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Preface

Supply chain risk is a well-studied subject in business processes and logistics
management literature. However, its scope is evolving and becoming wider as
the systems and processes are becoming more complex. Modern information
technology (IT), operational technology (OT), and Internet of things (IoT) systems
have complex global supply chains. Moreover, there is an intricate blend of
software and hardware systems, which are manufactured, controlled, and operated
by different entities. It is thus becoming critically important to have knowledge
and understanding of what vendors are linked to the system and what risk do
these vendors bring to the system operation. The cybersecurity of IoT-enabled
infrastructure systems overarchingly depends on the confidentiality, integrity, and
availability of the software and hardware components including their supply chain.
The complex network of components involves various actors and organizations that
design and integrate different sub-components of the larger system. The insecurity
of one sub-component in the supply chain can have downstream effects on the
security and resiliency of IoT-enabled infrastructure systems.

This book aims to provide the necessary tools for quantitative understanding
and assessment of the supply chain risk threats to critical infrastructure owners
and operators. In a typical IoT-enabled infrastructure system, there is a complex
integration of multiple components enabling various IT and OT functions. Each
component is supplied by a vendor or a network of vendors, which have different
levels of trustworthiness from the perspective of the stakeholders. Certain suppliers
may have a long-standing history of successful operation and comply with essential
cybersecurity practices. On the other hand, there are many newer and potentially less
secure vendors, which can introduce unknown vulnerabilities to the overall system
security. The supply chain front adds another dimension to the system reliability on
top of component reliabilities. Furthermore, a particular component in the system
may itself be very reliable but may have been procured from a less trustworthy
vendor. Similarly, a component may not be very reliable but may have a highly
trustworthy supplier. Therefore, it is critically important to understand the delicate
interplay between component reliabilities and the trustworthiness of their suppliers.
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viii Preface

Currently, there is a severe dearth of supply chain risk assessment tools that
prevents system operators to analyze the risk to their infrastructure from a supply
chain standpoint. Moreover, there is a lack of tools that can assist with supplier
selection from alternatives and provide insights about supply chain decisions. This
book is aimed at unfolding the emerging supply chain risk analysis ecosystem and
providing a peak into a practical software tool to help analyze the risk. The described
software tool, referred to as I-SCRAM, will enable critical infrastructure owners to
make risk informed decisions relating to the supply chain while deploying their IT
and OT systems. Providing such information to decision-makers will reduce the
possibility of being affected by supply chain attacks from malicious IT and OT
vendors. We hope that this book will provide a broad understanding of the emerging
cyber supply chain security in the context of IoT systems to academics, industry
professionals, and government officials.

Brooklyn, NY, USA Timothy Kieras
Dearborn, MI, USA Junaid Farooq
Brooklyn, NY, USA Quanyan Zhu
March 2022
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Chapter 1
IoT and Supply Chain Security

Abstract Internet of things (IoT) applications rely on a variety of technological
components that are manufactured and operated by different entities around the
globe. Supply chain is emerging as the next frontier of threats in the rapidly
evolving IoT ecosystem. It is fundamentally more complex compared to traditional
information and communications technology (ICT) systems. This chapter highlights
potential sources of supply chain risks in IoT systems and their unique aspects
along with providing an overview of the fundamental challenges in supply chain
risk assessment and mitigation.

1.1 Vendor Landscape of IoT Systems

The Internet of Things (IoT) is being used as a key enabling technology to secure the
supply chain of several industries by tracking of assets, raw materials, and supplies.
However, the supply chain security of the IoT itself is generally overlooked. The
IoT is an interconnection of smart devices and components that come together to
provide situational awareness and automated operation of electronic systems [1]. It
is not a standalone system obtained from a single supplier or manufacturer, having
propriety hardware and software. Instead, it is composed of various interconnected
components that may be designed, manufactured, and operated by different entities
located in different parts of the world [2].

A generic illustration of the various components along the IoT technology stack
and their interconnection is provided in Fig. 1.1. In essence, there are several actors
involved in setting up the IoT ecosystem that include sensing/actuating device
manufacturers, firmware developers, radio access network service providers, cloud
service providers, mobile app developers, and end-users. The endpoint devices are
made of embedded hardware that interacts with the physical environment and is
driven by software processes referred to as firmware or operating systems. These
make use of communication infrastructure, which is composed of access points,
gateways, and core IP networks to connect to cloud servers, that in turn host
applications and services, which are operated by users via computing devices such
as smart phones, smart watches, and voice assistants, etc. More and more systems

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Kieras et al., IoT Supply Chain Security Risk Analysis and Mitigation,
SpringerBriefs in Computer Science, https://doi.org/10.1007/978-3-031-08480-5_1
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2 1 IoT and Supply Chain Security

Fig. 1.1 A simplified stack
of technologies used in IoT
applications

are becoming intelligent and autonomous with the emergence of IoT devices and
enhanced ICT infrastructure. However, the integration of multiple devices and
components that are designed and manufactured by different entities makes the
system extremely vulnerable to cyber-physical attacks [3].

The IoT ecosystem faces serious security threats from traditional attackers due to
factors such as low cost, inherent inter-operability, and rapid product development
life cycle. Recent large-scale cyber attacks such as Mirai [4] botnet and Stuxnet [5]
have exploited some of the vulnerabilities in IoT systems. Apart from other
traditional cyber and physical threats to the IoT ecosystem, the supply chain is
emerging as a new source of potential threats. It emanates from the fact that the
IoT systems are often deployed in a decentralized manner where managers acquire
and deploy equipment needed for improving the efficiency of their business lines.
It is generally done without investigating who the suppliers actually are and what
risks the suppliers bring to the overall system. Small enterprises, in general, do not
have the necessary resources to manage or even assess their risks by increasing
automation via the IoT [6]. Therefore, besides tackling traditional cyber-physical
threats to the IoT, steps need to be taken to ward off threats at the supply chain
front as well. This chapter provides an analysis of some of these threats, research
challenges, and potential future directions. We restrict our focus on the supply chain
dimension of attacks and risks in the IoT arena.



1.2 Brief Taxonomy of Supply Chain Security 3

1.2 Brief Taxonomy of Supply Chain Security

Supply chain security has traditionally been linked to logistics management and
ensuring continuity of supplies in industrial processes. Its scope, however, is
growing broader as it becomes more critical to understand vendor involvement
in operating and maintaining systems and infrastructures that depend on inter-
connected electronic devices. Recent attacks and data breaches involving ICT
suppliers such as Huawei and SolarWinds have raised important concerns about
vendors for overall system security [7, 8]. Typically, the supply chain involves
individual nodes and links as shown in Fig. 1.2 and hence, supply chain security can
broadly be categorized into the following two major concerns. One is the security of
supply chain links or third-party interconnections,and the other one is the security
of supply nodes or third-party productions.

Security of the Supply-Chain Links The links of the supplier networks as
depicted in Fig. 1.2 represent the cyber, physical, or logical dependencies between
two suppliers. One intermediate supplier depends on the provision of services
or products from another supplier. The link captures, for example, the physical
process of transportation between two suppliers, the cyber process of informational
provision or IT support, and the logical process in which one product is integrated
into another product through designs and production. The security of the supply
chain links involves maintaining the continuity of supplies from a supplier to a
procurer in a timely manner to ensure meeting end-user requirements. Towards this
end, supply chain security implies preventing disruption of the supply chain links
because of unforeseen circumstances, natural disasters, or terrorist attacks, etc. One
example is the security of medical/pharmaceutical supplies [9] due to COVID-19
because of labor shortages, adulteration, contamination, etc. In the context of link-
level supply chain security, the associated Confidentiality, Integrity, and Availability
(CIA) triad are described as follows:

• Confidentiality: Breaches in security may result in privacy leakage of transac-
tions between suppliers and buyers. The goal of supply chain security here is to
keep the confidentiality of the users and the source of the products. To protect the

Fig. 1.2 Typical supply chain networks involving nodes and links: A node represents the product
suppliers. A link represents the cyber, physical, or logical dependencies of one supplier (or end-
buyer) on the other suppliers. The product of an intermediate supplier relies on the transportation
and the integration of the products from top-level suppliers. Potential supply-chain attacks may
occur both at individual nodes (illustrated by the red color malicious node), supplier links
(illustrated by the red color link between the intermediate supplier and end-user), or a combination
of the two



4 1 IoT and Supply Chain Security

confidentiality of the link transactions including information of the supplier and
the buyers, blockchain technologies have been shown to be promising solutions
[10, 11].

• Integrity: The products provisioned by the suppliers in the supply chain may be
contaminated by attackers during the process of transmission or transportation.
A potential solution to ensure verification of supplied products is based on
blockchain technologies [11, 12].

• Availability: Any link in the supply chain network can be disrupted due to
reasons such as shortage of labor, or delays in component deliveries. To avoid the
adverse effects of such events, effective planning and diversification of vendors
is needed [13, 14].

Security of the Components Produced or Designed by the Third Party or
Beyond Each node of the supply chain network depicted in Fig. 1.2 presents a
supplier and its associated products. The security issues can occur at the node
level; i.e., it is essential to ensure that products obtained from suppliers are free
from flaws, defects, and malicious functionalities. An example is the presence of
backdoor channels in microchips or IT equipment produced by third party vendors.
Recent supply chain attacks such as SolarWinds [15] and Target data breaches [16]
are prime case studies. In the context of node-level supply-chain security , the CIA-
triad are described as follows:

• Confidentiality: Third-party malicious products collect user’s data and private
information as we have seen in the infamous Target data breach in 2013 [16].

• Integrity: The design of the third party product is intentionally flawed and
produces a product that does not satisfy the specifications or has hidden unknown
vulnerabilities that can cause malfunctioning as we have seen in SolarWinds
attacks [15].

• Availability: The design of third-party product leads to a functional breakdown
or disruption of operations in the system of the users. For example, the supply-
chain induced ransomware attack can lead to the closure of a manufacturing plant
as seen by Honda’s recent hit by ransomware [17].

Systemic Supply Chain Security The security of the entire supply chain network
involves ensuring the system level security from a combination of unreliable
supplier links and risky components in the supply chain. In a complex integration
of components and system process flow, the security risks propagate through the
system and system level security solutions are needed. For instance, a particular
vendor in the supply chain may be unreliable or malicious but may not have a critical
role in system security. On the other hand, a particular supply chain link may be
compromised and thus may result in system malfunction despite un-compromised
individual supplier nodes. Hence, the security of components in the supply chain
and the security of supply chain links is intertwined. Node-level security leads to
link-level security and link-level security affects node-level security.
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A holistic approach is needed to ensure supply chain security since any particular
type of solutions are insufficient on its own. For instance, the verification of the
source can reduce the man in the middle attacks and hence make the next party
safer. However, the supply chain links also need to be secure to pass on the
benefits down the supply chain for achieving end-to-end supply chain security.
Therefore, individual components in the supply chain need to be hardened along
with improving the link-level security. This book focuses on making assessments
of systemic cyber risk using information about individual node vulnerabilities and
the system interconnects to understand how risk flows in IoT systems and networks.
The analysis is then to suggest remedial actions in terms of cost-effective vendor
selection and diversification of the supply chain.

1.3 IoT Supply Chain Risk: Hard to Observe and Hard to
Control

Supply chain risk has long been a matter of great concern for businesses and cor-
porations. In fact, supply chain risk management (SCRM) is a standard functional
area across many industries such as consumer goods, food, industrial products, etc.,
and is considered to be a vital component in securing revenues and profitability
of enterprises. Security of information and communications technology (ICT)
equipment has been an area of immense focus in recent times. since more advanced
and sophisticated methods have emerged to attack IT/OT systems. Cyber-physical
attacks on these systems may result in significant monetary and non-monetary
losses. To counter threats from such attacks, the U.S. National Institute of Standards
and Technology (NIST) has prepared a comprehensive list of best practices for
SCRM in traditional ICT systems [18].

The development and growth of the IoT are further enhancing security concerns.
Although the flexibility of communication and interaction between devices results
in tremendous benefits, however, it also opens doors for attackers and malicious
actors to sabotage the system. With the emergence of vendor-based attacks and
the involvement of global players, there are rising concerns about the security of
the IoT supply chain. The IoT is a special class of ICT systems and is evolving
rapidly. The interconnection of systems and devices enables a much richer attack
surface as opposed to traditional ICT systems. Moreover, the supply chain of
the IoT is extremely complex, globally distributed, and highly inter-connected.
In addition, the IoT is still a grossly unregulated technology in terms of security
standards unlike food, where the risks are better understood. It is mainly because the
ecosystem is highly diverse and the consequences of attacks are relatively unknown.
In certain industries such as food and medicine, there are agencies that regulate
the safety standards. It is because the risk assessment has been done by testing
the products repeatedly on subjects and evaluating the results. However, in the IoT
ecosystem, there are limitless functionalities as well as possibilities of malfunction
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and malicious activity. Hence, determining the possible attacks and enumerating the
consequences becomes extremely challenging.

In summary, the risk landscape of the IoT supply chain is extremely diverse.
The suppliers may use backdoor channels of devices, inject viruses, provide faulty
chips, or load with malicious software. These are merely a tip of a vast number
of possibilities that the IoT systems can be attacked. The alarming concern is that
these IoT systems are set to control national critical infrastructure resources as well
as improve battlefield effectiveness. The supply chain risks are hard to observe
and harder to control. The risk propagates from one device to the other and gets
amplified as the IoT ecosystem becomes more complex. It is not straightforward to
determine where to regulate the entire system.

1.3.1 Dissecting Supply Chain Links in IoT

There is a delicate interplay between suppliers and devices in an IoT ecosystem. To
illustrate the different types of interactions that may be present between suppliers
and devices, we provide an example in Fig. 1.3 where there are two devices
obtained from two different suppliers. While the supply chain can be constructed
several levels deep due to individual components in devices being manufactured
by different entities, however, for the sake of simplicity, the immediate supplier
of standalone devices is considered. In such a scenario, the following different
interactions between the supply chain actors might be present.

• Device-Supplier Interactions: This is a typical buyer-supplier interaction. The
devices are procured from the suppliers and have service contracts including
maintenance, upgrades, security patches, etc. The devices have security and
support requirements that need to be met under the agreements.

• Supplier-Supplier Interactions: Suppliers may have different front-end compa-
nies but common connections at the back end. This is typically common in the
tech world where corporations have mergers and takeovers. Different suppliers
may be owned by a common entity having more control over the supply chain
of the IoT network. A nexus of supply chain actors may result in the possibility
of coordinated attacks using backdoor channels and other forms of advanced
persistent threats.

• Device-Device Interactions: These interactions are present due to the inter-
connectivity of the IoT devices to provide desired functionality [19]. These
interactions are significant since they allow supply chain risks from one device
to transfer to the other independently of its own supply chain.

A more detailed illustration of the supply chain interaction with the physical
IoT network is provided in Fig. 1.4. There is a component graph that defines
the underlying connectivity of devices that make up the IoT ecosystem. Each
component has its independent supply chain. However, the supply chains of devices
may be linked not only via external affiliations but also via the physical connectivity
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Fig. 1.3 Key interactions
between different players in
the supply chain ecosystem of
the IoT

Fig. 1.4 Mapping of IoT and the underlying supply chain networks

of devices in the IoT network. It implies that the risk reciprocates among devices
in the network. In other words, my risk becomes your risk and your risk becomes
my risk. This makes the analysis of supply chain risks in IoT systems extremely
convoluted.

1.4 IoT Risk Implications and Consequences

The impact of risk in IoT is critically important to analyze since it deals with
the physical world and any attack or malicious activity may result in significant
consequences such as physical damages, operational disruption, and danger to



8 1 IoT and Supply Chain Security

human safety (e.g., see case studies in [20–25]). For instance, a malfunctioning
of heating or cooling systems may result is sudden power surges resulting in
breakdowns. It may cause a significant loss of revenue as well as damage to the
power system. Therefore, there are implications and consequences of the risk that
can be categorized as follows:

• Monetary Implications: The risk inevitably translates to monetary impact since
any disruption or damage to infrastructure would lead to loss of revenue and/or
safety hazards. Therefore, the financial impact is important to take into account
while selecting the supply chain of IoT networks.

• Legal Implications: In the occurrence of a large-scale cyber incident, the liability
and responsibility need to be determined. It is important to determine to what
extent are the supply chain actors liable for security breaches and what actions
can be taken against them. Therefore, there is a need to map out the liability
network.

• Policy Implications: Risk determines a lot of policies that must be followed by
the IoT ecosystem. Patching and upgrade policies are determined by how risky
the system is. Cyber-insurance policies and premiums will also depend on how
much risk is present in the system. While the supply chain is only a part of the
total risk, however, it plays a crucial role in determining the cyber risk of the
overall system since the same functionalities may be offered by less trustworthy
suppliers.

It is important for stakeholders in the supply chain to be aware of the implications
so they can decide whether they want to be part of a supply chain that may render
them legally or financially liable.

1.4.1 Key Features of IoT Security

The IoT itself and its security are drastically different than traditional ICT systems.
Firstly, there are many different players participating in an unregulated system.
Then, the devices are highly inter-operable allowing for limitless possibilities for
applications. In fact, it is up to the individual users to build their own desired
functionalities and enforce policies on the system. Unlike the Internet, there is no
standard protocol stack for the IoT ecosystem. This makes it difficult to embed
security into the protocols. The inherent inter-operability in the IoT creates security
challenges and vulnerabilities. To this end, the role of the supply chain in IoT is
also completely different. While existing wisdom in SCRM for ICT does act as a
useful guideline, it may not be sufficient to tackle the more complex nature of IoT
networks and the associated supply chain [26]. A summary of the key differences in
IoT systems and their security as compared to conventional ICT systems is provided
below:
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• Interaction with the physical world: The IoT devices interact with the physical
world with the aid of actuation capabilities as opposed to conventional mobile
and computing systems. It results in completely different consequences com-
pared to ICT systems since it may endanger human safety, damage equipment,
or cause operational disruptions.

• Limited access control and management: The IoT devices are often low-powered
with limited computational capabilities. The complete access and management
functionalities may not be built into these devices.

• Different cyber-security standards: The security and privacy requirements for
IoT device operation may be completely different from conventional ICT systems
due to different authentication and access mechanisms.

• Heterogeneous ownership and de-centralized control: There is no network
administrator that has control over the IoT device configurations. Unlike routers
and IP networks, the network administrator may not even have a complete view
of all the connected devices in the network.

1.5 Challenges in Cyber Supply Chain Risk Analysis of IoT

Since the IoT is inherently a decentralized system, it is difficult to exert control over
the entire supply chain. However, the challenges go much beyond the regulation of
the supply chain [27]. It is important to study and analyze the threat ecosystem in the
IoT landscape. It implies that the potential sources of attack are identified and their
potential implications studied in terms of the functionality and/or damage caused to
the overall system. In this aspect, some challenges are related to technical aspects
of IoT, while others emanate from the logistics and analysis or decision-making
standpoint [28]. Some of the key logistical challenges are as follows:

• Lack of control over upstream supply chain: There is no control over the upstream
supply chain from a device owner’s point of view. In other words, the buyers
do not have complete information about the cyber-physical supply chain of the
products.

• Disclosure of supply chain information: Not all suppliers are ready to clearly
articulate their cyber security practices and disclose their supply chain infor-
mation. Some of it is obvious due to privacy reasons and competitor-sensitive
information.

• Awareness of vulnerabilities: The suppliers of IoT equipment may not be fully
aware of all the possible vulnerabilities in their products. This makes it harder to
determine the possible attack paths and analyze risk.

• Centralized database of vulnerabilities: There is no centralized database of
known vulnerabilities and attacks that can serve as a guideline to identify risks
and possible attacks.
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• Heterogeneous supply chain management practices: The management practices
for supply chain to mitigate associated security risks are diverse and depend on
the industry. heterogeneity across application sectors.

Apart from the logistical constraints, there are also technical challenges in
managing the security of the IoT devices that are presented as follows:

• Lack of management controls: centralized network management may not be
available for the IoT. There is a need for developing management platforms to
provide more control to the administrator over the IoT infrastructure.

• Inflexible hardware: IoT device hardware may not be serviceable, meaning that
it cannot be repaired, customized, or inspected internally.

• Heterogeneous ownership: The devices are owned and operated by separate
entities resulting in less control over policy implementation.

Finally, some of the decision-making and policy questions that need to be
addressed are as follows:

• Risk informed procurement and deployment: The decisions to procure and deploy
IoT network devices need to be done in a risk-informed manner to allow for cost-
benefit analysis.

• Contingency planning: The IoT network requires an arrangement of contingen-
cies since suppliers may end security updates or discontinue support for the
equipment.

• Risk-Conscious supplier contracts: Contracts for installation services should
include risk as an essential factor to enable a more secure infrastructure.

Tackling these challenges by finding out novel ways to counter them is important
for the research community and policymakers. These are some of the opportunities
for researchers and technologists to come up with ways to counter these different
types of challenges that will pave the way for securing the IoT ecosystem from
supply chain threats.

1.6 Supply Chain Resilience

In a complex system of systems setting with many supply chain actors and their
convoluted interactions, it is an extremely challenging problem to mitigate and
control supply chain-oriented risks. The approach to tackle the problem is to first
completely understand the ecosystem from a supply chain viewpoint and then take
appropriate measures to control the risks. In light of the highlighted challenges, there
are two potential approaches that can be followed to tackle the problem. The first is
the top-down approach, which is centralized, while the second one is the bottom-up
approach, which takes a de-centralized viewpoint.
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1.6.1 Top-Down Approach to Managing Risk

Governments and policymakers are unable to micro-manage and control individual
users of technology to adopt certain practices, particularly in the technology supply
chain front. A top-down approach uses a regulatory view of controlling supply
risks in the IoT ecosystem. At the outset, policies and restrictions can be imposed
on certain supply chain actors. For instance, certain suppliers of equipment may
be banned for use in industry due to detected malicious practices or excessive
testing and standards may be enforced on certain suppliers based on their trust and
reliability levels. Furthermore, they can be mandated to have compulsory disclosure
of vulnerabilities to form a centralized database of threats. These will eventually
lead to the imposition of tariffs and security requirements on the suppliers. Once
the policies are in place, the hope is that the managers and users of IoT technology
will be aware of the risks they import by procurement from certain suppliers. This
will ultimately result in risk-aware decisions by the users of technology based on
other considerations such as cost and functionality. In essence, using a top-down
approach, policy drives the underlying technology and supply chain actions. The
hope is that centralized awareness and decision-making may have a trickle-down
effect to secure the IoT ecosystem from the supply chain threats. Eventually, it
might lead to the development of secure supply chain architectures for IoT [29]
ecosystems. An illustration of the main stages in the top-down approach is provided
in Fig. 1.5.

Fig. 1.5 Top-down approach
for managing supply chain
risks
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1.6.2 Bottom-Up Approach to Managing Risk

The bottom-up approach uses a totally different view from the top-down approach.
It aims to map out the view first and then lead to the development of policies to
control the risks. The first step is to study and analyze the threat landscape, i.e.,
sources of attack and potential impacts in terms of functionality and anticipated
loss/damage caused. This enables the formation of a comprehensive view of threats
and vulnerabilities that are both adversarial and non-adversarial. Once the view has
been mapped out, there needs to be a more holistic and integrated measurement of
risk. Compound metrics for analyzing the risk as well as the impact are needed. The
risk is generally measured as the impact times the likelihood. While the likelihood
can be determined using attack trees, the impact needs to be studied more carefully
by examining the inter-dependencies and information flows. Then, the goal is to
develop mitigation strategies. New infrastructure can then be developed such as a
centralized management platform that is in control of the administrators to have
a network-wide view of the IoT ecosystem and the supply chain actors involved.
While platforms may not be required for individual home users of IoT devices,
however, enterprises may need to have a comprehensive tool that allows them to
have a clear map of their deployments and the associated risks and propagation.
Once this is done, then policies and best practices can be developed for wider
dissemination and enforcement. An example of such policy guidelines is the
strategic principles that have been proposed by the U.S. Department of Homeland
Security for securing the IoT [30]. Consequently, road maps for implementation
can be developed by individual industries according to their requirements [31]. The
bottom-up approach can be summarized in the flow shown in Fig. 1.6. In essence,
the technology and risk assessment drive the development of policy and regulations.

