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Preface

The human brain is considered the most complex object in the known universe and
the least understood organ in the human body. To reveal it is such a hard task
that neuroscience may only be properly carried out by a multi and interdisciplinary
research team, with medical doctors, psychologists, engineers, computer scientists,
mathematicians, pharmacists, physicists, etc. A fruitful approach may be to gather
remarkable minds from distinct scientific fields and standpoints to uncover the brain.
In order to fulfill this requirement, the Latin American Workshop on Computational
Neuroscience (LAWCN) was born in 2017. It is a biannual event, the first edition
(LAWCN 2017) taking place in Porto Alegre (Brazil) and the second edition (LAWCN
2019) in São João Del-Rei (Brazil), that addresses topics of computational neuroscience,
artificial intelligence, neuroscience, and neuroengineering.

Besides all the usual endeavors of organizing a workshop, for the third edition
(LAWCN 2021) we also had to deal with a rare and tough challenge, namely the
COVID-19 pandemic. Instead of a completely online event, LAWCN 2021 was held as
an innovative hybrid event, i.e. both online and in person in the city of São Luís – capital
and largest city of the Brazilian state of Maranhão with a stunning colonial historical
center (UNESCOWorld Heritage Site) – during December 8–10, 2021. Six world-class
scientists – from Brazil, Argentina, and the USA – kindly accepted our invitation to give
keynote speeches, presenting their work either remotely or in person. Similarly, authors
of accepted papers gave presentations in fifteen-minute sessions, or accepted posters in
a ninety-minute session, both online and in person.

All manuscripts submitted were reviewed single-blindedly by at least three
experienced reviewers from our Program Committee (PC) consisting of 61 members: 23
researchers from Brazil and 38 from abroad (Argentina, the USA, Germany, Portugal,
Spain, Austria, Colombia, Switzerland, Mexico, Greece, Australia, Norway, Ecuador,
Italy, Chile, the UK, and Hungary). The 16 papers you will find in this volume of
Springer’s Communications in Computer and Information Science (CCIS) represent the
top tier of those accepted. They encompass all areas of the event, and they take forward
research on interdisciplinary applications of artificial intelligence (AI) and machine
learning (ML);AI andMLapplied to robotics;AI andMLapplied to biomedical sciences;
health issues and computational neuroscience; software and hardware implementations
in neuroscience; and neuroengineering (science and technology).

LAWCN 2021 was organized by the Federal University of Maranhão (UFMA –
Universidade Federal do Maranhão, Brazil) with the support of Fundação Sousândrade
(FSADU). Financial aid was provided Plexon Inc. and by the International Brain
Research Organization (IBRO). NeuroTechX (NTX) was a major partner for the
conference, contributing ideas, minds, panelists, and assisting with worldwide
dissemination. Springer has become a key collaborator of LAWCN as the publisher
of our top papers in their CCIS series.

We, the editors of CCIS volume 1519, would like to express our most heartfelt
gratitude to all the organizations, keynote speakers, authors, PC members (reviewers),
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and participants involved in LAWCN 2021. You all helped us to stage an awesome event
and publish this excellent book, which may aid, in a small way, the task of solving the
puzzle of the brain. Thank you!

December 2021 Paulo Rogério de Almeida Ribeiro
Vinícius Rosa Cota

Dante Augusto Couto Barone
Alexandre César Muniz de Oliveira
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and Machine Learning (ML)



Semantic Segmentation of the Cultivated
Area of Plantations with U-Net

Walysson Carlos dos Santos Oliveira(B) , Geraldo Braz Junior ,
and Daniel Lima Gomes Junior

Universidade Federal do Maranhão - UFMA, 322, São Lúıs, MA 65.086-110, Brazil

walysson.oliveira@discente.ufma.com.br, geraldo@nca.ufma.br,

daniellima@ifma.edu.br

Abstract. The farm tax is mainly on agricultural production. To reduce
tax evasion in agribusiness, it is possible to monitor the development of
plantations through the analysis of satellite images. For this, deep learn-
ing techniques can be applied in satellite images to estimate a planted
area of the plantations, which, in turn, can be used to estimate the pro-
duction of monitored plantations. This work aims to analyze the satellite
images of plantations to predict the cultivated area of plantations using
semantics with convolutional neural networks. To achieve this goal, a
method is proposed, which includes the creation of a dataset for planting
area data, image segmentation with U-net architecture, tests to obtain
the best combination of hyperparameters, and the evaluation of network
performance. The proposed methodology with the network with a U-net
segmentation architecture returned mean IoU results above 80%.

Keywords: Deep learning · Satellite image · Agriculture application

1 Introduction

Brazilian agribusiness is a prosperous and profitable activity. Abundant area,
regular rainfall, solar energy and a diversified climate make Brazil a country
with natural requirements for planting. Agribusiness is responsible not only for
a large part of the food items consumed, but also for a production chain that
involves various segments of the economy. In 2019, the sector represented 21.6%
of the national GDP, according to the Ministry of Agriculture, Livestock and
Supply of Brazil [20].

Since agribusiness is of paramount importance in the Brazilian economy, its
participation in the contribution to the functioning of the government through
taxes and fees arising from its activity is natural. However, agribusiness has a
high rate of tax evasion that occurs as a result of the current complexity of the
Brazilian tax system, in addition to the difficulty of inspection by the State, due
to the great cost that such inspection entails, making its execution unfeasible [4].

The public service has been modernizing [22], not as agilely as the private
sector, but projects such as Digital Government, which aim to accelerate the
c© Springer Nature Switzerland AG 2022
P. R. d. A. Ribeiro et al. (Eds.): LAWCN 2021, CCIS 1519, pp. 3–14, 2022.
https://doi.org/10.1007/978-3-031-08443-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08443-0_1&domain=pdf
http://orcid.org/0000-0002-8674-067X
http://orcid.org/0000-0003-3731-6431
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digital transformation in the public sector, have contributed to the moderniza-
tion [9]. As an example, Tax Administration bodies such as the Federal Revenue,
State and Municipal Revenues have been crossing large volumes of data such as
credit cards, electronic invoices and other tax documents to identify tax evasion.

In the context of agribusiness, the tax burden of rural establishments is cal-
culated mainly on their agricultural production. In order to reduce tax evasion,
it is possible to monitor the development of plantations through the analysis of
satellite images. For this, deep learning techniques can be applied in satellite
images to estimate the planted area of the plantations which, in turn, can be
used to estimate the production of the monitored plantations. This would bring
contributions such as: the reduction of tax evasion in agribusiness, the reduc-
tion of State expenses in on-site audits in places of difficult access and also the
possibility of application in other areas.

In recent years, deep learning with the algorithms of convolutional neural
networks, recurrent neural networks and generative adversary networks, has been
widely studied and applied in various fields with promising results and great
potential. Specifically, increasing attention has been paid to its application in
agriculture [12,28]. Recent studies that propose to segment land cover regions
as in [17], vegetation areas as in [27] and plantation areas as in [14], use fully
convolutional neural networks for this purpose.

Understanding that efficiency in tax inspection implies a reduction in tax
evasion, reduces costs, increases collection and may in the future bring about
qualitative changes in the tax collection mechanism in agribusiness. The present
study uses deep learning techniques to estimate the cultivated area of planta-
tions using semantic segmentation with convolutional neural networks in satellite
images. As this application is still little explored in the agribusiness segment,
several contributions are included in this work. The main contributions can be
highlighted: (a) the construction of a satellite image dataset, which can help
other researchers, with the marking of eight classes identified in the terrestrial
coverage of plantation regions (b) the proposition of an architecture deep learn-
ing that helps to automate the inspection process of rural establishments for tax
purposes; and (c) the possibility of applying the proposed architecture to other
problems with remote sensing images.

2 Related Works

To solve segmentation problems of satellite images and aerial images of plan-
tations, the approaches found in the literature, in general, make use of deep
learning techniques. These works focus on datasets created by companies, gov-
ernments, universities and researchers. In the general case, datasets are usually
created specifically for the particularities of the research or application. Some of
these works are discussed in this section.

The Agriculture-Vision [8] dataset contains 21,061 aerial images of US farms
captured throughout 2019. The dataset consists of six classes that are cloud
shadow, double crop, crop failure, puddle water, water path and weed block.
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Agriculture-Vision is a dataset for semantic segmentation of multiple classes,
where these classes can overlap, for example, a puddle of water shaded by a cloud.
To solve this problem, [2] proposed a new fully convolutional neural network
architecture that they called AgriSegNet. AgriSegNet uses attention ports and
combines the result of segmenting the images in different resolutions reaching
47.96% of mean IoU.

The winner of the Agriculture-Vision challenge used a U-Net based architec-
ture and combined a Residual DenseNet with Squeeze-and-Excitation (SE) [7]
blocks. In addition, expert networks with the same architecture but with fewer
layers were used to segment less frequent classes such as crop failure and water
puddle. The result network in mean IoU was 63.9% obtaining the best average
performance of the competition.

The Slovenia Dataset and Oregon Dataset datasets were used to segment
vegetation regions in satellite images into three classes being trees, shrubs and
grass [3]. In this approach, the DeepLabV3+ [6] convolutional neural network
architecture was used, which achieved 78.0% accuracy in the Slovenia Dataset
and 78.9% in the Oregon Dataset.

A U-net based architecture [19] was used in [23] to segment land cover areas
in satellite images and classify them into different types of crops. The datasets
used were the BigEarthNet Dataset [21] which presents 44 land cover classes and
the CORINE Dataset [5] which was developed by the European Environmental
Agency and presents a variety of classes including types of plantation crops. The
architecture used was a modified U-net with a ResNet50 [11] in the encoder. The
method had an accuracy of 77% for plantation areas and 86% for forest areas.

Even though some datasets are already available in the literature for seg-
mentation of plantation and land cover regions, they do not present the level of
detail that is sought in this research and are not related to plantations in Brazil-
ian territory. Thus, in this study, a new dataset is built for this specific research
and will be available to other researchers. Most of the works used architectures
based on U-net and in this study architectures of this type are also tested.

3 Methodology

In this section, we describe the methodology proposed in this work to estimate
the cultivated area of plantations using semantic segmentation with convolu-
tional neural networks in satellite images. For this, the Building the Dataset
steps will be followed, which is subdivided into Image Acquisition and Anno-
tation, followed by the Pre-processing, Hyperparameter Adjustment, Network
Model training and Performance Evaluation steps. Figure 1 illustrates the pro-
posed methodology. Each of these steps is explained in the following sections.

3.1 Building the Dataset

From searches carried out in the literature, some image datasets were found for
segmentation of plantation areas. However, none of the datasets found presents
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Fig. 1. Metodology

the desired level of detail for the problem addressed, nor are they from Brazilian
areas with its most common vegetation and plantations. Thus, it was decided to
create its own dataset.

Image Acquisition. Image acquisition is done with the aid of the Google Earth
Engine (GEE) cloud-based geospatial processing platform. GEE is a satellite
image catalog and geospatial dataset that allows the user to view, manipulate,
edit and create spatial data [15]. The satellite used is Sentinel-2, which has
a spatial resolution of 10m in its 4 main bands and image updates every 10
days [18].

To facilitate the acquisition of the images, a continuous area of plantations of
78,590.5 km2 of total area and 1,233.8 km of perimeter was selected, as illustrated
in Fig. 2 a). Point A, in Fig. 2 a), is located at coordinates 10◦47’19.41”S and
46◦73’36.57”W and Point B at coordinates 14◦32’85.88”S and 44◦90 ’44.33”W.
The images corresponding to this area will be downloaded with the GEE API,
which allows defining the region of interest, a range of dates for the capture of
images by the satellite and allowing filtering by the probability of clouds for
images with better quality.

The Sentinel 2 satellite has a variety of bands that capture different informa-
tion from the Earth’s surface. For the purpose of this work, 4 bands of interest
were selected, which are the bands B2 (Blue), B3 (Green), B4 (Red) and B8
(Near Infra Red).

The image acquisition region covers a large expanse of land, so it is necessary
to fragment the region into blocks of lower resolution. The selected area was
fragmented in a tabular (or grid) form, composed of several blocks of 256× 256
resolution images, as shown in Fig. 2 c). The naming of the images will indicate
their position in the image grid so that larger areas can be reassembled.

Image Annotation. After the acquisition steps, masks are created containing
the marks of each class in the images. The tags will be used to carry out the
training and evaluation of the networks. The marking process is carried out with
the help of a tool for this purpose called Labelme [24].
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Fig. 2. a) Acquisition area. b) full image. c) 4 image blocks. (Color figure online)

The region of interest in this work is the area of cultivation of planta-
tions. To define the classes, the plantation cultivation area is divided into three
classes according to the plantation development stage: Plantation preparation
area (class 1) which is the region of soil prepared to receive planting, Young
planting (class 2) which is the initial stage of the plantation that mixes green
areas with still areas of soil and mature plantation (class 3) which are regions
where the plantation is developed. It was thought important to mark the paths
that normally delimit the plantations and were named as Plantation division
lines (Class 4). The fifth class represents areas of natural vegetation, green areas
that are not cultivated, called Grassland or Forest Areas (class 5). The other
classes are Areas of soil or rocks (class 6), Water (wetlands, lakes, rivers, etc.)
(class 7) and Dwelling Areas (class 8) which are artificial houses or buildings in
the farm regions. The definition of classes and marking of areas was based on
other datasets with similar intent: DeepGlobe Land Cover [10], LandCoverNet
[1] and the EOPatches Slovenia [3].

The image annotation process is carried out in three stages by different peo-
ple, where the first one makes the tagging of all the images, the second reviews
all the tags made by the first person and makes the necessary corrections. The
third person is an expert in the field of agriculture who reviews a sample of the
tagged images and informs them of the necessary adjustments. Figure 3 presents
some examples of tagged images.

3.2 Preprocessing

Two pre-processing images are used, one being a smoothing filter and the other
a color vegetation index. The smoothing filter used is the bilateral filter to pre-
serve the edges of objects in the images. Colored vegetation indices are used
in remote sensing of plantations and forests. These indices have the function of
accentuating a specific color, such as the green of the plantation [25]. The vege-
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Fig. 3. a), b), c) and d) are RGB images of the dataset and e), f), g) and h) are,
respectively, their annotations. (Color figure online)

tation index used was the Normalized Difference Vegetation Index (NDVI) [16]
which is defined by the following formula, where RED is the red color channel
and NIR is the Near Infra Red channel:

NDV I =
NIR − RED

NIR + RED
(1)

3.3 Segmentation with U-Net Architecture

Convolutional neural networks are biologically inspired models that can learn
features in a hierarchical fashion, specially designed to deal with variability in
two-dimensional data, such as images in matrix format [13]. Convolutional neural
networks consist of 3 layers: 1) convolution layer, which performs image filtering
operations, and filters are formed by weights that are adjusted by the network
during the training process, 2) subsampling layer, which reduces the image res-
olution at each step and 3) fully connected layer that is composed of neurons
that perform the classification at the output of the [13] network.

Convolutional neural networks establish the state of the art for the image clas-
sification problem. However, for image segmentation problems, both the input
to the network and the output to the network must be images. For this purpose,
Totally Convolutional Networks were proposed, where the network produces an
output in the same dimensions as the input image, performing a pixel-by-pixel
segmentation of the input image, as is the case of U-net [19] shown in Fig. 4.

The U-net gets its name from its U-shaped architecture. The left side of
the U-net is known as the encoder and is where the image enters and goes
through convolution, ReLU activation and sub-sampling operations. After the
input image goes through these operations, we call the result activation maps.
These operations increase the number of activation maps and reduce their resolu-
tion as they approach the center of the network, which is why it is also known as
the contraction path. In contrast, the right side of the U-net is known as expan-
sion path or decoder, where activation maps are increased resolutions with the
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Fig. 4. U-net architecture

up-convolution operation and activation maps are reduced with dropout opera-
tions. There is also an operation of copying the corresponding layer activation
maps from the encoder to the decoder. In the end, after going through a 1× 1
convolution and a sigmoid or softmax activation (the most common), the net-
work output is a segmentation mask that has a resolution equal to or very close
to the resolution of the input image.

3.4 Hyperparameter Optimization

Hyperparameters are parameters used to configure a Machine Learning model
that cannot be estimated directly from network learning and must be configured
before training a Machine Learning model, as they define the model architec-
ture [26].

In the Hyperparameters optimization step, the fully convolutional network is
trained with a combination of hyperparameters that are adjusted to optimize the
results. In the experiments of this work, the best combination of hyperparameters
that optimize the network performance is tested. The following are adjusted
(Table 1):

3.5 Performance Evaluation

Image segmentation performance is measured from the Intersection over Union
assessment metric, known as IoU. The metric mIoU (mean IoU) is defined below
with its mathematical formulation in Eq. 2, considering that GT is the real region
of the object, that Pred is the region predicted by the network and c is number
of components.

mIoU =
1
c

c∑

i=1

Area(GTi ∩ Predi)
Area(GTi ∪ Predi)

(2)

We also use metrics Precision (PRE), Recall and F-score, whose formulations
are described as a function of the True Positive (TP), False Negative (FN), False



10 W. C. S. Oliveira et al.

Table 1. Set of hyperparameters that will be tested

Hyperparameters Test set

Backbone VGG, ResNet, SeResNet, ResNext, SeResNext, SeNet,
DenseNet, Inception, InceptionResNet, MobileNet and
EfficientNet

Loss function Jaccard, Dice, Categorical Focal, Categorical Cross
Entropy and combinations

Batche size 2, 4, 6, 8, 10

Optimizer Adam, Ftrl, Adagrad, Adamax, RMSprop, SGD, Nadam

Positives (FP) and True Negatives (TN) [29].

PRE =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

Fscore =
2 × PRE × SEN

PRE + SEN
(5)

4 Experiments and Results

A dataset was created to segment plantation areas, where images were acquired
from the Sentinel-2 satellite and obtained through the Google Earth platform
with the selection of the necessary bands and fragmentation of the region of
interest in 9860 256 × 256 resolution image blocks. So far, 250 images have been
tagged that have gone through the review and correction stages.

4.1 Data Description

The dataset built contains 8 classes that can be used for a variety of types of
applications. In the experiments of this article, the 8 classes are not used sepa-
rately, but groupings of them, as the objective is to segment planting regions. In
Table 2 are presented the classes of each one of these steps and their correspon-
dence with the original classes of the dataset.

4.2 Hyperparameter Test

One hundred random combinations of hyperparameters were tested and the com-
bination with the best result is Backbone: EfficientNetB7, Batch Size: 8, Loss
Function: Binary Focal Loss and Optimizer: Adam.
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Table 2. Definition of study classes.

Step 1 classes Original dataset classes

Plantation Mature Plantation

Young Plantation

Soil Prepared for Planting

Non-plantation Path/Road in the Plantation

Grass or Forest

Sand or Rock

Water

Building

4.3 Segmentation of Plantation Areas

The network input is composed of four bands of satellite images which were the
RGB and NIR bands. Visual results are shown in Fig. 5, with the segmentation
of Plantation areas represented in dark green color and Non-Plantation areas
represented in gold color. We can see in the example images that the planting
areas are well delimited and visually close to the ground truth (GT) segmentation
but contain apparent segmentation error noises that can be improved with a
post-processing step.

Fig. 5. In the first line some images in RGB, in the central line the true segmentation
mask for the Planting and Non-Planting classes and in the last line the result of the
network segmentation. Images 1, 2, 4, 8 and 10 are of farms, images 3 and 6 are of
urban areas with a river/lake and images 5, 7 and 9 are of rocky areas. (Color figure
online)

The numerical results of the segmentation are presented in Table 4 and are
consistent with the observations of the visual results. The mean IoU had a result
of 84.04%, which can be considered a median result for medical applications
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due to the critically of the application, but is a reasonably consistent result for
an agricultural and satellite imagery application. Precision, Recall and F-score
results had results above 90% (Table 3).

Table 3. Numerical result of the metrics of U-net architecture.

Class IoU Precision Recall F-score

Plantation 88.26% 94.83% 92.57% 93.67%

No Plantation 79.81% 86.92% 90.41% 88.57%

Mean 84.04% 90.87% 91.49% 91.12%

It was not possible to make a direct comparison (planting/non-planting seg-
mentation area) with other works, but for a general comparison, the works cited
in the Related Works section had the following results:

Table 4. Related works results

Author Model Dataset Task Result

[2] AgriSegNet [2] Agriculture-
Vision [8]

Segmentation 6
plantation classes

47.96% mIoU

[7] U-net based
architecture [19]

Agriculture-
Vision [8]

Segmentation 6
plantation classes

63.9% mIoU

[3] DeepLabV3+ [6] Slovenia Dataset Segmentation
trees, shrubs and
grass

78.0% accuracy

[23] U-net based
architecture [19]

BigEarthNet
Dataset [21] +
CORINE Dataset [5]

Segmentation
plantation areas

77% accuracy

5 Conclusion

In this work, a method for plantation area segmentation was presented and as a
contribution the work also included the creation of a plantation area segmenta-
tion dataset. The network hyperparameters were adjusted considering the U-net
backbone, the optimizer, loss function and batch size. The best combination of
hyperparameters was obtained to U-net returned mean IoU results above 80%.
The main contributions achieved are the construction of a satellite image dataset
that can help other researchers in similar studies; and the creation of a method
for the segmentation of plantation areas that can be used as one of the ini-
tial steps of an automated process of inspection of rural establishments for tax
purposes.
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As future work, the next step for creating an automated inspection process
for rural establishments for tax purposes is to use the predicted segmentation
area to estimate production in weight measurement units and compare with
official data declared by rural producers for the tax administration. Various
optimizations can be made to the network architecture such as using another
base architecture in place of U-net, such as the DeepLab architecture, or creating
a new architecture. Finally, it is still recommended to increase the number of
images in the dataset and test other pre-processing possibilities.
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na agropecuária brasileira. Agric. São Paulo, SP (50), 15–27 (2003)
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9. Cristóvam, J.S.d.S., Saikali, L.B., Sousa, T.P.d.: Governo digital na implementação
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Abstract. Machine Learning (ML) has been gaining prominence in
health, research and engineering, but despite the wide use of its pre-
dictive results, users of ML systems often have a poor understanding
of its operation. In general, many algorithms have a so-called “black
box” structure, whose logic is not interpretable. Therefore, there is a
line of research dedicated to clarifying how models make their decisions.
In this context, Item Response Theory (IRT), widely applied in educa-
tional tests, can be an alternative for understanding and interpreting ML
models. IRT consists in logistic models that relate given responses given
to the items with skills of their respondents and to the items param-
eters, such as: difficulty, discrimination and guessing. In this work, we
are interested in characterizing the ML instances according to the IRT
parameters, and establishing criteria for instance augmentation, as a way
to make them easier for the model, without modifying its performance.
To this end, we divided the study into two experiments: the first one
consists in increasing the items of greater difficulty, discrimination and
guessing, adding noise to them; and the second one consists of reduc-
ing a class and increasing it progressively observing the change in the
item’s parameters. The results show that the increase in fact causes a
reduction in the values of the IRT parameters, and that there is a pro-
portional relationship between them, without affecting the accuracy of
the models. In this sense, it is possible to observe a relationship between
the IRT parameters and its decision power in the model, and therefore,
unfolding it as a promising tool for understanding ML models.

Keywords: Machine learning · Interpretability · Item response theory

1 Introduction

Machine Learning (ML) is a set of mathematical techniques that use example
data to approximate a function, which creates a mapping between input and
desired output data. ML has been used for pattern recognition, classification and
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prediction [1], but despite the wide applicability of ML algorithms in solving real
problems, one of the difficulties of its usage is the low interpretability. Many of
the ML models are black boxes that don’t explain their options in a way that
humans understand. This lack of transparency and accountability of predictive
models can have serious consequences in criminal justice, medicine and other
domains [2]. A missing step in the construction of a ML model is precisely an
explanation of its logic, expressed in an understandable and readable format,
which highlights the videos seized by the model, allowing to understand and
validate its decision reasoning [7].

Even without a mathematical definition for interpretability, it can be under-
stood as the degree to which a human being can understand the cause of a
decision on a model [3]. Interpretability in ML refers to methods and models
that make behavior and predictions in ML systems understandable to human
language [4].

Understanding how models make their decisions is important because: i) in
many cases, researchers are related to the biological significance of the predictive
model rather than the predictive accuracy of the model [5], that is, for certain
problems obtaining the prediction alone (what) is not enough, the model should
also explain how to reach at the prediction (why) [6] ii) possible biases and arti-
facts hidden in the data can lead to unfair or unethical decisions [4] and knowing
more about how the decision process is made can help to understand more about
the data and flaws of the model [6] iii) an explanation of the decision mecha-
nisms in an understandable and readable format to comprehend and validate
the decision [7]. This validation can be useful to detect bias in ML models [6].

There are some methods that aim to interpret ML models, such as: (1) Per-
mutation Feature Importance [8]; (2) Partial Dependence Plot [9]; (3) Individual
Conditional Expectation Plot [10]; (4) Accumulated Local Effects [11]. However,
these methods have some disadvantages, such as: computational cost, leading to
processing slowness; dependence on human interpretability, in cases of graphic
visualization; dimensional limitation, since the graphic visualization is limited
to three dimensions; they are based only on the analysis of model attributes.

Item Response Theory (IRT), widely applied mainly in educational testing
and psychometric assessment [12], is an alternative that is already being used
for understanding and interpreting ML models [13]. The application of IRT as
an adaptive tool is suggested as a new perspective for a better understanding
of the results of machine learning experiments and, by extension, other artificial
intelligence experiments [13]. The IRT considers a set of models that associate
the predictions given to the item with the latent abilities of the respondents [14].
In this model, the probability of a correct answer is a function of the student’s
skill and the difficulty of the item [15]. In order to derive the respondent’s skill
score, Item Characteristic Curves (ICC) are used to represent the probability of
choosing the correct item given the subject’s skill [12].

One way to use the idea of IRT with ML is to consider each sample data in
the training set as an item in a questionnaire and each ML model as a respon-
dent. This approach can bring advantages over classical interpretation methods,
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such as: better assessment of model skills; identification of the most difficult
instances; measurement of the classifier’s proficiency level; and the probability
that a classifier can correctly classify the situation without actually learning the
features of the training data, called a guessing parameter.

In this article, we will present the IRT approach as an alternative for inter-
preting ML models, as well as a way to evaluate classifiers by their level of
proficiency, and classify instances by their level of difficulty. The purpose is to
use IRT to obtain instance-level characteristics, such as discrimination and diffi-
culty, and use them as a guide for instance augmentation, that is, as a method to
identify which examples need data augmentation. The hypothesis of this work is
that we can, with IRT, characterize the problematic items for learning the algo-
rithm, interpret these items and improve learning by collecting more examples
of training, similar to the problematic items. The increase in examples aims to
make difficult instances easier, as classifiers start to classify more variations of
that same instance until they perform well.

In [13], Martinez et al. uses IRT parameters to provide important information
about the proficiency level of the classifiers, using their coefficients as metrics to
evaluate the models and verify how these models are improving over time. They
sought to interpret IRT parameters for application in machine learning, detail-
ing what each coefficient can say about its dataset or about the model. Unlike
Martinez, here we are performing an application of IRT results to guide data
augmentation and improve prediction results. Despite the different approach, we
used a lot of the theory provided by Martinez et al. to interpret our results.

The rest of the article is organized as follows. Section 2 provides an overview
of the IRT. Section 3 details the dataset, packages and experiments performed.
Finally, Sect. 4 presents the results and discussion.

2 Item Response Theory

IRT is a set of mathematical models that seek to represent the probability of an
individual giving a certain answer to an item [16]. It is a logistic mathematical
function that depends on the item parameters and the respondent’s ability (or
abilities). The models presented in this work are formulations valid only for the
analysis of items of a dichotomous nature, that is, subject to only two answers
(true or false; right or wrong; 1 or 0). Dichotomous logistic models can have 1,
2, 3 and 4 parameters, which consider, respectively: (1) only the difficulty of the
item; (2) difficulty and discrimination; (3) difficulty, discrimination and guessing;
(4) the first three parameters, in addition to the upper and lower limits, which
represent the maximum or minimum probability of getting a certain item right.

Of the models proposed by IRT, the 3-parameter logistic model is given by:

P (Uij = 1|θj) = ci + (1 − ci)
1

1 + e−Dai(θj−bi)

with i = 1, 2, · · · , I, e j = 1, 2, · · · , n, where:

θi represents the skill (latent trait) of the j-th individual.
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P (Uij = 1|θj) is the probability that an individual j with skill θj will correctly
answer the item i and is called an Item Response Function (IRF).

bi is the difficulty (or position) parameter of the i item, measured on the same
scale as the skill.

ai is the discrimination (or slope) parameter of item i, with a value proportional
to the slope of the Item Characteristic Curve (ICC) at point bi.

ci is the item parameter that represents the probability of individuals with low
ability to correctly answer the item i (often referred to as the chance of hitting,
or guessing).

D is a scaling factor, constant is equal to 1. The value 1.7 is used when you want
the logistic function to provide similar results to the normal ogive.

3 Methodology

The method consists of applying the IRT model to a controlled experiment
using an image database well known in the AI/ML/Data Science community,
commonly used as a reference to validate their algorithms, the Fashion MNIST.

3.1 Data

Fashion MNIST is a clothing image dataset. The database has a training set of
60.000 examples and a test set of 10.000 examples. Each example consists of a
grayscale image of 28× 28 pixels, associated with a label of 10 classes, including:
0 - shirt; 1 - pants; 2 - sweater; 3 - dress; 4 - coat; 5 - sandals; 6 - shirt; 7 -
tennis; 8 - bag; 9 - boots. The Fashion MNIST set is very similar to the popular
MNIST set, sharing the same image size and division structure between training
and testing, however, the Fashion MNIST proves to be a more robust set, due
to the greater complexity of its images.

3.2 Experiment Design

In order to verify the initial hypothesis, we divided the work into two exper-
iments. The first experiment seeks to answer the first question of the work:
“Does increasing the training examples really reduce the item’s difficulty?”; and
the second experiment aims to determine the effect on the IRT indices from the
proportional increase, with the goal finding out if the difficulty, discrimination
and guessing exhibit a behavior proportional to the increase of examples.

To answer this questions, we will resample the most difficult, discriminating
and guessing items, and we will verify the item parameters behavior, as well as
the model accuracy with the resampling.

In [13], there is a suggestion to remove items with low discrimination as a
way to improve the assessment of classifiers, leaving only those instances that
better discriminate good models from bad models. However, doing this can mean
removing a noise or only instances that are well labeled, hence, unlike Martinez
et al. proposes, we do not remove instances with bad coefficients, but rather
increase the instances that are favorable to our results.
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Experiment 1. The experiment consists of loading the entire dataset of images,
and performing classification training with six ML models: Decision Trees; Ran-
dom Forests; Neural networks; AdaBoost; Naive Bayes; and Quadratic Discrim-
inant Analysis (QDA). In the second stage of the experiment, 100 examples of
each class of the test set are selected. With the dichotomous prediction results
for the 100 items (zero for a wrong prediction, and 1 for a correct prediction),
the IRT model is used to identify item characteristics such as difficulty, discrim-
ination, and guesswork.

Obtaining the most difficult item, it is increased by 1.000 times and its coef-
ficient of difficulty is checked. The same is true for the most discriminating and
highest guessing item. Enhancement the items is performed by replicating the
item and using common strategies in data augmentation such as adding noise,
rotation, magnification and sharpening of the image to it, like [17].

Experiment 2. The experiment consists of loading the image dataset, reducing
the number of training examples of the first class of the dataset (class: shirt) and
then performing classification training with the same six AM models. Training
set reduction happens gradually with each iteration by: 90%, 75%, 50%, 25%,
and 10%.

The purpose of this experiment is to see if the increased rate of training
examples for a class affects the parameters of each item. It includes both the
items the class that underwent augmentation, as well as the other classes.

4 Results and Discussion

4.1 Experiment 1

When applying IRT to the test set predictions, we took the indices whose coef-
ficients were the highest. We perform the 1.000-fold augmentation from these
items and look at the new coefficients. This experiment was performed 10 times
and the mean of the coefficients was obtained. Table 1 shows the average of the
original item coefficients (no augmentation) and the coefficients after augmenta-
tion. Table 2 shows the average of the original accuracies (no augmentation) for
each classifier, and accuracies after augmentation by discrimination, by difficulty
and by guessing.

Table 1. IRT coefficients for classifications with and without augmentation.

Coefficients Original Augmented

Discrimination (a) 4.978 3.971

Difficulty (b) 7.111 4.072

Guessing(c) 0.393 0.250
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Table 2. Model accuracies for classification of the original dataset, and the dataset
augmented by discrimination, by difficulty, and by guessing.

Classifiers Original Augmented by
discrimination

Augmented
by difficulty

Augmented
by guessing

Decision tree 0.6938 0.6929 0.6935 0.6944

Random forest 0.678 0.6742 0.6802 0.6985

Neural net 0.8526 0.8534 0.8557 0.8514

Ada boost 0.5425 0.5396 0.5505 0.5676

Naive bayes 0.5856 0.5786 0.5687 0.5639

QDA 0.5715 0.5584 0.5597 0.5677

It can be noted that three coefficients were, in fact, reduced (Table 1) (Reduc-
tions: a: 20.23%; b: 42.74%; c: 36.39%), while the classifiers accuracy remained,
i.e., the augmentation promoted a reduction in the IRT parameters, without
changing classifiers efficiency (Table 2).

4.2 Experiment 2

The relationship between difficulty and augmentation is represented by the
Fig. 1. The boxplot represents the distribution of the difficulty coefficients for
all items analyzed by the IRT, including items from the non-augmented class. It
is possible to observe that there was a decrease in item difficulty when increasing
the number of examples by 75% of the original size. Increases below that did not
cause a significant change in the difficulty parameter.

With the box plot, we were able to analyze the behavior of the difficulty
in general, but the confidence interval presented is large, so we cannot infer
much about the graphs. This fact occurs because the increase in a class does not
change the difficulty behavior of the entire system, but rather specifically for
the augmented class. In order to verify the variation of the difficulty parameter
by class, the calculation of the average difficulty of the items in the same class
for each increase was performed. To verify the effect of individual augmentation,
we plot the difficulty curve for each class (Fig. 2), and each color indicates a
garment in the dataset. Figure 2, it is possible to observe that the “T-shirt”
class, which has been increased, is a curve that exhibits a greater variation in
difficulty, decreasing as the number of examples increases.

The relationship between discrimination and augmentation is represented by
Fig. 3. From the 75% rate of increase, the discrimination of the dataset increases
considerably. This means that the data is now more easily differentiating between
good and bad classifiers.

As a way to verify the classes that most contribute to this behavior, we
performed an individual analysis of the class considering the average of discrim-
ination for each increase rate (Fig. 4).
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Fig. 1. Discrimination versus augmen-
tation rate

Fig. 2. Average discrimination per
class versus augmentation rate

The Fig. 4 shows that all classes exhibit the same behavior, remaining con-
stant up to 50% and increasing from that rate. Despite the similar behavior, the
T-shirt and boot weight classes had the greatest discriminating power.

Fig. 3. Difficulty versus augmentation
rate

Fig. 4. Average difficulty per class ver-
sus augmentation rate

The same analysis was performed for the guessing parameter of the IRT
model. Figure shows that there is a drop in guessing for training models from
the 75% rate of increase for one class (Figs. 5 and 6).

Analysing individual classes, it is possible to observe that there is a tendency
of decreasing guesswork as the examples increase. However, by increasing the
rate to 95%, the guessing increases. In addition, it is possible to identify that
the T-shirt class is the class with the lowest guessing coefficient, decreasing from
the rate of 75%.
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Fig. 5. Guessing versus augmentation
rate

Fig. 6. Average guessing per class ver-
sus augmentation rate

The accuracy measure characterizes the hit rate per classification model.
To evaluate the accuracy by item class we divided the instances into 6 bins
ordered by the difficulty parameter, like [12]. For each bin, we calculate the
average difficulty of the instances in the bin, and calculate the frequency of
right responses of the classifier. With the sum of hits, we calculate the accuracy
through the sum of correct predictions for each class, divided by the number of
examples in that class. The result of the accuracy by class is presented as the
average of all accuracies at each increase rate. On the x-axis we have the rate of
increase divided into 6 bins, and on the y-axis we have the average accuracy for
each bin.

Fig. 7. Accuracy per class versus augmentation rate

Figure 7 demonstrates that the accuracy remains practically constant for all
classes, with the exception of the t-shirt class, whose accuracy increases linearly
up to 50% enhancement. This suggests that the augmentation contributes posi-
tively to increasing the accuracy of the predictive model, however this increase
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occurs up to 50%, an iteration in which most classification models saturate,
reaching their maximum limit and therefore the accuracy value remains con-
stant for higher rise rates. Furthermore, it is possible to observe that there is
no change in the accuracy of the other classes, therefore, for this dataset, the
enhancement is beneficial and specific, i.e., it does not influence the accuracy of
the model for non-augmented classes.

In [13], Martinez et al. performs the analysis of proficiency through the Char-
acteristic Curve of the Classifier (CCC) that shows the relationship between
difficulty and accuracy for each classifier. The result is similar to ours, how-
ever we evaluated the relationship between accuracy and augmentation rate for
each class. But, knowing through experiment 1 and 2 that the rate of increase is
directly proportional to the difficulty coefficient, and knowing that the result per
class is an average of the six classifiers, it is possible to draw a parallel between
the results obtained by Martinez et al. and this one. For example, at Martinez,
the accuracy is lower for higher difficulty values, as can be seen from the blue
curve in 7.

5 Conclusion

The work found a reliable relation between the increase of data points for train-
ing and change in the IRT parameters, showing that it is possible to increase the
instances without modifying the accuracy of the models. This strategy can be
useful in data augmentation and small data scenarios where difficult parameter
from IRT can be employed to identify problematic items. However, IRT alone
does not help us to interpret ML models in a broad way. For this, it would be
necessary to combine IRT with some tools for visualizing the items and the deci-
sion boundaries. With these visualizations we can determine if an item labeled
as difficult is in a noisy or in a misclassified region. In future works, we intend
to apply IRT in conjunction with a decision boundary map to visualize where
the most difficult, more discriminating and highest guessing items are located on
the boundary and find out if it is possible to change the boundary by increasing
examples.

References

1. Tarca, A., Carey, V., Chen, X., Romero, R.: Machine learning and its applications
to biology. PLoS Comput. Biol. 3(6), e116 (2007)

2. Rudin, C.: Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. Nat. Mach. Intell. 1, 206–215 (2019)

3. Miller, T.: Explanation in artificial intelligence: insights from the social sciences.
Artif. Intell. 267, 1–38 (2019)

4. Pedreschi, D., Giannotti, F., Guidotti, R., Monreale, A., Ruggieri, S., Turini, F.:
Meaningful explanations of Black Box AI decision systems. In: Proceedings of the
AAAI Conference on Artificial Intelligence, pp. 9780–9784 (2019)

5. Xu, C., Jackson, S.: Machine learning and complex biological data. Genome. Biol.
20, 76 (2019). https://doi.org/10.1186/s13059-019-1689-0

https://doi.org/10.1186/s13059-019-1689-0


24 J. Dias et al.

6. Molnar, C.: Interpretable Machine Learning. Lulu.com, Leanpub, Victoria (2020)
7. Kroll, J., Huey, J., Barocas, S., Felten, E., Reidenberg, J., Robinson, D., Yu, H.:

Accountable algorithms. Univ. Pennsylvania Law Rev. (2017)
8. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001). https://doi.org/10.

1023/A:1010933404324
9. Friedman, J.: Greedy function approximation: a gradient boosting machine. Ann.

Stat JSTOR. 1189–1232 (2001)
10. Goldstein, A., Kapelner, A., Bleich, J., Kapelner, A.: Package ‘ICEbox’ (2017)
11. Apley, D., Zhu, J.: Visualizing the effects of predictor variables in black box super-

vised learning models. J. Royal Stat. Soc. Ser. B (Stat. Methodol.). 82(4), 1059–
1086 (2020)
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Av. Getúlio Vargas, 335 - Quitandinha, Petrópolis, RJ, Brazil
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Abstract. This paper presents a new approach to exploring sparse and
binary convolutional filters in traditional Convolutional Neural Networks
(CNN). Recent advances in the integration of Deep Learning archi-
tectures, particularly in mobile autonomous robotics applications, have
motivated several researches to overcome the challenges related to the
limitations of computational resources. One of the biggest challenges
in the area, is the development of applications to address the Loop
Closure Detection problem in Simultaneous Localization and Mapping
(SLAM) systems. For such application, it is necessary to use exhaus-
tive computational power. Nevertheless, resource optimization of Con-
volutional Neural Network models enhances the capability of integra-
tion. Therefore, we propose the reformulation of convolutional layers
through Local Binary Descriptors (LBD) to achieve this kind of opti-
mization of CNN’s resources. This paper discusses the evaluation of a
Bag of Visual Features (BoVF) approach, extracting features through
local descriptors (e.g., SIFT, SURF, KAZE), and local binary descrip-
tors (e.g., BRIEF, ORB, BRISK, AKAZE, FREAK). The descriptors
were evaluated in the recognition and classification steps using six visual
datasets (i.e., MNIST, JAFFE, Extended CK+, FEI, CIFAR-10, and
FER-2013) through a Multilayer Perceptron (MLP) classifier. Experi-
mentally, we demonstrated the feasibility of producing promising results
by combining BoVF with MLP classifier. Additionally, we can assume
that the computed descriptors generated by a Local Binary Descriptor
alongside the proposed hybrid DNN (Deep Neural Network) architecture
can satisfactorily accomplish the results for the optimization of a CNN’s
resources applied to the Loop Closure Detection problem.
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1 Introduction

An important issue addressed by mobile robots is the Simultaneous Localization
and Mapping (SLAM) problem [18], where consists in solving complex tasks,
such as mapping and localization. Unfortunately, these two tasks cannot perform
independently; that is, they act in a complementary way. A growing interest in
using cameras as a cheap alternative to inertial sensors and lasers for SLAM
mapping and localization tasks emerged [5], proving that it is possible to com-
bine Computer Vision (CV) techniques with the SLAM problem, acknowledged
in the literature as vision-based SLAM—VSLAM. Dynamic environments, light-
ning changes, low frame rate with high-speed performance, and Loop Closure
Detection (LCD) are in the area of VSLAM topics of relevance that becomes
challenging tasks, as society’s need for autonomous robots increasingly cheaper,
more robust, and efficient arises, which CV can provide us with those tech-
niques. In the last two decades, the growing research in Pattern Recognition
(PR) and Machine Learning (ML) based on Deep Learning (DL) has leveraged
the emergence of several techniques to address the problem of VSLAM. Tech-
niques like Convolutional Neural Network (CNN) [45] and Recurrent Neural
Network (RNN) [38] provide excellent results in the Feature Extraction process
and classification patterns in visual data and in VSLAM tasks [14,43]. From this
point of view, we are strongly motivated to develop a system capable of solving
the LCD problem with cheap and efficient computational performance, discard-
ing the use of resources such as distance sensors and lasers, which commonly are
expensive and demand a high computational complexity.

In this paper, we propose the development of an adaptation of a hybrid Deep
Neural Network (DNN) architecture: the Long-term Recurrent Convolutional
Network (LRCN) [17] (known by its more generic name and widespread in the
literature: CNN LSTM), for integration with a VSLAM system with the Robotic
Operating System (ROS) and simulator Gazebo for NVIDIA JetBot with Jetson
Nano. Figure 1 shows a flowchart of the proposed system, where consists of the
following steps:

Fig. 1. Flowchart of the proposed system. (a) represents the Input step; (b) represents
the Feature Representation step; (c) represents the Feature Extraction step; and (d)
represents the Loop Closure Detection step.
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– (a) Input: The purpose of this step consists in the configuration and cali-
bration of the monocular camera to obtain sequential images (video). This
step consists of preprocessing the sequential images obtained, such as chang-
ing the RGB color mode pattern (most typical) to grayscale (Local Feature
Descriptors and Local Binary Descriptors only work with input images in
the grayscale color mode pattern), and it also consists in the application of
resizing sequential images obtained in different sizes;

– (b) Feature Representation: The purpose of this step is to produce a Feature
Detection process and then compute the descriptors through the Local Binary
Descriptors that will be chosen at the end of the experiments presented in
this paper;

– (c) Feature Extraction: The purpose of this step is to reformulate the same
computed descriptors obtained in the previous step through the Local Binary
Descriptors into convolutional filters. We expect that the adaptation of the
proposed CNN architecture achieves the same goals as standard CNN archi-
tecture. This step’s ultimate purpose is to adapt a hybrid Deep Neural
Network architecture—the CNN LSTM. Its challenge is to investigate the
best methods to achieve the reformulation and implementation of descriptors
through convolutional filters to produce a sparse and binary model as an effi-
cient alternative to standard CNNs, which will be integrated into a hybrid
DNN architecture;

– (d) Loop Closure Detection: The purpose of this step is to implement LCD
in a VSLAM system itself. Therefore, the LCD will be based on the hybrid
DNN architecture developed in the previous step.

To achieve the development of the proposed system, this paper aims primar-
ily to cover experimental and preliminary simulation work. Where comprises the
evaluation of a Bag of Visual Features (BoVF) [39] approach, extracting features
through Local Feature Descriptors and Local Binary Descriptors for the tasks of
recognition and classification on six visual datasets (MNIST [24], JAFFE [29],
Extended CK+ [22,28], FEI [41], CIFAR-10 [23], and FER-2013 [19]) through
the Multilayer Perceptron (MLP) [31] classifier. By evaluating good results and
efficiency of each descriptor alongside the MLP classifier, empirically, it can
be assumed that the computed descriptors can accomplish satisfactory results
alongside the CNN architecture, that is, as a convolutional filter. For choosing
the best Local Binary Descriptors was determined to evaluate the efficiency of
five Local Binary Descriptors renowned in the literature and SLAM applica-
tions: Binary Robust Independent Elementary Features (BRIEF) [10,11], Ori-
ented FAST and Rotated BRIEF (ORB) [37], Binary Robust Invariant Scalable
Keypoints (BRISK) [25], Accelerated KAZE (AKAZE) [2], and Fast Retina Key-
point (FREAK) [1]. Additionally, three Local Feature Descriptors renowned in
the literature and SLAM applications were evaluated too: Scale Invariant Feature
Transform (SIFT) [26,27], Speeded-up Robust Features (SURF) [7], and KAZE
[3]. We expect that the experiment and preliminary simulations lead us to the
right choice of a Local Binary Descriptor (see Sect. 2) that will be addressed
in this work’s next steps. Then, we present another partial experiment that
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consists of performing Feature Detection and Description in step (b) using the
Local Binary Descriptor chosen in the previous experiment and preliminary sim-
ulations and reformulated in step (c) into convolutional filters of the proposed
system’s CNN architecture, shown in Fig. 1.

In addition to the Introduction, this paper is organized as follows: in Sect. 2
a brief literature review is presented, covering other works related to this paper.
Section 3 presents the methodologies adopted for the development of this work.
In Sect. 4, the experimental configuration and the results of the experiments and
simulations carried out during the development of this work so far. Furthermore,
in Sect. 5, a brief discussion of this work is presented, as well as this work’s next
steps to be carried out in the upcoming months.

2 Related Works

One of the significant steps in the proposed methodology in this work is to detect
keypoints and compute descriptors in sequential images, as shown in Fig. 1. We
intend to perform Feature Detection and Description in step (b) of the proposed
system—an essential method for VSLAM systems. There are many algorithms
for this purpose. The efficiency between these algorithms can be seen in several
works performed by the scientific community, in which the analyses and evalu-
ations were applied [12,33]. In highlight, [20] presents the performance evalua-
tion between different Local Binary Descriptors and different pairs of detectors
and descriptors. The authors evaluate the performance among three descriptors:
BRIEF, ORB, and BRISK, while using the SIFT and SURF descriptors as a
baseline. In [8], the authors present an evaluation of Local Binary Descriptors
such as BRIEF, ORB, BRISK, and FREAK. The results show that BRISK is
the descriptor with the highest number of best matches and the highest percent-
age of accuracy compared to each Local Binary Descriptors. After the literature
review and comparative analysis, it is possible to see in Table 1 a summary of
each descriptor’s invariance.

Table 1. Invariance of Descriptors.

