
writing formal solutions to modeling scenarios discussed in class (4 points each),
or meeting with assistants in the college writing center to get feedback on project
reports (3 points per visit). Students must complete 15 points worth of activities to
receive full credit.

Exercise 25 Suppose a student chooses activities to complete at random with no
regard to the number of points they are worth. What are the theoretical minimum
and maximum number of activities needed to reach the 15-point threshold? What
is the expected number of activities that the student will have to complete to get
full credit? Use your intuition and skill set from Sect. 2 to answer these questions.
Then, develop code to simulate this scenario by first writing out a pseudocode, and
then adapting it into the programming language of your choice. Run your simulation
1000 times, construct a histogram of the number of activities needed in each trial,
and comment on the distribution.

Exercise 26 To encourage students to pursue a wide variety of activities, Prof.
Lewis puts a limit of two activity submissions per category. Revise your simulation
from the previous exercise to account for this cap. How does this change your
distribution?

4 Suggested Research Projects

There is really no limit to the number of real-life scenarios that can be modeled via
simulation. In what follows, we present three different scenarios of interest that all
utilize the tools presented in this chapter, all revolving around the theme of choosing
a winner. Each scenario can be adapted to fit the interests of the student investigator.
In all cases, the student should use the skills gained in Sect. 2 to develop some
intuition about the way in which they expect the scenario to play out; then, code
can be developed to investigate and analyze the wide range of outcomes that may
be observed.
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4.1 Scenario 1: Objective Ranking

We begin by considering scenarios in which winners are chosen objectively; that is,
there is a clear winner and a clear loser. Specifically, our following prompts revolve
around the FIFA World Cup, but these prompts could easily be adapted to other
similar scenarios to suit the student’s interests (i.e., NBA March Madness bracket
selection, identification of NFL Superbowl playoff teams, etc.).

In the Fédêration Internationale de Football Association (FIFA) World Cup
Championship, played once every four years, teams representing countries from
across the globe face off in an elimination-style tournament to crown a winner. To
begin, the 32 qualifying teams are sorted into eight groups of four teams apiece for
the group stage. Each group plays a “round-robin” mini-tournament, where each
team plays matches against the three other teams, for a total of six matches per
group. During this stage, a team gains three points for each win, one point for a
draw, and zero points for a loss. After all six matches, the top two point-scorers in
each group advance to the knockout rounds. In determining the top two teams from
each group, the tie-breaker is the total goal differential across all matches played,
followed by the total number of goals scored across all matches played, if necessary.
Once into the knockout stage, teams are eliminated in one-off matches until only
two teams remain for the final game. Draws are not allowed in knockout matches—
teams will play into overtime or even penalty kicks to ensure a winner. (Note that the
FIFA Women’s World Cup typically begins with 24 teams—the top two teams from
each of six groups plus the top four third-place teams across all groups advance to
the knockout rounds).

Throughout the tournament, predictions abound among fans and in the media.
How will a particular fan-favorite team fare? How likely is it that the #1 and #2
ranked teams going into the tournament will actually play each other in the final
match? What are the chances that a highly ranked team gets knocked out in the
group stage by an underdog? We can use probability and simulation tools to model
the likelihood of observing different tournament outcomes.

Challenge Problem 1 Suppose that each team has a 50/50 chance of winning any
game in which they play. How likely is it that Team A will make it to the final
match? Compute your answer by hand; then, develop simulation code and run 1000
tournament simulations to estimate this probability. Compare your simulated results
to the answer you computed by hand.

Challenge Problem 2 Suppose that each team has a 50/50 chance of winning any
game in which they play. On average, how many games should Team A expect to
play in the tournament? Compute your answer by hand; then, refine your simulation
code to estimate the average number of games played over 1000 tournament
simulations.
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Research Project 1 In actuality, teams do not have a 50/50 chance of
winning every game they play. Implement a scheme in which each team
enters the tournament with a ranking of 1–32, with higher-ranked teams being
more likely to win against lower-ranked teams. How likely is it that the final
match is played by the two highest-ranked teams going into the tournament?
Investigate how this probability depends on different factors, including the
way in which teams are seeded into groups in the group stage and your
outlined scheme for determining the probability of each team winning their
matches.

4.2 Scenario 2: Subjective Ranking

Sports like soccer, basketball, and football are relatively straightforward—fishy
referee calls aside, there is typically a clear winner. But what about more subjec-
tively judged sports like figure skating or gymnastics? Or what about scenarios in
which judges are asked to score a musician’s performance, or a work of art, or
a paper submission? Subjective judging opens up a whole new world of potential
issues including the opportunity for variability of scores between judges or judge
bias. How can we model these issues in our simulations to allow us to assess the
likelihood of certain outcomes?

For example, let’s consider a gymnast competing on the balance beam. Suppose
her “true” score is a 14.750; this is the objective version, if such a thing could exist.
However, if we showed her routine to five different judges, we might receive marks
of {14.250, 14.775, 12.500, 14.825, 14.500}. Some of this could be attributed to
“noise”; in subjective judging, there is bound to be some disagreement (particularly
with regards to an execution score), and so we are not particularly troubled by
seeing the scores vary a bit within a reasonable range. But what about the 12.500
from Judge 3? In comparison to the other marks, this seems remarkably low. We
might surmise that this judge is biased against this particular gymnast, whether
unconsciously (perhaps Judge 3 just prefers a different style), or consciously
(perhaps Judge 3 has a nefarious plan to tank this gymnast so that the gymnast
representing the judge’s home country emerges the victor). We’ve seen this sort of
scandal before; in the 2014 Sochi Winter Olympics, the gold medal in women’s
figure skating was awarded to Adelina Sotnikova of Russia over the favorite, South
Korean skater Yuna Kim. Sotnikova’s performance was widely regarded as inferior
to Kim’s, and there was suspicion that the panel of judges—four of the nine of whom
were Eastern European—had thrown the event her way. Due to the anonymous
nature of figure skating judging during that Olympics, this could never be confirmed.

We can use the skills gained earlier in this chapter to represent these issues in
subjective judging within our simulations. For instance, to allow for a range of
scores from judges, we might randomly generate scores from a normal or uniform
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distribution centered at the “true” score with some specified spread. To incorporate
bias, we might shift that distribution to the right or left for a particular judge, or
perhaps even use a skewed distribution that makes it more likely that they will select
a score from one end of the distribution over the other.

Research Project 2 Develop a simulation code to represent two competing
gymnasts (or skaters, musicians, artists, etc.) for a certain event. Assign each
competitor a “true” score and select their given scores based on a distribution
centered at that true score with a spread which you define. Investigate how
likely it is that the gymnast with the lower “true” score is awarded a win over
the other, and how this probability depends upon the type of distribution used,
the centers of the distributions, and the values assigned for the measure of
spread.

Research Project 3 Expand your investigation from the previous research
prompt to include bias. If there are multiple judges whose scores are all
averaged together, how drastic does the bias on a single judge need to be
to overturn the results? Find a way to quantify the dependence of the result
on (a) the difference between the “true” scores for the two athletes, (b) the
amount of variability in scores among judges, (c) the level of bias present for
a single judge, and (d) combinations of (a)–(c) working in tandem.

4.3 Scenario 3: Comparing VotingMethods

So far, we’ve looked at building simulations to model scenarios with both objective
and subjective judging. But we haven’t actually questioned the underlying structure
of the tournament or judging protocols themselves! Another benefit that simulation-
based research can give us is the ability to compare multiple algorithms for the same
scenario to decide which is most fair, most stable, or most efficient. Let’s turn our
attention to an application that is always relevant: voting.

Many elections utilize a winner-takes-all system, also known as a plurality
system. The candidate who receives the most votes is declared the winner, regardless
of whether they actually obtained a simple majority of 50%. Though this system is
easy to understand and relatively resistant to manipulation, some have criticized
it for its inability to allow for emergence of minority opinions. But what are the
alternatives?

One option is the idea of rank-order voting, where voters rank all candidates in
order of preference. This method was recently used in the New York City 2021
Primary Election, as described at [9]. In the event that their first-choice candidate
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is eliminated from the race, a voter’s vote can be transferred to the next candidate
in line. This has the added benefit of assuring voters that their votes will count, and
mitigates the problem of vote-splitting, where two similar candidates might split the
vote of their supporters and allow for a third, less-desirable, candidate to run away
with the win.

While there are many benefits to rank-order voting, there are some drawbacks as
well. Above all, we desire a system that will consistently reflect the desires of the
electorate, choosing the candidate favored by the majority of voters (or where that is
not possible, a candidate that obtains a plurality of the vote). With some rank-order
voting schemes, it’s possible to observe selection of the “least-unfavored” candidate
over the choice of a preferred candidate. Thus, careful comparison of the stability,
consistency, and unbiasedness of differing voting systems must be conducted prior
to implementation. For readers interested in learning more about alternative voting
systems, we recommend getting started with basic descriptions at [3, 8]. For a more
comprehensive discussion of the mathematics behind various voting schemes, we
recommend [10].

Research Project 4 One type of rank-order voting system is instant-runoff
voting (IRV). In this scheme, voters rank all candidates in order of preference.
If one candidate receives over 50% of the vote, they are declared the winner.
Otherwise, the candidate with the fewest votes is eliminated, their votes are
redistributed to their supporters’ next choices, and the votes are re-tallied. This
system of elimination continues until someone obtains a majority of the votes.
Suppose you are running an instant-runoff election with N candidates. How
many different ballot-ranking orders are possible? Select probabilities for
each of the possible ballot rankings, and develop code to simulate the election.
How does the outcome depend upon your defined probabilities? (Hint: to
make the scenario more realistic, you might align your fake candidates along
a liberal-to-conservative spectrum, and assign probabilities according to what
preference orders you might expect to observe most often in reality.)

Research Project 5 Conduct a thorough comparison of three different voting
schemes: plurality voting, IRV as described in the previous research prompt,
and another variation of IRV in which if no one obtains a majority of the vote
in the first round, only the top two candidates advance to the runoff. How
sensitive are the results to the set of probabilities you defined for each ballot-
ranking possibility? Are there certain ballot-ranking probabilities that result
in contradictory results between the three schemes even if all are given the
same set of submitted ballots?
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The research projects we have outlined here represent only the tip of the iceberg
when it comes to the types of problems that can be investigated using probability
and simulation. We encourage students and mentors to design their own variations
on these problems and adapt them to their own interests.
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Abstract

In this chapter we present a survey of mathematical modeling approaches
to biological problems. We approach the modeling efforts through several
mathematical techniques: from basic algebra, already studied in middle- and
high school, to calculus, at the transition of high school and college. Throughout
the chapter, we rely heavily on computer simulation techniques with which we
investigate different aspects of these models and their relationships with the
studies systems, illustrating the modern approach of computational thinking. We
have presented versions of these problems and models in our own courses in
mathematics for non-majors, targeted to first- and second-year colleges students
who are interested in biology and life sciences. Many students have told us
that they found the approach engaging and that it increased their appreciation
of mathematics as an applied science. The problems and project that you will
see here are selected from areas of population biology (populations of squirrels,
insects, flies, and wasps); use of medical sensing and modeling to detect the
blood pressure and heartbeat in patients; and epidemiology, modeling the spread
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of infectious diseases, from Ebola in West Africa, with an option to study the
COVID pandemic in 2020–2021.

Suggested Prerequisites The sections are ordered in increasing difficulty of conceptual ideas and
technical tools. You do not need to read or try them in the indicated order, but if we use concepts
from prior section, look them up as needed. In the first two sections we expect acquaintance
with the ideas of basic algebra, in particular, with the more advanced concepts of sequences
and relationships between their terms. The subsequent two sections start using concepts from
differential calculus. Some familiarity with that field would be helpful, although we do provide
some guidance. All problems use some form of computational thinking, which involves computer
programming. Initially that is in Excel, assuming familiarity with functions and formulas. Then we
transition to modeling tools that are used more broadly by practitioners, like Octave and Matlab.
We provide links to tutorials for the use of these systems.

1 Introduction

Mathematical models allow us to pause and reflect on all the “what ifs” and “I
wonders” we might have about our universe. In this chapter, you will read about
several different ways mathematical models are used to answer questions. Questions
like, how to measure someone’s heart rate without touching them, how two insect
populations relate to crop yield, and more!

1.1 A Description of Mathematical Modeling

Mathematical modeling is a cyclic and iterative process—a delicate dance between
making and challenging assumptions. When building models, there is rarely a
“right” answer—only answers that stand on specific assumptions are supported by
mathematical logic and principles and help us generate productive knowledge in the
given context and setting. To help make sense of what can be a difficult process to
explain and understand, we frame the modeling process in four steps.

Step 1: Goals, Questions, and Assumptions
What do you want to know? What do you already know? Predictions and analyses
stemming from models are only as valuable as the accuracy of the assumptions. We
must think carefully about any assumptions we make and the criteria outlined in
problems we are given to solve.

Step 2: Build a Model
How can you utilize mathematics (and other fields) to move from your assumptions
to the answers to your questions? What areas of mathematics will be most useful?
From what subjects can you draw inspiration?
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Step 3: Apply your Model
Use the model to answer questions and meet initial goals.

Step 4: Assess and Revise your Model
Are the results/implications reasonable? What happens when you alter various
assumptions? Reflect on whether the assumptions posed are accurately incorporated
and whether there might be additional constraints to be considered. Can the model
be more accurate or efficient? Does it need to be?

We do not mean to imply that you should always proceed linearly from Step
1 through to Step 4. Sudden realizations about the mathematics involved or the
phenomenon to be modeled may send you back to a specific part of your model
immediately. New data from the field may stop you in your tracks to revise essential
assumptions. However, the general structure and spirit of these steps supports an
iterative approach to mathematical modeling in which answers are not “right,” but
well-supported. These steps and our general approaches are not unique to these
projects. They parallel directly George Polya’s four principles of problem-solving
[1] and are found embedded in the description of mathematical modeling from the
Society for Industrial and Applied Mathematics [2]. Look for this cycle within your
own pursuits!

1.2 Building aModel with Bias

There is inherent bias in mathematical modeling. Our decisions regarding what
to study and how to go about studying it are subject to our bias as people. Bias
is not something that can be temporarily suspended or minimized—it is inherent
to us. Acknowledging our bias and exploring the implicit bias in data does not
diminish our results, it strengthens them by allowing us to situate our results
appropriately with full awareness of the shortcomings and advantages of the model.
As an example, medical research has historically been done exclusively on adult
male subjects. In 2015 the United States Food and Drug Administration mandated
that clinical trials include female participants. The impact of that methodological
decision includes we are still today learning how differently women experience
medical emergencies such as heart attacks [3]. This bias was inherent within society
as well as within the research community and thus not accounted for in making
recommendations.

1.3 A Note About Computer-Based Simulations

All files with instructions for computer simulations are available for download at the
GitHub repository typically used for such tasks [4]. We typically develop and share
our code in this manner, although the use of repositories like GitHub becomes more
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obvious after much more experience with coding. For now, just take our word that
it is a good idea to learn how to use them.

The first two sections illustrate the use of computer-based simulations for
mathematical modeling using simpler and more widely accessible platforms like
Microsoft Excel and Google Sheets. Those platforms have the benefit of familiarity
and ease of entry, but they are severely limited when problems scale up in size and
complexity, becoming progressively more difficult to use, if at all.

Not surprisingly, the professional math modeling community is typically using
different platforms in our day-to-day work. They tend to be more difficult to learn
and master but allow us to tackle much more complex problems. Sections 4 and 5
present examples in two of these platforms: the commercial MATLAB [5] and
the open-source GNU Octave [6]. They have similar capabilities mainly because
Octave was specifically created to be compatible with MATLAB and use MATLAB
commands and structures without many changes. The main difference currently
is that MATLAB provides a nice integrated environment in which one can mix
text, computations, and visualizations, while Octave still uses text-based work
environment in which results have to be collated to separate documents with some
additional effort. One emerging platform which bridges some of the gap between
integrated ease of use and open source/free accessibility is Python in Jupyter
Notebook [7, 8]. We note that in passing but will not provide additional details in
this chapter.

Since both MATLAB and Octave are based on a text-based programming model,
we usually direct our students to online tutorials which provide them the foundations
of working with these systems and provide them with additional online materials
to expand their expertise should they want to. We believe that the basic tutorials
provide sufficient material so students can start exercises and later extend their
knowledge in the context of problems on which they are working and engaged.
MathWorks, the company behind MATLAB, provides a nice free introductory
tutorial [9], which awards certificates to students after they finish it. We usually
assign that tutorial as homework on our first day of class and collect the certificates.
The same tutorial will provide basic familiarity with Octave as well, but there will be
differences in the user interface. As an open-source product, Octave does not have
the polished tutorials of MATLAB, but there is still a lot of documentation in the
form of a Wiki, and several good quality video tutorials, comparable to MATLAB’s
Onramp [10], that can serve the same purpose.

We recommend that, before you attempt Sects. 4 and 5, you install MATLAB or
Octave on your computer, engage with the tutorials, while trying to replicate what
they suggest on your system, and continue with the those sections after you finish
those tutorials.

1.4 Active Learning

Learning is not a passive activity. To sit and read the words that follow will
impart knowledge, no doubt. But to learn about mathematical modeling, one must
actively model. Research in the teaching and learning of mathematics, science,
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and engineering shows consistently that active learning in the classroom leads to
improved student learning [11]. When reading a text like this, you are your own
teacher in many ways. Teach yourself well! We encourage you to try out the
examples provided and explore in new directions. Alter parameters and think about
the implications. Adjust assumptions to fit a new space and play with the ideas as
you read. This is active learning (and reading!). This philosophy also defines in part
the structure of this chapter and its section. Unlike the majority of chapters in this
book, we chose to not initially develop “all necessary math” and then present you
with challenges and research problems in which to use “it.” We chose to state a
potential problem relatively early in the corresponding section, then discuss some
possible mathematical approaches to it and provide references for specific tools that
the reader can follow as needed. This approach allows us to follow our favorite
learning strategy, which we use in our work as modelers as well: a combination of
foundation learning of general mathematical structures and “just in time” learning
of specific mathematical tools that could be of use to a particular problem.

2 Grey Squirrels in Six Fronts Park: Modeling a Changing
Population

Section Author William Hall

Suggested Prerequisites Algebra, sequences, difference equations

In this section, we build and use a mathematical model using spreadsheet
software to explore how a population of grey squirrels changes over time given
various parameters and observations. This problem is fictional—it was built for the
purposes of instruction so that the mechanics of translating the problem into the
mathematical model can be centered in the discussion. In the projects that follow,
the contexts and mathematical models are authentic and the principles are illustrated
outside a fictional park.

2.1 The Problem

Problem 1 A population of grey squirrels is being tracked within Six Fronts Park.
In a recent survey of park wildlife, it was estimated there were 1000 squirrels in the
park. The squirrel population has been increasing as of late and city officials have
asked for a report. Specifically, they want to know when they can expect the squirrel
population to reach 2000.
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2.1.1 Step 1: Goals, Questions, and Assumptions
We are asked to estimate when the population of grey squirrels will reach 2000. We
are told to assume the squirrel population is increasing by 20% each year.

2.1.2 Step 2: Build aModel
Many different models can be built to approximate the given situation and the reader
is encouraged to explore those that come to mind. Here, we will use Microsoft
Excel to provide a numerical approximation, using difference equations to solve
what would be called an initial-value problem in differential equations; however,
you will not need experience in differential equations for this activity. See Sects. 4
and 5 for more details on difference equations and differential equations. First, we
need to translate our assumptions into mathematical equations and expressions that
can be used in our model. We will use S(t) to represent the population of grey
squirrels t years from today. We know that we can assume there to be 1000 squirrels
in Six Fronts Park today. This is represented in our model as S(0) = 1000, where
t = 0 represents the present day. Assuming the growth rate of the squirrel population
is proportional to the squirrel population itself and not explicitly dependent on time,
we use R(S) to represent the growth rate of the population of grey squirrels for
some given population. Note that while S is a function of t , R is a function a S.
Assuming a growth rate of 20% per year in the context of the squirrel population
can be understood as: if there are 1000 squirrels in the park, the population will
be growing at a rate of 1000 · 0.2 = 200 squirrels per year. In our model, we can
write this more generally as R(S) = 0.2 · S. Given this information, we translate
the officials’ question (“When will there be 2000 squirrels?”) to our mathematical
notation: Find t such that S(t) = 2000.

What makes this problem challenging (and interesting too!) is that as soon as
more squirrels are added to the park, the growth rate increases. In our model: as
S increases, so too does R(S). For example, if there were 1200 squirrels in the
park, the growth rate would be 1200 · 0.2 = 240 squirrels per year. How do
we approximate a population in flux with a growth rate that changes too? One
answer: approximation. If we assume that the growth rate remains constant for some
finite interval (e.g., one month, three months, six months) we can approximate how
many new grey squirrels the model predicts there will be within that time interval.
We can do this several times, updating the rate of change as we approximate the
accumulative net change in the number of grey squirrels. A combination of the size
of those time intervals and how we approximate the rate of change within each
interval will determine how accurate our overall approximation will be. In the next
section we will use Excel to apply the model and answer the officials’ question.

2.1.3 Step 3. Apply theModel
The method showcased in this section relies on assuming non-linear growth can
be approximated using linear functions over finite time intervals. To find an exact
solution, we would need to consider infinitely small chunks of time (and possibly
infinitely small squirrels). However, we can approximate the solution with as much
accuracy as we like using just spreadsheet software and a few formulas. First, we
know that at t = 0, the growth rate is 200 squirrels per year, as we calculated
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earlier. If we assume this growth rate will remain constant over three months, we can
approximate that there will be (200 squirrels per year) · (0.25 years) = 50 additional
squirrels in Six Fronts Park over three months. Now there are approximately 1050
squirrels in the park. At this point, we re-calculate the growth rate since there are
more squirrels and we know that more squirrels means faster growth. Now, the
population is growing at 1050 · 0.2 = 240 squirrels per year. After three additional
months, (240 squirrels per year) · (0.25 years) = 60 additional squirrels added
during that three-month time interval. Thus, six months from now, we can estimate
there to be 1000 + 50 + 60 = 1110 grey squirrels in Six Fronts Park.

We can speed up this process with the help of spreadsheet software (many
other software options exist for this type of modeling, but we use Microsoft Excel
here). We will track time in the first column, the squirrel population in the second
column, and the growth rate with the third (using t, S, and R, respectively, as column
headings). The first entry will be the given information, that at t = 0, the population
S is 1000. We also need to make note of the time span over which we have decided
to assume a constant growth rate, which in our case is three months (0.25 years).
Once you have listed this value, you can use the “define name. . . ” feature to assign
a character string you can use to call up this value in formulas later on. In this
example, I used “dt” as the name for the cell containing 0.25, where dt represents a
small change in time. The benefit here, instead of typing 0.25 repeatedly, is that we
can change the value in the cell and any formulas in which we have used “dt” will
update to the new value. This enables us to explore how our assumption (the growth
rate was constant for some finite time interval) impacts the overall approximation
for the population of grey squirrels.

To calculate the growth rate at this point, we utilize a formula in Excel and let
the software run calculations. In the R column, in the cell adjacent to the current
population, we want to compute 0.2 multiplied by the current population. To use a
formula, type the equal sign followed by “0.2*” then you can either click the cell
with the current population or type the cell location directly. This is illustrated in
Fig. 1.

Moving to the next row, we first use how much time has elapsed (0.25 years) to
give the next value for t . To do so, we use a formula in the next cell in the time
column to add the value of “dt” we set earlier (0.25) to our previous time (t = 0).
Next, we update the number of squirrels in the park after this period (0.25 years) by
approximating the number of new squirrels by multiplying the current growth rate
by the value saved as “dt” and adding it to the previous population (see Fig. 2 for
formulas).

Finally, to find the new growth rate after 0.25 years have passed and there are
now approximately 1050 squirrels in the park, we use the fill-down feature (click
and drag the square in the bottom right corner of the cell with the formula you want
to apply). With the first two rows now filled in, if you simultaneously select all three
cells in the second row of values, you can use the same fill-down feature to generate
approximations as far into the future as you desire. See Fig. 3 for Excel formulas.

According to the current model (see Fig. 4), the squirrel population should reach
2000 between 3.5 and 3.75 years from now.
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Fig. 1 Using excel to calculate the growth rate

Fig. 2 Formulas for calculating time and population

Fig. 3 Formulas for model of population of grey squirrels

Fig. 4 Model of population
of grey squirrels with
constant growth rate for 0.25
year periods
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2.1.4 Step 4. Assess and Revise Your Model
What would happen if we assumed the growth rate was constant for one month
instead of three? Here we replace 0.25 with 0.083 (approximately 1

12 ). Make a
mental conjecture about how the solution might change before reading further or
changing your own values. Since we assigned “dt” to represent whatever value is in
the cell marking our time span, we can change that value and the entire model will
update as well. However, you may need to highlight the bottom row and use the fill-
down feature to include more rows in the model. In this model, our approximation
for when the population will hit 2000 falls between 3.486 and 3.569 years from
today. This interval is earlier than the previous one we found. Does that match your
conjecture?

2.2 Conclusion and Exercises

In this section, we modeled the population of grey squirrels in a fictional park using
numerical approximation methods. There are many ways to alter this model to pose
and answer new questions. Below, you will find several exercises the reader can
undertake within the fictional space of the park. Elevating to the level of project
could include utilizing the modeling techniques here in analyzing publicly available
data (e.g., COVID-19 infection/vaccination rates, unemployment rates) to pose and
reflect on questions about critical social issues in one’s community.

Exercise 1 Imagine you found out there was an error in the initial report and there
were only 800 squirrels in the park at t = 0. How does this alter the results of your
model under the original assumption? When would the population hit 2000 in that
case?

Exercise 2 What if a fire caused a significant drop in the population growth rate
during the first six months of the second year? How could you use the spreadsheet
we built here to model this case?

Exercise 3 Pose your own “what-if” question and then reflect on the results. What
do you learn about both the context and your model?

3 Non-contact Cardiovascular Measurements

Section Authors Giovanna Guidoboni and Raul Ivernizzi

Suggested Prerequisites Algebra, spreadsheet
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3.1 Context

At every heartbeat, blood is ejected from the heart into the cardiovascular system,
generating a thrust that is capable of moving our whole body [12]. This motion can
be captured via external sensors, such as accelerometers placed in an armchair or
load cells placed under the bed posts. Precisely, these sensors capture the motion
of the center of mass (which is the unique point of a distribution of mass in space
to which a force may be applied to cause a linear acceleration without an angular
acceleration) of the human body resulting from the function of the cardiovascular
system, thereby enabling health monitoring without requiring direct body contact.
This capability is especially useful for elderly individuals and patients suffering of
chronic diseases, such as those suffering of heart failure. What does this have to
do with math? Can we reconstruct the position of a known mass placed on the bed
by elaborating the signals from the load cells? This is what we will explore in this
project. We will see that unexpected results may occur. . . and yet Euler in his master
thesis in 1771 already explained all about it.

3.2 The Challenge

Research Project 1 Imagine that a doctor one day asks you to help him solve
a problem. He explains to you that it would be his intention to monitor the
health of the cardiovascular system of a patient that is bedridden for good part
of the day. The cardiovascular system, he continues, is made of many parts all
working together to make sure that every inch of our body gets the blood and
the oxygen that it needs to function (see Fig. 5 for a schematic representation
of the main parts of the cardiovascular system). The heart is the main pump,
beating about 100,000 times and pumping about 7200 liters (1900 gallons)
of blood each day through an amazing network of blood vessels of different
shape and size.

As a doctor monitoring patients with cardiovascular problems, it is very
important to know whether the patient has a problem in the heart or the
blood vessels, because depending on the situation different medicines can be
administered or interventions can be pursued.

The doctor says there are already several ways to understand if a person’s
heart is working well. For example, you can use the electrocardiogram (often
abbreviated to ECG), which consists of measuring the electrical activity of the
heart using electrodes placed on the skin (usually on the chest of patients) and
provides a graph of voltage versus time. Each peak in the graph corresponds
to a heartbeat, and other useful information can be gleaned from the minor
peaks (see Fig. 6 for a schematic of the peaks in an ECG graph). In addition
to the ECG, the pulse oximeter is another sensor that is often used for patient

(continued)
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monitoring (see Fig. 7). This sensor is placed on a finger, as if it were a
clothespin, and is able to measure the heart rate and the amount of oxygen
in the blood through the emission and subsequent measurement of light beam
from a point.

Our doctor’s idea, however, is to obtain data on the whole cardiovascular
system simultaneously, namely including both the heart and the blood vessels,
and to do so without touching the body of the patient! In fact, both the ECG
and the pulse oximeter require body contact and they have uncomfortable
wires that reach a computer capable of processing their signals.

So how can we measure the heartbeat of a subject or other information
about his/her cardiovascular system, without applying sensors on him/her? It
seems impossible! One could take advantage of the fact that the patient is
lying on a bed. So, thinking about it, he/she is touching the bed. Is it possible
to use this contact to get some useful information by putting sensors on the
bed frame instead of on the patient directly? This is what we will experiment
together.

Fig. 5 The cardiovascular system
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Fig. 6 Standard
electrocardiogram (ECG)
signal

Fig. 7 Pulse oximeter finger
sensor

We develop this challenge project in more detail to demonstrate how we work
with broadly defined projects like the ones in this book, how we approach them,
constrain them and define our own smaller project. Subsequent project in this
chapter is meant to be more independent, while still offering some guidance.

3.3 The Initial Experiment

Let us do the following experiment. Take a glass, possibly transparent and with a
wide base. Fill it halfway with water and walk to a place where you can safely lie
down supine (on the back or with the face upward), such as a sofa or a bed. Lie
down carefully, face up, with your head resting on a pillow so that is possible to see
your feet without straining abs. Now, place a glass with water on your chest in such
a way that is stable enough for it not to tip over. Now if you hold your breath for
few seconds and try to remain still you will notice interesting phenomena: the water
moves even if you stay still. One can look closely and see that the surface of the
water moves periodically, perhaps just a little, but it does. But why does this happen
even if we were holding our breath and trying to be immobile?

The answer is: the water move because it is impossible to stay perfectly still,
because we have a beating heart inside us!

