
Chapter 4
Policy Management

Abstract Supply chain security has become a growing concern in the security
risk analysis of IoT systems. Their highly connected structures have significantly
enlarged the attack surface, making it difficult to track the source of the risk
posed by malicious or compromised suppliers. This chapter presents a system-
scientific framework to study the accountability in IoT supply chains and provides a
holistic risk analysis technologically and socio-economically. We develop stylized
models and quantitative approaches to evaluate the accountability of the suppliers.
Two case studies are used to illustrate accountability measures for scenarios with
single and multiple agents. Finally, we present the contract design and cyber
insurance as economic solutions to mitigate supply chain risks. They are incentive-
compatible mechanisms that encourage truth-telling of the supplier and facilitate
reliable accountability investigation for the buyer.

4.1 Introduction

Supply chains play a critical role in the security and resilience of IoT systems and
affect many users, including small- and medium-sized businesses and government
agencies. An attacker can exploit vulnerabilities of a vendor in the supply chain
to compromise the IoT system at the end-user. The recent SolarWinds attack is an
example of an attack that has resulted in a series of data breaches at government
agencies. One seller of the Microsoft Cloud services was compromised by the
attacker, allowing the attacker to access the customer data of its re-sellers. Once the
attacker established a foothold in SolarWind’s software publishing infrastructure
after getting access to SolarWind’s Microsoft Office 365 account, he stealthily
planted malware into software updates that were sent to the users, which include
customers at US intelligence services, executive branch, and military.

The infamous Target data breach in 2013 is another example of supply-chain
attacks. The attacker first broke into Target’s main data network through ill-
protected HVAC systems. The attacker exploited the vulnerabilities in the moni-
toring software of the HVAC systems, which shared the same network with the
data services. It led to a claimed total loss of $290 million to data breach-related
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Fig. 4.1 Supply-chain attacks: An attacker first attacks a vendor, who sells the users compromised
products. They act as Trojans inside the user’s system and stealthily manipulate it

fees [1, 2]. The supply-chain attacks would become increasingly pervasive in IoT
systems. Consider a next-generation industrial manufacturing plant equipped with
IoT devices that are supported by third-party vendors . The software and the
hardware of these devices can be trojanized. As a result, the attacker disrupts
the manufacturing plant, which can create a shortage of essential products (e.g.,
pharmaceutical products, COVID19 vaccines, and gasoline) and lead to grave
repercussions in the nation’s supply chain. Illustrated in Fig. 4.1, the supply chain
attacks can go through multiple stages of the supply chain from the source of the
attack to the targeted users or systems.

Risk-based approaches presented in Chaps. 2 and 3 have been used to guide
the procurement and design decision-making process [3–7]. This kind of approach
offers risk measurement, rating tools, and compliance checking to identify and rank
the vendors by their risk criticality. It is a useful preventive measure that provides
a transparent understanding of the security posture in the products, systems, and
services of the end-users and helps mitigate the risks prior to the procurement
contracts and continuous product development. Cyber resilience complements this
measure. It shifts the focus from prevention to recovery by creating a cyber-
resilient mechanism to reconfigure the IoT system adaptively to the uncertainties
of adversaries and maintain critical functions in the event of successful attacks.

Many private sectors have for years prioritized efficiency and low cost over
security and resilience. In addition, they are agnostic to where these technologies
are manufactured and where the associated supply chains and inputs originate.
This common practice has resulted in enlarged attack surfaces and many unknown
and unidentified threats in the IoT systems. A healthy ecosystem of vendors and
suppliers is pivotal to secure and resilient IoT systems. One challenge is that the
IoT supply chain is becoming globalized. Manufacturers and material suppliers are
geographically diverse, thus increasing the uncertainties and the vulnerabilities of
the end-user IoT systems. It is critical to check the compliance of the products from
the global supply chain to determine whether they would increase the cyber risk of
the IoT users.
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One way to improve the health of the IoT supply chain is to design an IoT system
with built-in security and resilience mechanisms. For example, the integration of
cyber deception [8–10] into IoT systems provides a proactive way to detect and
respond to advanced and persistent threats. Game-theoretic methods [11–13] and
reinforcement learning techniques [14–16] have been used to provide a clean-
slate approach to designing cyber resilient mechanisms in response to supply-chain
attacks.

Apart from the technological solutions, accountability and insurance are the
socio-economic ones that can be used to improve the cyber resilience of IoT end-
users. Accountability, in general, is the ability to hold an entity, such as a person
or organization, responsible for its actions. An accountable system can identify and
punish the party or the system component that violates the policy or the contract.
By creating accountable IoT supply chains, we create an ecosystem where each
supplier invests in cybersecurity to reduce the cyber risks at each stage of the supply
chain. A supplier would be held accountable if the failures of the end-user system
are attributed to it. Accountability establishes a set of credible incentives for the
suppliers and elicits desirable behaviors that mitigate the cyber risks. Accountability
can be viewed as part of the cyber resilience solutions succeeding the technological
solutions, especially when the technological resilience measures do not prevent the
damages.

Insurance is another risk management tool [17] to protect the end-users from
cyber attacks and failures by transferring their residual risk from an entity to a third
party through an insurance contract. It is the last resort when an IoT system cannot
be perfectly accountable; i.e., there is inadequate evidence to hold any one of the
suppliers accountable, or when the defects in the user’s design lead to unanticipated
consequences. The residual risks would be evaluated by an underwriter and the
coverage can include the losses that arise from ransomware and data theft or
incidents caused by failures of IoT devices. Figure 4.2 shows the relationships
between preventive cyber measures and resilient cyber measures. The cyber-resilient
mechanisms include the technological real-time resilience measures as well as
accountability and insurance solutions. They constitute a holistic socio-technical
solution to protect the IoT systems from supply-chain threats.

Both accountability and insurance provide an additional layer of protection that
reduces the risks of IoT users. Accountability and insurance are system-level issues.
We need to take a system-scientific and holistic approach to understand their role in
IoT systems and supply chains, which would lead to an integrative socio-technical
solution for supply chain security. This chapter provides a quantitative definition to
measure and assess the accountability in the IoT supply chain that pertains to the
system design, procurement contracts, as well as, vendor description. Despite the
focus of the chapter on cybersecurity issues, the definition of accountability can be
extended and used for general contexts of supply chain disruptions caused by natural
disasters and the defects in the products.

Game theory naturally provides a framework that captures the incentives and
penalties through utility functions for multiple interacting agents. It has been widely
used in cybersecurity for the modeling between an attacker and defender in many
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Fig. 4.2 The IoT supply chain can be protected using preventive measures which include
compliance checking and auditing. The supply chain resilience can be enhanced by building real-
time resilience measures (e.g., detection, adaptation, and reconfigurations). The residual risk as a
result of the preventive and real-time resilience measures can be further mitigated by accountability
and insurance mechanisms. Accountability is designed to attribute the violations to the suppliers,
who will be penalized based on the contract. Insurance is another mechanism to transfer the
remaining risks to a third party through an insurance contract. The multi-tier solutions from
preventive measures to insurance are interdependent and they create consolidated protection of
our IoT supply chain ecosystem

scenarios, including intrusion detection systems [18–21], wireless communications
[22–27], and cyber deception [8, 12, 28–31]. It has also been used to harden the
security and resiliency of cyberphysical systems, including critical infrastructures
[32–36], industrial control systems [11, 37–41], and IoTs [42–46].

One important branch of game theory is the mechanism design theory [47, 48] ,
which explicitly provides a quantitative approach to create a reward and penalty
mechanism to elicit desirable behaviors at equilibrium. The violations from the
desired behaviors would be disincentivized or punished, while the compliance
with the rules would be incentivized or rewarded. In this chapter, we leverage
these features of game theory to create computational accountability and insurance
framework for IoT systems and their supply chain.

Accountability is a system-level issue that encompasses detection and attribution
of the violations or anomalies, multi-agent interactions, asymmetric information,
and feedback. Game-theoretic methods provide a baseline for a system-scientific
view for accountability. We build a system scientific framework that bridges game
theory, feedback system theory, detection theory, and network science to provide a
holistic view toward accountability in IoT supply chains. The framework proposed
here can be applied to understand accountability in general.

One extension of this chapter is to investigate the concept of collective account-
ability, where multiple agents are held accountable for the violations. One advantage
of such accountability mechanisms is the convenience in identifying the entities to
be held accountable and the implementation of the penalties. The disadvantage is
that they are not targeted and entities that are not directly linked to the violation of
the failures would be also punished.
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4.2 Literature Review

Accountability has been studied in many different contexts in computer science [49–
51]. Künnemann et al. in [52] have studied accountability in security protocols.
Accountability is defined as the ability of a protocol to point to any party that
causes failure with respect to a security property. Zou et al. in [53] have proposed
a service contract model that formalizes the obligations of service participants in
a legal contract using machine-interpretable languages. The formalism enables the
checking of obligation fulfillment for each party during service delivery and holds
the violating parties for the non-performance of the obligations. The definition
of accountability in these works aligns with the definition in this chapter. An
accountable system has the ability to check and verify compliance with the
requirements in the agreement and identify the non-conforming behaviors and their
parties.

There are several game-theoretic models that are closely related to accountability.
For example, inspection games [54–56] are one class of games where the inspector
determines a strategy to examine a set of sampled items from a producer to check
whether the producers of the goods violated the standards. The producer aims to set
a production strategy to minimize the detection probability while minimizing the
cost of maintaining high standards. The inspection games have been used in many
contexts such as patrolling, cybersecurity, and auditing. Blocki et al. in [57] have
studied a class of audit games in which the defender first chooses a distribution over
n targets to audit and the attacker then chooses one of the n targets to attack. It is
better for the defender to audit the attacked target than an unattacked target, and it is
better for the attacker to attack an unaudited target than an audited one. Rass et al. in
[58, 59] have studied a multi-stage cyber inspection game between a network system
defender and an advanced persistent threat (APT) attacker. The defender needs to
choose an inspection strategy to detect anomalies at different layers of the networks.
The attacker’s goal is to stay stealthy and find strategies to evade the detection and
compromise the target.

