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Preface

This book is a compilation of the invited papers presented at or solicited papers
from the invited speakers of the Fourth Symposium of the Canada Chapter of
the International Chinese Statistical Association (ICSA-Canada) held at Queen’s
University, Kingston, Ontario, Canada, August 9–11, 2019 (https://icsa-canada-
chapter.org/symposium2019/). The Symposium’s theme was “Advances and Inno-
vations in Statistics and Data Science,” and the goal of the Symposium is to
promote advances and innovations in statistics and data science and to offer the
opportunity for researchers to exchange research ideas and disseminate their results.
The Symposium has diverse topics and sessions in both statistics and data sciences,
including statistical challenges in high-dimensional data, survival data, missing data
and data with measurement error, longitudinal data and functional data analysis, and
statistical inference for biomarkers.

This book aims to provide a platform for the research ideas presented at the
Symposium to promote further advanced and innovative research in statistics and
data science. In this book, we collected 15 articles which are divided into two
parts. Part I includes six articles that discuss the advanced methodology in data
science, while Part II contains nine papers that investigate a variety of development
in statistical science.

Part I: Methodology Development in Data Science
(Chapters 1–6)

In Chapter 1, Henry Linder and Yuping Zhang present an integrated, graphical
regression model to endogenize the directed miRNA-gene target interactions and
control their effects on signalling pathway disturbance. They identify prominent
miRNA-gene interactions and propose a graphical representation of the targeting.
The network is merged with signalling pathway networks to obtain a cross-
functional graph representation of regulatory relationships between genes and

vii


 26117 22385 a 26117 22385
a
 
https://icsa-canada-chapter.org/symposium2019/
https://icsa-canada-chapter.org/symposium2019/
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miRNAs. Gene expression and miRNA expression are integrated, in tandem with
graphical integration of epigenetic and transcriptomic data types, to estimate a
statistical model.

Chapter 2 deals with feature screening commonly used to handle ultrahigh-
dimensional data before being formally analyzed. Li-Pang Chen and Grace Y.
Yi consider error-prone ultrahigh-dimensional survival data and propose a robust
feature screening method. In addition, they develop an iterative algorithm to
improve the performance of retaining all informative covariates. Theoretical results
are established for the proposed method.

Controlling the false discovery rate (FDR) and maintaining the high sensitivity
are key desiderata in post-selection inference in high-dimensional data analysis. In
Chapter 3, Bangxin Zhao and Wenqing He propose a method to control the FDR
and sensitivity simultaneously for high-dimensional post-selection inference using
Least Angle Regression (LARS), termed Cosine PoSI. Cosine PoSI focuses on the
geometric aspect of Least Angle Regression: in each step of the LARS algorithm,
the proposed Cosine PoSI method makes use of the angle between the entering
variable and current residual and treats this angle as a random variable that follows a
cosine distribution. Given the collection of the possible angles, the variable selection
path is stopped using a hypothesis testing based on the limiting distribution of
the maximum angle that can be obtained through the order statistics of the cosine
distribution. It is shown that both the sensitivity and the FDR can be controlled by
using the stopping criteria.

When a population exhibits heterogeneity, a finite mixture model is often invoked
to decompose the population into several different but homogeneous subpopu-
lations. Contemporary practice favors learning the mixtures by maximizing the
likelihood for statistical efficiency and the convenient EM-algorithm for numerical
computation. Yet the maximum likelihood estimate (MLE) is not well defined for
finite location-scale mixture in general. In Chapter 4, Qiong Zhang and Jiahua Chen
investigate feasible alternatives to MLE, such as minimum distance estimators.
Specifically, they use the Wasserstein distance that has intuitive geometric inter-
pretation and is successfully employed in many new applications. They find that
the minimum Wasserstein distance estimator (MWDE) is consistent, and derive a
numerical solution under finite location-scale mixtures. The robustness of MWDE
against outliers and mild model mis-specifications is studied. They found that the
MWDE suffers some efficiency loss against a penalized version of MLE in general
without a noticeable gain in robustness and reaffirmed the general superiority of the
likelihood-based learning strategies, even for the non-regular finite location-scale
mixtures.

Automatically ranking comments by relevance plays an important role in text
mining. In Chapter 5, Yuyang Zhang and Hao Yu present a new text digitization
method, the bag of word clusters model, by grouping semantic-related words
as clusters using pre-trained word2vec word embeddings and representing each
comment as a distribution of word clusters. This method extracts both semantic
and statistical information from texts. They then propose an unsupervised ranking
algorithm that identifies relevant comments by their distance to the “ideal” com-
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ment. This “ideal” comment is the maximum general entropy comment with respect
to the global word cluster distribution. The “ideal” comment highlights aspects of
a product that many other comments frequently mention and thus is regarded as a
standard to judge a comment’s relevance to this product.

Chapter 6 deals with statistical quality control for high-dimensional non-normal
data. M. Rauf Ahmad and S. Ejaz Ahmed propose a modification to the limit of the
Hotelling’s T 2-statistic for statistical control under high-dimensional settings and
evaluate its robustness to the normality assumption. The limit, evaluated for high-
dimensional asymptotics, is shown to be robust under a few mild assumptions and
a general multivariate model covering normality as a special case. Further, the limit
holds without any dimension reduction or preprocessing.

Part II: Challenges in Statistical Analysis (Chapters 7–15)

In the functional linear regression models, many methods have been proposed and
studied to estimate the slope function, while the functional predictors were observed
in the entire domain. However, works on functional linear regression models with
partially observed trajectories have received less attention. In Chapter 7, Yafei
Wang, Tingyu Lai, Bei Jian, Linglong Kong, and Zhongzhan Zhang consider the
scenario where individual functional predictors may be observed only on the part
of the domain to fill the gap. Two methods are developed depending on whether
the measurement error is presented in functional predictors. One is based on linear
functionals of the observed part of the trajectory, and the other one uses conditional
principal component scores.

In Chapter 8, Yanqing Sun and Fang Fang study several profile estimation
methods for the generalized semiparametric varying-coefficient additive model for
longitudinal data by utilizing the within-subject correlations. The model is flexible
in allowing time-varying effects for some covariates and constant effects for others,
and in having the option to choose different link functions which can be used
to analyze both discrete and continuous longitudinal responses. They investigated
the profile generalized estimating equation (GEE) approaches and the profile
quadratic inference function (QIF) approach. The profile estimations are assisted
with the local linear smoothing technique to estimate the time-varying effects.
Several approaches that incorporate the within-subject correlations are investigated,
including the quasi-likelihood (QL), the minimum generalized variance (MGV), the
quadratic inference function, and the weighted least squares (WLS). The proposed
estimation procedures can accommodate flexible sampling schemes. These methods
provide a unified approach that works well for discrete longitudinal responses as
well as for continuous longitudinal responses.

In Chapter 9, Riyadh Rustam Al-Mosawi and Xuewen Lu propose to esti-
mate both the regression coefficients and the baseline survival function of the
semiparametric linear transformation model with left-truncated and current status
data using the Sieve maximum likelihood estimation method based on techniques
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of constrained Bernstein polynomials. They proved that the obtained estimators
are semiparametrically efficient and asymptotically normally distributed based on
the conditional likelihood given the truncation time, and the estimator for the
nonparametric baseline survival function achieves the optimal rate of convergence.

Compositional data arise in many applications across various disciplines such as
ecology, geology, demography, and economics. For some time, log-ratio methods
have been a popular approach for analyzing compositional data and have motivated
much of the recent research in the area. In Chapter 10, Michail Tsagris and
Connie Stewart review two recently proposed transformations for data defined on
the simplex. The first α transformation transforms the data from the simplex to
a subset of Euclidean space, and the other one is a more complex transformation
involving folding, resulting in data with Euclidean sample space. In both cases,
the transformed data are assumed to follow a multivariate normal distribution,
and the parameter α provides flexibility compared to the traditional log-ratio
transformations.

The autoregressive conditional heteroscedasticity (ARCH) model and its various
generalizations have been widely used to analyze economic and financial data.
Although many variables like GDP, inflation, and commodity prices are imprecisely
measured, research focusing on the mismeasured response processes in GARCH
models is sparse. In Chapter 11, Mustafa Salamh and Liqun Wang study a dynamic
model with ARCH error where the underlying process is latent and subject to
additive measurement error. They show that, in contrast to the case of covariate
measurement error, this model is identifiable by using the observations of the
proxy process only, and no extra information is needed. They construct generalized
method of moments (GMM) estimators for the unknown parameters, which are
consistent and asymptotically normally distributed under general conditions. They
also propose a procedure to test the presence of measurement error, which avoids
the usual boundary problem of testing variance parameters.

Chapter 12 deals with skewed, truncated, or contaminated data with outliers. Sijia
Xiang and Weixin Yao introduce a new regression tool, named modal regression,
that aims to find the most probable conditional value (mode) of a dependent variable
Y given covariates X rather than the mean that is used by the traditional mean
regression. The modal regression can reveal new interesting data structure that is
possibly missed by the conditional mean or quantiles. In addition, modal regression
is resistant to outliers and heavy-tailed data, and can provide shorter prediction
intervals when the data are skewed. Furthermore, unlike traditional mean regression,
the modal regression can be directly applied to the truncated data. Modal regression
could be a potentially very useful regression tool that can complement the traditional
mean and quantile regressions.

The Galveston Bay Recovery Study conducted a longitudinal survey of residents
of two counties in Texas in the aftermath of Hurricane Ike, which made landfall
on September 13, 2008, and caused widespread damage. An important objective
was to chart the extent of symptoms of post-traumatic stress disorder (PTSD) in the
resident population over the following months. In Chapter 13, Mary E. Thompson,
Gang Meng, Joseph Sedransk, Qixuan Chen, and Rebecca Anthopoulos model the
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course of the repeated PTSD measures as a function of individual characteristics
and area segment, and to examine the analytical and visual evidence for spatial
correlation of the area segment effect. The composite likelihood approach is used in
the multilevel analysis to incorporate design information. The authors compare their
proposed method with a Bayesian multilevel analysis and discuss the estimability
of the model when the cluster level variation has spatial dependence.

Lasso regression has attracted significant attention in statistical learning and data
science. However, there is sporadic work on constructing efficient data collection
for regularized regression. In Chapter 14, Peter Chien, Xinwei Deng, and Chunfang
Devon Lin propose an experimental design approach using nearly orthogonal Latin
hypercube designs to enhance the variable selection accuracy of Lasso regression.
Systematic methods for constructing such designs are presented.

In Chapter 15, Xinyi Ge, Yingwei Peng, and Dongsheng Tu present a selective
overview of statistical methods for identifying the treatment-sensitive subsets of
patients. Identifying a subset of patients who may benefit from or be sensitive to a
specific type of treatment has become a critical research topic in clinical trials and
other types of clinical research. Statistical methods are essential in helping clinical
researchers to identify the subset. They consider first the cases where the outcome
of the clinical studies is time-to-event or survival time, and the subset is defined by
one continuous covariate, such as the expression level of a gene, or by multiple
covariates which can be continuous or categorical, such as mutation statuses of
multiple genes. The cases where the outcomes of the clinical studies are longitudinal
or repeated measurements, such as patient-reported quality of life scores before,
during, and after a treatment, are considered next. Gaps between the needs in clinical
research and the methods available in statistical literature are identified, and future
research topics to bridge these gaps are discussed based on this overview.

We have organized the book chapters to be self-contained, with their separate
references, to provide readers with the complete materials for each topic.

We sincerely thank the organizations and individuals for their support of the
Symposium. We owe a big thank you to the local organization team at Queen’s
University led by Drs. Devon Lin and Wenyu Jiang. We thank the program
committee for organizing the eye-catching scientific sessions of the Symposium:
Drs. Jiguo Cao at Simon Fraser University, Wenqing He at the University of Western
Ontario, Linglong Kong at the University of Alberta, Longhai Li at the University
of Saskatchewan, Xuewen Lu at the University of Calgary, Liqun Wang at the
University of Manitoba, Lang Wu at the University of British Columbia, and Ying
Zhang at Acadia University.

The editors would like to thank the authors of this book’s chapters for their
expertise, knowledge, and time contribution. Our sincere gratitude goes to the spon-
sors of the Fourth Symposium of the ICSA-Canada for their financial support: the
Canadian Statistical Science Institute (CANSSI), the Department of Mathematics
and Statistics, and the Faculty of Arts and Sciences at Queen’s University. We are
also grateful to the volunteers and staff of Queen’s University for their assistance at
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the Symposium. Without their support, the Symposium, as well as this book, would
not be possible.

We would also like to acknowledge the professional support from the publication
team at Springer.

We welcome readers’ comments and suggestions for the book. This book
is a collective contribution from the authors. Please send your suggestions and
comments to the chapter authors or any of the co-editors below. We will be delighted
to pass your suggestions and comments to the chapter corresponding authors.

London, ON, Canada Wenqing He
Winnipeg, MB, Canada Liqun Wang
Vancouver, BC, Canada Jiahua Chen
Kingston, ON, Canada Chunfang Devon Lin
August 2022
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MiRNA–Gene Activity Interaction
Networks (miGAIN): Integrated Joint
Models of miRNA–Gene Targeting and
Disturbance in Signaling Pathways

Henry Linder and Yuping Zhang

Abstract Omics data are now inexpensive to collect in vast quantities, across
a wide variety of not only multiple data platform, but also distinct functional
units. These bioinformatic datasets can enable scientific analysis of system-level
cellular processes, including complex diseases such as cancers. Recent experimen-
tal research has found significant interactions between non-coding microRNAs
(miRNAs) and genes. We propose an integrated, graphical regression model to
endogenize the directed miRNA–gene target interactions and control for their
effects in signaling pathway disturbance. We identify prominent miRNA–gene
interactions and propose a graphical representation of the targeting. We merge
this network with signaling pathway networks to obtain a cross-functional graph
representation of regulatory relationships between genes and miRNAs. We integrate
gene expression and miRNA expression, in tandem with graphical integration of
epigenetic and transcriptomic data types, and estimate a statistical model. We find
that our integration approach improves the statistical power, using a simulation
study. We demonstrate our integrated model with an application to disturbance of the
BRAF signaling pathway across 9 cancers. We find that integration of miRNA–gene
targets clarifies the differential activity between healthy and tumor tissues, which in
turn reflects different roles for the pathway across the different cancers.

Keywords Data integration · Network analysis · Statistical inference

1 Introduction

The widespread availability of genomic data has dramatically increased the scope of
quantitative research into biology at the molecular, genomic, and systems levels. The
diversity of data available for study improves the detail available to characterize the

H. Linder · Y. Zhang (�)
Department of Statistics, University of Connecticut, Storrs, CT, USA
e-mail: matthew.linder@uconn.edu; yuping.zhang@uconn.edu
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functional processes of the genome. Significantly, these data may provide valuable
new insight into the drivers of complex diseases. Multi-view datasets are now
routinely collected in multiple modalities across separate biological structures, and
large-scale research studies coordinate to improve the quality and quantity of data
available to advance knowledge, treatment, and prevention.

To analyze these high-resolution omics data, robust methods are essential
to ensure scientific rigor and validity. New experimental techniques should be
complemented by statistical methods that reflect the biology in a sophisticated way.
Increasingly, data is collected for genomic entities other than the gene, such as non-
coding microRNAs (miRNAs).

Notably, miRNA research is fundamentally integrative in nature. Individual
miRNAs are believed to target genes in a functional manner (Lewis et al. 2005), and
it is often the case that single miRNAs target multiple genes. To model correlated
gene activity due to a shared miRNA parent, miRNA–gene target interactions must
be known and available to researchers. Early miRNA–gene target research validated
individual targets experimentally, but the combinatoric problems introduced by
large numbers of genes and miRNAs motivated meta-analytic and computational
approaches. One such study of miRNA–gene targets was miRTarBase (Hsu et al.
2010), which identified gene targets for fewer than 700 miRNAs by manual
aggregation of experimental evidence. Modern informatic methods permit large-
scale analyses to identify miRNA targets. Frameworks such as miRTarBase and
DIANA-miRPath (Vlachos et al. 2015) utilize web interfaces to access and explore
association analyses between miRNAs and genes. DIANA-miRPath adapts methods
originally applied to gene expression. In addition to Fisher’s exact test, they also
test for differential activity in miRNAs using the enrichment analysis method of
Bleazard et al. (2015). Computational approaches have been used to identify targets,
too. Hsu et al. (2011) proposed miRTar, a successor to miRTarBase that used gene
set enrichment analysis for significance testing of differential activity. These are
often applied to specific phenomena or systems. Other databases include DIANA-
TarBase (Karagkouni et al. 2017) and TargetScan (Agarwal et al. 2015). Coll et al.
(2015) used correlation analysis to identify miRNA–gene targets related to cirrhosis
of liver tissue.

Integrative analysis unifies multiple data types into a single whole. However,
real-world analysis is often highly restrictive in its assumptions and the sophis-
tication of its representation of biological systems. In many cases, “integrated”
analysis refers to qualitative aggregation of separate marginal analyses on different
data types, as well as correlation analysis between data types. Early statistical
analyses of miRNAs were characterized by straightforward statistical methods. The
CORNA method of Wu and Watson (2009) applied hypergeometric and Fisher’s
exact tests to assess differential activity in miRNA–gene interactions and networks.
Du and Zhang (2015) integrated methylation in a small-sample analysis of lung
cancer that also included expression in genes and miRNAs. They used miRNA–
gene target databases, but the interactions were excluded from gene enrichment
analysis. Godard and van Eyll (2015) performed pathway analysis of miRNA in
the context of Alzheimer’s disease, also using a hypergeometric enrichment test.
Their procedure also treated pathways as simple gene sets, thereby ignoring known
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structural information about the signaling pathways. Miao et al. (2017) analyzed
the relationship between miRNAs and DNA methylation in sheep. They identified
gene–miRNA networks on the basis of a correlation analysis but only applied a basic
t-test for differential activity across gene sets, ignoring network topology. Moreover,
their integration was largely restricted to correlation analysis to cluster genes
targeted by the same miRNAs. Volinia and Croce (2013) analyzed gene expression
and miRNA expression for a breast cancer dataset. Their analysis focused on
survival outcomes, and the extent of their data integration was to include both
genes and miRNAs as covariates, rather than a structural or model-based integration.
Cava et al. (2014) considered copy number as well as gene and miRNA expression.
But, genes and miRNAs were only heuristically integrated, by performing separate
marginal analyses, as well as comparing up- and downregulation across the different
data types.

This lack of a single coherent integration scheme is also found in miRNA
analyses applied to cancer datasets. Enerly et al. (2011) studied miRNA suppression
in a novel miRNA and gene expression breast tumor dataset. But, their integration
was limited to correlation analysis and separate studies on each data type. Likewise,
Yu et al. (2019) identified specific biomarkers with differential survival outcomes
in lung cancer, and Li et al. (2018) used differential correlation analysis between
miRNAs and genes in cancer, both using correlation analysis.

We address this lack of technical statistical methods for joint integrative analysis
of data observed on genes and miRNAs. We identify prominent miRNA–gene
interactions and construct a graphical model to represent the targets. We merge
this network with signaling pathways to estimate pathway activity while controlling
network effects and coexpression of genes due to the miRNAs. We extend the
NetGSA regression model for analysis of signaling pathways, which was restricted
to gene-level measurements, originally only gene expression (E) in Shojaie and
Michailidis (2009) and Shojaie and Michailidis (2010). Zhang et al. (2017) extended
the signaling pathway network to include gene methylation (M) and copy number
(C), and we use their EMC-NetGSA model to integrate gene-level omics obser-
vations. In this chapter, we also incorporate miRNAs into the statistical model.
Furthermore, we also introduce a semi-parametric bootstrap procedure to assess the
robustness of the statistical inference.

This chapter proceeds as follows. In Sect. 2, we give an overview of the omics
datasets we use for integrative analysis. In Sect. 3, we give details of the network
integration and pathway model. In Sect. 4, we first perform simulation studies to
examine the statistical level and power of the proposed method in Sect. 4.1 and then
conduct a data analysis of pathway disturbance in the BRAF signaling pathway in 9
cancers in Sect. 4.2. Finally, we conclude our paper with discussion in Sect. 5.

2 Data

We consider a multi-platform omics dataset assembled from observations published
by The Cancer Genome Atlas (TCGA). TCGA is an ongoing, international study
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funded by the National Cancer Institute (NCI) that collects tumorous tissue samples
in patients with more than 30 distinct cancers (Tomczak et al. 2015). For each
cancer, we obtained measurements of gene expression, copy number variation
(CNV), and methylation, as well as miRNA expression. In order to analyze
differential activity by cancer, we downloaded omics data for all tumor samples,
as well as matched healthy control tissue samples. We describe in Sect. 4.2 our
steps to aggregate methylation and copy number at the level of individual genes.

Unlike gene-level integration of methylation and copy number features, no
standard, direct mapping exists between genes and miRNAs. Instead, we use
resources on functional miRNA–gene targets to construct an integrated statistical
model. Substantial work has been done to identify miRNA–gene targets. One
resource that quantifies the degree of experimental evidence in support of a given
miRNA–gene target interaction is mirDIP. Tokar et al. (2017) compiled the database
as a meta-analysis to integrate predicted miRNA–gene targets from 30 separate
sources of experimentally validated interactions. It includes information on the
degree to which the source databases overlap in their conclusion.

3 Methods

We integrate the omics data described in the previous section through a statistical
model across the four data types collected across miRNAs and genes. At a high
level, we start with a known genetic signaling pathway, specified as a directed graph
on vertices representing genes. We identify likely miRNA–gene targets and integrate
these with directed edges. We use a similar approach to integrate gene methylation
and copy number within each gene. Finally, the graph adjacency matrix of the
fully integrated omics network is used to form a design matrix for a mixed linear
model. This enables hypothesis testing for differential pathway activity between two
populations.

We introduce our integrated graphical network constructively. We start with
a genetic signaling pathway specifying known functional relationships between
genes. We define a directed graph G = {V, E}. Initially, V contains p graph vertices,
and E contains the directed edges between elements of the genes V that comprise the
signaling pathway. In general, the graph vertices in V represent biological features,
while the edges in E represent the functional interactions.

Graph G can be represented by a p×p adjacency matrix, A�E. The subscript “E”
emphasizes that the graph relations in A�E specify relationships between vertices for
gene expression. The element αjk of A�E is an indicator for the presence of a directed
edge from vertex k to vertex j , for all j, k = 1, . . . , p. αjk is nonzero when gene j
is conditionally dependent on gene k. For each gene, we observe gene expression as
a vector yi1 of p elements, where i = 1, . . . , N indexes tissue samples.

Suppose the p pathway genes are targeted by g miRNAs, and for each sample, we
observe a vector of g elements yi2, the values of which measure miRNA expression.
We add g vertices to V integrated the miRNA–gene target interactions, and we
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construct the p × g graph adjacency matrix A�mi. The element τj� ∈ A�mi is an
indicator value for miRNA � targeting gene j , j = 1, . . . , p, � = 1, . . . , g. Each
miRNA–gene target is represented by a directed edge which we add to E .

We construct the (p+ g)× (p+ g) integrated adjacency matrix A�miE that spans
both the genetic pathway and the miRNA–gene targets and contains elements of 0
and 1:

A�miE =
(

A�E A�mi
Og×p Og×g

)
, (1)

where Om×n is a m× n matrix of zeros.
Moreover, for each gene in yi1, we also observe copy number and methylation,

contained in the vectors yi3 and yi4, respectively. We adopt the EMC-NetGSA
model (Zhang et al. 2017) to integrate {yi1, yi3, yi4} by adding 2p vertices to V ,
one for each gene for copy number and methylation, and 2p directed edges to E ,
from the copy number and methylation vertices to their counterpart gene expression
vertices. This produces a fully integrated adjacency matrix, A�miEMC:

A�miEMC =
(

A�E A�mi Ip×p Ip×p
O(g+2p)×p O(g+2p)×g O(g+2p)×p O(g+2p)×p

)
. (2)

In real-world datasets, individual elements of yi2, yi3, and yi4 may be missing
across all N samples. An advantage of our unidirectional integration, which does
not model directed interactions from genes to the other omics features, is that we
may simply omit the columns and rows for the corresponding miRNA, copy number,
and methylation features in A�miEMC prior to the pathway analysis. Without loss of
generality, we consider the full (g+3p)× (g+3p) adjacency matrix A�miEMC, with
the knowledge that its true dimension q is such that q ≤ (g + 3p).

The network in Eq. 2 composes three distinct network layers: (1) the primary
signaling network on elements of yi1; (2) the miRNA integration layer of directed
relationships, possibly many-to-one, from miRNAs in yi2 to genes in yi1; and (3) a
within-gene layer integrating copy number in yi3 and methylation in yi4. Therefore,
the graph simultaneously provides for causal relationships between genes, allows
correlation between genes, and reduces noise by controlling for epigenetic and
transcriptional effects. Each of the three components is supported by scientific
knowledge of the complex underlying biological processes.

For expositional clarity, define m = (g + 3p), yi = (y′i1, y′i2, y′i3, y′i4)′, A� ≡
A�miEMC, and the elements of A� by δjk , j, k = 1, . . . , m.

Gaussian graphical models formalize the conditional dependence of vertex j on
vertex k as the partial correlation ρjk between gene-level random variables Yj , Yk ,
controlling for the effects of the remaining (m−2) vertices in V . Writing the random
variables for the remaining (m − 2) vertices by Z , ρjk = corr(Yj\Z , Yk\Z ), where
Yj\Z = Yj −PZYj is the orthogonal complement of Yj with respect to Z , and PZ
is a projection onto Z (Krämer et al. 2009).
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We estimate ρjk with the sample partial correlation rjk . We first estimate two
separate regressions, one of Yj on Z and the other of Yk on Z . Then, we estimate rjk
by the Pearson correlation coefficient between the residuals of the two regressions
(Kim 2015). Finally, we form a weighted adjacency matrix A with elements ajk =
rjkαjk , j, k = 1, . . . , m. Elements of A thus take either the value 0, when no
interaction exists, or a value in the interval (−1, 1) corresponding to the strength
of conditional association between two vertices with a functional interaction.

The effect of coexpression due to the graph topology G can be summarized
by a transformation � of A, called the influence matrix. As detailed in Shojaie
and Michailidis (2009), in the special case of directed acyclic graphs (DAGs), it
can be shown that � = (Im − A)−1. This definition extends to all graphs for
which the adjacency matrix has eigenvalues all of which are smaller than 1 in
magnitude. Shojaie and Michailidis (2010) extended the definition to non-DAG,
non-substochastic graphs. They used a limit approximation to induce in arbitrary
directed graphs the necessary eigenvalue properties of A.

The NetGSA statistical model uses � to structure the mean of yi , by setting
Eyi = �β for an unknown vector of m regression coefficients β. β is the network-
adjusted activity parameter, giving the mean values for the m observed elements
of yi , controlling for pass-through network effect due to G. The influence matrix
also structures the covariance of yi . The NetGSA model parameterizes variability
in individuals’ mean expression via a mixed effects linear regression model: yi =
�β + �γ i + εi , γi ∼ Nm(0m, σ

2
γ Im), εi ∼ Nm(0m, σ 2

ε Im), where γ i is a sample-
level random effect, and i = 1, . . . , N .

In proposing the NetGSA model, Shojaie and Michailidis (2009) also proposed a
hypothesis test for difference in mean vectors between two populations. Denote the
population label for sample i by ci , where ci ∈ {C,T}, “C” corresponds to control,
and “T” corresponds to treatment. In our pathway analysis of cancerous tumors,
we assign healthy tissue samples the label of “control,” and tumor tissues the label
“treatment.” We estimate separate weighted adjacency matrices AC, AT, yielding
distinct influence matrices �C, �T, and population-specific mean parameters βC,
βT.

We test for differential activity in subsets of the pathway features, corresponding
to elements in βC, βT, using an indicator vector b for the omics features of interest.
The NetGSA network contrast is � = (−b · b�C,b · b�T), and this yields a test
statistic T ∝ �β, β = (βC′ ,βT′)

′. T follows a Student’s t distribution with degrees
of freedom estimated using Satterthwaite’s approximation.

The above inference depends upon both the assumption of normality and the
composition of the control population. In practice, the size of the healthy sample
population is very small, and we may wish to assess the robustness of the inference
to the specific control samples. Therefore, we propose a semi-parametric bootstrap
test based on the principles discussed by MacKinnon (2009).

Specifically, we generate B pairwise bootstrap replicates under the null hypothe-
sis of no difference in the network-adjusted mean parameters in the two populations.
We randomly select pairs of population labels and omics observations, with
replacement. If a sample contains fewer than 10 observations in the control (healthy)
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population, we re-generate the bootstrap sample. Because the distribution of the
NetGSA test statistic is approximated using a function of the estimated variance, the
distributions of the test statistic are not comparable between bootstrap replicates,
as the degrees of freedom vary substantially. Instead, when the empirical p-value
is nominally significant, we calculate a 95% bootstrap upper confidence bound.
Inversely, for a p-value that is nominally not significant, we calculate a 5% bootstrap
lower bound.

This bootstrap procedure offers a semi-parametric criterion for assessing the
robustness of the outcome of a hypothesis test. The procedure still depends upon
the underlying assumptions of the mixed linear model but instead addresses the
robustness of the procedure to small sample sizes in the control population.

4 Results

First, we use a simulation study to demonstrate the improved power of our method
due to the integration of miRNA–gene target information. We then apply our method
to the TCGA dataset introduced in Sect. 2 for pathway analysis of the BRAF
pathway.

4.1 Simulations

Our simulation study borrows the ideas on simulation designs in the EMC-NetGSA
paper (Zhang et al. 2017). Broadly, we construct a pathway composed of a binary
tree signaling pathway; we model miRNA–gene targets that drive correlated gene
expression, and we integrate the methylation and copy number within genes.
This supplies three separate layers of network information that may contribute to
gene expression, and we examine the relationship between omics integration and
statistical power.

We modeled a signaling pathway consisting of a five-level binary tree containing
31 genes. We integrated miRNA with directed edges from miRNA to corresponding
genes. For every gene, we added three distinct miRNA vertices, i.e., each had out-
degree 1. We then partitioned the genes in V into disjoint sets of two, proceeding
from the root node. We assigned to each pair of genes one shared miRNA, i.e.,
with out-degree 2. Finally, we repeated this procedure for sets of three genes. We
assigned each triplet one miRNA with out-degree 3. The network topology for the
control population signaling pathway used the same integrated binary tree structure,
with all edges in the tree’s left branch removed. For EMC-NetGSA integration, we
add G directed edges into each gene from two vertices representing methylation and
copy number.

We set the correlation between expression vertices to 0.8 in the top third (two
levels) of the tree; association is 0.5 in the middle third (third level); and association
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0.2 in the final third (final level). We set the magnitude of the association strength
between miRNA and their gene targets to 0.4. In the TCGA dataset, we found that
the partial correlation coefficients between miRNA and expression were generally
symmetric. Therefore, we assigned alternating edges from miRNAs to genes to
have positive and negative association, respectively. This may be understood as
simulating cases where miRNAs with multiple gene targets have the same sign
for association, as well as different associations with different genes for a single
miRNA. We set the association 0.5 between copy number and gene expression and
−0.25 between methylation and expression.

We generated observation vectors yi , i = 1, . . . , N , from the NetGSA linear
mixed model, where N = NC +NT. The number of control samples was NC = 50,
and the number of treatment samples was NT = 150. This reflects the imbalanced
sample sizes in the real cancer datasets. We set the variance parameters as σ 2

γ = 5

and σ 2
ε = 0.5.

Denoting the mean vectors for gene expression, miRNA expression, gene copy
number, and gene methylation by βc1,βc2,βc3,βc4, we simulated two scenarios for
the network-adjusted mean parameter β. Here, c ∈ {C,T} indexes the control and
treatment populations. In the first scenario, we assigned βcj = 0, c ∈ {C,T}, j =
1, 2, 3, 4. In the second mean scenario, we held βCj = 0 for all j . For the top two-
thirds levels of the binary tree, we set (βT1, βT2, βT3, βT4) = (0.25, 0.5, 1.0, 0.5).
In the bottom third of the binary tree, we maintained (βT1, βT2, βT3, βT4) = 0, as in
the first scenario.

For each simulated dataset, we tested four gene sets for differential activation: (1)
the full binary tree; (2) the top third of the tree; (3) the top two-thirds of the tree; and
(4) the bottom third of the tree. We estimated the miEMC-NetGSA model for the
entire simulated dataset, as well as the NetGSA variants with the adjacency matrices
AmiE, AEMC, and AE, as well as the corresponding hypothesis test for each network.
We ran 1000 replicates of the simulation. We calculated the power for each method
by the proportion of hypothesis test p-values that were significant at the α = 0.05
level, i.e., the proportion of replicates for which we reject the null hypothesis of no
difference in pathway-adjusted mean parameters.

Figure 1 shows boxplots of the − log10 p-values from the significance tests.
The left-hand panel shows the results of the first mean scenario, in which no
features are differentially expressed. The right-hand panel shows the second mean
scenario, in which the top two-thirds of the binary tree signaling pathway are
differentially expressed. We compare the performance of miEMC-NetGSA with the
other integrated models described above.

The first mean scenario permits assessment of the false positive rate under
different omics integration schemes. We observe that in all gene sets that we tested,
all four NetGSA-based methods have low false positive rates. Most importantly,
integration of miRNA with expression alone (“miE”) does not cause an elevated
false positive rate over the original NetGSA method. Likewise, although the false
positive rate is somewhat elevated in miEMC-NetGSA, we observe that it is not
elevated significantly over the existing EMC-NetGSA method. Therefore, we do
not attribute to the miRNA integration a meaningful increase of the type I error rate.
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Fig. 1 Boxplots of − log10 p-values from simulation study. The left-hand panel shows signifi-
cance tests for four gene sets of interest, under the first mean scenario in which no omics features
exhibit differential activation. The right-hand panel shows the second mean scenario, in which the
top two-thirds of the simulated binary tree signaling pathway is differentially activated, but the
final third is equal in the control and treatment populations. miEMC-NetGSA is shown in green,
miE-NetGSA in yellow, EMC-NetGSA in blue, and NetGSA (“E”) on expression only in white

Further, we note that the number of miRNAs is large relative to the number of
genes. This causes the type I error rate to be lower for the methods that integrate
miRNA–gene targets, shown in the test set of the top 1/3 genes. The reason is that the
larger overall number of features provides increased accuracy to miEMC-NetGSA
and miE integration, so more substantial information is available to the inference
procedure than the methods with only gene-level network features.

The second mean scenario provides an assessment of the method’s power. We
observe that in the three test sets that contain differentially activated features,
the power of models that integrate miRNA–gene targets dominates the gene-
only analyses. In fact, an integrated model of miRNA and expression has power
comparable to EMC-NetGSA integration of methylation and copy number, although
miRNA–gene expression remains under-powered relative to EMC-NetGSA.

Also prominent is the increased power of the new method, which integrates both
the miRNA–gene targets and gene copy number and methylation. Integration of
miRNA reduces the type II error rate of the EMC-NetGSA model; equivalently, it
increases the analytic power. Finally, the miRNA methods continue to exhibit low
rates of type I errors for the gene set that is not differentially activated.

Taken in tandem, the results of the two simulation scenarios confirm the value of
pathway analysis that integrates miRNA–gene targets. We find miRNA contributes
to pathway analyses improved statistical power, relative to analyses conducted
solely at the level of individual genes. At the same time, we find that miRNA
integration does not artificially elevate the false positive rate. Finally, although the
addition of miRNA to an expression-only analysis improves power, the increase
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is marginally less substantial than is provided by integrating copy number and
methylation. But, our composition of these two integration schemes achieves the
highest statistical power and does not noticeably increase the type I error rate.

4.2 Data Analysis

Prior to analysis, we formatted the dataset described in Sect. 2. We downloaded level
3 TCGA data for 33 cancers from the NCI Genomic Data Commons (Grossman
et al. 2016), using the R package TCGA-Assembler, version 2.0.0 (Zhu et al.
2014; Wei et al. 2017).

Starting with gene expression data measured using RNASeqV2, we used a
normalization of the read counts provided by TCGA, fragments per kilobase of
transcript per million mapped reads upper quartile (FPKM-UQ) (Grossman et al.
2016). We further took a log2 transformation of the normalized read counts. We used
CNV data with common germ-line copy number variants removed and averaged
gene-level CNV across the corresponding DNA regions. We aggregated observed
methylation beta values across CpG sites by gene and took the mean.

Similar to gene expression, miRNA expression data are available from TCGA
in two formats: raw read counts and normalized reads per million (RPM). Raw
read counts were collected on the miRNASeq platform, and the TCGA processing
pipeline outlined by Chu et al. (2015) is consistent with procedures in comparable
projects, such as ENCODE (ENCODE Project Consortium et al. 2012). After
alignment and read trimming, a library of approximately 22 base pairs of mature
strands was used with an insert length of approximately 22.

Typical miRNASeq analyses use methods traditionally developed for RNASeq.
For example, Stokowy et al. (2014) employed RPM normalization and cited its
original definition from Mortazavi et al. (2008), in the context of gene expression.
They cited other work that applies RPM normalization to miRNASeq data, including
Chen et al. (2013). Following RPM normalization but prior to the primary analysis,
those authors applied a log2 transformation. Han et al. (2018) integrated gene and
miRNA expression. They first applied FPKM-UQ normalization RNASeq gene
expression values, then calculated RPM for miRNASeq values, and transformed
logarithmically. TCGA provides RPM-normalized transformation of the data, so for
our integrative analysis, we applied a log2 transformation to the RPM-normalized
values. Empirically, we observed that this normalization was comparable to FPKM-
UQ applied to the raw read counts.

To demonstrate our procedure, we performed data analysis of the BRAF pathway,
a genetic signaling pathway previously studied by Zhang et al. (2017). The left-hand
panel of Fig. 2 shows the network topology of the BRAF pathway. It consists of 10
genes—AKT1, BRAF, MAP2K1, MAP2K2, MAPK1, MTOR, NRAS, PIK3CA,
PTEN, and RAF1—which are connected by 12 directed edges. The BRAF pathway
is a DAG, and this property is preserved under integration with miRNA, copy
number, and methylation.
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Fig. 2 Network diagrams for the BRAF signaling pathway. The left-hand network is the directed
graph representing the BRAF genetic signaling pathway, consisting of 10 genes with 12 directed
edges between. The right-hand network contains the same 10 gene vertices, but edges represent a
shared miRNA parent. In other words, two genes that share an edge are both targets of a single
miRNA and possibly several. The graph contains 25 such edges. miRNA–gene targets are chosen
as those entries in the mirDIP database with an “very high” confidence score. Neither the NRAS
nor PTEN genes are targeted by any other genes. MAP2K1, MAP2K2, MAPK1, and PIK3CA
each have in-degree 2 from other genes. The remaining genes in the network each in-degree 1
from genes. The density of miRNA–gene targets is much higher: in-degree from miRNAs ranges
from 10–50 (AKT1, MAP2K1, MTOR, PIK3CA, RAF1) to 143 (PTEN), and BRAF and MAP2K2
are not targeted by any miRNAs

The mirDIP database compiled by Tokar et al. (2017) aggregates predicted
miRNA–gene target relationships from several experimentally validated sources.
The database assigns each miRNA–gene pair found across any of the 30 sources
a composite integrative score. The score, valued on the interval [0, 1], quantifies
the strength of experimental evidence that supports the existence of the interaction.
The scores are stratified by the so-called confidence classes, expressed in the labels
“very high,” “high,” “medium”, and “low” confidence. These classes, respectively,
represent the top 1% of scores (very high), the next 4% of scores (high), remainder
of top 33% of scores (medium), and all other scores (low). The classes offer a
discrete criterion for determining whether to include in A�miEMC a specific miRNA–
gene interaction. We downloaded their mirDIP unidirectional database, version 4.1,
and we considered both 3’ and 5’ UTR miRNA entries for miRNAs that were also
present in the TCGA dataset.

Figure 3 shows a scatter plot of the miRNA–gene target scores from mirDIP
for all genes in the BRAF pathway. For a given gene, we identified all miRNAs
in the database that target that gene. In the figure, the scores are grouped by gene
and colored by confidence class: blue represents very high confidence, green is high
confidence, yellow is medium confidence, and red is low confidence.

In our analysis, we used the subset of miRNA–gene targets for which the scores
in Fig. 3 belong to the “very high” confidence class. We can construct the secondary
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Integrative score predicting miRNA targeting of BRAF pathway genes
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Fig. 3 miRNA–gene interaction scores for all miRNA in TCGA dataset that target any of the 10
genes that comprise the BRAF pathway. Scores are grouped by gene and colored by confidence
class: very high, high, medium, and low confidence are colored blue, green, yellow, and red,
respectively. For our data analysis, we included only miRNA–gene target interactions with “very
high” confidence that the interaction exists, i.e., the blue scores

graph formed between genes that are both targeted by a mutual miRNA parent.
Compared with the genetic signaling pathway, this secondary network has a far
denser edge set: whereas the BRAF pathway contains 12 edges, the miRNA co-
target graph contains 25 edges.

More generally, this larger edge set due to miRNA–gene targets indicates
that miRNA integration substantially complexifies the network structure used as
input for the pathway analysis. This contrasts with the underlying simplicity of
the original graph: whereas the signaling pathway consists of 10 genes, miRNA
integration introduces to the network 238 vertices for miRNA observations. Nearly,
half of these miRNAs target multiple genes in the BRAF pathway.

The miRNA–gene target subnetwork, corresponding to the unweighted adja-
cency matrix A�mi in Eq. 2, is shown in Fig. 4. This graph shows the subnetwork
produced by the directed edges from miRNA vertices to genes, based on miRNA–
gene targets. The number of miRNAs targeting a given gene varies substantially,
from as many as 143 miRNAs targeting PTEN to as few as to 0. These in-degrees
from miRNA vertices are given in the caption to Fig. 2.

Although most miRNAs in the TCGA dataset target a single gene in the BRAF
pathway, 47% of the miRNAs target two or more genes. In the network diagram in
Fig. 4, miRNAs and their edges are colored according to the degree of the miRNA
node, that is, the number of genes in the BRAF pathway targeted by the miRNA.
Although there are 128 miRNAs that target only a single gene, the remaining 110
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Fig. 4 Topology of subnetwork of the integrated BRAF signaling pathway corresponding to the
unweighted adjacency matrix A�mi in Eq. 2, namely, the graph formed by miRNA–gene targets.
All edges are directed from the miRNA vertex to the gene vertex. The miRNA node colors, edge
widths, and edge colors correspond to the degree of the miRNA vertex, that is, the number of genes
in the BRAF pathway targeted by a given miRNA. Gray graph nodes are genes, while colored graph
nodes are miRNAs, targeting 1 gene (red), 2 genes (yellow), 3 genes (green), 4 genes (blue), and 5
genes (purple). The genes BRAF and MAP2K2 are not targeted by any genes. Darker edge colors
correspond to higher out-degree of the associated miRNA

target multiple genes. This intricate structure is not balanced, in neither the in-degree
of gene nodes nor the out-degree of miRNA nodes. The number of unique miRNAs
that target each gene varies from 58 (PTEN) to 4 (PIK3CA); while one miRNA
targets 5 genes, there are 19 that target 4, 31 that target 3, and 59 that target 2.

We obtained observations of gene expression, miRNA expression, methylation,
and copy number from TCGA, as described in Sect. 2. Among the TCGA cancer
studies, we restricted our analysis to the subset of cancers for which all 10 BRAF
pathway genes were observed, and for which more than 10 samples were available
in both the tumor and normal tissue sample populations. This yielded nine cancers
for integrative pathway analysis of the BRAF pathway: bladder, breast, head and
neck squamous cell, kidney renal clear cell and papillary cell, liver hepatocellular,
thyroid, and uterine corpus endometrial carcinomas, and prostate adenocarcinoma.
Sample sizes and proportional representation of the healthy samples were consistent
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across the nine cancers. For example, the bladder urothelial carcinoma dataset
contained 341 samples of tumor tissue and 15 samples of healthy tissue. This
corresponds to 356 total samples, 4% of which are healthy controls.

Within each cancer, we performed the same four NetGSA-based pathway
analyses as in the simulation study: full integration of gene expression, miRNA
expression, and gene-level methylation and copy number (miEMC-NetGSA); inte-
gration of gene and miRNA expression (“miE”); integration of gene expression,
methylation, and copy number (EMC-NetGSA); and the original NetGSA for
expression only (“E”). To correct for the multiple comparison problem, we adjusted
p-values within each cancer using the method of Benjamini and Hochberg (1995)
(BH).

The adjusted p-values are plotted in the top panel of Fig. 5. The pathway
is significantly disturbed at the α = 0.05 level across all cancers for both
methods that integrate miRNA. However, the cancers diverge in their decision
outcomes when only gene-level features are included. In head and neck squamous
cell carcinoma (HNSC) and prostate adenocarcinoma (PRAD), both methods that
integrate only gene-level features, namely, EMC-NetGSA and expression-only
NetGSA, fail to reject the null hypothesis of no pathway disturbance, but miRNA
integration confirms pathway disturbance. In bladder urothelial carcinoma (BLCA),
thyroid carcinoma (THCA), and uterine corpus endometrial carcinoma (UCEC), the
expression-only analysis does not reject the null hypothesis, while integration of any
features beyond gene expression leads to the conclusion of pathway disturbance.
In these cancers, integration of miRNA features leads to differential effects: in
the bladder and thyroid cancers, miRNA integration causes a large increase in
significance. Likewise, although the pathway is significantly disturbed in kidney
renal clear cell carcinoma (KIRC) and liver hepatocellular carcinoma (LIHC),
miRNA integration substantially increases the significance of the hypothesis test.
The same is largely true of breast invasive carcinoma (BRCA). On the other hand,
in the uterine cancer, the change in significance is less pronounced between gene-
only and miRNA–gene integration. Similarly, kidney renal papillary cell carcinoma
(KIRP) exhibits a lesser degree of differentiation between the significance of the
three integrative methods.

Figure 5 also shows bar plots of the test statistics corresponding to the p-
values. For most cancers with substantial increases in significance due to miRNA
integration, bladder, breast, kidney renal clear cell, prostate, and thyroid correspond
to test statistics with the same sign and distinctly greater magnitude than the gene-
level analyses. The test statistics of kidney renal papillary cell carcinoma display
a similar pattern in the relative magnitudes of the test statistics, despite the lesser
differences in statistical significance between the EMC-NetGSA and the miRNA-
NetGSA analyses. The liver and head and neck cancers have test statistics with the
opposite sign from those six cancers, in conjunction with sign switches in the test
statistics before and after miRNA integration. In contrast, the test statistics for the
uterine cancer display test statistics with consistent signs, though the magnitude
increases with miRNA integration.
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Fig. 5 (Top) Results of significance tests for pathway disturbance in the BRAF pathway, across
9 TCGA cancers. Barplots give values of − log10 p-values, after Benjamini–Hochberg adjustment
for multiple comparisons. Full gene expression miRNA expression, and gene-level methylation
and copy number are shown in green (“miEMC”); integration of gene and miRNA expression is
in yellow (“miE”); integration of gene expression and gene-level methylation and copy number
are in blue (“EMC”); and the original, expression-only NetGSA results are in white (“E”). The
horizontal dotted line gives the significance threshold at the α = 0.05 level. (Bottom) Test statistics
for pathway disturbance in 9 TCGA cancers, for the BRAF pathway. Bar plot heights give the test
statistic value. miEMC-NetGSA is in green, miE-NetGSA in yellow, EMC-NetGSA in blue, and
NetGSA (“E”) in white

Across the nine cancer types, we did not observe any apparent pattern in the
relation between the test statistic signs and the relative significance of the tests.
Relatively weaker significance in gene-level analyses sometimes corresponds to
small test statistics with the same sign, as in breast and kidney renal clear cell
cancers. But it also corresponds to sign changes in the test statistics, as in bladder,
head and neck, and thyroid cancers. The head and neck, liver, and uterine cancers
are notable for their inversion of the test statistic’s sign in the miRNA analyses,
relative to the other cancers. Despite the similarity between kidney renal papillary
cell carcinoma and uterine corpus endometrial carcinoma in terms of p-values and
relative significances of the four analyses, the kidney cancer test statistic sign is
more comparable to the other kidney cancer, among others. The large magnitude
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of the prostate cancer test statistics under miRNA integration matches the sharp
increase in significance.

Finally, we assessed the robustness of our inference to the assumptions, espe-
cially symmetric errors. Overdispersion can be a characteristic of RNASeq count
data (Zhou et al. 2011), but this typically arises in the context of count data and
the choice between Poisson and negative binomial distributions. Empirically, the
transformations we apply to the raw counts induce symmetry, and the assumption
of normality provides separate parameters for location and dispersion.

Furthermore, we applied the bootstrap method described in the previous section,
with B = 9999, and found that the inference for the full miEMC-NetGSA inte-
gration and the partial miRNA–gene expression integration were both robust in all
cancers, and the semi-parametric decision outcome matches that of the parametric
test. On the other hand, the EMC-NetGSA tests were not robust in any cancers
except the kidney cancers, and the expression-only tests for bladder and thyroid
cancers were likewise inconclusive. Therefore, we conclude that the inferences we
draw are robust to the model assumptions, and the evidence for pathway disturbance
in the miRNA-integrated analyses is valid in the semi-parametric setting, as well.

These results indicate statistically meaningful contributions of the miRNA
features to the pathway analysis. Moreover, they suggest the effect of miRNA
integration does not lead deterministically to a specific decision outcome. In some
cancers, miRNA integration reinforces the conclusions of pathway analysis using
existing methods based solely on gene-level features. In others, the miRNAs identify
a significant disturbance that is less apparent when the BRAF pathway is considered
using only gene-level features. This may be due to the reduction in noise at the level
of gene expression features using the augmented network, thereby accentuating the
differential expression in the pathway. Finally, in all the cancers, the reduction of
gene-level noise that is accomplished by the miRNA–gene target network effect
clarifies the expression of pathway genes.

We have made publicly available the code to produce the results of our analysis
at:

https://github.com/Zhang-Data-Science-Research-Lab/miEMC-NetGSA-BRAF

5 Discussion

In this chapter, we highlighted the importance of integrating miRNA measurements
into network analysis of genetic signaling pathways. We proposed a statistical
modeling approach that incorporates recent biological research on the functional
relationships between protein-coding and non-coding RNAs. We identified signifi-
cant miRNA–gene targets and constructed a graphical model of these interactions.
We combined this graph with a signaling pathway graph to account for correlated
coexpression in genes through a biological mechanism external to the signaling
pathway of interest. We used a simulation study to show that an integrative model
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of miRNA–gene targets has higher statistical power than analysis that focuses only
on gene-level features. At the same time, we demonstrated that our method does
not increase the false discovery rate, relative to the existing methods. Our miEMC-
NetGSA model offers a statistical framework for data integration and pathway
analysis of multiple omics data types, obtains high power, and is grounded in current
biological research.

Finally, we applied the miRNA–gene analysis to the BRAF signaling pathway
on a large-scale cancer study. Although the genetic pathway itself consisted of
only 12 edges on 10 vertices, we found that the fully integrated network of
gene expression, miRNA expression, gene copy number, and gene methylation
observations consisted of 268 vertices and 452 directed edges. The decision
outcome in a hypothesis test for differential expression varied across the 9 cancers
under consideration. In some cancers, integration of either miRNA or gene-level
copy number and methylation led to higher significance, but the composition of
all integrative features did not necessarily strengthen the significance. In other
cancers, integration of miRNA–gene targets with expression confirmed the result
of a gene expression-only analysis; while the integration of gene expression with
methylation and copy number indicated strong significance, the further addition
miRNA integration was in consensus with the expression-only and miRNA–gene
analyses.

References

Agarwal, V., Bell, G.W., Nam, J.-W., & Bartel, D.P. (2015). Predicting effective microRNA target
sites in mammalian mRNAs. elife, 4:e05005.

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and
powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B
(Methodological), 57(1), 289–300.

Bleazard, T., Lamb, J.A., & Griffiths-Jones, S. (2015). Bias in microRNA functional enrichment
analysis. Bioinformatics, 31(10), 1592–1598.

Cava, C., Bertoli, G., Ripamonti, M., Mauri, G., Zoppis, I., Della Rosa, P. A., Gilardi, M. C., &
Castiglioni, I. (2014). Integration of mRNA expression profile, copy number alterations, and
microRNA expression levels in breast cancer to improve grade definition. PLoS ONE, 9(5),
e97681.

Chen, M., Zhang, X., Liu, J., & Storey, K. B. (2013). High-throughput sequencing reveals
differential expression of miRNAs in intestine from sea cucumber during aestivation. PLoS
One, 8(10), e76120.

Chu, A., Robertson, G., Brooks, D., Mungall, A. J., Birol, I., Coope, R., Ma, Y., Jones, S., & Marra,
M. A. (2015). Large-scale profiling of microRNAs for the cancer genome atlas. Nucleic Acids
Research, 44(1), e3–e3.

Coll, M., El Taghdouini, A., Perea, L., Mannaerts, I., Vila-Casadesús, M., Blaya, D., Rodrigo-
Torres, D., Affò, S., Morales-Ibanez, O., Graupera, I., et al. (2015). Integrative miRNA and
gene expression profiling analysis of human quiescent hepatic stellate cells. Scientific Reports,
5, 11549.

Du, J., & Zhang, L. (2015). Integrated analysis of DNA methylation and microRNA regulation of
the lung adenocarcinoma transcriptome. Oncology Reports, 34(2), 585–594.



20 H. Linder and Y. Zhang

ENCODE Project Consortium et al. (2012) An integrated encyclopedia of DNA elements in the
human genome. Nature, 489(7414),57.

Enerly, E., Steinfeld, I., Kleivi, K., Leivonen, S.-K., Aure, M. R., Russnes, H. G., Rønneberg, J. A.,
Johnsen, H., Navon, R., Rødland, E., et al. (2011). miRNA-mRNA integrated analysis reveals
roles for miRNAs in primary breast tumors. PLoS One, 6(2), e16915.

Godard, P., & van Eyll, J. (2015). Pathway analysis from lists of microRNAs: common pitfalls and
alternative strategy. Nucleic Acids Research, 43(7), 3490–3497.

Grossman, R. L., Heath, A. P., Ferretti, V., Varmus, H. E., Lowy, D. R., Kibbe, W. A., & Staudt, L.
M. (2016). Toward a shared vision for cancer genomic data. New England Journal of Medicine,
375(12), 1109–1112.

Han, S., Kim, D., Shivakumar, M., Lee, Y.-J., Garg, T., Miller, J. E., Kim, J. H., Kim, D., & Lee,
Y. (2018). The effects of alternative splicing on miRNA binding sites in bladder cancer. PLoS
One, 13(1):e0190708.

Hsu, S.-D., Lin, F.-M., Wu, W.-Y., Liang, C., Huang, W.-C., Chan, W.-L., Tsai, W.-T., Chen, G.-Z.,
Lee, C.-J., Chiu, C.-M., et al. (2010). miRTarBase: a database curates experimentally validated
microRNA–target interactions. Nucleic Acids Research, 39(suppl_1), D163–D169.

Hsu, J. B. K., Chiu, C. M., Hsu, S. D., Huang, W. Y., Chien, C. H., Lee, T. Y., & Huang, H.
D. (2011). miRTar: an integrated system for identifying miRNA-target interactions in human.
BMC Bioinformatics, 12(1), 300.

Karagkouni, D., Paraskevopoulou, M. D., Chatzopoulos, S., Vlachos, I. S., Tastsoglou, S.,
Kanellos, I., Papadimitriou, D., Kavakiotis, I., Maniou, S., Skoufos, G., et al. (2017). DIANA-
TarBase v8: a decade-long collection of experimentally supported miRNA–gene interactions.
Nucleic Acids Research, 46(D1), D239–D245.

Kim, S. (2015). ppcor: an R package for a fast calculation to semi-partial correlation coefficients.
Communications for Statistical Applications and Methods, 22(6), 665.

Krämer, N., Schäfer, J., & Boulesteix, A.-L. (2009). Regularized estimation of large-scale gene
association networks using graphical Gaussian models. BMC Bioinformatics, 10(1), 384.

Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005). Conserved seed pairing, often flanked by
adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120(1), 15–
20.

Li, X., Yu, X., He, Y., Meng, Y., Liang, J., Huang, L., Du, H., Wang, X., & Liu, W. (2018).
Integrated analysis of microRNA (miRNA) and mRNA profiles reveals reduced correlation
between microRNA and target gene in cancer. BioMed Research International, 2018.

MacKinnon, J. G. (2009). Bootstrap hypothesis testing. Handbook of Computational Economet-
rics, 183, 213.

Miao, X., Luo, Q., Zhao, H., & Qin, X. (2017). An integrated analysis of miRNAs and methylated
genes encoding mRNAs and lncRNAs in sheep breeds with different fecundity. Frontiers in
Physiology, 8, 1049.

Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., & Wold, B. (2008). Mapping and
quantifying mammalian transcriptomes by RNA-seq. Nature Methods, 5(7), 621.

Shojaie, A., & Michailidis, G. (2009). Analysis of gene sets based on the underlying regulatory
network. Journal of Computational Biology, 16(3), 407–426.

Shojaie, A., & Michailidis, G. (2010). Network enrichment analysis in complex experiments.
Statistical Applications in Genetics and Molecular Biology, 9(1).
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Robust Feature Screening for
Ultrahigh-Dimensional Censored Data
Subject to Measurement Error

Li-Pang Chen and Grace Y. Yi

Abstract Feature screening is commonly used to handle ultrahigh-dimensional
data prior to conducting a formal data analysis. While various feature screening
methods have been developed in the literature, research gaps still exist. The
existing methods usually make an implicit assumption that data are accurately
measured. This requirement, however, is frequently violated in applications. In this
chapter, we consider error-prone ultrahigh-dimensional survival data and propose
a robust feature screening method. We develop an iteration algorithm to improve
the performance of retaining all informative covariates. Theoretical results are
established for the proposed method. Simulation studies are reported to assess the
performance of the proposed method, together with an application of the proposed
method to handle a mantle cell lymphoma microarray dataset.

Keywords Censored data · Distance correlation · Inverse Fourier
transformation · Measurement error · Robustness · Screening ·
Ultrahigh-dimension

1 Introduction

With modern technologies, data with high dimensions and complex structures can
be collected easily. One concern on high-dimensional data is the relevance and
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usefulness of the associated variables. It is important to preprocess data by excluding
unimportant variables before performing a formal analysis of the data (e.g., Chen &
Chen 2008).

Various methods of feature screening have been developed in the literature. For
example, Fan & Lv (2008) proposed the sure independent screening (SIS) procedure
for ultrahigh-dimensional linear models by utilizing the Pearson correlation. Hall &
Miller (2009) developed the bootstrap procedure to rank the predictor importance
based on the Pearson correlation between the response and the covariates. Fan
et al. (2009) and Fan & Song (2010) ranked the importance of each predictor
using the marginal likelihood method. To explore a flexible setting with model
misspecification, Zhu et al. (2011) and Li et al. (2012) proposed model-free feature
screening procedures to capture informative covariates for ultrahigh-dimensional
data. Yi et al. (2021) developed a screening method for settings where both the
sample size and the dimension of variables are large. To make robust feature
screening, Xue & Liang (2017) implemented cumulative distribution functions of
responses and covariates to the Henze–Zirkler test statistics, where the normal
distribution assumption was imposed.

Concerning high-dimensional survival data, Fan et al. (2010) proposed the
SIS method for the Cox model. Song et al. (2014) explored the censored rank
independence screening procedure. Yan et al. (2017) developed the Spearman rank
correlation screening method. Zhang et al. (2020) used the distance correlation to
describe the correlation of covariates with survival or censoring times. To avoid
the impact of outliers and make robust inference, Chen et al. (2018) modified
the distance correlation by incorporating the cumulative distribution functions of
survival times and covariates. Hao et al. (2019) proposed to rank the covariance for
the cumulative distribution function of the covariates and the survivor function of
the survival time.

Even though different feature screening methods have been developed for
ultrahigh-dimensional data, research gaps still exist. One issue is the accuracy of
feature screening. Conventional feature screening methods rank the importance of
each predictor through marginal measures, which may fail to detect truly important
covariates that are marginally independent of the response due to their correlations
with other covariates. An example can be found in Sect. 4.2.2 of Fan & Lv (2008).
To overcome this problem, Fan & Lv (2008) proposed the iterative SIS method.
Zhong & Zhu (2015) developed the iterated distance correlation to improve the
accuracy of variable screening. For survival data, Hao et al. (2019) proposed the
robust projection to update the selection of variables that are falsely excluded by
conventional feature screening methods. A second issue concerns measurement
error, an issue receiving little attention in the context of feature screening, though
Chen (2019) proposed a feature screening method for data with measurement error.
However, Chen (2019) considered only the case with classical additive error where
the normal distribution is assumed.

In this chapter, we develop a model-free feature screening method by utilizing
the cumulative distribution functions of survival times and covariates. To eliminate
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measurement error effects, we employ the inverse Fourier transformation that allows
us to consider a broad class of measurement error models. Theoretical results are
established to justify the validity of the proposed method. Moreover, we propose an
iterated procedure to improve the accuracy of feature screening.

The remainder is organized as follows. In Sect. 2, we introduce the basic
framework, together with the distance correlation method under the error-free
setting. In Sect. 3, we propose the inverse Fourier transformation approach to
address the feature of mismeasured covariates and establish theoretical results. In
Sect. 4, we describe the iterative feature screening procedure to accommodate the
case where important covariates are falsely excluded using the method in Sect. 3.
Empirical studies, including simulation results and real-data analysis, are provided
in Sect. 5. We conclude the article with discussions in Sect. 6.

2 Notation and Framework

2.1 Survival Data

For any individual, let T denote the failure time, and let C represent the associated
censoring time. Write Y = min{T ,C} and let δ = I(T ≤ C) be the censoring
indicator, where I(·) is the indicator function. Let X = (

X(1), · · · , X(p)
)� denote

the p-dimensional random vector of possibly associated covariates. Let τ > 0 be
a finite value representing the length of the study period, where P(T < τ) > 0.
Conditional on the covariates X, T and C are assumed to be independent.

Let

I = {
j : T is associated with X(j) for j = 1, · · · , p}

denote the active set containing all the relevant covariates for the response T , and
let q = |I|. Let Ic be the complement of I that contains all the covariates in X
that are irrelevant to the response T . Let XI = {

X(j) : j ∈ I
}

denote the vector
containing all the active covariates, and let XIc = {

X(j) : j ∈ Ic
}

be the vector
containing all the irrelevant covariates. We consider settings where the dimension
p of the covariates is ultrahigh relative to the sample size, denoted n, with p =
exp {O(nr)} for some r > 0 (e.g., Fan & Lv 2008) and where q < n. Our goal is
to develop a feature screening procedure to exclude irrelevant covariates as much as
possible, while retaining the covariates in I to output a reduced dataset for a further
formal analysis. Suppose that we have a sample

{(
Ti,Xi, δi, Ci

) : i = 1, · · · , n},
where the (Ti, Xi, δi, Ci) have the same distribution as (T ,X, δ, C). Write Yi =
min{Ti, Ci} for i = 1, · · · , n.
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2.2 Distance Correlation of Two Random Variables

For the following development, we now briefly review the distance correlation
method of Székely et al. (2007). For two random vectors U and V of
dimension dU and dV , respectively, let φU(s) = E

{
exp

(
is�U

)}
and φV (t) =

E
{
exp

(
it�V

)}
, respectively, denote their characteristic functions, and let

φU,V (s, t) = E
[
exp

{
i
(
s�U + t�V )}] be the joint characteristic function of

U and V , where i is the imaginary unit with i2 = −1, and s and t are dU × 1
and dV × 1 vectors of real numbers, respectively. For any complex function φ(t)
consisting of a real part and an imaginary part with i, let φ̄(·) denote its conjugate
with i replaced by −i, and define ‖φ(t)‖2 = φ(t)φ̄(t).

Define the distance covariance between U and V as

dcov(U, V ) =
∫
R
dU

∫
R
dV

∥∥φU,V (s, t)− φU(s)φV (t)∥∥2
w(s, t)dsdt,

where

w(s, t) =
{
cdU cdV ‖s‖1+dU

dU
‖t‖1+dV

dV

}−1 ;

for a given d, cd = π(1+d)/2/�{(1 + d)/2} with �(t) being the gamma function;
and ‖a‖d =

(
a2

1 + · · · + a2
d

)1/2 represents the Euclidean norm for a d-dimensional

vector a = (
a1, · · · , ad

)� ∈ R
d .

Székely et al. (2007) showed that dcov(U, V ) can be alternatively written as

dcov(U, V ) = J1 + J2 − 2J3, (1)

where

J1 = E
(∥∥U − Ũ∥∥

dU

∥∥V − Ṽ ∥∥
dV

)
,

J2 = E
(∥∥U − Ũ∥∥

dU

)
E
(∥∥V − Ṽ ∥∥

dV

)
,

J3 = E
{
E
(∥∥U − Ũ∥∥

dU

∣∣∣U)E (∥∥V − Ṽ ∥∥
dV

∣∣∣V )} ,
and (Ũ , Ṽ ) is an independent copy of (U, V ).

The distance correlation (DC) between U and V is defined as

dcorr(U, V ) = dcov(U, V )√
dcov(U,U)dcov(V , V )

. (2)

Székely et al. (2007) proved that two random vectors U and V are independent if
and only if dcorr(U, V ) = 0. This property shows that the distance correlation is
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useful to characterize the association between random variables, which is the basis
for our following development.

2.3 Feature Screening for Censored Data with Precise
Measurements

In the absence of censoring, it is straightforward to employ the distance correlation
between the covariates and the survival times to determine the active set I. However,
right censoring makes the direct implementation of this method impossible. Further,
as indicated by Chen et al. (2018), covariates may exhibit heavy-tailed distributions
and contain outliers. To alleviate the issues, we consider the transformed random
variables using cumulative distribution functions which are known to be bounded
and monotone.

To be specific, modifying (2), we propose the functional distance correlation for
X(j) and Y , given by

ωj � dcorr{FX(j) (X(j)), F (Y )}

= dcov{FX(j) (X(j)), F (Y )}√
dcov{FX(j) (X(j)), FX(j) (X(j))}dcov{F(Y ), F (Y )}

(3)

for j = 1, . . . , p, where F(t) = P(T ≤ t) is the cumulative distribution function
of the failure time T and FX(j) (x) = P(X(j) ≤ x) is the cumulative distribution
function of the j th covariate. While the formulation (3) applies to both continuous
and discrete covariates, in this chapter, we focus on continuous covariates only.
Therefore, FX(j) (x) can be written as FX(j) (x) =

∫ x
−∞ fX(j) (u)du, where fX(j) (x)

is the probability density function of X(j).
Similar to the idea of using the distance correlation to do feature screening (e.g.,

Li et al. 2012; Chen et al. 2018; Zhang et al. 2020), we use the functional distance
correlation ωj for j = 1, · · · , p to screen the covariates. A smaller value of ωj
indicates a weaker correlation between the j th covariate and the survival time, and
thus, ranking all the ωj for j = 1, · · · , p allows us to screen out the covariates of
little relevance to the survival time.

To implement this idea, we estimate (3) using the sample data. First, we
may express the three terms dcov(·, ·) in (3) using their equivalent forms,
as suggested by (1) with relevant quantities modified. Since estimation of
dcov{FX(j) (X(j)), FX(j) (X(j))} and dcov{F(Y ), F (Y )} can be obtained analogously
to that of dcov{FX(j) (X(j)), F (Y )}, we describe the latter case only. Similar to (1),
dcov{FX(j) (X(j)), F (Y )} can be estimated by its empirical counterpart from the
sample data:

d̂cov
{
F̂X(j) (X(j)), F̂ (Y )

} = M̂j,1 + M̂j,2 − 2M̂j,3 (4)



28 L.-P. Chen and G. Y. Yi

with

M̂j,1 = 1

n2

n∑
i=1

n∑
k=1

{∣∣∣F̂X(j) (Xi(j))− F̂X(j) (Xk(j))
∣∣∣ ∣∣F̂ (Yi)− F̂ (Yk)∣∣

}
,

M̂j,2 =
⎧⎨
⎩

1

n2

n∑
i=1

n∑
k=1

∣∣∣F̂X(j) (Xi(j))− F̂X(j) (Xk(j))
∣∣∣
⎫⎬
⎭
⎧⎨
⎩

1

n2

n∑
i=1

n∑
k=1

∣∣F̂ (Yi)− F̂ (Yk)∣∣
⎫⎬
⎭ ,

M̂j,3 = 1

n

n∑
i=1

⎡
⎣
⎧⎨
⎩

1

n

n∑
k=1

|F̂X(j) (Xi(j))− F̂X(j) (Xk(j))|
⎫⎬
⎭
⎧⎨
⎩

1

n

n∑
l=1

|F̂ (Yi)− F̂ (Yl)|
⎫⎬
⎭
⎤
⎦ ,

where Xi(j) represents the j th element of Xi ,

F̂ (t) = 1 −
n∏
i=1

⎧⎪⎪⎨
⎪⎪⎩

1 − 1
n∑
k=1

I(Yk ≥ Yi)

⎫⎪⎪⎬
⎪⎪⎭

δiI(Yi≤t)

is the Kaplan–Meier estimator of F(t), and

F̂X(j) (x) =
∫ x

−∞
f̂X(j) (u)du (5)

is the estimator of FX(j) (x) with f̂X(j) (u) being the nonparametric estimate of
fX(j) (u).

Consequently, using (4) gives the final estimator of (3)

d̃corr{F̂X(j) (X(j)), F̂ (Y )} =
d̂cov{F̂X(j) (X(j)), F̂ (Y )}√

d̂cov{F̂X(j) (X(j)), F̂X(j) (X(j))}d̂cov{F̂ (Y ), F̂ (Y )}
.

In this chapter, we take f̂X(j) (u) as the kernel estimator, given by

f̂X(j) (u) =
1

nh

n∑
i=1

K

(
u−Xi(j)

h

)
, (6)

with h being a bandwidth and K(·) being a kernel function satisfying the following
conditions (e.g., Wand & Jones 1995):

(C1)
∫∞
−∞K(u)du = 1; K(u) ≥ 0; K(u) is symmetric;

∫∞
−∞ u

rK(u)du is finite
for all r ∈ N.

(C2) h = o(n− 1
5 ).



Robust Feature Screening for Ultrahigh-Dimensional Censored Data Subject to. . . 29

Condition (C1) is standard for implementing the kernel estimation, in which the
requirement of

∫∞
−∞ u

rK(u)du to be finite for r ∈ N is satisfied by commonly used
kernel functions listed in Wand & Jones (1995). Condition (C2) is regarded as the
optimal bandwidth in the sense of Wand and Jones (1995, Sect. 2.5), and thus, we
take h as of the rate of n−1/5 in the following development.

3 Feature Screening for Censored Data with Error-Prone
Covariates

3.1 Measurement Error Model

We consider the setting where for i = 1, · · · , n, Xi is not precisely observed, but
instead, a surrogate, denoted X∗

i , is observed for Xi . Let �X∗ and �X denote the
covariance matrices of X∗

i and Xi , respectively. Here we focus on the classical
measurement error model (e.g., Carroll et al. 2006; Yi 2017)

X∗
i = Xi + εi (7)

for i = 1, · · · , n, where εi is the noise term with mean zero and covariance matrix
�ε , and εi is independent of {Xi, Ti, Ci}.

Let fε(·) denote the probability density function of εi that may or may not have
unknown parameters. In the following development, we consider three scenarios:

Scenario I: The distribution fε(·) of εi in (7) is completely known, and hence, no
unknown parameters are involved.
This is the simplest case to develop a screening procedure with measurement
error effects incorporated. In this instance, the covariance matrix �ε is uniquely
determined by the distribution fε(·).

Scenario II: The functional form of the density function fε(·) is known, but its
associated parameters are unknown yet repeated surrogate measurements are
available to estimate �ε .
That is, we have replicates of X∗

i , denoted X∗
ir , which follow

X∗
ir = Xi + εir

for i = 1, · · · , n and r = 1, · · · , ni with ni ≥ 2, where εir is independent of
{Xi, Ti, Ci} and εir ∼ (0, �ε). Using the method of moments, we estimate�ε by

�̂ε =

n∑
i=1

ni∑
r=1

(
X∗
ir − X̄∗

i·
) (
X∗
ir − X̄∗

i·
)�

n∑
i=1
(ni − 1)

, (8)
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where X̄∗
i· = 1

ni

ni∑
r=1
X∗
ir .

Scenario III: Both functional form of fε(·) and its associated parameters are
unknown, but external validation data are available.
Suppose that M is the subject set for the main study containing measurements{(
Ti, Ci, δi, X

∗
i

) : i ∈M} for n subjects and that V is the subject set for the
external validation study containing measurements

{(
Xi,X

∗
i

) : i ∈ V} for m
subjects, where M and V do not overlap. Assume that the main study and the
validation study share the same measurement error model (7); this is the so-called
transportability assumption (e.g., Yi et al. 2015).
With the availability of external validation data, fε(j) (·) for j = 1, · · · , p and�ε
can be estimated. For i ∈ V and j = 1, · · · , p, the j th component of εi is given
by εi(j) = X∗

i(j) − Xi(j), which is known. Then adopting the estimator (6) with
Xi(j) replaced by εi(j) and n replaced by m gives an estimate of the probability
density function fεi(j) (·) of εi(j):

f̂ε(j) (u) =
1

mh

∑
i∈V

K

(
u− εi(j)
h

)
.

Thus, the corresponding characteristic function φε(j) (u) is estimated by
φ̂ε(j) (u) = ∫∞

−∞ exp (iux) f̂ε(j) (x)dx. In addition, applying the least squares
regression method gives the estimator of �ε :

�̂ε = 1

m− 1

∑
i∈V
(X∗
i −Xi)(X∗

i −Xi)�. (9)

3.2 Feature Screening with Measurement Error Effects
Accommodated

In the presence of measurement error in covariates, the method in Sect. 2.3
cannot apply because the estimator (5) cannot be directly calculated due to the
unavailability of the Xi . In this subsection, we derive an estimator (5) using the
observed surrogateX∗

i . First, we re-express the probability density function fX(j) (x)
by the inverse Fourier transformation, given by

fX(j) (x) =
1

2π

∫ ∞

−∞
exp (−iux) φX(j) (u)du, (10)

where φX(j) (u) is the characteristic function of X(j).
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For j = 1, · · · , p, let φX∗
(j)
(u) and φε(j) (u) denote the characteristic functions of

X∗
(j) and ε(j), respectively, where X∗

(j) and ε(j) are the j th component of X∗ and ε,
respectively; and X∗ and ε follow the same distribution as X∗

i and εi , respectively.
Then model (7) yields that

φX∗
(j)
(u) = φX(j) (u)φε(j) (u),

and thus, φX(j) (u) =
φX∗
(j)
(u)

φε(j) (u)
, assuming φε(j) (u) �= 0. Then (10) becomes

fX(j) (x) =
1

2π

∫ ∞

−∞
exp (−iux)

φX∗
(j)
(u)

φε(j) (u)
du. (11)

To emphasize that (11) is expressed in terms of the surrogate X∗
(j), we let fadj,j (x)

to replace fX(j) (x) in the left-hand side of (11).
Next, to implement (11), we need to calculate φX∗

(j)
(u) and φε(j) (u), where

φε(j) (u) is derived from the distribution fε(j) (·) of ε(j), the j th marginal distribution
derived from fε(·).

It now remains to calculate φX∗
(j)
(u), which is given by

φX∗
(j)
(u) =

∫ ∞

−∞
exp (iux) fX∗

(j)
(x)dx, (12)

where fX∗
(j)
(x) denotes the probability density function of X∗

(j). Since X∗
(j) is

observable, then the probability density function of X∗
(j) can be estimated by the

kernel estimation, given by

f̂X∗
(j)
(x) = 1

nh

n∑
i=1

K

(
x −X∗

i(j)

h

)
, (13)

where h and K(·) are described for (6). In our numerical examination, we specify
K(u) to be the normal kernel and h can be estimated by the cross-validation method
(e.g., Wand & Jones 1995).

Consequently, with fX∗
(j)
(x) in (12) replaced by f̂X∗

(j)
(x), φX∗(u) can be esti-

mated by

φ̂X∗
(j)
(u) =

∫ ∞

−∞
exp (iux) f̂X∗

(j)
(x)dx

=
∫ ∞

−∞
exp (iux)

1

nh

n∑
i=1

K

(
x −X∗

i(j)

h

)
dx.
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Let z = x−X∗
i(j)

h
; then applying the change of variables yields

φ̂X∗
(j)
(u) =

∫ ∞

−∞
1

n

n∑
i=1

exp
(

iuX∗
(j) + iuhz

)
K (z) dz

=
{∫ ∞

−∞
exp (iuhz)K(z)dz

}
×
{

1

n

n∑
i=1

exp
(

iuX∗
i(j)

)}
. (14)

Combining (11) and (14) gives an estimator of (11):

f̂adj,j (x) = 1

2π

∫ ∞

−∞
exp (−iux)

φ̂X∗
(j)
(u)

φε(j) (u)
du, (15)

and thus, an adjusted estimator of the cumulative distribution function FX(j) (x) in
terms of X∗

(j) is

F̂adj,j (x) =
∫ x

−∞
f̂adj,j (u)du. (16)

Therefore, the functional distance correlation (3) can be estimated using the
observed surrogate X∗

(j) together with the outcome Y , given by

ω̂j � d̂corr{F̂adj,j (X∗
(j)), F̂ (Y )}

= d̂cov{F̂adj,j (X∗
(j)), F̂ (Y )}√

d̂cov{F̂adj,j (X∗
(j)), F̂adj,j (X

∗
(j))}d̂cov∗{F̂ (Y ), F̂ (Y )}

, (17)

where d̂cov{F̂adj,j (X∗
(j)), F̂ (Y )} is determined by (4) with F̂X(j) (x) replaced by

(16).

Remark The development here extends the discussion of Chen (2019) who assumed
that fε(·) is the probability density function of a normal distribution under Scenarios
I, II, and III. With the j th noise term ε(j) assuming a normal distribution with
mean zero and variance σ 2

ε(j)
, we have that the characteristic function is given by

φε(j) (u) = exp
(
− 1

2u
2σ 2
ε(j)

)
, and thus, (15) becomes

f̂adj,j (x) = 1

2π

∫ ∞

−∞
exp

(
−iux + 1

2
uσ 2
ε(j)

)
φ̂X∗

(j)
(u)du.

In contrast, if ε(j) follows a t distribution with degrees of freedom v > 1, then
the corresponding characteristic function is given by Dreiera & Kotzb (2002):
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φε(j) (u) =
2vvv/2

�(v)

∫ ∞

0
exp

{
−v1/2(2x + |u|)

}
× {x(x + |u|)}(v−1)/2 dx, (18)

and substituting (18) into (15) yields f̂adj,j (x).

3.3 Asymptotic Results

To establish theoretical results of the proposed method, we impose the following
additional conditions:

(C3) There exists a positive constant w0 such that for all 0 < w ≤ 2w0,

sup
p

max
1≤j≤p E

{
exp

(
w‖X(j)‖2

1

)}
<∞ and E

{
exp

(
w‖Y‖2

q

)}
<∞.

(C4) The minimum of the functional distance correlations for the active covariates
satisfies

min
j∈I

∣∣ωj ∣∣ ≥ 2cn−ζ

for some constants c > 0 and 0 ≤ ζ < 1/2.

(C5) There exists a positive constant v0 such that lim
p→∞

(
min
j∈I

∣∣ωj ∣∣− max
j∈Ic

∣∣ωj ∣∣
)
>

v0, assuming the limits exists.
(C6) The covariates X∗

i for i = 1, · · · , n are bounded.

Condition (C3) is used to examine the boundness of the difference
∣∣ω̂j − ωj

∣∣
between (3) and its estimator (17). Condition (C4) says that the marginal DC of
active covariates cannot be too small, which is similar to Condition 3 of Fan & Lv
(2008). Condition (C5) basically requires the signal carried by the active covariates
to be stronger than that displayed by inactive covariates for at least a fixed amount
if the dimension p goes to infinty. This condition was also imposed by other authors
(e.g., Cui et al. 2015). Condition (C6) indicates the finite boundness of surrogate
measurements of the covariates.

Theorem 1 Under regularity conditions (C3) and (C5) and the assumptions of
Lemmas 1 and 2 in Appendix A, we have that for c and ζ described in Condition
(C4), there exists a constant D > 0 such that

P

(
max

j=1,··· ,p
∣∣ω̂j − ωj ∣∣ ≥ cn−ζ

)
= O

{
p exp

(
−Dn1−2ζ

)}
. (19)

Moreover,
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P

(
max
j∈Ic

∣∣ω̂j ∣∣ ≥ min
j∈I

∣∣ω̂j ∣∣
)
= O

{
exp

(
−1

4
Dnv2

0

)}
, (20)

where v0 is the constant described in Condition (C5).

Equation (19) in Theorem 1 indicates ωj is close to its estimate with a large
probability. Similar to the discussion in Li et al. (2012) and Chen et al. (2018),
(19) shows that the proposed method is able to handle the non-polynomial (NP)
dimensionality of order logp = o(n1−2ζ ) for some constant 0 ≤ ζ < 1/2.
Equation (20) in Theorem 1 ensures that the proposed estimator (17) has the ranking
consistency property, similar to that discussed by Cui et al. (2015) and Hao et al.
(2019).

