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Chapter 1
The Role of MicroRNAs in Cancer Biology
and Therapy from a Systems Biology
Perspective

Xin Lai, Ulf Schmitz, and Julio Vera

Abstract Since the discovery of microRNAs (miRNAs) in Caenorhabditis elegans,
our understanding of their cellular function has progressed continuously. Today, we
have a good understanding of miRNA-mediated gene regulation, miRNA-mediated
cross talk between genes including competing endogenous RNAs, and miRNA-
mediated signaling transduction both in normal human physiology and in diseases.

Besides, these noncoding RNAs have shown their value for clinical applications,
especially in an oncological context. They can be used as reliable biomarkers for
cancer diagnosis and prognosis and attract increasing attention as potential thera-
peutic targets. Many achievements made in the miRNA field are based on joint
efforts from computational and molecular biologists. Systems biology approaches,
which integrate computational and experimental methods, have played a fundamen-
tal role in uncovering the cellular functions of miRNAs.

In this chapter, we review and discuss the role of miRNAs in oncology from a
system biology perspective. We first describe biological facts about miRNA genetics
and function. Next, we discuss the role of miRNAs in cancer progression and review
the application of miRNAs in cancer diagnostics and therapy. Finally, we elaborate
on the role that miRNAs play in cancer gene regulatory networks. Taken together,
we emphasize the importance of systems biology approaches in our continued efforts
to study miRNA cancer regulation.
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1.1 Biological Facts About miRNA Biogenesis and Function

MicroRNAs (miRNAs) are a class of small endogenous noncoding RNAs with a
length of around 22 nucleotides (nt). miRNAs are evolutionarily conserved regula-
tory molecules that, in most cases, modulate the stability and/or translation of target
mRNAs through direct binding to the target’s 30 UTR (Bartel 2004). miRNAs were
first found to be pivotal for Caenorhabditis elegans development (Vella et al. 2004)
and it was soon demonstrated that they play a key role in gene expression regulation
in both animals and plants. More recently, there is mounting evidence suggesting
that miRNAs and other similar noncoding RNAs are also important in viral and
bacterial gene regulation, as well as in the microbe-mediated host gene regulation.
Taken together, miRNAs are ubiquitous posttranscriptional regulators of gene
expression and important in normal cell physiology and function (Cardin and
Borchert 2017).

To date over 2500 miRNA sequences have been identified in the human genome
and registered in the miRBase database (Kozomara et al. 2019). These miRNAs are
estimated to regulate more than half of all protein-coding genes (Friedman et al.
2009). This indicates their pervasive roles in the regulation of cellular processes, like
proliferation, differentiation, and apoptosis. In addition to exerting critical functions
during normal development and cellular homeostasis, miRNA dysregulation has
been found in many human diseases, like cancer (Hwang and Mendell 2006). Thus,
understanding the function of miRNAs in gene regulation is crucial for unraveling
mechanisms underlying human pathogenesis and improving therapeutic approaches
in human diseases.

1.1.1 miRNA Biogenesis

The miRNA biogenesis pathway is a complex process composed of multiple steps
(Fig. 1.1) (Berezikov 2011; Filipowicz et al. 2008; Krol et al. 2010). At first, long
primary transcripts known as primary miRNAs (pri-miRNAs) are transcribed from
miRNA genes by RNA polymerase II (Pol II). Pri-miRNA molecules have a 5-
0-terminal 7-methylguanosine (m7G) cap, which is extended by a hairpin structure
with a terminal loop and a ~32 nt long imperfectly base-paired stem and end with a 30

poly(A) tail. Depending on the features of miRNA genes, pri-miRNAs can contain
single or multiple miRNA pairs that form hairpin structures. Next, with the help of
the complex that includes Drosha and its binding partner DGCR8, pri-miRNAs are
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Fig. 1.1 miRNA biogenesis. A miRNA can be processed either from a pri-miRNA or a mirtron.
The pri-miRNA, containing a 50 terminal m7G cap and a 30 poly(A) tail (AAAAA), is transcribed
from miRNA genes by Pol II and is subsequently cleaved (red arrowheads) by Drosha with the
cofactor DGCR8 and becomes a pre-miRNA. The mirtron situated between two exons is spliced
and becomes a pre-miRNA without the requirement of Drosha–DGCR8 complex. The pre-miRNA
is transported from the nucleus to the cytoplasm by exportin 5 with Ran-GTP. In the cytoplasm,
most pre-miRNAs are processed into double-stranded miRNA duplexes with the help of Dicer and
TRBP. One strand of the duplexes is loaded into AGO, whereas the other strand is degraded. When
a miRNA is perfectly or near-perfectly pairing to its target mRNA, it can result in the cleavage of the
mRNA. Otherwise, non-perfect base pairing between a miRNA and its target mRNA leads to
translation repression or target mRNA deadenylation. Both processes are implemented through the
interaction of miRISC with GW182 and PABP



processed into precursor miRNAs (pre-miRNAs), which are ~70 nt long hairpin
structures with a characteristic 2 nt 30 overhang. Then, through the recognition of the
2 nt overhangs, exportin 5 in conjunction with the cofactor Ran-GTP exports
pre-miRNAs from the nucleus into the cytoplasm. After that, cytoplasmic processing
by another complex, which is composed of Dicer, an Argonaute protein (AGO), and
a TAR RNA binding protein (TRBP), cleaves the pre-miRNA into a ~22 nt double-
stranded miRNA duplex (also known as mature miRNAs). Finally, one strand of the
miRNA duplex known as the active strand is loaded into the AGO-containing
miRNA-induced silencing complex (miRISC) that will bind to miRNA-specific
target mRNAs for subsequent cleavage or translation repression. The complemen-
tary strand of the miRNA duplex, known as the passenger strand, will be degraded.

4 X. Lai et al.

In addition to the canonical miRNA biogenesis pathway described above, mature
and functional miRNAs can also be produced via alternative pathways. These
pathways can be classified into Drosha- and Dicer-independent pathways
(Fig. 1.1) (Miyoshi et al. 2010). In the Drosha-independent pathway a class of
miRNA genes, which originates from pre-miRNA-sized short introns (termed as
mirtrons), can be directly processed into pre-miRNA hairpins without the participa-
tion of Drosha. These pre-miRNAs are further cleaved by Dicer in the cytoplasm to
produce mature miRNAs (Ruby et al. 2007). In the Dicer-independent pathway,
following normal nuclear processing, the pre-miRNA is not cleaved into a miRNA
duplex by Dicer but instead by the AGO catalytic center. For example, miR-451 is
produced through an AGO-dependent maturation pathway (Miyoshi et al. 2010).

1.1.2 miRNA Function

After the maturation of miRNAs, in most cases the active strands act as guides and
direct miRISCs to bind to the 30 UTR of target mRNAs, resulting in the repression of
target genes at the posttranscriptional level (Fig. 1.2). Some miRNAs can exert a
repressive function on target genes even when their binding sites are located in the 50

UTR or the coding regions of target mRNAs (Lytle et al. 2007). In addition, a few
miRNAs can bind to the 50 UTR of their target mRNA and enhance its translation
(Ørom et al. 2008). The mechanism by which target mRNAs are regulated is
determined by the degree of complementarity between miRNAs and their target
mRNAs. When a miRNA perfectly or near-perfectly pairs with its target mRNA,
mostly occurring in plants, target mRNA cleavage is triggered. Imperfect base
pairing between a miRNA and its target, predominating in animals, leads to trans-
lation repression or destabilization of the target mRNA (Bartel 2004). Based on
experimental evidence and bioinformatics analyses in animals, several miRNA seed
binding motifs have been identified including 8-mer, 7-mer, and 6-mer seed binding
(Bartel 2009). These miRNA binding motifs are defined by the number of contin-
uous base pairings in the seed region of miRNAs; for example, 7-mer means that in
the seed region of a miRNA there are seven continuous base pairings between the
miRNA and its target mRNA (Bartel 2009). The repression efficiency exerted via



these binding motifs can be further enhanced by additional base pairing between the
30 complementarity region of the miRNA and its target (Fig. 1.2) (Filipowicz et al.
2008). The following subsequences can influence target regulation efficiency:
(1) The seed region (miRNA nucleotides 2–8). A continuous seed region base
pairing (miRNA nucleotides 2–8) is crucial for assuring effective target repression.
If there are G-U pairs (guanine-uracil) or mismatches in this region, the target
repression will be greatly affected. However, the appearance of an A (adenine) at
position 1 of the miRNA and an A or U appearing at position 9 can improve the
repressive efficiency, although they are not required to base pair with the target
mRNA. (2) The central region (miRNA nucleotides 10–12). In this region, bulges or
mismatches must be present. (3) The complementary region (miRNA nucleotides
13 to last). The base pairing between the miRNA and target mRNA is typically quite
loose in this region. However, good complementarity, particularly for miRNA
nucleotides 13–16, becomes important when mismatches or bulges appear in the
seed region.

1 The Role of MicroRNAs in Cancer Biology and Therapy from a Systems. . . 5

Fig. 1.2 Illustration of base pairing between miRNAs and target mRNAs. In the seed region,
continuous Watson-Crick pairing (vertical solid lines) is crucial for the efficient duplex formation
and miRNA-mediated repression. When a mismatch (vertical dashed lines) or a bulge appears in the
seed region, Watson-Crick pairing centering on miRNA nucleotides 13–16 of the 30 complemen-
tarity region can compensate and thereby construct a functional miRNA binding site

In addition to the binding motifs, other factors can also affect miRNA repression
efficiency. For example, multiple miRNA binding sites in close proximity in the 30

UTR of a single mRNA can enhance the repression of the target (Doench and Sharp
2004; Saetrom et al. 2007). RNA-binding proteins (RBPs), which can interact with
miRISCs on the 30 UTR of target mRNAs, can either facilitate or counteract miRNA-
mediated repression (Krol et al. 2010).

In mammalian cells, most miRNA–target interactions are based on imperfect base
pairing, which can result in two main mechanisms by which miRNAs reduce protein



production. The two mechanisms are translation repression and destabilization of the
target mRNAs. More particularly, miRNAs can inhibit the translation of target
mRNAs by affecting the initiation or post-initiation stage of mRNA translation
(Fabian et al. 2010). At the initiation stage, the miRISC can inhibit translation by
interfering with eIF4E-cap recognition and recruitment of 40S small ribosomal
subunit or by antagonizing 60S subunit joining and preventing the formation of
80S ribosomal complex (Fig. 1.3a). At the post-initiation stage, the miRISC can

6 X. Lai et al.

Fig. 1.3 miRNA-mediated translation repression mechanisms. With the help of GW182 and
PABP, miRISCs can repress translation at the initiation and post-initiation stage, or induce the
deadenylation and decay of target mRNAs. (a) At the initial stage, binding of the miRISC
complexed with GW182 and PABP to the target mRNA can repress translation by either interfering
with the cap recognition or by repressing the 60S subunit joining. (b) The miRISC can inhibit
translation at the post-initiation step by blocking translation elongation, causing ribosome drop-off
or proteolytic cleavage of the nascent polypeptides. (c) Deadenylation of the target mRNA is
facilitated by the interaction of the miRISC with CCR4-NOT. Subsequently, the decay of the target
mRNA happens after the removal of the 50-terminal m7G cap by the decapping DCP1-DCP2
complex



inhibit translation by blocking ribosome elongation, inducing ribosome drop-off, or
facilitating proteolysis of the nascent polypeptides (Fig. 1.3b). For miRNA-mediated
mRNA degradation, with the participation of GW182 and PABP the miRISC
induces deadenylation of the poly (A) tail by interacting with the CCR4-NOT
deadenylase complex. Then, the 50 terminal m7G cap is removed by the DCP1-
DCP2 decapping complex, resulting in the degradation of the target mRNA
(Fig. 1.3c).
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What we described above can be considered the “standard” mechanism of gene
regulation by miRNAs. However, recent experimental studies indicate that miRNAs
can translocate into the nucleus, interact with gene promoters and activate expression
for given target genes (Xiao et al. 2017). Xiao et al. found that nuclear miR-24-1 can
activate gene transcription in a mechanism that involves interaction with enhancers
and enhancer RNAs. This indicates that in the future, once we elucidate the mech-
anisms of interaction between miRNAs, RNA binding proteins, and long noncoding
RNAs (lncRNAs), we may see more cases of alternative miRNA target regulation.

1.2 The Role of miRNAs in Cancer Progression, Diagnosis,
and Therapy

In the previous section, we discussed the genetics and molecular mechanisms
associated with miRNA biogenesis and function. The large amounts of experimental
evidence collected in the last 20 years show that miRNAs participate in the regula-
tion and fine-tuning of crucial processes that drive cellular phenotypes and functions
during cell development and repairing and in tissue homeostasis (Gangaraju and Lin
2009; Piotto et al. 2018). Since cancer cells hijack cell differentiation programs to
regain phenotypes that foster their progression, it is not surprising that many
miRNAs are associated with the pathogenesis and progression of cancer. In recent
years, researchers have investigated the phenomenon to search for new, accurate
diagnostic tools based on miRNA expression profiling in cancer patients. Further-
more, there are miRNA-based therapies under development, which promote more
targeted and personalized cancer therapies. In the following paragraphs, we discuss
the molecular mechanisms linking miRNAs to cancer pathophysiology and the use
of miRNAs in cancer diagnostics and therapy.

1.2.1 Genome-Level Alterations in miRNAs

As indicated before, miRNAs play a key role in shaping and fine-tuning the gene
regulatory circuits controlling tissue development and cell differentiation. Programs
controlling these phenotypes are hijacked by cancer cells allowing them to become
invasive, metastatic, and therapy resistant. Hence, one can find mechanisms by



which miRNA expression and function are distorted in cancer cells similar to those
that cause dysregulation of protein-coding genes.
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Alterations in miRNA gene copy number and gene location Comprehensive
genome analyses using computational and experimental approaches have identified
a large number of miRNA genes that are located in fragile and unstable chromo-
somal regions linked to cancer. One can find miRNA genes within or close to cancer-
associated amplified, deleted, or translocated genes, but also close to chromosomal
breakpoints. For example, Soh and co-workers analyzed genomic data from more
than 2000 tumor samples of The Cancer Genome Atlas (TCGA) cohort representing
seven prevalent cancer types and found that up to 85% of miRNA genes are located
in cancer type-specific genomic regions enriched in somatic copy number alterations
(SCNAs) (Soh et al. 2018). Czubak et al. investigated SCNAs of 14 miRNA genes
commonly deregulated in cancer and found that most of them displayed copy
number alterations in lung cancer (Czubak et al. 2015).

Alterations in miRNA biogenesis and transcriptional regulation Global miRNA
depletion caused by epigenetic or genetic alterations in miRNA biogenesis compo-
nents is oncogenic (Lin and Gregory 2015). For example, DICER1 seems to operate
as a haploinsufficient tumor suppressor. Kumar et al. showed that deleting a single
copy of DICER1 in tumors from animal models reduced survival (Kumar et al.
2009). Others made similar observations in cell lines and mouse models of several
aggressive cancers (Poma et al. 2019). Reduced expression of DICER1 has been
associated with various cancers while it is not a general pattern and therefore, it is
difficult to generalize the role of DICER repression or silencing in cancer (Foulkes
et al. 2014). This can also be found for other proteins involved in the miRNA
biogenesis pathway, which are considered either tumor suppressors or oncogenes
for different tumors (Hata and Kashima 2016). For example, DROSHA and DGCR8
both critical components of the miRNA biogenesis pathway, bear recurrent muta-
tions in some cancers (Walz et al. 2015).

The expression of many miRNAs is also controlled by transcription factors (TFs)
and cofactors, some of which are commonly deregulated in cancer. Consequently,
miRNAs regulated by those TFs experience cancer type-specific alterations in their
expression patterns. The literature contains many studies in which the expression of
miRNAs is controlled by TFs that are deregulated or mutated in cancer. To mention a
few, there is the tumor suppressor p53 which regulates the expression of the miR-34
family, the translational repressor ZEB1 regulating miR-200 family expression,
tumor suppressor p73 regulating miR-205 expression, and the proto-oncogene
c-Myc regulating the miR-17 ~92 cluster. In all these cases, evidence shows that
cancer-associated deregulation of these TFs induces abnormal expression of the
target miRNAs, which in turn promote post-transcriptional repression of genes
linked to key cancer phenotypes, such as cell proliferation, (anti)apoptosis, or
migration. In one particular case, the TF p73 promotes the expression of miR-205,
a miRNA involved in the repression of several anti-apoptotic members of the BCL2
family. Deregulation of p73 expression in cancer downregulates miR-205, which in
turn induces an increased level of anti-apoptotic BCL2 (Vera et al. 2013; Alla et al.



2012). In such a scenario, the cells initiate apoptosis following DNA damage and
become resistant to genotoxic drugs.
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There are several interesting points here. Firstly, deregulation of these TF can be
induced in different ways, e.g., via somatic mutations, overexpression, or alternative
splicing. The latter, for example, causes the expression of the anti-apoptotic DNp73
splice isoform instead of wild-type p73. Secondly, some TFs such as p53 or p73 can
upregulate the expression of miRNAs, and others can repress miRNA expression
like ZEB1 represses the miR-200 family. Finally, in many cases, miRNAs and TFs
are part of feedback and feedforward loops becoming deregulated in cancer. For
example, miR-205 establishes a negative feedback loop with E2F1 and p73 leading
to therapy resistance in malignant melanoma (Vera et al. 2013). Taken together, the
interplay between miRNAs and TFs is a complex multifactorial mechanism, whose
features and consequences will be discussed in more detail in Sect. 1.3.

Modification and deregulation of miRNA–mRNA interactions Not surprisingly,
the binding between miRNAs and their target mRNAs can also be distorted in
cancer. Binding can be altered through genetic changes in target genes such as
somatic point mutations or translocations. A point mutation within the canonical
seed-matching sequence of the mRNA 30 UTR could create a novel miRNA target
site but it could also impair an existing target site (Moszyńska et al. 2017). For
example, a point mutation located in the 30 UTR of the p53 inhibitor MDM4
(rs4245739 SNP, A > C) is associated with an increased risk of prostate cancer.
Bioinformatics analysis indicated that this SNP resides within a predicted binding
site for miR-191-5p, miR-887, and miR-3669. Stegeman and coworkers investigated
these predictions utilizing gene assays and demonstrated that miR-191-5p and
miR-887 have a specific affinity for the rs4245739 SNP C-allele in prostate cancer.
When targeting MDM4 with miR-191-5p or miR-887 in prostate cancer cell lines
they observed decreased cell viability (Stegeman et al. 2015). There are other
mechanisms altering the molecular structure of miRNA–mRNA binding sites,
including chromosomal translocations that eliminate given miRNA binding sites
from the 30 UTR of their mRNA targets (Hirano et al. 2019), or alternative
polyadenylation, which can shorten or lengthen a gene’s 30 UTR and thereby erase
or add miRNA binding sites, respectively (Mao et al. 2020).

1.2.2 Oncogenic and Tumor-Suppressive miRNAs

In the previous sections, we have discussed miRNA biogenesis and target repression
mechanisms and we have elucidated mechanisms by which miRNAs can become
deregulated in cancer. Now, the actual role that given miRNAs play in cancer will
depend largely on two factors: (1) whether they are up-or downregulated, and (2) the
function of their gene targets.

Oncogenic miRNAs, also known as oncomirs, are miRNAs that repress genes
with a known role as a tumor suppressor. For example, miR-125b has a binding site



in the 30 UTR of the tumor suppressor TP53. It has been found that miR-125b
overexpression reduces the endogenous levels of TP53 and hampers the activation of
apoptosis in several cancers (Le et al. 2009). Of note are also miRNAs that repress
genes that inhibit or downregulate oncogenic pathways. This is the case for
miR-663, which represses the expression of CDKN1A, a gene that encodes the
cell cycle regulator p21. The protein can induce cell cycle arrest, however, miR-663-
mediated suppression of p21 promotes cancer cell proliferation and tumor progres-
sion in nasopharyngeal carcinoma and other cancers (Yi et al. 2012).
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Other miRNAs described as tumor suppressors target oncogenes. A well-known
example is the role of the let-7 family in melanoma. These miRNAs suppress
melanoma proliferation and metastasis by targeting a range of genes including
ITGB3, an integrin linked to the acquisition of invasiveness (Müller and Bosserhoff
2008). Such kinds of miRNAs can also target inhibitors of tumor suppressors. A
well-known case is miR-34a which represses SIRT1 expression. SIRT1 is an
oncogene that would normally repress TP53 activation. It has been shown that
miR-34a-mediated repression of SIRT1 increases TP53 acetylation and hence the
expression of TP53 target genes (such as CDKN1A and PUMA) that regulate cell
cycle and apoptosis (Yamakuchi et al. 2008). More recently, it has been shown that
miRNAs also play a role in regulating cancer therapy efficiency and resistance to
chemotherapy. For example, Alla and coworkers found that DNp73-dependent
downregulation of miR-205 induces drug resistance by upregulating anti-apoptotic
BCL2 and ABC transporters (Alla et al. 2012).

Taken together, miRNAs play a crucial role in cancer through the inhibition of
tumor suppressors or oncogenes. Interestingly, since miRNAs can have multiple
targets, some miRNAs play contradictory roles in different tumor entities or even
within same cancer. For example, miR-146a can promote melanoma cell growth by
targeting NUMB, a repressor of the NOTCH signaling pathway (Forloni et al. 2014),
but can also suppress metastasis formation by downregulating the expression of
ITGAV and ROCK1 (Raimo et al. 2016).

1.2.3 miRNAs in Cancer Diagnostics and Therapy

In the last decade, a lot of work has been carried out to find means to use miRNAs for
primary or co-adjuvant therapies but also to identify biomarkers to predict disease
outcomes or resistance to therapy.

miRNAs as diagnostic signatures Due to the lack of sufficient specificity and
sensitivity of classical tumor biomarkers, researchers have been looking for alterna-
tive candidates for cancer diagnosis. A good alternative should be minimally inva-
sive and cost-effective. Profiling of circulating miRNAs from liquid biopsies has
been found to be a good means to identify tumor-derived molecules secreted into the
bloodstream. These miRNAs are good candidates for biomarkers because they are
chemically stable and resistant to RNase activity (Glinge et al. 2017) and are thus a



the pathogenesis, progression, and dissemination of tumors makes them attractive
targets for cancer therapeutic approaches. As indicated above, miRNAs can contrib-
ute to cancer progression by acting as either oncogenes or tumor suppressors. This
informs the design of miRNA-based therapies of which there are two different
approaches:

valuable source for the diagnosis and stratification of cancer subtypes (Quackenbush
et al. 2014). A paradigmatic example is a work by van Laar et al. (Van Laar et al.
2018). The authors utilized the Nanostring nCounter system to perform extensive
profiling and quantification of miRNAs in plasma samples from melanoma patients
and healthy controls. After analyzing the data, they identified 38 miRNAs that were
differentially expressed between melanoma and healthy plasma samples. Interest-
ingly, most of these miRNAs regulate protein-coding genes linked to angiogenesis,
metastasis, or therapy resistance, including miR-34a and miR-205 that were
discussed in the previous section. To test the prediction accuracy of this miRNA
signature, they trained a machine-learning model and validated it using additional
independently published datasets. The results indicated a high classification perfor-
mance (with the receiver operator characteristic curve value of 0.94). Blood profiling
of miRNAs is theoretically applicable for any tumor type, and in some specific tumor
entities, it is also possible to profile miRNAs in urine (Sapre et al. 2016) or feces
(Duran-Sanchon et al. 2020) for diagnostic purposes.
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miRNA-based therapy The increasing knowledge about the roles of miRNAs in

1. If the aim is the inhibition of oncogmirs, one can utilize RNA antagonists, such as
antisense oligonucleotides, antagomirs, or miRNA sponges. miRNA antagonists
designed with sequences complementary to oncomirs prevent them from binding
to AGO, thereby avoiding the inhibition of their tumor suppressor gene targets.
For example, miR-146a negatively regulates immune activation by repressing
STAT1 and the STAT1-dependent secretion of interferon-γ. miR-146a levels
have been found to be increased in the microenvironment of aggressive mela-
noma. Mastroianni and coworkers combined an anti-mir for miR-146a and anti-
PD1 therapy in a melanoma mouse model and found improved survival when
compared with both isotype-control or anti-PD-1 treatment alone (Mastroianni
et al. 2019).

2. If the treatment aims to replace depleted tumor suppressor miRNAs, one can
employ miRNA mimics, like miRNA expression vectors and synthetic double-
strand miRNAs. miRNA mimics can restore the diminished or lost function of
tumor suppressor miRNAs whose downregulation results in the activation of
oncogenes or pathways. As discussed earlier, miR-205 is a tumor suppressor and
is downregulated in several aggressive tumors including melanoma. Noguchi and
coworkers developed a chemically modified synthetic miRNA-205 with the
ability to inhibit melanoma growth and progression, which they could demon-
strate both in vitro and in vivo. They found that the synthetic miRNA can
downregulate the expression of known miR-205 targets such as E2F1 and
VEGF, and repress the anti-apoptotic gene BCL2.
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As discussed in the previous section, a miRNA has a multitude of targets, and
therefore we have to consider the potential off-target effects caused by any miRNA
therapies (Ishida and Selaru 2013; Lai et al. 2019). Furthermore, similar to any other
RNA-based therapies, a key challenge for miRNA therapeutics is the development
of efficient delivery systems that facilitate a safe and effective application, which is a
field under active investigation (Baumann and Winkler 2014; Winkle et al. 2021).
However, the wide use of mRNA vaccines for protecting us from SARS-CoV-2 has
laid the foundation for inventing successful carriers for therapeutic RNAs
(Buschmann et al. 2021).

1.3 miRNAs in Cancer Gene Regulatory Networks

We have discussed the molecular mechanisms for miRNA (de)regulation and
function in cancer. We can apprehend the complexity we face when trying to
understand and exploit the therapeutic role of miRNAs in cancer. In the following,
we introduce and discuss some miRNA-related phenomena that complicate miRNA-
gene regulatory circuits in cancer.

1.3.1 miRNA Clusters: Groups of Similarly Regulated
miRNAs

A miRNA cluster is a group of miRNA genes residing in close proximity in the
genome (Lai and Vera 2013a). To consider a group of miRNAs as a cluster they have
to (a) be transcribed in the same orientation, (b) they are not separated by another
transcriptional unit, or (c) a miRNA on the opposite strand. There are approximately
160 miRNA clusters in the human genome. Most of the miRNA clusters are
composed of two or three individual miRNAs, though larger ones are possible and
often contain miRNA sets with important regulatory functions. For example, the
miR-17-92 cluster contains six miRNA genes that reside in an intron of a 7-kb long
noncoding RNA known as the MiR-17-92a-1 Cluster Host Gene or MIR17HG for
short (Fig. 1.5a). Members of this cluster are the miRNAs miR-17, miR-18a,
miR-19a, miR-20a, miR-19b-1, and miR-92-1. The cluster can be activated by the
TF c-Myc, a well-known oncogene that is often constitutively expressed in cancer
and is primarily, but not only, linked to abnormal cell proliferation. Thus, the cluster
plays an important role in many cancers. One of its most relevant targets is the tumor
suppressor and cell cycle regulator PTEN, which is commonly suppressed in cancer
(Fuziwara and Kimura 2015).
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1.3.2 Target Hubs: Genes Regulated by Many miRNAs

miRNA target hubs are genes that are regulated by 10 or more miRNAs, that is, they
contain bona fide binding sites in their 30 UTR for ten or more different miRNAs (Lai
and Vera 2013b). Shalgi and coworkers utilized a computational approach to detect
miRNA target hubs in the human genome and found 470 genes potentially regulated
by at least 15 different miRNAs (Shalgi et al. 2007). Since the number of
known miRNAs has almost doubled since 2007, one can expect to find many
more miRNA target hubs. Since one miRNA alone often induces only mild repres-
sion of its gene target, multiple miRNAs with the same target can induce stronger
repression when acting in a concerted manner. The first example of a miRNA target
hub detected and experimentally investigated is the cell cycle regulator CDKN1A
(Fig. 1.5b). This gene can induce cell cycle arrest under normal conditions and in
response to DNA damage and is therefore considered a tumor suppressor gene.
Interestingly, through bioinformatics analysis researchers detected several dozen
binding sites for different miRNAs in the CDKN1A 30 UTR (Lai et al. 2013). Wu
and collaborators proved that at least 28 of these miRNAs can repress the gene
in vitro (Wu et al. 2010). Interestingly, 8 of these 28 miRNAs originate from the
chromosome 19 miRNA cluster, which is known to promote cancer proliferation and
is linked to aggressive tumors (Jinesh et al. 2018). Lai and coworkers developed a
mathematical model of CDKN1A regulation and simulated the concerted inhibition
of CDKN1A during the cell cycle, DNA damage, cell cycle arrest, senescence, and
apoptosis (Lai et al. 2013).

1.3.3 miRNA Cooperativity: Synergistic Gene Regulation by
Multiple miRNAs

Two research teams have independently confirmed that miRNA pairs with binding
sites that are in close proximity in a mutual target gene can show cooperative
behavior. In other words, the effect of their combined repression is higher than the
sum of the individual effects. Sætrom and coworkers experimentally determined the
optimal distance between miRNA binding sites facilitating miRNA cooperativity.
The optimal range is for the seed sites to be 13–35 nt apart. Based on this criterion,
Lai and collaborators identified multiple pairs of putatively cooperating miRNAs in
the 30 UTR of the miRNA target hub CDKN1A (Lai et al. 2012a). They then
validated the cooperative repression of CDKN1A exerted by miR-572 and miR-93
using a luciferase reporter system as well as immunoblotting. When they extended
the computational analysis to the whole human genome, they identified thousands of
putatively cooperating miRNA pairs and their mutual target genes (Schmitz et al.
2014). Since then, other groups have confirmed cooperative miRNA regulation in
other genes, some of which are related to cancer (Bogusławska et al. 2018;
Vandenwijngaert et al. 2018). The possibility that miRNAs act in a cooperative
manner has consequences for miRNA-based therapies. Utilizing this synergistic



effect in a miRNA replacement therapy would reduce the overall miRNA concen-
tration required to effectively diminish the target gene expression and thereby reduce
off-target effects (Lai et al. 2019). Lai et al. explored this idea and investigated the
therapeutic use of cooperative miR-205-5p and miR-342-3p in the repression of their
mutual target E2F1 in the context of cancer chemoresistance (Lai et al. 2018). Their
computational model-driven analysis was confirmed by in vitro functional experi-
ments. Most recently, it was shown that the biochemical basis of miRNA
cooperativity is regulated by TNRC6. The presence of the AGO-binding region in
TNRC6 prevents dissociation of miRISCs from closely spaced target sites on mRNA
and therefore improving their binding affinities (Briskin et al. 2020) (Fig. 1.4).
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Fig. 1.4 Model of miRNA cooperativity with or without TNRC6 participation. Proximal miRNA
binding sites on the target mRNA can result in cooperative gene repression by two miRNAs.
TNRC6 can decrease the dissociation rate of miRISCs (formed by a miRNA and AGO) from the
mRNA. Because TNRC6 simultaneously binds to two miRISCs, when one miRISC dissociates
from the mRNA, TNRC6 could prevent the dissociation of the other miRISC, therefore allowing for
rebinding of the disassociated miRISC

1.3.4 Network Motifs: miRNA-Enriched Feedback
and Feedforward Loops

A network motif is a regulatory structure involving several genes, which recurringly
appears in large biochemical networks (Alon 2007; Lai et al. 2016). One can
consider miRNA target hubs as a type of network motif, but the term was coined



for feedback and feedforward loops. It is known for a long time that some central
genes, especially TFs, are integrated into multiple instances of these loops and hence
it is not a surprise to find a similar occurrence for miRNAs, their TFs, and their tar-
gets. Here, we discuss some examples of network motifs and their role in cancer
biology.
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Feedback loops In feedback loops, the regulation between molecules forming a
closed loop allows state changes or self-regulation of a system. A positive feedback
loop often induces signal amplification or sustained system (de)activation. We have
found a myriad of feedback loops distorted in cancer, which integrated oncogenes
and oncomirs. A well-studied case of a positive feedback loop in cancer is the one
established by p53 and miR-34a with the mediation of the oncogene SIRT1 (SIRT1
a p53 ! miR-34a a SIRT1). SIRT1 is overexpressed in several tumors, including
melanoma, and through this circuit, it can impair the p53-mediated DNA damage
and anti-proliferative response (Wilking et al. 2014; Lai et al. 2012b). miR-34a is
considered a tumor suppressor and happens to be downregulated in some cancers
(Zhang et al. 2019). Researchers also found an abundance of positive feedback loops
involving cytokines, their signaling pathways, and downstream TFs, which play a
central role in amplifying and (de)regulating the immune response in the tumor
microenvironment (Jia et al. 2017). A special form of a positive feedback loop is
called a toggle switch. For example, the mutual repression of a TF and its miRNA
target can become a toggle switch. These motifs can display a nonlinear regulation
named all-or-nothing. Specifically, the expression of one of the components
represses the other in a sustained manner. The well-known and investigated case is
the one established by ZEB1 and the miR-200 family (Fig. 1.5c), which plays a
pivotal role in the abnormal epithelial-to-mesenchymal transition in cancer (Burk
et al. 2008). A negative feedback loop often induces the quick cessation of signaling
like the NF-kB pathway (Hoffmann et al. 2006; Inoue et al. 2016). They can also
induce homeostasis and hence are employed to fine-tune signaling and gene expres-
sion and maintain levels of activity of their components against noise and fluctuation
(Dublanche et al. 2006; Zhang et al. 2012). The Ras/Raf/MEK/ERK pathway is a
well-known example of a pathway with multiple negative feedback loops which
control cell proliferation and can get distorted in cancer (Lake et al. 2016). Not
surprisingly, in recent years several research groups have found miRNAs that
regulate the Ras/Raf/MEK/ERK pathway creating negative feedback loops and
thereby suppressing cell growth and invasion. However, these miRNAs are often
downregulated in cancer (Guo et al. 2019; Ghousein et al. 2020). There are other
more sophisticated means of distortion in miRNA-mediated negative feedback
loops. This is the case for the E2F1-p73/DNp73-miR-205 circuit. miR-205 represses
E2F1 and is simultaneously activated by p73 a target of E2F1, therefore forming a
negative feedback loop (Fig. 1.5d) (Vera et al. 2013). However, in some cancers,
there is a shift toward an alternative splice isoform of p73 named DNp73, which
represses miR-205 and amplifies E2F1 expression. This is often observed in aggres-
sive tumors, such as malignant melanoma and lung adenocarcinoma, and can lead to
the development of metastasis (Vera et al. 2013; Müller and Bosserhoff 2008).
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Fig. 1.5 A zoo of miRNA-mediated network motifs. (a) Example of a miRNA cluster. The
miR-17-92 cluster composed of 6 miRNAs (indicated by arrows) is located in an intron of the
miR-17-92 cluster host gene (MIR17HG). miR-17-92 cluster expression is regulated by the TF
c-Myc. miR-17-92 cluster members repress transcripts of the E2F1 gene family. (b) An example of
a miRNA target hub gene. The gene CDKN1A is a miRNA target hub with at least 22 predicted
miRNA binding sites in its 30 UTR. (c) An example of a positive feedback loop. ZEB1 and
miR-200c repress the expression of one another, thereby forming a positive feedback loop. In
addition, p53 activates transcription of miR-200c and miR-200c inhibits translation of stem cell
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Fig. 1.5 (continued) factors, such as BMI1. p53 stimulates expression of miR-200c, thereby driving
epithelial differentiation and counteracting epithelial–mesenchymal transition (EMT) and stemness.
(d) An example of a negative feedback loop. The TF E2F1 promotes the transcription of P73, which
can upregulate the expression of miR-205. In turn, miR-205 represses E2F1, thereby forming a
negative feedback loop. (e) An example of a coherent feedforward loop. Two signaling pathways
can lead to upregulation of E2F1-related cell apoptosis—one via pro-apoptotic gene BAX and the
other via anti-apoptotic gene BCL2 targeted by miR-205. (f) An example of an incoherent
feedforward loop. SXO10 can regulate cell migration in an inconsistent manner—one pathway
promotes it and the other suppresses it via miR-338 and miR-335

1 The Role of MicroRNAs in Cancer Biology and Therapy from a Systems. . . 17

Feedforward loops Another frequently observed network motif involving
miRNAs, TFs, and their mutual targets are feedforward loops (Lai and Vera
2013c). In such motifs, the TF regulates both the target gene and the miRNA,
while the miRNA inhibits the mutual target. In this way, the TF regulates the target
via two or more branches, i.e., directly via transcriptional regulation and indirectly
via miRNA-mediated gene repression. While the notion of feedback loops is firmly
imprinted in the experimentalist’s way of thinking, feedforward loops have received
little attention until recently (Jiang et al. 2019). We can distinguish two types of
these loops: (1) a coherent feedforward loop, when the TF regulation is consistent
through the two branches, (2) an incoherent feedforward loop when the TF regula-
tion is inconsistent. Coherent feedforward loops can act as a safeguard mechanism,
i.e., the effect on a downstream target is triggered only if both branches of the loop
are active at the same time. This is the case for the feedforward loop established by
E2F1, p73, and its apoptosis-related targets, which is mediated by miR-205 (Vera
et al. 2013). Triggering apoptosis requires the expression of the pro-apoptotic targets
of E2F1 and the coordinated repression of the anti-apoptotic protein BCL2 by
miR-205 (Fig. 1.5e). Since both processes must occur simultaneously, this provides
a window of opportunity for the cell to either confirm or prevent the irreversible
activation of apoptosis. In the case of the E2F1-p73/DNp73-miR-205 circuit,
miR-205 expression is inhibited via the oncogenic DNp73 splice isoform of p73
preventing apoptosis of some aggressive tumors. Incoherent feedforward loops can
also induce sophisticated regulatory patterns. In recent publications (Reiprich et al.
2017; Cantone et al. 2019), researchers detected a plethora of feedforward loops
linked to cell differentiation. Many of these motifs involve interactions between
miRNAs and the SOX family, whose deregulation is critical in melanoma patho-
genesis (Graf et al. 2014). One of the loops detected by Reiprich and his coworkers
involves the TFs SOX10 and SOX9, the SOX9-repressing miR-338 and miR-335,
and mutual targets of the TFs that promote cell migration. The authors hypothesized
that the incoherent feedforward loop established (SOX10! target! cell migration;
SOX10 ! miR-338/335 a SOX9 ! target ! cell migration) can generate a time
window during differentiation, in which cell migration is possible because of the
concerted activation of SOX10 and SOX9 (Fig. 1.5f). Beyond this period, SOX10-
mediated activation of the two miRNAs represses SOX9 and the cells lose their
migratory capacity. Sustained migratory capacity can be an advantage for metastatic
tumors like melanoma and therefore the repression of this type of loop could be
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advantageous. Interestingly, miR-335 is repressed in metastatic melanoma (Cheng
and Shen 2020), while SOX10 is overexpressed.

1.4 Bioinformatics and Systems Approaches
as the “Lifeline” to Navigate miRNA Networks

As a single miRNA can have many targets, the effective regulation of its target genes
may depend on other interacting molecules like lncRNAs and RNA binding pro-
teins. Often, multiple miRNAs target the same central cancer gene or genes belong-
ing to the same cancer pathway. The expression of each miRNA is regulated by
different TFs, and miRNAs are entangled with their TFs and targets in feedback and
feedforward loops. As a final point, these regulatory events do not happen in
isolation, but they form large, densely connected regulatory networks of miRNAs,
TFs, lncRNAs, and gene targets. The only way to navigate this level of complexity,
gain insights into oncogenesis, and design personalized therapies is to develop and
apply a systematic approach. Specifically, high-throughput molecular data (e.g.,
transcriptomes and proteomes) are analyzed and integrated utilizing bioinformatics
algorithms and computational models. Bioinformatics algorithms that focus on the
genome scale can be used to identify novel miRNA genes (Stegmayer et al. 2019),
miRNA targets (Saçar Demirci et al. 2019), and mutations within miRNA binding
sites (Ryan et al. 2016) or to detect miRNA clusters (Chan et al. 2012) and miRNA
regulatory hubs (Mukherjee et al. 2019). Network-based analysis of omics data can
be utilized to detect deregulated miRNA-mediated feedback and feedforward loops
and to obtain core regulatory subnetworks important for the regulation of tumor
initiation, progression, and therapy resistance (Dreyer et al. 2018). Finally, when
considering the spatiotemporal dynamics of these circuits, one can utilize computa-
tional modeling (Vera et al. 2013; Lai et al. 2016). Ultimately, all these tools can be
employed to obtain predictive gene signatures for cancer progression or stratification
(Hayes et al. 2014) or to detect therapeutic miRNA targets (Lai et al. 2019).
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Chapter 2
Circulating MicroRNAs as Cancer
Biomarkers in Liquid Biopsies

Beatriz Suárez, Carla Solé, Maitane Márquez, Francesca Nanetti,
and Charles Henderson Lawrie

Abstract Biological fluids such as blood, saliva, and urine offer a rich source of
biomarkers that have the potential to change the paradigm of cancer management.
By allowing routine noninvasive sampling that can offer new insights into cancer
progression and response to treatment so-called liquid biopsies can play an important
role in personalized medicine. MicroRNAs (miRNAs) are a particularly attractive
class of biomarkers as they are not only resistant to the high levels of RNases found
in biological fluids, but also able to confer clinically useful information about the
disease relating to diagnosis, prognosis, and the response to treatment. Circulating
miRNAs are either associated with proteins or extracellular vesicles (EV) and
although their origin and implied functions as intracellular messengers remain
somewhat controversial, they are implicated in the progression and the establishment
of metastatic niches. In this chapter, we review the rapidly emerging field of
circulating miRNA cancer biomarkers, their origin and function, techniques to detect
these molecules, and the use of bioinformatic tools to derive implied regulatory
function, as well as the challenges that lie ahead for their clinical implementation.
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Abbreviations

ABs Apoptotic bodies
AC Adjuvant chemotherapy
ADC Adenocarcinoma
AFP Alpha-Fetoprotein
Ago1/2 Argonaute 1 or 2
AGO CLIP-seq Argonaute-crosslinking and immunoprecipitation sequencing
ALIX ALG-2-interacting protein X
AMPS Acute multiple sclerosis plaques
ARF6 (Adenosine diphosphate)-ribosylation factor 6
ATG7 Autophagy-related 7 protein
ATG12 Autophagy-related 12 protein
ATP6V1E1 V-Type proton ATPase subunit E 1
AUC Area under the curve
BC Breast cancer
BCa Bladder cancer
BCR Biochemical recurrence
BCT Benign colorectal tumor
BFS Breadth first search
BGD Benign gastric disease
BI-RADS Breast imaging reporting and data system
BM Bone marrow
Biomark. Biomarker
BPH Benign prostate hyperplasia
C Chemotherapy
CA19–9 Carbohydrate antigen 19–9
CA72–4 Cancer antigen 72–4
CAG Chronic atrophic gastritis
CAGE Cap analysis of gene expression
Cancer GAMAdb Cancer genome-wide association and meta-analyses database
CC Cervical cancer
ccRCC Clear cell renal cell carcinoma
CDB Colorectal benign disease
CDS Coding sequence
CEA Carcinoembryonic antigen
cfRNA Circulating free RNA
CHB Chronic hepatitis B
ChIP Chromatin immunoprecipitation
CIN Cervical intraepithelial neoplasia
circRNA circular RNA
CLASH Cross-linking, ligation and sequencing of hybrids
CLEAR-CLIP Covalent-ligation of endogenous ago-bound RNAs-CLIP

sequencing
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CLIP-seq Cross-linking immunoprecipitation sequencing
CLL Chronic lymphocytic leukemia
CMEP Circulating microRNA expression profiling
CNS Central nervous system
COPD Chronic obstructive pulmonary disease
COSMIC Catalogue of somatic mutations in cancer
CR Chemoresistant
CRC Colorectal cancer
CRPs Ceramide-rich platforms
CS Chemosensitive
CSD Cold-shock domain
CSF Cerebro spinal fluid
CT Computed tomography
CTCs Circulating tumor cells
CtDNA Circulating tumor-associated DNA
CtRNA Circulating tumor-associated RNA
D Diagnostic
DAVID Database for annotation, visualization and integrated discovery
dbDEMC Database of differentially expressed miRNAs in human cancers
DbGaP Database of Genotypes and Phenotypes
DDBJ DNA Data Bank of Japan
ddPCR Droplet digital PCR
DFS Disease-free survival
DgC Digestive cancer
DLBCL Diffuse large B-cell lymphoma
EC Endometrial cancer
EFS Event-free survival
ELISA Enzyme-linked immunosorbent assay
ENCODE Encyclopedia of DNA elements
EOC Epithelial ovarian cancer
ESCC Esophageal squamous cell carcinoma
ESCRT Endosomal sorting complexes required for transport
EV Extracellular vesicle
Exp Expression
Exo Exosome
FANTOM Functional annotation of the mammalian genome
FBLs Feed-back loops
FDA-NIH Food and Drug Administration and National Institute of Health
FFLs Feed-forward loops
FMR1 Fragile X Mental Retardation
FOLFIRI Folinic acid, fluorouracil and irinotecan
FOLFOX 5-Fluorouracil, leucovorin, and oxaliplatin
FPC Familial pancreatic cancer
GBM Glioblastoma multiforme
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G3BP1 GTPase activating protein (SH3 Domain) binding protein 1
GC Gastric cancer
GEO Gene expression omnibus
GO Gene ontology
GPL Gastric precancerous lesions
GRO/PRO-Seq Global and precision nuclear run-on sequencing
GW182 Glycine-tryptophan protein of 182 kDa
GWAS Genome-Wide Association Study
H3K4me3 Trimethylation at the fourth lysine residue of the histone H3

protein
H3K36me3 Tri-methylation at the 36th lysine residue of the histone H3

protein
H3K27Ac Acetylation at the 27th lysine residue of the histone H3 protein
H3K4me1 Monomethylation at the fourth lysine residue of the histone H3

protein
HC Healthy control
HCC Hepatocellular carcinoma
HDL High-density lipoprotein
hEXO GGCU/A sequence
HITS-CLIP High-throughput sequencing of RNA isolated by crosslinking

immunoprecipitation
HMDD Human MicroRNA Disease Database
HnRNPA2B1 Heterogeneous nuclear ribonucleoproteins A2/B1
HnRNPK Heterogeneous nuclear ribonucleoprotein K
HnRNPU Heterogeneous nuclear ribonucleoprotein U
HNSCC Head and neck squamous cell carcinoma
HOTTIP HOXA distal transcript antisense RNA
Hp Helicobacter pylori
Hrs Hepatocyte growth factor [HGF]-regulated tyrosine kinase

substrate
HOTAIR Hox transcript antisense intergenic RNA
HSP70/90 Heat shock protein 70 or 90
IGM Idiopathic granulomatous mastitis
ILVs Intraluminal vesicles
INDELs Insertion/Deletion
IP-seq Immunoprecipitation sequencing
ITGαvβ Integrin subunit beta 1
KEGG Kyoto Encyclopedia of Genes and Genomes
KPS Karnofsky performance scale
KRAS Kirsten Rat Sarcoma Viral (Proto)-Oncogene
LARP1 La ribonucleoprotein 1
LC Lung cancer
LC3 Microtubule-associated protein 1 light chain 3 alpha
LDELS LC3-dependent EV loading and secretion
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LDL Low-density lipoproteins
LIR LC3 interaction region
lncRNA Long non-coding RNA
LUAD Lung adenocarcinoma
MALAT1 Metastasis associated lung adenocarcinoma transcript 1
MDS Myelodysplastic syndrome
MEG3 Maternally expressed 3
MGUS Monoclonal gammopathy of undetermined significance
MIAME Minimum Information About a Microarray Experiment
MiRNA MicroRNA
MRI Magnetic resonance imaging
MS Median survival
MVBs Multivesicular bodies
ncRNAs non-coding RNAs
NEAT1 Nuclear enriched abundant transcript 1
NHGRI The National Human Genome Research Institute Catalog
NGS Next generation sequencing
NN Neural network
NRAS Neuroblastoma RAS viral oncogene homolog
NSCLC Non-small cell lung cancer
nSMAse2 Neutral sphingomyelinase 2
NURR N-terminal unit for RNA recognition
OC Ovarian cancer
OS Overall survival
OS Osteosarcoma
OSCC Oral squamous cell carcinoma
PA Pituitary adenoma
PAR-CLIP Photoactivatable ribonucleoside-enhanced crosslinking and

immunoprecipitation
PC Pancreatic cancer
PCa Prostate cancer
PCAT1 Prostate cancer associated transcript 1
PCNSL Primary central nervous system lymphoma
Pd Predictive
PD Progressive disease
PDAC Pancreatic ductal adenocarcinoma
PD-1 Programmed death 1
PD-L1 Programmed death-ligand 1
PE Phosphatidylethanolamide
PET Positron emission tomography
PFS Progression-free survival
Pg Prognostic
PID Pathway Interaction Database
piRNA Piwi-associated RNAs
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POM1 1-Month post-operation
POM6 6-Month post-operation
PR Partial response
PS Phosphatidylserine
PSA Prostate-specific antigen
PTENP1 Phosphatase and tensin homolog pseudogene 1
PVT1 Plasmacytoma variant translocation 1
R Responders
RBP RNA-binding proteins
RCC Renal cell carcinoma
Ref Reference
RIP-Seq RNA immunoprecipitation sequencing
RISC RNA-induced silencing complex
RFS Recurrence-free survival
RILP Rab interacting lysosomal protein
RPF-Seq Ribosome profiling sequencing
RRM RNA recognition motif
RT-qPCR Quantitative reverse transcription PCR
SACC Salivary adenoid cystic carcinoma
SAFB Scaffold attachment factor B
SCC Squamous cell carcinoma
SCCA Squamous cell carcinoma antigen
SCLC Small cell lung cancer
SF3A1 Splicing factor 3a subunit 1
Sm Smoker
SNP Single nucleotide polymorphism
SnRNA Small nuclear RNA
SnoRNA Small nucleolar RNA
SPRY4-IT1 SPRY4 intronic transcript 1
SRA Short read archive
SR-BI Scavenger receptor class B type I
SVM Support vector machine
SYNCRIP Synaptotagmin-binding cytoplasmic RNA-interacting protein
TCGA The Cancer Genome Atlas
TDEs Tumor-derived exosomes
TFs Transcription factors
TKI Tyrosine kinase inhibitor
TLR8 Toll-like receptor 8
TME Tumor microenvironment
TMVs Tumor-derived microvesicles
TNM Tumor-node-metastasis
TRBP Transactivation response RNA-binding protein
TRNAs transfer RNA
TSG101 Tumor susceptibility gene 101 protein
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TSSs Transcriptional start sites
UCA1 Urothelial cancer associated 1
UCB Urotherial carcinoma of the bladder
UTR Untranslated region
US Urinary sediment
VCAMP3 Vascular cell adhesion molecule
XELOX Capecitabine plus oxaliplatin
YBX1 Y box binding protein 1

2.1 Introduction

Cancer is the primary cause of death before the age of 70 years in 91 out of
172 countries worldwide, and there are more than 18 million new cases and 9 million
mortalities caused by cancer every single year (Bray et al. 2018). Early diagnosis of
cancer is a critical factor in improving the survival of cancer patients, that in turn
depends upon the availability of suitably robust biomarkers and the widespread
technology to detect these biomarkers. Biomarkers are defined by the FDA-NIH as
“a defined characteristic that is measured as an indicator of normal biological
processes, pathogenic processes, or responses to an exposure or intervention, includ-
ing therapeutic interventions” (Group F-NBW 2016; Califf 2018). In general, cancer
biomarkers can be categorized as (1) diagnostic biomarkers, to detect whether a
patient has a particular medical condition; (2) prognostic biomarkers that indicate an
increased (or decreased) likelihood of a future clinical event, disease recurrence, or
progression in an identified population; and (3) predictive biomarkers that measure
the likelihood of response or lack of response for a particular therapy. There are
many technologies available for the detection of biomarkers at both research and
clinical levels. In the cancer clinic, this can involve medical history file review,
physical examination, diagnostic procedures (e.g., bronchoscopy, endoscopy, and
lumbar punch), imaging tests (e.g., X-ray, PET, CT, MRI, and ultrasound), histo-
logical examination, biochemical analysis of blood or urine, and increasingly the use
of genetic and molecular tests, most commonly carried out on biopsy material but
increasingly in biological fluids (i.e., liquid biopsies).

Biological fluids, most commonly blood, but also plasma, urine, pleural fluid,
cerebrospinal fluid (CSF), and saliva, represents a rich source of nucleic acid bio-
markers (Fig. 2.1). These can come from circulating tumor cells (CTCs), extracel-
lular vesicles (EV) or be free-floating, and include circulating tumor-associated
DNA (ctDNA), circulating tumor-associated RNA (ctRNA), microRNAs
(miRNAs), and other noncoding RNAs (ncRNAs) (Alix-Panabières and Pantel
2016; Schwarzenbach et al. 2014; Panagiotara et al. 2017; Michela 2021; Sole
et al. 2019).

MiRNAs are single-strand small (20–23 nucleotides length) noncoding RNAs
that posttranscriptionally regulate gene expression (Rupaimoole and Slack 2017).
They constitute 1% of the human genome and regulate more than 50% of protein-
coding genes in mammals (Hsu et al. 2006). MiRNAs bind to complementary or near



complementary sequences in the 30-untranslated regions (30-UTR) of their messen-
ger RNA (mRNA) targets, and occasionally to 50-UTR or coding sequences. They
act primarily by post-transcriptional reduction of translation or through direct deg-
radation of their target mRNA (Bartel 2004), although other noncanonical pathways
also exist (Cullen 2004).
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Fig. 2.1 MicroRNA synthesis and release into circulation. MiRNA genes are transcribed by RNA
Polymerase II and III into pri-miRNAs, which are processed by Drosha and DGCR8 enzymes to
produce pre-miRNAs. The pre-miRNAs are exported to the cytoplasm, where they are cleaved by
the action of Dicer/TRBP/PACT complex to form the miRNA duplex intermediate. Then, the
interaction with Ago and the RISC complex allows the final maturation of miRNAs. Apart from
other passive release mechanisms, miRNAs can then be delivered out of the donor cells thanks to
the binding to RNA-binding proteins (RBPs), lipoproteins, or encapsulation within extracellular
vesicles. The extracellular vesicles can be generated either through the shedding of the plasma
membrane or the formation of multivesicular bodies containing intraluminal vesicles that fuse with
the plasma membrane. The released miRNAs can be detected in different human fluids including
urine, blood, saliva, cerebrospinal fluid (CSF), or sputum and therefore be used as biomarkers

Although the gold standard for cancer diagnosis remains the histological exam-
ination of tissue biopsy, such procedures are expensive, sometimes risky, and require
consistent evaluation by expert pathologists. Liquid biopsies are an attractive alter-
native as their noninvasive nature allows for rapid, economical, and repeated
sampling, characteristics that would allow their use in screening programs and the
monitorization of treatment response and disease progression for a more personal-
ized approach to cancer management. Furthermore, the use of core tissue biopsies, in
particular, has been called into question recently as intra-tumoral heterogeneity can
be associated with false negatives, potentially leading to undertreatment of patients,



especially when biomarker expression is low, such as is the case for the widely used
immunotherapy biomarker PD-L1 (López et al. 2018). Liquid biopsies, in contrast,
can capture the entire genetic panorama of the tumoral landscape.
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The history of circulating nucleic acids dates back to the 1940s, when Mandel and
Mètais identified DNA and RNA in the plasma of healthy individuals (Mandel and
Metais 1948). This remained something of an oddity until 1994 when circulating
KRAS DNA mutations were identified in the plasma of pancreatic cancer
(PC) patients and, in another study, circulating NRAS mutations were identified in
myelodysplastic syndrome (MDS) patients, opening the possibility of their use as
cancer biomarkers (Sorenson et al. 1994; Vasioukhin et al. 1994). The first mention
of circulating free RNA (cfRNA) came 5 years later in 1999, when it was identified
in the blood of nasopharyngeal carcinoma patients (Lo et al. 1999). In 2008,
circulating miRNAs were identified in the sera of diffuse large B-cell lymphoma
(DLBCL) patients, and a few months later in the sera of prostate cancer (PCa)
patients (Lawrie et al. 2008; Mitchell et al. 2008).

Circulating miRNAs, in particular, have generated much interest in recent years
as in addition to the advantages listed above for circulating biomarkers, the small
size of circulating miRNAs not only makes them much more stable than other RNA
types, but they are also present in extracellular vesicles providing a potentially
tumor-enriched source of biomarkers. In this chapter, we consider the accumulating
evidence that circulating miRNAs are useful cancer biomarkers and the challenges
that remain before they enter routine clinical practice.

2.2 Circulating miRNAs

The labile nature of RNA and the presence of RNases at high concentrations in
biological fluids has been well-known for many years (Duttagupta et al. 2011). It
was therefore somewhat surprising when miRNAs were identified in blood, and
furthermore that they were stable and protected from RNase degradation (Mitchell
et al. 2008). Subsequent studies that used detergents, proteases, and sonication
suggested that miRNAs are not inherently resistant to RNase degradation but are,
in fact, protected by their association with a carrier protein or lipid, either associated
with extracellular vesicles or free-floating (Mitchell et al. 2008; Chen et al. 2008;
Kosaka et al. 2010a).

MiRNAs appear to be ubiquitously present in biological fluids and have been
detected not only in blood but also in plasma, serum, saliva, urine, tears, semen,
cerebral spinal fluid, milk, and ocular fluid (Weber et al. 2010; Fleischhacker and
Schmidt 2010). The origin of circulating miRNAs remains somewhat controversial
and there are at least three different non-mutually exclusive mechanisms that have
been identified (Turchinovich et al. 2012; Chatrchyan et al. 2011). Firstly, the
passive release of miRNAs from broken cells and tissues following injury, chronic
inflammation, cell apoptosis or necrosis, or from cells with a short half-life, such as
platelets. Secondly, by the active secretion of miRNAs contained within cellular



fragments of EVs such as exosomes, microvesicles, and microparticles (Mitchell
et al. 2008; Aguda et al. 2008; Ismail et al. 2013; Valadi et al. 2007a). Thirdly, by
active secretion of miRNAs associated with RNA-binding proteins (RBP) forming
conjugated complexes such as lipoproteins (Vickers et al. 2011), nucleophosmin
(Wang et al. 2010; Aad et al. 2010), or Argonaute 1 and 2 (Ago1 and Ago2) (Arroyo
et al. 2011; Turchinovich et al. 2011) (Fig. 2.1). Among lipoproteins, the most
commonly associated with circulating miRNAs are High-Density Lipoproteins
(HDL) and, to a lesser extent Low-Density Lipoproteins (LDL) (Wagner et al.
2013). The Scavenger Receptor class B type I (SR-BI) appears necessary for the
uptake of HDL–miRNA complexes on recipient cells and to prevent the degradation
at the lysosomes once they have been internalized in the cell (Vickers et al. 2011).
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In addition to being free-floating, RBPs can also be present within EVs,
representing up to 25% of the protein content (Sork et al. 2018). There are several
types of EVs that are classified according to size along with their respective
mechanism of origin (Fig. 2.1). Exosomes, for example, are vesicles of
30–150 nm in size generated by invagination of the plasma membrane forming
intraluminal vesicles (ILVs) within multivesicular bodies (MVBs) (Johnstone et al.
1987; Raposo et al. 1996; Colombo et al. 2014). Exosomes can be differentiated
from other EVs due to their sedimentation by ultracentrifugation at 100,000 g, the
expression of specific surface markers such as tetraspanins (CD63, CD81, and CD9),
flotillin, as well as an enrichment in Rab GTPases, ALIX, TSG101, HSP70, and
HSP90 proteins in the lumen (Escola et al. 1998; Buschow et al. 2009; Tauro et al.
2012; Wubbolts et al. 2003). On the other hand, microvesicles (MVs) are vesicles of
50–1000 nm in size that are generated by direct budding and fission of the plasma
membrane (Cocucci et al. 2009). MVs can be differentiated from other EVs because
they sediment at 10,000–60,000 g and also express specific surface markers includ-
ing β-integrins, CD40, P-selectin (CD62), ARF6, Annexin A1, and VCAMP3
(Heijnen et al. 1999; Jeppesen et al. 2019; Muralidharan-Chari et al. 2009). Apo-
ptotic bodies (ABs) are vesicles of 500–4000 nm in size that are generated from
plasma membrane blebbing through apoptopodia formation or “beads-on-a-string”
protrusions (Poon et al. 2014; Atkin-Smith et al. 2015). ABs sediment at 10,000 g
and express phosphatidylserine (PS), annexin V, thrombospondin and C3b, and
contain genomic DNA fragments, histones, and cell organelles (Fadok et al. 1998;
van Engeland et al. 1998; Savill et al. 1992; Takizawa et al. 1996; Akers et al. 2013).

The most commonly found RBPs associated with EVs are themselves compo-
nents of the miRNA processing machinery. For example, during exosome matura-
tion, such as in late endosomes and MVB, GW182 interacts with Ago2 to protect
loaded miRNAs from 30–50 exoribonuclease complex degradation (Wood et al.
2012). GW bodies are cytoplasmic foci where GW182 and Ago2 congregate with
untranslated mRNAs, frequently co-localized with multivesicular bodies resulting in
the preferential delivery of single-stranded mature miRNAs into exosomes
(Gibbings et al. 2009). However, in pathological conditions such as cancer,
double-stranded pre-miRNAs can also be delivered along with other RBPs. In
tumor-derived microvesicles (TMVs), pre-miRNAs are complexed with the RISC
components Dicer and Ago2 but also with Exportin-5 (Clancy et al. 2019). Exportin-



5 binds to double-stranded pre-miRNA in the nucleus, facilitating the crossing from
the nuclear envelope to the cytoplasm and the trafficking of the pre-miRNA complex
into shedding TMVs. In tumor-derived exosomes (TDEs), pre-miRNAs are associ-
ated with Ago2 and Dicer but also with another component of the RISC complex,
TRBP (Melo et al. 2014).
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The mechanisms of RBP–RNA complex formation within EVs remain largely
unknown. In the case of exosomes, several different cell-specific mechanisms have
been proposed. For example, one mechanism involves the ESCRT (Endosomal
Sorting Complexes Required for Transport) complex and accessory protein, ALIX,
that together bind to Ago2 and associated miRNAs, thereby favoring incorporation
into exosomes (Iavello et al. 2016). An ESCRT-independent mechanism, involves
the recruitment and activation of nSMAse2 within the lipid rafts of the MVB
membrane, resulting in the transformation of sphingomyelin into phosphocholine
and ceramide, leading to polymerisation of the ceramide molecules to create
ceramide-rich platforms (CRPs), which can act as ILV budding sites (Trajkovic
et al. 2008). Free RNA can be directly recruited to the EVs via its secondary
structure, which can form a motif with an affinity for lipid rafts (Janas et al. 2006;
Mańka et al. 2021) and the posttranscriptional addition of hydrophobic groups to
RNA can increase potential interactions with these domains (Janas et al. 2012; Janas
et al. 2015). In addition, RNAs can also bind to RBPs such as hnRNPA2B1, which
have high affinity for CRPs (Villarroya-Beltri et al. 2013).

RBPs are not only responsible for the loading of RNA into exosomes, but can do
so selectively in response to different stimuli. For example, inflammation causes
caspase-1 to cleave RILP, which in turn mediates the interaction at the cell periphery
of the ESCRT-0 component, Hrs, and the RBP FMR1 along with specific miRNAs
containing the AAUGC motif, as well as the transport of the MVB (Wozniak et al.
2020; Progida et al. 2006; Wang and Hong 2006; Jordens et al. 2001). Upon serum
starvation, an ESCRT-independent pathway, the LC3-Dependent EV Loading, and
Secretion (LDELS) pathway, becomes activated. LC3 is present in the ILVs within
the MVB and interacts with ATG7 (Autophagy Related 7) and ATG12 (Autophagy
Related 12) proteins, to mediate conjugation with phosphatidylethanolamine
(PE) once LC3 is cleaved, to generate LC3-II (Leidal and Huang 2020). LC3-II
captures proteins within the MVB limiting membrane, incorporating them into ILVs
for subsequent release as exosomes (Leidal and Huang 2020). Several RBPs can
bind to LC3-II through the LIR (LC3 Interaction Region) including SAFB (Scaffold
Attachment Factor B), hnRNPK, G3BP1 (GTPase Activating Protein (SH3 Domain)
Binding Protein 1), LARP1 (La Ribonucleoprotein 1), and SF3A1 (Splicing Factor
3a Subunit 1) (Leidal and Huang 2020). LC3 indirectly stimulates nSMAse2 thereby
promoting ILVs budding (Leidal and Huang 2020), in addition to regulating MVB
acidification through the interaction with ATP6V1E1, a subunit of the V1V0-
ATPase, controlling exosome release (Guo et al. 2017). However, RBPs do not
always favor RNA loading into EVs but can also act to retain RNA within the donor
cell. HnRNPU, for example, binds miRNA targets containing the AA/UGCU motif
within the nucleus thereby reducing their cytoplasmic abundance and consequently
their availability for vesicular export (Zietzer et al. 2020).
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The sequence, secondary/tertiary structures, and posttranscriptional modifications
of RNAs can also coordinate the loading into EVs. For example, miRNAs
containing 50-phosphorylated adenine or uracil residues are preferentially bound to
Ago2 through their MID (Middle) domain (Frank et al. 2010), whereas the presence
of a 30 UUU motif favors interaction with the Lupus La protein and its packaging
into exosomes (Temoche-Diaz and Shurtleff 2019). The EXO motif (GGAG) allows
the binding of sumoylated hnRNPA2B1, which promotes miRNA loading into
exosomes (Villarroya-Beltri et al. 2013; Wu et al. 2018), and similarly, the presence
of a hEXO motif (GGCU) allows the interaction with the NURR (N-terminal Unit
for RNA Recognition) domain of SYNCRIP (Synaptotagmin-binding Cytoplasmic
RNA-Interacting Protein hnRNP-Q or NSAP1) (Santangelo et al. 2016). MiRNAs
that can also interact with the RNA-binding region generated by the restructuration
of the three RRM (RNA Recognition Motif) domains of SYNCRIP increase their
binding affinity (Hobor et al. 2018). Another RBP, YBX1, can bind to specific RNA
sequences through its cold-shock domain (CSD) or alternatively non-specifically, in
a structural dependent manner, through its C-terminal domain (Kleene 2018). This
protein can also co-localize with GW bodies regulating the sorting of tRNAs,
snRNAs, H/ACA and C/D box snoRNAs, Y RNAs, and Vault RNAs into exosomes
(Goodier et al. 2007; Gallois-Montbrun et al. 2007; Shurtleff et al. 2017).

Posttranscriptional modifications such as 30-terminal 20-O-methylation can
increase the stability of miRNAs (and piRNAs) by avoiding 30-50 exoribonucleases
degradation which can enhance the affinity for Ago2 (Lambowitz et al. 2007; Ohara
et al. 2007; Liang et al. 2020). The addition of non-template nucleotides at the 30 end
of miRNAs can also alter their cell distribution, as it has been observed that miRNAs
with 30 adenylated ends, especially accumulate in the cytoplasm, whereas 30 end
uridylated miRNAs are enriched at the exosomes (Lambowitz et al. 2007).

