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Stress Kinase Signaling in Cardiac 
Myocytes

Xun Ai, Jiajie Yan, and Dan J. Bare

Abstract Stress-response kinases, the mitogen-activated protein kinases (MAPKs), 
are activated in response to the challenge of a myriad of stressors. c-jun N-terminal 
kinase (JNK), extracellular signal-regulated kinase (ERK), and MAPK p38 are the 
important members of the MAPK family in the heart. Extensive studies have revealed 
critical roles of activated MAPKs in the processes of cardiac injury, cardiac arrhyth-
mias, heart failure, and other cardiovascular diseases. Advancing our understanding 
regarding the functional impacts of MAPKs in the development of heart diseases 
could shed new light on developing novel therapeutic approaches to improve cardiac 
function and prevent arrhythmia development in patients. This chapter summarizes 
relevant current knowledge on the pivotal roles of MAPKs in physiopathological and 
molecular remodeling in cardiac myocytes during the disease development and for the 
therapeutic potentials of developing MAPK inhibitors and/or activators.
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Abbreviations

ASK1-2  Apoptosis signal-regulating kinases-1/2
AF  Atrial fibrillation 
BAMBI BMP and activin membrane-bound inhibitor
Ca2+-ATPase Plasma membrane calcium/calmodulin-dependent ATPase or PMCA
CICR  Ca2+ induced Ca2+ release
ICa  Ca2+ influx
CaMKIIδ  Calcium calmodulin kinase IIδ
Ca2+  Calcium
CVDs Cardiovascular diseases 
CHOP C/EBP homologous protein
JNK  c-jun N-terminal kinase
Cx43  Connexin43
CSBP  Cytokinin-specific binding protein
DAD Delayed afterdepolarization
DNMT1  DNA methyltransferase-1
DOC-1  Downstream-of-CHOP gene1
DWORF  Dwarf open reading frame
ECC Excitation-contraction coupling
ERK Extracellular signal-regulated kinase
GSK-3 Glycogen synthase kinase-3
HF  Heart failure
HMGB1  High mobility group box 1 protein
CRP C-reactive protein
[Ca2+]i  Intracellular Ca2+

I/R  Ischemia-reperfusion
LTCCs  L-type Ca2+ channels
MK2  MAPKAP kinase-2
Vmax  Maximal rate
MAPKs  Mitogen-activated protein kinases 
MNK  Mitogen-activated protein kinase interacting protein kinase
MSK1/2  Mitogen and stress-activated protein kinase1/2
MEKK4 Mitogen-kinase protein kinase kinase kinase-4
MI  Myocardial infarction
MyBP-C  Myosin-binding protein C
NCX  Na+ /Ca2+ exchanger
Ik  Outward potassium current
PKCε Protein kinase Cε
PP1 Protein phosphatase 1 
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PLB Phospholamban
PAF  Platelet-activating factor
p70RSK p70 ribosomal S6
p90RSK p90 ribosomal S6
INa  Rapid sodium influx
RISK  Reperfusion injury salvage kinase
RyR2  Ryanodine receptor channel-2
SR Sarcoplasmic reticulum
SERCA2a Sarcoplasmic reticulum Ca2+-ATPase 2a
SPEG  Striated muscle enriched protein kinase
PTEN Tensin homolog on chromosome 10
TNFα-R1  Tumor necrosis factor alpha receptor1
TnT Troponin T
TGF-β Transforming growth factor beta
TAC  Transverse aortic constriction
T-tubules  Transverse tubules 
TPY  Threonine-proline-tyrosine phosphorylation motif

 Introduction

The heart exhibits enhanced cellular stressors given its high level of energy con-
sumption and output (i.e., oxidative stress, inflammatory stress, senescence stress) 
and with increasing age and cardiovascular diseases (CVDs), which leads to a higher 
susceptibility to additional extrinsic stress stimuli (i.e., ischemia, inflammation, 
excessive alcohol exposure, obesity) [1–9]. The mitogen-activated protein kinases 
(MAPKs) are stress kinases that are activated in response to both intrinsic and 
extrinsic stress challenges and critically regulate cell survival and growth. Over the 
years, MAPK activation has been found to be critical in the development of various 
diseases such as diabetes, cancer, Alzheimer’s disease, as well as various cardiac 
diseases such as cardiac hypertrophy, heart failure, and atrial fibrillation [10–27]. 
Among ~500 recognized protein kinase genes in the human genome, the MAPK 
family is composed of three major members, c-jun NH2-terminal kinases (JNK), 
p38 mitogen-activated protein (MAP)  kinase (p38), and  extracellular signal- 
regulated kinases (ERK1/2). These three subfamilies have been the focus of exten-
sive studies to uncover their contributions to pathological cardiac remodeling and 
disease development [10, 14–27].
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 Stress Kinase MAPK Signaling in the Heart

MAPKs are serine/threonine kinases that phosphorylate serine or threonine residues 
in a consensus sequence of Pro-X-Thr/Ser-Pro on the target protein [28]. The 
canonical pathways leading to MAPK activation require a kinase cascade in which 
MAP kinase kinases phosphorylate MAPKs that in turn activate MAPKs. The 
MAPK cascade controls the activity of downstream target proteins including numer-
ous transcription factors, through the regulation of binding partners, protein confor-
mational changes, protein stability, and subcellular localization [29].

 JNK

JNK is an important member of the MAPK family that is activated in response to 
various stress challenges and regulates cell proliferation, differentiation, apoptosis, 
autophagy, cell survival, cell mobility, and cytokine production [10, 21, 28, 30–32]. 
The JNK kinase family was discovered in the early 1990s by Kyriakis and Avruch 
and reported as a novel protein named as pp54 MAP-2 kinase, which is activated by 
phosphorylation of the amino acid residues of threonine-183 and tyrosine-185 [33, 
34]. Next, two isoforms were identified with molecular weights of 46 and 56 kDa 
and were named JNK1 and JNK2, respectively [35]. Later, it was revealed that these 
JNK kinases could be activated by various extracellular stimuli. Given that these 
JNKs contained a threonine-proline-tyrosine phosphorylation motif (TPY), they 
were characterized as a member of the MAPK family. Finally, JNK3 was discovered 
in 1995 as the last member of this MAPK subfamily and is mainly expressed in 
neurons [10, 22, 36, 37]. In the heart, JNK1 and JNK2 are the major isoforms, while 
JNK3 is expressed at a much lower level [24, 38].

JNKs function within a protein kinase cascade and are activated by dual phos-
phorylation of on the specific threonine-X-tyrosine motif by the upstream kinases 
MKK4 and MKK7 in response to stress challenges [21, 28, 31, 39]. JNK itself is a 
Ser/Thr kinase that phosphorylates its substrates on serine or threonine residues in 
a consensus sequence of Pro-X-Thr/Ser-Pro [28]. Numerous JNK substrates have 
been identified and include but are not limited to Ca2+/calmodulin-dependent pro-
tein kinase  II δ (CaMKIIδ), c-jun, Jun-B, ATF2, c-Myc, and p53 [28, 40]. JNK 
activation has been observed with aging, excessive binge alcohol-triggered “holiday 
heart syndrome,” and with CVDs such as myocardial ischemic injury and heart 
failure. Accumulating evidence suggests that JNK signaling is critically involved in 
the development of diabetes, atrial fibrillation, and other CVDs such as heart failure 
(HF), ischemic myocardial infarction (MI), and atherosclerosis [9, 10, 20–22, 
30, 41–44].
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 P38