Theorem 2 Suppose that Conditions (C3)–(C4) and the assumptions of Lemmas 1
and 2 in Appendix A hold. Let

Î = {
j : ∣∣ω̂j ∣∣ ≥ cn−ζ for j = 1, · · · , p} (21)

for c and ζ described in Condition (C4). Then for a sufficiently large n, Î has the
sure screening property:

P
(
I ⊆ Î) ≥ 1 −O

{
q exp

(
−Dn1−2ζ

)}
,

where D and ζ are the constants described in Theorem 1.

The sure screening property in Theorem 2 shows that with a large probability,
the true active set is included in the estimated active set. This property is important
which is commonly required for any sensible screening procedure (e.g., Fan & Lv
2008; Li et al. 2012; Chen et al. 2018).

While (21) allows us to establish the sure screening property of the procedure, it
does not tell us exactly about the choice of a suitable threshold value because c and
ζ are unknown. In the actual implementation, we often rank the covariates by the
values of the ω̂j for j = 1, · · · , p and then retain, say, q̃ covariates with the first

q̃ largest ω̂j . A common choice of q̃ is q̃ =
⌊

n
log n

⌋
, where �·� stands for the floor

function (e.g., Li et al. 2012; Cui et al. 2015; Yan et al. 2017; Chen et al. 2018; Chen
2019).

4 Iteration Algorithm

While Theorem 2 shows that using (21) to do screening has a large probability
for retaining active covariates when n is sufficiently large and regularity conditions
are satisfied, it does not ensure a good performance in some settings. Typically,
when some covariates possess strong correlations, unimportant covariates may be
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likely to be retained due to their correlations with the important covariates. On the
other hand, some covariates may only have a weak marginal association with the
response variable, but they have a strong joint effect on the change of the response.
This phenomenon was discussed in Sect. 4.2.2 of Fan & Lv (2008). As a remedy,
we now add extra steps to modify the procedure that uses (17) to do screening.

The key idea is to construct the residuals in terms of the retained variables in Î
and then use those residuals to identify highly dependent variables in the inactive
set Îc. Similar to Chen (2019), we take the “residual” as the projection of the
distribution for variables in the inactive set Î onto the orthogonal space of the
distribution of variables selected in the active set Î. To present the idea explicitly,
we perform the following iteration algorithm:

Step 1: Initial determination of the active set.
First, we use (17) to select q1 variables, where q1 is a positive integer specified to
be smaller than q̃. Let Î1 denote the estimated active set containing the selected
q1 variables. Now decompose the measurement error model (7) as

X∗
i,Î1

= Xi,Î1
+ εi,Î1

(22a)

X∗
i,Îc1

= Xi,Îc1 + εi,Îc1 , (22b)

where X∗
i =

(
X∗�
i,Î1
, X∗�

i,Îc1

)�
, Xi =

(
X�
i,Î1
, X�

i,Îc1

)�
, and εi =

(
ε�
i,Î1
, ε�
i,Îc1

)�
. The covariance matrix �ε is also decomposed accordingly:

�ε =
⎛
⎝ �εÎ1

�εÎ1Îc1
��
εÎ1Îc1

�εÎc1

⎞
⎠ ,

where �εÎ1
is the q1 × q1 covariance matrix based on (22a), �εÎc1

is the (p −
q1)× (p−q1) covariance matrix based on (22b), and �εÎ1Îc1

is the q1 × (p−q1)

covariance matrix based on the interaction of (22a) and (22b).
Step 2: Improvement.

Corresponding to (22a) and (22b), we define FÎ1
as the n × q1 matrix with the

entry (i, j) being F̂adj,j (X∗
i(j)) for j ∈ Î1 and i = 1, · · · , n, where F̂adj,j (x)

is the proposed estimated function in (16) and X∗
i(j) the j th component of

X∗
i . Similarly, let FÎc1 be the n × (p − q1) matrix with the entry (i, j) being

F̂adj,j (X
∗
i(j)) for j ∈ Îc1 and i = 1, · · · , n. FÎ1

and FÎc1 essentially reflect

informative and noninformative variables in Î1 and Îc1, respectively.
Next, define the predictor residual matrix
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Fnew =
{
In − FÎ1

(
F �̂
I1
FÎ1

)−1
F �̂
I1

}
FÎc1, (23)

where In represents the n× n identity matrix, and the inverse matrix
(
F �̂
I1
FÎ1

)
is assumed to exist. Noting that Fnew can be regarded as the residual of linearly
regressingFÎc1 onFÎ1

, suggesting thatFnew contains the covariate information in

Îc1 and is uncorrelated with FÎ1
. Therefore, implementing (17) with F̂adj,j (X(j))

replaced by Fnew enables us to further select variables from Îc1. Suppose that we
select q2 such variables, and let Î2 denote the resulting active set containing q2
variables.

Step 3: Update of the active set.
Repeat Step 2 for (N − 1) times such that q̃ = q1 + q2 + · · · + qN . Then the

resulting estimated active set is given by Î =
N⋃
k=1
Îk , where N is a positive

integer.

Here we make several comments. In the absence of measurement error, Zhong &
Zhu (2015) considered to regress variables in the inactive set onto the variables in the
active set to eliminate the potential correlation among the variables and then detect
variables that are falsely excluded by the initial feature screening method. When
measurement error occurs in covariates, Chen (2019) took the similar strategies of
Zhong & Zhu (2015) and employed the conditional expectation method to eliminate
measurement error effects. Unlike Zhong & Zhu (2015) and Chen (2019) who
directly used the variables to produce “residuals,” our strategy (23) implements the
estimated cumulative distribution functions, and we expect that this treatment is
more likely to yield more robust results than the procedures considered by Zhong &
Zhu (2015) and Chen (2019). In addition, different from Chen (2019) that needs an
additional step to correct for measurement error effects, (23) directly builds in the
error effects correction in the implementation procedure.

In applications, the choicesN and {q1, · · · , qN } are not unique but user-specified
(e.g., Zhong & Zhu 2015; Hao et al. 2019). In our numerical studies, we takeN = 2

and set q1 =
⌊

3
4 q̃
⌋

.

5 Numerical Studies

5.1 Simulation Setup

Let X = (
X(1), · · · , X(p)

)� be generated from the normal distribution with mean
zero and the covariance matrix �X with the diagonal elements one, where p =
2000.
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We examine two parts in this section. In Part 1, the entry (k, l) in �X is set to be
ρ1+|k−l| with ρ = 0.5 or 0.8 for k, l = 1, · · · , p and k �= l, and the failure time T
is generated from one of the following two models:

M1: λ(t |X) = (log t) exp
(
X�β

)
with β = (1�4 , 0�p−4)

�.

M2: T = exp
(
X�β − 1

)
sin2 (X�β

) + � with β = (1�4 , 0�p−4)
�, and the noise

term � follows a lognormal distribution with mean zero and variance one,
where 1d is the d-dimensional unit vector, and 0d represents the d-dimensional
zero vector.

Model M1 is the Cox proportional hazards model with the baseline hazards
function log t , and Model M2 is the nonlinear transformation model considered by
Hao et al. (2019).

In Part 2, we consider the case similar to that considered in an example in
Sect. 4.2.2 of Fan & Lv (2008): for k �= l, the (k, l) element of �X is set as ρ
if k �= 4, l �= 4, and

√
ρ otherwise, where we consider ρ = 0.5 or 0.8. Given the

covariates, the failure time is generated from one of the following models:

M3:

T = exp
(
X(1) +X(2) +X(3) − 3

√
ρX(4) +�

)
, (24)

where � follows the standard extreme value distribution.
M4: T is given by (24), where � follows the standard logistic distribution.

Models M3 and M4 are modified from linear models in Sect. 4.2.2 of Fan & Lv
(2008), which were also considered by Chen et al. (2018), Hao et al. (2019), and
Zhang et al. (2020).

For Parts 1 and 2, the censoring timeC is generated from the uniform distribution
U(0, τC), where τC is a constant such that the censoring rate is approximately 50%.
As a result, we have Y = min{T ,C} and δ = I (T ≤ C). We repeat data generation
for i = 1, · · · , n independently and obtain the data

{
(Yi, δi , Xi) : i = 1, · · · , n},

where we consider the sample size n = 400.
Finally, to generate the observed surrogate X∗

i for i = 1, · · · , n, we take the
measurement error model (7) for two scenarios of εi , where the components of εi are
independent. In the first scenario, εi follows the normal distribution with mean zero
and the diagonal matrix �ε with all diagonal elements being σε , where σε = 1.5,
2, or 3. In the second scenario, εi(j) follows the t distribution with the degrees of
freedom v, where j = 1, · · · , p, and v is specified as 6, 4, or 3, yielding the variance
v
v−2 = 1.5, 2, or 3, respectively. Finally, we repeat simulation 1000 times in each
setting.
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5.2 Simulation Results

From Models M1–M4, the X(j) with j = 1, 2, 3, 4 are informative variables, so the
main goal is to retain them in implementing the screening procedure. For the data
generated in Part 1, we use the robust feature screening method in Sect. 3.2; and
for the data in Part 2, we implement the iteration procedure in Sect. 4. To assess
the impact of the measurement error effects on feature screening, we examine the
naive method using (17) with F̂adj,j (X∗

(j)) replaced by the empirical cumulative
distribution function of X∗

(j). In addition, we compare the methods to the corrected
DC method proposed by Chen (2019).

To evaluate the finite-sample performance of the proposed method, we report the
proportion, denoted Ps , for each active covariate to be retained in 1000 simulations
and the proportion, denoted Pa , for all active covariates to be retained in 1000
simulations. Here we present the results only for the case with known �ε and
omit the study for the cases with unknown �ε as discussed in Sect. 3.1 due to the
similarity in results. Numerical results for Part 1 are summarized in Table 1, and
results for Part 2 are given in Table 2, where “Naive” represents the naive method,
“DC” is the corrected DC method (Chen 2019), and “Proposed” is the proposed
method.

We see that without suitable correction of measurement error effects, the naive
method fails to retain all important variables, while the DC and proposed methods
are able to keep those four variables with a high possibility. Comparing two error
effect-corrected methods, we observe that when the noise term εi follows the normal
distribution, both the DC and proposed methods keep truly important variables with
a proportion near one. However, when the distribution of εi is non-normal, the
proportion of retaining truly informative variables based on the DC method becomes
less satisfactory. On the contrary, the proposed method still keeps all important
variables with a proportion close to one. Moreover, regarding the trajectory of
the model, the proposed method outperforms the DC method in Model M2 whose
relationship between the response and the covariates is relatively oscillatory.

In summary, the simulation results confirm that the proposed method is success-
ful in accounting for measurement error effects regardless of the distribution of the
noise term and is robust in retaining important variables.

5.3 Analysis of Mantle Cell Lymphoma Microarray Data

In this subsection, we apply the proposed method to study the mantle cell lymphoma
microarray dataset analyzed by Rosenwald et al. (2003). The dataset contains
survival times of 92 patients together with gene expression measurements of 8810
genes for each patient. As 6330 gene expressions contain missing values, we remove
them and consider the subset of the remaining 2480 gene expressions. During the
study period, 64 patients died of mantle cell lymphoma, and the remaining 28
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Table 1 Simulation results of feature screening for Part 1

εi ∼ Normal εi ∼ t (v)
Ps Ps

Model ρ σε Method X(1) X(2) X(3) X(4) Pa X(1) X(2) X(3) X(4) Pa
M1 0.5 1.5 Naive 0.001 0.002 0.002 0.001 0.001 0.000 0.000 0.000 0.000 0.000

DC 1.000 0.998 1.000 1.000 0.998 0.833 0.876 0.855 0.853 0.840

Proposed 1.000 0.999 1.000 1.000 0.999 0.998 0.996 0.997 0.997 0.996

2 Naive 0.000 0.002 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000

DC 1.000 0.997 0.998 1.000 0.997 0.830 0.869 0.853 0.852 0.837

Proposed 1.000 0.999 1.000 1.000 0.999 0.998 0.996 0.997 0.997 0.996

3 Naive 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000

DC 1.000 0.997 0.997 0.998 0.997 0.827 0.858 0.844 0.846 0.830

Proposed 1.000 0.998 1.000 1.000 0.998 0.997 0.996 0.996 0.996 0.996

0.8 1.5 Naive 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000

DC 1.000 0.998 0.998 1.000 0.998 0.845 0.867 0.860 0.855 0.846

Proposed 1.000 0.999 1.000 1.000 0.999 1.000 0.998 0.998 0.997 0.997

2 Naive 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

DC 0.998 0.997 0.997 1.000 0.997 0.838 0.864 0.856 0.847 0.839

Proposed 1.000 0.999 1.000 1.000 0.999 0.998 0.996 0.997 0.997 0.996

3 Naive 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000

DC 0.998 0.997 0.997 0.996 0.996 0.833 0.845 0.836 0.841 0.835

Proposed 1.000 0.998 0.998 1.000 0.998 0.998 0.997 0.996 0.997 0.996

M2 0.5 1.5 Naive 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

DC 0.951 0.958 0.963 0.969 0.951 0.836 0.846 0.847 0.847 0.836

Proposed 1.000 0.998 0.998 1.000 0.998 0.998 0.997 0.998 0.997 0.997

2 Naive 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

DC 0.950 0.955 0.962 0.963 0.950 0.834 0.844 0.845 0.844 0.834

Proposed 1.000 0.997 0.997 0.998 0.997 0.996 0.996 0.995 0.996 0.995

3 Naive 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

DC 0.946 0.951 0.957 0.957 0.944 0.830 0.839 0.841 0.838 0.830

Proposed 1.000 0.997 0.997 0.998 0.998 0.996 0.995 0.995 0.995 0.995

0.8 1.5 Naive 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

DC 0.953 0.956 0.960 0.966 0.953 0.831 0.844 0.844 0.843 0.831

Proposed 1.000 0.999 0.998 0.999 0.998 0.998 0.998 0.998 0.997 0.997

2 Naive 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

DC 0.949 0.951 0.954 0.957 0.951 0.830 0.840 0.841 0.841 0.831

Proposed 1.000 0.997 0.998 0.998 0.997 0.996 0.997 0.997 0.996 0.996

3 Naive 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

DC 0.945 0.947 0.950 0.953 0.943 0.826 0.831 0.833 0.833 0.831

Proposed 1.000 0.996 0.997 0.997 0.996 0.996 0.996 0.997 0.996 0.996

t (v): The t distribution with the degrees of freedom v
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Table 2 Simulation results of feature screening for Part 2

εi ∼ Normal εi ∼ t (v)
Ps Ps

Model ρ σε Method X(1) X(2) X(3) X(4) Pa X(1) X(2) X(3) X(4) Pa
M3 0.5 1.5 Naive 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

DC 1.000 1.000 1.000 1.000 1.000 0.874 0.878 0.870 0.872 0.870

Proposed 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.998 1.000 0.997

2 Naive 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

DC 1.000 1.000 1.000 1.000 1.000 0.869 0.874 0.866 0.867 0.865

Proposed 1.000 1.000 1.000 1.000 1.000 0.997 0.997 0.998 1.000 0.997

3 Naive 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

DC 1.000 1.000 1.000 1.000 1.000 0.866 0.870 0.863 0.863 0.863

Proposed 1.000 1.000 1.000 1.000 1.000 0.996 0.997 0.997 1.000 0.996

0.8 1.5 Naive 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

DC 1.000 1.000 1.000 1.000 1.000 0.870 0.875 0.870 0.870 0.870

Proposed 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.998 0.998 0.997

2 Naive 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

DC 1.000 1.000 1.000 1.000 1.000 0.866 0.870 0.865 0.865 0.865

Proposed 1.000 1.000 1.000 1.000 1.000 0.997 0.997 0.998 0.998 0.996

3 Naive 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

DC 1.000 1.000 1.000 1.000 1.000 0.860 0.861 0.860 0.860 0.860

Proposed 1.000 1.000 1.000 1.000 1.000 0.996 0.997 0.996 0.997 0.996

M4 0.5 1.5 Naive 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

DC 1.000 1.000 1.000 1.000 1.000 0.879 0.881 0.878 0.878 0.878

Proposed 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.998 1.000 0.998

2 Naive 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

DC 1.000 1.000 1.000 1.000 1.000 0.879 0.877 0.876 0.878 0.876

Proposed 1.000 1.000 1.000 1.000 1.000 0.999 0.998 0.998 1.000 0.998

3 Naive 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

DC 1.000 1.000 1.000 1.000 1.000 0.876 0.877 0.876 0.875 0.875

Proposed 1.000 1.000 1.000 1.000 1.000 0.997 0.997 0.998 0.999 0.997

0.8 1.5 Naive 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

DC 1.000 1.000 1.000 1.000 1.000 0.875 0.876 0.875 0.875 0.875

Proposed 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.998 0.998 0.998

2 Naive 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

DC 1.000 1.000 1.000 1.000 1.000 0.870 0.872 0.871 0.871 0.870

Proposed 1.000 1.000 1.000 1.000 1.000 0.998 0.997 0.997 0.996 0.996

3 Naive 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

DC 1.000 1.000 1.000 1.000 1.000 0.868 0.867 0.867 0.869 0.866

Proposed 1.000 1.000 1.000 1.000 1.000 0.996 0.995 0.997 0.995 0.995

t (v): The t distribution with the degrees of freedom v
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patients were censored, yielding the censoring rate 30%. As commented by Chen &
Yi (2021a), gene expressions are usually measured with error, and it is imperative
to account for this feature in data analysis.

Since the dataset has no additional information to characterize the degree of
measurement error, to implement the proposed method, we conduct sensitivity
analyses to address the measurement error effects, a commonly used strategy for
exploring the impacts of different magnitudes of measurement error (e.g., Chen
& Yi 2020, 2021a,b). Let �X and �X∗ denote the covariance matrices of Xi and
X∗
i , respectively, and let σXlk , σX∗lk , and σεlk denote the entry (l, k) of �X, �X∗ ,

and �ε , respectively. Measurement error model (7) suggests that σXlk is smaller
than σX∗lk for all l and k. To consider possible representative scenarios, we use
the sample covariance �̂X∗ to estimate �X∗ and take σXlk as σXlk = 0.9σ̂X∗lk ,
where σ̂X∗lk is the entry (l, k) of �̂X∗ . To specify σεlk , we use the reliability ratio
Rlk = σXlk

σX∗lk =
σXlk

σXlk+σεlk to guide us:

σεlk = (R−1
lk − 1)̂σX∗lk. (25)

For ease of exposition, we take Rlk as a common constant for all l and k and let R
denote it. Then (25) gives �ε = (R−1 − 1)�̂X∗ . When �ε is given, the distribution
of the noise term ε(j) for j = 1, · · · , 2480 is specified as a normal or a t distribution

with degrees of freedom specified as
⌊

2σεjj
σεjj−1

⌋
.

Set q̃ =
⌊

92
log 92

⌋
= 20, indicating that we aim to retain 20 variables with the

first 20 largest ω̂j . For the feature screening method in Sect. 3.2, we directly choose
q̃ gene expressions; for the iteration method in Sect. 4, we take N = 2, where we
retain the first q1 = 15 gene expressions in Step 1, and then select the remaining
q̃ − q1 = 5 gene expressions in Step 2.

Noting that the feature screening results are similar for different values of R,
to ease presentation, we summarize 20 selected genes’ ID numbers for the case
with R = 0.85 in Table 3, where “FS” represents the feature screening method in
Sect. 3.2 and “IFS” stands for the iteration method in Sect. 4. In comparison, we use
the naive method by directly implementing (13) rather than (15) as in the proposed
method to do feature screening, and let “nFS” and “nIFS” be the naive feature
screening method and the naive iteration method in Sects. 3.2 and 4, respectively.
It is interesting that genes “29854,” “27116,” “24721,” and “22155” are retained
regardless of the specification of the distribution for the noise term, while other
genes may be retained or excluded, depending on the distribution form of the noise
term. For example, “26050” is retained if a normal distribution is assumed for the
noise term, but it is excluded if a noise term assumes a t distribution; on the contrary,
“25230” is retained if the noise term assumes a t distribution, but it is excluded if a
normal distribution is assumed for the noise term. Regarding the iteration method,
we observe that genes “23970,” “16835,” and “31992” are retained regardless of the
specification of the distribution for the noise term. On the other hand, genes “26692”
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Table 3 Sensitivity analyses of mantle cell lymphoma microarray data: the results of feature
screening

Normal t distribution Naive

FS IFS FS IFS nFS nIFS

1 29854 29854 29854 29854 29598 29598

2 27116 27116 27116 27116 33027 33027

3 22155 22155 24721 24721 16787 16787

4 24721 24721 22155 22155 32583 32583

5 17230 17230 17545 17545 16121 16121

6 16528 16528 15936 15936 32049 32049

7 17545 17545 24819 24819 17548 17548

8 24819 24819 26050 26050 27361 27361

9 15936 15936 34524 34524 24610 24610

10 34524 34524 15936 15936 30282 30282

11 26050 26050 28726 28726 23970 23970

12 25230 25234 25230 25230 16835 16835

13 31935 31935 17176 17176 31992 31992

14 30575 30575 17927 17927 32259 32259

15 26692 26692 27019 27019 31895 31895

16 25234 31895 24850 31895 28726 29930

17 25055 23970 25055 23970 17176 24319

18 30157 16835 30157 16835 17927 31098

19 33570 31992 24545 31992 27019 27998

20 24734 32259 27998 31098 24850 24545

FS: The proposed feature screening method in Sect. 3.2
IFS: The proposed iteration method in Sect. 4
nFS: The naive feature screening method by implementing (13) to Sect. 3.2
nIFS: The naive iteration method by implementing (13) to Sect. 4

and “32259” are retained when the noise term is specified as a normal distribution
but are excluded when the noise term assumes a t distribution, and genes “27019”
and “31098” are retained when the noise term is assumed to follow a t distribution
but are excluded if a normal distribution is assumed. Finally, we observe that without
the error correction step, the genes retained by the naive methods have little in
common with those obtained from the proposed methods.

To further explore the relationship between the response and the selected genes,
we fit the Cox model to those data with the selected genes obtained, respectively,
from the FS and IFS methods under the normal or t distribution specified previously
for the measurement error, model, with R = 0.85:

λ(t |XÎ) = λ0(t) exp
(
X�̂
I β
)
, (26)
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where λ0(t) is the unspecified baseline hazard function, XÎ is the vector of selected
genes with Î representing the estimated active set of genes listed in Table 3, and β
is the vector of associated parameters.

To correct for the measurement error effects, we apply the insertion method
proposed by Chen & Yi (2021b) to estimate β. The analysis results, including
estimates (EST), standard errors (S.E.), and p-values, are summarized in Table 4.
For those genes that are commonly selected under different distributions for the
measurement error term, their estimates are stable and significant at the significant
level 0.05. On the contrary, genes “25055” and “33570,” which are retained by FS
but excluded by IFS, are insignificant. The last five genes, retained by IFS, are all
significant with small p-values.

6 Discussion

Ultrahigh-dimensional data analysis has received growing attention, where one
of the prime concerns is to screen variables by retaining informative ones and
excluding unimportant ones before conducting a formal analysis. While many
methods have been developed to do feature screening, little attention is directed
to deal with noisy data with measurement error.

In this chapter, we propose a robust feature screening method to handle ultrahigh-
dimensional censored data subject to covariate measurement error, which gener-
alizes to the procedure proposed by Chen (2019). The proposed method utilizes
cumulative distribution functions to construct the distance correlation for the robust-
ness. To improve the performance and retain truly important variables that may be
falsely excluded by an initial feature screening procedure, we further develop the
robust iteration procedure. Theoretical results and numerical examinations confirm
the satisfactory performance of the proposed method.

There are some possible extensions and applications. For example, the develop-
ment here is directed to continuous covariates subject to measurement error; it is
interesting to develop robust approaches to handle binary and count variables with
measurement error. The formula of the inverse Fourier transformation is developed
for the classical measurement error model (7). It is also useful to explore screening
procedures under other more complex measurement error models as outlined in
Yi (2017, Sect. 2.6). In addition to considering right censoring for survival data,
other characteristics of data, such as left truncation (e.g., Chen & Yi 2020, 2021b)
and network structures in covariates (e.g., Chen & Yi 2021a), are of interest to be
incorporated in feature screenings.
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Appendix

A. Technical Lemmas

In this appendix, we provide some lemmas that are useful to derive the main
theorems. The first lemma is the probabilistic bound of the estimated survivor
function.

Lemma 1 Let H(t) = P(Yi > t) denote the cumulative distribution function of
Yi , where Yi = min{Ti, Ci}. Suppose that there is a finite time point τ , such that
H(τ) > η for a positive constant η. Then for ξ > 27n−1η−2, there exist positive
constants κ1 and κ2 such that

P

(
sup
t∈[0,τ ]

∣∣F̂ (t)− F(t)∣∣ > ξ
)
≤ κ1 exp

(
−nξ2η4κ2

)
. (A.1)

This lemma is Theorem 2 of Földes & Rejtö (1981). The second lemma is about the
probabilistic bound of the estimator (16).

Lemma 2 Under regularity conditions (C1) and (C2), for any ξ∗ > 0, we have

P

(
sup
x

∣∣F̂adj,j (x)− FX(j) (x)∣∣ > ξ∗
)
≤ κ3 exp

{
−2n2ξ∗2

G2 + o(n− 1
5 )

}
(A.2)

for some positive constants G and κ3.

Proof We first write

f̂adj,j (x)− fX(j) (x) =
{
f̂adj,j (x)− fadj,j (x)

}+ {fadj,j (x)− fX(j) (x)}
= f̂adj,j (x)− fadj,j (x), (A.3)

because fadj,j (x) is just a different symbol of the inverse Fourier transformation of
fX(j) (x), i.e., fadj,j (x)− fX(j) (x) = 0. Therefore, the remaining task is to examine
f̂adj,j (x)− fadj,j (x). By (11) and (15), we have

f̂adj,j (x)− fadj,j (x) = 1

2π

∫ ∞

−∞
exp (−iux)
φε(j) (u)

{
φ̂X∗

(j)
(u)− φX∗

(j)
(u)
}
du. (A.4)

Note that φX∗
(j)
(u) = E

{
exp

(
iuX∗

i(j)

)}
and φ̂X∗

(j)
(u) is given by (14); then

φ̂X∗
(j)
(u)− φX∗

(j)
(u)



46 L.-P. Chen and G. Y. Yi

=
{

1

n

n∑
i=1

exp
(

iuX∗
i(j)

)}∫ ∞

−∞
exp (iuhz)K(z)dz− E

{
exp

(
iuX∗

i(j)

)}
. (A.5)

By Conditions (C1) and (C2) and the finiteness of
∫∞
−∞ u

rK(u)du for all r ∈
N, applying the Taylor series expansion of the exponential function gives that∫∞
−∞ exp (iuhz)K(u)du = 1 + o(n− 1

5 ). Combining with (A.5) gives

φ̂X∗
(j)
(u)− φX∗

(j)
(u) = 1

n

n∑
i=1

exp
(

iuX∗
i(j)

)
− E

{
exp

(
iuX∗

i(j)

)}
+ o(n− 6

5 ). (A.6)

Let Zi = exp
(

iuX∗
i(j)

)
, which is a complex random variable. By Theorem 1.2

of Isaev and McKay (2016), we have

∣∣∣E [exp {Zi − E(Zi)}
]− 1

∣∣∣ ≤ exp

(
G2

8

)
− 1, (A.7)

where G is some constant with G > diamZ � inf
{
c ∈ R

+ : P (|Z1 − Z2| > c)
= 0

}
. Note that φ̂X∗

(j)
(u) = 1

n

n∑
i=1
Zi ; then by (A.6), for any ξ2 > 0 and ν > 0,

P
(∣∣∣φ̂X∗

(j)
(u)− φX∗

(j)
(u)

∣∣∣ ≥ ξ2
)

≤ P
(

1

n

n∑
i=1

∣∣∣Zi − E(Zi)
∣∣∣ ≥ ξ2 + o(n− 6

5 )

)

= P
[

exp

(
ν

n∑
i=1

∣∣∣Zi − E(Zi)
∣∣∣
)
≥ exp

{
νnξ2 + o(n− 1

5 )
}]

≤ exp
{
−νnξ2 + o(n− 1

5 )
}
E

{
exp

(
ν

n∑
i=1

∣∣∣Zi − E(Zi)
∣∣∣
)}

=
[
exp

{
−νnξ2 + o(n− 1

5 )
}]

×
[
n∏
i=1

E
{

exp
(
ν

∣∣∣Zi − E(Zi)
∣∣∣)}
]

= exp

{
nν2G2

8
− νnξ2 + o(n− 1

5 )

}
, (A.8)

where the third step is due to Markov’s inequality, the fourth step is by the
independence of the X∗

i , and the last step comes from (A.7) with Zi replaced by
νZi , so that with constant νG satisfying νG > inf{νc : P (ν|Z1 − Z2| > νc) = 0},
we have E {exp (ν|Zi − E(Zi)|)} ≤ exp

(
ν2G2

8

)
.
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To get the best upper bound, we take the right-hand side of (A.8) as the function

of ν and then minimize it. Specifically, let ϕ(ν) = nν2G2

8 − νnξ2 + o(n− 1
5 ). Since

ϕ(ν) is a quadratic function, it is easy to check that ν∗ � argminn
ν

ϕ(ν) = 4ξ2
G2 . Then

replacing ν by ν∗ in (A.8) yields

P
(∣∣∣φ̂X∗

(j)
(u)− φX∗

(j)
(u)

∣∣∣ ≥ ξ2
)
≤ exp

{
−2nξ2

2

G2 + o(n− 1
5 )

}
. (A.9)

Moreover, by (A.4) and (A.9), we observe that with a probability greater than 1 −
exp

{
− 2nξ2

2
G2 + o(n− 1

5 )

}
,

sup
x

∣∣f̂adj,j (x)− fX(j) (x)∣∣ = sup
x

∣∣f̂adj,j (x)− fadj,j (x)∣∣

≤ sup
x

{
1

2π

∫ ∞

−∞
exp (−iux)
φε(j) (u)

∣∣∣φ̂X∗
(j)
(u)− φX∗

(j)
(u)

∣∣∣ du
}

≤
(

sup
x

1

2π

∫ ∞

−∞
exp (−iux)
φε(j) (u)

du

)
ξ2,

where the first equality is due to (A.3), the last step comes from (A.9), and the
improper integral

∫∞
−∞

exp(−iux)
φε(j) (u)

du is shown to converge to a finite value (e.g.,

Marsden & Hoffman 1999, Proposition 4.3.9).
In other words,

P

{
sup
x

∣∣f̂adj,j (x)− fX(j) (x)∣∣ ≥
(

sup
x

1

2π

∫ ∞

−∞
exp (−iux)
φε(j) (u)

du

)
ξ2

}

≤ exp

{
−2nξ2

2

G2 + o(n− 1
5 )

}
.

Specifying ξ∗ =
(

sup
x

1
2π

∫∞
−∞

exp(−iux)
φε(j) (u)

du

)
ξ2 gives that

P

(
sup
x

∣∣f̂adj,j (x)− fX(j) (x)∣∣ ≥ ξ∗
)
≤ κ3 exp

{
−2nξ∗2

G2 + o(n− 1
5 )

}
,

where κ3 � exp
{

2nξ∗2

G2 − 2nξ2

G2

}
, which is positive. Thus, by the definition of the

cumulative distribution function and (16), we conclude the desired result (A.2). ��
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B. Proofs of Main Theorems

B.1 Proof of Theorem 1

Part 1 We prove (19).
Since ωj and ω̂j are formulated in terms of dov(·, ·) and the associated estimates,
to show the desired result, it suffices to examine dov(·, ·) and its estimates.

Let ω∗j � d̂cov(FX(j) (X(j)), F (Y )) = M̃j,1 + M̃j,2 − 2M̃j,3, where M̃j,k with

k = 1, 2, 3 has the same form as M̂j,k in (4) with F̂X(j) (X(j)) and F̂ (Y ) replaced by
FX(j) (X(j)) and F(Y ), respectively. Therefore, the difference between ω̂j and ωj
can be expressed as

ω̂∗j − ωj =
(
ω̂∗j − ω∗j

)
+
(
ω∗j − ωj

)
. (B.1)

Similar to the derivation of Li et al. (2012), we can show that

P

(
max

j=1,··· ,p

∣∣∣ω∗j − ωj
∣∣∣ > ξ

)
= O

{
p exp

(
−c̃1nξ

2
)}

(B.2)

for some positive constants c̃1 and ξ .
On the other hand, we examine ω̂j − ω∗j by writing

ω̂j − ω∗j =
(
M̂j,1 − M̃j,1

)+ (M̂j,2 − M̃j,2)− 2
(
M̂j,3 − M̃j,3

)
. (B.3)

Since the derivations of M̂j,2−M̃j,2 and M̂j,3−M̃j,3 are similar to those of M̂j,1−
M̃j,1, we only present the argument for the latter case.

By adding and subtracting 1
n2

n∑
i=1

n∑
k=1

{ ∣∣F̂adj,j (Xi(j))− F̂adj,j (Xk(j))∣∣ |F(Yi)−
F(Yk)|

}
, we obtain that

M̂j,1 − M̃j,1

=
[
M̂j,1 − 1

n2

n∑
i=1

n∑
k=1

{ ∣∣F̂adj,j (Xi(j))− F̂adj,j (Xk(j))∣∣ |F(Yi)− F(Yk)|
}]

+
[

1

n2

n∑
i=1

n∑
k=1

{ ∣∣F̂adj,j (Xi(j))− F̂adj,j (Xk(j))∣∣ |F(Yi)− F(Yk)|
}
− M̃j,1

]

= 1

n2

n∑
i=1

n∑
k=1

{∣∣F̂adj,j (Xi(j))− F̂adj,j (Xk(j))∣∣ (∣∣F̂ (Yi)− F̂ (Yk)∣∣− |F(Yi)− F(Yk)|
)}

+ 1

n2

n∑
i=1

n∑
k=1

{
|F(Yi)− F(Yk)|

(∣∣∣F̂adj,j (Xi(j))− F̂X(j) (Xk(j))
∣∣∣
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−
∣∣∣Fadj,j (Xi(j))− FX(j) (Xk(j))

∣∣∣)}

� S1 + S2. (B.4)

First, we examine S1. Since F̂adj,j (x) is the estimated cumulative distribution
function with 0 ≤ F̂adj,j (x) ≤ 1, then for any i and k, we have that

∣∣F̂adj,j (Xi(j))− F̂adj,j (Xk(j))∣∣ ≤ 1. (B.5)

By the triangle inequality, we have that

∣∣F̂ (Yi)− F̂ (Yk)∣∣− |F(Yi)− F(Yk)| ≤
∣∣F̂ (Yi)− F(Yi)∣∣+ ∣∣F̂ (Yk)− F(Yk)∣∣ .

(B.6)

Then by (B.6), we have that

P

{∣∣∣∣ ∣∣F̂ (Yi)− F̂ (Yk)∣∣− |F(Yi)− F(Yk)|
∣∣∣∣ > ξ

}

≤ P {(∣∣F̂ (Yi)− F(Yi)∣∣+ ∣∣F̂ (Yk)− F(Yk)∣∣) > ξ}

≤ P
{

sup
t∈[0,τ ]

∣∣F̂ (t)− F(t)∣∣+ sup
t∈[0,τ ]

∣∣F̂ (t)− F(t)∣∣ > ξ
}

= P
{

2 sup
t∈[0,τ ]

∣∣F̂ (t)− F(t)∣∣ > ξ
}

= P
{

sup
t∈[0,τ ]

∣∣F̂ (t)− F(t)∣∣ > ξ
2

}

≤ κ1 exp

(
−1

4
nξ2η4κ2

)
, (B.7)

where the last step is due to Lemma 1 with ξ in the right-hand side of (A.1) replaced
by ξ

2 . Therefore, combining (B.5) and (B.7) gives

P
(∣∣S1

∣∣ > ξ) ≤ κ1 exp

(
−1

4
nξ2η4κ2

)
. (B.8)

Next, we examine S2 in a similar manner. Similar to (B.5), we have that

|F(Yi)− F(Yk)| ≤ 1. (B.9)
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Similar to the arguments for (B.7), we obtain that

P

{∣∣∣∣
∣∣F̂adj,j (Xi(j))− F̂X(j) (Xk(j))∣∣− ∣∣Fadj,j (Xi(j))− FX(j) (Xk(j))∣∣

∣∣∣∣ > ξ
}

≤ κ3 exp

{
− nξ

2

2G2
+ o(n− 1

5 )

}
. (B.10)

Therefore, combining (B.9) and (B.10) yields

P
(∣∣S2

∣∣ > ξ) ≤ κ3 exp

{
− nξ

2

2G2 + o(n− 1
5 )

}
. (B.11)

Finally, combining (B.4), (B.8), and (B.11), the probabilistic bound of M̂j,1 −
M̃j,1 is given by

P
(∣∣M̂j,1 − M̃j,1∣∣ > ξ) = P (∣∣S1 + S2

∣∣ > ξ) (B.12)

≤ P (∣∣S1
∣∣+ ∣∣S2

∣∣ > ξ)

≤ P
(∣∣S1

∣∣ > ξ
2

)
+ P

(∣∣S2
∣∣ > ξ

2

)

≤ κ1 exp

(
− 1

16
nξ2η4κ2

)
+ κ3 exp

{
− nξ

2

8G2 + o(n− 1
5 )

}
.

Furthermore, similar derivations show that

P
(∣∣M̂j,2 − M̃j,2∣∣ > ξ) ≤ κ1 exp

(
− 1

16
nξ2η4κ2

)

+κ3 exp

{
− nξ

2

8G2
+ o(n− 1

5 )

}
(B.13)

and

P
(∣∣M̂j,3 − M̃j,3∣∣ > ξ) ≤ κ1 exp

(
− 1

16
nξ2η4κ2

)

+κ3 exp

{
− nξ

2

8G2
+ o(n− 1

5 )

}
. (B.14)

Noting that the upper bounds in (B.12)–(B.14) are dominated by exp
(−c∗nξ2

)
for certain constant c∗, we apply (B.12)–(B.14) to (B.3) and obtain that

P
(∣∣∣ω̂j − ω∗j

∣∣∣ > ξ) = O {exp
(
−c̃2nξ

2
)}

(B.15)
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for some c̃2 > 0. Thus, combining (B.2) and (B.15) with (B.1) and specifying
ξ = cn−ζ for the constants c and ζ described in Condition (C4) yield the desired
result.

Part 2 We prove (20).
Let J = min

j∈I
∣∣ωj ∣∣− max

j∈Ic
∣∣ωj ∣∣. The left-hand side of (20) can be expressed as

P

(
max
j∈Ic

∣∣ω̂j ∣∣ ≥ min
j∈I

∣∣ω̂j ∣∣
)
= P

(
max
j∈Ic

∣∣ω̂j ∣∣− max
j∈Ic

∣∣ωj ∣∣ ≥ min
j∈I

∣∣ω̂j ∣∣− max
j∈Ic

∣∣ωj ∣∣
)

= P
(

max
j∈Ic

∣∣ω̂j ∣∣− max
j∈Ic

∣∣ωj ∣∣ ≥ min
j∈I

∣∣ω̂j ∣∣− min
j∈I

∣∣ωj ∣∣+ J
)

≤ P
(

max
j∈Ic

∣∣ω̂j − ωj ∣∣+ max
j∈I

∣∣ω̂j − ωj ∣∣ ≥ J
)

≤ P
(

2 max
j=1,··· ,p

∣∣ω̂j − ωj ∣∣ ≥ J
)

= O
{

exp

(
−1

4
Dnv2

0

)}
,

where the last step comes from the result in Part 1 and Condition (C5). �

B.2 Proof of Theorem 2

Similar to the derivations of Li et al. (2012), one can obtain that

{
max
j∈I

∣∣ω̂j − ωj ∣∣ ≤ cn−ζ
}
⊆ {
I ⊆ Î} .

It gives

P
(
I ⊆ Î) ≥ 1 − P

(
max
j∈I

∣∣ω̂j − ωj ∣∣ ≤ cn−ζ
)

≥ 1 − qP (∣∣ω̂j − ωj ∣∣ ≤ cn−ζ )

≥ 1 −O
{
q exp

(
−Dn1−2ζ

)}
,

where the last step comes from Theorem 1. ��
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Simultaneous Control of False Discovery
Rate and Sensitivity Using Least Angle
Regressions in High-Dimensional Data
Analysis

Bangxin Zhao and Wenqing He

Abstract Controlling the false discovery rate (FDR) and maintaining the high
sensitivity are key desiderata in post-selection inference in high-dimensional data
analysis. Least Angle Regression (LARS) is an efficient variable selection method,
and it provides a solution path along which the entered predictors always have the
same absolute correlation with the current residual. In this chapter, we propose a
new method to control the FDR and sensitivity simultaneously for high-dimensional
post-selection inference using least angle regression, termed Cosine PoSI. Cosine
PoSI focuses on the geometric aspect of least angle regression: in each step of the
LARS algorithm, the proposed Cosine PoSI method makes use of the angle between
the entering variable and the current residual and treats this angle as a random
variable that follows a cosine distribution. Given the collection of the possible
angles, the variable selection path is stopped using hypothesis testing based on the
limiting distribution of the maximum angle that can be obtained through the order
statistics of the cosine distribution. We show that both the sensitivity and the FDR
can be controlled by using the stopping criteria. Simulation studies and a real-data
analysis are conducted to assess the effectiveness of the proposed method.

Keywords False discovery rate · High-dimensional data · Least angle
regression · Sensitivity

1 Introduction

In high-dimensional data analysis, the assumption of sparsity is often taken, and
therefore, the variable selection is usually conducted to obtain the possible important
variables that may have real effects on the response. The inference of the final
model is conducted based on the selected variables and is therefore affected by
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the selection procedure for the important variables. In this aspect, methods from
classical statistical inference theory may be invalid due to the stochastic components
in the high-dimensional structure. Some recent developments on making inference
while doing variable selection using LASSO and forward-type regression can be
found in the literature. Relatively recent approaches on post-selection inference were
discussed in Berk et al. (2013), Lockhart et al. (2014), and Lee et al. (2016). Berk
et al. (2013) tackled a valid post-selection inference (PoSI) problem by forming
statistical tests and obtaining confidence intervals in linear models after selecting
a subset of variables in a data-driven fashion. Lockhart et al. (2014) and Lee
et al. (2016) illustrated the post-selection inference of LASSO by forming exact
hypothesis tests and constructing confidence intervals, respectively.

Assuming the relationship between the response and the predictor variables can
be postulated through a linear model:

Y = Xβ + ε, (1)

where X ∈ R
n×p, Xi ∈ R

p×1 is the ith column vector of X, cov(Xi ) = �, i =
1, ..., n, β ∈ R

p is the vector of the coefficient of the respective covariates, and
ε ∼ N(0, σ 2I ) is the noise in the model.

For high-dimensional data analysis with p > n, variables selection is often
applied to obtain variables that have real relationship with the response through
regularization:

β̂ = arg min
β

{
‖Y − Xβ‖2

2 + pλ(β)
}
,

where pλ(β) is the penalty function of the coefficients β and λ ≥ 0 is a tuning
parameter. Many regularization methods with different penalty functions have been
proposed in the literature. For example, LASSO regularization (Tibshirani 1996), or
an L1 penalty, takes the absolute value of the coefficients as the penalty

β̂ = arg min
β

{
‖Y − Xβ‖2

2 + λ‖β‖1

}
. (2)

The LASSO solution path β̂(λ) can be viewed as a continuous piecewise linear
function of the tuning parameter λ with a sequence of decreasing knots, i.e., λ1 ≥
λ2 ≥ · · · ≥ λn ≥ 0. To choose a predictor that enters the LASSO solution path at
a given knot, Lockhart et al. (2014) proposed a covariance test statistic. LetMk =
{j1, . . . , jk} be the LASSO solution path with increasing complexity controlled by
the tuning parameter λ. The corresponding tuning parameter at each step is λi , i =
1, . . . , k. Note that λ0 = ∞ corresponds toM0 = ∅. The jkth (jk ≥ 2) predictor
is added into the model after obtaining the solution pathMk−1. Let the estimates of
the coefficient β at the end of the k − 1th step be β̂(λk). If we refit the LASSO by
using just the variables inMk−1 with the tuning parameter λk , the estimates at the
end of this step are β̂Mk−1

(λk). The covariance test statistic of the jkth predictor
proposed in Lockhart et al. (2014) is then defined as
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Tjk =
1

σ 2 ·
(
〈Y,Xβ̂(λk)〉 − 〈Y,XMk−1 β̂Mk−1

(λk)〉
)
. (3)

The statistic Tjk measures how much contribution Xjk made to improve the fitted
model over the interval (λk−1, λk). At a high probability, a larger value of Tjk
determines bigger contribution of the variable Xjk in the modelMk−1

⋃{jk}. Under
the null hypothesis that all truly important variables are contained in the model

Mk−1
⋃{jk}, Tjk

d→ exp(1), as n, p→∞.
Lee et al. (2016) discussed a general scheme for post-selection inference that

yields exact p-values and confidence intervals in the Gaussian case. Recall the
linear model (1) with μ = Xβ and ε ∼ N(0, σ 2I ). Under the deterministic design
matrix setting, y ∼ N(μ, σ 2I ). For a given matrix M and vector b, a set of linear
inequalities in y, i.e., {My ≤ b}, can be used for variable selection. Let M be
the current solution set and η = XM(XTMXM)−1ej , j = 1, 2, . . . , |M|, where ej
is a vector having 1 for the j th element and 0’s elsewhere. Inferences about ηTμ

conditional on {My ≤ b} can be made using a truncated normal distribution.
This property provides the possibility of constructing a 1 − α level selection

interval for ηTμ, which can be obtained by solving the inequalities ηTμ such that
P(ηTμ) ≥ 1 − α/2 and P(ηTμ) ≤ α/2, respectively.

The path-based regression algorithms are widely used in high-dimensional
statistics Fan & Lv (2010), such as forward-type regression, LASSO (Tibshirani
1996), LARS (Efron et al. 2004), SIS (Fan & Lv 2008), and DTCCS (Zhao et al.
2021). To obtain a final model using these methodologies, variables are added either
one by one as in LARS and LASSO, or one group after another as in DTCCS. For
the LASSO method, the number of non-zero variables in the “best” final model only
depends on a single tuning parameter, which means that a sequence of “knots” of
tuning parameters determine different final models. For the DTCCS, the candidate
model size is predetermined, and a group of monotone values of tuning parameters
is used to form a final model.

Since the final model is determined by either the tuning parameter as in
LASSO or the predetermined number of variables in the final model as in DTCCS,
there might be unimportant variables being selected in the final model. The false
discovery rate (FDR) can be used to assess the final model (G’Sell et al. 2016;
Li & Barber 2017). Let Mk = {j1, . . . , jk} be the important variable solution
set with increasing complexity. G’Sell et al. (2016) proposed the “ForwardStop”
testing procedures and a stopping point k̂ to control the FDR. Li and Barber (2017)
develop a family of “accumulation tests” to choose a cutoff k̂ to evaluate the model
adequacy and control the FDR. On one side, we would like the model to be simple
(parsimony principle), but on the other side, the model should fit the date well
(adequacy principle). There is often a trade-off between these two aspects, and the
FDR can be used to control the trade-off. A conservative FDR control may induce
an oversimplified model. We follow the family of “accumulation tests” and propose
a method to control the FDR and maintain a high sensitivity simultaneously for
high-dimensional post-selection inference using least angle regression.
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The rest of this chapter is organized as follows. Section 2 introduces the
inference background and the new method that can control the FDR and sensitivity
simultaneously. Numerical studies are reported in Sect. 3 to show the superb of the
proposed method in high-dimensional settings even when strong multicollinearity
exists in the predictors. The conclusion and discussion are described in Sect. 4.

2 Methodology

2.1 Cosin Distribution

Recall linear model (1) with μ = Xβ and ε ∼ N(0, σ 2I). Under the deterministic
design matrix setting, Y ∼ N(μ, �). Assuming that σ 2 is known. For a fixed
matrix Xn×p of the predictor variables, we assume that all the predictors have been
standardized to have mean 0 and unit length, and the response is also centered. We
consider the forward procedure to obtain the solution path in the LARS context.
Note that we only consider the procedure of adding variables and ignore the
possibility of deleting variables.

Let Mk be the active set that contains the entered predictors along the LARS
solution path, Xjk be the jkth predictor entering into the path, and sjk be the sign of
the correlation between the Xjk and the residual from the previous step. Following
Efron et al. (2004), define the matrix

XMk
= (. . . sjkXjk . . . )jk∈Mk

. (4)

Let SMk
be the vector containing the signs in the active set with the entering

order and XS = XMk
SMk

be the corresponding submatrix formed by extracting the
columns of X in the same order.

Let

GMk
= XTMk

XMk
and AMk

= (1TMk
G−1
Mk

1Mk
)−1/2, (5)

where 1Mk
being a vector of 1s with length being equal to the cardinality of Mk ,

denoted as |Mk|.
The direction of LARS solution path is

vMk
= XMk

(XTMk
XMk

)−11Mk
, (6)

and then the unit equiangular vector can be defined as

uMk
= vMk

‖vMk
‖ , (7)
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where ‖vMk
‖ = 1/AMk

. Hence, XTMk
uMk

= AMk
1Mk

. The correlation vector
between the equiangular direction and all predictors can be calculated by

a = XT uMk
. (8)

Let STMk
XTMk

uMk
be a subvector of a for |Mk| < n. At the kth stage of selecting

the entering predictor, let Ĉk be the largest absolute value of the correlation between
the entering variables and the current residual Zk . LARS finds the predictor that has
the smallest angle with the current residual, and proceeds in the direction of uMk

,
which has the same angle with all Xjk ’s, jk ∈ Mk , in a step size of γ̂ until the
next predictor earns its “most correlated” position. By the end of each stage, LARS
updates the mean function, i.e.,

μ̂Mk+1 = μ̂Mk
+ γ̂ uMk

, (9)

where

γ̂ = min
l /∈Mk

+
{
Ĉk − ĉl
AMk

− al ,
Ĉk + ĉl
AMk

+ al

}
, (10)

where ĉl is the current correlation of the lth remaining predictor variable and min+
indicates the smallest positive value. The mean function μ̂ can be written as

μ̂Mk
= UMk

�Mk
, (11)

where UMk
= (

u1,u2, · · · ,uk
)

and �M = (γ̂1, γ̂2, . . . , γ̂k)
T . Denote β̂(Ĉk)

as the regression coefficients of the active predictors at stage k, β̂(Ĉk) =
(XTS XS)

−1XTS UMk
�Mk

. The current correlation can also be expressed as the score
vector of the least squares criterion with entering predictor:

Ĉk = − sjk
2

∂

∂βjk

n∑
i=1

(yi − xTi β)2
∣∣∣
β=β̂(Ĉk)

. (12)

Define θ(Xjk , Zk) as the angle between the vector Xjk and Zk . Since Xjk is
standardized, we have

cos{θ(Xjk , Zk)} =
‖XT Zk‖∞
‖Zk‖2

= Ĉk

‖Zk‖2
. (13)

In general, | cos{θ(Xjk , Zk)}|, k = 1, 2, 3, . . . , diminish stochastically. LARS
solution path ends at a predetermined step or when the angle θ(Xjk , Zk) is very
close to π

2 , i.e., the remaining variable is almost orthogonal to the current residual.
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Lemma 1 For AMk
≥ 1, the sequence | cos{θ(Xjk , Zk)}|, k = 1, 2, . . . , n − 1, is

non-increasing along the LARS solution path.

Proof For simplicity, we use θk to denote θ(Xjk , Zk).

Note that Ĉk declines with k increases (Efron et al. 2004). Showing 1 ≥ Ĉ1‖Z1‖2
≥

Ĉ2‖Z2‖2
≥ . . . is equivalent to show Ĉk

Ĉk+1
≥ ‖Zk‖2‖Zk+1‖2

≥ 1, for k = 1, 2, . . . .

By Eq. (9), Zk − Zk+1 = γ̂kuMk
. Hence, γ̂ 2

k = (Zk − Zk+1)
T (Zk − Zk+1), for

k = 1, 2, . . . .
From Eq. (5), (8), (9), and (12), we obtain

Ĉk − Ĉk+1 = γ̂kAk ≥ γ̂k = ‖Zk − Zk+1‖2 ≥ ‖Zk‖2 − ‖Zk+1‖2.

The last inequality is based on the triangle inequalities. We can obtain Ĉk

Ĉk+1
≥

‖Zk‖2‖Zk+1‖2
, that is, | cos(θk)| ≥ | cos(θk+1)|, for k = 1, 2, . . . , n− 1.

Note that in the traditional linear regression model with intercept, (1/AMk
)2 is

the first element of the diagonal of hat matrix, which is always bounded by 1
n

and 1.
��

Lemma 2 For Z( �= 0) ∈ R
n, the following events are equivalent:

{‖Zk+1‖2 cos θk+1 ≤ ‖Zk‖2 cos θk ≤ ‖Zk−1‖2 cos θk−1} = {θk−1 ≤ θk ≤ θk+1}.

Proof The event in the left hand is equivalent to {Ĉk+1 ≤ Ĉk ≤ Ĉk−1}, for k =
2, 3, . . . , which has the monotone property as shown in Efron et al. (2004). The
monotonicity of θ ’s and the one-to-one correspondence of Ĉk and θk , k = 2, 3, . . .
have been verified in Lemma 1. Hence, the above events are equivalent.

Recall in the linear regression model (1), negligible or zero value of residual
ei = yi − xTi β̂ shows a good prediction. In the LARS context, the absolute value of
the corresponding angle at each knot is bounded by π

2 , and no more predictor will
enter the model once the angle is “big” enough. We consider the angle close to π

2 to
be “big” enough.

We can make inference using the angle by assuming the angles follow a
(truncated) cosine distribution. We connect the angle θk of each LARS solution path
to the incremental null hypothesis that measures whetherMk statistically surpasses
Mk−1 or not. The limiting distribution of the maximum angle can be used to do an
efficient and robust significance test for each predictor variable.

We propose a truncated cosine distribution in a data-driven fashion. Let θ(1) and
θ(n) be the minimum and maximum order statistics of θ ’s, respectively. Under the
domain of [θ(1), θ(n)], we defined the following (truncated) cosine distribution with
the density function:
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f (θ) =

⎧⎪⎨
⎪⎩

1

2b
cos

(
θ − a
b

)
if θ(1) ≤ θ ≤ θ(n),

0 otherwise,

(14)

where the location parameter a = (θ(1) + θ(n))/2 and the scale parameter b =
(θ(n) − θ(1))/π .

Its cumulative density function (CDF) is given by

F(θ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if θ < θ(1),

sin2
(
θ − a

2b
+ π

4

)
if θ(1) ≤ θ ≤ θ(n),

1 if θ > θ(n).

(15)

This CDF, F(θ), of cosine distribution can be used to do hypotheses testing of
whether “Mk improves overMk−1” by the following theorem.

Theorem 1 Assume that the covariate vectors Xj ’s, j = 1, . . . , p, are linearly
independent in the LARS solution path. Let θ(j), j = 1, . . . , n, be the corresponding
angle at each knot Ĉj in the first n steps. a and b are defined in Eq. (14). If Lemma 1
and 2 hold:

n

2b2

(π
2
− θ(n)

)2 d→ χ2
2 as n→∞, (16)

where χ2
2 denotes a chi-square random variable with df = 2.

Proof We know that θ(j)’s, j = 1, . . . , n, are monotone increasing. Hence, θ(1) and
θ(n) can be considered as the minimum and maximum order statistics of θ ’s. As the
dimension increases, π2 − θ(n) will diminish stochastically.

Let θ̃n = n
2b2 (

π
2 − θ(n))2. From the CDF of the cosine distribution Eq. (15) and

the basic trigonometric formula, the distribution of θ̃n can be derived as follows:

P(θ̃n ≤ g) = P
{
n

2b2

(π
2
− θ(n)

)2 ≤ g
}

= P
{
θ(n) ≥ π

2
− b ·

(
2g

n

)1/2
}

= 1 − sin2n

⎡
⎢⎣
π
2 − b ·

(
2g
n

)1/2 − a
2b

+ π
4

⎤
⎥⎦
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= 1 − cos2n

[
1

2

(
2g

n

)1/2

+ π
4
− π

4b
+ a

2b

]
, over 0 ≤ g ≤ nπ2

8b2 .

Therefore, the limiting distribution of θ̃n is obtained as

lim
n→∞P(θ̃n ≤ g) = 1 − lim

n→∞ cos2n

[
1

2

(
2g

n

)1/2

+ π
4
− π

4b
+ a

2b

]

≈ 1 − e−g/2, g ≥ 0,

since cos2n
[

1
2b (

2g
n
)1/2 + π

4 − π
4b + a

2b

]
≈ (1 − g

4n )
2n = e−g/2 as n→∞.

Hence, θ̃n
d→ χ2

2 .

The limiting distribution of θ̃n determines if the corresponding angle at knot Ĉk is
“big” enough. A sequence of p-values can be obtained by using the above property
P(χ2

2 > θ̃j ), j = 1, . . . , n.

2.2 Selection Criteria

Definition 1 (Family of “Accumulation Tests,” Li & Barber, 2017) LetMm be
the model that includes the firstm entries. For an integer k ∈ {1, . . . , m}, a sequence
of null hypotheses, Hj , j = 1, 2, . . . , k, measures whether modelMj statistically
surpasses Mj−1 or not. Suppose there is a sequence of uniformly distributed p-
values, p1, p2, . . . , pk ∈ [0, 1] corresponding to the hypotheses Hj . For a given

function φ : [0, 1] �→ [0,∞) satisfying
∫ 1
t=0 φ(t)dt = 1, where φ is termed

“accumulation function,” the “accumulation tests” determine the stopping point k̂
to control FDR at level α

k̂φ = max

⎧⎨
⎩k ∈ {1, . . . , m} : 1

k

k∑
j=1

φ(pj ) ≤ α
⎫⎬
⎭. (17)

We suggest using φ(x) = x√
1−x2

to choose the stopping point k̂φ . Testing the

hypothesis H0 : the j th angle is the maximum one that is equivalent to testing
whether the current model is adequate along the LARS solution path. We reject all
hypotheses up to k̂φ to obtain the final model.
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3 Numerical Studies

A few related R packages have been available in the R community since 2015.
The most important packages are PoSI (Berk et al. 2013), covTest (Lockhart et al.
2014), and selectiveInference (Lee et al. 2016). Among them, packages PoSI
and covTest cannot handle the high-dimensional case of “small n and large p.”
The functions in selectiveInference incorporated the methods from Lockhart et al.
(2014), Lee et al. (2016), G’Sell et al. (2016). We term it LARS-sI for the methods
from selectiveInference in the LARS context. We assess the performance of the
proposed cosine post-selection inference (termed cosine PoSI) method by extensive
simulation studies and compare the results with those from LARS-sI. The function
φ = x√

1−x2
is used to determine the stop point along the LARS solution path, and

the test significance level is set to be 0.01. The package selectiveInference uses the
ForwardStop (G’Sell et al. 2016) to determine the stop point with φ(x) = log( 1

1−x ),
which is a special case of the accumulation test. The selected model size and the
selection accuracy of the selection are calculated by the averaged values of a certain
number of replications and are denoted as E(|Ms |) and P (T ⊂Ms), respectively,
where T is the set of all “true” variables andMs is the set of selected variables.

In Theorem 1, the covariate vectors are assumed to be independent. We would
like to assess the robustness of the proposed method against this assumption. In gen-
eral, a strong correlation among the predictors creates difficulty in high-dimensional
variable screening/selection. We will specifically evaluate the performance of the
proposed method in different degrees of correlation among the predictors.

3.1 Simulation Studies

To assess the performance of the proposed method, we examine two scenarios. In
the first scenario, compound symmetry structure of �’s is used to assess whether
the proposed method can overcome issues associated with strong correlation among
predictors. In the second scenario, auto-regressive correlation structure of �’s is
used to show that the proposed method is capable of getting parsimonious models.
100 replications of simulation are run for each scenario.

3.1.1 Scenario I: Compound Symmetry Structure of �

For the first scenario, we use model (1) with true β = (5, 5, 5, 0, . . . , 0)T . In this
model, X1, . . . ,Xp are the p predictors and ε ∼ N(0, σ 2In) is the noise that is
independent of the predictors. In this simulation, a sample of (X1, . . . , Xp) with
size n was drawn from a multivariate normal distribution N(0, �) with covariance
matrix� = (1−ρ)Ip+ρ11T , where 1 = (1, . . . , 1)T . 16 settings of the parameter
combinations are generated by using n = 100 or 200, p = 100 or 1000, ρ =
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Table 1 Selected model size and selection accuracy for Scenario I

p = 100 p = 1000

n Method Result ρ=0 ρ = 0.1 ρ = 0.5 ρ = 0.9 ρ=0 ρ = 0.1 ρ = 0.5 ρ = 0.9

100 cosine PoSI E(|Ms |) 3.05 3.17 7.77 11.35 3.23 4.83 16.24 23.90

P (T ⊂Ms ) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

LARS-sI E(|Ms |) 1.00 1.04 1.02 1.00 1.02 1.00 1.00 1.00

P (T ⊂Ms ) 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

200 cosine PoSI E(|Ms |) 3.00 3.00 5.68 10.02 3.00 3.05 10.98 19.94

P (T ⊂Ms ) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

LARS-sI E(|Ms |) 2.94 3.00 3.00 2.96 1.04 1.04 1.00 1.00

P (T ⊂Ms ) 0.93 0.99 0.98 0.98 0.01 0.00 0.00 0.00

0, 0.1, 0.5, or 0.9, respectively. This scenario follows Example I in Fan and Lv
(2008) with a fixed σ 2 = 1.

Table 1 reports the average model sizes and percentage of all the true predictors
included in the selected models. It shows that the proposed cosine PoSI method
works perfectly for the cases of n = 200, p = 100, 1000, and ρ = 0 (independent
predictor variables) and works very well for the cases of n = 100, p = 100, 1000,
and ρ = 0. The selected model size increases as the value of ρ increases, but the
increments are very small. The selection accuracy is perfect for all the cases, which
means the selected final model always contains the entire set of true covariates
(with non-zero coefficients). The competitor LARS-sI also works very well for the
low-dimensional case of n > p (n = 200, p = 100) with an over 90% selection
accuracy, but for the high-dimensional cases p ≥ n, LARS-sI is very conservative
by only keeping the “strongest” (the first one) variable in the model.

3.1.2 Scenario II: Auto-Regressive Correlation

In this scenario, we use model (1) with β = (3, 1.5, 0, 0, 2, 0, . . . , 0)T . The
predictors X1, . . . ,Xp and the noise ε are generated the same as in the first scenario,
but having different covariance matrices for the predictors. The covariance matrix�
has entries σii = 1, i = 1, . . . , p and σij = ρ|i−j |, i �= j . This example is modified
from Example 1 of Tibshirani (1996) with ρ being set at 0, 0.5, 0.7, or 0.9.

The average model sizes and percentage of all the true predictors included in
the selected models are reported in Table 2. We see the same pattern as in the
first scenario that the proposed post-selection method always selects the true model
with an accuracy rate of 100%, even when the predictors are highly correlated as
with ρ = 0.9, with a small increment of model size. The selected model size
increases as the value of ρ increases. The competitor LARS-sI works fine for the
low-dimensional case (n > p) with a bit low accuracy between 50 and 80%. Since
it always misses some predictors by only keeping one predictor in the final model
for high-dimensional cases (n < p), the accuracy is zero.
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Table 2 Selected model size and selection accuracy for Scenario II

p = 100 p = 1000

n Method Result ρ = 0 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0 ρ = 0.5 ρ = 0.7 ρ = 0.9

100 cosine PoSI E(|Ms |) 3.03 3.15 3.51 4.24 3.23 3.33 3.79 4.71

P (T ⊂Ms ) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

LARS-sI E(|Ms |) 1.12 1.04 1.00 1.00 1.02 1.00 1.00 1.00

P (T ⊂Ms ) 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

200 cosine PoSI E(|Ms |) 3.00 3.04 3.39 4.10 3.00 3.04 3.39 4.01

P (T ⊂Ms ) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

LARS-sI E(|Ms |) 2.74 2.73 2.77 2.37 1.00 1.00 1.00 1.00

P (T ⊂Ms ) 0.76 0.80 0.82 0.46 0.00 0.00 0.00 0.00

3.2 A Real-Data Application

We apply the proposed method on the data reported in Scheetz et al. (2006)
to illustrate the usage of the proposed method. In this chapter, F1 rats were
intercrossed, and the eye tissues from 120 twelve-week-old male F2 offspring rates
were obtained. The microarray technique is then used to obtain the gene expressions
of those eye tissues from the rats for over 31042 genes. Among those genes, one
gene labeled “T RIM32” was recently found causing the Bardet–Biedl syndrome,
and it is believed to be linked with a small number of other genes. We are interested
in finding those genes that are possibly linked to the “T RIM32” using the gene
expression data.

A subset of the microarray study can be found in the R package flare. The dataset
contains two parts:

(1) The gene expression data of 200 genes for the 120 rats are recorded in X—an
120 × 200 matrix.

(2) The gene expression data of the gene “T RIM32” for the 120 rats are recorded
in a vector Y.

The relationship of the gene expression of “T RIM32” and other genes is
postulated using model (1). The Leave-One-Out (LOO) cross-validation technique
is used to estimate the model accuracy in the selection process, measured by the total
square error

∑n
i=1(Yi − Ŷi )2. We invoke the methods to obtain the models using

the post-selection inference procedures on the training set, then obtain the OLS
estimator of those variables via a linear regression, and use the obtained model to
predict the gene expression of the “T RIM32” gene that was left out. Table 3 reports
the mean and the standard deviation (SD) of the total square errors for prediction and
the mean and median of model sizes from the n training sets. It can be seen that both
the mean total squared error and the standard error from the proposed cosine PoSI
are much smaller than those from LARS-sI, which justifies that the proposed cosine
PoSI method keeps the useful genes in the post-selection inference procedure, while
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Table 3 Data analysis of eye microarray data (LOOCV)

Mean SD Model size Model size
Method square errors square errors (mean) (median)

cosine PoSI 0.3548 0.3523 27.6750 28.0000

LARS-sI 15.5772 1.5019 1.0000 1.0000

Table 4 Final models for
eye microarray full data

Method Model Size MSE Adjusted R2

cosine PoSI 29 0.0041 0.8009

LARS-sI 1 0.0087 0.5776

LARS sI is too conservative and most likely screens out many relevant genes. The
LARS sI still only contains the very first entered variable in analysis.

We then apply the cosine PoSI method, in contrast to the LARS-sI approach,
to obtain a final model by applying them to the full data to first select relevant
genes and then obtain the final model by estimating the coefficients in the linear
regression. Table 4 reports the selected final model size, the mean square error
(MSE), and adjusted R2 for the two approaches. We see the proposed cosine
PoSI method contains a larger model than that from the LARS-sI procedure.
The final model from cosine PoSI method keeps 29 genes (ID in package flare):
{153, 55, 99, 87, 42, 85, 180, 177, 109, 90, 199, 112, 36, 185, 62, 136, 200, 155,
187, 146, 188, 134, 141, 172, 127, 11, 54, 181, 164}, while the final model from the
LARS-sI procedure is too conservative and only includes the first gene. The adjusted
R2 from the proposed model is 0.8009, while it is only 0.5776, which means some
useful genes are screened out in the LARS-sI. We also note that our own LARS
code generates the same solution path as that of the function “lar” in the package
selectiveInference.

4 Discussion

When using a traditional linear regression model, a fixed hypothesis test is con-
ducted to observe which variables are significant at significance level α and report
(1 − α) confidence intervals for the significant variables. The randomness aspect in
the high-dimensional context brought confliction between model selection and the
inference. In high-dimensional data analysis, the data-driven selection procedure is
critically important, and the model should be selected to be adaptive to the data
instead of devising a model before collecting data. Hence, a sequence of random
hypothesis tests is required to do post-selection inference (also termed selective
inference). In this chapter, we proposed a cosine PoSI procedure to select variables
via least angle regression path, which is a novel post-selection inference method
based on a cosine distribution. We discuss the geometric aspect in LARS and apply
the cosine PoSI in the LARS solution path to make inference regarding the variables
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to be included in the final model. Comparing with the methods in R package
selectiveInference, the proposed cosine PoSI performs better in the combination of
“small n and large p” scenarios than that of the methods in selectiveInference. The
proposed cosine PoSI method has the advantage in providing a parsimony model for
independent predictor variables and is robust with predictor “multicollinearity.”

Lee et al. (2016)’s “Polyhedral selection” draws inferences about ηTμ condi-
tional on the event {My ≤ b} using a truncated normal distribution. ηT y denotes
the parameter estimator constrained to a variable inM and ηT y ∼ N(ηTμ, ηT �η).

Let γ = �η(ηT �η)−1, d = y − γ ηT y, V−(d) = max
j :(Mγ )j<0

bj−(Md)j
(Mγ )j

, V+(d) =
min

j :(Mγ )j>0

bj−(Md)j
(Mγ )j

, V0(d) = min
j :(Mγ )j=0

{
bj − (Md)j

}
and V−, V+, V0 are

independent of ηT y, {My ≤ b} can be rewritten in terms of ηT y and d as follows:

{My ≤ b} = {V−(d) ≤ ηTY ≤ V+(d),V0 ≥ 0}, (18)

with eTj (X
T
MXM)−1XTMμ = ηT μ. Hence, ηT y|{My ≤ b,d = d0} is a truncated

normal between V−(d0) and V−(d0) where d0 is a fixed value of d and its CDF
follows about a standard uniform distribution.

Inspired by the “Polyhedral selection,” another cosine distribution can also be
constructed to approximate normal distribution based on the angles. The density
function and cumulative density function are given by

f (θ) =

⎧⎪⎨
⎪⎩

1

2π
(1 + cos θ) if |θ | ≤ π,

0 otherwise.
(19)

F(θ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if θ < −π,
1

2π
(π + θ + sin θ) if |θ | ≤ π,

1 if θ > π.

(20)

We conjecture that some statistics based on this cosine distribution are able
to measure how much improvement the kth entering predictor variable Xjk made
over the interval (Ĉk−1, Ĉk+1). Then the predictor variables having negligible
contribution on this interval can be screened out. We may also combine the
results with other post-selection inference methods to refine the candidate predictor
selection using LARS in high-dimensional data analysis.
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Minimum Wasserstein Distance
Estimator Under Finite Location-Scale
Mixtures

Qiong Zhang and Jiahua Chen

Abstract When a population exhibits heterogeneity, we often model it via a finite
mixture: decompose it into several different but homogeneous subpopulations. Con-
temporary practice favors learning the mixtures by maximizing the likelihood for
statistical efficiency and the convenient EM algorithm for numerical computation.
Yet the maximum likelihood estimate (MLE) is not well defined for finite location-
scale mixture in general. We hence investigate feasible alternatives to MLE such
as minimum distance estimators. Recently, the Wasserstein distance has drawn
increased attention in the machine learning community. It has intuitive geometric
interpretation and is successfully employed in many new applications. Do we gain
anything by learning finite location-scale mixtures via a minimum Wasserstein
distance estimator (MWDE)? This chapter investigates this possibility in several
respects. We find that the MWDE is consistent and derive a numerical solution
under finite location-scale mixtures. We study its robustness against outliers and
mild model mis-specifications. Our moderate scaled simulation study shows the
MWDE suffers some efficiency loss against a penalized version of MLE in general
without noticeable gain in robustness. We reaffirm the general superiority of the
likelihood-based learning strategies even for the non-regular finite location-scale
mixtures.

Keywords Finite mixture model · Location scale family · Minimum distance
estimator · Penalized maximum likelihood estimator · Wasserstein distance.

1 Introduction

Let F = {f (·|θ) : θ ∈ �} be a parametric distribution family with density function
f (·|θ) with respect to some σ -finite measure. Denote by G = ∑K

k=1wk{θk} a
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distribution assigning probability wk on θk ∈ �. A distribution with the following
density function:

f (x|G) =
∫
f (x|θ)dG(θ) =

K∑
k=1

wkf (x|θk)

is called a finite F mixture. We call f (x|θ) the subpopulation density function, θ the
subpopulation parameter, and wk the mixing weight of the kth subpopulation. We
use F(x|θ) and F(x|G) for the cumulative distribution functions (CDF) of f (x|θ)
and f (x|G), respectively. Let

GK = {
G : G =

K∑
k=1

wk{θk}, 0 ≤ wk ≤ 1,
K∑
k=1

wk = 1, θk ∈ �
}

be a space of mixing distributions with at most K support points. A mixture
distribution of (exactly) order K has its mixing distribution G being a member of
GK −GK−1.

We study the problem of learning the mixing distribution G given a set of
independent and identically distributed (IID) observations X = {x1, x2, . . . , xN }
from a mixture f (x|G). Throughout the paper, we assume the order of G is known
and F is a known location-scale family. That is,

f (x|θ) = 1

σ
f0

(x − μ
σ

)

for some probability density function f0(x) with x ∈ R with respect to Lebesgue
measure where θ = (μ, σ ) with � = {R× R

+}.
Finite mixture models provide a natural representation of heterogeneous pop-

ulation that is believed to be composed of several homogeneous subpopulations
(Pearson 1894; Schork et al. 1996). They are also useful for approximating
distributions with unknown shapes that are particularly relevant in image genera-
tion (Kolouri et al. 2018), image segmentation (Farnoosh & Zarpak 2008), object
tracking (Santosh et al. 2013), and signal processing (Plataniotis & Hatzinak 2000).

In statistics, the most fundamental task is to learn the unknown parameters.
In early days, the method of moments was the choice for its ease of com-
putation (Pearson 1894) under finite mixture models. Nowadays, the maximum
likelihood estimate (MLE) is the first choice due to its statistical efficiency and the
availability of an easy-to-use EM algorithm. Under a finite location-scale mixture
model, the log-likelihood function of G is given by

�N(G|X) =
N∑
n=1

log f (xn|G) =
N∑
n=1

log
{ K∑
k=1

wk

σk
f0

(xn − μk
σk

)}
. (1)
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At an arbitrary mixing distribution Gε = 0.5{(x1, ε)} + 0.5{(0, 1)}, we have
�N(Gε |X) → ∞ as ε → 0. Hence, the MLE of G is not well defined or
is ill defined. Various remedies, such as penalized maximum likelihood estimate
(pMLE), have been proposed to overcome this obstacle (Chen et al. 2008; Chen
& Tan 2009). At the same time, MLE can be thought of a special minimum
distance estimator. It minimizes a specific Kullback–Leibler divergence between the
empirical distribution and the assumed model F . Other divergences and distances
have been investigated in the literature as in Choi (1969); Yakowitz (1969);
Woodward et al. (1984); Clarke and Heathcote (1994); Cutler and Cordero-Brana
(1996); Deely and Kruse (1968). Recently, the Wasserstein distance has drawn
increased attention in machine learning community due to its intuitive interpretation
and good geometric properties (Evans & Matsen 2012; Arjovsky et al. 2017). The
Wasserstein distance-based estimator for learning finite mixture models is absent in
the literature.

Are there any benefits to learn finite location-scale mixtures by the minimum
Wasserstein distance estimator (MWDE)? This chapter answers this question from
several angles. We find that the MWDE is consistent and derive a numerical solution
under finite location-scale mixtures. We compare the robustness of the MWDE with
pMLE in the presence of outliers and mild model mis-specifications. We conclude
that the MWDE suffers some efficiency loss against pMLE in general without
obvious gain in robustness. Through this chapter, we better understand the pros and
cons of the MWDE under finite location-scale mixtures. We reaffirm the general
superiority of the likelihood-based learning strategies even for the non-regular finite
location-scale mixtures.

In the next section, we first introduce the Wasserstein distance and some of its
properties. This is followed by a formal definition of the MWDE, a discussion of
its existence, and consistency under finite location-scale mixtures. In Sect. 2.4,
we give some algebraic results that are essential for computing 2-Wasserstein
distance between the empirical distribution and the finite location-scale mixtures.
We then develop a BFGS algorithm scheme for computing the MWDE of the mixing
distribution. In addition, we briefly review the penalized likelihood approach and
its numerical issues. In Sect. 3, we characterize the efficiency properties of the
MWDE relative to pMLE in various circumstances via simulation. We also study
their robustness when the data contains outliers, is contaminated, or when the model
is mis-specified. We then apply both methods in an image segmentation example.
We conclude the paper with a summary in Sect. 4.

2 Wasserstein Distance and the Minimum Distance
Estimator

We introduce the Wasserstein distance and the minimum Wasserstein distance
estimator in this section.
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2.1 Wasserstein Distance

Wasserstein distance is a distance between probability measures. Let � be a
Polish space endowed with a ground distance D(·, ·) and P(�) the space of Borel
probability measures on �. Let η ∈ P(�) be a probability measure. If for some
p > 0,

∫
�

Dp(x, x0)η(dx) <∞,

for some (and thus any) x0 ∈ �, we say η has finite pth moment. Denote by
Pp(�) ⊂ P(�) the space of probability measures with finite pth moment. For
any η, ν ∈ P(�), we use �(η, ν) to denote the space of the bivariate probability
measures on �×� whose marginals are η and ν. Namely,

�(η, ν) = {π ∈ P(�2) :
∫
�

π(x, dy) = η(x),
∫
�

π(dx, y) = ν(y)}.

The p-Wasserstein distance is defined as follows.

Definition 1 (p-Wasserstein Distance) For any η, ν ∈ Pp(�) with p ≥ 1, the pth
Wasserstein distance between η and ν is

Wp(η, ν) =
{

inf
π∈�(η,ν)

∫
�2
Dp(x, y)π(dx, dy)

}1/p
.

Suppose X and Y are two random variables whose distributions are F andG and
induced probability measures are η and ν. We regard the p-Wasserstein distance
between η and ν and also the distance between random variables or distributions:
Wp(X, Y ) = Wp(F,G) = Wp(η, ν).

The p-Wasserstein distance is a distance on Pp(�) as shown by Villani (2003,
Theorem 7.3). For any η, ν, ξ ∈ Pp(�), it has the following properties:

1. Non-negativity:Wp(η, ν) ≥ 0 andWp(η, ν) = 0 if and only if η = ν.
2. Symmetry:Wp(η, ν) = Wp(ν, η).
3. Triangular inequality:Wp(η, ν) ≤ Wp(η, ξ)+Wp(ξ, ν).

The Wasserstein distance has many nice properties. Let us denote ηn
d−→ η for

convergence in distribution or measure. Villani (2003, Theorem 7.1.2) shows that it
has the following properties:

Property 1. For any q ≥ p ≥ 1,Wq(η, ν) ≥ Wp(η, ν).
Property 2. Wp(ηn, η)→ 0 as n→∞ if and only if both:

(i) ηn
d−→ η.

(ii)
∫
Dp(x, x0)ηn(dx)→

∫
Dp(x, x0)η(dx) for some (and thus any) x0 ∈ �.
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Computing the Wasserstein distance involves a challenging optimization problem
in general but has a simple solution under a special case. Suppose � is the space of
real numbers, D(x, y) = |x − y|, and F and G are univariate distributions. Let
F−1(t) := inf{x : F(x) ≥ t} and G−1(t) := inf{x : G(x) ≥ t} for t ∈ [0, 1] be
their quantile functions. We can easily compute the Wasserstein distance based on
the following property:

Property 3. Wp(F,G) =
{ ∫ 1

0 |F−1(t)−G−1(t)|pdt}1/p.

2.2 Minimum Wasserstein Distance Estimator

Let Wp(·, ·) be the p-Wasserstein distance with ground distance D(x, y) = |x −
y| for univariate random variables. Let X = {x1, x2, . . . , xN } be a set of IID
observations from finite location-scale mixture f (x|G) of order K and FN(x) =
N−1∑N

n=1 1(xn ≤ x) be the empirical distribution. We introduce the MWDE of
the mixing distribution G to be

ĜMWDE
N = arg infG∈GK Wp(FN(·), F (·|G)) = arg infG∈GK W

p
p (FN(·), F (·|G)).

(2)
As we pointed out earlier, the MLE is not well defined under finite location-scale

mixtures. Is the MWDE well defined? We examine the existence or sensibility of
the MWDE. We show that the MWDE exists when f0(·) satisfies certain conditions.

Assume that f0(0) > 0, f0(x) is bounded, continuous, and has finite pth
moment. Under these conditions, we can see

0 ≤ Wp(FN(·), F (·|G)) <∞

for any G ∈ GK . When N ≤ K , the solution to (2) merits special attention. Let
Gε = ∑N

n=1(1/N){(xn, ε)} be a mixing distribution assigning probability 1/N on
θn = (xn, ε). When ε → 0, each subpopulation in the mixture f (x|Gε) degenerates
to a point mass at xn. Hence, as ε → 0,

Wp(FN(·), F (·|Gε))→ 0.

Since none of G ∈ GK has zero distance from FN(·), the MWDE does not exist
unless we expand GK to include G0 =∑N

n=1(1/N){(xn, 0)} = limGε . To remove
this technical artifact, in the MWDE definition, we expand the space of σ to [0,∞).
We denote by F(·|(θ0, 0)) a distribution with point mass at x = θ0. With this
expansion, G0 is the MWDE when N ≤ K .