Fig. 1.6 Bottom-up
approach for managing
supply chain risks
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1.7 Overview of the Book

Due to the comparatively unconstrained nature of supply chain threats, potentially
posed by a malicious or compromised supplier, risk analysis must shift from
a vulnerability-centered approach to the modeling of suppliers and components
as a system. Chapter 2 introduces the supply chain risk model for IoT systems
and analysis techniques. While attack tree techniques provide a foundation for
our methodology, these techniques are adapted to include suppliers and supplier
groupings. The inclusion of supplier trust is grounded in the role played by
suppliers in risk analysis procedures. Borrowing from established methods in
reliability analysis, the use of minimal cutsets and importance measures provide
measures of risk across a system and its individual components. The results of
the risk assessment are then used to inform the decision-making process and
aid the selection of suppliers when alternatives are available. Chapter 3 provides
cost effective strategies to diversify the supply chain for reducing systemic risk.
Finally, Chap. 4 provides a systematic approach toward accountability investigation
of supply chain attacks resulting in appropriate cyber insurance contracts to mitigate
threats from vendors in the system. Finally, Chap. 5 provides an overview of a
computational tool that is customized for cybersecurity risk analysis and mitigation
in IoT-enabled infrastructure systems.
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Chapter 2
Risk Modeling and Analysis

Abstract Securing the supply chain of information and communications tech-
nology (ICT) has recently emerged as a critical concern for national security
and integrity. With the proliferation of Internet of Things (IoT) devices and their
increasing role in controlling real world infrastructure, there is a need to analyze
risks in networked systems beyond established security analyses. Existing methods
in literature typically leverage attack and fault trees to analyze malicious activity
and its impact. In this chapter, we develop a security risk assessment framework
borrowing from system reliability theory to incorporate the supply chain. We also
analyze the impact of grouping within suppliers that may pose hidden risks to the
systems from malicious supply chain actors. The results show that the proposed
analysis is able to reveal hidden threats posed to the IoT ecosystem from potential
supplier collusion.

2.1 Risk Scoring in Component Graphs

2.1.1 Introduction

Securing the supply chain and mitigating associated risk is critical to nearly
every industry and enterprise. The Internet of Things (IoT) is capable of assisting
supply chain risk management across different industries by enhancing tracking and
monitoring capabilities [1]. However, the supply chain of the IoT itself faces risks
that are much more complex and difficult to assess. The IoT is an integration of
diverse systems involving informational technology (IT) and operational technology
(OT) systems that are manufactured, owned, and operated by various different
entities around the world. This opens doors for malicious actors to manipulate IoT
systems and sabotage their operation [2]. Hence, maintaining supply chain integrity
is now becoming a key concern for information and communications technology
(ICT) users including governments and corporations [3].

Analyzing supply chain risks in IoT systems and networks is a crucial step
in measuring the potential threat to the system and is a necessary precursor to
making risk minimizing decisions regarding the supply chain. Supply chain risk
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management (SCRM) is a well studied subject in literature [4]. However, supply
chain risks in IoT systems are fundamentally different from traditional industries
such as food and medicine [5]. Among other reasons, the opacity of black box
systems renders assessment of risks considerably more difficult. Furthermore, IoT
supply chain risks are also different than the risks in traditional ICT systems due
to their inter-connectivity. Suppliers themselves are inter-connected in ways that
potentially increase risk, and these relationships are continually changing as firms
adapt to market conditions. Hence, analyzing supply chain risks in IoT systems
requires an adaptation of risk analysis techniques to consider these varied and
complex sources of risk.

In this chapter, we propose a framework for IoT supply chain risk analysis and
mitigation, referred to as I-SCRAM, that is centered around system components
and their suppliers. This involves a shift from the perspective of traditional security
risk analysis, where security events associated with particular component functions
are primary. The core challenge involved in supply chain threats is that suppliers
may potentially alter the system’s functions in indeterminate ways. Therefore, any
component could be a potential vector for such a threat, not only those marked as
important for security. Risk analysis can take this into account only by widening
the class of components under question and including their suppliers. This broader
approach requires supply chain risk analysis to leverage tools from system reliability
theory.

An example of a supply-chain attack would be when a supplier provides a prod-
uct with a degraded implementation of a common cryptographic protocol, all the
while claiming the product correctly uses the protocol to ensure the confidentiality
of customer information. In the absence of extensive testing, the users of this product
may assess the risk of using the product based on the (mis)information provided by
the supplier. Not only does the product leave the customers open to attacks against
the confidentiality of their data, the assessed risks are based on false information.
Any mitigation efforts taken by the customer are significantly sub-optimal because
of this supplier deception. Consequently, risk analysis must go beyond inherent
security risks and take into account the trustworthiness of suppliers. Figure 2.1
illustrates the involvement of suppliers in the risk analysis process.

2.1.2 Related Work

Supply chain security of the IoT is an emerging area of research and is gaining
considerable interest by the industry, government, and the news media. There have
been some attempts in the literature to develop secure architectures for IoT with
SCRM [6]. However, substantial analytical treatment of risk analysis and mitigation
strategies in such complex system-of-systems scenario is still lacking. Existing
literature related to SCRM falls broadly under three main categories:
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Fig. 2.1 Supplier’s role in
security risk assessment.
When providing a product,
the supplier also provides
associated specifications.
These specifications form the
basis of risk assessment of a
component, but their accuracy
affects the accuracy of the
assessed risk

• Supply chain risk
• Graph-based security modeling
• Reliability analysis

Much interest is given to ensuring business continuity in the face of various
disruptions to supply chains, for example as summarized in [4], though relatively
little attention has been given to the security implications of supplier access to
ICT products. A broad overview of cybersecurity risk posed by supply chains in a
defense and national security context is presented in [7]. The U.S. National Institute
of Standards and Technology (NIST) has issued a Special Publication on the topic
of supply chain risk management that we use as a reference for terminology and
associated risk management practices [8]. Best practices for SCRM in ICT systems
have been published by NIST in [9]. Similarly, some strategic principles for securing
the IoT are provided by the U.S. Department of Homeland Security in [10]. Our
approach differs by providing a holistic modeling framework that supports systemic
risk analysis as well as mitigation decisions.

A second area of related literature touches on security risk modeling techniques,
in particular, those that use directed acyclic graphs. Helpful overviews of this large
body of work are found in [11, 12]. The risk modeling approaches have been
recently successfully applied to model the interdependencies among infrastructures
subject to natural disasters [13–15] or human-induced attacks [16–18]. Attack
trees, developed by Schneier and Amoroso, are adaptations from fault tree analysis
in reliability theory [19, 20]. Significant developments have been made in the
construction and use of attack graphs, including the incorporation of defensive
measures, aggregation, and probabilistic modeling [12, 21–29]. A more formal
analysis of attack trees is presented in [30, 31]. Our approach also employs a graph-
based model. However, we have found it necessary to focus more on components
and their suppliers rather than goals or security events, as is typically the case with
attack graphs.
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The third area of related literature is the extensive field of reliability theory, which
provides many of the needed analytic tools for our approach, for example in [32, 33].
Baiardi et al. study hierarchical, hypergraph based modeling of systemic security
risks across various security attributes [34]. This combination of system modeling
and security attributes is a feature we find helpful for our analysis. Furthermore,
significant research has also been conducted on reliability optimization [35].
However, we consider an optimization problem at the supply chain frontier, which
takes into account the underlying system interconnections and the resulting risk.

2.1.3 Contributions

Security risk analysis has traditionally been studied in the context of estimating the
probability of various, specific attack events against a system, a method incapable
of capturing the possibility of covert modifications to the system itself. The security
of supply chains has also been well studied in the literature using tools from graph
theory and attack graphs. However, the interconnection of systems in an IoT setting
results in a system-of-systems scenario that makes the analysis and mitigation of
supply chain risk extremely challenging. In this work, we present a method to
analyze system security by considering supplier trust and the relationships among
suppliers. Our analysis is then used as a basis to solve risk mitigating decision
problems involving the selection of suppliers. A summary of the main contributions
of this work is as follows:

• We propose a system model, based on components and suppliers, for a unified
analysis of traditional security risks and those arising from a supply chain.

• We study the quantification of supplier involvement in a system for individual
suppliers as well as supplier groups.

• We develop a method to approach large scale supply chain risk mitigation
decisions using the Birnbaum structural importance measure.

• We solve a risk minimizing supplier choice problem that considers supplier
involvement to mitigate risks that may emanate from exclusive dominance of
suppliers in the supply chain.

The contents of this chapter are organized as follows: First, a system model
is defined in Sect. 2.2, that is capable of unifying supply chain risks along with
traditional security risks. Then, we propose metrics for risk analysis in Sect. 2.3
using this system model. We then define the supplier choice problem as a risk
mitigation decision, and provide a solution method in Sect. 3.2. Finally, we illustrate
the use of I-SCRAM by a case study involving risk analysis and a supplier choice
problem in Sect. 3.3 before concluding the chapter in Sect. 3.4.
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2.2 System Model for Risk Assessment

We consider an abstraction of an IoT system involving a network of components
and their individual suppliers. Our model takes into account a hierarchy of suppliers
of the components and the logical network that defines the inter-dependencies of
components and functionality of the system. We discuss each of these, in turn,
before defining their relationship in terms of supplier trust and then presenting a
unified system model.

2.2.1 Model Definitions

In this subsection, we describe the core elements of our system model that support
risk analysis and mitigation decisions. These include the component security graph
and the system supplier network, which are elaborated as follows.

2.2.1.1 Component Security Graph

The components in a system are related not only by functional dependencies, but
also by security dependencies. Although the aim of I-SCRAM is to analyze the
effect of suppliers on system security, we build this analysis on an understanding of
the security dependencies among components themselves. The following are some
of the key elements of the component security graph :

• Components, denoted by C, are the set of atomic system elements. The set
of components in a system is retrieved through a process of hierarchical
decomposition.1 This can be carried out recursively to an arbitrary level of depth.
For the purpose of supply chain risk modeling, a general rule is that a component
should be a system element with a single or principal supplier. Any further
decomposition would be unnecessary. Components may be hardware or software
elements in general.

• Component security attributes, denoted by the set A, are Boolean proper-
ties of the component state relevant to security. The function determining
the attribute value given the component state is defined in a security pol-
icy. Following convention, we use the following set of security attributes:
{confidentiality, integrity, availability}. In principle, this set can be expanded
based on the particular application at hand. For simplicity, we consider these
attributes to have binary values: either the component state conforms to the
security policy or not.

1 Hierarchical decomposition refers to a process that takes a component in a system and considers
it as a system in itself, returning subsystems and additional components.
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• Component security dependencies, denoted by D are attributed to each compo-
nent security attribute n ∈ Z

+. Each dependency is a component, attribute tuple:
〈c ∈ C, a ∈ A〉. The security failure of a dependency affects the component in
question. For an attribute to be true, a necessary but not sufficient condition is
that its dependencies must evaluate to true. A security dependency captures a
relationship between components similar to edges in an attack graph. However,
component security dependencies do not consist of events as in an attack graph.
Each dependency rests in a component, which is the core abstraction in our model
rather than events. Each component, attribute tuple may be considered a potential
root node for an attack tree, in which at least some attack events coincide with
other component, attribute tuples.

• The component security logic function, �, computes the value of the vector of
component security dependencies. We restrict our analysis to the use of two logic
functions: {AND,OR}. These logic functions encode whether or not the state
of a component’s security dependencies is sufficient to cause a failure in the
component’s security attribute. For example, if the component, attribute tuple
〈j, c〉 possesses dependencies {〈p, c〉, 〈q, c〉}, with the logic function AND, then
a security failure in either 〈p, c〉 or 〈q, c〉 yields a dependency state of f alse,
causing a security failure in 〈j, c〉.

• Component security risk, s, is the probability that 〈c, a〉 = f alse and is
computed as the union of �(D) and a risk value local to the component attribute
itself, referred to as r . Security failures can happen either by a node directly
being attacked, or by a sufficient attack against its dependencies. Given both
probabilities, the risk at any node can be calculated. However, care must be
taken in computing �(D) because dependencies may not be independent.2 This
difficulty can be eliminated in various ways, for example, by restricting valid
system configurations to a tree or by taking the dependence into account.
Because such approaches reduce the model’s utility, in particular when adding
the complexities of supply chain topologies, our approach relies on the use of
minimal cutsets as explored in reliability theory [36].

In light of the above elements, a component security graph is formally described
by Definition 2.1.

Definition 2.1 A component security graph is defined as a connected, directed
graph:

Gc = (V ,E), where (2.1)

2 In other words, given two dependencies a, b ∈ D, there may be some node x such that x ∈ Da

and x ∈ Db. In such a case it would be invalid to compute �(D) simply from the suppliers of a and
b, denoted by sa and sb respectively, because sa and sb are not independent.
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V = {〈c, a〉 | c ∈ C, a ∈ A}, and

E = {〈d, v〉 | d ∈ Dv, v ∈ V }.

When considering general system security risk, it is necessary to specify what
constitutes system-wide security. Analogous to Leveson’s discussion of system
safety in [37], security can be considered as an emergent property in a complex
system. As such, it is a non-trivial function of the component security graph state.
Our approach relies on a subset of components chosen as indicator nodes aggregated
by a logic function that, if f alse, represents a system security failure. Alternate
modeling approaches may be more suited to more diffuse threat scenarios, such as
a summation over expected loss values.

2.2.1.2 System Supplier Network

In this section we consider definitions relevant to the supply chain portion of the
problem. The key elements of the supplier network are described as follows:

• Suppliers, denoted by S, are any “organization or individual that enters into an
agreement with the acquirer or integrator for the supply of a product or service”
[8]. Every s ∈ S possesses at least one component πs as its corresponding
product. Inversely, sc refers to the supplier of c. Service providers correspond
to the product for which they provide service. We consider the category of
suppliers as widely as possible, including for example design, manufacturing,
logistics, retail, maintenance, and disposal. In every case, the entity in question
has significant opportunities for extended, intrusive, and covert access to the
component. This access is considered essential to being a supplier of the
component. Consideration of differing degrees of access may be incorporated
into supplier trust, considered below.

• A supplier group Gk consists of a finite set of mutually involved suppliers
capable of coordinated action.3 It is not required that every member of a group
have access to the products of the other members as if they were their own
product. Rather, it suffices that the group’s relationship supports coordinated
action. Each group Gk possesses a supplier group controller, κk . This entity
directs any coordinated action by the group. If κk ∈ Gk , the group is directed by
a member. Otherwise, a non-member directs group action. If the group possesses
a decentralized organization structure, for simplicity we abstract this by the
creation of a fictitious controller that represents group action. No group controller
possesses any relationship to a component product except through the members

3 The precise legal relationships that may constitute a supplier group are left unspecified here, but
may include ownership, partnership, or membership in joint ventures or cartels whether legally
recognized or not.
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of the group it directs. In other words, controllers are not suppliers in the strict
sense.

• The universal supplier network denotes the complete set of suppliers across an
industry, the suppliers of components acquired by them, and the interconnections
between these entities. The network is defined as a directed graph:

Gu = (V ,E), (2.2)

where

V = {s | s ∈ S}, and E = {〈s, s′〉 | 〈s, s′〉 ∈ S × S}.

It is assumed that all products are composed of components either purchased or
manufactured, entailing that the global supplier network includes each supplier
of each component at each level of complexity across every technical system. The
scope of this network is intentionally general, as it functions like the universal set
against which to define more specific networks. Edges in the supplier network
constitute a supply chain. The precise significance of an edge 〈s, s′〉 is that in
the case of some product, supplier s′ functioned as an ‘acquirer or integrator’ as
referenced in the definition of supplier, with s as supplier. A particular supplier
network is an induced subgraph, Gu[S′

c], where S′
c is defined for some component

c as:

S′
c = {s | s = sc} ∪ {s′ | a path exists from s′ to

s ∈ Gu}. (2.3)

Based on the above definitions, the system supplier network is formally described
by Definition 2.2.

Definition 2.2 The system supplier network, denoted by Gs , defines the set of
suppliers with connections to some component security graph Gc, along with their
dependencies. It is defined as:

Gs =
⋃

c∈Gc

Gu[S′
c]. (2.4)

It should be noted that when defining supplier networks, no reference is made to
security attributes. Only components and their suppliers are considered. The source
of supply chain risk that we seek to model is the particular degree of contact between
a supplier and a component, a property that is much more general than any security
attribute. Indeed, because a supplier may potentially manipulate a component in
relatively unlimited ways, any security attribute possessed by the component may
be affected by its supplier. For example, the supplier of the plastic chassis of a
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device should not have relevance for the device’s confidentiality attribute. However,
because this supplier has extensive access to the device there may be some risk that it
has tampered with the device. For example, perhaps it has inserted an eavesdropping
device. This kind of modification vastly exceeds what is expected of a supplier but
is neither inconceivable nor insignificant to risk modeling.

2.2.2 Supplier Trust

In this section we present definitions relevant to supplier trust, a central part of our
model. For each supplier and supplier group in the system under analysis, a value
in the interval [0,1] indicates the extent to which the entity is trusted. Although
trust has a familiar and intuitive meaning, we find it necessary to offer a formal
definition in order to justifiably relate supplier trust to security risk. Every system
is an implementation of a set of functions, achieved by the coordination of the
functions of individual system components. The question of supplier trust is: which
functions does this system implement, how do we know, and how confident are we
in this knowledge?

Actual functions, denoted by A, are those functions that a component implements
successfully within expected reliability standards. When provided with proper
input, the component reliably produces the proper output. In practice, however,
ascertaining the membership of set A for any arbitrary component may not be
straightforward. At best, a process of empirical study can be conducted, but
epistemological limitations make an exhaustive enumeration of the actual functions
of a component impossible. This limitation is relevant to the issue of supplier trust.
While verification of the presence of a function can be conducted by testing, it is not
possible strictly to ascertain with certainty all the functions that a component does
not implement. This points to the need for a well-grounded quantification of trust.

We define putative functions, P , as the set of functions of a component that
are allegedly implemented, according to its supplier. These putative functions
may equally well be called technical specifications. When a supplier provides a
component, let us assume the supplier also provides a set of specifications that
indicate the functions implemented by the component. It is generally assumed that
relevant details are not accidentally omitted. If some omission in fact occurs, we do
not distinguish here between potential sources of fault for the omission.

Hidden functions belong to the set A \ P . They are implemented in fact without
being communicated to acquirers. They may be benign or malicious. On the
contrary, Missing functions belong to the set P \A. Though the supplier claims they
have been implemented, in fact they are not. With the above definitions in mind,
supplier trust is formally expressed by Definition 2.3.

Definition 2.3 Supplier trust is related to the set of putative functions, P and the
set of actual functions, A, using the Jaccard index [38]:
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Fig. 2.2 Supplier trust
involves the overlap of
putative and actual functions
of a component

ts = |P ∩ A|
|P ∪ A| . (2.5)

We employ the notation t̄s = 1 − ts for supplier risk.

The trustworthiness of a supplier indicates the degree to which the putative
functions of a component and its actual functions overlap. This is illustrated in
Fig. 2.2, where both missing and hidden functions negatively impact trust. Trust
can likewise be interpreted as a measure of the strength of belief that stated
specifications are accurate and exhaustive.

Based on supplier trust, we define the adjusted component security risk as:

r̂ = t̄s + rc − t̄s rc where s = sc. (2.6)

Following the above discussion of supplier trust, risk arises in a component
from either the component itself or the inaccuracy of the supplier’s provided
specifications. The usefulness of our particular definition of trust lies in its basis
in component functionality. Component security risk is estimated by experts with
considerable reliance on the putative functions of a component. The degree of belief
in the accuracy of this information impacts the confidence one can reasonably
have in the resulting risk value. The supplier therefore stands in a critical though
often overlooked relationship to the process of component risk assessment. This
relationship is illustrated in Fig. 2.1. It is pertinent to mention that in the case of a
hierarchy of suppliers, the component risk will be impacted by a compounded trust
of individual suppliers in the chain.

We define the supplier trust estimation problem as assigning ts for some supplier
s. There are two methods to approach the determination of supplier trust values.
The first method is deductive and descriptive, closely following the definition
above. Supposing an exhaustive or reasonably exhaustive knowledge of A for
the components provided by a supplier, the value of ts is computed following
Definition 2.3. The value ts describes the trustworthiness of the supplier based on
objective criteria. The second method is inductive and useful for predictions. By
assigning a trust value through a heuristic process, the value can be used to predict
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Fig. 2.3 A simple systemic
risk graph composed of
components and suppliers
with security logic functions
indicated

the expected degree of overlap between P and A, avoiding the issue of how to
ascertain the membership of A. We pass over the description of such a heuristic
process, while referencing existing practices in security risk assessment techniques
[8, 39].

2.2.3 Systemic Risk Graph

The above definitions form the basis of the unified system model that is used for
risk analysis and mitigation decisions.

Definition 2.4 Gathering the above definitions, a systemic risk graph, Gr , is
defined as the composition of a component security graph and the relevant system
supplier network, as follows:

Gr = Gc ⊕ Gs (2.7)

where Gs is defined from Gc and ‘⊕’ represents the graph composition operator.

As an example, a simple system with three components is shown in Fig. 2.3.
In this example, keeping with the simplified model presented here, the possible
existence of multiple, relevant security attributes at a component is left aside.
Component c3 is marked as an AND node, with two components c1, c2 indicated
as dependencies by directed edges. Because c3 is AND, the security of c3 depends
on not only its own security but also both c1 and c2, as well as their suppliers a, b

and c.

2.3 Risk Analysis Metrics

At this point all the elements of the I-SCRAM system model have been discussed.
Suppliers and components are related in a systemic risk graph that can be then used
to compute various measures of risk. In the following definitions, several measures
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are discussed that are then used to assist in system optimization. Given the above
definitions, the security risk in a system may be approached generically as a problem
analogous to system reliability. The risk analysis conducted here follows the method
of distilling a systemic risk graph into a set of minimal cutsets [32].

The minimal cutsets, W , indicate possible system states in which a critical
security failure, predefined with an indicator node i, has occurred. Each cutset
w ∈ W is a subset of {v | v ∈ Gr} such that i = 0 if

1 −
∏

v∈w

(1 − v) = 0.

A cutset w is minimal when it cannot be reduced without failing to be a cutset, i.e.,
when � z ⊂ w, such that z ∈ W . As noted above, a target that represents the system
security state must be specified. For example, three significant component, attribute
tuples might be chosen and the system security indicator might be defined as an
AND node with these as dependents. A minimal cutset then represents a way to cut
the indicator from its dependencies. Note that nodes can fail on their own even if
their dependents are functioning. Procedures for discovering the minimal cutsets in
a system graph are borrowed from reliability theory. We note here the computational
complexity of the discovery of minimal cutsets. The MOCUS algorithm, which
is capable of handling nodes with AND and OR logic, can improve on the
worst case in practice [40]. Considerable research has been conducted on efficient
implementations of this and other algorithms relevant to fault tree analysis [41, 42].