p38 MAP kinase, also referred to as RK, p40, or CSBP2 (cytokinin-specific-binding 
protein 2), is also a member of the MAPK family and is ubiquitously expressed in 
all somatic cell types [45]. Although p38 participates in signaling cascades control-
ling cellular responses to cytokines and other stress stimuli, the function of the p38 
kinases appears to be both protective and deleterious in the stressed heart [46]. The 
p38 was initially found as an unidentified 38-kDa protein, which exhibited increased 
phosphorylation of tyrosine residues by lipopolysaccharide [47]. Later, it was dis-
covered that there are four identified genes of the p38 MAPK: p38α, p38β, p38γ, 
and p38δ. P38α shares sequence homology with p38β (~75%), p38γ (~62%), and 
p38δ (~61%), while p38γ and p38δ are ~70% identical [48, 49]. While the heart 
expresses all the sub-isoforms, p38α is the most abundant, followed by p38γ [50–
52]. The canonical activation of p38 MAPK was found to be achieved through dual 
phosphorylation of the threonine (Thr)-glycine (Gly)-tyrosine(Tyr) motif in its acti-
vation loop [53]. The phosphorylation of this threonine-X-tyrosine motif of p38 
in vivo is predominantly mediated by upstream MAPK kinases, MKK3 and MKK6, 
which are activated by MAPK kinase kinases such as TAK1, ASK1, DLK, and 
mitogen-kinase protein kinase kinase kinase 4 (MEKK4) [54–57]. This cascade can 
be instigated by one of multiple MKK-activating MAP3Ks in a stimulus-/stress- 
dependent manner relevant for specific cell type. Studies suggest that the different 
isoforms require differential activation of MAPK kinases for full activation, one 
such example being p38α which requires both MKK6 and MKK3 activation to be 
phosphorylated in response to cytokines, while p38δ is activated by MKK6, but 
negatively regulated by MKK3 [49]. In addition, low-molecular-weight GTP- 
binding proteins in the Rho family (i.e., Rac1, Cdc42, RhoA, and RhoF (Rif)) and 
heterotrimeric G-protein-coupled receptors could activate p38 [58–60]. 
Furthermore, the activity of p38 can also be modulated by dual-specificity phospha-
tases, such as PAC-1 and MKP-1 [53]. Finally, the autoactivation of p38, as a non-
canonical mode of p38 activation, was observed through the activation of scaffolding 
proteins such as TAB1 along with the “priming” phosphorylation of Tyr-323 by a 
tyrosine kinase of the SYK family [61–63].

 ERK

The ERK family, another MAPK member group, can be divided into five subfami-
lies named ERK1–ERK5. ERK1 and ERK2 share 90% homology and thus are usu-
ally referred to as ERK1/2 [64, 65]. And ERK1 and ERK2 (44kDa and 42kDa, 
respectively [66, 67]) are the most thoroughly investigated isoforms in the ERK 
family. The basic ERK signal transduction cascade has been shown to follow the 
typical MAPK cascade reaction (Ras-Raf-MEK-ERK pathway). ERK1/2 is acti-
vated by MEK1/2-mediated phosphorylation at Thr-183 and Tyr-185 [68]. This 
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dual-site phosphorylation enhances the ERK1/2 activity by >1000 folds [68, 69]. 
ERK can also be activated by tyrosine kinase receptors and Gi/o-, Gq-, and 
Gs-coupled receptors via a range of different signaling pathways [70–75]. One of 
the best characterized MKKKs to activate ERK is Raf-1, a Ser/Thr protein kinase 
[76], which binds directly to activated GTP-bound Ras leading to a full activation of 
MKKK [77]. Once it is fully activated, Raf-1 phosphorylates and activates MKK1 
or MKK2. MKK1/2, which in turn phosphorylates ERK1 or ERK2 (ERK1/2) on the 
Thr-X-Tyr motif in its activation loop, leads to ERK activation. Like JNK and p38, 
ERK is a Thr/serine (Ser) kinase that is normally located in the cytoplasm and trans-
locates into the nucleus when it is activated [29, 78]. Fully activated ERKs phos-
phorylate a wide spectrum of substrates with a general amino acid consensus 
sequence of proline (Pro)-X-Ser/Thr-Pro that can be localized at the plasma mem-
brane, in the cytosol and the nucleus that regulate important aspects of cell physiol-
ogy including cell proliferation, differentiation, adhesion, migration, and survival 
[79–83].

 MAPKs and Calcium Homeostasis in Myocytes

One of the hallmarks of a diseased heart is an altered protein phosphorylation state 
that critically contributes to ion transporter and channel dysfunctions leading to the 
disruption of Ca2+ homeostasis in response to both intrinsic and extrinsic stress 
stimuli in the heart [10, 20, 21, 22, 28, 31, 131, 132]. Calcium (Ca2+) is an important 
cation in the conversion of an electrical signal to mechanical function (termed as 
excitation-contraction coupling) during each heartbeat to maintain normal cardiac 
function and is also important in the cellular signal transduction pathways that con-
trol myocyte survival and growth [84–91]. Excitation-contraction coupling (ECC) 
is an essential link between myocyte excitation (membrane depolarization of the 
action potential) and Ca2+ release from the sarcoplasmic reticulum (SR) for myocyte 
contraction, and this series of events is critical in the beat-to-beat cardiac muscle 
contraction and relaxation.

 Normal and Abnormal Calcium (Ca2+) Signaling in Myocytes

The cardiac action potential occurs when myocyte membrane potential is depolar-
ized upon the initiation of a rapid sodium influx (INa) followed by Ca2+ influx (ICa), 
while repolarization occurs by the outward potassium current (Ik). During systole in 
normal cardiomyocytes, the Ca2+ entry via L-type Ca2+ channels (LTCCs) along 
with a much smaller amount of Ca2+ influx via the Na+ /Ca2+ exchanger (NCX) acti-
vates ryanodine receptor channels (RyR2) on the SR membrane to release a large 
amount of SR stored Ca2+. The LTCCs located in the plasma membrane are acti-
vated by the rapid sodium influx (INa) and depolarization of the myocyte membrane 
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[92–97]. A small amount of inward Ca2+ flux (ICa) through activated LTCCs triggers 
large quantities of Ca2+ to be released from the SR via cardiac ryanodine receptor 
type 2 (RyR2; also called Ca2+-triggered SR Ca2+ release channels) to produce a 
large intracellular Ca2+ ([Ca2+]i) transient, driving myocyte contraction [89, 98–100]. 
This Ca2+-induced Ca2+ release (CICR) event occurs locally within the clusters of 
RyR2 channels on the SR membrane that are in close proximity to LTCCs located 
on the plasma membrane [101, 102]. CICR is further facilitated by dyads, which are 
the structures consisting of terminal cisternae of SR, composed of clusters of RyR2 
channels, paired with transverse tubules (T-tubules), and LTCCs [103]. Upon action 
potential arrival at the T-tubule, Ca2+ influx via LTCCs activates RyR2 channels on 
the cytosolic side of SR allowing for  the occurrence of CICR, which activates 
neighboring RyR2 channels, resulting in a rapidly increased cytosolic Ca2+ [104, 
105]. CICR is also the trigger for Ca2+-troponin C binding, leading to myofilament 
activation and cardiac muscle contraction [106, 107]. During cardiac muscle relax-
ation, LTCCs close and terminate the influx of Ca2+, and RyR2 channels usually are 
also closed. Meanwhile, the excess amount of cytosolic Ca2+ is removed mainly 
through cardiac sarcoplasmic reticulum Ca2+-ATPase 2 (SERCA2) Ca2+ uptake back 
to the SR and Ca2+ extrusion from the myocyte to the extracellular space through 
NCX, while another small portion of Ca2+ is taken up by mitochondria via mito-
chondrial Ca2+ uniporters as well as a small Ca2+ efflux via the plasma membrane 
Ca2+-ATPase (also known as plasma membrane calcium-/calmodulin-dependent 
ATPase or PMCA) [93, 98, 108–110]. Normal contraction of the heart requires high 
Ca2+ levels in systole and low levels in diastole [111, 112]. Therefore, SR Ca2+ 
release via RyR2 channels and reuptake via the predominating Ca2+ pump SERCA2a 
isoform (SERCA2a) and, to a much lesser extent SERCA2b isoform, critically 
mediate the cytoplasmic Ca2+ concentration, which is essential in cardiac contrac-
tion and relaxation of each heartbeat [87, 90].

