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Abstract. Extracting stable periodic-frequent patterns in very large
temporal databases is a key task in big data analytics. Existing studies
have mainly concentrated on discovering these patterns only in row tem-
poral databases, and completely ignored the existence of these patterns
in columnar databases, which are widely becoming popular for storing
big data. In this paper we propose an efficient algorithm, Stable Periodic-
frequent Pattern-Equivalence CLass Transformation (SPP-ECLAT), to
find the desired patterns in a columnar temporal database. Empirical
results demonstrate that the SPP-ECLAT algorithm is much faster and
consumes significantly less memory than the state-of-the-art SPP-growth
algorithm on sparse and dense databases.
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1 Introduction

Databases are broadly classified into two types based on the layout of data
recording on a storage device, namely row databases and columnar databases1.
Row databases store data as records, maintaining the complete data associated
with a record in a storage device next to each other. These databases are pri-
marily based on ACID2 properties and are designed to read and write rows
fast. MySQL and Postgres are two examples of horizontal databases. Columnar
databases organize data into fields and store the complete data corresponding
with a field in the same storage device. These databases are primarily based on

1 Row and columnar databases are also referred to as horizontal and vertical databases,
respectively.

2 ACID stands for Atomicity, Consistency, Isolation, and Duration.
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BASE3 properties and are designed to be efficient when reading and computing
on columns. Snowflake and BigQuery are two examples of columnar databases.
Both row and columnar databases have their respective advantages and disad-
vantages. So, the user and/or application requirements determine the appro-
priate database layout. Generally, row databases are better suited to online
transaction processing (OLTP), whereas columnar databases are better suited to
online analytical processing (OLAP). Since the primary objective of OLAP is to
uncover meaningful information in data, this paper makes an effort to discover
stable periodic-frequent patterns in a columnar database.

Periodic-frequent pattern mining is a useful and essential big data analytical
technique. It involves identifying all patterns that satisfy the minimum support
(minSup) and maximum periodicity (maxPer) constraints which are specified
by user. MinSup measure constraints the minimum number of transactions in a
database where a pattern must appear. MaxPer measure constraints the max-
imum time interval within which a pattern must reappear. Periodic-frequent
pattern has been used for the analysis of market-basket analysis, which involves
finding the sets of items purchased by the customers periodically. Consider a
following example:

{Bread,Butter} [support = 25%, periodicity = 2h].

This pattern provides information that 25% of the customers have purchased the
items ‘Bread’ and ‘Butter’ at least once every two hours. Such information may be
helpful to the managers of a supermarket for inventory management and product
placement. Periodic-frequent pattern mining was extended to find fuzzy periodic-
frequent patterns [1], partial periodic patterns [2], and high utility periodic pat-
terns [3]. However, this technique has the major disadvantage of being overly strict.
The reason is that a pattern is discarded if there exist only one period that exceeds
maxPer. For example, a pattern that shows a customer purchases bread every day
would be discarded if the customer skipped only one day.

To deal with the above problem, some studies was proposed a model to
find partial periodic patterns [4] by relaxing the maxPer constraint, i.e., some
of the periods of a pattern is greater than the user-specified maxPer value.
Unfortunately, this [4] model is accepting some of the patterns which are having
very lengthy periods. For example, purchasing bread can be considered periodic
even if a customer purchases it on multiple days but without purchasing it again
for a month. The length of periods for some patterns can vary significantly in a
real-world database so that traditional models for discovering periodic-frequent
patterns are insufficient.

A new class of periodic-frequent patterns named stable periodic-frequent
patterns were introduced by Philippe et al. [5], whose recurrence deviation in
the database is within the user-specified threshold value. These patterns over-
come the above mentioned limitations of the periodic-frequent patterns. Fur-
thermore, a pattern-growth algorithm, called Stable Periodic-Frequent Pattern-
growth (SPP-growth), was proposed to discover desired patterns in a temporal
database. However, there exist two limitations as follows:
3 BASE stands for Basically Available, Soft state, and Eventually consistent.
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– SPP-growth is designed to discover stable periodic-frequent patterns only in
row databases. So, desired patterns in columnar databases cannot be found by
this algorithm. In addition, this would be costly to transform a big columnar
database into a row database.

– In the SPP-growth algorithm, huge memory is required to complete a tree-
based recursive mining process, and runtime consumption is also very high.

