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Abstract Industrial Control Systems (ICS) are characterized by large numbers of 
tightly integrated, interdependent, and heterogeneous components in a network. They 
act as a base system for safety and mission-critical Industrial Internet of Things (IIoT) 
applications such as smart grids, nuclear power plants, process control systems and 
robotics systems. The complex ICS, e.g., Supervisory Control and Data Acquisition 
(SCADA), consists of many interdependent subsystems. Modern SCADA systems 
are an amalgam of IIoT and legacy systems. IIoT is essentially a realization of 
advances in the connectivity of hardware and data networks that SCADA provides. 
Therefore, modern SCADA has evolved as a use case of IIoT, wherein IIoT improves 
industrial productivity by analyzing data generated by SCADA systems. The mod-
ernization of the SCADA system, standardization of communication protocols and 
almost ubiquitous interconnectivity courtesy for IIoT has drastically increased the 
attack surface of the SCADA system. Systematic Vulnerability Management (VM) 
of these attack surfaces minimizes risks and impacts associated with vulnerabil-
ity exploitation. In this chapter, we first find the correlation between the IIoT and 
SCADA systems, followed by security challenges faced by IIoT-based systems. Then 
we highlight the role of VM in securing the critical systems, followed by the study 
of the state-of-art approaches for VM. After that, we discuss some future research 
directions for developing techniques for efficient VM. The chapter underscores the 
design challenges and research opportunities for efficiently managing the increasing 
vulnerabilities. 
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1 Introduction 

Over the years, an increase in the number of cyberattacks targeting the Industrial 
Control Systems (ICS) such as Supervisory Control and Data Acquisition (SCADA) 
systems have drawn the security researchers’ attention towards these system’s secu-
rities. There are several real-world cyber attacks on ICS infrastructures as discussed 
below. 

Ransomware on US fuel pipeline In 2021, a ransomware attack encrypted criti-
cal data of Information Servers used in the SCADA stack of US Colonial Pipeline 
company [45]. As a consequence, Colonial pipeline company suspended all of the 
pipeline’s operations as a precaution and to prevent further cascading impact. The 
adversaries stole nearly 100 gigabytes of data which led the company to pay 75 
Bitcoin ($ 5 Million) to get the decryption tool due to a single compromised pass-
word. The pipeline shutdown impacted fuel shortages at airports and filling stations, 
resulted in canceling flights and panic fuel buying. 

Polish airline attack [29] was due to Distributed Denial of Service (DDoS) attack, 
which overwhelms a network with traffic. The security expert took five hours to 
resolve the issue, leading to 10 flights cancellation and delays of around 15 flights at 
Warsaw Chopin airport. 

The digital cyber-weapon Stuxnet [19] targeted at SCADA systems in 2010 is consid-
ered to be the most sophisticated cyber-attack. A malware jumped across air-gapped 
networks and damaged nuclear centrifuges of Iranian enrichment plants exploiting 
four unpatched zero-day Microsoft vulnerabilities used for self-replication and priv-
ilege escalation. Stuxnet damaged the centrifuges used in the uranium enrichment 
process by modifying their rotor speed. Vibrations and distortions caused by signifi-
cant and sudden changes in their speed destroyed a thousand centrifuges, leading to 
less enriched uranium production. 

Ukraine power grid attack [19, 46] in December 2015, where hackers hacked the 
information systems of three energy distribution companies using BlackEnergy mal-
ware. It resulted in rolling power outages for 1–6 h and affected 225,000 users. 

In German Steel Plant cyberattack [28], the attackers gained unauthorized access 
to the mill’s control systems using spear-phishing social engineering attacks. It led to 
an abnormal and unscheduled shutdown of the furnace, resulting in massive physical 
damage to the steel plant. 

These incidents demonstrate the impact of a cyberattack by a determined adversary 
on such Critical Infrastructure (CI). Such cyberattacks could affect the availability 
of the software running on the device or can be used to reveal the running appli-
cation’s secrets. Devices under attack could stop working, behave differently, or be
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Fig. 1 SCADA application areas [60] 

leveraged to pose DDoS attacks either exploiting zero-day or reported yet unpatched 
vulnerabilities in a system. Moreover, these attacks have been led due to vulnerable 
SCADA systems by exploiting multiple vulnerabilities on different systems, gener-
ally referred to as Multi-host Multi-stage (MhMs) cyberattacks. SCADA systems, a 
type of ICS, are characterized by large numbers of tightly integrated, interdependent 
and heterogeneous components in a network [32]. The smooth and genuine opera-
tion of the SCADA framework is one of the key concerns for enterprises because the 
outcome of the breakdown of the SCADA system may range from financial loss to 
environmental damage to loss of human life [12]. These systems act as the base for 
safety and mission-critical infrastructures such as smart grids, nuclear power plants, 
process control systems and robotics systems [60]. These systems have become an 
essential part of automated control and monitoring of CI such as agriculture, health-
care, nuclear reactor, transportation, energy sector, civil and chemical engineering, 
water plants, research etc., as depicted in Fig. 1. Considering the significance of 
SCADA and ICS security that underpin critical national infrastructure, US Govern-
ment offered policy recommendations for synchronizing foreign and domestic cyber 
security efforts and realizing a resilient and secure infrastructure [54]. 