2.3.1 Systemic Risk Function

The general systemic risk function computes the probability that all of the nodes
have failed of at least one of the minimal cutsets. Given a vector of risk values r, it
is defined as follows:

R(r) = 1 −
∏

w∈W

(
1 −

∏

v∈w

rv

)
(2.8)

The Birnbaum structural importance measure, Ii , measures the sensitivity of
system risk to the risk of some component i. It is closely related to the Birnbaum
component importance measure, which is a partial derivative of system risk with
respect to individual component risk:

Ii = ∂R(r)
∂ri
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System reliability analysis has produced several measures of component impor-
tance, the most relevant of which is the Birnbaum structural importance mea-
sure [32]. Although the measure is typically used with reference to reliability, we
employ it to consider risk. It has been shown that the two measures are equal for
component i when the risk of every component j 
= i is 0.5. While referring to
established sources for more ample discussion of the calculation of this value, we
note the following. Let two vectors be defined as:

s1
i = {ri = 1.0} ∪ {rj = 0.5 | j ∈ {1, . . . , n, j 
= i}}

s0
i = {ri = 0.0} ∪ {rj = 0.5 | j ∈ {1, . . . , n, j 
= i}}

The Birnbaum structural importance measure can then be computed as:

Ii = R(s1
i ) − R(s0

i )

We define the risk importance measure, RI as the inherent security risk of
the component weighted by the Birnbaum structural importance measure of the
component. It is defined as follows,

RIc = rc × Ic (2.9)

2.3.2 Supplier Involvement Measure

A supplier involvement measure, SI , captures the degree to which any supplier
or supplier group is involved in a systemic risk graph. This measure includes
consideration of supplier trust, component importance, as well as the grouping of
suppliers. We quantify the supplier involvement measure as follows:

SIk =
⎛

⎝
∑

j∈Gk

Iπj

⎞

⎠
2

t̄k (2.10)

Several aspects of this measure must be noted. First, the involvement of each
supplier j is captured by Iπj

, the Birnbaum structural importance of the component
it supplies. Secondly, the aggregate involvement of a supplier group is squared.
A critical aspect of supply chain security consists of the risk involved when
components are supplied by entities that are distinct yet organized into a supplier
group capable of coordinated action. We believe that the supplier involvement
measure should reflect this risk by being amplified as group size increases. Finally,
the value t̄k is the risk value corresponding to the supplier group controller. As a
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technical note regarding implementation, a supplier j that does not belong to any
supplier group k can be considered in its own group with t̄k = 0.0.

2.4 Uncertainties in Model Development

Although the model we have developed bears a resemblance to established methods
of system reliability analysis, the problem domains of reliability and security differ
sufficiently to warrant a discussion of limits and challenges to the use of this
model in practice. While certain of these challenges may be overcome through
developments in methodology, others may point to limits within which the problem
of supply chain security analysis must be conducted. In the analysis that follows
we identify major challenges to the accurate construction of this model for a real
system. After discussing these challenges in general, we illustrate the effect of four
kinds of uncertainties using a case study.

2.4.1 Parametric Uncertainties in Probability Estimates

The first major area of difficulty in the use of such a model is obtaining accurate
probability estimates for basic events such as component security failures and,
more critically, supplier security failures. Estimating the likelihood of a supplier
being compromised or being covertly malicious is a problem involving considerable
difficulty. On the assumption that any compromise or malicious act will eventually
be detected and attributed accurately, the accuracy of risk values will generally
increase as this information is incorporated into assessed likelihoods. We consider
the problem of estimating accurate risk values to be best approached through the
development and use of heuristics and metrics together with information gathering
and regular assessments. If accuracy is a limitation here then it is one that system
design and use must accommodate.

2.4.2 Structural Modeling Uncertainties

A second source of uncertainty lies in the possibility that sources of risk are simply
omitted from the system model, i.e., that some set of nodes or edges that should
be in the system graph are not included. We call these structural uncertainties,
and define them as a modeling choice that has some effect on the set of minimal
cutsets. Therefore the three kinds of uncertainties here will include those related
to nodes, edges, and node logic functions. Being uncertain about the structure of
a system could easily be a matter of neglect or oversight, but may just as well be
a result of a complexity in system design that lies outside the reasonable purview
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of those building the model. In the case of both an inaccurate probability value
and a structural modeling divergence, the calculated systemic risk value does not
correspond to the real system risk. In the case studies that follow, we seek to
illustrate the observation that structural uncertainties pose a significant challenge
to accurate modeling and merit priority over improvements in accurate probability
estimations.

2.5 Uncertainty Case Studies

In the case studies that follow, we first present a ground truth scenario that is
intended to represent an ideal system graph constructed to model the system in
question. Following this, we discuss four kinds of uncertainties and illustrate the
possible effect of each by comparing the results of risk analysis after each error
with the ground truth scenario.

2.5.1 Case 0: Ground Truth

The system graph for this case study is shown in Fig. 2.4. It possesses a tree structure
with twenty-five nodes and with roughly equal numbers of AND and OR nodes
distributed throughout the graph. We have chosen the tree structure to provide
the basis of these examples because of its resemblance to classical fault trees. In
practice the structure could vary widely. However, for the purpose of this study a
tree structure seems likely to provide a suitable basis for generalization.

Fig. 2.4 System Graph for Case 0: Uncertainty scenarios will be examined with reference to this
as the ground truth scenario. System security is represented by the top node, and node failures that
constitute minimal cutsets will cause a failure of the top node
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Table 2.1 Minimal cutsets
for case 0: Each cell contains
one minimal cutset such that
a failure of every node in the
cutset entails a system
security failure

{a} {b} {c}

{g} {h} {i}

{p} {q} {t}

{u} {r,s} {d,e,f}

{d,f,l} {d,f,m} {d,e,n,o}

{d,e,n,x} {d,e,n,y} {d,l,n,o}

{d,l,n,x} {d,l,n,y} {d,m,n,o}

{d,m,n,x} {d,m,n,y} {e,f,j,k}

{f,j,k,l} {f,j,k,m} {d,e,o,v,w}

{d,e,v,w,x} {d,e,v,w,y} {d,l,o,v,w}

{d,l,v,w,x} {d,l,v,w,y} {d,m,o,v,w}

{d,m,v,w,x} {d,m,v,w,y} {e,j,k,n,o}

{e,j,k,n,x} {e,j,k,n,y} {j,k,l,n,o}

{j,k,l,n,x} {j,k,l,n,y} {j,k,m,n,o}

{j,k,m,n,x} {j,k,m,n,y} {e,j,k,o,v,w}

{e,j,k,v,w,x} {e,j,k,v,w,y} {j,k,l,o,v,w}

{j,k,l,v,w,x} {j,k,l,v,w,y} {j,k,m,o,v,w}

{j,k,m,v,w,x} {j,k,m,v,w,y}

Table 2.2 Results for case 0,
ground truth

|W | 53

avg(|w|) ∀w ∈ W 4.018868

J (W,W ′) 0.0

Risk 0.403032

�Risk 0

The minimal cutsets of this system are shown in Table 2.1. Each cell contains a
set of nodes identified by alphabet letter, where the security failure of all nodes in
the set represents a security failure of the top node. To compute a risk value for the
system, we provide sample component risk values such that each component has a
risk of failure of 0.05. Essential metrics for this system are found in Table 2.2.

2.5.2 Case 1: Uncertainty of Single Node Logic

In this first uncertainty scenario, the logic type of a single node will be modified
to represent the mis-classification of a node with regard to its predecessors. A full
treatment of the case of a single logic error suggests investigating the effect of this
error on any given node in the graph. While this would indeed yield a more thorough
understanding, such a generalized study would be of limited value without operating
on a generalized graph. In lieu of this theoretical exercise, here we present the result
of analysis when various nodes in the case study are mistaken. We chose nodes c and
b, where the analysis will be conducted on the graph after each node’s logic function
�n ∈ {AND,OR} has been substituted for the opposite type. Descriptively, this
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Table 2.3 Results for case 1,
logic uncertainty in c

|W | 63

avg(|w|) ∀w ∈ W 4.238095

J (W,W ′) 0.366197

Risk 0.144027

�Risk −0.259005

Table 2.4 Results for case 1,
logic uncertainty in b

|W | 23

avg(|w|) ∀w ∈ W 1.478261

J (W,W ′) 0.830769

Risk 0.542643

�Risk 0.139611

entails an error in recognizing the way that components g, h, i and their predecessors
affect the security of component c, with an analogous error for node b. While the
ground truth scenario includes a more risk-amplifying relationship, where any of
g, h, i can cause c to fail, the situation studied in Case 1 is that the model designer
considers c to fail when all of g, h, i have failed. As such, we expect that this analysis
will result in an erroneously low risk assessment when node c has been modified,
while the opposite will be the case for node b.

Detailed results for Case 1 on node c are shown in Table 2.3, including a modest
rise in the number of cutsets as well as their average size. The Jaccard distance from
the ground truth is 0.366, indicating a probability of roughly 1/3 that a cutset in
either case is not shared between the two. Risk, as expected, has dropped by 0.259.
To contrast, we present the results for changing node b in Table 2.4. This single node
logic error results in a significant Jaccard distance of 0.83, while raising systemic
risk by 0.139. Finally, Fig. 2.5 shows the effect of a logic error at each node in the
system. Because many nodes are leaf nodes possessing no dependencies, the nature
of the logic function at the node is irrelevant to systemic risk. Similarly, we note a
general correlation between the magnitude of the change in risk and the height of
the node in question.

2.5.3 Case 2: Uncertainty of Node Omission

When constructing a model, it may easily occur that a component is overlooked
and omitted from the model. Especially as complex systems involve many layers
of components, there will be some uncertainty concerning whether important nodes
have been omitted. To capture this uncertainty, we test here the result of deleting
a node from the system graph. As in Case 1, much of the effect of such an error
will depend on the topography of the system graph as well as the location of the
node omitted. When omitting a node, we consider it necessary to omit also the
children of the node that become disconnected from the graph as a result. This
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Fig. 2.5 Case 1 Results: When node logic is subject to discrete error, systemic risk values vary
widely, but with a magnitude related to node height

choice reflects the likelihood that in overlooking a component, its sub-components
or dependencies will also be overlooked. We test here the omission of a mid-level
node f and, separately, a higher-level node c. Fig. 2.6 shows the modified system
graph with node c omitted.

Detailed results are shown in Tables 2.5 for the omission of node f and 2.6 for
the omission of node c, while a survey of the resulting change in risk for each node’s
omission is shown in Fig. 2.7. It is pertinent to note the lack of correlation between
the Jaccard distance of the minimal cutsets and the change in systemic risk. While
omitting node f yields a very significant distance between the cutsets (0.81), the
change in risk is minimal (0.004). By contrast, omitting node c results in a smaller
Jaccard distance (0.17) but a very large decrease in risk (0.305). This volatility
in modeling results points toward the importance of component level analysis in
understanding supply chain risk. We also note the lack of correlation here between
the change in risk and the height of the node in question. Omitting node c has a
rather large effect, whereas node b, with the same height, has a very small effect.

2.5.4 Case 3: Uncertainty in Edge Placement

The scenario captured as uncertainty in the placement of a single edge will be when
a component node is successfully identified but it is mistaken how the node is related
to other nodes in the system. As such, an edge error entails no change in the number
of connected nodes in the graph. There may be a large number of possibilities that
are plausible ways an edge might be mistakenly placed. As such it will be difficult
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Fig. 2.6 System graph for case 2, illustrating an erroneous omission of the component at node c

as well as its sub-components

Table 2.5 Results for case 2,
node omission in f

|W | 17

avg(|w|) ∀w ∈ W 1.588235

J (W,W ′) 0.813559

Risk 0.407450

�Risk 0.004418

Table 2.6 Results for case 2,
node omission in c

|W | 44

avg(|w|) ∀w ∈ W 4.613636

J (W,W ′) 0.169811

Risk 0.097911

�Risk -0.305121

to examine all the nodes as was done in the previous two cases. We present detailed
results of two different edge errors. First, we remove edge 〈d, b〉 and substitute it
for the edge 〈d, e〉. The results of this error are shown in Table 2.7. To contrast, we
also investigate the change of edge 〈h, c〉 to 〈h, g〉, the results of which are shown
in Table 2.8.

In the first examined edge modification we find a minimal change in risk despite
a large distance between the cutsets. In contrast, a change in the edge 〈h, c〉 yields
the identical minimal cutsets, owing to the nature of the original parent node’s logic.



34 2 Risk Modeling and Analysis

Fig. 2.7 Case 2 results, showing the change in system risk when a single node and the sub-tree
rooted at the node is omitted. The magnitude of change in risk is not strictly correlated with node
height

Table 2.7 Results for case 3,
edge 〈d, b〉 → 〈d, e〉 |W | 46

avg(|w|) ∀w ∈ W 2.913043

J (W,W ′) 0.875

Risk 0.409726

�Risk 0.006694

Table 2.8 Results for case 3,
edge 〈h, c〉 → 〈h, g〉 |W | 53

avg(|w|) ∀w ∈ W 4.018868

J (W,W ′) 0.0

Risk 0.403032

�Risk 0.0

2.5.5 Case 4: Uncertainty in Probability Values

After having explored the various kinds of structural uncertainties and illustrated
their potential effects in particular cases, we examine here the contrasting effects
of uncertainties in the estimation of probability values. These probability values
are critical points of data without which a model cannot approximate the real risk
in a system. Yet because of the difficulty of obtaining these values with accuracy
and confidence, we examine the general effect of various margins of error. When
applying each margin of error, 0 < e ≤ 1, the adjustment is made by adding
eri to element i of vector r. With this adjusted vector, the general risk function is
calculated. Because this class of errors involves no change to the number or identity
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Table 2.9 Results for case 4 e 0.02 0.05 0.10 0.50

Risk 0.409364 0.418751 0.434108 0.544767

�Risk 0.006332 0.015719 0.031076 0.141735

Fig. 2.8 Case 4 Results, where the probabilities of all events are adjusted by increasing margins
of error. Elevated probability values entail a linear increase in risk, but only high margins of error
are comparable to many structural uncertainties

of cutsets, we only compare the resulting risk value to the ground truth scenario
presented above. In Table 2.9, we show the effect on risk analysis of four margins of
error, e: 2%, 5%, 10% and 50%. Fig. 2.8 shows a range of errors and the resulting
change in systemic risk.

We note that errors are calculated with reference to the ground truth scenario,
where the probability of each event is 0.05. As such, the maximum error shown
in Fig. 2.8, 100%, results in an adjusted probability of 0.10. Likewise, we apply
this margin of error to every node in system graph. While more complex or drastic
scenarios can be imagined, these high error rates are sufficient to illustrate the
relative impact of uncertainties of different kinds.

2.6 Conclusion

In this chapter we have presented a modification of attack tree modeling suited for
the analysis of supply chain risks with the primary intention of investigating the
practical utility of such a model when faced with inevitable difficulties in obtaining
accurate data describing complex ICT and IoT critical infrastructure systems. The
preceding case studies have depicted various possible error scenarios that may
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be encountered while applying this modeling technique to an existing system.
Using a particular system graph, we have illustrated these error scenarios with
the help of several examples. Although caution is warranted when approaching a
problem of this complexity from particular case studies, we use the results shown
here to highlight the importance of structural errors in comparison to errors in
obtaining accurate probability estimates. If the security of components and the
trustworthiness of suppliers can be estimated to within 50% accuracy, our results
show a maximum possible error in risk assessment of 14%. This is a significant
change in risk, but equal or far greater discrepancies are found with a wide variety
of discrete structural errors. Mistaking a single node’s logic function, if it is a
systemically important node, may produce double the change in assessed risk.
Similar discrepancies are found with single node omissions or mistaken edges.
Generally, the nodes with greater height in the system graph are more conducive
to yielding larger discrepancies in systemic risk.

From these observations certain principles in the practical development of supply
chain risk assessments may be suggested. The following preferences summarize the
conclusions of this study.

• Structure over magnitude: Given the scarcity of resources available to conduct
risk assessments, and the possible impact of errors of various kinds, we suggest
significant attention be given to accurate structural modeling. While efforts to
obtain accurate magnitudes in risk and trust values are certainly important, the
development of accurate structural models for the ways in which components
relate to each other as security dependencies should usually be prioritized.

• Height over depth: At higher levels of systemic analysis, accuracy in structural
modeling should take unambiguous priority. Structural errors in the critical
window of 2–3 hops from the top event have the potential to make extraordinary
differences in modeling results. Extensive and accurate modeling of depth into
a system may be helpful, but it is less important than ensuring accuracy in this
critical window. The difficulty of obtaining accurate modeling at lower levels is
matched by a decrease in the impact of possible errors. As such, less effort should
be expended on components at these lower levels of a system.
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Chapter 3
Risk Mitigation Decisions

Abstract It is highly complex for organizations to navigate the emerging cyber-
security landscape due to the lack of available decision-support tools. In this
chapter, we present a systematic approach to supply chain risk mitigating decision-
making in IoT systems and networks. The framework discovers relationships
between suppliers and service providers across the different interconnected devices
and provides an analysis of the associated cyber risks including the weakest
and most vulnerable links. The decision-support engine allows for planning new
system deployments from a supply chain viewpoint by recommending an optimized
selection of suppliers.

3.1 Cost Effective Vendor Selection

The system model of I-SCRAM supports both risk analysis and mitigation deci-
sions [1, 2]. Here, we discuss mitigation decisions as a series of related optimization
problems that involve supply chain security. These problems in general are called
supplier choice problems [3]. A supplier choice problem exists when, given a
component security graph and universal supplier network as described above, an
acquirer or integrator must choose a supplier from among several options while
seeking to minimize risk within a certain budget. An optimal supplier choice must
take into account the topologies of both networks: the supplier network and the
component security graph. As IoT systems involve extensive complexity in both
networks, risk optimization problems will be challenging to approach [4, 5]. Here
we focus on providing a functional approach to risk optimization that can be applied
both to self-contained systems and larger, system-of-systems problems.

Figure 3.1 shows a simple system with only two components. For the system
to function, both components must function. Component c1 has only one supplier
option, a, whereas component c2 may be provided by either supplier b or c. Stepping
up to the top level of the diagram, two groups are represented, where A controls
suppliers a and b and B controls supplier c. The supplier choice problem for this
system has only two feasible solutions, represented as the left and right diagrams.
Dotted black lines indicate a possible choice that is not taken, whereas solid red lines

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Kieras et al., IoT Supply Chain Security Risk Analysis and Mitigation,
SpringerBriefs in Computer Science, https://doi.org/10.1007/978-3-031-08480-5_3
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Fig. 3.1 Example scenarios
of the supplier choice
problem. Both represent
feasible solutions where
differing suppliers are chosen
for component c2, involving
the system in different
supplier groups

indicate the chosen supplier and which supplier network is involved. The optimal
choice is found by choosing between suppliers b and c such that the resulting risk
to the system is minimal, given a specified budget.

3.1.1 Strict Supplier Choice Problem

The first problem we approach directly aims to minimize system risk and serves as
the basis for understanding the remaining supplier choice problems we discuss. This
problem is formulated as a binary integer programming problem, with the decision
variable x = [xij ], i ∈ {1 . . . n}, j ∈ {1 . . . m}, indicating which supplier should be
chosen for each component. There are n components in the system, and m suppliers.
The set Xi indicates the subset of suppliers that offer the component i. We consider
various parameters for each supplier choice: the security risk of the component (rij ),
the cost of the component (cij ) and the trust value of the supplier (tj ).

Definition 3.1 The strict supplier choice problem minimizes the general system
risk function subject to the constraint of a specified budget. We formulate this
nonlinear integer program as follows:

min
x

R(r(x, r, t)), (3.1)

where

r(x, r, t) = {ri | ri =
m∑

j=1

xij rij , i ∈ {1, . . . , n}}

∪ {t̄j | t̄j =
n∑

i=1

xij t̄ij , j ∈ {1, . . . , m}}, (3.2)
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subject to

n∑

i=1

m∑

j=1

cij xij ≤ b, b ∈ R
+, (3.3)

xij ∈ {0, 1}, i ∈ {1, . . . , n}, j ∈ {1, . . . , m}, (3.4)

m∑

j=1

xij ≤ 1, i ∈ {1, . . . , n}, (3.5)

n∑

x=1

∑

j∈Xi

xij ≤ 1. (3.6)

The objective function here directly computes the systemic risk as defined in
Definition 2.3.1, given a vector of risk values for each entity in the system. In
(3.1)–(3.2), the decision variable x is used to assemble a vector of risk values from
component risks and supplier trusts. The budget constraint is expressed in (3.3), such
that the sum of chosen costs not exceed the budget b. A single choice of supplier
for each component is enforced by (3.5). The supplier choice must be among those
offering the component, as required by (3.6).

For this optimization problem, a serious difficulty arises from the fact that
the computation of the risk in the system requires an exhaustive discovery of
the but the topography of the system graph depends on the decision. While the
component security graph is static and its cutsets could be pre-computed, the choice
of suppliers entails modifying the system graph. As in the simple example shown
in Fig. 3.1, to choose supplier b entails that the system now has a single point of
failure in controller A. Because supplier networks can be arbitrarily complex, a
feasible approach to solving the supplier choice problem requires the use of heuristic
measures that reduce the computational complexity of the problem. Our approach
to this problem is to break the problem into two parts, as shown in Fig. 3.2. We now
discuss each part in the following sections before combining them into a feasible
approximation.

3.2 Supply Chain Diversification

Alongside satisfying budgetary constraints, it is also important to have diversifica-
tion in the supply chain ecosystem where possible [6]. This prevents possibilities of
potential collusion among potential attack vectors along with reducing the reliance
of the system on a single or small number of vendors [4, 7]. We incorporate
this feature into the decision framework by numerically quantifying the supplier
involvement and then using it to make optimized selections [8].
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Fig. 3.2 An expanded supplier choice problem, divided into the two smaller problems of supplier
involvement and component security risk

3.2.1 Component Security Risk Minimization Problem

The first step is to consider risk optimization in the component security graph.

Definition 3.2 We define the Component security risk minimization problem
to be a supplier choice problem that minimizes component security risks using
the risk importance measure from Sect. 2.3.1. The parameters and constraints
are the same as the strict .

min
x

m∑

j=1

n∑

i=1

xij rij Ii . (3.7)

Note that this problem does not consider suppliers, their trust value or the supplier
topology. Consideration is given only to the risk value of the component choice on
offer. The aim of any solution to assessing risk in a component security graph is to
consider not only the risk values but also the topology and logical function of the
corresponding component. We find the Birnbaum structural importance measure
captures these features well, allowing for an approximation of system risk that is
significantly simpler to compute.
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Example 3.1 Because the use of the risk importance measure plays a signif-
icant role in our approach, it is helpful to explore the utility of the measure
with an example. The example uses a system small enough that it is possible
to compare the result of the approximation and the strict supplier choice
problem. The system in question has only seven nodes, as presented in
Fig. 3.3. Each component has seven possible suppliers. We use node 1 as the
indicator node, with MOCUS [9] yielding the minimal cutsets [10] of this
example system:

W = {{1}, {2}, {4, 5}, {3}, {6}, {7}.

The above procedure for computing the Birnbaum structural importance for each
node in the system yielded the results shown in Table 3.1. Both the strict supplier
choice problem and the component security risk problem were solved for three sets
of parameter cases described as follows.

1. Case 1. Linear risk:

cij = 80 − 10j for i, j ∈ {1, . . . , 7},
rij = 0.05j for i, j ∈ {1, . . . , 7}.

Fig. 3.3 A component
security graph used to test the
use of the risk importance
measure. The output of
Component 1 indicates a
system failure event

Table 3.1 The Birnbaum
structural importance is
calculated as the difference
between system risk given
two risk vectors

i R(s1
i ) R(s0

i ) Ii = R(s1
i ) − R(s0

i )

1 1.00000 0.95312 0.04688

2 1.00000 0.95312 0.04688

3 1.00000 0.95312 0.04688

4 0.98438 0.96875 0.01562

5 0.98438 0.96875 0.01562

6 1.00000 0.95312 0.04688

7 1.00000 0.95312 0.04688
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2. Case 2. Logarithmic risk:

cij = 80 − 10j for i, j ∈ {1, . . . , 7},

rij = 1

log cij

− 0.20 for i, j ∈ {1, . . . , 7}.

3. Case 3. Random linear risk

cij = 80 − 10j for i, j ∈ {1, . . . , 7},
rij = Selected randomly from the interval

[0.05j, 0.05j + 0.05] for i, j ∈ {1, . . . , 7}.

