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Abstract. In hydrology and water resources management problems the theoreti-
cal probability distribution functions are widely used with the aim of the empirical
probability function. However, it is difficult to exploit the probability functions in
case that algebraic operations between random variables are required. A solution
should be the motivation from the probability functions to fuzzy sets by using the
fuzzy estimators. Finally based on the possibility theory the authors conclude that
based on a probability distribution, a possibility distribution with the maximum
specificity can be produced, that is near to the probability measure. The Recon-
naissance Drought Index (RDI) was proposed to assess meteorological drought
severity based on the precipitation to potential evapotranspiration ratio (P/PET).
However it is difficult to express the bivariate probability density function for this
ratio. Hence based on the fuzzy estimators, the analysis can be concluded to fuzzy
sets, and the extension principle of fuzzy sets can provide the required ratio as
fuzzy sets.

Keywords: Reconnaissance Drought Index (RDI) · Drought · Theoretical
probability density function · Normal distribution · Possibility distribution ·
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1 Introduction

In hydrology and water resources management problems the theoretical probability
distribution functions are widely used. An advantage of the probabilistic approach, as
a choice to deal with the uncertainty, is the exploitation of the cumulative empirical
(observed) probability distribution in order to test the goodness-of-fit for an examined
theoretical probability distribution with respect to the historical sample [1].

The use of theoretical probability distribution instead of the empirical function arises
from the fact that historical sample contains no many years (e.g. 40 years in Greece)
whilst an event with higher return period can be included within the sample and hence,
finally, probability density function are used.
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However, it is difficult to exploit the probability functions in case that algebraic
operations between random variables are required. This is very useful, since the proba-
bility associated with the precipitation to potential evapotranspiration ratio (P/PET) can
provide a useful information about the severity of drought.

The Reconnaissance Drought Index (RDI) can be characterized as a general mete-
orological index for drought assessment [2–4] with many applications. Compared with
the SPI index it incorporates both precipitation and potential evapotranspiration, which
are directly affected by climate change [3]. Also a strong advantage of RDI is that it
offers a rational comparison of drought conditions between areas with different climatic
characteristics [4]. Vangelis et al., 2011 [4] proposed a rather probabilistic approach
to characterize the drought whilst the majority of the Reconnaissance Drought Index
(RDI) applications used mainly simple algebraic operations. The approach of [4] can be
applied only in case that normal distribution is used.

In this work a correspondence between the fuzzy sets and theoretical probability
function is proposed and furthermore, this assumption is applied in order to estimate the
severity of drought based on both the precipitation and the potential evapotranspiration.

Compared with work of Papadopoulos et al., 2021 [5] instead of the estimation of the
mean and the standard deviation of the examined hydrological variable, here the direct
transformation from probabilistic to fuzzy sets is developed.

2 Fuzzy Methodology

2.1 Fuzzy Sets

In general, if A is a function from U into the interval [0, 1], then A is called a fuzzy set.
A is convex if and only if, for every t ∈ [0, 1] and x1, x2 ∈ X it holds:

A(tx1 + (1 − t)x2) ≥ min{A(x1),A(x2)} (1)

A is normalized if there exists x ∈ X , such that A(x) = 1. If A is a fuzzy set, by
α-cuts a ∈ (0, 1] we define the crisp sets:

A[α] = {x ∈ X : A(x) ≥ α} (2)

Considering the 0-cut, this can be defined as previously (Eq. 2), without the equal-
ity, that is, the zero-cut contains all the elements of the general set X, which have a
membership function greater than zero.

A special kind of fuzzy sets is the fuzzy numbers. The definition of fuzzy numbers
can be found in Klir and Yuan, 1995 [6]. It is proved that the membership function of a
fuzzy number can be expressed as:

A(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 for x < ω1

AL(x) for ω1 ≤ x ≤ α1

1 for α1 ≤ x ≤ α2

AR(x) for α2 ≤ x ≤ ω3

0 for x > ω3

(3)
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where AL : [ω1, a1] → [0, 1] and AR : [a2, ω2] → [0, 1] are the left and right mem-
bership functions of the fuzzy number A. In addition, AL is increasing and continuous
from the right, and AR is decreasing and continuous from the left [6].

