
Implicit Maximum Likelihood Clustering

Georgios Vardakas and Aristidis Likas(B)

Department of Computer Science and Engineering, University of Ioannina,
45110 Ioannina, Greece

g.vardakas@uoi.gr, arly@cs.uoi.gr

Abstract. Clustering is a popular unsupervised machine learning and
data mining problem defined as a process of assigning objects to groups
so that objects in the same group are similar to each other and differ
from objects in other groups. In this paper, a data clustering method is
proposed that is based on unsupervised training of a generative neural
network using the technique of Implicit Maximum Likelihood Estima-
tion (IMLE). Given a dataset, IMLE is an unsupervised method that
trains a neural network that takes random noise as input and produces
synthetic data samples whose distribution is close to the original data.
We have developed an appropriate adaptation of the IMLE generative
approach that also achieves clustering of the dataset. The proposed clus-
tering method has been evaluated on several popular datasets of various
types and complexity yielding promising results.

Keywords: Clustering · Neural networks · Implicit likelihood
maximization · Synthetic data generation

1 Introduction

Clustering is one type of unsupervised learning and is defined as a process of
partitioning a set of objects into groups (called clusters), so that the data in the
same group share common characteristics [1,9,20]. It is one of the most impor-
tant and popular problems in machine learning and data mining with numer-
ous applications in computer science and many other scientific and technological
areas [5,8]. Due to its particular importance, clustering is a well-studied problem
and numerous approaches have been proposed that can be generally classified as
hierarchical (divisive or agglomerative), model-based (e.g. k-means [14], mixture
models [1]) and density-based (e.g. DBSCAN [3], DensityPeaks [18]).

A wide family of model-based approaches can be considered as Maximum
Likelihood (ML) clustering methods. Such techniques construct a statistical gen-
erative model of the data by training a parametric probability density function
model in order to maximize the likelihood of the data. The most popular app-
roach is based on mixture models, where the underlying density model is a
mixture of distributions. Once the mixture model has been trained, a clustering
solution can be directly obtained by assuming that each component distribution
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corresponds to a cluster and computing the posterior probability P (k|x) that
each data object x has been generated from the k-th component distribution.
Then each data point x is assigned to the cluster k with maximum posterior
probability. In the case where the component distributions are Gaussian, the
well-known Gaussian mixture model (GMM) is obtained. An important issue
to be stressed is that training neural network models for maximum likelihood
clustering is considered a difficult task [16].

In this work, we aim to achieve generative maximum likelihood clustering
based on neural networks, by exploiting a recently proposed method of Implicit
Maximum Likelihood Estimation (IMLE) [13]. Given a set of data objects X, this
method uses a neural network (called generator) that takes random input vectors
and produces synthetic samples in the data space. By minimizing an appropri-
ate objective, the network is trained so the distribution of samples resembles the
data distribution. A notable issue is that it is proved that this training proce-
dure maximizes the likelihood of the dataset without explicitly computing the
likelihood.

Our proposed clustering method appropriately adapts the IMLE approach
in order to achieve maximum likelihood clustering based on neural networks. As
it will be explained, the modification occurs both in the way that the random
input vectors are generated and in the way that representative synthetic samples
are selected in order to be used for training. The method finally provides both
a neural generator of synthetic samples that resemble the objects of dataset X
as well as a partitioning of X into clusters.

The organization of the paper is the following. In Sect. 2 the IMLE method
is described, while in Sect. 3 the proposed IMLE clustering method is presented
and explained. Section 4 presents comparative experimental results on various
datasets, while Sect. 5 provides conclusions and directions for future research.

2 Generative Modeling Using IMLE

Suppose we are given a dataset X = {x1, ..., xN} where xi ∈ R
d. The Implicit

Maximum Likelihood Estimation (IMLE) [13] approach assumes a neural net-
work Gθ with m inputs, d outputs and parameter vector (weights) θ. This network
(called generator) takes as input a random vector z ∈ R

m usually sampled from
the Normal distribution and produces a sample sθ ∈ R

d, i.e., sθ = Gθ(z) (see
Fig. 2a).

