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Abstract. The growing demand for electricity worldwide has made residential
electricity consumption management increasingly urgent and necessary. The elec-
tricity cost reduction is one of the great challenges of energy demand and is directly
related to energy efficiency measures. One way to reduce the residential energy
cost is to use techniques for automatic monitoring and control of loads according
to the smart grid concept (SGs are control devices and consumption and demand
management, so these mechanisms are not only useful on the side of generation,
transmission, and distribution of electricity, but also for residential consumers).
This intelligence can be implemented through low-complexity bioinspired opti-
mization techniques, such as Genetic Algorithm (GA), Ant Colony Optimization
(ACO), or Particle Swarm Optimization (PSO). In this context, the present work
proposes the use of the PSO technique to reduce the cost of electricity taking
into account the load constraints, defined by the consumer or by the smart grid
operator, and a utility price-based demand response program.
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1 Introduction

The development of new technologies has increased significantly in recent years and
the area of electricity is not different. Due to the forecast of a 75% increase in energy
demand by the end of 2021, utilities need to rethink how electricity should be gener-
ated, transmitted, and distributed to all consumers, in order to avoid excessive costs in
expanding the network to meet this new demand [1]. Thus, in this new energy scenario,
associated with more efficient use of energy, the growing need to use renewable energy
sources, and the reduction of polluting gas emissions, the so-called Smart Grids (SGs)
emerged.

The SGs can be considered as an evolution of the classic energy model to enable
more efficient management of the relationship between energy supply and demand, in
order to overcome the contingency problems of the modern world and offer new services
to consumers and the utility [2–4]. To achieve their goals, they need to use advanced
Information and Communication Technologies (ICTs) to monitor and control the power
grid as a whole [4].
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One of the technologies available in the SGs is the Demand Response (DR), which
allows optimizing the use of electricity according to some constraints imposed by the
utility. DR plans can be basically divided into two categories: incentive-based programs
and price-based programs [3].

Incentive-based programs provide consumers with financial incentives to reduce
demand at critical times, when energy availability is scarce or when grid reliability
declines.On theother hand, in price-basedprograms,whichwill be the focus of this study,
consumers manage energy consumption by activating and deactivating loads according
to, among other factors, the variation in the energy tariff throughout the day.

However, the implementation of price-based DR programs is not trivial, especially
as the number of appliances increases and operating constraints becomemore severe [5].
Thus, an interesting way to solve this problem is the use of low-complexity bioinspired
optimization techniques, such as Genetic Algorithm (GA), Ant Colony Optimization
(ACO), and Particle Swarm Optimization (PSO), among others [6–9].

In this context, this article presents an analysis of the use of the PSO technique in
the load management of a residence, which integrates a price-based DR program, to
reduce electricity costs, considering the constraints imposed by both the utility and the
consumers.

This article is divided into 5 sections. In Sect. 2, the system model is introduced and
the PSO technique is presented. In Sect. 3, the analyzed problem is presented. Section 4
presents the results obtained and the analyzes carried out. Finally, Sect. 5 presents the
main conclusions of the work.

2 System Model and PSO Technique

In optimization problems, two main phases can be defined, the elaboration of the math-
ematical model and the choice of the optimization technique. According to [10], there
must be a compromise between these two phases, so that the model can adequately
represent the real problem and allow its solution through optimization techniques with
acceptable computational effort.

This study focuses on reducing the cost of electricity in a home, considering that it is
part of a utility price-based DR program. The cost reduction is obtained through the use
of the PSO technique in the management of household appliances, taking into account,
in addition to the energy price variation, the appliance operation constraints defined by
the consumer and the utility.

The cost function of the problem is given in (1) and corresponds to the total energy
cost in the 24-h period.

C =
H∑

h=1

(
Th ∗

∑

l∈L
Ph
l

)
(1)

where Th represents the hourly rate throughout the day determined by the utility, Ph
l

is the consumption of an appliance l ∈ L, where l is an appliance and L is the set of
appliances involved in usage programming, at time h ∈ H , where h is the time of the
day and H the 24-h set.
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Equation (1) must be optimized taking into account the constraints indicated in
Eqs. (3) to (7). According to (2), an appliance cannot be turned on outside the hours
programmed by the consumer.

