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Abstract Under the current Anthropocene Epoch there is an urgent need to deliver 
high-quality data, information and knowledge to the decision-making process for a 
sustainable management of environmental concerns, in particular for inland water. 
Most literature address the advantages brought by remote sensing (RS) techniques 
in operational monitoring and management of lakes. In the present work, optical RS 
is applied to a complex ecosystem, the turbid eutrophic shallow Lake Trasimeno 
(Italy). A first example of RS application addresses the use of high frequency spec-
troradiometric measurements collected by a WISPstation to retrieve intra-inter daily 
and seasonal dynamics of chlorophyll-a and phycocyanin. A second section focuses 
on long term trends of water quality by means of satellite data time series for the 
whole lake surface. Then we exploit the latest generation of hyperspectral satellite 
images (PRISMA and DESIS) utilizing the high spectral resolution and improving 
the accuracy of estimated lake water quality. Finally, high spatial resolution satellite 
data is used for a finer scale mapping of bottom substrates. Application of these 
techniques improved scientific understanding on the timing, composition and distri-
bution of phytoplankton blooms, the role of nutrients and climate drivers as well as 
changes in the extent and composition of aquatic plants.
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3.1 Introduction 

A key message of the Organization for Economic Cooperation and Development’s 
(OECD) Environmental Strategy for the first decade of the twenty-first century to 
address environmental sustainability was to improve information available for deci-
sion making by measuring progress using quality indicators; for water quality of 
lakes and rivers, in particular, the progress made is still insufficient [1]. Reasonable 
management of some of the world’s most serious environmental problems depends 
on the delivery of high-quality data, information and knowledge to the decision-
making process [2]. Data quality comprises components of relevance, reliability, 
accuracy, accessibility, timeliness, interpretability and coherence [3]. For the fresh-
water ecosystems in Europe, the EU Water Framework Directive (WFD) is an ambi-
tious legislation framework, which collects all information on the state of water in 
order to verify the commitment of the different countries to preserve water resources 
and to achieve a good state of water quality [4]. Substantial progress has been made 
in the past 30 years in understanding the causes of both water scarcity and water 
quality degradation, as well as in developing effective strategies to prevent or miti-
gate its adverse effects [5–7]. However, this is still not enough, especially if we 
consider emerging pressures such as global warming and climate change, which alter 
ecosystems dynamics and makes understanding and modelling more challenging. 

In particular, many studies have highlighted how lakes are ecosystems of particular 
importance for the assessment of already ongoing climate change [8, 9] and the 
need of large data-sets to provide more information that can lead to a capacity for 
understanding and the management of current and future issues. 

Since 1991, Bukata et al. [10] suggested that satellite monitoring of optically-
active components of inland water is an essential input to studies addressing the 
impact of climate change; since this first contribution, several other scientific articles 
pointed out the importance of satellite data for monitoring water quality of lakes with 
particular focus on the relationship with climate change (e.g., Yang et al. [11]). In 
fact, satellite remote sensing can provide near-real time, synoptic, and repeated data 
for monitoring physical and biogeochemical parameters of water status that avoids 
interpretive problems associated with spatial and temporal under sampling of tradi-
tional limnological field campaigns. Indeed, over the last three decades, there has 
been a significant advancement in the development of both technology and algorithms 
that allow the monitoring via satellite of ocean color to be used for studying coastal 
and ocean water quality [12]. Earth observation (EO) data acquired by satellites 
is increasingly used for providing information on a suite of functionally relevant 
indicators of water quality and ecosystem conditions from a local to global scale 
[13]. In the most recent review articles [14–18], robustness and maturity of remotely 
sensed based monitoring of the lakes have been addressed in terms of sensors avail-
ability, data quality, variability and consistency of processing algorithms, validation 
and accuracy assessment of the output products and advantages brought by satellite 
remote sensing to operational monitoring and the management of lake systems.
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In this chapter, we present the application of EO techniques to the case study 
of Lake Trasimeno (Italy), a turbid eutrophic shallow lake. In order to provide an 
exhaustive description of the potential of EO data for monitoring aquatic environ-
ments, we divided the chapter into four sections. Section 3.3 First, we present the use 
of data acquired by a WISPstation, an in situ fixed spectroradiometer, for continuous 
point monitoring with high temporal frequency that can depict sub-hourly, daily and 
seasonal dynamics of lake water quality; these reflectance measurements can also 
be exploited for the validation of satellite data processing. Section 3.4 focuses on 
the relevance of time series of satellite data for the analysis of long term trends 
and inter-annual dynamics of the status of lake water with a synoptic view over the 
whole lake surface based on data produced by the Lakes Climate Change Initiative 
(CCI) project. Section 3.5, we present the characteristics of the latest generation of 
hyperspectral satellite images as exploited for deriving high accuracy and up-to-date 
information on lake water status that can be achieved as a result of the high spectral 
resolution offered by these sensors. Section 3.6 focuses on the opportunities offered 
by satellite and/or airborne sensors that acquire data with very high spatial resolution 
for a finer spatial analysis of water surface optical properties. Based on the appli-
cations presented in this chapter, we can draw the conclusion that synoptic view, 
high temporal frequency of observation, high spatial and spectral resolution offered 
by RS techniques constitute a unique source of information for monitoring complex 
ecosystem such as Lake Trasimeno. 

