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Abstract Built on the ideas of mean and quantile, mean regression and quantile
regression are extensively investigated and popularly used to model the relationship
between a dependent variable Y and covariates x. However, the research about
the regression model built on the mode is rather limited. In this article, we
introduce a new regression tool, named modal regression, that aims to find the most
probable conditional value (mode) of a dependent variable Y given covariates x
rather than the mean that is used by the traditional mean regression. The modal
regression can reveal new interesting data structure that is possibly missed by the
conditional mean or quantiles. In addition, modal regression is resistant to outliers
and heavy-tailed data and can provide shorter prediction intervals when the data are
skewed. Furthermore, unlike traditional mean regression, the modal regression can
be directly applied to the truncated data. Modal regression could be a potentially
very useful regression tool that can complement the traditional mean and quantile
regressions.

Keywords Modal regression · Mode · Skewed data

1 Introduction

When talking about location measurements of a data set or distribution, mean,
quantile and mode are most commonly used. They have their own merits and
complement each other. Up till now, mean and quantile regressions have been
extensively studied and popularly used to model the relationship between a response
Y and covariates x. However, there is not much research about the regression built on
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the mode (i.e., modal regression). Different from mean/quantile regression, modal
regression is another important tool to study the relationship between a response
Y given a set of predictors x, which estimates the conditional modes of Y given x.
The developed new regression tool complements the mean and quantile regression
and is especially useful for skewed and truncated data and has broad applicability
throughout science, such as economics, sociology, behavior, medicine, and biology.

Indeed, the skewed data or truncated data can be commonly found in many
applications. For example, Cardoso and Portugal (2005) stated that wages, prices,
and expenditures are typical examples of skewed data. In sociology, Healy and
Moody (2014) showed that “many of the distributions typically studied in sociology
are extremely skewed,” for example, church sizes in sociology of religion (Weber
1993), symptoms indices in sociology of mental health (Mirowsky 2013), and so
on. Besides, truncated data can be commonly found in many applications such as
econometrics (Amemiya 1973; Lewbel & Linton 2002; Park et al. 2008) when
dependent variable is an economic index measured within some range. Some
examples of truncated data are a sample of Americans whose income is above the
poverty line, military height records with a minimum height requirement in many
armies, a central bank intervenes to stop an exchange rate falling below or going
above certain levels.

We use the following example (Yao & Li 2014) to demonstrate the difference
between the modal regression and the mean regression.

Example 1 Let (x, Y ) be coming from the model Use the standard equation
environment to typeset your equations, e.g.,

Y = m(x) + σ(x)ε, (1)

where ε has a density q(·), which is a skewed density with mean 0 and mode 1.

1. If m(x) = 0 and σ(x) = x�α, then

E(Y |x) = 0 and Mode(Y |x) = x�α.

That is to say, the conditional mean does not contain any information of the
covariate, while the conditional mode does. As a result, various techniques based
on modal regression could reveal more important covariates than conditional
mean.

2. If σ(x) = x�α − m(x) and m(x) is a nonlinear smooth function, then

E(Y |x) = m(x) and Mode(Y |x) = x�α.

In this case, the conditional mode is linear in x while the conditional mean does
not. Of course, the opposite situation could also happen.

In Fig. 1, we also use two plots to illustrate the difference between linear mean
and linear mode regression.
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Fig. 1 Mean regression vs mode regression

Many authors have made efforts to identify the modes in the one sample
problem. See, for example, Parzen (1962); Scott (1992); Friedman and Fisher
(1999); Chauduri and Marron (1999); Hall et al. (2004); Ray and Lindsay (2005);
Yao and Lindsay (2009); Henderson and Russell (2005); Henderson et al. (2008);
Henderson and Parmeter (2015). Modal hunting has received much interest and wide
applications in economy and econometrics too. For example, Henderson and Russell
(2005) applied a nonparametric production frontier model to show that international
polarization (shift from a uni-modal to a bimodal distribution) is brought primarily
by technological catch-up. Cardoso and Portugal (2005) studied the impact of union
bargaining power and the degrees of employer coordination on the wage distribution
in Portugal wage computed by the mode of the contractual wage set by collective
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bargaining. Henderson et al. (2008) applied recent advances from statistics literature
to test for unconditional multimodality of worldwide distributions of several
(unweighted and population-weighted) measures of labor productivity, which is
of great interest in economics. They also examined the movements of economies
between modal clusters and relationships between certain key development factors
and multimodality of the productivity distribution. Einbeck and Tutz (2006) used
the value(s) maximizing the conditional kernel density estimate as estimator(s) for
the conditional mode(s), and proposed a plug-in estimator using kernel density
estimator.