Detector Descriptor Rotation Scale Brightness Viewpoint

SIFT SIFT � � � �
SURF SURF � � � �
KAZE KAZE � � x x

- BRIEF x x � x

ORB ORB � x � x

BRISK BRISK � � � �
- FREAK � � � x

AKAZE AKAZE � � x x
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However, recent research indicates that based on CNN architecture tech-
niques outperforms the handcrafted resources for representing images in a mean-
ingful way explored in robotics. In [16], the authors provide a comparative
study of three distinct classes of Local Feature Descriptors in which handcrafted
resources, trained CNN, and pre-trained CNN were used. The work aimed to
evaluate its efficiency for combining keypoints in robotics applications, taking
into account descriptors’ ability to deal with conditional changes (e.g., lighting
and viewpoint). The final results of the comparative study carried out show
that: (a) the handcrafted descriptors compared with any CNN-based descriptor
method are not competitive; (b) regarding changes of viewpoint, the trained
CNN-based descriptor methods perform better than the pre-trained CNN-based
descriptor methods; (c) in contrast, regarding changes of lighting, the pre-trained
CNN-based descriptor methods perform better than the trained CNN-based
descriptor methods; nonetheless, they consume much memory.

In the proposed methodology, another significant step is to perform a Feature
Extraction in sequential images that cross step (b) to step (c) of the proposed sys-
tem, as shown in Fig. 1. We intend to perform Feature Extraction with a trained
CNN-based descriptor method due to the good results already presented. The
idea of combining these two techniques is not new [4,6], however, to generate
a hybrid DNN architecture with efficient computational performance, reducing
computational complexity compared to other hybrid DNN architectures, it was
decided to reformulate the computed descriptors into convolutional filters with
sparse and binary nature of convolutional layers of the proposed CNN archi-
tecture. This type of reformulation is feasible, as shown in [21], in which the
authors propose the Local Binary Convolution (LBC), a compelling alternative
to the convolutional layer in standard CNN architectures, which to reduce the
computational complexity in standard CNN architecture, the authors present
Local Binary Convolutional Neural Networks (LBCNN), a novel architecture
based on the principles of Local Binary Patters (LBP). Additionally, the LBC
layer reduces the model’s complexity due to its sparse and binary nature, con-
sequently, reducing the computational and memory requirements, becoming an
applicable model in real-world environments with scarce and limited resources.

As already commented, this paper discusses the evaluation of the BoVF app-
roach, a classic technique for image classification, widely disseminated by the
scientific community. This is one of the essential methods used in the CV field,
also known as Bag of Visual Words (BoVW) and inspired by a Bag of Words
(BoW) [9] approach, a technique widely used in document classification) through
MLP classifier. BoVF is a simple and low computational cost approach in which
the general idea is to represent each image sample presented into a visual dataset
as a frequency histogram of visual features of each feature present in the dic-
tionary of visual features. Some other works that use the principle of the BoVF
approach can be shown in [15,32].

Another significant step in the methodology proposed in this work is inte-
grating the system shown in Fig. 1 with a VSLAM system of a mobile robotic
platform. There has been a growing interest in the scientific community in the
evaluation and use of NVIDIA’s Jetson Nano for VSLAM systems [34,36].



32 A. M. R. da Silva et al.

3 Proposed Approach

To better understand the BoVF approach with the MLP classifier, we will present
in detail the techniques used in each step of the BoVF approach, followed by the
behavior of the MLP model used in this experiment and preliminary simulation.

3.1 Bag of Visual Features

Briefly, the BoVF approach can be divided into three steps: (a) Feature Repre-
sentation step; (b) Visual Vocabulary Generation step; and (c) Image Represen-
tation step. We can see these steps in more detail below:

Feature Representation. Finding interesting features in images is the func-
tion of a Local Feature Descriptor or a Local Binary Descriptor. This task
becomes essential in applications of topics related to CV and PR, as in the
case of a Structure from Motion (SfM), Object Detection, and Content-based
Image Retrieval (CBIR). In this work, we use the term keypoint to discrimi-
nate an interesting feature. To recognize those keypoints, it uses the Feature
Detection step. Through the Feature Description step, it is possible to obtain
information about each interesting feature.

It is possible to perform Feature Matching (FM) because, ideally, it is
expected that such information obtained is invariant concerning the transfor-
mation of some form (e.g., rotation, scale, brightness, or viewpoint) of an image.
In this way, it is possible to find that feature again. It was determined the eval-
uation of the efficiency of five Local Binary Descriptors: BRIEF, ORB, BRISK,
AKAZE, and FREAK. Additionally, three Local Feature Descriptors were eval-
uated too: SIFT, SURF, and KAZE. Through the descriptors already presented,
the keypoints will be detected from an input image (presented in both train-
ing and test samples on each visual dataset), and then the interesting features
(descriptors) will be computed. At the end of this operation, it was obtained a
feature vector with dimensions number of keypoints × number of descriptors.

Visual Vocabulary Generation. Now, it is needed to generate the dictionary
of possible visual vocabulary over the collection of feature vectors. To learn the
visual vocabulary, generally, a clustering algorithm is performed. For this experi-
ment, we decided to use the unsupervised learning K-Means clustering algorithm.
K-Means clustering is a standard algorithm used to partition samples into k dis-
tinct clusters, grouping samples with relevant features. Therefore, considering a
visual dataset T , where each n keypoints is represented by a d -dimensional real
vector:

T = {xi}ni=1 (1)

The K-Means clustering algorithm aims to partition the n keypoints into
k(≤ n) distinct clusters C = {c1, c2, ..., ck}. Therefore, for each, Ci a µi centroid
is associated with it. In this way, we can establish µi as the average of every
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element of the cluster, where ni is the number of elements in each cluster Ci,
that is:

µi =
1
ni

∑

xj∈Ci

xj (2)

As mentioned above, the K-means clustering algorithm aims to partition the
n keypoints into k(≤ n) distinct clusters, in which the resulting distribution is
the one that each keypoint is close to the others within the same cluster. Thus,
it is assumed that the closer, the more similar they are. In other words, the K-
means clustering algorithm aims to minimize an objective function, in this case,
the Sum of Squared Errors (SSE) of the distance of each keypoint concerning its
distance to centroids:

J =
k∑

j=1

n∑

i=1

∥∥∥x(j)
i − µi

∥∥∥
2

(3)

In the Eq. 3, J represents the objective function, k the number of clusters, n
the number of cases, and

∥∥∥x(j)
i − µi

∥∥∥ the Euclidean distance between a keypoint
xi and a centroid µi. Thus, the K-means clustering algorithm returns the center
(centroid) of each group (cluster), and each cluster center will be treated as the
vocabulary of the visual dictionary (acting as a visual feature).

Image Representation. Finally, each cluster’s frequencies are calculated
(computed for both the training-set and test-set), resulting in a Histogram of
Visual Features, none other than the BoVF. Finally, the Histogram of Visual
Features can be used later with a classifier (e.g., K-Nearest Neighbors (K-NN),
Support Vector Machine (SVM), or MLP). In this work, it was chosen the MLP
to be used as a classifier. In Fig. 2, it is possible to observe what happens in the
BoVF approach illustratively.

3.2 Multilayer Perceptron

With the MLP model used in this work, each input node xi (x1, x2, ..., xn) is
associated with a synaptic weight wi (w1, w2, ..., wn), where the value of synap-
tic weights are randomly initialized. The entry also has an activation thresh-
old b (bias), representing a fixed value other than 0. In this sense, the lin-
ear combination process occurs, producing the activation potential s, in which
the input nodes are weighted by their respective associated synaptic weights
(x1 · w1 + x2 · w2 + ... + xn · wn), and by the activation threshold b, where n
represents the size of the input vector, as seen in the Eq. 4.

s =
n∑

i=1

wixi + b (4)

After this process, the sum of the inputs weighted by their associated synap-
tic weights plus the activation threshold, that is, the activation potential s, is
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Fig. 2. Representation of BoVF approach. (a) represents the image samples presented
in a visual dataset; (b) represents the Visual Vocabulary generated by the K-means
clustering algorithm; (c) represents each cluster’s frequencies calculated, resulting in a
Histogram of Visual Features.

submitted to an activation function f , as seen in the Eq. 5 below:

f(s) = max(0, s) (5)

The activation function used in this model was the Rectified Linear Unit
(ReLU) function. Therefore, if the activation potential s is greater than the
activation threshold, the MLP model will be considered to be activated (output
y will be equal to 1), or deactivated otherwise.
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Finally, the experiments and preliminary simulation consist of comparing the
accuracy, computational efficiency, and performance of each of the Local Fea-
ture Descriptors and Local Binary Descriptors algorithm (presented in Sect. 1)
through the recognition and classification task by the MLP classifier. It will also
compare the processing time on generating the BoVF index in both training and
test steps. By analyzing each algorithm’s results, we expect to be able to choose
an efficient Local Binary Descriptors that will be addressed in this work’s next
steps. For a better understanding, Fig. 3 shows a flowchart of the BoVF app-
roach with MLP classifier for the training step. In comparison, Fig. 4 shows a
flowchart of the BoVF approach with MLP classifier for the test step.

Fig. 3. BoVF approach with MLP classifier for training step. (a) represents the train-
ing samples presented in a visual dataset; (b) represents the preprocessing step; (c)
represents the Feature Representation step; (d) represents the Visual Vocabulary Gen-
eration step; (e) represents the Image Representation step; and (f) represents the MLP
Training step.

Fig. 4. BoVF approach with MLP classifier for test step. (a) represents the test samples
presented in a visual dataset; (b) represents the preprocessing step; (c) represents the
Feature Representation step; (d) represents the Image Representation step; and (f)
represents the MLP Classifying step.

4 Experimental Setup and Results

In this Section, details about the experimental setup applied in the experiment
and preliminary simulations of this work are presented, followed by the results.
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4.1 Experimental Setup

It was decided to use the NVIDIA® Jetson™ family as an embedded GPU sys-
tem: NVIDIA’s Jetson Nano. We intend to integrate NVIDIA’s Jetson Nano with
a mobile robotics platform in this work’s next steps. All experiments and prelim-
inary simulations performed in this paper were carried out through NVIDIA’s
Jetson Nano. Python 3.6 language, OpenCV 4.1, and Scikit-learn 0.19 pack-
ages are used to perform the experiments presented in this paper. The source
code and future updates are available at the GitHub repository1. BRIEF and
FREAK algorithms are only descriptors. For these two scenarios, the ORB and
SURF detectors were used, respectively, while for the other algorithms, the same
descriptors were used as detectors. Regarding the classifier, we evaluated the effi-
ciency of this experiment with six MLP classifiers. However, the best performing
of the MLP classifiers will be more detailed in Subsect. 4.2.

4.2 Results

Some algorithms, like SIFT and SURF, performed very well working on smaller
patches, but the majority of them, like ORB, achieved excellent results on 32× 32
patches, to find keypoints and compute descriptors. Since MNIST, JAFFE,
Extended CK+, CIFAR-10, and FER-2013 have such tiny images, it was impos-
sible to achieve results in these visual datasets using BRIEF, AKAZE, and
FREAK descriptors. That happened because these descriptors do not fit appro-
priately in the images present in these visual datasets. To avoid the return of
keypoints without descriptors, the BRIEF, AKAZE, and FREAK remove them.
However, with those three descriptors, it was possible to achieve results on FEI
visual dataset, since it’s image’s size is 120 × 120 pixels, being somewhat more
significant (bigger) for BRIEF, AKAZE, and FREAK. When descriptors oper-
ate on JAFFE and FEI visual datasets, the results in steps (c), (d), and (e)
regarding the training step, shown in Fig. 3, and the results in steps (c) and
(d) regarding the test step, shown in Fig. 4, are achieved almost instantly (with
a tiny variance between zero and seven seconds). That occurs for both visual
datasets because they have very few samples, in case 150 and 280 images for the
training-set, respectively, and 63 and 120 images for the test-set.

Regarding the BoVF approach on the training step, the Local Feature
Descriptor SURF took the least time to extract features. In contrast, the Local
Binary Descriptor, ORB, exceeds other descriptors in this step for each visual
dataset. Since MNIST has tiny images, the same case that occurs with BRIEF,
AKAZE, and FREAK descriptors happen with BRISK. In this case, it was not
possible to achieve any results. Still regarding the BoVF approach of training
step shown in Fig. 3. The next step (d) consists of using the K-Means clus-
tering algorithm to generate the dictionary of possible visual vocabulary over
the collection of feature vectors extracted in the previous step. Considering the
processing time in step (d) for SIFT, SURF, KAZE, ORB, and BRISK descrip-
tors on MNIST, Extended CK+, CIFAR-10, and FER-2013 visual datasets the
1 https://github.com/whoisraibolt/BoVF-with-MLP-classifier.

https://github.com/whoisraibolt/BoVF-with-MLP-classifier
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Local Features Descriptors, SURF took the least time to generate the dictionary
of possible visual vocabulary. In contrast, regarding the Local Binary Descrip-
tors, BRISK was the fastest to do that. As already commented, since MNIST
has tiny images, the same case that occurs with BRIEF, AKAZE, and FREAK
descriptors also happen with BRISK, and, in this case, it was not possible to
achieve any results. Nevertheless, considering the BoVF approach of training step
shown in Fig. 3, the next step (e) consists of calculating each cluster’s frequencies
returns to the previous step, resulting in a Histogram of Visual Features. The
Histogram of Visual Features for descriptors, when performed over JAFFE and
FEI visual datasets, was achieved instantly. When it comes to the processing
time to obtain the Histogram of Visual Features for SIFT, SURF, KAZE, ORB,
and BRISK descriptors on MNIST, Extended CK+, CIFAR-10, and FER-2013
visual datasets, SURF takes less time to obtain the Histogram of Visual Fea-
tures than the other Local Features Descriptors, while BRISK achieved the bests
results compared to most of the Local Binary Descriptors. After generating a
Histogram of Visual Features, it is passed to step (f) to train the MLP model.

Regarding the BoVF approach of test step shown in Fig. 4, we can see
the processing time in steps (c) and (d) for SIFT, SURF, KAZE, ORB, and
BRISK descriptors on MNIST, Extended CK+, CIFAR-10, and FER-2013 visual
datasets presented in this work. SURF takes less time to extract features and
obtain the Histogram of Visual Features than the other Local Features Descrip-
tors and Local Binary Descriptors. After generating a Histogram of Visual Fea-
tures, the inference is performed, in step (e). In Table 2 and Table 3, it is possible
to see the results achieved through the MLP classifier, in which the performance
and efficiency of six different sets of parameters were evaluated: BRIEF, AKAZE,
and FREAK descriptors on FEI visual dataset and SIFT, SURF, KAZE, ORB,
and BRISK descriptors on each visual dataset. It is possible to observe that the
best results achieved with each descriptor over the MLP classifiers were over
FEI visual dataset, and the highest score achieved was with the MLP classifier
named “ML6” with AKAZE.

Table 2. Accuracy rate (%) at the test steps for BRIEF, AKAZE, and FREAK on
FEI.

Algorithms Visual dataset Multilayer percepton models

MLP1 MLP2 MLP3 MLP4 MLP5 MLP6

BRIEF FEI 0.78 0.74 0.77 0.76 0.82 0.85

AKAZE 0.85 0.87 0.83 0.84 0.83 0.86

FREAK 0.47 0.47 0.47 0.51 0.51 0.54

In many cases, using other MLP classifiers, it is possible to observe that the
models with each visual dataset did not produce satisfactory outcomes for recog-
nition and classification tasks. In general, they performed a low accuracy rate,
except with the JAFFE visual dataset, where they performed a high overfitting
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Table 3. Accuracy rate (%) at the test steps for SIFT, SURF, KAZE, ORB, and
BRISK on each visual dataset.

Algorithms Visual dataset Multilayer percepton models

MLP1 MLP2 MLP3 MLP4 MLP5 MLP6

SIFT MNIST 0.67 0.67 0.67 0.68 0.67 0.68

JAFFE 0.10 0.10 0.10 0.21 0.21 0.25

Extended CK+ 0.38 0.38 0.40 0.41 0.44 0.39

FEI 0.69 0.67 0.63 0.75 0.76 0.72

CIFAR-10 0.25 0.25 0.25 0.25 0.25 0.24

FER-2013 0.26 0.27 0.27 0.26 0.26 0.26

SURF MNIST 0.68 0.68 0.67 0.69 0.68 0.68

JAFFE 0.10 0.10 0.10 0.21 0.22 0.21

Extended CK+ 0.40 0.37 0.40 0.43 0.49 0.44

FEI 0.72 0.74 0.61 0.74 0.72 0.74

CIFAR-10 0.11 0.11 0.11 0.18 0.19 0.18

FER-2013 0.26 0.26 0.26 0.25 0.24 0.24

KAZE MNIST 0.65 0.65 0.66 0.67 0.68 0.66

JAFFE 0.08 0.19 0.24 0.22 0.21 0.22

Extended CK+ 0.36 0.36 0.41 0.44 0.42 0.43

FEI 0.62 0.62 0.63 0.58 0.67 0.68

CIFAR-10 0.25 0.25 0.25 0.25 0.24 0.24

FER-2013 0.26 0.25 0.26 0.26 0.25 0.25

ORB MNIST 0.53 0.52 0.53 0.52 0.53 0.52

JAFFE 0.14 0.13 0.10 0.11 0.19 0.14

Extended CK+ 0.31 0.31 0.30 0.30 0.27 0.29

FEI 0.50 0.57 0.58 0.65 0.64 0.70

CIFAR-10 0.23 0.23 0.23 0.22 0.22 0.21

FER-2013 0.26 0.25 0.25 0.26 0.25 0.26

BRISK MNIST - - - - - -

JAFFE 0.11 0.11 0.11 0.19 0.19 0.21

Extended CK+ 0.26 0.29 0.31 0.27 0.30 0.34

FEI 0.82 0.82 0.82 0.85 0.84 0.82

CIFAR-10 0.13 0.13 0.13 0.13 0.13 0.20

FER-2013 0.25 0.25 0.25 0.24 0.24 0.25

rate. The MLP classifiers named “MLP3”, “MLP4”, “MLP5”, and “MLP6”
over FEI visual dataset with ORB presented a high underfitting rate. Other
Local Binary Descriptors that stood out with FEI visual dataset are BRIEF
and BRISK.
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Fig. 5. Confusion matrix by BRISK on FEI with the “ML5” model.

Fig. 6. Training loss by BRISK on FEI with the “ML5” model.

However, the descriptor that has achieved prominence and that provided out-
standing results regarding the invariance to rotation, scale, lighting, and view-
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point in many other works is BRISK. Because of that, we chose to use BRISK
as the primary descriptor to be used in this work’s next steps.

In Fig. 5, it is possible to see the Confusion Matrix by BRISK on FEI visual
dataset with the “MLP5” model. The “MLP5” model over FEI visual dataset
with BRISK predicted correctly the basic emotion happy 51 times (true positive),
and neutral 50 times (true negative). In contrast, it predicted incorrectly happy
9 times (false positive) and neutral 10 times (false negative). In this context,
“MLP5” model over FEI visual dataset with BRISK had an accuracy of 84%,
as it got 101 out of 120 predictions correct. Furthermore, it is possible to see
the Training Loss of the six MLP classifiers’ graph over FEI visual dataset with
BRISK in Fig. 6. Note, that in Fig. 6, it is not possible to view the curve (d)
referent to the “ML4” model, this occurs because curve (d) follows the same
path of the curve (e) referent to the “ML5” model until more or less iteration
20, as both models’ configuration parameters are more or less similar.

It was found that many algorithms had results below expectations. We believe
this happens because most of the visual datasets that were used have tiny images.
However, as described in [15], for the BoVF approach to distinguish relevant
changes in parts of the image, the dictionary’s size must be large enough; how-
ever, not so large as to distinguish irrelevant variations such as noise. With the
chosen grouping method (K-means clustering algorithm), it is common to define
empirically the value to k. By modifying this parameter, we believe that the
results achieved can be enhanced. We also believe that modifying some param-
eters of the descriptors can also enhance it. Regarding the MLP model, other
techniques (e.g., dropout) can be explored to improve accuracy.

We emphasize that the purpose of this work is not to achieve the best accu-
racy rate by MLP classifier, but only to comprehend NVIDIA’s Jetson Nano
operation and obtain an overview of its procedure, besides knowing and evalu-
ating the performance of the descriptors alongside the MLP classifier discussed
here.

4.3 Other Results

To better understand a novel approach to exploit sparse and binary convolutional
filters in standard CNN, we present in detail the techniques used in each step of
the proposed reformulation, followed by the behavior of the convolutional layer
in this experiment and preliminary simulation. Also we present the experiment
and preliminary simulation carried out of the CBIR approach based on Auto-
Encoders, in which we believe it can help us as a baseline when evaluating the
construction of the proposed adaptation of the hybrid DNN architecture shown
in Fig. 1.

Reformulation of Convolutional Filters Through a Local Binary
Descriptor. A convolutional layer is the main operation in images inserted
in a CNN, and its main objective is to extract features from input images. An g
image is generated by converting a f convolutional filter (commonly known as
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kernel) with the input image I, and q is the size of the convolution mask, defined
by the Eq. 6:

g(m,n) =
q∑

i=1

q∑

j=1

f(i, j)I(m − i, n − j) (6)

A filter can highlight a certain feature present in an image, such as shadows,
borders, among others, and the convolution result is commonly known as a fea-
ture map. One of the most significant steps in that operation is the selection of
convolutional filters to be used. There are many ways to do that, most commonly
being determined empirically. The ability to universalize the selection of convo-
lutional filters is one of the motivations and inspirations behind the proposed
reformulation design. Figure 7 shows a flowchart of the proposed reformulation.

Fig. 7. Flowchart of the proposed reformulation. (a) represents the Feature Represen-
tation step; (b) represents the Feature Conversion step; and (c) represents the Feature
Extraction step.

As can be seen in Fig. 7, the proposed reformulation involves: (a) Feature
Representation step, as primarily block, responsible for executing keypoints
detection in the training-set, and then the descriptors are computed; with this,
a feature vector is generated; next, (b) Feature Conversion step, with consists
in reduce to dimensionality through the Dictionary Learning (DL) algorithm
applied to the feature vector generated by the previous step, reducing the fea-
ture vector while making it sparse, followed by a binarization process, in this
case, signal function, become the nature of the feature vector into sparse and
binary, followed by transformation of the feature vector into a square matrix,
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resulting in what is known in the literature as filter-weights; and finally, set all
center square matrix with a negative value (−1). At this moment, the filter-
weights are ready to be used as a kernel in the convolution operation. Figure 8
shows the convolution behavior through the 64 filter-weights of size 7 × 7, gen-
erated in the same way. We can comprehend that 64 convolutional filters f of
size 7 × 7 were applied to the input image I, resulting in 64 feature maps g.
The black filters indicate that the filter will positively respond to the black pix-
els in the input images (1), while the white filters indicate that the filter will
negatively respond to the black pixels in the input images (−1). The grayscale
filters represent 0.

Fig. 8. Convolution behavior through the 64 convolutional filters of size 7× 7 generated
through the BRISK descriptor’s reformulation.

The proposed reformulation was successfully developed, and the generated
convolutional filters presented good feature maps. The source code and future
updates is available at the GitHub repository2. Furthermore, to effectively eval-
uate the proposed reformulation’s efficiency, it is necessary to implement the
proposed system’s CNN architecture shown in Fig. 1. Later, an extensive work
of validation and analysis of the results obtained (e.g., classification accuracy,
computational consumption, among others) on the efficiency and accuracy of the
proposed system’s CNN architecture adaptation will be provided in this work’s
next steps.

Denoising Auto-Encoder for Content-Based Image Retrieval. Another
experiment carried out in corresponding to the experiment described above was
the study and evaluation of the CBIR approach (being a classic technique for
image retrieval problem, widely disseminated by the scientific community) based
on Auto-Encoders. This study and evaluation will lead us to future works on
image retrieval using DL and Semantic-Based SLAM [13,40] approaches, where
CBIR come showing very effectiveness in SLAM and VSLAM domain, as it can
handle a large amount of data in real-world environments. In addition, we believe
2 https://github.com/whoisraibolt/Reformulation-of-Convolutional-Filters-through-

Descriptors.

https://github.com/whoisraibolt/Reformulation-of-Convolutional-Filters-through-Descriptors
https://github.com/whoisraibolt/Reformulation-of-Convolutional-Filters-through-Descriptors
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it can help us as a baseline when evaluating the construction of the proposed
adaptation of the hybrid DNN architecture shown in Fig. 1.

Initially, the denoising Auto-Encoder was built and was trained with the
MNIST visual dataset (which will be available to be retrieved through CBIR
queries). Then, using the first half of the Auto-Encoder, the encoding part,
we built the CBIR system, which retrieves and displays on-screen the images
retrieved from an input, and displays the computed scores related to these
images. An arbitrary image was used to make the query, as can be seen in Fig. 9,
and it is possible to observe the retrieved images. In Fig. 9, the retrieved images
by the CBIR system are extremely similar to the query image filled in, as the
same time that they correspond to the same digit. This demonstrates the ability
of the Auto-Encoder in encoding similar images even where the corresponding
image labels are not presented. However, in this experiment, we are working
with a linear search with O(N) complexity, so we must attend to the scalabil-
ity of the CBIR system. Considering this, we intend in future works to better
explore the CBIR system using denoising Auto-Encoder, focus on working with
datasets for SLAM and LCD problem, such as New College and the City Center
datasets originally used by FAB-MA [35], LipIndoor and LipOutdoor datasets
[30], Bovisa dataset [42], and KITTI dataset [44].

[Input.]
[First 10 retrieved images.]

Fig. 9. CBIR system: images retrieved from an input.

5 Discussion and Future Works

An extensive literature review was performed in this work, going through the the-
oretical bases that support the proposed adaptation. Furthermore, the method-
ology to be applied will allow us to choose the approach to build a low compu-
tational cost and robust system, with efficient computational performance and
reduced computational complexity for the task of LCD for a VSLAM system.

The descriptor to be addressed in future work in step (b), and reformulated
in step (c) into convolutional filters of the proposed system’s CNN architecture
shown in Fig. 1 has been defined, and now we can advance to the next steps in
future work. Regarding this, new activities will occur in the development of this
work, consisting of:
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– A comparative evaluation of CBIR approach based on Hand-Crafted Features
and based on Auto-Encoders;

– Implementation of the adaptation of CNN: The purpose of this step consists
of implementing the proposed adaptation of the CNN, presenting the new
layer design for the proposed architecture;

– Construction of the proposed system: The purpose of this step consists of
implementing the proposed adaptation of the hybrid DNN architecture, at
the same time, a model with efficient computational performance, as well as
reducing the computational complexity, to solve the LCD problem;

– Integration with a VSLAM system: The purpose of this step consists of the
integration of the proposed system with a VSLAM system with the ROS and
Gazebo simulator for NVIDIA JetBot with Jetson Nano.

Our approach is promising; in the next steps of this work, we expect to
demonstrate that the proposed methods reduce the computational complexity
of the model, and it is potentially able to perform the task of LCD for a VSLAM
system.
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3 Departamento de Informática, Universidade Federal do Maranhão, Vila Bacanga,
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1 Introduction

A fundamental issue in autonomous mobile robots is their ability to navigate in
unknown environments with little human intervention or without it. To perform
this task, the robot should be able to map an unknown environment while simul-
taneously localizing itself in it. This problem is named Simultaneous Localisation
and Mapping (SLAM) [15] and has been addressed by several approaches, such
as the traditional ones [3,12,13] as well as bio-inspired solutions [17].

Among the bio-inspired solutions to solve the SLAM problem, the RatSLAM
algorithm is inspired by how the hippocampus in the rodents’ brain performs
spatial navigation [9,11]. RatSLAM has been improved and applied on several
works over the years [1,6,14]. However, the algorithm requires 31 parameters to
work [1]. Additionally, these parameters must be set for each new environment.

To appropriately adjust RatSLAM for new environments, Ball and collabora-
tors proposed a tuning algorithm that focuses only on two important parameters
and uses only part of the environment (an environment segment with the robot
in motion and a segment with a loop closure) [1]. On the other hand, the tuning
of these two parameters assumes that the other ones are correct or close to the
same ones used in similar environments tested in their work. Therefore, their
proposed solution lacks instructions for setting parameters in environments that
are significantly different from those previously tested.

Recently, Menezes and collaborators [5] have proposed an automatic param-
eter tuning method to solve the manual parameters adjustment in RatSLAM.
Their approach applies the irace (Iterated Racing for Automatic Algorithm Con-
figuration) [4] algorithm to systematically generate combinations of parameters
values. Then, the created maps with RatSLAM and irace parameters are eval-
uated by the Iterative Closest Point (ICP) [2] algorithm, which computes the
error between the created and the ground truth map of the environment.

The overall automatic process of this method is formulated as an optimization
problem, where the objective function is designed to find a set of parameters that
minimizes the errors (computed by ICP) between the created and the ground
truth maps.

Although their tuning solution correctly finds the parameters that gener-
ate the environment map, it uses the entire environment, unlike the proposal
presented in [1]. Using the complete environment could lead their method to a
computationally expensive process, mainly in large environments. Furthermore,
if the method uses only part of the environment, it also could generate over-
adjusted parameters for these parts, but not suitable for new places from the
same environment.

Therefore, this work aims to include the guidelines proposed by [1] in the
automatic tuning method proposed by [5] through objective function regularisa-
tion. In this sense, regularisation refers to adding a penalty term to the objective
function. Specifically, the objective function of the automatic algorithm receives
the rules of the manual algorithm that find parameters for a given environment
using only part of it in the tuning process.
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In Sect. 2, a general vision of the RatSLAM algorithm and its parameters
is presented. The parameter tuning approach is explained in Sect. 3. In Sect. 4,
the experiments are designed. Section 5 shows the results, and Sect. 6 discusses
them. Finally, Sect. 7 presents the conclusions of this work, as well as guides for
future works.

2 The RatSLAM Algorithm

The RatSLAM algorithm was first introduced in 2004 [11] and since then it has
been used to solve the SLAM problem for indoor and outdoor environments
[7,8]. The algorithm is inspired by the hippocampus of rodents and how they
perform mapping and localization tasks. Moreover, RatSLAM can accomplish
such tasks using a low-cost sensor such as a monocular camera. The RatSLAM
algorithm is described in the following subsection.

2.1 RatSLAM Structure

Figure 1 shows the structure of the RatSLAM that consists of four main parts: i)
Speed Sensor; ii) Local View Cells; iii) Pose Cells Network, and iv) Experience
Map.

   Speed Sensor

 Visual Sensor

Pose Cells NetworkLocal View Cells 

Fig. 1. The RatSLAM architecture.

Speed Sensor provides linear and angular speed information from the robot.
Moreover, velocities can also be computed from the images, i.e. visual odome-
try, which can reduce the necessary sensor for RatSLAM to a single low-cost
monocular camera.

The local view cells (LVC) is a 1-D array of local views (or templates) that
processes and stores the environment information sent by the Visual Sensor. If
the environment information is new (e.g. image from a new location), a new tem-
plate is created. Otherwise, the correspondent template of the view information
is activated.
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The pose cell network (PCN) is a 3-D continuous attractor network analo-
gous to the grid cells and head direction cells of the rodent’s entorhinal cortex
and hippocampus [10]. The activity on the PCN represents the robot’s pose on
the environment. Each cell on the X and Y network axis corresponds to the
x and y coordinates of the 2-D environment, whereas the Z-axis corresponds
to the robot’s orientation on the ground. Path integration over the velocities
sent by the Speed Sensor is performed on the PCN. Therefore, changes in the
robot’s speeds also modify the activity into the PCN. Moreover, the PCN links
the current template from Local View Cells with its current activity location.
Furthermore, when the robot performs a loop closure, that is, when the robot
revisits an already mapped area, the network coordinates associated with the
local view are activated, and this process corrects the robot’s belief of its pose
in the environment.

The Experience map is a 2-D topological-metric graph that represents the
map of the environment. Each node in the graph is called an experience. In
addition, each experience has information of the activity of the LVC and PCN
at the moment the experience is created, as well as its pose information. When
the activities in the LVC and PCN do not correspond to any previous experience,
a new one is created. Furthermore, the link built between two experiences stores
the euclidean distance and angular displacement between these experiences.

2.2 RatSLAM Parameters

The RatSLAM parameters (31 in total) are depicted on Table 1, where each one
has a type-associated value. In addition, some parameters are highly sensitive,
i.e. small changes may cause a huge variation in the mapping.

The Visual Odometry parameters are impacted by camera specification and
they are related to the robot’s translational and rotational speeds. The Local
View parameters are responsible for the creation and comparison of templates.
Thus, if they are misfitted they can cause over or under template sampling. The
Pose Cells parameters influence the amount of energy inserted into the PCN
when a scene is revisited. The Experience Map parameter exp loop concerns the
relocation of nodes and edges due to odometric errors throughout the experience
map. For further details about these parameters refer to [1].

3 Improved Tuning Process

In this section, an improved tuning method is presented. It regulates the objec-
tive function of the automatic tuning [5] by inserting the tuning conditions pre-
sented on the manual adjustment algorithm [1].

In the tuning algorithm proposed by Ball et al. [1], only the
vt match threshold and pc vt inject energy parameter should be adjusted. The
remaining parameters should be set similarly to one of the examples shown in
their work. These examples support parameters for large real-world, 360◦, and
controlled small environments. However, if a different environment, e.g. a virtual
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Table 1. RatSLAM parameters [1,5]

Module Parameter’s name Type

Visual odometry [vtrans image x min,
vtrans image x max,
vtrans image y min,
vtrans image y max];

Integer

[vrot image x min,
vrot image x max,
vrot image y min,
vrot image y max];

Integer

camera fov deg; Integer
camera hz; Integer
vtrans scaling; Real
vtrans max Real

Local view vt panoramic Binary
vt shift match; Integer
vt step match Integer
[image crop x min
image crop x max
image crop y min
image crop y max]

Integer

[template x size,
template y size]

Integer

vt match threshold; Real
vt normalization; Real
vt patch normalization Integer

Pose cells pc dim xy Integer
exp delta pc threshold Real
pc cell x size Real
pc vt inject energy Real
vt active decay Real
pc vt restore Integer

Experience map exp loops Integer

environment, is introduced, it is not guaranteed that the default values for the
remaining parameters will work properly in this new environment. In addition,
the manual tuning algorithm assumes that the velocities parameters are correctly
adjusted before the tuning of the vt match threshold and pc vt inject energy. In
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order to check the correct values for the Visual Odometry parameters, the rate
R = Ṫ /Ė should be closer to 0.5 or 1.0, where Ṫ is the number of visual tem-
plates and Ė is the number of experiences. After the tune of the Visual Odometry
parameters, the vt match threshold is tune inside a loop function to keep the R
rate between 0.5 and 1.0. Finally, the pc vt inject energy is tune (inside another
loop) to make RatSLAM closes a loop correctly in the environment.

The tuning process of RatSLAM by [5] is formulated as an optimization
problem that takes into account the values of the parameters, the generated
and the truth map. First, the irace package automatically generates a candidate
parameter set for the RatSLAM. For each parameters file, a resulting map is
obtained (generated map). Then, the deviations between the generated map
and the ground truth map (obtained from robots odometry) are evaluated with
the ICP algorithm. These evaluations are taken into account by irace to generate
new combinations of parameters until this deviation reaches a stopping criterion.
The objective function is described as follows [5]:

p∗ = arg min
p∈P

NV∑

k=1

er(p,vk) (1)

that minimizes the residual error, er(p,vk), between the generated map and the
ground truth, computed by ICP over the 2D coordinates points. Each mapping
is generated by the RatSLAM using a parameter set, p, and the input video
stream vk taken from NV input files.

Since the ICP computes the mean squared error of the distances between the
ground truth and generated map, the closest match between them leads to an
error closer to 0, and the higher error variation will depend on the maximum
distortion of the generated map. Therefore, the ICP can fairly represent the
perfect match of the maps when the error between them is 0, but it cannot
precisely inform their similarities if the error is higher than 0.

Improved Objective Function. It is assumed that the tuning method in [5] already
corrects the pc vt inject energy parameter if the ground truth map has a loop
closure. This is due to the fact that the irace will positively consider parameters
that generate maps similar to the ground truth one.

However, as the irace only considers the similarity between the two maps,
it does not into account the R rate as proposed in [1], which recommends a
generated map with a R rate ∈ [α, β]: commonly α = 0.5 and β = 0.9. To
overcome these issues, the new proposed objection function is given as following:

p∗ = arg min
p∈P

NV∑

k=1

er(p,vk) × (1 + max (R(p,vk) − α, β − R(p,vk), 0))×

log10(Nx + 10)

(2)
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where (1 + max (R(p,vk) − α, β − R(p,vk), 0)) increases the error only if R rate is
out of the recommended interval [α, β]. The log10(Nx + 10) penalises generated
maps with higher number of nodes Nx.

Hence it is assumed that the irace gives priority to those parameters that
maintain the R rate in the desired value, leading to configurations that generate
maps with a minor number of points but are better distributed over the map.

4 Experimental Setup

In this section, the experimental setup is covered. First, information about the
environment adopted is presented. Then, information regarding the irace tuning
process is described. In this work, the xRatSLAM [14] is used for the RatSLAM
implementation.

4.1 Environment Setup

To validate the improved objective function for the tuning algorithm, a 3D vir-
tual environment of a research laboratory has been modeled in a framework
developed to study biomimetic models of rodent behavior in spatial navigation
learning tasks [16], as shown in Fig. 2a and similar to a real research laboratory
[5].

(a)

(b) (c)

Fig. 2. Laboratory virtual environment. a) shows a view of the environment. b) displays
the counterclockwise lap performed by the agent. c) depicts the eight shaped lap that
has counterclockwise and clockwise laps.
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Three videos have been generated from the virtual environment, where they
are: i) a counterclockwise lap starting from the environment’s middle, as shown
in Fig. 2b; ii) a clockwise lap starting from the environment’s middle; and iii) a
eight shaped lap starting from the environment’s middle (Fig. 2c). In addition,
the eight lap is composed of both counterclockwise and clockwise laps.

The experiment consists in finding the parameters returned by the irace in
one of the small laps, i.e. videos i) and ii), and testing these parameters in the
other remaining videos, e.g. use the parameters previously found (on video i) on
video ii) and iii). Note that video iii) is not included in the parameters acquisi-
tion step, it is only used for test. This experiment aims to test the parameters
generalization, that is, acquiring them in one part of the environment and testing
them in another, as suggested by Ball and colleagues [1].

Therefore, it is expected a generalization feature of the proposed tuning
method if it successfully finds the parameters that are suitable for any part
of the environment. In addition, the eight lap contains important features to be
evaluated such as changing of directions (e.g. from clockwise to counterclockwise)
and it covers the complete environment.

4.2 irace Setup

As previously mentioned, the irace is used to find the best parameters for the
RatSLAM algorithm. However, a large number of parameters (see Table 1) can
lead this approach to be a large time-consuming process. Moreover, there is no
previous detailed information about range search for some parameters (unless
they are attached to hardware specification, e.g. camera image size), which can
result in a large number of parameter settings that generate similar map results.
Therefore, to make the adjustment process feasible, the parameter space required
by the irace has been empirically defined in this work and is described in Table 2.

In addition, few parameters related to the Visual Template and Visual Odom-
etry had their values fixed to avoid non-relevant features of the images, such as
floors and ceiling. These areas’ features usually do not change over the environ-
ment and, therefore, can be removed from the RatSLAM mapping process.

The irace has been conducted in 10 iterations with 50 configuration per itera-
tion. Moreover, it ran in parallel with 19 threads on a high-performance comput-
ing environment that employs Portable Batch System - (PBS)1 for scheduling
processes at nodes.

1 https://www.openpbs.org/.

https://www.openpbs.org/
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Table 2. Parameter spaces of RatSLAM for irace.

Name Type Range

# Local view

vt match threshold r (0.0, 0.2)

vt shift match i (0, 10)

vt step match i (1, 3)

vt normalisation r (0.1, 1.0)

image crop x min c (40)

image crop x max c (600)

image crop y min c (150)

image crop y max c (300)

vt active decay r (0.1, 1.0)

# Pose cells

pc vt restore r (0.01, 0.1)

pc dim xy i (20, 40)

pc vt inject energy r (0.1, 0.8)

pc dim th c (36)

exp delta pc threshold r (0.7, 1.3)

pc cell x size r (1)

# Experience map

exp loops i (1, 20)

# Visual odometry + Template size

vtrans image x min c (80)

vtrans image x max c (560)

vtrans image y min c (240)

vtrans image y max c (360)

vtrans scaling i (200,1000)

vtrans max r (1.0, 20.0)

vrot image x min c (80)

vrot image x max c (560)

vrot image y min c (240)

vrot image y max c (360)

camera fov deg i (30, 150)

camera hz c (1, 80)

template x size i (40,120)

template y size c (20,100)

5 Results

Table 3 presents the ICP errors, R rate, and the best-returned parameters by
irace for the counterclockwise and clockwise instances. Since ICP errors higher
than 0 cannot inform if the generated map is similar to the ground truth map,
for these cases visual analyses are used to compare the paths between the maps.
Moreover, the R rate for all scenarios were kept in the previously defined range
R ∈ [α, β]: α = 0.5 and β = 0.9.

Figure 3 shows the Experience Map of the counterclockwise lap experiment.
The map generated by the best configuration is displayed on the top-left. The
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Table 3. Residuals, R rate and RatSLAM parameters’ values for the best configura-
tions.

Lap Counterclockwise Clockwise

Residual of ICP
Counterclockwise 0.052 0.199
Clockwise 0.162 0.122
Eight 0.081 0.379

R rate
Counterclockwise 0.552 0.506
Clockwise 0.585 0.602
Eight 0.816 0.595

Parameters Values
# Local view
vt match threshold 0.064 0.196
vt shift match 2 1
vt step match 2 2
vt normalisation 0.843 0.5793
vt active decay 0.442 0.438
# Pose cells
pc vt restore 0.072 0.090
pc dim xy 35 26
pc vt inject energy 0.333 0.278
pc dim th 36 36
exp delta pc threshold 0.732 1.054
pc cell x size 1 1
# Experience map
exp loops 12 13
exp initial em deg –25 38

top-right is the ground truth robot’s movement. On the bottom-left, it exhibits
the same counterclockwise map after the translation and rotation operations
performed by the ICP. Lastly, the overlapping between the transformed map
and the ground truth is displayed for visual comparison purposes.

Figure 4 and 5 show the Experience Maps of the clockwise and eight laps cre-
ated by the counterclockwise parameters. These parameters built similar maps
of both the eight (which is the entire environment) and the clockwise laps, even
when these laps are not used in the tuning process.
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Fig. 3. Parameters of the counterclockwise experiment on counterclockwise lap. Top-
left shows the experience map generated by the tuned parameters. Bottom-left displays
the same map after ICP rotation and translation operations. Bottom-right depicts the
best matching between the resulting map and the ground truth.

Fig. 4. Parameters of the counterclockwise experiment on clockwise lap.

Figure 6 shows the Experience Map of the clockwise lap experiment. Sim-
ilar to the counterclockwise experiment, the map generated by the best irace
configuration for this instance is displayed on Table 3.

Figures 7 and 8 depicts the clockwise parameters on the counterclockwise
and eight laps. In the same way as the results of the counterclockwise lap, the
clockwise lap parameters have been able to generate representative maps of the
new environment places.

In order to exemplify the effect of the R in the improved objective function in
this work, Fig. 9 shows a counterclockwise lap example using only the objective
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Fig. 5. Parameters of the counterclockwise experiment on eight lap.

Fig. 6. Parameters of the clockwise experiment on the clockwise lap. Top-left shows the
experience map generated by the tuned parameters. Bottom-left displays the same map
after ICP rotation and translation operations. Bottom-right depicts the best matching
between the resulting map and the ground truth.

function in 1 [5]. In this example, the ICP error and the R rate are equal to
0.141896 and 1 (one experience per template created), respectively.

In Fig. 10, it is depicted the same parameters of Fig. 9 when applied to the
eight instance, where is visually notable the non-similarity between the generated
map and the ground truth. The ICP error and the R rate are equal to 3.596 and
1, respectively.
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Fig. 7. Parameters of the clockwise experiment on the counterclockwise lap.

Fig. 8. Parameters of the clockwise experiment on the eight lap.

6 Discussion

Proposed by Ball and collaborators [1], the manual tuning solution for RatSLAM
parameters could lead to a large time-consuming process to find parameters for
new environments. This might occur due to the number of parameters needed
for the RatSLAM. Their tuning algorithm focuses on two main parameters if the
environment is similar to the ones previously tested in their work. On the other
hand, for different environments, parameters such as visual odomentry should
be tuned before their tuning algorithm is used. An advantage of their tuning
algorithm is that found parameters by this process are suitable for the entire
environment, even if they are tuned only in part of the environment.
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Fig. 9. Parameters of the counterclockwise experiment without the R rate on the
counterclockwise lap. ICP error = 0.141896. R rate = 1 (not considered).

Fig. 10. Parameters of the counterclockwise experiment without the R rate on the
eight lap. ICP error = 3.596. R rate = 1 (not considered).

Part of this problem has been addressed by Menezes and colleagues [5] when
they proposed an automatic method to find the parameters. In their solution, a
range of possible values could be given to each parameter, and the irace returns
the best combination of values it had found for one or more environments. How-
ever, their solution might return parameters that work only for the trained envi-
ronment, as shown in Fig. 9 and 10. Note that the ICP error for the trained
instance in this example is comparable with the ones for the main experiments
shown on Table 3, especially the ones for the clockwise column. In contrast, when
these parameters were used on the eight lap, the results showed a distorted map



62 P. G. B. Gomes et al.

with both high ICP error and R rate. Therefore, their algorithm lacks parameters
generalization for new places from the same environment (i.e. tuned parameters
only work in the familiar area), since they did not completely cover the solution
proposed by Ball and collaborators [1].

As presented in Figure from 3 to 8, the regulated objective function proposed
in this work was able to solve the generalization of the parameters for the coun-
terclockwise and clockwise laps of the lab environment. This has been done by
adding the R rate condition as part of the decision of the best configurations
returned by irace. In addition, for all environments, the R rates had their values
inside the desired range.

7 Conclusion

Simultaneous localization and mapping (SLAM) inspired on the spatial navi-
gation system of rodents’ brains (named RatSLAM) has a set of performance
parameters that must be tuned for each new environment to generate a consis-
tent map of the environment.

Tuning RatSLAM parameters could lead to a long-time consuming process.
This process can be avoided using small chunks of the environment under map-
ping. In such cases, the tuning method needs to have good generalization power
since the complete environment is not included in the training.

This work proposes regularisation on the objective function that guides the
automatic adjustment procedure based on irace. The new tuning process can
find the parameters for RatSLAM using only part of a virtual environment

For validation, parameters acquired were tested in parts of the environment
that had not been trained before and the full environment. The results have
shown that the parameters found can be generalized to untrained areas of the
environment.

As future works, the solution proposed in this paper must be validated in
more trajectories, including large real-world datasets.
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Abstract. Each day, robotic systems are becoming more familiar and
common in different contexts such as factories, hospitals, houses, and
restaurants, creating a necessity of seeking for affordable and intuitive
interface for effective and engaging communication with humans. Like-
wise, innovative devices that offer alternative methods of interacting with
machines allow us to create new interfaces, improving the learning train-
ing and motion application. Thus, this paper compares two interaction
modes using leap motion to control a robotic manipulator (UR3) simula-
tor. Users can control the robot through numerical gestures to set up the
angle joints (coded mode) or counter/clockwise gestures to increase or
decrease the angle values (open mode). We evaluate these modes objec-
tively, capturing from 30 subjects the number of gestures and employed
time to reach three specific poses. Likewise, we collected subjective ques-
tionnaires to compare the control methods and preferences. Our findings
suggest that both methods employ similar gestures, but coded control
takes less time with higher variations among ages. Moreover, subjects’
preferences indicate a slight inclination towards the open mode. Finally,
it is mandatory to explore different difficulties in the tasks and increase
the population to have a more general understanding of the preferences
and performance.

Keywords: Leap-motion · UR3 · Robotic arm · Human-computer
interaction · Machine learning

1 Introduction

Nowadays, robots play an essential role in our daily lives and increasingly are
being an active part of our societies, primarily in economics, social and develop-
ing domains such as manufacturing, agriculture, medical and healthcare, defense,
land exploration, among others [4]. Human-Machine interaction (HMI) aims
for new alternatives to improve communication and interaction with machines.
These developments are continually applied in robotics, seeking to include new
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devices in the control and interaction with robots. Currently, there are important
developments on gesture-based interfaces to control robots; these explorations
aim to create non-conventional and multi-modal modes such as using the head
[10], gaze [8], arm [12], and hand [2] (among others) for interacting with either
mobile and fixed robots. Therefore, current innovative devices, such as Leap
Motion [16] that use a hand-gesture recognition system, have an essential role
in the development of new interactive robotic interfaces, offering a more natural
and familiar setup where hand gestures can be part of control commands.

Robotic manipulators are one of the most common robotic systems, consist-
ing of a mechanical-articulated arm composed of a series of links joined each
other, and to a fixed base [1]. The independent adjustment gives the movement
of the robotic arms in each of their joints, so one form of interaction with the
interfaces can be to associate the performance of hand gestures with the adjust-
ment of joints, in which it may have different control modes based on the different
use of gestures [13]. However, understanding such functionality requires the use
of learning tools based on simulations. Indeed, the future advance of robotic
manipulators will rely on simulated models to perform extensive physical and
motion analysis before the actual implementation [7]. Thus, the creation of real-
time simulators for either in-place or remote manipulator systems brings extreme
value during the training of robot operators.