The interval [α1, α2] can be an interval or a point but it can not be an empty set.
Let now A and B denote fuzzy numbers and let * denote any of the four basic

arithmetic operations. Then, we define a fuzzy set on �, A*B, by defining its α-cut,
(A ∗ B)[a] as:

(A ∗ B)[a] = A[a] ∗ B[a] for any a ∈ [0, 1]. (4)

Among the binary arithmetic operations between the α-cuts, the interval arithmetic is
applied. Here, from the fuzzy algebra we use the division and the subtraction operations

[α, β] − [c, d] = [α − d, β − c] (5)

[α, β]/[c, d] = [α, β] ·
[
1

d
,
1

c

]

(6)

and

[α, β] · [
c′, d′] = [

min
(
αc′, αd′, βc′, βd′), max

(
αc′, αd′, βc′, βd′)] (7)

Finally, in conjunctionwith the fuzzy decomposition theorem, the following equation
holds for all the fuzzy sets of the fuzzy operation (e.g. [6, 7]):

A ∗ B = ∪α(A ∗ B) (8)

In fact, we select a significant discrete number of α-cuts, and thus, the Eq. (4) can
be effectively approximated.

The question between the fuzzy sets and its relationwith the conventional probability
theory can be found in the field of possibility theory.

2.2 Fuzzy Estimators

Let X be a variable which takes values in a universe U and N a fuzzy set of U. Then the
truth value of the fuzzy proposition “X is N” when X = u, u ∈ U is defined as the value
N(u) of the membership value of the fuzzy set N (see [8]),

Therefore, the fuzzy proposition “X is N” associates the variable Xwith a possibility
distribution. The possibility distribution function associated with X is denoted by πX

and is defined to be the membership function μN of N.

ΠX ≡ μN

So, the possibility ΠX (u) that X = u is postulated to be equal to the value μN (u) of
the membership function of N at u,

ΠX (u) = μN (u)
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Definition 1. The possibility measure or simply the possibility of a subset A ⊂ U for a
possibility distribution ΠX associated with the variable X with universe U is defined as
the supremum of the possibilities of its elements (see [8, 9]).

ΠX (A) = sup{ΠX (u), u ∈ A} (9)

In the case of finite sets, the possibility measure is the maximum of the possibilities
of its elements

ΠX (A) = max{ΠX (u), u ∈ A} (10)

The degree of necessity of A for the possibility distribution ΠX is defined as (see
[9]),

NessX (A) = 1 − ΠX
(
A′) (11)

According to Zadeh [10] from this definition follows that NessX (A) is a measure of
its “certainty”. According to [9]:

Proposition 1. For a continuous possibility distribution ΠX for which

ΠX (u) = 1 ↔ u = u0, u0 ∈ U

(the possibility distribution functionΠX is a triangular shaped fuzzy number), the degree
of necessity of the α-cut ΠX [α] of the possibility distribution function ΠX , is 1−α,

NessX (ΠX [α]) = 1 − α, α ∈ [0, 1] (12)

According to [9]:

Definition 2. A possibility distributionΠX for a variable X is defined as consistent with
the probability distribution ΠX of X, if and only if the possibility ΠX (A) of any subset
A of the universe U of X is greater or equal to its probability ΠX (A),

ΠX (A) ≥ pX (A), ∀A ⊆ U (13)

This inequality is refereed as consistency principle.