Evolution of SCADA systems: Modern SCADA systems have evolved from stan-
dalone systems into sophisticated, complex and open systems connected to the Inter-
net. With Industry 4.0/Industrial Internet of Things (IIoT) evolution, modern SCADA 
systems have adopted Cyber-Physical System (CPS)/IIoT, cloud technology, big data 
analytics, artificial intelligence and Machine Learning (ML). IIoT, generally defined 
as a sub-set of the Internet of Things (IoT) in terms of usage, covers the domains



54 G. Yadav et al.

IoT IIoT CPSICSSCADA 

Fig. 2 IIoT and SCADA 

of machine-to-machine and industrial communication technologies with automation 
applications. IIoT paves the way for a better understanding of the manufacturing 
process, enabling efficient and sustainable production. IIoT allows a higher degree 
of automation by using cloud computing and data analytics to refine and optimize 
the process controls [9]. It further enables efficient interaction between the physical 
world and the cyber world, usually addressed as a CPS. ICS is the critical component 
to realize CPS. ICS provides control and monitoring functionality in manufacturing 
and industries. 

Correlation of IIoT and SCADA systems: In Fig.  2, we demonstrate the overlap of 
IoT, IIoT, SCADA, ICS and CPS systems. IIoT is a subset of IoT. ICS such as SCADA 
is used to control CPS. Modern SCADA has been evolved into a connected IIoT-based 
system i.e., modern SCADA systems are an amalgam of IIoT and legacy systems as 
shown in Fig. 3. IIoT is essentially a realization of advances in the connectivity of 
hardware and data networks that SCADA provides. From the security perspective, 
the differences between them is not important. Therefore, in this chapter, we consider 
SCADA systems as a use-case for IIoT-based systems. We use IIoT-based SCADA 
systems and IIoT-based systems interchangeably. 

In brief, integrating these technologies has significantly improved interoperability, 
eased maintenance and decreased the infrastructure cost. Therefore, modern SCADA 
systems are leading to a near real-time environment. Although IIoT improves the 
reachability in ICS, enhances data analytics, assuring ease of access and decision 
making, it also opens the ICS environment to attackers [14, 60]. The design of IIoT-
based SCADA introduces multiple entry points to an isolated system, which is used 
to protect itself via air-gapping and risk avoidance strategies. 

The Confidentiality, Integrity, and Availability (CIA) triad security model pro-
vides an excellent way to demonstrate the best practices to protect the data on the 
network. For the SCADA system, the security goal is generally the data availability 
that is the reverse of the prioritized security goals for traditional Information Tech-
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Fig. 3 IIoT-based SCADA [60] 

Fig. 4 Priority order for SCADA and general IT

nology (IT) systems, as shown in Fig. 4. Therefore, downtime-constraints security 
is considered while implementing IIoT-security solutions. The ICSs are also called 
Operational Technology (OT) devices that control the physical world, while IT sys-
tems manage data [6]. Therefore, attackers generally target interrupting the SCADA 
system availability, causing production loss, financial loss, data loss, system dam-
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age, etc., hence tremendously affecting the economy, safety and security of a nation. 
An attacker needs to think outside the normal operating procedures to discover the 
unusual behavior, thus identifying vulnerabilities resulting in unauthorized access. 
The attacker needs only a single security hole, while a defender must defend against 
all possible security holes. Therefore, the defender needs to be more competent to 
compete with an attacker. Developing rigorous security layers can help to mini-
mize the impact of attacks. A large number of vulnerabilities in various domains are 
reported to National Vulnerability Database (NVD) [38] each year. In NVD, 18,103 
new vulnerabilities were reported in 2020 itself. With the integration of IIoT and 
legacy SCADA, the vulnerabilities reported to other domains are also applicable 
to IIoT-based SCADA [53], in a characterization study of ICS patching behavior, 
observed a patch delay of approximately 60 days after vulnerability disclosure for 
50% of ICS devices. This lack of intime patching gives adversaries ample time to 
exploit these systems’ publicly disclosed vulnerabilities.

Hence, the management of ICS security is becoming a major prevalent challenge 
due to an increase in system complexity and interdependencies. The progressive 
nature of ICS further complicates the scenario. On the one hand, the increasing 
complexity of software usually translates into more software flaws and vulnerabilities 
to fix. On the other hand, system threats continuously evolve, changing the risk 
outlook as new vulnerabilities and attack vectors emerge. In brief, to minimize the 
potential impact of successful cyberattacks, Vulnerability Management (VM) plays 
a pivotal point in any strategy for system security management. 

In this chapter, we highlight the role of VM in securing critical systems, followed 
by the study of the state-of-art approaches for VM in Sect. 2. After that, we figure out 
the future research direction for developing techniques for efficient VM in Sect. 4. The  
chapter concludes by underscoring the design challenges and research opportunities 
for efficiently managing the increasing vulnerabilities in Sect. 5. 

2 Vulnerability Management 

VM is an indispensable part of managing an organization’s safety and security. VM 
allows an organization to get a continuous overview of vulnerabilities in their OT 
environment. It is generally characterized as a cyclical process of five stages, i.e., 
Vulnerability discovery, Vulnerability analysis, Vulnerability prioritization, Vulner-
ability remediation and Vulnerability verification and monitoring. 

