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Abstract The autoregressive conditional heteroscedasticity (ARCH) model and its
various generalizations have been widely used to analyze economic and financial
data. Although many variables like GDP, inflation, and commodity prices are
imprecisely measured, research focusing on the mismeasured response processes
in GARCH models is sparse. We study a dynamic model with ARCH error where
the underlying process is latent and subject to additive measurement error. We show
that, in contrast to the case of covariate measurement error, this model is identifiable
by using the observations of the proxy process only and no extra information is
needed. We construct GMM estimators for the unknown parameters which are
consistent and asymptotically normally distributed under general conditions. We
also propose a procedure to test the presence of measurement error, which avoids
the usual boundary problem of testing variance parameters. We carry out Monte
Carlo simulations to study the impact of measurement error on the naive maximum
likelihood estimators and have found interesting patterns of their biases. Moreover,
the proposed estimators have fairly good finite sample properties.

Keywords Dynamic ARCH model · Errors in variables · Generalized method of
moments · Measurement error · Semiparametric estimation

The original version of the chapter has been revised. A correction to this chapter can be found at
https://doi.org/10.1007/978-3-031-08329-7_16

M. Salamh
Department of Statistics, Cairo University, Giza, Egypt
e-mail: Mustafa.Salamh@feps.edu.eg

L. Wang (�)
Department of Statistics, University of Manitoba, Winnipeg, MB, Canada
e-mail: Liqun.Wang@umanitoba.ca

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022,
corrected publication 2023
W. He et al. (eds.), Advances and Innovations in Statistics and Data Science, ICSA
Book Series in Statistics, https://doi.org/10.1007/978-3-031-08329-7_11

235

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08329-7_11&domain=pdf

 -2016 47415 a -2016 47415
a
 
https://doi.org/10.1007/978-3-031-08329-7_16

 885 51863 a 885 51863
a
 
mailto:Mustafa.Salamh@feps.edu.eg

 885 55738 a 885 55738
a
 
mailto:Liqun.Wang@umanitoba.ca

 7630 61494 a 7630 61494
a
 
https://doi.org/10.1007/978-3-031-08329-7_11


236 M. Salamh and L. Wang

1 Introduction

Since the seminal works of Engle (1982) and Bollerslev (1986), the autoregressive
conditional heteroscedasticity (ARCH) model and its various generalizations have
been widely used to analyze economic and financial data, such as GDP, inflation,
stock prices, and interest rates, see, e.g., Grier and Perry (2000), Engle et al.
(2008), Fang and Miller (2009), Teräsvirta (2009), Francq and Zakoian (2011), and
Caporale et al. (2012). Moreover, there is also a large number of empirical studies
of agricultural and industrial commodity prices using ARCH/GARCH models, e.g.,
Ramirez and Fadiga (2003), Roche and McQuinn (2003), and Reitz and Westerhoff
(2007). However, it is well documented in the literature that many economic
variables including GDP, inflation and commodity prices are imprecisely measured.
For example, Wansbeek and Meijer (2000) and Buonaccorsi (2013) provide broad
surveys on the issues of measurement errors and their impacts in econometric
models. In particular, Alberini and Filippini (2011) emphasize that the US energy
prices are mismeasured, while Fan and Wang (2007) point out that high-frequency
financial data are particularly noisy. Furthermore, Handbury et al. (2013) investigate
the informativeness and bias of the consumer price index (CPI) as a proxy for the
“true” inflation and use a classical measurement error model to test for bias in
Japanese CPI. This raises an interesting question whether the “ARCH behavior” is
only a manifest phenomenon in empirical (observed) processes, or it is an intrinsic
property of the underlying (unobserved) processes. Therefore it is of theoretical and
practical interests to investigate the problem and impact of measurement error in
ARCH-type models.

The errors-in-variables problem has been extensively studied in statistics and
econometrics, see, e.g., Carroll et al. (2006); Chen et al. (2011); Wang and Hsiao
(2011); Yi et al. (2021), and the references therein. However, most of the research
focuses mainly on the problem of measurement error in covariates in regression
models. For dynamic models, Staudenmayer and Buonaccorsi (2005) studied
autoregressive (AR) model with white noise errors and mismeasured response
process, while Buonaccorsi (2010) gives an overview of estimation in dynamic
models. Some researchers, e.g., Harvey et al. (1992), Gourieroux et al. (1993) and
Francq and Zakoïan (2000), have considered GARCH models where the innovation
term contains an unobserved white noise component. However, research focusing
on the mismeasured response processes in GARCH models is sparse and even
answers to very basic questions are not known. For example, what is the impact of
measurement error on parameter estimation and inference? Under what conditions
is the model identifiable? How to quantify and correct the estimation bias caused by
measurement error?

In this paper we attempt to address some of these questions. To simplify notation
and analysis, we start with an autoregressive model with ARCH innovation where
the true latent process is measured with additive white noise error process. In
contrast to the models with covariate measurement error, we show that all model
parameters are identifiable by the observed proxy process only and no extra
information is needed. Moreover, we propose a set of moment conditions that are
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sufficient for the identifiability and therefore can used to construct GMM estimators
for the unknown parameters. We investigate the impact of measurement error on the
parameter estimation in dynamic ARCH models through Monte Carlo simulations.
In particular, we show that the measurement error induces biases in the naive maxi-
mum likelihood estimators and the relative biases have certain functional forms. We
also develop a statistical test for the presence of measurement error, which is useful
because more efficient GMM or maximum quasi-likelihood estimators can be used
if the measurement error is found to be absent or ignorable. Finally, we carry out
Monte Carlo simulations to examine the finite sample behavior of our proposed
estimators and compare them with the naive maximum likelihood estimators.

The paper is organized as follows. In Sect. 2 we introduce the model and show
it is identifiable without extra information. In Sect. 3 we construct the GMM
estimators and provide their asymptotic properties. In Sect. 4 we propose a test
for the measurement error. Further, we carry out Monte Carlo simulations to study
the impact of measurement error on the naive estimators in Sect. 5 and to examine
the finite sample properties of the proposed estimators and compare them with the
naiveMLE in Sect. 6. Finally, conclusions and discussions are given in Sect. 7, while
regularity assumptions and mathematical proofs are in the Appendix.