Let δ = inf{Wp(FN(·), F (·|G)) : G ∈ GK}. Clearly, 0 ≤ δ < ∞. By
definition, there exists a sequence of mixing distributions Gm ∈ GK such that
Wp(FN(·), F (·|Gm)) → δ as m → ∞. Suppose one mixing weight of Gm has
limit 0. Removing this support point and rescaling, we get a new mixing distribution
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sequence, and it still satisfiesWp(FN(·), F (·|Gm))→ δ. For this reason, we assume
that its mixing weights have non-zero limits by selecting converging subsequence if
necessary to ensure the limits exist. Further, when the mixing weights ofGm assume
their limiting values while keeping subpopulation parameters the same, we still have
Wp(FN(·), F (·|Gm)) → δ as m → ∞. In the following discussion, we therefore
discuss the sequence of mixing distributions whose mixing weights are fixed.

Suppose the first subpopulation of Gm has its scale parameter σ1 → ∞ as m→
∞. With the boundedness assumption on f0(x), the mass of this subpopulation will
spread thinly over entire R because σ−1

1 f0((x − μ1)/σ1) → 0 uniformly. For any
fixed finite interval, [a, b], this thinning makes

F(b|θ1)− F(a|θ1)→ 0

as m→∞. It implies that for any given t ∈ (0, 0.5), we have

|F−1(t |θ1)| + |F−1(1 − t |θ1)| → ∞.

This further implies for any t ∈ (0, w1/2), we have

|F−1(t |Gm)| + |F−1(1 − t |Gm)| → ∞

as m → ∞. In comparison, the empirical quantile satisfies x(1) ≤ F−1
N (t) ≤ x(N)

for any t . By Property 3 of Wp(·, ·), these lead to Wp(FN(·), F (·|Gm)) → ∞ as
m→∞. This contradicts the assumptionWp(FN(·), F (·|Gm))→ δ. Hence, σ1 →
∞ is not a possible scenario of Gm nor σk →∞ for any k.

Can a subpopulation of Gm instead have its location parameter μ → ∞?
For definitiveness, let this subpopulation correspond to θ1. Note that at least
w1{1 − F0(0)}-sized probability mass of F(x|Gm) is contained in the range
[μ1,∞). Because of this, when μ1 → ∞, we have F−1(1 − t |Gm) → ∞ for
t = w1{1 − F0(0)}/2. Therefore, Wp(FN(·), F (·|Gm)) → ∞ by Property 3. This
contradicts Wp(FN(·), F (·|Gm)) → δ < ∞. Hence, μ1 → ∞ is not a possible
scenario of Gm either. For the same reason, we cannot have μk →±∞ for any k.

After ruling out μk → ±∞ and σk → ∞, we find Gm has a converging
subsequence whose limit is a proper mixing distribution in GK . This limit is then
an MWDE and the existence is verified.

The MWDE may not be unique, and the mixing distribution may lead to a
mixture with degenerate subpopulations. We will show that the MWDE is consistent
as the sample size goes to infinity. Thus, having degenerated subpopulations in the
learned mixture is a mathematical artifact and also a sensible solution. In contrast,
no matter how large the sample size becomes, there are always degenerated mixing
distributions with unbounded likelihood values.
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2.3 Consistency of MWDE

We consider the problem when X = {x1, . . . , xN } are IID observations from a finite
location-scale mixture of order K . The true mixing distribution is denoted as G∗.
Assume that f0(x) is bounded, continuous, and has finite pth moment. We say the
location-scale mixture is identifiable if

F(x|G1) = F(x|G2)

for all x given G1,G2 ∈ GK implies G1 = G2. We allow subpopulation scale
σ = 0. The most commonly used finite location-scale mixtures, such as the normal
mixture, are well known to be identifiable (Teicher 1961). Holzmann et al. (2004)
give a sufficient condition for the identifiability of general finite location-scale
mixtures. Let ϕ(·) be the characteristic function of f0(t). The finite location-scale
mixture is identifiable if for any σ1 > σ2 > 0, limt→∞ ϕ(σ1t)/ϕ(σ2t) = 0.

We consider the MWDE based on p-Wasserstein distance with ground distance
D(x, y) = |x − y| for some p ≥ 1. The MWDE under finite location-scale mixture
model as defined in (2) is asymptotically consistent.

Theorem 1 With the same conditions on the finite location-scale mixture and same
notations above, we have the following conclusions:

1. For any sequence Gm ∈ GK and G∗ ∈ GK , Wp(F(·|Gm), F (·|G∗)) → 0

implies Gm
d−→ G∗ as m→∞.

2. The MWDE satisfiesWp(F(·|G∗), F (·|ĜMWDE
N ))→ 0 asN →∞ almost surely.

3. The MWDE is consistent:Wp(ĜMWDE
N ,G∗)→ 0 as N →∞ almost surely.

Proof We present these three conclusions in the current order that is easy to
understand. For the sake of proof, a different order is better. For ease presentation,
we write F ∗ = F(·|G∗) and Ĝ = ĜMWDE

N in this proof.
We first prove the second conclusion. By the triangular inequality and the

definition of the minimum distance estimator, we have

Wp(F
∗, F (·|ĜN)) ≤ Wp(FN, F ∗)+Wp(FN, F (·|ĜN)) ≤ 2Wp(FN, F

∗).

Note that FN is the empirical distribution and F ∗ is the true distribution; we
have FN(x) → F ∗(x) uniformly in x almost surely. At the same time, under the
assumption that F0(x) has finite pth moment, F ∗(x) also has finite pth moment.
The pth moment of FN(x) converges to that of F ∗(x) almost surely. Given the
ground distance D(x, y) = |x − y|, the pth moment in Wasserstein distance
sense is the usual moments in probability theory. By Property 2, we conclude
Wp(FN, F (·|G∗))→ 0 as both conditions there are satisfied.

Conclusion 3 is implied by Conclusions 1 and 2. With Conclusion 2 already
established, we only need to prove Conclusion 1 to complete the whole proof.
By Helly’s lemma (Van der Vaart 2000, Lemma 2.5) again, Gm has a converging
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subsequence though the limit can be a subprobability measure. Without loss of
generality, we assume thatGm itself converges with limit G̃. If G̃ is a subprobability
measure, so would be F(·|G̃). This will lead to

Wp(F(·|Gm), F (·|G∗))→ Wp(F(·|G̃), F (·|G∗)) �= 0,

which violates the theorem condition. If G̃ is a proper distribution in GK and

Wp(F(·|G̃), F (·|G∗)) = 0,

then by identifiability condition, we have G̃ = G∗. This implies Gm → G∗ and
completes the proof. ��

The multivariate normal mixture is another type of location-scale mixture. The
above consistency result of MWDE can be easily extended to finite multivariate
normal mixtures.

Theorem 2 Consider the problem when X = {x1, . . . , xN } are IID observations
from a finite multivariate normal mixture distribution of order K and ĜMWDE

N is
the minimum Wasserstein distance estimator defined by (2). Let the true mixing
distribution be G∗. The MWDE is consistent: Wp(ĜMWDE

N ,G∗) → 0 as N → ∞
almost surely.

The rigorous proof is long though the conclusion is obvious. We offer a less
formal proof based on several well-known probability theory results:

(I) A multivariate random variable sequence Yn converges in distribution to Y if
and only if aτ Yn converges to aτ Y for any unit vector a.

(II) If Y is multivariate normal if and only if aτ Y is normal for all a.
(III) The normal distribution has finite moment of any order.

Let Xm be a random vector with distribution F(·|Gm) for some Gm ∈ GK ,
m = 0, 1, 2, . . ., in a general mixture model setting. Suppose as m→ ∞, with the
notation we introduced previously

Wp(Xm,X0)→ 0.

Then for any unit vector a, based on property 2 of the Wasserstein distance and the
result (I), we can see that

Wp(aτXm, aτX0)→ 0.

Next, we apply this result to normal mixture so that F(·|Gm) becomes�(·|Gm) that
stands for a finite multivariate normal mixture with mixing distribution Gm. In this
case, Xm is a random vector with distribution �(·|Gm). Let (μk, �k) be generic
subpopulation parameters. We can see that the distribution of aτXm, �a(·|Gm) is
a finite normal mixture with subpopulation parameters (aτμk, a

τ�ka), and mixing
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weighs the same as those of Gm. Let the mixing distributions after projection be
Gm,a and G0,a.

By the same argument in the proof of Theorem 1,

Wp(�(·|ĜN),�(·|G∗))→ 0

almost surely as N →∞. This implies

Wp(�a(·|ĜN),�a(·|G∗))→ 0

almost surely as N → ∞ for any a. Hence, by Conclusion 1 of Theorem 1,

ĜN,a
d−→ Ĝ∗

a almost surely for any unit vector a. We therefore conclude the

consistency result: ĜN
d−→ Ĝ∗ almost surely.

2.4 Numerical Solution to MWDE

Both in applications and in simulation experiments, we need an effective way to
compute the MWDE. We develop an algorithm that leverages the explicit form of
the Wasserstein distance between two measures on R for the numerical solution to
the MWDE. The strategy works for any p-Wasserstein distance, but we only provide
specifics for p = 2 as it is the most widely used.

Let Y be a random variable with distribution f0(·). Denote the mean and variance
of Y by μ0 = E(Y ) and σ 2

0 = Var(Y ). Recall that G = ∑K
k=1wk{(μk, σk)}. Let

x(1) ≤ x(2) ≤ · · · ≤ x(N) be the order statistics, x2 = N−1∑N
n=1 x

2
n , and ξn =

F−1(n/N |G) be the (n/N)th quantile of the mixture for n = 0, 1, . . . , N . Let

T (x) =
∫ x

−∞
tf0(t)dt

and define

 Fnk = F0

(
ξn−μk
σk

)
− F0

(
ξn−1−μk
σk

)
,

 Tnk = T
(
ξn−μk
σk

)
− T

(
ξn−1−μk
σk

)
.

When p = 2, we expand the squared W2 distance, WN , between the empirical
distribution and F(·|G) as follows:

WN(G) = W 2
2 (FN(·), F (·|G))

=
∫ 1

0
{F−1
N (t)− F−1(t |G)}2dt
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= x2 +
K∑
k=1

wk{μ2
k + σ 2

k (μ
2
0 + σ 2

0 )+ 2μkσkμ0}

−2
∑
k

wk
{
μk

N∑
n=1

x(n) Fnk + σk
N∑
n=1

x(n) Tnk
}
.

The MWDE minimizes WN(G) with respect to G. The mixing weights and
subpopulation-scale parameters in this optimization problem have natural con-
straints. We may replace the optimization problem with an unconstrained one by
the following parameter transformation:

σk = exp(τk),

wk = exp(tk)/
{ K∑
j=1

exp(tj )
}

for k = 1, 2, . . . , K . We may then minimize WN with respect to {(μk, τk, tk) :
k = 1, 2, . . . , K} over the unconstrained space R

3K . Furthermore, we adopt the
quasi-Newton BFGS algorithm (Nocedal & Wright 2006, Section 6.1). To use this
algorithm, it is best to provide the gradients of WN(G), which are given as follows:

∂

∂tj
WN =

K∑
k=1

{
∂wk

∂tj

∂

∂wk
WN

}
=
∑
k

wj (δjk − wk) ∂
∂wk

WN,

∂

∂μj
WN = 2wj

{
μj + σjμ0 −

N∑
n=1

x(n) Fnj
}
,

∂

∂τj
WN = 2wj

{
σj (μ

2
0 + σ 2

0 )+ μjμ0 −
N∑
n=1

x(n) Tnj
}∂σj
∂τj
,

for j = 1, 2, . . . , K , where

∂

∂wk
WN = {μ2

k
+ σ 2

k
(μ2

0 + σ 2
0 )+ 2μkσkμ0} − 2

∑N−1
n=1 {x(n+1) − x(n)}ξnF (ξn|μk, σk)

−2
{
μk
∑N
n=1 x(n) Fnk + σk

∑N
n=1 x(n) Tnk

}
.

Since WN(G) is non-convex, the algorithm may find a local minimum of WN(G)

instead of a global minimum as required for MWDE. We use multiple initial values
for the BFGS algorithm and regard the one with the lowest WN(G) value as the
solution. We leave the algebraic details in the Appendix.
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This algorithm involves computing the quantiles ξn and  Tnj repeatedly that
may lead to high computational cost. Since ξn is between mink F

−1(n/N |θk) and
maxk F

−1(n/N |θk)], it can be found efficiently via a bisection method. Fortunately,
T (x) has simple analytical forms under two widely used location-scale mixtures that
make the computation of  Tnj efficient:

1. When f0(t) = (2π)−1/2 exp(−x2/2), which is the density function of the standard
normal, we have tf0(t) = −f ′0(t). In this case, we find

T (x) = −f0(x).

2. For a finite mixture of location-scale logistic distributions, we have

f0(t) = exp(−x)
(1 + exp(−x))2

and

T (x) =
∫ x
−∞

tf0(t)dt = x

1 + exp(−x) − log(1 + exp(x)). (3)

2.5 Penalized Maximum Likelihood Estimator

A well-investigated inference method under a finite mixture of location-scale
families is the pMLE (Tanaka 2009; Chen et al. 2008). Chen et al. (2008) consider
this approach for finite normal mixture models. They recommend the following
penalized log-likelihood function:

p�N(G|X) = �N (G|X)− aN
∑
k

{
s2x/σ

2
k + log σ 2

k

}

for some positive aN and sample variance s2x . The log-likelihood function is given
in (1). They suggest us to learn the mixing distribution G via pMLE defined as

Ĝ
pMLE
N

= arg supp�N(G|X).

The size of aN controls the strength of the penalty, and a recommended value is
N−1/2. Regularizing the likelihood function via a penalty function fixes the problem
caused by degenerated subpopulations (i.e., some σk = 0). The pMLE is shown to
be strongly consistent when the number of components has a known upper bound
under the finite normal mixture model.
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The penalized likelihood approach can be easily extended to a finite mixture of
location-scale families. Let f0(·) be the density function in the location-scale family
as before. We may replace the sample variance s2x in the penalty function by any
scale-invariance statistic such as the sample inter-quartile range. This is applicable
even if the variance of f0(·) is not finite.

We can use the EM algorithm for numerical computation. Let zn = (zn1, . . . , znK)

be the membership vector of the nth observation. That is, the kth entry of zn is
1 when the response value xn is an observation from the kth subpopulation and
0 otherwise. When the complete data {(zn, xn), n = 1, 2, . . . , N} are available, the
penalized complete data likelihood function of G is given by

p�cN (|X) =
N∑
n=1

K∑
k=1

znk log

{
wk

σk
f0

(xi − μk
σk

)}
− aN

∑
k

{
s2x/σ

2
k + log(σ 2

k )
}
.

Given the observed data X and proposed mixing distribution G(t), we have the
conditional expectation

w
(t)
nk

= E(znk |X,G(t)) =
w
(t)
k
f (xn|μ(t)k , σ (t)k )∑K

j=1 w
(t)
j
f (xn|μ(t)j , σ (t)j )

.

After this E-step, we define

Q(G|G(t)) = ∑N
n=1

∑K
k=1 w

(t)
nk

log
{
wk
σk
f0

(
xn−μk
σk

)}
− aN

∑
k

{
s2x/σ

2
k
+ log(σ 2

k
)
}
.

Note that the subpopulation parameters are separated in Q(·|·). The M-step is
to maximize Q(G|G(t)) with respect to G. The solution is given by the mixing
distribution G(t+1) with mixing weights

w
(t+1)
k

= N−1
N∑
n=1

w
(t)
nk

and the subpopulation parameters

θ
(t+1)
k

= arg min
θ

{∑
n

w
(t)
nk
{log σ − f (xn|θ)} + aN {s2x/σ 2 + log σ 2}

}
(4)

with the notational convention θ = (μ, σ ).
For general location-scale mixture, the M-step (4) may not have a closed-form

solution, but it is merely a simple two-variable function. There are many effective
algorithms in the literature to solve this optimization problem. The EM algorithm
for pMLE increases the value of the penalized likelihood after each iteration. Hence,
it should converge as long as the penalized likelihood function has an upper bound.
We do not give a proof as it is a standard problem.
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3 Experiments

We now study the performance of MWDE and pMLE under finite location-scale
mixtures. We explore the potential advantages of the MWDE and quantify its
efficiency loss, if any, by simulation experiments. Consider the following three
location-scale families (Chen et al. 2020):

1. Normal distribution: f0(x) = (2π)−1/2 exp(−x2/2). Its mean and variance are
given by μ0 = 0 and σ 2

0 = 1.
2. Logistic distribution: f0(x) = exp(−x)/(1 + exp(−x))2. Its mean and variance are

given by μ0 = 0 and σ 2
0 = π2/3.

3. Gumbel distribution (type I extreme-value distribution): f0(x) = exp(−x −
exp(−x)). Its mean and variance are given by μ0 = γ and σ 2

0 = π2/6, where
γ is the Euler constant.

We will also include a real-data example to compare the image segmentation
result of using the MWDE and pMLE.

3.1 Performance Measure

For vector-valued parameters, the commonly used performance metric of their
estimators is the mean-squared error (MSE). A mixing distribution with finite
and fixed support points can be regarded as a real-valued vector in theory. Yet
the mean-squared errors of the mixing weights, the subpopulation means, and the
subpopulation scales are not comparable in terms of the learned finite mixture. In
this chapter, we use two performance metrics specific for finite mixture models.
Let Ĝ and G∗ be the learned mixing distribution and the true mixing distribution.
We use L2 distance between the learned mixture and the true mixture as the first
performance metric. The L2 distance between two mixtures f (·|G) and f (·|G̃) is
defined to be

L2(f (·|G), f (·|G̃)) = {wτ SGGw − 2wτ S
GG̃

w̃ + w̃τ S
G̃G̃

w̃}1/2,

where SGG, SGG̃ and S
G̃G̃

are three square matrices of size K×K with their (n,m)th
elements given by

∫
f (x|θn)f (x|θm)dx,

∫
f (x|θn)f (x|θ̃m)dx,

∫
f (x|θ̃n)f (x|θ̃m)dx.

Given an observed value x of a unit from the true mixture population, by Bayes’
theorem, the most probable membership of this unit is given by

k∗(x) = arg max
k

{w∗kf ∗(x|θ∗k)}.
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Following the same rule, if Ĝ is the learned mixing distribution, then the most likely
membership of the unit with observed value x is

k̂(x) = arg max
k

{ŵkf (x|θ̂k)}.

We cannot directly compare k∗(x) and k̂(x) because the subpopulation themselves
is not labeled. Instead, the adjusted Rand index (ARI) is a good performance metric
for clustering accuracy. Suppose the observations in a dataset are divided into K
clustersA1, A2, . . . , AK by one approach, andK ′ clusters B1, B2, . . . , BK ′ by another.
Let Ni = #(Ai), Mj = #(Bj ), Nij = #(AiBj ) for i, j = 1, 2, . . . , K, where #(A) is the
number of units in set A. The ARI between these two clustering outcomes is defined
to be

ARI =
∑
i,j

(Nij
2

)− (N2 )−1∑
i,j

(Ni
2

)(Mj
2

)
1
2
∑
i

(Ni
2

)+ 1
2
∑
j

(Mj
2

)− (N2 )−1∑
i,j

(Ni
2

)(Mj
2

) .

When the two clustering approaches completely agree with each other, the ARI
value is 1. When data are assigned to clusters randomly, the expected ARI value
is 0. ARI values close to 1 indicate a high degree of agreement. We compute ARI
based on clusters formed by k∗(x) and k̂(x).

For each simulation, we choose or generate a mixing distribution G∗(r) and then
generate a random sample from mixture f (x|G∗(r)). This is repeated R times. Let
Ĝ(r) be the learned G based on the rth dataset. We obtain the two performance
metrics as follows:

1. Mean L2 distance:

ML2 = R−1
R∑
r=1

L2(f (·|Ĝ(r)), f (·|G∗(r))).

2. Mean-adjusted Rand index:

MARI = R−1
R∑
r=1

ARI(Ĝ(r),G∗(r)).

The lower the ML2 and the higher the MARI, the better the estimator performs.
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3.2 Performance Under Homogeneous Model

The homogeneous location-scale model is a special mixture model with a single
subpopulation K = 1. Both MWDE and MLE are applicable for parameter
estimation. There have been no studies of MWDE in this special case in the
literature. It is therefore of interest to see how MWDE performs under this model.

Under three location-scale models given earlier, the MWDE has closed analytical
forms. Using the same notation introduced, their analytical forms are as follows:

1. Normal distribution:

μ̂MWDE = x̄, σ̂MWDE =
N∑
n=1

x(n)
{
f0(ξn−1)− f0(ξn)

}
.

2. Logistic distribution:

μ̂MWDE = x̄, σ̂MWDE = 3

π2

N∑
n=1

x(n)
{
T (ξn)− T (ξn−1)

}
,

where T (x) is given in (3).
3. Gumbel distribution:

μ̂MWDE = {1 − γ r}−1{x̄ − γ T }, σ̂MWDE = T − rμ̂MWDE,

where

T = {γ 2 + π2/6}−1
N∑
n=1

x(n)

∫ ξn
ξn−1

tf0(t)dt

and r = γ /(γ 2 + π2/6).

The MLEs under the logistic and Gumbel distributions do not have an easy-to-use
analytical form. We employ a numerical optimization program to solve for MLE.
We generate samples of sizes between N = 10 and N = 100,000 with R = 1000
repetitions. Under the homogeneous model, it is most convenient to compute the
MSE of the location and scale parameters separately. Due to the invariance property,
we generate data from distributions with μ = 0 and σ = 1. The simulation results are
summarized as plots in Fig. 1. Both the x and y axes in these plots are in logarithm
scale. For both MLE and MWDE, their log-MSE and log(N) values are close to the
straight lines with slope −1. This phenomenon indicates that both estimators have
the expected convergence rates O(N−1/2) as the sample size N →∞.

The performances of the estimators for the location parameter and scale parame-
ter are different. For the location parameter under all three models, the lines formed
by MLE and MWDE are nearly indistinguishable though the MLE is always below
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Fig. 1 The MSEs of the MWDE and MLE for location and scale parameters versus sample size
N under different homogeneous models. (a) Normal. (b) Logistic. (c) Gumbel

the MWDE. For the scale parameter σ , the MLE is also more efficient than the
MWDE, but the difference is negligible under the normal and logistic models. Under
the Gumbel model, the MWDE is less efficient.

In summary, using MWDE under a homogeneous model may not be preferred but
may be acceptable under the normal and logistic models. We do not investigate the
performance of MWDE under Gumbel mixture due to its efficiency loss under the
homogeneous model. With these observations, we move to its performance under
finite location-scale mixtures.

3.3 Efficiency and Robustness Under Finite Location-Scale
Mixtures

We next study the efficiency and robustness of the MWDE for learning finite
location-scale mixtures. Since the MLE is not well defined, we compare the
performance of MWDE with the pMLE (Chen & Tan 2009) instead. We compare
their performances when the mixture model is correctly specified, when the data is
contaminated, or when the model is mildly mis-specified.

3.3.1 Efficiency

A widely employed two-component mixture model (Cutler & Cordero-Brana 1996;
Zhu 2016) has a density function in the following form:

f (x|G) = pf (x|0, a)+ (1 − p)f (x|b, 1) (5)

for some density function f (·|θ) from a location-scale family. Namely, we have
K = 2 is known, the mixing weights be w1 = p,w2 = 1 − p, and subpopulation
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parameters be θ1 = (0, a) and θ2 = (b, 1). By choosing different combinations of
p, a, and b, we obtain mixtures with different properties. Due to the invariance
property, we need to consider only the case where one of the location parameters is
0 and one of the scale parameters is 1.

We generate samples from f (x|G) according to the following scheme: generate
an observation Y from distribution with density function f0(x), and let

X =
⎧⎨
⎩
aY, with probability p;
Y + b, otherwise.

(6)

We can easily see that the distribution of X is f (x|G) specified earlier.
The level of difficulty to precisely estimate the mixture largely depends on the

degree of overlap between the subpopulations. Let

oj |i = P
(
wif (X|μi, σi) < wjf (X|μj , σj )|X ∼ f (x|μi, σi)

)
.

This is the probability of a unit from subpopulation i misclassified as a unit in
subpopulation j by the maximum posterior rule. The degree of overlap between
the ith and j th subpopulations is therefore

oij = oj |i + oi|j . (7)

We employ the following a, b, and p values in our simulation experiments:

1. Mixing proportion p = 0.15, 0.25, 0.5, 0.75, 0.85.
2. Scale of the first subpopulation a2 = 1, 2.
3. Location parameter b values such that o12 = 0.03, 0.1.

The combination of these choices leads to 24 mixtures with various shapes. The
sample size N in our experiments is chosen to be 100, 500, and 1000, respectively.

We obtain the average L2 distance (ML2) and adjusted Rand index (MARI)
based on R = 1000 repetitions on data generated from normal and logistic mixture
distributions as specified by (6). Figures 2 and 3, respectively, contain plots of
ML2 and MARI of the WMDE and pMLE estimators against sample size N under
these two models. We can see that when the sample size increases, ML2 of both
estimators decreases and MARI of both estimators increases, supporting the theory
that both WMDE and pMLE are consistent. Under the normal mixture, these two
estimators have nearly equal L2 distances. The MWDE slightly outperforms pMLE
in terms of the MARI, when the degree of overlap is large (o12 = 0.1) and the two
subpopulations have both equal scale and highly unbalanced weights. Under logistic
mixture, as shown in plots (a) and (b) of Fig. 3, the pMLE always outperforms the
MWDE in terms of the L2 distance. In terms of the MARI, the MWDE is better
when the scale parameters are equal and weights are highly unbalanced. When the
scale parameters are different, the pMLE is better than MWDE when p > 0.5 and
worse than MWDE when p < 0.5.
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Fig. 2 Performances of pMLE and MWDE under 2-component normal mixture. (a) L2 distance.
(b) Adjusted Rand index

We next investigate the performance of the MWDE and pMLE for learning 3-
component normal mixtures. We come up with 8 such distributions with different
configurations. The three subpopulations have the same or different weights and
same or different scale parameter values. They lead to different degrees of overlap
as defined by

MeanOmega = mean1≤i<j≤3{oij },

where oij is the degree of overlap between subpopulations i and j in (7). See Table 1
for detailed parameter values.

Figure 4 contains plots of the ML2 and MARI values of two estimators. It is seen
that the pMLE consistently outperforms MWDE in terms of ML2 but the difference
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Fig. 3 Performances of pMLE and MWDE under 2-component logistic mixture. (a) L2 distance.
(b) Adjusted Rand index

Table 1 Parameter values of 3-component normal mixtures

MeanOmega w1 w2 w3 μ1 μ2 μ3 σ1 σ2 σ3

I 0.288 (low) 0.4 0.5 0.1 −2 0 1 0.3 2 0.4

II 0.367 (high) 0.4 0.5 0.1 −2 0 1 0.3 1 0.4

III 0.097 (low) 0.3 0.5 0.2 −3 0 3 1 1 1

IV 0.249 (high) 0.3 0.5 0.2 −2 0 2 1 1 1

V 0.148 (low) 1/3 1/3 1/3 −1 0 1 1.5 0.1 0.5

VI 0.267 (high) 1/3 1/3 1/3 −0.5 0 0.5 1.5 0.1 0.5

VII 0.091 (low) 1/3 1/3 1/3 −3 0 3 1 1 1

VIII 0.226 (high) 1/3 1/3 1/3 −2 0 2 1 1 1
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Fig. 4 Performances of pMLE and MWDE under 3-component normal mixture. (a) L2 distance.
(b) Adjusted Rand index

is small. The performances of the MWDE and pMLE are mixed in terms of MARI
and the differences are small. The pMLE is clearly better under I and II.

3.3.2 Robustness

Robustness is another important property of estimators. Sample mean is the most
efficient unbiased estimator of the population mean in terms of variance under
normality or some other well-known parametric models. However, the value of
the sample mean changes dramatically even if the dataset contains merely a single
extreme value. Sample median offers a respectable alternative and still has high
efficiency across a broader range of parametric models.

In the context of learning finite location-scale mixture models, both pMLE and
MWDE rely on a parametric distribution family assumption through f0(x). How
important is to have f0(x) correctly specified? We shed some light into this problem
by simulation experiments in this section. We learn finite normal mixtures assuming
K = 2 but generate data from the following distributions:

1. Mixture with outliers: (1 − α){pφ(x|0, a) + (1 − p)φ(x|b, 1)} + αφ(x|8, 1) with
α = 0.01 and φ(x|μ, σ) = exp(−(x − μ)2/2σ 2)/

√
2πσ 2.

2. Mixture contaminated: (1 − α){pφ(x|0, a)+ (1 − p)φ(x|b, 1)} + αφ(x|b/2, 7) with
α = 0.01.

3. Mixture mis-specified I: pf0(x|0, a)+ (1−p)f0(x|b, 1) with f0(x) being Student-t
with 4 degrees of freedom.
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Fig. 5 Adjusted Rand index based on pMLE and MWDE when data contains outliers or is
contaminated. (a) Mixture with outliers. (b) Mixture contaminated

4. Mixture mis-specified II: pf1(x|0, a)+ (1−p)f2(x|b, 1) with f1(x)and f2(x) being
Student-t with 2 and 4 degrees of freedom.

In every case, we use the combinations of the a, b, and p values the same as
before. We regard (1− α){pφ(x|0, a)+ (1−p)φ(x|b, 1)} as the true distribution in all
cases and computed the MARI accordingly.

We obtain the MARI values based on R = 1000 repetitions with sample sizes N =
100, 500, and 1000, see Figs. 5 and 6. We see that when the degree of overlap is low,
MWDE and pMLE have similar performances. When the subpopulation variance
is larger (a2 = 2), the performance of pMLE is generally better. In general, we
conclude that pMLE is preferred.
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Fig. 6 Adjusted Rand index based on pMLE and MWDE when subpopulation distributions are
mis-specified. (a) Mixture mis-specified I. (b) Mixture mis-specified II

Statistical inference usually becomes more accurate when the sample size
increases. This is not the case in this simulation experiment. We can see that MARI
often decreases (becomes less accurate) when the sample size increases. This is not
caused by simulation error. When the model is mis-specified, the learned model
does not converge to the “true model” as N → ∞. Hence, the inference does not
necessarily improve. The moral of this simulation study is that the MWDE is not
more robust than the pMLE, against our intuition.
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3.4 Image Segmentation

Image segmentation aims to partition an image into regions, each with a rea-
sonably homogeneous visual appearance or corresponds to objects or parts of
objects (Bishop 2006, Chapter 9). In this section, we perform image segmentation
with finite normal mixtures, a common practice in the machine learning community.

Each pixel in an image is represented by three numbers within the range of [0, 1]
that corresponds to the intensities of the Red, Green, and Blue (RGB) channels.
Since the intensity values are always between 0 and 1, unlike the common practice
in the literature, we feel obliged to transform the intensity values to ensure the
normal mixture model fits better. Let y = �−1((x + 1/N)/(1 + 2/N)) with x being
the intensity and N the total number of pixels in the image. We then learn a two-
component normal mixture on y values from each channel. Namely, we learn three
normal mixtures on red, green, and blue channels, respectively.

We use the maximum posterior probability rule to assign each pixel to one of two
clusters. We then form an image segment by pixels assigned to the same cluster. We
visualize the segregated images channel by channel by re-drawing the image with
the original intensity value replaced by the average intensity of the pixels assigned
to the specific cluster.

The segregated images depend heavily on the fitted mixture distributions. We
compare the segregated images obtained by the normal mixtures learned via the
pMLE and MWDE. We retrieved an image from Pexels1 as shown in Fig. 7a. Clark
(2015) resized the original high-resolution image to 433 × 650 grids using Lanczos
filter. We learn a normal mixture of order K = 2 for each channel based on resized
datasets and evaluated its utility of segregating the foreground and the background.

We present the specifications of the learned mixing distributions by pMLE and
MWDE in Table 2. Plots (d), (g), and (j) in Fig. 7 are histograms of the transformed
intensity values of RGB channels, together with the mixture densities learned via
pMLE and MWDE. The corresponding segmented images are shown as plots (e),
(h), and (k) for pMLE and (f), (i), and (l) for MWDE. The estimated parameter
values and the fitted density on the red and green channels based on these two
approaches are very similar. For the blue channel, the fitted densities and the
segmentation results are very similar although the estimated parameter values of the
second component are quite different. Both approaches can produce images with
meaningful structures segregating foreground from background.

There are two clusters in each of 3 channels leading to 8 refined clusters. We may
paint each pixel with the average RGB intensity triplet according to these 8 refined
clusters. The re-created images via pMLE and MWDE, respectively, are shown in
(b) and (c). We note these two images are very similar, showing that both learning
strategies are effective.

1 https://www.pinterest.se/pin/761952830692007143/.
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Fig. 7 Flower image and its segmentation outcomes. (a), (b) and (c): original image; aggregated
images based on segmentation outcomes via pMLE and MWDE. (d), (g) and (j): histograms of
pixel intensity of Red, Green, and Blue channels together with the fitted mixtures. (e), (h) and (k):
segregated images via PMLE in RGB channels. (f), (i) and (l): segregated images via MWDE in
RGB channels
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Table 2 Estimated mixing distributions of the flower image by pMLE and MWDE.

Channel Estimator w1 w2 μ1 μ2 σ1 σ2

Red pMLE 0.896 0.104 −1.668 1.139 1.321 0.277

MWDE 0.915 0.085 −1.617 1.220 1.316 0.213
Green pMLE 0.804 0.196 −0.935 0.637 0.373 0.595

MWDE 0.819 0.181 −0.926 0.724 0.378 0.510
Blue pMLE 0.735 0.265 −0.753 0.268 0.414 1.034

MWDE 0.862 0.138 −0.722 1.019 0.473 0.592

4 Conclusion

The MWDE provides another approach for learning finite location-scale mixtures.
We have shown the MWDE is well defined and consistent. Our moderate scaled
simulation study shows it suffers some efficiency loss against a penalized version of
MLE in general without noticeable gain in robustness. We gain the knowledge on
the benefits and drawbacks of the MWDE under finite location-scale mixtures. We
reaffirm the general superiority of the likelihood-based learning strategies even for
non-regular models.

Acknowledgments The authors would like to thank Richard Schonberg for proofreading the
manuscript.

Appendix

Numerically Friendly Expression of W2(FN,F(·|G))

To learn the finite mixture distribution through MWDE, we must compute

WN(G) = W2
2 (FN(·), F (·|G)) =

∫ 1

0
{F−1
N
(t)− F−1(t |G)}2dt

for finite location-scale mixture

F(·|G) =
K∑
k=1

πkF(·|θk) =
K∑
k=1

πkσ
−1
k
F0((x − μk)/σk).

We write Ek(·) as expectation under distribution F(·|θk). For instance,

Ek{X2} = μ2
k + σ 2

k (μ
2
0 + σ 2

0 )+ 2μkσkμ0.
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Let In = ((n − 1)/N, n/N ] for n = 1, 2, . . . , N so that F−1
N
(t) = x(n) when t ∈ In,

where x(n) is the nth order statistic. For ease of notation, we write x(n) as xn. Over
this interval, we have

∫
In

{F−1
N
(t)− F−1(t |G)}2dt =

∫
In

[x2
n − 2xnF

−1(t |G)+ {F−1(t |G)}2]dt. (8)

The integration of the first term in (8), after summing over n, is given by

N∑
n=1

∫
In

x2
ndt = N−1

∑
n

x2
n = x2.

The integration of the third term in (8) is

N∑
n=1

∫
In

{F−1(t |G)}2dt =
∫ ∞
−∞

x2f (x|G)dx =
K∑
k=1

wkEk{X2}.

Let ξ0 = −∞, ξN+1 = ∞, and ξn = F−1(n/N |G) for n = 1, . . . , N . Denote

 Fnk = F(ξn|θk)− F(ξn−1|θk)

and

T (x) =
∫ x
−∞

tf0(t)dt,  Tnk = T ((ξn − μk)/σk)− T (ξn−1 − μk)/σk).

Then
∫
In

F−1(t |G)dt =∑
k wk

∫ ξn
ξn−1

xf (x|μk, σk)dx

=∑
k wk{μk Fnk + σk Tnk}.

These lead to numerically convenient expression

WN(G) = x2 +
∑
k

wkEk{X2} − 2
∑
k

wk{μk Fnk + σk Tnk}.

To most effectively use BFGS algorithm, it is best to provide gradients of the
objective function. Here are some numerically friendly expressions of some partial
derivatives.

Lemma 1 Let δjk = 1 when j = k and δjk = 0 when j �= k. For n = 1, . . . , N and
j = 1, 2, . . . , K , we have
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∂

∂wj
F (ξn|θk) = f (ξn|θk) ∂ξn

∂wj
,

∂

∂μj
F (ξn|θk) = f (ξn|θk)

(
∂ξn

∂μj
− δjk

)
,

∂

∂σj
F (ξn|θk) = f (ξn|θk)

( ∂ξn
∂σj

−
{
ξn − μk
σk

}
δjk

)
,

and

∂

∂wj
T

(
ξn − μk
σk

)
= f (ξn|θk)

(
ξn − μk
σk

)
∂ξi

∂wj
,

∂

∂μj
T

(
ξn − μk
σk

)
= f (ξn|θk)

(
ξn − μk
σk

)(
∂ξn

∂μj
− δjk

)
,

∂

∂σj
T

(
ξn − μk
σk

)
= f (ξn|θk)

(
ξn − μk
σk

){
∂ξi

∂σj
−
(
ξn − μk
σk

)
δjk

}
.

Furthermore, we have

∂ξn

∂μk
= wkf (ξi |θk)

f (ξn|G) ,

∂ξn

∂σk
= wkf (ξn|θk)

f (ξi |G)
(
ξn − μk
σk

)
,

∂ξn

∂wk
= −F(ξn|θk)

f (ξn|G) .

Based on this lemma, it is seen that

∂

∂μj
WN = 2wj (μj + σjμ0)− 2wj

N∑
n=1

x(n) Fnj

−2
N∑
n=1

∑
k

wkμkx(n)

{
∂F0(ξn|θk)
∂μj

− ∂F0(ξn−1|θk)
∂μj

}

−2
N∑
n=1

∑
k

wkσkx(n)
∂

∂μj

{
T

(
ξn − μk
σk

)
− T

(
ξn−1 − μk

σk

)}

with F0(ξ0|θk) = 0, F0(ξN+1|θk) = 1, T
( ξ0−μk
σk

) = 0, and T
( ξN+1−μk

σk

) = ∫∞
−∞ tf0(t)dt

is a constant that does not depend on any parameters. Substituting the partial
derivatives in Lemma 1, we then get

∂

∂μj
WN = 2wj (μj + σjμ0)− 2wj

N∑
n=1

x(n) Fnj
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−2
N−1∑
n=1

x(n)ξn
∑
k

wkf (ξn|μk, σk)
( ∂ξn
∂μj

− δjk
)

+2
N−1∑
n=1

x(n)ξn−1
∑
k

wkf (ξn−1|μk, σk)
(∂ξn−1

∂μj
− δjk

)

= 2wj
{
μj + σjμ0 −

N∑
n=1

x(n) Fnj
}
.

Similarly, we have

∂

∂σj
WN = 2wj {σj (μ2

0 + σ 2
0 )+ μjμ0 −

N∑
n=1

x(n) μnj },

∂

∂wk
WN = {μ2

k + σ 2
k (μ

2
0 + σ 2

0 )+ 2μkσkμ0} − 2
N−1∑
n=1

{x(n+1) − x(n)}ξiF (ξn|θk)

−2
{
μk

N∑
n=1

x(n) Fnk + σk
N∑
n=1

x(n) Tnk
}
.

Computing the quantiles of the mixture distribution F(·|G) for each G is one of
the most demanding tasks. The property stated in the following lemma allows us to
develop a bi-section algorithm.

Lemma 2 Let F(x|G) = ∑K
k=1 F(x|μk, σk) be a K-component mixture, and ξ(t) =

F−1(t |G) and ξk(t) = F−1(t |θk), respectively, the t-quantile of the mixture and its kth
subpopulation. For any t ∈ (0, 1),

min
k
ξk(t) ≤ ξ(t) ≤ max

k
ξk(t). (9)

Proof Since F(x|θ) has a continuous CDF, we must have F(ξk(t)|θk) = t . By the
monotonicity of the CDF F(·|θk), we have

F(min
k
ξk(t)|θk) ≤ F(ξk(t)|θk) ≤ F(max

k
ξk(t)|θk).

Multiplying by wk and summing over k lead to

F(min
k
ξk(t)|G) ≤ t ≤ F(max

k
ξk(t)|G).

This implies (9) and completes the proof. ��
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In view of this lemma, we can easily find the quantiles of F(·|θk) to form an
interval containing the targeting quantile of F(·|G). We can quickly find F−1(t |G)
value through a bi-section algorithm.
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An Entropy-Based Comment Ranking
Method with Word Embedding
Clustering

Yuyang Zhang and Hao Yu

Abstract Automatically ranking comments by their relevance plays an important
role in text mining. In this chapter, we introduce a new text digitization method:
the bag-of-word clusters model, i.e., grouping semantic-related words as clusters
using pre-trained word2vec word embeddings and representing each comment as
a distribution of word clusters. This method extracts both semantic and statistical
information from texts. Next, we propose an unsupervised ranking algorithm that
identifies relevant comments by their distance to the “ideal” comment. This “ideal”
comment is the maximum general entropy comment with respect to the global word
cluster distribution. The intuition is that the “ideal” comment highlights aspects of a
product that many other comments frequently mention. Therefore, it is regarded as
a standard to judge a comment’s relevance to this product. At last, we analyze our
algorithm’s performance on a real Amazon product.

Keywords Bag-of-word clusters · Comment ranking · Cosine similarity ·
General entropy · K-L divergence · Word2vec

1 Introduction

Online shopping has become popular all over the world. The most obvious benefit
of online shopping is convenience, and shoppers can simply access online stores
from their computers whenever they have free time available, in particularly, during
current pandemic time. Another benefit is that online shopping provides a greater
diversity of products. This means you can choose goods that suit your requirements
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and budget the most. However, there are also disadvantages of online shopping.
One of the most obvious ones is the lack of interactivity. You cannot touch and feel
the product you want to buy. Besides, the lack of touch and feel creates concerns
over the quality of the product. With a large variety of goods and websites, people
tend to do a lot of research before making a purchasing decision when doing online
shopping. They will browse web pages about product details and, more importantly,
check other buyer’s comments on the product site.

Gathering information based on other people’s opinions is an essential part of
the purchasing decision process (Chevalier & Mayzlin 2006). With the rapid growth
of the Internet, these conversations in online markets provide a large amount of
product information. So when doing online shopping, consumers rely on online
product comments, posted by other consumers, for their purchase decisions.

However, a large number of comments for a single product may make it harder
for people to evaluate the true underlying quality of a product. In this situation,
consumers tend to focus on the average rating of a product, like the number of stars
on Amazon.com. But in reality, some products can easily obtain high average ratings
by cheating, while some other products may get unfair low ratings. Therefore, it is
very important to extract these relevant and high-quality comments from the product
site, which help consumers obtain accurate information about this product.

1.1 How to Judge a Comment’s Quality?

Before we start to construct a comment ranking algorithm, the fundamental question
is how to judge a comment’s quality. Most online business sites evaluate their
comments’ quality using criteria such as overall rating or helpfulness. Helpfulness
is typically a score measured as the total votes given by consumers, which is an
interesting way of defining a comment’s relevance and quality. Many researches in
comments ranking area also use this type of helpfulness score as their comments’
evaluation score (Zhang & Varadarajan 2006). However, this method fails to identify
these most recent comments with few votes. For example, we may always observe
that only a few comments published a long time ago have a high helpfulness score
in a product site, and most other comments have no votes. The reason for the
phenomenon is that most people only read the first few pages of comments before
making their purchase decisions. A new comment that has just appeared on the
product site and has not received any votes until recently may remain at the bottom
of the comment list. This comment may contain important information about this
product and thus has the potential to rise to the top of the list.

1.2 Ranking Comments Using Entropy

Ranking comments is a very important task, and there is no doubt that there are
many studies in this field. Some researches treat this ranking task as a supervised
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learning task, such as Hsu et al. (2009) and Alberto et al. (2015). Most of them
used the consumers’ votes, such as helpfulness scores, as their training target.
Then they adopted or designed several statistical or machine-learning models
based on training data. As mentioned before, the reliability of this training data
is hard to be assured; some high-quality comments may have relatively low votes.
Moreover, these supervised ranking models cannot be used on multiple products
simultaneously since they have to be retrained for different products.

In this situation, we propose a comment ranking algorithm that is unsupervised,
which means we do not require any human-annotated training set. Besides, as
we mentioned before, in most cases, online business sites may not be able to
provide some information, such as the reviewer’s reputation. We prefer to develop
an algorithm that ranks comments based on their contents. To construct this ranking
algorithm, we need to solve these two problems below.

1. How to define a metric that can evaluate both comments’ relevance and
text complexity?

2. How to effectively retrieve information from comments’ content?
Let us take a look at the first question first. When it comes to text complexity

or information richness, we naturally think of Shannon’s entropy (Shannon
1948). However, Shannon’s entropy does not measure comment’s relevance to the
product. So how to redefine entropy and take comment’s relevance into account?
Zhang (2019) defined a new entropy value called the general entropy. In his thesis,
he developed an unsupervised ranking method on Amazon’s dataset and used the
general entropy to measure the answer’s information quality. The general entropy is
defined as follows:

E(P) = −
n∑
i=0

Qi · Pi · logPi, (1)

where P = [P0, ..., Pn] is the words’ distribution of an individual comment and
Q = [Q0, ...,Qn] is the distribution of the words of all comments combined under
the same product, which is called global distribution. So general entropy assigns
weight on each self-information of word where the weight is the corresponding word
probability in the global comment set. Since we want to measure the information
richness and the relevance of a comment, we give higher weight to these words that
other comments also mentioned and lower weight to words that other comments
hardly mentioned.

The general entropy seems a good ranking metric that measures both relevance
and text complexity. However, comment with high complexity (e.g., very long
comment with many different kinds of words) and almost no relevance to this
product may get very high general entropy. These comments may have high
ranks since most comments’ entropy scores are close to each other. So instead
of calculating scores for every comment, we first find an “ideal” comment and
then judge comment by how far or how different it is from our “ideal” comment.
Naturally, we define a comment with maximum general entropy as our “ideal”
comment, and we call this “ideal” comment the Maximum General Entropy
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Comment. Since this “ideal” comment has the maximum general entropy, it keeps
a good balance of relevance and information richness. We define the Maximum
General Entropy Comment as follows:

B = arg max
P
E(P). (2)

Note that the maximum entropy comment is a comment with the maximum
general entropy within all possible comments. This comment may not exist in
the existing comment set. Now, the question is how to measure each comment’s
“distance” to this “ideal” comment. Since we treat each comment as a distribution,
we use Kullback–Leibler (K-L) divergence defined as follows:

DKL(P|B) =
n∑
i=0

Pi · log
(Pi
Bi

)
. (3)

Notice that this is a divergence, not a “distance.” Actually, K-L divergence is
used to measure how one probability distribution is different from others. In our
application, we need to compare how each comment is different from the maximum
general entropy comment. If a comment is similar to the maximum general entropy
comment, it gets low divergence. Otherwise, if a comment is very different from the
maximum general entropy comment, it may get high divergence. Compared to the
method purely using the general entropy, this method achieved better performance
in our experiment since it is more sensitive to comments’ relevance to the product.

1.3 Text Representation

Let us consider the second problem described before: How to retrieve information
from comments’ content effectively? As we discussed in the previous subsection,
in order to use entropy as our comments’ ranking metric, we need to treat each
comment as a distribution of words P = [P1, ..., Pn]. P is a numerical vector where
each dimension indicates the frequency of a word that appeared in the comment, and
n indicates the number of unique words in the whole collection of comments. This is
actually called the bag-of-words (BOW) model. A bag-of-words is a representation
of text that describes the occurrence of words within a document. Despite the
simplicity of this representation method, it has two significant disadvantages:

(1) The number of unique words in comments data is about 10,000, while each
comment has only 10–200 words, and using the BOW model leads to high-
dimensional and sparse vectors.

(2) BOW representation does not consider the semantic relation between words,
and it assumes all the words are independent. This assumption may have
some problems, for example, “used bicycle” and “old bike” will be considered
entirely different phrases because they have no words in common.
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In this chapter, we construct an entirely different method to solve both the BOW
model’s sparsity and the semantic problem. We called our model: the bag-of-word
clusters model. Unlike the traditional bag-of-words model that treats each word as
an independent item, we group semantic-related words as clusters using pre-trained
word2vec word embeddings (see Mikolov et al. 2013a,b). For example, consider
the “used bike” and “old bicycle” example, and we have four unique words: “old,”
“bike,” “used,” and “bicycle.” By using the traditional BOW model, we represent
“old bike” as vector [ 1

2 ,
1
2 , 0, 0] and represent “used bicycle” as [0, 0, 1

2 ,
1
2 ]. It

turns out that these two vectors are orthogonal, and two vectors have no elements
in common. But in reality “used bicycle” and “old bike” are semantic-related.
Using our methods, we first group similar words such as “bicycle” and “bike”
into the same cluster and treat them as the same item. For example, we have two
groups: cluster #1: “used,” “old”; cluster #2: “bike,” “bicycle.” Then we represent
“old bike” as [ 1

2 ,
1
2 ], where each dimension indicates one cluster, and then the

bag-of-word clusters representation of “used bicycle” is also [ 1
2 ,

1
2 ]. Using this

example, our method solves the BOW model’s sparsity problem, and the number of
clusters is significantly smaller than the number of unique words. Also, we retrieve
semantic information from text, and similar phrases “old bike” and “used bicycle”
are represented as the same vector in our model. Besides, unlike Zhang’s method,
which only considers keywords and treats all other words as noise, our method keeps
most words and treats related words as the same item. We believe our method can
extract more information from text and thus has a better ranking performance. More
detail about the bag-of-word clusters model is introduced in the next section.

The rest of this chapter is organized as follows. In Sect. 2, we propose a new
text representation method: the bag-of-word clusters model. In Sect. 3, we give a
detailed description of our ranking algorithm. Section 4 introduces our experiment
with a real Amazon product using the Amazon product dataset (see He and McAuley
2016; McAuley et al. 2015).

2 Bag-of-Words Model with Word Embedding Clusters

In most text mining or text analytics applications, the first and fundamental problem
is how we represent text as input to our model or algorithm. More specifically,
how do we represent the text documents to make them mathematically computable?
Various text representation methods were proposed during the last few years, and
the most commonly used text representation model in the area of text mining is
called the vector space model (VSM) (Manning et al. 2008), which aims to represent
a text document as numerical vectors. One main advantage of VSM is that it
is straightforward to compute the similarity between each vector (document), for
example, by using cosine similarity.

One of the commonly used VSMs is the BOW. A bag-of-words is a representation
of text that describes the occurrence of words within a document. And to build a
BOW model, people need to provide two things: the vocabulary of known words
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and a measure of the presence of known words. Given the document collection
D = {di, i = 1, 2, 3...n} and m unique words in these documents, mathematically,
each document di is represented by an m × 1 vector vi ∈ Rm×1. For instance,
consider there are three documents in this collection D:

d1: I like learning text mining.
d2: What is text mining?
d3: Apple tastes good.

Now we make a list of all words in our model’s vocabulary. The unique words
here (ignoring case and punctuation) are: {I, like, learning, text, mining, what, is,
apple, taste, good}. Thus we have 10 unique words and 12 words in total within this
collection D.

Next step is to score each word in the document. There are many methods of
scoring. Let us consider the simple Boolean first. If a word appears in a document,
its corresponding weight is 1; otherwise, it is 0. Since our vocabulary has 10 words,
we use a fixed-length vector representation, with each position in the vector to score
a word. Then the vector representations of these three documents are like this

v1 = [1, 1, 1, 1, 1, 0, 0, 0, 0, 0],

v2 = [0, 0, 0, 1, 1, 1, 1, 0, 0, 0],

v3 = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1].
Notice that the order of word index is the same as the unique word list above.

The intuition of this model is that the information within a document is from its
content, which are words in this case. Documents are similar if they have similar
words. Since each of the three vectors has a fixed length, we use cosine similarity to
measure their similarity. Consider two vectors A and B with a fixed length N , and
cosine similarity is defined as follows:

Cosine Similarity = A · B
||A||||B|| =

∑i=N
i=1 AiBi√∑i=N

i=1 A
2
i

√∑i=N
i=1 B

2
i

, (4)

where Ai and Bi are components of vectors A and B, respectively.
The cosine value ranges between [−1, 1], 1 for vectors pointing at the same

direction, 0 for orthogonal, and −1 for vectors pointing in the opposite direction.
For documents, the term values are usually non-negative, so the cosine similarity
ranges between [0, 1], and the higher the value is, the more similar two documents
are.

Now we calculate the similarity between documents d1, d2 and d3 using this
formula,

cos(d1, d2) = 0.4472; cos(d1, d3) = 0; cos(d2, d3) = 0.
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We believe that this result is consistent with our observation, d1 and d2 are similar
to each other because they are both talking about text mining, d3 has no relation with
d1 and d2, and thus their cosine similarity is zero.

The BOW model is very straightforward and is easy to implement. For the word
weight in the BOW model, besides the simple Boolean model, we also use counts
of words, frequency, or term frequency-inverse document frequency (tf-idf) as word
weight, and more information about this is referred to Salton and Buckley (1988).

Despite the simplicity of this representation method, we face two significant
disadvantages if we want to adapt this method on our comments data: (1) The
vocabulary size in comments data is about 10,000, while each comment has only
10–200 words, and using the BOW model will lead to high-dimensional and sparse
vectors. (2) BOW representation does not consider the semantic relation between
words, and it assumes all the words are independent. This assumption may have
some problems, for example, “used bicycle” and “old bike” will be considered as
entirely different phrases because they have no words in common.

Next we develop a new text representation method based on the BOW model
to overcome these disadvantages. First, we introduce word embeddings, a learned
representation of words where words with the same meaning will have similar
representations (Manning et al. 2008). Word2vec (see Mikolov et al. 2013a,b) is a
very effective algorithm to train word embeddings based on the local documents.
With these word embeddings, we group similar words as a cluster using the
clustering method. Finally, instead of representing document (comment) as “bag
of words,” we represent them as “bag of word clusters.” In this way, we retrieve
semantic information from the text, for example, “bike” and “bicycle” are grouped
together because they have the same or similar meaning. Moreover, the BOW
model’s sparsity problem is handled since the number of clusters is significantly
smaller than the vocabulary size.

Word2vec was created and published in 2013 by a team of researchers led by
Tomas Mikolov at Google (Mikolov et al. 2013a,b). Word2vec is a group of related
models used to produce word vectors (also called word embeddings). Usually,
word2vec is referred to two model architectures and two related training techniques:

– 2 model architectures: continuous bag-of-words (CBOW) and skip-gram (SG).
CBOW aims to predict a center word from the surrounding context in terms of
word vectors. Skip-gram does the opposite and predicts the probability of context
words from a center word.

– 2 training techniques: negative sampling and hierarchical softmax. Negative
sampling defines an objective by sampling negative examples, while hierarchical
softmax defines an objective using an efficient tree structure to compute proba-
bilities of appearance for all the vocabulary.

In our application, the skip-gram model with negative sampling is used. The
detailed steps are given in the first author’s master thesis. For a detailed explanation
of other models in word2vec, one refers to Rong (2014). Moreover, since skip-gram
is a neural network model, if you are not familiar with the neural network model,
you can refer to Goodfellow et al. (2016).
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Fig. 1 Word2vec example

Training using word2vec model produces N-dimensional vectors for each word
in our vocabulary. These word embeddings have many good properties. Since each
word embeddings have the same size N , it is easy to measure the distance between
a pair of word embeddings. Another property of these pre-trained word embeddings
is that semantically related words usually have a close distance. Here we use the
cosine similarity defined by (4), and the more similar two words are the higher
cosine similarity of their word embeddings. Figure 1 shows three examples of words
“baby,” “apple,” and “well” with their top 10 most similar words in the whole
vocabulary with around 104 words. More detail about how these word embeddings
trained is described in Sect. 4.

In our method, we adopt the K-means algorithm (Hartigan & Wong 1979) to
perform word embeddings clustering. K-means is a straightforward and efficient
algorithm for general clustering. We introduce how K-means are applied in our
method, and let us review this algorithm first.

In this clustering problem, we are given n word embeddings as our training set
{w(1), w(2), ..., w(n)} and w(i) ∈ R

N . The number of clusters is a pre-set parameter
K , and the K-means algorithm is as follows:

1. Initialize cluster centroids μ1, μ2, ..., μK ∈ R
N randomly.

2. Repeat until convergence: {
for every i ∈ {1, ..., n}, set
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c(i) := arg min
j

||w(i) − μj ||2; (5)

for every j ∈ {1, ..., K}, set

μj =
∑n
i=1 1{c(i) = j}w(i)∑n
i=1 1{c(i) = j} . (6)

}

For every repetition, there are two steps, first is to assign each training sample
w(i) to its nearest cluster μj and update its assigned cluster index ci . Then, update
the cluster μj to the mean of the points assigned to it. The K-means algorithm is
also regarded as a coordinate descent on the distortion function J ,

J (c, μ) =
n∑
i=1

||w(i) − μc(i) ||2. (7)

Clearly, the distortion function is a non-convex function, so the K-means
algorithm is easily got stuck in local minima. One common solution to this problem
is to run K-means many times with a different random initialization of μ, and out of
all different clusters founded, use the one with the lowest distortion J as our final
solution.

Normally, we use cosine similarity to measure the distance between word
embeddings as we mentioned before, but K-means use only Euclidean distance as
the distance measure. Although other clustering methods use cosine as a distance
measure like K-medoids (Kaufmann 1987), we still use K-means due to its much
higher computational efficiency. And we justify that for normalized vectors, cosine
similarity and Euclidean distance are linearly connected. For two normalized vectors
A = {Ai}, B = {Bi} (

∑
A2
i =

∑
B2
i = 1), the Euclidean distance between A and

B is

||A− B||2 =
∑
(Ai − Bi)2

=
∑
(A2
i + B2

i − 2AiBi)

=
∑
A2
i +

∑
B2
i − 2

∑
AiBi

= 1 + 1 − 2 cos(A,B)

= 2(1 − cos(A,B)).

(8)

Note that for normalized vectors cos(A,B) =
∑
AiBi√∑
A2
i

√∑
B2
i

= ∑
AiBi .

The higher two word embeddings’ cosine similarity is, the closer their Euclidean
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distance is, which is consistent with our objective. Thus in our application, we
perform K-means on the normalized pre-trained word embeddings.

So instead of representing text documents as “bag of words,” we represent them
as “bag of word clusters.” Now we have our pre-trained word embeddings, and
then we perform K-means algorithm, which assigns each word a unique cluster
index. Then constructing bag-of-word clusters representation of text document is
summarized as the following steps:

1. Preprocess and tokenize the text, and then each text is represented as a list of
words.

2. Given pre-trained K word cluster, replace each word in the list as its cluster
index, if there are unknown words, replace them with K + 1, so this vector is
transformed to numerical lists with the number 1 to K + 1.

3. Calculate each cluster’s frequency in the text list, and construct a vector with
length k+1 where each term will be the calculated frequency of clusters with
the corresponding index number. And this new vector is our “bag of clusters”
representation of text.

With the above steps, we transform each text into a K + 1-dimensional vector.
For example, we have a short text:

"I love eating apples, they are delicious"

and we have four pre-trained word clusters: C1 ={“I,” “they,” “you”},
C2 ={“apple,” “pear,” “banana”}, C3 = {“is,” “are,” “was”}, and C4 = {
“delicious,” “good,” “tasty”}. First, we tokenize this text as a vector v = [“I,”
“love,” “eating,” “apples,” “they,” “are,” “delicious”], then replace these words
with the corresponding clusters v = [1, 5, 5, 2, 1, 3, 4], and remember to replace
unknown words with “k+1” that is 5 here. Next we calculate each cluster’s relative
frequency: f1 = 2

7 , f2 = 1
7 , f3 = 1

7 , f4 = 1
7 , f5 = 2

7 , and represent this text with
new vector v′ = [f1, f2, f3, f4, f5] = [ 2

7 ,
1
7 ,

1
7 ,

1
7 ,

2
7 ].

Text digitalization or representing text as numerical vectors is an essential part
of every text mining application. Our “bag of word clusters” model can extract not
only statistical information but also part of semantic information from text.

3 Ranking Comments with General Entropy

In this section, we use General Entropy (Zhang 2019) to rank comments based on
the entropy value. First we define the Maximum Entropy Comment. By treating
the maximum entropy comment as an “ideal” comment, we measure each comments
distance to the “ideal” comment by using K-L divergence and rank comments based
on its value. Moreover, there are two features of our comment ranking algorithm:
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(1) Our method is unsupervised, which means there is no human-labeled training
set to learn from, and all we have is a group of comments without any order. In
other words, our method does not depend on an annotated training set.

(2) Judging the quality of a comment is subjective, and we cannot just create
a judgment standard from nothing. So the objective of our method is not
to distinguish these top-ranked comments but to make sure those unrelated
or “fake” comments have as lower ranks as possible. In general, one of the
objectives of our method is to filter out “bad” comments.

After the pre-trained word embedding clustering, given n clusters of words
and m comments under a product, we regard the collection of all m com-
ments together as the Global Comments Set. Then we calculate the number
of each word cluster appears in the global comments set, which is represented
as {NumG0 , NumG1 , NumG2 , ..., NumGn }, and notice that NumG0 is the number of
unknown words that appear in the collection. Now we define the global probability
of word cluster i in the global comments set as

Qi = NumGi

NumG0 +NumG1 +NumG2 + ...+NumGn
, i = 0, 1, . . . , n. (9)

And for all global probabilities, we have

n∑
i=0

Qi = 1. (10)

Since word2vec model has to be trained on a large corpus with around 104–105

unique words, we group these words into n word clusters. One feature of our bag-
of-word clusters model is that these pre-trained word clusters are used for many
products at the same time. So for one product, it is possible that no word within its
global comments set falls into the word cluster i∗. In other words, it is possible that
global probabilityQi∗ = 0 for this product.

In our comments ranking method, we tend to treat each text or comment as
a distribution of word clusters. If two comments have similar distributions, they
probably expressed similar meanings. And as an unsupervised method, without any
training set, the global comments set’s distribution can be an essential reference for
determining each individual comment’s relevance to others. We believe that under a
product, most comments will focus on some specific aspects of this product, which
tend to have similar distributions of words, and if a comment has a completely
different word distribution with the others, it might be a “fake comment.”

Similarly, for an individual comment with index j , we have the number of each
word cluster in the comment as {Numj0, Numj1, Numj2, ..., Numjn}, the probability
of word cluster i in the j th comment is defined as
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P
j
i = Num

j
i

Num
j

0 +Numj1 +Numj2 + ...+Numjn
, i = 0, 1 . . . , n, (11)

where

n∑
i=0

P
j
i = 1, (12)

and note that ifQi = 0, then P ji = 0.
Thus with our new definition, for global comment set, the vector is

[Q0,Q1,Q2, . . . ,Qn], and for individual comment j is [P j0 , P j1 , P j2 , ..., P jn ].
By treating each comment as a distribution, we assess each comment’s information
quality by calculating entropy based on these probabilities.

In terms of comments, we treat each comment as a multinomial distribution of
word clusters with probability Pj = [P j0 , P j1 , P j2 , ..., P jn ], that is, if we randomly
sample a word from this comment, this word should have this probability distribu-
tion. For the worst scenario, if a comment only has one type of word in it like “good
good good...good,” then this comment has a distribution with P(good) = 1, and the
entropy of this comment is zero. For the best scenario, without any constraint, the
uniform distribution is the maximum entropy probability distribution for a random
variable. The reason is that the entropy score is the “expected information gain,” and
the hardest distribution to predict is the uniform distribution when using a binomial
score. For example, if a comment has an equal probability of every word cluster
in it, it would have the maximum entropy. However, if we use entropy defined at
(11) as our ranking score, a comment with uniform distribution would rank highest
under any product, which cannot be used in our application. That is why we have to
consider each comment relevance to the others, so we define the General Entropy
as follows:

Definition 1 (General Entropy) Given global probability Q = {Q0,Q1, ...,Qn}
and a comment with probability Pj = {P j0 , P j1 , ..., P jn }, the general entropy of this
comment is

E(Pj ) = −
n∑

i=0,P ji �=0

Qi · P ji · logP ji .

Notice that P ji can be 0 since a comment may not include all word clusters. The
general entropy measures the average information rate for an individual comment
j with respect to the global probability. From the entropy definition given by (1),
it assigns weight on each self-information of word cluster where the weight is the
corresponding global probability. As we mentioned before, the global probability is
regarded as a high-level abstraction of the topic in the comments under this product.
Since we want to measure the information richness and the relevance of a comment,
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we give higher weight to these words that other comments also mentioned and lower
weight to words that other comments hardly mentioned.

At last, we summarize our general entropy ranking algorithm as follows:

Algorithm 1 Ranking comments based on the general entropy
Input:

Input: The set of n word clusters;
The set of m comments under a product;

Output:
Output Ranking results of all comments;

1: Covert all comments into their bag-of-word clusters representations;
2: Calculate the global probability Q = [Q0,Q1,Q2, ...,Qn];
3: Calculate each comment’s probability: Pj = [P j0 , P j1 , P j2 , ..., P jn ], j = 1, 2...m;
4: Calculate each comment’s general entropy E(Pj );
5: Rank comments based on their general entropy, comment with higher general entropy is ranked

higher;
6: return Ranking results;

In our experiment, comment with high complexity (e.g., very long comment with
many different kinds of words) and almost no relevance to this product can get pretty
high general entropy. These comments may have high ranks since most comments’
entropy scores are close to each other. So instead of calculating scores for every
comment, we first find an “ideal” comment and then judge comment by how far
or how different it is from our “ideal” comment. Naturally, can define a comment
with maximum general entropy as our “ideal” comment, and we call this “ideal”
comment the Maximum General Entropy Comment. Since the maximum general
entropy comment has the maximum general entropy, it keeps a good balance of
relevance and information richness. We define the Maximum General Entropy
Comment as follows:

Definition 2 (Maximum General Entropy Comment) Given global probabil-
ity Q = {Q0,Q1, . . . ,Qn}, the maximum general entropy comment B :=
{B0, B1, ..., Bn} is defined as

B = arg max
P
E(P),

where P := {P0, P1, ..., Pn} and
∑n
i=0 Pi = 1. ��

Note that the maximum entropy comment is a comment with the maximum
general entropy within all possible comments. This comment may not exist in the
existing comment set. However, it is regarded as a standard to judge each comment’s
relevance to the product. The following theorem shows that the maximum entropy
comment exists and is unique, given a collection of comments. Its proof can be
found in the first author’s master thesis.
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Theorem 1 Given global probability Q = {Q0,Q1, ...,Qn} and an index set C
that i ∈ C if Qi �= 0 and i /∈ C otherwise. Then there exists a unique maximum
general entropy answer B = {B0, B1, ..., Bn} so that B = arg maxP E(P) and Bi ={
e
−1− λ

Qi i ∈ C
0 i /∈ C,

where λ is a unique value and
∑n
i=0 Bi = 1.

After the definition of the “ideal” comment, now we need a method to measure
each comment’s distance to the maximum general entropy comment. As we
mentioned before, we treat each comment as a multinomial distribution with
probability {P j0 , P j1 , ..., P jn }, that is, if we randomly sample a word from this

comment, this word belongs to word cluster i with probability P ji . We treat the
maximum general entropy answer the same way as it is a multinomial distribution
with {Bj0 , Bj1 , ..., Bjn }. To measure how one probability distribution is different from
others, we use K-L divergence defined as follows:

Definition 3 (K-L Divergence) Given j th comment probability Pj = {P j0 , P j1 , ...,
P
j
n } and the maximum general entropy comment B = {B0, B1, ..., Bn}, the

Kullback–Leibler divergence from the maximum general entropy comment B to
j th comment Pj is defined to be

DKL(Pj |B) =
n∑

i=0,P ji �=0

P
j
i · log

(P ji
Bi

)
.

In statistics, we call B the prior probability distribution and Pj the posterior
probability distribution, and the K-L divergence from B to Pj is

DKL(Pj |B) =
n∑

i=0,P ji �=0

P
j
i · log

(P ji
Bi

)

= −
n∑

i=1,P ji �=0

P
j
i · log(Bi)−

(
−

n∑
i=1,P ji �=0

P
j
i · log(P ji )

)

= −
n∑

i=1,P ji �=0

P
j
i · log(Bi)−H(Pj).

(13)

DKL(Pj |B) is actually the information gain if we use distribution B to approx-
imate Pj . When two distributions are close to each other, this value is relatively
small, and otherwise, it is large if two distributions are very different. The first item
−∑n

i=1,P ji �=0
P
j
i · log(Bi) in (13) is called cross-entropy, which is a very popular

loss function of classification problem in machine-learning area.
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Finally, we summarize our ranking process as follows:

Algorithm 2 Ranking comments based on K-L divergence to the maximum general
entropy comment
Input:

The set of n word clusters;
The set of m comments under a product;

Output:
Output Ranking results of all comments;

1: Covert all comments into their bag-of-word clusters representations;
2: Calculate the global probability: Q = [Q0,Q1,Q2, ...,Qn];
3: Calculate each comment’s probability: Pj = [P j0 , P j1 , P j2 , ..., P jn ], j = 1, 2...m;
4: Based on the global probability Q, find the maximum general entropy comment: B =

{B0, B1, ..., Bn};
5: Calculate each comment’s K-L divergence to the maximum general entropy comment B;
6: Rank comments based on their K-L divergence, comment with lower divergence is ranked

higher;
7: return Ranking results.

The next step is to assess this algorithm by evaluating the ranking quality.
Here we introduce normalized Discounted Cumulative Gain (nDCG) (Järvelin &
Kekäläinen 2002); it is often used to measure the effectiveness of web search engine
algorithms, but it can also be applied to text ranking application. Many researches
mentioned before (Hsu et al. 2009; Woloszyn et al. 2017) adapt this method to assess
their ranking algorithm. First, let us define Discounted Cumulative Gain (DCG).

Definition 4 (DCG) Given a ranked list with m comments, and reli is graded
relevance of the result at position i, discounted cumulative gain is defined as

DCGm =
m∑
i=1

reli

log2(i + 1)
.

According to this definition, if a comment with high graded relevance appears
lower in the ranking result, it will be penalized as the graded relevance value is
reduced logarithmically proportional to the position of the ranking result. To achieve
high DCG value, the algorithm should rank a high relevance comment higher than
low relevance one. Notice that in our application, graded relevance reli is a manually
annotated comment quality score that will not be used as an input in our algorithm,
and more detail about our experiment is described in Sect. 4.

While DCG is already a valid measure of ranking quality, it does not have a
proper upper and lower bound to let people better compare the performance of
different ranking results, and then nDCG is defined as follows:

Definition 5 (nDCG) Given a ranked list withm comments and its DCG value, the
normalized discounted cumulative gain is computed as
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nDCGm = DCGm

IDCGm
,

where IDCGm is the ideal discounted cumulative gain.

IDCGm is straightforward to compute where the ideal ranking result is to rank
these comments directly based on their graded relevance. nDCG ranges from 0 to
1, while 0 will not be able to achieve, and the closer our nDCG is to 1, the better
quality our result has.

4 Experiment with Amazon Review Data

In this section, we conduct our experiment based on the Amazon product dataset
(see He and McAuley 2016; McAuley et al. 2015), which contains users’ reviews
on Amazon website spanning 1996–2014. We choose one of the Amazon products
and rank its comments using both pure general entropy and K-L divergence to “ideal
comment.” By comparing these two methods on a real dataset, we understand each
method’s characteristics and how they distinguish “fake” comments from actual
comments. Moreover, we also analyze the relationship between general entropy and
K-L divergence.

Amazon product data contain more than one hundred million reviews over
millions of products, and these reviews were grouped into different categories. In
our experiment, we chose the category “baby,” which includes 160,782 comments
of 7701 products. Notice that the dataset is titled “5-core,” which means each of the
users and products has at least 5 comments. In that case, we assume that most of the
comments in this dataset are reasonable.

As described in Sect. 2, in order to keep our word embedding’s quality, we need
a large amount of data to train our word2vec model. In that case, we combine all
comment text in “baby” category as our corpus, which is used as an input to our
word2vec model. The first step is data cleaning that is an essential part of every text
mining application. We need to carefully remove all noise or unnecessary words in
the text and keep as much information as possible. We performed our data cleaning
process using a Python package called Gensim (Řehůřek & Sojka 2010). After
cleaning the dataset, we feed the corpus to our word2vec model with K-means
clustering. The detailed steps are described in the first author’s master thesis.

Table 1 shows part of the results of our word clusters; notice that the “Semantic
category” titles are manually assigned and not used in the ranking algorithm. We
observe that in cluster #133, word “she” is in the same cluster as “baby.” That is an
interesting feature of the word2vec model; remember our dataset is the collection of
all products’ comments under the “baby” category. In these comments, “she” always
indicates a “baby,” where these two words have similar context words and thus have
similar word embeddings. That is also why word “poorly” and “perfectly” are in
the same cluster; despite the two words are antonyms, they have similar context
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words in the corpus. This property does not affect our application since we only
care about each comment’s relevance, and criticism and praise of a product are both
information-rich comments.

Assigning similar words with the same cluster number enables us to distinguish
comments more accurately. With our word embedding clusters, we transform each
comment into its “bag of word clusters” digital representation. Now we apply our
ranking algorithm on a real product. We used a product called “OXO Tot Waterproof
Silicone Roll Up Bib with Comfort-Fit Fabric Neck” (ASIN: B00D3TPGAO) (Oxo
tot waterproof silicone roll up bib with comfort-fit fabric neck 2014). This product
also belongs to the “baby” category, which means we will have no difficulties
transforming comments into their bag-of-word clusters representation. The details
of this product are shown in Fig. 2.

This product has 95 comments in total. We checked all comments and made
sure that they are all related to the products. Let us first take a look at the word
cluster distribution of all comments, which we also called global probability in
Sect. 3. Figure 3 is the histogram of global word distribution, where the horizontal
axis represents the cluster index, and the vertical axis represents frequency. The
word clusters distribution is not very uniform, and some clusters have significantly
higher frequencies than the others. Tables 2 and 3 show the top 3 most frequent and
least frequent word clusters in the whole collection of comments. Obviously, one of
the most frequent words under this product should be “bib,” and its corresponding

Table 1 Examples of the word embedding clusters

Cluster# Semantic category Examples of clustered words

133 Baby Baby, son, daughter, child, kid, she, little_guy, kiddo, babe,...

11 Automobile Car, trunk, vehicle, drive, SUV, truck, Sedan, van, Ford,...

248 Food Banana, apple, veggie, pea, chicken, meat, pasta, avocado,...

116 Adverb Well, fine, perfectly, nicely, properly, beautifully, poorly,...

104 Media Picture, movie, video, image, show, pic, visual, television,...

Fig. 2 Product detail (Oxo tot waterproof silicone roll up bib with comfort-fit fabric neck 2014)
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Fig. 3 Global word distribution

Table 2 Top 3 most frequent word clusters

Cluster# Frequency Examples of clustered words

112 0.0701 Bib, spoon, bowl, plate, dish, fork, catch_food...

133 0.0299 Baby, son, daughter, child, kid, little_guy, kiddo...

1 0.0216 Easy, easier, simple, useful, handy, make_easier...

word clusters have the highest frequency. It is not just because this cluster includes
the word “bib,” it also includes many related words such as “spoon,” “fork,”
“catch_food,” which may also appear a lot in the comments. The second most
frequent cluster includes “baby” related words; these words appear a lot in the
comments as this is a baby product. The third cluster is “easy” related words;
many users describe this product using these adjectives. If these clusters have high
frequency appearing in a comment, this comment is likely related to our product.
After analyzing the global word cluster distribution, we find that global probabilities
contain a lot of information regarding our product and are capable of judging
the relevance of a comment to this product, which partially proves our methods’
feasibility.

In the following, we apply our two ranking methods on our dataset: general
entropy and K-L divergence to the maximum general entropy comment. In the
dataset, we have one product with 95 comments, and these comments are considered
as relevant comment. Since we do not judge these 95 comments’ quality, we
arbitrarily select 5 sets of comments that are not related to this product. Each set
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Table 3 Top 3 least frequent word clusters

Cluster# Frequency Examples of clustered words

20 0 Phone, iPhone, tablet, computer, laptop, smartphone...

259 0 Brush, hair, bristle, toothbrush, nail_cliper, scalp...

263 0.0047 Sleep, sleeping, fall_asleep, cozy, snuggle, cuddle...

Fig. 4 nDCG of two methods on Amazon dataset

contains 10 comments. We called these comments fake comment, and they are all
real comments under other Amazon products. It is worth mentioning that during
the experiment, we are not aware of which comment is fake. We calculate global
distribution and the maximum general entropy comment based on all comments,
including fake comments.

To assess the ranking performance, we used the evaluation metric nDCG given
in Sect. 3. According to the definition, we need to assign each comment a relevance
score reli . In our experiment, we assigned the 95 original comments with relevance
score 10 and fake comments with relevance score −10. To achieve higher nDCG
value, the original comments should rank higher than fake comments. Moreover,
in the best scenario, fake comments happen to have the lowest ranks, and we can
calculate our ideal DCG (iDCG) based on this case.

Figure 4 shows the nDCG values of two methods on 5 different fake answer sets.
Remember that nDCG ranges from 0 to 1, where a higher score indicates better
performance. The red dashed line at the bottom of this figure is the baseline of our
application. To construct the baseline, we generate 100,000 random sequences as the
ranking results and calculate the mean of their nDCG values, which is 0.9396. Both
of the two methods have better performance than the baseline, which shows our
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methods’ effectiveness. The K-L method generally outperforms the general entropy
method, and they have the same trend. We observe that when the K-L achieves
higher nDCG scores, the general entropy always has a higher score as well. The
reason for this phenomenon is that they both rank comments based on their relevance
to the global distribution. K-L method is more sensitive to each comment word
distribution, and the variation of comments’ K-L score is bigger than that of the
general entropy method, so it has better discrimination power. In conclusion, the K-
L method is more sensitive to the word distribution, while the general entropy puts
more weight on the text complexity.
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A Robust Approach to Statistical Quality
Control for High-Dimensional
Non-Normal Data

M. Rauf Ahmad and S. Ejaz Ahmed

Abstract A recently proposed modification to the limit of the Hotelling’s T 2-
statistic for statistical control under high-dimensional settings is evaluated for its
robustness to the normality assumption. The limit, evaluated for high-dimensional
asymptotics, is shown to be robust under a few mild assumptions and a general
multivariate model covering normality as a special case. Further, the limit holds
without any dimension reduction or preprocessing. The validity of the limit is
demonstrated through simulations.

Keywords High-dimensional theory · Profile monitoring · Robust statistics

1 Introduction

Let Xi = (Xi1, . . . , Xip)
′ ∈ R

p, i = 1, . . . , n, be iid random vectors from
certain non-degenerate multivariate distribution, F , with E(xi ) = μ ∈ R

p and
Cov(Xi ) = � ∈ R

p×p. Assuming F to be multivariate normal, Np(μ,�), Ahmad
and Ahmed (2020) proposed a modification to the Hotelling’s T 2 statistic used in
statistical monitoring when the data are high-dimensional, i.e., p � n. The modified
statistic is shown to follow a scaled χ2 or, alternatively, a normal distribution, as
n, p → ∞. Using the results of simulations under several parameter settings, the
validity of the proposed limit is demonstrated, particularly for high-dimensional
data settings.

The T 2 chart is the most commonly used multivariate control chart and, under
the normality assumption, has several optimality properties. For general references,
see Johnson and Wichern (2007), Montgomery (2013), and Qiu (2014). As high-
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dimensional theory is getting inroads in all classical multivariate methods, the
improvement of process monitoring for such data has also become the need of the
day, due to the availability of large data sets and associated questions that cannot
be addressed by classical theory. The modification proposed in Ahmad and Ahmed
(2020) addresses this issue for T 2 chart, which cannot be used for high-dimensional
data.

The present note aims to evaluate and extend the aforementioned modifica-
tion, in a high-dimensional setting, but relaxing the normality assumption. The
normality assumption is replaced with a general multivariate model often used in
high-dimensional, non-normal inference. The extended modified limit is shown,
theoretically and via simulations using a variety of parameter settings, to be valid
for p � n. As many practical applications involve data which is far from normal,
this robust extension, along with the original modification in Ahmad and Ahmed
(2020), provides a substantial alternative for high-dimensional statistical process
monitoring, where the proposed modification can be used for a wide spectrum of
multivariate distributions.

Most of the attempts in the literature on statistical monitoring, including for
high-dimensional data, have investigated the theory only under normality; see
the references discussed in Ahmad and Ahmed (2020). However, a few attempts
have also been made by relaxing the normality assumption, or even purely non-
parametrically; see, for example, Chen et al. (2016), Capizzi and Masarotto (2017),
Qiu (2008, 2018), Qiu and Hawkins (2001), and Zou et al. (2008). An interesting
case for statistical monitoring as an important tool to deal with large data is argued
in Qiu (2019).

After a brief notational set up in Sect. 2, a robust extension of the modification is
presented in Sect. 3. The simulation based evaluation of the accuracy of robustness
is the subject of Sects. 4 and 5 summarizes the main points. All technical results are
collected in the appendix.