Most of the above modal hunting methods require first nonparametrically
estimating the joint density f (x, y) and f (y | x), and then estimating the mode
based on the estimated conditional density f (y | x), which is practically challenging
when the dimension of x is large due to the well-known “curse of dimensionality."
Motivated by the result that the conditional mode from the truncated data provides
consistent estimates of the conditional mean for the original non-truncated data,
Lee (1989) proposed to model Mode(y|x) = x�β and derived the mode regression
estimator. The identification of β and strong consistency of its estimator were
derived. However, the objective function used by Lee (1989) is based on kernels
with bounded support and thus is difficult to implement in practice. This might
explain why modal regression has not drawn too much attention in the last century.
In addition, the tuning parameter h used by Lee (1989) is fixed and does not
depend on the sample size n. Therefore, it requires the error to be symmetric to
get the consistent modal line. Note that in such cases the modal line is indeed
the same as the mean regression line and thus their modal regression estimator is
essentially a type of robust regression estimate under the assumption of symmetric
error density. This limitation of requiring a symmetric error density also applies to
the nonparametric modal regression proposed by Yao et al. (2012).

Kemp and Santos Silva (2012) and Yao and Li (2014) are among the first
who proposed consistent linear modal regression estimates without requiring a
symmetric error density. They established asymptotic properties of the proposed
modal estimates, under very general conditions, allowing a skewed error density
and a more general kernel function, by letting the bandwidth h go to zero. Since the
work of Kemp and Santos Silva (2012) and Yao and Li (2014), modal regression
has received much attention recently and been widely applied to various problems.
Chen et al. (2016) considered a nonparametric modal regression and used it to
build confidence sets based on a kernel density estimate of the joint distribution.
Zhou and Huang (2016) considered estimating local modes of the food frequency
questionnaire (FFQ) intake given one’s long-term usual intake using dietary data.
Noticing that the neuroimaging features and cognitive assessment are often heavy-
tailed and skewed, Wang et al. (2017) argued that a traditional regression approach
might fail to capture the relationship, and applied a regularized modal regression
to predict for Alzheimer’s disease. Yao and Li (2014) also applied the modal linear
regression to a forest fire data, and the results showed that the modal regression gave
shorter predictive intervals than traditional methodologies. In order to accurately
forecast the energy that will be consumed in the evening, so as to optimize the
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capacity of storage and consequently to increase the batteries life, Chaouch et al.
(2017) applied modal regression to analyze electricity consumption. Kemp et al.
(2019) applied both mode- and mean-based autoregressive models to compare the
estimates and forecasts of monthly US data on inflation and personal income growth.
Please also see Krief (2017); Chen (2018); Li and Huang (2019); Ota et al. (2019);
Feng et al. (2020) for some other extensions of the linear modal regression. Ullah
et al. (2021) extended the modal regression to the panel data setting.

The rest of the article is organized as follows. In Sect. 2, we formally define the
linear modal regression model and discuss its estimator. In Sect. 3, we introduce
the nonparametric modal regression. The semiparametric modal regression, which
combines the linear modal regression and nonparametric modal regression, is
introduced in Sect. 4. A discussion section with some possible future works are
presented in Sect. 5.