Hence, the focus of this article is to provide a new gestural interaction using
a leap motion that allows the control of a robotic manipulator in a virtual sim-
ulator. We compare and propose two potential modes to create the interactive
scenario: coded and open. The first one deals with the setup of joint angle val-
ues with numerical hand gestures, while the second one only uses clockwise and
counterclockwise circle gestures to set up these values. We simulated the UR3
robotic platform from Universal Robotics [15] under Unity 3D. We captured the
number of gestures and time employed to perform three basic motion activi-
ties, where users had to place the robot in a specific pose. Also, we included
usability questionnaires and preferences questions to assess each interface mode
subjectively.

The remainder of this paper is structured as follows: Sect. 2 presents related
works that employed leap motion for controlling robotic platforms. Then, Sect. 3
shows the experimental procedure’s materials and methods. Later, Sect. 4 pro-
vides the main findings and a discussion of them; and finally, Sect. 5 presents
the conclusions and future directions.

2 Related Works

This section focuses on related works on hand gesture-based control of robots,
mainly using Leap Motion. Different works incorporate the Leap Motion sensor
for the movement of the robotic arm; initially, [14] designed and built from ser-
vomotors a prototype robotic arm to be controlled by Leap Motion, the data
processing is done with the Arduino Uno micro-controller. They reported a high
precision in the control of approximately 0.01 mm per second. We also found a
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Leap Motion application [6], where a simulator similar to ours is created using
hand gestures to control the UR10 robotic arm. This report differs from the
current proposal in terms of the interaction, where they employ the gesture
data to control the whole robot instead of individual joints. Likewise, differ-
ent robotic platforms have been used for interaction with Leap Motion. Chen
and colleagues [5], controlled a real robotic arm SCARA LS3-401 using Leap
Motion. They reported satisfactory results for complete robot control. Similarly,
Bassily et al. [3] controlled the robotic arm, Jaco of 6-DOF, with Leap Motion.
They propose implementing a novel intuitive and adaptive manipulation scheme
by developing a human-machine communication interface based on the optimal
mapping of the user’s hand movement. These works demonstrate several suc-
cessful implementations of Leap Motion for robotics, allowing a more natural
and comfortable interaction between humans and machines.

3 Materials and Methods

3.1 Overview

We created a UR3 robotic simulator to evaluate a leap motion interface that
uses two modes of interaction: coded and open. We aim to compare them sub-
jectively with questionnaires and objectively capture the number of gestures
and time taken to complete a specific task. After the experiment, the partici-
pants had to complete the following questionnaires: a demographics information,
simulator perception and comparative survey for each control mode presented,
and Edinburgh Handedness. 30 healthy subjects (nine women) between 18 and
52 years old (u = 25.3, SD = 10.1) voluntary participated in this study where,
following the COVID-19 restrictions, we carried out the tests with an inner circle
of relatives and friends in an isolated house with all of the bio-security protocols.

3.2 Leap Motion

The Leap Motion is an optical tracking device that captures hand movements
with high precision (an error of about 200 µm) [18]. Due to its high performance
and relative low-average price, it has opened up new opportunities for gesture
recognition [11] and interactive software application [9], allowing the develop-
ment of effortless and natural interfaces. Leap Motion offers two data captur-
ing configurations: “Desktop” and “VR.” The main difference lies in operation,
wherein “Desktop” captures data on a surface with a fixed position while “VR”
refers to the active motion capture in virtual reality applications. To our app-
roach, the “Desktop” mode is the most suitable. Following the previous analysis
of the Leap Motion working area [17], we set up the interaction box with a min-
imum distance of 82.5mm and a maximum of 317.5 mm along the Y-axis. While
Z-axis, the one perpendicular to the longest side of the sensor, is in the range of
–73.5 mm to 73.5 mm. Finally, the range along the X-axis is –117.5 mm until
117.5 mm. Figure 1 shows the working area created to capture the data.
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Fig. 1. Calibrating the interaction zone of the Leap Motion

3.3 Experimental Scenarios

Once the UR3 model has been fully functional in Unity, we created a Graphic
User Interface to manipulate the robotic platform. To avoid visual preferences,
this interface gives the same information independently of the control mode,
namely, the objective measures (number of gestures and time) and the current
pose of each angle and the control mode. Figure 2 shows the interfaces for each
control mode. Also, we incorporated visual elements to support the subject dur-
ing the interaction tasks. Initially, a virtual arm appears to create an ownership
sensation because it follows every user’s hand movements. Later, the selected
join and link will be highlighted with green color and the color text where the
angle information appears. Finally, the objective task appears to remember the
final pose to be reached by the robot. Figure 3 shows the interface during the
interaction.

3.4 Experimental Procedure

The subjects sat comfortably in a chair, where before using the simulator, clear
instructions were provided regarding robotics terminology, the interfaces, Leap
Motion, the control modes, and the three different tasks they had to execute.
Likewise, before the data capture, participants interacted with the simulator and
each gesture per mode and were asked to run simple trials similar to the real
ones. Thirty subjects participated voluntarily in the experiment. Nine of them
were women, ranging from 18 to 52 years old (u = 25.3, SD = 10.1). Nine of them
manifested have previous experience with Leap Motion or related technologies,
while 13 know about robotics and virtual simulators.

After the training, the subjects were instructed to carry out the interaction
experience. We asked to complete the tasks as quickly as possible but focus on
performing the gestures naturally. We counterbalanced the modes, so each par-
ticipant starts with one mode, and after five minutes of resting, they perform
the next mode. After running both modes, they were asked to fill two question-
naires: the Simulator Perception Survey (SPS) and the Edinburgh Handedness
Inventory (EHI). The first one was designed to capture personal information
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Fig. 2. Graphic user interface (GUI) for both modes of control.

Fig. 3. Visual interface during the tasks execution. Selected join is highlighted with
green. All the time the current and objective values are shown.
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regarding the use of the simulator, difficulty, usability, and quality. Also, we
asked about the mode preference in terms of efficiency, comfort, and movement
precision. Since the Leap Motion is only developed for right-arm use, we ran the
handedness survey to evaluate if laterality influenced the user’s performance.

Two control modes were proposed and evaluated to manipulate the robot:
“Open Control” and “Coded Control,” presented individually in the following
sections. However, both of them have three common interaction gestures: clock-
wise circle, counterclockwise circle, and swipe (a long linear movement of a finger,
either left or right). They are used to change the join (swipe) and to increase the
angle value (clockwise) or reduce the value (counterclockwise). Independently
of the mode, they had to perform the same three tasks: to reach three specific
poses, and each one is more difficult than the previous. The main difference lies
in the number of gestures and how they have been used to set up the joint angles.
The angle poses of each task corresponding to the base, shoulder, elbow, wrist1,
wrist2, and wrist3 joints are the follows:

– 50◦ every joint;
– {50, 40, 30, –30, –40, –50◦};
– {–10, 10, 30, –70, 10, 60◦}.

The robot starts with its initial pose by default, that is, base equal to 90◦

and the other joints equal to 0◦ (Fig. 4).

Fig. 4. Participants during the execution of the tasks

3.5 Coded Control

This mode allows using number gestures to set up the joint angles. It incorporates
the representations of the hand gestures through the coordinates of different
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reference points of the hand. Thus, we obtained a database of 46 columns coming
from different reference points for each spatial coordinate (X, Y, Z), namely, 15
for hand, three points per finger, and the corresponding digit label at the end
digit and 900 rows coming from 100 captures per digit (from one up to nine).
We used the Machine Learning Model Builder Toolbox in C# to train the model
with the data. It compares several techniques and returns the best one based
on cross-validation precision values. In this case, Multi-Layer Perceptron (MLP)
obtained the higher result with an average of 99% precision. Thus, our system
recognizes either of the digit gestures during the interaction task. The recognized
digit is used as a multiplier by 10 for updating the angle; therefore, if a user would
like to increase 40◦ a specific joint, namely the elbow from the base, (s)he should
do twice the swipe movement towards the right to choose the elbow, later the
gesture of the number four and finally the clockwise gesture to set up the angle.
Thus, it should be four gestures in total. Figure 5 show the available gestures for
this control mode, including the embodiment of the digits.

Fig. 5. Gestures employed during the coded control mode.

3.6 Open Control

Contrary to the coded control, the open mode uses only the three basic inter-
action gestures (clockwise, counterclockwise, and swipe) to set up a new pose
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angle. In other words, there are no digit gestures. The clockwise gesture means
an increase of 10◦ while the counterclockwise a decrease of 10◦. The swipe ges-
ture is similar to the coded control, which means switching the selected joint.
Thus, in this mode, for the previous example of increasing 40◦ the elbow angle
from the base, the subject should do twice the swipe movement towards the
right to choose the elbow, then four times the clockwise gesture to set up the
new angle value. In total, there were five gestures. Figure 6 shows the interaction
gestures used in this mode.

Fig. 6. Gestures employed during the open control mode.

4 Results

We initially compared the two modes using the number of gestures and time
taken to accomplish the three tasks. As both of these variables are non-normal
distribution (according to the Shapiro-Wilk normality test), we performed the
paired Wilcoxon signed-rank test with continuity correction where neither of
these variables reached a significant difference between control modes. Figures
7 and 8 show the gestures and time differences between the modes respectively.
Firstly, we can see that the number of gesture are similar in both modes but
with higher variance in the coded control. As the time is highly dependent on
the number of gestures, a similar pattern is presented too; however, it takes less
time for the coded control than the open one.

As we have a wide range of ages of our participants, from 18 up to 52, we
decided to study the same variables among the different age ranges. Figures 9
and 10 present the variation obtained per age and control mode for number
of gestures and time respectively. At first glance, the coded control took more
gestures and time in participants from 40 to 47. Indeed, the time is the unique
value where is higher for this control mode and age. The standard deviation is
smaller in the open control for the number of gestures. Evidently, the younger
participants obtained better results than the older ones. Presumably, it would
be the technological appropriation typical of the 20 up 30 ages. Also, we study
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Fig. 7. Comparison of the number of gestures taken during the task execution per
control modes. There is no a significant difference between them.

the relationship between age and the numerical results using Pearson’s product-
moment correlation. Thus, we found that age positively correlates with both
the number of gestures (r2 = 0.30, p-value = 0.01596) and the time (r2 = 0.35,
p-value = 0.005384), indicating that as older the participant as higher time and
gestures employed for the tasks except for the last group (48–55 years old).

On the other hand, we analyze each control mode subjectively with the user’s
preferences survey, where the comparison question (CQ1) refers to with which
one do you feel more comfortable; CQ2, which one represents a more efficient and
natural interaction; and CQ3, which one do you feel harder to perform accurate
movements. Figure 11 resumes these findings. We can see that subjects prefer
the coded control over the open one in terms of comfort and natural interaction,
while open control and coded one share the same preference in terms of easy-
to-use. We also evaluated the influence of the user’s previous experience with
Leap Motion or related devices in the numerical results. Thus, we ran a 2-step
Polychoric Correlation estimation reporting a high influence in the experience
for the time (x2 = 81.36, p-value = 0.02319) and the number of gestures (x2 =
65.69, p-value = 0.04567), however, it is not conclusive since we need to run the
experiment with an expert and a naive group.

Finally, the Simulator Perception Survey (SPS) offers a subjective view from
the subjects about the simulator evaluated by ratings from zero (the worst)
up to seven (the best). Figure 12 shows the summary of the answers for each
question where the first one is related to how easy the simulator is; the second is
how understandable the instructions are; how well the functionality is; and how
visually well-looking the simulator is. We can see that participants found the
simulator easy with a rating close to five, while the instructions were effectively
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Fig. 8. Comparison of the time taken during the task execution per control modes.
There is no a significant difference between them.

Fig. 9. Variations of the number of gestures among the age per control mode. This
value is decreasing as younger the participant is.

presented with a rating superior to six. The visual aspect and functionality share
a rating of almost six. These results demonstrate that, in general, there was a
good acceptance of the simulator as a tool for controlling a virtual robot. Also,
we studied the handedness influence on the numerical results. Thus, we ran
a Pearson’s product-moment correlation to find the relationship between the
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Fig. 10. Variations of the taken time among the age per control mode. This value is
decreasing as younger the participant is.

Fig. 11. Comparative question about the user’s preferences between control modes.
Q1: Which mode is the most comfortable for you to use?; Q2: Which mode presents a
more efficient and fluid form of use?; Q3: Which mode gave you the most difficulty in
making precise movements?

laterality index from the Edinburgh Handedness Inventory (EHI) and the time
and number of gestures, where only for the time we found a significant value
(r2 = 0.28, p-value = 0.02894). This finding indicates that, as was expected, the
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Fig. 12. Results from simulator perception survey (SPS). Q1: How easy is the use of the
simulator?; Q2: How Understandable are the Instructions?; Q3: How is the Simulator
working?; Q4: How aesthetically pleasing is the Simulator?. zero represents the worse
value and seven the best.

Leap Motion is right-handedly dependent. However, extensive experiments with
a balanced population between left and right-handed persons should be carried
out to draw conclusive facts.

The above findings suggest that Leap Motion is a technology that could be
used in different setups for robotic control. Moreover, it provides a natural way
of interacting with machines since the hands are one of the most used modes
to set up any device, and also it is very informative due to the large number
of independent gestures created by the fingers and hand. Likewise, the possible
implications of the control modes evaluated here range from the operator train-
ing for industrial manipulators, educational contexts, and social robot research
that seeks to develop and study natural ways of interaction between humans and
machines since the hand’s gestures are one of the more intuitive modes of human
communication, independently of the age. Indeed, that was one of the motiva-
tions for including an extensive range of ages in the experimentation; however,
more studies should be carried out. Finally, new possible and complex control
methods should be explored to improve the current findings in terms of precision
and interaction. For example, including both hands could extend the number of
control signals, expanding the control possibilities.

5 Conclusions

We created a simulator to compare two methods to control a robotic manipulator
using a Leap Motion, a device to capturing and tracking hands movement. The
open and coded modes use the hand’s gesture to set up each joint angle to reach
a specific pose. The coded mode recognizes number gestures to configure the
angle value, while the open one only uses (counter)clockwise finger movement
to increase or decrease the angle value. The difference between them lies in how
these gestures are used. They shared the same interface and also the instructions
to choose a specific joint.
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Our findings suggest slight differences in the number of gestures and time,
where coded control seems to have better results. However, no significance was
reached. During the age evaluation, we found high variance for 40–47 years old
in both modes, suggesting that older participants take more time to learn and
execute while from 14 until 30 years, the performance is similar for both cases.
Subjective analysis shows that the Coded control is the most preferred mode to
reach work.

Our study is a step more towards the full inclusion of Leap Motion in robotic
tasks since we use hands gestures to configure and control each joint individ-
ually instead of the complete robotic manipulator. While here we propose two
alternatives to use such a device, several explorations and tasks should be done
to evaluate Leap Motion’s value in robotics deeply. Increasing the number of
scenarios (tasks to be executed) and participants is mandatory to generalize the
behavior presented here.
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Abstract. Epilepsy is a neurological disorder characterized by the
recurrence of epileptic seizures. Epileptic seizures are associated with
abnormal electrical activity in the brain. Electroencephalogram (EEG) is
a monitoring method that records the brain’s electrical activity through
electrodes placed on the scalp and is non-linear and dynamic in nature.
Therefore, several studies were made to develop alternative approaches
for the diagnosis of epileptic seizures. It is observed in the literature that
the application of machine learning techniques yields satisfactory results
for epileptic seizure detection. However, the researches obtained focused
on the machine learning model developed rather than its applications on
the real diagnosis. Therefore, in this study, we have proposed to train a
machine learning model for epilepsy seizure detection and provide it as
a web service through a Web API. We applied diverse machine learn-
ing methods such as Decision Trees, Logistic Regression, Support Vector
Machines (SVM), and Multilayer Perceptron (MLP) and compared their
results. We also applied different preprocessing methods such as Fourier
Transform, Cosine Transform, Short-Term Fourier Transform, Wavelet
Transform, and Wavelet Packet Decomposition, to find the best model
to be used as a web service.

Keywords: Epileptic seizure detection · Frequency analysis · Machine
learning · Web service

1 Introduction

Epilepsy is a neurological disorder caused by different etiologies and character-
ized by the occurrence of recurrent epileptic seizures [6]. Epileptic seizures have
variable intensity and intervals, which can cause brief episodes or long periods
of convulsion resulting in physical injuries [6]. This condition directly impairs
the quality of life, as it has neurological, cognitive, psychological, and social
consequences [6]

Epileptic seizures are associated with abnormal and excessive electrical activ-
ity in the brain [8]. The diagnosis of epileptic seizures involves consulting the
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patient’s medical history and identifying ictal or interictal discharges (IED) on
the electroencephalogram (EEG) [14].

EEG is a non-invasive electrophysiological monitoring method that records
brain electrical activity by placing electrodes in different positions on the scalp
[10]. The EEG measures the voltage fluctuations over time that represent the
brain activity in that region [10]. The EEG is considered a standard method to
detect epilepsy due to its wide availability and low cost [6]. However, the EEG
presents complex information of the patient, which provides long and error-prone
analysis when performed manually [6].

This scenario has motivated the increase of alternative approaches for the
diagnosis of epileptic seizures [1,14,17,23]. These methods extract linear and
non-linear features in the frequency or time domain of the EEG signals. Then,
these extracted features are used with machine learning techniques for automatic
detection of epileptic seizures [2,10,19].

Even though there are several studies about the classification of epileptic
seizures [8,10,14], it is necessary to share these models in order to make them
more useful.

An approach that has been widely used to provide resources is a web service
[3,11]. Web services can be an effective method to share developed classification
models [22].

Thus, rather than provide another work on classification models for epileptic
seizures, the present work aims to provide a classification system, through a
Web API, that can be easily used for those who need to detect the seizures.
Different preprocessed method were studied and applied in order to select the
best approach. Diverse machine learning techniques were used to train several
classification models, and the model with the best results was selected to be
used in the web service. Then, with the classification model trained, this study
provides a method to offer Epilepsy Seizure Classification as a web service. The
goal of this work is to provide the web service as an instrument to be used
by software engineers or any organization interested for real applications to be
developed in this field.

This article is organized as follows: Sect. 2 describes the methodology used
in this article, starting with the database obtained, the preprocessing methods
used for the feature extraction, and the machine learning models trained to be
used in the web service; Sect. 3 presents the results of the trained models, and
the web service developed using the best model; and Sect. 4 covers the conclusion
of this study.

2 Methodology

The method proposed in this work is represented in Fig. 1. It consists of: Acquire
the database with the electroencephalograms; Preprocess the data based on a
frequency domain analysis; Extract the features of the data; Develop the machine
learning models; Select the best model and deploy it as a web service through
a Rest API. Six Machine Learning methods were applied: K Nearest Neighbors,
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Support Vector Machines, Decision Trees, Logistic Regression, Stochastic Gra-
dient Descent Optimization, and Multilayer Perceptron Neural Network. Each
method was optimized with hyperparameter tuning using grid search. Multi-
ple models were trained with different hyperparameters combinations, and then
evaluated using k-Fold cross-validation. Then, the model with the best hyper-
parameters was selected for each machine learning method. Also, five differ-
ent preprocessing techniques were used resulting in five different datasets for
each preprocessing method. So, each machine learning method was applied for
each preprocessed dataset. The results are 25 models for each preprocessing and
machine learning methods combination. The 25 models were further analyzed
with classifications metrics and the best was selected for the web service. The
dataset was divided in training dataset and test dataset before the grid search,
to prevent bias of the hyperparameter tuning in the model selection. The train-
ing dataset was used in the grid search optimization, and the test dataset was
used for the evaluation and model selection. The best model was then available
trough a web-service Rest API.

Fig. 1. Work flowchart

2.1 Database

The database was obtained from the electroencephalograms collected and made
available by the Temple University Hospital (TUH) [12]. The available database
contains 1947 recordings, with 571 classified with epileptic seizures and 1376
classified without epileptic seizures. Electroencephalogram signals were collected
through electrodes placed on the scalp of patients at a sampling rate 250 Hz. The
International System 10–20 was used, placing the 2 electrodes on the pre-frontal
region(Fp); 5 electrodes on the frontal region (F); 4 electrodes on the temporal
region (T); 3 electrodes on the parietal region (P); 3 electrodes on the central
region (C); and 2 electrodes on the occipital region (O). The electroencephalo-
gram signals are then available in EDF format (European Data Format) with
the recordings of the 19 channels of the performed electroencephalogram.

2.2 Preprocessing

The database was preprocessed to extract the features used in the model train-
ing. The delta, theta, alpha, beta and gamma brain waves were extracted from
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each channel of the electroencephalogram [4,17]. A band-pass filter was applied
at the intervals: 0.5 Hz to 4 Hz, 4 Hz to 8 Hz, 8 Hz to 12 Hz, 12 Hz to 35 Hz and
35 Hz to 100 Hz. Subsequently, five frequency domain analysis techniques were
applied: Fourier transform, Cosine transform, Short Term Fourier Transform,
Wavelet Transform, and Wavelet Packets Decomposition.

Fourier Transform
The Fourier transform is an operation that decomposes a temporal function f(t)
in the frequency spectrum using the following formula:

F (ξ) =
∫ ∞

−∞
f(t) · e−2πiξtdt (1)

The result of the operation is a complex function F (ξ) whose absolute value
represents the amount of frequency ξ present in the original function. For dis-
crete signals such as the digital signals of the electroencephalogram, the discrete
fourier transform is applied, represented by the following formula:

Xk =
N−1∑
n=0

x[n] · e− 2πi
N kn (2)

The result is a vector {Xk} := X0,X1, ...,XN−1 with each position being a
complex number that encodes both amplitude and phase of the sinusoidal com-
ponent representing the frequency domain. As the electroencephalogram signal
has a sampling rate of 250Hz, the absolute value of each position of the vector
indicates the amount of frequency N · 0.004 Hz present in the original signal.

Cossine Transform
In the Cosine transform, a variation of the Fourier transform is applied, in which
only the cosine of the Euler formula is used, defined by the formula:

F (ν) =
∫ ∞

−∞
f(t) · cos(−2πνt)dt (3)

The discrete Cosine transform is defined equal to the discrete Fourier trans-
form. It obtains only real components of the frequency domain, so is computa-
tionally more efficient.

Short-Term Fourier Transform
The Short-Term Fourier Transform (STF) is a non-stationary derivation of the
Fourier Transform. The frequency spectrum obtained by this transform varies
with time and is therefore non-stationary. This technique consists of applying
the fourier transform at different times in the original signal, called short terms.

The Short Term Fourier Transform maps a real one-dimensional function, or
signal, to a complex two-dimensional function in the frequency spectrum and
its temporal location. The temporal localization is obtained using a windowing
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function g(τ), which extracts the short term of the signal in the time interval τ .
Thus, the formula including the windowing function becomes:

F (ξ, τ) =
∫ ∞

−∞
f(t)g(t − τ) · e−2πiξtdt (4)

The result of the transform is the frequency spectrum obtained by the Fourier
Transform, in a short time interval of the original function defined by the win-
dowing function g(τ).

For digital signals, the discrete version of the Short Term Fourier Transform
is also used. The Discrete Fourier Transform is also applied to the digital signal
in different short terms of the signal using a discrete windowing function h[t].
The Short Term Discrete Fourier Transform formula becomes:

Xk,m =
N−1∑
n=0

x[n]h[n − m] · e− 2πi
N kn (5)

The result of the transform is a complex matrix with each line representing
time interval component, and each column representing the frequency spectrum.

Wavelet Transform
The wavelet transform is defined by the inner product between the input function
and the wavelet function after a scale factor a and shift factor b, denoted by the
following formula:

F (a, b) =
1√|a|

∫ ∞

−∞
ψ

(
x − b

a

)
· f(x)dx (6)

The scaling and shift factors (a and b) allow to obtain information about
the original signal at high and low frequencies, and at different moments of
the signal. The wavelet function ψ is used as an impulse applied to the system
represented by the original signal [15].

The discrete wavelet transform is used for digital signals. In the discrete
wavelet transform, the scaling factor a is defined in discrete values of aj = 2j .
The shift factor is also defined in discrete values of bj = 2jk. The discrete wavelet
transform algorithm divides the process into n = log2(N) levels. At each level j,
a low-pass and high-pass filter is applied at the yj−1[k] output signal from the
previous level, according to the formulas 7 and 8

ylow =
∞∑

k=−∞
x[k] · g[2n − k] (7)

yhigh =
∞∑

k=−∞
x[k] · h[2n − k] (8)

The h[t] is the impulse function of the high-pass filter defined by the wavelet
with discrete values, represented by formula 9, and g[t] its quadrature mirror
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filter. The discrete coefficients yhigh, also called detailed components, have only
half the frequencies for the level j and it is the output of the wavelet transform for
the level j. The discrete coefficients ylow, also called approximate components,
have the other half of the frequencies. The components are then recursively
passed to the algorithm for the nexe level j+1. Thus, the transform calculates the
detailed and approximate components at each level, and pass the approximate
components to calculate the components of the next level. The final discrete
Wavelet transform is formed by the set of all detailed components generated at
each level with approximate component generated at the last level, resulting in
n + 1 coefficients.

h[t] =
1√
2j

· ψ

(−t

2j

)
, t = 1, 2j , 22j , ..., 2N (9)

Wavelet Packet Decomposition
Wavelet Packet Decomposition is a variation of the Wavelet Discrete Transform
where more filters are applied to the signal in the algorithm for calculating the
coefficients. When calculating the Wavelet Transform, the detailed components
are the final results of the transform, while the approximate components are
used to calculate the coefficients for the next level. In Wavelet Packet Decompo-
sition, both detailed and approximate components are passed to the next level,
generating 2 branches in the recursion for each component as the input. So, the
algorithm grows exponentially with 2n coefficients while the Wavelet transform
has n + 1 coefficients.

2.3 Feature Extraction

After extracting the five brainwaves intervals for each of the 19 channels, 95 waves
were obtained for each electroencephalogram. Then, the preprocessing method
was applied on the signals extracted for each of the five preprocessing methods.
Thus, five different datasets were obtained for the frequency domain analysis
of each method. The Features of the dataset were extracted by calculating five
statistical characteristics: Average Value, Standard Deviation, Average Energy,
Average Absolute Value, Skewness [20]. These features are respectively defined
on the following formulas:

μ =
1
N

N−1∑
k=0

x[k] (10)

σ =

√√√√ 1
N − 1

N−1∑
k=0

(x[k] − μ)2 (11)

AE =
1
N

N−1∑
k=0

(x[k])2 (12)
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AAV =
1
N

N−1∑
k=0

|x[k]| (13)

S =
∑N−1

k=0 (x[k] − μ)3

N ∗ σ3
(14)

Each electroencephalogram is transformed into 95 signals by applying the
frequency analysis preprocessing method. After extracting the five statistical
features, each electroencephalogram is then encoded as 475 final features. So,
five datasets are obtained with 1947 samples and 475 features, 1 for each pre-
processing method.

2.4 Machine Learning

The database has a total of 1947 samples, with 571 classified with epileptic
seizures and 1376 without. Since database is unbalanced, the total samples used
were reduced to balance it [5]. 571 samples were randomly selected from the
class without epileptic seizures, resulting in a total of 1142 samples used. Also,
each dataset was divided in training and test dataset, to avoid a bias during
the selection of the best optimized model. 80% of the dataset was used as the
training dataset, and 20% as the test dataset. The training dataset was used in
the hyperparameter optimization, and the test dataset used to evaluate the best
model of the optimization.

Different models were developed and evaluated to obtain the most efficient
model. Each machine learning method was optimized by tuning its hyperparam-
eters to obtain the model with the best result. The method used for optimiza-
tion was the grid search [7,21]. The method consists of selecting the possible
values of each hyperparameter. Then, for each combination of the hyperparame-
ters values, models are trained and evaluated to select the best hyperparameter
combination. To select the best hyperparameter during the optimization, k-fold
cross-validation [13,16,24] was used with k = 10. The k-Fold consists of further
splitting the training dataset into k partitions, with k − 1 used for training, and
1 for testing. The partition used for testing is permuted so all k partitions are
used at least 1 time for testing, and therefore, used k − 1 times for training.
Finally, k models are trained and the evaluation metrics are calculated for each
fold. The evaluation of the hyperparameter combination is the average of the
folds metrics. For the best hyperparameter selection, the accuracy metric was
used, defined by the formula 17.

After the optimization, the best hyperparameters values was selected for each
machine learning method and preprocessing dataset. Then, a model was trained
with the hyperparameters values on the whole training dataset. Finally, each
model was evaluated on the test dataset, using the classification metrics: preci-
sion, sensitivity, accuracy, and F1-Score. The classification metrics are defined
by the formulas 15, 16, 17, and 18.
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precision =
TP

TP + FP
(15)

sensitivity =
TP

TP + FN
(16)

accuracy =
TP + TN

TP + FP + TN + FN
(17)

F1 =
2TP

2TP + FP + FN
(18)

The metrics uses the confusion matrix [18] calculated. The TP, TN, FN and
FP values used in the formula represents the true-positive, true-negative, false-
negative and false-positive values respectively of the confusion matrix. With
the metrics evaluation, the results were compared to select the best models
between the techniques. To select the final model, the bayesian information cri-
terion (BIC) was calculated for the best models, since it can be used for model
selection[9]. The BIC is represented by the formula 19. In the formula, k repre-
sents the model parameters, n is the number of samples in the data, and L̂ is
the model likelihood, or in this case, its evaluation metric. Thus, the final model
was selected to be used in the web service.

BIC = k · ln(n) − 2ln(L̂) (19)

2.5 Web Service

Fig. 2. Web service architecture

After the best model has been selected, it was deployed as a web service.
The web service architecture used was REST (Representational State Transfer).
Since the models developed were training and saved using the programming
language Python, the service was also deployed in Python. The library used to
handle the HTTP request was Flask. The library handles the GET, POST, PUT,
and DELETE HTTP requests, which form the main REST operations. The web
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service was then developed to handle those HTTP requests contained the client
electroencephalogram, as well as send a response to the client via HTTP with
the model classification prediction. The process of EEG seizure classification
prediction via the web service is represented by the Fig. 2

3 Results

3.1 Model Optimization

The machine learning techniques used were: Support Vector Machine (SVM),
Logistic Regression, Decision Trees, K Nearest Neighbor (KNN), Multilayer Per-
ceptron Neural Networks (MLP), and Stochastic Descending Gradient Optimiza-
tion (SGD). Each machine learning method was applied in each preprocessing
dataset. The hyperparameters were optimized with the accuracy metric used as
best hyperparameter selection. The results of the optimization for each machine
learning method per dataset are represented by Table 1, 2, 3, 4, 5 and 6. Each
row presents the 5 best models for each preprocessing method column, with the
best results in bold.

Table 1. KNN optimization

Fourier Cosine STF Wavelet Wavelet packet

77.0831% 77.4104% 76.4226% 78.9465% 80.2628%

73.9047% 77.1859% 74.3442% 78.1808% 79.6046%

73.5702% 76.9709% 73.9142% 78.1713% 79.0612%

73.458% 75.3249% 70.5112% 77.4128% 78.2895%

71.3784% 74.2379% 67.6469% 75.8696% 77.0855%

Table 2. SVM optimization

Fourier Cosine STF Wavelet Wavelet packet

51.4238% 51.8645% 51.2076% 51.9709% 51.7559%

51.4238% 51.757% 51.0977% 51.7547% 51.0977%

51.3151% 51.4262% 50.989% 51.5337% 51.0977%

51.3139% 51.3151% 50.989% 51.5337% 51.0965%

51.2052% 51.2076% 50.9878% 51.3151% 51.0965%

The results for the Support Vector Machine are close regardless of the prepro-
cessed dataset used. The results of K Nearest Neighbors, Logistic Regression and
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Table 3. MLP optimization

Fourier Cosine STF Wavelet Wavelet packet

74.6751% 76.4178% 75.7561% 79.5975% 78.5069%

74.447% 76.0882% 74.232% 79.2726% 77.9443%

74.3383% 75.7561% 74.0002% 78.397% 77.8488%

74.005% 75.3237% 69.6166% 77.3041% 76.9685%

72.4701% 74.0158% 69.0743% 76.8705% 76.8669%

Table 4. Logistic regression optimization

Fourier Cosine STF Wavelet Wavelet packet

68.0948% 66.9828% 67.8655% 70.0669% 71.8156%

68.0948% 66.8813% 67.7556% 69.0815% 71.1538%

67.7676% 66.8765% 67.3184% 69.0815% 70.8242%

58.4353% 62.9419% 63.1558% 64.478% 62.9443%

58.4353% 62.6099% 63.0471% 63.9298% 62.7222%

Multilayer Perceptron Neural Networks have an increase between 3% and 5% for
the Wavelet Transform and Wavelet Packet Decomposition datasets. The results
of Stochastic Gradient Descent Optimization were higher for the Fourier Trans-
form and Short Term Fourier transform, while the results for Decision Tree were
higher only for the Short Term Fourier Transform. The methods that obtained
the best results were Decision Trees, Multilayer Perceptron Neural Networks and
K Nearest Neighbors, with best values close to 80%. The Logistic Regression
also obtained close results, with best values around 70%. Both Support Vector
Machines and Stochastic Gradient Descendant Optimization obtained the worst
results, with best values close 55%.

Table 5. SGD optimization

Fourier Cosine STF Wavelet Wavelet packet

59.9737% 52.629% 58.7733% 56.5815% 53.4245%

59.7611% 51.9709% 57.1249% 55.2699% 53.4161%

59.1042% 50.6605% 55.1517% 54.0576% 52.4283%

58.9623% 50.2263% 54.6141% 53.4136% 52.1691%

58.8429% 49.5215% 53.973% 52.6136% 52.0619%
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Table 6. Decision Tree Optimization

Fourier Cosine STF Wavelet Wavelet packet

75.9974% 75% 79.3968% 73.5738% 74.4505%

75.6677% 74.8901% 78.7339% 73.2465% 74.2284%

75.6677% 74.6715% 78.5165% 73.1378% 74.1245%

75.4479% 74.5604% 78.4066% 73.1366% 73.9011%

75.0084% 74.4577% 78.2979% 73.0339% 73.5702%

3.2 Model Selection

The best model of each machine learning method and each preprocessing dataset
were evaluated using the other classification metrics in the test dataset and their
results are represented by Fig. 3, 4, 5 and 6. The K Nearest Neighbors had the
best results for the precision metric, but had low results for the recall, and
therefore low values for F1 score as well. The Support Vector Machine had the
best values for recall with almost 100% for all preprocessing methods, but the
worst values for the other metrics. The models with the best results for all the
metrics were the Multilayer Perceptron Neural Network for the Cosine Transform
and Wavelet Transform preprocessing methods with least 80% for all 4 metrics.
Thus, the BIC was calculated for the both methods using the F1 and accuracy
metric, since they both use all of the confusion matrix. Since the BIC for the
MLP with the Wavelet Transform was higher than the MLP with the Cosine
transform, it was selected to be used in the web service.

Fig. 3. Precision results
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Fig. 4. Recall results

Fig. 5. Accuracy results

Even though the best model was evaluated with the classification metrics
around 80%, it can be improved with other approaches. In [10] a model was devel-
oped with 94.2% of accuracy through features extracted with Principal Compo-
nent Analysis applied to the time domain. In [23], the authors achieved 88.3% of
accuracy in a multi-class classification using pre-trained convolutional networks
for feature extraction. The work in [17] developed a model with 82.5% accuracy,
using Filter Bank Common Spatial Pattern (FBCSP) for feature extraction in
the Motor Imagery EEGs, with accuracy close to the present work. In [14], a
new method for classification using fractional linear prediction was used achiev-
ing 95.33% of accuracy.
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Fig. 6. F1 Score results

3.3 Web Service

After the best model was selected, it was deployed as web service via a REST
API. The methods and urls handled by the API are described in Table 7. The
API offers information about the service itself, and the model used trough GET
operations. The API handles a POST operation for the prediction with the EEG
data as an EDF file. Attached to the POST, the user sends the binary data of
the EDF file to be processed by the service and passed to the model. When
the web service receives a POST with the EEG, it preprocess and extract the
features based on the selected model preprocessing method. The features are
passed to the selected model for the classification. The service then sends a
HTTP Response with the prediction of seizure detection.

Table 7. Web services URL descriptions

Method URL Description

GET / General description of the web service

GET /Model Contains the details of the model used for
the prediction

GET /Model/Metrics Contains the evaluation metrics of the
model

GET /Model/Predict Contains the details of the EEG to be sent
as .edf file for seizure detection prediction

POST /Predict Predict epilepsy seizure on the EEG data
posted

The web service API was developed in a local machine. To test the seizure
detection prediction, cURL, a command line tool, was used to send the HTTP
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Fig. 7. EEG prediction with seizure detected

request. The usage of the web service with the cURL is represented by Fig. 7
and 8.

Fig. 8. EEG prediction with no seizure detected

Fig. 9. Web service running

A POST HTTP request was sent to the server to detect epilepsy seizure on
the EEG represented by the EDF files sent. The server showed by the Fig. 9
receives the EEG data, preprocess the data, and pass it to the machine learning
model, as proposed on Fig. 2. The server send the prediction as a HTTP response,
as previously demonstrated (Fig. 7 and 8).
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Even though the web service offers a simple Rest API, it can be used as a mid-
dleware for the detection of epileptic seizure in EEG’s. The simple architecture
of the Rest API offers a straightforward communication for the classification of
EEG’s which can be used on different levels of abstraction and types of systems
requiring the web service. However, the API is not scalable for more complex
systems using the web service, which can be adjusted but modifying the API to
be used in computer clusters depending of the type of the system.

4 Conclusion

This work applied some of the principal methods of machine learning tech-
niques and frequency domain analysis to develop a classifier model of epilep-
tic seizures in electroencephalogram. Five different preprocessing methods were
used to compare the results: Fourier Transform, Cosine Transform, Short Term
Fourier Transform, Wavelet Transform, and Wavelet Packet Decomposition.
After their features extracted, six Machine Learning methods were applied: K
Nearest Neighbors, Support Vector Machines, Decision Trees, Logistic Regres-
sion, Stochastic Gradient Descent Optimization, and Multilayer Perceptron Neu-
ral Network. The best model developed was then selected to be used as the clas-
sifier deployed as web service. The model was deployed trough a REST API,
to handle HTTP Requests with electroencephalogram data. The web service
developed can be used as a method to classify electroencephalogram with the
developed model. Thus, it is a possible way to make available classification mod-
els for epilepsy seizures.

Even though the developed model achieved satisfactory results, as stated in
the previous section, it can be improved by using the more complex preprocess-
ing and feature extraction methods used in the previous cited works. However,
the goal of this research was accomplished by successfully deploying a epilepsy
seizure classification model as a web service. Thus, it suggests that a web service
can be a valid method to deploy the classification models for possible systems
interested in seizure detection via the web service as middleware.
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Abstract. Dravet syndrome is a type of drug-resistant and devastating child-
hood epilepsy, which begins in the first year of life. Etiologically, it is most fre-
quently associated with loss-of-function de novo mutations in the gene SCN1A,
which encodes for the NaV1.1 channel, a voltage-operated sodium channel
highly expressed in inhibitory GABAergic interneurons. Dysfunction of this chan-
nel causes global hyperexcitability. Whereas exacerbation of seizures in Dravet
patients has been observed after the administration of voltage-operated sodium
channel blockers with low or no selectivity towards specific channel subtypes,
recent preclinical evidence suggests that highly selective blockade of sodium
channels other than NaV1.1 or the selective activation of NaV1.1 could correct
the Dravet phenotype.

Here,we report the development and validation of ligand-based computational
models for the identification of selective NaV1.2 or NaV1.6 with no inhibitory
effect on NaV1.1. The models have been jointly applied to screen the chemi-
cal library of the DrugBank 5.1.8 database, in order to select starting points for
the development of specific drugs against Dravet syndrome. The ligand-based
models were built using free software for molecular descriptor calculation (Mor-
dred) in combination with in-house Python scripts. Training data was retrieved
from ChemBL and specialized literature, and representatively sampled using an
in- house clustering procedure (RaPCA). Linear classifiers were generated using
a combination of the random subspace method (feature bagging) and forward
stepwise. Later, ensemble learning was used to obtain meta-classifiers, which
were validated in retrospective screening experiments before their use in the final,
prospective screen.
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1 Introduction

Dravet syndrome, previously known as severe myoclonic epilepsy of infancy, is a dev-
astating and drug-resistant type of epilepsy that manifests in the first year of life; it
is associated with ataxia, severe cognitive disability, deficit in social interaction, and
altered circadian rhythm [1, 2]. The disease usually begins around 6 months of age, with
seizures triggered by temperature (fever, hot weather, a hot bath), after which seizures
become progressively more frequent and severe. Even with access to the most modern
diagnostic and care techniques, 15% of Dravet patients die before reaching adolescence
[1]. It is a rare disorder, with an incidence of about 1 in 16,000 to 40,000 children born
in high-income countries [3, 4] and it has been included in the list of rare disorders of the
Genetic and Rare Diseases Information Center of the United States (https://rarediseases.
info.nih.gov/diseases). Such disorders, due to their low incidence and low investment
return, usually require the intervention of public agencies and non-profit organizations
to develop new diagnostic tools and specific therapeutic solutions, as reflected by the
recent creation of international consortia and programs with these objectives, e.g., the
Rare Diseases Program of the Food and Drug Administration (FDA) or the International
Rare Diseases Research Consortium [5].

The etiology of Dravet syndrome is associated in most cases to heterozygous loss of
function of theNaV1.1 channel, due to deletion or loss of functionality caused by de novo
mutations of the SCN1A gene [6, 7]. Dysfunction of NaV1.1, which is highly expressed
in inhibitory GABAergic interneurons, causes global hyperexcitability. This phenotype
is predictably worsened by administration of voltage-operated sodium channel blockers
with low or no selectivity towards specific channel subtypes such as phenytoin, oxcar-
bazepine or lamotrigine, which are contraindicated [8–10]. However, recent preclinical
evidence in animal models of Dravet suggests that highly selective blockade of sodium
channels other than NaV1.1 or, alternatively, the selective activation of NaV1.1 could
correct the Dravet phenotype [11, 12].

Although challenging due to the similarity of the drug-binding sites of the different
channel subtypes, achieving high selectivity in sodium channel blockers is feasible, as
proven by the recent success in the development of small molecules capable of selec-
tively inhibiting the NaV1.7 subtype, with great potential as analgesics and neuropathic
pain treatments [13–15]. Clinical trials of several such selectiveNaV1.7 blockers are cur-
rently underway, including Pfizer’s PF-05089771 (which successfully completed phase
II studies), orGDC-276 andGDC-0310 (XenonPharmaceuticals).Basedon this premise,
here we have implemented in silico screening campaigns to identify selective NaV1.2 or
NaV1.6 blockers, with no predicted inhibitory activity onNaV1.1. For such purposes, we
have trained and validated ligand-based meta-classifiers capable of identifying blocking
agents of NaV1.1, NaV1.2, and NaV1.6. NaV1.2 and NaV1.6 were then used as drug
targets, whereas NaV1.1 was used as anti-target. All the models have been developed
based on freely available software and in-house scripts, assuring their portability.

https://rarediseases.info.nih.gov/diseases


Machine Learning Search of Novel Selective NaV1.2 and NaV1.6 103

2 Methods

2.1 Dataset Collection, Curation, and Labeling

Three datasets consisting of compounds with blocking properties on NaV1.1, NaV1.2
and/or NaV1.6 were extracted from ChEMBL (https://www.ebi.ac.uk/chembl/). Only
compounds with reported single point activity data or IC50 measured against the alpha
subunit of human sodium channels were considered. In the case of NaV1.1 and NaV1.6,
owing to the scarcity of data, this search was complemented with data from special-
ized literature (the list of papers from which compounds were extracted is presented
as Supplementary Material). Literature search was performed in Scopus (https://www.
scopus.com/) using the following keywords and Booleans: “Sodium channel” AND/OR
“NaV1.1” AND/OR “Nav1.6” AND/OR “SCN1A” AND/OR “SCN8A” AND/OR “in-
hibition” AND/OR “inhibitor” AND/OR “patch clamp” AND/OR “epilepsy” AND/OR
“anticonvulsive”. Duplicated data were removed. ChEMBL data were further curated by
removing compounds with anomalous/atypical activity data or with data which were not
extracted from journals. Toxins and compoundswithmolecularweight above 1 kDawere
also excluded, as the focus of the models would be small, drug-like molecules. Since
only conformation-independent molecular descriptors would be included in the models,
when data from optical isomers were reported, only one of themwas kept whenever both
isomers belonged to the same activity class, and the compounds were disregarded if the
isomers belonged to different activity classes.

2D molecular representations were standardized using the standardization tool
MolVS, written using the RDKit chemistry framework (https://molvs.readthedocs.io/
en/latest/). Sets of 91, 167, and 91 compounds survived the curation steps for NaV1.1,
NaV1.2 and NaV1.6, respectively. Compounds with IC50 < 10 μM or with percentage
of inhibition above 50% at 10μM (or at lower concentrations) were labelled as ACTIVE
compounds. Otherwise, they were labelled as INACTIVE compounds. The composition
of the three datasets is shown in Table 1.

Table 1. Composition of the NaV1.1, NaV1.2 and NaV1.6 datasets.

NaV1.1 NaV1.2 NaV1.6

Active 44 112 39

Inactive 47 55 52

The molecular diversity of the entire dataset, as well as within and between each
category of compounds can be visually appreciated in the heatmap displayed in Fig. 1,
which shows, for every channel and every compound pair, the Tanimoto distance com-
puted using Morgan fingerprints. The three datasets are provided as Supplementary
Material in.csv format.

https://www.ebi.ac.uk/chembl/
https://www.scopus.com/
https://molvs.readthedocs.io/en/latest/
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Fig. 1. The heatmaps illustrate the molecular diversity of the datasets, with blue bits corres-
ponding to similar compounds pairs and pale-yellow bits corresponding to dissimilar compounds
pairs. NaV1.1 (left), NaV1.2 (middle), NaV1.6 (right).

2.2 Dataset Partitioning into Training and Test Sets

It has been reiteratively observed that representative partitioning of datasets into training
and test sets tends to yield better results in the validation stage(s) [16–18]. In the current
study, thus, an in-house representative sampling procedure was used to split the datasets
into a training set that was used to infer the models and a test set that was used to inde-
pendently assess the models’ performance (i.e., their predictive power). The approach,
which we called RaPCA, is based on a combination of the random subspace approach
(feature bagging, which stochastically explores random subsets of the features), and
Principal Component Analysis (PCA) for feature reduction purposes: PCA extracts a
sequence of p unit vectors, where the ith vector corresponds to the direction of a line
that best fits the data in the correspondent feature subspace while being orthogonal to
the first i − 1 vectors.

The active and inactive compounds within each dataset are clustered separately, 1612
molecular descriptors were calculated with Mordred 1.2.0 [19]. Molecular descriptors
with low information content (variance below 0.05) were removed. 1000 subsets of 200
descriptors each were randomly generated, and redundant molecular descriptors (Pear-
son correlation coefficient above 0.4) were removed. From the resulting feature subsets,
only those consisting of 10–20 descriptors were kept, and the two principal components
were computed. The k-means clustering procedure was then applied, systematically
varying the number of k clusters between 2 and 20 and computing the silhouette coeffi-
cient [20] for every k value. The clustering scheme corresponding to the highest value of
the silhouette coefficient was selected. A graphical summary of the clustering approach
is provided in Fig. 2. The correspondent script (RaPCA.py) is provided as Supplemen-
tary Material; the tunable parameters (e.g., maximum Pearson correlation coefficient,
maximum number of clusters to be considered, etc.) can be selected by the user in future
applications of the method.
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Fig. 2. A graphical summary of the RaPCA clustering method, combining feature bagging,
principal component analysis and k-means optimization.

2.3 Molecular Descriptor Calculation and Modeling Procedure

1612 conformation-independent descriptors were computed with Mordred 1.2.0. A ran-
dom subspace approach was again applied to obtain 1000 subsets of 200 descriptors
each. In the random subspace approach, subsets of molecular descriptors are randomly
sampled, and each model is trained from one subset of the features [21, 22]; conse-
quently, the resulting models do not reiteratively focus on those features that display
high explanatory power for the training examples. A dummy variable was used as the
dependent variable (class label). It was assigned observed values of 1 for compounds
within the ACTIVE class and observed values of 0 for compounds in the INACTIVE
class. A Forward Stepwise procedure was used to obtain 1000 linear classifiers, one per
feature subset. Only one molecular descriptor every 10 training examples was allowed
into the model, to prevent overfitting. A maximum Pearson correlation coefficient of
0.85 was considered and no descriptor with regression coefficient with p-value above
0.05 was incorporated into the models. The predictive ability of each individual model
was assessed through external validation, using the independent test set described in the
preceding section, computing the global accuracy.