Utility-theoretic approaches are useful to capture the incentives of the partic-
ipants in an agreement and their punishment. In [51], Feigenbaum et al. have
formalized the notion of punishment using a utility-theoretic, trace-based view of
system executions. Violation is determined based on the traces of the participants.
When there is a violation, the participant is punished. This punishment is captured
through a decrease in the utility, relative to the one without the violation. This
approach to punishment is often seen in the literature of mechanism design [48, 60].
The designer first announces a resource allocation rule and a payment or punishment
rule. The participants in the mechanism know the rules and determine the messages
that they send to the designer. An incentive-compatible mechanism is one in which
the participants will truthfully reveal their private information through the message
under the allocation and the punishment rules. In other words, no participants
have incentives to lie about their private information under an incentive-compatible
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Fig. 4.3 Supply chain accountability: the buyer of the product can identify the supplier of a
component who violates the policies or the contracts. The buyer can then use the contract to
penalize the identified supplier. The supplier can attribute the violation to his supplier. It is called
multi-stage accountability

mechanism. Mechanism designs have been used in many disciplines to study pricing
of resources [61–63], create security protocols [45, 64], recommend policies [10],
and design services [17, 65]. The framework that we present in this chapter is built
on the mechanism design approach. The utility-theoretic approach conveniently
captures the incentives of the suppliers and their behaviors. Furthermore, the
mechanism-design approach naturally creates a punishment mechanism to create
incentives for truthful behaviors. This type of behavior can be generalized to
compliant behaviors in supply chain agreements and contracts.

Our framework builds on this approach and bridges the accountability gap by
incorporating the detection mechanism that enables the designer to detect and
attribute the non-compliant behaviors. In addition, our framework distinguishes
from prior works in accountability by focusing on accountability in system engi-
neering. This problem is instrumental in the development of large-scale IoT systems,
where the building blocks of the IoT systems are manufactured or designed by
third parties. We integrate the critical component of engineering designs into the
accountability problem for IoT systems. The system designs can contribute to
accountability. A design is called transparent if it helps identify the cause of the
accidents; otherwise, a design makes the accountability inconspicuous. Figure 4.3
illustrates the concept of accountability. A user can use his observed information to
identify the immediate cause of accidents or malfunctions. The seller who has been
identified as the cause can further identify the further cause of the event. In this way,
the source of the attack can be sequentially identified stage-by-stage through a chain
of accountability efforts.
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4.3 Accountability Models in IoT Supply Chain

4.3.1 Running Examples

We introduce two running examples which will be used in later discussions for
illustrations.

Example I: Uber Autonomous Vehicles The Uber incident in Tempe, Arizona
is another example of accountability of autonomous vehicles. A pedestrian was
struck by an Uber self-driving vehicle with a human safety backup driver in the
driving seat. The fatality is caused by the failure of the software system which fails
to recognize the pedestrian. Sensor technologies, including radar and LiDAR, are
sophisticated enough to recognize objects in the dark. Evidence has shown that the
pedestrian was detected 1.3 s before the incident and the system determined that
emergency braking was required but the emergency braking maneuvers were not
enabled when the vehicle is under computer control. The design of the software
system is accountable for the death of the pedestrian.

Example II: Ransomware Attack on Smart Homes A smart home consists
of many modern IoT devices, including lighting systems, surveillance cameras,
autonomous appliance control systems, and home security systems. The compo-
nents of each system are supplied by different entities. Smart home technology
integrates the components and creates a functioning system that will sense the
home environment, make online decisions, and control the system. The camera is
accountable if the home security system does not respond to the burglary adequately
due to a camera failure. There is an increasing concern about ransomware attacks.
Accountability enables the homeowner to mitigate the impact of the ransomware by
attributing the attack to a supplier of the IoT devices.

Illustrated in the two examples, IoT supply chain security has a significant
impact on the private sector and its customers. Several technologies have been
proposed to track the integrity of the supply chain to provide real-time monitoring
and alerts of tampering and disruptions. They provide a tool to monitor, trace,
and audit the activities of all participants in the supply chain and ensure that
the contractually defined Service Level Agreements (SLAs) are followed. The
essence of the technologies is to create transparency and situational awareness for
the companies. However, the software and hardware tampering is much harder
to monitor and track than the physical one. As a result, it creates information
asymmetry where the buyers or the systems do not have complete information about
their suppliers. As in the Target and the SolarWinds attacks, an attacker can get
access to the system through a compromised third-party vendor. It would require
proactive security mechanisms to detect and respond to the exploited vulnerabilities.
We have seen the emerging applications of cyber deception [8, 9, 66] and moving
target defense [67–69] in both software and hardware to reduce the information
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Fig. 4.4 A supplier of type θ provides a description m of the product to a buyer who will make a
procurement decision a. The system designer develops a design d to integrate all the components to
form a functioning system. The system, as a result, yields an observable performance y. The supply
chain is said to be accountable if the malfunction of the system can be attributed to the supplier who
has misled the system designer. The supply chain risk can be mitigated at three stages. The first
stage is compliance checking before the procurement. The buyer can check whether the description
of the product complies with the standards, regulations, and requirements. The second stage is the
contracting stage. The buyer can make a contract that specifies the penalty or the consequences
if the supplier does not fully disclose the product information. It will allow the buyer to hold the
supplier accountable when the root cause of the malfunction is at the supplier. The third stage is
cyber insurance. The buyer can purchase cyber insurance to mitigate the financial impact of the
malfunction. The financial risk is partially transferred to the insurer

asymmetry and create proactive mechanisms for detection. They are tools that
contribute to real-time resilience measures as illustrated in Fig. 4.4 and provide
inputs for accountability in the next stage.

4.3.2 System Modeling

In this section, we provide a stylized model and a quantitative approach to
accountability. Figure 4.4 describes three stages of interactions. At the first stage,
a supplier interacts with a buyer to agree on an SLA contract. The supplier is
characterized by the private information θ ∈ �, which is a true description of the
product of the supplier. For example, the supplier is aware of the true security level
and investment in the product but may not disclose the information to the buyer.
The supplier sends the buyer a message m ∈ M , which is the informed description
of the product. The description can prevaricate, hide, or sometimes lie about the
security information that would be useful in the procurement decisions. We say
that the supplier truthfully reports the product when θ = m; otherwise, we say
that the supplier misinforms the buyer. This misinformation can be unintended or
intentional. In the case of intentional behaviors, the supplier sends a manipulative
message when he knows his true type. For example, some foreign suppliers do not
fully disclose the information of their product with the aim to attract US customers
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due to its low cost. In the case of unintended behaviors, the supplier may not be
aware of the vulnerabilities of the product and sends a description based on his
perceived information. In this case, we can assume that the private information θ is
a function ρ : � × W �→ � of the truth and uncertainties, i.e., θ = ρ(θt, wt),
where θt ∈ � is the true value unobservable by the supplier and wt ∈ W is
the bias, modeled as a random variable, unknown to the supplier. This bias can
be interpreted as the uncertainties introduced by nature or a stealthy attacker that
has unknowingly changed the security attributes of the product. In both cases of
unintended and intentional behaviors, it is sufficient to assume that the type known
to the supplier is θ .

Based on the product description m, the buyer can make purchase decisions.
Let a = 1 denote the decision of adopting the product of the vendor and a = 0
otherwise. The decision rule α : M �→ [0, 1] yields the probability of purchase
based on the received description, i.e. α(m) = Pr(a = 1|m). This can be interpreted
as the purchase preference from historical records. If the buyer decides to adopt
the product, then he determines how the product is designed and integrated into
the system. Here, we assume that the user and the designer belong to the same
organization and hence the procurement and design decisions are made jointly. In
other words, the user and the designer can be viewed as the same decision entity
who coordinates the design and procurement. In practice, the engineers design the
systems and send the procurement department the specifications and requirements
for the needed materials and components.

An IoT system consists of many components. We can classify the compo-
nents into five major categories: sensing, computation, control, communications,
and hardware. The sensing component allows the system to provide information
about the environment, for example, the LiDAR and temperature sensors. The
computation units provide functions and services for information processing and
computations, for example, cloud services and GPUs. The control components
are used to instrument and actuate the physical systems, for example, temperature
adjustment and remote control. Communications provide the information and data
transmission among IoT components, e.g., LoRa and ZigBee wireless communica-
tions. The hardware refers to the physical systems that underlie the IoT network, for
example, the manufacturing plant and the robots.

The designer builds an IoT system using a blueprint δ : M �→ D, which yields
a design d = δ(m), d ∈ D based on the device descriptions and specifications
provided by the supplier. The system design leads to a performance y ∈ Y. For
example, in Example I, the designer develops a software system that integrates
sensors, control algorithms, and the car. Safety is a critical performance measure
of autonomous vehicles. It can be measured by the rate of accidents experienced by
vehicles as of now. Here, we model the performance as a random variable. Given α

and δ, the distribution of the performance random variable is py(y; θ, α(m), δ(m)),
py : � × M �→ �Y. Using Bayes’ rule, we arrive at

py(y; θ, α(m), δ(m)) = pθ
y(y;α(m), δ(m)|θ)pθ (θ), (4.1)
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where pθ(·) ∈ �� is the prior distribution of the type of product; pθ
y(y;α(m), δ(m)|

θ), pθ
y : M �→ �Y, is an indication of all possible system performances given

the attribute of product θ . Note that the performance implicitly depends on m. The
true performance of the system is determined by the true attribute of the product
and the procurement and design decisions, which are made based on m. We denote
pI = py(y; θ, α(θ), δ(θ)) as the ideal system performance when the design and
procurement decisions are made given a truthful supplier, i.e., m = θ .

Without knowing the true attributes of the product θ , the performance anticipated
by the buyer is denoted by qy = py(y;m,α(m), δ(m)). When m �= θ , there
is a difference between the observed performance py and the anticipated one qy .
The buyer can perform hypothesis testing based on the sequence of observations
y1, y2, · · · , by setting up H0 as the hypothesis that the observations follow the
distribution qy and H1 otherwise. For example, in Example I, this decision is
particularly important when yi represents malfunctions or accidents for each trial
test driving. If the malfunction is not expected by the designer, then there is a need
to find out which supplier is accountable for the accidents or, in the case of a single
supplier, whether the supplier should be held accountable.