3.2 Study Area 

This study focuses on Lake Trasimeno, a post-tectonic, shallow (maximum depth 
6.3 m), located in central Italy (43°08'N; 12°06'E; Fig. 3.1). It is the fourth largest 
lake of the country (average surface area 120.5 km2 with a circular shape) with three 
small islands (Polvese, Maggiore and Minore islands) and has an extensive bay— 
Oasi la Valle that is colonized by aquatic vegetation in the south-east [19]. Nearly all 
the littoral zones of Trasimeno are colonized by aquatic vegetation mainly composed 
by helophytes (e.g. Phragmites australis, Typha angustifolia), and hydrophytes (e.g. 
Potamogeton pectinatus, Chara globularis, Myriophyllum spicatum) [20]. 

Lake Trasimeno is of significant conservation importance and is part of a Natural 
Regional Park, Site of Community Interest, Special Protection Zone and of two 
Natura 2000 sites (IT5210018 and IT5210070) [21]. 

The catchment of Lake Trasimeno lies over a substratum of low permeability 
(turbidite), covered by Plio-Pleistocene and Holocene deposits, with a variable 
content of silicatic and of carbonatic minerals [22, 23]. However, despite their low 
permeability, these formations host small aquifers [22] where all the infiltrating 
water radially flows towards the lake [24]. Because of the small area of the catch-
ment relative to the lake area, the annual water inflows are frequently lower than 
evaporation losses and the water balance of the lake is therefore strongly affected 
by the pluviometric regime [23] and by the extreme variability of the climate that
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Fig. 3.1 True color composition of Lake Trasimeno from satellite (PRISMA data acquired on 
25 July 2020) and its location in Italy. The image shows the WISPstation position (red dot) and 
the Oasi La Valle bay colonized by macrophytes (yellow box). Inset (red box) is a picture of the 
platform supporting the WISPstation. The ARPA Umbria stations (TRS30 and TRS35) used for 
WFD monitoring are also indicated 

characterizes the Mediterranean area. In the past, the lake was subject to human inter-
ventions on inflows and outflows in order to regulate the lake level since Etruscan 
or Roman times [21, 23]. A dramatic hydrological crisis occurred in the 1950s due 
to the artificial outflow threshold being displaced after its restructuring at the end 
of the nineteenth century [25]. Following the enlargement of the catchment area 
the lake level increased from 1960 to 1965, followed by an alternation of wet and 
drought periods. In order to prevent flooding of the coastal area, on one occasion 
in 2015, the artificial outlet was opened for some days after being closed for about 
30 years [24]. Under the current climate change scenario, the lake level is in a low 
phase and the rules restricting abstraction together with the maintenance works on 
the inflowing rivers seem to be insufficient to avoid the significant reduction in water 
availability [25]. During drought periods, higher concentrations of suspended solids, 
an accumulation of dissolved salts and an increase of the total alkalinity can occur 
[26]. 

The consequences of the periodically low water levels have had a negative effect 
on the entire ecosystem, in terms of impoverishment of native biodiversity and 
reduced fishing yield; these effects are exacerbated by water abstractions for irriga-
tion purposes and by the presence of civil and agricultural discharges [21]. Tourism, 
fisheries and agriculture (cultivated lands cover about 70% of the catchment) are the 
most important activities in the Trasimeno area. 

Lake Trasimeno is generally turbid (average Secchi disk depth 1.1 m and the 
average total suspended matter was 10.4 gm−3 for the period 2002–2008) and in
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meso-eutrophic conditions with chlorophyll-a (Chl-a) concentration up to 90 mg m−3 

[21, 27]. The water column is unstratified, with recurring sediment resuspension as 
a result of wind action. According to the WFD, the lake is currently classified at 
moderate ecological status [28]. 

Lake Trasimeno has a phytoplankton community dominated by chlorophytes and 
dinoflagellates. Cryptophytes also comprised a relatively large portion of the biomass, 
whereas euglenophytes and diatoms are relatively scarce [29]. The high nutrient 
concentrations favor the occurrence of phytoplankton blooms, including cyanobac-
teria species (e.g. Cylindrospermopsis raciborskii, Planktothrix agardhii) [26, 30]. 
The zooplankton is dominated by cyclopoids tending to have the greatest relative 
biomass in autumn, and Cladocera with peaks in winter or spring [29]. 

The fish community of Lake Trasimeno comprises 19 species and is dominated 
by cyprinids [31]. The most important commercial native fish species in the lake 
are tench (Tinca tinca), southern pike and eel (Anguilla Anguilla). The remarkable 
decline of tench, and other native species, coincided with a substantial expansion of 
the alien goldfish (Carassius auratus) [31]. 

3.3 High Frequency Spectroradiometric Measurements 

Phytoplankton responds to changes in environmental conditions very quickly [32], 
and phytoplankton growth in Lake Trasimeno is also influenced by both phyto-
plankton physiology and external factors, including light, temperature, and nutri-
ents. Drivers affecting short-term dynamics in populations and communities are 
complex and may consist of several factors acting in parallel. Sometimes environ-
mental drivers induce rhythmic oscillations, which are easily linked to recognized 
important factors such as diurnal shifts in temperature and light [33, 34]. In addition 
to the high dynamics of phytoplankton, the low lake depth influences the resuspen-
sion of the bottom sediments due to wind action. These resuspensions determine the 
typical turbid water conditions for Lake Trasimeno. Diurnal and seasonal variation 
affect the physicochemical variables thereby causing variation in the abundance and 
diversity of plankton [35] and suspended sediments. 

