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Abstract. Non-Intrusive Load Monitoring (NILM) or Energy disaggre-
gation may be the holy grail of energy efficiency. The impact of energy
disaggregation at the commercial level of home customers is the increased
utility customer engagement and the reduced energy usage. The goal at
this level is to itemize the consumer’s energy bill, analyze the energy usage
and cost per household appliance and make personalized and prioritized
energy savings recommendations. All these should be viable through a sin-
gle sensor per household that monitors the total energy consumption and
other related quantities. Energy disaggregation is a set of computational
approaches for extracting end-use appliance level data from an aggregate
energy signal without any plug-level sensors. In the present work, we used
a smart meter designed by Meazon S.A. to monitor the energy consump-
tion of a house for 70 days and use basic machine learning methods for
regression. To this end, we use an extensive set of features to train our
models apart from using only active power. Furthermore, we make com-
parisons with respect to accuracy and training time between Decision
Tree, Random Forest and k-NN machine learning methods.

Keywords: NILM · Energy disaggregation · Supervised machine
learning · Decision Tree · Random Forest · k-NN

1 Introduction

Non-Intrusive Load Monitoring (NILM), also referred to as Energy Disaggrega-
tion, was firstly introduced by George W.Hart, Ed Kern and Fred Schweppe in
the early 1980s. Household energy consumption signals are analyzed and decom-
posed into various sub-signals, which correspond to the energy consumption of
individual appliances. The difficulties arising in this problem involve the exis-
tence of multiple sources of uncertainty, such as “noise” present in the back-
ground, multiple devices with almost the same energy consumption and similar
behavior as well as appliances with complex energy profiles (e.g., multiple states).

The problem of energy disaggregation can be formulated as follows [1]:

Xt =
N∑

i=1

yi
t + σ(t)
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The term σ(t) represents devices which contribute to the total consumption
at time t but are not taken into account as well as the background noise. The
set X = {X1,X2, ...,XT } includes the central consumption of N total devices at
different time instances t = {1, 2, ..., T}. Therefore, the objective is to find the
contribution yi

t of the i-th device separately, where i ∈ {1, 2, ..., T}.
NILM is constantly gaining attention due to the development of smart grids

as well as the development of cheap smart meters with enhanced capabilities.
This is also due to the undeniable advantages of NILM allowing us to face certain
challenges. Among them the following can be distinguished [15,16]:

• Detailed information about consumption: the main advantage for cus-
tomers is that the analytical energy consumption will allow them to adopt an
energy saving behavior. In addition, real-time information on running devices
could be a useful tool, i.e., provide reminders to turn off certain devices before
consumers leave home, especially those that are likely to cause serious damage
or those that require excessive energy.

• Separate device power consumption: This allows the consumers to iden-
tify the devices that consume the most energy in their home and in general the
contribution of each device in the total energy consumption. In fact, [17] esti-
mates savings of 9% to 20% by implementing an energy consumption strategy
based on these power analytics.

• Detection of dysfunctional devices: a precise device usage archive is
useful for checking device status and detecting faulty devices.

• Illegal load detection: detection of abnormal loads in households is more
accurate and can be used to report potential energy theft in public and private
buildings.

• Environmental intelligence: allows for other detection approaches with-
out the need to apply new sensors. Instead of turning all devices into smart
devices, which is very expensive and not environment-friendly, a single smart
meter can provide the necessary information to implement various policies.

1.1 Impact of NILM

Many studies demonstrate the impact of NILM on consumption behavior [2].
This research has shown a potential saving (theoretically) of 15% in energy
consumption. However, a later analysis of 36 studies over 15 years [3] shows that
it is possible to influence people’s decision to reduce their consumption by up
to 12%, providing real-time information or even daily or weekly information as
depicted in Fig. 1.

Even though the first commercialization of a NILM system was done in 1996
by the company Enetics Inc, the generalized use of the NILM system remains
low, as the process is time-consuming, costly due to the difficulties in installation
but also highly inaccurate on a larger scale. For these reasons, NILM is still con-
sidered unreliable, which prevents its widespread adoption. Nevertheless, there
are many start-ups and companies that try to commercialize NILM.
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Fig. 1. Analysis of the impact of different feedback methods on behavior change [3]

1.2 Our Contributions

In this paper, we process the data generated by a smart meter (designed by Mea-
zon S.A.) that was installed in the central electricity switchboard of a house. Our
goal is to identify the appliances that operate in each time instance and com-
pute the total energy consumed by each appliance. To this end, experiments are
carried out using three different machine learning techniques for energy disaggre-
gation from the aggregate signal, which are detailed in Sect. 4. Our contribution
lies in the use of a set of features to train our models rather than using only
active power. This set contains “Active Power”, “Angle between V and I”, “Reac-
tive Power” and “Crest Factor”. Our goal is to measure and compare the accuracy
of the predictions of the methods as well as their performance. After the eval-
uation of the above experiments with the usual metrics in the Regression field
(MSE, MAE, RMSE), an attempt was made to compare these methods in terms
of their effectiveness and efficiency.