4.3.3 Accountability Investigation

One critical step of accountability is the ability to attribute the performance
outcomes to the supplier. We start with the accountability of a single supplier
with binary type � = {0, 1} and assume the message space is the same as type
space M = �. Consider a sequence of repeated but independent observations
Y k = {y1, y2, · · · , yk}, k ∈ N. A binary accountability investigation is performed
based on Y k . Based on the received m, hypothesis H0 is set to be the case when the
observations follow the anticipated distribution qy and H1 otherwise. Depending on
whether H0 or H1 holds, each observation yi admits the following distribution

H0 : yi ∼ fm(y|H0) = py(y;m,α(m), δ(m)), (4.2)

H1 : yi ∼ fm(y|H1) = py(y; ¬m,α(m), δ(m)). (4.3)

The optimum Bayesian investigation rule is based on the likelihood ratio, which
is denoted by

L(Y k) =
k∏

j=1

py(yj ; δ(m)|¬m)pθ(¬m)

py(yj ; δ(m)|m)pθ(m)
, (4.4)

where we omit the purchase decision because the performance can only be observed
when a = 1 and α(m) = Pr[a = 1|m] is the same under both hypotheses. The
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likelihood ratio test (LRT) provides the decision rule that H1 is established when
L(Y k) exceeds a defined threshold value τk ∈ R; otherwise, H0 is established. It
can be formulated by the equation

L(Y k)

H1

�
H0

τk. (4.5)

One critical component in accountability investigation is the prior distribution
over hypotheses, which indicates the reputation of the supplier. Without knowing
the true distribution of the type, we argue that reputation is sufficient knowledge
to determine the accountability of the supplier. Here, we give the definition of
reputation over a binary type space, but the definition can be extended to multiple
type space accordingly.

Definition 4.1 (Reputation) The reputation of the supplier π ∈ �H is a
prior distribution over all hypotheses. In binary case, π0 = Pr[H0] is the prior
probability that the supplier truthfully report and π1 = Pr[H1] otherwise, with
π0 + π1 = 1.

Assume that the cost of the investigation is symmetric and incurred only when
an error occurs. In the binary case, the optimum decision rule will consequently
minimize the error probability, and the threshold value τk in LRT will reduce to

τk = π0/π1. (4.6)

Definition 4.2 (Accountability)

1. Given an investigation rule, i.e., the threshold τk , the accountability PA ∈
[0, 1] is defined as the probability of correct establishment of hypothesis
H1 based on the observations Y k and message m, which is given by

PA(τk) =
∫

Y1

fm(Y k|H1)dyk, (4.7)

where Y1 is the observation space where Y1 = {Y k : L(Y k) ≥ τk}.
2. The wronged accountability PU ∈ [0, 1] is defined as the probability

of a false alarm that H1 is established while the underlying truth is H0.
Consider the threshold τk and observations Y k , PU is given by

PU(τk) =
∫

Y1

fm(Y k|H0)dyk. (4.8)
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We call a supplier η-unaccountable if PA ≤ η, for a threshold accountability
η ∈ [0, 1] chosen by the investigator. In this case, the system does not have strong
confidence that the observed accidents are caused by the supplier. We call a system
ε-nontransparent if PA ≤ ε, for a given small ε ∈ [0, 1]. That is, the system is close
to being unable to hold the vendor accountable for the accidents.

The performance of the accountability investigation will be evaluated in terms of
PA and PU . Ideally, we would like to conduct error-free accountability testing where
PA is close to one and PU is close to zero (correctly identify accountable supplier
without making mistake). However, the definition above leads to a fundamental limit
on the accountability of the supplier. Except for situations where the observations
Y k under H0 and H1 are completely separable or the number of observations k goes
to infinity, the performance of the accountability testing will be restricted within a
feasible region.

Definition 4.3 (Accountability Receiver Operating Characteristic)
Accountability Receiver Operating Characteristic (AROC) is a plot which
describes the relationship between achievable accountability PA and wronged
accountability PU in the square [0, 1] × [0, 1].

As shown in Fig. 4.5, if we conduct LRT in accountability investigation, the
AROC curve depicts the testing performance with respect to different threshold
values τk . Similar to traditional binary hypothesis testing, the AROC curve under
proper design preserves the following properties [70].

Fig. 4.5 Accountability receiver operating characteristics (AROC)
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Property 4.1 (AROC) AROC curve under proper design has the following proper-
ties:

(1) (PU , PA) = (0, 0) and (1, 1) belong to the AROC.
(2) The slope of the AROC curve dPA(τk)/dPU(τk) is equal to the threshold τk .
(3) The AROC curve is concave and the feasible domain of (PU , PA) is convex.
(4) PA(τk) ≥ PU(τk), ∀τk ∈ [0,+∞).

Remark 4.1 The likelihood ratio lies in the region between zero and infinity. If
we set the threshold τk in LRT to zero, investigator will classify any performance
results into hypothesis H1 (misinformation). Both accountability PA and wronged
accountability PU will approach to one, as (PU , PA) = (1, 1). Similarly, if we set
τk in LRT to infinity, investigator will classify any performance into hypothesis H0
(truthfully report), resulting in (PU , PA) = (0, 0).

Remark 4.2 Property (3) and (4) are satisfied under the proper design; i.e., the test
is “good” when PA ≥ PU . For a “bad” test when PA < PU . As the hypothesis refers
to a specific context of applications, we cannot simply reverse the performance
distribution as in traditional hypothesis testing. Instead, we need to re-construct the
investigation and find another performance metric that can properly distinguish the
misinformation between suppliers and buyers.

It is worth noting that as the threshold τk increases, the accountability of the
supplier PA increases. However, according to the aforementioned properties, it
would also increase wronged accountability PU when the accidents are not caused
by the vendor. There is a fundamental trade-off between accountability PA and
wronged accountability PU depending on the accountability investigation. One way
to evaluate the investigation performance is the area under the AROC curve (AUC).
AUC is a measure of investigation capability [71], which provides a simple figure
of merit to represent the degree of separability between two hypotheses.

AUC(τk) =
∫ 1

0
PA(τk) dPU(τk) (4.9)

This value varies from 0.5 to 1. When AUC equals 0.5, the designed investigation
has no separation capability, which means the performance of the test is no better
than flipping a coin. This corresponds to the case when PA(τk) = PU(τk) for all
possible threshold τk . Ideally, an excellent test will produce an AUC equal to one.
In this situation, the accountability investigation can completely distinguish between
two hypotheses, thus correctly identifying the supplier who should be accountable
for the accidents.

Unfortunately, in realistic investigation tasks, it is hard to obtain the exact
computation of AUC. Analyzing the upper and lower bounds of AUC helps
the investigator describe the performance of the designed test. Shapiro in [72]
provides an upper bound and lower bound on binary testing. Consider equally likely
hypotheses with τ = 1, the probability of error Pe ∈ [0, 1] is defined as
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Pe = PU(τ = 1)

2
+ 1 − PA(τ = 1)

2
. (4.10)

Due to the convexity of the AROC curve, the bounds of the AUC can be described
as

1 − Pe ≤ AUC ≤ 1 − 2P 2
e . (4.11)

4.3.4 Model Extensions

This framework can be extended to multiple product types and multiple suppliers.
Accountability needs to point to varied suppliers that cause failures under the
hypothesis. In this section, we provide several testing frameworks and the definition
of accountability accordingly.

4.3.4.1 Single Supplier with Multiple Types

Consider the product from the supplier with T ∈ N possible types, � =
{θ1, θ2, . . . , θT }. Based on the received message m = θm, hypotheses
{H1,H2, . . . , HT } can be constructed by the investigator such that the performance
observation y under each hypothesis Ht admits

Ht : y ∼ fm(y|Ht) = py(y; θt , α(θm), δ(θm)), (4.12)

for 1 ≤ t ≤ T . The distribution under hypothesis Ht describes the system
performance if the buyer makes purchase and designs based on the message θm

while the underlying true product type is θt . In this case, the only anticipated
performance by the buyer follows Hm. Any other observation distribution Ht �=m

will attribute to the accountability of the supplier. Investigation could be conducted
through M-ary hypothesis testing. For a single supplier with multiple product types,
we can define the accountability as follows.

Definition 4.4 (Accountability with Multiple Types) Given a detection
rule λ, received message m and observations Y k , the accountability for a
single supplier with multiple product types is defined as

PA(λ) =
∑

t �=m,1≤t≤T

∫

Yt

fm(Y k|Ht)dyk, (4.13)

where Yt is the observation space we classify the observations as Ht .
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If we assume that the investigation cost is symmetric and depends only on the
error, it leads an MAP decision rule and the performance of the accountability
testing can be evaluated through the error probability as

Pe =
∑

1≤t≤T

Pr(E|Ht)π(t), (4.14)

where E denotes the error event, and π(·) ∈ �� is the prior probability that Ht is
true, which represents the reputation of the supplier.

4.3.4.2 Multiple Suppliers

In IoT system design with multiple suppliers, accountability testing needs to point to
varied suppliers that cause failures under the hypothesis. To simplify the illustration,
we consider the case where the component from each supplier may have binary
types θi ∈ {0, 1},∀i ∈ I. Consider the problem with N vendors in the supply
chain. Each supplier i ∈ I = {1, 2, . . . , N} with true product type θi will send a
message mi ∈ Mi to the buyer to make purchase decision ai ∈ {0, 1} and determine
the overall design d ∈ D. The process is illustrated in Fig. 4.6. We can construct
hypotheses as a vector

Hj = (h1, h2, . . . , hN), hi = 1(mi �= θi)∀i ∈ I, (4.15)

where each element hi is an indicator of whether supplier i truthfully reports or
not, and the subscript 0 ≤ j ≤ 2N − 1 is the decimal number of the binary
combination in the vector. The hypothesis vector indicates which supplier(s) should
be accountable for the accident. When the performance distribution under each
hypothesis is distinguishable, the investigation could be conducted through M-
ary hypothesis testing. Otherwise, we can consider decentralized investigation as
described in the sequel.

Fig. 4.6 Extension of the model to multiple suppliers
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Fig. 4.7 Accountability by aggregating the investigations of the performance of multiple IoT
components. A local investigation is performed based on the performance of each component
y1, y2, · · · , yN . The results h1, · · · , hN are aggregated to form a final result Hj

Consider a decentralized accountability investigation with 2N hypothesis
H0, .., H2N−1 and prior reputation π(H0), . . . , π(H2N−1), respectively. Suppose
that we have N suppliers providing components to the system. Each component
investigator λi is inspecting the performance related to the product provided from
the vendor i. In practice, we can design the independent tests for each component
to determine the accountability of supplier i. We can control the other parts (j �= i)

to be known and fixed products in test design and focus on the binary hypothesis
testing with respect to component i.

Illustrated in Fig. 4.7, each component investigator receives observations yi ,
which is a random variable taking values in a set Yi . The local investigator will con-
duct accountability testing through λi : Yi �→ {0, 1} and output a binary decision
variable hi = λi(yi), which indicates whether supplier i should be held accountable
for the accident. This reduces the problem to N parallel binary hypothesis testing
with each supplier, and the accountability of each supplier then will be the same
as defined in Definition 4.2. The final investigator determines which hypothesis is
established based on received information, λ0 : {0, 1}N → {0, 1, . . . , 2N −1}. It has
been shown in [73] and [74] that there exists an optimal detection rule if each testing
observations are independent or conditionally correlated under each hypothesis.

