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Abstract. Our recently introduced Neocortex-Inspired Locally Recur-
rent Neural Network is a machine learning system that is able to learn
feature extraction functions from sequential data in an unsupervised way.
While it was designed with the main purpose of feature learning, its struc-
ture and desired functioning is highly inspired by models of the feedfor-
ward circuits in the neocortex. In this work, we study the behavior of our
system when it takes shifting images as input, and we compare it with
known behavior of the primary visual cortex. The results show that some
of the best-known emerging properties in the primary visual cortex, such
as the emergence of simple and complex cells as well as orientation maps,
also occur in our system, indicating that also their behaviors can be con-
sidered analogous. This validates our system as a potential model of the
primary visual cortex that may contribute to further understanding of
its functioning. In addition, considering that most areas in the neocortex
show similarities in terms of structure and operation, future studies of
our system over inputs other than images may also bring new insights
about other neocortical areas.

Keywords: Brain-inspired machine learning · Biologically inspired
neural networks · Cognitive architectures · Feature learning ·
Unsupervised learning · Models of the visual cortex

1 Introduction

Within the field of cognitive neuroscience, computational models of different
regions of the brain have been extensively used when aiming to understand how
these systems work and how the different forms of cognition emerge (e.g., models
of the basal ganglia [5], models of the hippocampus [3], etc.). One region that
has been intensively studied and that has inspired the development of a series
of computational models is the primary visual cortex [14], which is the earliest
area in the neocortex processing the incoming visual information. The main
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advantage of computational models over more descriptive or conceptual models
is that they allow us to simulate the system and test different hypotheses. Indeed,
they provide full control over the parameters of the system, which allows us
to understand how they affect its behavior, and they give the possibility to
measure any state variable. Still, not only the models that have been designed
with this purpose have been useful in the advancement of our knowledge about
the functioning of the different regions of the brain: There are also machine
learning systems that, while designed with a complete different purpose, have
still drawn inspiration from the structure of regions of the brain. This way,
they show analogies with those regions in terms of behavior, and have brought
insights about their functioning. A typical example is that of convolutional neural
networks (CNNs): These networks have not been designed with the purpose of
modeling our visual system, and therefore their design puts performance before
being analogous to our brain. Still, they were inspired by the architecture and
connections of our visual cortex. This, added to the fact that, due to their great
success, they have been extensively and deeply studied, has put them as relevant
sources of understanding our visual system [11].

In this sense, our recently proposed Neocortex-Inspired Locally Recurrent
Neural Network (NILRNN) [22] is also a machine learning system that mainly
seeks performance, but which is strongly inspired by our neocortex. In this study,
we compare the behavior of the NILRNN with that of the primary visual cortex,
as it is one of the best-known regions of the neocortex. The results show that both
systems have analogous behaviors upon all the visual cortex properties for which
the NILRNN was evaluated. This, added to the fact that the neocortex seems to
be quite homogeneous along its areas in terms of structure and functioning [17],
suggests that the use of our system in different applications may bring new
insights about the operation of not only the visual cortex, but also other areas
of the neocortex.

This article is organized as follows: Sect. 2 introduces concepts about the
neocortex and the primary visual cortex, as well as about related computa-
tional systems. Section 3 describes the NILRNN architecture. Section 4 presents
the results obtained regarding the visual cortex properties for which NILRNN
was evaluated. Finally, Sect. 5 discusses on the results obtained and on possible
implications.

2 Background

The neocortex is a thin layered region of the brain that is involved in high-level
cognitive functions such as sensory perception, rational thought, voluntary motor
control or language [13]. It is organized in general in a six-layered structure [18],
and it is divided into areas that perform different functions [16]. For example,
the primary visual cortex is the first area in the neocortex processing the input
visual information. It gets the visual input from the thalamus, processes it and
forwards it to the next areas in the visual cortex [21]. Still, the neocortex seems
to be quite uniform along most of its areas in terms of structure and operation,
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and therefore it appears to have a common underlying algorithm along those
different areas [17].

