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Abstract. Knowledge graph embedding (KGE) has become an integral
part of AI as it enables knowledge construction and exploring missing
information. KGE encodes the entities and relations (elements) in a
knowledge graph into a low-dimensional vector space. The conventional
KGE models are trained using positive and negative examples by discrim-
inating the positives from the negatives. However, the existing knowledge
graphs contain only the positives. Hence, it is required to generate neg-
atives to train KGE models. This remains a key challenge in KGE due
to various reasons. Among them, the quality of the negatives is a critical
factor for KGE models to produce accurate embeddings of the observed
facts. Therefore, researchers have introduced various strategies such as
Bernoulli negative sampling to generate quality negatives that are hard
to distinguish from positives. However, fixed negative sampling strate-
gies are suffering from vanishing gradients and false negatives. Later,
the dynamic negative sampling techniques were introduced to overcome
the vanishing gradient, but the false negatives still remain as a chal-
lenge to the research community. The present research introduces a new
strategy called MDNCaching (Matrix Decomposed Negative Caching),
which generates negatives considering the dynamics of the embedding
space while exploring the quality negatives with large similarity scores.
Matrix decomposition is used to eliminate false negatives, and hence, the
MDNCaching ensures the quality of the generated negatives. The per-
formance of MDNCaching was compared with the existing state-of-art
negative sampling strategies, and the results reflect that the proposed
negative sampling strategy can produce a notable improvement in exist-
ing KGE models.
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1 Introduction

A Knowledge Graph (KG) is a structured representation of facts, textual data in
the form of (head, relation, tail) known as a triplet, e.g., (Shakespeare, isAutho-
rOf, Hamlet). Knowledge graphs are constructed using the knowledge bases such
as Freebase, DBpedia, WordNet, and YAGO. KGs have been utilized in many
real-world applications, such as question answering, recommendation systems,
and information retrieval. Although the knowledge bases contain vast volumes
of facts, the KGs are often incomplete as they are created based on the available
facts or the ground truth, which are often dynamic and evolving. For exam-
ple, when considering the people’s birthplaces, 71% and 66% are not found in
Freebase and DBpedia, respectively. Therefore, it is worth having methods to
complete the KGs automatically by adding the missing knowledge or the facts.

Recent research have shown that Machine Learning (ML) methods can be
effectively used to complete knowledge graphs. However, applying ML meth-
ods is still a challenging task due to various facts such as high dimensionality.
As a solution, knowledge graph embedding methods have been introduced by
past research. Knowledge graph embedding (KGE) which maps entities and
relations into a low dimensional vector space while preserving their seman-
tic meaning. Moreover, KGE overcomes the difficulties in manipulating textual
data in knowledge graphs, such as sparseness and computational cost [9]. Mod-
ern KGE strategies have shown promising results in knowledge acquisition tasks
such as link prediction, triplet classification, and knowledge graph completion.
Typically, KGE models accelerate training ML algorithms by extending the moti-
vation of ranking the observed instances (positives) higher than the unobserved
instances (negatives). However, the knowledge bases contain only positive exam-
ples. Hence, it is necessary to explore strategies to generate quality negatives that
are hard to distinguish from positives as they have high similarity but are nega-
tives. For instance, considering the positive (Shakespeare, isAuthorOf, Hamlet),
we say that the generated negative (Shakespeare, isAuthorOf, TheWidow’sTears)
is a quality negative as it is hard to distinguish from positives instead the negative
(Shakespeare, isAuthorOf, London). Generation of quality negatives enhances
the KG embeddings, which is always challenging. Therefore, negative sampling
becomes indispensable in knowledge representation learning as the KGE model’s
performance heavily relies on negative selection.

Most of the state-of-the-art strategies in generating negatives consider cor-
rupting positives randomly (e.g., [2,14]), based on closed world assumption, or
exploiting the KG structure when generating quality negatives (e.g., [1,17]).
However, these strategies suffer from false negatives as they do not guarantee
that the generated ones are always relevant, i.e., generating latent positives as
negatives. As KGE models are sensitive to inputs, false negatives usually fool the
model, losing the semantics of entities and relations. Furthermore, strategies
that randomly corrupt positives suffer from vanishing gradients as they tend to
generate triplets with zero gradients during the training phase.