Given the tightly regulated role of Ca2+ in ECC, even a small amount of aberrant 
Ca2+ release resulting from slowly developed pathological changes of the intracel-
lular Ca2+ homeostasis can potentially have escalating negative consequences for 
the myocyte and ultimately the entire heart. With increasing age and abnormal 
stressed conditions (e.g., heart failure (HF), ischemia-reperfusion (I/R) injury, myo-
cardial infarction (MI), post-MI, and excessive alcohol exposure), impaired Ca2+ 
homeostasis causes myocardial molecular remodeling, including aberrant gene 
expression, myocyte death, electrical and mechanical dysfunctions, contractile dys-
function, and triggered arrhythmic activities [24, 25, 113–122]. Abnormal Ca2+ 
dynamics such as reduced SR Ca2+ content via decreased uptake by SERCA2 and 
increased diastolic SR calcium leak via RyR2 channels are involved in the develop-
ment of maladaptive cardiac remodeling. The abnormal diastolic SR Ca2+ leak via 
RyR2 openings may produce large/frequent Ca2+ sparks that may trigger propagat-
ing diastolic Ca2+ waves [113, 121, 123]. These aberrant Ca2+ waves result in an 
excess outward NCX current, which is electrogenic (3 Na+ in, 1 Ca2+ out), and, thus, 
may produce triggered arrhythmic  activities such as delayed afterdepolarization 
(DAD) that may initiate cardiac arrhythmias [98, 123]. Under certain pathological 
conditions such as HF, decreased SR Ca2+ refill during the SR Ca2+ cycling in myo-
cytes due to reduced Ca2+ uptake by SERCA2a leads to a reduced Ca2+ transient 
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amplitude and consequently decreased cardiac contractility as seen in the failing 
heart [124–127]. In the normal diastolic phase, CICR-mediated SR Ca2+ release 
shuts off almost completely (∼99%). However, increased diastolic RyR2 channel 
activity leads to increased diastolic SR Ca2+ leak and further reduced SR Ca content, 
which results in a reduced systolic fractional Ca2+ release for a given ICa as the 
release trigger [123, 128, 129]. Meanwhile, this increased diastolic SR Ca2+ leakage 
along with an impaired SR Ca2+ uptake in HF slows down the intracellular Ca2+ 
decline and then elevates the amount of diastolic intracellular Ca2+ concentration, 
which leads to increased Na+ influx via NCX for removing the elevated intracellular 
Ca2+ outside of the cell membrane. As a result, increased diastolic SR Ca2+ leak 
promotes aberrant Ca2+ events (Ca2+ sparks and waves), and the inward NCX current 
produces abnormal triggered activities, DADs, to initiate atrial arrhythmias such as 
atrial fibrillation (AF) and ventricular arrhythmias including ventricular tachycardia 
and ventricular fibrillation; fatal types of cardiac arrhythmias [94, 98, 99, 123, 130].

 MAPKs in Stress-Evoked Ca2+ Mishandling in Myocytes

JNK is a key member of the MAPK family, which plays a critical role in maladap-
tive cardiac remodeling [10, 20, 21, 30, 31, 43, 133–135]. Although the contribu-
tions of JNK1 in cellular apoptosis and proliferation as well as cardiac contractile 
function have been well studied, the function of JNK2, one of the two major cardiac 
isoforms, has received significantly less attention [10, 20, 133]. Recently, a causal 
role of JNK2 in abnormal Ca2+ handling was discovered for the first time in animal 
models and humans with both binge alcohol exposure and increasing age with pre-
served cardiac function and no history of cardiac arrhythmias or any major CVDs 
[20, 24–26]. JNK2, but not JNK1, drives a significant diastolic SR Ca2+ leak and a 
higher SR Ca2+ load at the same time in the stressed myocytes. This JNK2-enhanced 
SR Ca2+ uptake partially compensates for the greater diastolic SR Ca2+ leak and 
maintains a normal level of Ca2+ transients and normal cardiac function, while the 
greater JNK2-driven diastolic SR Ca2+ leak acts as a key contributor to enhanced 
atrial arrhythmic Ca2+ events and arrhythmia susceptibility [24, 25].

Very recently, JNK2 was identified as a previously unrecognized enhancer of 
SERCA2 function via the elevation of the maximal rate (Vmax) of SERCA2 activity 
by phosphorylating SERCA2 protein [24]. The SERCA2 pump activity is known to 
be regulated by phospholamban (PLB), sarcolipin, myoregulin, striated muscle 
enriched protein kinase (SPEG) and DWORF (dwarf open reading frame) micrope-
ptide [136–139]. All those regulators that are known to increase SERCA2 Ca2+ 
affinity (Km) do not change the Vmax, whereas, JNK2 significantly enhances the Vmax 
of SERCA2-ATPase activity but not the Km [24, 136–139]. Intriguingly, JNK2- 
enhanced SR Ca2+([Ca2+]SR) load by itself (in the absence of CaMKII-dependent 
RyR2 channel sensitization) may not be sufficient to cause significant diastolic leak, 
a combined higher load and CaMKII-sensitized RyR2 channels may promote the 
diastolic leak as previously demonstrated [24, 113, 120, 122, 123]. Thus, JNK2 is 
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an important stress-induced regulator driving to maintain a high SR Ca2+ uptake and 
load in order to preserve cardiac function, while JNK2 also drives a greater CaMKII- 
dependent SR Ca2+ leak to promote abnormal triggered activities (discussed in 
detail below), as seen in both humans and animal models.

The atrial action potential morphology differs from that of the ventricle, where 
the atrial action potential is generally shorter with a triangular shape due to a smaller 
Ca2+ influx and a more gradual repolarization period [140, 141]. Ca2+ handling in 
atrial myocytes while similar to that of ventricular myocytes has some important 
structural and molecular differences. Atrial myocytes are thinner and longer and 
exhibit a longer lag time between APs and Ca2+ transients at the center of the cell. 
This property of the atrial cell contributes to a higher instability of Ca2+ propagation, 
which is pro-arrhythmogenic [142]. Notably, atrial Ca2+ transient amplitude is 
smaller, and the rate of intracellular Ca2+ decay is higher than in ventricular myo-
cytes due to a greater SERCA2 uptake and a stronger NCX removal of cytosolic 
Ca2+ during the diastolic phase [142, 143]. The increased SERCA2-dependent intra-
cellular Ca2+ removal is attributed to a greater amount of SERCA2 protein and lower 
level of SERCA2 inhibitory protein PLB [142, 143]. This stronger cytosolic Ca2+ 
removal machinery in the atria leads to a higher SR Ca2+ content than that of ven-
tricular myocytes, which makes atrial myocytes prone to diastolic SR Ca2+ leak 
when RyR2 is pathologically sensitized and SR Ca2+ overload is increased due to 
the dual functional impact of stress-activated JNK2 [24, 120, 123, 142, 144–146]. 
Thus, markedly increased JNK2 in atria exposed to stress stimuli (i.e., aging, binge 
alcohol) is a major contributor to continued pathological remodeling and enhanced 
AF risk [20, 24–26, 120]. T-tubules are a subcellular network involved in SR Ca2+ 
dynamics by the coupling of LTCCs to RyR2 channels on the SR membrane to 
allow a rapid intracellular Ca2+-triggered SR Ca2+ release in response to electrical 
excitation [147–150]. Previously it was believed that atrial T-tubules were virtually 
absent in isolated myocytes from small rodents; [151, 152] however, accumulating 
evidence suggests that the T-tubule network is present in intact atrial myocytes and 
plays a functional role in atrial myocytes from both large mammalian species and 
small rodents (including humans, sheep, dogs, cows, and horses, rats, mice) [153–
157]. These inconsistent research findings may likely be due to the nature of fast 
T-tubule structural deformation during myocyte isolation and preparation. However, 
atrial T-tubular networks are clearly less abundant and less well-organized com-
pared to ventricular. In fact, rapid pacing-induced HF dogs showed reduced atrial 
T-tubular abundance that was linked to altered subcellular Ca2+ dynamics and AF 
development [122, 154, 155]. However, the involvement of the stress-response 
MAPKs in T-tubular remodeling remains unknown to date.