Bresciani et al. [19] recently evaluated the dynamics of the Chl-a concentrations 
of Lake Trasimeno for six months in 2018, using data gathered from the fixed position 
autonomous radiometer WISPstation (located 400 m north from the Polvese island 
as in Fig. 3.1). Briefly, the WISPstation allows continuous measurements with two 
radiance sensors that look downward to the water surface at an angle of 40° from the 
vertical (Lup) and a sky looking radiance sensor looking upward at an angle of 40° 
from the vertical (Lsky) in the NNW direction and two radiance channels collecting 
Lup and Lsky in the NNE direction and two irradiance channels in a wavelength range 
of 350 to 1100 nm. Data are transmitted to the database (“WISPcloud”) automatically 
through a cellular connection. 

In this work, we develop the analysis of Bresciani et al. [19] by extending the 
temporal range for Chl-a analysis as well as by adding the analysis of phycocyanin
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Fig. 3.2 Average Water spectral signatures (remote sensing reflectance, Rrs) from WISPstation 
data on the six different time intervals for the WFD classification [40] 

(PC) derived, as for Chl-a, from the conversion of Remote Sensing Reflectance (Rrs) 
measured by the WISPstation [36]. Moreover, the hyperspectral Rrs data from the 
WISPstation enable us to also simulate the band setting of satellite data providing 
valuable reference data to be compared to satellite observations [37]; an example of 
using the WISPstation data for this is presented in Sect. 3.5. 

The WISPstation Rrs data used in this section were collected continuously from 
24th April 2018 to 30th November 2020 every 15 min. Over 30,000 acquisitions of 
Rrs data with corresponding values of Chl-a and phycocyanin (PC) for water quality 
monitoring purposes were available for the analysis. The Chl-a was derived through 
a standard water quality algorithm [38] and for PC retrieval the algorithms of Simis 
[39]. 

Figure 3.2 shows average values of Rrs in different periods of the year, selected 
based on the time interval for the WFD classification [40]. In summer and in summer-
to-autumn the effect of phytoplankton on Rrs is evident in the lower values of the 
blue wavelengths and generates the typical feature of absorbance/reflectance in the 
region between 665 and 705 nm. In both cases it is also evident the contribution of 
cyanobacteria pigments in between 625 and 650 nm. In the winter and spring the 
higher values of Rrs were attributed to both a lower presence of phytoplankton and 
higher concentrations of Total Suspended Matter (TSM). 

Examining the WISPstation data for Chl-a it is interesting that the start and rate 
of increase of the summer bloom was remarkably similarly in the three investigated 
years (Fig. 3.3). The increase always began in the first week of July and peaked in 
September. The rate of increase was linear up until early September (with an R2 > 
0.8). In particular, considering the Day of Year (DOY) 180 to 250 (29th June–7th 
September) the slopes of the increase were 0.54, 0.50 and 0.59 for 2018, 2019 and 
2020 respectively and were not significantly different in a linear model (testing year 
for interaction with DOY or between individual years (p > 0.05) [41–43].
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Fig. 3.3 Chlorophyll-a concentration averaged at daily level from the WISPstation data 

The WISPstation also produces estimates of the pigment phycocyanin useful for 
estimating the seasonal dynamics of cyanobacteria. Figure 3.4 shows a plot of Chl-a 
and phycocyanin concentrations for 2020. It can be seen that sudden increases in 
Chl-a correspond to sudden increases in phycocyanin. For example from the 1st of 
August, a rapid increase in Chl-a from 22 to 35 mg m−3 over a period of four days 
corresponds to a period of rapid increase in phycocyanin. Conversely the rapid decline 
in phycocyanin on the 11th of August is matched by a decline in Chl-a. A similar 
pattern occurs at the beginning of September where an increase in cyanobacteria 
drives the Chl-a to its annual maximum level. Utilizing the phycocyanin results from 
the WISPstation showed how cyanobacteria played a key role in the sudden increases 
and declines in Chl-a in mid to late summer. Combining Chl-a and phycocyanin data 
allows managers to see when the composition of blooms is driven by potentially

Fig. 3.4 Chlorophyll-a (green) and phycocyanin (blue) pigment concentration averaged at daily 
level from the WISPstation data
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toxic cyanobacteria in almost real time. However, despite the presence of potentially 
harmful algae, toxicity tests carried out for bathing water purposes have been reported 
as negative for Trasimeno lake [44].

The high frequency measurements provided by the WISPstation have unique 
value in improving scientific knowledge and in providing opportunities for improved 
management for high value recreational lakes like Trasimeno. Examining the timing 
and rate of bloom development using high frequency data revealed that it was consis-
tent among the three years examined. This predictability provides an opportunity to 
understand and model the timing and size of blooms for management purposes. 

In Italy there are three phases of monitoring in lakes at risk of cyanobacteria 
blooms: routine, alert and emergency which are differentiated by response (sampling 
intensity and parameters measured) and management action (ranging from none to 
risk-communication, scum removal and a bathing ban) in response to increasing 
health risk [45]. One of the main challenges in the current guidelines is the provision 
of adequate temporal and spatial monitoring of cyanobacteria. Daily sampling is 
unfeasible and wind-driven accumulations of cyanobacteria can present dangerous 
concentrations of toxins within a period of hours [46]. One of the benefits of the 
WISPstation is that it couples Chl-a and phycocyanin data allowing managers to 
see when the composition of blooms is driven by potentially toxic cyanobacteria 
in almost real time and would improve all monitoring phases if incorporated. The 
drawback is that the WISPstation is limited to a fixed position on the lake. 

