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Abstract. Intercity traveling has been recognized as a leading cause
for the continuation of the COVID-19 global pandemic. However, there
lacks credible prediction of the spatiotemporal spread of COVID-19 with
humans traveling between metropolitan areas. This study attempts to
establish a novel framework to simulate human traveling and the spread
of virus across an intercity population mobility network. A Markov pro-
cess was introduced to capture the stochastic nature of travelers’ migra-
tion. A backward derivation algorithm was adopted and the Nelder-Mead
simplex optimization method applied to overcome the limitation of exist-
ing deterministic epidemic models, including the difficulties in estimat-
ing the initial susceptible population and the optimal hyper-parameters
required for simulation. We conducted two case studies with data from 24
cities in China and Italy. Our framework yielded state-of-the-art accuracy
while being modular and scalable, indicating the addition of population
mobility and stochasticity significantly improves prediction performance
compared to using epidemic data alone. Moreover, our results revealed
that transmission patterns of COVID-19 differ significantly with different
population mobility, offering valuable information to the understanding
of the correlation between traveling activities and COVID-19 transmis-
sion.

Keywords: Epidemic modeling · COVID-19 · Spatiotemporal
analysis · Population mobility

1 Introduction

It is a common belief that the spread of COVID-19 across the world is through
humans traveling over an open and interwoven network of population flow.
Recent studies confirmed that human mobility is a major factor driving the
spatial spread of COVID-19 [1–3]. Similarly, [4] revealed that mobility patterns
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strongly correlated with COVID-19 growth rates, based on data from the most
affected counties in the U.S. However, it is challenging to predict the extent and
speed of virus transmission with credible accuracy. Further and deeper investi-
gation on the spatiotemporal spreading patterns of COVID-19 utilizing a popu-
lation mobility network beyond the traditional Susceptible-Exposed-Infectious-
Removed (SEIR) model [5] needs to be undertaken. Such an investigation is not
only essential for understanding the mechanism of the spread in a population
mobility network involving intercity traveling, but also beneficial for devising
measures for spread prevention and control on a global basis.

The art, also the science, of mathematical modeling, is to construct the sim-
plest model that captures the salient features of the system. Virus transmission
is a dynamic process that involves many stochastic components. Consequently,
it is necessary to seamlessly incorporate population mobility and stochastic pro-
cesses into the classical SEIR model to predict the spatiotemporal effect of virus
transmission. Additionally, COVID-19 shows some variation from the typical
progression of infectious disease transmission, in the sense that it is also infec-
tious during the incubation period [6], which needs to be considered through
modification of the classical SEIR model.

To our best knowledge, there does not exist any applicable mainstream net-
work topology structure to simulate COVID-19 spread associated with pop-
ulation mobility. Also, some inadequacies in the deterministic epidemic models
remain unaddressed. First, previous network models with clustering are context-
specific hence not scalable [7,8]. Consequently, results generated from such mod-
els may not be generalizable [9]. Second, we propose an initial high-risk popula-
tion to accurately represent the size of the initial susceptible population, which
is pivotal for epidemic modeling [10]. Prior studies suggested using the city pop-
ulation base as the initial susceptible population [6,11]. However, such methods
overestimate the infection cases at the early stage of epidemic transmission,
which varies based on the demographic background of different cities. Thus, the
infection rate is at risk of being underestimated as the size of infected popula-
tions being the product of the initial susceptible population and the infection
rate. Third, the epidemic models usually are not parameter-free. Besides the
essential initial susceptible population, initial parameters like the infection rate
and recovery rate also need to be provided [12]. However, due to the lack of a
comprehensive review of historical incidence data, it is hard to derive specific
parameters for different survey sites.