Every time that the heart ejects blood into our vessels, it generates a thrust that
moves our whole body in the opposite direction, thereby displacing the water in
the glass. This is Newton’s third law, also known as the action-reaction principle:
to every action there is a reaction that is equal in magnitude and opposite in
direction. This fact has actually been known for quite some time. Biathlonists or
military snipers, for example, train a lot to pull the trigger taking into account this
phenomenon. In fact, even if they hold their breath, they cannot stop their heart from
making them jump at each beat, so they must learn to synchronize the shot with the
beat.
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Fig. 8 Picture of an old prototype of suspended bed

Since the mid-1900s, several scientists were developing instruments to accurately
measure these body movements. One of the most popular methods was the “swing
bed,” which consisted of a rigid board, suspended by means of cables that were
attached to the ceiling or to a stiff metal frame (see Fig. 8). They saw that the power
of the cardiac contraction that pushed the blood in one direction was able to move
the entire bed with the person on it. These movements were, therefore, simple to be
measured. In fact, it was enough to fix a felt-tip pen facing down to the oscillating
table, and if you make it so that it touches a sheet of paper placed under it, it will then
trace the movement of the bed. The signal generated by the body motion in response
to the flow of blood in the cardiovascular system is known as ballistocardiogram,
typically abbreviated to BCG. Since then, different and more precise methods have
been developed to measure the BCG, for example, using contactless distance meters
such as those laser meters that architects use to measure the size of the rooms of a
building, or else by using accelerometers. A system made of a bed suspended with
cables is quite impractical to be used in a hospital or at home. So, it is natural to
wonder if there is a way to measure the forces that create the BCG using a normal
bed resting on the ground rather than a suspended one.

3.4 Weigh a Bed?

Let us imagine that we have 4 equal scales. In practice, in scientific laboratories,
bathroom-like scales have more sophisticated substitutes, which are known as “load
cells” (see Fig. 9). They may look different than the standard scales, but essentially
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Fig. 9 Picture of a load cell
placed under the leg of a bed

they do the same thing: they measure the mass of an object. In addition, these
instruments can also be connected to a computer to read the data of the multiple
load cells simultaneously and even continuously, obtaining a graph as a function of
time. This aspect will come in handy.

If we place one load cell under each bed post, for a total of four load cells, we
will be able to take into account the weight that each post unloads on the ground.
But what do we do with this apparently useless data?

Let us remember that we are interested in having a measure of how the heart
makes the body vibrate in order to measure its beats and possibly obtain other
useful information. Is it possible, having only the measurement of the “constraint
reactions” of the bed to the floor (i.e., the forces that it transmits to the floor and
which, in turn, the floor transmits to the bed by reaction), to obtain the forces
transmitted by the person’s body to the bed itself? In short, we would like to
understand if we can use the load cells to quantify those very same forces that
make the water move inside the glass on your chest or make the bed swing when
suspended with cables.

The answer is that, thanks to mathematics, it is possible. And it is not very
complicated either. Let us see how to get this information:

We draw a diagram of the bed, with the posts at the four corners. We label
each corner with a number from one to four. We set a Cartesian reference frame
by drawing the x and y along the direction of the bed width and length, as shown in
Fig. 10.

We indicate with R1, R2, R3, R4, the constraint reactions that the bed exchanges
with the floor. Basically these are the forces that we read through the load cells.
(Note that the direction towards which we draw the forces is not important at the
moment. In fact, we can fix the arrows in any direction and, at the end of the
computations, the + or − sign that we will obtain will automatically change the
directions, if necessary). To simplify the computations, let us consider only one
direction at a time, either x or y. We are basically choosing to look at the bed either
along its width or along its length and we add together the reactions that act on the
same end of the segment, as schematized in Fig. 11.
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Fig. 10 Three-dimensional
schematic representation of a
bed

Fig. 11 Cross sectional schematic representation of the forces to which the bed is subjected

Now imagine placing a weight of known mass, say 1 kg, on the bed. We indicate
with Wbed the mass of the bed, with Wweight the mass of the small weight and with
Wtot the total mass of the bed plus the mass of the small weight. Thus we can write
Wtot = Wbed + Wweight . We can represent this situation by drawing a downward
arrow representing Wtot , as schematized in Fig. 11 left, or if we consider the two
components related to the weight of the bed and that of the weight separately, we
obtain Fig. 11 right (which is anyway equivalent to Fig. 11 left).

The question we ask ourselves now is the following: “Using only the data
obtained from the load cells under the bed posts, would we be able to reconstruct
the position of the small weight on the bed?” This question will be the important for
the next reasoning.

If we are able to reconstruct the position of a small weight on the bed, having
only the data from the load cells, it would mean that we are able to measure the
deviation of the center of mass of the bed if there is a weight on it. This would lead
us to say that, if a person were lying on the bed, we would be able to measure the
displacements of the person’s center of mass, and these would be caused precisely
by the movement of blood inside the arteries. We would have measured the BCG,
which provides information about the performance of the whole cardiovascular
system!

Returning to our problem, to reconstruct the position of the weight, we use what
is called “rotational equilibrium.” In physics and mechanics, the moment of a force
is the rotational equivalent of a linear force, and to calculate it we just need to
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multiply the modulus of the force (i.e., its intensity, in N = “Newton” as unit of
measure, for example) by the arm (i.e., the distance perpendicular to the force,
expressed in m = “meters,” for example) from a fixed point that we can choose
at will and we will call the fulcrum. As a result, we will get the moment of that
force relative to the chosen fulcrum, and it will have Nm = “Newton per meter” as
unit of measure.

By enforcing the rotational equilibrium with respect to the left end of the bed
indicated with a gray point in Fig. 11, we obtain:

[�����(R2+R4) 0] [Wtot xc,tot]+ [(R1+R3) Lbed] = 0 (1)

[������(R2+R4) 0] [Wbed xc,bed] [Wweight xc,weight]+ [(R1+R3) Lbed] = 0
(2)

From the first equation, we can retrieve the location xc,tot of the center of mass
along the bed width when the weight on it.

For the second equation we need Wbed, xc,bed, and xc,weight.
Adding the load cell signal and averaging it over time, we can obtain Wtot . Because
Wweight is known, we can obtain Wbed by subtraction:

Wbed =Wtot Wweight (3)

To obtain xc,bed , we need to write the rotational equilibrium for the bed without
the weight on it. Let us denote by R1,bed , R2,bed , R3,bed , and R4,bed the load cell
reactions that we measure in this case. Thus, we can write

xc,bed =
R1,bed+R2,bed

Wbed (4)

Finally, we can combine the two equations to obtain an expression for the
coordinate xc,weight identifying the position of the weight along the bed width:

xc,weight =
Wtot xc,tot Wbed xc,bed

Wweight (5)

Repeating the same steps along the y axis, we obtain an expression for the
coordinate yc,weight identifying the position of the weight along the bed length:

yc,weight =
Wtot yc,tot Wbed yc,bed

Wweight (6)
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Fig. 12 Table reporting the mass of the weight positioned on the bed, and the magnitude of the
constraint reactions of the bed posts measured by the load cells. Note that there are 5 different
cases associated with 5 different weights positions. Case #0 is the reference case, where there is no
extra weight on the bed

3.5 Let Us Get Our Hands Dirty!

Exercise 4 Let us now have some fun and use what we have learned so far to
reconstruct the position of a small weight placed on a bed, given the readings from
four load cells placed under the bed posts. Specifically, let us consider the data
reported in the table, compute the coordinates xc and yc for each of the weights
placed on the bed. Let us assume that the dimensions of the bed are as follows
(Fig. 12):

Bed length: L = 200 cm= 2.0 m (78.74")
Bed width: W = 150 cm= 1.5 m (59.055")

Hint: Notice that in the case #0 no weight was placed on the bed. You can use this
case to obtain the information that you need for to calculate Wbed and xc,bed .

Solution See Fig. 13, which shows the solution in the form of a table with attached
the load diagrams for the five scenarios.

3.6 Interesting Observations

One would expect that, by adding an extra weight on the bed, all the load cells would
record a higher mass. But this is not always the case!

Let us take a second look at the example described in the previous section. In the
absence of an extra weight on the bed (see case #0), the load cells in positions 1
and 2 measure 11 kg each, whereas the load cells in positions 3 and 4 measure 9 kg
each. Let us now add an extra weight of 1.5 kg on the bed (see cases #1, #3 and #4).
In case #1, all the load cells record an increased mass, as we would have expected.
However, in case #3 we see that the load cell in position 1 measures R1 = 10.375 kg,
which is less than 11 kg! We observe a similar phenomenon in the case #4 with the
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Fig. 13 Table and images showing the solution to the exercise. First the total weight is calculated,
then the center of mass of the system (bed + weight) is obtained and, finally, the position of the
weight in the four cases is obtained

Fig. 14 Representation of the states of equilibrium of a bed that has two longer transverse legs.
Left: unstable equilibrium position with the bed parallel to the ground. Middle: stable equilibrium
position with the bed tilted to the right; Right: Position of stable equilibrium, with the bed inclined
towards the left leg

load cell in the position 2, for which R2 = 10.775 kg < 11 kg. Interestingly, the
extra weight in cases #1, #3 and #4 is the same, but it is placed at different locations
with respect to the center of mass of the bed.

This apparently strange behavior can be explained by looking at the following
ideal experiment: Let us take a very stiff rectangular board with 4 legs, one at each
corner (as a very stiff bed). If two diagonally opposite legs are much longer than the
other two (e.g., referring to Fig. 14, assume that legs 2 and 3 are longer), they create
a line of equilibrium. As the other two legs are shorter, dropping a weight on one
triangular side of the board (for instance, putting the weight close to leg 4) leads to
a reduction of the reaction force exerted by the leg opposite to the triangular part
chosen (in this case a reduction of the weight at the leg 1). This can also bring, in
some cases, to the lifting of the bed corner with respect to its original position.
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We can, therefore, conclude that using a bed with 4 legs, the equilibrium solution
is not necessarily unique, because, for example, by placing the weight exactly on the
equilibrium line imagined in the ideal experiment explained above, we can obtain
that the table naturally rests more on leg 4 or more on leg 1 based on its initial
configuration. But both situations are valid.

On the other hand, considering a triangular table with only 3 legs, we immedi-
ately understand that there cannot be any stable oscillatory movement between two
legs, and, therefore, each equilibrium solution must be unique. In general we can say
that for every structure with more than 3 legs on the ground we have a hyperstaticity
that generates multiple possible balanced solutions, all equally valid in theory, but
only one will appear in practice. This is exactly what Euler studied in his master
thesis in 1771!

Challenge Problem 1 Let us now think back at Eqs. (5) and (6). There are many
more interesting questions you could explore. Given the same weight, do you think
it would be easier or harder to lace it on the bed if the bed’s dimensions are closer
to a square, in which case L = W , or to an elongated rectangle in which case
L < W or L > W? How do you expect the weight of the object to matter? What
are problems that you think you may encounter if the object is very heavy or very
light?

3.7 Conclusions

We have seen that it is possible to make measurements of objects placed on a bed
using only load cells placed under each post. But what does this have to do with
the original question that the doctor asked us? The doctor would have liked to be
able to have measurements of cardiovascular health without touching the person.
Well, we are now able to say that by analyzing the weight transmitted to the floor by
the posts of the bed, we can accurately measure any variation in the center of mass
linked to objects placed above the bed. Thus, when a person is on the bed and the
blood moves inside the cardiovascular system, we will be able to detect the change
of the person’s center of mass based on the load cell readings... and here we have
our desired BCG!

All of this was made possible by using mathematics to write down the physics of
the system into equations. Scientists have taken this approach even further, by using
mathematics to write the equations describing the physics of the blood flow into
the cardiovascular system and generate virtual BCGs by simulating on a computer
healthy or diseased conditions [13].

Examples of real load cell recordings are reported in Fig. 15 These recordings
have been performed within the laboratories of the Center for Eldercare and
Rehabilitation Technology directed by Prof. Marge Skubic at the University of
Missouri. Data have been collected on a healthy subject (male, 26 y/o). By
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Fig. 15 Total weight signal obtained by summing, for each instant, all four load cells measure-
ments. The result is then normalized by the average

Fig. 16 Over-time weight measurement obtained by one load cell placed under a bed leg with a
patient on it. The high-frequency peaks are due to the heart rate, while the low-frequency curve
(obtained by interpolation) shows the respiration rate

elaborating the signal from the load cells, it is possible to capture in a very precise
manner the heartbeat, see Fig. 15, and the breathing pattern of a subject, see Fig. 16.

Sensors based on the mathematical principles described in this chapter are
not just a mere academic exercise. in their different forms, from load cells to
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accelerometers and piezoelectric sensors, are helping many people around the
world suffering from cardiovascular diseases living their lives as independently as
possible while being monitored for potential worrisome conditions. Currently, Prof.
Guidoboni is directly involved in helping monitor hundreds of elderly individuals in
over 10 long-care facilities. Math does, indeed, help us all live a better life

4 Difference Equations in Population Ecology

Section Authors Sergey Lapin, Thomas McCutcheon

Suggested Prerequisites Algebra, sequences, difference equations

4.1 Introduction

In many cases it is of interest to model the evolution of some system over time. We
can call these systems dynamic systems, systems that investigate the quantitative
change of variables connected in a system over time. There are two distinct types of
dynamic systems. One where time is a continuous variable, and another one where
time is a discrete variable. The first case often leads to differential equations. The
second case can be described using difference equations. We will discuss the latter
case in this section.

We consider a time period T and observe (or measure) the system states denoted,
for instance, by variable U at times t = nT , where n is a natural number, i.e.,
n ∈ N0. The result is a sequence of states

U(0);U(1);U(2); ...;U(k); ...,

or using different notation we can write the sequence as

U0;U1;U2; ...;Uk; ... (7)

The values Uk can obtained from a function f , which is defined for all t ≥ 0. In
this case U(n) = f (nT ). This method of obtaining the values is called periodic
sampling. We can model the evolution of a system using a difference equation,
sometimes it is also called a recurrence relation. In this section we will consider
the simplest cases first. We start with the following equation,

U(n + 1) = aU(n); n ∈ N0; (8)

where a is a given constant. The solution of (8) is given by

U(n) = anU(0) (9)
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The value U(0) is called the initial value. To prove that (9) solves (8), we compute
as follows.

U(n + 1) = an+1U(0) = a(anU(0)) = aU(n)

4.2 Population Growth with Difference Equations

Let us continue our exploration of population growth behavior discussed in Sect. 2.
We now investigate how difference equations can be used to track changes in
populations.

Understanding how populations grow and what factors influence their growth
is important in variety studies such as, for example, bacterial growth, wildlife
management, ecology, and harvesting. There are various factors that can affect
growth pattern of a specific population, for example, environmental factors, food
availability, species interactions, and human interventions. If there is a situation,
such that none of these external factors is present to impact the growth and
proliferation of organisms, then the organisms will keep on multiplying. Such a
growth pattern is called exponential growth. Nearly all populations will tend to grow
exponentially as long as the resources are available.

Many animals tend to breed only during a short, well-defined, breeding season.
It is then natural to think of the population changing from season to season and,
therefore, measuring time discretely with positive integers denoting breeding sea-
sons. Growth of such a population can be naturally described using an appropriate
difference equation.

Let us start with insect-type populations. Insects often have well-defined annual
non-overlapping generations—adults lay eggs in spring/summer and then die. The
eggs hatch into larvae which eat and grow and then overwinter in a pupal stage. The
adults emerge from the pupae in spring. We take the census of adults in the breeding
seasons. It is then natural to describe the population as the sequence of states such
as (7), where Uk in this case is the number of adults in the k-th breeding season.
The simplest assumption to make is that there is a functional dependence between
subsequent generations

Nn+1 = f (Nn), for n = 0, 1, ... (10)

Exercise 5 Let us introduce the number R0, which is the average number of eggs
laid by an adult insect. R0 is called the basic reproductive ratio or the intrinsic
growth rate. The simplest functional dependence in (10) is

Nn+1 = Nn + R0Nn, for n = 0, 1, ... (11)

which describes the situation that the size of the population is determined only by
its fertility.
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Fig. 17 Exponential population growth

If we determine a population solely by its fertility we get an exponential growth
behavior. For instance, Fig. 17 represents the growth of Hessian flies in an ecosystem
with abundant food, no predators, and the flies are immortal.

The population will continue to grow exponentially towards infinity which is
unrealistic as there is always a finite cap on the resources available in an ecosystem.
To this end, the idea of a carrying capacity, often denoted as K , is introduced. K

represents the maximum population an ecosystem can sustain.

Exercise 6 We introduce a new functional dependence:

Nn+1 = Nn + R0Nn

(
1 − Nn

K

)
, for n = 0, 1, ... (12)

In Eq. (12),

1 − Nn

K

is our carrying capacity term. As the population of our species approaches its
carrying capacity the above term approaches zero. This causes our growth term to
approach zero which in turn creates what appears to be an asymptote in our graph.

It is important to note that the line created by our carrying capacity term is not
truly an asymptote but rather a stable solution. What this mean is that no matter the
value of our initial population, the population will always trend towards this line
(Fig. 18 and 19).
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Fig. 18 Exponential population growth with carrying capacity

Fig. 19 Exponential population decay with carrying capacity

When a graph acts like Fig. 19 this is called exponential decay. Looking back at
Eq. (12), we can see the reason our graph decays is because of the ratio between
the current population and the carrying capacity is greater than one. This causes our
carrying capacity term to result in a negative number which is then multiplied to
our growth term causing the decay we observed. A major difference between stable
solutions and asymptotes is that the population graph may cross over our stable
solution, however, once it does, as we just discussed, the graph decays back to the
stable solution.
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4.3 Coding Difference Equations

As nobody wants to perform the thousands of calculations that go into Fig. 21 or any
of the other graphs above we outsource those calculations to computer software.

To code the above difference equations we need to create variables representing
the current population of each population, separate objects to store all the previous
populations for each insect, code the equations and code a loop to run the equations
as many times as we need/want.

A question to consider whenever coding is, where might a computers logic
cause issues? Most prevalently in our example is population count. To the computer
the population count is just a number and if one population goes below zero the
computer has no problem continuing to perform the algebra using negative numbers.
For example, if the herbivore population was wiped out and ended up as a value
below zero to the computer, we would suddenly have a crop population that is
growing. How you implement a safeguard to ensure the population count never
contains a negative number is up to the coder, however, having a population hit
zero can be just as problematic as negative populations. The carrying capacities
of the herbivore/predator populations are dependent on the populations of the
crop/herbivore which means we may end up dividing by zero if either of those
populations crashes down to zero. Most coding environments come with their own
error handling and when those environment read divide by zero they halt the code
where that occurs and exit. For population difference equation, one population
completely wipes out another is very feasible and so we need to design our code
in such a way that the error is ignored or can simply never occur. In the case of code
used here every divisor that could be zero had a small fraction, such as one over ten
million, added so the value there would never truly be zero.

The final topic discussed here is step size. As its name suggests, step size is an
incremental increase in a variable, usually x on a standard Cartesian graph like the
ones shown above. Step size is often denoted by h and in Eqs. (14), (15), and (16)
every term except for the first term, representing the previous population of that
organism, would have an h attached to it. The importance of step size in relation to
difference equations is best seen in a graphical example. ex can be approximated by
Yn+1 = Yn + hYn f or Y (0) = Y0 = 1. Our approximation comes from a special
case of Taylor’s theorem. Taylor’s theorem allows us to expand any function into a
Taylor series provided it is infinitely differentiable at a point a. A Taylor series has
an infinite number of terms so we then truncate the series into what is called a Taylor
polynomial. In our case ex is infinitely differentiable for any a contained within the
real numbers. All the reader needs to know about derivatives is that ex is a special
case among derivatives and is its own derivative. For more on differential equations
and derivatives see Sect. 5. The general form of a Taylor series is f (x) = f (a) +
f ′(a)(x−a)

1! + f ′′(a)(x−a)
2! + .... The apostrophes between f and (a) indicate which

derivative of the function is needed, f ′(a) is the first derivative of f at a. We are
content to use the first two terms of this equation. If f (x) = ex , remembering ex is
its own derivative, our Taylor polynomial becomes f (x) = f (a)+ f (a)(x−a)

1! . When
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Fig. 20 Large vs small step size

working with difference equations we start with f (x) = c so approximating f (x) is
not all that helpful for us. With on slight modification to our Taylor polynomial we
can fix that. Let x = x +h and a = x. With these changes, our Taylor polynomial is
f (x+h) = f (x)+ f (x)(x+h−x)

1! = f (x)+ f (x)(h)
1! . h is our step size and letting f (x+

h) = Yn+1 and f (x) = Yn returns us to our stated approximation. As promised we
will now look at a graphical example of the importance of step size (Fig. 20).

Clearly a smaller step size produces a graph that is more accurate, however, it is
not perfect. Eventually our approximation using the smaller step size will lag behind
the true graph. This is because our error, the difference between the true value of the
equation and our approximation, is dependent on both step size and, in this case,
our function value. For our exponential difference equation the error function is as
follows

Error =
∞∑
i=2

hi

i! Y = h2

2
Y + h3

6
Y + h4

24
Y + h5

120
Y + ... (13)

As we can see a large h, a large step size, results in a large error. The h and i

terms will be true for any equation while the Y term is specific to our equation. As
Y grows our Error term increases and since our approximation is strictly increasing,
the further we stretch our range the less accurate our approximation is. As a side
note, if you looked at our error terms and said, since those are the difference between
the true value of our function and its approximation we should add those terms to
our original difference equations, you would succeed at making our approximation
more accurate. In this example, with the simple function ex , we could add more of
the error terms onto the equation to get a more accurate approximation. However,
calculating and adding these terms can be extremely computationally intensive even
for a computer.
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If we assume we cannot add more terms to our difference equation to make it
more accurate, our only way to decrease our Error is to take smaller and smaller
steps. Unfortunately, other errors may arises if we shrink our step size too much.
Unlike our previous error, these new errors are the fault of the computer not our
equations. We will only discuss round off error here but for those who are interested
see Numerical Analysis Mathematics of Scientific Computing by David Kincaid
and Ward Cheney [14] for other computational errors. Computers convert numbers
into a series of bits, bits are either 1 or 0. However, many bits a computer is using
to store a number, it cannot be an infinite number of bits and at some point the
computer will round the number [15]. What the round off error of the computer is
can vary but if we add too many numbers together the round of error will eventually
become significant. For example, let us add one tenth to itself 3.6 million times. if
our computer is limited to 24 bit binary storage our binary approximation of one
tenth when converted back is off by 0.000000095, this is our round off error. If we
then multiply our round of error by 3.6 million, the number of times it has been
added together, our error has grown to 0.342. A third may not seem like much,
however, this exact error contributed at a catastrophic failure in the Patriot Missile
Defense System during the Gulf War [16].

P l a n t P o p = [ ] ;
FlyPop = [ ] ;
P r e d a t o r P o p = [ ] ;

s t e p s = 300 ;

DaysinMonth = 30 .44
H l i f e = 4 4 . 5
H l i f e S = ( ( H l i f e / DaysinMonth ) / 4 ) * s t e p s
P l i f e = 76 .75
P l i f e s = ( ( P l i f e / DaysinMonth ) / 4 ) * s t e p s

PE = ( . 0 0 0 0 1 9 1 6 *100 ) / P l i f e s ; # p r e d a t o r . . .
e a t / growth *400 i s f o r s c a l i n g t o # of months . . .
s i m u l a t e d and our s c a l e b e i n g based of 100

HG = ( 0 . 0 0 0 1 5 5 6 * 100) / H l i f e S ; # H e r b i v o r e . . .
e a t / growth

Yc = 100 ; # i n i t i a l Crops
Yh = 2 0 ; # i n i t i a l H e r b i o v r e
Yp = Yh / 1 . 2 ; # i n i t i a l p r e d a t o r
Dh = ( ( 4 4 . 5 / 3 0 . 4 4 ) / ( 1 2 0 0 0 0 0 ) ) *100 / H l i f e S % . . .

L i f e s p a n of t h e i n s e c t i n months s c a l e d t o . . .
s i m u l a t i o n
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Dp = ( ( 7 6 . 7 5 / 3 0 . 4 4 ) / ( 1 2 0 0 0 0 0 ) ) *100 / P l i f e s

i = 1 . 0 ;

CropGone = 0 ;

f o r i = l i n s p a c e ( 1 , 5 , s t e p s )
Yc = max ( Yc - ( Yh / s t e p s ) , 0 ) ;
i f ( CropGone = = 1)

Yc = 0
end
Yh = Yh + ( Yh * HG * (1 - max ( Yh , 0 ) / ( 2 . 7 * . . .

Yc + 10 ^ ( - 10) ) ) - Yh * Dh - Yp * PE ) ;
Yp = Yp + ( Yp * PE * . . .

( 1 - ( max ( 0 , Yp ) / max ( 0 . 0 0 0 0 0 0 0 0 1 ,Yh ) ) ) - Yp * . . .
Dp ) ;

i f ( Yc ~ = 0)
P l a n t P o p = [ P lan tPop , Yc ] ;

e l s e i f ( Yc = = 0) % e n s u r i n g no n e g a t i v e . . .
p o p u l a t i o n
CropGone = 1 ;
P l a n t P o p = [ P lan tPop , 0 ] ;

end
FlyPop = [ FlyPop , max ( Yh , 0 ) ] ;

P r e d a t o r P o p = [ P r e d a t o r P o p , max ( Yp , 0 ) ] ;
end

t o t a l = l i n s p a c e ( 1 , 5 , s t e p s ) ;

f o r i n d e x = 1 :40 % 60 f o r 150 , 20 f o r 100

i = 1 . 0 ;

CropGone = 0 ;
Yc = 150 ; % 100 f o r low d e n s i t y p l a n t i n g

f o r i = l i n s p a c e ( 1 , 5 , s t e p s ) + 4* i n d e x
iNew = i - 4* i n d e x ;
Yc = max ( Yc - ( Yh / s t e p s ) , 0 ) ;
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i f ( CropGone = = 1)
Yc = 0

end
Yh = Yh + ( Yh * HG * (1 - . . .

max ( Yh , 0 ) / ( 2 . 7 * Yc + 10 ^ ( - 10) ) ) - Yh * . . .
Dh - Yp * PE ) ;

Yp = Yp + ( Yp * PE * . . .
( 1 - ( max ( 0 , Yp ) / max ( 0 . 0 0 0 0 0 0 0 0 1 ,Yh ) ) ) - . . .
Yp * Dp ) ;

i f ( Yc ~ = 0)
P l a n t P o p = [ P lan tPop , Yc ] ;

e l s e i f ( Yc = = 0) % e n s u r i n g no n e g a t i v e . . .
p o p u l a t i o n

CropGone = 1 ;
P l a n t P o p = [ P lan tPop , 0 ] ;

end
FlyPop = [ FlyPop , max ( Yh , 0 ) ] ;
P r e d a t o r P o p = [ P r e d a t o r P o p , max ( Yp , 0 ) ] ;
end
t o t a l = [ t o t a l , ( l i n s p a c e ( 1 , 5 , s t e p s ) + 4* i n d e x ) ] ;

end
f i g u r e
p l o t ( t o t a l , P l a n t P o p )
t i t l e ( " P l a n t P o p u l a t i o n ove r Time " ) ;
y l a b e l ( " P l a n t P o p u l a t i o n " ) ;
x l a b e l ( " Time " ) ;
f i g u r e
p l o t ( t o t a l , FlyPop )
t i t l e ( " H e s s i a n Fly P o p u l a t i o n ove r Time " ) ;
y l a b e l ( " H e s s i a n Fly P o p u l a t i o n " ) ;
x l a b e l ( " Time " ) ;
f i g u r e
p l o t ( t o t a l , P r e d a t o r P o p )
t i t l e ( " P a r a s i t i o d Wasp P o p u l a t i o n ove r Time " ) ;
y l a b e l ( " P a r a s i t i o d Wasp P o p u l a t i o n " ) ;
x l a b e l ( " Time " ) ;
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4.4 Difference Equations for Predator-Prey Problems

Research Project 2 Let us consider a farm with three organisms, wheat,
Hessian flies, and Parasitoid wasps. Hessian flies are a pest insect. The adult
flies lay eggs on wheat, which hatch into larvae which then devour the stem of
the wheat destroying the crop [17, 18]. Parasitoid wasps are a predator insect
that lay their eggs into the pupae of Hessian flies, the pupae is the same as a
cocoon for caterpillars. The larval wasps then eat the Hessian fly in its pupa
stage before progressing to its own pupa stage [19].

In this project we want to see if over planting, which will allow for more herbivores
in our system, actually leads to a lower crop yield, due to the increase in herbivore
insects. Looking back to our four steps of mathematical modeling, now that we have
a goal, to finish step one we must state the assumptions we will be working under:

1. Our farm contains no organisms, including humans, that would affect the
population of our crop, herbivore insect and predator insect,

2. We assume all insects alive at the end of one planting season hibernate through
to the next planting season,

3. Both of our insects are mono-gendered,
4. We are able to plant 50% more crops in the same space without ruining the soil.

In this second step we will be relying entirely on algebra to create our difference
equations. With our assumptions in mind we can now write down our system of
difference equations. In this second step we will be relying entirely on algebra to
create our difference equations.

Cn+1 = Cn − HnCd (14)

Hn+1 = Hn + HnGh

(
1 − Hn

rhCn

)
− HnDh − PnGp (15)

Pn+1 = Pn + PnGp

(
1 − Pn

rpHn

)
− PnDp (16)

where Cn—Crop population at step n; Hn—Herbivore population at step n; Pn—
Predator population at step n; Cd—Crop Destruction Coefficient; Gh—Herbivore
growth coefficient; rh—Ratio of herbivores that can survive per crop; Dh—
Herbivore death coefficient; Gp—Predator growth coefficient; rp—Ratio of preda-
tors that can survive per herbivore; Dp—Predator death coefficient.



Modeling of Biological Systems: From Algebra to Calculus and Computer Simulations 203

For the sake of clarity, let us dig into the above variables in more depth. The three
population variables can be thought of as the y on a standard graph, for their specific
equations. These three are the only true variables as they change with each step in
our equations. Everything else is a constant. Before we discuss our constants, we
need to touch on the one thing they depend on, step size. Before we begin to use
our difference equations we decide our simulation is going to cover a four month
period and we are going to take 300 steps during this time. Our step size is thus
four divided by 300. We must ensure that all our constants are scaled to this step
size otherwise our results will be wildly inaccurate. For example, say a population
grows by 10 each month and we take 4 steps per month. If we forget to scale 10 to
our step size our population will actually grow by 40. Step size will be discussed in
detail in the next section so for now let us return to the discussion of our equation’s
constants.