IMLE trains the generator so that it can generate synthetic samples sθ that
resemble the real data x. It is a simple generative method that under certain
conditions is equivalent to maximum likelihood estimation. This is surprising
given that the IMLE objective does not explicitly contain any log-likelihood
term and training neural networks using maximum likelihood is considered a
difficult task [16].

At each IMLE iteration a sampling procedure takes place where a set of
L random input vectors (called latent variables) are drawn from the Normal
distribution zi ∼ N (0, σ2) and used for the computation of the synthetic samples
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sθ
i = Gθ(zi) (i = 1, . . . , L). Then, for each real data example xi (i = 1, . . . , N),

its representative sample rθ
i ∈ Sθ is computed via an application of the nearest

neighbor search (NNS) in Sθ based on Euclidean distance, i.e. rθ
i = NNS(xi, S

θ).
The generator parameters θ are updated in order to minimize the following IMLE
objective function:

θ̂IMLE = argminθ

n∑

i=1

||rθ
i − xi||22 (1)

IMLE training is summarized in Fig. 1. It is obvious that IMLE is very simple
to implement. Moreover, it does not suffer from mode collapse, vanishing gradi-
ents or training instability, unlike popular deep generative methods such as, for
example, GANs [7]. Mode collapses do not occur since the loss ensures that each
data example is represented by at least one sample. Gradients do not vanish
because the gradient of the distance between a data example and its representa-
tive sample does not become zero unless they coincide. Training is stable because
the IMLE estimator is the solution to a simple minimization problem. Finally,
it can be used both in the case of small and large datasets.

Fig. 1. (a) The data points are represented by squares and the samples by circles. (b)
For each data point the nearest sample is found. (c) Minimize the IMLE objective.
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Fig. 2. (a) IMLE general architecture. (b) IMLE clustering architecture.

3 Clustering Based on IMLE

In this work, we propose a modification of the IMLE method in order to achieve
not only synthetic data generation but also clustering of the original dataset X.
More precisely, we introduce two basic algorithmic modifications to the IMLE
framework namely: (i) a cluster-friendly sampling prior to generate random input
vectors zi and (ii) the two-stage nearest neighbor search algorithm to deter-
mine the representative sample rθ

i ∈ Sθ for a data point xi. The two issues are
explained below.

An important observation is that each data point x can be associated with the
input vector z that generated the representative sample rθ of x. Therefore, except
for the correspondence (x, rθ), the correspondence (x, z) (where rθ = Gθ(z))) can
be defined and it will be exploited in our clustering method.

3.1 Cluster Friendly Input Distribution

In the original IMLE method, the input random vectors z belong to a single
cluster since they are drawn from a multivariate m-dimensional Normal distri-
bution. However, it can be observed that, if the original data xi form distinct
clusters, the corresponding input vectors also demonstrate a clustering tendency
in the sense that similar data points xi correspond to input vectors zi that are
close.

Based on this observation, if we assume that the random input vectors are
drawn from a mixture model (i.e. from K distinct distributions), then a cluster-
ing of the original dataset X can be obtained: each data point xi can be assigned
to the cluster from which its corresponding input vector has been drawn. There-
fore in the proposed method, the single Normal distribution is replaced by K
non-overlapping distributions, with the k-th distribution responsible for the gen-
eration of the subset Zk of input vectors assigned to cluster k. The most obvious
first choice is a mixture of K m-dimensional Gaussian distributions. However,
this choice requires the specification of the centers and covariances of K Gaussian
distributions which are well separated.
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A more sophisticated mechanism for generating m-dimensional random vec-
tors that form K disjoint clusters has been proposed in [17], where input vector
z consists of two parts, i.e. z = (zc, zn). The first deterministic part zc which is
the one-hot encoding of the corresponding cluster, thus for K clusters the dimen-
sion of zc is equal to K. The second part zn is randomly drawn a p-dimensional
Gaussian distribution: zn ∼ N (0, σ2I). In addition, the standard deviation σ is
set to a small value like σ = 0.10 to ensure that the K clusters of random vectors
Zk do not overlap.