Like JNK, other MAPK members ERK and p38 are also involved in various 
types of stress-caused cardiac pathogenesis [10, 21, 22, 131, 132, 158]. Although 
enhanced activity of ERK or p38 alone may or may not be required or sufficient for 
facilitating cardiac hypertrophy, both ERK and p38 were found to be involved in 
pathological remodeling and AF development in the failing heart [159–165]. 
Hypertrophic stimuli lead to an increase in ICa and downregulation of SERCA2 
expression via activated ERK [17–19]. While Ras, a GTPase, is able to activate 
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ERK through a Ras-Raf-MEK cascade [166], Ras signaling-activated ERK was 
found to contribute to downregulation of L-type Ca2+ channels and reduced channel 
activity along with reduced SERCA2 protein expression in cultured myocytes [15, 
16]. Thus, Ras-ERK-modulated molecular remodeling led to decreased intracellular 
Ca2+ transients and impaired SR Ca2+ uptake, which could lead to enhanced arrhyth-
mogenicity [167]. In both isolated cardiomyocytes and Langendorff-perfused intact 
hearts, activation of p38 MAPK signaling was found to induce SR Ca2+ overload 
through enhanced SERCA2 activity and increased SR Ca2+ uptake during cardiac 
I/R injury, which in turn prompted myocardial apoptosis [168]. Overall, the stress- 
response MAPK signaling cascades are critically involved in cardiac Ca2+ handling 
and stress-caused maladaptive cardiac remodeling. However, many questions 
remain unanswered such as the extent and detailed mechanisms of how the three 
MAPK members interact and functionally overlap with regards to Ca2+ handling in 
cardiac myocytes under physiological and stressed conditions.

 MAPKs and Ca Handling Proteins in Myocytes

JNK2 was recently recognized as a critical activator and transcriptional regulator of 
CaMKIIδ, a highly validated pro-arrhythmic signal [25, 40, 120]. CaMKIIδ is a 
well-recognized regulator of Ca2+ dysregulation in cardiomyocytes through its criti-
cal contribution in phosphorylation of the Ca2+ handling proteins RyR2-Ser2815 
(sensitizing RyR2 channels to increase diastolic SR Ca2+ leak) and PLB-Thr17 (ele-
vating the SERCA activity to enhance the SR Ca2+ uptake), which results in trig-
gered activities and arrhythmia pathogenesis in humans and animal models [25, 
145, 146, 169–171]. In addition, CaMKIIδ also regulates other ion channels such as 
Ca2+, Na+, K+ channels as well as NCX and myofilament proteins including troponin 
T (TnT) and myosin-binding protein C (MyBP-C) via phosphorylation [172–191]. 
Thus, hyper-activated CaMKIIδ drives RyR2 channel-mediated diastolic Ca2+ dys-
function that causes and triggers arrhythmic activities but also contributes to cardiac 
contractile function. Intriguingly, recent studies revealed that JNK2 has specific 
actions in regulating both expression and activation of CaMKIIδ, which conse-
quently drives CaMKIIδ-dependent SR Ca2+ mishandling in the stressed heart. 
Specifically, JNK2 and CaMKIIδ were found to be tethered with each other, and 
JNK2 increases phosphorylation of CaMKIIδ at the autophosphorylation site 
Thr286 to activate CaMKIIδ in a JNK2 dose-dependent manner [25]. Protein phos-
phatase 1 (PP1) is known to  target this specific Thr286 site to dephosphorylate 
CaMKIIδ [192]. Thus, a possible interrelationship between PP1 and JNK2 might 
exist in regulating the CaMKIIδ activity, and this is worthy of further 
investigation.

Although CaMKIIδ is essential in regulating a large number of cellular sub-
strates including ion channels, pumps, transporters, and transcription factors [25, 
120, 172–191, 193], exactly how the CaMKIIδ gene and protein expression is con-
trolled remains surprisingly understudied. A recent study reported for the first time 
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that JNK2 downstream transcription factors c-jun and activating transcription factor 
2 (ATF2) both bind to the CaMKIIδ gene promoter and regulate CaMKIIδ expres-
sion [40]. Surprisingly, c-jun was found to be a key transcription factor for the basal 
level expression of CaMKIIδ mRNAs and proteins. This was evidenced by the sup-
pression of CaMKIIδ promoter baseline activity when c-jun was knocked out in the 
cells or the binding consensus sequence for c-jun was mutated to alter binding. 
Moreover, robustly activated JNK2, mimicking a stressed condition, significantly 
increases the binding of c-jun, but did not change the binding of ATF2, to the 
CaMKIIδ promoter, while JNK2 inhibition alleviated this enhanced c-jun binding 
activity. In addition, the JNK2 specific action in c-jun-regulated CaMKIIδ promoter 
activity was strongly supported by the suppressed CaMKIIδ promoter activity from 
JNK2 knockdown or suppressed activity [40]. These findings take on special trans-
lational importance given that the development of drugs that target CaMKIIδ activ-
ity has been considered as an appealing anti-arrhythmic intervention point; however, 
specificity issues driving off-target effects greatly hinder the clinical applications. 
Additionally, upstream or downstream components of the CaMKII signaling cas-
cades are then considered as new potential therapeutic targets. Stress-driven JNK2 
activation and the JNK2-CaMKII cross talk are likely critical mechanisms that cou-
ple stressors and maladaptive cardiac responses. Therefore, modulating JNK2 activ-
ity could be a likely therapeutic approach to prevent and treat cardiac arrhythmias.

An extensive number of studies have demonstrated that JNK1 activation is criti-
cally involved in preservation of cardiac function and promoting apoptosis after 
myocardial I/R, MI, and HF via the regulation of signaling pathways that modulate 
gene expression [10, 21, 165, 194–200]. Also, emerging evidence suggests that p38 
regulates SERCA2 mRNA and protein expression via the transcription factors Egr-1 
and SP1 [14]. However, the functional role of all three MAPK members and sub- 
isoforms of each kinase in Ca2+ handling proteins in cardiomyocytes under physio-
logical conditions or stress challenges requires further investigation. Our 
advancement of understanding the functional role of MAPKs will likely aid the 
effort of developing novel preventive and therapeutic strategies for CVDs.

 MAPKs and Molecular Remodeling in Myocytes

The MAPK signaling pathway transduces and integrates diverse stress stimuli into 
complex cytoplasmatic and nuclear processes and finally leads to altered cellular 
function including proliferation, gene expression, differentiation, and apoptosis. 
MAPKs regulate cellular processes via direct phosphorylation of downstream tar-
gets and/or indirectly regulate gene expression in maintaining normal cell function 
and cellular responses under stress stimuli challenges. Generally, the JNKs and p38 
kinases regulate the stress or injury responses, while the ERKs are more specialized 
for mitogenic and growth factor stimulations [201, 202].
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 MAPKs and Gene Regulation in Myocytes

