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Abstract In this paper, we study several profile estimation methods for the
generalized semiparametric varying-coefficient additive model for longitudinal data
by utilizing the within-subject correlations. The model is flexible in allowing time-
varying effects for some covariates and constant effects for others, and in having the
option to choose different link functions which can used to analyze both discrete
and continuous longitudinal responses. We investigated the profile generalized
estimating equation (GEE) approaches and the profile quadratic inference function
(QIF) approach. The profile estimations are assisted with the local linear smoothing
technique to estimate the time-varying effects. Several approaches that incorporate
the within-subject correlations are investigated including the quasi-likelihood (QL),
the minimum generalized variance (MGV), the quadratic inference function, and
the weighted least squares (WLS). The proposed estimation procedures can accom-
modate flexible sampling schemes. These methods provide a unified approach that
works well for discrete longitudinal responses as well as for continuous longitudinal
responses. Finite sample performances of these methods are examined through
Monto Carlo simulations under various correlation structures for both discrete
and continuous longitudinal responses. The simulation results show efficiency
improvement over the working independence approach by utilizing the within-
subject correlations as well as comparative performances of different approaches.
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1 Introduction

The repeated measurements on same individuals over time are common in medical
and public health researches. In AIDS clinical trials, for example, the viral load
and CD4 cell counts, which are considered as surrogate endpoints for HIV disease
progression and HIV transmission to others, are measured repeatedly during the
course of studies for trial participants. The repeated measurements in the longitu-
dinal follow-up often display temporal effects and are correlated. We investigate
several estimation methods for analyzing longitudinal data under the generalized
semiparametric varying-coefficient additive models by incorporating the within-
subject correlations.

Suppose that there is a random sample of n subjects. For the ith subject, let
Yi(t) be the response at time t and let Xi(t) and Zi(t) be the possibly time-
dependent covariates of dimensions p +1 and q, respectively, over the time interval
[0, τ ], where τ is the end of follow-up. Let μi(t) = E{Yi(t)|Xi(t), Zi(t)} be the
conditional expectation of Yi(t) given Xi(t) and Zi(t) at time t . The generalized
semiparametric regression model speculates that

μi(t) = g−1{αT (t)Xi(t) + βT Zi(t)}, i = 1, . . . , n, (1)

for 0 ≤ t ≤ τ , where g(·) is a known link function, α(t) is a (p + 1)-
dimensional vector of unspecified functions and β is a q-dimensional vector of
unknown parameters. The notation θT represents transpose of a vector or matrix
θ . When the link function g(·) is the identity function, model (1) is known as the
semiparametric additive model. When the link function is the natural logarithm
function and Xi(t) = 1, model (1) is known as the proportional means model.
Setting the first component of Xi(t) as 1 gives a nonparametric baseline function.
Under model (1), the effects of some covariates are constant while others are time-
varying. Model (1) is more flexible than the parametric regression model where
all the regression coefficients are time-independent and more desirable for model
building than the nonparametric regression model where every covariate effect is
an unspecified function of time. Different link functions can be selected to provide
a rich family of models for longitudinal data. Both the categorical and continuous
longitudinal responses can be modeled with appropriately chosen link functions. For
example, the identity and logarithm link functions can be used for the continuous
response variables while the logit link function can be used for the binary responses.

The semiparametric additive model for longitudinal data has been studied exten-
sively for decades. These approaches include the nonparametric kernel smoothing
by Hoover et al. (1998), the joint modeling of longitudinal responses and sampling
times by Martinussen and Scheike (1999) and Lin and Ying (2001), the backfitting
method by Zeger and Diggle (1994) and Wu and Liang (2004), and the profile
kernel smoothing approach by Sun and Wu (2005). Fan and Li (2004) considered
the profile local linear approach and the joint modeling for partially linear models.
Hu et al. (2004) showed that for partially linear models, the backfitting is less effi-
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cient than the profile kernel method. Sun et al. (2013) investigated the generalized
semiparametric additive model (1) using the local linear profile estimation method.
The aforementioned estimation and inference procedures are derived without
considering the correlations of longitudinal responses within subjects known as
the working independence approach. The estimation methods under the working
independence are valid and yield asymptotically unbiased estimators.

Correlation among repeated measurements on the same subject often exists for
longitudinal data or clustered data. Incorporating such within-subject correlation
into estimation procedure can lead to improved efficiency. Liang and Zeger (1986)
introduced the idea of using a working correlation matrix with a small set of
nuisance parameters to avoid specification of correlation between measurements
within the cluster. Severini and Staniswalis (1994) and Lin and Carroll (2001a,b)
estimated α(t) using the kernel method by ignoring the within-subject correlation
while estimating β using weighted least squares by accounting for the within-
subject correlation when Xi(t) ≡ 1. Chen and Jin (2006) studied the method
of generalized estimating equations by modeling the within-cluster correlation.
Using piecewise local polynomial approximation of α(t), Chen and Jin (2006)
showed that the weighted least square estimator of β achieves the semiparametric
efficiency. Fan et al. (2007) proposed a profile local linear approach by imposing
certain correlation structure for the longitudinal data for improved efficiency. Fan
et al. (2007) proposed two methods to estimate for the within-subject correlation by
optimizing the quasi-likelihood (QL) and by minimizing the generalized variance
of the estimator of β (MGV). Following the generalized method of moments of
Hansen (1982) and Qu et al. (2000) proposed the quadratic inference function
method (QIF) by representing the inverse of working correlation matrix by a linear
combination of basis matrices. Song et al. (2009), Madsen et al. (2011), and
Tang et al. (2019) studied a mean-correlation parametric regression method for a
family of discrete longitudinal responses by assuming that the marginal distributions
of longitudinal responses follow an exponential family distribution and the joint
distributions of the discrete responses from the same subject are modeled by a
copula model. These approaches have a limitation of not allowing for time-varying
covariate effects.

Semiparametric statistical modeling of discrete longitudinal responses beyond
the marginal approach has been understudied. We investigate several profile esti-
mation methods for the generalized semiparametric varying-coefficient additive
model (1) by incorporating the within-subject correlations including the profile
generalized estimating equation (GEE) approaches and the quadratic inference
function approach. These methods provide a unified approach that work well for
discrete longitudinal responses as well as for continuous longitudinal responses.
Different methods for estimating the within-subject correlations such as the QL and
MGV methods as well as a newly proposed profile weighted least square (WLS)
approach fall under the umbrella of profile GEE approaches. The performances of
these different methods are examined through extensive simulation studies under
a variety of models and the within-subject correlation structures. The proposed
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semiparametric methods utilizing the within-subject correlations work well for
discrete longitudinal responses as well as for continuous longitudinal responses.