What is VM? Strategic vulnerability management reduces the risk associated with 
vulnerability exploitation. In a generic term, VM tries to answer the following ques-
tions: 

1. Do vulnerabilities exist on organizations’ assets? If yes, what are they? 
2. What are the characteristics of the discovered vulnerabilities?
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Fig. 5 Generic vulnerability 
management lifecycle 
(*Extended stage) 

3. What are the efficient strategies to fix the vulnerabilities so that the vulnerability 
exploitation’s impact is minimal? Is there a critical need to patch all vulnerabili-
ties? 

4. What are the mechanisms for efficient and safe patch deployment? 
5. Are the systems working normally post-patch deployment? Also, what vulnera-

bilities can not be patched yet have high risk? What are the monitoring strategies 
for unpatched vulnerabilities? 

How is VM performed? VM is a cyclical practice of discovering, analyzing, priori-
tizing, remediating and verifying/monitoring possible exploitation of vulnerabilities 
in operating systems (OSs), enterprise applications, browsers and end-user applica-
tions, as shown in Fig. 5. In the first step, the vulnerabilities are generally discovered 
using a vulnerability scanner such as Nessus [50] and Nozomi networks [39]. Then 
in the second stage, the vulnerability scanner generates a consolidated report of pos-
sible known vulnerabilities. The security experts analyzed the report to prioritize the 
vulnerabilities based on their expertise and network knowledge in the third stage. 
The high severity vulnerabilities are selected for patching and the respective patch 
is deployed in the fourth stage. Once the vulnerabilities have been identified and 
resolved, consistent follow-up audits are required to ensure the mitigation is work-
ing in the fifth stage. This stage of vulnerability management is called the verification 
stage that helps to maintain transparency and accountability over the remediation pro-
cess. Further, there can be two scenarios (i) the patch1 is not available, (ii) a patch can 
not be applied to the system due to resource constraints or availability requirements. 
This gives an adversary ample time to exploit those vulnerabilities. Therefore, it is 
highly recommended to monitor the system to detect ongoing exploitation on time 
to minimize the potential damage. We extend the standard VM cycle by monitoring 
such a set of vulnerabilities in the fifth stage. 

Why is VM needed? In brief, the lack of an appropriate plan for cyber-securing 
the assets in IIoT-based SCADA can cause organizations to have high risks of losing

1 A security patch is applied to the system to fix the vulnerability to prevent successful exploitations.
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revenue and reputation. VM is crucial to prioritize possible threats, reduce their attack 
surface and minimize the potential impact of cyber-attacks. 

2.1 Challenges of IIoT-Based Systems for VM 

The challenges of securing the IIoT-based systems are as follows: 

1. One of the critical things that enterprises need to consider ahead of VM in IIoT 
is constant, uninterrupted availability of the systems except for scheduled main-
tenance downtime [38]. The security solutions should either work concurrently 
without interfering with the system’s functionality, or any change to the system 
should only be deployed at the scheduled downtime. This raises constraints on 
efficiently managing the VM cycle. Among the five stages of VM, patch deploy-
ment is the crucial phase, which hinders the system’s functionality. Therefore, it 
becomes challenging for system administrators to effectively manage the sched-
uled downtime to fix the vulnerabilities issues. 

2. The second challenge arises due to the blend of legacy and IIoT infrastructures 
[25], leading to increased attack surface and increased number of attack paths 
to exploit the legacy vulnerabilities. This leads to legacy vulnerabilities being 
targeted by the attackers [48]. 

3. The third challenge for system administrators is to monitor and control the end-
to-end security of such large and complex critical industries [37]. 

4. The proposed solutions for efficient VM should consider the downtime constraints 
to take care of the various challenges mentioned above. 

This short discussion presented above helps to identify the gap in the state-of-the-art 
leading the research contributions mentioned in the next section. 

3 Tools and Techniques for Systematic VM 

In this section, we discuss Tools and techniques for each stage of systematic VM in 
detail. 

3.1 Vulnerability Discovery 

Discovering security vulnerabilities in software is a demanding task that requires 
significant human efforts. Vulnerability discovery is often the liability of software 
testers before release and white-hat hackers using bug bounty programs after the 
software is released. However, testers typically aim to find bugs related to perfor-
mance and functionality with little focus on the security bugs due to the lack of
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expertise needed to discover security bugs. In [30] observed that only 40% of the 
tester have formal training in software engineering practices. Apart from that, black-
hat hackers also identify vulnerabilities and later exploit them to gain economic or 
political benefits. The bug-bounty programs offer bounties in terms of money or 
recognition to vulnerability discoverers [18]. Therefore, vulnerability discovery is 
a competition between software testers and white-hat hackers vs. black-hat testers. 
Discovering vulnerabilities before the software release not only save time, money, 
a company reputation but also provides users protection and concerns regarding the 
patch deployment, especially in CPS, where the availability of the systems is the 
primary concern. Software development with the consideration of security reduces 
the reported vulnerabilities. Over time, vulnerability discovery tools have evolved to 
discover vulnerabilities automatically. However, human intelligence acts as a sup-
plement to these tools. 

