
Vulnerability Management in IIoT-Based
Systems: What, Why and How

Geeta Yadav, Kolin Paul, and Praveen Gauravaram

Abstract Industrial Control Systems (ICS) are characterized by large numbers of
tightly integrated, interdependent, and heterogeneous components in a network. They
act as a base system for safety and mission-critical Industrial Internet of Things (IIoT)
applications such as smart grids, nuclear power plants, process control systems and
robotics systems. The complex ICS, e.g., Supervisory Control and Data Acquisition
(SCADA), consists of many interdependent subsystems. Modern SCADA systems
are an amalgam of IIoT and legacy systems. IIoT is essentially a realization of
advances in the connectivity of hardware and data networks that SCADA provides.
Therefore, modern SCADA has evolved as a use case of IIoT, wherein IIoT improves
industrial productivity by analyzing data generated by SCADA systems. The mod-
ernization of the SCADA system, standardization of communication protocols and
almost ubiquitous interconnectivity courtesy for IIoT has drastically increased the
attack surface of the SCADA system. Systematic Vulnerability Management (VM)
of these attack surfaces minimizes risks and impacts associated with vulnerabil-
ity exploitation. In this chapter, we first find the correlation between the IIoT and
SCADA systems, followed by security challenges faced by IIoT-based systems. Then
we highlight the role of VM in securing the critical systems, followed by the study
of the state-of-art approaches for VM. After that, we discuss some future research
directions for developing techniques for efficient VM. The chapter underscores the
design challenges and research opportunities for efficiently managing the increasing
vulnerabilities.

G. Yadav (B) · K. Paul
Indian Institute of Technology Delhi, New Delhi, India
e-mail: geeta@cse.iitd.ac.in

P. Gauravaram
Tata Consultancy Services (TCS), Brisbane, Australia

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Pal et al. (eds.), Secure and Trusted Cyber Physical Systems, Smart Sensors,
Measurement and Instrumentation 43, https://doi.org/10.1007/978-3-031-08270-2_3

51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08270-2_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08270-2_3&domain=pdf
mailto:geeta@cse.iitd.ac.in
mailto:geeta@cse.iitd.ac.in
https://doi.org/10.1007/978-3-031-08270-2protect LY1	extunderscore 3
https://doi.org/10.1007/978-3-031-08270-2_3

52 G. Yadav et al.

1 Introduction

Over the years, an increase in the number of cyberattacks targeting the Industrial
Control Systems (ICS) such as Supervisory Control and Data Acquisition (SCADA)
systems have drawn the security researchers’ attention towards these system’s secu-
rities. There are several real-world cyber attacks on ICS infrastructures as discussed
below.

Ransomware on US fuel pipeline In 2021, a ransomware attack encrypted criti-
cal data of Information Servers used in the SCADA stack of US Colonial Pipeline
company [45]. As a consequence, Colonial pipeline company suspended all of the
pipeline’s operations as a precaution and to prevent further cascading impact. The
adversaries stole nearly 100 gigabytes of data which led the company to pay 75
Bitcoin ($ 5 Million) to get the decryption tool due to a single compromised pass-
word. The pipeline shutdown impacted fuel shortages at airports and filling stations,
resulted in canceling flights and panic fuel buying.

Polish airline attack [29] was due to Distributed Denial of Service (DDoS) attack,
which overwhelms a network with traffic. The security expert took five hours to
resolve the issue, leading to 10 flights cancellation and delays of around 15 flights at
Warsaw Chopin airport.

The digital cyber-weapon Stuxnet [19] targeted at SCADA systems in 2010 is consid-
ered to be the most sophisticated cyber-attack. A malware jumped across air-gapped
networks and damaged nuclear centrifuges of Iranian enrichment plants exploiting
four unpatched zero-day Microsoft vulnerabilities used for self-replication and priv-
ilege escalation. Stuxnet damaged the centrifuges used in the uranium enrichment
process by modifying their rotor speed. Vibrations and distortions caused by signifi-
cant and sudden changes in their speed destroyed a thousand centrifuges, leading to
less enriched uranium production.

Ukraine power grid attack [19, 46] in December 2015, where hackers hacked the
information systems of three energy distribution companies using BlackEnergy mal-
ware. It resulted in rolling power outages for 1–6 h and affected 225,000 users.

In German Steel Plant cyberattack [28], the attackers gained unauthorized access
to the mill’s control systems using spear-phishing social engineering attacks. It led to
an abnormal and unscheduled shutdown of the furnace, resulting in massive physical
damage to the steel plant.

These incidents demonstrate the impact of a cyberattack by a determined adversary
on such Critical Infrastructure (CI). Such cyberattacks could affect the availability
of the software running on the device or can be used to reveal the running appli-
cation’s secrets. Devices under attack could stop working, behave differently, or be

Vulnerability Management in IIoT-Based Systems: What, Why and How 53

Fig. 1 SCADA application areas [60]

leveraged to pose DDoS attacks either exploiting zero-day or reported yet unpatched
vulnerabilities in a system. Moreover, these attacks have been led due to vulnerable
SCADA systems by exploiting multiple vulnerabilities on different systems, gener-
ally referred to as Multi-host Multi-stage (MhMs) cyberattacks. SCADA systems, a
type of ICS, are characterized by large numbers of tightly integrated, interdependent
and heterogeneous components in a network [32]. The smooth and genuine opera-
tion of the SCADA framework is one of the key concerns for enterprises because the
outcome of the breakdown of the SCADA system may range from financial loss to
environmental damage to loss of human life [12]. These systems act as the base for
safety and mission-critical infrastructures such as smart grids, nuclear power plants,
process control systems and robotics systems [60]. These systems have become an
essential part of automated control and monitoring of CI such as agriculture, health-
care, nuclear reactor, transportation, energy sector, civil and chemical engineering,
water plants, research etc., as depicted in Fig. 1. Considering the significance of
SCADA and ICS security that underpin critical national infrastructure, US Govern-
ment offered policy recommendations for synchronizing foreign and domestic cyber
security efforts and realizing a resilient and secure infrastructure [54].

Evolution of SCADA systems: Modern SCADA systems have evolved from stan-
dalone systems into sophisticated, complex and open systems connected to the Inter-
net. With Industry 4.0/Industrial Internet of Things (IIoT) evolution, modern SCADA
systems have adopted Cyber-Physical System (CPS)/IIoT, cloud technology, big data
analytics, artificial intelligence and Machine Learning (ML). IIoT, generally defined
as a sub-set of the Internet of Things (IoT) in terms of usage, covers the domains

54 G. Yadav et al.

IoT IIoT CPSICSSCADA

Fig. 2 IIoT and SCADA

of machine-to-machine and industrial communication technologies with automation
applications. IIoT paves the way for a better understanding of the manufacturing
process, enabling efficient and sustainable production. IIoT allows a higher degree
of automation by using cloud computing and data analytics to refine and optimize
the process controls [9]. It further enables efficient interaction between the physical
world and the cyber world, usually addressed as a CPS. ICS is the critical component
to realize CPS. ICS provides control and monitoring functionality in manufacturing
and industries.

Correlation of IIoT and SCADA systems: In Fig. 2, we demonstrate the overlap of
IoT, IIoT, SCADA, ICS and CPS systems. IIoT is a subset of IoT. ICS such as SCADA
is used to control CPS. Modern SCADA has been evolved into a connected IIoT-based
system i.e., modern SCADA systems are an amalgam of IIoT and legacy systems as
shown in Fig. 3. IIoT is essentially a realization of advances in the connectivity of
hardware and data networks that SCADA provides. From the security perspective,
the differences between them is not important. Therefore, in this chapter, we consider
SCADA systems as a use-case for IIoT-based systems. We use IIoT-based SCADA
systems and IIoT-based systems interchangeably.

In brief, integrating these technologies has significantly improved interoperability,
eased maintenance and decreased the infrastructure cost. Therefore, modern SCADA
systems are leading to a near real-time environment. Although IIoT improves the
reachability in ICS, enhances data analytics, assuring ease of access and decision
making, it also opens the ICS environment to attackers [14, 60]. The design of IIoT-
based SCADA introduces multiple entry points to an isolated system, which is used
to protect itself via air-gapping and risk avoidance strategies.

The Confidentiality, Integrity, and Availability (CIA) triad security model pro-
vides an excellent way to demonstrate the best practices to protect the data on the
network. For the SCADA system, the security goal is generally the data availability
that is the reverse of the prioritized security goals for traditional Information Tech-

Vulnerability Management in IIoT-Based Systems: What, Why and How 55

Fig. 3 IIoT-based SCADA [60]

Fig. 4 Priority order for SCADA and general IT

nology (IT) systems, as shown in Fig. 4. Therefore, downtime-constraints security
is considered while implementing IIoT-security solutions. The ICSs are also called
Operational Technology (OT) devices that control the physical world, while IT sys-
tems manage data [6]. Therefore, attackers generally target interrupting the SCADA
system availability, causing production loss, financial loss, data loss, system dam-

56 G. Yadav et al.

age, etc., hence tremendously affecting the economy, safety and security of a nation.
An attacker needs to think outside the normal operating procedures to discover the
unusual behavior, thus identifying vulnerabilities resulting in unauthorized access.
The attacker needs only a single security hole, while a defender must defend against
all possible security holes. Therefore, the defender needs to be more competent to
compete with an attacker. Developing rigorous security layers can help to mini-
mize the impact of attacks. A large number of vulnerabilities in various domains are
reported to National Vulnerability Database (NVD) [38] each year. In NVD, 18,103
new vulnerabilities were reported in 2020 itself. With the integration of IIoT and
legacy SCADA, the vulnerabilities reported to other domains are also applicable
to IIoT-based SCADA [53], in a characterization study of ICS patching behavior,
observed a patch delay of approximately 60 days after vulnerability disclosure for
50% of ICS devices. This lack of intime patching gives adversaries ample time to
exploit these systems’ publicly disclosed vulnerabilities.

