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Abstract In functional linear regression model, many methods have been proposed
and studied to estimate the slope function while the functional predictor was
observed in the entire domain. However, works on functional linear regression
model with partially observed trajectories have received less attention. In this
paper, to fill the literature gap we consider the scenario where individual functional
predictor maybe observed only on part of the domain. Depending on whether
measurement error is presented in functional predictors, two methods are developed,
one is based on linear functionals of the observed part of the trajectory and the
other one uses conditional principal component scores. We establish the asymptotic
properties of the two proposed methods. Finite sample simulations are conducted
to verify their performance. Diffusion tensor imaging (DTI) data from Alzheimer’s
Disease Neuroimaging Initiative (ADNI) study is analyzed.
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1 Introduction

With the advance in technology, it is increasingly common to encounter data that
are functions or curves in nature (see Ramsay 2005). Functional linear regression
models provide a framework for modeling the dynamic relationship between
response and functional predictors, which was first introduced by Ramsay and
Dalzell (1991). One of the primary goals for functional linear model (FLM) is to
get an estimator of functional coefficient. And many procedures have been proposed
to approximate functional coefficient, for example, functional principal component
analysis (FPCA) based approaches (Cardot et al. 1999; Hall and Horowitz 2007;
Yao et al. 2005b), spline-based approaches (Crambes et al. 2009; Marx and Eilers
1999)), wavelet-based approaches (Zhao et al. 2012; Wang et al. 2019)), and others.
We refer to Morris (2015) and Reiss et al. (2017) for more informative and extensive
reviews on such functional linear models.

Among the different based methods in functional data analysis, FPCA based
approaches for capturing the information of covariates are popular (Hall et al. 2006;
Che et al. 2017). In the setting where trajectories are observed on dense and regular
grid on the entire domain, the existing works can be found in Besse and Ramsay
(1986), Rice and Silverman (1991), Cardot et al. (1999), Shin (2009), Horváth and
Kokoszka (2012), to name a few. Yao et al. (2005a) emphasize the case where the
functional predictors are observed with irregularly sparse measurements which is
often referred to as sparse functional data and proposes a nonparametric method to
perform FPCA. For general review on FPCA, see Shang (2014). In this paper, we
prefer to use FPCA method to get an estimator of the functional coefficient.

Sparse functional data addresses the case where each trajectory is observed at
a small number of points that are distributed randomly on the domain which is
different from the partially observed functional data (or incomplete or fragmentary
functional data) which was first introduced in Liebl (2013). Partially observed
functional data addresses each trajectory is observed at points that cover a subset
of the domain in such a way that trajectories can be reasonably treated as fragments
of curves (Delaigle and Hall 2016) that has great implication in applications, such
as in biomedicine, economics (see Kraus 2015; Kneip and Liebl 2020). Considering
the partially observed functional data can be treated as missing data for functional
curves over the domain, two missing mechanisms are introduced in the existing
works: one is missing completely at random (MCAR), that is, the missing data
mechanism is independent from other stochastic components (Delaigle and Hall
2016; Goldberg et al. 2014); the other one is the missing mechanism in which
depends on systematic strategies, such as missing parts of the trajectories only occur
at the upper interval of the domain (see Liebl and Rameseder 2019). In the setting of
MCAR, Delaigle and Hall (2016), Goldberg et al. (2014) and Kraus (2015) address
the problem for recovering the missing parts of trajectories. Kraus (2015) and Kneip
and Liebl (2020) model the functional principal (FPC) scores of an incomplete
trajectory. In the scenario where missing data mechanism depends on systematic
strategies, Liebl and Rameseder (2019) establishes estimators for the mean and the
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covariance function of the incomplete functional data via the fundamental theorem
of calculus. To the best of our knowledge, no work exists focusing on estimating
functional coefficient of FLM with partially observed trajectories.

In this paper, we address the problem of getting an estimator of functional
coefficient for the case of partially observed functional data without and with
measurement error. In the scenario that trajectories observed without measurement
error, instead of deleting the incomplete trajectories, we get estimators of FPC
scores for each incomplete trajectory by modeling it as linear functionals of the
observed parts of that trajectory. In the setting where trajectories observed with
measurement error, we use local linear smoother methods to estimate mean and
covariance function of the functional predictor, followed by getting FPC scores via
conditional expectation.

The contributions of this paper are as follows. First, we extend FLM approach
to partially observed functional data without measurement error, which leads to
an improved estimator for functional coefficient comparing with the one obtained
through deleting the incomplete trajectories for given dataset. Second, we develop
an estimate method for functional coefficient in FLM for incomplete trajectories
with measurement error. We illustrate its usefulness by comparing with another
two methods: one is based on integration method to get the FPC scores of the
functional predictor instead of using conditional expectations; the other estimator is
obtained by ignoring the measurement error of the trajectories in the dataset. Third,
in both scenarios, we obtain the rate of convergence for the proposed estimators.
Overall, the methodological and numerical developments in this paper can provide
a practically useful way in analyzing FLM with partially observed functional data.

The rest of this paper is organized as follows. In Sect. 2, we introduce functional
linear models. In Sect. 3.1, we develop an estimator for functional coefficient
with incomplete trajectories observed without measurement error and establish
theoretical properties for the proposed estimator. An estimator and theoretical
properties in the scenario that incomplete trajectories observed with measurement
error are introduced in Sect. 3.2. Section 4 illustrates the finite sample performance
of our proposed estimators through simulation studies, followed by a real data
analysis in Sect. 5. Discussion is presented in Sect. 6. Proofs of theorems are given
in the Appendix.

2 Functional Linear Model

Consider a functional linear model, in which the scalar response Yi is linearly related
to the functional covariate Xi ,

Yi = α +
∫
T

γ (t)Xi(t)dt + εi, (1)
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where α is the intercept, {Xi(t) : t ∈ T , i = 1, . . . , n} are the functional predictors,
sampled from the stochastic process {X(t) : t ∈ T } with mean function μ, domain
T is bounded and closed, γ is the slope function to be estimated, εi are random
errors satisfying E[εi] = 0, E[ε2i ] = σ 2 < ∞. We can easily get an estimator
of intercept once we get an estimator of γ . So we focus on estimating γ in the
following (Hall and Horowitz 2007). Let 〈·, ·〉, ||·|| be the inner product and norm on
L2(T ), the set of all square integrable functions on T , with 〈f, g〉 = ∫

T f (t)g(t)dt,
‖f ‖ = 〈f, f 〉1/2 for any f, g ∈ L2(T ).