2 Linear Modal Regression

2.1 Introduction of Linear Modal Regression

Suppose {(xi , yi), i = 1, . . . , n} is a random sample, where xi is a p-dimensional
column vector, and f (y|x) is the conditional density function of Y given x. In
conventional regression models, the mean of f (y|x) is used to investigate the
relationship between Y and x. However, when the conditional density of Y given
x is skewed, truncated, or contaminated data with outliers, the conditional mean
may not provide a good representation of the x-Y relationship. In this scenario, it is
well-known that the mode provides a more meaningful location estimator than the
mean. Therefore, the modal regression model is more preferable in this scenario.

The traditional modal estimation is to first estimate the joint density f (x, y)

based on kernel density estimation and then derive the conditional density f (y|x)
and its conditional mode. Such method works reasonably well when the dimension
of x is low, however, it is practically infeasible when the dimension of x is large,
due to the “curse of dimensionality".

Borrowing the idea from linear mean/quantile regression, Kemp and Santos Silva
(2012) and Yao and Li (2014) proposed linear modal regression (LMR), which
assumes that the mode of f (y|x) is a linear function of x. Suppose that the mode of
f (y|x) is unique, and denote it by

Mode(Y |x) = argmax
y

f (y|x),

then, the LMR assumes that Mode(Y |x) is a linear function of x, that is,

Mode(Y |x) = x�β, (2)
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where the first element of x is assumed to be 1 to represent the intercept. Denote
the error term as ε = y − x�β, and let q(ε|x) to be the conditional distribution of
ε given x, which is referred to as the error distribution. Note that we allow the error
distribution to depend on x. Based on the model assumption of (2), the error density
q(ε|x)‘ has the mode at 0.

Unlike one sample mode estimators, the proposed linear modal regression
(Yao and Li 2014) puts some model assumptions on Mode(Y |x) to transform the
original multivariate problems to a much simpler one-dimensional problem and
thereby avoid directly estimating the conditional density f (y|x). Note that if the
error distribution q(ε|x) is symmetric, then β in (2) is nothing but the regression
coefficient in traditional linear regression model. However, if q(ε|x) is skewed or
heavy-tailed, then, (2) will be quite different from the conventional mean regression
model.

Next we explain how we can use a kernel based objective function to estimate
the modal regression parameter β in (2) consistently. Note that if β = β0 is a scalar,
then β0 is the mode of f (y), i.e., 0 is the mode of f (y − β0). Therefore, β0 can be
estimated by the maximizer of

Qh(β0) = 1

n

n∑

i=1

φh(yi − β0), (3)

which is a kernel density estimate of f (y), where φh(·) = h−1φ(·/h) with φ(·)
being a kernel density function symmetric about 0 and h being a tuning parameter.
Such a modal estimator has been proposed by Parzen (1962). It has been proved that
as n → ∞ and h → 0, the mode of kernel density function will converge to the
mode of the distribution of Y .

If β does include predictors like in the model (2), by extending the objective
function (3), we can then estimate β by maximizing

Qh(β) = 1

n

n∑

i=1

φh(yi − x�
i β), (4)

which can be also considered as the kernel density estimate of the residual εi =
yi − x�

i β at 0. Then, maximizing (4) with respect to β yields x�β̂ so that the kernel
density function of εi at 0 is maximized. It has been proved by Yao and Li (2014)
that as h → 0 as n → ∞, the maximizer of (4), named the linear modal regression
estimator (LMRE), is a consistent estimate of β in (2) for very general error density
without requiring symmetry.

Note that if φh(t) = (2h)−1I (|t | ≤ h), a uniform kernel, then maximizing (4) is
equivalent to maximizing

1

n

n∑

i=1

I (|yi − x�
i β| ≤ h) = 1

n

n∑

i=1

I (x�
i β − h ≤ yi ≤ x�

i β + h).
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Therefore, the LMR tries to find the linear regression x�β̂ such that the band
x�β̂ ± h contains the largest proportion/number of response yi . Therefore, modal
regression provides more meaningful point predictions, i.e., larger coverage proba-
bility of prediction intervals with a fixed small window around the estimate, and
shorter predication intervals than the mean and quantile regression for a fixed
confidence limit.