The primary visual cortex is one of the better-known areas in the neocortex,
and many computational models of it exist. These models usually focus on layers
2, 3 and 4 of the neocortex, and on the feedforward connections, which are the
ones in charge of bringing the visual information through the different processing
areas to the higher abstraction areas. Neurons in these layers of the primary
visual cortex are sensitive to small regions of the input stimuli known as receptive
fields, and are typically classified into simple and complex cells: Simple cells,
mainly found in layer 4 (L4), tend to fire after edges in their receptive field
with a particular orientation and position, while complex cells, mainly found
in layers 2 and 3 (L2/3), tend to fire after edges with a particular orientation,
but independently of their position (i.e., small shifts in the input affects little
their response) [6]. This behavior is typically studied using as visual stimuli
sine gratings as those shown in Fig. 1, for which simple cells tend to respond
to a specific orientation and phase, while complex cells respond to a specific
orientation but are more phase-invariant. In addition, neurons in layers 2, 3 and
4 with similar receptive fields and orientation preferences are found to be located
close to each other, forming smooth ordered maps [10]. However, such order does
not seem to exist in terms of phase [12].

Fig. 1. Examples of sine gratings of different orientations, spatial frequencies and
phases.

In computational models of the primary visual cortex, the behavior of sim-
ple cells is typically achieved through Hebbian-like learning techniques, which
model how neurons in our brain learn [4]. These learning rules applied over small
regions of input images lead the modeled neurons to learn edge patterns of a par-
ticular orientation and phase. Regarding complex cells (mainly in L2/3), their
expected behavior is often achieved by pooling simple cells (mainly in L4) of
similar orientations but different phases, achieving this way a strong response to
that orientation in a more phase-invariant way [9]. Considering that neurons in
the primary visual cortex with similar orientations but different phases tend to
be close to each other, models that satisfy such property can achieve the desired
complex cell behavior by just pooling the neurons in a localized region of L4.
Antolik et al. [1] proposed a model able to achieve such orientation order and
phase disorder in a biologically plausible way by introducing lateral and feedback
connections that allow neurons in L4 to contribute to the firing of their neighbors
with certain time delay. This makes nearby neurons respond to input patterns
that tend to occur close in time, but not to the same input. This way, if the
model gets as input shifting images (mimicking the input to our visual system),
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nearby neurons with similar receptive fields will learn edges with similar orienta-
tions but shifted in space, leading to the desired order. Another advantage of this
model is that it does not explicitly rely on properties of the input images, and
therefore may be also valid for other areas of the neocortex processing different
types of data (as most areas have a similar structure).

Computational models of the visual cortex have inspired several machine
learning systems, being CNNs a well-known successful example that has also
contributed to its understanding [11]. CNNs, however, do not rely on learn-
ing a set of patterns that show orientation order but phase disorder to then
pool nearby neurons together, but they are explicitly designed (i.e., hardwired)
to pool neurons detecting the same pattern at slightly shifted positions of the
input image. A key factor to their success seems to be that those shifted ver-
sions of the same pattern contribute essentially with the same information to
the overall meaning of the input, and by grouping them, the network is losing
little relevant information while simplifying the representation. However, this
idea is not applicable in general to domains other than vision (e.g., shifting the
elements of a generic feature vector may completely change its meaning), and
neither seems to correspond to anything occurring in other regions of the neocor-
tex. Our recently proposed NILRNN [22], on the other hand, is indeed designed
to achieve orientation order and phase disorder when having shifting images as
input. To do so, it relies on the same principle as that of the model by Antolik
et al. [1], i.e., it pushes nearby neurons to learn patterns typically occurring
close in time, which are then pooled together. This way, it can be argued that
NILRNN works because input patterns that tend to occur close in time also
have in general a very similar meaning, and can therefore be grouped together.
This approach has the added benefit that it applies to almost any domain that
deals with sequential data, and is a mechanism that may be also occurring in
neocortical regions other than the visual cortex. In fact, considering that, due
to such mechanism, the activity in the pooling neurons varies slower in time
than the input, this approach is also consistent with the neocortex-related slow-
ness principle, which states that the environment changes in a slower timescale
than the sensory input we get from it, and therefore, good representations of
the environment should also change in such slower timescale [23]. This makes
NILRNN a more accurate model of the visual cortex in terms of structure as well
as a potential model of other areas of the neocortex. Still, as we mentioned in
Sect. 1, NILRNN was designed as a feature learning system for machine learning
applications rather than as a model of the neocortex. In this regard, NILRNN
has already shown its effectiveness outperforming other feature learning systems
in classification tasks over sequential data domains such as speech recognition
or action recognition [22].