Hence, the management of ICS security is becoming a major prevalent challenge
due to an increase in system complexity and interdependencies. The progressive
nature of ICS further complicates the scenario. On the one hand, the increasing
complexity of software usually translates into more software flaws and vulnerabilities
to fix. On the other hand, system threats continuously evolve, changing the risk
outlook as new vulnerabilities and attack vectors emerge. In brief, to minimize the
potential impact of successful cyberattacks, Vulnerability Management (VM) plays
a pivotal point in any strategy for system security management.

In this chapter, we highlight the role of VM in securing critical systems, followed
by the study of the state-of-art approaches for VM in Sect. 2. After that, we figure out
the future research direction for developing techniques for efficient VM in Sect. 4. The
chapter concludes by underscoring the design challenges and research opportunities
for efficiently managing the increasing vulnerabilities in Sect. 5.

2 Vulnerability Management

VM is an indispensable part of managing an organization’s safety and security. VM
allows an organization to get a continuous overview of vulnerabilities in their OT
environment. It is generally characterized as a cyclical process of five stages, i.e.,
Vulnerability discovery, Vulnerability analysis, Vulnerability prioritization, Vulner-
ability remediation and Vulnerability verification and monitoring.

What is VM? Strategic vulnerability management reduces the risk associated with
vulnerability exploitation. In a generic term, VM tries to answer the following ques-
tions:

1. Do vulnerabilities exist on organizations’ assets? If yes, what are they?
2. What are the characteristics of the discovered vulnerabilities?

Vulnerability Management in IIoT-Based Systems: What, Why and How 57

Fig. 5 Generic vulnerability
management lifecycle
(*Extended stage)

3. What are the efficient strategies to fix the vulnerabilities so that the vulnerability
exploitation’s impact is minimal? Is there a critical need to patch all vulnerabili-
ties?

4. What are the mechanisms for efficient and safe patch deployment?
5. Are the systems working normally post-patch deployment? Also, what vulnera-

bilities can not be patched yet have high risk? What are the monitoring strategies
for unpatched vulnerabilities?

How is VM performed? VM is a cyclical practice of discovering, analyzing, priori-
tizing, remediating and verifying/monitoring possible exploitation of vulnerabilities
in operating systems (OSs), enterprise applications, browsers and end-user applica-
tions, as shown in Fig. 5. In the first step, the vulnerabilities are generally discovered
using a vulnerability scanner such as Nessus [50] and Nozomi networks [39]. Then
in the second stage, the vulnerability scanner generates a consolidated report of pos-
sible known vulnerabilities. The security experts analyzed the report to prioritize the
vulnerabilities based on their expertise and network knowledge in the third stage.
The high severity vulnerabilities are selected for patching and the respective patch
is deployed in the fourth stage. Once the vulnerabilities have been identified and
resolved, consistent follow-up audits are required to ensure the mitigation is work-
ing in the fifth stage. This stage of vulnerability management is called the verification
stage that helps to maintain transparency and accountability over the remediation pro-
cess. Further, there can be two scenarios (i) the patch1 is not available, (ii) a patch can
not be applied to the system due to resource constraints or availability requirements.
This gives an adversary ample time to exploit those vulnerabilities. Therefore, it is
highly recommended to monitor the system to detect ongoing exploitation on time
to minimize the potential damage. We extend the standard VM cycle by monitoring
such a set of vulnerabilities in the fifth stage.

Why is VM needed? In brief, the lack of an appropriate plan for cyber-securing
the assets in IIoT-based SCADA can cause organizations to have high risks of losing

1 A security patch is applied to the system to fix the vulnerability to prevent successful exploitations.

58 G. Yadav et al.

revenue and reputation. VM is crucial to prioritize possible threats, reduce their attack
surface and minimize the potential impact of cyber-attacks.

2.1 Challenges of IIoT-Based Systems for VM

The challenges of securing the IIoT-based systems are as follows:

1. One of the critical things that enterprises need to consider ahead of VM in IIoT
is constant, uninterrupted availability of the systems except for scheduled main-
tenance downtime [38]. The security solutions should either work concurrently
without interfering with the system’s functionality, or any change to the system
should only be deployed at the scheduled downtime. This raises constraints on
efficiently managing the VM cycle. Among the five stages of VM, patch deploy-
ment is the crucial phase, which hinders the system’s functionality. Therefore, it
becomes challenging for system administrators to effectively manage the sched-
uled downtime to fix the vulnerabilities issues.

2. The second challenge arises due to the blend of legacy and IIoT infrastructures
[25], leading to increased attack surface and increased number of attack paths
to exploit the legacy vulnerabilities. This leads to legacy vulnerabilities being
targeted by the attackers [48].

3. The third challenge for system administrators is to monitor and control the end-
to-end security of such large and complex critical industries [37].

4. The proposed solutions for efficient VM should consider the downtime constraints
to take care of the various challenges mentioned above.

This short discussion presented above helps to identify the gap in the state-of-the-art
leading the research contributions mentioned in the next section.

3 Tools and Techniques for Systematic VM

In this section, we discuss Tools and techniques for each stage of systematic VM in
detail.

3.1 Vulnerability Discovery

Discovering security vulnerabilities in software is a demanding task that requires
significant human efforts. Vulnerability discovery is often the liability of software
testers before release and white-hat hackers using bug bounty programs after the
software is released. However, testers typically aim to find bugs related to perfor-
mance and functionality with little focus on the security bugs due to the lack of

Vulnerability Management in IIoT-Based Systems: What, Why and How 59

expertise needed to discover security bugs. In [30] observed that only 40% of the
tester have formal training in software engineering practices. Apart from that, black-
hat hackers also identify vulnerabilities and later exploit them to gain economic or
political benefits. The bug-bounty programs offer bounties in terms of money or
recognition to vulnerability discoverers [18]. Therefore, vulnerability discovery is
a competition between software testers and white-hat hackers vs. black-hat testers.
Discovering vulnerabilities before the software release not only save time, money,
a company reputation but also provides users protection and concerns regarding the
patch deployment, especially in CPS, where the availability of the systems is the
primary concern. Software development with the consideration of security reduces
the reported vulnerabilities. Over time, vulnerability discovery tools have evolved to
discover vulnerabilities automatically. However, human intelligence acts as a sup-
plement to these tools.

A vulnerability discovery process can be divided into five stages: information gath-
ering, program understanding, attack surface exploration and vulnerability recogni-
tion, and reporting [52]. In the information gathering state, the major goal is to
understand prior efforts and the base technologies for the program. It plays a critical
role in deciding whether to expend additional effort or resources or move on to a
different target. In the program understanding state, the hackers attempt to learn the
program behavior and its interaction with users and the network. After discovering
the program’s functionality, the hacker tries to identify the attack surface. This step
leads to identifying resources that can be manipulated to influence the program exe-
cution and identification of critical components of the program. In the vulnerability
recognition step, system administrators explore malicious activities and pass mali-
cious input using automated tools to identify the malicious states of software. An
iterative process of program understanding, attack surface exploration and vulnera-
bility recognition leads to identifying vulnerabilities in the system. A comprehensive
report is generated in the last stage, including the vulnerability reproduction steps,
which the developer later uses to generate the patches. The skilled testers perform
penetration testing to identify the vulnerabilities in the system. Penetration testing
(commonly known as pentesting) is an authorized simulated cyberattack on a com-
puter system to check for exploitable vulnerabilities. The penetration tests can be
performed against the system from inside or outside to study all possible attackers’
strategies. Each penetration test specifies guidelines and recommendations to address
the identified issues. It is generally categorized into three types: black-box, grey-box,
and white-box [26]. In the case of black-box testing, no information is available to the
attacker. However, in the case of grey-box testing, basic information about the net-
work is available to the attacker. In white-box testing, detailed system information,
network architecture is available to the tester [7]. Since attackers access the target
system from an outside network, the black-box testing results are the most realistic
pentesting technique. Most widely used tools for pentesting, such as Nmap Metas-
ploit, Burp suite Sqlmap, subfinder are freely available on Kali Linux. A thorough
penetration testing when implementing IIoT architecture will reduce the reported
vulnerabilities after the software is released. In large-scale IIoT networks, manually

60 G. Yadav et al.

testing each system is challenging under resource-constrained scenarios, hence the
researchers focus on automated security analysis solutions.

A manual penetration testing approach was proposed by Denis et al. [13] per-
forming individual system penetration testing using the tools within the Kali Linux
on smartphones and computers. The attacks performed were traffic sniffing, Man-
in-the-Middle attack, hacking phone Bluetooth, remote desktop and open ports, etc.
The primary focus of the work is to demonstrate penetration testing in a simplistic
way. On the same line of work [51], developed PENTOS, a pentest tool specially
designed for IoT devices to increase security awareness. PENTOS is a Graphical
User Interface (GUI)-based tool on Kali-Linux, which first gathers the target sys-
tem wirelessly followed by performing attacks such as web attacks and password
attacks to get unauthorized access, followed by a report generation for successful
attacks. PENTOS also has security guidelines for Open Web Application Security
Project’s top 10 vulnerabilities [41] to increase awareness [13, 51] provide practical
experience of penetration testing. However, they do not demonstrate how to apply
them on heterogeneous IoT nodes. Moreover, both the works are limited to a fixed
set of attacks and are not scalable to a large IIoT network. With the increase in the
complexity and size of the IIoT network, pentesting each and every system is a very
challenging task. Therefore, researchers have focussed on using penetration graphs
first to analyze the feasibility of exploitation. It facilitates the testers’ analysis of
the target network and provides a reference for executing penetration testing. In this
direction, [56] proposed an automatic penetration graph generation algorithm com-
bining the penetration graph generation method with the CVSS information. The
authors made heuristics for generating the penetration graph that if a vulnerability
has a CVSS score in the range [7–10], it will lead to admin privilege. However, they
did not evaluate their framework in terms of scalability and IIoT applicability. AlG-
hazo et al. [1] proposed a framework that enlists a set of all possible sequences in
which atomic-level vulnerabilities can be exploited to compromise specific system-
level security given the networked system description. The traditional penetration
testing systems are targeted to the pentesting of a system individually, which fails
to detect MhMs attacks. This highlights an urgent need for new algorithms, tools,
and frameworks to secure such resource-constrained devices. Koroniotis et al. [27]
proposed a DL-based penetration testing framework using LSTM enabled vulnera-
bility identification to detect the scanning attacks. The authors used Nessus, Zeek
and Scapy to collect the training data by performing fuzzing scanning attacks against
the network-enabled components of the smart airport-based testbed. This led to the
generation of network traffic that was gathered, processed and labeled.