2 Notations and Preliminaries

We briefly recap the classical T 2 charts here for further reference. For further details,
see Johnson and Wichern (2007) and Ahmad and Ahmed (2020). For the data set up
in Sect. 1, let

X = 1

n

n∑
i=1

Xi , �̂ = 1

n− 1

n∑
i=1

X̃iX̃Ti (1)

be unbiased estimators of μ and �, respectively, where X̃i = Xi − X. Assuming
n > p and Xi ∼ Np(μ,�), so that X ∼ Np(μ,�/n) and (n − 1)�̂ ∼Wp(n −
1,�), whereWp(·) denotes the Wishart distribution, the phase I chart in statistical
monitoring consists of plotting (i, T 2

i ) where
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T 2
i = X̃Ti �̂

−1X̃i , i = 1, . . . , n. (2)

The criterion to declare an observation as outlier is based on the upper control limit
(UCL), i.e., [(n− 1)2/n]beta[α;p/2, (n−p− 1)/2], where beta(·) denotes 100α%
quantile of beta distribution (Johnson and Wichern 2007). After discarding outliers,
the cleaned data in phase I provides final estimates of parameters to be used in
phase II, where a similar decision can be made for future observations, assuming
the process is still in control. The T 2 statistic for future observation, X0, computed
as

T 2
0 = X̃T0 �̂

−1X̃0 (3)

is compared to the upper bound [p(n2 − 1)/(n(n − p))]Fαp,n−p, where Fαp,n−p
denotes a 100(1 − α)% quantile of the F distribution with parameters p and
n − p, X̃0 = X0 − X, and X, �̂ are the final estimates obtained in phase I. A
similar procedure holds for subgroup-means charts when multiple observations are
available for each unit i. Although, the aforementioned modification and its robust
alternative, presented below, apply to all these charts; for brevity, we shall skip
further details of subgroup-means charts; see Ahmad and Ahmed (2020, Sec. 2).

3 Modification and Robustness

3.1 Model and Assumptions

Given Xi , let Yi = Xi − μ with E(Yi ) = 0, Cov(Yi ) = �. Having
relaxed normality, our robustness evaluation will be based on the following general
multivariate model:

Yi = 	Ui , (4)

where Ui ∈ R
p with E(Ui ) = 0, Cov(Ui ) = I, and 	 ∈ R

p×p is a known constant
matrix with 	T	 = A, 		T = � > 0, where A is any positive semi-definite
matrix. Model (4) contains multivariate normality as a special case and is often used
for general multivariate inference; see Ahmad (2017) for details and references.

The normality-based modification in Ahmad and Ahmed (2020) is essentially
based on a single extra assumption, stated as Assumption 3.1 below, whereas, for
the present case under Model (4), we additionally need Assumptions 1–3. Let λj ,
j = 1, . . . , p denote the eigenvalues of �, so that ν1, . . . , νp, νj = λj/p, denote
those of � = �/p. Further, let E(U3

ij ) = γ1 ∈ R and E(U4
ij ) = γ2 + 3, γ2 ∈ R

+,
be the third and fourth moments of the elements of U, respectively.

Assumption 1 limp→∞
∑p

j=1 νj = O(1).
Assumption 2 Let γ1, γ2 <∞, where γ1, γ2 are defined above.
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Assumption 3 limp→∞ tr(A � A)/tr(A ⊗ A) = 0 with A a positive semi-definite
matrix, where � and ⊗ denote Hadamard and Kronecker products, respectively.

Assumption 1 is inevitably needed under Model (4), since the computations
involve second moments of quadratic forms. Assumption 2 puts a bound on
the average of the scaled eigenvalues, νj . It is simple, effective, and commonly
used in high-dimensional inference; moreover, it has an interesting consequence,
limp→∞

∑p

s=1 ν
2
j = O(1) which will be referred to in the sequel. To see practical

applicability of Assumption 2 and its consequence, let � be compound symmetric,
which belongs to the group of spiked covariance structures, i.e., � = (1− ρ)I+ ρJ
with I as identity matrix, J = 11′, 1 a vectors of 1s, and ρ ∈ R,−1/(p−1) ≤ ρ ≤ 1.
It can be easily shown that tr(�i ) = O(pi), i = 1, 2, which satisfies the assumption
and its consequence. Finally, Assumption 3 is mild, because the numerator is a much
smaller term, in terms of p, than the denominator.

Note that, in the computations below, 	 in Model (4) will essentially appear as
�1/2, so that A will be representing �. For example, the traces in Assumption 3
can be considered for A as well as for �. In this context, with normality relaxed,
Assumption 3 controls the behavior of the moments of estimators that compose the
modified statistic; see Theorem 1 below.

3.2 Statistic, Its Limit, and Robustness

For brevity, we only focus on the charts for an individual observations case. The case
of subgroup-means follows similarly. The statistic for an individual observations
case, T 2

i , is given in Eq. (2), which, under the normality assumption and for fixed
p, follows a beta distribution which provides the upper limit given after Eq. (2).
Alternatively, as an approximation for fixed p and n → ∞, a χ2

p limit can also be
used. These limits, however, are not applicable for a high-dimensional setup, i.e.,
when p is large, and particularly for p � n, mainly due to the singularity of �̂ in
T 2
i . The modified form of T 2

i in Ahmad and Ahmed (2020), valid for the p � n

case, is defined as

Wi = n

n− 1

‖di‖2

tr(�̂)
, (5)

where �̂ = �̂/p, di = X̃i/
√
p, i = 1, . . . , n, ‖ · ‖ denotes the Euclidean

vector norm and tr(·) is the trace operator. It is shown that, under normality and
Assumption 2,

Wi − E(Wi)
σ̂Wi

D−→ N(0, 1), (6)
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as n, p → ∞, where E(Wi) = 1 + oP (1) and σ̂ 2
Wi

, a consistent estimator of σ 2
Wi

,
is defined below; see also Theorem 2 and Corollary 4 in the reference mentioned
above. To motivate the evaluation of Wi in (5) for robustness under the general
multivariate model, (4), we first note that the limit of Wi in Ahmad and Ahmed
(2020) is obtained by using the consistency of tr(�̂) for n, p → ∞ and showing
thatWi has the same limit as that of

Ai = n

n− 1

‖di‖2

tr(�)
. (7)

Under normality assumption, E(Ai) = 1, V ar(Ai) = 2/f , where f =
[tr(�)]2/tr(�2). This helps determine the limit of Ai , and thus that of Wi , as
χ2
f /f whose first two moments coincide with those of Ai .

When we replace normality with Model (4), E(Ai) = 1 remains same, using
E(‖di‖2) = [(n − 1)/n]tr(�), but V ar(‖di‖2) differs. The following lemma, the
proof of which follows easily using Theorem 3, collects the moments of ‖di‖2 under
Model (4):

Lemma 1 For ‖di‖2 defined above, we have, under Model (4),

E(‖di‖2) = n− 1

n
tr(�)

V ar(‖di‖2) =
(
n− 1

n

)2 [
2tr(�2)+ M1

p2

]

Cov(‖di‖2, ‖dj‖2) = 1

n2

[
2tr(�2)+ M1

p2

]
,

∀ i �= j , i, j = 1, . . . , n, whereM1 is defined in Theorem 3.

Note that, the moments in Lemma 1 reduce to those in Ahmad and Ahmed (2020)
under normality when γ2 = 0 ⇒ M1 = 0. Further, these moments help us define
the moments of the traces involved in the limit of Wi , and particularly f given
above, which in turn justifies the use of Assumption 3 involving the trace operator
with Hadamard product. In this context, we exploit the equivalence of the limits
of Ai and Wi and consider ‖di‖2/tr(�), where the scaling trace factor will make
the terms involving Hadamard product vanish under the assumption. Finally, this
last point will further help us, using the covariance part in Lemma 1, obtain the
multivariate limit of the vector of ‖di‖2. To approach this multivariate limit, write
Ai in (7) as

Ai = n

n− 1
ai, (8)

where ai = ‖di‖2/tr(�), i = 1, . . . , n. As ai are correlated, we are essentially
seeking the distribution of the vector a = (a1, . . . , an)

T . From Lemma 1, it follows
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that E(ai) = [n/(n−1)] and it holds without Model (4) or any assumption. Further,
for n → ∞ and fixed p, E(ai) → ∞, V ar(ai) → 2/f and Cov(ai, aj ) → 0,
without needing any assumptions. Now, when we let n, p → ∞, the so-called
high-dimensional setup, then, under Assumption 2 and its consequence, f is
uniformly bounded in p (using the moments in Theorem 1 below) so that, under
Assumptions 1–3, the convergence for ai , and therefore also that ofAi , or the vector
A = (A1, . . . , An)

′, may hold conveniently. For this, we use Lemma 1 for Eq. (8)
and note, for i �= j , i, j = 1, . . . , n, that

E(Ai) = 1

V ar(Ai) = 2

f

[
1 + M1

[tr(�)]2
p∑
s=1

ν2
j

]

Cov(Ai, Aj ) = 2

f
· 1

(n− 1)2

[
1 + M1

[tr(�)]2
p∑
s=1

ν2
j

]
,

where νj are the eigenvalues of �; see the assumptions above. Now, under the
consequence of Assumption 2 discussed above, limp→∞

∑p

s=1 ν
2
j in V ar(Ai)

and Cov(Ai, Aj ) is uniformly bounded where the fractional term involving M1
vanishes under Assumption 3. Note that, this vanishing limit can also be obtained
by replacing Assumption 3 with tr(A � A)/p2 → 0 as p→∞. But, we also need
to assume a simultaneous rate of convergence of p and n, i.e., p/n → c ∈ (0,∞)
as n, p → ∞. Assumption 3, for which the denominator implies tr(A ⊗ A) =
tr(�⊗ �) = [tr(�)]2, helps us avoid any such (n, p)-relationships.

This argument implies that, even under Model (4), moments of Ai , and later of
Wi , behave similarly as under normality so that a limit similar to that in Ahmad and
Ahmed (2020) may be obtained. For the entire vector A, we can now write

E(A) = 1, Cov(A) = 2

f
In[1 +O(1)] + [(Jn − In)O(n−2)], (9)

where In is identity matrix, Jn = 1n1Tn with 1n a vector of 1s, so that, using the
limits for Ai ,

lim
n,p→∞Cov(A) =

2

f
In[1 + o(1)], (10)

under the assumptions. As Cov(A) is a diagonal (in fact, a spherical) matrix in the
limit, Ai are asymptotically independent and a limit of A follows by the central
limit theorem. Note that, for such vectors with correlated elements, the essential
requirement for multivariate limit is that the covariances, Cov(Ai, Aj ), or more
precisely, the corresponding correlations, converge to the same fixed constant. This
limit, in our case, is 0, making Cov(A) a diagonal matrix.
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It follows from the above arguments that a limit of Wi under Model (4),
similar to (6), follows if consistent and efficient estimators of the traces involved
in f are defined for Model (4) under a high-dimensional asymptotic setup. The
estimators in Ahmad and Ahmed (2020) are indeed non-parametrically defined and
hence applicable under Model (4) as well. These estimators, of tr(�), tr(�2) and
[tr(�)]2, respectively, are defined as

E1 = tr(�̂) (11)

E2 = η{(n− 1)(n− 2)tr(�̂
2
)+ [tr(�̂)]2 − nQ} (12)

E3 = η{2tr(�̂2
)+ (n2 − 3n+ 1)[tr(�̂)]2 − nQ}, (13)

where η = (n− 1)/[n(n− 2)(n− 3)] andQ =∑n
i=1 q

2
i /(n− 1) with qi = ‖di‖2.

For an equivalent U -statistics formulation of the estimators, justifying their non-
parametric nature, see Sect. 8. Thus, to use them in the present context of robustness,
we need efficient and consistent moments of these estimators under Model (4). They
are given in the following theorem, proved in Sect. 8, which reduce to Theorem 3 in
Ahmad and Ahmed (2020) under normality.

Theorem 1 The estimators, E1, E2, and E3, defined in Eqs. (11)–(13), are unbi-
ased for tr(�), tr(�2) and [tr(�)]2, respectively, with

V ar(E1) = 2

n− 1
tr(�2)+M1

V ar(E2) = 4

P(n)

[
a(n)tr(�4)+ b(n)[tr(�2)]2 + 2c(n)M1 + d(n){6M2 +M3}

−2e(n)M4

]

V ar(E3) = 4

P(n)

[
4tr(�4)+ f (n)[tr(�2)]2 + g(n)tr(�2)[tr(�)]2 + d(n)M2

1

+h(n)M1tr(�
2)+ k(n)M1[tr(�)]2 − 2e(n)[M5 +M4]

]
,

where a(n) = 2n3 −12n2 +21n−5, b(n) = n2 −6n+11, c(n) = (n−1)(n−3)2,
d(n) = (n − 2)(n − 3)/2, e(n) = n − 3, f (n) = n2 − 6n + 10, g(n) = (n −
2)(n− 3)(2n− 3), h(n) = (n− 3)(2n− 5), k(n) = (n− 1)(n− 2)(n− 3),M1 =
γ1tr(A�A),M2 = γ1tr(A2 �A2),M3 = γ 2

1 tr(A�A)2,M4 = γ 2
2 tr[(A�A)A2],

M5 = γ 2
2 tr(A�A�A2). Further, V ar(Ei) and likewiseCov(Ei, Ej ) are uniformly

bounded by O(1/n), i, j = 1, 2, 3,, i �= j .
From Theorem 1, the variances and covariances are uniformly bounded in p where
the bounds only depend on n. This important consequence will help us arrive at
the limit of the test statistic conveniently, which in turn ensures f̂ = E3/E2 as a
consistent estimator of f , implying a consistent estimator of the test statistic, i.e.,
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2/f . In summary, we have the following theorem, the proof of which is sketched
in Sect. 9. Note that, following the arguments around Eqs. (6) and (8), using the
consistency of tr(�̂), it immediately follows that E(Wi) = 1 + oP (1) → 1 for
n, p→∞, same as under normality.

Theorem 2 GivenWi in Eq. (5), Model (4) and Assumptions 2–3. Then, as n, p→
∞

Wi − E(Wi)
σ̂Wi

D−→ N(0, 1),

where E(Wi) = 1, σ̂ 2
Wi

= 2/f̂ with f̂ = E3/E2 a consistent estimator of f =
[tr(�)]2/tr(�2).

Although, Theorem 2 deals with a univariate limit, it follows from the moments
of a in Eq. (9) and the arguments around it that the multivariate limit of the vector
W = (W1, . . . ,Wn)

′ can also be conveniently obtained, through a similar limit of
A = (A1, . . . , An), so that the required limit in Theorem 2 follows simply as a
marginal projection. In fact, Cov(A), for n, p→∞, has the same limit, [2/f ]I[1+
o(1)], as that of a in Eq. (10). With Cov(Ai, Aj ) = 0, making Ai’s asymptotically
independent and the variances uniformly bounded in p, the limit of a, eventually of
A, follows as

√
f/2(A − E(A)) D−→ Nn(0, I),

as n, p → ∞. Likewise, the limit of W follows by replacing f with its (n, p)-
consistent estimator, E2/E3. Theorem 2 extends the use of modified T 2 statistic for
statistical control to a general model covering normality as a special case.

A very similar approach, with precisely the same limit, holds for the phase II
chart of future observation and also for both types of charts for subgroup-means as
well. In fact, as shown in Ahmad and Ahmed (2020), the convergence of the limit
in case of subgroup-means is relatively better because the statistics are composed of
averages. To avoid repetition, we shall not discuss these cases here, but they can be
approached following the same steps as above.

4 Simulations

We evaluate the performance of the proposed extension of the modified statistic for
robustness to normality for high-dimensional data, using three non-normal distribu-
tions, exponential, uniform and t10. For each distribution, we generate n iid vectors
each of dimension p, where n ∈ {20, 50, 100} and p ∈ {50, 100, 300, 500, 1000},
assuming the distribution has mean vector zero and covariance matrix either
compound symmetry (CS) or fist-order autoregressive, AR(1), defined, respectively,
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Table 1 Estimated size and Power ofWi for two Distributions

Size Power

Exponential Uniform T Exponential

n p CS AR CS AR CS AR CS AR Uniform T

20 50 0.051 0.044 0.060 0.063 0.068 0.063 0.488 0.155 0.551 0.197 0.473 0.358

100 0.053 0.046 0.058 0.061 0.057 0.058 0.663 0.298 0.702 0.303 0.608 0.482

300 0.049 0.046 0.055 0.058 0.058 0.060 0.774 0.472 0.893 0.598 0.711 0.602

500 0.052 0.047 0.053 0.056 0.054 0.055 0.936 0.788 1.000 0.806 0.898 0.724

1000 0.055 0.047 0.054 0.052 0.055 0.057 0.992 0.882 1.000 0.902 0.941 0.875

50 50 0.045 0.048 0.054 0.055 0.062 0.066 0.795 0.403 0.899 0.455 0.885 0.538

100 0.055 0.051 0.051 0.052 0.055 0.058 0.899 0.571 0.995 0.660 0.942 0.771

300 0.042 0.045 0.048 0.053 0.054 0.057 0.914 0.889 1.000 0.905 0.991 0.848

500 0.052 0.049 0.057 0.049 0.049 0.052 0.942 0.915 1.000 1.000 1.000 0.962

1000 0.044 0.047 0.051 0.046 0.050 0.053 1.000 0.999 1.000 1.000 1.000 1.000

100 50 0.053 0.052 0.054 0.054 0.053 0.051 0.898 0.735 0.993 0.883 0.954 0.821

100 0.047 0.051 0.057 0.052 0.056 0.052 0.994 0.896 1.000 0.958 1.000 0.990

300 0.049 0.048 0.054 0.053 0.052 0.047 1.000 0.989 1.000 1.000 1.000 1.000

500 0.050 0.051 0.058 0.055 0.051 0.048 1.000 1.000 1.000 1.000 1.000 1.000

1000 0.052 0.046 0.055 0.052 0.047 0.052 1.000 1.000 1.000 1.000 1.000 1.000

as κI + ρJ and Cov(Xk,Xl) = κρ|k−l|, ∀ k, l, where I is an identity matrix and J
is a matrix of 1s. We use ρ = 0.5 and κ = 1 for both structures. Finally, we set
α = 0.05 for both test size and power and estimate them as an average over 1000
simulations.

The estimated size and power of the statistic are reported, respectively, in the
left and right panels of Table 1. The statistic seems to perform accurately for both
criteria, under all distributions, and for both covariance patterns. In particular, we
notice an improvement in the accuracy for increasing n, although the accuracy also
remains intact for increasing p for any given n. The power shows a similar pattern
with discernible improvement for increasing sample sizes. We also note slightly
less accuracy and slower improvement, for both size and power, under exponential
distribution, which, however, get better with only a small increase in the sample
size.

From sample size perspective, the robustness of the modification seems to work
well even for a moderate n like 50, where it shows a drastic increase in accuracy
for n = 100. As this holds for p, and since the test statistic is based on estimators
uniformly bounded in dimension, combined with the fact that we do not need to
assume any simultaneous rate of increase for n and p, it can be concluded that the
robustness holds valid for any reasonable sample size and large dimension.

In summary, the proposed modification seems to work well for high-dimensional
data and is robust to normality assumption, so that it can be used as an alternative to
the classical T 2 statistic which collapses for large dimensions.
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5 Discussion

A modification to the limit of T 2 statistic used in multivariate process control,
originally proposed in Ahmad and Ahmed (2020) for high-dimensional normal data,
is further extended for its robustness to normality. Replacing normality with a more
general multivariate model, requiring only moments up to order four bounded, it
is shown that the same normality-based modified limit can also be used for high-
dimensional, non-normal data. Simulations are used to demonstrate the accuracy of
the proposed limit. This robustness extension provides a useful practical tool for
statistical monitoring to deal with large, not necessarily normal, data.

The practical worth of the proposed modification and its robust version follow
from certain distinguishing features it offers. It has a simple structure, is based
on only a few, very mild, assumptions, particularly not requiring any higher
moment assumptions on the unknown covariance matrix or its eigenvalues and no
relationship between the growth of sample size and dimension, and it is valid for
any moderate sample size and large dimension. It thus provides a valid alternative
option to the classical T 2 statistic for multivariate process control.

6 Basic Moments

Following theorem summarizes some important moments of quadratic and bilinear
forms under Model (4) which are needed to prove the main results. These moments
reduce to those under normality when (4) reduces to the same.

Theorem 3 Given Model (4) with E(Yi ) = 0, Cov(Yi ) = � ∀ i, let Qi = YTi Yi
= XTi AYi and Qij = YiYj = XTi AXj , Kij = XTi A2Xj , i �= j , be quadratic and
bilinear forms, respectively. Then

E(Qi) = tr(�)
E(Qij ) = 0

E
(
Q2
i

)
= 2tr(�2)+ [tr(�)]2 +M1

E
(
Q2
ij

)
= tr(�2)

E
(
Q3
ij

)
= 0

E
(
Q4
ij

)
= 6tr(�4)+ 3[tr(�2)]2 + 6M2 +M3

E(QiQij ) = 0

E
(
Q2
ijKij

)
= M4
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E(QiQjKij ) = M4 +M5

E
(
Q2
ijKii

)
= 2tr(�4)+ [tr(�2)]2 +M2

E
(
Q2
ijQ

2
ik

)
= 2tr(�4)+ [tr(�2)]2 +M2

E(QijQikKjk) = tr(�4)

E(QijQkjQirQkr) = tr(�4),

where M1 = γ2tr(A � A), M2 = γ2tr(A2 � A2), M3 = γ 2
2 tr(A � A)2,

M4 = γ 2
1 tr[(A � A)A2], M5 = γ 2

1 tr(A � A � A2). Furthermore, E[A3
ijAik],

E(AijAikKii), E(AijAikKij ), E(A2
ijKij ) and E(A

2
ijAikAjk) all vanish.

Lemma 2 (Jiang 2010, p 183) Let Y1, Y2, . . . be iid random variables with
E(Yi) = 0, V ar(Yi) = 1, and bni , i = 1, . . . , n, be a sequence of constants such

that maxi b2
ni → 0, as n→∞. Then

∑n
i=1 bniYi

D−→ N(0, 1).

7 Proof of Lemma 1

Given di = (Xi − X)/p, with E(di ) = 0 and Cov(di ) = [(n − 1)/n]�.
Then, E(‖di‖2) and V ar(‖di‖2) in Lemma 1 follow, using, respectively, E(Qi)
and E(Q2

ij ) in Theorem 3. Finally, using the same moments, and the fact that

Cov(di ,dj ) = −�/n, gives Cov(‖di‖2, ‖dj‖2). Note that, all these moments
hold under Model (4), which includes normality. In particular, under normality,
E(‖di‖2) remains unchanged, where V ar(‖di‖2) and Cov(‖di‖2, ‖dj‖2) reduce,
by substituting M1 = 0 (since γ2 = 0), to 2(1 − 1/n)2tr(�)2 and 2tr(�)2/n2,
respectively.

8 Proof of Theorem 1

The theoretical properties of estimators can be studied more conveniently by using
their alternative forms as U -statistics, as given in Ahmad and Ahmed (2020), i.e.,

E1 = 1

Q(n)

∑
∗

π(·)

1

2
Aij , E2 = 1

P(n)

∑
∗

π(·)

1

12
Bijkl, E3 = 1

P(n)

∑
∗

π(·)

1

12
Cijkl

(14)
withAij = ‖Dij‖2,Bijkl = A2

ijkl+A2
ikj l+A2

iljk ,Cijkl = AijAkl+AikAjl+AilAjk ,
where Dij = Xi−Xj , i �= j , withE(Dij ) = 0,Cov(Dij ) = 2�,A2

ijkl = (DTijDkl)2,
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Q(n) = n(n − 1), P(n) = n(n − 1)(n − 2)(n − 3), and
∑

∗ indicates sum over all
indices and π(·) means all indices pairwise unequal. The U -statistics form of E1,
E2, E3 in (14) is equivalent to their computational forms in (11)–(13) and is based
on symmetric kernels Aij /2, Bijkl/12, Cijkl/12, respectively.

The unbiasedness of E1, E2, E3 follows by noting, for their kernels, that
E(Aij ) = tr(�), E(A2

ijkl) = 4‖�‖2 and E(AijAkl) = 4[tr(�)]2, respectively.
For variances, first note that, without loss of generality, Dij = Xi −Xj = Yi −Yj ,
Yi = Xi −μ. Then, for V ar(E1), we can write its kernel, h(Xi ,Xj ) = h(·) = Aij ,
ignoring 2, as Aij = YTi Yi − 2YTi Yj + YTj Yj , so that its projections (conditional
expectations) and their variances, ξr , r = 1, 2, by Theorem 3, are, respectively,
h1(Yi ) = YTi Yi + tr(�2) ⇒ ξ1 = 2tr(�2) + M1, h2(Yi ,Yj ) = Aikr ⇒
4ξ2 = 2tr(�2)+M1/2.

Using the variance formula of a U -statistic (see, e.g., Serfling 1980; Ahmad
2017), we get V ar(E1) in Theorem 1. For V ar(E2), similarly write its 4th order
kernel, h(Yi ,Yj ,Yk,Yl ) = h(·), as

h(·) =
(

YTk Yl − YTk Ys − YTr Yl + YTr Ys
)2 +

(
YTk Yr − YTk Ys − YTl Yr + YTl Ys

)2

+
(

YTk Yl − YTk Yr − YTs Yl + YTs Yr
)2

ignoring 12, with corresponding projections computed as

h1(·) = 6YTi �Yi + 6tr(�2)

h2(·) = E[h(·)|xi , xk] = 4YTi �Yi + 4YTk �Yk + 2(YTi Yk)2 − 4YTi �Yk + 2tr(�2)

h3(·) = E[h(·)|xi , xk, xj ] = 2

[(
YTi Yj

)2 + YTi �Yi +
(

YTk Yj
)2 + YTk �Yk − YTi YjYTk Yj

− YTi YkYTj Yk − YTi YjYTi Yk − YTi �Yk +
(

YTi Yk
)2 + YTj �Yj − YTi �Yj − YTj �Yk

]

and h4(·) = h(·). The variances of these projections, ξm, r = 1, . . . , 4, using
moments from Theorem 3, follow after long and tedious computations which,
substituting into the variance formula of a U -statistic, give V ar(E2). V ar(E3)

follows the same way, with the projections of its kernel h(·) = AkrAls + AklArs +
AksAlr , computed as

h1(·) = 6YTk Yk + 6[tr(�)]2

h2(·) = 2tr(�)Akr + 2
(

YTk Yk + tr(�)
) (

YTr Yr + tr(�)
)

h3(·) = Akr
(

YTl Yl + tr(�)
)
+ Akl

(
YTr Yr + tr(�)

)
+ Alr

(
YTk Yk + tr(�)

)

and h4(·) = h(·). Finally, the covariance bounds follow by the Cauchy-Schwarz
inequality.
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9 Proof of Theorem 2

As argued around Eqs. (5) and (7), the distribution of Wi follows from that of Ai
using the consistency of tr(�̂). We thus focus on the limit of Ai first. From the
moments of ai in Eq. (9), it immediately follows that

E(Ai) = n

n− 1

V ar(Ai) = 2

f

(
n

n− 1

)
+
[
O

(
1

p2

)
+O

(
1

np2

)]
M1

[tr(�)]2

Cov(Ai, Aj ) = 2

f
· 1

(n− 1)2
+
[
O

(
1

n2p2

)
+O

(
1

n3p2

)]
M1

[tr(�)]2 ,

which converge to 1, 2/f and 0, respectively, same as those of ai . Having relaxed
normality, and working under Model (4), we proceed as follows: Since Cov(di ) =
(n − 1)�/n, let ui = [√n/(n− 1)]di , so that Cov(ui ) = �. First, assume p is
fixed. Then, with E(di ) = 0, by the multivariate central limit theorem,

ui = [√n/(n− 1)]di D−→ Np(0,�),

as n→∞, which further implies, for [(n− 1)/n]‖di‖2 = uTi ui , that

uTi ui
D−→

p∑
s=1

νsZ
2
is , (15)

whereZis are iidN(0, 1) and λs are constants. Note that, since � > 0 ⇒ rank(bs�)
= p which ensures the sum in the above limit for all p components, although the
limit also holds if � ≥ 0 with rank(�) = r ≤ p, so that the sum in the limit is over
r non-zero terms.

From Eq. (15), the limiting moments of Ai , with tr(�) = ∑p

s=1 νs as denom-
inator, are 1 and 2/f , f = (

∑p

s=1 νs)
2/
∑p

s=1 ν
2
s = [tr(�)]2/tr(�2), so that the

limit ofWi follows by replacing tr(�) with E1, which is consistent under the high-
dimensional setup, i.e., n, p → ∞. We, however, use another, direct, approach to
obtain the required normal limit in Theorem 2 under the high-dimensional setup.
For this, using the limit in (15) for n→∞, we write as

Ai − E(Ai) D−→
p∑
s=1

ωs

(
Z2
is − 1

)

with ωs = νs/
∑
s νs , where E(Ai − E(Ai)) = 0 and V ar(Ai − E(Ai)) = 2/f .

Since, Z2
is are independent, we use Lemma 2, which is a special case of Lindeberg-

Feller central limit theorem, with Z2
is’s as Yi’s and ωs as bni . Letting p → ∞
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and assuming maxω2
s → 0, the required normal limit follows immediately. The

consistency of estimators from Theorem 1, implying the consistency of f̂ = E3/E2,
extends the limit toWi , as required.
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Abstract In functional linear regression model, many methods have been proposed
and studied to estimate the slope function while the functional predictor was
observed in the entire domain. However, works on functional linear regression
model with partially observed trajectories have received less attention. In this
paper, to fill the literature gap we consider the scenario where individual functional
predictor maybe observed only on part of the domain. Depending on whether
measurement error is presented in functional predictors, two methods are developed,
one is based on linear functionals of the observed part of the trajectory and the
other one uses conditional principal component scores. We establish the asymptotic
properties of the two proposed methods. Finite sample simulations are conducted
to verify their performance. Diffusion tensor imaging (DTI) data from Alzheimer’s
Disease Neuroimaging Initiative (ADNI) study is analyzed.
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1 Introduction

With the advance in technology, it is increasingly common to encounter data that
are functions or curves in nature (see Ramsay 2005). Functional linear regression
models provide a framework for modeling the dynamic relationship between
response and functional predictors, which was first introduced by Ramsay and
Dalzell (1991). One of the primary goals for functional linear model (FLM) is to
get an estimator of functional coefficient. And many procedures have been proposed
to approximate functional coefficient, for example, functional principal component
analysis (FPCA) based approaches (Cardot et al. 1999; Hall and Horowitz 2007;
Yao et al. 2005b), spline-based approaches (Crambes et al. 2009; Marx and Eilers
1999)), wavelet-based approaches (Zhao et al. 2012; Wang et al. 2019)), and others.
We refer to Morris (2015) and Reiss et al. (2017) for more informative and extensive
reviews on such functional linear models.

Among the different based methods in functional data analysis, FPCA based
approaches for capturing the information of covariates are popular (Hall et al. 2006;
Che et al. 2017). In the setting where trajectories are observed on dense and regular
grid on the entire domain, the existing works can be found in Besse and Ramsay
(1986), Rice and Silverman (1991), Cardot et al. (1999), Shin (2009), Horváth and
Kokoszka (2012), to name a few. Yao et al. (2005a) emphasize the case where the
functional predictors are observed with irregularly sparse measurements which is
often referred to as sparse functional data and proposes a nonparametric method to
perform FPCA. For general review on FPCA, see Shang (2014). In this paper, we
prefer to use FPCA method to get an estimator of the functional coefficient.

Sparse functional data addresses the case where each trajectory is observed at
a small number of points that are distributed randomly on the domain which is
different from the partially observed functional data (or incomplete or fragmentary
functional data) which was first introduced in Liebl (2013). Partially observed
functional data addresses each trajectory is observed at points that cover a subset
of the domain in such a way that trajectories can be reasonably treated as fragments
of curves (Delaigle and Hall 2016) that has great implication in applications, such
as in biomedicine, economics (see Kraus 2015; Kneip and Liebl 2020). Considering
the partially observed functional data can be treated as missing data for functional
curves over the domain, two missing mechanisms are introduced in the existing
works: one is missing completely at random (MCAR), that is, the missing data
mechanism is independent from other stochastic components (Delaigle and Hall
2016; Goldberg et al. 2014); the other one is the missing mechanism in which
depends on systematic strategies, such as missing parts of the trajectories only occur
at the upper interval of the domain (see Liebl and Rameseder 2019). In the setting of
MCAR, Delaigle and Hall (2016), Goldberg et al. (2014) and Kraus (2015) address
the problem for recovering the missing parts of trajectories. Kraus (2015) and Kneip
and Liebl (2020) model the functional principal (FPC) scores of an incomplete
trajectory. In the scenario where missing data mechanism depends on systematic
strategies, Liebl and Rameseder (2019) establishes estimators for the mean and the
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covariance function of the incomplete functional data via the fundamental theorem
of calculus. To the best of our knowledge, no work exists focusing on estimating
functional coefficient of FLM with partially observed trajectories.

In this paper, we address the problem of getting an estimator of functional
coefficient for the case of partially observed functional data without and with
measurement error. In the scenario that trajectories observed without measurement
error, instead of deleting the incomplete trajectories, we get estimators of FPC
scores for each incomplete trajectory by modeling it as linear functionals of the
observed parts of that trajectory. In the setting where trajectories observed with
measurement error, we use local linear smoother methods to estimate mean and
covariance function of the functional predictor, followed by getting FPC scores via
conditional expectation.

The contributions of this paper are as follows. First, we extend FLM approach
to partially observed functional data without measurement error, which leads to
an improved estimator for functional coefficient comparing with the one obtained
through deleting the incomplete trajectories for given dataset. Second, we develop
an estimate method for functional coefficient in FLM for incomplete trajectories
with measurement error. We illustrate its usefulness by comparing with another
two methods: one is based on integration method to get the FPC scores of the
functional predictor instead of using conditional expectations; the other estimator is
obtained by ignoring the measurement error of the trajectories in the dataset. Third,
in both scenarios, we obtain the rate of convergence for the proposed estimators.
Overall, the methodological and numerical developments in this paper can provide
a practically useful way in analyzing FLM with partially observed functional data.

The rest of this paper is organized as follows. In Sect. 2, we introduce functional
linear models. In Sect. 3.1, we develop an estimator for functional coefficient
with incomplete trajectories observed without measurement error and establish
theoretical properties for the proposed estimator. An estimator and theoretical
properties in the scenario that incomplete trajectories observed with measurement
error are introduced in Sect. 3.2. Section 4 illustrates the finite sample performance
of our proposed estimators through simulation studies, followed by a real data
analysis in Sect. 5. Discussion is presented in Sect. 6. Proofs of theorems are given
in the Appendix.

2 Functional Linear Model

Consider a functional linear model, in which the scalar response Yi is linearly related
to the functional covariate Xi ,

Yi = α +
∫
T
γ (t)Xi(t)dt + εi, (1)
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where α is the intercept, {Xi(t) : t ∈ T , i = 1, . . . , n} are the functional predictors,
sampled from the stochastic process {X(t) : t ∈ T } with mean function μ, domain
T is bounded and closed, γ is the slope function to be estimated, εi are random
errors satisfying E[εi] = 0, E[ε2

i ] = σ 2 < ∞. We can easily get an estimator
of intercept once we get an estimator of γ . So we focus on estimating γ in the
following (Hall and Horowitz 2007). Let 〈·, ·〉, ||·|| be the inner product and norm on
L2(T ), the set of all square integrable functions on T , with 〈f, g〉 = ∫

T f (t)g(t)dt,
‖f ‖ = 〈f, f 〉1/2 for any f, g ∈ L2(T ).

We first recall the method FPCA in estimating the slope function for model (1)
with the functional predictorXi observed on the entire domain T . For the stochastic
process X ∈ L2(T ), denote its mean function as μ: μ = E(X), and its covariance
function as cX(s, t): cX(s, t) = cov(X(s),X(t)). Assume cX is continuous on
T × T . The expression cX(s, t) = ∑∞

j=1 λjφj (s)φj (t) exists by the Mercer
Lemma (Riesz and Nagy 1955), where λ1 > λ2 > · · · > 0; φ1, φ2, · · · are
the eigenvalue sequence and the continuous orthonormal eigenfunction sequence
of the linear operator CX: (CXφ)(·) = ∫

T cX(·, t)φ(t)dt, φ ∈ L2(T ), with the
kernel cX. On the other hand, by the Karhunen–Loève (K-L) expansion, one has
Xi(t) = ∑∞

j=1 Uijφj (t), where the random variables Uij = 〈Xi − μ, φj 〉 are

uncorrelated with E[Uij ] = 0, E[U2
ij ] = λj , and γ (t) = ∑∞

j=1 γjφj (t) with
γj = 〈γ, φj 〉.

The full model (1) is then equivalent to Yi − EYi = ∑∞
j=1 γjUij + εi based on

K-L expansion, which can be approximated by
∑m
j=1 γjUij + εi by using the first

m terms. To simplify notations, we assume that {Yi, i = 1, · · · , n} are centered. Let
Y = (Y1, · · · , Yn)T , γ = (γ1, · · · , γm)T , μ̂ be an estimator of μ, {λ̂j } and {φ̂j } be
estimators of the sequence {λj } and {φj } with λ̂1 > λ̂2 > · · · > 0. The least square
estimator γ̂ is then given as

γ̂ =
(

ÛTmÛm
)−1

ÛmY, (2)

provided that (ÛTmÛm)−1 exists with Ûij = 〈Xi − μ̂, φ̂j 〉, Ûm = (Ûij )i=1,··· ,n;
j=1,··· ,m

.

Moreover, for the estimator γ̂j , j = 1, · · · ,m, it has the equivalent form as

γ̂j = λ̂−1
j

〈
n−1

n∑
i=1

(Yi − Ȳ0)(Xi − μ̂), φ̂j
〉
.

Consequently, an estimator of γ is given by

γ̂ (t) =
m∑
j=1

γ̂j φ̂j (t). (3)

The number m of included eigenfunctions is chosen by fraction of
variance explained criterion in practice (James et al. 2000): m = min{k :
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∑k
l=1 λ̂l/

∑n
l=1 λ̂i ≥ R}, with a given threshold R. For the asymptotic analysis, we

assume m depends on sample size n such that m→∞ as n→∞.

3 Estimation Methods

The above analysis is based on the assumption the functional predictor is observed
on the entire domain. We now consider the scenario that the predictor Xi, i =
1, · · · , nmay be available only on parts of T . We first give some notations and then
make further analysis. LetX1, · · · , Xn be an independent and identically distributed
samples from the random function X. We denote the observed and missing parts of
Xi byOi andMi withOi∪Mi = T . LetOi = [Li, Ri] ⊆ T , and assume that it is a
random subinterval independent ofXi withRi−Li > 0 almost surely. The observed
data for ith functional predictor is then given as Xi(t), t ∈ Oi, i = 1, · · · , n,
denoted by XiOi . In this section, our objective interest is to develop an estimation
method for model (1) with partially observed functional observations without and
with measurement error, respectively. And in these scenarios, our objective is to get
estimators of the functional principal component scores {Uij } and the eigenfunctions
{φj } as indicated in formulas (2) and (3). Depending on whether measurement error
is presented in partially observed functional curves, two methods are developed: one
is established by applying linear functionals of the observed parts of that trajectory,
while the other one is based on principal component analysis through conditional
expectation.

3.1 Partially Observed Functional Data Without Measurement
Error

In the scenario that functional curves are partially observed on the domain without
measurement error, to get an estimator of γ in model (1), we need to get estimators
of Uij and φj pertaining to this case. An estimator of Uij is obtained based on the
linear functional of the observed part XiOi , and an estimator of φj is obtained by
giving estimators of mean and covariance function of X. The steps are given here.

Step 1: Estimate the mean μ and the covariance function cX by sample mean and
sample covariance.

Step 2: Estimate eigenvalues {λj } and eigenfunctions {φj } by
∫
T ĉX(s, t)φ̂j (s)

ds = λ̂j φ̂j (t).
Step 3: Estimate principal component scores Uij = UijOi + UijMi with ÛijOi =

〈XiOi − μ̂Oi , φ̂jOi 〉, and estimate UijMi by modeling it as linear functionals of
XiOi given as ÛijMi = 〈ξ̂ijMi , XiOi − μ̂Oi 〉.
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Step 4: Estimate γ based on formulas (2) and (3) for XiOi observed without
measurement error.

We first address the problem of getting estimators of μ and cX, denoted as
μ̂NME and ĉNME

X , respectively, followed by establishing estimators of Uij and
eigenfunctions φj which are denoted as ÛNME

ij and φ̂NME
j . For simplicity of

presentation, we suppress the notation on “NME” in this subsection unless otherwise
stated.

Let Oi(t) = IOi (t) with indicator function IOi (t) being 1 if t ∈ Oi , and 0
otherwise, and let Wi(s, t) = Oi(s)Oi(t). The estimators of the mean function μ
and the covariance function cX of X obtained from the observed points s, t of Xi ,
are given by,

μ̂(t) = 1∑n
i=1Oi(t)

n∑
i=1

Oi(t)Xi(t), (4)

ĉX(s, t) = 1∑n
i=1Wi(s, t)

n∑
i=1

Wi(s, t)(Xi(s)− μ̂(s))(Xi(t)− μ̂(t)). (5)

Therefore, we get the estimators {λ̂j }, {φ̂j } related to {λj } and {φj } from ĉX

associated with the covariance operator ĈX.
We could not get estimators Ûij of FPC scores {Uij } of Xi directly from its

definition if Oi �= T . To bridge the gap, Uij is decomposed into two parts:

Uij = 〈XiOi − μOi , φjOi 〉 + 〈XiMi − μMi , φjMi 〉 = UijOi + UijMi , (6)

where μOi and φjOi denote the restriction of μ and the eigenfunction φj on Oi ,
respectively, and the definitions of μMi , φjMi are similar. The estimator ÛijOi of
UijOi can be estimated directly from the observed part XiOi and the estimator φ̂j ,
given as ÛijOi = 〈XiOi − μ̂iOi , φ̂jOi 〉. For the term UijMi , we consider using the
linear functional form 〈ξijMi , XiOi − μOi 〉 of the observed part XiOi to estimate it
which is also considered in Kraus (2015), that is,

ξ̂ijMi = argmin
ξijMi∈L2

n−1
n∑
i=1

(ÛijMi − 〈ξijMi , XiOi − μ̂iOi 〉)2

with ÛijMi = 〈XiMi − μ̂Mi , φ̂jMi 〉. The estimator ξ̂ijMi has the explicit form:
ξ̂ijMi = Ĉ−1

OiOi
ĈOiMi φ̂jMi , where ĈOiOi , ĈOiMi are the empirical covariance

operator for COiOi , COiMi with the kernel being the covariance function ĉX of Xi
restricted to Oi × Oi and Oi × Mi , respectively. To obtain a stable solution, we
adopt ridge regularization, given by
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ξ̂
(ρ)
ijMi

= (Ĉ(ρ)OiOi )
−1
ĈOiMi φ̂jMi ,

Û
(ρ)
ijMi

= 〈ξ̂ (ρ)ijMi , XiOi − μ̂iOi 〉, i = 1, · · · , n, j = 1, · · · ,m, (7)

where Ĉ(ρ)OiOi = ĈOiOi + ρFOi , FOi is an identity operator defined on L2(Oi), ρ is

a ridge parameter; see Kraus (2015) for further details. Let ÛNME
ij = ÛijOi + Û (ρ)ijMi .

The estimator γ̂NME of γ using all of the information of the dataset is then obtained
through replacing Ûij in (2) with ÛNME

ij ,

γ̂NME(t) =
m∑
j=1

γ̂j φ̂j (t). (8)

To facilitate our theoretical analysis, we first impose some assumptions on
observation points for partially observed functional curves, indicating the obser-
vation points asymptotically provide enough information in individual or pairwise
crossover.

(A1) There exists δ1 > 0 s.t. sup
t∈[0,1]

P{n−1∑n
i=1 IOi (t) ≤ δ1} = O(n−2).

(A2) There exists δ2 > 0 s.t. sup
s,t∈[0,1]2

P{n−1∑n
i=1Wi(s, t) ≤ δ2} = O(n−2).

Moreover, we also introduce some regularity conditions necessary to derive theoret-
ical properties for the estimate γ̂NME.

(A3) E||X − μ||4 <∞.
(A4) nm−1 →∞, n/(

∑m
j=1 δ

−2
j )→∞ with δj = minj≥1{λj −λj+1, λj−1 −λj }

and nλ2
m →∞ as m→∞.

(A5) The ridge parameter ρ satisfies ρ → 0, nρ3 → 0, nm−1ρ2 →∞.
(A6)

∑∞
k=1[E[YUk]]2/λ2

k <∞.

(A7)
∑∞
j=1

∑∞
k=1

r2
MiOi jk

λ2
OiOi k

<∞,with rMiOijk = cov(〈XMi−μMi , φMiMij 〉, 〈XMi−
μMi , φOiOik〉).

Assumption (A3) is a common condition in the analysis of functional model
by using the method of FPCA to guarantee the random functions have finite
fourth moment (see Cardot et al. 1999). Note that if the eigenvalues {λj } are
exponentially or geometrically decreasing, the assumption (A4) holds. The same
kind of conditions are also introduced in Cardot et al. (1999). Assumption (A5) is
used to control the size of ridge effect. To define the convergence of the right hand
of the formula γ (s) = ∑∞

k=1(E[YUk]/λk)φk(s), in the L2 sense, assumption (A6)
is required that is similar to the condition (A1) in Yao et al. (2005b). Assumption
(A7) is used to make the solution ξ̂ijMi valid which is commonplace in the theory
of inverse problems as Picard condition (see Hansen 1990).



144 Y. Wang et al.

Let θn = ∑∞
k=m[E[YUk]]2/λ2

k . Then assumption (A6) indicates that θn → 0.
Denote υ = ∑m

j=1 Vij with Vij = 〈φjMi , (CMiMi − CMiOiC−1
OiOi

COiMi )φjMi 〉.
Based on the above assumptions, Theorem 1 gives the converge rate for the
estimator γ̂NME in the L2 sense.

Theorem 1 Suppose that (A1)–(A7) are satisfied. Then

‖γ̂ NME − γ ‖2 = Op(n−1mρ−2 + ιn + θn + υ),

with ιn = n−1∑m
j=1 δ

−2
j .

Theorem 1 indicates that the approximation error rate of γ̂NME for γ is controlled
by four terms. The first term depends on sample size n, tuning parameter m, ridge
parameter ρ, which is of the higher order than the one given in Hall and Horowitz
(2007) that is mainly due to functional curves observed on the part of the domain.
The second term is related to the spacings between adjacent eigenvalues, and its
effect on convergence rate of γ is also emphasized in Hall and Horowitz (2007).
The third term is related to the convergence of γ in L2 sense, which is also shown
in Yao et al. (2005b) to get approximation error rate for functional coefficient. The
fourth term is introduced by approximating UijMi with ŨijMi .

Note that in practice, the ridge parameter ρ included in the regularized estimation
of the j th score of the ith functional observation is chosen by generalized cross-
validation based on the set of samples observed on the entire domain (see Kraus
2015).

3.2 Partially Observed Functional Data with Measurement
Error

In this subsection, we construct an estimator for the slope function γ for partially
observed trajectories with measurement error. We suppose the functional observa-
tions are:

Zil = Xi(til)+ εil, til ∈ Oi, i = 1, · · · , n, l = 1, · · ·Ni, (9)

where εil is independent from all the other variables Xj , j �= i, with E(εil) = 0,
var(εil) = σ 2

X.
To get an estimator of γ in (1) in the scenario that trajectories may be observed

on parts of the domain with measurement error (WME), we need give estimators of
FPC scores and eigenstructure pertaining to this case. Estimator of eigenstructure
is established after using local linear smoothers to get estimators of mean and
covariance function of X. We obtain estimators of FPC scores by using approach
of principal component analysis via conditional expectation. The steps are given
here.
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Step 1: Estimate the mean and covariance functions by local linear smoothers.
Step 2: Estimate eigenvalues {λj } and eigenfunctions {φj } by

∫
T ĉ

WME
X (s, t)

φ̂WME
j (s)ds = λ̂WME

j φ̂WME
j (t).

Step 3: Estimate FPC scores {Uij } by principal component analysis via condi-
tional expectation (PACE): Ũij = E[Uij |Zi].

Step 4: Based on obtained estimators ˆ̃
Uij and φ̂WME

j , we get estimator γWME for
XiOi observed with measurement error.

We first calculate estimators for the mean and the covariance function ofX in the
scenario (9), denoted as μ̂WME and ĉWME

X , that are required to derive estimators for
the FPC scores Uij =

∫
(Xi(t) − μ(t))φj (t)dt. For simplicity of presentation, we

suppress notation on “WME” unless otherwise stated in this subsection.
Let K(·) be a nonnegative univariate kernel function that is assumed to be a

symmetric probability density function (pdf) with compact support supp(K) =
[−1, 1], and hμ, hc be the bandwidths for obtaining estimators of μ, cX. Assume
that the second derivatives of μ, cX on T , T 2, respectively, exist. We use local
linear smoothers for the mean function μ (Yao et al. 2005a,b; Kneip and Liebl 2020)
defined as μ̂(t) = β̂0, where

(β̂0, β̂1) = argmin
β0,β1

n∑
i=1

Ni∑
l=1

K

(
til − t
hμ

)
[Zil − β0 − β1(t − til)]2. (10)

Let Ĝilk = (Zil − μ̂(til))(Zik − μ̂(tik)) be the raw covariance points. The local

linear smoother for the covariance function cX is defined as ĉX = ˆ̃
β0, where

(
ˆ̃
β0,

ˆ̃
β1,

ˆ̃
β2) = arg min

β̃0,β̃1,β̃2

n∑
i=1

∑
1≤l,k≤Ni

K

(
til − t
hc

)
K

(
tik − s
hc

)

× [Ĝilk − β̃0 − β̃1(til − t)− β̃2(tik − s)]2. (11)

Similar to the technique introduced in Yao et al. (2005a), the points Ĝill , l =
1 · · · , Ni are not included in (11). Let T1 = [inf{Li ∈ T , i = 1, · · · , n} +
|T |/4, sup{Ri ∈ T , i = 1, · · · , n} − |T |/4] with |T | being the length of T . The
estimator of σ 2

X is defined as σ̂ 2
X if σ̂ 2

X > 0, otherwise σ̂ 2
X = 0 with

σ̂ 2
X = 2

∫
T1

(V̂X(t)− G̃(t))dt/|T |,

where V̂X(t) is the local linear estimator using the points {Ĝill}, G̃(t) is the estimate
ĉX(s, t) restricted to s = t (Staniswalis and Lee 1998; Yao et al. 2005a). The
estimators of {λj , φj }j≥1 are the corresponding solutions of the eigen-equations
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∫
T
ĉX(s, t)φ̂j (s)ds = λ̂j φ̂j (t).

Based on the K-L expansion of Xi , model (9) can be rewritten as

Zil = μ(til)+
∞∑
j=1

Uijφj (til)+ εil, til ∈ Oi, i = 1 · · · , n, l = 1 · · · , Ni.

Let Xi = (Xi(ti1), · · · , Xi(tiNi ))T , Zi = (Zi1, · · · , ZiNi )T , μi = (μ(ti1), · · · ,
μ(tiNi ))

T , φij = (φj (ti1), · · · , φj (tiNi ))T . Assume that Uij and εil are jointly
Gaussian. Following Yao et al. (2005a), the best prediction of Uij of the ith subject
given the observations (Zil, til), l = 1, · · · , Ni is obtained as

Ũij = λjφTijΣ−1
Zi
(Zi − μi),

where ΣZi = cov(Zi ,Zi ) = cov(Xi ,Xi ) + σ 2
XINi with identity matrix INi . That

is, the (u, v)th element of ΣZi is (ΣZi )u,v = cX(tiu, tiv) + σ 2
XIuv with Iuv = 1

if u = v, and 0 otherwise. Then the estimator of Uij is given through substituting
μ, λj , φj with μ̂, λ̂j , φ̂j as

ÛWME
ij = λ̂j φ̂Tij Σ̂−1

Zi
(Zi − μ̂i), (12)

where the (u, v)th entry of Σ̂Zi is (Σ̂Zi )u,v = ĉX(tiu, tiv) + σ̂ 2
XIuv . Replacing Ûij

in (2) with ÛWME
ij , we then get the estimator γ̂WME of γ from (3)

γ̂WME(t) =
m∑
j=1

γ̂j φ̂j ,

where γ̂j is the j th entry of γ̂ with ÛWME
ij in (2).

Next, we give some theoretical results for γ̂WME(t). We assume the following
regularity conditions which are similar to the assumptions in Kneip and Liebl
(2020), Yao et al. (2005b).

(B1) The observational points {til , l = 1, · · · , Ni} given Oi for the ith subject are
i.i.d. random variables with pdf ft |Oi (u) > 0 for all u ∈ Oi ⊆ T and zero
else. For the marginal pdf ft of observation times tij , ft (u) > 0 for all u ∈ T .

(B2) Let N = min{Ni, i = 1, · · · , n}. N # nr with 0 < r < ∞, where an # bn
means that there exists a constant 0 < L < ∞ such that an/bn → L as
n→∞.

(B3) hμ → 0, hc → 0, nNhμ →∞, nMhc →∞ as n→∞ withM = N2 −N .
(B4) K is a second order kernel with compact support [−1, 1].
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(B5) Let Gilk = (Zil − μ(til))(Zik − μ(tik)). Define fZt , ftt , fGtt as the joint pdf
of (Zil, til) on R×T , (til1 , til2) on T 2, (Gilk, til , tik) on R×T 2, respectively.
All of the second derivatives of fZt , ftt , fGtt are uniformly continuous and
bounded. Moreover, ft is uniformly continuous and bounded on T .

(B6) LetΛ = diag{λ1, · · · , λm},Ξ = (λ1φi1, · · · , λmφim)T , Υ = Λ−ΞΣ−1
Zi
ΞT

and ςn ≡ trace(Υ ). Denote rμ = h2
μ + 1/

√
nNhμ + 1/

√
n, rc = h2

c +
1/
√
nMh2

c + 1/
√
n. υn ≡ mrμ → 0, τn ≡ rc(∑m

j=1 δ
−1
j )→ 0.

Theorem 2 Under the regularity conditions (A3), (A6), (B1)–(B6), we have that

‖γ̂WME − γ ‖2 = Op(υn + τn + ςn + θn).

Theorem 2 gives the rate of convergence of the estimator γ̂WME in the L2 sense.
The rate of convergence of γ̂WME depends on the sample size and bandwidths which
is common for estimating curves or surface by local linear smoothers for functional
data analysis (see Li and Hsing 2010). Related results of Theorem 2 can also be
found in Yao et al. (2005b). The terms υn, τn are related to rates of convergence
of estimators for the mean and covariance function by using local linear smoothers.
The term ςn is introduced by approximating Uij with Ũij .

4 Simulation Studies

In this section, we use the simulated datasets to evaluate the finite sample properties
of our proposed methods in Sect. 3. These studies are based on n ∈ {50, 100, 200}
i.i.d. samples {Xi, Yi}ni=1 and equally spaced grid {t1, · · · , t30} on [0, 1] with
t1 = 0, t30 = 1. For the ith functional observation Xi(t), the missing interval Mi
takes the form [Ri − Ei, Ri + Ei], with Ri = a1T

1/2
i1 , Ei = a2Ti2, where Ti1, Ti2

are independent random variables uniformly distributed on [0, 1], a1, a2 ∈ R. We
consider (a1, a2) = (1.5, 0.2), (a1, a2) = (1.5, 0.4) with the expected missing
length over the domain being 0.4 and 0.8, respectively. We set the intercept α = 0.
To evaluate the performance of an estimator γ̂ of γ , mean integrated square error
(MISE) is used below as an evaluation criterion, given by,

MISE = 1

N

N∑
l=1

∫ 1

0
(γ̂l(t)− γ (t))2dt,

where N is the number of Monte Carlo replications.
For functional predictors {Xi} without measurement error, the trajectories are

generated as follows. The simulated random function Xi has zero mean, the
covariance function is generated from two eigenfunctions, φ1(t) =

√
2sin(πt/2),

φ2(t) = √
2sin(3πt/2). For the eigenvalues, we take λ1 = (π/2)−2, λ2 =
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Table 1 MISEs of the estimators of γ under different methods with 1000 Monte Carlo replica-
tions for functional predictors without measurement error

Method (a1, a2) n = 50 n = 100 n = 200

ORIa 2.0295 1.0767 0.3670

NMEb (1.5, 0.2) 2.8653 1.6650 0.7343

(1.5, 0.4) 3.5650 2.4412 1.3497

SUBc (1.5, 0.2) 3.5632 1.8844 0.8322

(1.5, 0.4) 4.600 2.6664 1.4401
a The estimator is obtained with the original dataset {Xi, Yi} with functional predictors observed

in entire domain [0, 1] (ORI)
b The estimator γ̂NME introduced in Sect. 3.1 (NME)
c The estimator is obtained by deleting the functional predictors with missing parts (SUB)

(3π/2)−2, λk = 0, for k ≥ 3. The error εi in (1) is assumed to be standard normal.
For the slope function γ in (1), we take the form γ (t) = φ1(t)+3φ2(t). We compare
the finite sample performance of our proposed method with the method that gives
an estimator for γ through formula (2), (3) with deleting the incomplete functional
observations in the datasets denoted as “SUB.” Moreover, the estimator of γ based
on the original complete dataset is also considered in this scenario and denotes it as
“ORI.” We conduct 1000 simulation runs in each setup. Table 1 reports the results.

As shown in Table 1, in the scenario where incomplete functional predictors are
observed without measurement error, the estimation method in Sect. 3.1 performs
better than “SUB” method. This is because some useful information the dataset has
will be lost if we delete them directly, while the “NME” method can take advantage
of the whole information about the dataset. Specially, in each setting for (a1, a2),
MISEs from the “NME” method have smaller values relative to the “SUB” method.
These simulation results also demonstrate that MISEs decrease with increasing
sample size n for these three methods. And MISEs increase with longer missing
length on [0, 1] at fixed n indicating that a large error is introduced for the “NME”
method in imputing missing scores of incomplete functional predictors through
little available information from functional samples. In further, the difference of
MISEs among these three methods are reduced with increasing sample size n, and
the “NME” method still performs better than the “SUB” method, those imply the
“NME” method is promising.

For functional predictors Xi with measurement error, they are generated accord-
ing to Zi(til) = Xi(til) + εil, l = 1, · · · , 30, as follows. We take Xi(t) =∑50
j=1 Uijφj (t) with Uij = (−1)j+1j−1.1/2Wij , whereWij is uniformly distributed

on [−√3,
√

3], φ1(t) = 1, φj (t) =
√

2cos(jπt) for j ≥ 2. The additional random
error εil, l = 1 · · · , 30 and the error εi in (1) are assumed to be normal with mean
zero, variance 0.25. For the slope function γ , we take γ = ∑50

j=1 γjφj (t) with

γ1 = 0.3, γj = 4(−1)j+1j−2 for j ≥ 2 (Hall and Horowitz 2007). We conduct
100 simulation runs in each setup. To demonstrate the superior performance of our
proposed method in Sect. 3.2, we compare it with the other two methods after we
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Table 2 MISEs of the estimators of γ under different methods with 100 Monte Carlo replications
for functional predictors with measurement error

Method (a1, a2) n = 50 n = 100 n = 200

WMEa (1.5, 0.2) 0.1535 0.1176 0.0753

(1.5, 0.4) 0.2033 0.1607 0.1057

INa (1.5, 0.2) 0.1702 0.1560 0.1024

(1.5, 0.4) 0.2671 0.2374 0.1974

NMEc (1.5, 0.2) 0.6312 0.4517 0.3320

(1.5, 0.4) 0.7249 0.5086 0.3808
a The estimator is obtained by using the method in Sect. 3.2 (WME)
b The estimator is obtained by using integration method to get estimators of the principal

component scores Uij (IN)
c The estimator is obtained by using the method in Sect. 3.1 (NME)

get estimators of μ(t) and cX(s, t) by solving the optimization problems (10), (11),
respectively: one is that an estimator of γ is established by applying integration
method to get the FPC scores Ûij in (2) instead of using formula (12), denoted as
“IN”; the other one is that an estimator of γ is obtained by using the method in
Sect. 3.1 with dataset {Zi, Yi} with measurement error being ignored. The results
are summarized in Table 2.

We find from Table 2 that the “WME” method has the best performance relative
to the other two methods in each setup, and the gains are dramatic when switching
from the “NME” method to the “WME” method with the “NME” method ignoring
observation errors for functional predictors. Specifically, for the case of n = 100,
comparing with the “NME” method, the MISEs are reduced by 74%, 68% using the
“WME” method with (a1, a2) = (1.5, 0.2) and (a1, a2) = (1.5, 0.4), respectively.
For the “IN” method, it provides a reasonable estimator for γ and has better
performance than the “NME” method, but nevertheless the “WME” method still
performs better than “IN” method with improvement of 25%, 32% with respect to
(a1, a2) = (1.5, 0.2) and (a1, a2) = (1.5, 0.4). In addition, these simulation results
show that the MISEs decrease with increasing sample size n that is consistent with
the derived theoretical results.

To sum up, in the scenario that incomplete functional predictors observed without
measurement error, the “NME” method taking advantage of the whole information
of the dataset produces a better estimator compared with the “SUB” method; in the
scenario that incomplete functional predictors observed with measurement error,
the “WME” method is preferred for giving the smallest MISE relative to the “IN”
and “NME” methods. Both MISEs of the estimators of γ decrease with increasing
sample size n that is consistent with the derived theoretical properties.



150 Y. Wang et al.

5 Real Data Analysis

A real diffusion tensor imaging (DTI) dataset considered here is from NIH
Alzheimer’s Disease Neuroimaging Initiative (ADNI) study with 212 subjects,
and is obtained through http://adni.loni.usc.edu/. The primary goal of ADNI study
is to test whether serial magnetic resonance imaging (MRI), positron emission
tomography (PET), biological markers, and neuropsychological assessment can be
combined to measure the progression of mild cognitive impairment (MCI) and early
Alzheimer’s disease (AD). DTI obtained using mathematical method to represent
the anisotropic diffusion of the water molecule in brain organization can be used
to learn MCI and AD. The concrete measure of anisotropy includes fractional
anisotropy (FA), relative anisotropy (RA), Volume ratio (VR), and FA is commonly
adopted for its advantage in contrast ratio of grey-white matter. More details about
preprocessing and methods of this study can be found in Zhu et al. (2012) and Yu
et al. (2016).

Our main interest is characterizing the dynamic relationship between FA and
mini-mental state examination (MMSE) score which is seen as a reliable and valid
clinical measure in quantitatively assessing the severity of cognitive impairment.
FA is measured at 83 equally spaced grid along the corpus callosum (CC) fiber
tract that is the largest fiber tract in human brain, is responsible for much of the
communication between two hemispheres, and connects homologous areas in two
cerebral hemispheres.

To demonstrate the usefulness of the proposed method in Sect. 3.1, we artificially
delete some observed points of FA, and then compare the estimator of γ obtained
by using these incomplete functional observations with the estimator obtained by
applying original complete dataset. For the ith FA curve, the missing domain has
the same form with the interval given in Sect. 4 with (a1, a2) = (1.5, 0.2) and
(a1, a2) = (1.5, 0.4). A part of complete and incomplete individual trajectories
are displayed in Fig. 1.
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Fig. 1 A part of complete (left) and incomplete (right) FA curves with mean function (purple line)
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Fig. 2 Estimators of γ with different expected missing length on [0, 1]. Blue line: the estimator
using original complete dataset; Red line: the estimator with (a1, a2) = (1.5, 0.2); Green line: the
estimator with (a1, a2) = (1.5, 0.4)

Estimators of functional coefficient obtained by both complete and incomplete
FA dataset are illustrated in Fig. 2. It shows that estimators obtained by incomplete
dataset with different missing domain (red line and green line) are similar to the
estimator obtained from original complete dataset (blue line). This reveals that the
proposed framework is useful in getting an estimator for the model with incomplete
functional predictors.

Next, we focus on the problem of recovering the missing parts XiMi of Xi .
Assume that the infinite-dimensional process Xi is well approximated by the
projection onto the function space L2(T ) via the first m eigenfunctions (Yao et al.
2005a). In practice, the prediction for the trajectory Xi(t) of the ith subject using
the first m eigenfunctions given in Sect. 3.1 can be approached by

X̂i(t) = μ̂NME(t)+
m∑
k=1

Û
(ρ)
ij φ̂

NME
j (t).

We randomly select four FA curves with different missing parts. The predicted
profiles for these four curves are presented in Fig. 3, showing that the predicted
profiles are close to the real part. This demonstrates the “NME” method by
recovering the missing parts of incomplete trajectories encourages a better estimator
comparing with the “SUB” method with deleting them directly.
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Fig. 3 Predicted profiles for four randomly chosen FA curves with different missing parts with
(a1, a2) = (1.5, 0.2). Missing parts of trajectories from left to right and top to down: missing in
left side, middle side, right side, both left and right side. Blue point: real data point; Red line:
predicted profile

6 Discussion

In this paper, we address the problem for getting estimators of γ in (1) with
partially observed trajectories without and with measurement error. Basic elements
of our approach are estimators of FPC scores for each partially observed trajectory.
Specially, in the scenario that incomplete functional predictors observed without
measurement error, we achieve it by modeling FPC scores of the missing part
as linear functionals of the observed part of that trajectory. In the scenario
where incomplete functional data is observed with measurement error, we obtain
estimators of FPC scores via conditional expectation. Rates of convergence of the
proposed estimators γ̂NME, γ̂WME under different scenarios are established. We also
compare the proposed methods with the “SUB” or “IN” method. We conclude from
simulation studies that both the “NME” and “WME” methods borrowing strength
from entire samples to get estimators of γ in model (1) perform well in practice.
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The methods proposed here can be extended to other models in terms of
functional regression with partially observed trajectories, such as partial functional
linear regression (see Shin 2009). The framework established in this paper is
based on the assumption that missing parts of trajectories are missing completely
at random. In a number of applications, it is common to encounter that the
underlying missing mechanism for dataset depends on systematic strategies (Liebl
and Rameseder 2019) that clearly violate MCAR assumption. Extension to this
scenario is also of interest and significance in practice.

Appendix

Lemma 1 (Kraus (2015), Proposition 1)

(a) Let E‖X‖2 <∞ and assumption (A1) be satisfied. Then E(||μ̂NME − μ||2) =
O(n−1) for n→∞.

(b) Let E‖X‖4 < ∞ and observation pattern (A2) holds. Then E(||ĈNME
X −

CX||2S) = O(n−1) for n→∞ (here || · ||S denotes the Hilbert–Schmidt norm).

Lemma 2 (Kneip and Liebl (2020), Theorem 4.1) Under the assumptions (B1)–
(B5), we have that

(a) supt∈T |μ̂WME(t)− μ(t)| = Op(rμ) with rμ = h2
μ + 1/

√
nNhμ + 1/

√
n.

(b) sup(s,t)∈T 2 |ĉWME(s, t)−cX(s, t)| = Op(rμ+ rc) with rc = h2
c+1/

√
nMh2

c+
1/
√
n.

Proof of Theorem 1 The following results can be derived from the theory developed
by Bhatia et al. (1983):

supj≥1|λ̂NME
j − λj | ≤ ‖ĈNME

X − CX‖,

supj≥1δj‖φ̂jNME − φj‖ ≤ 81/2‖ĈNME
X − CX‖. (13)

Therefore, we obtain from Lemma 1,

supj≥1|λ̂NME
j − λj | = Op(n−1/2),

supj≥1δj‖φ̂NME
j − φj‖ = Op(n−1/2). (14)
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Note that,
∫
T
(γ̂NME(s)− γ (s))2ds

=
∫
T

⎧⎨
⎩
m−1∑
j=1

⎡
⎣n−1 ∑n

i=1[Yi ÛNME
ij ]

λ̂NME
j

φ̂NME
j (s)− E[YUj ]

λj
φj (s)

⎤
⎦
⎫⎬
⎭

2

ds

+
∫
T

⎧⎨
⎩

∞∑
j=m

E[YUj ]
λj

φj (s)

⎫⎬
⎭

2

ds

+ 2
∫
T

⎧⎨
⎩
m−1∑
j=1

⎡
⎣n−1 ∑n

i=1[Yi ÛNME
ij ]

λ̂NME
j

φ̂NME
j (s)− E[YUj ]

λj
φj (s)

⎤
⎦
⎫⎬
⎭
⎧⎨
⎩

∞∑
j=m

E[YUj ]
λj

φj (s)

⎫⎬
⎭ ds

:= A1(n)+ A2(n)+ A3(n). (15)

For simplicity, we suppress the notation on “NME.” Assumption (A6) implies
that A2(n) → 0 as m → ∞. For A3(n), Cauchy–Schwarz inequality implies that

A2
3(n) ≤ A2

1(n) × A2
2(n)

p→ 0. Combing the result (14), and the formula (15), we

see that the result of the theorem follows if we can get the convergence rate of Ûij
of the trajectories per subject with Ûij = ÛijOi + Û (α)ijMi .

Denote the estimates of UijMi , COiOi , COiMi , φjMi as ÛijMi(−i), ĈOiOi(−i),
ĈOiMi(−i), φ̂jMi(−i) with deleting the ith curves Xi(t). Let ξ̃ (ρ)ijMi = (C

(ρ)
OiOi

)−1

COiMiφjMi with C(ρ)OiOi = COiOi + ρFOi , Ũ
(ρ)
ijMi

= 〈ξ̃ (ρ)ijMi , XiOi 〉, and the notation

ξ̃ijMi ŨijMi are corresponded to the symbols ξ̃ (ρ)ijMi ,Ũ
(ρ)
ijMi

with ρ = 0. Since

E
∥∥∥Û (ρ)ijMi − ŨijMi

∥∥∥2 = E
∥∥∥Û (ρ)ijMi − Ũ (ρ)ijMi + Ũ (ρ)ijMi − ŨijMi

∥∥∥2

= 2E
∥∥∥Û (ρ)ijMi − Ũ (ρ)ijMi

∥∥∥2 + 2
∥∥∥Ũ (ρ)ijMi − ŨijMi

∥∥∥2

≤ 4E
∥∥∥Û (ρ)ijMi − Û (ρ)ijMi(−i)

∥∥∥2 + 4E
∥∥∥Û (ρ)ijMi(−i) − Ũ (ρ)ijMi

∥∥∥2

+ 2
∥∥∥Ũ (ρ)ijMi − ŨijMi

∥∥∥2
, (16)

we then analyze the terms E‖Û (ρ)ijMi−Û
(ρ)

ijMi(−i)‖2, E‖Û (ρ)ijMi(−i)−Ũ
(ρ)
ijMi

‖2, ‖Ũ (ρ)ijMi−
ŨijMi‖2 in turn. Let ξ̂ (ρ)ijMi(−i) = (Ĉ

(ρ)

OiOi(−i))
−1ĈOiMi(−i)φ̂jMi(−i). Then

E‖Û (ρ)ijMi(−i) − Ũ
(ρ)
ijMi

‖2

= E〈ξ̂ (ρ)ijMi(−i) − ξ̃
(ρ)
ijMi

, XiOi 〉2

= E{E[〈ξ̂ (ρ)ijMi(−i) − ξ̃
(ρ)
ijMi

, XiOi 〉2|{XkOi , k �= i}]}
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= E||C1/2
OiOi

((Ĉ
(ρ)

OiOi(−i))
−1ĈOiMi(−i)φ̂jMi(−i) − (C(ρ)OiOi )−1COiMiφjMi )||2

≤ 4
{

E||C1/2
OiOi

(Ĉ
(ρ)

OiOi(−i))
−1(ĈOiMi(−i) − COiMi )(φ̂jMi(−i) − φjMi )||2

+ E||C1/2
OiOi

(Ĉ
(ρ)

OiOi(−i))
−1COiMi (φ̂jMi(−i) − φjMi )||2

+ E||C1/2
OiOi

(Ĉ
(ρ)

OiOi(−i))
−1(ĈOiMi(−i) − COiMi )φjMi ||2

+E||C1/2
OiOi

((Ĉ
(ρ)

OiOi(−i))
−1 − (C(ρ)OiOi )−1)COiMiφjMi ||2

}

:= B1 + B2 + B3 + B4. (17)

Let Fm = {λm2 < λ̂m <
3
2λm}. Suppose the event Fm holds. Otherwise, we have

P(|λ̂m − λm| ≥ λm
2 ) ≤ P(‖ĈNME

X − CX‖ ≥ λm
2 )→ 0 from assumption (A4). We

have the following results for terms B1 to B4 with the equality

(
Ĉ
(ρ)

OiOi(−i)
)−1 −

(
C
(ρ)
OiOi

)−1 = (ĈOiOi(−i) − COiOi )
(
C
(ρ)
OiOi

)−1 (
Ĉ
(ρ)

OiOi(−i)
)−1

.

For the term B1,

B1 ≤ E

[∥∥∥C1/2
OiOi

∥∥∥2

2
·
∥∥∥∥
(
Ĉ
(ρ)

OiOi (−i)
)−1

∥∥∥∥
2

∞
·
∥∥∥ĈOiMi (−i) − COiMi

∥∥∥2

2
·
∥∥∥φ̂jMi (−i) − φjMi

∥∥∥2
]

= O
(
n−2δ−2

j

)
·O(ρ−2).

Denote ‖ · ‖∞ as the operator norm. For the term B2, under the assumption (A7),
E‖C1/2

OiOi
‖2∞ <∞ and the result (14), it is clear that

B2 ≤ E

[∥∥∥C1/2
OiOi

∥∥∥2

∞ ·
∥∥∥∥
(
Ĉ
(ρ)

OiOi(−i)
)−1

COiMi

∥∥∥∥
2

2
·
∥∥∥φ̂jMi(−i) − φjMi

∥∥∥2
]

≤
∑
j

∑
k

r2
MiOijk

(λOiOik + ρ)2
·O

(
n−1δ−2

j

)
= O

(
n−1δ−2

j

)
.

For the term B3,

B3 ≤ E
[
‖C1/2
OiOi

‖2
2 · ‖(Ĉ(ρ)OiOi(−i))−1‖2∞ · ‖ĈOiMi(−i) − COiMi‖2

2 · ‖φjMi‖2
]

= O(n−1ρ−2).

Note that
ρλOiOi k

(λOiOi k+ρ)2
< 1. Under the assumption (A7), we have that
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B4 ≤ E
[
‖C1/2
OiOi

· (C(ρ)OiOi )−1 · (Ĉ(ρ)OiOi (−i))−1 · COiMi ‖2
2 · ‖ĈOiOi (−i) − COiOi ‖2

2 · ‖φjMi ‖2
]

≤
⎧⎨
⎩
∑
j

∑
k

ρλOiOik

(λOiOik + ρ)2
· rOiMijk

2

(λOiOik + ρ)2
· ρ−1

⎫⎬
⎭ ·O(n−1)

= O(n−1) ·O(ρ−1).

These results combined with (17) indicate

E‖Û (ρ)ijMi(−i) − Ũ
(ρ)
ijMi

‖2 = O
(
n−1ρ−2 + n−1δ−2

j

)
. (18)

We then analyze E‖Û (ρ)ijMi − Û
(ρ)

ijMi(−i)‖2,

E‖Û (ρ)ijMi − Û
(ρ)

ijMi(−i)‖ = E〈ξ̂ (ρ)ijMi − ξ̂
(ρ)

ijMi(−i), XiOi 〉
≤ {E‖ξ̂ (ρ)ijMi − ξ̂

(ρ)

ijMi(−i)‖2}1/2{E‖XiOi‖2}1/2

≤ L{E‖ξ̂ (ρ)ijMi − ξ̂
(ρ)

ijMi(−i)‖2}1/2, (19)

where the last inequality holds from the finite second moment of X that is bounded
by constant L. We also have,

E‖ξ̂ (ρ)
ijMi

− ξ̂ (ρ)
ijMi(−i)‖

2 = E‖
(
(Ĉ
(ρ)
OiOi

)−1ĈOiMi − (Ĉ(ρ)OiOi(−i))
−1ĈOiMi(−i)

)
φ̂jMi(−i)‖2

= E‖
[(
(Ĉ
(ρ)
OiOi

)−1 − (Ĉ(ρ)
OiOi(−i))

−1
)
ĈOiMi

+ (Ĉ(ρ)
OiOi(−i))

−1(ĈOiMi − ĈOiMi(−i))
]
φ̂jMi(−i)‖2

≤ 2
{

E‖
(
(Ĉ
(ρ)
OiOi

)−1 − (Ĉ(ρ)
OiOi(−i))

−1
)
ĈOiMi ‖2

+ E‖(Ĉ(ρ)
OiOi(−i))

−1(ĈOiMi − ĈOiMi(−i))‖2 }. (20)

Note that

E‖ĈOiMi − ĈOiMi(−i)‖2 = O(n−2),

E‖
(
(Ĉ
(ρ)
OiOi

)−1 − (Ĉ(ρ)OiOi(−i))−1
)
ĈOiMi‖2 = O(n−2),

E‖(Ĉ(ρ)OiOi(−i))−1(ĈOiMi − ĈOiMi(−i))‖2 = O(n−2ρ−2).

Combining formulas (19) and (20), we deduce that
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E‖Û (ρ)ijMi − Û
(ρ)

ijMi(−i)‖2 = O(n−2ρ−2). (21)

On the other hand,

E ‖ Ũ (ρ)ijMi − ŨijMi ‖2= O(ρ), (22)

var(ŨijMi − UijMi ) = 〈φjMi , CMiMiφjMi 〉 − 〈φjMi , CMiOiC−1
OiOi

COiMiφjMi 〉
:= Vij . (23)

Therefore, with nρ3 → 0 and the formulas (16), (18), (21)–(23), we have that

E‖Û (ρ)ijMi − UijMi‖2 = O
(
n−1ρ−2 + n−1δ−2

j + Vij
)
.

Then the results are proved with nρ3 → 0.

Proof of Theorem 2 Let Ũi = (Ũi1, · · · , Ũim)T , Ui = (Ui1, · · · , Uim)T . The
covariance matrix of Ũi is var(Ui ) = ΞΣ−1

Zi
ΞT with Ξ = cov(Ũi ,Zi ) =

(λ1φi1, · · · , λmφim)
T . Moreover, var(Ũi−Ui ) = Λ−ΞΣZi

ΞT . Combining these
results with formulas (14), (12) and the results of Lemma 2, the result of Theorem 3
is obtained by replacing ÛNME

ij with ÛWME
ij in (15) with assumptions (B1)–(B6).
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Semiparametric Varying-Coefficient
Additive Models for Longitudinal Data
with Within-Subject Correlations
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Abstract In this paper, we study several profile estimation methods for the
generalized semiparametric varying-coefficient additive model for longitudinal data
by utilizing the within-subject correlations. The model is flexible in allowing time-
varying effects for some covariates and constant effects for others, and in having the
option to choose different link functions which can used to analyze both discrete
and continuous longitudinal responses. We investigated the profile generalized
estimating equation (GEE) approaches and the profile quadratic inference function
(QIF) approach. The profile estimations are assisted with the local linear smoothing
technique to estimate the time-varying effects. Several approaches that incorporate
the within-subject correlations are investigated including the quasi-likelihood (QL),
the minimum generalized variance (MGV), the quadratic inference function, and
the weighted least squares (WLS). The proposed estimation procedures can accom-
modate flexible sampling schemes. These methods provide a unified approach that
works well for discrete longitudinal responses as well as for continuous longitudinal
responses. Finite sample performances of these methods are examined through
Monto Carlo simulations under various correlation structures for both discrete
and continuous longitudinal responses. The simulation results show efficiency
improvement over the working independence approach by utilizing the within-
subject correlations as well as comparative performances of different approaches.
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1 Introduction

The repeated measurements on same individuals over time are common in medical
and public health researches. In AIDS clinical trials, for example, the viral load
and CD4 cell counts, which are considered as surrogate endpoints for HIV disease
progression and HIV transmission to others, are measured repeatedly during the
course of studies for trial participants. The repeated measurements in the longitu-
dinal follow-up often display temporal effects and are correlated. We investigate
several estimation methods for analyzing longitudinal data under the generalized
semiparametric varying-coefficient additive models by incorporating the within-
subject correlations.

Suppose that there is a random sample of n subjects. For the ith subject, let
Yi(t) be the response at time t and let Xi(t) and Zi(t) be the possibly time-
dependent covariates of dimensions p+1 and q, respectively, over the time interval
[0, τ ], where τ is the end of follow-up. Let μi(t) = E{Yi(t)|Xi(t), Zi(t)} be the
conditional expectation of Yi(t) given Xi(t) and Zi(t) at time t . The generalized
semiparametric regression model speculates that

μi(t) = g−1{αT (t)Xi(t)+ βT Zi(t)}, i = 1, . . . , n, (1)

for 0 ≤ t ≤ τ , where g(·) is a known link function, α(t) is a (p + 1)-
dimensional vector of unspecified functions and β is a q-dimensional vector of
unknown parameters. The notation θT represents transpose of a vector or matrix
θ . When the link function g(·) is the identity function, model (1) is known as the
semiparametric additive model. When the link function is the natural logarithm
function and Xi(t) = 1, model (1) is known as the proportional means model.
Setting the first component of Xi(t) as 1 gives a nonparametric baseline function.
Under model (1), the effects of some covariates are constant while others are time-
varying. Model (1) is more flexible than the parametric regression model where
all the regression coefficients are time-independent and more desirable for model
building than the nonparametric regression model where every covariate effect is
an unspecified function of time. Different link functions can be selected to provide
a rich family of models for longitudinal data. Both the categorical and continuous
longitudinal responses can be modeled with appropriately chosen link functions. For
example, the identity and logarithm link functions can be used for the continuous
response variables while the logit link function can be used for the binary responses.