Two constants not stated in our equations, but we must consider, are the number
of steps in our herbivore’s and predator’s lifespan. These constants are found by
taking the lifespan of the species, usually found in days for insects, dividing by the
average number of days in a month then dividing the result by the number of months
our simulation spans and finally multiplying by the number of steps we decide to
take. Let us call the number of steps in our herbivore’s life span Sh and the number
of steps in our predator’s lifespan Sp. Cd , due to our assumption that no external
forces impact the system, is the number of crops one herbivore can destroy over
its lifetime divided by Sh. We multiply this to the herbivore population to find the
number of crops destroyed during each step. Gh represents how many herbivores are
born each step. This constant is found by taking the number of eggs our herbivore
species lays in its lifetime converting that to the number of eggs laid per month,
multiply by the ratio of average days in a month over the average lifespan in days,
and scaling that to Sh. rh is what it says on the label. If one crop can support 270
of our herbivores eggs rh is 270. Dh is found by scaling the ratio of the herbivores
lifespan in days over the average number of days in a month to Sh. The predator
coefficients are found in the exact same manner only scaled to the lifespan of the
predator.

The system (14) predicts the size of population total based on the previous popu-
lation total plus the reproductive growth of the population minus the natural death of
our insects minus the consumption of the crop/herbivore by the herbivore/predator.

The graphs in Figs. 21, 22 and 23 were generated under the initial conditions,
at time 0, we have 100 crops, 60 herbivore insects and 50 predator insects. In the
high density case we have 150 crops initially. We will analyze the behavior of the
graphs along with the quantitative, numerical, results to determine if over planting
is a viable strategy in our simulation.1

It may be tempting to look at the above graphs and state, according to our
simulation increasing the density of planted crops will lead to an increased harvest

1 Even though graphs look continuous in time they are composed of many solutions corresponding
to discrete time steps.
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Fig. 21 Plant population. (a) Plant Population in high density scenario. (b) Plant Population in
low density scenario

Fig. 22 Prey/pest population. (a) Fly population in high density scenario. (b) Fly population in
low density scenario

without the herbivore insect growing out of control. In fact if we assume the farmer
goes bankrupt once his crop production falls below a certain level, as they likely
would, it seems over planting will keep our farmer afloat. It takes until month 80,
which is 20 single planting or 10 biannual planting years, for our farms production
to fall to the level of our regularly planted farm. In other words at month 80 our over
planting farmer is producing as much our regularly planting farmer produces in their
first planting season. However, it is always important to remember the scale of your
experiment and what assumptions have been made. A more accurate assessment
is that in an isolated system with infinitely nutritious soil the rate at which our
herbivore insect reproduces does not increase so rapidly that planting more crops
becomes inviable within a reasonable amount of time. Furthermore we can draw
more conclusions from our data than just the above. Suppose another swarm of
pest infests our farm. The influx of pests has brought us to our critical point, where
our pest population graph appears to be approaching the stable solution. We can
see that allowing the herbivore insects more resources has increased their stable
population, around 137 units of flies. The result of this increase in population is
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Fig. 23 Predator population. (a) Predator population in high density scenario. (b) Predator
population in low density scenario

that the farm produces 23.49 units of crops per year or about 15.667% of our crops
survive. Compare this to our low density case where, at its stable population of
94 units of flies, we yield 16.41% of our planted crop, or about 16.41 units of crop.
While our high density crop still yields a greater harvest if we consider the increased
costs, both labor and buying the crop, our farmer is likely to earn less if he plants
more densely.

A final note about modeling real-world situations is, once your base model is
complete, always think about where you could take it next. For example, factoring
in soil degradation could give further insight into the potential of denser planting.
To take the crop, herbivore, and predator model in a completely different direction
one could perform cost benefit analysis using the model to determine at what point
our would farmer go bankrupt.

Remark 1 The predator-prey models are not limited to model only behavior of
predators and prey (or plants). They are also used in sociology and social psychol-
ogy. For instance, similar approaches were used in modeling of protest movements
[20] or interpersonal relationships [21].

Before we can truly explore our equations we need to learn how to teach a computer
to do the leg work and what can go wrong.

5 Modeling the Spread of Infectious Diseases with
Differential Equations

Section Authors Alexander Dimitrov and Jacob Pennington

Suggested Prerequisites Algebra, difference equations, calculus
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This section presents an excerpt of exercises that we use for motivating the
modeling aspects of introductory Calculus, typically in a Calculus for Life Sciences
class. The two exercises and related labs we discuss here are inspired by material
found in the vast repository of modeling scenarios made available by the Systemic
Initiative for Modeling Investigations and Opportunities with Differential Equations
(SIMIODE) project [22]. The sequences of tasks listed in these labs are not
meant to be followed precisely, but to provide some structure to the readers’ own
investigations, and to illustrate our own thinking around these problems: were we
approaching them professionally, we would develop similar lists in order to keep
track of what needs to be done, and what we already have finished.

Our entry to Calculus-based modeling starts with something simpler, already
discussed in the preceding Sect. 4: a difference equation. We will not repeat the
motivation and justification of that section here, but present the scenario leading to
a difference equation model. This will allow you to practice that style of modeling
some more, and relay it to the broader goal of this section: modeling with differential
equations, that is, statements relating derivative of functions to hypotheses about
properties of the modeled system.

5.1 Modeling the Demise of Candy

The full lab is available as text and code in the MATLAB [5] or Octave [6]
environments. We prefer the .mlx Live Script format of MATLAB, since it provides
a nice integrated environment in which one can mix text, computations, and
visualizations. However, we also provide the .m text-based format which is more
versatile and works in both environments.

Exercise 7 You will need M&Ms or Skittles to generate data for the exercise. Dice
or coins could also be used with suitable adjustments to the instructions, but they
are not as tasty. After we walk through this tutorial together, you will be asked
to simulate and model more complicated population dynamics on your own. We
recommend completing this Lab 1 in groups of 3–4 students, and having another
group of 3–4 similarly minded friends with whom to exchange data.

First, we need to generate some data that represent a declining population or
decaying substance. This exercise will be presented as a tutorial. You do not need
to complete all iterations, but you should try at least a few tosses to make sure you
understand the idea sufficiently well so you can later model the process. Complete
the following steps:

1. Start with 40 pieces. Record that number as iteration 0 (n = 0).
2. One group member, pick a color of candy at random and keep it secret. Always

pick one out of all the colors of candy you had initially, even if no more candies
of that color remain.

3. Another group member, shake and throw the pieces onto the table (or onto a paper
plate, paper bowl, etc.).
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Fig. 24 A graph of the
number of remaining M&Ms
vs consecutive trial (iteration)
number for one possible
implementation of the
outlined process

4. Reveal the color chosen in step 2. Remove all candies of that color that have an
“M” (or “S”) facing up.

5. Record the remaining number of pieces and the iteration number (number of
tosses completed so far).

6. If there are no candies remaining, or if you have completed 40 iterations, stop.
Otherwise, repeat steps 2 through 5.

Example data for this process is reported as a table in the lab file, generated using
M&Ms with five different colors. We present it graphically in Fig. 24. We find that it
is always useful to have some visual representation of the process that we are trying
to model.

Now let us try to model this process (Step 1 in Sect. 1.1), in this case as a
difference equation. We use an approach that permeates most of the difference and
differential equation-based modeling efforts: continuity and conservation. Basically,
we assume that our functions do not jump around willy-nilly (are continuous; later
we will assume that they are differentiable), and that the quantity that we model
does not appear or disappear out of thin air (are conserved), so if we track all the
places to which it goes, we can predict the next state of the system. How is that
applied to our process of removing M&Ms? Well, we will need some variables first.
Let us call the iteration number t (useful for later to indicate time), and indicate
the number of remaining M&Ms at iteration t as the function R(t). Note that t is
an integer here (t = 0, 1, 2, . . .), so formally R(t) is a sequence, usually written in
textbooks as Rt . But our notation is also clear, and more useful when we transition
to derivatives. Now, assuming we know the value of R(t) (“the current R”) and the
process by which Rs are obtained, can we say anything useful about R(t+1) (which
we read as “the next R”)? This is where the idea of conservation comes into place.
We strongly suspect that

R(t + 1) = R(t) + “stuff added” - “stuff removed” (17)
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In this particular case, there is no “stuff added,” so we can set it to zero. But we
may have to make some assumptions in other cases, as indicated in Lab 1. “Stuff
removed” looks complicated here, with all the random things that we are doing. To
simplify, we will ignore the randomness for now (we have other tools to deal with
it at a later modeling iteration, in other parts of math—probability), and ask: on the
average, how many M&Ms do we remove each time? We realize that we always
perform the same process, but in step 4 we will remove more candy if we have
more at hand, and less candy if we have less at hand. So we make an educated, and
mathematically simple, guess: that we remove a fraction of the available candy; that
is, “stuff removed” = αR(t), 0 < α < 1 (as part of Step 2 in Sect. 1.1). In Lab 1 we
assume that α = 0.1 (try to figure out why), but it can be a parameter determined
later by observations. With that in mind, our “governing equation” for R becomes

R(t + 1) = R(t) − 0.1R(t); R(0) = 40,

where R(0) represents the initial state of R which is 40 pieces of candy, as per
instruction 1.

This equation can be solved to get the explicit expression R(t) = R(0) ∗ 0.9t

(check this on your own, and note further development from Step 2 in Sect. 1.1),
but that is not so important, and we cannot get such expressions very often. In
Lab 1, we show you how to use the computer to simulate such a system. While
writing solutions as expressions is possible for relatively simple systems, the process
quickly breaks for more complex system. But the simulations in MATLAB, Octave
or other systems are about the same and can produce good results for even complex
systems. This simulation-based approach, called “computational thinking,” has
become more popular due to its flexibility and improvement of technology over
the years. First, run a simulation and compare your results to your observations, as
suggested in Steps 2 and 3 in Sect. 1.1. Then continue with Lab 1 to try a similar
exercise on your own. You will be asked to derive a model and try to both simulate
it and analyze it.

In the previous exercise, the data we generated followed a fairly simple pattern:
the population/substance represented by the candies always declined/decayed. Now
we will complicate the pattern by adding immigrants (or injecting new substance)
on each iteration. Continue with the challenge project in Lab 2 on your own, using
the techniques that you learned in the previous exercise. See if the results are
satisfactory (i.e., represent the observations well), or consider ways to modify your
model, completing Step 4 in Sect. 1.1.

Research Project 3 Population Modeling with Skittles
The material in this lab was adapted from exercises available at www.simiode.
org, after Brian Winkel, Director SIMIODE, Cornwall NY USA.

(continued)
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Problem Statement
In the previous exercise, the data we generated followed a fairly sim-
ple pattern: the population/substance represented by the candies always
declined/decayed. Now we will complicate the pattern by adding immigrants
(or injecting new substance) on each iteration. Remember to reference the
exercise material for help with Matlab code and model formulation.

Data Generation
With your group members, pick a number of starting skittles, R0, between 10
and 20, and a number of immigrants, MI, between 6 and 16. Record these
values, but do not share your immigrant number with other groups. Then read
the following steps, but do not start the experiment yet.

(1) Place R0 candies in one cup (designated the Active cup), and place the
remaining candies in a second cup (the Reserve cup).

(2) Shake the Active cup and toss the candies onto the table (or paper plate,
bowl, etc.). Remove any candies that do not have an “S” or “M” facing
up, and place them in the Reserve cup.

(3) Add MI candies from the Reserve cup to the table.
(4) Count and record the number of candies on the table, along with the

iteration number (number of tosses completed so far).
(5) Place all of the candies on the table back into the Active cup.
(6) If you have completed 15 iterations, stop. Otherwise, repeat steps 2

through 5.

Note: you can perform more iterations if desired, but 15 is typically
sufficient to see a pattern.

Make a Prediction
Before starting the data generation process, answer the following questions:

(1) Describe what you expect the outcome to be. How will the number of
remaining candies change as the iterations are carried out?

(2) State your assumptions about the physical activity. Try to break your
assumptions down into simple statements: i.e., if you find yourself using
“and” a lot, you are probably stating multiple assumptions as one item.
Which of these assumptions (if any) influenced your prediction in (1)?

(3) Now you may proceed with data generation.
(4) Compare your prediction in (1) with what actually happened.

(continued)
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(5) Did any of your assumptions in (2) appear to be proved correct/incorrect?
If so, how did they play a role in the experiment?

Report Your Data

(6) Input your data into Matlab (see Table 1 from the tutorial).
(7) Plot your data (see Plot 1 from the tutorial).

Model Development

(8) Describe, in words, what happens to the number of candies remaining
after each iteration of the experiment.

(9) Propose a model by translating your description in (8) into a recursive
equation.

(10) Justify the reasonableness of your model. Why is each term in the model
included?

(11) If your model contains any fixed numbers, try to replace them with
model parameters and explain their interpretation. For example, in the
tutorial we replaced the value 0.1 with the parameter α to represent the
average proportion of candies removed on each toss.

Testing the Model

(12) Generate some data using your model, and plot the model output
alongside your data (see Plot 2 from the tutorial). If the model does not
appear to match the data well, try adjusting the values of some of your
model parameters.

(13) Comment on the success of your model. Does it do a good job of
describing your data? Why or why not?

(14) What is the long-term behavior of your model? Does it settle to some
fixed value? Does this match the behavior of your data?

Swap Your Data

(15) Exchange your data with another group. Then, use your model to try to
estimate the other group’s immigration number, MI. Hint: you will likely
need to adjust the value(s) of your model parameter(s).
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5.2 Population GrowthModels in Continuous Time

While difference equations are interesting and powerful models for certain natural
processes, as outlined in Sect. 4, here we mostly use them to transition to modeling
with differential equations. Let us start with Step 2 in Sect. 1.1 again. Previously we
interpreted R(t +1) as “the next time we measure R,” but we were unclear as to how
exactly we measure time, and what exactly is “next.” Statements about derivatives
try to clarify a bit better what “the next time” means. So, we will assume that time is
continuous, represented by some real numbers, possibly with some units attached to
it (e.g., seconds). We further assume that “next time” is some predefined small time
later than our current time, denoted by δt . Note that in this part of math, δ is usually
interpreted/pronounced as “small change of.” With this increased precision, we can
now model processes like Eq. (17) for populations that do not increase or decrease
at specific times, by tracking subsequent states that are closer and closer in time to
the current state:

R(t + δt) = R(t) + “stuff added” - “stuff removed” during time period δt (18)

We tend to read this expression as the system state R a little later (t plus ”a little
bit”) equals the system state R now, plus “stuff added” minus “stuff removed”
during the indicated time period.

Let us switch our modeling context now from candy to biological population
growth models, like the ones in Sect. 4, and reinterpret R to mean “the size of the
population of interest.” That will allows us to make some hypotheses about “stuff
added” and “stuff removed” as part of Step 2 in Sect. 1.1 in the context of biological
populations. It is usually easier to reason about “stuff removed”: there is some death
process, and in the simplest form we can hypothesize that the amount of death is
proportional to the population size. In that case, “stuff removed” = d ∗R(t)∗ δt . We
also include the assumption typical in this case that death is proportional to time: the
longer the interval δt over which we observe the death process, the more individuals
will die. Initially we can make similar assumptions about the birth process, or “stuff
added.” It sounds reasonable to assume that a fraction f of the population would be
able to give birth in a small period, and that each birth produces a litter size of l, to
obtain “stuff added” = b ∗ R(t) ∗ δt, b = f ∗ l. Combining the two statements, we
obtain

R(t + δt) = R(t) + (b − d) ∗ R(t) ∗ δt (19)

We continue with a few simple algebraic manipulations: subtract R on both sides
and divide by δt (now you see why we needed δt in the definition) to obtain a
“difference quotient” version of the same equation,

R(t + δt) − R(t)

δt
= (b − d) ∗ R(t) (20)
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As Calculus teaches us, at this stage we can take limδt→0 on both sides of the
equation to obtain one of the classic population growth models: the proportional or
Malthusian growth model [23],

dR

dt
= R′(t) = k ∗ R(t), (21)

where we have substituted k = (b−d). In many introductory books on mathematical
modeling this is also referred to as an exponential growth model, because its
solution can be written as R(t) = R0 ∗ ek∗(t−t0), a scaled exponent with rate
k. As this is not immediately obvious, we avoid that nomenclature here. But we
encourage you to continue this development of Step 2 in Sect. 1.1 and (a) verify that
the exponential function R(t) is actually a solution to this model, with an initial
condition R(t0) = R0, and (b) learn this mathematical synonym: Eq. (21) with
R(t0) = R0 and R(t) = R0 ∗ ek∗(t−t0) are equivalent mathematical statements.
We do not spend much time showing you how to “solve” such equations, because
there are relatively few equations with solutions that can be written as formulae.
However, this type of equation (linear autonomous) appears in many approximations
and analysis, so it is useful to keep the exponential solution in mind.

The exponential solution and our knowledge of how exponents, and biological
systems, behave also suggest that this is not a very good model. In particular,
the model predicts that, if we start with some known population of size R0, the
population would either explode with exponential growth (if k = b − d > 0, birth
rate higher than death rate) or decay exponentially to 0 (if k = b − d < 0, birth
rate lower than death rate). We know of extinct populations, so the latter outcome
could be feasible. But we definitely would have noticed if we were knee-deep in
bacteria, or fungi, or slime molds, or any other species that has been around for over
3.5 billion years and has had time to grow exponentially. As this is not the case,
we will have to modify the model so it better reflects our observations of reality.
This observation is a perfect example of the start of Step 4 in Sect. 1.1, at which we
evaluate the model and identify shortcomings, leading to alternative models.

Back to the modeling drawing board: improved single population models rely
on an observation made by biologists [24, 25]: unconstrained proportional growth
is often a good assumption for small populations, but once a population grows
large relative to its environment, its growth rate decreases, often approaching 0.
We account for this observation by modifying the per-capita growth rate k. In place
of a constant, as in Eq. (21), we will use a function of the population size, k(R). As
noted in the previous Sect. 4, the simplest function that often produces good results
in practice is a linear function, k(R) = k0 ∗ (1 − R

K
). This value of this function is

close to the constant k0 when the population size R is small, and close to 0 when
the population size is near the environment capacity K (“kapazität” in German,
where this model initially came from, hence the default notation). This leads to the
differential version of the logistic growth equation (12),
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R′(t) = k0 ∗
(

1 − R(t)

K

)
∗ R(t) (22)

This completes an iteration of Step 4 in Sect. 1.1, leaving us a new model to justify,
apply and analyze with Steps 2 and 3 in Sect. 1.1.

This differential equation also has a known formula for a solution, but it is not
very helpful for our goals, so we omit it here. Feel free to investigate it on your
own. Its dynamics are similar to the discrete logistic model shown in Fig. 18, but
in continuous time. More interesting are the local solutions. As we noted, when
the initial condition R0 is close to 0, then Eq. (22) is well approximated by the
proportional growth equation (20) and a corresponding exponential growth solution.
Correspondingly, if R0 is close to K , then we can express the population size relative
to a small change u(t) around K , R(t) = K − u(t), and obtain an approximate
equation for u(t):

u′(t) ≈ −k0 ∗ u(t) (23)

with a solution which is a decaying exponential with u(t) approaching 0 exponen-
tially, and hence R(t) approaching K exponentially, with a decay rate equal to the
negative of the growth rate near 0, k0. See exercises in Lab 3 for more experience
with that approach and note the iterative application of Steps 2 and 3 in Sect. 1.1
here.

5.2.1 A Basic Model of Infectious Disease Spread
We introduce the logistic growth model and approximations so we can use it as
a foundation to model the spread of infectious diseases, in particular, the Ebola
outbreak in West Africa in 2014 [26]. You can follow the development of the model
and preliminary analysis in the supplied Lab 3, with data provided by the World
Health Organization (WHO). After completing the lab, try replacing the Ebola data
with current data on infections or deaths due to COVID-19 (e.g., in [27, 28]).

How does the spread of Ebola relate to population growth? We provide some
empirical, data-based ideas in Lab 3, but we can also think about it here. What
population would be modeled? The population of disease-infected people. Then the
growth rate becomes intuitively clear: that is the infection rate of the disease. What
then is the “carrying capacity” of the environment in this case? What is even “the
environment” for the virus which causes the disease? A change in perspective lead
us to consider the virus as “the population” that we model, and the people as the
substrate/environment that the virus uses to grow. Once we make this conceptual
switch, a model for the viral “population” growing in the “environment” of people
makes sense and leads us to consider the logistic growth model in this situation as
well.

At this point, open Lab 3 in either MATLAB or Octave and follow the
instructions and cues there to attempt to model the observations provided by WHO.
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We have two challenges that point to the applicability of this model for real-world
situations, which follow the text of the project.

Research Project 4 Modeling the Spread of Infectious Diseases
After Lisa Driskell Computer Science, Mathematics, and Statistics Colorado
Mesa University Grand Junction CO 81501 USA ldriskel@coloradomesa.edu

Problem Statement
Ebola virus disease or EVD is a potentially fatal disease affecting humans.
The virus is thought to be carried by animals such as fruit bats and was
discovered in 1976 when the first human outbreaks occurred [1]. The World
Health Organization (WHO) recognizes March 2014 to be the start of the
worst Ebola outbreak in history. The outbreak was primarily contained to
West Africa, beginning in Guinea and spreading to Liberia and Sierra Leone
[1]. There was a recent Ebola outbreak in Congo [7]. The outbreak and swift
spread of Ebola in West Africa sparked fears worldwide for its potential
to reach other regions. In September 2014, the Center for Disease Control
(CDC) cited model predictions for the number of Ebola cases that reached as
high as 550,000 cases by January 20, 2015 in Liberia and Sierra Leone alone
[2]. When the model was corrected for under reporting, the number of cases
jumped to 1.4 million. At the time of the prediction, Liberia and Sierra Leone
combined for 2407 cases while the model fairly accurately estimated 2618
cases [2].

In a January 2016 news release, the World Health Organization officially
declared the Ebola outbreak over for all three countries [3] (although few
flare-ups resulted in 14 additional cases since that declaration). Because we
have the data for the actual epidemic, we now know that the predictions by
the CDC vastly overestimated the impact of the outbreak. We will investigate
our own models of the epidemic based on the data that we now have.

We will use data published by the WHO ([4, 5]) to determine parameters
for simple models that describe the outbreak. The data for the total number
of Ebola cases includes cases confirmed by test results as well as suspected
cases (those showing symptoms resistant to treatment) and probable cases
(suspected cases that have been seen by a clinician). Also note that the data
provided for the total number of cases is a running total of the number of cases
which includes those patients who may have since recovered or died from the
disease. The data for the number of deaths due to Ebola is also included to
provide the opportunity for additional modeling and comparisons.

(continued)
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Heads Up
Unlike the previous lab, the CHALLENGES for this project are mixed in
throughout. Make sure you do not miss any!

We continue with some guided exercises, and challenges, which will help us
approach this project.

Loading The Data
First, make sure to download the file eboladata.xlsx and save it in the same directory
as this Matlab script. Then the data can be loaded using the following code.
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t a b l e = r e a d t a b l e ( " e b o l a d a t a . x l s x " , . . .
’ P r e s e r v e V a r i a b l e N a m e s ’ , t r u e ) ;

d a t a = t a b l e 2 a r r a y ( t a b l e ( : , 1 : 2 ) ) ; % c o n v e r t t o . . .
a r r a y f o r e a s i e r p l o t t i n g

day = d a t a ( : , 1 ) ;
c a s e s = d a t a ( : , 2 ) ;

Now the day and cases variables store vectors representing the number of days
since reporting began and the total number of cases reported, respectively.

Data Visualization
Next, let us plot the data to get an idea of what the course of the epidemic looked
like.

f i g u r e ( ’ Name ’ , ’ P l o t 1 ’ ) ;
p l o t ( day , c a s e s , ’ k . ’ , ’ MarkerSize ’ , 10)
t i t l e ( ’ F u l l D a t a s e t ’ )
x l a b e l ( ’ Day ’ ) ;
y l a b e l ( ’ T o t a l Cases ’ ) ;

The data follows a clear pattern: cases increase slowly at first, then much more
quickly, and then increase very slowly again. This aligns with a typical trend in
epidemics: at first the disease spreads slowly from a handful of carriers, then spreads
rapidly as the number of carriers becomes large, and finally slows down as the
outbreak is controlled through vaccination, social distancing, and other public health
measures. However, it is not immediately clear how we should model this trend. So
instead of tackling the full dataset at once, we will try breaking the data (and our
model) into pieces.

Let us look at just the first 200 days of the outbreak. We can use the find( )
function to identify the relevant entries in the day variable

day200 = f i n d ( day < = 200) ;

The new variable day200 can now be used as a shortcut to select the relevant
datapoints from the day and cases vectors.

Challenge Problem 2

(1) Plot the total number of cases for the first 200 days of the outbreak.
(2) Describe the trend in the data for this portion of the outbreak.
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Model Development
As with the previous lab, while we could try to directly model the outbreak in terms
of total cases over time, we can make our modeling task easier by instead focusing
on incremental changes. Look back at your plot from exercise (1): how quickly is
the number of cases changing when the number of cases is small? How quickly is
the number changing when the number of cases is large? You should see that the rate
of increase is smaller for fewer cases and greater for more cases. In other words, the
rate of change in the number of cases is proportional to the number of cases. We
can express this observation as a differential equation:

dN/dt = rN,N(0) = N0

where N represents the number of cases, r is a constant that determines the
magnitude of the relationship and N0 is the population size at the initial time (initial
condition). Notice the similarity between this model and the model we came up with
in the first part of the previous lab. In that case, we represented the decline of the
skittles with a recursive equation:

R(t + 1) = (1 − a)R(t)

where R(t) represents the number of skittles remaining after n tosses. Both of these
models make a similar statement: that some variable is changing in proportion to the
current value of that variable. However, in the skittles exercise, we were modeling
a discrete process: the number of skittles could only change on each toss, with no
concept of “fractional tosses.” For the Ebola outbreak, our data is continuous: the
true number of cases might change every day, or every hour, or every second (even
though the timing of the reports will be at discrete intervals).

Now, we would like our model in a more convenient format: in short, we want to
be able to ask “how many cases will there be on day t?” With a differential equation,
we cannot answer this question immediately: the equation only tells us about rates
of change. However, if we know (or at least be able to guess) the state of the equation
at some initial time, and the value of any parameters in the equation, we can obtain
a solution as an expression for the function N(t), or approximate the solution with
numerical simulations. In this case we will do both. In most cases we cannot write
an expression for that solution. That is why we use simulations, but validate them
when we can against known solutions.

Remember, n0 is the initial number of cases. The parameter r controls how
quickly the number of cases increases (or decreases). Let us try to estimate both
parameter values from the data.
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Challenge Problem 3

(3) Use the data to make an initial guess for the value of the parameter n0, then
enter it in the code below.

(4) Use the data to make an initial guess for the value of the parameter r, then enter
it in the code below.

Hint: solve the equation N(t) = N0 ∗ e−k∗t for r.

i n i t i a l _ N 0 = 1 ; % ( answer t o 3 goes h e r e )
i n i t i a l _ r = 1 ; % ( answer t o 4 goes h e r e )

After entering your answers, rerun the code for this section.

Testing the Model
Now that we have some parameter values to start from, we can plot the model against
our data. The following code will define the model as a function of the number of
days since the outbreak, t, and produce the desired plot.

(5) Run the code block below to plot the comparison. Then, enter new values for
the parameters n0 and r and rerun the code block to see the new comparison.
Try to find values of n0 and r that make the model and data match as closely as
possible.

N0 = i n i t i a l _ N 0 ; % u p d a t e d p a r a m e t e r v a l u e s . . .
go h e r e

r = i n i t i a l _ r ; % ( you may need t o a d j u s t . . .
one o r bo th o f t h e s e v a l u e s )

% d e f i n e t h e known s o l u t i o n f u n c t i o n
Nsol = @( t ) N0* exp ( r * t )

% a l t e r n a t i v e l y , s i m u l a t e t h e sys tem f o r some . . .
t ime p o i n t s

t s p a n = [0 2 0 0 ] ; % i n t e r v a l o f t ime t o use
[ t , Nsim ] = ode23 (@( t ,N) r *N, t s p a n , N0 ) ; % . . .

s i m u l a t e s t h e model , s t o r e d as v e c t o r s t and N
% n o t e how ode23 has t o be f o r m a t t e d t o work , . . .

and what k ind of o u t p u t s i t
% p r o d u c e s by c h e c k i n g t h e d o c u m e n t a t i o n . . . .

There a r e a l s o ode45 , ode23s and
% a few o t h e r s i m u l a t o r s wi th v a r i o u s p r o p e r t i e s

f i g u r e ( ’ Name ’ , ’ P l o t 2 ’ ) ;
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p l o t ( day ( day200 ) , c a s e s ( day200 ) , ’ k . ’ , . . .
’ MarkerSize ’ , 10) % t h e d a t a

ho ld on
f p l o t ( Nsol , t s p a n , ’ b - ’ ) % e x a c t s o l u t i o n
p l o t ( t , Nsim , ’ ro ’ ) % model s i m u l a t i o n
yl im ( [ 0 , max ( c a s e s ( day200 ) ) * 1 . 1 ] ) % r e s t r i c t . . .

t h e v e r t i c a l a x i s t o known d a t a r a n g e s
t i t l e ( ’ Model ing t h e E a r l y Outbreak ’ )
x l a b e l ( ’ Day ’ ) ;
y l a b e l ( ’ T o t a l Cases ’ ) ;
ho ld o f f

Assuming you found a suitable combination of parameter values, you should
see that the model does indeed track this portion of the data fairly well. However,
so far we have only compared the model to the first 200 days. What about the
rest of the data? The following code defines some new variables for selecting the
first 300 days instead of the first 200 and regenerates the model on this extended
set of points.

day300 = f i n d ( day < = 300) ;
t s p a n = day ( day300 ) ;
[ t , N] = ode23 (@( t ,N) r *N, t s p a n , N0 ) ;

(6) Generate a new plot that compares the model to the first 300 days of data. You
can use the plotting code from exercise (5) as a template if needed. You may
also change the number of days shown if desired (you could try stopping at 250
days or 400 days, for example).