Both of the above two optimization problems were solved across the range of
feasible budgets. After each instance was solved, yielding a decision matrix x, the
general system risk function was computed based on vector of risk values indicated
by x. This process was repeated for the three sets of parameters. The resulting risks
are shown in Fig. 3.4. We find that the use of the risk importance measure functions
well in minimizing system risk without the direct calculation of the system risk
function.

3.2.2 Supplier Involvement Minimization Problem

Although the component risk minimization problem performs well, it does not
consider the topology of the supplier network. The following problem is intended to
capture this second portion of the strict supplier choice problem.

Fig. 3.4 Risk importance
evaluation results. By
minimizing the sum of risk
importance values, the overall
system risk is approximately
minimized
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Definition 3.3 We define the supplier involvement minimization problem as
a supplier choice problem that considers only supplier involvement as defined
in Sect. 2.3.2. Using the same parameters and constraints as the strict supplier
choice problem, this problem is formulated as follows:

min
x

K∑

k=1

⎛

⎝
∑

j∈Gk

n∑

i=1

xij Ii

⎞

⎠
2

t̄k . (3.8)

Example 3.2 Figure 3.1 illustrates a system suitable as an example of the supplier
involvement minimization problem.

In this example there are two supplier groups: G1 : {a, b}, G2 : {c}. Let the trust
values of the groups be: tA : 0.9, tB : 0.9. The two feasible solutions are represented
by the decision vectors: x1 = (1, 0, 1), x2 = (1, 1, 0). Using the above formula
for supplier involvement yields the following values: SI1 = 0.2, SI2 = 0.4. The
minimal cutsets for each feasible solution are:

W1 = {{c1, c2}, {a, c}, {a, c2},
{c, c1}{A,B}, {A, c}, {A, c2}, {B, a}, {B, c1}}
W2 = {{c1, c2}, {a, b}, {a, c2}, {b, c1}, {A}}

Using the system risk function from Sect. 2.3.1 and taking all component risk values
as zero yields the following results:

R1 = 0.01

R2 = 0.1

In this small example, we see that minimizing the supplier involvement measure
yields a result that corresponds to the minimal system risk. We note this example to
illustrate the use of the supplier involvement measure, while further noting that the
measure’s inherent trade-off between supplier grouping and supplier trust should
not be expected to minimize risk in every case. Consequently, there is need to adjust
the weighting of various sources of risk based on an organization’s priorities.

3.2.3 Relaxed Supplier Choice Problem

Our approach to reducing the complexity of the supplier choice problem has been to
split the problem into two parts and give each an appropriate heuristic measure. At
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this point we can combine the two in order to more feasibly approach the supplier
choice problem.

Definition 3.4 We define the relaxed supplier choice problem as an approx-
imation of the strict supplier choice problem employing both the supplier
involvement measure and the risk importance measure. The constant α is
used to weight the supplier involvement measure, and the parameters and
constraints are the same as the strict supplier choice problem. The objective
function is as follows:

min
x

m∑

j=1

n∑

i=1

xij r̂ij Ii + α

K∑

k=1

⎛

⎝
∑

j∈Gk

n∑

i=1

xij Ii

⎞

⎠
2

t̄k . (3.9)

The first term characterizes component security risk, based on the risk impor-
tance measure defined in Definition 2.3.1. The second term, weighted by α, adds
a penalty based on supplier involvement as defined in Sect. 2.3.2. Recall that r̂

stands for the adjusted component security risk, i.e., the security risk taking into
account the trust value of the associated supplier. Because the relaxed supplier
choice problem approximates the strict supplier choice problem, it must consider
not only component risk but also supplier trust.

With larger values of α, the minimized solution avoids choices that consist of
groups of suppliers across important components. However, this comes at the cost
of potentially choosing an isolated supplier that brings a higher risk value. As is
shown in the case study below, care must be taken when choosing α. While we
consider that a modest value generally contributes to the minimization of general
risk, we note that the object of our study is not simply the minimization of general
risk but the construction of systems that are not beholden to significant involvement
by groups of suppliers. If this goal is less significant to an organization, a minimal
or zero value for α is appropriate.

3.3 Case Study and Results

To illustrate the use of I-SCRAM for risk analysis and mitigation decisions, we
consider a case study of an autonomous vehicle system. The case study is based on
a simplified system model and assumes that the vehicle has been designed already
to meet functional requirements. In the sequel, we first describe the simulation setup
and then provide the results based on selected scenarios.



3.3 Case Study and Results 47

3.3.1 Simulation Setup

The simulation setup has two main parts as shown in the block diagram in Fig. 3.2.
The first part relates to component interconnections while the second part relates to
the configuration of the supply chain. The principal security risk we model involves
attacks against the availability of safety critical components. The system graph in
Fig. 3.5 represents a hypothetical result of such a security analysis. It involves 15
different components such as ‘steer_act’, ‘accel_act’, ‘brake_act’, etc., and their
logical connections. Each minimal cut on the graph represents a complete attack.
We assume here that a complete attack compromises the availability of any of the
three terminal actuators.

The supplier choice problem for this system involves choosing a supplier for each
of the 15 components. For this case study we have chosen the following scenario for
the supplier network: Each component may be acquired from one of three suppliers;
No supplier offers more than one component; Of the 45 suppliers, there are five
groups of five suppliers, with each group having a controller; The remaining 20
suppliers do not have a group controller. An illustration of the supplier hierarchy
is shown in Fig. 3.6. Although the supplier network topology described above is
kept unmodified, parameters for risk, cost, supplier trust and group controller trust
are varied across several different cases. In all cases, riskier components cost less.
Generally, the cases range from simpler to more complex, with details of each
described below along with results and discussion.

A particular area of interest is the weighting of the two terms in the objective
function in (3.9), controlled by the constant α. As α approaches zero, the supplier
involvement measure contributes less and the resulting risk is more sensitive to
group controller trust. When running experiments on varying budgets, each instance

Fig. 3.5 Component security
graph for an autonomous
vehicle. System security is
indicated by the top node
‘Indicator’. A security failure
of any of the actuators causes
an incident. Suppliers are not
shown here
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Fig. 3.6 Supply chain
hierarchy used for
simulations. The 15
components are represented
by nodes on the right while
the possible suppliers are
represented by nodes in the
middle and group controllers
are represented by nodes on
the left

was solved with values of α ∈ {0, 0.001, 0.01, 0.1}, though we present here only a
subset of the results that illustrate important aspects of the study.

The direct calculation of the system risk function entails a discovery of the
minimal cutsets after the composition of a component security graph with the
chosen supplier network. Because this is difficult for problems of significant size,
we have developed a Monte Carlo simulation framework that provides an empirical
approximation of the general security risk function. This simulation provides a
method to evaluate the performance of the relaxed supplier choice problem across
different budgets and values of α. In each iteration of the simulation, a supplier is
either normal or malicious based on a Bernoulli trial with its trust value. Similarly,
a component is either functional or non-functional based on a Bernoulli trial with
its risk value. The simulation (n = 104 iterations) results in two measures of system
risk: the probability of a general security failure (general risk), and the probability
of a critical security failure that is caused only by group controllers (group risk). We
expect that higher values of α should yield systems with generally decreasing group
risk, while lower α values yield generally decreasing general risk.

3.3.2 Example Scenarios and Results

We consider several different scenarios for components, their cost structures, as
well as trust level of suppliers for evaluating our framework. In each scenario, the
parameters used are provided explicitly. The supplier choice problem in each case
is solved using mixed integer non-linear programming . The resulting risk is then
plotted for varying budgets and values of α.

1. Case 1 tests the scenario of minimal complexity. All risk values are zero except
one supplier group. It implies that we have a single malicious supply chain actor
in the system that needs to be avoided. The parameters selected are as follows:

rij = 0.0 for i ∈ {1, . . . , n}, j ∈ {1, . . . , m},
tj = 1.0 for j ∈ {1, . . . , m},
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tk = 1.0 for k ∈ {1, . . . , K},
tk = 0.8 for k = 1.

In this case, we expect the first term of the objective function always to be zero,
with there being only one group that contributes any risk. Results are shown in
Fig. 3.7a, with α = 0.1. With a budget b > 1675, the objective function can reach
zero. The simulation shows that this yields a system with a risk of zero. Because
the only source of risk in this case is from a group, the general and group risks
are identical.

2. Case 2 features two risky groups, but maintains no other source of risk. The
parameters are:

rij = 0.0 for i ∈ {1, . . . , n}, j ∈ {1, . . . , m},
tj = 1.0 for j ∈ {1, . . . , m},
tk = 1.0 for k ∈ {2, . . . , K},
tk = 0.8 for k ∈ {1, 2}.

Results are shown in Fig. 3.7b. As in case 1, here simulated general risk and
group risk are identical, and as the objective function reaches zero, so also do
the risks. Since there are two risky groups and therefore ten supplier-component
choices that entail some risk, optimization across increasing budgets results in a
successively decreasing objective function that eventually eliminates the risk as
the budget gets large enough.

3. Case 3 continues increasing the complexity of the scenario. All group controllers
have a high, randomly generated trust value t < 1.0. No other sources of risk are
yet considered. The parameters are:

rij = 0.0 for i ∈ {1, . . . , n}, j ∈ {1, . . . , m},
tj = 1.0 for j ∈ {1, . . . , m},
tk = N(μ = 0.98, σ = 0.01) for k ∈ {1, . . . , K}.

In this case, we notice that the objective successively decreases as a higher budget
is available. However, it does not go to zero as in the previous cases. This is
because of multiple sources of risk present in the supply chain (Fig. 3.8).

4. In Case 4, both suppliers and groups introduce risk, but components themselves
still do not. The parameters are as follows:

rij = 0.0 for i ∈ {1, . . . , n}, j ∈ {1, . . . , m},
tj = N(μ = 0.98, σ = 0.01) for j ∈ {1, . . . , m},
tk = N(μ = 0.98, σ = 0.01) for k ∈ {1, . . . , K}.
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Fig. 3.7 Results for simple
cases. General and group
risks overlap and decrease
with higher budgets
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Fig. 3.8 Case 4 results begin
to show the divergence
between group and general
risk. Weighting within the
objective function assigns the
priority. Both risks decrease
but the non-prioritized risk
shows instability
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This is the first case where general system risk and group risk diverge. It is
also the first case where setting the value of α is non-trivial and affects the
ability of the objective function to capture a consistently minimized risk. This
is not surprising for two reasons: First, given the use of heuristics to reduce the
complexity of the problem, it would be unusual to find risk to strictly decrease
across every arbitrary budget interval. Second, if supplier group involvement has
been prioritized by a high α, then riskier components or suppliers may be chosen.
Whether this is desirable is at the discretion of the organization conducting the
risk modelling. The results for case 4 show that the value of α affects whether
general or group risk is prioritized as the budget increases. The non-prioritized
risk generally decreases but with significant instability.

5. Case 5 represents a more comprehensive, typical scenario where there is risk
from groups, suppliers and components, but all risks are small and similar.
Component risk is set by a linear function of its cost implying that the component
risk decreases linearly as its cost increases. There are no significantly risky
entities. The parameters are specified as follows:

rij = f (cij ) for i ∈ {1, . . . , n}, j ∈ {1, . . . , m},
tj = N(μ = 0.98, σ = 0.01) for j ∈ {1, . . . , m},
tk = N(μ = 0.98, σ = 0.01) for k ∈ {1, . . . , K}.

Results in Fig. 3.9b show that minimizing the objective function tends to mini-
mize system risk. However, with an α of 0.1, the resulting system is optimized to
avoid group risk and so general risk occasionally increases. By contrast, Fig. 3.9a
shows the results of optimizing for minimal general risk, which decreases in a
more stable manner at the expense of a generally higher level of group risk.

6. Case 6 represents a scenario where the supplier network contains some unusually
risky groups. These risky groups have controllers that are trusted with compara-
tively low values, i.e., 80% of the other groups. The parameters are:

rij = (0.01, 0.04) for i ∈ {1, . . . , n}, j ∈ {1, . . . , m},
tj = N(μ = 0.98, σ = 0.01) for j ∈ {1, . . . , m}
tk = N(μ = 0.98, σ = 0.01) × 0.8 for k ∈ {1, 2},
tk = N(μ = 0.98, σ = 0.01) for k ∈ {3, . . . , K}.

Results are shown with α = 0.1 in Fig. 3.9c. The lowest budgets are constrained
to involve these very risky groups, but in both cases the simulated risks are
reduced as each risky group is able to be eliminated from the system.
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Fig. 3.9 More complex cases
confirm the risk minimizing
performance along with the
effect of prioritizing general
and group risk
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Fig. 3.10 With constant budget, α is varied to show the effect of weighting and the presence of
state changes in the problem

3.3.3 Supplier Involvement Experiments

Throughout these cases, we have seen that the value of α occasionally affects the
results in significant ways. To explore this further, we present two experiments
where the budget is kept constant and only α varies. The other parameters are taken
from Case 6.
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Figure 3.10a shows the objective function and the two simulated risk results
for case 6 at the budget of 1850, with a variety of choices of α ∈ [0, 1]. This
high budget should require relatively few difficult choices. The results show that in
this case a clear transition occurs when α = 0.004, after which the assessment of
supplier group involvement dominates the objective function and drives down risk
significantly. The reduction of group risk to zero after this transition further indicates
that this type of risk accounts for the significant decrease in overall risk. Lastly, we
notice that increased values of α > 0.004 do not further decrease risk. These larger
values increase the value of the objective function; however, because the group risk
has already been driven to zero, no further gains are achieved by further weighting
it.

The second α experiment was conducted with a lower budget of b = 1675,
chosen to be near a potential state transition as found in the results for case 6. As
shown in Fig. 3.10b, the effect of weighting can be detected by a small decrease in
general risk. The higher values of alpha represent prioritization of group risk, which
is successfully decreased. Yet, we note the expected increase in general risk that
results from this choice of priorities.

3.4 Conclusion

In this chapter, we have presented a model for understanding the role of suppliers in
IoT system security risk assessments and argued for the need to take a component
centered approach to risk assessment when considering supply chain threats. With
the developed model we have presented measures for risk analysis and approached
optimization of budget-constrained supplier choices. Because IoT systems have
complex topologies and may be involved with a large number of suppliers, we
have developed an approximation of the supplier choice problem that can be more
easily scaled to approach the complex, system-of-systems scenarios of IoT systems.
Likewise, our approximation is capable of prioritizing various sources of risk
according to the needs of the organization. In a case study, we have shown that
our approach successfully decreases risk as the budget constraint increases.
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Chapter 4
Policy Management

Abstract Supply chain security has become a growing concern in the security
risk analysis of IoT systems. Their highly connected structures have significantly
enlarged the attack surface, making it difficult to track the source of the risk
posed by malicious or compromised suppliers. This chapter presents a system-
scientific framework to study the accountability in IoT supply chains and provides a
holistic risk analysis technologically and socio-economically. We develop stylized
models and quantitative approaches to evaluate the accountability of the suppliers.
Two case studies are used to illustrate accountability measures for scenarios with
single and multiple agents. Finally, we present the contract design and cyber
insurance as economic solutions to mitigate supply chain risks. They are incentive-
compatible mechanisms that encourage truth-telling of the supplier and facilitate
reliable accountability investigation for the buyer.

4.1 Introduction

Supply chains play a critical role in the security and resilience of IoT systems and
affect many users, including small- and medium-sized businesses and government
agencies. An attacker can exploit vulnerabilities of a vendor in the supply chain
to compromise the IoT system at the end-user. The recent SolarWinds attack is an
example of an attack that has resulted in a series of data breaches at government
agencies. One seller of the Microsoft Cloud services was compromised by the
attacker, allowing the attacker to access the customer data of its re-sellers. Once the
attacker established a foothold in SolarWind’s software publishing infrastructure
after getting access to SolarWind’s Microsoft Office 365 account, he stealthily
planted malware into software updates that were sent to the users, which include
customers at US intelligence services, executive branch, and military.

The infamous Target data breach in 2013 is another example of supply-chain
attacks. The attacker first broke into Target’s main data network through ill-
protected HVAC systems. The attacker exploited the vulnerabilities in the moni-
toring software of the HVAC systems, which shared the same network with the
data services. It led to a claimed total loss of $290 million to data breach-related
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Fig. 4.1 Supply-chain attacks: An attacker first attacks a vendor, who sells the users compromised
products. They act as Trojans inside the user’s system and stealthily manipulate it

fees [1, 2]. The supply-chain attacks would become increasingly pervasive in IoT
systems. Consider a next-generation industrial manufacturing plant equipped with
IoT devices that are supported by third-party vendors . The software and the
hardware of these devices can be trojanized. As a result, the attacker disrupts
the manufacturing plant, which can create a shortage of essential products (e.g.,
pharmaceutical products, COVID19 vaccines, and gasoline) and lead to grave
repercussions in the nation’s supply chain. Illustrated in Fig. 4.1, the supply chain
attacks can go through multiple stages of the supply chain from the source of the
attack to the targeted users or systems.

Risk-based approaches presented in Chaps. 2 and 3 have been used to guide
the procurement and design decision-making process [3–7]. This kind of approach
offers risk measurement, rating tools, and compliance checking to identify and rank
the vendors by their risk criticality. It is a useful preventive measure that provides
a transparent understanding of the security posture in the products, systems, and
services of the end-users and helps mitigate the risks prior to the procurement
contracts and continuous product development. Cyber resilience complements this
measure. It shifts the focus from prevention to recovery by creating a cyber-
resilient mechanism to reconfigure the IoT system adaptively to the uncertainties
of adversaries and maintain critical functions in the event of successful attacks.

Many private sectors have for years prioritized efficiency and low cost over
security and resilience. In addition, they are agnostic to where these technologies
are manufactured and where the associated supply chains and inputs originate.
This common practice has resulted in enlarged attack surfaces and many unknown
and unidentified threats in the IoT systems. A healthy ecosystem of vendors and
suppliers is pivotal to secure and resilient IoT systems. One challenge is that the
IoT supply chain is becoming globalized. Manufacturers and material suppliers are
geographically diverse, thus increasing the uncertainties and the vulnerabilities of
the end-user IoT systems. It is critical to check the compliance of the products from
the global supply chain to determine whether they would increase the cyber risk of
the IoT users.
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One way to improve the health of the IoT supply chain is to design an IoT system
with built-in security and resilience mechanisms. For example, the integration of
cyber deception [8–10] into IoT systems provides a proactive way to detect and
respond to advanced and persistent threats. Game-theoretic methods [11–13] and
reinforcement learning techniques [14–16] have been used to provide a clean-
slate approach to designing cyber resilient mechanisms in response to supply-chain
attacks.

Apart from the technological solutions, accountability and insurance are the
socio-economic ones that can be used to improve the cyber resilience of IoT end-
users. Accountability, in general, is the ability to hold an entity, such as a person
or organization, responsible for its actions. An accountable system can identify and
punish the party or the system component that violates the policy or the contract.
By creating accountable IoT supply chains, we create an ecosystem where each
supplier invests in cybersecurity to reduce the cyber risks at each stage of the supply
chain. A supplier would be held accountable if the failures of the end-user system
are attributed to it. Accountability establishes a set of credible incentives for the
suppliers and elicits desirable behaviors that mitigate the cyber risks. Accountability
can be viewed as part of the cyber resilience solutions succeeding the technological
solutions, especially when the technological resilience measures do not prevent the
damages.

Insurance is another risk management tool [17] to protect the end-users from
cyber attacks and failures by transferring their residual risk from an entity to a third
party through an insurance contract. It is the last resort when an IoT system cannot
be perfectly accountable; i.e., there is inadequate evidence to hold any one of the
suppliers accountable, or when the defects in the user’s design lead to unanticipated
consequences. The residual risks would be evaluated by an underwriter and the
coverage can include the losses that arise from ransomware and data theft or
incidents caused by failures of IoT devices. Figure 4.2 shows the relationships
between preventive cyber measures and resilient cyber measures. The cyber-resilient
mechanisms include the technological real-time resilience measures as well as
accountability and insurance solutions. They constitute a holistic socio-technical
solution to protect the IoT systems from supply-chain threats.

Both accountability and insurance provide an additional layer of protection that
reduces the risks of IoT users. Accountability and insurance are system-level issues.
We need to take a system-scientific and holistic approach to understand their role in
IoT systems and supply chains, which would lead to an integrative socio-technical
solution for supply chain security. This chapter provides a quantitative definition to
measure and assess the accountability in the IoT supply chain that pertains to the
system design, procurement contracts, as well as, vendor description. Despite the
focus of the chapter on cybersecurity issues, the definition of accountability can be
extended and used for general contexts of supply chain disruptions caused by natural
disasters and the defects in the products.

Game theory naturally provides a framework that captures the incentives and
penalties through utility functions for multiple interacting agents. It has been widely
used in cybersecurity for the modeling between an attacker and defender in many
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Fig. 4.2 The IoT supply chain can be protected using preventive measures which include
compliance checking and auditing. The supply chain resilience can be enhanced by building real-
time resilience measures (e.g., detection, adaptation, and reconfigurations). The residual risk as a
result of the preventive and real-time resilience measures can be further mitigated by accountability
and insurance mechanisms. Accountability is designed to attribute the violations to the suppliers,
who will be penalized based on the contract. Insurance is another mechanism to transfer the
remaining risks to a third party through an insurance contract. The multi-tier solutions from
preventive measures to insurance are interdependent and they create consolidated protection of
our IoT supply chain ecosystem

scenarios, including intrusion detection systems [18–21], wireless communications
[22–27], and cyber deception [8, 12, 28–31]. It has also been used to harden the
security and resiliency of cyberphysical systems, including critical infrastructures
[32–36], industrial control systems [11, 37–41], and IoTs [42–46].

One important branch of game theory is the mechanism design theory [47, 48] ,
which explicitly provides a quantitative approach to create a reward and penalty
mechanism to elicit desirable behaviors at equilibrium. The violations from the
desired behaviors would be disincentivized or punished, while the compliance
with the rules would be incentivized or rewarded. In this chapter, we leverage
these features of game theory to create computational accountability and insurance
framework for IoT systems and their supply chain.

Accountability is a system-level issue that encompasses detection and attribution
of the violations or anomalies, multi-agent interactions, asymmetric information,
and feedback. Game-theoretic methods provide a baseline for a system-scientific
view for accountability. We build a system scientific framework that bridges game
theory, feedback system theory, detection theory, and network science to provide a
holistic view toward accountability in IoT supply chains. The framework proposed
here can be applied to understand accountability in general.

One extension of this chapter is to investigate the concept of collective account-
ability, where multiple agents are held accountable for the violations. One advantage
of such accountability mechanisms is the convenience in identifying the entities to
be held accountable and the implementation of the penalties. The disadvantage is
that they are not targeted and entities that are not directly linked to the violation of
the failures would be also punished.
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4.2 Literature Review

Accountability has been studied in many different contexts in computer science [49–
51]. Künnemann et al. in [52] have studied accountability in security protocols.
Accountability is defined as the ability of a protocol to point to any party that
causes failure with respect to a security property. Zou et al. in [53] have proposed
a service contract model that formalizes the obligations of service participants in
a legal contract using machine-interpretable languages. The formalism enables the
checking of obligation fulfillment for each party during service delivery and holds
the violating parties for the non-performance of the obligations. The definition
of accountability in these works aligns with the definition in this chapter. An
accountable system has the ability to check and verify compliance with the
requirements in the agreement and identify the non-conforming behaviors and their
parties.

