
Hybrid (CPU/GPU) Exact Nearest
Neighbors Search in High-Dimensional

Spaces

David Muhr1,2(B) and Michael Affenzeller2,3

1 BMW Group, Steyr, Austria
david.muhr@bmw.com

2 Johannes Kepler University, Linz, Austria
3 University of Applied Sciences Upper Austria, Hagenberg, Austria

Abstract. In this paper, we propose a hybrid algorithm for exact near-
est neighbors queries in high-dimensional spaces. Indexing structures
typically used for exact nearest neighbors search become less efficient
in high-dimensional spaces, effectively requiring brute-force search. Our
method uses a massively-parallel approach to brute-force search that effi-
ciently splits the computational load between CPU and GPU. We show
that the performance of our algorithm scales linearly with the dimen-
sionality of the data, improving upon previous approaches for high-
dimensional datasets. The algorithm is implemented in Julia, a high-
level programming language for numerical and scientific computing. It is
openly available at https://github.com/davnn/ParallelNeighbors.jl.

Keywords: Nearest neighbors · GPU · CPU · Exact · Hybrid · k-NN

1 Introduction

The k-nearest neighbors algorithm (k-NN) identifies, for a given query, the k
most similar samples from a reference set. It has been applied in a broad range
of applications in information retrieval and data mining, for example, in pattern
classification [10], regression [33] and outlier detection [29]. k-NN is computa-
tionally intensive since every query involves the comparison to all the elements
in the reference set. The computational complexity of a single nearest neigh-
bors query with Euclidean distance is O(nd), where n refers to the number
of examples and d to the dimensionality of the dataset [21]. When the size of
the reference set is large or a large number of queries need to be solved, the
execution time may become unacceptably high. In low-dimensional spaces, the
complexity of exact neighbors queries can be reduced using various indexing
structures, as studied in [21], for example. However, in high-dimensional spaces,
index searches typically become more exhaustive, where a k-NN query for a given
point needs to search through a large fraction of the points in the reference set
[38]. Thus, index search largely becomes ineffective in higher dimensional spaces

c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
I. Maglogiannis et al. (Eds.): AIAI 2022, IFIP AICT 647, pp. 112–123, 2022.
https://doi.org/10.1007/978-3-031-08337-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08337-2_10&domain=pdf
http://orcid.org/0000-0003-2350-3228
http://orcid.org/0000-0001-5692-5940
https://github.com/davnn/ParallelNeighbors.jl
https://doi.org/10.1007/978-3-031-08337-2_10

Hybrid Nearest Neighbors Search in High-Dimensional Spaces 113

and may even degrade performance relative to a brute-force search because the
index search incurs some degree of overhead. To address the challenge of nearest
neighbors searches in high-dimensional spaces, we propose a massively parallel
algorithm that combines the computational capabilities of a central processing
unit (CPU) with that of a graphical processing unit (GPU) to enable efficient
brute-force search in high-dimensional data.

The rest of this paper is organized as follows. Section 2 presents the related
work and techniques used for nearest neighbors search. In Sect. 3, we describe
the proposed algorithm in detail, explain the implementation, and highlight our
contributions. Section 4 shows how the algorithm scales in comparison to other
widely used implementations. In Sect. 5, we summarize our findings and describe
possible future research directions.

2 Related Work

Various techniques have been proposed for nearest neighbors search (mostly in
metric spaces) encompassing (1) hierarchical methods, (2) pivot-based methods
and (3) compression-based methods. Hierarchical methods typically use some
form of tree structure to partition the search space. Notable examples include
the k-d tree and its variants and the R-tree and its variants. The k-d tree uses
binary space partitioning to statically organize k-dimensional points [4]. R-trees,
on the other hand, divide space into minimum bounding rectangles, such that
regions can intersect and form a hierarchy [16]. Pivot-based approaches store pre-
computed distances to a set of so-called pivot points. Using the pre-computed
distances and the triangle inequality, it is possible to exclude points from fur-
ther consideration. The most prominent examples of pivot-based approaches are
AESA [36] and LAESA [26]. AESA uses the full pairwise distance matrix of
the reference set, and LAESA uses the pairwise distances to a set of chosen pivot
points. Compression-based methods use some form of quantization and lower-
bounding to achieve exact nearest neighbors search in more compact spaces. An
example of a compression method is the VA-file [37] and its variants, which
uses scalar quantization to organize the search space into a grid of cells enabling
filtering of points that cannot be near the query. Algorithms that combine dif-
ferent aspects exist as well; for example, trees that use pivot points [35], or trees
that use compression ideas [5].