(7) You should see that the model does not work very well beyond 200 days.
Describe any differences you see. What happens in the data as t becomes larger?
What happens in the model as t becomes larger?

Model Development
Clearly we need to make some adjustments if we want our model to describe the
full course of the outbreak. Let us look at the full dataset again to remind ourselves
what the trend looks like.

f i g u r e ( ’ Name ’ , ’ P l o t 3 ’ ) ;
p l o t ( day , c a s e s , ’ k . ’ , ’ MarkerSize ’ , 10)
t i t l e ( ’ F u l l D a t a s e t ’ )
x l a b e l ( ’ Day ’ ) ;
y l a b e l ( ’ T o t a l Cases ’ ) ;
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The key difference appears to be that, while the number of cases in our model
continues to accelerate as the number of days increases, the number of cases in the
data begins to decelerate somewhere around 250 days and eventually stops changing
much at all. So, we need to modify our model in a way that causes the rate of change
in the number of cases to become small as the number of cases approaches some
upper bound. Let us state this observation in a new differential equation:

dN/dt = rN ∗ f (N,K)

where f(N, K) represents some function of the number of cases and the upper bound
that the data approaches—often this latter parameter is referred to as the carrying
capacity. But what should the function f(N, K) look like? We would like f(N, K) to
be close to 1 when the number of cases is small—that way, the value of r N will
be close to what it was for our previous model, which worked pretty well when the
number of cases was small. On the other hand, we want f(N, K) to be close to zero
if the number of cases is getting close to the upper bound, K. That way, the rate of
change will approach 0 as the number of cases increases, similar to our data. One
form of f(N, K) that satisfies these properties is:

f (N,K) = 1 − N/K

making our differential equation:

dN/dt = rN(1 − N/K)

Before we go on, let us convince ourselves that this formula does in fact satisfy the
properties we just mentioned.

Challenge Problem 4

(8) What is the value of r N (1 - N / K) if N is small, say N = 0 ?
(9) What is the value of r N (1 - N / K) if N is very close to K, say N = K ?

(10) (Optional) Can you think of any other version of f(N, K) that might work? Try
some out!

Testing the Model
Now that we are satisfied with the reasonableness of our new model, let us simulate
it. This model also has a known expression for a solution, but we will proceed
with simulation-only approach in order to prepare you for more complex cases. As
before, we need to assign some initial guesses for our model’s parameter values. To
prevent overwriting the variables we used before, we can name our new parameters
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n02, r2, etc. Fortunately, since our new model is very similar to the old model for
certain portions of the data, the values we already determined for n0 and r should
be decent guesses for n02 and r2.

i n i t i a l _ N 0 2 = N0 ;
i n i t i a l _ r 2 = r ;

This just leaves the parameter K.

Challenges
(11) Use the data to make an initial guess for the value of the parameter K, then

enter it in the code below. Recall that K represents the upper bound for the
number of cases.

i n i t i a l _ K = 10000; % ( answer t o 11 goes . . .
h e r e )

After entering your answer, rerun the code for this section.

Now we can compare the model to the data as before.
(12) Run the code block below to plot the comparison. Then, enter new values

for the parameters n02, r2, and K, and rerun the code block to see the new
comparison. Try to find a combination of parameter values that makes the
model and data match as closely as possible.

N02 = i n i t i a l _ N 0 2 ; % Updated p a r a m e t e r . . .
v a l u e s go h e r e .

r2 = i n i t i a l _ r 2 ; % You may need t o change . . .
one

K = i n i t i a l _ K ; % or a l l t h r e e o f t h e s e . . .
v a l u e s .

t s p a n 2 = [ day ( 1 ) day ( end ) ] ;
[ t2 , N2 ] = ode23 (@( t2 , N2 ) r2 *N2*(1 - N2 /K) , . . .

t span2 , N02 ) ;

f i g u r e ( ’ Name ’ , ’ P l o t 4 ’ )
p l o t ( day , c a s e s , ’ k . ’ , ’ MarkerSize ’ , 10)
ho ld on
p l o t ( t2 , N2 , ’ ro ’ )
y l im ( [ 0 max ( c a s e s ) * 1 . 1 ] ) % a g a i n r e s t r i c t . . .

v e r t i c a l a x i s t o r a n g e of o b s e r v e d c a s e s



222 A. Dimitrov et al.

t i t l e ( ’ Model ing t h e F u l l Outbreak ’ )
x l a b e l ( ’ Day ’ ) ;
y l a b e l ( ’ T o t a l Cases ’ ) ;
ho ld o f f

(13) Would you say the model does a good job of describing the Ebola outbreak?
Why or why not?

(14) List one difference you notice between the data and the model.
(15) Propose an explanation for the difference you noted in (14), in terms of the

epidemic. You could also think of this in terms of what pieces the model might
be missing.

5.3 Discussion

Back to our project-based challenges. The first attempt was to use the approximate
proportional/exponential growth model based on early observations and try to
predict the course of the disease. When you compare to the actual course, you
will see that the model works well initially, but then drastically over-estimates the
infections. That leads us to search for an alternative, and the logistic model provides
a reasonable option. Once we have a reasonable model like the logistic growth
model, we can try to assess key features of the outbreak process by analyzing the
model itself. If you look at a result from Lab 3 that we show on Fig. 25, you will
notice 2 things: first, the model matches observations reasonably well initially, but
diverges significantly in later days. A logistic model cannot do much better than
that, since it has some symmetries which the real data does not, so we will need to
further revise the model to improve our prediction (Step 4 in Sect. 1.1).

Second, and perhaps more interesting, we see one prediction of the model that
is mirrored in the data: the functions describing the total infected population size
change their nature, from increasing initially, to decreasing in the later stages of
the infection. We can translate that observation in mathematical statements, as per
Step 2 in Sect. 1.1. In Calculus, such a transition from increasing to decreasing (or
vice versa) happens at inflection points. Since this is obviously an important point to
know for the epidemic, both the time at which it happens and the size of the infected
population at that time, let us try to analyze the equation in order to find the inflection
point. In principle, we can use the simulations in Lab 3, and you should try that, for
some more ”computational thinking.” But we can also use analytical results based
directly on the equation, without simulations or a known formula for a solution. One
thing to note: when we have an expression about the derivative of a function, as in
(22), we know a lot about the function itself. We know its first derivative, which
means we can take a derivative and compute its second derivative. Then one more
time, to obtain its third derivative, etc. So, basically, from the Eq. (22) we can find
out ALL derivatives of R and only do not know the function itself, values for the
population size R at specific times t!
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Fig. 25 A graph of the WHO Ebola outbreak data (black dots) and a logistic model fit to it (red
curve). We see that the model performs well initially, but has problems explaining the data later

Let us work out this analysis here. How can we find an inflection point of a
function? Well, if the function transitions from increasing to decreasing, that means
there is a minimum of the derivative of the function, so that the derivative is positive
to the left of it (increasing) and negative to the right (decreasing). This means that
an the inflection point the derivative of the derivative will be zero, which means that
the second derivative of the solution is zero at an inflection point. Now that we have
a feature to look for, we take the formula for the solution, find the second derivative,
... Oh, wait, we do not have the formula of the solution! However, we do have a
formula for its derivative that was our model expressed as a differential equation
(22)

R′(t) = k0 ∗
(

1 − R(t)

K

)
∗ R(t)

This is actually nice, since we do not have to compute the first derivative, we already
know it. So if we take one more derivative of this equation, we will get

R′′(t) = d

dt

(
k0 ∗

(
1 − R(t)

K

)
∗ R(t)

)

Hmm, we have the second derivative, but the right hand side seems a bit messy.
Do not we need R(t) after all? Let us persist, and evaluate the derivatives while
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keeping the unknown function R(t) and its derivative R′(t) as we come across them.
Continuing with the product rule of the right hand side, we obtain

R′′(t) = k0 ∗
(

−R′(t)
K

∗ R(t) +
(

1 − R(t)

K

)
∗ R′(t)

)
= k0 ∗ R′(t)

(
1 − 2

R(t)

K

)

That does not look too enlightening, until we remember that we do have an expres-
sion for R′(t)—that is the original equation (22). We substitute this expression for
R′(t) on the right hand side to obtain

R′′(t) = k0 ∗ k0 ∗
(

1 − R(t)

K

)
∗ R(t) ∗

(
1 − 2

R(t)

K

)

That equation is almost ready for analysis. For what values of R(t) would R′′(t)
be zero? From the right hand side, we see that R(t) = 0,K, or K/2 are all
possible solutions. However, R(t) = 0 and R(t) = K represent “no infection”
and “everyone infected” states, respectively (known as fixed points), so we are
left with the conclusion that the inflection point occurs when R(t) = K/2, or
half of the infectable population is infected. This analysis does not produce the
time at which this inflection occurs: for that information, we would still need a
formula or simulation. Try to find the time of inflection with a simulation in Lab
3. However, this approach does provide two useful predictions. First, it predicts a
level of infection beyond which things would get better. Second, it predicts that,
according to this model, it will take the same amount of time for things to get better
as it took to get to that situation. Those are powerful and actionable predictions, and
similar models have been used by WHO to respond to the Ebola, COVID, and other,
epidemics.

6 Conclusions

In this chapter we presented a progression of biological situations, coupled by
associated mathematical representations that reflect our understanding of these real-
world situations. This is the gist of mathematical modeling. It is a process of
discovery, and it is an iterative process, as summarized by Steps 1 through 4 in
Sect. 1.1. The most important of them is probably Step 4 in Sect. 1.1, which asserts
that anything we write down is not “the truth,” but just our latest, most improved
understanding of the real-world situation that we are translating into a mathematical
representation. We are using the term ”translate” quite literally here, since we think
of mathematics as a language (or rather, a set of related languages), but a language
which can provide much higher precision of expression compared to other human
languages.

We as professional applied mathematicians are directly involved with using
very similar models to approach and solve real-world problems. As noted previ-
ously, Prof. Guidoboni is currently directly involved in helping monitor hundreds
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of elderly individuals in over 10 long-care facilities. The predator-prey models
discussed in Sect. 4 are not limited to model only behavior of predators and prey.
They are also used in sociology and social psychology [20, 21]. Students of Dr.
Dimitrov’s used a version of the Ebola modeling project as a stepping stone to
identify and model problems from the current COVID pandemic and ultimately
analyze different approaches to hospital utilization to help states manage the influx
of COVID patients [29]. Should you chose to proceed on this path, soon you will
be able to tackle difficult societal problems and help people on your own, through
mathematical modeling.

We tried to demonstrate the breadth of situations that can be understood using
mathematical models, while remaining within the domain of biological systems.
Even that shows the breadth of problems that can be addressed mathematically, and
the scope of results and conclusions that can be obtained in that way. You will hear
this statement many times in your journey building and evaluating mathematical
models, but it bears repeating: just start, summarize your thought in mathematical
notation, and then let the math help you on the way.
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Population Dynamics of Infectious Diseases

Glenn Ledder and Michelle Homp

Abstract

We develop two models for the spread of an epidemic: an individual-based model
and a continuous-time SEIR model. The presentation is accessible to students
who have a strong background in algebra and functions, with or without calculus.
Projects focus primarily on extending the models to novel situations, including
more complicated disease histories and incorporation of mitigating strategies
such as isolation and vaccination.

Suggested Prerequisites Mathematical epidemiology requires strong algebra skills and a good
understanding of the function concept. For maximum flexibility, each exercise, challenge problem,
and research project is marked to indicate how much background is required in both calculus
and computer programming. In both cases, “level 0” means there is no requirement. Level 1
calculus means that students need to understand the derivative concept, which is presented in
Sect. 3, while level 2 calculus indicates a requirement for some computation of derivatives and
or anti-derivatives. Level 1 programming means that students need to be able to run the programs
presented in the appendix using either MATLAB or Octave and also make minimal modifications to
commands that assign values to variables. Level 2 programming means that students will need to
make some modifications to the program codes in order to adapt the program to a novel scenario.

1 Mathematical Models in Epidemiology

The reader may be familiar with the basic model of exponential growth:
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P(t) = P0e
kt , (1)

where P(t) is the population of some group at time t , P(0) = P0 is the initial
population, and k > 0 is a parameter called the rate constant or proportionality
constant.1 From this example, we can tease out some details about models and
modeling.

1. If you take P0 = 1 and k = 1, the population at time 1 is P = e ≈ 2.718, which
is not an integer.

2. If you keep using larger and larger values of t , there is no limit to how large P

can be.
3. The model can be rewritten in a different form by taking the logarithm of both

sides to get ln P = ln P0 + kt . This means that the graph of ln P vs t is a straight
line and suggests a way to identify k from data.

Each of these statements illustrates a typical characteristic of mathematical
models. First, models often give results that include all possible numbers in a range
on a number line even though the quantities they represent can only take discrete
values. While a value of 1079.6 is not technically correct for an integer population,
there is no problem interpreting it as approximately 1080. Second, models can
sometimes have qualitative properties that are not in alignment with the context they
are intended to represent. Third, models can sometimes be rearranged or analyzed in
ways that allow for convenient comparison with data or suggest theoretical insights.

While most of us lack the capability to collect data for growth of bacteria or other
rapidly growing organisms, those who have done so will tell us that the results are
never exactly the same two times in a row. The real biological world has unavoidable
randomness that makes results of individual experiments unpredictable.

Although the exponential growth model is not “correct” or “true,” it still has
value. Data from population growth experiments can adhere closely to the prediction
of exponential growth until resource limits start to matter. The extreme example
of this is the amount of data that can be put on a state-of-the-art computer chip, a
quantity that has been growing exponentially since the 1960s and is only just starting
to show signs of slowing [17].

Our epidemiological models are not going to be “true” either. They will be
based on assumptions that are oversimplifications. Nevertheless they will have value
because they can make general predictions about the course of an epidemic and
the impact of public health policies. For example, a model can be used to address
questions such as “Will extensive contact tracing significantly decrease the negative
impact of an epidemic?” Contact tracing requires significant infrastructure, so we
would like to have some idea of whether it will matter before we decide to do it.

1 You may be familiar with this model using different symbols for some of the quantities, such as
y = Aekt . The symbols represent the quantities, so the model is the same no matter what symbols
are used.
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Models may not give us exact answers to questions such as these, but they are the
best way we have to predict outcomes when we cannot do real experiments.2

Based on these considerations, we can make a tentative definition of the term
mathematical model:

Definition 1 A mathematical model is a collection of one or more variables
together with enough mathematical equations or rules to prescribe the values
of those variables. Models are based on some actual or hypothetical real-world
scenario and created in the hope that they will capture enough of the features of
that scenario to be useful for answering research questions.

The phrase “enough of the features” requires interpretation. We can ignore minor
deviations such as fractional populations or small percentage errors, but we should
be on the lookout for qualitative errors. As an example, the model most often used in
ecology to describe simple food web systems with one prey species and one predator
species is the Lotka–Volterra model (see the Wikipedia article [16], for example).
We can add an additional term that directly decreases the predator population
through hunting. However, the model is a system of interacting components.
Mathematical analysis shows that the increased predator death rate is accompanied
by an increase in prey population, which in turn causes an increase in the predator
birth rate. In the Lotka–Volterra model, this indirect increase fully compensates for
the additional deaths, leading to the faulty conclusion that increasing the predator
death rate does not actually reduce the predator population. Predator extinction from
hunting is widely observed in ecology; the correct conclusion to draw from the
model analysis is not that predators do not go extinct, but that the Lotka–Volterra
model is fundamentally flawed [10]. Nevertheless, most treatments of the Lotka–
Volterra model in books and other references fail to mention this critical flaw.3

Plan of the Chapter
Section 2 is devoted to an individual-based model, a model based on tracking
the characteristics of individuals over time, much as occurs in a computer game
incorporating characters with changing ability ratings and who maintain inventories
of personal items.

The remainder of the chapter is devoted to dynamical system models that use
mathematical formulas to update the total counts of people in different epidemio-
logical states, such as infectious and recovered. The background for these models is
presented Sect. 3. A broad classification scheme is presented in Sect. 4 and then the

2 A commonly quoted statement is that “All models are wrong, but some are useful.” This statement
points in the right direction, but the word “wrong” implies that the purpose of a model is to
represent reality. The purpose of a model is to help us obtain insights about reality, so models
can be “good” or “bad,” but not “right” or “wrong.”
3 While the exponential growth model also fails to predict long-term qualitative behavior, it is
useful in the short term. The Lotka–Volterra model is often qualitatively inaccurate in the short
term as well as the long term.
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standard SEIR example is developed in Sects. 5 and 6. Sections 7 and 8 discuss the
various ways to obtain results from the model.

Exercises appear where needed. There are a small number of challenge problems,
one that asks students to implement a model in a spreadsheet and several that ask
students with adequate calculus background to derive some of the important results
that appear in Sects. 6 and 7. Projects appear at the end of three sections: projects
using individual-based models are in Sect. 2, while projects using dynamical system
models are in Sects. 7 and 8.

All of the exercises, challenge problems, and projects are classified according to
the level of calculus background required and the level of programming challenge.
For both, level 0 means no requirements. In calculus, level 1 means that students
need the background provided in Sect. 3, while level 2 means that calculus
computation is required. In programming, level 1 means that students need to be
able to run MATLAB programs (provided in the appendix) in either MATLAB or
Octave [12] and make minor changes to a few lines of code, while level 2 means
that students have to make modest changes to the program code.

This chapter can be used in different ways, depending on the background of the
students and the amount of time available for background material. Instructors who
want to get to research with a minimal amount of preparation or whose students
have not had calculus can focus exclusively on Sect. 2, which has ample scope for
research projects. Instructors whose students have taken calculus may want to skip
Sect. 2 so as to focus on the more commonly used continuous dynamical system
models. Sections 7 and 8 provide complementary launch points for research, but
either can be done without the other. Figure 1 shows these relationships among the
sections, with one caveat: readers who wish to skip Sect. 7 should still read the short
introduction to that section before proceeding to Sect. 8.

1

2

3 4 5 6

7

8

Fig. 1 Relationships among the sections
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2 An Individual-Based Epidemic Model

Individual-based models,4 or IBMs, are a good starting point for modeling because
they are intuitive and can be implemented as an activity, thereby providing students
with valuable direct experience [7]. Observing the effect of randomness inherent
in IBMs helps students obtain a healthy skepticism that strengthens their ability to
contextualize the results of deterministic models.

2.1 Model Description and Physical Simulation

Definition 2 An individual-based model consists of a database of individuals,
each identified by one or more attributes that can change over time, and a set of
rules that update the attributes of each individual at each time step.

Individual-based models can be implemented as a physical activity with actual
people as the “individuals” in the model, a table-top simulation in which one
modeler manages all the “individuals,” or an automated simulation written with
software such as MATLAB or NetLogo. A description of a physical activity for our
disease model is available online [6]. See [5, 13] for more about individual-based
models.

For our IBM, we assume a fixed population of N individuals, each of whom has
a single attribute that indicates their current epidemiological status. There are four
possible states:

1. “Healthy” individuals have not yet been infected;
2. “Presymptomatic” individuals have been infected and can transmit the disease,

but do not show symptoms;
3. “Sick” individuals have been infected, can transmit the disease, and do show

symptoms;
4. “Recovered” individuals are no longer sick, cannot transmit the disease, and

cannot be reinfected.

We assume individuals move linearly through these states, although that assumption
could be modified as a variation of the original model. We will sometimes refer to
these states using the letters H , P , S, and R.5

The state attribute in the model can be identified in various ways. When enacting
the model as a physical activity, the participants carry a set of four colored status
cards—green for healthy, yellow for presymptomatic, red for sick, and blue for

4 The term agent-based model is also common.
5 These letters are chosen to help students build intuition before we introduce formal models. In
standard epidemiology models, the symbol S is used to represent susceptible individuals, but in the
current context, it makes more sense to use S for sick individuals.
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recovered—and place the appropriate card on the top of their stack. In a computer
implementation, the status can be a number: 0 for healthy, 1 for presymptomatic,
and so on. The rules that govern the changes in states have been carefully balanced;
they work best if there are at least 16 individuals in the population, with a starting
point of two presymptomatic individuals in a small initial population or 2% in a
large one, and the rest initially healthy.

Once the initial states have been assigned to the individuals, the simulation
consists of consecutive time steps, each divided into phases:

1. Individuals in the population are randomly assigned to pairs. This can be done
using a fully random approach, such as dealing out a deck of cards (each
representing a member of the population) in pairs, running a web-based app that
creates pairs from a list, or using a partially random “speed dating” structure that
is more convenient for physical enactments because it takes less time [6]. In a
fully automated implementation, only the healthy individuals need to be assigned
a partner.

2. Healthy individuals who are paired with a presymptomatic or sick individual
become infected with probability 5/6; in a physical enactment, this is easily done
by rolling a die and equating a die roll of one with avoiding the infection. Those
who do become infected advance from healthy to presymptomatic.

3. After all pairs have been checked for disease spread, any individuals who were
presymptomatic at the beginning of the time step become sick, while those who
were sick at the beginning of the time step become recovered.

4. The number of individuals in each status category is recorded for subsequent
analysis.

The simulation proceeds from one day to the next, each day starting with new
partner assignments and continuing with status updates. Eventually the simulation
ends when all remaining individuals are either healthy or recovered. Once there
are no presymptomatic or sick individuals remaining, there can be no further status
changes.

This simple individual-based model captures many of the features of real disease
spread. Individuals interact randomly and possible transmission encounters may or
may not result in actual transmission. Other features are not so realistic. In reality,
the amount of time spent in a presymptomatic or sick state can vary from one
person to another. Most diseases have an incubation period of noticeable duration,
necessitating a latent stage between the healthy and presymptomatic stages. In real
disease settings, individuals have large numbers of daily contacts, each with a low
probability of transmission. Our individual-based model obtains realistic results
with a simple mechanic by reversing this pattern, with only one daily contact and a
high probability of transmission.

The simplicity of this individual-based model also highlights the critical role
assumptions play in modeling a phenomenon. In this context, the need for and out-
comes of changing the model’s assumptions can easily be understood, demonstrat-
ing the importance of consulting with experts to ensure that a model incorporates
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critical features and exhibits necessary behaviors. (Some of these assumptions will
be considered in the exercises.)

2.2 Computer Simulation

While a physical simulation is a great way to build intuition, it is not a great way to
study general model behavior. Instead, it is helpful to write a computer simulation
for our individual-based model. We have provided two resources for this purpose.

Challenge Problem 1 provides detailed directions for creating a spreadsheet
implementation of the HPSR individual-based model. This can be used (with
modification) for the research projects in this section.

Spreadsheets have the advantage of familiarity and an intuitive structure. They
are not generally used for serious modeling work because of two significant
drawbacks: (1) the formulas that encode the model can only be viewed singly rather
than as a package, and (2) they lack some essential programming functionality, such
as the capacity to easily repeat computations with minor variations.

As an alternative to spreadsheet programming, we recommend that students use
computer programs written for the MATLAB programming environment. The MAT-
LAB environment has its own language, not much different from the better-known
Visual Basic language, along with a large number of powerful, built-in functions that
do complicated computations. Since few students who take mathematics courses at
any level have any programming background, we provide MATLAB programs we
wrote specifically to be accessible to beginners.

The Appendix contains a suite of three MATLAB programs that automate the
model computations and obtain results from the output data. We present here a
brief description of these programs. Most academic institutions have agreements
that allow students to obtain MATLAB at little or no cost. For those that do not, there
is free online software called Octave that is able to run most MATLAB programs
[12].6 We assume that students have acquired basic operational knowledge of how
to load programs into the edit windows and how to run the programs from those
windows.

MATLAB programs are of two types: scripts and functions. Scripts are self-
contained lists of instructions written in syntax that can be understood by an
interpreter that translates the instructions into computer code. These can be run from
the MATLAB editor or an Octave window by clicking the Run menu item.7

Functions are special programs that automate some of the more complicated
program tasks. These have a specific name along with a list of arguments and
output variables. Part of the strength of MATLAB as an environment for scientific

6 As of this writing, the programs all run successfully in Octave.
7 In MATLAB, any changes entered in a script will be saved before the script is run. In Octave,
you must manually save changes before rerunning a script.
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computation is its extensive library of built-in functions, while another part of its
strength is its facility for user-defined functions.

Functions cannot be run as separate programs, but are instead called from a
command window or run from a script, just as one might use y=cos(pi). The
program suite for the IBM is based on a function [H,P,S,R]=hpsr(b,N,P0,S0),8

which automates the entire individual-based model computation and returns the
time series of class counts. Function hpsr requires input values for the transmission
probability (b), the total population (N), and the initial numbers of presymptomatic
(P0) and sick (S0). It needs to be modified for Programming Level 2 projects to
match changes in the model rules, but does not need to be changed for Level 1
projects.

The IBM program suite includes two scripts that make use of function hpsr.

• HPSR_sim.m uses hpsr to run one simulation and produce a plot of the
results. The user needs to modify the SCENARIO DATA section for each run.
The function call in the COMPUTATION section and some of the OUTPUT
instructions will need to be changed for Level 2 projects.

• HPSR_avg.m collects data from multiple simulations and computes the mean
and standard deviation of two key results: the maximum infected fraction and the
final healthy fraction. The user needs to modify the SCENARIO DATA section
for each run. The function call in the COMPUTATION section will need to be
changed for Level 2 projects.

2.3 Section 2 Exercises

Exercise 1 (Calculus Level 0, Programming Level 0) Run the individual-based
model three times using either a physical simulation, with people playing the roles
of the individuals, or a table-top simulation. In each case, plot graphs of the daily
class counts. Also record the number and identities of individuals who remained
healthy throughout the simulation. Are those who do not get sick different in any
meaningful way from those who do? In a real situation where an illness is spreading
among a population, might there be a difference between those individuals who do
not get sick and those who do? Discuss.

Exercise 2 (Calculus Level 0, Programming Level 0) The individual-based
model uses four different states, each marked by a different color in the physical
simulation, to describe the illness progression.

(a) Using the rules as described, explain which, if any, of the color distinctions are
needed and which are not.

8 By convention, we choose to give functions names that start with a lower-case letter, while script
names start with a capital letter.
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(b) Now suppose the rules for the physical simulation are changed so that half of
the individuals who are sick choose to isolate. Explain which, if any, of the color
distinctions are needed and which are not.

(c) How might the rules change if some of the individuals are vaccinated? How
might this impact the meaning or number of the colored status cards?

(d) How might the rules change if individuals could contract the same illness more
than once? How might this impact the meaning or number of the colored status
cards?

Exercise 3 (Calculus Level 0, Programming Level 0) The individual-based
model described in this unit assumes the duration of each phase of the illness
is a single day. In reality, most illnesses do not progress this quickly. Visit the
website [3] for information about the H1N1 virus, often referred to as “swine
flu.” Then develop a set of status cards and rules for an individual-based model of
H1N1. Assume that the model would incorporate isolation of sick people. Would
you still continue to use the same four states or would you need more? How many
status cards would you use for each state? How many would you need for the full
simulation? Would you need to incorporate additional die rolls into the model?
Fully justify any assumptions made about the states of the illness and the duration
of each state.

Exercise 4 (Calculus Level 0, Programming Level 1) Run the individual-based
model program HPSR_onesim three times using parameter values that match your
physical simulation in Exercise 1. Compare the results. Do they give convincing
evidence that the computer simulation and physical simulation actually implement
the same model?

Exercise 5 (Calculus Level 0, Programming Level 1) Run the individual-based
model program HPSR_avg using parameter values that match your physical simula-
tion in Exercise 1. Compare the results. Is this a good way to check that the computer
simulation and physical simulation are actually implementing the same model?

2.4 Section 2 Challenge Problem

Challenge Problem 1 (Calculus Level 0, Programming Level 0) Create a
spreadsheet implementation of a slightly modified version of the individual-based
model described in the section. Here are some recommended guidelines:

1. Use row 1 to list the four parameters by symbol: the transmission probability b,
the population size N , and the initial counts of presymptomatic P0 and sick S0.
The values of these parameters go in row 2, beneath the parameter names. For a
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first run, we recommend a transmission probability of 5/6 or 1 and a population
of 1000 that includes 20 presymptomatic and 0 sick.

2. Use row 4 to enter headings for the data columns. Columns for the day and the
four population classes (H , P , S, R) are a minimal requirement.

3. We recommend having three additional columns for the total population, the
infectious population I = P + S, and the number of new infections.

(a) The values in the total population column should be calculated using a
formula that sums the four classes. This serves as a check on the spreadsheet
formulas.

(b) The values in the infectious column are just the sums of the P and S columns.
The main benefit of this column is that a graph of the daily infectious count
is very useful.

(c) The new infections column is helpful because it is good to do calculations
in several small formulas rather than one messy one. Without identifying
individual pairings, we can estimate the fraction of healthy people whose
“partner” in the simulation is infectious as the fraction of the total population
that is infectious. Then we can assume that a fraction b of these healthy
people with infectious partners become presymptomatic in the next time step.

4. Each of the columns needs to be given formulas to determine the values using
the data in row 2. We recommend running the simulation for 30 days. The initial
counts for classes H, P, S, and R can be calculated from the values entered in the
cells for N , P0, and S0. Subsequent values in these columns can be calculated
from the previous values along with the number of new infections in the last
column.

5. Spreadsheets do computer calculations, which means that they produce numbers
with many decimal digits. This makes it very hard to read the results. We
recommend that you format all of the cells in the data table as “Number” with 0
decimal digits.

6. Raw numbers are hard to interpret. Your spreadsheet will be more useful if you
make a graph. Use the scatter plot with only points because the data is discrete.
Plot three data series: H, I, and R. Make sure your graph has axis labels and a
legend. You can use the default color and style scheme; alternatively, you can
match the color scheme of the card system by using dark green for Healthy, red
for Infectious, and blue for Recovered. The graph will be easier to read if you use
different styles for the points in each data series. One possibility is shown in the
MATLAB program HPSR_onesim.m.

When you are finished, try using parameter values that match your physical
simulation so that you can make sure the results are consistent. Alternatively, use
a comparison with HPSR_avg with the recommended population size of 1000.
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2.5 Section 2 Projects

In each of these projects, it is best to start by using the physical simulation to make
sure that your model changes make sense. Then use the spreadsheet from Challenge
Problem 1 and/or the MATLAB program suite to collect data.