3 Materials and Methods

NILRNN is an unsupervised feature learning neural network for sequential data.
The NILRNN feature extraction system, shown in Fig. 2, consists of three
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layers: the input layer, the recurrent layer (analogous to L4) and the max pooling
layer (analogous to L2/3). Neurons in the recurrent layer are arranged in two
dimensions, with neurons close to each other being connected through recur-
rent connections. This allows neurons to contribute to the firing of their nearby
neurons in the next timestep, which, during the training phase, pushes them to
learn input patterns that tend to occur successively in time. This way, a form
of self-organization mechanism emerges, with a global order appearing due to
the local interactions among the components. Since we will work with images
as input, the input to this layer will be also partially connected, following a
connection pattern that mimics the one observed in the primary visual cortex:
Neurons in the recurrent layer are connected to a region of the input (i.e., their
receptive field, see Sect. 2), in a way that, when moving along the neurons in the
recurrent layer in both directions, the corresponding receptive fields also shift
smoothly in both directions, similar to the connection patterns of convolutional
layers. This way, neighbor neurons have same or very similar receptive fields.
Neurons in the recurrent layer make use of sigmoid activation functions, since
their desired behavior consists of just working as detectors of specific patterns
in the input. Regarding the max pooling layer, it has a similar input connection
pattern, with each neuron pooling neurons from a region of the recurrent layer.
All these connection kernels have an approximately circular shape.

Fig. 2. NILRNN feature extraction system architecture with partially-connected input.
The green cells represent input feedforward connections. The blue cells represent local
recurrent connections. The red cells represent max pooling connections. (Color figure
online)

This feature extraction system can of course be trained as part of a larger
neural network and in a supervised way, but in this study we are interested in
analyzing its behavior when trained in an unsupervised way, similar to what
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occurs in the brain. The NILRNN unsupervised learning system (see Fig. 3)
relies on self-supervised learning techniques similar to those used in autoen-
coders [7] (Hebbian learning methods are avoided because they typically require
complementary mechanisms to lead to the desired results, making the system
more complex and harder to design [15]). This way, since the neural network is
recurrent, it is trained to reconstruct the input (same as autoencoders) as well
as to predict the following inputs. On the other hand, since the max pooling
layer does not need to learn any weights nor contributes in a positive way to the
desired learning of weights in the recurrent layer, it is not included in the self-
supervised learning system. The output layer is formed of several channels with
the size and shape of the input layer corresponding to each of the predictions
at the different timesteps. Each of these channels are connected to the recur-
rent layer following a pattern that is symmetric to that defining the connections
between the input layer and the recurrent layer. Neurons in the output layer also
make use of sigmoid activation functions, which means that the input to the net-
work needs to be in the range (0, 1). Finally, the recurrent layer is designed to
have a sparse activity by adding a sparsity term to the cost function, similar
to how is done for sparse autoencoders [7]. Sparsity, which consists of allowing
only a small percentage of the neurons to be active at a given time, is a behavior
that has been observed in the neocortex [8], and it is often very appropriate
to represent the observations of the real world because these observations can
usually be described through the presence of a limited number of features out of
a considerably larger number of possible features (e.g., the presence of certain
objects, their location, etc.), besides showing other advantages. This way, the
cost function is given by the following equation:

J(W, b) = Jerror + λ · Jregularization + β · Jsparse (1)

where W and b represent all the variable weights and bias units, Jerror is the
squared-error cost term, Jregularization is the L2 regularization term, Jsparse is
the sparsity term based on the KL-divergence and applied only to the recurrent
layer, and λ and β are cost function weights.