4.4 Case Study 1: Autonomous Truck Platooning

In the following section, we will provide a detailed case study in autonomous truck
platooning with adaptive cruise control (ACC) system. This case study illustrates
the scenario where the true performance is unknown to the investigator. We will
discuss the accountability of the ranging sensor supplier in the case of a collision.
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4.4.1 Background

With the rapid development of autonomous vehicles, safety is one of the main
priorities for manufacturers. As estimated by the World Health Organization
(WHO), the number of annual road deaths with collision has reached 1.35 million
worldwide [75]. The recent incident in Tempe, Arizona, has thrown a spotlight on
the safety of autonomous vehicles. The Uber self-driving test car caused the death of
the pedestrian because of the failure of braking control by the autonomous driving
system. The investigation of accountability is crucial to determine the cause of the
collision and provides insights for future car design.

In this case study, we consider the task of autonomous truck platooning with
ACC system. Adaptive cruise control is a driver assistance technology that maintains
a safe following distance between the vehicle and traffic ahead without any
intervention by the driver. If the preceding truck is detected traveling too slowly
or too close, the ACC system will react by automatically activating the brakes and
mitigating potential collisions. Brake control is determined based on the relative
distance, relative velocity, and the acceleration of leading and the following truck.
The speed and acceleration of both vehicles can be measured by built-in speed
sensors and accelerometers. Ranging sensors, including radar and LiDAR, are used
for distance detection in the ACC system. The upper-level control system uses
the measurements of the sensors to interpret the driving environment, and trigger
appropriate brake actions to mitigate collision [76]. Thus, the detection range and
precision of the ranging sensor are critical in ACC design. Defective ranging sensors
could cause severe consequences and should be held accountable in case of such a
collision.

4.4.2 Vehicle Dynamics Model

To illustrate the accountability of the ranging sensor in this framework, we first
introduce the dynamics model of the problem. Consider the testing scenario in
Fig. 4.8, where the host truck equipped with ACC system approaches the preceding
vehicle. The control goal of the ACC system is to maintain the desired safe
distance from the leading vehicle. The desired distance L is normally determined by
Constant time gap spacing policy in ACC systems, which guarantees the individual
vehicle stability and string stability [76].

L = vh · tgap, (4.16)

where vh is the speed of the host vehicle and tgap is the constant desired time gap.
Denote xi, vi, ai as the position, velocity, and acceleration of the leading

(i = l) or host (i = h) vehicle, respectively. We assume that the leading vehicle
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Fig. 4.8 Host truck with
ACC system following the
leading truck

is at constant speed vl(t) = v0. The system state vector x(t) and control vector u(t)

are defined as follows [77].

x(t) = [
�x(t) − L, �v(t)

]T
, u(t) = [

ah(t)
]
, (4.17)

where �x(t) = xl(t) − xh(t) is the current distance and �v(t) = vl(t) − vh(t)

is the relative speed between the leading and following vehicles. The state space
representation of the system can be written as

ẋ(t) = Ax(t) + Bu(t), (4.18)

y(t) = Cx(t) + w(t), (4.19)

The matrices are given by

A =
[

0 1
0 0

]
, B =

[−tgap

−1

]
, C = [

1 0
]
, (4.20)

where y(t) = �x(t) − L + w(t) is the noisy control error between the desired
distance and current distance; w(t) is the observation noise. We assume that the
observation disturbance is modeled by an additive white Gaussian noise,

w(t) = N(0, σ 2). (4.21)

The variance σ 2 indicates the influence of the measurement environment. The intu-
ition behind using the Gaussian noise model is that it gives a good approximation
of the natural processes. If a specific distribution of measurement error is given, the
noise model can be changed accordingly and the accountability testing framework
will still work.

The optimal control can be achieved through linear quadratic regulator (LQR)
control. We define the cost function with zero terminal cost as

J = 1

2

∫ ∞

t=0
x(t)T Qx(t) + u(t)T Ru(t) dt, (4.22)
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where the diagonal weights

Q =
[
w1 0
0 w2

]
, R = [

1
]
. (4.23)

The goal of the controller is to regulate the state towards (0, 0)T . The optimal
feedback control law is given as

u(t) = −R−1BT Px(t) (4.24)

where P is the solution to the following associated algebraic Riccati equation:

0 = PA + AT P + Q − PBR−1BT P. (4.25)

The aforementioned vehicle dynamics model and optimal control describe the
system design δ of the final ACC system based on the information provided by
the supplier. Different control methods and system design can be implemented to
achieve the same goal. In the following section, we assume that this system design
is not the cause of the collision and purely focuses on the accountability of the
sensor supplier.

4.4.3 Accountability Testing

The true product attributes play an important role in control system design. From
the previous section, the optimal control of the system depends on the correct
distance detection between the two objectives. Thus, the sensor with degraded
detection result should hold accountable if the ACC system fails to maintain the
safety distance and causes a collision. To attribute the ACC system performance to
the ranging sensor supplier, we conduct the following accountability testing with
respect to the ranging sensor.

For the simplicity of the model, we consider two types of ranging sensor θ ∈
� = {0, 1}, which differ in the detection precision. We assume the sensor with type
θ = 1 is functioning normally, as the detection result r1(t) = �x(t); while the
sensor with type θ = 0 is malfunctioning with detection result r0(t) = �x(t) + ed .
The value ed is the detection error of the ranging sensor. The damaged sensor will
put the host vehicle at risk of collision, since the actual distance is closer to the
detection result.

The true property of the sensor is private information to the supplier, which is not
revealed to the system designer. The supplier should hold accountable for a collision
if there exists misinformation between the product description m and true product
property θ . Note that the misinformation can be unintended or intentional. We would
like to determine whether the ranging sensor supplier should be accountable for such
an accident.
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Fig. 4.9 Accountability testing with different sensor types

Consider the testing scenario in Fig. 4.9. The distance detection result from the
sensor will be the input of the state vector as

x(t) = [
rθ (t) − L, �v(t)

]T
. (4.26)

We use the final distance control error as the performance y of the ACC system
when testing. Suppose that the supplier reports m = 1 when signing the contract.
Consider a noisy observation results y as described in (4.19), then the performance
should follow

y ∼ py(y; 1, α(1), δ(1)) = N(0, σ 2).

It is the anticipated distribution of the observations when the supplier truthfully
report the product type (m = θ = 1). On the other hand, if the supplier misinforms
the buyer (m �= θ = 0), the performance should follow

y ∼ py(y; 0, α(1), δ(1)) = N(−ed, σ 2)

The negative distance control error suggests that the distance between two vehicles
is smaller than the desired safety distance requirement L, which can lead to a
potential collision.

We set up the following hypotheses to quantify the accountability of the supplier
who reports m = 1. Let Y = [y1, y2, . . . , yN ] ∈ R

N be a vector of independent
identically distributed observations yk (1 ≤ k ≤ N) of the aforementioned testing
scenarios.

H0 : Y ∼ N(−ed, σ 2IN)

H1 : Y ∼ N(0, σ 2IN)
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where IN is the identity matrix of size N . To keep the consistency with other studies,
we let H1 represent the case that the supplier truthfully report and H0 mean that
there exists misinformation between the reported product description m and true
product type θ . The supplier is accountable if the investigator correctly determines
that hypothesis H0 should be established.

Assume that the cost of the decision is symmetric and incurred only when an
error occurs. The reputation of the supplier follows [π0, π1]. In Bayesian binary
hypothesis testing, LRT compares the likelihood ratio to threshold τ = π0/π1. The
result suggests that the hypothesis H0 be established if the sample mean S is smaller
than the testing threshold η, as shown in the following

S = 1

N

N∑

i=1

yi

H1

�
H0

η (4.27)

where

η = ed

2
+ σ 2 ln(τ )

Ned

(4.28)

Given the decision rule and supplier’s reputation ratio τ , the accountability and
wronged accountability of the sensor supplier who reported m = 1 is

PA(τ) =
∫

Y0

f1(y|H0)dy = 1 − Q

(
d

2
+ ln(τ )

d

)
(4.29)

PU(τ) =
∫

Y0

f1(y|H1)dy = Q

(
d

2
− ln(τ )

d

)
(4.30)

where Q(x) is the Gaussian Q function and d = N1/2ed/σ [70].

4.4.4 Parameter Analysis

The accountability of the sensor supplier helps the investigator determine whether
the failure of the ACC system should be attributed to the sensor. Since the
accountability depends on parameters such as sampling size N , environmental
observation noise variance σ 2 and sensor range difference ed . In this section, we
discuss several numerical results under different cases.

Figure 4.10 depicts the influence of the number of tests N and sensor detection
error ed on the accountability. First, we notice that the PA → 1 and PU → 0 as the
number of tests N increases. This phenomenon indicates more testing will produce
a more accurate detection of the supplier’s accountability. From Eq. (4.27), we note
that the observation means S converges almost surely to the expected mean of each
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Fig. 4.10 Different sensor range difference (σ = 2, π0/π1 = 0.5/0.5). (a) Accountability PA. (b)
Wronged accountability PU

Fig. 4.11 Impact of
supplier’s reputation (σ = 2,
ed = 2, N = 30)

hypothesis as N → ∞. Besides, the second term in the testing threshold η vanishes,
and we end up comparing the expected mean of Y to the middle point ed/2 of two
hypothesis means.

The influences of sensor detection error ed is also illustrated in Fig. 4.10. The
prior is set to π0 = π1 = 0.5, which means that we do not favor any hypothesis
before testing. From Fig. 4.10, as the range difference between two types increases,
the PA and PD curves are associated with a more rapid change with respect to N . It
suggests that if the qualities of the two types of sensors have a significant difference,
it be easier for the investigator to determine the accountability of the supplier within
a fewer number of tests.

Figure 4.11 displays the impact of supplier’s reputation on the accountability
estimation. The ratio τ = π0/π1 represents the reputation of the supplier. A larger
value of τ indicates that we have a strong belief the supplier is dishonest. Normally,
we incline to expect that the supplier with a bad reputation would be accountable
for the incidents. As shown in Fig. 4.11, when we fix the testing environment,
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the accountability of supplier PA increases as τ increases. However, it should be
noted that the wronged accountability PU increases as well. This is because the
increase of τ will cause the testing threshold η in LTR will increase, leading to a
larger observation space Y0, where we classify the observations as H0. Thus, both
PA and PU will increase according to the definition. The wronged accountability
misattributes the incident to the supplier when they should not be accountable. We
will discuss the trade-off between PA and PU in the following section.