Research Project 1 (Calculus Level 0, Programming Level 0 or 1) Study
the effect of the transmission probability b on the results of the disease in the
individual-based model. Hint: You can collect useful data for any value of b

using the spreadsheet implementation of Challenge Problem 1 or by running
HPSR_avg.

Research Project 2 (Calculus Level 0, Programming Level 0 or 2) Sup-
pose patients with the disease are sick for two days instead of one. Modify the
model to account for that possibility. Try keeping the transmission probability
the same and also adjusting it downward by some amount. Determine what
transmission probability yields results most like those of the original model
with the larger transmission probability and one day of sick time. Hint: You
can break the sick class up into two subgroups.

Research Project 3 (Calculus Level 0, Programming Level 0 or 2) As an
extension of Research Project 2, suppose a fraction p of patients with the
disease are sick for two days, while the remainder are sick for just one day.
Design experiments with this model and describe and explain the results.

Research Project 4 (Calculus Level 0, Programming Level 0 or 2) Sup-
pose individuals have two contacts per day instead of one. Modify the model
and compare the results with the original model.
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Research Project 5 (Calculus Level 0, Programming Level 0 or 2) Add
isolation of the sick to the original model or one of the variations described in
other projects. Note that you will need a parameter to represent the probability
that an individual isolates when sick. The effect of isolation will depend on
the value of this parameter.

3 Continuous-Time Dynamical Systems

While the individual-based model of Sect. 2 is discrete, most epidemiology models
take the form of continuous-time dynamical systems. These systems consist of
differential equations, which means that they are based on calculus. However,
some of the background needed to understand these systems is not part of the
standard calculus curriculum; conversely, very little of what does appear in a
calculus curriculum is actually needed for our purposes. The goal of this section is to
provide a self-contained introduction to dynamical systems that can be understood
by students with a strong background in algebra and pre-calculus.

3.1 The Derivative

Standard first courses in calculus focus on the derivative. The text material includes
the motivation for the derivative, its definition, rules for computing derivatives, and
a variety of applications of the derivative. While all of this material is important in
calculus, all we really need for dynamical systems is the geometric concept of the
derivative. Here is a concise summary.9

Figure 2 illustrates a pair of functions, x(t) and y(t), that might represent the
population size of a growing community. The function x shows linear growth, as
would happen when individuals join the community at a fixed rate from the outside.
That rate is the change in x divided by the change in t , which is the slope of the
line in the graph. We can calculate the slope using algebra by picking two points,
calculating the differences in their x and t values, and taking the ratio; here,

slope = Δx

Δt
= 0.8 − 0.6

1.5 − 1
= 0.4. (2)

The function y shows what is called logistic growth, which means that the growth
is limited by the availability of resources. In this instance, the population grows by
virtue of having more births than deaths, with no migration. It grows slowly at first

9 See [9] for a more complete presentation.
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Fig. 2 A linear function x(t) and a nonlinear function y(t) (the thick curves), showing the slope
and instantaneous slope (the thin lines) of the two functions at various values of t

because there are few potential parents, then increases more rapidly, and then levels
off as the availability of resources or space becomes critical.

It still makes sense to talk about the slope of the graph of y, which we can think
of as the slope of the line tangent to the graph at a particular point. A tangent line
has only one known point, so we cannot calculate its slope with standard algebra;
techniques for determining the slope of these tangent lines are developed in calculus.
For our purposes, we can assign a symbol to represent the slope at a point t and focus
on its interpretation. The symbol we use is dy/dt , which is similar to the notation
Δy/Δt for the slope of a line. The key difference is that we have to interpret dy/dt

as a single symbol, not a quotient of two different things.

Definition 3 For a function y(t) that has a smooth graph, the derivative dy/dt at
any given point is the slope of the tangent line at that point, which represents the
instantaneous rate of change of the quantity y.

3.2 Dynamical Systems

In a calculus text, the derivative of a function y(t) is nearly always given as a
function of the independent variable t . In mathematical modeling, we often have
systems in which the rates of change are dependent only on the state of the system,
which means that the derivative is given as a function of the dependent variables.

Definition 4 An autonomous dynamical system is a system of quantities whose
rates of change in time are given as functions of the quantities themselves.

As an example, the dynamical system model
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dy

dt
= f (y) = 4y(1 − y), y(0) = y0, 0 < y0 < 1, (3)

where y is a function of t , represents the spread of misinformation (which can be
considered as similar to the spread of a disease). Everyone is either “susceptible” to
the misinformation or “infectious” with it, and there is no “recovery.” The dependent
variable y is the fraction of the population that is infectious. This fraction increases
for any current fraction y between 0 and 1 according to the function f (y) = 4y(1−
y).

How should we try to understand the dynamical system (3)? The simplest way is
to use the information shown by a graph of the known function f (y) = 4y(1 − y)

for the range of values from y = 0 to y = 1, not to find a formula for the function
y(t), but to check slopes on a sketch of the graph of y vs t . If we know the current
value of y at any point in time, then we can use the graph of f to identify dy/dt ,
which is the slope of the graph of y(t) at that particular time.

Figure 3 shows two graphs, one of the function f (y) and one of the function
y(t). The first graph gives us information we can use to verify the second graph.
Suppose the value of y is initially 0.01. From the left panel of Fig. 3, we can see that
the value of f , and hence of dy/dt , is small and positive. So y is increasing, but
with a fairly flat rise. The first marked point in the right panel shows the same value
of y and a tangent line that has the slope found from the f axis in the left panel. As
y increases, the graph of f tells us that y will continue to rise with increasing slope.
In other words, it will curve upward as it increases. The second marked point is at
y = 0.1 and shows the value of dy/dt to be a little less than 0.4. The corresponding
point in the panel on the right has y = 0.1 and shows the tangent line with the
correct slope. This behavior starts to change when we reach y = 0.5, since that is
where f achieves its maximum value. This point corresponds to the steepest slope
on the graph of y(t). After that, the function f is still positive, but its value decreases
as y increases further. The graph of y(t) continues to increase, but with a flattening,
or downward curvature. The fourth marked point has the same value of f as the
second, which means that the slopes of the graph of y at those two points are the
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Fig. 3 The function f (y) = 4y(1 − y) and the solution of dy/dt = f (y) with y(0) = 0.01
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same. Note that the graph of y(t) can never cross the threshold value y = 1 because
f is 0 when y = 1, meaning that y is no longer increasing.

The graph of y in the right panel was created by applying calculus to obtain the
solution formula for the system (3); however, it could instead have been obtained
from a numerical simulation using a method presented in Sect. 8. Without one of
these methods, we would not have been able to get the times right for the four
marked points; however, we would still have been able to get the right slopes for
each value of y, which give us the correct overall shape for the graph.

To summarize: a differential equation of the form dy/dt = f (y) specifies the
slope of the graph of y as a function of the value of y. This information, along with
an initial condition, is sufficient to define the graph, which we can roughly sketch
with nothing more than logical statements about how f changes as y changes.

It is not a large leap to appreciate that this same idea will work for a system of
four differential equations for variables S, E, I , and R, where the derivatives are
known functions of the four variables. The rates of change for each variable will be
functions of more than one state variable, so we will not have a graph like the one in
the left panel of Fig. 3; however, we will have the formulas that calculate the slopes
from the state of the system.

3.3 Section 3 Exercises

Exercise 6 (Calculus Level 1, Programming Level 0) The differential equation
dy/dt = ky, where k is any positive constant, models exponential growth. In
contrast, explain why Eq. (3) and the graph of its solution (see the graph on the
right in Fig. 3) is an appropriate model for a scenario in which there is a constant
but limited amount of available resources.

Exercise 7 (Calculus Level 1, Programming Level 0) As noted in Exercise (6),
the differential equation in (3) is used to model the growth of a population with
a fixed resource limitation. In models representing the interaction between predator
and prey populations, the function y(t) can represent the predator while the prey can
be considered the limited resource. For what situations would the equation in (3) be
appropriate for modeling the population of a predator species for a given prey? For
what predator-prey situations would it not be appropriate? Justify your claims.

Exercise 8 (Calculus Level 1, Programming Level 0) The dynamical system
model

dy

dt
= f (y) = 4y(1 − y) − 3y, y(0) = 0.01
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represents the infectious population fraction for a disease in which recovered
individuals can be reinfected (like the common cold). Plot the graph of f and use
it to sketch a possible graph for y(t). (Keep in mind that y represents a population
fraction.) Check your graph by plotting the function

y(t) = (
4 + 96e−t

)−1
,

which is the solution of the differential equation problem.

Exercise 9 (Calculus Level 1, Programming Level 0) Repeat Exercise 8, but with
y(0) = 0.5. [Keep in mind that you will not be able to use the given solution formula
as a check.]

Exercise 10 (Calculus Level 2, Programming Level 0) Show that the function

y(t) = (
4 + 96e−t

)−1

solves the initial value problem

dy

dt
= f (y) = 4y(1 − y) − 3y = y − 4y2, y(0) = 0.01.

Hint: If we define u(t) = 4+96e−t = y−1, the right side of the differential equation
becomes (uy)y − 4y2 = (u − 4)y2.

Exercise 11 (Calculus Level 2, Programming Level 0) Show that the function

y(t) =
[

b

a
+

(
1

y0
− b

a

)
e−at

]−1

solves the initial value problem

dy

dt
= ay − by2, y(0) = y0.

Hint: See Exercise 10.
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4 Dynamical SystemModels

Model development is as much an art as it is a science. The science is in the
employment of logical structures to serve as the model framework, while the art
is in finding creative ways to conceptualize the motivating real-world scenario.

In Sect. 2 we saw one class of models—individual-based models. They have the
advantage of easy conceptualization and inclusion of randomness, but they have
some drawbacks as well:

1. They have to be run many times to get a picture of the expected behavior.
2. They become very complicated when more realistic features are added, such as

random durations of incubation and infectivity.
3. They do not lend themselves to mathematical analysis.

Most mathematical modeling in epidemiology instead uses dynamical system
models, which we explore in the remainder of the chapter. Dynamical system
models in epidemiology have a long history [2]. The class of models most
commonly used today was first introduced in a seminal paper by W.O. Kermack
and A.G. McKendrick published in 1927 [8].

Dynamical system models are based on the same principle as accounting. If
you want to know how much money you have in different budget categories, you
can (1) keep the money in different boxes and count it every day, or (2) keep
track of your income, expenditures, and internal transfers, and use these amounts
to calculate daily totals. In epidemiology, the budget categories are replaced by
variables that indicate the current totals of people in various epidemiological states,
such as “Susceptible” (which we called “healthy” in the individual-based model) or
“Infectious” (which often includes both presymptomatic and sick individuals).

Mathematical epidemiology is a rich subject for which one can find books at
levels from advanced undergraduate to research level.10

4.1 Classification of Dynamical SystemModels

Several features are needed to classify epidemiology models. We present these in
rough order of importance.

1. Disease Type
Infectious diseases can be divided into two subgroups, based on the transmission
mechanism.

10 Space does not permit an exhaustive list of references. For lower-division undergraduates, we
recommend the oddly titled book by Smith [15] because it builds up to a sophisticated level from
a very humble beginning. For advanced undergraduates, the paper by Blackwood and Childs [1] is
a good place to start.
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• Person-to-person transmission involves either direct transmission through
physical contact or indirect transmission through the environment, such as
droplets that enter the air through sneezing or coughing.

• Vector-borne transmission is required for diseases in which the pathogen has
a complicated life cycle that requires multiple host species. An example is
malaria, which is caused by a protozoan that lives part of its life in humans
and part in mosquitoes.

Most infectious diseases which affect humans fit neatly into one of these two
categories, but some are less clear. The plague that swept through much of the
world in the medieval period had two forms: bubonic, which humans contracted
from fleas, and pneumonic, which was passed from person to person via droplets
in the air.

In this chapter, we consider only diseases with person-to-person transmission.
2. Time Frame

• Epidemic models are designed for the short term. Their distinguishing
characteristic is that there are no mechanisms for replenishment of susceptible
people. Like a forest fire that must eventually run out of fuel, an epidemic
scenario necessarily ends with no remaining disease. Study of epidemic
models focuses on rate of spread, change in the number of infected individuals
over time, and final susceptible population size. Analytical methods are
available for some results in the simplest cases, but usually simulations are
required. Epidemic models can be either deterministic (no randomness) or
stochastic (having some random elements), depending on the level of detail
desired for quantifying the various disease processes.

• Endemic models are designed for the long term. They always include at
least one mechanism for replenishment of susceptibles, typically birth of
susceptible individuals, but there can also be processes such as immigration
or gradual loss of immunity. There are also diseases, such as the common
cold, that do not confer subsequent immunity at all, perhaps because there is a
plethora of strains or very rapid mutation. The long-term behavior of endemic
models can be obtained using computational and analytical methods.

Many treatments of mathematical models in epidemiology focus primarily on
endemic models, because these are the ones for which mathematical analysis can
make the strongest conclusions. In this chapter, we instead focus on epidemic
models to reflect their importance in the COVID-19 dominated world of 2020
and beyond.

3. Population Constancy
The total population can be fixed by omitting demographic processes altogether,
by making sure birth and death rates are equal with no additional mortality or
migration, or, in the case of epidemic models, counting deceased individuals as
equivalent to recovered ones. This simplifies the model as compared to the more
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common case of variable size populations and is typically done for all epidemic
models as well as some endemic models.

4. Classes
Although the choice of classes is no more fundamental than the choice of time
frame, it is traditional to name models according to the list of classes used in
them. Each class tracks the number of individuals with that particular disease
status. Our starting point is the SEIR model, where

• S is Susceptible, for individuals who are at risk of catching the disease. (We
called this group “Healthy” in the individual-based model.)

• E is Exposed, for individuals who have been infected but are not yet infectious.
This is a poor choice of term–“latent” is more accurate. In everyday language,
we would say that a person has been “exposed” when they have contacted
an infectious person, regardless of whether they have caught the infection,
but in epidemiology all members of the “Exposed” class have been infected.
As a compromise between accuracy and consistency, we will retain the class
symbol E but use the term Latent as the class name. (The individual-based
model did not have a latent class.)

• I is Infectious, for individuals who can transmit the disease. In the basic
SEIR model, infectious individuals may or may not have symptoms. (In the
individual-based model, the infectious class was divided into presymptomatic
and symptomatic subgroups.)

• R is Removed, for individuals who are not currently infectious and are immune
from further infection. This can include individuals who have recovered and
individuals who are still sick but no longer infectious. Including deceased
individuals as “removed” is convenient if death by the disease is the only
demographic process, as then the population can still be thought of as
“constant” in the sense that the class system is then closed.

Many disease models include additional or different classes based on features
of the particular disease being studied. There could be isolated infectives11

and quarantined susceptibles, and infectives could be further subdivided into
asymptomatic and symptomatic. A COVID-19 model should distinguish between
asymptomatic and symptomatic infectives and between unconfirmed, confirmed,
and hospitalized cases.

5. Processes
In addition to a list of epidemiological classes, a model needs a list of processes
that cause individuals to move from one class to another. In an SEIR model,
there must be a transmission process that moves susceptible individuals into the
latent class, an incubation process that moves latent individuals into the removed
class, and a removal process that moves infectious individuals into the removed

11 Technically speaking, the word “infective” does not appear in official dictionaries; however, it is
a much better term than the alternative “infectious individual.”
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class. There could be other processes, such as vaccination, isolation, and loss of
immunity. Some of these are considered in the projects.

6. Dynamical System Type
Discrete-time models are based on algebra, while continuous-time models are
based on calculus. Discrete-time models can seem more intuitive, but continuous
dynamical systems have much better mathematical properties. We will follow the
more common practice of using continuous models.

5 Building the SEIR Epidemic Model

Figure 4 shows a schematic of the structure of the standard SEIR model. The four
population classes are related by three processes:

1. A transmission process moves susceptible individuals into the latent class (E).
2. An incubation process moves latent individuals into the infectious class.
3. A removal process moves infectious individuals into the removed class.

Notice what is missing:

• We have not explicitly included disease-induced mortality, but that does not
mean we have not allowed for it. It is customary in epidemic models to make
no distinction between people who have died from the disease and people
who have recovered. This undoubtedly seems horrible to the novice modeler,
but it is actually very instructive. From a human perspective, we want to
distinguish between healthy people, sick people, recovered people, people with
ongoing deleterious effects, and people who died. But our goal is to make
an epidemiological model. There is no epidemiological distinction between
infectious people who are sick and those who are not, or between removed people
who are healthy, still suffering illness, or deceased. These human interest features
can be added to the base epidemiological model during analysis.

• We have no birth or natural death processes and no migration. Obviously these
demographic processes do occur during a disease outbreak. However, on an
epidemic time scale of weeks or months, births and natural deaths only change
the class counts to a limited extent. Remember that our model is not intended
to exactly match reality. We will see assumptions in the quantification of the
epidemiological processes that will yield more quantitative error. Some of these
will be explored as research projects.

S E I Rtransmission incubation removal

Fig. 4 The SEIR epidemic model in words
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• We have not included any modifications for public health measures, such as
vaccination, isolation of infectious individuals, or quarantine of individuals
through contact tracing. The end-of-chapter projects will focus largely on adding
possible modifications. There are many ways to do this, not all of which have
been thoroughly explored. This is part of the art of mathematical modeling, and
it offers students an opportunity to do original research by being the first to think
of a new idea.

From the schematic diagram, we can immediately write a set of conceptual
equations for the changes in the class sizes. The susceptible population is affected
by only one process–the transmission process, which decreases the population:

dS

dt
= − transmission rate. (4)

Similar equations describe the overall rates of change for the other classes:

dE

dt
= transmission rate − incubation rate, (5)

dI

dt
= incubation rate − removal rate, (6)

dR

dt
= removal rate. (7)

Now suppose we define N to be the total population; that is,

N = S + E + I + R. (8)

The change in N is the sum of the changes in the four components. Since each
process increases one class at the expense of another, the overall population stays the
same (given the interpretation of “deceased” as being epidemiologically equivalent
to “recovered”). This means that we could omit one of the change equations; for
example, we could omit the R equation and instead use the N equation to calculate
R. This is commonly done when focusing on the mathematical analysis of a model.
However, when doing a computer simulation, it is good practice to use the change
equations to calculate all class counts and then use the N equation as a check for
possible error in the program.

While we could use N to represent the actual population, it is usually best to
take N = 1, which means that the class sizes are used to measure fractions of the
total population rather than raw numbers. Fractions of a total are meaningful with
no additional context, whereas class counts are only meaningful in comparison to
the total population.
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5.1 Quantifying the Processes

To complete the SEIR model, we need to find mathematical formulas for each of the
three processes in the compartment diagram and conceptual equations. There are
standard choices that are used in nearly all circumstances. These standard choices
are based on some questionable assumptions, so it is important to understand the
formulas in some detail. (See [15] for a similar discussion with much more detail.)

The first step in quantifying each of the processes is deciding what variables must
be considered. Take removal as an example. If a lot of people are infectious now,
then surely people will leave the infectious class at a high rate; however, if nobody
is infectious, then nobody can be removed from the infectious class and the removal
rate is 0. Thus it is reasonable to assume the removal rate depends on the size of
the infectious class. What about the other three classes? Does the rate of removal
from the infectious class depend on how many people are susceptible, how many are
latent, or how many are already removed? The answer is “no” in all cases. Whether
an infectious person is removed in a given day depends only on what is happening
inside that infectious person, not on the states or changes in state of anyone else.
The removal process is an example of a transition: a process that happens to each
individual person in the departing class, independent of anyone else. Similarly, the
incubation process is a transition. Each latent individual becomes infectious based
on their own internal changes, independent of what is happening to others. The
more people in the class that undergoes the transition, the greater the rate at which
the transition occurs at the population level.

The transmission process is fundamentally different from the transition pro-
cesses. Susceptibles are necessary for transmission to occur. But unlike incubation,
which happens to latent people without any interaction, transmission does not
happen independently. You cannot get the disease without getting it from someone
who is infectious.12 Thus, the formula for the transmission process is going to need
to use both the susceptible and infectious class counts. Accordingly, we consider
transitions and transmission separately.

5.1.1 Transition Processes
Let us start with the incubation process. If we compare two moments in the history
of an outbreak, and there are twice as many latent people in moment A than in
moment B, it seems reasonable that the rate of incubation is twice as great at moment
A. We, therefore, assume that the incubation rate is proportional to the latent class
size.13 This assumption tells us the mathematical form of the rate formula, but with

12 Some diseases are spread through the environment, but the disease agent gets into the
environment from infectious individuals. Epidemiologically, it does not matter if you get the
disease by shaking hands with someone or by breathing in disease agents the other person left
behind when leaving a room.
13 This can be shown to be equivalent to the assumption that the incubation times are exponentially
distributed, with the rate constant given by the reciprocal of the mean time.
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a proportionality rate constant that is specific for each disease. It is customary to use
lower-case Greek letters for this and other rate constants. The specific rate constant
symbol for a particular process varies from one author to another. We will use the
Greek letter “eta” for the incubation rate constant. Thus, we have

incubation rate = ηE. (9)

The removal process is analogous to the incubation process in that its rate is
proportional to the size of the class it is leaving. Using the Greek letter “gamma,”
we have

removal rate = γ I. (10)

So far this may seem straightforward, but there is actually a lot more that needs
to be said. As a thought experiment, suppose that the entire latent class is made up
of people who just got infected yesterday. Assuming that the rate is proportional
to the class size, the rate of incubation will be largest on day 1, when the entire
cohort is still latent. This is a very suspicious claim. If it takes an average of 5
days, then most people will become infectious in 4, 5, or 6 days. It seems likely that
nobody would become infectious in the first day, as that would require the disease
to progress 5 times as fast as the average. The naive assumption that the incubation
rate constant for latent patients will be the same each day is a significant conceptual
error, far worse than the minor error of neglecting the small number of births that
occur during the scenario. The reality is far more complicated than what we are
assuming in our model.

In spite of the apparent seriousness of this conceptual error, there is some reason
to think that it will not actually matter. Most of the time, the latent class will consist
of people who were infected at different times. If our naive model predicts that
someone who is newly infected suddenly becomes infectious today, while someone
who has been infected for 6 days already does not, these errors should average out
at the population level. This is really what we are assuming. While this issue is
largely ignored in epidemiological modeling, we should keep it in mind whenever
we are tempted to take our results too seriously. Exploration of this issue makes
a nice research project (given here as Research Project 8, with background from
Exercise 13).

5.1.2 The Transmission Process
Suppose each infectious person encounters a fraction c of a population of size N

per day. Assuming that all possible encounters are equally likely, we can expect
that a fraction S/N of these encounters are with susceptible individuals. This means
that each infectious person has cS encounters with susceptible individuals. If each
encounter has a probability p of resulting in a transmission, then we can expect one
infectious person to transmit the disease to pcS individuals per day. If we have I

infectious individuals rather than 1, the total rate of transmission is pcSI . We do
not need individual factors p and c, so we can write the transmission rate as
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transmission rate = βSI, (11)

where β is the product of the contact fraction and the transmission probability. This
formula can be used regardless of whether we are measuring the population classes
as counts of people or fractions of the total population, but the value for β is different
in the two cases. This is one of several reasons why it is hard to identify a value for
this parameter. This issue will be addressed later.

As with the transition formulas, there are hidden assumptions in the simple
formula for the transmission rate. If you reread the explanation, you should notice
that it does not distinguish individuals from each other. In reality, we live in a social
network where we have frequent contacts with some people and no contact with
nearly everyone else. Some of us are at the center of our network and have lots of
contacts, while others have far fewer contacts. In the COVID-19 pandemic, some
people deliberately reduced the number and frequency of contacts, while others
did not. Additionally, infectious individuals vary in their level of infectivity and
susceptibles vary in their level of susceptibility. As with transition processes, we
are assuming that we can use averages. On the other hand, it was easy to come
up with a thought experiment in which the transition formula gives a value that is
too high or too low, even averaged over the whole population at any given time. It
is much harder to do that for the transmission process. While there may be some
error introduced in an epidemiology model by the overly simple assumptions about
transmission, it is almost certainly less error than is introduced by the assumptions
about transitions.

5.2 The Final Model

Now that we have chosen formulas for the rates of the processes, it is helpful to
redraw the compartment diagram, using those rates as the labels on the arrows
(Fig. 5).

Working directly from the diagram gives us the differential equations that
describe the rates of change in terms of the state of the system. Full model
specification also requires initial conditions. We will use lower-case letters for
these, as R0 is often used for something entirely different from the initial condition
parameters. The final model is

dS

dt
= −βSI, S(0) = s0 > 0; (12)

S E I Rb SI hE g I

Fig. 5 The SEIR epidemic model in symbols
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dE

dt
= βSI − ηE, E(0) = e0 ≥ 0; (13)

dI

dt
= ηE − γ I, I (0) = i0 ≥ 0; (14)

dR

dt
= γ I, R(0) = r0 ≥ 0; (15)

where

s0 + e0 + i0 + r0 = 1, e0 + i0 > 0. (16)

These last two requirements ensure that the initial population total is 1 and that there
are some infected people to get the outbreak started.

5.3 Section 5 Exercises

Exercise 12 (Calculus Level 1, Programming Level 0) Construct a compartment
diagram similar to that of Fig. 5 for the class and process structure that matches the
individual-based model of Sect. 2.

Exercise 13 (Calculus Level 0, Programming Level 0) Suppose there are two
latent stages, E1 and E2, each with the same transition rate constant. Newly infected
individuals are in class E1, pass to class E2 with a “partial incubation” process
having rate constant σ , and then pass on to class I with a second partial incubation
process also having rate constant σ . Prepare a compartment diagram like that of
Fig. 5 for this SEEIR model.

Exercise 14 (Calculus Level 2, Programming Level 0) Prepare a compartment
diagram like that of Fig. 5 for a model in which a fraction p of infectious
individuals are asymptomatic (class A) and the remainder are symptomatic (class I).
Assume that asymptomatic individuals do not subsequently become symptomatic.
In completing the diagram, keep in mind that both classes in this SEAIR model are
infectious.
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6 Modeling

In addition to variables and equations, mathematical models contain parameters. An
understanding of parameters is critically important in mathematical modeling.

Definition 5 Parameters are quantities that function either as variables or con-
stants, depending on the context.

The critical importance of parameters is illustrated in the schematic diagram of
modeling shown in Fig. 6. In developing the model, we had time as the independent
variable and dependent variables S, E, I , and R. In this narrow view, the parameters
are constants. This is the realm of mathematics, be it analytical calculation (algebra
and/or calculus) or numerical simulation. We can do analysis without parameter
values, but we treat them the same way we treat the constant π ; that is, as numbers
denoted by symbols rather than numerals. Numerical simulation requires specific
values for the parameters to produce numerical approximations for the rates of
change at specific times.

Most important modeling work takes place in the broad view. Here is where we
ask questions that we hope will be useful in interpreting the scenario that inspired
the model rather than simply calculating results. In the broad view, we can study the
effects of changes in the parameter values, asking questions such as “If two diseases
have different incubation periods, how does that difference affect the outcomes of
the model?” The outcomes can be whatever we are most interested in: for example,
the maximum size of the infectious class, the day on which that occurs, and/or the
total number of people who get the disease during the outbreak. Such information
could be used to estimate the danger of running out of hospital space and the total
number of deaths, for example.

The function concept is helpful in understanding how mathematical models
work. In the narrow view, the class counts are functions of the number of days
since the start of the outbreak. In the broad view, the outcomes are functions of
the parameter values. Both the narrow view and broad view functions differ in an
important way from the functions you are used to seeing in math classes. Functions
in math classes are nearly always defined by explicit formulas, such as the formula

equations� �

independent

variable(s)

dependent

variable(s)

narrow view

� �parameters outcomes

broad view

Fig. 6 Narrow and broad views of mathematical models
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for the incubation rate (9). In mathematical modeling, functions are defined in much
more subtle ways; for example, as the solution of a mathematical problem rather
than as a mathematical formula. Conceptually, however, the function idea is the
same regardless of whether the function is computed from a formula or as the result
of a numerical procedure. It is best to think of functions in terms of their graphs
rather than their formulas. Sections 7 and 8 develop tools for working with the
functions in models. In this section, we focus on the specification of parameters.

6.1 Identifying Parameter Values

Initial condition parameters are determined by the specific scenario we have in
mind. In practice, we will assume that the initial fractions of removed, latent, and
infectious individuals are known, with everyone else susceptible. How we do this
depends on the starting point for the scenario. For the initial introduction of a disease
to a community, we assume that nobody is immune or infectious and that just a small
fraction of people are latent. Other situations will be discussed later.

The three process parameters represent the quantitative characteristics of the
particular disease being modeled. Often we have a specific disease in mind, so it
is important to be able to use measurable properties to determine the values.

Dimensional analysis provides clues for the meaning of parameters. Things that
can be compared in an equation or added have to have the same dimension, and the
dimension of a product is the product of the dimensions. The terms dI/dt and γ I

must have the same dimension of people/time, so γ has dimension 1/time. What
is not clear without mathematical development is how to know what time γ is the
reciprocal of. The theorem given here is proven in Challenge Problem 2.

Theorem 1 A transition rate parameter is the reciprocal of the average amount of
time required for the transition process.

While simple, this rule is actually very subtle. In order to derive it, we have to
solve a calculus problem; hence, we defer this to the exercises.

Let tL be the mean incubation period and tI the mean infectious duration,
which are generally known to a reasonable approximation. Then the transition rate
parameter rule gives us

η = 1

tL
, γ = 1

tI
. (17)

Note that the values of these parameters do not depend on whether we use
population counts or population fractions for the state variables.

The transmission rate parameter β poses a special problem. It is not actually
a fundamental disease property because its numerical value depends on how we
define population size. It does not have the dimension of 1/time, so it cannot be the
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reciprocal of a measured time. Fortunately, there is another parameter that represents
the infectiousness of a disease.

6.2 The Basic Reproduction Number

The basic reproduction number, which is given the symbol R0 and read as “R-
nought,” is the fundamental measure of the infectiousness of a disease.

Definition 6 The basic reproduction number is the average number of secondary
infections brought about by one infectious person in a population that is wholly
susceptible.