Future directions: In Table 1, we compare state-of-the-art vulnerability discovery
approaches. We observed that most vulnerability discovery approaches focus on iso-
lated system testing with a little focus on user-friendly GUI. These approaches will
not detect the possible attacks exploiting MhMs vulnerabilities. Moreover, the pen-
etration report only mentions the vulnerabilities reported, without further analysis,
which are the critical vulnerabilities, which systems are critical in the network and

Vulnerability Management in IIoT-Based Systems: What, Why and How 61

Ta
bl
e
1

V
ul
ne
ra
bi
lit
y
di
sc
ov
er
y:
 s
um

m
ar
y
of
 th

e
re
la
te
d
w
or
k

R
es
ea
rc
h
w
or
k

To
ol
s
us
ed

V
ul
ne
ra
bi
lit
y

da
ta
ba
se
s
us
ed

A
tta

ck
s
pe
rf
or
m
ed

M
hM

s
at
ta
ck
-p
at
hs

C
ri
tic

al
 p
at
h,
 n
od

e,

vu
ln
er
ab
ili
ty

se
le
ct
io
n

G
U
I-
ba
se
d

D
en
is
 e
t a
l.
[1
3]

To
ol
s
w
ith

in
 th

e
K
al
i

L
in
ux

 s
ui
te
 p
ar
tic

ul
ar
ly

M
et
as
pl
oi
t,
W
ir
es
ha
rk
,

E
tte

rc
ap

✗
T
ra
ffi
c
sn
if
fin

g,

m
an
-i
n-
th
e-
m
id
dl
e

at
ta
ck
, h
ac
ki
ng
 p
ho
ne

bl
ue
to
ot
h
an
d
re
m
ot
e

de
sk
to
p
an
d
op
en
 p
or
ts

✗
✗

✗

V
is
oo

tti
vi
se
th
 e
t a
l.

[5
1]

To
ol
s
w
ith

in
 th

e
K
al
i

L
in
ux

 s
ui
te

✗
Pa
ss
w
or
d
at
ta
ck
, w

eb

at
ta
ck
 a
nd

 w
ir
el
es
s

at
ta
ck

✗
✗

✓

X
ue
qi
u
et
 a
l.
[5
6]

A
tta

ck
 g
ra
ph

Se
ve
ri
ty
 s
co
re

pr
ov
id
ed
 b
y
C
V
SS

✗

✓
✗

✗

A
l G

ha
zo
 e
t a
l.
[1
]

A
tta

ck
 g
ra
ph

✗
R
em

ot
e
co
de
 e
xe
cu
tio

n,

un
qu
ot
ed
 s
er
vi
ce
pa
th
s,

us
er
 c
re
de
nt
ia
ls

co
ns
tr
uc
tio

n,
 c
ro
ss
-s
ite

sc
ri
pt
in
g,
 a
ut
he
nt
ic
at
io
n

to
ke
n/
co
ok
ie

✗
✗

✗

K
or
on

io
tis
 e
t a
l.

[2
7]

D
ee
p
le
ar
ni
ng

 &

N
es
su
s,
 Z
ee
k
an
d
Sc

ap
y

to
 p
er
fo
rm

 f
uz
zi
ng

sc
an
ni
ng

 a
tta

ck
s
to

ga
th
er
 d
at
a
fo
r
tr
ai
ni
ng

✗
Sc

an
ni
ng

 a
tta

ck
s

✗
✗

✗

62 G. Yadav et al.

the most likely exploited attack paths. This analysis helps the system administrators
to take proactive measures to secure the network.

3.2 Vulnerability Analysis

After identifying the vulnerabilities in the network using network scanners, penetra-
tion testing, etc., the next step of VM is to assess the vulnerabilities. A systematic and
strategic assessment of a vulnerability would provide an actual severity and impact
leading to an efficient resource allocation strategy. The NVD uses CVSS to analyze
and assign a severity score to a vulnerability in the range [0, 10]. The vulnerabilities
are analyzed based on their basic characteristics (such as Attack complexity, Attack
vector, Privilege needed), temporal characteristics (such as Exploit Code Maturity,
Remediation Level, Report Confidence) and environmental characteristics. Weighted
Impact Vulnerability Scoring System (WIVSS) [49] is proposed to achieve higher
diversity and accuracy of severity scores. WIVSS uses factors similar to CVSS,
i.e., attack vector, attack complexity, authentication, confidentiality impact, integrity
impact and availability impact. However, it uses different weights for the impact
metrics (confidentiality impact, integrity impact and availability Impact) compared
to the CVSS.

Phillips et al. [43] proposed a graph-based vulnerability analysis system, where
a node represents a stage of attack and edge represents the transitions between the
attack stages for network-vulnerability analysis considering internal and external
attackers. The analysis system needs a common attack database with respective
network configuration and topology configuration is analyzed. The level of effort is
calculated by combining the probability of success on the edges. The likelihood of
success is proportional to attack-path length. The major limitation of the work lies in
the need for atomic steps of attacks. In a practical case, an attacker does not always
follow a fixed set of patten. Moreover, the authors only presented a brief idea about
the analysis system with no implementation and scalability analysis.

Ammann et al. [5] proposed a scalable vulnerability analysis approach by con-
sidering an assumption of monotonicity, i.e., the precondition of an exploit remains
the same irrespective the attacker has exploited another vulnerability. The goal is
achieved by combining the attacker access privilege, network connectivity and vul-
nerability in a common attribute, reducing the attack graphs’ complexity.

Future directions: CVSS and WIVSS do not consider the domain characteristics
while scoring the vulnerabilities. Therefore, directly using CVSS severity score and
analysis may not give the exact severity of a vulnerability. Hence, extending the
CVSS vulnerability analysis is necessary by considering the environment and net-
work characteristics for deploying further security measures.

Vulnerability Management in IIoT-Based Systems: What, Why and How 63

3.3 Vulnerability Prioritization

With the expansion of networks due to IIoTization, more and more IIoT devices are
connected to the Internet. Hence, there is a drastic increase in the number of vulnera-
bilities reported on these systems. Currently, NVD contains more than 1.60 lakhs vul-
nerabilities, out-of-which 18,767 vulnerabilities were reported in 2020 itself. Patch-
ing each vulnerability is a very challenging task. However [21], studied the ratio of
vulnerability exploited and vulnerability reported for 2009–2018. 76 k vulnerabilities
were reported to NVD in the mentioned period, out of which about 12.8% (9.7/76 k)
of all vulnerabilities had their published exploit code. A key observation is that only
about 5% (4.2/76 k) vulnerabilities were exploited. This shows that not all vulnera-
bilities are exploited, nor all vulnerabilities can be patched in a resource-constrained
scenario. Hence, vulnerability prioritization should be considered.

To efficiently handle these scenarios in a resource-constrained environment, indus-
tries prioritize vulnerability patching using crude heuristics based on limited data.
Hence, many known vulnerabilities are breached by attackers for which the patch
was already available. It raises a few challenges to the system administrators:

1. Suppose we patch all the vulnerabilities of the network. In that case, resources
are consumed on the low-severity vulnerability, which has less probability of
exploitability and low impact, even if they got exploited.

2. In another scenario, if we patch a few critical-severity vulnerabilities, it may be
an economical, efficient strategy but may lead to other high-risk vulnerabilities,
including MhMs exploitation.

In brief, vulnerability prioritization is a practice to balance resource availability and
exploitation impacts with a large amount of discovered vulnerabilities. The vulner-
ability prioritization should be strategic and efficient.

Game theory has been used widely in capturing the strategic interactions between
the intelligent agents, i.e., the attacker and the defender, where the payoff of each
depends not only on their own action but also on other players’ actions. Apart from
game theory, graph theory is also used to find an optimized strategy. The expert
analysis also helps to understand the severity of a vulnerability. Next, we discuss
related work in each category, i.e., expert analysis based, graph theory-based and
game theory-based approaches in detail.

Expert analysis based vulnerability prioritization approaches: The CVSS is an
indicator of true vulnerability severity. CVSS is used by nexpose [44] vulnerability
management tool to rank the vulnerabilities. However, the severity score provided by
CVSS is static and has not changed over time. These scores are standard for all sys-
tems and can be improved by considering temporal and environmental metrics with
base metrics [17]. WIVSS [49] is proposed to achieve higher diversity and accuracy
of severity scores. WIVSS uses factors similar to CVSS, i.e., attack vector, attack
complexity, authentication, confidentiality impact, integrity impact and availability
impact. However, it uses different weights for the impact metrics (confidentiality
impact, integrity impact and availability impact) compared to the CVSS.

64 G. Yadav et al.

Graph-based vulnerability prioritization approaches: Graph-based vulnerability
prioritizing approaches like SecureRank [35], Risk-Rank [3] and VULCON [16]
provide a static ranking of patching order and they do not consider the behavior of
an attacker. SecureRank defines a security metric based on the percentage of time a
random attacker would spend endeavoring to exploit a vulnerability successfully. It
takes network topology and vulnerability severity as inputs and returns defense prob-
ability for each subsystem. Defense probability denotes the probability of selecting
a vulnerability on a particular subsystem for patching to reach the optimal state. Our
framework in stage 3 establishes that it reaches a Nash equilibrium. The authors com-
pared SecureRank with density, source and type-based prioritization and observed
that SecureRank provides an effective and efficient patch prioritization approach. It
prioritizes vulnerabilities based on a balance between immediate risk and the risk
due to system interdependencies’ cascading. The Risk-Rank algorithm captures the
risk diffusion by using complex interaction over time. Risk-Rank is verified by using
a case study based on the organization’s conceptual structure, business units’ risk
dependencies and vulnerabilities. VULCON is a patch prioritization framework pro-
posed for network security management. It is based on fundamental performance
metrics, i.e., “time-to-vulnerability remediation” and “total vulnerability exposure”.
The proposed algorithm uses a mixed-integer multi-objective optimization algorithm
to prioritize vulnerabilities for patching subject to the given resource constraints.
However, the graph theory-based approaches fail to incorporate the attacker behavior,
which plays a vital role in analyzing the possible impact of exploiting a vulnerability.