The semiparametric additive model for longitudinal data has been studied exten-
sively for decades. These approaches include the nonparametric kernel smoothing
by Hoover et al. (1998), the joint modeling of longitudinal responses and sampling
times by Martinussen and Scheike (1999) and Lin and Ying (2001), the backfitting
method by Zeger and Diggle (1994) and Wu and Liang (2004), and the profile
kernel smoothing approach by Sun and Wu (2005). Fan and Li (2004) considered
the profile local linear approach and the joint modeling for partially linear models.
Hu et al. (2004) showed that for partially linear models, the backfitting is less effi-
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cient than the profile kernel method. Sun et al. (2013) investigated the generalized
semiparametric additive model (1) using the local linear profile estimation method.
The aforementioned estimation and inference procedures are derived without
considering the correlations of longitudinal responses within subjects known as
the working independence approach. The estimation methods under the working
independence are valid and yield asymptotically unbiased estimators.

Correlation among repeated measurements on the same subject often exists for
longitudinal data or clustered data. Incorporating such within-subject correlation
into estimation procedure can lead to improved efficiency. Liang and Zeger (1986)
introduced the idea of using a working correlation matrix with a small set of
nuisance parameters to avoid specification of correlation between measurements
within the cluster. Severini and Staniswalis (1994) and Lin and Carroll (2001a,b)
estimated α(t) using the kernel method by ignoring the within-subject correlation
while estimating β using weighted least squares by accounting for the within-
subject correlation when Xi(t) ≡ 1. Chen and Jin (2006) studied the method
of generalized estimating equations by modeling the within-cluster correlation.
Using piecewise local polynomial approximation of α(t), Chen and Jin (2006)
showed that the weighted least square estimator of β achieves the semiparametric
efficiency. Fan et al. (2007) proposed a profile local linear approach by imposing
certain correlation structure for the longitudinal data for improved efficiency. Fan
et al. (2007) proposed two methods to estimate for the within-subject correlation by
optimizing the quasi-likelihood (QL) and by minimizing the generalized variance
of the estimator of β (MGV). Following the generalized method of moments of
Hansen (1982) and Qu et al. (2000) proposed the quadratic inference function
method (QIF) by representing the inverse of working correlation matrix by a linear
combination of basis matrices. Song et al. (2009), Madsen et al. (2011), and
Tang et al. (2019) studied a mean-correlation parametric regression method for a
family of discrete longitudinal responses by assuming that the marginal distributions
of longitudinal responses follow an exponential family distribution and the joint
distributions of the discrete responses from the same subject are modeled by a
copula model. These approaches have a limitation of not allowing for time-varying
covariate effects.

Semiparametric statistical modeling of discrete longitudinal responses beyond
the marginal approach has been understudied. We investigate several profile esti-
mation methods for the generalized semiparametric varying-coefficient additive
model (1) by incorporating the within-subject correlations including the profile
generalized estimating equation (GEE) approaches and the quadratic inference
function approach. These methods provide a unified approach that work well for
discrete longitudinal responses as well as for continuous longitudinal responses.
Different methods for estimating the within-subject correlations such as the QL and
MGV methods as well as a newly proposed profile weighted least square (WLS)
approach fall under the umbrella of profile GEE approaches. The performances of
these different methods are examined through extensive simulation studies under
a variety of models and the within-subject correlation structures. The proposed
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semiparametric methods utilizing the within-subject correlations work well for
discrete longitudinal responses as well as for continuous longitudinal responses.

The rest of the paper is organized as follows. The profile GEE estimation
using fixed working covariance matrices is presented in Sect. 2.1. The methods
for estimating the correlations are described in Sect. 2.2. An alternative profile
estimation of model (1) via quadratic inference function is proposed in Sect. 2.3. The
computational algorithms of the proposed procedures are summarized in Sect. 2.4.
Section 3 presents the results of simulation studies for evaluating the finite sample
performances of different methods. The results of simulation studies for continuous
longitudinal responses are presented in Sect. 3.1 and the results of simulation studies
for discrete longitudinal responses are given in Sect. 3.2. Some concluding remarks
are given in Sect. 4.

2 Profile GEE Estimation Procedures

This section presents several profile estimation methods for the generalized semi-
parametric varying-coefficient additive model (1) by incorporating the within-
subject correlations and the approaches for estimating the within-subject correla-
tions. Choices of kernel function, bandwidth, and link function are also discussed.

2.1 Model Estimation Using Fixed Working Covariance
Matrices

Suppose that the longitudinal response Yi(t) and the possibly time-dependent
covariates Xi(t) and Zi(t) are observed at the sampling times Ti1 < Ti2 <

· · · < TiJi , where Ji is the total number of observations on the ith subject. Let
Yij = Yi(Tij ), Xij = Xi(Tij ) and Zij = Zi(Tij ). Let Yi = (Yi1, · · · , YiJi )T be
the vector of responses for individual i. Similarly, define Xi = (Xi1, · · · , XiJi )T ,
Zi = (Zi1, · · · , ZiJi )T and Ti = (Ti1, · · · , TiJi ). The sampling times {Tij , j =
1, . . . , Ji} varies among individuals under random designs, while they are not
dependent on i under fixed designs. We propose the kernel assisted profile method
to estimate the nonparametric functions α(t) and parametric coefficients β under
model (1) by taking into consideration of the within-subject correlations.

For given β, let α(t) = α(t0) + α̇(t0)(t − t0) + O((t − t0)2) be the first-order
Taylor expansion of α(·) for t ∈ Nt0 , a neighborhood of t0, where α̇(t0) is the
derivative of α(t) at t = t0. Denote α∗(t0) = (αT (t0), α̇T (t0))T and X∗

i (t, t − t0) =
Xi(t)⊗ (1, t− t0)T , where ⊗ is the Kronecker product. Then for t ∈ Nt0 , model (1)
can be approximated by



Profile Estimation of Generalized Semiparametric Varying-Coefficient Additive. . . 163

μ̃(t, t0, α
∗(t0), β|Xi(t), Zi(t)) = g−1{α∗T (t0)X∗

i (t, t − t0)+ βT Zi(t)}. (2)

LetX∗
ij (t0) = Xij ⊗ (1, Tij − t0)T , j = 1, . . . , Ji . The approximated conditional

expectation of Yij for Tij ∈ Nt0 is given by μ∗ij (t0) = μ{α∗T (t0)X∗
ij (t0)+ βT Zij },

where μ(·) = g−1(·). Denote μ̇∗ij (t0) = μ̇{α∗T (t0)X∗
ij (t0) + βT Zij } where μ̇(·) is

the first derivative ofμ(·). Letμ∗i (t0) = (μ∗i1(t0), · · · , μ∗iJi (t0))T . LetX∗
i (t0) denote

a 2(p+ 1)× Ji matrix with the j th column vector being the X∗
ij (t0), j = 1, . . . , Ji .

Let K(·) be a nonnegative kernel function and h = hn > 0 a bandwidth
parameter. LetKih(t0) = diag{Kh(Tij − t0), j = 1, . . . , Ji} be the Ji×Ji diagonal
matrix with {Kh(Tij − t0), j = 1, . . . , Ji}, on the diagonal and zero elsewhere,
where Kh(·) = K(·/h)/h. At each t0 and for fixed β, we consider the following
local linear estimating function for α∗(t0):

Uα(α
∗;β, t0) =

n∑
i=1

X∗
i (t0) 

∗
i (t0)K

1/2
ih (t0)V

−1
1i K

1/2
ih (t0)

[
Yi − μ∗i (t0)

]
, (3)

where  ∗
i (t0) = diag{μ̇∗ij (t0), j = 1, . . . , Ji} and V −1

1i is the inverse of the
working covariance matrix for estimating α∗(t0). The solution to the equation
Uα(α

∗;β, t0) = 0 is denoted by α̃∗(t0, β). We denote the first p+ 1 components of
α̃∗(t0, β) by α̃(t0, β).

Let μ̃ij (β) = μ{α̃T (Tij , β)Xij + βT Zij } and μ̃i(β) = (μ̃i1(β), . . . , μ̃iJi (β))T .
The profile weighted least squares estimator β̂ is obtained by minimizing the
following profile least squares function:

�β(β) = 1

n

n∑
i=1

[Yi − μ̃i(β)]T V −1
2i [Yi − μ̃i(β)], (4)

where V −1
2i is the inverse of the working covariance matrix for estimating β.

Let Aij = ∂α̃T (Tij , β)/∂β be the derivative of α̃T (Tij , β) with respect to β,
which is a q × (p + 1) matrix with the kth row having the partial derivative
of α̃T (Tij , β) with respect to the kth component of βk , 1 ≤ k ≤ q. Let
∂α̃T (Ti ,β)

∂β
= ( ∂α̃T (Ti1,β)

∂β
, · · · , ∂α̃T (TiJi ,β)

∂β

)
and X̃i = diag

{
Xij , j = 1, . . . , Ji

}
.

Then ∂α̃T (Ti ,β)
∂β

X̃i =
( ∂α̃T (Ti1,β)

∂β
Xi1, · · · , ∂α̃

T (TiJi ,β)

∂β
XiJi

)
is a q × Ji matrix.

Taking the derivative of �β(β) with respect to β, we have the score function

Uβ(β) =
n∑
i=1

{∂α̃T (Ti, β)
∂β

X̃i + Z̃i
}
 ̃iV

−1
2i

[
Yi − μ̃i(β)

]
, (5)
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where  ̃i = diag{ ˙̃μij , j = 1, . . . , Ji}, ˙̃μij = μ̇{α̃T (Tij , β)Xij + βT Zij }, and
Z̃i =

(
Zi1, · · · , ZiJi

)
is a q × Ji matrix.

For given working covariance matrices V1i and V2i , the profile GEE estimator β̂
of β is obtained by solving the estimating equation Uβ(β) = 0. The profile GEE
estimator for α(t) is given by α̂(t) = α̃(t, β̂).

Note that ∂α̃T (t, β)/∂β is the first p + 1 columns of ∂α∗T (t, β)/∂β. Next we
show that ∂α∗T (t, β)/∂β can be expressed in terms of the partial derivatives of
Uα(α

∗;β, t) at α∗ = α̃∗(t, β). Specifically, since Uα(α̃∗(t, β);β, t) ≡ 02(p+1)
by (3), it follows that α̃∗(t, β) satisfies

{
∂Uα(α

∗;β, t)
∂α∗

∂α̃∗T (t, β)
∂β

+ ∂Uα(α
∗;β, t)
∂β

}∣∣∣∣
α∗=α̃∗(t,β)

= 02(p+1).

Therefore,

∂α̃∗T (t, β)
∂β

= −
{
∂Uα(α

∗;β, t)
∂α∗

}−1
∂Uα(α

∗;β, t)
∂β

∣∣∣∣∣
α∗=α̃∗(t,β)

, (6)

where

∂Uα(α
∗;β, t)
∂α∗

= −
n∑
i=1

X∗
i (t) 

∗
i (t)K

1/2
ih (t)V

−1
1i K

1/2
ih (t) 

∗
i (t)X

∗T
i (t), (7)

and

∂Uα(α
∗;β, t)
∂β

= −
n∑
i=1

X∗
i (t) 

∗
i (t)K

1/2
ih (t)V

−1
1i K

1/2
ih (t) 

∗
i (t)Z̃

T
i . (8)

Under the identity link in model (1), α̃∗(t, β) and β̂ can be solved explicitly as
the roots of the score functions (3) and (5), respectively. When there are no explicit
solutions, the Newton–Raphson iterative algorithm can be used to solve the equa-
tions. The estimation procedure iteratively updates estimates of the nonparametric
component α̃∗(t, β) and the parametric component β̂ until convergence. We denote
the first p + 1 components of the convergent α̃∗(t, β) as α̂(t).

Let ˙̂μij = μ̇{α̂T (Tij )Xij + βT Zij } and  ̂i = diag{ ˙̂μij }. Define

Ê11(t) = n−1∑n
i=1Xi ̂iK

1/2
ih (t) V

−1
1i K

1/2
ih (t) ̂iX

T
i and Ê12(t) = n−1∑n

i=1Xi

 ̂iK
1/2
ih (t)V

−1
1i K

1/2
ih (t)  ̂iZ

T
i . Let B̂ij = −ÊT12(Tij ) Ê

−1
11 (Tij )Xij + Zij and

B̂i = (B̂i1, · · · , B̂iJi )T . Following the derivations in Fan et al. (2007), we estimate
the variance of β̂ by P̂−1D̂P̂−1 for given covariance matrices V1i and V2i , where
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P̂ = n−1
n∑
i=1

[
B̂Ti  ̂iV

−1
2i  ̂i B̂i

]
,

and

D̂ = n−1
n∑
i=1

[
B̂Ti  ̂iV

−1
2i (Yi − μ̂i)(Yi − μ̂i)T V −1

2i  ̂i B̂i

]
.

2.2 Estimation of the Within-Subject Covariance Matrix

The conditional within-subject correlation of longitudinal responses Yi(·) at times
s, t ∈ [0, τ ] can be measured by the Pearson correlation coefficient ρi(s, t) =
Corr

(
Yi(s), Yi(t)

∣∣Xi(·), Zi(·)) = Cov
(
Yi(s), Yi(t)

∣∣Xi(·), Zi(·))/(σi(s)σi(t)),
where σi(t) be the conditional standard deviation of Yi(t) given Xi(t) and Zi(t),
0 ≤ t ≤ τ . For simplicity, we assume that both σi(t) and ρi(s, t) do not depend
on the covariates Xi(·) and Zi(·). Thus we use the notations σ(t) and ρ(s, t)
in place of σi(t) and ρi(s, t), respectively. In practice, the correlation structure
ρ(s, t) is often unknown or complex, and a working correlation is employed by
assuming a correlation model for ρ(s, t). The working independence corresponds
to assuming ρ(s, t) = 0 for s �= t . Other commonly used correlation models
include the compound symmetry or exchangeable structure (Exchangeable) with
ρ(s, t) = θ , |θ | < 1; a generalized the first-order autoregressive (AR(1)) with
ρ(s, t) = θ |s−t |, 0 < θ < 1, which is a generalization of AR(1) model in time
series to allow the possibility of unequally spaced times; and a generalization of
the first-order autoregressive moving-average (ARMA(1,1)) with ρ(s, t) = pq |s−t |,
where |p| < 1 and q > 0. Fan et al. (2007) considered more complex correlation
structure by embedding the working correlation into a collection of the correlation
families ρ0(s, t, θ0), . . . , ρm(s, t):

ρ(s, t, θ) = b0ρ0(s, t; θ0)+ b1ρ1(s, t, θ1)+ · · · + bmρm(s, t, θm), (9)

where θ = (θ0, b0, θ1, b1, . . . , bm, θm) and b0 + · · · + bm = 1 with all bi ≥ 0.
Let ρk(s, t, θ), θ ∈ �, be the working correlation function for Yi(t), 0 ≤ t ≤

τ , for k = 1, 2. We consider decomposition of the working covariance Vki of
(Yi1, · · · , YiJi ) into

Vki = AiRki(θ)Ai, (10)

where Ai = diag{σ(Tij ), j = 1, . . . , Ji}, and Rki(θ) is the working correlation
matrix of (Yi1, · · · , YiJi ) under the working correlation model ρk(s, t, θ) for k =
1, 2.
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The examples of correlation matrices Ri(θ) of (Yi1, · · · , YiJi ) at the measure-
ment times t1, . . . , tJi for Ji = 4 for Exchangeable, AR(1) and ARMA(1,1)
correlations are shown in the following:

⎡
⎢⎢⎢⎣

1 θ θ θ

1 θ θ

1 θ

1

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

1 θ |t1−t2| θ |t1−t3| θ |t1−t4|
1 θ |t2−t3| θ |t2−t4|

1 θ |t3−t4|
1

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

1 pq|t1−t2| pq|t1−t3| pq|t1−t4|
1 pq|t2−t3| pq|t2−t4|

1 pq|t3−t4|
1

⎤
⎥⎥⎥⎦ .

(a) Exchangeable (b) AR(1) (c) ARMA(1,1)

The GEE estimation of the regression coefficients is consistent even when the
true correlation matrix is not an element of the class of working correlation matrices,
and are efficient when the working correlation is correctly specified (Liang and
Zeger 1986). Lin and Carroll (2000) showed that the most efficient estimation of
the nonparametric component α(t) can be achieved by ignoring the within-subject
correlation. However, more efficient estimation for the parametric component β is
obtained by letting V2i in (5) to be to the inverse of true covariance matrix of Yi ;
see Lin and Carroll (2001a,b), Wang et al. (2005), and Fan et al. (2007). Thus
we set R1i (θ) to be the identity matrix and focus on discussing the approaches
for estimating Ai and R2i (θ). For convenience, we use the notation ρ(s, t, θ) for
ρ2(s, t, θ) and Ri(θ) for R2i (θ).

2.2.1 Estimation of Marginal Variance

Let α̂0(t) and β̂0 be the marginal estimators of α(t) and β in Sect. 2 by setting Vki
to the identity matrix for k = 1, 2. Define the residual r̂ij = Yij − μ̂ij , where
μ̂ij = g−1{α̂T0 (Tij )Xij + β̂T0 Zij }. Following Fan et al. (2007), we estimate the
marginal variance of response Yi(t) when it is continuous using kernel smoothing:

σ̂ 2(t) =
∑n
i=1

∑Ji
j=1 r̂

2
ijK

∗
h(t − Tij )∑n

i=1
∑Ji
j=1K

∗
h(t − Tij )

, (11)

whereK∗
h(·) = K∗(·/h)/h,K∗(·) is a nonnegative kernel function and h = hn > 0

a bandwidth parameter.
When the response Yi(t) is a discrete random variable, the variance estimation

can take different form to account for the model structure of the particular
distribution family. For example, r̂2

ij is replaced by μ̂ij (1−μ̂ij ) if the response Yi(t)
is a Bernoulli random variable, and by μ̂ij if Yi(t) is a Poisson random variable. We
refer to Liang and Zeger (1986) for the relationship between variance and the model
parameters when marginal distribution of Yi(t) belongs to an exponential family.
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2.2.2 Estimation of Correlation Coefficients

We study different approaches to estimate θ of the correlation matrix R(θ). Two of
the methods, the quasi-likelihood approach and the minimum generalized variance
approach, were adopted from Fan et al. (2007) for model (1) with the identity link
function. We also propose the minimum weighted least squares approach to estimate
θ .

The QL estimation of θ is obtained by maximizing the quasi-likelihood function:

θ̂ = arg max
θ∈�

(
− 1

2

n∑
i=1

{log |Ri(θ)| + r̂Ti Â−1
i R

−1
i (θ)Â

−1
i r̂i}

)
, (12)

where Ri(θ) and Âi = diag{σ̂ (Tij ), j = 1, . . . , Ji} are defined the same as in
Eq. (10), r̂i = {r̂i1, . . . , r̂iJi } is the estimator for vector εi and r̂ij are defined above.

Let �
β̂
(σ̂ 2, θ) be the estimated covariance matrix of β̂ under the working

correlation model ρk(s, t, θ), which depends on the estimated marginal variance
σ̂ 2 and the correlation parameter vector θ . Defining the generalized variance of β̂ as
the determinant |�

β̂
(σ̂ 2, θ)| of �

β̂
(σ̂ 2, θ). By Dempster (1969, Section 3.5), the

volume of the ellipsoid of (β̂ − β)T �−1
β̂
(σ̂ 2, θ) (β̂ − β) < c for any positive

constant c equals πq/2c1/2|�
β̂
(σ̂ 2, θ)|1/2/�(q2 + 1), where �(·) is the gamma

function. It follows that minimizing the volume of the confidence ellipsoid of
(β̂ − β)T �−1

β̂
(σ̂ 2, θ) (β̂ − β) < c over θ ∈ � is equivalent to minimizing

|�
β̂
(σ̂ 2, θ)| for θ ∈ � and that the minimizer of the volume of the confidence

ellipsoid over θ ∈ � is not affected by c. Here c can be viewed as a constant
associated with a confidence level. The MGV estimation of θ by Fan et al. (2007)
is obtained by minimizing the generalized variance of β̂:

θ̂ = arg min
θ∈� |�β̂(σ̂

2, θ)|. (13)

Following the idea of the quasi-likelihood approach of Fan et al. (2007), we also
study estimation of θ obtained by minimizing the weighted least squares:

θ̂ = arg min
θ

(
r̂Ti Â

−1
i R

−1
i (θ)Â

−1
i r̂i

)
. (14)

2.3 Profile Estimation via Quadratic Inference Function

Qu et al. (2000) proposed the method of quadratic inference functions that does
not involve direct estimation of the correlation parameter. The idea is to represent
the inverse of the working correlation matrix by the linear combination of basis
matrices:
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R−1 ≈ a1M1 + a2M2 + · · · + aKMK, (15)

where M1 is the identity matrix, and M2, · · · ,MK are symmetric matrices, and
a1, · · · , aK are constant coefficients. The representation is applicable to many com-
monly used working correlations (Qu et al. 2000). For example, if the correlation
structure exchangeable, then R(θ) has 1’s on the diagonal, and θ ’s everywhere off
the diagonal. The inversion R−1 can be written as a1M1 + a2M2, where M1 is the
identity matrix, andM2 is a matrix with 0 on the diagonal and 1 off the diagonal. For
the AR(1) correlation with ρ(s, t) = θ |s−t |, the inversion R−1 of a J×J correlation
matrix can be written as a linear combination of three basis matrices, where M1 is
the identity matrix, and M2 has 1 on the two main off-diagonals and 0 elsewhere,
andM2 has 1 on the corners (1, 1) and (J, J ), and 0 elsewhere.

Applying the QIF approach, we propose an alternative profile estimation of
model (1). We replace the GEE estimator of β that solves Uβ(β) = 0 in Sect. 2
by the estimator that minimizes the quadratic inference function while keep the
estimation for α̃(t, β) as the root of (3) unchanged. Applying idea of the QIF, we
define the “extended score” function:

gn(β) = 1

n

n∑
i=1

gi(β)

= 1

n

n∑
i=1

⎛
⎜⎜⎜⎝

{
∂α̃T (Ti ,β)

∂β
X̃i + Z̃i

}
 iÂ

−1/2
i M1Â

−1/2
i

[
Yi − μ̃i(β)}

]
...{

∂α̃T (Ti ,β)
∂β

X̃i + Z̃i
}
 iÂ

−1/2
i MKÂ

−1/2
i

[
Yi − μ̃i(β)}

]

⎞
⎟⎟⎟⎠ . (16)

The quadratic inference function is defined as Qn(β) = gTn (β)C
−1
n (β)gn(β),

where Cn(β) = (1/n2)
∑n
i=1 gi(β)g

T
i (β). The profile QIF estimator is the

minimizer ofQn(β):

β̂ = arg min
β
Qn(β). (17)

Following the derivations of the asymptotic properties shown in Qu et al. (2000),
we estimate the variance of the QIF estimator β̂ by {ġn(β̂)C−1

n (β̂)ġ
T
n (β̂)}−1, where

ġn(β) = 1

n

n∑
i=1

⎛
⎜⎜⎜⎜⎝

{
∂α̃T (Ti ,β)

∂β
X̃i + Z̃i

}
 ̂i Â

−1/2
i

M1Â
−1/2
i

 ̂i

{
∂α̃(Ti ,β)
∂β

X̃i + Z̃i
}T

...{
∂α̃T (Ti ,β)

∂β
X̃i + Z̃i

}
 ̂i Â

−1/2
i

MKÂ
−1/2
i

 ̂i

{
∂α̃(Ti ,β)
∂β

X̃i + Z̃i
}T

⎞
⎟⎟⎟⎟⎠ .

(18)



Profile Estimation of Generalized Semiparametric Varying-Coefficient Additive. . . 169

2.4 Computational Algorithms

The iterative algorithms of the procedures using the QL, MGV, WLS, and QIF
approaches for estimating α(t) and β under model (1) are outlined in the following.

1. Calculate the estimates of α(t) and β using the working independence approach
and use them as the initial estimates α̂{0}(t) and β̂{0};

2. Given the m-step estimates α̂{m}(t) and β̂{m}, calculate r̂ij = Yij −
g−1{(α̂{m}(Tij ))T Xij + (β̂{m})T Zij } and obtain the matrix Â{m}

i whose diagonal
elements are estimated by (11);

3. For the QL, MGV, and WLS approaches for estimating the correlation matrix,
obtain the estimate θ̂ {m} using one of the QL, MGV, and WLS methods described
in Sect. 2.2.2; Set V̂ {m}

2i = Â
{m}
i Ri

(
θ̂ {m}

)
Â
{m}
i as in (10); Then update the

estimate of β to β̂{m+1} by solving (5) and the estimate of α(t) to α̂{m+1}(t) =
α̃(t, β̂{m+1});

4. For the QIF approach, update the estimate of β to β̂{m+1} obtained by minimizing
Qn(β) = gTn (β)C

−1
n (β)gn(β) where and Âi in gn(β) is replaced by Â{m}

i , and
then update the estimate of α(t) to α̂{m+1}(t) = α̃(t, β̂{m+1});

5. Repeating steps 2 to 4 until convergence, which is usually achieved within a few
iterations.

2.5 Choices of Kernel Function, Bandwidth, and Link
Function

We employ local linear techniques to estimate the nonparametric time-varying
effects α(t). The kernel function is designed to give greater weight to observations
with sampling time near t than those further away. In kernel density estimation, the
Epanechnikov kernel function K(x) = 3

4 (1 − x2)+ is asymptotically optimal with
the smallest mean integrated squared error among probability density functions.
Silverman (1986, p.43) showed that there is not much variation in the efficiency in
the choice of kernel function: the asymptotic relative efficiency of the Tukey kernel
function K(x) = 15

16 (1 − x2)2+ compared to the optimal Epanechnikov kernel is
99%, the Gaussian kernel has a relative efficiency of 95% and the rectangular kernel
has a relative efficiency about 93%. We expect that the choice of kernel function
has little effect on the performance of the proposed estimators for model (1) as well.
It is common to assume compact support for technical simplicity. This assumption
can be relaxed to include the Gaussian kernel (Silverman 1986, p.38).

The bandwidth, on the other hand, is much more of a concern. The cross-
validation bandwidth selection is widely used to choose the bandwidth. Rice and
Silverman (1991) suggested a leave-one-subject-out cross-validation approach. We
recommend the K-fold cross-validation bandwidth selection considered by Sun
et al. (2013) in the marginal estimation approach for the generalized semiparametric
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regression model (1). Specifically, subjects are divided intoK approximately equal-
sized groups. Let Dk denote the kth subgroup of data, then the kth prediction error
is given by

PEk(h) =
∑
i∈Dk

∑
t1≤Tij≤t2

[
Yij − g−1{(α̂(−k)(Tij ))T Xij + β̂T(−k)Zij }

]2

, (19)

for k = 1, . . . , K , where α̂(−k)(t) and β̂(−k) are the estimators of α(t) and β based
on the data without the subgroup Dk , and [t1, t2] ⊂ (0, τ ). The subset [t1, t2] is
considered to avoid possible instability in estimating α(t) near the boundary. In
practice, this interval can be taken to be close to [0, τ ]. The data-driven bandwidth
selection based on the K-fold cross-validation is to choose the bandwidth h that
minimizes the total prediction error PE(h) = ∑K

k=1 PEk(h). The K-fold cross-
validation bandwidth selection provides a working tool for locating an appropriate
bandwidth.

The proposed estimation procedure holds for a wide class of link functions under
model (1). A link function needs to be selected for a particular data application. The
choice may be clear for some applications based on prior knowledge, but more often
one needs to choose a link function that gives the “best fit” of the data. One criterion
proposed by Sun et al. (2013) is to access the model fit by the regression deviation
defined as

RD(g(·), hcv) =
n∑
i=1

∑
t1≤Tij≤t2

[
Yij − g−1{(α̂g(Tij ))T Xij + β̂Tg Zij }

]2

, (20)

where hcv is the bandwidth selected based on the K-fold cross-validation method
for the given link function g(·) described above, and α̂g(t) and β̂g are the estimators
of α(t) and β under model (1) with the bandwidth hcv . In practice, the link function
g(·) can be selected to minimize the regression deviation. Further examination of
model fitness should be accompanied by model assessment tools such as the residual
plots and formal goodness-of-fit tests.

3 Simulation Studies

In this section, we conduct a simulation study to assess the performances of
the profile estimation methods using the QL, MGV, WLS, and QIF approaches
presented in Sect. 2 under various models for longitudinal responses, different
types of the within-subject correlation structures and different models for the
measurement times. For convenience, we refer to the profile estimators resulted
from these approaches as the QL, MGV, WLS, and QIF estimators. Section 3.1
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presents a study of model (1) for continuous longitudinal responses and Sect. 3.2
shows the performances of these approaches for discrete longitudinal responses.

3.1 Continuous Longitudinal Responses

We study the performances of the proposed methods for continuous longitudinal
responses under model (1) with the identity link function: Yi(t) = αT (t)Xi(t) +
βT Zi(t)+ εi(t). We consider two simulation settings. In the first simulation setting
(C1), the true correlation structure of the longitudinal responses is ARMA(1,1)
and the measurement times are independent of covariates. In the second simulation
setting (C2), the true correlation structure of the longitudinal responses is Exchange-
able and the measurement times are dependent of covariates.

Simulation Setting (C1) Similar to Fan et al. (2007), for each subject i, we
consider time-independent covariates Xi(t) = (X1i (t), X2i (t))

T and Zi(t) =
(Z1i (t), Z2i )

T , where X1i = 1, (X2i (t), Z1i (t)) are time-varying covariates having
a bivariate normal distribution with mean 0, variance 1 and correlation coefficient
of 0.5 at each time t , and Z2i is a time-independent covariate from Bernoulli
distribution with success probability 0.5. We take α(t) = (

√
t/12, sin(2πt/12))T

and β = (1, 2)T . The error εi(t) is a Gaussian process with mean 0, variance varying
with time σ 2(t) = 0.5 exp(t/12) and of the ARMA(1,1) correlation structure,
i.e., Corr(Yi(s), Yi(t)) = γρ|t−s| for s �= t . We take (γ, ρ) = (0.85, 0.9)
and (0.85, 0.6) for strong and moderate, respectively. All subjects have the same
scheduled measurement time points, {0,1,2,. . . ,12}, but each of the scheduled
time points has a 20% probability of being skipped except for the time 0. A
random perturbation generated from the uniform distribution on [0, 1] is added to
the non-skipped scheduled time points. Every subject has approximately 7 to 13
observations with an average of 11.

Simulation Setting (C2) Similar to Sun et al. (2013), for each subject i, we let
Z1i (t) be a time-varying covariate from a uniform distribution on [0, 1], Z2i a time-
independent Bernoulli random variable with the success probability of 0.5,X1i = 1,
andX2i (t) a time-varying Bernoulli random variable with the success probability of
0.5 at each time t . Let α(t) = (0.5

√
t, 0.5 sin(2t))T and β = (0.5, 1)T . The error

εi(t) has a normal distribution with mean φi and variance ν2, where φi is a random
variable from N(0, 1). Thus εi(t) has an Exchangeable correlation structure with
the correlation coefficients equal to θ = 0.8 and θ = 0.5 for ν = 0.5 and ν = 1,
respectively. The measurement times Tij for each subject i follow a Poisson process
with the intensity hi(t) = 0.6 exp(0.7Z2i ), for 0 ≤ t ≤ τ with τ = 3.5. The
censoring times Ci are generated from a uniform distribution on [1.5, 8]. There are
approximately three observations per subject on [0, τ ] and about 30% of subjects
are censored before τ = 3.5.
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The performances of the profile GEE estimators using the QL, MGV, and
WLS approaches for estimating the correlation parameter θ as well as the profile
estimators via the QIF approach are examined under the settings (C1) and (C2).
We let V1i to be the identity matrix for all the estimators while using different
correlation structures are assumed for V2i . The working independence estimator
(WI) is obtained by letting V −1

2i be the identity matrix. The Epanechnikov kernel
function K(x) = 3

4 (1 − x2)+ is used in the study.
The simulation results for estimating β under the setting (C1) and ARMA(1,1)

correlation with strong and moderate correlations are shown in Tables 1 and 2,
respectively. The simulation results for estimating β under the setting (C2) and
Exchangeable correlation with strong and moderate correlations are shown in
Tables 3 and 4, respectively. The tables summarize the estimation bias (Bias), the
sample standard error of estimates (SEE), the sample mean of the estimated standard
errors (ESE), and the 95% empirical coverage probability (CP) for n = 200. Each
entry of the table is calculated based on 1000 repetitions. The bandwidth used for
each table is selected based on the 10-fold cross-validation of a single simulation
that minimizes the total prediction error PE(h) for h in [0.7, 1.3] and carried it
over for all 1000 repetitions.

The results for WI is obtained by assuming working independence case. The
performances of the estimators QL, MGV, WLS and QIF are examined under

Table 1 Summary of Bias, SEE, ESE and CP under different estimation methods for β1 and β2
with n = 200, h = 0.8 based on 1000 simulations under the model setting (C1) and the strong
ARMA(1,1) correlation with (γ, ρ) = (0.85, 0.9)

β1 = 1 β2 = 2

Method Bias SEE ESE CP Bias SEE ESE CP

Working independence

WI 0.0013 0.0244 0.0235 0.938 0.0059 0.1016 0.1011 0.944

Assuming exchangeable correlation (Misspecification)

QL 0.0001 0.0166 0.0160 0.937 0.0041 0.1096 0.1020 0.938

MGV 0.0001 0.0166 0.0160 0.936 0.0041 0.1061 0.0992 0.940

QIF 0.0003 0.0168 0.0160 0.930 0.0053 0.0954 0.0915 0.940

WLS 0.0004 0.0171 0.0164 0.934 0.0052 0.0946 0.0912 0.941

Assuming ARMA(1,1) Correlation (True)

QL 0.0005 0.0130 0.0127 0.936 0.0030 0.0955 0.0848 0.914

MGV 0.0008 0.0147 0.0140 0.929 0.0052 0.0936 0.0918 0.943

QIF 0.0005 0.0143 0.0136 0.931 0.0051 0.0926 0.0877 0.939

WLS 0.0006 0.0142 0.0136 0.935 0.0050 0.0926 0.0897 0.942

Assuming mixed correlation

QL 0.0005 0.0131 0.0127 0.937 0.0030 0.0956 0.0847 0.916

MGV 0.0005 0.0145 0.0138 0.930 0.0047 0.0934 0.0895 0.942

QIF 0.0004 0.0142 0.0133 0.928 0.0053 0.0925 0.0864 0.932

WLS 0.0006 0.0142 0.0136 0.934 0.0051 0.0927 0.0897 0.942
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Table 2 Summary of Bias, SEE, ESE and CP under different estimation methods for β1 and β2
with n = 200, h = 0.8 based on 1000 simulations under the model setting (C1) and the moderate
ARMA(1,1) correlation with (γ, ρ) = (0.85, 0.6)

β1 = 1 β2 = 2

Method Bias SEE ESE CP Bias SEE ESE CP

Working independence

WI 0.0009 0.0242 0.0236 0.942 0.004 0.0672 0.0666 0.946

Assuming exchangeable correlation (Misspecification)

QL 0.0003 0.0220 0.0210 0.937 0.0033 0.0665 0.0634 0.941

MGV 0.0001 0.0221 0.0212 0.939 0.0024 0.0937 0.0895 0.949

QIF 0.0004 0.0221 0.0209 0.931 0.0035 0.0647 0.0618 0.943

WLS 0.0005 0.0222 0.0212 0.937 0.0035 0.0645 0.0623 0.943

Assuming ARMA(1,1) Correlation (True)

QL 0.0008 0.0182 0.0174 0.935 0.0028 0.0618 0.0601 0.938

MGV 0.0007 0.0187 0.0179 0.933 0.0031 0.0618 0.0604 0.942

QIF 0.0007 0.0195 0.0182 0.928 0.0036 0.0629 0.0606 0.941

WLS 0.0008 0.0194 0.0184 0.933 0.0033 0.0622 0.0609 0.941

Assuming Mixed Correlation

QL 0.0008 0.0182 0.0174 0.935 0.0028 0.0619 0.0601 0.937

MGV 0.0005 0.0192 0.0183 0.942 0.0027 0.0659 0.0630 0.945

QIF 0.0007 0.0196 0.0181 0.924 0.0036 0.0633 0.0600 0.944

WLS 0.0008 0.0193 0.0184 0.933 0.0033 0.0622 0.0609 0.941

Table 3 Summary of Bias, SEE, ESE and CP under different estimation methods for β1 and β2
with n = 200, h = 1.2 based on 1000 simulations under the model setting (C2) and the strong
Exchangeable correlation with θ = 0.8

β1 = 1 β2 = 2

Method Bias SEE ESE CP Bias SEE ESE CP

Working Independence

WI 0.0023 0.1535 0.1544 0.949 0.0048 0.1691 0.1629 0.934

Assuming ARMA(1,1) Correlation

QL 0.0064 0.0884 0.0878 0.949 −0.0084 0.1605 0.1427 0.915

MGV 0.0047 0.0974 0.0973 0.948 0.0008 0.1574 0.1466 0.933

QIF 0.0048 0.1064 0.1019 0.935 −0.0001 0.1576 0.1434 0.917

WLS 0.0051 0.0945 0.0948 0.953 −0.0004 0.1564 0.1451 0.929

Assuming Exchangeable Correlation (True)

QL 0.0069 0.0853 0.0855 0.956 −0.0145 0.1625 0.1423 0.910

MGV 0.0044 0.1113 0.1119 0.950 0.0022 0.1588 0.1493 0.928

QIF 0.0066 0.1069 0.1037 0.950 0.0021 0.1584 0.1473 0.922

WLS 0.0053 0.0942 0.0945 0.956 −0.0009 0.1563 0.1449 0.926

Assuming Mixed Correlation

QL 0.0068 0.0855 0.0853 0.953 −0.0134 0.1622 0.1422 0.911

MGV 0.0031 0.1246 0.1249 0.949 0.0033 0.1616 0.1532 0.929

QIF 0.0060 0.1044 0.0976 0.930 −0.0003 0.1573 0.1421 0.914

WLS 0.0052 0.0942 0.0944 0.954 −0.0008 0.1563 0.1448 0.927
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Table 4 Summary of Bias, SEE, ESE and CP under different estimation methods for β1 and β2
with n = 200, h = 1.2 based on 1000 simulations under the model setting (C2) and the moderate
Exchangeable correlation with θ = 0.5

β1 = 1 β2 = 2

Method Bias SEE ESE CP Bias SEE ESE CP

Working Independence

WI 0.006 0.1952 0.196 0.949 0.0062 0.1863 0.1787 0.94

Assuming ARMA(1,1) Correlation

QL 0.0112 0.1611 0.1597 0.953 0.0006 0.1774 0.1647 0.932

MGV 0.0113 0.1723 0.1667 0.946 0.0020 0.1785 0.1665 0.929

QIF 0.0091 0.1740 0.1684 0.939 0.0033 0.1815 0.1658 0.917

WLS 0.0090 0.1661 0.1655 0.952 0.0039 0.1778 0.1667 0.927

Assuming exchangeable correlation (True)

QL 0.0118 0.1602 0.1591 0.954 −0.0001 0.1773 0.1646 0.935

MGV 0.0083 0.1723 0.1731 0.952 0.0048 0.1795 0.1695 0.933

QIF 0.0114 0.1676 0.1637 0.951 0.0045 0.1787 0.1659 0.928

WLS 0.0092 0.1659 0.1654 0.956 0.0037 0.1777 0.1666 0.927

Assuming mixed correlation

QL 0.0116 0.1602 0.1588 0.951 0.0001 0.1773 0.1646 0.933

MGV 0.0042 0.1837 0.1777 0.949 0.0055 0.1806 0.1710 0.936

QIF 0.0106 0.1692 0.1611 0.946 0.0039 0.1793 0.1632 0.921

WLS 0.0092 0.1658 0.1652 0.954 0.0037 0.1777 0.1665 0.927

both the correctly specified correlation model and the misspecified correlation
models. The results under “Assuming Exchangeable Correlation” are obtained by
assuming exchangeable correlation in the estimation, the results under “Assuming
ARMA(1,1) Correlation” are obtained by assuming ARMA(1,1) correlation in the
estimation, while the results under “Assuming Mixed Correlation” are obtained by
assuming the correlation to be the mix of the exchangeable and AR(1) correlation in
the estimation. The basis matrices for the QIF estimator are taken as a combination
the basis matrices for Exchangeable and AR(1) when ARMA(1,1) and Mixed
Correlation Structures are assumed.

The simulation study shows that all estimators are consistent with small estima-
tion bias. The WLS, QL, MGV and QIF estimators all perform well and improve
the estimation efficiency compared with the working independence (WI) method.
The methods utilizing the within-subject correlations show reduced estimation
standard errors in SEE and ESE. More efficiency is gained by assuming the true
or mixed correlation structures than the scenarios where correlation structures are
misspecified. More efficiency gain is also observed in the settings with stronger
within-subject correlations than with moderate within-subject correlations. For
example, compared with the WI estimator, the sample standard errors of the QL,
MGV, WLS, and QIF estimators for β1 reduced between 30% to 46% in Table 1 for
strong within-subject correlation and the sample standard errors reduced between
8% to 25% in Table 2 for moderate within-subject correlations under the true



Profile Estimation of Generalized Semiparametric Varying-Coefficient Additive. . . 175

ARMA(1,1) correlation. Similarly, compared with the WI estimator, the sample
standard errors of the QL, MGV, WLS, and QIF estimators for β1 reduced between
18% to 44% in Table 3 for strong within-subject correlation and the sample
standard errors reduced between 6% to 18% in Table 4 for moderate within-subject
correlations under the true Exchangeable correlation. The efficiency improved is
more evident in estimating the effect of time-varying covariate than for the time-
invariant covariate. This phenomenon also appeared in the simulation studies in Lin
and Carroll (2001b) and Wang et al. (2005).

The performances of the estimators by assuming ARMA(1,1) working correla-
tion and those under the mixed working correlation are close. The QL estimator
appeared to achieve most efficiency gain out of these estimators in most scenar-
ios. The above observations hold for both covariate-independent and covariate-
dependent measurement times.

3.2 Discrete Longitudinal Responses

In this section we examine the performance of the proposed methods for model (1)
for discrete longitudinal responses. We consider binary longitudinal responses in the
simulation setting (D1), and Poisson count responses in the simulation setting (D2).
Both settings have an Exchangeable correlation structure.

Simulation Setting (D1): The Bernoulli Model For binary longitudinal responses,
we let g(μ) = log{μ/(1 − μ)} be the logistic link function. The observation times
are generated similarly to the simulation setting (C1). All subjects have the same
scheduled observation time points, {0,1,2,. . . ,8}, but each of the scheduled time
points has a 20% probability of being skipped except for the time 0. A random
perturbation generated from the uniform distribution on [0, 1] is added to the non-
skipped scheduled time points. The number of observations, Ji , ranges from 4 to
9. At each observation time Tij , j = 1, . . . , Ji , Xij = 1, Z1ij and Z2ij are
independent standard normal random variables that do not vary with time. Let
α(t) = sin(πt/30) − 0.5 and β = (0.01, 0.01)T and μij = P(Yij = 1|Xij , Zij ).
The binary longitudinal responses Yij = Yi(Tij ), j = 1, . . . , Ji , are generated with
the marginal means following the logit model logit(μij ) = α(Tij )Xij + βT Zij and
with constant correlation coefficient Corr(Yi(s), Yi(t)) = 0.5 for s �= t . We refer to
Macke et al. (2009) for the techniques for simulating correlated binary responses.
Our simulation used the Matlab code provided in the paper to generate the correlated
binary variables with the specified mean and covariance.

Simulation Setting (D2): The Poisson Model Suppose that Tij , Xij and Zij are
the same as in the simulation setting (D1). We also use α(t) = sin(πt/30)−0.5 and
β = (0.01, 0.01)T . Let μij = E(Yij |Xij , Zij ). Using the method of Macke et al.
(2009), we generate Poisson longitudinal process Yij = Yi(Tij ), j = 1, . . . , Ji ,
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Table 5 Summary of Bias, SEE, ESE, and CP under different estimation methods for β1 and
β2 with n = 200, h = 1.2 based on 1000 simulations under the Bernoulli model (D1) and the
moderate Exchangeable correlation with θ = 0.5

β1 = 1 β2 = 2

Method Bias SEE ESE CP Bias SEE ESE CP

Working Independence

WI 0.0002 0.0524 0.0525 0.954 0.0014 0.0516 0.0525 0.962

Assuming ARMA(1,1) Correlation

QL −0.0002 0.0406 0.0404 0.945 −0.0012 0.0407 0.0405 0.948

MGV −0.0004 0.0429 0.0428 0.937 −0.0005 0.0429 0.0429 0.950

QIF −0.0002 0.0445 0.0434 0.932 −0.0008 0.0440 0.0435 0.942

WLS 0.0000 0.0411 0.0410 0.944 −0.0005 0.0410 0.0410 0.955

Assuming exchangeable correlation (True)

QL 0.0000 0.0396 0.0395 0.947 −0.0013 0.0396 0.0395 0.949

MGV 0.0000 0.0396 0.0395 0.947 −0.0013 0.0396 0.0395 0.948

QIF 0.0003 0.0404 0.0397 0.944 −0.0012 0.0404 0.0397 0.943

WLS 0.0001 0.0408 0.0407 0.950 −0.0005 0.0406 0.0407 0.956

Assuming Mixed Correlation

QL 0.0000 0.0396 0.0394 0.947 −0.0012 0.0396 0.0394 0.949

MGV 0.0003 0.0434 0.0432 0.946 0.0000 0.0428 0.0432 0.951

QIF 0.0001 0.0406 0.0393 0.941 −0.0014 0.0406 0.0393 0.936

WLS 0.0001 0.0408 0.0406 0.948 −0.0005 0.0406 0.0406 0.956

with the conditional marginal mean model log(μij ) = α(Tij )Xij + βT Zij and with
constant correlation coefficient Corr(Yi(s), Yi(t)) = 0.5 for s �= t .

The estimation results under the simulation settings (D1) and (D2) are summa-
rized in Tables 5 and 6, respectively. The simulation shows that estimation bias
is small for all estimators. The QL, MGV, WLS, and QIF estimators that utilize
the within-subject correlations show improved efficiency compared with using
the working independence (WI) method with the sample standard errors reduced
between 17% to 24% in Table 5 and between 10% to 30% in Table 6. The QL
estimator achieved most efficiency gain out of these estimators. Efficiency gains are
slightly higher when the true or mixed correlation structures are assumed compared
to assuming the ARMA(1,1) correlation structures.

4 Concluding Remarks

The generalized semiparametric varying-coefficient additive model (1) specifies a
model for the conditional mean of longitudinal responses. The model allows time-
varying effects for some covariates and constant effects for others and is an umbrella
for many different models with selections of the link function. The intensively
studied semiparametric additive model obtained by using the identity link function is
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Table 6 Summary of Bias, SEE, ESE and CP under different estimation methods for β1 and β2
with n = 200, h = 1.2 based on 1000 simulations under the Poisson model (D2) and the moderate
Exchangeable correlation with θ = 0.5

β1 = 1 β2 = 2

Method Bias SEE ESE CP Bias SEE ESE CP

Working independence

WI −0.0008 0.0271 0.0268 0.944 −0.0005 0.0271 0.0269 0.943

Assuming ARMA(1,1) Correlation

QL −0.0005 0.0206 0.0202 0.954 −0.0008 0.0199 0.0203 0.955

MGV −0.0008 0.0243 0.0241 0.943 −0.0011 0.0245 0.0240 0.949

QIF −0.0005 0.0220 0.0216 0.952 −0.0010 0.0224 0.0217 0.940

WLS −0.0006 0.0208 0.0205 0.954 −0.0007 0.0202 0.0205 0.954

Assuming exchangeable correlation (True)

QL −0.0006 0.0199 0.0197 0.951 −0.0007 0.0191 0.0197 0.955

MGV −0.0007 0.0219 0.0216 0.947 −0.0006 0.0215 0.0217 0.950

QIF −0.0005 0.0201 0.0197 0.950 −0.0006 0.0193 0.0197 0.953

WLS −0.0006 0.0206 0.0203 0.952 −0.0007 0.0199 0.0203 0.954

Assuming mixed correlation

QL −0.0006 0.0199 0.0197 0.948 −0.0007 0.0192 0.0197 0.956

MGV −0.0006 0.0222 0.0218 0.956 −0.0008 0.0219 0.0219 0.945

QIF −0.0006 0.0202 0.0195 0.949 −0.0007 0.0194 0.0195 0.954

WLS −0.0006 0.0206 0.0202 0.954 −0.0007 0.0200 0.0203 0.955

popular for modeling continuous longitudinal responses. Semiparametric statistical
modeling of discrete longitudinal responses has been understudied. With selection
of link functions, model (1) can be used to model both continuous and discrete
responses. Sun et al. (2013) investigated the local linear profile marginal estimation
method for model (1) under the working independence. The estimation methods
under working independence that ignore the within-subject correlation are valid and
yield asymptotically unbiased estimators.

In this paper, we studied several profile estimation methods for model (1) that
utilize the within-subject correlations to improve estimation efficiency. Several
profile estimation methods that utilize the within-subject correlations including the
profile GEE approaches and the profile QIF approach were investigated. The profile
estimations are assisted with the local linear smoothing technique by approximating
the time-varying effects with linear functions in the neighborhood of each time. The
profile GEE approaches include the quasi-likelihood, the minimum generalized vari-
ance, and the weighted least squares. These methods differ by different procedures
used in estimating the within-subject correlations. The proposed profile estimation
methods for the generalized semiparametric varying-coefficient additive model (1)
provide a unified approach that work well for discrete longitudinal responses as well
as for continuous longitudinal responses.

Finite sample performances of these different methods are examined through
Monto Carlo simulations under various correlation structures for both discrete
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and continuous longitudinal responses. Our study showed significant efficiency
improvement of all the estimators, the QL, WLS, WLS, and QIF estimators, over
the working independence approach. The QL estimator appeared to achieve most
efficiency gain out of all estimators in most scenarios. The efficiency improved is
more evident in estimating the effects of time-varying covariates than for the time-
invariant covariates. Efficiency gains are higher when the true or mixed correlation
structures are assumed compared to the misspecified correlation structures. The
above observations hold for both covariate-independent and covariate-dependent
measurement times.
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Sieve Estimation of Semiparametric
Linear Transformation Model with
Left-Truncated and Current Status Data

Riyadh Rustam Al-Mosawi and Xuewen Lu

Abstract In this paper, we analyze the semiparametric linear transformation model
with left-truncated and current status data. Sieve maximum likelihood estimation
method based on techniques of constrained Bernstein polynomials is exploited
to obtain estimators for both the regression coefficients and the baseline survival
function. Under some regularity conditions, we have proved that the proposed
parameter estimators are semiparametrically efficient and asymptotically normal
base on the conditional likelihood given the truncation time, and the estimator for
the nonparametric function achieves the optimal rate of convergence. Simulation
studies are conducted to assure the theoretical results, and a real data set is analyzed
using the proposed method.

Keywords Bernstein polynomials · Current status data · Efficient estimation ·
Left-truncated data · Linear transformation model

1 Introduction

Let T be a nonnegative random variable denoting the failure time of interest and
Z be a d-dimensional vector of covariates. The linear transformation model (LTM)
assumes that

H0(T ) = −βᵀ0 Z + ε, (1)
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where H0 is an unknown monotone increasing function with H0(0) = −∞, β0
is d-vector of regression parameters and ε is an error term assumed to follow a
known survival function Sε, free of the covariate Z, for example, see Cheng et al.
(1995). Here and throughout the paper, Bᵀ denotes the transpose of a vector or
matrix B. The importance of LTM in the survival analysis is its flexibility to include
some well-known regression models. The model (1) with ε following the extreme
value distribution and the logistic distribution correspond to the proportional
hazards model and the proportional odds model, respectively Cheng et al. (1995);
while the model (1) with ε following a standard normal distribution represents a
generalization of the usual Box-Cox model (see Bickel et al. 1993). The conditional
survival function of T given Z can be written as

S(t |Z) = P(T > t |Z) = Sε(H0(t)+ βᵀ0 Z). (2)

It is common in survival analysis to collect data with incomplete observations
or missing information rather than complete observations due to some reasons, for
example, the limitation of time or shortage in the budget. One form of incomplete
data is left censoring and right censoring. An observation is left-censored if we know
that the event has already happened at a time before the monitoring time while it
is right-censored if the event has not happened at or before the observation time.
The scheme of censoring in which each observation is either left-censored or right-
censored is called interval censoring of case I or current status, see, for example, Sun
(2006); Keiding (1991). In specific, assume for each subject there is an monitoring
time C. In current status data, the lifetime of each subject, T , is only known to
occur before the monitoring time (i.e., T ≤ C) or after the monitoring time (i.e.,
T > C). Current status observations are often occur in cross-sectional studies and
tumorigenicity experiments (Sun and Kalbfleisch 1996). It should be noted that,
unlike to the usual right-censored data, here we do not have exact observations.
Analyzing the semiparametric linear transformation model with censored data was
investigated by many authors. For example, Cheng et al. (1995); Chen et al. (2002);
McLain and Ghosh (2013) for right-censored data, Zhang et al. (2013) and Lu
et al. (2019) for current status data and (Hu and Xiang 2016) interval-censored
data with cure fraction. Another form of missing information can be represented by
truncation. Truncation occurs when the incomplete nature of the observations is due
to the design of the experiment rather than the limitations of resources. If we observe
those individuals whose event time are greater than some truncation threshold, then
the individuals are subject to left censoring. Assume for each subject, there is a left-
truncation time L such that L < C. The lifetime of each subject can be observed
whenever T > L. For example, suppose that we are interested in the incubation time
of AIDS for patients who have already recorded positive HIV. Patients who have
already onset of AIDS before the study starts represent left-truncated observations
and they cannot be observed. Furthermore, patients in which the onset of AIDS is
already recorded at the observation time represent left-censored otherwise they are
considered as right-censored. Statistical models with left-truncation and interval-
censored data were considered by several authors. Kim (2003), Pan and Chappell
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(2002), Shen (2014) for the Cox model, (Wang et al. 2015) for additive hazard model
and Shen et al. (2019) for transformation model without or with a cure fraction. The
goal of this paper is to estimate the regression parameter β0 in model (2) in the
presence of the nuisance infinite dimensional parameter H0 with left-truncated and
current status data.

The rest of the paper is organized as follows. In Sect. 2, sieve maximum
likelihood estimators of the unknown parameters using Bernstein polynomials
technique are computed and the variances are estimated. Section 3 is devoted
to derive the efficient score and efficient information bound for estimation of β.
In Sect. 4, we investigate the asymptotic properties of the proposed estimators.
In Sect. 5, we conduct a Monte-Carlo simulation method to assess the proposed
method. In Sect. 6, we analyze a real data set for illustration of our method. In
Sect. 7, we provide some concluding remarks and discussions about future work.
Proofs of the lemmas and theorems are included in Appendix.

2 Sieve Maximum Likelihood Estimation

In this section, we compute the sieve maximum likelihood estimators of β and
H using Bernstein polynomials. Let V = (L,C,Δ,Z) be a single observation,
where L is the left-truncation random variable, C is the monitoring time random
variable, Δ = I (T ≥ C) is the censored indicator random variable, and Z is a
d-dimensional vector of covariates. Let Vi = (Li, Ci,Δi, Zi), i = 1, · · · , n, be
n independent copies of V and let V = (V1, · · · , Vn). Then the log-conditional
likelihood (hereinafter abbreviated as log-likelihood) of β and H based on the
observations, V, given L, can be written (up to terms do not involve (β,H)) as

ln(β,H |V) =
n∑
i=1

[
δi log

(
Sε(H(ci)+ βᵀzi)
Sε(H(li)+ βᵀzi)

)

+(1 − δi) log

(
1 − Sε(H(ci)+ β

ᵀzi)
Sε(H(li)+ βᵀzi)

)]
, (3)

where li , ci , δi , and zi denote the observed values of Li, Ci,Δi, and Zi, respec-
tively. From the Assumptions C1 and C2 in the appendix, we define the parameter
space of (β,H) as Θ = B×H, where B is defined in C1 and

H = {H(.) : B− < H(t) < B+, dH(t)/dt > 0, t ∈ (τ0, τ1)},

B− andB+ are defined in C2. The sieve estimation of the nonparametric component
is performed by approximating the function H (or the space H) over the finite
interval by a parametric function with finite number of parameters (or finite
dimensional space). Using Bernstein polynomial of degree q = O(nv), 0 < v < 1,
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Lorentz (2013), H(t) can be approximated by Hn(t; γ ), where

Hn(t; γ ) =
q∑
i=0

γi
q!

i!(q − i)!
( t − τ0
τ1 − τ0

)i(
1 − t − τ0

τ1 − τ0
)q−i := γ ᵀA(t),

γ ᵀ = (γ0, · · · , γq) and Aᵀ(t) = (A0(t), · · · , Aq(t)) with

Ai(t) = q!
i!(q − i)!

( t − τ0
τ1 − τ0

)i(
1 − t − τ0

τ1 − τ0
)q−i

, i = 0, 1 · · · , q. (4)

The optimal value of v is given in Theorem 3. Here, β0 and H0 denote the true
values of β and H, respectively. Due to the monotonicity of H, we define the sieve
space Hn by Lorentz (2013)

Hn =
{
γ ᵀA(t) : B− < γ0 ≤ · · · ≤ γq < B+,

q∑
j=0

|γj | ≤ Mγ
}
.

The quantity Mγ = O(na) is a positive constant that controls the size of the
sieve space (Shen 1997). Substituting the approximated expression, Hn, in the log-
likelihood function gives us

ln(β, γ |V) =
n∑
i=1

{
δi log

(
Sε(γ

ᵀA(ci)+ βᵀzi)
Sε(γ ᵀA(li)+ βᵀzi)

)

+(1 − δi) log

(
1 − Sε(γ

ᵀA(ci)+ βᵀzi)
Sε(γ ᵀA(li)+ βᵀzi)

)}
. (5)

In the sieve estimation problem, the major issue is how to select the degree of
smoothness of approximation, q, in the parameter space Hn. Here, the selection
procedure of q and the transformation distribution parameter r is to find the value
that minimizes the BIC criterion given by (19) in the simulation study and real
data analysis. To find sieve maximum likelihood estimator (β̂, Ĥn), we need to find
(β̂, γ̂ ) that maximizes the log-likelihood over the space Θn = B×Hn, i.e.,

(β̂, γ̂ ) = argmax(β,γ )∈Θnln(β, γ |V).

The algorithm we utilize here to maximize the log-likelihood consists of the
following steps. Suppose the values of β and γ at the k-th iteration are β(k) and
γ (k), respectively.

Step 1: Find γ (k+1) by maximizing the log-likelihood ln(β(k), γ (k)|V) subject to
monotone constraint on γ to update γ (k).

Step 2: Find β(k+1) by maximizing the log-likelihood ln(β
(k), γ (k+1)|V) to

update β(k).
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Step 3: Repeat Step 1 and Step 2 if ‖γ (k+1) − γ (k)‖ + ‖β(k+1) − β(k)‖ > η, for
a small pre-specified quantity η > 0, otherwise, set β̂ = β(k+1) and γ̂ = γ (k+1)

and terminate the algorithm.

Clearly, Step 1, is a constraint optimization of the log-likelihood function under
monotone constraints while Step 2 is an unconstraint optimization of log-likelihood
function. In the simulation section, the method that we used in Step 1 is known
as the adaptive barrier algorithm (Lange 1994) which is incorporated in con-
strOptim.nl() function in the R package alabama and Step 2 is performed by
Nelder-Mead simplex algorithm incorporated in the R function optim().

Estimation of the variance-covariance matrix of the sieve maximum likelihood
estimators can be obtained by the observed information matrix evaluated at (β̂, γ̂ ).
Specifically, the variance-covariance matrix of β̂ can be estimated by

Σ11 = (
Σ̂11 − Σ̂12Σ̂

−1
22 Σ̂

ᵀ
12

)−1
, (6)

where

Σ̂11 = −∂
2ln(β, γ |V)
∂β∂βᵀ

∣∣∣
β=β̂,γ=γ̂ , Σ̂12 = −∂

2ln(β, γ |V)
∂β∂γ ᵀ

∣∣∣
β=β̂,γ=γ̂ ,

Σ̂22 = −∂
2ln(β, γ |V)
∂γ ∂γ ᵀ

∣∣∣
β=β̂,γ .

However, as we have seen in the simulation study (the results are not reported
here), this procedure gives unstable estimates and many times it experiences singular
observed information matrix. Instead, we propose instead to use the observed profile
information technique suggested by Murphy and Van der Vaart (2000). Let γ̂β be
the maximizer of log-likelihood ln(β, γ̂ |V) for any β in the neighborhood of β̂.
The profile log-likelihood for β is defined as pln(β) = ln(β, γ̂β |V). Let es be a
vector in R

d with 1 in the sth position and 0 elsewhere and let hn is a constant such
that hn = O(n−1/2). The (s, t)th element of the information matrix of β̂ can be
approximated by

Îβs,t = −pln(β̂ + hnes + hnet |V)− pln(β̂ + hnes |V)− pln(β̂ + hnet |V)+ pln(β̂|V)
nh2
n

.

Then we propose to estimate the covariance matrix of β̂ by the inverse of the matrix
whose (s, t)th element is nÎβs,t , s, t = 1, . . . , d.
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3 Efficient Estimation

In this section, we investigate the efficient estimation of the regression parameters,
β, by computing the efficient score function and the efficient information. Assume
T > L a.s. and C > T a.s. Let fC and fL denote the marginal densities of L and
C, respectively, and let fL,C denote the joint density of (L,C). Without loss of
generality, we assume d = 1 and consider a single observation V = (L,C,Δ,Z).
Let

Qθ ≡ Qβ,H (l, c, z) = Pr(T ≥ c|T > l, L = l, C = c, Z = z) = Sε(H(c)+ βᵀz)
Sε(H(l)+ βᵀz) ,

Q̇β = Qθ
( Ṡβε (H(c)+ βᵀz)
Sε(H(c)+ βᵀz) −

Ṡ
β
ε (H(l)+ βᵀz)
Sε(H(l)+ βᵀz)

)
,

where

Ṡβε (H(t)+ βᵀz) =
∂Sε(H(t)+ βᵀz)

z∂β
.

The score function of β can be simply computed by differentiating the log-
likelihood function with respect to β as

�̇β = zQ̇β(δ −Qθ)
Qθ(1 −Qθ) . (7)

Now, we construct the score function of H. Suppose that H0 = {Hs, |s| < 1} is a
regular parametric submodel of H. Note that H0 passes through the true function

H0 at s = 0. Let h(.) = dHs(.)
ds

∣∣∣
s=0
. Let

ṠHε (H(t)+ βᵀz) =
∂Sε(Hs(t)+ βᵀz)

h(t)∂s

∣∣∣
s=0

and

Q̇t = Qθ Ṡ
H
ε (H(t)+ βᵀz)
Sε(H(t)+ βᵀz) .

Then the score operator for H in the direction h is

�̇H [h] = ∂ln(β,Hs)

∂s

∣∣∣
s=0

= (Q̇ch(c)− Q̇lh(l))(δ −Qθ)
Qθ(1 −Qθ) . (8)

To find the efficient score vector and information bound, we need to find h∗ in L2
so that �̇β − �̇H [h∗] ⊥ �̇H [h] for any function h in L2 that is,
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E((�̇β − �̇H [h∗])�̇H [h]) = 0, (9)

where

L2 =
{
a :
∫ τ1

τ0

a2(t)dt <∞
}
.

Now, we present the main theorem of this section, the detailed proofs of
Theorems 1 are deferred in the Appendix.

Theorem 1

(i) The efficient score for β is �̄β = �̇β − �̇H [h∗(C)], where h∗(t) is the unique
solution of the second-kind of Fredholm integral equation (I + A)[h∗(t)] =
o(t)/g(t), where

A[h] = −
∫
h(s)r(t, s)ds/g(t), (10)

g(t) = fC(t)E
( Q̇2

c

Qθ (1 −Qθ) |C = t
)
+ fL(t)E

( Q̇2
l

Qθ (1 −Qθ) |L = t
)
, (11)

o(t) = fC(t)E
( Q̇cQ̇βZ

Qθ (1 −Qθ) |C = t
)
− fL(t)E

( Q̇lQ̇βZ

Qθ (1 −Qθ) |L = t
)
, (12)

r(t, s) = fL,C(s, t)E
( Q̇cQ̇l

Qθ (1 −Qθ) |C = t, L = s
)
+

fL,C(t, s)E
( Q̇cQ̇l

Qθ (1 −Qθ) |C = s, L = t
)
, (13)

and I is the identity operator.
(ii) The Efficient information for estimation of β is Ī = E[�̄β �̄�β ].

Remark 1 As a special case of Theorem 1, for the case of currents status data
without truncation, we have Q̇l = 0,Qβ = Sε(H(c)+ βᵀz), Q̇c = QβṠHε (H(t)+
βᵀz),

g(t) = fC(t)E
( Q̇2

c

Qβ(1 −Qβ)
∣∣∣C = t

)
,

o(t) = fC(t)E
( Q̇2

cZ

Q(1 −Q)
∣∣∣C = t

)

and r(t, s) = 0. Hence

h∗(t) =
E
(

Q̇2
cZ

Qβ(1−Qβ)
∣∣∣C = t

)

E
(

Q̇2
c

Qβ(1−Qβ)
∣∣∣C = t

) ,
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the efficient score function and efficient information are

�̄β = Q̇c(Δ−Qβ)
Qβ(1 −Qβ)

(
Z − E

( Q̇2
cZ

Qβ(1 −Qβ)
∣∣∣C)(E( Q̇2

c

Qβ(1 −Qβ)
∣∣∣C))−1

)
,

I = E
[( Q̇c(Δ−Qβ)
Qβ(1 −Qβ)

)2
(
Z − E

( Q̇2
cZ

Qβ(1 −Qβ)
∣∣∣C)(E( Q̇2

c

Qβ(1 −Qβ)
∣∣∣C))−1

)⊗2]
,

respectively, where a⊗2 = aaᵀ. By replacing Δ with 1 − Δ and after some
simplifications, the above expressions reduce to the expressions (5) and (6) of Zhang
et al. (2013).

Remark 2 As a second special case of Theorem 1, for the proportional hazards
model with left-truncated and current-status data investigated by Kim (2003), let

Sε(t) = e−Λ(t)eβ
ᵀz

, then we have Q = e−(Λ(C)−Λ(L))eβ
ᵀZ
, Q̇β = −Q(Λ(C) −

Λ(L))eβ
ᵀZ and Q̇l = Q̇c = −QβeβᵀZ. Therefore the expressions (11)–(13) reduce

to

g(t) = −fC(t)E
( Q̇2

c

Qβ(1 −Qβ) |C = t
)
,

o(t) = −fL(t)E
( Q̇cQ̇βZ

Qβ(1 −Qβ) |L = t
)
,

r(t, s) = fL,C(s, t)E
( Q̇2

c

Qβ(1 −Qβ) |C = t, L = s
)
.

By multiplying both sides of the above expressions by g(t), integrating with respect
to t and after some algebraic simplifications, we get

h∗(C)− h∗(L) = (Λ(C)−Λ(L))
E
(
Qβ

1−Qβ Z exp(2βᵀZ)
∣∣∣L,C)

E
(
Qβ

1−Qβ exp(2βᵀZ)
∣∣∣L,C) .

Now, by the above expression, the efficient score function and efficient information
can be written as

�̄β = −(Δ−Qβ)(Λ(C)−Λ(L)) exp(βᵀZ)
1 −Qβ

⎛
⎝Z −

E
(
Qβ

1−Qβ Z exp(2βᵀZ)
∣∣∣L,C)

E
(
Qβ

1−Qβ exp(2βᵀZ)
∣∣∣L,C)

⎞
⎠ ,

I = E
⎡
⎢⎣ (Δ−Qβ)2(Λ(C)−Λ(L))2 exp(2βᵀZ)

(1 −Qβ)2

⎛
⎝Z −

E
(
Qβ

1−Qβ Z exp(2βᵀZ)
∣∣∣L,C)

E
(
Qβ

1−Qβ exp(2βᵀZ)
∣∣∣L,C)

⎞
⎠
⊗2⎤
⎥⎦ ,
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respectively. The above expressions are the same as given in Theorem 3.1. of Kim
(2003) after replacing Δ with 1 −Δ.

4 Asymptotic Properties

In this section, we investigate the asymptotic properties of the sieve maximum
likelihood estimator (β̂n, Ĥn). Let θ = (β,H) ∈ Φ. Similarly, let θ0 = (β0,H0)

and θ̂ = (β̂, Ĥ ) denote the true and the sieve maximum likelihood estimator,
respectively. For θ1, θ2 ∈ Φ, define the metric

d(θ1, θ2) = ‖β1 − β2‖ + ||H1 −H2||2,
where

||H1 −H2||2 =
√
E(H1(C)−H2(C))2 + E(H1(L)−H2(L))2.

Here ‖ · ‖ denotes the Euclidean norm. To study the asymptotic properties of the
maximum likelihood estimator in the semiparametric model, we need to impose
several assumptions and they are included in the Appendix.

Theorem 2 (Consistency) Suppose the assumptions C1–C7 hold. Then d(θ̂n, θ0)

→P 0 and n→∞.

Theorem 3 (Rate of Convergence) the assumptions (C1), (C4), and (C5) hold. Let
q = O(nv), where 0 < v < 0.5. Then

d(θ̂n, θ0) = Op(n−min(rv,(1−v)/2)).

By Theorem 3, the MLE of the nonparametric component of the model,H, achieves
the optimal rate of convergence, nr/(2r+1), where r is the degree of smoothness of
H. Consequently, the rate of convergence will be n1/3 for r = 1 and n2/5 for r = 2.

Now, we investigate the asymptotic distribution and efficiency of the sieve
maximum likelihood estimators. Let δn = n−1/4. For any θ ∈ Θ such that
d(θ, θ0) = O(δn), define the first directional derivative at the direction w ∈ W, and
the second directional derivative at the direction w, w̃ ∈ W, of the log-likelihood
function, ln(θ |V), as

l̇n(θ |V)[w] = dln(θ + sw|V)
ds

∣∣∣
s=0

and

l̈n(θ |V)[w, w̃] = dl̇n(θ + sw̃|V)[w]
ds

∣∣∣
s=0
,
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respectively, where W represents a vector space Θ − θ0 = {θ − θ0 :
θ ∈ Θ}. For every w, w̃ ∈ W, define the Fisher inner product 〈w, w̃〉 =
P {l̇n(θ0|V)[w]l̇n(θ0|V)[w̃]}. Define (W, ‖ · ‖) as a Hilbert space, where W is the
closed vector space of W and ‖ · ‖ is the Fisher norm defined by ‖w‖ = √〈w,w〉,
for w ∈ W.

Similar to Hu and Xiang (2016), define Q(θ) = αᵀβ + ∫ τ1
τ0
λ(x)H(x)dx as a

smooth functional of θ, where α ∈ R
d , ‖α‖ ≤ 1 and λ ∈ H. Then, directional

derivative of Q along the path w = (wβ,wH ), where wβ ∈ R
d and wH ∈ H, can

be computed as

Q̇(θ)[w] = dQ(θ + sw)
ds

∣∣∣
s=0

= d(αᵀ(β + swβ)+
∫ τ1
τ0
λ(x)(H(x)+ swH (x))dx)
ds

∣∣∣
s=0

= αᵀwβ +
∫ τ1

τ0

λ(x)wH (x)dx.

It can be seen that

Q(θ)−Q(θ0) = Q̇(θ0)[θ − θ0]. (14)

By Riesz representation theorem and Assumption C8, there exists w∗ ∈ W such
that

Q̇(θ0)[w] = 〈w∗, w〉f or allw ∈ W (15)

and ‖w∗‖ = ‖Q̇(θ0)‖.
Theorem 4 (Asymptotic Normality) Suppose the conditions (C1)–(C6),(C8) hold.
For 0.25/r < v < 0.5, we have

√
n(Q(θ̂)−Q(θ0))→d N(0, ‖Q̇(θ0)‖2)

and Q(θ̂) is semiparametrically efficient, where →d denotes the convergence in
distribution. Furthermore, the asymptotic variance ‖Q̇(θ0)‖2 can be consistently
estimated by

(αᵀ, �ᵀ)Σ−1(αᵀ, �ᵀ)ᵀ,

where �ᵀ = (
∫ τ1
τ0
λ(x)A0(x)dx, · · · ,

∫ τ1
τ0
λ(x)Aq(x)dx),Ai is given in (4) and Σ

is the observed information matrix of β and γ.

The detailed proofs of Theorems 2–4 are deferred in the Appendix.

Remark 3 Consider λ ≡ 0. Then Q(θ) = αᵀβ and Q̇(θ0)[w] = αᵀwβ. Then
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‖Q̇(θ0)‖2 = sup
w∈W:‖w‖>0

|Q̇(θ0)[w]|2
‖w‖2

= sup
w∈W:‖w‖>0

(αᵀwβ)2

‖w‖2

= sup
w∈W:‖w‖>0

(αᵀwβ)2

P(l̇n(θ0;W)[w])2

= sup
w∈W:‖w‖>0

(αᵀwβ)2

P(�βwβ + �H [wH ])2 ,

where �β and �H are the score functions of β and H given in (7) and (8). Let
w∗
H = −h∗wβ, where h∗is the least-favorable direction given in Theorem 1. Then

‖Q̇(θ0)‖2 = w
ᵀ
βαα

ᵀwβ
w

ᵀ
βP (�β − �H [h∗])2wβ

= αI−1αᵀ,

where I is the efficient information of β. This leads to

√
n(β̂ − β0)→d N(0, I

−1),

where I−1 can be consistently estimated by Σ̂11, where Σ̂11 is given in (6).

Remark 4 Consider α = 0. Then Q(θ) = ∫ τ1
τ0
λ(x)H(x)dx and Q̇(θ0)[w] =∫ τ1

τ0
λ(x)wH (x)dx. Then

√
n

∫ τ1

τ0

λ(x)(Ĥn(x)−H0(x))dx →d N(0, ‖Q̇(θ0)‖2).

The asymptotic variance can be consistently estimated by �ᵀΣ̂22�, where Σ̂22 =
(Σ̂22 − Σ̂21Σ̂

−1
11 Σ̂12)

−1, where Σ̂22, Σ̂21, and Σ̂11 are defined in Sect. 1. We may
use the above result in nonparametric test hypotheses as follows. Assume, for
example, we are interested in testing the hypotheses H0(x) = ζ0 + ζ1x. Then we
can adopt the test statistic

Tn =
n
( ∫ τ1
τ0
λ(x)(Ĥ (x)− ζ0 − ζ1x)dx

)2

(�ᵀΣ̂22�)2
∼ χ2

1 .
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5 Simulation Study

In this section, we investigate the finite-sample performances of the proposed
estimators using a Monte-Carlo simulation study. The linear transformation model
is assumed to be

H(T ) = −β1Z1 − β2Z2 + ε, (16)

where H(·) is the unknown transformation function. The performance of the pro-
posed estimators is investigated across three different configurations of regression
parameters β and the transformation function H(·). In specific, in configuration
I, β = (0.5,−0.5)ᵀ and H(t) = log(t/4), in configuration II, β = (0.9, 0.5)
and H(t) = log((t2 + t)/5) and configuration III, β = (−1, 1) and H(t) =
log(log(1 + t/2)). The monitoring time C is uniformly distributed in [0.5, 2]
and the truncation variable L is uniformly distributed in [0.01, 0.5]. Under this
setting, the left-truncation rate is of 0.19%. Moreover, the covariates Z1 and Z3 are
assumed to fellow standard normal and Bernoulli with probability 0.5 distributions,
respectively. The baseline survival function of the error, ε, is assumed to have the
form S(t) = (1+r exp(t))−1/r , where 0 ≤ r ≤ 1 is a distribution parameter. Hence
model (16) can be written as

S(T |Z) = [1 + r exp{H(T )+ β1Z1 + β2Z2}]−1/r . (17)

To approximate the function H , we use Bernstein polynomial with degree q.
Following Huang and Rossini (1997) and Wang et al. (2016), in the simulation study,
the value of q is set at [n1/3], which is the lower of the asymptotic convergence
rates, where [x] denotes the least integer greater than or equal to x. However, in
practice, one can use a data-driven method such as BIC to select q and r , as we
did in the data analysis. Table 1 reports the simulation results with sample sizes
n = 200, 500 and r = 0, 0.5, 1, respectively, based on 1000 replications. For
estimating the variances of β̂1 and β̂2 by the observed profile information method,
we used the tuning constant hn = 0.56n−1/2. However, other values of hn are also
considered and the obtained results are similar to those given in Table 1. To assess
the performance of the estimators of the nonparametric part, H , we calculate the
Integrated Mean Square Error (IMSE) of each of these estimators. The IMSE is
defined by

IMSE(Hn,H) = E
∫
(Hn(x)−H(x))2dx,

where Hn(x) is the Bernstein estimator of H(x).We approximate IMSE by

ÎMSE = 1

M

M∑
i=1

∫
(Hn,i(x)−H(x))2dx,
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Table 1 Simulation results for estimation of (β1, β2) using the Bernstein MLE

Configuration r n Bias SSE ESE RMSE CP

I 0 200 β1 0.002 0.174 0.163 0.174 93.5

β2 −0.030 0.291 0.267 0.293 94.4

500 β1 0.001 0.107 0.103 0.107 95.1

β2 −0.007 0.185 0.168 0.185 95.3

0.5 200 β1 0.011 0.213 0.200 0.213 93.9

β2 −0.037 0.344 0.300 0.346 93.3

500 β1 0.007 0.126 0.124 0.126 95.4

β2 −0.010 0.208 0.187 0.209 94.5

1 200 β1 0.019 0.240 0.233 0.241 94.8

β2 −0.040 0.365 0.330 0.368 94.8

500 β1 0.012 0.144 0.143 0.144 95.2

β2 −0.010 0.223 0.205 0.223 95.2

II 0 200 β1 0.028 0.150 0.151 0.152 94.0

β2 −0.005 0.191 0.165 0.191 94.1

500 β1 0.012 0.093 0.094 0.093 95.1

β2 0.007 0.112 0.103 0.113 95.1

0.5 200 β1 0.025 0.196 0.188 0.198 93.3

β2 −0.003 0.238 0.216 0.238 93.2

500 β1 0.012 0.113 0.117 0.114 95.3

β2 0.007 0.144 0.135 0.144 94.8

1 200 β1 0.031 0.253 0.227 0.255 93.8

β2 −0.003 0.299 0.267 0.298 93.8

500 β1 0.008 0.148 0.142 0.148 95.3

β2 0.006 0.184 0.178 0.184 95.1

III 0 200 β1 −0.034 0.172 0.157 0.175 93.7

β2 −0.021 0.190 0.167 0.191 94.3

500 β1 −0.012 0.102 0.098 0.103 95.1

β2 −0.004 0.114 0.105 0.114 94.5

0.5 200 β1 −0.042 0.223 0.210 0.227 94.7

β2 −0.024 0.269 0.244 0.270 95.2

500 β1 −0.019 0.142 0.132 0.143 95.6

β2 −0.004 0.168 0.152 0.168 94.2

1 200 β1 −0.058 0.303 0.287 0.308 94.2

β2 −0.028 0.363 0.347 0.363 93.5

500 β1 −0.018 0.180 0.174 0.180 95.2

β2 −0.009 0.213 0.210 0.213 95.7

whereM is the total number of simulation runs. The results of IMSE are presented
in Table 2.

From Table 1, it can be seen that the biases (Bias) for the estimated values of
β = (β1, β2)

� are reasonably small. The sampled standard errors (SSE) of the
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Table 2 Integrated Mean Square Error (IMSE) of Ĥ .

n

Configuration I Configuration II Configuration III

200 500 200 500 200 500

r = 0 0.379 0.170 0.702 0.281 0.321 0.137

r = 0.5 0.395 0.170 0.689 0.297 0.367 0.157

r = 1 0.426 0.164 0.678 0.285 0.354 0.148

estimator are close to the average estimated standard errors (ESE) and the root
mean squared error (RMSE) of the estimator that are computed using the observed
profile information matrix. The empirical coverage probabilities of 95% confidence
intervals (CP), are very close to the nominal level especially when the sample size
n is large (e.g., n ≥ 500). Moreover, Table 2 shows that the values of IMSE of
the Bernstein estimator for the unknown function, H. Clearly the IMSE values are
reasonably small and these values significantly decrease as n increases. Figures 1,
2, 3, 4, 5, and 6 demonstrate the histograms for the estimated values of β1, β2 and
the curve estimation of the function H in the three configurations: I, II, and III. The
histograms show approximately normal distribution of the estimates of β1 and β2
and the figures show that the median estimated curves are close to the true curve.
Moreover, Figs. 7, 8, and 9 show the effect of the degree of Bernstein binomial,
q, on the estimation of the nonparametric part H in the three configurations. It is
clear, from these figures, that for all the cases the estimated median curves of H
are close to the true curves when the degree q of the Bernstein polynomials is close
to [n1/3], the estimated curves become biased when q becomes smaller. From the
above results, we conclude that the proposed estimation method performs very well.