To that end, a novel algorithm, named Stable Periodic-frequent Pattern-
Equivalence CLass Transformation (SPP-ECLAT), is proposed in this paper to
discover stable periodic-frequent patterns in a columnar temporal database. The
proposed algorithm is shown to be efficient in terms of both memory and runtime.

The remainder of the paper is organized as follows. The related work is
presented in Sect. 2. The model of stable periodic-frequent pattern is provided
in detail in Sect. 3. The SPP-ECLAT algorithm is then described in Sect. 4.
Section 5 shows the evaluation results and discussions. Finally, conclusions and
future research directions are given in Sect. 6.

2 Related Work

Tanbeer et al. [6] described a novel pattern-growth algorithm to discover
periodic-frequent patterns in a transactional database. Amphawan et al. [7] have
identified the most frequent patterns as candidate patterns and generated the
Top-k periodic-frequent patterns with the help of the best-first search strategy.
Uday et al. [8] have designed a novel concept named local periodicity to prune the
non-periodic patterns locally. Authors have discarded the patterns whose local
periodicity is less than the user-specified maxPer value. As a result, most of the
non-periodic patterns tid-lists were not completely built, resulting in a decrease
in the computational time of the proposed algorithm. Anirudh et al. [9] have
designed an approach to reduce the memory consumption of the pattern growth
approach. In general, PF-trees have maintained the transaction identifiers (tid)
in a particular node named as tail-node. However, in real-world applications, it
is highly impractical to maintain the complete tid-list. Hence the authors have
designed a new strategy named periodic summaries to be maintained at the
tail-node to reduce the memory consumption while generating periodic-frequent
patterns. Ravi et al. [10] have introduced PF- ECLAT, to find periodic-frequent
patterns in a columnar databases. All the algorithms mentioned above will dis-
card a non-periodic pattern if any of the period or local period exceeds the value
of the maxPer constraint. Kiran et al. [11] have classified patterns as partial
periodic and full periodic patterns. In real-world applications, some patterns will
occur only at a particular point of time named partial periodic patterns. How-
ever, this algorithm cannot be applied to mine stable periodic-frequent patterns.
The proposed algorithm has calculated the period− support measure as a count
of the periods of the patterns whose value is less than the user-specified maxPer.
Unfortunately, it completely ignores the periods’ deviation from the maxPer.

A new interestingness measure called lability was exploited by Philippe
et al. [5] to determine the interestigness of stable periodic-frequent patterns in
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transactional databases. Authors had described a new strategy named lability.
The lability of a pattern is the cumulative sum of the difference between each
period length and maxper. A novel measure maxLa was also used to assess the
stability of a pattern’s periodic behavior in a database. Ruimeng et al. [12] dis-
cussed a model to find stable periodic-frequent patterns in uncertain databases.
Fournier-Viger et al. [13] utilized the concept of top-K mining to generate the
stable periodic-frequent patterns. It has to be noted that all of these algorithms
find the patterns in only row databases. In this paper, we have devised an algo-
rithm to find the patterns in columnar databases.

3 Model of Stable Periodic-Frequent Patterns

Assume that we have a pattern (or an itemset) Y, Y ⊆ I, where I is the set of
items. Denoted k-pattern as the pattern that has k items, k ≥ 1. tk = (ts, X)
is a transaction with X being the pattern and ts being timestamp, ts ∈ R

+. A
set of transactions constitute a temporal database denoted by TDB over I,
i.e., TDB = {t1, · · · , td}, d = |TDB|. Let tsY be the timestamp of pattern Y ,
Y ⊆ X, which occurs in transaction ti (or ti contains Y ), ti = (ts, X), i ≥1.
Denoted TSY as a set of timestamps {tsYj , · · · , tsYi }, j, k ∈ [1, d] and j ≤ i.
TSY can be consider as an ordered set of timestamps of pattern Y .

Example 1. Assume that we have a set of items I = {p, q, r, s, t, u}. Table 1
shows a row temporal database. Table 2 shows a columnar temporal database
which is converted from above row database. In Table 3 we show for each item
the temporal occurrences over the whole database. The set of items ‘r’ and ‘q’,
i.e., {r, q} is a pattern. This pattern will be represented as ‘rq’ for brevity. This
pattern is denoted as 2-pattern because it contains two items. The occurrences
of pattern ‘rq’ are at the timestamps of 1, 3, 6, 8, 9, and 10. Therefore, we have
a list of timestamps containing ‘rq’, i.e., TSrq = {1, 3, 6, 8, 9, 10}.