A problem inherent with all of the mentioned techniques is that they rapidly
decline in performance once the dimensionality of the dataset increases. In fact,
under some assumptions regarding the data distribution, even an optimal index
structure will, as dimensionality increases, always degenerate to visiting the
entire data set [38]. For example, Kibriya and Eibe [21] empirically show that
the classical tree variants generally become worse than brute-force search for
datasets with more than 16 dimensions. More recently proposed methods also
suffer from the curse-of-dimensionality as shown, for example, in [15] or [22].

An approach to tackle the curse-of-dimensionality is to rely on a brute-force
search of the data and use parallelization to speed up the search. A benefit of

114 D. Muhr and M. Affenzeller

such an approach is that it can be used for non-metric spaces, as it does not
rely on any assumptions about the distance function being used. Paralelliza-
tion methods include shared-nothing architectures such as MapReduce [13]
(e.g. [23]), distributed-memory architectures such as MPI [9] (e.g. [2]), shared-
memory architectures such as OpenMP [11] (e.g. [39]) and massively-parallel
architectures such as GPGPU [24]. The brute-force GPGPU methods mainly
differ in the selection of the k smallest elements from every row in the distance
matrix, a problem we describe as k-selection. Tang et al. [34] identify three major
variants to solve the k-selection problem. A näıve approach is to sort the list and
then select the k first values in the sorted list (e.g. [3]). However, this method
does unnecessary work when the sorted distances are not repeatedly used. A
more efficient approach is to partially sort the distances only up to the first k
values (e.g. [31]). Another option is to use selection algorithms instead of sorting
(e.g. [1]), which recursively divide the distances into groups.

3 Algorithm

The primary motivation for our approach is to explore the combination of CPU-
based shared-memory parallelism and the GPGPU paradigm to address the
curse-of-dimensionality in nearest neighbors search. We propose a generic inter-
face to solve high-dimensional k-NN queries and split the problem into distance
computation and k-selection. Using the Julia programming language [7], multiple
dispatch allows us to generically implement distance computation and k-selection
approaches based on abstract types, which get just-in-time compiled for the con-
crete, user-provided subtypes. Distance computation is performed on the GPU,
which we refer to as the device, and k-selection is asynchronously performed
on the CPU, which we refer to as the host. The parallelization of the distance
computation on the device and the k-selection on the host is made possible
through batching strategies. Batching is necessary for two reasons: (1) device
memory is typically highly restricted, and not all points in the reference and
query sets might fit in device memory, and (2) we can asynchronously compute
the k-selection of batch n while we calculate the distances for batch n + 1; thus,
we can overlap computations and achieve better resource utilization. Our app-
roach enables nearest neighbors search for datasets that do not fit in memory,
and work is efficiently distributed between CPU and GPU. For simplicity, we
assume that the dataset initially resides in host memory, but the algorithm itself
does not make assumptions about the input data location.

3.1 Distance Computation

Most of the literature on similarity search and nearest neighbors search is con-
cerned with metric spaces. A metric δ is required to be non-negative δ(x, y) ≥ 0,
identical δ(x, y) = 0 ⇔ x = y, symmetric δ(x, y) = δ(y, x) and triangular
δ(x, y) + δ(y, z) ≥ δ(x, z). However, with the increasing complexity of data enti-
ties across various domains, many distances are used that are not metrics [32].

