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Abstract. The use of electroencephalography (EEG) signals for bio-
metrics purposes has gained attention in the last few years, and many
works have already shown that it is possible to identify a person based on
features extracted from these signals. In this work we focus on four func-
tional connectivity measures (magnitude-squared and imaginary coher-
ence, motif synchronization and space-time recurrence) for the classifi-
cation of 10 epilepsy patients with recorded resting-state EEG signals,
to compare and discuss different methodologies. We perform the analy-
sis by slicing the signals of at least 2 trials for each subject in epochs
of 3 and 10 s, filtering the data in the ranges of 1 40 Hz and 1 100 Hz,
building reference and test vectors from the connectivity measures and
labeling each test vector to a subject using the minimal Euclidean dis-
tance from the feature vectors. The best classification rates were obtained
with magnitude-squared coherence and motif synchronization, for the
data segmented in epochs of 10 s and filtered between 1 40 Hz. All the
measures with the signal filtered in the same range obtained an accu-
racy equal or higher than 80%, a result that can be enhanced with more
complex classifiers.
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1 Introduction

Electroencephalography (EEG) based biometry is a growing area of research [1,2]
for user recognition in security systems, since it provides signals that can only be
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obtained from live individuals and varies according to different types of stimuli.
The first works on the subject [3,4] proposed the use of spectral decomposition
as a measure for identification, and an accuracy of almost 90% was obtained
in [4]. Since then other methodologies were applied, combining different tasks
and feature extraction methods. Some combinations were able to achieve 100%
of accuracy, such as the use of averaged event-related potential (ERP) from
visual stimulation [5], correlation between ERPs elicited by a rapid serial visual
presentation (RSVP) [6] and spectral coherence (COH) from resting-state with
eyes open and closed [7]. Some effects caused by the increase in the number of
subjects, their gender or modification in the age group are discussed in [8], and
show that accuracy levels can strongly rely on these parameters, which indicates
the need for more works with diverse populations and methodologies on the
subject.

On the other hand, EEG has been one of the most used neuroimaging tech-
niques to aid in the diagnosis of epilepsy [9]. This is mainly due to its rela-
tively lower cost, portability and high temporal resolution, compared to other
techniques. The EEG exam can detect physiological manifestations underlying
epileptic activity, although only interictal epileptiform discharges (IEDs) are of
clinical use [9]. In addition, it has been suggested that epilepsy interferes with
functional brain networks [10–13]. These networks are characterized through
functional connectivity analysis, where a similarity measure is used to compare
activity time series from different brain regions (for a review, see, e.g., [14]).
Recently, Nentwich et al. showed that EEG functional connectivity is subject-
specific and depends on the phenotype [15]. They report that the connectivity
patterns they found were more similar across tasks than across individuals, and
state that “functional connectivity can be used as a diagnostic metric to assess
individuals” [15].

In this context, the aim of this work was to perform an individual characteri-
zation of epilepsy patients using different connectivity measures and methodolo-
gies, and compare their performances in a biometry scenario. Magnitude-squared
coherence (COH) has already been used for EEG biometry in [7], achieving 100%
accuracy, and the use of other measures such as imaginary coherence (ICOH),
motif-synchronization (MS) [16] and space-time-recurrence (STR) [17] are pro-
posed here along with COH. In addition to these measures, we also vary the
pre-processing steps for the signals, performing filtering in the intervals 1–40 Hz
and 1–100 Hz and segmentation in epochs of 3 s and 10 s. The frequency band
1–40 Hz was chosen due to its common use in connectivity studies as it covers
the low frequency bands, especially the alpha band whose alterations have been
associated with epilepsy [18,19]. The 1–40 Hz range was also used in another
EEG based authentication study [7]. The second frequency band, 1–100 Hz, was
chosen so that its higher frequency is close to the maximum available frequency
considering the sampling rate 250 Hz. As for the epoching choices, the 10 s seg-
mentation was used based on previous works in the area [6,7,20]. The smaller
segmentation was chosen to be 3 s as it is the lower interval that gives more
precise estimations of coherence in low frequencies, and it is recommended for
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security systems with a required true acceptance rate equal or higher than 90%
[6]. As a result, four methodologies were applied for each measure, producing
sixteen different classifiers. This is a pilot study; at this point, we did not yet
investigate the association between epilepsy phenotype and EEG connectivity.