Definition 1 (The support of Y). Denoted sup(Y ) the support of Y which
is the number of transactions containing Y in TDB. That is, sup(Y ) = |TSY |.
Example 2. The support of ‘rq’, i.e., sup(rq) = |TSrq| = 6.

Definition 2 (Frequentpattern Y). The pattern Y is a frequent pattern if
sup(Y ) ≥ minSup, where minSup is a minimum support value indicated by
user.

Example 3. Suppose minSup = 5, then rq is a frequent pattern because of
sup(rq) ≥ minSup.

Definition 3. (Periodicity of Y). Denoted tsYm and tsXn , j ≤ m < n ≤ k the
two consecutive timestamps in TSY . The time difference between tsYn and tsYm
is given by a period of Y , denoted by pYz . That is, pYz = tsYn − tsYm. Denoted
PY = (pY1 , pY2 , · · · , pYn ) the set of all periods for pattern Y . The periodicity
of Y , denoted by per(Y ) = maximum(pY1 , pY2 , · · · , pYn ).
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Table 1. Row
database

ts Items ts Items

1 qrs 6 pqr

2 pq 7 stu

3 pqrs 8 qrs

4 tu 9 pqrs

5 prs 10 pqrs

Table 2. Columnar database

Items Items

ts p q c s e u ts p q r s t u

1 0 1 1 1 0 0 6 1 1 1 0 0 0

2 1 1 0 0 0 0 7 0 0 0 1 1 1

3 1 1 1 1 0 0 8 0 1 1 1 0 0

4 0 0 0 0 1 1 9 1 1 1 1 0 0

5 1 0 1 1 0 0 10 1 1 1 1 0 0

Table 3. Timestamp
list of an item

Item TS-list

p 2,3,5,6,9,10

q 1,2,3,6,8,9,10

r 1,3,5,6,8,9,10

s 1,3,5,7,8,9,10

t 4,7

u 4,7

Example 4. All periods of the pattern ‘rq’ are : prq1 = 1 (= 1 − tsinitial), p
rq
2 =

2 (= 3 − 1), prq3 = 3 (= 6 − 3), prq4 = 2 (= 8 − 6), prq5 = 1 (= 9 − 8), prq6 =
1 (= 10 − 9), and prq8 = 0 (= tsfinal − 10), where first transaction time
stamp is denoted by tsinitial = 0 and the last transaction’s time stamp is
denoted by, tsfinal = |TDB| = 10. The periodicity of rq, i.e., per(rq) =
maximum(1, 2, 3, 2, 1, 1, 1, 0) = 3.

Definition 4 (Periodic-frequent pattern Y). The frequent pattern Y be con-
sidered as periodic-frequent pattern if per(Y ) ≤ maxPer, here maxPer is
maximum periodicity value which is specified by user.

Example 5. Let the user-specified maxPer = 3, in this case the frequent pattern
‘rq’ is called as a periodic-frequent pattern as per(rq) ≤ maxPer.

Definition 5 (Lability of an itemset). Denoted tsYi+1 and tsYi , i ∈
[0, sup(Y )] two consecutive time stamps where Y occurs in TDB. We call i-
th lability of Y denoted by la(Y, i) = max(0, la(Y, i− 1) + pYi −maxPer), where
la(Y,−1) = 0. For simplicity, the following short form is used

la(Y, i) = max(0, la(Y, i − 1) + tsYi+1 − tsYi − maxPer)

The following is a list of periods which represent the lability of an itemset
Y : la(Y ) = {la(Y, 0), la(Y, 1), · · · , la(Y, sup(Y ))}, and |la(Y )| = |per(Y )| =
sup(Y ) + 1.

Example 6. Given an item p. If maxPer= 2, the parameters for calculating its
lability are la(p, 0) = max(0, la(p,−1)+ pp0 −maxPer) = max(0, 0 + 2− 2) = 0,
la(p, 1) = 0, la(p, 2) = 0, la(p, 3) = 0, la(p, 4) = 1, la(p, 5) = 0, and la(p, 6) = 0.
Therefore, the lability of p is la(p) = {0, 0, 0, 0, 1, 0, 0}.