6 Real Data Analysis

For further illustration, we apply the proposed method to an AIDS cohort study of
hemophiliacs dataset proposed by De Gruttola and Lagakos (1989). The dataset
was analyzed by many authors, for example, Sun (1995, 1997); Fang and Sun
(2001); Kim (2003) and Wang et al. (2015), among others. The dataset consists
of 257 patients with Type A or Type B hemophilia who had been treated at Hˆopital
Kremlin Bicetre and Hôpital Coeur des Yvelines in France since 1978. These
hemophiliacs were at risk for HIV-1 infection through the contaminated blood
factor they received for their treatment. By the time of analysis, 188 were found
to be infected with the virus, 41 of whom subsequently progressed to AIDS-related
symptoms. The primary goal of this example is to apply the procedures described
in the previous sections to assess the effects of level of treatment received for
hemophilia on the risk of developing AIDS-related symptoms. The subjects are
classified into two groups, lightly and heavily treated groups, according to the
amount of blood they received. Patients in the heavily treated group (105) received



Sieve Estimation of SLTM with LTCS Data 195

β̂1

F
re

qu
en

cy

0
50

10
0

15
0

20
0

−0.1 0.1 0.3 0.5 0.7 0.9 1.1

Histogram of β̂1

β̂1

F
re

qu
en

cy

0
50

10
0

15
0

20
0

−0.2 0.1 0.4 0.7 1 1.2

Histogram of β̂1

β̂1

F
re

qu
en

cy

0
50

10
0

15
0

−0.3 0 0.2 0.5 0.8 1 1.2

Histogram of β̂1

β̂2

F
re

qu
en

cy

0
20

40
60

80
10

0
12

0

−1.49 −1.05 −0.61 −0.17 0.27

Histogram of β̂2

β̂2

F
re

qu
en

cy

0
20

40
60

80
10

0
12

0

−1.71 −1.16 −0.61 −0.06 0.38

Histogram of β̂2

β̂2

F
re

qu
en

cy

0
20

40
60

80
10

0
12

0

−1.82 −1.27 −0.72 −0.17 0.38

Histogram of β̂2

0.0 0.5 1.0 1.5 2.0

−
5

−
4

−
3

−
2

−
1

0

Fitted H0

t

H
0 

 fu
nc

tio
n 

0.0 0.5 1.0 1.5 2.0

−
5

−
4

−
3

−
2

−
1

0

Fitted H0

t

H
0 

 fu
nc

tio
n 

0.0 0.5 1.0 1.5 2.0

−
5

−
4

−
3

−
2

−
1

0

Fitted H0

t

H
0 

 fu
nc

tio
n 

Fig. 1 Histograms of the estimators β̂1 and β̂2 and the estimated curves for the function H for
r = 0, 0.5, 1, respectively, in the configuration I. Solid lines in the estimated curve of H : the true
curves and dashed lines in the estimated curve of H : the median estimated curves. The results are
based on Monte Carlo simulation with sample size n = 200 and 1000 simulation runs
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Fig. 2 Histograms of the estimators β̂1 and β̂2 and the estimated curves for the function H for
r = 0, 0.5, 1, respectively, in the configuration I. Solid lines in the estimated curve of H : the true
curves and dashed lines in the estimated curve of H : the median estimated curves. The results are
based on Monte Carlo simulation with sample size n = 500 and 1000 simulation runs
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Fig. 3 Histograms of the estimators β̂1 and β̂2 and the estimated curves for the function H for
r = 0, 0.5, 1, respectively, in the configuration II. Solid lines in the estimated curve of H : the true
curves and dashed lines in the estimated curve of H : the median estimated curves. The results are
based on Monte Carlo simulation with sample size n = 200 and 1000 simulation runs
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Fig. 4 Histograms of the estimators β̂1 and β̂2 and the estimated curves for the function H for
r = 0, 0.5, 1, respectively, in the configuration II. Solid lines in the estimated curve of H : the true
curves and dashed lines in the estimated curve of H : the median estimated curves. The results are
based on Monte Carlo simulation with sample size n = 500 and 1000 simulation runs
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Fig. 5 Histograms of the estimators β̂1 and β̂2 and the estimated curves for the function H for
r = 0, 0.5, 1, respectively, in the configuration III. Solid lines in the estimated curve ofH : the true
curves and dashed lines in the estimated curve of H : the median estimated curves. The results are
based on Monte Carlo simulation with sample size n = 200 and 1000 simulation runs
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Fig. 6 Histograms of the estimators β̂1 and β̂2 and the estimated curves for the function H for
r = 0, 0.5, 1, respectively, in the configuration III. Solid lines in the estimated curve ofH : the true
curves and dashed lines in the estimated curve of H : the median estimated curves. The results are
based on Monte Carlo simulation with sample size n = 500 and 1000 simulation runs
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Fig. 7 The estimated curves for the function H in the configuration I. The top graphs; solid lines:
the true curves, dashed lines: the median estimated curves for q = 3 and the dotted lines: the
median estimated curves for q = 6. The bottom graphs; solid lines: the true curves, dashed lines:
the median estimated curves for q = 4 and the dotted lines: the median estimated curves for q = 8
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Fig. 8 The estimated curves for the functionH in the configuration II. The top graphs; solid lines:
the true curves, dashed lines: the median estimated curves for q = 3 and the dotted lines: the
median estimated curves for q = 6. The bottom graphs; solid lines: the true curves, dashed lines:
the median estimated curves for q = 4 and the dotted lines: the median estimated curves for q = 8
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Fig. 9 The estimated curves for the function H in the configuration III. The top graphs; solid
lines: the true curves, dashed lines: the median estimated curves for q = 3 and the dotted lines: the
median estimated curves for q = 6. The bottom graphs; solid lines: the true curves, dashed lines:
the median estimated curves for q = 4 and the dotted lines: the median estimated curves for q = 8
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at least 1000,μg/kg of the blood factor while Patients in the lightly treated group
(157) received less than 1000 μug/kg for at least 1 year between 1982 and 1985. By
the time the study was terminated, it had been confirmed that 97 of these patients
were infected with HIV-1, which is believed to have been due to the contaminated
blood factor they received for their hemophilia. In the original data set, there are
HIV-1 infection time intervals and AIDS-related-symptom diagnosis time intervals.
The time unit is 6-months. Following Kim (2003) and Wang et al. (2015), we modify
this data set into left-truncated and current status data by replacing HIV infection
time interval and AIDS-related-symptom diagnosis time interval by the midpoint
and the right end point of the interval, respectively. Define Z as binary covariate
coded as Z = 0 for lightly treated group and Z = 1 for heavily treated group. In
our analysis, we focus on the 188 patients (left-truncated data) who were found to
be infected by HIV-1 at the time of analysis. among theme, 41 were found to have
AIDS (left-censored) and the remaining 147 patients were found not developing
AIDS (right-censored). It can be seen that the left-truncation rate is 69/257 = 0.27.
We apply the proposed transformation model given as follows to fit the data:

S(t |Z) = (1 + r exp(H(t)+ βZ))−1/r . (18)

In Table 3, we report the results of our analysis of HIV data set for different
combinations of r and q and the values of BIC computed from the following defined
Bayesian information criterion (BIC):

BIC = −2ln(β̂, r)+ log(n)(d + q + 1), (19)

where β̂ = (β̂1, β̂2)
� denotes the MLE of β = (β1, β2)

�, and to emphasize the
dependence on β and r , the log-likelihood ln has been expressed as ln(β̂, r). The
BIC selects r = 0.1 and q = 3 as an optimal model, this is a new result different
from the proportional hazards model (r = 0) and the proportional odds model
(r = 1). For the proportional hazards model with left-truncated and currents status
data, (Kim 2003) computed the MLE of β as β̂ = 0.765 with the estimated standard
error of 0.367 and p-value of 0.038 for testing β = 0. Kim et al. (1993) estimated β
by 0.69 with the standard error of 0.34, using a discrete analogue of the proportional
hazards model. Our sieve method yielded an estimate β̂ = 0.737 with the estimated

Table 3 Analysis of HIV dataset of De Gruttola and Lagakos (1989)

r q MLE ESE BIC p-value

0 5 0.721 0.326 239.9 0.027

0.1 5 0.732 0.339 239.1 0.031

1 5 0.944 0.497 239.7 0.057

0 3 0.723 0.326 229.6 0.026

0.1 3 0.737 0.343 229.5 0.031

1 3 0.918 0.486 230.0 0.059
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Fig. 10 Estimated survival function for the total AIDS diagnosis time for q = 3 and r = 0, 0.1
and 1, respectively

standard error of 0.343 and p-value of 0.031. Figure 10 shows the estimated survival
functions for the two treatment groups with q = 3 and r = 0, 0.1, 1, respectively,
where r = 0.1 and q = 3 correspond the proposed model. Similar to Kim et al.
(1993) under the proportional hazards model and Wang et al. (2015) under the
additive hazards model, the results show that the patients in the heavily treatment
group had significantly greater risk of developing AIDS or being diagnosed to have
AIDS than in the lightly treatment group.

7 Concluding Remarks and Future Work

In this paper, we develop an efficient estimation procedure to analyze left-truncated
and current status data under a semiparametric linear transformation model. The
importance of this model focuses on its form which includes two commonly used
models: the linear proportional hazards and proportional odds models as special
cases. In the theoretical part, by approximating the non-parametric parts using
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Bernstein polynomial with suitable choice of Bernstein parameter q, we have
shown that the estimators for the finite-dimensional parameters are consistent and
asymptotically normal, and the estimators for the infinite-dimensional parameters
achieve the optimal rate of convergence. A consistent estimation of the variance-
covariance matrix is constructed using the observed information matrix to provide a
reliable inference procedure for the regression parameters. By implementing Monte
Carlo simulation experiments, we have shown that the proposed method performs
well and the results assure the theory. A real dataset concerning HIV of De Gruttola
and Lagakos (1989) is reanalyzed and the new results reveal a different model
from the existing models. Our approach is a conditional approach, meaning that
the analysis is conditional on truncation times. In consequence, these approaches
may not be fully efficient. To improve the efficiency, in our future research, we
can apply a pairwise pseudo-likelihood approach as Wang et al. (2020) did for the
left-truncated and interval-censored data under the Cox model. For further studies,
there exist several directions to extend the results of this paper. One is that, we may
consider case II interval-censored data by imposing multiple observation times for
each subject instead of one as in the case of currents status data.

Appendix

This Appendix devotes to sketch the proofs of Theorems 1–4. To study the
asymptotic properties of the maximum likelihood estimator in the semiparametric
model, we assume the following assumptions.

C1 The space of β, B, is a compact subset of Rd and the true value β0 is an interior
point of B.

C2 (i) The union of the supports of L and C is bounded by an interval [τ0, τ1]
where 0 < τ0 < τ1 < ∞. (ii) There exist two finite values B− and B+ such
that B− < H(t) < B+ for every t ∈ [τ0, τ1].

C3 There exists a positive number η such that C − L > η with probability one.
C4 The variable Z is bounded, that is, there exists k such that ||Z|| ≤ k with

probability 1.
C5 The first derivative of H0 is strictly positive and continuous on [τ0, τ1] and its

r-th (r ≥ 1) derivative is bounded in [τ0, τ1].
C6 The joint distribution function L and C has bounded second-order partial

derivatives.
C7 (i) There exists �1 ∈ (0, 1) such that

aᵀVar(Z|L,C)a ≥ �aᵀE(ZZᵀ|L,C)a a.s. f or all a ∈ R
d .

(ii) There exists �2 ∈ (0, 1) and Var(H(C) − H0(C)|L) ≥ �2E((H(C) −
H0(C))

2|L).
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C8 For any w ∈ W, Q(θ0 + tw) is continuously differentiable in t ∈ [0, 1] near
t = 0, and

‖Q̇(θ0)‖ = sup
w∈W:‖w‖>0

|Q̇(θ0)[w]|
‖w‖ <∞.

The above conditions are mild conditions and are commonly used in the literature
of semiparametric models under interval censored data, see, for example, Huang and
Rossini (1997), Huang and Wellner (1997) and Zhang et al. (2010). Assumptions
C1–C6 ensure that the survival function Sε and its partial derivatives are bounded
from 0 and finite which is necessary in proving the asymptotic properties of the
MLE’s. Assumption C7 will be used in proving the consistency.

Remark 5 The assumption C7 implies that E(ZZᵀ|L,C) is a positive definite
matrix andE((H(C)−H0(C))

2|L) is positive. By Wellner et al. (2007), the possible
choice of �1 is �1 = λd/λ1 where λd is the minimum eigen value of Var(Z|L,C)
and λ1 is the maximum eigen value of E(ZZᵀ|L,C). Similarly, the choice of �2
is as follows. Let k1 < Var(H(C)−H0(C)|L) and E((H(C)−H0(C))

2|L) < k2.

Clearly 0 < k1 < k2. Then

Var(H(C)−H0(C)|L) > k1 = k1

k2
k2 >

k1

k2
E((H(C)−H0(C))

2|L).

Hence the possible choice of �2 is�2 = k1/k2.

Throughout this section we adopt the following notations. From Assumption C1,
define B = {β ∈ R

d : ‖β‖ ≤ Kβ}, for some constant Kβ. Define the class L1 =
{ln(θ |V); θ ∈ Θn}. Define P as the probability measure and Pn as the empirical
measure of Vi = 1, · · · , n.Define the expectations of a function f with respect to P
and Pn by Pf = ∫

f dP and Pnf = ∫
f dPn, respectively. Let M(θ) = P ln(θ |V)

and Mn(θ) = Pnln(θ |V). Define the space L1(Pn) as {g : Pn|g| < ∞}. Also
let ‖g‖F = supf∈F |g(f )| and ‖g‖∞ = supx |g(x)|. For ε > 0, define the ε-
covering number N(ε,L1, L1(Pn)) as the smallest value of k for which there exists
{θ(1), · · · , θ(k)} such that

min
j∈{1,2,··· ,k}Pn|ln(θ |V)− ln(θ

(j)|V)| < ε, f or allθ ∈ Θn.

Similarly, we can define the ε-covering number N(ε,L1, ‖‖). An ε-bracket,
[f1, f2], is the set of all functions f such that f1 ≤ f ≤ f2 and ‖f1 − f2‖2 :=√
P((f1 − f2)2) ≤ ε. The ε-bracketing number N(ε,L1, L2(P )) as the minimum

number of ε-brackets needed to cover L1. Throughout this section, we use
Qθ ≡ Qβ,H to refer to Sε(H(c) + βᵀZ)/Sε(H(l) + βᵀZ) for θ ∈ Θn. Assume
K,K1, and K2 are universal constants.

Proof of Theorem 1 (Efficient Score and Efficient Information) We have
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E(g(L,C, T ,Z)) = E(g(L,C, T ,Z)|T > L)P (T > L)
+E(g(L,C, T ,Z)|T < L)P (T < L)

= E(g(L,C, T ,Z)|T > L),

since P(L > L) = 1. First, note that

E((Δ−Qβ)2|T > L,L = l, C = c, Z = z)
= E(Δ2|T > l, L = l, C = c, Z = z)− 2QβE(Δ|T > l, L = l, C = c, Z = z)+Q2

β

= E(Δ|T > l, L = l, C = c, Z = z)− 2QβE(Δ|T > l, L = l, C = c, Z = z)+Q2
β

= P(T ≥ c|T > l, L = l, C = c, Z = z)
−2QβPr(T ≥ c|T > l, L = l, C = c, Z = z)+Q2

β

= Qβ(1 −Qβ).

Then

E(�β�H [h]) = E
(ZQ̇β(h(C)Q̇c − h(L)Q̇l)

Q2
β(1 −Qβ)2

(Δ−Qβ)2
)

= E
(ZQ̇β(h(C)Q̇c − h(L)Q̇l)

Q2
β(1 −Qβ)2

E((Δ−Qβ)2|T > l, L = l, C = c, Z = z)
)

= E
(ZQ̇β(h(C)Q̇c − h(L)Q̇l)

Qβ(1 −Qβ)
)
, (20)

and

E(�H [h∗]�H [h]) = E
( (Q̇ch∗(C)− Q̇lh∗(L))(Q̇ch(C)− Q̇lh(L))

Q2
β(1 −Qβ)2

(Δ−Qβ)2
)

= E
( (Q̇ch∗(C)− Q̇lh∗(L))(Q̇ch(C)− Q̇lh(L))

Qβ(1 −Qβ)
)

= E
(h(C)(Q̇2

ch
∗(C)− Q̇cQ̇lh∗(L))
Qβ(1 −Qβ)

)

−E
(h(L)(Q̇cQ̇lh∗(C)− Q̇2

l h
∗(L))

Qβ(1 −Qβ)
)
. (21)

Now, substituting (20) and (21) in (9) gives us

E
(
h(C)

Q̇cQ̇βZ − Q̇2
ch

∗(C)+ Q̇cQ̇lh∗(L)
Qβ(1 −Qβ) − h(L) Q̇lQ̇βZ − Q̇cQ̇lh∗(C)+ Q̇2

l h
∗(L)

Qβ(1 −Qβ)
)
= 0
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⇔ E
(
h(C)E

( Q̇cQ̇βZ − Q̇2
ch

∗(C)+ Q̇cQ̇lh∗(L)
Qβ(1 −Qβ)

∣∣∣L,C)

−h(L)E
( Q̇lQ̇βZ − Q̇cQ̇lh∗(C)+ Q̇2

l h
∗(L)

Qβ(1 −Qβ)
∣∣∣L,C)) = 0

⇔ E
(
h(C)A1(L,C)− h(L)A2(L,C)

)
= 0

⇔ E
(
h(C)A1(L,C)

)
− E

(
h(L)A2(L,C)

)
= 0

⇔ E(E(h(C)A1(L,C)|C = t))− E(E(h(L)A2(L,C)|L = t)) = 0

⇔ E(h(t)E(A1(L,C)|C = t))− E(h(t)E(A2(L,C)|L = t)) = 0

⇔
∫
h(t)E(A1(L,C)|C = t)fC(t)dt −

∫
h(t)E(A2(L,C)|L = t)fL(t)dt = 0

⇔
∫
h(t)(E(A1(L,C)|C = t)fC(t)− E(A2(L,C)|L = t)fL(t))dt = 0,

where

A1(L,C) = E
( Q̇cQ̇βZ

Qβ(1 −Qβ) |L,C
)
− h∗(C)E

( Q̇2
c

Qβ(1 −Qβ) |L,C
)

+h∗(L)E
( Q̇cQ̇l

Qβ(1 −Qβ) |L,C
)

and

A2(L,C) = E
( Q̇lQ̇βZ

Qβ(1 −Qβ) |L,C
)
− h∗(C)E

( Q̇cQ̇l

Qβ(1 −Qβ) |L,C
)

+h∗(L)E
( Q̇2

l

Qβ(1 −Qβ) |L,C
)
.

Since the last equation holds for any function h in L2, then we have

fC(t)E(A1(L,C)|C = t)− fL(t)E(A2(L,C)|L = t) = 0. (22)

First, considering the first term on the left-hand side of (22), we have

fC(t)E(A1(L,C)|C = t)

= fC(t)E
(
E
( Q̇cQ̇βZ

Qβ(1 −Qβ) |L,C
)
− h∗(C)E

( Q̇2
c

Qβ(1 −Qβ) |L,C
)

+h∗(L)E
( Q̇cQ̇l

Qβ(1 −Qβ) |L,C
)∣∣∣C = t

)
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= fC(t)E
( Q̇cQ̇βZ

Qβ(1 −Qβ)
∣∣∣C = t

)
− fC(t)h∗(t)E

( Q̇2
c

Qβ(1 −Qβ)
∣∣∣C = t

)

+fC(t)E
(
h∗(L)E

( Q̇cQ̇l

Qβ(1 −Qβ)
∣∣∣L,C)|C = t

)
. (23)

Similarly, the second term on the left-hand side of (22) is

fL(t)E(A2(L,C)|L = t)

= fL(t)E
(
E
( Q̇lQ̇βZ

Qβ(1 −Qβ) |L,C
)
− h∗(C)E

( Q̇cQ̇l

Qβ(1 −Qβ)
∣∣∣L,C)

+h∗(L)E
( Q̇2

l

Qβ(1 −Qβ) |L,C
)∣∣∣L = t

)

= fL(t)E
( Q̇lQ̇βZ

Qβ(1 −Qβ)
∣∣∣L = t

)
− fL(t)E

(
h∗(C)E

( Q̇cQ̇l

Qβ(1 −Qβ)
∣∣∣L,C)

∣∣∣L = t
)

+fL(t)h∗(t)E
( Q̇2

l

Qβ(1 −Qβ)
∣∣∣L = t

)
. (24)

Now,

fC(t)E
(
h∗(L)E

( Q̇cQ̇l

Qβ(1 −Qβ)
∣∣∣L,C)∣∣∣C = t

)

= fC(t)E
(
h∗(s)E

( Q̇cQ̇l

Qβ(1 −Qβ) |L = s, C = t
)
|C = t

)

= fC(t)
∫
h∗(s)E

( Q̇cQ̇l

Qβ(1 −Qβ) |L = s, C = t
)
fL|C(s|t)ds

=
∫
h∗(s)E

( Q̇cQ̇l

Qβ(1 −Qβ) |L = s, C = t
)
fL,C(s, t)ds

and

fL(t)E
(
h∗(C)E

( Q̇cQ̇l

Qβ(1 −Qβ)
∣∣∣L,C)

∣∣∣L = t
)

= fL(t)E
(
h∗(s)E

( Q̇cQ̇l

Q(1 −Q)
∣∣∣L = t, C = s

)∣∣∣L = t
)

= fL(t)
∫
h∗(s)E

( Q̇cQ̇l

Q(1 −Q)
∣∣∣L = t, C = s

)
fC|L(s|t)ds
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=
∫
h∗(s)E

( Q̇cQ̇l

Qβ(1 −Qβ)
∣∣∣L = t, C = s

)
fL,C(t, s)ds,

where fL|C and fC|L are the conditional density of L given C and the conditional
density of C given L, respectively. Hence

fC(t)E
(
h∗(L)E

( Q̇cQ̇l

Qβ(1 −Qβ) |L,C
)
|C = t

)

+fL(t)E
(
h∗(C)E

( Q̇cQ̇l

Qβ(1 −Qβ)
∣∣∣L,C)∣∣∣L = t

)

=
∫
h∗(s)E

( Q̇cQ̇l

Qβ(1 −Qβ) |L = s, C = t
)
fL,C(s, t)ds

+
∫
h∗(s)E

( Q̇cQ̇l

Qβ(1 −Qβ)
∣∣∣L = t, C = s

)
fL,C(t, s)ds. (25)

Finally, from (23)–(25), we obtain

h∗(t)−
∫
h∗(s)r(t, s)ds/g(t) = o(t)/g(t), (26)

where g(t), o(t), and r(t, s) are given in (11), (12), and (13), respectively. It is
easy to see that g(t) > 0 for t ∈ [τ0, τ1]. Define the operator A as A[h] =
− ∫ h∗(s)r(t, s)ds/g(t) and I as the identity operator. Therefore (26) can be written
as (I + A)[h∗] = o(t)/g(t). Since h∗ is L2 integrable function and A[h∗] is
continuously differentiable function then A is a compact operator on [τ0, τ1]. It is
clear that the invertibility of the operator I+A grantees the existence and uniqueness
of the solution h∗. Since the kernel function, r(t, s), isL2 bounded then by Theorem
4.25 of Rudin (1973), it is sufficient to prove that I+A is one-to-one operator that is
if (I +A)[h] = 0 then h(t) = 0 on [τ0, τ1]. Assume (I +A)[h] = 0 then o(t) = 0.
Following Zeng et al. (2006), if (I +A)[h] = 0 then for any function h on [τ0, τ1],
we have

0 =
∫
h(t)o(t)dt

=
∫
h(t)

[
fC(t)E

( Q̇cQ̇βZ

Qβ(1 −Qβ) |C = t
)
− fL(t)E

( Q̇lQ̇βZ

Qβ(1 −Qβ) |L = t
)]
dt

=
∫
h(t)E

( Q̇cQ̇βZ

Qβ(1 −Qβ) |C = t
)
fC(t)dt −

∫
h(t)E

( Q̇lQ̇βZ

Qβ(1 −Qβ) |L = t
)
fL(t)dt

= E
(
h(t)E

( Q̇cQ̇βZ

Qβ(1 −Qβ) |C = t
))

− E
(
h(t)E

( Q̇lQ̇βZ

Qβ(1 −Qβ) |L = t
)
fL(t)

)
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= E
(
h(C)

Q̇cQ̇βZ

Qβ(1 −Qβ)
)
− E

(
h(L)

Q̇lQ̇βZ

Qβ(1 −Qβ)
)

= E
( Q̇βZ(h(C)Q̇c − h(L)Q̇l)

Qβ(1 −Qβ)
)

= E(�β,λ�H [h]),

which implies that E(�H [h∗]�H [h]) = 0 for any h. By taking h∗ = h, we obtain
E(�2

H [h]) = 0 and hence �H [h] = 0. From (8), we get h(t) = 0 for any t ∈ [τ0, τ1].
��

Lemma 1 (Covering Number) Assume the Assumptions C1–C5 hold. The ε-
covering number of the class L1 associated with L1(Pn) norm, N(ε,L1, L1(Pn)),

is bounded by K(M/ε)d+q+1, whereM = max(Mβ,Mγ ).

Proof Let θ(i) ≡ (H (i), βi) ∈ R
n, i = 1, 2. Observe that

|ln(θ(1)|V)− ln(θ(2)|V)| =
∣∣∣δ log

(Qθ(1)
Qθ(2)

)
+ (1 − δ) log

(
1 − Qθ(1)

Qθ(2)

)∣∣∣

=
∣∣∣δ log

(Sε(H(1)n (c)+ βᵀ1 z)
Sε(H

(2)
n (c)+ βᵀ2 z)

)
− log

(Sε(H(1)n (l)+ βᵀ1 z)
Sε(H

(2)
n (l)+ βᵀ2 z)

)

+(1 − δ)
(Sε(H(1)n (l)+ βᵀ1 z)− Sε(H(1)n (c)+ βᵀ1 z)
Sε(H

(2)
n (l)+ βᵀ2 z)− Sε(H(2)n (c)+ βᵀ2 z)

)∣∣∣

≤ | log(Sε(H
(1)
n (c)+ βᵀ1 z))− log(Sε(H

(2)
n (c)+ βᵀ2 z))|

+| log(Sε(H
(1)
n (l)+ βᵀ1 z))− log(Sε(H

(2)
n (l)+ βᵀ2 z))|

+| log(Sε(H
(1)
n (l)+ βᵀ1 z)− Sε(H(1)n (c)+ βᵀ1 z))

− log(Sε(H
(2)
n (l)+ βᵀ2 z)− Sε(H(2)n (c)+ βᵀ1 z))|.

By mean-value theorem and Assumptions C1–C5, we can obtain

|ln(θ(1)|V)− ln(θ(2)|V)| ≤ K|Sε(H(1)(c)+ βᵀ1 z)− Sε(H(2)(c)+ βᵀ2 z)|
+K|Sε(H(1)n (l)+ βᵀ1 z)− Sε(H(2)n (l)+ βᵀ2 z)|

≤ K(|β1 − β2|Z + |H(1)n (l)−H(2)n (l)| + |H(1)n (c)−H(2)n (c)|).

Since Hn ∈ Hn, then it can be represented by H(j)n (t) = ∑q

k=0 γ
(j)
k Ak(t), for

j = 1, 2. Then
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|H(t)n (t)−H(2)n (t)| =
∣∣∣
q∑
k=0

(γ
(1)
k

− γ (2)
k
)Ak(t)

∣∣∣ < ∣∣∣
q∑
k=0

(γ
(1)
k

− γ (2)
k
)

∣∣∣ ≤
q∑
k=0

∣∣∣γ (1)k − γ (2)
k

∣∣∣

≤ max
0≤k≤q |γ

(1)
k

− γ (2)
k

| = ‖γ (1) − γ (2)‖∞.

It follows that for any θn ∈ Θ, we have

Pn|ln(θ(1)|V)− ln(θ(2)|V)| = K‖β1 − β2‖ +K‖γ (1) − γ (2)‖∞.

Now, by Assumption C1,B is a compact subset of Rd , then using Lemma 2.5 of
Geer and van de Geer (2000), {β ∈ R

d , ‖β‖ ≤ Mβ} it is covered by (20KMβ/ε)d

balls with radius ε/4k and consequently, the class {βᵀZ : β ∈ B} is covered by
(20KMβ/ε)d balls with radius ε/4k due to the bounded Assumption C4. Similarly,
the class {γ ∈ R

q+1,
∑q

j=0 |γj | ≤ Mγ } is covered by (20KMγ /ε)q+1 balls with
radius ε/4k. Hence

N(ε,L1, L1(Pn)) ≤ (20KMβ/ε)
d(20KMγ /ε)

q+1 ≤ K(M/ε)d+q+1. ��

Lemma 2 (Bracketing Number) Assume the Assumptions C1–C5 hold. The ε-
bracketing number of the class L1 associated with L2(P ) norm, N(ε,L1, L2(P )),

is bounded by K(M/ε)d+q+1, whereM = max(Mβ,Mγ ).

Proof For θ(j) = (βj ,H
(j)
n ) ∈ Θn, j = 1, 2, define the distance d̃(θ (1), θ (2)) =

‖β(1) − β(2)‖ + ‖H(1)n −H(2)n ‖∞. From the proof of Lemma 1, we have

|ln(θ(1)|V)− ln(θ(2)|V)| ≤ K(‖β1 − β2‖ + ‖γ (1) − γ (2)‖∞) = Kd̃(θ(1), θ (2)).
��

By Theorem 2.7.11 of van der Vaart and Wellner (1996), we have

N[](2Kε,L1, L2(P ) ≤ N(ε,Θn, d̃),

whereN[](2Kε,L1, L2(P ) is the bracketing number associated withL2(P ) norm of
the class L1 and N(ε,Θn, d̃) is the covering number ofΘn associated with distance
d̃. The definitions of the bracketing number and covering number are given in the
Definitions 2.1.5 and 2.1.6 of van der Vaart and Wellner (1996), respectively. From
Lemma 8 of Hu et al. (2017), we have N(ε,Θn, d̃) = K(η/ε)q+1. By Theorem
2.7.11 of van der Vaart and Wellner (1996), the bracketing number associated with
L2(P ) of the class L1,

N[](2Kε,L1, L2(P )) = K(η/ε)q+1.
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Lemma 3 (Uniform Convergence) Assume that the Assumptions C1–C4 hold.
Then we have

‖Mn −M‖Θn → a.s. 0.

Proof By Assumptions C1–C4, we conclude that ln(θ |V) is bounded, so without
loss of generality, let |ln(θ |V)| ≤ 1. Define δn = εn−1/2+α(log(n))1/2 as a non-
increasing sequence of positive numbers with 0 < α < 1/2 and ε > 0. It can be
seen that for every ln(θ |V) ∈ L1 and for large n, we have

var(Pnln(θ |V))
(4δn)2

≤
1
n
var(l2(θ |V))
16n2α log(n)

≤ P l2(θ |V)
16n2α log(n)

≤ 1

16n2α log(n)
≤ 1

2
,

since |ln(θ |V)| ≤ 1 and using the i.i.d property of V1, · · · , Vn. Let σᵀ =
(σ1, · · · , σn) be a sequence of independent random variables with Pr(σi = 1) =
Pr(σi = −1) = 1

2 , for every i = 1, 2, · · · , n. Assume also σ is independent of V.
Define the symmetrized empirical measure

M
σ (θ) := Pσn (ln(θ |V)) =

1

n

n∑
i=1

σiln(θ |Vi), θ ∈ Θn.

By Equation (31) of Pollard (1984) we have

Pr

(
sup
θ∈Θn

|Mσ
n (θ)| > 2δn

∣∣∣V) ≤ 2N(δn,L1, L1(Pn)) exp
{
− 1

2
nδ2
n/max

j
Pngj

}
,

where the maximum runs over of all functions with covering number
N(δn,L1, L1(Pn)) in the class L1. Using the fact that the class L1 is uniformly
bounded by 1, and after taking expectations over V, we obtain

Pr

(
sup
θ∈Θn

|Mσ
n (θ)| > 2δn

)
≤ 2N(δn,L1, L1(Pn)) exp

{− 1

2
nδ2
n

}
. (27)

Hence, from Equation (31) (Pollard 1984), Eq. (27) and Lemma 1, we can deduce
that

Pr

(
sup
θ∈Θn

|Mn(θ))−M(θ))| > 8δn
)
≤ 4Pr

(
sup
θ∈Θn

|Mσ
n (θ)| > 2δn

)

≤ 8N(δn,L1, L1(Pn)) exp
{
− 1

2
nδ2
n

}

≤ K(M/δn)d+q+1 exp
{− 1

2
nδ2
n

}

= K exp
{
(1/2 − α)(d + q + 1) log(n)− (d + q + 1)(logM)
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−(d + q + 1)(log ε)− 1

2
(d + q + 1) log log(n)− 1

2
ε2n2α log(n)

}

≤ K1e
−K2n

2α log(n) → 0 as n→ 0.

Hence,
∑∞
n=1 P(supθ∈Θn |Mn(θ) − M(θ)| > 8δn) < ∞. By the Borel–Cantelli

lemma,

sup
θ∈Θn

|Mn(θ)−M(θ)| → 0, a.s.Pθ0 .

��

Lemma 4 Let g1(Z) = (β−β0)
ᵀZ, g2(C) = H(C)−H0(C) and g3(L) = H(L)−

H0(L). Let K < 1. Then, we have

(1) (E(g1(g2 + g3)))
2 ≤ KE(g2

1)E(g2 + g3)
2.

(2) (E(g2g3))
2 ≤ KE(g2

2)E(g
2
3).

Proof By iterative expectation and Cauchy-Schwarz inequality, we get

[E(g1(g2 + g3))]2 = [E((g2 + g3)E(g1|L,C))]2
≤ E(g2 + g3)

2E[E(g1|L,C)]2
= E(g2 + g3)

2E(E([E(g1|L,C)]2|L,C)).

Observe that

E([E(Z|L,C)]⊗2|L,C)
= E([Z − (Z − E(Z|L,C))]⊗2|L,C)
= E(Z⊗2 + (Z − E(Z|L,C))⊗2 − 2Z(Z − E(Z|L,C))ᵀ)|L,C)
= E(Z⊗2|L,C)+ var(Z|L,C)− 2E(Z⊗2|L,C)+ 2[E(Z|L,C)]⊗2

= E(Z⊗2|L,C)+ var(Z|L,C)− 2var(Z|L,C)
= E(Z⊗2|L,C)− var(Z|L,C)
≤ (1 −�1)E(Z

⊗2|L,C) (28)

by Assumption C7(i). Then

E(E([E(g1|L,C)]2|L,C)) = E((β − β0)
ᵀE([E(Z|L,C)]⊗2|L,C)(β − β0))

≤ (1 −�1)E((β − β0)
ᵀE(Z⊗2|L,C)(β − β0))

= (1 −�1)E((β − β0)
ᵀZ)2

= (1 −�1)E(g1(Z))
2
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using (28). This completes the proof (1). Similarly, for (2), we have

[E(g2g3)]2 = [E(g3)E(g2|L))]2
≤ E(g3)

2E[E(g2|L)]2
= E(g3)

2E(E([E(g2|L)]2|L)).

Note that

E([ E (H(C)−H0(C)|L)]2|X,W) (29)

= E([H(C)−H0(C)− (H(C)−H0(C)− E(H(C)−H0(C)|L))]2|L)
= E((H(C)−H0(C))

2 + (H(C)−H0(C)− E(H(C)−H0(C)|L))2
−2(H(C)−H0(C))(H(C)−H0(C)− E(H(C)−H0(C)|L)))|L)

= E((H(C)−H0(C))
2|L)+ var(H(C)−H0(C)|L)

−2E((H(C)−H0(C))
2|L)+ 2(E(H(C)−H0(C)|L))2

= E((H(C)−H0(C))
2|L)− var(H(C)−H0(C)|L)

≤ (1 −�2)E((H(C)−H0(C))
2|L) (30)

using condition C7(ii). Then

E(E([E(g2|L)]2|L)) = E(E([E(H(C)−H0(C)|L)]2|L))
≤ (1 −�2)E(E((H(C)−H0(C))

2|L))
≤ (1 −�2)E(H(C)−H0(C))

2

= (1 −�2)E(g2(C))
2

using (29). This completes the proof. ��

Lemma 5 Assume the assumptions C1–C5 hold. For θ ∈ Θn, we have

K1d
2(θ, θ0) ≤ M(θ0)−M(θ) ≤ K2d

2(θ, θ0)

for some real constants K1 < K2.

Proof First, note that, by assumptions C1–C3, Qθ = Sε(H(c)+ βᵀz)/Sε(H(l)+
βᵀz) is bounded away from 0 and 1. Define L(θ |V) to be the likelihood function
corresponding to ln(θ |V) and P is the probability measure of V. Note that P is
closely related to L(θ0|V). Similar to the proof of Lemma 25.85 of van der Vaart
(1998)

M(θ0)−M(θ) = P(log(L(θ0|V))− log(L(θ |V)))
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= P
(

log
L(θ0|V)
L(θ |V)

)

≥ K
∫ (√

L(θ0|V)−
√
L(θ |V)

)2
dμ

= K
∫ (

L(θ0|V)− L(θ |V)
)2

L(θ0|V)
(√
L(θ0|V)+√

L(θ |V)
)2L(θ0|V)dμ

≥ K
∫ (

L(θ0|V)− L(θ |V)
)2
dP

= KP
(
L(θ0|V)− L(θ |V)

)2

= KP
(
Δ(Qθ0 −Qθ)+ (1 −Δ)(Qθ0 −Qθ)

)2

= KP
(
Δ(Qθ0 −Qθ)2 + (1 −Δ)(Qθ0 −Qθ)2

)

= KP(Qθ0 −Qθ)2

≥ KP((β − β0)
ᵀZ + (H(C)−H0(C))+ (H(L)−H0(L)))

2,

by Taylor series. By Assumptions C1–C4, Lemma 4 and Lemma A6 of Murphy and
van der Vaart (1997), we get

M(θ0)−M(θ) ≥ K(P ((β − β0)
ᵀZ)2 + P(H(C)−H0(C))

2 + P(H(L)−H0(L))
2)

≥ K1(||β − β0||2 + P(H(C)−H0(C))
2 + P(H(L)−H0(L))

2)

= K1d
2(θ, θ0).

Next, we consider the right-hand inequality. Notice that Since

E(Δ|T > L,C,Z) = P(T ≥ C|T > L,C,Z) = Qθ0 .

Observe that

M(θ0)−M(θ) = P(ln(θ0|V)− ln(θ |V))
= P

(
Δ log

(Qθ0
Qθ

)
+ (1 −Δ) log

(1 −Qθ0
1 −Qθ

))

= P
(
Qθ0 log

(Qθ0
Qθ

)
+ (1 −Qθ0) log

(1 −Qθ0
1 −Qθ

))

= P
(
Qθ

[Qθ0
Qθ

log
(Qθ0
Qθ

)
− Qθ0
Qθ

+ 1
]
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+(1 −Qθ)
[ (1 −Qθ0)
(1 −Qθ) log

(1 −Qθ0
1 −Qθ

)
− 1 −Qθ0

1 −Qθ + 1
])

= P
(
QθD

[Qθ0
Qθ

]
+ (1 −Qθ)D

[1 −Qθ0
1 −Qθ

])
,

where D(t) = t log(t) − t + 1. It is easy to see that D(t) ≤ (t − 1)2 for t in a
neighborhood of t = 1. By assumptions C1–C5, it follows that

M(θ0)−M(θ) ≤ P
( [Qθ −Qθ0 ]2
Qθ(1 −Qθ)

)

≤ KP [Qθ −Qθ0 ]2

≤ KP((β − β0)
ᵀZ +H(C)−H0(C)+H(L)−H0(L))

2

≤ K(β − β0)
ᵀP(ZZᵀ)(β − β0)+ P(H(C)−H0(C))+ P(H(L)−H0(L))

2

≤ K2(β − β0)
ᵀ(β − β0)+ P(H(C)−H0(C))

2 + P(H(L)−H0(L))
2

= K2(||β − β0||2 + ||H(C)−H0(C)||22 + ||H(L)−H0(L)||22)
= K2d

2(θ, θ0).

This completes the proof. ��
Proof of Theorem 2 (Consistency) The proof is accomplished by verifying the
conditions of Theorem 5.7 of van der Vaart (1998). First, the proof of the uniform
convergence condition of the theorem is established in Lemma 3. From Lemma 5,

M(θ0)−M(θ) ≥ Kd2(θ, θ0).

Then, it implies that

sup
θ :d(θ,θ0)>ε

M(θ) ≤ M(θ0)−Kε2 ≤ M(θ0).

Finally, we prove the nearly maximization condition of the theorem. From Lu et al.
(2007), there exists a projection H0,n of the true value H0 on the space Hn such that
||H0,n − H0||∞ ≤ O(n−rv). This also implies that ‖H0,n − H0‖2 = O(n−rv). Let
θ0,n = (β0,H0,n). Observe that

Mn(θ̂n)−Mn(θ0) = Mn(θ̂n)−Mn(θ0,n)+Mn(θ0,n)−Mn(θ0)

≥ Mn(θ0,n)−Mn(θ0)

≥ (Pn − P)(ln(θ0,n|V)− ln(θ0|V))+ P(ln(θ0,n|V)− ln(θ0|V)),

since θ̂n is the sieve maximum likelihood estimator of θ. First, we consider the
first term. Let L2(η) = {ln(θ0|V) − ln(θ0,n|V) : H ∈ Hn, ||H − H0|| < η}. Let
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θ(j) = (β0,H
(j)) ∈ Θn, j = 1, 2 such that ‖H(j) −H0‖ ≤ η. From Lemma 2, the

ε-bracketing number associated with L2(P ) of the class L2(η),

N[](2Kε,L2(η), L2(P )) = K(η/ε)q+1.

Then the bracketing integral of the class L2 is

J[](ζ,L2(η), L2(P )) =
∫ ζ

0

√
logN[](2Kε,L2(η), L2(P ))dε

=
∫ ζ

0

√
log(K(η/ε)q+1)dε ≤ Kη√q + 1 <∞.

Therefore, the class L2(η) is P-Donsker class by Theorem 19.5 of van der
Vaart (1998). Moreover, form the Assumptions C1–C4 and using the dominated
convergence theorem, one can show that P(ln(θ0,n|V) − ln(θ0|V))2 → 0 and
n → ∞. Hence, by Lemma 19.24 of van der Vaart (1998), we conclude that
(Pn−P)(ln(θ0,n|V)− ln(θ0|V)) = oP (n−1/2). For the second term, using the Taylor
expansion with Assumptions C1–C5, we obtain

P(ln(θ0,n|V)− ln(θ0|V)) = −k(θ0,n − θ0)
2 ≥ −O(n−2rv) = −o(1).

Therefore,

Mn(θ̂n)−Mn(θ0) ≥ oP (n−1/2)− o(1) = −oP (1).

This completes the proof of d(θ̂n, θ0)→P 0. ��
Proof of Theorem 3 (Rate of Convergence) We apply Theorem 3.2.5 of van der
Vaart and Wellner (1996) page 289 to prove this theorem. The first condition of
Theorem 3.2.5 of van der Vaart and Wellner (1996) is already proved in the proof
of Theorem 2. From Lemma 3, the ε-bracketing number of the class L3(η) =
{ln(θ |V)− ln(θ0|V) : d(θ, θ0) < η, θ ∈ Θn} with respect to L2(P ) norm is bounded
by K(η/ε)q+1 and this leads to the bracketing integral J[](η,L3(η), L2(P )) ≤
Kη

√
q + 1. By using the Assumptions C1–C4 and Lemma 3.4.2 of van der Vaart

and Wellner (1996) and the fact that q = O(nv), we get

φn(η) = J[](η,L3(η), L2(P ))
(

1 + J[](η,L3(η), L2(P ))K

η2
√
n

)

= η√q + 1 + (q + 1)n−1/2

= nv/2η + nv−1/2.

Notice that, if rv > (1 − v)/2, then, for rn = n(1−v)/2, we have
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r2
nφn(r

−1
n ) = n1−v[nv−1/2 + nv−1/2] = O(n1/2),

and if rv < (1 − v)/2, then for rn = nrv, we have

r2
nφn(r

−1
n ) = n2rvφn(n

−rv)

= n2rv[nv/2n−rv + nv−1/2]
= nv/2+rv + n2rv+v−1/2

= n1/2[nrv−(1−v)/2 + n2rv−(1−v)] < n1/2.

Hence we get rn = nmin(pv,(1−v)/2). This establishes the second condition of
Theorem 3.2.5 of van der Vaart and Wellner (1996). From the proof of consistency,
we have shown that

Mn(θ̂n)−Mn(θ0) ≥ (Pn − P)(ln(θ0,n|V)− ln(θ0|V))
+P(ln(θ0,n|V)− ln(θ0|V)). (31)

First, we consider the first term of (31). From the proof of Theorem 2, we have
proved that the class {ln(β0,Hn|V)−ln(θ0,H0|V) : Hn ∈ Hn, ‖Hn−H‖2 ≤ η} is P-
Donsker. Because of ||H0,n−H0||∞ = O(n−rv)which implies that ||H0,n−H0||2 =
O(n−rv) and using Assumptions C1–C4, the mean-value theorem and the bounded
convergence theorem, we obtain

P
( ln(θ0,n|V)− ln(θ0|V)

n−rv+ε
)2 → 0,

for 0 < ε < 1/2− rv. Therefore, by Lemma 19.24 of van der Vaart (1998), we get

(Pn − P)
( ln(θ0,n|V)− ln(θ0|V)

n−rv+ε
)
= op(n−1/2),

and consequently, this gives

(Pn − P)(ln(θ0,n|V)− ln(θ0|V)) = op(n−rv+εn−1/2) = op(n−2rv),

by choosing ε = 1/2 − rv. Next, consider the second term of (31). Using Taylor
series, Assumptions C1–C5, Lemmas 4 and 5, we can show that

M(θ0,n)−M(θ0) ≥ −K(P (H0,n(C)−H0(C))
2 + P(H0,n(L)−H0(L))

2)

= −Kd2(θ0,n, θ0) = −O(n−2vr ).

Therefore,
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Mn(θ̂n)−M(θ0) ≥ −Op(n−2rv) = Op(n−2 min(rv,(1−v)/2)) = −Op(r−2
n ).

This completes the proof. ��
Proof of Theorem 4 (Normality) The proof of this theorem is established by
utilizing the ideas of Shen (1997) and Chen et al. (2006). Let δn = n−1/4. By Lu
et al. (2007), for everyw∗ ∈ V, there exists projection,w∗

n on the spaceΘn−θ such
that ‖w∗ −w∗

n‖ = O(n−rv). For v > 1/4, it follows that δn‖w∗ −w∗
n‖ = o(n−1/2).

Let εn by any positive sequence such that εn = o(n−1/2). Define ρ(θ − θ0|V) =
ln(θ |V)− ln(θ0|V)− l̇n(θ0|V)[θ−θ0]. Let θ∗ ∈ {θ ∈ Θn : |θ̂−θ | = εnw∗

n}.Without
loss of generality, we assume θ̂ > θ∗. Now, since θ̂ maximizes the log-likelihood
over Θ, then, using Taylor expansion and the fact that P(l̇n(θ0|V)[w∗] = 0, we
have

0 ≤ Pn{ln(θ̂ |V)− ln(θ∗|V)}
= (Pn − P){ln(θ̂ |V)− ln(θ∗|V)} + P {ln(θ̂ |V)− ln(θ∗|V)}
= (Pn − P){ln(θ̂ |V)− ln(θ0|V)− l̇n(θ0|V)[θ̂ − θ0] − ln(θ∗|V)+ ln(θ0|V)

+l̇n(θ0|V)[θ∗ − θ0]} + P {ln(θ̂ |V)− ln(θ0|V)− l̇n(θ0|V)[θ̂ − θ0]
−ln(θ∗|V)+ ln(θ0|V)+ l̇n(θ0|V)[θ∗ − θ0]}
+(Pn − P)l̇n(θ0|V)[θ̂ − θ∗] + P l̇n(θ0|V)[θ̂ − θ∗]

= (Pn − P){ρ(θ̂ − θ0|V)− ρ(θ∗ − θ0|V)} + P {ρ(θ̂ − θ0|V)− ρ(θ∗ − θ0|V)}
+εnPnl̇n(θ0|V)[w∗

n − w∗] + εnPnl̇n(θ0|V)[w∗]
:= I1 + I2 + I3 + εn(Pn − P)l̇n(θ0|V)[w∗]. (32)

First, we prove

I1 = (Pn − P){ρ(θ̂ − θ0|V)− ρ(θ∗ − θ0|V)} = εnop(n−1/2). (33)

Using Taylor expansion, we get

I1 = (Pn − P){ln(θ̂ |V)− ln(θ∗|V)− l̇n(θ0|V)[θ̂ − θ∗]}
= (Pn − P){ln(θ̂ |V)− ln(θ∗|V)− εnl̇n(θ0|V)w∗

n}
= εn(Pn − P){l̇(θ̃ |V)[w∗

n] − l̇n(θ0|V)[w∗
n]},

where θ̃ ∈ Θn lies between θ̂ and θ∗. Let L4 = {l̇n(θ |V)[w∗
n] − l̇n(θ0|V)[w∗

n]; θ ∈
Θn; d(θ; θ0) < δn, ‖w∗

n‖ < δn}. Note that w∗
n is bonded due to the boundedness

of the space Θn − θ. Similar to Lemma 2, one can show that that the ε-bracketing
number of the class L4 associated with L2(P ) norm is bounded by K(M/ε)d+q+1.

This implies that the class L4 is P-Donsker class due to the Theorem 19.5 of van der
Vaart (1998). Then
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P((l̇n(θ |V)− l̇n(θ0|V))w∗
n)

2 = P(l̈n(θ̃ |V)(θ − θ0)w
∗
n)

2 ≤ δ2
nK → 0,

due to the Assumptions C1–C5. Hence by Lemma 19.24 and Corollary 2.3.12 of
van der Vaart and Wellner (1996), we conclude that I1 = oP (n

−1/2). Next, the
proof of

I2 = P {ρ(θ̂ − θ0|V)− ρ(θ∗ − θ0|V)} = −εn〈θ̂ − θ0, w
∗〉 + εnop(n−1/2) (34)

is similar to that of Hu et al. (2017), so it is omitted. Finally, we prove

I3 = Pnl̇n(θ0|V)[w∗
n − w∗] = εnop(n−1/2). (35)

Utilizing the fact ‖w∗
n −w∗‖ = o(1), and the i.i.d. data, V1, · · · , Vn, then using the

Chebyshev’s inequality, for any η > 0, we have

Pr(
√
nPnl̇n(θ0|V)[w∗

n − w∗] > η) ≤ √
nE(Pnl̇n(θ0|V)[w∗

n − w∗])/η
≤ √

n

√
E(Pnl̇n(θ0|V)[w∗

n − w∗])2/η

=
√
E(l̇n(θ0|V)[w∗

n − w∗])2/η
= ‖w∗

n − w∗‖/η→P 0,

as n → ∞, where →P denotes the convergence in probability. By substitut-
ing (33), (34) and (35) in (32), and using the central limit theorem, we obtain

√
n〈θ̂ − θ0, w

∗〉 = √
n(Pn − P)l̇n(θ0|V)[w∗] + op(1)→d N(0, ‖w∗‖2),(36)

where ‖w∗‖2 = P(l̇n(θ0|V)[w∗])2 = ‖Q̇(θ0)‖2. By (14) and (15), we get

√
n(Q(θ̂)−Q(θ0)) = √

nQ̇(θ0)[θ̂ − θ0] = √
n〈θ̂ − θ0, w

∗〉 →d N(0, ‖Q̇(θ0)‖2).

��
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A Review of Flexible Transformations for
Modeling Compositional Data

Michail Tsagris and Connie Stewart

Abstract Vectors of non-negative components carrying only relative information,
and often normalized to sum to one, are referred to as compositional data and their
sample space is the simplex. Compositional data arise in many applications across
a variety of disciplines such as ecology, geology, demography, and economics to
name a few. For some time, log-ratio methods have been a popular approach for
analyzing compositional data and have motivated much of the recent research in
the area. In this paper, we consider two recently proposed transformations for data
defined on the simplex. The first, referred to as the α-transformation, transforms
the data from the simplex to a subset of Euclidean space while a more complex
transformation, involving folding, results in data with Euclidean sample space.
In both cases, the transformed data are assumed to follow a multivariate normal
distribution and the parameter α provides flexibility compared to the traditional log-
ratio transformations. Through an empirical study using several real-life data sets
we illustrate that the α-transformation may be sufficient and preferred in practice
compared to the α-folded model, and further that it is often needed over the log-
ratio transformation.

Keywords α-folding transformation · α-transformation · Compositional data ·
Isometric log-ratio transformation

1 Introduction

In many multivariate data analysis applications, the variables carry only relative
information and the data are then commonly normalized to sum to one. Such data are
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referred to as compositional data and the corresponding variables as components.
Numerous examples of compositional data arising in practice are cited in Tsagris
and Stewart (2020) and, in Sect. 3, additional examples of compositional data from
a variety of disciplines are presented. While examples of compositional data are
widespread, modeling compositional data presents some statistical challenges due,
predominantly, to their restricted sample space. More specifically, the corresponding
sample space for a D-part composition, x = (x1, x2, . . . , xD), is the simplex,
defined as

SD−1 =
{

x = (x1, x2, . . . , xD) : xi > 0, i = 1, 2, . . . D,
D∑
i=1

xi = 1

}
.

Note that due to the constraint,
∑D
i=1 xi = 1, onlyD− 1 components are needed to

determine the composition.
The analysis of compositional data relies on the availability of appropriate

models. Although the Dirichlet distribution, with its support the simplex, may,
in some applications, be sufficient to model compositional data directly (that is,
without transforming the data), some of its properties limit its flexibility (see
Aitchison 2003). Alternatively, common practice to modeling compositional data,
originating from Aitchison (2003), involves transforming the data from the simplex
(SD−1) to Euclidean space (RD−1) using a log-ratio transformation so that standard
multivariate procedures may then be applicable. The isometric log-ratio transforma-
tion (Egozcuef et al. 2003) is one such popular transformation and is defined in
Sect. 2. One issue with any log-ratio transformation approach, however, is that there
is no guarantee that the transformed data are multivariate normally distributed, a
requirement for many conventional multivariate procedures. Another difficulty is
that a log-ratio transformation cannot be applied to data sets containing zeros, at
least without first modifying the zeros. While several imputation approaches have
been proposed (see, for instance, Palarea-Albaladejo et al. (2007) and Palarea-
Albaladejo and Martín-Fernández (2008)), these methods are not ideal when there
are a significant number of zeros in the data or the zeros are legitimately zero (that
is, not due to rounding). As a means of handling the problem of modeling zeros
in the compositional data directly, Stephens (1982) and Scealy and Welsh (2011,b)
made use of the square root transformation. Another approach developed by Stewart
and Field (2011) involves dividing the data according to where the zeros occur and,
within each group, modeling the nonzero components in the compositions using a
log-ratio transformation. A mixture model is then used to describe the data.

The α-transformation, analogous to the Box-Cox transformation, was proposed
by Tsagris et al. (2011) and includes the isometric log-ratio transformation as α
converges to 0. While this transformation (defined in Sect. 2) provides flexibility and
has been used effectively in a variety of situations (Tsagris 2015; Scealy et al. 2015;
Tsagris et al. 2016, 2017; Ankam and Bouguila 2018), a theoretical drawback is that



Transformations for Compositional Data 227

it transforms the compositional data from SD−1 to a subset of RD−1. In Tsagris
and Stewart (2020), the α-folding transformation was introduced as an extension to
the α-transformation with the purpose of ensuring a transformation from SD−1 to
RD−1. This desirable property, however, is accompanied by added complexity. Note
that an alternative folding model for compositional data was proposed by Scealy and
Welsh (2014b) as a means of dealing with the same issue that arises with the square
root transformation of Scealy and Welsh (2011,b).

In this paper, several data sets are examined to evaluate empirically how
frequently the folding is indeed needed in practice. In addition, the value of using the
α parameter over its competitor, the isometric log-ratio transformation is considered.
The findings in this paper will inform (1) researchers who are working on extending
and developing new methodology for the analysis of compositional data and (2)
practitioners seeking suitable, but unnecessarily complicated, models.

2 Transformations for Compositional Data

2.1 Isometric Log-Ratio Transformation

Conventionally, Aitchison’s log-ratio transformation methodology has been used to
transform compositional data to multivariate normality (Aitchison 2003). Arising
from this work is the so-called isometric log-ratio (ilr) transformation approach
(Egozcuef et al. 2003) which, based heavily on its mathematical properties, has
been promoted in the compositional data literature.

For a composition x = (x1, x2, . . . , xD), we define the ilr transformation as

z(x) = Hw0(x), (1)

where

w0(x) = log

⎛
⎝ xi∏D

j=1 x
1/D
j

⎞
⎠ , for i = 1, . . . , D

and H is the Helmert matrix (an orthonormal D × D matrix) after deletion of the
first row (Lancaster 1965). The transformation w0(x) is the centered log ratio (clr)
transformation defined in Aitchison (1983). TheD clr transformed components sum
to 0 and, with this transformation, the issue of the unit sum constraint is simply
replaced by a zero sum constraint. Multiplication by H results in a transformation
from SD−1 to RD−1 and the transformed data are no longer constrained. The
function call alfa(x,0) in the R package Compositional (Tsagris et al. 2020) can
be used to transform nonzero compositional data using the above ilr transformation.
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2.2 α-transformation

A more general Box-Cox type transformation involving a power transformation α
was developed by Tsagris et al. (2011), and termed the α-transformation, defined as

zα(x) = Hwα(x), (2)

where

wα(x) = Duα − 1

α

and

uα(x) =
(

xα1∑D
j=1 x

α
j

, . . . ,
xαD∑D
j=1 x

α
j

)T
.

As α → 0, the α-transformation in Eq. (2) converges to the ilr transformation.
For convenience purposes, α is generally restricted to the interval [−1, 1], but this
interval can be reduced to (0, 1] if there are zeros in the data. The parameter α
can be estimated via maximum likelihood estimation, assuming the α-transformed
data follow a multivariate normal distribution, with the resulting distribution called
the α-normal distribution (Tsagris et al. 2011). In the R package Compositional,
the optimal value of α is chosen via the function alfa.tune and function alfa(x, a)
transforms the data.

The α-transformation is one-to-one and maps the data inside SD−1 to a subset
of (D − 1)-dimensional real space, AD−1, given by

A
D−1 =

{
Hwα

∣∣∣∣− 1

α
≤ wi,α ≤ D − 1

α
,

D∑
i=1

wi,α = 0

}
.

In theory, using this transformation approach may neglect an important amount
of probability of the multivariate normal distribution. This potential shortcoming
motivated the development of the α-folding transformation recently introduced in
Tsagris and Stewart (2020) and defined below in Sect. 2.3.

2.3 α-Folding Transformation

The following extension to the α-transformation in Eq. (2) was shown by Tsagris
and Stewart (2020) to be a one-to-one transformation from the simplex to (D − 1)-
dimensional real space:
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y =
{

zα(x) with probability p
zα(x)
w∗2
α (x)

with probability 1 − p, (3)

where w∗
α(x) = αmin

{
w1,α(x), . . . , wD,α(x)

}
and zα(x) = Hwα(x).

The inverse of Eq. (3) is referred to as the α-folding transformation and is as
follows

x =
{

z−1
α (y) if y ∈ A

D−1

w−1
α

(
HT y
q∗2
α (y)

)
if y ∈ R

D−1 \ AD−1,
(4)

where q∗α(y) = αmin
{
HT y

}
.

If y ∼ ND−1
(
μα,�α

)
then (Tsagris and Stewart 2020) showed that the

distribution of x, defined as in Eq. (4), is given below

f
(
x|α, p,μα,�α

) = p
∣∣J 0
α

∣∣
|2π�α|1/2

× exp

[
−1

2

(
zα(x)− μα

)T
�−1
α

(
zα(x)− μα

)]

+ (1 − p)
∣∣J 1
α

∣∣
|2π�α|1/2

× exp

[
−1

2

(
zα(x)
w∗2
α (x)

− μα

)T
�−1
α

(
zα(x)
w∗2
α (x)

− μα

)]
, (5)

where x ∈ SD−1, α ∈ [−1, 1], 0 ≤ p ≤ 1. Also,
∣∣J 0
α

∣∣ = DD−1+ 1
2
∏D
i=1

xα−1
i∑D
j=1 x

α
j

and
∣∣J 1
α

∣∣ = (
1

αw∗(x)

)2(D−1)
.

Note that compositional data with zeros cannot be directly modeled by this
distribution due to the product in

∣∣J 0
α

∣∣. The authors of Tsagris and Stewart (2020)
used the EM algorithm for parameter estimation and this may be carried out using
the function alpha.mle in the package R package Compositional, while the function
a.est selects the optimal value of α.

In this paper, we are specifically interested in the parameters α and p. If the
estimate of α is close to zero, then this suggests that the α-transformation in Eq. (2)
is not needed and that the ilr transformation in Eq. (1) may be sufficient for the data
set at hand. With respect to p, note that 1−p can be interpreted as the probability that
a vector y is outside of AD−1 (or equivalently that a composition x needs to be folded
into the simplex). If p = 1 (and 1 − p = 0), then the density in Eq. (5), reduces to
the α-normal distribution in Tsagris et al. (2011). Therefore, in practice, if 1 − p is
estimated to be close to zero, then the sample space of zα(x) will be approximately
equal to R

D−1 and the α-transformation should suffice without the need for folding.
Several real-life data sets are explored in Sect. 3 to determine how often the α-
transformation tends to be advantageous compared to the ilr transformation, as well
as whether folding is typically needed in practice.
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3 Real-life Data Applications

To investigate the applicability of the two α-transformations and the ilr transforma-
tion in practice, 44 real-life data sets obtained from books, papers, websites, and
R packages were examined. Details on the source of the data sets may be found in
Table 1. For each data set, the data were first transformed using the α-transformation
in Eq. (2) and then a multivariate normal distribution was fit to the transformed data.
Using the resulting optimal parameters, 40 million observations were generated
from the fitted distribution and the probability left outside the simplex (that is, an
estimate of 1−p) was computed by determining the proportion of observations that
belong to R

D−1 \ AD−1.
The results appear in Table 2. The sample sizes range from 20 to 485 and the

number of components, D, from 3 to 14. The optimal value of the α-transformation
in Eq. (2) is reported along with the relevant 95% confidence intervals which reveal
whether a value other than 0 yields better results. The confidence intervals were
obtained assuming asymptotic normality and the observed Fisher’s information (see
Tsagris and Stewart 2020). If the 95% confidence interval for the true value of α
does not include 0, then this is evidence that the ilr transformation in Eq. (1) is not

Table 1 Data references

Data set Reference Data set Reference

activity10 Aitchison (2003) juraset Atteia et al. (1994)

activity31 Aitchison (2003) lake Aitchison (2003)

animal Aitchison (2003) mn Greenacre (2009)

buxeda Buxeda i Garrigós (2008) mammals Hartigan (1975)

catalan Greenacre (2002) metabolites Aitchison (2003)

cleameast Aitchison (2003) pottery Baxter et al. (2005)

clamwest Aitchison (2003) qrf Skilbeck (1985)

coffee Templ et al. (2010) serum Aitchison (2003)

diagnosticprob Aitchison (2003) shift Aitchison (2003)

economics Larrosa (2003) skulls Aitchison (2003)

eu04 Eurostat skyAFM Aitchison (2003)

eu05 Eurostat students DASL library

eu06 Eurostat twins1 Aitchison (2003)

eu07 Eurostat twins2 Aitchison (2003)

geochem compositional.data.com volley Louzada et al. (2018)

gdpreg Eurostat whitecells1 Aitchison (2003)

glass Baxter et al. (1990) whitecells2 Aitchison (2003)

halimba compositional.data.com wines Hron et al. (2012)

household Aitchison (2003) yatquat1 Aitchison (2003)

hydrochem Otero et al. (2005) yatquat2 Aitchison (2003)

jobs DASL library carseg Graf (2020)

serumprotein Aitchison (2003) oecd DASL library

http://epp.eurostat.ec.europa.eu/portal/page/portal/population/data/main_tables
http://epp.eurostat.ec.europa.eu/portal/page/portal/population/data/main_tables
http://lib.stat.cmu.edu/DASL/Datafiles/oecdat.html
http://epp.eurostat.ec.europa.eu/portal/page/portal/population/data/main_tables
http://epp.eurostat.ec.europa.eu/portal/page/portal/population/data/main_tables
http://www.compositionaldata.com//pages/material.php
http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Household_consumption_expenditure
http://www.compositionaldata.com//pages/material.php
http://lib.stat.cmu.edu/DASL/Datafiles/oecdat.html
http://lib.stat.cmu.edu/DASL/Datafiles/oecdat.html
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sufficient. The α-transformation showed that a value other than 0 was statistically
significant (using a 5% significance level) in 17 out of the 44 data sets (or almost
39% of the data sets), providing evidence that the α-transformation (over the ilr
transformation) should be used in these cases. The statistically significant results
are denoted by an asterisk.

In terms of the necessity of folding, the column 1 − p̂, provides the estimated
probability left outside the simplex when the α-normal model is used. In only 6
of the data sets is the probability left outside the simplex nonzero. Furthermore, in
three of these cases, the probability may be considered to be inconsequential (since
1 − p̂ is less than or equal to 0.03). Probabilities greater than 0.03 are denoted by *
in Table 2.

4 Conclusion

The prevailing recommended approach for modeling compositional data is to log-
transform the data (using the ilr transformation) from the simplex to Euclidean
space, and then to assume multivariate normality in order to subsequently apply
standard multivariate procedures. Akin to the well-known Box-Cox transforma-
tion, the α-transformation, with the corresponding α-normal distribution, has the
potential to provide a better fit over the ilr transformation. This transformation,
when the range of possible α values is restricted to be greater than zero, also
allows problematic zeros in the data to be modeled without any modifications. A
downside, however, is that the sample space of the transformed data is a subset
of Euclidean space. Theoretically speaking, this could mean that some probability
is omitted with the assumption of multivariate normality. Furthermore, in Tsagris
and Stewart (2020), it was shown through simulations that, not surprisingly, when
this probability is large, parameter estimates based on the α-transformation may be
substantially biased compared to those obtained using the α-folded transformation,
which was developed to account for this potentially missing probability. For
additional simulation study results regarding parameter estimation, as well as
computational costs, of the folded model, see Tsagris and Stewart (2020).

The purpose of this work was to review and compare transformations to
multivariate normality for compositional data from a practical point of view. In
particular, we wanted to address, using a diverse set of examples whether the α-
transformation tends to be advantageous over the ilr transformation and whether
the more complex (but theoretically sound) α-folding transformation should be
commonplace over the α-transformation. While we did identify that, in the majority
of the cases (61% of the 44 data sets) the α-transformation favored a value of
α = 0 (indicating that the ilr transformation is more suitable in these cases), the ilr
transformation is clearly not the panacea transformation for all compositional data.
Among the data sets, in only 3 cases was the α-folding transformation preferred
as the probability left outside the simplex when using the α-transformation was
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substantial. This in turn reveals that, in practice, the simpler α-transformation may
suffice.

It should be emphasized that the choice of α was based on maximum likelihood
estimation. In the regression and classification settings, α has been estimated using
cross-validation methods (Tsagris 2014, 2015; Tsagris et al. 2016) and therefore our
conclusions cannot be extended to these frameworks where no such large empirical
study has been conducted. Note, however, that an advantage of the α-transformation
in these settings, in contrast to the ilr transformation, is that it is unaffected by the
presence of zeros, thus treating this problem naturally.
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various generalizations have been widely used to analyze economic and financial
data. Although many variables like GDP, inflation, and commodity prices are
imprecisely measured, research focusing on the mismeasured response processes
in GARCH models is sparse. We study a dynamic model with ARCH error where
the underlying process is latent and subject to additive measurement error. We show
that, in contrast to the case of covariate measurement error, this model is identifiable
by using the observations of the proxy process only and no extra information is
needed. We construct GMM estimators for the unknown parameters which are
consistent and asymptotically normally distributed under general conditions. We
also propose a procedure to test the presence of measurement error, which avoids
the usual boundary problem of testing variance parameters. We carry out Monte
Carlo simulations to study the impact of measurement error on the naive maximum
likelihood estimators and have found interesting patterns of their biases. Moreover,
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1 Introduction

Since the seminal works of Engle (1982) and Bollerslev (1986), the autoregressive
conditional heteroscedasticity (ARCH) model and its various generalizations have
been widely used to analyze economic and financial data, such as GDP, inflation,
stock prices, and interest rates, see, e.g., Grier and Perry (2000), Engle et al.
(2008), Fang and Miller (2009), Teräsvirta (2009), Francq and Zakoian (2011), and
Caporale et al. (2012). Moreover, there is also a large number of empirical studies
of agricultural and industrial commodity prices using ARCH/GARCH models, e.g.,
Ramirez and Fadiga (2003), Roche and McQuinn (2003), and Reitz and Westerhoff
(2007). However, it is well documented in the literature that many economic
variables including GDP, inflation and commodity prices are imprecisely measured.
For example, Wansbeek and Meijer (2000) and Buonaccorsi (2013) provide broad
surveys on the issues of measurement errors and their impacts in econometric
models. In particular, Alberini and Filippini (2011) emphasize that the US energy
prices are mismeasured, while Fan and Wang (2007) point out that high-frequency
financial data are particularly noisy. Furthermore, Handbury et al. (2013) investigate
the informativeness and bias of the consumer price index (CPI) as a proxy for the
“true” inflation and use a classical measurement error model to test for bias in
Japanese CPI. This raises an interesting question whether the “ARCH behavior” is
only a manifest phenomenon in empirical (observed) processes, or it is an intrinsic
property of the underlying (unobserved) processes. Therefore it is of theoretical and
practical interests to investigate the problem and impact of measurement error in
ARCH-type models.

The errors-in-variables problem has been extensively studied in statistics and
econometrics, see, e.g., Carroll et al. (2006); Chen et al. (2011); Wang and Hsiao
(2011); Yi et al. (2021), and the references therein. However, most of the research
focuses mainly on the problem of measurement error in covariates in regression
models. For dynamic models, Staudenmayer and Buonaccorsi (2005) studied
autoregressive (AR) model with white noise errors and mismeasured response
process, while Buonaccorsi (2010) gives an overview of estimation in dynamic
models. Some researchers, e.g., Harvey et al. (1992), Gourieroux et al. (1993) and
Francq and Zakoïan (2000), have considered GARCH models where the innovation
term contains an unobserved white noise component. However, research focusing
on the mismeasured response processes in GARCH models is sparse and even
answers to very basic questions are not known. For example, what is the impact of
measurement error on parameter estimation and inference? Under what conditions
is the model identifiable? How to quantify and correct the estimation bias caused by
measurement error?

In this paper we attempt to address some of these questions. To simplify notation
and analysis, we start with an autoregressive model with ARCH innovation where
the true latent process is measured with additive white noise error process. In
contrast to the models with covariate measurement error, we show that all model
parameters are identifiable by the observed proxy process only and no extra
information is needed. Moreover, we propose a set of moment conditions that are
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sufficient for the identifiability and therefore can used to construct GMM estimators
for the unknown parameters. We investigate the impact of measurement error on the
parameter estimation in dynamic ARCH models through Monte Carlo simulations.
In particular, we show that the measurement error induces biases in the naive maxi-
mum likelihood estimators and the relative biases have certain functional forms. We
also develop a statistical test for the presence of measurement error, which is useful
because more efficient GMM or maximum quasi-likelihood estimators can be used
if the measurement error is found to be absent or ignorable. Finally, we carry out
Monte Carlo simulations to examine the finite sample behavior of our proposed
estimators and compare them with the naive maximum likelihood estimators.

The paper is organized as follows. In Sect. 2 we introduce the model and show
it is identifiable without extra information. In Sect. 3 we construct the GMM
estimators and provide their asymptotic properties. In Sect. 4 we propose a test
for the measurement error. Further, we carry out Monte Carlo simulations to study
the impact of measurement error on the naive estimators in Sect. 5 and to examine
the finite sample properties of the proposed estimators and compare them with the
naive MLE in Sect. 6. Finally, conclusions and discussions are given in Sect. 7, while
regularity assumptions and mathematical proofs are in the Appendix.

2 The Model and Identifiability

Let {Xt } be the unique nonanticipative strictly stationary solution of the following
AR(p)-ARCH(q) model (Francq and Zakoian 2011, Ch. 7)

Xt = α0 (B)Xt + εt , t ∈ Z, (1)

εt =
√
htηt , ht = ω0 + β0(B)ε

2
t , (2)

where α0 (B) = ∑p

i=1 α0iB
i , β0 (B) = ∑q

j=1 β0jB
j , B is the backshift operator,

and {ηt } is a sequence of iid random variables with E(ηt ) = 0 and E(ηt 2) = 1.
Under this model {Xt } is second-order stationary if the unknown parameters satisfy
ω0 > 0, β0j ≥ 0, j = 1, 2, . . . , q,

∑q

j=1 β0j < 1 and α0 (z) �= 1 for all |z| ≤ 1.
Moreover, under these conditions {Xt } is strictly stationary and ergodic (Francq and
Zakoian 2011, Th. 2.5).

Assume that {Xt } is not directly observable and instead we observe the proxy
process

Zt = Xt + δt , (3)

where the measurement error process {δt } is iid with E(δt ) = 0, E(δ2
t ) = σ 2

0
and is independent of {ηt }. Note that such a classical measurement error model is
commonly used in the literature and is also used by Handbury et al. (2013). Our main
interest is consistent estimation of unknown parameters θ0 = (α′

0,β
′
0, ω0, σ

2
0 )

′,
where α′

0 = (α01, . . . , α0p) and β ′
0 = (β01, . . . , β0q). If {Xt } were observable,

then this can be done by using standard methods such as least squares or quasi-
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likelihood methods. However, when only observations on {Zt } are available, several
issues arise and one of them is the model identifiability.

It is well-known that in a regression model with covariate measurement error
usually extra information such as replicate or instrumental data are needed in order
for all parameters to be identifiable. Here we demonstrate that, in contrary, all
parameters in model (1)–(3) are identifiable based on the observations on {Zt }
only. To simplify notation, we consider the case where p = q = 1 and let
Yt = Zt − α0Zt−1.

Then under model assumptions we have

E(Yt |Zs, s ≤ t − 2) = E(Zt |Zs, s ≤ t − 2)− α0E(Zt−1|Zs, s ≤ t − 2)

= E(εt |Zs, s ≤ t − 2)+ E(δt − α0δt−1|Zs, s ≤ t − 2)

= 0.

Since bothE(Zt |Zs, s ≤ t−2) andE(Zt−1|Zs, s ≤ t−2) are observable functions,
α0 is uniquely identified by the above equation. In order to see the identifiability of
other parameters, we consider higher moments. In particular, since

E(YtYt−1) = E(−α0δ
2
t−1) = −α0σ

2
0 ,

σ 2
0 is identified given that α0 is identified. Further, from

E(Y 2
t |Zs, s ≤ t − 3) = ω0 + (1 − β0)(1 + α2

0)σ
2
0 + β0E(Y

2
t−1|Zs, s ≤ t − 3),

it is easy to see that β0 and ω0 + (1 − β0)(1 + α2
0)σ

2
0 are uniquely determined and

hence ω0 is identified.

3 GMM Estimation

Motivated by the above discussion of identifiability, in this section we propose an
estimation procedure based on the following conditional moments. Specifically, let

Yt (α0) = [1 − α0(B)]Zt . (4)

Then under the model assumptions we have (w.p.1)

E {Yt (α0)|Zs, s < t − p} = E {εt |Zs, s < t − p} + E {[1 − α0(B)]δt |Zs, s < t − p}
= 0 (5)

and

E
{
[1 − β0(B)]Y 2

t (α0)|Zs, s < t − p − q
}
= ω0 + [1xβ0(1)][1 + α2

0(1)]σ 2
0 ,

(6)
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where β0(1) = ∑q

j=1 β0j and α2
0(1) = ∑p

j=1 α
2
0j . In addition, we have the

following unconditional moment condition

E {Yt (α0)Yt−1(α0)} =
⎡
⎣p−1∑
j=1

α0jα0(j+1) − α01

⎤
⎦ σ 2

0 . (7)

Therefore a GMM estimator for θ0 can be constructed as follows. Denote

r t (θ) =
⎛
⎜⎝

Yt (α)

[1 − β(B)] Y 2
t (α)− ω − [1 − β(1)][1 + α2(1)]σ 2

Yt (α)Yt−1(α)− [∑p−1
j=1 αjαj+1 − α1]σ 2

⎞
⎟⎠ (8)

and the matrix of instrumental functions

Gt =
⎛
⎝f1(Z̃t−p−1) 0 0

0 f2(Z̃t−p−q−1) 0
0 0 1

⎞
⎠ , (9)

where f1(Z̃t−p−1) is a k1-vector of measurable functions of Z̃t−p−1 =
(Zt−p−1, Zt−p−2, . . . ), f2(Z̃t−p−q−1) is a k2-vector of functions of Z̃t−p−q−1 =
(Zt−p−q−1, Zt−p−q−2, . . . ), and k1 ≥ p, k2 ≥ q + 1 are chosen to achieve
identification and efficiency. Then from (5)–(7) we have

E {Gtr t (θ0)} = 0. (10)

To simplify notation, in the following we assume that Z̃t−p−1 = (Zt−p−1, . . . ,

Zt−p−k1) and Z̃t−p−q−1 = (Zt−p−q−1, . . . , Zt−p−q−k2). Given the observations
Zτ ,Zτ+1, . . . , Zn, τ = min {1 − p − k1, 1 − p − q − k2}, the GMM estimator is
given by

θ̂n = argmin
�

[
n∑
t=1

Gtr t (θ)]′�n[
n∑
t=1

Gtr t (θ)], (11)

where �n is a nonnegative definite matrix which may depend on the observed data
and converges to a positive definite matrix � as n → ∞. The parameter space
� ⊂ Rp × [0,∞)q × (0,∞) × [0,∞) is assumed to be compact and contain
θ0 as an interior point. The asymptotic properties of θ̂n can be established in
a usual GMM framework. Specifically, denote � = E[G0r0(θ0)r

′
0(θ0)G

′
0] and

�′ = E[∇θ r
′
0(θ0)G

′
0] where ∇θ r

′
0(θ) = ∂r ′0(θ)/∂θ . Then we have the following

asymptotic results for the GMM estimator, the proof of which and further regularity
conditions are given in Section 8.
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Theorem 1 The GMM estimator θ̂n has the following properties.

(1) Under Assumption 1–2, θ̂n
a.s.→ θ0 as n→∞.

(2) Under Assumption 1–6,
√
n(θ̂n − θ0)

d→ N(0,A−1BA−1) as n→ ∞, where
A = �′��, B = �′����.

Given the specified set of instruments, the optimal (efficient) GMM estimator is

obtained by taking the weight �n to be such that �−1
n

p→ � as n → ∞. Then the
optimal GMM has asymptotic variance-covariance matrix A−1

0 = (�′�−1
�)−1.

To compute the optimal weight, we propose to use a serial correlation robust
estimator of �. Specifically, let et = Gtr t (θ0). Then since E(et |Ft−p−q−1) = 0,
we have

�n = V
(
n−1/2

n∑
i=1

et

)

= E(e0e
′
0)+

p+q∑
i=1

n− i
n

[E(e0e
′−i )+ E(e−ie′0)].

Similarly to White (2001, p.147) and Wooldridge (1994, Sec.4.5), we can find a

positive definite matrix �n such that �−1
n −�n

p→ 0 as n→∞, where

�−1
n = 1

n

n∑
t=1

êt ê
′
t +

p+q∑
i=1

mi(n)

n

n∑
t=i+1

(êt ê
′
t−i + êt−i ê′t ),

êt = Gtr t (θ̂) and mi(n) → 1, i = 1, 2, . . . , p + q are suitably chosen to ensure
that �n > 0. In practice, we can start with mi(n) = 1, i = 1, 2, . . . , p + q. If
�n is not positive definite, then we can modify mi(n) as mi(n) = (1 − n−1)i or
mi(n) = exp(i/n) to achieve the desired result.

4 Testing for Measurement Error

Although our GMM framework does not rule out zero measurement error, from
practical point of view it is of interest to verify its presence and severity. However,
testing for measurement error is generally a challenging task because under the null
hypothesis the value of the measurement error variance is on the boundary of the
parameter space. The framework in the previous section provides a possibility to
construct such a test by applying the similar idea of the incremental Sargan test
(Arellano 2003, p.193). Specifically, we construct a test for the following hypotheses
on the measurement error variance
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H0 : σ 2
0 = 0 vs. Ha : σ 2

0 > 0. (12)

We first consider the problem of estimating a subset of unknown parameters γ 0 =
(α′

0,β
′
0, τ0)

′, where α0,β0 are defined as in the AR(p)-ARCH(q) model (1)–(2) and

τ0 = ω0 + [1 − β0(1)][1 + α2
0(1)]σ 2

0 . (13)

Then it can be shown that γ 0 can be identified by the following k1 + k2 moment
conditions

E[G1t r̃ t (γ 0)] = 0, (14)

where r̃ t (γ ) = (Yt (α), [1 − β(B)]Y 2
t (α)− τ)′,

G′
1t =

(
Zt−p−1 Zt−p−2 · · · Zt−p−k1 0 0 · · · 0

0 0 · · · 0 Zt−p−q−1 Zt−p−q−2 · · · Zt−p−q−k2

)

and k1 > p, k2 > q + 1. Therefore the optimal GMM estimator for γ 0 is given by

γ̂ 1 = argmin
�

b′1n(γ )V
−1
1n b1n(γ ), (15)

where b1n(γ ) = n−1∑n
t=1 G1t r̃ t (γ ), V 1n is positive definite and V 1n −

V [n1/2b1n(γ 0)]
p→ 0, and � ⊂ Rp × [0,∞)q × (0,∞) is compact.