The predictive power and robustness of the models were initially assessed through
Leave-Group-Out (LGO) cross-validation and Fisher’s randomization tests. In the case
of randomization, the class label was scrambled across the compounds in the training
set. The training set with the randomized dependent variable was used to train new
models from the descriptor selection step. Such a procedure was repeated 1000 times
within each random subspace. It is expected that the randomized models will perform
poorly compared to the real ones. Regarding LGO cross-validation, random stratified
subsets of 10% of the total training set compounds were removed from the training set
in each cross-validation round, and the model was generated again using the remaining
compounds. The resulting model was used to predict the class label for the removed
sample. The procedure was repeated 1000 times. The results were informed as the
average accuracy across the folds; this was compared with the accuracy of the model
inferred from the original, whole training set, and also, as advised by Gramatica [23],
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to the No-Model error rate or risk, i.e., the error provided in absence of model, which in
our case corresponds to 0.5.

2.4 Ensemble Learning

Classifier ensembles (or meta-classifiers) often provide better generalization and accu-
racy than individual classifiers [24, 25]. As described in the next section, we have run
two retrospective in silico screening experiments, the first of which is used to assess the
enrichment power of the individual classifiers and train model ensembles, whereas the
second retrospective screen is used to validate the performance of the ensembles. The
libraries subjected to retrospective virtual screening are obtained by seeding the com-
pounds that compose the test sets among a high number of putative inactive compounds
termed decoys. Decoys have been obtained here by application of an in-house script
that behaves similarly to the well-known Directory of Useful Decoys enhanced [26] (see
next section for details).

The best individual classifiers are selected and combined according to their perfor-
mance in the first retrospective screen, using the area under the Receiving Operating
Characteristic (ROC) curve (AUCROC) as performance criterion. Systematic combi-
nations of the 2 to N x 10/100 best performing classifiers were analyzed, N being the
number of instances in the training set. Five combination schemes were applied to obtain
a combined score: Average score (AVE), Average Ranking (RANK), Minimum operator
(MIN), Product operator (PROD) and Average Voting (VOT) as computed by Zhang and
Muegge [27].

For comparison purposes, the performance of our model ensembles was compared
with those emerging from the combination of feature bagging on the descriptor pool
(3000 random subspaces of 200 descriptor each) and three other machine learning algo-
rithms:RandomForest (RF),Multi-layer Perceptron (MLP) andSupportVectorMachine
(SVM). These algorithms have been implemented through the sklearn package in Python
using the default parameters.

2.5 Retrospective Screening

Toestimate the enrichment performanceof the individualmodels andmodel ensembles in
a realistic virtual screening setting, two retrospective virtual screening experiments were
implemented. For that purpose, the known active compounds in the test sets were seeded
among a large number of decoys obtained with the help of an in-house decoy generation
algorithm that we have termed LUDe (LIDeB Useful Decoys). Briefly, this algorithm
is fed with molecular representations of known active compounds and retrieves from
ChEMBL compounds paired through some general physicochemical properties but with
distinctive molecular topology. For each active compound used as query, we extracted
from ChEMBL compounds with similar molecular weight (±2 Dalton in comparison
with the query), log P ((±0.5 log units in comparisonwith the query), number of rotatable
bonds (±1), number of H-bond acceptors (±1), number of H-bond donors (±1). Three
successive filters were then applied to select, among the retrieve compounds, those that
are less similar, topologically speaking, to the query compound: 1) Tanimoto similarity
coefficient between the query compound and each potential decoy was calculated, using



Machine Learning Search of Novel Selective NaV1.2 and NaV1.6 107

Morgan fingerprints, radius 2, and only decoys with similarity coefficient of at most 0.3
were kept; 2) the maximum common substructure between the query and the decoy is
found using RDKit’s rdFMCS module; the ratio between the number of atoms in the
maximum common substructure and the query compound is calculated, and only decoys
with ratio below 0.5 are kept; 3) only decoys with different scaffolds than the query
compound are kept. For such a purpose, RDKits’s MurckoScaffold tool is used. Finally,
the resulting list of decoys are compared with all the remaining active compounds in the
dataset and only those with Tanimoto similarity below 0.3 with every active compound
are retained. Up to 100 decoys per query compound are used. The general workflow
to obtain decoys is graphically displayed in Fig. 3. The composition of the libraries
used to assess the performance of NaV1.1, NaV1.2 and NaV1.3 models through two
retrospective screens is summarized in Table 2. Note that in any case the yielding of
active compounds of the correspondent library is around 0.01. Also note that, due to data
scarcity, in the cases of NaV1.1 and NaV1.6 the active compounds seeded in both the
retrospective screening libraries (first and second retrospective screen for each channel
subtype) are identical, whereas the decoys used in each case have varied. In the case
of NaV1.2, the available data allowed the use of completely different libraries for the
retrospective screens. The corresponding script is provided as Supplementary Material
(LUDe.py).

Fig. 3. A graphical workflow of the LUDe method.

The performance of the individual classifiers and the classifier ensembles in each
library was assessed using different enrichment metrics were computed, namely:
AUCROC, the Boltzmann-Enhanced Discrimination of the Receiver Operating Charac-
teristic (BEDROC), the area under the Precision Recall curve (AUPR) and enrichment
factor 1% (EF0.01) [28, 29]. The DeLong method was used to compare the AUCROC
values from a statistical viewpoint.
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Table 2. Composition of the libraries used for retrospective screen experiments, for the three
subtypes of sodium channels considered in this study. The true active and inactive compounds
used for such purposes are the test set compounds for each channel subtype.

Screen NaV1.1 NaV1.2 NaV1.6

Active True
inactive

Putative
inactive

Active True
inactive

Putative
inactive

Active True
inactive

Putative
inactive

Retrospective
screen 1

14 17 1210 29 0 1477 9 22 756

Retrospective
screen 2

14 0 852 28 0 1463 9 0 475

2.6 Use of Positive Predictive Value Surfaces to Choose a Score Threshold
for the Prospective Screen

The Positive Predictive Value (PPV) answers a very pragmatic question: how many in
silico hits emerging from a virtual screening campaign should be submitted to experi-
mental confirmation to obtain a true, confirmed hit. For instance, a PPV of 0.5 implies
that about one every two hits will confirm the predicted activity experimentally. Estima-
tion of PPV is however hampered by its dependency on the yielding of active compounds
(Ya) in a chemical library, which is not known a priori in prospective virtual screens.

PPV = SeYa

SeYa + (1 − Sp)(1 − Ya)
(1)

where Se represents the sensitivity associated to a given score cutoff value and Sp
represents the specificity.

Equation (1) was applied to build PPV surfaces: 3D plots showing the interplay
between PPV, the Se/Sp ratio and Ya were built for each individual classifier and for
each model ensemble. Using the first retrospective screening library for each subtype
of sodium channel, Se and Sp were computed in all the range of possible cutoff score
values and Ya was varied between 0.001 and 0.01, assuming that the Se/Sp ratio would
remain invariant no matter the Ya. Visual inspection of the resulting PPV surfaces (see
Fig. 4 for an example) was used to assist in the selection of a score threshold value with
a desired range of PPVs.

2.7 Prospective Virtual Screen

The model ensembles that, for each channel subtype, showed the best performance in
the retrospective virtual screening experiments were used to screen DrugBank 5.1.8, an
online database focused on chemical substances that may be subject to drug repurposing,
e.g., approved, investigational and withdrawn drugs [30]. The molecular representations
of the compounds in this database were standardized as previously described for the
dataset compounds and 1612 molecular descriptors were calculated withMordred 1.2.0.
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Fig. 4. PPV surface for the best model ensemble obtained for the NaV1.2 channel.

The extent of extrapolation approach [31] was used for applicability domain assess-
ment, using a critical value of 3d/n, n being the number of descriptors included in each
model. For model ensembles, the proportion of models in the ensemble for which the
screened compound falls within the applicability domain was calculated. A screened
compound was regarded as an in silico hit when it was predicted as a blocker of NaV1.2
or NaV1.6 and a non-blocker of NaV1.1.

3 Results and Discussion

A ligand-based prospective virtual screening approach was used to discover selective
NaV1.2 orNaV1.6 blockers,with no inhibitory effect onNaV1.1, as potential therapeutic
agents for Dravet syndrome. Dataset compounds were retrieved from ChEMBL or from
specialized literature, and representatively sampled into training and test sets by using an
in-house clustering method, RaPCA, based on a combination of feature bagging, dimen-
sionality reduction through PCA and k-means optimization. RaPCA showed an excellent
performance in all cases, with observed silhouette coefficient values for the optimal clus-
tering between 0.82 and 0.95 (see Fig. 5 for a representative example, corresponding to
clustering of NaV1.1 active compounds).
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1,000 individual linear classifiers were generated by applying a combination of ran-
dom subspace and forward stepwise on a pool of 1,612 Mordred molecular descrip-
tors. The individual models were validated both internally (through cross-validation and
randomization tests) and externally. Equation 2 provides an example of linear model
(corresponding to the best NaV1.2 model):

Model 225 = −0.369 + 0.052 ∗ SssNH + 0.017 ∗ EState_VSA5 + 0.44
∗GATS7are + 0.027 ∗ ETA_dBeta + 0.087 ∗ AATSC7Z + 0.011 ∗ EState_VSA9

(2)

where SssNH denotes the sum of the electrotopological states of the ssNH atom
type, which encodes, in unison, the topology and electronic environment of such molec-
ular fragments. EState_VSA5 is a MOE-type descriptor considering EState indices and
surface area contribution: the EState VSA Descriptor 5 considers the atomic Van der
Waals Surface Area contributions of atoms with EState in the range (1.17<= x< 1.54);
similarly, EState_VSA9 computes the atomic Van der Waals Surface Area contributions
of atoms with EState in the range (4.69 <= x < 9.17). GATS7are represents the Geary
autocorrelation of lag 7 weighted by Allred-Eocow electronegativity, which in essence
assumes higher values when the molecule presents pairs of atoms with different elec-
tronegativities at a topological distance of 7. ETA_dBeta corresponds to the Extended
Topochemical Atom delta beta descriptor (a measure of the relative unsaturation con-
tent). AATSC7Z codifies for the averaged and centered Moreau-Broto autocorrelation
of lag 7 weighted by atomic number (essentially averaging the product of the atomic
numbers for atom pairs located at a topological distance of 7).

The explanatory power of the best model was around 80% for the three channel
subtypes. Internal validation results for the best individual classifier obtained, according
to the performance of the first retrospective screen, for each channel are summarized in
Table 3. The mean accuracy of the randomized models, which is virtually identical to the
NOMER value in all cases, suggests a low probability of spurious correlations for the
true models. Regarding the cross-validation, the mean accuracy across the folds is in all
cases below 70%, suggesting that the models might be missing robustness. This seems
to be confirmed by the results in the external validation. The best individual NaV1.1,
NaV1.2 and NaV1.6 models showed an overall accuracy on the corresponding test sets
(which consisted of 31, 57 and 31 compounds, respectively) of 74, 82, and 71%, in that
order. This lack of generalizability of the individual models might have been anticipated
due to the limited size of the available datasets, particularly for NaV1.1 and NaV1.6
models. The suboptimal results of the individual classifiers in the cross-validation and
external validation, which insinuate some degree of overfitting, plus their rather modest
metrics in the retrospective screens (Table 4) justified resorting to ensemble learning to
improve robustness and predictivity.
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Fig. 5. Output of the RaPCA clustering procedure for NaV1.1 active compounds; the optimal
value of the silhouette coefficient (0.89) was found for k = 4: (up) graph of the number of cluster
vs the Silhouette coefficient; (down) scatter plot of PCA1 vs PCA2, which indicates for every
molecule its belonging in each cluster.

TheMIN operators consistently provided the best results across the different sodium
channel subtypes, greatly improving the early and overall enrichment performance. In
the case of NaV1.1 and NaV1.6, the chosen ensembles comprised 6 models, whereas
in the case of NaV1.2, a 11-model ensemble was selected. Also note that, judging from
the standard deviation of the enrichment metrics (obtained through bootstrapping), the
behavior of the ensembles is much more robust than that of the individual models.
Remarkably, the AUCROC values obtained by the MIN ensembles were higher than
those obtained by RF, MLP and SVM for the three isoforms of the sodium channels,
except for NaV1.6, where RF provided non-significant but higher AUCROC values
than the MIN ensemble. Nevertheless, even in that case the early enrichment metrics
(BEDROC, EF0.01) obtained by our ensemble were better than those obtained by RF
(results not shown). All in all, our ensemble models seem to consistently provide better
results than the other machine learning algorithms tested for comparison purposes.



112 M. Fallico et al.

Table 3. Accuracy of the best individual models for each sodium channel subtype in the training
set, leave-group-out cross-validation and randomization test. In the case of the cross-validation
and randomization tests, the mean accuracy across the 1000 rounds is informed; the standard
deviation of the mean is presented within parentheses.

Channel Training set Cross-validation Randomization External validation

NaV1.1 0.80 0.66 (0.19) 0.49 (0.17) 0.74

NaV1.2 0.78 0.66 (0.14) 0.50 (0.12) 0.82

NaV1.6 0.85 0.60 (0.18) 0.49 (0.15) 0.71

Table 4. Comparison of the performance of the best individual models and the best model
ensemble for each channel in the retrospective screening experiments.

Channel Model Retrospective
screen

AUCROC BEDROC
(α = 20)

AUPR EF0.01

NaV1.1 Individual
model

1 0.89 (0.02) 0.29(0.05) 0.09(0.03) 6.53

2 0.88 (0.02) 0.25(0.06) 0.11(0.04) 6.51

6-model
ensemble

1 0.94 (0.01) 0.54 (0.05) 0.21 (0.05) 9.02

2 0.92 (0.02) 0.45 (0.06) 0.18 (0.04) 6.80

NaV1.2 Individual
model

1* 0.80(0.02) 0.19(0.03) 0.08(0.02) 2.92

2* 0.75(0.03) 0.17(0.03) 0.05(0.006) 0

11-model
ensemble

1 0.90(0.02) 0.62(0.04) 0.4(0.05) 27.40

2 0.87(0.02) 0.47(0.04) 0.21(0.04) 13.90

NaV1.6 Individual
model

1* 0.83(0.03) 0.25(0.06) 0.06(0.01) 0.70

2* 0.82(0.03) 0.25(0.06) 0.10(0.02) 0

6-model
ensemble

1 0.89(0.04) 0.50(0.06) 0.17(0.04) 11.40

2 0.88(0.04 0.50(0.06) 0.24(0.06) 10.14
* Statistically significant differences in comparison with the MIN ensemble (p < 0.05)

TheNaV1.2 andNaV1.6 ensembleswere thenused to explore theDrugBankdatabase
for potential blockers. The score cutoff value to identify in silico hits was chosen based
on PPV surface analysis. In the case of NaV1.2, the chosen cutoff value was 0.48,
corresponding to a Se of 0.51 and a Sp of 0.98. For a yield of active compounds of 0.01,
such cutoff value would determine a PPV of 0.20 (meaning that at least 1 in 5 in silico
hits are theoretically expected to corroborate the predicted activity experimentally). For
NaV1.6, we have chosen compounds with scores between 0.68 and 0.71, also providing
a PPV of 0.20 for Ya= 0.01. Since NaV1.1 is conceived, in the framework of the present
study, as an anti-target (as inhibition of this subtype of channel would aggravate Dravet
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phenotype), those NaV1.2 and NaV1.6 hits also predicted as NaV1.1 inhibitors were
disregarded. This is graphically shown in Fig. 6, where it can be visually appreciated
that, for the set of hits, the PPV for NaV1.2 or NaV1.6 substantially exceeds the PPV
for NaV1.1. In this manner, 154 selective in silico hits were obtained for NaV1.2 and
33 selective in silico hits were obtained for NaV1.6.

Fig. 6. The heatmaps visually display the predicted selectivity of the in silico hits. Each column
represents a hit, and each row represents the PPV predictions for a given channel subtype (the
upper row in each heatmap corresponds to the pursued target, NaV1.2 or NaV1.6, while the lower
row corresponds to NaV1.1).

Table 5 and Table 6 present the PPV values for each channel subtype for the ten
top-ranked hits for NaV1.2 and NaV1.6, respectively. It can be appreciated that the
tables include compounds with different status: experimental drugs (the compound is at
pre-clinical stage of development), investigational drugs (the drug has entered clinical
trials) or approved drugs. Among them, investigational and, in particular, approved drugs
are the ones for which a larger amount of knowledge has been collected, thus making
them the most straightforward candidates to fully exploit the advantages of the drug
repurposing paradigm. Analyzing the available data about the pharmacokinetics, dose
range, route of administration and side effects of these candidates may serve to evaluate
which deserve further consideration and research for the new pursued indication, i.e.
treatment of Dravet syndrome. For instance, one of the hits, tirofiban, is an intravenous
antiplatelet used at very low doses (a loading dose of 25 μg/kg, followed by an infusion
at 0.15 μg/kg/min) and has bleeding as a frequent side effect [32]. All in all, thus, it
makes quite a poor candidate for the treatment of a chronic condition like a childhood
epilepsy. Tenofovir, in contrast, is an antiviral that is orally bioavailable and is in general
well-tolerated, the most common adverse event seen in Phase 3 clinical trials being
headache (although long-term use has been associated with nephrotoxicity and bone
loss) [33].
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Table 5. Ten top-ranked hits for Nav1.2.

DrugBank ID Structure PPV (0.01) Antitarget (Nav1.1)
PPV (0.01) Status Indication(s) 

DB08270 0.606820 0.037670 Experimental Osteoporosis 

DB02200 0.606820 0.090471 Experimental Chagas disease

DB06997 0.606820 0.042232 Experimental Gastric carcinoma

DB06302 
(Glesatinib) 0.606820 0.080588 Investigational Lung cancer

DB15254 
(RO-5126766) 0.606820 0.017874 Investigational Kras mutant tumors

 DB07333 0.606820 0.039077 Experimental Angiogenesis for 
tumors 

DB02051 0.606820 0.153317 Experimental Chagas disease

DB13340 
(Suloctidil) 0.606820 0.010197 Experimental Vasodilator 

DB00775 
(Tirofiban) 0.562580 0.029203 Approved Antithrombotic 

DB05038 
(Anatibant) 0.562580 0.016649 Investigational Traumatic brain 

injuries 
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Table 6. Ten top-ranked hits for Nav1.6.

DrugBank ID Structure PPV (0.01) Antitarget (Nav1.1)
PPV (0.01) Status Indication(s) 

DB02038 0.225441 0.022355 Experimental Antibacterial 

DB02490 0.225441 0.011677 Experimental Creatine kinase M-
type inhibitor

DB03305 0.225441 0.011222 Experimental Neuroprotective in 
Parkinson's disease

DB09299 
(Tenofovir 

alafenamide)

0.225441 0.012028 Investigational/ 
approved Chronic hepatitis B

DB08395 0.225441 0.029342 Experimental Inflammatory 
diseases

DB13597 
(Moroxydine) 0.225441 0.018460 Experimental Antiviral 

DB12625 
(Evogliptin) 0.225441 0.016784 Investigational Type 2 Diabetes 

Mellitus

DB03530 
(Acylated 

ceftazidime)
0.225441 0.011252 Experimental Antibacterial 

DB13183 
(Technetium 

Tc-99m 
etifenin)

0.225441 0.011202 Experimental Radiopharmaceutical 
for imaging studies

DB02463 0.225441 0.014925 Experimental Protease-inhibitor 
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4 Conclusions

Linear classifiers to identify selective NaV1.2 or NaV1.6 inhibitors as potential treat-
ments for Dravet syndrome have been derived using a combination of random subspace
and forward stepwise procedures. The pool of molecular descriptors used in this work
has been computed through publicly available free software; complementary, the in-
house routines of the RaPCA and LUDe applicationsm as well as the datasets compiled
and curated for this work, are being made available as supplementary.py files and.csv
files, respectively, which maximizes the reproducibility and portability of the obtained
models, and allows to freely use the same tools in future investigations.

The individual models obtained displayed moderate performance at the validation
and retrospective screening steps andwere considerably outperformed through ensemble
learning. The so obtained meta-classifiers not only showed improved enrichment met-
rics in the retrospective screening campaigns, but also displayed a more robust behavior
according to the standard deviation in the enrichment metrics, estimated by bootstrap-
ping. The score cut-off values of the best-performing model ensembles were rationally
optimized through inspection of Positive Predictive Value surfaces; the optimized score
cutoffs were subsequently applied for the prospective screening of DrugBank, a database
commonly used in computer-guided drug repurposing campaigns.

Computer-aided drug discovery represents a key strategy for the identification of
novel active scaffolds in a time- and cost-efficient manner, a point especially important
when pursuing novel therapeutic solutions for rare diseases, such as Dravet syndrome.

Experimental in vitro assays are to be performed in the near future to confirm our
computational predictions.
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Abstract. Electrical stimulation of the brain is a largely used alternative for the
treatment of myriad neurological disorders. Although recognizably efficacious
and safe, many details of the underlying mechanisms remain obscure. Our group
devised and successfully tested, in animal models of epilepsy, a novel nonstandard
form of electrical stimulation in which the intervals between pulses are random-
ized. Termed Nonperiodic Stimulation (NPS), it has been specifically tailored
to suppress hypersynchronism supporting seizure generation. For a better under-
standing of the underpinnings ofNPS,we sought to carry out in silico investigation,
but we found no easy way to implement its temporal pattern in the very success-
ful NEURON simulator, given the unconventional nature of our stimulus. In this
work, we report two approaches devised and tested to implement NPS applied
both intra and extracellularly using the NEURON simulator. Neuronal responses
reproduced the distinct temporal patterns of stimulation in a high-fidelity fashion,
while being influenced by both stimulus polarity and distance from electrode tip.
These results suggest our solutions successfully implemented intra and extracel-
lular NPS (as well as other temporal patterns of interest) and represent an early
but essential step in enabling in silico investigation of the mechanisms of such
neuromodulation method.

Keywords: NEURON platform · Intracellular · Extracellular · Electrical
stimulation · NPS · Temporal-pattern

1 Introduction

Epilepsy is a serious neurological disorder affecting circa 1 to 2% of the world popula-
tion [1]. Although pharmacological and surgical treatments are considerably effective,
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circa 15% of the patients are unable to properly control their seizures [2]. A promising
alternative in this case is the electrical stimulation (ES) of the brain, a method termed
Deep Brain Stimulation (DBS), which is usually delivered as square pulses of current
or voltage fired at a fixed rate to myriad different neural substrates [3]. Although DBS
is a very promising neurotechnology, a less empirical and a more engineered-oriented
development of such methods is much needed [4].

Thedesignof a neuromodulation technology, for the treatment of anydisorder, should
always aim at reducing the energy transferred from the pulse generator to the tissue, for
safety reasons and to increase the duration of batteries and electrodes [5].Yet, virtually all
DBS methods need high frequencies of operation (100 Hz and above) to properly attain
therapeutic effect [6]. In fact, low frequencies have wielded controversial results in both
human and animal experimentation [7]. Towork around this issue, our group devised and
successfully tested a novel approach of ESwith robust anticonvulsant power while deliv-
ering only four pulses per second, with conventional amplitude and duration, and thus
with very low energy (~0.100 µC/s) [5, 8]. Termed Nonperiod Stimulation (NPS), our
method constitutes of randomizing the intervals between pulses (IPI – interpulse inter-
vals) following a natural-like scale-free pattern in which the distribution curve of val-
ues approximates a power law of unitary exponent [9]. The rationale behind NPS is that
such a temporal pattern would impair hypersynchronous processes occurring in neural
circuitry known to support epileptic phenomena, while having minor effects on healthy
neural function. NPS applied to the basolateral amygdala has shown robust anticonvul-
sant effects against seizures in both animal models of acute [8] and chronic seizures [10],
and it is maxed out when applied bilaterally in an asynchronous fashion [11].

Mechanistic investigation has also been carried out to suggest that NPS is capable
of disrupting aberrant synchronization within and between afferences of the basolateral
amygdala, putatively by randomly (thus in an out-of-phase fashion) recruiting them and
consequently impairing their coupling [12–14]. Some additional evidence corroborates
this line of reasoning: 1) synchronization of brain areas is attained by means of a shared
rhythmic oscillation (in contrast to non-periodic activity) [15] and; 2) scale-free stimuli
mimics natural-like input that entrains single neurons and small networks in high fidelity
activity [16–18]. By this token, we have recently hypothesized that the never-repeating
temporal patterns in NPS easily recruits distinct microcircuits in the neighborhood of the
amygdala, entraining them in healthy activity and impairing their abnormal coupling,
while at the same time competing with aberrant synchronization that underlies epileptic
phenomena [9].

In order to properly assess these ideas, our group set out to perform in silico inves-
tigations of the mechanisms underlying NPS in different levels of brain organization.
Particularly, testing the response of single cells or of small networks of neurons to NPS
is important considering the previously mentioned features of such temporal pattern of
stimuli. A biophysically realistic model such as the Hodgkin Huxley applied to anatom-
ically correct cells using simulation software such as NEURON (from Duke University)
is an obvious choice for such investigation. Yet, considering the very unusual form of
stimulation, there are no tools within the simulator to reproduce our ES methods. Thus,
in this work, we sought to implement a programmable add-on to simulate nonperiodic ES
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both intra and extracellularly. Two different solutions were developed: 1) a .hoc file rou-
tine that creates a point-process for single pulse stimulation for each of the NPS pulses,
and; 2) a NetPyne routine that creates NPS delivered from an extracellular point source
within a small network of neurons and then performs the field propagation calculation
to affect individual cells.

2 Methodology

2.1 Intracellular Stimulation Using Point-Processes

The point process is the way that NEURON uses to represent signal sources, such as
localized membrane shunts, synapses, and electrodes [19]. So, one way to create a
stimulus could be by using point processes. With this option in mind, our strategy was
to choose a point process included in the NEURON environment that, with a specific
configuration, could mimic the NPS temporal pattern.

To do that, we first created a very simple cell that would receive the stimulus. The cell
created had only two compartments, a soma and an axon, both modeled by Hodgkin &
Huxley equations. It is, in fact, a simplified cell to use in a computational model of the
cellular level, but since the goal of this work is to implement a new wave stimulus and
not to study the cellular behavior, this simple model was sufficient.

After creating the neuron, we attached the point process that would represent the
electrode and stimulate the cell. The mechanism chosen to create the NPS stimulus
was the “IClamp”, which injects current with a constant amplitude, duration, and delay.
Of particular importance here, the delay variable represents the latency period since
the beginning of the stimulation in which the current will actually be injected to the
cell. IClamp mechanism does not provide an option to change the interval between
pulses, just delays, frequency or pre-determined distributions among which the scale-
free nature of NPS is not included. Thus, instead of using one electrode that fires in
the temporal pattern, our strategy was to create several electrodes in the same position
and with the same duration and amplitude, but each one with a different delay. By
their turn, delays corresponded to the temporal pattern of NPS according to the original
algorithm of generation [8]. This strategy was implemented in a HOC language routine
and we achieved it by creating a vector that saves the times that the pulses should be
injected. Using a for loop with the number of iterations equals to the length of the
vector, that creates one “IClamp” point process per iteration, each one receiving a delay
corresponding to one element of the vector created.

Total simulation time for the intracellular ES was ten seconds (10000 ms) and the
initial potential was set as −65 mV.

2.2 Extracellular Stimulation Using Field Propagation

The NEURON environment does not have an option for extracellular stimulation. The
only alternative is the extracellular mechanism, which adds an additional layer to the
equivalent circuit corresponding to the extracellular milieu. With this extra layer (which
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can be adjusted to the interest of the research), the extracellular potential can be influ-
enced by an electric current while without it, the potential would be considered to be
zero for all its extension.

In order to implement the extracellular ES,we had to use the extracellularmechanism
to model an extracellular field that would be responsible for propagating the potential
across all the space outside the membrane. Furthermore, since the NEURON environ-
ment does not have an option for an extracellular electrode, we also created a function
to simulate the behavior of having a current injected extracellularly. This was achieved
by choosing a position for the hypothetic electrode, calculating the distance between it
and each cell of the network, and creating an equation that represents the decay rate of
the electrical potential.

To implement all these strategies, we used the NetPyNE package and Neuron library
on a colab notebook [20]. With the NetParams block from the NetPyNE package, we
created a network of 50 pyramidal cells, in which 40 of them are excitatory and 10 are
inhibitory (Fig. 1). The position of cells was randomly set inside a 250 × 400 × 250
µm space, while the electrode position (in blue) was set to be (250, 250, 250) for x, y,
and z axes respectively.

Fig. 1. Reconstruction of the network of simple neurons used for the simulation of extracellular
stimulation using NetPyNEGUI. Green cells are excitatory and yellow cells are inhibitory, having
their soma represented by a larger cylinder and the axon by a thinner cylinder. Electrode tip is
shown at the center by a small blue cylinder. (Color figure online)

The soma compartment of each cell, inhibitory and excitatory, had the Hodgkin &
Huxley and the extracellular mechanism inserted. The dendrites were modeled by the
passive mechanism. The connectivity rules were set to each cell to have 0.1 probability
of being connected to any other cell. Figure 2 shows the connectivity of the network.
The creation of the external field was made using the “numpy.vectorize” function to
insert all the calculated potential values of each cell into a vector. To insert the NPS
extracellularly, we created a numpy array with the wave time stamps and multiplied it
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to the extracellular field. By doing this, we got a vector with different weights for each
cell, multiplied by another vector with a fix amplitude for each time stamp of the NPS
stimulus. A total of 5 s (5000 ms) was simulated.

Fig. 2. Connectivity of the network created. Excitatory cells (green circles) send excitatory affer-
ences (pink lines) to several other neurons, while inhibitory cells (yellow circles) project inhibitory
afferences (blue lines), both with a 10% probability. (Color figure online)

2.3 Temporal-Patterned Stimuli

To test and compare the cellular responses to stimuli, we created three more ES temporal
patterns, aside from the NPS described earlier: burst, periodic, and another form of
nonperiodic stimulus, called NPSLH. The burst pattern consisted of a wave with four
pulses per second and IPI of 20ms. The periodic stimulus also had four pulses per second,
but with a constant IPI of 250 ms. The NPSLH, differently from the NPS, did not have
a distribution of IPI values that approximates a power law of unitary exponent, but that
of a linear decay. In original animal studies, NPSLH was not effective in suppressing
seizures. Histograms of IPI distributions for each of the tested temporal pattern is showed
in Fig. 3.

Also, as a way to help the validation of the model created, we tested both types of
current, anodic and cathodic. The cathodic intracellular stimulations should depolarize
the cell and the anodic, hyperpolarize it. For the extracellular stimulations, the opposite
should happen, even though both polarities can induce the firing of action potentials by
different mechanisms. Moreover, as the stimulus intensity decays with distance from the
tip, it is expected that neurons closer to the electrode will have a greater tendency to fire.



124 H. d. C. B. Terra et al.

Intracellular current pulses had 3 nA and 100 µs of width. Extracellular pulses were
25 µs in width, but with variable amplitude (supra- and subthreshold). On both cases,
there was no background noise.

Fig. 3. Histograms of IPI distributions for each of the temporal pattern generated for both the
intra and the extracellular stimulations: periodic (top left), burst (top right), NPSLH (bottom left),
and NPS (bottom right).

3 Results

3.1 Single Neuron Response to Intracellular Stimulation

Responses to the intracellular stimulation are shown in Fig. 4 and in Fig. 5, which show
the cellular responses for the cathodic and anodic stimulations, respectively. As Fig. 4
shows, the neuron responded in a high-fidelity one cathodic pulse (red diamonds) to
one action potential fashion and, thus, faithfully reproduced the temporal-pattern being
applied. Analogously, anodically-stimulated cells (Fig. 5) also responded in a one-to-
one fashion. This was of course expected, given we purposefully chose a suprathreshold
current applied to a simple cell without any other kind of background noise. All panels of
both figures contain insets with isolated representative action potentials generated after
stimulus. They are all stereotypical in morphology, with depolarization, repolarization,
and hyperpolarization phases. On the other hand, only when anodic pulses are applied,
action potential are preceded by a hyperpolarizing electronic potential. This suggest
action potentials are fired by different mechanisms.
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Fig. 4. Cellular response of the neuron to the four intracellular cathodic stimulation patterns. Red
diamonds depict time points when stimulation pulses were applied. Insets display stereotypical
action potentials generated in each case. Stimulation was periodic (top left), burst (top right),
NPSLH (bottom left), and NPS (bottom right). (Color figure online)

Fig. 5. Cellular response of the neuron to the four intracellular anodic stimulation patterns. Red
diamonds depict time points when stimulation pulses were applied. Insets display stereotypical
action potentials generated in each case. They were preceded by hyperpolarizing electrotonic
potentials. Stimulation was periodic (top left), burst (top right), NPSLH (bottom left), and NPS
(bottom right). (Color figure online)
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3.2 Network Response to Extracellular Stimulation

Figures 6 and 7 depict the time course of the membrane potential of responsive (blue)
and non-responsive (orange) cells, in terms of firing action potentials, when submitted
to anodic and cathodic pulses, respectively. Notice the high-fidelity firing of action
potentials to the different temporal patterns of stimulation for both cells.When undergoin
anodic stimulation, while the responsive cell fires an action potential for each stimulus
pulse, non-responsive cell responds only with a depolarizing subthreshold potential
(Fig. 6). Insets in all of the panels show action potential waveforms in which both cells
display initial depolarizing potentials, but of different magnitudes. Curiously, the burst
temporal pattern has both kinds of response in the same cell, firing an action potential
after the first pulse and only depolarizing electrotonic potentials for the other three
pulses. One possibility is that this may be due to a polysynaptic effect in the network
that causes the cancelling of potentials to a subthreshold threshold sum.

Similar results were obtained when the network was submitted to cathodic stimuli
(Fig. 7). On the other hand, as insets show, both cells are preceded by a hyperpolarizing
electrotonic potential. Again, burst stimulus was followed by the firing of an action
potential only after the first pulse in the train. Integration of post-synaptic potentials in
the network may also be in place here.

Fig. 6. Membrane potential of a responsive (blue) and a non-responsive (orange) neuron to
the extracellular anodic stimulation. Notice in the insets the presence of an initial depolarizing
electrotonic potential. (Color figure online)

Stimulus amplitude was chosen carefully in order to evoke action potentials in some
cells and not in the other ones. In this way, we were able to show the two types of
responses, sub and suprathreshold. Amajor determinant for this difference is the distance
from the electrode tip. In order to verify this factor,weperformed an additional simulation
with a smaller network composed of 25 cells randomly located also inside a 250× 400×
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Fig. 7. Membrane potential of a responsive (blue) and a non-responsive (orange) neuron to the
extracellular cathodic stimulation. Notice in the insets the presence of an initial hyperpolarizing
electrotonic potential. (Color figure online)

250µm space with an electrode positioned at (0, 0, 125) for x, y, and z axes, respectively
(Fig. 8, left). Responsive (firing) cells, highlighted in thick blue, tend to be closer to the
electrode tip when compared to silent cells in magenta (Fig. 8, right). Position of cells
on the other axes and polysynaptic effects are additional factors here.

Fig. 8. A network of 25 randomly positioned neurons submitted to extracellular stimulation from
a point source located in the middle of the y–z plane. Cells responding with an action potential are
highlighted in blue, while non-responsive cells are depicted in magenta (right panel). Activated
neurons tend to be closer to the electrode tip. (Color figure online)
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4 Discussion and Conclusions

The primary objective of this work was to implement a solution to perform both intra-
cellular and extracellular electrical stimulation with nonconventional temporal patterns
of firing of pulses inside the NEURON simulator. The driving goal was to be able to
simulate NPS and compare it to other temporal patterns used in previous in vivo studies
and, thus, to get better insight of the mechanisms underlying the therapeutic efficacy
of our neuromodulation method, given the obvious advantages of in silico experimen-
tation. Considering that the time stamps of pulses in NPS (and also NPSLH) stimuli
cannot be easily determined by simple mathematical formulation, there was no easy nor
straightforward way to implement such computational experiment.

To the extent of our knowledge, the vast majority of therapeutic electrical neu-
romodulation approaches employ fixed high-frequency pulsatile methods. Only a few
have tried modifying the temporal structure of stimuli to treat experimental epilepsy
[5, 8, 9, 21–24] or motor disorders in pre-clinical and clinical trials [25–28]. Among
these studies, at least one group has developed solid supporting theoretical work with
computational neuroscience methods. A pioneering in silico investigation using network
of oscillators has shown that stimulation, in which its temporal structure is tailored to
specifically disrupt hypersynchronization, has the potential to be highly beneficial in
disorders characterized by this hallmark (mainly Parkinson’s disease and epilepsy) [29].
Several in silico studies of the same group using an approach inspired on these ideas
(termed Coordinate Reset or CR) were carried out to understand the nuts and bolts of
its desynchronizing effects, recently showing the relative irrelevance of the number of
stimulation sites and the benefits of introducing jitter noise in inducing neural plasticity
for the stabilization of synchronism levels [30–37]. Recently, they simulated networks
of leaky integrate-and-fire (LIF) neurons submitted to ES with randomized temporal
patterns and also locations, in a variant technique termed L/M-Random Reset [38].
They found out that such an approach induced plasticity and long-lasting effects (i.e.,
after stimuli terminated), while high-frequency stimuli did not. Although representing
a remarkable advance in the theoretical investigation of the neurophysics of temporal
structure of pulsatile neurostimulation, these studies do not provide a set of tools that can
be transferred to the research on NPS. Not only temporal patterns are different, but also,
they were not implemented in the NEURON simulator, which is of major importance,
given the possibility of running biophysically realistic simulations.

In this work, we report initial results showing the solutions found for each type
of stimulation, which were tested intracellularly on isolated neurons or extracellularly
on small networks, using both cathodic and anodic pulses (known to have differential
effects on neuronal activation). As expected, neurons responded according to what have
been initially postulated, in a high-fidelity mode such as could be predicted by the well-
established neurophysics of stimulation in a very well-controlled condition, such as this.
In fact, the dependency of the nature of responses (presence of action potentials and
directions of membrane voltage deflections) on the different polarities applied (cathodic
and anodic) and also on the distance from electrode tip within the network of neurons
were strong indicators that the implemented code is properlyworking.Moreover, neurons
fired action potentials (or electrotonic potentials) in a high-fidelity mode reproducing the



Implementation of Intra and Extracellular Nonperiodic Scale-Free Stimulation 129

temporal pattern used for stimulation, adding further evidence that the solutions found
are efficacious.

One important limitation of solutions presented here is the fact that the intracellular
implementation of NPS does not scale well for longer periods of stimulation, once four
new IClamp point processes have to be added for each neuron and each second. Although
this is not a major concern to our own research, in which we pursue the replication of
short-time in vivo experiments (few minutes), this may be a real issue if one is aiming at
simulating many hours of stimulation and neuronal activity. In any case, we are pursuing
anoptimal solution for this issue,whichmaybe attainedby completely rewriting the point
process using .mod routines. Furthermore, additional experiments could certainly help
in stablishing the quality of present solutions. These includes obtaining intensity versus
duration curves for the determination of rheobase current and chronaxie, delineation of
activation threshold curves for anodic versus cathodic pulses, and investigation of the
effects of the electrode position in relation to the cell (closer to soma or axon). On the
other hand, given such experimentation is highly constrained to a sophistication of the
current models of the cell and the network, it was postponed to a later phase in our
studies.

In our understanding, although representing a very early stage, these initial results
are of considerable importance to biophysically realistic in silico investigation of NPS
and other nonstandard forms of electrical stimulation applied to epilepsy phenotypes,
once it benefits from a very well-developed simulator in computational neuroscience.
With these novel tools, we expect to be able of reproducing all the previous in vivo
experiments, now, computationally. All code is freely available and links will be shared
upon request to authors. As for the improvements and perspectives, we are already
pursuing to implementing more realistic models of neuronal cells from areas of interest
(e.g., basolateral amygdala, subthalamic nuclei, and hippocampal CA1) to investigate,
with appropriate measures of synchronization, the application of temporally coded ES
on them isolatedly or embedded in cytoarchitectonic-realistic microcircuits. We are
positive that such endeavor will provide great insights into the therapeutic mechanisms
underlying NPS in particular and ES in general.
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Abstract. Computational modeling is a powerful tool to investigate the mech-
anisms of neural function. This work model in silico the effect of experimental
electrical stimulation on a neuronal network of the basolateral amygdala. Starting
from the premise that different temporal patterns of stimulation affect in differ-
ent ways the behavior of neural circuits involved in the genesis of epilepsy and
seizures, we tested the hypothesis that non-periodic electrical stimulation (NPS)
has a desynchronizing or suppressing effect on the origin of synchronization. The
basolateral amygdala was modeled with three firing patterns present in Izhike-
vich’s neurons. The obtained data were analyzed and compared with the effect of
other temporal patterns of electrical stimulation. The results indicates that differ-
ent temporal patterns reflect different timing for the origin of synchronization, but
also suggest that the already proven mechanism of NPS, is not on a microcircuit
level, but possibly on a macroscopic level of forebrain networks.

Keywords: Epilepsy · Basolateral amygdala · Ictogenesis · Non-Periodic
Electrical Stimulation (NPS) · Izhikevich

1 Introduction

1.1 General

Electrical stimulation of neural tissue is a promising alternative for the treatment of
different neurological disorders in cases when first-line treatment methods (pharmaco-
logical, surgical, behavioral, etc.) fail to provide proper control of symptoms or to deliver
long-lasting effects [1]. One such application is the usage of electrical stimulation (ES)
delivered to the central nervous system (Deep Brain Stimulation – DBS) to suppress
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seizures in patients with refractory epilepsy [2]. While with varying electrical parame-
ters and targets within the brain, most if not all different methods of pulsatile ES (DBS
included) are delivered in a high-frequency manner (pulses fired at 80 Hz or more),
given the majority of studies showed that application of low frequencies results in con-
troversial (or neutral at best) effects [3]. On the other hand, the carefully engineering of
ES strategies should always pursue the lowest frequencies possible [4]. Such solutions
would wield therapeutic effect with minimum amounts of energy being transferred from
the power supply of an implantable pulse generator to the neural tissue, which implies
increased safety and extended longevity of batteries and electrodes [5].

To approach this issue, our group proposed and successfully tested in animals a non-
standardformofES, termednonperiodstimulation(NPS),asameans to treatepilepsywith
a very low count of pulses per second, only four. Based on the rationale that seizures are a
network-levelhypersynchronousphenomenaoriginatingfromaconditionof tissuehyper-
excitability,NPSwasspecificallydesigned to impairneural synchronizationbydelivering
its pulses across time in a random fashion, inwhich the interpulse intervals (IPI) display a
natural-like scale-free distribution that follows a power-law of unitary exponent [6]. This
wouldputatively break aberrant oscillations and thus suppress seizureswithminor impact
on basal neural function. In an originalwork,we testedNPS in animals submitted to acute
seizures induced by pentylenotetrazole (PTZ) and compared it to controls and three other
temporalpatternsofES:periodic(fixed250msIPI),50HzBursts,andadifferentformofIPI
randomization termedNPSLH[7].Even thoughallpatternshad theverysame lownumber
ofpulsespersecond(four)andsameelectricalparameters, thussameenergy,onlyNPSwas
capableofincreasinglatenciesforanimalstodisplayconvulsivebehaviorduringcontrolled
PTZinjection,demonstrating its anticonvulsant effect.NPSalsoshowedbeneficial effects
on an animal model of Temporal Lobe Epilepsy (a frequently refractory form of the dis-
ease) [8] and that it ismost efficaciouswhenapplied tobothamygdalae inanasynchronous
fashion [9]. Finally, mechanistic investigation suggested that NPS suppresses seizures by
inducinganaturally-randomizedrecruitmentofnodesreceivingafferencesfromtheamyg-
dala, which impairs aberrant synchronization across ictogenic neural circuitry such as the
limbicsystemandothersinvolvingareasoftheforebrain,midbrain,andhindbrain[10–12].

In order to further investigate this hypothesis, our group set out to test NPS in
silico, given the obvious and well known ethical and methodological advantages of
computational models of the brain [13]. Although accumulated evidence suggests the
therapeutic mechanisms rely on circuits in the meso to macroscale, the group is testing
a wide range of brain-organization levels, from single biophysically realistic neurons to
the neurodynamics of the whole brain. In this work, we present the first in silico results
of NPS applied to a microcircuit resembling the cytoarchitectonics of the basolateral
amygdala.We chose to construct the network using different types of Izhikevich neurons,
once it is a model praised for its capacity of reproducing several different kinds of
neuronal firing behaviors with small computational complexity [14, 15]. Ictogenesis
was modeled by gradually changing the synaptic weights of the network across time,
while the different types of ES were implemented using the external input current term
of the Izhikevich model.
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2 Methodology

2.1 Network of Izhikevich Neurons

Izhikevich’s model is a nonlinear integrate-and-fire type model. This model combines
computational efficiency and the ability to produce rich firing patterns exhibited by real
biological neurons [14, 15], making it biophysically realistic and ideal for large-scale
simulations. The model can be described by the following equations:

(1)
(2)

(3)

where v(t) is the membrane voltage; u(t) is the recovery variable and; I is the input
current, i.e., the external stimulus that the neuron receives, which can be background
activity or the response of another neuron. In addition, parameter a describes the time
scale of the recovery variable; b describes the sensitivity of the recovery variable (u);
parameter c describes the resting potential of the membrane; and d describes the reset
of the recovery variable after firing. Here, these equations were computationally solved
by applying the Euler method.

The present study consisted in modeling a neuronal circuit in silico (Fig. 1), which
presented cytoarchitecture similar to that of the basolateral amygdala (~70,000 neurons),
including the proportion between the main cell types present in this region. The imple-
mentation represented a biologically plausible simulation capable of presenting firing
patterns and oscillations similar to those of the synchronous and asynchronous forebrain
states observed in this region [13, 14, 16]. The network was composed of 1200 neu-
rons (scale of 1:60) [14], divided into three subpopulations: main cells with adaptation
(PNa); main cells with continuous spiking (PNc); and the fast-firing interneurons (FSI)
[13]. Thus, according to the study by Feng et al. (2019) neurons were categorized being
64% PNa (n = 768), 26% PNc (n = 312) and 10% FSI (n = 120). These cells were
assigned with the firing patterns commonly found in electrophysiological recordings in
the basolateral amygdala. The class of excitatory neurons (PNa and PNc) was assigned
the patterns regular firing (RS) and chattering (CH) neurons, respectively. In turn, the
inhibitory neurons (FSI) mimic the low firing threshold (LTS) neurons [15, 16]. This net-
work was made to be recurrent with all-to-all connections, where all neurons connect to
each otherwith randomly distributed synapticweights. The network implementationwas
chosen and evaluated in terms of biological plausibility and considering previous works
that used the same network architecture [14–19] or that compared different topologies,
realistic or scaled, in the structuring of neural networks [20–22]. The entire study was
developed based on an adapted version of the MATLAB® code provided by Izhikevich
(2003) [15].
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Fig. 1. Basolateral Amygdala (BA) model. The neural network implemented for this simulation
studywas based on the Izhikevich formalism andwas performed in a reduced scale (1:60) [14], that
is, with 768main cells with adaptation (PNa) indicated by a green circle, 312main cells continuous
spiking (PNc) indicated by a blue circle, and 120 inhibitory neurons (FSI) indicated by a red circle
(illustration in the left). The relative proportions of the three cell types were obtained from Feng
et al. (2019) (top panels) [13]. PNa and PNc cells provide excitatory inputs to other cells, while FSI
neurons are inhibitory. This network was made to be recurrent with all-to-all connections, where
PNa, PNc and FSI were connected among themselves and with each other. Sample recordings
from neurons in the current injection are shown in the righ panel. Four Stimulus temporal patterns
were developed according to the experiments performed by Cota and collaborators (2009) [7]:
(1) periodic stimulation with interpulse intervals (IPIs) of 250 ms; (2) bursts with IPI of 20 ms;
(3) non-periodic stimulation (NPSLH) with pseudo-randomized IPIs, following the linear decay
histogram and; (4) non-periodic stimulation (NPSIH, or just NPS) with pseudo-randomized IPIs,
following the inverse decay histogram (power-law with unitary exponent) (bottom panel). In all
cases, the amplitudes were kept the same for all cases. Furthermore, all temporal patterns of
stimulation always trigger four pulses per second. LA: lateral amygdala; CA: central amygdala;
ES: electrical stimulation.