4.4.5 Investigation Performance

4.4.5.1 Accountability Receiver Operating Characteristic

In the context of this ACC case study, we are interested in the relationship between
accountability PA and wronged accountability PU . as

PA =
∫

Y0

fm(y|H0)dy = 1 − PF (4.31)

PU =
∫

Y0

fm(y|H1)dy = 1 − PD (4.32)

Because of the symmetric property of the Gaussian Q function, the AROC curve is
invariant under this transformation. From Eqs. (4.29) and (4.30), if we eliminate the
parameter τ , the relationship between PA and PU can be written as

PU = Q(d − Q−1(1 − PA)) (4.33)

The relationship between PA and PU is traced out as the threshold τ in LRT varies
from 0 to ∞. Note that this relationship depends on the variable d = N1/2ed/σ . We
plot the AROC curve under different d values in Fig. 4.12.

The slope of the AROC at point (PA(τ), PU (τ)) is equal to the supplier’s
reputation τ [70]. Ideally, we would like to conduct a hypothesis test such that
PA is close to one and PU is close to zero. As we can see from the figure, the
AROC curve approached the ideal test point when the value of d increases. This
result coincides with our aforementioned analyses. Increasing the number of test N ,
comparing sensor with larger sensor error ed , and reducing the observation variance
σ can all increase the value of d, leading to a more reliable accountability test result.

4.4.5.2 Area Under the AROC Curve

In the ACC sensor accountability testing case, the exact AUC value and its bounds
with respect to d are shown in Fig. 4.13. From the figure, we can see that the
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Fig. 4.12 ROC curve under
different d

Fig. 4.13 Bounds of AUC
under different d

performance of the hypothesis testing increases along with the value d. In fact, in
testing with the Gaussian hypothesis, the value d indicates the Chernoff distance
between the two Gaussian distributions [70]. A larger value of d means the
distribution of H0 and H1 have less overlap, thus it is easier to separate between
them. Since we have the exact expression of Pe, the bounds of AUC can be
expressed as

1 − Q

(
d

2

)
≤ AUC(d) ≤ 1 − 2Q2

(
d

2

)
. (4.34)
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4.5 Case Study 2: Ransomware in IoT Supply Chain

In this section, we provide a second case study of supplier accountability in
smart home IoT under ransomware attacks. This example illustrates how we
determine accountability in a supply chain and sophisticated systems involving
varied components.

4.5.1 Background

Ransomware is a type of malware that infects particular network entities to demand
ransom. This kind of attack is becoming more prevalent nowadays with the fast
development of IoT systems. The broad connections for IoT devices provide more
security threats and vulnerabilities. Besides, the massive number of IoT devices
increases the risk of getting infected by ransomware since any device could be
the target. Indeed, the ransomware attack has caused significant economic losses
in industrial domains. The estimated global damage from ransomware reaches $20
billion in 2021 [78].

Smart home technologies integrate different IoT-enabled components to provide
advanced services within the home environment. The components from different
suppliers contribute to addressing various challenges to improve the quality of
human life. However, their limited processing capabilities make them vulnerable to
security threats [79], including ransomware. If the component in the home security
system is taken controlled by the attacker, the end-user may face serious economic
loss and privacy leakage . The user needs to determine which part of the IoT system
should hold accountable for the accident. Our framework provides a way to mitigate
the impact of ransomware by attributing the accident to a supplier of IoT devices.

4.5.2 Smart Lock and Ransomware Attack

Nowadays, smart home technologies have been widely accepted by individuals and
organizations to improve home security. With the development of IoT and machine
learning, the number of smart lock users are increasing in recent decades. Instead
of physical keys, smart lock utilizes face recognition and/or fingerprint verification
to achieve digital authentication. Most smart locks also are equipped with intruder
alert and remote control when you are physically away from home. This innovation
avoids the threats with cloneable physical keys and provides a front-line deterrent
against potential intruders.

While the smart lock offers convenience to homeowners, the transition towards
digital control brings concerns over security in cyberspace. One potential threat
is the ransomware attack. This type of attacks belongs to the family of Advanced
Persistent Threats (APTs) . A malicious attacker attack your smart home IoT system,
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Fig. 4.14 IoT supply chain
related to security lock

lock the front door of your house, and request a ransom. The highly-connected
feature of IoT provides the attacker multiple vulnerabilities as the entry point into
the network. Once building a foothold in the network, the attacker moves laterally
towards the target to achieve his goal, in this case, locking the door and denying
legitimate access. Once compromised by ransomware, the dangling participle would
be huge if someone under medical conditions is locked and requires immediate
treatment. We may be discouraged by the fact that victims simply pay the ransom
in many cases, and even the FBI has inadvertently mentioned paying ransom if the
network device is infected [80].

Accountability investigation provides a way to check the responsibility of the IoT
device supplier(s) regarding the attack to mitigate the loss under such ransomware
attacks. It is important for the investigator to find out the initial attack entry that
poses a risk to the whole system. Due to the tiered structure of the supply chain,
the accountability investigation needs to be constructed through a top-down layered
tree analysis as shown in Fig. 4.14. This structure helps the investigator narrow down
the search scope and determine the accountability of the suppliers among multiple
supply chain tiers. More details are provided in the following section.

4.5.3 Accountability Investigation

4.5.3.1 Tier-1 Investigation

Face recognition and fingerprint verification are two critical parts of smart lock
authentication. The failure of the smart lock could be caused by the failure of one
or both of the functions. In this case, the first step in accountability investigation is
to determine whether the tier-1 suppliers of these two parts need to be accountable
for the ransomware attack.
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Table 4.1 Four hypotheses
in accountability investigation

Hypothesis h1 = 1(θ1 �= 0) h2 = 1(θ2 �= 0)

Ĥ0 0 0

Ĥ1 0 1

Ĥ2 1 0

Ĥ3 1 1

Fig. 4.15 Decentralized
tier-1 accountability
investigation

Denote the supplier of face recognition technology as i = 1 and the supplier
of fingerprint verification technique as i = 2. We assume that each supplier has
binary types θi ∈ {0, 1}. θi = 0 means that the provided product operates normally
and θi = 1 stands for malfunctioning. By default, each supplier sends a message
mi = 0 and guarantees the product functionality when signing the contract with
the buyer. Thus, we can construct the following hypotheses as in Table 4.1. Denote
hi, i = {1, 2}, as the accountability of supplier i. Ĥ0 indicates that both parts operate
normally as reported; Ĥ1/Ĥ2 suggests that there be misinformation from one of the
suppliers; Ĥ3 means both suppliers need to be held accountable for the ransomware
attack.

Instead of looking into the joint performance of the two components, we conduct
independent decentralized investigations into each of the suppliers as shown in
Fig. 4.15. We take the face recognition system h1 for example. The investigation of
the fingerprint verification h2 can be conducted in the same manner. Suppose that the
normal operating face recognition system can correctly detect the registered identity
with μ0 = 9% accuracy. If this system is destructed by the ransomware attacker,
we would expect a lower identification accuracy, i.e. μ1 < μ0. To investigate
the accountability of the face recognition system, we design the following testing
scenarios. On each trial, different photos of registered faces are displayed randomly
in front of the device. The performance yi ∈ {0, 1} at each trial is an indicator
of the testing results, where yi = 1 represents correct identification and yi = 0
otherwise. Let YN = {y1, y2, . . . , yN } be a sequence of independent and identically
distributed trials, we consider the following hypotheses for accountability testing.
For each trail 1 ≤ i ≤ N ,

H0 : yi ∼ Bern (0.9) , H1 : yi ∼ Bern (μ1) ,

where μ1 < μ0 = 0.95. Bernoulli distribution is a natural model to describe events
with Boolean-valued outcomes under certain success probability. In this hypothesis
model, H0 indicates that the face recognition system operates normally with 90%
detection accuracy on average. H1 suggests a degraded identification accuracy. This
investigation aims to find out whether hypothesis H1 should be established based on
the system performance.
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One limitation of Bayesian tests as described in Sect. 4.4 is their reliance on the
prior knowledge π , i.e., the reputation of the supplier, and costs assigned to different
decision errors. The choice of decision cost depends on the nature of the problem,
but the prior probabilities must be known. In many applications, the prior knowledge
may not be obtained precisely; thus, the correct value of the threshold in LRT is
unknown. In the ransomware case study, the misinformation between the supplier
and buyer may be unintended. It is challenging to determine the probability π1 that
the supplier is compromised by the attacker. It is natural to consider alternative tests
that can achieve desired detection results without such prior knowledge.

Neyman and Pearson [81] formulated a test λ that maximizes the correct detec-
tion probability PA(λ) (accountability) while ensuring the false-alarm probability
PU(λ) (wronged accountability) is subject to an upper bound constraint α. This can
be formulated as

max
λ

PA(λ) =
∫

Y1

fm(YN |H0)dyN,

s.t. PU (λ) =
∫

Y1

fm(YN |H1)dyN ≤ α.

(4.35)

This constrained optimization problem requires no prior knowledge about reputa-
tion and decision cost function. The only parameter that needs specification is the
maximum acceptable wronged accountability α. A classic result due to Neyman and
Pearson shows that the optimal solution to this type of investigation is a likelihood
ratio test (LRT).

Lemma 4.1 (Neyman-Pearson Lemma) Consider the likelihood ratio test in (4.5)
with τk > 0 chosen so that PU(τk) = α. There does not exist another test λ such
that PU(λ) ≤ α and PA(λ) ≥ PA(τk). Hence, the LRT is the most powerful test with
false-alarm probability PU(λ) less than or equal to α.

In the accountability investigation of the face recognition system, both hypothe-
ses admit a Bernoulli distribution. The likelihood ratio is given by

L(Y k) =
∏N

i=1 μ
yi

1 (1 − μ1)
1−yi

∏N
i=1 μ

yi

0 (1 − μ0)1−yi

=
(

1 − μ0

1 − μ1

)N (
μ0(1 − μ1)

μ1(1 − μ0)

)∑N
i=1 yi

.

The sufficient statistics of such testing will be the sum of all performance results
S = ∑N

i=1 yi . According to Neyman-Pearson lemma , the most powerful test will
hold the supplier accountable if S < λ for a constant threshold λ.