The mechanisms driving the sudden increase in cyanobacteria detected by the 
WISPstation are likely to include nutrient inputs, mixing, wind driven accumulations 
or surface accumulation given their buoyancy and previous work has indicated that 
these factors are linked to variation in Chl-a [19, 46]. In addition, the drivers in 
the observed pattern of Chl-a and PC are also likely to be highly dependent on 
species succession in response to and alongside changing physical and chemical 
drivers. The rapid changes in Chl-a and PC during the August–September period 
are typically reflected in highly dynamic changes in the phytoplankton community. 
For example in 2018, cyanobacteria dominance shifted from Snowella lacustris (8th 
July–5th August) to Cylindrospermopsis raciborskii (12th August–10th September) 
and finally to Planktothrix agardhii (16th–24th September) [47]. Such changes in 
seasonal composition were also indicated by the different spectral signatures over 
time in Fig. 3.2. 

3.4 Long Term EO Data-Set 

The European Space Agency’s (ESA) climate change initiative (CCI) aims to exploit 
the long term global earth observation record to produce essential climate variables 
(ECVs) supporting the United Nations Framework Convention on Climate Change 
(UNFCCC). The objective of the CCI dataset for the ECV Lakes is to use satellite data 
to create the largest and longest possible consistent, open global record of five lake
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Fig. 3.5 Climate Change Initiative (CCI) results for Lake Trasimeno for LSWT, Chl-a and turbidity 
from 1996 to 2019 

thematic variables: lake water level, extent, temperature, water-leaving reflectance, 
and ice cover. The main characteristics of this data set [48] are:  

• Spatial coverage: 250 globally distributed lakes, set to expand to around 2,000 in 
the second phase. 

• Spatial resolution: 1/120 degree global grid. 
• Temporal resolution: daily netCDF files containing all variables and associated 

uncertainty. 
• Temporal coverage: from 1992 up to 2019. 

For Lake Trasimeno, lake surface water temperature (LSWT), Chl-a and turbidity 
(the latter two derived from water-leaving reflectance) were available in the CCI 
Lakes database version 1.0 (Fig. 3.5). The dataset for LSWT dates from 1993 while 
that for the other parameters starts in 2002. The increased intensity of satellite moni-
toring is visible comparing LSWT recorded in the 1990s with that currently. There is 
a significant data gap in Chl-a and turbidity from 2012 to 2015 due to the failure of 
the MERIS satellite. One of the current management issues facing Trasimeno lake is 
eutrophication. The lake can be classified as eutrophic based on Chl-a with seasonal 
blooms hindering the recreational use of the lake. The peak height of the blooms can 
be seen to increase from 2008 onwards in Fig. 3.5. The variation in bloom incidence 
between years can also be seen by plotting the distribution for each year. Figure 3.6 
shows a ridge plot for the data where several years are noted to have concentrations 
above 30 mg m−3. Such blooms typically occur in early to mid-September, only 2003 
and 2005 had blooms centered in August in the data analyzed (Fig. 3.5). 

The CCI data set presents an opportunity to examine what parameters are impor-
tant in controlling the size of blooms and their inter-annual variation. In order to do 
this the Chl-a data were linearly interpolated to daily resolution. The most continuous 
period 2003–2011 was included for analysis. Few in situ environmental data sets are 
available to match this temporal resolution so daily climatic data were obtained 
from ERA5, the fifth generation ECMWF reanalysis for the global climate and
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Fig. 3.6 Ridge plot showing distribution of Chl-a concentration mg m−3 from 2002 to 2019 for 
Lake Trasimeno 

weather (https://cds.climate.copernicus.eu/cdsapp#!/home). Data used in the anal-
ysis included: wind direction and speed, 2 m temperature (the air temperature at 2 m 
above surface), total precipitation and the sum of rainfall for the previous seven days. 
Several studies have detected changes in Italian lakes linked to long term climate 
change and fluctuations in large scale regional climate drivers such as the North 
Atlantic Oscillation (NAO) and the East Atlantic pattern (EA) during winter [49, 50]. 
Daily values of the NAO (North Atlantic Oscillation) were taken from NOAA-CPC 
(https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml). 

For the analysis two approaches were trialed—Google AI (Auto ML) and 
Nonparametric Multiplicative Regression (NPMR). NPMR [51] was used to esti-
mate the response of average daily Chl-a to climate and environmental parameters 
listed above. NPMR describes response surfaces using variables in a multiplicative 
instead of an additive way. This method is advanced and can better defining unimodal 
responses compared to methods such as multiple regression [51]. It has previously 
been applied to model tree species distribution [52], the response of lichens to climate 
change [53] and in time-series analysis [54]. NPMR was implemented with the soft-
ware HyperNiche version 2.3 [55]. The Chl-a response was estimated with a local 
mean multiplicative smoothing function with Gaussian weighting. NPMR models 
were created by the stepwise adding of predictors with fit represented by a cross-
validated R2 (xR2) which can be considered as a measure of fit similar to a traditional 
R2. The sensitivity, which is an indicator of the influence of each parameter included 
in the NPMR, was estimated by altering the range of predictors by ± 5%, with 
resulting deviations expressed as a proportion of the observed range of the response 
variable. Sensitivity can aid in comparing the importance of variables included in 
models because NPMR models are unlike standard linear regression having no fixed 
coefficients or slopes. Google AI (Auto ML) is a service that applies machine learning