2.2 Asymptotic Properties

In this section, the consistency, convergence rate and asymptotic distribution of the
LMR estimator (Kemp & Santos Silva 2012; Yao & Li 2014) are discussed.

Theorem 1 As h → 0 and nh5 → ∞, and under the regularity conditions (A1)–
(A3) given in the Appendix, there exists a consistent maximizer of (4) such that

∥∥∥β̂ − β0

∥∥∥ = Op{h2 + (nh3)−1/2},

and the asymptotic distribution of the estimator is

√
nh3

[
β̂ − β0 − h2

2
J−1K{1 + op(1)}

]
D→ N{0, ν2J−1LJ−1},

where β0 denotes the true coefficient of (4), ν2 = ∫
t2φ2(t)dt with φ(·) being the

standard normal density and q(·) is the density of the error term.

J = E{q ′′(0|xi )xix�
i }, K = E{q ′′′(0|xi )xi}, L = E{q(0|xi )xix�

i }. (5)

Readers are referred to Yao and Li (2014) for the proofs. One striking but
reasonable finding is that the convergence rate of modal regression estimator is
slower than the root-n convergence rate of traditional mean/median regression
estimators. That is the cost we need to pay in order to estimate the conditional
mode (Parzen 1962). Note that for the distribution of Y (without conditioning on x),
Parzen (1962) and Eddy (1980) have proven similar asymptotic results for kernel
estimators of the mode. Therefore, the results of Parzen (1962) and Eddy (1980)
can be considered as special cases of the above theorem with no predictor.

Based on the asymptotic bias and asymptotic variance of β̂, a theoretical optimal
bandwidth h for estimating β is to minimize the asymptotic weighted mean squared
errors

E{(β̂ −β0)
�W(β̂ −β0)} ≈ (4)−1K�J−1WJ−1Kh4+ (nh3)−1ν2tr(J

−1LJ−1W),
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where tr(·) denotes the trace and W is a diagonal matrix, whose elements reflect
the importance of the accuracy in estimating different coefficients. As a result, an
asymptotic optimal bandwidth h can be calculated as

ĥopt =
[
3ν2tr(J−1LJ−1W)

K�J−1WJ−1K

]1/7
n−1/7,

where J,K , and L are listed in (5).
If W is set to be W = (J−1LJ−1)−1 = JL−1J , which is proportional to the

inverse of the asymptotic variance of β̂, then

ĥopt =
[
3ν2(p + 1)

K�L−1K

]1/7
n−1/7.

We can then use a plug-in method (Yao and Li 2014) to choose the bandwidth based
on the above results.

Another computationally extensive way to choose the bandwidth is to use a cross
validation criterion proposed by Zhou and Huang (2019) for modal regression. In
addition, instead of just estimating the conditional mode for a chosen value of h,
Kemp and Santos Silva (2012) proposed estimating the parameters of interest for a
wide range of h, and obtain a more detailed picture of how the parameter estimators
perform. The authors further argued that since the inference will not be based on a
single value of h, the choice of the limits of h is not as critical as the choice of an
optimal value of h.

2.3 Estimation Algorithm

Since there is no closed-form solution to maximize (4), a modal expectation-
maximization (MEM) algorithm (Yao 2013) is extended to find the maximizer,
which consists of an E-step and an M-step. Note that the choice of the kernel
function is not crucial, and Yao and Li (2014) used the standard Gaussian kernel
to simplify the computation in the M-step of a modal EM (MEM) algorithm.

Algorithm 2.1 For t = 0, 1, . . ., at the (t + 1)-th iteration,
E-step For i = 1, . . . , n, calculate the weight as

p(i|β(t)) = φh(yi − x�
i β(t))

∑n
j=1 φh(yj − x�

j β(t))
∝ φh(yi − x�

i β(t)).

M-step Update the estimate β(t+1) as
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β(t+1) = argmax
β

n∑

i=1

{p(i|β(t)) logφh(yi − x�
i β)}

=(X�WtX)−1X�Wty, (6)

where X = (x1, . . . , xn)
�, Wt is an n × n diagonal matrix whose diagonal element

is p(i|β(t)) and y = (y1, . . . , yn)
�.