The rest of the paper is organized as follows. The profile GEE estimation
using fixed working covariance matrices is presented in Sect. 2.1. The methods
for estimating the correlations are described in Sect. 2.2. An alternative profile
estimation of model (1) via quadratic inference function is proposed in Sect. 2.3. The
computational algorithms of the proposed procedures are summarized in Sect. 2.4.
Section 3 presents the results of simulation studies for evaluating the finite sample
performances of different methods. The results of simulation studies for continuous
longitudinal responses are presented in Sect. 3.1 and the results of simulation studies
for discrete longitudinal responses are given in Sect. 3.2. Some concluding remarks
are given in Sect. 4.

2 Profile GEE Estimation Procedures

This section presents several profile estimation methods for the generalized semi-
parametric varying-coefficient additive model (1) by incorporating the within-
subject correlations and the approaches for estimating the within-subject correla-
tions. Choices of kernel function, bandwidth, and link function are also discussed.

2.1 Model Estimation Using Fixed Working Covariance
Matrices

Suppose that the longitudinal response Yi(t) and the possibly time-dependent
covariates Xi(t) and Zi(t) are observed at the sampling times Ti1 < Ti2 <

· · · < TiJi
, where Ji is the total number of observations on the ith subject. Let

Yij = Yi(Tij ), Xij = Xi(Tij ) and Zij = Zi(Tij ). Let Yi = (Yi1, · · · , YiJi
)T be

the vector of responses for individual i. Similarly, define Xi = (Xi1, · · · , XiJi
)T ,

Zi = (Zi1, · · · , ZiJi
)T and Ti = (Ti1, · · · , TiJi

). The sampling times {Tij , j =
1, . . . , Ji} varies among individuals under random designs, while they are not
dependent on i under fixed designs. We propose the kernel assisted profile method
to estimate the nonparametric functions α(t) and parametric coefficients β under
model (1) by taking into consideration of the within-subject correlations.

For given β, let α(t) = α(t0) + α̇(t0)(t − t0) + O((t − t0)
2) be the first-order

Taylor expansion of α(·) for t ∈ Nt0 , a neighborhood of t0, where α̇(t0) is the
derivative of α(t) at t = t0. Denote α∗(t0) = (αT (t0), α̇

T (t0))
T and X∗

i (t, t − t0) =
Xi(t)⊗ (1, t − t0)

T , where ⊗ is the Kronecker product. Then for t ∈ Nt0 , model (1)
can be approximated by
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μ̃(t, t0, α
∗(t0), β|Xi(t), Zi(t)) = g−1{α∗T (t0)X

∗
i (t, t − t0) + βT Zi(t)}. (2)

Let X∗
ij (t0) = Xij ⊗ (1, Tij − t0)

T , j = 1, . . . , Ji . The approximated conditional

expectation of Yij for Tij ∈ Nt0 is given by μ∗
ij (t0) = μ{α∗T (t0)X

∗
ij (t0) + βT Zij },

where μ(·) = g−1(·). Denote μ̇∗
ij (t0) = μ̇{α∗T (t0)X

∗
ij (t0) + βT Zij } where μ̇(·) is

the first derivative ofμ(·). Letμ∗
i (t0) = (μ∗

i1(t0), · · · , μ∗
iJi

(t0))
T . LetX∗

i (t0) denote
a 2(p + 1) × Ji matrix with the j th column vector being the X∗

ij (t0), j = 1, . . . , Ji .
Let K(·) be a nonnegative kernel function and h = hn > 0 a bandwidth

parameter. Let Kih(t0) = diag{Kh(Tij − t0), j = 1, . . . , Ji} be the Ji ×Ji diagonal
matrix with {Kh(Tij − t0), j = 1, . . . , Ji}, on the diagonal and zero elsewhere,
where Kh(·) = K(·/h)/h. At each t0 and for fixed β, we consider the following
local linear estimating function for α∗(t0):

Uα(α∗;β, t0) =
n∑

i=1

X∗
i (t0)�

∗
i (t0)K

1/2
ih (t0)V

−1
1i K

1/2
ih (t0)

[
Yi − μ∗

i (t0)
]
, (3)

where �∗
i (t0) = diag{μ̇∗

ij (t0), j = 1, . . . , Ji} and V −1
1i is the inverse of the

working covariance matrix for estimating α∗(t0). The solution to the equation
Uα(α∗;β, t0) = 0 is denoted by α̃∗(t0, β). We denote the first p + 1 components of
α̃∗(t0, β) by α̃(t0, β).

Let μ̃ij (β) = μ{α̃T (Tij , β)Xij + βT Zij } and μ̃i(β) = (μ̃i1(β), . . . , μ̃iJi
(β))T .

The profile weighted least squares estimator β̂ is obtained by minimizing the
following profile least squares function:

�β(β) = 1

n

n∑

i=1

[Yi − μ̃i(β)]T V −1
2i [Yi − μ̃i(β)], (4)

where V −1
2i is the inverse of the working covariance matrix for estimating β.

Let Aij = ∂α̃T (Tij , β)/∂β be the derivative of α̃T (Tij , β) with respect to β,
which is a q × (p + 1) matrix with the kth row having the partial derivative
of α̃T (Tij , β) with respect to the kth component of βk , 1 ≤ k ≤ q. Let
∂α̃T (Ti ,β)

∂β
= ( ∂α̃T (Ti1,β)

∂β
, · · · ,

∂α̃T (TiJi
,β)

∂β

)
and X̃i = diag

{
Xij , j = 1, . . . , Ji

}
.

Then ∂α̃T (Ti ,β)
∂β

X̃i = ( ∂α̃T (Ti1,β)
∂β

Xi1, · · · ,
∂α̃T (TiJi

,β)

∂β
XiJi

)
is a q × Ji matrix.

Taking the derivative of �β(β) with respect to β, we have the score function

Uβ(β) =
n∑

i=1

{∂α̃T (Ti, β)

∂β
X̃i + Z̃i

}
�̃iV

−1
2i

[
Yi − μ̃i(β)

]
, (5)
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where �̃i = diag{ ˙̃μij , j = 1, . . . , Ji}, ˙̃μij = μ̇{α̃T (Tij , β)Xij + βT Zij }, and
Z̃i = (

Zi1, · · · , ZiJi

)
is a q × Ji matrix.

For given working covariance matrices V1i and V2i , the profile GEE estimator β̂

of β is obtained by solving the estimating equation Uβ(β) = 0. The profile GEE
estimator for α(t) is given by α̂(t) = α̃(t, β̂).

