
Chapter 7
Singular Integrals and Boundary
Problems in Morrey and Block Spaces

The spaces which bear the name of Morrey have been introduced by C. Morrey in
1930s in relation to regularity problems for solutions to partial differential equations
in the Euclidean setting. Membership of a function to a Morrey space amounts to
a bound on the size of the Lp-integral average of said function over an arbitrary
ball in terms of a fixed power of its radius. Since these are all measure-metric
considerations, this brand of space naturally adapts to the more general setting
of spaces of homogeneous type. Here we are concerned with the scale of Morrey
spaces when the ambient is the boundary of a uniformly rectifiable domain � ⊆ R

n.
We make use of the Calderón–Zygmund theory for singular integral operators acting
on Morrey spaces in such a setting as a platform that allows us to build in the
direction of solving boundary value problems for weakly elliptic systems in δ-AR
domains with boundary data in Morrey spaces (and their pre-duals).

7.1 Boundary Layer Potentials on Morrey and Block Spaces

The material in this section closely follows [113, §2.6]. We begin by discussing the
scale of Morrey spaces on Ahlfors regular sets. To set the stage, assume � ⊆ R

n

(where, as in the past, n ∈ N with n ≥ 2) is a closed Ahlfors regular set, and
abbreviate σ := Hn−1��. Given p ∈ (0,∞) and λ ∈ (0, n − 1), we then define the
Morrey space Mp,λ(�, σ) as

Mp,λ(�, σ) :=
{
f : � → C : f is σ -measurable and ‖f ‖Mp,λ(�,σ) < +∞

}
,

(7.1)

where, for each σ -measurable function f on �, we have set
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‖f ‖Mp,λ(�,σ) := sup
x∈� and

0<R<2 diam(�)

{
R

n−1−λ
p

(  
�∩B(x,R)

|f |p dσ
) 1

p

}
. (7.2)

The space Mp,λ(�, σ) is complete, hence Banach (though not separable) when
equipped with the norm (7.2), and (cf. [112, §6.2] for a proof)

Mp,λ(�, σ) ↪→ L
p

loc(�, σ ) ∩ L1
(
�,

σ(x)

1 + |x|n−1−ε

)

if p ∈ [1,∞), λ ∈ (0, n − 1), and 0 ≤ ε < n−1−λ
p

.

(7.3)

As may be seen from (7.1)–(7.2) and Hölder’s inequality, we also have

Ls(�, σ) ↪→ Mp,λ(�, σ) continuously, with s := p(n−1)
n−1−λ

∈ (p,∞). (7.4)

In particular, there exists some C ∈ (0,∞) which depends only on n, p, λ, and the
Ahlfors regularity constant of �, with the property that for each σ -measurable set
E ⊆ � we have

∥∥1E

∥∥
Mp,λ(�,σ)

≤ C
∥∥1E

∥∥
Ls(�,σ)

= C · σ(E)(n−1−λ)/[p(n−1)]. (7.5)

As a consequence, 1E belongs to Mp,λ(�, σ) whenever E ⊆ � is a σ -measurable
set with σ(E) < +∞. Other examples of functions belonging to Morrey spaces are
presented below (see [112, §6.2]).

Example 7.1 Let �, σ be as above, and for each fixed point xo ∈ � consider the
function fxo : � → R defined for each x ∈ �\{xo} as fxo(x) := |x−xo|−(n−1−λ)/p.
Then each fxo belongs to the Morrey space Mp,λ(�, σ) and, in fact,

sup
xo∈�

‖fxo‖Mp,λ(�,σ) < +∞. (7.6)

This being said, each fxo fails to be in Ls(�, σ) with s := p(n−1)
n−1−λ

, so the inclusion
in (7.4) is strict.

In view of (7.4) it is of interest to define the space

M̊p,λ(�, σ ) := the closure of Ls(�, σ) with s := p(n−1)
n−1−λ

in Mp,λ(�, σ).

(7.7)

Hence, by design,

M̊p,λ(�, σ ) is a closed linear subspace of Mp,λ(�, σ)

such that Ls(�, σ) ↪→ M̊p,λ(�, σ ) continuously and
densely.

(7.8)
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Thus, when equipped with the norm inherited from the larger ambient Mp,λ(�, σ),
the space M̊p,λ(�, σ ) is complete (hence Banach). As a consequence of (7.8)
and (2.508) we also see that

the space M̊p,λ(�, σ ) is separable. (7.9)

As noted in [112, §6.2],

the operator of pointwise multiplication by any given func-
tion b ∈ L∞(�, σ ) is a bounded mapping from the space
M̊p,λ(�, σ ) into itself, with operator norm ≤ ‖b‖L∞(�,σ),

(7.10)

and

if f, g : � → C are two σ -measurable functions with the prop-

erty that |g| ≤ |f | at σ -a.e. point on � and f ∈ M̊
p,λ

(�, σ ),

then g also belongs to the space M̊
p,λ

(�, σ ).

(7.11)

In relation to the space introduced in (7.7), we also wish to remark that since
Lipcomp(�) (the space of Lipschitz functions with compact support on �) is dense
in Ls(�, σ) and since, according to (7.4), the latter space embeds continuously into
Mp,λ(�, σ), we have

M̊p,λ(�, σ ) = the closure of Lipcomp(�) in Mp,λ(�, σ). (7.12)

An immediate corollary of the latter description of the space M̊p,λ(�, σ ) worth
mentioning is that functions f belonging to M̊p,λ(�, σ ) enjoy the “vanishing”
property

lim
ρ→0+ sup

x∈� and
R∈(0,ρ)

{
R

n−1−λ
p

(  
�∩B(x,R)

|f |p dσ
) 1

p

}
= 0. (7.13)

As such, it is natural to refer to M̊p,λ(�, σ ) as being a vanishing Morrey
space.

The topic addressed next pertains to the pre-duals of Morrey spaces, and the
duals of vanishing Morrey spaces. Continue to assume that � ⊆ R

n is a closed
Ahlfors regular set and define σ := Hn−1��. To set the stage, given an integrability
exponent q ∈ (1,∞) and a parameter λ ∈ (0, n − 1), a function b ∈ Lq(�, σ) is
said to be a Bq,λ-block on � (or, simply, a block) provided there exist some point
xo ∈ � and some radius R ∈ (

0, 2 diam(�)
)
such that

supp b ⊆ B(xo, R) ∩ � and ‖b‖Lq(�,σ) ≤ R
λ
( 1

q
−1

)
. (7.14)
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With r := q(n−1)
n−1+λ(q−1) ∈ (1, q) we then define the block space

Bq,λ(�, σ ) :=
{
f ∈ Lr(�, σ) : there exist a numerical sequence (7.15)

{λj }j∈N ∈ 
1(N) and a family {bj }j∈N

of Bq,λ-blocks on � with f =
∞∑

j=1

λjbj in Lr(�, σ)
}
,

and for each f ∈ Bq,λ(�, σ ) define

‖f ‖Bq,λ(�,σ) := inf
{ ∞∑

j=1

|λj | : f =
∞∑

j=1

λjbj in Lr(�, σ) with (7.16)

{λj }j∈N ∈ 
1(N) and each bj a Bq,λ-block on �
}
.

Work in [112, §6.2] gives that

(
Bq,λ(�, σ ) , ‖ · ‖Bq,λ(�,σ)

)
is a separable Banach space,

and Bq,λ(�, σ ) ↪→ Lr(�, σ) with r := q(n−1)
n−1+λ(q−1) ∈ (1, q)

(7.17)

and

the operator of pointwise multiplication by any given function
b ∈ L∞(�, σ ) is a linear and bounded mapping from the space
Bq,λ(�, σ ) into itself, with operator norm ≤ ‖b‖L∞(�,σ).

(7.18)

Note that the latter property further implies that

if f, g : � −→ C are two σ -measurable functions such that
|g| ≤ |f | at σ -a.e. point on � and f ∈ Bq,λ(�, σ ), then we
have g ∈ Bq,λ(�, σ ) as well as ‖g‖Bq,λ(�,σ) ≤ ‖f ‖Bq,λ(�,σ).

(7.19)

Examples of functions in the block space (7.15) may be produced using the
following result from [112, §6.2].

Proposition 7.1 Assume � ⊆ R
n is a closed Ahlfors regular set and abbreviate

σ := Hn−1��. Also, fix an exponent q ∈ (1,∞) along with λ ∈ (0, n − 1). Then
for each a > λ one has the continuous and dense embedding

Lq
(
�, (1 + |x|)a(q−1)σ (x)

)
↪→ Bq,λ(�, σ ). (7.20)
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In particular,

if N >
λ(q−1)+n−1

q
and fN(x) := (1+|x|)−N for x ∈ �,

then the function fN belongs to the space Bq,λ(�, σ ).
(7.21)

Our primary interest in the space (7.15) stems from the fact that this turns out to
be the pre-dual of a Morrey space. In turn, vanishing Morrey spaces are pre-duals
of block spaces. Specifically, we have the following result proved in [112, §6.2].

Proposition 7.2 Assume � ⊆ R
n is a closed Ahlfors regular set and abbreviate

σ := Hn−1��. Fix two exponents p, q ∈ (1,∞) satisfying 1/p + 1/q = 1, along
with a parameter λ ∈ (0, n − 1). Then there exists C ∈ (0,∞) which depends only
on the Ahlfors regularity constant of �, n, p, and λ, with the property that

ˆ
�

|f ||g| dσ ≤ C‖f ‖Mp,λ(�,σ)‖g‖Bq,λ(�,σ)

for all f ∈ Mp,λ(�, σ) and g ∈ Bq,λ(�, σ ).

(7.22)

In addition, the mapping

Mp,λ(�, σ) � f �−→ �f ∈ (
Bq,λ(�, σ )

)∗
given by

�f (g) :=
ˆ

�

fg dσ for each g ∈ Bq,λ(�, σ )
(7.23)

is a well-defined, linear, bounded isomorphism, with bounded inverse. Simply put,
the integral pairing yields the quantitative identification

(
Bq,λ(�, σ )

)∗ = Mp,λ(�, σ). (7.24)

Furthermore, regarding M̊p,λ(�, σ ) as a Banach space equipped with the norm
inherited from Mp,λ(�, σ), the mapping

Bq,λ(�, σ ) � g �−→ �g ∈ (
M̊p,λ(�, σ )

)∗
given by

�g(f ) :=
ˆ

�

fg dσ for each f ∈ M̊p,λ(�, σ )
(7.25)

is a well-defined, linear, bounded isomorphism, with bounded inverse. As such, the
integral pairing yields the identification

(
M̊p,λ(�, σ )

)∗ = Bq,λ(�, σ ). (7.26)

In the setting of Proposition 7.2, from (7.24), (7.17), and the Sequential Banach–
Alaoglu Theorem we conclude that
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any bounded sequence in Mp,λ(�, σ) has a sub-sequence which
is weak-∗ convergent.

(7.27)

A result in this spirit in which a stronger conclusion is reached, provided one
assumes more than mere boundedness for said sequence, has been proved in [112,
§6.2].

Proposition 7.3 Assume � ⊆ R
n is a closed Ahlfors regular set and abbreviate

σ := H n−1��. Fix two exponents p, q ∈ (1,∞) satisfying 1/p + 1/q = 1, along
with a parameter λ ∈ (0, n − 1). Suppose {fj }j∈N ⊆ Mp,λ(�, σ) is a sequence of
functions with the property that

f (x) := lim
j→∞ fj (x) exists for σ -a.e. x ∈ �, and

there exists some g ∈ Mp,λ(�, σ) such that for each

j ∈ N one has |fj (x)| ≤ |g(x)| for σ -a.e. x ∈ �.

(7.28)

Then f ∈ Mp,λ(�, σ) and fj → f as j → ∞ weak-∗ in Mp,λ(�, σ), i.e.,

lim
j→∞

ˆ
�

fjh dσ =
ˆ

�

f h dσ for each h ∈ Bq,λ(�, σ ). (7.29)

Remarkably, certain types of estimates on Muckenhoupt weighted Lebesgue
space imply estimates on Morrey spaces. Here is a basic result of this flavor from
[112, §6.2] (cf. also [43] for related results in the Euclidean setting).

Proposition 7.4 Let � ⊆ R
n (where n ∈ N with n ≥ 2) be a closed Ahlfors regular

set, and abbreviate σ := H n−1��. Also, fix an integrability exponent p ∈ (1,∞)

along with a parameter λ ∈ (0, n − 1). Finally, let F be a family of pairs (f, g) of
σ -measurable functions defined on � such that

for each Muckenhoupt weight w ∈ A1(�, σ ) there exists some
constant Cw = C([w]A1) ∈ (0,∞), which stays bounded as
[w]A1 stays bounded, and with the property that for each pair
(f, g) ∈ F one has ‖f ‖Lp(�,w) ≤ Cw‖g‖Lp(�,w).

(7.30)

Then there exist two constants C�,p ∈ (0,∞) (depending only on p and the
Ahlfors regularity constant of �) and Qn,λ ∈ (0,∞) (depending only on n and λ)
such that, with

C := C�,p · sup
w∈A1(�,σ)
[w]A1≤Qn,λ

Cw, (7.31)

one has

‖f ‖Mp,λ(�,σ) ≤ C‖g‖Mp,λ(�,σ) for each pair (f, g) ∈ F. (7.32)
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Based on Propositions 7.4, 3.4, 7.2 (as well as Coltar’s inequality and bound-
edness results for the Hardy–Littlewood maximal operator on Morrey and block
spaces), the following result has been established in [113, §2.6].

Proposition 7.5 Let� ⊆ R
n be an open set such that ∂� is a UR set and abbreviate

σ := Hn−1�∂�. Assume N = N(n) ∈ N is a sufficiently large integer and
consider a complex-valued function k ∈ CN

(
R

n \ {0}) which is odd and positive
homogeneous of degree 1 − n. Also, fix two integrability exponents p, q ∈ (1,∞)

with 1/p + 1/q = 1, along with a parameter λ ∈ (0, n − 1), and pick an aperture
parameter κ > 0. In this setting, for each f belonging to either Mp,λ(∂�, σ),
M̊p,λ(∂�, σ), Bq,λ(∂�, σ) define

Tεf (x) :=
ˆ

y∈∂�
|x−y|>ε

k(x − y)f (y) dσ(y) for each x ∈ ∂�, (7.33)

T∗f (x) := sup
ε>0

|Tεf (x)| for each x ∈ ∂�, (7.34)

Tf (x) := lim
ε→0+ Tεf (x) for σ -a.e. x ∈ ∂�, (7.35)

Tf (x) :=
ˆ

∂�

k(x − y)f (y) dσ(y) for each x ∈ �. (7.36)

Then there exists a constant C ∈ (0,∞) which depends exclusively on n, p, λ,
and the UR constants of ∂� with the property that for each f ∈ Mp,λ(∂�, σ) one
has

‖T∗f ‖Mp,λ(∂�,σ) ≤ C
( ∑

|α|≤N

sup
Sn−1

|∂αk|
)

‖f ‖Mp,λ(∂�,σ) , (7.37)

‖Nκ(Tf )‖Mp,λ(∂�,σ) ≤ C
( ∑

|α|≤N

sup
Sn−1

|∂αk|
)

‖f ‖Mp,λ(∂�,σ) , (7.38)

for each f ∈ M̊p,λ(∂�, σ) one has

‖T∗f ‖
M̊p,λ(∂�,σ)

≤ C
( ∑

|α|≤N

sup
Sn−1

|∂αk|
)

‖f ‖
M̊p,λ(∂�,σ)

, (7.39)

‖Nκ(Tf )‖
M̊p,λ(∂�,σ)

≤ C
( ∑

|α|≤N

sup
Sn−1

|∂αk|
)

‖f ‖
M̊p,λ(∂�,σ)

, (7.40)
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and for each f ∈ Bq,λ(∂�, σ) one has

‖T∗f ‖Bq,λ(∂�,σ) ≤ C
( ∑

|α|≤N

sup
Sn−1

|∂αk|
)

‖f ‖Bq,λ(∂�,σ) , (7.41)

‖Nκ(Tf )‖Bq,λ(∂�,σ) ≤ C
( ∑

|α|≤N

sup
Sn−1

|∂αk|
)

‖f ‖Bq,λ(∂�,σ) . (7.42)

Also, for each function f belonging to either Mp,λ(∂�, σ), M̊p,λ(∂�, σ), or
Bq,λ(∂Ω, σ) the limit defining Tf (x) in (7.35) exists at σ -a.e. x ∈ ∂� and the
operators

T : Mp,λ(∂�, σ) −→ Mp,λ(∂�, σ), (7.43)

T : M̊p,λ(∂�, σ) −→ M̊p,λ(∂�, σ), (7.44)

T : Bq,λ(∂�, σ) −→ Bq,λ(∂�, σ), (7.45)

are well defined, linear, and bounded. In addition,

the (real) transpose of the operator (7.44) is the operator −T

with T as in (7.45), and the (real) transpose of the opera-
tor (7.45) is the operator −T with T as in (7.43).

(7.46)

Thus, the results from Proposition 7.5 are applicable to the Riesz transforms
{Rj }1≤j≤n defined as in (4.297) on the boundary of a UR domain � ⊆ R

n. This
proves that, in such a setting, for each p, q ∈ (1,∞) and λ ∈ (0, n − 1)

the operators {Rj }1≤j≤n are well defined, linear, and bounded
on the spaces Mp,λ(∂�, σ), M̊p,λ(∂�, σ), and Bq,λ(∂�, σ).

(7.47)

In concert with Theorem 4.3, (7.7), and duality (cf. Proposition 7.2), Proposi-
tion 7.4 also yields the following version of the commutator theorem from [31], in
Morrey and block spaces.

Theorem 7.1 Make the assumption that � ⊆ R
n be a closed Ahlfors regular set,

and abbreviate σ := Hn−1��. Fix p0 ∈ (1,∞) along with some non-decreasing
function � : (0,∞) → (0,∞) and let T be a linear operator which is bounded on
Lp0(�,w) for every w ∈ Ap0(�, σ ), with operator norm ≤ �

([w]Ap0

)
.

Then for each exponent p ∈ (1,∞) and each parameter λ ∈ (0, n − 1) the
operator T induces well-defined, linear, and bounded mappings in the contexts

T : Mp,λ(�, σ) −→ Mp,λ(�, σ), (7.48)
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T : M̊p,λ(�, σ ) −→ M̊p,λ(�, σ ). (7.49)

In addition, given any integrability exponent p ∈ (1,∞) along with some parameter
λ ∈ (0, n − 1), there exist two constants, C1 = C1(�, n, p0, p, λ) ∈ (0,∞) and
C2 = C2(�, n, p0, p, λ) ∈ (0,∞), with the property that for every complex-valued
function b ∈ L∞(�, σ ) one has

‖[Mb, T ]‖
M̊p,λ(�,σ)→M̊p,λ(�,σ)

≤ ‖[Mb, T ]‖Mp,λ(�,σ)→Mp,λ(�,σ)

≤ C1�(C2) ‖b‖BMO(�,σ) , (7.50)

where [Mb, T ] := bT (·) − T (b ·) is the commutator of T (considered either as
in (7.48) or as in (7.49)) and the operator Mb of pointwise multiplication (either on
Mp,λ(�, σ) or on M̊p,λ(�, σ )) by the function b.

Moreover, if T � denotes the (real) transpose of the original operator T , then for
each q ∈ (1,∞) and λ ∈ (0, n − 1) the operator T � induces a well-defined, linear,
and bounded mapping

T � : Bq,λ(�, σ ) −→ Bq,λ(�, σ ). (7.51)

Finally, for each q ∈ (1,∞) and λ ∈ (0, n − 1) there exist two positive finite
constants, C1 = C1(�, n, p0, q, λ) and C2 = C2(�, n, p0, q, λ), with the property
that for every complex-valued function b ∈ L∞(�, σ ) one has

∥∥∥[Mb, T
�]

∥∥∥
Bq,λ(�,σ)→Bq,λ(�,σ)

≤ C1�(C2) ‖b‖BMO(�,σ) . (7.52)

For example, if � ⊆ R
n is a UR domain then, for each complex-valued function

k ∈ CN
(
R

n \ {0}) (where N = N(n) ∈ N is sufficiently large) which is odd
and positive homogeneous of degree 1 − n, Theorem 7.1 applies with � := ∂�

and T as in (7.35). In such a scenario, from (7.52) and (7.46) we see that for each
b ∈ L∞(∂�, σ), q ∈ (1,∞), and λ ∈ (0, n−1), the following commutator estimate
holds:

‖[Mb, T ]‖Bq,λ(∂�,σ)→Bq,λ(∂�,σ) ≤ C
( ∑

|α|≤N

sup
Sn−1

|∂αk|
)

‖b‖BMO(∂�,σ) , (7.53)

where C ∈ (0,∞) depends exclusively on n, q, λ, and the UR constants of ∂�.
Following [112, §11.7], we may also consider Morrey-based Sobolev

spaces on the boundaries of Ahlfors regular domains. Specifically, if � ⊆ R
n

is an Ahlfors regular domain and σ := Hn−1�∂�, then for each p ∈ (1,∞) and
λ ∈ (0, n − 1) we define
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M
p,λ

1 (∂�, σ) :=
{
f ∈ Mp,λ(∂�, σ) ∩ L1

1,loc(∂�, σ) : (7.54)

∂τjk
f ∈ Mp,λ(∂�, σ) for each j, k ∈ {1, . . . , n}

}
,

equipped with the natural norm

M
p,λ

1 (∂�, σ) � f �−→ ‖f ‖Mp,λ(∂�,σ) +
n∑

j,k=1

∥∥∂τjk
f

∥∥
Mp,λ(∂�,σ)

. (7.55)

A significant closed subspace of M
p,λ

1 (∂�, σ) is the vanishing Morrey-
based Sobolev space

M̊
p,λ

1 (∂�, σ) :=
{
f ∈ M̊p,λ(∂�, σ) : for each j, k ∈ {1, . . . , n} (7.56)

one has ∂τjk
f ∈ M̊p,λ(∂�, σ)

}
.