We first recall the method FPCA in estimating the slope function for model (1)
with the functional predictor Xi observed on the entire domain T . For the stochastic
process X ∈ L2(T ), denote its mean function as μ: μ = E(X), and its covariance
function as cX(s, t): cX(s, t) = cov(X(s),X(t)). Assume cX is continuous on
T × T . The expression cX(s, t) = ∑∞

j=1 λjφj (s)φj (t) exists by the Mercer
Lemma (Riesz and Nagy 1955), where λ1 > λ2 > · · · > 0; φ1, φ2, · · · are
the eigenvalue sequence and the continuous orthonormal eigenfunction sequence
of the linear operator CX: (CXφ)(·) = ∫

T cX(·, t)φ(t)dt, φ ∈ L2(T ), with the
kernel cX. On the other hand, by the Karhunen–Loève (K-L) expansion, one has
Xi(t) = ∑∞

j=1 Uijφj (t), where the random variables Uij = 〈Xi − μ, φj 〉 are

uncorrelated with E[Uij ] = 0, E[U2
ij ] = λj , and γ (t) = ∑∞

j=1 γjφj (t) with
γj = 〈γ, φj 〉.

The full model (1) is then equivalent to Yi − EYi = ∑∞
j=1 γjUij + εi based on

K-L expansion, which can be approximated by
∑m

j=1 γjUij + εi by using the first
m terms. To simplify notations, we assume that {Yi, i = 1, · · · , n} are centered. Let
Y = (Y1, · · · , Yn)

T , γ = (γ1, · · · , γm)T , μ̂ be an estimator of μ, {λ̂j } and {φ̂j } be
estimators of the sequence {λj } and {φj } with λ̂1 > λ̂2 > · · · > 0. The least square
estimator γ̂ is then given as

γ̂ =
(
ÛT

mÛm

)−1
ÛmY, (2)

provided that (ÛT
mÛm)−1 exists with Ûij = 〈Xi − μ̂, φ̂j 〉, Ûm = (Ûij )i=1,··· ,n;

j=1,··· ,m
.

Moreover, for the estimator γ̂j , j = 1, · · · ,m, it has the equivalent form as

γ̂j = λ̂−1
j

〈
n−1

n∑
i=1

(Yi − Ȳ0)(Xi − μ̂), φ̂j

〉
.

Consequently, an estimator of γ is given by

γ̂ (t) =
m∑

j=1

γ̂j φ̂j (t). (3)

The number m of included eigenfunctions is chosen by fraction of
variance explained criterion in practice (James et al. 2000): m = min{k :



Functional Linear Regression for Partially Observed Functional Data 141

∑k
l=1 λ̂l/

∑n
l=1 λ̂i ≥ R}, with a given threshold R. For the asymptotic analysis, we

assume m depends on sample size n such that m → ∞ as n → ∞.

3 Estimation Methods

The above analysis is based on the assumption the functional predictor is observed
on the entire domain. We now consider the scenario that the predictor Xi, i =
1, · · · , n may be available only on parts of T . We first give some notations and then
make further analysis. LetX1, · · · , Xn be an independent and identically distributed
samples from the random function X. We denote the observed and missing parts of
Xi by Oi and Mi with Oi ∪Mi = T . Let Oi = [Li, Ri] ⊆ T , and assume that it is a
random subinterval independent ofXi withRi−Li > 0 almost surely. The observed
data for ith functional predictor is then given as Xi(t), t ∈ Oi, i = 1, · · · , n,
denoted by XiOi

. In this section, our objective interest is to develop an estimation
method for model (1) with partially observed functional observations without and
with measurement error, respectively. And in these scenarios, our objective is to get
estimators of the functional principal component scores {Uij } and the eigenfunctions
{φj } as indicated in formulas (2) and (3). Depending on whether measurement error
is presented in partially observed functional curves, two methods are developed: one
is established by applying linear functionals of the observed parts of that trajectory,
while the other one is based on principal component analysis through conditional
expectation.

3.1 Partially Observed Functional Data Without Measurement
Error

In the scenario that functional curves are partially observed on the domain without
measurement error, to get an estimator of γ in model (1), we need to get estimators
of Uij and φj pertaining to this case. An estimator of Uij is obtained based on the
linear functional of the observed part XiOi

, and an estimator of φj is obtained by
giving estimators of mean and covariance function of X. The steps are given here.

Step 1: Estimate the mean μ and the covariance function cX by sample mean and
sample covariance.

Step 2: Estimate eigenvalues {λj } and eigenfunctions {φj } by
∫
T ĉX(s, t)φ̂j (s)

ds = λ̂j φ̂j (t).

Step 3: Estimate principal component scores Uij = UijOi
+ UijMi

with ÛijOi
=

〈XiOi
− μ̂Oi

, φ̂jOi
〉, and estimate UijMi

by modeling it as linear functionals of
XiOi

given as ÛijMi
= 〈ξ̂ijMi

, XiOi
− μ̂Oi

〉.
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Step 4: Estimate γ based on formulas (2) and (3) for XiOi
observed without

measurement error.

We first address the problem of getting estimators of μ and cX, denoted as
μ̂NME and ĉNME

X , respectively, followed by establishing estimators of Uij and
eigenfunctions φj which are denoted as ÛNME

ij and φ̂NME
j . For simplicity of

presentation, we suppress the notation on “NME” in this subsection unless otherwise
stated.

Let Oi(t) = IOi
(t) with indicator function IOi

(t) being 1 if t ∈ Oi , and 0
otherwise, and let Wi(s, t) = Oi(s)Oi(t). The estimators of the mean function μ

and the covariance function cX of X obtained from the observed points s, t of Xi ,
are given by,

μ̂(t) = 1∑n
i=1 Oi(t)

n∑
i=1

Oi(t)Xi(t), (4)

ĉX(s, t) = 1∑n
i=1 Wi(s, t)

n∑
i=1

Wi(s, t)(Xi(s) − μ̂(s))(Xi(t) − μ̂(t)). (5)

Therefore, we get the estimators {λ̂j }, {φ̂j } related to {λj } and {φj } from ĉX

associated with the covariance operator ĈX.
We could not get estimators Ûij of FPC scores {Uij } of Xi directly from its

definition if Oi �= T . To bridge the gap, Uij is decomposed into two parts:

Uij = 〈XiOi
− μOi

, φjOi
〉 + 〈XiMi

− μMi
, φjMi

〉 = UijOi
+ UijMi

, (6)

where μOi
and φjOi

denote the restriction of μ and the eigenfunction φj on Oi ,
respectively, and the definitions of μMi

, φjMi
are similar. The estimator ÛijOi

of
UijOi

can be estimated directly from the observed part XiOi
and the estimator φ̂j ,

given as ÛijOi
= 〈XiOi

− μ̂iOi
, φ̂jOi

〉. For the term UijMi
, we consider using the

linear functional form 〈ξijMi
, XiOi

− μOi
〉 of the observed part XiOi

to estimate it
which is also considered in Kraus (2015), that is,

ξ̂ijMi
= argmin

ξijMi
∈L2

n−1
n∑

i=1

(ÛijMi
− 〈ξijMi

, XiOi
− μ̂iOi

〉)2

with ÛijMi
= 〈XiMi

− μ̂Mi
, φ̂jMi

〉. The estimator ξ̂ijMi
has the explicit form:

ξ̂ijMi
= Ĉ−1

OiOi
ĈOiMi

φ̂jMi
, where ĈOiOi

, ĈOiMi
are the empirical covariance

operator for COiOi
, COiMi

with the kernel being the covariance function ĉX of Xi

restricted to Oi × Oi and Oi × Mi , respectively. To obtain a stable solution, we
adopt ridge regularization, given by
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ξ̂
(ρ)
ijMi

= (Ĉ
(ρ)
OiOi

)
−1

ĈOiMi
φ̂jMi

,

Û
(ρ)
ijMi

= 〈ξ̂ (ρ)
ijMi

, XiOi
− μ̂iOi

〉, i = 1, · · · , n, j = 1, · · · ,m, (7)

where Ĉ
(ρ)
OiOi

= ĈOiOi
+ ρFOi

, FOi
is an identity operator defined on L2(Oi), ρ is

a ridge parameter; see Kraus (2015) for further details. Let ÛNME
ij = ÛijOi

+ Û
(ρ)
ijMi

.

The estimator γ̂NME of γ using all of the information of the dataset is then obtained
through replacing Ûij in (2) with ÛNME

ij ,

γ̂NME(t) =
m∑

j=1

γ̂j φ̂j (t). (8)

To facilitate our theoretical analysis, we first impose some assumptions on
observation points for partially observed functional curves, indicating the obser-
vation points asymptotically provide enough information in individual or pairwise
crossover.

(A1) There exists δ1 > 0 s.t. sup
t∈[0,1]

P{n−1 ∑n
i=1 IOi

(t) ≤ δ1} = O(n−2).

(A2) There exists δ2 > 0 s.t. sup
s,t∈[0,1]2

P{n−1 ∑n
i=1 Wi(s, t) ≤ δ2} = O(n−2).

Moreover, we also introduce some regularity conditions necessary to derive theoret-
ical properties for the estimate γ̂NME.

(A3) E||X − μ||4 < ∞.
(A4) nm−1 → ∞, n/(

∑m
j=1 δ−2

j ) → ∞ with δj = minj≥1{λj −λj+1, λj−1 −λj }
and nλ2m → ∞ as m → ∞.

(A5) The ridge parameter ρ satisfies ρ → 0, nρ3 → 0, nm−1ρ2 → ∞.
(A6)

∑∞
k=1[E[YUk]]2/λ2k < ∞.

(A7)
∑∞

j=1
∑∞

k=1
r2MiOi jk

λ2OiOi k

< ∞,with rMiOijk = cov(〈XMi
−μMi

, φMiMij 〉, 〈XMi
−

μMi
, φOiOik〉).

Assumption (A3) is a common condition in the analysis of functional model
by using the method of FPCA to guarantee the random functions have finite
fourth moment (see Cardot et al. 1999). Note that if the eigenvalues {λj } are
exponentially or geometrically decreasing, the assumption (A4) holds. The same
kind of conditions are also introduced in Cardot et al. (1999). Assumption (A5) is
used to control the size of ridge effect. To define the convergence of the right hand
of the formula γ (s) = ∑∞

k=1(E[YUk]/λk)φk(s), in the L2 sense, assumption (A6)
is required that is similar to the condition (A1) in Yao et al. (2005b). Assumption
(A7) is used to make the solution ξ̂ijMi

valid which is commonplace in the theory
of inverse problems as Picard condition (see Hansen 1990).
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Let θn = ∑∞
k=m[E[YUk]]2/λ2k . Then assumption (A6) indicates that θn → 0.

Denote υ = ∑m
j=1 Vij with Vij = 〈φjMi

, (CMiMi
− CMiOi

C−1
OiOi

COiMi
)φjMi

〉.
Based on the above assumptions, Theorem 1 gives the converge rate for the
estimator γ̂NME in the L2 sense.

Theorem 1 Suppose that (A1)–(A7) are satisfied. Then

‖γ̂ NME − γ ‖2 = Op(n−1mρ−2 + ιn + θn + υ),

with ιn = n−1 ∑m
j=1 δ−2

j .

Theorem 1 indicates that the approximation error rate of γ̂NME for γ is controlled
by four terms. The first term depends on sample size n, tuning parameter m, ridge
parameter ρ, which is of the higher order than the one given in Hall and Horowitz
(2007) that is mainly due to functional curves observed on the part of the domain.
The second term is related to the spacings between adjacent eigenvalues, and its
effect on convergence rate of γ is also emphasized in Hall and Horowitz (2007).
The third term is related to the convergence of γ in L2 sense, which is also shown
in Yao et al. (2005b) to get approximation error rate for functional coefficient. The
fourth term is introduced by approximating UijMi

with ŨijMi
.

Note that in practice, the ridge parameter ρ included in the regularized estimation
of the j th score of the ith functional observation is chosen by generalized cross-
validation based on the set of samples observed on the entire domain (see Kraus
2015).

3.2 Partially Observed Functional Data with Measurement
Error

In this subsection, we construct an estimator for the slope function γ for partially
observed trajectories with measurement error. We suppose the functional observa-
tions are:

Zil = Xi(til) + εil, til ∈ Oi, i = 1, · · · , n, l = 1, · · · Ni, (9)

where εil is independent from all the other variables Xj , j �= i, with E(εil) = 0,
var(εil) = σ 2

X.
To get an estimator of γ in (1) in the scenario that trajectories may be observed

on parts of the domain with measurement error (WME), we need give estimators of
FPC scores and eigenstructure pertaining to this case. Estimator of eigenstructure
is established after using local linear smoothers to get estimators of mean and
covariance function of X. We obtain estimators of FPC scores by using approach
of principal component analysis via conditional expectation. The steps are given
here.
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Step 1: Estimate the mean and covariance functions by local linear smoothers.
Step 2: Estimate eigenvalues {λj } and eigenfunctions {φj } by

∫
T ĉWME

X (s, t)

φ̂WME
j (s)ds = λ̂WME

j φ̂WME
j (t).