Based on Definition 5, the periodic pattern can be considered as stable (labil-
ity is zero) if all its periods are less than or equal to maxPer. The lability of a
period of a pattern will increase when a period of a pattern larger than maxPer,
and these exceeding values are accumulated using the measure of lability. The
value of lability will be reduced when periods of a pattern no more than maxPer.
Therefore, according to the periodic characteristic of a pattern, its lability will
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vary over time, and each value exceeding maxPer is accumulated. A periodic
behavior is considered stable when lability value is low while a high value means
an unstable one. So stable pattern can be found using this measure given a limit
on the maximum lability.

Definition 6 (Stable periodic-frequent pattern). For a pattern Y , denote
la(Y) the set of all i-th lability. The stability of the pattern is defined by maxla(Y)
= max(la(Y)). Pattern Y is a SPP if sup(Y ) ≥ minSup and maxla(Y ) ≤
maxLa.

Example 7. Given the above example, if the user specified minSup= 4,
maxPer= 2, and maxLa= 1, the complete set of SPPs are p: (6,1), ps: (4,0),
psr: (4,0), pq: (5,0), pqr: (4,0), pr: (5,0), q: (7,1), qs: (5,0), qsr: (5,0), qr: (6,0),
r: (7,0), rs:(6,0) and s: (7,0), where each SPP Y is annotated with Y : (sup(Y),
maxLa(Y)).

Be noted that if maxLa = 0, SPPs are the traditional PFPs. Therefore, the
PFPs is a special case of SPPs.

Definition 7 (Problem definition). Considering a temporal database (TDB)
with minimum support (minSup), maximum periodicity (maxPer), and max-
imum lability (maxLa) constraints. The purpose of this task is discovering the
complete set of stable periodic-frequent patterns that have support higher or equal
to minSup and lability lower or equal to maxLa constraints.

4 Our Mining Algorithm: SPP-ECLAT

This section shows the process of mining the stable periodic-frequent patterns
in two steps using SPP-ECLAT algorithm and our algorithm works in two steps.
First, SPP-ECLAT algorithm utilizes the Depth-First Search (DFS) strategy
on the itemset lattice. Second, this algorithm employs the downward closure
property (see Property 1) of stable periodic-frequent patterns to minimize the
huge search space of the lattice effectively.

Property 1. If A is a stable periodic-frequent pattern, then ∀A ⊂ B and A �= ∅,
A is also a stable periodic-frequent pattern.

4.1 Mining 1-Stable Periodic-Frequent Patterns

This part focuses on discovering 1-patterns by SPP-list. The detailed steps are
shown in Algorithm 1, which works on a row database shown in Table 1. Let
minSup = 5 and maxPer = 2 and maxLa = 1.

The 1-patterns are first generated by reading the whole database transactions
at once. Then, the row database is converted to the columnar database. After
reading the 1st transaction, “1 : qrs”, with tscur = 1 inserts the items q, r and
s, in the SPP-list. We have the timestamps of these items is 1 (= tscur). Similarly,
ML and TSl contents were updated to 0 and 1, respectively (lines 7 and 8 in
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Fig. 1. SPP-list generation process. (a) content of the list after reading the 1st trans-
action, (b) after reading the 2nd one, (c) after reading the 3rd one, (d) after reading
the 4th one, (e) Final content after reading the whole database, and (f) The complete
list of 1-stable periodic-frequent patterns

