
A Selective Overview of Statistical
Methods for Identification of the
Treatment-Sensitive Subsets of Patients

Xinyi Ge, Yingwei Peng, and Dongsheng Tu

Abstract Identification of a subset of patients who may benefit from or be sensitive
to a specific type of treatment has become a very important research topic in
clinical trials and other types of clinical research. Statistical methods are essential
in helping clinical researchers to identify the subset. In this article, we provide a
selective overview of statistical methods developed in recent years in this research
areas. Specifically, we consider first the cases where the outcome of the clinical
studies is time-to-event or survival time and the subset is defined by one continuous
covariate, such as the expression level of a gene, or by multiple covariates which
can be continuous or categorical, such as mutation statuses of multiple genes.
The cases where the outcomes of the clinical studies are longitudinal or repeated
measurements, such as patient reported quality of life scores before, during, and
after a treatment, are considered next. Gaps between the needs in clinical research
and the methods available in statistical literature are identified and future research
topics to bridge these gaps are discussed based on this overview.

Keywords Censored survival times · Clinical trials · Interaction · Longitudinal
data · Predictive function

1 Introduction

For many diseases, such as cancer, it is often difficult to find a treatment that benefits
all patents. There is an interest to identify a subset of patients, defined by individual
characteristics, such as age, gender, blood test results, or gene expression levels,
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who may be more sensitive to a specific treatment and have a larger treatment effect
in comparison with a standard treatment. Conversely, if a treatment is costly or
has potential negative side effects, there is also an interest to look for subsets of
patients for which the treatment has less side effects. Therefore, identification of
treatment-sensitive subsets of patients for a specific treatment has become a very
important topic in clinical research. For example, in a recent secondary analysis of
data from CO.17 and CO.20 trials conducted by the Canadian Cancer Trials Group
(CCTG), the investigators were interested to know whether older patients with
advanced colorectal cancer treated by, respectively, cetuximab alone or cetuximab
plus brivanib had a less benefit, in comparison with younger patients, in terms of
various outcomes including overall survival and quality of life (Wells et al. 2008).

Subset analysis, which includes (1) identification of the subsets, (2) estimation of
treatment effects in the subsets, and (3) tests for the significance of the differences
in the treatment effects in these subsets, is a main statistical tool to assess the
heterogeneity in treatment effects in subsets defined by certain characteristics of
patients. For example, in the analyses of CO.17 and CO.20 data mentioned above,
patients were divided into two age subsets based on whether their age was 70 years
or older and differential treatment effects in these two age subsets were assessed
through a test of interaction between the subset and treatment. However, it is unclear
whether 70 years is an optimal cutpoint to define the age subsets when assessing
the heterogeneity of treatment effects by age. This issue arises in many studies
where the variable to define subsets is continuous but a pre-specified cutpoint is
not available from previous studies or clinical experience, and a statistical approach
is often needed to determine the optimal cutpoints based on data.

When the outcomes for the subgroup analyses are times to an event or survival
times, such as progression-free or overall survivals, several approaches have been
proposed for the determination of cutpoints in the definition of subsets. For example,
Jiang et al. (2007) proposed a biomarker-adaptive threshold design, which combines
a test for overall treatment effect in all patients with the determination and validation
of a cutpoint for a biomarker which is used to define a sensitive subset. Chen et al.
(2014) developed a hierarchical Bayesian procedure to estimate simultaneously the
interaction parameter and cutpoint in a threshold Cox proportional hazards model.
He et al. (2018) proposed a single-index threshold Cox proportional hazard model,
which includes a smoothly clipped absolute deviation (SCAD) penalty function,
to select and linearly combine multiple biomarkers in identification of treatment-
sensitive subsets. Su et al. (2008) developed an interaction tree procedure, which
recursively partitions the patients into two subsets based on the greatest interaction
between the subset and treatment, to obtain treatment-sensitive subsets.

When the outcomes are longitudinal measurements, Moineddin et al. (2008)
used multilevel models including patient-specific random effects to identify subsets
of patients with differential treatment effects of gabapentin versus placebo on
longitudinal measurements of hot flashes based on the baseline measurements in a
double-blind randomized controlled trial for treatment of hot flashes in women who
enter menopause naturally but a median was used as the cutpoint in defining subsets.
Andrews et al. (2017) considered a random effects linear model for longitudinal
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outcomes to determine whether a patient had a positive response to the treatment
and supervised learning algorithms were proposed to estimate a predictive function
for the positive response but 0.5 was used as an ad hoc cutpoint for the predictive
function to assign patients into subsets. Recently, Ge et al. (2020) introduced a
threshold linear mixed model for the identification of treatment-sensitive subsets
of patients based on longitudinal outcomes.

The objectives of this article are to provide a detailed review of the methods
mentioned above and, based on this review, to discuss some future directions in this
interesting and important area of research.