2.3 Function of Circulating miRNAs

It remains unclear whether the release of circulating miRNAs from cells is selective
or passive (or both). For example, Turchinovich et al. found that the majority of
circulating miRNAs are not associated with EVs but free-floating, leading the
authors to suggest that they are by-products of dead cells (Turchinovich et al.
2011). Consistent with this concept many other authors have reported that even
when miRNAs are in EVs they reflect the expression of the host cells in a passive
manner. For example, Zhou et al. found that the upregulation of miR-105 in
metastatic breast cancer cells was mirrored in exosomes (Zhou et al. 2014), as did
Fang et al. who demonstrated increased levels of miR-1247-3p in both tissues and
serum exosomes from hepatocellular carcinoma (HCC) patients (Fang et al. 2018).
In contrast, many studies have shown that the composition of circulating miRNAs
either free-floating or associated with EVs differs greatly from their respective donor
cells suggesting selective active transport (Mittelbrunn et al. 2011). Indeed, some
secreted miRNAs appear not to be present at all in their respective parental cells



(Valadi et al. 2007b). In HCC, for example, it was demonstrated that although let-7
and miR-21 are upregulated in serum-derived exosomes this is not the case for whole
blood or associated tissues (Mjelle et al. 2019). Another study showed that of the
109 miRNAs identified as being upregulated in sera from renal cell carcinoma
(RCC), only 36 of them were also upregulated in the tissue samples (Wulfken
et al. 2011). Similar findings have been made in other biological fluids, including
Pigati et al. who found that the bulk of miR-451 and miR-1246 produced by
malignant mammary cells was released into blood, milk and ductal fluids, while
the majority of miRNAs produced by nonmalignant cells were retained (Pigati et al.
2010).
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Several authors have demonstrated that circulating miRNAs can function in cell–
cell communication, although it remains unclear if this function is restricted only to
miRNAs packaged into exosomes. In 2007, Valadi et al. first proposed extracellular
miRNAs can act in a paracrine manner for intercellular communication (Valadi et al.
2007b). Consistent with this hypothesis circulating miRNAs have subsequently been
demonstrated to be delivered to recipient cells where they can inhibit gene expres-
sion through the same mechanisms than cellular miRNAs (Kosaka et al. 2010b)
including tumor growth and metastasis formation (Solé and Lawrie 2021).

The mechanism of how circulating miRNAs “decide” in which organ they will
reside for the constitution of the metastatic niche is still unclear. In the case of EVs
however, organ tropism appears to be determined by their size, charge, and the
presence of specific molecules in the surface of their membranes. For example,
ovarian cancer cells deliver exosomes specifically enriched in mannose and sialic
acid glycoproteins (Escrevente et al. 2011). Glioblastoma cells release
phosphatidylethanolamine-enriched exosomes while neuroblastoma cells release
exosomes in which the presence or absence of CD63 determines targeting either to
neural dendrites or to whole neurons and glial cells, respectively (Escrevente et al.
2011; Toda et al. 2015; Laulagnier et al. 2018). The presence of specific integrins,
such as ITGαvβ5 can define the specific binding of exosomes to liver Kupffer cells,
whereas the expression of ITGα6β4 and ITGα6β1 can target exosomes to either
fibroblast or epithelial cells of the lung (Hoshino et al. 2015).

Once the exosomes are anchored to the surface of recipient cells, they are
internalized by endocytosis (clathrin-mediated endocytosis, caveolin-dependent
endocytosis, lipid-raft mediated endocytosis), micropinocytosis, phagocytosis or
direct fusion of plasma membranes (Xu et al. 2013; Tian et al. 2014; Gurung et al.
2021), while vesicle-free miRNAs seem to be taken up by specific receptors in the
cell surface (Chen et al. 2012). In the case of tumor-derived extracellular vesicles,
heparan sulfate proteoglycans seem to be the favored internalizing receptor for lipid-
raft mediated endocytosis (Christianson et al. 2013), which is increased upon
hypoxia (Cerezo-Magaña et al. 2021).

In the next stage, encapsulated miRNAs are released and can modulate gene
expression in the cytoplasm or, surprisingly, can also act as ligands for intracellular
receptors. Both miR-21 and miR-29a have been demonstrated to interact with TLR8
(Toll-Like Receptor 8) expressed at the surface of the endosomes of macrophages
through their GU-rich motif, triggering a pro-metastatic inflammatory response and



promoting tumor growth and metastasis (Fabbri et al. 2012). Moreover,miR-142 and
miR-223, which are endogenously expressed in macrophages, are transferred to
hepatocarcinoma cells through heterologous cell–cell contact and gap junctions to
posttranscriptionally regulate target mRNA expression (Aucher et al. 2013).
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2.4 Circulating ncRNAs as Cancer Biomarkers

2.4.1 MiRNAs

MiRNAs are attractive candidates as cancer biomarkers as their stability and expres-
sion profile can classify different types of tumors according to their diagnosis and
stage much more robustly and accurately than mRNA expression profiles (Lu et al.
2005). The first report of circulating miRNAs as a diagnostic and prognostic bio-
markers for cancer came in 2008 when it was observed that levels of miR-155, miR-
210, and miR-21 in the serum of the DLBCL patients were significantly different
from healthy sera and associated with prognostic outcome (Lawrie et al. 2008). In
the same year, Mitchell et al. reported circulating miRNAs in the plasma of PCa
patients (Bartel 2004). Subsequently, the potential of circulating miRNAs has been
expanded to many different cancer types, encompassing diagnostic, prognostic, and
predictive biomarkers (van den Berg et al. 2020).

MiRNAs are ubiquitously dysregulated in cancer, both directly in tumor cells but
also in the cells that constitute the tumor microenvironment (TME). These changes
in miRNA levels are often reflected in biological fluids thereby offering great
potential as non-invasive biomarkers for cancer patients. A great deal of publications
reports the potential of circulating miRNAs as biomarkers to diagnose or classify
tumors, impart prognostic information, or monitor tumor progression and/or
response to the therapy. Some of the most important publications in this field are
summarized in Table 2.1.

A number of publications have proposed that individual or signature miRNA
levels have better diagnostic power than current diagnostic techniques. For example,
in the sera of gastric cancer (GC) patients a 3-miRNA signature (miR-18a,
miR-181b, and miR-335) was observed to have higher diagnostic accuracy with all
patients’ stages (AUC 0.86), including stage I patients (AUC: 0.85), than current
blood markers CEA (Carcinoembryonic Antigen) and CA19-9 (Carbohydrate Anti-
gen 19-9) (AUC: CEA 0.65; CA19-9 0.67) (Izumi et al. 2021). In another GC study
by Yang et al., plasma-derived exosomal miR-195-5p and miR-211-5p levels could
distinguish GC patients from healthy individuals with an AUC value of 0.820
compared to CEA (AUC: 0.541), CA19-9 (AUC: 0.622) and CEA + CA19-9
(AUC: 0.567) (Yang et al. 2021). Moreover, the authors found that expression levels
of miR-211-5p correlated with lymph node metastasis, tumor stage, and overall
survival (OS). In plasma from cervical cancer, expression levels of exosomal let-
7d-3a and miR-30d-5p were decreased compared to healthy individuals and patients
with benign stages with an AUC of 0.828, which was better than cytology (AUC:
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0.766) (Zheng et al. 2019). Furthermore, the integration of the two miRNAs with
cytological testing further increased the diagnostic power to 0.887. In a similar
fashion, when the levels of plasma exosomal miR-15a-5p were combined with
blood CEA and CA125 levels for endometrial cancer patients, an AUC value of
0.899 was obtained, higher than the individual components (Zhou et al. 2021). In
another study, levels of three miRNAs (miR-222-3p*miR-24-3p/miR-30c-5p)
derived from the urine of prostate cancer patients were found to have higher
diagnostic accuracy than PSA (Prostate-Specific Antigen), with an AUC of
0.89–0.95 in all patients and an AUC of 0.89–0.97 for patients with PSA
level � 15 ng/mL (Fredsøe et al. 2018). In the same study, three different miRNAs
(miR-125b-5p*let-7a-5p/miR-151a-5p) were associated with recurrence-free sur-
vival (RFS).
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Circulating miRNA expression is often related to prognostic outcomes and the
presence of metastasis in cancer patients. For example, in colorectal cancer (CRC),
several miRNAs have been identified as independent prognostic factors including
serum-derived miR-1290 and plasma-derived miR-21-5p (Imaoka et al. 2016;
Fukada et al. 2021), and miR-21-5p expression has also been associated with
recurrence and progressive disease after surgical resection (Fukada et al. 2021).
Wang et al. observed that levels of serum exosomal miR-25-3p, miR-130b, and miR-
425-5p correlated with progression and metastasis in CRC patients and that in vitro,
this miRNA promoted the M2 polarization of macrophages (Wang et al. 2020a). In
GC, two circulating miRNAs (miR-4286 and miR-211-5p) were found to correlate
with the presence of lymph node metastasis (Tsai et al. 2020; Yang et al. 2021),
while in another study miR-301a-3p and miR-1229-3p correlated with peritoneal
metastasis (Xia et al. 2020; Nishibeppu et al. 2020). In addition, the levels of miR-
211-5p (and miR-15b-3p) were also related to OS of patients (Yang et al. 2021;
Konishi et al. 2020; Nishibeppu et al. 2020). In glioma, sera levels of miR-210 and
plasma levels of miR-182 and miR-2276-5p have been demonstrated to correlate
with OS (Sun et al. 2021; Xiao et al. 2016; Lai et al. 2015).

MiRNAs found in urine have also been demonstrated to have prognostic ability in
bladder cancer, for example, the levels of miR-34a, miR-200a, and miR-193a could
distinguish between high- and low-risk patients as well as being associated with
shorter event-free survival (EFS) (Cavallari et al. 2020). In urine from PCa cancer
patients, the expressions of three miRNAs (miR-26a-5p, miR-532-5p, and miR-99b-
3p) were upregulated in exosomes from patients with biochemical recurrence
(BCR), an event associated with an aggressive phenotype (Sharova et al. 2021).

Apart from diagnostic and prognostic biomarkers, circulating miRNAs have
widely been used as predictive biomarkers for therapeutic response. In a study of
plasma samples obtained from patients with non-small cell lung cancer (NSCLC),
that were classified according to their response to anti-PD-1 or anti-PD-L1 immu-
notherapy, 32 miRNAs were identified from whole plasma and seven from plasma-
derived EVs (Shukuya et al. 2020). Another study identified that plasma exosomal
miR-320d, miR-320c, and miR-320b could predict the response to PD-1/PD-L1
inhibitors in advanced NSCLC (Peng et al. 2020). Also in NSCLC, 23 differentially
expressed plasma exosomal miRNAs were identified between good responders and



poor responders in patients treated with EGFR-tyrosine kinase inhibitors (TKIs)
(Wu et al. 2016; Lin 2021). In another study in late-stage NSCLC that received
EGFR TKI treatment, levels of sera miR-1246 and miR-1290 were decreased in
responders compared to non-responders (Wu et al. 2016). In advanced CRC,
plasma-derived exosomal levels of miR-17-5p and miR-185-5p were found to be
upregulated in patients that responded to FOLFOX (leucovorin, 5-fluorouracil, and
oxaliplatin) or FOLFIRI (Leucovorin, 5-fluorouracil, and irinotecan) in conjunction
with targeted therapies (Sur et al. 2021). In another study, a 6-miRNA signature
(miR-100, miR-92a, miR-16, miR-30e, miR-144-5p, and let-7i) was identified in
plasma-derived exosomes from CRC patients that could distinguish chemoresistance
between patients treated with FOLFOX o XELOX (capecitabine plus oxaliplatin),
with higher accuracy (AUC: 0.825) than traditional tumor biomarkers (Han et al.
2020). In plasma obtained from melanoma patients, a nine-miRNA signature was
identified that could classify the response of patients with metastasis to anti-PD-1 or
anti-PD1/anti-CTLA-4 immunotherapy (Bustos et al. 2020).

44 B. Suárez et al.

In addition to the expression of miRNAs themselves, posttranscriptional modifi-
cations of circulating miRNAs have also been proposed as potential cancer bio-
markers. For example, methylation levels of miRNAs were observed to be increased
in both pancreatic and CRC patient serum when compared to healthy donors (Cole
et al. 2019). Furthermore, the authors found higher levels in the sera of pre-surgery
than post-surgery patients, and increased levels of methylated miR-17-5p in the sera
of pancreatic cancer patients even though it was expressed at low levels or was
absent in controls.

Aside from the evaluation of individual miRNAs, the use of next generation
sequencing (NGS) techniques allows the evaluation of the whole circulating
transcriptome of cancer patients. For example, Xie et al. used the GEO (Gene
Expression Omnibus) database to obtain miRNA expression patterns from osteosar-
coma plasma samples (n ¼ 20) and normal controls (n ¼ 15) and found several
dysregulated miRNAs, long non-coding RNAs (lncRNAs) and mRNAs (Xie et al.
2018). Bai et al. used NGS in the plasma of HCC patients to identify a miRNA
expression profile distinct from healthy individuals including the downregulation of
miR-486-5p in HCC patients (Bai et al. 2019). Another study identified 14 aberrantly
expressed miRNAs by NGS from serum and tissue of patients with cervical cancer
(n ¼ 133) compared to healthy controls (n ¼ 106) (Shukla et al. 2019). They found
that miR-17-5p, miR-32-5p and miR-454-3p were upregulated while miR-409-3p
was downregulated in cancer patients. Hallal et al. used NGS analysis on serum-
derived EVs from glioblastoma (GBM) patients and identified that miR-486-3p and
miR-25-3p were overexpressed and that expression was associated with tumor
aggressiveness (Hallal et al. 2020).
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2.4.2 LncRNAs and Other ncRNAs

LncRNAs are transcripts of more than 200 nt in length that do not encode for a
protein. Although initially considered as transcriptional by-products, lncRNAs show
higher conservation than either introns or intergenic sequences, particularly in their
secondary and tertiary structures, suggesting a functionality maintained across
evolution (Guttman et al. 2009; Ponjavic et al. 2007; Tavares et al. 2019; Smith
et al. 2013). Moreover, lncRNA genes share many characteristics of mRNAs such as
histone modifications (i.e., H3K4me3, H3K36me3, H3K27Ac, and H3K4me1)
(Djebali et al. 2012; Ayupe et al. 2015), 50 capping, 30 adenylation and transcript
splicing (Ayupe et al. 2015; Melé et al. 2017). Interestingly, lncRNAs exhibit a
significantly higher turnover rate than mRNAs, along with more tissue- and tumor-
specific expression patterns, making them attractive candidates as biomarkers (Clark
et al. 2012; Cabili et al. 2011; Iyer et al. 2015; Geisler and Coller 2013).

Several circulating lncRNAs have been demonstrated to be potentially useful
cancer biomarkers. Indeed, the lncRNA, urinary PCA3 has FDA approval for
prostate cancer diagnosis (Marks et al. 2007). In GC patients, for example, serum
levels of HOTTIP (AUC: 0.827) and plasma levels of lncRNA-GC1 (AUC: 0.903)
were observed to have better discriminatory capability than either CEA (AUC: 0.653
in serum and 0.5987 in plasma), CA72–4 (AUC: 0.639 in serum and 0.6816 in
plasma), or CA19–9 (AUC: 0.685 in serum and 0.6482 in plasma) (Zhao et al.
2018a; Guo et al. 2020). In addition, HOTTIP upregulation was observed to asso-
ciate with poor prognosis indicators such as advanced TNM stage, presence of
invasion, and decreased OS. Another lncRNA, LncUEGC1 (AUC: 0.8406) was
even able to distinguish patients at early stages of GC from those with an underlying
chronic inflammation disease, with a better accuracy than CEA (AUC: 0.6123) (Lin
et al. 2018). In CRC patients, serum levels of CRNDE (AUC: 0.892) and plasma
levels of RPPH1 (AUC: 0.860) show a better diagnostic value than CEA (AUC:
0.688 in serum and 0.790 in plasma) (Liu et al. 2016; Liang et al. 2019). Moreover,
CRNDE upregulation also associates with clinical parameters like the presence of
metastasis at lymph nodes and distal organs. In plasma of esophageal squamous cell
carcinoma (ESCC) patients, POUF3 (AUC: 0.842) levels had a higher degree of
diagnostic accuracy than the tumor marker SCCA (Squamous Cell Carcinoma
Antigen) (AUC: 0.784) (Tong et al. 2015). Additionally, it has also recently been
described that lncRNA fragments, like the S fragment of RN7SL1 (AUC: 0.870)
contained within plasma exosomes of HCC patients, can be used as circulating
biomarkers with better discriminatory ability than their respective full-length tran-
scriptional counterparts (AUC: 0.750) (Tan et al. 2019).

LncRNAs can also exhibit predictive biomarker capabilities. For example,
increased levels of serum PART1 were associated with poor response to gefitinib
treatment in ESCC patients (Kang et al. 2018), and in the serum of GBM patients,
high levels of lncSBF2-AS1 were demonstrated to be associated with resistance to
temozolomide treatment (Zhang et al. 2019). The upregulation of UCA1 in serum of
ovarian cancer patients was found to be indicative of cisplatin resistance (Li et al.



2019a). In addition, increased levels of lncARSR in plasma of RCC patients were
observed to be associated with response to sunitinib treatment (Qu et al. 2016a).
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Apart from lncRNAs and miRNAs, other circulating small non-coding molecules
such as small nucleolar RNAs (snoRNAs), small nuclear RNAs (snRNAs), piwi-
associated RNAs (piRNAs), transfer RNAs (tRNA), and circular RNAs (circRNA)
have also been reported in body fluids (Table 2.2) (Umu and Langseth 2018). For
example, Kitagawa et al. found that levels of snoRNAs are upregulated in sera of
renal and pancreatic cancer patients compared to healthy controls (Zhao et al. 2020a;
Kitagawa et al. 2019) and that SNORA74A and SNORA25 could distinguish between
healthy and early-stage pancreatic cancer patients with an AUC > 0.9 (Kitagawa
et al. 2019). In NSCLC patients, levels of the snoRNAs SNORD33, SNORD66,
SNORD76, SNORD78, or SNORA42 from either plasma or sputum could distinguish
between patients with chronic obstructive pulmonary disease, smokers, or healthy
individuals (Liao et al. 2010; Su et al. 2016). The snRNA RNU2-1f has been found to
be highly expressed in sera and plasma from colorectal, pancreatic, lung, and ovarian
cancer patients (Richter et al. 2014; Baraniskin et al. 2013; Köhler et al. 2016;
Kuhlmann et al. 2014). Another study observed that the snRNA RNU6–1 was
overexpressed in serum exosomes of GBM patients compared with healthy controls
and was associated with the differentiation of GBM from nonneoplastic brain lesions
and primary central nervous system lymphoma (Puigdelloses et al. 2020). Circulat-
ing piRNAs (i.e., piR-001311, piR-004153, piR-017723, piR-017724, and piR-
020365) have been identified in the sera of CRC patients and found to be
downregulated compared to healthy individual samples, with piR-017724 demon-
strated to be an independent prognostic biomarker (Gállego Pérez-Larraya et al.
2019). Another study also in CRC sera, observed an upregulation of piR-5937 and
piR-28876 to be associated with tumor stage postoperative status (Vychytilova-
Faltejskova et al. 2018). Circulating tRNA-derived fragments (tRFs) (i.e., tRF-
Glu-CTC-003, tRF-Gly-CCC-007, tRF-Gly-CCC-008, tRF-Leu-CAA-003, tRF-Ser-
TGA-001, and tRF-Ser-TGA-002) were identified in plasma of breast cancer patients
and were found to be significantly downregulated, being their expression levels
associated with prognostic outcome (Wang et al. 2020b). In GC patients, the levels
of hsa-tsr016141 and tiRNA-5034-GluTTC-2 in serum and plasma, respectively,
were associated with prognosis (Gu et al. 2021; Zhu et al. 2019).

CircRNAs, similar to miRNAs, are highly resistant to exonuclease-mediated
degradation and consequently are widely believed to be one of the most stable
RNA types present in biofluids (Yu et al. 2019). Several circRNAs have been
identified in biological fluids (Table 2.2) including circSMARCA5 and
circ_0000190 expression that has shown to correlate with AFP and CA19-9 levels,
clinical markers for HCC, and GC diagnosis, respectively (Chen et al. 2017; Li et al.
2019b).
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2.5 Methods and Challenges to Detect Circulating miRNAs

Currently, the gold standard for diagnostic and other biomarker detection relies upon
the invasively obtained tissue biopsy. However, this approach is expensive and not
without risk to the patient. Although circulating miRNAs (and other RNAs) hold
great clinical potential as noninvasive biomarkers, the translation of this knowledge
into routine clinical practice still leaves a lot to be desired. The studies mentioned
above are nearly all single-center retrospective studies and generally the cohorts in
these studies are insufficiently powered (Tables 2.1 and 2.2). Consequently, there are
many nonoverlapping and even contradictory circulating miRNA markers resulting
primarily from biological and technical variations caused by differences in
(1) starting material including differences in techniques of purification of EVs,
between whole plasma and sera samples, control populations used, RNA extraction
methods, etc.; (2) detection technology (e.g., microarray, qRT-PCR, and NGS)
(Fig. 2.2); (3) altered signal/noise ratio of target miRNAs due to the presence of
secondary response-associated miRNAs (e.g., inflammatory and immune); (4) use of
differing statistical models for discovery and validation. In addition to these differ-
ences, the general low quality and low quantity of circulating miRNAs in biological
fluids further compound the problem.

The choice of biological fluid itself can create challenges. For example, in some
biological fluids such as urine, saliva, sputum, or stool samples, bacterial contami-
nation can be particularly problematic. Even in the case of more “sterile” samples
such as serum and plasma, the expression levels of the RNAs can differ greatly
between blood fractions due to hemolysis. Moreover, the inter-patient variability in
these samples is increased because of the release of EV-associated RNAs from
stimulated platelets (McDonald et al. 2011; Kirschner et al. 2011; Pritchard et al.
2012). Also, intra-patient variability between RNA levels depends on the time of the
day, diet, gender, age, alcohol consumption, etc. (Heneghan et al. 2010; Gourzones
et al. 2013; Hu et al. 2013).

2.6 Bioinformatics Analyses

Once dysregulated miRNAs have been identified by detection techniques bioinfor-
matics tools are frequently used to identify putative target genes. Such tools rely on a
combination of experimentally validated miRNA target genes and various predictive
algorithms.

Predictive algorithms generally fall into one of the following categories or a
combination thereof: thermodynamic (free energy hybridization of the RNA hybrid),
evolutionary (sequence conservation), sequence-based (such as seed match, site
accessibility, 30 compensatory pairing, G:U pairs allowed in the seed or local AU
content), or probabilistic (target: site abundance), to which they apply either Bayes-
ian Networks or other machine learning methods. The most well-known prediction



algorithms are miRanda, PicTar, PITA, TargetScan, StarMir, SVmicrO,
DianamicroT, and mirTarget (John et al. 2004; Krek et al. 2005; Kertesz et al.
2007; Agarwal et al. 2015; Liu et al. 2010; Rennie et al. 2014; Paraskevopoulou
et al. 2013; Liu and Wang 2019). An increasing number of databases also integrate
expression levels of miRNAs and target transcripts, obtained from deep-sequencing
analysis, as an additional parameter for prediction. Other features can also include
the biophysical constraints forced by Argonaute protein on miRNA:target interac-
tion or the presence of miRNA seed and seedless target sites at the CDS and 50 UTR
(Khorshid et al. 2013; Hsu et al. 2011; Jeggari et al. 2012; Rennie et al. 2016). Some
newer predictive algorithms such as TargetMiner and MultimiTar are based on
Support Vector Machine (SVM) classifiers that include negative examples of
miRNA targets in order to increase the robustness of the predictions
(Bandyopadhyay and Mitra 2009; Mitra and Bandyopadhyay 2011).
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Fig. 2.2 Methods for microRNA detection. The transcription factors (TFs) that regulate miRNA
transcription and the miRNA targets are experimentally identified in cell lines and tissues of
different origins either by low-throughput techniques (reporter gene assays, RT-qPCR, Western
Blot, or ELISA) or by high-throughput techniques (microarrays, RNA-Seq, and IP-Seq). The results
obtained can be collected in databases that serve for the construction of software that predict TF:
miRNA and miRNA:RNA interactions to establish regulatory networks. Some of these miRNAs
can also be identified in human biofluids by RNA-Seq and microarray and further validated using
RT-qPCR techniques and the evaluation of their biomarker properties can be improved when
applying neural networks or meta-analysis
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2.6.1 Databases of miRNA: Target RNA Interaction

Prediction algorithms are typically used to generate databases and/or trained using
existing databases that collect experimentally validated miRNA targets (Fig. 2.2).
For example, DIANA-TarBase is a database that compiles information about exper-
imentally validated miRNA targets in 600 different cell lines and tissue types in
more than 450 experimental conditions. The methodologies comprise
low-throughput experiments like reporter gene assays, qPCR, Western Blot, or
ELISA, as well as high-throughput experiments like microarrays, RNA-Seq,
RIP-Seq, RPF-Seq, CLIP-Seq, AGO CLIP-seq, CLEAR-CLIP, or CLASH obtained
from DNA Data Bank of Japan (DDBJ) and Gene Expression Omnibus (GEO)
repositories (Karagkouni et al. 2018). Similarly, developers of the starBase database
analyzed CLIP-Seq data from GEO, but considered all the coding and non-coding
competing endogenous RNAs (especially lncRNAs, pseudogenes and circRNAs)
with which a miRNA can interact (Li et al. 2014a). MiRGator compiles the infor-
mation of deep-sequencing results of public databases such as GEO, SRA (Short
Read Archive), and TCGA (The Cancer Genome Atlas). These datasets were
manually curated into different tissue and disease types. During the alignment
process, mismatches on miRNA loci are permitted, thus allowing the identification
of iso-miRs and miRNA variants with 30 non-templated nucleotide additions (Cho
et al. 2013). The PolymiRTS database contains both DNA polymorphisms and
INDELs at miRNA seed regions and at the 30 UTR of their target sites. The SNPs
and INDELs of mature miRNAs were obtained from comparisons with the dbSNP
and miRBase database repositories; whereas target gene SNPs and INDELs were
retrieved from the dbSNP database and mapped onto experimentally validated
CLASH sequences (Bhattacharya et al. 2014). Other databases, such as miRTarBase
and miRSel (Huang et al. 2020; Naeem et al. 2010), have been created by text
mining articles from the PubMed repository for miRNA–gene associations.

2.6.2 Databases of Transcription Factor: miRNA Gene
Interaction

Other databases focus on the study of the upstream regulation of miRNA transcrip-
tion by transcription factors (TFs). For example, the TransmiR database uses man-
ually curated publications of TF-miRNA regulation supported by the presence of
highly conserved TF binding motifs at the promoters of miRNAs or by luciferase
reporter and ChIP-seq experiments. (Tong et al. 2019). The MirTrans database
includes cell type-specific information on miRNA promoters, transcription factor
binding sites, and transcriptional start sites (TSSs), identified by the presence of
H3K4me3 marks and DNAse-I hypersensitive sites. Moreover, the transcriptional
regulation of miRNAs is experimentally supported by GRO/PRO-Seq and CAGE
(Cap Analysis of Gene Expression) techniques, among others (Hua et al. 2018). The



DIANA-mirGen database uses machine learning algorithms trained on more than
1000 CAGE experiments corresponding to 133 different tissues, cell lines and
primary cells available in the FANTOM repository, allowing cell-specific TSS
annotation. In combination with DNA-Seq and ChIP-Seq datasets from ENCODE,
DIANA-mirGen can identify the DNAse hypersensitivity sites containing the tran-
scription factor motifs within the defined TSS (Perdikopanis et al. 2021).
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ChIPBase includes the results of more than 500 ChIP-Seq experiments carried out
on different cell types and tissues from six different model organisms, allowing the
genome-wide identification of the binding sites of 252 transcription factors and their
positions relative to the TSSs of miRNAs and other ncRNAs (Zhou et al. 2017). The
TSmir database generates expression patterns of tissue-specific miRNAs and the
transcription factors that regulate them, with a special focus on transcription factors
expressed in the same tissue creating tissue-specific regulatory networks (Guo et al.
2014).

The CircuitsDB database contains information on regulatory loops between
transcription factors and miRNAs that commonly regulate genes, in other words,
mixed miRNA/TF Feed-Forward regulatory Loops (FFLs) and Feed-Back regula-
tory Loops (FBLs). As the classification of feedback loops as positive or negative is
tissue-dependent, the expression values across 14 human tissues of the transcription
factor are also included (Friard et al. 2010). Similarly, TMREC explores linear
regulatory cascades (transcription factor-miRNA-mRNA), following the Breadth
First Search (BFS) traversal method in the context of human diseases, including
cancer (Wang et al. 2015).

2.6.3 Construction of Regulatory Networks

Both miRNA: target RNA and TF:miRNA gene interaction databases can be used to
reconstruct regulatory networks to infer their possible biological impact. Some of the
above-mentioned databases, for example, starBase, miRGator, PolymiRTS, or
CircuitsDB, can include a module of functional analyses using KEGG (Kyoto
Encyclopedia of Genes and Genomes), DAVID (Database for Annotation, Visual-
ization, and Integrated Discovery), GO (Gene Ontology), BioCarta, Reactome or
PID (Pathway Interaction Database) databases (Ogata et al. 1999; Dennis et al. 2003;
Harris et al. 2004; Vastrik et al. 2007; Schaefer et al. 2009). Additionally, those
databases focus on the study of SNPs or somatic mutations from genome-wide
association studies (GWAS) using data from the NHGRI GWAS Catalog, dbGaP,
or Cancer GAMAdb to predict the effect of these genetic variations on the risk of
developing a disease, including cancer (Buniello et al. 2019; Mailman et al. 2007;
Schully et al. 2011).
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2.6.4 Databases of miRNAs with Cancer Biomarker Potential

In addition to the databases listed above, there are also disease-focused databases
such as the HMDD (Human MicroRNA Disease Database), Mir2Disease,
miRCancer, TUMIR, or OncomiRBD (Li et al. 2014b; Jiang et al. 2009; Xie et al.
2013; Dong et al. 2013; Wang et al. 2014). The dbDEMC database collates miRNA
expression profiles from different cancer types obtained from the GEO and TCGA
databases, microarray, and NGS data. SomamiR is a database of cancer-associated
somatic mutations found in miRNAs and seed regions of target genes and also
lncRNAs and circRNAs identified by CLASH, PAR-CLIP, and HITS-CLIP exper-
iments or predicted by mapping somatic mutations from COSMIC to the 30 UTRs of
coding genes (from RefSeq annotations) and non-coding genes (from LNCipedia
and circBase annotations) (Bhattacharya et al. 2013; Bhattacharya and Cui 2016).

More recently, databases have been created specifically dedicated to extracellular
circulating ncRNAs, including miRNAs. For example, miRandola is a manually
curated database based on literature mining (Russo et al. 2012). The ExRNA Atlas
and CMEP (Circulating MicroRNA Expression Profiling) databases contain expres-
sion profiles of extracellular small non-coding RNAs in different human biofluids
derived from RNA sequencing, miRNA microarray, and qRT-PCR techniques
(Murillo et al. 2019; Li et al. 2019c).

2.6.5 Application of Neural Networks and Meta-Analysis
to Identify Robust Biomarkers

The construction of neural network (NN) models using miRNA profiles in human
fluids can be used to create a formula for identifying cancer. For example, in colon
cancer, hsa-miR-6726-5p, hsa-miR-7111-5p, hsa-miR-1247-3p, and hsa-miR-614
expression levels in serum were used for designing a NN model that can diagnose
colon cancer with an AUC ¼ 1 (Afshar et al. 2019). In epithelial ovarian cancer
(EOC), the expression levels of a signature of seven microRNAs (miR-29a-3p,
miR-92a-3p, miR-200c-3p, miR-320c, miR-335–5 p, miR-450b-5p, and miR-
1307–5 p) in serum was used to create a NN EOC diagnosis model with an
AUC ¼ 0.89 (Elias and Fendler 2017). The expression values of miR-15a, miR-
101, and miR-144 in the plasma of women with BI-RADS (Breast Imaging
Reporting and Data System) were used to create a NN model to discern whether
the tumor is benign or malignant with an AUC ¼ 0.96 (Pezuk et al. 2017). Although
the use of NN models to increase the accuracy of cancer diagnosis using circulating
miRNAs holds great promise it is still in its infancy. Instead, many studies have
chosen a meta-analysis approach to generate meaningful data models (Table 2.3).
The most analyzed miRNA in these analyses is miR-21 (Peng et al. 2017; Gao et al.
2016a, b; Jinling et al. 2017; Qu et al. 2016b). For example in CRC miR-21 was
found to have a higher overall diagnostic power in serum samples than plasma (Peng
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et al. 2017). In contrast, miR-106 has been found to have a higher diagnostic
accuracy in the plasma of gastric cancer patients than in serum (Peng et al. 2018).
Other researchers found that circulating miR-21 expression levels have high diag-
nostic accuracy in 14 different cancers analyzed (Gao et al. 2016a). Other studies
analyzed the diagnostic/prognostic value of miR-21 in mixed origin samples, bodily
fluids, and tissues, and also found that is a promising biomarker in breast cancer,
pancreatic cancer, and glioma, among others (Gao et al. 2016b; Jinling et al. 2017;
Qu et al. 2016b; Zhao et al. 2020b). Other circulating miRNAs have been evaluated
for their diagnostic capacity including a study of miR-221/222 expression in plasma
of 11 different cancer types, leading to a specificity of 0.76 and sensitivity of 0.75
with an AUC of 0.82 (Zhang et al. 2016). Furthermore, miR-221/222 expression was
also evaluated in tissue and bodily fluids in thyroid cancer patients, where it showed
high accuracy in differentiating cancer patients from non-thyroid cancer patients
(AUC: 0.88) (Liang et al. 2018). Other meta-analysis studies have analyzed the
prognostic capacity of circulating miRNAs. For example levels of plasma miR-130b
in HCC patients were found to correlate with disease-free survival (DFS) (Peng and
Duan 2019) and with progression-free survival (PFS) in HCC, while levels of miR-
203 correlated with DFS and PFS in colorectal and breast cancer patients (Peng and
Duan 2019; Shao et al. 2017). Similarly levels of miR-155 and miR-203 have been
linked to overall survival in leukemia and CRC patients respectively (Shao et al.
2017; Zhang et al. 2018).
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2.7 Conclusions

Since the discovery of circulating miRNAs as cancer biomarkers in 2008 (Lawrie
et al. 2008), many studies have shown the potential usefulness of these molecules as
noninvasive biomarkers. Of particular note, some miRNAs (and other ncRNAs)
have been demonstrated to have better diagnostic capabilities than existing bio-
markers (Izumi et al. 2021; Yang et al. 2021; Fredsøe et al. 2018). However, a lack of
standardization including a great variety of methods for isolation, detection, and
analysis of miRNAs precludes their uptake in routine clinical diagnostic practice
(Larrea et al. 2016). In this regard, it is necessary to establish standard methodologies
and reporting systems for circulating miRNA studies to make results robust between
studies, in a similar manner that has been instigated with high-throughput methods
such as microarray and NGS using the MIAME guidelines (Brazma et al. 2001). And
beyond the reporting system standardization needs to be applied to the downstream
computational analysis particularly when a range of predictive algorithms are used to
impart functional significance without follow-on functional verification. Only when
these issues are resolved can circulating miRNAs fulfil their clear potential and
translate into routine clinical practice for the benefit of cancer patients.
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Chapter 3
Regulation of Immune Cells by microRNAs
and microRNA-Based Cancer
Immunotherapy

Rafaela Nasser Veiga, Érika Pereira Zambalde, Livia Cox,
Tayana Shultz Jucoski, Ana Flávia Kohler, Tamyres Mingorance Carvalho,
Ana Carolina Rodrigues, Beatriz Ludwig, Kaitlyn Crowley,
Jaqueline Carvalho de Oliveira, and Maria Angelica Cortez

Abstract MicroRNAs (miRNAs) are small (~21 nucleotides) endogenous noncod-
ing RNA molecules involved in the posttranscriptional regulation of gene expres-
sion. Modulation of gene expression by miRNAs occurs via base-pairing of the
specific miRNA primary sequence to its corresponding target messenger RNA,
which can be located either in the 30 untranslated region or within the coding
sequence. This pairing can lead to either translational repression or cleavage of the
mRNA, resulting in reduced levels of the target protein. MiRNAs are involved in
mediating and controlling several interactions between immune and cancer cells and
are also important regulators of immune responses. Increasing interest has focused
on elucidating the role of miRNAs in the regulation of anticancer immune responses
and how this could affect the efficacy of different cancer therapeutics. Indeed,
immune responses have both pro- and anti-oncogenic effects, and functional inter-
actions between immune and cancer cells in the tumor microenvironment are crucial
in determining the course of cancer progression. Thus, understanding the role of
miRNAs in controlling cancer immunity is important for revealing mechanisms that
could be modulated to enhance the success of immunotherapy for patients with
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cancer. In this chapter, we discuss the involvement of miRNAs in the regulation of
immune cells and potential therapeutic approaches in which miRNAs are used for
cancer immunotherapy.
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3.1 Introduction

Over the past few decades, substantial efforts have been made by the scientific
community to reveal the mechanisms of cancer immune surveillance and determine
how tumor cells acquire the ability to evade the immune system (Drake et al. 2006;
Swann and Smyth 2007; Chow et al. 2012; Spranger and Gajewski 2018). Under-
standing these mechanisms could facilitate the discovery of new druggable targets
and therapeutic approaches to improve response to anticancer treatments.

The goal of the growing field of cancer immunotherapy is to boost immune
system function by activating and strengthening individual patients’ own immune
systems to efficiently fight tumors. New immunotherapeutic approaches are being
developed, and some are already being applied in the clinic. One of the best-known
immunotherapy strategies to date involves the use of monoclonal antibodies that
target cancer cells by recognizing and blocking immune checkpoint molecules
expressed on their surfaces such as cytotoxic T-lymphocyte-associated protein
4 (CTLA4) and programmed cell death 1 (PD1) (Wei et al. 2018). Other strategies
involve the use of chimeric antigen receptor (CAR) T-cell therapy (Neelapu et al.
2017), cancer vaccines (Wang et al. 2018c), immunostimulatory cytokines
(Rosenberg et al. 2015), and oncolytic viruses, which can be classified as both
immune and biological therapy (Pol et al. 2016).

Unfortunately, only a subset of cancer patients treated with immunotherapy have
experienced positive clinical outcomes, in part because of immune-related adverse
events in diverse biological systems that can lead to severe toxicity during treatment
(Rashdan et al. 2018; Dahiya et al. 2020; De Martin et al. 2020; Harrison et al. 2020;
Presotto et al. 2020; Muntyanu et al. 2021). Therefore, identifying those patients
who would benefit from immunotherapy without experiencing major immune-
related adverse events is essential for avoiding unnecessary toxicity, particularly
among those who would not efficiently respond to immunotherapeutic strategies.
Characterizing the tumor microenvironment (TME), including its immune cell
infiltrates and soluble signaling components, is of utmost importance for identifying
potential biomarkers of response (or lack of response) to immunotherapy.

MicroRNAs (miRNAs) are short, single-stranded RNAmolecules that are usually
20–23 nucleotides long (Croce and Calin 2005; Farazi et al. 2011). These noncoding
RNA molecules participate in the regulation of gene expression through posttran-
scriptional repression of mRNAs, which are targeted by strong complementarity
between mRNA sequence and miRNA seed sequences (Bartel 2009).

The expression of miRNAs is often dysregulated during cancer development and
progression (Sathipati and Ho 2018; Angius et al. 2019; Fehlmann et al. 2020),
which consequently dysregulates the expression of many coding genes that control



important biological processes in cancer (Angius et al. 2019). These findings make
miRNAs interesting potential targets for cancer therapy. Because miRNAs are
involved in regulating immune responses during cancer progression (Okada et al.
2010; Hirschberger et al. 2018; Omar et al. 2019), miRNA-based therapies might
also enrich the field of immunotherapy.
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Therefore, the scientific community has been seeking to identify the mechanisms
by which miRNAs regulate the immune responses against cancer and how
dysregulation of miRNAs could influence various cancer therapies. Although one
function of the immune system is to provide constant surveillance for identifying and
eliminating cancer cells, the immune system can also have pro-oncogenic effects.
For example, inflammatory responses may spur the production of factors that
enhance tumor cell growth and survival as well as angiogenesis in addition to
prompting the secretion of soluble molecules that promote the activation of
epithelial–mesenchymal transition pathways (Hanahan and Weinberg 2011). Thus,
understanding how miRNAs could affect the complex interactions between immune
cells and cancer cells in the TME is crucial to developing effective, specific, and safe
miRNA-based therapeutic strategies against cancer.

In this chapter, we review the role of miRNAs in the regulation of immune cells
and discuss the potential for, and challenges with, miRNA-based therapies against
cancer.

3.2 Innate Immunity

The innate immune response can be crucial in tumor prevention, initiation, and
progression. The outcome of pro- versus antitumor innate immune responses
depends on the TME, which first primes and then reinforces the differentiation and
response of infiltrating cells, cytokines, chemokines, matrix-degrading enzymes, and
growth factors present in situ (Curtale 2018). The most abundant infiltrating cells are
macrophages, myeloid-derived suppressor cells (MDSCs), neutrophils, mast cells,
dendritic cells (DCs), and natural killer (NK) cells (Xing et al. 2021).

Tumor regulatory networks also involve miRNAs, which can coordinate different
immune response functions in the TME or be transferred from one cell to another via
exosomes (Lone et al. 2021). These miRNAs may also regulate the expression of
immunomodulatory molecules in both tumor and immune cells in ways that facilitate
tumor immune escape (Hirschberger et al. 2018). In this section, we focus on the role
of miRNAs in the innate immune response, specifically their immunomodulatory
effects on macrophages, DCs, and NK cells. These various roles are discussed in the
following paragraphs and are summarized in Table 3.1.

3.2.1 Macrophages

Macrophages are a heterogeneous group of cells with a wide spectrum of activation
states, ranging from the classically activated (M1 macrophages) to the alternatively
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Table 3.1 Role of miRNAs in tumor immune response

miRNA Targets Immune response References

let-7a/
let-7i

SOCS1 Suppresses immune evasion;
induces macrophage M2
polarization; reduces matura-
tion and functional state of
DCs; promotes tumor escape

Zhang et al. (2011), Park
et al. (2019)

miR-
130a

TGF-βR Promotes antitumor immu-
nity; restricts tumor
metastasis

Bader (2012)

miR-138 CTLA4; PD1; PDL1 Regulates immune
checkpoints

Wei et al. (2016),
Rasoolnezhad et al. (2021)

miR-142 IRF8; CD40L;
TRAF6; IRAK1;
PDL1

Regulates maturation pro-
cess, pro-inflammatory cyto-
kine secretion, and TCD4
differentiation of DCs;
decreases NF-kB signaling;
enhances antitumor
immunity

Belz (2013), Fordham et al.
(2015), Naqvi et al. (2015),
Jia et al. (2017), Berrien-
Elliott et al. (2019),
Taghikhani et al. (2019)

miR-145 TGF-βR Promotes antitumor immu-
nity; restricts tumor
metastasis

Bader (2012)

miR-
146a/
miR-
146b

TRAF6; IRAK1;
STAT1; STAT3;
MyD88

Modulates TLR4 signaling;
decreases NF-kB signaling;
modulates Th1 response

Taganov et al. (2006),
Nahid et al. (2009), Chen
et al. (2011), El Gazzar
et al. (2011), Du et al.
(2012), Curtale et al.
(2013), Zhang et al. (2013),
Park et al. (2015), Xu et al.
(2017a), Simanovich et al.
(2018), Wang et al. (2018b)

miR-
149/
miR-
149-3p

CSF-1; PD1; TIM-3;
BTLA; FOXP1

Blocks paracrine interactions
with macrophages; reverses
CD8+ T-cell exhaustion

Zhang et al. (2019),
Sánchez-González et al.
(2020)

miR-
150/
miR-
150-5p

Prf1; PIK3AP1;
AKT2

Facilitates cytotoxic capacity
and maturation of NK cells;
reduces maturation of DCs;
decreases IL-10

Bezman et al. (2010), Kim
et al. (2011, 2014), Tung
et al. (2018)

miR-152 – Reduces maturation of DCs,
reduces IL-6 and IL-12

Smyth et al. (2015), Tung
et al. (2018)

miR-155 c-Fos; TLR; IL13RA;
LPS/INF-y; SHIP-1;
TIM-3; c-Maf;
SOCS1; PDL1

Reduces maturation and
functional state of DCs; reg-
ulates NF-κB signaling;
induces macrophage M1
polarization; suppresses
INF-y production; contrib-
utes to thymic Treg cell dif-
ferentiation; regulates Th1
and Th17 response; sensitizes

Eis et al. (2005), Rodriguez
et al. (2007), Kohlhaas
et al. (2009), Dunand-
Sauthier et al. (2011),
Martinez-Nunez et al.
(2011), Cai et al. (2012),
Chang et al. (2012), Ji et al.
(2015), Mashima (2015),
Huffaker et al. (2017), Yee

(continued)



B-lymphoma cells to anti-
PDL1 antibody

(continued)
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Table 3.1 (continued)

miRNA Targets Immune response References

et al. (2017), Wang et al.
(2018a), Chen et al. (2020),
Monnot et al. (2020), Dong
et al. (2021)

miR-15a FOXP3; CTLA4 Regulates T cell cycle and
memory T cell differentiation

Liu et al. (2014)

miR-17-
92
cluster

TGF-βRII; CREB1;
PTEN; RORα;
PHLPP2

Inhibits cell surface mole-
cules on DCs; enhances DC
endocytosis; regulates Th1
response; enhances IFN-γ
production; suppresses and
regulates T cell differentia-
tion; accelerates P13K
signaling

Jiang et al. (2011), de
Kouchkovsky et al. (2013),
Ohno et al. (2013), Ranji
et al. (2013), Kosaka et al.
(2015), Kuo et al. (2019)

miR-181 NLK; Smad7; PIAS3 Promotes NK differentiation;
reduces IFN-γ translation;
increases TGF-β-induced
signaling; inhibits Th17 cell
differentiation

Zhang et al. (2018c), Jiang
et al. (2020)

miR-183 DAP12 Inhibits NK cytotoxicity Donatelli et al. (2014)

miR-186 TGF-β1 Inhibits NK cytotoxicity Neviani et al. (2019)

miR-20 MICA/B Inhibits NK cytotoxicity Zhu et al. (2018)

miR-
200a/
miR-
200b/
miR-
200c

CD47 (B6H12);
PDL1

Promotes phagocytosis of
macrophages; regulates
immune checkpoints

Chen et al. (2014),
Rigoutsos et al. (2017),
Katakura et al. (2020)

miR-203 MHC II; RUNX1 Reduces antigen-presenting
and regulatory capabilities of
DCs; induces macrophage
M2 polarization

Zhou et al. (2014),
Shinohara et al. (2017),
Takano et al. (2017)

miR-21 TLR; DUSP10;
PIAS3; STAT3

Activates NF-κB signaling;
induces macrophage M2
polarization; reduces IL-12;
regulates CD8+ cell prolifer-
ation and the polarization and
inflammatory responses of
Th1 and Th2 through the IL-2
and IFN-γ pathways; con-
tributes to immune cell
recruitment

Kwak et al. (2011), Chang
et al. (2012), Fabbri et al.
(2012), Wang et al. (2013b,
2015b), Okoye et al.
(2014), Smyth et al. (2015),
Tung et al. (2018), Hsieh
et al. (2018), Anastasiadou
et al. (2019), Ren et al.
(2019a), Syed et al. (2019),
Hong et al. (2020)

miR-
212-3p

MHC II; RFXAP Reduces antigen-presenting
and regulatory capabilities of
DCs; inhibits immune
tolerance

Ding et al. (2015)

miR-214 JAK/STAT; PTEN Suppresses macrophage M2
polarization

Okoye et al. (2014), Gao
et al. (2020)
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Table 3.1 (continued)

miRNA Targets Immune response References

miR-24 STAT5; FGF11 Promotes Treg cells and dif-
ferentiation into Th1 and
Th17 cells

Fordham et al. (2015),
Naqvi et al. (2015), Ma
et al. (2016), Ye et al.
(2016), Zhang et al.
(2018a)

miR-
27a-3p/
miR-
27a-5p

ICOS; Prf1; GzmB Promotes antitumor immu-
nity; reduces cytotoxic
capacity and maturation of
NK cells

Kim et al. (2011), Ma et al.
(2016), Yao et al. (2020)

miR-29 TLR Activates NF-κB signaling,
which increases the expres-
sion of pro-inflammatory
cytokines

Fabbri et al. (2012), Nygren
et al. (2014), Ren et al.
(2019a)

miR-
34a/
miR-
34a-5p

PD1/PDL1 Increases immunogenicity in
mixed lymphocyte reactions;
regulates immune
checkpoints

Bader (2012), Yang et al.
(2012), Cortez et al. (2016),
Anastasiadou et al. (2019),
Hong et al. (2020)

miR-
374b

PD1 Regulates immune
checkpoints

Huang et al. (2018)

miR-
410-5p

miR-410-3p Forms a duplex with -3p arm
and promotes degradation,
thereby suppressing its ability
to inhibit tumor angiogenesis

Wang et al. (2017)

miR-424 PDL1 Regulates immune check-
points; activates T cell
response

Xu et al. (2016)

miR-
5119

PDL1; IDOS Regulates immune
checkpoints

Zhang et al. (2020)

Abbreviations: BMDMs, bone marrow-derived macrophages; CD40L, cluster of differentiation
40 ligand; CREB1, CAMP-responsive element binding protein 1; CSF-1, colony-stimulating
factor-1; CTLA4, cytotoxic T-lymphocyte associated protein 4; DAP12, DNAX-activating protein
12 kDa; DCs, dendritic cells; DUSP10, dual-specificity phosphatase 10; FGF11, fibroblast growth
factor 11; FOXP1, forkhead box P1; FOXP3, forkhead box P3; GzmB, granzyme B; IL-10,
interleukin-10; IL-12, interleukin-12; IL-13RA, interleukin-13 receptor alfa; IL-6, interleukin-6;
INF-γ, interferon-gamma; IRAK1, interleukin-1 receptor-associated kinase 1; IRF8, interferon
regulatory factor 8; JAK, Janus kinase; MHC, major histocompatibility complex; NF-kB, nuclear
factor kappa beta; NK, natural-killer cells; NLK, Notch signaling inhibitor Nemo-like kinase;
PIAS3, protein inhibitor of activated STAT3; PD1: programmed cell death protein 1; PDL1:
programmed death-ligand 1; PI3K, phosphoinositide-3-kinase; PTEN: phosphatase and tensin
homolog; Prf1, perforin 1; RFXAP, regulatory factor X-associated protein; RORα, RAR-related
orphan receptor alpha; RUNX1, runt-related transcription factor 1; SHIP-1, SH2-containing inositol
50-phosphatase 1; SOCS1, suppressor of cytokine signaling 1; STAT, signal transducer and
activator of transcription; TAMs, tumor-associated macrophages; Tim-3, T-cell immunoglobulin,
mucin domain-3; TGF-β1, transforming growth factor beta; TGF-BRII, transforming growth factor
beta receptor 2; TLR, Toll-like receptors; TRAF6, TNF receptor-associated factor 6; Treg, regula-
tory T cell



activated (M2 macrophages) (Sica et al. 2015). In the early stages of tumor devel-
opment, pro-inflammatory M1 macrophages predominate and result in antitumor
activity (Qin et al. 2012). However, chronic inflammation alters the TME so as to
promote the alternatively activated M2 macrophages, otherwise known as anti-
inflammatory, pro-tumorigenic, or tumor-associated macrophages (TAMs) (Zhang
et al. 2017; Syed et al. 2019). Indeed, TAMs are the major inflammation-related
component of the TME (Gordon and Martinez 2010).
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In addition to regulating macrophage polarization, miRNAs can also target
several critical signaling pathways in macrophages associated with tumor-associated
inflammation (Syed et al. 2019). MiR-21 and miR-29 bind to the toll-like receptors
(TLRs) on TAMs and activate NF-κB signaling, which increases the expression of
pro-inflammatory cytokines (Syed et al. 2019). Also, enhanced delivery of miR-21-
5p by extracellular vesicles (EVs) promotes macrophage M2 polarization after
hypoxia in lung cancer (Ren et al. 2019a) and epithelial–mesenchymal transition-
mediated M2 polarization in Snail overexpressing cancer cells (Hsieh et al. 2018).

MiR-155 is also associated with M1 polarization: it silences the interleukin-13
receptor A (IL-13RA), stabilizes tumor necrosis factor (TNF)-α, and targets CEBP/
β, thereby blocking M2 polarization (Martinez-Nunez et al. 2011). MiR-155 can also
prompt M1 polarization in bone marrow-derived macrophages (BMDMs) upon
exposure to lipopolysaccharide (LPS) or interferon (IFN)-γ (Cai et al. 2012).

On the other hand, M2 polarization in BMDMs occurs in response to miR-146a,
which is induced by IL-4 (Zhang et al. 2013). The main targets of miR-146a are IL-1
receptor-associated kinase 1 (IRAK1) and TNF receptor-associated factor
6 (TRAF6) adaptor molecules in the TLR pathway (Taganov et al. 2006).
MiR-146a participates in a negative feedback loop that dampens the signals
upstream of NF-κB (Nahid et al. 2009). MiR-146a also promotes interactions
between RBM4 and Ago2, which prompt the assembly of the miRNA-induced
silencing complex, which disrupts translation of TNF-α in THP-1 monocytic cells
(El Gazzar et al. 2011). On the other hand, the anti-inflammatory activity of IL-10
relies in part on the induction of miR-146b in a STAT3-dependent manner.
MiR-146b also modulates TLR4 signaling by dampening MyD88, IRAK1, and
TRAF6 signaling (Curtale et al. 2013).

Other miRNAs have distinct functions in macrophage polarization (Table 3.1).
For example, transfer of the miRNA let-7a by EVs under hypoxic tumor conditions
promotes M2 polarization (Park et al. 2019). miR-149 impairs the infiltration of
primary tumors by M2 macrophages (Sánchez-González et al. 2020), and miR-214
suppresses M2 polarization via inhibiting JAK2/STAT3 signaling (Gao et al. 2020).

3.2.2 Dendritic Cells

DCs are antigen-presenting cells with the ability to regulate adaptive immunity.
Mature DCs promote the activation, proliferation, and differentiation of effector T
cells, whereas immature DCs downregulate T-cell responses (Morelli and Thomson
2007). DCs acquire tumor-specific or tumor-associated antigens and are activated by



the recognition of activator signals arising from stressed or dying cancer cells (Yatim
et al. 2017). The capacity to induce a tumor-specific immune response in vivo
correlates with the degree of DC maturation (Labeur et al. 1999).
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A variety of miRNAs including miR-155, let-7i, miR-22, miR-21, miR-146,
miR-34a, and miR-142 have been implicated in DC differentiation and maturation.
Mechanistically, miR-142 upregulates IFN regulatory factor 8 (IRF8), which regu-
lates the differentiation of DCs into CD4+ DCs (Belz 2013). MiRNA-146a regulates
the maturation of DCs and pro-inflammatory cytokine secretion by DCs by targeting
CD40L, TRAF6, and IRAK1, which decrease NF-κB signaling (Chen et al. 2011;
Park et al. 2015). Inhibition of let-7i depresses the maturation and functional state of
DCs via targeting suppressor of cytokine signaling 1 (SOCS1) (Zhang et al. 2011).
MiR-155 silences c-Fos expression, another crucial factor in DC maturation and
function (Dunand-Sauthier et al. 2011). Overexpression of miR-17-5p inhibits the
expression of cell surface molecules on DCs and enhances DC endocytosis (Cui
et al. 2019).

DCs also use exosomal miRNAs as an efficient mechanism of intercellular
communication (Montecalvo et al. 2012). Exosomal delivery of let-7i and
miR-142 regulates the maturation of DCs and promotes tumor escape through a
variety of mechanisms (Taghikhani et al. 2019). Intercellular communications also
have substantial influence on Tregs, which transfer EVs containing miRNA to
antigen-presenting cells during immune recognition, which leads to immune mod-
ulation (Mittelbrunn et al. 2011). In one study, high levels of miR-21, miR-148, and
miR-152 were found to be present in EVs derived from Tregs. One mechanism by
which miRNAs are transferred is by modifying the cytokine profile of DCs (Smyth
et al. 2015). MiR-21 inhibits IL-12p35 production, whereas miR-148 and miR-152
suppress IL-6 and IL-12 production, both of which are cytokines involved in DC
maturation (Tung et al. 2018). Decreases in IL-12, IL-6, and TNF-α after TLR
blockade in DCs were also observed after ectopic expression of miR-142-3p
(Fordham et al. 2015; Naqvi et al. 2015). Moreover, miR-150-5p may be linked to
the increased IL-10 levels seen in DCs treated with Treg-derived EVs (Tung et al.
2018).

The complex communications between the TME and DCs refine the regulation of
cancer cells via miRNAs. For example, pre-miR-410 can be processed into
miR-410-5p in cancer cells and miR-410-3p in DCs. Cancer cells stimulate the
DCs to produce miR-410-3p, which can inhibit angiogenesis by targeting vascular
endothelial growth factor (VEGF)-α. However, cancer cells also express miR-410-
5p, which can be transported into DCs where they form a duplex with miR-410-3p.
The duplex formation promotes miR-410-3p degradation and thus suppresses its
ability to inhibit tumor angiogenesis (Wang et al. 2017).

3.2.3 Natural Killer Cells

NK cells identify, target, and kill cancer cells. NK cells can also coordinate both the
innate and the adaptive immune responses against foreign pathogens and



transformed cells (Yu et al. 2013). NK cells express various surface receptors that
either promote or inhibit cell killing by those NKs. Generally, the predominance of
activating vs. inhibiting receptor signaling is responsible for the induction of
NK-mediated killing (Fabbri 2020).
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In various animal and human cell culture systems, the miRNA profile can also
affect NK cell development and function. Disruption of the global miRNA profile in
mouse NK cells by the deletion of either Dicer or Dgcr8, both important to miRNAs
biogenesis, resulted in decreased NK cell survival, maturation, and proliferation
(Bezman et al. 2010; Sullivan et al. 2013). Other microarray studies revealed that
highly expressed conserved miRNAs are present in both mouse and human NK cells
(Bezman et al. 2010).

MiRNAs can also affect the cytotoxic capacity of NK cells via miR-150, which
targets the perforin 30 UTR, and miR-27a*-5p, which targets Prf1 and GzmB
expression (Kim et al. 2011, 2014). Other miRNAs such as miR-146a negatively
regulate IFN-γ production in NK cells by targeting IRAK1 and TRAF6, with
subsequent inhibition of the NF-κB signaling cascade; miR-146a also reduces the
production of TNF-α by targeting STAT1, therefore reducing NK cell-mediated
cytotoxicity (Xu et al. 2017a; Wang et al. 2018b).

Most of the endogenous miRNAs that have been characterized so far have been
shown to modulate NK cell antitumor activity in the TME (Pesce et al. 2020).
TGF-β, a key mediator in the TME, increases the expression of mature miRNA-
1245, which acts to block NKG2D-mediated immune responses in NK cells and thus
support the TME (Espinoza et al. 2012). TGF-β also induces miR-183, which
abrogates the tumor cell killing function of NK cells by targeting DNAX-activating
protein of 12 kDa (DAP12) (Donatelli et al. 2014).

The EVs released by NK cells also transport miRNAs that are capable of
mounting strong antitumor effects in the TME (Fabbri 2020). In one study, lung
cancer-derived EVs containing miRNAs suppressed the antitumor activities of NK
cells by targeting CD107a expression (Berchem et al. 2016). The delivery of
miR-186 to MYCN-amplified NK cells was found to impair their survival and
migration and prevent the TGF-β1-dependent inhibition of NK cytotoxicity, thereby
altering the cytotoxic potential of NKs (Neviani et al. 2019).

3.3 Adaptive [Acquired] Immunity

3.3.1 T-Helper Cells

MiRNAs control many aspects of the adaptive immune response through their
regulation of T-helper cells. These key mediators of immune function become
activated upon interacting with antigens expressed on the surface of antigen-
presenting cells (e.g., macrophages or DCs), which prompts an intracellular signal-
ing cascade that, depending on the antigens presented, leads to differentiation of
these effector CD4+ T-helper cells into subsets, the two main types of which are Th1



and Th2. Th1 cells are involved in cell-mediated immunity and phagocyte-
dependent inflammation and produce IFN-γ, IL-2, and TNF-β (Romagnani 2000).
Th2 cells, on the other hand, produce IL-4, IL-5, IL-6, IL-9, IL-10, and IL-13 and
evoke strong antibody responses and eosinophil accumulation in addition to
inhibiting phagocytic-cell functioning (Romagnani 2000). MiR-155 has a pivotal
role in the regulation of both Th1 and Th2 cells. Overexpression of miR-155 in
activated CD4+ T cells promotes Th1 cell differentiation (Banerjee et al. 2010).
Moreover, under Th1-inducing conditions, miR-155 targets IFN-γRα, which affects
T-cell differentiation through cytokine signaling (Banerjee et al. 2010). On the other
hand, suppression of miR-155 shifts the differentiation of CD4+ T cells toward the
Th2 phenotype (Chen et al. 2020) by increasing levels of the CD4+ T-cell target
c-Maf, which leads to enhanced production of the Th2 cytokines IL-4, IL-5, and
IL-10 (Rodriguez et al. 2007). The role of miR-155 in adaptive immunity has
significant oncogenic consequences; indeed, miR-155 expression has been directly
associated with antitumor immune responses in 30 types of solid tumors, including
melanoma, in humans (Huffaker et al. 2017).
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Overexpression of the miR-17-92 cluster (consisting of miR-17, miR-18a,
miR-19a, miR-19b, and miR-20a) in Th1 cells has been noted to have oncogenic
effects in B cell lymphoma and prostate cancer (Kuo et al. 2019). Specifically,
miR-17 and miR-19b regulate the Th1 response by promoting proliferation, reduc-
ing activation-induced cell death, enhancing IFN-γ production, and suppressing
regulatory T-cell (Treg) differentiation. The regulatory functions of miR-17 and
miR-19b result from their targeting TGF-βRII, CREB1, and PTEN (Jiang et al.
2011). Moreover, miR-146 has also been shown to inhibit STAT1 expression,
thereby controlling Th1 response (Lu et al. 2010).

Another subset of CD4+ T cells called follicular helper cells express chemokine
receptor 5 and participate in the humoral immune response by regulating immune
cell growth, differentiation, immunoglobulin isotype switching, affinity maturation
of B cells, and antibody secretion, in part through their production of IL-21. The
miR-17-92 cluster regulates the differentiation of follicular T-helper cells by
targeting PTEN and the transcription factor RORα, which blocks the expression of
genes associated with other T-helper cell subtypes such as Th17 and Th22 (Ranji
et al. 2013). Th17 cells produce the cytokines IL-17A, IL17-F, and IL-22, and as
such are also crucial in adaptive and innate immunity (Ranji et al. 2013). Th22 cells,
the differentiation of which is promoted by miR-31, produce cytokine IL-22 (Jia and
Wu 2014; Huang et al. 2019). The miR-17-92 cluster also regulates the migration of
follicular T-helper cells by inhibiting PHLPP2, thereby accelerating P13K signaling
and prompting migration of T cells into the B cell follicle and germinal center (Kuo
et al. 2019).

Th17 cells can have both antitumor and pro-tumorigenic effects, the former
through their ability to enhance CD8+ T-cell function (Li et al. 2016) and the latter
by inducing tumor vascularization and eliciting IL-6 production by both the tumor
and tumor-associated stromal cells, leading to STAT3-mediated upregulation of
pro-survival and pro-angiogenic genes (Wang et al. 2009). Mice deficient in
IL-17A were found to be more likely to develop tumors, because Th17 cells activate



tumor-specific cytotoxic (CD8+) T cells that are crucial to the antitumor effect (Kuen
et al. 2020). In melanoma, the expression of IL-17 by Th17 cells promotes angio-
genesis. The development of Th17 cells is regulated by two miRNAs, miR-326, and
miR-181c. MiR-326 targets the negative regulator transcription factor ETs-1 for
differentiation, and miR-181c targets the negative regulator Smad7, which results in
increased TGF-β-induced Smad2/3 signaling and inhibition of Th17 cell differenti-
ation via inhibition of IL-2 functions (Zhang et al. 2018c). MiR-10a also affects
differentiation of Th17 and Treg cells from CD4+ cells (Zhang et al. 2018c).
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3.3.2 Cytotoxic T Cells

Recognition of antigens synthesized in the cellular cytoplasm prompts the differen-
tiation of CD8+ T cells into cytotoxic T cells, which in turn induces target cells to
undergo programmed cell death. Overexpression of the miR cluster miR-17-92 by
CD8+ cells enhances IFN-γ production, ultimately driving cytotoxic T-cell
responses that are promoted by Th1, and also leads to downregulation of TGF-βRII,
which increases the frequency of memory T cells (Kosaka et al. 2015). Moreover,
activation of the T-cell receptor results in upregulation of miR-155, which is
necessary for CD8+ cells to thrive and proliferate (Monnot et al. 2020), for limiting
syngeneic tumor growth, and for promoting the production of IFN-γ by T cells
(Huffaker et al. 2017). CD8+ T cell proliferation is also regulated by miR-21, which
targets dual-specificity phosphatase (DUSP10), and miR-30b, which targets B cell
CLL/lymphoma 6 (BCL-6) (Chang et al. 2012). Transcription of both miR-21 and
miR-155 relies on a negative feedback involving DUSP10, which downregulates the
activity of the AP-1 necessary for transcribing these miRNAs (Chang et al. 2012).
Downregulation of miR-21 by Spry2 has also been linked with malignant progres-
sion in gliomas (Kwak et al. 2011), thereby implicating Spry2 in the treatment of
glioma resulting from posttranscriptional regulation by miR-21 (Kwak et al. 2011).
miR-21 also regulates the polarization and inflammatory response of Th1 and Th2
cells through the IL-2 and IFN-γ pathways (Liu et al. 2014).

3.3.3 Regulatory T Cells

Tregs, a subset of CD4+ T cells that express the surface antigen Foxp3, regulate
immune function by limiting pathogenic immune responses to self-antigens and
binding to the promotor region of the BIC gene, the sequence of which includes
miR-155 (Eis et al. 2005). MiR-155 may also promote maturation of medullary
thymic epithelial cells by contributing to thymic Treg cell differentiation (Dong et al.
2021). MiR-155 is upregulated in stimulated Tregs (Dong et al. 2021), and miR-155
deficiency is thought to dampen the development of Tregs, resulting in diminished
numbers of both thymic and splenic Tregs (Kohlhaas et al. 2009). MiR-155 also



targets the negative regulator of 1 L-2R signaling SOCS1, thereby increasing the
Th-17-mediated inflammatory response (Wang et al. 2018a). Expressed at low levels
in Treg cells, miR-15 and miR-16 suppress the T cell cycle and memory T-cell
differentiation; miR-15a and miR-16 can also target Foxp3 and CTLA4 (Liu et al.
2014). Overexpression of these miRNAs reduces Foxp3 and CTLA4 levels, thereby
partially suppressing Tregs (Liu et al. 2014).
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3.4 miRNA-Mediated Regulation in the Tumor
Microenvironment

The TME is essential to tumor maintenance and progression, as it encompasses
interactions among fibroblasts, endothelial cells, stromal cells, and immune cells
(da Cunha et al. 2019). The TME has two roles in tumor development: first, it hosts a
group of cells that is capable of identifying and eliminating tumor cells, which stops
cancer progression; however, it is also home to growth factors and hormones that
contribute to tumor cell progression (Hanahan and Weinberg 2000, 2011;
Grivennikov et al. 2010; Beatty and Gladney 2015).

Immune regulatory cells such as MDSCs, Tregs, DCs, and TAMs in the TME
produce numerous cytokines, interleukins, chemokines, and metabolites. Tumor-
infiltrating immune cells (e.g., cytotoxic T cells and NK cells) also affect antitumor
immunity through both tumor-suppressive and tumor-promoting activities (Giraldo
et al. 2015; Joyce and Fearon 2015; Malekghasemi et al. 2020; Verneau et al. 2020;
Wang et al. 2020b). From this perspective, miRNAs modulate the tumor immune
response by regulating the recruitment of different immune cell sets in the TME;
hence abnormal expression of miRNAs by tumor cells can affect the composition of
the immune microenvironment. Clarifying the mechanisms by which tumor and
immune cells interact would contribute substantially to the use of miRNAs as
predictors of prognosis, diagnosis, and immunotherapy strategies.