https://cds.climate.copernicus.eu/cdsapp\#!/home
https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml
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models to diverse data types such as images, text, or numeric data aiming to auto-
mate the selection and application of models to data. Google AI (Auto ML) was 
also applied to produce a model for Chl-a as a designated feature. The supervised 
learning model followed a regression approach with chronological assignment using 
the first 80% of the timeseries for model training with each subsequent 10% used 
for validation (a fine-tuning of the models hyper parameters) and testing (with inde-
pendent data deriving the model’s performance statistics) (https://cloud.google.com/ 
automl-tables). Both modeling approaches included the time component as the most 
important accounting for 87.3% as feature importance in Google AI and a combined 
(year and day of year) percentage sensitive value of 66.7% in NPMR. The next most 
important parameter was the NAO in both modelling approaches with a 3.9% feature 
importance in Google AI and 0.6% sensitivity in NPMR. No other parameters were 
included in the NPMR model while the Google AI approach estimated the seven 
day antecedent sum of rainfall as having a feature importance of 3.1% with no other 
variables accounting for more than 3%. 

While a precise comparison is not possible between the two approaches owing to 
different model design and performance statistics they could be considered as broadly 
similar comparing the Google AI R2 of 0.65 with that of the NPMR xR2 of 0.54. 
A NPMR plot of Chl-a (as contour lines in Fig. 3.7) with NAO and the day of year 
(DOY) indicates that NAO appears to be most relevant to Chl-a concentration in the 
weeks around DOY 250 (7th September). More positive values of the NAO in early to 
mid-September were associated with higher Chl-a (Fig. 3.7). The importance of time 
in the models is likely linked to the consistency in timing of large September blooms 
over the years that dominate the seasonal pattern (Fig. 3.5). The size of these blooms 
is likely to be mostly determined by nutrients such as phosphorus given its key role 
in controlling algal populations [56]. Total phosphorus (TP) was not available at 
daily frequency for the lake but we can compare Chl-a concentration in early to mid-
September with annual TP concentrations sourced from local authorities (https:// 
apps.arpa.umbria.it/acqua/Home) and published values [26] (Fig. 3.8). The R2 of the 
relationship was 0.65 indicating the strong influence of annual TP in determining

Fig. 3.7 Model estimates for Chl-a mg m−3 (contour lines) against DOY (Day of Year) and NAO 
(North Atlantic Oscillation)

https://cloud.google.com/automl-tables
https://cloud.google.com/automl-tables
https://apps.arpa.umbria.it/acqua/Home
https://apps.arpa.umbria.it/acqua/Home
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Fig. 3.8 Chlorophyll-a 
(average of a two week 
period around day 250—7th 
September) and annual 
average total phosphorus 

the size of the September phytoplankton bloom. In summary the analysis indicates 
that years with high TP concentrations and high NAO in early to mid-September, 
indicative of high pressure with warm sunny weather [57], will tend to lead to the 
largest phytoplankton blooms. The high temporal resolution of the CCI satellite 
data coupled with the ERA5 climatic data proved crucial to understanding the inter-
annual dynamics driving phytoplankton blooms. It would not be possible to match 
the temporal and spatial coverage afforded by satellite monitoring with boat based 
sampling and laboratory analysis. However, such traditional methods are key to 
understanding providing TP and other nutrient concentrations and Chl-a data for 
validating satellite estimates.

The examination of the CCI timeseries for Chl-a indicated the importance of the 
temporal component and NAO for both AI and NPMR. While the importance of the 
temporal component reflects the regularity of the large blooms that dominate the 
annual pattern the influence of NAO was interesting. Previous work has identified 
the importance of winter values of teleconnection indices like the NAO and the EA 
where, for example, in deep sub-alpine lakes higher values lead to warmer winters 
preventing mixing and reducing nutrient supply from the hypolimnion [49, 50]. It 
has also been associated with controlling the onset of spring blooms and zooplankton 
abundance in some lakes [58]. In this study a higher NAO value in September was 
related to higher Chl-a and this may have resulted from higher temperatures and 
sunnier weather increasing cyanobacteria growth during this period. A meta-analysis 
of European lakes previously found summer cyanobacteria biomass to be associated 
with winter NAO which was attributed to a direct physiological influence of higher 
temperatures on growth or an increased period of stratification, although the latter 
would be irrelevant in the case of shallow Trasimeno likely to be more influenced 
by prevailing weather conditions [59]. As several species of cyanobacteria change
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dominance during summer, the NAO may also influence the timing of the seasonal 
succession but this would require further analysis for confirmation. 

The AI analysis also found the antecedent 7-day rain to be significant and this is 
likely to be indicative of the supply of nutrients to the lake. Examination of satellite 
images has previously identified phytoplankton blooms in the vicinity of an inflow to 
Trasimeno lake during summer that was followed by a widespread increase in Chl-a 
in the lake [19]. The good relationship between TP measured by local authorities 
and the average concentration of the September bloom, shows both how Chl-a is 
constrained by nutrients and also demonstrates the benefits of using satellite data to 
obtain a better temporal and spatial resolution. 