The remainder of this article is organized as follows. Sections 2 and 3 present
a detailed review of statistical methods developed when, respectively, survival
times and longitudinal measurements are the outcomes of the clinical research.
Discussions on the future research directions are presented in the last section.

2 Statistical Methods for Treatment-Sensitive Subset
Identification with Survival Times

Time to an event, which is denoted as F in this article and usually called as
the survival time with overall survival or progression-free survival as examples,
is usually a primary endpoint in a cancer clinical trial. Before we give detailed
descriptions on the approaches proposed to identify treatment-sensitive subsets of
patients based on survival times, some conventional notations, and a commonly used
statistical model for the survival times are introduced below.

Denote Fi and Ci as, respectively, the potential survival and censoring times of
a patient i (i = 1, 2, · · · , n). The observed survival times Ti and survival status
indicator δi are defined, respectively, as{

Ti = min(Fi, Ci),

δi = I(Fi<Ci).

(1)

Let h(t |Wi) be the hazard function of survival time Fi for a patient with a vector of
covariatesWi, which may include treatment indicatorsXi and biomarkers of interest
Zi. In the survival analysis, Cox’s proportional hazards model (Cox 1972, 1975) is
usually used to model the relationship between h(t |Wi) and Wi as follows:

h(t |Wi) = h0(t)g(Wi,β),

where g(·) is a given link function, h0(t) is an unknown baseline hazard function,
and β is an unknown vector of regression coefficients. A non-informative censoring
is assumed, which implies that, given the covariates Wi , Fi , and Ci are independent.
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2.1 An Approach Based on a Biomarker-Adaptive Threshold
Design

We first review an approach based on a biomarker-adaptive threshold design
proposed by Jiang et al. (2007), which tests first for an overall treatment effect in
all patients and, if the overall treatment effect is not significant, proceeds to the
next step to determine a cutpoint for a biomarker to identify a potential treatment-
sensitive subset of patients.

Specifically, consider the following threshold Cox’s proportional hazards model:

log{h(t |Wi)} = logh0(t) + β1X1i + β2I(Z1i>c) + β3X1iI(Z1i>c), (2)

where, for i = 1, 2, · · · , n, Wi = (X1i , Z1i ) with X1i an treatment indicator equal
to 1 if patient i is assigned into a treatment group or 0 if into a control group and Z1i
the value of a continuous biomarker which is used to define the treatment-sensitive
subset, c is an unknown threshold parameter for the definition of the sensitive subset,
β1 is the main treatment effect, β2 is the main biomarker effect, and β3 is the
treatment by biomarker interaction effect. Without loss of generality, c and Z1i are
assumed to take values in the interval (0, 1).

In the first step of their procedure, the effect of treatment over all patients is
assessed, which can be achieved by taking β2 = β3 = 0 in model (2) and testing
the null hypothesis that β1 = 0 in the reduced model

logh(t |Wi) = logh0(t) + β1X1i

by a likelihood ratio test. If the test rejects the null hypothesis of no treatment effect
over all patients, the procedure stops and one can conclude that the treatment will
benefit all patients. Otherwise, the procedure will continue to assess whether there
is a subset of patients defined by a biomarker who may benefit from the treatment
by testing the null hypothesis that β3 = 0 in the full model (2).

Since the threshold parameter c is unknown, the following procedure is proposed
to test the null hypothesis that β3 = 0 under the assumption that β1 = 0: For
each candidate biomarker threshold in the range (0, 1), a reduced model (2) with
β1 = 0 is fitted on the subset of patients with biomarker values over c to obtain a
log-likelihood ratio statistic S(c) for testing the null hypothesis β3 = 0 under the
given c. Maximizing S(c) over a range of possible cutpoint values would give a test
statistic for testing null hypothesis β3 = 0 with c unspecified. In order to obtain a
reasonable power, a test statistic T is defined as max((S(0)+R), max

0<c<1
S(c)), where

R is a positive constant which was suggested to be 2.2 by Jiang et al. (2007). The
p-value of this test statistic can be calculated from a resampling-based approach by
randomly permutating treatment labels. If the test rejects the null hypothesis β3 = 0,
the optimal threshold c0 can be estimated as
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ĉ0 = argmax
c0

l(c0),

where l(c0) is the partial log-likelihood function based on model (2):

l(c0) = max
β1,β2,β3

l(β1, β2, β3, c0).

Therefore, the treatment-sensitive subset of patients can be defined by {i : I (Z1i >

ĉ0)}, that is, a patient will be sensitive to the treatment if the observed value of the
biomarker from this patients is over ĉ0.

2.2 A Hierarchical Bayesian Method

Chen et al. (2014) proposed a hierarchical Bayesian method to estimate all
unknown parameters, including the threshold c, in model (2) simultaneously without
assumption β1 = 0.