If sl ≤ h ≤ fl then Pl ≥ 0; else Pl = 0 (2)

where: sl represents the initial hour and fl the final hour of operation of each appliance,
defined by the consumer.

As shown in (3), the sum of consumption in the period between sl and fl must not
be greater than the total consumption (represented by El) allocated to each appliance.

fl∑

h=sl

Ph
l = El (3)

The programmed appliance operating interval l must be within the 24-h period, as
indicated in (4).

sl ≤ fl ≤ H (4)

The operating time of each appliance tl must not be greater than the programmed
operating interval, as shown in (5).

fl − sl ≤ tl (5)

According to (6), the sum of the consumption of all appliances in a period of one
hour, Ptotal/h, must not exceed Dmax.

∑

l∈L
Ph
l ≤ Dmax (6)

Finally, as indicated in (7), the consumption of each appliance in one hour must not
exceed Emax (which represents the maximum consumption per hour).

Ph
l ≤ Emax (7)

The PSO technique, developed by Kennedy and Eberhart [11], is known for solving
nonlinear optimization problems. It is a stochastic search technique developed through
an evolutionary process that simulates the action performed by birds in search of food
and that can be used to solve the problem of reducing the cost of electricity described
in this section. The advantages of PSO over other metaheuristic methods include its
flexibility, feasibility, and computational efficiency [11].

The PSO is based on a very simple theory of social cognition. All individuals in the
population have their own experience and can assess the quality of that experience. As
individuals are social, they also understand their neighbors’ behavior. These two pieces
of information correspond to individual learning (cognitive) and cultural transmission
(social), respectively. Therefore, the probability of a certain individual making a specific
decision will depend on his previous performance and the performance of some of
his neighbors. In [8], the process of cultural adaptation was summarized using three
principles:
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• Evaluation – individuals can feel the environment to estimate their own behavior;
• Comparison – individuals use each other as a comparative reference;
• Imitation – imitation is fundamental in human social organizations and is important
for the acquisition and maintenance of mental abilities.

Similar to other collective intelligence approaches, the PSO algorithm is based on a
population of individuals that interact with each other and with the environment. Based
on the properties of self-assessment, comparison, and imitation, individuals can deal
with a number of possible situations that the environment presents to them. Therefore,
global behaviors will emerge from the results of these interactions [8, 9].

In PSO, individuals in the population are represented by dots, known as particles, that
fly in a search space. Variations in the attributes of these particles lead to new particles
in space. Most PSO algorithms employ two sociometric principles, which represent two
types of important information in the decision process. The first metric, pb, conceptually
connects all members of a population, as a consequence, the behavior of each particle
is influenced by the behavior of all other particles. The second metric, pi, creates a
neighborhood for each individual composed of itself and its closest neighbors. Both
metrics are measured by a cost function f (p), usually called fitness function, which
corresponds to the optimal solution to the problem [11].

The implementation of the PSO algorithm is given as follows: Let M be the size of
the swarm, n the dimension of the problem and t the current instant, each particle i has
a position xi(t) ∈ Rn in the solution space and a velocity vi(t) ∈ Rn, which indicates the
direction and magnitude of its displacement. Additionally, each particle has the memory
of the best visited individual position p∗

i (t) ∈ Rn, and the swarm has the memory of the
best position visited by some particle so far p∗

b(t) ∈ Rn.
During the execution of the algorithm, the velocity of each particle is calculated

according to the best individual position visited p∗
i (t), the best position visited by the

swarm p∗
b(t) and the component that groups its previous velocity, serving as a term

of momentum (inertia). A particle pi(t) moves in a certain direction depending on the
current position of the particle xi(t), the velocity vi(t + 1), the position of the particle
that led to its best performance so far, and the best overall system performance so far
p∗
b(t). Thus, the speed update of each particle is given in (8).