The crosstalk between immune and tumor cells depends on the incorporation of
molecules in circulation in the TME, among them miRNAs, which appear through
the internalization of free miRNAs in extracellular space or by interactions with EVs
such as apoptotic bodies, microvesicles, and exosomes (Kogure et al. 2019). The
principal differences among these types of EVs are their origin and size. The
apoptosis machinery produces apoptotic bodies that are 1–5 μm in diameter;
microvesicles emerge from protuberances in the plasma membrane, and are
100–1000 nm in diameter (Heijnen et al. 1999; Turiák et al. 2011); and exosomes,
the smallest of the EVs at 40–100 nm, are formed from the fusion of plasma and
endosomal membranes (Heijnen et al. 1999; Belting and Wittrup 2008). EVs
released from immune cells interact with tumors and vice versa, enabling the
internalization of miRNAs to regulate gene expression and, consequently, stimulate
biochemical mechanisms and evoke phenotypic changes in the recipient cells. This
intercellular communication is particularly important because many miRNAs



regulate both immune and tumor cells (Anfossi et al. 2018). Studies of miRNAs over
the past few decades have explored their potential use as biomarkers, mainly to
evaluate the effectiveness of anticancer treatments (Anfossi et al. 2018). Indeed,
levels of M2-like TAMs and the recruitment of MDSCs and Tregs can be linked to
dysregulation of specific miRNAs in the TME.
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TAMs, the most abundant of the immune cells in the TME, participate in tumor
cell growth, inflammation, invasion, metastasis, angiogenesis, and immunoregula-
tion. miRNAs participate in the regulation and polarization of TAMs (Malekghasemi
et al. 2020). The polarization process contributes to tumor development, because
M1-like macrophages are involved in the inflammatory response and antitumor
immunity whereas M2-like macrophages have pro-tumorigenic and anti-
inflammatory properties. Conversion of the pro-immune M1-like phenotype to an
immune regulatory M2-like phenotype can result from aberrant miRNA regulation
in tumors. The TME is also rich in soluble factors such as TGF-β, VEGF, IL-4,
IL-13, IL-10, and PGE2 that promote macrophage polarization as well as having
other pleiotropic immune-suppressive effects. Indeed, miR-125, miR-29, and
miR-155 are well known for promoting the repolarization of macrophages from
the M2 to the M1 phenotype (Essandoh et al. 2016; Wang et al. 2020a).

Conversely, some miRNAs can prevent repolarization of M2 macrophages; in
one example, stimulation with LPS or IFN-γ leads to increases in miR-21, which can
prevent PGE2-mediated M2 generation by targeting STAT3 (Wang et al. 2015b). In
general, M1-like stimuli (that is, cytokines secreted by Th1 cells) leads to reductions
in miR-23a, miR-27a, and miR-24-2 cluster expression by binding the NF-κB
promoter. Conversely, M2-polarization stimuli (e.g., Th2 cytokines) can activate
the expression of this cluster via STAT6 signaling (Ma et al. 2016). In colorectal
cancer, cancer cell-derived EVs containing miR-203 and miR-145 can polarize
macrophages to the M2 phenotype and contribute to distant metastasis (Shinohara
et al. 2017; Takano et al. 2017). In lung cancer, miR-21 and miR-29 have been
observed in tumor-EVs delivered to TAMs, resulting in activation of the NF-κB
pathway by binding to TLR8 and TLR7 (Fabbri et al. 2012). Thus, miRNA transfer
via tumor-EVs and cellular interactions in TME that contribute to macrophage
reprogramming also contribute to tumor advancement.

Some miRNAs can regulate chemokines that lead to recruitment and infiltration
of lymphocytes into tumors and the TME. MiR-21 contributes to lymphocyte
migration; in one study, inhibition of this miR led to enhanced release of the
chemokines CCL5 and CXCL10 in a breast cancer cell line, and consequently
amplified lymphocyte migration (Wang et al. 2013b). In hepatocellular carcinoma,
high levels of TGF-β suppressed the expression of miR-34a, which increased the
production of the chemokine CCL2, which is responsible for recruiting Tregs to the
TME (Yang et al. 2012). MiR-130a and miR-145 also target TGF-β receptors, and
both are downregulated in myeloid cells. Ectopic expression of these miRs in
myeloid cells promotes antitumor immunity by downregulating type 2 cytokines
and increasing IFN-γ CD8+ T cells, thereby restricting tumor metastasis (Ishii et al.
2018). In nasopharyngeal cancer, exosomal miR-24 reduces T cell proliferation and
differentiation into Th1 and Th17 cells by increasing levels of pERK, pSTAT1, and



pSTAT3 and decreasing levels of pSTAT5 (Ye et al. 2016). The suppressor function
of Tregs can be evoked by interaction with or by encompassing miRNAs in EVs. For
example, miR-214 in tumor cell-EVs promotes the expansion of Tregs, enhancing
immune suppression through PTEN as a target in CD4+ T cells (Okoye et al. 2014).
T cells with alterations in the expression of miR-9 and miR-181 as delivered by
tumor-EVs trigger the apoptosis cascade and reduce proliferative mechanisms con-
tributing to breast tumor progression (Jiang et al. 2020).
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DCs in the TME can also promote tumor development via miRNAs. MiR-221
induces proliferation of hepatocellular carcinoma cells and inhibits the maturation of
DCs (Fu et al. 2019). Abnormal expression of several miRNAs in DCs directly
affects their maturation and function, such as miR-22, miR-128, miR-133a,
miR146a, and miR-212-3p (Du et al. 2012; Ding et al. 2015; Liang et al. 2015;
Gao et al. 2016). In an osteosarcoma model, overexpression of miR-133a suppressed
the maturation and activation of DCs (Gao et al. 2016). MiR-22 and miR-128 have
been shown to affect the function of DCs by targeting P38 (Liang et al. 2015). EVs
released by pancreatic cancer cells affect the immune functions of DCs by inducing
immune tolerance through the action of miR-212-3p (Ding et al. 2015).
EV-mediated transfer of miR-203 from pancreatic cancer cells to DCs induced
downregulation of TLR4, TNF-α, and IL-12, which collectively suppressed activa-
tion of the immune response (Zhou et al. 2014).

Tumor EV miRNAs can also regulate some NK cell activities. As noted previ-
ously, NK cells are responsible for identifying and eliminating tumor cells by
generating cytotoxic molecules such as perforin and granzymes. In one study of
lung cancer cells, EVs originating from hypoxic tumor cells had elevated levels of
miR-23a and miR-210 expression, which affected NK cytotoxicity (Berchem et al.
2016). In cervical cancer, overexpression of miR-20a in NK cells inhibited their
antitumor effects by targeting RUNX1 (Zhu et al. 2018); overexpression of miR-24
in colorectal cancer cells and miR-218-5p in lung adenocarcinoma cells had similar
effects (Zhang et al. 2018a; Yang et al. 2019).

MiRNAs also participate in the regulation of function, differentiation, and mat-
uration of MDSCs. In breast cancer, miR-9 and miR-181a not only influence T cells
in the TME but also affect the early development of MDSCs via interactions with
SOCS3 and PIAS3 (Jiang et al. 2020). MiR-107 has been shown to interact with
PTEN and DICER in MDSCs in gastric tumors (Ren et al. 2019b). Abnormal levels
of some miRNAs influence the aggregation and other behavior of MDSCs in the
TME, such as miR-30a, miR-155, miR-223, and miR-486 (Liu et al. 2011; Tian et al.
2015; Wang et al. 2015a; Xu et al. 2017b; Jiang et al. 2018).

In summary, strategies to increase the activity of the immune system require
further exploration of how miRNAs interact with macrophages, DCs, NK cells,
T-helper cells, cytotoxic T cells, MDSCs, and Tregs in tumors and the TME to
participate in tumor development.
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3.5 Immune Checkpoint Molecules

Immune checkpoint molecules are key regulators of the immune system. Two
signals are required for a T cell to respond: the first is the interaction of major
histocompatibility complex (MHC) proteins expressed by antigen-presenting cells
with T-cell receptors, which confers the specificity of T-cell activation; the second
signal involves co-stimulatory and co-inhibitory molecules that can determine
whether the T cell is activated or suppressed. Those co-signaling molecules are
known as immune checkpoints (Pardoll 2012). The best studied of these molecules
involved in T-cell activation are PD1, expressed on T cells, and its ligand PDL1,
expressed on various immune and nonimmune cell types. The interaction of those
two molecules results in inhibition of T-cell activation and proliferation, as well as
downregulation of pro-inflammatory cytokines and antiapoptotic proteins (Dermani
et al. 2019).

Another widely investigated set of receptors and ligands is CTLA4 and CD80 or
CD86. Interactions between the CTLA4 receptor, expressed mainly on T cells, and
its ligands, expressed on several types of cells, lead to suppression of T-cell activity
or promotion of Treg development and function (Wing et al. 2008; Hosseini et al.
2020). In the context of cancer, tumor cells can overexpress these inhibitory mole-
cules to escape from immune surveillance.

MiRNAs are important regulators of immune checkpoint molecule expression,
and the identification of relevant miRNAs could be beneficial to improve alternatives
to immunotherapy (Yang et al. 2018). For example, PD1 can be directly regulated by
binding between miR-138 (Wei et al. 2016), miR-149-3p (Zhang et al. 2019), and
miR-374b (Huang et al. 2018) and the 30-UTR of its mRNA (Table 3.1). PDL1 can
also be directly regulated by several miRNAs, including miR-34a (Anastasiadou
et al. 2019), miR-138 (Zhao et al. 2016; Rasoolnezhad et al. 2021), miR-142
(Berrien-Elliott et al. 2019), miR-155 (Yee et al. 2017), miR-200 (Chen et al.
2014; Katakura et al. 2020), miR-424 (Xu et al. 2016), miR-513 (Gong et al.
2010), and miR-570 (Wang et al. 2012) (Table 3.1). MiR-138 is also associated
with the regulation of CTLA4 mRNA (Wei et al. 2016) (Table 3.1).

The CD28 receptor is a CTLA4 homolog and competes for the same ligands.
However, these two molecules have opposite functions in T-cell activation: CTLA4
has an inhibitory role in the adaptive immune response and CD28 is a co-stimulatory
molecule, enhancing T-cell survival through activation of AP-1 and NF-κB (Alegre
et al. 2001; Rowshanravan et al. 2018). MiR-145 (Wang et al. 2013a) and the
miR-17-92 cluster (de Kouchkovsky et al. 2013) can interact with CD28. Because
both receptors (CTLA4 and CD28) bind to the same ligands, dysregulation of those
miRNAs could lead to lower levels of CD28, resulting in a more suppressive profile.

Another immune checkpoint molecule with bidirectional roles in immune acti-
vation is B7-H3 (also known as CD276), which can act as a co-stimulatory or
co-inhibitory molecule. The receptor that binds to B7-H3 is still not confirmed;
however, the most probable candidate is TLT-2 (Yang et al. 2020). B7-H3 also has
non-immunologic functions in cancer that lead to proliferation, migration, invasion,
angiogenesis, and drug resistance (Flem-Karlsen et al. 2020). Several miRNAs can



target the 30-UTR of B7H3 mRNA, including miR-29c, the overexpression of which
in breast cancer patients was associated with a reduced risk of death by
downregulating B7-H3 (Nygren et al. 2014).
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In addition to direct regulation, miRNAs can regulate immune checkpoint mol-
ecules by regulating their upstream signaling pathways. The Epstein-Barr virus
miRNA, miR-BART-5p, is one example, as it can directly target PIAS3 mRNA,
downregulating PIAS3 protein levels with consequent activation of STAT3 and
upregulation of PDL1 (Yoon et al. 2020).

A novel class of repetitive short DNA sequences, known as pyknons, are tran-
scribed and present in nearly all mRNAs, and can contain binding sites for miRNAs
(Rigoutsos et al. 2006). Pyknon-90, which is present in the sequence of the long
noncoding RNA N-BLR, harbors a binding site for miR-200c-3p (Rigoutsos et al.
2017). This primate-specific long noncoding RNA can act as a “sponge” for
miR-200, increasing the levels of its targets such as PDL1. This example illustrates
another layer of regulatory mechanisms between miRNAs and immune checkpoint
molecules.

In summary, identifying relevant miRNAs that can directly or indirectly affect
immune checkpoint inhibitors that are overexpressed in cancer cells could lead to
additional alternatives to antitumor immunotherapies, and perhaps predict respon-
siveness to treatments.

3.6 miRNAs as Potential Targets for Immunotherapy

As alluded to earlier in this chapter, miRNAs regulate the expression of several gene
targets that themselves are key regulators of various signaling pathways, including
immune signaling (Di Martino et al. 2021; Raue et al. 2021). For this reason,
increased interest has been expressed in exploring the potential role of miRNAs as
therapeutic agents in cancer immunotherapy. Depending on their function, miRNAs
can be oncogenic (“oncomiRs”) or tumor suppressive and are commonly
dysregulated in several types of cancer (Table 3.2). The twin goals of miRNA-
based therapy are to restore or replace downregulated tumor suppressor miRNAs and
to inhibit upregulated oncomiRs (Mollaei et al. 2019; Di Martino et al. 2021; Raue
et al. 2021).

One way of restoring the expression of tumor suppressor miRNAs is by using
miRNA mimics, synthetic double-strand oligonucleotides with the same sequence as
the mature target miRNA (Mollaei et al. 2019; Di Martino et al. 2021; Raue et al.
2021). However, use of miRNA mimics as a therapeutic strategy presents some
difficulties related to their stability and delivery. To enable systemic delivery and
increase the stability of miRNA mimics, several chemical modifications have been
tested, such as including 20-OH modifications and the use of peptide nucleic acids
and locked nucleic acids; conjugation with small cell peptides and aptamers has also
been used for delivery purposes. Restoration of stably expressed specific miRNAs
can also be achieved with viral vectors, such as lentivirus, adenovirus, and adeno-
associated viruses; other nonviral delivery methods involve inorganic, lipid-based,
and polymeric carriers (Mollaei et al. 2019; Di Martino et al. 2021; Raue et al. 2021).



(c
on

tin
ue
d)

3 Regulation of Immune Cells by microRNAs and microRNA-Based. . . 91

T
ab

le
3.
2

M
iR
N
A
s
th
at
ar
e
po

te
nt
ia
l
ta
rg
et
s
in

ca
nc
er

im
m
un

ot
he
ra
py

m
iR
N
A

A
ct
io
n

(M
im

ic
or

In
hi
bi
to
r)

Im
m
un

e
re
sp
on

se
T
yp

es
of

ca
nc
er

st
ud

ie
d

C
lin

ic
al
tr
ia
ls

R
ef
er
en
ce
s

m
iR
-

10
0

A
nt
ag
om

ir
In
du

ce
s
M
2
po

la
ri
za
tio

n
B
re
as
tc
an
ce
r

–
W
an
g
et
al
.(
20

18
d)

m
iR
-

12
5b

M
im

ic
E
nh

an
ce
s
ap
op

to
si
s
an
d
pr
o-
in
fl
am

m
at
or
y
st
at
us
;

en
ha
nc
es

iN
O
S
/A
rg
1
ra
tio

,T
N
F
-α
,a
nd

IL
-1
;

re
du

ce
s
IL
-1
0;

in
du

ce
s
M
1
po

la
ri
za
tio

n

L
un

g
ad
en
oc
ar
ci
no

m
a,

he
pa
to
ce
llu

la
r
ca
rc
in
om

a
–

T
al
ek
ar

et
al
.(
20

16
),

W
an
g
et
al
.(
20

20
a)

m
iR
-

12
8

M
im

ic
S
up

pr
es
se
s
tu
m
or

gr
ow

th
an
d
m
et
as
ta
si
s;
in
cr
ea
se
s

nu
m
be
rs
of

D
C
s,
C
D
8+

T
ce
lls
,a
nd

N
K
ce
lls

in
tu
m
or
s;
pr
om

ot
es

an
tit
um

or
im

m
un

ity

P
an
cr
ea
tic

ad
en
oc
ar
ci
no

m
a

–
X
i
et
al
.(
20

20
)

m
iR
-

13
8

M
im

ic
R
ed
uc
es

le
ve
ls
of

im
m
un

e
ch
ec
kp

oi
nt
s
C
T
L
A
4,

P
D
L
1,

an
d
F
ox

P
3

G
lio

m
a

–
W
ei
et
al
.(
20

16
)

m
iR
-

14
2-
5p

M
im

ic
In
hi
bi
ts
P
D
L
1
ex
pr
es
si
on

an
d
in
cr
ea
se
s
C
D
4+

an
d

C
D
8+

T
ce
lls

B
re
as
tc
an
ce
r

–
Ji
a
et
al
.(
20

17
)

m
iR
-

14
3

M
im

ic
E
nh

an
ce
s
th
e
cy
to
to
xi
ci
ty

of
C
A
R
-T

ce
lls

E
so
ph

ag
ea
l
ca
nc
er

–
Z
ha
ng

et
al
.(
20

18
b)

m
iR
-

14
6a
-

5p

A
nt
ag
om

iR
R
ed
uc
es

tu
m
or

gr
ow

th
,a
ng

io
ge
ne
si
s,
an
d
T
G
F
-β

le
ve
ls
;
in
cr
ea
se
s
ap
op

to
si
s
an
d
C
D
8+

T
ce
lls

R
en
al
co
rt
ic
al

ad
en
oc
ar
ci
no

m
a

–
S
im

an
ov

ic
h
et
al
.(
20

18
)

m
iR
-

15
5

A
nt
ag
om

iR
R
el
at
ed

to
di
ff
er
en
t
im

m
un

ol
og

ic
pr
oc
es
se
s

H
em

at
ol
og

ic
ca
nc
er
s,

cu
ta
ne
ou

s
T
ce
ll

ly
m
ph

om
as

N
C
T
02

58
05

52
N
C
T
03

71
33

20
Ji
et
al
.(
20

15
),
M
as
hi
m
a

(2
01

5)
,F

os
s
et
al
.(
20

18
)

m
iR
-1
6

M
im

ic
R
el
at
ed

to
im

m
un

e
ch
ec
kp

oi
nt
s;
re
du

ce
s
P
D
L
1;

pr
om

ot
es

T
ce
ll
re
sp
on

se
;d

ec
re
as
es

tu
m
or

gr
ow

th
P
le
ur
al
m
es
ot
he
lio

m
a

N
T
C
02

36
91

98
va
n
Z
an
dw

ijk
et
al
.

(2
01

7)
,L

ie
t
al
.(
20

20
)

m
iR
-

17
-9
2

M
im

ic
Im

pr
ov

es
su
rv
iv
al
an
d
cy
to
to
xi
c
ac
tiv

ity
G
lio

bl
as
to
m
a

–
O
hn

o
et
al
.(
20

13
)

m
iR
-

20
3

M
im

ic
R
ed
uc
es

T
L
R
4,

T
N
F
-α
,a
nd

IL
-1
2
le
ve
ls
;
re
du

ce
s

an
tit
um

or
im

m
un

ity
P
an
cr
ea
tic

ad
en
oc
ar
ci
no

m
a

–
Z
ho

u
et
al
.(
20

14
)



T
ab

le
3.
2

(c
on

tin
ue
d)

m
iR
N
A

A
ct
io
n

(M
im

ic
or

In
hi
bi
to
r)

Im
m
un

e
re
sp
on

se
T
yp

es
of

ca
nc
er

st
ud

ie
d

C
lin

ic
al
tr
ia
ls

R
ef
er
en
ce
s

m
iR
-

23
a-
3p

M
im

ic
U
pr
eg
ul
at
es

P
D
L
1
ex
pr
es
si
on

;
st
im

ul
at
es

im
m
un

e
es
ca
pe

vi
a
th
e
P
T
E
N
-A

K
T
/P
I3
K

pa
th
w
ay

H
ep
at
oc
el
lu
la
r
ca
rc
in
om

a
–

L
iu

et
al
.(
20

19
)

m
iR
-

27
a-
3p

M
im

ic
U
pr
eg
ul
at
es

P
D
L
1
ex
pr
es
si
on

;
st
im

ul
at
es

im
m
un

e
es
ca
pe

vi
a
th
e
P
T
E
N
-A

K
T
/P
I3
K

pa
th
w
ay

B
re
as
tc
an
ce
r

–
Y
ao

et
al
.(
20

20
)

m
iR
-3
4

M
im

ic
P
ro
m
ot
es

th
e
an
tit
um

or
im

m
un

e
re
sp
on

se
a

N
C
T
01

82
99

71
B
ad
er

(2
01

2)
,C

or
te
z
et
al
.

(2
01

6)

A
bb

re
vi
at
io
ns
:
D
C
s,
de
nd

ri
tic

ce
lls
;
N
K
ce
lls
,n

at
ur
al
ki
lle
r
ce
lls
;
C
A
R
,c
hi
m
er
ic
an
tig

en
re
ce
pt
or

a I
nc
lu
de
s
he
pa
to
ce
llu

la
r
ca
rc
in
om

a,
m
el
an
om

a,
re
na
lc
el
lc
ar
ci
no

m
a,
lu
ng

ca
nc
er
,g
as
tr
oi
nt
es
tin

al
st
ro
m
al
tu
m
or
,n
eu
ro
en
do

cr
in
e
tu
m
or
s,
an
d
ot
he
rt
um

or
ty
pe
s

92 R. N. Veiga et al.



3 Regulation of Immune Cells by microRNAs and microRNA-Based. . . 93

The activity of oncogenic miRNAs can be inhibited either directly by blocking
binding of the miRNA to its target, or indirectly by interacting with the target so as to
prevent miRNA binding (Mollaei et al. 2019; Di Martino et al. 2021; Raue et al.
2021). Molecules used for this purpose include synthetic antisense oligonucleotides
(ASOs), locked nucleic acid antisense oligonucleotides, miRNA “sponges,”miRNA
masks, and nanoparticles. ASOs, single-stranded nucleic acids complementary to a
mature miRNA target, are the most commonly used miRNA inhibitors. ASOs can be
chemically modified to enhance their stability and efficiency of delivery. The
miRNA “sponges” function as decoys that prevent the miRNA from binding to its
target. These transcripts can be targeted to a specific miRNA or to a set of miRNAs
that share the same binding site. These two approaches are based on complementary
sequences in mature miRNA. The miR-masks, in contrast, act by masking the
binding site on the mRNA target, thereby precluding the miRNA–mRNA interaction
(Mollaei et al. 2019; Di Martino et al. 2021; Raue et al. 2021).

TAMs, the central immune cell type in the TME, can be tumor-promoting or
tumor-inhibiting, depending on their phenotype (M0, M1, or M2). In one in vivo
study of KP (KrasG12D/p53fl/fl) mice, human lung adenocarcinoma cells were
transfected with miR125b- and wt-p53-expressing plasmids in dual D44/EGFR-
targeted hyaluronic acid-based nanoparticles, which led to enhanced apoptosis and
pro-inflammatory status, as characterized by increased iNOS/Arg1 ratio, TNF-α, and
IL-1β and reduced IL-10 levels. In the same study, coculturing J774.A1 macro-
phages with the transfected SK-LU-1 lung adenocarcinoma cells in vitro led to
repolarization of the macrophages (Talekar et al. 2016). In another study with
mouse models of hepatocellular carcinoma and Lewis lung cancer, the targeted
delivery of miR-125a or miR-99b into TAMs led to repolarization of M2-like
TAMs toward the M1 phenotype (by downregulating κB-Ras2) and reduced the
M2 phenotype (by downregulating mTOR), leading to tumor regression (Wang et al.
2020a).

In addition to miRNA restoration therapy, inhibition of miRNAs has also been
used to repolarize macrophages. In an example of this approach, use of an miR-100
antagomiR-induced M2 polarization in RAW 264.7 cells and mouse peritoneal
macrophages cultured in vitro. Moreover, M2 TAMs were also observed after the
intratumoral injection of the miR-100 antagomiR in a 4 T1 mouse breast cancer
model (Wang et al. 2018d).

In addition to affecting macrophage polarization, miRNAs also regulate the
activity of other immune cells and key receptors in antitumor responses. In one
study of the anticancer potential of an miR-146a antagomir, its systemic injection, in
combination with intratumoral injection of stimulated RAW 264.7 macrophages, led
to reduced tumor growth and angiogenesis, and increased apoptosis, in BALB
c/mice implanted with RENCA mouse renal carcinoma cells. This combined
approach also affected the TME by increasing CD8+ T cells and reducing levels of
the M2-related cytokine TGF-β (Simanovich et al. 2018). Another approach
involved investigating the influence of another miRNA, miR-203, on TLR expres-
sion and downstream cytokines in DCs. In that study, culturing DCs with pancreatic
cancer-derived exosomes (which had high miR-203 levels) and miR-203 mimics led



to decreased levels of TLR4, TNF-α and IL-12; however, treatment with exosomes
and miR-203 inhibitors reversed this downregulation. Thus the authors concluded
TLR4 has an essential role in the maturation of DCs and is regulated by miR-203
(Zhou et al. 2014).
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Another miRNA with great immunotherapeutic potential is miR-128, which
regulates the activity of several types of immune cells in the TME and can suppress
tumor growth and metastasis in a pancreatic adenocarcinoma mouse model. Indeed,
injection of an miR-128 overexpressing lentivirus vector enhanced the numbers of
DCs, CD8+ T cells, and NK cells in both the tumor and the spleen in that mouse
model, and promoted antitumoral immunity via the ZEB1/CD47 axis (Xi et al.
2020). Blockade of CD47 has also emerged as another promising form of tumor
immunotherapy (Matlung et al. 2017; Weiskopf 2017; Murata et al. 2018). CD47
mediates immune evasion by its interaction with signal regulatory protein (SIRP)-α
expressed on macrophages and other myeloid cells, which leads to inhibition of
phagocytosis; thus CD47-blocking approaches would restore phagocytosis and
enhance antitumor effects (Matlung et al. 2017; Weiskopf 2017; Murata et al. 2018).

As noted previously, exosomes, which carry several regulatory molecules includ-
ing miRNAs, are also being tested as anticancer therapy. One group used exosome
cocultures with macrophages in vitro as well as injecting exosomes in vivo to
demonstrate that the upregulation of PDL1 expression in macrophages is promoted
by miR-23a-3p (Liu et al. 2019). Specifically, endoplasmic reticulum-stressed hepa-
tocellular carcinoma cells release exosomes with abundant levels of miR-23a-3p,
which inhibits PTEN expression and enhances phosphorylated AKT and PDL1
expression in macrophages. In another study, exosomes derived from endoplasmic
reticulum-stressed breast cancer cells showed high levels of miR-27a-3p and
induced PDL1 expression in macrophages in vitro and in vivo via the PTEN-
AKT/PI3K pathway, with the ultimate result of stimulating immune escape (Yao
et al. 2020).

Another miRNA that seems to participate in PDL1 regulation is miR-142-5p.
Overexpression of this miRNA inhibits PDL1 expression, increases the numbers of
CD4+ and CD8+ T cells, and reduces the numbers of PD1+ T cells in vivo, thereby
enhancing antitumoral immunity (Jia et al. 2017). Another miRNA, miR-138,
regulates the expression of another immune checkpoint molecule, CTLA4, in addi-
tion to PDL1. In one study, transfection of human CD4+ T cells with miR-138 led to
reduced levels of CTLA4, PDL1, and Foxp3 (a marker of Tregs); giving miR-138 to
immune-competent mice implanted with GL261 glioma cells had the same effect
(Wei et al. 2016).

MiRNAs have also been combined with CAR-T cells with the goal of enhancing
their cytotoxic effects. In one such study, CAR-T cells directed to glioblastoma cells
stably expressing EGFR variant III co-transduced with miR-17-92 led to improved
survival and cytotoxic activity under temozolomide treatment (Ohno et al. 2013).
Another example of a synergistic effect between CAR-T cell therapy and miRNA
expression was noted in the esophageal cancer cell line TE7; in that study, the
cytotoxicity of HER2-CAR-T cells against TE-7 cells was enhanced by miR-143
overexpression (Zhang et al. 2018b).
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Despite these exciting findings, few miRNAs have been evaluated to date in
clinical trials of miRNA restoration or miRNA inhibition for cancer therapy. The
first miRNA tested for miRNA-based anticancer therapy was miR-34, which is
known to be downregulated in several types of cancer. In trial NCT01829971, a
liposomal mimic of miR-34a (MRX34; Mirna Therapeutics Inc.), was given by
injection in patients with solid tumors refractory to standard treatments (e.g., hepa-
tocellular carcinoma, melanoma, renal cell carcinoma, lung cancer, gastrointestinal
stromal tumor, and neuroendocrine tumors), with the goal of restoring miR-34 levels
and its activity in the p53/WNT signaling pathway. The challenges involved in this
therapeutic approach included the appearance of immune-related adverse events in
the phase I portion of the trial. In the subsequent trial NCT02862145, a
recommended phase II dose of MRX34 was evaluated in patients with advanced
melanoma; that dose, preceded by dexamethasone, had an acceptable toxicity profile
for most patients (Hong et al. 2020). In a preclinical study, MRX34 was found to
increase the tumor infiltration of CD8+ T cells and to reduce the number of
CD8+PD1+ T cells in a syngeneic mouse model of non-small cell lung cancer; the
addition of radiation therapy was further enhanced the number of CD8+ T cells
(Cortez et al. 2016). These findings suggest that miR-34a mimics have potential for
promoting an antitumor immune response through its actions as a master tumor
suppressor that targets a variety of oncogenic genes, thereby having effects on
several signaling pathways (Bader 2012).

In addition to restoration therapy, another approach involves use of a locked
nucleic acid-based antagonist of miR-155, MRG-106 (cobomarsen), which is being
evaluated in a phase I study of patients with hematologic malignancies including
chronic lymphocytic leukemia (NCT02580552) and a phase II trial of patients with
cutaneous T cell lymphoma (NCT03713320) (Foss et al. 2018). As noted elsewhere
in this chapter, miR-155 has many effects on a diverse variety of immune cells; the
reasoning behind using miR-155 antagonists is that its deficiency impairs immune
functions (Ji et al. 2015; Mashima 2015).

In another approach to miRNA therapy, miR-16 mimics have been assessed in
therapy for pleural mesothelioma (NTC02369198). This novel approach involves
use of “TargomiRs” that is, minicells (EnGeneIC Dream Vector) loaded with a
miR-16 mimic. Intravenous injection of TargomiRs in a phase I study revealed an
acceptable safety profile (van Zandwijk et al. 2017). Finally, the mechanism of
action of the related molecule miR-16a-5p was recently found to be linked with
the immune checkpoint molecule PDL1 in gastric cancer. That study revealed that
miR-16-5p was transferred between M1 macrophages and gastric cancer cells via
exosomes and targeted PDL1, and that M1 macrophage-derived exosomes
containing miR-16-5p triggered a T-cell immune response leading to inhibited
tumor formation, both in vitro and in vivo, by reducing the expression of PDL1
(Li et al. 2020).

MiRNAs that could serve as targets in cancer immunotherapy are summarized in
Table 3.2.
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3.7 Challenges in miRNA-Based Therapy

Although miRNAs have potential as immunotherapy or as targets in immunother-
apy, their implementation in clinical practice is still far away. Among the various
strategies tested to date, the combination of miRNA-based therapy with other
methods, e.g., chemotherapy (Chakraborty et al. 2018) or silencing with siRNAs,
had superior results, such as enhancing antitumor effectiveness (Nishimura et al.
2013). However, estimating the correct dose of each component in such combined
therapies can be a challenge (Yin et al. 2018) and must be customized for each
patient. Three considerations regarding miRNA-based therapy are the need for
miRNA stability in vivo; tumor-specific delivery; and retention in metabolizing
organs such as liver and kidney, although these points could be addressed by
delivering miRNAs via nanoparticles. Combined therapies could help to develop
synergistic effects (Chakraborty et al. 2018).

In one example, a miR-5119 mimic-engineered DC vaccine was able to increase
antitumor immune response in breast cancer cells by increasing cytokine production
and reducing T-cell apoptosis, as well as reducing tumor size and volume. However,
although DCs can increase the activity of T cells, DCs can also express ligands that
bind to T cells (e.g., PDL1) that induce T cell exhaustion (Zhang et al. 2020).

In general, studies of miRNAs in immunotherapy done to date have some
limitations, including small numbers of patients and lack of standardization with
regard to documentation of clinicopathological factors, habits, and treatment that
could affect the upregulation or downregulation of miRNAs (Peng et al. 2020).
miRNAs can also affect the TME in ways that lead to decreased cell migration; in
one study, for example, miR-1 contributed to resistance to EGFR-TKI immunother-
apy and prompted the induction of cytokines, leading the authors to propose that
miR-1 could be used as indicator of the effectiveness of chemotherapy as well
(Kawana et al. 2021).

Exosomes, because they are endogenous molecules, may be one of the best
options for therapies that involve delivery of miRNAs, but several limitations to
this approach must also be acknowledged. Difficulties in producing and isolating
exosomes have led to generally low yields; strategies such as the use of bioreactors
or modulating oxygen or pH levels could help to bring production to a larger scale.
However, these approaches must be considered carefully, as stress can affect the
contents of exosomes. Also, the technology for generating exosomes is not well
developed, and difficulties with storage can affect the purity of the product. Finally,
the optimal route of administration of miRNAs by various delivery methods must
also consider their biodistribution (Yamashita et al. 2018).

3.8 Conclusions

MiRNAs are deeply involved in the regulation of numerous anticancer immune
responses (Fig. 3.1), including both innate and adaptive immunity. Although
miRNA-based therapy has yet to become a reality in clinical settings, the use of
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miRNA mimics and inhibitors as immunotherapeutics has huge potential. However,
some challenges remain that must be overcome, such as identifying which patients
would truly benefit from miRNA-based therapy; reducing immune-related adverse
events; and improving drug delivery strategies. Thus, much remains to be deter-
mined regarding how miRNAs interact with aspects of the TME to fully recognize
the potential of miRNAs in immunotherapy against cancer.
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Chapter 4
Machine Learning Based Methods and Best
Practices of microRNA-Target Prediction
and Validation

Neetika Nath and Stefan Simm

Abstract Within the last years, more and more noncoding RNAs (ncRNAs) became
the focal point to understand cell regulatory mechanisms because one class of
ncRNAs, microRNAs (miRNAs), plays an essential role in translation repression
or degradation of specific mRNAs and is implicated in disease etiology. miRNAs
can serve as oncomiRs (oncogenic miRNAs) and tumor suppressor miRNAs, thus,
miRNA therapeutics in clinical trials have become a vital component with respect to
cancer treatment. To circumvent side-effects and allow an accurate effect it is crucial
to accurately predict miRNAs and their mRNA targets. Over the last two decades,
different approaches for miRNA prediction as well as miRNA target prediction have
been developed and improved based on sequence and structure features. Nowadays,
the abundance of high-throughput sequencing data and databases of miRNAs and
miRNA targets from different species allow the training, testing, and validation of
predicted miRNAs and miRNA targets with machine learning methods. This book
chapter focuses on the important requirements for miRNA target prediction tools
using ML like common features used for miRNA-binding site prediction. Further-
more, best practices for the prediction and validation of miRNA–mRNA targets are
presented and set in the context of possible applications for cancer diagnosis and
therapeutics.

Keywords Machine learning · Best practices · Cancer · miRNA–mRNA target
prediction · miRNA validation

4.1 Introduction of miRNAs and Their Role in Cancer

The progressions of the post-genomic era have paved the way to focus on regulation
based on RNomics including protein-coding messenger RNAs (mRNAs) and non-
coding RNAs (ncRNAs) (Huttenhofer et al. 2002). Among these ncRNAs,
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microRNAs (miRNAs; 19–25 nucleotides in length) are receiving increasing atten-
tion as they regulate gene expression at the posttranscriptional level (Chakraborty
et al. 2018). In principle, miRNAs are transcribed through RNA polymerase II,
spliced, capped, and polyadenylated, resulting in the primary miRNA (pri-miRNA).
Subsequently, pri-miRNAs are processed via the endonuclease Drosha leading to a
specific hairpin structure referred to as “precursor” miRNAs (Adams 2017). Once
processed from the hairpin, the mature miRNA is loaded in the Argonaute protein of
the RNA-induced silencing complex (RISC) and pairs with mRNAs to direct
posttranscriptional repression. To understand the functional regulation of miRNAs,
it is vital to identify the target mRNAs (Bartel 2009). Predictions of potential
miRNA–mRNA targets are based on specific properties of miRNA response ele-
ments (MREs) and evolutionary conservation of target sites (Simkin et al. 2020). As
it is noted that miRNAs genes are often located in specific key sites like cancer-
associated regions (Chakraborty et al. 2018) the functional understanding has the
potential to be used in cancer treatment applications (Box 4.1).
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Box 4.1 Types of miRNAs in Cancer
Studies have conclusively demonstrated that miRNAs are deeply involved in
tumor onset and progression either behaving as tumor-promoting miRNAs
(oncomiRs and metastamiRs) or as tumor suppressor miRNAs (Volinia et al.
2006). For example, miR-25 acting as oncomiR in osteosarcoma is negatively
regulating p27 protein expression (Wang et al. 2014). Additionally,
metastamiRs are a subclass of oncomiRs associated with the acquisition of
metastatic phenotypes by a metastasis-promoting or tumor suppressor inhib-
itory activity (White et al. 2011), for example, miR-1908 decreases the
expression of the tumor suppressor PTEN in glioblastoma cells resulting in
an increase in proliferation, migration, and invasion (Xia et al. 2015). Further-
more, miRNAs can function as both oncomiR and metastamiR like miR-96
regulating the TGF-β/mTOR signaling, promoting bone metastasis, and con-
tributing to a reduced survival rate in prostate cancer (Siu et al. 2015). In
contrast to oncomiRs and metastamiRs, tumor suppressor miRNAs exist,
which are often downregulated in tumors and exhibit onco-suppressor prop-
erties by targeting oncoprotein coding mRNAs. For example, miR-340 is
responsible for the downregulation of the posttranscriptional regulators
PUM1, PUM2, and SKP2 and this is involved in the upregulation of p27
and has the opposite function of miR-25 (Fernandez et al. 2015).

Alterations in miRNA expression have been demonstrated to be associated with
cancer, where guided alterations of specific miRNAs have been suggested as novel
therapeutic approaches (Garzon et al. 2010). A review by Chakraborty et al. (2017)
pinpoint miRNA controlling cancer stem cells and their role in carcinogenesis
(Fig. 4.1). Within the last decades, cancer-related miRNAs are increasingly identi-
fied and characterized of which the majority are located in cancer-associated



genomic regions in solid tumors and hematological malignancies (Gambari et al.
2016). Further, it was confirmed that cancer-specific miRNAs can also be present in
body fluids. These miRNAs play an essential role in the crosstalk between cancer
cells and surrounding normal cells (Weber et al. 2010).
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Fig. 4.1 Cancer-related miRNAs (breast, lung, and prostate) in Homo sapiens. The scheme
represents the known tumor suppressor miRNAs (right site) inhibiting oncogene mRNA targets
and oncomiRs and metastamiRs (left side) inhibiting tumor suppressor mRNAs. miRNAs were
extracted from the review of Gambari et al. (2016)

Besides the identification of miRNAs and their expression profiles within the cell,
the prediction of target mRNAs is crucial to understanding the regulatory mecha-
nism of the miRNAs in the context of diseases. Challenging for the prediction of
miRNA–mRNA target sites is the fact that several types of miRNA binding sites
exist differing in the position and localization of Watson–Crick pairings and mis-
matches (Bartel 2009). Additionally, the rules for miRNA–mRNA target sites vary
within eukaryotic clades. In plants, most miRNA–mRNA target sites are located
within the open reading frames (ORFs) of target genes and have nearly full comple-
mentarity to the miRNA (Voinnet 2009), whereas in animals, miRNA–mRNA target
prediction is more challenging because of diverse binding rules (Witkos et al. 2011).
First, only a few miRNA–mRNA targets show a strict complementarity in the target
site and this increases the interaction complexity. Second, there is only limited
knowledge about the rules as miRNA binding sites are predominantly found in 30

untranslated regions (UTRs) of target genes and only sporadically in 50 UTRs or
ORFs (Lytle et al. 2007). Therefore within the last decades, new findings of miRNA
biology and their targets including novel miRNA–mRNA target features
implemented in prediction algorithms helped to increase accuracy in the prediction
of miRNA–mRNA interactions (Witkos et al. 2011). Furthermore, numerous target
prediction algorithms exploiting optimization function of machine learning (ML) for
refining the miRNA–mRNA target predictions were developed.
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4.2 miRNA Target Prediction Tools

Besides the prediction of miRNAs (Box 4.2) another big challenge is the identifica-
tion of miRNA–mRNA target sites driven by sequence complementarity. Given that
a genome-wide detection of new miRNAs and their target sites would be very time
consuming and expensive in the wet lab, computational approaches are used to
screen the genome for potential targets and their target sites. Subsequently, the high-
confidence candidates can be validated by wet lab experiments. To support the user
in choosing between the variety of miRNA target prediction tools two interactive
guide tools are available as web services to give an overview of available miRNA
target prediction tools: MT-guide (Kern et al. 2020) and Tools4miRs (Lukasik et al.
2016). These tools provide manually curated catalogs of different methods that are
available for miRNA–mRNA target prediction. There are multistep questionnaires
and check boxes to set distinguishing features like prediction method, target organ-
ism, target region, and prediction features.

4.2.1 Common Features for miRNA Target Prediction

The common principle of computational methods lies in the identification of com-
plementary sequence matches between miRNAs and the identified target genes (Min
and Yoon 2010). Besides the fact that perfect complementary matches between
miRNA and mRNA are rarely observed, especially in mammalian organisms, the
algorithms need to consider near-perfect complementary matches and further fea-
tures. The commonly used features in such miRNA target prediction tools are local
seed sequence comparisons, structural sequence information, and global sequence
information like conservation and abundance of target sites (Peterson et al. 2014).
However, these features provide limited knowledge to cover all existing special
cases of the complex miRNA–mRNA target binding mechanisms in vivo for
example miRNA/mRNA pairing lacking seed complementary (Chipman and
Pasquinelli 2019). Additionally, the prediction of putative miRNA targets is not
directly connected to biological significance, as multiple mRNA targets exist for one
miRNA and (anti-)correlated expression levels have to be set into biological context
(Misiewicz-Krzeminska et al. 2019).

Box 4.2 Prediction of miRNAs Using ML
Genome-wide identification of miRNAs within a species is performed using
high-throughput sequencing like miRNAseq. The sequencing reads are
mapped on the genome to identify known miRNAs. Expressed unannotated
regions are considered for novel miRNA prediction. For the prediction via ML
techniques, the general workflow is to train the classifier model using a

(continued)



Box 4.2 (continued)
positive and negative dataset for miRNAs, at which the structure of miRNAs
has to be predicted beforehand using tools like Vienna RNAfold (Gruber et al.
2008). The positive set contains hairpin sequences of the miRNAs from
experimentally verified databases like miRBase (Kozomara et al. 2019) or
RFAM (Griffiths-Jones et al. 2003), which can be filtered based on specific
features and should not contain redundancy from miRNA duplexes. Whereas,
the negative set is created in silico using random segments from pre-miRNA
hairpins to create pseudo miRNA duplexes. Afterward, the classifier is trained
on both sets using different features like structure (stem and loop), sequence,
or thermodynamic energies and can be extended using only the mature
miRNA sequences as additional features. The best-trained model will be
chosen based on the cross-validation results. As possible classifiers mainly
support vector machines (SVM; e.g., miR-abela (Sebastian and Aggrey 2008)
or Triplet-SVM (Xue et al. 2005)), Hidden Markov models (HMM; e.g.,
ProMirII (Nam et al. 2006), HHMMiR (Kadri et al. 2009)) or naïve Bayes
methods (e.g., BayesMirFind (Yousef et al. 2006) or miR-KDE (Chang et al.
2008)) are used. Besides, also random forest (RF)-based methods like MiPred
(Jiang et al. 2007) and neural networks (NN) (Zheng et al. 2020) have been
implemented to predict pre-miRNAs or novel miRNAs.

4 Machine Learning Based Methods and Best Practices of microRNA-Target. . . 113

Until now miRNA target prediction (Fig. 4.2) is an important, dynamic research
field. Prediction tools are classified into six categories (Chu et al. 2020) based on six
main features (Grimson et al. 2007; Peterson et al. 2014; Riolo et al. 2020): (1) Seed
matching is the most common principle that is incorporated in many target predic-
tion algorithms. To calculate the seed matching score, the general rule is to deter-
mine the complementarity of the miRNA seed to the mRNA. The miRNA seed
sequence is 2–8 nucleotides long starting at the 50 end and counting toward the 30

Fig. 4.2 Features for miRNA–mRNA target prediction. The scheme represents the main features
for miRNA–mRNA target prediction categorized in local sequence level: seed matching (1); local
AU content (2); in structure level: target site accessibility (3); free energy (4); global sequence level:
target site abundance (5); and target site conservation (6). The miRNAs are visualized in orange and
the mRNA target in gray



end. This region binds to the 30 UTR of mRNAs and the efficacy of target repression
is dependent on the number of consecutive base pairs (1mer, 2mer, . . .) and their
complementary (Lewis et al. 2003). So far the majority of known miRNA–mRNA
target sites can be classified into three types of canonical sites based on the seed
matching feature (Benway and Iacomini 2018): the 7mer1A that has an adenine in
position 1 at the 50 end of miRNA, the 8mer having matched adenine in position
1 and an additional match in position 8 and the 7mer-m8 that has a match in position
8. Besides these main types, shorter seed matching regions like the 6mer, and
30-supplementary/-compensatory sites have been observed. Thereby the 30 part of
the miRNA (positions 13–16) corresponds to nucleotides of the transcript and can
compensate for a mismatch in the seed region (Grimson et al. 2007).
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Within the seed matching, local abundance of adenine (A) and uracil (U) in the
seed region are considered as a specific feature (Ghoshal et al. 2015). This local AU
content (2) feature has intrinsically a high correlation to the seed matching feature
but is less commonly used in the target prediction. (3) The feature of target site
accessibility is still focusing on the seed region but provides in contrast to the local
AU content information about the structure of the mRNA target site (Marin and
Vanicek 2011). The accessibility is calculated using the cost of free energy to unfold
the mRNA at the seed region to bind the miRNA (Kertesz et al. 2007). The second
structural feature is considering (4) the free energy not only used in the unfolding
likelihood of the mRNA but also as a general feature to define the stability of the
miRNA–mRNA complex. Greater stability of miRNA/mRNA duplexes is reflected
by lower free energy, which is influenced by other factors like length of mRNA,
formation of secondary structures at thermodynamic equilibrium, binding site acces-
sibility, and thermodynamic stability of miRNA–mRNA duplexes (Rojo Arias and
Busskamp 2019). Besides these commonly used features for miRNA target site
prediction focusing on the local specific seed sequence or the structural information
also two features are based on a more widespread view. Here, (5) target site
abundance across the whole 30 UTR of the mRNA as well as (6) the conservation
of miRNA binding sites across species are considered. The target site abundance is
measured by how many target sites occur in the putative mRNA 30UTR region and
should be considered as a secondary feature to the seed matching or free energy
feature (Garcia et al. 2011). In contrast, the conservation feature is based on the
hypothesis that a miRNA target site, which is conserved across species, is the result
of positive natural selection and this adds a functional meaning to the prediction. The
method is based on the analysis of the UTR as well as the miRNA and includes
different “seed types” across different clades for their calculations (Simkin et al.
2020). The inclusion of next generation sequencing (NGS) data leads to additional
information like co-expression, which is used for in silico prediction (Alexiou et al.
2009).

Currently, various tools for miRNA–mRNA target prediction are available that
are roughly categorized into feature driven (derived from characteristics of the
mRNA sequence and/or miRNA–mRNA interaction) and statistics driven (statistical
inference based on ML) (Riolo et al. 2020). The feature-driven algorithms use
different features of the miRNA-target complex to identify de novo interactions,



whereas in the case of statistics-driven methods, the idea is to identify miRNA
targets referenced by biological significant miRNA–mRNA duplexes from sample
datasets to use the acquired information on unknown data (Witkos et al. 2011).
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4.2.2 Machine Learning Based Algorithms for miRNA Target
Prediction

The generic term machine learning (ML) comprises algorithms like logistic/lasso
regression, support vector machine (SVM), random forest (RF), and neural network
(NN). These algorithms can be supervised or unsupervised, at which in the case of
miRNA target prediction supervised methods are mainly used. In principle, the aim
of ML techniques is to train and reduce the internal error on known input datasets
with labels using an optimizer function. The trained ML model can be afterward
applied to new datasets to predict the class labels as output (Sidey-Gibbons and
Sidey-Gibbons 2019). In contrast to the miRNA prediction (Box 4.2), miRNA–
mRNA target prediction methods based on ML are trained to distinguish between
target and non-target. Therefore the general outline is to identify for a set of validated
targets (positive) and non-targets (negative) the putative binding sites of the miRNA,
extract the feature information (free energy, seed matching, etc.), train the ML
classifier and use the trained ML to decide for a separate set of miRNA–mRNA
pairs between target and non-target (Parveen et al. 2019). To focus on cancer-
specific miRNA–mRNA target prediction based on ML methods the search space
was limited to prediction tools included in MT-guide and Tools4miRs containing
Homo sapiens as target organism and ML as prediction method published in the time
interval between 2006 and 2020 (Fig. 4.3).

Linear ML approaches, like lasso or logistic regression (miRNALasso (Wang
et al. 2015), TargetThermo (Lekprasert et al. 2011), MirAncesTar (Leclercq et al.
2017), and STarMir (Rennie et al. 2014) outperform static rule-based miRNA target
prediction algorithms due to their ability to dynamically adjust linear relationships in
their models based on newly detected targets. The linear ML models define a
prediction outcome (target vs. non-target) based on different sequences and struc-
tural features. Where tools like TargetThermo only consider seed matching and
energy-based features for miRNA–mRNA target prediction, miRNALasso addition-
ally includes co-expression data of mRNA and miRNA to predict the regulatory
effect. In addition to sequence features, some tools and web servers like STarMir
include experimental data like crosslinking immunoprecipitation in humans for
predicting targets (V-CLIP) (Kishore et al. 2011). The tool MirAncesTar is consid-
ering the human miRNAs and their mammalian orthologues from the database
miRBase (Kozomara et al. 2019) to boost the prediction accuracy of their model.
In contrast to nonlinear ML techniques like SVM, RF or NN are capable of training
on all available features and modeling nonlinear relationships like miRNA



expression and target repression (Pelaez and Carthew 2012), which can lead to more
insights into the target interactions (Schafer and Ciaudo 2020).
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Fig. 4.3 Timeline for ML-based miRNA target prediction tools. The timeline represents the release
of the first version of developed tools from 2006 to 2020 categorized in support vector machine
(red), random forest (green), neural network (blue), and other methods (Bayesian inference,
regression; black). Tools are limited to Homo sapiens including miRNA target prediction gathered
from MT-guide and Tools4miRs

In the beginning, starting from 2006, most miRNA target prediction tools were
based on linear ML methods including Gaussian mixture models or some nonlinear
Bayesian mixture models (Expmicro (Liu et al. 2010b), GenMir++ (Huang et al.
2007), ElMMo3 (Gaidatzis et al. 2007), BcmicrO (Yue et al. 2012), TargetSpy
(Sturm et al. 2010), DIANA-microT-CDS (Paraskevopoulou et al. 2013),
SuperMirTar (Liu et al. 2013), TaLasso (Muniategui et al. 2012), NbmiRTar
(Yousef et al. 2007), homoTarget (Ahmadi et al. 2013)). In the first 10 years of
miRNA target prediction, many tools implemented SVMs beside the mixture models
like Avishkar, chimiRic, ComiR, Cupid, miREE, miRgo, mirSVR, MiRTif,
miTarget, MultiMiTar, SVMicrO, TargetExpress, and TargetMiner (Table 4.1).
SVM-based prediction methods are still implemented today in tools like miRgo
(Chu et al. 2020). In principle, SVMs use the kernel trick to map the input dataset in
a higher-dimensional space through a chosen kernel function. This allows the SVM
method to construct an optimized hyperplane in the feature space to maximize
segregation of miRNA–mRNA targets from non-targeted interactions (Vapnik
1999).

Between 2010 and 2018 ML tools based on RF like Antar, IMTRBM, MBStar,
microCLIP, mirMark, miSTAR, Oasis 2.0, TargetScan, and TarPmiR have been
released (Table 4.2). The most important property of RF is to select features and
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Table 4.1 SVM-based methods for miRNA target prediction (a. . .NGS input)

Tool References Web
Target
region

Prediction features

miTarget Kim et al. (2006 30 UTR Yes No No Yes No No

MiRTif Yang et al. (2008) W Any Yes Yes No No No No

TargetMinera Bandyopadhyay and
Mitra (2009)

Both 30 UTR Yes No No No No No

SVMicrO Liu et al. (2010a 30 UTR Yes No Yes Yes Yes Yes

mirSVR Betel et al. (2010 0 UTR Yes Yes No No No No

MultiMiTar Mitra and
Bandyopadhyay
(2011)

Both 30 UTR Yes Yes No No No No

miREE Reyes-Herrera et al.
(2011)

30 UTR Yes No Yes Yes No No

ComiRa Zhao and Xue
(2019)

Both 30 UTR No No No No No No

Avishkar Ghoshal et al.
(2016)

D Any Yes Yes Yes No No No

Cupid Chiu et al. (2015 30 UTR Yes Yes Yes Yes Yes Yes

MirTarget Liu and Wang
(2019)

W Any Yes Yes No Yes Yes No

chimiRic Lu and Leslie (2016 D 30 UTR Yes Yes No No No No

TargetExpressa Ovando-Vazquez
et al. (2016)

Both 30 UTR No No No No No No

miRgo Chu et al. (2020) W Any Yes No No Yes No No

Availability (web server: W; download: D; both), target region (30 UTR; 50 UTR; CDS; Any), and
prediction features (1: seed matching; 2: local AU content; 3: target site accessibility; 4: free energy;
5: target site abundance; 6: target site conservation) are listed

Table 4.2 RF methods for miRNA target prediction (a. . .NGS input)

Tool References Web
Target
region

Prediction features

Antar Wen et al. (2011 0 UTR Yes No Yes Yes No No

mirMark Menor et al. (2014 30 UTR Yes Yes Yes Yes No Yes

MBStar Bandyopadhyay et al.
(2015)

Both 30 UTR Yes No Yes Yes No No

TarPmiR Ding et al. (2016) D Any Yes Yes Yes Yes No No

miSTAR Van Peer et al. (2017 W 30 UTR Yes Yes No Yes Yes No

Oasis 2.0a Capece et al. (2015) W Any No No No No No No

microCLIP Paraskevopoulou
et al. (2018)

30 UTR,
CDS

Yes No No Yes No Yes

IMTRBM Liu et al. (2019) D Any Yes No Yes Yes No No

TargetScan Lewis et al. (2003) Both 30 UTR Yes No Yes No No Yes

Availability (web server: W; download: D; both), target region (30 UTR; 50 UTR; CDS; Any), and
prediction features (1: seed matching; 2: local AU content; 3: target site accessibility; 4: free energy;
5: target site abundance; 6: target site conservation) are listed
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notice their relevance during the model training. In principle, RF is an ensemble
approach operating by building a multitude of decision trees. Several decision trees
are trained with random bootstrap samples from two-thirds of the original dataset
and afterward combined into a single prediction by means of voting (Svetnik et al.
2003).
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Table 4.3 NN tools for miRNA–mRNA target prediction

Tool References Web
Target
region

Prediction features

MTar Chandra et al.
(2010)

Any Yes Yes No Yes No No

miRepress Ghosal et al.
(2016)

Both Any Yes No Yes No Yes Yes

MiRTDL Cheng et al. (2016) Both Any Yes No Yes No No Yes

deepTarget Lee et al. (2016) D Any No No Yes No Yes Yes

DeepMirTar Wen et al. (2018 30 UTR Yes No Yes Yes No Yes

miRaw Pla et al. (2018 30 UTR Yes No Yes Yes No No

miTAR Gu et al. (2021) D Any Yes No No No No No

Availability (web server: W; download: D; Both), target region (30 UTR; 50 UTR; CDS; Any), and
prediction features (1: seed matching; 2: local AU content; 3: target site accessibility; 4: free energy;
5: target site abundance; 6: target site conservation) are shown

Since 2016, tools using NN approaches like MTar, miRepress, MiRTDL,
deepTarget, DeepMirTar, miRaw, and miTAR have been increasingly released
and becoming the state-of-the-art technique in this research area (Table 4.3). Many
of these NN methods for miRNA target prediction belong in the category of deep
learning because they are based on multiple layers that progressively extract features
from the input. Such neural nets can be subdivided into categories like convolutional
neural networks (CNN), auto-encoder, or recurrent neural networks (RNN). Basi-
cally, NNs are trained iteratively over the single layers until a pattern can be
identified to distinguish between target and non-target. After the input layer several
hidden layers of neurons, each responsible for a linear transformation followed by a
nonlinear activation function are connected and end in an output layer containing the
categories (Rumelhart et al. 1986).

Because ML-based prediction tools are trained on labelled datasets, these algo-
rithms must be trained on a positive dataset of experimentally validated miRNA–
mRNA interactions and a negative dataset containing artificially generated or
experimentally proven non-targets. The aim is to identify specific patterns that
discriminate between miRNA–mRNA target and non-target (Sidey-Gibbons and
Sidey-Gibbons 2019). Supervised ML can exclusively learn from the provided
examples but is able to generalize the given information within the features and
transfer them to unknown results for classification (Kim et al. 2006). The funda-
mental importance of the training is to provide good quality datasets covering special
cases and general rules (Selbach et al. 2008). The positive dataset is extracted from
publicly available databases like miRBase (Kozomara et al. 2019), MiRTarBase
(Hsu et al. 2011), DIANA-TarBase (Karagkouni et al. 2018), and miRecords (Xiao



et al. 2009), whereas the negative dataset is often generated artificially and rarely
based on negative miRNA–mRNA target results. The positive dataset can introduce
bias caused by cell type, condition, and laboratory approaches (Schafer and Ciaudo
2020). The negative dataset can be too similar to the positive dataset or too artificial
compared to real miRNA–mRNA non-targets. Both situations will lead to a ML
approach not being able to efficiently discriminate between target and non-target
(Riolo et al. 2020). As important as the creation of the positive and negative dataset
are the balancing of both sets to prevent over or under-fitted models (Parveen et al.
2019). In summary, the ML-based miRNA target prediction methods use in principle
the same miRNA–mRNA interaction features but differ mainly in the chosen ML
architecture and the training dataset used for training and validation. For example,
miTarget (SVM), miTAR (RF), and mirMark (NN) are all based on seed matching
and different free energy features but differ in the data source and sample size. For
example, miTarget is trained on 398 positive meaningful miRNA–mRNA target
sites from the literature, mirMark is trained on the full miRecords database (Xiao
et al. 2009) and miTAR used ~33,000 positive targets extracted from the
DeepMirTar and miRAW training datasets.
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4.3 Best Practices for miRNA Target Prediction

Due to the diverse types of miRNA target binding sites based on position and
localization of Watson–Crick pairings and mismatches it is important to use several
features and tools for the prediction (Bartel 2009). The interaction complexity allow
only a limited generalizability of rules for the miRNA–mRNA target prediction
(Witkos et al. 2011). Based on the heterogeneity of target sites, the usage of a single
miRNA–mRNA target feature or model is not sufficient and requires specifically
developed best practices and workflows.

4.3.1 Workflow to Detect miRNA–mRNA Target Sites

Target prediction programs are in principle binary classifiers and the two main
statistical parameters to proof the tools performance are based on specificity and
sensitivity. A comparative study of target prediction algorithms (Sethupathy et al.
2006) checked for these parameters using a set of experimentally validated mam-
malian targets from a database, which did not include all possible types of miRNA–
mRNA target sites. Tools focusing on conserved seed matching, e.g., TargetScan
(Lewis et al. 2003) reached a specificity of around 50% and sensitivity of 6–12% for
specific miRNAs. Combination of several tools in so called metatools (Box 4.3) can
increase the sensitivity at the cost of specificity creating a consensus out of tools
considering different features like length of the 30 UTR or synergistic effects from
multiple target sites of the same or different miRNAs (Gaidatzis et al. 2007).
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Box 4.3 Metatools of miRNA Target Prediction
Combining results from various tools can lead to a decrease in the prediction
performance meaning the intersection of results from two or more tools can
improve specificity at the cost of decreasing sensitivity, whereas the union of
two or more tools increases the number of true targets and decreases the
specificity (Witkos et al. 2011). However, in many studies, ensemble methods
like the intersection of multiple tools are used to avoid false-positive pre-
dictions regardless of the loss in sensitivity (Wang et al. 2017). In such
approaches, a ranking system for miRNA–mRNA is adapted based on the
strength of the correlation coefficients (Le et al. 2015). For such a rank, the
Borda count election can be used by selecting candidates in a democratic
election with the best average rank (Marbach et al. 2012). Ensemble methods
help with obtaining more comprehensive results, at which a combination of
methods taking different approaches may result in a better ensemble method
than combining methods in the same category. Nevertheless, simple meta-
strategies like the intersection to directly integrate the outputs of individual
predictors may not improve the prediction performance significantly (Zhao
and Xue 2017). Therefore, more sophisticated meta-strategies can balance out
sensitivity and specificity of different tools by integrating various data analysis
techniques. Additionally, it can be expected that additional techniques may be
used to further reduce noise, and consequently improve prediction accuracy
but so far no consensus regarding the gold standard for miRNA target predic-
tion exists (Oliveira et al. 2017).

In general, target prediction programs give scores and percentages to positions
that only assess the possibility of interaction. By this, the basic concept of miRNA–
mRNA target prediction algorithms predetermines the outcome advantages and
weak points. For instance, the wobble pairing within the seed region of miRanda
(Enright et al. 2003) adds 30 compensatory sites by a simultaneous lowering of the
precision. Another example would be DIANA-microT (Paraskevopoulou et al.
2013) analyzing target sites independently leading to a bias against miRNAs with
multiple target sites. To overcome such shortcomings best practices for miRNA–
mRNA target site prediction combining several tools are necessary and dependent on
the wished outcome like performing comprehensive analysis to discover all true
interactions (basic research) or finding the strongest interactions that could be
employed in gene therapies (clinical-oriented research) (Witkos et al. 2011).

A possible best practices workflow (Fig. 4.4) would be to use in a first step one
program focusing on site conservation like seed matching (e.g., MiRTif, miTAR, or
TargetScan) because they are characterized by high precision and sensitivity. The
next optional step is to add targets indicated by programs exploiting other parameters
for final scoring (e.g., Cupid, TarPmiR, or DeepMirTar). After selection of predicted
miRNA–mRNA target sites tools like ComiR, TargetMiner, TargetExpress, or Oasis
2.0 are using the expression profile of miRNAs and targets to detect overlaps or



inverse correlations. Finally, the last step to detect putative target sites in the
immediate vicinity (MirTarget, miSTAR, or deepTarget) would be beneficial as it
may play an important role in the mechanism of miRNA-mediated gene regulation.
In genome-wide analyses (Grimson et al. 2007) as well as experimental data
(Saetrom et al. 2007), it could be demonstrated that target sites located close to
each other often act synergistically. After determining candidate miRNAs and their
target mRNA interactions, synergy has to be validated using wet lab experiments to
obtain full legitimacy (Thomson et al. 2011). Experimentally validated miRNA–
mRNA interactions can be found in various databases like TarBase (Papadopoulos
et al. 2009), MiRecords (Xiao et al. 2009), Ago (Shahi et al. 2006), or miRNAMAP
(Hsu et al. 2008).
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Fig. 4.4 Flowchart for best practices in miRNA target prediction. The flowchart shows a best
course of practice to predict miRNA–mRNA targets. Input, Output (parallelogram), and database
are orange, essential processing steps are gray and optional processing steps are light gray

4.3.2 Validation of miRNA Target Prediction

Several methods for experimental verification of predicted miRNA–mRNA interac-
tions are currently being used, i.e., reporter assays, transcriptomics, and proteomics
analyses (Witkos et al. 2011). Depending on the information provided, experimental
approaches can be classified into direct and indirect methods. Direct methods like
reporter assays investigate the existence of an interaction between miRNA and its
target, by studying directly the miRNA–mRNA pair or introducing a specific target
site bound by miRNAs, known as MREs, into a reporter gene that measures the
potential miRNA-induced changes at protein levels. Transcriptomics and proteomics
analyses are categorized as indirect approaches because in both cases effects derived
from an altered miRNA expression on mRNA or protein expression are observed.
However, both classes have their disadvantages. Direct methods are relying on
predictions of MREs and indirect methods can be affected by “knock-on” effects



altering indirectly the expression of multiple genes (Alexiou et al. 2009). An easy
measurement approach under the gene reporter assays to detect miRNA–mRNA
interactions are luciferase reporter assays (Miranda et al. 2006). This method is
based on cloning the 30 UTRs of genes (containing miRNA binding sites) into
expression vectors bearing a reporter gene and using as negative control mutated
target sites. Reporter assays serve as an efficient strategy for the verification of
individual miRNA–mRNA interactions. In contrast, transcriptomics and proteomics
approaches enable a genome-wide analysis of putative miRNA/target interactions.
Microarray experiments compare cell transcriptomes after miRNA overexpression
or inhibition with reference to the transcriptome of untreated cells which are highly
dependent on the cell physiology. For proteome analysis, stable isotope labeling
with amino acids in cell culture (SILAC) is used followed by a quantitative-mass
spectrometry (Vinther et al. 2006). Besides these two main high-throughput methods
approaches like AGO immunoprecipitation followed by NGS are used to identify
miRNA–mRNA target prediction at a genome-wide level (Chi et al. 2009).
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As a general approach, four criteria should be fulfilled to validate a miRNA–
mRNA target pair in the biological model of interest (Thomson et al. 2011):
(1) Co-expression of miRNA and predicted target mRNA must be demonstrated;
(2) A direct interaction between the miRNA of interest and a specific region within
the target mRNA must be proved; (3) Gain and loss of function experiments must be
performed to demonstrate the regulatory mechanism; (4) The predicted changes in
protein expression that are associated with modified biological functions should be
demonstrated (Matkovich et al. 2011). First, the co-profiling of miRNAs and
mRNAs allows insights into sharing the same transcriptional program or regulation
by members of the same pathway. Microarray and RNA-Seq profiling on large
scales as well as northern blots and RT-qPCR on a few genes can demonstrate
co-expression. Second, it is essential to investigate the physical interaction between
the miRNA and the MRE in the target mRNA. For such a direct interaction the
reporter assays are still the gold standard procedure. The 30 UTR with the MRE
sequence is cloned downstream of the reporter gene and subcloned under the control
of a ubiquitous promoter. Third, protein abundance analysis should be performed to
investigate the change at the protein level of the target mRNA bound by the miRNA.
Therefore, conventional methods like western blotting, ELISA or immune-
cytochemistry experiments as well as global analysis like SILAC with additional
mass spectrometry can be used (Yang et al. 2010). Fourth, it is essential to show that
the miRNA–mRNA interaction has a biological function in the cell via in vitro or
in vivo assays (Orom et al. 2008). By such assays signaling pathways, proliferation,
differentiation, or migration behavior can be analyzed in cellular models.

As the experimental validation of miRNA targets is difficult, miRNA target
prediction should be a powerful tool to identify potential miRNA targets. Compu-
tational approaches should provide invaluable tools for identification of miRNA
targets in various biological networks. To accurately answer such questions more
complex computational approaches are needed modeling the interplay between
miRNAs (Huang et al. 2010). The present scarcity of experimentally validated
exact miRNA hybridization sites is one big obstacle to the development of better



prediction methods (Riolo et al. 2020). High-throughput methods can on the one
hand connect computational prediction and experimental validation but on the other
hand generate a large amount of data that is not easy to interpret. Further, the
validation of miRNA targets via such indirect methods can lead to “knock-on”
effects by overexpression studies or are limited by the specificity of the inhibitor
(Thomson et al. 2011).
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4.4 miRNA-Based Therapeutics for Cancer

Worldwide, an estimated 19.3 million new cancer cases and almost 10.0 million
cancer deaths occurred in 2020 (Sung et al. 2021). According to estimates from the
World Health Organization (WHO) in 2019, cancer is the first or second leading
cause of death before the age of 70 years in 112 of 183 countries and ranks third or
fourth in a further 23 countries. Cancer’s rising prominence as a leading cause of
death partly reflects marked declines in mortality rates of stroke and coronary heart
disease, relative to cancer, in many countries. At present, three main therapeutic
strategies for cancer management are available (chemotherapy, surgery, and radio-
therapy). Nowadays, direct and indirect miRNA-based strategies for cancer treat-
ment have been developed (Box 4.4) with the potential to increase survival rate and
reduce mortality rate (Gambari et al. 2016). Therapies are either based on reduction/
inhibition of miRNAs or miRNAs are replaced/restored (Kong et al. 2012).