2 Subjects, Materials and Methods

2.1 Data Acquisition and Pre-processing

Scalp EEG signals were obtained from volunteer epilepsy patients undergoing
pre surgical evaluation in the Neuroimaging Laboratory (LNI) at Unicamp. EEG
data were acquired in resting state condition simultaneously with functional
magnetic resonance imaging (fMRI) data, using a magnetic resonance (MR)
compatible EEG system (BrainProducts GmbH, München, Germany), consisting
of two BrainAmp MRplus amplifiers and a 64-electrode brain cap (including
one electrocardiogram electrode), with electrodes positioned following the 10/10
system [21]. The sampling rate was 5 kHz, with reference on FCz and ground on
AFz.

The criteria for inclusion in the study were a total acquisition time larger
or equal to 600 s and a number of epileptiform events, which were marked by
neurophysiologists, smaller than 30. From that, we selected signals from ten
subjects (mean age 41.9 ± 12.3, 6 female). The EEG signals were collected in
a single session (day) for each subject, and all the selected subjects had two
or more acquisitions during the same session (trials). Table 1 shows the number
of trials used for each patient and their diagnosis, which can be temporal lobe
epilepsy (TLE) or frontal lobe epilepsy (FLE), and the respective affected brain
hemisphere.

Table 1. Number of trials of each patient and diagnosis when available.

Patient Trials Diagnosis

1 3 Bilateral TLE with left predominance

2 3 FLE (unknown side)

3 3 Left TLE

4 3 Left TLE

5 3 Right TLE

6 3 Left TLE

7 3 Left TLE

8 3 Right TLE

9 3 Left TLE

10 2 Left TLE
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The steps of the pre-processing were the following: MR gradients artifact
correction using MR trigger syncronism; average artifact subtraction correction;
balistocardiogram correction for the scalp channels; downsampling the data to
250 Hz and discarding epileptiform events and the ECG channel, in order to
retain only signals with regular brain activity. A manual cleaning and an inde-
pendent component analysis (ICA) decomposition were also performed to discard
noisy fragments and to remove blink components from the data, respectively. The
ICA decomposition and the rejection of components were made with the fastICA
algorithm and the ICLabel extension [22], both implemented in EEGLAB [23].
EEG data were then re-referenced to the average of all electrodes, and filtered in
the frequency ranges of 1–40 Hz and 1–100 Hz. Since we wanted a total of 600 s
of signal, we first selected 300 s from the first trial of each patient to compose
the training dataset. Then, for the patients with two trials we selected 300 s
from the second trial, and for the remaining patients we selected 150 s from the
second and 150 s from the third trials to compose the test dataset. Finally, these
segments were divided into epochs of 3 s and 10 s.

The study was approved by the ethics committee of our institution (CAAE
16715319.9.0000.5404, CEP-UNICAMP), and all subjects signed an informed
consent form prior to data acquisition.

2.2 Connectivity Measures

Coherence. Coherence is a measure that quantifies the level of similarity
between signals with respect to their frequency and amplitude [24]. It is a com-
mon technique to study brain connectivity from EEG signals since it gives the
synchrony in a chosen specific frequency range between distinct regions of the
brain. The magnitude-squared coherence between two signals i and j for a fre-
quency f is given by the formula

COHij(f) =
|Sij(f)|2

Sii(f)Sjj(f)
, (1)

where Sij is the cross spectral density between the two signals and Sii and Sjj ,
the spectral density for each of them. Another common way to express coherence
is using its imaginary part, which can prevent the contamination of the signals
from volume conduction [25]. The expression for the imaginary coherence now
depends on the imaginary part of the cross spectral density, and is given by

ICOHij(f) =
Im(Sij(f))

√
Sii(f)Sjj(f)

. (2)
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To build the reference vectors, the magnitude-squared and imaginary coher-
ence were calculated for each epoch of the first trial (n = 30 epochs for segments
with 10 s and n = 100 epochs for segments with 3 s) over the frequency ranges
1–40 Hz and 1–100 Hz. The analysis was performed with Brainstorm [26], an
open-source application for analysis and processing of brain recordings, with a
maximum frequency resolution of 1 Hz and an overlap of 50% for power spectral
density (PSD) estimation. The resultant coherence matrices were then aver-
aged over the n epochs and over the frequencies, resulting in a vector 2016 × 1
(2016 = [N(N − 1)/2 + N ], where N = 63 is the number of electrodes) for each
subject. For the test vectors, COH and ICOH were calculated for each epoch
from the second trial or the second and third trials, and the coherence matrices
were averaged only over the frequencies. This method resulted in n = 100 and
n = 30 test vectors 2016 × 1 for epochs of 3 and 10 seconds, respectively, for
each subject and frequency range.