Gene regulation is one of the important functions of the MAPK family via the 
downstream transcription factors such as c-jun, ATF2, JunD, c-Fos, SRF, AP-1, 
c-Myc, MEF2, GATA, SMAD, STAT-1, and NFκB. The JNKs directly phosphory-
late a number of their downstream transcription factors such as c-jun, ATF2, AP-1, 
JunD, Sp1, Elk1, and c-Myc [26, 40, 203–206]. The AP-1 complex is composed of 
homodimers of c-jun or heterodimers of c-jun/ATF2 or other combinations of tran-
scription factors, which induce target gene expression by binding the AP-1 consen-
sus site(s) in the promoter region of the gene or dissociating from the promoter 
region to upregulate or suppress the specific gene expression [40]. These activated 
transcription factors critically contribute to the transcriptional regulation of proteins 
that are involved in I/R caused myocardial injury and ATP depletion. JNK1 is also 
known to regulate several important genes (i.e., Notch1, SOD-3) in response to 
inflammation, oxidative stress, and heat stress through phosphorylation of several 
transcription factors (i.e., c-jun, Sp1, DAF-16) [207–209]. Under long-term stress 
challenges (i.e., aging, repeated binge alcohol exposure), JNK2, but not JNK1, is 
activated, which leads to reduced AP-1 activity but increased binding of c-jun and 
unchanged binding of ATF2 to the promoters of JNK2 target genes such as the “cell- 
to- cell communicator”  gap junction protein connexin43(Cx43), “pro-arrhythmic 
kinase” CaMKIIδ, and “epigenetic regulatory molecule” DNA methyltransferase1 
(DNMT1) to either suppress or enhance their transcriptional activities and gene 
expression. Consequently, this JNK2-mediated gene regulation leads to impaired 
cellular function including intercellular uncoupling between cardiac myocytes 
along with the slowing of electrical conduction or enhanced cardiac Ca2+-mediated 
arrhythmic triggered activities or increases DNA methylation [20, 24–26, 40, 210].

Like the JNKs, p38 also directly phosphorylates transcription factors including 
ATF1/2/6, c-Myc, c-Fos, GATA4, MEF2A/C, SRF, STAT-1, and CHOP [53, 211–
213]. Upon activation, p38 translocates into the nucleus and reenters the cytosol 
when inactivated which is essential for its function across all cell types [58]. The 
phosphorylation status and the interaction of p38 with other proteins determine its 
subcellular location and activities of its downstream targets [214]. For instance, 
activated p38/MAPKAP kinase-2 (MK2) can form a complex with activated p38 in 
the nucleus leading to the export of MK2 from the nucleus to phosphorylate its 
cytosolic substrates [215, 216]. The mitogen and stress-activated protein kinase 1/2 
(MSK1/2) is a downstream target of p38 but also regulates the subcellular location 
of p38 and the p38/MSK complex in regulating the transcriptional activity of CREB, 
STAT3, and NFκB [217–221]. Moreover, p38-regulated transcription factors con-
tribute to the upregulation of several important stress-response genes including 
phosphatase and tensin homolog on chromosome 10 (PTEN) that acts to limit the 
phosphorylation and activation of Akt as well as the transforming growth factor beta 
(TGF-β) signaling pathway in regulating cell growth/differentiation/apoptosis and 
other cellular functions [222, 223].
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Activated ERK1/2, another MAPK family member, has been found to undergo 
nucleus-translocation and directly phosphorylate transcription factors and bind to 
chromatin inside the nuclei [224–226]. A recent discovery shows that autophos-
phorylation of ERK2 at the site of Thr188 (Thr208 in ERK1) promotes the nucleo-
tide binding but attenuates ERK kinase activities, while inhibiting the upstream 
regulator MEK1/2 also abolishes the nucleotide binding and reduces the activity of 
ERK [227, 228]. ERK has diverse cytoplasmic targets such as the p90 ribosomal S6 
(p90RSK) family with isoforms 1–4, p70 ribosomal S6 (p70RSK) [229], MNK [230], 
and glycogen synthase kinase-3 (GSK-3) [231], which consequently phosphorylate 
a wide range of substrates involved in gene transcription, translation, cell cycle 
regulation, and cell survival [232, 233]. Moreover, ERK can phosphorylate a com-
plex family of transcription factors, the ternary complex factors (TCFs; SAP-1, 
Elk-1, Net, etc.), which are vertebrate ETS-domain proteins that link transcription 
to MAPK signaling in order to regulate the expression of c-Fos, c-Myc, and c-jun 
and in turn contribute to transcriptional regulation of various late-response genes 
that promote cell survival, cell division, and mobility, which are opposite to the 
regulatory role of JNK and p38 on those cellular responses as discussed above [158, 
234–237]. In addition, several key transcription factors including FOXO, BETA2/
NeurD1 (the basic helix-loop-helix protein partner), E4, and PDX-1 were found to 
be related to glucose regulation and insulin gene transcription, which also underlie 
the anti-apoptosis effect in myocytes and cardiac protective effect of ERK1/2 
[238–241].

In summary, MAPK signaling pathways are key mediators of cell transcriptional 
responses to stress-induced extracellular signals. These pathways critically control 
gene expression in a number of ways including the phosphorylation of cytosolic 
proteins and regulation of transcription factors and co-regulatory proteins.

 MAPKs and Apoptotic Signaling Pathways 
in Stress-Exposed Myocytes

Apoptosis is a highly regulated process in the cell composed of a balance between 
pro-death and pro-survival cell signals, and apoptotic cell death plays a pivotal role 
in myocyte survival in response to stress stimuli such as ischemic cardiac injury and 
heart failure. Apoptosis can be roughly divided into extrinsic apoptosis, meaning the 
apoptosis signaling coming from the environment, and intrinsic apoptosis, meaning 
the apoptosis signaling coming from the cell itself. The main route of apoptosis in 
the heart is intrinsic apoptosis, and the key initiator of intrinsic apoptosis is the 
mitochondrial release of cytochrome c [242]. Cytochrome c released from mito-
chondria forms a complex from pro-caspase 9 and its cofactor APAF-1 and eventu-
ally leads to the activation of caspase 9 and apoptosome formation in the cytosol 
followed by the activation of caspase 3 leading to apoptosis [242]. Various adverse 
conditions can lead to intrinsic apoptosis in cardiac myocytes including but not 
limited to redox stress, energy deprivation, and activation of Gαq signaling 
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[243–245]. On the other hand, activation of the extrinsic apoptotic signaling path-
way is a common phenomenon in stressed hearts such as seen with myocardial 
ischemic I/R, postinfarction remodeling, end-stage heart failure, and diabetes [246–
249]. Two families of independent receptors that mediate the extrinsic apoptosis 
signaling are mainly regulated by the Fas receptor (receptor for Fas ligand, FasL) 
and TNFα receptor 1 (TNFα-R1). Activation of Fas receptor and TNFα-R1 by their 
specific ligands leads to cleavage of pro-caspase 8 into caspase 8 which further 
activates caspase 3 to promote apoptosis. In both extrinsic and intrinsic apoptosis, 
the Bcl-2 family of proteins with Bcl-homology domains plays important roles. To 
date, this Bcl-2 family is known to contain two subgroups, anti-apoptotic proteins 
including Bcl-2, Bcl-X(L), Bcl-W, Bfl-1, and Mcf-1 and pro-apoptotic proteins 
including Bad, Bac, Bak, Bix, Box, Bid, Bim, Bnip3, and Nix [250, 251]. 
Phosphorylation of Bcl-2 family members plays a key role in regulating mitochon-
drial membrane integrity, and MAPK has been shown to regulate the Bcl-2 family 
by phosphorylation [250, 251]. While anti-apoptotic Bcl-2 proteins bind to the pro-
teins forming mitochondrial pores, controlling their opening and closure, some pro-
apoptotic Bcl-2 proteins including Bax and Bak can insert into mitochondrial outer 
membrane upon activation via phosphorylation and form pores into the mitochon-
dria [252–255]. The Bcl-2 family achieve the anti-apoptotic effect through the inhi-
bition of pro-apoptotic proteins (i.e., Bad, Bax, and Bim) [256–260].