2 Related Work

Many different algorithmic approaches have been used for NILM that contain
among others machine learning, signal processing and deep learning methods
with artificial neural networks. The latter are increasingly being used as they
have proven their effectiveness in various settings. Initially, one of the most
used techniques are different variants of Hidden Markov models (HMMs) such
as [4,17,18,20], presenting clearly satisfactory results. Other approaches include
signal processing techniques (Dynamic Time Warping) [5,5,21], and Graph Sig-
nal Processing [6,7].
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Machine learning techniques have been extensively used, such as Decision
Trees [21], Random Forests [8,22] or even genetic algorithms like [9,19,23–25].
In addition, Support Vector Machines have been used in [11,26] and in [10]. In
[11], the authors experimented with k-NN and Naive-Bayes [10]. Convolutional
Neural Networks (CNN) and Recurrent Neural Networks (RNN) have also been
used as in [12–14].

Our paper is structured as follows. In Sect. 3 we discuss the dataset and in
Sect. 4 we discuss our experimental setup and our methodology with respect to
the experimental evaluation. In Sect. 5, we provide our experimental findings
while we conclude in Sect. 6.

3 Data Preprocessing

The sampling rate of the smart meter is at 1Hz. In Fig. 2, we observe a sample
of the energy consumption (60 min) of all the appliances in the house as well as
of the energy consumption of the boiler and the oven separately.

Fig. 2. Energy consumption of appliances from 06/06/21 20:40 to 06/06/21 21:40

The data set includes NaN (Not a Number) values at many positions. In order
for the models to be able process the data, it’s necessary to solve this missing
values problem. We tried three different approaches, at first by replacing NaN
with zero values, then with the mean value of each column and at last with the
median of each column. The results of the algorithms were almost the same in
all three cases so we adopted the median approach. The reason that all methods
had the same effect was that the NaN values were existent for very small time
intervals, and thus their impact on the effectiveness was non-observable.

The dataset has 2.539.386 measurements (rows) that correspond to 70 days,
and dimension of 12 (columns) that correspond to the 3 appliances (mains, oven
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and boiler) with 4 features each. We manually split the dataset into training,
test and validation. The training set has 1.523.632 measurements, the validation
set has 507.877 and the test data has 507.877 measurements.

4 Experimental Results

The experiments were performed on a 64-bit operating system with an Intel Core
i7-10700 processor and with 16GB RAM.

We are setting the values of the main consumption on the X variable and the
data from the boiler (or oven) on the Y . In order to improve the effectiveness of
the algorithms and select the best possible classifiers, some tuning experiments
were performed in order to achieve the maximum possible performance. The
behavior of each machine learning method is determined by certain parameters.

The tuning experiments aim at selecting the most appropriate values for
these parameters, which are evaluated on the basis of evaluation metrics and
aim to extract the best prediction model of each algorithm. In addition, to avoid
overfitting, the cross-fold validation method is used, which is a sampling process
used to evaluate machine learning models in a limited data sample. The basic
parameter tested in the DT and RF methods is minimum samples split, which
specifies the minimum number of samples needed to separate a node. A range
with different values for this parameter was initialized for each method. We
execute a repeated procedure and as result we have a unique classifier for each
different value of minimum sample split. The best classifier is the one with the
lowest value of the evaluation metrics.

4.1 Decision Tree

For DT, the range of values for minimum samples split was between 2 and 400
with step 5. Afterwards, we use the best estimator in order to make predictions
and the results are shown in Fig. 3. The performance of the model is observed
through graphs, comparing the actual values of the oven consumption (blue line)
with those predicted by the model (red line).

In general, the model’s predictions are successful and for long time intervals
they match the actual consumption, but in some other time intervals the model
does not perform well. This may be the result of the complicated behavior of
the specific device.

In the next experiment the same model is far more accurate for the boiler as it
is confirmed by Fig. 4. As we notice, the model’s predictions are quite successful
and they match the actual consumption. The first diagram of Fig. 4 depicts the
predicted consumption for a complete operation cycle of the appliance (from ON
state until OFF state). In the second diagram we can observe in more detail the
predicted consumption versus the real consumption during the operation of the
boiler (this is why we use a different scale on the y axis). The model is highly
accurate and generally follows the changes of the real consumption.
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Fig. 3. Real vs Predicted consumption of Decision Trees for the oven.

