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Abstract. Finding an optimal solution to multi-period inventory order-
ing decision problems with uncertain demand is important for any man-
ufacturing organization. Moreover, these problems are NP-hard as there
are many factors to consider including customer demand and lead time
which are stochastic in nature. This paper describes a reinforcement
learning (RL) approach, Q-learning in particular, to decide on ordering
policies. We formulated the finite horizon single-product multi-period
problem into a reinforcement learning model in the form of Markov deci-
sion processes (MDP) and solve it to obtain the near-optimal solutions.
Mixed integer linear programming (MILP) technique is still common in
solving these problems; but they usually lack simplicity and may not
optimized near to optimal. We formulated the same problem using the
mixed integer linear programming model as the baseline algorithm so
that we can compare it with RL approach. In comparison to MILP,
the reinforcement learning agent performed better in making ordering
decisions over the finite horizon. Obtaining better performance in multi-
period problem would help the business in taking appropriate inventory
decisions and reduce the total inventory costs.

Keywords: Reinforcement learning - Multi-period inventory
management *+ Q-learning

1 Introduction

Optimal solution to inventory control and management problems is the crucial
part of business solutions. On top of it, the stochastic inventory models have been
the major focus of extensive research because the stochastic nature of variables
make problem more challenging and complex. With the evolution of Industry 4.0,
machine learning is playing important role in addressing such inventory control

problems by optimizing the inventory costs [9].
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Reinforcement learning is one of the techniques of machine learning (ML).
There are generally three different threads in RL. The first one is optimal con-
trol; the second one is trial and error; and the third one is temporal difference.
These three concepts form the basis of Reinforcement Learning (RL) [14]. Unlike
supervised learning and unsupervised learning, the learner (agent) in reinforce-
ment learning is not explicitly told to perform any particular action. In fact, in
each time stamp, an agent closely observes the current state and takes an action
so that returns it receives is maximum. Using the information of return, also
called reward, an agent keeps on updating the knowledge of environment and
selects the next possible action. It is a way to map situations to actions so that
the environment maximizes a reward value.

In 2002, reinforcement learning was used in solving inventory optimization [3].
Later in 2008, RL techniques were used to solve the beer game problem [2]. Beer
game problem is a popular simulation tool for the study of supply chain manage-
ment that depicts a bullwhip effect. In that study, the Q-learning algorithm [14]
and the genetic algorithm (GA) based algorithm were compared. In 2015, a deep-
Q-network algorithm was developed making deep RL strong enough to solve many
sequential decision making problems [8]. In 2017, deep RL was also introduced to
solve beer game problem in supply chain management [9].

In recent years, RL has evolved to handle various supply chain manage-
ment problems. It was used in addressing the coordination problem of global
supply chain management [12]. The model called SMART (Semi Markov Aver-
age Reward Technique) was proposed. Considering a general supply chain, the
coordination of inventory policies adopted by different agents, such as suppliers,
retailers, manufacturers is a major issue. All these agents need to coordinate to
minimize the total inventory costs while meeting the customer demand. In [3],
RL approach was used to determine and manage the inventory decisions at all
stages aiming at optimizing the performance of supply chain. [6] uses approxi-
mate SARSA (State Action Reward State Action) and REINFORCE algorithms
to solve a supply chain optimization problem which is very much similar to the
problem we’ve considered.

In [2], Q-learning algorithm was proposed to optimize inventory order deci-
sions of four-stage supply chain. Similarly, a research work [5] has used Q-learning
and State-action-reward-state-action (SARSA) algorithms and managed to min-
imize total cost of a retailer when dealing with the inventory management sys-
tem of perishable products under the random demand and deterministic lead
time. The research work by Oroojlooyjadid et al. [9] proposed an RL approach
based on Deep Q-Network (DQN) and a transfer learning to calculate the opti-
mal ordering policy. Limited research [4,9-11] have applied deep reinforcement
learning models to inventory management problems (for example beer distribu-
tion game and newsvendor problems). A paper by Bharti S. et al. [1] applied
Q-learning algorithm to solve single agent supply chain problem that is related
to ordering decision problem. It is found that Q-learning approach is better than
Order-Up-To (OUT) policy and 1-1 policy [1].