Box 4.4 Strategies for miRNA-Based Therapeutics
Blocking oncogenic miRNAs using antisense oligonucleotides—Antisense
oligonucleotides are used as competitive inhibitors of miRNAs by annealing
to the mature miRNA guide strand and inducing degradation or stoichiometric
duplex formation (Hutvagner et al. 2004).

Locked nucleic acid (LNA) antimiR constructs—Nucleic acid analogues
like LNA nucleosides contain a “locked” ribose ring by a methylene bridge
connecting the 20-O atom and the 40-C atom. By “locking” the molecule with
the methylene bridge, LNA oligonucleotides increase mismatches discrimina-
tion, aqueous solubility, and hybridization affinity (Vester and Wengel 2004).

miRNAs sponges—miRNA sponges are decoy transcripts containing mul-
tiple, tandem binding sites to a miRNA of interest. Beside antisense oligonu-
cleotides against miRNAs (Ebert et al. 2007).

miR-Mask—miR-Mask stands for miRNA-Masking antisense oligonucle-
otides technology and is another decoy-based mechanism. miR-Masks consist
of single-stranded 20-O-methyl-modified antisense oligonucleotides that are
fully complementary to predicted miRNA binding sites in the 30 UTR of the
target mRNA (Choi et al. 2007).

(continued)
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Box 4.4 (continued)
Small-molecule inhibitors—Small molecule drugs are used to modulate the

expression of miRNAs by targeting signaling pathways. This will influence
the activation of transcription factors that regulate miRNA encoding genes.
The aim is to modulate the miRNA maturation and degradation process
machinery (Gumireddy et al. 2008).

Restoring tumor suppressor miRNA expression—Compensation for the
loss or downregulation of a tumor suppressor miRNA can be reached by the
introduction of synthetic oligonucleotides like miRNA mimics (Garzon et al.
2009).

Reprogramming cancer cells—In contrast, this strategy is based on
reprogramming a miRNA network in cancer. The reprogramming could be
achieved by chemotherapeutic drugs or the modulation of several antisense
oligonucleotides or miRNA mimics (Garzon et al. 2007).

Many promising examples potentially lead to the development of miRNA-based
therapeutic protocols against cancer, in which therapies should be designed to target
multiple miRNAs in respect to the high complexity of the networks for cancer
(Gambari et al. 2016). The problem of in vivo miRNA therapeutics is the delivery
to specific tissues and of sufficient amount of cellular uptake due to biological
instability of unmodified oligonucleotides, size, and negative charge (Aagaard and
Rossi 2007). In addition, the potential off-target effects of miRNA therapeutics may
cause toxic phenotypes (Dias and Stein 2002). But besides the importance of
miRNAs as a therapeutic possibility for cancer miRNAs have also a very important
implication in the diagnosis and prognosis of cancer types. One relatively recent
example is the specific pattern of circulating cell-free miRNAs in serum (Fayyad-
Kazan et al. 2013). Such cancer-specific miRNAs present in extracellular body fluids
allow the crosstalk between cancer and normal cells and has the advantage for
diagnosis and prognosis to be a noninvasive liquid biopsy (Koberle et al. 2013).
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Chapter 5
Turning Data to Knowledge: Online Tools,
Databases, and Resources in microRNA
Research

Ido Blass, Keren Zohar, and Michal Linial

Abstract MicroRNAs (miRNAs) provide a fundamental layer of regulation in cells.
miRNAs act posttranscriptionally through complementary base-pairing with the
30-UTR of a target mRNA, leading to mRNA degradation and translation arrest.
The likelihood of forming a valid miRNA-target duplex within cells was computa-
tionally predicted and experimentally monitored. In human cells, the miRNA pro-
files determine their identity and physiology. Therefore, alterations in the
composition of miRNAs signify many cancer types and chronic diseases. In this
chapter, we introduce online functional tools and resources to facilitate miRNA
research. We start by introducing currently available miRNA catalogs and miRNA-
gateway portals for navigating among different miRNA-centric online resources. We
then sketch several realistic challenges that may occur while investigating miRNA
regulation in living cells. As a showcase, we demonstrate the utility of miRNAs and
mRNAs expression databases that cover diverse human cells and tissues, including
resources that report on genetic alterations affecting miRNA expression levels and
alteration in binding capacity. Introducing tools linking miRNAs with transcription
factor (TF) networks reveals miRNA regulation complexity within living cells.
Finally, we concentrate on online resources that analyze miRNAs in human diseases
and specifically in cancer. Altogether, we introduce contemporary, selected
resources and online tools for studying miRNA regulation in cells and tissues and
their utility in health and disease.
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Abbreviations

CAGE Cap-based expression analysis
ceRNA Competing endogenous RNA
ChIP Chromatin immunoprecipitation
circRNA Circular RNA
CLASH Cross linking, ligation and sequencing of hybrids
CLIP Cross-linking immunoprecipitation
CNV Copy number variation
DRV Disease-related variation
FFL Feed-forward loop
GEO Gene expression omnibus
GO Gene ontology
GWAS Genome wide association study
HTP High throughput
KEGG Kyoto encyclopedia of genes and genomes
lncRNA Long non-coding RNAs
LTP Low throughput
MBS miRNA-binding sites
miRNA microRNA
ML Machine learning
mRNA Messenger RNA
MS Mass spectrometry
MTI miRNA-target interaction
RISC RNA-induced silencing complex
RPM Reads per million
Seq Sequencing
smRNA Small RNA
SNV Single nucleotide variation
SVM Support vector machine
TCGA The Cancer Genome Atlas
TF Transcription factor
TFBS TF binding sites
TSS Transcription start sites
UTR Untranslated region

5.1 Human miRNA Regulation

Molecular View In multicellular organisms, microRNAs (miRNAs) play a role in
driving cell differentiation, identity, and physiology (Wienholds and Plasterk 2005).
A miRNA prototype is a single-stranded RNA molecule of approximately
22-nucleotide length that hybridizes to the 30-UTR of its target transcript. In humans,



the ~1900 miRNA genes account for ~2600 mature miRNAs (Djuranovic et al.
2011). The RNA-induced silencing complex (RISC) protects the miRNA from
degradation while stabilizing the miRNA–mRNA duplex. Consequently, the paired
RISC–miRNA–mRNA shifts the protein translation efficiency by interfering with
initiation, elongation, or termination steps. Occasionally, the miRNA–mRNA
duplex also activates protein degradation processes. The bound transcript itself
may undergo deadenylation, decapping, and further processing (e.g., degradation)
(Cai et al. 2009).
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pre-miRNA (~70 nt)
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Fig. 5.1 A schematic view of stem-loop structure of the primary miRNA, pre-miRNA, and the
mature miRNA products. The miRNA names are indicative of the source of the sequence from the
stem-loop. For example, hsa-miR-142-5p and miR-142-3p are from the 50 and 30 arm, respectively.
The dashed sign indicates non-perfect base-pairing in the stem-loop. The seed is 6–8 nt at the 50

end of the mature miRNA. Often only one arm of the pre-miRNA is selected (guide strand) and
loaded onto the RISC to form the miRISC

The 50 sequence of mature miRNAs includes the seed region (6–8 nt) that anchors
the miRNA to the miRNA-binding sites (MBS) by a perfect base-pairing (Peterson
et al. 2014) (Fig. 5.1). However, other sequence-based and structural features govern
the actual binding specificity and efficiency. The fraction of the human transcriptome
that is subjected to miRNA regulation is unknown. It is estimated that ~60% of the
transcripts are regulated and have at least one conserved miRNA-binding site (MBS)
at the 30-UTR. Approximately 50% of all human protein-coding genes harbor
alternative polyadenylation sites, resulting in transcripts with different 30-UTR
lengths (Müller et al. 2014). Naturally, alternative transcripts that differ in their
30-UTR occur at different cell types. Consequently, the actual network of miRNAs
and their targets is cell dependent. Whereas some mRNAs lack MBS, others may
contain tens of them. From the miRNA perspective, while some miRNAs may pair
with a limited number of targets, other miRNAs can pair with 100s of different
mRNAs. Moreover, among the ~2600 reported human miRNAs, many have low
expression levels and were only identified in specific cellular contexts by NGS (next-
generation sequencing) data with an increased depth. Many of these candidate
miRNAs lack experimental validation.

Cellular View For most cell systems, a detailed description of the transcriptome
(i.e., mRNAs and miRNAs) allows determining each cell type and its origin (Gebert



and MacRae 2019). However, knowledge regarding the cell state and its physiology
remains untraceable (Fu et al. 2013). Furthermore, regulating transcription factors
(TFs) by miRNAs raises the need for assessing the direct and indirect effects within
cells and tissues. In steady-state, miRNAs act as molecular agents for attenuating
transcriptional noise. Upon changes in external conditions, miRNAs exploit coop-
erative and competitive modes that are difficult to model. For yielding an accurate
model of cell homeostasis, evaluating the robustness of each cellular system to
miRNA perturbations is needed (Mahlab-Aviv et al. 2019). Concretely, the molec-
ular interactions of a miRNA with its targets can lead to abrupt changes in cell fate
due to alterations in the levels of TFs, protein production, signaling cascades, and
cell energetics (Alvarez-Garcia and Miska 2005).
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Within living cells, sequestering of miRNAs by pairing with long noncoding
RNAs (lncRNAs) leads to an apparent depletion in free miRNAs (sponge-like
function). This implies an additional layer of complex regulation driven by the
miRNA interactome (Militello et al. 2017). As the competition among miRNAs
governs cell physiology, quantifying the amounts and the stoichiometry of miRNAs
and mRNAs within cells is critical. The stochastic nature of miRNA-target interac-
tion argues for using a probabilistic framework to describe the dynamics and the
steady state of miRNAs and transcripts in living cells (Mahlab-Aviv et al. 2019).
Capturing the bound miRNA–mRNA pairs yields a comprehensive and quantitative
view of miRNA competition within living cells. Currently, most available miRNA
tools fail to address the complexity of miRNA–mRNA pairing within cells. The
contribution of miRNAs to the communication among neighboring cells was
reported for neurons and glial cells (Morel et al. 2013). The generality of the
miRNA-dependent signaling between cells awaits further studies. Merging cell
studies (e.g., clinical tissues, cell lines, and single cells) with computational and
experimental resources and tools is fundamental to empowering miRNA research.

5.2 The Scope and Organization of the Chapter

Plenty of resources and web tools were developed over the last 18 years (since 2003)
for supporting miRNA research (Gomes et al. 2013). Studying miRNA regulation
had been expanded along with the maturation of deep sequencing and diverse cross-
linking immunoprecipitation (CLIP)-seq technologies. Many of the early developed
tools aimed to predict miRNA–mRNA pairs. In reality, the many miRNA–mRNA
prediction tools suffer from low consistency between them. Notably, results from
computational prediction tools and experimental results show a high degree of
inconsistency.

In recent years, numerous review articles have covered the collection of miRNA
databases and tools (Shukla et al. 2017; Lukasik and Zielenkiewicz 2019; Akhtar
et al. 2016; Shaker et al. 2020). Other publications concentrate on computational
miRNA–mRNA prediction tools and their underlying algorithms (Mendes et al.
2009; Schmitz and Wolkenhauer 2013; Riffo-Campos et al. 2016; Monga and



Kumar 2019). A recent survey of the literature revisited ~100 review articles that
covered ~1000 tools related to the broad field of miRNA (Chen et al. 2019).
Unfortunately, many of the original tools and resources are discontinued or unstable.
We focus on online tools and webservers and will not discuss stand-alone tools.
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We aim to present a contemporary list of selected resources and online tools for
studying miRNA regulation in health and disease. To allow an entry point to human-
centric research, we will briefly mention tools in the context of the competition of
miRNA and other noncoding RNAs (ncRNA) such as pseudogenes and circular
RNAs (circRNAs). We will not discuss miRNA-related tools that focus on compar-
ative genomics and evolution conservation (e.g., miROrtho (Gerlach et al. 2009) and
CoGemiR (Maselli et al. 2008)).

The chapter starts by introducing a gateway to a human-centric collection of
miRNA resources and online tools. We limit ourselves to those developed or
updated in the last decade (from 2012) and are fully functional. We highlight tools
that associate miRNAs with their targets according to computational and experi-
mental approaches. We focus on tools that apply method integration, including
major validated benchmarks. We then discuss resources that highlight dysregulation
of miRNA in human diseases, specifically in cancer. In discussing the online tools,
we consider the most updated version, as reported by primary publications. Finally,
we will briefly review useful databases and online tools that are valuable in solving
real-life experimental tasks regarding miRNA regulation in cellular systems.

5.3 Repositories for miRNA: Catalogs and Genome
Browsers

MiRNAs are processed from hairpin-containing primary transcripts of ~200-nt
(pri-miRNA) that are further processed to a ~70-nt stem-loop structure
(pre-miRNA). These transcriptional events occur in the nucleus. All mature miRNAs
undergo these biogenesis maturation steps. The pre-miRNA is then transported into
the cytoplasm where a set of sequential cleavage events result in a functional miRNA
that is bound to the RISC complex (Fig. 5.1). However, for many observed short
RNAs that were identified from large-scale deep sequencing experiments, the
definition of miRNAs is less definitive, and often indirect evidence from sequence
conservation and independent experimental identification remains the sole support.

Several repositories for human miRNAs have been developed over the past
18 years. In the early days, the microRNA Registry, a branch of Rfam (Griffiths-
Jones 2004; Kalvari et al. 2018) was compiled to facilitate the development of
computational approaches for miRNA-target prediction. This registry was the
basis for the current miRBase catalog (Kozomara et al. 2019). At present, miRNA
notations and nomenclature are unified and adopted by the research community as
presented in miRBase (Fromm et al. 2015).
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5.3.1 miRNA Gene Catalogs

miRBase (release 22.1; 10/2018) is an exhaustive and inclusive miRNA catalog that
aims to reach completeness. The miRNA collection was initially developed in 2006
and was regularly updated (Kozomara and Griffiths-Jones 2011). Presently, it
includes over 1900 human miRNA genes and the notations for >2600 mature
miRNA as observed from experimentally sequenced miRNAs. With the expansion
of deep sequencing data, evidence from experiments is reported as normalized
values (reads per million, RPM). Each miRNA is labeled on the pre-miRNA
(stem-loop structure) and the mature processed version is depicted. A graphical
viewer aligns the clustered sequences on the pre-miRNA and uses a unified nomen-
clature for the 3p and 5p arms (Fig. 5.1). Each miRNA in miRBase is associated with
relevant publications and a detailed sequence of the precursor. Moreover, miRNAs
are assigned to their families. The family members are miRNAs that derive from a
common ancestor and have similar physiological functions (but are not necessarily
conserved in sequence or structure) (Kamanu et al. 2013). Besides, miRBase pro-
vides a predicted secondary structure for miRNA hairpin loop precursors based on
the RNAfold software. A confidence comment was added to allow the community to
indicate the subjective confidence for the validity of a candidate miRNA. miRBase
reports also on neighboring miRNAs by their chromosomal locations (i.e., miRNA
clusters).

miRBase search engine allows extracting all cell or tissue-specific experiments. It
is a useful entry point for miRNAs that were originally reported in RNAcentral (The
RNAcentral Consortium et al. 2017). miRBase Tracker allows to keep track of
historical and current miRNA annotations (Van Peer et al. 2014). miRBase FTP
downloads allow the user to select data from any organism of choice (total 270).

MirGeneDB (Ver 2.0, 1/2020) is a robust platform for experimental results on
small RNA (sRNA). While miRBase provides an exhaustive list of miRNA candi-
dates, it suffers from a high level of false-positive entries. MirGeneDB aims to
increase miRNA identification reliability by testing similarity among 45 metazoan
species. The challenge for MirGeneDB is to provide an accurate assignment of
miRNAs among expressed smRNA fragments derived from other genes (e.g.,
tRNAs, small nuclear (snRNAs), and small nucleolar RNAs (snoRNAs), piRNAs).
The input starts with ~400 publicly available smRNA sequencing datasets extracted
from smRNAbench (originally calledmiRanalyzer) (Aparicio-Puerta et al. 2019), and
processed by miRTrace. A uniform annotation for each species relies on MirMiner
that uses data derived from experiments of manipulated miRNA biogenesis genes
(Fromm et al. 2020). Therefore, MirGeneDB also considers miRNA variants derived
from noncanonical biogenesis. The current version compiled 556 annotated human
miRNA genes that can be browsed, searched, and downloaded.

miRCarta (Ver 1.1 7/2018) is a database that features miRNA and precursor data
from miRBase but complements the list from deep sequencing NGS from
miRMaster and selected publications (Backes et al. 2018). The goal of miRCarta is
to compile a consistent collection of novel miRNA candidates and augment the



information reported by miRBase. The database also includes an integrated infor-
mation on predicted and experimentally validated targets extracted from
miRTarBase (Huang et al. 2020), microT-CDS (Paraskevopoulou et al. 2013), and
TargetScan (Agarwal et al. 2015). The functional links of miRCarta include the
pathway dictionary of miRPathDB (Backes et al. 2016), and several miRNA-disease
association databases (miR2Disease (Jiang et al. 2009), HMDD (Huang et al.
2019)). Besides, miRCarta provides a comprehensive collection of human miRNAs
and miRNA candidates. It covers ~40 k miRNAs and precursors which are com-
pressed to 2.9 k genomic clusters and 590 miRNA families.
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5.3.2 miRNAs in Genome Browsers

An easily accessible entry point for the collection of miRNAs is supported by the
major human genome browsers (e.g., UCSC and Ensembl). Figure 5.2 displays an
overview of the main sources of primary data used in miRNA research. The primary
data derived from NGS (next-generation sequencing) for genomics and
transcriptomics (e.g., RNA-seq and smRNA-seq). The main genomic browsers
provide the researcher with a comprehensive and up-to-date repository of genetic

Fig. 5.2 An overview about sources of primary data for miRNA research combined with generic
catalogs. The primary data is driven by recent advances in NGS (next generation sequencing) for
genomics and transcriptomics (RNA-seq and smRNA-seq). NGS is applied to diverse biological
samples. Specific methodologies for isolated miRNA and their targets include high-throughput
(HTP) CLIP experiments (e.g., HITS-CLIP, iCLIP, and PAR-CLIP), CLASH based on miRNA-
mRNA ligation protocol, ChIP-seq with TF and more. Rich experimental protocols of low through-
put (LTP) include miRNA overexpression (OX), antimiR settings for downregulation of miRNA
expression, mass spectrometry (MS), immunoprecipitation (IP) by RISC proteins, and numerous
molecular manipulations with designed reporter (e.g., luciferase) for quantifying miRNA-
dependent in vivo gene regulation (Thomson et al. 2011). Generic catalogs include the annotation
of genes, alternative splicing (AS), Refseq transcripts, catalogs of cancerous cell lines (e.g., CCLE
(Ghandi et al. 2019)), and human-related pathways (e.g., KEGG and BioCarta)



variants, transcripts, cross-species information, and a multidimensional rich data on
cell regulation (Fig. 5.2).
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The UCSC browser (5/2018) provides a collection of miRNAs as part of an
annotation track for snoRNAs and miRNAs (Fujita et al. 2010). The data is matched
to genome coordinates from miRBase, with only perfect matches (100% identity) are
annotated. A list of miRNAs and genome coordinates are cross-referenced to
miRBase. Together with the snoRNAs, it reports on 2230 gene name entries.

The Ensembl browser (Release 102, 11/2020) provides a collection of miRNAs
that are annotated as part of the ncRNAs (Aken et al. 2016). Details are extracted
from miRBase, with ~1900 entries for gene annotations. Each miRNA is considered
by its functional arm of the pre-miRNA (3p or 5p; e.g., hsa-miR-155-3p, Fig. 5.1).
When information is available, the relevant miRNA transcript is reported with
evidence extracted from TarBase v8 (Karagkouni et al. 2018). The download of
miRNA gene information of transcripts is supported by the Ensembl BioMart
retrieval system.

5.4 Gateways for miRNAs: Integrative Platforms

The overwhelming number of tools and resources for miRNA analysis calls for
easier access along with high-quality assessment. Elixir bio.tools registry (Ison et al.
2019) is such an entry point that provides a comprehensive registry of software and
databases in all life science domains. Within the miRNA research domain, there are
~160 listed resources with comparable information and easy access. To ease the
classification of the available web-based database, a meta-database was presented
(miRandb) covering ~180 miRNA-centric databases (Aghaee-Bakhtiari et al. 2018).
An entry point for human miRNAs is designed to specifically answer common
miRNA-related research tasks. HumiR is an integrated website that compiled several
human-centric databases and online tools for facilitating the selection of an appro-
priate tool (Solomon et al. 2020).

miRToolsGallery (9/2017) is a portal that provides an effective shortcut to main
hubs for bioinformatics tools developed for miRNA research. The tool addresses the
need for navigating among 100s of tools and the demand to meet the correct set of
tools for any specific application. miRToolsGallery facilitates this process by curat-
ing ~950 miRNA analysis tools and resources. The portal provides a querying
system for prioritizing the preferred tool for the needed application. The user can
refine the search according to different criteria and requirements. Several features
make this platform valuable as an entry point for miRNA research. One such feature
allows flexible tagging of tools that belong to multiple categories. Moreover, it ranks
results according to their popularity in citation and visibility (Chen et al. 2018a).

mirDIP 4.1 (1/2018) compiles a large number of computational miRNA-target
prediction tools. It integrates >150 M human miRNA-target predictions across
30 different resources. Altogether, there are >48 M unique interactions, comprising
~2600 unique miRNAs and 28 k human genes. The database presents a



statistically-based integrative score for each miRNA-target interaction. Users can
search for miRNA-target pairs according to the level of consistency between given
resources, and apply several options as their desirable confidence score (Tokar et al.
2018).

5 Turning Data to Knowledge: Online Tools, Databases, and Resources. . . 141

Tools4miRs Ver 1.1 (3/2021) is a manually curated platform gathering all avail-
able tools that are miRNA related. Currently, there are 205 such tools (based on
170 methods), with the vast majority providing data on humans. The tools and
database collections are categorized and further partitioned to more defined themes
(e.g., isomiR identification and target functional analysis). Filtering by organisms,
availability (e.g., online and downloading) facilitates the search for tools and
databases that meet the user’s needs. For example, the target prediction allows the
user to define the target MBS positioning to 50-UTR, coding, or 30-UTR (Lukasik
et al. 2016). The searched tools are presented in a simple or advanced mode.
Tools4miRs also provide a meta-server for target prediction in which the user selects
the designated methods to be included. It provides an option for reporting the
miRNA-target prediction results via unification, intersection, or consensus method.
A summary for each of the 205 tools is available along with a publication (Lukasik
et al. 2016).

5.5 miRNA Gene Regulation: TFs and Cellular Context

The following set of resources are compiled from large-scale sequencing analysis
with complementary information regarding gene expression and regulation. A
unique feature unifying all these resources is the use of information from the
cross-talk of miRNAs and cell-specific TFs. Many key resources benefit from
cross-referenced complementary tools and algorithms and will briefly be mentioned.
The ChIPBase database is a comprehensive annotation database from ChIP-Seq data
mapping the transcriptional regulation of miRNAs (Yang et al. 2013). Other publicly
available databases that address the problem of miRNA gene transcription regulation
are TFmiR (Hamed et al. 2015), the tissue-specific miRNAs (TSmiR (Guo et al.
2014)), and more (Fig. 5.3).

DIANA-miRGen v4 (1/2021) is an updated version of experimentally supported
functional relationships of miRNA-regulating genes (Alexiou et al. 2010). miRGen’s
goal is to provide an exhaustive resource for miRNA transcription start sites (TSS)
extracted from a cap-based expression analysis (CAGE) of gene expression as
reported by FANTOM (Abugessaisa et al. 2021). The TSS analysis covers most
miRNA genes (1534 pre-miRNAs annotated in miRBase) across 135 different
cellular contexts of diverse tissues, primary cells, and cell lines. Information on
miRNA TSS is combined with the ENCODE ChIP-Seq results for TF binding sites
(TFBS > 280) available from (Davis et al. 2018). miRGen provides detailed infor-
mation on the genomic context of miRNAs, TF regulation (with multiple lines of
experimental evidence), and cell-specific gene expression. It compiles a rich



resource for miRNAs through cell-specific promoters and transcription regulation
(Perdikopanis et al. 2021).

TransmiR v2.0 (1/2019) is a database that provides comprehensive information
on TF-miRNA regulation based on surveying the literature and manual curation of
>1300 publications. In addition, 1.7 M tissue-specific TF-miRNA regulations from
ChIP-seq data were included. Querying the predicted TF-miRNA regulations in
humans is based on information of the TF binding motifs. Additional capacities of
TransmiR allow presenting the TF-miRNA interaction through a network or disease-
centric views. Querying the system with a set of miRNAs allows the identification of
TFs which most likely regulate this set of miRNAs. TransmiR provides a rich
resource for investigating the regulation of miRNAs (Tong et al. 2019).
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Fig. 5.3 An overview of main components in miRNA research: thematic categories, experimental
methods, and the online tools, database, and resources. Experiments are based on miRNA-specific
(e.g., CLASH) and generic methodologies (e.g., RNA-seq and MS proteomics). Cell perturbations
for investigating miRNAs in cellular systems are based on overexpression (OX), downregulation
(CRISPR, AntimiR), and designed reporters (e.g., luciferase) for assessing 30-UTR regulation of
target genes. Databases that were developed to facilitate miRNA research often rely on publicly
available genomics, transcriptomics, and proteomics results from large-scale experiments (e.g.,
TCGA)
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CircutesDB (1/2014) is a database of regulatory circuits composed of miRNAs
and TFs. This resource integrates transcriptional and posttranscriptional regulatory
networks. The basic notion is the existence of several circuit motifs such as feed-
forward loops (FFLs) in which a TF regulates a miRNA, and together the expression
level of a joint target is determined. A unique feature allows browsing among the
catalog of regulatory motifs. Examples are intronic miRNA-mediated self-loops
(iMSLs) (Friard et al. 2010).

5.6 miRNA-Target Prediction: Experiments
and Validations

Most computational efforts and available tools for miRNA research address the
pressing problem of target prediction. Namely, the task of accurately mapping
miRNAs to their designated targets in a cellular context (Fig. 5.3). The many-to-
many relationships make this problem challenging from a computational and exper-
imental perspective. We will not elaborate on any of the algorithms behind target
prediction tools that were thoroughly discussed (Schmitz and Wolkenhauer 2013;
Riffo-Campos et al. 2016; Monga and Kumar 2019).

In a nutshell, the main features that are used by almost any of the tens of available
miRNA-target prediction tools consider the degree of base-pairing with the seed
region at the 50 sequence with the mRNA (Fig. 5.1) (Biggar and Storey 2015).
Additional features include the thermodynamic stability determined via the predicted
minimum free energy of a putative miRNA-target duplex (Yue et al. 2009), and the
estimated energy for removing the secondary structure of the target mRNA for
exposing hidden MBS (i.e., MBS accessibility). Sequence conservation and geno-
mic information across different branches of the taxonomy tree are utilized for
removing false annotations, assigning reliability measures for the miRNA-target
pairing (Peterson et al. 2014). Many more subtle features are considered for
assessing the likelihood of the miRNA-target pairing. In some of the routinely
used tools, a machine learning approach (e.g., support vector machine—SVM)
was applied along the miRNA-prediction process. Most tools use scores to internally
rank their predictions. Unfortunately, tool-specific scores are not easily generalized
and rarely used in an integrative approach (Friedman et al. 2014). Recently, an
application based on a semi-supervised ML method (RPmirDIP) confirmed the
benefit of using prediction scores (Kyrollos et al. 2020).

5.6.1 miRNA-Target Prediction Tools and Resources

Selected tools for target prediction and validation, developed and updated since
2013, are listed in Table 5.1. We indicate the class of the algorithms and features that



led to the development of the listed tools. Notably, many of these tools use machine
learning (ML) that includes 100s of features and experimental results, allowing the
algorithms to optimize the weights for each input data (Zou et al. 2015). As training
by deep-learning efforts benefits from an increase in datasets, tools that rely on ML
often give a superior prediction.
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Table 5.1 Selected miRNA-target prediction online tools and validation resources

Tool Version Update Algorithma Taxa Goal References

miRGator v3.0 2013 IA 1 Predict Cho et al. (2013)

miRecords v4 2013 Text Many Validate Xiao et al. (2009)

miRTarCLIP v1.0.1 2013 Exper, Seq 2 Predict Chou et al. (2013)

mirMAP V1.0 2013 IA 8 Predict Vejnar et al. (2013)

PolymiRTS v3.0 2014 IA, Seq 1 Predict
variation

Bhattacharya et al.
(2014)

miRror v2.0 2014 IA 5 Predict Friedman et al. (2014)

RNA22 v2.0 2015 Seq Many Predict Loher and Rigoutsos
(2012)

miTALOS v2 2016 IA 2 Predict
pathway

Preusse et al. (2016)

MiRTDL 2016 ML 1 Predict Shuang et al. (2016)

TarBase v8 2017 IA, Text Many Validate
(Exper)

Karagkouni et al.
(2018)

miRTar2GO 2017 Exper, Seq 1 Predict Ahadi et al. (2017)

TargetScan v7.2 2018 Seq Many Predict Agarwal et al. (2015)

miRWalk v3.0 2018 IA, Text 3 Predict Dweep and Gretz
(2015)

mirDIP v4.1 2018 IA 1 Predict
pathway

Tokar et al. (2018)

miRDB v6.0 2019 ML 5 Predict Chen and Wang
(2020)

miRTarBase 2020 2020 Text Many Validate
(Exper)

Huang et al. (2020)

aAlgorithm used is based on an integrative approach (IA); Text mining/manual literature curation
(Text); Machine learning, including deep neural networks (ML); Sequence features, matching seed,
base-pairing complementarity, stability (Seq); Direct experimental data (Exper)

starBase v2.0 (1/2014) database reports on miRNA interactions as extracted from
108 CLIP-Seq experiments (PAR-CLIP, HITS-CLIP, iCLIP, CLASH). It covers 9 k
miRNA–circRNA, 16 k miRNA–pseudogene, and 285 k protein–RNA regulatory
relationships. starBase v2.0 provides a comprehensive pairing list for miRNA–
mRNA and miRNA-lncRNA interactions based on CLIP-Seq data. A unique feature
of starBase v2.0 is the miRFunction and ceRNAFunction servers that allow
predicting the function of miRNAs and ncRNAs in the context of their regulatory
networks and their coordinated function (Li et al. 2014).

miRDB v6.0 (1/2020) is an online database for miRNA target prediction and
functional annotations (Chen and Wang 2020). The comprehensiveness of the
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training data is evident in the RNA-seq dataset that consists of ~1.5 billion reads.
Additionally, features extracted from CLASH (CLIP-ligation protocol) are consid-
ered as a validated set for the miRISC-MBS pairs. It covers the expression profiles of
>1000 human cell lines and presents target prediction tailored for specific cel
models. The underlying algorithm is MirTarget that was developed for analyzing
NGS experiments. The predictions are based on a support vector machine (SVM)
model. The prediction scores range from 0 to 100 where transcripts with scores of
�50 are presented as predicted targets. For humans, miRDB covers ~2600 miRNA
for 29 k genes leading to 1.6 M pairs. On average, there are ~600 gene targets per
miRNA in humans. The miRDB is supplemented with a rich querying system with
functional annotations and expression profiles from 100s of cell lines. All can be
analyzed for GO annotation functional enrichment.
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TargetScan v7.2 (3/2018) is designed to predict miRNA-targets by searching for
the presence of conserved sequence features (e.g., seed and its extended variants)
that match MBS in the 30-UTR of mRNA transcripts. It combined a rich set of
sequence-based features including the location of MBS relative to the stop codon.
TargetScan also sorts miRNAs by their family relation according to the degree of
taxonomical conservation (e.g., only mammals). The user can select to activate the
analyses while choosing the level of miRNA family conservation (e.g., highly
conserved in mammals, broadly conserved, or poorly conserved among mammals),
including MBS with mismatches within the seed region. In mammals, the internal
scoring reflects the predicted efficacy of targeting. The other scoring system shows
the prediction ranking by the probability of conserved targeting (Agarwal et al.
2015).

miRTar2GO (4/2017) is a model trained on the accepted rules of miRNA–target
pairing, including experimentally validated interactions from CLIP-seq data.
miRTar2GO allows the prediction of cell-type-specific targets. The model provides
biological insights through GO enrichment of miRNA-targets (Ahadi et al. 2017).
miRTar2GO ranks the interactions predicted for a miRNA based on its distance to
the verified interactions of that miRNA. A unique feature is the option to activate the
model as highly specific or highly sensitive (Ahadi et al. 2017).

miRGate (4/2015) is a curated database of miRNA–mRNA targets that compare
several established miRNA-related experimental databases and integrate major
miRNA-target prediction tools (microTar, RNAHybrid, miRanda, TargetScan)
(Andres-Leon et al. 2015).

miRror-Suite (6/2014) is an integrative set of tools dealing with miRNA regula-
tion in the context of living cells. Specifically, it allows a query on a set of
differentially expressed miRNAs that list the most likely targets that are affected
by such a set. It allows the user to reanalyze the data by redefining the statistical
significance thresholds. It is based on miRror v2.0 that also provides the opposite
view. Namely, from a set of differentially expressed mRNAs as input, find the most
likely miRNAs set that plays a role in the regulation. The miRror-Suite miRtegrate
algorithm designates statistical criteria that were uniformly applied to a dozen
miRNA-target prediction databases. The user can refine the analysis by selecting



the desired tissues, cell lines, differential expression, and internal predicting scores
(Friedman et al. 2014).

miRGator 3.0. (1/2013) serves as a miRNA portal that relies on NGS data for
miRNA diversity, expression, and target relationships. It is based on 73 NGS
datasets from major gene expression resources (GEO, SRA, and TCGA) that include
2.5B aligned reads. The database provides expression data by anatomical description
and assigned the miRNA data to 38 human diseases with summary statistics (Cho
et al. 2013). A unique feature is the availability of tools to facilitate the exploration of
massive raw NGS reads for finding miRNAs. By using the miRDeep2 algorithm
novel miRNAs, isomiRs, and edited miRNA versions are sought. Moreover, the
portal allows comparing gene sets from different studies and extracting biological
insights by functional enrichment scheme and gene set analysis.

The utilization of publicly available NGS data such as transcriptomic data for
successful use by the miRNA community is challenging. Many databases (e.g.,
microRNA.org, deepBase, and miRBase) quantify the results from smRNA-seq data
for presenting normalized expression values. Many computational and bioinformat-
ics tools combined HTP experimental data with normalized and processed raw data.
Still, a set of tools were developed to assist researchers in using miRNA-specific
NGS-based pipelines.

miRMine (5/2017) compiled ~350 miRNA-seq datasets from NCBI-SRA.
miRMine reported on ~2500 mature RNAs and their RPM (reads per million)
expression level for 16 human tissues including body fluids and 24 cell lines
(Panwar et al. 2017).

smRNAtoolbox (5/2015) provides a collection of useful tools for NGS experiment
analyses (smRNAbench), complemented with several miRNA analysis tools. While
it is not a miRNA dedicated platform, it contains seven independent tools that create
a workflow for miRNA analyses. The tools are designed to meet a realistic flow for
NGS miRNA-seq experiments. Integration of tools allows the user to benefit from a
set of established smRNA bioinformatic tools for read mapping, expression profiles,
differential expression, genome browser visualization, enrichment of functional
annotations, pathway viewer, and cross-species miRNA target prediction (Rueda
et al. 2015).

5.6.2 miRNA-Target Prediction Validation Databases

Results from experimental CLIP-seq studies, CLASH, and the advances in NGS led
to a wave of datasets that are the basis for updating many miRNA-target prediction
tools. Such an effect led to high-quality miRNA-target validated resources as
benchmarks in the miRNA field.

DIANA-TarBase v8 (1/2018) database reports on experimentally supported
miRNA targets. This resource is considered a benchmark for several prediction
methods. The current TarBase reports on ~670 k unique miRNA-target pairs. The
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database compiles information from a large set of experimental methodologies,
conditions, and cellular contexts, covering about 600 cell types and tissues. The
database provides an interactive querying system and rich filtering options in
addition to the browsing capacity. Retrieval of miRNA-target pairs is activated
according to a combined selection of species, supporting methodology, and the
selected cell type. TarBase v8 presents a ranking system that is based on the
empirical reliability of the method used as evidence (Karagkouni et al. 2018).
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miRTarBase 2020 (1/2020) is a comprehensive resource of experimentally vali-
dated miRNA-target interactions (denoted MTIs). miRTarBase is a rich experimen-
tally validated MTI database with comprehensively annotated information (Huang
et al. 2020). The database covers >380 k validated MTIs for humans. Such MTIs are
based on ~2600 miRNAs and >15 k targets with supporting evidence from 7.2 k
manually curated publications. A scoring system based on text mining ranks any
miRNA-target interaction pair. Evidence from direct assays (e.g., Western blot,
qPCR, and reporter gene) are scored higher than those from large-scale methodol-
ogies (e.g., CLIP-Seq). Also, a large number of databases were integrated to provide
rich information on the number of MTIs within a regulatory network (based on
KEGG pathways). The database also provides the current list of validated miRNA-
targets according to CLIP-seq technology (Huang et al. 2020).

miRecords (4/2013) consists of experimentally validated miRNA-targets as
revealed from literature curation. In addition, it provides a synthesis of many target
prediction programs (e.g., DIANA-microT, miTarget, PITA, and TargetScan).
miRecords hosts over 2700 records of miRNA-target pairs, with information from
direct testing of interaction. It covers about 650 miRNAs and 1900 target genes
(Xiao et al. 2009).

5.7 miRNA-Target Databases: Networks and Pathways

On the basis of the predicted and experimentally validated miRNA-target interac-
tions, several databases were developed to address complex regulatory networks in
the context of cellular pathways. Assignment of miRNAs to pathways according to
individual prediction tools (Table 5.1) suffers from an uncontrolled number of false-
positive predictions and poor level of agreement. Relying on the consistency of
miRNA-target prediction tools and predetermined topology of human pathways
showed that miRNAs are crucial in most pathways from KEGG and the pathway
interaction database (PID) (Naamati et al. 2012).

mirDIP v4.1 (1/2018) provides nearly 152 M miRNA-target predictions collected
from 30 different resources. The underlying algorithm NAViGaTOR (Shirdel et al.
2011) produces miRNA-target networks from the literature and pathways databases
(e.g., KEGG and Reactome). The signaling pathway networks that are signified by
miRNA involvement are listed and scored (Tokar et al. 2018).
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miRWalk v3.0 (10/2018) is a platform providing an intuitive interface that
generates predicted and validated MBS. miRWalk uses a random-forest approach
implemented in the TarPmiR algorithm to search for MBS across the entire transcript
length (i.e., MBS is not limited to the 30-UTR). The current version of miRWalk
stores predicted data including experimentally verified miRNA-target interactions
(Sticht et al. 2018). The human version covers the entire miRNA set (2656 miRNAs
according to miRBase Ver 22). The pairing is with regard to the ~20 k RefSeq
coding genes and 42 k transcripts. miRWalk provides a cross-reference to other
major miRNA-target predictions (e.g., TargetScan and miRDB). The pairwise
miRNA–mRNA 100 M reported interactions include the ~0.9 M validated pairs
from miRTarBase database (Sticht et al. 2018).

miRPathDB v2.0 (1/2020) is a dictionary of miRNAs and pathways. It covers an
exhaustive collection of candidate miRNAs from miRBase v.22.1 and miRCarta
(v.1.1), 28 k human targets and ~17 k pathways for Homo sapiens. It uses the
validated MTIs from miRTarBase and activates target prediction by using
TargetScan (v.7.1) and miRanda. A querying system allows determining the max-
imal number of miRNAs to be presented based on a reference pathway (e.g., from
KEGG, Recatome, and WikiPathways). In addition, it provides new functionality by
allowing users to determine a threshold for the reliability of the results. The
miRPathDB presents similarity maps for miRNAs and pathways by the statistical
significance of overlapping in their targets and pathways. The visualization tools and
the downstream analysis are designed to determine a minimal set of candidate
regulators that are sufficient to target a gene list (Kehl et al. 2020).

5.8 miRNA Sponging: ceRNA and lncRNA Interactions

An indirect regulatory level of miRNA function is formulated by the concept of
competing endogenous RNAs (ceRNAs). In cells, miRNAs may be sequestered by
RNA molecules that contain MBS but are not genuine mRNA targets. These RNAs
act as miRNA sponges and are often pseudogenes, long noncoding RNAs (lncRNA),
or circRNAs. Cell physiological and pathological processes are often regulated by
ceRNAs. To fully appreciate the in vivo steady-state in cells, the quantitative aspects
of miRNAs in the cellular context and the subtleties of cellular states and molecular
events such as miRNA partition between nucleus and cytoplasm, exosome signaling,
and miRNA editing may impact the in vivo miRNA-target interaction landscape.

miRSponge (9/2015) is a manually curated database that provides experimentally
supported resources for miRNA sponge interactions. miRSponge reports on
298 miRNA–ceRNA interactions in humans that occur between miRNA,
pseudogenes, lncRNAs, circRNAs, and human viruses. The database covers 11 spe-
cies with ~600 miRNA–ceRNA interactions that are supported by ~1200 published
articles. miRSponge is a webtool with browsing, retrieval, and downloading



capacities. A unique feature is a submission page that allows researchers to enrich
the resource by adding validated miRNA sponge data (Wang et al. 2015).

DIANA-LncBase v.2 (1/2016) is a database of experimentally supported and in
silico predicted MBS in lncRNAs. DIANA-LncBase is an extensive collection of
miRNA–lncRNA interactions with ~70 k experimentally supported interactions
derived from publications and the analysis of ~150 AGO CLIP-Seq libraries. In
addition to the experimentally validated set, DIANA-LncBase lists in silico pre-
dictions based on the DIANA-microT algorithm. A unique feature is the association
of the prediction results with information regarding 66 different cell types from
36 tissues. The database includes an exhaustive analysis of six billion RNA-Seq
reads for obtaining accurate cell-specific lncRNA expression information
(Paraskevopoulou et al. 2016).

5.9 Genomic miRNA Databases: Variations and isomiRs

The following resources address the impact of human genome variations on miRNA
regulation via changes in the identity and specificity of MBSs and miRNAs. Also,
the immense NGS repository becomes fundamental for identifying isomiRs and
other miRNA candidates (Glogovitis et al. 2020).

PolymiRTS v3.0 (1/2014) is a platform for analyzing the impact of genetic poly-
morphisms in miRNA seed regions and miRNA target sites for humans and mice.
The resource provides a comprehensive list of naturally occurring genetic variations
in seed regions of miRNAs and the MBS on targets. SNVs and indels in miRNAs
and their MBS have the potential to alter miRNA-mediated regulation. This database
is a useful resource for genotype and phenotype association studies. The data is
based on CLASH experimental results of miRNA–mRNA interactions. Unique
features include the use of polymorphic sites of TargetScan scores. Interpretation
for the SNVs occurring at the 30-UTR of the human transcripts are presented by
searching the downstream effects on gene expression and pathways in the context of
genome wide association studies (GWAS) for human traits and diseases
(Bhattacharya et al. 2014).

miRdSNP (1/2012) aims to present the impact of SNVs with regard to diseases.
SNVs could lead to gene dysregulation by modifying the efficiency of miRNA
binding to the 30-UTR of the target. miRdSNP is based on a manually curated
literature survey with ~800 disease associations SNVs and ~200 disease types, an
extended list of experimentally validated miRNA–mRNAs pairs, and sites predicted
by key predicting tools (e.g., TargetScan). The tool allows searching for the distance
of the identified MBS and SNVs associated with human diseases. It also provides a
viewer through the UCSC Genome browser (Bruno et al. 2012).

MIRPIPE (8/2016) is a pipeline for the quantification of miRNA based on
smRNA sequencing reads. MIRPIPE allows an automatic trimming of sequencing
adapters from raw RNA-seq reads and clustering of isomiRs. MIRPIPE does not rely
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on the generic reference genome to identify miRNAs. A unique feature is its flexible
model for miRNA quantification. Any uploaded database can be considered a
reference for the homology search engine (Kuenne et al. 2014).
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SomamiR v 2.0 (1.2016) is a database of cancer somatic mutations that potentially
affect miRNAs and their targets. It addresses the impact of genetic alterations on
ceRNA, including their effect on circRNAs and lncRNAs. SomamiR provides an
integrated platform for functional analysis of somatic mutations. To this end,
miR2GO is used to analyze the functional consequences of somatic mutations in
the seed region of miRNAs. Besides, experimental data (CLASH, CLIP-seq) are
analyzed given the somatic mutations. The database highlights mutations in
miRNAs and their target sites that change cancer risk as reported in GWAS and
various experimental evidence (Bhattacharya and Cui 2016).

Enriching the miRNA variant landscape from external data collections led to the
development of dedicated pipelines. An example ismiRVarwhich is based on LOVD
v.2.0 (Build 22) (Bhartiya et al. 2011). A machine learning approach using SVM
predicts the processing sites of pre-miRNA and the guide strand selection (Fig. 5.1).
The possible effect of variations in miRNAs was assessed based on the expected
penetrance in the human population.

5.10 miRNA Dysregulation: Diseases, Cancer,
and Signaling

The regulation by miRNAs on their intended target only represents a snapshot of a
dynamic circuit (Re et al. 2017). miRNAs take active parts in many pathologies and
altered signaling pathways. The regulatory networks are produced from small
network motifs that are recurrent in nature. While motifs that involve TFs were
studied extensively, those including lncRNAs or epigenetic regulators (Sato et al.
2011) introduce overlooked dimensions to the role of miRNAs in cell physiology
and pathology.

Regulation of gene expression is the key to maintaining homeostatic processes.
Several databases aim to cope with miRNA-target interactions upon changing
conditions (e.g., CSmiRTar (Wu et al. 2017). In this view, many events that involve
cell pathological conditions are reflected by a shift in miRNA action in cells (e.g.,
miRwayDB (Das et al. 2018)). The dysregulation of miRNAs has been associated
with many diseases such as type 2 diabetes (T2D) and cardiovascular diseases. The
impact of miRNAs in other conditions such as arthritic diseases, Alzheimer, and
several mental conditions becomes evident. The discovery of miRNA signaling by
exosomes is a novel aspect of cell–cell regulation and is an attractive source of
biomarkers.
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5.10.1 Disease-Related miRNA Databases

Studying disease-related miRNAs is beneficial to understand disease mechanisms at
the miRNA level. However, most current methodologies in miRNA research
(Fig. 5.2) are limited to in vitro binding assays and cellular manipulation
(Fig. 5.3). Several studies have developed networks of miRNAs and diseases
(Gu et al. 2016). The validity of such networks was analyzed (Chen et al. 2018b),
and proved to be useful for miRNA-disease relation predictions (You et al. 2017;
Chen et al. 2018c).

HMDD v3.2 (1/2019) (Human microRNA Disease Database) is a database that
curated experiment-supported evidence for miRNA-disease associations. The list of
evidence (with 20 evidence codes) includes genetics, epigenetics, circRNAs, and
miRNA-target interactions. HMDD bridges between observations from numerous
experiments and disease-associated miRNAs. HMDD also covers GWAS results
and copy number variations (CNV) leading to gain and loss of genomic miRNAs
(Huang et al. 2019). The current version covers a manually collected list of 35.5 k
miRNA-disease associations involving 1200 miRNAs and about 900 human dis-
eases. The findings are supported by >19 k publications. The disease annotation is
linked to ICD-10 that is the unified index used by the medical community. A
connection to major disease ontology terms (e.g., DOID, MESH, OMIM, and
HPO) is also provided (Huang et al. 2019).

miRNASNP-v3 (1/2020) is a rich resource that combines data on genetic varia-
tions in miRNAs and MBS with disease-related variations (DRVs). miRNASNP is
used to determine the possible effect of SNVs on miRNA interactions. The resource
analyzes >7 M germline and somatic SNVs and 0.5 M disease-related variations
with respect to ~2600 mature miRNAs and > 18 k 30 UTRs of human genes.
miRNASNP compiled the set of SNVs from clinical samples (ClinVar and COS-
MIC) and population variation catalogs (dbSNP, GWAS Catalog). It provides a
functional enrichment analysis of miRNA target gain/loss caused by SNPs/DRVs.
Correlations between drug sensitivity and miRNA expression level are presented,
with a special focus on potential targets in cancers (Liu et al. 2021).

miRandola (9/2017) is a database of extracellular ncRNAs that are attractive as
noninvasive biomarkers from body fluids. miRandola collected data from 314 arti-
cles that reported on ~1000 miRNAs and other ncRNAs. The website provides a
browsing capacity, name convertor, and details tabular information on the experi-
ments and the nature of the carrier of miRNA (e.g., exosome and microparticle)
(Russo et al. 2018).
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5.10.2 Cancer-Related miRNA Databases

As miRNAs govern cell identity and physiology in many tissues, alterations in
miRNAs signify all cancer types. Human cancer databases such as The Cancer
Genome Atlas (TCGA) provide a rich resource for the expression levels of miRNAs
and mRNAs for over 14 k cancer samples. Other collections include the OncomiR
cancer database (e.g., (Sarver et al. 2018)). The expression levels of oncogenic
miRNAs (oncomiRs) and those that act as tumor suppressors make them attractive
sites for manipulation and a lead for cancer therapeutic methods.

dbDEMC 2.0 (1/2017) is a cancer-specific resource for storing and displaying
differentially expressed miRNAs in human cancers. It uses a simple text search for
human cancers from the GEO gene expression data collection. The latest version of
dbDEMC contains ~2200 differentially expressed miRNAs identified for 36 cancer
types (73 subtypes) from 436 experiments. From large-scale analyses of cancer
samples (based on ~150 publications), a collection of 49 k miRNA–cancer associ-
ations is provided (Yang et al. 2017). For example, based on TCGA, a list of
miRNAs in colon cancer (total 2100) is split into those induced or suppressed
relative to the healthy tissue. A unique feature is a meta-profiling representation
that allows the user to provide an input set of miRNAs and retrieves as an output
their differential expression trend by a heatmap according to broad clinical charac-
teristics (e.g., metastasis, high and low grades) (Yang et al. 2017).

miRCancer (1/2013) provides a comprehensive collection of miRNA expression
profiles in various human cancers that are automatically extracted from published
literature using text-mining approaches. It utilizes rule-based techniques for mining
key sentences regarding the expression trend in cancer and control cells. Manual
revision is applied after auto-extraction to improve precision. miRCancer reports on
236 miRNAs and 79 human cancer types from 26 k publications. A unique feature is
the constant updating of the information by analyzing the literature in PubMed (Xie
et al. 2013).

miRNACancerMAP (9/2018) is a user-friendly web server with integrated data
sources and a computational workflow for exhaustive searching of miRNA-cancer
information. Specifically, one can ask for the common miRNA-gene regulation
networks in multiple cancers using context-dependent expression evidence. The
resource allows identifying the sponge regulations by lncRNAs in a clinical setting.
The interactive interface allows merging of public data (e.g., TCGA and GEO) with
user results such as cancer-derived miRNA–mRNA expression data. Therefore, for
the known pathways (e.g., KEGG and Reactome) the impact of miRNA
dysregulation on cancer is determined. It allows highlighting miRNAs acting as
cancer drivers and tumor suppressors by the cancer hallmark database. A unique
feature is the possibility to analyze the user miRNA data by providing interactive
visualization tools, and activating multiple miRNA algorithms (Tong et al. 2018).

OncomiR (2/2018) is a user-friendly resource for exploring miRNA dysregulation
in cancer. OncomiR covers ~1200 mature miRNA and 30 k mRNA transcripts from



~10 k patients spanning 30 cancer types, along with statistical analysis. OncomiR
consists of a database and a dynamic web server. Key functions of OncomiR are the
identification of cancer-relevant miRNAs and de novo analysis based on miRNA
expression. The unique functionality of OncomiR is in providing the most signifi-
cant miRNAs for any specific cancer type. Moreover, it allows listing potential
miRNAs for a survival signature with Kaplan–Meier (KM) survival curve represen-
tation available for a given cancer type (Wong et al. 2018).
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5.11 Summary and Future Perspectives

The field of experimental and computational miRNA research has been gradually
evolving over the last 18 years (Fig. 5.2). To this end, hundreds of stand-alone,
online tools (e.g., multiMiR package) (Ru et al. 2014), algorithms, and databases
have been developed for miRNA research. The main task was to provide simple
rules for the miRNA regulation in living cells and at the organism level. Unfortu-
nately, the degree of inconsistency remains high among the many miRNA-target
prediction tools (Riffo-Campos et al. 2016). Therefore, selecting suitable databases
and tools for researchers became increasingly challenging. In this chapter, we briefly
discuss tools and databases for assisting miRNA-focused research according to
major categories (Fig. 5.3). Notably, the improved HTP technologies such as deep
sequencing led to an increase in the number of miRNA candidates, with many of
them still awaiting experimental validation. It became clear that in living cells,
examining miRNA profiles is not limited to simple miRNA-target pairing rules.
Instead, an integration of different regulation layers (TFs, epigenetics, translation,
and lncRNAs) is essential. Currently, tools for quantifying key players (i.e.,
miRNAs, TFs, mRNAs, and proteins) and their dynamics in living cells are missing
(Mahlab-Aviv et al. 2019). Such measurements are essential for evaluating the
degree of competition and cooperativity among miRNAs in cellular systems (Balaga
et al. 2012). The use of medical informatics to determine genetic variations and their
impact on diseases allowed to bridge between miRNA research and research in
human health (Fig. 5.4). Refining experimental methods for miRNAs and collecting
accurate data in databases and well-maintained and undated online tools will con-
tinue to advance the field. Specifically, designing solid benchmarks for comparing
the tools’ performance is a pressing need. The current knowledge on miRNA
regulation in health and disease will benefit from modern statistical methods (e.g.,
deep learning) and further development of integrative approaches.
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Chapter 6
Bioinformatics Methods for Modeling
microRNA Regulatory Networks in Cancer

Tao Pan, Yueying Gao, Gang Xu, and Yongsheng Li

Abstract MicroRNAs (miRNAs) play important roles in the physiology and devel-
opment of cancers. The increase of multidimensional molecular profiles of tumor
patients generated by high-throughput sequencing technologies has enabled compu-
tational analysis of miRNA regulatory networks in cancer. In this chapter, we first
summarized currently widely used computational methods for identifying miRNA–
gene interactions. In addition, crosstalk among miRNAs and competitive endoge-
nous RNAs (ceRNAs) represent novel layers of gene regulation mediated by
miRNAs, which also play important roles in cancer. We next reviewed computa-
tional methods for modeling miRNA–miRNA crosstalk and ceRNA–ceRNA inter-
actions in cancer. These methods integrate multi-omics data and range from
genomics to phenomics. MiRNA–miRNA networks are generally constructed
based on genomic sequences, transcriptomes, miRNA–gene regulation, and func-
tional pathways. Moreover, five types of computational methods for identifying
ceRNA–ceRNA interactions are summarized in this chapter. Among these methods,
two types of global ceRNA regulation and three types of context-specific methods
are included. The application of these computational methods focused on miRNA
regulation in cancer provides valuable functional insights into the underlying mech-
anism of cancer, as well as future precision medicine.

Keywords miRNA · Regulatory network · Cancer · ceRNA · Crosstalk

6.1 Introduction

A microRNA (miRNA) is a kind of small endogenous RNA (Lu and Rothenberg
2018), which is about 22 nucleotides in length (Bartel 2009) but does not encode
protein. MiRNAs play a crucial role in the process of protein synthesis and function.
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MiRNAs are key regulators of gene selective expression in the process of cell
differentiation by targeting mRNAs. In addition, miRNAs also play an important
regulatory role in the development and progression of human diseases (Chang and
Mendell 2007; Zhang 2008; Xu et al. 2020), such as prostate cancer, breast cancer,
and colorectal cancer.
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In order to better understand the mechanism of miRNAs and their important
biological functions, the key is to recognize the targets of miRNAs. MiRNAs can
degrade or inhibit the translation of target mRNAs by binding to RISC
(RNA-induced silencing complex) (Bartel 2018; Kobayashi and Tomari 2016) and
acting on the 30-UTR of mRNAs. The “seed sequence” is the 2–8 nucleotide
sequence of the 50-end of miRNAs (Lewis et al. 2003), which can complement
and pair with the 30-UTR of mRNAs. The inhibitory effects of miRNAs on mRNAs
depend on the way in which the seed sequence of miRNAs binds with the 30-UTR of
mRNAs. If the seed sequence of a miRNA completely complements and pairs with a
30-UTR subsequence (a.k.a. miRNA response element) of the target mRNA it is
called “seed matching” (Lewis et al. 2003), then miRNA will directly degrade its
target mRNA for incomplete pairing. A miRNA can also inhibit the translation of its
target mRNA. Large numbers of computational methods have been proposed to
identify the targets of miRNAs, such as TargetScan (Agarwal et al. 2015) and
DIANA-TarBase (Karagkouni et al. 2018). All these methods provide novel insights
into the functions of miRNAs in complex diseases.

Moreover, miRNA–miRNA crosstalk has been found in various kinds of cancers
(Shao et al. 2019). However, the identification of miRNA–miRNA crosstalk based
on experimental methods is still challenging. Computational methods have dramat-
ically reduced the number of miRNA–miRNA crosstalk candidates. These methods
range from genomics to phenomics. On the other side, crosstalk among RNAs yields
large regulatory competing endogenous RNAs (ceRNAs) via co-regulated miRNAs.
CeRNA regulation represents a novel layer of gene regulation that plays important
roles in complex diseases (Xu et al. 2015, 2016). A number of computational
methods have been proposed to model ceRNA–ceRNA interaction networks
(Li et al. 2018, 2019). Understanding these computational techniques focused on
miRNA–miRNA or ceRNA–ceRNA interaction will help understand the miRNA
regulatory mechanisms in complex diseases.

6.2 Bioinformatics Methods for miRNA–Gene Regulatory
Networks

1. TargetScan
Although the sequence-based algorithms for predicting the targets of miRNAs are
different from each other, they basically follow similar principles: (a) The seed
region of miRNAs is complementary to the 30-UTR of mRNAs; (b) The binding
of miRNA and mRNA results in thermodynamic stability of the double-stranded
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structure; (c) MiRNA targets are conserved in different species; (d) The predic-
tion of miRNA targets is impacted by the secondary structure of miRNA targets
and the sequences outside miRNA targets.

TargetScan is a prediction algorithm developed in 2003 to predict and recog-
nize the miRNA targets (Agarwal et al. 2015). The algorithm depending on
sequencing data predicts the target genes of miRNAs, and relies on a 30-UTR
configuration file. Two concepts of “miRNA seed” and “seed matching” were
proposed for the first time. TargetScan predicts the miRNA targets by searching
for conserved 8-mer, 7-mer, and 6-mer sites (“mer” refers to the length of nucleic
acid sequence) that are matched to each miRNA seed region (Fig. 6.1). For this
tool, types of binding site and another 14 features are considered to identify the
most effective miRNA targets.

In 2018, TargetScan released version 7.2, which covers miRNA target infor-
mation in more than ten species including humans and mice (Fig. 6.2). It includes
19,432 human genes and corresponding 28,352 transcripts, and 2,606 human
miRNAs. All mature miRNAs are obtained from the miRbase database.
TargetScan classifies miRNAs based on their conservation, and users can select
miRNAs from different species according to different classifications. The output
shows all mRNAs containing the binding sites of interested miRNA and provides
the gene name of miRNA targets and the corresponding transcripts, a number of
3P-seq tags supporting UTR+5, binding site on UTR, the number of bases paired
with the seed sequence in the conservative and nonconservative binding sites, and
the score of the binding sites (Fig. 6.3). The current TargetScan examined 30-UTR
isoform quantifications previously generated using poly(A)-position profiling by
sequencing (3P-seq). The model used the dominant mRNA from the subset of
genes for which �90% of the 3P-seq tags corresponded to a single 30-UTR
isoform. The number of 3P-seq tags supporting UTR indicates this information.
TargetScan returns a score for each binding site according to the context++
model, which is integrated by the 14 features of the specific binding site. The
smaller the score, the greater the probability of being a miRNA target. TargetScan
also provides another parameter, aggregate Pct, which is used to evaluate the
conservation of miRNA binding sites. The higher the aggregate Pct score, the
higher the conservation of the miRNA binding sites.

2. DIANA-TarBase

Fig. 6.1 The sites of
interactions between
miRNAs and mRNAs
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DIANA-TarBase v8 was released by the DIANA laboratory in 2018
(Karagkouni et al. 2018). TarBase is one of the databases for querying the targets
of miRNAs confirmed by experiments (Fig. 6.4). The database contains the
interactions between miRNAs and their targets in 18 species. There are a total
of more than 1.08 million entries, which were generated by 34 methods, spanning
85 tissue types, and reported by 1208 articles. The web address is: http://carolina.
imis.athena-innovation.gr/diana_tools/web/index.php?r¼tarbasev8/index.

The functionality of TarBase is very powerful and practical. In the home page
of the database, there is a prominet statistics panel for users. By clicking this icon,
we can see statistical results of all the information in this database, including
species, cell types, and source of tissues. The database provides several options
for users, such as species, method type, method, regulation type, and validation
type. The database also provides information from different versions of TarBase
for users to query, including TarBase 6.0 (Vergoulis et al. 2012), TarBase 7.0
(Vlachos et al. 2015a), and TarBase 8.0. For the miRNA queried in this database,
the name that conforms to the miRNA naming format in the miRBase database
should be provided, such as hsa-let-7a-3p. However, for genes, we can input the
gene symbol or Ensemble ID.

This database can return a comprehensive information for users' querying
(Fig. 6.5). For target genes, we can observe the chromosome location, transcript
ID, gene type (coding gene or noncoding gene), Ensemble gene ID (by clicking, it
can also link to external database to obtain the details), gene names, and func-
tional parts. For miRNAs, the query results include the name of the miRNA, the
sequence, miRBase ID (link to an external database to obtain the detailed
information on miRNA), the information of the miRNA in other tools of
DIANA, and diseases associated with the miRNA. Similarly, in the result inter-
face, the tool also provides filtering options. However, the data in the database
can only be browsed, but cannot be downloaded. If you want to download, you
need to send an application to the development team.

3. PicTar
PicTar (probabilistic identification of combinations of target sites) predicts the

miRNA targets by constructing a probabilistic model (Krek et al. 2005). PicTar
algorithm can not only effectively predict the targets of a single miRNA, but also
predict the common targets of multiple miRNAs. At the same time, it can reduce
the false positive rate caused by the small number of miRNA binding sites on
mRNA 30-UTR.

The input file of PicTar is a miRNA set and a file of homologous 30-UTR
sequences. PicTar calculates the maximum probability that all binding sites on the
sequence bind to each miRNA in the set, and filters the false positives through
cross-species comparison. Then PicTar integrates the scores of candidate
sequences of each species, and finally gets the PicTar score of genes (Fig. 6.6).
PicTar’s prediction performance has been well verified in the prediction of the
targets of multiple miRNAs across species, and the false positive has been
constantly low. It is the first algorithm to predict common targets of miRNA

http://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=tarbasev8/index
http://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=tarbasev8/index
http://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=tarbasev8/index
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Fig. 6.6 Flowchart for calculating the PicTar score

collections. PicTar analysis results are available from https://pictar.mdc-berlin.
de/.

4. HOCTAR
HOCTAR is another algorithm that predicts miRNA targets based on miRNA

and mRNA expression profiles (Fig. 6.7). The algorithm predicts miRNA targets
by expression of human miRNA host genes, and has been applied to
178 human miRNA host genes (Gennarino et al. 2009). The algorithm obtains
the information of miRNA in human gene and its corresponding host gene from
miRBase version 10.1. The g:Sorter tool (http://biit.cs.ut.ee/gprofiler/gost) is used
to infer the expression correlation between miRNA and its corresponding host
genes. The algorithm is also compared with other miRNA target gene prediction
tools, such as TargetScan, Miranda, PicTar, and other tools, and it proves that the
accuracy of HOCTAR in predicting miRNA targets is reliable. The results of
prediction analysis are available at: http://hoctar.tigem.it.

http://pictar.mdc-berlin.edu/
http://pictar.mdc-berlin.edu/
http://biit.cs.ut.ee/gprofiler/gost
http://hoctar.tigem.it
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6.3 Bioinformatics Methods for Analyzing miRNA–miRNA
Regulatory Networks

6.3.1 Sequence Similarity: Complementary Base Pairing

Different miRNA sequences can bind to each other in a complementary way, thereby
affecting the transcription of each other (Fig. 6.8a). Guo et al. (2012) analyzed the
expression patterns of miRNAs in different species, and found miRNA–miRNA
complementary matching in different species (such as human, rat, and mouse). Some
of the miRNA pairs are relatively well conserved among species.

In the past few decades, a number of bioinformatics resources, methods, and tools
had been developed to predict and store the miRNA–target interactions (Table 6.1).
These tools predict miRNA–target interactions relatively reliable by evaluating the
accessibility, conservation, stability, correlation, and complementarity of the sites
and the scores obtained by the developed algorithms. In addition, miRBase database
(Kozomara et al. 2019) stores pre-miRNA and mature miRNAs sequences of many
animal species. We can obtain endogenous sense and antisense miRNAs according
to the specific location of these miRNAs in the genome, and then obtain a pair of
miRNA–miRNA complementary matching. These databases contribute to investi-
gating the interactions among sequence-based miRNAs. Therefore, by analyzing the
similarity of seed sequences among miRNAs, we can get a global view of miRNA
crosstalk.

6.3.2 Higher-Order Chromatin Conformation

With the emergence and development of techniques to capture chromosome confor-
mation, it has been proved that chromatin interactions play a role in transcriptional
regulation and coordination, and affect genomic function (Jia et al. 2017). Further-
more, we have studied the influence of higher chromatin structures on the regulation
of miRNA transcription (Fig. 6.8b). Chen et al. (2014) investigated how higher-
order chromatin structures regulate miRNA transcription, and found that when
miRNA and protein-coding genes were in the same position, there would be
coordinate expression. They also linked highly reliable miRNA–target pairs with
chromatin interaction networks, further suggesting the existence of spatial miRNA–
miRNA chromatin interaction networks, and indicated that in general, spatially
coordinated miRNA pairs were from the same family and related to the same disease
category.

As we study chromatin interactions in more depth, the data about chromatin
interactions has increased rapidly (Table 6.1). Teng et al. (2015) constructed the
4DGenome database for storing chromatin interactions through a comprehensive
literature survey. The database contains the datasets obtained by low and high flux
measurement methods including 3C, 4C, 5C, Hi-C, and so on. Xie et al. (2016) also
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Table 6.1 Commonly used methods to construct the miRNA–miRNA network

PubMed
ID

Sequence similarity

Guo et al. 23031806 –

TargetScan √ 26267216 http://www.targetscan.org/vert_72/

miRnada √ 20799968 http://cbio.mskcc.org/microrna_data/miRanda-
aug2010.tar.gz

Starbase √ 24297251 http://starbase.sysu.edu.cn/

miRBase √ 30423142 http://mirbase.org/

Higher-order chromatin conformation

Jia et al. 29149895 –

Chen et al. 24357409 –

4DGenome √ 25788621 http://4dgenome.int-med.uiowa.edu/

Xi et al. √ 26868054 http://songyanglab.sysu.edu.cn/ccsi

Co-regulated genes

Fan et al. 25471818 –

miRTarBase √ 31647101 http://miRTarBase.cuhk.edu.cn/

miRDB √ 31504780 http://mirdb.org/

miRBase √ 30423142 http://mirbase.org/

miRWalk √ 26226356 http://mirwalk.umm.uni-heidelberg.de/

miRmapper √ 30223528 R package miRmapper

DIANA miRPath
v.2.0

√ 22649059 http://www.microrna.gr/miRPathv2

DIANA-miRPath
v3.0

√ 25977294 http://www.microrna.gr/miRPathv3

Xu et al. 27551063 –

Shalgi et al. 17630826 –

Segura et al. 25838464 –

GeneSet2miRNA √ 19420064 http://mips.helmholtz-muenchen.de/proj/gene2mir/

miRror √ 20529892 http://www.proto.cs.huji.ac.il/mirror/

Functional similarity

C2Analyzer √ 24862384 http://www.bioinformatics.org/c2analyzer/

Aftabuddin et al. 26066638 –

Hsu et al. 18491312 –

Liang et al. 17652130 –

Sun et al. 23874989 –

Xu et al. 20929877 –

Disease phenotype

HMDD √ 30364956 http://www.cuilab.cn/hmdd

Chaulk et al. 26563430 –

Hua et al. 25641175 –

Hua et al. 23619378 –

Ting et al. 29800060 –

miR2Disease √ 18927107 http://www.mir2disease.org/

CancerNet √ 26690544 http://bis.zju.edu.cn/CancerNet

http://www.targetscan.org/vert_72/
http://cbio.mskcc.org/microrna_data/miRanda-aug2010.tar.gz
http://cbio.mskcc.org/microrna_data/miRanda-aug2010.tar.gz
http://starbase.sysu.edu.cn/
http://mirbase.org/
http://4dgenome.int-med.uiowa.edu/
http://songyanglab.sysu.edu.cn/ccsi
http://mirtarbase.cuhk.edu.cn/
http://mirdb.org/
http://mirbase.org/
http://mirwalk.umm.uni-heidelberg.de/
http://www.microrna.gr/miRPathv2
http://www.microrna.gr/miRPathv3
http://mips.helmholtz-muenchen.de/proj/gene2mir/
http://www.proto.cs.huji.ac.il/mirror/
http://www.bioinformatics.org/c2analyzer/
http://www.cuilab.cn/hmdd
http://www.mir2disease.org/
http://bis.zju.edu.cn/CancerNet
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acquired 91 sets of chromatin interaction data from published literature. Through the
integration and annotation of datasets, a database of chromatin–chromatin spatial
interaction (CCSI) was constructed. These chromatin datasets provide us with
resources to study the interactions among ncRNAs (non-coding RNA, including
miRNAs) at the chromatin level.

