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Abstract When a population exhibits heterogeneity, we often model it via a finite
mixture: decompose it into several different but homogeneous subpopulations. Con-
temporary practice favors learning the mixtures by maximizing the likelihood for
statistical efficiency and the convenient EM algorithm for numerical computation.
Yet the maximum likelihood estimate (MLE) is not well defined for finite location-
scale mixture in general. We hence investigate feasible alternatives to MLE such
as minimum distance estimators. Recently, the Wasserstein distance has drawn
increased attention in the machine learning community. It has intuitive geometric
interpretation and is successfully employed in many new applications. Do we gain
anything by learning finite location-scale mixtures via a minimum Wasserstein
distance estimator (MWDE)? This chapter investigates this possibility in several
respects. We find that the MWDE is consistent and derive a numerical solution
under finite location-scale mixtures. We study its robustness against outliers and
mild model mis-specifications. Our moderate scaled simulation study shows the
MWDE suffers some efficiency loss against a penalized version of MLE in general
without noticeable gain in robustness. We reaffirm the general superiority of the
likelihood-based learning strategies even for the non-regular finite location-scale
mixtures.

Keywords Finite mixture model · Location scale family · Minimum distance
estimator · Penalized maximum likelihood estimator · Wasserstein distance.

1 Introduction

Let F = {f (·|θ) : θ ∈ �} be a parametric distribution family with density function
f (·|θ) with respect to some σ -finite measure. Denote by G = ∑K

k=1 wk{θk} a
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distribution assigning probability wk on θk ∈ �. A distribution with the following
density function:

f (x|G) =
∫

f (x|θ)dG(θ) =
K∑

k=1

wkf (x|θk)

is called a finite F mixture. We call f (x|θ) the subpopulation density function, θ the
subpopulation parameter, and wk the mixing weight of the kth subpopulation. We
use F(x|θ) and F(x|G) for the cumulative distribution functions (CDF) of f (x|θ)

and f (x|G), respectively. Let

GK = {
G : G =

K∑

k=1

wk{θk}, 0 ≤ wk ≤ 1,
K∑

k=1

wk = 1, θk ∈ �
}

be a space of mixing distributions with at most K support points. A mixture
distribution of (exactly) order K has its mixing distribution G being a member of
GK − GK−1.

We study the problem of learning the mixing distribution G given a set of
independent and identically distributed (IID) observations X = {x1, x2, . . . , xN }
from a mixture f (x|G). Throughout the paper, we assume the order of G is known
and F is a known location-scale family. That is,

f (x|θ) = 1

σ
f0

(x − μ

σ

)

for some probability density function f0(x) with x ∈ R with respect to Lebesgue
measure where θ = (μ, σ ) with � = {R × R

+}.
Finite mixture models provide a natural representation of heterogeneous pop-

ulation that is believed to be composed of several homogeneous subpopulations
(Pearson 1894; Schork et al. 1996). They are also useful for approximating
distributions with unknown shapes that are particularly relevant in image genera-
tion (Kolouri et al. 2018), image segmentation (Farnoosh & Zarpak 2008), object
tracking (Santosh et al. 2013), and signal processing (Plataniotis & Hatzinak 2000).

In statistics, the most fundamental task is to learn the unknown parameters.
In early days, the method of moments was the choice for its ease of com-
putation (Pearson 1894) under finite mixture models. Nowadays, the maximum
likelihood estimate (MLE) is the first choice due to its statistical efficiency and the
availability of an easy-to-use EM algorithm. Under a finite location-scale mixture
model, the log-likelihood function of G is given by

�N(G|X) =
N∑

n=1

log f (xn|G) =
N∑

n=1

log
{ K∑

k=1

wk

σk

f0

(xn − μk

σk

)}
. (1)
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At an arbitrary mixing distribution Gε = 0.5{(x1, ε)} + 0.5{(0, 1)}, we have
�N(Gε |X) → ∞ as ε → 0. Hence, the MLE of G is not well defined or
is ill defined. Various remedies, such as penalized maximum likelihood estimate
(pMLE), have been proposed to overcome this obstacle (Chen et al. 2008; Chen
& Tan 2009). At the same time, MLE can be thought of a special minimum
distance estimator. It minimizes a specific Kullback–Leibler divergence between the
empirical distribution and the assumed model F . Other divergences and distances
have been investigated in the literature as in Choi (1969); Yakowitz (1969);
Woodward et al. (1984); Clarke and Heathcote (1994); Cutler and Cordero-Brana
(1996); Deely and Kruse (1968). Recently, the Wasserstein distance has drawn
increased attention in machine learning community due to its intuitive interpretation
and good geometric properties (Evans & Matsen 2012; Arjovsky et al. 2017). The
Wasserstein distance-based estimator for learning finite mixture models is absent in
the literature.

Are there any benefits to learn finite location-scale mixtures by the minimum
Wasserstein distance estimator (MWDE)? This chapter answers this question from
several angles. We find that the MWDE is consistent and derive a numerical solution
under finite location-scale mixtures. We compare the robustness of the MWDE with
pMLE in the presence of outliers and mild model mis-specifications. We conclude
that the MWDE suffers some efficiency loss against pMLE in general without
obvious gain in robustness. Through this chapter, we better understand the pros and
cons of the MWDE under finite location-scale mixtures. We reaffirm the general
superiority of the likelihood-based learning strategies even for the non-regular finite
location-scale mixtures.

In the next section, we first introduce the Wasserstein distance and some of its
properties. This is followed by a formal definition of the MWDE, a discussion of
its existence, and consistency under finite location-scale mixtures. In Sect. 2.4,
we give some algebraic results that are essential for computing 2-Wasserstein
distance between the empirical distribution and the finite location-scale mixtures.
We then develop a BFGS algorithm scheme for computing theMWDE of the mixing
distribution. In addition, we briefly review the penalized likelihood approach and
its numerical issues. In Sect. 3, we characterize the efficiency properties of the
MWDE relative to pMLE in various circumstances via simulation. We also study
their robustness when the data contains outliers, is contaminated, or when the model
is mis-specified. We then apply both methods in an image segmentation example.
We conclude the paper with a summary in Sect. 4.

2 Wasserstein Distance and the Minimum Distance
Estimator

We introduce the Wasserstein distance and the minimum Wasserstein distance
estimator in this section.
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2.1 Wasserstein Distance

Wasserstein distance is a distance between probability measures. Let � be a
Polish space endowed with a ground distance D(·, ·) and P(�) the space of Borel
probability measures on �. Let η ∈ P(�) be a probability measure. If for some
p > 0,

∫

�

Dp(x, x0)η(dx) < ∞,

for some (and thus any) x0 ∈ �, we say η has finite pth moment. Denote by
Pp(�) ⊂ P(�) the space of probability measures with finite pth moment. For
any η, ν ∈ P(�), we use 	(η, ν) to denote the space of the bivariate probability
measures on � × � whose marginals are η and ν. Namely,

	(η, ν) = {π ∈ P(�2) :
∫

�

π(x, dy) = η(x),

∫

�

π(dx, y) = ν(y)}.