To overcome the stated challenges, the present work proposes a negative
sampling strategy that explores negatives, considering the dynamic distribution
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of embedding space and reducing false negatives by adopting matrix decompo-
sition. We first trained the latent relation model that uses positives to utilize
the matrix decomposition. Then we predict the latent relations and refer them
with negative candidates generation. We utilize a caching technique to manage
negative triplets with large similarity scores. To overcome the vanishing gra-
dients problem, we up-date negative candidates concerning the changes to the
embedding space with KGE model training. Furthermore, we propose a selection
criterion that ensures “exploration and exploitation” that balances exploring all
possible quality negative candidates and sampling a fixed number of negatives
close to the positives.

The remainder of this paper is organized as follows. Section 2 discusses related
work with knowledge graph embedding and negative sampling. In Sect. 3, we pro-
pose a new strategy in generating quality negatives with large similarity scores
considering the dynamic distribution of embedding space while eliminating false
negatives adopting matrix decomposition. In Sect. 4, we present an experimen-
tal study in which we compare our proposed negative sampling strategy with
baseline results of benchmark datasets and analyze results with state-of-the-art.
In Sect. 5, we conclude this paper.

2 Related Work

Various research work has been conducted in Negative Sampling and Knowl-
edge Graph Embedding. KGE maps knowledge graph elements, i.e., entities
and relations, into low dimensional continuous vector space to use numeri-
cal representation when carrying out knowledge acquisition tasks. Commonly,
three mainstream KGE models are found: translational distance-based mod-
els, semantic matching-based models, and neural network approaches. Transla-
tional distance-based models represent the distance of projected KG elements
(e.g., [2,6,14]). Using matrix decomposition, semantic matching-based models
represent latent semantics organized in vectorized entities and relations (e.g.,
[8,11,16]). In addition, Neural network approaches have also gained attention
in recent research work that utilizes the potential of neural networks and vari-
ants (e.g., [4,5]). Typically, KGE models learn knowledge representation by dis-
criminating positives from negatives made by corrupting positives. However, the
quality of negatives affects training and performances of knowledge represen-
tation downstream tasks. In abstract, knowledge graph embedding work has
focused on providing a better representation for connection between entities
and relations of the knowledge graph, while negative sampling strategies have
focused on boosting the underlying embedding model.

2.1 Negative Sampling

Among the existing negative sampling strategies, Uniform negative sampling is a
widely used strategy due to its simplicity and efficiency. For example, TransE [2],
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ComplEx [11] and DistMult [16] use Uniform negative sampling to generate nega-
tives. Uniform negative sampling randomly corrupts positives by replacing head
or tail entities, and it reflects that generated negatives do not contribute to
knowledge representation learning in most cases and generate false negatives.
The Bernoulli negative sampling strategy was proposed to overcome this limita-
tion by considering relation cardinality (i.e., 1-N, N-N, and N-1) to reduce false
negatives [14]. However, both Uniform and Bernoulli sampling strategies are
fixed sampling schemes. They both suffer from vanishing gradients as they gener-
ate triplets with zero gradients during the training phase [17]. Hence, Generative
adversarial networks (GAN) based negative sampling strategies IGAN [12] and
KBGAN [3] were introduced to generate negatives with large similarity scores
considering the dynamic distribution of embeddings. The GAN-based strategies
adversarially train the discriminator to produce quality negatives concerning
a pre-trained KGE model as the generator. In KBGAN, the generator gener-
ates a candidate set of uniformly sampled negatives, i.e., Neg = (h̄, r, t̄), selects
one with the highest probability from set Neg, and then feeds to the discrimi-
nator that minimizes marginal loss between positives and negatives to improve
the final embedding. However, GAN-based strategies suffer from high variance in
REINFORCE gradient [15], and the generator introduces additional parameters.
Both KBGAN and IGAN require pre-trained, which adds extra costs. Recently,
Structure Aware Negative Sampling (SANS) [1] strategy was introduced with a
different perspective that utilizes available graph structure by selecting negatives
considering the neighborhood. Since SANS explores potential negatives within
a k-hop neighborhood, SANS also increases the possibility of generating false
negatives. NSCaching [17] was proposed to overcome the challenges in gener-
ating quality negatives by introducing a cache that maintains negative triplets
with large similarity scores and updating the cache using importance sampling.
Despite this, NSCaching may produce false negatives with a high possibility as
the latent positives also reflect large similarity scores.