6.3.3 Co-regulated Genes

To detect the interactions among miRNAs, we can proceed from miRNA targets. If
miRNA pairs can co-regulate at least one target together, they may cooperate with
each other (Fig. 6.8c). miRWalk2.0 (Dweep and Gretz 2015) is a comprehensive
database that integrates information of miRNA–target interactions derived from
miRTarBase, miRDB, TargetScan, and other resources. The database also provides
an additional framework to obtain miRNA pairs that can significantly co-regulate
genes. In the investigation of Silveira et al. (da Silveira et al. 2018), the authors
developed miRmapper, which could identify the main miRNAs in the miRNA–
mRNA regulatory network and calculated the similarity among miRNAs using
Jaccard distance based on the co-regulatory genes, further revealed the cooperative
interactions of miRNAs in the regulation of common targets. DIANA-miRPath v.2.0
(Vlachos et al. 2012) proposed an analysis scheme for the intersection or union of
genes (or pathways) to study miRNA pairs, while DIANA-miRPath v3.0 (Vlachos
et al. 2015b) was updated by adding functional annotations to identify miRNAs in
specific GO terms or pathways.

In current studies related to identifying cooperative miRNA target regulation, the
common statistical test is the cumulative hypergeometric statistic. Some of the above
databases have analyzed the significance of miRNA targets by using the
hypergeometric test. However, there may be potential bias when using the
hypergeometric distribution to predict cooperative miRNA regulation because of
variation in the average length of the 30-UTR. Targets with a longer 30-UTR may
contain more miRNA binding sites, which may lead to an overrated co-occurrence
rate (very low P-value) (Xu et al. 2017). For the scheme of inferring interactions in
the miRNA–gene regulatory network, Shalgi et al. (2007) designed a random-based
test. With regards to random miRNA–gene regulation, the Meet/Min score of each
miRNA–miRNA pair was calculated. The co-regulation P-value was defined
according to the Meet/Min score of the pair and used to identify the co-regulated
miRNA pairs. Segura et al. (2015) also extended the clustering coefficient, which
was used to describe the degree of clustering between the vertices of a graph, into the
network by using the Meet/Min coefficient, greatly increasing the accuracy of the
predicted interaction.

In addition to co-regulated genes, there are also many methods to identify
cooperative miRNA pairs via the list of co-regulated genes. The GeneSet2miRNA
database (Antonov et al. 2009) is a network tool to identify the miRNA activity by
gene lists. The input of this tool is a gene list. It uses the hypergeometric test and
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some other tests to identify miRNA models (single, pair, triplet, or quadruplet
miRNAs) significantly related to the gene set, and finally outputs the list of
miRNA regulatory models. Mirror (Friedman et al. 2010) also used gene sets to
explain the possibility of the observed data by evaluating the combined regulation of
miRNA targets under various conditions, and finally found the best miRNA set to
explain its regulation. These tools based on gene sets have identified the crosstalk
among miRNAs, but the gene set used also limited these tools.

6.3.4 Functional Similarity

Recent studies have demonstrated the prediction of miRNA pairs based on their
functions. It is assumed that genes regulated by miRNA combinations may have
similar functions and play similar roles. According to the above hypothesis, many
methods have been proposed to identify miRNA pairs with similar functions by
evaluating their functional similarity. C2Analyzer (Co-target-Co-function Analyzer)
(Aftabuddin et al. 2014) is a multifunctional and user-friendly web tool based on
Perl. In order to determine whether miRNA pairs are functionally enriched, this tool
uses hypergeometric analysis. It can also output miRNA result files, which is
convenient for us to visualize miRNA–miRNA pairs by using software such as
Cytoscape. Aftabuddin et al. (Mal et al. 2015) have identified the functional coop-
erative module of miRNA pairs and constructed a miRNA–miRNA functional
synergy network by combining the co-regulatory target network with Gene Ontol-
ogy (GO) annotation. Functional similarity usually depends on whether
co-regulatory genes share the same GO annotations or pathways, which is usually
identified by the hypergeometric test. Though proteins regulated by miRNAs might
not form regulatory modules, miRNA–target genes can form significant regulatory
modules by binding with their interacting proteins (Hsu et al. 2008).

Previous studies have shown that interacting proteins tend to be regulated by
similar types of miRNAs (Liang and Li 2007). Sun et al. (2013) developed a new
computing framework and method, miRFunSim, based on graph properties. This
tool calculated the functional similarity scores of miRNA pairs according to the
protein connectivity in the protein–protein interaction network and the targeting
orientation of the miRNAs. It also revealed that the functional similarity scores of
miRNAs in the same family or cluster were significantly higher than other miRNAs,
which was confirmed by results of previous studies. Xu et al. (2011) developed a
computational method to construct a miRNA–miRNA functional synergetic net-
work. By integrating three characteristics, (1) the common targets of miRNA pairs,
(2) the enrichment of the same GO terms, and (3) the topological characteristics of
the protein–protein interaction network, they obtained the functional module of
common regulation, and then identified the synergetic miRNA pairs based on this
module to construct a miRNA–miRNA functional synergetic network (Fig. 6.8d).
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6.3.5 Disease Phenotype

The above part is based on the global identification of miRNA pairs, using sequence,
co-regulatory genes, functions, and other information. However, if we want to
construct a miRNA–miRNA network for a certain disease, we need to integrate
more information and consider more aspects, such as miRNAs associated with
human diseases, expression profile of miRNAs, and their regulated genes in specific
disease, genes regulated by miRNAs in specific disease and so on.

HMDD (Huang et al. 2019) is a comprehensive database of human disease-
related miRNAs that integrates a large number of miRNA–disease associated entries
from the published literature and is constantly being maintained and updated. This
database is conducive to investigate miRNAs related to diseases. Chaulk et al.
(2016) investigated whether there were co-expression patterns among miRNAs
using miRNA expression data, and found complex miRNA co-expression patterns
and determined that co-expressed miRNAs had similar biological activities. We can
also integrate the differentially expressed miRNAs with other information to con-
struct a miRNA–miRNA network (Fig. 6.8e). Hua et al. (2014) built a synergistic
miRNA–miRNA network related to coronary artery disease by combining the
differentially expressed miRNAs and genome-wide single nucleotide polymorphism
(SNP) genotype. After determining the regulating relationship between miRNAs and
mRNAs in a specific environment, above methods are used to construct miRNA–
miRNA interaction networks.

Hua et al. (2013) used the expression data of miRNAs and mRNAs in breast
cancer to construct the maladjusted miRNA–mRNA network. Then based on this
network, the miRNA–miRNA network was extracted according to the correlation
coefficient. They also applied other network analysis methods to the miRNA
expression data in order to verify the identified miRNA clusters. In addition to
investigations on specific cancers, there are studies that analyze multiple types of
cancer. Ting et al. (Shao et al. 2019) studied the collaborative regulation of miRNA
pairs in 18 cancer types, and found that cancer types with similar tissue origin had
high similarity in the expression of the collaborative network and collaborative
miRNA pairs. They further identified miRNA hubs and combined miRNA collab-
oration modules with clinical information for survival analysis, and found that
miRNA collaboration modules were related to the survival rate of patients with
several types of cancer. Meng et al. (2015) developed the CancerNet database and
respectively constructed cancer-specific miRNA–miRNA synergistic networks
based on the functions of miRNA targets and their topological characteristics in a
cancer protein interactions network for 33 human cancers. CancerNet can serve as a
comprehensive platform for evaluating the interactions between proteins and
miRNAs in human cancers.



6.4 Bioinformatics Methods for Identifying
miRNA-Mediated ceRNA Networks

An increasing body of evidence suggests that >60% of protein-coding genes (PCGs)
are regulated by miRNAs (Bajan and Hutvagner 2014; Friedman et al. 2009).
Moreover, many PCGs can also be regulated by several miRNAs. Pandolfi et al.
found that some protein–coding genes and their pseudogenes had the same miRNA-
binding sites in their 30-UTRs, and that their respective expression levels were
regulated by competing for miRNA binding (Poliseno et al. 2010). Based on this
mechanism, they proposed the competing endogenous RNA (ceRNA) hypothesis
(Salmena et al. 2011). According to the hypothesis, ceRNAs could act as molecular
sponges for a miRNA through their miRNA response elements (MREs) to regulate
other target genes of the respective miRNAs. The conventional regulatory pattern
has been altered from linear regulation of miRNA–RNA to network regulation of
RNA–miRNA–RNA. Understanding this novel type of RNA regulatory pattern will
provide insights into regulatory networks and may help develop strategies in human
cancer and other complex diseases (Li et al. 2019). The ceRNA hypothesis has
aroused a wide concern and various types of RNAs, including pseudogenes,
lncRNAs, and circRNAs, as well as mRNAs were demonstrated to be ceRNA
molecules (Fig. 6.9). On the basis of this hypothesis, MREs can be viewed as the
letters of an “RNA language”, and transcripts can actively communicate with others
to regulate their respective expression levels (Fig. 6.9).

After obtaining the miRNA–target regulation, there are two commonly used
principles to identify miRNA-mediated ceRNA regulatory networks (Ala et al.
2013; Chiu et al. 2015a). The central hypothesis of most computational methods is
that ceRNA crosstalk increases with high miRNA regulatory similarity between
mRNAs and their strong co-expression in a specific context (Fig. 6.10) (Li et al.
2019).

Firstly, miRNA–target interactions were discovered by integration of computa-
tional methods and AGO-CLIP Seq datasets. Secondly, miRNA-mediated ceRNA
pairs are identified by ratio or hypergeometric test. Finally, RNA–RNA expression
similarity was evaluated based on expression profile datasets.

Here, we reviewed five types of methods for identifying ceRNA regulation or
miRNA sponge interactions (Table 6.2), including two types of global ceRNA
regulation prediction methods (ratio-based, termed ratio, and hypergeometric test-
based, termed HyperT) and three types of context-specific prediction methods
(Hypergeometric test combined with co-expression, termed HyperC, sensitivity
correlation (SC)-based method and conditional mutual information (CMI)-based
methods). Collectively, these strategies offer a major advantage in identifying the
interactions of functional miRNA–targets.

For a ceRNA pair of RNA-X and RNA-Y, the following four types of methods
are used to estimate whether RNA-Y is a modulator of RNA-X (Fig. 6.11).
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Fig. 6.9 MiRNA-mediated novel RNA regulatory pattern



6 Bioinformatics Methods for Modeling microRNA Regulatory Networks in Cancer 179

Fig. 6.10 The pipeline used to identify ceRNA regulation

Table 6.2 Summary of computational approaches for identifying miRNA-mediated ceRNA
interactions

Methods Input data Statistical methods
P-
value PMID

Ratio miRNA–target regulation No N 27365046

HyperT miRNA–target regulation Hypergeometric test Y 24297251

HyperC miRNA–target regulation; RNA
expression

Hypergeometric test; cor-
relation coefficient

Y 26304537

SC miRNA–target regulation;
miRNA and RNA expression

Sensitive correlation coef-
ficient; random test

Y 25033876

CMI miRNA–target regulation;
miRNA and RNA expression

CMI; random test Y 22000015
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1. Ratio-based method. Based on the ceRNA hypothesis that the proportion of
miRNAs that RNA-Y shares with RNA-X from all candidate gene sets S is
calculated as:

RX ¼ miRNAX \miRNAY

miRNAX
,X 2 S:

where miRNAX is the miRNA set that regulates RNA-X and miRNAY is the miRNA
set that regulates RNA-Y (Fig. 6.11b).

2. Hypergeometric test-based method. The hypergeometric test is used to determine
whether RNA-X and RNA-Y are co-regulated by miRNAs (Fig. 6.11c). This
statistic test computes the significance of common miRNAs for each ceRNA pair.
The probability P is calculated as follows:

P ¼ 1� F NXY � 1jN,NX ,NYð Þ ¼ 1�
XNXY

t¼0

NX
t

� �
N�NX
NY�t

� �

N
NY

� � :

where N represents the number of all miRNAs in the human genome, NX and NY are
the total number of miRNAs that regulate RNA-X and RNA-Y, respectively, and
NXY represents the number of miRNAs shared between RNA-X and RNA-Y. P-
values are subject to false discovery rate (FDR) correction and RNAs are ranked
based on the FDR values.

3. Hypergeometric test combined with co-expression-based method. To identify the
active ceRNA–ceRNA regulatory pairs in a given context, the co-expression
principle is used to filter the ceRNA regulatory interactions that were identified
based on the above two global predictions (Chiu et al. 2015b; Zhou et al. 2014).
Based on RNA-X and RNA-Y expression profile datasets, the Pearson correlation
coefficient (R) of each candidate ceRNA regulation pair discovered is
calculated as:

R ¼
Pn

i¼1 exprXi � �exprXð Þ exprYi � �exprYð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
i¼1

exprXi � �exprXð Þ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1

exprYi � �exprYð Þ2
s :

where exprXi and exprYi are the expression levels of RNA-X and RNA-Y in sample
i in a specific context, and �exprX and �exprY are the average expression levels of
RNA-X and RNA-Y across all tumor samples. The RNA-X and RNA-Y are ranked
by the P-value of hypergeometric test and the correlation coefficient, separately.
Finally, the average rank of each ceRNA regulatory is calculated to rank the
candidate genes (Fig. 6.11d).



4. SC-based method. In addition, miRNA expression profiles can be also integrated
to identify ceRNA regulation in cancer. There is a common method that is used to
discover highly correlated ceRNA pairs in which the correlation is due to the
presence of one or more miRNAs (Fig. 6.11e). SC had been proposed to identify a
sponge interaction network between mRNAs and lncRNAs in breast cancer (Paci
et al. 2014). For a candidate pair of RNA-X and RNA-Y, given a co-regulated
miRNA-M, the method is as follows:

RXYjM ¼ RXY � RXMRMYffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

XY

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

MY

q :

where, RXY, RXM, and RMY represent the Pearson correlation coefficient between
RNA-X and RNA-Y, RNA-X and miRNA-M, RNA-Y and miRNA-M, respectively.
The SC of miRNA-M, termed S, and the corresponding candidate ceRNA pairs are
calculated as:
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S ¼ RXY � RXYjM :

Finally, to calculate the significant correlation, a random background distribution
of the S was generated by calculating the score S of randomly selected combinations
of RNA-X/miRNA/RNA-Y ceRNA regulation.

5. CMI-based method. Based on the CMI method (Sumazin et al. 2011), the
ceRNA–ceRNA interactions are identified (Fig. 6.11f). The RNA–RNA correla-
tions and miRNAs/RNAs expression profiles are required in the method. We can
use Hermes method, which predicts ceRNA interactions from expression profiles
of candidate RNAs and their common miRNA regulators using CMI. First, the
size of the common miRNAs that regulate two candidate RNAs is necessary to be
statistically significant relative to the two individual miRNA sizes, and this is
performed by Fisher’s exact test. Then Hermes evaluates the statistical signifi-
cance of the test for each miRNA i as:

I miRNAi,AjXð Þ > I miRNAi,Að Þ:

The random test where the candidate modulator’s expressions across cancer
patients are perturbed and calculated for P-value of each RNA-X/miRNA/RNA-Y
interaction. The final significance for all miRNAs is then calculated by combining all
the individual P-values for each miRNA i. This is based on Fisher’s method,

χ2 ¼ �2
XN

k¼1
ln pkð Þ:

where N is the total number of miRNAs.
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6.5 Future Directions

Computational analysis of miRNA regulatory networks represents a robust platform
for understanding miRNA functions in complex diseases, including cancer. Here, we
summarized the widely used computational methods for identifying miRNA–gene,
miRNA–miRNA, and ceRNA–ceRNA regulation in cancer. However, gene expres-
sion is also regulated by other regulatory factors, such as transcription factors and
RNA binding proteins. There are both opportunities and challenges for the compre-
hensive integration of these regulatory layers for understanding gene expression
regulation in cancer.
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Chapter 7
Analysis of the p53/microRNA Network
in Cancer

Markus Kaller, Sabine Hünten, Helge Siemens, and Heiko Hermeking

Abstract MicroRNAs (miRNAs) are important components of the signaling cas-
cades that mediate and regulate tumor suppression exerted by p53. This review
illustrates some of the main principles that underlie the mechanisms by which
miRNAs participate in p53’s function and how they were identified. Furthermore,
the current status of the research on the connection between p53 and miRNAs, as
well as alterations in the p53/miRNA pathways found in cancer will be summarized
and discussed. In addition, experimental and bioinformatic approaches which can be
applied to study the connection between p53 and miRNAs are described. Although,
some of the central miRNA-encoding genes that mediate the effects of p53, such as
the miR-34 and miR-200 families, have been identified, much more analyses remain
to be performed to fully elucidate the connections between p53 and miRNAs.
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7.1 Introduction to p53 Biology

The p53 transcription factor is encoded by a tumor suppressor gene, which is
presumably the most commonly mutated gene in human cancer (Soussi 2011). In
addition, many of the cancers without p53 mutation may harbor alterations up- or
downstream of p53, which also impede the ability of p53 to suppress tumor cell
growth. p53 and its loss may represent attractive targets for tumor therapy (Cheok
et al. 2011). Most p53 mutations target the DNA binding properties of p53,
suggesting that the regulation of specific target genes is central to the tumor
suppression mediated by p53. However, alternative functions of p53 in the cyto-
plasm and in mitochondria have also been described (Green and Kroemer 2009).
p53’s transcriptional activity is induced by various forms of cellular stress that cause
diverse posttranslational modifications of p53, which are thought to allow a fine-
tuning of the cellular response to the type and extent of stress experienced by the
respective cell (Kruse and Gu 2009), summarized in Fig. 7.1). For example, repair-
able DNA damage may cause a transient cell cycle arrest, whereas extensive damage
may induce apoptosis via generating different levels of p53 activity. DNA damage in
the form of double-strand DNA breaks was one of the first inducers of p53 to be
discovered. Subsequently, ribosomal, replication, metabolic, oxidative, and tran-
scriptional stress, as well as hypoxia were found to cause an increase in p53’s
transcriptional activity. These alterations stimulate distinct signaling cascades
which activate enzymes that modify p53 or regulate cofactors binding to p53. For
example, DNA double-strand breaks lead to activation of the ATM kinase, which
phosphorylates p53 at multiple N-terminal residues (Derheimer and Kastan 2010)
and thereby increases its transactivation activity. Furthermore, p53 may be activated
by inhibition of the MDM2 protein, which represents an E3-ubiquitin ligase that
marks p53 for proteasomal degradation. p53 forms tetramers that bind to palin-
dromic recognition sites often organized in tandem repeats with spacers of varying
lengths between them (Fig. 7.1). Promoters display gradual responsiveness to p53
either due to different numbers of p53 binding motifs or due to the presence of high
affinity versus low-affinity sites (Menendez et al. 2009). For example, the p21 gene
has a high-affinity p53 binding site and mediates cell cycle arrest, whereas genes that
mediate cell death harbor low-affinity p53 binding sites. Therefore, apoptosis is
presumably only induced when p53 is strongly activated. p53 directly activates a
large set of genes, which mediate numerous cellular functions that contribute to
tumor suppression (Kastenhuber and Lowe 2017; Fischer 2017). Many, but not all of
these protein-coding target genes are depicted in Fig. 7.1. The activation of p53
target genes is either caused by an increase in p53 abundance after p53 stabilization,
anti-repression of specific genes after removal of repressive MDM2/MDMX from
p53 by acetylation and/or phosphorylation, or formation of promoter-specific tran-
scriptional complexes (Kruse and Gu 2009). Furthermore, p53 may mediate the
repression of specific genes. However, the mechanisms of transcriptional repression
by p53 are less well understood and are presumably mediated indirectly via the
p21/DREAM complex (Fischer et al. 2014, 2016). Furthermore, miRNAs represent
important mediators of gene repression caused by p53 (Hermeking 2012).
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Fig. 7.1 p53 as a central mediator of stress responses. In this model, the types of stress and events
leading to activation of p53 and the protein-encoding genes activated by p53 are depicted. p53 is
shown as a symbolic tetramer occupying a p53 binding motif (in red) containing two palindromic
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p53 and the respective p53 target genes implicated are indicated

7.2 p53 and the miRNA World: Current State of the Art

miRNAs have presumably evolved to allow organisms to effectively deal with stress
(Leung and Sharp 2007, 2010). In line with this notion, the p53 stress-response
pathway is heavily interconnected with miRNAs not only by regulating their expres-
sion and processing, but also since p53 itself represents a downstream target of
miRNAs (see Figs. 7.2, 7.3, and 7.4). The protein-coding genes regulated by p53



elicit several cellular phenotypes/processes, which contribute to tumor suppression,
for example, induction of cell cycle arrest, senescence, and apoptosis, as well as
inhibition of metastasis, angiogenesis, and glycolysis (Vogelstein et al. 2000;
Hermeking 2007, 2003, 2010; Vousden and Ryan 2009; Vousden and Prives
2009; Riley et al. 2008). Interestingly, these processes are also regulated and, in
some cases, induced by p53-regulated miRNAs (Hermeking 2007, 2010, 2012).
Consequently, the characterization of a number of miRNAs directly regulated by
p53 and the cellular effects of these connections have been reported. For an
overview, see Fig. 7.3.
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Fig. 7.2 Effects of p53 on the miRNA processing pathway. The synthesis of miRNAs in mam-
malian cells and the known modes of regulation by p53 are depicted

7.2.1 The miR-34 Genes

In 2007, the miR-34 genes, miR-34a, and miR-34b/c, were reported to be directly
regulated by p53 by a number of laboratories using diverse approaches (Tarasov
et al. 2007; Chang et al. 2007; He et al. 2007a; Bommer et al. 2007; Raver-Shapira
et al. 2007; Corney et al. 2007). For example, we determined the abundance of
miRNAs in libraries representing small RNAs generated after p53 activation using a
next generation sequencing approach (Tarasov et al. 2007): we found that miR-34a



showed the most pronounced increase among all detected miRNAs after p53 acti-
vation, which is mediated by p53 binding sites in the promoter region of its host
gene. When ectopically expressed, miR-34a and miR-34b/c displayed tumor-
suppressive activities, i.e., they caused induction of apoptosis and senescence,
inhibition of cell cycle progression, and decrease of angiogenesis (reviewed in
(Hermeking 2007, 2010; He et al. 2007b). These effects were mediated by direct
downregulation of numerous key regulators and effectors of these processes such as
BCL-2, Cyclin E, CDK4, and CDK6. Meanwhile, a large number of additional
miR-34 targets have been identified using a variety of approaches (reviewed in
Hermeking (2010, 2012), Rokavec et al. (2014a); see also Kaller et al. (2011), Lal
et al. (2011) and references therein). Among the miR-34 targets, SIRT1, c-MET,
AXL, c-/N-MYC, LDHA, and SNAIL seem to be especially relevant for the
suppression of cancer. In fact, their common upregulation in tumors could be due
to the frequent inactivation of the p53/miR-34 axis during tumor development
(Lodygin et al. 2008; Vogt et al. 2011). These targets contribute to the suppression
of migration and invasion (SNAIL, c-MET, AXL) and metabolism (LDHA). In the
case of c-MET it was shown that p53 downregulates c-MET expression via
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Fig. 7.3 Regulation of miRNA expression by p53. Model summarizing direct transcriptional
activation of miRNA-encoding genes, the affected miRNA targets and the reported cellular effects,
which collectively contribute to tumor suppression by p53



SP1-mediated occupancy and repression of the c-MET promoter and by inducing
miR-34a/b/c, which directly target the 3’-UTR of the c-MET mRNA (Hwang et al.
2011). p53 may suppress metastasis by preventing epithelial–mesenchymal transi-
tions, which have been implicated in the early, invasive stages of metastasis.
Accordingly, p53 activation promotes mesenchymal–epithelial transition (MET)
and favors the epithelial state of cells (Schubert and Brabletz 2011). We found that
p53-induced MET is mediated by the induction of miR-34a and miR-34b/c in
colorectal cancer cell lines (Siemens et al. 2011). miR-34a and miR-34b/c achieve
this effect by negatively regulating a master-regulator of EMT, the SNAIL tran-
scription factor (Siemens et al. 2011; Kim et al. 2011b). In addition, we found that
the miR-34a and the miR-34b/c genes are directly repressed by SNAIL (Siemens
et al. 2011). Therefore, miR-34a/b/c and SNAIL form a double-negative feedback
loop (summarized in Brabletz (2012)). Stemness represents another important onco-
genic trait of cancer cells which is suppressed by miR-34. It was shown that miR-34
directly suppresses CD44, which blocks the expansion of cancer-initiating tumor
stem cells in a mouse model of prostate cancer (Liu et al. 2011). When miR-34a is
ectopically expressed, stemness markers such as CD133, CD44, and BMI-1 are
downregulated in colorectal cancer cells (Siemens et al. 2011). Furthermore, it was
reported that similar to p53, the miR-34 miRNAs provide a barrier for somatic cell
reprograming and the generation of IPS (induced pluripotent stem) cells from mouse
embryo fibroblast (Choi et al. 2011). miR-34 mediated this effect by downregulation
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Fig. 7.4 Regulation of p53 by miRNAs. Model summarizing the regulation of the 3’-UTR of p53,
as well as the downregulation of p53-modifying enzymes by miRNAs. Oncogenic miRNAs with
seed-matching sequences in the 3’-UTR of p53 or tumor-suppressive miRNAs directly
downregulating the indicated proteins are depicted



of NANOG, SOX2, and N-MYC. Therefore, cancer cells with loss of miR-34
expression may also be more prone to become tumor-initiating cells, which exhibit
features of stem cells. Furthermore, miR-34 inhibits components of the
WNT/β-catenin/TCF pathway, such as β-catenin, LEF1, and WNT1 (Kaller et al.
2011; Kim et al. 2011a). Thereby, miR-34 may contribute to the suppression of
stemness- and EMT-related features of cancer cells. In the recent years, we identified
and characterized additional miR-34 targets, which are critical for the suppression of
stemness and EMT by miR-34 in cancer cells, such as ZNF281 (Hahn et al. 2013),
CSF1R (Shi et al. 2020), INH3/PPP1R11 (Li et al. 2017), IL6R (Rokavec et al.
2014b) and PAI1 (Oner et al. 2018).
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The miR-34 family also includes miR-449. Although the seed sequences of
miR-34a/b/c and miR-449a/b/c are highly conserved, the regulation of the genes
encoding these miRNAs is divergent as miR-449 expression is induced by E2F1, but
not by p53 and/or DNA damage (Lize et al. 2011). Therefore, the regulation of
similar targets by miR-34 and miR-449 miRNAs may occur under rather distinct
circumstances. Furthermore, miR-449 presumably has a restricted expression pat-
tern, since it was found to be highly expressed in differentiating lung epithelia and at
comparatively low levels in other tissues (Lize et al. 2011).

7.2.2 The miR-200 Family

The two genes encoding the miR-200 family, which give rise to the miR-200c/141
and the miR-200a/200b/429 miRNAs, were identified as direct p53 target genes that
enforce mesenchymal–epithelial transitions (MET) (Chang et al. 2011; Kim et al.
2011c) by targeting the EMT regulators ZEB1 and ZEB2 (Gregory et al. 2008). In
addition, miR-200 downregulates KLF4 and the polycomb repressor BMI-1, both
stemness factors, and thereby contributes to the loss of metastatic capacity of tumor-
initiating cancer stem cells (Chang et al. 2011). Therefore, the induction of the
miR-200 family represents a new mechanism by which p53 suppresses metastasis
(reviewed in Keck and Brabletz 2011; Schubert and Brabletz 2011).

7.2.3 The miR-192 Family

The 3 members of the miRNA-192 family were found to be encoded by p53 target
genes using a microarray analysis to monitor miRNA expression after treatment with
the Mdm-2 inhibitor Nutlin-3a (Braun et al. 2008). These authors also found that
ectopic miR-192 expression induces p21 in a p53-dependent manner. Later it was
shown that the miR-192 family targets the IGF pathway and also Mdm-2, which
results in the activation of p53 (Pichiorri et al. 2010). Furthermore, this tumor-
suppressive loop is impaired in multiple myeloma, which shows downregulation of
the miR-192 family. In addition, ectopic miR-192 leads to a G1 and G2/M cell cycle



arrest by targeting CDC7, MAD2L1, and CUL5 (Georges et al. 2008). More
recently, we showed that p53 inhibits the paracrine induction of EMT by secreted
Nidogen-1 (NID1) via direct inducing miR-192 and miR-215, which directly target
NID1 in colorectal cancer cells (Rokavec et al. 2019).
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7.2.4 Additional p53-Regulated miRNAs

miR-107 is encoded by an intron of the p53-induced PANK1 gene (Yamakuchi et al.
2010). Ectopic expression of miR-107 decreases HIF1β expression which dimin-
ishes the response to hypoxia and blocks tumor angiogenesis and growth. In
addition, miR-107 targets the cell cycle regulators CDK6 and p130/pRBL2 (Bohlig
et al. 2011).

miR-145 represents a p53-inducible miRNA, which was shown to contribute to
the repression of c-MYC by p53 via directly targeting the c-MYC 3’-UTR (Sachdeva
et al. 2009). Interestingly, miR-145 negatively regulates OCT4, SOX2, and KLF4,
and thereby represses pluripotency in human embryonic stem cells (Xu et al. 2009).
Therefore, miR-145 may at least in part explain why deletion of p53 strongly
enhances the generation of IPS cells and potentially promotes the expansion of
cancer stem cells (Krizhanovsky and Lowe 2009).

miR-15a and miR-16-1 are encoded by an intron of the DLEU2 long noncoding
(lnc) RNA. Initially, miR-15/16 was shown to be processed at an increased rate after
p53 activation (Suzuki et al. 2009; Tarasov et al. 2007). Later, the DLEU2 gene was
shown to be a transcriptional target of p53 (Fabbri et al. 2011; Shi et al. 2014). Since
miR-15/16 targets BCL2 and Cyclin E, they affect both, the cell cycle and apopto-
sis. Moreover, we showed that direct targeting of AP4 by miR-15/16 results in
mesenchymal-epithelial transition (MET), inhibition of migration and invasion, and
suppression of metastasis of colorectal cancer cells (Shi et al. 2014). Recently, we
showed that down-regulation of AP4 also results in DNA damage, chromosomal
instability (CIN), and cellular senescence (Chou et al. 2022).

More recently, miR-30e-5p has been reported to be a direct transcriptional target
of p53 which inhibits colorectal cancer invasion and metastasis by targeting ITGA6
and ITGB1 (Laudato et al. 2017). Moreover, miR-30a is directly activated by p53
and controls tumor cell invasion and distal spreading via targeting ZEB2 in triple-
negative breast cancer (di Gennaro et al. 2018).

The host genes C9ORF3 and COL27A1 of the intronic miR-27b-3p and miR-455-
3p miRNAs are directly activated by p53, and promote cancer cell quiescence via
targeting CKS1B and CAC1, ultimately leading to stabilization of p27 due to its
reduced polyubiquitination (La et al. 2018).



7 Analysis of the p53/microRNA Network in Cancer 195

7.2.5 Direct Regulation of p53 Expression by miRNAs

Several publications demonstrated that miRNAs contribute to the tight control under
which p53 is placed in the cell by directly interacting with the 3’-UTR of p53
(reviewed in Liu et al. 2017 and summarized in Fig. 7.4). By computational analysis
of putative miRNA binding sites using TargetScan and mirBase prediction software,
a binding site of miR-125b was identified in the 30-UTR of p53 (Careccia et al.
2009). MiR-125b is expressed at high levels in the brain and conserved between
human, zebrafish, and other vertebrates. Ectopic expression of miR-125b decreased
p53 protein levels and apoptosis in human cells, whereas inhibition of miR-125b had
the opposite effect in lung fibroblasts and zebrafish brain. When zebrafishes were
treated with DNA damaging agents, miR-125b expression was downregulated,
presumably allowing the observed increase in p53 protein. Analysis of 89 colorectal
cancer samples revealed that elevated expression of miR-125b is associated with
increased tumor size and invasion, and also correlates with poor prognosis and
decreased survival (Nishida et al. 2011). These results are in accordance with
negative regulation of p53 by miR-125b.

By an in silico search, two miR-504 seed-matching sequences were identified in
the 3’-UTR of p53 (Hu et al. 2010). Accordingly, ectopic expression of miR-504
downregulated p53 protein levels, reduced p53-dependent apoptosis and cell cycle
arrest, and resulted in increased in vivo tumor formation.

miR-33 also targets p53 by binding to two seed-matching motifs in the 3’-UTR of
p53 (Herrera-Merchan et al. 2010). Interestingly, miR-33 is downregulated in
hematopoietic stem cells (HSC) and upregulated in more differentiated progenitor
cells in so-called super-p53 mice, which are endowed with an extra copy of p53.
Ectopic expression of miR-33 in HSC results in increased stemness and decreased
recipient survival. In mouse embryonic fibroblasts miR-33 promotes neoplastic
transformation presumably via downregulation of p53.

miR-380-5p was found to downregulate p53 in neuroblastomas, which com-
monly express wild-type p53 (Swarbrick et al. 2010). Neuroblastomas with elevated
expression of miR-380-5p showed a decreased patient survival. Furthermore,
miR-380-5p was highly expressed in mouse embryonic stem cells and its ectopic
expression cooperated with HRAS in transformation, abrogation of oncogene-
induced senescence, and promoted tumor formation in mice. Finally, in vivo deliv-
ery of a miR-380-5p antagonist decreased tumor size in an orthotopic mouse model
of neuroblastoma.

In a systematic, bioinformatic screen 107 potential p53-targeting miRNAs were
identified using TargetScan (Tian et al. 2010). When these candidates were exper-
imentally tested in a dual-reporter assay, miR-1285 turned out to be the most
effective repressor of p53’s 3’-UTR activity. In line with these results, miR-1285
decreased p53 mRNA and protein levels by directly binding to the 3’-UTR of p53
via two seed-matching sequences.

In a similar bioinformatic screen using less stringent criteria and 4 different
miRNA target prediction methods (Miranda, TargetScan, PicTar, and RNA22)



67 candidate miRNAs with the potential to directly inhibit p53 expression were
identified (Kumar et al. 2011). In a subsequent experimental screen only 8 of these
had an inhibitory effect on p53-mediated transactivation. Of these, only miR-200a,
�30d and � 25 were effective in a dual-reporter assay employing the p53 3’-UTR.
By mutation of the respective corresponding seed-matching sequences in reporter
constructs, only miR-30d and miR-25 were validated as direct regulators of the p53
3’-UTR. In contrast, miR-200a presumably affects the p53 3’-UTR by indirect
regulation, e.g., via modulation of transcription factors that regulate miRNAs,
which directly target p53. In a cellular assay, ectopic miR-30d and miR-25 decreased
p53 levels, p53 target expression, and downstream effects of p53 as apoptosis, cell
cycle arrest, and senescence. The opposite was observed when both miRNAs were
inhibited by antagomirs. In line with these observations, miR-25 and miR-30d were
found to be upregulated in multiple myeloma cells, which showed a concomitant
downregulation of p53 mRNA expression. Furthermore, inhibition of miR-25 and
miR-30d induced p53 and apoptosis in a multiple myeloma cell line. Therefore,
miR-25 and miR-30d presumably represent oncogenic miRNAs.
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More recently, miR-638 and miR-518c� were shown to directly target p53,
together with other tumor suppressors such as PTEN and BRCA1. Furthermore,
their overexpression increases cell migration, invasion, and proliferation, suggesting
an oncogenic role for these miRNAs (Tay et al. 2014).

7.2.6 Indirect Regulation of p53 by miRNAs

Several examples of p53 being subject to indirect regulation by miRNAs via
downregulation of upstream regulators of p53 have been documented (Liu et al.
2017). One of the first cases was the regulation of SIRT1 by miR-34a (Yamakuchi
et al. 2008). An in silico search for miR-34a targets, which might affect p53 resulted
in the analysis and experimental confirmation of SIRT1 as a miR-34a target. As a
consequence of SIRT1 downregulation by miR-34a an increase in p53 activity and
enhanced expression of its targets such as p21 and PUMA, as well as increased
apoptosis was observed. Since miR-34a itself is induced by p53, the regulations
connecting miR-34a, SIRT1, and p53 constitute a positive feedback loop. In tumors,
this self-activating loop may be disrupted by the silencing of miR-34 genes by CpG
methylation and mutation/inactivation of p53 (Hermeking 2010; Lodygin et al.
2008; Vogt et al. 2011).

Moreover, miR-34a directly regulates MTA2, HDAC1, and YY1, which are
additional factors involved in the regulation of p53 protein levels either via
deacetylation or ubiquitination (Chen et al. 2011; Zhao et al. 2013; Kaller et al.
2011).

As mentioned above, miR-449 is similar to miR-34, but regulated by other factors
like E2F1. When miR-449 was expressed ectopically, it also indirectly activated p53
via directly suppressing the expression of HDAC1 and SIRT1 (Bou Kheir et al.
2011). This may allow additional pathways to increase p53 activity.
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Also, miR-122 leads to an upregulation of p53 (Fornari et al. 2009). However,
this is achieved even more indirectly, since the downregulation of the miR-122 target
Cyclin G1 presumably leads to decreased recruitment of PP2A phosphatase to
MDM2, which results in a decreased MDM2 activity and increased p53 levels/
activity. In line with this scenario, ectopic miR-122 expression increased the sensi-
tivity of hepatocellular carcinoma-derived cell lines to doxorubicin.

More recently, miR-885-5p was shown to activate p53 and the expression of p53
target genes (Afanasyeva et al. 2011). Although miR-885-5p was shown to target
CDK2 and MCM5, the mechanism for the effect on p53 remained unclear.

miR-192/194/215 are transcriptionally induced by p53 and negatively modulate
Mdm2 activity (Pichiorri et al. 2010). Interestingly, their ectopic expression
enhanced the therapeutic effectiveness of MDM2 inhibitors against multiple mye-
loma (MM), an incurable B cell neoplasm, in experimental settings. A similar
feedback loop was recently described for miR-605, which is also induced by p53
and negatively regulates MDM2 expression (Xiao et al. 2011).

In addition, several miRNAs such as miR-10a, miR-191-5p, miR-887, miR-661,
miR-34a, miR-199a-3p, and let-7 repress MDM4, another important regulator of p53
protein levels (Hoffman et al. 2014).

7.2.7 Direct Involvement of p53 in miRNA Processing
and Maturation

Since the levels of certain processed miRNAs were increased after p53 activation
even in the absence of an induction of the corresponding primary miRNAs
(pri-mRNAs), the possibility that p53 may directly affect the processing of miRNAs
was analyzed (Suzuki et al. 2009). Indeed, these authors found that p53 interacts
with the miRNA processing complex DROSHA through association with the
DEAD-box RNA helicase p68 (indicated in Fig. 7.2). Thereby, p53 enhances the
processing of specific pri-miRNAs with growth-suppressive function (e.g., miR-16-
1, miR-143, and miR-145) to precursor miRNAs (pre-miRNAs) resulting in a
significant increase in the corresponding miRNAs. Therefore, direct transcriptional
regulation of any miRNA-encoding gene by p53 should not be deduced from the
detection of an increase in mature miRNA levels by techniques like miRNA-Seq.
Such analysis should be complemented by quantifications of the pri-miRNA levels
and detection of p53 occupancy at the promoter of the respective pri-miRNA
encoding gene.

Another link between p53 and miRNA processing has been observed in condi-
tional DICER knockout mice (Mudhasani et al. 2008). DICER deficiency and
therefore incomplete miRNA maturation induce p53 and p19/ARF, which leads to
reduced proliferation and premature senescence. Interestingly, deletion of Ink4/Arf
or p53 prevents premature senescence induced by deletion of DICER. Therefore, a
p53-dependent checkpoint seems to monitor proper miRNA processing.
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7.2.8 The p53 Relatives p63 and p73 in the Regulation
of miRNAs

The p53 family members p63 and p73 have also been implicated in the regulation of
miRNA expression and processing. TAp63 was shown to coordinately regulate
DICER and miR-130b to suppress metastasis (Su et al. 2010). In contrast to p53,
the p63 and p73 genes are not affected by mutations in tumors. p73 promotes
genome stability and mediates chemosensitivity, whereas p63 largely lacks these
p53-like functions and instead promotes proliferation and cell survival. p63 and p73
were shown to be connected via miRNA regulations: p63 represses the expression of
miR-193-5p, which targets p73, thereby causing an increase in p73 expression,
whereas p73 induces miR-193-5p (Ory and Ellisen 2011). Interestingly, therapeutic
inhibition of miR-193-5p effectively blocked tumor progression in an orthotopic
tumor model when combined with otherwise ineffective chemotherapy.

7.3 Alterations of the p53/miRNA Network in Human
Cancer

Similar to protein-coding genes, miRNA-encoding genes may harbor oncogenic or
tumor-suppressive functions. As discussed above, p53-induced miRNAs promote
tumor-suppressive processes like cell cycle arrest, senescence, inhibition of EMT,
and metastasis. During cancer initiation or progression, cells with inactivation of
miRNA-encoding genes may have a selective advantage, since they presumably
display a weakened or missing induction of these tumor suppressive mechanisms. In
tumors, miRNA-encoding genes may be inactivated by a number of different
mechanisms. The p53-inducible miRNAs discussed above are likely to be
downregulated in at least half of all tumors due to the mutational inactivation of p53.

However, in tumors retaining wild-type p53 the p53-regulated miRNA-encoding
genes represent good candidates for being subject to inactivating events. These
include loss by deletion or other structural changes as translocations. In addition,
downregulation of miRNA expression by epigenetic silencing via CpG methylation
and/or deacetylation of promoter regions has been described (reviewed in (Kaur
et al. 2016; Gregorova et al. 2021; Morales et al. 2017).

Furthermore, indirect downregulation due to mutations of other upstream regu-
latory transcription factors and alterations in the miRNA processing machinery has
been observed. Another mode of inactivation may be the aberrant expression of a
seed-match containing RNA, a so-called competing endogenous RNA (ceRNA),
which sequesters the respective miRNA (Salmena et al. 2011). This mechanism was
originally observed in plants (Rubio-Somoza et al. 2011). The existence of cancer-
relevant ceRNAs in human cells was documented by the identification of RNAs,
which regulate expression of the PTEN tumor suppressor via this route (Tay et al.
2011). A further possibility of miRNA inactivation was suggested to occur by



mutation of seed sequences or altered processing of miRNAs. For example, such
alterations have been described in lung cancer (Galka-Marciniak et al. 2019).
Furthermore, an escape from miRNA action by deletion or mutation of seed-
matching sequences is conceivable. Indeed, such alterations have been observed in
mRNAs encoding oncogenic factors (Mayr and Bartel 2009; Mayr et al. 2007). For
an overview of reported alterations in the p53/miRNA network detected in cancer
see Table 7.1.
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7.3.1 Cancer-Specific Alteration of the miR-15/16 Encoding
dLEU2 Gene

The earliest reported genetic inactivation of a miRNA was the observation that the
dLEU2 gene, which is located on chromosome 13q14 and encodes the miR-15a and
miR-16-1 miRNAs, is commonly deleted in chronic lymphocytic leukemia (CLL)
(Calin et al. 2002). More recently, it was shown that experimental deletion of miR-
15a/16-1 or of the entire dLEU2 gene predisposes mice to CLL (Klein et al. 2010).
Therefore, dLEU2 is presumably the tumor suppressor gene located in the 13q14
region. Importantly, this study provided the first proof for a bona fide tumor
suppressor gene function of a miRNA.

7.3.2 Cancer-Specific Alterations of the miR-34 Family

The miR-34a and miR-34b/c genes are frequently silenced by CpG methylation in a
variety of tumor types (Hermeking 2010; Lodygin et al. 2008; Toyota et al. 2008;
Vogt et al. 2011). MiR-34a methylation was initially shown to occur in numerous
cell lines derived from different tumor types, including primary prostate cancer and
melanoma (Lodygin et al. 2008). Also, the expression of the miR-34 family mem-
bers miR-34b and miR-34c, which are encoded by a common transcript, is
downregulated in many types of cancer. A high frequency of miR-34b/c silencing
by CpG methylation has been found in colorectal cancer cell lines and colorectal
tumor samples (Toyota et al. 2008). We also found CpG methylation ofmiR-34b/c in
all 114 cases of primary colorectal cancers analyzed (Vogt et al. 2011). Interestingly,
miR-34b/cmethylation correlated with metastasis and poor survival for several types
of cancer (Lujambio et al. 2008). The reintroduction of miR-34b/c into cancer cell
lines exhibiting miR-34b/c silencing inhibited their motility, reduced tumor growth,
and inhibited metastasis formation in a xenograft model with an associated
downregulation of the respective target genes (e.g., c-MYC, E2F3, and CDK6).

The miR-34a gene is located on chromosome 1p36, a region that is commonly
deleted in human cancers, as, for example, in neuroblastoma (Thorstensen et al.
2000). Indeed, neuroblastoma often displays loss of miR-34a expression (Welch
et al. 2007).
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7.3.3 Cancer-Specific Alterations of the miR-200 Family

The miR-200 family encodes a highly conserved group of miRNAs, which controls
EMT by downregulating the EMT-inducing transcription factors ZEB1 and ZEB2
(Gregory et al. 2008). The miR-200 family can be subdivided into two clusters:
miR-200c and miR-141 (located at chromosome 12p13), and miR-200a, miR-200b,
and miR-429 (located at chromosome 1p36). Expression of the miR-200c/141
cluster is frequently silenced by CpG methylation in breast cancer (Neves et al.
2010). Interestingly, a correlation between methylation of the miR-200c promoter
and invasiveness was determined in breast cancer cell lines. Downregulation of the
miR-200c/141 cluster was also described for breast cancer-initiating cells (Shimono
et al. 2009) and Epstein-Barr virus-associated gastric carcinomas (Shinozaki et al.
2010). As mentioned above, loss of 1p36 is a recurrent aberration, especially in
neuroblastoma, indicating that there may be two distinct mechanisms that
downregulate the expression of the miR-200 family.

7.3.4 Cancer-Specific Alterations of the miR-192 Family

The p53-regulated miR-192 family is comprised of miR-192, miR-194-2, and
miR-215, which induce p21 expression and cell cycle arrest in a p53-dependent
manner (Braun et al. 2008). The miR-192 family is downregulated by an unknown
mechanism in multiple myeloma (MM), which rarely shows mutation or deletion of
p53 (Pichiorri et al. 2010). Reactivation of p53 in MM resulted in re-expression of
miR-192, miR-194-2, and miR-215 and downregulation of MDM2, which repre-
sents a target of these miRNAs (Pichiorri et al. 2010). Moreover, ectopic expression
of miR-192 family members inhibited cell growth, migration, and invasion of
MM. Furthermore, the miR-192 family members are downregulated in colon cancer
and induce apoptosis and senescence although to a lesser extent than miR-34a
(Braun et al. 2008). The mechanism of the miR-192 family downregulation
remained unclear in this study, but p53 inactivation (de Krijger et al. 2011) and a
single nucleotide polymorphism (SNP) located within the miR-192 precursor (Duan
et al. 2007) may contribute to this phenomenon.

7.3.5 Other p53-Induced miRNAs Inactivated in Cancer

Recently, the p53-inducible miR-145 was shown to be downregulated by CpG
methylation and p53 mutation in prostate cancer samples and cell lines (Suh et al.
2011).

miR-103 and miR-107 were shown to directly target DICER1 mRNA, which
encodes a central component of the miRNA processing machinery (Martello et al.



2010). Ectopic expression of miR-103 and miR-107 enhance migration in vitro and
allow metastatic dissemination of otherwise nonaggressive cells in vivo, whereas the
loss of miR-103/107 opposes migration and metastasis of malignant cells. Moreover,
it was shown that high levels of miR-103/107 are associated with metastasis and
poor outcome in breast cancer. These findings suggest that the deregulation of the
miRNA processing machinery in cancer leads to metastasis and poor outcome, and
predicts an anticancer activity of the majority of the miRNAs. In support of this
conclusion, DICER1 was characterized as an haploinsufficient tumor suppressor
gene in a tumor mouse model (Kumar et al. 2009). Furthermore, decreased expres-
sion of DICER1 correlates with poor prognosis in human lung cancer (Karube et al.
2005). Interestingly, the p53 family member p63 transcriptionally controls DICER1
expression. Mutant p53 presumably interferes with this regulation, which leads to a
reduction in DICER1 levels and reduces the levels of certain cancer-relevant
miRNAs (Su et al. 2010). Moreover, mutant p53 has been shown to inhibit the
maturation of a subset of pri-miRNAs via binding and sequestration from the
microprocessor complex of the RNA helicases p72/82 (Garibaldi et al. 2016; Suzuki
et al. 2009). More recently, p53 was shown to interact with AGO2 and thus regulate
the association with AGO2 of a subset of mature miRNAs, such as let-7 family
members. Furthermore, specific mutations in p53 decreased the association of let-7
family members with AGO2, thus reducing their activity (Krell et al. 2016).
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7.3.6 Mutations in the miRNA Processing Machinery
in Cancer

Another possibility of how the abundance of p53-regulated miRNAs could be
altered in cancer is to constitutively change the processing of pri-miRNAs to
miRNAs by alterations in components of this pathway. For example, mutations of
the nuclear export protein Exportin-5 resulted in trapping pre-miRNAs in the
nucleus and reduced miRNA processing (Melo et al. 2010). As a result, numerous
miRNAs were not fully processed and a diminished inhibition of the respective
miRNA targets was detected. Notably, restoration of Exportin-5 functions reversed
the impaired export of pre-miRNA and had tumor-suppressive effects. Several
studies supported the hypothesis that variations in the expression and mutations of
miRNA processing components such as Exportin-5, DROSHA, and DICER1 affect
the outcome of breast (Leaderer et al. 2011), ovarian (Merritt et al. 2008), cystic
nephroma (Bahubeshi et al. 2011), and pediatric pulmonary cancer (Hill et al. 2009).
A large percentage of Wilms tumors, the most common childhood malignancy of the
kidney, harbor heterozygous missense mutations in the RNaseIII domain of
DROSHA, leading to a global reduction in miRNA levels (Walz et al. 2015; Wegert
et al. 2015; Torrezan et al. 2014; Rakheja et al. 2014). In addition, mutations in the
dsRNA binding domain of DGCR8, a microprocessor subunit, have also been
identified in Wilms tumors (Walz et al. 2015; Wegert et al. 2015; Torrezan et al.



2014). Furthermore, recurrent homozygous deletions of DROSHA have been iden-
tified in pineoblastoma (Snuderl et al. 2018).
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7.4 Approaches to Study p53-Regulated miRNAs and Their
Targets

One currently feasible strategy for a comprehensive, genome-wide identification of
p53-regulated miRNAs and their associated target genes is the combination of
several approaches depicted in Fig. 7.5. This strategy may in principle also apply
to other transcription factors of interest besides p53. These analyses generate a large
amount of bioinformatic data, which can be processed with the help of the algo-
rithms indicated in Fig. 7.6. The experimental strategy can be subdivided into two
main parts: (1) identification of p53-regulated miRNAs, and (2) identification of
target mRNAs of the p53-regulated miRNAs. So far, the studies in this area have
rather focused on the identification and characterization of single miRNAs regulated
by p53 or they have carried out one type of genome-wide approach, with subsequent
confirmation of a limited number of candidates. In the following section, we will
describe which approaches have been applied to identify and characterize
p53-regulated miRNAs and their associated targets in the past and which lessons
have been learned from these analyses.
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Fig. 7.5 Analysis of p53-regulated miRNAs and their targets. Summary of experimental
approaches for the comprehensive identification and characterization of p53-regulated miRNAs.
The approaches are described in detail in the text
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Fig. 7.6 Bioinformatics characterization of p53-regulated miRNAs and their targets. Summary of
bioinformatics approaches to facilitate the analyses of data obtained by the experimental analyses
described in the main text and in Fig. 7.5 MirDeep2 (Mackowiak 2011), miRanalyzer (Hackenberg
et al. 2011) and miRge2.0 (Lu et al. 2018) can be used to analyze miRNA-Seq data. Commonly
used mappers for ChIP-Seq data are Bowtie (Langmead et al. 2009) and BWA (Li and Durbin
2009). For peak calling, several tools are available, e.g., Find Peaks (Fejes et al. 2008) or MACS
(Feng et al. 2012). AGO2 CLIP-Seq data can be analyzed using PARalyzer (Corcoran et al. 2011).
For the mapping of RNA-Seq reads, TopHat2 (Kim et al. 2013), STAR (Dobin et al. 2013), or
HISAT (Kim et al. 2015) are widely applied. Several R/Bioconductor-based software packages,
such as EdgeR, DESeq/DESeq2 or limma-voom, are commonly used to analyze differential gene
expression (DGE) (Law et al. 2014; Anders and Huber 2010; Love et al. 2014; Robinson et al.
2010). Alternatively, mappers such as TopHat can be used in conjunction with CuffLinks to
determine differentially expressed genes (Trapnell et al. 2012). For the analysis of large mass
spectrometric data sets, MaxQuant (Cox and Mann 2008) can be used. For subsequent pathway
analyses, miRo (Lagana et al. 2009), the Molecular Signatures Database (MSigDB) (Liberzon et al.
2015; Liberzon 2014), and gene set enrichment analysis (GSEA) (Subramanian et al. 2005) are
commonly used tools

7.4.1 Identification of p53-Regulated miRNAs

In order to experimentally identify p53-regulated miRNAs, cellular systems in
which p53 activity can be turned on using conditional systems or pharmacological
p53 activators should be employed. Endogenous p53 can either be activated by the
addition of DNA damaging substances or by specific p53-activators such as Nutlin-



3a. Isogenic cells with and without wild-type p53 should be treated in parallel in
order to identify p53-dependent regulations. For example, the colon cancer cell lines
HCT 116 exhibiting either wild-type p53 expression or p53 knockout are useful for
this purpose (Bunz et al. 1998). Alternatively, the miRNA expression in tissues of
p53 knockout mice or derived cells, e.g., mouse embryonic fibroblasts (MEFs),
represent useful systems to identify p53-mediated miRNA regulations, as
documented previously (He et al. 2007a).
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A more specific activation of p53 can be achieved using ectopic expression of
p53. However, certain posttranslational modifications of p53 induced by treatment
with DNA damaging agents or pharmacological activators do not occur hereby and
therefore, differences in the pattern of miRNAs regulated by p53 may occur when
compared to activation of p53 by stressors such as oncogene activation and DNA
damaging agents. In the past, we have used an episomal, doxycyclin-inducible
expression system to re-express p53 in p53-deficient H1299 lung cancer cells
(Tarasov et al. 2007). Since p53 may enhance the synthesis of miRNAs by directly
influencing pre-miRNA processing, the detection of differential expression of the
mature miRNA is not sufficient to deduce a direct transcriptional regulation of the
corresponding pri-miRNA by p53 (Suzuki et al. 2009). Therefore, it is advantageous
to obtain both miRNA and pri-miRNA profiles simultaneously.

Differential expression of mature miRNAs upon p53 activation can be monitored
using specifically designed miRNA microarrays. A number of commercially avail-
able microarray platforms can be used for this purpose, such as the Human miRNA
Microarray Release 21.0 (Agilent) or the Genechip miRNA 4.0 array (Affymetrix).

Several previous studies have used microarrays to identify miR-34 and miR-215/
miR-192 as direct p53 targets. A miRdicator array was used to identify miR-34a as a
p53 target gene (Raver-Shapira et al. 2007), a 4X2K microarray (CombiMatrix) that
contained probes against mouse miRNAs identified miR-34b/c as a p53 target gene
(Corney et al. 2007) and customized miRNA arrays were used to detect miR-34a
(Chang et al. 2007) and miR-192/miR-215 (Braun et al. 2008) as p53 target genes.
For example, two studies employed miRNA microarrays to identify members of the
miR-200 family as p53 targets (Chang et al. 2011; Kim et al. 2011c).

For more focused approaches, pre-designed PCR panels covering known disease-
relevant miRNAs such as the miRCURY LNA miRNA Focus PCR Panels
(QIAGEN) or TaqMan Arrays (ThermorFisher) can also be used. In these assays,
the induction of mature miRNAs after p53 activation can be measured by stem-loop
RT-qPCR. Hannon and colleagues used a panel of 145 TaqMan assays to monitor
changes in mature miRNA levels after p53 activation (He et al. 2007a). This
approach may also be used to verify the microarray expression data at the level of
individual, processed miRNAs. In order to determine whether p53 regulates miRNA
expression at the transcriptional level, induction of the pri-miRNA transcript can be
measured using total mRNA preparations after reverse transcription into cDNAs and
standard real-time quantitative PCR (qPCR).

A subset of miRNAs lies within intronic sequences of host genes, and therefore
differential expression of the host mRNAs can in principle be monitored by standard
gene expression arrays used for mRNAs. However, induction of the primary host



transcript does not necessarily lead to a significant induction of the mature miRNA.
Therefore, the induction of the mature miRNA should be validated by stem-loop
RT-qPCR assays. The above-mentioned methods have in common that they only
detect previously known miRNAs.
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For the unbiased detection of all miRNA expressed in a certain state, several Next
Generation Sequencing (NGS) based approaches are currently being used. Small
RNAs are isolated, ligated to adapters, reverse transcribed, and amplified to generate
libraries, which may be analyzed using different NGS platforms, e.g., HiSeq or
MiSeq (Illumina), IonTorrent (ThermoFisher), or the SOLID system (Applied
Biosystems) (reviewed in (Liu 2018; Hu et al. 2017). The adapters often contain
distinct bar codes, which allow multiplexing of several samples in one sequencing
run generating up to several hundred million reads. The coverage which can be
achieved by these analyses is presumably close to complete. In 2007, we applied a
454-sequencing approach to identify miR-34a as direct p53 target (Tarasov et al.
2007). At that time only ~200.000 sequencing reads per run were reached, but were
sufficient to identify many of the miRNAs with the most pronounced regulation
by p53.

7.4.2 Confirmation of Direct Regulation by p53 Using ChIP
Approaches

The detection of p53 occupancy at the respective promoters of the genes encoding
p53-regulated pri-miRNAs or other precursor mRNAs can be achieved by chromatin
immunoprecipitation (ChIP)-based techniques. These can either be performed on a
gene-by-gene basis using qPCR-ChIP or on a genome-wide level by coupling ChIP
with techniques such as NGS, SAGE, or hybridization to a promoter array. The
disadvantage of the latter is a bias toward previously characterized promoters that are
spotted.

The consensus sequence necessary for p53 binding consists of two copies of the
RRRCWWGYYYmotif separated by a small spacer of 0-21 nucleotides (R¼ pyrim-
idine; Y ¼ purine; W ¼ A/T; see also Fig. 7.1). However, among the validated p53
response elements identified in p53 target gene promoters, the majority display slight
deviations from the consensus sequence, indicating a degeneracy in p53’s binding
requirements. Based on the consensus motif, potential p53 binding sites can be
predicted using a variety of search algorithms. For example, in the context of
p53-regulated miRNAs, the p53MH algorithm (Hoh et al. 2002) and the
MatInspector software (Genomatix) have been applied to identify p53 binding
sites in the promoters of miRNA-encoding genes. The P53MH algorithm was used
to identify a p53 binding site in the miR-34b/c promoter (Corney et al. 2007) and in
the miR-194-1/miR-215 cluster (Braun et al. 2008), whereas the two p53 binding
sites in the miR-145 promoter were identified using the MatInspector software
(Sachdeva et al. 2009).



7 Analysis of the p53/microRNA Network in Cancer 211

Initially, binding of p53 to the identified binding site was experimentally tested
in vitro by gel shift assays. Furthermore, in order to test the requirement of the p53
response element, a genomic region encompassing the p53 binding site or its mutant
version can be placed upstream of a luciferase ORF or an equivalent reporter gene.
The responsiveness of these constructs to p53 is interrogated by co-transfection with
p53-encoding plasmids into mammalian cells and a subsequent reporter assay. In
order to test whether p53 binds to the identified binding site in a native chromatin
environment in vivo, chromatin immunoprecipitation assays have to be performed.
This can either be done on a single gene basis by ChIP followed by semiquantitative
PCR or qPCR or p53 binding sites can also be identified on a genome-wide scale. In
the initial genome-wide binding studies, immunoprecipitated DNA from the ChIP
experiment was hybridized into high-density oligonucleotide tiling arrays (ChIP-on-
Chip). Cawley et al. used a ChIP-on-Chip approach to map p53 binding sites on
human chromosomes 21 and 22 and identified 48 high-confidence sites (Cawley
et al. 2004). These results suggested the existence of ~1600 putative p53 sites in the
human genome. When the same approach was applied to the complete genome, 1546
p53 binding sites were identified in actinomycin D-treated U2OS cells (Smeenk et al.
2008).

The ChIP-PET method is an extension of the ChIP-on-Chip approach and is
related to SAGE (Velculescu et al. 1995). Short tags derived from
immunoprecipitated DNA fragments are converted into a DNA library. After further
ligations, the paired-end ditags form concatemeres, which are subjected to capillary
sequencing. The obtained tag-sequences reads are subsequently mapped to the
genome and quantified. Wei et al. used the ChIP-PET method to monitor p53
binding across the whole genome and identified more than 500 high-confidence
p53 binding sites (Wei et al. 2006). This resource was used by other laboratories to
identify p53 binding sites in the miR-34a and miR-34b/c promoters (Bommer et al.
2007; Raver-Shapira et al. 2007).

The methods mentioned above have been largely replaced by a combination of
ChIP and NGS (ChIP-Seq). Since the latest generation of sequencing devices
achieve up to several billion reads in one run, it is possible to multiplex several
libraries representing, for example, different time points and experimental replicas in
one single sequencing run. The identification of occupied p53 binding sites in the
genome may be combined with detection of histone modifications indicating active
transcription units and enhancers. This allows the assignment of orphan miRNAs to
active promoters present in their vicinity. Furthermore, the results obtained using the
expression studies described above have to be compared to the DNA binding
patterns of p53 in a genome-wide manner using bioinformatic approaches.

7.4.3 Identification of miRNA Targets

Having obtained a set of p53-regulated miRNAs, the next step is to identify the
physiologically relevant target mRNAs of these miRNAs. We suggest the systematic
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identification of miRNA-regulated target genes following p53 induction by an
integrated approach that involves:

A. Identification and mapping of miRNA binding sites using biochemical tech-
niques involving RISC isolation.

B. Testing the functionality of these binding sites in the regulation of their respec-
tive target mRNAs using either microarrays or NGS as well as dual-reporter
assays.

C. Proteomic approaches to measure changes in target abundance on the protein
level indicate translational regulation in cases without a decrease in the
corresponding mRNA.

Similar to the identification of p53-induced miRNAs in part 1, these approaches
should be ideally performed in parallel as they complement each other. The identi-
fication and mapping of miRNA binding sites in the transcriptome provide informa-
tion as to whether a miRNA directly binds to its cognate target mRNA, but does not
provide information about the regulation of the bound mRNA. Conversely, micro-
array and proteomic approaches provide information on the regulation of a given
mRNA or protein, but do not per se distinguish between direct and indirect targets.
Therefore, a combined approach that maps binding sites of p53-regulated miRNAs
in the transcriptome and validates the functionality of these binding sites regarding
target regulation may comprehensively uncover the network of protein expression
that is regulated by p53-induced miRNAs.

MiRNAs typically regulate their targets via association of a ~7 nucleotide stretch,
the so-called seed-sequence, located in their 50-portion with a complementary
sequence in the 3´-UTR of the target mRNA. Additional base pairing may occur
via nucleotides in the middle and 30-portion of the miRNA. Since miRNAs usually
pair imperfectly with their respective target mRNAs, the number of theoretically
possible targets is typically large and presumably most of the predicted targets are
not significantly regulated by the respective miRNA. Several bioinformatic algo-
rithms have been developed to predict miRNA targets with the intention to reduce
the rate of false-positive predictions by incorporating features such as conservation
between species. However, even these algorithms often predict hundreds of target
mRNAs for a particular miRNA, of which not all are necessarily physiologically
relevant targets.

Numerous miRNA target prediction tools have been developed in recent years
(reviewed in Roberts and Borchert (2017), Loganantharaj and Randall (2017)). Here,
we focus on the most commonly used algorithms and their underlying principles of
prediction. Due to differences in the parameters used to weigh individual features
involved in miRNA/mRNA interaction, different target prediction algorithms often
result in only partially overlapping sets of predicted target genes. Algorithms like
TargetScan and Pictar (Friedman et al. 2009; Krek et al. 2005) place more weight on
perfect, evolutionarily conserved seed matches, whereas PITA, RNA22, and
RNAhybrid (Kertesz et al. 2007; Miranda et al. 2006; Rehmsmeier et al. 2004)
prioritize the ΔG of the miRNA/mRNA duplex and the accessibility of the site
within the mRNA. Although algorithms like Target Scan and Pictar have been



shown to have high predictive power when tested on experimentally obtained
proteomic data (Alexiou et al. 2009; Baek et al. 2008; Selbach et al. 2008), they
may be less useful in the prediction of miRNA target sites that lack a perfect seed-
sequence, are not evolutionarily conserved, or lie outside the 3´-UTR of the target
gene. Therefore, the combined use of several different algorithms may be helpful to
identify target mRNAs of a given miRNA. For example, a useful resource combin-
ing predictions of several algorithms is the miRWalk database (Dweep et al. 2014;
Sticht et al. 2018). In addition, ComiR (Combinatorial miRNA targeting) applies a
combination of several prediction algorithms to predict mRNA coordinately regu-
lated by several miRNAs, which helps to improve miRNA target prediction
(Coronnello and Benos 2013; Bertolazzi et al. 2020).
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The sets of predicted target mRNAs generated by different algorithms are typi-
cally used to filter sets of differentially regulated genes that were identified by
experimental perturbation of miRNA function. This is followed by unbiased
genome- or proteome-wide measurements of changes in mRNA or protein abun-
dance. As outlined in Fig. 7.5, miRNA binding sites can be mapped by isolation of
RISC-bound miRNA target mRNAs. This is typically accomplished by immuno-
precipitation of RISC components such as Ago2, which can either be done via
endogenous proteins or ectopically expressed epitope-tagged versions of the respec-
tive proteins (Beitzinger et al. 2007; Hendrickson et al. 2008; Karginov et al. 2007).
The RISC/mRNA/miRNA complexes are precipitated and the associated mRNAs
are identified either by hybridization to microarrays or by NGS technologies.
However, this method does not directly lead to the identification of the actual
miRNA binding site, since the entire RISC-bound mRNA is immunoprecipitated
and sequenced.

An improved version of these initial approaches is high-throughput sequencing of
RNAs isolated by cross-linking and immunoprecipitation (HITS-CLIP (Chi et al.
2009): miRNA-bound RNAs are cross-linked to RISC by UV irradiation. The RISC/
miRNA/mRNA complex is then immunoprecipitated with antibodies against RISC
components such as Ago2. A RNAse-digest eliminates all mRNA fragments not
protected by the RISC/miRNA complex. In another version of an AGO2-IP-based
approach named photoactivatable-ribonucleoside-enhanced cross-linking and
immunoprecipitation (PAR-CLIP) (Hafner et al. 2010), cells are cultured with the
photo-reactive 4-thiouridine before UV-cross-linking. 4-thiouridine is incorporated
into the cellular RNA during transcription and leads to improved cross-linking
efficiencies. Since 4-thiouridine results in C-to-T transitions during reverse tran-
scription, it helps to map the exact miRISC-bound position on the mRNA.