Note that ∂α̃T (t, β)/∂β is the first p + 1 columns of ∂α∗T (t, β)/∂β. Next we
show that ∂α∗T (t, β)/∂β can be expressed in terms of the partial derivatives of
Uα(α∗;β, t) at α∗ = α̃∗(t, β). Specifically, since Uα(α̃∗(t, β);β, t) ≡ 02(p+1)
by (3), it follows that α̃∗(t, β) satisfies

{
∂Uα(α∗;β, t)

∂α∗
∂α̃∗T (t, β)

∂β
+ ∂Uα(α∗;β, t)

∂β

}∣∣∣∣
α∗=α̃∗(t,β)

= 02(p+1).

Therefore,

∂α̃∗T (t, β)

∂β
= −

{
∂Uα(α∗;β, t)

∂α∗

}−1
∂Uα(α∗;β, t)

∂β

∣∣∣∣∣
α∗=α̃∗(t,β)

, (6)

where

∂Uα(α∗;β, t)

∂α∗ = −
n∑

i=1

X∗
i (t)�

∗
i (t)K

1/2
ih (t)V −1

1i K
1/2
ih (t)�∗

i (t)X
∗T
i (t), (7)

and

∂Uα(α∗;β, t)

∂β
= −

n∑

i=1

X∗
i (t)�

∗
i (t)K

1/2
ih (t)V −1

1i K
1/2
ih (t)�∗

i (t)Z̃
T
i . (8)

Under the identity link in model (1), α̃∗(t, β) and β̂ can be solved explicitly as
the roots of the score functions (3) and (5), respectively. When there are no explicit
solutions, the Newton–Raphson iterative algorithm can be used to solve the equa-
tions. The estimation procedure iteratively updates estimates of the nonparametric
component α̃∗(t, β) and the parametric component β̂ until convergence. We denote
the first p + 1 components of the convergent α̃∗(t, β) as α̂(t).

Let ˙̂μij = μ̇{α̂T (Tij )Xij + βT Zij } and �̂i = diag{ ˙̂μij }. Define

Ê11(t) = n−1∑n
i=1 Xi�̂iK

1/2
ih (t) V −1

1i K
1/2
ih (t)�̂iX

T
i and Ê12(t) = n−1∑n

i=1 Xi

�̂iK
1/2
ih (t)V −1

1i K
1/2
ih (t) �̂iZ

T
i . Let B̂ij = −ÊT

12(Tij ) Ê−1
11 (Tij )Xij + Zij and

B̂i = (B̂i1, · · · , B̂iJi
)T . Following the derivations in Fan et al. (2007), we estimate

the variance of β̂ by P̂ −1D̂P̂ −1 for given covariance matrices V1i and V2i , where
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P̂ = n−1
n∑

i=1

[
B̂T

i �̂iV
−1
2i �̂i B̂i

]
,

and

D̂ = n−1
n∑

i=1

[
B̂T

i �̂iV
−1
2i (Yi − μ̂i)(Yi − μ̂i)

T V −1
2i �̂i B̂i

]
.

2.2 Estimation of the Within-Subject Covariance Matrix

The conditional within-subject correlation of longitudinal responses Yi(·) at times
s, t ∈ [0, τ ] can be measured by the Pearson correlation coefficient ρi(s, t) =
Corr

(
Yi(s), Yi(t)

∣∣Xi(·), Zi(·)
) = Cov

(
Yi(s), Yi(t)

∣∣Xi(·), Zi(·)
)
/(σi(s)σi(t)),

where σi(t) be the conditional standard deviation of Yi(t) given Xi(t) and Zi(t),
0 ≤ t ≤ τ . For simplicity, we assume that both σi(t) and ρi(s, t) do not depend
on the covariates Xi(·) and Zi(·). Thus we use the notations σ(t) and ρ(s, t)

in place of σi(t) and ρi(s, t), respectively. In practice, the correlation structure
ρ(s, t) is often unknown or complex, and a working correlation is employed by
assuming a correlation model for ρ(s, t). The working independence corresponds
to assuming ρ(s, t) = 0 for s �= t . Other commonly used correlation models
include the compound symmetry or exchangeable structure (Exchangeable) with
ρ(s, t) = θ , |θ | < 1; a generalized the first-order autoregressive (AR(1)) with
ρ(s, t) = θ |s−t |, 0 < θ < 1, which is a generalization of AR(1) model in time
series to allow the possibility of unequally spaced times; and a generalization of
the first-order autoregressive moving-average (ARMA(1,1)) with ρ(s, t) = pq |s−t |,
where |p| < 1 and q > 0. Fan et al. (2007) considered more complex correlation
structure by embedding the working correlation into a collection of the correlation
families ρ0(s, t, θ0), . . . , ρm(s, t):

ρ(s, t, θ) = b0ρ0(s, t; θ0) + b1ρ1(s, t, θ1) + · · · + bmρm(s, t, θm), (9)

where θ = (θ0, b0, θ1, b1, . . . , bm, θm) and b0 + · · · + bm = 1 with all bi ≥ 0.
Let ρk(s, t, θ), θ ∈ �, be the working correlation function for Yi(t), 0 ≤ t ≤

τ , for k = 1, 2. We consider decomposition of the working covariance Vki of
(Yi1, · · · , YiJi

) into

Vki = AiRki(θ)Ai, (10)

where Ai = diag{σ(Tij ), j = 1, . . . , Ji}, and Rki(θ) is the working correlation
matrix of (Yi1, · · · , YiJi

) under the working correlation model ρk(s, t, θ) for k =
1, 2.
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The examples of correlation matrices Ri(θ) of (Yi1, · · · , YiJi
) at the measure-

ment times t1, . . . , tJi
for Ji = 4 for Exchangeable, AR(1) and ARMA(1,1)

correlations are shown in the following:

⎡

⎢⎢⎢⎣

1 θ θ θ

1 θ θ

1 θ

1

⎤

⎥⎥⎥⎦ ,

⎡

⎢⎢⎢⎣

1 θ |t1−t2| θ |t1−t3| θ |t1−t4|
1 θ |t2−t3| θ |t2−t4|

1 θ |t3−t4|
1

⎤

⎥⎥⎥⎦ ,

⎡

⎢⎢⎢⎣

1 pq|t1−t2| pq|t1−t3| pq|t1−t4|
1 pq|t2−t3| pq|t2−t4|

1 pq|t3−t4|
1

⎤

⎥⎥⎥⎦ .

(a) Exchangeable (b) AR(1) (c) ARMA(1,1)

The GEE estimation of the regression coefficients is consistent even when the
true correlation matrix is not an element of the class of working correlation matrices,
and are efficient when the working correlation is correctly specified (Liang and
Zeger 1986). Lin and Carroll (2000) showed that the most efficient estimation of
the nonparametric component α(t) can be achieved by ignoring the within-subject
correlation. However, more efficient estimation for the parametric component β is
obtained by letting V2i in (5) to be to the inverse of true covariance matrix of Yi ;
see Lin and Carroll (2001a,b), Wang et al. (2005), and Fan et al. (2007). Thus
we set R1i (θ) to be the identity matrix and focus on discussing the approaches
for estimating Ai and R2i (θ). For convenience, we use the notation ρ(s, t, θ) for
ρ2(s, t, θ) and Ri(θ) for R2i (θ).