Hybrid Nearest Neighbors Search in High-Dimensional Spaces 115

Relaxing the last three axioms, for example, leads to the notion of a premetric,
i.e. a distance function satisfying only the non-negative and identical axioms.
Because a brute-force approach does not rely on assumptions about the used
distance function, we can use any metric or non-metric distance function. Fur-
thermore, our high-level interface allows researchers to implement such distance
functions without any knowledge of the underlying GPU platform. For the pur-
pose of evalution, we use the popular Euclidean metric given by

d(ri, qj) =
√

||ri − qj ||2. (1)

The square of the distance metric can be written as

d2(ri, qj) = ||ri − qj ||2
= (ri − qj)�(ri − qj)

= r�
i ri + q�

j qj − 2r�
i qj

= ||ri||2 + ||qj ||2 − 2r�
i qj .

(2)

for all i ∈ {1, 2, . . . , N} and j ∈ {1, 2, . . . ,M} where N is the number of reference
points and M is the number of query points. If we now assume that the points in
both sets are of dimensionality D and define the reference set as a matrix RN×D

and the query set as a matrix QM×D, we can formulate the pairwise Euclidean
distance matrix as

D =
√

−2R�Q +
r

||R||2 +
c

||Q||2. (3)

where || · ||2 is the row-wise squared vector norm, +r is the row-wise addition,
+c is the column-wise addition and

√· is the element-wise square root. For
the computationally expensive dense matrix multiplication, it is common to
use optimized libraries such as cuBLAS1, clBLAS2 or MAGMA3. Because our
implementation is based on the Julia programming language, we can implement
such a distance kernel generically based on the notion of an abstract matrix type.
Depending on the user-provided matrix, for example, a CUDA-specific subtype,
the computation is dispatched on that subtype and just-in-time compiled, which
might, for example, invoke a cuBLAS call for the matrix multiplication. Thus,
our implementation can support different devices without code specific to the
device platforms through multiple dispatch, and the JuliaGPU project [6].

3.2 k-Selection

As mentioned previously, the GPU-based methods mainly differ in the k-selection
process. In our case, we choose to remove the k-selection process from the GPU
entirely and instead perform the computation asynchronously on the CPU. The

1 https://nvidia.com.
2 https://gpuopen.com.
3 https://icl.cs.utk.edu/magma/.

https://nvidia.com
https://gpuopen.com
https://icl.cs.utk.edu/magma/

116 D. Muhr and M. Affenzeller

motivation for using the GPU for distance computations and the CPU for sort-
ing is based on the observation that dense matrix operations are much faster on
the GPU than on the CPU [18,20,40] and that it is much more difficult to sig-
nificantly outperform CPU-based sorting on the GPU [14,30]. As with distance
computations, our approach is generic enough to use arbitrary k-selection pro-
cedures, but for the purpose of evaluation, we use the popular partial quicksort
algorithm. Quicksort works by selecting a pivot element from the array and par-
titioning the other elements into two sub-arrays depending on whether they are
smaller or larger than the pivot. The sub-arrays are then sorted recursively [17].
There is no need to recursively sort partitions that only contain elements that
would fall after the k-th place in the final sorted array in the partial quicksort
variant. Thus, if the pivot falls in position k or later, the recursion only takes
place on the left partition [25].

3.3 Batching

Recall that a k-nearest neighbors query identifies the k most similar samples
from a reference set R. Of course, there can also be multiple queries, which we
refer to as the query set Q. Because every point q ∈ Q is associated with a
distance to every point r ∈ R, a trivial batching approach would be to only
batch the points in Q and load the entire reference set on the device. We call
this approach Q-batch. Q-batch requires only a single k-selection step for each
point in Q, because the distances from a single query point to all reference points
are known after the distance computation for a batch is complete. The following
figures show the distance computation (Fig. 1) and k-selection (Fig. 2) process
using the Q-batch methodology. For simplicity, we ignore the memory transfer
between host and device before each batch in the visualizations.

Fig. 1. Exemplary distance computation of three-dimensional points using Q-batch
with a batch size of 2 where r(i, ·) is a point in the reference set, q(j, ·) is a point in
the query set and d(j, i) refers to the distance from point q(j, ·) to r(i, ·).