Game theory-based vulnerability prioritization approaches: Game theory-based
approaches for patch prioritization [4, 10, 24, 47] incorporate attackers’ behavior to
better estimate the prioritization strategy.

Alshawish and Risk de Meer [47] proposed a game-theoretical model to optimize
the security strategy of electricity distribution networks with vulnerable Distributed
Energy Resource (DER) nodes. The authors consider an adversarial model for false
data injection attacks to compromise vulnerable nodes. The impact of this attack
in a smart grid on a defender includes the loss of voltage regulation and the cost
of induced load control under supply-demand mismatch between the generator and
distributor. The proposed greedy approach is formulated in a three-stage defender-
attacker-defender game, (i) the defender first chooses a strategy to secure DER nodes
(ii) the attacker will try to compromise the DER nodes (iii) the defender chooses
the security investments strategy by controlling the loads and non-compromised
nodes. The authors use a greedy approach to compute attacker-defender strategies
and recommend optimal financial investments to secure the systems. Kamdem et al.
[24] proposed a two-player zero-sum Markov game to identify the optimal strategy
to disconnect vulnerable services to slow down the attack.

Alshawish and Risk de Meer [4] proposed an integrated risk-based methodol-
ogy for prioritizing possible vulnerability remediation activities by leveraging Time-
To-Compromise (TTC) security metric. This model employs the network topology,
attackers’ capability and published vulnerability and exploit information. TTC is
calculated by taking into account the total number of disclosed vulnerabilities, the

Vulnerability Management in IIoT-Based Systems: What, Why and How 65

number of high severity vulnerabilities, the number of low severity vulnerabilities, the
total number of existing exploits, the expected time taken for identifying the zero-day
vulnerability, the expected time taken for calculating the exploit and adversarial skill
set. The authors provide a game-theoretic approach considering the stochastic nature
of risk assessments across an electric power organization. The authors acknowledged
that TTC-based models could convey misleading results due to the aggregation of
anticipated features of a vulnerability. Chen et al. [10] proposed a bi-level optimiza-
tion model under a game-theoretic framework to incorporate the interactions of a
system administrator and an adversary. The interactions among cyber-physical ele-
ments are considered to determine cascading failure under potential attacks. The
approach leads to optimal resource allocation by the system defender to maintain
system reliability. However, the game theory-based approaches proposed earlier for
patch prioritization consider only the single attacker-defender scenario, which is not
pragmatic in all cases.

Apart from the above approaches [2], proposed an ML-based exploit predic-
tion model leveraging vulnerability information from different databases, i.e., NVD,
ExploitDB, ZDI and Dark Web (DW). The attacker behavior is integrated by consider-
ing the blogs/ posts for respective vulnerabilities on DW. However, the learning-based
detection approaches may be deceived due to intentionally discussing the random
vulnerabilities on DW by adversaries.

Future directions: In Table 2, we compare state-of-the-art vulnerability prioritiza-
tion approaches based on architectural feature, vulnerability feature, patch dependen-
cies, attacker feature and approach category. We observed that most approaches do
not consider resource constraints, functional dependencies, patch dependencies and
multiple defender-attackers practical scenarios. Incorporating an attacker’s behav-
ior plays a vital role in proper resource allocation and failure to consider the patch
dependencies will lead to patch breaks while deployed. In this direction [57, 58],
proposed a prioritization framework leveraging a game-theoretical model. However,
the approach can be extended by considering different attacker strategies and network
characteristics.

3.4 Vulnerability Remediation

After the system administrators have analyzed and prioritized the vulnerabilities, the
next phase is to deploy the patches. It is the most challenging stage of patch manage-
ment due to the complexities of software arising from network inter-connectivity and
inter-dependencies. Hence, a patch deployment may affect other dependent appli-
cations potentially. Apart from software dependencies, the patch dependencies hier-
archy needs to be considered, i.e., if patch A depends upon patch B then before
deploying patch A, the administrators need to deploy patch B. Another concern is
the limited time between the patch availability and the exploit release, leading to the
high probability of successful exploitation. This raises concern for the deployment of

66 G. Yadav et al.

Ta
bl
e
2

V
ul
ne
ra
bi
lit
y
pr
io
ri
tiz

at
io
n:
 s
um

m
ar
y
of
 th

e
re
la
te
d
w
or
k

R
es
ea
rc
h
w
or
k

A
rc
hi
te
ct
ur
al
 f
ea
tu
re

V
ul
ne
ra
bi
lit
y
fe
at
ur
e

A
tta

ck
er
 f
ea
tu
re

Fu
nc
tio

na
l

de
pe
nd
en
cy

M
ul
tip

le
-

at
ta
ck
er
-

de
fe
nd
er

Pa
tc
h

de
pe
nd
en
ci
es

R
ap
id
7-
co
m
m
un

ity

[4
4]

✗
A
tta

ck
 v
ec
to
r,
at
ta
ck
 c
om

pl
ex
ity
,

sc
op

e,
 im

pa
ct
 (
co
nfi

de
nt
ia
lit
y,

in
te
gr
ity
, a
va
ila

bi
lit
y)

✗
✗

✗
✗

Sp
an
os
 e
t a
l.
[4
9]

✗
W
ei
gh

te
d
ch
ar
ac
te
ri
st
ic
s
(A

tta
ck

ve
ct
or
, a
tta

ck
 c
om

pl
ex
ity
, s
co
pe
,

im
pa
ct
 (
co
nfi

de
nt
ia
lit
y,
 in

te
gr
ity
,

av
ai
la
bi
lit
y)

✗
✗

✗
✗

M
iu
ra
-K

o
an
d

B
am

bo
s
[3
5]

N
et
w
or
k
to
po
lo
gy

%
 o
f
tim

e
a
ra
nd

om
 a
tta

ck
er

w
ou
ld
 s
pe
nd
 tr
yi
ng
 to

 e
xp
lo
it

R
an
do

m
 a
tta

ck
er

✗
✗

✗

A
lp
ca
n
an
d

B
am

bo
s
[3
]

B
ip
ar
tit
e
gr
ap
h

✗
✗

✗
✗

✗

Fa
rr
is
 e
t a
l.
[1
6]

M
is
si
on

 c
ri
tic

al
ity

 s
co
re

To

ta
l v

ul
ne
ra
bi
lit
y
ex
po

su
re
,

T
im

e-
to
-v
ul
ne
ra
bi
lit
y
re
m
ed
ia
tio

n
✗

✗
✗

✗

Sh
el
ar
 a
nd

A
m
in
 [
47

]
N
et
w
or
k
m
od

el
 o
f
ra
di
al

el
ec
tr
ic
 d
is
tr
ib
ut
io
n

sy
st
em

s

Im
pa
ct
 o
f
at
ta
ck
 in

 te
rm

s
of
 lo

ss
 o
f

vo
lta
ge
 r
eg
ul
at
io
n
an
d
co
st
 o
f

in
du
ce
d
lo
ad
 c
on
tr
ol
 u
nd
er

su
pp
ly
-d
em

an
d
m
is
m
at
ch

T
hr
ee
-s
ta
ge
 d
ef
en
de
r-

at
ta
ck
er
-d
ef
en
de
r

ga
m
e

✗
✗

✗

A
ls
ha
w
is
h
an
d

M
ee
r
[4
]

N
et
w
or
k
to
po
lo
gy

T
im

e-
to
-c
om

pr
om

is
e
fe
at
ur
e

A
ll
po

ss
ib
le
 a
tta

ck
-p
at
hs

to
 th

e
ta
rg
et
 n
od
e

✗
✗

✗

Y
ad
av
 a
nd
 P
au
l [
59

]
In
te
r
de
pe
nd
en
ci
es

C
os
t o

f
de
fe
nd
, c
os
t o

f
at
ta
ck
 a
nd

Im
pa
ct
 o
f
at
ta
ck
 (
N
V
D
 D
at
ab
as
e,

C
V
SS

 s
co
re
)

Si
ng

le
 a
tta

ck
er

✗
✗

✗

K
am

de
m
 e
t a
l.
[2
4]

N
ew

or
k
to
po
lo
gy

C
V
SS

 s
ev
er
ity

 s
co
re

Si
ng

le
 a
tta

ck
er

✗
✗

✗

C
he
n
et
 a
l.
[1
0]

N
od
e-
lin

k
m
od
el

C
as
ca
di
ng

 f
ai
lu
re
 u
nd

er
 m

al
ic
io
us

at
ta
ck
s

Si
ng

le
 a
tta

ck
er

✗
✗

✗

Vulnerability Management in IIoT-Based Systems: What, Why and How 67

the patches as soon as they are available. A security patch should be well tested before
deployment. It may sometimes break the service rather than repairing faulty patches
that introduce issues like backward compatibility, interoperability issue, patch break
and introduction of a new vulnerability. The presence of faulty patches increases
the cost of patch deployment and service downtime. Hence, many system admin-
istrators often delay installing patches and keep using outdated software, leaving
known vulnerabilities readily exploitable. However, in ICS systems, the patching
is scheduled with consideration of the requirement of the system availability, pre-
deployment testing and post-deployment testing. In brief, the difficulty in dealing
with patch dependencies and the significant amount of human effort required for con-
figuring a test environment to simulate a production-identical environment hinders
automated patch deployment. Therefore, before deploying a patch, a deep analysis
of the impact of patch deployment should be done. A sophisticated live patching
technique has been proposed to reduce the service downtime or maintenance win-
dow [33]. However, their applicability in practice is minimal. Commonly available
virtualization capabilities allow system administrators to perform a majority of the
patchwork outside of the maintenance window by capturing the disk activities and
replaying them during the actual maintenance window.