2.2 Induction of Ictogenesis

First, the network with the parameters described in Table 1 was adjusted, so it displayed
a gamma rhythm-modulation, a frequency that is commonly present in electrographic
recordings in physiological conditions [23]. This adjustment was done by empirically
modifying the synaptic weights. At first, the excitatory neurons received a maximum
weight of 0.5 and the inhibitory neurons a maximum weight of 1, maintaining the con-
figuration in Izhikevich’s study [15, 16]. Thus, the firing rate of the inhibitory population
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was increased in comparison to that of the excitatory population [23]. However, this com-
bination of weights returned an already hypersynchronized network, so the inhibitory
synaptic weight was raised to the minimum necessary for the network not to exhibit this
aberrant activity.

Table 1. Network model parameters

Parameters PNa PNc FSI

Number of neurons 768 312 120

a 0.02 0.02 0.02

b 0.2 0.2 0.25

c −65 −50 −65

d 8 2 2

s (max) 0.5 0.5 −3.5

v −65 −50 −65

To simulate the process of ictogenesis, a gradual modification (increment or decre-
ment) of 0.01%was made in the synaptic weights at each iteration (1 ms) and, therefore,
modifying the excitatory or inhibitory tonus.With this, the networkmakes a gradual tran-
sition from the normal state to an aberrant synchronous activity arising from increased
excitability. The four experiments to achieve this transition were: (1) increased synaptic
weights in A-type excitatory neurons (PNa); (2) increased synaptic weights in C-type
excitatory neurons (PNc); (3) increased synaptic weights in all excitatory neurons (PNa
and PNc); (4) reduced synaptic weights in inhibitory neurons (FSI). The normal activity
was modeled by random distribution with the following maximum synaptic weights:
0.5 PNa, 0.5 PNc, and −3.5 FSI. In this way, and considering a total time of 10000 ms,
the subpopulation that would suffer changes in their synaptic weights would end each
experiment with twice the initial weight, or with a zero weight for experiment 4.

These changes promoted by the gradual modification of synaptic weights in the
simulation protocol allowed us to study the influence of the relationship between exci-
tation/inhibition in the network that is associated with the generalized change in the
amygdala, as well as in pharmacological maneuvers used in our in vivo experiments
[7] using nonspecific GABAergic antagonists or pilocarpine, a nonselective muscarinic
agonist.

2.3 Temporal-Patterned Stimuli

Stimulus temporal patterns were developed according to the experiments performed by
Cota and collaborators (2009) [7]. The present study applied 4 patterns of ES: (1) peri-
odic stimulation with interpulse intervals (IPIs) of 250 ms; (2) bursts with IPI of 20 ms;
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(3) non-periodic stimulation (NPSLH) with pseudo-randomized IPIs, following the lin-
ear decay histogramand; (4) non-periodic stimulation (NPSIH, or justNPS)with pseudo-
randomized IPIs, following the inverse decay histogram (power-law with unitary expo-
nent). In all cases, the amplitudes were kept the same for all cases. Furthermore, all tem-
poral patterns of stimulation always trigger four pulses per second. Figure 2 shows the
histogramsof the inter-pulse intervals (IPIs) for each typeof stimulation implemented [7].

The total simulation time was 10 s for each experiment performed, and the stimu-
lations were applied from the beginning for each of the stimulated groups. These stim-
ulations were developed in subroutines that returned a stimulation matrix (stim), with
dimensions of the number of neurons [PNa; PNc; FSI] vs. simulation time [ms]. In this
way, thematrix was filledwith zeros and, at the time of stimulation, the columnwas filled
with the pre-set amplitude. This stim matrix is added to the input current (parameter I
of Eq. 1), which represents external inputs.

In this study we used a randomized distribution of stimulation amplitudes between 5
and 15 mV, and these parameters were obtained empirically. Finally, we ran simulations
in which electrical stimulation differentially affects neuronal types, in order to represent
different situations of the electrode position in relation to the amygdala cytoarchitecture.
We simulated: 1) stimulation of only excitatory neurons (PNa and PNc), separately or
together; 2) only inhibitory neurons (FSI) and; 3) the whole set of neurons.

Fig. 2. Histogram of the IPIs of the stimulations implemented in the experiments (MATLAB®).
A) NPS stimulation; B) NPSLH stimulation; C) Periodic stimulation; D) Burst stimulation.
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2.4 Experimental Protocol and Assessment of Effects on Synchronization

For each experiment presented in this paper, 10 trialswere performed under all conditions
for each stimulation pattern to obtain statistical power (1− β = 0.915 with a critical F=
2.579 for an effect of 0.6 and p < 0.05. Performed using theG Power software – version
3.1.9.7), totaling 600 simulations. From the neuronal firing, the following were calcu-
lated: 1) the percentage of neurons firing simultaneously (time window of 10000 ms);
2) the simplified local field potential (LFP), represented by the sum of the membrane
potentials of the excitatory neurons over time and; 3) the frequency spectrum obtained
by the Fast Fourier Transform on the LFP. From these analyses, we manually collected
data such as the time to the first hypersynchronous event (spike), the occurrence and
number of spike clusters and of their spikes, the latency to onset of sustained synchro-
nization, and the intervals between events. For this evaluation, the periods in which
the network exceeded a threshold of three times the standard deviation of the baseline
activity were considered as spikes. A synchronization criterion of 400msminimum-time
between spikes was established to validate whether the interval between events belonged
to a synchronized state or not. To characterize as a synchronization cluster, the network
should exhibit at least two spikes within the synchronization criterion followed by a long
low neuronal activity.

Statistical analysis was performed based on the mean and standard error of the mean
(SEM) obtained in each experiment, with the help of IBM SPSS Statistics program.
Data normality was analyzed by the Shapiro-Wilk test and statistical significance of the
comparative analysis was performed using one-way ANOVA followed by Tukey test for
multiple comparisons (p < 0.05). The association between the stimulated groups and
the presence of a spike cluster was performed by Fisher’s exact test, which is usually
used for small samples.

2.5 Interspike Intervals (ISI) and Coefficient of Variation (CV)

Neural networks have the ability to change from one state of activity to another by mod-
ifying the external frequency that feeds the network’s activity, or by altering the balance
between excitation and inhibition. Brunel (2000, 2001) carried out, in an analytical way,
the categorization of the different states that a network with sparse limits can be adopted,
so the greater the width of the distribution of interspike intervals (ISI), the more irregular
the network [21, 22]. Aiming to quantify the variability of the neuronal firings, the ISI
was defined as the time interval between two consecutive spikes [24]:

ISI = tdt+1 − tdt (4)

where tdt is the time of the m-th neuronal fire. For a given spike train, the average
ISI was given by:

〈ISI〉 = 1

Nspk − 1

∑Nspk

i=1
ISI (5)

where Nspk is the number of spikes.
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The coefficient of variation (CV) of the ISI was defined from the ratio between the
standard deviation σISI of the ISI and the mean ISI [25]:

CV = σISI

ISI
(6)

Considering that Poisson processes produce CV = 1, values of CV < 1 determine
that the firings of a given neuron are less regular, while values of CV > 1 imply regular
firings. CV values close to 0 indicate regular spikes, while bursting patterns results in
CV ≥ 0.5 [24, 25].

3 Results

The network created to model a circuit in the basolateral amygdala was capable of
presenting a state of synchronous irregular firing [21]. Figure 3 shows a normal firing
pattern, that is, the network presents the dominant gamma rhythm (above 20 Hz) [26].
Panels on the right confirm the idea that the network does not exhibit a characteristic
hypersynchrony present in epilepsy electrographic recordings.

Fig. 3. Experiment 0 with normal network activity. In this experiment there was no change in
synaptic weights and the network does not show any level of hypersynchronism. Raster Plot of
network with maximum synaptic weights: S = 0.5 PNa; 0.5 PNc and −3.5 FSI. Here and in all
raster plots of this study, neurons are aligned in sequence in the y-axis as PNa (rows 1 to 768),
PNc (rows 769 to 1080), and FSI (rows 1081 to 1200).

Basolateral amygdala is an ideal system for the exploration of the biophysical ratio-
nales of physiological and pathophysiological oscillations and thus the basic mecha-
nisms underlying the cellular basis of the phenomenal local field potential oscillations
and normal-ictal transitions [27]. Figure 4 shows the four possible ways to achieve high
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Fig. 4. Samples of the four strategies for obtaining network synchronization from the 0.01% step
modification in synaptic weights (no stimulation). Maximum synaptic weights used: 0.5 PNa;
0.5 PNc and −3.5 FSI. A) Raster Plot of Experiment 1: Increase in synaptic weights in PNa; B)
Raster Plot of Experiment 2: Increase in synaptic weights in PNc; C) Raster Plot of Experiment
3: Increase in synaptic weights in PNa and PNc; D) Raster Plot of Experiment 4: Reduction in
synaptic weights in FSI inhibitory neurons.

levels of synchronization. All forms of tampering with synaptic weights resulted in a
transition from synchronous irregular to synchronous regular states.

An important detail that contributed to the validation of the model was that all four
experiments displayed oscillations in the delta (0 to 4 Hz) or low theta (4 to 8 Hz) ranges
as the fundamental frequency (Fig. 5) [26]. This rhythm is found in in vivo studies in
animals with pharmacologically induced seizures and is mainly determined by spiking
rates at (4 to 5 events per second) [7]. It is worth noting that this rhythm arose naturally,
without any changes to adjust the network in this direction.

It is believed that experiment 4 (Fig. 5), where there is a loss of inhibitory tone, is the
experiment that better reflects reality because it is considered a fundamental factor in the
generation of epileptic phenomena. Of particularly interest to us, in our work seizures
were induced by means of decreasing inhibitory tonus via administration of PTZ, which
is a GABAergic antagonist.

Figure 6 depicts the results of the analysis of the first hypersynchronous event and
the results of the onset of sustained synchronization obtained in experiment 1 (increased
synaptic weights of PNa) with the various conditions tested.

When all neurons were stimulated, only the burst stimulation significantly decreases
the time for appearance of the first spike when compared to the no stimulation group only
(Fig. 6A). When considering stimulation only of inhibitory neurons, burst decreases the
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Fig. 5. Experiment 4 with aberrant network activity. In this experiment, there was a reduction in
inhibitory synaptic weights. The network shows hypersynchronism. Raster plot of network with
maximum synaptic weights: S = 0.5 PNa; 0.5 PNc and −3.5 FSI

Fig. 6. Synchronization results for all stimulation conditions across ictogenesis induced by
increasing PNa synaptic weights. Panel shows the time of the first spike and the onset of sus-
tained synchronization obtained in experiment 1. A) Time of first spike in which all neurons were
stimulated; B) Time of first spike inwhich only inhibitory neuronswere stimulated; C) Time of first
spike in which only excitatory neurons were stimulated; D) Onset of sustained synchronization in
which all neurons were stimulated; E) Onset of sustained synchronization in which only inhibitory
neurons were stimulated; F) Onset of sustained synchronization in which only inhibitory neurons
were stimulated. Significant differences are indicated by an asterisk.
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time for the first spike in comparison to all other groups, while these others groups do not
induce any changes (Fig. 6B). Finally, when only excitatory neurons are stimulated, all
groups induce a significant decrease in comparison to the non-stimulated group (Fig. 6C).

Regarding the onset of sustained synchronization, stimulation of all neurons dif-
ferentially modulated the network for the periodic pattern when compared to NPS and
burst (Fig. 6D). This increase of time is of unclear significance. On the other hand, when
stimulation target is broken down, only NPSLH (but not NPS, nor periodic) induced a
decrease for onset of sustained synchronization in comparison to burst.

Only a few simulations displayed isolated spike clusters and to test whether dif-
ferent patterns modulated these synchronous events, number of experiments resulting
in clusters (number of occurrences) was assessed using Fisher’s exact. Table 2 shows
that there was no association between stimulations and the presence of spike clusters
when all neurons were stimulated. On the other hand, periodic and burst stimuli seem
to generate fragmentation, although mildly, of synchronization when inhibitory neurons
were targeted. Additionally, all patterns induced fragmentation of synchronization when
only excitatory neurons were stimulated.

Table 2. Count of occurrences of spike clusters from Experiment 1

Count of occurrences All Neurons

No Stim NPS NPSLH Periodic Burst

Yes 0 1 1 4 0

No 10 9 9 6 10

Fisher’s exact test X 2
(4) = 7.298; p = 0.64

Count of occurrences Inhibitory

No Stim NPS NPSLH Periodic Burst

Yes 0 0 0 3 4

No 10 10 10 7 6

Fisher’s exact test X 2
(4) = 10.085; p = 0.015

Count of occurrences Excitatory

No Stim NPS NPSLH Periodic Burst

Yes 0 8 10 9 7

No 10 2 0 1 3

Fisher’s exact test X 2
(4) = 27.805; p = 0.000003

Figure 7 presents the results obtained with experiment 2, increasing the synaptic
weights in C-type excitatory neurons (PNc). Here, results are analogous to experiment
1, but somehow toned down (no differences when all neurons are stimulated; Fig. 7A
and Fig. 7D). As before, time for the appearance of the first spike was significantly
decreased under burst stimulation, when only inhibitory neurons were targeted (Fig. 7B),



In silico Investigation of the Effects of Distinct Temporal Patterns 143

but were decreased by all patterns when only excitatory neurons were affected (Fig. 7C).
Finally, time for onset of sustained synchronizationwas affected (increased) only byburst
stimulus targeted at excitatory neurons (Fig. 7F).

Fig. 7. Synchronization results for all stimulation conditions across ictogenesis induced by
increasing PNc synaptic weights. Panel shows the time of the first spike and the onset of sus-
tained synchronization obtained in experiment 2. A) Time of first spike in which all neurons were
stimulated; B) Time of first spike inwhich only inhibitory neuronswere stimulated; C) Time of first
spike in which only excitatory neurons were stimulated; D) Onset of sustained synchronization in
which all neurons were stimulated; E) Onset of sustained synchronization in which only inhibitory
neurons were stimulated; F) Onset of sustained synchronization in which only inhibitory neurons
were stimulated.

Table 3 presents Fisher’s exact test for occurrence of spike clusters in experiment 2.
Again, there seems to be no association between stimulations and the presence of spike
clusters when all neurons and also when only inhibitory neurons were stimulated. On the
other hand, all patterns induced fragmentation when excitatory neurons were targeted.

In experiment 3 (Fig. 8), increase in synaptic weights in all excitatory neurons (PNa
and PNc), results repeat those of experiment one: time for the appearance of the first
spike was significantly decreased under burst stimulation only, when inhibitory neurons
were targeted (Fig. 8B), but were decreased by all patterns (but burst significantly less)
when only excitatory neurons were affected (Fig. 8C). No differences were observed
when all neurons were stimulated (Fig. 8A). In the same vein, there were no significant
differences regarding onset of sustained synchronization in the first two conditions (all
neurons stimulated, Fig. 8D and inhibitory neurons stimulated, Fig. 8E). Curiously,
NPSLH pattern only significantly decreased, in comparison to all other groups, onset
time for sustained synchronization when all neurons are targeted (Fig. 8F).
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Table 3. Count of occurrences of spike clusters from Experiment 2

Count of occurrences All Neurons

No Stim NPS NPSLH Periodic Burst

Yes 3 4 4 2 0

No 7 6 6 8 10

Fisher’s exact test X 2
(4) = 6.254; p = 0.223

Count of occurrences Inhibitory

No Stim NPS NPSLH Periodic Burst

Yes 3 2 4 2 5

No 7 8 6 8 5

Fisher’s exact test X 2
(4) = 3.043; p = 0.664

Count of occurrences Excitatory

No Stim NPS NPSLH Periodic Burst

Yes 3 9 8 9 10

No 7 1 2 1 0

Fisher’s exact test X 2
(4) = 14.387; p = 0.002

Next, the results of Fisher’s exact test for experiment 3 are presented (Table 4). As
in experiment 2, the test shows that there is no association between stimulations and the
presence of spike clusters when all neurons were stimulated and when only inhibitory
neurons were stimulated. Also, as in experiment 2, the test showed that all patterns
induced fragmentation of sustained synchronization.

Experiment 4, reduction of synaptic weights in inhibitory neurons (FSI), displayed
results very analogous to those of experiment 2 regarding time for appearance of the first
synchronous spike (Figs. 9A, 9B, and 9C). Conversely, effects on sustained synchroniza-
tion were much more diverse in this alternative form of induction of ictogenesis. In this
case, both nonperiodic stimuli (NPS and NPSLH) induced a decrease in the onset time,
compared to all other groups, when all neurons were stimulated (Fig. 9D). On the other
hand, only NPSLH had such an effect, and compared only to no-stimulation condition
and periodic pattern, when inhibitory neurons were targeted. Finally, and in line with
this previous finding, NPSLH only induced a decrease of onset times when compared
to all other stimulation patterns when they were applied to excitatory neurons (Fig. 9F).

Finally, the phenomenon of fragmentation of synchronization was more prevalent in
relation to previous ones, as showed by the Fisher’s exact test for experiment 4 (Table 5).

There is an association between stimuli and the presence of spike clusters in all the
conditions tested. While burst stimulation seems to induce clusters when applied to all
neurons or inhibitory only neurons, all stimulation patterns seem to do so when applied
to excitatory only neurons.
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Fig. 8. Synchronization results for all stimulation conditions across ictogenesis induced by
increasing PNa and PNc synaptic weights. Panel shows the time of the first spike and the onset
of sustained synchronization obtained in experiment 3. A) Time of first spike in which all neu-
rons were stimulated; B) Time of first spike in which only inhibitory neurons were stimulated;
C) Time of first spike in which only excitatory neurons were stimulated; D) Onset of sustained
synchronization in which all neurons were stimulated; E) Onset of sustained synchronization in
which only inhibitory neurons were stimulated; F) Onset of sustained synchronization in which
only inhibitory neurons were stimulated.

Table 4. Count of occurrences of spike clusters from Experiment 3

Count of occurrences All Neurons

No Stim NPS NPSLH Periodic Burst

Yes 0 1 0 1 2

No 10 9 10 9 8

Fisher’s exact test X 2
(4) = 3.355; p = 0.783

Count of occurrences Inhibitory

No Stim NPS NPSLH Periodic Burst

Yes 0 0 0 2 2

No 10 10 10 8 8

Fisher’s exact test X 2
(4) = 4.952; p = 0.197

Count of occurrences Excitatory

No Stim NPS NPSLH Periodic Burst

Yes 0 8 7 8 6

No 10 2 3 2 4

Fisher’s exact test X 2
(4) = 18.882; p = 0.001
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Fig. 9. Synchronization results for all stimulation conditions across ictogenesis induced by reduc-
tion FSI synaptic weights. Panel shows the time of the first spike and the onset of sustained syn-
chronization obtained in experiment 4. A) Time of first spike in which all neurons were stimulated;
B) Time of first spike in which only inhibitory neurons were stimulated; C) Time of first spike in
which only excitatory neurons were stimulated; D)Onset of sustained synchronization in which all
neurons were stimulated; E) Onset of sustained synchronization in which only inhibitory neurons
were stimulated; F) Onset of sustained synchronization in which only inhibitory neurons were
stimulated.

Table 5. Count of occurrences of spike clusters from Experiment 4

Count of occurrences All Neurons

No Stim NPS NPSLH Periodic Burst

Yes 1 0 1 4 7

No 9 10 9 6 3

Fisher’s exact test X 2
(4) = 15.351; p = 0.002

Count of occurrences Inhibitory

No Stim NPS NPSLH Periodic Burst

Yes 1 1 1 5 7

No 9 9 9 5 3

Fisher’s exact test X 2
(4) = 13.725; p = 0.005

Count of occurrences Excitatory

No Stim NPS NPSLH Periodic Burst

Yes 1 8 5 9 7

No 9 2 5 1 3

Fisher’s exact test X 2
(4) = 16.266; p = 0.002
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Table 6. ISI and CV of the experiments.

ISI (mean ± 
SEM) (ms) CV ISI (mean ± 

SEM) (ms) CV ISI (mean ± 
SEM) (ms) CV ISI (mean ± 

SEM) (ms) CV

No Stim 260.7 ± 2.20 0.1109 228.5 ± 4.75 0.1960 253.9 ± 1.84 0.1166 239.3 ±1.94 0.1273
NPS 259.8 ± 2.92 0.1513 220.4 ± 2.68 0.1197 251.3 ± 1.62 0.1026 235.0 ±1.34 0.0925
NPSLH 260.6 ± 2.61 0.1287 226.0 ± 3.28 0.1477 253.5 ± 1.51 0.0951 234.8 ±1.16 0.0801
Periodic 256.5 ± 2.04 0.0997 222.6 ± 3.29 0.1456 253.0 ± 1.57 0.0984 236.5 ±1.42 0.0952
Burst 256.2 ± 2.04 0.1060 225.6 ± 3.61 0.1835 252.7 ± 1.62 0.1028 237.3 ±1.25 0.0823

No Stim 260.7 ± 2.20 0.1109 228.5 ± 4.75 0.1960 253.9 ±1.84 0.1166 239.3 ± 1.94 0.1273
NPS 260.4 ± 2.49 0.1293 231.7 ± 5.44 0.2450 252.8 ± 1.67 0.1064 236.8 ± 1.32 0.0907
NPSLH 261.2 ± 2.35 0.1175 228.7 ± 4.72 0.2153 251.7 ± 1.71 0.1118 237.7 ± 1.55 0.1066
Periodic 257.5 ± 2.48 0.1301 230.9 ± 4.78 0.2017 252.6 ± 1.65 0.1060 238.8 ± 1.55 0.1021
Burst 260.2 ± 2.32 0.1189 228.4 ± 4.82 0.2252 253.5 ± 1.81 0.1170 240.4 ± 1.99 0.1319

No Stim 260.7 ± 2.20 0.1109 228.5 ± 4.75 0.7960 253.9 ± 1.84 0.1166 239.3 ± 1.94 0.1273
NPS 253.1 ± 1.95 0.1275 240.6 ± 10.87 0.4800 247.8 ± 2.01 0.1337 230.6 ± 1.54 0.1078
NPSLH 254.4 ± 2.45 0.1391 213.0 ± 4.86 0.2582 249.3 ±2.10 0.1444 233.4 ± 1.61 0.1169
Periodic 257.7 ± 2.77 0.1447 240.3 ± 7.06 0.3164 249.0 ±1.80 0.1192 238.3 ± 1.87 0.1240
Burst 252.3 ± 2.33 0.1224 215.0 ± 3.96 0.1726 251.4 ± 1.97 0.1248 235.6 ± 1.73 0.1129

Experiment 3 Experiment 4

All neurons

Inhibitory 
neurons

Excitatory 
neurons

Stimulation
Pattern of 
electrical 

stimulation

Experiment 1 Experiment 2

Complementary analysis of the ISI and the CV was carried out to investigate the
patterns of activities of the simulated networks. Table 6 shows, in detail, the values
found for ISI and CV in all simulated scenarios (Figs. 6–9 D–F). The ISI analysis
showed significant differences only in Experiments 2 and 4, both with stimulation of
excitatory neurons. In Experiment 2, an increase in ISI (213.0 ms to 240.0 ms) and CV
(0.2582 to 0.3164) during periodic stimulation, in comparison to NPSLH, was observed.
In Experiment 4, a significant reduction in ISI was observed in the NPS and NPSLH
groups (230.6 ms and 233.4 ms, respectively) when compared to the No Stimulation
group (239.3 ms). Finally, an increase in this parameter in periodic stimulation when
compared to NPS (230.6 ms to 238.3 ms) was also observed. In these simulations, the
CV was between 0.1078 and 0.1273.

The variations found in both the ISI and the CV indicated that the activities corre-
spond to regular synchronous dynamics with CV < 0.5. For these values, the mean of
the ISI is large, that is, far above the threshold, and the standard deviation σ is compar-
atively small, characterizing a neuronal dynamic that is close to deterministic with an
almost periodic firing. These states have been observed as a self-sustained activity in
networks, which results naturally from the recurrently generated fluctuations intrinsic to
the dynamics of the system to display characteristics consistent with both experimental
[28] and simulation data [24, 25].

4 Discussion and Conclusions

Although insufficient to derive definitive conclusions regarding the effects of distinct
patterns of ES in general and of NPS in particular in the occurrence and nature of hyper-
synchronous phenomena, present results add novel evidence supporting the rationale that
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the temporal structure of stimulus is a major determinant of neuronal response, includ-
ing in therapeutic approaches [6, 7, 29–33]. In fact, a prevalent result seen here were
different modulation effects (increases and decreases) in all studied metrics (time to first
spike, onset of transition to a synchronous regular state (hypersynchronism), induction
of fragmentation, ISI, and CV) that depended on the temporal pattern being applied to
the network. Of particularly interest to us, effects of NPS and NPSLH were different
in several experimental conditions, even though both are nonperiodic, with randomly
generated IPI, differing only in their distributions. It is important to highlight that NPS
and NPSLH also displayed different anticonvulsant effects on animal experimentation
(NPSLH had none). On top of that, even this simple model of the basolateral amyg-
dala undergoing ictogenesis by alteration of single parameters (synaptic weights) was
enough to give rise to the property of differentiating the subtle distinction between NPS
and NPSLH. We believe it is remarkable that such feature emerges in such a simple
system as the model described here.

The network used in these simulations was capable of producing a synchronous
irregular state with gamma-oscillating activity [13, 34] when synaptic weights remained
unmodified. This provided initial validation regarding its neurobiological plausibility.
Additionally, by changing synaptic weights, we were able to induce transitions to syn-
chronous regular (or hypersynchronous) states, that showed a realistic spiking activity in
the 4–5Hz rate. In fact, the gradual variation of synapticweights disturbing the excitatory
versus inhibitory balance over time used here is similar to approaches of other studies,
in which alterations in the synaptic connectivity weight were performed to investigate
plastic changes [35–37] and also to induce ictogenesis in the network [38]. In any case,
modeled ictogenesis exhibited several aspects observed experimentally by our group
[7] and that were predicted in previous theoretical studies [14, 17, 21, 35, 36], such as
synchronous and asynchronous behavior of activity and changes in the balance between
inhibition and excitation at the microcircuit level. Moreover, similar findings were also
seen in the basolateral amygdala kindling model [27], where oscillations in the delta (0–
4 Hz) or low theta (4–8 Hz) ranges were found in both normal and seizure conditions.
In these experiments, multi-unit discharges increased with higher seizure staging, but
remained phase-locked to the delta waves in local field potentials. This induced alter-
nations between burst inhibitory (FSI neurons) and principal neurons (PNa and PNc)
activity, in which spike and inter-pulse intervals may concurrently set a wavelength for
delta frequencies. Finally, among the strategies to induce transition to synchronous reg-
ular states in the network of this work, it is the decrease of inhibitory synaptic weights.
This directly relates to the mechanisms underlying a very common and useful animal
model employed for the screening of new antiepileptic drugs or of novel therapeutics,
pentylenotetrazole (PTZ)-induced acute seizures. In fact, most of our previous results
has been obtained using such approach.

There are not many studies that report different patterns of ES applied to the baso-
lateral amygdala on ictogenesis [14, 18], since most investigations carried out in this
region focused on its role in conditioning and fear [39–41]. Focusing on the role of
ES on suppression and initiation of sustained synchronization, several studies have also
indicated that ES has the ability to modulate seizures [42–44]. In particular, responsive
stimulation, in which stimuli is applied to an epileptic region when the seizure has been
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detected or predicted, has the ability to suppress ongoing seizures, even if the suppression
effect occurs stochastically or locally [45].

We were not able to see any desynchronization effects of NPS in the present results.
On contrary, while it was neutral in many situations tested, in other times it actu-
ally decreased onset time for hypersynchronous phenomena. Although counter-intuitive
in the face of the well-established therapeutic properties of NPS, this was somehow
expected. First, it is important to notice that such latency-decreasing effect was not a
particularity of NPS as it was always accompanied by similar effects of other tempo-
ral patterns (Figs. 6 to 9). Second, our original guess was that NPS would manifest its
therapeutic effects on higher levels of brain organizations, such as polysynaptic neural
circuits of even in the coupling of large-scale networks, not in the microcircuit level
[6]. In line with this, previous findings with animal models actually suggest that NPS
may induce cross-frequency synchronization between oscillations in the delta and the
ripple bands [46], the latter being functionally related to microcircuit activity. Yet, and
as corroborated with present finding, it was important to assess effects of NPS on micro-
circuits, once these could have an impact on larger scale circuits. Taken together, results
may corroborate the notion that ictogenesis is not a trivial ubiquitous process of neural
hypersynchronization. Conversely, seizure generation probably relies on a loss of proper
and intricate coordination of myriad synchronization processes [47], including local
(high-frequency) desynchronization and long-range (low-frequency) synchronization.

Any model is a simplification of reality. Particularly, in the case of a mathematical
models, when simulations are planned, reductionism can be considered a rule to carry out
a reliable computational implementation and provide guidance for experimental investi-
gations, aiming to unravel the intricate interdependence between the variousmechanisms
that are capable of sustaining or suppressing the seizure. In this sense, despite the present
work being able to represent different temporal patterns that reflect different times for
the origin of synchronization, it is of central importance to repeat these experiments in
an expanded version of this model, which includes in silico reproductions of other areas
in the temporal lobe or maybe even across the forebrain, midbrain, and hindbrain. To
see if this is feasible using Izhikevich neuron models is still an open issue for us.
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nológico (CNPq) for financial support. This chapter is dedicated to the memory of author Keite
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Abstract. The use of electroencephalography (EEG) signals for bio-
metrics purposes has gained attention in the last few years, and many
works have already shown that it is possible to identify a person based on
features extracted from these signals. In this work we focus on four func-
tional connectivity measures (magnitude-squared and imaginary coher-
ence, motif synchronization and space-time recurrence) for the classifi-
cation of 10 epilepsy patients with recorded resting-state EEG signals,
to compare and discuss different methodologies. We perform the analy-
sis by slicing the signals of at least 2 trials for each subject in epochs
of 3 and 10 s, filtering the data in the ranges of 1 40 Hz and 1 100 Hz,
building reference and test vectors from the connectivity measures and
labeling each test vector to a subject using the minimal Euclidean dis-
tance from the feature vectors. The best classification rates were obtained
with magnitude-squared coherence and motif synchronization, for the
data segmented in epochs of 10 s and filtered between 1 40 Hz. All the
measures with the signal filtered in the same range obtained an accu-
racy equal or higher than 80%, a result that can be enhanced with more
complex classifiers.

Keywords: EEG-based biometry · Epilepsy · Brain connectivity

1 Introduction

Electroencephalography (EEG) based biometry is a growing area of research [1,2]
for user recognition in security systems, since it provides signals that can only be
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obtained from live individuals and varies according to different types of stimuli.
The first works on the subject [3,4] proposed the use of spectral decomposition
as a measure for identification, and an accuracy of almost 90% was obtained
in [4]. Since then other methodologies were applied, combining different tasks
and feature extraction methods. Some combinations were able to achieve 100%
of accuracy, such as the use of averaged event-related potential (ERP) from
visual stimulation [5], correlation between ERPs elicited by a rapid serial visual
presentation (RSVP) [6] and spectral coherence (COH) from resting-state with
eyes open and closed [7]. Some effects caused by the increase in the number of
subjects, their gender or modification in the age group are discussed in [8], and
show that accuracy levels can strongly rely on these parameters, which indicates
the need for more works with diverse populations and methodologies on the
subject.

On the other hand, EEG has been one of the most used neuroimaging tech-
niques to aid in the diagnosis of epilepsy [9]. This is mainly due to its rela-
tively lower cost, portability and high temporal resolution, compared to other
techniques. The EEG exam can detect physiological manifestations underlying
epileptic activity, although only interictal epileptiform discharges (IEDs) are of
clinical use [9]. In addition, it has been suggested that epilepsy interferes with
functional brain networks [10–13]. These networks are characterized through
functional connectivity analysis, where a similarity measure is used to compare
activity time series from different brain regions (for a review, see, e.g., [14]).
Recently, Nentwich et al. showed that EEG functional connectivity is subject-
specific and depends on the phenotype [15]. They report that the connectivity
patterns they found were more similar across tasks than across individuals, and
state that “functional connectivity can be used as a diagnostic metric to assess
individuals” [15].

In this context, the aim of this work was to perform an individual characteri-
zation of epilepsy patients using different connectivity measures and methodolo-
gies, and compare their performances in a biometry scenario. Magnitude-squared
coherence (COH) has already been used for EEG biometry in [7], achieving 100%
accuracy, and the use of other measures such as imaginary coherence (ICOH),
motif-synchronization (MS) [16] and space-time-recurrence (STR) [17] are pro-
posed here along with COH. In addition to these measures, we also vary the
pre-processing steps for the signals, performing filtering in the intervals 1–40 Hz
and 1–100 Hz and segmentation in epochs of 3 s and 10 s. The frequency band
1–40 Hz was chosen due to its common use in connectivity studies as it covers
the low frequency bands, especially the alpha band whose alterations have been
associated with epilepsy [18,19]. The 1–40 Hz range was also used in another
EEG based authentication study [7]. The second frequency band, 1–100 Hz, was
chosen so that its higher frequency is close to the maximum available frequency
considering the sampling rate 250 Hz. As for the epoching choices, the 10 s seg-
mentation was used based on previous works in the area [6,7,20]. The smaller
segmentation was chosen to be 3 s as it is the lower interval that gives more
precise estimations of coherence in low frequencies, and it is recommended for
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security systems with a required true acceptance rate equal or higher than 90%
[6]. As a result, four methodologies were applied for each measure, producing
sixteen different classifiers. This is a pilot study; at this point, we did not yet
investigate the association between epilepsy phenotype and EEG connectivity.

2 Subjects, Materials and Methods

2.1 Data Acquisition and Pre-processing

Scalp EEG signals were obtained from volunteer epilepsy patients undergoing
pre surgical evaluation in the Neuroimaging Laboratory (LNI) at Unicamp. EEG
data were acquired in resting state condition simultaneously with functional
magnetic resonance imaging (fMRI) data, using a magnetic resonance (MR)
compatible EEG system (BrainProducts GmbH, München, Germany), consisting
of two BrainAmp MRplus amplifiers and a 64-electrode brain cap (including
one electrocardiogram electrode), with electrodes positioned following the 10/10
system [21]. The sampling rate was 5 kHz, with reference on FCz and ground on
AFz.

The criteria for inclusion in the study were a total acquisition time larger
or equal to 600 s and a number of epileptiform events, which were marked by
neurophysiologists, smaller than 30. From that, we selected signals from ten
subjects (mean age 41.9 ± 12.3, 6 female). The EEG signals were collected in
a single session (day) for each subject, and all the selected subjects had two
or more acquisitions during the same session (trials). Table 1 shows the number
of trials used for each patient and their diagnosis, which can be temporal lobe
epilepsy (TLE) or frontal lobe epilepsy (FLE), and the respective affected brain
hemisphere.

Table 1. Number of trials of each patient and diagnosis when available.

Patient Trials Diagnosis

1 3 Bilateral TLE with left predominance

2 3 FLE (unknown side)

3 3 Left TLE

4 3 Left TLE

5 3 Right TLE

6 3 Left TLE

7 3 Left TLE

8 3 Right TLE

9 3 Left TLE

10 2 Left TLE
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The steps of the pre-processing were the following: MR gradients artifact
correction using MR trigger syncronism; average artifact subtraction correction;
balistocardiogram correction for the scalp channels; downsampling the data to
250 Hz and discarding epileptiform events and the ECG channel, in order to
retain only signals with regular brain activity. A manual cleaning and an inde-
pendent component analysis (ICA) decomposition were also performed to discard
noisy fragments and to remove blink components from the data, respectively. The
ICA decomposition and the rejection of components were made with the fastICA
algorithm and the ICLabel extension [22], both implemented in EEGLAB [23].
EEG data were then re-referenced to the average of all electrodes, and filtered in
the frequency ranges of 1–40 Hz and 1–100 Hz. Since we wanted a total of 600 s
of signal, we first selected 300 s from the first trial of each patient to compose
the training dataset. Then, for the patients with two trials we selected 300 s
from the second trial, and for the remaining patients we selected 150 s from the
second and 150 s from the third trials to compose the test dataset. Finally, these
segments were divided into epochs of 3 s and 10 s.

The study was approved by the ethics committee of our institution (CAAE
16715319.9.0000.5404, CEP-UNICAMP), and all subjects signed an informed
consent form prior to data acquisition.

2.2 Connectivity Measures

Coherence. Coherence is a measure that quantifies the level of similarity
between signals with respect to their frequency and amplitude [24]. It is a com-
mon technique to study brain connectivity from EEG signals since it gives the
synchrony in a chosen specific frequency range between distinct regions of the
brain. The magnitude-squared coherence between two signals i and j for a fre-
quency f is given by the formula

COHij(f) =
|Sij(f)|2

Sii(f)Sjj(f)
, (1)

where Sij is the cross spectral density between the two signals and Sii and Sjj ,
the spectral density for each of them. Another common way to express coherence
is using its imaginary part, which can prevent the contamination of the signals
from volume conduction [25]. The expression for the imaginary coherence now
depends on the imaginary part of the cross spectral density, and is given by

ICOHij(f) =
Im(Sij(f))

√
Sii(f)Sjj(f)

. (2)
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To build the reference vectors, the magnitude-squared and imaginary coher-
ence were calculated for each epoch of the first trial (n = 30 epochs for segments
with 10 s and n = 100 epochs for segments with 3 s) over the frequency ranges
1–40 Hz and 1–100 Hz. The analysis was performed with Brainstorm [26], an
open-source application for analysis and processing of brain recordings, with a
maximum frequency resolution of 1 Hz and an overlap of 50% for power spectral
density (PSD) estimation. The resultant coherence matrices were then aver-
aged over the n epochs and over the frequencies, resulting in a vector 2016 × 1
(2016 = [N(N − 1)/2 + N ], where N = 63 is the number of electrodes) for each
subject. For the test vectors, COH and ICOH were calculated for each epoch
from the second trial or the second and third trials, and the coherence matrices
were averaged only over the frequencies. This method resulted in n = 100 and
n = 30 test vectors 2016 × 1 for epochs of 3 and 10 seconds, respectively, for
each subject and frequency range.

Fig. 1. Transformation of a randomly generated signal X into a series of motifs XM ,
with unitary lag.

Motif-Synchronization. The motif technique considers an original signal X
as a sequence of predetermined elementary patterns that are used to transform
the signal into a sequence of labels XM , as depicted in Fig. 1. This method was
originally proposed to perform a study on permutation entropy in EEG data
[27], and a more recent work proposed the use of motifs for a connectivity mea-
sure, called Motif-Synchronization [16]. The objective of the method is to obtain
the synchrony between the signals of two sources by counting the simultaneous
appearance of the defined patterns. After performing the transformation of the
signal, the following variable is evaluated for each pair of sources
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cXY = max

(
Lm∑

i=1

Jτ0
i ,

Lm∑

i=1

Jτ1
i , . . . ,

Lm∑

i=1

Jτn
i

)

, (3)

where

Jτ
i =

{
1, if XM (i) = YM (i + τ)
0, else.

(4)

In the expressions above, Lm is the number of selected points from the time
series and τ is the time delay ranging from τ0 = 0 to a maximum value τn to
be chosen. The connectivity matrix is then obtained from the synchronization
degree of each pair, given by

QXY =
max (cXY , cY X)

Lm
, (5)

that can assume values between 0 (no synchronization) and 1 (maximum syn-
chronization).

For this work, we performed the transformation of the original signals to
motifs using three points patterns and unitary lag, in which the two last points
of a pattern overlap with the next one (see Fig. 1). The maximum delay was
considered to be τn = 4, corresponding to 16 ms in the data. The n = 100 (for
epochs with 3 s) and n = 30 (for epochs with 10 s) connectivity matrices from
the first trial were averaged to form the reference vector (of dimensions N2 × 1)
and the matrices from the second trial or the second and third trials were used
as test vectors.

Space-Time Recurrence. The space-time recurrence technique for connec-
tivity is based on recurrence plots (RP) [17], a powerful tool in the analysis of
complex systems that indicates the level of proximity between dynamical states.
The recurrence in space and time for a pair of signals can be computed as [28]

STRij(ε, t) = θ (ε − ‖xi(t) − xj(t)‖1), (6)

where θ is the Heaviside function, ε a threshold value for the distance and t the
index of the sample (time). For N sources of signals, we have a N × N × T
matrix, with T the total number of samples. To obtain a recurrence for a time
period, we can define a density matrix of the form

Denij =
1
T

T∑

t=1

STRij(ε, t), (7)

which assumes values from 0 to 1 and gives a space-time recurrence average
through time.
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For this work, the density matrix (7) was used to build the reference and
test vectors for classification. Since Den is symmetric, only the entries below the
diagonal and the diagonal were used, resulting in vectors of 2016 × 1 as in the
coherence measures. For the reference vectors, the density matrices of all epochs
from the first trial were averaged, and the matrices from epochs of the other
trials were considered as test vectors. Although many methods for the choice of
the distance threshold value have been proposed [29,30], in this work the values
of ε for each case were chosen according to the best classification results.

2.3 Classification

Once the reference and test vectors were built and labeled to their respective
subjects, the method of classification for all the connectivity measures was per-
formed in the same way. First, the Euclidean distance between each of the i test
vectors and j reference vectors was calculated by the expression

Dij = ‖ti − rj‖2. (8)

This distance matrix has the dimensions n × Nsubjects, where n = 30 for
epochs with 10 s, n = 100 for epochs with 3 s and Nsubjects = 10. For every test
vector, the minimum distance obtained was associated with the respective sub-
ject, and the classification results compared to the original labels. The accuracy
was then given by the ratio between the number of correct classifications and n.

3 Results and Discussion

As can be seen in Figs. 2, 4, and 5, the connectivity matrices for COH, MS
and STR present subtle variations that are not easily distinguishable, at least
visually. The imaginary coherence maps exhibit more variety as can be seen in
Fig. 3, where the maps generated by data segmented into epochs of 10 s have
lower values in general.

The classification accuracies are presented in Table 2. It can be seen that
COH, ICOH and MS vary strongly with the range of filtering chosen, with a dif-
ference of up to 24% in classification accuracy for COH. The variation for STR is
less significant, but the accuracies for the filtering range 1–40 Hz are still better.
These results indicate that the most relevant signals for subject distinction are
contained in the lower frequency bands, including the α and β bands which are
related to relaxed awareness and concentration [31]. A more restricted filtering
also provides the elimination of possible high-frequency artifacts that can harm
the quality of the data.

As for the epoch size, the 10 s segmentation resulted in higher accuracy in
the majority of the cases, producing a difference of at most 5% for MS and
STR. A better performance was expected with the segmentation in 10 s, since
the connectivity measures from larger periods of time are less susceptible to be
disrupted by momentary movement artifacts and cognitive processes. However,
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Fig. 2. Connectivity matrices for the reference vector from subject 1, with values of
the magnitude-squared coherence (1) (COH).
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Fig. 3. Connectivity matrices for the reference vector from subject 1, with values of
the imaginary coherence (2) (ICOH).
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Fig. 4. Connectivity matrices for the reference vector from subject 1, with values of
the degree of synchronization Qxy (5) using MS.
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Fig. 5. Connectivity matrices for the reference vector of the first subject, with values
of the density matrices (7) using STR (the off-diagonal entries were rescaled from 0 to
1 for a better visualization).

some of the accuracies for 3 s were still higher, and periods longer than 10 s can
be studied to verify if this improvement is relevant.
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Table 2. Classification accuracy (in percentage) obtained from the different measures.
The parentheses in the STR line contain the values for ε that gave the best accuracy.

Measure 1–40Hz 1–100 Hz

3 s 10 s 3 s 10 s

COH 93.7 94.7 72.3 70.7

ICOH 84.9 80.0 75.2 67.3

MS 91.6 91.7 81.0 86.0

STR 86.3 (5.0e−7) 91.3 (3.3e−7) 85.1 (0.19) 91.0 (0.19)
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Fig. 6. Confusion matrices for the classifiers with COH measures. A row contains the
percentage of the samples from one class attributed to each of the classes.

The good performance of magnitude-squared coherence corroborates the
results of [7], where high accuracies were obtained with both eyes-closed and
eyes-open acquisitions. To the best of our knowledge, no other works used MS or
STR for EEG-based biometry, but both measures have already been used in con-
nectivity studies [16,28] and generated good results. Our results for MS reveal
that this measure is a good candidate to perform distinction between subjects,
alongside with COH.
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Fig. 7. Confusion matrices for the classifiers with ICOH measures. A row contains the
approximate percentage of the samples from one class attributed to each of the classes.

As can be seen in the confusion matrices in Figs. 6, 7, 8 and 9, the patients
3, 4, 6, 9, and 10 have a correct classification smaller or equal to 50% for at least
one of the connectivity measures. Patient 4 has the lower hit rates in general,
and is more related to patients 9 and 2 in some of the measures. The rest of
the patients with worse ratings are related to different subjects depending on
the connectivity measure. Alongside this, the patterns of classification seem to
repeat for the same measure and filtering range, and not vary too much for the
different epoch segmentation.

Relevant limitations of this work were the number of subjects whose EEG
signals were appropriate for our analysis and the use of EEG signals acquired
jointly with fMRI data, which have more artifacts than regularly acquired sig-
nals. However, the data used are maintained for diverse scientific purposes, which
includes EEG-fMRI investigation of epilepsy patients, a goal towards which we
believe this work will be useful in the future.
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Fig. 8. Confusion matrices for the classifiers with MS measures. A row contains the
approximate percentage of the samples from one class attributed to each of the classes.

4 Conclusion

The approach proposed here had the intention to study different connectivity
measures and methodologies for EEG-based biometry of epilepsy patients, and
to compare their performances. For our subjects and method of classification,
COH and MS measures obtained from epochs of 10 s extracted from the original
signals filtered in the 1–40 Hz range resulted in the highest classification accuracy.
We also found that STR and MS can result in classifications as good as or even
better than COH and ICOH, depending on the methodology and pre-processing
steps.

A first modification in the continuation of this work will be to include a
larger number of subjects, which can make the results more reproducible and
reliable. Other improvements include the use of more robust classification meth-
ods, exploration of the lag parameter for MS, which was held constant here,
and to determine which electrodes are more relevant for classification, in order
to reduce the dimensions of feature and test vectors. Finally, once we are able
to increase patient sample, a future direction will be to explore the association
between epilepsy phenotype and diagnosis with EEG functional connectivity.
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Fig. 9. Confusion matrices for the classifiers with STR measures. A row contains the
percentage of the samples from one class attributed to each of the classes.
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Abstract. Electrical stimulation of neural tissue is a well-established method in
neurosciences for the investigation of neural function, neurological disorders, and
neuromodulation therapies. Although one can easily find a great variety of off-
the-shelf equipment for such experimentation, recent developments of the field,
such as a precision neuroengineering approach to stimuli waveforms and closed-
loop paradigms, are putting a lot of pressure on current available designs. In fact,
many times, scientists fall short of implementing their novel non-conventional
stimulation protocols on commercially available apparatuses and need to develop
their own device. While the popularization of microcontroller boards made it
easy and cheap to design and build highly flexible control units for electrical
stimulators, output stages with proper voltage and current output compliances,
controlled by multiple low-cost platforms are largely missing. In this work we
report a new inexpensive design of a PWM-controlled output stage capable of
producing current-fixed mono or biphasic pulses (i.e., it does not change even if
output impedance varies) with enough power to sufficiently excite neural tissue.
Electrical tests confirmed that the circuit is capable of producing highly stable
current pulses of different amplitudes and morphologies (cathodic, anodic, or
biphasic), with a null dead time (interval between phases). Although we have
tested the design using and Arduino Leonardo controller board, it is expected that
any platform capable of generating PWM pulses will work just as well .

Keywords: Electrical stimulation · Neural electrophysiology · Fixed current ·
Output stage

1 Introduction

Electrical stimulation (ES) of excitable tissue is a widely used method for the treatment
of diverse neurological disorders and also extensively for neuroscience experimentation
[1]. This last application includes brain slices electrophysiology, long term potentiation
(LTP) and plasticity induction, behavioral modulation, electrolytic lesions, and also
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experimental epileptic seizure suppression. Recently, novel techniques use simultaneous
recordings to trigger responsive ES in closed-loop experiments. Such approach opens
up new possibilities for studies in neuroscience, creating new biohybrid approaches [2]
in which tissue excitability is controlled in real-time [3] to benefit, for instance, patients
with epilepsy [4]. Effects and applicability of ES in neural tissue are now largely known
and comprehensive reviews can be found in [5, 6].