The p-Wasserstein distance is defined as follows.

Definition 1 (p-Wasserstein Distance) For any η, ν ∈ Pp(�) with p ≥ 1, the pth
Wasserstein distance between η and ν is

Wp(η, ν) =
{

inf
π∈	(η,ν)

∫

�2
Dp(x, y)π(dx, dy)

}1/p
.

Suppose X and Y are two random variables whose distributions are F and G and
induced probability measures are η and ν. We regard the p-Wasserstein distance
between η and ν and also the distance between random variables or distributions:
Wp(X, Y ) = Wp(F,G) = Wp(η, ν).

The p-Wasserstein distance is a distance on Pp(�) as shown by Villani (2003,
Theorem 7.3). For any η, ν, ξ ∈ Pp(�), it has the following properties:

1. Non-negativity: Wp(η, ν) ≥ 0 and Wp(η, ν) = 0 if and only if η = ν.
2. Symmetry: Wp(η, ν) = Wp(ν, η).
3. Triangular inequality: Wp(η, ν) ≤ Wp(η, ξ) + Wp(ξ, ν).

The Wasserstein distance has many nice properties. Let us denote ηn
d−→ η for

convergence in distribution or measure. Villani (2003, Theorem 7.1.2) shows that it
has the following properties:

Property 1. For any q ≥ p ≥ 1, Wq(η, ν) ≥ Wp(η, ν).
Property 2. Wp(ηn, η) → 0 as n → ∞ if and only if both:

(i) ηn
d−→ η.

(ii)
∫

Dp(x, x0)ηn(dx) → ∫
Dp(x, x0)η(dx) for some (and thus any) x0 ∈ �.
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Computing theWasserstein distance involves a challenging optimization problem
in general but has a simple solution under a special case. Suppose � is the space of
real numbers, D(x, y) = |x − y|, and F and G are univariate distributions. Let
F−1(t) := inf{x : F(x) ≥ t} and G−1(t) := inf{x : G(x) ≥ t} for t ∈ [0, 1] be
their quantile functions. We can easily compute the Wasserstein distance based on
the following property:

Property 3. Wp(F,G) = { ∫ 1
0 |F−1(t) − G−1(t)|pdt

}1/p.

2.2 Minimum Wasserstein Distance Estimator

Let Wp(·, ·) be the p-Wasserstein distance with ground distance D(x, y) = |x −
y| for univariate random variables. Let X = {x1, x2, . . . , xN } be a set of IID
observations from finite location-scale mixture f (x|G) of order K and FN(x) =
N−1 ∑N

n=1 1(xn ≤ x) be the empirical distribution. We introduce the MWDE of
the mixing distribution G to be

ĜMWDE
N = arg infG∈GK

Wp(FN(·), F (·|G)) = arg infG∈GK
W

p
p (FN(·), F (·|G)).

(2)
As we pointed out earlier, the MLE is not well defined under finite location-scale

mixtures. Is the MWDE well defined? We examine the existence or sensibility of
the MWDE. We show that the MWDE exists when f0(·) satisfies certain conditions.

Assume that f0(0) > 0, f0(x) is bounded, continuous, and has finite pth
moment. Under these conditions, we can see

0 ≤ Wp(FN(·), F (·|G)) < ∞

for any G ∈ GK . When N ≤ K , the solution to (2) merits special attention. Let
Gε = ∑N

n=1(1/N){(xn, ε)} be a mixing distribution assigning probability 1/N on
θn = (xn, ε). When ε → 0, each subpopulation in the mixture f (x|Gε) degenerates
to a point mass at xn. Hence, as ε → 0,

Wp(FN(·), F (·|Gε)) → 0.

Since none of G ∈ GK has zero distance from FN(·), the MWDE does not exist
unless we expand GK to include G0 = ∑N

n=1(1/N){(xn, 0)} = limGε . To remove
this technical artifact, in the MWDE definition, we expand the space of σ to [0,∞).
We denote by F(·|(θ0, 0)) a distribution with point mass at x = θ0. With this
expansion, G0 is the MWDE when N ≤ K .

Let δ = inf{Wp(FN(·), F (·|G)) : G ∈ GK}. Clearly, 0 ≤ δ < ∞. By
definition, there exists a sequence of mixing distributions Gm ∈ GK such that
Wp(FN(·), F (·|Gm)) → δ as m → ∞. Suppose one mixing weight of Gm has
limit 0. Removing this support point and rescaling, we get a new mixing distribution
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sequence, and it still satisfiesWp(FN(·), F (·|Gm)) → δ. For this reason, we assume
that its mixing weights have non-zero limits by selecting converging subsequence if
necessary to ensure the limits exist. Further, when the mixing weights ofGm assume
their limiting values while keeping subpopulation parameters the same, we still have
Wp(FN(·), F (·|Gm)) → δ as m → ∞. In the following discussion, we therefore
discuss the sequence of mixing distributions whose mixing weights are fixed.

Suppose the first subpopulation of Gm has its scale parameter σ1 → ∞ as m →
∞. With the boundedness assumption on f0(x), the mass of this subpopulation will
spread thinly over entire R because σ−1

1 f0((x − μ1)/σ1) → 0 uniformly. For any
fixed finite interval, [a, b], this thinning makes

F(b|θ1) − F(a|θ1) → 0

as m → ∞. It implies that for any given t ∈ (0, 0.5), we have

|F−1(t |θ1)| + |F−1(1 − t |θ1)| → ∞.

This further implies for any t ∈ (0, w1/2), we have

|F−1(t |Gm)| + |F−1(1 − t |Gm)| → ∞

as m → ∞. In comparison, the empirical quantile satisfies x(1) ≤ F−1
N (t) ≤ x(N)

for any t . By Property 3 of Wp(·, ·), these lead to Wp(FN(·), F (·|Gm)) → ∞ as
m → ∞. This contradicts the assumption Wp(FN(·), F (·|Gm)) → δ. Hence, σ1 →
∞ is not a possible scenario of Gm nor σk → ∞ for any k.