Remark 2.1

1. From the above algorithm, we can see that the major difference between the
mean regression estimated by the least squares (LSE) criterion and the modal
regression lies in the weight p(i|β(t)). For LSE, each observation has equal
weight 1/n, while for modal regression, the weight p(i|β(t)) depends on how
close yi is to the modal regression curve. This weight scheme allows the modal
regression to reduce the effect of observations far away from the regression curve,
so as to achieve robustness.

2. Note that when a normal kernel is used in (4), the function optimized in the
M-step is a weighted sum of log-likelihoods corresponding to weighted least
squares estimator in the ordinary linear regression. In this case, we obtain a
closed-form expression for the maximizer in (6). If other kernels are used, then
some optimization algorithms are needed in the M-step.

3. It should be noted that the converged value of this MEM algorithm depends on
the starting value. Therefore, it is prudent that we start from several different
starting values and choose the best local optima.

2.4 Prediction Intervals Based on Modal Regression

As we explained after the objective function (4), the modal regression could
provide more representative point predictions and shorter prediction intervals. In
this section, we explain how to construct asymmetric prediction intervals for new
observations based on the linear modal regression. The described methods can be
also applied to other nonparametric or semiparametric modal regression models
introduced in Sects. 3 and 4.

For the simplicity of explanation, we assume that the error distribution of ε is
independent of x. Let ε̂1, . . . , ε̂n be the residuals of the linear modal regression
estimate, where ε̂i = yi−x�

i β̂, and ε̂[i] be the ith smallest value of the residuals. The
traditionally used prediction interval with confidence level 1−α for a new covariate
xnew is (x�

newβ̂ + ε̂[n1], x�
newβ̂ + ε̂[n2]), where n1 = 	nα/2
, and n2 = n − n1.

This symmetric method works best if the error distribution is symmetric. Since the
linear modal regression focuses on the highest conditional density region and does
not assume a symmetric error density, Yao and Li (2014) proposed the following
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method for modal regression to use the information of the skewed error density to
construct prediction intervals. Suppose q̂(·) is a kernel density estimate of ε based on
the residuals ε̂1, . . . , ε̂n. We find the indexes k1 < k2 such that k2−k1 = �n(1−α)�
and q̂(ε̂[k1]) ≈ q̂(ε̂[k2]). The proposed prediction interval by Yao and Li (2014) for
a new covariate xnew is then (x�

newβ̂ + ε̂[k1], x�
newβ̂ + ε̂[k2]).

To find indexes k1 and k2, we could use the following iterative algorithm.

Algorithm 2.2 Starting from k1 = 	nα/2
 and k2 = n − n1,

Step 1: If q̂(ε̂[k1]) < q̂(ε̂[k2]) and q̂(ε̂[k1+1]) < q̂(ε̂[k2+1]), k1 = k1 + 1 and k2 =
k2 +1; if q̂(ε̂[k1]) > q̂(ε̂[k2]) and q̂(ε̂[k1−1]) > q̂(ε̂[k2−1]), k1 = k1 −1 and
k2 = k2 − 1.

Step 2: Iterate Step 1 until none of above two conditions is satisfied or (k1 −
1)(k2 − n) = 0.

Based on Yao and Li (2014)’s numerical studies, the above proposed prediction
intervals have superior performance to existing symmetric prediction intervals when
the data is skewed.

3 Nonparametric Modal Regression

Similar to the traditional linear regression, linear modal regression requires a strong
parametric assumption which might not hold in practice. To relax the parametric
assumption, there are also nonparametric modal regression that is built based on
kernel density estimation. Readers are referred to Chen (2018) for a detailed review
of nonparametric modal regressions. For simplicity of explanation, in this section,
the covariate X is assumed to be univariate with a compactly supported density
function. The estimation procedure can be easily extended to multivariate case but
practically difficult due to the “curse of dimensionality.”