A problem with the Q-batch approach is that the full reference set must be
on the device, which may not be feasible depending on the size of the reference

Hybrid Nearest Neighbors Search in High-Dimensional Spaces 117

Fig. 2. Exemplary k-selection using Q-batch with a batch size of 2. Note that the
selection process happens asynchronously on the host. The exemplary 1-nearest neigh-
bors are marked with a red rectangle, thus the final nearest neighbors would be
q(1) → r(1), q(2) → r(3) and q(3) → r(2). (Color figure online)

set. A more generic approach is to batch the points in Q and R separately, given
a batch size B, which yields a distance matrix that is at most of size B × B.
We call this approach QR-batch and conceptually show in how it differs from Q
batch in distance computation (Fig. 3) and k-selection (Fig. 4).

Fig. 3. Exemplary distance computation of three-dimensional points using QR-batch
with a batch size of 2 where r(i, ·) is a point in the reference set, q(j, ·) is a point in
the query set and d(j, i) refers to the distance from point q(j, ·) to r(i, ·).

The implementation of the algorithms is open-source and available online; it
can be found at https://github.com/davnn/ParallelNeighbors.jl.

https://github.com/davnn/ParallelNeighbors.jl

118 D. Muhr and M. Affenzeller

Fig. 4. Exemplary k-selection using QR-batch with a batch size of 2. Note that, in
contrast to Q-batch, we have to split the k-selection process into two steps: first, we
select the k possible candidates from the reference set, and then we perform k-selection
on the possible candidates. Again, we mark the exemplary candidates and neighbors
with a red rectangle showing that both methodologies yield the same result. (Color
figure online)

4 Results

In this section, we compare our approach to popular libraries used for exact near-
est neighbors search, namely Scikit-learn [28], NearestNeighbors.jl [8], PyTorch
[27] and Faiss [19]. The first two libraries are CPU-based, and we use multi-
threaded parallelism for both libraries using all processors. Note that we only
compare brute-force search and do not consider the tree-based implementations
of the libraries because they do not scale to the tested dimensionalities. We use
the GPU-based variants of the last two libraries. Both GPU-based variants do
not natively support batching and transfer the entire data to the GPU before
the computation. For the evaluation, we use a generic Euclidean distance ker-
nel that follows the definition in Eq. 3 and only uses the high-level operations
described in the equation. The definition of the distance kernel shows the generic
capabilities of our approach, which enables researchers to develop custom dis-
tance functions without having to resort to GPU programming. Another point
to mention is that we start all benchmarks with the data residing in host mem-
ory; thus, the benchmark times always include the transfer from host to device.
The batch size for all evaluations is defined as n

8 with a minimum batch size
of 256 and a maximum batch size of 1024 for Q-batch and 2048 for QR-batch.
We use uniform random points in the unit hypercube for all our evaluations,
and the correctness of all algorithms is ensured by comparison to a reference
implementation. Our experimental environment employs an AMD Ryzen 3900X
CPU and a GeForce 1080 Ti GPU with CUDA Toolkit 11.3. An initial anal-
ysis regarding different numbers of neighbors k shows that all libraries scale
alike with the number of neighbors; thus, we use k = 1 for all further evalua-
tions. We propose two benchmarks for the evaluation, (1) batch prediction and

Hybrid Nearest Neighbors Search in High-Dimensional Spaces 119

(2) online prediction. The first benchmark involves an equal amount of refer-
ence and query points n ∈ {29, 210, . . . , 214} for varying dataset dimensionalities
d ∈ {29, 210, . . . , 214}. In Fig. 5 we show the results for benchmark (1). The CPU-
based approaches deteriorate significantly with an increasing number of refer-
ence and query points for all tested dimensionalities. For dimensionalities up to
d = 2048, the hybrid approaches incur an overhead compared to the GPU-based
approaches, but starting with d = 4096, the hybrid approaches outperform all
other approaches despite using batch-wise data transfer. For the largest number
of query and reference points and d = 16384, using a hybrid approach results in
a 30% to 40% decrease in processing time compared to the GPU libraries. Addi-
tionally, note that a one-time data transfer is more efficient than a batch-wise
transfer from host to device; therefore, this benchmark favors the GPU-based
libraries over our proposed approaches.