Although many studies deal with bullwhip effect and examine how RL
and DRL techniques deal with beer game problem, a few studies are made to
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understand how RL handle multi-period inventory management problem [13].
This paper contributes on identifying the effectiveness of Q-learning algorithm
for the multi-period inventory management problem taking in consideration the
stochastic demand and deterministic lead time. In this paper, we have considered
the MILP model as baseline as it is one of the popular operation research (OR)
approaches and compared the results with that of reinforcement learning app-
roach.

2 Problem Description and Modeling

2.1 Problem Description

We consider a single product and a periodic-review stochastic inventory control
system with lost sales and positive lead times.

The event timing of the problem description is depicted in Fig.1. An inven-
tory manager makes sequential decisions in discrete time steps t = 1,...,7. In
the beginning of every time step ¢, (every month in our case), inventory manager
observes the current inventory level INV;, and open-order level that are unful-
filled orders in the pipeline. Let’s denote this open-order as OO;_p,...,00;_1.
Here, L > 0 is the lead time which is defined as the duration between placing
an order and receiving it. Based on the inventory and order level, inventory
manager decides on the amount to be ordered in the current time step t. Note
that the order placed is received L time steps later. After placing the order
and receiving the items ordered previously, the on-hand inventory at time step t
will be I; = INV; + OO;_r. Now, the inventory manager observes the demand
D; > 0. If the demand is more than on-hand inventory (i.e. D; > I), the
lost sales is recorded and penalty cost is incurred. If I; > D;, a holding cost of
Ch = h(Iy— Dy) incurs otherwise a penalty cost of C}, = p(D;—I) is incurred on
the part of demand that could not be met due to insufficient on-hand inventory.
Therefore, the total cost incurred at the end of time step t can be expressed as
Ct = Ch + Cp = h(It - Dt)+ —|—p(Dt — It)+, where (It - Dt)+ = maaj([t — Dt, O),
(D — I)" = max(Dy — I;,0), and h, p are pre-specified constants denoting per
unit holding cost, and per unit penalty cost respectively.

The Fig. 1 illustrates the sequence of events that is explained above. The next
step ¢ + 1 begins with the leftover inventory: INV; 11 = (INV; + OO;_1, — Dy)*
and the new pipeline of open-order will be: OO;_1 41, ..., OOy.
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The objective of inventory control management is to find the policy that an
agent should follow so that the total inventory cost of the system consisting of
holding cost and penalty cost with lost sales is minimized.

2.2 MDP Formulation

To solve the aforementioned problem, we represent it with Markov decision pro-
cesses (MDP) [14]. MDP can be expressed as (S, 4, Pr, R,) where S is the set
of states, A is the set of actions, Pr is the transition probabilities, and R, is the
reward. Since the Q-learning is model free algorithm, we do not need to consider
transitional probabilities.

Decision epochs: In this problem, the length of the timeline is 12 months.
t=1{1,2,..,12}.

States: The system state variable provides the important information to the
agent so that an agent can make optimal sequential decision in each step. Since
the capacity of the store is M, and backlog order is not maintained, a set of states
in this problem is the combination of inventory level, lost sales, open-order, and
the order received at that time step (we call it shipment received - SR). It can
be stated as S = {(INV;, LS;,00;_1,,SR;)}.

Action: Action set is a set of number that represents the order that can be
placed at each time step ¢. In the beginning of every time step, an action is taken.
Based on the assumptions a set of action can be expressed as: A =0,1,2,..., M.
Theoretically, the demand can be of any size. If there were no capacity constrains,
the set of actions would have been A = 0,1,2,..., M. Since we have a limit to
capacity of storing items in inventory, the set of action will be A = {0,1,2, ..., a}
where a = (M — I; — OOy).

Reward: Since the main objective is to minimize the total inventory cost, the
reward can be stated as r(s,a) = h(I; — D)t + p(D; — I;)™. Here, r; denotes
the net reward at time step ¢, h is unit holding cost, and p is the unit penalty
cost.

2.3 Modeling with Q-learning

The state of the environment initially will be (INV, LS, 0O, SR) as we initially
have zero inventory level, no lost sales, and no any orders in pipeline. The agent
(inventory manager) takes an action. i.e. the agent places an order to the supplier.
This order OO, will be appended in transit as an open order because of the lead
time. The action/order an agent places follows the exploration and exploitation
phenomenon. In exploration process, an agent randomly picks a number OO,
such that OO; € A. In exploitation process, an agent uses Q-table to get the
action so that the reward for that action is maximum. But how does an agent
decide which path to follow? Generally an € value (exploration rate) is defined in
the environment where € € [0, 1]. A threshold value is randomly generated. If the
threshold value is greater than the e then the agent will exploit the environment
and choose the action (i.e. places the order) that has the highest Q-value in
the Q-table at time step t. If, on the other hand, the threshold is less than or
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equal to the €, then the agent will explore the environment, and picks one value
(randomly) from the action space.