Can a subpopulation of Gm instead have its location parameter μ → ∞?
For definitiveness, let this subpopulation correspond to θ1. Note that at least
w1{1 − F0(0)}-sized probability mass of F(x|Gm) is contained in the range
[μ1,∞). Because of this, when μ1 → ∞, we have F−1(1 − t |Gm) → ∞ for
t = w1{1 − F0(0)}/2. Therefore, Wp(FN(·), F (·|Gm)) → ∞ by Property 3. This
contradicts Wp(FN(·), F (·|Gm)) → δ < ∞. Hence, μ1 → ∞ is not a possible
scenario of Gm either. For the same reason, we cannot have μk → ±∞ for any k.

After ruling out μk → ±∞ and σk → ∞, we find Gm has a converging
subsequence whose limit is a proper mixing distribution in GK . This limit is then
an MWDE and the existence is verified.

The MWDE may not be unique, and the mixing distribution may lead to a
mixture with degenerate subpopulations. We will show that the MWDE is consistent
as the sample size goes to infinity. Thus, having degenerated subpopulations in the
learned mixture is a mathematical artifact and also a sensible solution. In contrast,
no matter how large the sample size becomes, there are always degenerated mixing
distributions with unbounded likelihood values.
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2.3 Consistency of MWDE

We consider the problem when X = {x1, . . . , xN } are IID observations from a finite
location-scale mixture of order K . The true mixing distribution is denoted as G∗.
Assume that f0(x) is bounded, continuous, and has finite pth moment. We say the
location-scale mixture is identifiable if

F(x|G1) = F(x|G2)

for all x given G1,G2 ∈ GK implies G1 = G2. We allow subpopulation scale
σ = 0. The most commonly used finite location-scale mixtures, such as the normal
mixture, are well known to be identifiable (Teicher 1961). Holzmann et al. (2004)
give a sufficient condition for the identifiability of general finite location-scale
mixtures. Let ϕ(·) be the characteristic function of f0(t). The finite location-scale
mixture is identifiable if for any σ1 > σ2 > 0, limt→∞ ϕ(σ1t)/ϕ(σ2t) = 0.

We consider the MWDE based on p-Wasserstein distance with ground distance
D(x, y) = |x − y| for some p ≥ 1. The MWDE under finite location-scale mixture
model as defined in (2) is asymptotically consistent.

Theorem 1 With the same conditions on the finite location-scale mixture and same
notations above, we have the following conclusions:

1. For any sequence Gm ∈ GK and G∗ ∈ GK , Wp(F(·|Gm), F (·|G∗)) → 0

implies Gm
d−→ G∗ as m → ∞.

2. The MWDE satisfiesWp(F(·|G∗), F (·|ĜMWDE
N )) → 0 asN → ∞ almost surely.

3. The MWDE is consistent: Wp(ĜMWDE
N ,G∗) → 0 as N → ∞ almost surely.

Proof We present these three conclusions in the current order that is easy to
understand. For the sake of proof, a different order is better. For ease presentation,
we write F ∗ = F(·|G∗) and Ĝ = ĜMWDE

N in this proof.
We first prove the second conclusion. By the triangular inequality and the

definition of the minimum distance estimator, we have

Wp(F ∗, F (·|ĜN)) ≤ Wp(FN, F ∗) + Wp(FN, F (·|ĜN)) ≤ 2Wp(FN, F ∗).

Note that FN is the empirical distribution and F ∗ is the true distribution; we
have FN(x) → F ∗(x) uniformly in x almost surely. At the same time, under the
assumption that F0(x) has finite pth moment, F ∗(x) also has finite pth moment.
The pth moment of FN(x) converges to that of F ∗(x) almost surely. Given the
ground distance D(x, y) = |x − y|, the pth moment in Wasserstein distance
sense is the usual moments in probability theory. By Property 2, we conclude
Wp(FN, F (·|G∗)) → 0 as both conditions there are satisfied.

Conclusion 3 is implied by Conclusions 1 and 2. With Conclusion 2 already
established, we only need to prove Conclusion 1 to complete the whole proof.
By Helly’s lemma (Van der Vaart 2000, Lemma 2.5) again, Gm has a converging
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subsequence though the limit can be a subprobability measure. Without loss of
generality, we assume that Gm itself converges with limit G̃. If G̃ is a subprobability
measure, so would be F(·|G̃). This will lead to

Wp(F(·|Gm), F (·|G∗)) → Wp(F(·|G̃), F (·|G∗)) 	= 0,

which violates the theorem condition. If G̃ is a proper distribution in GK and

Wp(F(·|G̃), F (·|G∗)) = 0,

then by identifiability condition, we have G̃ = G∗. This implies Gm → G∗ and
completes the proof. 
�

The multivariate normal mixture is another type of location-scale mixture. The
above consistency result of MWDE can be easily extended to finite multivariate
normal mixtures.

Theorem 2 Consider the problem when X = {x1, . . . , xN } are IID observations
from a finite multivariate normal mixture distribution of order K and ĜMWDE

N is
the minimum Wasserstein distance estimator defined by (2). Let the true mixing
distribution be G∗. The MWDE is consistent: Wp(ĜMWDE

N ,G∗) → 0 as N → ∞
almost surely.

The rigorous proof is long though the conclusion is obvious. We offer a less
formal proof based on several well-known probability theory results:

(I) A multivariate random variable sequence Yn converges in distribution to Y if
and only if aτ Yn converges to aτ Y for any unit vector a.

(II) If Y is multivariate normal if and only if aτ Y is normal for all a.
(III) The normal distribution has finite moment of any order.

Let Xm be a random vector with distribution F(·|Gm) for some Gm ∈ GK ,
m = 0, 1, 2, . . ., in a general mixture model setting. Suppose as m → ∞, with the
notation we introduced previously

Wp(Xm,X0) → 0.

Then for any unit vector a, based on property 2 of the Wasserstein distance and the
result (I), we can see that

Wp(aτXm, aτX0) → 0.

Next, we apply this result to normal mixture so that F(·|Gm) becomes �(·|Gm) that
stands for a finite multivariate normal mixture with mixing distribution Gm. In this
case, Xm is a random vector with distribution �(·|Gm). Let (μk, �k) be generic
subpopulation parameters. We can see that the distribution of aτXm, �a(·|Gm) is
a finite normal mixture with subpopulation parameters (aτμk, a

τ�ka), and mixing
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weighs the same as those of Gm. Let the mixing distributions after projection be
Gm,a and G0,a.

By the same argument in the proof of Theorem 1,

Wp(�(·|ĜN),�(·|G∗)) → 0

almost surely as N → ∞. This implies

Wp(�a(·|ĜN),�a(·|G∗)) → 0

almost surely as N → ∞ for any a. Hence, by Conclusion 1 of Theorem 1,

ĜN,a
d−→ Ĝ∗

a almost surely for any unit vector a. We therefore conclude the

consistency result: ĜN
d−→ Ĝ∗ almost surely.