2.2.1 Estimation of Marginal Variance

Let α̂0(t) and β̂0 be the marginal estimators of α(t) and β in Sect. 2 by setting Vki

to the identity matrix for k = 1, 2. Define the residual r̂ij = Yij − μ̂ij , where
μ̂ij = g−1{α̂T

0 (Tij )Xij + β̂T
0 Zij }. Following Fan et al. (2007), we estimate the

marginal variance of response Yi(t) when it is continuous using kernel smoothing:

σ̂ 2(t) =
∑n

i=1
∑Ji

j=1 r̂2ijK
∗
h(t − Tij )

∑n
i=1

∑Ji

j=1 K∗
h(t − Tij )

, (11)

where K∗
h(·) = K∗(·/h)/h, K∗(·) is a nonnegative kernel function and h = hn > 0

a bandwidth parameter.
When the response Yi(t) is a discrete random variable, the variance estimation

can take different form to account for the model structure of the particular
distribution family. For example, r̂2ij is replaced by μ̂ij (1−μ̂ij ) if the response Yi(t)

is a Bernoulli random variable, and by μ̂ij if Yi(t) is a Poisson random variable. We
refer to Liang and Zeger (1986) for the relationship between variance and the model
parameters when marginal distribution of Yi(t) belongs to an exponential family.
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2.2.2 Estimation of Correlation Coefficients

We study different approaches to estimate θ of the correlation matrix R(θ). Two of
the methods, the quasi-likelihood approach and the minimum generalized variance
approach, were adopted from Fan et al. (2007) for model (1) with the identity link
function. We also propose the minimumweighted least squares approach to estimate
θ .

The QL estimation of θ is obtained by maximizing the quasi-likelihood function:

θ̂ = argmax
θ∈�

(
− 1

2

n∑

i=1

{log |Ri(θ)| + r̂T
i Â−1

i R−1
i (θ)Â−1

i r̂i}
)
, (12)

where Ri(θ) and Âi = diag{σ̂ (Tij ), j = 1, . . . , Ji} are defined the same as in
Eq. (10), r̂i = {r̂i1, . . . , r̂iJi

} is the estimator for vector εi and r̂ij are defined above.
Let 

β̂
(σ̂ 2, θ) be the estimated covariance matrix of β̂ under the working

correlation model ρk(s, t, θ), which depends on the estimated marginal variance
σ̂ 2 and the correlation parameter vector θ . Defining the generalized variance of β̂ as
the determinant |

β̂
(σ̂ 2, θ)| of 

β̂
(σ̂ 2, θ). By Dempster (1969, Section 3.5), the

volume of the ellipsoid of (β̂ − β)T −1
β̂

(σ̂ 2, θ) (β̂ − β) < c for any positive

constant c equals πq/2c1/2|
β̂
(σ̂ 2, θ)|1/2/�(

q
2 + 1), where �(·) is the gamma

function. It follows that minimizing the volume of the confidence ellipsoid of
(β̂ − β)T −1

β̂
(σ̂ 2, θ) (β̂ − β) < c over θ ∈ � is equivalent to minimizing

|
β̂
(σ̂ 2, θ)| for θ ∈ � and that the minimizer of the volume of the confidence

ellipsoid over θ ∈ � is not affected by c. Here c can be viewed as a constant
associated with a confidence level. The MGV estimation of θ by Fan et al. (2007)
is obtained by minimizing the generalized variance of β̂:

θ̂ = argmin
θ∈�

|
β̂
(σ̂ 2, θ)|. (13)

Following the idea of the quasi-likelihood approach of Fan et al. (2007), we also
study estimation of θ obtained by minimizing the weighted least squares:

θ̂ = argmin
θ

(
r̂T
i Â−1

i R−1
i (θ)Â−1

i r̂i
)
. (14)

2.3 Profile Estimation via Quadratic Inference Function

Qu et al. (2000) proposed the method of quadratic inference functions that does
not involve direct estimation of the correlation parameter. The idea is to represent
the inverse of the working correlation matrix by the linear combination of basis
matrices:
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R−1 ≈ a1M1 + a2M2 + · · · + aKMK, (15)

where M1 is the identity matrix, and M2, · · · ,MK are symmetric matrices, and
a1, · · · , aK are constant coefficients. The representation is applicable to many com-
monly used working correlations (Qu et al. 2000). For example, if the correlation
structure exchangeable, then R(θ) has 1’s on the diagonal, and θ ’s everywhere off
the diagonal. The inversion R−1 can be written as a1M1 + a2M2, where M1 is the
identity matrix, and M2 is a matrix with 0 on the diagonal and 1 off the diagonal. For
the AR(1) correlation with ρ(s, t) = θ |s−t |, the inversion R−1 of a J ×J correlation
matrix can be written as a linear combination of three basis matrices, where M1 is
the identity matrix, and M2 has 1 on the two main off-diagonals and 0 elsewhere,
and M2 has 1 on the corners (1, 1) and (J, J ), and 0 elsewhere.

Applying the QIF approach, we propose an alternative profile estimation of
model (1). We replace the GEE estimator of β that solves Uβ(β) = 0 in Sect. 2
by the estimator that minimizes the quadratic inference function while keep the
estimation for α̃(t, β) as the root of (3) unchanged. Applying idea of the QIF, we
define the “extended score” function:

gn(β) = 1

n

n∑

i=1

gi(β)

= 1

n
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The quadratic inference function is defined as Qn(β) = gT
n (β)C−1

n (β)gn(β),
where Cn(β) = (1/n2)

∑n
i=1 gi(β)gT

i (β). The profile QIF estimator is the
minimizer of Qn(β):

β̂ = argmin
β

Qn(β). (17)

Following the derivations of the asymptotic properties shown in Qu et al. (2000),
we estimate the variance of the QIF estimator β̂ by {ġn(β̂)C−1

n (β̂)ġT
n (β̂)}−1, where

ġn(β) = 1
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2.4 Computational Algorithms

The iterative algorithms of the procedures using the QL, MGV, WLS, and QIF
approaches for estimating α(t) and β under model (1) are outlined in the following.