 JNK and Apoptotic Signaling Pathways in Myocytes

In the heart, JNK is activated in response to various stimuli signals including 
mechanical stretch [261, 262], pressure overload [263–265], I/R [266, 267], and 
catecholamine stimulation [263], which are known to activate apoptotic signaling 
pathways [262, 268, 269]. Apoptosis signal-regulating kinases (ASK, including 
ASK1 and ASK2) promote the activation of MKK4 and MKK7, which are the 
upstream activators of JNK [21]. However, mixed findings regarding the role of 
JNK in apoptosis have been reported, suggesting complicated stress responses of 
JNK signaling in different cell types and potentially different isoform activation at 
different time frames following various stress challenges. In ROS-challenged myo-
cyte models (H2O2-treated or norepinephrine-treated adult rat ventricular myo-
cytes), JNK activation is involved in ROS-induced apoptosis, evidenced by alleviated 
ROS production and reduced apoptosis through JNK-specific inhibiton [270, 271]. 
In addition, JNK has been localized to the mitochondria in cardiac myocytes and is 
known to promote the mitochondrial cytochrome c release in a capase-9-dependent 
but capase-8-independent manner, suggesting a direct functional role of JNK in 
mitochondria-associated appotosis [272]. This pro-apoptotic effect of JNK was also 
found in noncardiac mammalian cells via enhanced phosphorylation and degrada-
tion of anti-apoptotic proteins Bcl-2 and Bcl-X(L), which removes the inhibitory 
regulation of Bcl-2 and consequently activates the pro-apoptotic proteins Bad, Bax, 
and Bim [256–260]. Furthermore, suppressing JNK1 or the MKK4 pathway from 
overexpression of dominant negative proteins enhances apoptosis during NO 
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treatment and I/R injuries, further supporting the anti-apoptotic effect of cardiac 
JNK in response to ischemic stress [273–275]. While JNK inhibition reduces apop-
tosis during numerous stress conditions including transient energy deprivation (glu-
cose deprivation and mitochondria inhibition), I/R, and hyperglycemia in cultured 
H9c2 cells and myocytes, JNK-deficiency in fibroblasts activates mitochondrial 
apoptotic signaling [276–280]. Thus, the functional role of JNKs in cellular apop-
totic pathways of the heart may vary depending on the cell type and context in 
response to different types of stress stimuli. While the findings discussed above are 
predominantly regarding the contributions of JNK1 in cellular apoptosis and prolif-
eration that have been well studied [10, 20, 133], the functional roles of cardiac 
JNK2 and JNK3 (with less expression in the heart) in the apoptotic pathway under 
different stressed conditions remain largely unknown. Further investigations are 
clearly needed to enhance our understanding regarding the functional role of JNK 
in myocardial remodeling and maladaptive development.

 p38 and Apoptotic Signaling Pathways in Myocytes

p38 is critically involved in cardiac apoptosis in various animal models of cardiac 
disease such as cardiac injury and HF [281–285]. p38 was found to activate p53 and 
promote apoptosis by enhancing the expression and translocation of Bax in mito-
chondria [286]. p38 can also phosphorylate Bcl-2 via translocation into mitochon-
dria to suppress the anti-apoptotic effect of cytosolic Bcl-2 [287]. In platelet-activating 
factor (PAF)-treated H2c2 cardiac myocytes with elevated cytosolic Ca2+, caspase 3 
activity and mitochondria release of cytochrome c increase in a p38-dependent 
manner, further supporting the pivotal role of p38 in promoting myocyte apoptosis 
[288]. Also, a reduced level of Bcl-2 and enhanced apoptosis was found in cardiac 
myocytes with overexpression of wild-type p38 but not in the myocytes with over-
expression of an inactive dominant negative form of p38α [283]. This pro- apoptotic 
function of p38α was further demonstrated in a mouse myocardial infarction model 
where overexpression of p38α alleviates the inhibition of apoptosis guard Bcl-X(L) 
and Bcl-2 reduces the Bcl-X(L) deamination consequently activating the pro- 
apoptotic signaling cascades [282]. The I/R injury response is crucially determined 
by mitochondrial function and activity and p38 inhibition during I/R decreases 
mitochondrial swelling and ultrastructural alterations and mitigates mitochondrial 
membrane depolarization [289]. There is also evidence that p38 activation during 
I/R contributes to cardiac damage by triggering intracellular Ca2+ overload [290]. 
While the pro-apoptotic role of p38α in myocytes has been well-recognized, the 
pro-apoptotic role of p38δ in deteriorating cardiac function was recently reported 
with chemotherapeutic doxorubicin-induced cardiomyopathy [291]. Moreover, p38 
is a key player in α1-adrenoreceptor blocker doxazosin-induced apoptosis in car-
diac myocytes that increases the risk of  HF development [292, 293]. Although the 
overwhelming evidence suggests a pro-apoptotic role of p38, an anti-apoptosis role 
of p38 has also been described under certain stressed conditions. For instance, with 
specific β-adrenergic receptor signaling mediated through Gi-dependent receptors, 
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p38 could exert anti-apoptotic roles, while osmotic stress also showed anti- apoptotic 
function of p38 via phosphorylation of small heat shock protein αB-crystallin [294–
296]. Therefore, p38 may have a differential functional impact on myocyte apop-
totic signaling pathways in response to different stress stimuli. In addition, the 
distinct functional roles of the different sub-isoforms of p38 under different stress 
stimuli require further investigation.

Other than a direct regulation of p38 in the apoptotic signaling cascade proteins, 
p38 can also promote apoptosis in cardiac myocytes by regulating apoptotic genes 
via a wide panel of transcription factors including but not limited to ATF2, AP-1, 
GATA, SMAD, STAT-1, and NFκB [297]. For instance, in I/R injury and hypoxia 
animal and cell models, p38-dependent phosphorylation of ATF2 leads to enhanced 
expression of phosphatase PTEN which limits the phosphorylation and activation of 
Akt, a powerful survival pathway regulator [222]. Suppressing p38 by overexpress-
ing dominant negative p38 or PTEN both attenuated myocyte death, cardiac injury, 
and functional loss after the I/R injury [222]. Enhanced expression of FasL is a 
well-established route toward DNA fragmentation and apoptosis [298, 299]. p38 
has been shown to upregulate Fas/FasL expression via increased phosphorylation of 
the downstream transcription factor STAT-1 at the Ser727 site to enhance its tran-
scriptional activity in myocytes treated with angiotensin II, norepinephrine, and 
hypoxia [300, 301]. Moreover, p38-dependent AP-1 and GATA transcriptional reg-
ulation were also found to upregulate TGF-β expression, which triggers the activa-
tion of transcription factor SMAD-mediated apoptosis in angiotensin II-treated 
myocytes [223]. GADD153 (growth-arrest-and-DNA-damage-inducible protein 
153 also known as C/EBP homologous protein (CHOP)) is one of the pro-apoptotic 
transcription factors engaged in response to enhanced ER stress. p38-dependent 
activation of GADD153 has been shown to promote the expression of downstream- 
of- CHOP gene 1(DOC-1), which encodes for a stress-induced form of carbonic 
anhydrase VI that catalyzes the formation of H2CO3 to increase cellular stress- 
induced apoptosis [302, 303]. In addition, p38-activated GADD153 enhances NFκB 
phosphorylation and nuclear translocation, which was found in doxorubicin-induced 
inflammation and apoptosis in cardiac myocytes [304]. Furthermore, inhibition of 
p38/NFκB signaling alleviates isoproterenol-induced cardiac dysfunction in a rat 
model [297]. Thus far, the evidence supports a key role for p38 in myocyte apopto-
sis and the development of cardiac maladaptive function.

 ERK and Apoptotic Signaling Pathways in Myocytes

ERK activation is largely anti-apoptotic in the heart under various stressed condi-
tions such as I/R injury, oxidative stress, hypoxia stimulation, and β-adrenergic 
stimulation [305, 306]. ERK inhibition enhanced the oxidative stress-induced cell 
injury and apoptosis, while also pharmacologically potentiated ERK activation 
showed a protective effect against apoptosis induced with a chemotherapy reagent 
doxorubicin in cardiac myocytes [307–309]. In contrast, activated ERK1/2 attenu-
ates I/R injury in both cell and animal models [268, 310–313]. Another interesting 
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finding is that the cell survival signaling through β2-adrenergic receptor activation 
has been shown to be regulated through activated ERK [314].