Step 3: Estimate FPC scores {Uij } by principal component analysis via condi-
tional expectation (PACE): Ũij = E[Uij |Zi].

Step 4: Based on obtained estimators ˆ̃
Uij and φ̂WME

j , we get estimator γWME for
XiOi

observed with measurement error.

We first calculate estimators for the mean and the covariance function of X in the
scenario (9), denoted as μ̂WME and ĉWME

X , that are required to derive estimators for
the FPC scores Uij = ∫

(Xi(t) − μ(t))φj (t)dt. For simplicity of presentation, we
suppress notation on “WME” unless otherwise stated in this subsection.

Let K(·) be a nonnegative univariate kernel function that is assumed to be a
symmetric probability density function (pdf) with compact support supp(K) =
[−1, 1], and hμ, hc be the bandwidths for obtaining estimators of μ, cX. Assume
that the second derivatives of μ, cX on T , T 2, respectively, exist. We use local
linear smoothers for the mean function μ (Yao et al. 2005a,b; Kneip and Liebl 2020)
defined as μ̂(t) = β̂0, where

(β̂0, β̂1) = argmin
β0,β1

n∑
i=1

Ni∑
l=1

K

(
til − t

hμ

)
[Zil − β0 − β1(t − til)]2. (10)

Let Ĝilk = (Zil − μ̂(til))(Zik − μ̂(tik)) be the raw covariance points. The local

linear smoother for the covariance function cX is defined as ĉX = ˆ̃
β0, where

(
ˆ̃
β0,

ˆ̃
β1,

ˆ̃
β2) = argmin

β̃0,β̃1,β̃2

n∑
i=1

∑
1≤l,k≤Ni

K

(
til − t

hc

)
K

(
tik − s

hc

)

× [Ĝilk − β̃0 − β̃1(til − t) − β̃2(tik − s)]2. (11)

Similar to the technique introduced in Yao et al. (2005a), the points Ĝill , l =
1 · · · , Ni are not included in (11). Let T1 = [inf{Li ∈ T , i = 1, · · · , n} +
|T |/4, sup{Ri ∈ T , i = 1, · · · , n} − |T |/4] with |T | being the length of T . The
estimator of σ 2

X is defined as σ̂ 2
X if σ̂ 2

X > 0, otherwise σ̂ 2
X = 0 with

σ̂ 2
X = 2

∫
T1

(V̂X(t) − G̃(t))dt/|T |,

where V̂X(t) is the local linear estimator using the points {Ĝill}, G̃(t) is the estimate
ĉX(s, t) restricted to s = t (Staniswalis and Lee 1998; Yao et al. 2005a). The
estimators of {λj , φj }j≥1 are the corresponding solutions of the eigen-equations
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∫
T

ĉX(s, t)φ̂j (s)ds = λ̂j φ̂j (t).

Based on the K-L expansion of Xi , model (9) can be rewritten as

Zil = μ(til) +
∞∑

j=1

Uijφj (til) + εil, til ∈ Oi, i = 1 · · · , n, l = 1 · · · , Ni.

Let Xi = (Xi(ti1), · · · , Xi(tiNi
))T , Zi = (Zi1, · · · , ZiNi

)T , μi = (μ(ti1), · · · ,

μ(tiNi
))T , φij = (φj (ti1), · · · , φj (tiNi

))T . Assume that Uij and εil are jointly
Gaussian. Following Yao et al. (2005a), the best prediction of Uij of the ith subject
given the observations (Zil, til), l = 1, · · · , Ni is obtained as

Ũij = λjφ
T
ijΣ

−1
Zi

(Zi − μi),

where ΣZi
= cov(Zi ,Zi ) = cov(Xi ,Xi ) + σ 2

XINi
with identity matrix INi

. That
is, the (u, v)th element of ΣZi

is (ΣZi
)u,v = cX(tiu, tiv) + σ 2

XIuv with Iuv = 1
if u = v, and 0 otherwise. Then the estimator of Uij is given through substituting
μ, λj , φj with μ̂, λ̂j , φ̂j as

ÛWME
ij = λ̂j φ̂

T
ij Σ̂

−1
Zi

(Zi − μ̂i), (12)

where the (u, v)th entry of Σ̂Zi
is (Σ̂Zi

)u,v = ĉX(tiu, tiv) + σ̂ 2
XIuv . Replacing Ûij

in (2) with ÛWME
ij , we then get the estimator γ̂WME of γ from (3)

γ̂WME(t) =
m∑

j=1

γ̂j φ̂j ,

where γ̂j is the j th entry of γ̂ with ÛWME
ij in (2).

Next, we give some theoretical results for γ̂WME(t). We assume the following
regularity conditions which are similar to the assumptions in Kneip and Liebl
(2020), Yao et al. (2005b).

(B1) The observational points {til , l = 1, · · · , Ni} given Oi for the ith subject are
i.i.d. random variables with pdf ft |Oi

(u) > 0 for all u ∈ Oi ⊆ T and zero
else. For the marginal pdf ft of observation times tij , ft (u) > 0 for all u ∈ T .

(B2) Let N = min{Ni, i = 1, · · · , n}. N  nr with 0 < r < ∞, where an  bn

means that there exists a constant 0 < L < ∞ such that an/bn → L as
n → ∞.

(B3) hμ → 0, hc → 0, nNhμ → ∞, nMhc → ∞ as n → ∞ with M = N2 − N .
(B4) K is a second order kernel with compact support [−1, 1].
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(B5) Let Gilk = (Zil − μ(til))(Zik − μ(tik)). Define fZt , ftt , fGtt as the joint pdf
of (Zil, til) on R×T , (til1 , til2) on T 2, (Gilk, til , tik) on R×T 2, respectively.
All of the second derivatives of fZt , ftt , fGtt are uniformly continuous and
bounded. Moreover, ft is uniformly continuous and bounded on T .