Laboratory ES equipment is often composed of complex machinery, based on many
different designs and usually with high costs, being very difficult to customize to novel
paradigms of stimulation. This is mostly due to intellectual property reasons, but also to
a general closed innovation strategy of production, marketing, and commercialization
[7]. Yet, this is particularly concerning given that the neuromodulation field is currently
entering a new age of precision engineering in which every aspect and parameter of the
stimulation waveformmatters, not only the target substrate or firing frequency. In partic-
ular, non-rhythmic temporal patterns of stimulation is an aspect of increasing importance
[8]. For instance, our group has been successfully developing and testing a promising
technique for the treatment of refractory epilepsy, termed Non-Periodic Electrical Stim-
ulation (NPS), which consists in the application of ES with random intervals between
pulses and low mean frequency (4 Hz) [9, 10]. Usually, electrical stimulus applied with
short symmetrical square biphasic pulses of voltage or current, andfired at high frequency
(usually>100 Hz), has an anticonvulsive effect in the control of epilepsies, while at low
frequencies it does not [11]. Yet, the same therapeutic effect can be obtained by applying
lower frequencies and with less energy, causing less damage to tissues, if a temporal
pattern such as NPS is used [12]. Thus, very high flexibility and freedom to customize
stimuli is largely desirable in ES hardware design supporting neuromodulation research.

Older implementations of electrical stimulator hardware were solely based on oscil-
lator systems (quartz crystal-driven frequency dividers and counters, timer ICs, etc.) in
order to generate fixed rates for the firing of pulses. This design strategy made it very
complex to implement ES strategies which deviated from a fixed frequency paradigm.
On the other hand, modern, microcontroller-based architectures largely enabled a great
variability of waveform generation capabilities. The popularization of microcontrollers
of all kinds with comprehensive sets of programmable properties, including those with
open-source design (open-source hardware) such as Arduino, contributed a lot to pop-
ularize and to lower the costs of development and acquisition [13]. With this sort of
technology, it became easy to develop control units for ES equipment, which are capa-
ble of controlling multiple aspects of the pulsatile stimulation, including frequency,
temporal pattern, pulse width, number and polarity of phases, etc.

Although such approach to the development of stimulator designs offers great ver-
satility in an easy and inexpensive manner, output generated from controllers are not
tailored to properly affect neurons. This is due to several reasons: 1) microcontrollers
operate on a positive-only power supply (e.g. 0 to 5 V), while both cathodic and anodic
(or both of them at the same time) pulses are largely desirable; 2) digital circuit output
voltage pulses will yield different currents according to the output impedance, while
experimental ES is better carried out with fixed values of electric currents (i.e. it does
not change even if impedance varies), and; 3) digital circuits do not comply to power
levels needed for tissue excitation.
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In this work, we present an inexpensive electronic circuit design that generates mono
or biphasic fixed-current pulses controlledwith PWMcommands for proper timing and it
is thus compatible with anymicrocontroller platformwith such capabilities.We describe
its working and the results of a simple implementation to show its output compliance.

2 Materials and Methods

2.1 Electronic Circuit Design

The software used to develop and simulate the circuit was LTspice,which is free. Figure 1
depicts the final diagram.

Fig. 1. Electronic circuit diagram for the output stage. Mono or biphasic fixed-current pulses are
created from PWM control signals (V3, V4, V5, and V6) by summator circuits and a voltage to
current converter.

V3, V4, V5 and V6 sources are microcontroller PWM signals which are summed
and subtracted in the circuit to generate outputs of interest, which can be monophasic
(only positive or negative) or also biphasic (positive and negative) pulses. The selective
presence or absence of each of the PWM signals will determine the output morphology.
Moreover, their timing will define pulse width, firing rate (if in a fixed frequency), and
the temporal pattern.

To analyze the circuit, first consider operational amplifier represented by AP1, con-
nected in the adder configuration with the voltages V3 and V5 as inputs. That is, in this
configuration, AP1 will add V3 and V5 and, since all resistors in this stage are 10 K�,
there will be no amplification of the signal as this is not the intention. This is represented
by Eq. 1 below (R1 = R2 = R6 = 10 K�) before and after simplification.

Vout1 = −
(
R2

R1
V5 + R2

R6
V3

)
= −(V3+ V5) (1)
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The voltage output Vout1 is also the input of the second operational amplifier AP2,
which is also wired as an adder together with V4 and V6. Analogously to what has been
done to Eq. 1, we can easily derive Vout2 in Eq. 2.

Vout2 = −
(
R5

R3
Vout1 + R5

R4
V6 + R5

R7
V4

)
= −(−(V3+ V5) + V4+ V6) (2)

Equations 3 and 4 below are just algebraic rearrangements of Eq. 2.

Vout2 = ((V3+ V5) − V4− V6) (3)

Vout2 = (V5− V4) − (V6− V3) (4)

Notice that Eq. 4 describes the subtraction of two other subtractions. This can be
interpreted as voltage signals for the positive (V5–V4) and the negative (V6–V3) phases
of stimulation waveform. Moreover, each subtraction is put in place in such a way that
while one PWM signal (V5 or V6) is used to generate the main wave, the other one (V3
or V4) is used to limit it.

Finally, operational amplifier AP3 receives the signal according to the configuration
made by the user and generated by the controller regarding the number and polarity of
phases, frequency and pulse duration. The electronic circuit was designed to generate
fixed electrical currents. That is, even if conditions change from animal to animal, such
as the resistance of the brain tissue, the current remains at the programmed value. For
this, AP3 is wired in the voltage-to-current converter configuration.

The input current i1 depends only on the operation voltage of the controller (usually
5 V), maintained across AP1 and AP2 circuits, and the resistor R10. By its turn, the
output current iout , or i2 in the diagram of Fig. 2 below, is equal to i1 (there is no current
entering the inverter terminal of the operational amplifier due to its high impedance),
which is obtained through Eq. 5. Therefore, even when the output impedance is changed,
the current remains the same, that is, constant and determined only by resistor R10.
Specifically, for R10, this can be a potentiometer or a board with resistors, with a selector
switch, for example, where it is possible to select different currents.

iout = −Vout2

R10
(5)

The entire process described and detailed in Eqs. 1 to 5 for generating the signals
(anode and cathode) is illustrated in Fig. 3. In this Figure we have that the first pulse gen-
erated is given by V5–V4 (anodic pulse). The second pulse is given by V6–V3 (cathodic
pulse). That is, V5 and V6 are the main waves and V3 and V4 cut the main waves accord-
ing to the desired pulse width for a given frequency. Finally, in the last wave, there is the
sum of these signals in the second amplifier, (V5–V4) and (V6–V3), with a 180° shift for
the second pulse, resulting in the wave that will be amplified in the last stage, in AP3.
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Fig. 2. Voltage to current operational amplifier circuit used to generate fixed-current pulses. Out-
put current (iout or i2) is equal to i1 which is dependent only upon R10 and the voltage at its left
node, which is 5 V pulsed (Eq. 5).

Fig. 3. Abiphasic cathodic-first pulse is created from summation and subtraction of PWMsignals
according to Eq. 4. Signal V4 is subtracted from V5 to create the cathodic pulse after an inversion
(top row). Analogously, V3 is subtracted from V6 to create the anodic pulse (middle row). These
partial signals are summed to createVout2 whichwill be converted to a current-fixed signal (bottom
row).

2.2 Circuit Tests

To establish the limits and characteristics of the circuit, electrical tests were carried out.
The first and most important was the constant current test, which aimed at verifying the
stability of the output current, regardless of the output resistance found (simulating the
variability between experiments). We know that in a typical application of extracellular
ES, the stimulated impedance may vary between 1 K� and 10 K�, these values being
represented by resistor R11. Here, we used the following values for R11: 1 K�, 4.02 K�,
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6.19 K�, 8.25 K� and 10 K�. It is important to note that, although both stimulated
tissue and the electrolyte-electrode interface are not pure resistive, current testing and
calibration is usually performed upon pure resistive loads.

A total of 23 different resistors for R10 were used, yielding output currents from
15µA to 1.2 mA. Table 1 presents all the values used, as well as the calculated/expected
currents (according to Eq. 5). The multimeter used for this test was the Agilent U1241B
and to generate the PWMwaves, the Arduino Leonardo was used.We selected very long
pulses to facilitate readouts.

Another test performed was the polarity test, in order to verify if the circuit is really
generating negative and/or positive pulses. The polarity test certifies via oscilloscope
that the output signal is responding to the commands for choosing the pulses. Finally,
the dead time of the circuit, which is the time interval between the end of one phase and
the start of the next phase in a biphasic pulse, was verified. The oscilloscope used for
these tests was the Agilent DSO-X 2002A model.

Table 1. Resistance values used for R10 during testing.

Nominal current (µA) Resistor R10 (K�) Calculated current (µA)

1200 4,02 1243,78

1000 4,7 1063,83

900 5,6 892,86

800 6,19 807,75

700 7,15 699,30

600 8,25 606,06

500 10 500,00

400 12,1 413,22

350 14 357,14

300 16,9 295,86

250 20,5 243,90

200 24,9 200,00

150 33,2 150,60

100 44,2 113,12

90 56,2 88,97

80 61,9 80,97

70 71,5 69,93

60 78,7 63,53

(continued)
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Table 1. (continued)

Nominal current (µA) Resistor R10 (K�) Calculated current (µA)

50 100 50,00

40 120 41,67

30 150 33,33

20 240 20,83

15 360 13,89

2.3 Circuit Assembly

In order to carry out all the tests, the circuit was assembled on a protoboard. The opera-
tional amplifier used was the TL071 which has among its characteristics a low voltage -
noise ratio (0.003%) and a good slew rate (13 V/µs). This 8-pin integrated circuit can be
powered with voltages up to+ 18 V (+Vdc) and−18 V (−Vdc). In addition, it features
1.4 mA supply current, 75 dB common mode rejection ratio, and 3MHz gain bandwidth

Fig. 4. Electrical stimulator circuit assembled on protoboard. The Arduino board was used to
create the PWM pulses for these tests, but any other compatible platforms can also be used.
Potentiometers on the bottom-left of the protoboard are used to control pulse width and frequency.
The operational amplifier-based circuitry for the integration of PWM signals into a biphasic (or
monophasic) fixed-current pulse is seen on the superior portion of the protoboard.
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(GBP). However, we make it clear that any other operational amplifier with similar char-
acteristics can also be used. The resistors are all precision, that is, they have a maximum
of 1% error in relation to their face values and their power is 1/8 W. It is important to
highlight that resistor value should always be tested with a multimeter prior to assembly
in order to increase circuit reliability. For the generation of PWM signals, an Arduino
Leonardo was used. Frequencies as well as the pulse widths were informed to Arduino
by 10 K� potentiometers connected to analog inputs. To make all the interconnections
on the protoboard, AWG 26 cables (jumpers) were used. The sources V1 and V2 and
also V7 and V8 in the diagram of Fig. 1 are DC power supplies of +9 V, −9 V, +18 V,
−18 V respectively, as well as the circuit reference. The font used to supply this was
the Agilent U9031A model. Figure 4 shows the circuit in question with the components
used.

Here we used of Arduino Leonardo for convenience and simplicity, but any other
circuit capable of generating a PWM signal could also be employed. The Arduino code
for these tests is freely available upon request to authors. All tests were performed only
on an electronic bench and no animal experimentation was carried out at this point of
development for ethical reasons.

3 Results

3.1 Positive and Negative Current Test

With the proposed circuit, it is possible to stimulate with monophasic or biphasic pulses.
For this reason, it is necessary to check the positive and negative currents separately.
Tables 2 and 3 present the results found for positive and negative currents, respectively,
applied to different output loads.

Table 2. Stimulation currents for positive pulse.

Possible currents (µA) 1 K� 4,02 K� 6,19 K� 8,25 K� 10 K� Variation / error (%)

1243,78 1252 1247 1245 1240 1239 1,04 / 0,07

1063,83 1068 1064 1062 1058 1050 1,70 / 0,32

892,86 902 896 894 890 885 1,90 / 0,06

807,75 810 805 804 800 795 1,87 / 0,62

699,30 702 697 695 692 686 2,30 / 0,71

606,06 609 605 604 600 595 2,32 / 0,57

500,00 505 500 500 495 491 2,81 / 0,36

413,22 415 413 413 405 400 3,67 / 0,98

357,14 360 355 355 350 347 3,68 / 1,06

295,86 302 298 295 291 288 4,75 / 0,36

(continued)
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Table 2. (continued)

Possible currents (µA) 1 K� 4,02 K� 6,19 K� 8,25 K� 10 K� Variation / error (%)

243,90 250 245 243 241 240 4,10 / 0,04

200,00 208 205 202 197 195 6,45 / 0,70

150,60 154 153 152 149 148 3,97 / 0,40

113,12 115 112 110 110 108 6,31 / 1,91

88,97 92 90 90 88 86 6,73 / 0,26

80,97 83 82 81 79 77 7,46 / 0,71

69,93 72 70 70 68 67 7,20 / 0,76

63,53 64 63 63 62 61 4,79 / 1,49

50,00 51 50 50 47 47 8,16 / 2,04

41,67 43 42 41 40 39 9,76 / 1,63

33,33 34 33 33 33 32 6,06 / 1,00

20,83 22 22 21 21 20 9,43 / 1,75

13,89 15 15 14 14 14 6,94 / 3,54

The mean error of measured currents to calculated values were below 1% for the
majority of currents, positive and negative pulses, but achieving a maximum of 3.54%
and 3.66% for a current of 15 µA, positive and negative pulses respectively. The mean
of the total variation of the positive current is 4.93% and for the negative current, it is
4.60%.

Table 3. Stimulation currents for negative pulse

Possible currents (µA) 1 K� 4,02 K� 6,19 K� 8,25 K� 10 K� Variation / error (%)

1243,78 1245 1239 1238 1238 1235 0,81 / 0,39

1063,83 1059 1057 1055 1054 1048 1,04 / 0,88

892,86 897 892 890 888 885 1,35 / 0,28

807,75 807 803 802 799 795 1,50 / 0,82

699,30 695 692 691 687 685 1,45 / 1,35

606,06 605 603 602 599 596 1,50 / 0,84

500,00 500 496 495 493 490 2,02 / 1,05

413,22 413 410 408 405 400 3,19 / 1,48

357,14 357 354 353 350 345 3,41 / 1,52

295,86 300 295 293 291 290 3,40 / 0,70

(continued)
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Table 3. (continued)

Possible currents (µA) 1 K� 4,02 K� 6,19 K� 8,25 K� 10 K� Variation / error (%)

243,90 247 244 242 240 238 3,72 / 0,70

200,00 205 200 199 197 195 5,02 / 0,40

150,60 152 149 149 147 145 4,72 / 1,48

113,12 115 112 112 110 108 6,28 / 1,54

88,97 91 90 88 87 85 6,80 / 0,87

80,97 82 80 80 79 77 6,28 / 1,72

69,93 72 70 70 68 67 7,20 / 0,76

63,53 64 63 62 61 60 6,45 / 2,47

50,00 51 50 49 48 48 6,10 / 1,63

41,67 42 41 41 39 39 7,43 / 3,14

33,33 34 34 33 32 31 9,15 / 1,62

20,83 22 21 21 20 20 9,62 / 0,14

13,89 14 14 13 13 13 7,46 / 3,66

Figures 5 and 6 is a graphical depiction of results obtained for the positive and
negative current tests, respectively. A total of 46 currents were measured, being 23
positive pulses and 23 negative pulses. Both tables and figures help to demonstrate how
currents are stable across loads of different resistance values.

Fig. 5. Different amplitudes of output positive pulse currents generated by the circuit by varying
R10 (see color coding and image inset) as applied to different loads varying from 1 K� to 10 K�.
Notice that amplitude values remain highly constant across load variation.
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Fig. 6. Different amplitudes of output negative pulse currents generated by the circuit by varying
R10 (see color coding and image inset) as applied to different loads varying from 1 K� to 10 K�.
Notice that amplitude values remain highly constant across load variation.

3.2 Polarity Test

For this test, we simply checked if there are two pulses and if they obey the triggers
turning on or off according to the user’s handling.

To perform this test, a frequency of 2 Hz and a pulse width of 512 µs was chosen.
Figure 7 shows the two pulses together, that is, in the biphasic configuration. In Fig. 8, the
negative pulse was deactivated, leaving the output signal as a monophasic positive pulse.

Fig. 7. Screenshot from the oscilloscope for the polarity test configured for a biphasic pulse of
512 µs duration (each phase) fired at 2 Hz.
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Finally, in Fig. 9, the positive pulse was deactivated, making the circuit be single-phase
with a negative pulse at the output.

Fig. 8. Screenshot from the oscilloscope for the polarity test configured for 512 µs monophasic
positive-only pulse fired at 2 Hz.

Fig. 9. Screenshot from the oscilloscope for the polarity test configured for 512 µs monophasic
negative-only pulse fired at 2 Hz.

3.3 Dead Time Test

Using the same frequency and the same pulse width, Fig. 10 depicts a biphasic pulse in
a larger timescale (5 ms/div). Figure 11 has a faster timescale (500 ns/div), where it is
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already possible to see that there is a rate of change, but the dead time is still not seen.
Finally, in Fig. 12 (100 ns/div), it is already possible to say that the dead time of the
circuit is very close to zero.

Fig. 10. A biphasic pulse (negative-first) used for testing dead time between phases observed at
a 5 ms per division scale.

Fig. 11. A biphasic pulse (negative-first) used for testing dead time between phases observed at
a 500 ns per division scale.



A Multiplatform Output Stage 183

Fig. 12. A biphasic pulse (negative-first) used for testing dead time between phases observed at
a 100 ns per division scale. There is no noticeable dead time.

4 Discussions and Conclusions

This article presented an inexpensive electronic circuit capable of delivering electri-
cal stimulation current-fixed pulses as it is done in several fields of electrophysiology
research. Simplified and very low cost, the circuit obtained good results in its electrical
tests and confirmed that it can be fully controlled using only PWM signals.

The first test was the constant current, which kept its variation below 10% for each
pulse (anodic or cathodic). Largest errors found are related to currents of 15µA and does
not exceed 4% in both pulses (Tables 2 and 3). As these values are found in the lowest
currents, where any slight variation causes a large percentage of error, it is expected that
the largest error is associated with them. Therefore, the constant current test showed that
the circuit maintains its current fixed, even if the output impedance changes.

Another test performed was the polarity test, which, regardless of frequency and
pulse width, can be chosen between positive and negative (anodic or cathodic). There
are studies that need single-phase pulses and others that need biphasic pulses and thus,
a circuit was developed in which it is possible to choose the polarity and number of
phases. This test validated the choice of polarity according to the user’s need.

The dead time found is practically zero, that is, there is no noticeable delay time
between the voltage variation between the phases of the biphasic pulse. Even with the
time scale in the order of nanoseconds, it was still not possible to verify the existence of
dead time.

Additional testing must be carried out before the output stage can be used in animal
experimentation. For instance, it is important to know how current values hold for long-
term stimulation protocols. Furthermore, it is highly necessary to assess the stimulator
performance in terms of reliability of pulse width and firing frequency according to the
commanded values and also in the long run. Finally, it is also of paramount importance
to evaluate efficiency and efficacy of the circuit with animal experimentation. On the
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other hand, all these criteria will be influenced also by the controller platform chosen.
For this reason, such experimentation was not carried in the study, which has the goal of
assessing the output stage separately. Follow up development and investigation on these
issues are already being performed by our group with promising preliminary results and
will be reported soon.

Here, we tested the output stage using pure resistive loads, while in a real experi-
mental scenario, current pulses will be applied to impedances with also a capacitance
part too (inductances are usually negligible). Consequently, current pulses flowing in
the neural tissue will not be perfectly square and its shape (particularly speed of decay)
will depend on the capacitance seen by the output stage. By its turn, this depends on
factors such as stimulation target (e.g., gray vs. white matter) and electrode characteris-
tics. Researchers should always be aware of such confounding factors when performing
neural stimulation experiments. It is important to notice, on the other hand, that these
issues are true for any stimulation equipment, given that they arise from the physical
nature of tissue and the electrolyte-electrode interface.

Virtually all electrical stimulators used in research purposes across Latin Amer-
ica and other underdeveloped regions are manufactured and sold by private companies
operating abroad and thus, have mostly high cost. Prices are also vulnerable to market
fluctuations that affect the foreign currency and its exchange ratio. On top of that, taxes
and importation fees impose even further difficulties in the access of such apparatuses.
With this circuit together with any hardware capable of generating PWM, it is possible to
start implementing simple but versatile ES protocols for research in electrophysiology.
Here, the controller hardware used was the Arduino Leonardo. However, it would also
be possible with any other Arduino board or other controllers, such as ESP32, ESP 8266,
and even a Raspberry Pi system.
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Abstract. For a better rescuing of peoplewith disabilities, it is crucial the develop-
ment of new assistive technologies and therapeutic methods to rehabilitate people
with some disabilities to integrate them to a complete social life. A very promising
tool is the physiological self-regulation protocols based on biofeedback training.
Biofeedback protocols are based on the premise that it is possible to learn how to
self-modulate specific aspects of the body’s physiological activity. A biofeedback
system is composed of input physiological information and output sensorial stim-
uli information in a real-time closed-loop process that allows patients to modulate
a target physiological (dys)function. The application of biofeedback protocols has
been widely studied and used in different clinical practices such as orthopedic,
neurological, physiological, and cognitive conditions. This review focuses on the
main aspects concerning the system arrangement and protocols of stimulation
in biofeedback approaches, from its basic principles of operation to its clinical
application in different contexts, with emphasis on sensorimotor and cognitive
deficits.

Keywords: Self-regulation · Biofeedback · Neurofeedback · Brain machine
interface · Brain computer interface · Rehabilitation

1 Introduction

In the last decade, different protocols based on closed loop self-regulation training have
been applied as a new experimental and clinical approach, with great therapeutic poten-
tial (Neblett 2016; Bunderson 2014; Kawase et al. 2017; Schweisfurth et al. 2016;
Ramos-Murguialday et al. 2013; Shokur et al. 2016). Currently, there are many different
systems and protocols, but all of them start from the same common biofeedback prin-
ciples (Hodgson et al. 2014; Kawase et al. 2017; Dosen et al. 2015; Reiter et al. 2016;
Seáñez-González et al. 2016).

Technically, the concept of biofeedback can designate two complementary parts - (i) a
physical system, relative to the construction/integration of physical components, device
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architecture, statistical techniques, and type of signal recording, and (ii) a protocol,
relative to the process and training that the patients will be submitted to recover or
improve the physiological target (dys)functions. The biofeedback system depends on
the type of physiological signal that will be recorded, such as the brain, heart, muscle,
etc. It is characteristically composed of a set of electronic devices, arranged in a specific
and ergonomic way to optimally record the physiological activity related to the target
function, to treat and produce in real time the set of stimuli (feedbacks) to the patient.
It also contains a computational processing that implements statistical techniques to
enable the processing of all signal features associated with a software (in general, with
a friendly interface) to allow the responsible clinician/researcher and the patient choose
and command all parameters (Neblett 2016; Fazli et al. 2012; Sarasola-Sanz et al. 2017;
Xie et al. 2013).

Concerning biofeedback as a protocol, it must be elaborated according to specific
conditions of interest, with the premise of explicit or implicit learning through operant
conditioning. It means that, as the target activity is recorded, the patient receives some
sensory feedback and/or reward, for example, by performing a game-type task (such as
rotating a virtual cube, and translating a vertical bar), reinforcing positively or negatively
the patient’s behavior and the physiological function that generates the desired activity
(Sterman and Egner 2006). This physiological activitymodulation is guided by a specific
protocol design that in a closed loop stimulates the patient’s senses (visual, tactile, or
auditory) according to a signal-stimulus mapping (Neblett 2016).

Biofeedback protocols have shown success in the clinical treatment of different
comorbidities, such as attention-deficit/hyperactivity disorder (ADHD) (Reiter et al.
2016), stroke (Carvalho 2019; Stanton et al. 2017), epilepsy (Sterman and Egner 2006),
urinary incontinence (Herderschee et al. 2013), and tension-type headache (Bendtsen
et al. 2010). However, although biofeedback training has already been widely used
as a rehabilitation tool, the precise mechanisms and neural bases underlying the self-
learning are not entirely well known. Evidence from studies on neurofeedback (Gunkel-
man and Johnstone 2005; Yucha and Montgomery 2008) has indicated that learning to
self-modulate certain physiological information possibly involves permanent changes in
the central nervous system (CNS) (Sitaram et al. 2017),which can support the application
of this therapeutic approach in different scenarios.

Given the importance of a better understanding of the therapeutic options available
that can help people with disabilities to return to their functional and social activities
as soon as possible, and the increasing and promising use of biofeedback training, this
study reviewed the key aspects of this technique, from its basic concepts and principles
of operation to its application in different clinical contexts, especially in the conditions
of sensorimotor or cognitive deficits.

2 Principles of System Operation

Besides the clinical environment, ergonomic structure, and electronic configura-
tion/arrangements of a biofeedback system, one of themost important parts of the system
consists in the way and choice of signal features selected as inputs of the system to opti-
mize the physiological modulation. Input signals contain the physiological information
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that will be self-modulated. This information needs to be recorded and converted into
digital data to be processed and analyzed in real time and finally provide a feedback to the
user through some sensorymodality fromwhich it is possible to learn to control/modulate
the physiological information in question (Neblett 2016) (Fig. 1).

Fig. 1. Overview of biofeedback. A biofeedback system involves data acquisition from one or
more physiological modalities, the real-time processing of these signals, and feedback, which
is given through some sensory modality. From this cycle, it is possible to learn how to self-
modulate the desired activity through training.A)Examples of different acquisition techniques that
can be used: electroencephalography (EEG) to record large-scale neural activity, biomechanical
parameters (BP) to acquire information about body movements, electrocardiography (ECG) to
record cardiac electrical activity, and electromyography (EMG) to recordmuscle electrical activity.
B) Examples of sensors used in different acquisition techniques, which might be invasive or non-
invasive. C) Real-time data processing, which includes signal filtering, feature extraction, and
decision making to provide feedback. D) Feedback delivery by stimulation of one or more sensory
modalities.

2.1 Inputs

Input signals of a biofeedback system can be directly or indirectly measured from any
physiological activity that reflects the interaction of our body with the environment.
There are many techniques available to provide measurements of physiological activi-
ties in different contexts (Castelnuovo et al. 2016;Ma et al. 2015;Mihara andMiyai 2016;
Moleiro andCid 2001; Rao 2011), such as sensors to estimate biomechanical parameters,
electromyography (EMG), electrocardiography (ECG or EKG), and electroencephalog-
raphy (EEG). Other techniques can also be used, such as functional magnetic resonance
(fMRI), functional near-infrared spectrum (fNIRS), magnetoencephalography (MEG),
etc. However, most of these types of measurements are expensive and not practical for
real-time procedures, which restricts their uses.

Biomechanical Signals. Biomechanical signals are commonly used to measure move-
ments and postural patterns. These patterns can be estimated using several sensors or
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devices, such as motion sensors (inertial sensors, potentiometers, and accelerometers)
(Kent et al. 2015), ground reaction force platforms (Schenck andKesar 2017), or cameras
(Valdés and Van der Loos 2018).

Electronic devices, such as accelerometers and gyroscopes (Kent et al. 2015), which
measure acceleration and angular velocity, respectively, can be found either separately or
in combination, composing a system known as an Inertial Measurement Unit (Morrison
1987). Additionally, pressure and force sensors also make part of the setup to measure
biological signals associated with motion and displacement (Schenck and Kesar 2017).
These sensors typically transduce angular rotation along three axes (pitch, roll, and yaw)
into a time series of electrical potential amplitude, according to the body displacements
in time and space.

Biomechanical signals are used in different protocols due to their intuitive use and
low cost, such as training people with spinal cord injury (SCI) (Seáñez-González et al.
2016) or as part of the treatment of peoplewith low back pain (Kent et al. 2015). Different
studies have also demonstrated efficiency in using reaction force platforms as biofeed-
back systems to improve gait (Schenck and Kesar 2017) or for balance training when
associated with visual feedback and functional electrical stimulation in the elderly (Li
et al. 2018). Camera-based systems are generally used to perform body-tracking, which
is obtained via markers placed on anatomical references on the patient’s body, allowing
a body-dynamic representation in a three-dimensional coordinate system (Amadio et al.
1999). A recent study showed that the use of biofeedback with cameras was efficient in
respiratory training for healthy people (Heerink et al. 2018). Valdés and Van der Loos
2018 also showed that this type of input associated with multimodal feedback may be
interesting to reduce body compensation after stroke (Valdés and Van der Loos 2018).

Electromyography (EMG). Electromyography is a technique that measures bioelec-
trical responses produced bymuscle activity, via depolarization of the muscle membrane
during contraction over time (Basmajian andDe Luca 1985). The technique is performed
by applying electrodes on the surface of the skin using contact electrodes or intramus-
cularly via a needle. The device that performs EMG is the electromyograph and the
reading is called the electromyogram. EMG signals inform the level of activation or
order of muscle recruitment and also can be used to analyze the biomechanics of motion
(Konrad 2005).

This technique pioneered biofeedback training for people to learn how to relax their
muscles (Budzynski and Stoyva 1969). EMGbiofeedback protocols have been applied to
different clinical conditions, such as improvement of upper-limb functionality in patients
with hemiparesis (Armagan et al. 2003), upper-limb training for children with cerebral
palsy (Yoo et al. 2017), and sensory-motor recovery for people after peripheral nervous
surgeries (Sturma et al. 2018). In terms of the use of an electrophysiological signal as an
input to the biofeedback system, EMG is also the technique most found in the clinical
environment.

Electrocardiography(ECG)andHeartRateVariability(HRV). Electrocardiography
measures thevariationofelectric cardiacactivityover time.ECGis recorded throughelec-
trodes placed on the skin surface using bipolar acquisition ormore derivations (Houghton
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and Gray 2008). The recorded signals represent the sum of action potentials in multiple
cardiac muscle cells, which provides information on the propagation of the electric wave
through the cardiac chambers that underlies the heart contraction dynamic (Silverthorn
2010). There are many ECG indexes associated with heart dynamics, however heart rate
(HR) is one of the simplest andmost usedmetrics (Holmet al. 2010; Ivanov et al. 2004). It
essentially reports an average of heartbeats in the right timewindowandhelps to evaluate,
for instance,moments of bradycardia and tachycardia (Houghton andGray 2008).

Another important biological signal is the activity of the autonomic nervous system
(ANS). Inessence, theANSis theprimarymechanismrelated toflight-or-flight responses,
and it is governed by the activity of two paths, the parasympathetic (vagal nervous), and
sympathetic nervous, where they present competitive (but complementary) actions (Gor-
dan et al. 2015). Besides the regulation of physiological functions such as digestion, res-
piratory rate, and pupillary action, one of themost important physiological functionmod-
ulated by the ANS is the HR (Borresen and Lambert 2008). Thus, it is possible to extract
ANSactivity throughacorrelationwithheart rate variability (HRV)byevaluatinghow the
heartbeatintervalsvaryovertimeandtoinferwhichbranchoftheANSismoreactive(Dong
2016).

Studieshaveshownthat theuseofbiofeedbacksystemsthatutilizesHRasinputsignals
can reduceheart arrhythmias aswell as a reduction in the systolic bloodpressurebymodu-
latingtheHR(MoleiroandCid2001).WhilebiofeedbacksystemsusingHRVcanbeuseful
in the treatment of respiratorydiseases, such as asthma (Lehrer et al. 2004), coronaryheart
disease (Nolan et al. 2005), and stress (Shusterman 2005).

There are still many other possible inputs applicable to biofeedback systems, such as
the use of respiratory parameters, ultrasound images (Giggins et al. 2013), and galvanic
skin response (Nagai et al. 2019).Anyphysiological characteristicsmeasurable over time
byabiosensorcan, inprinciple, beused inabiofeedbacksystemandbeproposedaspecific
biofeedbackclinicalprotocoltomodulatesomesignal-featurerelatedtoatargetphysiolog-
icalcondition(Gigginsetal.2013). Inaddition,severalcombinationscanbemadebetween
these techniques, seekingmore robustness, speed, and clinical efficacy.

2.1.1 Central Nervous System Activity

When using neural activity as input information, the biofeedback system is called neuro-
feedback (Gunkelman and Johnstone 2005; Yucha andMontgomery 2008). This unlocks
a great possibility for directly training the brain and its ascending and descending com-
munication pathways under various conditions (Frolov et al. 2017; Hodgson et al. 2014;
Ramos-Murguialday et al. 2013; Shokur et al. 2016). Usually, the training is based on
brain information recorded by EEG, or fMRI and fNIRS. Regardless of the way brain
information is acquired, there is a possibility, through training of the participant, to self-
modulate certain brain activities and bring functional benefits to which this activity is
related.

Electroencephalography (EEG). In neurofeedback, the most used method of acqui-
sition in the research environment and clinical area is EEG (Hohmann et al. 2016). An
EEG essentially records cortical electrical activity changes over time by measuring the
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sum of electrical fields generated by oscillations of post-synaptic potential (Buzsáki et al.
2012).When the recording is performed directly on the cortex surface, sub- or over-dural,
this technique is called electrocorticography (ECoG). An ECoG signal has, in general,
a better resolution and more specificity on the activity over spatial cortex regions (Kaiju
et al. 2017). For non-invasive EEG, the electrodes are positioned on the scalp of the
subject, following an international system of placement (Tatum et al. 2016). In a general
way, the neural activity in the brain is supported by a variety of neuronal oscillations,
characterized by their frequency ranges and anatomical locations, and widely correlated
with cognitive and behavioral states (Buzsáki and Watson 2012). Several studies use
the information from theses oscillations to investigate brain dynamics, synchronicity,
or to establish neurofeedback protocols, wherein the patients are trained to modulate
their brain activity according to an objective and clinical conditions (Orndorff-Plunkett
et al. 2017), such as rehabilitation of people with motor deficits or cognitive arising
from stroke (Cho et al. 2015), SCI (Shokur et al. 2016), or even for cognitive training in
healthy people (Gomez-Pilar et al. 2014), and other conditions such as ADHD (Hodgson
et al. 2014) and post-traumatic stress disorder (PTSD) (Peniston and Kulkosky 1991).

Functional Magnetic Resonance Imaging (fMRI). The fMRI technique allows mea-
suring the intrinsic relaxation time of a material, after the application of a magnetic field,
revealing differences in its composition. The generated image allows exploring anatom-
ical structures of soft tissues with high spatial resolution, which is not possible using
X-ray and tomography (Watanabe et al. 2017). Associated with this signal it is possible
to extract information about differences in blood flow in biological systems, usually
through the technique blood-oxygen-level dependent (BOLD) imaging, which may be
related to metabolic changes in the brain and consequently to neural activity (Logothetis
et al. 2001). Therefore, despite the use of fMRI being far more expensive and complex
than EEG, there are many studies using fMRI in biofeedback protocols for chronic pain
control (DeCharms et al. 2005), training people with stroke (Liew et al. 2016), and mod-
ulation of cognitive functions (Caria et al. 2007; Yoo et al. 2006). The great advantage
of the fMRI technique is its accuracy concerning spatial-temporal parts in the brain. It
means that, if well applied, a neurofeedback protocol using fMRI could, in principle,
modulate a specific signal from a very particular internal brain region (DeCharms 2008).

Functional Near-Infrared Spectroscopy (fNIRS). The fNIRS technique is a method
to assess the activation state of cortical areas in the brain by applying light pulses with a
wavelength near the infrared electromagnetic spectrum on the region of interest (Coyle
et al. 2004). The neural tissue can present different absorption rates according to the bal-
ance of oxygenated and deoxygenated hemoglobin in the local capillaries. It means that
the BOLD technique is frequently used to correlate neural metabolic activity (Richard
et al. 2011). Furthermore, compared to traditional neuroimaging technology, fNIRS is
non-invasive, safe, portable, and has a significantly lower cost (Mihara andMiyai 2016).
One of the first studies with fNIRS in neurofeedback protocols was conducted by Coyle
et al. (2004), where the participants performed a movement of grasping a ball with
their hand or imagined themselves performing this task. From their measurements, it
was possible to observe an increase of oxygen flow in the cerebral area correspond-
ing to that movement (the portion of the motor cortex related to hand control) (Coyle
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et al. 2004). Clinical protocols applying fNIRS started to be explored in the last few
years, such as for better motor control of people with severe hemiparesis after stroke
(Mihara et al. 2013).

For neurofeedback approaches, there are still several other types of techniques and
signals that can be used, such as MEG (Buch et al. 2008) and invasive multielectrodes
(Benabid et al. 2019). Furthermore, it also possible to make different combinations of
these techniques, according to interest and accessibility (Fazli et al. 2012; Keynan et al.
2016). The main limitation to use or integrate some of these techniques is the high cost
of device acquisition and protocol complexity. Therefore, when compared to those, EEG
is still the most used in clinical practice (Gruzelier 2014).

2.2 Features from Input Signals

After selecting the type of signal that will be recorded, the next step is to choose what
features of this signal optimize the target physiology activity and how these features
will be changed to ensure the intended physiological modulation (Anzai 2012; Bishop
2006). Here, we will especially focus on the electrophysiological signals most used in
biofeedback and neurofeedback systems, recorded through EMG, ECG/HRV, and EEG,
and on the image acquisition techniques (fMRI and fNIRS) (Fig. 2).

Electromyography (EMG). The intensity of muscle activity, related to contraction or
relaxation, is very well represented through the amplitude of the EMG signals over time.
Therefore, if the objective is just to detect the level of activation of muscle groups,
to look at the amplitude variation over time is enough. In this case, the most com-
mon features to be calculated and analyzed are total power, signal root mean square
(RMS), maximum/minimum amplitude values, and average/median amplitude values
(that overpass a threshold); all of them calculated along with buffer window (that can
be the whole buffer) (De Luca 2006). Depending on the protocol, sometimes it is nec-
essary to identify more precisely the shape and firing rates of some motor units, which
can be important in cases of some neuromuscular disorders, it is necessary to look after
some spectral signatures of these units and use their features in the classification process
(Reaz et al. 2006).

Electrocardiography (ECG) and Heart Rate Variability (HRV). The signal gener-
ated by the ECG record forms waves and complexes related to electrical and muscular
activity of the heart are known as PQRST complexes. The first approach in these cases
is to detect the peak of one of these complexes and through them calculate the HR and
HRV. Generally, it uses the peak R due to its prominence. Once detected, the peak R,
and the precise time associated with its occurrence, it is possible to calculate both, HR
and HRV. For HR, it is enough to count the number of R peaks in a specific interval of
time (Houghton and Gray 2008).

Through theHRV it is possible to infer the variability associatedwith theHR.HRV is
commonly calculated using a related ECG time series, called tachogram (Clifford 2002),
defined by the temporal distance of each R–R interval. The tachogram is not calculated
with the R amplitude values but with its time stamps. Once the tachogram is in hand,
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Fig. 2. The first step in defining a biofeedback system is to determine which physiological activi-
ties will be trained, and A) which acquisition techniques will be used for recording, such as EEG,
BP, ECG, EMG B) The next step is to understand how this signal changes over time, and then C)
which characteristics of that signal can best represent the physiological modality of interest D)
Relevance of each feature given the choice of a technique. For example, in order to train brain
activity and record it using EEG, the best way to extract information from this signal is to separate
it into different frequency bands, commonly referred to as “brain rhythms”. These rhythms vary
largely depending on where they are registered, and in respect to different behaviors or move-
ment states. Else, if the idea is to train motion control of a body segment or balance, we can use
biomechanical parameters, often using information from the center of mass, center of pressure,
position, velocity, or acceleration. Another possibility is training based on self-modulation of the
autonomic nervous system, which is widely used in protocols involving emotional behavioral
changes by HRV. Finally, as exemplified, we can also train muscle control (to learn to either relax
or contract a particular muscle), and this muscle activity can be easily represented by the amplitude
of the signal over time.

it is possible to extract different features, both in time and frequency domain, that are
used to characterize cardiac and autonomic functions (Hejjel and Roth 2004).

Examples of HRV features in time domain are as follows: standard deviation of
normal-to-normal beats, defined as the standard deviation of RR intervals; standard
deviation of averages normal-to-normal, which corresponds to standard deviation of
slow variabilities; and RMS of the successive differences, which mainly refers to abrupt
variations of HRV (Clifford 2002). HRV features in the frequency domain uses some
spectral technique on the tachogram (usually the parametric technique autoregressive
model since tachograms generally are small time series and techniques based on the
Fourier analysis become unstable). The main HRV signal features in the frequency
domain are power spectrum density of frequency, power of low frequency (LF), high
frequency (HF), and the ratio between them (LF/HF), which are related to autonomic
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balances of the nervous system (Őri et al. 1992). The HF spectrum (0.15 to 0.4 Hz) is
related to parasympathetic or vagal activity and also called the respiratory band since
it corresponds to the HR variations associated with respiratory cycles (Hernando et al.
2016). In addition, despite the LF spectrum (0.05 to 10 Hz) described as being related
to sympathetic activity, this relationship is not completely precise. Currently, several
studies have shown that independently of HF modulation LF power seems to be more
related to baroreflex function than cardiac sympathetic tone (Hayano 2019).

This is one of the most complex signals to be used in a biofeedback approach. The
main problem concerning biofeedback protocols using HRV is the short interval of time
that every biofeedback system imposes to process the signal in real time. It means that
all biofeedback systems have only a small period to extract all informative features to
decode and transduce it to a sensory stimulus.However,workingwith short time intervals
in a HRV from ECG recordings may be insufficient, and one needs to be careful with
this type of protocols (Acharya et al. 2006).

Electroencephalography (EEG). The EEG recordings often investigate the informa-
tion associated with the frequency domain, since it shows the brain presents specific
frequency ranges, called rhythms, associated with specific regions and conditions. By
convention, they are defined as Delta (0.5–4 Hz), Theta (4–8 Hz), Alpha (8–12 Hz), Beta
(12–30 Hz), and Gamma (>30 Hz) (Buzsáki 2009). For spontaneous EEG recordings,
the neural oscillatory activity is better represented by these frequency bands than by
amplitude over time. The most used methods that work on the spectrum of frequency
are mainly based on the calculus of power, coherence, and phase lag of these rhythms
(Vaid et al. 2015).

A widely used brain rhythm in neurofeedback protocols is the sensorimotor rhythm
(SMR). There are some divergences concerning the actual frequency range of oscillation
related to this rhythm (Stern 2005; Pfurtscheller et al. 2006). The literature points out
that this rhythm in humans varies between 9 and 13 Hz (Pfurtscheller et al. 2006), but in
neurofeedback or Brain Computer-Interface (BCI) protocols broader frequency ranges
are normally used, reaching up to 30 Hz (Naros et al. 2016; Pfurtscheller et al. 2006;
Zich et al. 2015).

The SMR rhythm is a result of the interaction between thalamic nuclei and the
sensorimotor cortex. It is characterized by the resting activity of the motor-sensory
thalamocortical pathway. In this way, the power associated with the frequency range
of SMR is higher in resting conditions and lower during an execution, preparation, or
imagination of somemotor act (Sterman andEgner 2006). Such aspectsmake this rhythm
the best choice in neurofeedback protocol or BCI, especially in motor deficit conditions,
in which users are trained to imagine a certain movement and self-modulate this activity
to suppress the power of the SMR (Frolov et al. 2017; Pfurtscheller et al. 2006; Ramos-
Murguialday et al. 2013). Another current possible clinical application is for people with
pharmacoresistant epilepsy. There is evidence of training to self-modulate the power of
the SMR (in this case, learning how to increase it, since they want to reduce motor
activity); there is a change on the excitability threshold of the cortical sensorimotor-
thalamus pathway and, consequently, a reduction on the number of crises (Finley et al.
1975; Sterman 2000; Sterman and Egner 2006; Wyler et al. 1979).
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Motor imagery protocols, typically use two types of stimuli—(i) event-related syn-
chronization (ERS), which is related to an SMR increase in power and present after the
end of movement or imagination, related to inhibitory cortical activity, and (ii) event-
related desynchronization (ERD), which occurs during the imagination of a specific
movement, associated with a decreasing in SMR power (Neuper et al. 2009).

Furthermore, other possibilities for neurofeedback protocols with EEG is to use slow
cortical potentials (SCP) (Mayer et al. 2016; Studer et al. 2014) and directed evoked
potentials (Silvoni et al. 2016). SCP referred as the specific cortical activity of post-
synaptic potentials of large cell assemblies, usually identifiedwith a frequency range less
than 1Hz, also provided by the thalamocortical circuitry (Neske 2016). SCP is essentially
characterized by periods of intense high (up states) and low (down states) levels of
activity, where these fluctuations are the core of a neurofeedback protocol using SCP
(Mattia and Sanchez-Vives 2019; Timofeev 2011). Finally, evoked potentials protocols
generate the type of signals that are more in phase training with the sensory stimulus. In
these protocols, the neural activities observed are yielded due to a synchronized external
stimulus that evokes a specific neural response (Bentley et al. 2016; Güntekin and Başar
2016). The neural response characteristic of an evoked potential protocol has some
specific peaks in the waveform of the signal, which will be used as an input feature in
the neurofeedback system.

Functional Magnetic Resonance Imaging (fMRI) and Functional Near-Infrared
Spectroscopy (fNIRS). Regarding imaging analysis, we highlight the BOLD technique
used in both fMRI and fNIRS (DeCharms et al. 2005; Richard et al. 2011). The differ-
ences in blood oxygenation detected are related to metabolic changes in the brain and
consequently to neural activity (Logothetis et al. 2001). Therefore, the signal analyzed
with these techniques refers to a temporal-scale of the neurophysiological activity slower
than electrophysiological responses, and the main aimed feature, usually analyzed, is
the amplitude variation of the signal over time (Murta et al. 2015). Furthermore, in this
type of activity, it is important to investigate the real BOLD activity from non-BOLD
drifts, which can occur due to respiration artefacts, for example (Evans et al. 2015).

It is worth emphasizing that it is possible to use more than one feature from a
collected signal and integrate features from different physiological activities measures
(Fazli et al. 2012; Keynan et al. 2016). However, it is necessary to pay attention to the
efficacy of that integration regarding the real-time computational processing, as well as
the classification accuracy and their importance to the physiological changes sought by
clinical biofeedback protocols.

3 Real-Time Signal Processing

Once they choose all input signals and their features of interest, it is crucial to determine
which statistical approach will be used to perform the pattern identification and data
classification. This step is correlated with the previous one, in the sense that the extracted
features will have a direct influence on the type of statistical tool required for optimal
pattern recognition and computational cost.
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In a general way, any statistical technique seeks an optimal line able to discriminate
twoormore probability distributions related to a specific feature.Once someperturbation
occurs, it is expected (as an alternative hypothesis) that this alteration will produce
some statistical difference in their probability distributions (Bishop 2006). Therefore,
in a biofeedback protocol, it is expected that some statistical features associated with
the physiological activity recorded will be modulated, and differentiate itself from the
baseline activity, during the target task.

In this way, the chosen features of a signal corresponding to the processed dataset
that will be used to distinguish the observed physiological patterns related to a specific
behavior, intention, or response. This processed dataset constitutes the so-called ‘feature
space’, wherein the patterns are classified (Bishop 2006). From this, it is then selected
a classifier, or some multifactorial statistical method, which can identify, in real time,
the different changes promoted by the task protocol on the physiological signal features
(Van Drongelen 2018). Depending on the protocol signal to record and chosen feature,
it is only necessary to apply a simple comparison between the baseline activity and
the activity during the stimulus exposition. If the signal-feature evaluated overpassed
some predefined threshold, the task is considered accomplished, and a new threshold is
imposed. This procedure is performed until the intended activity level is achieved.

However, some neuro/biofeedback protocols are complex and require more sophis-
ticated techniques to compare different sets of features in real time. The application of a
classifier can be done by using supervised methods, involving a training data set, semi-
supervised methods where part of data is labeled and the other is not, or unsupervised
methods where the dataset has no label, and it classifies via data clustering. The labels
are indicators of the particular state that an event is related to and are used to assess
the precision of a classifier during training by comparing the rate of correct predictions
according to the data label (Bishop 2006). Additionally, the applied mathematical tools
can be based on linear or nonlinear equations to perform class discrimination. All these
techniques are known as machine learning methods that correspond to a branch of arti-
ficial intelligence. Some of the most used and known techniques in this context include
linear and quadratic discriminant analysis, support vector machine, partial least square,
naïve Bayes, network Bayes, tree classifier, and k-means (Anzai 2012).

In summary, the major consideration to be made in respect to the data processing
cycle in biofeedback systems is to promote an efficient autoregulation. All of the steps
have to be performedwithin a physiological time constraint, it is usually referred between
250 ms and 300 ms (Mizuno et al. 2011; Felsinger et al. 1947; Grice et al. 1948), to
guarantee a physiological time of response, allowing the user to interpret the stimulus
happening in real time.

4 Output Signals: Feedback Stimulation

There are several ways to associate a physiological signal to sensory stimulation. The
choice of how a sensory stimulus is presented to a user must consider the clinical con-
dition and the best way to represent the physiological information being trained, that is,
feedback must be contingent (Sitaram et al. 2017). A stimulus can be presented isolated,
independently, or integrated with other stimuli, such as in a video game, for instance
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(Giggins et al. 2013, Caria et al. 2007; Donovan et al. 2016; Shokur et al. 2016; Weber
et al. 2011).