For simplicity of presentation, denote [X1i , I (Z1i > c),X1iI (Z1i > c)]′ as
Wi(c) and [β1, β2, β3]′ as β. With these notations, model (2) can be rewritten as

h(t |Wi(c)) = h0(t) exp{W′
i(c)β}. (3)

Chen et al. (2014) assumed that the threshold parameter c has a prior Beta
distribution Beta(2,q) for a given hyper-parameter q > 1, which can be written
as

p1(c|q) ∝ q(q + 1)c(1 − c)q−1.

This prior is flexible enough to accommodate any prior distribution in a family with
its mode taking any specific value in the interval (0, 1). In order to assign a specific
prior distribution of c, instead of taking an arbitrary value for q, it is considered that
q has a hyper-prior distribution with the following density function form

p2(q) ∝ q − 1

q(q + 1)
, q > 1.

At the same time, β is assumed to has a uniform improper prior distribution p(β) ∝
1. For every given 0 < c < 1, the corresponding partial likelihood function of β in
model (3) is given by

p3(β|c) =
n∏

i=1

⎡
⎢⎣ exp{W′

i(c)β}∑
j∈R(Ti)

exp{W′
j(c)β}

⎤
⎥⎦

δi

,
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where the risk set R(t) is the index set of patients who are at risk of experiencing
an event at time t . Consequently, given the observed data, the joint posterior
distribution of β, c, q can be written as

p(β, c, q|data) ∝ p1(c|q)p2(q)p3(β|c)

=
n∏

i=1

⎡
⎢⎣ exp{W′

i(c)β}∑
j∈R(Ti)

exp{W′
j(c)β}

⎤
⎥⎦

δi

c(1 − c)q−1(q − 1).

Therefore, the marginal posterior distributions of β and c can be calculated,
respectively, as

p(β) =
∫

c,q

p(β, c, q|data)dcdq

p(c) =
∫

β,q

p(β, c, q|data)dβdq.

Statistical inferences, such as point estimation, confidence interval and hypothesis
testing, on the threshold parameter c and the regression coefficient β can be obtained
based on these marginal distributions. After obtaining the estimation of the threshold
c, the treatment-sensitive subset of patients consequently can be defined if β3 is
significantly different from 0.

2.3 A Procedure Based on a Single-index Threshold Cox
Model

In some clinical trials, it may be difficult to identify a treatment-sensitive subset
of patients based on a single biomarker, but a combination of multiple biomarkers
may have a potential to identify a treatment-sensitive subset. For example, in
a randomized control trial PA.3 conducted by NCIC Clinical Trials Group, 35
key proteins were selected from a global genetic analysis of pancreatic cancers
with the purpose of identifying a subset of patients with locally advanced or
metastatic pancreatic cancer who will be sensitive to the treatment of erlotinib in
addition to gemcitabine (Shultz et al. 2016). However, no significant interaction was
found between the treatment and any of these biomarkers, which implies that it is
impossible to identify a treatment-sensitive subset according to a single biomarker.
He et al. (2018) found that a combination of some of these biomarkers (CA 19-9
and Axl) had the potential to define a treatment-sensitive subset of patients with
pancreatic cancer. It is more complicated to identify a treatment-sensitive subset
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based on multiple biomarkers, compared to the cases where there is only a single
biomarker.

Several approaches have been proposed in subgroup analysis based on multiple
biomarkers. He et al. (2018) proposed a single-index threshold Cox’s proportional
hazards model to identify treatment-sensitive subsets for each treatment using
multiple biomarkers based on a linear combination of the multiple biomarkers. Let
Xi = (xi1, xi2, · · · , xid)′ be a d-dimensional vector of exposure variables, such
as treatment group indicators, for a patient i and Zi = (zi1, zi2, · · · , zip)′ be a
p-dimensional vector which are the observed values of p biomarkers from the i-
th patient (i = 1, 2, · · · , n). Define an indicator function I(Z′

iγ j>cj ) to be used to
define the treatment-sensitive subset of patients for the j -th treatment, where γj is
a p-dimensional vector used to combine biomarkers linearly and cj is the threshold
parameter. Denote Wi = (X′

i,Z
′
i). The proposed model can be written as

h(t |Wi) = h0(t) exp

⎧⎨
⎩β ′Xi +

d∑
j=1

ηj I(Z′
iγ j>cj ) +

d∑
j=1

αjxj I(Z′
iγ j>cj )

⎫⎬
⎭ , (4)

where h(t), h0(t), and β are the same defined in last section. The parameters η =
(η1, η2, · · · , ηd)′ and α = (α1, α2, · · · , αd)′ model the main effect of biomarker
and the treatment-biomarker interaction, respectively. A significant treatment-
biomarker interaction implies the treatment effect varies across subsets defined by
I(Z′

iγ j>cj ) and, consequently, the treatment-sensitive subsets for each treatment can
be determined.