2 The Model and Identifiability

Let {Xt } be the unique nonanticipative strictly stationary solution of the following
AR(p)-ARCH(q) model (Francq and Zakoian 2011, Ch. 7)

Xt = α0 (B)Xt + εt , t ∈ Z, (1)

εt = √
htηt , ht = ω0 + β0(B)ε2t , (2)

where α0 (B) = ∑p

i=1 α0iB
i , β0 (B) = ∑q

j=1 β0jB
j , B is the backshift operator,

and {ηt } is a sequence of iid random variables with E(ηt ) = 0 and E(ηt
2) = 1.

Under this model {Xt } is second-order stationary if the unknown parameters satisfy
ω0 > 0, β0j ≥ 0, j = 1, 2, . . . , q,

∑q

j=1 β0j < 1 and α0 (z) �= 1 for all |z| ≤ 1.
Moreover, under these conditions {Xt } is strictly stationary and ergodic (Francq and
Zakoian 2011, Th. 2.5).

Assume that {Xt } is not directly observable and instead we observe the proxy
process

Zt = Xt + δt , (3)

where the measurement error process {δt } is iid with E(δt ) = 0, E(δ2t ) = σ 2
0

and is independent of {ηt }. Note that such a classical measurement error model is
commonly used in the literature and is also used by Handbury et al. (2013). Our main
interest is consistent estimation of unknown parameters θ0 = (α′

0,β
′
0, ω0, σ

2
0 )′,

where α′
0 = (α01, . . . , α0p) and β ′

0 = (β01, . . . , β0q). If {Xt } were observable,
then this can be done by using standard methods such as least squares or quasi-
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likelihood methods. However, when only observations on {Zt } are available, several
issues arise and one of them is the model identifiability.

It is well-known that in a regression model with covariate measurement error
usually extra information such as replicate or instrumental data are needed in order
for all parameters to be identifiable. Here we demonstrate that, in contrary, all
parameters in model (1)–(3) are identifiable based on the observations on {Zt }
only. To simplify notation, we consider the case where p = q = 1 and let
Yt = Zt − α0Zt−1.

Then under model assumptions we have

E(Yt |Zs, s ≤ t − 2) = E(Zt |Zs, s ≤ t − 2) − α0E(Zt−1|Zs, s ≤ t − 2)

= E(εt |Zs, s ≤ t − 2) + E(δt − α0δt−1|Zs, s ≤ t − 2)

= 0.

Since both E(Zt |Zs, s ≤ t−2) and E(Zt−1|Zs, s ≤ t−2) are observable functions,
α0 is uniquely identified by the above equation. In order to see the identifiability of
other parameters, we consider higher moments. In particular, since

E(YtYt−1) = E(−α0δ
2
t−1) = −α0σ

2
0 ,

σ 2
0 is identified given that α0 is identified. Further, from

E(Y 2
t |Zs, s ≤ t − 3) = ω0 + (1 − β0)(1 + α2

0)σ
2
0 + β0E(Y 2

t−1|Zs, s ≤ t − 3),

it is easy to see that β0 and ω0 + (1 − β0)(1 + α2
0)σ

2
0 are uniquely determined and

hence ω0 is identified.

3 GMM Estimation

Motivated by the above discussion of identifiability, in this section we propose an
estimation procedure based on the following conditional moments. Specifically, let

Yt (α0) = [1 − α0(B)]Zt . (4)

Then under the model assumptions we have (w.p.1)

E {Yt (α0)|Zs, s < t − p} = E {εt |Zs, s < t − p} + E {[1 − α0(B)]δt |Zs, s < t − p}
= 0 (5)

and

E
{
[1 − β0(B)]Y 2

t (α0)|Zs, s < t − p − q
}

= ω0 + [1xβ0(1)][1 + α2
0(1)]σ 2

0 ,

(6)
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where β0(1) = ∑q

j=1 β0j and α2
0(1) = ∑p

j=1 α2
0j . In addition, we have the

following unconditional moment condition

E {Yt (α0)Yt−1(α0)} =
⎡

⎣
p−1∑

j=1

α0jα0(j+1) − α01

⎤

⎦ σ 2
0 . (7)

Therefore a GMM estimator for θ0 can be constructed as follows. Denote

r t (θ) =
⎛

⎜
⎝

Yt (α)

[1 − β(B)] Y 2
t (α) − ω − [1 − β(1)][1 + α2(1)]σ 2

Yt (α)Yt−1(α) − [∑p−1
j=1 αjαj+1 − α1]σ 2

⎞

⎟
⎠ (8)

and the matrix of instrumental functions

Gt =
⎛

⎝
f1(Z̃t−p−1) 0 0

0 f2(Z̃t−p−q−1) 0
0 0 1

⎞

⎠ , (9)

where f1(Z̃t−p−1) is a k1-vector of measurable functions of Z̃t−p−1 =
(Zt−p−1, Zt−p−2, . . . ), f2(Z̃t−p−q−1) is a k2-vector of functions of Z̃t−p−q−1 =
(Zt−p−q−1, Zt−p−q−2, . . . ), and k1 ≥ p, k2 ≥ q + 1 are chosen to achieve
identification and efficiency. Then from (5)–(7) we have

E {Gtr t (θ0)} = 0. (10)

To simplify notation, in the following we assume that Z̃t−p−1 = (Zt−p−1, . . . ,

Zt−p−k1) and Z̃t−p−q−1 = (Zt−p−q−1, . . . , Zt−p−q−k2). Given the observations
Zτ ,Zτ+1, . . . , Zn, τ = min {1 − p − k1, 1 − p − q − k2}, the GMM estimator is
given by

θ̂n = argmin
�

[
n∑

t=1

Gtr t (θ)]′�n[
n∑

t=1

Gtr t (θ)], (11)

where �n is a nonnegative definite matrix which may depend on the observed data
and converges to a positive definite matrix � as n → ∞. The parameter space
� ⊂ Rp × [0,∞)q × (0,∞) × [0,∞) is assumed to be compact and contain
θ0 as an interior point. The asymptotic properties of θ̂n can be established in
a usual GMM framework. Specifically, denote � = E[G0r0(θ0)r

′
0(θ0)G

′
0] and

�′ = E[∇θ r
′
0(θ0)G

′
0] where ∇θ r

′
0(θ) = ∂r ′

0(θ)/∂θ . Then we have the following
asymptotic results for the GMM estimator, the proof of which and further regularity
conditions are given in Section 8.
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Theorem 1 The GMM estimator θ̂n has the following properties.