Future directions: A patch management policy that tests and applies suitable patches
to all affected areas in an efficient and timely manner is crucial. A trustworthy
remediation solution helps developers, security and devOps teams by keeping them
in sync so that the entire vulnerability management process runs smoothly. With the
decrease in system downtime and the need to keep systems updated highlights the
need for advanced techniques for live patching.

3.5 Vulnerability Verification and Monitoring

Once the vulnerabilities have been patched, the next stage of VM is to verify or
test the deployed patches on these systems. The patch deployments are verified by
monitoring the systems for unexpected service interruptions. Manual patch deploy-
ment verification approaches are challenging, error-prone and time-consuming in
complex networks. There is a lack of automated tools to overview the state of the
system post-patch deployment.

Moreover, due to system availability requirements, few critical vulnerabilities can
not be patched in ICS systems. In those cases, system administrators need to monitor
these systems to timely detect ongoing exploitations. If an ongoing attack is detected
in the network, which may lead a path to the critical asset, suitable actions to stop the
attack or reduce the attack’s impact should be taken. There has been active research
for more than a decade for using system logs to detect the anomalous behavior of a
system using either rule-based strategies or ML-based techniques on a single system.
However, only a few approaches focus on correlating the attack scenario on different
systems to find the indications of compromise, which leads to the detection of an

68 G. Yadav et al.

attack before it reaches its target. We study the related work into three categories as
discussed below:

Techniques for anomaly detection on a system using system logs: Rule-based
anomaly detection approaches [40, 64] are limited to detect specific scenarios with
high accuracy, requiring domain expertise. [64] represented the Syslog behaviors
using a combination of hidden Markov models followed by learning the model
using a discounting learning algorithm. Oprea et al. [40] proposed a graph-theoretic
framework based on belief propagation to detect advanced persistence threats infec-
tion. The ML-based anomaly detection approaches can be categorized as supervised
and unsupervised learning-based approaches. Supervised learning-based approaches
derive a model from the labeled training data, which generally label data either normal
or anomalous. Chen et al. [11] presented a decision tree-based approach to diagnose
failures on Internet sites. First, they trained the decision trees on the request traces.
The training request traces data also included the request failure scenarios visible
and labeled by the user. When tested on real-failure data from eBay (an eCommerce
website) request traces, the proposed approach successfully identified 13 out of 14
failure cases. Liang et al. [31] applied Support Vector Machine (SVM) to predict
failures in IBM BlueGene/L event logs2 . The supervised-learning-based approaches
need a large amount of labeled data to train the model. In an unsupervised-learning
algorithm clustering approach, LogCluster utilizes the base idea to check if a par-
ticular log sequence has occurred or not [31]. Apart from these, program invariants
were used to detect abnormal events. Initially, program invariants are being iden-
tified to learn the linear relationships between system events during the program
execution. A log sequence that does not follow the program invariants is labeled
as anomalous. The above ML approaches made a close-world assumption that the
log set is finite and data will be stable over the period. However, in practice, log
data may encounter previously unseen log sequences, decreasing the accuracy of
the anomalous log detection. In this direction, Deeplog [15] is an online anomalous
log detection approach using the LSTM model. The approach consists of three key
modules, i.e., key anomaly detection, parameter anomaly detection and workflow
construction. Deeplog is trained on normal data only and can adapt new log patterns
on false positive detection. Zhang et al. [65] proposed an anomaly detection approach
by utilizing an attention-based Bi-LSTM model. Meng et al. [34] highlighted to use
of the semantics of the log messages rather than the indexes, which is generally
used for anomaly detection to reduce the false positive. LSTMs have proved to be a
promising solution to sequence and time-series related problems.

2 The event logs are the events from OSs, applications or devices and are stored in a single cluster
by the operating system. Events logged by the operating system are also called system logs.

Vulnerability Management in IIoT-Based Systems: What, Why and How 69

Techniques for ongoing attack detection on single system logs: In this direction
[8], proposed a rule-based model to detect targeted port scans, detection of Cross-
Site Scripting (XSS) and SQL Injection (SQLI) attacks using access logs of Apache
HTTP Server. Moh et al. [36] leveraged the features of both rule-based and learning-
based approaches to detect the SQLI attacks using web server logs. A collaborative
approach by combining intrusion detection at different layers, i.e., network, kernel
and application, can increase the accuracy of attack detection as compared to indi-
vidual detectors, without much degradation in performance [55]. An attack-story
reconstruction approach proposed by Pei et al. [42] correlates the log graph utilizing
logs from different levels on a single host. However, these approaches are limited
to attack detection on a single system with knowledge of how they can be used for
correlated attacks.

Approaches for temporal and spatial correlation of attacks using logs: In this
direction [11], proposed a process query system based on control and estimation
methods to correlate the distributed network events. Attack graph has been used for
correlating attacks on MhMs attacks. However, manual construction of the attack
graphs is challenging and error-prone. Few automatic attack-graph generation have
been proposed in literature e.g. [1, 20, 22, 62, 63]. The attack-graph generation
approaches either use their model checker or use a knowledge database of vulner-
abilities and exploits, e.g., NVD, ExploitDb etc., to generate the pre-requisites and
post-conditions related to exploitation steps. The pre-requisite and post-conditions of
a vulnerability denote the conditions needed to exploit a vulnerability and the capa-
bility gained by exploiting it. However, these approaches [1, 20, 22, 62, 63] limit
themselves to generate the attack paths only, i.e., they will not detect any ongoing
attacks. Therefore, there is a need for an effective methodology to detect ongoing
MhMs attacks timely.

Future directions: In Table 3, we compare state-of-the-art vulnerability monitor-
ing approaches based on ‘Data used’, ‘Technique used’, ‘Attacks detected’, ‘Detect
attacks on single system’ and ‘Detect MhMs attacks’. We observe that except [11],
the approaches are targeted to detect vulnerabilities exploitation on a single system.
[11] approach lack the practical implementation and feasibility analysis.

70 G. Yadav et al.

Ta
bl
e
3

V
ul
ne
ra
bi
lit
y
m
on

ito
ri
ng

: s
um

m
ar
y
of
 th

e
re
la
te
d
w
or
k

R
es
ea
rc
h
w
or
k

D
at
a
us
ed

Te
ch
ni
qu
es
 u
se
d

A
tta

ck
s
de
te
ct
ed

D
et
ec
t a
tta

ck
s
on

si
ng

le
 s
ys
te
m

D
et
ec
t M

hM
s

at
ta
ck
s

Y
en
 e
t a
l.
[6
4]

L
og

 d
at
a

✗
V
ar
ia
tio

n
fr
om

 th
e
no
rm

al

be
ha
io
ur

✗
✗

O
pr
ea
 e
t a
l.
[4
0]

W
eb
 p
ro
xy
 lo

gs
B
el
ie
f
pr
op

ag
at
io
n
in
sp
ir
ed
 f
ro
m

gr
ap
h
th
eo
ry

A
PT

 in
fe
ct
io
n
at
ta
ck

✗
✗

C
he
n
et
 a
l.
[1
1]

R
eq
ue
st
 tr
ac
es

D
ec
is
io
n
tr
ee
s

C
au
se
s
of
 f
ai
lu
re
s

✗
✗

L
ia
ng

 e
t a
l.
[3
1]

Sy
st
em

 lo
gs

SV
M
 a
nd
 n
ea
re
st
 n
ei
gh
bo
r
m
et
ho
d

V
ar
ia
tio

n
fr
om

 th
e
no
rm

al

be
ha
io
ur

✗
✗

Z
ha
ng

 e
t a
l.
[6
5]

Sy
st
em

 lo
gs

A
n
at
te
nt
io
n-
ba
se
d
B
i-
L
ST

M

m
od
el

V
ar
ia
tio

n
fr
om

 th
e
no
rm

al

be
ha
io
ur

✗
✗

M
en
g
et
 a
l.
[3
4]

Sy
st
em

 lo
gs

E
xt
ra
ct
in
g
se
m
an
tic

 in
fo
rm

at
io
n

us
in
g
Te
m
pl
at
e2
V
ec

Se
qu

en
tia

l a
nd

 q
ua
nt
ita

tiv
e

an
om

al
y
de
te
ct
io
n

✗
✗

D
u
et
 a
l.
[1
5]

Sy
st
em

 L
og
s

L
ST

M
-b
as
ed
 d
ee
p
le
ar
ni
ng

D
en
ia
l o

f
se
rv
ic
e
at
ta
ck
, p
or
t s
ca
n,

so
ci
al
ly
 e
ng

in
ee
re
d
at
ta
ck

✓
✗

W
u
et
 a
l.
[5
5]

L
og
s
fr
om

 I
D
S
Sn

or
t,

L
ib
sa
fe
 a
nd
 s
ys
m
on

G
ra
ph
-b
as
ed
 a
nd
 a
 B
ay
es
ia
n

ne
tw
or
k
ba
se
d
ag
gr
eg
at
io
n
m
et
ho

d
B
uf
fe
r
ov
er
flo

w
, fl

oo
di
ng
 a
nd

sc
ri
pt
-b
as
ed
 a
tta

ck
s

✓
✗

Pe
i e
t a
l.
[4
2]

D
N
S
lo
gs
, A

ud
itd

 lo
gs
,

Fi
re
fo
x
lo
gs
, S

ys
lo
g

G
ra
ph

 a
na
ly
tic

s
A
 p
hi
sh
in
g
em

ai
l,
w
at
er
in
g-
ho

le

at
ta
ck
, t
ro
ja
n
so
ft
w
ar
e,
 a
n

un
of
fic

ia
l p

at
ch
 c
on

ta
in
in
g

m
al
ic
io
us
 p
ay
lo
ad
s

✓
✗

Ji
an
g
an
d

C
yb
en
ko
 [
11

]
Sy

st
em

 e
ve
nt
s

C
on
tr
ol
 a
nd
 e
st
im

at
io
n
m
et
ho
ds

✓
✓

B
a
et
 a
l.
[8
]

A
cc
es
s
lo
g
fil
es
 o
f

A
pa
ch
e
w
eb
 s
er
ve
rs

R
ul
e-
se
t b

as
ed
 a
pp

ro
ac
h

W
eb
 s
ca
n
de
te
ct
io
ns
, S

Q
L

in
je
ct
io
n
an
d
X
SS

 a
tta

ck
s

✓
✗

M
oh
 e
t a
l.
[3
6]

W
eb
 s
er
ve
r
lo
gs

H
yb
ri
d
ap
pr
oa
ch
 (
co
m
bi
ne
 r
ul
e

an
d
la
rn
in
g
ba
se
d
ap
pr
oa
ch
)

SQ
L
 I
nj
ec
tio

n
✓

✗

Vulnerability Management in IIoT-Based Systems: What, Why and How 71

4 Reseach Directions

The researchers should aim at building techniques for an efficient VM.