In the same vein, for each q ∈ (1,∞) let us also define the block-based
Sobolev space

Bq,λ

1 (∂�, σ) :=
{
f ∈ Bq,λ(∂�, σ) : for each j, k ∈ {1, . . . , n} (7.57)

one has ∂τjk
f ∈ Bq,λ(∂�, σ)

}
,

and endowed with the norm

Bq,λ

1 (∂�, σ) � f �−→ ‖f ‖Bq,λ(∂�,σ) +
n∑

j,k=1

∥∥∂τjk
f

∥∥
Bq,λ(∂�,σ)

. (7.58)

It has been noted in [114, §3.3] that by combining the extrapolation result
from Proposition 7.4 with Proposition 3.5 (while also keeping in mind Proposi-
tion 3.2, (7.3), (7.8), (7.17), Proposition 7.5, and (7.18)) one obtains the following
result pertaining to the action of boundary layer potentials associated with weakly
elliptic second-order systems in UR domains, on the scales of spaces discussed
earlier.

Theorem 7.2 Suppose � ⊆ R
n is a UR domain and abbreviate σ := Hn−1�∂�.

Let L be a homogeneous, weakly elliptic, constant complex coefficient, second-
order M × M system in R

n (for some M ∈ N). Pick a coefficient tensor A ∈ AL

and consider the double layer potential operators DA, KA, K#
A associated with

the coefficient tensor A and the set � as in (3.22), (3.24), and (3.25), respectively.
Finally, select p ∈ (1,∞) along with λ ∈ (0, n − 1) and some aperture parameter
κ > 0.



7.1 Boundary Layer Potentials on Morrey and Block Spaces 443

Then the operators

KA,K#
A : [

Mp,λ(∂�, σ)
]M −→ [

Mp,λ(∂�, σ)
]M (7.59)

are well defined, linear, and bounded. Additionally, the operators KA,K#
A in the

context of (7.59) depend continuously on the underlying coefficient tensor A.
Specifically, with the piece of notation introduced in (3.13), the following operator-
valued assignments are continuous:

AWE � A �−→ KA ∈ Bd
([

Mp,λ(∂�, σ)
]M)

, (7.60)

AWE � A �−→ K#
A ∈ Bd

([
Mp,λ(∂�, σ)

]M)
. (7.61)

Furthermore, there exists a constant C ∈ (0,∞), depending only on the UR
constants of ∂�, L, n, κ , p, and λ, with the property that

∥∥Nκ

(
DAf

)∥∥
Mp,λ(∂�,σ)

≤ C‖f ‖[Mp,λ(∂�,σ)]M

for each function f ∈ [
Mp,λ(∂�, σ)

]M
.

(7.62)

Moreover, for each given function f in the Morrey space
[
Mp,λ(∂�, σ)

]M
the

following nontangential boundary trace formula holds (with I denoting the identity
operator)

DAf

∣∣∣
κ−n.t.

∂�
= ( 1

2I + KA

)
f at σ -a.e. point on ∂�. (7.63)

In addition, for each function f belonging to the Morrey-based Sobolev space[
M

p,λ

1 (∂�, σ)
]M

it follows that

the nontangential boundary trace
(
∂
DAf

)∣∣κ−n.t.

∂�
exists (in CM )

at σ -a.e. point on ∂�, for each 
 ∈ {1, . . . , n}, (7.64)

and there exits some finite constant C > 0, depending only on ∂�, L, n, κ , p, λ,
such that

∥∥Nκ(DAf )
∥∥

Mp,λ(∂�,σ)
+ ∥∥Nκ(∇DAf )

∥∥
Mp,λ(∂�,σ)

≤ C‖f ‖[Mp,λ
1 (∂�,σ)]M . (7.65)

In fact, similar results are valid with the Morrey space Mp,λ(∂�, σ) replaced
throughout by the vanishing Morrey space M̊p,λ(∂�, σ) (defined as in (7.7) with
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� := ∂�), or by the block spaceBq,λ(∂�, σ)with q ∈ (1,∞) (defined as in (7.15)–
(7.16) with � := ∂�).

Next, the operators

KA : [
M

p,λ

1 (∂�, σ)
]M −→ [

M
p,λ

1 (∂�, σ)
]M

, (7.66)

KA : [
M̊

p,λ

1 (∂�, σ)
]M −→ [

M̊
p,λ

1 (∂�, σ)
]M

, (7.67)

are well defined, linear, bounded and, for each q ∈ (1,∞), so is

KA : [
Bq,λ

1 (∂�, σ)
]M −→ [

Bq,λ

1 (∂�, σ)
]M

. (7.68)

Also, much as in (7.60)–(7.61), the operator KA in the context of (7.66)–(7.68)
depends in a continuous fashion on the underlying coefficient tensor A.

Next we introduce the homogeneous Morrey-based Sobolev spaces.
Consider an Ahlfors regular domain � ⊆ R

n and abbreviate σ := Hn−1�∂�. Given
an integrability exponent p ∈ (1,∞) and λ ∈ (0, n − 1) let us define the space

.
M

p,λ

1 (∂�, σ) :=
{
f ∈ L1(∂� ,

σ(x)
1+|x|n

) ∩ L
p

1,loc(∂�, σ) : (7.69)

∂τjk
f ∈ Mp,λ(∂�, σ) for each j, k ∈ {1, . . . , n}

}

and equip it with the semi-norm

.
M

p,λ

1 (∂�, σ) � f �−→ ‖f ‖ .
M

p,λ
1 (∂�,σ)

:=
n∑

j,k=1

∥∥∂τjk
f

∥∥
Mp,λ(∂�,σ)

. (7.70)

Then (7.3) ensures that we have the following continuous embedding

M
p,λ

1 (∂�, σ) ↪→ .
M

p,λ

1 (∂�, σ). (7.71)

It is also clear that constant functions on ∂� belong to
.

M
p,λ

1 (∂�, σ) and have

vanishing semi-norm. We shall occasionally work with
.

M
p,λ

1 (∂�, σ)
/ ∼, the

quotient space of classes [ · ] of equivalence modulo constants of functions in
.

M
p,λ

1 (∂�, σ), equipped with the semi-norm

.
M

p,λ

1 (∂�, σ)
/ ∼� [f ] �→ ∥∥[f ]∥∥ .

M
p,λ
1 (∂�,σ)/∼ :=

n∑
j,k=1

∥∥∂τjk
f

∥∥
Mp,λ(∂�,σ)

.

(7.72)
To proceed, choose a scalar-valued function φ ∈ C∞

0 (Rn) with φ ≡ 1 in B(0, 1)
and suppφ ⊆ B(0, 2). Having fixed a reference point x0 ∈ ∂�, for each scale
r ∈ (0,∞) define
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φr(x) := φ
(x − x0

r

)
for each x ∈ R

n, (7.73)

and use the same notation to denote the restriction of φr to ∂�. For each r ∈ (0,∞)

set �r := ∂� ∩ B(x0, r). Given any f ∈ L1
loc(∂�, σ), define

fr := φr · (
f − f�2r

)
on ∂�, where f�2r :=

 
�2r

f dσ. (7.74)

Lemma 7.1 Suppose � ⊆ R
n is a two-sided NTA domain with the property that

∂� is an unbounded Ahlfors regular set, and abbreviate σ := H n−1�∂�. Fix some
reference point x0 ∈ ∂�, along with some integrability exponent p ∈ (1,∞) and
a parameter λ ∈ (0, n − 1). Finally, pick a function f which belongs to the space
L1

(
∂�,

σ(x)
1+|x|n

) ∩ L1
1,loc(∂�, σ) and, for each radius r ∈ (0,∞), define the surface

ball �r := B(x0, r) ∩ ∂� and f�r := ffl
�r

f dσ . Then the following statements are
true.

(i) There exists a constant C = C(�,p, λ, x0) ∈ (0,∞), independent of the
function f , such that

sup
r>0

1

r

∥∥|f − f�r | · 1�r ‖Mp,λ(∂�,σ) ≤ C

n∑
j,k=1

∥∥∂τjk
f

∥∥
Mp,λ(∂�,σ)

. (7.75)

(ii) For each r ∈ (0,∞) there exists a constant Cr ∈ (0,∞) which depends on �,
p, λ, x0, and r , but is independent of f , such that

ˆ
∂�

|f (x) − f�r |
1 + |x|n dσ(x) ≤ Cr

‖1�r ‖Mp,λ(∂�,σ)

n∑
j,k=1

∥∥∂τjk
f

∥∥
Mp,λ(∂�,σ)

.

(7.76)
(iii) There exists a constant C = C(�,p, λ, x0) ∈ (0,∞), independent of the

function f , such that with the notation introduced in (7.74) one has

sup
r>0

∥∥∇tan fr

∥∥[Mp,λ(∂�,σ)]n ≤ C
∥∥∇tan f

∥∥[Mp,λ(∂�,σ)]n . (7.77)

Proof We shall prove all claims using extrapolation (cf. Proposition 7.4). Consider
first the task of establishing (i). Recall (2.585) and define

F1 :=
{( |f −f�r |

r
1�r ,|∇tan f | ) : (7.78)

f ∈ L1(∂�,
σ(x)
1+|x|n

) ∩ L1
1,loc(∂�, σ), r > 0

}
.
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We claim that for the given integrability exponent p ∈ (1,∞) and for every weight
w ∈ Ap(∂�, σ) there exists a constant C = C(�,p, [w]Ap , x0) ∈ (0,∞) such that

‖F1‖Lp(∂�,w) ≤ C‖F2‖Lp(∂�,w) (7.79)

for all (F1, F2) ∈ F1. Indeed, this inequality is trivial if ‖F2‖Lp(∂�,w) = ∞,
whereas if ‖F2‖Lp(∂�,w) < ∞ we may rely on (7.78) and (2.586) to invoke
Proposition 2.25 to obtain (2.618). This, in turn, gives (7.79) on account of (2.586).
Moreover, the intervening constant C stays bounded if [w]Ap stays bounded. In
particular, in view of item (2) from Proposition 2.20, the argument so far shows
that (7.79) holds for every w ∈ A1(∂�, σ) and that the intervening constant stays
bounded if [w]A1 stays bounded. We may then invoke Theorem 7.4 to conclude that
for each given number λ ∈ (0, n − 1) we have ‖F1‖Mp,λ(∂�,σ) ≤ C‖F2‖Mp,λ(∂�,σ)

for each (F1, F2) ∈ F1. This and (2.585) then imply (7.75), finishing the proof of
(i).

Let us now address the claim made in item (ii). Fix r ∈ (0,∞) and define

F2 :=
{(‖f − f�r ‖

L1
(
∂�,

σ(x)
1+|x|n

) 1�r , |∇tan f | ) : (7.80)

f ∈ L1(∂�,
σ(x)
1+|x|n

) ∩ L1
1,loc(∂�, σ)

}
.

As before, the goal is to check that (7.79) holds for all weights w ∈ Ap(∂�, σ)

and all pairs (F1, F2) ∈ F2 (where now the constant C is allowed to depend on the
scale r , which has been fixed). This may be seen reasoning much as before, applying
Proposition 2.25, but this time the relevant estimate is (2.620). Granted (7.79), we
may then apply Theorem 7.4 to the family F2 and, as desired, conclude that (7.76)
holds.

To justify the claim made in item (iii), we introduce

F3 :=
{(|∇tan fr |, |∇tan f |) : f ∈ L1(∂�,

σ(x)
1+|x|n

) ∩ L1
1,loc(∂�, σ), r > 0

}
.

(7.81)

In line with what we have done in the previous cases, we now wish to show
that (7.79) holds for all weights w ∈ Ap(∂�, σ) and all pairs (F1, F2) ∈ F3. Again,
it suffices to consider the case when ‖F2‖Lp(∂�,w) < ∞. By definition, we have
(F1, F2) = (|∇tan gr |, |∇tan g|) for some g ∈ L1

(
∂�,

σ(x)
1+|x|n

) ∩ L1
1,loc(∂�, σ) and

some r > 0. This, the assumption ‖F2‖Lp(∂�,w) < ∞, (2.586), and Proposition 2.25
then guarantee that g ∈ .

L
p

1 (∂�,w). We may therefore proceed as in (4.370)–
(4.377) in the proof of Theorem 4.11 to conclude that (4.377) holds. Equivalently,
this proves (7.79) for the given choice of (F1, F2). Moreover, a careful examination
of the proof shows that the intervening constant C ∈ (0,∞) stays bounded if [w]Ap
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stays bounded. We have therefore shown that (7.79) holds for each (F1, F2) ∈ F3
and each w ∈ Ap(∂�, σ). In particular (cf. item (2) in Proposition 2.20), this is
the case for every w ∈ A1(∂�, σ) and the intervening constant C ∈ (0,∞) stays
bounded if [w]A1 stays bounded. As such, we may avail ourselves of Theorem 7.4 to
conclude that, given any λ ∈ (0, n−1), one has ‖F1‖M

p,λ
1 (∂�,σ)

≤ C‖F2‖M
p,λ
1 (∂�,σ)

for every (F1, F2) ∈ F3. Hence, there existsC = C(�,p, λ, x0) ∈ (0,∞) such that

∥∥|∇tan fr |
∥∥

Mp,λ(∂�,σ)
≤ C

∥∥|∇tan f |∥∥
Mp,λ(∂�,σ)

(7.82)

for every f ∈ L1
(
∂�,

σ(x)
1+|x|n

) ∩ L1
1,loc(∂�, σ) and every r > 0. This completes the

proof of (7.77). ��
It turns out that, when considered on the boundaries of two-sided NTA domains,

the quotient space
.

M
p,λ

1 (∂�, σ)
/ ∼ is actually a Banach space.

Proposition 7.6 Suppose � ⊆ R
n is a two-sided NTA domain with an unbounded

Ahlfors regular boundary and abbreviate σ := H n−1�∂�. Pick some integrability
exponent p ∈ (1,∞) along with a parameter λ ∈ (0, n − 1). Finally, recall that.
M

p,λ

1 (∂�, σ)
/ ∼ denotes the quotient space of classes [ · ] of equivalence modulo

constants of functions in
.

M
p,λ

1 (∂�, σ), equipped with the semi-norm (7.72).

Then (7.72) is a genuine norm on
.

M
p,λ

1 (∂�, σ)
/ ∼, and

.
M

p,λ

1 (∂�, σ)
/ ∼ is a

Banach space when equipped with the norm (7.72).

Proof Let us first observe from (7.76) that the semi-norm (7.72) is indeed a
norm on the space

.
M

p,λ

1 (∂�, σ)
/ ∼. We shall next show that

.
M

p,λ

1 (∂�, σ)
/ ∼

is complete when equipped with the norm (7.72). With this goal in mind, let
{fα}α∈N ⊆ .

M
p,λ

1 (∂�, σ) be such that
{[fα]}

α∈N is a Cauchy sequence in the

quotient space
.

M
p,λ

1 (∂�, σ)
/ ∼ . This means that

{
∂τjk

fα

}
α∈N is a Cauchy

sequence in Mp,λ(∂�, σ), for any two fixed indices j, k ∈ {1, . . . , n}. Using
the fact that Mp,λ(∂�, σ) is a Banach space, we then conclude that for each
j, k ∈ {1, . . . , n} there exists gjk ∈ Mp,λ(∂�, σ) such that

∂τjk
fα → gjk in Mp,λ(∂�, σ) as α → ∞. (7.83)

Fix a reference point x0 ∈ ∂� and, for each r ∈ (0,∞), set �r := B(x0, r) ∩ ∂�.
Also, set fα,�r := ffl

�r
fα dσ for each r ∈ (0,∞) and each α ∈ N. Applying (7.76)

to f := fα −fβ we obtain that for any radius r ∈ (0,∞) there exists some constant
Cr ∈ (0,∞) which depends only on �, p, λ, r , and x0, such that that for all indices
α, β ∈ N we have

∥∥(
fα − fα,�r

) − (
fβ − fβ,�r

)∥∥
L1

(
∂�,

σ(x)
1+|x|n

)
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≤ Cr

‖1�r ‖Mp,λ(∂�,σ)

n∑
j,k=1

∥∥∂τjk
fα − ∂τjk

fβ

∥∥
Mp,λ(∂�,σ)

.

(7.84)

Since
{
∂τjk

fα

}
α∈N is a Cauchy sequence in Mp,λ(∂�, σ), it then follows that for

each fixed r ∈ (0,∞) the sequence
{
fα −fα,�r

}
α∈N is Cauchy in the Banach space

L1
(
∂�,

σ(x)
1+|x|n

)
. Hence, for each fixed r ∈ (0,∞) there exists hr ∈ L1

(
∂�,

σ(x)
1+|x|n

)
such that

fα − fα,�r → hr in L1(∂�,
σ(x)
1+|x|n

)
as α → ∞. (7.85)

On the other hand, by (7.75) (applied to the difference f := fα − fβ ), there exists
some constant C = C(�,p, λ, x0) ∈ (0,∞) such that for each fixed r ∈ (0,∞)

we have

∥∥|(fα − fα,�r ) − (fβ − fβ,�r )| · 1�r ‖Mp,λ(∂�,σ)

≤ C r

n∑
j,k=1

∥∥∂τjk
fα − ∂τjk

fα

∥∥
Mp,λ(∂�,σ)

. (7.86)

Hence, the sequence
{(

fα − fα,�r

)
1�r

}
α∈N is Cauchy in the Banach space

Mp,λ(∂�, σ) for each fixed r ∈ (0,∞). As a result, for each fixed r ∈ (0,∞)

it follows that

there exists a function kr ∈ Mp,λ(∂�, σ) such that(
fα − fα,�r

)
1�r → kr in Mp,λ(∂�, σ) as α → ∞.

(7.87)

Note that convergence in M
p,λ

1 (∂�, σ) implies convergence in Lp(�r, σ ) and,
after eventually passing to a sub-sequence, pointwise a.e. convergence. Thus (7.85)
and (7.87) immediately give

hr

∣∣
�r

= kr ∈ Mp,λ(∂�, σ) for each r ∈ (0,∞). (7.88)

Additionally, for each fixed r1, r2 ∈ (0,∞) the convergence recorded in (7.85) also
yields

fα,�r2
− fα,�r1 ,w → hr1 − hr2 in L1(∂�,

σ(x)
1+|x|n

)
as α → ∞. (7.89)

Thus hr1 − hr2 must be constant. This, (7.85), (7.88), and (7.3) eventually lead to

hr ∈ L1(∂�,
σ(x)
1+|x|n

) ∩ L
p

loc(∂�, σ) for each r ∈ (0,∞). (7.90)
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To continue we simply write h for hr with r = 1, and cα for fα,�r with r = 1.
Then, as seen from (7.90),

h belongs to L1(∂�,
σ(x)
1+|x|n

) ∩ L
p

loc(∂�, σ), (7.91)

and the sequence {cα}α∈N ⊆ C is such that

fα − cα → h in L1(∂�,
σ(x)
1+|x|n

)
as α → ∞. (7.92)

For each j, k ∈ {1, . . . , n} and each test function ϕ ∈ C∞
0 (Rn) we may then write

ˆ
∂�

h(∂τjk
ϕ) dσ = lim

α→∞

ˆ
∂�

(fα − cα)(∂τjk
ϕ) dσ

= − lim
α→∞

ˆ
∂�

∂τjk
(fα − cα)ϕ dσ = − lim

α→∞

ˆ
∂�

(∂τjk
fα)ϕ dσ

=
ˆ

∂�

gjkϕ dσ, (7.93)

thanks to (7.92), (2.583), (7.83), and (7.3). From this and (2.581)–(2.582) we then
conclude that

∂τjk
h = gjk ∈ Mp,λ(∂�, σ) for each j, k ∈ {1, . . . , n}. (7.94)

Collectively, (7.91) and (7.94) prove that h ∈ .
M

p,λ

1 (∂�, σ). Finally,
from (7.83), (7.94), and (7.72) we conclude that the sequence

{[fα]}
α∈N converges

to [h], the class of h, in the quotient space
.

M
p,λ

1 (∂�, σ)
/ ∼. ��

We continue by making the following definition, which should be compared
with (7.69).