This definition of R0 sounds complicated, but it is much simpler if we break it
down into parts. The transmission rate formula (11) tells us that the average number
of secondary infections per day in a population of any composition is βSI . If
that population is wholly susceptible, then we get an average of βNI secondary
infections per day. That is the number produced by the whole infectious class;
with I = 1, we see that “the average number of secondary infections per day
brought about by one infectious person in a population that is wholly susceptible”
is βN . To get the basic reproductive number, we just need to take into account that
one infectious person has, on the average, tI days in which to produce secondary
infections. Total is rate times time, so the basic reproduction number is

R0 = βNtI . (18)

While we have calculated the basic reproduction number in terms of β, the actual
use of this formula is usually to determine β from R0. Of course this means that we
need to be able to determine R0 by some other means. You can look up values
for well-known diseases. The issue of how to estimate R0 for a novel disease is
critically important to accurate modeling results; this will be addressed in Sect. 7.

Note that the value of R0 is independent of the units used for population class
sizes. If we change N , it is the value of β that makes a corresponding change. Given
that we have chosen N = 1 by design, we can rearrange (18) and replace tI with
1/γ to obtain

β = γR0. (19)

We can, therefore, specify a particular disease using tL, tI , and R0 as the three
fundamental disease parameters and use (17) and (19) to calculate the parameters
that appear in the model.

Before we move on, this is a good time to think about what the basic reproduction
number tells us. Suppose the first generation consists of 10 infectious individuals.
If R0 = 3, then each infectious person will generate an average of three new
infections, for a total of 30 in the second generation. The epidemic will grow
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explosively as long as the population remains largely susceptible. Only when most
of the population has been infected will we stop seeing more infections in the next
generation than the previous one. In the end, nearly everyone will have got the
disease.

Instead, if R0 = 1.1, there will be an average of 11 in the second generation.
This is enough to keep the outbreak growing for a little while, but at a much slower
rate than if R0 = 3, and a much smaller decrease in the susceptible population will
be enough to stop the disease. Continuing with the comparison, if R0 = 0.9 then
the second generation will average 9 individuals. We see that the disease is unable
to get a foothold. Thus, R0 = 1 is a critical value—a disease can only cause an
epidemic outbreak if R0 > 1.

We can now appreciate why COVID-19 is such a serious problem. The most
common infectious diseases prior to COVID-19, the common cold and influenza,
have R0 values on the order of 1.5–3. It is not uncommon for a person to have known
exposures to someone with the flu and not get the disease. In contrast, the standard
twentieth century childhood diseases of measles, chicken pox, and mumps have R0
values of 10 or more. Before the development of the vaccines for these diseases,
virtually everyone who was exposed caught them.14 The basic reproduction number
for the original strain of COVID-19 has been reported to be in the range from 2.5 to
8. Our best estimate is R0 = 5.7 [14], which is a very large value.15 When you run
simulations, you will see that in a society that completely ignores the threat, almost
the entire population will get the disease in less than 2 months.

6.3 Section 6 Exercises

Exercise 15 (Calculus Level 0, Programming Level 0) Estimates of the basic
reproduction number and durations for incubation and infectiousness can be found
online for many illnesses. Use published information about H1N1 flu [3] to estimate
reasonable parameter values for η, γ , and β. Be sure to justify all assumptions and
cite all references.

Exercise 16 (Calculus Level 0, Programming Level 0) Repeat Exercise (15)
using the infectious disease of your choice. Justify all assumptions and cite all
references.

14 Curiously, neither of the chapter authors, both growing up before there were vaccines for these
diseases, was ever diagnosed with chicken pox. Nevertheless, one of the authors is now known
through detection of antibodies to have had the disease, and the other almost certainly had the
disease as well because of repeated exposures.
15 As of July 2021, the delta variant is just becoming dominant, with a basic reproductive number
probably between 8 and 10. Given this value, virtually everyone who is not vaccinated will get the
disease.
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6.4 Section 6 Challenge Problem

Challenge Problem 2 (Calculus Level 2, Programming Level 0) Assume a pop-
ulation of newly infectious people and let I (t) be the fraction of this cohort that is
still infectious at time t , so that

dI

dt
= −γ I, I (0) = 1.

Use your knowledge of derivative formulas to identify the function I (t) that satisfies
these two requirements. Rewrite the result by solving it for t ; this gives you the
time at which the cohort has been reduced to a particular size. Now use calculus
to determine the average value of t over the interval 0 ≤ I ≤ 1. Explain why this
proves Theorem 1.

7 Model Analysis

It is helpful to frame the model analysis by using the idea of a mathematical model
as a function that determines outcomes in terms of the parameters. The details are
shown in Fig. 7 as a schematic diagram.
There are six input parameters, the three that define the disease properties and
three that define the starting point of the scenario. There are a number of possible
outcomes we could be interested in. We focus on five of these:

1. The early stage exponential growth coefficient, λ (this will be defined shortly),
which tells us how rapidly the epidemic grows at the beginning;

2. The maximum infectious class size, Imax , which tells us how much impact the
epidemic will have at the worst point;

3. The time at which the maximum infectious class size occurs, tmax , which tells us
how much time there is to prepare for the peak;

4. The ending susceptible population, denoted as s∞, which tells us how much of
the population does not contract the illness and will be at risk in a subsequent
scenario;

SEIR Model� �0, tL, tI , r0, e0, i0 , Imax, tmax, s , S

Fig. 7 Schematic diagram of the SEIR model as a function
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5. The total population infected during the scenario, ΔS = s0 − s∞. If we know
what fraction of infected people die, we can use ΔS to calculate the total number
of deaths in a given initial population.

Our outcomes will need to be determined by a variety of methods. We can
use analytical methods (exact calculations using algebra or calculus) to compute
λ and to derive an algebraic equation for s∞. That equation cannot be solved
using analytical methods, but it can be solved with numerical methods (approximate
calculations using a computer program). Most epidemic model outcomes, such as
Imax and tmax in the SEIR model, can only be determined by a fully numerical
method. In this section, we consider λ and s∞; the following section discusses
numerical simulation of the full model.

7.1 Early Phase Exponential Growth

Analytical methods and numerical methods are complementary in many ways.
One of these is that the behavior illustrated by numerical simulations can yield
conjectures that can subsequently be confirmed by analysis. Figure 8 shows the
results of a simulation using an initial condition of no infectious or removed
individuals and only one latent individual per 10K population. The plot on the left
shows the typical pattern of an epidemic outbreak. It takes a while to get started,
but then the infection grows rapidly. Both the latent and infectious classes reach
a peak and then drop off to 0, with the latent peak occurring earlier in time than
the infectious peak. The plot on the right shows some very important detail that
can only be seen on a logarithm plot. There is a very fast initial phase during
which the latent population is decreasing. This is because we started without any
infectious individuals, so new transmissions had to wait until the first batch of latent
individuals became infectious. Then there is a significant period of time during
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i0 = r0 = 0



258 G. Ledder and M. Homp

which the graphs of ln(E) and ln(I ) are linear and parallel. Only as the latent
population comes close to its peak do the graphs of ln(E) and ln(I ) begin to curve
downward. These same features appear with any realistic choices for the disease
parameters, as long as the initial fractions of the exposed and infectious classes are
small. From this graph, we can make the following conjecture:

• After a short initial adjustment phase, there is a period in which the logarithms
of the infected classes are linear with a common slope λ.

Mathematical exploration of this insight leads to the following result (see Challenge
Problem 3):

Theorem 2 Suppose the initial populations of the infected classes are small
compared to that of the susceptible class. Then the SEIR model shows an extended
exponential growth phase with

I ≈ I0e
λt , E ≈ ρI0e

λt , S ≈ s0 ≈ 1 − r0, (20)

where λ is the positive solution of the equation

(λ + η)(λ + γ ) = ηγ s0R0, (21)

and

ρ = λ + γ

η
. (22)

Theorem 2 has two very important consequences. First, it gives us a way to
estimate R0 from early data on the infectious class population. From data for ln(I ),
we can estimate the value of λ and then use (21) to estimate R0. This is the best
way to estimate R0 for a novel disease, like COVID-19. In late March of 2020, the
“accepted” value of R0 for COVID-19, obtained by statistical analysis of known
transmissions, was 2.6. One of us (GL) used (21) to obtain an estimate of 5.0 at that
time. Subsequently, our current best guess of 5.7, obtained using a method similar
to ours, was published in July 2020 [14].

The other important consequence of Theorem 2 is that it allows us to prescribe
scenarios using only two initial conditions rather than three. For any scenario that
starts with a small infected population, we can choose i0 and then use e0 = ρi0,
where ρ is given by (22).
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7.2 The End State

Dynamical systems often progress toward a fixed end state. These must be states for
which all of the rates of change are 0. For endemic models, there are usually only
one or two such states and there are straightforward methods to determine which
is the end state. The situation is much more complicated for epidemic models. To
begin, note that a fixed end state must have no further changes in R. Since dR/dt =
γ I , we can only have a fixed value of R if I = 0. From here, we can similarly
conclude that a fixed value I = 0 also requires E = 0. The chain stops here,
however. There is no particular reason why a fixed end state should have S = 0 or
any particular value of R. Based on the differential equation model (12)–(16), any
state with values

S = s∞, E = 0, I = 0, R = r∞ = 1 − s∞ (23)

could serve as the end state.
In the case of the SEIR epidemic model and a few other simple ones, the end state

can be found using calculus. The idea is that the relationship between the variables
S and R is determined by the differential equations for those two variables. If we
assume that R is a function of S, rather than being an independent function of t , we
can use the chain rule to obtain an expression for dR/dS. If that expression depends
only on the variable S, as is the case here, then we can use integration techniques to
find the one-parameter family of anti-derivatives for dR/dS. Only one of these anti-
derivatives also satisfies the initial conditions for R and S. The result is as follows:

Theorem 3 The initial and final values of the susceptible population are related by
the equation

ln s0 − ln s∞ = R0(1 − r0 − s∞). (24)

Equation (24) is an analytical result that connects the initial values r0 and s0,
the basic reproduction number R0, and the final value s∞. It cannot be used to
immediately calculate s∞ for any set of input parameters because there is no way
to solve the algebraic equation for s∞. However, we can obtain several useful
conclusions from the theorem:

1. The final state s∞ depends only on the basic reproduction number and the initial
conditions; it is unaffected by the values used for the rate constants η and γ . If
these constants are relatively small for one scenario, then it will just take longer
to reach the same final state.

2. The final state cannot have s∞ = 0 because there are no values one can choose
for the other parameters to satisfy (24).



260 G. Ledder and M. Homp

3. If we want to see how s∞ depends on the infectiousness of the disease for a given
initial scenario, we can use (24) to calculate R0 values from given values of s∞
and then plot a graph of s∞ vs R0, without ever solving the equation for s∞.

If we want to be able to calculate s∞ rather than approximating it from a graph,
we need a numerical method, since (24) cannot be solved for it using algebra. The
equation can be manipulated in various ways to put it in the form F (s∞) = 0
for some function F . There are a variety of well-documented numerical methods
for solving such equations. These methods are much harder to use in practice than
they are in theory because of various complicating factors. Scientific computing
software, such as MATLAB, includes built-in functions for this task. These have
been written by numerical analysis experts, and you can use these if you just want
an answer. If you want better mathematical understanding, you have to write your
own programs to test specific methods. We include this as a possible project for the
more mathematically experienced.

7.3 Section 7 Exercises

Exercise 17 (Calculus Level 0, Programming Level 0) Find estimates for the
incubation period, the infectious period, and the basic reproductive number for an
infectious disease of your choice. Use this information to calculate η, γ , λ, and ρ

for that disease. Also estimate s∞ assuming r0 = 0 and s0 ≈ 1, either by using a
numerical solver with (24) or by using a plot of s∞ vs R0 (see consequence 3 of
Theorem 3).

Exercise 18 (Calculus Level 1, Programming Level 0) As described in the
opening paragraphs of Sect. 7, the graph on the left of Fig. 8 shows both the latent
and infectious classes reach a peak before dropping off to 0. Note that in addition to
occurring earlier in time, the latent peak is lower and approaches zero more quickly
than the infectious peak. Explain why this is the case for the given parameters.
Would it be possible for the latent peak to be larger than the infectious peak? Would
it be possible for the latent curve to be greater than the infectious curve during
certain periods of time during the epidemic? If so, for what parameters might this
happen? Explain.

Exercise 19 (Calculus Level 1, Programming Level 0) Explain what the right
panel of Fig. 8 suggests about the nature of the epidemiological process in the stage
where the graphs of ln(E) and ln(I ) are parallel. It may help to reference material
in Sect. 1. Your explanation should also relate the plot to the corresponding plot in
the left panel.
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7.4 Section 7 Challenge Problems

Challenge Problem 3 (Calculus Level 2, Programming Level 0) Assume that
S = s0, R = r0, ln I = ln I0 + λt , and ln E = ln I + ln ρ for some unknown
values I0 and ρ (note that these assumptions are justified when e0 and i0 are small
by Fig. 8). Derive the results of Theorem 2 by substituting these assumptions into
the model (12)–(15) .

Challenge Problem 4 (Calculus Level 2, Programming Level 0) Assume that
R0, η, γ , i0, and r0 are given, with i0 small. Use the same method as in Challenge
Problem 3 to derive a quadratic equation whose solution determines ρ. Note that
this formula can be used to select an appropriate e0 for a scenario that starts shortly
after the beginning of an outbreak.

Challenge Problem 5 (Calculus Level 2, Programming Level 0) Assume R is a
function of S(t). Use this assumption and the model (12–15) to derive a formula for
dR/dS. Then use calculus and algebra to derive the result of Theorem 3.

7.5 Section 7 Project

Research Project 6 (Calculus Level 2, Programming Level 2) Develop an
algorithm for solving (24) for s∞. If you use a method, such as Newton’s
method, that requires a starting guess, your algorithm should include steps
that compute a good starting guess from the parameters s0, r0, and R0. Your
algorithm should work for reasonable values of the parameters: for example,
1 < R0 ≤ 10.

8 Simulations

In Sect. 7, we identified five important outcomes for an epidemic model. Even
when some of these can be determined analytically, there are always some that can
only be determined by running a numerical simulation. We also need a numerical
simulation if we want to see the full course of the epidemic rather than just seeing
key outcomes.

There are two different aspects of simulation that we need to study: the numerical
aspect and the modeling aspect. The distinction is best made in terms of Fig. 6. The
narrow view is the realm of numerical analysis; we need to work out methods to
determine the time histories of the state variables S, E, I , and R, with a given set of
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parameters. The broad view is the realm of modeling; we need to work out strategies
for getting useful information from data for the time histories.

8.1 Numerical Simulation of Continuous Dynamical Systems

Continuous dynamical systems pose a problem for simulation because computers
can only do algebra, not calculus. This means that the only way to simulate a
continuous dynamical system is to approximate it by a discrete dynamical system.
Consider the model dy/dt = f (y) = by(1 − y), which represents an SI model, as
an example. The obvious way to approximate the differential equation is to replace
the derivative with the difference quotient Δy/Δt . Then we can define yn to be the
approximate value of y on day n. With f evaluated using the population on day n,
we have

yn+1 = yn + f (yn)Δt. (25)

(Note that Δt = 1 in our model.) This straightforward method is called Euler’s
method.16 While this is the most intuitive way to approximate a differential equation
numerically, there are much better methods. In most cases, including the models that
arise in epidemiology, the method of choice is a more complicated method called
the Runge–Kutta17 method of order 4, sometimes referred to as “RK4.” The basic
idea of the method is that we want to retain the simple structure of Euler’s method,

yn+1 = yn + mΔt,

but with a more sophisticated estimate of the slope m. The RK4 method calculates
three other slope estimates in addition to f (yn) and takes a weighted average. A
more complete discussion can be found in most differential equations texts, and the
formulas appear in the program seir.m in the Appendix.

In general, one can improve accuracy by using time intervals smaller than 1 day,
but this is unnecessary when using the RK4 method with an epidemiology model
because the time scales for the processes are on the order of several days.

8.2 Implementation of Numerical Simulations

We present here a brief description of the MATLAB program suite that we use to
implement the numerical simulation of the SEIR model (the programs themselves
appear in the Appendix). We assume that students have MATLAB installed and
know how to access the software, or else know how to run MATLAB programs

16 Pronounced OY-ler.
17 Pronounced RUN-guh KUT-tah.
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using the online version of Octave [12]. The reader should review the description of
the individual-based model programs in Sect. 2.2.

One way to make an accessible program suite is to have it consist of a function
file that does computations for one scenario and a set of driver scripts that use
the computational function to do experiments. The function file seir.m contains the
function seir, which requires input values for the basic reproductive number, the
mean incubation time, the mean recovery time, initial conditions, and data used to
implement a situation-based ending condition. The outputs of seir are vectors that
give the values of the four population classes at each time along with the value of
s∞ calculated by applying MATLAB’s built-in equation solver to solve (24).

Most of the coding in seir.m can be left as is when modifying the program to
simulate other models. Additional function arguments and outputs may be needed,
and there will likely be small changes to the INITIALIZATION section, but most of
the changes will appear in the FUNCTION FOR THE DIFFERENTIAL EQUATION
section. The comments in this section and the syntax of the statements in it should
suffice for a novice programmer to be able to make modifications as needed.

There are three driver programs, each designed for a particular type of experi-
ment:

• SEIR_onesim.m runs one simulation, leading to a plot like that in the left panel
of Fig. 8. The user needs to modify the SCENARIO DATA section for each run.

• SEIR_comparison.m runs a comparison of scenarios having one parameter that
takes a variety of values. There is a section for default scenario data that includes
all the input parameters. Values for the parameter selected as the independent
variable are specified as xvals in the INDEPENDENT VARIABLE DATA section.
The first line in the computation loop assigns values from xvals to the desired
parameter name. This uses a different value for that parameter on each run
through the loop, while the other parameters keep their default values.

• SEIR_paramstudy.m produces plots of key outcomes as a function of one of the
parameters. The parameter values are specified in almost the same manner as for
SEIR_comparison.

8.3 Section 8 Exercises

Exercise 20 (Calculus Level 1, Programming Level 1) Our best guesses for the
original strain of COVID-19 are a basic reproductive number of 5.7, an incubation
period average of 5 days, and an infectious period average of 10 days. Assume
an initial population that is entirely susceptible except for ten latent individuals per
100K. Run SEIR_onesim.m and describe what would have happened in a community
that made no behavioral or public health adjustments.

Exercise 21 (Calculus Level 1, Programming Level 1) Repeat Exercise 20 using
the disease you characterized in Exercise 17. Make sure that the final susceptible
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fraction obtained by the computer simulation matches the one you estimated in that
exercise.

Exercise 22 (Calculus Level 1, Programming Level 1) The Incan Empire had
a population of over one million when it was conquered by 168 Spanish Con-
quistadores in 1525. The Spanish had gunpowder weapons and horses, but these
advantages would not have been sufficient to defeat the huge Incan army. (It took
about 2 minutes to reload a single-shot arquebus.) They also benefitted by joining
forces with peoples subjugated by the Incas, but that would not have happened on
its own. Historians William H. McNeill and Jared Diamond have argued that the key
factor in the Incan defeat was the European diseases the Spanish brought with them
[4, 11]. To test this theory, set the basic reproduction number at 5, the incubation
period at 12 days, and the infectious duration at 20 days, values that roughly match
smallpox. Describe the effect introduction of smallpox into Incan civilization would
have had, even without considering the death toll of the disease.

Exercise 23 (Calculus Level 1, Programming Level 1) For a more complete
look at the effect of the basic reproduction number on epidemic progression, run
SEIR_comparison.m using R0 values 5, 3, 2, 1.5, and 1.25, with incubation period
5 days, infectious duration 10 days, and initial infectious fraction 0.001.

1. Discuss the graphs, explaining why the effects of R0 are what you see.
2. Suppose a disease with R0=5 is combated with social distancing and measures

to decrease transmission probability for each contact. What effect do you expect
these social policies to have and why?

Exercise 24 (Calculus Level 1, Programming Level 1) Use SEIR_paramstudy.m
to study the effect of the basic reproduction number on epidemic outcomes. Use R0
values from 0 to 6 and the original default values for the other parameters. Describe
and explain the results, paying particular attention to the behavior near R0=1.

Exercise 25 (Calculus Level 1, Programming Level 1) Use SEIR_paramstudy.m
to do a more thorough study of the effect of the disease duration on epidemic
outcomes. Use R0=2.5 and tI values from 4 to 12. Describe and explain the results.
Pay particular attention to the axis limits.
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8.4 Section 8 Projects

Research Project 7 (Calculus Level 1, Programming Level 1) Write an
analysis of herd immunity. You can find basic information about this concept
on the web, but you will need to justify all of your claims with simulation
results rather than quotations from other sources. You will have to think
carefully about what outcome is the most important to report. You should
also address the question of why herd immunity does not work in an epidemic
scenario for a disease with a large value of R0 (say 5.0) that starts with nearly
everyone susceptible.

Research Project 8 (Calculus Level 1, Programming Level 2) How much
of a problem is the assumption that transition rates are proportional to the
class size? At issue is the association of this assumption with the exponential
distribution. Look up the characteristics of this distribution. A more realistic
choice is the Erlang E2 distribution. An Erlang E2-distributed process is
equivalent to a sequence of two exponentially distributed stages. This means
that we can get Erlang-distributed incubation times by replacing the standard
SEIR model with the SEEIR model from Exercise 13. To study this new
model, you will need to modify the SEIR programs for SEEIR and compare
the results. Be careful about how you calculate σ ; keep in mind that tL is the
average total time spent in the E classes, not the average time spent in each
of the classes. Under what circumstances are we making a significant error by
using the SEIR model in place of the more accurate SEEIR model?

Research Project 9 (Calculus Level 1, Programming Level 2) Research
the impact of isolation of symptomatic infectious patients on the course of an
epidemic. This will require you to change the model from SEIR to SEPUR,
where the original infectious class has been divided into a sequence of a
presymptomatic class and an unisolated symptomatic class. You can assume
that some fraction q of individuals who transition out of the presymptomatic
class move directly into the removed class through isolation, while the
remainder move into the unisolated class and become removed in the usual
way. Note that you have to be careful with your formula for the transmission

(continued)
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process, since the new model has two infectious classes. Exercise 12 can serve
as a good starting point.

Research Project 10 (Calculus Level 1, Programming Level 2) Build and
study a model that incorporates social distancing and/or mask usage to
decrease transmission. Consider making the model more realistic by dividing
the population into a compliant subgroup and a noncompliant subgroup, but
keep in mind that individuals in the two groups still interact with each other.

Research Project 11 (Calculus Level 1, Programming Level 2) How does
the development of a vaccine change the course of an epidemic? You will need
a new model that accounts for several features of vaccine implementation: (1)
a new vaccine can only be distributed gradually as doses are produced and
distributed, (2) not everyone is willing to take a vaccine, and (3) not everyone
who is vaccinated develops immunity.

Acknowledgments The authors wish to thank the book editors for their assistance and encour-
agement, Hannah Callender Highlander for suggesting this chapter, and Julie Blackwood for her
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Appendix: Programs

hpsr.m

function [H,P,S,R]=hpsr(b,N,P0,S0)
%
% function [H,P,S,R]=hpsr(b,N,P0,S0)
%
% runs a simulation of an agent-based model
%
% H: healthy
% P: presymptomatic
% S: sick
% R: recovered
%



Population Dynamics of Infectious Diseases 267

% b is the transmission probability
% N is the total population
% P0 is the initial presymptomatic population
% S0 is the initial sick population
%
% by Glenn Ledder
% written 2020/11/29
% revised 2021/10/20
%
% direct comments to gledder@unl.edu

%% DATA

% suggested default values
% b = 1;
% N = 1000;
% P0 = 20;

%% INITIALIZATION

% limit simulation duration
maxdays = 100;

% set data structures using initial conditions
H = (N-P0-S0)*ones(1,maxdays+1);
P = P0*ones(1,maxdays+1);
S = S0*ones(1,maxdays+1);
R = zeros(1,maxdays+1);

%% COMPUTATION

for n=1:maxdays

% calculate probability of an infected partner for a
healthy person

p = (P(n)+S(n))/(N-1);

% get a ’partner’ for each healthy person
partners = rand(H(n),1);

% count H’s with infectious partners
atrisk = length(find(partners<p));

% get random numbers for transmission success
exposure = rand(atrisk,1);
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% count atrisks with successful transmission
infected = length(find(exposure<b));

% calculate new class counts
H(n+1) = H(n)-infected;
P(n+1) = infected;
S(n+1) = P(n);
R(n+1) = R(n)+S(n);

% check if done
if P(n+1)+S(n+1)==0

% delete unneeded rows
H = H(1:(n+1));
P = P(1:(n+1));
S = S(1:(n+1));
R = R(1:(n+1));
% exit for loop
break;

end %if

end %for

%% END

end

HPSR_onesim.m

%% HPSR_onesim

% Plots the results of an HPSR agent-based model
simulation

% Prints results and outcomes:
% results is a matrix of columns for time,H,P,S,R
% maxI is the maximum number infected
% finalH is the ending size of H

% User specifies values for 4 parameters:
% b is the transmission probability
% N is the total population
% P0 is the initial presymptomatic population
% S0 is the original sick population
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% If using Octave, add the additional option pair
"’MarkerSize’,2.5"

% (without the double quotes) to the three plot
statements)

% Uses hpsr.m, 2021/10/20 version

%- function [H,P,S,R]=hpsr(b,N,P0,S0)
%-
%- runs a simulation of the HPSR agent-based disease

model
%-
%- H: healthy
%- P: presymptomatic
%- S: sick
%- R: recovered
%-
%- b is the transmission probability
%- N is the total population
%- P0 is the initial presymptomatic population
%- S0 is the initial sick population

% by Glenn Ledder
% written 2020/11/29
% revised 2021/10/26

% direct comments to gledder@unl.edu

%% SCENARIO DATA

b = 5/6;
N = 1000;
P0 = 20;
S0 = 0;

%% INITIALIZATION

% set up for first figure

figure(1)
clf
darkgreen = [0 0.6 0];
hold on
box on
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%% COMPUTATION

% collect simulation data
[H,P,S,R] = hpsr(b,N,P0,S0);

% record simulation duration [H(1) is for day 0]
days = length(H)-1;

%% OUTPUT

% get list of times for plot
times = 0:days;

% If using Octave, add the additional option pair
"’MarkerSize’,2.5"

% (without the double quotes) to the three plot
statements

% plot healthy, infected, recovered
plot(times,H,’d’,’Color’,darkgreen,’MarkerFaceColor’,

darkgreen)
plot(times,P+S,’rs’,’MarkerFaceColor’,’r’)
plot(times,R,’b^’,’MarkerFaceColor’,’b’)
xlim([0,days])

% label axes
% use ’FontSize’,18 in Octave
xlabel(’days’,’FontSize’,14)
ylabel(’populations’,’FontSize’,14)

legend(’healthy’,’infected’,’recovered’,’Location’,
’East’)

% display results as a matrix with columns for t, H, P,
S, R

results = [times’,H’,P’,S’,R’]

% report maximum simultaneously infected
maxI = max(P+S)

% report final healthy population
finalH = H(end)

%% FIGURE 2
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% uncomment the lines from 101 to get a figure of
log(P+S)

% add ",’MarkerSize’,2.5" to the end of this plot
command in Octave

% use ’FontSize’,18 in Octave

% figure(2)
% clf
% hold on
% box on
%
% plot(times,log(P+S),’rs’,’MarkerFaceColor’,’r’)
%
% xlabel(’days’,’FontSize’,14)
% ylabel(’ln(infected)’,’FontSize’,14)

HPSR_avg.m

%% HPSR_avg

% Computes results for an HPSR agent-based model
simulation

% Displays histograms and prints means and standard
deviations of outcomes

% maxI_pct is the maximum number infected by
percentage

% finalH_pct is the ending size of H by percentage

% User specifies values for 5 parameters:
% b is the transmission probability
% N is the total population
% P0 is the initial presymptomatic population
% S0 is the original sick population
% numruns is the number of simulation runs in the

experiment

% SEE SPECIAL INSTRUCTIONS (below) FOR HISTOGRAMS IF
USING OCTAVE.