1. Calculate the estimates of α(t) and β using the working independence approach
and use them as the initial estimates α̂{0}(t) and β̂{0};

2. Given the m-step estimates α̂{m}(t) and β̂{m}, calculate r̂ij = Yij −
g−1{(α̂{m}(Tij ))

T Xij + (β̂{m})T Zij } and obtain the matrix Â
{m}
i whose diagonal

elements are estimated by (11);
3. For the QL, MGV, and WLS approaches for estimating the correlation matrix,

obtain the estimate θ̂ {m} using one of the QL, MGV, and WLS methods described
in Sect. 2.2.2; Set V̂

{m}
2i = Â

{m}
i Ri

(
θ̂ {m})Â{m}

i as in (10); Then update the

estimate of β to β̂{m+1} by solving (5) and the estimate of α(t) to α̂{m+1}(t) =
α̃(t, β̂{m+1});

4. For the QIF approach, update the estimate of β to β̂{m+1} obtained by minimizing
Qn(β) = gT

n (β)C−1
n (β)gn(β) where and Âi in gn(β) is replaced by Â

{m}
i , and

then update the estimate of α(t) to α̂{m+1}(t) = α̃(t, β̂{m+1});
5. Repeating steps 2 to 4 until convergence, which is usually achieved within a few

iterations.

2.5 Choices of Kernel Function, Bandwidth, and Link
Function

We employ local linear techniques to estimate the nonparametric time-varying
effects α(t). The kernel function is designed to give greater weight to observations
with sampling time near t than those further away. In kernel density estimation, the
Epanechnikov kernel function K(x) = 3

4 (1 − x2)+ is asymptotically optimal with
the smallest mean integrated squared error among probability density functions.
Silverman (1986, p.43) showed that there is not much variation in the efficiency in
the choice of kernel function: the asymptotic relative efficiency of the Tukey kernel
function K(x) = 15

16 (1 − x2)2+ compared to the optimal Epanechnikov kernel is
99%, the Gaussian kernel has a relative efficiency of 95% and the rectangular kernel
has a relative efficiency about 93%. We expect that the choice of kernel function
has little effect on the performance of the proposed estimators for model (1) as well.
It is common to assume compact support for technical simplicity. This assumption
can be relaxed to include the Gaussian kernel (Silverman 1986, p.38).

The bandwidth, on the other hand, is much more of a concern. The cross-
validation bandwidth selection is widely used to choose the bandwidth. Rice and
Silverman (1991) suggested a leave-one-subject-out cross-validation approach. We
recommend the K-fold cross-validation bandwidth selection considered by Sun
et al. (2013) in the marginal estimation approach for the generalized semiparametric
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regression model (1). Specifically, subjects are divided into K approximately equal-
sized groups. Let Dk denote the kth subgroup of data, then the kth prediction error
is given by

PEk(h) =
∑

i∈Dk

∑

t1≤Tij ≤t2

[
Yij − g−1{(α̂(−k)(Tij ))

T Xij + β̂T
(−k)Zij }

]2
, (19)

for k = 1, . . . , K , where α̂(−k)(t) and β̂(−k) are the estimators of α(t) and β based
on the data without the subgroup Dk , and [t1, t2] ⊂ (0, τ ). The subset [t1, t2] is
considered to avoid possible instability in estimating α(t) near the boundary. In
practice, this interval can be taken to be close to [0, τ ]. The data-driven bandwidth
selection based on the K-fold cross-validation is to choose the bandwidth h that
minimizes the total prediction error PE(h) = ∑K

k=1 PEk(h). The K-fold cross-
validation bandwidth selection provides a working tool for locating an appropriate
bandwidth.

The proposed estimation procedure holds for a wide class of link functions under
model (1). A link function needs to be selected for a particular data application. The
choice may be clear for some applications based on prior knowledge, but more often
one needs to choose a link function that gives the “best fit” of the data. One criterion
proposed by Sun et al. (2013) is to access the model fit by the regression deviation
defined as

RD(g(·), hcv) =
n∑

i=1

∑

t1≤Tij ≤t2

[
Yij − g−1{(α̂g(Tij ))

T Xij + β̂T
g Zij }

]2
, (20)

where hcv is the bandwidth selected based on the K-fold cross-validation method
for the given link function g(·) described above, and α̂g(t) and β̂g are the estimators
of α(t) and β under model (1) with the bandwidth hcv . In practice, the link function
g(·) can be selected to minimize the regression deviation. Further examination of
model fitness should be accompanied by model assessment tools such as the residual
plots and formal goodness-of-fit tests.

3 Simulation Studies

In this section, we conduct a simulation study to assess the performances of
the profile estimation methods using the QL, MGV, WLS, and QIF approaches
presented in Sect. 2 under various models for longitudinal responses, different
types of the within-subject correlation structures and different models for the
measurement times. For convenience, we refer to the profile estimators resulted
from these approaches as the QL, MGV, WLS, and QIF estimators. Section 3.1
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presents a study of model (1) for continuous longitudinal responses and Sect. 3.2
shows the performances of these approaches for discrete longitudinal responses.

3.1 Continuous Longitudinal Responses

We study the performances of the proposed methods for continuous longitudinal
responses under model (1) with the identity link function: Yi(t) = αT (t)Xi(t) +
βT Zi(t) + εi(t). We consider two simulation settings. In the first simulation setting
(C1), the true correlation structure of the longitudinal responses is ARMA(1,1)
and the measurement times are independent of covariates. In the second simulation
setting (C2), the true correlation structure of the longitudinal responses is Exchange-
able and the measurement times are dependent of covariates.

Simulation Setting (C1) Similar to Fan et al. (2007), for each subject i, we
consider time-independent covariates Xi(t) = (X1i (t), X2i (t))

T and Zi(t) =
(Z1i (t), Z2i )

T , where X1i = 1, (X2i (t), Z1i (t)) are time-varying covariates having
a bivariate normal distribution with mean 0, variance 1 and correlation coefficient
of 0.5 at each time t , and Z2i is a time-independent covariate from Bernoulli
distribution with success probability 0.5. We take α(t) = (

√
t/12, sin(2πt/12))T

and β = (1, 2)T . The error εi(t) is a Gaussian process with mean 0, variance varying
with time σ 2(t) = 0.5 exp(t/12) and of the ARMA(1,1) correlation structure,
i.e., Corr(Yi(s), Yi(t)) = γρ|t−s| for s �= t . We take (γ, ρ) = (0.85, 0.9)
and (0.85, 0.6) for strong and moderate, respectively. All subjects have the same
scheduled measurement time points, {0,1,2,. . . ,12}, but each of the scheduled
time points has a 20% probability of being skipped except for the time 0. A
random perturbation generated from the uniform distribution on [0, 1] is added to
the non-skipped scheduled time points. Every subject has approximately 7 to 13
observations with an average of 11.