Definition 7.1 Assume � ⊆ R
n is an Ahlfors regular domain. Set σ := H n−1�∂�

and pick an exponent p ∈ (1,∞) along with a parameter λ ∈ (0, n − 1). In
this context, define the vanishing Morrey-based homogeneous Sobolev
space of order one on ∂� as

.
M

p,λ

1 (∂�, σ) :=
{
f ∈ L1

(
∂�,

σ(x)

1 + |x|n
)

∩ L
p

loc(∂�, σ) : (7.95)

∂τjk
f ∈ M̊p,λ(∂�, σ) for each j, k ∈ {1, . . . , n}

}

and equip this space with the semi-norm
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.
M

p,λ

1 (∂�, σ) � f �→ ‖f ‖ .
M

p,λ
1 (∂�,σ)

:=
n∑

j,k=1

‖∂τjk
f ‖Mp,λ(∂�,σ). (7.96)

As seen from of Definition 7.1, all constant functions on ∂� belong
to

.
M

p,λ

1 (∂�, σ) and their respective semi-norms vanish. It is also apparent
from (7.95)–(7.96) and (7.69)–(7.70) that

.
M

p,λ

1 (∂�, σ) =
{
f ∈ .

M
p,λ

1 (∂�, σ) : ∂τjk
f ∈ M̊p,λ(∂�, σ) (7.97)

for all j, k ∈ {1, . . . , n}
}

and

.
M

p,λ

1 (∂�, σ) is a closed subspace of
.

M
p,λ

1 (∂�, σ). (7.98)

Moreover, we have the continuous embedding

M̊
p,λ

1 (∂�, σ) ↪→ .
M

p,λ

1 (∂�, σ) ∩ L1
(
∂�,

σ(x)

1 + |x|n−1

)
. (7.99)

Much as in Proposition 7.6, if � ⊆ R
n is a two-sided NTA domain such that ∂� is

an unbounded Ahlfors regular set, then

.
M

p,λ

1 (∂�, σ)
/ ∼ � [f ] �−→ ∥∥[f ]∥∥ .

M
p,λ
1 (∂�,σ)/∼ :=

n∑
j,k=1

∥∥∂τjk
f

∥∥
Mp,λ(∂�,σ)

(7.100)
is a genuine norm on

.
M

p,λ

1 (∂�, σ)
/ ∼, and

.
M

p,λ

1 (∂�, σ)
/ ∼ is a Banach space

when equipped with the norm (7.100).
In a similar fashion, we introduce the following brand of block-based homoge-

neous Sobolev spaces:

Definition 7.2 Suppose that � ⊆ R
n is an Ahlfors regular domain. Abbreviate

σ := H n−1�∂� and fix an integrability exponent q ∈ (1,∞) along with a
parameter λ ∈ (0, n − 1). Also, introduce

qλ := q(n − 1)

n − 1 + λ(q − 1)
∈ (1, q). (7.101)

In this context, define the block-based homogeneous Sobolev space of
order one on ∂� as

.
Bq,λ

1 (∂�, σ) :=
{
f ∈ L1

(
∂�,

σ(x)

1 + |x|n
)

∩ L
qλ

loc(∂�, σ) : (7.102)
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∂τjk
f ∈ B q,λ(∂�, σ) for each j, k ∈ {1, . . . , n}

}

and equip this space with the semi-norm

.
Bq,λ

1 (∂�, σ) � f �→ ‖f ‖ .
B q,λ
1 (∂�,σ)

:=
n∑

j,k=1

‖∂τjk
f ‖Bq,λ(∂�,σ). (7.103)

It turns out that we have the continuous embeddings

Bq,λ

1 (∂�, σ) ↪→ .
Bq,λ

1 (∂�, σ) ∩ L1
(
∂�,

σ(x)

1 + |x|n−1

)
, (7.104)

and

.
Bq,λ

1 (∂�, σ) ↪→ .
L

qλ

1 (∂�, σ). (7.105)

In the context of Definition 7.2 it follows that all constant functions on ∂� belong
to

.
Bq,λ

1 (∂�, σ) and their respective semi-norms vanish. We shall occasionally work

with the space
.
Bq,λ

1 (∂�, σ)
/ ∼, the quotient space of classes [ · ] of equivalence

modulo constants of functions in
.
Bq,λ

1 (∂�, σ), which we equip with the semi-norm

.
Bq,λ

1 (∂�, σ)
/ ∼ � [f ] �→ ∥∥[f ]∥∥ .

Bq,λ
1 (∂�,σ)/∼ :=

n∑
j,k=1

∥∥∂τjk
f

∥∥
Bq,λ(∂�,σ)

.

(7.106)
Analogously to Proposition 7.6, we have the following completeness result (see

[112, §11.13] for a proof).

Proposition 7.7 Let � ⊆ R
n be a two-sided NTA domain such that ∂� is an

unbounded Ahlfors regular set. Abbreviate σ := H n−1�∂� and pick an integrability
exponent q ∈ (1,∞) along with a parameter λ ∈ (0, n − 1). Then (7.106) is a
genuine norm on

.
Bq,λ

1 (∂�, σ)
/ ∼, and

.
Bq,λ

1 (∂�, σ)
/ ∼ is a Banach space when

equipped with the norm (7.106).

We continue by recording the following remarkable trace result proved in [112,
§11.13].

Proposition 7.8 Let � ⊆ R
n be an NTA domain such that ∂� is an Ahlfors regular

set. Abbreviate σ := H n−1�∂�, and fix an aperture parameter κ ∈ (0,∞) along
with some integrability exponents p, q ∈ (1,∞) and a parameter λ ∈ (0, n− 1). In
this setting, the following statements are true.

(1) For each function u : � → C satisfying

u ∈ C 1(�) and Nκ(∇u) ∈ Mp,λ(∂�, σ), (7.107)
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the nontangential trace

u
∣∣κ−n.t.

∂�
exists σ -a.e. on ∂�, belongs to

.
M

p,λ

1 (∂�, σ),

and
∥∥u

∣∣κ−n.t.

∂�

∥∥ .
M

p,λ
1 (∂�,σ)

≤ C
∥∥Nκ(∇u)

∥∥
Mp,λ(∂�,σ)

(7.108)

for some constant C ∈ (0,∞) independent of u.
(2) For each function u : � → C satisfying

u ∈ C 1(�) and Nκ(∇u) ∈ Bq,λ(∂�, σ), (7.109)

the nontangential trace

u
∣∣κ−n.t.

∂�
exists σ -a.e. on ∂�, belongs to

.
Bq,λ

1 (∂�, σ),

and
∥∥u

∣∣κ−n.t.

∂�

∥∥ .
Bq,λ
1 (∂�,σ)

≤ C
∥∥Nκ(∇u)

∥∥
Bq,λ(∂�,σ)

(7.110)

for some constant C ∈ (0,∞) independent of u.
(3) For each function u ∈ C 1(�) satisfying

Nκ(∇u) ∈ M̊p,λ(∂�, σ) and (∇u)
∣∣κ−n.t.

∂�
exists σ -a.e. on ∂�, (7.111)

the nontangential trace

u
∣∣κ−n.t.

∂�
exists σ -a.e. on ∂�, belongs to

.
M

p,λ

1 (∂�, σ),

and
∥∥u

∣∣κ−n.t.

∂�

∥∥ .
M

p,λ
1 (∂�,σ)

≤ C
∥∥Nκ(∇u)

∥∥
Mp,λ(∂�,σ)

(7.112)

for some constant C ∈ (0,∞) independent of u.

It has also been noted in [114, §3.3] that Theorems 3.3, 3.4, and Proposition 7.8
imply the following Fatou-type results and integral representation formulas.

Theorem 7.3 Let � ⊆ R
n be an NTA domain such that ∂� is an unbounded

Ahlfors regular set. Abbreviate σ := H n−1�∂� and denote by ν the geometric
measure theoretic outward unit normal to �. Let A = (

a
αβ
rs

)
1≤r,s≤n
1≤α,β≤M

(where

M ∈ N) be a complex coefficient tensor with the property that L := LA is a weakly
elliptic M × M system in R

n. In this setting, recall the modified version of the
double layer operator D

A,mod from (3.49), and the modified version of the single
layer operator Smod from (3.38). Fix an aperture parameter κ ∈ (0,∞) along with
some integrability exponents p, q ∈ (1,∞) and a number λ ∈ (0, n − 1). Finally,
consider a function u : � → C

M satisfying
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u ∈ [
C∞(�)

]M
and Lu = 0 in �. (7.113)

(1) If Nκ(∇u) ∈ Mp,λ(∂�, σ) then

u
∣∣κ−n.t.

∂�
exists σ -a.e. on ∂� and belongs to

[ .
M

p,λ

1 (∂�, σ)
]M

,

(∇u)
∣∣κ−n.t.

∂�
exists σ -a.e. on ∂� and ∂A

ν u ∈ [
Mp,λ(∂�, σ)

]M
,

(7.114)

and there exists some C
M -valued locally constant function cu in � with the

property that

u = D
A,mod

(
u
∣∣κ−n.t.

∂�

) − Smod

(
∂A
ν u

) + cu in �. (7.115)

(2) If Nκ(∇u) ∈ Bq,λ(∂�, σ) then

u
∣∣κ−n.t.

∂�
exists σ -a.e. on ∂� and belongs to

[ .
Bq,λ

1 (∂�, σ)
]M

,

(∇u)
∣∣κ−n.t.

∂�
exists σ -a.e. on ∂� and ∂A

ν u ∈ [
Bq,λ(∂�, σ)

]M
,

(7.116)

and (7.115) continues to hold.
(3) If Nκ(∇u) ∈ M̊p,λ(∂�, σ) then

u
∣∣κ−n.t.

∂�
exists σ -a.e. on ∂� and belongs to

[ .
M

p,λ

1 (∂�, σ)
]M

,

(∇u)
∣∣κ−n.t.

∂�
exists σ -a.e. on ∂� and ∂A

ν u ∈ [
M̊p,λ(∂�, σ)

]M
,

(7.117)

and (7.115) once again continues to hold.

We wish to augment Theorem 7.2 with a series of results dealing with modified
boundary layer potentials.

Theorem 7.4 Let � ⊆ R
n be a UR domain. Denote by ν = (ν1, . . . , νn) the

geometric measure theoretic outward unit normal to � and set σ := H n−1�∂�.
Also, for some M ∈ N, let A = (

a
αβ
rs

)
1≤r,s≤n
1≤α,β≤M

be a complex coefficient tensor with

the property that L := LA is a weakly elliptic M × M system in R
n. Recall the

modified boundary-to-boundary single layer operator Smod associated with L and
� as in (3.42). Finally, fix two exponents p, q ∈ (1,∞) along with a parameter
λ ∈ (0, n − 1). Then the following properties are true.

(1) The modified boundary-to-boundary single layer operator induces a mapping

Smod : [
Mp,λ(∂�, σ)

]M −→ [ .
M

p,λ

1 (∂�, σ)
]M (7.118)
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which is well defined, linear, and bounded, when the target space is endowed
with the semi-norm (7.70). In particular,

for each function f ∈ [
Mp,λ(∂�, σ)

]M
and pair of indices

j, k ∈ {1, . . . , n} one has ∂τjk

(
Smodf

) ∈ [
Mp,λ(∂�, σ)

]M
.

(7.119)

Also, for each function f ∈ [
Mp,λ(∂�, σ)

]M
, at σ -a.e. point x ∈ ∂� one has

( 1
2I + K#

A�
)(( − 1

2I + K#
A�

)
f

)
(x) (7.120)

=
(

lim
ε→0+

ˆ

y∈∂�
|x−y|>ε

νi(x)a
μγ

ij aβα
rs (∂rEγβ)(x − y)∂τjs

(
Smodf

)
α
(y) dσ(y)

)

1≤μ≤M

,

where K#
A� is the singular integral operator associated as in (3.25) with the set

� and the transpose coefficient tensor A�. Finally,

for each sequence of functions {fj }j∈N ⊆ [
Mp,λ(∂�, σ)

]M
which is weak-∗ convergent to some f ∈ [

Mp,λ(∂�, σ)
]M

and

for each test function φ ∈ [
Lip(∂�)

]M
with compact support

one has lim
j→∞

´
∂�

〈
Smodfj , φ

〉
dσ = ´

∂�

〈
Smodf, φ

〉
dσ .

(7.121)

(2) As a consequence of (7.118), the following is a well-defined linear operator:

[
Smod

] : [
Mp,λ(∂�, σ)

]M −→ [ .
M

p,λ

1 (∂�, σ)
/ ∼ ]M

defined as
[
Smod

]
f := [

Smodf
] ∈ [ .

M
p,λ

1 (∂�, σ)
/ ∼ ]M

,

for all f ∈ [
Mp,λ(∂�, σ)

]M
.

(7.122)

Moreover, if actually � ⊆ R
n is an open set satisfying a two-sided local John

condition and whose boundary is an unbounded Ahlfors regular set, then the
operator (7.122) is also bounded when the quotient space is endowed with the
norm introduced in (7.72).

(3) With Smod denoting the modified version of the single layer operator acting

on functions from
[
L1

(
∂�,

σ(x)

1+|x|n−1

)]M
as in (3.38), for each given aperture

parameter κ > 0 there exists some constant C = C(�,L, n, p, λ, κ) ∈ (0,∞)

with the property that for each given function f ∈ [
Mp,λ(∂�, σ)

]M
one has
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Smodf ∈ [
C∞(�)

]M
, L

(
Smodf

) = 0 in �,

Nκ

(∇Smodf
)
belongs to Mp,λ(∂�, σ) and

∥∥Nκ

(∇Smodf
)∥∥

Mp,λ(∂�,σ)
≤ C‖f ‖[Mp,λ(∂�,σ)]M ,

((
Smodf

)∣∣∣
κ−n.t.

∂�

)
(x) = (Smodf )(x) at σ -a.e. point x ∈ ∂�.

(7.123)

Moreover, for each given function f in the Morrey space
[
Mp,λ(∂�, σ)

]M
the

following jump formula holds (with I denoting the identity operator)

∂A
ν Smodf = ( − 1

2I + K#
A�

)
f at σ -a.e. point in ∂�, (7.124)

where K#
A� is the singular integral operator associated as in (3.25) with the set

� and the transpose coefficient tensor A�.
(4) Similar properties to those described in items (1)–(3) are valid for block spaces

(and block-based homogeneous Sobolev spaces) in place of Morrey spaces (and
homogeneous Morrey-based Sobolev spaces). More specifically, the operator

Smod : [
B q,λ(∂�, σ)

]M −→ [ .
B q,λ

1 (∂�, σ)
]M (7.125)

is well defined, linear, and bounded, when the target space is endowed with the
semi-norm (7.103). Also,

[
Smod

] : [
B q,λ(∂�, σ)

]M −→ [ .
B q,λ

1 (∂�, σ)
/ ∼ ]M

defined as
[
Smod

]
f := [

Smodf
] ∈ [ .

B q,λ

1 (∂�, σ)
/ ∼ ]M

,

for all f ∈ [
B q,λ(∂�, σ)

]M
(7.126)

is a well-defined linear operator, which is also bounded in the case when
� ⊆ R

n is an open set satisfying a two-sided local John condition and whose
boundary is an unbounded Ahlfors regular set (assuming the quotient space
is endowed with the norm introduced in (7.106)). Finally, for each aperture
parameter κ > 0 there exists C = C(�,L, n, q, λ, κ) ∈ (0,∞) with the
property that for each function f ∈ [

B q,λ(∂�, σ)
]M

one has
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Smodf ∈ [
C∞(�)

]M
, L

(
Smodf

) = 0 in �,

Nκ

(∇Smodf
)
belongs to B q,λ(∂�, σ),

∥∥Nκ

(∇Smodf
)∥∥

B q, λ(∂�,σ)
≤ C‖f ‖[B q, λ(∂�,σ)]M ,

((
Smodf

)∣∣∣
κ−n.t.

∂�

)
(x) = (Smodf )(x) at σ -a.e. point x ∈ ∂�,

and ∂A
ν Smodf = ( − 1

2I + K#
A�

)
f at σ -a.e. point in ∂�.

(7.127)

(5) Analogous properties to those presented in items (1)–(3) above are also valid
for vanishing Morrey spaces M̊p,λ(∂�, σ) (cf. (7.7)) and homogeneous vanish-
ing Morrey-based Sobolev spaces

.
M

p,λ

1 (∂�, σ) (cf. Definition 7.1) in place of
Morrey spaces and homogeneous Morrey-based Sobolev spaces, respectively.

This theorem has been established in [114, §3.3, §1.5]. Here we wish to note
that an alternative argument may be given along the lines of the proof of item (2) in
Theorem 8.5 (where a more general result of this flavor is obtained).

Some of the main properties of the modified boundary-to-domain double layer
potential operators and their conormal derivatives acting on homogeneous Morrey-
based and block-based Sobolev spaces on boundaries of UR domains are collected
in the next theorem from [114, §3.3].

Theorem 7.5 Let � ⊆ R
n be a UR domain. Denote by ν = (ν1, . . . , νn) the

geometric measure theoretic outward unit normal to � and set σ := H n−1�∂�. In
addition, for some M ∈ N, let A = (

a
αβ
rs

)
1≤r,s≤n
1≤α,β≤M

be a complex coefficient tensor

with the property that L := LA is a weakly elliptic M × M system in R
n. Also, let

E = (Eγβ)1≤γ ,β≤M be the matrix-valued fundamental solution associated with L

as in Theorem 3.1. In this setting, recall the modified version of the double layer
operator D

A,mod acting on functions from
[
L1

(
∂�,

σ(x)
1+|x|n

)]M
as in (3.49). Finally,

fix some integrability exponents p, q ∈ (1,∞) along with a number λ ∈ (0, n − 1),
and an aperture parameter κ ∈ (0,∞). Then the following statements are true.

(1) There exists some constantC = C(�,A, n, p, λ, κ) ∈ (0,∞)with the property
that for each function f ∈ [ .

M
p,λ

1 (∂�, σ)
]M

it follows that

D
A,modf ∈ [

C∞(�)
]M

, L
(
D

A,modf
) = 0 in �,

(
D

A,modf
)∣∣κ−n.t.

∂�
,

(∇D
A,modf

)∣∣κ−n.t.

∂�
exist σ -a.e. on ∂�,

Nκ

(∇D
A,modf

)
belongs to Mp,λ(∂�, σ) and

∥∥Nκ

(∇D
A,modf

)∥∥
Mp,λ(∂�,σ)

≤ C‖f ‖[ .Mp,λ
1 (∂�,σ)]M .

(7.128)

In fact, for each function f ∈ [ .
M

p,λ

1 (∂�, σ)
]M

one has
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(D
A,modf )

∣∣κ−n.t.

∂�
= ( 1

2I + K
A,mod

)
f at σ -a.e. point on ∂�, (7.129)

where I is the identity operator on
[ .
M

p,λ

1 (∂�, σ)
]M

, and K
A,mod is the modified

boundary-to-boundary double layer potential operator from (3.50) and (3.48).
(2) Given any function f = (fα)1≤α≤M belonging to the homogeneous Morrey-

based Sobolev space
[ .
M

p,λ

1 (∂�, σ)
]M

, at σ -a.e. point x ∈ ∂� one has

(
∂A
ν (D

A,modf )
)
(x) =

(
lim

ε→0+

ˆ

y∈∂�
|x−y|>ε

νi(x)a
μγ

ij aβα
rs (∂rEγ β)(x − y)×

(7.130)

× (
∂τjs

fα

)
(y) dσ(y)

)

1≤μ≤M

,

where the conormal derivative is considered as in (3.66).
(3) The operator

∂A
ν DA,mod : [ .

M
p,λ

1 (∂�, σ)
]M −→ [

Mp,λ(∂�, σ)
]M

defined as
(
∂A
ν DA,mod)f := ∂A

ν (D
A,modf ) for each f ∈ [ .

M
p,λ

1 (∂�, σ)
]M (7.131)

is well defined, linear, and bounded, when the domain space is equipped with the
semi-norm (7.70). As a consequence of (7.131), the following is a well-defined
linear operator:

[
∂A
ν DA,mod

] : [ .
M

p,λ

1 (∂�, σ)
/ ∼ ]M −→ [

Mp,λ(∂�, σ)
]M

given by
[
∂A
ν DA,mod

][f ] := ∂A
ν (D

A,modf )

for each function f ∈ [ .
M

p,λ

1 (∂�, σ)
]M

.

(7.132)

If, in fact,� ⊆ R
n is an open set satisfying a two-sided local John condition and

whose boundary is an unbounded Ahlfors regular set, then the operator (7.132)
is also bounded when the quotient space is equipped with the norm (7.72).

(4) With K#
A� denoting the singular integral operator associated as in (3.25) with

the set � and the transpose coefficient tensor A�, one has
( 1
2I + K#

A�
)( − 1

2I + K#
A�

) = [
∂A
ν DA,mod

][
Smod

]

as mappings acting from
[
Mp,λ(∂�, σ)

]M
,

(7.133)

and
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[
∂A
ν DA,mod

][
K

A,mod

] = K#
A�

[
∂A
ν DA,mod

]

as mappings acting from
[ .
M

p,λ

1 (∂�, σ)/ ∼ ]M
.

(7.134)

Moreover, if ∂� is connected then also

( 1
2I + [

K
A,mod

])( − 1
2I + [

K
A,mod

]) = [
Smod

][
∂A
ν DA,mod

]

as mappings acting from
[ .
M

p,λ

1 (∂�, σ)/ ∼ ]M
,

(7.135)

and

[
Smod

]
K#

A� = [
K

A,mod

][
Smod

]

as mappings acting from
[
Mp,λ(∂�, σ)

]M
.