vi(t + 1) = wvi(t) + c1r1
(
p∗
i (t) − xi(t)

) + c2r2
(
p∗
b(t) − xi(t)

)
(8)

where: r1 and r2 are random components taken from a uniform distribution that varies
between 0 and 1, responsible for a more natural search during the optimization process
[11]; c1 and c2 are, respectively, the local and global learning factors, responsible for
controlling the distance that a particle will move in just one iteration; w is the inertia
weight that multiplies the velocity at the previous instant t and makes the search more
exploratory at the beginning and the end, for a linearly decreasing inertia value, as
suggested in [11].

After updating the velocity, the particle changes its current position, as can be seen
in (9).

xi(t + 1) = xi(t) + vi(t + 1) (9)
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In order to guarantee the convergence of the algorithm within the search space, the
particle velocity module must be within a pre-establishedmaximum limit vmax. The PSO
algorithm runs until the stopping criterion is met or changes in particle velocities are
close to zero.

3 Problem Description

In this analysis, the white tariff created in 2016 by the Brazilian National Electric Energy
Agency (ANEEL) is adopted [12]. This pricing model establishes that the value of
electricity in a residence varies according to the consumption time concerning the peak
hours of the electricity grid. Table 1 shows the value of ANEEL’s white tariff for each
period of the day.

Table 1. White tariff from ANEEL [13].

Schedule Tariff Price (R$/kWh)
00:00 às 18:59 Off Peak 0.587
19:00 às 19:59 / 23:00 às 23:59 Intermediate 0.892
20:00 às 22:59 Peak 1.356

In Brazil, before the creation of the white tariff, there was only the conventional
tariff, with a single value (in R$/kWh), regardless of consumption time. In this DR
program, consumers try to avoid, whenever possible, consumption during periods with
higher tariffs [13].

To analyze the effectiveness of using the PSO technique in price-based load manage-
ment problems, a household that adopts ANEELwhite tariff programwith the following
appliances was considered, without loss of generality: 1 refrigerator (Refrig), 1 wash-
ing machine (Wmach), 1 microwave oven (Moven), 1 electric shower (Eshower), 1 air
conditioning (Aircon) and some lamps (Lamps).

Appliances, except the refrigerator, which needs to work practically all day (only 1
h off per day), must be programmed to work within the constraints imposed by the con-
sumer, preferably during off-peak periods. Loads contribute differently to the formation
of the cost function, as they have different powers and come into operation at different
times, according to the consumer’s needs, which may have different pricing rates.

Table 2 shows the power and operating time of each appliance, as well as the allowed
operating hours. Additionally, in this analysis, Emax will be considered greater than the
highest power among all the appliances used, and Dmax is considered as 8000 W.

Table 3 shows the possible hours of operation of each appliance, taking into account
the constraints previously established. For better visualization, the time instants in which
the appliances can be turned on were represented as ‘1’ and those that cannot, as ‘0’.
Additionally, different tariff periods were differentiated by distinct colors. White cells
indicate off-peak fare, yellow cells indicate mid-range fare, and red cells indicate peak
fare, as specified earlier in Table 1.
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Table 2. Power and operating restriction of each appliance [14].

Appliance Power (W) Duration (h) Allowed hours (h)

Refrigerator (Refrig) 500 23 h 0 h–23 h

Washing machine (Wmach) 1500 3 h 16 h–22 h

Microwave oven (Moven) 2000 1 h
1 h

7 h–9 h
19 h–21 h

Lamps (Lamps) 100 16 h 6 h–23 h

Electric shower (Eshower) 5500 1 h
1 h

6 h–8 h
18 h–23 h

Air conditioning (Aircon) 1400 10 h 8 h–22 h

Table 3. Allowed operating hours for each appliance.