In this paper, we use fine-grained spatiotemporal population mobility data, in
conjunction with epidemic data, to construct an urban network epidemic frame-
work, which is closer to real-world scenarios. The use of the framework offers a
scalable and credible solution compared with the traditional SEIR model and
strong baseline models such as Metapopulation SIR model [13] and Susceptible-
Undiagnosed-Infected-Removed (SUIR) model [14]. Additionally, some chal-
lenges of the deterministic epidemic model are better addressed. Extensive exper-
iments were conducted to assess the performance of our approach, using a real-
world COVID-19 epidemic dataset of 12 cities in Hubei Province, China, and 12
cities in Italy.
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2 The Proposed Approach

We propose an urban network epidemic framework (M-Urb-SEIR), a novel
approach that incorporates population mobility and stochasticity for accurate
COVID-19 confirmed case forecasting.

2.1 SEIR Model (Single-Network)

We adopt the SEIR model [5] to describe the dynamic process of epidemic prop-
agation. Criteria for dividing the subjects are as follows: (P) represents the total
population, Susceptible (S) is for the susceptible individuals, Exposed (E) for
the exposed individuals, previously susceptible who have been exposed to the
virus but may not be infected; Infected (I) for the infective individuals capable
of transmitting the disease, this includes a non-symptomatic infectious period,
and Recovered (R) for recovered individuals who were previously infected but
have become immune. If the immune period is limited, R can be converted into
S again. The relation between all variables is shown below:

dS

dt
= −αI(t)S(t)/N, (1)

dE

dt
= αI(t)S(t)/N − μE(t), (2)

dI

dt
= μE(t) − γI(t), (3)

dR

dt
= γI(t), (4)

S(t) + E(t) + I(t) + R(t) = N, (5)

where α represents the rate of conversion for the exposed become infected; μ
represents the rate of transformation for the incubation period to a patient; and
γ represents the probability of recovery.

2.2 M-Urb-SEIR (Urban Network Epidemic Framework)

The traditional SEIR model assumes a single infection network among individ-
uals and only model epidemic propagation in a single dimension. We extend the
traditional SEIR model to the scenario of urban networks. We assume that there
are N cities in a city network of interests. Eligibility criteria required individu-
als to be divided into four states: S, E, I, and R. To assess the city n, the city
population base was used Pn, and the number of S, E, I, and R in the city at
time t is Sn(t), En(t), In(t), and Rn(t). This study assumes a mobility intensity
(Wnm) between city n and m, representing the average number of visitors from
the city n to m. Recent evidence suggests that cases with the latent period are
infectious [6]. We therefore set out to assess the effect of the infection rate of the
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infected individual and the effect of infection rate of the latent individual (infec-
tious and lag onset). α1 represents the infection rate of the infected individual;
α2 represents the infection rate of the latent individual; μ represents the rate of
transformation of the incubation period to patients; γ represents recovery rate
of patients.

The transmission of and recovery from infection are intrinsically stochastic
processes, and the deterministic epidemic model does not account for fluctuations
[15]. To tackle this issue, we assume the process is Markovian on the relevant
time scales, the dynamic variations between states of the four populations at t
are summarized as follows:

dSn(t)
dt = −α1Sn(t)

∑N
m=1(

Wmn

Pm
+ Wnm

Pn
)Im(t)/Pn

−α2Sn(t)
∑N

m=1(
Wmn

Pm
+ Wnm

Pn
)Em(t)/Pn

+
√

α1Sn(t)In(t)/Pn · Pt(Sn
α1−→ En)

+
√

α2Sn(t)En(t)/Pn · Pt(Sn
α2−→ En)

+
√

α1Sn(t)
∑N

m �=n(Wnm

Pn
)Im(t)/Pn

·Pt(Sn
α1−→ En)

+ (
√

α2Sn(t)
∑N

m �=n(Wnm

Pn
)Em(t)/Pn

·Pt(Sn
α2−→ En)

+
√∑N

m �=n α1Sn(t)(Wnm

Pn
)Im(t)/Pn

·Pt(Sn
α1−→ Em).