(7.136)

(5) Similar properties to those described in items (1)–(4) above are also valid
for block spaces (and block-based homogeneous Sobolev spaces) in place of
Morrey spaces (and homogeneous Morrey-based Sobolev spaces). Concretely,
there exists a constant C = C(�,A, n, q, λ, κ) ∈ (0,∞) with the property that
for each function f ∈ [ .

Bq,λ

1 (∂�, σ)
]M

one has

D
A,modf ∈ [

C∞(�)
]M

, L
(
D

A,modf
) = 0 in �,

(
D

A,modf
)∣∣κ−n.t.

∂�
= ( 1

2I + K
A,mod

)
f at σ -a.e. point on ∂�,

(∇D
A,modf

)∣∣κ−n.t.

∂�
exist at σ -a.e. point on ∂�,

Nκ

(∇D
A,modf

)
belongs to Bq,λ(∂�, σ) and

∥∥Nκ

(∇D
A,modf

)∥∥
Bq,λ(∂�,σ)

≤ C‖f ‖[ .Bq,λ
1 (∂�,σ)]M .

(7.137)

Also, formula (7.130) remains true for each function f = (fα)1≤α≤M belonging

to the space
[ .
Bq,λ

1 (∂�, σ)
]M

, and the operator

∂A
ν DA,mod : [ .

Bq,λ

1 (∂�, σ)
]M −→ [

Bq,λ(∂�, σ)
]M

defined as
(
∂A
ν DA,mod)f := ∂A

ν (D
A,modf ) for each f ∈ [ .

Bq,λ

1 (∂�, σ)
]M (7.138)

is well defined, linear, and bounded, when the domain space is equipped with
the semi-norm (7.103). Furthermore,

[
∂A
ν DA,mod

] : [ .
Bq,λ

1 (∂�, σ)
/ ∼ ]M −→ [

B q,λ(∂�, σ)
]M

defined as
[
∂A
ν DA,mod

][f ] := ∂A
ν (D

A,modf )

for each f ∈ [ .
Bq,λ

1 (∂�, σ)
]M

(7.139)



7.1 Boundary Layer Potentials on Morrey and Block Spaces 459

is a well-defined linear operator, which is also bounded when the quotient space
is equipped with the norm (7.106) if, in fact, � ⊆ R

n is an open set satisfying
a two-sided local John condition and whose boundary is an unbounded Ahlfors
regular set. Finally, the operator identities in (7.133)–(7.135) are valid for
functions in

[ .
Bq,λ

1 (∂�, σ)/ ∼ ]M
.

(6) Analogous properties to those presented in items (1)–(4) above are also valid
for homogeneous vanishing Morrey-based Sobolev spaces

.
M

p,λ

1 (∂�, σ) (cf.
Definition 7.1) in place of homogeneous Morrey-based Sobolev spaces.

We next study mapping properties for modified boundary-to-boundary double
layer potential operators acting on homogeneous Morrey-based and block-based
Sobolev spaces on boundaries of UR domains.

Theorem 7.6 Let � ⊆ R
n (where n ∈ N satisfies n ≥ 2) be an NTA domain

such that ∂� is an Ahlfors regular set, and abbreviate σ := H n−1�∂�. Also, let
L = (

a
αβ
rs ∂r∂s

)
1≤α,β≤M

be a homogeneous, weakly elliptic, constant (complex)
coefficient, second-order M × M system in R

n (for some integer M ∈ N). In
this context, consider the modified boundary-to-boundary double layer potential
operator K

A,mod from (3.50). Finally, select some exponents p, q ∈ (1,∞) along
with a parameter λ ∈ (0, n − 1). Then the following statements are valid.

(1) The modified boundary-to-boundary double layer potential operator induces a
mapping

K
A,mod : [ .

M
p,λ

1 (∂�, σ)
]M −→ [ .

M
p,λ

1 (∂�, σ)
]M (7.140)

which is well defined, linear, and bounded, when the spaces involved are
endowed with the semi-norm (7.70). As a corollary of (7.140), the following
operator is well defined and linear:

[
K

A,mod

] : [ .
M

p,λ

1 (∂�, σ)
/ ∼ ]M −→ [ .

M
p,λ

1 (∂�, σ)
/ ∼ ]M

given by
[
K

A,mod

][f ] := [
K

A,modf
] ∈ [ .

M
p,λ

1 (∂�, σ)
/ ∼ ]M

,

for each function f ∈ [ .
M

p,λ

1 (∂�, σ)
]M

.

(7.141)

Moreover, if actually� ⊆ R
n is a two-sided NTA domain whose boundary is an

unbounded Ahlfors regular set then the operator (7.141) is also bounded when
all quotient spaces are endowed with the norm introduced in (7.72).

(2) If Ujk with j, k ∈ {1, . . . , n} is the family of singular integral operators defined
in (3.35), then
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∂τjk

(
K

A,modf
) = KA(∂τj k

f ) + Ujk(∇tanf ) at σ -a.e. point on ∂�

for each f ∈ [ .
M

p,λ

1 (∂�, σ)
]M

and each j, k ∈ {1, . . . , n}.
(7.142)

(3) Similar properties to those described in items (1)–(2) are valid for block-based
homogeneous Sobolev spaces in place of homogeneous Morrey-based Sobolev
spaces. Specifically,

K
A,mod : [ .

B q,λ

1 (∂�, σ)
]M −→ [ .

Bq,λ

1 (∂�, σ)
]M (7.143)

is a well-defined, linear, and bounded operator when the spaces involved are
endowed with the semi-norm (7.103). Also,

[
K

A,mod

] : [ .
B q,λ

1 (∂�, σ)
/ ∼ ]M −→ [ .

B q,λ

1 (∂�, σ)
/ ∼ ]M

given by
[
K

A,mod

][f ] := [
Kmodf

] ∈ [ .
Bq,λ

1 (∂�, σ)
/ ∼ ]M

for each function f ∈ [ .
Bq,λ

1 (∂�, σ)
]M

(7.144)

is a well-defined linear mapping, which is also bounded when all quotient
spaces are endowed with the norm introduced in (7.106) if in fact � ⊆ R

n

is a two-sided NTA domain whose boundary is an unbounded Ahlfors regular
set. Finally,

∂τjk

(
K

A,modf
) = KA(∂τjk

f ) + Ujk(∇tanf ) at σ -a.e. point on ∂�

for each f ∈ [ .
Bq,λ

1 (∂�, σ)
]M

and each j, k ∈ {1, . . . , n}.
(7.145)

(4) Analogous properties to those presented in items (1)–(2) above are also valid
for homogeneous vanishing Morrey-based Sobolev spaces

.
M

p,λ

1 (∂�, σ) (cf.
Definition 7.1) in place of homogeneous Morrey-based Sobolev spaces.

7.2 Inverting Double Layer Operators on Morrey and Block
Spaces

The starting point is deriving estimates for the operator norms of singular integral
operators whose integral kernels contain, as a factor, the crucial inner product
between the unit normal and the “chord” (cf. (7.146), (7.147)), of the sort obtained
earlier in Theorem 4.2 and Corollary 4.2 in the context of Muckenhoupt weighted
Lebesgue spaces, but now working in the framework of Morrey spaces, vanishing
Morrey spaces, and block spaces. We carry out this task in Theorem 7.7 below.
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Theorem 7.7 Let� ⊆ R
n be aUR domain. Abbreviate σ := Hn−1�∂� and denote

by ν the geometric measure theoretic outward unit normal to �. Fix an arbitrary
integrability exponent p ∈ (1,∞) along with some parameter λ ∈ (0, n − 1). Also,
consider a complex-valued function k ∈ CN(Rn \ {0}) (for some sufficiently large
integer N = N(n) ∈ N) which is even and positive homogeneous of degree −n. In
this setting consider the principal-value singular integral operators T , T # acting on
each given function f ∈ Mp,λ(∂�, σ) according to

Tf (x) := lim
ε→0+

ˆ

y∈∂�
|x−y|>ε

〈x − y, ν(y)〉k(x − y)f (y) dσ(y), (7.146)

and

T #f (x) := lim
ε→0+

ˆ

y∈∂�
|x−y|>ε

〈y − x, ν(x)〉k(x − y)f (y) dσ(y), (7.147)

at σ -a.e. point x ∈ ∂�. Also, define the action of the maximal operator T∗ on each
given function f ∈ Mp,λ(∂�, σ) as

T∗f (x) := sup
ε>0

∣∣∣∣
ˆ

y∈∂�
|x−y|>ε

〈x − y, ν(y)〉k(x − y)f (y) dσ(y)

∣∣∣∣ for each x ∈ ∂�,

(7.148)
and its companion

T #∗ f (x) := sup
ε>0

∣∣∣∣
ˆ

y∈∂�
|x−y|>ε

〈x − y, ν(x)〉k(x − y)f (y) dσ(y)

∣∣∣∣ for each x ∈ ∂�.

(7.149)
Then the following are well-defined, bounded operators

T∗, T #∗ , T , T # : Mp,λ(∂�, σ) −→ Mp,λ(∂�, σ), (7.150)

T∗, T #∗ , T , T # : M̊p,λ(∂�, σ) −→ M̊p,λ(∂�, σ), (7.151)

and for each m ∈ N there exists some Cm ∈ (0,∞), which depends only on m, n,
p, λ, and the UR constants of ∂� such that, with the piece of notation introduced
in (4.93), one has

‖T∗‖M̊p,λ(∂�,σ)→M̊p,λ(∂�,σ)
≤ ‖T∗‖Mp,λ(∂�,σ)→Mp,λ(∂�,σ)
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≤ Cm

( ∑
|α|≤N

sup
Sn−1

|∂αk|
)
‖ν‖〈m〉

[BMO(∂�,σ)]n , (7.152)

∥∥∥T #∗
∥∥∥

M̊p,λ(∂�,σ)→M̊p,λ(∂�,σ)
≤

∥∥∥T #∗
∥∥∥

Mp,λ(∂�,σ)→Mp,λ(∂�,σ)

≤ Cm

( ∑
|α|≤N

sup
Sn−1

|∂αk|
)
‖ν‖〈m〉

[BMO(∂�,σ)]n , (7.153)

‖T ‖
M̊p,λ(∂�,σ)→M̊p,λ(∂�,σ)

≤ ‖T ‖Mp,λ(∂�,σ)→Mp,λ(∂�,σ)

≤ Cm

( ∑
|α|≤N

sup
Sn−1

|∂αk|
)
‖ν‖〈m〉

[BMO(∂�,σ)]n , (7.154)

∥∥∥T #
∥∥∥

M̊p,λ(∂�,σ)→M̊p,λ(∂�,σ)
≤

∥∥∥T #
∥∥∥

Mp,λ(∂�,σ)→Mp,λ(∂�,σ)

≤ Cm

( ∑
|α|≤N

sup
Sn−1

|∂αk|
)
‖ν‖〈m〉

[BMO(∂�,σ)]n . (7.155)

Furthermore, for each q ∈ (1,∞) the operators

T , T # : Bq,λ(∂�, σ) −→ Bq,λ(∂�, σ) (7.156)

are well defined, linear, bounded, and for each m ∈ N there exists some constant
Cm ∈ (0,∞), which depends only on m, n, q, λ, and the UR constants of ∂� such
that, with the piece of notation introduced in (4.93), one has

max
{

‖T ‖Bq,λ(∂�,σ)→Bq,λ(∂�,σ) ,

∥∥∥T #
∥∥∥
Bq,λ(∂�,σ)→Bq,λ(∂�,σ)

}

≤ Cm

( ∑
|α|≤N

sup
Sn−1

|∂αk|
)
‖ν‖〈m〉

[BMO(∂�,σ)]n . (7.157)

Proof The claims made in (7.150)–(7.155) follow from Theorem 4.2, Corollary 4.2,
and Proposition 7.4 (also keeping in mind (7.3) and (7.7)). Then the claims
in (7.156)–(7.157) become consequences of what we have just proved and duality
(cf. Proposition 7.2 and (7.46)). ��
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In concert with the commutator estimates discussed earlier (cf. Theorem 7.1),
Theorem 7.7 implies the following result, which is the Morrey space (respectively,
vanishing Morrey space, and block space) counterpart of Theorem 4.6.

Corollary 7.1 Let � ⊆ R
n be a UR domain. Abbreviate σ := Hn−1�∂� and

denote by ν = (νk)1≤k≤n the geometric measure theoretic outward unit normal to�.
Also, fix two arbitrary integrability exponents p, q ∈ (1,∞) and a parameter λ ∈
(0, n−1). Finally, recall the boundary-to-boundary harmonic double layer potential
operatorK� from (3.29), the Riesz transforms {Rj }1≤j≤n from (4.297), and for each
index k ∈ {1, . . . , n} denote by Mνk

the operator of pointwise multiplication by the
k-th scalar component of ν.

Then for each m ∈ N there exists some Cm ∈ (0,∞) which depends only on
m, n, p, q, λ, and the UR constants of ∂� such that, with the piece of notation
introduced in (4.93), one has

‖K�‖Mp,λ(∂�,σ)→Mp,λ(∂�,σ) + max
1≤j,k≤n

∥∥[Mνk
, Rj ]

∥∥
Mp,λ(∂�,σ)→Mp,λ(∂�,σ)

≤ Cm‖ν‖〈m〉
[BMO(∂�,σ)]n , (7.158)

‖K�‖
M̊p,λ(∂�,σ)→M̊p,λ(∂�,σ)

+ max
1≤j,k≤n

∥∥[Mνk
, Rj ]

∥∥
M̊p,λ(∂�,σ)→M̊p,λ(∂�,σ)

≤ Cm‖ν‖〈m〉
[BMO(∂�,σ)]n , (7.159)

and

‖K�‖Bq,λ(∂�,σ)→Bq,λ(∂�,σ) + max
1≤j,k≤n

∥∥[Mνk
, Rj ]

∥∥
Bq,λ(∂�,σ)→Bq,λ(∂�,σ)

≤ Cm‖ν‖〈m〉
[BMO(∂�,σ)]n . (7.160)

Proof The estimates claimed in (7.158)–(7.160) are implied by (3.29), Theo-
rem 7.7, (4.297), Proposition 3.4, and Theorem 7.1. ��

We shall revisit Corollary 7.1 later, in Theorem 7.15, which contains estimates in
the opposite direction to those obtained in (7.158)–(7.160).

For the time being, we take up the task of establishing estimates akin to those
obtained in Theorem 4.7 for Muckenhoupt weighted Lebesgue and Sobolev spaces,
now working in the setting of Morrey spaces, vanishing Morrey spaces, block
spaces, as well as the brands of Sobolev spaces naturally associated with these
scales.

Theorem 7.8 Let � ⊆ R
n be a UR domain. Set σ := Hn−1�∂� and denote

by ν the geometric measure theoretic outward unit normal to �. Also, let L be a
homogeneous, second-order, constant complex coefficient, weakly elliptic M × M
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system in R
n for which Adis

L �= ∅. Pick A ∈ Adis
L and consider the boundary-

to-boundary double layer potential operators KA,K#
A associated with � and the

coefficient tensorA as in (3.24) and (3.25), respectively. Finally, fix two integrability
exponents p, q ∈ (1,∞) and a parameter λ ∈ (0, n − 1).

Then for each m ∈ N there exists some constant Cm ∈ (0,∞) which depends
only on m, n, A, p, q, λ, and the UR constants of ∂� such that, with the piece of
notation introduced in (4.93), one has

‖KA‖[Mp,λ(∂�,σ)]M→[Mp,λ(∂�,σ)]M ≤ Cm‖ν‖〈m〉
[BMO(∂�,σ)]n , (7.161)

‖KA‖[M̊p,λ(∂�,σ)]M→[M̊p,λ(∂�,σ)]M ≤ Cm‖ν‖〈m〉
[BMO(∂�,σ)]n , (7.162)

‖KA‖[Bq,λ(∂�,σ)]M→[Bq,λ(∂�,σ)]M ≤ Cm‖ν‖〈m〉
[BMO(∂�,σ)]n , (7.163)

‖KA‖[Mp,λ
1 (∂�,σ)]M→[Mp,λ

1 (∂�,σ)]M ≤ Cm‖ν‖〈m〉
[BMO(∂�,σ)]n , (7.164)

‖KA‖[M̊p,λ
1 (∂�,σ)]M→[M̊p,λ

1 (∂�,σ)]M ≤ Cm‖ν‖〈m〉
[BMO(∂�,σ)]n , (7.165)

‖KA‖[Bq,λ
1 (∂�,σ)]M→[Bq,λ

1 (∂�,σ)]M ≤ Cm‖ν‖〈m〉
[BMO(∂�,σ)]n , (7.166)

as well as

∥∥K#
A

∥∥[Mp,λ(∂�,σ)]M→[Mp,λ(∂�,σ)]M ≤ Cm‖ν‖〈m〉
[BMO(∂�,σ)]n , (7.167)

∥∥K#
A

∥∥[M̊p,λ(∂�,σ)]M→[M̊p,λ(∂�,σ)]M ≤ Cm‖ν‖〈m〉
[BMO(∂�,σ)]n , (7.168)

∥∥K#
A

∥∥[Bq,λ(∂�,σ)]M→[Bq,λ(∂�,σ)]M ≤ Cm‖ν‖〈m〉
[BMO(∂�,σ)]n . (7.169)

Proof All claims are justified as in the proof of Theorem 4.7, now making
use of Theorem 7.7, Proposition 3.2, Theorem 7.1, (7.54)–(7.58), as well
as (7.3), (7.8), (7.10), (7.17), (7.18). ��

Remark 7.1 Similar estimates to those established in Theorem 7.8 are valid for the
double layer operators acting on sums of Morrey spaces, vanishing Morrey spaces,
and block spaces (cf. (4.332)).

The stage is now set for obtaining invertibility results for certain types of double
layer potential operators acting on Morrey spaces, vanishing Morrey spaces, block
spaces, as well as on the brands of Sobolev spaces naturally associated with these
scales.
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Theorem 7.9 Let � ⊆ R
n be an Ahlfors regular domain. Set σ := Hn−1�∂�

and denote by ν the geometric measure theoretic outward unit normal to �. Also,
let L be a homogeneous, second-order, constant complex coefficient, weakly elliptic
M ×M system in Rn for which Adis

L �= ∅. Pick A ∈ Adis
L and consider the boundary-

to-boundary double layer potential operators KA,K#
A associated with � and the

coefficient tensorA as in (3.24) and (3.25), respectively. Finally, fix two integrability
exponents p, q ∈ (1,∞) along with a parameter λ ∈ (0, n − 1), and some number
ε ∈ (0,∞).

Then there exists some small threshold δ ∈ (0, 1) which depends only on n, p, q,
λ, A, ε, and the Ahlfors regularity constant of ∂� such that if ‖ν‖[BMO(∂�,σ)]n < δ

(i.e., if � is a δ-AR domain; cf. Definition 2.15) it follows that for each spectral
parameter z ∈ C with |z| ≥ ε the following operators are invertible:

zI + KA : [
Mp,λ(∂�, σ)

]M −→ [
Mp,λ(∂�, σ)

]M
, (7.170)

zI + KA : [
M̊p,λ(∂�, σ)

]M −→ [
M̊p,λ(∂�, σ)

]M
, (7.171)

zI + KA : [
Bq,λ(∂�, σ)

]M −→ [
Bq,λ(∂�, σ)

]M
, (7.172)

zI + KA : [
M

p,λ

1 (∂�, σ)
]M −→ [

M
p,λ

1 (∂�, σ)
]M

, (7.173)

zI + KA : [
M̊

p,λ

1 (∂�, σ)
]M −→ [

M̊
p,λ

1 (∂�, σ)
]M

, (7.174)

zI + KA : [
Bq,λ

1 (∂�, σ)
]M −→ [

Bq,λ

1 (∂�, σ)
]M

, (7.175)

zI + K#
A : [

Mp,λ(∂�, σ)
]M −→ [

Mp,λ(∂�, σ)
]M

, (7.176)

zI + K#
A : [

M̊p,λ(∂�, σ)
]M −→ [

M̊p,λ(∂�, σ)
]M

, (7.177)

zI + K#
A : [

Bq,λ(∂�, σ)
]M −→ [

Bq,λ(∂�, σ)
]M

. (7.178)

In addition, the inverses in (7.170)–(7.175) are compatible with one another and
also with the inverses of (4.309)–(4.310). Also, the inverses in (7.176)–(7.178) are
compatible with one another and also with the inverse of (4.311).

Proof All claims are consequence of Theorem 7.8, reasoning as in the proof of
Theorem 4.8 and Proposition 4.2. ��

Remark 7.2 The conclusions in Theorem 7.9 may fail when A /∈ Adis
L even when �

is a half-space. For example, from Proposition 3.13 and Theorem 7.2 we see that in
such a scenario it may happen that 1

2I + KA has an infinite dimensional cokernel
when acting on Morrey and block spaces.
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The operators in Remarks 4.14-4.15 (now considered on Morrey and block
spaces) also offer counter-examples for the conclusions in Theorem 7.9 in the case
when A /∈ Adis

L even when � is a half-space.