(B6) Let Λ = diag{λ1, · · · , λm}, Ξ = (λ1φi1, · · · , λmφim)T , Υ = Λ−ΞΣ−1
Zi

ΞT

and ςn ≡ trace(Υ ). Denote rμ = h2μ + 1/
√

nNhμ + 1/
√

n, rc = h2c +
1/

√
nMh2c + 1/

√
n. υn ≡ mrμ → 0, τn ≡ rc(

∑m
j=1 δ−1

j ) → 0.

Theorem 2 Under the regularity conditions (A3), (A6), (B1)–(B6), we have that

‖γ̂ WME − γ ‖2 = Op(υn + τn + ςn + θn).

Theorem 2 gives the rate of convergence of the estimator γ̂WME in the L2 sense.
The rate of convergence of γ̂WME depends on the sample size and bandwidths which
is common for estimating curves or surface by local linear smoothers for functional
data analysis (see Li and Hsing 2010). Related results of Theorem 2 can also be
found in Yao et al. (2005b). The terms υn, τn are related to rates of convergence
of estimators for the mean and covariance function by using local linear smoothers.
The term ςn is introduced by approximating Uij with Ũij .

4 Simulation Studies

In this section, we use the simulated datasets to evaluate the finite sample properties
of our proposed methods in Sect. 3. These studies are based on n ∈ {50, 100, 200}
i.i.d. samples {Xi, Yi}ni=1 and equally spaced grid {t1, · · · , t30} on [0, 1] with
t1 = 0, t30 = 1. For the ith functional observation Xi(t), the missing interval Mi

takes the form [Ri − Ei, Ri + Ei], with Ri = a1T
1/2
i1 , Ei = a2Ti2, where Ti1, Ti2

are independent random variables uniformly distributed on [0, 1], a1, a2 ∈ R. We
consider (a1, a2) = (1.5, 0.2), (a1, a2) = (1.5, 0.4) with the expected missing
length over the domain being 0.4 and 0.8, respectively. We set the intercept α = 0.
To evaluate the performance of an estimator γ̂ of γ , mean integrated square error
(MISE) is used below as an evaluation criterion, given by,

MISE = 1

N

N∑
l=1

∫ 1

0
(γ̂l(t) − γ (t))2dt,

where N is the number of Monte Carlo replications.
For functional predictors {Xi} without measurement error, the trajectories are

generated as follows. The simulated random function Xi has zero mean, the
covariance function is generated from two eigenfunctions, φ1(t) = √

2sin(πt/2),
φ2(t) = √

2sin(3πt/2). For the eigenvalues, we take λ1 = (π/2)−2, λ2 =
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Table 1 MISEs of the estimators of γ under different methods with 1000 Monte Carlo replica-
tions for functional predictors without measurement error

Method (a1, a2) n = 50 n = 100 n = 200

ORIa 2.0295 1.0767 0.3670

NMEb (1.5, 0.2) 2.8653 1.6650 0.7343

(1.5, 0.4) 3.5650 2.4412 1.3497

SUBc (1.5, 0.2) 3.5632 1.8844 0.8322

(1.5, 0.4) 4.600 2.6664 1.4401
a The estimator is obtained with the original dataset {Xi, Yi} with functional predictors observed
in entire domain [0, 1] (ORI)

b The estimator γ̂NME introduced in Sect. 3.1 (NME)
c The estimator is obtained by deleting the functional predictors with missing parts (SUB)

(3π/2)−2, λk = 0, for k ≥ 3. The error εi in (1) is assumed to be standard normal.
For the slope function γ in (1), we take the form γ (t) = φ1(t)+3φ2(t). We compare
the finite sample performance of our proposed method with the method that gives
an estimator for γ through formula (2), (3) with deleting the incomplete functional
observations in the datasets denoted as “SUB.” Moreover, the estimator of γ based
on the original complete dataset is also considered in this scenario and denotes it as
“ORI.” We conduct 1000 simulation runs in each setup. Table 1 reports the results.

As shown in Table 1, in the scenario where incomplete functional predictors are
observed without measurement error, the estimation method in Sect. 3.1 performs
better than “SUB” method. This is because some useful information the dataset has
will be lost if we delete them directly, while the “NME” method can take advantage
of the whole information about the dataset. Specially, in each setting for (a1, a2),
MISEs from the “NME” method have smaller values relative to the “SUB” method.
These simulation results also demonstrate that MISEs decrease with increasing
sample size n for these three methods. And MISEs increase with longer missing
length on [0, 1] at fixed n indicating that a large error is introduced for the “NME”
method in imputing missing scores of incomplete functional predictors through
little available information from functional samples. In further, the difference of
MISEs among these three methods are reduced with increasing sample size n, and
the “NME” method still performs better than the “SUB” method, those imply the
“NME” method is promising.

For functional predictors Xi with measurement error, they are generated accord-
ing to Zi(til) = Xi(til) + εil, l = 1, · · · , 30, as follows. We take Xi(t) =∑50

j=1 Uijφj (t) with Uij = (−1)j+1j−1.1/2Wij , where Wij is uniformly distributed

on [−√
3,

√
3], φ1(t) = 1, φj (t) = √

2cos(jπt) for j ≥ 2. The additional random
error εil, l = 1 · · · , 30 and the error εi in (1) are assumed to be normal with mean
zero, variance 0.25. For the slope function γ , we take γ = ∑50

j=1 γjφj (t) with

γ1 = 0.3, γj = 4(−1)j+1j−2 for j ≥ 2 (Hall and Horowitz 2007). We conduct
100 simulation runs in each setup. To demonstrate the superior performance of our
proposed method in Sect. 3.2, we compare it with the other two methods after we
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Table 2 MISEs of the estimators of γ under different methods with 100 Monte Carlo replications
for functional predictors with measurement error

Method (a1, a2) n = 50 n = 100 n = 200

WMEa (1.5, 0.2) 0.1535 0.1176 0.0753

(1.5, 0.4) 0.2033 0.1607 0.1057

INa (1.5, 0.2) 0.1702 0.1560 0.1024

(1.5, 0.4) 0.2671 0.2374 0.1974

NMEc (1.5, 0.2) 0.6312 0.4517 0.3320

(1.5, 0.4) 0.7249 0.5086 0.3808
a The estimator is obtained by using the method in Sect. 3.2 (WME)
b The estimator is obtained by using integration method to get estimators of the principal
component scores Uij (IN)

c The estimator is obtained by using the method in Sect. 3.1 (NME)

get estimators of μ(t) and cX(s, t) by solving the optimization problems (10), (11),
respectively: one is that an estimator of γ is established by applying integration
method to get the FPC scores Ûij in (2) instead of using formula (12), denoted as
“IN”; the other one is that an estimator of γ is obtained by using the method in
Sect. 3.1 with dataset {Zi, Yi} with measurement error being ignored. The results
are summarized in Table 2.