Simulation Setting (C2) Similar to Sun et al. (2013), for each subject i, we let
Z1i (t) be a time-varying covariate from a uniform distribution on [0, 1], Z2i a time-
independent Bernoulli random variable with the success probability of 0.5, X1i = 1,
and X2i (t) a time-varying Bernoulli random variable with the success probability of
0.5 at each time t . Let α(t) = (0.5

√
t, 0.5 sin(2t))T and β = (0.5, 1)T . The error

εi(t) has a normal distribution with mean φi and variance ν2, where φi is a random
variable from N(0, 1). Thus εi(t) has an Exchangeable correlation structure with
the correlation coefficients equal to θ = 0.8 and θ = 0.5 for ν = 0.5 and ν = 1,
respectively. The measurement times Tij for each subject i follow a Poisson process
with the intensity hi(t) = 0.6 exp(0.7Z2i ), for 0 ≤ t ≤ τ with τ = 3.5. The
censoring times Ci are generated from a uniform distribution on [1.5, 8]. There are
approximately three observations per subject on [0, τ ] and about 30% of subjects
are censored before τ = 3.5.
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The performances of the profile GEE estimators using the QL, MGV, and
WLS approaches for estimating the correlation parameter θ as well as the profile
estimators via the QIF approach are examined under the settings (C1) and (C2).
We let V1i to be the identity matrix for all the estimators while using different
correlation structures are assumed for V2i . The working independence estimator
(WI) is obtained by letting V −1

2i be the identity matrix. The Epanechnikov kernel
function K(x) = 3

4 (1 − x2)+ is used in the study.
The simulation results for estimating β under the setting (C1) and ARMA(1,1)

correlation with strong and moderate correlations are shown in Tables 1 and 2,
respectively. The simulation results for estimating β under the setting (C2) and
Exchangeable correlation with strong and moderate correlations are shown in
Tables 3 and 4, respectively. The tables summarize the estimation bias (Bias), the
sample standard error of estimates (SEE), the sample mean of the estimated standard
errors (ESE), and the 95% empirical coverage probability (CP) for n = 200. Each
entry of the table is calculated based on 1000 repetitions. The bandwidth used for
each table is selected based on the 10-fold cross-validation of a single simulation
that minimizes the total prediction error PE(h) for h in [0.7, 1.3] and carried it
over for all 1000 repetitions.

The results for WI is obtained by assuming working independence case. The
performances of the estimators QL, MGV, WLS and QIF are examined under

Table 1 Summary of Bias, SEE, ESE and CP under different estimation methods for β1 and β2
with n = 200, h = 0.8 based on 1000 simulations under the model setting (C1) and the strong
ARMA(1,1) correlation with (γ, ρ) = (0.85, 0.9)

β1 = 1 β2 = 2

Method Bias SEE ESE CP Bias SEE ESE CP

Working independence

WI 0.0013 0.0244 0.0235 0.938 0.0059 0.1016 0.1011 0.944

Assuming exchangeable correlation (Misspecification)

QL 0.0001 0.0166 0.0160 0.937 0.0041 0.1096 0.1020 0.938

MGV 0.0001 0.0166 0.0160 0.936 0.0041 0.1061 0.0992 0.940

QIF 0.0003 0.0168 0.0160 0.930 0.0053 0.0954 0.0915 0.940

WLS 0.0004 0.0171 0.0164 0.934 0.0052 0.0946 0.0912 0.941

Assuming ARMA(1,1) Correlation (True)

QL 0.0005 0.0130 0.0127 0.936 0.0030 0.0955 0.0848 0.914

MGV 0.0008 0.0147 0.0140 0.929 0.0052 0.0936 0.0918 0.943

QIF 0.0005 0.0143 0.0136 0.931 0.0051 0.0926 0.0877 0.939

WLS 0.0006 0.0142 0.0136 0.935 0.0050 0.0926 0.0897 0.942

Assuming mixed correlation

QL 0.0005 0.0131 0.0127 0.937 0.0030 0.0956 0.0847 0.916

MGV 0.0005 0.0145 0.0138 0.930 0.0047 0.0934 0.0895 0.942

QIF 0.0004 0.0142 0.0133 0.928 0.0053 0.0925 0.0864 0.932

WLS 0.0006 0.0142 0.0136 0.934 0.0051 0.0927 0.0897 0.942
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Table 2 Summary of Bias, SEE, ESE and CP under different estimation methods for β1 and β2
with n = 200, h = 0.8 based on 1000 simulations under the model setting (C1) and the moderate
ARMA(1,1) correlation with (γ, ρ) = (0.85, 0.6)

β1 = 1 β2 = 2

Method Bias SEE ESE CP Bias SEE ESE CP

Working independence

WI 0.0009 0.0242 0.0236 0.942 0.004 0.0672 0.0666 0.946

Assuming exchangeable correlation (Misspecification)

QL 0.0003 0.0220 0.0210 0.937 0.0033 0.0665 0.0634 0.941

MGV 0.0001 0.0221 0.0212 0.939 0.0024 0.0937 0.0895 0.949

QIF 0.0004 0.0221 0.0209 0.931 0.0035 0.0647 0.0618 0.943

WLS 0.0005 0.0222 0.0212 0.937 0.0035 0.0645 0.0623 0.943

Assuming ARMA(1,1) Correlation (True)

QL 0.0008 0.0182 0.0174 0.935 0.0028 0.0618 0.0601 0.938

MGV 0.0007 0.0187 0.0179 0.933 0.0031 0.0618 0.0604 0.942

QIF 0.0007 0.0195 0.0182 0.928 0.0036 0.0629 0.0606 0.941

WLS 0.0008 0.0194 0.0184 0.933 0.0033 0.0622 0.0609 0.941

Assuming Mixed Correlation

QL 0.0008 0.0182 0.0174 0.935 0.0028 0.0619 0.0601 0.937

MGV 0.0005 0.0192 0.0183 0.942 0.0027 0.0659 0.0630 0.945

QIF 0.0007 0.0196 0.0181 0.924 0.0036 0.0633 0.0600 0.944

WLS 0.0008 0.0193 0.0184 0.933 0.0033 0.0622 0.0609 0.941

Table 3 Summary of Bias, SEE, ESE and CP under different estimation methods for β1 and β2
with n = 200, h = 1.2 based on 1000 simulations under the model setting (C2) and the strong
Exchangeable correlation with θ = 0.8

β1 = 1 β2 = 2

Method Bias SEE ESE CP Bias SEE ESE CP

Working Independence

WI 0.0023 0.1535 0.1544 0.949 0.0048 0.1691 0.1629 0.934

Assuming ARMA(1,1) Correlation

QL 0.0064 0.0884 0.0878 0.949 −0.0084 0.1605 0.1427 0.915

MGV 0.0047 0.0974 0.0973 0.948 0.0008 0.1574 0.1466 0.933

QIF 0.0048 0.1064 0.1019 0.935 −0.0001 0.1576 0.1434 0.917

WLS 0.0051 0.0945 0.0948 0.953 −0.0004 0.1564 0.1451 0.929

Assuming Exchangeable Correlation (True)