1. The researcher should analyze the reported vulnerabilities specific to IIoT-based
SCADA systems to understand better the type of attacks, the vulnerable compo-
nents, and the vulnerabilities’ impact.

2. A focus on developing frameworks to analyze and find a series of vulnerabilities
in different systems that are needed to exploit to reach the target system. The
framework should recommend a consolidated report of the vulnerable state of the
system and all possible target paths to the critical node. The framework should
be scalable to the IIoT network.

3. Not all vulnerabilities are always exploited by the attackers, and not all vulnerabil-
ities can be patched due to the resource constraints such as people, infrastructure,
tools and time available to patch every vulnerability. Also, ICSs such as SCADA
have strict system uptime and availability requirements. These constraints place
significant importance on the patch prioritization of networks and devices, which
needs to be strategic and efficient.
There is a need to develop a patch prioritization framework that is applicable
to ICSs. The prioritization order should consider the architectural characteristics
to understand the domain knowledge of the target system, vulnerability char-
acteristics to embed the vulnerability severity, patch dependencies to avoid the
patch break on deployment and attacker behavior to reflect a practical scenario.
The framework should recommend a strategy for patching, which is optimal and
effective considering resource constraints.

4. Moreover, the researcher should focus on designing and developing frameworks
that correlate the evidence of an incident spread temporarily and spatially in
the network. The framework should detect the ongoing exploitation of MhMs
vulnerabilities on a system. In this direction, GloM has been presented to monitor
MhMs attack [61].

5 Conclusion

In this chapter, we first discussed the correlation between SCADA systems and
IIoT-based systems, followed by the need of VM for securing these systems. We
discuss what is VM? why we need VM? how to perform VM? Afterward, we discuss
the issues with state-of-the-art vulnerability management approaches. We observed
that vulnerability discovery approaches focus on isolated system testing with a little
focus on user-friendly GUI. These approaches will not detect the possible attacks
exploiting MhMs vulnerabilities. Moreover, the penetration report only mentions the
vulnerabilities reported, without further analysis, which are the critical vulnerabili-
ties, which systems are critical in the network and the most likely exploited attack
paths. This analysis helps the system administrators to take proactive measures to

72 G. Yadav et al.

secure the network. We observed that most vulnerability prioritization approaches do
not consider resource constraints, functional dependencies, patch dependencies and
multiple defender-attackers practical scenarios. Incorporating an attacker’s behav-
ior plays a vital role in proper resource allocation and failure to consider the patch
dependencies will lead to patch breaks while deployed. We also observed that the
vulnerability monitoring approaches are targeted to detect the exploitation of vul-
nerabilities on a single system only. Hence fail to detect the ongoing MhMs attacks
timely.

References

1. A.T. Al Ghazo, M. Ibrahim, H. Ren, R. Kumar, A2G2V: automated attack graph generator and
visualizer. in Mobile IoT SSP’18, vol. 3 (ACM, Los Angeles, CA, USA, 2018), pp. 1–6. https://
doi.org/10.1145/3215466.3215468

2. M. Almukaynizi, E. Nunes, K. Dharaiya, M. Senguttuvan, J. Shakarian, P. Shakarian, Patch
before exploited: an approach to identify targeted software vulnerabilities, in AI in Cybersecu-
rity, ed. by F.S. Leslie (Springer International Publishing, Cham, 2019), pp. 81–113. https://
doi.org/10.1007/978-3-319-98842-9_4

3. T. Alpcan, N. Bambos, Modeling dependencies in security risk management, in 2009 Fourth
International Conference on Risks and Security of Internet and Systems (CRiSIS 2009) (2009),
pp. 113–116

4. A. Alshawish, H. Risk de Meer, Risk mitigation in electric power systems: where to start?
Energy Inform. 2(1), 34 (2019)

5. P. Ammann, D. Wijesekera, S. Kaushik, Scalable, graph-based network vulnerability analy-
sis, in Proceedings of the 9th ACM Conference on Computer and Communications Security.
CCS ’02 (Association for Computing Machinery, Washington, DC, USA, 2002), pp. 217–224.
https://doi.org/10.1145/586110.586140

6. A. Andreu, Operational technology security—A data perspective. Netw. Secur. 1, 8–13 (2020).
https://doi.org/10.1016/S1353-4858(20)30008-8

7. R. Ankele, S. Marksteiner, K. Nahrgang, H. Vallant, Requirements and recommendations for
IoT/IIoT models to automate security assurance through threat modelling, security analysis
and penetration testing, in Proceedings of the 14th International Conference on Availability,
Reliability and Security. ARES ’19 (Association for Computing Machinery, Canterbury, CA,
United Kingdom, 2019). https://doi.org/10.1145/3339252.3341482

8. S.M. Ba, F.O. Catak, E. Gül, Detection of attack-targeted scans from the apache HTTP server
access logs. Appl. Comput. Inf. 14(1), 28–36. https://doi.org/10.1016/j.aci.2017.04.002

9. H. Boyes, B. Hallaq, J. Cunningham, T. Watson, The industrial internet of things (IIoT): an
analysis framework. Comput. Ind. 101, 1–12 (2018). https://doi.org/10.1016/j.compind.2018.
04.015

10. K. Chen, W. Fushuan, C.-L. Tseng, M. Chen, Z. Yang, H. Zhao, H. Shang, A game theory-based
approach for vulnerability analysis of a cyber-physical power system. Energies 12(15), 3002
(2019). https://doi.org/10.3390/en12153002

11. M. Chen, A.X. Zheng, J. Lloyd, M.I. Jordan, E. Brewer, Failure Diagnosis Using Decision
Trees (2004), pp. 36–43

12. Y. Cherdantseva, P. Burnap, A. Blyth, P. Eden, K. Jones, H. Soulsby, K. Stoddart, A review of
cyber security risk assessment methods for SCADA systems. Comput. Secur. 56, 1–27 (2016).
https://doi.org/10.1016/j.cose.2015.09.009

https://doi.org/10.1145/3215466.3215468
https://doi.org/10.1145/3215466.3215468
https://doi.org/10.1145/3215466.3215468
https://doi.org/10.1007/978-3-319-98842-9_4
https://doi.org/10.1007/978-3-319-98842-9_4
https://doi.org/10.1007/978-3-319-98842-9_4
https://doi.org/10.1145/586110.586140
https://doi.org/10.1145/586110.586140
https://doi.org/10.1016/S1353-4858(20)30008-8
https://doi.org/10.1016/S1353-4858(20)30008-8
https://doi.org/10.1145/3339252.3341482
https://doi.org/10.1145/3339252.3341482
https://doi.org/10.1016/j.aci.2017.04.002
https://doi.org/10.1016/j.aci.2017.04.002
https://doi.org/10.1016/j.compind.2018.04.015
https://doi.org/10.1016/j.compind.2018.04.015
https://doi.org/10.1016/j.compind.2018.04.015
https://doi.org/10.3390/en12153002
https://doi.org/10.3390/en12153002
https://doi.org/10.1016/j.cose.2015.09.009
https://doi.org/10.1016/j.cose.2015.09.009

Vulnerability Management in IIoT-Based Systems: What, Why and How 73

13. M. Denis, C. Zena, T. Hayajneh, Penetration testing: concepts, attack methods, and defense
strategies, in 2016 IEEE Long Island Systems, Applications and Technology Conference
(LISAT) (2016), pp. 1–6. https://doi.org/10.1109/LISAT.2016.7494156

14. L.L. Dhirani, E. Armstrong, T. Newe, Industrial IoT, cyber threats, and standards landscape:
evaluation and roadmap. Sensors 21(11) (2021). https://doi.org/10.3390/s21113901

15. M. Du, F. Li, G. Zheng, V. Srikumar, DeepLog: anomaly detection and diagnosis from system
logs through deep learning, in Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. CCS ’17 (Association for Computing Machinery, Dallas, Texas,
USA, 2017), pp. 1285–1298. https://doi.org/10.1145/3133956.3134015

16. K.A. Farris, A. Shah, G. Cybenko, R. Ganesan, S. Jajodia, VULCON: a system for vulnerability
prioritization, mitigation, and management. ACM Trans. Priv. Secur. 21(4) (2018). https://doi.
org/10.1145/3196884

17. C. Fruhwirth, T. Mannisto, Improving CVSS-based vulnerability prioritization and response
with context information, in 2009 3rd International Symposium on Empirical Software Engi-
neering and Measurement (2009), pp. 535–544. https://doi.org/10.1109/ESEM.2009.5314230

18. R. Hamper, Software bug bounties and legal risks to security researchers. Ph.D. thesis (2019)
19. Idaho-National-Laboratory, History of industrial control system cyber incidents (2018). https://

www.osti.gov/servlets/purl/1505628. Accessed 04 May 2020
20. K. Ingols, R. Lippmann, K. Piwowarski, Practical attack graph generation for network defense,

in Proceedings of the 22nd Annual Computer Security Applications Conference. ACSAC ’06
(IEEE Computer Society, Washington, DC, USA, 2006), pp. 121–130. https://doi.org/10.1109/
ACSAC.2006.39