3 MDNCaching

Although the literature shows diverse KGE models, generating quality negatives
remains as a fundamental challenge in KGE. The present research introduces
a new strategy called MDNCaching, which generates negatives considering the
dynamics of the embedding space while exploring the quality negatives with large
similarity scores. The novel strategy addresses existing challenges; 1). reducing
false negatives in the generated candidates, and 2). generation of quality nega-
tives with large similarity scores. To this end, we introduce a novel strategy that
combines the dynamic updates of the embedding space to overcome the chal-
lenge of generating quality negatives with large similarity scores, avoiding the
vanishing gradients problem. More precisely, the Matrix Decomposition tech-
nique is utilized to model the latent relations when avoiding false negatives that
enhance the quality of the generated negatives. Before delving into the details
of the proposed strategy, it is worth knowing the idea of matrix decomposition,
a critical component of the proposed strategy.
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3.1 Matrix Decomposition

The matrix decomposition (MD) technique utilizes matrix multiplication to gen-
erate latent features. Collaborative filtering is the typical application of MD to
identify ratings between item and user entities [7]. Referring to collaborative
filtering context, let U be a set of Users, D be a set of items, and R be a rating
matrix between U and D, i.e., R = R|U |×|D|, including all product ratings given
by users. With matrix decomposition, the goal is to generate latent rating fea-
tures, given that the input of two matrices, P that represents the association
between a user and features, and Q that represents the association between an
item and features, i.e., R ≈ P × Q� [7].

Even though the matrix decomposition techniques are utilized with KGE
(e.g., [8]), to the best of our knowledge, the MD technique is yet under utilized
in the negative sampling strategies. Considering the benefits of MD techniques
in modeling hidden semantics, we apply a matrix decomposition technique to
model the latent relations to predict potential false negatives. In our model, let
h be a set of Heads, t be a set of Tails, and R be a relation matrix between
h and t, i.e., R = R|h|×|t|, includes all relations between entities. Our goal is to
generate latent relations referring to the matrix decomposition model such that
R ≈ H × T� where H represents the association between a head and features,
and T represents the association between a tail and the features.

3.2 The Proposed Strategy

This section describes the proposed negative sampling strategy MDNCaching.
Recall the stated challenges in negative sampling 1). reduce false negatives that
fool the KGE model to lose the semantics of the KG, and 2). adopt dynamics
of the embedding space when generating quality negatives with large similarity
scores to avoid the vanishing gradient. The proposed strategy enhances the KGE
by generating quality negatives with large similarity scores while reducing the
possible false negatives in the sampling space.

The proposed MDNCaching is a dynamic distribution-based negative sam-
pling strategy that integrates a matrix decomposition technique and utilizes the
dynamics of the knowledge graph embedding to address the stated challenges.
We integrate the matrix decomposition technique to eliminate false negatives
by predicting latent relations. The reduction of false negatives decreases the
possible discrimination on latent positives and enhances the KGE. We consider
frequent updates to the embedding space to overcome the issue of generating
quality negatives with large similarity scores. Furthermore, we utilize a caching
technique that maintains negatives with large similarity scores for each positive
in the training set S. Two caches are separately maintained as head-cache H
that maintains candidates for head corruption and indexes negatives with tail
and relation (t, r), while tail-cache T maintains candidates for tail corruption
and indexes negatives with head and relation (h, r). We uniformly sample a neg-
ative from the cache efficiently without introducing any bias. The lazy update
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Fig. 1. The framework for the proposed negative sampling strategy MDNCaching.

technique in updating caches refreshes the cache after N number of epochs later
rather than immediate.

Our framework for the proposed negative sampling strategy is depicted in
Fig. 1, illustrating steps in generating a quality negative with tail corruption
scenario. The proposed MDNCaching consists of six critical steps in generating
quality negatives and executing the KGE task. In step 1, MDNCaching per-
forms the latent relation model training. Detection and elimination of false
negatives are critical tasks in the proposed negative sampling strategy. In order
to predict latent positives, the matrix decomposition model is trained concern-
ing the observed KG elements. In step 2, MDNCaching drops true positives
from the candidate negatives. The candidate negatives are initiated as entity
space E except the given positive elements. This technique ensures that the pro-
posed strategy explores candidate negatives best. For example, given the posi-
tive (h, r, t1), MDNCaching initializes the candidate negatives as {t2, t3, t4, t5}
where E = {h, t1, t2, t3, t4, t5}. However, the candidate negatives may comprise
true positives since KG consists of 1-N, N-N and N-1 relations. Therefore, it is
essential to drop true positives from the candidate negatives (e.g., given positive
(h, r, t3), candidate {t3} is removed from candidate negatives resulting {t2, t4, t5}
as candidates). In step 3, MDNCaching drops false negatives from the can-
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Algorithm 1: KGE model training with negatives from MDNCaching.
Input: Knowledge graph G, and the matrix decomposition model fmd