To obtain estimators of the parameters in the model, a maximum penalized
smoothed partial likelihood method has been proposed. First, assume that data
are available from n independent patients, where i = 1, 2, · · · , n. Denote Γ =
(γ1, γ2, · · · , γd)′, c = (c1, c2, · · · , cd)′, and θ = (β ′, η′, α′, c′, Γ ′)′. Then the
partial likelihood of the parameters in model (4) can be written as

L(θ)

=
n∏

i=1

⎡
⎢⎢⎢⎢⎣

exp

{
β ′Xi +

d∑
j=1

ηj I(Z′
iγ j>cj ) +

d∑
j=1

αjxij I(Z′
iγ j>cj )

}

∑
k∈R(Ti)

exp

{
β ′Xk +

d∑
j=1

ηj I(Z′
kγ j>cj ) +

d∑
j=1

αjxkj I(Z′
kγ j>cj )

}
⎤
⎥⎥⎥⎥⎦

δi

.

(5)

Since the partial likelihood function is not continuous at some parameters, the
estimator of θ cannot be obtained by maximizing the partial likelihood function
(5). He et al. (2018) proposed a local distribution function Φ((Z′

iγ j − cj )/h) as
a smooth approximation to the indicator function I (Z′

iγ j > cj ), where Φ is the
distribution function of the standard normal variable and the bandwidth h converges
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to zero as the sample size increases. With this approximation, the smoothed partial
likelihood (SPL) function can be defined as

S(θ) =

n∏
i=1

⎡
⎢⎢⎢⎣

exp{β ′Xi +
d∑

j=1
ηjΦ((Z′

i
γj − cj )/h) +

d∑
j=1

αjxijΦ((Z′
i
γj − cj )/h)}

∑
k∈R(Ti )

exp{β ′Xk +
d∑

j=1
ηjΦ((Z′

k
γj − cj )/h) +

d∑
j=1

αjxkjΦ((Z′
k
γj − cj )/h)}

⎤
⎥⎥⎥⎦

δi

.

(6)

Because a large number of covariates may be available but only a few of them may
be relevant in the definition of treatment-sensitive subsets, He et al. (2018) added a
penalty function to the SPL function for efficiently selecting relevant biomarkers
from large amount of biomarkers in practice. In their procedure, the smoothly
clipped absolute deviation (SCAD) penalty function was used and the penalized
smoothed partial likelihood (PSPL) function was defined as

Ln(θ) = log{S(θ)} − n

d∑
j=1

p∑
k=1

Pλ(|λjk|), (7)

where λjk is the component k of γj and Pλ(·) is the SCAD penalty function with
a regularization parameter λ. By maximizing PSPL function (7), the estimations of
θ can be obtained. Therefore, when at least one of the αj is significantly different
from 0, corresponding treatment-sensitive subset of patients for the treatment j can
be determined by the estimate ĉj of cj as {i : I(Z′

i
γj >ĉj )}.

2.4 An Interaction Tree Approach

Su et al. (2008) proposed a procedure to construct an interaction tree T based
on survival outcomes which can be used to identify treatment-sensitive subsets of
patients. There are three steps in the construction of an interaction tree which are
introduced in details below.

The first step is to grow a large initial tree. Let s be a single binary split of
patients in the tree construction based on a biomarker z measured on patients. If z is
continuous, then the split s is induced by whether or not z ≤ c, where the threshold
c can be any constant. However, in practice the threshold c is chosen as one of
the observed values of z. If z is ordinal, the split s can be induced by the similar
procedure. If z is a categorical variable with categories C = {c1, · · · , cr }, then the
split can be induced by the form of z ∈ A with A ⊂ C. In order to reduce the
computational burden, the treatment effect within each category is often estimated
first and then the categories of z are reordered according to the treatment effect.
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Splitting on z can then be induced by treating z as an ordinal variable. Next we need
to select the best split from all possible splits, which has the greatest difference in
the treatment effect between its two child nodes. The splitting selection approach in
Su et al. (2008) is to choose the split to maximize a statistic for test H0 : β3 = 0 in
the following Cox model:

h(t |Wi) = h0(t) exp{β1Xi + β2I
(s) + β3XiI

(s)}, (8)

where Xi is a treatment indicator, I (s) = I(z∈A) or I (s) = I(z≤c), and Wi =
(Xi, I

(s)). In their method, they chose to use the following partial likelihood ratio
test (PLRT) statistic as the test statistic for H0 : β3 = 0:

G(s) = −2(l2 − l1), (9)

where l2 is the maximized partial likelihood (Cox 1975) of model (8) and l1 is the
maximized partial likelihood of the reduced model under H0:

h(t |Wi) = h0(t) exp{β1Xi + β2I
(s)}. (10)

The best split s∗ can be determined by G(s∗) = max
s

G(s). After choosing the best

split, the patients can be divided into two subsets and therefore the tree grows two
child nodes. The same procedure is then implemented to split both child nodes based
on different variables such as the values of other biomarkers. A large initial tree T0
can be obtained by repeating the above process recursively.