% Uses hpsr.m, 2021/10/20 version

%- function [H,P,S,R]=hpsr(b,N,P0,S0)
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%-
%- runs a simulation of the HPSR agent-based disease

model
%-
%- H: healthy
%- P: presymptomatic
%- S: sick
%- R: recovered
%-
%- b is the transmission probability
%- N is the total population
%- P0 is the initial presymptomatic population
%- S0 is the initial sick population

% by Glenn Ledder
% written 2020/12/30
% revised 2021/10/26

% direct comments to gledder@unl.edu

%% SCENARIO DATA

b = 1;
N = 1000;
P0 = 10;
S0 = 0;
numruns = 1000;

%% INITIALIZATION

% set up for figure

clf
for k=1:2

subplot(1,2,k)
hold on

end

% create row vectors for output data

maxI = zeros(1,numruns);
finalH = zeros(1,numruns);

%% COMPUTATION
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for j=1:numruns
% run simulation
[H,P,S,~] = hpsr(b,N,P0,S0);
% save results
maxI(j) = max(P+S);
finalH(j) = H(end);

end

% convert to percentages and sort
maxI_pct = 100*sort(maxI)/N;
finalH_pct = 100*sort(finalH)/N;

%% OUTPUT

subplot(1,2,1)
% For Octave, replace the histogram statement with the

following:
% hist(maxI_pct,14,1,’FaceColor’,’y’)
histogram(maxI_pct,’Normalization’,’probability’,
’FaceColor’,’y’,’FaceAlpha’,1/3)
xlabel(’max I (pct)’,’FontSize’,11)
ylabel(’probability’,’FontSize’,11)

subplot(1,2,2)
% For Octave, replace the histogram statement with the

following:
% hist(finalH_pct,14,1,’FaceColor’,’y’)
histogram(finalH_pct,’Normalization’,’probability’,
’FaceColor’,’y’,’FaceAlpha’,1/3)
xlabel(’final H (pct)’,’FontSize’,11)
ylabel(’probability’,’FontSize’,11)

% report means and standard deviations
maxI_pct_mean = mean(maxI_pct)
maxI_pct_std = std(maxI_pct)
finalH_pct_mean = mean(finalH_pct)
finalH_pct_std = std(finalH_pct)

seir.m

function [S,E,I,R,sinfty]=seir(R0,tL,tI,e0,i0,r0,target,
maxdays)

%
% function [S,E,I,R,sinfty]=seir(R0,tL,tI,e0,i0,r0,
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target,maxdays)
%
% runs a simulation of an SEIR model
%
% S: susceptible
% E: ’exposed’ (’latent’ is the more accurate term)
% I: infectious
% R: removed
%
% R0 is the basic reproductive number
% tL is the mean incubation time
% tI is the mean recovery time
% e0 is the initial latent fraction
% i0 is the initial infectious fraction
% r0 is the initial immune fraction
% target is the infected fraction used as an end

condition
% maxdays is the maximum simulation duration
%
% by Glenn Ledder
% written 2020/11/27
%
% direct comments to gledder@unl.edu

%% DATA

% suggested default values
% R0 = 5;
% tL = 2;
% tI = 10;
% e0 = 0.0001;
% i0 = 0;
% r0 = 0;
% target = 0.001;
% maxdays = 1000;

%% INITIALIZATION

% calculate parameters

eta = 1/tL;
gamma = 1/tI;
beta = R0*gamma;
s0 = 1-e0-i0-r0;
k = 1-r0-log(s0)/R0;
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% set up results data structure with Y=[S,E,I,R]

results = zeros(maxdays+1,4);
Y = [s0,e0,i0,r0];
results(1,:) = Y;

y = Y’;
oldx = e0+i0;

%% FUNCTION FOR Sinfty

fnc = @(s,R0,k) s-exp(R0*(s-k)); % parameterized function
fofs = @(s) fnc(s,R0,k); % function of s alone

%% COMPUTATION

for t=1:maxdays
% y is a column vector, Y^T
y = rk4(1,y);
Y = y’;
results(t+1,:) = Y;
if Y(2)+Y(3)>min(target,oldx)

oldx = Y(2)+Y(3);
else

results = results(1:(t+1),:);
break;

end
end

S = results(:,1);
E = results(:,2);
I = results(:,3);
R = results(:,4);

sinfty = fzero(fofs,[0,1]);

%% FUNCTION FOR rk4

function y=rk4(dt,y0)
% y0 is a column vector of initial conditions at t
% y is a column vector of values at t+dt
k1 = yprime(y0);
k2 = yprime(y0+0.5*dt*k1);
k3 = yprime(y0+0.5*dt*k2);
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k4 = yprime(y0+dt*k3);
y = y0+dt*(k1+2*k2+2*k3+k4)/6;

end

%% FUNCTION FOR THE DIFFERENTIAL EQUATION

function yp=yprime(y)
% split out components

S = y(1);
E = y(2);
I = y(3);

% compute derivatives
Sp = -beta*S*I;
Ep = -Sp-eta*E;
Ip = eta*E-gamma*I;
Rp = gamma*I;

% assemble derivative
yp = [Sp;Ep;Ip;Rp];

end

%% END

end

SEIR_onesim.m

%% SEIR\_onesim

% Plots a comparison of population classes

% Prints results and outcomes(populations are fractions):
% results is a matrix of columns for time,S,E,I,R,

Delta S
% maxI is the maximum size of class I
% maxday is the day on which maxI occurs
% finalS is the ending size of S

% Uses seir.m, 2020/11/27 version

% User specifies values for 6 parameters:
% R0 is the basic reproductive number
% tL is the mean incubation time
% tI is the mean recovery time
% e0 is the initial latent fraction
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% i0 is the initial infectious fraction
% r0 is the initial immune fraction
% target is the infected fraction used as an end

condition
% maxdays is the maximum simulation duration

% Change axis label font sizes for Octave

% by Glenn Ledder
% written 2020/11/27
% revised 2021/08/01

% direct comments to gledder@unl.edu

%% SCENARIO DATA

R0 = 5;
tL = 2;
tI = 10;
e0 = .0001;
i0 = 0;
r0 = 0;

%% COMMON DATA

target = 0.001;
maxdays = 1000;

%% INITIALIZATION

clf
hold on
box on
colors = get(gca,’colororder’);

%% COMPUTATION

[S,E,I,R,sinfty] = seir(R0,tL,tI,e0,i0,r0,target,
maxdays);

days = length(I)-1;
new = S(1:days)-S(2:length(S));
new = [0;new];

%% OUTPUT
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times = 0:days;

plot(times,S,’Color’,colors(1,:),’LineWidth’,1.4)
plot(times,E,’Color’,colors(3,:),’LineWidth’,1.4)
plot(times,I,’Color’,colors(2,:),’LineWidth’,1.4)
plot(times,R,’Color’,colors(4,:),’LineWidth’,1.4)

% use ’FontSize’,18 in Octave
xlabel(’days’,’FontSize’,14)

% use ’FontSize’,16 in Octave
ylabel(’population fraction’,’FontSize’,12)

legend(’S’,’E’,’I’,’R’,’Location’,’West’)

results = [times’,S,E,I,R,new]
[M,J] = max(I);
maxI = M
maxday = J-1
finalS = sinfty

SEIR_comparison.m

%% SEIR\_comparison

% Plots a comparison of population classes for multiple
scenarios

% Uses seir.m, 2020/11/27 version

% User specifies a list of values for one of the key
parameters:

% R0 is the basic reproductive number
% tL is the mean incubation time
% tI is the mean recovery time
% i0 is the initial infectious fraction
% r0 is the initial immune fraction

% e0 is calculated assuming exponential growth phase

% The program is designed so that only two lines need to
be modified to

% make a new experiment (see ’%%%’ comments)
% line 47 defines the independent variable values
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% line 79 links the independent variable name and
values

% The legend is optional

% output figure:
% left panel: S vs time
% right panel: I vs time

% Change axis label font sizes for Octave

% by Glenn Ledder
% written 2020/11/27
% revised 2021/08/01

% direct comments to gledder@unl.edu

%% DEFAULT SCENARIO DATA

R0 = 2.5;
tL = 5;
tI = 10;
i0 = 0.001;
r0 = 0;

%% INDEPENDENT VARIABLE DATA

%%% This section needs to be modified for each
experiment.

%%% xvals is the set of independent variable values
xvals = [5,4,3,2];

%% COMMON DATA

target = 0.001;
maxdays = 1000;

%% INITIALIZATION

clf
for k=1:2

subplot(1,2,k)
hold on
box on
% comment out next line if desired



280 G. Ledder and M. Homp

axis square

% use ’FontSize’,18 in Octave
xlabel(’days’,’FontSize’,14)

end

N = length(xvals);
finalS = zeros(1,N);
maxI = zeros(1,N);
maxday = zeros(1,N);

%% COMPUTATION and PLOTS

for n=1:N

%%% The left side of this statement needs to be the
independent

%%% variable for the experiment.
R0 = xvals(n);

eta = 1/tL;
gamma = 1/tI;
beta = gamma*R0;

a = eta;
b = eta-gamma+gamma*R0*i0;
c = -gamma*R0*(1-i0-r0);
b2 = b/2;
rho = (sqrt(b2^2-a*c)-b2)/a;
e0 = rho*i0;

[S,~,I,~,sinfty] = seir(R0,tL,tI,e0,i0,r0,target,
maxdays);

days = length(I)-1;

[M,J] = max(I);
maxI(n) = M;
maxday(n) = J-1;
finalS(n) = sinfty;

subplot(1,2,1)
plot(0:days,S,’LineWidth’,1.4)
subplot(1,2,2)
plot(0:days,I,’LineWidth’,1.4)

end
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subplot(1,2,1)
ylim([0,1])
% use ’FontSize’,16 in Octave
ylabel(’susceptible’,’FontSize’,12)

subplot(1,2,2)
% use ’FontSize’,16 in Octave
ylabel(’infectious’,’FontSize’,12)
legend(’R0=5’,’R0=4’,’R0=3’,’R0=2’,’Location’,
’Northeast’)

%% OUTPUT

maxI = maxI
maxday = maxday
finalS = finalS

SEIR_paramstudy.m

%% SEIR parameter studies

% Runs an SEIR experiment to determine how maximum
infectious fraction and

% final at-risk fraction depend on a parameter value

% Uses seir.m, 2020/11/27 version

% User specifies a list of values for one of the key
parameters:

% R0 is the basic reproductive number
% tL is the mean incubation time
% tI is the mean recovery time
% i0 is the initial infectious fraction
% r0 is the initial immune fraction

% e0 is calculated assuming exponential growth phase

% The program is designed so that only a few lines need
to be modified to

% make a new experiment (see ’%%%’ comments)
% lines 49-51 define the independent variable values
% line 54 identifies the x axis label for the graph
% line 86 links the independent variable name and
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values

% Output figure:
% top left panel: max infectious fraction
% top right panel: day of max new infections
% bottom left panel: fraction of susceptibles who

become infected
% bottom right panel: final fraction susceptibles

% Change x axis label font size for Octave

% by Glenn Ledder
% written 2020/11/27
% revised 2021/08/01

% direct comments to gledder@unl.edu

%% DEFAULT SCENARIO DATA

R0 = 2.5;
tL = 5;
tI = 10;
i0 = 0.001;
r0 = 0;

%% INDEPENDENT VARIABLE DATA

%%% This section needs to be modified for each
experiment.

%%% first and last are the min and max values for the
independent variable

%%% N is the number of points (not subdivisions)
first = .1;
last = 6;
N = 60;

%%% xname is the name for the x axis label
xname = ’R0’;

%% COMMON DATA

target = 0.001;
maxdays = 1000;
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%% INITIALIZATION

clf
for k=1:4

subplot(2,2,k)
hold on
box on

% use ’FontSize’,18 in Octave
xlabel(xname,’FontSize’,14)

end
colors = get(gca,’colororder’);

% xvals holds whatever values are being used for the
independent variable

xvals = linspace(first,last,N);

finalS = zeros(1,N);
fracI = zeros(1,N);
maxI = zeros(1,N);
maxday = zeros(1,N);

%% COMPUTATION

for n=1:N

%%% The left side of this statement needs to be the
independent

%%% variable for the experiment.
R0 = xvals(n);

eta = 1/tL;
gamma = 1/tI;
beta = gamma*R0;

a = eta;
b = eta-gamma+gamma*R0*i0;
c = -gamma*R0*(1-i0-r0);
b2 = b/2;
rho = (sqrt(b2^2-a*c)-b2)/a;
e0 = rho*i0;
s0 = 1-e0-i0-r0;

[~,~,I,~,sinfty] = seir(R0,tL,tI,e0,i0,r0,target,
maxdays);
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[M,J] = max(I);
maxI(n) = M;
maxday(n) = J-1;
finalS(n) = sinfty;
fracI(n) = (s0-sinfty)/s0;

end

%% OUTPUT

subplot(2,2,1)
plot(xvals,maxI,’Color’,colors(3,:),’LineWidth’,1.7)
ylabel(’max fraction infectious’)
subplot(2,2,2)
plot(xvals,maxday,’k’,’LineWidth’,1.7)
ylabel(’days for max infectious’)
subplot(2,2,3)
plot(xvals,fracI,’Color’,colors(2,:),’LineWidth’,1.7)
ylabel(’fraction infected’)
subplot(2,2,4)
plot(xvals,finalS,’Color’,colors(1,:),’LineWidth’,1.7)
ylabel(’final fraction susceptible’)
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Playing with Knots

Allison Henrich

Abstract

One of the best ways to get acquainted with a mathematical object is to play
with it. Knots are no exception. In the process of trying to learn more about
the properties of knots, a team of undergraduate researchers played around with
knot diagrams, changing crossings to see how the knottedness of their knots was
affected. It felt like they were playing a game. And so they were! It turns out that
the team invented a game that is now called the “Knotting-Unknotting Game,”
one of the first topological-combinatorial games of its kind to be studied. Since
this initial game was introduced, many more researchers have devised games that
can be played with knot and link diagrams. Studying these games to determine
their mathematical properties can be just as fun as simply playing them, and in
the process, we can learn more about the knotty objects we’re playing with.

Suggested Prerequisites An introductory proofs course would be a helpful prerequisite for this
research, although several students have done research on knot games without formal training in
proof techniques. Otherwise, you can learn everything you need to know along the way.

1 Knots: Knotted and Unknotted

When did you first learn that mathematicians study knots? Last year? Last week?
Today? What?! Mathematicians study knots??!!
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It’s rather surprising since we typically think of knots as being very practical
(think: shoelaces, sailing, camping). Sometimes, we focus on their beauty, as we do
with Celtic knots. But rarely do we think of knots as being mathematical. It turns
out, however, that knot theory is an important area of study in mathematics.

1.1 What Is a Knot? (The Basics)

What exactly is a knot from a mathematician’s perspective? The answer is similar
to what your intuition tells you, with one possible exception. A knot is a nice,
smooth closed curve sitting in space in such a way that it doesn’t intersect itself,
although it might wind around itself in any number of interesting and intricate ways.
How your intuition might diverge from the mathematical notion is just this: we
don’t allow knots to have loose ends. If we did, any interesting knotting behavior
happening in our string might simply slip off one of the ends. More generally, a link
is a—possibly intertwining—collection of knots, where each knot in the collection
is called a component of the link. See Fig. 1 for an example of a knot and a 2-
component link.

Knots are often represented by knot diagrams. Formally, a knot diagram is a 2-
dimensional closed curve with a finite number of self-intersections where one strand
of the knot crosses another. Crossings in knot diagrams are decorated so that it is
clear which strand should pass over and which should pass under at each intersection
point. The special knot that can be represented by a diagram with no crossings is
called the unknot. All other knots can be referred to as nontrivial knots.

Similarly, a link diagram is a 2-dimensional representation of a link. If a link
can be represented by a diagram where there are no crossings occurring between
different components of the link, then we say that the link is splittable. If, on the
other hand, a link’s components are inextricably intertwined (i.e., not splittable), we
call it unsplittable. The simplest splittable links are simply disjoint collections of
unknots, called unlinks. In Fig. 2, we illustrate the unknot and give an example of a
nontrivial knot called the trefoil and a nontrivial (unsplittable) link called the Hopf
link.

Fig. 1 A knot (left) and a link (right) created by Rob Scharein using KnotPlot (www.knotplot.
com)
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Fig. 2 A diagram of the unknot (left), the trefoil knot (center) and a Hopf link (right)

Fig. 3 An alternating knot with four nugatory crossings

There are a number of questions we can ask related to knots, links, and their
diagrams. For instance, how can knot and link diagrams be used to provide a
measure of complexity for knots and links? One possible answer can be found in
the notion of a crossing number. The crossing number of a knot or link is the
minimum number of crossings needed to represent it diagrammatically. We view
knots and links with lower crossing numbers as being simpler and those with higher
crossing numbers as being more complex. Of course, any knot or link—no matter
how simple—can be represented by a diagram that has an enormous number of
crossings, so we often describe knots and links in terms of their simplest diagrams.
A diagram of a knot or link that actually achieves the minimum crossing number is
called a minimal crossing diagram of the knot or link. The unknot is the unique
knot with crossing number 0. In fact, it is the only knot with crossing number less
than 3!

Minimal crossing diagrams all have one thing in common. They don’t have any
nugatory crossings. A nugatory crossing is a crossing such that it is possible to
draw a (wobbly) circle through the crossing that splits the knot diagram into two
parts: a part that is entirely outside of the circle and a part that is entirely inside the
circle. In other words, this (wobbly) circle only touches the knot diagram at that one
crossing. In Fig. 3, we see a knot diagram with four nugatory crossings. Two are
encircled. Can you find the other two?

Here’s a thought experiment! Try to visualize how this diagram could be
simplified by twisting portions of the knot that are connected by nugatory crossings
in order to remove these unnecessary crossings. Do you think the resulting diagram
is a minimal crossing diagram? If not, why not? If so, can you prove it?

While minimal crossing diagrams of knots certainly exist, it can be quite difficult
to prove that a given knot diagram is a minimal crossing diagram. Thus, it can
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Fig. 4 An alternating knot with no nugatory crossings, derived from the diagram in Fig. 3 by
untwisting the knot at its nugatory crossings. This knot has crossing number 11

be hard to compute a knot’s crossing number and, hence, determine the knot’s
complexity. Fortunately, there is a special kind of knot diagram for which we have an
easy test for minimality: an alternating knot diagram. A knot diagram is alternating
if, as you travel around the diagram, you travel over, then under, then over, then
under, etc. at each of the crossings. Any knot that has an alternating diagram is
called an alternating knot. The diagram in Fig. 3 is alternating, and so represents
an alternating knot. However, we’ve already noted that this diagram is not a minimal
crossing diagram because of those pesky nugatory crossings. But if we were able
to untwist the knot to remove the nugatory crossings from our diagram, we’d be in
good shape according to a famous result: the Tait Conjecture.1

Theorem 1 (Tait Conjecture, Thistlethwaite-Kauffman-Murasugi) Any alter-
nating knot diagram that has no nugatory crossings is a minimal crossing diagram
of the knot it represents.

The Tait conjecture tells, for instance, us that the “untwisted” version of our knot
from Fig. 3, shown in Fig. 4, is a minimal crossing diagram.

Now, about this “untwisting.” We need a formal way of describing how we can
manipulate knot diagrams without fundamentally altering our knot. It’s about time
we learned about knot equivalence!

1.2 Knot Equivalence and Reidemeister Moves

The central question of knot theory deals with classification: when are two knots
or links the same and when are they different? What does it mean for two knots
to be “the same,” or, equivalent? We say two knots (or links) are equivalent if
one can be deformed into the other in space simply by stretching, bending, pulling,

1 While it was once a conjecture, this Tait Conjecture is now a theorem! In fact it is one of many
theorems proven from conjectures made by Peter Guthrie Tait. We still call Tait’s conjectures
“conjectures” for historical reasons.
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R1 R1

R2

R3 R3

Fig. 5 The Reidemeister moves: R1, R2, and R3. To visualize how these moves work, imagine
that the curve involved in one of the moves is a piece of a larger knot or link. The move alters just
this piece, leaving everything else unchanged

R3 R1 R3

R1 R2 R2 R1

Fig. 6 Simplifying a non-minimal unknot diagram using R-moves

expanding, contracting, etc. as long as the knot never passes through itself or gets
cut and reattached at any point.

One tool knot theorists use to help them determine if two knots or links are
equivalent is Reidemeister’s theorem. In the 1920s, Kurt Reidemeister [18] and,
independently, Alexander and Briggs [4] proved that two knot or link diagrams
represent the same knot or link if and only if their diagrams can be related by
a sequence of Reidemeister moves (shown in Fig. 5) and planar isotopies (i.e.,
“wiggling”). Notice that the R1 move adds or removes a little kink in the knot
or link. The R2 move overlaps two strands or pulls two strands—where one lies
entirely above the other—apart. The R3 move passes a strand of the knot over or
under a crossing. Figure 6 shows how Reidemeister moves can be used to simplify
a complicated unknot diagram.

If you think about it, Reidemeister’s theorem is a surprising result. It makes
sense that these three moves don’t change the knot or link type, but what is quite
unexpected is that these moves completely describe knot equivalence—no other
moves are needed to pass from one knot or link to another equivalent knot or link.
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Fig. 7 An unknot in disguise

Fig. 8 Several members of the twist knot family: T1, T2, T3, and T4

As we’ll see later, the three Reidemeister moves are particularly useful when we
need to identify whether or not a given knot or link diagram represents an unknot or
unlink.

Exercise 1 Use the Reidemeister moves to show that the knot diagram in Fig. 7 is
an unknot.

Challenge Problem 1 Show that any knot diagram with one or two crossings is
unknotted.

1.3 Some Useful Knots and Links

Now that we’ve used Reidemeister moves to better acquaint ourselves with the
unknot, let’s get to know a few other knots. One knot family that has some
interesting properties is called the twist knot family. Several members of the family
are pictured in Fig. 8. Notice that the first twist knot, T1, is a trefoil. The second
twist knot in the list, T2, also has a special name: it’s called the figure-eight knot.
All twist knots are made up of a clasp (with two crossings) and a twist (that can have
as many crossings as we like!). Figure 9 shows how this works. As we will soon
see, twist knots are particularly nice to play with. This is because if you were to
change one of the crossings in the clasp of any twist knot by making the overstrand
the understrand—no matter how many crossings are in your twist knot diagram
overall—you’d get a complicated diagram of the unknot.

Exercise 2 Prove the following. For any twist knot, if one of the clasp crossings
in its standard diagram is changed so that the understrand instead passes over the
crossing, the resulting knot is the unknot.
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clasp crossings

twist crossings

Fig. 9 A standard diagram for a general twist knot

p crossings

Fig. 10 A general (2, p)-torus knot

Fig. 11 The (2, 5)-torus knot. Image courtesy of Mitch Richling

Another knot type we like to play with is the (2, p)-torus knot, shown in Fig. 10.
This knot is called a (2, p)-torus knot because we could view it as a string wrapping
around a torus (think: doughnut) two times in one direction and p times in another
without touching itself. See Fig. 11 for an illustration of this phenomenon for the
(2, 7)-torus knot. Note that p is always an odd number for the (2, p)-torus knots. If
p is even, we have a (2, p)-torus link.

Whereas the twist knots are very easy to unknot if we are allowed to change one
of the crossings in the clasp, the (2, p)-torus knots are very difficult to unknot by
changing crossings. The number of crossings that need to be changed to unknot a
(2, p)-torus knot grows as p grows.

Both the twist knots and the (2, p)-torus knots (and links) are special cases of a
more general type of knot and link called a rational knot or rational link. Rational
knots and links are formed by taking two strings and twisting them together,
alternating horizontal and vertical twists, and then gluing together the loose ends
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Fig. 12 The rational knots (a1, a2) = (4, 2) [left] and (a1, a2, a3, a4, a5) = (−2, 2, 3, 1,−4)

[right]
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Fig. 13 Building rational knot (a1, a2, a3, a4, a5) = (−2, 2, 3, 1,−4)

in a particular way (using what is called the “numerator closure”). In Fig. 12, we see
two examples of rational knots—one formed by an even number of twists and one
formed using an odd number of twists.

Figure 13 shows how the second example in Fig. 12 is formed by twisting
and gluing. In particular, this example shows how we can form the rational knot
associated with the 5-tuple (a1, a2, a3, a4, a5) = (−2, 2, 3, 1,−4) by taking a
horizontal negative 2-twist (a1), then adding a vertical positive 2-twist below it (a2),
followed by a horizontal positive 3-twist to the right (a3), a vertical positive 1-twist
below it (a4), and then a horizontal negative 4-twist to the right (a5). Here, the sign
of a twist is determined by whether the overstrand of each of the crossings has a
positive or negative slope; a positive slope is associated with a positive twist.
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Fig. 14 A crossing change

The example from Fig. 13 demonstrates how to form a rational knot or link using
an odd number of twists. If our rational knot or link is formed from an even number
of twists, as in the first example shown in Fig. 12, we follow the same process,
except we begin with a vertical twist rather than a horizontal twist.

Notice that twist knots are all the rational knots of the form (a1, 2) (turn your
head sideways!) and (2, p)-torus knots and links are all the rational knots and links
of the form (a1).

1.4 Unknotting Operations and Numbers

Knots in closed loops can get quite complicated with no hope of simplification.
That is, there is no hope unless we are prepared to change the knot by cutting and
pasting it at various points. Such moves that allow us to simplify the knotting in
a knot are called unknotting operations. The most fundamental example of an
unknotting operation is one we’ve already been playing with: a crossing change.
(See Exercise 2.) A crossing change can be performed on a knot diagram, and
it usually changes the topological type of the knot (i.e., transforms it into a non-
equivalent knot). We see this crossing change operation pictured in Fig. 14.

An interesting fact about knots that a beginning knot theorist might prove early
on in their investigation is the following: Any knot can be unknotted with crossing
changes.

Challenge Problem 2 Provide an argument to show that any knot diagram can be
transformed into a diagram of the unknot by performing some number of crossing
changes.

Once we know that crossing changes can unknot any knot, we might ask a follow
up question: how many crossing changes do you need? The unknotting number
answers this question. For a given knot K , the unknotting number of K is the
minimum over all possible diagrams, D, of K of the number of crossing changes
that need to be performed in D in order to produce a (possibly quite complicated)
diagram of the unknot.

You’ve shown without too much work that the unknotting number of any twist
knot is 1. But determining the unknotting number of a knot is not always so
easy. What makes the unknotting number a difficult number to determine is that
sometimes a more complicated diagram of a knot requires fewer crossing changes
to unknot it than a simpler one. The pair of diagrams in Fig. 15 was discovered
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independently by Nakanishi [17] and Bleiler [5]. Both Nakanishi and Bleiler verified
that the diagram on the left cannot possibly be unknotted with fewer than three
crossing changes. But the diagram on the right, which is related to the first diagram
by an R2 move that adds two crossings, only requires two crossing changes to
unknot. This knot is called the (5,1,4)-pretzel knot, P5,1,4, because it can be formed
by connecting a vertical 5-crossing twist, a 1-crossing twist, and a vertical 4-
crossing twist by joining the twist ends at the tops and bottoms.

Exercise 3 Verify that (i) the minimal crossing diagram of P5,1,4 shown in Fig. 15
on the left can be unknotted by changing its three highlighted crossings and (ii) the
diagram on the right in Fig. 15 can be unknotted by changing its two highlighted
crossings.

To help describe which strand goes over and which strand goes under in a knot
or link diagram more easily, we should introduce a couple of new concepts: (1) an
orientation of a knot or link and (2) the sign of a crossing. First of all, we say that a
knot or link is oriented if it’s like a one way street, i.e., it has a preferred direction
in which we should travel around it. We can denote this in our diagram using an
arrow. Next, using an orientation for our knot or link, we can define the sign of a
crossing. Imagine looking at a crossing in such a way that the overstrand is pointed
upwards from our perspective. If the understrand is traveling from right to left, the
crossing is positive. If the understrand is traveling from left to right, the crossing is
negative. See Fig. 16.

Suppose a knot is given to us without an orientation, and we randomly choose
an orientation for it. It turns out that all of the crossings will have the same signs

Fig. 15 Nakanishi-Bleiler example

Fig. 16 The sign of a crossing
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R

Fig. 17 The region crossing change operation applied to the shaded region, R

A
B

Fig. 18 Regions A and B

as if we had chosen the other possible orientation. So, crossings signs are well-
defined even for unoriented knots. The same is not exactly true for links. If we have
an oriented link and we change the orientation of one or more (but not all) of the
components, it will likely change some crossing signs. Before reading on, convince
yourself of these facts!

The crossing change operation—i.e., the operation that changes the sign of a
crossing in a knot or link diagram—will become very important for several of the
games we describe below, but another important unknotting operation is called the
region crossing change (RCC) move. The fact that this operation can transform any
knot diagram into a diagram of the unknot was only recently discovered by Ayaka
Shimizu [19]. Here’s how it works. To perform a region crossing change on a knot
diagram, we first select a region R. Then, we perform the crossing change operation
on all crossings along the boundary of R. An example is pictured in Fig. 17.

Exercise 4 What would the diagram in Fig. 17 look like if we had instead per-
formed an RCC move on region A (the exterior region) or B, pictured in Fig. 18?

While we might be able to convince ourselves that individual crossing changes
can unknot knots, it is really quite surprising that region crossing changes can do
the same since we can only change groups of crossings, not individual crossings.
An enlightening proof of this fact can be found in [19].

Exercise 5 Find a collection of regions for the diagram on the left of Fig. 17 such
that, if you perform RCC moves on this set of regions, you get an unknot diagram.
(Note that the order in which you perform two RCC moves doesn’t affect the
resulting diagram.)

Just as with the ordinary crossing change operation, we can define an unknotting
number for the region crossing change. We have to define it a bit differently, though,
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for it to be an interesting quantity to study. It was proven that every knot has a
(perhaps very complicated) diagram such that only one region needs to be changed
to unknot it [3]. So, we define the region unknotting number as the minimum
number of RCC moves required in any minimal crossing diagram to unknot the
knot. See [19] to learn more.

Exercise 6 Prove that the region unknotting number of any twist knot is 1.

Fun fact! If we think about these unknotting operations for links, something
curious happens. Any link can be transformed into the unlink with some number
of crossing changes, as you might expect, but there are some links that can’t be
unlinked using the region crossing change. The Hopf link, shown in Fig. 2, is an
example of such a link.

Exercise 7 Convince yourself that the Hopf link diagram shown in Fig. 2 cannot
be transformed into the unlink by performing RCC moves.

1.5 Knot Invariants

When you’re given two knot or link diagrams, often you’d like to know if they
are equivalent or not. If you can find a sequence of Reidemeister moves that gets
you from one to the other, that’s great! They’re equivalent! But what if you can’t?
They might be equivalent—perhaps you just haven’t figured out the right sequence
of moves. But if they’re distinct, how can you prove it? For instance, how can we
prove that the unknot and the trefoil are actually non-equivalent knots?2 The answer
is simple: Use knot invariants!

A knot invariant is a function that takes as its input a knot—or, more likely,
a knot diagram—and outputs a value. This value might be “yes” or “no.” It might
be a natural number or an integer. It could be a polynomial. It might even be a far
more complex algebraic object like a graded abelian group. (If you want to know
what those are, you might be interested in math grad school!) The point is that when
you input two knots into a knot invariant, if the two outputs are different, that gives
you proof that the two inputs were different knots. If the two outputs are the same,
however, you might need to compute a different invariant to see if you get a different
result.

We’ve actually already seen three different knot invariants: the crossing number,
the unknotting number, and the region unknotting number of a knot. These invariants
all have natural numbers as output values—so in that sense they are nice—but they

2 Actually, you can prove they’re distinct using the Tait conjecture we learned about in Sect. 1.1,
but this conjecture is proven using the Kauffman bracket, a relative of the famous knot and link
invariant called the Jones polynomial.
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are tricky to compute. Let’s say you can unknot a knot diagram with two crossing
changes. Does that mean the unknotting number of that knot is 2? Not necessarily.
It could be 1 or even 0 (if it’s the unknot in disguise). Ruling out these options can
be tricky, requiring theorems that use other knot invariants to provide lower bounds
on the unknotting number.

For the games described in this chapter, it is often important to prove that
something is unknotted or knotted, linked or unlinked. Sometimes, invariants like
the Jones polynomial or the linking number can be helpful. You can learn about
these in [1, 11], if needed. However, there are two wonderful tools that we can use
to do our work for us, identifying when knots are knotted using the Jones polynomial
and other invariants. Both are web-based and involve drawing a knot freehand. The
first tool, called the Knot Identification Tool, was created by Joshua Horowitz and
can be found here: http://joshuahhh.com/projects/kit/. This program can identify
knots with up to 10 crossings. The second, called KnotFolio, was created by Kyle
Miller and can be found here: https://kmill.github.io/knotfolio/. Why not navigate
to one of these sites now and explore before moving on?