Algorithm 1). Figure 1(a) shows the generated SPP-list from the 1st transaction.
After reading the 2nd one, “2 : pq”, with tscur = 2 inserts the new items p into
the SPP-list by adding 2 (= tscur) in their TS-list. At the same instant, the ML
and TSl contents were updated to 0 and 2, respectively. Besides 2 (= tscur)
was added to the TS-list of existing items q with ML and TSl contents were
updated to 0 and 2, respectively (lines 10 and 13 in Algorithm 1). The SPP-list
which is generated after reading the 2nd one is shown in Fig. 1(b). After reading
the 3rd one, “3 : pqrs”, updates the TS-list, ML and TSl values of p, q, r,
and s in the SPP-list. Figure 1(c) shows the SPP-list which is generated after
reading the 3rd one. After reading the 4th one, “4 : tu” with tscur = 4, inserts
the new items e and u into the SPP-list by adding 4 (= tscur) in their TS-
list. Simultaneously, the ML and TSl values as 2 and 4. Figure 1(d) shows the
SPP-list which is generated after reading the 4th. We repeat the whole process
for the remaining transactions. Figure 1(e) depicts the final SPP-list which is
generated after scanning the whole database. The pattern t and u are pruned
(using the Property 1) from the SPP-list as its support value is no more than the
minSup value and ML value is greater than maxLa (lines 15 to 20 in Algorithm
1). The complete list of patterns available in the SPP-list are considered as 1-
stable periodic-frequent patterns. Those patterns are sorted in descending order
in terms of their support values. Figure 1(f) shows the final SPP-list.

4.2 Finding All Interesting Patterns from SPP-ECLAT

The detailed procedure for finding stable periodic-frequent patterns is shown in
Algorithm 2. Given the newly generated SPP-list, the procedure of this algorithm
is carried out as follows. Initially we choose the pattern q, as this is the initial
pattern in the SPP-list (line 2 in Algorithm 2). Figure 2(a) shows a record of
its support and lability. Since q is a stable periodic-frequent pattern, we move
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Fig. 2. The complete process of discovering stable periodic-frequent patterns using
SPP-ECLAT algorithm

to its child node qr. TS-list of qr is generated by performing intersection of
TS-lists of q and r, i.e., TSqr = TSq ∩ TSr (lines 2 and 3 in Algorithm 2).
This support and lability of qr are recorded, as shown in Fig. 2(b). We check
whether qr is a stable periodic-frequent pattern or unstable periodic frequent
pattern (line 4 in Algorithm 2). Since qr is stable periodic-frequent pattern we
move it to its child node qrs. Next, TS-list will be generated by performing
the intersection of TS-lists of qr and s, i.e., TSqrs = TSqr ∩ TSs. Figure 2(c)
shows a record of support and lability of qrs. Then qrs is identified as a stable
periodic-frequent pattern. Later, we shift to its child node qrsp. We produce
its TS-list by performing intersection of TS-lists of qrs and p, i.e., TSqrsp =
TSqrs ∩ TSp. Because a support of qrsp is less than minSup and lability is
greater than maxla, the pattern qrsp will be remove from the stable periodic-
frequent patterns list as shown in Fig. 2(d). We repeat the process to find all
stable periodic-frequent patterns for remaining nodes in the tree. Figure 2(e)
shows the final list of generated stable periodic-frequent patterns. Since we can
reduces the search space and the computational cost effectively our proposed
approach is efficient.

5 Experimental Results

This section evaluates the performance of the SPP-ECLAT against the state-of-
the-art algorithm named SPP-growth [5]. It shows that the SPP-ECLAT algo-
rithm is more efficient in memory consumption and runtime than SPP-growth.
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Algorithm 1. StablePeriodicFrequentItems(Temporal database (TDB), min-
imum support (minSup), maximum periodicity (maxPer), maximum Lability
(maxla):
1: Definition: SPP -list = (Y, TS-list(Y )) is a dictionary with the temporal occurrence information

of a pattern in a TDB; TSl is a temporary variable of list type to store the timestamp of the
final occurrence of a pattern; la and ML are temporary variable of list type to store the lability
and the Maximum Lability of a pattern; last is a term for the final timestamp; support is a
temporary varibale of list type to store the support of a pattern.

2: Initate tscur = 0
3: for each transaction tcur ∈ TDB do
4: Set tscur = tcur.ts;
5: for each item j ∈ tcur.Y do
6: if j does not exit in SPP-list then
7: SPP-list is updated by inserting j and corresponding timestamp value
8: la[j] = max(0, tscur − maxPer). Set ML[j] = la[j]
9: else
10: Add j’s timestamp in the SPP-list.
11: la[j] = max(0, la[j] + tscur − TSl[j] − maxPer
12: ML[j] = max(la[j],ML[j])
13: Update TSl[j] = tscur .
14: last = tscur

15: for each item j in SPP-list do
16: la[j] = max(0, la[j] + last − TSl[j] − maxPer)
17: ML[j] = max(la[j],ML[j])
18: s[j] = length(TS-list[j])
19: if s[j] < minSup and ML[j] > maxla then
20: Prune j from SPP-list
21: After the pruning the final list of patterns available in the SPP-list is sorted in ascending

order or descending order of the corresponding pattern’s support. Initiate pi as Null. Call SPP-
ECLAT(SPP-List, pi).