All occupied mRNA sites, presumably miRNA matching regions, are then
determined by NGS. Therefore, these approaches have to be combined with specific
bioinformatics workflows to extract the associated sequence motifs from the
sequencing data (Chakrabarti et al. 2018). Following this approach, information is
obtained not only regarding the bound mRNA target but also the miRNA matching
sequence, which allows to deduce the putative identity of the miRNA. In the case of
p53-induced miRNAs, this miRNA should be among those which are detected at
increased levels after p53 activation. A PAR-CLIP approach has been applied to



identify the mRNA targets of DNA damage-induced miRNAs in HCT116 TP53+/+

and TP53�/� cells (Krell et al. 2016). This study identified a role for p53 in the
association of let-7 miRNA family members with AGO2 and its target mRNAs.
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Since all these approaches essentially rely on the isolation of the RISC complex,
all miRNAs and their bound mRNA targets associated with RISC will be identified,
which means that identification of mRNA targets of a particular miRNA from the
obtained sequence data largely depends on the subsequent extraction of sequence
features associated with the miRNA. This includes the presence of a hexameric seed
sequence or the presence of other sequence features predicted to be targeted by
miRNAs by algorithms such as PITA or RNA22. An alternative involves the use of
biotinylated miRNAs that can be purified together with RISC in a tandem affinity
purification approach (Orom and Lund 2007, 2010).

As explained above, information on the miRNA binding site does not automat-
ically mean that this particular binding site is physiologically relevant for target
regulation. Therefore, changes in either mRNA or protein abundance have to be
determined following perturbation of miRNA expression. Experimental studies to
identify target mRNAs of p53-regulated miRNAs often involve gain-of-function
approaches using ectopic expression of miRNAs either by transfection of synthetic
pre-miRNA molecules or inducible expression of pri-miRNA transcripts (Bommer
et al. 2007; Kaller et al. 2011; Tarasov et al. 2007). In the opposite loss-of-function
approach, synthetic miRNA inhibitors (antagomiRs) can be used to block miRNA
function. Alternatively, and more elegantly, knockout cell lines for individual
miRNAs can be used to address this question. In recent years, the progress in
CRISPR/Cas9-mediated genome engineering has greatly facilitated the generation
of such miRNA knockout cell lines (Chang et al. 2016; Lataniotis et al. 2017). In
addition, the HCT116 DICERex5, a human colorectal cancer cell line with an
engineered hypomorphic DICER allele (Cummins et al. 2006), has been used to
characterize targets of p53-regulated miRNAs (He et al. 2007a, b; Georges et al.
2008).

A number of studies applied microarrays to identify targets of p53-induced
miRNAs, such as miR-34 (Bommer et al. 2007; Chang et al. 2007; He et al.
2007a; Tazawa et al. 2007) and mir-216/mir-192 (Georges et al. 2008). Microarray
approaches are limited as they cannot detect miRNA targets that are solely regulated
at the level of translational repression. On the other hand, assuming that miRNAs in
most cases only cause modest decreases in protein translation (Selbach et al. 2008;
Baek et al. 2008), the miRNA-mediated regulation of proteins with long half-lives
may not be detected by measuring steady-state protein levels using standard prote-
omic quantification as SILAC (stable isotope labeling by amino acids in cell culture)
(Ong et al. 2002). This problem was solved by the introduction of pSILAC (pulsed
SILAC), which facilitated the quantification of differences in protein translation
rates caused by miRNAs (Selbach et al. 2008). In this approach, induction of
miRNA expression is followed by a pulse of isotope-labeled amino acids which
are incorporated into newly synthesized proteins. Subsequent mass spectrometric
analysis of the proteome, therefore, allows to detect of changes in protein translation
rates after miRNA expression. We have applied this approach to identify miRNA



target genes after ectopic expression of miR-34a or after induction of p53. Notably,
numerous of the identified miR-34a targets were confirmed in a miRNA capture
approach using biotinylated miR-34a as a bait (Lal et al. 2011). Other quantitative
proteomic methods like isotope-coded affinity tag (ICAT)-labeling following trans-
fection with miR-34a have been used to identify miRNA targets (Chen et al. 2011).
One major drawback of all proteomic methods is their still limited ability to cover the
entire proteome of the cell, as well as their strong bias for highly expressed proteins.
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All genome- or proteome-wide methods to identify miRNA targets require further
validation such as qPCR or Western blot analysis to verify that a given mRNA or
protein is indeed regulated following miRNA induction.

Direct regulation by a miRNA is determined in dual-reporter assays. For this, the
3´-UTR of the putative target mRNA is placed downstream of a firefly luciferase
reporter gene. This reporter-construct is co-transfected either with miRNAmimics or
miRNA inhibitors and a Renilla luciferase vector for standardization. In case of
specific, direct regulation the 3´-UTR reporter is repressed by ~20-80%. In order to
map and validate the seed-matching sequences these should be mutated in the
context of its 3´-UTR sequence. The resulting constructs should ideally show
resistance toward the respective miRNA.

7.4.4 Follow-Up Analysis

Once p53-regulation of miRNAs and their targets have been confirmed, numerous
additional analyses are possible to interrogate the physiological and pathophysio-
logical relevance of the identified regulations. In recent years, CRISPR/Cas9-
mediated genome engineering has made it possible to rapidly generate miRNA
knockout cell lines or cell lines with specific alterations in individual miRNA
binding sites. Furthermore, the relevance of the respective miRNAs can be tested
in knockout mice in combination with tumor mouse models. For this purpose, a
collection of ES cell lines with deletion of 392 miRNAs was generated to facilitate
the rapid generation of knockout mice (Prosser et al. 2011). Furthermore, the
inactivation of the respective miRNA encoding genes by CpG methylation or
mutations in different types of cancer may be analyzed and correlated with the
putative upregulation of miRNA targets. In the recent years, publicly available
datasets of cancer patient cohorts, e.g., from The Cancer Genome Atlas (TCGA),
combining miRNA and mRNA expression, have been increasingly used to interro-
gate the role of p53 mutations on miRNA and miRNA target expression and to
determine correlations with mutations, epigenetic changes and clinical data
(Donehower et al. 2019).
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7.4.5 Outlook

In the future technological developments may result in an increase in sensitivities of
mass spectrometry analyses which may facilitate similar coverage rates of proteomic
quantifications as are now reached by RNA sequencing-based approaches. Further-
more, the integration of different bioinformatic platforms into a common program
for mRNA/miRNA/DNA binding and protein quantification will make integrated
analyses less complicated and laborious. For example, BioVLAB-MMIA-NGS has
been introduced as an integrated analysis system for both miRNA and mRNA
sequencing data to identify relevant miRNA-mediated mRNA regulations (Chae
et al. 2015). Another useful tool would be a comprehensive ontology-like database
for miRNA functions and targets. The miRo website is an example of such a tool
(Lagana et al. 2009).

High-throughput single cell (sc) expression analyses, such as scRNA-Seq and
sc-proteomics, will allow to determine the regulations of mRNA and protein expres-
sion, e.g., by p53-induced miRNAs on the cellular level. This will facilitate the
evaluation of cell type-specific expression as well as heterogeneity of expression in
normal tissue and tumor (Vistain and Tay 2021; Wang et al. 2019; Garg and Sharp
2016; Schmiedel et al. 2015; Kumar et al. 2014; Marx 2019). Taken together, these
possibilities will hopefully lead to the translation of knowledge about the
p53/miRNA network into diagnostic and therapeutic applications.
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Chapter 8
Machine Learning Using Gene-Sets to Infer
miRNA Function

Andrew Dhawan and Francesca M. Buffa

Abstract miRNA are regulators of cell phenotype, and there is clear evidence that
these small posttranscriptional modifiers of gene expression are involved in defining
a cellular response across states of development and disease. Classical methods for
elucidating the repressive effect of a miRNA on its targets involve controlling for the
many factors influencing miRNA action, and this can be achieved in cell lines, but
misses tissue and organism level context which are key to a miRNA function. Also,
current technology to carry out this validation is limited in both generalizability and
throughput. Methodologies with greater scalability and rapidity are required to better
understand the function of these important species of RNA. To this end, there is an
increasing store of RNA expression level data incorporating both miRNA and
mRNA, and in this chapter, we describe how to use machine learning and gene-
sets to translate the knowledge of phenotype defined by mRNA to putative roles for
miRNA. We outline our approach to this process and highlight how it was done for
our miRNA annotation of the hallmarks of cancer using the Cancer Genome Atlas
(TCGA) dataset. The concepts we present are applicable across datasets and pheno-
types, and we highlight potential pitfalls and challenges that may be faced as they
are used.

Keywords miRNA · miRNA function · Regularized regression · Machine learning ·
Hallmarks of cancer · Gene-set · Gene signatures · Expression · miRNA–mRNA
network
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8.1 Introduction

miRNA are short noncoding RNAs that regulate gene expression
posttranscriptionally. They classically function by exerting a repressive effect on
target mRNA transcripts, resulting in transcript degradation and inhibition of trans-
lation. As a result, miRNA reduces functional protein levels through RNA-induced
silencing complex (RISC) machinery (Chen and Rajewsky 2007; Cloney 2016).
How miRNAs are thought to target cognate transcripts is through base-pair matching
on an 8-nucleotide recognition site usually in the 30 untranslated region of a
transcript. This is a thermodynamic process for which much work has already
been done to understand the key variables increasing the likelihood of a given
mRNA being targeted by a particular miRNA. As a result, there are multiple
databases and methodologies that provide a listing of miRNA and putative mRNA
targets which we will use for our analyses, reviewed in more detail in Peterson et al.
(2014). These databases are each based on slightly different target prediction
methods, and to capture the range of possibilities, we considered the union of the
sets of mRNA predicted to be targeted by each miRNA (Oliveira et al. 2017). In
doing so, we hope to have reduced any element of bias that could have been
introduced into our results by anyone target prediction approach, and these are easily
implemented through the use of R packages, such as miRNAtap (Pajak and Simpson
2016). We summarize the various databases and briefly describe their methodologies
in Table 8.1.

As miRNAs target thousands of transcripts, and conversely one target can be
actioned upon by multiple miRNA, these short noncoding RNAs potentially carry a
great deal of biological information regarding cellular state. Indeed, their expression
is known to regulate many of the phenotypes associated with development, onco-
genesis, and therapeutic response (Aguda et al. 2008; Bartel 2004; Carroll et al.
2013; Chen et al. 2014; Gee et al. 2015). The association of miRNA to these
phenotypes has typically been arduous, requiring targeted experiments demonstrat-
ing relationships between specific phenotypic assays and miRNA expression in vitro
with concordant evidence of miRNA targeting relevant mRNAs. Needless to say,
such well-conducted experiments are few in number, and their results are often
generalized and extrapolated to in vivo results without clear validation.

Given the limited throughput of such in vitro studies, more sustainable ways to
relate miRNA expression to a phenotype can be extremely helpful, and can help in
refining the design of in vitro experiments. We present here an approach to translate
information from better understood mRNA gene sets (or expression signatures) to
infer miRNA function. The backbone of this is the gene expression signature—the
quantity that relates phenotype to mRNA expression (Liberzon et al. 2015). A gene
expression signature for this discussion will be defined as a set of genes, whose
expression, when summarized into a single value (score) by elementary summary
statistics such as mean or median, or more complex linear combinations, covaries
with a phenotype of interest in a given population of samples. Generally, gene
signatures defined using this paradigm are based on mRNA expression levels, and



many have been compiled, tested, and validated across cell lines and human tissues.
These signatures can then be used as a “proxy” measurement of the phenotype.
Databases of gene signatures can be found through many resources and primary
literature, but the most well-known database has been compiled by the Broad
Institute in MSigDB (Liberzon et al. 2011).

8 Machine Learning Using Gene-Sets to Infer miRNA Function 231

Table 8.1 Comparison of miRNA target prediction algorithms adapted from Supplementary
Information of Buffa et al. (2011)

Name Characteristics References

TargetScan • Perfect seed match rule with specific seed 50 and/or 30 flank
requirements.
• Thermodynamics of seed matching considered.
• Conservation among human, chimp, rodent, and dog.

Lewis et al.
(2005)

PicTar • Preference for perfect seed match.
• Optimal binding free energy considered when choosing tar-
gets.
•Maximum likelihood model for multiple miRNAs potentially
binding a target sequence.
• Conservation among human, chimp, rodent, and dog.

Lall et al. (2006)

DianaLab • Empirically determined binding rules.
• Unique thermodynamic considerations in binding based on
experimental data.
• Conservation among human, chimp, rodent, and dog.

Maragkakis
et al. (2009)

miBridge • Dynamic programming alignment score cutoff.
• Free energy calculation for miRNA–mRNA duplex consid-
ered.
• Conservation among human, rodent, and dog.
• Targets containing simultaneous 50- and 3’-UTR.
• Interaction sites.

Lee et al. (2009)

miRanda • Dynamic programing alignment score cutoff.
• Free energy calculation for miRNA-mRNA duplex consid-
ered.
• Conservation among human, chimp, rodent, and dog.

Miranda et al.
(2006)

miRTarget2 • Seed 50 and/or 30 flank requirements, based on support vector
machine model and large training dataset.
• Free energy calculation for miRNA–mRNA duplex consid-
ered.
• Conservation among human, rodent, and chicken.

Wang and El
Naqa (2008)

The task of summarizing gene expression values for a gene set (hence a set of
gene expression values) into a single score is non-trivial, and platform-agnostic ways
in which to do this that scale well with different sample sizes are not obvious. Many
well-known approaches are possible, such as measures of location and variability of
the distribution of gene expression values (e.g., median, mean, Z-score, and first
principal component in a PCA analysis), single-sample gene-set enrichment analysis
(ssGSEA), pathway-level analysis of gene expression (PLAGE) and others
(Hänzelmann et al. 2013; Tomfohr et al. 2005). For the discussion in this chapter,
we will focus on one of them, the median expression of signature genes (after
expression normalization and batch correction, if applicable) as our summary



score, but the concepts we will present are transferable across other scores. On the
other hand, in our experience, the median score tends to be easily portable across
platforms, scales well with different sample sizes, and is relatively robust to outliers
in gene expression. However, it can be less sensitive to pick small changes in the
phenotypes when compared, for example, to a mean or Z-score. It is therefore
important to evaluate the properties of a summary score, and evaluate its applica-
bility, using standard statistical metrics. In the following subsection, we discuss the
notion of gene signature quality control, a crucial step that has been missing from
much of the present literature on gene signatures. Quality control is key to ensuring
the appropriate use of gene signatures in more broad situations than those from
which the signature was derived (Dhawan et al. 2019).
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Approximately 32,284 gene sets/gene signatures are listed on MSigDB in its
latest version (v.7.4), many corresponding to well-known phenotypes such as
starvation, hypoxia/anoxia (low/no oxygen), angiogenesis, organogenesis, response,
or resistance to stimuli (e.g., drugs and other treatments). Via a summary score, these
signatures potentially “translate” mRNA expression to phenotypes, and can be used
in many cases to infer, hence better understand, cellular phenotypes. Among the
existing signatures with the strongest biological validation are the core “Hallmarks”
gene sets, of which a subset will be used in our analyses.

Another fundamental step that informs on the miRNA function is the notion of
miRNA targeting, and the expression of the miRNA targets. In our analyses, we used
the Cancer Genome Atlas (TCGA), one of the most-used and well-regarded datasets
in the field of cancer genomics, generated by a multicenter effort led by the National
Institutes of Health in the United States (Tomczak et al. 2015). It is a compilation of
genomic data with standardized clinical annotation across over 20,000 tumors from
33 cancer types. Genomic data spans whole-exome sequencing, RNA-sequencing,
small RNA-sequencing, single nucleotide polymorphism (SNP) arrays, and is
complemented in some cases by immunohistochemistry and proteomic analyses.
This dataset has been a trove of information in cancer genomics, and due to its size
has been among the strongest drivers of new information and validation in the field.
Its unique nature with concurrent profiling of miRNA and mRNA expression in the
same tumor samples enables a very clear analysis of how the expression of these two
species relates, which will be necessary for linking miRNA to mRNA.

8.2 Statistical Preliminaries

8.2.1 Linear Modeling and Penalized Regression

The machine learning approach we will take here to determine whether a given
miRNA shows anticorrelation with a given mRNA will rely on linear modeling.
Briefly, linear models describe the variation in a response (output) variable, as a
linear combination of the predictor (input) variables. There are a variety of methods
to determine how to optimally chose parameters for the model that allows for the



linear combination of predictors to be most representative of the output, based on
maximum likelihood estimates from a given dataset of known predictor and response
variables. However, like any statistical model, care must be taken during the fitting
of these models to assure that they are not overfitting (in essence, too tightly bound to
the known dataset) or underfitting (too few known data points to make reasonable
parameter estimates), and both of which limit generalizability. These issues can
occur for a variety of reasons, but with linear modelling, the most common is the
issue of underfitting due to too many predictor variables being considered in
proportion to the size of the known dataset. For instance, with two sets of known
observations, at most two parameters could be determined in a linear system, but this
system would likely not generalize well. As such, because the number of observa-
tions we can use as part of our “known” dataset is fixed, we must optimize the
number of predictors in the model to increase the generalizability of the linear model.
This is done through parameter selection and subsequently through penalization.
This is implemented through the “penalization” package in R (Goeman 2017).
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Our parameter (feature) selection is done by first assessing for even weak
correlations with the response variable of interest; typically, if a Spearman correla-
tion has a statistical significance p-value less than 0.2, we consider it to be weakly
correlated with the response variable, suggesting that it may be a reasonable param-
eter to include in the initial model. The next step in our approach is to consider L1
and L2 penalties, also known as lasso and ridge regression penalties. In doing so, we
can reduce the number of parameters by shrinking certain coefficients in the linear
model to zero, thereby allowing for the stronger predictors to be better represented
by the coefficients of the model. For further details regarding the implementation of
penalized regression, we refer the reader to (Heckman and Ramsay 2000), and for
further details regarding generalized linear models and statistical modelling
approaches, we refer the reader to Zheng and Agresti (2000).

8.2.2 Gene Signature Quality Control

Before using the mRNA gene expression signature in our proposed analysis, it is
imperative to assure that the signature can be used reliably in the given dataset. This
step is often omitted in similar analyses, and we feel that this is a significant pitfall,
wherein the blind application of gene signatures can result in invalid results. We
propose that a gene expression signature should only be used in the tissues and
conditions for which it has been derived unless its validity has been tested in the
dataset of interest.

To test signature validity, our group has proposed a quality control protocol called
sigQC in which datasets and signatures are taken as input and a suite of quality
control plots and metrics are produced as output. We will consider these here briefly
but would refer the reader for further information to our paper on the topic (Dhawan
et al. 2019). Of note, this has been implemented in an R package (available through
CRAN) that has already been integrated into workflows across multiple labs.
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First, to assess signature validity, one must ensure that the genes of the signature
are expressed in a tissue of interest and that the genes show some variability across
the samples considered. Following this, we examine the distribution of the expres-
sion of the signature genes to assure that there is not a significant skew because of a
subset of the genes. The sigQC package also produces plots and metrics that test the
degree of co-correlation between the genes of the signature, as depending on the
metric chosen for gene signature score, the genes may need to all show positive
co-correlation. Finally, sigQC also evaluates the impacts of various scoring metrics
and checks the degree of co-correlation among these metrics. Metrics that are all
co-correlated give higher confidence in the robustness of the gene signature score,
regardless of which metric is chosen to represent the signature score. Following this,
random sets of genes are sampled with these calculations repeated to derive empiric
statistical distributions for each of the values produced by sigQC, thereby testing the
degree of statistical significance in the choice of signature genes. For further details
regarding the use or application of sigQC, we refer the reader to Dhawan et al. (2019)
and https://cran.r-project.org/web/packages/sigQC/.

8.2.3 Rank Product Statistic

A key operation in our analysis is that of the rank product (Breitling et al. 2004). We
utilize the rank product statistic to aggregate findings across tissue types to identify
consistent associations. This is used because (i) it is non-parametric and (ii) it is
easily implemented computationally (Hong et al. 2006). For a given set of variables
of interest in the tissue types, the rank product statistic computes the relative rank of
each of the variables in the given tissue type, then computes the product of these
ranks. This product is taken as the test statistic and compared to the empiric
distribution of rank products under a null model where variables of interest are
randomly distributed across the tissue types. As such, this operation tests against the
hypothesis that the variables of interest are randomly ordered across each of the
tissues.

8.3 Approach to Choosing Representative Gene Signatures

The first step to connect mRNA expression signatures to miRNA expression was to
define the key phenotypes of interest. To do this, we obtained gene expression
signatures that would best represent these phenotypes in the tissues of interest. In
the case of our work in Dhawan et al. (2018), our phenotypes of interest were the
hallmarks of cancer, as outlined by Hanahan and Weinberg (2011, 2000). These
phenotypes had the benefit of being well-described and well-known to occur in
multiple cancer types, and also had well-known gene expression signatures. Also,
there was a biological rationale, and a built-in “sanity check” for the analysis being

http://0.0.7.227
https://cran.r-project.org/web/packages/sigQC/


performed, as many of the hallmarks signatures, already had validated associated
miRNA (e.g., miR-210 and hypoxia) (Camps et al. 2008; Gee et al. 2010). Also, for
many of the hallmarks of cancer, there were multiple gene signatures, each different
in their composition, which was an aspect of redundancy and robustness that we had
used to our advantage in our analysis, by seeking associations strengthened by
consensus. Should a given miRNA be associated with multiple signatures represen-
tative of a given phenotype, it increases the likelihood of relevance.
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Among the candidate gene signatures that could be used for our analysis, we next
interrogated the quality of these signature genes in the datasets of interest. In
particular, we ran our sigQC platform across signatures and gene expression data
across cancer types and determined for each signature and cancer type combination,
whether its performance across the various metrics produced by the package was
adequate for further analysis.

Because our computational approach was designed to use linear models to
elucidate miRNA as predictors of gene signature score, the emphasis on the inter-
pretation of the sigQC output was to assure that the gene signature score was a
reasonable summary statistic for the complete set of genes and that the set of genes
varied together in the same direction (either all positively or negatively in association
with a hallmark). As such, the primary sigQC output metrics used for further analysis
were those relating to signature gene co-correlation, signature gene expression, and
the co-correlations between signature scoring metrics. First, we assured ourselves
that signature genes were expressed and that the signature co-correlation ascertained
whether the signature genes co-varied consistently. Following this, we tested
whether the signature scoring metric chosen (in our case, the median of gene
expression was used) was reliable and had a strong correlation with the alternative
scoring metrics. In doing so, we were able to ensure that the signatures used were
applied in a manner consistent with the datasets used.

8.4 Evidence Across Tissue Types for miRNA Associations
to Key Gene Signatures

To substantiate our results, and to assure that the associations identified were not
related to tissue effects alone, we sought confirmation of the miRNA associations in
other tissues with similar histopathological bases (e.g., epithelial tissues). We
selected preferentially for those associations between miRNA and signatures that
persisted across tissue types using the rank product statistic. In this way, we
established stronger evidence for the associations and filtered spurious associations
that may have been tissue-specific biases. We included in this analysis the tissues
that had a sufficient number of samples to warrant robust miRNA–signature associ-
ations and biologic relevance. That is, because our analysis was focused around
epithelial tumors, only these tissues were included (i.e., non-epithelial tissues were
excluded), to ensure that the most biologically relevant signals would be amplified.



Had this step not been done and we focused only on a single tissue type, there is the
possibility that spurious associations could have emerged. On the other hand, it is
also important to note that these associations by their nature, should not be presumed
to be the same across similar tissues. Indeed, each tissue of the body (and even
subregions of tissues) are specialized toward its biological niche and thereby has
different regulatory programs. Without greater sample sizes of paired data in each
tissue, we could not identify with confidence which miRNA–signature associations
were tissue-specific, though it is possible that these could be identified in the future.
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8.5 Hallmarks-Associated miRNA Preferentially Regulate
Tumor Suppressor Genes

Up to this point, we have shown how to find the miRNA associated with phenotypes,
and the next phase of our analysis is to “go backward” and ask the question of which
mRNA was most strongly negatively associated with these species, to identify the
candidates for mRNA–miRNA repression. In doing so, our goal is to uncover
putative functional miRNA–mRNA repressive interactions driving phenotype. As
noted previously, this concept is motivated by the observation that in certain cancers,
several specific miRNAs (oncomiRs) are thought to be key drivers of the tumor
phenotype, acting by repression of tumor suppressor genes (TSGs) (Volinia et al.
2010).

Thus, we examined the union of the set of mRNAs predicted to be targeted by the
hallmarks-associated set of miRNA by using the miRNAtap R package. Correlation
coefficients for the expression values of each miRNA–mRNA pair were computed.
For each miRNA–mRNA pair, if the degree of anticorrelation in expression across
tissue types was statistically significant using the rank product statistic, then this
miRNA–mRNA pair was felt to be a potential candidate for experimental validation.
We identified a statistically significant overlap with tumor suppressor genes among
these mRNA, suggesting that our hypothesis that the hallmarks-associated miRNA
were preferentially regulating tumor suppressor genes was correct. Null distributions
were defined also with random sets of miRNA–mRNA pairs to exclude the hypoth-
esis that these mRNAs were themselves biased in favor of tumor suppressor genes.
Results are shown pictorially in Fig. 8.1.

Lastly, we endeavored to show that the miRNA–mRNA associations were
statistically significant in the context of broader genetic variation across the dataset.
In particular, we sought to ensure that the mRNA–mRNA association for tumor
suppressor genes was not due to copy number changes (which themselves are
associated with TSG expression), methylation of TSG promoters, and mutational
changes (as TSG are preferentially mutated in cancers). A multivariate model was
built with each of these variables, fit across tissue types, and coefficients were
compared to assess whether the miRNA–mRNA interaction coefficient remained
negative. Among the TSG that remained with statistically significant miRNA–



mRNA interaction coefficients in this analysis, we showed that the samples in which
there was a potential miRNA-mediated expression, there did not tend to be TSG
promoter methylation, TSG mutation, or gene deletion. The predicted miRNA–TSG
interactions remaining after this analysis are the most strongly predicted to be related
to the hallmarks of cancer.
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Fig. 8.1 Approach used for interpreting miRNA–target interactions. (a) First, miRNA–target pairs
for each positively associated hallmark-associated miRNA were identified, and the correlation
between these was determined. (b) Next, the correlations across cancer types were aggregated,
and those identified as consistently negative-ranking were identified with the rank product statistic.
(c) Among this list of miRNA–mRNA target pairs, there was highly significant enrichment for
tumor suppressor genes, as identified by the Fisher exact test. (d) The same procedure as described
in (a) and (b) was repeated for all miRNA and all predicted target TSG pairs, with each TSG
considered individually. (e) From the lists identified in b and d, we identified those miRNA–TSG
pairs in common, and plot their interactions on a circos plot, showing the repressive actions of each
miRNA on its predicted target TSG. Reproduced from Dhawan et al. 2018, Nature Communications
with permission. Licensed under Creative Commons Attribution 4.0: http://creativecommons.org/
licenses/by/4.0/
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8.6 Conclusions and Future Directions

The effect of miRNA on cellular phenotype is not yet fully understood, despite an
evolving knowledge of miRNA biology and mechanism. While the approach we
have proposed describes a method for inferring functional relationships between
miRNA expression and disease phenotype, the challenge of finding sufficiently large
datasets remains. With smaller datasets, the impact of noise and artefactual findings
is greater, and one must be mindful of this limitation. In addition to the accrual of
more data, future work in this field must focus on defining novel statistical method-
ologies to uncover miRNA–mRNA interactions. Further, emerging evidence sug-
gests that miRNA isoforms (isomiRs) play a role in cancer, and non-canonical
miRNA–mRNA interactions may also act paradoxically in increasing mRNA and
target protein levels (Stavast and Erkeland 2019; Telonis et al. 2017). As more data
becomes available, our ability to see finer-grained details of these interactions will be
enhanced, uncovering tissue-specific biology that could be exploited for therapeu-
tics. While functional validation remains the gold standard, more targeted hypoth-
eses can be formed, thereby accelerating the pace of discovery.
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Chapter 9
miRNA:miRNA Interactions: A Novel
Mode of miRNA Regulation and Its Effect
On Disease

Meredith Hill and Nham Tran

Abstract MicroRNAs (miRNAs) are known for their role in the post-transcriptional
regulation of messenger RNA (mRNA). However, recent evidence has shown that
miRNAs are capable of regulating non-coding RNAs, including miRNAs, in what is
known as miRNA:miRNA interactions. There are three main models for the inter-
play between miRNAs. These involve direct interaction between two miRNAs,
either in their mature or primary form, the subsequent changes in miRNA expression
due to miRNA-directed transcriptional changes, and the cell-wide impact on miRNA
and mRNA levels as a result of miRNA manipulation. Networks of mRNA and
miRNA regulatory connections are invaluable to the discovery of miRNA:miRNA
pathways, but this cannot be applied without consideration of the specific cell type or
condition.

In this chapter, we discuss what is understood about miRNA:miRNA interac-
tions, their mechanisms and consequences in disease biology, and suggest further
avenues of investigation based on current gaps in the literature and in our under-
standing of miRNA biology. We also address the pitfalls in contemporary methods
relating to the identification of miRNA:miRNA interactions. Future work in this area
may ultimately change the definitional role of miRNAs, and have far-reaching
impacts on therapeutic and diagnostic developments.
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9.1 Introduction

MicroRNAs (miRNAs) are typically known for their role in the negative regulation
of messenger RNA (mRNA) via complementary binding to the 3’ untranslated
region (UTR). However, recent evidence suggests that miRNAs may also target
non-coding RNA, including other miRNAs. This is termed a miRNA:miRNA
interaction, where a miRNA influences the expression of another miRNA through
direct or indirect means.

There are three main forms of miRNA:miRNA interaction. The first is those
miRNA:miRNA interactions that occur through Watson-Crick pairing between
either a primary miRNA (pri-miRNA) and mature miRNA, or between two mature
miRNAs. In the second category, miRNAs indirectly control miRNA expression by
targeting transcriptional regulators or the miRNA biogenesis components. And the
third subset considers the cascading effect of miRNA:miRNA interactions on
secondary mRNA and miRNA expression in the wider cellular environment
(Fig. 9.1).

Fig. 9.1 Overview of the different forms of miRNA:miRNA interaction



Proposed mechanism(s) Identified disease(s)
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This chapter will present these three different forms of miRNA:miRNA interac-
tions, their mechanisms, their role in disease development, and current limitations
for the investigation into this classification of miRNA regulation.

9.2 Discovery of miRNA:miRNA Interactions

The first description of a miRNA:miRNA interaction was from Lai et al. (2004), who
demonstrated that miRNA pairs were formed between miR-5 and miR-6, and
between miR-9 and miR-79. These dyads demonstrated a stronger binding capacity
compared to the complementary pairing between their respective miRNA guide and
passenger strands (Lai et al. 2004). From this research, it was suggested that
miRNAs may bind to each other in order to influence miRNA stability and mRNA
targeting (Guo et al. 2012; Lai et al. 2004). Although this study was performed using
sequence alignment and not confirmed in vitro, it established the concept that
miRNAs may bind to and regulate miRNAs and other noncoding RNAs. Subsequent
work has since established that miRNA:miRNA interactions do indeed occur in vitro
and have broad impacts on cell homeostasis. A summary of the mechanisms behind
miRNA:miRNA interactions and associated diseases is shown in Table 9.1.

Table 9.1 Description of each type of miRNA:miRNA interaction, their proposed mechanism, and
associated diseases

miRNA:
miRNA
type

Direct • Targeting of pri-miRNAs by nuclear miRNAs
(Forrest et al. 2010; Tang et al. 2012; Zisoulis et al.
2012).
• Impede microprocessor cleavage (Wang et al. 2014,
2018a).
• Complementary sequences in two mature miRNAs
(Chen et al. 2011; Lai et al. 2004).

• Hepatocellular Carci-
noma (Wang et al. 2018a).
• Cardiac disease (Wang
et al. 2014).

Indirect • miRNAs control Transcription Factors, Promoters,
and epigenetic controllers (Jia et al. 2016; Sylvestre
et al. 2007; van Rooij et al. 2009).
• miRNA control of the miRNA biogenesis compo-
nents (Leonov et al. 2015; Wang et al. 2018b).

• Lung Cancer (Borzi
et al. 2017).
• Epithelial ovarian cancer
(Wang et al. 2018b).
• Colon cancer (Yu et al.
2015).

Global • Culmination of changes as a result of promoter,
transcription factor, and gene regulation (Matkovich
et al. 2013).
• Secondary regulatory pathways (Ooi et al. 2017).

• Ovarian cancer (Shahab
et al. 2012).
• Pulmonary hypertension
(Bertero et al. 2014).
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9.3 Direct miRNA:miRNA Interactions

Direct miRNA:miRNA regulation involves the binding and regulation of one
miRNA by another, either in its mature form in the cytoplasm or pri-miRNA form
in the nucleus. This section will discuss several examples of direct binding between
two miRNAs, and how this relates to disease development.

9.3.1 Pri-miRNA:miRNA

Studies into miRNA regulation have found that selected pri-miRNAs contain sites
for mature miRNAs, and that complementary binding between these two RNA forms
results in a reduction in pri-miRNA processing and subsequent decrease in its
associated miRNA. The first example of this showed that miR-424 and miR-503
target pri-miR-9 to control cell differentiation and lineage (Forrest et al. 2010). The
main role of miR-9 is to maintain a non-differentiated cell state. However, miR-424
and miR-503 are in opposition to miR-9, as they are both pro-differentiative
miRNAs. The downregulation of pri-miR-9 by miR-424 and miR-503, therefore,
promotes cell lineage commitment and differentiation (Forrest et al. 2010). The
targeting of pri-miR-9 by these two miRNAs implies that this interaction occurs in
the nucleus, however, this aspect was not explored by the original authors. This
example highlights how miRNA:miRNA interactions may participate in altering cell
function and lineage.

Two major theories as to the actions of miRNA:miRNA interactions were
discussed in a study by Tang et al. (2012). They demonstrated that miR-709 targeted
pri-miR-15/16–1 in mice, and that the knockdown of Importin-8 (IPO8) prevented
miR-709 from migrating into the nucleus to target pri-miR-15a/16–1. This implies
that pri-miRNA targeting mature miRNAs are first produced in the cytoplasm and
are then transported back into the nucleus to perform their regulatory role. The
authors also established that miRNA:miRNA interactions have an influence on
miRNA biogenesis.

miRNA:miRNA interactions have also been shown to have an autoregulatory
aspect. In their study, Zisoulis et al. (2012) determined that in C. elegans, pri-let-7
was targeted by the mature form, let-7, to enhance its production, thus forming a
positive feedback loop. Again, these results implied that mature miRNAs were both
present and active in the nucleus, but also indicated that miRNAs may undergo
autoregulation.

The studies mentioned observed that miRNAs were capable of binding to the
primary miRNA form, but do not discuss or hypothesise on the mechanism by which
miRNA binding impacts pri-miRNA expression. Two reports have since demon-
strated that miRNA regulation is likely through the inhibition of Microprocessor
attachment and processing. The first was performed in murine cardiomyocytes,
where miR-361 targeted pri-miR-484 and prevented Drosha cleavage (Wang et al.



2014). In this case, a decrease in miR-361 directed targeting of pri-miR-484. Since
miR-484 is influential in cardiomyocyte apoptosis, this pathway contributed to an
anti-apoptotic state and was found to be associated with cardiac diseases, such as
myocardial infarction (Wang et al. 2014).
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The second study focused on hepatic cells, where under normal physiological
conditions miR-122 targeted pri-miR-21 (Wang et al. 2018a). The authors directly
demonstrated that due to the proximity of the miR-122 binding site to the Drosha
cleavage junction, the interaction between these two miRNAs interrupted Drosha
binding and resulted in the restricted expression of miR-21 in normal liver cells
(Wang et al. 2018a). Due to the influential nature of miR-21, particularly in cancer,
the maintenance of this relationship is essential to cellular homeostasis and
preventing tumorigenesis. This is mostly observed through the loss or mutation in
miR-122, which results in the decreased inhibition of miR-21. A higher level of
miR-21 results in the targeted downregulation of Programmed Cell Death
4 (PDCD4), resulting in a loss of cell cycle control and promoting tumour develop-
ment (Lu et al. 2008; Wang et al. 2018a). These studies demonstrate that mature
miRNAs may impede Microprocessor by binding to a pri-miRNA in proximity to
the Microprocessor cleavage site. Further investigations need to be conducted in
order to determine whether this form of direct miRNA:miRNA regulation is univer-
sal across miRNAs, and its impact on disease.

9.3.2 Direct Binding between Mature miRNAs

Since the postulated binding of two miRNAs by Lai et al. (2004), there are few
examples of this occurring in vitro. Chen et al. (2011) demonstrated that miR-107
and let-7 form a miRNA duplex, resulting in let-7 downregulation. The physical
binding of these two miRNAs results in a miRNA complex that depends on the GAA
internal loop structure of miR-107 (Chen et al. 2011). Since let-7 is a known tumour
suppressor miRNA, its downregulation via this complex results in an increase in its
oncogenic targets, and a subsequent increase in tumorigenic changes. However, this
study brings forth the question of how two RNA-induced silencing complex (RISC)-
bound mature miRNAs may recognise and bind to each other, and the implications
of this on the RISC components. One study on miRNA cooperation suggested that
amino acid residues within Argonaute (AGO) may interact to allow for two miRNAs
to act together (Flamand et al. 2017). It may be that this mechanism, or similar, is in
place to allow for the direct binding of two RISC-bound miRNAs. Another sugges-
tion is that miRNA:miRNA interactions increase mature miRNA stability, and that
this may be related to the observation that a miRNA is stabilised when bound to a
canonical target (Park et al. 2017).

Since their discovery, direct miRNA:miRNA interactions have been a fascinating
area of study. However, more work needs to be conducted to fully comprehend the
scope and mechanism behind these interactions. For example, it is not yet fully
known which miRNAs are transported into the nucleus or how this may occur. It is



also unknown whether miRNA binding to pri-miRNA is a widespread method of
miRNA control. Additionally, the role of RISC and its capacity to bind to other
miRNA-RISC complexes is not thoroughly researched.
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9.4 Indirect miRNA:miRNA Interactions

miRNA:miRNA interactions may also occur via the indirect actions of another
miRNA, adding another layer of complexity to cellular regulatory systems. This
section will discuss the involvement of miRNAs in the several modes of indirect
miRNA:miRNA interactions.

9.4.1 The Role of Transcriptional Regulation

One of the more explored mechanisms behind indirect miRNA:miRNA interactions
is the miRNA-mediated control of transcriptional regulators, such as transcription
factors and epigenetic markers. In this model, a miRNA targets the 3’ UTR of a
transcriptional regulator, thus altering its expression and the downstream levels of its
targets, including other miRNAs (Song et al. 2015). It is expected that with further
investigation, this form of miRNA regulation may be ubiquitously observed across
cellular systems.

The first identified transcription factor-mediated miRNA:miRNA interaction was
within murine cardiac muscle cells, whereby miR-208a regulated miR-208b and
miR-499 (van Rooij et al. 2009). The slow myosin genes, Myosin Heavy Chain 7
(Myh7) and Myosin Heavy Chain 7b (Myh7b), contain the intronic miRNAs,
miR-208b, and miR-499, whereas the fast myosin gene Myosin Heavy Chain
6 (Myh6) encodes for miR-208a. It was found that an increase in miR-208a
suppressed the repressors of Myh7 and Myh7b, resulting in an increase in their
transcription. This results in the subsequent production of miR-208b and miR-499,
which suppress the repressors of the slow myosin genes. A positive feedback loop is
then formed, as the slow myosin genes further activate miR-208b and miR-499
transcription. In this regulatory pathway, miR-208b is only upregulated by
miR-208a in the presence of external stress stimuli, such as low thyroid hormone
and high calcium levels (van Rooij et al. 2009). Thus, this miRNA:miRNA interac-
tion allows for the accurate modulation of miRNA levels to alter physiological traits,
in this case, muscle contraction.

Another example of a transcription factor-driven positive feedback loop is
between the E2 Factor (E2F) family of transcription factors and miR-20a (Sylvestre
et al. 2007). In this cycle, the miR-17 ~ 92a family, including miR-20a, targets the
E2F genes. This is reciprocated by the E2F-driven activation of miR-20a via its
promoter. Following this loop, an increase in miR-20a will lower E2F levels,
resulting in a decrease in its activation. Thus, miR-20 is capable of modulating its



own expression via E2F. This allows for the adjustment of E2F levels to prevent
apoptosis (Sylvestre et al. 2007). Also involved in this feedback network is the
transcription factor and proto-oncogene MYC, as it forms a positive feedback loop
with the E2F genes and transcriptionally regulates the miR-17 ~ 92a cluster (Aguda
et al. 2008). Due to the role of this feedback system in maintaining cell cycle
progression, its dysregulation results in increased proliferation and tumorigenesis
(Pickering et al. 2009). The miR-20a/E2F/MYC feedback system has been demon-
strated to impact the initiation and progression of glial tumours, with higher levels of
miR-20a associated with malignancy stage (Gruszka et al. 2021). Similarly in
prostate cancer, high levels of miR-20a were indicative of poor survival, and the
presence of high risk, progressive disease (Stoen et al. 2021). Therefore, the feed-
back mechanism between E2F and miR-20a has far-reaching implications for cancer
initiation and progression.
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Transcriptional pathways involving miRNA:miRNA interactions have been
shown to have implications on the control of the major oncogenes. In colorectal
cancer, an oncogenic miRNA (oncomiR), miR-21, is involved in the regulation of
miR-145 in order to amplify oncogenic changes (Yu et al. 2015). In this pathway, an
increase in miR-21-induced K-Ras signalling increased the expression of
Ras-responsive element-binding protein (RREBP), which in turn inhibited the
expression of miR-145. Conversely, miR-145 negatively controlled miR-21 expres-
sion by targeting the miR-21 promoter, Activator Protein-1 (AP1), and reduced
K-Ras signalling. miR-145 targets K-Ras and RREBP, its direct repressors, in
order to increase its own production, thus forming a positive feedback loop.
miR-21 also formed an indirect positive feedback loop with AP1. The loss of
miR-145 via the miR-21 mediated pathway resulted in an increase in its target
genes SRY-Box Transcription Factor 2 (SOX2), Nanog Homeobox (Nanog) and
Octamer-Binding Protein 4 (Oct4), and lead to tumorigenic changes (Yu et al. 2015).

Another instance of this involves Mouse Double Minute 2 (MDM2) and p53 in
lung cancer cells (Borzi et al. 2017). It was found that miR-660 repressed MDM2,
which resulted in an increase in p53, a subsequent increase in miR-486-5p, and the
miR-29 and miR-34 miRNA families (Borzi et al. 2017). This has implications on
carcinogenesis, as the instability of p53 affects the phosphatidylinositol 3-kinase
(PI3K)/protein kinase B (AKT) pathway, and other major cancer processes. It has
been suggested that this axis could be targeted by therapeutics in order to stabilise
p53 and restrict tumour growth (Borzi et al. 2017). Therefore, this pathway demon-
strates the wider impact of miRNA regulation and how these may influence disease
development through the involvement of key drivers of cancer.

Other indirect miRNA:miRNA interactions involve changes in methylation pat-
terns due to the miRNA-directed targeting of DNA methyltransferases. In this case,
miR-29b negatively regulates DNA methyltransferase 3 Beta (DMNT3B), which
alters the methylation pattern of the promoter for miR-195. This results in an
increase in miR-195 production (Jia et al. 2016). This pathway was significant in
tongue squamous cell carcinoma, as both of these miRNAs have been shown to have
tumour suppressive properties, and may be a suitable axis for targeted therapeutics
(Jia et al. 2016).
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9.4.2 The Role of the Biogenesis Components

Several miRNA:miRNA interactions have been found to occur through the regula-
tion of the miRNA biogenesis components. Experimentally, very few miRNA sites
within the 3’ UTR’s of the biogenesis components have been validated (Chou et al.
2018; Kishore et al. 2011). It is expected that the targeted regulation of a member of
the biogenesis pathway, such as Dicer or AGO2, would result in a global decrease in
miRNAs. This has yet to be shown, and current studies only show a limited number
of miRNAs to be affected. However, key relationships have been uncovered that are
associated with disease.

The first of these was observed in epithelial ovarian cancer, where the targeting of
Dicer by miR-98-5p decreased miR-152 expression (Wang et al. 2018b). This has
consequences on chemotherapy resistance, as high levels of miR-98-5p and conse-
quently low levels of miR-152 results in the upregulation of the DNA repair gene
RAD51 recombinase (RAD51) (Wang et al. 2018b). Testing of this pathway in
mouse models concluded that the introduction of miR-152 and treatment with
cisplatin resulted in greater decreased cell proliferation compared to either of these
treatments individually (Wang et al. 2018b). This implies that the interaction
between these two miRNAs, via Dicer, has a critical role in carcinogenesis, and
may be utilised as a potential therapeutic pathway.

Another example related to disease is the impact of miR-132 on AGO2 expres-
sion, and subsequent decrease in miR-221 and increase in miR-146a levels (Leonov
et al. 2015). These miRNAs have a role in angiogenesis, as miR-132 is
pro-angiogenic, miR-221 is anti-angiogenic, and miR-146a is related to inflamma-
tion (Leonov et al. 2015). Therefore, an increase in miR-132 and subsequent
decrease in miR-221 results in an increase in blood vessel formation and the
suppression of anti-angiogenic pathways (Leonov et al. 2015).

Another manner in which the biogenesis components are involved in the inter-
action between two miRNAs is the recently discovered phenomenon of Micropro-
cessor transfer. It was found that the Dicer-independent miRNA, miR-451, is reliant
on miR-144 for its production. It was observed that once Microprocessor had
cleaved miR-144, it was transferred to miR-451 for its production. Shorter, or less
optimal miRNAs were found to be located in clusters, and were thus more likely to
undergo Microprocessor transfer (Fang and Bartel 2020). This dependence was
optimised by both the presence of miR-144 with a full-length stem, and the base
pair width between the two miRNAs (Fang and Bartel 2020; Shang et al. 2020). Two
similar studies saw that the absence of miR-144 abrogated miR-451 expression, and
the extension of the miR-451 stem loop was adequate to induce independent
microprocessor cleavage (Fang and Bartel 2020; Shang et al. 2020). Application
of this process across the whole spectrum of miRNAs within the cell (miRNAome)
gives some explanation as to how shorter strand miRNAs are produced, and has
implications on the evolution of miRNA and small hairpin loops (Shang et al. 2020).

This form of miRNA processing dependence has implications for Dicer expres-
sion. Dicer contains a binding site for miR-144 within its 3’ UTR, while miR-451 is



Dicer independent (Kretov et al. 2020). The production of miR-144 induces
miR-451 cleavage by Microprocessor. An increased level of miR-144 induces the
downregulation of Dicer, which is advantageous for miR-451, due to its Dicer
independence. This results in an increase in AGO bound miR-451, and a decrease
in other canonical miRNAs. This process is observed in red blood cells, where
miR-451 is the dominant miRNA (Kretov et al. 2020).
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9.5 Global miRNA:miRNA Interactions

miRNAs and their targets are part of a dynamic system. Small changes in the
abundance of a subset of miRNAs may have a cascading effect on mRNAs and
miRNA control. miRNA:miRNA interactions have system wide consequences, and
thus it is important that we explore the impacts of miRNA aberrations on the cellular
environment.

Several studies have been conducted to elucidate the network-wide impacts of
miRNA changes. Shahab et al. (2012) observed the response of miRNAs and
mRNAs with the overexpression of miR-7 in ovarian cancer cells, allowing for the
identification of primary and secondary regulated miRNAs and genes. This brings
forward the question of how a singular miRNAmay impact miRNAs and mRNAs in
both a direct and indirect manner. It was postulated that indirect changes may be the
result of variations in promoter or transcription factor activity, the dysregulation of
mRNA containing intronic miRNAs, and changes in the transcription of miRNAs
from intergenic regions (Shahab et al. 2012).

A pivotal study by Matkovich et al. (2013) investigated the impact of miR-499
and miR-378 on miRNAs and mRNAs in murine cardiac cells. The transgenic
overexpression of miR-499 and miR-378 resulted in 17 dysregulated miRNAs
(11 up, 6 down) and 49 miRNAs (18 up, 31 down), respectively (Matkovich et al.
2013). Some of the changes in miRNA expression can be explained by regulatory
cascades, as 13 of the dysregulated miRNAs were encoded within the gene targets of
miR-499 or miR-378. Of the dysregulated mRNAs associated with miR-499
overexpression, only 7.8% (76) were targets of miR-499 itself, while 31% (298) of
the targets were linked to the 11 upregulated miRNAs. The remaining dysregulated
mRNAs (595) are likely the result of the observed secondary miRNA changes
(Matkovich et al. 2013). It was found that miR-378 indirectly affects miR-99
expression by targeting MAF bZIP Transcription Factor (MAF) and Retinoic Acid
Receptor-Related Orphan Receptor A (RORA), therefore indirectly altering the
expression of 31 miR-99 targets (Matkovich et al. 2013). This study was critical in
understanding the impact of miRNA expression on the global cell system.

Another study on the wider implication of miRNA:miRNA interactions investi-
gated miR-130/miR-301 in the context of pulmonary hypertension (Bertero et al.
2014). The elevated presence of miR-130/301, as observed in hypoxic conditions,
suppresses Peroxisome Proliferator-Activated Receptor Gamma (PPARƔ), which in
turn decreases Apelin, miR-322, miR-503, and increases Fibroblast Growth Factor



2 (FGF2) (Bertero et al. 2014). A decrease in PPARƔ also results in an increase in
Signal Transducer And Activator Of Transcription 3 (STAT3), and a subsequent
decrease in miR-204. Cumulatively, alterations in the mentioned miRNAs and genes
promote a coordinated response to pulmonary distress and increases vascular
remodelling. This aggregate effect is the result of miR-130/301 altering the expres-
sion of a wide range of miRNAs and genes, inducing a greater effect on cell
functioning (Bertero et al. 2014).
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9.5.1 The Wide Effect of a Small Set of miRNAs on Cell
Functioning

There are several proposed mechanisms as to how a miRNA, or a miRNA family,
may affect the spectrum of miRNAs and mRNAs within a cell system. One
suggested theory is the presence of a “master regulator” miRNA, a miRNA that
induces a change in an expanded network of genes and miRNAs, which results in a
coordinated response to a stimulus (Bertero et al. 2014; Tang et al. 2012). This
concept may well apply to many tissue types or cell systems, but is yet to be fully
documented.

This concept was first proposed by Tang et al. (2012) in their investigation of
miR-15a/16–1 regulation via miR-709. The authors introduced the idea of a miRNA
hierarchy, whereby a group of miRNAs, or master regulators, conduct broader post-
transcriptional miRNA control. The implication of this is the creation of a miRNA
cascade, whereby the control of a miRNA by another has secondary and even tertiary
effects on wider miRNA expression.

Another study demonstrated the actions of coordinated miRNA responses to
drive cell processes toward a certain phenotype. In this model, miR-130/301 expres-
sion decreased PPARƔ expression, resulting in the repression of apelin, thus
decreasing miR-424, miR-322, and miR-503. A decrease in PPARƔ expression
also increased STAT3 levels, and ultimately decreased miR-204 expression (Bertero
et al. 2014). By influencing these two pathways, miR-130/301 synchronise a
response to pulmonary hypertension to increase vascular remodelling (Bertero
et al. 2014).

This idea was also discussed in a study by Ooi et al. (2017) who studied the
effects of knocked down levels of miR-34 on murine cardiac ventricles and cell lines
with the aim to determine the primary and secondary changes in miRNAs in cardiac
pathology. A degree of coordination was found between the expression of miRNAs
and their interaction with transcription factors (Ooi et al. 2017). This indicates that
secondary miRNA changes may be the result of alterations in transcription, and that
these may act in a cooperative manner to amplify a response to a stimulus. Thus, it is
evident that master regulator miRNAs have expanded networks and roles, and that
these changes may be additive beyond the influence of just one miRNA.
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9.6 miRNA:miRNA Dysregulation

There are several postulated theories as to how miRNAs are dysregulated within
disease, including modifications to the miRNA sequence, changes in the biogenesis
components, or the expression of regulatory factors.

Mutations within a miRNA sequence have a direct impact on its site-directed
targeting of genes. Single nucleotide polymorphisms (SNPs) may occur within the
seed region of the miRNA, which is responsible for target recognition and binding
(Lewis et al. 2003). Additionally, isoforms of miRNAs, termed isomiRs, may also
alter the sequence of the seed region via the addition of nucleotides at its 3’ or 50 end.
IsomiRs and miRNA SNPs have also been found to be associated with disease
development (Bofill-De Ros et al. 2020). It is not currently known whether miRNA:
miRNA interactions occur via the seed region, or if isomiRs have a role in altering
miRNA:miRNA regulation. However, mutations in this region alter miRNA expres-
sion and mRNA targeting, and thus have reverberating effects on mRNA regulation.
This is therefore likely to impact miRNA:miRNA interactions (Króliczewski et al.
2018).

It was previously found that alterations in the IIIa or IIIb domains of Dicer impact
strand selection in miRNA biogenesis (Vedanayagam et al. 2019). Mutations within
these two domains enrich for 3p miRNAs, and alter a miRNA’s 5p to 3p ratio. This
has implications on gene targeting, as the 3p and 5p strands of a miRNA have a
different and distinct set of targets (Vedanayagam et al. 2019). For example, in
endometrial cancer, changes to the distribution of 3p and 5p miRNAs altered the
let-7, miR-15/16, miR-29, miR-101, and miR-17 miRNA families, resulting in the
loss of target gene repression (Vedanayagam et al. 2019). This phenomenon also
brings forth the question as to how miRNA:miRNA interactions, either direct or
indirect, are affected by changes in miRNA strand ratios.

Loss of function mutations in Exportin 5 (XPO5) have also been shown to impact
mature miRNA expression. With XPO5 mutation, there is a decrease in pre-miRNA
transport from the nucleus into the cytoplasm, resulting in a decrease in the expres-
sion of mature miRNAs (Kim et al. 2016). By altering overall miRNA levels, this
mutation impacts miRNA-directed mRNA targeting and has reverberating conse-
quences on cell function. It is also suggested that alterations in the biogenesis
components, such as this, have ramifications on miRNA:miRNA interactions,
whether direct or indirect. It is therefore important to consider the impact of
mutations and alterations in the miRNA biogenesis machinery on the overall
miRNA and mRNA landscape, and how this might contribute to cancer development
(Hata and Kashima 2016).

It is also pivotal to consider the role of super enhancers in the exploration of
miRNA:miRNA interactions. Super enhancers are genomic loci that contain several
enhancer elements that respond to multiple transcription factors, and are generally
responsible for the cell-specific expression of miRNAs and genes (Matsuyama and
Suzuki 2019). Changes in the super enhancer region are responsible for both tumour
suppressive and oncogenic changes, and thus are vital in cancer biology (Matsuyama
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and Suzuki 2019). A broader, systems-level understanding of the miRNAs and
mRNAs affected by super enhancers may uncover miRNA:miRNA pathways in
both a homeostatic and a pathogenic-related context.
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9.7 How Can miRNA:miRNA Interactions Be Utilised
for Cancer Therapy?

Further investigation into miRNA:miRNA interactions provides another avenue for
therapeutic design and development. The discovery of miRNA:miRNA interactions
results in the identification of their direct and indirect targets, which can be inte-
grated to create regulatory networks. This may then be used to predict the down-
stream effect of miRNA changes, or identify therapeutic targets and potential
biomarkers (Cilek et al. 2017). This approach has been used by both Liu and Ye
(2019) and Lapa et al. (2019) to incorporate mRNA, long non-coding RNA
(lncRNA), and miRNA changes in laryngeal squamous cell carcinoma (LSCC) to
identify hub genes or master regulator miRNAs. Additionally, miRNA:miRNA
networks have also been used to identify miRNA changes as a result of common
therapeutic treatments such as Trastuzumab in Breast Cancer (Cilek et al. 2017),
Cisplatin in Ovarian Cancer (Wang et al. 2018b), or experimental therapies such as
those against miR-34 in cardiac disease (Ooi et al. 2017). By investigating the wider
cell context of miRNA:miRNA and mRNA:miRNA interactions, scientists are better
able to identify off-target effects of newly designed therapeutics, especially those
that target aberrant miRNA expression. More research is needed to unravel the
complexity of miRNA:miRNA interactions and how they may be specific t
cell type.

9.8 Current Limitations to miRNA:miRNA Discovery

The investigation into miRNA:miRNA interactions is in its infancy. There are
limitations to current methods, both computational and biological, that need to be
addressed in order for research into this miRNA regulatory mechanism to move
forward. These include the incorporation of cell specificity into mRNA:miRNA and
miRNA:miRNA interactions, and in vitro methods.

9.8.1 Cell Specificity

The miRNA and target relationships, for the majority, are exclusive to cell type, and
thus this individuality is extended to miRNA:miRNA interactions (Salmanidis et al.



2014). Currently, common miRNA target algorithms do not consider cell specificity
in their predictions (Rock et al. 2019). In addition, the presence of isomiRs and the
distribution of miRNAs within the nucleus are also cell specific, and can alter which
genes are targeted within a cell system (Nam et al. 2014). Therefore, information
taken from miRNA:target databases, such as TargetScan (Agarwal et al. 2015) and
miRTarBase (Huang et al. 2019) may not reflect the relationships present in a cell
line or tissue of interest, and lead to inaccurate findings. Caution must be taken in
creating miRNA:miRNA networks, as the pathways and connections found in one
cell type cannot be directly applied to another. This issue of cell specificity is an
ongoing area of research, both in the bioinformatic and biological sciences.
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9.8.2 Identification

Current identification of miRNA:miRNA interactions has relied heavily on miRNA
sequencing (miRSeq) and miRNA microarray methods. Microarray identification
allows for the detection of a distinct set of miRNAs, congruent with current miRBase
annotations. However, miRSeq techniques allow for the discovery of novel
miRNAs, isomiRs, and sequence variants that may have a role in homeostatic and
pathogenic miRNA:miRNA interactions (Grillone et al. 2020). It is recommended
that miRSeq be paired with mRNASeq, as this allows for the establishment of
miRNA:miRNA:mRNA networks based on physiological changes.

To detect changes in miRNAs, many studies have overexpressed a set miRNA
using transfection or transgenic systems. However, this does not allow for the
inference of biologically relevant changes in miRNAs in response to the introduced
miRNAs. This is because the introduction of a miRNA into a system at high levels
induces competition with the endogenous miRNAs for available AGO (Khan et al.
2009). This results in a decrease in endogenous miRNA expression and conse-
quently, an increase in the levels of endogenous miRNA targets (Khan et al.
2009). It is therefore important to consider this phenomenon when uncovering
miRNA:miRNA interactions, as changes in miRNA expression may be due to the
transfection method, rather than biologically relevant miRNA:miRNA interactions.

Several examples of miRNA:miRNA interactions were found to be between a
mature miRNA and a pri-miRNA within the nucleus (Forrest et al. 2010; Tang et al.
2012; Wang et al. 2014, 2018a; Zisoulis et al. 2012). However, this has not been
described as a widespread phenomenon as this requires the annotation of
pri-miRNAs, which are highly transient in nature (Kim et al. 2017). Researchers
have previously used Drosha knock down techniques to identify its substrate
pri-miRNA, which has ultimately identified 60% of the pri-miRNAs for conserved
annotated miRNAs across humans and mice (Chang et al. 2015; Kim et al. 2017).
Several studies have also attempted to identify the transcriptional start sites of known
miRNAs, or used targeted primers 100 bp up and downstream of the precursor to
determining the pri-miRNA strand (Conrad et al. 2020). These methods restrict the
detection of regulatory sites, transcriptional or otherwise, that occur outside of the



defined region. A full annotation of pri-miRNAs would be required to elucidate the
impact of miRNAs on pri-miRNA regulation, and uncover how ubiquitous this
mode of miRNA:miRNA interaction is in cellular systems.
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9.9 Conclusions

This chapter discussed several manners in which miRNAs may control the expres-
sion of one another, and the impact of this on downstream cell functions. Many
identified miRNA:miRNA interactions occur between two specific miRNAs, or
miRNA families, but the systems level role of these powerful regulators also needs
to be considered. We need to re-evaluate the current canonical view of miRNAs to
incorporate their role in wider miRNA and mRNA regulation. Several outstanding
questions need to be addressed to fully appreciate the extent to which miRNAs
control the miRNAome. This includes investigation into the extent of pri-miRNA
targeting by nuclear miRNAs, the elucidation of cell-specific miRNA targets, and
the incorporation of bioinformatic techniques to identify key pathways. Currently
known miRNA:miRNA interactions were found to have a significant role in disease
development, including cancer, and as such it is predicted that this form of regulation
is more profound than previously thought. Awareness of the interplay between
miRNAs is vital, not only to understanding molecular cell functioning, but also in
the development of future therapeutics and biomarkers.
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Chapter 10
ClustMMRA v2: A Scalable Computational
Pipeline for the Identification of MicroRNA
Clusters Acting Cooperatively on Tumor
Molecular Subgroups

Céline Hernandez, Gabriele Cancila, Olivier Ayrault, Andrei Zinovyev,
and Loredana Martignetti

Abstract In recent cancer genomics programs, large-scale profiling of microRNAs
has been routinely used in order to better understand the role of microRNAs in gene
regulation and disease. To support the analysis of such amount of data, scalability of
bioinformatics pipelines is increasingly important to handle larger datasets.

Here, we describe a scalable implementation of the clustered miRNA Master
Regulator Analysis (clustMMRA) pipeline, developed to search for genomic clusters
of microRNAs potentially driving cancer molecular subtyping. Genomically clus-
tered microRNAs can be simultaneously expressed to work in a combined manner
and jointly regulate cell phenotypes. However, the majority of computational
approaches for the identification of microRNA master regulators are typically
designed to detect the regulatory effect of a single microRNA.

We have applied the clustMMRA pipeline to multiple pediatric tumor datasets,
up to a hundred samples in size, demonstrating very satisfying performances of the
software on large datasets. Results have highlighted genomic clusters of microRNAs
potentially involved in several subgroups of the different pediatric cancers or
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specifically involved in the phenotype of a subgroup. In particular, we confirmed the
cluster of microRNAs at the 14q32 locus to be involved in multiple pediatric
cancers, showing its specific downregulation in tumor subgroups with aggressive
phenotype.
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Keywords MicroRNA clusters · Combinatorial targeting · Posttranscriptional
regulation · Pediatric tumors · Molecular tumor subgroups

10.1 Introduction

MicroRNAs (miRNAs) are short regulatory RNAs discovered as important post-
transcriptional repressors of gene expression in diverse biological contexts (Bartel
2004). These ~22 nt long molecules recognize and bind to partially complementary
sites in the 30 UTR of target transcripts. Even though their precise mechanism of
action is still under investigation, the current idea is that miRNAs are able to
negatively affect the protein output through a combination of mRNA destabilization
or translational repression (Dexheimer and Cochella 2020). In plants, usually
miRNAs have perfect or near-perfect antisense complementarity to their mRNA
target, whereas in animals the complementarity is restricted to the 50 region of the
miRNA, in particular requiring a seed match of six nucleotides, around nucleotides
two–seven.

Both computational (Friedman et al. 2009) and experimental studies (Lim et al.
2005; Baek et al. 2008; Selbach et al. 2008; Hendrickson et al. 2009; Liu and Wang
2019) have revealed that most human protein-coding genes are regulated by one or
more miRNAs. Each miRNA has hundreds of target genes and a single gene can be
targeted by several miRNAs. This suggests the existence of a combinatorial post-
transcriptional regulatory layer which contributes to the complexity of gene expres-
sion patterns.

In humans and other mammals, miRNAs have been shown to be involved in the
regulation of all essential cell functions from differentiation and proliferation to
apoptosis (Bartel 2018) and to be aberrantly expressed in many diseases, including
cancer (Calin and Croce 2006). Multiple studies have demonstrated the importance
of miRNAs in all the cancer hallmarks defined by Hanahan and Weinberg (Van
Roosbroeck and Calin 2017) and indicated that they might function as oncogenes or
tumor suppressors (Cimmino et al. 2005; Ma et al. 2007; Valastyan et al. 2009).
Further experimental evidence suggested that specific miRNAs may also have a role
beyond the cancer onset and directly participate in cancer invasiveness and metas-
tasis (Ma et al. 2007; Brabletz and Brabletz 2010). Indeed, miRNA profiles can
distinguish not only between normal and cancerous tissue but they can also success-
fully classify different subgroups of a particular cancer (Yang et al. 2013; Rooj et al.
2017).

Identifying key miRNAs contributing to the genesis and development of a
particular disease is the goal of many studies. However, most studies have focused
their attention on single miRNA–target gene interactions, thereby neglecting the



combinatorial nature of gene regulation in higher eukaryotes. A recent work cou-
pling bioinformatics and functional validations (Cursons et al. 2018) has precisely
described a combinatorial regulatory circuit composed of a set of cooperating
miRNAs controlling epithelial-to-mesenchymal transition (EMT).
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With the aim of identifying regulation by multiple miRNA species acting coop-
eratively on pathological phenotypes, we recently designed the computational pipe-
line named Clustered MiRNA Master Regulator Analysis (ClustMMRA) (Cantini
et al. 2019) to search for genomically clustered miRNAs potentially driving cancer
subtyping, a comparison characterized by much lower variation than cancer versus
normal conditions. Approximately 25% of human miRNA genes are organized in
polycistronic genomic units or clusters (Altuvia et al. 2005), that contain two or more
miRNA genes transcribed from physically adjacent sequences. Genomically clus-
tered miRNAs can be simultaneously expressed and work in a combined manner,
jointly regulating targets in close proximity of the protein–protein interaction net-
work (Liang and Li 2007), or belonging to the same pathway (Tsang et al. 2010).

Among the best-studied miRNA clusters, the miR-17/92 cluster has been shown
to promote tumorigenesis in multiple cancers, including B-cell lymphoma (He et al.
2005; Mu et al. 2009; Olive et al. 2009), small-cell lung cancer, colon cancer,
neuroblastoma (NB), and medulloblastoma (MB) (Hayashita et al. 2005; Mestdagh
et al. 2010; Uziel et al. 2009; Murphy et al. 2013). The emerging picture suggests
that miR-17/92 plays a widespread role in tumorigenesis, but the specific miRNAs
involved and the key targets regulated appear highly context dependent.

Other studies have shown that the cluster of miRNAs at the 14q32 locus is
involved in multiple pediatric cancers, including desmoplastic MB (Lucon et al.
2013b), and NB (Soriano et al. 2019; Bhavsar et al. 2018). It was also shown to
define clinically relevant molecular subgroups in osteosarcoma (Hill et al. 2017),
glioblastoma (Shahar et al. 2016), and to be metastasis-suppressive in preclinical
models of lung and liver metastasis (Oshima et al. 2019). Another well-studied
cluster, the miR-183/96/182, has been shown to regulate cell survival, proliferation,
and migration in MB (Weeraratne et al. 2012).

The clustMMRA pipeline allows for the unbiased identification of clusters of
miRNAs that potentially drive cancer subtyping. In a previous study on breast cancer
(Cantini et al. 2019), the results have highlighted key miRNA clusters driving the
phenotype of different subgroups and the identification of miR-199/miR-214 as a
novel cluster promoting the triple-negative breast cancer (TNBC) phenotype through
its control of proliferation and EMT.

Here, we describe an improved implementation of the clustMMRA pipeline that
achieves an important improvement in computational performance in both time and
memory usage. This made it possible to use the pipeline to efficiently analyze
datasets containing hundreds of samples.

We applied the clustMMRA pipeline to multiple pediatric cancers, including NB,
MB and ependymoma (EPN), all diseases formed by the degeneration of primitive
tissue during the embryonic development that present a high heterogeneity in terms
of subgroups. The aim of our analysis is to highlight genomic clusters of miRNAs



potentially involved in several subgroups of the different diseases or specifically
involved in the phenotype of a subgroup.