Since the initial tree is large, it needs to be pruned until it has an appropriate size.
Su et al. (2008) introduced the following penalty function for a node h of the initial
tree:

g(h) = G(Th)

|Th − T̃h|
,

whereTh is the branch of tree with h as its root, T̃h represents the set of all terminal
nodes of Th, and |Th − T̃h| denotes the number of all internal nodes of Th. By
minimizing g(h) over all the internal nodes of T0, the weakest link (or the most
ineffective split) h∗ can be determined. Denote T1 as the subtree after pruning off
the branch Th∗ from T0 and apply the same pruning procedure to the subtree T1.
After the above process is repeated recursively, a nested sequence of subtrees can
be defined as TM ≺ · · · ≺ Tm ≺ Tm−1 · · · ≺ T1 ≺ T0, where TM is a tree only
having the root node and ≺ means “a subtree of.”

After the pruning procedure is finished, the last step of the proposed procedure
is to select the best size of the tree. For this purpose, following the split-complexity
pruning algorithm for survival tree (LeBlanc & Crowley 1993), the following
interaction-complexity measure is introduced to evaluate the overall goodness-of-



320 X. Ge et al.

interaction of a given tree T :

Gλ(T ) = G(T ) − λ · |T − T̃ |, (11)

where T̃ denotes a set of all terminal nodes of T and |T − T̃ | the number of
all internal nodes of T , G(T ) = ∑

h∈T −T̃ G(h), which is the sum of G(h), the
splitting statistic defined in (9), over node h (including its split to its child nodes),
and λ(� 0) is a penalty parameter for each added node. With this measure, an
optimally sized tree T ∗ can be determined by maximizing Gλ(T ) as following:

Gλ(T
∗) = max

m=0,··· ,M{G(Tm) − λ · |Tm − T̃m|},

where the penalty parameter λ can be pre-specified within the range 2 � λ � 4
(LeBlanc & Crowley 1993). After the optimally sized tree is determined, the
treatment-sensitive subsets of patients can be defined based on the terminal nodes
of the tree T ∗.

3 Statistical Methods for Treatment-Sensitive Subset
Identification Based on Longitudinal Measurements

Longitudinal measurements, which are repeated observations measured on the same
patients at different points in time, are often collected in clinical trials or other
medical studies. For example, although the treatment effect in cancer clinical trials
are traditionally evaluated by relatively objective endpoints such as tumor response,
relapse-free survival, or overall survival, it is argued that these endpoints may not
provide adequate information in understanding of the treatment effect. Recently,
evaluations of more subjective endpoints, such as patient reported quality of life
(QoL), have become increasingly recognized in cancer clinical trials, since these
endpoints can help patients to make the treatment decisions by providing detailed
information on side effects of the treatment (Blazeby et al. 2001). Also these
endpoints can help future patients understand the consequences of their illness and
treatment (Bezjak et al. 2006). These patient reported outcomes are usually assessed
at several timepoints before, during, and after patients have received the treatment.

Multilevel or hierarchical models are often used for the analysis of longitudinal
data, as these models incorporate the variation at different levels of the hierarchy
into analysis. This class of models includes multilevel models, linear mixed models,
random effects ANOVA models, generalized estimating equations (GEE), etc. In
this section, some statistical methods proposed for identifying treatment-sensitive
subsets of patients based on these models when the outcomes of clinical trials are
longitudinal or repeated measures are reviewed.
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3.1 A Procedure Based on Multilevel Models

To establish notations, let yij be the longitudinal measurement at j -th observation
time tij (j = 1, 2, · · · , ni) from patient i (i = 1, 2, · · · , N ). The observation times
are usually called as level-1 units in a multilevel model, while patients are called as
the level-2 units. Also denoteXi as the treatment indicator withXi = 1 if the patient
is assigned into the treatment group and Xi = 0 if the patient is assigned into the
control group. Consider the following two-level linear regression model proposed
in Moineddin et al. (2008) for these longitudinal measurements: the first level of the
model assumes that the measurement yij is a linear function of observation time tij ,
which can be written as

yij = β0i + β1i tij + eij , (12)

where eij is the random error term assumed to follow a normal distribution with
mean zero and a constant variance σ 2

e and β0i and β1i are, respectively, a random
intercept and slope associated with the ith patient. It is assumed further that β0i and
β1i can be explained by a linear function of Xi in the following second level of the
model:

β0i = γ00 + γ01Xi + u0i ,

β1i = γ10 + γ11Xi + u1i ,

where γrs (r = 0, 1 and s = 0, 1) are population average fixed effect parameters
and u0i and u1i are random errors which follow a bivariate normal distribution
with mean zero and variance-covariance var(u0i ) = σ 2