There are several game-theoretic models that are closely related to accountability.
For example, inspection games [54–56] are one class of games where the inspector
determines a strategy to examine a set of sampled items from a producer to check
whether the producers of the goods violated the standards. The producer aims to set
a production strategy to minimize the detection probability while minimizing the
cost of maintaining high standards. The inspection games have been used in many
contexts such as patrolling, cybersecurity, and auditing. Blocki et al. in [57] have
studied a class of audit games in which the defender first chooses a distribution over
n targets to audit and the attacker then chooses one of the n targets to attack. It is
better for the defender to audit the attacked target than an unattacked target, and it is
better for the attacker to attack an unaudited target than an audited one. Rass et al. in
[58, 59] have studied a multi-stage cyber inspection game between a network system
defender and an advanced persistent threat (APT) attacker. The defender needs to
choose an inspection strategy to detect anomalies at different layers of the networks.
The attacker’s goal is to stay stealthy and find strategies to evade the detection and
compromise the target.

Utility-theoretic approaches are useful to capture the incentives of the partic-
ipants in an agreement and their punishment. In [51], Feigenbaum et al. have
formalized the notion of punishment using a utility-theoretic, trace-based view of
system executions. Violation is determined based on the traces of the participants.
When there is a violation, the participant is punished. This punishment is captured
through a decrease in the utility, relative to the one without the violation. This
approach to punishment is often seen in the literature of mechanism design [48, 60].
The designer first announces a resource allocation rule and a payment or punishment
rule. The participants in the mechanism know the rules and determine the messages
that they send to the designer. An incentive-compatible mechanism is one in which
the participants will truthfully reveal their private information through the message
under the allocation and the punishment rules. In other words, no participants
have incentives to lie about their private information under an incentive-compatible
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Fig. 4.3 Supply chain accountability: the buyer of the product can identify the supplier of a
component who violates the policies or the contracts. The buyer can then use the contract to
penalize the identified supplier. The supplier can attribute the violation to his supplier. It is called
multi-stage accountability

mechanism. Mechanism designs have been used in many disciplines to study pricing
of resources [61–63], create security protocols [45, 64], recommend policies [10],
and design services [17, 65]. The framework that we present in this chapter is built
on the mechanism design approach. The utility-theoretic approach conveniently
captures the incentives of the suppliers and their behaviors. Furthermore, the
mechanism-design approach naturally creates a punishment mechanism to create
incentives for truthful behaviors. This type of behavior can be generalized to
compliant behaviors in supply chain agreements and contracts.

Our framework builds on this approach and bridges the accountability gap by
incorporating the detection mechanism that enables the designer to detect and
attribute the non-compliant behaviors. In addition, our framework distinguishes
from prior works in accountability by focusing on accountability in system engi-
neering. This problem is instrumental in the development of large-scale IoT systems,
where the building blocks of the IoT systems are manufactured or designed by
third parties. We integrate the critical component of engineering designs into the
accountability problem for IoT systems. The system designs can contribute to
accountability. A design is called transparent if it helps identify the cause of the
accidents; otherwise, a design makes the accountability inconspicuous. Figure 4.3
illustrates the concept of accountability. A user can use his observed information to
identify the immediate cause of accidents or malfunctions. The seller who has been
identified as the cause can further identify the further cause of the event. In this way,
the source of the attack can be sequentially identified stage-by-stage through a chain
of accountability efforts.
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4.3 Accountability Models in IoT Supply Chain

4.3.1 Running Examples

We introduce two running examples which will be used in later discussions for
illustrations.

Example I: Uber Autonomous Vehicles The Uber incident in Tempe, Arizona
is another example of accountability of autonomous vehicles. A pedestrian was
struck by an Uber self-driving vehicle with a human safety backup driver in the
driving seat. The fatality is caused by the failure of the software system which fails
to recognize the pedestrian. Sensor technologies, including radar and LiDAR, are
sophisticated enough to recognize objects in the dark. Evidence has shown that the
pedestrian was detected 1.3 s before the incident and the system determined that
emergency braking was required but the emergency braking maneuvers were not
enabled when the vehicle is under computer control. The design of the software
system is accountable for the death of the pedestrian.

Example II: Ransomware Attack on Smart Homes A smart home consists
of many modern IoT devices, including lighting systems, surveillance cameras,
autonomous appliance control systems, and home security systems. The compo-
nents of each system are supplied by different entities. Smart home technology
integrates the components and creates a functioning system that will sense the
home environment, make online decisions, and control the system. The camera is
accountable if the home security system does not respond to the burglary adequately
due to a camera failure. There is an increasing concern about ransomware attacks.
Accountability enables the homeowner to mitigate the impact of the ransomware by
attributing the attack to a supplier of the IoT devices.

Illustrated in the two examples, IoT supply chain security has a significant
impact on the private sector and its customers. Several technologies have been
proposed to track the integrity of the supply chain to provide real-time monitoring
and alerts of tampering and disruptions. They provide a tool to monitor, trace,
and audit the activities of all participants in the supply chain and ensure that
the contractually defined Service Level Agreements (SLAs) are followed. The
essence of the technologies is to create transparency and situational awareness for
the companies. However, the software and hardware tampering is much harder
to monitor and track than the physical one. As a result, it creates information
asymmetry where the buyers or the systems do not have complete information about
their suppliers. As in the Target and the SolarWinds attacks, an attacker can get
access to the system through a compromised third-party vendor. It would require
proactive security mechanisms to detect and respond to the exploited vulnerabilities.
We have seen the emerging applications of cyber deception [8, 9, 66] and moving
target defense [67–69] in both software and hardware to reduce the information
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Fig. 4.4 A supplier of type θ provides a description m of the product to a buyer who will make a
procurement decision a. The system designer develops a design d to integrate all the components to
form a functioning system. The system, as a result, yields an observable performance y. The supply
chain is said to be accountable if the malfunction of the system can be attributed to the supplier who
has misled the system designer. The supply chain risk can be mitigated at three stages. The first
stage is compliance checking before the procurement. The buyer can check whether the description
of the product complies with the standards, regulations, and requirements. The second stage is the
contracting stage. The buyer can make a contract that specifies the penalty or the consequences
if the supplier does not fully disclose the product information. It will allow the buyer to hold the
supplier accountable when the root cause of the malfunction is at the supplier. The third stage is
cyber insurance. The buyer can purchase cyber insurance to mitigate the financial impact of the
malfunction. The financial risk is partially transferred to the insurer

asymmetry and create proactive mechanisms for detection. They are tools that
contribute to real-time resilience measures as illustrated in Fig. 4.4 and provide
inputs for accountability in the next stage.

4.3.2 System Modeling

In this section, we provide a stylized model and a quantitative approach to
accountability. Figure 4.4 describes three stages of interactions. At the first stage,
a supplier interacts with a buyer to agree on an SLA contract. The supplier is
characterized by the private information θ ∈ 
, which is a true description of the
product of the supplier. For example, the supplier is aware of the true security level
and investment in the product but may not disclose the information to the buyer.
The supplier sends the buyer a message m ∈ M , which is the informed description
of the product. The description can prevaricate, hide, or sometimes lie about the
security information that would be useful in the procurement decisions. We say
that the supplier truthfully reports the product when θ = m; otherwise, we say
that the supplier misinforms the buyer. This misinformation can be unintended or
intentional. In the case of intentional behaviors, the supplier sends a manipulative
message when he knows his true type. For example, some foreign suppliers do not
fully disclose the information of their product with the aim to attract US customers
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due to its low cost. In the case of unintended behaviors, the supplier may not be
aware of the vulnerabilities of the product and sends a description based on his
perceived information. In this case, we can assume that the private information θ is
a function ρ : 
 × W �→ 
 of the truth and uncertainties, i.e., θ = ρ(θt, wt),
where θt ∈ 
 is the true value unobservable by the supplier and wt ∈ W is
the bias, modeled as a random variable, unknown to the supplier. This bias can
be interpreted as the uncertainties introduced by nature or a stealthy attacker that
has unknowingly changed the security attributes of the product. In both cases of
unintended and intentional behaviors, it is sufficient to assume that the type known
to the supplier is θ .

Based on the product description m, the buyer can make purchase decisions.
Let a = 1 denote the decision of adopting the product of the vendor and a = 0
otherwise. The decision rule α : M �→ [0, 1] yields the probability of purchase
based on the received description, i.e. α(m) = Pr(a = 1|m). This can be interpreted
as the purchase preference from historical records. If the buyer decides to adopt
the product, then he determines how the product is designed and integrated into
the system. Here, we assume that the user and the designer belong to the same
organization and hence the procurement and design decisions are made jointly. In
other words, the user and the designer can be viewed as the same decision entity
who coordinates the design and procurement. In practice, the engineers design the
systems and send the procurement department the specifications and requirements
for the needed materials and components.

An IoT system consists of many components. We can classify the compo-
nents into five major categories: sensing, computation, control, communications,
and hardware. The sensing component allows the system to provide information
about the environment, for example, the LiDAR and temperature sensors. The
computation units provide functions and services for information processing and
computations, for example, cloud services and GPUs. The control components
are used to instrument and actuate the physical systems, for example, temperature
adjustment and remote control. Communications provide the information and data
transmission among IoT components, e.g., LoRa and ZigBee wireless communica-
tions. The hardware refers to the physical systems that underlie the IoT network, for
example, the manufacturing plant and the robots.

The designer builds an IoT system using a blueprint δ : M �→ D, which yields
a design d = δ(m), d ∈ D based on the device descriptions and specifications
provided by the supplier. The system design leads to a performance y ∈ Y. For
example, in Example I, the designer develops a software system that integrates
sensors, control algorithms, and the car. Safety is a critical performance measure
of autonomous vehicles. It can be measured by the rate of accidents experienced by
vehicles as of now. Here, we model the performance as a random variable. Given α

and δ, the distribution of the performance random variable is py(y; θ, α(m), δ(m)),
py : 
 × M �→ �Y. Using Bayes’ rule, we arrive at

py(y; θ, α(m), δ(m)) = pθ
y(y;α(m), δ(m)|θ)pθ (θ), (4.1)
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where pθ(·) ∈ �
 is the prior distribution of the type of product; pθ
y(y;α(m), δ(m)|

θ), pθ
y : M �→ �Y, is an indication of all possible system performances given

the attribute of product θ . Note that the performance implicitly depends on m. The
true performance of the system is determined by the true attribute of the product
and the procurement and design decisions, which are made based on m. We denote
pI = py(y; θ, α(θ), δ(θ)) as the ideal system performance when the design and
procurement decisions are made given a truthful supplier, i.e., m = θ .

Without knowing the true attributes of the product θ , the performance anticipated
by the buyer is denoted by qy = py(y;m,α(m), δ(m)). When m 
= θ , there
is a difference between the observed performance py and the anticipated one qy .
The buyer can perform hypothesis testing based on the sequence of observations
y1, y2, · · · , by setting up H0 as the hypothesis that the observations follow the
distribution qy and H1 otherwise. For example, in Example I, this decision is
particularly important when yi represents malfunctions or accidents for each trial
test driving. If the malfunction is not expected by the designer, then there is a need
to find out which supplier is accountable for the accidents or, in the case of a single
supplier, whether the supplier should be held accountable.

4.3.3 Accountability Investigation

One critical step of accountability is the ability to attribute the performance
outcomes to the supplier. We start with the accountability of a single supplier
with binary type 
 = {0, 1} and assume the message space is the same as type
space M = 
. Consider a sequence of repeated but independent observations
Y k = {y1, y2, · · · , yk}, k ∈ N. A binary accountability investigation is performed
based on Y k . Based on the received m, hypothesis H0 is set to be the case when the
observations follow the anticipated distribution qy and H1 otherwise. Depending on
whether H0 or H1 holds, each observation yi admits the following distribution

H0 : yi ∼ fm(y|H0) = py(y;m,α(m), δ(m)), (4.2)

H1 : yi ∼ fm(y|H1) = py(y; ¬m,α(m), δ(m)). (4.3)

The optimum Bayesian investigation rule is based on the likelihood ratio, which
is denoted by

L(Y k) =
k∏

j=1

py(yj ; δ(m)|¬m)pθ(¬m)

py(yj ; δ(m)|m)pθ(m)
, (4.4)

where we omit the purchase decision because the performance can only be observed
when a = 1 and α(m) = Pr[a = 1|m] is the same under both hypotheses. The
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likelihood ratio test (LRT) provides the decision rule that H1 is established when
L(Y k) exceeds a defined threshold value τk ∈ R; otherwise, H0 is established. It
can be formulated by the equation

L(Y k)

H1

�
H0

τk. (4.5)

One critical component in accountability investigation is the prior distribution
over hypotheses, which indicates the reputation of the supplier. Without knowing
the true distribution of the type, we argue that reputation is sufficient knowledge
to determine the accountability of the supplier. Here, we give the definition of
reputation over a binary type space, but the definition can be extended to multiple
type space accordingly.

Definition 4.1 (Reputation) The reputation of the supplier π ∈ �H is a
prior distribution over all hypotheses. In binary case, π0 = Pr[H0] is the prior
probability that the supplier truthfully report and π1 = Pr[H1] otherwise, with
π0 + π1 = 1.

Assume that the cost of the investigation is symmetric and incurred only when
an error occurs. In the binary case, the optimum decision rule will consequently
minimize the error probability, and the threshold value τk in LRT will reduce to

τk = π0/π1. (4.6)

Definition 4.2 (Accountability)

1. Given an investigation rule, i.e., the threshold τk , the accountability PA ∈
[0, 1] is defined as the probability of correct establishment of hypothesis
H1 based on the observations Y k and message m, which is given by

PA(τk) =
∫

Y1

fm(Y k|H1)dyk, (4.7)

where Y1 is the observation space where Y1 = {Y k : L(Y k) ≥ τk}.
2. The wronged accountability PU ∈ [0, 1] is defined as the probability

of a false alarm that H1 is established while the underlying truth is H0.
Consider the threshold τk and observations Y k , PU is given by

PU(τk) =
∫

Y1

fm(Y k|H0)dyk. (4.8)
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We call a supplier η-unaccountable if PA ≤ η, for a threshold accountability
η ∈ [0, 1] chosen by the investigator. In this case, the system does not have strong
confidence that the observed accidents are caused by the supplier. We call a system
ε-nontransparent if PA ≤ ε, for a given small ε ∈ [0, 1]. That is, the system is close
to being unable to hold the vendor accountable for the accidents.

The performance of the accountability investigation will be evaluated in terms of
PA and PU . Ideally, we would like to conduct error-free accountability testing where
PA is close to one and PU is close to zero (correctly identify accountable supplier
without making mistake). However, the definition above leads to a fundamental limit
on the accountability of the supplier. Except for situations where the observations
Y k under H0 and H1 are completely separable or the number of observations k goes
to infinity, the performance of the accountability testing will be restricted within a
feasible region.

Definition 4.3 (Accountability Receiver Operating Characteristic)
Accountability Receiver Operating Characteristic (AROC) is a plot which
describes the relationship between achievable accountability PA and wronged
accountability PU in the square [0, 1] × [0, 1].

As shown in Fig. 4.5, if we conduct LRT in accountability investigation, the
AROC curve depicts the testing performance with respect to different threshold
values τk . Similar to traditional binary hypothesis testing, the AROC curve under
proper design preserves the following properties [70].

Fig. 4.5 Accountability receiver operating characteristics (AROC)
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Property 4.1 (AROC) AROC curve under proper design has the following proper-
ties:

(1) (PU , PA) = (0, 0) and (1, 1) belong to the AROC.
(2) The slope of the AROC curve dPA(τk)/dPU(τk) is equal to the threshold τk .
(3) The AROC curve is concave and the feasible domain of (PU , PA) is convex.
(4) PA(τk) ≥ PU(τk), ∀τk ∈ [0,+∞).

Remark 4.1 The likelihood ratio lies in the region between zero and infinity. If
we set the threshold τk in LRT to zero, investigator will classify any performance
results into hypothesis H1 (misinformation). Both accountability PA and wronged
accountability PU will approach to one, as (PU , PA) = (1, 1). Similarly, if we set
τk in LRT to infinity, investigator will classify any performance into hypothesis H0
(truthfully report), resulting in (PU , PA) = (0, 0).

Remark 4.2 Property (3) and (4) are satisfied under the proper design; i.e., the test
is “good” when PA ≥ PU . For a “bad” test when PA < PU . As the hypothesis refers
to a specific context of applications, we cannot simply reverse the performance
distribution as in traditional hypothesis testing. Instead, we need to re-construct the
investigation and find another performance metric that can properly distinguish the
misinformation between suppliers and buyers.

It is worth noting that as the threshold τk increases, the accountability of the
supplier PA increases. However, according to the aforementioned properties, it
would also increase wronged accountability PU when the accidents are not caused
by the vendor. There is a fundamental trade-off between accountability PA and
wronged accountability PU depending on the accountability investigation. One way
to evaluate the investigation performance is the area under the AROC curve (AUC).
AUC is a measure of investigation capability [71], which provides a simple figure
of merit to represent the degree of separability between two hypotheses.

AUC(τk) =
∫ 1

0
PA(τk) dPU(τk) (4.9)

This value varies from 0.5 to 1. When AUC equals 0.5, the designed investigation
has no separation capability, which means the performance of the test is no better
than flipping a coin. This corresponds to the case when PA(τk) = PU(τk) for all
possible threshold τk . Ideally, an excellent test will produce an AUC equal to one.
In this situation, the accountability investigation can completely distinguish between
two hypotheses, thus correctly identifying the supplier who should be accountable
for the accidents.

Unfortunately, in realistic investigation tasks, it is hard to obtain the exact
computation of AUC. Analyzing the upper and lower bounds of AUC helps
the investigator describe the performance of the designed test. Shapiro in [72]
provides an upper bound and lower bound on binary testing. Consider equally likely
hypotheses with τ = 1, the probability of error Pe ∈ [0, 1] is defined as
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Pe = PU(τ = 1)

2
+ 1 − PA(τ = 1)

2
. (4.10)

Due to the convexity of the AROC curve, the bounds of the AUC can be described
as

1 − Pe ≤ AUC ≤ 1 − 2P 2
e . (4.11)

4.3.4 Model Extensions

This framework can be extended to multiple product types and multiple suppliers.
Accountability needs to point to varied suppliers that cause failures under the
hypothesis. In this section, we provide several testing frameworks and the definition
of accountability accordingly.

4.3.4.1 Single Supplier with Multiple Types

Consider the product from the supplier with T ∈ N possible types, 
 =
{θ1, θ2, . . . , θT }. Based on the received message m = θm, hypotheses
{H1,H2, . . . , HT } can be constructed by the investigator such that the performance
observation y under each hypothesis Ht admits

Ht : y ∼ fm(y|Ht) = py(y; θt , α(θm), δ(θm)), (4.12)

for 1 ≤ t ≤ T . The distribution under hypothesis Ht describes the system
performance if the buyer makes purchase and designs based on the message θm

while the underlying true product type is θt . In this case, the only anticipated
performance by the buyer follows Hm. Any other observation distribution Ht 
=m

will attribute to the accountability of the supplier. Investigation could be conducted
through M-ary hypothesis testing. For a single supplier with multiple product types,
we can define the accountability as follows.

Definition 4.4 (Accountability with Multiple Types) Given a detection
rule λ, received message m and observations Y k , the accountability for a
single supplier with multiple product types is defined as

PA(λ) =
∑

t 
=m,1≤t≤T

∫

Yt

fm(Y k|Ht)dyk, (4.13)

where Yt is the observation space we classify the observations as Ht .
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If we assume that the investigation cost is symmetric and depends only on the
error, it leads an MAP decision rule and the performance of the accountability
testing can be evaluated through the error probability as

Pe =
∑

1≤t≤T

Pr(E|Ht)π(t), (4.14)

where E denotes the error event, and π(·) ∈ �
 is the prior probability that Ht is
true, which represents the reputation of the supplier.

4.3.4.2 Multiple Suppliers

In IoT system design with multiple suppliers, accountability testing needs to point to
varied suppliers that cause failures under the hypothesis. To simplify the illustration,
we consider the case where the component from each supplier may have binary
types θi ∈ {0, 1},∀i ∈ I. Consider the problem with N vendors in the supply
chain. Each supplier i ∈ I = {1, 2, . . . , N} with true product type θi will send a
message mi ∈ Mi to the buyer to make purchase decision ai ∈ {0, 1} and determine
the overall design d ∈ D. The process is illustrated in Fig. 4.6. We can construct
hypotheses as a vector

Hj = (h1, h2, . . . , hN), hi = 1(mi 
= θi)∀i ∈ I, (4.15)

where each element hi is an indicator of whether supplier i truthfully reports or
not, and the subscript 0 ≤ j ≤ 2N − 1 is the decimal number of the binary
combination in the vector. The hypothesis vector indicates which supplier(s) should
be accountable for the accident. When the performance distribution under each
hypothesis is distinguishable, the investigation could be conducted through M-
ary hypothesis testing. Otherwise, we can consider decentralized investigation as
described in the sequel.

Fig. 4.6 Extension of the model to multiple suppliers
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Fig. 4.7 Accountability by aggregating the investigations of the performance of multiple IoT
components. A local investigation is performed based on the performance of each component
y1, y2, · · · , yN . The results h1, · · · , hN are aggregated to form a final result Hj

Consider a decentralized accountability investigation with 2N hypothesis
H0, .., H2N−1 and prior reputation π(H0), . . . , π(H2N−1), respectively. Suppose
that we have N suppliers providing components to the system. Each component
investigator λi is inspecting the performance related to the product provided from
the vendor i. In practice, we can design the independent tests for each component
to determine the accountability of supplier i. We can control the other parts (j 
= i)

to be known and fixed products in test design and focus on the binary hypothesis
testing with respect to component i.

Illustrated in Fig. 4.7, each component investigator receives observations yi ,
which is a random variable taking values in a set Yi . The local investigator will con-
duct accountability testing through λi : Yi �→ {0, 1} and output a binary decision
variable hi = λi(yi), which indicates whether supplier i should be held accountable
for the accident. This reduces the problem to N parallel binary hypothesis testing
with each supplier, and the accountability of each supplier then will be the same
as defined in Definition 4.2. The final investigator determines which hypothesis is
established based on received information, λ0 : {0, 1}N → {0, 1, . . . , 2N −1}. It has
been shown in [73] and [74] that there exists an optimal detection rule if each testing
observations are independent or conditionally correlated under each hypothesis.

4.4 Case Study 1: Autonomous Truck Platooning

In the following section, we will provide a detailed case study in autonomous truck
platooning with adaptive cruise control (ACC) system. This case study illustrates
the scenario where the true performance is unknown to the investigator. We will
discuss the accountability of the ranging sensor supplier in the case of a collision.
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4.4.1 Background

With the rapid development of autonomous vehicles, safety is one of the main
priorities for manufacturers. As estimated by the World Health Organization
(WHO), the number of annual road deaths with collision has reached 1.35 million
worldwide [75]. The recent incident in Tempe, Arizona, has thrown a spotlight on
the safety of autonomous vehicles. The Uber self-driving test car caused the death of
the pedestrian because of the failure of braking control by the autonomous driving
system. The investigation of accountability is crucial to determine the cause of the
collision and provides insights for future car design.

In this case study, we consider the task of autonomous truck platooning with
ACC system. Adaptive cruise control is a driver assistance technology that maintains
a safe following distance between the vehicle and traffic ahead without any
intervention by the driver. If the preceding truck is detected traveling too slowly
or too close, the ACC system will react by automatically activating the brakes and
mitigating potential collisions. Brake control is determined based on the relative
distance, relative velocity, and the acceleration of leading and the following truck.
The speed and acceleration of both vehicles can be measured by built-in speed
sensors and accelerometers. Ranging sensors, including radar and LiDAR, are used
for distance detection in the ACC system. The upper-level control system uses
the measurements of the sensors to interpret the driving environment, and trigger
appropriate brake actions to mitigate collision [76]. Thus, the detection range and
precision of the ranging sensor are critical in ACC design. Defective ranging sensors
could cause severe consequences and should be held accountable in case of such a
collision.