Let f (z) denote the probability density function (pdf) of a random variable Z

and be twice differentiable. Then, define the global mode and local modes of f (z),
respectively, as:

UniMode(Z) = argmax
z

f (z)

and

MultiMode(Z) = {z : f
′
(z) = 0, f

′′
(z) < 0}.

UniMode(Z), which focuses on the conditional global mode, is called the uni-modal
regression, as studied by Lee (1989); Manski (1991). MultiMode(Z), on the other
hand, studies the conditional local modes, and is sufficiently investigated by Chen
et al. (2016).

The uni-modal regression searches for the function
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m(x) = UniMode(Y |X = x) = argmax
y

f (y|x)

and multi-modal regression targets at

M(x) = MultiMode(Y |X = x) =
{
y : ∂

∂y
f (y|x) = 0,

∂2

∂y2
f (y|x) < 0

}
,

where f (y|x) = f (x, y)/f (x) is the conditional density of Y given X = x. Note
that, for a given x, the modes or local modes of f (y|x) and f (x, y) are the same.
Therefore, the uni-modal and multi-modal regression can be also defined as

m(x) = UniMode(Y |X = x) = argmax
y

f (x, y), (7)

and

M(x) =
{
y : ∂

∂y
f (x, y) = 0,

∂2

∂y2 f (x, y) < 0

}
, (8)

respectively.

3.1 Estimating Uni-Modal Regression

First, we estimate the joint density f (x, y) by the kernel density estimator (KDE)
as

f̂n(x, y) = 1

nh1h2

n∑

i=1

K1

(
xi − x

h1

)
K2

(
yi − y

h2

)
, (9)

where K1 and K2 are kernel densities such as Gaussian functions and h1 > 0 and
h2 > 0 are tuning parameters. Then, a nonparametric modal regression estimator of
m(x) in (7) is

m̂n(x) = argmax
y

f̂n(x, y).

If K2 is assumed to be a spherical kernel such as K2(z) = 1
2I (|z| ≤ 1), then it

has been shown that the maximization operation is equivalent to the minimization
operator on a flattened 0 − 1 loss.

Yao and Xiang (2016) proposed a local polynomial modal regression (LPMR)
estimation procedure to estimate the nonparametric modal regression, which maxi-
mizes
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	(θ) = 1

n

n∑

i=1

Kh1(xi − x0)φh2

⎛

⎝yi −
p∑

j=1

βj (xi − x0)
j

⎞

⎠ (10)

over θ = (β0, . . . , βp). Similar to Yao et al. (2012), the authors used an EM
algorithm to maximize (10) since it has a mixture type form. The asymptotic
properties were discussed and proved.

Feng et al. (2020) also studied nonparametric modal regression from a statistical
learning viewpoint through the classical empirical risk minimization (ERM) scheme
and investigated its theoretical properties.

3.2 Estimating Multi-Modal Regression

Similar to the estimation of uni-modal regression, Chen et al. (2016) proposed
estimating the multi-modal regression by a plug-in estimate from the KDE, as
follows:

M̂n(x) =
{
y : ∂

∂y
f̂n(x, y) = 0,

∂2

∂y2 f̂n(x, y) < 0

}
,

where f̂n(x, y) is from (9).
By assuming K1 and K2 to be Gaussian kernels, M̂n(x) can be estimated through

a mean-shift algorithm (Chen et al. 2016) which is actually equivalent to the mode
hunting EM algorithm (Yao 2013, MEM). The results can be applied to other
radially symmetric kernels as well. The partial mean-shift algorithm is summarized
in Algorithm 3.1.

Algorithm 3.1 Partial mean-shift
Input: Samples D = {(x1, y1), . . . , (xn, yn)}, bandwidths h1 and h2.
1. Find a starting set M ∈ R

2, such as D.
2. For each (x, y) ∈ M, fix x and update y by

y ←
∑n

i=1 yiK(|x−xi |/h1)K(|y−yi |/h2)∑n
i=1 K(|x−xi |/h1)K(|y−yi |/h2)

until convergence. Let y∞ be the converged value.
Output: M∞, which contains the points (x, y∞).