Remark 7.3 In the context of Theorem 7.9, if the threshold δ ∈ (0, 1) is taken
sufficiently small in such a way that the operator zI + KA is invertible on the space[
M

p,λ

1 (∂�, σ)
]M we also claim that there exists some constant C ∈ (0,∞) with

the property that

whenever f ∈ [
M

p,λ

1 (∂�, σ)
]M

and g := (zI + KA)−1 f ∈ [
M

p,λ

1 (∂�, σ)
]M

then ‖∇tang‖[Mp,λ(∂�,σ)]n·M ≤ C ‖∇tanf ‖[Mp,λ
1 (∂�,σ)]n·M .

(7.179)

To justify this, use (3.37) to write, for each j, k ∈ {1, . . . , n},

∂τjk
f = ∂τjk

[(
zI + KA

)
g
] = (

zI + KA

)
(∂τjk

g) + Ujk(∇tang)

= (
zI + KA

)
(∂τjk

g) + Ujk

((
νr∂τrs gα

)
1≤α≤M
1≤s≤n

)
(7.180)

at σ -a.e. point on ∂�, where ν = (νr )1≤r≤n is the geometric measure theoretic
outward unit normal to �. Using the abbreviations introduced in (4.345), the
formulas in (7.180), corresponding to all indices j, k ∈ {1, . . . , n}, may be
collectively re-fashioned as

∇τ f = (
zI + R

)
(∇τ g), (7.181)

where I is the identity and R is the operator acting from
[
Mp,λ(∂�, σ)

]M·n2

into itself much as in (4.347)–(4.348). From these, (7.161), (3.35), Theorem 7.1,
and (3.81), we then conclude that for each m ∈ N we have

‖R‖[Mp,λ(∂�,σ)]M·n2→[Mp,λ(∂�,σ)]M·n2 ≤ Cm‖ν‖〈m〉
[BMO(∂�,σ)]n (7.182)

for some Cm ∈ (0,∞) which depends only on m, n, A, p, λ, and the UR constants
of ∂�. As a consequence of this, if we assume δ > 0 to be sufficiently small to
begin with, a Neumann series argument gives that

zI + R is invertible on
[
Mp,λ(∂�, σ)]M·n2 (7.183)

and provides an estimate for the norm of the inverse. At this stage, the estimate
claimed in (7.179) follows from (7.181), (7.183), (4.345), and (2.585)–(2.586).
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Wemay be further enhance the invertibility results from Theorem 7.9 by allowing
the coefficient tensor to be a small perturbation of any distinguished coefficient
tensor of the given system. Specifically, Theorem 7.8 in concert with the continuity
of the operator-valued assignments AWE � A �→ KA and AWE � A �→ K#

A,
considered in all contexts discussed in Theorem 7.2, yield the following result.

Theorem 7.10 Retain the original background assumptions on the set � from
Theorem 7.9 and, as before, fix some integrability exponents p, q ∈ (1,∞), a
parameter λ ∈ (0, n − 1), and some number ε ∈ (0,∞). Consider L ∈ Ldis

(cf. (3.195)) and pick an arbitrary Ao ∈ Adis
L . Then there exist some small threshold

δ ∈ (0, 1) along with some open neighborhood O of Ao in AWE , both of which
depend only on n, p, q, λ, Ao, ε, and the Ahlfors regularity constant of ∂�,
with the property that if ‖ν‖[BMO(∂�,σ)]n < δ (hence, � is a δ-AR domain; cf.
Definition 2.15) then for each A ∈ O and each spectral parameter z ∈ C with
|z| ≥ ε, the operators (7.170)–(7.178) are invertible.

We close this section with the following remark.

Remark 7.4 In the two-dimensional setting, more can be said about the Lamé
system. Specifically, the versions of Theorem 4.14 and Corollary 4.3 naturally
formulated in terms of Morrey spaces, vanishing Morrey spaces, block spaces, as
well as their associated Sobolev spaces, continue to hold, virtually with the same
proofs (now making use of Proposition 7.5, Theorems 7.1, 7.2, and 7.7).

7.3 Invertibility on Morrey/Block-Based Homogeneous
Sobolev Spaces

The starting point in this section is the following counterpart of Theorem 4.10
containing operator norm estimates for double layer potentials associated with
distinguished coefficient tensors on Morrey-based and block-based Sobolev spaces.
As in the past, the key feature of said estimates is the explicit dependence on the
BMO semi-norm of the geometric measure theoretic outward unit normal to the
underlying domain.

Theorem 7.11 Let � ⊆ R
n be a two-sided NTA domain whose boundary is an

unbounded Ahlfors regular set. Abbreviate σ := Hn−1�∂� and denote by ν the
geometric measure theoretic outward unit normal to �. Also, fix some integrability
exponents p, q ∈ (1,∞) and a parameter λ ∈ (0, n − 1). Next, let L be a
homogeneous, second-order, constant complex coefficient, weakly elliptic M × M

system in R
n for which Adis

L �= ∅. Finally, pick A ∈ Adis
L and consider the modified

boundary-to-boundary double layer potential operator
[
K

A,mod

]
associated with �

and the coefficient tensor A as in Theorem 7.6.
Then for each m ∈ N there exists some Cm ∈ (0,∞) which depends only on m,

n, A, p, q, λ, the two-sided NTA constants of �, and the Ahlfors regularity constant
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of ∂�, such that, with the piece of notation introduced in (4.93), one has

∥∥[
K

A,mod

]∥∥[ .Mp,λ
1 (∂�,σ)/∼]M→[ .Mp,λ

1 (∂�,σ)/∼]M ≤ Cm‖ν‖〈m〉
[BMO(∂�,σ)]n , (7.184)

∥∥[
K

A,mod

]∥∥[ .Bq,λ
1 (∂�,σ)/∼]M→[ .Bq,λ

1 (∂�,σ)/∼]M ≤ Cm‖ν‖〈m〉
[BMO(∂�,σ)]n , (7.185)

∥∥[
K

A,mod

]∥∥[ .Mp,λ
1 (∂�,σ)/∼]M→[ .Mp,λ

1 (∂�,σ)/∼]M ≤ Cm‖ν‖〈m〉
[BMO(∂�,σ)]n . (7.186)

Proof The estimate claimed in (7.184) is justified much as in the proof of
Theorem 4.10, making use of (7.141), (7.142), Theorem 7.7, and Theorem 7.1. For
the estimate in (7.185), use (7.144), (7.145), Theorem 7.7, and Theorem 7.1. Finally,
the estimate in (7.186) is dealt with similarly, relying on item (4) in Theorem 7.6.

��
Having established Theorem 7.11, we now arrive at the first main result in this

section concerning invertibility properties of boundary-to-boundary double layer
potential operators associated with distinguished coefficient tensors on Morrey-
based and block-based Sobolev spaces.

Theorem 7.12 Let � ⊆ R
n be an Ahlfors regular domain. Denote by ν the geomet-

ric measure theoretic outward unit normal to � and set σ := Hn−1�∂�. Assume
L is a homogeneous, second-order, constant complex coefficient, weakly elliptic
M × M system in R

n for which Adis
L �= ∅. Pick A ∈ Adis

L and consider the modified
boundary-to-boundary double layer potential operator

[
K

A,mod

]
associated with

� and the coefficient tensor A as in Theorem 7.6. Finally, fix some integrability
exponents p, q ∈ (1,∞), a parameter λ ∈ (0, n−1), and some number ε ∈ (0,∞).

Then there exists some small threshold δ ∈ (0, 1) which depends only on n,
p, q λ, A, ε, and the Ahlfors regularity constant of ∂�, with the property that if
‖ν‖[BMO(∂�,σ)]n < δ (hence � is a δ-AR domain; cf. Definition 2.15) it follows that
for each spectral parameter z ∈ C with |z| ≥ ε the operators

zI + [
K

A,mod

] : [ .
M

p,λ

1 (∂�, σ)/ ∼ ]M −→ [ .
M

p,λ

1 (∂�, σ)/ ∼ ]M
, (7.187)

zI + [
K

A,mod

] : [ .
Bq,λ

1 (∂�, σ)/ ∼ ]M −→ [ .
Bq,λ

1 (∂�, σ)/ ∼ ]M
, (7.188)

zI + [
K

A,mod

] : [ .
M

p,λ

1 (∂�, σ)/ ∼ ]M −→ [ .
M

p,λ

1 (∂�, σ)/ ∼ ]M (7.189)

are all invertible.

Proof Pick δ ∈ (0, 1) small enough so that if ‖ν‖[BMO(∂�,σ)]n < δ then � is a two-
sided NTA domain with an unbounded boundary. That this is possible is guaranteed
by Theorem 2.3. Then all desired invertibility result follow (via a Neumann series
argument) from Theorem 7.11. ��
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Remark 7.5 The conclusions in Theorem 7.12 may fail when A /∈ Adis
L even when

� is a half-space. For example, Proposition 3.13 and Theorem 7.5 imply that in such
a case it may happen that 1

2I + [
K

A,mod

]
has an infinite dimensional cokernel when

acting on homogeneous Morrey-based and block-based Sobolev spaces.

Our next main result in this section, concerning the invertibility of Smod in
quotient Morrey/block spaces, reads as follows:

Theorem 7.13 Let � ⊆ R
n be an Ahlfors regular domain. Set σ := Hn−1�∂�

and denote by ν the geometric measure theoretic outward unit normal to �. Also,
let L be a homogeneous, second-order, constant complex coefficient, weakly elliptic
M × M system in R

n. Consider the modified boundary-to-boundary single layer
potential operator Smod associated with � and the system L as in (3.42). Fix some

exponent p ∈ (1,∞) and λ ∈ (0, n − 1). Finally, use
[ .
M

p,λ

1 (∂�, σ)
/ ∼ ]M

to
denote the M-th power of the quotient space of classes [ · ] of equivalence modulo
constants of functions in

.
M

p,λ

1 (∂�, σ), equipped with the semi-norm (7.72).
Then the following statements are valid.

(1) [Boundedness] If � satisfying a two-sided local John condition then the
operator

[
Smod

] : [
Mp,λ(∂�, σ)

]M −→ [ .
M

p,λ

1 (∂�, σ)
/ ∼ ]M

defined as
[
Smod

]
f := [

Smodf
] ∈ [ .

M
p,λ

1 (∂�, σ)
/ ∼ ]M

,

for all f ∈ [
Mp,λ(∂�, σ)

]M
(7.190)

is well defined, linear, and bounded.
(2) [Surjectivity] Whenever Adis

L �= ∅, there exists some small threshold δ ∈ (0, 1)
which depends only on n, p, λ, L, and the Ahlfors regularity constant of ∂�,
with the property that if ‖ν‖[BMO(∂�,σ)]n < δ (hence � is a δ-AR domain; cf.
Definition 2.15) it follows that (7.72) is a genuine norm and the operator (7.190)
is surjective.

(3) [Injectivity] Whenever Adis
L� �= ∅, there exists some small threshold δ ∈ (0, 1)

which depends only on n, p, λ, L, and the Ahlfors regularity constant of ∂�,
with the property that if ‖ν‖[BMO(∂�,σ)]n < δ (hence � is a δ-AR domain) it
follows that the operator (7.190) is injective.

(4) [Isomorphism] Whenever both Adis
L �= ∅ and Adis

L� �= ∅, there exists some
small threshold δ ∈ (0, 1) which depends only on n, p, λ, L, and the Ahlfors
regularity constant of ∂�, with the property that if ‖ν‖[BMO(∂�,σ)]n < δ (hence

the domain � is a δ-AR domain) it follows that
[ .
M

p,λ

1 (∂�, σ)
/ ∼ ]M

is a
Banach space when equipped with the norm (7.72) and the operator (7.190) is
an isomorphism.

(5) [Other spaces] For each given q ∈ (1,∞), similar results to those described in
items (1)–(4) are valid for the operator
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[
Smod

] : [
Bq,λ(∂�, σ)

]M −→ [ .
Bq,λ

1 (∂�, σ)
/ ∼ ]M

defined as
[
Smod

]
f := [

Smodf
] ∈ [ .

Bq,λ

1 (∂�, σ)
/ ∼ ]M

,

for all f ∈ [
Bq,λ(∂�, σ)

]M
,

(7.191)

as well as the operator

[
Smod

] : [
M̊p,λ(∂�, σ)

]M −→ [ .
M

p,λ

1 (∂�, σ)
/ ∼ ]M

defined as
[
Smod

]
f := [

Smodf
] ∈ [ .

M
p,λ

1 (∂�, σ)
/ ∼ ]M

,

for all f ∈ [
M̊p,λ(∂�, σ)

]M
.

(7.192)

(6) [Optimality] If Adis
L = ∅ then the operator

[
Smod

]
may fail to be surjective (in

fact, may have an infinite dimensional cokernel) in all settings considered above
even in the case when � is a half-space, and if Adis

L� = ∅ then the operator[
Smod

]
may fail to be injective (in fact, may have an infinite dimensional kernel)

in all settings considered above even in the case when � is a half-space.

Proof That the operator (7.190) is well defined, linear, and bounded follows from
item (2) in Theorem 7.4, bearing in mind (2.87) and (2.48). This takes care of item
(1).

To deal with the claims in item (2), pick a coefficient tensor A ∈ Adis
L . Together,

Theorems 2.3, 7.9, and 4.8 guarantee that we may choose a threshold δ ∈ (0, 1)
small enough so that if ‖ν‖[BMO(∂�,σ)]n < δ (a condition which we shall henceforth
assume) then

� is a two-sided NTA domain with an unbounded boundary, (7.193)

and

the operators ± 1
2I + KA are invertible on

[
M

p,λ

1 (∂�, σ)
]M and on

[
L

p

1 (∂�, σ)
]M

.
(7.194)

To proceed, choose a scalar-valued function φ ∈ C∞
0 (Rn) with φ ≡ 1 on B(0, 1)

and suppφ ⊆ B(0, 2). Having fixed a reference point x0 ∈ ∂�, for each scale
r ∈ (0,∞) define φr as in (7.73) and use the same notation to denote the restriction
of φr to ∂�. Suppose now some arbitrary function g ∈ [ .

M
p,λ

1 (∂�, σ)
]M has been

given, and for each r ∈ (0,∞) define gr as in (7.74). Thanks to (7.69) we may
invoke item (iii) in Lemma 7.1 which gives

∥∥∇tan gr

∥∥[Mp,λ(∂�,σ)]n·M ≤ C
∥∥∇tan g

∥∥[Mp,λ(∂�,σ)]n·M (7.195)
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for some C ∈ (0,∞) independent of g and r . For each r ∈ (0,∞) let us now
define hr as in (4.378) (here it helps to note that ± 1

2I + KA are invertible both

on
[
M

p,λ

1 (∂�, σ)
]M and on

[
L

p

1 (∂�, σ)
]M , and the two inverses are compatible).

Using the formula ∂τjk
gr = (

∂τjk
φr

) · (
g − g�2r

) + φr · ∂τjk
g, the fact that the

function g belongs to the space
[ .
M

p,λ

1 (∂�, σ)
]M , and (7.69) it is straightforward

to show that gr ∈ [
M

p,λ

1 (∂�, σ) ∩ L
p

1 (∂�, σ)
]M . Hence, hr is a meaningfully

defined function which belongs to
[
M

p,λ

1 (∂�, σ) ∩ L
p

1 (∂�, σ)
]M . Moreover, from

the definition of hr (cf. (4.378)), (7.179), and (7.195) we conclude that there exists
a constant C ∈ (0,∞), independent of g and r , such that

‖∇tanhr‖[Mp,λ(∂�,σ)]n·M ≤ C ‖∇tangr‖[Mp,λ(∂�,σ)]n·M

for each r ∈ (0,∞).
(7.196)

Going further, for each r ∈ (0,∞) abbreviate

fr := ∂A
ν

(
DAhr

)
at σ -a.e. point on ∂�. (7.197)

Since hr ∈ [
M

p,λ

1 (∂�, σ) ∩ L
p

1 (∂�, σ)
]M , the boundedness result recorded

in (3.115) implies that fr ∈ [
Lp(∂�,w)

]M and for each r ∈ (0,∞) we have

‖fr‖[Lp(∂�,w)]M ≤ C‖∇tanhr‖[Lp(∂�,w)]n·M , (7.198)

whereC ∈ (0,∞) is independent of g and r . Moreover, (7.64), (3.33), (3.66), (2.586),
Proposition 7.5, and (7.196) permit us to write

‖fr‖[Mp,λ(∂�,σ)]M ≤ C‖∇tanhr‖[Mp,λ(∂�,σ)]n·M

≤ C‖∇tang‖[Mp,λ(∂�,σ)]n·M . (7.199)

We use next that hr ∈ [
L

p

1 (∂�, σ)
]M , (3.130), (4.378), (7.197), and Theorem 2.4

to ensure that for each r ∈ (0,∞) there exists some constant cr ∈ C
M such that

Smodfr = gr + cr on ∂�. (7.200)

Select now a sequence {rj }j∈N ⊆ (0,∞) which converges to infinity. Since

from (7.199) we know that {frj }j∈N is a bounded sequence in
[
Mp,λ(∂�, σ)

]M , we
can rely on the Banach–Alaoglu Theorem (cf. (7.27)) and (7.24) to assume, without
loss of generality, that {frj }j∈N is actually weak-∗ convergent to some function

f ∈ [
Mp,λ(∂�, σ)

]M . On account of (7.121), (7.200), and the definition of gr

given in (7.74), for each test function ψ ∈ [
Lip(∂�)

]M with compact support we
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may write

ˆ
∂�

〈
Smodf,ψ

〉
dσ = lim

j→∞

ˆ
∂�

〈
Smodfrj , ψ

〉
dσ = lim

j→∞

ˆ
∂�

〈
grj + crj , ψ

〉
dσ

= lim
j→∞

ˆ
∂�

〈
φrj · (

g − g�2rj

) + crj , ψ
〉
dσ

= lim
j→∞

ˆ
∂�

〈
g − g�2rj

+ crj , ψ
〉
dσ

=
ˆ

∂�

〈g,ψ〉 dσ + lim
j→∞

〈
crj − g�2rj

,

ˆ
∂�

ψ dσ
〉
. (7.201)

Since ψ is arbitrary, we conclude that the sequence
{
crj − g�2rj

}
j∈N ⊆ C

M

converges to some constant c ∈ C
M . Hence, we may then conclude from (7.201)

that
ˆ

∂�

〈
Smodf,ψ

〉
dσ =

ˆ
∂�

〈g + c, ψ〉 dσ (7.202)

for each function ψ ∈ [
Lip(∂�)

]M with compact support. Eventually, from (7.202)
we obtain (see [111, §3.7] for a general measure theoretic result of this nature)

Smodf = g + c at σ -a.e. point on ∂�. (7.203)

Hence,
[
Smod

]
f = [

Smodf
] = [g] and since [g] ∈ [ .

L
p

1 (∂�,w)
/ ∼ ]M is arbitrary,

it follows that the operator (7.190) is surjective. Moreover, from (7.199) we see that

‖f ‖[Mp,λ(∂�,σ)]M ≤ lim sup
j→∞

‖frj ‖[Mp,λ(∂�,σ)]M ≤ C ‖∇tang‖Mp,λ(∂�,σ)]n·M

≤ C ‖[g]‖[ .Mp,λ(∂�,σ)/∼]M , (7.204)

for some constant C ∈ (0,∞) independent of g, so the surjectivity of the operator
in (7.190) comes with quantitative control.

Let us also observe that the fact that (7.72) is, as claimed, a genuine norm is clear
from (7.193) and Proposition 7.6.

Moving on, let us now deal with item (3). Pick a coefficient tensor Ã ∈ AL such
that Ã� ∈ Adis

L� . By Theorem 7.9 we may then choose δ ∈ (0, 1) small enough so
that if ‖ν‖[BMO(∂�,σ)]n < δ (something we shall henceforth assume) then

the operators ± 1
2I + K#

Ã�are invertible on
[
Mp,λ(∂�, σ)

]M
. (7.205)
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The goal is to show that the operator (7.190) is injective. To this end, suppose the
function f ∈ [

Mp,λ(∂�, σ)
]M is such that

[
Smod

]
f = [0]. Hence, [

Smodf
] = [0]

which implies that there exists some constant c ∈ C
M for which

Smodf = c at σ -a.e. point on ∂�. (7.206)

This, together with (7.120), allows us to obtain

( 1
2I + K#

Ã�
)(( − 1

2I + K#
Ã�

)
f

)
= 0 at σ -a.e. point on ∂� (7.207)

which, by (7.205), leads to f = 0. Since the operator (7.190) is linear, it follows
that this is indeed injective.