Output: Knowledge graph embeddings
1 Initialize head-features embeddings ∀h ∈ E , and tail-features embeddings

∀t ∈ E and train fmd for a certain number of epochs.
2 Initialize caches; head-cache H, tail-cache T using Algorithm 2.
3 Initialize knowledge graph embeddings ∀e ∈ E , ∀r ∈ R.
4 Loop
5 foreach (h, r, t) ∈ G do
6 Index H by (t, r), i.e.,H(t,r) and T by (h, r), i.e.,T(h,r).
7 Uniformly sample h̄ ∈ H(t,r) and t̄ ∈ T(h,r).
8 Select negative (h̄, r, t̄) either as (h̄, r, t) or (h, r, t̄) considering the

relation cardinality of r.
9 Update knowledge graph embeddings discriminating (h, r, t) against

(h̄, r, t̄).
10 end foreach
11 update cache H and T using Algorithm 2;

12 end

didate negatives utilizing the trained MD model at step 1. It is essential to
identify false negatives before the score filtration since they also contain large
similarity scores. Therefore, the proposed strategy predicts latent relations to
exclude false negatives from the candidate negatives (e.g., given the (h, r) pair,
{t1, t3, t5} are predicted, and the {t5} is removed from the candidate negatives,
which is the latent). In step 4, the proposed strategy evaluates similarity
scores for the candidate negatives, referring to the baseline scoring function.
Since MDNCaching drops true positives and false negatives, the candidate neg-
atives consist of potential negatives. In step 5, the quality negatives are filtered
considering the similarity score, i.e., filter scores, and negatives with large sim-
ilarity scores are selected (e.g., given s2 and s4 are similarity scores for (h, r, t2),
(h, r, t4) respectively, and given s4 ≥ filtration threshold, we update the can-
didate negatives as {t4}). In step 6, the proposed strategy performs the KGE
model training by discriminating provided positives (e.g., (h, r, t1)) against
generated negatives (e.g., (h, r, t4)).

3.3 Integration of MDNCaching with KGE Framework

Figure 1 describes the general framework of negative sample generation. How-
ever, we utilize a caching technique to manage generated negatives effectively in
MDNCaching. Therefore, we describe the integration of MDNCaching with the
typical KGE framework and the utilization of the caching technique in Algo-
rithm 1. First, the matrix decomposition model training is performed. Then, the
caches are initialized. Generally, we generate a triplet as a candidate for nega-
tives by replacing either head or tail. The generated negatives are stored in two
separate caches , i.e., head-cache H (indexed by (t, r)) and tail-cache T (indexed
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Algorithm 2: MDNCaching cache update considering the dynamic distri-
bution of embedding space.
Input: Baseline scoring function f , knowledge graph G, matrix decomposition

model fmd

Output: head-cache H and tail-cache T
1 foreach (h,r,t) ∈ G do
2 Initialize negative candidates for H(t,r) and T(h,r).
3 Remove true positives from H(t,r) and T(h,r).
4 Predict latent relations from fmd, ∀h̄ ∈ H(t,r), ∀t̄ ∈ T(h,r) and drop false

negatives from H(t,r) and T(h,r).
5 Evaluate similarity scores ∀h̄ ∈ H(t,r) and ∀t̄ ∈ T(h,r) considering the

baseline scoring function f , i.e., f(h̄, r, t) and f(h, r, t̄) respectively.
6 Select candidates with large similarity scores from H(t,r) and T(h,r).