Fig. 1. Transformation of a randomly generated signal X into a series of motifs XM ,
with unitary lag.

Motif-Synchronization. The motif technique considers an original signal X
as a sequence of predetermined elementary patterns that are used to transform
the signal into a sequence of labels XM , as depicted in Fig. 1. This method was
originally proposed to perform a study on permutation entropy in EEG data
[27], and a more recent work proposed the use of motifs for a connectivity mea-
sure, called Motif-Synchronization [16]. The objective of the method is to obtain
the synchrony between the signals of two sources by counting the simultaneous
appearance of the defined patterns. After performing the transformation of the
signal, the following variable is evaluated for each pair of sources
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cXY = max

(
Lm∑

i=1

Jτ0
i ,

Lm∑

i=1

Jτ1
i , . . . ,

Lm∑

i=1

Jτn
i

)

, (3)

where

Jτ
i =

{
1, if XM (i) = YM (i + τ)
0, else.

(4)

In the expressions above, Lm is the number of selected points from the time
series and τ is the time delay ranging from τ0 = 0 to a maximum value τn to
be chosen. The connectivity matrix is then obtained from the synchronization
degree of each pair, given by

QXY =
max (cXY , cY X)

Lm
, (5)

that can assume values between 0 (no synchronization) and 1 (maximum syn-
chronization).

For this work, we performed the transformation of the original signals to
motifs using three points patterns and unitary lag, in which the two last points
of a pattern overlap with the next one (see Fig. 1). The maximum delay was
considered to be τn = 4, corresponding to 16 ms in the data. The n = 100 (for
epochs with 3 s) and n = 30 (for epochs with 10 s) connectivity matrices from
the first trial were averaged to form the reference vector (of dimensions N2 × 1)
and the matrices from the second trial or the second and third trials were used
as test vectors.

Space-Time Recurrence. The space-time recurrence technique for connec-
tivity is based on recurrence plots (RP) [17], a powerful tool in the analysis of
complex systems that indicates the level of proximity between dynamical states.
The recurrence in space and time for a pair of signals can be computed as [28]

STRij(ε, t) = θ (ε − ‖xi(t) − xj(t)‖1), (6)

where θ is the Heaviside function, ε a threshold value for the distance and t the
index of the sample (time). For N sources of signals, we have a N × N × T
matrix, with T the total number of samples. To obtain a recurrence for a time
period, we can define a density matrix of the form

Denij =
1
T

T∑

t=1

STRij(ε, t), (7)

which assumes values from 0 to 1 and gives a space-time recurrence average
through time.



Brain Connectivity in EEG-Based Biometry for Epilepsy 161

For this work, the density matrix (7) was used to build the reference and
test vectors for classification. Since Den is symmetric, only the entries below the
diagonal and the diagonal were used, resulting in vectors of 2016 × 1 as in the
coherence measures. For the reference vectors, the density matrices of all epochs
from the first trial were averaged, and the matrices from epochs of the other
trials were considered as test vectors. Although many methods for the choice of
the distance threshold value have been proposed [29,30], in this work the values
of ε for each case were chosen according to the best classification results.

2.3 Classification

Once the reference and test vectors were built and labeled to their respective
subjects, the method of classification for all the connectivity measures was per-
formed in the same way. First, the Euclidean distance between each of the i test
vectors and j reference vectors was calculated by the expression

Dij = ‖ti − rj‖2. (8)

This distance matrix has the dimensions n × Nsubjects, where n = 30 for
epochs with 10 s, n = 100 for epochs with 3 s and Nsubjects = 10. For every test
vector, the minimum distance obtained was associated with the respective sub-
ject, and the classification results compared to the original labels. The accuracy
was then given by the ratio between the number of correct classifications and n.

3 Results and Discussion

As can be seen in Figs. 2, 4, and 5, the connectivity matrices for COH, MS
and STR present subtle variations that are not easily distinguishable, at least
visually. The imaginary coherence maps exhibit more variety as can be seen in
Fig. 3, where the maps generated by data segmented into epochs of 10 s have
lower values in general.

The classification accuracies are presented in Table 2. It can be seen that
COH, ICOH and MS vary strongly with the range of filtering chosen, with a dif-
ference of up to 24% in classification accuracy for COH. The variation for STR is
less significant, but the accuracies for the filtering range 1–40 Hz are still better.
These results indicate that the most relevant signals for subject distinction are
contained in the lower frequency bands, including the α and β bands which are
related to relaxed awareness and concentration [31]. A more restricted filtering
also provides the elimination of possible high-frequency artifacts that can harm
the quality of the data.