Next, to treat the claims in item (4), assume that Adis
L �= ∅ and Adis

L� �= ∅.
Then, by the previous items the operator (7.190) is a continuous bijection. Moreover,
Proposition 7.6 and (7.193) imply that

[ .
M

p,λ

1 (∂�, σ)
/ ∼ ]M is a Banach space,

hence the operator (7.190) is a linear isomorphism.
Considered now the claims made in item (5). First, the fact that the opera-

tor (7.191) is well defined, linear, and bounded is seen from item (4) in Theorem 7.4,
keeping in mind (2.87) and (2.48). Second, that the operator (7.191) satisfies the
properties described in items (2)–(3) of Theorem 7.13 is a consequence of the
operator identities

( 1
2I + K#

A�
)( − 1

2I + K#
A�

) = [
∂A
ν DA,mod

][
Smod

]

as mappings acting from
[
Bq,λ(∂�, σ)

]M
,

(7.208)

and

( 1
2I + [

K
A,mod

])( − 1
2I + [

K
A,mod

]) = [
Smod

][
∂A
ν DA,mod

]

as mappings acting from
[ .
Bq,λ

1 (∂�, σ)/ ∼ ]M
,

(7.209)

both of which are contained in Theorem 7.5, (7.178) in Theorem 7.9 (specialized
to z = ± 1

2 ), (7.188) in Theorem 7.12 (again with z = ± 1
2 ), as well as (7.139),

Theorem 2.3, and Theorem 2.4. The case of the operator
[
Smod

]
in (7.192) is handled

analogously.
Finally, the optimality results in item (6) are seen from (3.406) and the natural

version of Proposition 4.4 for Morrey and block spaces. ��

Remark 7.6 Together, (7.133), Theorem 7.9 (with z = ± 1
2 ), (7.135), Theorem 7.12

(with z = ± 1
2 ), (7.132), Theorems 2.3, and 2.4 provide an alternative proof of items

(2)–(3) in Theorem 7.13.



474 7 Singular Integrals and Boundary Problems in Morrey and Block Spaces

We conclude this section with the following theorem addressing the issue of
invertibility for the conormal of the double layer operator acting from homogeneous
Morrey-based and block-spaces Sobolev spaces.

Theorem 7.14 Let � ⊆ R
n be a UR domain. Abbreviate σ := Hn−1�∂� and

denote by ν the geometric measure theoretic outward unit normal to �. Also, let
L be a homogeneous, second-order, constant complex coefficient, weakly elliptic
M × M system in R

n. Fix some exponent p ∈ (1,∞) along with some parameter
λ ∈ (0, n − 1). Pick some coefficient tensor A ∈ AL and consider the modified
conormal derivative of the modified double layer operator in the context of (7.132),
i.e.,

∂A
ν DA,mod : [ .

M
p,λ

1 (∂�, σ)
/ ∼ ]M −→ [

Mp,λ(∂�, σ)
]M

defined as
(
∂A
ν DA,mod)[f ] := ∂A

ν (D
A,modf ) for each f ∈ [ .

M
p,λ

1 (∂�, σ)
]M

.
(7.210)

From Theorem 7.5 this is known to be a well-defined, linear, and bounded operator
when the quotient space is equipped with the norm (7.72). In relation to this, the
following statements are valid.

(1) [Injectivity]Whenever Adis
L �= ∅ and actually A ∈ Adis

L it follows that there exists
some small threshold δ ∈ (0, 1)which depends only on n, p, λ,A, and the Ahlfors
regularity constant of ∂�, with the property that if ‖ν‖[BMO(∂�,σ)]n < δ (hence
� is a δ-AR domain; cf. Definition 2.15) then the operator (7.210) is injective.

(2) [[Surjectivity] Whenever Adis
L� �= ∅ and actually A� ∈ Adis

L� it follows that there
exists some small threshold δ ∈ (0, 1) which depends only on n, p, λ, A, and the
Ahlfors regularity constant of ∂�, with the property that if ‖ν‖[BMO(∂�,σ)]n < δ

(hence � is a δ-AR domain) then the operator (7.210) is surjective.
(3) [Isomorphism] If Adis

L �= ∅, Adis
L� �= ∅, and A ∈ Adis

L is such that A� ∈ Adis
L� it

follows that there exists some small threshold δ ∈ (0, 1) which depends only on
n, p, λ, A, and the Ahlfors regularity constant of ∂�, with the property that if
‖ν‖[BMO(∂�,σ)]n < δ (hence � is a δ-AR domain) then the operator (7.210) is
an isomorphism.

(4) [Other spaces] For each q ∈ (1,∞), similar results to those described in items
(1)–(3) above are valid for the modified conormal derivative of the modified
double layer operator in the context of block and vanishing Morrey spaces, i.e.,

[
∂A
ν DA,mod

] : [ .
Bq,λ

1 (∂�, σ)
/ ∼ ]M −→ [

B q,λ(∂�, σ)
]M

given by
[
∂A
ν DA,mod

][f ] := ∂A
ν (D

A,modf ) for each f ∈ [ .
Bq,λ

1 (∂�, σ)
]M

,

(7.211)
and

∂A
ν DA,mod : [ .

M
p,λ

1 (∂�, σ)
/ ∼ ]M −→ [

M̊p,λ(∂�, σ)
]M

given by
(
∂A
ν DA,mod)[f ] := ∂A

ν (D
A,modf ) for each f ∈ [ .

M
p,λ

1 (∂�, σ)
]M

.
(7.212)
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Proof All claims may be established by arguing as in the proof of Theorem 4.13,
now making use of Theorems 7.5, 7.9, and 7.12. ��

7.4 Characterizing Flatness in Terms of Morrey and Block
Spaces

How do the quantitative aspects of the analysis of a certain geometric environment
affect the very geometric features of said environment? Here we address a specific
aspect of this general question by characterizing the flatness of a “surface” in terms
of the size of the norms of certain singular integral operators acting on Morrey and
block spaces considered on this surface.

In order be able to elaborate on this topic, we need some notation. Given a UR
domain � ⊆ R

n, denote by ν its geometric measure theoretic outward unit normal
and abbreviate σ := Hn−1�∂�. From Proposition 7.4 and (5.16)–(5.18) we then
conclude that whenever p ∈ (1,∞) and λ ∈ (0, n − 1), the operators

C : Mp,λ(∂�, σ) ⊗ C
n −→ Mp,λ(∂�, σ) ⊗ C
n, (7.213)

C : M̊p,λ(∂�, σ) ⊗ C
n −→ M̊p,λ(∂�, σ) ⊗ C
n, (7.214)

and

C# : Mp,λ(∂�, σ) ⊗ C
n −→ Mp,λ(∂�, σ) ⊗ C
n, (7.215)

C# : M̊p,λ(∂�, σ) ⊗ C
n −→ M̊p,λ(∂�, σ) ⊗ C
n (7.216)

are all well defined, linear, and continuous, with

‖C‖Mp,λ(∂�,σ)⊗C
n→Mp,λ(∂�,σ)⊗C
n
,

‖C#‖Mp,λ(∂�,σ)⊗C
n→Mp,λ(∂�,σ)⊗C
n
,

‖C‖
M̊p,λ(∂�,σ)⊗C
n→M̊p,λ(∂�,σ)⊗C
n

,

‖C#‖
M̊p,λ(∂�,σ)⊗C
n→M̊p,λ(∂�,σ)⊗C
n

,

bounded exclusively in terms of n, p, λ, and the UR constants of ∂�.

(7.217)

Granted these, via duality (cf. (5.19) and Proposition 7.2) we also obtain that for
each q ∈ (1,∞) and λ ∈ (0, n − 1) the operators

C : Bq,λ(∂�, σ) ⊗ C
n −→ Bq,λ(∂�, σ) ⊗ C
n, (7.218)
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C# : Bq,λ(∂�, σ) ⊗ C
n −→ Bp,λ(∂�, σ) ⊗ C
n (7.219)

are all well defined, linear, and bounded, with

‖C‖Bq,λ(∂�,σ)⊗C
n→Bp,λ(∂�,σ)⊗C
n
,

‖C#‖Bq,λ(∂�,σ)⊗C
n→Bq,λ(∂�,σ)⊗C
n

controlled only in terms of n, q, λ, and the UR constants of ∂�.

(7.220)

In addition, from (5.20) and duality (cf. (5.19) and Proposition 7.2) we conclude
that, for each p, q ∈ (1,∞) and λ ∈ (0, n − 1),

the operator identities C2 = 1
4I and

(
C#

)2 = 1
4I are valid on

either of the spaces Mp,λ(∂�, σ) ⊗ C
n, M̊p,λ(∂�, σ) ⊗ C
n,
and Bq,λ(∂�, σ) ⊗ C
n.

(7.221)

More delicate estimates than (7.217), (7.220) turn out to hold for the antisym-
metric part of the Cauchy–Clifford operator, i.e., for the difference C − C#, of the
sort described in the proposition below.

Proposition 7.9 Let � ⊆ R
n be a UR domain. Abbreviate σ := Hn−1�∂� and

denote by ν the geometric measure theoretic outward unit normal to �. Also, fix two
integrability exponents p, q ∈ (1,∞) and a parameter λ ∈ (0, n − 1). Then for
each m ∈ N there exists some constant Cm ∈ (0,∞) which depends only on m, n,
p, q, λ, and the UR constants of ∂� such that, with the piece of notation introduced
in (4.93), one has

∥∥∥C − C#
∥∥∥

Mp,λ(∂�,σ)⊗C
n→Mp,λ(∂�,σ)⊗C
n

≤ Cm‖ν‖〈m〉
[BMO(∂�,σ)]n , (7.222)

∥∥∥C − C#
∥∥∥

M̊p,λ(∂�,σ)⊗C
n→M̊p,λ(∂�,σ)⊗C
n

≤ Cm‖ν‖〈m〉
[BMO(∂�,σ)]n , (7.223)

∥∥∥C − C#
∥∥∥
Bq,λ(∂�,σ)⊗C
n→Bq,λ(∂�,σ)⊗C
n

≤ Cm‖ν‖〈m〉
[BMO(∂�,σ)]n . (7.224)

Proof This is implied by the structural result from Lemma 5.1 (bearing in
mind (7.3), (7.8), (7.17)), together with Theorems 7.1, 7.7, and (3.29). ��

Remarkably, it is also possible to establish bounds from below for the operator
norm of C − C# on Morrey spaces and their pre-duals, considered on the boundary
of a UR domain, in terms of the BMO semi-norm of the geometric measure theoretic
outward unit normal vector to the said domain.

Proposition 7.10 Let � ⊆ R
n be a UR domain such that ∂� is unbounded.

Abbreviate σ := Hn−1�∂� and denote by ν the geometric measure theoretic
outward unit normal to �. Also, fix an integrability exponent p ∈ (1,∞) along
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with a parameter λ ∈ (0, n − 1). Then there exists some C ∈ (0,∞) which depends
only on n, p, λ, and the Ahlfors regularity constant of ∂� with the property that

‖ν‖[BMO(∂�,σ)]n ≤ C

∥∥∥C − C#
∥∥∥

M̊p,λ(∂�,σ)⊗C
n→M̊p,λ(∂�,σ)⊗C
n

≤ C

∥∥∥C − C#
∥∥∥

Mp,λ(∂�,σ)⊗C
n→Mp,λ(∂�,σ)⊗C
n

. (7.225)

Furthermore, for each q ∈ (1,∞) and λ ∈ (0, n − 1) there exists some constant
C ∈ (0,∞) which depends only on n, q, λ, and the Ahlfors regularity constant of
∂� with the property that

‖ν‖[BMO(∂�,σ)]n ≤ C

∥∥∥C − C#
∥∥∥
Bq,λ(∂�,σ)⊗C
n→Bq,λ(∂�,σ)⊗C
n

. (7.226)

Proof The argument largely follows the proof of the unweighted version of Theo-
rem 5.1 (i.e., whenw ≡ 1), so we will only indicate the main changes. First, in place
of (5.45) we now write (making use of (7.2), the fact that 1�(y0,R) ∈ M̊p,λ(∂�, σ),
and (7.5))

 
�(x0,R)

|(C − C#)1�(y0,R)(x)|p dσ(x)

≤ R−(n−1−λ)
∥∥(C − C#)1�(y0,R)

∥∥p

Mp,λ(∂�,σ)

≤ R−(n−1−λ)
∥∥1�(y0,R)

∥∥p

Mp,λ(∂�,σ)
‖C − C#‖p

M̊p,λ(∂�,σ)⊗C
n→M̊p,λ(∂�,σ)⊗C
n

≤ CR−(n−1−λ)σ
(
�(y0, R)

)(n−1−λ)/(n−1)×

× ‖C − C#‖p

M̊p,λ(∂�,σ)⊗C
n→M̊p,λ(∂�,σ)⊗C
n

≤ C‖C − C#‖p

M̊p,λ(∂�,σ)⊗C
n→M̊p,λ(∂�,σ)⊗C
n
, (7.227)

where C ∈ (0,∞) depends only on n, p, λ, and the Ahlfors regularity constant of
∂�.

Second, thanks to (7.227), in place of (5.46) we have

 
�(x0,R)

∣∣∣∣
ˆ

�(y0,R)

{
x0 − y

|x0 − y|n � ν(y) + ν(x) � x0 − y

|x0 − y|n
}
dσ(y)

∣∣∣∣
p

dσ(x)

≤ C(�−n ln�)p‖ν‖p

[BMO(∂�,σ)]n + Cn,p

 
�(x0,R)

|(C − C#)1�(y0,R)(x)|p dσ(x)
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+ C�−np

 
�(x0,R)

∣∣ν(x) − ν�(x0,R)

∣∣p dσ(x)

≤ C(�−n ln�)p‖ν‖p

[BMO(∂�,σ)]n

+ C‖C − C#‖p

M̊p,λ(∂�,σ)⊗C
n→M̊p,λ(∂�,σ)⊗C
n
, (7.228)

where C ∈ (0,∞) depends only on n, p, λ, and the Ahlfors regularity constant of
∂�.

Third, with (7.228) in hand, the same type of argument as in the end-game of the
proof of Theorem 5.1 (cf. (5.47)–(5.54)) presently gives

‖ν‖[BMO(∂�,σ)]n ≤ C(�−1 ln�)‖ν‖[BMO(∂�,σ)]n

+ C�n−1‖C − C#‖
M̊p,λ(∂�,σ)⊗C
n→M̊p,λ(∂�,σ)⊗C
n

,

(7.229)

where C ∈ (0,∞) depends only on n, p, λ, and the Ahlfors regularity constant of
∂�. By eventually further increasing � as to ensure that �−1 ln� < 1/(2C), we
finally conclude from (7.229) that

‖ν‖[BMO(∂�,σ)]n ≤ C
∥∥C − C#‖

M̊p,λ(∂�,σ)⊗C
n→M̊p,λ(∂�,σ)⊗C
n
, (7.230)

where C ∈ (0,∞) depends only on n, p, λ, and the Ahlfors regularity constant
of ∂�. This establishes the first estimate claimed in (7.225). The second estimate
in (7.225) is a direct consequence of (7.8).

Finally, the estimate claimed in (7.226) follows from the first inequality
in (7.225), plus the fact that whenever p, q ∈ (1,∞) are such that 1/p + 1/q = 1
then the (real) transpose of

C − C# : M̊p,λ(∂�, σ) ⊗ C
n −→ M̊p,λ(∂�, σ) ⊗ C
n (7.231)

is the operator

C# − C : Bq,λ(∂�, σ) ⊗ C
n −→ Bq,λ(∂�, σ) ⊗ C
n. (7.232)

See (5.19) and Proposition 7.2 in this regard. ��
Our next result contains estimates in the opposite direction to those presented in

Corollary 7.1.

Theorem 7.15 Let � ⊆ R
n be a UR domain. Abbreviate σ := Hn−1�∂� and

denote by ν = (νk)1≤k≤n the geometric measure theoretic outward unit normal
to �. Also, fix two arbitrary integrability exponents p, q ∈ (1,∞) along with some
parameter λ ∈ (0, n−1). Finally, recall the boundary-to-boundary harmonic double
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layer potential operator K� from (3.29), the Riesz transforms {Rj }1≤j≤n on ∂�

from (4.297), and for each index k ∈ {1, . . . , n} denote by Mνk
the operator of

pointwise multiplication by the k-th scalar component of ν. Then there exists some
C ∈ (0,∞) which depends only on n, p, q, λ, and the Ahlfors regularity constant
of ∂� with the property that

‖ν‖[BMO(∂�,σ)]n ≤ C
{

‖K�‖Mp,λ(∂�,σ)→Mp,λ(∂�,σ) (7.233)

+ max
1≤j,k≤n

∥∥[Mνk
, Rj ]

∥∥
Mp,λ(∂�,σ)→Mp,λ(∂�,σ)

}
,

‖ν‖[BMO(∂�,σ)]n ≤ C
{

‖K�‖
M̊p,λ(∂�,σ)→M̊p,λ(∂�,σ)

(7.234)

+ max
1≤j,k≤n

∥∥[Mνk
, Rj ]

∥∥
M̊p,λ(∂�,σ)→M̊p,λ(∂�,σ)

}
,

and

‖ν‖[BMO(∂�,σ)]n ≤ C
{

‖K�‖Bq,λ(∂�,σ)→Bq,λ(∂�,σ) (7.235)

+ max
1≤j,k≤n

∥∥[Mνk
, Rj ]

∥∥
Bq,λ(∂�,σ)→Bq,λ(∂�,σ)

}
.

Proof If ∂� is unbounded then all estimates are implied by Proposition 7.10 and
the structural result from Lemma 5.1 (keeping in mind (7.3), (7.8), (7.17)). When
∂� is bounded, we have K�1 = ± 1

2 (cf. [114, §1.5]) with the sign plus if � is
bounded, and the sign minus if � is unbounded, hence the norm of K� on either
Mp,λ(∂�, σ), M̊p,λ(∂�, σ) or Bq,λ(∂�, σ) is ≥ 1

2 in such a case. Given that
‖ν‖[BMO(∂�,σ)]n ≤ 1 (cf. (2.118)), the estimates claimed in (7.233)–(7.235) are
valid in this case if we take C ≥ 2. ��

In turn, the results established in Theorem 7.15 may be used to characterize the
class of δ-AR domains in Rn, in the spirit of Corollary 5.2, using Morrey spaces and
their pre-duals.

By way of contrast, Theorem 7.16 discussed next is a stability result stating that
if � ⊆ R

n is a UR domain with an unbounded boundary for which the URTI
(cf. (5.58)) are “almost” true in the context of either Morrey or block spaces, then
∂� is “almost” flat, in that the BMO semi-norm of the outward unit normal to � is
small.

Theorem 7.16 Let � ⊆ R
n be a UR domain with an unbounded boundary.

Abbreviate σ := Hn−1�∂� and denote by ν the geometric measure theoretic
outward unit normal to �. Also, fix p, q ∈ (1,∞) along with λ ∈ (0, n − 1),
and recall the Riesz transforms {Rj }1≤j≤n on ∂� from (4.297). Then there exists
some C ∈ (0,∞) which depends only on n, p, q, λ, and the UR constants of ∂�
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with the property that

‖ν‖[BMO(∂�,σ)]n ≤ C
{∥∥∥I +

n∑
j=1

R2
j

∥∥∥
Mp,λ(∂�,σ)→Mp,λ(∂�,σ)

(7.236)

+ max
1≤j,k≤n

∥∥[Rj ,Rk]
∥∥

Mp,λ(∂�,σ)→Mp,λ(∂�,σ)

}
,

plus similar estimates with the Morrey space Mp,λ(∂�, σ) replaced by the vanish-
ing Morrey space M̊p,λ(∂�, σ), or the block space Bq,λ(∂�, σ).

Proof A key ingredient is the fact that we have the operator identities

C − C# = C
(
I +

n∑
j=1

R2
j

)
+

∑
1≤j<k≤n

C[Rj ,Rk]ej � ek

on Mp,λ(∂�, σ) ⊗ C
n, M̊p,λ(∂�, σ) ⊗ C
n,Bq,λ(∂�, σ) ⊗ C
n.

(7.237)

These are proved much like formula [61, (4.6.46), p. 2752], now making use
of (7.221). Once (7.237) has been established, Proposition 7.10 and (7.213)–(7.220)
to conclude (much as in the proof of Theorem 5.3) that the estimate claimed
in (7.236) as well as its related versions on vanishing Morrey spaces and block
spaces are all true. ��

The last result in this section contains estimates in the opposite direction to those
from Theorem 7.16. Together, Theorems 7.17 and 7.16 amount to saying that, under
natural background geometric assumptions on the set �, the URTI are “almost” true
on Morrey spaces or block spaces if and only if ∂� is “almost” flat (in that the BMO
semi-norm of the outward unit normal to � is small).

Theorem 7.17 Let � ⊆ R
n be a UR domain. Abbreviate σ := Hn−1�∂� and

denote by ν the geometric measure theoretic outward unit normal to �. Also, fix
p, q ∈ (1,∞) along with λ ∈ (0, n−1), and recall the Riesz transforms {Rj }1≤j≤n

on ∂� from (4.297).
Then for each m ∈ N there exists some constant Cm ∈ (0,∞) which depends

only on m, n, p, q, λ, and the UR constants of ∂� such that, with the piece of
notation introduced in (4.93), one has

∥∥∥I +
n∑

j=1

R2
j

∥∥∥
Mp,λ(∂�,σ)→Mp,λ(∂�,σ)

≤ Cm‖ν‖〈m〉
[BMO(∂�,σ)]n , (7.238)

max
1≤j<k≤n

∥∥[Rj ,Rk]
∥∥

Mp,λ(∂�,σ)→Mp,λ(∂�,σ)
≤ Cm‖ν‖〈m〉

[BMO(∂�,σ)]n , (7.239)

plus similar estimates with the Morrey space Mp,λ(∂�, σ) replaced by the vanish-
ing Morrey space M̊p,λ(∂�, σ), or the block space Bq,λ(∂�, σ).
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Proof The starting point is to observe that we have the operator identities

C(C# − C) = − 1
4

(
I +

n∑
j=1

R2
j

)
− 1

4

∑
1≤j<k≤n

[Rj ,Rk]ej � ek,

on Mp,λ(∂�, σ) ⊗ C
n, M̊p,λ(∂�, σ) ⊗ C
n, Bq,λ(∂�, σ) ⊗ C
n,

(7.240)

which are themselves consequences of (7.237) and (7.221). With (7.240) in hand,
the estimates claimed in the statement of the theorem may then be justified via
an estimate similar in spirit to (5.66), and also invoking Proposition 7.9 (as well
as (7.217), (7.220)) in the process. ��

7.5 Boundary Value Problems in Morrey and Block Spaces

We begin by discussing the Dirichlet Problem for weakly elliptic systems in δ-AR
domains with boundary data in ordinary Morrey spaces, vanishing Morrey spaces,
and block spaces.