(6)

dEn(t)
dt = α1Sn(t)

∑N
m=1(

Wmn

Pm
+ Wnm

Pn
)Im(t)/Pn

+α2Sn(t)
∑N

m=1(
Wmn

Pm
+ Wnm

Pn
)Em(t)/Pn

−μ · En(t) − (
√

α1Sn(t)In(t)/Pn

·Pt(Sn
α1−→ En)

− (
√

α2Sn(t)En(t)/Pn · Pt(Sn
α2−→ En)

− (
√

α1Sn(t)
∑N

m �=n(Wnm

Pn
)Im(t)/Pn

·Pt(Sn
α1−→ En)

− (
√

α2Sn(t)
∑N

m �=n(Wnm

Pn
)Em(t)/Pn

·Pt(Sn
α2−→ En)

− (
√∑N

m �=n α1Sn(t)(Wnm

Pn
)Im(t)/Pn

·Pt(Sn
α1−→ Em)

− (
√∑N

m �=n α2Sn(t)(Wnm

Pn
)Em(t)/Pn

·Pt(Sn
α2−→ Em)

+ (
√

μEn(t) · Pt(En
μ−→ In).

(7)

dIn(t)
dt = μ · En(t) − γ · In(t)

(
√

μEn(t) · Pt(En
μ−→ In)

+
√

γIn(t) · Pt(In
γ−→ Rn).

(8)
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dRn(t)
dt

= γ · In(t) −
√

γIn(t) · Pt(In
γ−→ Rn). (9)

Pt (Sn
α1−→ En), the probability that individuals in S state (city n) will be

transformed into E state (city n) at t time, which is caused by the contact
between S (city n) and I (city n). Pt (Sn

α2−→ En), the probability that individuals
in S state (city n) will be transformed into E state (city n) at t time, which is
caused by the contact between S (city n) and E (city n). Pt (Sn

α1−→ Em), the
probability that the individuals in S state (city n) will be transformed into E
state (city m) at t time due to the contact between individuals in S (city n) and
I (city m). Pt (Sn

α2−→ Em), the probability that the individuals in S state (city
n) will be transformed into E state (city m) at t time due to the contact between
individuals in S (city n) and E (city m). Pt (En

μ−→ In), the probability that
individuals in E state (city n) transforms into I state (city n) at t time. Pt (In

γ−→ Rn), the probability of individuals in I state (city n) transforms into R state
(city n) at time t.

In an urban network, there are three behaviors for susceptible populations
in urban n to access the incubation period.
(1) Internal transmission of city n:

α1 · Sn(t) · In(t)/Pn + α2 · Sn(t) · En(t)/Pn

−√
α1Sn(t)In(t)/Pn · Pt(Sn

α1−→ En)
−√

α2Sn(t)En(t)/Pn · Pt(Sn
α2−→ En)

(10)

(2) Transmission caused by the flow of infected and exposed individuals from
city m to n:

α1 · Sn(t) · ∑N
m �=n(Wmn

Pm
) · Im(t)/Pn

+α2 · Sn(t) · ∑N
m �=n(Wmn

Pm
) · Em(t)/Pn

−
√

α1Sn(t)
∑N

m �=n(Wnm

Pn
)Im(t)/Pn · Pt(Sn

α1−→ En)

−
√

α2Sn(t)
∑N

m �=n(Wnm

pm
)/Pn · Pt(Sn

α2−→ En)

(11)

(3) The susceptible population from city n flows into m and infected:

∑N
m �=n α1 · Sn(t)(Wnm

Pn
) · Im(t)/Pn

+
∑N

m �=n α2 · Sn(t)(Wnm

Pn
) · Em(t)/Pn

−
√∑N

m �=n α1Sn(t)(Wnm

Pn
)Im(t)/Pn · P 2

t (Sn
α1−→ Em)

−
√∑N

m �=n α2Sn(t)(Wnm

Pn
)Em(t)/Pn · P 2

t (Sn
α2−→ Em)

(12)