Hour Refrig Wmach Moven Lamps Eshower Aircon
00:00 1 0 0 0 0 0
01:00 1 0 0 0 0 0
02:00 1 0 0 0 0 0
03:00 1 0 0 0 0 0
04:00 1 0 0 0 0 0
05:00 1 0 0 0 0 0
06:00 1 0 0 1 1 0
07:00 1 0 1 1 1 0
08:00 1 0 1 1 1 1
09:00 1 0 1 1 0 1
10:00 1 0 0 1 0 1
11:00 1 0 0 1 0 1
12:00 1 0 0 1 0 1
13:00 1 0 0 1 0 1
14:00 1 0 0 1 0 1
15:00 1 0 0 1 0 1
16:00 1 1 0 1 0 1
17:00 1 1 0 1 0 1
18:00 1 1 0 1 1 1
19:00 1 1 1 1 1 1
20:00 1 1 1 1 1 1
21:00 1 1 1 1 1 1
22:00 1 1 0 1 1 1
23:00 1 0 0 1 1 0
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4 Results and Discussions

Once the systemmodel and the PSO techniquewere properly presented, the feasibility of
using the PSO technique in the studied problem can be analyzed through computational
simulation in MatLab.

4.1 Integer Linear Programming

In this work, the Integer Linear Programming (ILP) technique [4] was used as a perfor-
mance reference and it considered all the defined constraints. The results for the analyzed
problem are presented in Table 4. In the table, the individual cost of each appliance during
the 24-h period is presented, as well as, the total cost, which is R$29.18.

Table 4. Obtained results with the ILP method.

Appliance Cost (R$)

Refrig 7,82

Wmach 2,64

Moven 2,96

Lamps 1,08

Eshower 6,46

Aircon 8,22

Total 29,18

4.2 Particle Swarm Optimization

The performance of the PSO technique depends significantly on the values of its param-
eters, such as population size, the maximum number of iterations, c1, and c2. Therefore,
it is important to analyze statistically the best values to reach the optimal solution.

Table 5 shows the results of some of the tests performed, varying the PSO parameters
values.

Table 5. Performed tests with the PSO.

Runs M Imax c1 c2 OK OK%

50 1.000 2.000 2,0 2,0 1 2,0

50 1.000 2.000 3,5 0,5 30 60,0

(continued)
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Table 5. (continued)

Runs M Imax c1 c2 OK OK%

50 1.000 2.000 4,0 0,5 31 62,0

50 1.000 2.000 4,5 0,5 19 38,0

50 4.000 2.000 3,5 0,5 41 82,0

50 4.000 2.000 4,0 0,5 47 94,0

50 4.000 2.000 4,5 0,5 44 88,0

50 6.000 2.000 3,5 0,5 46 92,0

50 6.000 2.000 4,0 0,5 47 94,0

50 6.000 2.000 4,5 0,5 49 98,0

50 6.000 3.000 4,5 0,5 50 100,0

According to the results obtained in the tests, the best optimization result (in agree-
ment with the optimal result reached by the ILP technique) is obtained for M = 6.000,
c1 = 4, 5, c2 = 0, 5, wmax = 0, 9, wmin = 0, 4, vmax = 1, and the maximum number of
iterations, Imax = 3.000.

In Fig. 1, the results of the 50 performed tests (runs) are presented, considering
the best configuration of PSO parameters obtained. It can be seen that 50 of the 50 runs
performed reached the optimal result indicated by the ILP technique, resulting in a 100%
hit probability.

Fig. 1. Electricity cost for each PSO realization with optimized parameters.

In Fig. 2, the convergence curves of each of the 50 runs analyzed are presented. It
can be seen that to ensure convergence with a high probability of success, the algorithm
needs to perform more than 2.000 iterations.
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Fig. 2. PSO convergence by number of iterations.

Table 6. Power per appliance throughout the day using the PSO technique.