2.4 Numerical Solution to MWDE

Both in applications and in simulation experiments, we need an effective way to
compute the MWDE. We develop an algorithm that leverages the explicit form of
the Wasserstein distance between two measures on R for the numerical solution to
the MWDE. The strategy works for any p-Wasserstein distance, but we only provide
specifics for p = 2 as it is the most widely used.

Let Y be a random variable with distribution f0(·). Denote the mean and variance
of Y by μ0 = E(Y ) and σ 2

0 = Var(Y ). Recall that G = ∑K
k=1 wk{(μk, σk)}. Let

x(1) ≤ x(2) ≤ · · · ≤ x(N) be the order statistics, x2 = N−1 ∑N
n=1 x2

n , and ξn =
F−1(n/N |G) be the (n/N)th quantile of the mixture for n = 0, 1, . . . , N . Let

T (x) =
∫ x

−∞
tf0(t)dt

and define

�Fnk = F0

(
ξn−μk

σk

)
− F0

(
ξn−1−μk

σk

)
,

�Tnk = T
(

ξn−μk

σk

)
− T

(
ξn−1−μk

σk

)
.

When p = 2, we expand the squared W2 distance, WN , between the empirical
distribution and F(·|G) as follows:

WN(G) = W 2
2 (FN(·), F (·|G))

=
∫ 1

0
{F−1

N (t) − F−1(t |G)}2dt
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= x2 +
K∑

k=1

wk{μ2
k + σ 2

k (μ2
0 + σ 2

0 ) + 2μkσkμ0}

−2
∑

k

wk

{
μk

N∑

n=1

x(n)�Fnk + σk

N∑

n=1

x(n)�Tnk

}
.

The MWDE minimizes WN(G) with respect to G. The mixing weights and
subpopulation-scale parameters in this optimization problem have natural con-
straints. We may replace the optimization problem with an unconstrained one by
the following parameter transformation:

σk = exp(τk),

wk = exp(tk)/
{ K∑

j=1

exp(tj )
}

for k = 1, 2, . . . , K . We may then minimize WN with respect to {(μk, τk, tk) :
k = 1, 2, . . . , K} over the unconstrained space R

3K . Furthermore, we adopt the
quasi-Newton BFGS algorithm (Nocedal & Wright 2006, Section 6.1). To use this
algorithm, it is best to provide the gradients ofWN(G), which are given as follows:

∂

∂tj
WN =

K∑

k=1

{
∂wk

∂tj

∂

∂wk

WN

}

=
∑

k

wj (δjk − wk)
∂

∂wk

WN,

∂

∂μj

WN = 2wj

{
μj + σjμ0 −

N∑

n=1

x(n)�Fnj

}
,

∂

∂τj

WN = 2wj

{
σj (μ

2
0 + σ 2

0 ) + μjμ0 −
N∑

n=1

x(n)�Tnj

}∂σj

∂τj

,

for j = 1, 2, . . . , K , where

∂

∂wk
WN = {μ2

k
+ σ 2

k
(μ2

0 + σ 2
0 ) + 2μkσkμ0} − 2

∑N−1
n=1 {x(n+1) − x(n)}ξnF (ξn|μk, σk)

−2
{
μk

∑N
n=1 x(n)�Fnk + σk

∑N
n=1 x(n)�Tnk

}
.

SinceWN(G) is non-convex, the algorithm may find a local minimum ofWN(G)

instead of a global minimum as required for MWDE. We use multiple initial values
for the BFGS algorithm and regard the one with the lowest WN(G) value as the
solution. We leave the algebraic details in the Appendix.
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This algorithm involves computing the quantiles ξn and �Tnj repeatedly that
may lead to high computational cost. Since ξn is between mink F−1(n/N |θk) and
maxk F−1(n/N |θk)], it can be found efficiently via a bisection method. Fortunately,
T (x) has simple analytical forms under two widely used location-scale mixtures that
make the computation of �Tnj efficient:

1. When f0(t) = (2π)−1/2 exp(−x2/2), which is the density function of the standard
normal, we have tf0(t) = −f ′

0(t). In this case, we find

T (x) = −f0(x).

2. For a finite mixture of location-scale logistic distributions, we have

f0(t) = exp(−x)

(1 + exp(−x))2

and

T (x) =
∫ x

−∞
tf0(t)dt = x

1 + exp(−x)
− log(1 + exp(x)). (3)

2.5 Penalized Maximum Likelihood Estimator

A well-investigated inference method under a finite mixture of location-scale
families is the pMLE (Tanaka 2009; Chen et al. 2008). Chen et al. (2008) consider
this approach for finite normal mixture models. They recommend the following
penalized log-likelihood function:

p�N(G|X) = �N (G|X) − aN

∑

k

{
s2x/σ 2

k + log σ 2
k

}

for some positive aN and sample variance s2x . The log-likelihood function is given
in (1). They suggest us to learn the mixing distribution G via pMLE defined as

Ĝ
pMLE
N

= arg supp�N(G|X).

The size of aN controls the strength of the penalty, and a recommended value is
N−1/2. Regularizing the likelihood function via a penalty function fixes the problem
caused by degenerated subpopulations (i.e., some σk = 0). The pMLE is shown to
be strongly consistent when the number of components has a known upper bound
under the finite normal mixture model.
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The penalized likelihood approach can be easily extended to a finite mixture of
location-scale families. Let f0(·) be the density function in the location-scale family
as before. We may replace the sample variance s2x in the penalty function by any
scale-invariance statistic such as the sample inter-quartile range. This is applicable
even if the variance of f0(·) is not finite.

We can use the EM algorithm for numerical computation. Let zn = (zn1, . . . , znK)

be the membership vector of the nth observation. That is, the kth entry of zn is
1 when the response value xn is an observation from the kth subpopulation and
0 otherwise. When the complete data {(zn, xn), n = 1, 2, . . . , N} are available, the
penalized complete data likelihood function of G is given by

p�c
N (|X) =

N∑

n=1

K∑

k=1

znk log

{
wk

σk
f0

(xi − μk

σk

)}

− aN

∑

k

{
s2x/σ 2

k + log(σ 2
k )

}
.

Given the observed data X and proposed mixing distribution G(t), we have the
conditional expectation

w
(t)
nk

= E(znk |X, G(t)) = w
(t)
k

f (xn|μ(t)
k

, σ
(t)
k

)
∑K

j=1 w
(t)
j

f (xn|μ(t)
j

, σ
(t)
j

)
.

After this E-step, we define

Q(G|G(t)) = ∑N
n=1

∑K
k=1 w

(t)
nk

log
{

wk
σk

f0

(
xn−μk

σk

)}
− aN

∑
k

{
s2x/σ 2

k
+ log(σ 2

k
)
}
.