We find from Table 2 that the “WME” method has the best performance relative
to the other two methods in each setup, and the gains are dramatic when switching
from the “NME” method to the “WME” method with the “NME” method ignoring
observation errors for functional predictors. Specifically, for the case of n = 100,
comparing with the “NME” method, the MISEs are reduced by 74%, 68% using the
“WME” method with (a1, a2) = (1.5, 0.2) and (a1, a2) = (1.5, 0.4), respectively.
For the “IN” method, it provides a reasonable estimator for γ and has better
performance than the “NME” method, but nevertheless the “WME” method still
performs better than “IN” method with improvement of 25%, 32% with respect to
(a1, a2) = (1.5, 0.2) and (a1, a2) = (1.5, 0.4). In addition, these simulation results
show that the MISEs decrease with increasing sample size n that is consistent with
the derived theoretical results.

To sum up, in the scenario that incomplete functional predictors observed without
measurement error, the “NME” method taking advantage of the whole information
of the dataset produces a better estimator compared with the “SUB” method; in the
scenario that incomplete functional predictors observed with measurement error,
the “WME” method is preferred for giving the smallest MISE relative to the “IN”
and “NME” methods. Both MISEs of the estimators of γ decrease with increasing
sample size n that is consistent with the derived theoretical properties.
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5 Real Data Analysis

A real diffusion tensor imaging (DTI) dataset considered here is from NIH
Alzheimer’s Disease Neuroimaging Initiative (ADNI) study with 212 subjects,
and is obtained through http://adni.loni.usc.edu/. The primary goal of ADNI study
is to test whether serial magnetic resonance imaging (MRI), positron emission
tomography (PET), biological markers, and neuropsychological assessment can be
combined to measure the progression of mild cognitive impairment (MCI) and early
Alzheimer’s disease (AD). DTI obtained using mathematical method to represent
the anisotropic diffusion of the water molecule in brain organization can be used
to learn MCI and AD. The concrete measure of anisotropy includes fractional
anisotropy (FA), relative anisotropy (RA), Volume ratio (VR), and FA is commonly
adopted for its advantage in contrast ratio of grey-white matter. More details about
preprocessing and methods of this study can be found in Zhu et al. (2012) and Yu
et al. (2016).

Our main interest is characterizing the dynamic relationship between FA and
mini-mental state examination (MMSE) score which is seen as a reliable and valid
clinical measure in quantitatively assessing the severity of cognitive impairment.
FA is measured at 83 equally spaced grid along the corpus callosum (CC) fiber
tract that is the largest fiber tract in human brain, is responsible for much of the
communication between two hemispheres, and connects homologous areas in two
cerebral hemispheres.

To demonstrate the usefulness of the proposed method in Sect. 3.1, we artificially
delete some observed points of FA, and then compare the estimator of γ obtained
by using these incomplete functional observations with the estimator obtained by
applying original complete dataset. For the ith FA curve, the missing domain has
the same form with the interval given in Sect. 4 with (a1, a2) = (1.5, 0.2) and
(a1, a2) = (1.5, 0.4). A part of complete and incomplete individual trajectories
are displayed in Fig. 1.
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Fig. 1 A part of complete (left) and incomplete (right) FA curves with mean function (purple line)
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Fig. 2 Estimators of γ with different expected missing length on [0, 1]. Blue line: the estimator
using original complete dataset; Red line: the estimator with (a1, a2) = (1.5, 0.2); Green line: the
estimator with (a1, a2) = (1.5, 0.4)

Estimators of functional coefficient obtained by both complete and incomplete
FA dataset are illustrated in Fig. 2. It shows that estimators obtained by incomplete
dataset with different missing domain (red line and green line) are similar to the
estimator obtained from original complete dataset (blue line). This reveals that the
proposed framework is useful in getting an estimator for the model with incomplete
functional predictors.

Next, we focus on the problem of recovering the missing parts XiMi
of Xi .

Assume that the infinite-dimensional process Xi is well approximated by the
projection onto the function space L2(T ) via the first m eigenfunctions (Yao et al.
2005a). In practice, the prediction for the trajectory Xi(t) of the ith subject using
the first m eigenfunctions given in Sect. 3.1 can be approached by

X̂i(t) = μ̂NME(t) +
m∑

k=1

Û
(ρ)
ij φ̂NME

j (t).

We randomly select four FA curves with different missing parts. The predicted
profiles for these four curves are presented in Fig. 3, showing that the predicted
profiles are close to the real part. This demonstrates the “NME” method by
recovering the missing parts of incomplete trajectories encourages a better estimator
comparing with the “SUB” method with deleting them directly.
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Fig. 3 Predicted profiles for four randomly chosen FA curves with different missing parts with
(a1, a2) = (1.5, 0.2). Missing parts of trajectories from left to right and top to down: missing in
left side, middle side, right side, both left and right side. Blue point: real data point; Red line:
predicted profile

6 Discussion

In this paper, we address the problem for getting estimators of γ in (1) with
partially observed trajectories without and with measurement error. Basic elements
of our approach are estimators of FPC scores for each partially observed trajectory.
Specially, in the scenario that incomplete functional predictors observed without
measurement error, we achieve it by modeling FPC scores of the missing part
as linear functionals of the observed part of that trajectory. In the scenario
where incomplete functional data is observed with measurement error, we obtain
estimators of FPC scores via conditional expectation. Rates of convergence of the
proposed estimators γ̂NME, γ̂WME under different scenarios are established. We also
compare the proposed methods with the “SUB” or “IN” method. We conclude from
simulation studies that both the “NME” and “WME” methods borrowing strength
from entire samples to get estimators of γ in model (1) perform well in practice.
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The methods proposed here can be extended to other models in terms of
functional regression with partially observed trajectories, such as partial functional
linear regression (see Shin 2009). The framework established in this paper is
based on the assumption that missing parts of trajectories are missing completely
at random. In a number of applications, it is common to encounter that the
underlying missing mechanism for dataset depends on systematic strategies (Liebl
and Rameseder 2019) that clearly violate MCAR assumption. Extension to this
scenario is also of interest and significance in practice.

Appendix

Lemma 1 (Kraus (2015), Proposition 1)

(a) Let E‖X‖2 < ∞ and assumption (A1) be satisfied. Then E(||μ̂NME − μ||2) =
O(n−1) for n → ∞.