Definition 3. A possibility distribution Π∗
X consistent with the probability distribution

PX is defined as maximally specific if it is more specific than any possibility distribution
ΠX consistent with the probability distribution PX , that is, if

Π∗
X(x) < ΠX (x), ∀x ∈ U (14)

If the possibility distribution ΠX is consistent with the probability distribution PX , then
according to (13) the possibility ΠX

(
A′) of the complement A′ of any subset A of U fis

greater or equal to the probability of A′, so because of (11).

pX
(
A′) ≤ ΠX

(
A′) ↔ 1 − pX (A) ≤ 1 − NessX (A) ↔ pX (A) ≥ NessX (A) (15)

Therefore because of (13):
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Proposition 2. For a possibility distribution ΠX consistent with the probability distri-
bution PX of a variable X, the probability pX (A) of any subset A of the universe of X is
greater or equal to its necessity NessX (A) and less or equal to its possibility,

NessX (A) ≤ pX (A) ≤ ΠX (A) (16)

From Proposition 1 and (16) follows that:

Proposition 3. If the possibility distribution function ΠX of a possibility distribution
ΠX consistent with the probability distribution PX is a triangular shaped fuzzy number,
then the probability of its α-cut is greater or equal to 1−α,

P(ΠX [α]) ≥ 1 − α (17)

so the α - cuts of ΠX are confidence intervals of X of degree of confidence greater or
equal to 1−α.

Let X a continuous random variable with universe U, unique mode m, probability
density pX (u), symmetric about m and distribution function FX and X̃ ∗ ⊆ U a fuzzy
subset of U with membership functionμX∗(u), u ∈ U , the α - cuts of which are intervals
in which the probability of a value of X is 1−α. If F−1

X (α), 0 ≤ α ≤ 1 the inverse
distribution function of X, then it holds that [11]:

P
(
F−1
X

(α

2

)
< X < F−1

X

(
1 − α

2

))
= FX (F−1

X

(
1 − α

2

)
− FX (F−1

X

(α

2

)

= 1 − α

2
− α

2
= 1 − α (18)

Therefore the α - cuts of the fuzzy set X̃ ∗ are

X ∗[α] =
[
F−1
X

(α

2

)
,F−1

X

(
1 − α

2

)]
, 0 ≤ α ≤ 1 (19)

According to [9]:

Proposition 4. The possibility distribution ΠX̃ ∗ induced by the fuzzy proposition “X is
X ∗”, the possibility distribution function of which ΠX ∗(x) is the membership function
μX∗(x) of X̃ ∗ with α - cuts given in (19), is consistent with the probability distribution
PX , that is, it satisfies the consistency principle.

ΠX ∗(A) > pX (A),∀x ∈ U (20)

The fuzzy set X̃ ∗ is called fuzzy estimator of X.
Also, if the probability density pX (x) of X is symmetric about the mode, then the

intervals of (18) are the shortest intervals in which the probability to find a value of X
is 1−α. Therefore, for any possibility distribution ΠX consistent with the probability
distribution PX it is true that

ΠX (x) > ΠX
∗(x),∀x ∈ U (21)
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In this case, ΠX̃ ∗ is the most specific possibility distribution consistent with the
probability distribution PX and the fuzzy set X̃ ∗ is called fuzzy estimator of maximal
specificity of X. Therefore, the triangular shaped fuzzy number X̃ ∗ which is produced
putting one above the other the confidence intervals in which a value of X is found with
a given probability is estimator (of maximal specificity) of X.

It is true that (FX (x) the distribution function of X).
for x ≤ m,

x = F−1
X (

α

2
) ↔ α

2
= FX (x) ↔ α = 2FX (x) (22)

for x > m,

x = F−1
X (1 − α

2
) ↔ 1 − α

2
= FX (x) ↔ α = 2(1 − FX (x)) (23)

so the membership function of the fuzzy set X̃ ∗ is

μX̃ ∗(x) =
{
2FX (x), x ≤ m
2(1 − FX (x)), x > m

(24)

where FX (x) the distribution function and m the mode of X. Therefore:

Proposition 5. Themembership function of the fuzzy estimator X̃ ∗ of a random variable
X, the α - cuts of which are given in (19), is

Π∗
X (x) = μX̃ ∗(x) =

{
2FX (x), x ≤ m
2
(
1 − FX (x)

)
, x > m

(25)