3.5 Spaceborne Imaging Spectrometry 

In recent years new spaceborne missions dedicated to hyperspectral measurements 
have been developed [60] and in this section imagery data acquired from PRISMA 
(Hyperspectral Precursor of the Application Mission) and DESIS (DLR Earth 
Sensing Imaging Spectrometer) are presented for assessing water quality in Lake 
Trasimeno. 

PRISMA, a fully funded mission by the Italian Space Agency (ASI), is an EO 
system with innovative, electro-optical instrumentation that combines a hyperspec-
tral sensor with a medium-resolution panchromatic camera. The PRISMA orbit is 
characterized by a revisit time in a nadir-looking configuration of 29 days, the system 
is capable of acquiring images distant 1000 km in a single pass (with a total rota-
tion left to right side looking and vice versa) so that the temporal resolution can 
be improved significantly. The PRISMA Payload is composed of an Imaging Spec-
trometer, able to take images at 30 m resolution in a continuum of spectral bands 
ranging from 400 to 2500 nm, and a 5 m resolution Panchromatic Camera [61]. 
DESIS is a hyperspectral instrument integrated in the Multi-User-System for Earth 
Sensing (MUSES) platform installed on the International Space Station (ISS). The 
mission is operated by Teledyne Brown Engineering (TBE), Alabama, USA, and 
the German Aerospace Center (DLR), Germany. DESIS is realized as a pushbroom 
imaging spectrometer spectrally sensitive over the VNIR range from 400 to 1000 nm 
with a spectral sampling distance of 2.55 nm [62]. 

Within this study imagery data from PRISMA and DESIS of Lake Trasimeno 
acquired on the 25th July 2020 and on the 26th May 2020, respectively are used 
for water quality mapping. PRISMA data were downloaded as Level 1 (L1) prod-
ucts (top-of-atmosphere calibrated radiance), then imported and converted to ENVI 
format (L3Harris Technologies, Inc., Melbourne, FL, USA), re-projected with a 
geographic lookup table (GLT) Bowtie correction and re-scaled to physical units 
of mWcm−2sr−1 μm−1, in the case of DESIS the geocoded L1C products in ENVI 
format were simply re-scaled to physical units of mWcm−2sr−1 μm−1. 

To map water quality, L1 PRISMA and DESIS imagery were firstly corrected 
for atmospheric effects in order to compute remote sensing reflectance Rrs. To this
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aim, the ATCOR code (version 9.3.0, ATCOR-2 module) [63] was used as in Pepe 
et al. [64]. The code was pre-configurated in order to handle data acquired from 
both sensors (e.g. spectral setting, swath) and then the correction was performed 
with varying visibility and water vapor, the related viewing and solar angles, a rural 
model for aerosols and by setting to 258 m above-sea-level the altitude of the target. 
The ATCOR-derived atmospherically corrected reflectance was then converted into 
remote sensing reflectance Rrs dividing by π. The ATCOR-derived Rrs values were 
compared to the WISPstation synchronous measurements (cf. Section 1). In partic-
ular, WISPstation data overlapping the sensing time of PRISMA within 15 min 
were averaged while, Rrs spectra of PRISMA and DESIS, were extracted from 
imagery data corresponding to a 3 × 3 pixel Region of Interest (ROI) centering 
the WISPstation position (cf. Figure 3.1). The comparison between spaceborne data 
and field measurements is shown in Fig. 3.9, that also includes the results of common 
descriptive statistical metrics (e.g., Bracaglia et al. [65]): root mean square differ-
ence (RMSD), spectral angle (SA), and the square of the coefficient of correlation 
(R2) defined in the Table 3.1. The comparison of ATCOR-derived Rrs values with 
in situ measurements proved overall a very good agreement at all wavelengths. The 
magnitude and shape of PRISMA and DESIS are comparable to in situ data even if a 
more detailed examination of the peaks/dips seems to indicate a minor spectral shift 
of PRISMA. 

In order to convert the Rrs data into biophysical water parameters such as Chl-a, 
Total Suspended Matter (TSM) and Colored Dissolved Organic Matter (CDOM) we

Fig. 3.9 Comparison between spectral signatures acquired by the WISPstation and obtained after 
atmospheric correction of DESIS (on the left) and PRISMA (on the right). The boxes contain the 
values of statistical metrics R2, RMSD and SA 

Table 3.1 Statistical metrics 
used to assess the agreement 
of Rrs between spaceborne 
data and field measurements 
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used the BOMBER tool [66], which implements a non-linear optimisation procedure 
to derive water parameters from a four-component bio-optical model. To this aim the 
bio-optical model was parameterized with the specific inherent optical properties of 
Lake Trasimeno as described in Giardino et al. [67].

For Chl-a we can compare the image products from PRISMA and DESIS with 
in situ data collected by ARPA Umbria on the 25th May 2020 and 20th July 2020. 
The Chl-a concentrations were measured from samples collected from the euphotic 
zone at two WFD stations named Center and San Feliciano (Fig. 3.1). Chl-a concen-
tration was then determined in the laboratory spectrophotometrically (using acetone 
90% for the extraction) and calculated following Lorenzen [68]. The results of the 
comparison show a good agreement between hyperspectral-derived products (for 
which the standard deviation can be also computed over the 3 × 3 ROI) and labo-
ratory measurements. In particular, on the 26th May 2020: in situ data were 2.8 and 
4 mg m−3 (respectively for stations TRS30 and TRS35) with corresponding values 
from DESIS of 2.9 ± 0.3 and 3.8 ± 0.5 mg m−3. On the 25th July 2020, in situ 
data were 18.7 and 13.2 mg m−3 (respectively for stations TRS30 and TRS35), with 
corresponding values from PRISMA of 19.7 ± 0.6 mg m−3 (st.dev 0.6) and 12.5 ± 
1.7 mg m−3. 