0.01

1

100

0.01

1

100

2 9 2 10 2 11 2 12 2 13 2 14

0.01

1

100

2 9 2 10 2 11 2 12 2 13 2 14

Julia CPU (NearestNeighbors.jl) Python CPU (Scikit-learn) Python GPU (Faiss) Python GPU (PyTorch) Julia HYBRID-QR Julia HYBRID-Q

d = 512

d = 1024

d = 2048

d = 4096

d = 8192

d = 16384

Fig. 5. Benchmark (1): Comparison of popular libraries to the proposed hybrid algo-
rithms for k = 1 neighbors. The number of query and reference points is visualized on
the x-axis of each plot and the processing time in seconds is visualized on the y-axis.

The second benchmark compares the GPU and hybrid approaches using a
large number of reference points n ∈ {214, 215, . . . , 218} with a single query point
and fixed dimensionality d = 4096. The dimensionality is chosen based on the
observation that the compared algorithms show similar performance for that
dimensionality in the first benchmark. The maximum number of reference points
is the largest number of points fitting in GPU memory, enabling a comparison

120 D. Muhr and M. Affenzeller

to libraries that do not support batch-wise data transfer. We additionally evalu-
ate the difference between batch-wise and one-time data transfer for the hybrid
approaches in this benchmark. The one-time data transfer evaluation can be
interpreted as the lower bound of achievable processing time for batch-wise pro-
cessing, only attainable if all data transfers can be scheduled asynchronously
without impacting the rest of the computation. The result of benchmark (2) is
depicted in Fig. 6. The hybrid approaches outperform the GPU-based variants
when both use one-time data transfer; in this case, the processing time can be
decreased by about 25% to 50%. Because there is only one query point in the
second benchmark, Q-batch uses a batch size of one and shows almost no differ-
ence to one-time transfer. The performance difference between QR-batch with
one-time and batch-wise data transfer hints at further optimization potential,
which might be achievable through better memory allocation.

2 14 2 15 2 16 2 17 2 18

0.01

0.1

1

Python GPU (Faiss) Python GPU (PyTorch) Julia HYBRID-QR Julia HYBRID-Q Julia HYBRID-QR (pre) Julia HYBRID-Q (pre)

Fig. 6. Benchmark (2): Comparison of hybrid and GPU-based approaches for one query
point with k = 1 and d = 4096. The number of reference points is visualized on the
x-axis, and the processing time in seconds is visualized on the y-axis.

Dashti et al. [12] show that the total speedup of massively-parallel nearest
neighbors searches asymptotically approaches the speedup of the distance com-
putation. If the time required for asynchronous memory transfer and CPU-based
k-selection is smaller than the time required for GPU-based distance computa-
tion, a hybrid approach should outperform a purely CPU-based or GPU-based
approach.

5 Conclusions

In this paper, we set out to tackle the curse-of-dimensionality in exact near-
est neighbors searches. We propose a hybrid, massively-parallel nearest neigh-
bors algorithm that uses batching to split the computational workload efficiently
between CPU and GPU. We show that a highly-generic implementation of our
method significantly outperforms popular exact nearest neighbors libraries for
high-dimensional data. Most notably, the performance of our proposed hybrid

Hybrid Nearest Neighbors Search in High-Dimensional Spaces 121

approach scales linearly with the dimensionality of the data. Because datasets
continually increase in size and dimensionality, we believe that high-performance
nearest neighbors search strategies become more relevant in future research.
While the low-dimensional similarity search community has attracted a large
amount of research over the last 20 years, there are many open opportunities for
future research in the high-dimensional case. Future researchers should inves-
tigate existing highly-optimized distance kernels and k-selection methods and
combinations thereof in the CPU, GPU, hybrid, and distributed setting.