Algorithm 2. SPP-ECLAT(SPP-List, pi)
1: for each item j in SPP-List do
2: Set Y = j ∪ pi and TSY = TSj ∩ TSpi;
3: Calculate support and Lability of X;
4: if sup(TSY ) ≥ minSup and la(TSY ) ≤ maxla then
5: Add j to pi and Y is considered as stable periodic-frequent pattern;
6: SPP -ECLAT (SPP-list[j+1:], pi);

The algorithms, SPP-growth and SPP-ECLAT, were developed in Python
3.7 and executed on a machine containing two AMD EPIC 7542 cpus and 600
GB RAM. The operating system of this machine is Ubuntu Server OS 20.04.
The experiments have been conducted on real-world (T10I4D100K, Retail, and
Mushroom) databases. The complete statistics of the databases is shown in the
Table 4.

In this experiment, we have fixed the values of minSup, maxPer for all
the three databases. Subsequently, we have evaluated the performance of both
the algorithms by varying the maxLa parameter for all the three databases.
Figure 3(a)–3(c) shows the number of stable periodic-frequent patterns generated
in T10I4D100K, Retail, and Mushroom databases at different maxLa values.
After careful observation of the mentioned graphs, we can conclude that raises in
maxLa positively affect the total count of the number of stable periodic-frequent
patterns. With an increase in the maxLa threshold, most of the patterns have
become stable periodic-frequent patterns.
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Table 4. Statistics of the databases used

S. No Database Type Nature Transaction
Length (in count)

Database
Size (in count)

min. avg. max.

1 T10I4D100K Synthetic Sparse 1 10 29 1,00,000

2 Retail Real Sparse 2 12 77 88,162

3 Mushroom Real Dense 23 23 23 8,124
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Fig. 3. Number of stable periodic-frequent patterns generated in various datasets

We have varied the values of minSup, maxPer, and maxLa parameters and
shown the runtime requirements of SPP-growth and SPP-ECLAT algorithms in
Fig. 4. Specifically, for Retail database, the runtime requirement of both algo-
rithms are shown in Fig. 4(a)–4(c), respectively. For T10I4D100K database, the
runtime requirement of both algorithms are shown in Fig. 4(d)–4(f), respectively.
For Mushroom database, the runtime requirement of both algorithms are shown
in Fig. 4(g)–4(i), respectively. After careful observation of the mentioned graphs,
we can conclude that raises in the value of the maxLa parameter shows the rais-
ing trend in the graphs. However, we can conclude that SPP-ECLAT algorithms
always consumes relatively less runtime than the SPP-growth algorithm.

We have varied the values of minSup, maxPer, and maxLa parameters and
shown the memory consumption of SPP-growth and SPP-ECLAT algorithms in
Fig. 5. Specifically, for Retail database, the memory consumption of both algo-
rithms are shown in Fig. 5(a)–5(c), respectively. For T10I4D100K database, the
runtime requirement of both algorithms are shown in Fig. 5(d)–Fig. 5(f), respec-
tively. For Mushroom database, the runtime requirement of both algorithms are
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Fig. 4. Runtime comparison of the two algorithms

shown in Fig. 5(g)–5(i), respectively. After careful observation of the mentioned
graphs, we can conclude that raises in the value of the maxLa parameter shows
the raising trend in the graphs. However, we can conclude that SPP-ECLAT
algorithms always consumes relatively less memory than the SPP-growth algo-
rithm.
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Fig. 5. Memory comparison of the two algorithms

6 Conclusions and Future Work

This paper proposes an efficient algorithm called stable periodic-frequent
pattern-equivalence class transformation to discover stable periodic-frequent pat-
terns from columnar temporal databases. The experiment was carryout with dif-
ferent real-world databases. Experimental results show that the proposed algo-
rithm consumes less memory and can generate interesting patterns much faster
than the state-of-the-art algorithm. We want to work on parallel algorithms to
discover stable periodic-frequent patterns in vast temporal databases as part of
future work.
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