From Proposition 1 follows that the degree of necessity of the α - cuts of the fuzzy
number X̃ ∗ of (19) is 1−α,

Ness
(
X̃ ∗[α]

)
= 1 − α (26)

Also because of (18) and (19), the probability of finding X in the α - cut X̃ ∗[α] of
X̃ ∗ is

P
(
X̃ ∗[α]

)
= 1 − α (27)

so:

Proposition 6. The degree of necessity of the α - cuts of the fuzzy estimator X̃ ∗ defined
by (19) is equal to its probability,

Ness
(
X̃ ∗[α]

)
= P

(
X̃ ∗[α]

)
= 1 − α (28)

so that the α-cuts of are confidence intervals of X of degree of confidence 1−α.



Creating a Bridge Between Probabilities and Fuzzy Sets 35

Definition 4. As fuzzy estimator X̃ of a random variable X is defined any fuzzy number
such, that the possibility distribution ΠX induced by the fuzzy proposition “X is X̃ ” to
be consistent with the probability distribution PX of X.

The membership function μX̃ ∗(x) of the fuzzy estimator X̃ ∗ of X (or the possibility
distribution function ΠX̃ ∗(x)) is below the membership function μX̃ (x) of any other
fuzzy estimator X̃ of X (any possibility distribution function ΠX consistent with the
probability distribution PX ), i.e.

μ
X̃ ∗(x) ≤ μ

X̃
(x),∀x ∈ U (29)

or equivalently the α-cuts of the fuzzy estimator X̃ ∗ are subsets of the α - cuts of any
other fuzzy estimator X̃ , i.e.

X̃ ∗[α] ⊆ X̃ [α],∀α ∈ [0, 1] (30)

Consequently, the intervals X̃ [α] are wider than X̃ ∗[α], so that according to
Propositions 3 and 6 it is true that:

Proposition 7. The probability of the α-cuts X̃ [α] of any fuzzy estimator X̃ of X is
greater or equal to 1−α.

So, the α - cuts X̃ [α] re confidence intervals of X of degree of confidence greater or
equal to 1−α. Especially, the α - cuts X̃ ∗[α] of the fuzzy estimator X̃ ∗ are confidence
intervals of X of degree of confidence 1 −α.

The Definition 4 and the Proposition 7 have no value for a random variable with
known probability distribution, since for this there is the fuzzy estimator of maximal
specificity X̃ ∗ with α - cuts given in (19), but they are useful in cases of random variables
for which is not easy to find the probability distribution, as presented in next section.

Example 1. We plot the membership function of the fuzzy estimator of maximal

specificity ˜Prec
∗
of a normal variable Prec (precipitation) with mean

m = 360.15 mm and standard deviation s = 111.4 mm.
Since the probability density of the normal distribution is symmetric about the mode,

according to Proposition 4, the α - cuts of the fuzzy estimator of maximal specificity
˜Prec

∗
of Precipitation are given by (19)

Prec∗[α] = [F−1
Prec

(α

2
;m, s

)
,F−1

Prec

(
1 − α

2
;m, s

)
], 0 ≤ α ≤ 1 (31)

where F−1
Prec(α;m, s)], 0 ≤ α ≤ 1 the inverse distribution function of Prec (normal

distribution with mean m and standard deviation s). Implementing the α - cuts of (21),
in Fig. 1 the membership function of the fuzzy estimator P̃rec

∗
is plotted, where FPrec

the distribution function of Prec.
Hence, with the use of the fuzzy estimator of maximal specificity random variable

X*, a bridge between the probabilities and the fuzzy sets can be achieved.
If a random variable Y is a function of the random variables X1,X2, . . . ,X n, which

take values in the universe U (Y = g(X1,X2, . . . ,X n)), then from the fuzzy proposition
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Fig. 1. The fuzzy estimator of maximal specificity random variable Prec*, in case that the
precipitation is normally distributed.

(Ỹ ∗ is a fuzzy number with α - cuts the intervals of (19) for the inverse distribution
function of Y).