S =
N∑

i=1

yi

H0

�
H1

λ
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Fig. 4.16 Neyman-Pearson
test result for tier-1
investigation

Under H0, the detection accuracy is on average μ0, and S admits to a binomial
distribution, S ∼ Binomial(N,μ0). Illustrated in Fig. 4.16, to ensure PU(λ) = α,
the threshold λ is chosen to be the α-quantile of the Binomial(N,μ0) distribution.

λ = Q(α) = inf {x ∈ R : α ≤ FS(x)} ,

where FS(x) is the cumulative distribution function of random variable S. Note that
as this is a discrete distribution, it may not be possible to get the exact α and λ

desired. One way to address this problem is to increase the total number of trials N

and approximate the binomial with a Gaussian distribution according to the central
limit theorem (Fig. 4.16).

In the IoT ransomware attack case, the changes made by the stealthy attacker
often remains unknown even after investigations. Thus, it is hard to determine
identification accuracy μ1 after the attack and find the exact performance dis-
tribution under hypothesis H1. We can only assume that the attack results in a
degraded identification accuracy as μ1 < μ0. Neyman-Pearson test provides a
way to investigate the accountability of the supplier with limited prior knowledge.
It guarantees that the correct detection probability PA is maximized under the
false-alarm constraint PU ≤ α. In the context of the IoT supply chain attack,
Neyman-Pearson test paves the way for the buyer to investigate the accountability
of the supplier with limited information.

4.5.3.2 Multi-Stage Accountability Investigation

The tier-1 investigation examines the accountability of each tier-1 supplier. How-
ever, due to the layered structure of the IoT supply chain and the sophisticated
feature of the ransomware attack, the true cause of the attack may lie in the suppliers
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Fig. 4.17 Multi-stage accountability investigation

at the subordinate tiers. Tier-1 suppliers can further attribute the malfunction to their
suppliers following a similar fashion. A top-down layered investigation is needed if
we would find out the origin of the attack and obtain a holistic view of the entire
supply chain. This is called a multi-stage accountability investigation.

For instance, if the face recognition system should be held accountable for
the attack after the tier-1 investigation, the supplier could further investigate
the components that the system consists of. There may exist different types of
vulnerabilities in the components that are provided by tier-2 suppliers. The attacker
could break into the system by compromising the ill-protected camera and further
penetrating into the system. Another possibility is that adversaries against face
recognition are performed at the detection software. If the latter case holds true,
the detection software provider can further check which part of the software is
malfunctioning. Face recognition attacks can be performed at the database, the
predefined algorithm parameters, the communication channels, etc. The multi-
stage accountability investigation aims to further figure out which among the
vulnerabilities is the underlying cause of the attack (Fig. 4.17).

To analyze the accountability of the involved suppliers at each tier, we view the
supply chain as a directed graph as shown in Fig. 4.19. The arrows in the graph
indicate the procurement relationship. Multi-stage accountability starts from the
top tier node, the final product. The accountability investigation on each supplier
i produces accountability P i

A subject to an investigation cost Ci . Whether a supplier
is accountable depends on the comparison between P i

A and selected threshold
ε ∈ (0, 1). We call a supplier accountable if P i

A > ε.
If the current supplier is determined to be non-accountable (P i

A < ε), there is no
need to continue investigation among its suppliers. In the ransomware case study,
if we determine that the face recognition system solely should be accountable after
the tier-1 investigation, there is no need to conduct an accountability check for the
suppliers related to the fingerprint verification system. Deductive reasoning helps
reduce the investigation efforts on unrelated system components and focus on the
ones that the accident is attributed to. It provides a way to prioritize the factors
leading to the top event.
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It should be noted that the product design of each sub-system can also be the
cause of the vulnerability that exposes the system to threats. This brings up the
question of how deep we should investigate during the process. Suppose the total
investigation budget is B. The investigator needs to decide whether to continue the
investigation or simply stop and replace the component. Replacement is a better
choice if the remaining budget cannot support further investigation as

B −
∑

i∈I
Ci ≤ Cnext,

where I is the set of investigated suppliers and Cnext is the investigation cost
of the next supplier. The trade-off between investigation and replacement can be
another dimension for consideration when conducting multi-stage accountability
investigations.

Multi-stage accountability investigation is an iterative analysis process to find
the cause of the accident. The layered approach provides a way to understand how
the system fails, identify the vulnerabilities in the IoT supply chain, and determine
the accountability of any supplier. It also creates the foundation for any further
analysis and evaluation. If the structure of the supply chain has been upgraded (e.g.,
component replacement), it can provide a set of steps to design quality tests and
maintenance procedures.

4.6 Compliance and Cyber Insurance

4.6.1 Compliance Modeling

The description m ∈ M from the supplier to the buyer is a self-reporting mechanism
that requires the vendors to disclose information about their products so that the
buyers can use the NIST standards to check their compliance before they are
integrated into IoT systems. The procured products have to comply with the business
or mission, organization-specific requirements, the operational environment, risk
appetite, and risk tolerance [82]. Security requirements are an important component
of compliance. They are imposed by not only the developers in the private sectors
to provide information and quality assurance but also the law, which aims to protect
the nation from cyber-attacks.

Recent legislation has been signed into law requiring IoT devices purchased
with government money to comply with security standards [83]. The Internet of
Things Cybersecurity Act of 2020 [84] requires NIST to “develop and publish under
section 20 of NIST Act (15 U.S.C. 278g-3) standards and guidelines for the federal
government on the appropriate use and management of Internet of Things devices
owned or controlled by an agency and connected to information systems owned
or controlled by an agency, including minimum information security requirements
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for managing cybersecurity risks associated with such device.” All IoT devices
connected to IT systems owned or controlled by a federal agency must conform
to NIST standards by September 4, 2021.

The Biden executive order of May 12, 2021 [85] demands that “the federal
government must bring to bear the full scope of its authorities and resources to
protect and secure its computer systems, whether they are cloud-based, on-premises,
or hybrid. The scope of protection and security must include systems that process
data (information technology (IT)) and those that run the vital machinery that
ensures our safety (operational technology (OT)).” The executive order requires
full NIST compliance. The focus of the new rules is on IoT systems that support
information technologies, e.g., the power and cooling systems, such as uninterrupt-
ible power supplies (UPSs), power distribution units (PDUs), and computer room
air conditioners and air handlers (CRAC & CRAH) that support networks, servers,
and data centers on the property of federal agencies, building management systems
(BMS), and data center infrastructure management systems (DCIM).

Besides the federal regulations, supply contracts are also useful to secure
systems installed by suppliers. The suppliers need to be informed of your security
requirements and standards. You can check whether the proposed or delivered
products or services comply with them. The contracts also play an important role
in accountability. The penalty can be enforced by contracts once non-compliance of
the services is found by the buyer, which has been discussed in the earlier section.

We can use formal methods to check whether the attributes in m satisfy the
requirements that are coded into logical formulae f . The product is compliant
if m |� p, the description satisfies the specifications; otherwise, it is not. There
are well-established tools that can be used to efficiently solve this satisfiability
problem. For example, the compliance problem can be formulated as a satisfiability
modulo theories (SMT) problem, which can be solved using a formalized approach
and many solvers. PRISM is another tool that enables probabilistic modeling and
checking of systems. Under the assumption that the reporting of m truthfully
describes the product, i.e., m = θ , a compliant buyer or system will not acquire
from suppliers that do not satisfy the requirement. In other words, a = 0 if m �|� p.

4.6.2 Contract Design

There are two economic-level solutions. One is the mechanism design between the
buyer and the supplier to induce m = θ . To achieve this, we would need to create
incentives for the supplier to truthfully reveal θ . This would rely on the design of
a certain form of penalty as a credible threat. One of such penalties is through the
contract. The contract between the supplier and the buyer would include a penalty
once the supplier is accountable. The contract will be effective only when the buyer
decides to purchase the product a = 1, which happens with probability α(m) =
Pr(a = 1|m). We consider the following utility function of the supplier, US :
� × M �→ R, given by
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US(θ,m) :=Eα

[
JS(θ,m) − EP m

A
[CS(θ,m)]

]
. (4.36)

Here, JS : � × M �→ R is the profit of the supplier if he reports m ∈ M when
the true type is θ ∈ � and under the procurement decision. The second term in the
utility function is the average penalty CS : �×M �→ R for the supplier if he is held
accountable. The probability of being accountable is given by P m

A in Definition 4.2
based on the received message m. It is clear that the penalty depends on θ and m.

We call a supplier is incentive-compatible if

US(θ, θ) ≥ US(θ,m), for all m ∈ M. (ICS)

An incentive-compatible supplier does not have incentives to misreport what he
knows when he is held accountable for his actions. Note that to achieve this, we
assume that the purchase rule and accountability testing scheme are revealed to the
supplier through the contract. The (ICS) condition gives a natural constraint when
designing a procurement contract . However, the challenge is that the profit function
JS and the type space of the suppliers are often unknown to the acquirer and they
need to be conjectured or learned from experience or data.

We call a supplier is individually rational if

US(θ,m) ≥ 0, for all m ∈ M,m �= θ (IRS)

The (IRS) constraint ensures that the supplier benefits from participating in the
contract. It requires the buyer to design the penalty carefully so that the expected
profit of the supplier is non-negative.

Example: Autonomous Truck Platooning
The utility function of the supplier can be further expressed as

US(θ,m) = α(m) · [JS(θ,m) − CS(θ,m) · P m
A

]
. (4.37)

The goal of contract design is to assign an appropriate penalty CS for the supplier
if they need to be held accountable for the accident. The first consideration comes
from the (IRs) constraints. This set of constraints suggests that we should not assign
a penalty that exceeds the expected profit.

The (ICS) constraints are automatically satisfied when the supplier truthfully
reports m = θ . Consider the autonomous truck platooning example as described
in Sect. 4.4 with the binary sensor type space, i.e., � = M = {0, 1}. The contract
designer needs to meet the following constraints

α(1)
(
J 11

S − P 1
AC11

S

)
≥ α(0)

(
J 10

S − P 0
AC10

S

)
(4.38)

α(0)
(
J 00

S − P 0
AC00

S

)
≥ α(1)

(
J 01

S − P 1
AC01

S

)
(4.39)
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where we denote the profit of supplier with true type θ who sends message m as
J

θ,m
S , and the penalty for such supplier as C

θ,m
S .

From the contract designer’s viewpoint, the profit of the supplier J
θ,m
S is beyond

his control. This value is determined by the production cost and economic nature
of the system. In the ACC system, θ = 1 is the product type corresponding to the
system design. It is natural to assume that the sensor supplier with true type θ = 1
makes more profit when he truthfully reports, as J 11

S > J 10
S . Similarly, we can

assume that misinformation brings a higher profit for the supplier with θ = 0, as
J 00

S < J 01
S .