(1) Under Assumption 1–2, θ̂n
a.s.→ θ0 as n → ∞.

(2) Under Assumption 1–6,
√

n(θ̂n − θ0)
d→ N(0,A−1BA−1) as n → ∞, where

A = �′��, B = �′����.

Given the specified set of instruments, the optimal (efficient) GMM estimator is

obtained by taking the weight �n to be such that �−1
n

p→ � as n → ∞. Then the
optimal GMM has asymptotic variance-covariance matrix A−1

0 = (�′�−1
�)−1.

To compute the optimal weight, we propose to use a serial correlation robust
estimator of �. Specifically, let et = Gtr t (θ0). Then since E(et |Ft−p−q−1) = 0,
we have

�n = V

(

n−1/2
n∑

i=1

et

)

= E(e0e
′
0) +

p+q∑

i=1

n − i

n
[E(e0e

′−i ) + E(e−ie
′
0)].

Similarly to White (2001, p.147) and Wooldridge (1994, Sec.4.5), we can find a

positive definite matrix �n such that �−1
n − �n

p→ 0 as n → ∞, where

�−1
n = 1

n

n∑

t=1

êt ê
′
t +

p+q∑

i=1

mi(n)

n

n∑

t=i+1

(êt ê
′
t−i + êt−i ê

′
t ),

êt = Gtr t (θ̂) and mi(n) → 1, i = 1, 2, . . . , p + q are suitably chosen to ensure
that �n > 0. In practice, we can start with mi(n) = 1, i = 1, 2, . . . , p + q. If
�n is not positive definite, then we can modify mi(n) as mi(n) = (1 − n−1)i or
mi(n) = exp(i/n) to achieve the desired result.

4 Testing for Measurement Error

Although our GMM framework does not rule out zero measurement error, from
practical point of view it is of interest to verify its presence and severity. However,
testing for measurement error is generally a challenging task because under the null
hypothesis the value of the measurement error variance is on the boundary of the
parameter space. The framework in the previous section provides a possibility to
construct such a test by applying the similar idea of the incremental Sargan test
(Arellano 2003, p.193). Specifically, we construct a test for the following hypotheses
on the measurement error variance
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H0 : σ 2
0 = 0 vs. Ha : σ 2

0 > 0. (12)

We first consider the problem of estimating a subset of unknown parameters γ 0 =
(α′

0,β
′
0, τ0)

′, where α0,β0 are defined as in the AR(p)-ARCH(q) model (1)–(2) and

τ0 = ω0 + [1 − β0(1)][1 + α2
0(1)]σ 2

0 . (13)

Then it can be shown that γ 0 can be identified by the following k1 + k2 moment
conditions

E[G1t r̃ t (γ 0)] = 0, (14)

where r̃ t (γ ) = (Yt (α), [1 − β(B)]Y 2
t (α) − τ)′,

G′
1t =

(
Zt−p−1 Zt−p−2 · · · Zt−p−k1 0 0 · · · 0

0 0 · · · 0 Zt−p−q−1 Zt−p−q−2 · · · Zt−p−q−k2

)

and k1 > p, k2 > q + 1. Therefore the optimal GMM estimator for γ 0 is given by

γ̂ 1 = argmin
�

b′
1n(γ )V −1

1n b1n(γ ), (15)

where b1n(γ ) = n−1 ∑n
t=1 G1t r̃ t (γ ), V 1n is positive definite and V 1n −

V [n1/2b1n(γ 0)]
p→ 0, and � ⊂ Rp × [0,∞)q × (0,∞) is compact.

Next, under H0 we consider additional 2p + q moment conditions

E[G2t r̃ t (γ 0)] = 0, (16)

where

G′
2t =

(
Zt−1 Zt−2 · · · Zt−p 0 0 · · · 0
0 0 · · · 0 Zt−1 Zt−2 · · · Zt−p−q

)
.

Similarly, the optimal GMM estimator is given by

γ̂ = argmin
�

b′
n(γ )V −1

n bn(γ ), (17)

where bn(γ ) = n−1 ∑n
t=1(G

′
1t

... G′
2t )

′r̃ t (γ ), V n is positive definite and V n −
V [n1/2bn(γ 0)]

p→ 0.
Then the test statistic is defined as

SW = nb′
n(γ̂ )V −1

n bn(γ̂ ) − nb′
1n(γ̂ 1)V

−1
1n b1n(γ̂ 1). (18)
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For this test we have the following result, the proof of which is given in section 8.

Theorem 2 Under Assumption 1–6 and H0, SW
d→ χ2

2p+q as n → ∞.

5 Impact of Measurement Error

It is well-known that in a linear errors-in-variables model with iid data the usual OLS
or ML estimators are attenuated towards zero. The impact of the measurement error
in dynamic ARCH models, however, has not been studied before. In this section we
carry out Monte Carlo simulations to investigate the behavior of the naive MLE of
a Gaussian AR(1)-ARCH(1) model with Gaussian classical additive measurement
error. Specifically, we consider the model

Xt = α0Xt−1 + εt , (19)

εt = √
htηt , ht = ω0 + β0ε

2
t−1, (20)

Zt = Xt + δt , (21)

where ηt ∼ N(0, 1) and δt ∼ N(0, σ 2
0 ) are independent and iid sequences. The

parameter values are set to ω0 = σ 2
0 = 1, α0 ∈ {−0.9,−0.8, . . . , 0.8, 0.9} and β0 ∈

{0.05, 0.1, . . . , 0.9, 0.95}, respectively. In all simulations, 1000 samples of size n =
105 are generated to accurately estimate the asymptotic bias of ML(α0, β0, ω0).