A vulnerability discovery process can be divided into five stages: information gath-
ering, program understanding, attack surface exploration and vulnerability recogni-
tion, and reporting [52]. In the information gathering state, the major goal is to 
understand prior efforts and the base technologies for the program. It plays a critical 
role in deciding whether to expend additional effort or resources or move on to a 
different target. In the program understanding state, the hackers attempt to learn the 
program behavior and its interaction with users and the network. After discovering 
the program’s functionality, the hacker tries to identify the attack surface. This step 
leads to identifying resources that can be manipulated to influence the program exe-
cution and identification of critical components of the program. In the vulnerability 
recognition step, system administrators explore malicious activities and pass mali-
cious input using automated tools to identify the malicious states of software. An 
iterative process of program understanding, attack surface exploration and vulnera-
bility recognition leads to identifying vulnerabilities in the system. A comprehensive 
report is generated in the last stage, including the vulnerability reproduction steps, 
which the developer later uses to generate the patches. The skilled testers perform 
penetration testing to identify the vulnerabilities in the system. Penetration testing 
(commonly known as pentesting) is an authorized simulated cyberattack on a com-
puter system to check for exploitable vulnerabilities. The penetration tests can be 
performed against the system from inside or outside to study all possible attackers’ 
strategies. Each penetration test specifies guidelines and recommendations to address 
the identified issues. It is generally categorized into three types: black-box, grey-box, 
and white-box [26]. In the case of black-box testing, no information is available to the 
attacker. However, in the case of grey-box testing, basic information about the net-
work is available to the attacker. In white-box testing, detailed system information, 
network architecture is available to the tester [7]. Since attackers access the target 
system from an outside network, the black-box testing results are the most realistic 
pentesting technique. Most widely used tools for pentesting, such as Nmap Metas-
ploit, Burp suite Sqlmap, subfinder are freely available on Kali Linux. A thorough 
penetration testing when implementing IIoT architecture will reduce the reported 
vulnerabilities after the software is released. In large-scale IIoT networks, manually
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testing each system is challenging under resource-constrained scenarios, hence the 
researchers focus on automated security analysis solutions. 

A manual penetration testing approach was proposed by Denis et al. [13] per-
forming individual system penetration testing using the tools within the Kali Linux 
on smartphones and computers. The attacks performed were traffic sniffing, Man-
in-the-Middle attack, hacking phone Bluetooth, remote desktop and open ports, etc. 
The primary focus of the work is to demonstrate penetration testing in a simplistic 
way. On  the same line of work [51], developed PENTOS, a pentest tool specially 
designed for IoT devices to increase security awareness. PENTOS is a Graphical 
User Interface (GUI)-based tool on Kali-Linux, which first gathers the target sys-
tem wirelessly followed by performing attacks such as web attacks and password 
attacks to get unauthorized access, followed by a report generation for successful 
attacks. PENTOS also has security guidelines for Open Web Application Security 
Project’s top 10 vulnerabilities [41] to increase awareness [13, 51] provide practical 
experience of penetration testing. However, they do not demonstrate how to apply 
them on heterogeneous IoT nodes. Moreover, both the works are limited to a fixed 
set of attacks and are not scalable to a large IIoT network. With the increase in the 
complexity and size of the IIoT network, pentesting each and every system is a very 
challenging task. Therefore, researchers have focussed on using penetration graphs 
first to analyze the feasibility of exploitation. It facilitates the testers’ analysis of 
the target network and provides a reference for executing penetration testing. In this 
direction, [56] proposed an automatic penetration graph generation algorithm com-
bining the penetration graph generation method with the CVSS information. The 
authors made heuristics for generating the penetration graph that if a vulnerability 
has a CVSS score in the range [7–10], it will lead to admin privilege. However, they 
did not evaluate their framework in terms of scalability and IIoT applicability. AlG-
hazo et al. [1] proposed a framework that enlists a set of all possible sequences in 
which atomic-level vulnerabilities can be exploited to compromise specific system-
level security given the networked system description. The traditional penetration 
testing systems are targeted to the pentesting of a system individually, which fails 
to detect MhMs attacks. This highlights an urgent need for new algorithms, tools, 
and frameworks to secure such resource-constrained devices. Koroniotis et al. [27] 
proposed a DL-based penetration testing framework using LSTM enabled vulnera-
bility identification to detect the scanning attacks. The authors used Nessus, Zeek 
and Scapy to collect the training data by performing fuzzing scanning attacks against 
the network-enabled components of the smart airport-based testbed. This led to the 
generation of network traffic that was gathered, processed and labeled. 

Future directions: In Table 1, we compare state-of-the-art vulnerability discovery 
approaches. We observed that most vulnerability discovery approaches focus on iso-
lated system testing with a little focus on user-friendly GUI. These approaches will 
not detect the possible attacks exploiting MhMs vulnerabilities. Moreover, the pen-
etration report only mentions the vulnerabilities reported, without further analysis, 
which are the critical vulnerabilities, which systems are critical in the network and
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the most likely exploited attack paths. This analysis helps the system administrators 
to take proactive measures to secure the network.