Comparing between uni-modal and multi-modal regression, we can see that
multi-modal regression is more preferred in situations where there are hidden
heterogeneous relations in the data set. In addition, if the there are several modes
in the original data, since the uni-modal regression can only detect the main
component, the prediction regions tend to be wider than that of the multi-modal
regression, as shown in Fig. 2. However, it is obvious that the uni-modal regression
is easier to interpret, which is quite important in data applications.
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Fig. 2 Uni-modal vs multi-modal regression

4 Semiparametric Modal Regression

Many authors have extended the linear modal regression (Kemp & Santos Silva
2012; Yao & Li 2014) to semiparametric models. See, for example, Krief (2017),
Ota et al. (2019), and Yao and Xiang (2016). In this section, we explain the idea
of semiparametric modal regression using the varying coefficient modal regressions
proposed by Yao and Xiang (2016).

To be more specific, given a random sample {(xi , ui, yi); 1 ≤ i ≤ n}, where yi

is the response variable and (xi , ui) are covariates, Yao and Xiang (2016) proposed
a nonparametric varying coefficient modal regression, defined as

Mode(y|xi , ui) = max
y

f (y|xi , ui) =
p∑

j=1

gj (ui)xij , (11)

where xi = (xi1, . . . , xip)� and {g1(u), . . . , gp(u)}� are unknown smooth func-
tions. If gj (u) is constant for all j , then the above model becomes the linear modal
regression (2). In addition, the nonparametric uni-modal regression introduced in
Sect. 3 is a special case of (11) when p = 1 and xi = 1. Allowing gj (u) to
depend on some index u, the varying coefficient modal regression can relax the
constant coefficient assumption of the linear modal regression, and also better model
how the modal regression coefficients dynamically change over the index u, which
could be a time or location index. Compared to the fully nonparametric modal
regression, the above model can easily adopt multivariate covariates by imposing
some model assumption on the conditional mode. Therefore, the semiparametric
modal regression can combine the benefits of both the parametric modal regression
and the nonparametric modal regression.
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Yao and Xiang (2016) proposed estimating the varying coefficient modal regres-
sion (11) by a local linear approximation of gj (u) in a neighborhood of u0,

gj (u) ≈ gj (u0) + g′
j (u0)(u − u0) = bj + cj (u − u0).

Let θ = (b1, . . . , bp, h1c1, . . . , h1cp)�. Then θ is found by maximizing

	(θ) =
n∑

i=1

Kh1(ui − u0)φh2

⎡

⎣yi −
p∑

j=1

{bj + cj (ui − u0)}xij

⎤

⎦ , (12)

over θ . Let θ̂ = (b̂1, . . . , b̂p, h1ĉ1, . . . , h1ĉp)� be the maximizer of (12). Then
ĝ(u0) = (b̂1, . . . , b̂p)� is the estimate of {g1(u0), . . . , gp(u0)}�, and ĝ′(u0) =
(ĉ1, . . . , ĉp)� is the estimate of {g′

1(u0), . . . , g
′
p(u0)}�.

The algorithm proposed to maximize (12) is summarized as follows.

Algorithm 4.1 Starting with t = 0:

E-Step: Update π(j | θ (t))

π(j | θ (t)) =
Kh1(uj − u0)φh2

[
yj −∑p

l=1

{
b
(t)
l

+ c
(t)
l

(uj − u0)
}

xjl

]

n∑
i=1

Kh1(ui − u0)φh2

[
yi −∑p

l=1

{
b
(t)
l

+ c
(t)
l

(ui − u0)
}

xil

] ,

j = 1, . . . , n.

M-Step: Update θ (t+1)

θ (t+1) = argmax
θ

n∑

j=1

π(j | θ (t)) logφh2

⎡

⎣yj −
p∑

l=1

{
b
(t)
l

+ c
(t)
l

(uj − u0)
}

xjl

⎤

⎦ ,

which has an explicit solution since φ(·) is the Gaussian density.