Ŷ is Ỹ ∗′′

is induced the possibility distribution Πϒ̃∗ for which according to Proposition 3 is true
that:

Proposition 8. Let Π∼
ϒ

∗ the possibility distribution induced by the fuzzy proposition “Y
∧

is Ỹ ∗” which has as possibility distribution function Π∼
ϒ

∗(y) the membership function

μỸ ∗(y) of Ỹ ∗, the α - cuts of which (according to (19) with FY the distribution function
of Y) are

Π∼
ϒ

∗ [α] = Ỹ ∗[α] =
[
F−1
Y (

α

2
),F−1

Y (1 − α

2
)
]
, 0 ≤ α ≤ 1, (32)

Πϒ̃∗ is consistent with the probability distribution PY, i.e. it satisfies the consistency

principle (20), so Ỹ
∗
is a fuzzy estimator of Y.

Also, if the probability density pY(y) of Y is symmetric about the mode, then accord-
ing to Proposition 3 Πϒ̃∗ is the most specific possibility distribution consistent with the

probability distribution PY and the fuzzy set Ỹ
∗
is called fuzzy estimator of maximal

specificity of Y.
If the probability density pY (y) of Y is not known, then the membership function of

the fuzzy estimator of maximal specificity Ỹ ∗ of Y can not be found.
Even if the probability distributions of these randomvariables are known, in general it

is difficult to determine the combined probability distribution.A choice is to use the fuzzy
transformation, based on the concept of fuzzy estimator of maximal specificity random
variable X*. Hence by exploiting the extension principle, the shape of the dependent
variable Y can be determined. In such cases another fuzzy estimator of Y is constructed
as follows [11]:
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Proposition 9. The α - cuts of a fuzzy estimator Ỹ of the variable.
Y = g(X1,X2, . . . ,X n) are

Ỹ [α] = g
(
X̃ ∗
1 [α], X̃

∗
2 [α], . . . , X̃

∗
n [α]

)
(33)

where

X̃ ∗
i [α] =

[
F−1
i (

α

2
),F−1

i (1 − α

2
)
]
, i = 1, 2, . . . , n, 0 ≤ α ≤ 1

the α - cuts of the fuzzy estimators X̃ ∗
i ofXi andF−1

ι (α) the inverse distribution functions
of Xi.

The α - cuts Ỹ [α] are confidence intervals of Y of degree of confidence greater or
equal to 1−α.

2.3 Proposed Methodology

Step 1: The annual precipitation and the annual potential evapotranspiration are
calculates for each meteorological station.

Step 2: The individual theoretical probability distribution function is examined for
both the precipitation and the potential evapotranspiration. Statistical tests can be used
to check the suitability of the used theoretical probability density function. In this work
the normal probability were used.

Step 3: By using the individual fuzzy estimators of maximal specificity regarding
random variable, we translate the information into fuzzy sets regarding the annual pre-
cipitation and the annual evapotranspiration. Practically the fuzzy sets can be achieved
by using a significant number of α-cuts.

Step 4: The extension principle is used in order to find the α-cuts of the annual
precipitation to potential evapotranspiration ratio. This will be the fuzzy estimator:

Ỹ [a] = ˜Prec
∗[a]

˜PET
∗[a]

(34)

where

˜Prec
∗
[α] =

[
F−1
i (

α

2
),F−1

i (1 − α

2
)
]
, ˜PET

∗
[α] =

[
F−1
i (

α

2
),F−1

i (1 − α

2
)
]

(35)

3 Application and Discussion

For the application of the proposed methodology the data of annual precipitation and
average monthly temperature from four meteorological stations in Greece were used
(Helliniko (Athens), Larissa, Heraklion and Naxos were used. Monthly values of PET
were then calculated using the Hargreaves method, a method based on average monthly
temperatures [4, 12].
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According to [4] the Aridity Index is calculated 0.34 for Helliniko (Athens), 0.33
for Larissa, 0.47 for Heraklion and 0.42 for Naxos. The aridity index equals to mean
precipitation to potential evapotranspiration ratio. Both the precipitation and the potential
evapotranspiration are normally distributed regarding the examined samples [4].