0 , var(u1i ) = σ 2
1 and

cov(u0i , u1i ) = σ 2
01. From the definition of Xi as a treatment indicator, it can be

seen that the fixed effects γ00 and γ10 are, respectively, the population average of
the measurement yij at baseline (intercept) and the population average of change
over time (slope) for patients in the control group, while the parameters γ01 and
γ11 can be interpreted as the differences in, respectively, the population averages of
the measurement yij at baseline (intercepts) and the population average of changes
over time (slopes) between the treatment and the control groups. Parameter σ 2

0 is the
residual variance of the measurement yij at baseline (intercept) , σ 2

1 is the residual
variance of the change rate (slope), and σ 2

01 is the residual covariance between the
baseline the measurement and rate of change.

It is known that u1i represents the residuals of the regression slopes across the
patients. When the variance of u1i is significant at a two-sided 0.05 level, Moineddin
et al. (2008) suggested that treatment-sensitive subsets of patients can be identified
based on a baseline factor (age, gender, biomarker, etc.) of patients by correlating
u1i with this factor using a t-test or analysis of variance if the factor is categorical
and the Pearson or Spearman correlations if the factor is continuous. When the
association is significant at two-sided 0.05 level, treatment-sensitive subsets of
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patients can be defined by the natural grouping generated by the categories of the
baseline factor when it is categorical (for example, female and male subsets if the
gender is the baseline factor). When the factor is continuous such as the age or value
of a biomarker, however, a cutpoint is required. Only an ad hoc approach using the
median of the factor as a cutpoint was suggested and there was no formal procedure
proposed to estimate the cutpoint.

3.2 A Prediction Model Approach

Andrews et al. (2017) proposed a complete procedure which can be used for both
identification of the treatment-sensitive subsets of patients and validation of the
subsets identified based on longitudinal measurements. First step in the proposed
procedure is to use a linear mixed model which includes a random effect term
to evaluate the individual treatment effect and a fixed effect term to evaluate the
population average treatment effect. Based on the estimates of individual treatment
effect, various classifying methods can then be used to build prediction models
which can be used to identify treatment-sensitive subsets of patients based on the
characteristics of patients. A validation step is then followed to select the best
prediction model under a marginal regression framework.

Specifically, consider the following random intercept-slope linear mixed model:

yij = β0 + α0i + (β1 + α1i )Xitij + β2tij + eij , (13)

where Xi , tij , yij and random error term eij are the same as defined in the last
subsection, β0 and β1 represent, respectively, the population average of the initial
status and the treatment effect over time, α0i and α1i are, respectively, the random
intercept and slope for patient i, and β2 is the fixed effect of time. The interaction
effect β1 + α1i between the treatment and time in this model describes the trend of
individual treatment effect over time.

To simplify the presentation of the procedure, model (13) can be rewritten in
matrix form as

Y = Xβ + Dα + e, (14)

where Y is a n-dimensional vector of the responses with n =
N∑

i=1
ni , X and D are

an n × 3 and n × 2N matrices of covariates corresponding to the fixed effects β =
(β0, β1, β2)

′ and random effects α = (α01, · · · , α0N, α11, · · · , α1N), respectively,
and e is a m-dimensional vector of the random errors. It is assumed that E(α) = 0
andE(e) = 0. In addition, it is assumed that α and e are independent and distributed
as multivariate normal as
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[
α

e

]
∼ N

([
0
0

]
,

[
G 0
0 R

])
.

By using the conventional maximum likelihood method for the linear mixed model,
the parameter estimates for the fixed and random effects can be obtained as
following:

β̂ = (X′Σ̂−1
X)−1X′Σ̂−1

Y ,

α̂ = ĜD′Σ̂
−1

(Y − Xβ̂),

where Σ = DGD′ + R and Ĝ and R̂ are obtained by maximizing the following
likelihood function:

l(R,G|Y,X) = − 1

2
(Y − X(X′Σ−1

X)−1X′Σ−1
Y )′Σ−1

(Y − X(X′Σ−1
X)−1X′Σ−1

Y ) − 1

2
log |Σ | − n

2
log(2π),

where |Σ | is the determinant of the variance-covariance matrix Σ . The asymptotic
consistency and efficiency of these estimates were proved by Hartley and Rao
(1967). Furthermore, if the variance estimation is biased, the restricted maximum
likelihood would be a viable alternative method (Verbeke & Molenberghs 2009).

Since the random slope β1+α1i describes the treatment effect over time, patients
can be divided into two subsets based on whether its estimate β̂1 + α̂1i is positive.
Define Ci as the subset indicator based on this definition. That is,

Ci =
{
1 β̂1 + α̂1i > 0
−1 β̂1 + α̂1i ≤ 0.