3.2 Vulnerability Analysis 

After identifying the vulnerabilities in the network using network scanners, penetra-
tion testing, etc., the next step of VM is to assess the vulnerabilities. A systematic and 
strategic assessment of a vulnerability would provide an actual severity and impact 
leading to an efficient resource allocation strategy. The NVD uses CVSS to analyze 
and assign a severity score to a vulnerability in the range [0, 10]. The vulnerabilities 
are analyzed based on their basic characteristics (such as Attack complexity, Attack 
vector, Privilege needed), temporal characteristics (such as Exploit Code Maturity, 
Remediation Level, Report Confidence) and environmental characteristics. Weighted 
Impact Vulnerability Scoring System (WIVSS) [49] is proposed to achieve higher 
diversity and accuracy of severity scores. WIVSS uses factors similar to CVSS, 
i.e., attack vector, attack complexity, authentication, confidentiality impact, integrity 
impact and availability impact. However, it uses different weights for the impact 
metrics (confidentiality impact, integrity impact and availability Impact) compared 
to the CVSS. 

Phillips et al. [43] proposed a graph-based vulnerability analysis system, where 
a node represents a stage of attack and edge represents the transitions between the 
attack stages for network-vulnerability analysis considering internal and external 
attackers. The analysis system needs a common attack database with respective 
network configuration and topology configuration is analyzed. The level of effort is 
calculated by combining the probability of success on the edges. The likelihood of 
success is proportional to attack-path length. The major limitation of the work lies in 
the need for atomic steps of attacks. In a practical case, an attacker does not always 
follow a fixed set of patten. Moreover, the authors only presented a brief idea about 
the analysis system with no implementation and scalability analysis. 

Ammann et al. [5] proposed a scalable vulnerability analysis approach by con-
sidering an assumption of monotonicity, i.e., the precondition of an exploit remains 
the same irrespective the attacker has exploited another vulnerability. The goal is 
achieved by combining the attacker access privilege, network connectivity and vul-
nerability in a common attribute, reducing the attack graphs’ complexity. 

Future directions: CVSS and WIVSS do not consider the domain characteristics 
while scoring the vulnerabilities. Therefore, directly using CVSS severity score and 
analysis may not give the exact severity of a vulnerability. Hence, extending the 
CVSS vulnerability analysis is necessary by considering the environment and net-
work characteristics for deploying further security measures.
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3.3 Vulnerability Prioritization 

With the expansion of networks due to IIoTization, more and more IIoT devices are 
connected to the Internet. Hence, there is a drastic increase in the number of vulnera-
bilities reported on these systems. Currently, NVD contains more than 1.60 lakhs vul-
nerabilities, out-of-which 18,767 vulnerabilities were reported in 2020 itself. Patch-
ing each vulnerability is a very challenging task. However [21], studied the ratio of 
vulnerability exploited and vulnerability reported for 2009–2018. 76 k vulnerabilities 
were reported to NVD in the mentioned period, out of which about 12.8% (9.7/76 k) 
of all vulnerabilities had their published exploit code. A key observation is that only 
about 5% (4.2/76 k) vulnerabilities were exploited. This shows that not all vulnera-
bilities are exploited, nor all vulnerabilities can be patched in a resource-constrained 
scenario. Hence, vulnerability prioritization should be considered. 

To efficiently handle these scenarios in a resource-constrained environment, indus-
tries prioritize vulnerability patching using crude heuristics based on limited data. 
Hence, many known vulnerabilities are breached by attackers for which the patch 
was already available. It raises a few challenges to the system administrators: 

1. Suppose we patch all the vulnerabilities of the network. In that case, resources 
are consumed on the low-severity vulnerability, which has less probability of 
exploitability and low impact, even if they got exploited. 

2. In another scenario, if we patch a few critical-severity vulnerabilities, it may be 
an economical, efficient strategy but may lead to other high-risk vulnerabilities, 
including MhMs exploitation. 

In brief, vulnerability prioritization is a practice to balance resource availability and 
exploitation impacts with a large amount of discovered vulnerabilities. The vulner-
ability prioritization should be strategic and efficient. 

Game theory has been used widely in capturing the strategic interactions between 
the intelligent agents, i.e., the attacker and the defender, where the payoff of each 
depends not only on their own action but also on other players’ actions. Apart from 
game theory, graph theory is also used to find an optimized strategy. The expert 
analysis also helps to understand the severity of a vulnerability. Next, we discuss 
related work in each category, i.e., expert analysis based, graph theory-based and 
game theory-based approaches in detail. 