In terms of misinformation penalty, it is incentive to penalize more on the
supplier who fails to truthfully report, as C

θ,θ
S < C

θ,m
S , for every m �= θ . If we

expect the same procurement policy α(m) and accountability P m
A = PA are the

same for both messages m ∈ {0, 1}, constraint (4.38) will be automatically satisfied
and constraint (4.39) will be reduced to

J 01
S − J 00

S ≤ PA(C01
S − C00

S ). (4.40)

This indicates for the supplier θ = 0 who has the incentive to misinform the buyer,
the expected extra penalties brings to the supplier through contract need to exceed
the extra profit generated from the untruthful report. The result coincides with the
intuition that the contract needs to be designed with incentive compatibility.

For automakers looking at production, the prices of LiDAR sensors need to be
cost-effective for automotive ACC use. Ranging sensors with greater abilities will
be sold for higher prices. It is reported that LiDAR suppliers manage to reduce
the single-unit samples price to $250 in large volumes [86]. In the ACC supplier
example, consider the following values:

J 11
S = J 01

S = 250; J 00
S = J 10

S = 200; α(1) = 0.8, α(0) = 0.5; P 1
A = 0.3, P 0

A = 0.7.

We arrive at the following constraints for the contract penalty design for the
supplier:

0.8 ∗ (250 − 0.3 ∗ C11
S ) ≥ 0.5 ∗ (200 − 0.7 ∗ C10

S ),

0.5 ∗ (200 − 0.7 ∗ C00
S ) ≥ 0.8 ∗ (250 − 0.3 ∗ C01

S ), (ICS)

0.5 ∗ (200 − 0.7 ∗ C10
S ) ≥ 0,

0.8 ∗ (250 − 0.3 ∗ C01
S ) ≥ 0, (IRS)

C00
S < C01

S , C11
S < C10

S .

By solving the feasible region of penalty under constraints as in Fig. 4.18, the
contract designer can select the proper penalties for the supplier and help avoid
misinformation.



4.6 Compliance and Cyber Insurance 91

Fig. 4.18 Feasible penalties under constraints. (a) Feasible region for θ = 0. (b) Feasible region
for θ = 1

4.6.3 Cyber Insurance

4.6.3.1 Background Introduction

In spite of the wide applications of cyber-physical systems, the cyber risks within
the IoT supply chain are considered to be the most challenging problem to handle.
Cyber insurance is the last resort for resilience to mitigate the loss of performance.
It is an important risk management tool that transfers the risks of the buyer to a third
party, i.e., an insurer. Victims of a cyber attack can reduce their financial losses
and quickly recover to restore their business operations. According to the cyber
insurance report released by the National Association of Insurance Commissioners
(NAIC) [87], the cybersecurity insurance market in 2020 is roughly $4.1 billion
reflecting an increase of 29.1% from the prior year. This scheme particularly benefits
small and medium-size businesses that cannot afford a major investment in cyber
protection.

Unlike traditional insurance policies, cyber insurance compensates the buyer
for the loss incurred by data breaches, malware infections, or other cyberattacks
in which the insured entity was at fault. An incentive-compatible cyber insurance
policy could help reduce the number of successful cyber attacks by incentivizing
the adoption of preventative measures in return for more coverage [88, 89]. It
can be served as an indicator of the quality of security protection. Besides, it is
believed that cyber insurance can induce greater social welfare and encourage more
comprehensive policies regarding cyber security[90].

Various frameworks have been proposed to study cyber insurance from different
perspectives, including [17, 65, 91, 92]. Pal et al. have studied the economic impact
of cyber insurance by proposing a supply-demand model. Their work showed
that cyber insurance with client contract discrimination can improve network
security [93]. Böhme et al. have proposed several market models to understand
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Fig. 4.19 Information exchange between the insurer, buyer and supplier

the information asymmetries between defenders and insurers [94]. Radanliev et al.
have built an impact assessment model of IoT cyber risk to better estimate cyber
insurance [95]. In our framework, we focus on the cyber insurance policy within the
IoT supply chain and understand the impact of accountability investigation on cyber
insurance.

4.6.3.2 Insurance Policy Design

Typically, the cyber insurance contract consists of the premium price and the
coverage rate . The key challenge in insurance policy design lies in the difficulty
of risk evaluation due to the complex structure of the cyber-physical systems. An
insurer can make two separate contracts with the supplier or/and the buyer. The loss
of the buyer would be compensated by the insurer when an accident or a disruption
occurs. The loss of the supplier due to accountability could be insured as well. In
this section, we focus on the insurance contract between an insurer and a buyer
(Fig. 4.19).

The contract is composed of the premium and the coverage of the losses. Let
CI ∈ R be the premium charged by an insurer and the coverage is modeled by the
percentage r ∈ (0, 1]. They are decision variables that are determined by the insurer.
A buyer has incentives to participate in the insurance if the average utility under the
coverage is higher than the one without coverage. To quantitatively capture it, we
specify the loss or payoff function of the buyer JB , given by

JB(m, δ) := (1 − r)L̂B(m, δ(m); θ) + CB(m) + CI . (4.41)

Here, the first term L̂B is the average loss of performance, which is the difference
between the true and the anticipated performances. The cyber insurance will cover
the r portion of the risk. Hence the residual loss is (1−r) of the losses. The insurance
can completely compensate for the loss of the performance when r = 1. The second
term is CB(m) is the cost of procurement of the product and CI is the premium paid
by the buyer.

In this framework, we focus on the potential loss due to the misinforma-
tion from the supplier who cannot be held accountable due to the limitation of
accountability investigation. According to the investigation, if the supplier should
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be held accountable for the malfunctioning of the system, the loss of performance
should be compensated by the supplier. However, if the investigation cannot hold
the supplier accountable, the risk will be transferred to the third party under the
insurance contract. The latter case occurs with probability 1−P m

A , the probability of
unaccountable. Thus, the loss of performance can be viewed as a random variable lB

lB(m, δ(m); θ) =
{

UB(m, δ(m)) − UB(θ, δ(m)) w.p. 1 − P m
A ,

0 w.p. P m
A ,

(4.42)

where UB(θ, δ(m)) is the performance utility measure under the design δ(m) and
the true product quality θ . We assume that the true performance UB(θ, δ(m)) is
at best the same as the anticipated performance when m = θ , i.e. UB(m, δ(m)).
When misinformation occurs, there will be a positive loss of performance; when the
supplier reports truthfully, the true performance coincides with anticipated one and
the loss is zero; in other words, the expected loss of performance

L̂B = (1 − P m
A )�UB ≥ 0, (4.43)

where we denote the difference in performance measure as �UB .
One critical aspect of cyber insurance is the bias from insurance buyers. Humans

will hold biased perception concerning losses and risks, which can lead to different
decisions compared to completely rational ones. Agents are often risk-averse; i.e.,
they prefer lower returns with known risks rather than higher returns with unknown
risks. In terms of the expected losses L̂B , economic literature commonly imposes
the following functions for a risk-averse agent.

• Constant Absolute Risk Aversion (CARA) [94]:

φ(x) = eβx

β
, (4.44)

where the parameter β ≤ 1 is the absolute risk aversion coefficient, measuring the
degree of risk aversion that is implicit in the utility function. The biased expected
loss in this case is

�(L̂B) = (1 − P m
A )φ(�UB), (4.45)

• Prospect Theory (PT) [96]:

φ(x) =
{

xβ x ≥ 0

−λ(−x)β x < 0
, w(p) = pζ

pζ + (1 − p)ζ
, (4.46)

where φ(x) and w(p) are biased utility and weighted probability, respectively,
and λ, β, ζ are prospect parameters with loss aversion implying λ > 1. In



94 4 Policy Management

general, PT shows that people are more averse to losses and less sensitive to
gains; people inflate the belief for rare events and deflate for high-probability
ones. The biased expected loss in this case is

�(L̂B) = w(1 − P m
A )φ(�UB), (4.47)

For these types of buyer, we should replace the average loss L̂B in Eq. (4.41) with
the biased expectation �(L̂B). The risk-averse buyer has an incentive to purchase
cyber insurance if the expected cost under insurance is lower than the one without
insurance:

(1 − r)�(L̂B) + CB(m) + CI ≤ �(L̂B) + CB(m). (IRB )

Note that we assume that the utility of the buyer does not include the penalty
payment from the procurement contract and assume that the procurement does not
involve an accountability contract. If so, we need to design the procurement contract
and the insurance contract jointly as they are interdependent.

The mechanism design problem of the insurer is to determine the optimal
premium rate CI and the coverage r to maximize his profit. The insurer provides
insurance only when the profit is non-negative. Thus, we have the following
constraint.

JI := CI − r · L̂B ≥ 0 (IRI )

We assume that the insurer is rational and risk-neutral so that they use the accurate
value of the expected loss of the system when making decisions. The insurer solves
the following optimization problem:

max
r, CI

JI = CI − r · L̂B

s.t. (1 − r)�(L̂B) + CI ≤ �(L̂B) (IRB)

CI − r · L̂B ≥ 0 (IRI )

r ∈ (0, 1]
CI ∈ R

+

(4.48)

Combining the individual rationality constraints (IRB ) and (IRI ) with the biased
utility function, we arrive at the following proposition.
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Proposition 4.1 The insurance contract is established between the insurer
and the buyer if the premium CI ∈ R

+ and the coverage level r ∈ (0, 1]
satisfy

L̂B ≤ CI

r
≤ �(L̂B) (4.49)

This result shows that the ratio between the coverage level r and premium value
CI depends on the average loss of performance of the system and the risk aversion
of the pursuer. Under this constraint, a risk-averse buyer will have the incentive
to purchase the insurance. This provides a fundamental principle for designing the
insurance policy.

4.6.3.3 Maximum Premium with Full Coverage

In this section, we discuss the maximum acceptable premium the risk-averse buyer
is willing to pay. According to Proposition 4.1, the ratio between the coverage level
and the premium CI/r is bounded by the expected and biased loss of performance
of the system. The maximum premium value can be achieved when the insurer is
providing full coverage as r = 1.