In summary, in order to generate an input vector z = (zc, zn) of cluster k,
we set zc equal to the one-hot encoding of k and draw zn from N (0, σ2I). By
sampling an equal number of vectors for each cluster k the set of random input
vectors Z is created at each iteration which is partitioned into disjoint subsets
Zk each one containing the random input vectors for cluster k (k = 1, . . . , K).
Additionally, since sθ = Gθ(z), the set Sθ of computed samples is partitioned into
K disjoint clusters Sθ

k . Consequently, the original dataset X can be partitioned
into K clusters by assigning each xi to the cluster of its representative rθ

i , i.e. if
rθ
i ∈ Sθ

k then xi is assigned to cluster k.

3.2 Two-Stage Nearest Neighbor Search for Determining Data
Representatives

As we already mentioned, for each data point xi, the IMLE method performs a
nearest neighbor search in the entire set of the generated samples Sθ to locate
the representative sample rθ

i ∈ Sθ that is used in the IMLE objective (Eq. 1).
We have empirically observed that clustering performance can be improved if we
modify this strategy in order to take into account that samples sθ are partitioned
into subsets Sθ

k .
To take this information into account, we first compute the centroid ck of

each subset Sθ
k . Then we assign a data point xi to the cluster l whose centroid

cl is nearest to xi based on Euclidean distance. Then instead of determining the
representative sample for xi through nearest neighbor search over the entire set
of samples Sθ, we confine the nearest neighbor search to the specific subset Sθ

l

that contains the samples of cluster l. Therefore, r̂θ
i = NNS(xi, S

θ
l ).

θ̂ := argminθ

n∑

i=1

||r̂θ
i − xi||22 (2)

The proposed IMLE clustering method is presented in the Algorithm1. Note
that the gradient-based updates can use any standard gradient-based learning
rule with the most popular choice being the Adam optimizer [10].
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Algorithm 1. IMLE clustering algorithm
Require: Data X, number of clusters K
1: Specify the network architecture Gθ, the number of samples L, the number of

iterations T
2: for t ← 1 to T do
3: Sample K clusters of random input vectors Z = {z1, ..., zL}, where z = (zn, zc).

Let Zk the subset corresponding to cluster k.
4: Generate samples {sθ

1, ..., s
θ
L}, where sθ

i = Gθ(zi). Let Sθ
k the subset correspond-

ing to cluster k.
5: For every Sθ

k compute the corresponding centroid ck.
6: For each xi find r̂θ

i with the two-stage nearest neighbor search.
7: Update the parameters θ of the generator network by descending its stochastic

gradient:

∇θ

n∑

i=1

||r̂θ
i − xi||22 (3)

8: end for
9: Find the final clustering by assigning each xi based on the nearest sample centroid

cl.
10: Return the final network parameters θ∗ and the clustering solution.

Table 1. Main characteristics of the tested datasets.

Dataset Instances Features Classes

Images

Fashion-Mnist 60000 784 10

Mnist 60000 784 10

Olivetti 400 4096 40

Tabular

10x 73k 73233 720 8

Australian 690 14 2

Dermatology 366 34 6

Ecoli 336 7 8

Iris 150 4 3

Pendigits 10992 16 10

Wine 178 13 3

4 Experiments

4.1 Datasets

In order to evaluate the proposed clustering method, several datasets have been
considered. More specifically, we have conducted experiments on three image
datasets and seven tabular datasets. In Table 1, we present the characteristics
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of the datasets used in our study. In all experiments, the number of clusters K
was set equal to the number of classes of each dataset. All data are normalized
in [0, 1].

– Fashion-MNIST [19] dataset consists 60,000 training samples of grayscale
images describing a fashion product. Each sample is a 784 image associated
with a label from ten classes.

– MNIST [12] dataset consists 60,000 training samples of grayscale images of
handwritten digits. Each sample is a 784 image and it is associated with a
label from ten classes.

– Olivetti [6] is a face database of 40 individuals with ten 4096 grayscale
images per individual. For some individuals, the images were taken at different
times, varying the lighting, facial expressions (open/closed eyes, smiling/not
smiling) and facial details (glasses/no glasses). All the images were taken
against a dark homogeneous background with the subjects in an upright,
frontal position (with tolerance for some side movement).

– 10x 73k [21] dataset consists of 73233 RNA-transcripts belonging to 8 dif-
ferent cell types. The 720 genes with the highest variances across the cells
were selected to reduce the data dimensionality. The data set is sparse, since
the data matrix has about 40% zero values.