As the agent performs an action of ordering products from supplier, there
incurs costs like ordering cost, purchasing costs and so on. Besides these costs,
there are other inventory costs that include holding cost, penalty cost, spoilage
cost, and transportation cost etc. But we only consider holding cost and penalty
cost in our optimization problem because these are directly related to over-
stocking and under-stocking situations. After agent places an order, an envi-
ronment receives the shipments from supplier. The total inventory level at this
moment is INT; + OO, _,. Since we are not serving the backlog order, the new
inventory level before serving the demand will be I; = (INV; + OO;_1)". We
then serve the demand D;. After the demand Dy is served, the reward is eval-
uated. By the end of the time step ¢, in our case a month, a reward can be
calculated.

The essence of Bellman equation is to find the optimal policy that can pro-
duce the best action at any given state. The basic idea behind the Bellman
equation is that the value of a current state is the sum of reward of being in that
state and the reward you will be receiving after visiting subsequent states. [13]

T
Ry =71 +97riq2 + ’Yth+3 +..= Z’Ykrt+k+1 (1)
k=0

where the discount faction v € [0,1]. After we observe the reward that we had
received taking the action from the previous state, we can update the Q-values
for the state-action pair in the Q-table. We use the following Bellman equation
to update the Q-value [13]:

Q" (s,a) = Q(s,a) + a( — Ry + 7 max Q(s',a) — Q(s7a)) (2)

where Q* (s, a) represents the action-value function that produces optimal policy,
a is the learning rate and ~ is the discount factor. The negative reward (—Ry)
is used because we want to minimize the cumulative reward value.

2.4 Modeling with MILP

We formulate the same aforementioned problem using MILP. Specifically, MILP
is often used for solving optimization problem because it can offer flexible and
powerful method to solve some complex problems like inventory management
problem [7]. The method that is used here for comparison is a customized inven-
tory planning algorithm that has applications in various industries. Its purpose
is to optimize inventory of materials so as to achieve minimal inventory cost,
minimal material wastage and maximize customer service level.

The inventory planning algorithm is based on stochastic programming, and
the decision variables are the order quantity, and supplier choice over the speci-
fied planning horizon. In the model, we optimize the decision variables for mul-
tiple materials. There are S suppliers which supply the material m. The model
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solves an inventory planning problem with a finite planning horizon T" which is
composed of T' planning periods, starting with period ¢ = 1 and ending with
period t =1T.

For this experiment, the number of supplies considered is 1, and the number
of materials passed to the model is 1. The demand over the planning horizon T’
is deterministic. The stochastic optimization model considers a finite planning
horizon T which is composed of T' planning periods, starting with period ¢t = 1
and ending with period ¢t =T

3 Experimental Results

Once the training of RL agent was over, we evaluated the performance of the
RL model. This section also explains the initial state of the retailer, i.e. the
initial inventory level, unit of lost sales, open-order, and shipment received when
starting the evaluation.

3.1 Training the Model

In order to train the RL model, we set the parameters as listed in the following
Table 1.

Table 1. Parameter values used in Table 2. Hyper-parameter values used
training the Q-learning Agent in training the Q-learning Agent
Parameters Values Parameters Values
Maximum capacity of a store M |10 Learning rate o 0.001

Holding cost per unit h Discount factor 0.95

Penalty cost per unit p
Initial Inventory Level INV

Initial Lost Sales lostsales

Initial exploration rate - €|1.0

Exploration decay rate 0.001

Maximum episode 1e5

Time period T 12

Initial open-order openorder

Initial shipment received SR
Lead Time L

N O OO O] |

We also set the hyper-parameters for training the RL agent. Table 2 shows the
hyper-parameters used during the implementation of Q-learning. These hyper-
parameters are selected because it provided the lowest average reward during
training phase. After setting the parameters and hyper-parameters, we train the
RL agent. The dataset is synthetic and generated using demand distribution.
During the training phase, at each time step t, an action is predicted based on
exploration value, demand is realised and finally the reward is calculated. This
continues till £ = 12 an then the environment is reset. This is a single rollout
also called an episode. An agent was trained with 1eb episodes.
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Fig. 2. Q-table with Q-values

3.2 Agent’s Policy

In this experiment, an optimal policy is learned when Q-table is updated subse-
quently. The value in the cell Q(s,a) represents the value of the action a taken
when the state is s. Given a state s, the action a that has highest Q(s,a) is
selected. As the iteration during training continues, Q(s, a) for all combination
of s,a are calculated with greedy search approach. With this approach, Q-values
are converged to the near optimal policy. The Fig. 2a helps us to visualise the
Q-function as a simple Q-table.