Figures 3.10 and 3.11 show the true-color composite and products obtained from 
DESIS and PRISMA, nicely depicting the ranges of concentrations and spatial 
patterns in Lake Trasimeno. Overall the DESIS map of spring 2020 shows rather 
turbid conditions, with TSM concentration reaching 20 g m−3. In contrast, Chl-a 
concentrations remain rather low (maximum of 8 mg m−3), while the absorption due 
to CDOM is between 0 and 1 m−1. In the case of the PRISMA image, the mapping 
indicates more productive waters typical of the summer season, with Chl-a concen-
trations reaching 30 mg m−3. In this case TSM and CDOM are lower than 10 g m−3 

and 0.5 m−1 respectively, indicating a dominance of phytoplankton with respect to 
the other water components. By comparing DESIS and PRISMA products, as well 
as the true-color composite, it is also evident how the region characterised by the 
presence of aquatic vegetation in the south-east bay of Lake Trasimeno, covers a 
greater area in the PRISMA scene compared to the DESIS. This localized feature is 
consistent with the seasonal changes in macrophyte abundance. In late May, at the 
time of DESIS image acquisition, the aquatic plants have just started their pheno-
logical cycle; compared to late July, at the time of the PRISMA image when all 
plants are much more developed. In addition, this will influence water conditions, 
since the macrophyte community tends to keep the water clearer, therefore the TSM 
concentrations from DESIS are higher than those observed by PRISMA. 

3.6 High Spatial Resolution Products 

High spatial resolution images (<5 m pixel resolution from e.g. WordView, Rapid-
Eye, PlanetScope) are typically designed for terrestrial applications, nevertheless 
these sensors can have aquatic applications whenever finer scale mapping is needed
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Fig. 3.10 The pseudo true colour DESIS image acquired on 26th May 2020 and the three 
BOMBER-retrieved products. The lake area with substrates colonized by aquatic vegetation (in 
grey) in the Oasi la Valle bay (cf. Fig. 3.1) are masked as BOMBER was run for optically deep 
waters only

(e.g., Giardino et al. [69], Niroumand-Jadidi [70] for water constituents; and e.g. 
Doxani et al. [71], Arsen [72], Halls and Costin [73] for macrophyte mapping 
and coastal bathymetry). High spatial resolution satellite data is often preferable 
to medium-to-low spatial resolution data, for example, when the ecosystems include 
small macrophyte stands, when macrophyte community expansion or recession 
occurs over a few square meters, or whenever fine-scale mapping is required to 
support proper management decisions. In such situations, it is important to remember 
that high spatial resolution images are usually acquired on demand by commercial 
entities and it will be necessary to obtain a quote in advance for the service. Moreover 
the data may be challenging due to a high variation of sensor angles and a signal to 
noise ratio not optimised for aquatic applications [74]. 
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Fig. 3.11 The pseudo true colour PRISMA image acquired on 25th July 2020 and the three 
BOMBER-retrieved products. The lake area with substrates colonized by aquatic vegetation (in 
grey) in the Oasi la Valle bay (cf. Fig. 3.1) are masked as BOMBER was run for optically deep 
waters only

In the case of Lake Trasimeno, the use of high spatial resolution satellite images 
was previously investigated to obtain information on the status and changes of macro-
phyte communities, that are unfortunately showing a slight deterioration. In partic-
ular, Potamogeton associations declined by about 20% from 2003 to 2008 [27]. 
Moreover, the progressive dieback of the common reed [75] on the lake littoral 
occurred with a loss of about 66% of its total surface area in the period between 1988 
and 2005 [75, 76]. The macrophyte decrease is mostly attributable to an increase 
of water turbidity, even if some fish species (such as goldfish, common carp and 
grass carp) that are prospering in the lake, can eat significant quantities of vegetation 
[77]. The invasive red swamp crayfish (Procambarus clarkia) and coypu (Myocastor 
coypus) might have also contributed to the macrophyte decline in Lake Trasimeno, 
due to their feeding habits [78, 79]. Previous work tracing a period of decline in
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common reed health has used different high spatial resolution images (QuickBird, 
ASTER and ALOS-AVNIR/2) by Bresciani et al. [80].

In this study, an example of the use of high spatial resolution satellite data is shown 
to estimate the portion of Lake Trasimeno covered by submerged macrophytes (with 
also a subdivision of the type of association of macrophytes present) and to assess 
whether there have been changes over time. To the aim, data have been gathered 
from the WorldView-3 multispectral satellite sensor, launched in 2014, with a spatial 
resolution at nadir at 1.24 m having 8 bands in the region from 400 to 1040 nm. 
The WordView-3 image of Lake Trasimeno was acquired on the 4th August 2019 
and it was atmospherically corrected with Simulation of the Satellite Signal in the 
Solar Spectrum vector code (6SV) [81, 82]. Then, the bio-optical model BOMBER 
[66] parametrized with specific inherent optical properties of Lake Trasimeno [67] 
was used to estimate bottom types from imagery data. Before to run the bio-optical 
model we applied a Normalized Difference Water Index (NDWI) to maps the pres-
ence of common reed and emergent macrophytes area according to Lantz and Wang 
[83]. The bottom type map (Fig. 3.12) shows the main association of submerged 
macrophytes growing in the Oasi La Valle, in the southern-east part of Lake Trasi-
meno (cf. Fig. 3.1). The map in red and green tones shows areas dominated by dense 
submerged macrophyte stands. Although this area is still rather extended, a decrease 
of about 100 hectares of submerged macrophytes is observed when compared to the 
same period of 2014 [67]. 