Expert analysis based vulnerability prioritization approaches: The CVSS is an 
indicator of true vulnerability severity. CVSS is used by nexpose [44] vulnerability 
management tool to rank the vulnerabilities. However, the severity score provided by 
CVSS is static and has not changed over time. These scores are standard for all sys-
tems and can be improved by considering temporal and environmental metrics with 
base metrics [17]. WIVSS [49] is proposed to achieve higher diversity and accuracy 
of severity scores. WIVSS uses factors similar to CVSS, i.e., attack vector, attack 
complexity, authentication, confidentiality impact, integrity impact and availability 
impact. However, it uses different weights for the impact metrics (confidentiality 
impact, integrity impact and availability impact) compared to the CVSS.
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Graph-based vulnerability prioritization approaches: Graph-based vulnerability 
prioritizing approaches like SecureRank [35], Risk-Rank [3] and VULCON [16] 
provide a static ranking of patching order and they do not consider the behavior of 
an attacker. SecureRank defines a security metric based on the percentage of time a 
random attacker would spend endeavoring to exploit a vulnerability successfully. It 
takes network topology and vulnerability severity as inputs and returns defense prob-
ability for each subsystem. Defense probability denotes the probability of selecting 
a vulnerability on a particular subsystem for patching to reach the optimal state. Our 
framework in stage 3 establishes that it reaches a Nash equilibrium. The authors com-
pared SecureRank with density, source and type-based prioritization and observed 
that SecureRank provides an effective and efficient patch prioritization approach. It 
prioritizes vulnerabilities based on a balance between immediate risk and the risk 
due to system interdependencies’ cascading. The Risk-Rank algorithm captures the 
risk diffusion by using complex interaction over time. Risk-Rank is verified by using 
a case study based on the organization’s conceptual structure, business units’ risk 
dependencies and vulnerabilities. VULCON is a patch prioritization framework pro-
posed for network security management. It is based on fundamental performance 
metrics, i.e., “time-to-vulnerability remediation” and “total vulnerability exposure”. 
The proposed algorithm uses a mixed-integer multi-objective optimization algorithm 
to prioritize vulnerabilities for patching subject to the given resource constraints. 
However, the graph theory-based approaches fail to incorporate the attacker behavior, 
which plays a vital role in analyzing the possible impact of exploiting a vulnerability. 

Game theory-based vulnerability prioritization approaches: Game theory-based 
approaches for patch prioritization [4, 10, 24, 47] incorporate attackers’ behavior to 
better estimate the prioritization strategy. 

Alshawish and Risk de Meer [47] proposed a game-theoretical model to optimize 
the security strategy of electricity distribution networks with vulnerable Distributed 
Energy Resource (DER) nodes. The authors consider an adversarial model for false 
data injection attacks to compromise vulnerable nodes. The impact of this attack 
in a smart grid on a defender includes the loss of voltage regulation and the cost 
of induced load control under supply-demand mismatch between the generator and 
distributor. The proposed greedy approach is formulated in a three-stage defender-
attacker-defender game, (i) the defender first chooses a strategy to secure DER nodes 
(ii) the attacker will try to compromise the DER nodes (iii) the defender chooses 
the security investments strategy by controlling the loads and non-compromised 
nodes. The authors use a greedy approach to compute attacker-defender strategies 
and recommend optimal financial investments to secure the systems. Kamdem et al. 
[24] proposed a two-player zero-sum Markov game to identify the optimal strategy 
to disconnect vulnerable services to slow down the attack. 

Alshawish and Risk de Meer [4] proposed an integrated risk-based methodol-
ogy for prioritizing possible vulnerability remediation activities by leveraging Time-
To-Compromise (TTC) security metric. This model employs the network topology, 
attackers’ capability and published vulnerability and exploit information. TTC is 
calculated by taking into account the total number of disclosed vulnerabilities, the
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number of high severity vulnerabilities, the number of low severity vulnerabilities, the 
total number of existing exploits, the expected time taken for identifying the zero-day 
vulnerability, the expected time taken for calculating the exploit and adversarial skill 
set. The authors provide a game-theoretic approach considering the stochastic nature 
of risk assessments across an electric power organization. The authors acknowledged 
that TTC-based models could convey misleading results due to the aggregation of 
anticipated features of a vulnerability. Chen et al. [10] proposed a bi-level optimiza-
tion model under a game-theoretic framework to incorporate the interactions of a 
system administrator and an adversary. The interactions among cyber-physical ele-
ments are considered to determine cascading failure under potential attacks. The 
approach leads to optimal resource allocation by the system defender to maintain 
system reliability. However, the game theory-based approaches proposed earlier for 
patch prioritization consider only the single attacker-defender scenario, which is not 
pragmatic in all cases. 

Apart from the above approaches [2], proposed an ML-based exploit predic-
tion model leveraging vulnerability information from different databases, i.e., NVD, 
ExploitDB, ZDI and Dark Web (DW). The attacker behavior is integrated by consider-
ing the blogs/ posts for respective vulnerabilities on DW. However, the learning-based 
detection approaches may be deceived due to intentionally discussing the random 
vulnerabilities on DW by adversaries. 

Future directions: In Table 2, we compare state-of-the-art vulnerability prioritiza-
tion approaches based on architectural feature, vulnerability feature, patch dependen-
cies, attacker feature and approach category. We observed that most approaches do 
not consider resource constraints, functional dependencies, patch dependencies and 
multiple defender-attackers practical scenarios. Incorporating an attacker’s behav-
ior plays a vital role in proper resource allocation and failure to consider the patch 
dependencies will lead to patch breaks while deployed. In this direction [57, 58], 
proposed a prioritization framework leveraging a game-theoretical model. However, 
the approach can be extended by considering different attacker strategies and network 
characteristics. 