We first calculate the relative bias of the ML(α0) as

RB.ML(α0) = Bias.ML(α0)

α0
× 100.

Figure 1 shows clearly that the ML(α0) is biased towards zero, similar to the
OLS estimator of the slope parameter in a linear errors-in-variables model. More
importantly, the bias has a pattern of a symmetric parabolic function in α0 and a
nearly linear function in β0. The absolute RB is monotone decreasing in both α0
and β0. These observations indicate a similarity between the asymptotic bias of
ML(α0) and OLS(α0) calculated by regressing Zt on Zt−1. By direct calculation we
can obtain the OLS relative bias as

RB.OLS(α0) = − 1

1 + ω0/(1 − β0)(1 − α2
0)σ

2
0

.

This raises an interesting question: To what extend can the OLS(α0) bias formula
be used to approximate and therefore to correct the bias of ML(α0)? To further
investigate this question, we examine the ratio Bias.OLS(α0)/Bias.ML(α0) as a
function of α0 and β0. Figure 2 shows that the formula of Bias.OLS provides good
approximation to Bias.ML in a fairly large area of the parameter space. However,



Fig. 1 Relative bias of ML(α0)

Fig. 2 Ratio of Bias.OLS(α0)/Bias.ML(α0)
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Fig. 3 Relative bias of ML(β0)

the Bias.OLS formula underestimates the Bias.ML for large values of β0, which is
understandable because the two estimators are more different when β0 gets larger.
Again, it is interesting to see that there is a clear (unknown) functional relationship
between Bias.ML and Bias.OLS.

Further, we have also calculated the relative bias of ML(β0) and ML(ω0), which
are shown in Figs. 3 and 4, respectively. From these figures we can see that the
ML(β0) has downward bias and the absolute relative bias is generally decreasing
for β0 ≥ 0.3 or |α0| ≤ 0.7. In contrast, ML(ω0) has an upward bias pattern, which
is similar to the intercept estimator in a linear errors-in-variables model. Again, both
Figs. 3 and 4 show clear (but unknown) functional patterns of the asymptotic bias
of the MLE. Overall, Figs. 1, 2, 3, and 4 show that the measurement error has more
severe effect on the estimate of ω0 than on α0 and β0.

6 Finite Sample Properties

In this section we carry out Monte Carlo simulations to investigate the finite sample
properties of the proposed GMM estimator and compare it with the corresponding
naive ML estimator. Again we use the model (19)–(21) in the previous section,
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Fig. 4 Relative bias of ML(ω0)

under which the optimal choice of the instrument matrix Gt depends on the
quantities such as E[Zt−h|Z̃t−p−1], h = 1, 2, . . . , p, E[Y 2

t−h(α0)|Z̃t−p−q−1], h =
1, 2, . . . , q, and E[(r t (θ0)r

′
t (θ0))ij |Iij ] for some suitably chosen information set

Iij . Unfortunately some of these instrumental functions cannot be computed easily
without simplification which would require further distributional assumptions on
the latent and error processes. Consequently we have attempted with several
constructions and found the following procedure to be most practical. Since the
number of moment equations used here is the same of the number of unknown
parameters, the estimators can be calculated in the following sequential process.

First, compute

α̂ = argmin
−1<α<1

⎡

⎣
n∑

t=k3

Ẑt−1Yt (α)

⎤

⎦

2

, (22)

where k3 = 4 + k2 and Ẑt−1 is the linear projection of Zt−1 onto{
Zt−2, Zt−3, . . . , Zt−1−k1

}
. Second, let Yt = Yt (α̂) and compute
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σ̂ 2 = argmin
σ 2≥0

⎡

⎣
n∑

t=k3

(YtYt−1 + α̂σ 2)

⎤

⎦

2

. (23)

Third, compute

β̂ = argmin
0<β<1

⎡

⎣
n∑

t=k3

Ŷ 2
t−1(y

2
t − βy2

t−1)

⎤

⎦

2

, (24)

where Ŷ 2
t−1 is the linear projection of Y 2

t−1 onto

{
Y 2

t−3

1 + Y 2
t−3

,
Y 2

t−4

1 + Y 2
t−4

, . . . ,
Y 2

t−2−k2

1 + Y 2
t−2−k2

}

,

and y2
t = Y 2

t − Y 2, y2
t−1 = Y 2

t−1 − Y 2−1 with

Y 2 = 1

n − k3 + 1

n∑

t=k3

Y 2
t , Y 2−1 = 1

n − k3 + 1

n∑

t=k3

Y 2
t−1.

Finally, compute

ω̂ = argmin
ω>0

[
Y 2 − β̂Y 2−1 − ω − (1 − β̂)(1 + α̂2)σ̂ 2

]2
. (25)

It is worthwhile to note that Ŷ 2
t−1 is defined in terms of bounded instruments

to guarantee the consistency of the proposed estimator over a wide range of the
parameter space.

We generate the data using parameter values {0.05, 0.2, 0.35, 0.5, 0.65, 0.8, 0.95}
for α0 and β0, respectively. In addition, we set ω0 = 1 and let σ 2

0 vary proportionally
to σ 2

X = ω0/(1 − β0)(1 − α2
0) such as σ 2

0 = aσ 2
X, where the noise-to-signal ratio

a ∈ {0, 0.25, 0.5, . . . , 1.75, 2}, respectively, and a = 0 corresponds to the case
of no measurement error. Again, we generate 1000 samples for each of the sizes
n = 100, 1000, 10000 and n = 100000 to approximate the asymptotic scenario. In
each simulation we compute the naive ML (nML) and two GMM estimators using
k1 = k2 = 1 (GMM1) and k1 = k2 = 5 (GMM5) instruments, respectively.