Theorem 7.18 Let � ⊆ R
n be an Ahlfors regular domain. Set σ := Hn−1�∂�,

denote by ν the geometric measure theoretic outward unit normal to �, and fix an
aperture parameter κ > 0. Also, pick an exponent p ∈ (1,∞) and a parameter
λ ∈ (0, n − 1). Given a homogeneous, second-order, constant complex coefficient,
weakly elliptic M × M system L in Rn, consider the Dirichlet Problem

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u ∈ [
C∞(�)

]M
,

Lu = 0 in �,

Nκu ∈ Mp,λ(∂�, σ),

u
∣∣κ−n.t.

∂�
= f ∈ [

Mp,λ(∂�, σ)
]M

.

(7.241)

The following claims are true:

(a) [Existence, Regularity, and Estimates] If Adis
L �= ∅ and A ∈ Adis

L , then there
exists δ ∈ (0, 1) which depends only on n, p, λ, A, and the Ahlfors regularity
constant of ∂� such that if ‖ν‖[BMO(∂�,σ)]n < δ (hence � is a δ-AR domain;
cf. Definition 2.15) then 1

2I + KA is an invertible operator on the Morrey space[
Mp,λ(∂�, σ)

]M
and the function u : � → C

M defined as

u(x) :=
(
DA

(
1
2I + KA

)−1
f

)
(x) for all x ∈ �, (7.242)

is a solution of the Dirichlet Problem (7.241). Moreover,
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‖Nκu‖Mp,λ(∂�,σ) ≈ ‖f ‖[Mp,λ(∂�,σ)]M . (7.243)

Furthermore, the function u defined in (7.242) satisfies the following regularity
result

Nκ(∇u) ∈ Mp,λ(∂�, σ) ⇐⇒ f ∈ [
M

p,λ

1 (∂�, σ)
]M

, (7.244)

and if either of these conditions holds then

(∇u
)∣∣κ−n.t.

∂�
exists (in Cn·M ) at σ -a.e. point on ∂� and

‖Nκu‖Mp,λ(∂�,σ) + ‖Nκ(∇u)‖Mp,λ(∂�,σ) ≈ ‖f ‖[Mp,λ
1 (∂�,σ)]M .

(7.245)

(b) [Uniqueness] Whenever Adis
L� �= ∅, there exists some δ ∈ (0, 1) which depends

only on n, p, [w]Ap , L, η, and the Ahlfors regularity constant of ∂� such that if
‖ν‖[BMO(∂�,σ)]n < δ (hence � is a δ-AR domain; cf. Definition 2.15) then the
Dirichlet Problem (7.241) has at most one solution.

(c) [Well-Posedness] If Adis
L �= ∅ and Adis

L� �= ∅ then there exists some δ ∈ (0, 1)
which depends only on n, p, [w]Ap , A, η, and the Ahlfors regularity constant of
∂� such that whenever ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain; cf.
Definition 2.15) then the Dirichlet Problem (7.241) is uniquely solvable and the
solution satisfies (7.243).

(d) [Sharpness] If Adis
L = ∅ then the Dirichlet Problem (7.241) may fail to

be solvable (actually for boundary data belonging to an infinite dimensional
subspace of the corresponding Morrey space). Also, if Adis

L� = ∅ then the
Dirichlet Problem (7.241) may have more than one solution (in fact, the linear
space of null-solutions may actually be infinite dimensional).

(e) [Other Spaces of Boundary Data] Similar results to those described in items (a)–
(d) above hold with the Morrey space Mp,λ(∂�, σ) replaced by the vanishing
Morrey space M̊p,λ(∂�, σ), or the block space Bq,λ(∂�, σ) with q ∈ (1,∞).

In addition, given any pair of integrability exponents p0, p1 ∈ (1,∞) along
with any pair of parameters λ0, λ1 ∈ (0, n − 1), similar results are valid for the
Dirichlet Problem

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u ∈ [
C∞(�)

]M
,

Lu = 0 in �,

Nκu ∈ Mp0,λ0(∂�, σ) + Mp1,λ1(∂�, σ),

u
∣∣κ−n.t.

∂�
= f ∈ [

Mp0,λ0(∂�, σ) + Mp1,λ1(∂�, σ)
]M

,

(7.246)

as well as for its versions with the Morrey spaces replaced by vanishing Morrey
space or block spaces.
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To give an example, suppose � ⊆ R
n is a δ-AR domain and fix an arbitrary

aperture parameter κ > 0 along with some power a ∈ (0, n − 1). In addition,
choose a number λ ∈ (0, n− 1− a) and define p := (n− 1−λ)/a ∈ (1,∞). Then,
if δ > 0 is sufficiently small (relative to n, a, λ, and the Ahlfors regularity constant
of ∂�), it follows that for each point xo ∈ ∂� the Dirichlet Problem

⎧⎨
⎩

u ∈ C∞(�), �u = 0 in �, Nκu ∈ Mp,λ(∂�, σ),(
u
∣∣κ−n.t.

∂�

)
(x) = |x − xo|−a at σ -a.e. point x ∈ ∂�

(7.247)

has a unique solution. Moreover, there exists a constant C(�, n, κ, a, λ) ∈ (0,∞)

with the property that said solution satisfies ‖Nκu‖Mp,λ(∂�,σ) ≤ C(�, n, κ, a, λ).
The reason is that, as seen from Example 7.1, the function fxo(x) := |x − xo|−a

for σ -a.e. point x ∈ ∂� belongs to the Morrey space Mp,λ(∂�, σ) and we have
supxo∈∂� ‖fxo‖Mp,λ(∂�,σ) < ∞. As such, the result in item (c) of Theorem 7.18
applies and yields the desired conclusion.

In addition, there is a naturally accompanying regularity result. To formulate it,
assume q ∈ (1,∞) and μ ∈ (0, n − 1) are such that a + 1 = (n − 1 − μ)/q.
Starting from the realization that the boundary datum fxo actually belongs to a
suitably defined off-diagonal Morrey-based Sobolev space on ∂�, from (6.37) and
Example 7.1 we see that there exists C(�, n, κ, a, q, μ) ∈ (0,∞) independent of
xo ∈ ∂� such that, if δ > 0 is sufficiently small to begin with, then the unique
solution of the Dirichlet Problem (7.247) satisfies the following additional regularity
properties

(∇u
)∣∣κ−n.t.

∂�
exists (in Rn) at σ -a.e. point on ∂�,

and ‖Nκ(∇u)‖Mq,μ(∂�,σ) ≤ C(�, n, κ, a, q, μ).
(7.248)

To wrap up the discussion about (7.247) we wish to note that since the inverse
of 1

2I + K� on Mp,λ(∂�, σ) is compatible with the inverse of 1
2I + K� on

Lp,∞(∂�, σ) (as alluded to in Remark 4.20), we conclude (from the manner
in which the solution is constructed; cf. (7.242)) that the solution u of the
Dirichlet Problem (7.247) actually coincides with the solution u of the Dirichlet
Problem (6.35).

In closing, let us also mention that boundary value problems in a bounded
Lipschitz domain � ⊆ R

n with boundary data with components in the Morrey
spaces M2,λ(∂�, σ) (with λ belonging to a certain sub-interval of (0, n − 1))
for symmetric, homogeneous, second-order, systems with constant real coefficients
satisfying the Legendre–Hadamard strong ellipticity condition have been considered
in [127].

After this digression we turn to the task of giving the proof of Theorem 7.18.

Proof of Theorem 7.18 The argument parallels the proof of Theorem 6.2. First,
Theorem 7.9 shows that there exists some number δ ∈ (0, 1), whose nature
is as specified in the statement of the theorem, with the property that if � is



484 7 Singular Integrals and Boundary Problems in Morrey and Block Spaces

a δ-AR domain then the operator 1
2I + KA is invertible on the Morrey space[

Mp,λ(∂�, σ)
]M . Hence, the function u in (7.242) is meaningfully defined, and

according to (3.23), (7.3), and Theorem 7.2, we have u ∈ [
C∞(�)

]M , Lu = 0 in
�, Nκu ∈ Mp,λ(∂�, σ), and (7.243) holds. Concerning the equivalence claimed
in (7.244), if f ∈ [

M
p,λ

1 (∂�, σ)
]M then Theorem 7.9 gives (assuming δ > 0 is

sufficiently small) that
(
1
2I + KA

)−1
f belongs to

[
M

p,λ

1 (∂�, σ)
]M . With this in

hand, (7.64)–(7.65) then imply that the function u defined as in (7.242) satisfies

Nκ(∇u) ∈ Mp,λ(∂�, σ), the nontangential boundary trace (∇u
)∣∣κ−n.t.

∂�
exists σ -a.e.

on ∂�, and the left-pointing inequality in the equivalence claimed in (7.245) holds.
In particular, this justifies the left-pointing implication in (7.244). The right-pointing
implication in (7.244) together with the right-pointing inequality in the equivalence
claimed in (7.245) are consequences of (7.3) and Proposition 2.22.

Turning our attention to the uniqueness result claimed in item (b), make the
assumption that Adis

L� �= ∅ and pick some A ∈ AL such that A� ∈ Adis
L� . Also,

denote by q ∈ (1,∞) the Hölder conjugate exponent of p. From Theorem 7.9,
presently used with L replaced by L�, we know that there exists δ ∈ (0, 1), which
depends only on n, p, λ, A, and the Ahlfors regularity constant of ∂�, such that if
� is a δ-AR domain then the following operator is invertible:

1
2I + KA� : [

Bq,λ

1 (∂�, σ)
]M −→ [

Bq,λ

1 (∂�, σ)
]M

. (7.249)

Also, decreasing the value of δ ∈ (0, 1) if necessary guarantees that � is an NTA
domain with unbounded boundary (cf. Theorem 2.3). In such a case, (6.2) ensures
that � is globally pathwise nontangentially accessible.

Moving on, recall the fundamental solution E = (
Eαβ

)
1≤α,β≤M

associated with

the systemL as in Theorem 3.1. Pick x� ∈ R
n\� along with x0 ∈ �, arbitrary. Also,

fix ρ ∈ (
0, 1

4 dist(x0, ∂�)
)
and define K := B(x0, ρ). Finally, recall the aperture

parameter κ̃ > 0 associated with � and κ as in Theorem 6.1. To proceed, for each
fixed index β ∈ {1, . . . ,M}, consider the CM -valued function

f (β)(x) := (
Eβα(x − x0) − Eβα(x − x�)

)
1≤α≤M

, ∀ x ∈ ∂�. (7.250)

Based on (7.19), (7.250), (7.57), (2.579), (7.21), (3.16), and the Mean Value
Theorem we then conclude that

f (β) ∈ [
Bq,λ

1 (∂�, σ)
]M

. (7.251)

Consequently, with
(
1
2I + KA�

)−1
denoting the inverse of the operator in (7.249),

vβ := (
vβα

)
1≤α≤M

:= DA�
( (

1
2I + KA�

)−1
f (β)

)
(7.252)
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is a well-defined CM -valued function in � which, by virtue of Theorem 7.2, satisfies

vβ ∈ [
C∞(�)

]M
, L�vβ = 0 in �,

Nκ̃ vβ ∈ Bq,λ(∂�, σ), Nκ̃ (∇vβ) ∈ Bq,λ(∂�, σ),

and vβ

∣∣κ̃−n.t.

∂�
= f (β) at σ -a.e. point on ∂�.

(7.253)

In addition, from (7.251)–(7.252) and (7.64) we see that

(∇vβ

)∣∣κ̃−n.t.

∂�
exists (in Cn·M ) at σ -a.e. point on ∂�. (7.254)

For each pair of indices α, β ∈ {1, . . . ,M} let us now define

Gαβ(x) := vβα(x)−(
Eβα(x−x0)−Eβα(x−x�)

)
, ∀ x ∈ �\{x0}. (7.255)

Regarding G := (
Gαβ

)
1≤α,β≤M

as a C
M×M -valued function defined Ln-a.e. in

�, from (7.255) and Theorem 3.1 we then see that G ∈ [
L1
loc(�,Ln)

]M×M .
Furthermore, by design,

L�G = −δx0IM×M in
[
D′(�)

]M×M and

G
∣∣κ̃−n.t.

∂�
= 0 at σ -a.e. point on ∂�,

(∇G
)∣∣κ̃−n.t.

∂�
exists at σ -a.e. point on ∂�,

(7.256)

while if v := (
vβα

)
1≤α,β≤M

then from (2.8), (3.16), and the Mean Value Theorem
it follows that at each point x ∈ ∂� we have

(
N�\K

κ̃ G
)
(x) ≤ (

Nκ̃ v
)
(x) + Cx0,ρ(1 + |x|)1−n and

(
N�\K

κ̃ (∇G)
)
(x) ≤ (

Nκ̃ (∇v)
)
(x) + Cx0,ρ(1 + |x|)−n,

(7.257)

where Cx0,ρ ∈ (0,∞) is independent of x. From (7.253), (7.257), (7.21), and (7.19)
we see that the conditions listed in (6.4) are presently satisfied and, in fact,

N�\K
κ̃ (∇G) ∈ Bq,λ(∂�, σ). (7.258)

Assume now that u = (uβ)1≤β≤M is a CM -valued function in � satisfying

u ∈ [
C∞(�)

]M
, Lu = 0 in �,

u
∣∣κ−n.t.

∂�
exists at σ -a.e. point on ∂�,

and Nκu belongs to the space Mp,λ(∂�, σ).

(7.259)
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Since (7.258) and (7.22) imply

ˆ
∂�

Nκu·N�\K
κ̃ (∇G) dσ

≤ C
∥∥Nκu

∥∥
Mp,λ(∂�,σ)

∥∥N�\K
κ̃ (∇G)

∥∥
Bq,λ(∂�,σ)

< ∞, (7.260)

we may rely on Theorem 6.1 to conclude that the Poisson integral representation

formula (6.6) holds. In particular, said formula proves that whenever u
∣∣κ−n.t.

∂�
= 0 at

σ -a.e. point on ∂�we necessarily have u(x0) = 0. Given that x0 has been arbitrarily
chosen in�, this ultimately shows such a function u is actually identically zero in�.
This finishes the proof of the uniqueness claimmade in item (b). The well-posedness
claim in item (c) is a consequence of what we have already proved in items (a)–(b).

Going further, the first claim in item (d), regarding the potential failure of
solvability of the Dirichlet Problem (7.241), is a consequence of Proposition 3.10
formulated for Morrey spaces. Its proof goes through virtually unchanged, with one
caveat. Specifically, to justify (3.308), instead of Lebesgue’s Dominated Conver-
gence Theorem onMuckenhoupt weighted Lebesgue spaces we now use the weak-∗
convergence on Morrey spaces from Proposition 7.3 (bearing in mind the continuity
and skew-symmetry of the Hilbert transform onMorrey and block spaces on the real
line). For higher dimensions, see Proposition 3.13. Also, the second claim in item
(d), regarding the potential failure of uniqueness for the Dirichlet Problem (7.241),
is a consequence of Example 3.5 (keeping in mind (3.258) and (7.4)). Again, for
higher dimensions see Proposition 3.13.

Consider next the claim made in item (e). When the Morrey space Mp,λ(∂�, σ)

is replaced by the vanishing Morrey space M̊p,λ(∂�, σ) in the formulation
of (7.241), virtually the same proof goes through, given that matters may be
arranged (by taking δ > 0 sufficiently small) so that the operator 1

2I + KA is

invertible on
[
M̊p,λ(∂�, σ)

]M and
[
M̊

p,λ

1 (∂�, σ)
]M (cf. Theorem 7.9). In the

scenario in which the Morrey space Mp,λ(∂�, σ) is replaced by the block space
Bq,λ(∂�, σ) for some given q ∈ (1,∞) in the formulation of (7.241), the same line
of reasoning applies, with a few notable changes. First, if p is the Hölder conjugate
exponent of q, then taking δ sufficiently small we may ensure that the operator
1
2I + KA is invertible on

[
Bq,λ(∂�, σ)

]M ,
[
Bq,λ

1 (∂�, σ)
]M , and

[
M

p,λ

1 (∂�, σ)
]M

(cf. Theorem 7.9). Second, with f (β) as in (7.250), thanks to (7.4) in place of (7.251)
we now have

f (β) ∈ [
M

p,λ

1 (∂�, σ)
]M

. (7.261)

In place of (7.258), this eventually implies

N�\K
κ̃ (∇G) ∈ Mp,λ(∂�, σ), (7.262)

so in place of (7.260) we now have (again, thanks to (7.22))
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ˆ
∂�

Nκu·N�\K
κ̃ (∇G) dσ

≤ C
∥∥Nκu

∥∥
Bq,λ(∂�,σ)

∥∥N�\K
κ̃ (∇G)

∥∥
Mp,λ(∂�,σ)

< ∞. (7.263)

As before, this allows us to invoke Theorem 6.1 to conclude that the Poisson integral
representation formula (6.6) holds. Ultimately, this readily implies the uniqueness
result we presently seek. The versions of the claims in item (d) for vanishing
Morrey spaces and block spaces are dealt with much as before (for the former
scale, use (7.8); in the case of block spaces, it is useful to observe that (7.17)
and Lebesgue’s Dominated Convergence Theorem yield, in place of (3.308), that
lim

ε→0+ hε = f1 + if2 in Lr(R,L1) where r is as in (7.17), and this suffices to

conclude that (3.309) holds in this case). Once more, for higher dimensions see
Proposition 3.13. Finally, one deals with (7.246) and its related versions along the
lines of the proof of Theorem 6.3. The proof of Theorem 7.18 is therefore complete.

��
It turns out that the solvability results established in Theorem 7.18 may be further

enhanced, via perturbation arguments, as described in our next theorem.

Theorem 7.19 Retain the original background assumptions on the set � from
Theorem 7.18 and, as before, fix two integrability exponents p, q ∈ (1,∞) along
with a parameter λ ∈ (0, n − 1). Then the following statements are true.

(a) [Existence] For each given system Lo ∈ Ldis (cf. (3.195) ) there exist some small
threshold δ ∈ (0, 1) and some open neighborhood U of Lo in L, both of which
depend only on n, p, q, λ, Lo, and the Ahlfors regularity constant of ∂�, with
the property that if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) then for
each system L ∈ U the Dirichlet Problem (7.241), along with its versions in
which the Morrey space Mp,λ(∂�, σ) is replaced by the vanishing Morrey space
M̊p,λ(∂�, σ) or the block space Bq,λ(∂�, σ), are all solvable.

(b) [Uniqueness] For each given system Lo ∈ L with L�
o ∈ Ldis there exist some

small threshold δ ∈ (0, 1) and some open neighborhood U of Lo in L, both of
which depend only on n, p, q, λ, Lo, and the Ahlfors regularity constant of ∂�,
with the property that if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) then
for each system L ∈ U the Dirichlet Problem (7.241) along with its versions in
which the Morrey space Mp,λ(∂�, σ) is replaced by the vanishing Morrey space
M̊p,λ(∂�, σ) or the block space Bq,λ(∂�, σ), have at most one solution.

(c) [Well-Posedness] For each given system Lo ∈ Ldis with L�
o ∈ Ldis there exist

some small threshold δ ∈ (0, 1) and some open neighborhoodU of Lo in L, both
of which depend only on n, p, q, λ, Lo, and the Ahlfors regularity constant of ∂�,
with the property that if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) then
for each system L ∈ U the Dirichlet Problem (7.241) along with its versions in
which the Morrey space Mp,λ(∂�, σ) is replaced by the vanishing Morrey space
M̊p,λ(∂�, σ) or the block space Bq,λ(∂�, σ), are all well posed.
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Proof This may be justified by reasoning as in the proof of Theorem 6.4, now
making use of the invertibility results from Theorem 7.10. ��

We continue by discussing the Inhomogeneous Regularity Problem for weakly
elliptic systems in δ-AR domains with boundary data in Morrey-based Sobolev
spaces, vanishing Morrey-based Sobolev spaces, as well as block-based Sobolev
spaces.

Theorem 7.20 Let � ⊆ R
n be an Ahlfors regular domain. Set σ := Hn−1�∂�,

denote by ν the geometric measure theoretic outward unit normal to �, and fix an
aperture parameter κ > 0. Also, pick an exponent p ∈ (1,∞) and a parameter
λ ∈ (0, n − 1). Given a homogeneous, second-order, constant complex coefficient,
weakly elliptic M × M system L in R

n, consider the Inhomogeneous Regularity
Problem

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u ∈ [
C∞(�)

]M
,

Lu = 0 in �,

Nκu, Nκ(∇u) ∈ Mp,λ(∂�, σ),

u
∣∣κ−n.t.