The state Sy of our environment is the combination of four variables. They are
inventory level, backorder, open-order, and shipment received. With the values
of these variables, a code (index in this case) is generated using a function. This
code represents the row in a Q-table.

Solving a problem using reinforcement learning means finding a policy that
provides the maximum reward during the training phase. Hence, the policy of
an agent is the corresponding column value of the maximum Q-value in the row
i.e. a = maxQ(s,a) where a is the amount to be ordered when state s is reached.
Let’s take an example of state with inventory level: 2, lost sales: 0, open-order:
9, and shipment received: 4. The state of the environment is S(2,0,9,4) which
gives a code/index as 7319. Now, looking at the Q-table, the maximum Q-value
in a row 7319 is located at Q(7319,3). Hence, the policy suggests to place an
order of 3 (#column). The Fig. 2b is a snapshot of the Q-table we obtained after
training an agent. After placing an order of 3, and the realization of demand is
2, the new state of the environment will be S(0,0,8,5). In the next step, the
above procedure is repeated.

3.3 Initial Setting for Evaluation

The demand distribution is shown in Table 3. Let’s set that the initial state of
the inventory has Inventory (INV,) = 10 units, Lost sales (LSp) = 0, Open
order for the first month (OOg) = 4 units, and Open order for the second month
(SRp) = 5 units.

We examined the RL agent with 10 different test datasets, each consisting of
randomly generated demands with finite planning horizon of T' = 12 as shown
in Table4. The same test datasets were also being used in MILP model. As
shown in Table4, RL agent performed better than MILP agent in those test
datasets. Let’s consider the first test dataset out of 10 listed in Table4 to see
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Table 4. Comparison of inventory cost generated
by RL agent and MILP agent from 10 different test

datasets.
Test List of demand Total cost |Total cost
dataset (RL Agent) | (MILP)
1 676643644433] 92 108
2 [676636444444] 96 120
3 667633374434] 88 116
4 676744433646]124 136
5 676644634334] 84 100
6 [666633434466] 96 128
7 676644633434] 88 100
8 [666643346334] 96 112
9 676644633334] 84 96
10 676636444446] 88 128
‘ : _
—— Demand

—=— Inventory level(RL)
—e— Inventory level(MILP)

Time step
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how inventory levels are maintained. Inventory level is a total stock in hand at
a particular time step. Besides total cost, other indicators are also important.
Figure 3 shows the inventory level of the first test dataset.

Some of the Key Performance Indicators (KPIs) in inventory management
other than total inventory costs are service level and fill rate. Service level mea-
sures the percentage of not getting stock-out i.e. not losing the sales of all cus-
tomers’ demand arriving within a given planning horizon. For example, if the
current service level is 80%, it means there are two time steps out of 10 where
customers’ demand could not be fulfilled. Let D; be the demand over the time

period ¢t and I; be the current inventory level. Then service level (n;) is:

1T
=-Y's
! Tt;

n

3)
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where S = 1 if stock is available to fulfill the customers’ demand, and S = 0 oth-
erwise. Unlike service level, fill rate is the percentage of customers’ demand that
is fulfilled without lost sales. Service level calculates the fraction of replenishment
cycle during which customers’ demand are fulfilled whereas fill rate calculates
the fraction of demand satisfied from available stock. For instance, 98% fill rate
means, it fulfilled 98 customers’ demand out of 100. The formula to calculate
the fill rate (n2) is:

_ S min(Dy, 1)
S D

Figure 4a and Fig. 4b respectively show the service levels and fill rates main-
tained by RL and MILP agents in all 10 different test datasets listed in Table 4.

In most of the test datasets, RL agent successfully achieved 100% of service
level where as MILP agent struggles to maintain 90% service level. This signifies
that RL agent could do better in predicting the future demand and could take
an account of supply and demand variance very well. Similarly, most of the time
the fill rate obtained by MILP agent is lower than the one obtained by RL agent.
The better fill rate obtained by RL agent signifies that the ordering decisions
made by RL agent could meet customers’ demand very well.