Note that the subpopulation parameters are separated in Q(·|·). The M-step is
to maximize Q(G|G(t)) with respect to G. The solution is given by the mixing
distribution G(t+1) with mixing weights

w
(t+1)
k

= N−1
N∑

n=1

w
(t)
nk

and the subpopulation parameters

θ
(t+1)
k

= argmin
θ

{ ∑

n

w
(t)
nk

{log σ − f (xn|θ)} + aN {s2x/σ 2 + log σ 2}
}

(4)

with the notational convention θ = (μ, σ ).
For general location-scale mixture, the M-step (4) may not have a closed-form

solution, but it is merely a simple two-variable function. There are many effective
algorithms in the literature to solve this optimization problem. The EM algorithm
for pMLE increases the value of the penalized likelihood after each iteration. Hence,
it should converge as long as the penalized likelihood function has an upper bound.
We do not give a proof as it is a standard problem.
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3 Experiments

We now study the performance of MWDE and pMLE under finite location-scale
mixtures. We explore the potential advantages of the MWDE and quantify its
efficiency loss, if any, by simulation experiments. Consider the following three
location-scale families (Chen et al. 2020):

1. Normal distribution: f0(x) = (2π)−1/2 exp(−x2/2). Its mean and variance are
given by μ0 = 0 and σ 2

0 = 1.
2. Logistic distribution: f0(x) = exp(−x)/(1 + exp(−x))2. Its mean and variance are

given by μ0 = 0 and σ 2
0 = π2/3.

3. Gumbel distribution (type I extreme-value distribution): f0(x) = exp(−x −
exp(−x)). Its mean and variance are given by μ0 = γ and σ 2

0 = π2/6, where
γ is the Euler constant.

We will also include a real-data example to compare the image segmentation
result of using the MWDE and pMLE.

3.1 Performance Measure

For vector-valued parameters, the commonly used performance metric of their
estimators is the mean-squared error (MSE). A mixing distribution with finite
and fixed support points can be regarded as a real-valued vector in theory. Yet
the mean-squared errors of the mixing weights, the subpopulation means, and the
subpopulation scales are not comparable in terms of the learned finite mixture. In
this chapter, we use two performance metrics specific for finite mixture models.
Let Ĝ and G∗ be the learned mixing distribution and the true mixing distribution.
We use L2 distance between the learned mixture and the true mixture as the first
performance metric. The L2 distance between two mixtures f (·|G) and f (·|G̃) is
defined to be

L2(f (·|G), f (·|G̃)) = {wτ SGGw − 2wτ S
GG̃

w̃ + w̃τ S
G̃G̃

w̃}1/2,

where SGG, S
GG̃

and S
G̃G̃

are three square matrices of size K ×K with their (n, m)th
elements given by

∫

f (x|θn)f (x|θm)dx,

∫

f (x|θn)f (x|θ̃m)dx,

∫

f (x|θ̃n)f (x|θ̃m)dx.

Given an observed value x of a unit from the true mixture population, by Bayes’
theorem, the most probable membership of this unit is given by

k∗(x) = argmax
k

{w∗
kf ∗(x|θ∗

k)}.
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Following the same rule, if Ĝ is the learned mixing distribution, then the most likely
membership of the unit with observed value x is

k̂(x) = argmax
k

{ŵkf (x|θ̂k)}.

We cannot directly compare k∗(x) and k̂(x) because the subpopulation themselves
is not labeled. Instead, the adjusted Rand index (ARI) is a good performance metric
for clustering accuracy. Suppose the observations in a dataset are divided into K

clustersA1, A2, . . . , AK by one approach, andK ′ clusters B1, B2, . . . , BK ′ by another.
Let Ni = #(Ai), Mj = #(Bj ), Nij = #(AiBj ) for i, j = 1, 2, . . . , K, where #(A) is the
number of units in set A. The ARI between these two clustering outcomes is defined
to be

ARI =
∑

i,j

(Nij

2

) − (N
2
)−1 ∑

i,j

(Ni
2

)(Mj

2

)

1
2

∑
i

(Ni
2

) + 1
2

∑
j

(Mj

2

) − (N
2
)−1 ∑

i,j

(Ni
2

)(Mj

2

) .

When the two clustering approaches completely agree with each other, the ARI
value is 1. When data are assigned to clusters randomly, the expected ARI value
is 0. ARI values close to 1 indicate a high degree of agreement. We compute ARI
based on clusters formed by k∗(x) and k̂(x).

For each simulation, we choose or generate a mixing distribution G∗(r) and then
generate a random sample from mixture f (x|G∗(r)). This is repeated R times. Let
Ĝ(r) be the learned G based on the rth dataset. We obtain the two performance
metrics as follows:

1. Mean L2 distance:

ML2 = R−1
R∑

r=1

L2(f (·|Ĝ(r)), f (·|G∗(r))).

2. Mean-adjusted Rand index:

MARI = R−1
R∑

r=1

ARI(Ĝ(r),G∗(r)).

The lower the ML2 and the higher the MARI, the better the estimator performs.
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3.2 Performance Under Homogeneous Model

The homogeneous location-scale model is a special mixture model with a single
subpopulation K = 1. Both MWDE and MLE are applicable for parameter
estimation. There have been no studies of MWDE in this special case in the
literature. It is therefore of interest to see how MWDE performs under this model.

Under three location-scale models given earlier, the MWDE has closed analytical
forms. Using the same notation introduced, their analytical forms are as follows:

1. Normal distribution:

μ̂MWDE = x̄, σ̂MWDE =
N∑

n=1

x(n)

{
f0(ξn−1) − f0(ξn)

}
.

2. Logistic distribution:

μ̂MWDE = x̄, σ̂MWDE = 3

π2

N∑

n=1

x(n)

{
T (ξn) − T (ξn−1)

}
,

where T (x) is given in (3).
3. Gumbel distribution:

μ̂MWDE = {1 − γ r}−1{x̄ − γ T }, σ̂MWDE = T − rμ̂MWDE,

where

T = {γ 2 + π2/6}−1
N∑

n=1

x(n)

∫ ξn

ξn−1

tf0(t)dt

and r = γ /(γ 2 + π2/6).

TheMLEs under the logistic and Gumbel distributions do not have an easy-to-use
analytical form. We employ a numerical optimization program to solve for MLE.
We generate samples of sizes between N = 10 and N = 100,000 with R = 1000
repetitions. Under the homogeneous model, it is most convenient to compute the
MSE of the location and scale parameters separately. Due to the invariance property,
we generate data from distributions with μ = 0 and σ = 1. The simulation results are
summarized as plots in Fig. 1. Both the x and y axes in these plots are in logarithm
scale. For both MLE and MWDE, their log-MSE and log(N) values are close to the
straight lines with slope −1. This phenomenon indicates that both estimators have
the expected convergence rates O(N−1/2) as the sample size N → ∞.