The cardiac protective roles of ERK1/2 during a stress challenge are multidimen-
sional. ERK substrates include nuclear substrates (transcription factors) and cytosolic 
substrates promote apoptosis through activity and transcriptional regulation of certain 
key apoptosis-related proteins in the cytosol or nucleus. For example, activated cardiac 
ERK1/2 can phosphorylate cytosolic proteins such as phospholipase A2 and transcrip-
tion-regulating kinases p90SRK, GSK3, which are critically involved in cellular apopto-
sis under stressed conditions [315–322]. ERK1/2 also inhibits a key pro-apoptotic 
protein Bad by facilitating the protein kinase Cε (PKCε)-mediated phosphorylation of 
Bad in mitochondria and downregulates the expression of Bax, another pro-apoptotic 
protein in the Bcl-2 family, resulting in the inhibition of cytochrome c release from 
mitochondria in cardiac myocytes [312, 316–318]. Moreover, ERK-GATA4 signaling 
was shown to be involved in the anti-apoptosis function of ERK by upregulated expres-
sion of anti-apoptotic protein Bcl-X(L) via enhanced phosphorylation of the transcrip-
tion factor GATA4 at the Ser105 site to enhance the promoter activity of Bcl-X(L) 
[312, 323]. It is known that activating ERK promotes the activation and nuclear trans-
location of transcription factor Nrf2 which promotes the expression of genes that 
potentiate the glutathione antioxidant response, while ERK also upregulates COX-2 
via enhanced AP-1 and NFκB-2 transcriptional activity to sustain the cardiac myocyte 
survival and metabolism in response to an oxidative stress challenge [213, 324]. This 
convincing evidence suggests that ERK1/2 fulfills an anti-apoptotic role to promote 
cell survival and growth in response to stress stimuli to protect cardiac function. 
However, ERK was also found to be pro- apoptotic in certain disease models. For 
instance, in a diabetic rat model with upregulated HMGB1 (high mobility group box 1 
protein), ERK was found to promote apoptosis via the activation of Ets-1, which even-
tually leads to enhanced Bax protein and caspase 3 activation [325].

Taken together, the three MAPK members fulfill unique but overlapping intracel-
lular signaling mechanisms in responding to a myriad of mitogens and stressors 
mediating the signaling networks of cell survival and death as well as cardiac 
metabolism and pathogenesis in a cell type and context dependent manner.

 Dynamic Relationships of MAPKs in Pathological Cardiac 
Remodeling in Stressed Hearts

Accumulating evidence suggests that the three MAPK family members play impor-
tant roles in the development of pathological remodeling and maladaptive cardiac 
function during disease progression in a cellular context- and time-dependent man-
ner [10, 21, 22, 131, 132, 326]. Cardiac remodeling encompasses the molecular and 
structural changes accompanying the electrical physiological and pathological 
changes in stress-exposed hearts. Those changes are manifested clinically in the 
progression of HF including increased heart size, deteriorated cardiac contractile 
function, and reduced cardiac output along with a series of clinical symptoms of 
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HF. Cardiomyocytes are the major cardiac cells involved in the remodeling process, 
although other components are also involved including the interstitium, fibroblasts, 
and coronary vasculature. Being terminally differentiated cells, cardiac myocytes 
respond to stress stimuli by adaptive growth, also known as hypertrophy, as the 
adaptive response in stress-exposed hearts [327]. Cardiac hypertrophy can be 
roughly divided into physiological (or adaptive) hypertrophy and pathological (or 
maladaptive) hypertrophy [328]. Physiological hypertrophy is reversible and occurs 
in response to continuously increased demand for cardiac function, which bears the 
main characteristics of increased cell size, increased fatty acid oxidation and protein 
synthesis, sarcomeric reorganization, and increased gene transcription related to 
cell growth [329, 330]. Pathological hypertrophy may also occur after myocardial 
ischemic injury, inflammatory heart muscle diseases (i.e., myocarditis), idiopathic 
dilated cardiomyopathy, or unfavorable cardiac volume loading such as hyperten-
sion, aortic stenosis, or valvular regurgitation. Pathological hypertrophy is usually 
accompanied by enhanced inflammation signaling, fetal gene expression, interstitial 
fibrosis, and risks of decompensation and progression toward to HF [329–332].

Regardless of cardiomyocyte MAPK activation under different stress conditions, 
a different temporal response to various stress stimuli clearly plays a role [161, 
333–336]. Cardiac ERK1/2 plays an essential role in promoting myocyte survival 
and growth during the progression of adaptive hypertrophy and pathological mal-
adaptive remodeling [337–339]. In response to stress stimuli, ERK1/2 can be acti-
vated by either G protein-coupled receptor (altered angiotensin II, endothelin-1, 
phenylephrine, catecholamines, etc. ) [331, 332, 340–343], receptor tyrosine kinases 
(altered fibroblast growth factor, TGF-β1, growth differentiation factor 15, etc. ) 
[344–346], or mechanical stretch [347]. Activated ERK drives a wide network of 
intricate pathways which activate secondary signaling to regulate cardiac myocyte 
cytosolic activity and gene regulation leading to cardiac hypertrophy without pre-
mature death or impaired cardiac function [84, 348–350]. While suppression of 
ERK1/2 signaling by inhibition of ERK1/2 or MEK1/2 with pharmacological agents 
and dominant negative protein overexpression abolishes hypertrophic response in 
myocytes during pathological insults (e.g., pressure overload, I/R injury, oxidative 
stress), this ERK inhibition however leads to aggravated cardiac function and exac-
erbated myocyte death [161, 324, 351–354]. Thus, ERK-mediated hypertrophic 
remodeling appears to be a beneficial early response to maintain a normal cardiac 
function under stress challenges.

A dynamic relationship between the three MAPKs was found in various cardiac 
disease models. While some studies observed only transient ERK activation in a 
pressure-overload mouse model induced with transverse aortic constriction (TAC), 
other reports suggest that ERK remained activated for 2- to 4-week post-TAC [333, 
335, 336]. However, JNK and p38 were found to be constantly activated over the 
course of pressure overload [161, 333–336]. On the other hand, severity of the pres-
sure overload and HF status likely plays a key role in the differential activation 
status of the three MAPK members [333, 335, 336]. For instance, JNK and p38 
activation in the heart and in white blood cells were in positive correlation with the 
severity of pressure overload measured with trans-stenotic systolic pressure 
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gradient and the severity of hypertrophy (left ventricular weight/body weight ratio) 
[355]. This was supported by another study in animals showing that JNK is signifi-
cantly increased with a mild to severe pressure overload (35–85% aortic constric-
tion), while p38 is activated in HF with a more severe pressure overload (85% aortic 
constriction), but ERK was only transiently activated [356]. In human hypertensive 
patients with uncontrolled blood pressure, p38 and JNK activation is significantly 
higher in white blood cells compared to patients with controlled blood pressure 
[355]. Myocardial I/R is another common and complicated pathophysiological 
stressor that can lead to myocardial stunning, arrhythmias, and eventually HF [357]. 
Different time scales of MAPK activation have been shown in the infarct or infarct 
border zone of post-MI mouse, and p38 phosphorylation is increased initially, while 
JNK phosphorylation increased approximately 2 weeks after MI; on the other hand, 
ERK phosphorylation increased after about 4 weeks after MI, likely contributing to 
the post-MI myocardial remodeling [358]. In a rat model of I/R injury, increased 
p38 and unchanged ERK occurred during the acute ischemia phase, while JNK was 
only increased during the reperfusion phase [359]. Similarly, in a long-term isch-
emia porcine model of coronary embolism, JNK, p38, and ERK activations were all 
enhanced, contributing to the postischemic remodeling from the microinfarction 
and apoptosis [360]. The enhanced phosphorylation of p38 and JNK after I/R injury 
further decreased the cell viability and promoted cardiac cell apoptosis [361] via 
decreased anti-apoptotic Bcl-2 and increased pro-apoptotic Bax [280]. Moreover, 
acute MI (6 hours after LAD ligation) could activate both JNK and p38, yet ERK 
was decreased, accompanied by increased activity of pro-apoptotic protein caspase-
 3 [362–364]. ROS has been shown to be critical in activating MAPKs in response to 
I/R injury. Suppression of ROS production alleviates MAPK activation and attenu-
ates the loss of cardiac function and decreased infarct size [365]. This is supported 
by the findings of ROS-dependent JNK and p38 activation in post-MI ventricular 
tissues [366]. In animal models of diabetes and post-MI diabetes, increased ROS 
was found to be responsible for intensified myocardial injury and loss of cardiac 
function along with increased activation of JNK and p38, and the contribution of 
ROS-activated JNK and p38 was confirmed by the striking rescue effect of ROS 
suppression and stress kinase inhibiton [367, 368]. Moreover, antioxidant/anti- 
inflammatory agents also prove to enhance ERK1/2 activation and preserve the car-
diac function along with suppressed activities of JNK and p38 [369, 370].