21. J. Jacobs, S. Romanosky, I. Adjerid, W. Baker, Improving vulnerability remediation through
better exploit prediction. J. Cybersecur. 6(1), tyaa015 (2020). https://doi.org/10.1093/cybsec/
tyaa015. https://academic.oup.com/cybersecurity/article-pdf/6/1/tyaa015/33746021/tyaa015.
pdf

22. S. Jajodia, S. Noel, B. O’Berry, Topological analysis of network attack vulnerability, in Man-
aging Cyber Threats: Issues, Approaches, and Challenges. Ed. by Vipin Kumar, Jaideep Sri-
vastava, and Aleksandar Lazarevic (Springer US, Boston, MA, 2005), pp. 247–266. https://
doi.org/10.1007/0-387-24230-9_9

23. G. Jiang, G. Cybenko, Temporal and spatial distributed event correlation for network security,
in Proceedings of the 2004 American Control Conference, vol. 2 (2004), pp. 996–1001. https://
doi.org/10.23919/ACC.2004.1386701

24. G. Kamdem, C. Kamhoua, Y. Lu, S. Shetty, L. Njilla, A Markov game theoritic approach for
power grid security, in 2017 IEEE 37th International Conference on Distributed Computing
Systems Workshops (ICDCSW) (2004), pp. 139–144. https://doi.org/10.1109/ICDCSW.2017.
63

25. K. Keshav, S.S. Vijay, D.M. Lourenço, A. Anil Kumar, P. Plapper, Retrofitting of legacy
machines in the context of industrial internet of things (IIoT), in 3rd International Conference
on Industry 4.0 and Smart Manufacturing on Procedia Computer Science, vol. 200 (2022), pp.
62–70. https://doi.org/10.1016/j.procs.2022.01.205. https://www.sciencedirect.com/science/
article/pii/S1877050922002149

26. M.E. Khan, F. Khan, A comparative study of white box, black box and grey box testing
techniques. Int. J. Adv. Comput. Sci. Appl. 3(6) (2012). https://doi.org/10.14569/IJACSA.
2012.030603

27. N. Koroniotis, N. Moustafa, B. Turnbull, F. Schiliro, P. Gauravaram, H. Janicke, A Deep
learning-based penetration testing framework for vulnerability identification in internet of
things environments (2021). arXiv: 2109.09259 [cs.CR]

28. R.M. Lee, M.J. Assante, T. Conway, German steel mill cyber attack. Ind. Control Syst. 1–15
(2014)

29. M. Lehto, Cyber security in aviation, maritime and automotive. Comput. Big Data Transp.
19–32 (2010)

30. T.C. Lethbridge, J. Diaz-Herrera, R.J. Jr., LeBlanc, J.B. Thompson, Improving software practice
through education: challenges and future trends, in 2007 Future of Software Engineering. FOSE
’07 (IEEE Computer Society, USA, 2007), pp 12–28. https://doi.org/10.1109/FOSE.2007.13

https://doi.org/10.1109/LISAT.2016.7494156
https://doi.org/10.1109/LISAT.2016.7494156
https://doi.org/10.3390/s21113901
https://doi.org/10.3390/s21113901
https://doi.org/10.1145/3133956.3134015
https://doi.org/10.1145/3133956.3134015
https://doi.org/10.1145/3196884
https://doi.org/10.1145/3196884
https://doi.org/10.1145/3196884
https://doi.org/10.1109/ESEM.2009.5314230
https://doi.org/10.1109/ESEM.2009.5314230
https://www.osti.gov/servlets/purl/1505628
https://www.osti.gov/servlets/purl/1505628
https://www.osti.gov/servlets/purl/1505628
https://doi.org/10.1109/ACSAC.2006.39
https://doi.org/10.1109/ACSAC.2006.39
https://doi.org/10.1109/ACSAC.2006.39
https://doi.org/10.1093/cybsec/tyaa015
https://doi.org/10.1093/cybsec/tyaa015
https://doi.org/10.1093/cybsec/tyaa015
https://academic.oup.com/cybersecurity/article-pdf/6/1/tyaa015/33746021/tyaa015.pdf
https://academic.oup.com/cybersecurity/article-pdf/6/1/tyaa015/33746021/tyaa015.pdf
https://academic.oup.com/cybersecurity/article-pdf/6/1/tyaa015/33746021/tyaa015.pdf
https://doi.org/10.1007/0-387-24230-9_9
https://doi.org/10.1007/0-387-24230-9_9
https://doi.org/10.1007/0-387-24230-9_9
https://doi.org/10.23919/ACC.2004.1386701
https://doi.org/10.23919/ACC.2004.1386701
https://doi.org/10.23919/ACC.2004.1386701
https://doi.org/10.1109/ICDCSW.2017.63
https://doi.org/10.1109/ICDCSW.2017.63
https://doi.org/10.1109/ICDCSW.2017.63
https://doi.org/10.1016/j.procs.2022.01.205
https://doi.org/10.1016/j.procs.2022.01.205
https://www.sciencedirect.com/science/article/pii/S1877050922002149
https://www.sciencedirect.com/science/article/pii/S1877050922002149
https://www.sciencedirect.com/science/article/pii/S1877050922002149
https://doi.org/10.14569/IJACSA.2012.030603
https://doi.org/10.14569/IJACSA.2012.030603
https://doi.org/10.14569/IJACSA.2012.030603
http://arxiv.org/abs/2109.09259
http://arxiv.org/abs/2109.09259
https://doi.org/10.1109/FOSE.2007.13
https://doi.org/10.1109/FOSE.2007.13

74 G. Yadav et al.

31. Y. Liang, Y. Zhang, H. Xiong, R. Sahoo, Failure prediction in IBM blueGene/L event logs
(2007); In Q. Lin, H. Zhang, J.-G. Lou, Y. Zhang, X. Chen, Log clustering based problem
identification for online service systems, inProceedings of the 38th International Conference on
Software Engineering Companion. ICSE ’16 (Association for Computing Machinery, Austin,
Texas, 2016), pp. 102–111. https://doi.org/10.1145/2889160.2889232

32. Y. Lu, P. Witherell, A. Jones, Standard connections for IIoT empowered smart manufacturing.
Manuf. Lett. 26, 17–20 (2020). https://doi.org/10.1016/j.mfglet.2020.08.006

33. M. Maurer, David Brumley, Tachyon: tandem execution for efficient live patch testing, in 21st
USENIX Security Symposium (USENIX Security 12). (Bellevue, WA, USENIX Association,
2012), pp. 617–630

34. W. Meng, Y. Liu, Y. Zhu, S. Zhang, D. Pei, Y. Liu, Y. Chen, R. Zhang, S. Tao, P. Sun, R. Zhou,
LogAnomaly: unsupervised detection of sequential and quantitative anomalies in unstruc-
tured logs, in Proceedings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, IJCAI-19. International Joint Conferences on Artificial Intelligence Organization
(2019), pp. 4739–4745. https://doi.org/10.24963/ijcai.2019/658

35. R.A. Miura-Ko, N. Bambos, SecureRank: a risk-based vulnerability management scheme for
computing infrastructures, in 2007 IEEE International Conference on Communications (2007),
pp. 1455–1460. https://doi.org/10.1109/ICC.2007.244

36. M. Moh, S. Pininti, S. Doddapaneni, T.-S. Moh, Detecting web attacks using multi-stage log
analysis, in 2016 IEEE 6th International Conference on Advanced Computing (IACC) (2016),
pp. 733–738. https://doi.org/10.1109/IACC.2016.141

37. A. Mosteiro-Sanchez, M. Barcelo, J. Astorga, A. Urbieta, End to end secure data exchange in
value chains with dynamic policy updates, in CoRR (2022). arXiv: 2201.06335

38. C. Niesler, S. Surminski, L. Davi, Hera: hotpatching of embedded real-time applications, in
28th Network and Distributed System Security Symposium (NDSS) (2021); NIST, National
vulnerability database (2021). https://nvd.nist.gov/

39. Nozomi-Networks, Nozomi-networks (2021)
40. A. Oprea, Z. Li, T.-F. Yen, S.H. Chin, S. Alrwais, Detection of early-stage enterprise infection

by mining large-scale log data, in 2015 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (2015), pp. 45–56. https://doi.org/10.1109/DSN.2015.14

41. OWASP-community, OWASP top ten (2021). https://owasp.org/www-projecttop-ten/
42. K. Pei, Z. Gu, B. Saltaformaggio, S. Ma, F. Wang, Z. Zhang, L. Si, X. Zhang, D. Xu, HERCULE:

attack story reconstruction via community discovery on correlated log graph, in Proceedings
of the 32nd Annual Conference on Computer Security Applications. ACSAC ’16 (Association
for Computing Machinery, Los Angeles, California, USA, 2016), pp. 583–595. https://doi.org/
10.1145/2991079.2991122

43. C. Phillips, L.P. Swiler, A graph-based system for network-vulnerability analysis, in Proceed-
ings of the 1998 Workshop on New Security Paradigms. NSPW ’98 (Association for Computing
Machinery, Charlottesville, Virginia, USA, 1998), pp. 71–79. https://doi.org/10.1145/310889.
310919

44. Rapid7-community, Working with vulnerabilities (2021). https://docs.rapid7.com/nexpose/
working-with-vulnerabilities/. Accessed 13 June 2021

45. J.R. Reeder, C.T. Hall, Cybersecurity’s pearl harbor moment: lessons learned from the colonial
pipeline ransomware attack (2021)

46. SANS-ICS, Analysis of the cyber attack on the Ukrainian power grid (2016). https://ics.sans.
org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf. Accessed 03 Jan. 2021

47. D. Shelar, S. Amin, Security assessment of electricity distribution networks under DER node
compromises. IEEE Trans. Control of Netw. Syst. 4(1):23–36 (2017)