4 Results

To evaluate how the NILRNN has an analogous behavior to that of the neocortex,
we have used a network that takes as input an image patch of size 16× 16, and
has a recurrent layer formed of neurons with a receptive field of size 69 pixels
and connected in a recurrent way to 29 neurons of the same layer. Their specific
receptive field is defined by a stride of 0.33 neurons (i.e., every three neurons,
the receptive field shifts one pixel), leading to a layer size of 46× 46. The max
pooling layer is defined by a kernel size of 21 neurons and by a stride of 1 neuron,
having also a size of 46× 46. Regarding the self-supervised learning system, its
output is formed of three channels (i.e., it has a size of 16× 16× 3, reconstructing
the current and next two inputs). The cost function is characterized by weights
λ = 1.5 · 10−6 and β = 0.15, and by a desired sparsity parameter of 0.04.
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Fig. 3. NILRNN self-supervised feature learning system architecture with partially-
connected input and output. The green cells represent input and output feedforward
connections. The blue cells represent local recurrent connections. (Color figure online)

For the training, we have used truncated backpropagation through time with a
truncation horizon of 4 timesteps, Adam optimization with a stepsize of 2.5 ·
10−3, and a batch size of 1000 samples, and we have trained the system on
400.000 batches. Note that all these hyperparameters have been set manually,
and therefore better results may be obtained using other values. Regarding the
training input, it consists of sequences of image patches of size 16× 16 obtained
by moving laterally a 16× 16 window along the image at random velocities and
directions, and which are taken from whitened natural images [19] normalized
to the interval [0.1, 0.9].

Once the system has been trained, we have set images of drifting sinu-
soidal gratings with different phases, orientations and spatial frequencies as those
shown in Fig. 1 as input, and we have analyzed the responses of the neurons in
both the recurrent and max pooling layers, similar to how has been done when
studying the behavior of the primary visual cortex [2] or of models of it [1].
Figure 4 shows the resultant weights from the training at the input feedfor-
ward connections, once normalized (i.e., the input patterns that the neurons at
the recurrent layer have learnt to detect). This figure shows that, as expected,
the neurons learn to detect edges in the input, with neighbor neurons tend-
ing to detect edges with similar orientations but different phases. This can be
also observed in the orientation and phase maps of the recurrent and max
pooling layers shown in Fig. 5. These maps are obtained by finding, for each
neuron, the orientation and phase of the input pattern that draws the max-
imum response, for any spatial frequency. As can be seen in this figure, the
orientation map for the max pooling layer looks similar and has similar char-
acteristics to those typically obtained from the primary visual cortex (i.e., it
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has homogeneous regions appearing periodically, pinwheels where many differ-
ent orientations meet, etc.) [2]. The orientation map for the recurrent layer has
similar properties, but with the regions being more scattered, which is some-
thing that also occurs in other models of the primary visual cortex, and that,
to the best of our knowledge, does not contradict any experimental evidence [1].
In addition, and as expected, regions at similar positions of the two layers have
similar orientation preferences. Regarding the phase maps, that of the recurrent
layer does not appear to have any order, which is consistent with experimental
evidence. On the other hand, some homogeneous regions appear at the phase
map of the max pooling layer, but these regions are in general smaller than those
at the orientation map, and have the shape of the max pooling kernel (which is
a 21 neurons kernel with the shape of a 5× 5 square without its 4 corners). This
way, they seem to appear simply because the maximum value for a neuron in
the max pooling layer corresponds to the maximum of all the maximum values
of the neurons it is pooling, so neurons in the recurrent layer having high maxi-
mum values will lead most neurons pooling them to have those same maximum
values for the same input patterns (i.e., same phases). Other than that, it does
not seem to exist any phase order.