– Australian [2] two-class dataset is composed of 690 credit card applications.
Each sample is described by 14-dimensional feature vector.

– Dermatology [2] six-class dataset is composed of 366 patient records that
suffer from six different types of the Eryhemato-Squamous disease. Each
patient is described by a 34-dimensional vector, containing clinical and
histopathological features.

– Ecoli [2] includes 336 proteins from the E.coli bacterium and seven attributes,
calculated from the amino acid sequences, are provided. Proteins belong to
eight categories according to their cellular localization sites.

– Iris [2] dataset contains three classes of 50 instances each, where each class
refers to a type of iris plant. Each sample is described by a 4-dimensional
vector, corresponding to the length and the width of the sepals and petals,
in centimeters.

– Pendigits [2] dataset consists of 10992 writing samples from 44 different writ-
ers, in total 10992 written samples. Each sample is a 16-dimensional vector,
containing pixel coordinates associated with a label from ten classes.

– Wine [2] tree-class dataset consists of 178 samples of chemical analysis of
wines. Each sample is described by a 13-dimensional feature vector.

4.2 Neural Network Architecture

The networks are trained using the Adam optimizer with learning rate n = 10−4

and coefficients b1 = 0.5 and b2 = 0.9. The dimension of zc is the set equal to the
number of classes in the dataset. We used Leaky Relu activations (LRelu) with
leak = 0.2 and Batch Normalization (BN) and we trained the generator for 2000
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Table 2. Network architecture for each dataset.

Dataset Input (zn, zc) Hidden {1, 2} Output

Images

Fashion-MNIST (10, 10) FC 256 LReLU BN FC 784 Sigmoid

MNIST (10, 10) FC 256 LReLU BN FC 784 Sigmoid

Olivetti (10, 40) FC 256 LReLU BN FC 4096 Sigmoid

Tabular

10x 73k (10, 8) FC 256 LReLU BN FC 720 Sigmoid

Australian (5, 2) FC 256 LReLU BN FC 14 Sigmoid

Dermatology (5, 6) FC 256 LReLU BN FC 34 Sigmoid

Ecoli (2, 8) FC 256 LReLU BN FC 7 Sigmoid

Iris (2, 3) FC 256 LReLU BN FC 4 Sigmoid

Pendigits (5, 10) FC 256 LReLU BN FC 16 Sigmoid

Wine (2, 3) FC 256 LReLU BN FC 3 Sigmoid

Table 3. Selected batch size per datasets.

Dataset Instances Batch size #Batches

Images

Fashion-Mnist 60000 1024 58

Mnist 60000 1024 58

Olivetti 400 400 1

Tabular

10x 73k 73233 1024 71

Australian 690 690 1

Dermatology 366 366 1

Ecoli 336 336 1

Iris 150 150 1

Pendigits 10992 1024 10

Wine 178 178 1

epochs for all datasets. The hidden layers are the same for all networks. It is
necessary to adjust the input and the output layers based on the given dataset.
The details of the network architectures are presented in Table 2. The number of
synthetic samples generated was chosen to be equal to twice the number of data
(L = 2N) in all cases. In Table 3 we present the selected batch size per dataset.
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4.3 Evaluation Metrics

It is necessary to mention that since clustering is an unsupervised problem, we
ensured that all algorithms are unaware of the true category of the data. In
order to evaluate the results of the clustering methods, we use the standard
evaluation metrics which assume that a ground truth clustering is available.
For all algorithms, the number of clusters is set to the number of ground-truth
categories [15] and assumes ground truth that cluster labels coincide with class
labels. The first evaluation metric is Clustering Accuracy (ACC):

ACC = max
m

n∑
i=1

I(yi = m(ci))

n
(4)

where I(x) = 1 if x is true and 0 otherwise, yi is the ground-truth label, ci

is the cluster assignment generated by the clustering algorithm, and m is a
mapping function which ranges over all possible one-to-one mappings between
assignments and labels. This metric finds the best matching between cluster
assignments from a clustering method and the ground truth. It is worth noting
that the optimal mapping function can be efficiently computed by the Hun-
garian algorithm [11]. The second evaluation metric is the Normalized Mutual
Information (NMI) defined as [4]:

NMI(Y,C) =
2 × I(Y,C)

H(Y ) + H(C)
(5)

where Y denotes the ground-truth labels, C denotes the clusters labels, I is the
mutual information metric and H the entropy.