As for the epoch size, the 10 s segmentation resulted in higher accuracy in
the majority of the cases, producing a difference of at most 5% for MS and
STR. A better performance was expected with the segmentation in 10 s, since
the connectivity measures from larger periods of time are less susceptible to be
disrupted by momentary movement artifacts and cognitive processes. However,
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Fig. 2. Connectivity matrices for the reference vector from subject 1, with values of
the magnitude-squared coherence (1) (COH).
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Fig. 3. Connectivity matrices for the reference vector from subject 1, with values of
the imaginary coherence (2) (ICOH).
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Fig. 4. Connectivity matrices for the reference vector from subject 1, with values of
the degree of synchronization Qxy (5) using MS.
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Fig. 5. Connectivity matrices for the reference vector of the first subject, with values
of the density matrices (7) using STR (the off-diagonal entries were rescaled from 0 to
1 for a better visualization).

some of the accuracies for 3 s were still higher, and periods longer than 10 s can
be studied to verify if this improvement is relevant.
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Table 2. Classification accuracy (in percentage) obtained from the different measures.
The parentheses in the STR line contain the values for ε that gave the best accuracy.

Measure 1–40 Hz 1–100 Hz

3 s 10 s 3 s 10 s

COH 93.7 94.7 72.3 70.7

ICOH 84.9 80.0 75.2 67.3

MS 91.6 91.7 81.0 86.0

STR 86.3 (5.0e−7) 91.3 (3.3e−7) 85.1 (0.19) 91.0 (0.19)
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Fig. 6. Confusion matrices for the classifiers with COH measures. A row contains the
percentage of the samples from one class attributed to each of the classes.

The good performance of magnitude-squared coherence corroborates the
results of [7], where high accuracies were obtained with both eyes-closed and
eyes-open acquisitions. To the best of our knowledge, no other works used MS or
STR for EEG-based biometry, but both measures have already been used in con-
nectivity studies [16,28] and generated good results. Our results for MS reveal
that this measure is a good candidate to perform distinction between subjects,
alongside with COH.
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Fig. 7. Confusion matrices for the classifiers with ICOH measures. A row contains the
approximate percentage of the samples from one class attributed to each of the classes.

As can be seen in the confusion matrices in Figs. 6, 7, 8 and 9, the patients
3, 4, 6, 9, and 10 have a correct classification smaller or equal to 50% for at least
one of the connectivity measures. Patient 4 has the lower hit rates in general,
and is more related to patients 9 and 2 in some of the measures. The rest of
the patients with worse ratings are related to different subjects depending on
the connectivity measure. Alongside this, the patterns of classification seem to
repeat for the same measure and filtering range, and not vary too much for the
different epoch segmentation.

Relevant limitations of this work were the number of subjects whose EEG
signals were appropriate for our analysis and the use of EEG signals acquired
jointly with fMRI data, which have more artifacts than regularly acquired sig-
nals. However, the data used are maintained for diverse scientific purposes, which
includes EEG-fMRI investigation of epilepsy patients, a goal towards which we
believe this work will be useful in the future.
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Fig. 8. Confusion matrices for the classifiers with MS measures. A row contains the
approximate percentage of the samples from one class attributed to each of the classes.

4 Conclusion

The approach proposed here had the intention to study different connectivity
measures and methodologies for EEG-based biometry of epilepsy patients, and
to compare their performances. For our subjects and method of classification,
COH and MS measures obtained from epochs of 10 s extracted from the original
signals filtered in the 1–40 Hz range resulted in the highest classification accuracy.
We also found that STR and MS can result in classifications as good as or even
better than COH and ICOH, depending on the methodology and pre-processing
steps.

A first modification in the continuation of this work will be to include a
larger number of subjects, which can make the results more reproducible and
reliable. Other improvements include the use of more robust classification meth-
ods, exploration of the lag parameter for MS, which was held constant here,
and to determine which electrodes are more relevant for classification, in order
to reduce the dimensions of feature and test vectors. Finally, once we are able
to increase patient sample, a future direction will be to explore the association
between epilepsy phenotype and diagnosis with EEG functional connectivity.
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Fig. 9. Confusion matrices for the classifiers with STR measures. A row contains the
percentage of the samples from one class attributed to each of the classes.
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