Fig. 4. Real vs Predicted consumption of Decision Trees for the boiler.

4.2 Random Forest

The same set of experiments were also conducted for a Random Forest-based
regressor. The only difference is the chosen range of the minimum sample split
variable. It is set between 2 and 30 with step 2 for efficiency reasons.

Figure 5 depicts the results of regression with the RF model for the oven. The
model’s predictions are successful in general and match the actual consumption
in many cases. The results are almost the same with the DT model, although
we set a lower value for minimum samples split.

Figure 6 presents the experimental results for the boiler. The model’s predic-
tions are quite successful and they match to a great extent the actual consump-
tion. The first diagram of Fig. 6, depicts the predictions for the whole operation
cycle of the boiler (from the ON state until OFF state). In the second diagram
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Fig. 5. Real vs Predicted consumption of Random Forest for the oven.

it is depicted in greater detail the predicted versus the actual consumption when
the boiler is operating.

Fig. 6. Real vs Predicted consumption of Random Forest for the boiler.

4.3 k-NN

The tuning of the k-NN regressor is related to the number of neighbors. The
range of k value is ranging between 2 and 30. Each value returns a different
classifier/estimator and we keep the best one by calculating their RMSE value.
The best value for the oven is k = 29. The results of this model for the oven
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are depicted in Fig. 7 and for the boiler in Fig. 8. The k-NN model performs
similarly to the previously two models. The results for the boiler are better as
expected, although the best results were achieved by using k = 20 neighbors.

Fig. 7. Real vs Predicted consumption of k-NN for the oven.

Fig. 8. Real vs Predicted consumption of k-NN for the boiler.

5 Results and Performance

In this section we present the performance of our models in terms of the Mean-
Square-Error (MSE), Mean-Average-Error (MAE) and Rooted-Mean-Square-
Error (RMSE). In addition, the execution time of tuning, training and regres-
sion are reported. In Table 1 we provide the error measures for the oven while in
Table 2 we provide the error measures for the boiler.
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Table 1. Performance: Decision Tree vs Random Forest vs k-NN (Oven)

Oven application

Metrics DT RF k-NN
MSE 878.13 882.89 1860.53

MAE 3.25 2.88 3.91

RMSE 29.63 29.71 43.13

Table 2. Performance: Decision Tree vs Random Forest vs k-NN (Boiler)

Boiler application

Metrics DT RF k-NN
MSE 184.03 179.42 202.8

MAE 1.44 1.43 1.12

RMSE 13.57 13.39 14.24

DT and RF are superior to k-NN, concerning the case of the oven as it can
be seen from Table 1. The differences between DT and RF is almost insignificant
with respect to accuracy. In the case of the boiler, all three models have the
almost the same behavior with the RF marginally outperforming the others.
With respect to execution time, DT is significantly faster than RF and k-NN for
both appliances. In the case of the oven, DT requires 18 min and 7 s to train
in contrast to RF, which needs 1 h, 16 min and 46 s, and k-NN, which is the
slowest method, requiring 28 h and 15 min. The same holds for the case of the
boiler where DT requires 21 min and 10 s, RF requires 1 h, 39 min and 34 s,
and the k-NN requires 28 h and 6min.

6 Conclusions and Future Work

In the present work, we study the regression problem for energy disaggregation
in a real-world dataset. More precisely, we used a smart meter to collect mea-
surements related to the aggregate consumption of a household. Three different
supervised machine learning methods are applied: 1) Decision Tree, 2) Random
Forest and 3) k-NN. Our main goal and the significant difference to the existing
literature, is that we take advantage of a set of automatically (by the smart
meter) generated features to train our models. In particular, we do not only
use active power data, but our models are also trained with “Angle between V
and I”, “Reactive Power” and “Crest Factor” features. Our findings indicate that
regression in energy disaggregation is possible and these features enhance the
accuracy of our models. The experimental comparison shows that DT and RF
are far more accurate than k-NN, although the differences between them seems
to be insignificant. Concerning the training time, DT is the superior method,
outperforming RF and k-NN.
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This research constitutes a first step towards a more profound understand-
ing of regression in energy disaggregation. In the future, we intend to focus on
extensive experimental evaluation for deep learning methods and more specifi-
cally with Neural Networks. Our main focus is to make use of CNNs and RNNs.
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