Fig. 3.12 Map of the benthic substrate and submerged macrophytes in the southern eastern portion 
of the Lake Trasimeno (Oasi La Valle site) retrieved by WordView-3 image acquired on the 4th 
August 2019. In grey the common reed and emerged macrophytes
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3.7 Conclusions 

This work demonstrates that remote and proximal sensing data can provide accu-
rate and high-resolution information for water monitoring and management and 
extend the scientific understanding of Lake Trasimeno. The integrated and multi-
scale approach (combining sources from field, fixed station and multiple satellites) to 
assessing Chl-a and other water quality parameters has the benefit of improving confi-
dence, knowledge and substantially increases the potential for research, monitoring 
and model development. 

High temporal and spectral resolution spectroradiometric data, such as those 
obtained by WISPstation in Lake Trasimeno, allows the estimation of phytoplankton 
pigment concentration and in particular to identify the start and rate of increase of the 
summer bloom. The phenology was found to be consistent in the three years inves-
tigated (2018–2020), with a bloom typically increasing between the 29th June–7th 
September and a slope ranging from 0.50 to 0.59. Moreover, PC retrieval demon-
strated that cyanobacteria played a pivotal role in the sudden increases and declines 
in Chl-a in mid to late summer. For water managers, one of the benefits of the use of 
the WISPstation data is the coupling of the retrieval of different pigments that allows 
the identification of different phytoplankton functional groups and the detection, in 
almost real time, of potentially toxic cyanobacteria. Coupling high frequency (hourly) 
and temporal (daily, seasonal) data helped to develop understanding, giving clear 
benefits for water management in detecting and predicting bloom event dynamics 
and manifestation. A drawback is that the WISPstation is limited to a fixed position 
and describes a point-like portion of the lake; a gap that can be successfully filled 
with the satellite technology. 

The availability of long time-series of satellite observations for different param-
eters, such as LSWT, Chl-a and turbidity from the recent ESA CCI Lakes database 
[48] allowed a clear view over time showing that the peak height of the algal blooms 
increased from 2008 onwards. Moreover, the performed analysis suggested that years 
with high TP concentrations and high NAO in early to mid-September, indicative of 
high nutrient availability with warm sunny weather, will tend to lead to the largest 
phytoplankton blooms. Currently the lake is classified as eutrophic and periodic 
blooms can interfere with the recreational use and tourism in the lake area. Therefore, 
long-time series of satellite-derived maps allow the examination of the phenology 
and intensity of phytoplankton bloom history, an opportunity to identify drivers of 
the long-term dynamics in communities which is a complex subject as it may consist 
of several factors acting in parallel and it is also an opportunity for managers to 
identify hotspot zones that tend to show higher bloom events. 

With the CCI dataset set to expand to 2000 lakes in the second phase of the project 
it will represent an important resource for the scientific community and water quality 
managers. 

The new generation of satellite hyperspectral data (i.e., PRISMA, DESIS) among 
other things, offers the opportunity for high quality spatial data on water quality.
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The comparison between spaceborne Rrs data and field measurements (by WISP-
station) shown a good agreement (R2 = 0.98) as did the comparison between Chl-a 
hyperspectral-derived products and Chl-a laboratory measurements. DESIS derived 
maps of spring 2020 shown that Lake Trasimeno was characterized by high turbidity 
(TSM > 20 gm−3) and low Chl-a concentration (up to 8 mg m−3) and low presence 
of aquatic vegetation. Instead, in summer the PRISMA-derived maps indicated more 
productive waters (Chl-a > 30 mg m−3), and low turbidity (TSM < 10 g m−3) influ-
enced by the presence of submerged vegetation in the southern-east part of the lake 
which favors increased water transparency. 

Another important aspect to be considered is the availability of high resolution 
spatial data in supporting specific analysis on primary producers, such as hotspots of 
algal blooms and submerged macrophytes cover and abundance. On this last issue, in 
this study an example of the use of high spatial resolution satellite data (WorldView-3 
with 1.2 m pixel resolution) was shown to estimate the portion of Lake Trasimeno 
covered by submerged macrophytes (with also a subdivision of the type of association 
of macrophytes) and to assess whether there have been changes over time. In fact, 
the bottom type map produced (2019) shown a decrease of submerged macrophytes 
compared to the same period of 2014. 

The different approach applied in this work may be transferred to other water 
bodies to analyze specific features of phytoplankton species, which can threaten 
the conservation of aquatic habitats and interfere with human recreational activities 
(e.g. touristic navigation, fishing), thus heavily impacting on the ecosystem and 
socio-economics. 

Overall, this study confirms how advanced remote sensing technology is contin-
uously providing enhanced opportunities to monitor changes in space and time 
and to perform retrospective analysis of water quality status. Integrated data from 
different optical sensors are also a key element because such an approach allows, 
upon verification of the methods and accuracies, the continuity of consistent analysis 
of water quality, and guarantees a support to decision-makers involved in monitoring, 
management and conservation of aquatic ecosystems. 
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