(b) Let E‖X‖4 < ∞ and observation pattern (A2) holds. Then E(||ĈNME
X −

CX||2S) = O(n−1) for n → ∞ (here || · ||S denotes the Hilbert–Schmidt norm).

Lemma 2 (Kneip and Liebl (2020), Theorem 4.1) Under the assumptions (B1)–
(B5), we have that

(a) supt∈T |μ̂WME(t) − μ(t)| = Op(rμ) with rμ = h2μ + 1/
√

nNhμ + 1/
√

n.

(b) sup(s,t)∈T 2 |ĉWME(s, t)−cX(s, t)| = Op(rμ + rc) with rc = h2c +1/
√

nMh2c +
1/

√
n.

Proof of Theorem 1 The following results can be derived from the theory developed
by Bhatia et al. (1983):

supj≥1|λ̂NME
j − λj | ≤ ‖ĈNME

X − CX‖,

supj≥1δj‖φ̂j
NME − φj‖ ≤ 81/2‖ĈNME

X − CX‖. (13)

Therefore, we obtain from Lemma 1,

supj≥1|λ̂NME
j − λj | = Op(n−1/2),

supj≥1δj‖φ̂NME
j − φj‖ = Op(n−1/2). (14)
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Note that,
∫
T

(γ̂NME(s) − γ (s))2ds

=
∫
T

⎧⎨
⎩

m−1∑
j=1

⎡
⎣n−1 ∑n

i=1[Yi Û
NME
ij ]

λ̂NME
j

φ̂NME
j (s) − E[YUj ]

λj

φj (s)

⎤
⎦

⎫⎬
⎭

2

ds

+
∫
T

⎧⎨
⎩

∞∑
j=m

E[YUj ]
λj

φj (s)

⎫⎬
⎭

2

ds

+ 2
∫
T

⎧⎨
⎩

m−1∑
j=1

⎡
⎣n−1 ∑n

i=1[Yi Û
NME
ij ]

λ̂NME
j

φ̂NME
j (s) − E[YUj ]

λj

φj (s)

⎤
⎦

⎫⎬
⎭

⎧⎨
⎩

∞∑
j=m

E[YUj ]
λj

φj (s)

⎫⎬
⎭ ds

:= A1(n) + A2(n) + A3(n). (15)

For simplicity, we suppress the notation on “NME.” Assumption (A6) implies
that A2(n) → 0 as m → ∞. For A3(n), Cauchy–Schwarz inequality implies that

A2
3(n) ≤ A2

1(n) × A2
2(n)

p→ 0. Combing the result (14), and the formula (15), we

see that the result of the theorem follows if we can get the convergence rate of Ûij

of the trajectories per subject with Ûij = ÛijOi
+ Û

(α)
ijMi

.

Denote the estimates of UijMi
, COiOi

, COiMi
, φjMi

as ÛijMi(−i), ĈOiOi(−i),

ĈOiMi(−i), φ̂jMi(−i) with deleting the ith curves Xi(t). Let ξ̃
(ρ)
ijMi

= (C
(ρ)
OiOi

)−1

COiMi
φjMi

with C
(ρ)
OiOi

= COiOi
+ ρFOi

, Ũ (ρ)
ijMi

= 〈ξ̃ (ρ)
ijMi

, XiOi
〉, and the notation

ξ̃ijMi
ŨijMi

are corresponded to the symbols ξ̃
(ρ)
ijMi

,Ũ (ρ)
ijMi

with ρ = 0. Since

E
∥∥∥Û

(ρ)
ijMi

− ŨijMi

∥∥∥2 = E
∥∥∥Û

(ρ)
ijMi

− Ũ
(ρ)
ijMi

+ Ũ
(ρ)
ijMi

− ŨijMi

∥∥∥2

= 2E
∥∥∥Û

(ρ)
ijMi

− Ũ
(ρ)
ijMi

∥∥∥2 + 2
∥∥∥Ũ

(ρ)
ijMi

− ŨijMi

∥∥∥2

≤ 4E
∥∥∥Û

(ρ)
ijMi

− Û
(ρ)

ijMi(−i)

∥∥∥2 + 4E
∥∥∥Û

(ρ)

ijMi(−i) − Ũ
(ρ)
ijMi

∥∥∥2

+ 2
∥∥∥Ũ

(ρ)
ijMi

− ŨijMi

∥∥∥2 , (16)

we then analyze the terms E‖Û (ρ)
ijMi

−Û
(ρ)

ijMi(−i)‖2, E‖Û (ρ)

ijMi(−i)−Ũ
(ρ)
ijMi

‖2, ‖Ũ (ρ)
ijMi

−
ŨijMi

‖2 in turn. Let ξ̂ (ρ)

ijMi(−i) = (Ĉ
(ρ)

OiOi(−i))
−1ĈOiMi(−i)φ̂jMi(−i). Then

E‖Û (ρ)

ijMi(−i) − Ũ
(ρ)
ijMi

‖2

= E〈ξ̂ (ρ)

ijMi(−i) − ξ̃
(ρ)
ijMi

, XiOi
〉2

= E{E[〈ξ̂ (ρ)

ijMi(−i) − ξ̃
(ρ)
ijMi

, XiOi
〉2|{XkOi

, k �= i}]}
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= E||C1/2
OiOi

((Ĉ
(ρ)

OiOi(−i))
−1ĈOiMi(−i)φ̂jMi(−i) − (C

(ρ)
OiOi

)−1COiMi
φjMi

)||2

≤ 4
{
E||C1/2

OiOi
(Ĉ

(ρ)

OiOi(−i))
−1(ĈOiMi(−i) − COiMi

)(φ̂jMi(−i) − φjMi
)||2

+ E||C1/2
OiOi

(Ĉ
(ρ)

OiOi(−i))
−1COiMi

(φ̂jMi(−i) − φjMi
)||2

+ E||C1/2
OiOi

(Ĉ
(ρ)

OiOi(−i))
−1(ĈOiMi(−i) − COiMi

)φjMi
||2

+E||C1/2
OiOi

((Ĉ
(ρ)

OiOi(−i))
−1 − (C

(ρ)
OiOi

)−1)COiMi
φjMi

||2
}

:= B1 + B2 + B3 + B4. (17)

Let Fm = {λm

2 < λ̂m < 3
2λm}. Suppose the event Fm holds. Otherwise, we have

P(|λ̂m − λm| ≥ λm

2 ) ≤ P(‖ĈNME
X − CX‖ ≥ λm

2 ) → 0 from assumption (A4). We
have the following results for terms B1 to B4 with the equality

(
Ĉ

(ρ)

OiOi(−i)

)−1 −
(
C

(ρ)
OiOi

)−1 = (ĈOiOi(−i) − COiOi
)
(
C

(ρ)
OiOi

)−1 (
Ĉ

(ρ)

OiOi(−i)

)−1
.