The bias and root mean squared error (RMSE) of the estimators are calculated
and numerical results for AR and ARCH parameters α0, β0, ω0 for some selected
cases are reported in Tables 1, 2, and 3. The numerical results for negative α0 values
are similar to those for positive values and therefore are not reported here.

From Tables 1, 2, and 3 we can see that, in the case of no measurement error
(a = 0), the GMM estimators have both larger bias and RMSE than the naive
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Table 1 Bias and RMSE of nML, GMM1 and GMM5 estimators for AR parameter α0 (with
ω0 = 1)

a = 0.00 a = 0.75 a = 1.5

nML GMM1 GMM5 nML GMM1 GMM5 nML GMM1 GMM5

n α0 β0 = 0.2

100 0.2 −0.007 −0.022 −0.029 −0.095 0.020 −0.093 −0.120 −0.055 −0.146

0.109 0.510 0.340 0.142 0.580 0.402 0.159 0.622 0.420

0.5 −0.011 −0.020 −0.023 −0.227 −0.003 −0.122 −0.304 −0.082 −0.249

0.094 0.217 0.180 0.254 0.367 0.331 0.323 0.498 0.448

0.8 −0.015 −0.019 −0.021 −0.359 −0.012 −0.096 −0.489 −0.073 −0.234

0.067 0.092 0.089 0.382 0.192 0.208 0.505 0.298 0.373

105 0.2 −0.000 0.000 0.000 −0.086 −0.001 −0.001 −0.120 −0.002 −0.003

0.003 0.016 0.016 0.086 0.028 0.028 0.120 0.040 0.039

0.5 −0.000 0.000 0.000 −0.214 −0.000 −0.000 −0.300 −0.001 −0.001

0.003 0.005 0.005 0.214 0.010 0.010 0.300 0.016 0.014

0.8 −0.000 −0.000 −0.000 −0.339 −0.000 −0.000 −0.479 −0.001 −0.001

0.002 0.002 0.002 0.339 0.005 0.004 0.479 0.009 0.005
β0 = 0.5

100 0.2 −0.004 −0.063 −0.053 −0.099 −0.010 −0.106 −0.123 −0.086 −0.148

0.107 0.565 0.353 0.149 0.614 0.409 0.165 0.655 0.418

0.5 −0.008 −0.025 −0.038 −0.240 −0.034 −0.143 −0.313 −0.118 −0.263

0.091 0.244 0.207 0.268 0.432 0.351 0.334 0.548 0.464

0.8 −0.011 −0.021 −0.025 −0.375 −0.022 −0.114 −0.501 −0.094 −0.260

0.060 0.101 0.098 0.402 0.210 0.235 0.521 0.342 0.406

105 0.2 −0.000 0.001 0.001 −0.090 −0.001 −0.002 −0.123 −0.001 −0.002

0.003 0.026 0.026 0.090 0.037 0.034 0.123 0.044 0.043

0.5 −0.000 0.000 0.000 −0.222 −0.000 −0.001 −0.307 −0.001 −0.001

0.003 0.009 0.009 0.222 0.012 0.011 0.307 0.017 0.015

0.8 −0.000 0.000 0.000 −0.343 −0.000 −0.000 −0.484 −0.000 −0.000

0.002 0.003 0.003 0.343 0.006 0.004 0.484 0.009 0.005
β0 = 0.8

100 0.2 −0.003 −0.109 −0.071 −0.120 −0.064 −0.131 −0.138 −0.109 −0.156

0.107 0.614 0.371 0.169 0.676 0.423 0.180 0.701 0.421

0.5 −0.006 −0.049 −0.061 −0.290 −0.082 −0.215 −0.350 −0.173 −0.315

0.093 0.326 0.254 0.320 0.520 0.418 0.373 0.628 0.502

0.8 −0.009 −0.029 −0.036 −0.452 −0.058 −0.185 −0.559 −0.172 −0.359

0.053 0.142 0.135 0.483 0.297 0.329 0.581 0.482 0.516

105 0.2 −0.000 −0.000 −0.005 −0.105 −0.016 −0.017 −0.136 −0.006 −0.013

0.003 0.170 0.130 0.105 0.173 0.128 0.137 0.154 0.129

0.5 −0.000 0.001 −0.001 −0.264 −0.007 −0.008 −0.342 −0.001 −0.003

0.004 0.059 0.051 0.264 0.093 0.066 0.342 0.053 0.043

0.8 −0.000 −0.000 −0.001 −0.411 −0.002 −0.003 −0.545 −0.001 −0.001

0.001 0.020 0.019 0.411 0.032 0.027 0.545 0.018 0.014
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Table 2 Bias and RMSE of nML, GMM1 and GMM5 estimators for ARCH slope parameter β0
(with ω0 = 1)