The proposed framework is implemented by an overall algorithm as follows:
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Algorithm 1: M-Urb-SEIR
Require: R0, (α′, γ′), (α1, α2, μ, γ), W , P , cumulative confirmed Ĉ(t), T
Ensure: S(t), E(t), I(t), R(t)
1: Initialize: α′, γ′, α1, α2, μ, γ
2: Backward derivation E0:
3: Apply R0, α′, γ′, P on Eq. (3.13), then use the Nelder-Mead simplex optimization

method to obtain the optimal E0 from I(T ) + R(T ) = E0

4: Apply (α1, α2, μ, γ), W , P on Markov stochastic process, and infer the Pt (Sn
α1−→ En), Pt (Sn

α2−→ En), Pt (Sn
α1−→ Em), Pt (Sn

α2−→ Em), Pt (En
μ−→ In), Pt

(In
γ−→ Rn) (see Table 3)

5: Estimation:
6: Apply (α1, α2, μ, γ), W , P , E0(S(0) = E0) and Pt(·) on Eq. (3.6-3.9), obtain I(t),

R(t), and C(t) = I(t) + R(t)
7: Optimize (α1, α2, μ, γ) by using the Nelder-Mead simplex optimization method
8: Simulation:
9: Obtain the relative error from C(t) and Ĉ(t)

10: for t = 1 to T do
11: Apply (α1, α2, μ, γ) on Eq. (3.6-3.9)
12: update S(t), E(t), I(t), R(t)
13: end for

2.3 Addressing the Challenges of a Deterministic Epidemic Model

(1) Our proposed framework is scalable. Once the original and target domain are
located and marked, the actual cross-domain propagation of COVID-19 can be
simulated. (2) We propose a backward derivation algorithm to derive the initial
susceptible population E0. Specifically, we first used the way of [16] to obtain R0

sequences from time-series data of confirmed cases. We then established a basic
Susceptible-Infected-Recovered (SIR) model [11] as shown in Eq. (3.13).

R0 =
α · P

γ
, (13)

where α represents the infection rate, P represents the total population in the
area, and γ represents the recovery rate. Based on Eq. (3.13), we first initialized
the infection rate (α) and recovery rate (γ). We then adopted the Nelder-Mead
simplex optimization method to optimize α and γ to make the total number
of infected individuals (I) and recovered individuals (R) as close as possible to
the real number of confirmed cases. Last, the total number of infected individ-
uals (I) and recovered individuals (R) were used as E0 of the urban network
epidemic framework. Moreover, the optimal α and γ were used as the initial
hyper-parameters of the urban network epidemic framework. Note that we used
E0 instead of the city population base in the urban network epidemic framework,
and the Markov process used the difference between the city population base and
E0 to incorporate stochasticity. (3) We used the Nelder-Mead simplex optimiza-
tion method again to optimize the α, γ, and μ (the rate of transformation of the
incubation period to patients) of the urban network epidemic framework.
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3 Experimental Settings

We present datasets, competitors, and evaluation metrics for our experiments.

3.1 Datasets

We adopted the epidemic data from the National Health Commission of the
People’s Republic of China1 (daily confirmed new cases for each city between
January 23, 2020 and February 29, 2020) and Italian epidemic data2 (daily
confirmed new cases for each city between February 24, 2020 and April 15, 2020).
The statistical data includes the cumulative number of infected, recovered, and
death cases. Chinese migration data were obtained with consent from Baidu
migration, and the most recent data are available on the website (https://qianxi.
baidu.com). The dataset includes the immigration scale index, the emigration
scale index, and intracity travel intensity. The migration scale index is converted
according to the absolute value of the number of individuals who move in/out,
reflecting the population scale of the cities. The intensity of intracity travel is the
exponential result of the number of individuals who have traveled in the city and
the city’s resident population, reflecting the intracity mobility scale. Similarly,
Italian migration data were obtained from [17].

3.2 Competitors

To fairly compare different approaches, we compare our approach with the fol-
lowing deterministic epidemic models.

1. SEIR is an epidemiological model used to simulate the spread of infectious
disease.

2. Metapopulation SIR model [13] (SIGKDD 2018) extends the SIR model to
a metapopulation SIR model that allows visitors transmission between any
two sub-populations.

3. SUIR model [14] (SIGKDD 2020) incorporates a unique ’undiagnosed’ state
of the COVID-19 on the basis of the SIR model.