References

1. Alabi, T., Blanchard, J.D., Gordon, B., Steinbach, R.: Fast K-selection algo-
rithms for graphics processing units. ACM J. Exp. Algorithmics 17, 4.2:4.1–4.2:4.29
(2012). https://doi.org/10.1145/2133803.2345676

2. Apaŕıcio, G., Blanquer, I., Hernández, V.: A parallel implementation of the K
nearest neighbours classifier in three levels: threads, MPI processes and the grid.
In: Daydé, M., Palma, J.M.L.M., Coutinho, Á.L.G.A., Pacitti, E., Lopes, J.C.
(eds.) VECPAR 2006. LNCS, vol. 4395, pp. 225–235. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-71351-7 18

3. Arefin, A.S., Riveros, C., Berretta, R., Moscato, P.: GPU-FS-kNN: a software tool
for fast and scalable kNN computation using GPUs. PLOS ONE 7(8), e44000
(2012). https://doi.org/10.1371/journal.pone.0044000

4. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Commun. ACM 18(9), 509–517 (1975). https://doi.org/10.1145/361002.361007

5. Berchtold, S., Bohm, C., Jagadish, H., Kriegel, H.P., Sander, J.: Independent
quantization: an index compression technique for high-dimensional data spaces.
In: Proceedings of 16th International Conference on Data Engineering (Cat.
No.00CB37073), pp. 577–588, February 2000. https://doi.org/10.1109/ICDE.2000.
839456

6. Besard, T., Foket, C., De Sutter, B.: Effective extensible programming: unleashing
Julia on GPUs. IEEE Trans. Parallel Distrib. Syst. (2018). https://doi.org/10.
1109/TPDS.2018.2872064

7. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh approach to
numerical computing. SIAM Rev. 59(1), 65–98 (2017). https://doi.org/10.1137/
141000671

8. Carlsson, K., et al.: KristofferC/NearestNeighbors.jl: V0.4.9. Zenodo, June 2021.
https://doi.org/10.5281/zenodo.4943232

9. Clarke, L., Glendinning, I., Hempel, R.: The MPI message passing interface stan-
dard. In: Decker, K.M., Rehmann, R.M. (eds.) Programming Environments for
Massively Parallel Distributed Systems, pp. 213–218. Monte Verità, Birkhäuser,
Basel (1994). https://doi.org/10.1007/978-3-0348-8534-8 21

10. Cover, T.M., Hart, P.E.: Nearest neighbor pattern classification. IEEE Trans. Inf.
Theory 13(1), 21–27 (1967). https://doi.org/10.1109/TIT.1967.1053964

11. Dagum, L., Menon, R.: OpenMP: an industry standard API for shared-memory
programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998). https://doi.org/10.
1109/99.660313

12. Dashti, A., Komarov, I., D’Souza, R.M.: Efficient computation of k-nearest neigh-
bour graphs for large high-dimensional data sets on GPU clusters. PLOS ONE
8(9), e74113 (2013). https://doi.org/10.1371/journal.pone.0074113

https://doi.org/10.1145/2133803.2345676
https://doi.org/10.1007/978-3-540-71351-7_18
https://doi.org/10.1371/journal.pone.0044000
https://doi.org/10.1145/361002.361007
https://doi.org/10.1109/ICDE.2000.839456
https://doi.org/10.1109/ICDE.2000.839456
https://doi.org/10.1109/TPDS.2018.2872064
https://doi.org/10.1109/TPDS.2018.2872064
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
https://doi.org/10.5281/zenodo.4943232
https://doi.org/10.1007/978-3-0348-8534-8_21
https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.1109/99.660313
https://doi.org/10.1109/99.660313
https://doi.org/10.1371/journal.pone.0074113

122 D. Muhr and M. Affenzeller

13. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008). https://doi.org/10.1145/1327452.1327492

14. Dominik, Z., Marcin, P., Maciej, W., Kazimierz, W.: Comparison of hybrid sorting
algorithms implemented on different parallel hardware platforms. Comput. Sci.
14(4), 679 (2013). https://doi.org/10.7494/csci.2013.14.4.679