a = 0.00 a = 0.75 a = 1.5

nML GMM1 GMM5 nML GMM1 GMM5 nML GMM1 GMM5

n β0 α0 = 0.2

100 0.2 −0.030 0.177 0.041 −0.133 0.216 0.039 −0.150 0.225 0.043

0.146 0.461 0.335 0.161 0.495 0.363 0.169 0.502 0.361

0.5 −0.064 −0.044 −0.201 −0.353 −0.079 −0.268 −0.407 −0.074 −0.283

0.219 0.424 0.388 0.385 0.447 0.429 0.425 0.451 0.431

0.8 −0.107 −0.326 −0.460 −0.601 −0.366 −0.580 −0.669 −0.381 −0.615

0.253 0.519 0.567 0.636 0.580 0.669 0.692 0.590 0.696

105 0.2 −0.000 −0.000 −0.009 −0.134 −0.036 −0.044 −0.167 −0.040 −0.029

0.005 0.098 0.123 0.134 0.150 0.133 0.167 0.198 0.125

0.5 −0.000 −0.002 −0.003 −0.316 −0.005 −0.009 −0.391 −0.003 −0.022

0.006 0.032 0.035 0.316 0.064 0.064 0.391 0.125 0.108

0.8 −0.001 −0.021 −0.024 −0.528 −0.025 −0.036 −0.616 −0.032 −0.051

0.008 0.048 0.052 0.528 0.066 0.073 0.616 0.080 0.086
α0 = 0.5

100 0.2 −0.028 0.152 0.047 −0.142 0.188 0.021 −0.155 0.219 0.020

0.145 0.441 0.342 0.166 0.484 0.349 0.171 0.496 0.335

0.5 −0.062 −0.041 −0.188 −0.380 −0.103 −0.289 −0.421 −0.071 −0.295

0.219 0.417 0.384 0.405 0.448 0.435 0.436 0.452 0.432

0.8 −0.104 −0.317 −0.449 −0.629 −0.394 −0.612 −0.685 −0.378 −0.615

0.252 0.502 0.561 0.659 0.593 0.687 0.704 0.593 0.696

105 0.2 −0.000 −0.000 −0.009 −0.150 −0.040 −0.035 −0.175 0.017 0.030

0.005 0.098 0.123 0.150 0.175 0.121 0.175 0.290 0.218

0.5 −0.000 −0.002 −0.003 −0.351 −0.003 −0.014 −0.410 0.004 −0.040

0.006 0.032 0.035 0.351 0.091 0.087 0.411 0.204 0.185

0.8 −0.001 −0.020 −0.022 −0.562 −0.027 −0.041 −0.636 −0.035 −0.059

0.022 0.050 0.053 0.562 0.074 0.081 0.636 0.099 0.101
α0 = 0.8

100 0.2 −0.024 0.141 0.045 −0.150 0.200 0.029 −0.161 0.230 0.010

0.145 0.431 0.342 0.173 0.486 0.340 0.176 0.506 0.328

0.5 −0.059 −0.041 −0.182 −0.424 −0.113 −0.286 −0.446 −0.089 −0.329

0.217 0.411 0.380 0.439 0.455 0.439 0.454 0.460 0.448

0.8 −0.102 −0.309 −0.429 −0.690 −0.379 −0.635 −0.723 −0.415 −0.670

0.252 0.487 0.545 0.708 0.594 0.710 0.735 0.618 0.728

105 0.2 −0.000 −0.000 −0.009 −0.170 0.075 0.164 −0.185 0.219 0.393

0.005 0.098 0.123 0.170 0.362 0.382 0.185 0.494 0.575

0.5 −0.000 −0.002 −0.003 −0.410 0.010 −0.053 −0.442 −0.043 0.067

0.006 0.032 0.035 0.410 0.286 0.266 0.442 0.417 0.396

0.8 −0.000 −0.020 −0.022 −0.627 −0.031 −0.063 −0.670 −0.076 −0.108

0.008 0.050 0.054 0.627 0.127 0.118 0.670 0.273 0.219
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Table 3 Bias and RMSE of nML, GMM1 and GMM5 estimators for ARCH intercept parameter
ω0 (with ω0 = 1)