Auditory Stimulus. In the case of auditory feedback, this can be integrated by varying
different parameters such as tone, volume, sound type, and duration. Auditory stimuli
are easy to implement and present a relatively short time of processing in the brain, with
a wide informational bandwidth (Robertson et al. 2009). This type of biofeedback is
mainly used in animal research (Koralek et al. 2012) and has been also proven effective
in human clinical conditions for training of sensorimotor skills, for example (Donovan
et al. 2016). The integration of different sensory modalities seems to elicit a better
perceptual experience, for instance, using the auditory feedback related to a target-based
task increases the accuracy of visual perception (Boyer et al. 2016).

Visual Stimuli. Regarding visual stimuli, the biofeedback protocols can be performed
with different types of contents, such as images, videos, and virtual games, which can be
displayed on a computer, cell phone, tablet screen, or in a virtual or augmented reality
environment. Important care must be taken not to present excessive visual stimulation,
since it can work as a distractor instead of a modulation guide of the physiological target
function (Sterman and Egner 2006). In general, for visual stimulation, it is presented
to the user as a specific visual target, as a point or line, that must be reached using a
cursor represented by another point or line (Wolpaw et al. 1991; Zapała et al. 2017).
It is common to use bars to represent the effort of the user (Caria et al. 2007; Weber
et al. 2011), for instance, more concentrated or contracted muscles will increase the size
of the bar. The hot-cold color intensity of an image is also often used to represent the
modulation of brain activity training in a neurofeedback protocol (Hwang et al. 2009).
Additionally, texts and photos can also be used as a reward when the task is completed
(Zapała et al. 2017).

In recent years, with the popularization of virtual reality (VR) devices, there has been
an increase in the number of studies applying VR as a tool in biofeedback protocols,
allowing for immersive andmore realistic perception (Riener et al. 2006). The number of
resources and degree of freedom that a VR device can provide in a biofeedback protocol
is much bigger than by using a regular two-dimensional screen. For example, it can
provide new possibilities of therapeutic games and reproduce environments related to
real daily activities in an interactive and pleasant task (Bunderson 2014). Many previous
studies have already used VR devices in biofeedback protocols, for instance, people
with amputation to train the movement control of a limb or virtual prosthesis (Blana
et al. 2016; Bunderson 2014), people with SCI who see and control an avatar walking
on different texture floors (Shokur et al. 2016), or to improve the dynamic balance of
stroke patients (Kim et al. 2016).

Augmented reality (AR) environments also follow the same track as VR, however
its concept and technology are slightly more recent. The principle behind its functioning
is to use image processing as a tool to extract and identify properties of the natural
(and real) surrounding environment and use that information to superimpose interactive
virtual objects (Azuma 1993). The use of augmented reality in biofeedback protocols has
already been tested by people with neurological diseases such as Parkinson’s and stroke
(Kim et al. 2016) or for gait training of people with orthopedic diseases (Karatsidis et al.
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2018). This technology shows high potential as a personal gadget; it does not limit the
user’s perception of the real world, but it adds new features into it.

Tactile Stimuli. The term haptic, often used when talking about tactile sensa-
tion/perception, refers to a more encompassing concept, which involves the relationship
between the sensations produced internally by the body itself and its interaction with
the environment, including modalities such as pressure, vibration, or even temperature
as well as kinematic and kinesthetic information that is involved in the perception of
body movements and acting forces (Burton 1993; West and Gibson 1969). In this way,
haptic feedback amplifies the concept of tactile stimulation by extending the emulation
of sensations considering other modalities around sensorial information.

This type of stimulus also has been well explored and can be provided as a touch
feeling using vibratory stimuli applied directly to the skin or by electrical stimulation
(Farina and Aszmann 2014; Hellman et al. 2015). Additionally, biofeedback systems
with vibrotactile stimulation have already been used under some conditions, such as
balance training in people with Parkinson’s disease (Lee et al. 2018) and gait training
in people after stroke (Ma et al. 2017), with associated feedback in a VR environment
with vibrotactile stimuli to represent different floor textures and gait phases in patients
with SCI (Shokur et al. 2016).

Considering the variety of sensory stimuli that can be used as feedback, there is a
great possibility of integrating them in different applications to provide the most relevant
information to the user, and consequently, optimize the treatment and improve outcomes.

5 Biofeedback Training Protocols

Training protocols must be constructed according to the clinical condition to be modu-
lated, considering the advantages and limitations of the system itself.However, regardless
of the profile of people who will perform the training with a biofeedback protocol, there
is a basic premise that is critical - operant conditioning (Sterman and Egner 2006).

Associative learning can be divided into two approaches, classical and operant con-
ditioning. The classical conditioning occurs through the association between an envi-
ronmental stimulus and a natural stimulus. The association between them results in a
learned and automatic/involuntary response. The classical example was given by Ivan
P. Pavlov where every time he presented meat to a dog, he played a bell. After some
trials, the dog associated the meat with the bell sound in such a way that if the bell
was played, the dog started to salivate (Pavlov 1927). In operant conditioning, there is
an association between behavior and a consequence of this behavior. Certain behavior
can be reinforced positively (addition of a favorable event) or negatively (removal of
unfavorable events), favoring a specific behavior. Alternatively, the same behavior can
be punished positively (presentation of an unfavorable event) or negatively (removal of a
favorable event), disfavoring the repetition of this behavior. A good example is given by
Burrhus F. Skinner, recognized as the father of operant conditioning. He taught a dove to
turn itself around by applying the reward/punishment principles of operant conditioning
(Skinner 1938).
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In this way, the biofeedback protocol should be planned such that the participant
gradually succeeds in the proposed task. Hence, at first, a minimum of control over
the trained physiological activity is considered satisfactory and reinforcement is given
to the participant, for the criterion to consider the task completed to be progressively
increased. In general, contingent feedback itself already works as a form of reinforce-
ment, however motivational stimuli can also be used as a reward. Although, the latency
between response and contingent feedback/reward must be immediate; ideally approxi-
mately less than 250/300 ms of time is required for learning development (Mizuno et al.
2011;Felsinger et al. 1947; Grice et al. 1948). In terms of neurophysiology, the base
nucleus circuitry seems to play an important role in the development of reinforcement
learning. Additionally, there is much evidence indicating that the activity of dopamin-
ergic neurons in the substantia nigra and cholinergic interneurons in the striatum are
involved in the processing of this information (Kandel et al. 2014) (Fig. 3).

6 Underlying Mechanisms

Although it is unclear which are the exact biological mechanisms that support learning
provided by the use of biofeedback protocols, some studies have sought to understand
how biofeedback mediated by self-modulation can lead to specific physiological, neu-
ral, and behavioral changes (Bouton et al. 2016; Hochberg et al. 2006). In a review,
Sitaram et al. (2017) proposed some theories and models to explain learning from the
use of neurofeedback and its underlying mechanisms: operant or instrumental learning,
motor learning, dual-process theory, awareness theory, global workspace theory, and
skill learning (Sitaram et al. 2017). From this perspective, any learning achieved using a
neurofeedback protocol seems to involve associative learning. Behaviorally, associative
learning is mainly based on classical and operant conditioning (Kandel et al. 2014).
Neurobiologically, the main known mechanism associated with any learning–memory
process is long-term potentiation (LTP) (Cooke and Bear 2012). Essentially, LTP is the
persistent strengthening of synapses in neuronal networks that exhibit specific activity
patterns. Additionally, this synaptic strengthening between neurons reinforces signal
transmission between neurons. This relationship is at the core of the principles formu-
lated by Donald Hebb in 1949, to explain how the brain favored some neural connections
over others. He raised the hypothesis that if the repeated activity in a presynaptic neuron
leads to the firing of the postsynaptic neuron, then a lasting modification will occur in
the synaptic structure, therefore the subsequent activity of this presynaptic neuron has
a high probability of exciting the postsynaptic neuron, strengthening their connectivity
(Hebb 1949). This occurs always when the activity of the two neurons exhibit a causal
relationship with each other (Garraway et al. 2001; Rossignol and Frigon 2011).

From these evidences, the learning process promoted using self-modulating systems,
such as biofeedback, seems to involve not only behavior but mainly structural neuronal
reorganization (Sitaram et al. 2017). Nevertheless, current discussions are claiming that
associative learning can also arise either from structural changes in neural connections
and/or from new patterns of functional connectivity (Balasubramanian et al. 2017).
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Fig. 3. Training protocol based on operant conditioning. The protocol is designed based on the
rules of operant conditioning, which include progressive increase in difficulty (to increase speci-
ficity of response), contingent feedback on the proposed task (feedback which the user can relate
with the recorded physiological activity), and a reward (which works as reinforcement mecha-
nism). A) An example of a physiological activity, normalized between 0 and 1 for simplicity,
comprising different target thresholds (0.25, 0.50, and 0.75). Here the protocol starts with a lower
threshold, which is increased as the participant reaches the proposed goals, in order to increase
the task difficulty. B) Examples of difficulty progression for a given task. Here we assume, for
simplicity, that these time series represent an RMS amplitude of an EMG signal over time (i.e.,
training muscle contraction with increasing difficulty). In this protocol, the goal is to keep the
lamp “on” for the most part of the trial, by maintaining the muscle activity above the threshold.
On the right side of each graph, we see a representation of the equivalent time that the user spent
on each state (on/off), and its success on the task. As we see, in the first case, a minimum level of
contraction was found to be satisfactory, that is, the threshold that the patient needs to reach is very
low and, as soon as he surpasses this target, the lamp lights up as a reinforcement. In the second
and third cases, given that the patient reached the proposed goals with the previous threshold, the
next level of difficulty is presented progressively.

7 Clinical Applicability of Biofeedback

Given this contextualization about the system, protocol, and mechanisms underlying the
learning process involved in a biofeedback approach, as can be seen, there are innu-
merable possibilities and health conditions in which biofeedback training can be used
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and bring benefits, therefore this review choose to emphasize applicability in specific
sensorimotor and cognitive conditions.

Studies show that ADHD is one of the most prevailing cognitive disorders among
children (Willcutt 2012). They are normally diagnosed around the age of 7 years. It
can be characterized as a spectrum disorder since it contains different levels of severity:
inattentive, hyperactive/impulsive, and combined (Lofthouse et al. 2012). The conven-
tional treatment is based on psychostimulant medications that in some cases can cause
side effects, like weight loss, insomnia, and nausea (Rabipour and Raz 2012). For those
who do not adapt themselves to pharmaco-treatment, the adoption of neurofeedback
training can work as a complementary therapy (Hodgson et al. 2014). Most children
with ADHD present abnormal EEG, exhibiting a great amount of slow-wave activity
and a diminished amount of fast-wave activity mainly in the frontal lobe. This common
pattern across ADHD patients has been used as the basis for neurofeedback indication
as a viable intervention for this condition (Vernon et al. 2004) since these patterns can
be self-modulated. Due to this characterization, most of the protocols favor EEG-brain
theta wave inhibition and the enhancement of low beta activity (Lofthouse et al. 2012).
Findings indicate that after neurofeedback training, patients present better performance
on intelligence tests and control of attention (Heinrich et al. 2007).

Post-traumatic stress disorder is another disorder that has been treated using neu-
rofeedback protocols. It can be described as a disorder that appears when a strong and
particular event causes overactivation fight-flight responses that persist, even after the
danger is ended (American Psychiatric Association). According to the National Insti-
tute of Mental Health, the symptoms include re-experiencing the traumatic event (e.g.,
rethinking over and over) or avoidance of situations that remind the trauma, with an
increase of physical distress in both situations (National Institute of Mental Health). The
current PTSD treatments include the conjugation of psychotherapy and medication and
recent findings indicate that neurofeedback could be effective as well (Reiter et al. 2016).
The neurofeedback protocol used to treat PTSD is known as alpha–theta brainwave neu-
rofeedback therapy (BWT), which basically focuses on reinforcement of those waves.
Peniston and Kulkosky (1991) conducted a study on Vietnam-war veterans diagnosed
with PTSD and found that training with BWT decreases the suffering/illness scores on
clinical scales (e.g., depression, hysteria, and paranoia) compared to traditional drug
treatment.

For patients with SCI or stroke, the goal of neuro/biofeedback rehabilitation is to
promote the self-modulation of physiological signals that support neural network reorga-
nizations (Seáñez-González et al. 2016). In this way, muscle signals (recorded by EMG)
can be used to estimate joint angles and intensity of contraction in conjunction with neu-
ral signals (recorded by EEG), and the integration of these signals potentially can be used
to control an exoskeleton or external device. This protocol was tested in healthy subjects
and a person with cervical SCI (with visual feedback) and showed to be promising for
the use in the rehabilitation and the daily life of people with very limited motor function
(Kawase et al. 2017). VR and AR platforms are also an alternative to create immersive,
interactive, and motivational protocols, increasing the involvement of patients with the
therapy and optimizing the rehabilitation procedure (Carelli et al. 2017). In a study with
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SCI patients, the subjects used their upper body movements (captured by inertial sen-
sors), not affected by the lesion, to control a virtual cursor and simultaneously visual
feedback was provided. They were able to remap their residual motor skills into efficient
control patterns, learning to use their own body to control the cursor and a wheelchair
in a virtual environment. After training, significant improvements in their motor and
also in their brain structure performance was observed (Seáñez-González et al. 2016).
Recent evidence also demonstrates that patients with SCI may have a realistic illusion
of walking on different surfaces (sand, paved streets, and grass), as well as experiencing
virtual leg movements during different stages of gait and still assimilate virtual members
with part of their own body. This was made through a protocol in which an exoskele-
ton was controlled by EEG signals associated with visual feedback conjugated with the
vibro-tactile stimulus, applied on the patient’s arms, to represent the different textures
of the floor and the phases of the gait cycle (Shokur et al. 2016).

In a research conducted with people with chronic stroke a clinical trial conducted by
Frolov et al. (2017), where patients trained to self-modulate their EEG SMR activities
by imagining a hand movement with visual and kinesthetic feedback, demonstrated
positive effects on functionality of the upper limbs (Frolov et al. 2017). A systematic
review by Stanton et al. (2017), pointed out that the use of biofeedback as a rehabilitation
component in peoplewith stroke history is increasing, particularly to improve lower limb
performances. These authors concluded that biofeedback training is more effective for
this application compared to conventional therapy, but that the long-term effects are not
yet clear (Stanton et al. 2017).

With respect to the use of biofeedback in rehabilitation for amputee people, the main
goal is to improve motor control and provide somatosensory feedbacks that replace
the natural information lost, after amputation. This can be performed through a proper
activation of the preserved sensory systems. The feedback, in this case, can be invasive,
applied directly to the peripheral nerves associated to sensory-motor paths (Farina and
Aszmann 2014), directly to the brain (Tabot et al. 2015), or non-invasively through tactile
stimuli on the skin (Hellman et al. 2015). The study of myoelectric prostheses (EMG-
controlled), providing also sensory feedback to the user, has been very promising in the
last years (Peerdeman et al. 2011) since this type of biofeedback can improve prosthesis
use and facilitate embodiment (Antfolk et al. 2013). A study demonstrated that it is
possible to improve force control in a predictive and accurate way, in which EMG
signals were used to control an upper limb prosthesis, with a corresponding feedback of
the range movement and grip strength (both provided by visual feedback on a screen)
(Dosen et al. 2015; Schweisfurth et al. 2016). Štrbac et al. (2017) proposed a protocol by
which peoplewith upper limb amputation could control prosthesis fromEMGactivity. In
this prosthesis, force sensors provided information about the force exerted and allowed
the delivery of visual (on computer screen) and electrotactile feedback during the task
of grasping an object.

8 Final Considerations

This narrative review gets together different knowledge about biofeedback: system
components, from the recording of physiological activity, extraction of characteristics,
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real-time processing and the feedback provided, to discuss the bases of system con-
struction, training protocol designs and possible underlying mechanisms to learning
self-modulation. Finally, we indicate promising clinical applications in cognitive and
sensorimotor rehabilitation.

In the current scenario, despite the numerous studies in this area, there is still a
wide spectrum to be explored regarding the applicability of training with self-regulation
systems. Most studies are still basic, as case reports, requiring more studies with ran-
domized controlled clinical trials to assess and identify real clinical benefits, in specific
populations.

In addition, some questions still need to be better understood. For instance, for a given
condition, is there an optimal window for applying this training?What is the “dose”, how
many sessions are needed, and for how long? Are functional and neurophysiological
outcomes immediate and/or permanent? Are the underlying mechanisms the same in
different application protocols and contexts?

However, even with many questions to be answered, the use of the training with
biofeedback systems is increasingly present in clinical practice, becoming averyvaluable
and promising therapeutic tool for health professionals, which can help countless people
with different dysfunctions or disabilities, improving their functionality and quality of
life.
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Abstract. Stroke is a clinical condition that can cause a long-term disability due
to hemiparesis. Experimental interventions such as Brain-Computer Interfaces
(BCI) could be part of rehabilitation strategies. However, recovery mechanisms
are not fully understood. For this reason, and with the purpose of understand-
ing how changes in cortical activity after upper limb rehabilitation interventions
are associated with clinical recovery, this study compares the patterns of cortical
activation across a BCI-based intervention during the motor intention (MI) and
feedback (passive movement) intervals of the trials performed by stroke patients.
Moreover, it evaluates the correlation between subjects’ cortical activity with the
clinical outcome. The cortical activity of 10 patients showed activations in regions
of the somatosensory cortex during both MI and passive movement, with signifi-
cant differences across the intervention in alpha and beta activations. Particularly,
compensatory mechanisms involving the unaffected hemisphere could be hypoth-
esized. Therefore, MI and passive movement’s neural correlates are promising
biomarkers of stroke recovery that deserve further attention.

Keywords: Neurorehabilitation · Brain-computer interfaces ·
Electroencephalography

1 Introduction

In the United States, each year approximately 795,000 people experience a new or
recurrent stroke, this clinical condition is a leading cause of severe long-term disability
[1]. Motor impairment of the upper limb is one of the most disabling and prevalent
consequences, occurring in 73%–88% first time stroke survivors and in 55%-75% of
chronic stroke patients [2]. The need for the development of more effective therapies for
this motor impairment becomes evident once it is taken into consideration that after six
months of the stroke onset, only 35% of patients recover enough hand motor function
to be able to use it in activities of the daily living [3].

Therapies that increase stroke patients’ neuroplasticity have shown potential for
improving functionality and motor control of the affected limbs. Specifically, inter-
ventions based on robotic assistive devices are a promising emergent field that has
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demonstrated the capability to target the underlying physiology of neuroplasticity [3].
Brain-computer interfaces (BCI) are also a potential tool for neurorehabilitation since
they allow efferent central nervous system communication and can act as a decoder of
user intentions for the control of assistive robotic devices [4]. BCI are comprised by
several elements, namely signal acquisition, signal preprocessing, feature extraction,
feature selection, classification, and feedback (external devices) [4].

It is important to consider that the implementation of BCI for motor rehabilitation
after stroke have important challenges,mainly because cortical activation of brain regions
in the sensorimotor cortex during motor intention (MI) of the affected hand is reduced,
especially in those patients with cortical or mixed (both cortical and subcortical) lesions
[5, 6]. Even so, patients with paralysis of the upper limb can still elicit a power increase
or decrease in alpha and beta frequencies during MI, this phenomenon is described
as event related desynchronization or synchronization (ERD/ERS) [7]. It is therefore
reasonable to hypothesize that implementing these paradigms is a practical way to target
neuroplasticity with the purpose of improving the rates of recovery in patients with upper
limb motor impairment.

On the other hand, brain rhythms could provide biomarkers for recovery of upper
limbmotor function in stroke [8, 9]. However, electroencephalography (EEG) is not usu-
ally measured during patients’ conventional treatment. Therefore, BCI-based therapies
provide the opportunity to explore EEG-based biomarkers of upper limb motor function
in stroke. Since in healthy subjects, passive movement elicits cortical activations similar
to those of actual movement [10], it would also be reasonable to hypothesize that a pos-
sible biomarker in stroke patients would be the similarity between cortical activations
during passive movement provided by a BCI controlled robotic device with activations
during MI.

The purpose of this study is to analyze the cortical activations of stroke patients
during MI tasks with the paralyzed hand and passive movement, across an interven-
tion comprised by a BCI therapy plus conventional therapy. As well as exploring their
application as recovery markers by evaluating their correlation with the change in motor
function across these rehabilitation interventions measured with a clinical scale.

2 Materials and Methods

2.1 Patients

This study includes data from 10 stroke patients recruited in the National Institute of
Rehabilitation “Luis Guillermo Ibarra Ibarra”. All patients read and signed an informed
consent approved by the Ethics Committee, and the study itself was approved by the
Institute’s Research Committee. Patients were between 2 and 10 months since onset
of ischemic stroke [11], as confirmed through neuroimaging studies by a neurologist.
Before stroke, patients were right-handed and had no history of neurological lesions
or significant alterations in attention and memory according to the neuropsychological
test NEUROPSI [12]. All patients presented adequate understanding of instructions and
capability to give informed consent. Clinical assessment and physiological measure-
ments were also performed as part of a larger longitudinal study. In this work, only the
Fugl-Meyer Assessment for Upper Extremity (FMA-UE) is presented.
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2.2 Intervention

Each patient underwent an intervention comprised by BCI-based therapy plus conven-
tional therapy, provided sequentially, so that each patient would receive both therapies
in a randomized order. Conventional therapy was performed by the same rehabilitation
therapist for all patients. It consisted of activities to improve the affected upper limb’s
fine and gross motor skills, sensitivity function, muscle strength, motor coordination,
as well as neurofacilitation techniques. Conventional and BCI therapy sessions had a
duration of 30 to 40 min and lasted 4 weeks with 3 sessions per week.

For each BCI session, patients were instructed to sit in a comfortable armchair in a
sound-attenuated room, with the same illumination conditions and at the same time of
the day, with a computer monitor placed approximately at 1.5m in front of them. Each
session consisted of 3 runs of 20 trials. The trials’ time structure is based on the Graz
paradigm [13]. They began with an initial 3 s resting period in which patients observed
a white cross on the computer screen. The patient was notified that the task was about
to begin by a loud beeping sound at the 2 s mark. After the initial resting period, at
the 3 s mark, the MI period of the task began. An arrow pointing to the direction of
the patient’s paralyzed hand appeared on the screen and disappeared after 1.5 s, after
which the screen turned black for 3.5 s, during this period patients were instructed to
continuously attempt a spherical grasp on a baseball located in their hand. Afterwards,
at the 8 s after the trial’s onset, the screen turned grey for 4 s, during this period discrete
feedback was provided by means of a robotic hand orthosis. To finalize the trial and to
prevent habituation, the screen turned blue for a period of 3 to 5 s, during which patients
could blink, move, and rest. A depiction of the trials’ time structure is shown in Fig. 1A.

Fig. 1. A)Trial structure of each session of BCI-based therapy. B)General stages and components
of the BCI system.
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2.3 BCI System

The acquisition stage of the BCI system consisted of a g.USBamp biosignal amplifier
from g.tec and an electrode cap with 11 g.LADYbird active electrodes placed in the F3,
F4, Fz, P3, P4, Pz, C3, C4, Cz, T3 and T4 positions of the international 10–20 system,
placing the ground electrode in the AFz position and the reference electrode in the right
earlobe. The EEG signal was acquired with 24 bits of resolution and a sampling rate of
256 Hz.

The processing stage of the BCI consisted of offline and online phases. In the offline
phase, data from each trial were filtered in 6 frequency bands (8–12, 12–16, 16–20,
20–24, 24–28 and 28–32 Hz) using 30th order FIR filters and a notch filter. Spatial filters
were then computed by applying the Common Spatial Patterns (CSP) algorithm to these
filtered signals, which resulted in 66 features (11 channels times 6 frequency bands).
Particle SwarmOptimization (PSO) was consequently used to select the minimum num-
ber of features that allowed the best classification between the rest (REST) and the MI
condition, using Linear Discriminant Analysis (LDA). The output of this processing
stage were the coefficients of CSP and LDA, and the subject-specific frequency bands
selected using PSO. EEG data from the last session of therapy was used for the offline
phase.

The online phase of the BCI processing stage was comprised by the classification of
1-s windows of each trial (Fig. 1A) as either REST or MI. For this classification to be
performed, EEG data was filtered in the frequency bands that were selected in the offline
stage. Then it was spatial filtered with the offline computed CSP coefficients, and lastly
it was classified with LDA. If two of the three processed 1 sMIwindows (4.5–7.5 s of the
trial time structure) were correctly classified asMI, then a Bluetooth command activated
the robotic orthosis providing passive movement feedback to patients at the 8th s of the
trial. A detailed description of the BCI can be found in the work of Cantillo-Negrete
et al. [14]. A visual depiction for the overall BCI system is found in Fig. 1B.

2.4 EEG Signal Acquisition

The main variable in the present work consisted of the frequency features extracted from
the EEG data, which was obtained in three time periods from each patient. The first
acquisition period, referred to as baseline period, took place before the interventions.
The baseline period was followed by the first intervention period, after which data
was analyzed, called post-therapy1. This would be followed by the remaining therapy
modality and the second post-therapy acquisition period after this second intervention
(post-therapy2). The order in which each patient received conventional and BCI system-
based therapy modalities was randomized.

For baseline measurements, data was obtained in a similar manner as described in
Sect. 2.2, however, feedback was not recorded in baseline trials (there was no activation
of the robotic orthosis, since it was an introductory session), so that only rest and MI
time intervals were acquired. For both the first and second post-therapy periods, trials
were comprised by rest, MI, and feedback time intervals.
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2.5 EEG Signal Processing

Each patient’s raw EEG data was preprocessed using two notch filters at 60 Hz and
120 Hz, a low-pass filter at 32 Hz, a high-pass filter at 4 Hz, as well as a common average
reference (CAR) spatial filter to reduce reference placement effects. Preprocessed and
segmented signals were visually inspected and the trials with excessive noise where
manually eliminated. Time-frequency features were obtained for each trial and EEG
channel using Morlet wavelet transform [15]. ERD/ERS was computed for each trial by
subtracting averaged power from the 3 s time interval that comprised the rest condition
from the trial’s power during MI and dividing it by the rest condition’s averaged power
and finally, multiplying the result by 100. For the patients with right hemisphere lesions,
right hemisphere electrodes were interchanged with left hemisphere electrodes, so that
all patients’ EEG channels would represent information from the same affected and
unaffected hemisphere. Therefore, the affected hemisphere’s (AH) cortical activity is
shown over the left hemisphere’s channels and unaffected hemisphere’s (UH) cortical
activity is shown over the right channels. Grand averaged brain topographic activity was
computed for each session in two frequency bands: alpha from 8 to 13 Hz and beta from
14 to 30 Hz.

2.6 Statistical Analysis

ERD/ERS data were analyzed with a non-parametric cluster-based permutation test in
the time-frequency domain to determine statistical significance while addressing the
multiple comparison problem [16]. The averaged ERD/ERS values from baseline, post-
therapy1, and post-therapy2 were compared, as well as the MI (4–7 s) and feedback
(8–11 s) intervals from post-therapy1 and post-therapy2. Comparisons were performed
separately for alpha and beta frequency bands.

To analyze the relation betweenERD/ERSdata and the clinical outcomes, correlation
was determined between the clinical recovery (as defined by the change in the FMA-UE
score between the end and the onset of the whole intervention) with ERD/ERS values
in each therapy period as well as in both frequency bands.

In each comparison between ERD/ERS data, t-tests were conducted for each time-
frequency data point, while spearman tests were performed to determine the correlation
between ERD/ERS data and clinical recovery. Clusters were then constructed from each
time-frequency significant t-value map (p < 0.05). Afterwards all the positive or nega-
tive t-values within the clusters were summed to obtain cluster-level t-scores. Clusters
were then compared to a permutation distribution constructed from the largest cluster
t-scores obtained using 1,000 permutations of data points between each comparison.
Cluster-level p-values were obtained by calculating a probability density function on
the values obtained during the iterations. The cluster-level p-values with a magnitude
lower than 0.05 were considered significant. All computations were performed using the
MATLAB®2019 software fromMathWorks and theFieldtrip toolboxversion20200406.
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3 Results

3.1 Patients’ Clinical Assessment

For the 10 patients, clinical and demographical information was as follows: half of the
patients were female, the youngest patient was 43 years old and the oldest was 85, mean
age was 59.9 years (SD ± 12.8); laterality of hemisphere lesion was equally distributed
with half of the patients’ lesions localized in the left hemisphere and for the others in
the right; the mean of the clinical recovery was 5.4 scale’s points (SD ± 8.4). A total
of 8 patients had a lesion limited to the subcortical area, one in the cortical and one had
a lesion pertaining both cortical and subcortical areas. Eight of the patients had a high
impairment of the upper limb motor function according to the scores of the FMA-UE.

3.2 ERD/ERS Brain Topographic Maps

Grand averaged ERD/ERS topographical maps are shown in Fig. 2, separated by fre-
quency band (alpha and beta) and time interval (MI and feedback). For the baseline
and the post-therapy1, the central UH and AH showed a desynchronization tendency, as
well as synchronization in sagittal electrodes Cz and Pz in the alpha band, during MI. In
post-therapy1 patients also elicited desynchronization in central regions in the AH and
UH during feedback. In post-therapy 2 central regions of the UH and frontal regions
of both hemispheres showed desynchronization, in both alpha and beta, during MI and
feedback.

3.3 ERD/ERS Comparisons

Results of the statistical comparisons are shown in the plots marked by letters in Fig. 2.
Significant differences were observed between the feedback of post-therapy1 and post-
therapy2, in central sagittal, frontal, and temporal regions of the UH, in alpha (Fig. 2A).
Significant differences were also observed between MI and feedback in post-therapy1
with more pronounced ERD elicited during MI in the frontal AH and central UH in beta
(Fig. 2B).

3.4 Comparison Between Clinical Recovery and ERD/ERS

The clinical recovery for all 10 patients between the beginning and end of interventions
is shown in Fig. 3A. The correlation between the clinical recovery and the ERD/ERS is
shown in Fig. 3B. Significant correlations were only detected between the post-therapy2
ERD/ERS and the clinical recovery during passive movement, specifically in the sagittal
electrodes, as well as the central and posterior electrodes of the unaffected hemisphere
in the beta frequency band.



Movement-Related Electroencephalography 221

Fig. 2. Grand averaged ERD/ERS topographic maps during MI (4–7 s) and feedback (8–11 s)
intervals for each evaluation period and cluster analysis of ERD/ERS results. Affected hemi-
spheres are shown left on each topographical map and unaffected hemispheres are shown right. A.
Differences between post-therapy1 and post-therapy2 in the feedback interval (8–11 s) in the alpha
frequency band. B. Differences between the MI (4–7 s) and feedback (8–11 s) intervals in post-
therapy1 in the beta frequency band. Differences with p ≤ 0.05 are marked with (x), comparisons
with p ≤ 0.01 are marked with (*).

Fig. 3. Clinical recovery in all patients and its correlation with the grand-averaged ERD/ERS
map corresponding to the alpha frequency band (8–13 Hz) and feedback period (8–11 s).

4 Discussion

Before the intervention most patients had a severe upper limb motor impairment as
measured with the FMA-UE. After the intervention 8 patients presented an increase in
FMA-UE scores, implying that neuroplasticity processes occurred during this period.
Therefore, these neuroplasticity processes could have been reflected in cortical activa-
tion changes. In alpha, bilateral cortical activations were observed duringMI and robotic
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feedback, at baseline and at post-therapy1, implying that patients engaged their AH and
UH for performing motor tasks. In post-therapy2 cortical activations differed from those
observed at baseline and post-therapy1, probably due to neuroplasticity effects of the
intervention across a longer period of rehabilitation. These bilateral activations have been
described as a compensatory mechanism in stroke patients with a significantly affected
motor function [17]. In beta, activations were more pronounced in the UH across the
intervention. Furthermore, a significant correlation between the unaffected hemisphere
and clinical recovery was also found. Although the role of the UH is still unclear in
stroke, it has been hypothesized that BCI therapies that increase the engagement of
the UH during MI could improve motor function by enhancing compensatory recovery
mechanisms [18]. Also important, is that recovery was associated with cortical acti-
vations elicited during passive hand movement, and not during MI. Most studies have
focused in analyzing MI cortical activity, but the literature regarding the role of passive
movement with relation to motor recovery is more limited. While it has been proposed
that passive movement shows smaller ERD as a marker of cognitive engagement than
the execution of an active motor task [19], it has also been found that active and pas-
sive movement show no difference in classification performance of motor imagery [20].
This highlights the potential of analyzing neuroplasticity processes during motor-related
tasks to describe recovery biomarkers.

Significant cortical activation differences between MI and feedback (passive move-
ment) were only observed in post-therapy1, but not in post-therapy2. This could be
explained by the neuroplasticity driven by the rehabilitation intervention. Since it allowed
patients to elicit cortical activations duringMI, that weremore similar to the ones elicited
during passive movement, only after patients had received both interventions. It has been
reported that in healthy subjects, passive movement resembles actual executed move-
ment [10]. Therefore, it can be hypothesized that if patients’ cortical activations in beta
during MI are similar to those observed during passive movement, then cortical acti-
vations might be closer to those of a healthy subject, thus, being a possible marker of
recovery. Specially, since these activations were only observed in the beta frequency
band, because there is an association of beta with propagation of information between
the primary motor cortex, and its efferent structures and the muscles [21].

Significant activation differences were observed during passive movement provided
by the robotic orthosis (BCI feedback) between post-therapy2 and post-therapy1. These
activations were in frontal and temporal regions of the AH, and in the central sagittal
area. This could imply a higher involvement of the AH and interhemispheric coupling
during motor-related information processing. Therefore, a higher recruitment of pre-
served neuronal tissue in the AH, coupled to an increase in callosal pathway activation
during passive movement, could also be a marker of stroke recovery. This is important
since most studies have reported EEG biomarkers during MI [8, 9], but not during pas-
sive movement, showing a promising route for increasing the understanding of brain
recovery mechanisms in stroke.

It is also important to acknowledge the inherent limitations of this study. As with any
EEG protocol, there is a limited spatial resolution, which is a factor for the low regional
specificity of the previously discussed findings. The averaging between subjects can
induce certain bias in the qualitative analysis of results. However, the non-parametric
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cluster permutation test allowed to assess quantitative differences in cortical activations,
without a significant bias due to the distribution of data. The sample of 10 patients
could have restricted the potential biomarkers identified in this study, to a population of
severely affected stroke patients. However, cortical activations during MI and passive
movement elicited by a robotic device, could provide valuable insights for neuroplasticity
mechanisms during BCI and other experimental interventions.
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Abstract. Parkinson’s disease (PD) is the second most prevalent neurodegener-
ative disorder. Currently, PD represents a complex “circuitopathy” involving the
cortex, thalamus, basal ganglia, and associated locomotor networks. Freezing of
gait (FOG) is a typical symptom affecting around 50% of advanced PD patients
with a massive impact on their mobility, safety, and life quality. The unpredictable
occurrence of this symptom outlines a problem of significant relevance in PD
treatment. The understanding of the electrophysiological phenomena underlying
cortical and subcortical structures should prompt treatment solutions. Despite the
phasic nature of FOG, it is reasonable to argue that FOG patients may present spe-
cific dysfunctional motor circuit oscillations, as mentioned above. Subthalamic
nucleus (STN) beta (8–35 Hz) local field potential (LFP) power correlates with
rigidity and bradykinesia. A few works have analyzed its spectral characteristics
under FOG and non-FOG (n-FOG) groups. This work presents a spectral analy-
sis of the STN-LFP during rest (lying) concerning 37 recordings during surgery
for deep brain stimulation (DBS) electrode implantation from 23 PD patients: 14
of whom presented with FOG (FOG group), and nine had not the clinical phe-
nomenon (n-FOG group). FOG patients showed higher STN-LFP alpha (8–15Hz)
activitywhen compared to n-FOGpatients. This featuremarginally correlatedwith
the FOG clinical score. We hypothesized that exaggerated alpha activity might be
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linked to a deficit in attention and executive circuit underpinning the FOG mani-
festation. These findings may contribute to newer electrophysiological biomark-
ers for the FOG phenomenon and, therefore, new hypotheses and interventions
concerning this disabling motor symptom.

Keywords: Parkinson’s disease · Subthalamic nucleus · Freezing of gait

1 Introduction

Parkinson’s disease (PD) is an idiopathic neurodegenerative disorder that progressively
deteriorates the patient’s autonomy and quality of life. It is a complex “circuitopathy”
associated with dysfunctional neuronal oscillations within the corticobasal–thalamo-
cortical (CBGTC) loop. The disease affects 1–3% of the worldwide population older
than 60 years old [1]. PD patients disclose non-motor (sleep, sensory, cognitive, and
autonomic) and motor symptoms such as tremor, rigidity, bradykinesia, and gait distur-
bances [1]. Freezing of gait is a specific and disabling motor symptom, which typically
causes falls andmobility restrictions in the advanced PD population. Conceptually, FOG
is [2] “a brief, episodic absence or marked reduction of forwarding progression of the
feet despite the intention to walk.” Due to its functional complexity, sudden and unpre-
dictable occurrence, the electrophysiological mechanisms underlying FOG are still far
from being elucidated, making it challenging to define an appropriate treatment [3, 4].

Despite its phasic nature, it is reasonable to assume that FOG relies on a dysfunctional
CBGTC loop and on locomotor networks alterations that increase the probability of its
acute condition, which implies gait freezing. Indeed, the connection among the central
brain regions involved in locomotion control is altered in FOGpatients compared to those
without FOG and healthy subjects [3, 5]. Some results show that the communication
between the subthalamic nucleus and supplementary motor area (SMA) is impaired [5]
in FOG patients compared to the n-FOG ones. The worse integrative information among
the circuits that perform motor planning, posture adjustments, cognitive decision, and
visual perception underlies FOG episodes.

Subthalamic DBS has been established as an alternative strategy to alleviate PD
motor symptoms [6]. Undoubtedly, STN-DBS effectively relieves PD patients’ motor
complaints, mainly tremor, rigidity, and bradykinesia. Nevertheless, DBS efficacy con-
cerning FOG is far from a consensus [3, 4], which has motivated the quest for more
precise electrophysiological markers and anatomical targets for gait disturbances [7].
Recently, exaggerated synchrony of alpha/beta rhythms obtained from basal ganglia
local field potentials (LFP) was described as a candidate biomarker of FOG [8–10].
However, the STN-LFP spectral composition remains unclear in such patients during
the rest, i.e., in the initial condition for the upcoming demand of selective movement
or attention [11, 12]. The spectral features during the transition during rest, particularly
within the period between motor preparation and the type of motor execution was yet
observed for cortical structures. Notably, in the FoG phenotype, disconnection between
attentional and lower limb movement preparation is attributed to a lack of event-related
desynchronization in beta band sustained by a dysfunction in communication between
sensorimotor areas and STN [13]. During upper limb freezing, elevated beta bandpower
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was computed in transition tapping period to freezing event compared to regular fin-
ger tapping [14]. Indeed, the understanding of the altered electrophysiological rhythms
during anticipatory movement may contribute to unravel new biomarkers that either
discriminate the FOG phenotypes or even predict the FOG event.

In the present work, we present a detailed spectral comparison concerning 37 STN-
LFP recordings (24 FOG vs. 13 n-FOG) from 23 patients submitted toDBS neurosurgery
during lying.We observed an increased alpha rhythm in FOGpatients. These results may
contribute to the proposal of new electrophysiological FOG biomarkers and, therefore,
new target variables for DBS.

2 Materials and Methods

2.1 Patients

Either UPDRS or MDS-UPDRS evaluated motor and non-motor scores during practi-
cal OFF and ON-medication states one month before surgery by a movement disorders
neurologist (MR). The study included twenty-nine patients diagnosed with moderate
to advanced idiopathic PD with severe motor fluctuations or dyskinesias. The patients
were classified in FOG and n-FOG groups according to their performance on the FOG
questionnaire [14]. The FOG-Questionnaire evaluated the presence of daily FOG. The
presence of clinical FOG was defined if the score was at least ≥ 3 on question 3 or 4,
or if the examiner observed freezing of gait during motor evaluation. The n-FOG did
not present FOG episodes during the assessment of gait initiating, stepping, and turn-
ing and scored below three on either question on the FOG questionnaire. Six patients
were excluded due to excessive anxiety during surgery and poor quality of intraoper-
ative recordings, resulting in 23 patients: 14 FOG and nine n-FOG. The local ethics
committee approved this study, and all patients gave prior written consent (CAAE:
62418316.9.2004.0066 registered in “Plataforma Brasil”: http://conselho.saude.gov.br/
plataforma-brasil-conep?view=default).

2.2 Surgery

The surgical procedure was previously reported [16]. We performed a digital fusion
of stereotactic tomography (CT) with non-stereotactic 1.5T magnetic resonance imag-
ing (MRI) to target the dorsolateral STN. Microelectrode recordings (MER) acquired
the STN-LFP through a set of three parallel 1 M� impedance tungsten microelec-
trodes (microTargeting® electrodes, FHC, Greenville, MA, USA). Action potentials
were amplified (1000 -fold), filtered (0.3–10 kHz, notch filtered at 60 Hz), and digitally
stored (Lead Point - Medtronic, Minneapolis, MN, USA). The sensorimotor sector of
STNwas identified by an increase in the background noise amplitude besides the irregu-
lar activity of neurons. The ventral extremity of quadripolar electrodes was placed at the
ventral border of the STN defined byMER (3389 model - Medtronic, Minneapolis, MN,
USA). Before electrodes implanting, the STN-LFP signals were acquired and sampled
at 24 kHz, bandpass filtered (1–200 Hz), and recorded at lying for 60 s. Fourteen patients
received bilateral implanting (10 FOG and four n-FOG), while nine patients received

http://conselho.saude.gov.br/plataforma-brasil-conep?view=default
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unilateral implanting (4 FOG and five n-FOG), providing 37 STN-LFP recordings (24
FOG and 13 n-FOG). All patients were in practical off-condition during the surgery, as
they did not receive levodopa treatment for 12 h at least.

2.3 Signal Processing

STN-LFP signals were exported and post-processed in Matlab 2018b. Signals (in μV)
were downsampled to 1 kHz (decimation method), followed by notch filtering at 60 Hz
and at their harmonics, bandpass filtering (6th order Butterworth filter, 2–200 Hz). Each
observationwas z-scored normalized, leading to adimensional (ad.) time-series. This last
procedure preserves the spectral shape and the power distribution along the frequency
spectrum, defining a more robust framework for inter signal comparisons [13]. The
frequency bandwidth (i.e., 2–200 Hz) included the main LFP sub-bands: theta (4–8 Hz),
alpha (8–15 Hz), low beta (15–25 Hz), high beta (25– 35 Hz), beta (15–35 Hz) and
gamma (35–200 Hz). Results concerning beta and beta division in low and high bands
were shown here, given the possible functional role of such division.

The spectral composition of FOGandn-FOGpatientswere performed throughWelch
periodogram considering power spectral density (PSD) estimation [13]. Sixty seconds
of the z-normalized STN-LFP for each patient were Hamming windowed (4 s) with 50%
of overlap followed by a square of the magnitude estimates of the discrete Fourier trans-
form whereas averaging considering all windows, which implies a spectral resolution of
0.25 Hz. The STN-LFP bandpower (in ad.2) was obtained by evaluating the area under
the PSD curve, considering each of the LFP rhythms aforementioned.

2.4 Statistical Analysis

STN-LFP bandpower was presented as mean and standard deviation (SD). D’Agostino’s
test confirmed normal distribution.Comparison ofmean bandpower betweenFOGand n-
FOGgroupswas computedbyunpaired t student in case of normality.Otherwise, the non-
parametric Mann-Whitney test was carried out. The correlation coefficients (ρ) between
bandpower and FOG scores were evaluated considering the whole population without
phenotypic categorization. Pearson’s correlation was performed for normal distribution,
and Spearman’s coefficient was used otherwise.

3 Results

Figure 1 illustrates the Welch periodograms of STN-LFP in logarithmic scale (dB/Hz).
PSD for FOG and n-FOG groups are shown under rest. Visual inspection may clarify
that PSD amplitude is differed between groups within the alpha-low beta band.

Table 1 and Figure 2 summarize the quantitative analysis for group comparison
(FOG in red and n-FOG in blue) concerning classical STN-LFP bandpower rhythms for
the phenotypes. No significant differences were found for: theta (p = 0.283; unpaired
t student test - Fig 2A); beta (p = 0.503; unpaired t student test - Fig 2C); low beta (p
= 0.673; unpaired t student test - Fig 2D), high beta (p = 0.477; Mann Whitney test -
Fig 2E) and gamma (p = 0.714; unpaired t student test - Fig 2F). Alpha bandpower was
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Fig. 1. Power spectral density (PSD - dB/Hz) for FoG and n-FOG groups under rest conditions.
Visual inspection suggests that PSD is higher in the FOG group in the alpha and low beta band
(8–15 Hz). Data are expressed as mean ± SD.

Table 1. Mean bandpower (area under the PSD curve) for FOG and n-FOG phenotypes within
a specific range of bands, including the theta (4–8 Hz), alpha (8–15 Hz), low beta (15–25 Hz),
high beta (25–35 Hz), beta (15–35 Hz) and gamma (35–200 Hz). The values of the bandpower
are presented as mean ± standard deviation (SD) for 37 recordings in 24 FOG and 13 n-FOG
phenotypes.

FOG (N = 24) n-FOG (N = 13)

Theta 0.164 ± 0.039 0.188 ± 0.071

Alpha 0.331 ± 0.087 0.248 ± 0.089

Low beta 0.238 ± 0.059 0.249 ± 0.087

High beta 0.085 ± 0.042 0.103 ± 0.066

Beta 0.319 ± 0.078 0.347 ± 0.135

Gamma 0.069 ± 0.031 0.073 ± 0.040

significantly different between phenotypes (p = 0.011; unpaired t student test; Fig 2B),
being increased for FOG patients.

Finally, we assessed correlations between STN-LFP bandpower and fog score
(Fig. 3). It was found negative, though not significant, correlation of theta (ρ = −
0.051; p = 0.983), high beta (ρ = −0.265; p = 0.286), beta (ρ = −0.078; p = 0.756)
and gamma (ρ = −0.280; p = 0.259) with fog score. Low beta was weakly positively
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Fig. 2. Mean bandpower for STN-LFP bands as theta, alpha, low beta, high beta, beta, and gamma
for FOG and n-FOG phenotypes under rest. *p < 0.05.

correlated with FOG score (ρ = 0.098; p = 0.697). In contrast, alpha was positively
correlated with such symptom (ρ = 0.315; p = 0.202).
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Fig. 3. (A) Correlation between fog score and STN-LFP bandpower as the theta (θ), alpha (α),
low beta (βl), high beta (βh), beta (β) and gamma (γ). (B) Correlation between alpha bandpower
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4 Discussion

The “circuitopathy” underlying the FOG is still a matter of intense debate [3, 4]. It
is unclear the electrophysiological correlates underlying this debilitating symptom in
PD. Efforts to support the prediction of early kinematic abnormalities preceding the
FOG event have emerged, pointing to the requirement for a better understanding of the
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underlying neurophysiological phenomenon. Herein, we observed exaggerated alpha
oscillations at resting state in FOG patients compared to those without FOG.

Previously, Syrkin-Nikolau et al. [10] showed increased alpha activity in patients
who presented FOG during walking and FOG episodes. Additionally, alpha bandpower
in STN-LFP has been associated with attention and executive domains in frontal corti-
cal and premotor areas [17]. In terms of executive disfunction, PD patients with FOG
present conflict-resolution deficit, fail to prevent hasty decisions to move under unfa-
miliar environment, and, subsequently, a higher probability of triggering FOG [3, 4]. An
electroencephalography-based study in PD patients [12] showed increased alpha oscil-
lations and gamma amplitude cross-talking regarding the attention circuit. This crosstalk
contributes to a functional discordance between top-down (voluntary and goal-directed
allocation of attention to perform movement) and bottom-up (a circuit breaker when
stimulus-driven attracts attention), affording the anti-kinetic activity. Although the work
did not categorize the patients into FOG and n-FOG phenotypes, the study provided a
possible mechanistic hypothesis for the phenomenon.

Another critical hallmark concerns the role of beta activity. Admittedly, beta rhythm
suppression associates with the facilitation of continuous movement sequences [18].
Nevertheless, we did not find any significant differences across FOG and n-FOG patients
groups concerning this rhythm or associated sub-bands. Some previous studies reported
different results concerning beta bandpower in PD according to the presence of FOG.
For instance, both [8] and [9] reported increased bandpower for the low and high beta
band during walking, respectively. In this case, the movement condition may play a
critical role in justifying the discrepancy from our results.