For the term B1,

B1 ≤ E

[∥∥∥C
1/2
OiOi

∥∥∥2
2
·
∥∥∥∥
(
Ĉ

(ρ)

OiOi (−i)

)−1
∥∥∥∥
2

∞
·
∥∥∥ĈOiMi (−i) − COiMi

∥∥∥2
2
·
∥∥∥φ̂jMi (−i) − φjMi

∥∥∥2
]

= O
(
n−2δ−2

j

)
· O(ρ−2).

Denote ‖ · ‖∞ as the operator norm. For the term B2, under the assumption (A7),
E‖C1/2

OiOi
‖2∞ < ∞ and the result (14), it is clear that

B2 ≤ E

[∥∥∥C
1/2
OiOi

∥∥∥2∞ ·
∥∥∥∥
(
Ĉ

(ρ)

OiOi(−i)

)−1
COiMi

∥∥∥∥
2

2
·
∥∥∥φ̂jMi(−i) − φjMi

∥∥∥2
]

≤
∑
j

∑
k

r2MiOijk

(λOiOik + ρ)2
· O

(
n−1δ−2

j

)
= O

(
n−1δ−2

j

)
.

For the term B3,

B3 ≤ E
[
‖C1/2

OiOi
‖22 · ‖(Ĉ(ρ)

OiOi(−i))
−1‖2∞ · ‖ĈOiMi(−i) − COiMi

‖22 · ‖φjMi
‖2

]

= O(n−1ρ−2).

Note that
ρλOiOi k

(λOiOi k
+ρ)2

< 1. Under the assumption (A7), we have that
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B4 ≤ E
[
‖C1/2

OiOi
· (C(ρ)

OiOi
)−1 · (Ĉ

(ρ)

OiOi (−i))
−1 · COiMi

‖22 · ‖ĈOiOi (−i) − COiOi
‖22 · ‖φjMi

‖2
]

≤
⎧⎨
⎩

∑
j

∑
k

ρλOiOik

(λOiOik + ρ)2
· rOiMijk

2

(λOiOik + ρ)2
· ρ−1

⎫⎬
⎭ · O(n−1)

= O(n−1) · O(ρ−1).

These results combined with (17) indicate

E‖Û (ρ)

ijMi(−i) − Ũ
(ρ)
ijMi

‖2 = O
(
n−1ρ−2 + n−1δ−2

j

)
. (18)

We then analyze E‖Û (ρ)
ijMi

− Û
(ρ)

ijMi(−i)‖2,

E‖Û (ρ)
ijMi

− Û
(ρ)

ijMi(−i)‖ = E〈ξ̂ (ρ)
ijMi

− ξ̂
(ρ)

ijMi(−i), XiOi
〉

≤ {E‖ξ̂ (ρ)
ijMi

− ξ̂
(ρ)

ijMi(−i)‖2}1/2{E‖XiOi
‖2}1/2

≤ L{E‖ξ̂ (ρ)
ijMi

− ξ̂
(ρ)

ijMi(−i)‖2}1/2, (19)

where the last inequality holds from the finite second moment of X that is bounded
by constant L. We also have,

E‖ξ̂ (ρ)
ijMi

− ξ̂
(ρ)
ijMi(−i)

‖2 = E‖
(
(Ĉ

(ρ)
OiOi

)−1ĈOiMi
− (Ĉ

(ρ)
OiOi(−i)

)−1ĈOiMi(−i)

)
φ̂jMi(−i)‖2

= E‖
[(

(Ĉ
(ρ)
OiOi

)−1 − (Ĉ
(ρ)
OiOi(−i)

)−1
)

ĈOiMi

+ (Ĉ
(ρ)
OiOi(−i)

)−1(ĈOiMi
− ĈOiMi(−i))

]
φ̂jMi(−i)‖2

≤ 2
{
E‖

(
(Ĉ

(ρ)
OiOi

)−1 − (Ĉ
(ρ)
OiOi(−i)

)−1
)

ĈOiMi
‖2

+ E‖(Ĉ(ρ)
OiOi(−i)

)−1(ĈOiMi
− ĈOiMi(−i))‖2 }. (20)

Note that

E‖ĈOiMi
− ĈOiMi(−i)‖2 = O(n−2),

E‖
(
(Ĉ

(ρ)
OiOi

)−1 − (Ĉ
(ρ)

OiOi(−i))
−1

)
ĈOiMi

‖2 = O(n−2),

E‖(Ĉ(ρ)

OiOi(−i))
−1(ĈOiMi

− ĈOiMi(−i))‖2 = O(n−2ρ−2).

Combining formulas (19) and (20), we deduce that
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E‖Û (ρ)
ijMi

− Û
(ρ)

ijMi(−i)‖2 = O(n−2ρ−2). (21)

On the other hand,

E ‖ Ũ
(ρ)
ijMi

− ŨijMi
‖2= O(ρ), (22)

var(ŨijMi
− UijMi

) = 〈φjMi
, CMiMi

φjMi
〉 − 〈φjMi

, CMiOi
C−1

OiOi
COiMi

φjMi
〉

:= Vij . (23)

Therefore, with nρ3 → 0 and the formulas (16), (18), (21)–(23), we have that

E‖Û (ρ)
ijMi

− UijMi
‖2 = O

(
n−1ρ−2 + n−1δ−2

j + Vij

)
.

Then the results are proved with nρ3 → 0.

Proof of Theorem 2 Let Ũi = (Ũi1, · · · , Ũim)T , Ui = (Ui1, · · · , Uim)T . The
covariance matrix of Ũi is var(Ui ) = ΞΣ−1

Zi
ΞT with Ξ = cov(Ũi ,Zi ) =

(λ1φi1, · · · , λmφim)T . Moreover, var(Ũi −Ui ) = Λ−ΞΣZi
ΞT . Combining these

results with formulas (14), (12) and the results of Lemma 2, the result of Theorem 3
is obtained by replacing ÛNME

ij with ÛWME
ij in (15) with assumptions (B1)–(B6).
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