QL 0.0069 0.0853 0.0855 0.956 −0.0145 0.1625 0.1423 0.910

MGV 0.0044 0.1113 0.1119 0.950 0.0022 0.1588 0.1493 0.928

QIF 0.0066 0.1069 0.1037 0.950 0.0021 0.1584 0.1473 0.922

WLS 0.0053 0.0942 0.0945 0.956 −0.0009 0.1563 0.1449 0.926

Assuming Mixed Correlation

QL 0.0068 0.0855 0.0853 0.953 −0.0134 0.1622 0.1422 0.911

MGV 0.0031 0.1246 0.1249 0.949 0.0033 0.1616 0.1532 0.929

QIF 0.0060 0.1044 0.0976 0.930 −0.0003 0.1573 0.1421 0.914

WLS 0.0052 0.0942 0.0944 0.954 −0.0008 0.1563 0.1448 0.927
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Table 4 Summary of Bias, SEE, ESE and CP under different estimation methods for β1 and β2
with n = 200, h = 1.2 based on 1000 simulations under the model setting (C2) and the moderate
Exchangeable correlation with θ = 0.5

β1 = 1 β2 = 2

Method Bias SEE ESE CP Bias SEE ESE CP

Working Independence

WI 0.006 0.1952 0.196 0.949 0.0062 0.1863 0.1787 0.94

Assuming ARMA(1,1) Correlation

QL 0.0112 0.1611 0.1597 0.953 0.0006 0.1774 0.1647 0.932

MGV 0.0113 0.1723 0.1667 0.946 0.0020 0.1785 0.1665 0.929

QIF 0.0091 0.1740 0.1684 0.939 0.0033 0.1815 0.1658 0.917

WLS 0.0090 0.1661 0.1655 0.952 0.0039 0.1778 0.1667 0.927

Assuming exchangeable correlation (True)

QL 0.0118 0.1602 0.1591 0.954 −0.0001 0.1773 0.1646 0.935

MGV 0.0083 0.1723 0.1731 0.952 0.0048 0.1795 0.1695 0.933

QIF 0.0114 0.1676 0.1637 0.951 0.0045 0.1787 0.1659 0.928

WLS 0.0092 0.1659 0.1654 0.956 0.0037 0.1777 0.1666 0.927

Assuming mixed correlation

QL 0.0116 0.1602 0.1588 0.951 0.0001 0.1773 0.1646 0.933

MGV 0.0042 0.1837 0.1777 0.949 0.0055 0.1806 0.1710 0.936

QIF 0.0106 0.1692 0.1611 0.946 0.0039 0.1793 0.1632 0.921

WLS 0.0092 0.1658 0.1652 0.954 0.0037 0.1777 0.1665 0.927

both the correctly specified correlation model and the misspecified correlation
models. The results under “Assuming Exchangeable Correlation” are obtained by
assuming exchangeable correlation in the estimation, the results under “Assuming
ARMA(1,1) Correlation” are obtained by assuming ARMA(1,1) correlation in the
estimation, while the results under “Assuming Mixed Correlation” are obtained by
assuming the correlation to be the mix of the exchangeable and AR(1) correlation in
the estimation. The basis matrices for the QIF estimator are taken as a combination
the basis matrices for Exchangeable and AR(1) when ARMA(1,1) and Mixed
Correlation Structures are assumed.

The simulation study shows that all estimators are consistent with small estima-
tion bias. The WLS, QL, MGV and QIF estimators all perform well and improve
the estimation efficiency compared with the working independence (WI) method.
The methods utilizing the within-subject correlations show reduced estimation
standard errors in SEE and ESE. More efficiency is gained by assuming the true
or mixed correlation structures than the scenarios where correlation structures are
misspecified. More efficiency gain is also observed in the settings with stronger
within-subject correlations than with moderate within-subject correlations. For
example, compared with the WI estimator, the sample standard errors of the QL,
MGV, WLS, and QIF estimators for β1 reduced between 30% to 46% in Table 1 for
strong within-subject correlation and the sample standard errors reduced between
8% to 25% in Table 2 for moderate within-subject correlations under the true
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ARMA(1,1) correlation. Similarly, compared with the WI estimator, the sample
standard errors of the QL, MGV, WLS, and QIF estimators for β1 reduced between
18% to 44% in Table 3 for strong within-subject correlation and the sample
standard errors reduced between 6% to 18% in Table 4 for moderate within-subject
correlations under the true Exchangeable correlation. The efficiency improved is
more evident in estimating the effect of time-varying covariate than for the time-
invariant covariate. This phenomenon also appeared in the simulation studies in Lin
and Carroll (2001b) and Wang et al. (2005).

The performances of the estimators by assuming ARMA(1,1) working correla-
tion and those under the mixed working correlation are close. The QL estimator
appeared to achieve most efficiency gain out of these estimators in most scenar-
ios. The above observations hold for both covariate-independent and covariate-
dependent measurement times.

3.2 Discrete Longitudinal Responses

In this section we examine the performance of the proposed methods for model (1)
for discrete longitudinal responses. We consider binary longitudinal responses in the
simulation setting (D1), and Poisson count responses in the simulation setting (D2).
Both settings have an Exchangeable correlation structure.

Simulation Setting (D1): The Bernoulli Model For binary longitudinal responses,
we let g(μ) = log{μ/(1 − μ)} be the logistic link function. The observation times
are generated similarly to the simulation setting (C1). All subjects have the same
scheduled observation time points, {0,1,2,. . . ,8}, but each of the scheduled time
points has a 20% probability of being skipped except for the time 0. A random
perturbation generated from the uniform distribution on [0, 1] is added to the non-
skipped scheduled time points. The number of observations, Ji , ranges from 4 to
9. At each observation time Tij , j = 1, . . . , Ji , Xij = 1, Z1ij and Z2ij are
independent standard normal random variables that do not vary with time. Let
α(t) = sin(πt/30) − 0.5 and β = (0.01, 0.01)T and μij = P(Yij = 1|Xij , Zij ).
The binary longitudinal responses Yij = Yi(Tij ), j = 1, . . . , Ji , are generated with
the marginal means following the logit model logit(μij ) = α(Tij )Xij + βT Zij and
with constant correlation coefficient Corr(Yi(s), Yi(t)) = 0.5 for s �= t . We refer to
Macke et al. (2009) for the techniques for simulating correlated binary responses.
Our simulation used theMatlab code provided in the paper to generate the correlated
binary variables with the specified mean and covariance.