Next, under H0 we consider additional 2p + q moment conditions

E[G2t r̃ t (γ 0)] = 0, (16)

where

G′
2t =

(
Zt−1 Zt−2 · · · Zt−p 0 0 · · · 0

0 0 · · · 0 Zt−1 Zt−2 · · · Zt−p−q
)
.

Similarly, the optimal GMM estimator is given by

γ̂ = argmin
�

b′n(γ )V −1
n bn(γ ), (17)

where bn(γ ) = n−1∑n
t=1(G

′
1t

... G′
2t )

′r̃ t (γ ), V n is positive definite and V n −
V [n1/2bn(γ 0)]

p→ 0.
Then the test statistic is defined as

SW = nb′n(γ̂ )V −1
n bn(γ̂ )− nb′1n(γ̂ 1)V

−1
1n b1n(γ̂ 1). (18)
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For this test we have the following result, the proof of which is given in section 8.

Theorem 2 Under Assumption 1–6 and H0, SW
d→ χ2

2p+q as n→∞.

5 Impact of Measurement Error

It is well-known that in a linear errors-in-variables model with iid data the usual OLS
or ML estimators are attenuated towards zero. The impact of the measurement error
in dynamic ARCH models, however, has not been studied before. In this section we
carry out Monte Carlo simulations to investigate the behavior of the naive MLE of
a Gaussian AR(1)-ARCH(1) model with Gaussian classical additive measurement
error. Specifically, we consider the model

Xt = α0Xt−1 + εt , (19)

εt =
√
htηt , ht = ω0 + β0ε

2
t−1, (20)

Zt = Xt + δt , (21)

where ηt ∼ N(0, 1) and δt ∼ N(0, σ 2
0 ) are independent and iid sequences. The

parameter values are set to ω0 = σ 2
0 = 1, α0 ∈ {−0.9,−0.8, . . . , 0.8, 0.9} and β0 ∈

{0.05, 0.1, . . . , 0.9, 0.95}, respectively. In all simulations, 1000 samples of size n =
105 are generated to accurately estimate the asymptotic bias of ML(α0, β0, ω0).

We first calculate the relative bias of the ML(α0) as

RB.ML(α0) = Bias.ML(α0)

α0
× 100.

Figure 1 shows clearly that the ML(α0) is biased towards zero, similar to the
OLS estimator of the slope parameter in a linear errors-in-variables model. More
importantly, the bias has a pattern of a symmetric parabolic function in α0 and a
nearly linear function in β0. The absolute RB is monotone decreasing in both α0
and β0. These observations indicate a similarity between the asymptotic bias of
ML(α0) and OLS(α0) calculated by regressing Zt on Zt−1. By direct calculation we
can obtain the OLS relative bias as

RB.OLS(α0) = − 1

1 + ω0/(1 − β0)(1 − α2
0)σ

2
0

.

This raises an interesting question: To what extend can the OLS(α0) bias formula
be used to approximate and therefore to correct the bias of ML(α0)? To further
investigate this question, we examine the ratio Bias.OLS(α0)/Bias.ML(α0) as a
function of α0 and β0. Figure 2 shows that the formula of Bias.OLS provides good
approximation to Bias.ML in a fairly large area of the parameter space. However,



Fig. 1 Relative bias of ML(α0)

Fig. 2 Ratio of Bias.OLS(α0)/Bias.ML(α0)
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Fig. 3 Relative bias of ML(β0)

the Bias.OLS formula underestimates the Bias.ML for large values of β0, which is
understandable because the two estimators are more different when β0 gets larger.
Again, it is interesting to see that there is a clear (unknown) functional relationship
between Bias.ML and Bias.OLS.

Further, we have also calculated the relative bias of ML(β0) and ML(ω0), which
are shown in Figs. 3 and 4, respectively. From these figures we can see that the
ML(β0) has downward bias and the absolute relative bias is generally decreasing
for β0 ≥ 0.3 or |α0| ≤ 0.7. In contrast, ML(ω0) has an upward bias pattern, which
is similar to the intercept estimator in a linear errors-in-variables model. Again, both
Figs. 3 and 4 show clear (but unknown) functional patterns of the asymptotic bias
of the MLE. Overall, Figs. 1, 2, 3, and 4 show that the measurement error has more
severe effect on the estimate of ω0 than on α0 and β0.

6 Finite Sample Properties

In this section we carry out Monte Carlo simulations to investigate the finite sample
properties of the proposed GMM estimator and compare it with the corresponding
naive ML estimator. Again we use the model (19)–(21) in the previous section,
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Fig. 4 Relative bias of ML(ω0)

under which the optimal choice of the instrument matrix Gt depends on the
quantities such as E[Zt−h|Z̃t−p−1], h = 1, 2, . . . , p, E[Y 2

t−h(α0)|Z̃t−p−q−1], h =
1, 2, . . . , q, and E[(r t (θ0)r

′
t (θ0))ij |Iij ] for some suitably chosen information set

Iij . Unfortunately some of these instrumental functions cannot be computed easily
without simplification which would require further distributional assumptions on
the latent and error processes. Consequently we have attempted with several
constructions and found the following procedure to be most practical. Since the
number of moment equations used here is the same of the number of unknown
parameters, the estimators can be calculated in the following sequential process.

First, compute

α̂ = argmin
−1<α<1

⎡
⎣ n∑
t=k3

Ẑt−1Yt (α)

⎤
⎦

2

, (22)

where k3 = 4 + k2 and Ẑt−1 is the linear projection of Zt−1 onto{
Zt−2, Zt−3, . . . , Zt−1−k1

}
. Second, let Yt = Yt (α̂) and compute



246 M. Salamh and L. Wang

σ̂ 2 = argmin
σ 2≥0

⎡
⎣ n∑
t=k3

(YtYt−1 + α̂σ 2)

⎤
⎦

2

. (23)

Third, compute

β̂ = argmin
0<β<1

⎡
⎣ n∑
t=k3

Ŷ 2
t−1(y

2
t − βy2

t−1)

⎤
⎦

2

, (24)

where Ŷ 2
t−1 is the linear projection of Y 2

t−1 onto

{
Y 2
t−3

1 + Y 2
t−3

,
Y 2
t−4

1 + Y 2
t−4

, . . . ,
Y 2
t−2−k2

1 + Y 2
t−2−k2

}
,

and y2
t = Y 2

t − Y 2, y2
t−1 = Y 2

t−1 − Y 2−1 with

Y 2 = 1

n− k3 + 1

n∑
t=k3

Y 2
t , Y 2−1 =

1

n− k3 + 1

n∑
t=k3

Y 2
t−1.

Finally, compute

ω̂ = argmin
ω>0

[
Y 2 − β̂Y 2−1 − ω − (1 − β̂)(1 + α̂2)σ̂ 2

]2
. (25)

It is worthwhile to note that Ŷ 2
t−1 is defined in terms of bounded instruments

to guarantee the consistency of the proposed estimator over a wide range of the
parameter space.

We generate the data using parameter values {0.05, 0.2, 0.35, 0.5, 0.65, 0.8, 0.95}
for α0 and β0, respectively. In addition, we set ω0 = 1 and let σ 2

0 vary proportionally
to σ 2

X = ω0/(1 − β0)(1 − α2
0) such as σ 2

0 = aσ 2
X, where the noise-to-signal ratio

a ∈ {0, 0.25, 0.5, . . . , 1.75, 2}, respectively, and a = 0 corresponds to the case
of no measurement error. Again, we generate 1000 samples for each of the sizes
n = 100, 1000, 10000 and n = 100000 to approximate the asymptotic scenario. In
each simulation we compute the naive ML (nML) and two GMM estimators using
k1 = k2 = 1 (GMM1) and k1 = k2 = 5 (GMM5) instruments, respectively.

The bias and root mean squared error (RMSE) of the estimators are calculated
and numerical results for AR and ARCH parameters α0, β0, ω0 for some selected
cases are reported in Tables 1, 2, and 3. The numerical results for negative α0 values
are similar to those for positive values and therefore are not reported here.

From Tables 1, 2, and 3 we can see that, in the case of no measurement error
(a = 0), the GMM estimators have both larger bias and RMSE than the naive
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Table 1 Bias and RMSE of nML, GMM1 and GMM5 estimators for AR parameter α0 (with
ω0 = 1)

a = 0.00 a = 0.75 a = 1.5

nML GMM1 GMM5 nML GMM1 GMM5 nML GMM1 GMM5

n α0 β0 = 0.2

100 0.2 −0.007 −0.022 −0.029 −0.095 0.020 −0.093 −0.120 −0.055 −0.146

0.109 0.510 0.340 0.142 0.580 0.402 0.159 0.622 0.420

0.5 −0.011 −0.020 −0.023 −0.227 −0.003 −0.122 −0.304 −0.082 −0.249

0.094 0.217 0.180 0.254 0.367 0.331 0.323 0.498 0.448

0.8 −0.015 −0.019 −0.021 −0.359 −0.012 −0.096 −0.489 −0.073 −0.234

0.067 0.092 0.089 0.382 0.192 0.208 0.505 0.298 0.373

105 0.2 −0.000 0.000 0.000 −0.086 −0.001 −0.001 −0.120 −0.002 −0.003

0.003 0.016 0.016 0.086 0.028 0.028 0.120 0.040 0.039

0.5 −0.000 0.000 0.000 −0.214 −0.000 −0.000 −0.300 −0.001 −0.001

0.003 0.005 0.005 0.214 0.010 0.010 0.300 0.016 0.014

0.8 −0.000 −0.000 −0.000 −0.339 −0.000 −0.000 −0.479 −0.001 −0.001

0.002 0.002 0.002 0.339 0.005 0.004 0.479 0.009 0.005
β0 = 0.5

100 0.2 −0.004 −0.063 −0.053 −0.099 −0.010 −0.106 −0.123 −0.086 −0.148

0.107 0.565 0.353 0.149 0.614 0.409 0.165 0.655 0.418

0.5 −0.008 −0.025 −0.038 −0.240 −0.034 −0.143 −0.313 −0.118 −0.263

0.091 0.244 0.207 0.268 0.432 0.351 0.334 0.548 0.464

0.8 −0.011 −0.021 −0.025 −0.375 −0.022 −0.114 −0.501 −0.094 −0.260

0.060 0.101 0.098 0.402 0.210 0.235 0.521 0.342 0.406

105 0.2 −0.000 0.001 0.001 −0.090 −0.001 −0.002 −0.123 −0.001 −0.002

0.003 0.026 0.026 0.090 0.037 0.034 0.123 0.044 0.043

0.5 −0.000 0.000 0.000 −0.222 −0.000 −0.001 −0.307 −0.001 −0.001

0.003 0.009 0.009 0.222 0.012 0.011 0.307 0.017 0.015

0.8 −0.000 0.000 0.000 −0.343 −0.000 −0.000 −0.484 −0.000 −0.000

0.002 0.003 0.003 0.343 0.006 0.004 0.484 0.009 0.005
β0 = 0.8

100 0.2 −0.003 −0.109 −0.071 −0.120 −0.064 −0.131 −0.138 −0.109 −0.156

0.107 0.614 0.371 0.169 0.676 0.423 0.180 0.701 0.421

0.5 −0.006 −0.049 −0.061 −0.290 −0.082 −0.215 −0.350 −0.173 −0.315

0.093 0.326 0.254 0.320 0.520 0.418 0.373 0.628 0.502

0.8 −0.009 −0.029 −0.036 −0.452 −0.058 −0.185 −0.559 −0.172 −0.359

0.053 0.142 0.135 0.483 0.297 0.329 0.581 0.482 0.516

105 0.2 −0.000 −0.000 −0.005 −0.105 −0.016 −0.017 −0.136 −0.006 −0.013

0.003 0.170 0.130 0.105 0.173 0.128 0.137 0.154 0.129

0.5 −0.000 0.001 −0.001 −0.264 −0.007 −0.008 −0.342 −0.001 −0.003

0.004 0.059 0.051 0.264 0.093 0.066 0.342 0.053 0.043

0.8 −0.000 −0.000 −0.001 −0.411 −0.002 −0.003 −0.545 −0.001 −0.001

0.001 0.020 0.019 0.411 0.032 0.027 0.545 0.018 0.014
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Table 2 Bias and RMSE of nML, GMM1 and GMM5 estimators for ARCH slope parameter β0
(with ω0 = 1)

a = 0.00 a = 0.75 a = 1.5

nML GMM1 GMM5 nML GMM1 GMM5 nML GMM1 GMM5

n β0 α0 = 0.2

100 0.2 −0.030 0.177 0.041 −0.133 0.216 0.039 −0.150 0.225 0.043

0.146 0.461 0.335 0.161 0.495 0.363 0.169 0.502 0.361

0.5 −0.064 −0.044 −0.201 −0.353 −0.079 −0.268 −0.407 −0.074 −0.283

0.219 0.424 0.388 0.385 0.447 0.429 0.425 0.451 0.431

0.8 −0.107 −0.326 −0.460 −0.601 −0.366 −0.580 −0.669 −0.381 −0.615

0.253 0.519 0.567 0.636 0.580 0.669 0.692 0.590 0.696

105 0.2 −0.000 −0.000 −0.009 −0.134 −0.036 −0.044 −0.167 −0.040 −0.029

0.005 0.098 0.123 0.134 0.150 0.133 0.167 0.198 0.125

0.5 −0.000 −0.002 −0.003 −0.316 −0.005 −0.009 −0.391 −0.003 −0.022

0.006 0.032 0.035 0.316 0.064 0.064 0.391 0.125 0.108

0.8 −0.001 −0.021 −0.024 −0.528 −0.025 −0.036 −0.616 −0.032 −0.051

0.008 0.048 0.052 0.528 0.066 0.073 0.616 0.080 0.086
α0 = 0.5

100 0.2 −0.028 0.152 0.047 −0.142 0.188 0.021 −0.155 0.219 0.020

0.145 0.441 0.342 0.166 0.484 0.349 0.171 0.496 0.335

0.5 −0.062 −0.041 −0.188 −0.380 −0.103 −0.289 −0.421 −0.071 −0.295

0.219 0.417 0.384 0.405 0.448 0.435 0.436 0.452 0.432

0.8 −0.104 −0.317 −0.449 −0.629 −0.394 −0.612 −0.685 −0.378 −0.615

0.252 0.502 0.561 0.659 0.593 0.687 0.704 0.593 0.696

105 0.2 −0.000 −0.000 −0.009 −0.150 −0.040 −0.035 −0.175 0.017 0.030

0.005 0.098 0.123 0.150 0.175 0.121 0.175 0.290 0.218

0.5 −0.000 −0.002 −0.003 −0.351 −0.003 −0.014 −0.410 0.004 −0.040

0.006 0.032 0.035 0.351 0.091 0.087 0.411 0.204 0.185

0.8 −0.001 −0.020 −0.022 −0.562 −0.027 −0.041 −0.636 −0.035 −0.059

0.022 0.050 0.053 0.562 0.074 0.081 0.636 0.099 0.101
α0 = 0.8

100 0.2 −0.024 0.141 0.045 −0.150 0.200 0.029 −0.161 0.230 0.010

0.145 0.431 0.342 0.173 0.486 0.340 0.176 0.506 0.328

0.5 −0.059 −0.041 −0.182 −0.424 −0.113 −0.286 −0.446 −0.089 −0.329

0.217 0.411 0.380 0.439 0.455 0.439 0.454 0.460 0.448

0.8 −0.102 −0.309 −0.429 −0.690 −0.379 −0.635 −0.723 −0.415 −0.670

0.252 0.487 0.545 0.708 0.594 0.710 0.735 0.618 0.728

105 0.2 −0.000 −0.000 −0.009 −0.170 0.075 0.164 −0.185 0.219 0.393

0.005 0.098 0.123 0.170 0.362 0.382 0.185 0.494 0.575

0.5 −0.000 −0.002 −0.003 −0.410 0.010 −0.053 −0.442 −0.043 0.067

0.006 0.032 0.035 0.410 0.286 0.266 0.442 0.417 0.396

0.8 −0.000 −0.020 −0.022 −0.627 −0.031 −0.063 −0.670 −0.076 −0.108

0.008 0.050 0.054 0.627 0.127 0.118 0.670 0.273 0.219
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Table 3 Bias and RMSE of nML, GMM1 and GMM5 estimators for ARCH intercept parameter
ω0 (with ω0 = 1)

a = 0.00 a = 0.75 a = 1.5

nML GMM1 GMM5 nML GMM1 GMM5 nML GMM1 GMM5

n β0 α0 = 0.2

100 0.2 0.003 −0.045 0.025 1.043 −0.708 −0.460 1.994 −0.607 −0.343

0.190 0.776 0.512 1.099 0.927 0.902 2.054 1.001 1.052

0.5 0.042 0.361 0.462 1.908 −0.531 −0.139 3.521 −0.420 0.128

0.240 1.401 0.969 1.985 1.116 1.267 3.612 1.301 1.726

0.8 0.110 1.001 1.599 4.802 −0.066 0.917 8.823 0.539 2.016

0.355 2.175 4.624 4.957 2.468 3.345 9.012 5.836 7.898

105 0.2 −0.000 0.000 0.011 1.101 0.072 0.085 2.127 0.117 0.104

0.007 0.122 0.153 1.101 0.269 0.258 2.127 0.410 0.338

0.5 0.000 0.003 0.005 1.905 0.047 0.059 3.590 0.075 0.116

0.007 0.055 0.062 1.905 0.245 0.244 3.590 0.412 0.396

0.8 0.000 0.054 0.072 4.676 0.103 0.165 8.728 0.209 0.320

0.008 0.176 0.175 4.676 0.606 0.633 8.729 0.849 0.911
α0 = 0.5

100 0.2 0.001 −0.180 −0.051 1.460 −0.294 0.054 2.714 −0.206 0.313

0.191 0.584 0.475 1.521 0.979 0.989 2.782 1.252 1.466

0.5 0.041 0.108 0.356 2.595 0.062 0.639 4.682 0.148 1.082

0.241 0.947 0.868 2.684 1.487 1.722 4.792 1.919 2.578

0.8 0.113 0.820 1.348 6.366 1.009 2.435 11.536 1.389 3.592

0.403 1.938 2.657 6.559 3.708 4.954 11.784 4.891 7.102

105 0.2 −0.000 −0.000 0.011 1.545 0.050 0.044 2.900 −0.016 −0.033

0.007 0.122 0.154 1.545 0.222 0.156 2.900 0.369 0.278

0.5 0.000 0.002 0.004 2.617 0.006 0.028 4.809 −0.004 0.086

0.007 0.055 0.062 2.617 0.185 0.174 4.809 0.414 0.377

0.8 0.002 0.042 0.051 6.262 0.085 0.151 11.497 0.121 0.238

0.053 0.156 0.176 6.262 0.316 0.337 11.498 0.453 0.466
α0 = 0.8

100 0.2 −0.002 −0.188 −0.067 3.453 −0.170 0.222 6.240 0.258 1.096

0.191 0.563 0.468 3.541 1.100 1.227 6.354 2.031 2.573

0.5 0.037 0.062 0.316 5.835 0.452 1.077 10.319 1.187 2.588

0.241 0.880 0.817 5.982 2.061 2.437 10.520 3.693 4.750

0.8 0.107 0.743 1.271 13.969 2.189 4.419 24.908 4.305 7.359

0.371 1.664 4.663 14.324 6.165 8.307 25.415 10.275 12.976

105 0.2 −0.000 −0.000 0.011 3.663 −0.095 −0.205 6.673 −0.271 −0.489

0.007 0.122 0.153 3.663 0.453 0.478 6.673 0.620 0.720

0.5 0.000 0.002 0.004 5.979 −0.020 0.105 10.721 0.092 −0.129

0.007 0.055 0.063 5.980 0.571 0.530 10.722 0.842 0.799

0.8 0.000 0.039 0.046 13.859 0.087 0.235 24.931 0.306 0.461

0.008 0.160 0.184 13.866 0.563 0.490 24.932 1.249 1.006
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MLE at sample size n = 100, while the bias reduces markedly at sample size
n = 105. However, when the measurement error is present (a = 0.75 or a = 1.5),
the GMMs has significantly smaller bias than the naive MLE at all sample sizes,
and significantly smaller RMSE at n = 105. In particular, while the bias in GMMs
reduces significantly at large sample size n = 105, the bias in naive MLE remains
persistently at high level. Overall, the GMM5 using k1 = k2 = 5 instruments have
smaller RMSE but larger bias than the GMM1 using k1 = k2 = 1 instrument. In
general, the AR parameter α0 has the smallest bias and RMSE, while the ARCH
intercept ω0 has the largest values.

In the following we provide a more detailed summary of findings for each
parameter based on over 300 various configurations of parameter values.

AR Parameter α
The nML estimator is clearly downward biased and its absolute relative bias (ARB)
is fast increasing (from 20% to 80%) with the noise-to-signal ratio a. The GMM
estimators are downward biased in small samples and their ARB are decreasing with
α0 but increasing with β0. While the ARB of GMM1 has no relation with a that of
GMM5 is a fast increasing function of a. The RMSE of the nML estimator has,
respectively, a shape of square-root function in a, a clear increasing linear function
in α0, and a slightly increasing linear function of β0. In contrast, the RMSE of the
GMM estimators are decreasing with α0, but increasing with β0 and a, respectively.
However, the RMSE of GMM5 vanishes in large samples faster than that of GMM1
estimator.

ARCH slope β
Again the nML estimator is clearly downward biased in large samples and most of
small sample cases, and its ARB is fast increasing with a (from 40% to 80%). In
small samples, the biases of the GMM estimators have a shape of concave function
with respect to β0, while their ARB have a shape of convex function. Furthermore,
when the sample size increases the GMM biases vanish very slowly for large α0
(0.95) and small β0 (0.05). The RMSE of the nML estimator takes the shape of a
square-root function in a, a fast increasing linear function in β0, has no relation to
α0. The RMSE of the GMM estimators are a convex function of β0 but have no
relation with α0 or a.

ARCH intercept ω
The nML estimator has an upward bias and the bias is increasing with a, α0, and β0,
respectively. In small samples the biases of the GMM estimators have, respectively,
the shape of a linear function in α0, an increasing function in β0, and a fast
increasing function in a. However, the bias vanishes slowly when the sample size
increases. The RMSE of all three estimators have similar patterns as their respective
biases.
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7 Conclusions and Discussion

We have studied a dynamic model with autoregressive heteroscedastic error where
the underlying process is latent and subject to additive measurement error. We have
shown that the model is identifiable by using the observations of a proxy process
only. This is in contrast to the case of measurement error in the covariates, where
extra information such as external instrumental variables or replicate observations
is needed for model identifiability. Moreover, we proposed a set of identifying
moment conditions and used them to construct GMM estimators for the unknown
parameters. The proposed estimators are consistent and asymptotically normally
distributed under usual regularity conditions. As a byproduct, this framework allows
us to construct a test for the presence of measurement error. Our Monte Carlo
simulation studies show that the measurement error causes downward bias in the
naive MLE, and the relative biases have certain functional forms. This is interesting
because it provides a possibility to find the formulas that can be used to correct the
biases in the naive MLE. Furthermore, the proposed estimators possess fairly good
finite sample properties and comparisons with the naive MLE are also presented.

This work attempts to address some basic measurement error problems in
dynamic models with ARCH-type errors. There are many more questions and
issues remaining to be investigated. For example, it would be interesting to explore
other possible moment conditions that can be used to achieve identification and to
obtain more efficient estimators. It would also be interesting to study more general
measurement error processes. We used a simple ARCH model in order to be able
to gain insights of the problem and to obtain some concrete results. From both
theoretical and practical point of view, it is important to investigate the measurement
error problem in more general GARCH models. Our theoretical framework should
apply to GARCH processes as well, but the estimation will be based on a different
set of moments than (5)–(7) used here. Another way is to convert the GARCH
process to an infinite order ARCH and then truncate it to finite order, so that the
estimators based on the moments (5)–(7) can be used directly.

Acknowledgments The research was partially supported by grants from the Natural Sciences and
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Appendix

Regularity Assumptions and Mathematical Proofs

In this Appendix we provide the regularity assumptions that are sufficient for the
theoretical results in Theorems 1 and 2. We also provide a sketch of the proofs of
them, since they follow the general framework of GMM estimation.
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Regularity Assumptions

For the asymptotic properties of the GMM estimator θ̂n we make the following
assumptions, where ‖·‖ denotes the Euclidean norm.

Assumption 1 The instrumental functions satisfy E
∥∥∥Zt−hf1(Z̃t−p−1)

∥∥∥ < ∞ for

h = 0, 1, . . . , p and E
∥∥∥Z2

t−hf2(Z̃t−p−q−1)

∥∥∥ <∞ for h = 0, 1, . . . , p + q.

Assumption 2 θ0 is the unique solution to E {G0r0(θ)} = 0 in �.

Assumption 3 The covariance matrix V [n−1/2∑n
t=1 Gtr t (θ0)] is uniformly posi-

tive definite.

Assumption 4 The instrumental functions satisfy E
∥∥∥Z2

t−hf 2
1 (Z̃t−p−1)

∥∥∥ < ∞ for

h = 0, 1, 2, . . . , p, E
∥∥∥Z4

t−hf 2
2 (Z̃t−p−q−1)

∥∥∥ <∞ for h = 0, 1, 2, . . . , p + q, and
E(Z4

0) <∞.

Assumption 5 E[∥∥E(G0r0(θ0)|F−j )
∥∥2] <∞, j = 1, 2, . . . , p + q, where Ft =

σ(Zs, s ≤ t).

Assumption 6 �′ = E[∇θ r
′
0(θ0)G

′
0] has full rank p + q + 2, where ∇θ r

′
0(θ) =

∂r ′0(θ)/∂θ .

Note that the above assumptions are not more restrictive than the usual assump-
tions for the asymptotic properties of GMM estimators in the literature. They are
formulated for the general forms of the instrumental functions f1 and f2 (which are
also on the diagonal of matrix Gt ). For example, if f1 and f2 are taken to be the
linear projections of the lagged Zt , then Assumption 1 simply means the Zt process
has finite second and third moments. Similarly, Assumption 4 means Zt has finite
fourth and sixth moments. In particular, the identifiability Assumption 3 is based on
the moment conditions (5)–(7) which is given in r t (θ). Again, if f1 and f2 are taken
to be the linear projections then this assumption follows directly from (5)–(7).

Proof of Theorem 1

To simplify notation in the following we will omit the subscript n in θ̂n and
denote it as θ̂ . First, since {Xt } is strictly stationary and ergodic, and {δt } is iid
and independent of {ηt }, {Zt } is strictly stationary and ergodic. It follows from
Assumption 1 and White (1996, Th. A.2.2) that E[Gtr t (θ)] is continuous on �
and, furthermore, by the strong uniform law of large numbers (ULLN), as n→∞,
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sup
�

∥∥∥∥∥
1

n

n∑
i=1

Gtr t (θ)− E[G0r0(θ)]
∥∥∥∥∥
a.s.→ 0. (26)

The result (1) follows then from Assumption 2 and White (1996, Th. 3.4).
To prove the asymptotic normality, note that for sufficiently large n, the score

Sn(θ̂ ,1n) =
[
n∑
t=1

∇θ r
′
t (θ̂)G

′
t

]
1n

[
n∑
t=1

Gtr t (θ̂)

]
= 0, w.p.1, (27)

where ∇θ r
′
t (θ) = ∂r ′t (θ)/∂θ . Then using the mean-value theorem (Jennrich 1969),

we have
[
n∑
t=1

∇θ r
′
t (θ̂)G

′
t

]
1n

[
n∑
t=1

Gtr t (θ0)

]
= −

[
n∑
t=1

∇θ r
′
t (θ̂)G

′
t

]
1n

[
n∑
t=1

Gt∇θ r t (θ̃)

]
(θ̂ − θ0),

(28)

where
∥∥∥θ̃ − θ0

∥∥∥ ≤
∥∥∥θ̂ − θ0

∥∥∥. Again by the ULLN (White 1996, Th. A.2.2 and

Cor. 3.8), we have, as n→∞,

1

n

n∑
t=1

∇θ r
′
t (θ̂)G

′
t

a.s.→ E
[∇θ r

′
0(θ0)G

′
0

]
(29)

which has full rank by Assumption 6. Further, by Assumption 3–5 and (White 1996,
Th. A.3.2), we can use the so-called Cramer–Wold device (Rao 1973) to show that

1√
n

n∑
t=1

Gtr t (θ0)
d→ N(0,�), (30)

where � = E[Gtr t (θ0)r
′
t (θ0)G

′
t ]. Finally the result follows from (28)–(30) and

Assumption 6.

Proof of Theorem 2

First, using the nonsingular factorization we can write

V 1 = plim
n→∞

V [n1/2b1n(γ 0)] = C1C
′
1

and V 1n = C1nC
′
1n such that C1 = plimn→∞ C1n. Then by the mean-value

theorem and Slutsky’s theorem we have

�1 = n1/2C′
1nb1n(γ̂ 1) = n1/2M1C

′
1b1n(γ 0)+ op(1), (31)
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where M1 = I k1+k2 −A1(A
′
1A1)

−1A′
1, A1 = C′

1D1, and D′
1 = E[∇γ r̃ ′t (γ 0)G

′
1t ].

Similarly, let V n = CnC
′
n, where

C′
n =

(
C′

1n 0
0 C′

2n

)(
I k1+k2 0
−H n I 2p+q

)
,

C2nC
′
2n = V −1[n1/2(b2n(γ 0)− H nb1n(γ 0))], and

plim
n→∞

H n = E[b2n(γ 0)b1n(γ 0)
′]E−1[b1n(γ 0)b1n(γ 0)

′].

Then it is easy to show that plimn→∞ CnC
′
n = limn→∞ V −1[n1/2bn(γ 0)], and

similarly to (31), we have

� = n1/2C′
nbn(γ̂ ) = n1/2MC′bn(γ 0)+ op(1), (32)

where M = I k1+k2+2p+q − A(A′A)−1A′, C = plimn→∞ Cn, A = C′D, D′ =
(D′

1,D
′
2), and D′

2 = E[∇γ r̃ ′t (γ 0)G
′
2t ]. Further, denote

M2 =
(

M1 0
0 0

)
.

Then out test statistic is

SW = nb′n(γ 0)C(M − M2)C
′bn(γ 0)+ op(1). (33)

Finally, since clearly (M − M2)M2 = 0 and n1/2C′bn(γ 0)
d→ N(0, I k1+k2+2p+q)

under H0, we have SW
d→ χ2

2p+q .
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Modal Regression for Skewed, Truncated,
or Contaminated Data with Outliers

Sijia Xiang and Weixin Yao

Abstract Built on the ideas of mean and quantile, mean regression and quantile
regression are extensively investigated and popularly used to model the relationship
between a dependent variable Y and covariates x. However, the research about
the regression model built on the mode is rather limited. In this article, we
introduce a new regression tool, named modal regression, that aims to find the most
probable conditional value (mode) of a dependent variable Y given covariates x
rather than the mean that is used by the traditional mean regression. The modal
regression can reveal new interesting data structure that is possibly missed by the
conditional mean or quantiles. In addition, modal regression is resistant to outliers
and heavy-tailed data and can provide shorter prediction intervals when the data are
skewed. Furthermore, unlike traditional mean regression, the modal regression can
be directly applied to the truncated data. Modal regression could be a potentially
very useful regression tool that can complement the traditional mean and quantile
regressions.

Keywords Modal regression · Mode · Skewed data

1 Introduction

When talking about location measurements of a data set or distribution, mean,
quantile and mode are most commonly used. They have their own merits and
complement each other. Up till now, mean and quantile regressions have been
extensively studied and popularly used to model the relationship between a response
Y and covariates x. However, there is not much research about the regression built on
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the mode (i.e., modal regression). Different from mean/quantile regression, modal
regression is another important tool to study the relationship between a response
Y given a set of predictors x, which estimates the conditional modes of Y given x.
The developed new regression tool complements the mean and quantile regression
and is especially useful for skewed and truncated data and has broad applicability
throughout science, such as economics, sociology, behavior, medicine, and biology.

Indeed, the skewed data or truncated data can be commonly found in many
applications. For example, Cardoso and Portugal (2005) stated that wages, prices,
and expenditures are typical examples of skewed data. In sociology, Healy and
Moody (2014) showed that “many of the distributions typically studied in sociology
are extremely skewed,” for example, church sizes in sociology of religion (Weber
1993), symptoms indices in sociology of mental health (Mirowsky 2013), and so
on. Besides, truncated data can be commonly found in many applications such as
econometrics (Amemiya 1973; Lewbel & Linton 2002; Park et al. 2008) when
dependent variable is an economic index measured within some range. Some
examples of truncated data are a sample of Americans whose income is above the
poverty line, military height records with a minimum height requirement in many
armies, a central bank intervenes to stop an exchange rate falling below or going
above certain levels.

We use the following example (Yao & Li 2014) to demonstrate the difference
between the modal regression and the mean regression.

Example 1 Let (x, Y ) be coming from the model Use the standard equation
environment to typeset your equations, e.g.,

Y = m(x)+ σ(x)ε, (1)

where ε has a density q(·), which is a skewed density with mean 0 and mode 1.

1. If m(x) = 0 and σ(x) = x�α, then

E(Y |x) = 0 and Mode(Y |x) = x�α.

That is to say, the conditional mean does not contain any information of the
covariate, while the conditional mode does. As a result, various techniques based
on modal regression could reveal more important covariates than conditional
mean.

2. If σ(x) = x�α −m(x) and m(x) is a nonlinear smooth function, then

E(Y |x) = m(x) and Mode(Y |x) = x�α.

In this case, the conditional mode is linear in x while the conditional mean does
not. Of course, the opposite situation could also happen.

In Fig. 1, we also use two plots to illustrate the difference between linear mean
and linear mode regression.



Modal Regression for Skewed, Truncated, or Contaminated Data with Outliers 259

Fig. 1 Mean regression vs mode regression

Many authors have made efforts to identify the modes in the one sample
problem. See, for example, Parzen (1962); Scott (1992); Friedman and Fisher
(1999); Chauduri and Marron (1999); Hall et al. (2004); Ray and Lindsay (2005);
Yao and Lindsay (2009); Henderson and Russell (2005); Henderson et al. (2008);
Henderson and Parmeter (2015). Modal hunting has received much interest and wide
applications in economy and econometrics too. For example, Henderson and Russell
(2005) applied a nonparametric production frontier model to show that international
polarization (shift from a uni-modal to a bimodal distribution) is brought primarily
by technological catch-up. Cardoso and Portugal (2005) studied the impact of union
bargaining power and the degrees of employer coordination on the wage distribution
in Portugal wage computed by the mode of the contractual wage set by collective
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bargaining. Henderson et al. (2008) applied recent advances from statistics literature
to test for unconditional multimodality of worldwide distributions of several
(unweighted and population-weighted) measures of labor productivity, which is
of great interest in economics. They also examined the movements of economies
between modal clusters and relationships between certain key development factors
and multimodality of the productivity distribution. Einbeck and Tutz (2006) used
the value(s) maximizing the conditional kernel density estimate as estimator(s) for
the conditional mode(s), and proposed a plug-in estimator using kernel density
estimator.

Most of the above modal hunting methods require first nonparametrically
estimating the joint density f (x, y) and f (y | x), and then estimating the mode
based on the estimated conditional density f (y | x), which is practically challenging
when the dimension of x is large due to the well-known “curse of dimensionality."
Motivated by the result that the conditional mode from the truncated data provides
consistent estimates of the conditional mean for the original non-truncated data,
Lee (1989) proposed to model Mode(y|x) = x�β and derived the mode regression
estimator. The identification of β and strong consistency of its estimator were
derived. However, the objective function used by Lee (1989) is based on kernels
with bounded support and thus is difficult to implement in practice. This might
explain why modal regression has not drawn too much attention in the last century.
In addition, the tuning parameter h used by Lee (1989) is fixed and does not
depend on the sample size n. Therefore, it requires the error to be symmetric to
get the consistent modal line. Note that in such cases the modal line is indeed
the same as the mean regression line and thus their modal regression estimator is
essentially a type of robust regression estimate under the assumption of symmetric
error density. This limitation of requiring a symmetric error density also applies to
the nonparametric modal regression proposed by Yao et al. (2012).

Kemp and Santos Silva (2012) and Yao and Li (2014) are among the first
who proposed consistent linear modal regression estimates without requiring a
symmetric error density. They established asymptotic properties of the proposed
modal estimates, under very general conditions, allowing a skewed error density
and a more general kernel function, by letting the bandwidth h go to zero. Since the
work of Kemp and Santos Silva (2012) and Yao and Li (2014), modal regression
has received much attention recently and been widely applied to various problems.
Chen et al. (2016) considered a nonparametric modal regression and used it to
build confidence sets based on a kernel density estimate of the joint distribution.
Zhou and Huang (2016) considered estimating local modes of the food frequency
questionnaire (FFQ) intake given one’s long-term usual intake using dietary data.
Noticing that the neuroimaging features and cognitive assessment are often heavy-
tailed and skewed, Wang et al. (2017) argued that a traditional regression approach
might fail to capture the relationship, and applied a regularized modal regression
to predict for Alzheimer’s disease. Yao and Li (2014) also applied the modal linear
regression to a forest fire data, and the results showed that the modal regression gave
shorter predictive intervals than traditional methodologies. In order to accurately
forecast the energy that will be consumed in the evening, so as to optimize the
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capacity of storage and consequently to increase the batteries life, Chaouch et al.
(2017) applied modal regression to analyze electricity consumption. Kemp et al.
(2019) applied both mode- and mean-based autoregressive models to compare the
estimates and forecasts of monthly US data on inflation and personal income growth.
Please also see Krief (2017); Chen (2018); Li and Huang (2019); Ota et al. (2019);
Feng et al. (2020) for some other extensions of the linear modal regression. Ullah
et al. (2021) extended the modal regression to the panel data setting.

The rest of the article is organized as follows. In Sect. 2, we formally define the
linear modal regression model and discuss its estimator. In Sect. 3, we introduce
the nonparametric modal regression. The semiparametric modal regression, which
combines the linear modal regression and nonparametric modal regression, is
introduced in Sect. 4. A discussion section with some possible future works are
presented in Sect. 5.

2 Linear Modal Regression

2.1 Introduction of Linear Modal Regression

Suppose {(xi , yi), i = 1, . . . , n} is a random sample, where xi is a p-dimensional
column vector, and f (y|x) is the conditional density function of Y given x. In
conventional regression models, the mean of f (y|x) is used to investigate the
relationship between Y and x. However, when the conditional density of Y given
x is skewed, truncated, or contaminated data with outliers, the conditional mean
may not provide a good representation of the x-Y relationship. In this scenario, it is
well-known that the mode provides a more meaningful location estimator than the
mean. Therefore, the modal regression model is more preferable in this scenario.

The traditional modal estimation is to first estimate the joint density f (x, y)
based on kernel density estimation and then derive the conditional density f (y|x)
and its conditional mode. Such method works reasonably well when the dimension
of x is low, however, it is practically infeasible when the dimension of x is large,
due to the “curse of dimensionality".

Borrowing the idea from linear mean/quantile regression, Kemp and Santos Silva
(2012) and Yao and Li (2014) proposed linear modal regression (LMR), which
assumes that the mode of f (y|x) is a linear function of x. Suppose that the mode of
f (y|x) is unique, and denote it by

Mode(Y |x) = arg max
y
f (y|x),

then, the LMR assumes that Mode(Y |x) is a linear function of x, that is,

Mode(Y |x) = x�β, (2)
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where the first element of x is assumed to be 1 to represent the intercept. Denote
the error term as ε = y − x�β, and let q(ε|x) to be the conditional distribution of
ε given x, which is referred to as the error distribution. Note that we allow the error
distribution to depend on x. Based on the model assumption of (2), the error density
q(ε|x)‘ has the mode at 0.

Unlike one sample mode estimators, the proposed linear modal regression
(Yao and Li 2014) puts some model assumptions on Mode(Y |x) to transform the
original multivariate problems to a much simpler one-dimensional problem and
thereby avoid directly estimating the conditional density f (y|x). Note that if the
error distribution q(ε|x) is symmetric, then β in (2) is nothing but the regression
coefficient in traditional linear regression model. However, if q(ε|x) is skewed or
heavy-tailed, then, (2) will be quite different from the conventional mean regression
model.

Next we explain how we can use a kernel based objective function to estimate
the modal regression parameter β in (2) consistently. Note that if β = β0 is a scalar,
then β0 is the mode of f (y), i.e., 0 is the mode of f (y − β0). Therefore, β0 can be
estimated by the maximizer of

Qh(β0) =
1

n

n∑
i=1

φh(yi − β0), (3)

which is a kernel density estimate of f (y), where φh(·) = h−1φ(·/h) with φ(·)
being a kernel density function symmetric about 0 and h being a tuning parameter.
Such a modal estimator has been proposed by Parzen (1962). It has been proved that
as n → ∞ and h → 0, the mode of kernel density function will converge to the
mode of the distribution of Y .

If β does include predictors like in the model (2), by extending the objective
function (3), we can then estimate β by maximizing

Qh(β) = 1

n

n∑
i=1

φh(yi − x�i β), (4)

which can be also considered as the kernel density estimate of the residual εi =
yi − x�i β at 0. Then, maximizing (4) with respect to β yields x�β̂ so that the kernel
density function of εi at 0 is maximized. It has been proved by Yao and Li (2014)
that as h→ 0 as n→ ∞, the maximizer of (4), named the linear modal regression
estimator (LMRE), is a consistent estimate of β in (2) for very general error density
without requiring symmetry.

Note that if φh(t) = (2h)−1I (|t | ≤ h), a uniform kernel, then maximizing (4) is
equivalent to maximizing

1

n

n∑
i=1

I (|yi − x�i β| ≤ h) = 1

n

n∑
i=1

I (x�i β − h ≤ yi ≤ x�i β + h).
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Therefore, the LMR tries to find the linear regression x�β̂ such that the band
x�β̂ ± h contains the largest proportion/number of response yi . Therefore, modal
regression provides more meaningful point predictions, i.e., larger coverage proba-
bility of prediction intervals with a fixed small window around the estimate, and
shorter predication intervals than the mean and quantile regression for a fixed
confidence limit.

2.2 Asymptotic Properties

In this section, the consistency, convergence rate and asymptotic distribution of the
LMR estimator (Kemp & Santos Silva 2012; Yao & Li 2014) are discussed.

Theorem 1 As h → 0 and nh5 → ∞, and under the regularity conditions (A1)–
(A3) given in the Appendix, there exists a consistent maximizer of (4) such that

∥∥∥β̂ − β0

∥∥∥ = Op{h2 + (nh3)−1/2},

and the asymptotic distribution of the estimator is

√
nh3

[
β̂ − β0 −

h2

2
J−1K{1 + op(1)}

]
D→ N{0, ν2J

−1LJ−1},

where β0 denotes the true coefficient of (4), ν2 = ∫
t2φ2(t)dt with φ(·) being the

standard normal density and q(·) is the density of the error term.

J = E{q ′′(0|xi )xix�i }, K = E{q ′′′(0|xi )xi}, L = E{q(0|xi )xix�i }. (5)

Readers are referred to Yao and Li (2014) for the proofs. One striking but
reasonable finding is that the convergence rate of modal regression estimator is
slower than the root-n convergence rate of traditional mean/median regression
estimators. That is the cost we need to pay in order to estimate the conditional
mode (Parzen 1962). Note that for the distribution of Y (without conditioning on x),
Parzen (1962) and Eddy (1980) have proven similar asymptotic results for kernel
estimators of the mode. Therefore, the results of Parzen (1962) and Eddy (1980)
can be considered as special cases of the above theorem with no predictor.

Based on the asymptotic bias and asymptotic variance of β̂, a theoretical optimal
bandwidth h for estimating β is to minimize the asymptotic weighted mean squared
errors

E{(β̂−β0)
�W(β̂−β0)} ≈ (4)−1K�J−1WJ−1Kh4+ (nh3)−1ν2tr(J−1LJ−1W),
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where tr(·) denotes the trace and W is a diagonal matrix, whose elements reflect
the importance of the accuracy in estimating different coefficients. As a result, an
asymptotic optimal bandwidth h can be calculated as

ĥopt =
[

3ν2tr(J−1LJ−1W)

K�J−1WJ−1K

]1/7

n−1/7,

where J,K , and L are listed in (5).
If W is set to be W = (J−1LJ−1)−1 = JL−1J , which is proportional to the

inverse of the asymptotic variance of β̂, then

ĥopt =
[

3ν2(p + 1)

K�L−1K

]1/7

n−1/7.

We can then use a plug-in method (Yao and Li 2014) to choose the bandwidth based
on the above results.

Another computationally extensive way to choose the bandwidth is to use a cross
validation criterion proposed by Zhou and Huang (2019) for modal regression. In
addition, instead of just estimating the conditional mode for a chosen value of h,
Kemp and Santos Silva (2012) proposed estimating the parameters of interest for a
wide range of h, and obtain a more detailed picture of how the parameter estimators
perform. The authors further argued that since the inference will not be based on a
single value of h, the choice of the limits of h is not as critical as the choice of an
optimal value of h.

2.3 Estimation Algorithm

Since there is no closed-form solution to maximize (4), a modal expectation-
maximization (MEM) algorithm (Yao 2013) is extended to find the maximizer,
which consists of an E-step and an M-step. Note that the choice of the kernel
function is not crucial, and Yao and Li (2014) used the standard Gaussian kernel
to simplify the computation in the M-step of a modal EM (MEM) algorithm.

Algorithm 2.1 For t = 0, 1, . . ., at the (t + 1)-th iteration,
E-step For i = 1, . . . , n, calculate the weight as

p(i|β(t)) = φh(yi − x�i β(t))∑n
j=1 φh(yj − x�j β(t))

∝ φh(yi − x�i β(t)).

M-step Update the estimate β(t+1) as
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β(t+1) = arg max
β

n∑
i=1

{p(i|β(t)) logφh(yi − x�i β)}

=(X�WtX)−1X�Wty, (6)

where X = (x1, . . . , xn)�, Wt is an n× n diagonal matrix whose diagonal element
is p(i|β(t)) and y = (y1, . . . , yn)

�.

Remark 2.1

1. From the above algorithm, we can see that the major difference between the
mean regression estimated by the least squares (LSE) criterion and the modal
regression lies in the weight p(i|β(t)). For LSE, each observation has equal
weight 1/n, while for modal regression, the weight p(i|β(t)) depends on how
close yi is to the modal regression curve. This weight scheme allows the modal
regression to reduce the effect of observations far away from the regression curve,
so as to achieve robustness.

2. Note that when a normal kernel is used in (4), the function optimized in the
M-step is a weighted sum of log-likelihoods corresponding to weighted least
squares estimator in the ordinary linear regression. In this case, we obtain a
closed-form expression for the maximizer in (6). If other kernels are used, then
some optimization algorithms are needed in the M-step.

3. It should be noted that the converged value of this MEM algorithm depends on
the starting value. Therefore, it is prudent that we start from several different
starting values and choose the best local optima.

2.4 Prediction Intervals Based on Modal Regression

As we explained after the objective function (4), the modal regression could
provide more representative point predictions and shorter prediction intervals. In
this section, we explain how to construct asymmetric prediction intervals for new
observations based on the linear modal regression. The described methods can be
also applied to other nonparametric or semiparametric modal regression models
introduced in Sects. 3 and 4.

For the simplicity of explanation, we assume that the error distribution of ε is
independent of x. Let ε̂1, . . . , ε̂n be the residuals of the linear modal regression
estimate, where ε̂i = yi−x�i β̂, and ε̂[i] be the ith smallest value of the residuals. The
traditionally used prediction interval with confidence level 1−α for a new covariate
xnew is (x�newβ̂ + ε̂[n1], x�newβ̂ + ε̂[n2]), where n1 = �nα/2�, and n2 = n − n1.
This symmetric method works best if the error distribution is symmetric. Since the
linear modal regression focuses on the highest conditional density region and does
not assume a symmetric error density, Yao and Li (2014) proposed the following
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method for modal regression to use the information of the skewed error density to
construct prediction intervals. Suppose q̂(·) is a kernel density estimate of ε based on
the residuals ε̂1, . . . , ε̂n. We find the indexes k1 < k2 such that k2−k1 = )n(1−α)*
and q̂(ε̂[k1]) ≈ q̂(ε̂[k2]). The proposed prediction interval by Yao and Li (2014) for
a new covariate xnew is then (x�newβ̂ + ε̂[k1], x�newβ̂ + ε̂[k2]).

To find indexes k1 and k2, we could use the following iterative algorithm.

Algorithm 2.2 Starting from k1 = �nα/2� and k2 = n− n1,

Step 1: If q̂(ε̂[k1]) < q̂(ε̂[k2]) and q̂(ε̂[k1+1]) < q̂(ε̂[k2+1]), k1 = k1 + 1 and k2 =
k2+1; if q̂(ε̂[k1]) > q̂(ε̂[k2]) and q̂(ε̂[k1−1]) > q̂(ε̂[k2−1]), k1 = k1−1 and
k2 = k2 − 1.

Step 2: Iterate Step 1 until none of above two conditions is satisfied or (k1 −
1)(k2 − n) = 0.

Based on Yao and Li (2014)’s numerical studies, the above proposed prediction
intervals have superior performance to existing symmetric prediction intervals when
the data is skewed.

3 Nonparametric Modal Regression

Similar to the traditional linear regression, linear modal regression requires a strong
parametric assumption which might not hold in practice. To relax the parametric
assumption, there are also nonparametric modal regression that is built based on
kernel density estimation. Readers are referred to Chen (2018) for a detailed review
of nonparametric modal regressions. For simplicity of explanation, in this section,
the covariate X is assumed to be univariate with a compactly supported density
function. The estimation procedure can be easily extended to multivariate case but
practically difficult due to the “curse of dimensionality.”

Let f (z) denote the probability density function (pdf) of a random variable Z
and be twice differentiable. Then, define the global mode and local modes of f (z),
respectively, as:

UniMode(Z) = arg max
z
f (z)

and

MultiMode(Z) = {z : f ′
(z) = 0, f

′′
(z) < 0}.

UniMode(Z), which focuses on the conditional global mode, is called the uni-modal
regression, as studied by Lee (1989); Manski (1991). MultiMode(Z), on the other
hand, studies the conditional local modes, and is sufficiently investigated by Chen
et al. (2016).

The uni-modal regression searches for the function
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m(x) = UniMode(Y |X = x) = arg max
y
f (y|x)

and multi-modal regression targets at

M(x) = MultiMode(Y |X = x) =
{
y : ∂
∂y
f (y|x) = 0,

∂2

∂y2
f (y|x) < 0

}
,

where f (y|x) = f (x, y)/f (x) is the conditional density of Y given X = x. Note
that, for a given x, the modes or local modes of f (y|x) and f (x, y) are the same.
Therefore, the uni-modal and multi-modal regression can be also defined as

m(x) = UniMode(Y |X = x) = arg max
y
f (x, y), (7)

and

M(x) =
{
y : ∂
∂y
f (x, y) = 0,

∂2

∂y2 f (x, y) < 0

}
, (8)

respectively.

3.1 Estimating Uni-Modal Regression

First, we estimate the joint density f (x, y) by the kernel density estimator (KDE)
as

f̂n(x, y) = 1

nh1h2

n∑
i=1

K1

(
xi − x
h1

)
K2

(
yi − y
h2

)
, (9)

where K1 and K2 are kernel densities such as Gaussian functions and h1 > 0 and
h2 > 0 are tuning parameters. Then, a nonparametric modal regression estimator of
m(x) in (7) is

m̂n(x) = arg max
y
f̂n(x, y).

If K2 is assumed to be a spherical kernel such as K2(z) = 1
2I (|z| ≤ 1), then it

has been shown that the maximization operation is equivalent to the minimization
operator on a flattened 0 − 1 loss.

Yao and Xiang (2016) proposed a local polynomial modal regression (LPMR)
estimation procedure to estimate the nonparametric modal regression, which maxi-
mizes
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�(θ) = 1

n

n∑
i=1

Kh1(xi − x0)φh2

⎛
⎝yi −

p∑
j=1

βj (xi − x0)
j

⎞
⎠ (10)

over θ = (β0, . . . , βp). Similar to Yao et al. (2012), the authors used an EM
algorithm to maximize (10) since it has a mixture type form. The asymptotic
properties were discussed and proved.

Feng et al. (2020) also studied nonparametric modal regression from a statistical
learning viewpoint through the classical empirical risk minimization (ERM) scheme
and investigated its theoretical properties.

3.2 Estimating Multi-Modal Regression

Similar to the estimation of uni-modal regression, Chen et al. (2016) proposed
estimating the multi-modal regression by a plug-in estimate from the KDE, as
follows:

M̂n(x) =
{
y : ∂
∂y
f̂n(x, y) = 0,

∂2

∂y2 f̂n(x, y) < 0

}
,

where f̂n(x, y) is from (9).
By assumingK1 andK2 to be Gaussian kernels, M̂n(x) can be estimated through

a mean-shift algorithm (Chen et al. 2016) which is actually equivalent to the mode
hunting EM algorithm (Yao 2013, MEM). The results can be applied to other
radially symmetric kernels as well. The partial mean-shift algorithm is summarized
in Algorithm 3.1.

Algorithm 3.1 Partial mean-shift
Input: Samples D = {(x1, y1), . . . , (xn, yn)}, bandwidths h1 and h2.
1. Find a starting set M ∈ R

2, such as D.
2. For each (x, y) ∈ M, fix x and update y by

y ←
∑n
i=1 yiK(|x−xi |/h1)K(|y−yi |/h2)∑n
i=1K(|x−xi |/h1)K(|y−yi |/h2)

until convergence. Let y∞ be the converged value.
Output: M∞, which contains the points (x, y∞).

Comparing between uni-modal and multi-modal regression, we can see that
multi-modal regression is more preferred in situations where there are hidden
heterogeneous relations in the data set. In addition, if the there are several modes
in the original data, since the uni-modal regression can only detect the main
component, the prediction regions tend to be wider than that of the multi-modal
regression, as shown in Fig. 2. However, it is obvious that the uni-modal regression
is easier to interpret, which is quite important in data applications.
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Fig. 2 Uni-modal vs multi-modal regression

4 Semiparametric Modal Regression

Many authors have extended the linear modal regression (Kemp & Santos Silva
2012; Yao & Li 2014) to semiparametric models. See, for example, Krief (2017),
Ota et al. (2019), and Yao and Xiang (2016). In this section, we explain the idea
of semiparametric modal regression using the varying coefficient modal regressions
proposed by Yao and Xiang (2016).

To be more specific, given a random sample {(xi , ui, yi); 1 ≤ i ≤ n}, where yi
is the response variable and (xi , ui) are covariates, Yao and Xiang (2016) proposed
a nonparametric varying coefficient modal regression, defined as

Mode(y|xi , ui) = max
y
f (y|xi , ui) =

p∑
j=1

gj (ui)xij , (11)

where xi = (xi1, . . . , xip)
� and {g1(u), . . . , gp(u)}� are unknown smooth func-

tions. If gj (u) is constant for all j , then the above model becomes the linear modal
regression (2). In addition, the nonparametric uni-modal regression introduced in
Sect. 3 is a special case of (11) when p = 1 and xi = 1. Allowing gj (u) to
depend on some index u, the varying coefficient modal regression can relax the
constant coefficient assumption of the linear modal regression, and also better model
how the modal regression coefficients dynamically change over the index u, which
could be a time or location index. Compared to the fully nonparametric modal
regression, the above model can easily adopt multivariate covariates by imposing
some model assumption on the conditional mode. Therefore, the semiparametric
modal regression can combine the benefits of both the parametric modal regression
and the nonparametric modal regression.
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Yao and Xiang (2016) proposed estimating the varying coefficient modal regres-
sion (11) by a local linear approximation of gj (u) in a neighborhood of u0,

gj (u) ≈ gj (u0)+ g′j (u0)(u− u0) = bj + cj (u− u0).

Let θ = (b1, . . . , bp, h1c1, . . . , h1cp)
�. Then θ is found by maximizing

�(θ) =
n∑
i=1

Kh1(ui − u0)φh2

⎡
⎣yi −

p∑
j=1

{bj + cj (ui − u0)}xij
⎤
⎦ , (12)

over θ . Let θ̂ = (b̂1, . . . , b̂p, h1ĉ1, . . . , h1ĉp)
� be the maximizer of (12). Then

ĝ(u0) = (b̂1, . . . , b̂p)
� is the estimate of {g1(u0), . . . , gp(u0)}�, and ĝ′(u0) =

(ĉ1, . . . , ĉp)
� is the estimate of {g′1(u0), . . . , g

′
p(u0)}�.

The algorithm proposed to maximize (12) is summarized as follows.

Algorithm 4.1 Starting with t = 0:

E-Step: Update π(j | θ (t))

π(j | θ (t)) =
Kh1(uj − u0)φh2

[
yj −

∑p
l=1

{
b
(t)
l

+ c(t)
l
(uj − u0)

}
xjl

]
n∑
i=1
Kh1(ui − u0)φh2

[
yi −

∑p
l=1

{
b
(t)
l

+ c(t)
l
(ui − u0)

}
xil

] ,

j = 1, . . . , n.

M-Step: Update θ (t+1)

θ (t+1) = arg max
θ

n∑
j=1

π(j | θ (t)) logφh2

⎡
⎣yj −

p∑
l=1

{
b
(t)
l

+ c(t)
l
(uj − u0)

}
xjl

⎤
⎦ ,

which has an explicit solution since φ(·) is the Gaussian density.
Denote by fu(u) the marginal density of u, q(ε | x, u) the conditional density of
ε = y −∑p

j=1 gj (u)xj given x and u, and q(v)(ε | x, u) the v-th derivative of
q(ε | x, u). Let

αj (u) = E{xXjq(2)(0 | x, u) | u}, β(u) = E{xq(3)(0 | x, u) | u}
Δ(u) = E{xx�q(2)(0 | x, u) | u}, Δ̃(u) = E{xx�q(0 | x, u) | u}.

Yao and Xiang (2016) provided the following asymptotic properties for the proposed
varying coefficient modal regression estimator.
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Theorem 2 Under the regularity conditions (A4)|(A6) in the Appendix, if the
bandwidths h1 and h2 go to 0 such that nh3

1h
5
2 →∞ and h2

1/h2 → 0 the asymptotic
bias of ĝ(u0) is given by

Bias
{
ĝ(u0)

} = 1

2
Δ−1(u0)

⎧⎨
⎩μ2h

2
1

p∑
j=1

g′′j (u0)αj (u0)− h2
2β(u0)

⎫⎬
⎭
{
1 + op(1)

}
,

(13)
and the asymptotic covariance is

Cov
{
ĝ(u0)

} = ν̃ν0

nh1h
3
2fu(u0)

Δ−1(u0)Δ̃(u0)Δ
−1(u0)

{
1 + op(1)

}
, (14)

where μj =
∫
tjK(t)dt, νj =

∫
tjK2(t)dt, and ν̃ = ∫

t2φ2(t)dt .

Theorem 3 Under the same condition as in Theorem 2, if the bandwidths h1 and
h2 go to 0 such that nh1h

5
2 → ∞ and h2

1/h2 → 0, the estimate g(u0) has the
following asymptotic distribution

[Cov{ĝ(u0)}]−1/2[ĝ(u0)− g0(u0)− Bias{ĝ(u0)}] L→ N(0, I ),

where Bias{ĝ(u0)} is defined in (13) and Cov{ĝ(u0)} is defined in (14).

5 Discussion

In this article, we introduced modal regressions, which can be a good complement
to mean/quantile regression, and are especially suitable for skewed, truncated,
or contaminated data with outliers. Compared to traditional mean regression
models, the modal regression models are more robust and have better prediction
performance. Simulation studies and real data analysis are done to illustrate the
numerical performance of the new methods. Due to the length of the article, the
readers are referred to Yao and Li (2014) and Yao and Xiang (2016) for the details.

The development of modal regression is still in its early stage. Parallel to the
traditional mean/quantile regression, the modal regression can be extended to a
broad variety of parametric, nonparametric, and semiparametric modal regression
models. For high dimensional models, it is interesting to investigate how to perform
feature screening and variable selection for modal regression. In addition, it also
requires more research to extend the modal regression to the longitudinal/panel data
(Ullah et al. 2021), time series data, data with measurement errors, and missing data
problems.
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Appendix

The conditions used by the theorems are listed below. They are not the weakest
possible conditions, but they are imposed to facilitate the proofs.
Technical Conditions:

(A1) q(v)(t | x), v = 0, 1, 2, 3 is continuous in a neighborhood of 0 , and q ′(0 |
x) = 0 for any x.

(A2) n−1∑n
i=1 q

′′ (0 | xi) xixTi = J + op(1), n−1∑n
i=1 q

′′′ (0 | xi) xi = K +
op(1) and n−1∑n

i=1 q (0 | xi) xixTi = L+ op(1), where J < 0, that is, −J is a
positive definite matrix.

(A3) n−1∑n
i=1 ‖xi‖4 = Op(1), and q ′(0 | x) = 0 any x.

(A4) gj (x) has continuous 2nd derivative at the point x0, j = 1, ..., p.
(A5) q ′(0 | x, u) = 0, q ′′(0 | x, u) < 0, q(v)(t | x, u) is bounded in a neighbor of
(x0, u0) and has continuous first derivative at the point (x0, u0) as a function of
(x, u), for v = 0, . . . , 4.

(A6) The fu(u) is bounded and has continuous first derivative at the point u0 and
f (u0) > 0.
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Spatial Multilevel Modelling in the
Galveston Bay Recovery Study Survey

Mary E. Thompson, Gang Meng, Joseph Sedransk, Qixuan Chen,
and Rebecca Anthopolos

Abstract The Galveston Bay Recovery Study conducted a longitudinal survey of
residents of two counties in Texas in the aftermath of Hurricane Ike, which made
landfall on September 13, 2008 and caused widespread damage. An important
objective was to chart the extent of symptoms of Post-Traumatic Stress Disorder
(PTSD) in the resident population over the following months. Wave 1 of the survey
was conducted between November 17, 2008 and March 24, 2009. Waves 2 and
3 consisted of two month and one year follow-ups, respectively. With the use of
a stratified, 3-stage sampling design, data were collected from 658 residents. The
first stage of sampling within strata was the selection of clusters, or area segments.
Our objective is to model the course of the repeated PTSD measures as a function
of individual characteristics and area segment, and to examine the analytical and
visual evidence for spatial correlation of the area segment effect. To incorporate
design information, our multilevel analysis uses the composite likelihood approach
of Rao et al. (Survey Methodology, 39, 263–282, 2013) and Yi et al. (Statistica
Sinica, 26, 569–587, 2016). We compare this with a Bayesian multilevel analysis
and discuss the estimability of the model when the cluster-level variation has spatial
dependence.
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1 Introduction

The Galveston Bay Recovery Study (GBRS) survey was conducted to study the
impact of Hurricane Ike, which had made landfall at Galveston Bay on September
13, 2008. The survey took place in Chambers County and Galveston County in
Texas. Galveston County includes Galveston Island and the Bolivar Peninsula, with
Goat Island just to the north. The hurricane caused severe damage, particularly on
the Bolivar Peninsula and Goat Island, but also on Galveston Island and further into
the Bay.

With the intention of gathering data close to the time of the disaster, the
investigators were able to design a three-wave longitudinal survey of which Wave
1 went into the field about two months after Hurricane Ike. Wave 1 continued until
March 24, 2009. Wave 2 was a half-hour follow-up intended to be conducted two to
three months after the initial interview. Wave 3 was a full follow-up survey intended
to be conducted about a year after the first interview (University of Michigan
Survey Research Center/Institute for Social Research 2010). The sampling design
was a two-stage area sample of households from address-based frames, while
interviewing took place by telephone. The main goal was to characterize trajectories
and determinants of post-disaster mental health outcomes, such as Post-Traumatic
Stress Disorder (PTSD), as measured through a severity score computed from
responses to a 17-item scale (Pietrzak et al. 2013). Another aim (Gruebner et al.
2016a,b) was to use spatial analysis to identify patterns of mental health and
wellness, and their predictors, across the geographic area in the aftermath of the
disaster.

With a view to incorporating the complex features of the sampling design,
Anthopolos et al. (2020) have proposed a Bayesian growth mixture model, where
the three-wave trajectory of the log of the PTSD severity score is modelled within
latent classes. The modelling of latent class membership is multilevel because of
the clustering of the sample, and incorporates spatial dependence across adjacent
clusters. Sampling design variables such as household size and auxiliary information
on the frames are incorporated as covariates. Inference concerning the cluster-level
variance components of latent class membership is part of the purpose.

The aim of this paper is to implement a frequentist approach to incorporating
complex sampling design features in a more basic repeated measures analysis of the
same data, where inference concerning the cluster-level variance components for the
log PTSD severity score itself is envisaged. The complex sampling design features
are incorporated using pairwise likelihood using the approach of Rao et al. (2013)
and Yi et al. (2016).

Section 2 will describe the sampling design in detail. Sections 3 and 4 will
document the construction of survey weights and the derivation of the inclusion
probabilities required for the illustrative analyses. Section 5 specifies the spatial
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multilevel model under consideration. Sections 6 and 7 present a standard Bayesian
analysis and the proposed frequentist analysis, respectively. Section 8 discusses the
advantages and disadvantages of the two approaches, with reference to the ways in
which they use the information in the sampling design and the weights.

2 Sampling Design

The following description is taken from Valliant et al. (2009) and University of
Michigan Survey Research Center/Institute for Social Research (2010).

There were two sampling frames. One frame was the Experian Gold list for
Galveston and Chambers Counties, purchased from the credit reporting agency
Experian. This list had demographic information that could be used in an attempt
to identify households and persons with higher probability of experiencing PTSD
in the short or long run, based on earlier studies. A score was then constructed
by the SRC to classify most of the households as high risk or low risk (or with
insufficient data to determine) for PTSD after a disaster. The other frame was an
area probability frame created by field staff listing procedures. Its coverage was
more comprehensive, for example, including growth since the 2000 Census.

For the GBRS survey, FEMA maps of the flooding in the Galveston area
immediately after Hurricane Ike and Census 2000 data were used to divide the two-
county area into five geographic strata:

Stratum 1: Galveston Island and the Bolivar Peninsula, which suffered storm surge
damage

Stratum 2: Flooded areas of the mainland
Stratum 3: Non-flooded areas of the mainland which had relatively high rates of

poverty in the 2000 Census
Stratum 4: Non-flooded, non-poverty areas east of Route 146 (and thus close to the

Bay)
Stratum 5: Non-flooded, non-poverty areas west of Route 146 and the remainder of

Chambers County (not flooded for the most part)

Within strata, the researchers constructed area segments composed of census blocks
from the 2000 Census. Eighty (80) of these were to be selected. It was initially
decided that the relative sampling rates in the strata would be 4, 4, 2, 2, and 1, so
that Stratum 1 and Stratum 2 would be oversampled, while Stratum 5 would be
undersampled. Implementing these rates resulted in an allocation of area segments
to strata of 42, 4, 16, 4, and 14. Within strata, the area segments were selected with
probability proportional to a size measure, namely the number of occupied housing
units in the 2000 census.

Three of the selected segments in Stratum 1 were in an area (the Bolivar
Peninsula) that received extensive damage and could not be field-listed. Thus the
final numbers of segments represented in the strata samples are 39, 4, 16, 4 and
14; or 77 in all. Figure 1 shows the locations of the census tracts of the sampled
area segments, coloured according to stratum, superimposed on a map of population
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Fig. 1 Census blocks of the sampled area segments superimposed on a map of population density
from the 2000 Census

density from the 2000 Census. From this map it is apparent that the sample is taken
from areas of higher population density.

The area field listing included many housing units present in the area which did
not appear on the Experian frame, and there were many cases where the same
housing unit was recorded differently on the two frames. Within selected area
segments, it was decided to use the Experian list as the primary sampling frame.
Households therein were subdivided in each geographic stratum into High Risk for
PTSD and Other (low risk or not determinable). The High Risk group was sampled
at a rate 1.5 times that of the Other group. A separate sample was then taken from
the subset of the area field frame listings which did not appear on the Experian
frame. Whether this was the case could not always be determined perfectly: in some
apartment buildings, there were cases that had a chance of selection on both frames.
In the end, there were 124 Wave 1 interviews that came from the area frame (all
coded as other for the risk variable) and 534 from the Experian frame.

In a first phase of sampling, selected households where it was possible to make
contact were rostered, and in each, a member was selected at random from among
those who were 18 years of age or older at the time of selection. Respondent locating
was a major part of the effort, and this task was sent first to an outside vendor for
internet locating of respondents, to be followed by in-person tracking.

In a second phase of sampling of households not responding in the first fieldwork
period, cases from the first released sample, either in tracking or never contacted,
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were considered for further effort aimed at completing an interview. Of 489 eligible
cases, 250 were selected.

Overall there were 2116 selected housing units, 420 of which were determined to
be out of scope, and 658 of which resulted in a completed interview. Twenty (20) of
the selected respondents were judged ineligible. Thus the Wave 1 response rate was
approximately 40%. Weighted re-interview rates were 81.4% at Wave 2 and 73.3%
at Wave 3.

3 Survey Weights

Survey weights were constructed for the GBRS survey data. Only the Wave 1
weights will be described here. The process is described in Valliant et al. (2009). The
initial household weight was calculated as the reciprocal of the intended household
inclusion probability, taking into account risk status (High Risk for PTSD or Other),
the possibility of inclusion in both frames, and phase of sampling.

Consideration of phase of sampling leads to high variability of the initial
household weight within strata.

The household weight was then adjusted for non-response, as follows. Contact,
screening, and main interview completion were modelled in terms of housing
unit characteristics: observed damage to the unit, observed destruction of the unit,
stratum, Bolivar indicator, Experian indicator, High Damage Area indicator, Median
Year Housing Units Built (an area segment variable), Ever a Refusal (15% of
household refusals were converted), and Number of Calls.

Four adjustment strata were created, and weights were adjusted by the mean
predicted contact, screening, and interview propensities in their adjustment strata. A
few non-response adjustment factors were very large, and the corresponding weights
were trimmed, with the reduction in weights being distributed across the other cases.

For each individual respondent, the person-level weight was the product of the
non-response-adjusted household weight and the number of adults aged 18 or over
in the household.

4 Inferring Inclusion Probabilities from the Weights

In the data file the household weights and person weights were provided, giv-
ing us the unconditional inclusion probability for each household and for each
individual. For an illustrative design-based multilevel analysis, we needed to
assign an estimated inclusion probability to each sampled area segment, and an
estimated inclusion probability to each sampled individual, conditional on their area
segment being sampled. The sampling of area segments was done using probability
proportional to size sampling, where size was the 2000 census number of occupied
housing units in the area segment. We were able to obtain an approximate value
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of the size of an area segment by summing the year 2000 occupied housing unit
numbers of the census blocks of sampled households within the area segment,
and adjusting the sum upward so that the totals over area segments in the strata
would match known numbers. This produced an estimated size variable N̂hj for
each Stratum h and area segment j . It should be noted that the designers of the
sampling plan would have had access to the true size values.

If we denote the initial household weight for household k in area segment j and
Stratum h by whjk , we can write the reciprocal of whjk as

πk|hjπj |h, (1)

where πj |h is the needed area segment inclusion probability and πk|hj is the design
inclusion probability of household k within sampled area segment j in Stratum h.
The value of πk|hj depends on the risk stratum (High Risk for PTSD vs Other) of
the household.

The High Risk for PTSD vs Other variable is not included on the data set.
However, within many area segments, the lower household weights follow a pattern:
the lowest weights are about 2/3 of the next lowest weights. Thus it appears
that the lowest weights may correspond to deliberate oversampling, and we have
assumed that they belong to households that were sampled at a rate of 1.5 times
the “usual” rate in the area segment. We have also noted that within strata, the
inclusion probabilities for households from the area frame were a fixed multiple
of the inclusion probability of lower risk households from the Experian frame.
Using these facts, together with information about the inclusion probabilities for
the second phase samples, and additional assumptions, we have assigned a value of
the High Risk indicator to each household.

Except for some extreme values due to the second phase of sampling, the initial
household weights are not highly variable within area segments, and we approx-
imated household inclusion probabilities by assuming simple random sampling
within risk indicator value to begin with. Let ahj (to be estimated) be Nhj times
the sampling rate for lower risk households in area segment j of stratum h, where
Nhj is the number of census 2000 occupied housing units in the area segment (the
“size” of the area segment), so that for household k, the probability of inclusion
πk|hj is 1.5δhjk ahj /Nhj where δhjk = 1 if household k is of High Risk for PTSD, and
0 otherwise. Suppose the number of sampled households in the area segment is nhj .
Let the proportion of those households that appear (from their weights) to be High
Risk for PTSD be p̂hj . Then ahj can be estimated from the equation

nhj = p̂hj (1.5âhj )+ (1 − p̂hj )âhj . (2)

This gives a preliminary estimate of Nhjπk|hj for each household k in the sample in
area segment j .

Taking this estimate and multiplying by initial household weight, i.e., the
reciprocal of the expression in (1), we computed a household-specific preliminary
estimate of πj |h/Nhj . We averaged these over the households with non-extreme
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weights in area segment j to estimate πj |h/Nhj . We multiplied by N̂hj and took the
minimum of the result and 1 to obtain an approximate value of πj |h for each area
segment j .

We then estimated the post-nonresponse inclusion probability for a household,
given inclusion of its area segment, as the reciprocal of (the non-response adjusted
household weight times the approximate value of the area segment inclusion
probability). If we set aside three area segments with unusually high inclusion prob-
abilities in Stratum 1, the average estimated area segment inclusion probabilities in
the five strata are, respectively, 0.516, 0.689, 0.239, 0.260, and 0.113. The relative
values of these are not very different from those of the initial target sampling rates,
which were to be proportional to 4, 4, 2, 2, and 1.

These calculations allowed us to construct, for illustrative purposes, approximate
decompositions of the person-level inclusion probabilities as follows:

πhjki = πj |hπk|hjπi|hjk,

where πi|hjk is the reciprocal of the number of people aged 18 or over in household
k. In what follows it will be convenient most of the time so suppress the stratum
index h and combine the selection of household and person, writing the inclusion
probability of person i of area segment j as

πji = πjπi|j . (3)

5 Spatial Multilevel Model

Let the outcome variable yjit be the logarithm of self-reported Post-Traumatic
Stress Disorder (PTSD) severity score for resident i living in sampling cluster j
at Wave t , t = 1, 2, 3. The sampling clusters are taken to be the area segments.
We suppress notation for the sampling stratum h and the household k for simplicity.
The PTSD severity scores were calculated as the sum of responses to 17 symptoms
of PTSD, such as “repeated, disturbing memories of Hurricane Ike,” using the
Checklist-Specific version (PCL-S) (Blanchard et al. 1996) with each symptom
rated from 1 (not at all) to 5 (extremely). Questions were asked in reference to the
period since the hurricane at Wave 1, and the period since the previous interview at
Waves 2 and 3. Let xj i be the row vector of p covariates of interest for resident i in
cluster j , potentially including age, gender, ethnicity, highest education completed,
pre-disaster trauma exposure, pre-disaster PTSD, pre-disaster depression, hurricane-
related trauma and stressors, peri-event reactions, and community-level social assets
(Gruebner et al. 2016a). The model for the outcome variable could also depend on
the sampling design through the sampling stratum, and through determinants of
wij , such as a smooth function of the logarithm of the size variable (the number of
occupied housing units in the sampled census blocks of the area segment); the risk
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indicator for the household; the number of adult members of the household; and a
function of the household non-response adjustment (Anthopolos et al. 2020). We
have used all of these except the function of the size variable, this being omitted to
keep the covariate space relatively simple.

The goal of this modelling approach is to examine risk factors, analytically
and visually, associated with post-disaster scores of PTSD after accounting for
longitudinal dependence, spatial correlation and the complex survey design. We
propose a three-level model, where the three levels are the spatial cluster (the area
segment), the individual within a cluster, and the survey wave within an individual.
By an extension of notation j is the identifier of the adjusted census tract (CT)
containing cluster j . Adjusted CTs were defined as follows: if two or more area
segments (clusters) were in one official CT, the CT was split based on the number
of area segments within it so that each area segment is in just one adjusted CT; if a
CT has no area segment within it, that CT is combined with the nearest adjusted CT;
thus after adjustment, the whole study area has the same number of adjusted CTs as
the number of area segments.

The model for the outcome variable can be written as follows:

yjit |μjit ∼ N(μjit , σ 2
c )

μjit = α0j i + γ02I (t = 2)+ γ03I (t = 3)

α0j i = β0j + xj iβ + v0j i

v0j i ∼ N(0, σ 2
v0)

β0j = γ00 + w0j + u0j

w0j ∼ N(0, σ 2
w0),

where μjit is the expected value for individual i in area segment j at Wave t , and σ 2
c

is the within person variance component; the individual level intercept α0j i depends
on the covariates, and has an individual level variance component σ 2

v0; its area
segment level intercept β0j has the sum of two error terms, a spatially correlated
term u0j and an i.i.d. error term w0j with variance component equal to σ 2

w0.
For the spatially correlated error term of the area segment level intercept a

relatively simple choice is the intrinsic conditional autoregressive (ICAR) prior
(Besag et al. 1991):
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u0j |u0j ′, j
′ ∈ ne(j) ∼ N

(
ū0j ,

σ 2
u0

nj

)
, (4)

where ne(j) is the set of adjusted CTs which are neighbours of Area j , nj is the
number of such neighbours, and ū0j is the mean of the neighbouring spatial random
effects.

In this spatial multilevel model, we model the spatial dependence of clusters by
the neighbourhood structure. Adjusted CTs are considered to be neighbours if they
have a boundary edge or a corner in common.

A Note on Identifiability
An important reason for application of a multilevel spatial model is to try to estimate
the response variable cluster means and to map them. Separating the cluster random
effects into spatially correlated and independent parts can also be of interest, and
that means not only estimating the variance components σ 2

c , σ 2
v0, σ 2

w0, and σ 2
u0 but

also estimating (in a Bayesian analysis) or predicting (in a frequentist analysis)
w0j and u0j . With the model of this section and the kind of data available from
the Galveston Bay Recovery Study, the variance components are identifiable in a
frequentist likelihood analysis, or in the composite likelihood approach of Sect. 7.
The quantities β0j and γ00 are also estimable if the β0j are constrained to have
mean value 0. However, the separation of the random effect w0j + u0j into its two
components is not identifiable in these contexts. (The Bayesian analysis of Sect. 6
would allow such a separation because of the prior assumption on the variance
components.) See Eberly and Carlin (2000) and Best et al. (2005) for discussions of
this non-identifiability of spatial and random effects.

Leroux et al. (1999) and MacNab (2003) proposed a different model for b0j =
w0j + u0j under which this total cluster random effect can be estimated, as well as
a parameter λ that expresses the extent of spatial dependence of the cluster means.
In this model, the covariance of b0j and b0j ′ is the jj ′-th element of the matrix
[σ 2
w0+σ 2

u0][λ(D−A)+ (1−λ)I ]−1 whereD is the diagonal matrix with j -th entry
equal to nj , the number of neighbours of area segment j ; A is the adjacency matrix
for the area segment clusters; and I is the identity matrix. Our method in this paper
could be adapted to working with this parameterization.

6 A Bayesian Analysis

If a Bayesian approach is taken, for example, using WINBUGS, the following prior
distributions for the parameters may be adopted:

γ02 ∼ N(0, 1000); γ03 ∼ N(0, 1000); β ∼ MVN(0, 1000 ∗ I ),
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where I is the identity matrix with the same number of rows as the dimension of xij
and the component standard deviations σc, σu0, σv0 and σw0 have a Cauchy(25)
distribution, where Cauchy(h) signifies a half-Cauchy distribution with scale
parameter h. The parameter γ00 is given an improper uniform prior. All parameters
are a priori independent. In all analyses in this paper, we assume dropout is not
informative.