Since some baseline characteristics or covariates Wi of patients, such as age,
gender, blood pressure, and gene expression, might influence the treatment effect, a
prediction model

f (Wi ) = P(Ci = 1|Wi )

based on the subset indicator Ci and these baseline characteristics or covariates W i

may be used to classify patients into two subsets which have differential treatment
effects. In general, the relationship between Ci and Wi is unknown, which could
be linear or nonlinear, so the predictive function f (·) in the above prediction model
needs to be estimated. Andrews et al. (2017) suggested various linear or nonlinear
supervised learning algorithms, such as logistic regression, support vector machine
(SVM) with linear kernel, linear discriminant analysis (LDA), decision tree, random
forest, etc., may be used to estimate f (·). Once the estimated prediction function
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f̂ (Wi ) is obtained from the data, it was proposed that patient i can be classified in
the subset of patients who may benefit from the treatment if f̂ (Wi ) > 0.5.

Andrews et al. (2017) also developed a validation procedure to assess the
effectiveness of the method proposed above for the treatment-sensitive subset
identification but the choice of 0.5 as the cutpoint for estimated predictive function
to define the subsets is ad hoc, which may have large impact on the performance of
the proposed method.

3.3 A Procedure Based on a Threshold Linear Mixed Model

Ge et al. (2020) introduced a threshold linear mixed model which can be used
simultaneously to determine the cutpoint of a continuous covariate, such as age or
the expression level of a biomarker, in the definition of treatment-sensitive subsets
of patients and to assess the interaction effect between the treatment and subset
indicator based on longitudinal measurements. The standard likelihood method
is difficult to apply to the inference of the parameters in the model because the
likelihood function is not continuous for some parameters. They therefore proposed
a smoothing likelihood function to approximate the original likelihood function and
developed an inference procedure for the parameters in the model based on this
new likelihood function. Finally, they used the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm (Broyden 1970; Fletcher 1970; Goldfarb 1970; Shanno 1970),
which belongs to quasi-Newton methods and is included in R package “maxLik”
(Henningsen & Toomet 2011), to implement the proposed procedure.

Specifically, denote a column vector Yi = (yi1, yi2, · · · , yini
) for the longitu-

dinal measurements observed from the i-th patient. For each patient, denote also
Xi = (xi1, xi2, · · · , xini)

′ as an (ni × p) designed matrix of covariates for fixed
effect β and Zi = (zi1, zi2, · · · , zini)

′ as an (ni × q) designed matrix of covariates
for random effect αi . Assume bi is an indicator of the treatment received by patient
i with either bi = 1 if the patient receiving a new therapy or bi = 0 if not.
Denote wi as a continuous covariate at baseline for patient i and assume two subsets
of patients can be defined based on whether wi exceeds an unknown cutpoint c.
The following threshold linear mixed model was proposed to assess the potential
differential treatment effects between these two subsets:

Yi = Xiβ + Ziαi + η1I (wi > c)1 + η2biI (wi > c)1 + εi, (15)

where εi = (εi1, εi2, · · · , εini
)′ is a vector of random errors and 1 is a ni-

dimensional vector with its all elements as 1. In model (15), the response yij of
patient i measured at the time tij is modeled by three components: the fixed effects
of all covariates x′

ij
β + η1I (wi > c) + η2biI (wi > c), the patient effect z′

ij
αi , and

the random error εij . The columns of Xi may include intercept, time or its function,
treatment, and other confounding variables, and the columns of Zi are assumed to
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be a subset of the columns of Xi. In order to simplify the presentation, model (15)
can be rewritten in the matrix form as:

Y = Xβ + Wη + Zα + ε, (16)

where Y = [Y′
1,Y

′
2, · · · ,Y′

N]′, X = [X′
1,X

′
2, · · · ,X′

N]′, α = (α′
1, α′

2, · · · , α′
N

)′,
ε = (ε′

1, ε
′
2, · · · , ε′

N
)′ and W = [W′

1,W
′
2, · · · ,W′

N]′, and

Z =

⎛
⎜⎜⎜⎝
Z1 0 0 · · · 0
0 Z2 0 · · · 0
...

...
...

. . .

0 0 0 ZN

⎞
⎟⎟⎟⎠ , Wi =

⎛
⎜⎜⎜⎝

I (wi > c) bi × I (wi > c)

I (wi > c) bi × I (wi > c)
...

...

I (wi > c) bi × I (wi > c)

⎞
⎟⎟⎟⎠

ni×2

.

For the vector of random effects α and vector of random errors ε in the model, it is
assumed that E(α) = 0 and E(ε) = 0. In addition, it is assumed that α and ε are
independent and distributed as multivariate normal, that is,

[
α

ε

]
∼ N

([
0
0

]
,

[
G 0
0 R

])
.