4.4.2 Vehicle Dynamics Model

To illustrate the accountability of the ranging sensor in this framework, we first
introduce the dynamics model of the problem. Consider the testing scenario in
Fig. 4.8, where the host truck equipped with ACC system approaches the preceding
vehicle. The control goal of the ACC system is to maintain the desired safe
distance from the leading vehicle. The desired distance L is normally determined by
Constant time gap spacing policy in ACC systems, which guarantees the individual
vehicle stability and string stability [76].

L = vh · tgap, (4.16)

where vh is the speed of the host vehicle and tgap is the constant desired time gap.
Denote xi, vi, ai as the position, velocity, and acceleration of the leading

(i = l) or host (i = h) vehicle, respectively. We assume that the leading vehicle
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Fig. 4.8 Host truck with
ACC system following the
leading truck

is at constant speed vl(t) = v0. The system state vector x(t) and control vector u(t)

are defined as follows [77].

x(t) = [
�x(t) − L, �v(t)

]T
, u(t) = [

ah(t)
]
, (4.17)

where �x(t) = xl(t) − xh(t) is the current distance and �v(t) = vl(t) − vh(t)

is the relative speed between the leading and following vehicles. The state space
representation of the system can be written as

ẋ(t) = Ax(t) + Bu(t), (4.18)

y(t) = Cx(t) + w(t), (4.19)

The matrices are given by

A =
[

0 1
0 0

]
, B =

[−tgap

−1

]
, C = [

1 0
]
, (4.20)

where y(t) = �x(t) − L + w(t) is the noisy control error between the desired
distance and current distance; w(t) is the observation noise. We assume that the
observation disturbance is modeled by an additive white Gaussian noise,

w(t) = N(0, σ 2). (4.21)

The variance σ 2 indicates the influence of the measurement environment. The intu-
ition behind using the Gaussian noise model is that it gives a good approximation
of the natural processes. If a specific distribution of measurement error is given, the
noise model can be changed accordingly and the accountability testing framework
will still work.

The optimal control can be achieved through linear quadratic regulator (LQR)
control. We define the cost function with zero terminal cost as

J = 1

2

∫ ∞

t=0
x(t)T Qx(t) + u(t)T Ru(t) dt, (4.22)
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where the diagonal weights

Q =
[
w1 0
0 w2

]
, R = [

1
]
. (4.23)

The goal of the controller is to regulate the state towards (0, 0)T . The optimal
feedback control law is given as

u(t) = −R−1BT Px(t) (4.24)

where P is the solution to the following associated algebraic Riccati equation:

0 = PA + AT P + Q − PBR−1BT P. (4.25)

The aforementioned vehicle dynamics model and optimal control describe the
system design δ of the final ACC system based on the information provided by
the supplier. Different control methods and system design can be implemented to
achieve the same goal. In the following section, we assume that this system design
is not the cause of the collision and purely focuses on the accountability of the
sensor supplier.

4.4.3 Accountability Testing

The true product attributes play an important role in control system design. From
the previous section, the optimal control of the system depends on the correct
distance detection between the two objectives. Thus, the sensor with degraded
detection result should hold accountable if the ACC system fails to maintain the
safety distance and causes a collision. To attribute the ACC system performance to
the ranging sensor supplier, we conduct the following accountability testing with
respect to the ranging sensor.

For the simplicity of the model, we consider two types of ranging sensor θ ∈

 = {0, 1}, which differ in the detection precision. We assume the sensor with type
θ = 1 is functioning normally, as the detection result r1(t) = �x(t); while the
sensor with type θ = 0 is malfunctioning with detection result r0(t) = �x(t) + ed .
The value ed is the detection error of the ranging sensor. The damaged sensor will
put the host vehicle at risk of collision, since the actual distance is closer to the
detection result.

The true property of the sensor is private information to the supplier, which is not
revealed to the system designer. The supplier should hold accountable for a collision
if there exists misinformation between the product description m and true product
property θ . Note that the misinformation can be unintended or intentional. We would
like to determine whether the ranging sensor supplier should be accountable for such
an accident.



76 4 Policy Management

Fig. 4.9 Accountability testing with different sensor types

Consider the testing scenario in Fig. 4.9. The distance detection result from the
sensor will be the input of the state vector as

x(t) = [
rθ (t) − L, �v(t)

]T
. (4.26)

We use the final distance control error as the performance y of the ACC system
when testing. Suppose that the supplier reports m = 1 when signing the contract.
Consider a noisy observation results y as described in (4.19), then the performance
should follow

y ∼ py(y; 1, α(1), δ(1)) = N(0, σ 2).

It is the anticipated distribution of the observations when the supplier truthfully
report the product type (m = θ = 1). On the other hand, if the supplier misinforms
the buyer (m 
= θ = 0), the performance should follow

y ∼ py(y; 0, α(1), δ(1)) = N(−ed, σ 2)

The negative distance control error suggests that the distance between two vehicles
is smaller than the desired safety distance requirement L, which can lead to a
potential collision.

We set up the following hypotheses to quantify the accountability of the supplier
who reports m = 1. Let Y = [y1, y2, . . . , yN ] ∈ R

N be a vector of independent
identically distributed observations yk (1 ≤ k ≤ N) of the aforementioned testing
scenarios.

H0 : Y ∼ N(−ed, σ 2IN)

H1 : Y ∼ N(0, σ 2IN)
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where IN is the identity matrix of size N . To keep the consistency with other studies,
we let H1 represent the case that the supplier truthfully report and H0 mean that
there exists misinformation between the reported product description m and true
product type θ . The supplier is accountable if the investigator correctly determines
that hypothesis H0 should be established.

Assume that the cost of the decision is symmetric and incurred only when an
error occurs. The reputation of the supplier follows [π0, π1]. In Bayesian binary
hypothesis testing, LRT compares the likelihood ratio to threshold τ = π0/π1. The
result suggests that the hypothesis H0 be established if the sample mean S is smaller
than the testing threshold η, as shown in the following

S = 1

N

N∑

i=1

yi

H1

�
H0

η (4.27)

where

η = ed

2
+ σ 2 ln(τ )

Ned

(4.28)

Given the decision rule and supplier’s reputation ratio τ , the accountability and
wronged accountability of the sensor supplier who reported m = 1 is

PA(τ) =
∫

Y0

f1(y|H0)dy = 1 − Q

(
d

2
+ ln(τ )

d

)
(4.29)

PU(τ) =
∫

Y0

f1(y|H1)dy = Q

(
d

2
− ln(τ )

d

)
(4.30)

where Q(x) is the Gaussian Q function and d = N1/2ed/σ [70].

4.4.4 Parameter Analysis

The accountability of the sensor supplier helps the investigator determine whether
the failure of the ACC system should be attributed to the sensor. Since the
accountability depends on parameters such as sampling size N , environmental
observation noise variance σ 2 and sensor range difference ed . In this section, we
discuss several numerical results under different cases.

Figure 4.10 depicts the influence of the number of tests N and sensor detection
error ed on the accountability. First, we notice that the PA → 1 and PU → 0 as the
number of tests N increases. This phenomenon indicates more testing will produce
a more accurate detection of the supplier’s accountability. From Eq. (4.27), we note
that the observation means S converges almost surely to the expected mean of each
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Fig. 4.10 Different sensor range difference (σ = 2, π0/π1 = 0.5/0.5). (a) Accountability PA. (b)
Wronged accountability PU

Fig. 4.11 Impact of
supplier’s reputation (σ = 2,
ed = 2, N = 30)

hypothesis as N → ∞. Besides, the second term in the testing threshold η vanishes,
and we end up comparing the expected mean of Y to the middle point ed/2 of two
hypothesis means.

The influences of sensor detection error ed is also illustrated in Fig. 4.10. The
prior is set to π0 = π1 = 0.5, which means that we do not favor any hypothesis
before testing. From Fig. 4.10, as the range difference between two types increases,
the PA and PD curves are associated with a more rapid change with respect to N . It
suggests that if the qualities of the two types of sensors have a significant difference,
it be easier for the investigator to determine the accountability of the supplier within
a fewer number of tests.

Figure 4.11 displays the impact of supplier’s reputation on the accountability
estimation. The ratio τ = π0/π1 represents the reputation of the supplier. A larger
value of τ indicates that we have a strong belief the supplier is dishonest. Normally,
we incline to expect that the supplier with a bad reputation would be accountable
for the incidents. As shown in Fig. 4.11, when we fix the testing environment,
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the accountability of supplier PA increases as τ increases. However, it should be
noted that the wronged accountability PU increases as well. This is because the
increase of τ will cause the testing threshold η in LTR will increase, leading to a
larger observation space Y0, where we classify the observations as H0. Thus, both
PA and PU will increase according to the definition. The wronged accountability
misattributes the incident to the supplier when they should not be accountable. We
will discuss the trade-off between PA and PU in the following section.

4.4.5 Investigation Performance

4.4.5.1 Accountability Receiver Operating Characteristic

In the context of this ACC case study, we are interested in the relationship between
accountability PA and wronged accountability PU . as

PA =
∫

Y0

fm(y|H0)dy = 1 − PF (4.31)

PU =
∫

Y0

fm(y|H1)dy = 1 − PD (4.32)

Because of the symmetric property of the Gaussian Q function, the AROC curve is
invariant under this transformation. From Eqs. (4.29) and (4.30), if we eliminate the
parameter τ , the relationship between PA and PU can be written as

PU = Q(d − Q−1(1 − PA)) (4.33)

The relationship between PA and PU is traced out as the threshold τ in LRT varies
from 0 to ∞. Note that this relationship depends on the variable d = N1/2ed/σ . We
plot the AROC curve under different d values in Fig. 4.12.

The slope of the AROC at point (PA(τ), PU (τ)) is equal to the supplier’s
reputation τ [70]. Ideally, we would like to conduct a hypothesis test such that
PA is close to one and PU is close to zero. As we can see from the figure, the
AROC curve approached the ideal test point when the value of d increases. This
result coincides with our aforementioned analyses. Increasing the number of test N ,
comparing sensor with larger sensor error ed , and reducing the observation variance
σ can all increase the value of d, leading to a more reliable accountability test result.

4.4.5.2 Area Under the AROC Curve

In the ACC sensor accountability testing case, the exact AUC value and its bounds
with respect to d are shown in Fig. 4.13. From the figure, we can see that the
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Fig. 4.12 ROC curve under
different d

Fig. 4.13 Bounds of AUC
under different d

performance of the hypothesis testing increases along with the value d. In fact, in
testing with the Gaussian hypothesis, the value d indicates the Chernoff distance
between the two Gaussian distributions [70]. A larger value of d means the
distribution of H0 and H1 have less overlap, thus it is easier to separate between
them. Since we have the exact expression of Pe, the bounds of AUC can be
expressed as

1 − Q

(
d

2

)
≤ AUC(d) ≤ 1 − 2Q2

(
d

2

)
. (4.34)



4.5 Case Study 2: Ransomware in IoT Supply Chain 81

4.5 Case Study 2: Ransomware in IoT Supply Chain

In this section, we provide a second case study of supplier accountability in
smart home IoT under ransomware attacks. This example illustrates how we
determine accountability in a supply chain and sophisticated systems involving
varied components.

4.5.1 Background

Ransomware is a type of malware that infects particular network entities to demand
ransom. This kind of attack is becoming more prevalent nowadays with the fast
development of IoT systems. The broad connections for IoT devices provide more
security threats and vulnerabilities. Besides, the massive number of IoT devices
increases the risk of getting infected by ransomware since any device could be
the target. Indeed, the ransomware attack has caused significant economic losses
in industrial domains. The estimated global damage from ransomware reaches $20
billion in 2021 [78].

Smart home technologies integrate different IoT-enabled components to provide
advanced services within the home environment. The components from different
suppliers contribute to addressing various challenges to improve the quality of
human life. However, their limited processing capabilities make them vulnerable to
security threats [79], including ransomware. If the component in the home security
system is taken controlled by the attacker, the end-user may face serious economic
loss and privacy leakage . The user needs to determine which part of the IoT system
should hold accountable for the accident. Our framework provides a way to mitigate
the impact of ransomware by attributing the accident to a supplier of IoT devices.

4.5.2 Smart Lock and Ransomware Attack

Nowadays, smart home technologies have been widely accepted by individuals and
organizations to improve home security. With the development of IoT and machine
learning, the number of smart lock users are increasing in recent decades. Instead
of physical keys, smart lock utilizes face recognition and/or fingerprint verification
to achieve digital authentication. Most smart locks also are equipped with intruder
alert and remote control when you are physically away from home. This innovation
avoids the threats with cloneable physical keys and provides a front-line deterrent
against potential intruders.

While the smart lock offers convenience to homeowners, the transition towards
digital control brings concerns over security in cyberspace. One potential threat
is the ransomware attack. This type of attacks belongs to the family of Advanced
Persistent Threats (APTs) . A malicious attacker attack your smart home IoT system,
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Fig. 4.14 IoT supply chain
related to security lock

lock the front door of your house, and request a ransom. The highly-connected
feature of IoT provides the attacker multiple vulnerabilities as the entry point into
the network. Once building a foothold in the network, the attacker moves laterally
towards the target to achieve his goal, in this case, locking the door and denying
legitimate access. Once compromised by ransomware, the dangling participle would
be huge if someone under medical conditions is locked and requires immediate
treatment. We may be discouraged by the fact that victims simply pay the ransom
in many cases, and even the FBI has inadvertently mentioned paying ransom if the
network device is infected [80].

Accountability investigation provides a way to check the responsibility of the IoT
device supplier(s) regarding the attack to mitigate the loss under such ransomware
attacks. It is important for the investigator to find out the initial attack entry that
poses a risk to the whole system. Due to the tiered structure of the supply chain,
the accountability investigation needs to be constructed through a top-down layered
tree analysis as shown in Fig. 4.14. This structure helps the investigator narrow down
the search scope and determine the accountability of the suppliers among multiple
supply chain tiers. More details are provided in the following section.

4.5.3 Accountability Investigation

4.5.3.1 Tier-1 Investigation

Face recognition and fingerprint verification are two critical parts of smart lock
authentication. The failure of the smart lock could be caused by the failure of one
or both of the functions. In this case, the first step in accountability investigation is
to determine whether the tier-1 suppliers of these two parts need to be accountable
for the ransomware attack.
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Table 4.1 Four hypotheses
in accountability investigation

Hypothesis h1 = 1(θ1 
= 0) h2 = 1(θ2 
= 0)

Ĥ0 0 0

Ĥ1 0 1

Ĥ2 1 0

Ĥ3 1 1

Fig. 4.15 Decentralized
tier-1 accountability
investigation

Denote the supplier of face recognition technology as i = 1 and the supplier
of fingerprint verification technique as i = 2. We assume that each supplier has
binary types θi ∈ {0, 1}. θi = 0 means that the provided product operates normally
and θi = 1 stands for malfunctioning. By default, each supplier sends a message
mi = 0 and guarantees the product functionality when signing the contract with
the buyer. Thus, we can construct the following hypotheses as in Table 4.1. Denote
hi, i = {1, 2}, as the accountability of supplier i. Ĥ0 indicates that both parts operate
normally as reported; Ĥ1/Ĥ2 suggests that there be misinformation from one of the
suppliers; Ĥ3 means both suppliers need to be held accountable for the ransomware
attack.

Instead of looking into the joint performance of the two components, we conduct
independent decentralized investigations into each of the suppliers as shown in
Fig. 4.15. We take the face recognition system h1 for example. The investigation of
the fingerprint verification h2 can be conducted in the same manner. Suppose that the
normal operating face recognition system can correctly detect the registered identity
with μ0 = 9% accuracy. If this system is destructed by the ransomware attacker,
we would expect a lower identification accuracy, i.e. μ1 < μ0. To investigate
the accountability of the face recognition system, we design the following testing
scenarios. On each trial, different photos of registered faces are displayed randomly
in front of the device. The performance yi ∈ {0, 1} at each trial is an indicator
of the testing results, where yi = 1 represents correct identification and yi = 0
otherwise. Let YN = {y1, y2, . . . , yN } be a sequence of independent and identically
distributed trials, we consider the following hypotheses for accountability testing.
For each trail 1 ≤ i ≤ N ,

H0 : yi ∼ Bern (0.9) , H1 : yi ∼ Bern (μ1) ,

where μ1 < μ0 = 0.95. Bernoulli distribution is a natural model to describe events
with Boolean-valued outcomes under certain success probability. In this hypothesis
model, H0 indicates that the face recognition system operates normally with 90%
detection accuracy on average. H1 suggests a degraded identification accuracy. This
investigation aims to find out whether hypothesis H1 should be established based on
the system performance.
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One limitation of Bayesian tests as described in Sect. 4.4 is their reliance on the
prior knowledge π , i.e., the reputation of the supplier, and costs assigned to different
decision errors. The choice of decision cost depends on the nature of the problem,
but the prior probabilities must be known. In many applications, the prior knowledge
may not be obtained precisely; thus, the correct value of the threshold in LRT is
unknown. In the ransomware case study, the misinformation between the supplier
and buyer may be unintended. It is challenging to determine the probability π1 that
the supplier is compromised by the attacker. It is natural to consider alternative tests
that can achieve desired detection results without such prior knowledge.

Neyman and Pearson [81] formulated a test λ that maximizes the correct detec-
tion probability PA(λ) (accountability) while ensuring the false-alarm probability
PU(λ) (wronged accountability) is subject to an upper bound constraint α. This can
be formulated as

max
λ

PA(λ) =
∫

Y1

fm(YN |H0)dyN,

s.t. PU (λ) =
∫

Y1

fm(YN |H1)dyN ≤ α.

(4.35)

This constrained optimization problem requires no prior knowledge about reputa-
tion and decision cost function. The only parameter that needs specification is the
maximum acceptable wronged accountability α. A classic result due to Neyman and
Pearson shows that the optimal solution to this type of investigation is a likelihood
ratio test (LRT).

Lemma 4.1 (Neyman-Pearson Lemma) Consider the likelihood ratio test in (4.5)
with τk > 0 chosen so that PU(τk) = α. There does not exist another test λ such
that PU(λ) ≤ α and PA(λ) ≥ PA(τk). Hence, the LRT is the most powerful test with
false-alarm probability PU(λ) less than or equal to α.

In the accountability investigation of the face recognition system, both hypothe-
ses admit a Bernoulli distribution. The likelihood ratio is given by

L(Y k) =
∏N

i=1 μ
yi

1 (1 − μ1)
1−yi

∏N
i=1 μ

yi

0 (1 − μ0)1−yi

=
(

1 − μ0

1 − μ1

)N (
μ0(1 − μ1)

μ1(1 − μ0)

)∑N
i=1 yi

.

The sufficient statistics of such testing will be the sum of all performance results
S = ∑N

i=1 yi . According to Neyman-Pearson lemma , the most powerful test will
hold the supplier accountable if S < λ for a constant threshold λ.

S =
N∑

i=1

yi

H0

�
H1

λ
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Fig. 4.16 Neyman-Pearson
test result for tier-1
investigation

Under H0, the detection accuracy is on average μ0, and S admits to a binomial
distribution, S ∼ Binomial(N,μ0). Illustrated in Fig. 4.16, to ensure PU(λ) = α,
the threshold λ is chosen to be the α-quantile of the Binomial(N,μ0) distribution.

λ = Q(α) = inf {x ∈ R : α ≤ FS(x)} ,

where FS(x) is the cumulative distribution function of random variable S. Note that
as this is a discrete distribution, it may not be possible to get the exact α and λ

desired. One way to address this problem is to increase the total number of trials N

and approximate the binomial with a Gaussian distribution according to the central
limit theorem (Fig. 4.16).

In the IoT ransomware attack case, the changes made by the stealthy attacker
often remains unknown even after investigations. Thus, it is hard to determine
identification accuracy μ1 after the attack and find the exact performance dis-
tribution under hypothesis H1. We can only assume that the attack results in a
degraded identification accuracy as μ1 < μ0. Neyman-Pearson test provides a
way to investigate the accountability of the supplier with limited prior knowledge.
It guarantees that the correct detection probability PA is maximized under the
false-alarm constraint PU ≤ α. In the context of the IoT supply chain attack,
Neyman-Pearson test paves the way for the buyer to investigate the accountability
of the supplier with limited information.

4.5.3.2 Multi-Stage Accountability Investigation

The tier-1 investigation examines the accountability of each tier-1 supplier. How-
ever, due to the layered structure of the IoT supply chain and the sophisticated
feature of the ransomware attack, the true cause of the attack may lie in the suppliers
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Fig. 4.17 Multi-stage accountability investigation

at the subordinate tiers. Tier-1 suppliers can further attribute the malfunction to their
suppliers following a similar fashion. A top-down layered investigation is needed if
we would find out the origin of the attack and obtain a holistic view of the entire
supply chain. This is called a multi-stage accountability investigation.

For instance, if the face recognition system should be held accountable for
the attack after the tier-1 investigation, the supplier could further investigate
the components that the system consists of. There may exist different types of
vulnerabilities in the components that are provided by tier-2 suppliers. The attacker
could break into the system by compromising the ill-protected camera and further
penetrating into the system. Another possibility is that adversaries against face
recognition are performed at the detection software. If the latter case holds true,
the detection software provider can further check which part of the software is
malfunctioning. Face recognition attacks can be performed at the database, the
predefined algorithm parameters, the communication channels, etc. The multi-
stage accountability investigation aims to further figure out which among the
vulnerabilities is the underlying cause of the attack (Fig. 4.17).

To analyze the accountability of the involved suppliers at each tier, we view the
supply chain as a directed graph as shown in Fig. 4.19. The arrows in the graph
indicate the procurement relationship. Multi-stage accountability starts from the
top tier node, the final product. The accountability investigation on each supplier
i produces accountability P i

A subject to an investigation cost Ci . Whether a supplier
is accountable depends on the comparison between P i

A and selected threshold
ε ∈ (0, 1). We call a supplier accountable if P i

A > ε.
If the current supplier is determined to be non-accountable (P i

A < ε), there is no
need to continue investigation among its suppliers. In the ransomware case study,
if we determine that the face recognition system solely should be accountable after
the tier-1 investigation, there is no need to conduct an accountability check for the
suppliers related to the fingerprint verification system. Deductive reasoning helps
reduce the investigation efforts on unrelated system components and focus on the
ones that the accident is attributed to. It provides a way to prioritize the factors
leading to the top event.
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It should be noted that the product design of each sub-system can also be the
cause of the vulnerability that exposes the system to threats. This brings up the
question of how deep we should investigate during the process. Suppose the total
investigation budget is B. The investigator needs to decide whether to continue the
investigation or simply stop and replace the component. Replacement is a better
choice if the remaining budget cannot support further investigation as

B −
∑

i∈I
Ci ≤ Cnext,

where I is the set of investigated suppliers and Cnext is the investigation cost
of the next supplier. The trade-off between investigation and replacement can be
another dimension for consideration when conducting multi-stage accountability
investigations.

Multi-stage accountability investigation is an iterative analysis process to find
the cause of the accident. The layered approach provides a way to understand how
the system fails, identify the vulnerabilities in the IoT supply chain, and determine
the accountability of any supplier. It also creates the foundation for any further
analysis and evaluation. If the structure of the supply chain has been upgraded (e.g.,
component replacement), it can provide a set of steps to design quality tests and
maintenance procedures.

4.6 Compliance and Cyber Insurance

4.6.1 Compliance Modeling

The description m ∈ M from the supplier to the buyer is a self-reporting mechanism
that requires the vendors to disclose information about their products so that the
buyers can use the NIST standards to check their compliance before they are
integrated into IoT systems. The procured products have to comply with the business
or mission, organization-specific requirements, the operational environment, risk
appetite, and risk tolerance [82]. Security requirements are an important component
of compliance. They are imposed by not only the developers in the private sectors
to provide information and quality assurance but also the law, which aims to protect
the nation from cyber-attacks.