Finally, our results provide evidence that despite the phasic nature of the FOG phe-
nomenon, there is a functional difference between FOG and n-FOG PD patients at rest
condition in the CBGTC circuit, at the STN level, associated with increased LFP alpha
power. This increased alpha rhythmmaybe related to dysfunctional behavior and the syn-
chronism with attentional/higher-order cognitive networks. It may outline an essential
marker for pharmacological or electrical intervention, which requires careful attention.
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Abstract. Discriminating between different motor imagery tasks within
the same limb is challenging because of the proximity of their spatial
representations on the motor cortex. Overcoming this challenge would
largely increase the number of control dimensions and pave the way for
more practical brain-computer interfaces (BCIs). This paper explores
how hand dominance affects classification performance when decoding
different motor imagery tasks completed with the same hand. This aspect
has, to the best of our knowledge, not been presented in the literature
before. The performance was also evaluated to see if acceptable accura-
cies for real-life applications could be reached without handcrafted fea-
tures. EEG signals were collected from nine subjects performing the same
set of imagery grasping tasks with both dominant and non-dominant
hand. The signals were analyzed using traditional state-of-the-art meth-
ods, such as filterbank common spatial patterns (FBCSP) and Tan-
gent Space (TS), in addition to well-validated convolutional neural net-
works designed for limited data. Automatic channel selection according
to a Riemannian geometry criterion before classification improved dis-
crimination. Variation in performance when using dominant versus non-
dominant hand was found for all the subjects. To establish whether these
differences are statistically significant, or to identify trends, more data
is required. Five out of nine subjects achieved accuracies above 70% for
classification within the same hand without using tailored features.

Keywords: BCI · EEG · Motor imagery · Machine learning

1 Introduction

A brain-computer interface (BCI) is a system that translates brain activity into
commands for an interactive application. Many application areas can be revo-
lutionized, such as control of assistive technologies for severely motor-impaired
users, rehabilitation for stroke patients, gaming devices, and adaptive human-
computer interfaces reacting to the user’s mental state. Brain activity is often
captured using electroencephalography (EEG), and there is a growing interest
in the commercialization of EEG products for BCI applications. Several new
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electrode headsets designed for speed, ease of use, comfort, and mobility in real-
world environments have entered the market in the last few years.

The various control signals that can be employed in a BCI system are divided
into different paradigms. Motor imagery (MI) signals are generated when imag-
ining a motor task. Research has confirmed that imagining a movement activates
the same area in the brain as when physically generating the movement [23]. This
study will be limited to EEG-based BCIs following the motor imagery paradigm.
Promising results have been obtained for distinguishing between the MI tasks
of body parts with separated spatial representations on the motor cortex. The
number of commands that can be decoded corresponds to the number of MI
tasks that the BCI system can distinguish. The ability to discriminate between
finer motor tasks with close-by cortical representations would vastly increase
the number of available commands and hence the functionality of such a BCI.
This paper aims to serve as a stepping stone towards increasing the number of
available commands.

There are several challenges to overcome in the development of more practical
BCIs. EEG signals are noisy and non-stationary, and the data is highly complex.
Also, the statistical distribution of MI data is highly variable across subjects,
runs, and sessions. Therefore a calibration process with hand-engineered feature
extraction techniques has traditionally been necessary to achieve acceptable per-
formances by the classifier [18]. Emerging deep learning techniques have, how-
ever, shown great promise in tackling these challenges. These techniques do not
rely on hand-engineered features and can merge feature extraction, selection, and
classification. Sometimes they require no preprocessing and can potentially be
used to build subject-independent systems with no calibration time, when deal-
ing with highly complex data. The literature shows that convolutional neural
networks (CNNs) have been the most popular choice, but advantages compared
to traditional EEG processing approaches remain unverified [26].

An MI EEG dataset was collected for this study. The main objective was to
determine whether finer motor tasks within the same hand are easier to classify
when imagined with the dominant hand compared to the non-dominant one. A
secondary goal was to investigate whether such finer motor tasks on a single limb
could reach acceptable performance criteria to pass as additional commands in
a practical BCI. There is a consensus in the field that the required accuracy
level for real-world application is around 70% [6,13,16]. Current state-of-the-
art algorithms in conventional machine learning were explored and compared
to novel, promising EEG-tailored convolutional neural networks. Different data
augmentation- and feature selection techniques were also experimented with.

2 Materials and Methods

In a traditional MI EEG-based system, signal processing is carried out by the
following steps. First, raw EEG data is collected and usually preprocessed to
some degree to remove noise or artifacts. Then features are extracted, and, in
some systems, the most salient features are selected before classification. Finally,
the classifier attempts to decode the motor imagery task performed by the user.
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2.1 Data Acquisition

Both the literature [25,30] and the available datasets online reveal that the vast
majority of the existing MI EEG-based BCI systems have focused on differen-
tiating between left hand, right hand, feet, and tongue. These tasks have been
shown to produce significant and discriminative changes in the EEG signals rela-
tive to background EEG [11]. The classification of tasks like these has been widely
documented, yielding good accuracy performances. The task of discriminating
the motor imagery of different movements within the same limb, however, has
proven challenging [10,21]. The challenge arises because these motor tasks acti-
vate regions that have very proximate representations on the motor cortex area
of the brain, all on the same hemisphere. To date, few studies have addressed this
problem. The studies that have [9,10,17,32], however, show promising results,
demonstrating the possibility of utilizing EEG signals to decode single-limb MI
tasks. Nevertheless, in these studies, the motor imagery task was conducted on
one side only. The effect of hand dominance was not considered, which is the
focus of this study.

The work of D. Zapala et al. [33], has evaluated the effect of handedness
on one simple left-hand/right-hand motor imagery task. Differences in perfor-
mance between dominant and non-dominant hands for subjects with the same
handedness is not discussed in Zapala’s work. The results of the study show
that lateralization of the sensorimotor rhythm (SMR) during a motor imagery
task is different for right and left-handed subjects. Those who were left-handed
presented lower accuracy compared to the right-handed subjects in a single BCI
session. The SMR suppression in the alpha band (8–13 Hz) was weaker during
mental simulation of left-hand movements. Consequently, the authors suggest
that the individual differences in hand dominance should be considered in the
user’s training to improve BCI control. In another study by C. Marques-Chin
et al. [20], the main objective was to identify specific hand movements from
electroencephalographic activity. The effect of hand dominance was discussed,
and four participants performed an experiment using both their dominant and
non-dominant hands. When comparing the results, the authors found no signif-
icant difference in the average classification accuracy. The research was limited
to motor execution, and additional recording devices such as an optical sensor
and a sensor glove were included.

In our study, a custom dataset was created to explore the effect of hand dom-
inance when decoding tasks within the same hand, where participants imagined
different grasps, using both dominant and non-dominant hand. Grasp types are
divided into two main categories: precision and power. In a power grasp, all fin-
gers and palms are activated. In a precision grasp, only the tip of the thumb and
opposing finger(s) are used. To ensure that the collected MI data was informa-
tive and high-quality, the experimental setup followed the principal guidelines
provided by H. Cho et al. [8]. Nine right-handed, non-impaired subjects, aged
between 25 and 60 participated in the EEG experiment. Five of the subjects
were female and four were male. None of them had any previous experience with
BCIs. Before the experiment began, the subjects were instructed to imagine
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the kinesthetic, not the visual experience, during the motor imagery period. As
reported in the work of C. Stinear et al. [31], kinesthetic MI modulates more
corticomotor excitability than visual MI does.

The cue-based protocol consisted of four different motor imagery/executory
tasks, namely the imagination/execution of a left-hand cylindrical grasp (class
1), left-hand pinch grasp (class 2), right-hand cylindrical grasp (class 3), and
right-hand pinch grasp (class 4). Each session comprised of four motor imagery
runs. One run consisted of 40 trials (10 for each of the four possible classes) in
a pseudorandom order, yielding a total of 160 trials per session. Two additional
runs of motor execution (ME) were also collected in each session to be used in
an experiment combining MI and ME data. Since motor imagery is more tiring
than execution, a combination of the two could potentially increase the amount
of useful data that can be collected each session.

Throughout the experiments, the subjects were seated comfortably in an
armchair in front of a computer screen, see Fig. 1. Each trial lasted eight seconds.
A fixation cross appeared on the screen at the beginning of a trial (t = 0 s). After
three seconds, a visual cue in the form of an image (corresponding to one of the
four classes) appeared and stayed on the screen for two seconds, followed by
a blank screen for three consecutive seconds. This cue prompted the subjects
to perform the corresponding motor imagery/execution task. The subjects were
asked to carry out the task until the fixation cross reappeared from the screen
at t = 8 s. The protocol is illustrated in Fig. 2. After each run, the participants
were asked to rest while seated to avoid fatigue.

Fig. 1. Experimental setup.

The EEG data was recorded with the BioSemi ActiveTwo system, sampled at
1024 Hz Hz. The code for visual stimuli and trigger point collection was written in



Effect of Hand Dominance When Decoding Motor Imagery Grasping Tasks 237

Fig. 2. Illustration of tasks and experimental protocol of a single trial.

Matlab, using the Psychophysics Toolbox extensions [7]. A 64-channel montage
was used, based on the international 10–20 system.

2.2 Data Processing

The raw EEG-data was preprocessed and analyzed using MNE-Python [12]. To
provide a realistic picture of performance, minimal preprocessing was applied
on all subjects, and there was no tailoring for specific subjects. First, potential
power line noise 50 Hz (Europe) was removed with notch filtering. Then a high-
pass filter with a cutoff frequency 2 Hz was applied to the data to remove baseline
drift.

Before feature extraction or classification, the raw data was divided into
3D arrays consisting of time-locked trials, called epochs. The epochs were then
bandpass filtered to select the band(s) defined by the algorithm that was used
before being downsampled to 128, in accordance with the MNE software’s best
practice [12]. Bad epochs were automatically rejected by defining a threshold of
800e-6V for peak-to-peak amplitude and flat signal detection.

The choice of trial segment was [0.5–2.5] seconds post cue, which is a window
that is widely used in literature [14,19,24,27]. Before any channel or feature
selection was applied, each trial was shaped with a size of (64, 256), i.e., 64
channels, and 256 samples in a two-second window with a sampling frequency of
128. Preliminary analysis of the data revealed that the motor imagery induced
activity repression was clearly most prominent in this time segment, further
supporting this choice of window. Using epochs that start 0.5 s after cue onset
also avoids classifying responses evoked by the visual cue.

The data was scaled and normalized to zero mean and unit variance using
the function z-score. By using this function, the convergence time was reduced.
The built-in function ’Scaler’ in MNE was used, which scales each channel using
mean and standard deviation computed across all of its time points and epochs.
Due to scaling sensitivity in deep learning, the data was multiplied with 1e6.
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New data examples can be artificially generated to reduce overfitting and
allow the use of more complex deep learning models. This technique is called
data augmentation and can lead to better generalization abilities and increased
stability and accuracy. Two approaches were tested in this study, sliding win-
dow augmentations and reuse of downsampled data. Two different overlaps were
used for the sliding window: 0.1 and 0.5 s. With a 0.1 s overlap, one trial was
expanded to five highly correlated trials formed by the moving windows of [0.3–
2.3], [0.4–2.4], [0.5–2.5], [0.6–2.6] and [0.7–2.7]. An overlap of 0.5 s, gave the
following segments: [0.5–2.5], [1.0–2.0], [1.5–3.5], [2.0–4.0] and [2.5–4.5]. The lat-
ter segments were less correlated than the first ones and utilized the full trial.
The size of the data set was increased by five times with both overlaps. When
reusing downsampled data, the data could be augmented eight times. The orig-
inal sampling frequency was 1024 Hz Hz, and the data was downsampled by a
factor of 8 128 Hz.

2.3 Feature Extraction, Selection, and Classification

Riemannian geometry classifiers (RGCs) and filter bank common spatial pat-
terns (FCSPs) are considered the standard for several BCI problems, including
motor imagery [18]. When evaluating the performance of novel deep learning
networks, FCSPs are the algorithms to compare to. Deep learning methods are
currently lagging in performance for BCI, given the limited available training
data. It is assumed that a considerable amount of data is required for EEG
signals, due to their high dimensionality. Shallow networks do, however, show
promise. The methods that were used in this study are presented in the following
subsections.

Channel Selection. Both manual selection and automatic selection of chan-
nels were employed. All eight neighboring electrodes of both C3 and C4 were
selected in the manual selection, including C3 and C4. These channels are located
on the sensory-motor cortex, where distinctive activity can be expected when
performing/imagining different hand movements.

In addition, an automatic channel selection was made based on a Rieman-
nian geometry criterion. For each class, a centroid is estimated, and the channel
selection is based on the maximization of the distance between centroids. This
is done by a backward elimination, where the electrode that carries the less
distance is removed from the subset at each iteration [3].

Filter Bank Common Spatial Patterns. The Common Spatial Patterns
(CSP) algorithm is considered a standard tool in the repertoire of oscillatory
activity-based BCIs. It has won multiple competitions for decoding EEG, such as
BCI competition IV and datasets 2a and 2b. Simply put, CSP finds spatial filters
where the variance of the filtered signal is maximal for one class and minimal
for the other. Maximizing this difference between the classes leads to optimized
discriminant band-power features. However, CSP also has some limitations, as it
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is not robust to noise and non-stationarity and is prone to overfitting when the
amount of training data is small. To make CSP more stable and robust, a variant
called Filter Bank CSP (FBCSP) was introduced [1,2]. In this method, the EEG
signals are first filtered in multiple frequency bands using a filter bank. After
filtering, the CSP algorithm is used on each of the bands to optimize the spatial
filters. Here both spatial and spectral information is exploited, using band power
features from relevant frequency bands.

The implementation of FBCSP followed the description in V. J. Lawhern
et al. [14]. First, the EEG signal was bandpass filtered into nine non-overlapping
filter banks with a step size 4 Hz, starting 4 Hz. Hence the following banks were
created: 4–8 Hz, 8–12 Hz, 12–16 Hz, 16–20 Hz, 20–24 Hz, 24–28 Hz, 28–32 Hz,
32–36 Hz, and 36–40 Hz. Second, four CSP filters were trained with a one-versus-
rest strategy, using Ledoit wolf regularization for each filter bank. This gives a
feature vector with a total of 36 features, four CSP filters times nine filter banks,
for each trial. Third, an elastic-net logistic regression classifier was trained, with
a penalty α = 0.95. Finally, the trained classifier was applied to the test set
through cross-validation.

Tangent Space Projection. Tangent Space followed by Logistic Regression
(TSLR) is a Riemannian geometry classifier. The same preprocessing as for
the other methods was applied, except the bandpass filtering 4 Hz 30 Hz. Then
covariance matrices were computed and mapped into the Riemannian manifold
using the pyRiemann software [4,5]. Finally, the matrices were projected onto
the tangent space before LR classification.

Convolutional Neural Networks. Three well-validated convolutional neural
networks were implemented; EEGNet [24], DeepConvNet [28] and ShallowCon-
vNet [28]. Specifically, the EEGNet-8,2 version was used, where 8 and 2 denote
the number of temporal and spatial filters to be learned, respectively. The tem-
poral kernel length was set to 32 samples to account for the data being high-pass
filtered 4 Hz. The implemented model was fit using the Adam optimizer, with
default parameters, minimizing the categorical cross-entropy loss function. The
drop-out rate was set to 0.5 due to the limited amount of training data. The max-
imum number of training iterations (epochs) was set to 500, and early stopping
was enabled, saving the model weights, which produced the lowest validation set
loss. This is a compact CNN architecture intended for EEG-based BCIs, with
the aim of being applicable across several different BCI paradigms, working well
with limited data, and producing neurophysiologically interpretable features.

The DeepConvNet architecture is inspired by successful computer vision
architectures, aiming to create a model that can extract a wide range of fea-
tures, not restricted to specific feature types. Finally, the ShallowConv network
is inspired by the FBCSP pipeline, specifically tailored to decode band power
features. The transformations performed by FBCSP are similar to the transfor-
mations of the ShallowConvNet.
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2.4 Experiments

First, data from BCI competition IV 2a was classified with all the mentioned
classifiers, and these results were compared to those of V. J. Lawhern et al. [14]
to verify that the algorithms were implemented correctly. The hyperparameters
and preprocessing methods were kept the same, and the results were in line with
the compared study.

When investigating the effect of hand-dominance, the right-hand (dominant)
grasps were separated from the left-hand (non-dominant) grasps during the
experiments, making each of them a binary classification problem. The num-
ber of class samples per subject was thereby reduced from 160 (4 classes × 10
trials × 4 runs) to 80 (2 classes × 10 trials × 4 runs). The case where all left-hand
precision and power grasps are isolated will be referred to as the LH-LH case
(non-dominant). Similarly, the case where all right-hand precision and power
grasps are isolated will be referred to as the RH-RH case (dominant).

The following experiments were conducted for both cases, using all the five
models - FBCSP, TSLR, EEGNet, ShallowConvNet, and DeepConvNet.

1. Motor imagery data for all subjects, cross-validated on every run. This will
be referred to as the baseline experiment.

2. Sliding window augmented motor imagery data for all subjects, cross-
validated on every run.

3. Motor imagery data augmented by reusing downsampled data for all subjects,
cross-validated on every run.

4. Motor imagery and executory data for all subjects, cross-validated on every
run. The number of class samples per subject increased from 80 to 120 since
two additional runs were added.

5. Manual channel selection before feature extraction or classification.
6. Riemannian automatic channel selection algorithm before feature extraction

or classification.

Inter- or intra-subject classification has an impact on the performance. Mod-
els trained on the data of a single subject (intra-subject) have less variability to
account for and often lead to better performances. However, the data available
for such models is limited. With multiple subjects included (inter-subject), the
model sees more data. This study was limited to intra-subject classification.

The validation procedure can also impact the performance. Using different
subjects for training and testing may lead to lower performance but applies to
real-life scenarios. In the experiments of this study, Kfold cross-validation was
used, where the folds comprised of the various runs of the given subject. Conse-
quently, with four runs per subject, the number of folds was four. When motor
execution and imagery were combined, the number of folds was six, reflecting
the total number of runs. The random state was kept the same for all exper-
iments to ensure a proper comparison. For evaluation, one fold was set aside
and not included in the training. Performance may be overrated if measures are
estimated through cross-validation on training data [18].
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The evaluation metric of choice was accuracy, the most widely used evaluation
criteria in BCI research. The classes should be balanced when using this metric,
meaning there should be the same number of samples for each class, as is the
case in this study. It is also important to note that the accuracy of a random
classifier is already 100% divided by the number of classes. For example, if there
are two classes, there is a 50% chance of correct classification, given balanced
classes [29].
The software and hardware used for these experiments were:

– Programming language: Python3
– Signal processing library: MNE-python 0.23.0.
– Traditional baselines: MNE-python 0.23.0 and scikit-learn 0.24.
– Deep learning library: Keras and TensorFlow 2.
– Hardware: Nvidia RTX3090 GPU.

3 Results and Discussion

In this section the results of all relevant experiments are summarized. The accu-
racies of the LH-LH and RH-RH classification problems averaged across all folds
and subjects are summarized in Tables 1 and 2, respectively. For simplicity, only
the best performing augmentation technique has been included. This technique
was sliding window augmentation with an overlap of 0.1s, providing a five times
increase in the amount of data. Only motor imagery data was used when exper-
imenting with augmentation and channel selection.

Table 1. LH-LH case (non-dominant hand): accuracies averaged across all subjects
and all folds. Best performing experiment marked in bold for each model.

Experiment FBCSP TSLR EEGNet ShallowConvNet DeepConvNet

Motor imagery

data only
54.17 56.04 53.85 54.48 49.69

Motor imagery +

Motor executory
53.86 55.54 55.39 55.33 53.65

Sliding window

augmentation
52.48 55.25 54.12 54.60 50.19

Manual channel

selection (18 chns)
53.44 49.69 53.65 52.60 50.42

Riemann channel

selection (16 chns)
59.27 60.52 53.02 54.69 52.60

Riemann channel

selection (8 chns)
61.34 61.81 55.00 57.40 52.40
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Table 2. RH-RH case (dominant hand): accuracies averaged across all subjects and
all folds. Best performing experiment marked in bold for each model.

Experiment FBCSP TSLR EEGNet ShallowConvNet DeepConvNet

Motor imagery

data only
53.33 52.50 53.12 53.85 51.56

Motor imagery +

Motor executory
57.59 57.45 54.48 56.25 49.34

Sliding window

augmentation
53.63 53.98 53.67 54.02 50.71

Manual channel

selection (18 chns)
52.50 53.75 53.65 55.31 52.19

Riemann channel

selection (16 chns)
60.83 61.35 55.94 57.19 51.46

Riemann channel

selection (8 chns)
63.88 65.14 57.40 57.40 53.33

In the baseline experiment, where only motor imagery data is included, most
models yielded an average accuracy close to chance. TSLR performed best in the
LH-LH case (non-dominant), with a 56.04% accuracy score. This score is 3.54%
points better than what was obtained with the same model for the RH-RH case
(dominant). Interestingly, adding motor executory data increases performance
up to 4.95% points for the conventional methods in the RH-RH case, surpassing
LH-LH. The LH-LH case was unaffected by additional motor executory data.
The increase in data also slightly enhances the performance of all the neural
networks except DeepConvNet in the RH-RH case. A drawback of including
executory data is that it can be challenging for motor-impaired people. However,
from an inter-subject perspective, the potential data increase that follows a
combination of MI and ME is an appealing aspect to explore further. Sliding
window augmentation did not improve performance for any of the models, and
neither did manual channel selection.

The average accuracies across subjects for almost all the experiments are, in
general, very close to chance. The exceptions are the Riemann channel selection
experiments, which increase the performance by 12.64% points for the best per-
forming model, compared to the baseline experiment (TSLR, RH-RH case). In
this case, the number of channels is reduced from 64 to 8 before being fed to
the classifier, thereby reducing dimensionality. Because of the promising results
of Riemann channel selection performance, especially with eight channels, this
experiment will be further reviewed by analyzing the performance of the indi-
vidual subjects. The results of the Riemann channel selections are presented in
Tables 3 and 4.

Riemann geometry and FBCSP outperform all convolutional neural networks
for most subjects. There is high variability in performance among the partici-
pants for all models. Three subjects (4, 5, and 7) reached the 70% threshold with
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Table 3. LH-LH case (non-dominant hand), with Riemann channel selection, 8 chan-
nels: accuracies of individual subjects averaged over all folds. Scores above 70% marked
in bold.

Subj. FBCSP TSLR EEGNet ShallowConvNet DeepConvNet

1 48.75 46.25 47.50 52.50 45.00

2 60.00 50.00 60.00 56.25 50.00

3 65.00 67.50 57.50 58.75 55.00

4 71.25 65.00 58.75 62.50 45.00

5 61.25 70.00 46.25 58.75 50.00

6 61.25 61.25 48.75 56.25 50.00

7 73.75 75.00 66.25 66.25 57.50

8 52.50 53.75 52.50 57.50 50.00

9 58.75 67.50 55.00 57.50 58.75

Avg 60.63 60.31 55.00 57.40 52.40

Table 4. RH-RH case (dominant hand), with Riemann channel selection, 8 channels:
accuracies of individual subjects averaged over all folds. Scores above 70% marked in
bold.

Subj. FBCSP TSLR EEGNet ShallowConvNet DeepConvNet

1 65.00 61.25 51.25 53.75 55.00

2 73.75 78.75 72.50 72.50 61.25

3 76.25 78.75 76.50 58.75 55.00

4 53.75 55.00 58.75 45.00 47.50

5 65.00 67.50 50.00 62.50 51.25

6 56.25 58.75 55.00 52.50 53.75

7 62.50 66.25 58.75 58.75 55.00

8 57.50 62.50 50.00 57.50 52.50

9 65.00 57.50 52.50 57.50 56.25

Avg 63.23 64.06 57.40 57.40 53.33

their non-dominant hand, and two subjects (2 and 3) reached it with their dom-
inant hand. Interestingly, the same subjects did not reach these levels with both
dominant and non-dominant hand, indicating that there was indeed a difference
in performance with regards to the that hand-side was used for the imagery task.

It should be noted that what hand-side performs better seemingly depends
on two factors. One being the subject performing the task. Subject 2 achieved
28.75% points higher accuracy when using their dominant hand, compared to
using to their non-dominant. This result is contrary to subject 7, where the
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non-dominant hand yielded 11.25% points better accuracy than the dominant
one. The second factor that affects performance is the classifier that was used.
Subjects 5 and 9 received better scores for RH-RH imagery when classified with
FBCSP, but poorer when using TSLR. For the remaining subjects, which side
performed better was consistent across the models.

Figure 3 compares the average FBCSP classification score and standard devi-
ation for both dominant and non-dominant hands. In this case, six out of nine
subjects reached their highest obtained accuracy with their dominant hand. Sim-
ilarly, Fig. 4, compares the results of TSLR. Using TSLR, only four out of nine
performed better with their dominant hand. For two of the subjects the best-
performing hand-side depended on the classification model. Hence no clear trends
with regards to which side tends to yield better performances can be identified.
Additional data collection and studies are necessary, where more participants
complete both the dominant and non-dominant hand experiments multiple times
across several sessions.

For one subject, the difference between the hand-sides was statistically signif-
icant (t-test, p = 0.006). This was subject 7, using the TSLR classifier. The small
sample sizes for each subject make it difficult to draw any relevant conclusion
regarding the statistics.

Fig. 3. Accuracy scores for dominant and non-dominant hand, using FBCSP. Error
bars denote the standard deviation of the folds.

Regarding within-hand classification and real-world application, five out of
the nine subjects reached decoding accuracies above the required threshold (70%)
for at least one of their hands. The results indicate that same-limb motor imagery
has the potential to be utilized in a BCI system, providing additional commands
to external devices. It should, however, be noted that in an additional experi-
ment where all four classes were considered, the accuracy dropped significantly.
The four-class system did not pass the minimum threshold, emphasizing that
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Fig. 4. Accuracy scores for dominant and non-dominant hand, using TSLR. Error bars
denote the standard deviation of the folds.

increasing the number of commands is challenging, and more research is neces-
sary.

It is also clear that differences in subject-wise performance are a challenge.
In an experiment by M. Lee et al. [15], 30% of the subjects were not able to
achieve more than 70% decoding accuracy when using an MI-based BCI. BCI
illiteracy is a proposed condition wherein users of BCI technology fail to reach
proficiency in using it within a standard training period [22]. The condition is a
challenge in MI BCI systems, because it means that not everyone can use them.
The subjects who did not achieve accuracy above the threshold in any of the
experiments could suffer from BCI illiteracy.

The performance also varies within trials, runs, and sessions. The classifica-
tion accuracy is usually at its peak around the chosen window segment in this
study, i.e., 0.5 to 2.5. In later stages of the trials, the classification accuracy often
decreases. Subjects losing concentration towards the end of the task could be the
cause of this performance decrease. When collecting data for this study, it was
commented that the motor imagery runs were particularly tiring compared to
the executory ones.

3.1 Future Work

Collecting more data to potentially identify trends as to which hand-side usu-
ally performs better is an enticing next step following this study. The ability
to control an SMR-BCI is closely linked to handedness [33], and it would be
interesting to explore whether the difference in performance between dominant
and non-dominant hand depends on the handedness of the subject. To research
this, data from both right-handed and left-handed participants would need to
be collected.
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There are also many ways to further explore the existing dataset beyond the
scope of this work. Models pre-trained on open relevant datasets can be used for
transfer learning, aiming for better initialization or regularization. Pre-training
could perhaps enhance the performance of the neural networks especially. Several
other models, feature extraction, and feature selection techniques can be tested
to potentially improve performance.

There is a shifting focus in the BCI field from inter-subject analysis to intra-
subject analysis. It would be exciting to examine this aspect further, as such
a system would require no training from the user, and the amount of avail-
able training data would be substantially increased. Further understanding of
the extracted features would also be helpful in the investigation of novel clas-
sification methods, specifically focused on single-limb classification. Structural
and functional differences are known to exist within the cortical sensorimotor
networks with respect to the dominant vs. non-dominant hand.

4 Summary and Conclusion

One critical limitation of current BCI applications is the lack of usability, mainly
due to the small number of available classes for decoding, leaving room for few
commands. In this study, the aim was to contribute in a direction toward more
commands. To this end, the study sought to determine whether hand-dominance
has an effect when classifying imagery movements within the same limb. Another
objective was to investigate to what extent finer motor tasks by a single limb can
reach acceptable performance criteria to pass as additional commands in a BCI.
To achieve these objectives, an EEG dataset with nine right-handed participants
was collected. The participants performed an identical set of grasping tasks with
both their dominant and non-dominant hands. Current algorithms in traditional
machine learning, such as FBCSP and Riemannian geometry, were implemented
and compared to novel, promising, EEG-tailored convolutional neural networks.
Different data augmentation and feature selection techniques were be explored
in various experiments.

Channel selection according to a Riemannian geometry criterion before fea-
ture extraction or classification improved discrimination. None of the scores aver-
aged across all subjects reached the required accuracy level of 70%. Some of the
individual subjects in the study did, however. The best scores were 75.00% for
grasps imagined by the non-dominant hand and 78.75% for grasps performed by
the dominant hand. BCI illiteracy could have caused some of the subjects not
to reach accuracy levels above the required minimum to be deployed in a BCI
application.

For all the subjects, one of the sides provided higher accuracy decoding levels
than the other, indicating that what hand was used mattered for the result.
Which side depended on both the subject and the classifier. To identify a trend
or establish whether the differences are statistically significant, more data is
required. The results of this study should be viewed as an exploratory report
of potential classification differences when the same experiments are performed
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by both dominant and non-dominant hand. Further research on the topic is
encouraged.
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25. Rodŕıguez-Bermúdez, G., Garćıa-Laencina, P.J.: Automatic and adaptive classifi-
cation of electroencephalographic signals for brain computer interfaces. J. Med.
Syst. 36(Suppl 1), S51–63 (2012). ISSN: 0148–5598. https://doi.org/10.1007/
s10916-012-9893-4

https://doi.org/10.3389/fnins.2013.00267
https://www.frontiersin.org/articles/10.3389/fnins.2013.00267/full
https://doi.org/10.1053/apmr.2001.26621
http://arxiv.org/abs/1611.08024
https://doi.org/10.1088/1741-2552/aace8c
https://doi.org/10.1093/gigascience/giz002
https://doi.org/10.1109/BCI48061.2020.9061657
https://doi.org/10.1371/journal.pone.0085192
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0085192
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0085192
https://doi.org/10.1088/1741-2552/aab2f2
https://doi.org/10.1109/JPROC.2015.2404941
https://doi.org/10.1080/10790268.2017.1369215
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5778933/
https://doi.org/10.1109/IEMBS.2005.1616878
https://doi.org/10.1109/IEMBS.2005.1616878
https://doi.org/10.3390/s19061423
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6471241/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6471241/
https://doi.org/10.1016/S0304-3940(97)00889-6
https://doi.org/10.1016/S0304-3940(97)00889-6
https://doi.org/10.1016/j.jneumeth.2020.109037
https://www.sciencedirect.com/science/article/pii/S016502702030460X
https://www.sciencedirect.com/science/article/pii/S016502702030460X
https://doi.org/10.1007/s10916-012-9893-4
https://doi.org/10.1007/s10916-012-9893-4


Effect of Hand Dominance When Decoding Motor Imagery Grasping Tasks 249

26. Roy, Y., et al.: Deep learning-based electroencephalography analysis: a systematic
review. J. Neural Eng. 16(5), 051001–051001 (2019). ISSN: 1741–2560. https://
doi.org/10.1088/1741-2552/ab260c

27. Sakhavi, S., Guan, C., Yan, S.: Parallel convolutionallinear neural network for
motor imagery classification. In: 2015 23rd European Signal Processing Con-
ference (EUSIPCO), pp. 2736–2740. IEEE, Nice, August 2015. https://doi.org/
10.1109/EUSIPCO.2015.7362882. http://ieeexplore.ieee.org/document/7362882/.
Accessed 14 June 2021

28. Schirrmeister, R.T., et al.: Deep learning with convolutional neural networks for
EEG decoding and visualization. Hum. Brain Mapp. 38(11), 5391–5420 (2017).
ISSN: 1097-0193. https://doi.org/10.1002/hbm.23730. https://onlinelibrary.wiley.
com/doi/abs/10.1002/hbm.23730. Accessed 15 June 2021

29. Schlogl, A., et al.: Evaluation criteria for BCI research, p. 66 (2007)
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Abstract. The neuron motor system has the ability to update the control strategy
according to the environment. Intercepting a moving object is a task that can pro-
vide and study this ability. The aim of this study is to determine the performance
and the control strategy on visual occlusion perturbation to intercepting moving
targets. Sixteen subjects (24.4 ± 5.32 years old; 12 males and 4 females) were
recruited. The experiment was carried out with a familiarization and an experi-
mental phase where the participants managed a Physical Effector Machine (PEM)
synchronized with a Virtual Interception Task (VIT). During the familiarization
phase, participants learned the movement time (200 to 250 ms). In the experi-
mental phase participants performed under two different conditions: Perturbation
condition (PC), which corresponds to the target occlusion for 75 ms and 300 ms
before expected movement onset and Control condition (CC) where there was
no occlusion. In both conditions, the target moved at a constant velocity (145
cm.s−1). The results were analysed from the kinematics Movement time (MT),
Relative time to peak velocity (%tPV), Correction Numbers (CN) and Spatial
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strategy to intercepting seemed to be similar in both conditions.
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1 Introduction

Interceptive moving targets involve accurately hitting an object in movement and at an
exact location [1]. Hitting tasks require short and fast movement of the intercepting
effector, such as a hand or a device [2]. Since intercepting moving targets involve many
variables, it is usual to find studies using a single-degree of freedom task to investigate
temporal and amplitude movement constraints on performance accuracy and control
strategies to infer how the motor control system works [1, 3, 4].

Practicing a single-degree of freedom intercept task in a predictable context [4–6]
improves movement control and performance based on kinematic information such as
target velocity [2, 7]. Results using kinematics have shown the motor control strategy
regarding the movement time (MT), target distance and velocity [1], target size and
temporal precision [8] and even changes in control during learning [6]. For example, the
relative time to peak velocity (%tPV) increases with learning under predictable context.

On the other hand, intercepting moving targets under unpredictable contexts is more
difficult or even impossible, depending on the unpredictability [9, 10]. Facing unpre-
dictable changes on target speed of initiated or ongoing movements requires corrections
that depend on the available time to make the necessary changes to the previously sent
control and demanding a higher level of visual information processing [9, 11]. The
processing of visual sensory pathways, in unpredictable conditions, engages feedback
mechanisms involving visual organs and brain circuitry to translate input information
into output (i.e., movement) [12, 13]. Since the eye distance to the brain is short, retinal
processing of visual input takes ~ 30 ms [14]. The continuous brain processing takes
~ 60–75ms that corresponds to visuomotor brain integration until initiating the volun-
teer muscle response [15, 17]. The kinematic response changes (e.g., velocity changes)
take at least 200ms after initiation of voluntary muscle response to be visualized [2,
11–18]. It seems that kinematic response changes could be an efficient tool to observe
and understand the strategies and control mechanisms in interceptive actions.

Evidence for corrections of interceptive actions can be provided from the kine-
matic response changes, such as velocity and acceleration [2]. In this sense, kinematic
responses could be inferred as a strategy to use feedforward control, when the subject
waits for the target to be as near as possible to the strike zone before starting the inter-
ception action [4]. On the other hand, anticipation of the peak velocity could be inferred
as a strategy that gives more time for the subject to use feedback control and make pos-
sible corrections [10–15]. In addition, this anticipation strategy can be observed under
unpredictable contexts, which means anticipation to the tPV and perceived inflections
on the acceleration curves (e.g., valleys greater than 2% of the peak). These valleys are
considered corrections in function of the velocity deceleration after peaks on velocity
curves [2, 19]. Even if that kinematic analysis could be used to describe themotor control
and strategies of interception tasks, this method has been little used to infer the control
mechanisms involved in the interception of moving targets [6, 19, 20]. Furthermore, to
our knowledge, no paper has yet been found to explain the computational analysis that
allows the explanation of control strategy on visual occlusion perturbation using %tPV
and the inflexions on the acceleration curves.
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The aim of the present study is to determine the performance and the control strategy
on visual occlusion perturbation through kinematic responses as %tPV and the acceler-
ation inflections to infer the control mechanisms used to intercept moving targets. We
expected that the PC would disrupt and reduce the performance of interceptive actions.
Also, we expected that the control strategy in PC will be different to the CC.

2 Methods

2.1 Participants

Sixteen subjects (24.4± 5.32 years old; 12males and 4 females) were recruited, and each
one had written informed consent to participate voluntarily in this study. All participants
were healthy and self-declared as right-handed preference and normal or corrected-to-
normal vision. The procedures were approved by the Institutional Review Board of
Universidade Federal de Minas Gerais (protocol 24754819.6.0000.5149), in conformity
with the ethical standards established in the 1964 Declaration of Helsinki, amended in
1989, on the participation of human subjects in research.

2.2 Instruments and Task

The task involved virtual and physical element (Fig. 1) and required an Intel® Core™
i5 3.60 GHz, a projector (Epson PowerLite77c) a Virtual Interception Task (VIT) and a
Physical Effector Machine (PEM). The VIT and PEM involved physical staffs (Juliana
Buére, Jonathan Ferreira, CarlosCampos, CrislaineCouto, CintiaMatos&HerbertUgri-
nowitsch,UFMG,BeloHorizonte,Brazil) anddata acquisitionwasperformedusingLab-
view® (National Instruments Corporation, Austin/TX, USA). The data were processed
using MatLab® (The Mathworks Co, Natick, MA).

The PEM is composed of a linear nylon guide (rail) of 100 cm (length) vs 10 cm
(width) vs 4 cm (height), and abs premium physical effector attached on a linear guide
Magnetic Transducer (BTL6-A110-M0400) Balluff® with precision in µm and a steel
chair fixed on the floor (Fig. 1). The kinematic acquisition variables (position-time) were
acquired at 200 Hz. For acquisition and transformation of the kinematic data, an A/D
Board DAC-NIUSB-6009 National Instruments® was used.

To perform the VIT, participants sat down on a chair parallel to the attached linear
guide where the elbow was supported according to the arm anthropometric dimensions.
Participants were requested to intercept a virtual moving target (6× 5 cm blue rectangle)
using a virtual effector (4 × 5 cm green rectangle) within the width of the target and
inside the limits of the strike zone. From the first appearance on the projection right side,
the virtual target traveled 210 cm from right to left perpendicularly to the target rail.
Then, the participant moved the physical effector flexing the shoulder and extending the
elbow until the strike zone.

Participants were asked to perform the interceptive action in a range of 200–250 ms
movement time (MT), since this range characterizes a ballistic movement and provide
sufficient time to make corrections after the movement’s onset [5], enabling the use of
different mechanisms to control [6].
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Fig. 1. Illustration of the experimental setup. (a) represents the virtual interception task (VIT)
machine, including the virtual horizontal rail (304 cm) and the moving target (blue rectangle).
A virtual effector (green rectangle) synchronized with the physical effector machine would be
moved (30 cm) on the vertical rail and hit the target into the strike zone. (b) Represents the end
position and visual feedback. The physical effector was moved forward along the virtual vertical
rail until the strike zone. The zoomed detail represents the visual feedback available to participants
after each trial. The dimensions are not to scale.
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2.3 Study Design

The experiment was carried out with a familiarization and an experimental phase. During
the familiarization phase, participants performed the movement time ranging from 200–
250 ms for six trials in a row, which was adopted as performance criteria of movement
time (MT) learning. The objective for the participants was to perform that specific MT,
which was sufficient to pre-program and make corrections after the onset of the move-
ment [5]. Furthermore, the movement time ensured that the control strategy observed at
the end of the experiment was based on the participant’s choice and not on the limitation
of the task. In this phase, the target moved at a constant velocity of 130 cm.s−1. Then,
following a 5 min’ break, the experimental phase began.

During the experimental phase, participants performed two different conditions with
10 attempts each. On perturbation condition (PC), the target had been occluded for 75
ms (i.e., the target projection disappeared), 300 ms before expected movement onset
(See Fig. 2a), which corresponds to 250 ms before the target achieves the strike zone.
On the other hand, on the control condition (CC) there was no perturbation (See Fig. 2b).
In both conditions, the target moved at a constant velocity of 145 cm.s−1.

Fig. 2. Illustrations of the two experimental conditions. (a) illustrates the position where the
target is occluded for 75 ms, 300 ms before the expected movement onset for PC. (b) illustrates
the position where the target was expected to be before movement onset for CC.

2.4 Data Analysis

The data were obtained from LabView and processed using MatLab. The Movement
Velocity (MV) andMovement Acceleration (MA) data for each participant were filtered
with a dual pass second-order Butterworth filter with a cutoff frequency of 50 Hz [20].
From the MV we obtained the peak velocity and relative time to peak velocity (%tPV)
using the findpeaks function. From the MA we extracted the acceleration peaks and
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valleys (e.g. inflexions onMAconsidered corrections) using a splitted signal. The splitted
signal starts with an index before the maximum peak of the whole signal and goes until
the end of the signal. The valleys of the splitted signal were found using findpeaks with
the splitted signal inverted (- splitted). The calculated peaks and valleys were stored on
vectors and for each index i a deviation was calculated as:

deviation[i] = 100× abs(peaks[i] − valleys[i])/valleys[i] (1)

For deviations greater than or equal to 2% a correction was counted up. This process
was repeated for each trial of the participants to verify the existence and counter the
corrections (CN).

2.5 Statistical Analysis

The effects of the two experimental conditions (CC and PC) were analysed from the
kinematic variables (MT, %tPV and NC) as well as on spatial absolute-error (AE). The
quantitative variables were expressed as means and standard deviations and to test the
normality of the data distribution we run the Shapiro–Wilk test on Python. Since the data
were not normally distributed the analysis was run by the non-parametricMannWhitney
test to verify possible differences between the CC and PC. In order to strengthen the
inferences of the statistical results, Cohen’s d correction was also performed calculating
r [21]. All statistical analyzes were performed using Python and with a significance level
of p < .05.

3 Results

The MannWhitney test showed a higher AE for PC than CC condition [U(159) = 16.738
p = .012; r = .43]. It seems that the occlusion condition perturbed the participants and
imposed more difficulty to plan the interceptive movement (See Fig. 3).

Even though the statistical results comparing the kinematic variables TM, %tPV
and NC did not show differences between experimental conditions (See Fig. 4), some
individual participants’ results behaviorwould provide interesting insights about the used
control strategies. To present an explanation directed to the control strategy, we extracted
the performance results of participants, from Fig. 4, who demonstrated a particular
behavior that gave them any advantage during interception movements. The participants
v2, v4, v7 and v16 showed specific and important behavior, which will be discussed in
the next section.

4 Discussion

The aimof the present studywas to determine the performance and the control strategy on
visual occlusion perturbation using kinematic responses to infer the control mechanisms
used for intercepting moving targets.

The first hypothesis was confirmed since the perturbation conditions (e.g. occlusion
condition) disrupted and reduced the performance of interceptive actions. The perfor-
mance reduction happens because during interceptive actions (See Fig. 2), the subject
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Fig. 3. Comparison of absolute error between CC and PC. *p < .05

needs to extract and use visual information from the environment (e.g. target displace-
ment velocity) to guide movement planning [22, 23] and decide when to start the inter-
ceptive action. Some studies had already shown loss in the intercept rate when the target
was occluded for 200 ms [24]. Since the disturbance is inserted, part of the information
is suppressed and could not be used. After target occlusion ~30 ms will be spent by
the retina [25, 26] to process the input (e.g. target disappearance) and ~75 ms to pro-
cess and integrate visuomotor information according to the environment and the type
of task [27]. In the present study, one of the experimental conditions was to intercept
an occluded (for 75 ms) moving target 300 ms before the expected onset interceptive
movement. The occlusion becomes a disturbance, since the time to initiate a voluntary
action is ~100 ms [13, 28], and the resultant muscle strength produced, responsible for
the desired interceptive movement, will spend ~ 100ms more [16, 29]. Thus, even if the
task is known, the control of the first interceptive actions will lead to errors that will
provide feedback for the next actions (e.g. motor planning), attenuating the occlusion
effect and increasing performance [24, 30].

Once an error in the planning movement happens it is expected modifications on the
movement using the feedback sources to achieve a greater performance. These modifi-
cations can be seen on the kinematics such as %tPV (See Fig. 4D) and inflexions on the
acceleration curves represented by CN (See Fig. 4B). In order to modify the movement,
enough time is necessary to perceive and compute the error as well as the time to replan
and execute the action [31].

For the second hypothesis it was expected, during occlusion conditions, that sub-
jects would make corrections due to suppression of information (e.g. PC), which could
interfere in the desired action and consequently on quality of planning execution [27].
However, our second hypothesis was not confirmed, since no difference was found
between both conditions.

Even though our general results did not show statistically significant differences, on
either the %tPV or on the NC, comparing the two experimental conditions, an ad hoc
analysis, shown in Fig. 5 and Fig. 6, gives strong indications for that phenomenon and
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Fig. 4. Individual performance results of all participants comparing the spatial AE, %tPV, MT
and NC between CC and PC conditions. (a) represents the spatial AE; (b) represents the NC;
(c) represents the MT; and (d) represents the %tPV. The black bars represent the estimate of mean
standard error.
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highlights the necessity of including individual analysis for better understanding or, at
least, to indicate how themotor system uses themechanisms involved on the interception
ofmoving targets, since several researches have shown thatmotor control and learning do
not follow the same aways for all human beings [6, 8, 11–28]. Moreover, to be successful
in an interceptive task, the subject needs to extract and use relevant visual information
from the environment such as the direction, velocity of the target and its exact position to
move one of the arms or moving an effector to intercept a moving target. Figure 5 shows
the performance of five participants in the environment predictable control condition
(e.g. CC). The performance is represented by average of Spatial AE (cm), %tPV and
NC. It is a crucial aspect to understand the direct relationship between %tPV and the
NC. The participants who spent less time to achieve the peak velocity had more time
to apply corrections to maintain or increase the performance. The anticipation of peak
velocity has been shown as a strategy that could [1] give more time to make any change
on the movement using the feedback sources [2, 31, 32]. Conversely, when the relative
time to peak velocity is close to the end of movement, there is no chance of making any
change [2, 3, 11].

Fig. 5. Mean of 4 attempts of participants v2, v4, v7, v16 exemplifying AE, %tPV and CN
performances and profile of AE and%tPV performance in attempts without corrections on control
condition.

Figure 6 shows the performance of the same five participants in the Perturbation
condition that the environment is unpredictable. The performance is represented by
average of Spatial AE (cm), %tPV and NC. Note that the behavior is similar to that
of the control condition. The anticipation of the peak velocity becomes more evident
as a good control strategy. Izawa et al. [33] demonstrate that to anticipate the peak
velocity brings more time to use feedback and possible corrections. Furthermore, this
strategy in an unpredictable environment has been shown as a good candidate to infer
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the control mechanism used by the neural motor system [6, 33]. Since the correction
number increases while the time to peak velocity decreases, it is plausible to affirm
that the motor control system uses the feedback mechanism to adjust the interceptive
action after the perturbation provoked by occlusion. It has been shown that when the
%tPV happens near the beginning of the movement this strategy enables the neuro
motor system to make corrections until the end of the movement [2]. In this case, the
movement is controlled using a feedback mechanism [11, 34] and indicates that the
neuro motor system anticipates the peak velocity, as a strategy, to gain more time to
perform corrections.

Conversely, in both conditions participants who presented time to peak velocity
close to the end of interceptive movements (e.g. 95.27 and 94.47% respectively) could
not make any corrections. Furthermore, their spatial AE in the perturbation condition is
more than double compared to the performance of the other participants. In this case, the
neuromotor system seems to use the mechanism of preprogramming the motor output
[2, 6].

Fig. 6. Mean of 4 attempts of participants v2, v4, v7, v16 exemplifying AE,%tPV and CN perfor-
mances and profile of AE and %tPV performance in attempts without corrections on perturbation
condition.

5 Conclusion

In summary, according to our first hypothesis the results demonstrated that the occlusion,
as amanipulationof visual information, can significantly affect the performance accuracy
to intercept moving targets. Even though our second hypothesis was not confirmed, the
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methods chosen and the results obtained gave us enough information to infer about
the control strategies using kinematic features. From a behavioral perspective, our last
analysis gives a useful way to observe motor behavior and more specifically the control
strategy. From a neurobiological perspective the kinematic variables used in ourmethods
seems to be useful, since the visual sensory control presents a remarkable behavior in
function of the context environment. The major challenge for the following research is
to make sure that the analysed kinematic response could support the actual visual and
somatosensory neural substrates.
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