7 end foreach

by (h, r)). Next, KGEs are initialized for KG elements, and KGE model training
is performed iteratively for a certain number of epochs. When a positive triplet
is received, the head-cache H and the tail-cache T are indexed. Then, a candi-
date negative triplet is generated referring to H(t,r) and T(h,r). Since the caches
maintain quality negatives with large similarity scores, selecting any candidate
from H(t,r) or T(h,r) avoids the vanishing gradient problem with high probability.
Then, it performs the typical embedding update task referring to the baseline
KGE model. Finally, caches are updated, adopting the changes to the KGE
space, and strategy refers the Algorithm 2 to populate quality negatives in the
head-cache H and the tail-cache T . Algorithm 2 describes the process of gener-
ating quality negatives with large scores following the previously described steps
2–5 iteratively for each element in the KG.

In summary, the proposed MDNCaching strategy introduces an additional
step to train a matrix decomposition model before KGE model training, and it
introduces a caching technique to manage generated candidate negatives effec-
tively. With flexibility in integrating any translational distance-based or seman-
tic matching-based model, MDNCaching enables robustness in training models
from scratch with fewer parameters than previous dynamic negative sampling
work IGAN [12], and KBGAN [3]. The generator in GAN approaches tends to
generate correct facts that are considered as positives instead of negatives, and
in contrast to GAN approaches, the proposed MDNCaching strategy considers
latent relations to eliminate plausible positive facts from the negative candi-
dates by utilizing the matrix decomposition technique. Besides, MDNCaching
extends the idea of caching candidate negative that proposed in NSCaching [17].
The proposed strategy explores the candidate space to the best at step 2 and
exploits the candidates by carefully managing caches at step 5. In addition to
that, the exploration of negatives with large similarity scores effectively impacts
embedding training.
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Table 1. Scoring functions for triple (h, r, t), and parameters. diag(r) constructs the
diagonal matrix with r.

Model Scoring function Definition Parameters

Translational

distance-based

TransE [2] ‖h + r − t‖i h, r, t ∈ R
n

TransD [6]
∥
∥
∥h + wrw

�
h h + r − (t + wrw

�
t t)

∥
∥
∥
i

h, r, t, wh, wt, wr ∈ R
n

Semantic

matching-based

DistMult [16] h · diag(r) · t� h, r, t ∈ R
n

ComplEx [11] Re(h · diag(r) · t�) h, r, t ∈ C
n

Table 2. Statistics of the datasets used with experiments

Dataset #entity #relation #train #valid #test

WN18RR 93,003 11 86,835 3,034 3,134

FB15K237 14,541 237 272,115 17,535 20,466

4 Experiments

We evaluated the proposed negative sampling strategy, i.e., MDNCaching, on the
link prediction in KGs and compared results with the state-of-the-art negative
sampling strategies. In this case, the task was to predict the missing head (h)
or tail (t) entity for a positive triplet (h, r, t) and evaluate the rank of the head
and tail entities among all predicted entities. We evaluated the results for link
prediction with TransE [2], TransD [6], DistMult [16], and ComplEx [11] baseline
KGE models, and definitions are described in Table 1.

4.1 Experimental Setup

Datasets. The experiments were conducted on two popular benchmark datasets
WN18RR [13] and FB15K237 [10]. These datasets were constructed by remov-
ing inverse-duplicate relations from previous WN18 and FB15K datasets respec-
tively. The experiments were carried out in these two variants as they were
more challenging and realistic than originals. The statistics of the data sets are
described in Table 2.

Performance Measurement. We consider the “Filtered” setting with perfor-
mance evaluation so that valid entities outscoring the target are not considered
mistakes. Hence they are skipped when computing the rank. We evaluate results
based on the following metrics,

1. Mean Rank (MR) is the average of the obtained ranks; MR = 1
|Q|

∑
q∈Q q.

The smaller value of MR tends to infer better results. However, since MR is
susceptible to outliers, the Mean Reciprocal Rank is widely used.
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2. Mean Reciprocal Rank (MRR) is the average of the inverse of the obtained
ranks; MRR = 1

|Q|
∑

q∈Q
1
q . The higher value of MRR tends to infer better

results.
3. Hit@K is the ratio of predictions for which the rank is equal or lesser than

a threshold k; Hits@K = |{q∈Q:q≤K}|
|Q| . The higher value of Hits@K tends to

infer better results.

Optimization and Implementation. A knowledge graph model was opti-
mized by minimizing the objective function with Adam optimizer, and first,
we tuned hyper-parameters referring to Bernoulli sampling strategy based on
MRR. We conducted the evaluation for 1000 epochs and presented the best
result for MRR. We started our experiments within the following ranges for
hyper-parameters: embedding dimension d ∈ {50, 100, 250, 1000}, learning rate
η ∈ {0.0005, 0.005, 0.05, 0.5}, margin value γ ∈ {1, 2, 3, 4, 5} and optimized for
best performance.