Congratulations! You are now a beginner knot theorist! Now that you have a
basic foundation in knot theory, we can turn our attention to the main event: games
on knots and links!

2 The Knotting-Unknotting Game

Most of the games involving knots and links that we’ll be studying in the rest of this
chapter can trace their origins back to the Knotting-Unknotting Game. It’s curious,
then, that the Knotting-Unknotting Game was invented by accident! A group of
undergraduate researchers—Noel MacNaughton, Sneha Narayan, Oliver Pechenik,
and Jen Townsend—were doing knot theory research one summer at the Williams
College SMALL Research Experiences for Undergraduates (REU) program. One
day, they were trying to determine how much over/under crossing information you
can forget in a diagram of an unknot and still know that your diagram is unknotted.
While trying to solve their problem, it felt to them like they were playing a game.
And so they were! So, they formalized the rules of the game and studied game
strategy for a few knot families as a side project for the rest of the summer. In
addition to the paper they wrote on their primary research [15], they wrote a second
paper [14] introducing the Knotting-Unknotting Game and many others. Later,
another undergraduate, Will Johnson, expanded on their results in [16].

The Knotting-Unknotting Game can be played as follows. Two players are
given a knot shadow, that is, a knot diagram where all of the over/under crossing
information is missing. (Aside: When a crossing’s under/over information is
missing, we call it a precrossing. Also, if a knot diagram has some crossings
and some precrossings, we call it a pseudodiagram rather than a diagram or a
shadow. In Fig. 19, we see several examples of pseudodiagrams.) One player, the
Unknotter (U), wants to turn this shadow into a diagram of the unknot, while
the other player, the Knotter (K), wants to make the shadow into a diagram of
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U K U

K U K

Fig. 19 The Knotting-Unknotting Game is played on the T4 twist knot. The Unknotter, U, plays
first. The final diagram is a complicated diagram of a figure-eight knot. Since this is a nontrivial
knot, K has won the game

a nontrivial knot. During game play, U and K take turns choosing precrossings.
When a precrossing is chosen by a player, the player can decide which strand
will go over and which will go under at the crossing. In other words, the player
chooses crossing information. This process of determining crossing information
for a precrossing is called resolving a precrossing. When a player’s turn is over,
the crossing information they have just chosen is now fixed. The game continues
until all precrossings have been resolved, and the knot type of the final diagram
determines the game’s winner.

We give one example of game play in Fig. 19 to give the reader an idea of how
the game works. In this example, the Unknotter plays first on a twist knot with
four twist crossings. She starts in the clasp. The Knotter follows up in the clasp,
making the crossings so that they’re alternating to avoid an R2 move that would
effectively hand the Unknotter a win. The rest of game play takes place in the twist
precrossings. In the end, the twist simplifies, but doesn’t fall apart altogether. The
resulting knot is the figure-eight knot, which is nontrivial. So, the Knotter wins! To
see other examples of this game being played, we recommend reading [8] and [14].

There are a few questions we should be asking at this point.

1. K won. Is that because U played poorly, or did K have a winning strategy?
2. What would have happened if K had gone first? Could U have won?

Both of these questions are ultimately asking about winning strategies, so let’s
take a moment to talk about outcomes for these types of games. All of the games
we’re going to be studying in this chapter are combinatorial games. This means
that there is one player who can always guarantee themselves a win if they play
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according to a winning strategy. A winning strategy in a game is an optimal
strategy that guarantees that a given player will win the game, regardless of how
their opponent plays. (Note that one or more moves that follow a winning strategy
may seem counterintuitive, given the player’s goal!)

Now, for the twist knot shadow shown in Fig. 19, did K have a winning strategy
or did U simply fail to play optimally? It turns out that K did indeed have a winning
strategy, so it wasn’t the Unknotter’s fault that she lost. Let’s see how to prove it.

Since K is the player with a winning strategy and K plays second, we first need
to consider all possible opening moves that U might play and decide how K should
respond to each one. We can simplify the possibilities we need to consider by
observing that playing in one of the clasp precrossings is equivalent to playing in
the other, and playing in any of the twist precrossings is equivalent to playing in any
other twist precrossing. So, we need only decide what to do if U plays in the clasp
or the twist.

Let’s say we’re playing as K, the Knotter. If U plays in the clasp, it is critical that
we also play in the clasp. Otherwise, U can play again in the clasp and ensure that
an R2 move can be performed to unclasp the clasp and unknot the entire knot. So,
we must play in the clasp in such a way that the crossings are alternating, avoiding
an R2 move.

Otherwise, if U plays in the twist, we should resolve a precrossing in the twist
so that it has the same sign as U’s crossing. Why is this? Notice that, no matter how
you orient the strands involved in an R2 move, one of the crossings is positive and
one is negative. If our goal is to keep the twist as twisted up as possible, we want
to avoid the situation that there are two positive and two negative crossings in the
twist (which would allow for two R2 moves to completely untwist it). So, we’d like
to make sure that at least three of the four crossings have the same sign.

In fact, these options for how we respond to U’s first move also tell us how to play
the remainder of the game. We should play to ensure that the clasp is clasped and
the twist doesn’t get too untwisted (that is, we need to ensure at least three crossings
have the same sign).

Suppose we play according to the strategy outlined above. What are the
outcomes? Well, if the clasp is alternating and the twist has four positive or four
negative crossings, the knot is T4 (if the entire diagram is alternating) or T3 (if not).
If the clasp is alternating and the twist has three positive or three negative crossings
that means a single R2 move is possible. The resulting knot is the figure-eight knot,
T2, (if the entire diagram is alternating) or the trefoil, T1, (if not). In any of these
cases, the outcome is a nontrivial knot, so K wins.

Exercise 8 Suppose that the two crossings in the clasp of the twist knot shadow
shown in Fig. 19 are resolved to be positive as are three of the four twist crossings.
Use Reidemeister moves to show that the resulting knot is the trefoil by showing it
can be reduced to an alternating, 3-crossing diagram.

Exercise 9 Invite a friend who has not been told the above winning strategy to play
the Knotting-Unknotting Game with you on the twist knot from Fig. 19. Ask your
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friend to go first and play the role of the Unknotter. As the Knotter playing second,
test out the winning strategy outlined above to see how it works.

Now we know what happens when we play the Knotting-Unknotting Game on
a shadow of a standard T4 twist knot diagram, assuming the Knotter plays second.
But what if the Knotter plays first? In fact, the Unknotter has a winning strategy in
that case. (Before reading any further, can you prove it?)

More generally, is there something special about T4 or do similar strategies work
for all twist knots? Yes and no. The precise answer is contained in the following
result.

Theorem 2 ([14]) Suppose the Knotting-Unknotting Game is played on a standard
shadow of a twist knot, Tn, with n + 2 crossings. Then, the Knotter has a winning
strategy if and only if n is even and the Knotter plays second.

To prove this theorem, we make the following observations.
Observations for the Proof of Theorem 2:

1. If the Unknotter can play second in the clasp precrossings, the Unknotter can
win.

2. The Unknotter can play second in the clasp precrossings if
a. n is even and the Unknotter plays second, or
b. n is odd and the Unknotter plays first.

3. One player can respond to the other player’s moves in the twist precrossings so
that R2 moves can remove all but possibly one (n odd) or two (n even) crossings
in the twist, so the n = 1, 2 strategies determine the remaining cases.

Challenge Problem 3 Prove Theorem 2 by proving the observations above and
finding winning strategies in the base cases of T1 and T2.

In [14], there are examples of knot families where the Unknotter wins both
playing first and second. There are also examples where the second player always
wins, regardless of whether the second player is U or K. Similarly, there are
examples where the first player always wins, regardless of whether the first player
is U or K. But there are no examples where the Knotter wins both playing first and
second.

Research Project 1 Find an infinite family of knot shadows for which the
Knotter has a winning strategy playing the Knotting-Unknotting Game—
regardless of whether he plays first or second—or prove that none exists.
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Research Project 2 Familiarize yourself with the knot shadows for which
we know winning strategies from [14, 16], and [7]. Find a knot shadow or
family of knot shadows that has not been studied and determine who has a
winning strategy when playing the Knotting-Unknotting Game.

3 The Region Unknotting Game

When we described how to play the Knotting-Unknotting Game, we said the game
board should be a knot shadow. There is an equivalent (albeit less intuitive) way
we could have described the game. The game can be played on a knot diagram
rather than a shadow. In this case, a player’s move involves choosing a crossing and
deciding whether to keep it as is (i.e., “fix it”) or perform a crossing change. Once a
crossing has been chosen (whether or not it has been changed), it is removed from
game play. This is a little more cumbersome way to play since you have to keep
track of which crossings the players have visited. But it does have one advantage.
We can see how to invent a new, related game using a different unknotting operation!

In [6], undergraduates Sarah Brown, Frank Cabrera, Riley Evans, Gianni Gibbs,
graduate student James Kreinbihl and myself introduced a variation on the Knotting-
Unknotting Game that uses region crossing changes instead of ordinary crossing
changes. In our game, there are still two players, U and K, with the same unknotting
and knotting goals. The players still take turns making moves on a knot diagram. But
instead of performing crossing changes or fixing crossings, the players can perform
region crossing changes (aka RCC moves) or “fix” regions in the plane by removing
them from game play. In other words, on a player’s turn, they pick a region for which
they either change all the crossings or fix all the crossings along the boundary of that
region. Once this choice has been made, that region cannot be chosen again. This
new game is called the Region Unknotting Game.

We give a sample game in Fig. 20. In this example, U moves first, performing an
RCC move on a twist region. This immediately unknots the diagram, but it doesn’t
stay unknotted for long. On his first move, K responds by changing a region joining
the twist and the clasp. The Unknotter then fixes another twist region. Game play
continues until all of the regions have been chosen. In the end, four (blue) regions
were changed using RCC moves and four (purple) regions were fixed. The resulting
knot is nontrivial, and so K wins.

Once again, we’d like to know if the fact that K won in the sample game was a
fluke or if K actually has a winning strategy on this knot diagram. The following
theorem provides an answer. Since the Knotter played second and played well, he
was destined to win!
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Fig. 20 The Region Unknotting Game is played on the T4 twist knot. Regions highlighted in blue
are regions on which an RCC move has been performed. Those regions in purple are regions that
have been chosen, but fixed. In this game, the Unknotter, U, plays first. The final diagram is a
complicated diagram of a trefoil, so K has won the game

Theorem 3 ([6]) If the Region Unknotting Game is played on a standard alter-
nating diagram of twist knot, Tn, where n is even, then the second player has the
winning strategy, regardless of which player plays second.

We prove one half of this theorem in the following lemma.

Lemma 1 Suppose the Region Unknotting Game is played on a standard alternat-
ing diagram of twist knot, Tn, as in Fig. 21. If n is even and the Unknotter plays
second, then the Unknotter has a winning strategy.

Proof The Unknotter, U, playing second, wins in this game by ensuring that the
clasp can be unclasped using an R2 move. She achieves this by ensuring that
crossings a and b have the opposite signs. Notice that the only region that has a

but not b along its boundary is region 5, and the only region that has crossing b

but not a along its boundary is region 4. Changing any other region does not affect
whether or not crossings a and b have the same sign. The Unknotter’s strategy is to
ensure that a and b have opposite signs, so moves on regions other than on 4 or 5
are not relevant for game play. Since the Knotter, K, plays first and the knot diagram
has an even number of regions, U will play last. Thus, U can force K to play first
on the pair of regions 4 and 5. This ensures that U can play on the corresponding
region in such a way that crossings a and b have opposite signs at the end of game
play. The resulting knot is the unknot. Hence, the Unknotter wins.
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Fig. 21 A labeled twist knot

Theorem 3 takes care of the case when our twist knot diagram has an even
number of crossings, but what happens if the number of crossings is odd? We have
the following result.

Theorem 4 ([6]) If the Region Unknotting Game is played on a standard alternat-
ing diagram of twist knot, Tn, where n is odd and the Unknotter plays first, then the
Unknotter has a winning strategy.

Challenge Problem 4 Prove Theorem 4.

Now, we’ve dealt with the twist knot cases where n is even and K goes first, n is
even and U goes first, and n is odd and U plays first. Which case are we missing?
It turns out that the authors of [6] weren’t able to figure out what happens in the
missing case. Perhaps you can!

Research Project 3 Find which player has a winning strategy if the Region
Unknotting Game is played on a standard alternating diagram of twist knot,
Tn, where n is odd and the Knotter plays first.

In [6], the authors also studied some specific diagrams of (2, p)-torus knots. In
particular, they proved several results for diagrams of the (2, 3), (2, 5), and (2, 7)-
torus knots. They were unable to prove a more general result, however. This brings
us to our next open problem.
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Research Project 4 Find which player has a winning strategy if the Region
Unknotting Game is played on the standard (2, p)-torus knot diagram pictured
in Fig. 10 for all odd p.

Finally, there are many more knot diagrams out in the world than the twist and
torus knot diagrams we’ve been looking at. Explore the universe of knot diagrams
to tackle the following problem!

Research Project 5 Find an infinite family of knot diagrams for which you
can determine who has a winning strategy in the Region Unknotting Game.

4 The Linking-Unlinking Game

The Knotting-Unknotting Game not only led to the invention of the Region Unknot-
ting Game, but it also inspired Professor Adam Giambrone and undergraduate Jake
Murphy to invent yet another game: the Linking-Unlinking Game [10]. In this game,
players are given a link shadow rather than a knot shadow. Just as before, they take
turns resolving precrossings. In this game, however, one player—the Unlinker (U)—
wants to create a splittable link (i.e., a link where the components are not linked with
each other) while the other player—the Linker (L)—aims to create an unsplittable
link. (In a variant of this game, one may modify the desired outcomes so that the
Unlinker must produce the unlink.)

Let’s take a look at a sample game. In Fig. 22, we see the Linking-Unlinking
Game being played on a shadow of the rational link given by the triple (2, 2, 4).
The Unlinker moves second and wins. Her strategy is to move adjacent to where the
Linker moves and resolve crossings so that an R2 move can simplify the diagram
after each of her moves. This is a fantastic winning strategy for the Unlinker that
actually extends to an infinite family of rational links.

Challenge Problem 5 In the sample game shown in Fig. 22, the Unlinker wins
moving second. Show that if the Linker moves second on this link shadow, the
Linker has a winning strategy.

Theorem 5 ([10]) Suppose we have a shadow of a rational 2-component link
defined by the n-tuple (a1, ..., an).
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Fig. 22 The Linking-Unlinking Game is played on a rational link

1. If a2k+1 = 0 for all k, then the Unlinker has a winning strategy.
2. If either

a. a2k+1 �= 0 for at least one k and all of the ai are even,
b. n = 2 and both a1 and a2 are odd, or
c. n ≥ 3, both a1 and an are odd, and all other ai are even,
then the second player has a winning strategy.

As we can see, the sample game falls into the category of 2(a), so the second
player has a winning strategy, which agrees with what we saw in the example and
Challenge Problem 5. Note that Theorem 5 refers to the possibility that numbers
in the n-tuple defining a rational link might be 0. This corresponds to simply
replacing a twist in the directions for creating a rational knot or link diagram (as
in Sect. 1.3) by two parallel, nonintersecting strands. In Fig. 23, we see an example
of this phenomenon that also satisfies the first condition in Theorem 5. This link,
given by the 5-tuple (0, 2, 0, 1, 0), is a modification of the diagram of rational knot
(−2, 2, 3, 1,−4) shown in Fig. 12 where we’ve replaced all odd twists by 0 twists.
As we can see, this link starts out as an unlink, so there is no possibility for an L
win.

Giambrone and Murphy proved additional theorems about rational links, but they
also showed the following more general result.

Theorem 6 ([10]) Suppose S is the shadow of a 2-component link.

1. If the only precrossings in S are self-intersections within each component (i.e.,
the diagram is already split), then the Unknotter wins.
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Fig. 23 The rational link associated with the 5-tuple (0, 2, 0, 1, 0)

2. If S contains (i) at least one precrossing that involves both components and (ii)
an odd number of precrossings that are self-intersections of either component,
then the Linker has a winning strategy when playing first.

3. If the shadow contains (i) at least one precrossing that involves both components
and (ii) an even number of precrossings that are self-intersections of either
component, then the Linker has a winning strategy when playing second.

Notice that the result you proved in Challenge Problem 5 is an example of Case 3,
since the shadow you were given has (six) precrossings involving both components
and two precrossings that are self-intersections of one of the components.

You may have spotted that there are some missing cases in Theorem 6. These
missing cases provide us with open problems.

Research Project 6 Suppose you are playing the Linking-Unlinking Game
and the Linker plays second. Find a family of 2-component link shadows for
which you can determine a winning strategy such that each shadow contains
(i) a nonzero number of precrossings that involve both components and (ii) an
odd number of precrossings that are self-intersections of either component.

Research Project 7 Suppose you are playing the Linking-Unlinking Game
and the Linker plays first. Find a family of 2-component link shadows for
which you can determine a winning strategy such that each shadow contains
(i) a nonzero number of precrossings that involve both components and (ii) an
even number of precrossings that are self-intersections of either component.
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5 The KnotLink Game

Next up: the KnotLink Game! This game combines a variant of the Linking-
Unlinking Game with the Knotting-Unknotting Game to create a game that can
be played on either a knot shadow or a link shadow. The KnotLink Game was
introduced in 2020 by undergraduate Hunter Adams, high school student Solden
Stoll, and yours truly in [2].

In this game, the Simplifier, S, plays with the goal of creating either an unknot or
an unlink, and the Complicator, C, aims to make any nontrivial knot or link. Most
moves in the game consist of players taking turns resolving precrossings, but each
player has a special move they have the option to use at most once at any point in
the game. This special move is called smoothing a precrossing and is pictured in
Fig. 24. A player may opt to smooth a precrossing either vertically or horizontally,
as shown in the figure. Notice that smoothing a crossing can transform a knot into a
link and vice versa, which is why our players need to prepare to play on both types
of pseudodiagrams.

We provide a sample game in Fig. 25. The Simplifier and the Complicator face
off on our favorite type of knot shadow, the shadow of a minimal crossing twist knot
diagram. Here, the Complicator moves first. The Complicator begins by resolving

Fig. 24 Smoothing a precrossing. We assume that outside of this local picture, the rest of the knot
or link diagram is unchanged

C S

C S C

S C

Fig. 25 A sample KnotLink game
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a crossing in the twist. The Simplifier responds by resolving an adjacent crossing
in the twist in such a way that a simplifying R2 move can be performed. Next,
the Complicator moves on another crossing in the twist, this time performing a
smoothing. The Simplifier then uses their one smoothing move in the clasp. In the
remaining moves, players take turns resolving the remaining crossings. Finally, a
diagram of the unknot is produced and the Simplifier wins.

Could the Complicator have won this game if he had played more strategically?
Not if the Simplifier was playing according to her winning strategy! Recall that twist
knots are the special types of rational knots associated with the ordered pair (a1, 2).
Given this observation, the following theorem tells us that the Simplifier should be
the winner on the twist knot shadow in Fig. 25.
Theorem 7 ([2]) If the KnotLink Game is played on a standard (a1, a2) rational
knot diagram where a1 is odd and a2 is even, then the Simplifier wins, regardless of
whether they move first or second.

The previous theorem has implications for odd twist knots, but what about even
twist knots? Even twist knots are the rational knots given by ordered pairs of the
form (a1, 2) where a1 is even. The following theorem tells us that the situation is a
bit different in the even twist knot case.

Theorem 8 ([2]) If the KnotLink Game is played on a standard (a1, a2) rational
knot shadow where both a1 and a2 are even, then the second player has winning
strategy regardless of their goal.

Let’s look at how to prove half of Theorem 8.

Lemma 2 ([2]) If the KnotLink Game is played on a standard (a1, a2) rational
knot shadow where both a1 and a2 are even and the Complicator moves first, then
the Simplifier has winning strategy.

Proof First, we observe that which crossing a player moves on within a twist
does not affect game strategy or game outcomes, so without loss of generality, we
move on the first crossing in each twist. We proceed by cases, considering all of
the possibilities for how the Complicator might play on his first move. Diagrams
corresponding to each case are shown in Fig. 26.

Case 1: Suppose the Complicator performs a horizontal smoothing in the a2
twist. Then, the Simplifier should perform a vertical smoothing in the a2 twist.
Now, neither player has the smoothing move available to them, and there are an
even number of crossings in the a1 twist and the a2 twist remaining. For the rest
of the game, when the Complicator moves in a2, the Simplifier should move in
a2, resolving any crossing in any way since the a2 twist crossings no longer affect
the linking of the diagram. Moreover, when the Complicator resolves a crossing
in a1, the Simplifier should respond by resolving an adjacent crossing in a1 so
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Fig. 26 The six cases considered in the proof of Lemma 2

that an R2 move can be performed to remove the two crossings from the diagram.
This will result in an unlink diagram.

Case 2: Suppose the Complicator performs a vertical smoothing in the a2 twist.
Then, the Simplifier should perform a horizontal smoothing in the a2 twist and
then follow the same strategy as in Case 1.

Case 3: Suppose the Complicator resolves a crossing in the a2 twist. Then the
Simplifier should resolve an adjacent crossing in a2 so that an R2 move can be
performed, reducing the game to a game on a smaller, (a1, a2 − 2) rational knot
(if a2 > 2) or an unknotted pseudodiagram (if a2 = 2).

Case 4: Suppose the Complicator performs a horizontal smoothing in the a1
twist. This case is analogous to Case 2 and should be handled similarly.

Case 5: Suppose the Complicator performs a vertical smoothing in the a1 twist.
This case is analogous to Case 1 and should be handled similarly.

Case 6: Finally, suppose the Complicator resolves a crossing in the a1 twist. This
case is analogous to Case 3 and should be handled similarly.

Challenge Problem 6 Prove the other half of Theorem 8. In other words, prove
the following: If the KnotLink Game is played on a standard (a1, a2) rational knot
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shadow where both a1 and a2 are even and the Simplifier moves first, then the
Complicator has winning strategy.

Theorems 7 and 8 have the following corollary.

Corollary 1 Suppose the KnotLink Game is played on a standard diagram of a
twist knot, Tn, with n + 2 crossings. Then the Complicator has a winning strategy if
and only if n is even and the Simplifier moves first.

In [2], winning strategies are also determined for the case of a rational knot given
by (a1, a2) where both a1 and a2 are odd as well as for (2, p)-torus knots and links.
There are many ways that these results might be extended. For instance, as of this
writing, nobody has yet done the following.

Research Project 8 Determine which player has a winning strategy in the
KnotLink Game played on a rational knot or link given by the triple
(a1, a2, a3) for each combination of parities (i.e., even/odd properties) for the
ai values.

Research Project 9 Determine winning strategies in the KnotLink Game
played on more complex rational knots, i.e., rational knots given by n-tuples
(a1, a2, . . . , an) where n > 3.

Research Project 10 Determine winning strategies in the KnotLink Game
played on shadows of your favorite non-rational knots.

6 The Link Smoothing Game

We now go all-in on using smoothings as moves in knot and link games! The Link
Smoothing Game, introduced by Inga Johnson and myself in [12], is played on a
connected knot or link shadow. Two players take turns selecting precrossings in the
shadow, as usual, but in the Link Smoothing Game, players smooth at precrossings
instead of resolving them. There are two possible choices for how to smooth at a
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precrossing (just as in Fig. 24), and these choices can have quite different effects
on the diagram. The goal of one player, the Knotter (K), is to keep the diagram
connected so that the final game board is a simple unknot while the goal of the other
player, the Linker (L), is to disconnect the diagram so that the final game board is
an unlink with two or more components.

A sample game where the Knotter plays first is shown in Fig. 27. Notice that after
the Knotter’s initial move, every time the Linker makes a move, he is attempting to
set up a situation where a portion of the diagram can be disconnected from the rest
of the diagram. (On each of his moves, he creates an R1-like loop.) So, the Knotter
is forced to play defense for the rest of the game, although she is able to effectively
thwart the Linker’s attempts to disconnect the diagram. This is a common feature of
Link Smoothing Games in which the Knotter wins.

K L K

L K L

K L K

Fig. 27 A sample Link Smoothing game where the Knotter wins by producing a final diagram
that has a single component
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Fig. 28 Example of a shadow and its checkerboard coloring

Fig. 29 The “black” graph for the example in Fig. 28 is shown in red (left), and the “white” graph
is shown in blue (center). The black-and-white graphs are shown together (right) to demonstrate
their duality

Exercise 10 Find a friend and play the Link Smoothing Game on the standard
shadow of any twist knot, Tn, with any n ≥ 3. Which player has a winning strategy
on your twist knot shadow? Explain why.

The Link Smoothing game was studied in [12] and again in [13] not by playing
games on the link shadows themselves, but instead by analyzing game play on the
checkerboard graph associated with a link shadow. Knot theorists have for years
used the fact that the shadow of a knot or link can be represented using a planar
graph to get a handle on a knot’s underlying structure [1]. This representation
provides tremendous insight into the game strategy for the Link Smoothing Game.

Sounds good! So, what is a checkerboard graph again?
The checkerboard graph, G, of a knot or link shadow D is constructed by first

black-and-white checkerboard coloring the regions of D, as in Fig. 28. Then, the
“black” graph is formed by placing a vertex in each black region. Each crossing
in D determines an edge that connects the vertices of the crossing’s two bordering
black regions. The “white” graph is constructed similarly, but with vertices coming
from white regions, including the outside region. See Fig. 29. The black-and-white
graphs of a shadow may contain loops or multiple edges between a given vertex
pair.

We should note that these two graphs are duals of each other. This means that
the white graph can be determined from the black graph or vice versa. We simply
place vertices in the regions of the black graph’s diagram and place one edge
perpendicular to each edge in the black graph so that it joins the vertices in the
regions it connects. The graph we’ve just created is the white graph! See Fig. 29.
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Fig. 30 The link shadow after the first move of the game in Fig. 27 (left) together with its black
graph (center) and white graph (right)

Since we’re interested in using these graphs to study the Link Smoothing Game,
we need to understand how the moves in the game affect the black-and-white
graphs. If a smoothing is used that joins two black regions (as in Fig. 30), then
the two vertices in those regions merge into one, contracting along the edge that
connects them through the smoothed crossing. Notice that a smoothing that joins
two black regions breaks a connection between two white regions, so an edge in
the white graph gets deleted. If, on the other hand, a smoothing that connects two
white regions is used during game play, the same phenomena will occur. This time,
however, two white graph vertices will contract into one, and one black graph edge
will be deleted.

When we play the Link Smoothing Game on the checkerboard graphs, the
Knotter is the winner if she can keep both graphs connected. The Linker wins if
either graph becomes disconnected at any point during game play. Now, we can
play the Link Smoothing Game on the black-and-white graphs rather than on the
link shadow!

Exercise 11 Show how the black-and-white checkerboard graphs are transformed
with each move in the sample game from Fig. 27.

Exercise 12 Following your observations from Exercise 10, see how game play on
the twist knot shadow proceeds when played on the corresponding checkerboard
graphs. What feature of the twist knot’s black graph do you suspect gives one player
the upper hand in this game?

Using the link-graph correspondence, the following theorem was proven in [12,
13].

Theorem 9 ([12,13]) Let G be a checkerboard graph associated with a connected
link shadow D. Graph G represents a game board on which the second player
has a winning strategy when playing the Link Smoothing Game if and only if G

is composed of two edge-disjoint spanning trees.
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Fig. 31 A graph (left) with two of its cycles (dashed edges; center, right)

Fig. 32 Two trees (left, center); a graph decomposed into two edge-disjoint spanning trees (right)

We see that this is a powerful theorem, but what in the world does it mean for
a graph to be composed of two edge-disjoint spanning trees? Good question! (We
didn’t even know the answer when we began studying the Link Smoothing Game!)
Let’s take a moment to gather a few definitions from graph theory.

First of all, a cycle in a graph is a path (think: going on a walk in a graph, making
sure you never visit the same place twice) that starts and ends at the same vertex.
Two examples of cycles are shown in Fig. 31. A tree is a connected graph with no
cycles. A spanning tree of a graph G with n vertices is a subset of n−1 edges of G

that form a tree. In Fig. 32, we see two trees, and we see how they’re both spanning
trees for the graph from Fig. 31. In fact these trees are edge-disjoint spanning trees
because they don’t share any edges.

We see in Fig. 32 that the game board we get after playing the first move in
our sample game (Fig. 27) fits the criteria for Theorem 9. So the second player has
a winning strategy. If we begin our game one move in, the Knotter plays second,
so the Knotter does indeed have a winning strategy. What about the original game
board from the sample game? Well, the Knotter is the first player in this game, so
the Knotter can ensure that the first move of the game puts her into a situation where
Theorem 9 guarantees her a win. Thus, The Knotter has a winning strategy when
playing first on the original knot shadow as well!

For more on the Link Smoothing Game, we encourage you to read [12].

7 Conclusion

Many of the major questions about the Link Smoothing Game have already been
answered, but we included it here to inspire you to invent new, and perhaps
similar games. For instance, another interesting smoothing game called the Region
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Smoothing Swap Game was inspired by this work. It is a hybrid of the Link
Smoothing Game and the Region Unknotting Game. We refer you to [13] to learn
more about this more complex game that can not only be played on a flat surface,
but also on tori, tori with more than one hole, and even nonorientable surfaces like
Klein bottles!

In fact, there are even more games you can play on knot diagrams that aren’t
included here. One of these is a two-player game, where players’ moves involve
performing Reidemeister moves [9]. Another is a single-player game—more of a
puzzle—called Region Select [20]. This game is based on the results about the
region crossing change operation from [19].

These are all interesting games to learn more about and explore. For now, though,
we leave you with your biggest challenge and the most fun open problem in this
chapter. Enjoy playing!

Research Project 11 Taking inspiration from all the games you learned
about here, invent your own game that can be played on knot and link
diagrams. Does your game have two players? Or perhaps your game only
has one player. . . or three! Be creative. Don’t edit your ideas for possible
new games before you’ve explored many possibilities. Once you have settled
on a game concept, explore your game. Which game boards are interesting
to study? If your game is a two-player game, which players have winning
strategies when moving first or second on which game boards?
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