4. Urb-SEIR (without Markov process) is one variant of the proposed frame-
work.

3.3 Evaluation Metrics

This study assumes that the prediction date between t and T , and the relative
error is defined as:

e(t, T ) =
|C(t + T ) − Ĉ(t + T )|

Ĉ(t + T )
, (14)

where C(t) represents the cumulative confirmed cases obtained from the base-
lines and our proposed methods, and Ĉ(t) represents the cumulative truth cases
based on the database.
1 https://github.com/CSSEGISandData/COVID-19.
2 https://github.com/pcm-dpc/COVID-19.

https://qianxi.baidu.com
https://qianxi.baidu.com
https://github.com/CSSEGISandData/COVID-19
https://github.com/pcm-dpc/COVID-19
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4 Experimental Results

Most research works use the number of city population base as the initial sus-
ceptible population, however, Table 1 shows the initial high-risk population base
deduced by the backward derivation algorithm is much less than city population
but more reasonable. Furthermore, the optimal hyper-parameter identified in
these responses are summarized in Table 2. Table 3 shows the inference formula-
tion by Markov stochastic process.

Figures 1, 2, 3 and 4 illustrate the prediction error bars of models in Chinese
and Italian cities. The graphs show that our M-Urb-SEIR performs well in the
28 days forecast period of 12 cities in China compared with baseline models.
Moreover, we find that the M-Urb-SEIR outperforms the Urb-SEIR. This ben-
efits from incorporating random effects into epidemic models, which is critical
for improving prediction accuracy. Besides, we had three critical findings from
the experimental results in Italian cities. First, the Metapopulation SIR model
prediction result performs the best on most days of the first week, and the sub-
optimal model is the traditional SEIR model. Second, by contrast, Urb-SEIR
and M-Urb-SEIR perform better with a longer prediction horizon. Usually, they
will perform better than other approaches when the prediction horizon is longer
than 1 or 2 weeks. Third, the performance of the Urb-SEIR is better than M-
Urb-SEIR. Compared to China, where ‘Chunyun’ leads to dramatic population
migration, Italy’s strength of population movement is much milder. Therefore,
M-Urb-SEIR, which considers more about the stochastic effect, performs worse
than Urb-SEIR. These figures suggest that the prediction of COVID-19 should
be customized, and contextual information should be considered. In different
application scenarios, the model should be able to be extended and modulized.
Specifically, for the high randomness effect such as the ‘Chunyun’ event (the
largest periodic human migration in China), models should take the Markov

Table 1. Number of the initial high-risk population obtained from backward derivation
algorithm

Site Ezhou Enshi Huanggang Huangshi Jingzhou Shiyan

City Population 1059.7k 3390k 6333k 2471.7k 5570.1k 3398k

High-Risk Population 663 180 460250 682 7474 538

Site Suizhou Wuhan Xiantao Xiangyang Xiaogan Yichang

City Population 2221k 11212k 1140.1k 5680k 4921k 4137.9k

High-Risk Population 919 304800 687 582 4355 1770

Site Roma Milano Brescia Torino Monza Bologna

City Population 4342.2k 3293.7k 1266k 2259.7k 830.5k 1014.6k

High-Risk Population 17513 55678 129944 10214 62505 35390

Site Firenze Catania Verona Bergamo Trieste Napoli

City Population 1011.3k 1107.7k 926.5k 1114.6k 234.5k 3084.9k

High-Risk Population 4117 29981 19017 21485 1443 2865
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Table 2. Optimal hyper-parameters of outbreak cities in China and Italy