3.4 Vulnerability Remediation 

After the system administrators have analyzed and prioritized the vulnerabilities, the 
next phase is to deploy the patches. It is the most challenging stage of patch manage-
ment due to the complexities of software arising from network inter-connectivity and 
inter-dependencies. Hence, a patch deployment may affect other dependent appli-
cations potentially. Apart from software dependencies, the patch dependencies hier-
archy needs to be considered, i.e., if patch A depends upon patch B then before 
deploying patch A, the administrators need to deploy patch B. Another concern is 
the limited time between the patch availability and the exploit release, leading to the 
high probability of successful exploitation. This raises concern for the deployment of
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the patches as soon as they are available. A security patch should be well tested before 
deployment. It may sometimes break the service rather than repairing faulty patches 
that introduce issues like backward compatibility, interoperability issue, patch break 
and introduction of a new vulnerability. The presence of faulty patches increases 
the cost of patch deployment and service downtime. Hence, many system admin-
istrators often delay installing patches and keep using outdated software, leaving 
known vulnerabilities readily exploitable. However, in ICS systems, the patching 
is scheduled with consideration of the requirement of the system availability, pre-
deployment testing and post-deployment testing. In brief, the difficulty in dealing 
with patch dependencies and the significant amount of human effort required for con-
figuring a test environment to simulate a production-identical environment hinders 
automated patch deployment. Therefore, before deploying a patch, a deep analysis 
of the impact of patch deployment should be done. A sophisticated live patching 
technique has been proposed to reduce the service downtime or maintenance win-
dow [33]. However, their applicability in practice is minimal. Commonly available 
virtualization capabilities allow system administrators to perform a majority of the 
patchwork outside of the maintenance window by capturing the disk activities and 
replaying them during the actual maintenance window.

Future directions: A patch management policy that tests and applies suitable patches 
to all affected areas in an efficient and timely manner is crucial. A trustworthy 
remediation solution helps developers, security and devOps teams by keeping them 
in sync so that the entire vulnerability management process runs smoothly. With the 
decrease in system downtime and the need to keep systems updated highlights the 
need for advanced techniques for live patching. 

3.5 Vulnerability Verification and Monitoring 

Once the vulnerabilities have been patched, the next stage of VM is to verify or 
test the deployed patches on these systems. The patch deployments are verified by 
monitoring the systems for unexpected service interruptions. Manual patch deploy-
ment verification approaches are challenging, error-prone and time-consuming in 
complex networks. There is a lack of automated tools to overview the state of the 
system post-patch deployment. 

Moreover, due to system availability requirements, few critical vulnerabilities can 
not be patched in ICS systems. In those cases, system administrators need to monitor 
these systems to timely detect ongoing exploitations. If an ongoing attack is detected 
in the network, which may lead a path to the critical asset, suitable actions to stop the 
attack or reduce the attack’s impact should be taken. There has been active research 
for more than a decade for using system logs to detect the anomalous behavior of a 
system using either rule-based strategies or ML-based techniques on a single system. 
However, only a few approaches focus on correlating the attack scenario on different 
systems to find the indications of compromise, which leads to the detection of an
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attack before it reaches its target. We study the related work into three categories as 
discussed below: 

Techniques for anomaly detection on a system using system logs: Rule-based 
anomaly detection approaches [40, 64] are limited to detect specific scenarios with 
high accuracy, requiring domain expertise. [64] represented the Syslog behaviors 
using a combination of hidden Markov models followed by learning the model 
using a discounting learning algorithm. Oprea et al. [40] proposed a graph-theoretic 
framework based on belief propagation to detect advanced persistence threats infec-
tion. The ML-based anomaly detection approaches can be categorized as supervised 
and unsupervised learning-based approaches. Supervised learning-based approaches 
derive a model from the labeled training data, which generally label data either normal 
or anomalous. Chen et al. [11] presented a decision tree-based approach to diagnose 
failures on Internet sites. First, they trained the decision trees on the request traces. 
The training request traces data also included the request failure scenarios visible 
and labeled by the user. When tested on real-failure data from eBay (an eCommerce 
website) request traces, the proposed approach successfully identified 13 out of 14 
failure cases. Liang et al. [31] applied Support Vector Machine (SVM) to predict 
failures in IBM BlueGene/L event logs2 . The supervised-learning-based approaches 
need a large amount of labeled data to train the model. In an unsupervised-learning 
algorithm clustering approach, LogCluster utilizes the base idea to check if a par-
ticular log sequence has occurred or not [31]. Apart from these, program invariants 
were used to detect abnormal events. Initially, program invariants are being iden-
tified to learn the linear relationships between system events during the program 
execution. A log sequence that does not follow the program invariants is labeled 
as anomalous. The above ML approaches made a close-world assumption that the 
log set is finite and data will be stable over the period. However, in practice, log 
data may encounter previously unseen log sequences, decreasing the accuracy of 
the anomalous log detection. In this direction, Deeplog [15] is an online anomalous 
log detection approach using the LSTM model. The approach consists of three key 
modules, i.e., key anomaly detection, parameter anomaly detection and workflow 
construction. Deeplog is trained on normal data only and can adapt new log patterns 
on false positive detection. Zhang et al. [65] proposed an anomaly detection approach 
by utilizing an attention-based Bi-LSTM model. Meng et al. [34] highlighted to use 
of the semantics of the log messages rather than the indexes, which is generally 
used for anomaly detection to reduce the false positive. LSTMs have proved to be a 
promising solution to sequence and time-series related problems.