Proposition 4.2 The maximum acceptable premium for the buyer is achieved
under the following insurance policy:

r∗ = 1, C∗
I = �(L̂B). (4.50)

Consider the PT risk aversion in (4.46). The maximum acceptable premium can
be expressed as

C∗
I = �̂(L̂B) = (1 − P m

A ) · λ(�UB)β. (4.51)

Proposition 4.3 With full coverage r = 1, the maximum acceptable premium
is higher than the unbiased expected loss when the performance difference is
relatively small, as

C∗
I ≥ L̂B if 0 ≤ �UB ≤ λ

1
1−β .
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Fig. 4.20 Maximum
acceptable premium under
different degrees of risk
aversion

Fig. 4.21 Relationship
between accountability and
maximum acceptable
premium

We first set P m
A = 0.8, apply β = 0.88, ζ = 0.69 in behavioral science literature

and discuss the influence of loss aversion level λ on the maximum acceptable
premium C∗

I , which is depicted in Fig. 4.20. The dotted line served as the baseline of
the risk-neutral buyer, which represents the unbiased expected loss of performance.
A larger value of λ indicates that the buyer is more risk-averse against the losses.
The biased loss function is concave in �UB because when the �UB in performance
is too high, a small increase in losses has little influence on the buyer’s recognition.

Risk-averse buyers are sensitive to small losses, which provides the insurer
an opportunity to take advantage of the risk aversion and charge for a higher
premium. From the Fig. 4.21, the biased expected loss is greater than the unbiased
one when �UB is within the tolerable range for the buyer. This range coincides

with the insurance purchase constraint in Proposition 4.1. If �UB > λ
1

1−β , we
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have �(L̂B) > L̂B and the buyer would not have the incentive to purchase cyber
insurance anymore. This indicates that the insurer can increase the premium to its
maximum acceptable value if the buyer participates in the insurance.

Proposition 4.4 Cyber insurance is an incentive mechanism that encourages
the buyer to have a more reliable accountability investigation.

Another key result is that cyber insurance can increase the buyer’s incentive to
establish a more valid accountability investigation method. As described in (4.51),
the maximum acceptable premium C∗

I has a negative correlation with respect to the
accountability P m

A . Let β = 0.88, λ = 2.25 and ζ = 0.69 as the typical values
in prospect theory, the influence of accountability investigation on the maximum
acceptable premium is depicted in the following figure.

Figure 4.21 illustrates that a more reliable accountability investigation (larger
P m

A ) can reduce the maximum premium of the insurance. The amount of reduction
is higher if the performance differs more within two product types. If we consider
the payoff function of the buyer under full insurance coverage. If the insurance
company charges the maximum acceptable premium, we have

JB(m, δ) = CB(m) + C∗
I . (4.52)

The decrease in CI will reduce the total payoff JB of the buyer, resulting in a
higher profit. In other words, cyber insurance provides incentives for the buyer to
invest more in accountability investigation and establish a more reliable examination
method to determine whether the supplier should be accountable for the incident.

4.6.3.4 Coverage Level with Given Premium

In this section, we discuss the coverage level r when the premium CI is given.
As demonstrated in Proposition 4.1, given a premium CI , the insurance contract is
established if

CI

�(L̂B)
≤ r ≤ CI

L̂B

. (4.53)

This can be regarded as a constraint in the optimization problems for the buyer and
the insurer.

Given CI , the buyer’s problem is to find the optimal coverage level that
minimizes the total payoff under insurance.
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min
r∈(0,1] JB = (1 − r)�(L̂B) + CB(m) + CI ,

s.t.
CI

�(L̂B)
≤ r ≤ CI

L̂B

.

(OPB )

Note that the buyer makes decision under biased expected loss, thus we use �(L̂B)

in the objective function to represent her recognition. On the other hand, the
insurer’s problem is to find the optimal coverage level that maximizes his profit.

max
r∈(0,1]

JI = CI − rL̂B,

s.t.
CI

�(L̂B)
≤ r ≤ CI

L̂B

.

(OPI )

We assume that the insurer is rational and the expected loss in the objective function
is unbiased.

By solving these two optimization problems (OPB ) and (OPI ), we find the
optimal coverage levels for the buyer and the insurer as follows:

r∗
B = max

{ CI

L̂B

, 1
}
, r∗

I = min
{ CI

�(L̂B)
, 0

}
.

The buyer prefers a larger coverage level achieved at the upper bound under the
constraints, while the insurer favors a lower coverage level achieved at the lower
bound. The result coincides with the fact that the insurance company and the buyer
have a conflict of incentives in terms of the overall payoff. However, the individual
preferences of both sides need to satisfy the constraint in (4.53) in order to establish
the insurance contract in the first place.

Proposition 4.5 Given the insurance premium CI , the acceptable range of
coverage level r will shift in the buyer’s favor with more accountability P m

A .

Figure 4.22 illustrates the acceptable coverage level r when the performance
difference �UB = 6 and given premium value CI = 2. From the figure, both
bounds of the coverage level increase with respect to the accountability P m

A . This is
because both L̂B and �(L̂B) are decreasing functions in P m

A . The phenomenon
shows that a more reliable accountability investigation (larger P m

A ) benefits the
buyer when he participates in cyber insurance. Since the insurance contract is only
established under the constraint, the acceptable range of coverage level closer to 1
covers more portion of the losses in the system, thus reducing the payoff that the
buyer needs to pay after a system malfunction.
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Fig. 4.22 Coverage level
under different accountability
(�UB = 6, CI = 2)

4.6.3.5 Trade-Off Between Accountability Investment and Cyber
Insurance

Lastly, we discuss the trade-off between the investment in accountability investiga-
tion and cyber insurance. From the previous discussion, a more reliable accountabil-
ity investigation method (larger P m

A ) reduces the maximum acceptable premium CI

and increases the coverage level r . They result in a more favorable insurance plan
for the buyer that mitigates the losses of performance due to the supplier. However,
usually, the increase in P m

A comes with a cost. It brings up the question: how much
should we invest in accountability?

Suppose the cost to increase the accountability from P m
A to P m′

A is Cn. This value
represents the extra funding on accountability investigation. The total payoff of the
buyer before (JB ) and after (J ′

B ) accountability investment are

JB = (1 − r)(1 − P m
A )�UB + CB(m) + CI

J ′
B = (1 − r ′)(1 − P m′

A )�UB + CB(m) + C′
I + Cn

(4.54)

where r ′ and C′
I are the modified insurance plan. From previous discussions, we

have arrived at P m′
A > P m

A , r ′ > r and C′
I < CI . The problem is to find the optimal

investment such that

J ′
B − JB ≤ 0. (4.55)

The optimal investment depends on various factors such as the cost Cn, expected
loss L̂B , the buyer’s risk aversion, etc. We illustrate the trade-off between account-
ability investment and cyber insurance in the following example.
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Example: Autonomous Truck Platooning
Consider the autonomous truck platooning example in Sect. 4.4.3. The accountabil-
ity of the supplier takes the form

P m
A (N) = 1 − Q

(
d

2
+ ln(τ )

d

)
, (4.56)

where d = N1/2ed/σ . Normally, the sensor difference ed , supplier’s reputation
ratio τ and observation variance σ 2 are already given. The only variable that is
completely controlled by the investigator is the number of test N . From the analysis
in the previous section, we know that dP m

A /dN ≥ 0. In order to reach a higher value
of P m

A , the buyer needs to increase the number of tests during the investigation,
which is costly in general.

Consider the insurance plan with full coverage r = 1 and maximum premium C∗
I

as described in Proposition 4.2. We assume the buyer obeys CARA risk aversion for
the expected loss. Suppose the cost to conduct one test is cn. The buyer would like
to find out the optimal number of tests N that can minimize her payoff, which is

min
N

JB = (1 − r)L̂B + CB(m) + C∗
I + N · cn

=CB(m) + (1 − P m
A (N))φ(�UB) + N · cn

(4.57)

Figure 4.23 shows the optimal number of accountability tests with different test
costs. When there is no cost to conduct one accountability test (cn = 0), more
tests are better for the buyer. Increasing the number of tests, in general, increases
the accountability P m

A . As N → ∞, the accountability investigation can identify
the untruthful supplier almost surely with P m

A → 1. In this case, the supplier
will be penalized for the misinformation, and the payoff of the buyer will be

Fig. 4.23 Optimal number of
test with different test cost
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close to zero. When the cost of each test cn increases, the optimal number of
test N∗ decreases. This illustrates the trade-off between accountability investigation
and cyber insurance. Even though increasing the number of tests provides a more
reliable test and reduce the insurance premium, the total investment would exceed
the benefit after some point, causing unnecessary payoff for the buyer. Finally, if
the investigation is too costly as cn = 100, the buyer will never benefit from
conducting an accountability investigation. It is better for the buyer to change to
other comparatively low-cost investigation methods. By decreasing cn, the buyer
can find the optimal number of tests and achieve a lower payoff.

4.7 Conclusion

In this chapter, we have proposed a system-scientific framework to study the
accountability in IoT supply chains and provided a holistic risk analysis technolog-
ically and socio-economically. We have developed stylized models and quantitative
approaches to evaluate the accountability of the supplier. Two case studies have been
used to demonstrate the model of accountability in the setting of autonomous truck
platooning and ransomware in IoT supply chain.

We discuss the accountability investigation performance and design with a single
supplier in the autonomous truck platooning case. From the parameter analysis,
the reliability of the investigation can be improved with larger sensor error, more
number of tests, and less observation variance. We have also showed the impact
of the supplier’s reputation on accountability investigation. A bad reputation will
increase both accountability and wronged accountability during the investigation.

Using the smart lock case study, we have illustrated how to determine the
accountability of the supplier in the IoT supply chain under a ransomware attack. A
Neyman-Pearson test has been used to deal with suppliers with limited prior infor-
mation. We have presented the model of the multi-stage accountability investigation
with multiple suppliers in the supply chain and discussed the trade-off between
detailed investigation and product replacement.

Contract design and cyber insurance are used as economic solutions to improve
the cyber resilience in IoT supply chains. By designing contracts under incentive-
compatibility and individual rationality constraints, the IoT end-user can penalize
the accountable supplier and reduce his incentive of providing misinformation in
the first place. Cyber insurance mitigates the loss of performance by transferring the
risks to a third party. We have shown that cyber insurance is an incentive-compatible
mechanism that facilitates a more reliable accountability investigation from the
buyer side. However, the investigator needs to balance between the accountability
investment and cyber insurance to achieve a higher payoff.
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23. Q. Zhu, Z. Yuan, J.B. Song, Z. Han, T. Başar, Interference aware routing game for cognitive
radio multi-hop networks. IEEE J. Sel. Areas Commun. 30(10), 2006–2015 (2012)
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