15. Gast, E., Oerlemans, A., Lew, M.S.: Very large scale nearest neighbor search: ideas,
strategies and challenges. Int. J. Multimedia Inf. Retriev. 2(4), 229–241 (2013).
https://doi.org/10.1007/s13735-013-0046-4

16. Guttman, A.: R-trees: a dynamic index structure for spatial searching. ACM SIG-
MOD Rec. 14(2), 47–57 (1984). https://doi.org/10.1145/971697.602266

17. Hoare, C.A.R.: Quicksort. Comput. J. 5(1), 10–16 (1962). https://doi.org/10.1093/
comjnl/5.1.10

18. Huang, Z., Ma, N., Wang, S., Peng, Y.: GPU computing performance analysis
on matrix multiplication. J. Eng. 2019(23), 9043–9048 (2019). https://doi.org/10.
1049/joe.2018.9178

19. Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with GPUs. IEEE
Trans. Big Data 7(3), 535–547 (2021). https://doi.org/10.1109/TBDATA.2019.
2921572

20. Kestur, S., Davis, J.D., Williams, O.: BLAS comparison on FPGA, CPU and GPU.
In: 2010 IEEE Computer Society Annual Symposium on VLSI, pp. 288–293, July
2010. https://doi.org/10.1109/ISVLSI.2010.84

21. Kibriya, A.M., Frank, E.: An empirical comparison of exact nearest neighbour
algorithms. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S.,
Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 140–
151. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74976-9 16

22. Liu, J., Nishimura, S., Araki, T.: P-Index: a novel index based on prime factoriza-
tion for similarity search. In: 2019 IEEE International Conference on Big Data and
Smart Computing (BigComp), pp. 1–8, February 2019. https://doi.org/10.1109/
BIGCOMP.2019.8679353

23. Lu, W., Shen, Y., Chen, S., Ooi, B.C.: Efficient processing of K nearest neighbor
joins using MapReduce. Proc. VLDB Endow. 5(10), 1016–1027 (2012). https://
doi.org/10.14778/2336664.2336674

24. Luebke, D., et al.: GPGPU: general-purpose computation on graphics hardware. In:
Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, pp. 208-es.
SC 2006. Association for Computing Machinery, New York, NY, USA, November
2006. https://doi.org/10.1145/1188455.1188672

25. Mart́ınez, C.: Partial quicksort. In: Proceedings of the First ACM-SIAM Workshop
on Analytic Algorithmics and Combinatorics, p. 5 (2004)

26. Micó, M.L., Oncina, J., Vidal, E.: A new version of the nearest-neighbour approx-
imating and eliminating search algorithm (AESA) with linear preprocessing time
and memory requirements. Pattern Recogn. Lett. 15(1), 9–17 (1994). https://doi.
org/10.1016/0167-8655(94)90095-7

27. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning
library. In: Proceedings of the 33rd International Conference on Neural Information
Processing Systems, pp. 8026–8037, vol. 721. Curran Associates Inc., Red Hook,
NY, USA, December 2019

28. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

29. Ramaswamy, S., Rastogi, R., Shim, K.: Efficient algorithms for mining outliers
from large data sets. SIGMOD Rec. 29(2), 427–438 (2000). https://doi.org/10.
1145/335191.335437

https://doi.org/10.1145/1327452.1327492
https://doi.org/10.7494/csci.2013.14.4.679
https://doi.org/10.1007/s13735-013-0046-4
https://doi.org/10.1145/971697.602266
https://doi.org/10.1093/comjnl/5.1.10
https://doi.org/10.1093/comjnl/5.1.10
https://doi.org/10.1049/joe.2018.9178
https://doi.org/10.1049/joe.2018.9178
https://doi.org/10.1109/TBDATA.2019.2921572
https://doi.org/10.1109/TBDATA.2019.2921572
https://doi.org/10.1109/ISVLSI.2010.84
https://doi.org/10.1007/978-3-540-74976-9_16
https://doi.org/10.1109/BIGCOMP.2019.8679353
https://doi.org/10.1109/BIGCOMP.2019.8679353
https://doi.org/10.14778/2336664.2336674
https://doi.org/10.14778/2336664.2336674
https://doi.org/10.1145/1188455.1188672
https://doi.org/10.1016/0167-8655(94)90095-7
https://doi.org/10.1016/0167-8655(94)90095-7
https://doi.org/10.1145/335191.335437
https://doi.org/10.1145/335191.335437