Fig. 4. Normalized weights at the input feedforward connections of an NILRNN trained
with shifting images as input.
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Fig. 5. Orientation and phase maps at the recurrent and max pooling layers of an
NILRNN trained with shifting images as input.

In order to evaluate whether the neurons in both layers behave as simple
or complex cells, we have calculated their modulation ratios [20]. The mod-
ulation ratio of a neuron is calculated as the ratio between the first harmonic
and the average of the response to a drifting sine of the spatial frequency and
orientation for which the maximum response is obtained. Neurons with a more
simple-like behavior respond in a strong way to a particular phase with respect
to the others, and therefore have a higher modulation ratio, while those with a
more complex-like behavior respond more homogeneously, and therefore have a
lower modulation ratio. Typically, neurons are classified as complex cells if their
modulation ratio is below 1, and as simple cells otherwise. Figure 6 shows the
histograms with the modulation ratios of all the neurons of each layer of the NIL-
RNN, as well as a typical distribution obtained when taking a sample of neurons
from the primary visual cortex across layers. In this figure we can see how, as
expected, most neurons in the recurrent layer behave as simple cells, while most
neurons in the max pooling layer behave as complex cells, analogously to what
has been observed in the primary visual cortex (see Sect. 2). On the other hand,
if we consider the neurons of both layers of our system altogether, the shape of
the resultant histogram would be very similar to that obtained for the neurons
in the primary visual cortex (except for the relative height of the two peaks,
which depends on the size of the sample of neurons at each layer, and therefore
should not be considered as a relevant difference).

Finally, Fig. 7 shows the orientation tuning curves and phase responses
of some representative neurons from the inside of the orientation-wise homoge-
neous regions of both layers of the NILRNN. The orientation tuning curves show
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Fig. 6. Modulation ratios of the neurons of each layer of an NILRNN trained with
shifting images as input, and of a sample of neurons from several layers of the primary
visual cortex of a macaque monkey.

the maximum response value of each neuron as a function of the orientation for
any phase and spatial frequency. The phase responses show the response obtained
as a function of the phase for the orientation and spatial frequency that give the
strongest response. The orientation tuning curves show that all these neurons
are indeed finely tuned to a narrow band of spatial frequencies. As expected,
and analogously to what has been observed in the primary visual cortex [20],
the spatial frequency bands of the neurons in the max pooling layer are broader
than those of the neurons in the recurrent layer. Regarding the phase responses,
the figure shows how the neurons in the recurrent layer are also finely tuned to
a narrow band of phases, while the neurons in the max pooling layer are much
more phase-invariant, which corresponds to the behavior of simple and complex
cells, respectively, as commented in Sect. 2.

5 Discussion

NILRNN is a neocortex-inspired artificial neural network for the unsupervised
learning of features in sequential data. It is strongly inspired by computational
models of the primary visual cortex, and it relies on brain-inspired machine learn-
ing mechanisms and principles such as sparsity, slowness or self-organization. The
results presented in this study show that its behavior is in different ways anal-
ogous to that of the primary visual cortex. This means that it can function to
some extent as a model of the primary visual cortex, and contribute to obtaining
new insights about its principles of functioning, similar to what has ocurred with
CNNs. In fact, NILRNN is analogous to the primary visual cortex to a larger
extent than CNNs both in terms of structure and of emerging behavior, allowing
it for example to develop orientation maps. Furthermore, NILRNN is based on
ideas that do not only apply to the visual cortex, but which may also apply to
other areas of the neocortex (i.e., it relies on grouping together input patterns
that tend to occur close in time, and not on grouping together spatially shifted
versions of the same pattern). This allows NILRNN to be applicable to domains
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Fig. 7. Orientation tuning curves and phase responses of three representative neurons
of each layer of an NILRNN trained with shifting images as input. The positions of the
three neurons in both layers are (28,10) (top), (23,38) (middle) and (21,13) (bottom).

with very different properties from those of computer vision, as well as to pos-
sibly serve as a model of different areas of the neocortex, and, thus, contribute
to the advancement of our knowledge about those areas and the neocortex in
general.
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