a = 0.00 a = 0.75 a = 1.5

nML GMM1 GMM5 nML GMM1 GMM5 nML GMM1 GMM5

n β0 α0 = 0.2

100 0.2 0.003 −0.045 0.025 1.043 −0.708 −0.460 1.994 −0.607 −0.343

0.190 0.776 0.512 1.099 0.927 0.902 2.054 1.001 1.052

0.5 0.042 0.361 0.462 1.908 −0.531 −0.139 3.521 −0.420 0.128

0.240 1.401 0.969 1.985 1.116 1.267 3.612 1.301 1.726

0.8 0.110 1.001 1.599 4.802 −0.066 0.917 8.823 0.539 2.016

0.355 2.175 4.624 4.957 2.468 3.345 9.012 5.836 7.898

105 0.2 −0.000 0.000 0.011 1.101 0.072 0.085 2.127 0.117 0.104

0.007 0.122 0.153 1.101 0.269 0.258 2.127 0.410 0.338

0.5 0.000 0.003 0.005 1.905 0.047 0.059 3.590 0.075 0.116

0.007 0.055 0.062 1.905 0.245 0.244 3.590 0.412 0.396

0.8 0.000 0.054 0.072 4.676 0.103 0.165 8.728 0.209 0.320

0.008 0.176 0.175 4.676 0.606 0.633 8.729 0.849 0.911
α0 = 0.5

100 0.2 0.001 −0.180 −0.051 1.460 −0.294 0.054 2.714 −0.206 0.313

0.191 0.584 0.475 1.521 0.979 0.989 2.782 1.252 1.466

0.5 0.041 0.108 0.356 2.595 0.062 0.639 4.682 0.148 1.082

0.241 0.947 0.868 2.684 1.487 1.722 4.792 1.919 2.578

0.8 0.113 0.820 1.348 6.366 1.009 2.435 11.536 1.389 3.592

0.403 1.938 2.657 6.559 3.708 4.954 11.784 4.891 7.102

105 0.2 −0.000 −0.000 0.011 1.545 0.050 0.044 2.900 −0.016 −0.033

0.007 0.122 0.154 1.545 0.222 0.156 2.900 0.369 0.278

0.5 0.000 0.002 0.004 2.617 0.006 0.028 4.809 −0.004 0.086

0.007 0.055 0.062 2.617 0.185 0.174 4.809 0.414 0.377

0.8 0.002 0.042 0.051 6.262 0.085 0.151 11.497 0.121 0.238

0.053 0.156 0.176 6.262 0.316 0.337 11.498 0.453 0.466
α0 = 0.8

100 0.2 −0.002 −0.188 −0.067 3.453 −0.170 0.222 6.240 0.258 1.096

0.191 0.563 0.468 3.541 1.100 1.227 6.354 2.031 2.573

0.5 0.037 0.062 0.316 5.835 0.452 1.077 10.319 1.187 2.588

0.241 0.880 0.817 5.982 2.061 2.437 10.520 3.693 4.750

0.8 0.107 0.743 1.271 13.969 2.189 4.419 24.908 4.305 7.359

0.371 1.664 4.663 14.324 6.165 8.307 25.415 10.275 12.976

105 0.2 −0.000 −0.000 0.011 3.663 −0.095 −0.205 6.673 −0.271 −0.489

0.007 0.122 0.153 3.663 0.453 0.478 6.673 0.620 0.720

0.5 0.000 0.002 0.004 5.979 −0.020 0.105 10.721 0.092 −0.129

0.007 0.055 0.063 5.980 0.571 0.530 10.722 0.842 0.799

0.8 0.000 0.039 0.046 13.859 0.087 0.235 24.931 0.306 0.461

0.008 0.160 0.184 13.866 0.563 0.490 24.932 1.249 1.006
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MLE at sample size n = 100, while the bias reduces markedly at sample size
n = 105. However, when the measurement error is present (a = 0.75 or a = 1.5),
the GMMs has significantly smaller bias than the naive MLE at all sample sizes,
and significantly smaller RMSE at n = 105. In particular, while the bias in GMMs
reduces significantly at large sample size n = 105, the bias in naive MLE remains
persistently at high level. Overall, the GMM5 using k1 = k2 = 5 instruments have
smaller RMSE but larger bias than the GMM1 using k1 = k2 = 1 instrument. In
general, the AR parameter α0 has the smallest bias and RMSE, while the ARCH
intercept ω0 has the largest values.

In the following we provide a more detailed summary of findings for each
parameter based on over 300 various configurations of parameter values.

AR Parameter α

The nML estimator is clearly downward biased and its absolute relative bias (ARB)
is fast increasing (from 20% to 80%) with the noise-to-signal ratio a. The GMM
estimators are downward biased in small samples and their ARB are decreasing with
α0 but increasing with β0. While the ARB of GMM1 has no relation with a that of
GMM5 is a fast increasing function of a. The RMSE of the nML estimator has,
respectively, a shape of square-root function in a, a clear increasing linear function
in α0, and a slightly increasing linear function of β0. In contrast, the RMSE of the
GMM estimators are decreasing with α0, but increasing with β0 and a, respectively.
However, the RMSE of GMM5 vanishes in large samples faster than that of GMM1
estimator.

ARCH slope β

Again the nML estimator is clearly downward biased in large samples and most of
small sample cases, and its ARB is fast increasing with a (from 40% to 80%). In
small samples, the biases of the GMM estimators have a shape of concave function
with respect to β0, while their ARB have a shape of convex function. Furthermore,
when the sample size increases the GMM biases vanish very slowly for large α0
(0.95) and small β0 (0.05). The RMSE of the nML estimator takes the shape of a
square-root function in a, a fast increasing linear function in β0, has no relation to
α0. The RMSE of the GMM estimators are a convex function of β0 but have no
relation with α0 or a.

ARCH intercept ω

The nML estimator has an upward bias and the bias is increasing with a, α0, and β0,
respectively. In small samples the biases of the GMM estimators have, respectively,
the shape of a linear function in α0, an increasing function in β0, and a fast
increasing function in a. However, the bias vanishes slowly when the sample size
increases. The RMSE of all three estimators have similar patterns as their respective
biases.
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7 Conclusions and Discussion

We have studied a dynamic model with autoregressive heteroscedastic error where
the underlying process is latent and subject to additive measurement error. We have
shown that the model is identifiable by using the observations of a proxy process
only. This is in contrast to the case of measurement error in the covariates, where
extra information such as external instrumental variables or replicate observations
is needed for model identifiability. Moreover, we proposed a set of identifying
moment conditions and used them to construct GMM estimators for the unknown
parameters. The proposed estimators are consistent and asymptotically normally
distributed under usual regularity conditions. As a byproduct, this framework allows
us to construct a test for the presence of measurement error. Our Monte Carlo
simulation studies show that the measurement error causes downward bias in the
naive MLE, and the relative biases have certain functional forms. This is interesting
because it provides a possibility to find the formulas that can be used to correct the
biases in the naive MLE. Furthermore, the proposed estimators possess fairly good
finite sample properties and comparisons with the naive MLE are also presented.

This work attempts to address some basic measurement error problems in
dynamic models with ARCH-type errors. There are many more questions and
issues remaining to be investigated. For example, it would be interesting to explore
other possible moment conditions that can be used to achieve identification and to
obtain more efficient estimators. It would also be interesting to study more general
measurement error processes. We used a simple ARCH model in order to be able
to gain insights of the problem and to obtain some concrete results. From both
theoretical and practical point of view, it is important to investigate the measurement
error problem in more general GARCH models. Our theoretical framework should
apply to GARCH processes as well, but the estimation will be based on a different
set of moments than (5)–(7) used here. Another way is to convert the GARCH
process to an infinite order ARCH and then truncate it to finite order, so that the
estimators based on the moments (5)–(7) can be used directly.

Acknowledgments The research was partially supported by grants from the Natural Sciences and
Engineering Research Council of Canada (NSERC).

Appendix

Regularity Assumptions and Mathematical Proofs

In this Appendix we provide the regularity assumptions that are sufficient for the
theoretical results in Theorems 1 and 2. We also provide a sketch of the proofs of
them, since they follow the general framework of GMM estimation.
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Regularity Assumptions

For the asymptotic properties of the GMM estimator θ̂n we make the following
assumptions, where ‖·‖ denotes the Euclidean norm.

Assumption 1 The instrumental functions satisfy E

∥∥∥Zt−hf1(Z̃t−p−1)

∥∥∥ < ∞ for

h = 0, 1, . . . , p and E

∥∥∥Z2
t−hf2(Z̃t−p−q−1)

∥∥∥ < ∞ for h = 0, 1, . . . , p + q.