2 The event logs are the events from OSs, applications or devices and are stored in a single cluster 
by the operating system. Events logged by the operating system are also called system logs. 
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Techniques for ongoing attack detection on single system logs: In this direction 
[8], proposed a rule-based model to detect targeted port scans, detection of Cross-
Site Scripting (XSS) and SQL Injection (SQLI) attacks using access logs of Apache 
HTTP Server. Moh et al. [36] leveraged the features of both rule-based and learning-
based approaches to detect the SQLI attacks using web server logs. A collaborative 
approach by combining intrusion detection at different layers, i.e., network, kernel 
and application, can increase the accuracy of attack detection as compared to indi-
vidual detectors, without much degradation in performance [55]. An attack-story 
reconstruction approach proposed by Pei et al. [42] correlates the log graph utilizing 
logs from different levels on a single host. However, these approaches are limited 
to attack detection on a single system with knowledge of how they can be used for 
correlated attacks. 

Approaches for temporal and spatial correlation of attacks using logs: In this  
direction [11], proposed a process query system based on control and estimation 
methods to correlate the distributed network events. Attack graph has been used for 
correlating attacks on MhMs attacks. However, manual construction of the attack 
graphs is challenging and error-prone. Few automatic attack-graph generation have 
been proposed in literature e.g. [1, 20, 22, 62, 63]. The attack-graph generation 
approaches either use their model checker or use a knowledge database of vulner-
abilities and exploits, e.g., NVD, ExploitDb etc., to generate the pre-requisites and 
post-conditions related to exploitation steps. The pre-requisite and post-conditions of 
a vulnerability denote the conditions needed to exploit a vulnerability and the capa-
bility gained by exploiting it. However, these approaches [1, 20, 22, 62, 63] limit 
themselves to generate the attack paths only, i.e., they will not detect any ongoing 
attacks. Therefore, there is a need for an effective methodology to detect ongoing 
MhMs attacks timely. 

Future directions: In Table 3, we compare state-of-the-art vulnerability monitor-
ing approaches based on ‘Data used’, ‘Technique used’, ‘Attacks detected’, ‘Detect 
attacks on single system’ and ‘Detect MhMs attacks’. We observe that except [11], 
the approaches are targeted to detect vulnerabilities exploitation on a single system. 
[11] approach lack the practical implementation and feasibility analysis.
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4 Reseach Directions 

The researchers should aim at building techniques for an efficient VM. 

1. The researcher should analyze the reported vulnerabilities specific to IIoT-based 
SCADA systems to understand better the type of attacks, the vulnerable compo-
nents, and the vulnerabilities’ impact. 

2. A focus on developing frameworks to analyze and find a series of vulnerabilities 
in different systems that are needed to exploit to reach the target system. The 
framework should recommend a consolidated report of the vulnerable state of the 
system and all possible target paths to the critical node. The framework should 
be scalable to the IIoT network. 

3. Not all vulnerabilities are always exploited by the attackers, and not all vulnerabil-
ities can be patched due to the resource constraints such as people, infrastructure, 
tools and time available to patch every vulnerability. Also, ICSs such as SCADA 
have strict system uptime and availability requirements. These constraints place 
significant importance on the patch prioritization of networks and devices, which 
needs to be strategic and efficient. 
There is a need to develop a patch prioritization framework that is applicable 
to ICSs. The prioritization order should consider the architectural characteristics 
to understand the domain knowledge of the target system, vulnerability char-
acteristics to embed the vulnerability severity, patch dependencies to avoid the 
patch break on deployment and attacker behavior to reflect a practical scenario. 
The framework should recommend a strategy for patching, which is optimal and 
effective considering resource constraints. 

4. Moreover, the researcher should focus on designing and developing frameworks 
that correlate the evidence of an incident spread temporarily and spatially in 
the network. The framework should detect the ongoing exploitation of MhMs 
vulnerabilities on a system. In this direction, GloM has been presented to monitor 
MhMs attack [61]. 

5 Conclusion 

In this chapter, we first discussed the correlation between SCADA systems and 
IIoT-based systems, followed by the need of VM for securing these systems. We 
discuss what is VM? why we need VM? how to perform VM? Afterward, we discuss 
the issues with state-of-the-art vulnerability management approaches. We observed 
that vulnerability discovery approaches focus on isolated system testing with a little 
focus on user-friendly GUI. These approaches will not detect the possible attacks 
exploiting MhMs vulnerabilities. Moreover, the penetration report only mentions the 
vulnerabilities reported, without further analysis, which are the critical vulnerabili-
ties, which systems are critical in the network and the most likely exploited attack 
paths. This analysis helps the system administrators to take proactive measures to
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secure the network. We observed that most vulnerability prioritization approaches do 
not consider resource constraints, functional dependencies, patch dependencies and 
multiple defender-attackers practical scenarios. Incorporating an attacker’s behav-
ior plays a vital role in proper resource allocation and failure to consider the patch 
dependencies will lead to patch breaks while deployed. We also observed that the 
vulnerability monitoring approaches are targeted to detect the exploitation of vul-
nerabilities on a single system only. Hence fail to detect the ongoing MhMs attacks 
timely. 
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