The performances of the estimators for the location parameter and scale parame-
ter are different. For the location parameter under all three models, the lines formed
by MLE and MWDE are nearly indistinguishable though the MLE is always below
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Fig. 1 The MSEs of the MWDE and MLE for location and scale parameters versus sample size
N under different homogeneous models. (a) Normal. (b) Logistic. (c) Gumbel

the MWDE. For the scale parameter σ , the MLE is also more efficient than the
MWDE, but the difference is negligible under the normal and logistic models. Under
the Gumbel model, the MWDE is less efficient.

In summary, usingMWDE under a homogeneous model may not be preferred but
may be acceptable under the normal and logistic models. We do not investigate the
performance of MWDE under Gumbel mixture due to its efficiency loss under the
homogeneous model. With these observations, we move to its performance under
finite location-scale mixtures.

3.3 Efficiency and Robustness Under Finite Location-Scale
Mixtures

We next study the efficiency and robustness of the MWDE for learning finite
location-scale mixtures. Since the MLE is not well defined, we compare the
performance of MWDE with the pMLE (Chen & Tan 2009) instead. We compare
their performances when the mixture model is correctly specified, when the data is
contaminated, or when the model is mildly mis-specified.

3.3.1 Efficiency

A widely employed two-component mixture model (Cutler & Cordero-Brana 1996;
Zhu 2016) has a density function in the following form:

f (x|G) = pf (x|0, a) + (1 − p)f (x|b, 1) (5)

for some density function f (·|θ) from a location-scale family. Namely, we have
K = 2 is known, the mixing weights be w1 = p, w2 = 1 − p, and subpopulation
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parameters be θ1 = (0, a) and θ2 = (b, 1). By choosing different combinations of
p, a, and b, we obtain mixtures with different properties. Due to the invariance
property, we need to consider only the case where one of the location parameters is
0 and one of the scale parameters is 1.

We generate samples from f (x|G) according to the following scheme: generate
an observation Y from distribution with density function f0(x), and let

X =
⎧
⎨

⎩

aY, with probability p;
Y + b, otherwise.

(6)

We can easily see that the distribution of X is f (x|G) specified earlier.
The level of difficulty to precisely estimate the mixture largely depends on the

degree of overlap between the subpopulations. Let

oj |i = P
(
wif (X|μi, σi) < wjf (X|μj , σj )|X ∼ f (x|μi, σi)

)
.

This is the probability of a unit from subpopulation i misclassified as a unit in
subpopulation j by the maximum posterior rule. The degree of overlap between
the ith and j th subpopulations is therefore

oij = oj |i + oi|j . (7)

We employ the following a, b, and p values in our simulation experiments:

1. Mixing proportion p = 0.15, 0.25, 0.5, 0.75, 0.85.
2. Scale of the first subpopulation a2 = 1, 2.
3. Location parameter b values such that o12 = 0.03, 0.1.

The combination of these choices leads to 24 mixtures with various shapes. The
sample size N in our experiments is chosen to be 100, 500, and 1000, respectively.

We obtain the average L2 distance (ML2) and adjusted Rand index (MARI)
based on R = 1000 repetitions on data generated from normal and logistic mixture
distributions as specified by (6). Figures 2 and 3, respectively, contain plots of
ML2 and MARI of the WMDE and pMLE estimators against sample size N under
these two models. We can see that when the sample size increases, ML2 of both
estimators decreases and MARI of both estimators increases, supporting the theory
that both WMDE and pMLE are consistent. Under the normal mixture, these two
estimators have nearly equal L2 distances. The MWDE slightly outperforms pMLE
in terms of the MARI, when the degree of overlap is large (o12 = 0.1) and the two
subpopulations have both equal scale and highly unbalanced weights. Under logistic
mixture, as shown in plots (a) and (b) of Fig. 3, the pMLE always outperforms the
MWDE in terms of the L2 distance. In terms of the MARI, the MWDE is better
when the scale parameters are equal and weights are highly unbalanced. When the
scale parameters are different, the pMLE is better than MWDE when p > 0.5 and
worse than MWDE when p < 0.5.
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Fig. 2 Performances of pMLE and MWDE under 2-component normal mixture. (a) L2 distance.
(b) Adjusted Rand index

We next investigate the performance of the MWDE and pMLE for learning 3-
component normal mixtures. We come up with 8 such distributions with different
configurations. The three subpopulations have the same or different weights and
same or different scale parameter values. They lead to different degrees of overlap
as defined by

MeanOmega = mean1≤i<j≤3{oij },

where oij is the degree of overlap between subpopulations i and j in (7). See Table 1
for detailed parameter values.

Figure 4 contains plots of the ML2 and MARI values of two estimators. It is seen
that the pMLE consistently outperforms MWDE in terms of ML2 but the difference
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Fig. 3 Performances of pMLE and MWDE under 2-component logistic mixture. (a) L2 distance.
(b) Adjusted Rand index

Table 1 Parameter values of 3-component normal mixtures

MeanOmega w1 w2 w3 μ1 μ2 μ3 σ1 σ2 σ3

I 0.288 (low) 0.4 0.5 0.1 −2 0 1 0.3 2 0.4

II 0.367 (high) 0.4 0.5 0.1 −2 0 1 0.3 1 0.4

III 0.097 (low) 0.3 0.5 0.2 −3 0 3 1 1 1

IV 0.249 (high) 0.3 0.5 0.2 −2 0 2 1 1 1

V 0.148 (low) 1/3 1/3 1/3 −1 0 1 1.5 0.1 0.5

VI 0.267 (high) 1/3 1/3 1/3 −0.5 0 0.5 1.5 0.1 0.5

VII 0.091 (low) 1/3 1/3 1/3 −3 0 3 1 1 1

VIII 0.226 (high) 1/3 1/3 1/3 −2 0 2 1 1 1
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Fig. 4 Performances of pMLE and MWDE under 3-component normal mixture. (a) L2 distance.
(b) Adjusted Rand index

is small. The performances of the MWDE and pMLE are mixed in terms of MARI
and the differences are small. The pMLE is clearly better under I and II.

3.3.2 Robustness

Robustness is another important property of estimators. Sample mean is the most
efficient unbiased estimator of the population mean in terms of variance under
normality or some other well-known parametric models. However, the value of
the sample mean changes dramatically even if the dataset contains merely a single
extreme value. Sample median offers a respectable alternative and still has high
efficiency across a broader range of parametric models.