10.2 The clustMMRA Pipeline

The clustMMRA pipeline is a multi-step workflow that requires input miRNA/
mRNA expression profiles from matched tumor samples classified in different sub-
groups according to subgroup-specific gene signatures. The final output of
clustMMRA provides key miRNA clusters contributing to the regulation of partic-
ular subgroups of the disease.

The workflow of clustMMRA (see Fig. 10.1) consists of subsequent steps:
(i) differential expression analysis of clustered miRNAs; (ii) target enrichment
analysis; and (iii) network analysis.

In step (i), the subgroup-specific expression of each miRNA is assessed by
Kolmogorov–Smirnov (KS) statistical test and fold change cutoff. While a
miRNA cluster is usually transcribed as a single unit, the expression of mature
miRNAs in the same cluster might not be highly correlated due to regulatory events
in the maturation processes. The genomic locations of miRNAs were retrieved from
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Fig.10.1 Schematic
representation of the
Clustered microRNA
Master Regulator Analysis
(ClustMMRA) workflow.
The diagram shows the data
required as inputs, the three
analytical steps with their
respective outputs and the
final output of the pipeline



the miRBase v18 database (Kozomara et al. 2019). As in previous studies (Altuvia
et al. 2005; Marco et al. 2013), co-clustered miRNAs were defined as miRNA genes
located within 10 kb of distance in the same chromosome and on the same strand.
Clusters having at least two miRNAs with subgroup-specific expression change in
the same direction (both upregulated or downregulated) are selected for step (ii).
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In step (ii), miRNA clusters that have their predicted targets enriched for the gene
signature of the corresponding subgroup are selected. Individual miRNA targets are
predicted using four different databases, namely TargetScan (Agarwal et al. 2015),
DoRiNA (Anders et al. 2012), PicTar (Krek et al. 2005), and PITA (Kertesz et al.
2007), plus an experimental one miRTarBase (Huang et al. 2020) and requesting
prediction from at least two databases.

The set of targets of a cluster has been defined as the union of the targets of
individual miRNAs.

To control for false positives, we tested the significance of the overlap between
the targets of the cluster and the genes present in the signature based on a null model.
The null model was generated taking 1000 random sets of genes of the same size as
the target set and the true value of the intersection is tested, setting the 95th percentile
of the null distribution as the threshold. The goal of steps (i) and (ii) is to identify
co-clustered and co-expressed miRNAs potentially regulating a gene expression
signature jointly, without necessarily having a high overlap in terms of target
genes (Hausser and Zavolan 2014).

Finally, in step (iii) a miRNA–mRNA interaction network is constructed for each
selected cluster using the ARACNE algorithm (Margolin et al. 2006; He et al. 2017)
and including all the expressed genes. At this stage, we identify co-clustered miRNA
modules and interacting genes, including indirect interactions, which are believed to
participate in the phenotype of a given cancer subgroup (we call these modules
regulons). Permitting indirect interactions can introduce spurious links between
miRNAs and genes in the regulon. A Fisher’s exact test was performed to evaluate
the statistical significance of the overlap between the genes included in each regulon
and the gene signature of the associated subgroup.

The implementation was reviewed in order to better document each computation
step, and the global flow of information optimized, thus clarifying the implemented
analytic process. Moreover, the version of third-party software used by the pipeline
was updated, especially ARACNE (Margolin et al. 2006; He et al. 2017). This
update removed the dependency on a supporting computing cluster. ClustMMRA
can now run independently on a laptop with a recent processor and 32 Gb RAM.

10.3 ClustMMRA Usage

The primary input for clustMMRA is two tab-separated matrices containing expres-
sion values of genes and miRNAs in matched samples, with columns sorted
according to the cancer subtype conditions.
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The two normalized expression matrices have to be composed of the same
samples and include sample IDs in the first column and gene or miRNA IDs in the
first row. Samples can be classified in different subtypes based on external informa-
tion or according to transcriptomic profiles. A typical unsupervised classification can
be performed using hierarchical clustering on the most variant genes. To obtain a
robust classification, a consensus clustering approach such as the Monti consensus
algorithm can be applied (Monti et al. 2003; John et al. 2020). The miRNA
expression matrix will be used in step (i) for selecting clusters differentially
expressed in the different subtypes. Both miRNA and gene expression matrices
will be used in step (iii) to build a miRNA–mRNA interaction network for each
selected cluster based on mutual information between miRNA and gene expression.

The second required input consists of transcriptomic signatures for each cancer
subtype. These are provided as single-column text files reporting the list of those
genes that represent the considered subtype. In step (ii), these signatures are tested
for enrichment of miRNA targets predicted by different databases.

The clustMMRA pipeline is implemented as a main command line program
called run_clustMMRA.sh, which can be run on multiple computing platforms.
The main program asks for parameters interactively and redirects the output of
each step to the input of the next one. Intermediate output files are produced for
each step of the pipeline. It invokes R functions for computing the first two steps of
the pipeline and the third party ARACNE-AP software (Lachmann et al. 2016) in
step (iii). The ARACNE algorithm represents one of the most effective tools to
accomplish the goal of network reverse engineering. ARACNE-AP operates on a
bootstrapped version of the input matrix, generating N mutual information networks
for N bootstraps. It implements a consolidation step in which a consensus network is
computed by estimating the statistical significance of the number of times a specific
edge is detected across all bootstrap runs, based on a Poisson distribution and a
Bonferroni correction on the obtained p-values.

The final output of clustMMRA consists of a network file (regulon) for each
cluster associated to a given subtype. A network file is a tab delimited text file with
the following four columns: miRNA ID, target ID, mutual information, and the
corresponding p-value. This network includes co-clustered miRNAs and interacting
genes connected by both direct and indirect interactions, which are believed to
participate in the phenotype of a given cancer subtype.

10.4 Application to Pediatric Cancers

Here, we present the application of clustMMRA to miRNA and mRNA expression
data of three embryonic tumors for which we collected miRNA/mRNA expression
data from matched samples. ClustMMRA was applied to identify polycistronic
miRNAs potentially involved in the regulation of cancer molecular subgroups of
these tumors.
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The first dataset (from GSE121513 and GSE85047) consists of gene and miRNA
expression profiles of 95 NB samples classified in two patient subgroups based on
MYCN gene status (not amplified vs. amplified). Even thoughMYCN amplification is
a key indicator of poor prognosis, mechanisms by which MYCN promotes NB
tumorigenesis are not fully understood. Given the clinical heterogeneity of NB,
clusters of miRNAs associated to MYCN regulation may be of direct biological
relevance for molecular subgroups.

The second dataset includes miRNA and mRNA expression from 26 patients of
MB, a malignant pediatric brain tumor in childhood most commonly formed in the
cerebellum. The current consensus recognizes four main MB subgroups (WNT,
SHH, G3, and G4). While the WNT and SHH subgroups are characterized by clearly
defined aberrant oncogenic activation of developmental pathways, genomic and
transcriptomic approaches have failed to identify molecular aspects in G3 and G4.
A recent proteomic study in MB (Forget et al. 2018) revealed a relatively low degree
of concordance between the mRNA and protein expression in G3 and G4,
suggesting a possibly important role in post-transcriptional regulation.

The third dataset (GSE21687) consists of 58 patient samples of EPN, a neural
tumor that arises throughout the central nervous system (CNS). According to
genomic, transcriptomic, and miRNA profiles (Johnson et al. 2010), EPN tumors
are classified into nine molecular subgroups (A to I). The observation that different
molecular profiles are able to classify EPNs into similar subgroups supports the
notion that these subgroups are true biological entities.

We applied the clustMMRA pipeline to the three datasets separately. The analysis
outputs those miRNA clusters potentially contributing to the regulation of molecular
subgroups. The regulons associated by clustMMRA to a given subgroup contain
multiple miRNAs of the genomic cluster and their links to targets in that subgroup.

The clustMMRA output shows that 44 of the 133 clusters included in the analysis
are significantly associated with at least one disease subgroup, 6 in NB, 23 in MB,
and 15 in EPN, respectively (Table 10.1). Of these, six clusters are involved in the
subgrouping of three embryonic cancers, four clusters are involved in two of the
three cancers and 18 clusters are involved only in one cancer. To understand which
clusters are involved in several subgroups and which subgroups share the regulation
by the same clusters, we have represented these results in a bipartite graph where two
sets of nodes (miRNA clusters and cancer subgroups) are connected by links
corresponding to the potential regulation predicted by clustMMRA (Fig. 10.2).

The network shows that two clusters, the C19MC cluster on chr19q13 and the
C14CM cluster on chromosome 14, are involved in the regulation of numerous
subgroups of the three studied cancers. The C19MC cluster is significantly associ-
ated with the regulation of the subgroup G4 in MB, the subgroups A, B, F, I in EPN,
and the MYCN amplified and not amplified subgroups in NB. It is under-expressed
in subgroups A, B, and I of EPN while it is over-expressed in subgroup F of EPN and
subgroup G4 of MB. However, its expression is ambivalent in the NB subgroups,
since some miRNAs of the cluster are over-expressed in MYCN amplified and not
amplified subgroups and some others are under-expressed. The C14MC cluster is
predicted to regulate the G3 and G4 subgroups in MB, the subgroups B, E, G, and I



m
iR
-1
34

/m
iR
-1
54

-5
p/
m
iR
-1
54

-3
p/
m
iR
-2
99

-5
p/
m
iR
-2
99

-3
p/
m
iR
-3
76

c/
m
iR
-3
69

-5
p/
m
iR
-3
69

-3
p/

m
iR
-3
76

a-
5p

/m
iR
-3
76

a-
3p

/m
iR
-3
77

-5
p/
m
iR
-3
77

-3
p/
m
iR
-3
79

-5
p/
m
iR
-3
79

-3
p/
m
iR
-3
80

-5
p/
m
iR
-

38
0-
3p

/m
iR
-3
81

/m
iR
-3
82

-5
p/
m
iR
-3
82

-3
p/
m
iR
-3
23

a-
5p

/m
iR
-3
23

a-
3p

/m
iR
-3
29

/m
iR
-3
29

/m
iR
-

40
9-
5p

/m
iR
-4
09

-3
p/
m
iR
-4
12

/m
iR
-4
10

/m
iR
-3
76

b/
m
iR
-4
85

-5
p/
m
iR
-4
85

-3
p/
m
iR
-4
87

a/
m
iR
-4
94

/

266 C. Hernandez et al.

T
ab

le
10

.1
C
lu
st
er
s
of

m
iR
N
A
s
as
so
ci
at
ed

to
pe
di
at
ri
c
ca
nc
er

su
bg

ro
up

s

C
lu
st
er

ID
E
xp

r.
cl
as
s

C
lu
st
er

si
gn

C
lu
st
er

m
em

be
rs

S
iz
e

cl
11

89
_c
hr
X

E
P
N
_A

up
m
iR
-1
88

-5
p/
m
iR
-1
88

-3
p/
m
iR
-3
62

-5
p/
m
iR
-3
62

-3
p/
m
iR
-5
00

a-
5p

/m
iR
-5
00

a-
3p

/m
iR
-5
01

-5
p/
m
iR
-

50
1-
3p

/m
iR
-5
02

-5
p/
m
iR
-5
02

-3
p/
m
iR
-5
32

-5
p/
m
iR
-5
32

-3
p/
m
iR
-6
60

-5
p/
m
iR
-6
60

-3
p/
m
iR
-5
00

b
15

cl
12

26
_c
hr
X

E
P
N
_A

do
w
n

m
iR
-5
13

a-
5p

/m
iR
-5
13

a-
3p

/m
iR
-5
06

-3
p/
m
iR
-5
06

-5
p/
m
iR
-5
07

/m
iR
-5
08

-5
p/
m
iR
-5
08

-3
p

7

cl
22

8_
ch
r1
1

E
P
N
_A

do
w
n

m
iR
-3
4b

-5
p/
m
iR
-3
4b

-3
p/
m
iR
-3
4c
-5
p/
m
iR
-3
4c
-3
p

4

cl
49

1_
ch
r1
7

E
P
N
_A

do
w
n

m
iR
-1
42

-5
p/
m
iR
-1
42

-3
p/
m
iR
-4
73

6
3

cl
59

0_
ch
r1
9

E
P
N
_A

do
w
n

m
iR
-5
12

-5
p/
m
iR
-5
12

-3
p/
m
iR
-5
12

-5
p/
m
iR
-5
12

-3
p/
m
iR
-4
98

/m
iR
-5
20

e/
m
iR
-5
15

-5
p/
m
iR
-5
15

-3
p/

m
iR
-5
19

e-
5p

/m
iR
-5
19

e-
3p

/m
iR
-5
20

f/
m
iR
-5
15

-5
p/
m
iR
-5
15

-3
p/
m
iR
-5
19

c-
5p

/m
iR
-5
19

c-
3p

/m
iR
-

52
0a
-5
p/
m
iR
-5
20

a-
3p

/m
iR
-5
26

b-
5p

/m
iR
-5
26

b-
3p

/m
iR
-5
19

b-
5p

/m
iR
-5
19

b-
3p

/m
iR
-5
25

-5
p/
m
iR
-

52
5-
3p

/m
iR
-5
23

-5
p/
m
iR
-5
23

-3
p/
m
iR
-5
18

f-
5p

/m
iR
-5
18

f-
3p

/m
iR
-5
20

b/
m
iR
-5
18

b/
m
iR
-5
26

a/
m
iR
-5
20

c-
5p

/m
iR
-5
20

c-
3p

/m
iR
-5
18

c-
5p

/m
iR
-5
18

c-
3p

/m
iR
-5
24

-5
p/
m
iR
-5
24

-3
p/
m
iR
-5
17

-5
p/

m
iR
-5
17

a-
3p

/m
iR
-5
19

d/
m
iR
-5
21

/m
iR
-5
20

d-
5p

/m
iR
-5
20

d-
3p

/m
iR
-5
17

b-
3p

/m
iR
-5
17

-5
p/
m
iR
-

52
0
g/
m
iR
-5
16

b-
5p

/m
iR
-5
16

b-
3p

/m
iR
-5
26

a/
m
iR
-5
18

e-
5p

/m
iR
-5
18

e-
3p

/m
iR
-5
18

a-
5p

/m
iR
-

51
8a
-3
p/
m
iR
-5
18

d-
5p

/m
iR
-5
18

d-
3p

/m
iR
-5
16

b-
5p

/m
iR
-5
16

b-
3p

/m
iR
-5
18

a-
5p

/m
iR
-5
18

a-
3p

/
m
iR
-5
17

-5
p/
m
iR
-5
17

c-
3p

/m
iR
-5
20

h/
m
iR
-5
21

/m
iR
-5
22

-5
p/
m
iR
-5
22

-3
p/
m
iR
-5
19

a-
5p

/m
iR
-

51
9a
-3
p/
m
iR
-5
27

/m
iR
-5
16

a-
5p

/m
iR
-5
16

a-
3p

/m
iR
-5
16

a-
5p

/m
iR
-5
16

a-
3p

/m
iR
-5
19

a-
3p

/m
iR
-

13
23

/m
iR
-1
28

3/
m
iR
-1
28

3

75

cl
61

1_
ch
r2

E
P
N
_A

do
w
n

m
iR
-2
16

a/
m
iR
-2
17

2

cl
74

2_
ch
r2
2

E
P
N
_A

up
m
iR
-1
30

b-
5p

/m
iR
-1
30

b-
3p

/m
iR
-3
01

b
3

cl
11

61
_c
hr
9

E
P
N
_B

up
m
iR
-1
99

b-
5p

/m
iR
-1
99

b-
3p

/m
iR
-3
15

4
3

cl
12

17
_c
hr
X

E
P
N
_B

up
m
iR
-4
24

-5
p/
m
iR
-4
24

-3
p/
m
iR
-4
50

a-
5p

/m
iR
-4
50

a-
5p

/m
iR
-4
50

a-
3p

/m
iR
-5
03

/m
iR
-5
42

-5
p/
m
iR
-

54
2-
3p

/m
iR
-4
50

b-
5p

/m
iR
-4
50

b-
3p

10

cl
22

8_
ch
r1
1

E
P
N
_B

do
w
n

m
iR
-3
4b

-5
p/
m
iR
-3
4b

-3
p/
m
iR
-3
4c
-5
p/
m
iR
-3
4c
-3
p

4

cl
34

7_
ch
r1
4

E
P
N
_B

up
m
iR
-1
27

-5
p/
m
iR
-1
27

-3
p/
m
iR
-1
36

-5
p/
m
iR
-1
36

-3
p/
m
iR
-3
37

-5
p/
m
iR
-3
37

-3
p/
m
iR
-4
31

-5
p/
m
iR
-

43
1-
3p

/m
iR
-4
33

/m
iR
-4
93

-5
p/
m
iR
-4
93

-3
p/
m
iR
-4
32

-5
p/
m
iR
-4
32

-3
p/
m
iR
-6
65

14

cl
34

9_
ch
r1
4

E
P
N
_B

up
60



m
iR
-4
95

/m
iR
-4
96

/m
iR
-5
39

-5
p/
m
iR
-5
39

-3
p/
m
iR
-5
44

a/
m
iR
-3
76

a-
3p

/m
iR
-4
87

b/
m
iR
-4
11

-5
p/

m
iR
-4
11

-3
p/
m
iR
-6
54

-5
p/
m
iR
-6
54

-3
p/
m
iR
-6
55

/m
iR
-6
56

/m
iR
-7
58

/m
iR
-6
68

/m
iR
-1
18

5-
5p

/m
iR
-

11
85

-2
-3
p/
m
iR
-1
18

5-
5p

/m
iR
-1
18

5-
1-
3p

/m
iR
-3
00

/m
iR
-5
41

-5
p/
m
iR
-5
41

-3
p/
m
iR
-8
89

/m
iR
-5
43

/
m
iR
-1
19

7/
m
iR
-1
19

3/
m
iR
-3
23

b-
5p

/m
iR
-3
23

b-
3p

m
iR
-5
12

-5
p/
m
iR
-5
12

-3
p/
m
iR
-5
12

-5
p/
m
iR
-5
12

-3
p/
m
iR
-4
98

/m
iR
-5
20

e/
m
iR
-5
15

-5
p/
m
iR
-5
15

-3
p/

m
iR
-5
19

e-
5p

/m
iR
-5
19

e-
3p

/m
iR
-5
20

f/
m
iR
-5
15

-5
p/
m
iR
-5
15

-3
p/
m
iR
-5
19

c-
5p

/m
iR
-5
19

c-
3p

/m
iR
-

52
0a
-5
p/
m
iR
-5
20

a-
3p

/m
iR
-5
26

b-
5p

/m
iR
-5
26

b-
3p

/m
iR
-5
19

b-
5p

/m
iR
-5
19

b-
3p

/m
iR
-5
25

-5
p/
m
iR
-

(c
on

tin
ue
d)

cl
58

8_
ch
r1
9

E
P
N
_B

do
w
n

le
t-
7e
-5
p/
le
t-
7e
-3
p/
m
iR
-1
25

a-
5p

/m
iR
-1
25

a-
3p

/m
iR
-9
9b

-5
p/
m
iR
-9
9b

-3
p

6

cl
59

0_
ch
r1
9

E
P
N
_B

do
w
n

m
iR
-5
12

-5
p/
m
iR
-5
12

-3
p/
m
iR
-5
12

-5
p/
m
iR
-5
12

-3
p/
m
iR
-4
98

/m
iR
-5
20

e/
m
iR
-5
15

-5
p/
m
iR
-5
15

-3
p/

m
iR
-5
19

e-
5p

/m
iR
-5
19

e-
3p

/m
iR
-5
20

f/
m
iR
-5
15

-5
p/
m
iR
-5
15

-3
p/
m
iR
-5
19

c-
5p

/m
iR
-5
19

c-
3p

/m
iR
-

52
0a
-5
p/
m
iR
-5
20

a-
3p

/m
iR
-5
26

b-
5p

/m
iR
-5
26

b-
3p

/m
iR
-5
19

b-
5p

/m
iR
-5
19

b-
3p

/m
iR
-5
25

-5
p/
m
iR
-

52
5-
3p

/m
iR
-5
23

-5
p/
m
iR
-5
23

-3
p/
m
iR
-5
18

f-
5p

/m
iR
-5
18

f-
3p

/m
iR
-5
20

b/
m
iR
-5
18

b/
m
iR
-5
26

a/
m
iR
-5
20

c-
5p

/m
iR
-5
20

c-
3p

/m
iR
-5
18

c-
5p

/m
iR
-5
18

c-
3p

/m
iR
-5
24

-5
p/
m
iR
-5
24

-3
p/
m
iR
-5
17

-5
p/

m
iR
-5
17

a-
3p

/m
iR
-5
19

d/
m
iR
-5
21

/m
iR
-5
20

d-
5p

/m
iR
-5
20

d-
3p

/m
iR
-5
17

b-
3p

/m
iR
-5
17

-5
p/
m
iR
-

52
0
g/
m
iR
-5
16

b-
5p

/m
iR
-5
16

b-
3p

/m
iR
-5
26

a/
m
iR
-5
18

e-
5p

/m
iR
-5
18

e-
3p

/m
iR
-5
18

a-
5p

/m
iR
-

51
8a
-3
p/
m
iR
-5
18

d-
5p

/m
iR
-5
18

d-
3p

/m
iR
-5
16

b-
5p

/m
iR
-5
16

b-
3p

/m
iR
-5
18

a-
5p

/m
iR
-5
18

a-
3p

/
m
iR
-5
17

-5
p/
m
iR
-5
17

c-
3p

/m
iR
-5
20

h/
m
iR
-5
21

/m
iR
-5
22

-5
p/
m
iR
-5
22

-3
p/
m
iR
-5
19

a-
5p

/m
iR
-

51
9a
-3
p/
m
iR
-5
27

/m
iR
-5
16

a-
5p

/m
iR
-5
16

a-
3p

/m
iR
-5
16

a-
5p

/m
iR
-5
16

a-
3p

/m
iR
-5
19

a-
3p

/m
iR
-

13
23

/m
iR
-1
28

3/
m
iR
-1
28

3

75

cl
72

5_
ch
r2
1

E
P
N
_B

do
w
n

le
t-
7c
/m

iR
-9
9a
-5
p/
m
iR
-9
9a
-3
p

3

cl
81

_c
hr
1

E
P
N
_B

up
m
iR
-1
99

a-
5p

/m
iR
-1
99

a-
3p

/m
iR
-2
14

-5
p/
m
iR
-2
14

-3
p/
m
iR
-3
12

0-
3p

/m
iR
-3
12

0-
5p

6

cl
11

89
_c
hr
X

E
P
N
_C

up
m
iR
-1
88

-5
p/
m
iR
-1
88

-3
p/
m
iR
-3
62

-5
p/
m
iR
-3
62

-3
p/
m
iR
-5
00

a-
5p

/m
iR
-5
00

a-
3p

/m
iR
-5
01

-5
p/
m
iR
-

50
1-
3p

/m
iR
-5
02

-5
p/
m
iR
-5
02

-3
p/
m
iR
-5
32

-5
p/
m
iR
-5
32

-3
p/
m
iR
-6
60

-5
p/
m
iR
-6
60

-3
p/
m
iR
-5
00

b
15

cl
34

9_
ch
r1
4

E
P
N
_E

do
w
n

m
iR
-1
34

/m
iR
-1
54

-5
p/
m
iR
-1
54

-3
p/
m
iR
-2
99

-5
p/
m
iR
-2
99

-3
p/
m
iR
-3
76

c/
m
iR
-3
69

-5
p/
m
iR
-3
69

-3
p/

m
iR
-3
76

a-
5p

/m
iR
-3
76

a-
3p

/m
iR
-3
77

-5
p/
m
iR
-3
77

-3
p/
m
iR
-3
79

-5
p/
m
iR
-3
79

-3
p/
m
iR
-3
80

-5
p/
m
iR
-

38
0-
3p

/m
iR
-3
81

/m
iR
-3
82

-5
p/
m
iR
-3
82

-3
p/
m
iR
-3
23

a-
5p

/m
iR
-3
23

a-
3p

/m
iR
-3
29

/m
iR
-3
29

/m
iR
-

40
9-
5p

/m
iR
-4
09

-3
p/
m
iR
-4
12

/m
iR
-4
10

/m
iR
-3
76

b/
m
iR
-4
85

-5
p/
m
iR
-4
85

-3
p/
m
iR
-4
87

a/
m
iR
-4
94

/
m
iR
-4
95

/m
iR
-4
96

/m
iR
-5
39

-5
p/
m
iR
-5
39

-3
p/
m
iR
-5
44

a/
m
iR
-3
76

a-
3p

/m
iR
-4
87

b/
m
iR
-4
11

-5
p/

m
iR
-4
11

-3
p/
m
iR
-6
54

-5
p/
m
iR
-6
54

-3
p/
m
iR
-6
55

/m
iR
-6
56

/m
iR
-7
58

/m
iR
-6
68

/m
iR
-1
18

5-
5p

/m
iR
-

11
85

-2
-3
p/
m
iR
-1
18

5-
5p

/m
iR
-1
18

5-
1-
3p

/m
iR
-3
00

/m
iR
-5
41

-5
p/
m
iR
-5
41

-3
p/
m
iR
-8
89

/m
iR
-5
43

/
m
iR
-1
19

7/
m
iR
-1
19

3/
m
iR
-3
23

b-
5p

/m
iR
-3
23

b-
3p

60

cl
59

0_
ch
r1
9

E
P
N
_F

up
75

10 ClustMMRA v2: A Scalable Computational Pipeline for the Identification. . . 267



T
ab

le
10

.1
(c
on

tin
ue
d)

C
lu
st
er

ID
E
xp

r.
cl
as
s

C
lu
st
er

si
gn

C
lu
st
er

m
em

be
rs

S
iz
e

52
5-
3p

/m
iR
-5
23

-5
p/
m
iR
-5
23

-3
p/
m
iR
-5
18

f-
5p

/m
iR
-5
18

f-
3p

/m
iR
-5
20

b/
m
iR
-5
18

b/
m
iR
-5
26

a/
m
iR
-5
20

c-
5p

/m
iR
-5
20

c-
3p

/m
iR
-5
18

c-
5p

/m
iR
-5
18

c-
3p

/m
iR
-5
24

-5
p/
m
iR
-5
24

-3
p/
m
iR
-5
17

-5
p/

m
iR
-5
17

a-
3p

/m
iR
-5
19

d/
m
iR
-5
21

/m
iR
-5
20

d-
5p

/m
iR
-5
20

d-
3p

/m
iR
-5
17

b-
3p

/m
iR
-5
17

-5
p/
m
iR
-

52
0
g/
m
iR
-5
16

b-
5p

/m
iR
-5
16

b-
3p

/m
iR
-5
26

a/
m
iR
-5
18

e-
5p

/m
iR
-5
18

e-
3p

/m
iR
-5
18

a-
5p

/m
iR
-

51
8a
-3
p/
m
iR
-5
18

d-
5p

/m
iR
-5
18

d-
3p

/m
iR
-5
16

b-
5p

/m
iR
-5
16

b-
3p

/m
iR
-5
18

a-
5p

/m
iR
-5
18

a-
3p

/
m
iR
-5
17

-5
p/
m
iR
-5
17

c-
3p

/m
iR
-5
20

h/
m
iR
-5
21

/m
iR
-5
22

-5
p/
m
iR
-5
22

-3
p/
m
iR
-5
19

a-
5p

/m
iR
-

51
9a
-3
p/
m
iR
-5
27

/m
iR
-5
16

a-
5p

/m
iR
-5
16

a-
3p

/m
iR
-5
16

a-
5p

/m
iR
-5
16

a-
3p

/m
iR
-5
19

a-
3p

/m
iR
-

13
23

/m
iR
-1
28

3/
m
iR
-1
28

3

cl
34

9_
ch
r1
4

E
P
N
_G

do
w
n

m
iR
-1
34

/m
iR
-1
54

-5
p/
m
iR
-1
54

-3
p/
m
iR
-2
99

-5
p/
m
iR
-2
99

-3
p/
m
iR
-3
76

c/
m
iR
-3
69

-5
p/
m
iR
-3
69

-3
p/

m
iR
-3
76

a-
5p

/m
iR
-3
76

a-
3p

/m
iR
-3
77

-5
p/
m
iR
-3
77

-3
p/
m
iR
-3
79

-5
p/
m
iR
-3
79

-3
p/
m
iR
-3
80

-5
p/
m
iR
-

38
0-
3p

/m
iR
-3
81

/m
iR
-3
82

-5
p/
m
iR
-3
82

-3
p/
m
iR
-3
23

a-
5p

/m
iR
-3
23

a-
3p

/m
iR
-3
29

/m
iR
-3
29

/m
iR
-

40
9-
5p

/m
iR
-4
09

-3
p/
m
iR
-4
12

/m
iR
-4
10

/m
iR
-3
76

b/
m
iR
-4
85

-5
p/
m
iR
-4
85

-3
p/
m
iR
-4
87

a/
m
iR
-4
94

/
m
iR
-4
95

/m
iR
-4
96

/m
iR
-5
39

-5
p/
m
iR
-5
39

-3
p/
m
iR
-5
44

a/
m
iR
-3
76

a-
3p

/m
iR
-4
87

b/
m
iR
-4
11

-5
p/

m
iR
-4
11

-3
p/
m
iR
-6
54

-5
p/
m
iR
-6
54

-3
p/
m
iR
-6
55

/m
iR
-6
56

/m
iR
-7
58

/m
iR
-6
68

/m
iR
-1
18

5-
5p

/m
iR
-

11
85

-2
-3
p/
m
iR
-1
18

5-
5p

/m
iR
-1
18

5-
1-
3p

/m
iR
-3
00

/m
iR
-5
41

-5
p/
m
iR
-5
41

-3
p/
m
iR
-8
89

/m
iR
-5
43

/
m
iR
-1
19

7/
m
iR
-1
19

3/
m
iR
-3
23

b-
5p

/m
iR
-3
23

b-
3p

60

cl
11

89
_c
hr
X

E
P
N
_H

do
w
n

m
iR
-1
88

-5
p/
m
iR
-1
88

-3
p/
m
iR
-3
62

-5
p/
m
iR
-3
62

-3
p/
m
iR
-5
00

a-
5p

/m
iR
-5
00

a-
3p

/m
iR
-5
01

-5
p/
m
iR
-

5 0
1-
3p

/m
iR
-5
02

-5
p/
m
iR
-5
02

-3
p/
m
iR
-5
32

-5
p/
m
iR
-5
32

-3
p/
m
iR
-6
60

-5
p/
m
iR
-6
60

-3
p/
m
iR
-5
00

b
15

cl
11

89
_c
hr
X

E
P
N
_I

do
w
n

m
iR
-1
88

-5
p/
m
iR
-1
88

-3
p/
m
iR
-3
62

-5
p/
m
iR
-3
62

-3
p/
m
iR
-5
00

a-
5p

/m
iR
-5
00

a-
3p

/m
iR
-5
01

-5
p/
m
iR
-

5 0
1-
3p

/m
iR
-5
02

-5
p/
m
iR
-5
02

-3
p/
m
iR
-5
32

-5
p/
m
iR
-5
32

-3
p/
m
iR
-6
60

-5
p/
m
iR
-6
60

-3
p/
m
iR
-5
00

b
15

cl
11

95
_c
hr
X

E
P
N
_I

up
m
iR
-4
21

/m
iR
-3
74

b-
5p

/m
iR
-3
74

b-
3p

/m
iR
-3
74

c-
5p

/m
iR
-3
74

c-
3p

5

cl
22

8_
ch
r1
1

E
P
N
_I

do
w
n

m
iR
-3
4b

-5
p/
m
iR
-3
4b

-3
p/
m
iR
-3
4c
-5
p/
m
iR
-3
4c
-3
p

4

cl
34

9_
ch
r1
4

E
P
N
_I

do
w
n

m
iR
-1
34

/m
iR
-1
54

-5
p/
m
iR
-1
54

-3
p/
m
iR
-2
99

-5
p/
m
iR
-2
99

-3
p/
m
iR
-3
76

c/
m
iR
-3
69

-5
p/
m
iR
-3
69

-3
p/

m
iR
-3
76

a-
5p

/m
iR
-3
76

a-
3p

/m
iR
-3
77

-5
p/
m
iR
-3
77

-3
p/
m
iR
-3
79

-5
p/
m
iR
-3
79

-3
p/
m
iR
-3
80

-5
p/
m
iR
-

38
0-
3p

/m
iR
-3
81

/m
iR
-3
82

-5
p/
m
iR
-3
82

-3
p/
m
iR
-3
23

a-
5p

/m
iR
-3
23

a-
3p

/m
iR
-3
29

/m
iR
-3
29

/m
iR
-

40
9-
5p

/m
iR
-4
09

-3
p/
m
iR
-4
12

/m
iR
-4
10

/m
iR
-3
76

b/
m
iR
-4
85

-5
p/
m
iR
-4
85

-3
p/
m
iR
-4
87

a/
m
iR
-4
94

/
m
iR
-4
95

/m
iR
-4
96

/m
iR
-5
39

-5
p/
m
iR
-5
39

-3
p/
m
iR
-5
44

a/
m
iR
-3
76

a-
3p

/m
iR
-4
87

b/
m
iR
-4
11

-5
p/

m
iR
-4
11

-3
p/
m
iR
-6
54

-5
p/
m
iR
-6
54

-3
p/
m
iR
-6
55

/m
iR
-6
56

/m
iR
-7
58

/m
iR
-6
68

/m
iR
-1
18

5-
5p

/m
iR
-

11
85

-2
-3
p/
m
iR
-1
18

5-
5p

/m
iR
-1
18

5-
1-
3p

/m
iR
-3
00

/m
iR
-5
41

-5
p/
m
iR
-5
41

-3
p/
m
iR
-8
89

/m
iR
-5
43

/
m
iR
-1
19

7/
m
iR
-1
19

3/
m
iR
-3
23

b-
5p

/m
iR
-3
23

b-
3p

60

268 C. Hernandez et al.



(c
on

tin
ue
d)

cl
34

9_
ch
r1
4

E
P
N
_I

up
m
iR
-1
34

/m
iR
-1
54

-5
p/
m
iR
-1
54

-3
p/
m
iR
-2
99

-5
p/
m
iR
-2
99

-3
p/
m
iR
-3
76

c/
m
iR
-3
69

-5
p/
m
iR
-3
69

-3
p/

m
iR
-3
76

a-
5p

/m
iR
-3
76

a-
3p

/m
iR
-3
77

-5
p/
m
iR
-3
77

-3
p/
m
iR
-3
79

-5
p/
m
iR
-3
79

-3
p/
m
iR
-3
80

-5
p/
m
iR
-

38
0-
3p

/m
iR
-3
81

/m
iR
-3
82

-5
p/
m
iR
-3
82

-3
p/
m
iR
-3
23

a-
5p

/m
iR
-3
23

a-
3p

/m
iR
-3
29

/m
iR
-3
29

/m
iR
-

40
9-
5p

/m
iR
-4
09

-3
p/
m
iR
-4
12

/m
iR
-4
10

/m
iR
-3
76

b/
m
iR
-4
85

-5
p/
m
iR
-4
85

-3
p/
m
iR
-4
87

a/
m
iR
-4
94

/
m
iR
-4
95

/m
iR
-4
96

/m
iR
-5
39

-5
p/
m
iR
-5
39

-3
p/
m
iR
-5
44

a/
m
iR
-3
76

a-
3p

/m
iR
-4
87

b/
m
iR
-4
11

-5
p/

m
iR
-4
11

-3
p/
m
iR
-6
54

-5
p/
m
iR
-6
54

-3
p/
m
iR
-6
55

/m
iR
-6
56

/m
iR
-7
58

/m
iR
-6
68

/m
iR
-1
18

5-
5p

/m
iR
-

11
85

-2
-3
p/
m
iR
-1
18

5-
5p

/m
iR
-1
18

5-
1-
3p

/m
iR
-3
00

/m
iR
-5
41

-5
p/
m
iR
-5
41

-3
p/
m
iR
-8
89

/m
iR
-5
43

/
m
iR
-1
19

7/
m
iR
-1
19

3/
m
iR
-3
23

b-
5p

/m
iR
-3
23

b-
3p

60

cl
59

0_
ch
r1
9

E
P
N
_I

do
w
n

m
iR
-5
12

-5
p/
m
iR
-5
12

-3
p/
m
iR
-5
12

-5
p/
m
iR
-5
12

-3
p/
m
iR
-4
98

/m
iR
-5
20

e/
m
iR
-5
15

-5
p/
m
iR
-5
15

-3
p/

m
iR
-5
19

e-
5p

/m
iR
-5
19

e-
3p

/m
iR
-5
20

f/
m
iR
-5
15

-5
p/
m
iR
-5
15

-3
p/
m
iR
-5
19

c-
5p

/m
iR
-5
19

c-
3p

/m
iR
-

52
0a
-5
p/
m
iR
-5
20

a-
3p

/m
iR
-5
26

b-
5p

/m
iR
-5
26

b-
3p

/m
iR
-5
19

b-
5p

/m
iR
-5
19

b-
3p

/m
iR
-5
25

-5
p/
m
iR
-

52
5-
3p

/m
iR
-5
23

-5
p/
m
iR
-5
23

-3
p/
m
iR
-5
18

f-
5p

/m
iR
-5
18

f-
3p

/m
iR
-5
20

b/
m
iR
-5
18

b/
m
iR
-5
26

a/
m
iR
-5
20

c-
5p

/m
iR
-5
20

c-
3p

/m
iR
-5
18

c-
5p

/m
iR
-5
18

c-
3p

/m
iR
-5
24

-5
p/
m
iR
-5
24

-3
p/
m
iR
-5
17

-5
p/

m
iR
-5
17

a-
3p

/m
iR
-5
19

d/
m
iR
-5
21

/m
iR
-5
20

d-
5p

/m
iR
-5
20

d-
3p

/m
iR
-5
17

b-
3p

/m
iR
-5
17

-5
p/
m
iR
-

52
0
g/
m
iR
-5
16

b-
5p

/m
iR
-5
16

b-
3p

/m
iR
-5
26

a/
m
iR
-5
18

e-
5p

/m
iR
-5
18

e-
3p

/m
iR
-5
18

a-
5p

/m
iR
-

51
8a
-3
p/
m
iR
-5
18

d-
5p

/m
iR
-5
18

d-
3p

/m
iR
-5
16

b-
5p

/m
iR
-5
16

b-
3p

/m
iR
-5
18

a-
5p

/m
iR
-5
18

a-
3p

/
m
iR
-5
17

-5
p/
m
iR
-5
17

c-
3p

/m
iR
-5
20

h/
m
iR
-5
21

/m
iR
-5
22

-5
p/
m
iR
-5
22

-3
p/
m
iR
-5
19

a-
5p

/m
iR
-

51
9a
-3
p/
m
iR
-5
27

/m
iR
-5
16

a-
5p

/m
iR
-5
16

a-
3p

/m
iR
-5
16

a-
5p

/m
iR
-5
16

a-
3p

/m
iR
-5
19

a-
3p

/m
iR
-

13
23

/m
iR
-1
28

3/
m
iR
-1
28

3

75

cl
11

90
_c
hr
X

M
B
_W

N
T

up
le
t-
7f
-2
-3
p/
le
t-
7f
-5
p/
m
iR
-9
8

3

cl
12

26
_c
hr
X

M
B
_W

N
T

do
w
n

m
iR
-5
13

a-
5p

/m
iR
-5
13

a-
3p

/m
iR
-5
06

-3
p/
m
iR
-5
06

-5
p/
m
iR
-5
07

/m
iR
-5
08

-5
p/
m
iR
-5
08

-3
p

7

cl
12

27
_c
hr
X

M
B
_W

N
T

do
w
n

m
iR
-5
09

-5
p/
m
iR
-5
09

-3
p/
m
iR
-5
09

-5
p/
m
iR
-5
09

-3
p/
m
iR
-5
09

-3
-5
p/
m
iR
-5
09

-3
p/
m
iR
-5
14

b-
5p

/
m
iR
-5
14

b-
3p

8

cl
2_

ch
r1

M
B
_W

N
T

up
m
iR
-2
00

b-
5p

/m
iR
-2
00

b-
3p

/m
iR
-2
00

a-
5p

/m
iR
-2
00

a-
3p

/m
iR
-4
29

5

cl
90

4_
ch
r5

M
B
_W

N
T

up
m
iR
-4
49

a/
m
iR
-4
49

b-
5p

/m
iR
-4
49

b-
3p

/m
iR
-4
49

c-
5p

/m
iR
-4
49

c-
3p

5

cl
96

_c
hr
1

M
B
_W

N
T

up
m
iR
-2
15

/m
iR
-1
94

-5
p

2

cl
11

61
_c
hr
9

M
B
_S

H
H

up
m
iR
-1
99

b-
5p

/m
iR
-1
99

b-
3p

/m
iR
-3
15

4
3

cl
26

7_
ch
r1
2

M
B
_S

H
H

do
w
n

m
iR
-3
31

-5
p/
m
iR
-3
31

-3
p/
m
iR
-3
68

5
3

cl
51

2_
ch
r1
7

M
B
_S

H
H

do
w
n

m
iR
-3
38

-5
p/
m
iR
-3
38

-3
p/
m
iR
-6
57

/m
iR
-1
25

0/
m
iR
-3
06

5-
5p

/m
iR
-3
06

5-
3p

6

cl
56

4_
ch
r1
9

M
B
_S

H
H

do
w
n

m
iR
-1
81

c-
5p

/m
iR
-1
81

c-
3p

/m
iR
-1
81

d
3

10 ClustMMRA v2: A Scalable Computational Pipeline for the Identification. . . 269



T
ab

le
10

.1
(c
on

tin
ue
d)

C
lu
st
er

ID
E
xp

r.
cl
as
s

C
lu
st
er

si
gn

C
lu
st
er

m
em

be
rs

S
iz
e

cl
74

2_
ch
r2
2

M
B
_S

H
H

up
m
iR
-1
30

b-
5p

/m
iR
-1
30

b-
3p

/m
iR
-3
01

b
3

cl
81

_c
hr
1

M
B
_S

H
H

up
m
iR
-1
99

a-
5p

/m
iR
-1
99

a-
3p

/m
iR
-2
14

-5
p/
m
iR
-2
14

-3
p/
m
iR
-3
12

0-
3p

/m
iR
-3
12

0-
5p

6

cl
90

4_
ch
r5

M
B
_S

H
H

up
m
iR
-4
49

a/
m
iR
-4
49

b-
5p

/m
iR
-4
49

b-
3p

/m
iR
-4
49

c-
5p

/m
iR
-4
49

c-
3p

5

cl
11

95
_c
hr
X

M
B
_G

3
do

w
n

m
iR
-4
21

/m
iR
-3
74

b-
5p

/m
iR
-3
74

b-
3p

/m
iR
-3
74

c-
5p

/m
iR
-3
74

c-
3p

5

cl
12

22
_c
hr
X

M
B
_G

3
do

w
n

m
iR
-8
92

a/
m
iR
-8
90

/m
iR
-8
91

b/
m
iR
-8
88

-5
p/
m
iR
-8
88

-3
p/
m
iR
-8
92

b
6

cl
34

7_
ch
r1
4

M
B
_G

3
do

w
n

m
iR
-1
27

-5
p/
m
iR
-1
27

-3
p/
m
iR
-1
36

-5
p/
m
iR
-1
36

-3
p/
m
iR
-3
37

-5
p/
m
iR
-3
37

-3
p/
m
iR
-4
31

-5
p/
m
iR
-

43
1-
3p

/m
iR
-4
33

/m
iR
-4
93

-5
p/
m
iR
-4
93

-3
p/
m
iR
-4
32

-5
p/
m
iR
-4
32

-3
p/
m
iR
-6
65

14

cl
34

9_
ch
r1
4

M
B
_G

3
do

w
n

m
iR
-1
34

/m
iR
-1
54

-5
p/
m
iR
-1
54

-3
p/
m
iR
-2
99

-5
p/
m
iR
-2
99

-3
p/
m
iR
-3
76

c/
m
iR
-3
69

-5
p/
m
iR
-3
69

-3
p/

m
iR
-3
76

a-
5p

/m
iR
-3
76

a-
3p

/m
iR
-3
77

-5
p/
m
iR
-3
77

-3
p/
m
iR
-3
79

-5
p/
m
iR
-3
79

-3
p/
m
iR
-3
80

-5
p/
m
iR
-

38
0-
3p

/m
iR
-3
81

/m
iR
-3
82

-5
p/
m
iR
-3
82

-3
p/
m
iR
-3
23

a-
5p

/m
iR
-3
23

a-
3p

/m
iR
-3
29

/m
iR
-3
29

/m
iR
-

40
9-
5p

/m
iR
-4
09

-3
p/
m
iR
-4
12

/m
iR
-4
10

/m
iR
-3
76

b/
m
iR
-4
85

-5
p/
m
iR
-4
85

-3
p/
m
iR
-4
87

a/
m
iR
-4
94

/
m
iR
-4
95

/m
iR
-4
96

/m
iR
-5
39

-5
p/
m
iR
-5
39

-3
p/
m
iR
-5
44

a/
m
iR
-3
76

a-
3p

/m
iR
-4
87

b/
m
iR
-4
11

-5
p/

m
iR
-4
11

-3
p/
m
iR
-6
54

-5
p/
m
iR
-6
54

-3
p/
m
iR
-6
55

/m
iR
-6
56

/m
iR
-7
58

/m
iR
-6
68

/m
iR
-1
18

5-
5p

/m
iR
-

11
85

-2
-3
p/
m
iR
-1
18

5-
5p

/m
iR
-1
18

5-
1-
3p

/m
iR
-3
00

/m
iR
-5
41

-5
p/
m
iR
-5
41

-3
p/
m
iR
-8
89

/m
iR
-5
43

/
m
iR
-1
19

7/
m
iR
-1
19

3/
m
iR
-3
23

b-
5p

/m
iR
-3
23

b-
3p

60

cl
51

_c
hr
1

M
B
_G

3
up

m
iR
-1
37

/m
iR
-2
68

2-
5p

/m
iR
-2
68

2-
3p

3

cl
52

2_
ch
r1
8

M
B
_G

3
up

m
iR
-1
/m

iR
-1
33

a
2

cl
58

8_
ch
r1
9

M
B
_G

3
up

le
t-
7e
-5
p/
le
t-
7e
-3
p/
m
iR
-1
25

a-
5p

/m
iR
-1
25

a-
3p

/m
iR
-9
9b

-5
p/
m
iR
-9
9b

-3
p

6

cl
59

1_
ch
r1
9

M
B
_G

3
up

m
iR
-3
71

a-
5p

/m
iR
-3
71

a-
3p

/m
iR
-3
72

/m
iR
-3
73

-5
p/
m
iR
-3
73

-3
p/
m
iR
-3
71

b-
5p

/m
iR
-3
71

b-
3p

7

cl
11

18
_c
hr
8

M
B
_G

4
do

w
n

m
iR
-9
39

/m
iR
-1
23

4
2

cl
11

61
_c
hr
9

M
B
_G

4
do

w
n

m
iR
-1
99

b-
5p

/m
iR
-1
99

b-
3p

/m
iR
-3
15

4
3

cl
12

17
_c
hr
X

M
B
_G

4
do

w
n

m
iR
-4
24

-5
p/
m
iR
-4
24

-3
p/
m
iR
-4
50

a-
5p

/m
iR
-4
50

a-
5p

/m
iR
-4
50

a-
3p

/m
iR
-5
03

/m
iR
-5
42

-5
p/
m
iR
-

54
2-
3p

/m
iR
-4
50

b-
5p

/m
iR
-4
50

b-
3p

10

cl
12

27
_c
hr
X

M
B
_G

4
up

m
iR
-5
09

-5
p/
m
iR
-5
09

-3
p/
m
iR
-5
09

-5
p/
m
iR
-5
09

-3
p/
m
iR
-5
09

-3
-5
p/
m
iR
-5
09

-3
p/
m
iR
-5
14

b-
5p

/
m
iR
-5
14

b-
3p

8

270 C. Hernandez et al.



m
iR
-1
34

/m
iR
-1
54

-5
p/
m
iR
-1
54

-3
p/
m
iR
-2
99

-5
p/
m
iR
-2
99

-3
p/
m
iR
-3
76

c/
m
iR
-3
69

-5
p/
m
iR
-3
69

-3
p/

m
iR
-3
76

a-
5p

/m
iR
-3
76

a-
3p

/m
iR
-3
77

-5
p/
m
iR
-3
77

-3
p/
m
iR
-3
79

-5
p/
m
iR
-3
79

-3
p/
m
iR
-3
80

-5
p/
m
iR
-

38
0-
3p

/m
iR
-3
81

/m
iR
-3
82

-5
p/
m
iR
-3
82

-3
p/
m
iR
-3
23

a-
5p

/m
iR
-3
23

a-
3p

/m
iR
-3
29

/m
iR
-3
29

/m
iR
-

40
9-
5p

/m
iR
-4
09

-3
p/
m
iR
-4
12

/m
iR
-4
10

/m
iR
-3
76

b/
m
iR
-4
85

-5
p/
m
iR
-4
85

-3
p/
m
iR
-4
87

a/
m
iR
-4
94

/
m
iR
-4
95

/m
iR
-4
96

/m
iR
-5
39

-5
p/
m
iR
-5
39

-3
p/
m
iR
-5
44

a/
m
iR
-3
76

a-
3p

/m
iR
-4
87

b/
m
iR
-4
11

-5
p/

(c
on

tin
ue
d)

cl
34

9_
ch
r1
4

M
B
_G

4
up

m
iR
-1
34

/m
iR
-1
54

-5
p/
m
iR
-1
54

-3
p/
m
iR
-2
99

-5
p/
m
iR
-2
99

-3
p/
m
iR
-3
76

c/
m
iR
-3
69

-5
p/
m
iR
-3
69

-3
p/

m
iR
-3
76

a-
5p

/m
iR
-3
76

a-
3p

/m
iR
-3
77

-5
p/
m
iR
-3
77

-3
p/
m
iR
-3
79

-5
p/
m
iR
-3
79

-3
p/
m
iR
-3
80

-5
p/
m
iR
-

38
0-
3p

/m
iR
-3
81

/m
iR
-3
82

-5
p/
m
iR
-3
82

-3
p/
m
iR
-3
23

a-
5p

/m
iR
-3
23

a-
3p

/m
iR
-3
29

/m
iR
-3
29

/m
iR
-

40
9-
5p

/m
iR
-4
09

-3
p/
m
iR
-4
12

/m
iR
-4
10

/m
iR
-3
76

b/
m
iR
-4
85

-5
p/
m
iR
-4
85

-3
p/
m
iR
-4
87

a/
m
iR
-4
94

/
m
iR
-4
95

/m
iR
-4
96

/m
iR
-5
39

-5
p/
m
iR
-5
39

-3
p/
m
iR
-5
44

a/
m
iR
-3
76

a-
3p

/m
iR
-4
87

b/
m
iR
-4
11

-5
p/

m
iR
-4
11

-3
p/
m
iR
-6
54

-5
p/
m
iR
-6
54

-3
p/
m
iR
-6
55

/m
iR
-6
56

/m
iR
-7
58

/m
iR
-6
68

/m
iR
-1
18

5-
5p

/m
iR
-

11
85

-2
-3
p/
m
iR
-1
18

5-
5p

/m
iR
-1
18

5-
1-
3p

/m
iR
-3
00

/m
iR
-5
41

-5
p/
m
iR
-5
41

-3
p/
m
iR
-8
89

/m
iR
-5
43

/
m
iR
-1
19

7/
m
iR
-1
19

3/
m
iR
-3
23

b-
5p

/m
iR
-3
23

b-
3p

60

cl
51

2_
ch
r1
7

M
B
_G

4
up

m
iR
-3
38

-5
p/
m
iR
-3
38

-3
p/
m
iR
-6
57

/m
iR
-1
25

0/
m
iR
-3
06

5-
5p

/m
iR
-3
06

5-
3p

6

cl
59

0_
ch
r1
9

M
B
_G

4
up

m
iR
-5
12

-5
p/
m
iR
-5
12

-3
p/
m
iR
-5
12

-5
p/
m
iR
-5
12

-3
p/
m
iR
-4
98

/m
iR
-5
20

e/
m
iR
-5
15

-5
p/
m
iR
-5
15

-3
p/

m
iR
-5
19

e-
5p

/m
iR
-5
19

e-
3p

/m
iR
-5
20

f/
m
iR
-5
15

-5
p/
m
iR
-5
15

-3
p/
m
iR
-5
19

c-
5p

/m
iR
-5
19

c-
3p

/m
iR
-

52
0a
-5
p/
m
iR
-5
20

a-
3p

/m
iR
-5
26

b-
5p

/m
iR
-5
26

b-
3p

/m
iR
-5
19

b-
5p

/m
iR
-5
19

b-
3p

/m
iR
-5
25

-5
p/
m
iR
-

52
5-
3p

/m
iR
-5
23

-5
p/
m
iR
-5
23

-3
p/
m
iR
-5
18

f-
5p

/m
iR
-5
18

f-
3p

/m
iR
-5
20

b/
m
iR
-5
18

b/
m
iR
-5
26

a/
m
iR
-5
20

c-
5p

/m
iR
-5
20

c-
3p

/m
iR
-5
18

c-
5p

/m
iR
-5
18

c-
3p

/m
iR
-5
24

-5
p/
m
iR
-5
24

-3
p/
m
iR
-5
17

-5
p/

m
iR
-5
17

a-
3p

/m
iR
-5
19

d/
m
iR
-5
21

/m
iR
-5
20

d-
5p

/m
iR
-5
20

d-
3p

/m
iR
-5
17

b-
3p

/m
iR
-5
17

-5
p/
m
iR
-

52
0
g/
m
iR
-5
16

b-
5p

/m
iR
-5
16

b-
3p

/m
iR
-5
26

a/
m
iR
-5
18

e-
5p

/m
iR
-5
18

e-
3p

/m
iR
-5
18

a-
5p

/m
iR
-

51
8a
-3
p/
m
iR
-5
18

d-
5p

/m
iR
-5
18

d-
3p

/m
iR
-5
16

b-
5p

/m
iR
-5
16

b-
3p

/m
iR
-5
18

a-
5p

/m
iR
-5
18

a-
3p

/
m
iR
-5
17

-5
p/
m
iR
-5
17

c-
3p

/m
iR
-5
20

h/
m
iR
-5
21

/m
iR
-5
22

-5
p/
m
iR
-5
22

-3
p/
m
iR
-5
19

a-
5p

/m
iR
-

51
9a
-3
p/
m
iR
-5
27

/m
iR
-5
16

a-
5p

/m
iR
-5
16

a-
3p

/m
iR
-5
16

a-
5p

/m
iR
-5
16

a-
3p

/m
iR
-5
19

a-
3p

/m
iR
-

13
23

/m
iR
-1
28

3/
m
iR
-1
28

3

75

cl
74

2_
ch
r2
2

M
B
_G

4
do

w
n

m
iR
-1
30

b-
5p

/m
iR
-1
30

b-
3p

/m
iR
-3
01

b
3

cl
81

_c
hr
1

M
B
_G

4
do

w
n

m
iR
-1
99

a-
5p

/m
iR
-1
99

a-
3p

/m
iR
-2
14

-5
p/
m
iR
-2
14

-3
p/
m
iR
-3
12

0-
3p

/m
iR
-3
12

0-
5p

6

cl
12

17
_c
hr
X

N
B
_n

oM
Y
C
N

up
m
iR
-4
24

-5
p/
m
iR
-4
24

-3
p/
m
iR
-4
50

a-
5p

/m
iR
-4
50

a-
5p

/m
iR
-4
50

a-
3p

/m
iR
-5
03

/m
iR
-5
42

-5
p/
m
iR
-

54
2-
3p

/m
iR
-4
50

b-
5p

/m
iR
-4
50

b-
3p

10

cl
34

7_
ch
r1
4

N
B
_n

oM
Y
C
N

up
m
iR
-1
27

-5
p/
m
iR
-1
27

-3
p/
m
iR
-1
36

-5
p/
m
iR
-1
36

-3
p/
m
iR
-3
37

-5
p/
m
iR
-3
37

-3
p/
m
iR
-4
31

-5
p/
m
iR
-

43
1-
3p

/m
iR
-4
33

/m
iR
-4
93

-5
p/
m
iR
-4
93

-3
p/
m
iR
-4
32

-5
p/
m
iR
-4
32

-3
p/
m
iR
-6
65

14

cl
34

9_
ch
r1
4

N
B
_n

oM
Y
C
N

up
60

10 ClustMMRA v2: A Scalable Computational Pipeline for the Identification. . . 271



T
ab

le
10

.1
(c
on

tin
ue
d)

C
lu
st
er

ID
E
xp

r.
cl
as
s

C
lu
st
er

si
gn

C
lu
st
er

m
em

be
rs

S
iz
e

m
iR
-4
11

-3
p/
m
iR
-6
54

-5
p/
m
iR
-6
54

-3
p/
m
iR
-6
55

/m
iR
-6
56

/m
iR
-7
58

/m
iR
-6
68

/m
iR
-1
18

5-
5p

/m
iR
-

11
85

-2
-3
p/
m
iR
-1
18

5-
5p

/m
iR
-1
18

5-
1-
3p

/m
iR
-3
00

/m
iR
-5
41

-5
p/
m
iR
-5
41

-3
p/
m
iR
-8
89

/m
iR
-5
43

/
m
iR
-1
19

7/
m
iR
-1
19

3/
m
iR
-3
23

b-
5p

/m
iR
-3
23

b-
3p

cl
59

0_
ch
r1
9

N
B
_n

oM
Y
C
N

do
w
n

m
iR
-5
12

-5
p/
m
iR
-5
12

-3
p/
m
iR
-5
12

-5
p/
m
iR
-5
12

-3
p/
m
iR
-4
98

/m
iR
-5
20

e/
m
iR
-5
15

-5
p/
m
iR
-5
15

-3
p/

m
iR
-5
19

e-
5p

/m
iR
-5
19

e-
3p

/m
iR
-5
20

f/
m
iR
-5
15

-5
p/
m
iR
-5
15

-3
p/
m
iR
-5
19

c-
5p

/m
iR
-5
19

c-
3p

/m
iR
-

52
0a
-5
p/
m
iR
-5
20

a-
3p

/m
iR
-5
26

b-
5p

/m
iR
-5
26

b-
3p

/m
iR
-5
19

b-
5p

/m
iR
-5
19

b-
3p

/m
iR
-5
25

-5
p/
m
iR
-

52
5-
3p

/m
iR
-5
23

-5
p/
m
iR
-5
23

-3
p/
m
iR
-5
18

f-
5p

/m
iR
-5
18

f-
3p

/m
iR
-5
20

b/
m
iR
-5
18

b/
m
iR
-5
26

a/
m
iR
-5
20

c-
5p

/m
iR
-5
20

c-
3p

/m
iR
-5
18

c-
5p

/m
iR
-5
18

c-
3p

/m
iR
-5
24

-5
p/
m
iR
-5
24

-3
p/
m
iR
-5
17

-5
p/

m
iR
-5
17

a-
3p

/m
iR
-5
19

d/
m
iR
-5
21

/m
iR
-5
20

d-
5p

/m
iR
-5
20

d-
3p

/m
iR
-5
17

b-
3p

/m
iR
-5
17

-5
p/
m
iR
-

52
0
g/
m
iR
-5
16

b-
5p

/m
iR
-5
16

b-
3p

/m
iR
-5
26

a/
m
iR
-5
18

e-
5p

/m
iR
-5
18

e-
3p

/m
iR
-5
18

a-
5p

/m
iR
-

51
8a
-3
p/
m
iR
-5
18

d-
5p

/m
iR
-5
18

d-
3p

/m
iR
-5
16

b-
5p

/m
iR
-5
16

b-
3p

/m
iR
-5
18

a-
5p

/m
iR
-5
18

a-
3p

/
m
iR
-5
17

-5
p/
m
iR
-5
17

c-
3p

/m
iR
-5
20

h/
m
iR
-5
21

/m
iR
-5
22

-5
p/
m
iR
-5
22

-3
p/
m
iR
-5
19

a-
5p

/m
iR
-

51
9a
-3
p/
m
iR
-5
27

/m
iR
-5
16

a-
5p

/m
iR
-5
16

a-
3p

/m
iR
-5
16

a-
5p

/m
iR
-5
16

a-
3p

/m
iR
-5
19

a-
3p

/m
iR
-

13
23

/m
iR
-1
28

3/
m
iR
-1
28

3

75

cl
59

0_
ch
r1
9

N
B
_n

oM
Y
C
N

up
m
iR
-5
12

-5
p/
m
iR
-5
12

-3
p/
m
iR
-5
12

-5
p/
m
iR
-5
12

-3
p/
m
iR
-4
98

/m
iR
-5
20

e/
m
iR
-5
15

-5
p/
m
iR
-5
15

-3
p/

m
iR
-5
19

e-
5p

/m
iR
-5
19

e-
3p

/m
iR
-5
20

f/
m
iR
-5
15

-5
p/
m
iR
-5
15

-3
p/
m
iR
-5
19

c-
5p

/m
iR
-5
19

c-
3p

/m
iR
-

52
0a
-5
p/
m
iR
-5
20

a-
3p

/m
iR
-5
26

b-
5p

/m
iR
-5
26

b-
3p

/m
iR
-5
19

b-
5p

/m
iR
-5
19

b-
3p

/m
iR
-5
25

-5
p/
m
iR
-

52
5-
3p

/m
iR
-5
23

-5
p/
m
iR
-5
23

-3
p/
m
iR
-5
18

f-
5p

/m
iR
-5
18

f-
3p

/m
iR
-5
20

b/
m
iR
-5
18

b/
m
iR
-5
26

a/
m
iR
-5
20

c-
5p

/m
iR
-5
20

c-
3p

/m
iR
-5
18

c-
5p

/m
iR
-5
18

c-
3p

/m
iR
-5
24

-5
p/
m
iR
-5
24

-3
p/
m
iR
-5
17

-5
p/

m
iR
-5
17

a-
3p

/m
iR
-5
19

d/
m
iR
-5
21

/m
iR
-5
20

d-
5p

/m
iR
-5
20

d-
3p

/m
iR
-5
17

b-
3p

/m
iR
-5
17

-5
p/
m
iR
-

52
0
g/
m
iR
-5
16

b-
5p

/m
iR
-5
16

b-
3p

/m
iR
-5
26

a/
m
iR
-5
18

e-
5p

/m
iR
-5
18

e-
3p

/m
iR
-5
18

a-
5p

/m
iR
-

51
8a
-3
p/
m
iR
-5
18

d-
5p

/m
iR
-5
18

d-
3p

/m
iR
-5
16

b-
5p

/m
iR
-5
16

b-
3p

/m
iR
-5
18

a-
5p

/m
iR
-5
18

a-
3p

/
m
iR
-5
17

-5
p/
m
iR
-5
17

c-
3p

/m
iR
-5
20

h/
m
iR
-5
21

/m
iR
-5
22

-5
p/
m
iR
-5
22

-3
p/
m
iR
-5
19

a-
5p

/m
iR
-

51
9a
-3
p/
m
iR
-5
27

/m
iR
-5
16

a-
5p

/m
iR
-5
16

a-
3p

/m
iR
-5
16

a-
5p

/m
iR
-5
16

a-
3p

/m
iR
-5
19

a-
3p

/m
iR
-

13
23

/m
iR
-1
28

3/
m
iR
-1
28

3

75

cl
81

_c
hr
1

N
B
_n

oM
Y
C
N

do
w
n

m
iR
-1
99

a-
5p

/m
iR
-1
99

a-
3p

/m
iR
-2
14

-5
p/
m
iR
-2
14

-3
p/
m
iR
-3
12

0-
3p

/m
iR
-3
12

0-
5p

6

cl
12

17
_c
hr
X

N
B
_M

Y
C
N

do
w
n

m
iR
-4
24

-5
p/
m
iR
-4
24

-3
p/
m
iR
-4
50

a-
5p

/m
iR
-4
50

a-
5p

/m
iR
-4
50

a-
3p

/m
iR
-5
03

/m
iR
-5
42

-5
p/
m
iR
-

54
2-
3p

/m
iR
-4
50

b-
5p

/m
iR
-4
50

b-
3p

10

cl
12

26
_c
hr
X

N
B
_M

Y
C
N

do
w
n

m
iR
-5
13

a-
5p

/m
iR
-5
13

a-
3p

/m
iR
-5
06

-3
p/
m
iR
-5
06

-5
p/
m
iR
-5
07

/m
iR
-5
08

-5
p/
m
iR
-5
08

-3
p

7

272 C. Hernandez et al.



cl
34

9_
ch
r1
4

N
B
_M

Y
C
N

do
w
n

m
iR
-1
34

/m
iR
-1
54

-5
p/
m
iR
-1
54

-3
p/
m
iR
-2
99

-5
p/
m
iR
-2
99

-3
p/
m
iR
-3
76

c/
m
iR
-3
69

-5
p/
m
iR
-3
69

-3
p/

m
iR
-3
76

a-
5p

/m
iR
-3
76

a-
3p

/m
iR
-3
77

-5
p/
m
iR
-3
77

-3
p/
m
iR
-3
79

-5
p/
m
iR
-3
79

-3
p/
m
iR
-3
80

-5
p/
m
iR
-

38
0-
3p

/m
iR
-3
81

/m
iR
-3
82

-5
p/
m
iR
-3
82

-3
p/
m
iR
-3
23

a-
5p

/m
iR
-3
23

a-
3p

/m
iR
-3
29

/m
iR
-3
29

/m
iR
-

40
9-
5p

/m
iR
-4
09

-3
p/
m
iR
-4
12

/m
iR
-4
10

/m
iR
-3
76

b/
m
iR
-4
85

-5
p/
m
iR
-4
85

-3
p/
m
iR
-4
87

a/
m
iR
-4
94

/
m
iR
-4
95

/m
iR
-4
96

/m
iR
-5
39

-5
p/
m
iR
-5
39

-3
p/
m
iR
-5
44

a/
m
iR
-3
76

a-
3p

/m
iR
-4
87

b/
m
iR
-4
11

-5
p/

m
iR
-4
11

-3
p/
m
iR
-6
54

-5
p/
m
iR
-6
54

-3
p/
m
iR
-6
55

/m
iR
-6
56

/m
iR
-7
58

/m
iR
-6
68

/m
iR
-1
18

5-
5p

/m
iR
-

11
85

-2
-3
p/
m
iR
-1
18

5-
5p

/m
iR
-1
18

5-
1-
3p

/m
iR
-3
00

/m
iR
-5
41

-5
p/
m
iR
-5
41

-3
p/
m
iR
-8
89

/m
iR
-5
43

/
m
iR
-1
19

7/
m
iR
-1
19

3/
m
iR
-3
23

b-
5p

/m
iR
-3
23

b-
3p

60

cl
59

0_
ch
r1
9

N
B
_M

Y
C
N

do
w
n

m
iR
-5
12

-5
p/
m
iR
-5
12

-3
p/
m
iR
-5
12

-5
p/
m
iR
-5
12

-3
p/
m
iR
-4
98

/m
iR
-5
20

e/
m
iR
-5
15

-5
p/
m
iR
-5
15

-3
p/

m
iR
-5
19

e-
5p

/m
iR
-5
19

e-
3p

/m
iR
-5
20

f/
m
iR
-5
15

-5
p/
m
iR
-5
15

-3
p/
m
iR
-5
19

c-
5p

/m
iR
-5
19

c-
3p

/m
iR
-

52
0a
-5
p/
m
iR
-5
20

a-
3p

/m
iR
-5
26

b-
5p

/m
iR
-5
26

b-
3p

/m
iR
-5
19

b-
5p

/m
iR
-5
19

b-
3p

/m
iR
-5
25

-5
p/
m
iR
-

52
5-
3p

/m
iR
-5
23

-5
p/
m
iR
-5
23

-3
p/
m
iR
-5
18

f-
5p

/m
iR
-5
18

f-
3p

/m
iR
-5
20

b/
m
iR
-5
18

b/
m
iR
-5
26

a/
m
iR
-5
20

c-
5p

/m
iR
-5
20

c-
3p

/m
iR
-5
18

c-
5p

/m
iR
-5
18

c-
3p

/m
iR
-5
24

-5
p/
m
iR
-5
24

-3
p/
m
iR
-5
17

-5
p/

m
iR
-5
17

a-
3p

/m
iR
-5
19

d/
m
iR
-5
21

/m
iR
-5
20

d-
5p

/m
iR
-5
20

d-
3p

/m
iR
-5
17

b-
3p

/m
iR
-5
17

-5
p/
m
iR
-

52
0
g/
m
iR
-5
16

b-
5p

/m
iR
-5
16

b-
3p

/m
iR
-5
26

a/
m
iR
-5
18

e-
5p

/m
iR
-5
18

e-
3p

/m
iR
-5
18

a-
5p

/m
iR
-

51
8a
-3
p/
m
iR
-5
18

d-
5p

/m
iR
-5
18

d-
3p

/m
iR
-5
16

b-
5p

/m
iR
-5
16

b-
3p

/m
iR
-5
18

a-
5p

/m
iR
-5
18

a-
3p

/
m
iR
-5
17

-5
p/
m
iR
-5
17

c-
3p

/m
iR
-5
20

h/
m
iR
-5
21

/m
iR
-5
22

-5
p/
m
iR
-5
22

-3
p/
m
iR
-5
19

a-
5p

/m
iR
-

51
9a
-3
p/
m
iR
-5
27

/m
iR
-5
16

a-
5p

/m
iR
-5
16

a-
3p

/m
iR
-5
16

a-
5p

/m
iR
-5
16

a-
3p

/m
iR
-5
19

a-
3p

/m
iR
-

13
23

/m
iR
-1
28

3/
m
iR
-1
28

3

75

cl
59

0_
ch
r1
9

N
B
_M

Y
C
N

up
m
iR
-5
12

-5
p/
m
iR
-5
12

-3
p/
m
iR
-5
12

-5
p/
m
iR
-5
12

-3
p/
m
iR
-4
98

/m
iR
-5
20

e/
m
iR
-5
15

-5
p/
m
iR
-5
15

-3
p/

m
iR
-5
19

e-
5p

/m
iR
-5
19

e-
3p

/m
iR
-5
20

f/
m
iR
-5
15

-5
p/
m
iR
-5
15

-3
p/
m
iR
-5
19

c-
5p

/m
iR
-5
19

c-
3p

/m
iR
-

52
0a
-5
p/
m
iR
-5
20

a-
3p

/m
iR
-5
26

b-
5p

/m
iR
-5
26

b-
3p

/m
iR
-5
19

b-
5p

/m
iR
-5
19

b-
3p

/m
iR
-5
25

-5
p/
m
iR
-

52
5-
3p

/m
iR
-5
23

-5
p/
m
iR
-5
23

-3
p/
m
iR
-5
18

f-
5p

/m
iR
-5
18

f-
3p

/m
iR
-5
20

b/
m
iR
-5
18

b/
m
iR
-5
26

a/
m
iR
-5
20

c-
5p

/m
iR
-5
20

c-
3p

/m
iR
-5
18

c-
5p

/m
iR
-5
18

c-
3p

/m
iR
-5
24

-5
p/
m
iR
-5
24

-3
p/
m
iR
-5
17

-5
p/

m
iR
-5
17

a-
3p

/m
iR
-5
19

d/
m
iR
-5
21

/m
iR
-5
20

d-
5p

/m
iR
-5
20

d-
3p

/m
iR
-5
17

b-
3p

/m
iR
-5
17

-5
p/
m
iR
-

52
0
g/
m
iR
-5
16

b-
5p

/m
iR
-5
16

b-
3p

/m
iR
-5
26

a/
m
iR
-5
18

e-
5p

/m
iR
-5
18

e-
3p

/m
iR
-5
18

a-
5p

/m
iR
-

51
8a
-3
p/
m
iR
-5
18

d-
5p

/m
iR
-5
18

d-
3p

/m
iR
-5
16

b-
5p

/m
iR
-5
16

b-
3p

/m
iR
-5
18

a-
5p

/m
iR
-5
18

a-
3p

/
m
iR
-5
17

-5
p/
m
iR
-5
17

c-
3p

/m
iR
-5
20

h/
m
iR
-5
21

/m
iR
-5
22

-5
p/
m
iR
-5
22

-3
p/
m
iR
-5
19

a-
5p

/m
iR
-

51
9a
-3
p/
m
iR
-5
27

/m
iR
-5
16

a-
5p

/m
iR
-5
16

a-
3p

/m
iR
-5
16

a-
5p

/m
iR
-5
16

a-
3p

/m
iR
-5
19

a-
3p

/m
iR
-

13
23

/m
iR
-1
28

3/
m
iR
-1
28

3

75

10 ClustMMRA v2: A Scalable Computational Pipeline for the Identification. . . 273



274 C. Hernandez et al.

cl1222_chrX

cl51_chr1

cl1226_chrX

NB_MYCN

NB_noMYCN

cl1217_chrX

MB_G3 cl1195_chrX

MB_WNT

cl1190_chrX

cl96_chr1

EPN_I

cl904_chr5

EPN_H

cl81_chr1

EPN_C

cl742_chr22

EPN_A

cl725_chr21 cl1189_chrX

cl611_chr2

MB_SHH

cl591_chr19

EPN_B

EPN_F

cl1161_chr9

cl590_chr19

MB_G4

cl588_chr19

cl1118_chr8

cl564_chr19

cl522_chr18

cl512_chr17

cl491_chr17

EPN_G

EPN_E

cl349_chr14

cl347_chr14

cl2_chr1

cl267_chr12

cl228_chr11

cl1227_chrX

Fig. 10.2 Results of the clustMMRA pipeline applied to three pediatric cancers, namely NB, MB,
and EPN. The bipartite graph represents two sets of nodes (miRNA clusters and cancer subgroups)
connected by links corresponding to the potential regulation predicted by clustMMRA. Yellow,
blue, and pink nodes correspond, respectively, to NB, MB, and EPN subgroups, gray nodes
correspond to miRNA clusters. The gray nodes correspond to the miRNA clusters, with the size
of the node proportional to the number of miRNAs belonging to the cluster. Edges are green when
the miRNA cluster is upregulated in a given subgroup, red when it is downregulated



in EPN and the MYCN amplified and not amplified subgroups in NB. Interestingly,
the cluster of miRNAs at chromosome 14q32 was already found to be associated to
relapse in ependymoma (Costa et al. 2011), downregulated in desmoplastic MB
(Lucon et al. 2013a) and associated with poor prognosis in NB (Roth et al. 2016).
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Some disease subgroups show connections with a high number of clusters, in
particular, the G3 and G4 subgroups in MB are linked to eight and nine clusters,
respectively, and the EPN subgroup B which is linked to nine clusters. Specifically
in G3 and G4 of MB, mRNA expression has been shown to correlate poorly with
protein expression (Forget et al. 2018), suggesting a hallmark role of posttranscrip-
tional regulation in driving these cancer subgroups, possibly involving miRNA
regulation. The WNT and G3 subgroups in MB show more specific miRNA
regulation than the other subgroups, as they have specific links to specific clusters
(3 and 4, respectively) that are not linked to any other subgroup or other cancers.