Simulation Setting (D2): The Poisson Model Suppose that Tij , Xij and Zij are
the same as in the simulation setting (D1). We also use α(t) = sin(πt/30)−0.5 and
β = (0.01, 0.01)T . Let μij = E(Yij |Xij , Zij ). Using the method of Macke et al.
(2009), we generate Poisson longitudinal process Yij = Yi(Tij ), j = 1, . . . , Ji ,
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Table 5 Summary of Bias, SEE, ESE, and CP under different estimation methods for β1 and
β2 with n = 200, h = 1.2 based on 1000 simulations under the Bernoulli model (D1) and the
moderate Exchangeable correlation with θ = 0.5

β1 = 1 β2 = 2

Method Bias SEE ESE CP Bias SEE ESE CP

Working Independence

WI 0.0002 0.0524 0.0525 0.954 0.0014 0.0516 0.0525 0.962

Assuming ARMA(1,1) Correlation

QL −0.0002 0.0406 0.0404 0.945 −0.0012 0.0407 0.0405 0.948

MGV −0.0004 0.0429 0.0428 0.937 −0.0005 0.0429 0.0429 0.950

QIF −0.0002 0.0445 0.0434 0.932 −0.0008 0.0440 0.0435 0.942

WLS 0.0000 0.0411 0.0410 0.944 −0.0005 0.0410 0.0410 0.955

Assuming exchangeable correlation (True)

QL 0.0000 0.0396 0.0395 0.947 −0.0013 0.0396 0.0395 0.949

MGV 0.0000 0.0396 0.0395 0.947 −0.0013 0.0396 0.0395 0.948

QIF 0.0003 0.0404 0.0397 0.944 −0.0012 0.0404 0.0397 0.943

WLS 0.0001 0.0408 0.0407 0.950 −0.0005 0.0406 0.0407 0.956

Assuming Mixed Correlation

QL 0.0000 0.0396 0.0394 0.947 −0.0012 0.0396 0.0394 0.949

MGV 0.0003 0.0434 0.0432 0.946 0.0000 0.0428 0.0432 0.951

QIF 0.0001 0.0406 0.0393 0.941 −0.0014 0.0406 0.0393 0.936

WLS 0.0001 0.0408 0.0406 0.948 −0.0005 0.0406 0.0406 0.956

with the conditional marginal mean model log(μij ) = α(Tij )Xij + βT Zij and with
constant correlation coefficient Corr(Yi(s), Yi(t)) = 0.5 for s �= t .

The estimation results under the simulation settings (D1) and (D2) are summa-
rized in Tables 5 and 6, respectively. The simulation shows that estimation bias
is small for all estimators. The QL, MGV, WLS, and QIF estimators that utilize
the within-subject correlations show improved efficiency compared with using
the working independence (WI) method with the sample standard errors reduced
between 17% to 24% in Table 5 and between 10% to 30% in Table 6. The QL
estimator achieved most efficiency gain out of these estimators. Efficiency gains are
slightly higher when the true or mixed correlation structures are assumed compared
to assuming the ARMA(1,1) correlation structures.

4 Concluding Remarks

The generalized semiparametric varying-coefficient additive model (1) specifies a
model for the conditional mean of longitudinal responses. The model allows time-
varying effects for some covariates and constant effects for others and is an umbrella
for many different models with selections of the link function. The intensively
studied semiparametric additive model obtained by using the identity link function is
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Table 6 Summary of Bias, SEE, ESE and CP under different estimation methods for β1 and β2
with n = 200, h = 1.2 based on 1000 simulations under the Poisson model (D2) and the moderate
Exchangeable correlation with θ = 0.5

β1 = 1 β2 = 2

Method Bias SEE ESE CP Bias SEE ESE CP

Working independence

WI −0.0008 0.0271 0.0268 0.944 −0.0005 0.0271 0.0269 0.943

Assuming ARMA(1,1) Correlation

QL −0.0005 0.0206 0.0202 0.954 −0.0008 0.0199 0.0203 0.955

MGV −0.0008 0.0243 0.0241 0.943 −0.0011 0.0245 0.0240 0.949

QIF −0.0005 0.0220 0.0216 0.952 −0.0010 0.0224 0.0217 0.940

WLS −0.0006 0.0208 0.0205 0.954 −0.0007 0.0202 0.0205 0.954

Assuming exchangeable correlation (True)

QL −0.0006 0.0199 0.0197 0.951 −0.0007 0.0191 0.0197 0.955

MGV −0.0007 0.0219 0.0216 0.947 −0.0006 0.0215 0.0217 0.950

QIF −0.0005 0.0201 0.0197 0.950 −0.0006 0.0193 0.0197 0.953

WLS −0.0006 0.0206 0.0203 0.952 −0.0007 0.0199 0.0203 0.954

Assuming mixed correlation

QL −0.0006 0.0199 0.0197 0.948 −0.0007 0.0192 0.0197 0.956

MGV −0.0006 0.0222 0.0218 0.956 −0.0008 0.0219 0.0219 0.945

QIF −0.0006 0.0202 0.0195 0.949 −0.0007 0.0194 0.0195 0.954

WLS −0.0006 0.0206 0.0202 0.954 −0.0007 0.0200 0.0203 0.955

popular for modeling continuous longitudinal responses. Semiparametric statistical
modeling of discrete longitudinal responses has been understudied. With selection
of link functions, model (1) can be used to model both continuous and discrete
responses. Sun et al. (2013) investigated the local linear profile marginal estimation
method for model (1) under the working independence. The estimation methods
under working independence that ignore the within-subject correlation are valid and
yield asymptotically unbiased estimators.

In this paper, we studied several profile estimation methods for model (1) that
utilize the within-subject correlations to improve estimation efficiency. Several
profile estimation methods that utilize the within-subject correlations including the
profile GEE approaches and the profile QIF approach were investigated. The profile
estimations are assisted with the local linear smoothing technique by approximating
the time-varying effects with linear functions in the neighborhood of each time. The
profile GEE approaches include the quasi-likelihood, the minimum generalized vari-
ance, and the weighted least squares. These methods differ by different procedures
used in estimating the within-subject correlations. The proposed profile estimation
methods for the generalized semiparametric varying-coefficient additive model (1)
provide a unified approach that work well for discrete longitudinal responses as well
as for continuous longitudinal responses.

Finite sample performances of these different methods are examined through
Monto Carlo simulations under various correlation structures for both discrete
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and continuous longitudinal responses. Our study showed significant efficiency
improvement of all the estimators, the QL, WLS, WLS, and QIF estimators, over
the working independence approach. The QL estimator appeared to achieve most
efficiency gain out of all estimators in most scenarios. The efficiency improved is
more evident in estimating the effects of time-varying covariates than for the time-
invariant covariates. Efficiency gains are higher when the true or mixed correlation
structures are assumed compared to the misspecified correlation structures. The
above observations hold for both covariate-independent and covariate-dependent
measurement times.
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