Results. We compare results with state-of-the-art negative sampling strategies
concerning the reported performance comparison in NSCaching [17] work for
Bernoulli, KBGAN, NSCaching concerning the training from scratch. Also, we
directly consider the reported performance in SANS [1]. The performance com-
parison on link prediction is summarized in Table 3. When comparing results on
translational distance-based, it is evident that the proposed negative sampling
strategy gains substantial improvement for both datasets, i.e., WN18RR and
FB15K237. When evaluating results for semantic matching-based KGE models,
we observe that the proposed strategy outperforms the state-of-the-art negative
sampling strategies. One can observe that MDNCaching consistently achieves
better results with ComplEx than the state-of-the-art negative sampling strate-
gies for both datasets with substantial improvements (i.e., Hits@10 by 4.40% and
10.91% for WN18RR and FB15K237 respectively). Although some results are
competitive, experimental results reflect that MDNCaching enhances link predic-
tion tasks against the state-of-the-art negative sampling strategies. For instance,
when considering the Hits@10, we can witness 7.83% and 10.91% improvement
with TransE and ComplEx respectively for the FB15K237 dataset while we
observe 4.64% and 4.40% improvement with DistMult and ComplEx respec-
tively for the WN18RR dataset. The results evidence that the proposed negative
sampling strategy effectively enhances the KGE by generating quality negatives.
The substantial improvements in MRR and Hits@10 reflect that the MDNCache
successfully overcomes the stated challenges with negative generation.
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Table 3. Comparison of state-of-the-art negative sampling strategies on WN18RR and
FB15K237 datasets. Note that results of MR and results for TransD and ComplEx
embedding models for SANS [1] is not available as the original did not include. We
consider SANS with the random walk configuration.

Score
function

Negative sampling
strategy

WN18RR FB15K237

MRR MR Hits@10 MRR MR Hits@10

TransE Bernoulli [17] 0.1784 3924 45.09 0.2556 197 41.89

KBGAN [17] 0.1808 5356 43.24 0.2926 722 46.59

SANS [1] 0.2317 – 53.41 0.2981 – 48.50

NSCaching [17] 0.2002 4472 47.83 0.2993 186 47.64

MDNCaching 0.2390 3054 53.20 0.3330 200 52.30

TransD Bernoulli 0.1901 3555 46.41 0.2451 188 42.89

KBGAN 0.1875 4083 46.41 0.2465 825 44.4

SANS – – – – – –

NSCaching 0.2013 3104 48.39 0.2863 189 47.85

MDNCaching 0.1737 4477 48.36 0.2683 354 46.43

DistMult Bernoulli 0.3964 7420 45.25 0.2491 280 42.03

KBGAN 0.2039 11351 29.52 0.2272 276 39.91

SANS 0.4071 – 49.09 0.2621 – 41.46

NSCaching 0.4128 7708 45.45 0.2834 273 45.56

MDNCaching 0.3921 2946 51.37 0.2694 403 44.10

ComplEx Bernoulli 0.4431 4693 51.77 0.2596 238 43.54

KBGAN 0.3180 7528 35.51 0.1910 881 32.07

SANS – – – – – –

NSCaching 0.4463 5365 50.89 0.3021 221 48.05

MDNCaching 0.4729 5312 54.05 0.3594 415 53.29

5 Conclusion

The present research proposed MDNCaching, which is an enhanced negative
sampling strategy for KGE, addressing the problem of false negatives by reducing
latent positives predicting through matrix decomposition. The proposed strategy
effectively manages separate caches for head and tail candidates that contain
quality negatives with large similarity scores, adopting the dynamic changes in
the embedding space. Experimentally, we evaluated the MDNCaching on two
datasets and four scoring functions covering translational-distance and semantic
matching models. Experimental results reflect a substantial enhancement with
TransE, DistMult, and ComplEx KGE models. Notably, the ComplEx KGE
model with MDNCaching improves both datasets considerably. When carefully
balanced the exploration and exploitation, MDNCaching requires considerable
memory as it explores possible candidates, and utilization of memory handling
will proceed as future works. Also, possible enhancements with latent relation
prediction will continue for our future works.
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