Assumption 2 θ0 is the unique solution to E {G0r0(θ)} = 0 in �.

Assumption 3 The covariance matrix V [n−1/2 ∑n
t=1 Gtr t (θ0)] is uniformly posi-

tive definite.

Assumption 4 The instrumental functions satisfy E

∥∥∥Z2
t−hf

2
1 (Z̃t−p−1)

∥∥∥ < ∞ for

h = 0, 1, 2, . . . , p, E

∥∥∥Z4
t−hf

2
2 (Z̃t−p−q−1)

∥∥∥ < ∞ for h = 0, 1, 2, . . . , p + q, and

E(Z4
0) < ∞.

Assumption 5 E[∥∥E(G0r0(θ0)|F−j )
∥∥2] < ∞, j = 1, 2, . . . , p + q, where Ft =

σ(Zs, s ≤ t).

Assumption 6 �′ = E[∇θ r
′
0(θ0)G

′
0] has full rank p + q + 2, where ∇θ r

′
0(θ) =

∂r ′
0(θ)/∂θ .

Note that the above assumptions are not more restrictive than the usual assump-
tions for the asymptotic properties of GMM estimators in the literature. They are
formulated for the general forms of the instrumental functions f1 and f2 (which are
also on the diagonal of matrix Gt ). For example, if f1 and f2 are taken to be the
linear projections of the lagged Zt , then Assumption 1 simply means the Zt process
has finite second and third moments. Similarly, Assumption 4 means Zt has finite
fourth and sixth moments. In particular, the identifiability Assumption 3 is based on
the moment conditions (5)–(7) which is given in r t (θ). Again, if f1 and f2 are taken
to be the linear projections then this assumption follows directly from (5)–(7).

Proof of Theorem 1

To simplify notation in the following we will omit the subscript n in θ̂n and
denote it as θ̂ . First, since {Xt } is strictly stationary and ergodic, and {δt } is iid
and independent of {ηt }, {Zt } is strictly stationary and ergodic. It follows from
Assumption 1 and White (1996, Th. A.2.2) that E[Gtr t (θ)] is continuous on 

and, furthermore, by the strong uniform law of large numbers (ULLN), as n → ∞,
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sup


∥∥∥∥∥
1

n

n∑

i=1

Gtr t (θ) − E[G0r0(θ)]
∥∥∥∥∥

a.s.→ 0. (26)

The result (1) follows then from Assumption 2 and White (1996, Th. 3.4).
To prove the asymptotic normality, note that for sufficiently large n, the score

Sn(θ̂ ,�n) =
[

n∑

t=1

∇θ r
′
t (θ̂)G′

t

]

�n

[
n∑

t=1

Gtr t (θ̂)

]

= 0, w.p.1, (27)

where ∇θ r
′
t (θ) = ∂r ′

t (θ)/∂θ . Then using the mean-value theorem (Jennrich 1969),
we have

[
n∑

t=1

∇θ r
′
t (θ̂)G′

t

]

�n

[
n∑

t=1

Gtr t (θ0)

]

= −
[

n∑

t=1

∇θ r
′
t (θ̂)G′

t

]

�n

[
n∑

t=1

Gt∇θ r t (θ̃)

]

(θ̂ − θ0),

(28)

where
∥∥∥θ̃ − θ0

∥∥∥ ≤
∥∥∥θ̂ − θ0

∥∥∥. Again by the ULLN (White 1996, Th. A.2.2 and

Cor. 3.8), we have, as n → ∞,

1

n

n∑

t=1

∇θ r
′
t (θ̂)G′

t

a.s.→ E
[∇θ r

′
0(θ0)G

′
0

]
(29)

which has full rank by Assumption 6. Further, by Assumption 3–5 and (White 1996,
Th. A.3.2), we can use the so-called Cramer–Wold device (Rao 1973) to show that

1√
n

n∑

t=1

Gtr t (θ0)
d→ N(0,�), (30)

where � = E[Gtr t (θ0)r
′
t (θ0)G

′
t ]. Finally the result follows from (28)–(30) and

Assumption 6.

Proof of Theorem 2

First, using the nonsingular factorization we can write

V 1 = plim
n→∞

V [n1/2b1n(γ 0)] = C1C
′
1

and V 1n = C1nC
′
1n such that C1 = plimn→∞ C1n. Then by the mean-value

theorem and Slutsky’s theorem we have

�1 = n1/2C′
1nb1n(γ̂ 1) = n1/2M1C

′
1b1n(γ 0) + op(1), (31)
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where M1 = I k1+k2 − A1(A
′
1A1)

−1A′
1, A1 = C′

1D1, and D′
1 = E[∇γ r̃ ′

t (γ 0)G
′
1t ].

Similarly, let V n = CnC
′
n, where

C′
n =

(
C′

1n 0
0 C′

2n

)(
I k1+k2 0
−H n I 2p+q

)
,

C2nC
′
2n = V −1[n1/2(b2n(γ 0) − H nb1n(γ 0))], and

plim
n→∞

H n = E[b2n(γ 0)b1n(γ 0)
′]E−1[b1n(γ 0)b1n(γ 0)

′].

Then it is easy to show that plimn→∞ CnC
′
n = limn→∞ V −1[n1/2bn(γ 0)], and

similarly to (31), we have

� = n1/2C′
nbn(γ̂ ) = n1/2MC′bn(γ 0) + op(1), (32)

where M = I k1+k2+2p+q − A(A′A)−1A′, C = plimn→∞ Cn, A = C′D, D′ =
(D′

1,D
′
2), and D′

2 = E[∇γ r̃ ′
t (γ 0)G

′
2t ]. Further, denote

M2 =
(

M1 0
0 0

)
.

Then out test statistic is

SW = nb′
n(γ 0)C(M − M2)C

′bn(γ 0) + op(1). (33)

Finally, since clearly (M − M2)M2 = 0 and n1/2C′bn(γ 0)
d→ N(0, I k1+k2+2p+q)

under H0, we have SW
d→ χ2

2p+q .
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