In the proposed model, they assumed thatR = σ 2I (σ is an unknown parameter) and
G = σ 2ρ2I (ρ is also an unknown parameter). Following Patterson and Thompson
(1971), the covariance-variance matrix of the observation Y can be written as

V ar(Y) = σ 2(ρ2ZZ′ + I) = σ 2H,

where H = ρ2ZZ′ + I.
Under the assumptions and notations mentioned above, Y follows a multivariate

normal distribution as N(Xβ+Wη, σ 2H). Denote n =
N∑

i=1
ni as the total number of

observations, The log-likelihood for the unknown parameters θ = (β, η, c, ρ2, σ 2)

in model (16) based on longitudinal outcomes Y can be written as

l(θ |Y,X,Z) = −1

2

{
log(2π) + n log σ 2+

log |H| + (Y − Xβ − Wη)′H−1(Y − Xβ − Wη)

σ 2

}
. (17)

However, due to the presence of the indicator functions I (wi > c), the log-
likelihood function is not continuous with respect to c, which makes the conven-
tional maximum likelihood theory and algorithm difficult to apply. Following a
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smoothing procedure used by Brown and Wang (2007), they proposed to use a
kernel smooth function

Φ

(
wi − c

h

)
(18)

as a smooth approximation to the indicator function I (wi > c), where Φ is the
distribution function of the standard normal distribution and h is a bandwidth
which converges to zero as the sample size increases. Using this approximation,
a smoothed log-likelihood function can be defined by replacingWi in the definition
of W in (17) with

W̃i =

⎡
⎢⎢⎢⎣

Φ(
wi−c

h
) bi × Φ(

wi−c
h

)

Φ(
wi−c

h
) bi × Φ(

wi−c
h

)
...

...

Φ(
wi−c

h
) bi × Φ(

wi−c
h

)

⎤
⎥⎥⎥⎦

ni×2

,

therefore the smoothed log-likelihood function of θ is given by

sl(θ |Y,X,Z) = −1

2

{
log(2π) + n log σ 2+

log |H| + (Y − Xβ − ˜Wη)′H−1(Y − Xβ − ˜Wη)

σ 2

}
(19)

where W̃ = [W̃′
1, W̃

′
2, · · · , W̃′

n]′. The maximum smoothed likelihood estimates
(MSLE) of θ can be obtained by maximizing the smoothed log-likelihood function
(19). Based on this estimate, a treatment-sensitive subset of patients can be defined
as {i : I (wi > ĉ)}, where ĉ is an estimate of c, if η2 is found significantly different
from 0 based on its estimate and associated variance estimate.

4 Discussions and Future Work

Most of the methods reviewed in this article assume a specific statistical model
for the clinical outcomes of the study. For example, the Cox proportional hazards
models were assumed when the clinical outcomes are survival times and longi-
tudinal outcomes are required to be normally distributed because of assumptions
underlying the linear mixed models. The proportional hazards assumption behind
the Cox model and the normality assumption required for linear mixed models
may not be satisfied by the data. Some more robust methods with more realistic
assumptions may be preferred. For example, since quality of life scores are restricted
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to an interval, a linear mixed model with beta (Hunger et al. 2012) or simplex
(Qiu et al. 2008) distributions may be more appropriate. For patients with early
stage of cancer, some of them may be cured by the treatment they received and,
therefore, cure models may be more useful for the observed survival times (Othus
et al. 2012). Extensions of the methods reviewed in this article to these models
may be of interest. When the cutpoint of a single biomarker is known and pre-
specified and survival times are the clinical outcomes of a study, a nonparametric
measure of interaction was proposed recently by Jiang et al. (2016). Development
of statistical methods which use this measure of interaction to identify treatment-
sensitive subsets of patients may also be of interest but can be difficult when there
are multiple biomarkers.

In many clinical studies, both survival times and longitudinal measurements are
collected but they are usually analyzed separately. Joint analysis of longitudinal
outcomes and survival times may identify treatment-sensitive subsets of patients
for both of these outcomes. But technically this may be more difficult because
additional random effects are required to connect the Cox proportional hazards
with linear mixed models, which will require novel computation methods to make
inferences on the parameters in both of these models.

When the clinical outcomes are longitudinal, only the case where a single
covariate is available to define the subsets of patients has been considered. Similar
procedures as that presented in Sect. 2.3 would be generalized from the case where
the clinical outcomes are survival times to the case where longitudinal outcomes are
outcomes of interest to combine multiple covariates or biomarkers when they are
available.

There is so far no systematic comparison between the treatment-sensitive subsets
of patients identified from different approaches. As noted by Janes et al. (2015),
accuracy measures such as sensitivity, specificity, and positive and negative predic-
tions employed for the comparison of statistical procedures for the identification of
prognostic groups are difficult to define for the comparisons of statistical procedures
for the identification of treatment-sensitive subsets. A consensus is required among
medical researchers and statisticians on the measures which could be used for the
comparisons.
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