4.4 Experimental Results

In our experimental study, the proposed IMLE clustering method was compared
in all datasets against k-means and the typical maximum likelihood clustering
method which is the Gaussian Mixture Model (GMM). It should be noted that
GMMs with diagonal covariance has been considered. Since all compared meth-
ods depend on initialization, we executed each algorithm 10 times with random
initialization and provide in Table 4 the average and standard deviation for ACC
and NMI.

It can be observed that the IMLE clustering approach outperforms the typical
methods in the case of large datasets with structured data (images) in most cases.
For small datasets, it is superior in some cases, while in the remaining cases it
demonstrates comparable performance. It should be emphasized that the method
does not necessarily require large datasets to be trained as happens with deep
clustering methods (like clusterGAN [17]) that cannot be employed to cluster
datasets with few data. This major advantage of our method is inherited from
the IMLE approach and makes the method applicable in all clustering problems.
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Table 4. Experimental results on several datasets. Bold numbers indicate the best
average performance for each dataset.

Dataset Algorithm ACC NMI

Images

IMLE clustering 0.56± 0.05 0.51± 0.02

Fashion-MNIST K-means 0.52 ± 0.02 0.47 ± 0.01

GMM 0.52 ± 0.02 0.48 ± 0.02

IMLE clustering 0.55± 0.02 0.48 ± 0.02

MNIST K-means 0.51 ± 0.03 0.48 ± 0.02

GMM 0.51 ± 0.03 0.49± 0.02

IMLE clustering 0.56± 0.03 0.77± 0.01

Olivetti-Faces K-means 0.52 ± 0.02 0.74 ± 0.01

GMM 0.35 ± 0.03 0.62 ± 0.03

Tabular

IMLE clustering 0.53 ± 0.03 0.49 ± 0.03

10x 73k K-means 0.54± 0.05 0.55 ± 0.04

GMM 0.54± 0.04 0.58± 0.01

IMLE clustering 0.77± 0.07 0.25± 0.14

Australian K-means 0.73 ± 0.13 0.23 ± 0.18

GMM 0.67 ± 0.11 0.12 ± 0.12

IMLE clustering 0.73± 0.05 0.80± 0.04

Dermatology K-means 0.68 ± 0.13 0.80± 0.06

GMM 0.70 ± 0.04 0.70 ± 0.04

IMLE clustering 0.56 ± 0.03 0.56 ± 0.03

Ecoli K-means 0.52 ± 0.05 0.56 ± 0.03

GMM 0.58± 0.08 0.60± 0.03

IMLE clustering 0.89 ± 0.01 0.74 ± 0.02

Iris K-means 0.82 ± 0.10 0.70 ± 0.05

GMM 0.92± 0.00 0.80± 0.00

IMLE clustering 0.70± 0.03 0.66 ± 0.03

Pendigits K-means 0.69 ± 0.04 0.69± 0.01

GMM 0.58 ± 0.03 0.58 ± 0.03

IMLE clustering 0.94± 0.01 0.82± 0.02

Wine K-means 0.92 ± 0.08 0.80 ± 0.08

GMM 0.94± 0.03 0.82± 0.06
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5 Conclusions

We have proposed a data clustering method that is based on training a generative
neural network using the technique of Implicit Maximum Likelihood Estimation
(IMLE). In IMLE a neural network is trained that takes as input random noise
and produces synthetic data similar to the data in the training set. We have
appropriately modified the IMLE method by combining the generative process
with a clustering procedure in order to perform clustering of the data in the
training set. The proposed method has provided good clustering results on sev-
eral datasets of various sizes and dimensionality.

Future research could focus on the detailed experimental investigation of the
performance of the method and its sensitivity to various parameters such as the
network architecture and the number of synthetic samples. Alternative mixture
distributions for the random inputs could also be examined. Finally, it would be
interesting to consider the use of a second neural network that will be trained
to implement the inverse mapping of the generator network, i.e. it will take a
synthetic sample as input and will provide as output the corresponding random
input vector.
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