(4)

12

4 Conclusions and Future Work

This paper models the multi-period inventory management problem with stochas-
tic demand into Markov decision processes and solves it using value-based app-
roach of reinforcement learning so called Q-learning. The RL approach of solving
the aforementioned problem has shown good result. The RL model in comparison
with MILP model shows that it can handle the fluctuation of demand with high
service level and good fill rate. In addition, the exploratory results presented in
this paper proves that RL can be a good approach for solving multi-period inven-
tory control that adds a great value to smart manufacturing processes. In future,
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research can be conducted to solve complex multi-period inventory control prob-
lems introducing more business and operational constrains.

Acknowledgements. The authors would like to thank the Singapore Institute of
Manufacturing Technology (SIMTech), Singapore for its input and support.

References

10.

11.

12.

13.

14.

Bharti, S., Kurian, D.S., Pillai, V.M.: Reinforcement learning for inventory man-
agement. In: Deepak, B.B.V.L., Parhi, D.R.K., Jena, P.C. (eds.) Innovative Prod-
uct Design and Intelligent Manufacturing Systems. LNME, pp. 877-885. Springer,
Singapore (2020). https://doi.org/10.1007/978-981-15-2696-1_85

Chaharsooghi, S.K., Heydari, J., Zegordi, S.H.: A reinforcement learning model
for supply chain ordering management: an application to the beer game. Decis.
Support Syst. 45(4), 949-959 (2008)

Giannoccaro, I., Pontrandolfo, P.: Inventory management in supply chains: a rein-
forcement learning approach. Int. J. Prod. Econ. 78(2), 153-161 (2002)
Gijsbrechts, J., Boute, R.N., Van Mieghem, J.A., Zhang, D.: Can deep reinforce-
ment learning improve inventory management? Performance and implementation
of dual sourcing-mode problems. SSRN Electron. J .1-26 (2019)

Kara, A., Dogan, I.: Reinforcement learning approaches for specifying ordering
policies of perishable inventory systems. Expert Syst. Appl. 91, 150-158 (2018)
Kemmer, L., Read, J.: Reinforcement learning for supply chain optimization. In:
The 14th European Workshop on Reinforcement Learning, vol. 14 (2018)
Kiigiikyavuz, S.: Mixed-integer optimization approaches for deterministic and
stochastic inventory management. In: Transforming Research into Action, pp. 90—
105. INFORMS (2011)

Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529-533 (2015)

Oroojlooyjadid, A., Snyder, L., Taka¢, M.: A Deep Q-Network for the Beer Game:
an Approach to Solve Inventory Optimization Problems. Deep Reinforcement
Learning Symposium, NIPS 2017 (2017)

Oroojlooyjadid, A., Snyder, L.V., Taka¢, M.: Applying deep learning to the
newsvendor problem. IISE Trans. 52(4), 444-463 (2020)

Peng, Z., Zhang, Y., Feng, Y., Zhang, T., Wu, Z., Su, H.: Deep reinforcement learn-
ing approach for capacitated supply chain optimization under demand uncertainty.
In: Proceedings - Chinese Automation Congress, pp. 3512-3517 (2019)
Pontrandolfo, P., Gosavi, A., Okogbaa, O.G., Das, T.K.: Global supply chain man-
agement: a reinforcement learning approach. Int. J. Prod. Res. 40(6), 1299-1317
(2002)

Sultana, N.N., Meisheri, H., Baniwal, V., Nath, S., Ravindran, B., Khadilkar, H.:
Reinforcement Learning for Multi-Product Multi-Node Inventory Management in
Supply Chains. CoRR (2020). http://arxiv.org/abs/2006.04037

Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. The MIT
Press, London, England (2018)


https://doi.org/10.1007/978-981-15-2696-1_85
http://arxiv.org/abs/2006.04037

	Reinforcement Learning Approach for Multi-period Inventory with Stochastic Demand
	1 Introduction
	2 Problem Description and Modeling
	2.1 Problem Description
	2.2 MDP Formulation
	2.3 Modeling with Q-learning
	2.4 Modeling with MILP

	3 Experimental Results
	3.1 Training the Model
	3.2 Agent's Policy
	3.3 Initial Setting for Evaluation

	4 Conclusions and Future Work
	References