10.5 Discussion

In the past decades, we have observed a tremendous increase in the availability of
omics profiles from normal to cancer samples. For example, The Cancer Genome
Atlas (TCGA), a landmark cancer genomics program, molecularly characterized
over 20,000 primary cancer and matched normal samples spanning 33 cancer types.
The comprehensive genomics data generated by TCGA includes the unprecedented
amount of ~11.000 libraries of miRNA sequences (Chu et al. 2016). To support the
analysis of such an amount of data, scalability of bioinformatics pipelines in terms of
CPU usage, data storage, and memory requirements is increasingly important to
handle larger datasets.

Here, we present a scalable implementation of the clustMMRA pipeline for the
unbiased identification of clusters of miRNAs that potentially regulate cancer
subtyping. This software allows to highlight the regulation by multiple miRNA
species that act cooperatively on the phenotypes of cancer subgroups. This is quite
original, since the majority of computational and experimental approaches for the
identification of master miRNA regulators involved in cancer onset and subtyping
are typically designed to detect the regulatory effect of a single miRNA.

The new version of the clustMMRA pipeline shows some advantages over the
previous one. Specifically, the first version of clustMMRA had to run on a cluster,
due to its computing needs in terms of both CPU power and memory usage. This
update removed the reliance on a supporting computing cluster, as ClustMMRA can
now run independently on a laptop with a recent processor and 16 Gb RAM. In this
new version of clustMMRA, the third-party ARACNE software has been updated to
the latest version, achieving a dramatic improvement in computational performance
in both time and memory usage while preserving the network inference accuracy of
the original algorithm. Finally, the readability of the code and its documentation
have been significantly improved.
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As a case study, we have applied the clustMMRA pipeline to multiple pediatric
cancers to highlight genomic clusters of miRNAs potentially involved in several
subgroups of the different cancers or specifically involved in the phenotype of a
subgroup. Three datasets ranging in size up to a hundred samples were analyzed, and
the entire analysis process was done in a few minutes. The scalability of the software
to large datasets is therefore very satisfactory.

The results of our analysis confirm a possible regulatory role of the C14MC
cluster at the 14q32 locus in several pediatric cancers. This cluster is downregulated
in subgroups with aggressive phenotype, in particular, in the MB G3 subgroup and
the NB MYCN amplified subgroup, while it is upregulated in the NB non-amplified
MYCN subgroup. These observations are consistent with previous studies showing a
tumor suppressor role in the C14MC cluster.

In our results, we did not observe cluster miR-17/92 as a regulator of any
subgroup, as we would have expected from the wide literature showing its
overexpression in a variety of human cancers, including pediatric cancers. This
may be due to the fact that the miR-17/92 cluster is very often dysregulated in
human cancers, but its dysregulation could occur in all cancers and not be specific to
a subgroup of the diseases we have analyzed.

Looking in more detail at the results for this cluster, we observe that miR-17/92 is
selected in step (i) of the pipeline, as it is differentially expressed in some cancer
subgroups, but is discarded at step (ii) because the signatures of these subgroups are
not enriched by the targets of this cluster. Indeed, results of clustMMRA rely on
well-defined transcriptomic signatures specific to subgroups. If these signatures are
not accurate enough or are predominantly associated with regulatory factors other
than miRNAs, some potentially relevant clusters are not retained in the clustMMRA
output. With the availability of large-scale quantitative proteomics data, the same
analysis can be performed using signatures specific to subgroups defined based on
both transcriptomics and proteomics profiles.

Finally, in our case study, clustMMRA was applied to systematically investigate
the cooperative effect of miRNAs belonging to genomic clusters. In practice, the use
of clustMMRA can be generalized in order to study other sets of cooperatively acting
miRNAs than the case of genomic clusters, such as co-expressed miRNAs from
different genomic locations.

10.6 Code Availability

The clustMMRA pipeline is available at https://github.com/sysbio-curie/
clustMMRA_v2.
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Chapter 11
3D Modeling of Non-coding RNA
Interactions

Krishna Pal Singh and Shailendra Gupta

Abstract Non-coding RNAs (ncRNAs) are a growing class of transcripts, with
lengths ranging from tens to several thousand of bases, involved in the regulation of
a large number of biological processes and diseases. Many of these ncRNAs have
emerged as the molecules of interest for prognostic, diagnostic, and therapeutic
purposes in many diseases including cancer. Although ncRNAs do not encode
proteins, they fold into complex structures to interact with target proteins, DNA,
or other RNAs. In contrast to microRNAs (miRNAs) where researchers mainly
focused on the nucleotide sequence for target prediction in the past, folding and
structural conservation seems to be important to encode functions and interactions of
long non-coding RNA (lncRNA). In this chapter, we discuss methods and tools
available for the structural modeling of ncRNAs together with various examples
from the literature where structural modeling helped decipher the function of
ncRNAs. We also provide a step-by-step procedure to design 3D structures of
ncRNAs combining state-of-the-art tools available toward the design of novel
RNA therapeutics.

Keywords Non-coding RNAs · Structure modeling · miRNA-mRNA · Molecular
docking · Molecular dynamic simulation · Deep learning

11.1 Introduction

The Human Genome Project revealed that our genome is mostly composed of non-
protein-coding DNA. Functional non-coding RNAs (ncRNAs), which are tran-
scribed from DNA, do not encode proteins but play important roles in the regulation
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of various cellular processes and disease pathophysiology. Together, ncRNA tran-
scripts constitute almost 60% of the transcriptional output in human cells (Feingold
et al. 2004; Sarah et al. 2012). There are thousands of ncRNAs that have been
identified, which are classified into different categories based on their functions and
lengths (Cech and Steitz 2014). These include transfer RNA (tRNA), ribosomal
RNA (rRNA), circular RNA (circRNA), small nucleolar RNA (snoRNA), small
nuclear RNA (snRNA), microRNA (miRNA), and long ncRNA (lncRNA) (Cheng
et al. 2005; Washietl et al. 2007). ncRNAs have been found to play key roles in the
regulation of tumor-associated pathologies through different processes and mecha-
nisms. These include transcriptional and posttranscriptional regulation of tumor
genes, chromatin remodeling, and signal transduction. Like proteins, RNA also
folds into well-defined three-dimensional (3D) structures. To understand their func-
tion, to design synthetic RNA-based regulators, and to discover drugs targeting
functional RNAs, knowledge of their structure is crucial.
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In the last two decades, the functional annotations of RNA molecules were
mainly based on their secondary (2D) structure confirmations represented by
Watson–Crick (WC) base pairing for which several methods have been previously
developed (Zuker 2003; Ding et al. 2008; Mathews et al. 2010). For RNA sequences
with <700 nucleotides, the secondary structure of RNAmolecules can be determined
based on thermodynamic principles with almost 70% accuracy (Mathews 2004).
This limited accuracy is attributed to the fact that thermodynamics alone is not the
only determinant of free energy change. The main challenge is to determine the
optimal structural fold with base pairings resulting in the lowest free energy change
from an unfolded to folded state of the RNA molecule. This task becomes increas-
ingly complex due to an exponentially increasing folding space with longer RNA
sequences such as lncRNAs, which can range from a few hundreds to several
thousand nucleotides in length.

For experimental determination of RNA structures, chemical probing-based
methods have been used in the past several decades (Draper et al. 2005; Weeks
2010). Over the years, chemical probing methods have been extended to illustrate
the native state and flexibility of RNA molecules inside the living cells in a high-
throughput manner (Rouskin et al. 2013; Loughrey et al. 2014; Talkish et al. 2014;
Kubota et al. 2015; Lorenz et al. 2016) including their three-dimensional structure
assessment (Weeks 2010; Cordero and Das 2015). Still, there is only a little progress
made on the 3D structural elucidation of RNAs experimentally. As shown in
Fig. 11.1, there is a huge gap between the number of experimentally determined
nucleic acid structures available in Protein Data Bank (PDB) in comparison to
protein structures. Even though the human non-coding transcriptome is approxi-
mately 30 times larger than that coding for proteins, the number of experimentally
determined RNA structures is <1% of total protein structures resolved. If we search
for ncRNA 3D structures, currently there are only 47 experimentally curated struc-
tures available in PDB. These numbers indicate that most common methods for the
computational modeling of protein structures such as homology modeling cannot be
simply extended in case of ncRNA structures due to the absence of suitable
templates.
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Fig. 11.1 Experimentally determined structures of biomolecules in PDB as of December 2021

11.2 Structure Modeling of ncRNAs

The number of ncRNAs are expanding rapidly, so do the computational tools to
predict their structure in the 3D space. Considering the total ncRNA universe known
so far, the Rfam repository (http://rfam.xfam.org) has 4069 RNA families across all
species each of which is represented by manually curated sequence alignments,
consensus secondary structures, and predicted homologues (Kalvari et al. 2018,
2021). Interestingly, in the Rfam database, for members of an RNA family the
secondary structure is more conserved than their primary sequence. However, the
identification of a functional RNA structure purely based on minimum folding
energy (MFE) calculations is generally considered not reliable in the absence of
experimental validation.

Computer programs like RNAfold (available via the ViennaRNA Web Services;
http://rna.tbi.univie.ac.at) can provide the MFE structure of any given RNA
sequence (up to the length of 10,000 bases) using the loop-based energy model
and the dynamic programming algorithm. Although, the MFE structure of ncRNAs
can be considered somewhat more stable, the difference in the folding energies
between the native ncRNA sequence and a random sequence created by reshuffling

http://rfam.xfam.org
http://rna.tbi.univie.ac.at


of the original sequence is often too indistinguishable with the exception of miRNAs
(Workman and Krogh 1999; Rivas and Eddy 2000).
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Like other biomolecules, ncRNAs also take a 3D confirmation in nature, which
can be predicted from the 2D structure by looking for the connections between
various bases in the MFE structure. Considering this, the MFE secondary structure
represents a useful abstraction of the full-length 3D structure of RNA molecules
(Gorodkin and Hofacker 2011).

Various tools and web services for designing ncRNA structures and predicting
interaction sites with proteins, DNA, and other RNAs are provided in Table 11.1.

11.3 Modeling of miRNA–mRNA–Argonaute complexes

Among non-coding RNAs, miRNAs are involved in the regulation of a large number
of developmental and physiological processes by sequence-specific recognition and
inhibition of target mRNA. The central component of this targeted mRNA repres-
sion is the miRNA-induced silencing complex (miRISC) formed between miRNA,
Argonaute (Ago), and other Ago binding proteins including GW182. The crystal
structure of human Argonaute 1 (Ago1, PDB ID: 4KRF) and Ago2 (PDB ID: 4EI1)
are already resolved. To understand the structural basis of miRNA-mediated silenc-
ing, Schirle and colleagues have experimentally determined the crystal structures of
human Ago2–miRNA complexes (PDB IDs: 4W5N, 4W5O, 4W5Q, 4W5R, and
4W5T) with and without target mRNA (Schirle et al. 2014). These experimental
structures provide a foundation to prepare and analyze computational models of
various miRNA–mRNA duplexes in complex with Ago for more accurate assess-
ment of miRNA function.

A large number of algorithms have been developed for miRNA-target recognition
based on the base pairing in the seed region and/or duplex secondary structure
(Quillet et al. 2020). Among them, miRanda (Betel et al. 2010), PITA (Kertesz
et al. 2007), SVmicrO (Liu et al. 2010), TargetScan (Agarwal et al. 2015), MBSTAR
(Bandyopadhyay et al. 2015), miRWalk (Dweep and Gretz 2015), ExprTarget
(Gamazon et al. 2010), and miRMap (Vejnar and Zdobnov 2012) are frequently
used by researchers. However, there is increasing experimental evidence for the
frequent use of non-canonical binding sites for miRNAs with imperfect seed pairing
or even formation of seedless duplexes (Helwak et al. 2013; Chipman and
Pasquinelli 2019; Sheu-Gruttadauria et al. 2019). These duplexes can often not be
predicted using conventional computational methods, which rely on the sequence
features.

Several structure-based analyses indicate that miRISC not only stabilizes
miRNAs but also coordinates the formation of miRNA-target base pairing (Wang
et al. 2008; Parker et al. 2009) and thereby facilitates the miRNA–mRNA duplex
even in cases with imperfect seed binding sites. Combining structural modeling of
Ago with miRNA–mRNA duplexes with features from sequence and secondary
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Table 11.1 Tools and webservices frequently used for the design and analysis of ncRNA struc-
tures and interactions

Name Description Link References

Secondary and tertiary structure prediction tools for ncRNAs

MINT: Motif
identifier for
nucleic acid
trajectory

Tool for analyzing 3D struc-
tures of nucleic acids and
their full atom molecular
dynamics trajectories. Pre-
dicts secondary confirmation
of RNA and RNA motifs.

Mint.Cent.Uw.
Edu.Pl

Górska et al. (2015)

VARNA: Visu-
alization applet
for RNA

Tool for drawing, visualiza-
tion, and annotation of sec-
ondary structures of RNA

varna.lri.fr Darty et al. (2009)

Forma: Force-
directed RNA

RNA secondary structure
visualization tool

rna.tbi.univie.ac.
at/forna

Kerpedjiev et al. (2015)

ViennaRNA
web services

Collection of tools to predict
minimum free energy sec-
ondary structure of RNA
(limit 10 K nt)

rna.tbi.univie.ac.
at

Gruber et al. (2015)

NUPACK Tool for analysis and design
of nucleic acid structures
(limit 30 K nt)

nupack.org Zadeh et al. (2011)

3DRNA RNA and DNA tertiary
structure and non-coding
RNAs

biophy.hust.edu.
cn/new/3dRNA

Zhang et al. (2020)

RNAComposer Fully automated prediction of
large RNA 3D structures

rnacomposer.cs.
put.poznan.pl

Biesiada et al. (2016)

SimRNA RNA 3D structure modeling
with optional restraints

genesilico.pl/soft
ware/stand-
alone/simrna/

Boniecki et al. (2016)

Molecular docking tools for ncRNA/protein interactions

P3DOCK Protein-RNA docking based
on a hybrid algorithm of
template-based (PRIME) and
free docking (3dRPC)

rnabinding.com/
P3DOCK/P3
DOCK.html

Zheng et al. (2020)

HDOCK Protein–protein and protein–
DNA/RNA docking based on
a hybrid algorithm of
template-based modeling and
ab initio free docking

hdock.phys.hust.
edu.cn

Yan et al. (2017)

PATCHDOCK
and
FIREDOCK

Molecular docking algorithm
based on object recognition
and image segmentation
techniques. The server can be
used for protein, DNA, RNA,
peptide, and drug interac-
tions. The interactions posed
are further refined using
FIREDOCK. These two pro-
grams can be utilized for
ncRNA–protein interactions

bioinfo3d.cs.tau.
ac.il/PatchDock
http://bioinfo3d.
cs.tau.ac.il/
FireDock

Schneidman-Duhovny
et al. (2005), Mashiach
et al. (2008)

http://Mint.Cent.Uw.Edu.Pl
http://Mint.Cent.Uw.Edu.Pl
http://varna.lri.fr
http://rna.tbi.univie.ac.at/forna
http://rna.tbi.univie.ac.at/forna
http://rna.tbi.univie.ac.at
http://rna.tbi.univie.ac.at
http://nupack.org
http://biophy.hust.edu.cn/new/3dRNA
http://biophy.hust.edu.cn/new/3dRNA
https://en.wikipedia.org/w/index.php?title=RNAComposer&action=edit&redlink=1
http://rnacomposer.cs.put.poznan.pl
http://rnacomposer.cs.put.poznan.pl
http://genesilico.pl/software/stand-alone/simrna/
http://genesilico.pl/software/stand-alone/simrna/
http://genesilico.pl/software/stand-alone/simrna/
http://rnabinding.com/P3DOCK/P3DOCK.html
http://rnabinding.com/P3DOCK/P3DOCK.html
http://rnabinding.com/P3DOCK/P3DOCK.html
http://hdock.phys.hust.edu.cn
http://hdock.phys.hust.edu.cn
http://bioinfo3d.cs.tau.ac.il/PatchDock
http://bioinfo3d.cs.tau.ac.il/PatchDock
http://bioinfo3d.cs.tau.ac.il/FireDock
http://bioinfo3d.cs.tau.ac.il/FireDock
http://bioinfo3d.cs.tau.ac.il/FireDock
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Table 11.1 (continued)

Name Description Link References

HADDOCK HADDOCK is an
information-driven flexible
docking program for the
modeling of a variety of bio-
molecular complexes. HAD-
DOCK can be used for the
interaction of ncRNAs and
proteins

https://wenmr.sci
ence.uu.nl/
haddock2.4/

Dominguez et al. (2003)

MPRDOCK MPRDOCK server predicts
the complex structure
between proteins and nucleic
acids by efficient consider-
ation of protein flexibility

huanglab.phys.
hust.edu.cn/
mprdock/

He et al. (2019)

Hexserver FFT-based algorithm to
exploit shape complementar-
ity as a feature for
optimization

hexserver.loria.fr Macindoe et al. (2010)

AutoDock For the prediction of a variety
of biomolecular complexes.
The program can be adopted
for protein-ncRNA
interactions

https://autodock.
scripps.edu/down
load-autodock4/

Morris et al. (2009)

ZDOCK ZDOCK optimizes
desolvation, shape comple-
mentarity, and electrostatics
using the FFT-algorithm to
identify interactions between
two proteins. The program
can also be adopted for
protein–ncRNA interactions

zdock.
umassmed.edu

Pierce et al. (2014)

Sequence level ncRNA/protein interaction predictions

CatRAPID Predicts protein interactions
with large RNA

s.tartaglialab.
com/update_sub
mission/428105/
d4ee4f48bd

Yan et al. (2017)

RPISeq Computational methods for
predicting RNA–protein
interactions

pridb.gdcb.
iastate.edu/
RPISeq/

Muppirala et al. (2011)

Force fields are frequently used for ncRNA molecular dynamic simulation

AMBER Widely used force fields for
ncRNA simulations. AMBER
ff94 was initially developed
for RNA simulations which
were further refined with sev-
eral dihedral parameters in
ff98 and ff99. The recent
force field used for RNA is
ff99bsc0xOL3. New

ambermd.org/
AmberModels.
php

Cheatham et al. (1999),
Wang et al. (2000),
Bayly et al. (2002),
Šponer et al. (2017)

https://wenmr.science.uu.nl/haddock2.4/%0d
https://wenmr.science.uu.nl/haddock2.4/%0d
https://wenmr.science.uu.nl/haddock2.4/%0d
http://huanglab.phys.hust.edu.cn/mprdock/
http://huanglab.phys.hust.edu.cn/mprdock/
http://huanglab.phys.hust.edu.cn/mprdock/
http://hexserver.loria.fr
https://autodock.scripps.edu/download-autodock4/%0d
https://autodock.scripps.edu/download-autodock4/%0d
https://autodock.scripps.edu/download-autodock4/%0d
http://zdock.umassmed.edu
http://zdock.umassmed.edu
http://s.tartaglialab.com/update_submission/428105/d4ee4f48bd
http://s.tartaglialab.com/update_submission/428105/d4ee4f48bd
http://s.tartaglialab.com/update_submission/428105/d4ee4f48bd
http://s.tartaglialab.com/update_submission/428105/d4ee4f48bd
http://pridb.gdcb.iastate.edu/RPISeq/
http://pridb.gdcb.iastate.edu/RPISeq/
http://pridb.gdcb.iastate.edu/RPISeq/
http://ambermd.org/AmberModels.php
http://ambermd.org/AmberModels.php
http://ambermd.org/AmberModels.php


parameters are aimed mainly
at refining specific torsion
angles and certain
non-bonded terms

structure levels might help in predicting non-canonical and seedless duplexes more
accurately.

Gan and Gunsalus used structure modeling methods to investigate the role of Ago
in the formation of miRISC (Gan and Gunsalus 2015). Using human and C. elegans
Ago structures, they showed that Ago adopts variable conformations to generate
distorted and imperfect miRNA–target duplexes. For the analysis, they first gener-
ated open Ago conformation using the elNemo implementation of the Elastic
Network Model (ENM), which is available at http://www.sciences.univ-nantes.fr/
elnemo/ and selected a structure from low-frequency mode to accommodate a
miRNA–mRNA duplex structure. They generated RNA duplex structures using
the MC-Sym algorithm (Parisien and Major 2008). Further, for each of the duplex
structures, 3D structure models were prepared and ranked using an all-atom
AMBER99 force field with atomic interaction and implicit solvation energies.
Further, they loaded the duplex into the open Ago structures by superimposing a
guide RNA strand to the experimentally resolved T. thermophilus Ago-duplex
structure (PDB ID: 3HJF) as a reference structure using the superpose routine of
the TINKER package (https://dasher.wustl.edu/tinker/) (Pappu et al. 1998). Finally,
they superimposed human and C. elegans Ago models to the reference structure
using combinatorial extension (CE) algorithms (Shindyalov and Bourne 2001) for
preparing final miRISC structures. A computational pipeline used by Gan and
Gunsalus for the tertiary structure analysis of miRNA–target interactions is shown
in Fig. 11.2.

The human and C. elegans miRISC structures modeled by Gan and Gunsalus
using experimentally a solved bacterial miRISC structure suggest that both human
and C. elegans Ago proteins have similar dynamic modes of motion compared to
bacterial Ago. Interestingly, they find similar binding affinity treads for loaded RNA
duplexes for T. thermophilus, yeast, and human miRISCs. Their miRISC models
also highlight that the quality of duplex accommodation within Ago structures

11 3D Modeling of Non-coding RNA Interactions 287

Table 11.1 (continued)

Name Description Link References

CHARMM The CHARMM36 force field
parameters are widely used to
simulate nucleic acids, pro-
teins, and other heteroge-
neous biomolecular system.
CHARMM force fields are
commercialized and available
in the Biovia Discovery Stu-
dio software suit (https://
www.3ds.com)

mackerell.
umaryland.edu/
charmm_ff.shtml

Xu et al. (2016), Huang
et al. (2017)

http://www.sciences.univ-nantes.fr/elnemo/
http://www.sciences.univ-nantes.fr/elnemo/
https://dasher.wustl.edu/tinker/
https://www.3ds.com
https://www.3ds.com
http://mackerell.umaryland.edu/charmm_ff.shtml
http://mackerell.umaryland.edu/charmm_ff.shtml
http://mackerell.umaryland.edu/charmm_ff.shtml
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depends on the duplex structure distortions. Structural distortions in the seed region
(2–8) and 30 end regions (nt positions 14–21) cause less steric clashes with Ago
compared to the central region (nt position 10–14). In their computational pipeline,
the miRNA–mRNA duplexes and Ago were superimposed on the already available
reference bacterial Ago–miRNA–mRNA complex. However, considering various
sequence lengths and arrangements of bases both in miRNAs and their target sites,
simple superimposition of the duplexes on the already resolved miRISC structure
might not be a universal solution to design and predict new miRISC structures.
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11.4 Computational Pipeline for the Structural Modeling
of ncRNAs, Proteins, and Their Interactions

In this section, we provide a step-by-step procedure to design 3D structures of
ncRNA and proteins with open access software and web-based services followed
by prediction of their interaction interface using molecular docking and molecular
dynamics simulations.

1. Extraction of ncRNA and protein sequences
For modeling ncRNA and protein 3D structures and interactions, the first step

is to retrieve the sequence of the molecules of interest from public databases
(Table 11.2).

Table 11.2 Protein and ncRNA sequence databases

Database Brief description Link

NCBI
Refseq

Comprehensive, integrated, non-redundant, well-annotated
set of sequences, including genomic DNA, transcripts, and
proteins.

www.ncbi.nlm.
nih.gov/refseq/

UniProt Comprehensive resource for protein sequence and annotation
data. The UniProt databases are the UniProt Knowledgebase
(UniProtKB), the UniProt Reference Clusters (UniRef), and
the UniProt Archive (UniParc).

www.uniprot.org/

Protein data
Bank

Archive information about the 3D shapes of proteins, nucleic
acids, and complex assemblies.

www.rcsb.org/

miRBase Published archive of microRNA sequences and annotations. www.mirbase.
org/

NONCODE Contains a total of 487,164 lncRNA transcripts and 324,646
lncRNA genes for 39 different species.

www.noncode.
org/

LNCipedia LncRNA sequence and annotation database. The current
release contains 127,802 human lncRNAs transcripts.

lncipedia.org/

RNAcentral Comprehensive annotations of eukaryotic lncRNAs. rnacentral.org

GENCODE Contains ncRNA gene annotations in GTF format and
ncRNA transcript sequences in FASTA format.

www.
gencodegenes.
org/

http://www.ncbi.nlm.nih.gov/refseq/
http://www.ncbi.nlm.nih.gov/refseq/
https://www.uniprot.org/help/uniprotkb
https://www.uniprot.org/help/uniprotkb
https://www.uniprot.org/help/uniref
https://www.uniprot.org/help/uniparc
http://www.uniprot.org/
http://www.rcsb.org/
http://www.mirbase.org/
http://www.mirbase.org/
http://www.noncode.org/
http://www.noncode.org/
https://lncipedia.org/
http://lncipedia.org
http://rnacentral.org
http://www.gencodegenes.org/
http://www.gencodegenes.org/
http://www.gencodegenes.org/
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For ncRNAs, RNAcentral is one of the most widely used public resources that
offers integrated access to a comprehensive and up-to-date set of non-coding
RNA sequences provided by a collaborating group of Expert Databases
representing a broad range of organisms and RNA types (Fig. 11.3) (Petrov
et al. 2015). Most of these databases offer the utility to download ncRNA and
protein sequences in the FASTA format suitable for the secondary structure
prediction and structure modeling tools highlighted in Table 11.1.

2. Structure modeling of ncRNAs
Currently, most of the state-of-the-art tools to design the 3D structure of

ncRNAs are based on the thermodynamically stable secondary structure of the
RNA sequence. For this purpose, the RNAfold server, available within the
ViennaRNA web services, is frequently used by researchers among many other
tools as highlighted in Table 11.1. After predicting the thermodynamically stable
secondary structure of an ncRNA, the next step is to predict the ncRNA tertiary
structure. MC-Fold/MC-Sym, 3DRNA, and RNAComposer are the most widely
used web-based tools for this purpose. In most cases, the input to the server is
simply the RNA sequence in FASTA format followed by its secondary structure
in dot-bracket notation. While MC-Fold/MC-Sym has a limit of 150 nucleotides,
RNAComposer can handle RNA sequences of up to 500 nt for their 3D structure
prediction. Larger ncRNA structures can be modeled using the 3dRNA tool
(Fig. 11.4) (http://biophy.hust.edu.cn/new/3dRNA), where the RNA sequence
is first decomposed into smallest secondary elements, including helix, hairpin
loop, internal loop, bulge loop, pseudoknot loop, and multibranch loop (also
known as a junction). The 3D structure of each element is then computed using
the appropriate 3D template, which is often experimentally determined using
X-ray crystallography or NMR. For those segments where the appropriate 3D
template is missing, the structure is prepared ab initio using a distance geometry-
based loop building method. Finally, the 3D elements are assembled into an
integrated 3D structure based on the information from the 2D structure, followed
by minimization of final predicted structure using AMBER force fields in the
generalized Born solvent model, to remove any atomic clashes in the model.

3. Structure modeling of proteins
The protein 3D structure for interaction analysis can be extracted directly from

the Protein Data Bank (https://www.rcsb.org/). In case the protein 3D structure is
not available, a variety of methods are available including homology modeling,
threading-based approaches, ab initio, machine learning, or deep learning-based
structure prediction. Detailed descriptions of each of the protein 3D structure
prediction method are out of the scope of this chapter. There are many detailed
review articles that can be explored for the 3D structure prediction of proteins
(Dorn et al. 2014; Kuhlman and Bradley 2019; Senior et al. 2020). One of the
frequently used web-based servers to predict the protein structures which are not
resolved yet is I-TASSER (Fig. 11.5) (zhanggroup.org/I-TASSER/).

In the recent Critical Assessment of Techniques for Protein Structure Predic-
tion (CASP14) challenge for the assessment of methods of protein structure
modeling, the artificial intelligence-based AlphaFold program developed by

http://biophy.hust.edu.cn/new/3dRNA
https://www.rcsb.org/
http://zhanggroup.org/I-TASSER


11 3D Modeling of Non-coding RNA Interactions 291

F
ig
.1

1.
3

S
na
ps
ho

to
f
R
N
A
ce
nt
ra
ld

at
ab
as
e.
nc
R
N
A
s
ca
n
be

se
ar
ch
ed

di
re
ct
ly

by
pr
ov

id
in
g
th
e
ge
ne

na
m
e,
ac
ce
ss
io
n
nu

m
be
r,
or

a
ke
yw

or
d
in

th
e
se
ar
ch

ba
r

(1
).
A
lte
rn
at
iv
el
y,

th
e
te
xt

se
ar
ch

(2
)
ca
n
be

us
ed

fo
r
m
or
e
ad
va
nc
ed

se
ar
ch

op
tio

ns
an
d
se
ar
ch

fi
lte
rs
.I
n
th
e
ex
am

pl
e
sh
ow

n
in

th
e
ri
gh

tp
an
el
,w

e
se
ar
ch
ed

th
e

hu
m
an

H
O
T
A
IR

ln
cR

N
A
.T

he
se
qu

en
ce

ca
n
be

do
w
nl
oa
de
d
di
re
ct
ly

in
F
A
S
T
A

fo
rm

at
(3
)
fo
r
fu
rt
he
r
pr
oc
es
si
ng



292 K. P. Singh and S. Gupta

F
ig
.1

1.
4

S
na
ps
ho

to
f
th
e
3d

R
N
A
W
eb

S
er
ve
r.
T
he

se
rv
er

ne
ed
s
on

ly
tw
o
ba
si
c
in
pu

ts
fr
om

th
e
us
er

fo
r
R
N
A
3D

st
ru
ct
ur
e
m
od

el
in
g
(l
ef
t)
.T

he
se

ar
e
(1
)
th
e

se
qu

en
ce

of
R
N
A

an
d
(2
)
th
e
se
co
nd

ar
y
st
ru
ct
ur
e
in

do
t-
br
ac
ke
t
no

ta
tio

n.
F
or

th
e
la
tte
r,
th
e
se
rv
er

al
so

of
fe
rs

se
co
nd

ar
y
st
ru
ct
ur
e
pr
ed
ic
tio

n
fr
om

on
e
of

th
e

es
ta
bl
is
he
d
m
et
ho

ds
(R
N
A
fo
ld
,M

ax
E
xp

ec
t,
P
ro
bk

no
t,
or

IP
kn

ot
).
In

th
e
ri
gh

tp
an
el
of

th
e
fi
gu

re
,a

sa
m
pl
e
ou

tp
ut
is
sh
ow

n.
T
he

3d
R
N
A
se
rv
er
co
m
pu

te
s
th
e
to
p

fi
ve

m
in
im

iz
ed

m
od

el
s
(b
y
de
fa
ul
t)
,w

hi
ch

ca
n
be

do
w
nl
oa
de
d
in

th
e
P
D
B
fo
rm

at
(3
)



11 3D Modeling of Non-coding RNA Interactions 293

F
ig
.1

1.
5

S
na
ps
ho

t
of

th
e
I-
T
A
S
S
E
R
S
er
ve
r
w
hi
ch

pr
ed
ic
ts
pr
ot
ei
n
3D

st
ru
ct
ur
es
.
R
eg
is
te
re
d
us
er
s
ne
ed

to
pr
ov

id
e
th
e
pr
ot
ei
n
se
qu

en
ce

in
F
A
S
T
A

fo
rm

at
(1
)
al
on

g
w
ith

th
ei
r
cr
ed
en
tia
ls

(2
).
T
he
re

ar
e
se
ve
ra
l
ad
va
nc
ed

pa
ra
m
et
er
s
th
at

ca
n
be

fi
ne
-t
un

ed
fo
r
th
e
pr
ed
ic
tio

n
of

pr
ot
ei
n
st
ru
ct
ur
es

in
cl
ud

in
g
co
nt
ac
t/

di
st
an
ce

re
st
ra
in
s,
in
cl
us
io
n/
ex
cl
us
io
n
of

so
m
e
sp
ec
ifi
c
te
m
pl
at
es
,
se
tti
ng

se
co
nd

ar
y
st
ru
ct
ur
e
pr
ofi

le
s
fo
r
sp
ec
ifi
c
re
si
du

es
,
et
c.

T
he

se
rv
er

co
m
pu

te
s
th
e
to
p

5
m
od

el
s
fo
r
ea
ch

of
th
e
pr
ot
ei
n
se
qu

en
ce
s
su
bm

itt
ed

w
hi
ch

ar
e
ra
nk

ed
ba
se
d
on

th
e
C
-s
co
re

(c
on

fi
de
nc
e
sc
or
e
fo
r
es
tim

at
in
g
th
e
qu

al
ity

of
pr
ed
ic
te
d
m
od

el
by

I-
T
A
S
S
E
R
)



294 K. P. Singh and S. Gupta

Alphabets’s/Google’s DeepMind (Senior et al. 2020) ranked number one in the
protein structure prediction from the amino acid sequence with high accuracy.
Other neural network-based protein structure prediction program RoseTTaFold
can accurately model multichain protein–protein complexes (Baek et al. 2021).

4. Prediction of protein and non-coding RNA binding from sequence data
For shorter ncRNAs, such as miRNAs, it is possible to perform molecular

docking studies directly after the 3D structure of the ncRNA and protein are
prepared. However, for lncRNAs, it is suggested to first identify potential
lncRNA–protein interaction sites at sequence level to reduce the search space in
molecular docking programs. There are several tools available (Table 11.1) that,
based on sequence information, predict potential ncRNA/protein binding sites.
Some widely used tools for lncRNA–protein interaction site predictions include
CatRAPID (Armaos et al. 2021), RPISeq (Muppirala et al. 2011), lncPro
(Lu et al. 2013), RPI-Pred (Suresh et al. 2015), and rpiCOOL (Akbaripour-
Elahabad et al. 2016). CatRAPID estimates the binding propensity of protein–
RNA pairs by combining secondary structure, hydrogen bonding, and van der
Waals contributions. RPISeq and RPI-Pred predictions are based on Support
Vector Machine (SVM), while rpiCOOL predicts binding regions based on
sequence motifs. Putative binding sites between lncRNA and proteins can be
further prioritized based on features of lncRNA and protein secondary and tertiary
structures, such as surface charge and solvent accessibility. Predicted sites can be
used as input in molecular docking programs to fine-tune lncRNA–protein
interaction poses.

5. Molecular docking of ncRNAs and proteins
Molecular docking tools play an important role in the prediction and investi-

gation of binding interfaces and key residues involved in the interaction of
molecules. For the molecular docking of biomolecules, different conventional
tools and webservers are available which can be used for ncRNA–protein inter-
action analysis (Table 11.1).

Web-based servers such as Hex (hex.loria.fr/), which was initially designed for
protein–DNA and protein–ligand docking based on 3D shape similarity and
complementarity calculation, are now used for protein–ncRNA interactions as
well, considering ncRNAs as a rigid molecule (Wang et al. 2010; Feng et al.
2019; Philip et al. 2021). Conventional molecular docking tools, such as
Autodock (autodock.scripps.edu) are already being adopted to identify interac-
tion sites between proteins and miRNAs (Wang et al. 2010; Suyal et al. 2018;
Mallick et al. 2019; Mahernia et al. 2020) and lncRNA–ligand interactions
(Abulwerdi et al. 2019; Li et al. 2019). Like Hexserver, ZDOCK, which uses a
Fast Fourier Transform algorithm to enable global docking search on a 3D grid in
combination with shape complementary and electrostatics parameters for
protein–protein docking (Pierce et al. 2014) was also successfully employed for
protein–ncRNA interactions (Bose et al. 2015; Iwakiri et al. 2016; Jha et al. 2020;
Koralewska et al. 2021).

Programs such as HADDock (wenmr.science.uu.nl/haddock2.4/) allow flexi-
ble docking incorporating knowledge from experimental and computational data

http://hex.loria.fr/
https://autodock.scripps.edu
https://wenmr.science.uu.nl/haddock2.4/
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to drive the modeling process. Users can provide hints about the interaction
regions from, for example, mutagenesis, mass spectrometry, NMR, chemical
shift perturbation, or from various computational analyses such as prediction of
protein–RNA binding sites and structural motifs. HADDOCK uses these features
as ambiguous interaction restraints to identify interactions between protein–
protein, protein–nucleic acid, and with small molecules. Jiang and colleagues
used HADDOCK to identify initial binding between human Ago and miRNAs
(Jiang et al. 2015). Salerno and colleagues exploited Hex and HADDOCK to
show that the lncRNA DLEU2 interacts with the Hepatitis B protein HBx and the
histone methyltransferase Enhancer of Zeste Homolog 2 (EZH2) (Salerno et al.
2020). Eichhorn and colleagues used HDOCK to explore interactions between
human La-related protein group 7 (hLarp7) and 7SK lncRNA (Eichhorn et al.
2018).

The HDOCK program (hdock.phys.hust.edu.cn) uses hybrid docking strate-
gies based on template-based as well as ab initio docking to predict the binding
complexes between two molecules including proteins and nucleic acids. The
server is capable of both, blind and controlled docking between two molecules
depending on the availability of binding site information. Naderi et al. used
HDOCK to explore the interactions between two lncRNAs (NONHSAT139215
and NONHSAT139219), which were significantly downregulated in patients
with severe hemophilia A, with coagulation factor VIII (Naderi et al. 2018).
Similarly, Yeh et al. used HDOCK to understand the regulatory role of various
fragments of lncRNA NDRG1-OT1, which is upregulated under hypoxia, on
NDRG1 promoter and other NDRG1 regulating proteins including HNRNPA1,
KHSRP, and HIF-1α (Yeh et al. 2018). Recently, Lu et al. used HDOCK to
explore how single nucleotide polymorphisms and variants alter the binding
affinities of lncRNA HCG23 and transcription factor E2F6 (Lu et al. 2020).

Other frequently used molecular docking tools that are also employed for
protein–miRNA and protein–lncRNA interactions are PatchDock (https://
bioinfo3d.cs.tau.ac.il/PatchDock/) and FireDock (http://bioinfo3d.cs.tau.ac.il/
FireDock/). Ghosh and colleagues used PatchDock to model the interaction of
NEAT1 lncRNA with the JunD transcription factor and ZO-1 promoter (Ghosh
et al. 2021). Similarly, Bozgeyik and colleagues performed interaction studies
between miR-19a-3p and miR-421 with Ago protein and PCA3 lncRNA using
the PatchDock server (Bozgeyik et al. 2021). In one of our previous studies, we
used the PatchDock and FireDock servers to investigate the interactions between
SLC16A1-AS1 lncRNA with E2F1 transcription factor on the MCT1 promoter
(Logotheti et al. 2020), which is described in detail in the case study section of
this chapter.

Besides open access webservers and tools available for molecular docking,
commercial docking software such as Schrödinger’s Small Molecular Discovery
Suite (https://www.schrodinger.com/platform/drug-discovery) for structure prep-
aration and virtual library screening and Dassault Systèmes’s Biovia Discovery
Studio (https://www.3dsbiovia.com/) are also used to explore interactions
between ncRNA–ncRNA; ncRNA–protein, and other biomolecules (François-
Moutal et al. 2021).

http://hdock.phys.hust.edu.cn
https://bioinfo3d.cs.tau.ac.il/PatchDock/
https://bioinfo3d.cs.tau.ac.il/PatchDock/
http://bioinfo3d.cs.tau.ac.il/FireDock/
http://bioinfo3d.cs.tau.ac.il/FireDock/
https://www.schrodinger.com/platform/drug-discovery
https://www.3dsbiovia.com/
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6. Molecular dynamic simulations
The stability of molecular interactions can be assessed using molecular

dynamic (MD) simulations, which mimic the physical, chemical, and thermody-
namic conditions to predict interactions at atomic level and their dynamics over
time using fundamental laws of Newtonian physics (Adcock and McCammon
2006). A comprehensive overview highlighting fundamental methodological
challenges and development in the field of RNA MD simulations was recently
provided by Šponer and colleagues (Sponer et al. 2018).

The application of conventional and enhanced MD methods on the assessment
of ncRNA functions is reviewed in detail by Palermo and colleagues (Palermo
et al. 2019). In case of the RNA-guided CRISPR–Cas9 complex, they investi-
gated the mechanistic basis by which the Cas9 protein undergoes structural
transitions from an “open” state to a “close” state for RNA binding followed by
binding and cleavage of the targeted DNA. They suggested the use of enhanced
sampling simulation using the Gaussian accelerated MD (GaMD) method (Miao
et al. 2015) that can overcome the time scale limit of MD simulations to capture
large-amplitude confirmational changes in case of protein–RNA binding
(Palermo et al. 2018).

Other than the time scale limit of traditional simulation engines, another
limiting factor in the MD simulation of ncRNA molecules is the availability of
molecular mechanical force fields that define the relationship between the mole-
cule’s geometry at atomic level and its potential energy. Different classes of force
fields have been developed in the past, focusing on different MD simulation
systems and types of biomolecules modeled. Some classical force fields include
OPLS (Jorgensen et al. 1996), AMBER (Duan et al. 2003), GROMOS (Christen
et al. 2005), and CHARMM (MacKerell et al. 1998), which were initially
prepared to simulate proteins and peptides and subsequently modified to include
nucleic acids as well. AMBER ff94 (Cornell et al. 1995), followed by the
correction of several dihedral parameters in AMBER ff98 (Cheatham et al.
1999), and AMBER ff99 (Wang et al. 2000)) are most widely used AMBER
nucleic acid force fields. Another class of force field that is used for simulations of
ncRNA systems belongs to CHARMM. The latest version of CHARMM is
CHARMM36 (Huang et al. 2017), which is tested for nucleic acid simulations.
There are several open access and commercial tools that include AMBER and
CHARMM force fields to simulate ncRNAs in complex with proteins and other
biomolecules. The AMBER force field can be used directly in the AmberTools21
software (https://ambermd.org/) available under the GNU General Public License
(GPL). The most widely used open access tool for MD simulations is
GROMACS (https://www.gromacs.org/) mainly supporting the simulation of
proteins, lipids, and nucleic acids (Abraham et al. 2015). Both AMBER and
CHARMM force fields can be used with GROMACS for simulating ncRNA
molecules. Another open access, GPU accelerated MD simulation program is
NAMD (https://www.ks.uiuc.edu/Research/namd/) developed by the Theoretical
and Computational Biophysics Group at the NIH Center for Macromolecular
Modeling and Bioinformatics, University of Illinois. NAMD also supports both

https://ambermd.org/
https://www.gromacs.org/
https://www.ks.uiuc.edu/Research/namd/
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AMBER and CHARMM force fields for MD simulation. The Gaussian Acceler-
ated Molecular Dynamics (GaMD) method for unconstrained enhanced sampling
and free energy calculations of biomolecules is also supported by both
AmberTool21 and NAMD for large-scale MD simulation studies of ncRNA
complexes. OpenMM (https://openmm.org/) is another open access program for
simulating RNA and protein complexes. In the commercial domain, both
Schrödinger’s Small Molecular Discovery Suite and Dassault Systèmes’s Biovia
Discovery Studio provide easy-to-use graphical user interfaces for preparing
ncRNA complexes suitable for MD simulations and follow-up analysis. While
Schrödinger’s Small Molecular Discovery Suite uses the OPLS4 force field
(Lu et al. 2021) for RNA and Biovia Discovery Studio contains the commercial
version of the CHARMM36 force field (Huang et al. 2017).

11.5 Advances in Modeling Protein–ncRNA Interactions
Using Deep Learning

To explore the mechanism of interaction between proteins and ncRNAs, most of the
computational pipelines rely heavily on RNA sequence data and thermodynamically
stable secondary structure confirmation of RNA molecules along with the use of
conventional molecular docking and MD simulation tools. Recently, artificial
intelligence-based systems, such as AlphaFold have transformed the entire structural
biology domain and open a new gateway to predict 3D structure-level interactions of
many unresolved proteins and ncRNAs. Now all the human proteins are modeled
using AlphaFold and are currently available in the UniProt database, although many
of them are of low quality. However, the prediction capability of deep learning
methods will potentially increase in the next few years with the availability of more
experimental structures.

Similar to the prediction of protein structures, the newly developed deep learning-
based method Atomic Rotationally Equivariant Scorer (ARES) (Townshend et al.
2021) has significantly improved the prediction of RNA structures. After 3D model-
ing the main task is to determine the molecular function, that is, how a specific
molecule can interact with another. Deep learning methods were previously used to
optimize the CRISPR guide RNA design (Chuai et al. 2018) and play an important
role in designing new antimicrobial peptides (Das et al. 2021). In most of the
conventional protein–RNA interaction prediction methods, binding regions between
interacting protein–RNA molecules are predicted usually using sequence and struc-
tural binding motifs either on protein or RNA. Deep learning methods identify the
pattern on both protein and RNA simultaneously to predict the most favorable
protein–RNA interaction sites (Lam et al. 2019). While the binding site prediction
refers to the RNA binding sites on the protein surface at the structural level, the
binding preference means to predict the protein binding preference against given
RNA sequences.

https://openmm.org/
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Table 11.3 List of selected neural network-based tools to predict RNA binding sites in protein
sequences and structures

Name of
the tool

Prediction
type

aPRBind Binding
site

CNN PSSM and feature vector Liu et al. (2021)

Graphbind Binding
site

GNN Graph, feature vector Xia et al. (2021)

Deepclip Binding
Preference

CNN + BiLSTM One-hot encoding Bjørnholt
Grønning et al.
(2020)

DeepBind Binding
Preference

CNN PWM Alipanahi et al.
(2015)

DeeperBind Binding
Preference

CNN Long short termmemory
networks (LSTMs)

Hassanzadeh and
Wang (2016)

iDeepS Binding
Preference

CNN DBN-kmer Pan et al. (2018)

iDeepE Binding
Preference

CNN PWM Pan and Shen
(2018)

Overall, methods for modeling molecular interactions can be divided into two
categories: The first category is based on the principle that similar structures may
have similar functions, which underlies the template-based method to predict bind-
ing sites (Yang et al. 2013; Chen et al. 2014; Wu et al. 2018; Xie et al. 2020) and
binding preference (Zheng et al. 2016). Performance of these methods depends
heavily on the availability of homologous sequences (Senior et al. 2020). The second
category of methods combines hand-crafted features with shallow-learning methods,
such as Support Vector Machine (SVM) (Maticzka et al. 2014; Zhang et al. 2017;
Jolma et al. 2020), logistic regression (Hiller et al. 2006; Kazan et al. 2010;
Orenstein et al. 2016; Yan and Kurgan 2017), and random forest (Sun et al. 2016;
Li et al. 2017) to explore the binding sites between proteins and RNAs.

To identify the binding preference of proteins for RNAs, several tools have been
developed based on Convolutional Neural Networks (CNNs) to detect RNA binding
motifs in protein sequences as shown in Table 11.3. For example, the DeepBind tool
(Alipanahi et al. 2015) is based on CNN which takes RNA sequences as input and
predicts relevant RNA binding proteins. Another tool, DeeperBind (Alipanahi et al.
2015), is based on the Long Short-Term Memory (LSTM) that includes layers into
the DeepBind architecture, which is helpful in understanding the long-range depen-
dency between the sequence features extracted by the CNN layers. Similarly, the
iDeepS (Pan et al. 2018) tool combines CNN and a bidirectional LSTM to simulta-
neously identify protein binding sites and structure motifs on RNA sequences.

For RNA binding site prediction on protein surfaces, features such as sequence
one-hot encodings (Yan et al. 2016), Position-Specific Scoring Matrix (PSSM), and
conservation entropy derived from PSSM are used. Similarly, in case of RNA, RNA
feature extraction, much related to the proteins, using the one-hot encodings k-mer
models (Orenstein et al. 2016), and PWM (position weight matrix)(Kazan et al.



2010; Orenstein et al. 2016) are used by various tools. In a recent development by
Liu et al., a convolutional neural network-based ab initio method for RNA binding
residue prediction on proteins is trained by combining features from sequences and
structures predicted by I-TASSER (Liu et al. 2021). Xia et al. developed another tool
(GraphBind) based on hierarchical graph neural networks for recognizing nucleic
acid-binding residues on proteins (Xia et al. 2021).
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11.6 Case Study

In this section, we present methodologies from our previously published work to
guide researchers in setting up new ncRNA–ncRNA and ncRNA–protein interaction
studies.

11.6.1 SLC16A1-AS1 lncRNA Interacts with Transcription
Factor E2F1 and Modulates Its Activities

LncRNAs are acknowledged for their role in the regulation of genes, proteins, and
miRNAs. In many of our experimental studies, we observed a positive correlation
between expression profiles of SLC16A1-AS1 lncRNA with the E2F1 regulated
genes involved in cancer metabolism (Logotheti et al. 2020). To support the
hypothesis that SLC16A1-AS1 has the potential to interact with E2F1 and facilitate
its binding to the promotor region of target genes; we used a computational pipeline
that incorporates sequence and structural level analysis of this lncRNA and its
interaction with E2F1.

11.6.1.1 Retrieval of Sequence and Secondary Structure Prediction
of SLC16A1-AS1

The SLC16A1-AS1 sequence was retrieved from the National Center for Biotech-
nology Information (NCBI) database (Refseq ID: NR_103743). The SLC16A1-AS1
transcript sequence contains 1521 bases which we submitted to the RNAfold server
available on the ViennaRNA web services platform (Gruber et al. 2008; Lorenz et al.
2011) for the identification of the thermodynamically most stable secondary struc-
ture (Fig. 11.6).
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11.6.1.2 Preparation and Optimization of the SLC16A1-AS1 and E2F1
Tertiary Structure

The interaction between the biological molecules and their functional implications
can be better understood at the tertiary structure level. For this, we first generated the
full-length 3D structure of the SLC16A1-AS1 lncRNA. The basic 3D structure of
lncRNAs is generated using the 3DRNA software tool (Wang et al. 2019), which is
based on a fragment assembly approach to build RNA 3D structures utilizing the
information from the thermodynamically most stable secondary structure predicted
by RNAfold.

The structure was manually curated for missing interactions and bond length after
applying the CHARMm force field (Vanommeslaeghe et al. 2010) in an iterative
manner using the Biovia Discovery Studio 2017 (DS2017) software suite. The
curated structure was further optimized using the “Smart Minimizer protocol”
available in DS2017 for a maximum run of 20,000 steps with the “Minimization
RMS Gradient Tolerance” of 0.1 kcal / (mol x Å) to exit the minimization routine in
case the average gradient is less than or equal to the set cutoff (Fig. 11.7). The
tertiary structure of E2F1 was used from our previously published works (Meier
et al. 2014; Wang et al. 2016; Goody et al. 2019) which was prepared using the
I-TASSER webserver and optimized in the Biovia Discovery Studio software suite.

Fig. 11.7 Tertiary structure of full-length SLC16A1-AS1. The model was initially prepared using
the 3DRNA software tool and then optimized in Biovia Discovery Studio software using the
CHARMm force field. The 3D model is shown as all atom with a flat ribbon backbone
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11.6.1.3 Prediction and Prioritization of E2F1 Binding Sites
on SLC16A1-AS1 lncRNA

For lncRNAs with large binding surface available for investigating molecular
interactions with protein and other biomolecules, it is always advisable to prioritize
regions for protein binding to reduce the search space in docking protocols. For the
prediction of possible binding sites between E2F1 and SLC16A1-AS1, we used the
catRAPID fragment module available on the catRAPID omics server (Agostini et al.
2013). The algorithm was previously tested for the prediction of lncRNA and protein
interactions (Bellucci et al. 2011) as shown in Fig. 11.8. The tool first divides protein
and RNA into small sequences and then predicts the binding propensity between
them in an iterative manner.

For the prioritization of lncRNA regions bound to E2F1, we also considered
parameters from the secondary structures of protein and RNA. In case of the
lncRNA, loop regions were given priority over the nucleotide forming the stem
while in case of the protein, we considered the solvent accessibility parameter
calculated using the NetSurfP-2.0 tool (Klausen et al. 2019). The analysis suggested
that in the lncRNA fragment (172–233), most of the bases lie in the loop region,
while the E2F1 fragment (312–363) has maximum solvent accessibility (absolute
solvent accessibility (ASA) ¼ 92.69) among all the possible interacting fragments
(Table 11.4).

Based on these clues from the secondary structure of the lncRNA and the solvent
accessibility of the protein, lncRNA region between 172–233 nucleotides and E2F1
region between 312 and 363 amino acid residues may be the most promising regions
to investigate in a molecular docking analysis.

11.6.1.4 Molecular Docking Between SLC16A1-AS1 and E2F1

After the lncRNA structural modeling and optimization and the identification of a
region of interest that has the highest potential to interact with E2F1, we extracted
the fragment from 162 to 243 nucleotides from the full-length 3D structure. We
explicitly included 10 additional bases at both ends to preserve the folding of the
lncRNA fragment. This small fragment was extracted for molecular docking due to
the limitation of molecular docking software dealing with protein and nucleic acid
interactions. Molecular docking of E2F1 and lncRNA fragments was performed
using the PatchDock tool (Schneidman-Duhovny et al. 2005). The top 50 poses
identified from the PatchDock tool were refined with the FireDock server (Mashiach
et al. 2008). The best pose (Fig. 11.9) based on most favoring thermodynamics of the
E2F1 and lncRNA interaction at 25 �C was interestingly in agreement with the
binding sites predicted by the catRAPID server on the E2F1 surface using sequence-
based information.

In silico mutagenesis experiments for further validation of binding sites between
SLC16A1-AS1 and E2F1.
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Fig. 11.8 Interaction profile and interaction matrix between SLC16A1-AS1 and E2F1. (a) The
interaction profile is calculated as an average over protein binding fragments. (b) All the protein and
lncRNA interacting fragments are shown in interaction matrix

To further support the binding regions identified between E2F1 and lncRNA, we
performed in silico mutagenesis experiments by deleting several segments of
lncRNA and identify the impact of deletion on E2F1 binding. More specifically,
we deleted bases from (1) 172–233; (2) 262–323; (3) 172–233 and 262–323;
(4) 193–209; (5) 172–175; and (6) 172–175 and 193–209 together. While the first
three deletion studies were associated with the potential binding sites between E2F1
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and lncRNA as identified from the catRAPID fragment tool, the deletions 4–6 were
from the loop forming regions that interact with E2F1.
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Fig. 11.9 Best docking pose of SLC16A1-AS1 lncRNA fragment (ribbon model) with E2F1
(surface model). DNA binding domain of E2F1 is shown in green color

After deletion of the selected segments from the lncRNA, we refolded the
lncRNA structure and performed molecular docking with E2F1 with the parameters
described above. In all the cases, we keep the lncRNA fragment with a similar length
by adding a number of bases, equal to the deleted bases, in both directions. In all the
mutagenesis experiments, top interaction poses were analyzed and compared for
binding energy between E2F1 and SLC16A1-AS1. For the control case, i.e.,
lncRNA fragment without deletion, the binding energy of the complex (ΔG) was
�35.68 kcal/mol. In case of the 172–175 bases deletion, it formed a more stable
complex with E2F1 (ΔG ¼ �57.29 kcal/mol). This is due to the overall increase in
the loop regions of the lncRNA after the refolding of the mutated structure. How-
ever, the deletion of regions 172–175 and 193–209 together resulted in a weaker
complex (ΔG ¼ �24.66 kcal/mol). In case of the deletion of both 172–233 and
262–323 together, no binding regions were identified between E2F1 and the lncRNA
by the catRAPID fragmentation tool. In all the cases of in silico mutagenesis, we
found both favorable and unfavorable impacts on E2F1 binding affinity, which
suggests that this region of SLC16A1-AS1 is important for E2F1 binding. In silico
mutagenesis results were experimentally confirmed by the transfection of UMUC-3-
KO cells with wild-type SLC16A1-AS1 or the first three deletion mutants, followed



by E2F1 immunoprecipitation, RNA purification, and amplification by qPCR and
semiquantitative PCR with primers against SLC16A1-AS1 (Logotheti et al. 2020).
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11.6.1.5 Molecular Dynamics Simulation of Best Binding Poses
of SLC16A1-AS1 lncRNA and E2F1

The best docked pose was subjected to an MD simulation study using
the GROMACS software package (4.5.3) to analyze the interaction stability. The
AMBER force field was applied to the complex prior to the MD simulation. The
complex was solvated with single point charge (SPC) water molecules (Parrinello
and Rahman 1981). The system was further neutralized using proper counter ions by
replacing the water molecules to ensure overall charge neutrality of the system. The
system was equilibrated by 5000 steps of energy minimization using the steepest
descent algorithm, followed by a 100 pico-second (ps) MD equilibrium simulation in
constant number of particles, volume, and temperature (NVT) ensemble, with
harmonic restraints (20 kcal mol�1 Å�2) applied to the backbone atoms of the
biomolecules. The entire simulation was performed in the isothermal-isobaric
ensemble, and both lncRNA fragment and E2F1 were kept unconstrained throughout
the simulation run. Temperature and pressure were controlled at 1 atm, and 310 K
using a Parrinello-Rahman barostat and V-rescale thermostat respectively as
described in (Nosé 1984; Bussi et al. 2007). For the analysis of molecular interac-
tions, a non-bonded cutoff was set to 10 Å and all the electrostatic interactions were
calculated using particle mesh Ewald sums (Essmann et al. 1995). Bonds between
hydrogen and heavy atoms were constrained at their equilibrium length using the
LINCS algorithm (Hess et al. 1997). The production run of 5 ns was performed to
study conformational changes during the simulation run time. All trajectories were
saved after each 1 ps interval.

We analyzed the root�mean� square deviation (RMSD) of the distance between
E2F1- lncRNA fragment and the radius of gyration (Rg) of the complex (Fig. 11.9).
To extract the information on the dynamic stability of the docked complex, the root
mean square deviation (RMSD) profile of the backbone atoms of the complex was
computed with reference to their initial structures for 5 ns. As shown in Fig. 11.10
(left panel), the complex stabilizes at 3 ns. We further analyzed the overall com-
pactness (radius of gyration (Rg) in Fig. 11.10 (middle panel) and the stability of
E2F1 in the complex with the lncRNA fragment. Results indicate that after around
3 ns E2F1 attained equilibrium. We also calculated the distance between E2F1 and
the lncRNA fragment during the 5 ns production run as shown in Fig. 11.10 (right
panel). For this, we calculated the distance between the center of mass (COM) of
E2F1 and the lncRNA fragment. Overall, these results indicate that lncRNA
SLC16A1-AS1 forms a stable complex with E2F1.
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Fig. 11.10 RMSD of docked complex followed a deviation from 0.1 to ~0.7 nm in the initial 2 ns
of simulation (left panel) and achieved a significant stability afterwards. Radius of gyration
(Rg) (middle panel) values of E2F1 state maintain a relatively steady value of around 2.96 nm.
This means that the system shows stability in its folding and achieved its native confirmation.
Distance between E2F1 and lncRNA decreases initially and stabilizes at around 3 ns (right panel)

11.6.1.6 Modeling of the SLC16A1-AS1/E2F1 Complex on the Promoter
Site of the MCT1 Gene

We further investigated if SLC16A1-AS1 functions in a cis-acting manner to
regulate transcription of the E2F1 target gene MCT1. For this, we first prepared
the 3D structure of the MCT1 promoter region with an extended E2F1 binding motif
using the “Build and Edit Nucleic Acid” protocol in the Biovia Discovery Studio.
We superimposed the SLC16A1-AS1 fragment in complex with E2F1 to the full-
length 3D structure of the lncRNA to prepare a complete receptor molecule and
again used the combination of PatchDock and FireDock programs to study the
interactions between lncRNA-E2F1 and the MCT1 promoter. Top-ranked poses
suggest that the E2F1 DNA binding domain directly interacts with the MCT1
promoter and a part of the lncRNA also interacts with various MCT1 promoter
bases on both sites of E2F1 binding domain (Fig. 11.11), suggesting that SLC16A1-
AS1 can help stabilizing E2F1 binding to the MCT1 promoter.

We also used the LongTarget tool (He et al. 2015) to identify potential lncRNA-
promoter binding sites based on base paring rules and observed a consensus between
both sequence and structure level predictions. All the steps presented in this case
study are reproducible and can be used to design similar work with other lncRNA–
protein interactions.

11.7 Future Directions for the 3D Interactions of ncRNAs

The main issue in the prediction of ncRNA interactions with proteins and other
biomolecules is the availability of experimentally determined tertiary structures.
Although conventional molecular modeling and molecular docking tools designed
for protein–ligand and protein–DNA/RNA interactions are frequently used for
ncRNAs as well, the reliability of the results is one of the major concerns specifically
for large ncRNAmolecules due to their large interaction surface and flexibility of the
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molecules. With the research focus shifting toward mechanistic insights of ncRNAs,
models of even larger ncRNAs are becoming available, due to the help of experi-
mental data as well as computational prediction pipelines.
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Currently available tools for RNA structure modeling achieve good accuracies in
predicting topologies and Watson–Crick base pairs for shorter RNA molecules.
However, the prediction of large ncRNA structures based on sequence information
remains a challenging problem because large ncRNAs form complex tertiary struc-
tures that are stabilized by many long-range interactions, non-canonical base pairs,
and structural motifs. The prediction of non-canonical interactions (non-Watson–
Crick base pairs), which are dominated in case of ncRNA–ncRNA and ncRNA–
protein interactions, is also difficult. Advancements in the artificial intelligence-
based design of 3D structures and the prediction of interactions at structure level
bridge this gap. Further experimental data on non-canonical interactions will help
currently available algorithms to predict reliable ncRNA structures and facilitate a
mechanistic understanding of their role at the structural level.
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