Let us study the Naxos meteorological station. Assuming that the random variables
Precipitation (Prec) and PET follow normal distributions.

Prec ∼ N (m1, s1) and PET ∼ N (m2, s2)

where m1 = 360.15, s1 = 111.40 and m2 = 854.83, s2 = 29.85.
By using the individual fuzzy estimator of maximal specificity and the fuzzy arith-

metics according to Proposition 9, the α - cut of the fuzzy estimator
∼
Y of the random

variable: Y = Prec
PET is formulated as follows:

Ỹ [a] = ˜Prec
∗
[a]

˜PET
∗
[a]

=
[
F−1

(
α
2 ;m1, s1

)
,F−1

(
1 − α

2 ;m1, s1
)]

[
F−1

(
α
2 ;m2, s2

)
,F−1

(
1 − α

2 ;m2, s2
)]

=
[

F−1
(

α
2 ;m1, s1

)

F−1
(
1 − α

2 ;m2, s2
) ,

F−1
(
1 − α

2 ;m1, s1
)

F−1
(

α
2 ;m2, s2

)
,

]

(36)

whereF−1(α;m1, s1) andF−1(α;m1, s1) the inverse distribution functions of the normal
random variables Prec and PET. Hence, by using a significant number of α-cuts the fuzzy
number can be constructed as in Fig. 2.

This procedure is repeated for eachmeteorological station and the results are depicted
in Fig. 2.

Fig. 2. The fuzzy estimator of the ration Prec/PET regarding the four examined stations.
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A similar behavior can be considered in case of both the Hellinikon and the Larisa
station. As it is descripted in the theoretical part of the manuscript the transformation
from probability to fuzzy is achieved by using the fuzzy estimator of maximal specificity.
By exploiting these individual fuzzy estimator of maximum specificity a fuzzy estimator
of the ration Prec/PET can be achieved.

Unfortunately this cannot be considered as the fuzzy estimator of maximum speci-
ficity for the examined ratio. However the proposed methodology based on Eq. (36) can
be applied for several probability distributions and not only for normal distributions as
in [4] (as an approximation). The conventional thresholds of drought levels can be used
also in the proposed possibilistic formulation based on the following approximation: the
α-cuts corresponds to the 1−α cumulative probability with the lower and upper tails of
the 1−α confidence interval. The correspondence based on the probability threshold of
the extreme hydro meteorological analysis, that is, without the dry and the wet phenom-
ena (e.g. [2, 3]) and the corresponding possibilistic approach via α-cuts are shown in
Table1:

Table 1. Correspondence between probability levels and α-cut regarding the Naxos station

Description Probability (1−α) % α-cuts

Without extremely phenomena 95.4% [0.151, 0.732]

Without severe or more extreme cases 86.6% [0.215, 0.651]

Without moderate or more extreme cases 68.2% [0.281, 0.571]

4 Concluding Remarks

In hydrology and water resources management problems the theoretical probability
distribution functions are widely used with the aim of the empirical probability func-
tion. However, it is difficult to exploit the probability functions in case that algebraic
operations between random variables are required. A solution should be the motivation
from the probability functions to fuzzy sets by using the fuzzy estimators. Based on
the Possibility and the Necessity measures theory the authors conclude that based on
a theoretical probability distribution we can move to the possibility distribution with
the maximum specificity, near to the probability measure. The Reconnaissance Drought
Index (RDI) was proposed to assessmeteorological drought severity based on the precip-
itation to potential evapotranspiration ratio (Prec/PET). However it is difficult to express
the bivariate probability density function for this ratio. Hence based on the fuzzy estima-
tors, the analysis can be concluded to fuzzy sets, and the extension principle of fuzzy sets
can provide the ratio as fuzzy sets. Unfortunately this approach cannot be considered as
the fuzzy estimator of maximum specificity but it can be seen as a first approximation.
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