The results of the Bayesian analysis are displayed in Table 1. The level of PTSD
is seen to decrease after Wave 1, and to rise a little between Wave 2 and Wave
3. The level of PTSD tends to be higher among females, and to increase with
age; it is higher for minorities; higher for people with PTSD prior to Hurricane
Ike; higher for people with Ike-related trauma; higher for people with peri-event

Table 1 Results of the Bayesian analysis

Beta values Mean SD 2.50% 97.50%

Intercept 3.1500 0.1695 2.8230 3.4890

Survey waves Wave 2 −0.1107 0.0131 −0.1367 −0.0850

Wave 3 −0.0835 0.0135 −0.1096 −0.0570

Sex Male −0.0408 0.0224 −0.0842 0.0032

Age groups 35–54 0.0215 0.0303 −0.0379 0.0799

55 and over 0.1180 0.0335 0.0511 0.1832

Race Black non-hisp 0.1226 0.0356 0.0529 0.1932

Hispanic 0.0929 0.0317 0.0312 0.1557

Other non-hisp 0.0328 0.0497 −0.0644 0.1314

Education = high school −0.1006 0.0353 −0.1690 −0.0313

> high school −0.1379 0.0327 −0.2017 −0.0741

# traumatic events prior to Ike 2–3 0.0179 0.0264 −0.0337 0.0701

4+ 0.0471 0.0295 −0.0103 0.1049

Depression prior to Ike Yes 0.0359 0.0287 −0.0204 0.0929

PTSD prior to Ike Yes 0.2017 0.0355 0.1328 0.2720

Ike-related trauma Yes 0.1058 0.0342 0.0390 0.1734

Ike-related stress Yes 0.0028 0.0499 −0.0951 0.0996

Peri-event emotional reactions Medium 0.1608 0.0272 0.1087 0.2149

High 0.3801 0.0285 0.3234 0.4359

Non-response adjustment −0.0262 0.0625 −0.1503 0.0945

# adult household members 2–3 0.0371 0.0242 −0.0104 0.0851

4+ 0.0585 0.0629 −0.0657 0.1826

High PTSD risk indicator Yes 0.0090 0.0232 −0.0361 0.0557

Average social support 0.0670 0.0541 −0.0397 0.1727

Average collective efficacy −0.0635 0.0384 −0.1372 0.0132

Within person variance σ 2
c 0.0474 0.0026 0.0427 0.0529

Within cluster variance σ 2
v0 0.0456 0.0041 0.0381 0.0539

Between cluster variance (indep) σ 2
w0 0.0033 0.0025 0.0001 0.0090

Between cluster variance (ICAR) σ 2
u0 0.0064 0.0051 0.0007 0.0197
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Fig. 2 Estimated cluster-level mean fixed effects of PTSD severity score

emotional reactions. The components of variance σ 2
c and σ 2

v0 are estimated at 0.047
and 0.046, respectively, while the estimates of σ 2

u0 and σ 2
w0 are much smaller, and

the posterior 2.50% quantiles of these last two variance components are very close
to 0, suggesting that the variability within and between individuals dominates the
area segment level variability.

Figures 2 and 3 display, respectively, the estimated cluster-level mean fixed
effects and the estimated cluster-level random effects u0 + w0. (See Fig. 1 for
comparison of the areas of high and low predicted PTSD severity with the stratum
definitions.) The cluster-level mean fixed effects are the average, taken over sample
members of the cluster at baseline, of the regression function with the coefficients
replaced by their posterior mean values.

The estimated mean fixed effects have higher variability about their overall mean
than do the estimated random effects. For the mean fixed effects, the values are
mainly as expected given the characteristics of their strata. For example, higher
values for the average predicted PTSD severity score are found in Stratum 1, in the
eastern part of Galveston Island and Bolivar Island, and in some areas of Stratum
3, while lower values appear in parts of Stratum 5. The random effects also appear
higher in Stratum 1.
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Fig. 3 Estimated cluster-level random effects of PTSD severity score

7 Frequentist Composite Likelihood Analysis

For a frequentist analysis, we consider adapting the weighted pairwise composite
likelihood approach of Rao et al. (2013) and Yi et al. (2016). The idea in outline is
as follows.

• Find (approximately) unbiased census estimating function terms for individual
y values (for mean function parameters) and pairs of y values (for variance
parameters).

• Combine them appropriately so that the combinations become maximum pair-
wise composite likelihood equations under the Gaussian model of Sect. 5.

• Estimate the census estimating functions by weighted sample estimating func-
tions, and find their roots for point estimation.

7.1 Estimating Function System for Mean Parameters

For the mean parameters, the estimating function system could be a survey weighted
GEE system:
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∑
j

∑
i

wjiXji(Σr)
−1(yji. −Mji.), (5)

whereMjit = γ00+xj iβ+γ02I (t = 2)+γ03I (t = 3) is the marginal mean of yjit ,
and yji.−Mji. is the vector of observed yjit minus the correspondingMjit ;Xji is a
(p+3)×3 matrix with columns equal to the transposes of (xj i , 1, 1, 1), (xj i , 0, 1, 0)
and (xj i , 0, 0, 1); and Σr is an exchangeable working correlation matrix, with 1’s
on the diagonal and with off-diagonal entries equal to a single correlation parameter
ρ. The residuals are ẑj it = yjit − M̂jit .

We note that the corresponding census estimating equation system is sub-optimal
because the working covariance structure assumes independence of individuals,
rather than the two-level model. Fitting this model using SUDAAN allows the
stratification and two-stage design to be taken into account in estimation and testing
hypotheses for the mean function parameters. This use of SUDAAN requires that
the working correlation matrix be either exchangeable or independent.

7.2 Decomposition of the Error Term

The variance of

zjit = yjit −Mjit = ejit + v0ij + w0j + u0j

is

σ 2
c + σ 2

v0 + σ 2
w0 + σ 2

uj ,

where σ 2
uj is the (unconditional) variance of u0j under the ICAR model.

The covariance of zjit and zj ′i′t ′ is the (unconditional) covariance of u0j , u0j ′
under the ICAR model. This is expressible as Cujj ′ , the jj ′-th element of the matrix
σ 2
u0(D−A)−1 (generalized inverse) whereD is the diagonal matrix with j -th entry

equal to nj , the number of neighbours of area segment j ; and A is the adjacency
matrix for the area segment clusters.

7.3 Estimating Equation System for Variance Components

If zjit = yjit − Mjit , and sj denotes the sample of respondents in cluster j , the
estimating equation system for the variance components can be written as:
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∑
j

wj
∑
i∈s(j)

wi|j
3∑
t=1

(z2
j it − v1j ) = 0, (6)

∑
j

wj
∑
i∈s(j)

wi|j
3∑
t=1

∑
t ′<t
(zjit zjit ′ − v2j ) = 0, (7)

∑
j

wj
∑
i′<i

∑
∈s(j)

wii′|j
3∑
t=1

3∑
t ′=1

(zjit zji′t ′ − v3j ) = 0, (8)

and

∑
h

∑
j ′<j∈Sh

wjj ′
∑
i′∈s(j ′)

∑
i∈s(j)

wi′|j ′wi|j
3∑
t=1

3∑
t ′=1

(zjit zj ′i′t ′ − Cjj ′) = 0. (9)

In Eqs. (6)–(8), the notation
∑
j signifies

∑
h

∑
j∈Sh , where Sh denotes Stratum h.

In the system of equations (6)–(9)

v1j = σ 2
uj + σ 2

w0 + σ 2
v0 + σ 2

c

v2j = σ 2
uj + σ 2

w0 + σ 2
v0

v3j = σ 2
uj + σ 2

w0

Cujj ′ = cjj ′σ 2
u0

and cjj ′ is a known constant.
The solutions to (5) and to (6)–(9) have closed forms:

σ̂ 2
u0 =

∑
h

∑
j ′<j∈Sh wjj ′

∑
i′∈s(j ′)

∑
i∈s(j) wi′|j ′wi|j

∑3
t=1

∑3
t ′=1 Iit Ii′t ′zjit zj ′i′t ′∑

h

∑
j ′<j∈Sh wjj ′

∑
i′∈s(j ′)

∑
i∈s(j) wi′|j ′wi|j �i�i′cjj ′

(10)

σ̂ 2
w0 =

∑
j wj

∑
i∈s(j)

∑
i′<i∈s(j) wii′|j

∑3
t=1

∑3
t ′=1 Iit Ii′t ′(zjit zji′t ′ − aj σ̂ 2

u0)∑
j wj

∑
i∈s(j)

∑
i′<i∈s(j) wii′|j �i�i′

(11)
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σ̂ 2
v0 =

∑
j wj

∑
i∈s(j) wi|j

∑3
t=1

∑
t ′<t Iit Iit ′(zjit zjit ′ − aj σ̂ 2

u0)∑
j wj

∑
i∈s(j) wi|j �i(�i − 1)/2

− σ̂ 2
w0 (12)

σ̂ 2
c =

∑
j wj

∑
i∈s(j) wi|j

∑3
t=1 Iit (z

2
j it − aj σ̂ 2

u0)∑
j wj

∑
i∈s(j) wi|j �i

− σ̂ 2
w0 − σ̂ 2

v0. (13)

where Iit is the indicator function for i having an interview at t , and �i is the number
of interviews of i.

7.4 Point Estimation

In a design-based analysis taking the weights to be the reciprocals of the correspond-
ing inclusion probabilities, inclusion probabilities are needed for area segments j
and for individuals within area segments i | j . Joint inclusion probabilities are
needed for area segments jj ′ and for individuals within area segments ii′ | j .

To illustrate the method with the GBRS data, having reconstructed inclusion
probabilities from partial information on the data file as described in Section 4,
we have used a Hájek approximation (Hájek et al. 1964) for the joint inclusion
probabilities:

πab - πaπb
[

1 − (1 − πa)(1 − πb)∑
a∈sample(1 − πa)

]
.

The paper by Haziza et al. (2008) gives an account of this and other joint inclusion
approximations that can be used in variance estimation, including the one by Hartley
and Rao (1962).

The residuals zjit = yjit −Mjit were estimated using SUDAAN; the results of
the SUDAAN analysis are displayed in Table 2:

In (5), the design weight for yji. minus its marginal mean is the design weight
for individual i in cluster j . This was taken to be the reciprocal of πi|jπj as
approximated in Sect. 4. These design weights were also applied in (13) and (12).

In (11), the design weight for zji′t ′zjit minus its marginal mean was taken to be
the reciprocal of πjπii′|j , where the second factor is the joint inclusion probability
of i and i′, given that cluster j is included. The second factor was taken to be the
product of the reciprocals of the numbers of adults in their households, times the
joint inclusion probabilities of their households, given that cluster j is included.
This last factor was calculated by a Hájek approximation from the individual
conditional inclusion probabilities. Finally, in (10), the weight wjj ′ was taken to be
the reciprocal of the Hájek approximation to the joint cluster inclusion probability
πjj ′ .
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Table 2 Results of the GEE analysis

Beta values Point est SE 2.50% 97.50%

Intercept 3.0554 0.1995 2.6656 3.4452

Survey waves Wave 2 −0.1165 0.0162 −0.1489 −0.0842

Wave 3 −0.0785 0.0241 −0.1265 −0.0304

Sex Male 0.0005 0.0262 −0.0518 0.0527

Age groups 35–54 0.0440 0.0283 −0.0123 0.1004

55 and over 0.1277 0.0282 0.0715 0.1840

Race Black non-hisp 0.2176 0.0326 0.1525 0.2827

Hispanic 0.1324 0.0407 0.0513 0.2136

Other non-hisp 0.0634 0.0457 −0.0277 0.1544

Education = high school −0.0097 0.0449 −0.0991 0.0797

> high school −0.0480 0.0443 −0.1363 0.0403

# traumatic events prior to Ike 2–3 −0.0353 0.0305 −0.0961 0.0254

4+ −0.0065 0.0275 −0.0613 0.0484

Depression prior to Ike Yes 0.0165 0.0295 −0.0424 0.0754

PTSD prior to Ike Yes 0.1975 0.0311 0.1354 0.2595

Ike-related trauma Yes 0.2115 0.0653 0.0814 0.3416

Ike-related stress Yes −0.0106 0.0470 −0.1043 0.0830

Peri-event emotional reactions Medium 0.1458 0.0284 0.0891 0.2024

High 0.3354 0.0372 0.2613 0.4095

Non-response adjustment −0.0033 0.0597 −0.1223 0.1157

# adult household members 2–3 0.0449 0.0317 −0.0183 0.1082

4+ 0.0522 0.0620 −0.0715 0.1758

High PTSD risk indicator Yes 0.0245 0.0270 −0.0293 0.0784

Average social support 0.1401 0.0355 0.0694 0.2108

Average collective efficacy −0.1200 0.0436 −0.2069 −0.0332

Within person correlation ρ 0.2903

The point estimates of the first two variance components from the Galveston Bay
data are σ̂ 2

c = 0.0381 and σ̂ 2
v0 = 0.0314. The sum of σ̂ 2

u0 and σ̂ 2
w0, the total cluster-

level variance component, is estimated at 0.0023, indicating that in this data set, the
within cluster (between person) and within person variances dominate. We note that
the sample has not been designed to facilitate a spatial analysis with the multilevel
model of Sect. 5, and that the model itself may be too simple to apply well to the
whole area.

The point estimates of variance components are somewhat smaller than those
arising from the Bayesian analysis, but despite the high variability of the survey
weights, the relative values from the frequentist analysis are similar.

There is good agreement between the estimates in Tables 1 and 2. Considering
exclusion of zero from a nominal 95% interval as evidence of a non-zero effect,
there are only four variables (average social support, average collective efficacy and
the two education variables) where the inferences are different. It should be noted
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that, although the GEE point estimation is sub-optimal, the standard errors from the
GEE analysis do take into account the clustering and (through the design weights)
the unequal probability sampling in the sampling design, and not surprisingly the
SEs for the GEE analysis tend to be a little larger than the SDs of the Bayesian
analysis.

7.5 Uncertainty Estimation

There are several methods that can be contemplated for the estimation of uncertainty
in the point estimates arising from the system (5) and (6)–(8) or the system (5) and
(10)–(13).

Applying a classical design-based approach would require the use of third and
fourth order approximate inclusion probabilities. More appealing would be a model-
based estimator of the mean-squared error of the design-based point estimators,
using a sandwich estimation technique, described next in a simpler case.

Suppose θ̂ is the solution of the estimating equation

∑
i∈s
wiφi(yi, θ),

where under the model for the observations yi , the terms φi(yi, θ) are correlated,
with a correlation structure having parameters ρ. Then consider the Taylor series
expression for the estimation error:

θ̂ − θ -
(∑
i∈s
wi
∂φi

∂θ

)−1∑
i∈s
wiφi .

The square of the left-hand side can be expressed as

(θ̂ − θ)2 =
(∑
i∈s
wi
∂φi

∂θ

)−1∑
i

∑
i′
wiwi′φiφi′

(∑
i∈s
wi
∂φi

∂θ

)−1

.

The factor in the middle can be replaced by its expectation in terms of the ρ
parameters. The estimator of the variance of θ̂ could be the same expression
evaluated at θ̂ and ρ̂.

Another possible approach would be to treat the expressions in the left-hand
sides for the sample-based maximum pairwise composite likelihood equations
as analogous to the score function in a corresponding Gaussian model for the
generation of the observations, as developed in the case of a simpler random effects
model by Thompson et al. (2022). In that case, applying an adjustment to the
curvature of the corresponding log likelihood along the lines of that proposed by



292 M. E. Thompson et al.

Ribatet et al. (2012) would make the pairwise log likelihood equations information
unbiased and bring the inference based on them closer to that of a Bayesian analysis.

8 Discussion and Conclusions

We have outlined a frequentist design-based approach to estimation of the parame-
ters of a multilevel repeated measures model with a continuous outcome, using data
from a complex stratified three stage sampling design. The method uses the sample
data to estimate population pairwise composite likelihood estimating functions. We
have applied it to complex survey data from the Galveston Bay Recovery Study.
In this application, the point estimates are broadly similar to those obtained from a
Bayesian analysis of the same model.

Besides availability in software, important advantages of the Bayesian approach
are the capacity to estimate the parameters of complex models and the principled
expression of uncertainty through posterior distributions and credible intervals.
From the frequentist perspective, a disadvantage of some Bayesian approaches is
a requirement for knowledge of the variables influencing the sampling design, and
the form of that influence. Incorporating this knowledge in the model accounts for
the way in which the sampling design may distort the population relationships of
interest. Other Bayesian approaches, such as the one used by Anthopolos et al.
(2020), and used in Sect. 6, summarize the design features by including in the model
the sample weights as covariates. When we include the survey design variables in
the model, the interpretation of covariates of interest is altered, and may be changed
in ways that do not align with scientific investigation.

The design-based frequentist approach attempts to address directly and compen-
sate for this distortion. An advantage of this approach is that it can be applied in a
straightforward manner to simple analytic uses of complex survey data with the use
of a single set of survey weights supplied with the data. With this approach, there
is also a natural extension to account for missing data by multiplying the baseline
weight of someone who has responded at Wave t by the reciprocal of the probability
of remaining in the sample up to that wave. Disadvantages are that the method as
applied in this paper requires linear or quadratic estimating functions and that the
variance components at the cluster-level tend to be weakly estimable.

We recommend the use of both methods for comparison in simple analytic uses
of the data.
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Efficient Experimental Design for Lasso
Regression

Peter Chien, Xinwei Deng, and Chunfang Devon Lin

Abstract Lasso regression has attracted great attention in statistical learning and
data science. However, there is sporadic work on constructing efficient data collec-
tion for regularized regression. In this work, we propose an experimental design
approach, using nearly orthogonal Latin hypercube designs, to enhance the variable
selection accuracy of Lasso regression. Systematic methods for constructing such
designs are presented. The effectiveness of the proposed method is illustrated with
several examples.

Keywords Design of experiments · Latin hypercube design · Nearly orthogonal
design · Regularization · Variable selection

1 Introduction

In statistical learning and data sciences, regularized regression has attracted great
attention across multiple disciplines (Fan et al. 2005; Hesterberg et al. 2008; Huang
& Breheny 2012; Heinze et al. 2018). Among various regularized regression, the
Lasso regression is one of the most well-known techniques on the L1 regularization
to achieve accurate prediction with variable selection (Tibshirani 1996). Statistical
properties and various extensions of this method have been actively studied in recent
years (Tibshirani & Taylor 2011; Zhao & Yu 2006; Zhao et al. 2009; Zou & Hastie
2005; Zou 2016). However, there is sporadic work on constructing efficient data

P. Chien
Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA
e-mail: peter.chien@wisc.edu

X. Deng
Department of Statistics, Virginia Tech, Blacksburg, VA, USA
e-mail: xdeng@vt.edu

C. Devon Lin (�)
Department of Mathematics and Statistics, Queen’s University, Kingston, ON, Canada
e-mail: devon.lin@queensu.ca

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
W. He et al. (eds.), Advances and Innovations in Statistics and Data Science, ICSA
Book Series in Statistics, https://doi.org/10.1007/978-3-031-08329-7_14

295

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08329-7_14&domain=pdf

 885 49096 a 885 49096 a
 
mailto:peter.chien@wisc.edu

 885
52970 a 885 52970 a
 
mailto:xdeng@vt.edu

 885 56845 a 885 56845
a
 
mailto:devon.lin@queensu.ca

 7630 61494 a 7630 61494
a
 
https://doi.org/10.1007/978-3-031-08329-7_14


296 P. Chien et al.

collection for regularized regression (De Castro 2014; Ravi et al. 2016; Huang
& Kong 2020). In this article, we study the data collection for the regularized
regression from an experimental design perspective.

First, we give a brief description of the Lasso procedure. Consider a linear model

y = xT β + ε, (1)

where x = (x1, . . . , xp)
T is the vector of p continuous predictor variables, y is the

response value, β = (β1, . . . , βp)
T are the vector of regression parameters, and the

error term ε is normally distributed with mean zero and variance σ 2. Throughout,
assume data are centered so that the model in (1) has no intercept. Suppose this
model has a sparse structure for which only p0 predictor variables are active with
non-zero regression coefficients, where p0 < p. Let A(β) = {j : βj �= 0, j =
1, . . . , p} be the set of the indices of the active variables. Then the cardinality of the
setA(β) is p0.

For a given n × p regression matrix X = (x1, . . . , xn)
T , and a given response

vector y = (y1, . . . , yn)
T , the Lasso solution is

β̂ = arg min
β
[(y − Xβ)T (y − Xβ)+ λ‖β‖l1 ], (2)

where ‖β‖l1 = ∑p

i=1 |βi | and λ is a tuning parameter. Because the l1 norm ‖ · ‖l1
is singular at the origin, a desirable property of the Lasso is that some components
of β̂ are exactly zero. Then A(β) can be estimated by A(β̂) = {j : β̂j �= 0, j =
1, . . . , p}. The number of false selections of the Lasso is

γ = #{j : j ∈ A(β̂) but j /∈ A(β)} + #{j : j /∈ A(β̂) but j ∈ A(β)}, (3)

where # denotes the set cardinality, the first term counts the number of false positives
and the second term counts the number of false negatives.

The scope of this work is in developing experimental design techniques to
construct the regression matrix X in (2) in order to minimize the value of γ in
(3), the number of false selection. Based on the probability properties of regularized
regression, it often requires large randomness in the regression matrix (Jung et al.
2019). Thus, a straightforward way is to take X to be an independently and identi-
cally distributed (i.i.d.) sample. However, from an experimental design perspective,
the points of an i.i.d. sample is not well stratified in the design space (Box et al.
2005; Wu & Hamada 2009). To improve upon this scheme, we propose to take X to
be a nearly orthogonal Latin hypercube design (NOLHD) that is a Latin hypercube
design with nearly orthogonal columns. A Latin hypercube design is a space-filling
design that achieves maximum uniformity when the points are projected onto any
one dimensional space (McKay et al. 1979). An NOLHD simultaneously possesses
two desirable properties: low-dimensional stratification and nearly orthogonality.
Owen (1992) stated the advantage of using Latin hypercube designs for learning
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additive models. It was discussed in Section 3 of Owen (1992) that the least-
squares estimates of the regression coefficients of an additive regression with a Latin
hypercube design can have significant smaller variability than their counterparts
under an i.i.d. sample. Since the model in (1) is additive, β̂ in (2) associated with
a Latin hypercube design is expected to be superior to that with an i.i.d. sample.
Both random Latin hypercube designs and NOLHDs are popular in computer
experiments (Lin 2015). It is advantageous to use NOLHDs instead of random Latin
hypercube designs for the Lasso problem because the former have guaranteed small
columnwise correlations. When the regression matrix X is taken to be an NOLHD,
its small columnwise correlations allow the active variables less correlated with the
inactive variables, thus improving the selection accuracy of the Lasso.

There is some consistency between the concept of NOLHDs and the sparsity
concept in variable selection. The sparsity assumption we have made earlier for
the model in (1) states that only p0 variables in the model are active and does not
specify which p0 variables are active. If the regression matrix X for this model is an
NOLHD of n runs for p input variables, when the points of this design are projected
onto any p0 dimensions, the resulting design still retains the NOLHD structure for
the p0 factors. Note that an NOLHD has more than two levels and spreads the points
evenly in the design space, not restricted to the boundaries only. Since the number
of false selections γ in (3) has a nonlinear relation with the regression matrix X,
the use of an NOLHD for the Lasso problem is more appropriate than a two-level
design to exploit this complicated relation between γ and X.

The remainder of the article is organized as follows. Section 2 introduces a new
criterion to measure NOLHDs and presents two systematic methods for constructing
such designs for the Lasso problem. Section 3 provides numerical examples to bear
out the effectiveness of the proposed method. The numerical examples in Sect. 3
clearly indicate the superiority of NOLHDs over two-level designs for the Lasso
problem. We provide a brief discussion in Sect. 4.

2 Methodology

In this section we discuss the construction of NOLHDs and how to use them for the
Lasso problem. We prefer NOLHDs over random Latin hypercube designs because
the latter are not guaranteed to have small columnwise correlations. An illustration,
let n = 64 and p = 192 and compute γ in (3) for two different choices of X in (2).
Assume the model in (1) has σ = 8 and β = (0.05, 0.2, . . . , 3.0, 0 . . . , 0)T , where
only the first 20 coefficients are nonzeros, and the predictor variables take values on
the hypercube [−(64−1)/2, (64−1)/2]p . The first method takes the design matrix
X to be a random Latin hypercube design constructed by (7). Figure 1 depicts the
histogram of the columnwise sample correlations of one random Latin hypercube
design, where 21% of the columnwise correlations of the matrix are larger than 0.1
in absolute values. This method gives γ = 36 in one realization of the model. The
second method takes the design matrix to be a 64 × 192 NOLHD from Sect. 2.1,
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Fig. 1 Histogram of the sample correlations of a 64 × 192 random Latin hypercube design

where the columnwise correlations of the matrix are very small. The second method
gives γ = 20 in one realization of the model. The difference of γ values of the two
methods indicates that the Lasso solution with an NOLHD can be far more superior.

Here are some useful notation and definitions for constructing NOLHDs. The
Kronecker product of an n× p matrix A = (aij ) and an m× q matrix B = (bij ) is

A ⊗ B =

⎡
⎢⎢⎢⎣
a11B a12B . . . a1pB
a21B a22B . . . a2pB
...

...
. . .

...

an1B an2B . . . anpB

⎤
⎥⎥⎥⎦ ,

where aijB is an m × q matrix whose (k, l) entry is aij bkl . The correlation matrix
of an n× p matrix X = (xij ) is

ρ =

⎛
⎜⎜⎜⎝
ρ11 ρ12 . . . ρ1p

ρ21 ρ22 . . . ρ2p
...

...
. . .

...

ρp1 ρp2 . . . ρpp

⎞
⎟⎟⎟⎠ , (4)

where
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ρij =
∑n
k=1(xki − x̄i )(xkj − x̄j )√∑
(xki − x̄i )2∑(xkj − x̄j )2

, (5)

represents the correlation between the ith and j th columns of X, x̄i = n−1∑n
k=1 xki

and x̄j = n−1∑n
k=1 xkj . The matrix X is orthogonal if ρ in (4) is an identity matrix.

Let D = (dij ) be an n × p random Latin hypercube in which each column
is a random permutation of 1, . . . , n, and all columns are generated independently.
Using D, a random Latin hypercube design Z = (zij ) on [0, 1]p is generated through

zij = dij − uij
n

, i = 1, . . . , n; j = 1, . . . , p, (6)

where the uij ’s are independent uniform random variables on [0,1), and the dij ’s and
the uij ’s are mutually independent. If Z needs to be defined on [a, b]p for general
a < b, rescale zij in (6) as

zij ← (b − a)zij + a. (7)

We use NOLHD(n, p) to denote an n × p NOLHD. For a pre-specified vector
t = (t1, . . . , tq) with 0 ≤ tq ≤ · · · ≤ t1 ≤ 1, the orthogonality of an NOLHD X can
be assessed by using the proportion correlation vector given by

δt(X) = (δt1(X), . . . , δtq (X)), (8)

where δtk (X) = {p(p − 1)}−1∑p

i=1

∑
j �=i I (|ρij | ≤ tk), k = 1, . . . , q, and I (·)

is an indicator function. For k = 1, . . . , q, this criterion computes the proportion
of the |ρij |’s not exceeding tk . For two designs X1 and X2, X1 is preferred over
X2 if δtk (X1) > δtk (X2) for t1, . . . , tq . For the Lasso problem, this new criterion
has more discriminating power than the maximum correlation ρm and root average
squared correlation ρave criteria proposed in Bingham et al. (2009), where ρm(X) =
maxi,j |ρij | and and ρave(X) = {∑i<j ρ

2
ij /[p(p − 1)/2]}1/2. Designs with similar

values of ρm and ρave may have different values of δt. For illustration, compare a
randomly generated 64× 192 i.i.d. sample with an NOLHD(64, 192) from Sect. 2.1.
The former has ρave = 0.124 and ρm = 0.493 and the latter has ρave = 0.112 and
ρm = 0.786. The two designs are indistinguishable in terms of ρave. But for t =
(0.1, 0.05, 0.01, 0.005), δt = (0.562, 0.305, 0.064, 0.033) for the i.i.d. sample and
δt = (0.906, 0.894, 0.883, 0.883) for the NOLHD, clearly indicating the superiority
of the latter.

Sections 2.1 and 2.2 present two systematic methods for constructing NOLHDs.
The first method was proposed by Lin et al. (2009) and the second method is a
generalization of the method in Lin et al. (2010). To assist readers in machine
learning who may not be familiar with NOLHDs, we describe these two methods
in a self-contained fashion. These two methods are easy to implement. Other
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construction methods for (nearly) orthogonal Latin hypercube designs include
Owen (1994), Tang (1998), Ye (1998), Steinberg and Lin (2006), Pang et al.
(2009), and Sun et al. (2009, 2010), among others. However, they have run-size
constraints and thus we do not consider here. In the two constructions we will
present, an NOLHD with n runs is obtained from a Latin hypercube in which
the n levels in each column are {−(n − 1)/2, . . . , 0, . . . , (n − 1)/2} if n is odd and
{−(n− 1)/2, . . . ,−1/2, 1/2, . . . , (n− 1)/2} if n is even.

2.1 A Construction Method Using Orthogonal Arrays

Lin et al. (2009) proposed a method for constructing nearly orthogonal Latin
hypercubes using orthogonal arrays. Recall that an orthogonal array OA(n, p, s)

of strength two is an n × p matrix with levels 1, . . . , s such that, for any two
columns, all level combinations appear equally often (Hedayat et al. 1999). Let A
be an OA(s2, 2f, s) and let B = (bij ) be an s × p Latin hypercube. This method
works as follows.

Step 1. For j = 1, . . . , p, obtain an s2 × (2f )matrix Aj from A by replacing the
symbols 1, . . . , s in the latter by b1j , . . . , bsj , respectively, and partition Aj to
Aj1, . . . ,Ajf , each of two columns.

Step 2. Let

V =
[

1 −s
s 1

]
.

For j = 1, . . . , p, obtain an s2 × (2f ) matrix

Mj = [Aj1V, . . . ,AjfV].

Step 3. For n = s2 and q = 2pf , define an n× q matrix M = [M1, . . . ,Mp].

Lemma 1 from Lin et al. (2009) captures the structure of M.

Lemma 1

(a) The matrix M constructed above is an s2 × (2pf ) Latin hypercube.
(b) The correlation matrix of M is ρ(M) = ρ(B) ⊗ I2f , where I2f is the identity

matrix of order 2f .

Observe that the proportion correlation δtk in (8) of M is

δtk (M) = [p(2f − 1)+ (p − 1)δtk (B)]/(2pf − 1), for k = 1, . . . , q. (9)

Example 1 Let A be an OA(49, 8, 7) from Hedayat et al. (1999) and let B be an
NOLHD(7, 12) given by
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⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−3 0 −1 0 3 3 0 −2 1 −3 −1 −3
−2 −1 1 −3 −1 −3 1 −3 −2 −1 1 3
−1 3 0 3 0 −2 2 0 −1 3 −3 −1

0 −2 3 2 −2 2 −2 1 −3 1 2 −2
1 1 −3 −1 −3 1 −3 −1 3 2 0 1
2 −3 −2 1 1 −1 3 2 2 0 3 0
3 2 2 −2 2 0 −1 3 0 −2 −2 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

where ρave(B) = 0.3038, ρm(B) = 0.9643, and δt(B) = (δ0.1, δ0.05, δ0.01, δ0.005) =
(0.500, 0.364, 0.136, 0.136). Here, the matrix M from Lemma 1 is an
NOLHD(49, 96) with ρave(M) = 0.1034 and ρm(M) = 0.9643. From (9),
δt(M) = (δ0.1, δ0.05, δ0.01, δ0.005) = (0.942, 0.926, 0.9, 0.9). In general, if B is
an NOLHD(7, p), Lemma 1 gives an NOLHD(49, 8p).

2.2 A Construction Method Using the Kronecker Product

We now propose a generalization of the method in Lin et al. (2010) for constructing
NOLHDs. This generalization provides designs with better low-dimensional projec-
tion properties than those obtained in Lin et al. (2010).

For j = 1, . . . , m2, let Cj = (c
j
ik) be an n1 × m1 Latin hypercube and let

Aj = (a
j
ik) be an n1 × m1 matrix with entries ±1. Let B = (bij )n2×m2 be an

n2 ×m2 Latin hypercube, let D = (dij )n2×m2 be a matrix with entries ±1, and let r
be a real number. Our proposed method constructs

M =

⎡
⎢⎢⎢⎣

b11A1 + rd11C1 b12A2 + rd12C2 . . . b1m2 Am2 + rd1m2 Cm2

b21A1 + rd21C1 b22A2 + rd22C2 . . . b2m2 Am2 + rd2m2 Cm2
...

...
. . .

...

bn21A1 + rdn21C1 bn22A2 + rdn22C2 . . . bn2m2 Am2 + rdn2m2 Cm2

⎤
⎥⎥⎥⎦ . (10)

In contrast, the method in Lin et al. (2010) constructs

L = A ⊗ B + rC ⊗ D, (11)

where A = (aij )n1×m1 is a matrix with entries ±1, C = (cij )n1×m1 is an n1 ×
m1 Latin hypercube, and B, D and r are as in (10). Lin et al. (2010) provided the
conditions for L to be a nearly orthogonal Latin hypercube. When projected onto
some pairs of predictor variables, points in the design in (11) lie on straight lines,
which may not be desirable for the Lasso problem. Such projection patterns are
due to the use of the same A and the same C for each entry of B and D in (11).
The generalization in (10) uses different Aj ’s and Cj ’s to eliminate this undesirable
projection pattern. Proposition 1 establishes conditions for M in (10) to be a Latin
hypercube.
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Proposition 1 Let r = n2. Then the design M in (10) is a Latin hypercube if
one of the following two conditions holds:

(a) For j = 1, . . . , m2, the Aj and Cj satisfy that for i = 1, . . . , m1, c
j
pi = −cj

p′i
and ajpi = ajp′i hold simultaneously.

(b) For k = 1, . . . , m2, the entries of B and D satisfy the condition that bqk =
−bq ′k and dqk = dq ′k hold simultaneously.

Proposition 1 can be verified by using an argument similar to the proof of
Lemma 1 in Lin et al. (2010) and thus is omitted. Proposition 2 studies the
orthogonality of M in terms of Aj ’s, B, Cj ’s and D.

Proposition 2 Suppose Aj ’s, B, Cj ’s, D and r in (10) satisfy condition (a) or (b)
in Proposition 1 and M in (10) is a Latin hypercube. In addition, assume that Aj s,
B, and D are orthogonal and that BTD = 0 or ATj Cj = 0 holds for all js. Then we
have that

(a) ρm(M) = Max{w1ρm(Cj ), j = 1, . . . , m2}, where w1 = n2
2(n

2
1 − 1)/(n2

1n
2
2 −

1).

(b) ρave(M) =
√
w2
∑m2
j=1 ρ

2
ave(Cj )/m2, where w2 = (m1 − 1)w2

1/(m1m2 − 1)].
(c) δtk (M) ≥

∑m2
j=1 δtk (Cj )/m2 for k = 1, . . . , q.

(d) The matrix M is orthogonal if and only if C1, . . . ,Cm2 are all orthogonal.

Proof Let Mjk and Mj ′k′ be the [(j −1)m2 +k]th and [(j ′ −1)m2 +k′]th columns
of M in (10), respectively. Take n = n1n2. Let ρ(Mjk,Mj ′k′) be the correlation
between Mjk and Mj ′k′ defined in (5). Express 12−1n(n2 − 1)ρ(Mjk,Mj ′k′) as

n2∑
i1=1

n1∑
i2=1

(bi1j a
j
i2k

+ n2di1j c
j
i2k
)(bi1j ′a

j ′
i2k

′ + n2di1j ′c
j ′
i2k

′),

which equals

n2∑
i1=1

bi1j bi1j ′
n1∑
i2=1

a
j
i2k
a
j ′
i2k

′ + n2

n2∑
i1=1

di1j bi1j ′
n1∑
i2=1

c
j
i2k
a
j ′
i2k

′

+n2

n2∑
i1=1

bi1j di1j ′
n1∑
i2=1

a
j
i2k
c
j ′
i2k

′ + n2
2

n2∑
i1=1

di1j di1j ′
n1∑
i2=1

c
j
i2k
c
j ′
i2k

′

=
n2∑
i1=1

bi1j bi1j ′
n1∑
i2=1

a
j
i2k
a
j ′
i2k

′ + n2
2

n2∑
i1=1

di1j di1j ′
n1∑
i2=1

c
j
i2k
c
j ′
i2k

′ .

Thus, ρ(Mjk,Mj ′k′) is zero for j �= j ′ and is n2
2(n

2
1 − 1)ρkk′(Cj )/(n2 − 1) for

j = j ′ and k �= k′. By the definitions of ρm and ρave, the results in (a) and (b) hold.
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Note that for k = 1, . . . , q,

δtk (M) = {m2(m2 − 1)m2
1 +m1(m1 − 1)

m2∑
j=1

δtk (Cj )}/{m1m2(m1m2 − 1)}

=
m2∑
j=1

δtk (Cj )/m2 + [(m2 − 1)m1{1 −
m2∑
j=1

δtk (Cj )/m2}]/(m1m2 − 1).

The result in (c) now follows because
∑m2
j=1 δtk (Cj )/m2 ≤ 1. By (a), (b), and (c),

(d) is evident. This completes the proof. ��
Proposition 2 expresses the near orthogonality of M in (10) in terms of that of

Cj ’s and establishes conditions for Aj , B, and D in order for M to be an orthogonal
Latin hypercube. The required matrices in Proposition 2 can be chosen as follows.
First, orthogonal matrices Aj ’s and D are readily available from Hadamard matrices
when n1 and n2 are multiples of four. Second, orthogonal Latin hypercubes B are
available from Pang et al. (2009), Lin et al. (2009), Lin et al. (2010), among others.
If Aj , B, and D are orthogonal, and either BTD = 0 or ATj Cj = 0, then M is
orthogonal when Cj ’s are orthogonal Latin hypercubes. If Cj ’s are NOLHDs like
those from Lin et al. (2009) and Lin et al. (2010), then M is nearly orthogonal. If
C1 is an NOLHD, C2, . . . ,Cm2 can be obtained by permuting the rows of C1.

Example 2 Let

B = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −3 7 5
3 1 5 −7
5 −7 −3 −1
7 5 −1 3

−1 3 −7 −5
−3 −1 −5 7
−5 7 3 1
−7 −5 1 −3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

−1 1 1 1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

A1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1
1 −1 1 1 1 −1

−1 1 −1 1 1 1
−1 −1 1 −1 1 1

1 −1 −1 1 −1 1
−1 1 −1 −1 1 −1
−1 −1 1 −1 −1 1
−1 −1 −1 1 −1 −1

1 −1 −1 −1 1 −1
1 1 −1 −1 −1 1
1 1 1 −1 −1 −1

−1 1 1 1 −1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, and C1 = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−11 −9 9 11 5 1
−9 5 −1 −5 −9 11
−7 11 −3 3 1 −7
−5 −1 −9 −9 −1 −9
−3 −7 5 −11 7 −1
−1 9 −7 5 9 5

1 −3 7 −7 −7 3
3 −11 −11 9 −11 −3
5 7 11 7 −5 −5
7 −5 −5 1 11 7
9 1 3 −3 3 −11

11 3 1 −1 −3 9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.



304 P. Chien et al.

For j = 2, 3, 4, obtain Aj and Cj by permuting the rows of A1 and C1, respectively.
Using the above matrices, M in (10) is a 96 × 24 orthogonal Latin hypercube.

Example 3 Let C1 be an NOLHD(25, 24) constructed by Lemma 1 using an
OA(25, 6, 5) from Hedayat et al. (1999) and an NOLHD(5, 4). Permute the rows of
C1 to get an NOLHD C2. Generate two 25× 24 nearly orthogonal matrices, A1 and
A2, by using the Gendex DOE software associated with Nguyen (1996). Using

B =
( 1

2 − 1
2

− 1
2

1
2

)
and D =

(
1 1
1 1

)
,

M in (10) is an NOLHD(50, 48).

3 Numerical Illustration

In this section we provide numerical examples to compare the number of false
selections γ in (3) with four different types of design matrices. Method I uses an
NOLHD from Sect. 2. Method II uses a two-level design at levels ±(n − 1)/2. If
p > n− 1, a two-level design is often called a supersaturated design (Lin 1993; Wu
1993). Method III uses a random Latin hypercube design (RLHD) constructed in
(7). Method IV uses an i.i.d. sample. Denote by γNOLHD , γFD , γRLHD , and γIID
the γ values of these methods, respectively. Since the focus here is to compare the
effect of the regression matrix X on the accuracy of the Lasso solution, the response
vector y from the model in (1) is generated with the same ε = (ε1, . . . , εn)

T for
the four methods. The tuning parameter λ in (2) is selected by the five-fold cross-
validation. The package lars (Efron et al. 2003) in R (R, 2010) is used to compute
the Lasso solution β̂ in (2). Examples below have different p/n ratios.

Example 4 For the model in (1), let p = 48, σ = 8, and β = (0.8, 1.0, . . . , 3,
0, . . . , 0)T with the last 36 coefficients being zero. Take n = 50 with n ≈ p.
Method I takes the NOLHD(50, 48) in Example 3. Method II uses a 50 × 48 nearly
orthogonal two-level design from the Gendex software based on the algorithm in
Nguyen (1996). Table 1 compares three quartiles of the γNOLHD , γFD , γRLHD
and γIID values over 50 replications. Figure 2 depicts the boxplots of γ values of
these methods. Table 1 and Fig. 2 clearly indicate that γNOLHD is smaller than γFD ,
γRLHD , and γIID .

Table 1 Three quartiles of
the γNOLHD , γFD , γRLHD ,
and γIID values over 50
replications for Example 4

NOLHD FD RLHD IID

Median 13.00 18.00 18.00 20.00

1st quartile 12.00 14.00 15.00 16.00

3rd quartile 15.00 21.00 23.00 23.00



Efficient Experimental Design for Lasso Regression 305

NOLHD FD RLHD IID
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Fig. 2 Boxplots of the γNOLHD , γFD , γRLHD , and γIID values over the 50 replications for
Example 4

Table 2 Three quartiles of
the γNOLHD , γFD , γRLHD
and γIID values over 50
replications for Example 5

NOLHD FD RLHD IID

Median 17.50 27.00 25.00 27.00

1st quartile 15.00 24.00 22.25 23.25

3rd quartile 22.75 30.00 28.00 29.00

Example 5 For the model in (1), let p = 96, σ = 8 and β = (0.2, 0.4, . . . ,
3, 0, . . . , 0)T with the last 81 coefficients being zero. Take n = 49 with p > n.
Method I uses the NOLHD(49, 96) in Example 1. Method II uses an E(s2)-optimal
supersaturated design from the Gendex software associated with Nguyen (1996).
Table 2 compares three quartiles of the γNOLHD , γFD , γRLHD and γIID values
over 50 replications. Figure 3 depicts the boxplots of γ values of these methods.
Table 2 and Fig. 3 show that γNOLHD , once more, significantly outperforms γFD ,
γRLHD , and γIID .

Example 6 For the model in (1), let p = 192, σ = 8 and β = (0.05, 0.2, . . . ,
3, 0, . . . , 0)T with the last 172 coefficients being zero. Take n = 64 with p >
n. Method I uses an NOLHD(64, 192) from Lemma 1 in Sect. 2.1. Method II uses
an E(s2)-optimal supersaturated design from the Gendex software associated with
Nguyen (1996). Table 3 compares three quartiles of the γNOLHD , γFD , γRLHD ,
and γIID values over 50 replications. Figure 4 depicts the boxplots of γ values
for these methods, where γNOLHD is much smaller than γFD , γRLHD , and γIID .
This example clearly demonstrates that the use of an NOLHD leads to significant
improvement of the Lasso solution.
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NOLHD FD RLHD IID
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Fig. 3 Boxplots of the γNOLHD , γFD , γRLHD and γIID values over the 50 replications for
Example 5

Table 3 Three quartiles of
the γNOLHD , γFD , γRLHD
and γIID values over 50
replications in Example 6

NOLHD FD RLHD IID

Median 27.00 42.50 43.00 41.00

1st quartile 23.00 40.00 34.25 34.00

3rd quartile 33.00 46.00 45.00 45.00

NOLHD FD RLHD IID

20
30

40
50

Fig. 4 Boxplots of the γNOLHD , γFD , γRLHD and γIID values over the 50 replications for
Example 6
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These examples suggest that the Lasso solution with an NOLHD is more accurate
than those of the competing designs. Comparison of Figs. 2, 3, 4 indicates that the
advantage of using NOLHDs in the Lasso problem grows as the ratio p/n increases.

4 Discussion

In this work, we proposed a method using NOLHDs from computer experiments to
significantly enhance the variable selection accuracy of the Lasso procedure. The
effectiveness of this method has been successfully illustrated by several examples.
Design construction for sparse regressions is a new research direction in design of
experiments, which can be applied in many areas, such compressed sensing (Song
et al. 2016; Jung et al. 2019), and actuator placement (Du et al. 2019).

As an alternative to the proposed method, one may develop a model-based
optimal design approach by extending the ideas of Meyer et al. (1996) and Bingham
and Chipman (2007). Because the Lasso solution in (2) does not have an analytic
form, a potential difficulty in developing such an approach is to introduce a sensible
and computationally efficient design criterion for the Lasso problem. Another
possible direction is to consider the Bayesian optimal design with proper priors for
the sparsity on the regression parameters. It will be of interest as a future research
project to study the proposed design strategy for various sparse regression under
linear and generalized linear models.
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A Selective Overview of Statistical
Methods for Identification of the
Treatment-Sensitive Subsets of Patients

Xinyi Ge, Yingwei Peng, and Dongsheng Tu

Abstract Identification of a subset of patients who may benefit from or be sensitive
to a specific type of treatment has become a very important research topic in
clinical trials and other types of clinical research. Statistical methods are essential
in helping clinical researchers to identify the subset. In this article, we provide a
selective overview of statistical methods developed in recent years in this research
areas. Specifically, we consider first the cases where the outcome of the clinical
studies is time-to-event or survival time and the subset is defined by one continuous
covariate, such as the expression level of a gene, or by multiple covariates which
can be continuous or categorical, such as mutation statuses of multiple genes.
The cases where the outcomes of the clinical studies are longitudinal or repeated
measurements, such as patient reported quality of life scores before, during, and
after a treatment, are considered next. Gaps between the needs in clinical research
and the methods available in statistical literature are identified and future research
topics to bridge these gaps are discussed based on this overview.

Keywords Censored survival times · Clinical trials · Interaction · Longitudinal
data · Predictive function

1 Introduction

For many diseases, such as cancer, it is often difficult to find a treatment that benefits
all patents. There is an interest to identify a subset of patients, defined by individual
characteristics, such as age, gender, blood test results, or gene expression levels,
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who may be more sensitive to a specific treatment and have a larger treatment effect
in comparison with a standard treatment. Conversely, if a treatment is costly or
has potential negative side effects, there is also an interest to look for subsets of
patients for which the treatment has less side effects. Therefore, identification of
treatment-sensitive subsets of patients for a specific treatment has become a very
important topic in clinical research. For example, in a recent secondary analysis of
data from CO.17 and CO.20 trials conducted by the Canadian Cancer Trials Group
(CCTG), the investigators were interested to know whether older patients with
advanced colorectal cancer treated by, respectively, cetuximab alone or cetuximab
plus brivanib had a less benefit, in comparison with younger patients, in terms of
various outcomes including overall survival and quality of life (Wells et al. 2008).

Subset analysis, which includes (1) identification of the subsets, (2) estimation of
treatment effects in the subsets, and (3) tests for the significance of the differences
in the treatment effects in these subsets, is a main statistical tool to assess the
heterogeneity in treatment effects in subsets defined by certain characteristics of
patients. For example, in the analyses of CO.17 and CO.20 data mentioned above,
patients were divided into two age subsets based on whether their age was 70 years
or older and differential treatment effects in these two age subsets were assessed
through a test of interaction between the subset and treatment. However, it is unclear
whether 70 years is an optimal cutpoint to define the age subsets when assessing
the heterogeneity of treatment effects by age. This issue arises in many studies
where the variable to define subsets is continuous but a pre-specified cutpoint is
not available from previous studies or clinical experience, and a statistical approach
is often needed to determine the optimal cutpoints based on data.

When the outcomes for the subgroup analyses are times to an event or survival
times, such as progression-free or overall survivals, several approaches have been
proposed for the determination of cutpoints in the definition of subsets. For example,
Jiang et al. (2007) proposed a biomarker-adaptive threshold design, which combines
a test for overall treatment effect in all patients with the determination and validation
of a cutpoint for a biomarker which is used to define a sensitive subset. Chen et al.
(2014) developed a hierarchical Bayesian procedure to estimate simultaneously the
interaction parameter and cutpoint in a threshold Cox proportional hazards model.
He et al. (2018) proposed a single-index threshold Cox proportional hazard model,
which includes a smoothly clipped absolute deviation (SCAD) penalty function,
to select and linearly combine multiple biomarkers in identification of treatment-
sensitive subsets. Su et al. (2008) developed an interaction tree procedure, which
recursively partitions the patients into two subsets based on the greatest interaction
between the subset and treatment, to obtain treatment-sensitive subsets.

When the outcomes are longitudinal measurements, Moineddin et al. (2008)
used multilevel models including patient-specific random effects to identify subsets
of patients with differential treatment effects of gabapentin versus placebo on
longitudinal measurements of hot flashes based on the baseline measurements in a
double-blind randomized controlled trial for treatment of hot flashes in women who
enter menopause naturally but a median was used as the cutpoint in defining subsets.
Andrews et al. (2017) considered a random effects linear model for longitudinal
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outcomes to determine whether a patient had a positive response to the treatment
and supervised learning algorithms were proposed to estimate a predictive function
for the positive response but 0.5 was used as an ad hoc cutpoint for the predictive
function to assign patients into subsets. Recently, Ge et al. (2020) introduced a
threshold linear mixed model for the identification of treatment-sensitive subsets
of patients based on longitudinal outcomes.

The objectives of this article are to provide a detailed review of the methods
mentioned above and, based on this review, to discuss some future directions in this
interesting and important area of research.

The remainder of this article is organized as follows. Sections 2 and 3 present
a detailed review of statistical methods developed when, respectively, survival
times and longitudinal measurements are the outcomes of the clinical research.
Discussions on the future research directions are presented in the last section.

2 Statistical Methods for Treatment-Sensitive Subset
Identification with Survival Times

Time to an event, which is denoted as F in this article and usually called as
the survival time with overall survival or progression-free survival as examples,
is usually a primary endpoint in a cancer clinical trial. Before we give detailed
descriptions on the approaches proposed to identify treatment-sensitive subsets of
patients based on survival times, some conventional notations, and a commonly used
statistical model for the survival times are introduced below.

Denote Fi and Ci as, respectively, the potential survival and censoring times of
a patient i (i = 1, 2, · · · , n). The observed survival times Ti and survival status
indicator δi are defined, respectively, as

{
Ti = min(Fi, Ci),

δi = I(Fi<Ci).
(1)

Let h(t |Wi) be the hazard function of survival time Fi for a patient with a vector of
covariates Wi, which may include treatment indicators Xi and biomarkers of interest
Zi. In the survival analysis, Cox’s proportional hazards model (Cox 1972, 1975) is
usually used to model the relationship between h(t |Wi) and Wi as follows:

h(t |Wi) = h0(t)g(Wi,β),

where g(·) is a given link function, h0(t) is an unknown baseline hazard function,
and β is an unknown vector of regression coefficients. A non-informative censoring
is assumed, which implies that, given the covariatesWi , Fi , and Ci are independent.
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2.1 An Approach Based on a Biomarker-Adaptive Threshold
Design

We first review an approach based on a biomarker-adaptive threshold design
proposed by Jiang et al. (2007), which tests first for an overall treatment effect in
all patients and, if the overall treatment effect is not significant, proceeds to the
next step to determine a cutpoint for a biomarker to identify a potential treatment-
sensitive subset of patients.

Specifically, consider the following threshold Cox’s proportional hazards model:

log{h(t |Wi)} = logh0(t)+ β1X1i + β2I(Z1i>c) + β3X1iI(Z1i>c), (2)

where, for i = 1, 2, · · · , n, Wi = (X1i , Z1i ) with X1i an treatment indicator equal
to 1 if patient i is assigned into a treatment group or 0 if into a control group and Z1i
the value of a continuous biomarker which is used to define the treatment-sensitive
subset, c is an unknown threshold parameter for the definition of the sensitive subset,
β1 is the main treatment effect, β2 is the main biomarker effect, and β3 is the
treatment by biomarker interaction effect. Without loss of generality, c and Z1i are
assumed to take values in the interval (0, 1).

In the first step of their procedure, the effect of treatment over all patients is
assessed, which can be achieved by taking β2 = β3 = 0 in model (2) and testing
the null hypothesis that β1 = 0 in the reduced model

logh(t |Wi) = logh0(t)+ β1X1i

by a likelihood ratio test. If the test rejects the null hypothesis of no treatment effect
over all patients, the procedure stops and one can conclude that the treatment will
benefit all patients. Otherwise, the procedure will continue to assess whether there
is a subset of patients defined by a biomarker who may benefit from the treatment
by testing the null hypothesis that β3 = 0 in the full model (2).

Since the threshold parameter c is unknown, the following procedure is proposed
to test the null hypothesis that β3 = 0 under the assumption that β1 = 0: For
each candidate biomarker threshold in the range (0, 1), a reduced model (2) with
β1 = 0 is fitted on the subset of patients with biomarker values over c to obtain a
log-likelihood ratio statistic S(c) for testing the null hypothesis β3 = 0 under the
given c. Maximizing S(c) over a range of possible cutpoint values would give a test
statistic for testing null hypothesis β3 = 0 with c unspecified. In order to obtain a
reasonable power, a test statistic T is defined as max((S(0)+R), max

0<c<1
S(c)), where

R is a positive constant which was suggested to be 2.2 by Jiang et al. (2007). The
p-value of this test statistic can be calculated from a resampling-based approach by
randomly permutating treatment labels. If the test rejects the null hypothesis β3 = 0,
the optimal threshold c0 can be estimated as
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ĉ0 = arg max
c0
l(c0),

where l(c0) is the partial log-likelihood function based on model (2):

l(c0) = max
β1,β2,β3

l(β1, β2, β3, c0).

Therefore, the treatment-sensitive subset of patients can be defined by {i : I (Z1i >

ĉ0)}, that is, a patient will be sensitive to the treatment if the observed value of the
biomarker from this patients is over ĉ0.

2.2 A Hierarchical Bayesian Method

Chen et al. (2014) proposed a hierarchical Bayesian method to estimate all
unknown parameters, including the threshold c, in model (2) simultaneously without
assumption β1 = 0.

For simplicity of presentation, denote [X1i , I (Z1i > c),X1iI (Z1i > c)]′ as
Wi(c) and [β1, β2, β3]′ as β. With these notations, model (2) can be rewritten as

h(t |Wi(c)) = h0(t) exp{W′
i(c)β}. (3)

Chen et al. (2014) assumed that the threshold parameter c has a prior Beta
distribution Beta(2,q) for a given hyper-parameter q > 1, which can be written
as

p1(c|q) ∝ q(q + 1)c(1 − c)q−1.

This prior is flexible enough to accommodate any prior distribution in a family with
its mode taking any specific value in the interval (0, 1). In order to assign a specific
prior distribution of c, instead of taking an arbitrary value for q, it is considered that
q has a hyper-prior distribution with the following density function form

p2(q) ∝ q − 1

q(q + 1)
, q > 1.

At the same time, β is assumed to has a uniform improper prior distribution p(β) ∝
1. For every given 0 < c < 1, the corresponding partial likelihood function of β in
model (3) is given by

p3(β|c) =
n∏
i=1

⎡
⎢⎣ exp{W′

i(c)β}∑
j∈R(Ti)

exp{W′
j(c)β}

⎤
⎥⎦
δi

,
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where the risk set R(t) is the index set of patients who are at risk of experiencing
an event at time t . Consequently, given the observed data, the joint posterior
distribution of β, c, q can be written as

p(β, c, q|data) ∝ p1(c|q)p2(q)p3(β|c)

=
n∏
i=1

⎡
⎢⎣ exp{W′

i(c)β}∑
j∈R(Ti)

exp{W′
j(c)β}

⎤
⎥⎦
δi

c(1 − c)q−1(q − 1).

Therefore, the marginal posterior distributions of β and c can be calculated,
respectively, as

p(β) =
∫
c,q

p(β, c, q|data)dcdq

p(c) =
∫

β,q

p(β, c, q|data)dβdq.

Statistical inferences, such as point estimation, confidence interval and hypothesis
testing, on the threshold parameter c and the regression coefficient β can be obtained
based on these marginal distributions. After obtaining the estimation of the threshold
c, the treatment-sensitive subset of patients consequently can be defined if β3 is
significantly different from 0.

2.3 A Procedure Based on a Single-index Threshold Cox
Model

In some clinical trials, it may be difficult to identify a treatment-sensitive subset
of patients based on a single biomarker, but a combination of multiple biomarkers
may have a potential to identify a treatment-sensitive subset. For example, in
a randomized control trial PA.3 conducted by NCIC Clinical Trials Group, 35
key proteins were selected from a global genetic analysis of pancreatic cancers
with the purpose of identifying a subset of patients with locally advanced or
metastatic pancreatic cancer who will be sensitive to the treatment of erlotinib in
addition to gemcitabine (Shultz et al. 2016). However, no significant interaction was
found between the treatment and any of these biomarkers, which implies that it is
impossible to identify a treatment-sensitive subset according to a single biomarker.
He et al. (2018) found that a combination of some of these biomarkers (CA 19-9
and Axl) had the potential to define a treatment-sensitive subset of patients with
pancreatic cancer. It is more complicated to identify a treatment-sensitive subset
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based on multiple biomarkers, compared to the cases where there is only a single
biomarker.

Several approaches have been proposed in subgroup analysis based on multiple
biomarkers. He et al. (2018) proposed a single-index threshold Cox’s proportional
hazards model to identify treatment-sensitive subsets for each treatment using
multiple biomarkers based on a linear combination of the multiple biomarkers. Let
Xi = (xi1, xi2, · · · , xid)′ be a d-dimensional vector of exposure variables, such
as treatment group indicators, for a patient i and Zi = (zi1, zi2, · · · , zip)′ be a
p-dimensional vector which are the observed values of p biomarkers from the i-
th patient (i = 1, 2, · · · , n). Define an indicator function I(Z′

iγ j>cj )
to be used to

define the treatment-sensitive subset of patients for the j -th treatment, where γj is
a p-dimensional vector used to combine biomarkers linearly and cj is the threshold
parameter. Denote Wi = (X′

i,Z
′
i). The proposed model can be written as

h(t |Wi) = h0(t) exp

⎧⎨
⎩β ′Xi +

d∑
j=1

ηj I(Z′
iγ j>cj )

+
d∑
j=1

αjxj I(Z′
iγ j>cj )

⎫⎬
⎭ , (4)

where h(t), h0(t), and β are the same defined in last section. The parameters η =
(η1, η2, · · · , ηd)′ and α = (α1, α2, · · · , αd)′ model the main effect of biomarker
and the treatment-biomarker interaction, respectively. A significant treatment-
biomarker interaction implies the treatment effect varies across subsets defined by
I(Z′

iγ j>cj )
and, consequently, the treatment-sensitive subsets for each treatment can

be determined.
To obtain estimators of the parameters in the model, a maximum penalized

smoothed partial likelihood method has been proposed. First, assume that data
are available from n independent patients, where i = 1, 2, · · · , n. Denote Γ =
(γ1, γ2, · · · , γd)′, c = (c1, c2, · · · , cd)′, and θ = (β ′, η′, α′, c′, Γ ′)′. Then the
partial likelihood of the parameters in model (4) can be written as

L(θ)

=
n∏
i=1

⎡
⎢⎢⎢⎢⎣

exp

{
β ′Xi +

d∑
j=1
ηj I(Z′

iγ j>cj )
+

d∑
j=1
αjxij I(Z′

iγ j>cj )

}

∑
k∈R(Ti)

exp

{
β ′Xk +

d∑
j=1
ηj I(Z′

kγ j>cj )
+

d∑
j=1
αjxkj I(Z′

kγ j>cj )

}

⎤
⎥⎥⎥⎥⎦

δi

.

(5)

Since the partial likelihood function is not continuous at some parameters, the
estimator of θ cannot be obtained by maximizing the partial likelihood function
(5). He et al. (2018) proposed a local distribution function Φ((Z′

iγ j − cj )/h) as
a smooth approximation to the indicator function I (Z′

iγ j > cj ), where Φ is the
distribution function of the standard normal variable and the bandwidth h converges
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to zero as the sample size increases. With this approximation, the smoothed partial
likelihood (SPL) function can be defined as

S(θ) =

n∏
i=1

⎡
⎢⎢⎢⎣

exp{β ′Xi +
d∑
j=1
ηjΦ((Z

′
i
γj − cj )/h)+

d∑
j=1
αjxijΦ((Z

′
i
γj − cj )/h)}

∑
k∈R(Ti )

exp{β ′Xk +
d∑
j=1
ηjΦ((Z

′
k
γj − cj )/h)+

d∑
j=1
αjxkjΦ((Z

′
k
γj − cj )/h)}

⎤
⎥⎥⎥⎦

δi

.

(6)

Because a large number of covariates may be available but only a few of them may
be relevant in the definition of treatment-sensitive subsets, He et al. (2018) added a
penalty function to the SPL function for efficiently selecting relevant biomarkers
from large amount of biomarkers in practice. In their procedure, the smoothly
clipped absolute deviation (SCAD) penalty function was used and the penalized
smoothed partial likelihood (PSPL) function was defined as

Ln(θ) = log{S(θ)} − n
d∑
j=1

p∑
k=1

Pλ(|λjk|), (7)

where λjk is the component k of γj and Pλ(·) is the SCAD penalty function with
a regularization parameter λ. By maximizing PSPL function (7), the estimations of
θ can be obtained. Therefore, when at least one of the αj is significantly different
from 0, corresponding treatment-sensitive subset of patients for the treatment j can
be determined by the estimate ĉj of cj as {i : I(Z′

i
γj>ĉj )

}.

2.4 An Interaction Tree Approach

Su et al. (2008) proposed a procedure to construct an interaction tree T based
on survival outcomes which can be used to identify treatment-sensitive subsets of
patients. There are three steps in the construction of an interaction tree which are
introduced in details below.

The first step is to grow a large initial tree. Let s be a single binary split of
patients in the tree construction based on a biomarker z measured on patients. If z is
continuous, then the split s is induced by whether or not z ≤ c, where the threshold
c can be any constant. However, in practice the threshold c is chosen as one of
the observed values of z. If z is ordinal, the split s can be induced by the similar
procedure. If z is a categorical variable with categories C = {c1, · · · , cr }, then the
split can be induced by the form of z ∈ A with A ⊂ C. In order to reduce the
computational burden, the treatment effect within each category is often estimated
first and then the categories of z are reordered according to the treatment effect.
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Splitting on z can then be induced by treating z as an ordinal variable. Next we need
to select the best split from all possible splits, which has the greatest difference in
the treatment effect between its two child nodes. The splitting selection approach in
Su et al. (2008) is to choose the split to maximize a statistic for test H0 : β3 = 0 in
the following Cox model:

h(t |Wi) = h0(t) exp{β1Xi + β2I
(s) + β3XiI

(s)}, (8)

where Xi is a treatment indicator, I (s) = I(z∈A) or I (s) = I(z≤c), and Wi =
(Xi, I

(s)). In their method, they chose to use the following partial likelihood ratio
test (PLRT) statistic as the test statistic for H0 : β3 = 0:

G(s) = −2(l2 − l1), (9)

where l2 is the maximized partial likelihood (Cox 1975) of model (8) and l1 is the
maximized partial likelihood of the reduced model under H0:

h(t |Wi) = h0(t) exp{β1Xi + β2I
(s)}. (10)

The best split s∗ can be determined by G(s∗) = max
s
G(s). After choosing the best

split, the patients can be divided into two subsets and therefore the tree grows two
child nodes. The same procedure is then implemented to split both child nodes based
on different variables such as the values of other biomarkers. A large initial tree T0
can be obtained by repeating the above process recursively.

Since the initial tree is large, it needs to be pruned until it has an appropriate size.
Su et al. (2008) introduced the following penalty function for a node h of the initial
tree:

g(h) = G(Th)

|Th − T̃h|
,

where Th is the branch of tree with h as its root, T̃h represents the set of all terminal
nodes of Th, and |Th − T̃h| denotes the number of all internal nodes of Th. By
minimizing g(h) over all the internal nodes of T0, the weakest link (or the most
ineffective split) h∗ can be determined. Denote T1 as the subtree after pruning off
the branch Th∗ from T0 and apply the same pruning procedure to the subtree T1.
After the above process is repeated recursively, a nested sequence of subtrees can
be defined as TM ≺ · · · ≺ Tm ≺ Tm−1 · · · ≺ T1 ≺ T0, where TM is a tree only
having the root node and ≺ means “a subtree of.”

After the pruning procedure is finished, the last step of the proposed procedure
is to select the best size of the tree. For this purpose, following the split-complexity
pruning algorithm for survival tree (LeBlanc & Crowley 1993), the following
interaction-complexity measure is introduced to evaluate the overall goodness-of-
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interaction of a given tree T :

Gλ(T ) = G(T )− λ · |T − T̃ |, (11)

where T̃ denotes a set of all terminal nodes of T and |T − T̃ | the number of
all internal nodes of T , G(T ) = ∑

h∈T −T̃ G(h), which is the sum of G(h), the
splitting statistic defined in (9), over node h (including its split to its child nodes),
and λ(� 0) is a penalty parameter for each added node. With this measure, an
optimally sized tree T ∗ can be determined by maximizing Gλ(T ) as following:

Gλ(T
∗) = max

m=0,··· ,M{G(Tm)− λ · |Tm − T̃m|},

where the penalty parameter λ can be pre-specified within the range 2 � λ � 4
(LeBlanc & Crowley 1993). After the optimally sized tree is determined, the
treatment-sensitive subsets of patients can be defined based on the terminal nodes
of the tree T ∗.

3 Statistical Methods for Treatment-Sensitive Subset
Identification Based on Longitudinal Measurements

Longitudinal measurements, which are repeated observations measured on the same
patients at different points in time, are often collected in clinical trials or other
medical studies. For example, although the treatment effect in cancer clinical trials
are traditionally evaluated by relatively objective endpoints such as tumor response,
relapse-free survival, or overall survival, it is argued that these endpoints may not
provide adequate information in understanding of the treatment effect. Recently,
evaluations of more subjective endpoints, such as patient reported quality of life
(QoL), have become increasingly recognized in cancer clinical trials, since these
endpoints can help patients to make the treatment decisions by providing detailed
information on side effects of the treatment (Blazeby et al. 2001). Also these
endpoints can help future patients understand the consequences of their illness and
treatment (Bezjak et al. 2006). These patient reported outcomes are usually assessed
at several timepoints before, during, and after patients have received the treatment.

Multilevel or hierarchical models are often used for the analysis of longitudinal
data, as these models incorporate the variation at different levels of the hierarchy
into analysis. This class of models includes multilevel models, linear mixed models,
random effects ANOVA models, generalized estimating equations (GEE), etc. In
this section, some statistical methods proposed for identifying treatment-sensitive
subsets of patients based on these models when the outcomes of clinical trials are
longitudinal or repeated measures are reviewed.
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3.1 A Procedure Based on Multilevel Models

To establish notations, let yij be the longitudinal measurement at j -th observation
time tij (j = 1, 2, · · · , ni) from patient i (i = 1, 2, · · · , N). The observation times
are usually called as level-1 units in a multilevel model, while patients are called as
the level-2 units. Also denoteXi as the treatment indicator withXi = 1 if the patient
is assigned into the treatment group and Xi = 0 if the patient is assigned into the
control group. Consider the following two-level linear regression model proposed
in Moineddin et al. (2008) for these longitudinal measurements: the first level of the
model assumes that the measurement yij is a linear function of observation time tij ,
which can be written as

yij = β0i + β1i tij + eij , (12)

where eij is the random error term assumed to follow a normal distribution with
mean zero and a constant variance σ 2

e and β0i and β1i are, respectively, a random
intercept and slope associated with the ith patient. It is assumed further that β0i and
β1i can be explained by a linear function of Xi in the following second level of the
model:

β0i = γ00 + γ01Xi + u0i ,

β1i = γ10 + γ11Xi + u1i ,

where γrs (r = 0, 1 and s = 0, 1) are population average fixed effect parameters
and u0i and u1i are random errors which follow a bivariate normal distribution
with mean zero and variance-covariance var(u0i ) = σ 2

0 , var(u1i ) = σ 2
1 and

cov(u0i , u1i ) = σ 2
01. From the definition of Xi as a treatment indicator, it can be

seen that the fixed effects γ00 and γ10 are, respectively, the population average of
the measurement yij at baseline (intercept) and the population average of change
over time (slope) for patients in the control group, while the parameters γ01 and
γ11 can be interpreted as the differences in, respectively, the population averages of
the measurement yij at baseline (intercepts) and the population average of changes
over time (slopes) between the treatment and the control groups. Parameter σ 2

0 is the
residual variance of the measurement yij at baseline (intercept) , σ 2

1 is the residual
variance of the change rate (slope), and σ 2

01 is the residual covariance between the
baseline the measurement and rate of change.

It is known that u1i represents the residuals of the regression slopes across the
patients. When the variance of u1i is significant at a two-sided 0.05 level, Moineddin
et al. (2008) suggested that treatment-sensitive subsets of patients can be identified
based on a baseline factor (age, gender, biomarker, etc.) of patients by correlating
u1i with this factor using a t-test or analysis of variance if the factor is categorical
and the Pearson or Spearman correlations if the factor is continuous. When the
association is significant at two-sided 0.05 level, treatment-sensitive subsets of
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patients can be defined by the natural grouping generated by the categories of the
baseline factor when it is categorical (for example, female and male subsets if the
gender is the baseline factor). When the factor is continuous such as the age or value
of a biomarker, however, a cutpoint is required. Only an ad hoc approach using the
median of the factor as a cutpoint was suggested and there was no formal procedure
proposed to estimate the cutpoint.

3.2 A Prediction Model Approach

Andrews et al. (2017) proposed a complete procedure which can be used for both
identification of the treatment-sensitive subsets of patients and validation of the
subsets identified based on longitudinal measurements. First step in the proposed
procedure is to use a linear mixed model which includes a random effect term
to evaluate the individual treatment effect and a fixed effect term to evaluate the
population average treatment effect. Based on the estimates of individual treatment
effect, various classifying methods can then be used to build prediction models
which can be used to identify treatment-sensitive subsets of patients based on the
characteristics of patients. A validation step is then followed to select the best
prediction model under a marginal regression framework.

Specifically, consider the following random intercept-slope linear mixed model:

yij = β0 + α0i + (β1 + α1i )Xitij + β2tij + eij , (13)

where Xi , tij , yij and random error term eij are the same as defined in the last
subsection, β0 and β1 represent, respectively, the population average of the initial
status and the treatment effect over time, α0i and α1i are, respectively, the random
intercept and slope for patient i, and β2 is the fixed effect of time. The interaction
effect β1 + α1i between the treatment and time in this model describes the trend of
individual treatment effect over time.

To simplify the presentation of the procedure, model (13) can be rewritten in
matrix form as

Y = Xβ + Dα + e, (14)

where Y is a n-dimensional vector of the responses with n =
N∑
i=1
ni , X and D are

an n× 3 and n× 2N matrices of covariates corresponding to the fixed effects β =
(β0, β1, β2)

′ and random effects α = (α01, · · · , α0N, α11, · · · , α1N), respectively,
and e is a m-dimensional vector of the random errors. It is assumed that E(α) = 0
andE(e) = 0. In addition, it is assumed that α and e are independent and distributed
as multivariate normal as
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[
α

e

]
∼ N

([
0
0

]
,

[
G 0
0 R

])
.

By using the conventional maximum likelihood method for the linear mixed model,
the parameter estimates for the fixed and random effects can be obtained as
following:

β̂ = (X′Σ̂−1
X)−1X′Σ̂−1

Y ,

α̂ = ĜD′Σ̂
−1
(Y − Xβ̂),

where Σ = DGD′ + R and Ĝ and R̂ are obtained by maximizing the following
likelihood function:

l(R,G|Y,X) =− 1

2
(Y − X(X′Σ−1

X)−1X′Σ−1
Y )′Σ−1

(Y − X(X′Σ−1
X)−1X′Σ−1

Y )− 1

2
log |Σ | − n

2
log(2π),

where |Σ | is the determinant of the variance-covariance matrix Σ . The asymptotic
consistency and efficiency of these estimates were proved by Hartley and Rao
(1967). Furthermore, if the variance estimation is biased, the restricted maximum
likelihood would be a viable alternative method (Verbeke & Molenberghs 2009).

Since the random slope β1+α1i describes the treatment effect over time, patients
can be divided into two subsets based on whether its estimate β̂1 + α̂1i is positive.
Define Ci as the subset indicator based on this definition. That is,

Ci =
{

1 β̂1 + α̂1i > 0
−1 β̂1 + α̂1i ≤ 0.

Since some baseline characteristics or covariates Wi of patients, such as age,
gender, blood pressure, and gene expression, might influence the treatment effect, a
prediction model

f (Wi ) = P(Ci = 1|Wi )

based on the subset indicator Ci and these baseline characteristics or covariates W i

may be used to classify patients into two subsets which have differential treatment
effects. In general, the relationship between Ci and Wi is unknown, which could
be linear or nonlinear, so the predictive function f (·) in the above prediction model
needs to be estimated. Andrews et al. (2017) suggested various linear or nonlinear
supervised learning algorithms, such as logistic regression, support vector machine
(SVM) with linear kernel, linear discriminant analysis (LDA), decision tree, random
forest, etc., may be used to estimate f (·). Once the estimated prediction function
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f̂ (Wi ) is obtained from the data, it was proposed that patient i can be classified in
the subset of patients who may benefit from the treatment if f̂ (Wi ) > 0.5.

Andrews et al. (2017) also developed a validation procedure to assess the
effectiveness of the method proposed above for the treatment-sensitive subset
identification but the choice of 0.5 as the cutpoint for estimated predictive function
to define the subsets is ad hoc, which may have large impact on the performance of
the proposed method.

3.3 A Procedure Based on a Threshold Linear Mixed Model

Ge et al. (2020) introduced a threshold linear mixed model which can be used
simultaneously to determine the cutpoint of a continuous covariate, such as age or
the expression level of a biomarker, in the definition of treatment-sensitive subsets
of patients and to assess the interaction effect between the treatment and subset
indicator based on longitudinal measurements. The standard likelihood method
is difficult to apply to the inference of the parameters in the model because the
likelihood function is not continuous for some parameters. They therefore proposed
a smoothing likelihood function to approximate the original likelihood function and
developed an inference procedure for the parameters in the model based on this
new likelihood function. Finally, they used the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm (Broyden 1970; Fletcher 1970; Goldfarb 1970; Shanno 1970),
which belongs to quasi-Newton methods and is included in R package “maxLik”
(Henningsen & Toomet 2011), to implement the proposed procedure.

Specifically, denote a column vector Yi = (yi1, yi2, · · · , yini ) for the longitu-
dinal measurements observed from the i-th patient. For each patient, denote also
Xi = (xi1, xi2, · · · , xini)

′ as an (ni × p) designed matrix of covariates for fixed
effect β and Zi = (zi1, zi2, · · · , zini)

′ as an (ni × q) designed matrix of covariates
for random effect αi . Assume bi is an indicator of the treatment received by patient
i with either bi = 1 if the patient receiving a new therapy or bi = 0 if not.
Denotewi as a continuous covariate at baseline for patient i and assume two subsets
of patients can be defined based on whether wi exceeds an unknown cutpoint c.
The following threshold linear mixed model was proposed to assess the potential
differential treatment effects between these two subsets:

Yi = Xiβ + Ziαi + η1I (wi > c)1 + η2biI (wi > c)1 + εi, (15)

where εi = (εi1, εi2, · · · , εini )′ is a vector of random errors and 1 is a ni-
dimensional vector with its all elements as 1. In model (15), the response yij of
patient i measured at the time tij is modeled by three components: the fixed effects
of all covariates x′

ij
β + η1I (wi > c)+ η2biI (wi > c), the patient effect z′

ij
αi , and

the random error εij . The columns of Xi may include intercept, time or its function,
treatment, and other confounding variables, and the columns of Zi are assumed to
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be a subset of the columns of Xi. In order to simplify the presentation, model (15)
can be rewritten in the matrix form as:

Y = Xβ + Wη + Zα + ε, (16)

where Y = [Y′
1,Y

′
2, · · · ,Y′

N]′, X = [X′
1,X

′
2, · · · ,X′

N]′, α = (α′
1, α′

2, · · · , α′
N
)′,

ε = (ε′
1, ε

′
2, · · · , ε′

N
)′ and W = [W′

1,W
′
2, · · · ,W′

N]′, and

Z =

⎛
⎜⎜⎜⎝

Z1 0 0 · · · 0
0 Z2 0 · · · 0
...
...
...
. . .

0 0 0 ZN

⎞
⎟⎟⎟⎠ , Wi =

⎛
⎜⎜⎜⎝
I (wi > c) bi × I (wi > c)
I (wi > c) bi × I (wi > c)

...
...

I (wi > c) bi × I (wi > c)

⎞
⎟⎟⎟⎠
ni×2

.

For the vector of random effects α and vector of random errors ε in the model, it is
assumed that E(α) = 0 and E(ε) = 0. In addition, it is assumed that α and ε are
independent and distributed as multivariate normal, that is,

[
α

ε

]
∼ N

([
0
0

]
,

[
G 0
0 R

])
.

In the proposed model, they assumed that R = σ 2I (σ is an unknown parameter) and
G = σ 2ρ2I (ρ is also an unknown parameter). Following Patterson and Thompson
(1971), the covariance-variance matrix of the observation Y can be written as

V ar(Y) = σ 2(ρ2ZZ′ + I) = σ 2H,

where H = ρ2ZZ′ + I.
Under the assumptions and notations mentioned above, Y follows a multivariate

normal distribution asN(Xβ+Wη, σ 2H). Denote n =
N∑
i=1
ni as the total number of

observations, The log-likelihood for the unknown parameters θ = (β, η, c, ρ2, σ 2)

in model (16) based on longitudinal outcomes Y can be written as

l(θ |Y,X,Z) = −1

2

{
log(2π)+ n log σ 2+

log |H| + (Y − Xβ −Wη)′H−1(Y − Xβ −Wη)

σ 2

}
. (17)

However, due to the presence of the indicator functions I (wi > c), the log-
likelihood function is not continuous with respect to c, which makes the conven-
tional maximum likelihood theory and algorithm difficult to apply. Following a
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smoothing procedure used by Brown and Wang (2007), they proposed to use a
kernel smooth function

Φ

(
wi − c
h

)
(18)

as a smooth approximation to the indicator function I (wi > c), where Φ is the
distribution function of the standard normal distribution and h is a bandwidth
which converges to zero as the sample size increases. Using this approximation,
a smoothed log-likelihood function can be defined by replacing Wi in the definition
of W in (17) with

W̃i =

⎡
⎢⎢⎢⎣
Φ(

wi−c
h
) bi ×Φ(wi−ch )

Φ(
wi−c
h
) bi ×Φ(wi−ch )

...
...

Φ(
wi−c
h
) bi ×Φ(wi−ch )

⎤
⎥⎥⎥⎦
ni×2

,

therefore the smoothed log-likelihood function of θ is given by

sl(θ |Y,X,Z) = −1

2

{
log(2π)+ n log σ 2+

log |H| + (Y −Xβ − ˜Wη)′H−1(Y −Xβ − ˜Wη)

σ 2

}
(19)

where W̃ = [W̃′
1, W̃

′
2, · · · , W̃′

n]′. The maximum smoothed likelihood estimates
(MSLE) of θ can be obtained by maximizing the smoothed log-likelihood function
(19). Based on this estimate, a treatment-sensitive subset of patients can be defined
as {i : I (wi > ĉ)}, where ĉ is an estimate of c, if η2 is found significantly different
from 0 based on its estimate and associated variance estimate.

4 Discussions and Future Work

Most of the methods reviewed in this article assume a specific statistical model
for the clinical outcomes of the study. For example, the Cox proportional hazards
models were assumed when the clinical outcomes are survival times and longi-
tudinal outcomes are required to be normally distributed because of assumptions
underlying the linear mixed models. The proportional hazards assumption behind
the Cox model and the normality assumption required for linear mixed models
may not be satisfied by the data. Some more robust methods with more realistic
assumptions may be preferred. For example, since quality of life scores are restricted
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to an interval, a linear mixed model with beta (Hunger et al. 2012) or simplex
(Qiu et al. 2008) distributions may be more appropriate. For patients with early
stage of cancer, some of them may be cured by the treatment they received and,
therefore, cure models may be more useful for the observed survival times (Othus
et al. 2012). Extensions of the methods reviewed in this article to these models
may be of interest. When the cutpoint of a single biomarker is known and pre-
specified and survival times are the clinical outcomes of a study, a nonparametric
measure of interaction was proposed recently by Jiang et al. (2016). Development
of statistical methods which use this measure of interaction to identify treatment-
sensitive subsets of patients may also be of interest but can be difficult when there
are multiple biomarkers.

In many clinical studies, both survival times and longitudinal measurements are
collected but they are usually analyzed separately. Joint analysis of longitudinal
outcomes and survival times may identify treatment-sensitive subsets of patients
for both of these outcomes. But technically this may be more difficult because
additional random effects are required to connect the Cox proportional hazards
with linear mixed models, which will require novel computation methods to make
inferences on the parameters in both of these models.

When the clinical outcomes are longitudinal, only the case where a single
covariate is available to define the subsets of patients has been considered. Similar
procedures as that presented in Sect. 2.3 would be generalized from the case where
the clinical outcomes are survival times to the case where longitudinal outcomes are
outcomes of interest to combine multiple covariates or biomarkers when they are
available.

There is so far no systematic comparison between the treatment-sensitive subsets
of patients identified from different approaches. As noted by Janes et al. (2015),
accuracy measures such as sensitivity, specificity, and positive and negative predic-
tions employed for the comparison of statistical procedures for the identification of
prognostic groups are difficult to define for the comparisons of statistical procedures
for the identification of treatment-sensitive subsets. A consensus is required among
medical researchers and statisticians on the measures which could be used for the
comparisons.
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