48. K. Smith, I. Wilson, The challenges of the internet of things considering industrial control
systems, inPrivacy, Security And Forensics in The Internet of Things (IoT), ed. by R. Montasari,
F. Carroll, I. Mitchell, S. Hara, R. Bolton-King (Springer International Publishing, Cham, 2022),
pp. 77–94. https://doi.org/10.1007/978-3-030-91218-5_4

49. G. Spanos, A. Sioziou, L. Angelis, WIVSS: a new methodology for scoring information systems
vulnerabilities, in Proceedings of the 17th Panhellenic Conference on Informatics. PCI ’13

https://doi.org/10.1145/2889160.2889232
https://doi.org/10.1145/2889160.2889232
https://doi.org/10.1016/j.mfglet.2020.08.006
https://doi.org/10.1016/j.mfglet.2020.08.006
https://doi.org/10.24963/ijcai.2019/658
https://doi.org/10.24963/ijcai.2019/658
https://doi.org/10.1109/ICC
https://doi.org/10.1109/ICC
https://doi.org/10.1109/IACC.2016.141
https://doi.org/10.1109/IACC.2016.141
http://arxiv.org/abs/2201.06335
http://arxiv.org/abs/2201.06335
https://nvd.nist.gov/
https://nvd.nist.gov/
https://doi.org/10.1109/DSN.2015.14
https://doi.org/10.1109/DSN.2015.14
https://owasp.org/www- projecttop-ten/
https://owasp.org/www- projecttop-ten/
https://doi.org/10.1145/2991079.2991122
https://doi.org/10.1145/2991079.2991122
https://doi.org/10.1145/2991079.2991122
https://doi.org/10.1145/310889.310919
https://doi.org/10.1145/310889.310919
https://doi.org/10.1145/310889.310919
https://docs.rapid7.com/nexpose/working-with-vulnerabilities/
https://docs.rapid7.com/nexpose/working-with-vulnerabilities/
https://docs.rapid7.com/nexpose/working-with-vulnerabilities/
https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf
https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf
https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf
https://doi.org/10.1007/978-3-030-91218-5_4
https://doi.org/10.1007/978-3-030-91218-5_4

Vulnerability Management in IIoT-Based Systems: What, Why and How 75

(Association for Computing Machinery, Thessaloniki, Greece, 2013), pp. 83–90. https://doi.
org/10.1145/2491845.2491871

50. Tenable-community, Nessus (2021). https://www.tenable.com/products/nessus. Accessed 13
Oct. 2021

51. V. Visoottiviseth, P. Akarasiriwong, S. Chaiyasart, S. Chotivatunyu, PENTOS: penetration
testing tool for internet of thing devices, in TENCON 2017—2017 IEEE Region 10 Conference
(2017), pp. 2279–2284. https://doi.org/10.1109/TENCON.2017.8228241

52. D. Votipka, R. Stevens, E. Redmiles, J. Hu, M. Mazurek, Hackers versus testers: a comparison of
software vulnerability discovery processes, in 2018 IEEE Symposium on Security and Privacy
(SP) (2018), pp. 374–391. https://doi.org/10.1109/SP.2018.00003

53. B. Wang, X. Li, L.P. de Aguiar, D.S. Menasche, Z. Shafiq, Characterizing and modeling patch-
ing practices of industrial control systems. Proc. ACM Meas. Anal. Comput. Syst. 1(1). https://
doi.org/10.1145/3084455

54. S.A. Weed, US policy response to cyber attack on SCADA systems supporting critical
national infrastructure (2017). https://media.defense.gov/2017/Nov/20/2001846609/-1/-1/0/
CPP0007_WEED_SCADA.PDF. Accessed 02 Mar. 2022

55. Y.S. Wu, B. Foo, Y. Mei, S. Bagchi, Collaborative intrusion detection system (CIDS): a frame-
work for accurate and efficient IDS, in Proceedings of the 19th Annual Computer Security
Applications Conference. ACSAC ’03 (IEEE Computer Society, USA, 2003), p. 234

56. Q. Xueqiu, S.W. Jia, C. Xia, L. Lv, Automatic generation algorithm of penetration graph in
penetration testing, in 2014 Ninth International Conference on P2P, Parallel, Grid, Cloud and
Internet Computing (2014), pp. 531–537. https://doi.org/10.1109/3PGCIC.2014.104

57. G. Yadav, P. Gauravaram, A.K. Jindal, SmartPatch: a patch prioritization framework for SCADA
chain in smart grid, in Proceedings of the 26th Annual International Conference on Mobile
Computing and Networking. MobiCom ’20 (Association for Computing Machinery, London,
United Kingdom, 2020). https://doi.org/10.1145/3372224.3418162

58. G. Yadav, P. Gauravaram, A.K. Jindal, K. Paul, SmartPatch: a patch prioritization framework.
Comput. Ind. 137, 103595 (2022). https://doi.org/10.1016/j.compind.2021.103595. https://
www.sciencedirect.com/science/article/pii/S0166361521002025

59. G. Yadav, K. Paul, PatchRank: ordering updates for SCADA systems, in 2019 24th IEEE
International Conference on Emerging Technologies and Factory Automation (IEEE ETFA)
(2022). https://doi.org/10.1109/ETFA.2019.8869110

60. G. Yadav, K. Paul, Architecture and security of SCADA systems: a review. Int. J. Critic.
Infrastr. Protect. 34, 100433 (2021). https://doi.org/10.1016/j.ijcip.2021.100433. https://www.
sciencedirect.com/science/article/pii/S1874548221000251

61. G. Yadav, K. Paul, Global monitor using spatiotemporally correlated local monitors, in 2021
IEEE 20th International Symposium on Network Computing and Applications (NCA) (2021),
pp. 1–10. https://doi.org/10.1109/NCA53618.2021.9685330

62. G. Yadav, K. Paul, A. Allakany, K. Okamura, IoT-PEN: a penetration testing framework for IoT,
in 2020 International Conference on Information Networking (ICOIN) (2020a), pp. 196–201.
https://doi.org/10.1109/ICOIN48656.2020.9016445

63. G. Yadav, K. Paul, A. Allakany, K. Okamura, IoT-PEN: an E2E penetration testing framework
for IoT. J. Inf. Process. 28, 633–642 (2020b). https://doi.org/10.2197/ipsjjip.28.633.

64. T.-F. Yen, A. Oprea, K. Onarlioglu, T. Leetham, W. Robertson, A. Juels, E. Kirda, Beehive:
large-scale log analysis for detecting suspicious activity in enterprise networks, in Proceedings
of the 29th Annual Computer Security Applications Conference. ACSAC ’13 (Association for
Computing Machinery, New Orleans, Louisiana, USA, 2013), pp. 199–208

65. X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie, X. Yang, Q. Cheng, Z. Li, J.
Chen, X. He, R. Yao, J.-G. Lou, M. Chintalapati, F. Shen, D. Zhang, Robust log-based anomaly
detection on unstable log data, in ESEC/FSE 2019. Tallinn, Estonia: Association for Computing
Machinery (2019), pp. 807–817. https://doi.org/10.1145/3338906.3338931

https://doi.org/10.1145/2491845.2491871
https://doi.org/10.1145/2491845.2491871
https://doi.org/10.1145/2491845.2491871
https://www.tenable.com/products/nessus
https://www.tenable.com/products/nessus
https://doi.org/10.1109/TENCON.2017.8228241
https://doi.org/10.1109/TENCON.2017.8228241
https://doi.org/10.1109/SP.2018.00003
https://doi.org/10.1109/SP.2018.00003
https://doi.org/10.1145/3084455
https://doi.org/10.1145/3084455
https://doi.org/10.1145/3084455
https://media.defense.gov/2017/Nov/20/2001846609/-1/-1/0/CPP0007_WEED_SCADA.PDF
https://media.defense.gov/2017/Nov/20/2001846609/-1/-1/0/CPP0007_WEED_SCADA.PDF
https://media.defense.gov/2017/Nov/20/2001846609/-1/-1/0/CPP0007_WEED_SCADA.PDF
https://doi.org/10.1109/3PGCIC.2014.104
https://doi.org/10.1109/3PGCIC.2014.104
https://doi.org/10.1145/3372224.3418162
https://doi.org/10.1145/3372224.3418162
https://doi.org/10.1016/j.compind.2021.103595
https://doi.org/10.1016/j.compind.2021.103595
https://www.sciencedirect.com/science/article/pii/S0166361521002025
https://www.sciencedirect.com/science/article/pii/S0166361521002025
https://www.sciencedirect.com/science/article/pii/S0166361521002025
https://doi.org/10.1109/ETFA.2019.8869110
https://doi.org/10.1109/ETFA.2019.8869110
https://doi.org/10.1016/j.ijcip.2021.100433
https://doi.org/10.1016/j.ijcip.2021.100433
https://www.sciencedirect.com/science/article/pii/S1874548221000251
https://www.sciencedirect.com/science/article/pii/S1874548221000251
https://www.sciencedirect.com/science/article/pii/S1874548221000251
https://doi.org/10.1109/NCA53618.2021.9685330
https://doi.org/10.1109/NCA53618.2021.9685330
https://doi.org/10.1109/ICOIN48656.2020.9016445
https://doi.org/10.1109/ICOIN48656.2020.9016445
https://doi.org/10.2197/ipsjjip.28.633.
https://doi.org/10.2197/ipsjjip.28.633.
https://doi.org/10.1145/3338906.3338931
https://doi.org/10.1145/3338906.3338931

	 Vulnerability Management in IIoT-Based Systems: What, Why and How
	1 Introduction
	2 Vulnerability Management
	2.1 Challenges of IIoT-Based Systems for VM

	3 Tools and Techniques for Systematic VM
	3.1 Vulnerability Discovery
	3.2 Vulnerability Analysis
	3.3 Vulnerability Prioritization
	3.4 Vulnerability Remediation
	3.5 Vulnerability Verification and Monitoring

	4 Reseach Directions
	5 Conclusion
	References