In the context of learning finite location-scale mixture models, both pMLE and
MWDE rely on a parametric distribution family assumption through f0(x). How
important is to have f0(x) correctly specified? We shed some light into this problem
by simulation experiments in this section. We learn finite normal mixtures assuming
K = 2 but generate data from the following distributions:

1. Mixture with outliers: (1 − α){pφ(x|0, a) + (1 − p)φ(x|b, 1)} + αφ(x|8, 1) with
α = 0.01 and φ(x|μ, σ) = exp(−(x − μ)2/2σ 2)/

√
2πσ 2.

2. Mixture contaminated: (1 − α){pφ(x|0, a) + (1 − p)φ(x|b, 1)} + αφ(x|b/2, 7) with
α = 0.01.

3. Mixture mis-specified I: pf0(x|0, a)+ (1−p)f0(x|b, 1) with f0(x) being Student-t
with 4 degrees of freedom.
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Fig. 5 Adjusted Rand index based on pMLE and MWDE when data contains outliers or is
contaminated. (a) Mixture with outliers. (b) Mixture contaminated

4. Mixture mis-specified II: pf1(x|0, a)+ (1−p)f2(x|b, 1) with f1(x)and f2(x) being
Student-t with 2 and 4 degrees of freedom.

In every case, we use the combinations of the a, b, and p values the same as
before. We regard (1− α){pφ(x|0, a) + (1− p)φ(x|b, 1)} as the true distribution in all
cases and computed the MARI accordingly.

We obtain the MARI values based on R = 1000 repetitions with sample sizes N =
100, 500, and 1000, see Figs. 5 and 6. We see that when the degree of overlap is low,
MWDE and pMLE have similar performances. When the subpopulation variance
is larger (a2 = 2), the performance of pMLE is generally better. In general, we
conclude that pMLE is preferred.
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Fig. 6 Adjusted Rand index based on pMLE and MWDE when subpopulation distributions are
mis-specified. (a) Mixture mis-specified I. (b) Mixture mis-specified II

Statistical inference usually becomes more accurate when the sample size
increases. This is not the case in this simulation experiment. We can see that MARI
often decreases (becomes less accurate) when the sample size increases. This is not
caused by simulation error. When the model is mis-specified, the learned model
does not converge to the “true model” as N → ∞. Hence, the inference does not
necessarily improve. The moral of this simulation study is that the MWDE is not
more robust than the pMLE, against our intuition.
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3.4 Image Segmentation

Image segmentation aims to partition an image into regions, each with a rea-
sonably homogeneous visual appearance or corresponds to objects or parts of
objects (Bishop 2006, Chapter 9). In this section, we perform image segmentation
with finite normal mixtures, a common practice in the machine learning community.

Each pixel in an image is represented by three numbers within the range of [0, 1]
that corresponds to the intensities of the Red, Green, and Blue (RGB) channels.
Since the intensity values are always between 0 and 1, unlike the common practice
in the literature, we feel obliged to transform the intensity values to ensure the
normal mixture model fits better. Let y = �−1((x + 1/N)/(1 + 2/N)) with x being
the intensity and N the total number of pixels in the image. We then learn a two-
component normal mixture on y values from each channel. Namely, we learn three
normal mixtures on red, green, and blue channels, respectively.

We use the maximum posterior probability rule to assign each pixel to one of two
clusters. We then form an image segment by pixels assigned to the same cluster. We
visualize the segregated images channel by channel by re-drawing the image with
the original intensity value replaced by the average intensity of the pixels assigned
to the specific cluster.

The segregated images depend heavily on the fitted mixture distributions. We
compare the segregated images obtained by the normal mixtures learned via the
pMLE and MWDE. We retrieved an image from Pexels1 as shown in Fig. 7a. Clark
(2015) resized the original high-resolution image to 433 × 650 grids using Lanczos
filter. We learn a normal mixture of order K = 2 for each channel based on resized
datasets and evaluated its utility of segregating the foreground and the background.

We present the specifications of the learned mixing distributions by pMLE and
MWDE in Table 2. Plots (d), (g), and (j) in Fig. 7 are histograms of the transformed
intensity values of RGB channels, together with the mixture densities learned via
pMLE and MWDE. The corresponding segmented images are shown as plots (e),
(h), and (k) for pMLE and (f), (i), and (l) for MWDE. The estimated parameter
values and the fitted density on the red and green channels based on these two
approaches are very similar. For the blue channel, the fitted densities and the
segmentation results are very similar although the estimated parameter values of the
second component are quite different. Both approaches can produce images with
meaningful structures segregating foreground from background.

There are two clusters in each of 3 channels leading to 8 refined clusters. We may
paint each pixel with the average RGB intensity triplet according to these 8 refined
clusters. The re-created images via pMLE and MWDE, respectively, are shown in
(b) and (c). We note these two images are very similar, showing that both learning
strategies are effective.

1 https://www.pinterest.se/pin/761952830692007143/.
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Fig. 7 Flower image and its segmentation outcomes. (a), (b) and (c): original image; aggregated
images based on segmentation outcomes via pMLE and MWDE. (d), (g) and (j): histograms of
pixel intensity of Red, Green, and Blue channels together with the fitted mixtures. (e), (h) and (k):
segregated images via PMLE in RGB channels. (f), (i) and (l): segregated images via MWDE in
RGB channels
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Table 2 Estimated mixing distributions of the flower image by pMLE and MWDE.

Channel Estimator w1 w2 μ1 μ2 σ1 σ2

Red pMLE 0.896 0.104 −1.668 1.139 1.321 0.277

MWDE 0.915 0.085 −1.617 1.220 1.316 0.213
Green pMLE 0.804 0.196 −0.935 0.637 0.373 0.595

MWDE 0.819 0.181 −0.926 0.724 0.378 0.510
Blue pMLE 0.735 0.265 −0.753 0.268 0.414 1.034

MWDE 0.862 0.138 −0.722 1.019 0.473 0.592

4 Conclusion

The MWDE provides another approach for learning finite location-scale mixtures.
We have shown the MWDE is well defined and consistent. Our moderate scaled
simulation study shows it suffers some efficiency loss against a penalized version of
MLE in general without noticeable gain in robustness. We gain the knowledge on
the benefits and drawbacks of the MWDE under finite location-scale mixtures. We
reaffirm the general superiority of the likelihood-based learning strategies even for
non-regular models.

Acknowledgments The authors would like to thank Richard Schonberg for proofreading the
manuscript.

Appendix

Numerically Friendly Expression of W2(FN,F(·|G))

To learn the finite mixture distribution through MWDE, we must compute

WN(G) = W2
2 (FN(·), F (·|G)) =

∫ 1

0
{F−1

N
(t) − F−1(t |G)}2dt

for finite location-scale mixture

F(·|G) =
K∑

k=1

πkF(·|θk) =
K∑

k=1

πkσ
−1
k

F0((x − μk)/σk).