Hybrid Nearest Neighbors Search in High-Dimensional Spaces 123

30. Satish, N., Harris, M., Garland, M.: Designing efficient sorting algorithms for many-
core GPUs. In: 2009 IEEE International Symposium on Parallel Distributed Pro-
cessing, pp. 1–10, May 2009. https://doi.org/10.1109/IPDPS.2009.5161005

31. Sismanis, N., Pitsianis, N., Sun, X.: Parallel search of k-nearest neighbors with
synchronous operations. In: 2012 IEEE Conference on High Performance Extreme
Computing, pp. 1–6. IEEE, Waltham, MA, USA, September 2012. https://doi.
org/10.1109/HPEC.2012.6408667

32. Skopal, T., Bustos, B.: On nonmetric similarity search problems in complex
domains. ACM Comput. Surv. 43(4), 34:1–34:50 (2011). https://doi.org/10.1145/
1978802.1978813

33. Stone, C.J.: Consistent nonparametric regression. Ann. Stat. 5(4), 595–620 (1977)
34. Tang, X., Huang, Z., Eyers, D., Mills, S., Guo, M.: Efficient selection algorithm for

fast k-NN search on GPUs. In: 2015 IEEE International Parallel and Distributed
Processing Symposium, pp. 397–406, May 2015. https://doi.org/10.1109/IPDPS.
2015.115

35. Uhlmann, J.K.: Satisfying general proximity/similarity queries with metric trees.
Inf. Process. Lett. 40(4), 175–179 (1991)

36. Vidal Ruiz, E.: An algorithm for finding nearest neighbours in (approximately)
constant average time. Pattern Recogn. Lett. 4(3), 145–157 (1986). https://doi.
org/10.1016/0167-8655(86)90013-9

37. Weber, R., Blott, S.: An approximation-based data structure for similarity search
(1997)

38. Weber, R., Schek, H.J., Blott, S.: A quantitative analysis and performance study
for similarity-search methods in high-dimensional spaces. In: Proceedings of the
24rd International Conference on Very Large Data Bases, pp. 194–205, VLDB
1998. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, August 1998

39. Xiao, B., Biros, G.: Parallel algorithms for nearest neighbor search problems in
high dimensions. SIAM J. Sci. Comput. 38(5), S667–S699 (2016). https://doi.org/
10.1137/15M1026377

40. Zhang, P., Gao, Y.: Matrix multiplication on high-density multi-GPU architec-
tures: theoretical and experimental investigations. In: Kunkel, J.M., Ludwig, T.
(eds.) ISC High Performance 2015. LNCS, vol. 9137, pp. 17–30. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-20119-1 2

https://doi.org/10.1109/IPDPS.2009.5161005
https://doi.org/10.1109/HPEC.2012.6408667
https://doi.org/10.1109/HPEC.2012.6408667
https://doi.org/10.1145/1978802.1978813
https://doi.org/10.1145/1978802.1978813
https://doi.org/10.1109/IPDPS.2015.115
https://doi.org/10.1109/IPDPS.2015.115
https://doi.org/10.1016/0167-8655(86)90013-9
https://doi.org/10.1016/0167-8655(86)90013-9
https://doi.org/10.1137/15M1026377
https://doi.org/10.1137/15M1026377
https://doi.org/10.1007/978-3-319-20119-1_2

	Hybrid (CPU/GPU) Exact Nearest Neighbors Search in High-Dimensional Spaces
	1 Introduction
	2 Related Work
	3 Algorithm
	3.1 Distance Computation
	3.2 k-Selection
	3.3 Batching

	4 Results
	5 Conclusions
	References