Recent legislation has been signed into law requiring IoT devices purchased
with government money to comply with security standards [83]. The Internet of
Things Cybersecurity Act of 2020 [84] requires NIST to “develop and publish under
section 20 of NIST Act (15 U.S.C. 278g-3) standards and guidelines for the federal
government on the appropriate use and management of Internet of Things devices
owned or controlled by an agency and connected to information systems owned
or controlled by an agency, including minimum information security requirements
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for managing cybersecurity risks associated with such device.” All IoT devices
connected to IT systems owned or controlled by a federal agency must conform
to NIST standards by September 4, 2021.

The Biden executive order of May 12, 2021 [85] demands that “the federal
government must bring to bear the full scope of its authorities and resources to
protect and secure its computer systems, whether they are cloud-based, on-premises,
or hybrid. The scope of protection and security must include systems that process
data (information technology (IT)) and those that run the vital machinery that
ensures our safety (operational technology (OT)).” The executive order requires
full NIST compliance. The focus of the new rules is on IoT systems that support
information technologies, e.g., the power and cooling systems, such as uninterrupt-
ible power supplies (UPSs), power distribution units (PDUs), and computer room
air conditioners and air handlers (CRAC & CRAH) that support networks, servers,
and data centers on the property of federal agencies, building management systems
(BMS), and data center infrastructure management systems (DCIM).

Besides the federal regulations, supply contracts are also useful to secure
systems installed by suppliers. The suppliers need to be informed of your security
requirements and standards. You can check whether the proposed or delivered
products or services comply with them. The contracts also play an important role
in accountability. The penalty can be enforced by contracts once non-compliance of
the services is found by the buyer, which has been discussed in the earlier section.

We can use formal methods to check whether the attributes in m satisfy the
requirements that are coded into logical formulae f . The product is compliant
if m |� p, the description satisfies the specifications; otherwise, it is not. There
are well-established tools that can be used to efficiently solve this satisfiability
problem. For example, the compliance problem can be formulated as a satisfiability
modulo theories (SMT) problem, which can be solved using a formalized approach
and many solvers. PRISM is another tool that enables probabilistic modeling and
checking of systems. Under the assumption that the reporting of m truthfully
describes the product, i.e., m = θ , a compliant buyer or system will not acquire
from suppliers that do not satisfy the requirement. In other words, a = 0 if m 
|� p.

4.6.2 Contract Design

There are two economic-level solutions. One is the mechanism design between the
buyer and the supplier to induce m = θ . To achieve this, we would need to create
incentives for the supplier to truthfully reveal θ . This would rely on the design of
a certain form of penalty as a credible threat. One of such penalties is through the
contract. The contract between the supplier and the buyer would include a penalty
once the supplier is accountable. The contract will be effective only when the buyer
decides to purchase the product a = 1, which happens with probability α(m) =
Pr(a = 1|m). We consider the following utility function of the supplier, US :

 × M �→ R, given by
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US(θ,m) :=Eα

[
JS(θ,m) − EP m

A
[CS(θ,m)]

]
. (4.36)

Here, JS : 
 × M �→ R is the profit of the supplier if he reports m ∈ M when
the true type is θ ∈ 
 and under the procurement decision. The second term in the
utility function is the average penalty CS : 
×M �→ R for the supplier if he is held
accountable. The probability of being accountable is given by P m

A in Definition 4.2
based on the received message m. It is clear that the penalty depends on θ and m.

We call a supplier is incentive-compatible if

US(θ, θ) ≥ US(θ,m), for all m ∈ M. (ICS)

An incentive-compatible supplier does not have incentives to misreport what he
knows when he is held accountable for his actions. Note that to achieve this, we
assume that the purchase rule and accountability testing scheme are revealed to the
supplier through the contract. The (ICS) condition gives a natural constraint when
designing a procurement contract . However, the challenge is that the profit function
JS and the type space of the suppliers are often unknown to the acquirer and they
need to be conjectured or learned from experience or data.

We call a supplier is individually rational if

US(θ,m) ≥ 0, for all m ∈ M,m 
= θ (IRS)

The (IRS) constraint ensures that the supplier benefits from participating in the
contract. It requires the buyer to design the penalty carefully so that the expected
profit of the supplier is non-negative.

Example: Autonomous Truck Platooning
The utility function of the supplier can be further expressed as

US(θ,m) = α(m) · [JS(θ,m) − CS(θ,m) · P m
A

]
. (4.37)

The goal of contract design is to assign an appropriate penalty CS for the supplier
if they need to be held accountable for the accident. The first consideration comes
from the (IRs) constraints. This set of constraints suggests that we should not assign
a penalty that exceeds the expected profit.

The (ICS) constraints are automatically satisfied when the supplier truthfully
reports m = θ . Consider the autonomous truck platooning example as described
in Sect. 4.4 with the binary sensor type space, i.e., 
 = M = {0, 1}. The contract
designer needs to meet the following constraints

α(1)
(
J 11

S − P 1
AC11

S

)
≥ α(0)

(
J 10

S − P 0
AC10

S

)
(4.38)

α(0)
(
J 00

S − P 0
AC00

S

)
≥ α(1)

(
J 01

S − P 1
AC01

S

)
(4.39)
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where we denote the profit of supplier with true type θ who sends message m as
J

θ,m
S , and the penalty for such supplier as C

θ,m
S .

From the contract designer’s viewpoint, the profit of the supplier J
θ,m
S is beyond

his control. This value is determined by the production cost and economic nature
of the system. In the ACC system, θ = 1 is the product type corresponding to the
system design. It is natural to assume that the sensor supplier with true type θ = 1
makes more profit when he truthfully reports, as J 11

S > J 10
S . Similarly, we can

assume that misinformation brings a higher profit for the supplier with θ = 0, as
J 00

S < J 01
S .

In terms of misinformation penalty, it is incentive to penalize more on the
supplier who fails to truthfully report, as C

θ,θ
S < C

θ,m
S , for every m 
= θ . If we

expect the same procurement policy α(m) and accountability P m
A = PA are the

same for both messages m ∈ {0, 1}, constraint (4.38) will be automatically satisfied
and constraint (4.39) will be reduced to

J 01
S − J 00

S ≤ PA(C01
S − C00

S ). (4.40)

This indicates for the supplier θ = 0 who has the incentive to misinform the buyer,
the expected extra penalties brings to the supplier through contract need to exceed
the extra profit generated from the untruthful report. The result coincides with the
intuition that the contract needs to be designed with incentive compatibility.

For automakers looking at production, the prices of LiDAR sensors need to be
cost-effective for automotive ACC use. Ranging sensors with greater abilities will
be sold for higher prices. It is reported that LiDAR suppliers manage to reduce
the single-unit samples price to $250 in large volumes [86]. In the ACC supplier
example, consider the following values:

J 11
S = J 01

S = 250; J 00
S = J 10

S = 200; α(1) = 0.8, α(0) = 0.5; P 1
A = 0.3, P 0

A = 0.7.

We arrive at the following constraints for the contract penalty design for the
supplier:

0.8 ∗ (250 − 0.3 ∗ C11
S ) ≥ 0.5 ∗ (200 − 0.7 ∗ C10

S ),

0.5 ∗ (200 − 0.7 ∗ C00
S ) ≥ 0.8 ∗ (250 − 0.3 ∗ C01

S ), (ICS)

0.5 ∗ (200 − 0.7 ∗ C10
S ) ≥ 0,

0.8 ∗ (250 − 0.3 ∗ C01
S ) ≥ 0, (IRS)

C00
S < C01

S , C11
S < C10

S .

By solving the feasible region of penalty under constraints as in Fig. 4.18, the
contract designer can select the proper penalties for the supplier and help avoid
misinformation.
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Fig. 4.18 Feasible penalties under constraints. (a) Feasible region for θ = 0. (b) Feasible region
for θ = 1

4.6.3 Cyber Insurance

4.6.3.1 Background Introduction

In spite of the wide applications of cyber-physical systems, the cyber risks within
the IoT supply chain are considered to be the most challenging problem to handle.
Cyber insurance is the last resort for resilience to mitigate the loss of performance.
It is an important risk management tool that transfers the risks of the buyer to a third
party, i.e., an insurer. Victims of a cyber attack can reduce their financial losses
and quickly recover to restore their business operations. According to the cyber
insurance report released by the National Association of Insurance Commissioners
(NAIC) [87], the cybersecurity insurance market in 2020 is roughly $4.1 billion
reflecting an increase of 29.1% from the prior year. This scheme particularly benefits
small and medium-size businesses that cannot afford a major investment in cyber
protection.

Unlike traditional insurance policies, cyber insurance compensates the buyer
for the loss incurred by data breaches, malware infections, or other cyberattacks
in which the insured entity was at fault. An incentive-compatible cyber insurance
policy could help reduce the number of successful cyber attacks by incentivizing
the adoption of preventative measures in return for more coverage [88, 89]. It
can be served as an indicator of the quality of security protection. Besides, it is
believed that cyber insurance can induce greater social welfare and encourage more
comprehensive policies regarding cyber security[90].

Various frameworks have been proposed to study cyber insurance from different
perspectives, including [17, 65, 91, 92]. Pal et al. have studied the economic impact
of cyber insurance by proposing a supply-demand model. Their work showed
that cyber insurance with client contract discrimination can improve network
security [93]. Böhme et al. have proposed several market models to understand
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Fig. 4.19 Information exchange between the insurer, buyer and supplier

the information asymmetries between defenders and insurers [94]. Radanliev et al.
have built an impact assessment model of IoT cyber risk to better estimate cyber
insurance [95]. In our framework, we focus on the cyber insurance policy within the
IoT supply chain and understand the impact of accountability investigation on cyber
insurance.

4.6.3.2 Insurance Policy Design

Typically, the cyber insurance contract consists of the premium price and the
coverage rate . The key challenge in insurance policy design lies in the difficulty
of risk evaluation due to the complex structure of the cyber-physical systems. An
insurer can make two separate contracts with the supplier or/and the buyer. The loss
of the buyer would be compensated by the insurer when an accident or a disruption
occurs. The loss of the supplier due to accountability could be insured as well. In
this section, we focus on the insurance contract between an insurer and a buyer
(Fig. 4.19).

The contract is composed of the premium and the coverage of the losses. Let
CI ∈ R be the premium charged by an insurer and the coverage is modeled by the
percentage r ∈ (0, 1]. They are decision variables that are determined by the insurer.
A buyer has incentives to participate in the insurance if the average utility under the
coverage is higher than the one without coverage. To quantitatively capture it, we
specify the loss or payoff function of the buyer JB , given by

JB(m, δ) := (1 − r)L̂B(m, δ(m); θ) + CB(m) + CI . (4.41)

Here, the first term L̂B is the average loss of performance, which is the difference
between the true and the anticipated performances. The cyber insurance will cover
the r portion of the risk. Hence the residual loss is (1−r) of the losses. The insurance
can completely compensate for the loss of the performance when r = 1. The second
term is CB(m) is the cost of procurement of the product and CI is the premium paid
by the buyer.

In this framework, we focus on the potential loss due to the misinforma-
tion from the supplier who cannot be held accountable due to the limitation of
accountability investigation. According to the investigation, if the supplier should



4.6 Compliance and Cyber Insurance 93

be held accountable for the malfunctioning of the system, the loss of performance
should be compensated by the supplier. However, if the investigation cannot hold
the supplier accountable, the risk will be transferred to the third party under the
insurance contract. The latter case occurs with probability 1−P m

A , the probability of
unaccountable. Thus, the loss of performance can be viewed as a random variable lB

lB(m, δ(m); θ) =
{

UB(m, δ(m)) − UB(θ, δ(m)) w.p. 1 − P m
A ,

0 w.p. P m
A ,

(4.42)

where UB(θ, δ(m)) is the performance utility measure under the design δ(m) and
the true product quality θ . We assume that the true performance UB(θ, δ(m)) is
at best the same as the anticipated performance when m = θ , i.e. UB(m, δ(m)).
When misinformation occurs, there will be a positive loss of performance; when the
supplier reports truthfully, the true performance coincides with anticipated one and
the loss is zero; in other words, the expected loss of performance

L̂B = (1 − P m
A )�UB ≥ 0, (4.43)

where we denote the difference in performance measure as �UB .
One critical aspect of cyber insurance is the bias from insurance buyers. Humans

will hold biased perception concerning losses and risks, which can lead to different
decisions compared to completely rational ones. Agents are often risk-averse; i.e.,
they prefer lower returns with known risks rather than higher returns with unknown
risks. In terms of the expected losses L̂B , economic literature commonly imposes
the following functions for a risk-averse agent.

• Constant Absolute Risk Aversion (CARA) [94]:

φ(x) = eβx

β
, (4.44)

where the parameter β ≤ 1 is the absolute risk aversion coefficient, measuring the
degree of risk aversion that is implicit in the utility function. The biased expected
loss in this case is

�(L̂B) = (1 − P m
A )φ(�UB), (4.45)

• Prospect Theory (PT) [96]:

φ(x) =
{

xβ x ≥ 0

−λ(−x)β x < 0
, w(p) = pζ

pζ + (1 − p)ζ
, (4.46)

where φ(x) and w(p) are biased utility and weighted probability, respectively,
and λ, β, ζ are prospect parameters with loss aversion implying λ > 1. In
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general, PT shows that people are more averse to losses and less sensitive to
gains; people inflate the belief for rare events and deflate for high-probability
ones. The biased expected loss in this case is

�(L̂B) = w(1 − P m
A )φ(�UB), (4.47)

For these types of buyer, we should replace the average loss L̂B in Eq. (4.41) with
the biased expectation �(L̂B). The risk-averse buyer has an incentive to purchase
cyber insurance if the expected cost under insurance is lower than the one without
insurance:

(1 − r)�(L̂B) + CB(m) + CI ≤ �(L̂B) + CB(m). (IRB )

Note that we assume that the utility of the buyer does not include the penalty
payment from the procurement contract and assume that the procurement does not
involve an accountability contract. If so, we need to design the procurement contract
and the insurance contract jointly as they are interdependent.

The mechanism design problem of the insurer is to determine the optimal
premium rate CI and the coverage r to maximize his profit. The insurer provides
insurance only when the profit is non-negative. Thus, we have the following
constraint.

JI := CI − r · L̂B ≥ 0 (IRI )

We assume that the insurer is rational and risk-neutral so that they use the accurate
value of the expected loss of the system when making decisions. The insurer solves
the following optimization problem:

max
r, CI

JI = CI − r · L̂B

s.t. (1 − r)�(L̂B) + CI ≤ �(L̂B) (IRB)

CI − r · L̂B ≥ 0 (IRI )

r ∈ (0, 1]
CI ∈ R

+

(4.48)

Combining the individual rationality constraints (IRB ) and (IRI ) with the biased
utility function, we arrive at the following proposition.
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Proposition 4.1 The insurance contract is established between the insurer
and the buyer if the premium CI ∈ R

+ and the coverage level r ∈ (0, 1]
satisfy

L̂B ≤ CI

r
≤ �(L̂B) (4.49)

This result shows that the ratio between the coverage level r and premium value
CI depends on the average loss of performance of the system and the risk aversion
of the pursuer. Under this constraint, a risk-averse buyer will have the incentive
to purchase the insurance. This provides a fundamental principle for designing the
insurance policy.

4.6.3.3 Maximum Premium with Full Coverage

In this section, we discuss the maximum acceptable premium the risk-averse buyer
is willing to pay. According to Proposition 4.1, the ratio between the coverage level
and the premium CI/r is bounded by the expected and biased loss of performance
of the system. The maximum premium value can be achieved when the insurer is
providing full coverage as r = 1.

Proposition 4.2 The maximum acceptable premium for the buyer is achieved
under the following insurance policy:

r∗ = 1, C∗
I = �(L̂B). (4.50)

Consider the PT risk aversion in (4.46). The maximum acceptable premium can
be expressed as

C∗
I = �̂(L̂B) = (1 − P m

A ) · λ(�UB)β. (4.51)

Proposition 4.3 With full coverage r = 1, the maximum acceptable premium
is higher than the unbiased expected loss when the performance difference is
relatively small, as

C∗
I ≥ L̂B if 0 ≤ �UB ≤ λ

1
1−β .



96 4 Policy Management

Fig. 4.20 Maximum
acceptable premium under
different degrees of risk
aversion

Fig. 4.21 Relationship
between accountability and
maximum acceptable
premium

We first set P m
A = 0.8, apply β = 0.88, ζ = 0.69 in behavioral science literature

and discuss the influence of loss aversion level λ on the maximum acceptable
premium C∗

I , which is depicted in Fig. 4.20. The dotted line served as the baseline of
the risk-neutral buyer, which represents the unbiased expected loss of performance.
A larger value of λ indicates that the buyer is more risk-averse against the losses.
The biased loss function is concave in �UB because when the �UB in performance
is too high, a small increase in losses has little influence on the buyer’s recognition.

Risk-averse buyers are sensitive to small losses, which provides the insurer
an opportunity to take advantage of the risk aversion and charge for a higher
premium. From the Fig. 4.21, the biased expected loss is greater than the unbiased
one when �UB is within the tolerable range for the buyer. This range coincides

with the insurance purchase constraint in Proposition 4.1. If �UB > λ
1

1−β , we
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have �(L̂B) > L̂B and the buyer would not have the incentive to purchase cyber
insurance anymore. This indicates that the insurer can increase the premium to its
maximum acceptable value if the buyer participates in the insurance.

Proposition 4.4 Cyber insurance is an incentive mechanism that encourages
the buyer to have a more reliable accountability investigation.

Another key result is that cyber insurance can increase the buyer’s incentive to
establish a more valid accountability investigation method. As described in (4.51),
the maximum acceptable premium C∗

I has a negative correlation with respect to the
accountability P m

A . Let β = 0.88, λ = 2.25 and ζ = 0.69 as the typical values
in prospect theory, the influence of accountability investigation on the maximum
acceptable premium is depicted in the following figure.

Figure 4.21 illustrates that a more reliable accountability investigation (larger
P m

A ) can reduce the maximum premium of the insurance. The amount of reduction
is higher if the performance differs more within two product types. If we consider
the payoff function of the buyer under full insurance coverage. If the insurance
company charges the maximum acceptable premium, we have

JB(m, δ) = CB(m) + C∗
I . (4.52)

The decrease in CI will reduce the total payoff JB of the buyer, resulting in a
higher profit. In other words, cyber insurance provides incentives for the buyer to
invest more in accountability investigation and establish a more reliable examination
method to determine whether the supplier should be accountable for the incident.

4.6.3.4 Coverage Level with Given Premium

In this section, we discuss the coverage level r when the premium CI is given.
As demonstrated in Proposition 4.1, given a premium CI , the insurance contract is
established if

CI

�(L̂B)
≤ r ≤ CI

L̂B

. (4.53)

This can be regarded as a constraint in the optimization problems for the buyer and
the insurer.

Given CI , the buyer’s problem is to find the optimal coverage level that
minimizes the total payoff under insurance.
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min
r∈(0,1] JB = (1 − r)�(L̂B) + CB(m) + CI ,

s.t.
CI

�(L̂B)
≤ r ≤ CI

L̂B

.

(OPB )

Note that the buyer makes decision under biased expected loss, thus we use �(L̂B)

in the objective function to represent her recognition. On the other hand, the
insurer’s problem is to find the optimal coverage level that maximizes his profit.

max
r∈(0,1]

JI = CI − rL̂B,

s.t.
CI

�(L̂B)
≤ r ≤ CI

L̂B

.

(OPI )

We assume that the insurer is rational and the expected loss in the objective function
is unbiased.

By solving these two optimization problems (OPB ) and (OPI ), we find the
optimal coverage levels for the buyer and the insurer as follows:

r∗
B = max

{ CI

L̂B

, 1
}
, r∗

I = min
{ CI

�(L̂B)
, 0

}
.

The buyer prefers a larger coverage level achieved at the upper bound under the
constraints, while the insurer favors a lower coverage level achieved at the lower
bound. The result coincides with the fact that the insurance company and the buyer
have a conflict of incentives in terms of the overall payoff. However, the individual
preferences of both sides need to satisfy the constraint in (4.53) in order to establish
the insurance contract in the first place.

Proposition 4.5 Given the insurance premium CI , the acceptable range of
coverage level r will shift in the buyer’s favor with more accountability P m

A .

Figure 4.22 illustrates the acceptable coverage level r when the performance
difference �UB = 6 and given premium value CI = 2. From the figure, both
bounds of the coverage level increase with respect to the accountability P m

A . This is
because both L̂B and �(L̂B) are decreasing functions in P m

A . The phenomenon
shows that a more reliable accountability investigation (larger P m

A ) benefits the
buyer when he participates in cyber insurance. Since the insurance contract is only
established under the constraint, the acceptable range of coverage level closer to 1
covers more portion of the losses in the system, thus reducing the payoff that the
buyer needs to pay after a system malfunction.
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Fig. 4.22 Coverage level
under different accountability
(�UB = 6, CI = 2)

4.6.3.5 Trade-Off Between Accountability Investment and Cyber
Insurance

Lastly, we discuss the trade-off between the investment in accountability investiga-
tion and cyber insurance. From the previous discussion, a more reliable accountabil-
ity investigation method (larger P m

A ) reduces the maximum acceptable premium CI

and increases the coverage level r . They result in a more favorable insurance plan
for the buyer that mitigates the losses of performance due to the supplier. However,
usually, the increase in P m

A comes with a cost. It brings up the question: how much
should we invest in accountability?

Suppose the cost to increase the accountability from P m
A to P m′

A is Cn. This value
represents the extra funding on accountability investigation. The total payoff of the
buyer before (JB ) and after (J ′

B ) accountability investment are

JB = (1 − r)(1 − P m
A )�UB + CB(m) + CI

J ′
B = (1 − r ′)(1 − P m′

A )�UB + CB(m) + C′
I + Cn

(4.54)

where r ′ and C′
I are the modified insurance plan. From previous discussions, we

have arrived at P m′
A > P m

A , r ′ > r and C′
I < CI . The problem is to find the optimal

investment such that

J ′
B − JB ≤ 0. (4.55)

The optimal investment depends on various factors such as the cost Cn, expected
loss L̂B , the buyer’s risk aversion, etc. We illustrate the trade-off between account-
ability investment and cyber insurance in the following example.
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Example: Autonomous Truck Platooning
Consider the autonomous truck platooning example in Sect. 4.4.3. The accountabil-
ity of the supplier takes the form

P m
A (N) = 1 − Q

(
d

2
+ ln(τ )

d

)
, (4.56)

where d = N1/2ed/σ . Normally, the sensor difference ed , supplier’s reputation
ratio τ and observation variance σ 2 are already given. The only variable that is
completely controlled by the investigator is the number of test N . From the analysis
in the previous section, we know that dP m

A /dN ≥ 0. In order to reach a higher value
of P m

A , the buyer needs to increase the number of tests during the investigation,
which is costly in general.

Consider the insurance plan with full coverage r = 1 and maximum premium C∗
I

as described in Proposition 4.2. We assume the buyer obeys CARA risk aversion for
the expected loss. Suppose the cost to conduct one test is cn. The buyer would like
to find out the optimal number of tests N that can minimize her payoff, which is

min
N

JB = (1 − r)L̂B + CB(m) + C∗
I + N · cn

=CB(m) + (1 − P m
A (N))φ(�UB) + N · cn

(4.57)

Figure 4.23 shows the optimal number of accountability tests with different test
costs. When there is no cost to conduct one accountability test (cn = 0), more
tests are better for the buyer. Increasing the number of tests, in general, increases
the accountability P m

A . As N → ∞, the accountability investigation can identify
the untruthful supplier almost surely with P m

A → 1. In this case, the supplier
will be penalized for the misinformation, and the payoff of the buyer will be

Fig. 4.23 Optimal number of
test with different test cost
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close to zero. When the cost of each test cn increases, the optimal number of
test N∗ decreases. This illustrates the trade-off between accountability investigation
and cyber insurance. Even though increasing the number of tests provides a more
reliable test and reduce the insurance premium, the total investment would exceed
the benefit after some point, causing unnecessary payoff for the buyer. Finally, if
the investigation is too costly as cn = 100, the buyer will never benefit from
conducting an accountability investigation. It is better for the buyer to change to
other comparatively low-cost investigation methods. By decreasing cn, the buyer
can find the optimal number of tests and achieve a lower payoff.