Overall, dynamic changes of the three MAPKs appear to occur at different time 
points during the pathological cardiac remodeling process in response to a myriad 
of mitogens and stressors. In general, the end result of this temporally dynamic 
activation of p38 and JNK leads to the aggravation of cardiac injury, promotes mal-
adaptive cardiac remodeling, and impairs cardiac function, while the activation of 
ERK promotes cell survival and preserves cardiac function. To date, the MAPK 
family has received extensive interest due to the far-reaching implications its mem-
bers manifest in signaling and cross talk with other signaling networks. Further 
understanding regarding the dynamic relationship between the three MAPK mem-
bers under different stress conditions will be required for the development of 
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effective therapeutic strategies and the discovery of novel therapeutic targets for 
early intervention and treatment of cardiac diseases.

 MAPKs and Therapeutic Potentials

MAPKs are critically involved in cardiac pathological remodeling, and disease 
development (i.e., hypertrophy, ischemic injury, HF, and cardiac arrhythmias) posi-
tioning the modulation of MAPK activity as a novel point for therapeutic interven-
tion. Pharmacological inhibition and genetic deletion of the three MAPK kinases 
has proven to change the course of stress-induced cardiac adaptive and maladaptive 
remodeling [333, 371]. Inhibition of JNK and p38 activities has been shown to 
reduce cardiac injury and preserve cardiac function in the stressed heart, and this 
was supported by manipulating upstream regulators of JNK and/or p38 to suppress 
their activities. The knockdown of Grb2 adaptor protein suppressed JNK and p38 
activities (no effect on ERK), which effectively alleviated cardiac hypertrophy and 
apoptosis in pressure-overload hearts [334, 372]. Another example is that deletion/
suppression of multiple upstream regulatory genes (i.e., BAMBI, NECTIN2, 
DKK3, and the 14-3-3 family) inhibits JNK and p38 activity along with exacerbated 
apoptosis, fibrosis, and cardiac function loss [373–376].

However, selective inhibition of each MAPK often offers different outcomes, 
which is in line with the evidence of differential involvement of the three MAPKs 
and their downstream signaling pathways at different stages during the progression 
of cardiac remodeling and disease development under different stress conditions. 
While some studies have shown a beneficial effect of competitive inhibition of the 
p38 signaling alone by overexpression of dominant negative p38 or pharmacologi-
cal inhibition in promoting cardiac hypertrophy by preventing apoptosis and fibrosis 
and preserving cardiac function in response to pressure overload and I/R injury 
[281, 283, 372, 375, 377–379], other studies suggest that inhibiting p38 alone pro-
motes hypertrophy but aggravates the deterioration of cardiac function in both pres-
sure overload and I/R injury models and even abolishing the protective effects of 
ischemia preconditioning [380–383]. There are current clinical trials testing the 
safety and efficacy of p38 inhibition in myocardial infarction [384, 385]. The p38 
inhibitor SB-681323 decreased the circulating inflammatory marker high- sensitivity 
C-reactive protein (hs-CRP) in statin-receiving patients undergoing elective percu-
taneous coronary intervention [386]. A phase 2 clinical trial suggests treating 
patients with non-ST-segment elevation myocardial infarction with the p38 inhibitor 
losmapimod (GW856553X) decreased circulating levels of inflammatory markers 
including IL-6 and hs-CRP short term (72 hour); however, no differences in inflam-
matory markers or risk of cardiovascular events were shown in a longer term trial 
(12 weeks) [384, 387, 388]. Similarly, JNK inhibition without the influence in ERK 
and p38 led to increased myocyte size; upregulated activation of pro-apoptotic 
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proteins including p53, Bad, and Bax; and exacerbated deterioration of cardiac 
function in different disease models [389–391]. Thus, therapeutic potentials of 
selective inhibition of either JNK or p38 for cardiac function protection under cer-
tain pathological conditions need to be further evaluated. Recently, JNK2, an under-
studied JNK isoform, showed therapeutical potentials in anti-arrhythmogenesis [20, 
24–26, 392]. While accumulating evidence suggests that pro-arrhythmic molecule 
CaMKII may represent a target for therapy and provoked the development of 
CAMKII inhibitors [113, 393, 394], CAMKII inhibitors have off-target effects that 
hinder their clinical application [395]. With the discovery of a novel form of patho-
genic kinase-on-kinase cross talk, JNK2 directly regulates CAMKII activity, and the 
development of compounds directed at JNK2 may represent an alternative drug tar-
get. More research is warranted to explore JNK2 as an anti-arrhythmic drug target 
in patients.

Considering the protective role of ERK and detrimental role of JNK and p38 in 
cardiac injury and pathological remodeling, developing specific strategies for use of 
selective MAPK inhibitors has a high clinical potential in preventing and treating 
cardiac injury and pathological remodeling and ultimately preserving or improving 
cardiac function. In fact, activation of the ERK1/2 pathway has been identified as a 
central component of the so-called Reperfusion Injury Salvage Kinase (RISK) path-
way [396]. ERK1/2-specific in  vitro kinase activity in adult hearts subjected to 
20 minutes of ischemia followed by 15 minutes of reperfusion was doubled [362]. 
In addition to this study, others support a protective role for the MEK1-ERK2- 
signaling pathway against I/R injury [268, 397, 398]. A thorough experimental dis-
section of the RISK pathway revealed a combination of two parallel cascades, 
PI3K-Akt and MEK1-ERK1/2, that produced a protective effect when blocked with 
the co-administration of both PI3K and ERK inhibitors at different time points 
[399]. Thus, broadly the RISK pathway refers to a group of pro-survival protein 
kinases, which confer cardioprotection when activated specifically at the time of 
reperfusion [399, 400]. The RISK pathway has recently been seen as a universal 
signaling cascade for cardioprotection and is likely recruited not only by ischemic 
conditioning but also by other pharmacological agents such insulin, bradykinin 
adenosine, or statins [401] shared by most cardioprotective therapies [402]. 
Therefore, the cardiac protective effect of activated ERK shed new light on drug 
development studies. Intriguingly, pharmacological reagents that are suppressive to 
JNK and p38 activities while augmenting the activation of ERK lead to attenuated 
scar formation and improved cardiac outcome, underscoring the functional cross 
talk between the MAPKs [282, 362–364]. As it has been discussed in this chapter, 
differential changes of the three MAPKs occur during the development of adaptive 
and maladaptive cardiac remodeling and cardiac disease progression in cellular 
context and time-dependent manners. Further investigation is urgently needed to 
enhance our understanding of the dynamic relationships between the three MAPK 
members under different stress conditions, which is essential for the development of 
effective therapeutic strategies and the discovery of novel therapeutic targets for 
early intervention and treatment of cardiac diseases.
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