We write Ek(·) as expectation under distribution F(·|θk). For instance,

Ek{X2} = μ2
k + σ 2

k (μ2
0 + σ 2

0 ) + 2μkσkμ0.
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Let In = ((n − 1)/N, n/N ] for n = 1, 2, . . . , N so that F−1
N

(t) = x(n) when t ∈ In,
where x(n) is the nth order statistic. For ease of notation, we write x(n) as xn. Over
this interval, we have

∫

In

{F−1
N

(t) − F−1(t |G)}2dt =
∫

In

[x2n − 2xnF−1(t |G) + {F−1(t |G)}2]dt. (8)

The integration of the first term in (8), after summing over n, is given by

N∑

n=1

∫

In

x2ndt = N−1
∑

n

x2n = x2.

The integration of the third term in (8) is

N∑

n=1

∫

In

{F−1(t |G)}2dt =
∫ ∞
−∞

x2f (x|G)dx =
K∑

k=1

wkEk{X2}.

Let ξ0 = −∞, ξN+1 = ∞, and ξn = F−1(n/N |G) for n = 1, . . . , N . Denote

�Fnk = F(ξn|θk) − F(ξn−1|θk)

and

T (x) =
∫ x

−∞
tf0(t)dt, �Tnk = T ((ξn − μk)/σk) − T (ξn−1 − μk)/σk).

Then
∫

In

F−1(t |G)dt = ∑
k wk

∫ ξn

ξn−1
xf (x|μk, σk)dx

= ∑
k wk{μk�Fnk + σk�Tnk}.

These lead to numerically convenient expression

WN(G) = x2 +
∑

k

wkEk{X2} − 2
∑

k

wk{μk�Fnk + σk�Tnk}.

To most effectively use BFGS algorithm, it is best to provide gradients of the
objective function. Here are some numerically friendly expressions of some partial
derivatives.

Lemma 1 Let δjk = 1 when j = k and δjk = 0 when j 	= k. For n = 1, . . . , N and
j = 1, 2, . . . , K , we have
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∂

∂wj
F (ξn|θk) = f (ξn|θk)

∂ξn

∂wj
,

∂

∂μj
F (ξn|θk) = f (ξn|θk)

(
∂ξn

∂μj
− δjk

)

,

∂

∂σj
F (ξn|θk) = f (ξn|θk)

( ∂ξn

∂σj
−

{
ξn − μk

σk

}

δjk

)
,

and

∂

∂wj
T

(
ξn − μk

σk

)

= f (ξn|θk)

(
ξn − μk

σk

)
∂ξi

∂wj
,

∂

∂μj
T

(
ξn − μk

σk

)

= f (ξn|θk)

(
ξn − μk

σk

) (
∂ξn

∂μj
− δjk

)

,

∂

∂σj
T

(
ξn − μk

σk

)

= f (ξn|θk)

(
ξn − μk

σk

) {
∂ξi

∂σj
−

(
ξn − μk

σk

)

δjk

}

.

Furthermore, we have

∂ξn

∂μk
= wkf (ξi |θk)

f (ξn|G)
,

∂ξn

∂σk
= wkf (ξn|θk)

f (ξi |G)

(
ξn − μk

σk

)

,

∂ξn

∂wk
= −F(ξn|θk)

f (ξn|G)
.

Based on this lemma, it is seen that

∂

∂μj
WN = 2wj (μj + σjμ0) − 2wj

N∑

n=1

x(n)�Fnj

−2
N∑

n=1

∑

k

wkμkx(n)

{
∂F0(ξn|θk)

∂μj
− ∂F0(ξn−1|θk)

∂μj

}

−2
N∑

n=1

∑

k

wkσkx(n)
∂

∂μj

{

T

(
ξn − μk

σk

)

− T

(
ξn−1 − μk

σk

)}

with F0(ξ0|θk) = 0, F0(ξN+1|θk) = 1, T
( ξ0−μk

σk

) = 0, and T
( ξN+1−μk

σk

) = ∫ ∞
−∞ tf0(t)dt

is a constant that does not depend on any parameters. Substituting the partial
derivatives in Lemma 1, we then get

∂

∂μj
WN = 2wj (μj + σjμ0) − 2wj

N∑

n=1

x(n)�Fnj
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−2
N−1∑

n=1

x(n)ξn
∑

k

wkf (ξn|μk, σk)
( ∂ξn

∂μj
− δjk

)

+2
N−1∑

n=1

x(n)ξn−1
∑

k

wkf (ξn−1|μk, σk)
(∂ξn−1

∂μj
− δjk

)

= 2wj

{
μj + σjμ0 −

N∑

n=1

x(n)�Fnj

}
.

Similarly, we have

∂

∂σj
WN = 2wj {σj (μ2

0 + σ 2
0 ) + μjμ0 −

N∑

n=1

x(n)�μnj },

∂

∂wk
WN = {μ2

k + σ 2
k (μ2

0 + σ 2
0 ) + 2μkσkμ0} − 2

N−1∑

n=1

{x(n+1) − x(n)}ξiF (ξn|θk)

−2
{
μk

N∑

n=1

x(n)�Fnk + σk

N∑

n=1

x(n)�Tnk

}
.

Computing the quantiles of the mixture distribution F(·|G) for each G is one of
the most demanding tasks. The property stated in the following lemma allows us to
develop a bi-section algorithm.

Lemma 2 Let F(x|G) = ∑K
k=1 F(x|μk, σk) be a K-component mixture, and ξ(t) =

F−1(t |G) and ξk(t) = F−1(t |θk), respectively, the t-quantile of the mixture and its kth
subpopulation. For any t ∈ (0, 1),

min
k

ξk(t) ≤ ξ(t) ≤ max
k

ξk(t). (9)

Proof Since F(x|θ) has a continuous CDF, we must have F(ξk(t)|θk) = t . By the
monotonicity of the CDF F(·|θk), we have

F(min
k

ξk(t)|θk) ≤ F(ξk(t)|θk) ≤ F(max
k

ξk(t)|θk).

Multiplying by wk and summing over k lead to

F(min
k

ξk(t)|G) ≤ t ≤ F(max
k

ξk(t)|G).

This implies (9) and completes the proof. 
�



Minimum Wasserstein Distance Estimator Under Finite Location-Scale Mixtures 97

In view of this lemma, we can easily find the quantiles of F(·|θk) to form an
interval containing the targeting quantile of F(·|G). We can quickly find F−1(t |G)

value through a bi-section algorithm.
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