Denote by fu(u) the marginal density of u, q(ε | x, u) the conditional density of
ε = y − ∑p

j=1 gj (u)xj given x and u, and q(v)(ε | x, u) the v-th derivative of
q(ε | x, u). Let

αj (u) = E{xXjq
(2)(0 | x, u) | u}, β(u) = E{xq(3)(0 | x, u) | u}

Δ(u) = E{xx�q(2)(0 | x, u) | u}, Δ̃(u) = E{xx�q(0 | x, u) | u}.

Yao and Xiang (2016) provided the following asymptotic properties for the proposed
varying coefficient modal regression estimator.
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Theorem 2 Under the regularity conditions (A4)|(A6) in the Appendix, if the
bandwidths h1 and h2 go to 0 such that nh31h

5
2 → ∞ and h21/h2 → 0 the asymptotic

bias of ĝ(u0) is given by

Bias
{
ĝ(u0)

} = 1

2
Δ−1(u0)

⎧
⎨

⎩μ2h
2
1

p∑

j=1

g′′
j (u0)αj (u0) − h22β(u0)

⎫
⎬

⎭
{
1 + op(1)

}
,

(13)
and the asymptotic covariance is

Cov
{
ĝ(u0)

} = ν̃ν0

nh1h
3
2fu(u0)

Δ−1(u0)Δ̃(u0)Δ
−1(u0)

{
1 + op(1)

}
, (14)

where μj = ∫ tjK(t)dt, νj = ∫ tjK2(t)dt, and ν̃ = ∫ t2φ2(t)dt .

Theorem 3 Under the same condition as in Theorem 2, if the bandwidths h1 and
h2 go to 0 such that nh1h

5
2 → ∞ and h21/h2 → 0, the estimate g(u0) has the

following asymptotic distribution

[Cov{ĝ(u0)}]−1/2[ĝ(u0) − g0(u0) − Bias{ĝ(u0)}] L→ N(0, I ),

where Bias{ĝ(u0)} is defined in (13) and Cov{ĝ(u0)} is defined in (14).

5 Discussion

In this article, we introduced modal regressions, which can be a good complement
to mean/quantile regression, and are especially suitable for skewed, truncated,
or contaminated data with outliers. Compared to traditional mean regression
models, the modal regression models are more robust and have better prediction
performance. Simulation studies and real data analysis are done to illustrate the
numerical performance of the new methods. Due to the length of the article, the
readers are referred to Yao and Li (2014) and Yao and Xiang (2016) for the details.

The development of modal regression is still in its early stage. Parallel to the
traditional mean/quantile regression, the modal regression can be extended to a
broad variety of parametric, nonparametric, and semiparametric modal regression
models. For high dimensional models, it is interesting to investigate how to perform
feature screening and variable selection for modal regression. In addition, it also
requires more research to extend the modal regression to the longitudinal/panel data
(Ullah et al. 2021), time series data, data with measurement errors, and missing data
problems.
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Appendix

The conditions used by the theorems are listed below. They are not the weakest
possible conditions, but they are imposed to facilitate the proofs.
Technical Conditions:

(A1) q(v)(t | x), v = 0, 1, 2, 3 is continuous in a neighborhood of 0 , and q ′(0 |
x) = 0 for any x.

(A2) n−1∑n
i=1 q ′′ (0 | xi) xix

T
i = J + op(1), n−1∑n

i=1 q ′′′ (0 | xi) xi = K +
op(1) and n−1∑n

i=1 q (0 | xi) xix
T
i = L + op(1), where J < 0, that is, −J is a

positive definite matrix.
(A3) n−1∑n

i=1 ‖xi‖4 = Op(1), and q ′(0 | x) = 0 any x.
(A4) gj (x) has continuous 2nd derivative at the point x0, j = 1, ..., p.
(A5) q ′(0 | x, u) = 0, q ′′(0 | x, u) < 0, q(v)(t | x, u) is bounded in a neighbor of

(x0, u0) and has continuous first derivative at the point (x0, u0) as a function of
(x, u), for v = 0, . . . , 4.

(A6) The fu(u) is bounded and has continuous first derivative at the point u0 and
f (u0) > 0.
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