Site Ezhou Enshi Huanggang Huangshi Jingzhou Shiyan

α1 0.0971 0.0801 0.0965 0.0958 0.0967 0.0897

α2 0.0764 0.0615 0.0751 0.0756 0.0637 0.0699

μ 0.0833 0.2882 0.1667 0.1053 0.4082 0.1942

γ 0.4261 0.3012 0.3661 0.4052 0.4753 0.3521

Site Suizhou Wuhan Xiantao Xiangyang Xiaogan Yichang

α1 0.0828 0.1534 0.0459 0.0963 0.0732 0.0735

α2 0.0512 0.0785 0.0403 0.0855 0.0614 0.0632

μ 0.1333 0.1429 0.2857 0.101 0.295 0.3846

γ 0.3253 0.3656 0.3081 0.4233 0.3031 0.4146

Site Roma Milano Brescia Torino Monza Bologna

α1 0.1525 0.1585 0.1371 0.1734 0.1513 0.1539

α2 0.1317 0.1457 0.1164 0.1611 0.1261 0.1372

μ 0.1316 0.1887 0.1811 0.0813 0.1942 0.1361

γ 0.4131 0.4373 0.4513 0.4461 0.4333 0.4717

Site Firenze Catania Verona Bergamo Trieste Napoli

α1 0.1683 0.1746 0.1768 0.1476 0.1853 0.1736

α2 0.1505 0.1681 0.1367 0.1346 0.1641 0.1623

μ 0.1357 0.3142 0.1392 0.2665 0.1047 0.0899

γ 0.4338 0.4162 0.4743 0.4526 0.4297 0.4529

Table 3. Inference formulation by Markov stochastic process

Site Sn Enα1 Enα2 In Rn

Sm
Wmn
Pm

Wmn
Pm

α1
Wmn
Pm

α2
Wmn
Pm

(α1 + α2μ) Wmn
Pm

(α1 + α2)μγ

Emα1 0 Wmn
Pm

0 Wmn
Pm

μ Wmn
Pm

μγ

Emα2 0 0 Wmn
Pm

Wmn
Pm

μ Wmn
Pm

μγ

Im 0 0 0 Wmn
Pm

Wmn
Pm

γ

Rm 0 0 0 0 Wmn
Pm

stochastic process into account; however, in the context of regular population
movements (Italian cities), the results highlighted the need to use the Urb-SEIR
as a predictive tool.
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Fig. 1. Prediction error bars of models after T days.

With regard to the research methods, some limitations need to be acknowl-
edged. The principal limitation of this analysis was the variance to estimate R0

[18]. Another major source of uncertainty is in the backward derivation algorithm
used to calculate the initial susceptible population. The latent infectivity popula-
tion and other external factors were not accounted for in the derivation process.
Although there are limitations in the backward derivation, it contributed to the
infinite approach to the real world’s transmission state. An additional uncon-
trolled factor is the effect of ‘Chunyun’ [19], which is hard to be measured in
the prediction process. Furthermore, the summary of error results is subject
to inevitable fluctuation. The fluctuation phenomenon is intrinsically one of the
challenges of the deterministic epidemic model, which reflects the likelihood that
the precision of a deterministic epidemic model will vary across the ‘life cycle’
of an epidemic outbreak when analyzed using a set of fixed parameters. This
will clearly influence the results across a long forecast period; Therefore, we pro-
vided a 28 days prediction horizon, which is much longer than most prior stud-
ies. Future studies that adopt a ‘stage’ forecast in the life cycle of an epidemic
are clearly indicated. Despite its limitations, this study indicates the effective-
ness of incorporating population mobility and random effects into the epidemic
simulation.
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Fig. 2. Prediction error bars of models after T days.

Fig. 3. Prediction error bars of models after T days.
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Fig. 4. Prediction error bars of models after T days.

5 Conclusion

In this paper, we propose a novel urban network epidemic framework to study
the spread pattern of COVID-19 in different cities. We applied the framework to
simulate and predict the COVID-19 confirmed cases in ‘epicenter’ Wuhan and
other 11 cities in Hubei Province of China and 12 cities in Italy with severe epi-
demic situations, which outperforms other deterministic state-of-the-art models
in the COVID-19 spreading prediction task. We also demonstrated that incorpo-
rating population mobility and random effect into epidemic models is necessary.
Our findings provide new scientific evidence for further epidemic model design
and offer a foundation for conducting other research studies, such as assessing
the long-term social and economic effects of COVID-19.
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