Hour Refrig Wmach Moven Lamps Eshower Aircon PTotal/h

00:00 500 0 0 0 0 0 500
01:00 500 0 0 0 0 0 500
02:00 500 0 0 0 0 0 500
03:00 500 0 0 0 0 0 500
04:00 500 0 0 0 0 0 500
05:00 500 0 0 0 0 0 500
06:00 500 0 0 100 0 0 600
07:00 500 0 0 100 5.500 0 6.100
08:00 500 0 0 100 0 1.400 2.000
09:00 500 0 2.000 100 0 1.400 4.000
10:00 500 0 0 100 0 1.400 2.000
11:00 500 0 0 100 0 1.400 2.000
12:00 500 0 0 100 0 1.400 2.000
13:00 500 0 0 100 0 1.400 2.000
14:00 500 0 0 100 0 1.400 2.000
15:00 500 0 0 100 0 1.400 2.000
16:00 500 1.500 0 100 0 1.400 3.500
17:00 500 1.500 0 100 0 1.400 3.500
18:00 500 1.500 0 100 5.500 0 7.600
19:00 500 0 2.000 100 0 0 2.600
20:00 0 0 0 0 0 0 0
21:00 500 0 0 100 0 0 600
22:00 500 0 0 0 0 0 500
23:00 500 0 0 100 0 0 500
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Table 6 shows the power consumption of each appliance throughout the day, after the
optimization process performed by the PSO technique. The first column represents the
hours of the day and the other columns represent the power consumed by each appliance
throughout the day. It can be seen that the allocation of appliances in the 24-h period
meets all predefined operating constraints (including PTotal/h ≤ Dmax, that is, PTotal/h ≤
8.000 W).

Table 7 shows the cost spent by each appliance throughout the day, after the opti-
mization process performed by the PSO technique. The costs for each appliance per
hour are shown in each row corresponding to the appliance column and the total cost
per appliance for the day is shown at the end of each column. The sum of these values
corresponds to the total cost of electricity on the day, which was R$29.18. This value
corresponds to the optimal solution of the problem presented by the ILP technique,
validating the PSO technique analyzed for the proposed problem.

Table 7. Cost per appliance throughout the day using the PSO technique.

01:00 0,2935 0 0 0 0 0
02:00 0,2935 0 0 0 0 0
03:00 0,2935 0 0 0 0 0
04:00 0,2935 0 0 0 0 0
05:00 0,2935 0 0 0 0 0
06:00 0,2935 0 0 0,0587 0 0
07:00 0,2935 0 0 0,0587 3,2285 0
08:00 0,2935 0 0 0,0587 0 0,8218
09:00 0,2935 0 1,174 0,0587 0 0,8218
10:00 0,2935 0 0 0,0587 0 0,8218
11:00 0,2935 0 0 0,0587 0 0,8218
12:00 0,2935 0 0 0,0587 0 0,8218
13:00 0,2935 0 0 0,0587 0 0,8218
14:00 0,2935 0 0 0,0587 0 0,8218
15:00 0,2935 0 0 0,0587 0 0,8218
16:00 0,2935 0,8805 0 0,0587 0 0,8218
17:00 0,2935 0,8805 0 0,0587 0 0,8218
18:00 0,2935 0,8805 0 0,0587 3.2285 0
19:00 0,446 0 1,784 0,0892 0 0
20:00 0 0 0 0 0 0
21:00 0,678 0 0 0,1356 0 0
22:00 0,678 0 0 0 0 0
23:00 0,446 0 0 0,0892 0 0
PTotal/ap 7,82 2,64 2,96 1,08 6,46 8,22

Hour Refrig Wmach Moven Lamps Eshower Aircon
00:00 0,2935 0 0 0 0 0
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5 Conclusion

This work presented a PSO-based load management technique for residential applica-
tions, which takes into account a utility price-based DR program and load operation
constraints defined by the consumers or even by the utility. Analyzing the obtained
results, it can be verified that the proposed technique proved to be a very efficient and
attractive low-complexity strategy to reduce electricity costs in domestic applications.

For future work, other bioinspired optimization techniques, such as FPA or ACO,
can be applied to the analyzed problem and their performance can be compared to that
obtained by the PSO technique.
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