4.7 Conclusion

In this chapter, we have proposed a system-scientific framework to study the
accountability in IoT supply chains and provided a holistic risk analysis technolog-
ically and socio-economically. We have developed stylized models and quantitative
approaches to evaluate the accountability of the supplier. Two case studies have been
used to demonstrate the model of accountability in the setting of autonomous truck
platooning and ransomware in IoT supply chain.

We discuss the accountability investigation performance and design with a single
supplier in the autonomous truck platooning case. From the parameter analysis,
the reliability of the investigation can be improved with larger sensor error, more
number of tests, and less observation variance. We have also showed the impact
of the supplier’s reputation on accountability investigation. A bad reputation will
increase both accountability and wronged accountability during the investigation.

Using the smart lock case study, we have illustrated how to determine the
accountability of the supplier in the IoT supply chain under a ransomware attack. A
Neyman-Pearson test has been used to deal with suppliers with limited prior infor-
mation. We have presented the model of the multi-stage accountability investigation
with multiple suppliers in the supply chain and discussed the trade-off between
detailed investigation and product replacement.

Contract design and cyber insurance are used as economic solutions to improve
the cyber resilience in IoT supply chains. By designing contracts under incentive-
compatibility and individual rationality constraints, the IoT end-user can penalize
the accountable supplier and reduce his incentive of providing misinformation in
the first place. Cyber insurance mitigates the loss of performance by transferring the
risks to a third party. We have shown that cyber insurance is an incentive-compatible
mechanism that facilitates a more reliable accountability investigation from the
buyer side. However, the investigator needs to balance between the accountability
investment and cyber insurance to achieve a higher payoff.
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24. Q. Zhu, J.B. Song, T. Başar, Dynamic secure routing game in distributed cognitive radio
networks, in Global Telecommunications Conference (GLOBECOM 2011), 2011 IEEE (IEEE,
2011), pp. 1–6
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Chapter 5
Computational Tools

Abstract Computational tools are critical in measuring systemic risk and assisting
with mitigation decisions. While several software packages and tools are available
for the traditional supply chain management solutions, there is no dedicated tool
to assist with the cyber supply chain risk analysis and mitigation. This chapter
introduces a software tool named I-SCRAM that is specifically designed to allow
the vendor risk assessment of IT, OT, and IoT systems and assist with cost-effective
risk minimizing selection of vendors. Case studies are provided to help illustrate the
utility of the developed tool.

5.1 Introduction to I-SCRAM: A Software Tool for IoT
SCRM

This chapter introduces I-SCRAM, a software tool for conducting supply chain risk
analysis and mitigation decisions. The tool itself aims to implement the framework
that has already been described, and so after a short introduction, this chapter will
focus on a description of the interface of the tool illustrated by two case studies.

5.1.1 Supply Chain Risk Analysis and Mitigation

As described earlier, the framework utilizes a graph-based system model, where
nodes are suppliers and components, and edges represent dependencies of relevance
for the system’s functions and security. An additional dimension of modeling
consists in assigning nodes a particular logic function that determines the state of
the node based on the states of its dependencies. With these abstractions at hand,
the I-SCRAM framework can be employed to model the risks in a great variety of
systems.

In addition to the structural aspects of the system model, I-SCRAM presupposes
that probabilities can be assigned to each node that represents the best available
assessment of the individual node’s likelihood to introduce risk. These risks may
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T. Kieras et al., IoT Supply Chain Security Risk Analysis and Mitigation,
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Fig. 5.1 The ISCRAM analysis page featuring case study 1: autonomous vehicle

be risks of the individual component compromise due to, for example, poorly
implemented cryptography, or they may be risks of non-security-related failures
in functionality. While this offers a great deal of flexibility, the requirement for a
coherent analysis is that the occurrence of whatever event that is modeled must be a
contributor to the failures of adjacent nodes in the system.

Because a central problem in carrying out this analysis in practice relates to the
availability and reliability of quantitative risk assessments of individual components
and suppliers, an important feature of I-SCRAM’s analysis consists in allowing the
discovery of systemic sources of risk independent of the particular probabilities at
each node. We will see in the discussions that follow that the interface of the I-
SCRAM tool, shown in Fig. 5.1, allows for the user to carry out some analysis even
when the probability values are uncertain. With these general observations in mind,
what follows will be a description of the chief components of the I-SCRAM tool
and its capabilities.

5.1.1.1 I-SCRAM Software Components

The chief components of the I-SCRAM tool are a user interface available in a web
browser, a server that conducts the analysis itself, and a data model that is provided
by the user as input. The I-SCRAM server is written in Python, with source code
available at (https://github.com/tkieras/iscram). Future developments of I-SCRAM
can be obtained at [https://www.i-scram.com/]

5.1.1.2 User Interface

The user interface is implemented to allow the chief capabilities of the tool to be
accessible from a web browser. The interface’s main features are data visualizations
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to show the system graph and the various metrics that are computed by the server.
Separate views are available for risk analysis and mitigation decisions. Editing the
system graph is also possible.

5.1.1.3 Data Model

The data model captures the problem data that the user must provide as input. All
operations of the I-SCRAM tool require this data as input. The data is provided
in a JSON object which is loaded into the tool from a file. The data can also be
edited in the interface. The input has three main parts: ‘system_graph’, ‘data’, and
‘preferences’. Details of the schema required in these fields can be found by running
the server and viewing the OpenAPI documentation, but a general overview here
will be helpful in understanding the nature of the input required. In general, the
‘system_graph’ portion of the data specifies the structural aspects of the system
itself, essentially nodes and edges. The ‘data’ portion then adds specific probabilities
and attributes to nodes or edges. These two portions are separated to allow more
efficient operations when the structure of the system is fixed and what varies more
frequently are the probabilities and attributes specified in the data portion.

5.1.1.4 Server

The server itself implements an HTTP API which returns one of several different
metrics based on the ‘system_graph’ and ‘data’ input. While the primary use case
consists in using the I-SCRAM tool via a browser-based client, it is possible to make
requests to the server using any HTTP client. Likewise, the server’s core operations
can be invoked via a CLI interface independent from the client-server architecture.

The major functions provided by the I-SCRAM server are:

• the Birnbaum importances of nodes based on the provided risk values,
• the Birnbaum structural importances of nodes based on unknown risk values,
• the Birnbaum importances of attributes,
• the total system risk,
• the Birnbaum importances of supplier attributes,
• the recommended supplier choices given a specified budget.

When displaying options to the user, a distinction is presented between sensitivity
based on known risk values and sensitivity based on unknown risk values. In the
first case, what is computed is the Birnbaum importance measure, and in the second
case it is the Birnbaum structural importance measure as described earlier in this
book. The distinction is particularly useful for the I-SCRAM tool. In the first case,
the importances of nodes are largely determined by the risk values provided in the
data input. These risk values represent the output of a process of estimation of
risks performed by analysts and based on observed patterns of failure. These risk
values may or may not be highly reliable, and in many cases will be a best-effort
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score. With this in mind, the Birnbaum structural importance can provide a needed
alternative perspective. In this measure, the risk values for each node are assumed to
be unknown, i.e., the nodes are equally likely to fail or not fail. Given these values,
the computed importances reflect only the structure of the system graph. Depending
on the use case and the individual availability of strong risk values for each node,
either of the two importances would be more influential when assessing optimal
risk-mitigating decisions.

To assist in clarifying the nodes of higher importances, an optional normalization
may be applied to these importances. In this case what is sought by the analysis is
chiefly the relative ranking of nodes by importance, with a view to making risk
mitigating decisions.

5.1.1.5 Implementation of Core Operations

Several technical challenges were presented in developing the I-SCRAM tool and
it will be helpful here to describe briefly the approach taken to implement the
core operations of the tool efficiently. The first challenge was to compute the
Birnbaum measures on larger system graphs. As described earlier in this book, a
simple algorithm for this computation utilizes the MOCUS algorithm for finding the
minimal cutsets in a fault tree [1]. After these cutsets are found the calculation can
be computed efficiently. However, there may be a very large number of cutsets and
this leads to computational challenges in terms of memory usage and running time.
The alternate approach explored in recent research is the use of the Binary Decision
Diagram (BDD) data structure [2], which has been used to evaluate fault trees
of significant size [3–6]. A BDD-based approach is used in I-SCRAM to support
larger system graphs and minimize the computational resources required. When a
user first loads a system graph into the tool, a BDD is constructed using the CUDD
software library (https://web.archive.org/web/20150215010018/http://vlsi.colorado.
edu/~fabio/CUDD/cuddIntro.html). The data structure is cached on the server and
used whenever there is a need to evaluate the system risk or compute sensitivity
metrics for the system graph in question.

The second aspect of I-SCRAM’s implementation that should be described
briefly is the handling of optimization when solving the supplier choice problem.
The tools used for solving the problem as formulated earlier in this book are the
pyomo Python package for interfacing with specialized optimization tools [7, 8],
and the Couenne solver developed by the COIN-OR project (http://www.coin-or.
org/Couenne).

5.2 Case Study 1: Autonomous Vehicle

In this case study, the system in question is an Autonomous Vehicle with a structure
described by diagram in Fig. 5.2, which is inspired from the study conducted in [9].
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Fig. 5.2 Attack Tree model for an autonomous vehicle failure due to vehicular components

After translating this diagram into a system graph following the requirements
described earlier, the data can be loaded in to the I-SCRAM tool for analysis. The
analysis interface is shown in Fig. 5.3. The main component of the interface is a
graph visualization where nodes are colored according to one of several methods.
Selected in this figure is a coloring by the individual risk values. In Table 5.1 a
subset of the risk data is presented.

In Fig. 5.4 we see an alternate coloring method, by the Birnbaum importance
measure (or sensitivity using known data). Data for this visualization is presented in
Table 5.2. As we develop these case studies more will be said on the particulars of
the case, but it can be seen clearly that certain nodes are immediately highlighted as
being of higher importance than others.

It is instructive to contrast these two figures because when considering nodes
individually they roughly appear to be without significant difference in their risks.
However, the relative importances of the nodes given their location in the system
structure vary widely, and this variance would not be captured simply by considering
nodes individually.

Given the data presented, the interface will present the top five suppliers and
components according to whatever metric is selected. In Fig. 5.5 the Birnbaum
importance is once again selected. In this case study the nodes roughly fall into one
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Table 5.1 Risk values for
case study 1: Autonomous
Vehicle

mechanical_system 0.001

communication_system 0.0100

passenger_interface 0.0150

lte_modem 0.0020

gps_supplier_alt 0.0030

gps 0.0020

indicator 0.0000

sensor_system 0.0030

camera_supplier_alt 0.0013

database_supplier_alt 0.0100

camera 0.0100

ir_ur_sensor 0.0010

backup_sensor_supplier_alt 0.0093

wheel_encoder 0.0010

integration_platform 0.0150

radar_supplier 0.0009

passenger_interface_supplier 0.0012

ir_ur_sensor_supplier_alt 0.0012

communication_system_supplier_alt 0.0015

mechanical_system_supplier_alt 0.0013

radar_supplier_alt 0.0012

backup_communication_system_supplier_alt 0.0013

mechanical_system_supplier 0.0019

wheel_encoder_supplier 0.0150

backup_sensor_supplier 0.0015

sensor_system_supplier 0.0100

integration_platform_supplier_alt 0.0013

communication_system_supplier 0.0015

primary_sensor 0.0010

lte_modem_supplier 0.0015

primary_sensor_supplier_alt 0.0010

lte_modem_supplier_alt 0.0020

wheel_encoder_supplier_alt 0.0008

of two categories, and they are either highly important or of minimal importance
based on their position in this relatively uniform system graph. As we will see in the
following case study, this is not always the case.

I-SCRAM also features a helpful analysis of suppliers based on attributes that
are assigned to them. These attributes must be binary valued and are intended to
capture a wide variety of features that may be of interest to the analyst. In this
example, each supplier is tagged with the attributes: certified, small, domestic,
and existing_contract. If the analyst can provide attributes such as these for each
supplier, the attributes can be analyzed across the system in question.
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Table 5.2 Birnbaum
importances for case study 1:
Autonomous Vehicle

hardware_system 0.990

hardware_system_supplier 0.983

software_system 1.000

software_system_supplier 0.982

mechanical_system 0.981

mechanical_system_supplier 0.982

communication_system 0.990

communication_system_supplier 0.981

integration_platform 0.995

integration_platform_supplier 0.981

sensor_system 0.983

sensor_system_supplier 0.990

primary_sensor 0.019

primary_sensor_supplier 0.019

lidar 0.020

lidar_supplier 0.019

radar 0.019

radar_supplier 0.019

gps 0.019

gps_supplier 0.019

camera 0.019

camera_supplier 0.019

wheel_encoder 0.019

wheel_encoder_supplier 0.019

passenger_interface 0.995

passenger_interface_supplier 0.981

database 0.995

database_supplier 0.980

lte_modem 0.982

lte_modem_supplier 0.981

backup_sensor 0.068

backup_sensor_supplier 0.067

backup_communication_system 0.067

backup_communication_system_supplier 0.067

ir_ur_sensor 0.067

ir_ur_sensor_supplier 0.067

In Fig. 5.6, we see a simple visualization of each attribute according to its
representation in the system. In other words, what fraction of suppliers have each
value for the attribute. We see for example that many more suppliers have the
existing_contract attribute than not. Clearly for the attribute to have a stable meaning
it must correspond to some policy definition that can be resolved into a binary
attribute given observed data about the supplier.
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Fig. 5.5 Top five components and suppliers according to their impact on system risk

Fig. 5.6 Supplier attributes, fractions of each value represented

In Fig. 5.7, we see an alternate perspective on the attributes, using the Birnbaum
importance measure described earlier. The importance of the attribute is computed
by treating the entire set of suppliers with an attribute as being a unit and calculating
the relative system risk when this unit is varied in its functionality. We see in this
case study that the attributes all have similar importance, and that the values of
each attribute are similar to each other. This is indicative that these attributes in this
system are well distributed across suppliers in varying positions within the system.
No attribute simply captures a larger share of the system risk than any other.

5.3 Case Study 2: Industrial Control System

In this case study, we will consider the example of an Industrial Control System
with a structure described by diagram show in Fig. 5.8. The characteristics of this
system will be different from the Autonomous Vehicle as will be seen in the more
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Fig. 5.7 System risk sensitivity for each supplier attribute value

varied node importances. We will also examine the decision support features of the
I-SCRAM tool by considering how best to minimize risk given a certain budget and
given various choices for each supplier.

In Fig. 5.9 we see the visualization of the Birnbaum importances for suppliers and
components in this case study. The values computed here, again, take into account
the risk values provided as user input. The data for this visualization is found in
Table 5.3. The top five components and suppliers according to their importance are
found in Fig. 5.10. We see here that there is a clear indication, given the data and
analysis, that nodes that are contributors to the Firewall and Corporate Network are
the most critical nodes, as well as the Sup_PLC_top node. The other nodes appear
to be relatively insignificant.

It is useful to contrast the above analysis with the more cautious Birnbaum
structural importance measure, which again does not take into account the user-
provided risk values. This visualization is provided in Fig. 5.11 and the data in
Table 5.4. The top five suppliers and components are shown in Fig. 5.12. In this
case, we see a similar pattern, though the contrast between the two sets of nodes is
less significant. Given that this measure is computed without reliance on the ‘best
effort’ risk values, there is certain robustness to the analysis that might be lacking
in comparison to the earlier results. Because these risk values are typically subject
to various unknowns, the alignment of these two measures can lend weight to the
decision to allocate resources on the Firewall and Corporate Network as well as
their suppliers. Yet this measure is also more cautious and would suggest that the
other nodes in the system, highlighted here in yellow though pictured as green in
the earlier figure, deserve attention as well (Figs. 5.13 and 5.14).

As described above, I-SCRAM allows suppliers to be assigned attributes. In
this case, we see that the attributes in question (as illustrated in Fig. 5.13) are
more unequally distributed through the system than in the prior case study. The
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Fig. 5.8 Attack tree model for an industrial control system

importances shown in Fig. 5.14, however, appear quite similar and without much
variation again between the values of each attribute. The contrast between the two
graphs shows that although many more suppliers are marked as ‘domestic’ than
otherwise, the system is not considerably more sensitive to the ‘domestic’ attribute
than otherwise. A recurring theme in this analysis is that the structure of the system
in question plays a significant role in determining the importance of each node,
much more than simpler metrics such as representation would suggest.

In this case study, we will also examine the decision support features of the I-
SCRAM tool, pictured in Fig. 5.15. The graph pictured here appears more complex
because each node has several possible suppliers pictured. The importances and
risks can be visualized as usual, though it is important to mention that only one
supplier of each component is active at any given time. In other words, suppliers
that are merely potential suppliers of a component are pictured with an edge to
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Fig. 5.9 Components and suppliers colored according to Birnbaum importances using the scheme
shown in Fig. 5.1

the component, but they do not yet contribute any risk to the component. The
optimization interface allows the user to specify a budget and a degree of supply
chain risk tolerance . These correspond to budget and α values described in earlier
chapters. Data for the supplier choice problem pictured here is provided in Table 5.5.
Essentially for each component, there are various suppliers, where a higher price is
correlated with a lower risk.

The result of the optimization is shown by the updated risk and importance
values in the graph, as well as the updated chart of the highly critical suppliers
and components. What we see in Fig. 5.16 are the top five components after a low
budget optimization. Given few resources, we end up choosing the riskier suppliers.
In Fig. 5.17 the result is shown after a higher budget optimization, featuring a lower
importance measure for many of the suppliers and components. These contrasting
plots show that the higher budget was able to not only reduce the system risk but
also reduce the dependence of the system on particular, highly critical components
and suppliers.

5.4 Conclusions and Outlooks

In this chapter, we have presented an introduction and usage of a software tool
named I-SCRAM, designed to provide decision support for risk mitigation from
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Table 5.3 Birnbaum
importances for Case Study
2: Industrial Control System

PLC 0.240

PLC_Slave 0.231

HMI 0.243

Control_Server 0.248

Firewall 0.944

PLC_Master 0.236

Data_Server 0.241

Data_Historian 0.924

Work_Station 1.000

Corporate_Network 0.867

Sup_PLC 0.226

Sup_PLC_Slave 0.224

Sup_Control_Server 0.226

Sup_HMI 0.240

Sup_Firewall 0.859

Sup_PLC_Master 0.219

Sup_Data_Server 0.234

Sup_Data_Historian 0.867

Sup_Work_Station 0.859

Sup_Corporate_Network 0.859

Sup_PLC_top 0.867

Fig. 5.10 Top five components and suppliers by Birnbaum importance

the supply chain in IoT-enabled infrastructure systems. The tool uses a customized
approach to analyze risks in networked systems, such as the IoT, that emanates from
the suppliers of individual components. Case studies of an autonomous vehicle and
an industrial control system cyber security have been provided to illustrate the risk
analysis framework and risk mitigation decisions in Chaps. 2 and 3, respectively.

The supply chain risk management in IoT is a highly convoluted problem to
solve. This book has provided an introduction to modeling, computations, and
software tools for IoT supply chain risk analysis and mitigation. It has opened
up a new dimension in traditional supply chain risk management by understanding
vendor involvement and risk propagation in complex and networked systems. Going
forward, we envision that advances will be made on several different fronts. The
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Fig. 5.11 Components and suppliers colored according to Birnbaum structural importances using
the scheme shown in Fig. 5.1

Fig. 5.12 Top five components and suppliers by Birnbaum structural importance in Case Study 2

first direction is the accurate mapping of the threat landscape in terms of the supply
chain. Then, a comprehensive risk assessment and impact analysis need to be done.
Finally, mitigation strategies are needed to act as a guideline for establishing best
practices. Effective solutions to ensure the supply chain security of the IoT require a
long trajectory of development. There is a need for active public-private engagement
to come up with concrete solutions. Joint policy and technical solutions are needed
to counter the risks. Technology should inform policy and policy should regulate
technology. Continuous assessment of risks presented by existing suppliers and
response strategies is required for an effective defense against the emerging supply
chain threats in IoT systems.
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Table 5.4 Birnbaum
structural importance
measure for Case Study 2:
Industrial Control System

PLC 0.496

PLC_Slave 0.496

HMI 0.496

Control_Server 0.496

Firewall 1.000

PLC_Master 0.496

Data_Server 0.496

Data_Historian 1.000

Work_Station 1.000

Corporate_Network 1.000

Sup_PLC 0.496

Sup_PLC_Slave 0.496

Sup_Control_Server 0.496

Sup_HMI 0.496

Sup_Firewall 1.000

Sup_PLC_Master 0.496

Sup_Data_Server 0.496

Sup_Data_Historian 1.000

Sup_Work_Station 1.000

Sup_Corporate_Network 1.000

Sup_PLC_top 1.000

Fig. 5.13 Supplier attributes representation

Since the system-level analysis and decision-making of IoT supply chain security
involves high computational complexity, future work can study the use of heuristics
to achieve feasibly optimized risk mitigation. Furthermore, it can also consider the
interaction of event and supplier risks as well as considering more complex supplier
network topologies. A particularly troubling aspect of supply chain security is that
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Fig. 5.14 Supplier attributes importances

Fig. 5.15 Decision Support panel featuring the Industrial Control System graph

the supply chain may change after a system has been designed and manufactured. In
the terms of our analysis in this book, group memberships can be modified after the
supplier choices are made. Because many suppliers have ongoing access to systems
in the form of maintenance or support access, this dynamism in the supplier network
can significantly alter the perceived risk to system security. Hence, more dynamic
and real-time risk management techniques can be explored in future extensions of
this book.
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Table 5.5 Input data for supplier choice problem

Supplier Component Risk Cost

Sup_PLC PLC 0.08 10

Sup_PLC_Slave PLC_Slave 0.0700 10

Sup_Control_Server Control_Server 0.1100 30

Sup_HMI HMI 0.0900 20

Sup_Firewall Firewall 0.1000 300

Sup_PLC_Master PLC_Master 0.0900 100

Sup_Data_Server Data_Server 0.1100 500

Sup_Data_Historian Data_Historian 0.0800 250

Sup_Work_Station Work_Station 0.1500 350

Sup_Corporate_Network Corporate_Network 0.0200 1000

Alt_Sup_PLC PLC 0.1600 5

Alt_Sup_PLC_Slave PLC_Slave 0.1400 5

Alt_Sup_Control_Server Control_Server 0.2200 15

Alt_Sup_HMI HMI 0.1800 10

Alt_Sup_Firewall Firewall 0.2000 150

Alt_Sup_PLC_Master PLC_Master 0.1800 50

Alt_Sup_Data_Server Data_Server 0.2200 250

Alt_Sup_Data_Historian Data_Historian 0.1600 125

Alt_Sup_Work_Station Work_Station 0.3000 175

Alt_Sup_Corporate_Network Corporate_Network 0.0400 500

Alt_2_Sup_PLC PLC 0.0400 20

Alt_2_Sup_PLC_Slave PLC_Slave 0.0350 20

Alt_2_Sup_Control_Server Control_Server 0.0700 60

Alt_2_Sup_HMI HMI 0.0450 30

Alt_2_Sup_Firewall Firewall 0.0550 600

Alt_2_Sup_PLC_Master PLC_Master 0.0450 200

Alt_2_Sup_Data_Server Data_Server 0.0550 1000

Alt_2_Sup_Data_Historian Data_Historian 0.0400 500

Alt_2_Sup_Work_Station Work_Station 0.0750 700

Alt_2_Sup_Corporate_Network Corporate_Network 0.0100 2000

Fig. 5.16 Top five components and suppliers after a low budget optimization
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Fig. 5.17 Top five components and suppliers after a high budget optimization
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