∂�
= f ∈ [

M
p,λ

1 (∂�, σ)
]M

.

(7.264)

The following statements are true:

(a) [Existence and Estimates] If Adis
L �= ∅ and A ∈ Adis

L , then there exists δ ∈ (0, 1)
which depends only on n, p, λ, A, and the Ahlfors regularity constant of ∂�

such that if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) then 1
2I + KA

is an invertible operator on the Morrey-based Sobolev space
[
M

p,λ

1 (∂�, σ)
]M

and the function

u(x) :=
(
DA

(
1
2I + KA

)−1
f

)
(x), ∀ x ∈ � (7.265)

is a solution of the Inhomogeneous Regularity Problem (7.264). In addition,

‖Nκu‖Mp,λ(∂�,σ) ≈ ‖f ‖[Mp,λ(∂�,σ)]M and

‖Nκu‖Mp,λ(∂�,σ) + ‖Nκ(∇u)‖Mp,λ(∂�,σ) ≈ ‖f ‖[Mp,λ
1 (∂�,σ)]M .

(7.266)

(b) [Uniqueness] Whenever Adis
L� �= ∅, there exists δ ∈ (0, 1) which depends

only on n, p, λ, L, and the Ahlfors regularity constant of ∂� such that if
‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) then the Inhomogeneous
Regularity Problem (7.264) has at most one solution.

(c) [Well-Posedness] If Adis
L �= ∅ and Adis

L� �= ∅ then there exists δ ∈ (0, 1)
which depends only on n, p, λ, L, and the Ahlfors regularity constant of
∂� such that if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) then
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the Inhomogeneous Regularity Problem (7.264) is uniquely solvable and the
solution satisfies (7.266).

(d) [Other Spaces of Boundary Data] Analogous results to those described in
items (a)–(c) above are also valid for the Inhomogeneous Regularity Problem
formulated with boundary data in the vanishing Morrey-based Sobolev space[
M̊

p,λ

1 (∂�, σ)
]M

, or the block-based Sobolev space
[
Bq,λ

1 (∂�, σ)
]M

with
q ∈ (1,∞).

(e) [Perturbation Results] In each of the cases considered in items (a)–(d), there
are naturally accompanying perturbation results of the sort described in Theo-
rem 7.19.

(f) [Sharpness] If Adis
L = ∅ the Regularity Problem (7.264) (and its variants

involving vanishing Morrey-based Sobolev spaces, or block-based Sobolev
spaces) may fail to be solvable, and if Adis

L� = ∅ the Inhomogeneous Regularity
Problem (7.264) (along with its aforementioned variants) may possess more
than one solution.

Proof The claims in items (a)–(d) are implied by Theorems 7.9 and 7.18, while
the claim in item (e) may be justified by reasoning as in the proof of Theorem 6.4,
now making use of the invertibility results from Theorem 7.10. Finally, the claims
in item (f) are consequences of the versions of Example 3.5 and Proposition 3.11
formulated for Morrey spaces, as well as vanishing Morrey spaces and block spaces
(whose proofs naturally adapt to these spaces; see the discussion in the proof of item
(d) in Theorem 7.18). For higher dimensions see Proposition 3.13. ��

Remark 7.7 Much as indicated in Remark 6.3, similar solvability and well-
posedness results as in Theorem 7.20 hold for the versions of the Regularity
Problem (7.264) formulated with boundary data belonging to suitably defined
off-diagonal Morrey-based Sobolev spaces (as well as off-diagonal vanishing
Morrey-based Sobolev spaces, and off-diagonal block-based Sobolev spaces).

The next goal is to formulate and solve the Homogeneous Regularity Problem
with boundary data from homogeneous Morrey-based Sobolev spaces. This aug-
ments solvability results established earlier in Theorems 7.18 and 7.20.

Theorem 7.21 Assume � ⊆ R
n is an Ahlfors regular domain. Denote by ν the

geometric measure theoretic outward unit normal to � and set σ := Hn−1�∂�.
Also, fix an aperture parameter κ > 0 and pick some exponent p ∈ (1,∞)

along with a number λ ∈ (0, n − 1). For a given homogeneous, second-order,
constant complex coefficient, weakly elliptic M × M system L in R

n, consider the
Homogeneous Regularity Problem
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u ∈ [
C∞(�)

]M
,

Lu = 0 in �,

Nκ(∇u) ∈ Mp,λ(∂�, σ),

u
∣∣κ−n.t.

∂�
= f ∈ [ .

M
p,λ

1 (∂�, σ)
]M

,

(7.267)

where
.

M
p,λ

1 (∂�, σ) is the homogeneous Morrey-based boundary Sobolev space
defined in (7.69). In relation to this, the following statements are valid:

(a) [Existence, Estimates, and Integral Representations] If Adis
L �= ∅ then there

exists δ ∈ (0, 1) which depends only on n, p, λ, L, and the Ahlfors regularity
constant of ∂� with the property that if ‖ν‖[BMO(∂�,σ)]n < δ (a scenario
which ensures that � is a δ-AR domain; cf. Definition 2.15) then the following
properties are true. First, the operator

[
Smod

] : [
Mp,λ(∂�, σ)

]M −→ [ .
M

p,λ

1 (∂�, σ)
/ ∼ ]M (7.268)

is surjective and the Homogeneous Regularity Problem (7.267) is solvable.
More specifically, with [f ] ∈ [ .

M
p,λ

1 (∂�, σ)
/ ∼ ]M

denoting the equivalence
class (modulo constants) of the boundary datum f , and with

g ∈ [
Mp,λ(∂�, σ)

]M
selected so that

[
Smod

]
g = [f ], (7.269)

there exists a constant c ∈ C
M such that the function

u := Smodg + c in � (7.270)

is a solution of the Homogeneous Regularity Problem (7.267). In addition, this
solution satisfies (with implicit constants independent of f )

‖Nκ(∇u)‖Mp,λ(∂�,σ) ≈ ‖∇tanf ‖[Mp,λ(∂�,σ)]n·M . (7.271)

Second, for each coefficient tensor A ∈ Adis
L the operator

1
2I + [

K
A,mod

] : [ .
M

p,λ

1 (∂�, σ)/ ∼ ]M −→ [ .
M

p,λ

1 (∂�, σ)/ ∼ ]M (7.272)

is an isomorphism, and the Homogeneous Regularity Problem (7.267) may be
solved as

u := D
A,modh + c in �, (7.273)

for a suitable constant c ∈ C
M and with
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h ∈ [ .
M

p,λ

1 (∂�, σ)
]M

such that [h] =
(
1
2I + [

K
A,mod

])−1[f ]. (7.274)

Moreover, this solution continues to satisfy (7.271).
(b) [Uniqueness] Whenever Adis

L� �= ∅, there exists δ ∈ (0, 1) which depends only
on n, p, λ, L, and the Ahlfors regularity constant of ∂� with the property that
if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain ) then the Homogeneous
Regularity Problem (7.267) has at most one solution.

(c) [Well-Posedness and Additional Integrability/Regularity] Whenever Adis
L �= ∅

and Adis
L� �= ∅ it follows that there exists δ ∈ (0, 1) which depends only on

n, p, λ, L, and the Ahlfors regularity constant of ∂� with the property that
if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) then the Homogeneous
Regularity Problem (7.267) is uniquely solvable. Moreover, the unique solution
u of (7.267) satisfies (in a quantitative fashion)

Nκu ∈ Mp,λ(∂�, σ) ⇐⇒ f ∈ [
M

p,λ

1 (∂�, σ)
]M

. (7.275)

In particular, the equivalence in (7.275) proves that the unique solution of the
Homogeneous Regularity Problem (7.267) for a boundary datum f belonging
to

[
M

p,λ

1 (∂�, σ)
]M (which is a subspace of

[ .
M

p,λ

1 (∂�, σ)
]M

; cf. (7.71)) is
actually the unique solution of the Inhomogeneous Regularity Problem (7.264)
for the boundary datum f .

(d) [Other Spaces of Boundary Data] Analogous results to those described in items
(a)–(c) above are also valid for the Homogeneous Regularity Problem formu-
lated with boundary data in homogeneous vanishing Morrey-based Sobolev
spaces, or homogeneous block-based Sobolev spaces.

(e) [Perturbation Results] In each of the scenarios considered in items (a)–(d),
there are naturally accompanying perturbation results of the sort described in
Theorem 7.19.

(f) [Sharpness] If Adis
L = ∅ the Homogeneous Regularity Problem (7.267) may fail

to be solvable (actually for boundary data belonging to an infinite dimensional
subspace of the corresponding weighted homogeneous Sobolev space), and if
Adis

L� = ∅ the Homogeneous Regularity Problem (7.267) may possess more
than one solution (in fact, the linear space of null-solutions may actually be
infinite dimensional), even in the case when � = R

n+. In particular, if either
Adis

L = ∅ or Adis
L� = ∅, then the Homogeneous Regularity Problem (7.267) may

fail to be well posed, again, even in the case when � = R
n+.

Proof All claims are established by reasoning along the lines of the proof of
Theorem 6.8, now making use of Proposition 7.8, Theorems 7.4, 7.5, 7.9, 7.12,
7.13, and 7.3. ��

We next treat the Neumann Problem for weakly elliptic systems in δ-AR domains
with boundary data in Morrey spaces, vanishing Morrey spaces, and block spaces.
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Theorem 7.22 Let � ⊆ R
n be a UR domain. Denote by ν the geometric measure

theoretic outward unit normal to �, abbreviate σ := Hn−1�∂�, and fix an aperture
parameter κ > 0. Also, pick an integrability exponent p ∈ (1,∞) and a parameter
λ ∈ (0, n − 1). Next, suppose L is a homogeneous, second-order, constant complex
coefficient, weakly elliptic M × M system in R

n. Finally, select some coefficient
tensor A ∈ AL and consider the Neumann Problem

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u ∈ [
C∞(�)

]M
,

Lu = 0 in �,

Nκ(∇u) ∈ Mp,λ(∂�, σ),

∂A
ν u = f ∈ [

Mp,λ(∂�, σ)
]M

.

(7.276)

Then the following statements are valid:

(a) [Existence, Estimates, and Integral Representation] IfA� ∈ Adis
L� then there exists

δ ∈ (0, 1), depending only on n, p, λ, A, and the Ahlfors regularity constant of
∂�, such that if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) then the

operator − 1
2I + K#

A� is invertible on the Morrey space
[
Mp,λ(∂�, σ)

]M
and

the function u : � → C
M defined as

u(x) :=
(
Smod

(
− 1

2I + K#
A�

)−1
f

)
(x) for all x ∈ �, (7.277)

is a solution of the Neumann Problem (7.276) which satisfies

‖Nκ(∇u)‖Mp,λ(∂�,σ) ≤ C ‖f ‖[Mp,λ(∂�,σ)]M (7.278)

for some constant C ∈ (0,∞) independent of f . Also, the operator (7.210) is
surjective which implies that, for some constant C ∈ (0,∞),

there exists g ∈ [ .
M

p,λ

1 (∂�,w)
]M

with ∂A
ν (D

A,modg) = f

and such that ‖g‖[ .Mp,λ
1 (∂�,w)]M ≤ C ‖f ‖[Mp,λ(∂�,w)]M . (7.279)

Consequently, the function

u := D
A,modg in � (7.280)

is a solution of the Neumann Problem (7.276) which continues to satisfy (7.278).
(b) [Uniqueness (modulo constants)] Whenever A ∈ Adis

L there exists δ ∈ (0, 1)
which depends only on n, p, λ, A, and the Ahlfors regularity constant of ∂� such
that if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) then any two solutions
of the Neumann Problem (7.276) differ by a constant from C

M .
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(c) [Well-Posedness]Whenever A ∈ Adis
L and A� ∈ Adis

L� then there exists δ ∈ (0, 1)
which depends only on n, p, λ, A, and the Ahlfors regularity constant of ∂�

such that if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) then the Neumann
Problem (7.276) is solvable, the solution is unique modulo constants from C

M ,
and each solution satisfies (7.278).

(d) [Other Spaces of Boundary Data and Perturbation Results] Similar results as
in items (a)–(c) are valid with the Morrey space Mp,λ(∂�, σ) replaced by
the vanishing Morrey space M̊p,λ(∂�, σ), or the block space Bq,λ(∂�, σ)

with q ∈ (1,∞). In each of these cases there are naturally accompanying
perturbation results of the sort described in Theorem 7.19. Finally, given any pair
of integrability exponents p0, p1 ∈ (1,∞) along with any pair of parameters
λ0, λ1 ∈ (0, n − 1), similar results are valid for the Neumann Problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u ∈ [
C∞(�)

]M
,

Lu = 0 in �,

Nκ(∇u) ∈ Mp0,λ0(∂�, σ) + Mp1,λ1(∂�, σ),

∂A
ν u = f ∈ [

Mp0,λ0(∂�, σ) + Mp1,λ1(∂�, σ)
]M

,

(7.281)

as well as for its versions with the Morrey spaces replaced by vanishing Morrey
space or block spaces.

(e) [Sharpness] If A� /∈ Adis
L� then the Neumann Problem (7.276) may not be

solvable. In addition, if A /∈ Adis
L then the Neumann Problem (7.276) may

have more than one solution. In fact, even the two-dimensional Laplacian may
be written as � = divA∇ for some matrix A ∈ C

2×2 (not belonging to
Adis

� = {I2×2}) such that the Neumann Problem formulated for this as in (7.276)
for this choice of A and with � := R

2+ fails to have a solution for each non-zero
boundary datum belonging to an infinite-dimensional linear subspace of the full
space of boundary data, and the linear space of null-solutions for the Neumann
Problem formulated as in (7.276) for this choice of A and with � := R

2+ is
actually infinite dimensional. The aforementioned lack of Fredholm solvability is
also present for the Neumann Problem formulated in other function spaces, like
those considered in item (d).

Proof Theorem 7.9 guarantees the existence of some threshold δ ∈ (0, 1), whose
nature is as specified in the statement of the theorem, with the property that if �

is a δ-AR domain then the operator − 1
2I + K#

A� is invertible on
[
Mp,λ(∂�, σ)

]M ,[
M̊p,λ(∂�, σ)

]M , and
[
Bq,λ(∂�, σ)

]M (assuming q ∈ (1,∞) has been fixed to
begin with). Granted this, all conclusions, save for the very last claim in item (d),
follow from Theorems 7.4, 7.9, 7.10, and 7.14 by reasoning as in the proof of
Theorem 6.11. The claims pertaining to the Neumann Problem (7.281) are dealt
with much as in the proof of Theorem 6.14. Finally, the sharpness aspect highlighted
in item (e)may be justified by reasoning much as in the proof of Theorem 6.11. ��
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In relation to Theorem 7.22, we wish to note that in the formulation of the
Neumann Problem (7.276) for the two-dimensional Lamé system we may allow
conormal derivatives associated with coefficient tensors of the form A = A(ζ ) as
in (4.401) for any ζ as in (6.155) (see Remark 7.4 and Remark 6.10 in this regard).

Finally, we formulate and solve the Transmission Problem for weakly elliptic
systems in δ-AR domains with boundary data in Morrey spaces, vanishing Morrey
spaces, and block spaces. In the formulation on this problem, the clarifications made
right after the statement of Theorem 6.15 continue to remain relevant.

Theorem 7.23 Let � ⊆ R
n be a UR domain. Denote by ν the geometric measure

theoretic outward unit normal to �, abbreviate σ := Hn−1�∂�, and set

�+ := �, �− := R
n \ �. (7.282)

Also, pick an exponent p ∈ (1,∞) along with a parameter λ ∈ (0, n − 1), an
aperture parameter κ > 0, and a transmission (or coupling) parameter η ∈ C. Next,
assume L is a homogeneous, second-order, constant complex coefficient, weakly
elliptic M × M system in R

n. Finally, select some A ∈ AL and consider the
Transmission Problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u± ∈ [
C∞(�±)

]M
,

Lu± = 0 in �±,

Nκ(∇u±) ∈ Mp,λ(∂�, σ),

u+∣∣κ−n.t.

∂�
− u−∣∣κ−n.t.

∂�
= g ∈ [ .

M
p,λ

1 (∂�,w)
]M

,

∂A
ν u+ − η · ∂A

ν u− = f ∈ [
Mp,λ(∂�, σ)

]M
.

(7.283)

In relation to this, the following statements are valid:

(a) [Uniqueness (modulo constants)] Suppose either

A� ∈ Adis
L� and η ∈ C \ {−1}, (7.284)

or

A ∈ Adis
L and η ∈ C \ {0,−1}. (7.285)

Then there exists δ ∈ (0, 1) which depends only on n, η, p, λ, A, and the Ahlfors
regularity constant of ∂� such that whenever ‖ν‖[BMO(∂�,σ)]n < δ (a scenario
which renders � a δ-AR domain; cf. Definition 2.15) it follows any two solutions
of the Transmission Problem (7.283) differ by a constant (from C

M ).
(b) [Well-Posedness, Integral Representations, and Additional Regularity] Assume

A ∈ Adis
L , A� ∈ Adis

L� , and η ∈ C \ {−1}. (7.286)
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Then there exists some small δ ∈ (0, 1) which depends only on n, p, λ, A, η,
and the Ahlfors regularity constant of ∂� such that if ‖ν‖[BMO(∂�,σ)]n < δ

(a scenario which ensures that � is a δ-AR domain; cf. Definition 2.15) it
follows that the Transmission Problem (7.283) is solvable. Specifically, in the
scenario described in (7.286), the operator − η+1

2 I + (1 − η)K#
A� is invertible

on the Morrey space
[
Mp,λ(∂�, σ)

]M
, the operator

[
Smod

]
is invertible from[

Mp,λ(∂�, σ)
]M

onto the space
[ .
M

p,λ

1 (∂�, σ)
/ ∼ ]M

, and the functions
u± : �± → C

M defined as

u+ := S +
mod

h0 + S +
mod

h1 − c in �+,

u− := S −
mod

h0 in �−,
(7.287)

where the superscripts ± indicate that the modified single layer potentials are
associated with the sets �± and

h1 := [
Smod

]−1[g] ∈ [
Mp,λ(∂�, σ)

]M
, c := Smodh1 − g ∈ C

M,

h0 :=
(
− η+1

2 I + (1 − η)K#
A�

)−1 (
f − ( − 1

2I + K#
A�

)
h1

)
,

(7.288)

solve the Transmission Problem (7.283) and satisfy, for a finite constant C > 0
independent of f and g,

∥∥Nκ(∇u±)
∥∥

Mp,λ(∂�,σ)
≤ C

(
‖f ‖[Mp,λ(∂�,σ)]M + ‖g‖[ .Mp,λ

1 (∂�,σ)]M
)
.

(7.289)
Moreover, any two solutions of the Transmission Problem (7.283) differ by a con-
stant (from C

M ). In particular, any solution of the Transmission Problem (7.283)
satisfies (7.289).

Alternatively, under the conditions imposed in (7.286) and, again, assuming�

is a δ-AR domain with δ ∈ (0, 1) sufficiently small, a solution of the Transmission
Problem (7.283) may also be found in the form

u+ := D+
A,mod

ψ0 + c in �+,

u− := D−
A,mod

ψ1 in �−,
(7.290)

where the superscripts ± indicate that the modified double layer potentials are
associated with the sets �±, where c ∈ C

M is a suitable constant, and where

ψ0, ψ1 ∈ [ .
M

p,λ

1 (∂�, σ)
]M

are two suitable functions satisfying

‖ψ0‖[ .Mp,λ
1 (∂�,σ)]M + ‖ψ1‖[ .Mp,λ

1 (∂�,σ)]M

≤ C
(

‖f ‖[Mp,λ(∂�,σ)]M + ‖g‖[ .Mp,λ
1 (∂�,σ)]M

)
, (7.291)
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for some constant C ∈ (0,∞) independent of f and g. In particular, u±
in (7.290) also satisfy (7.289).

(c) [Well-Posedness for η = 1] In the case when

η = 1 and � is a two-sided NTA domain with
an unbounded Ahlfors regular boundary

(7.292)

the Transmission Problem (7.283) is solvable, and any two solutions of the
Transmission Problem (7.283) differ by a constant. Any solution is given by

u+ := D+
A,mod

g − S +
mod

f + c in �+,

u− := −D−
A,mod

g − S −
mod

f + c in �−,
(7.293)

for some c ∈ C
M , where the superscripts ± indicate that the modified layer

potentials are associated with the sets �± introduced in (7.282). In addition, any
solution satisfies (7.289).

(d) [Other Spaces of Boundary Data and Perturbation Results] Analogous results
hold with the Morrey space Mp,λ(∂�, σ) replaced by the vanishing Morrey
space M̊p,λ(∂�, σ), the block spaceBq,λ(∂�, σ)with q ∈ (1,∞), or by sums of
such spaces. In addition, in each of these cases there are naturally accompanying
perturbation results of the sort described in Theorem 7.19.

Proof For each fixed η ∈ C\ {−1}, p, q ∈ (1,∞), and λ ∈ (0, n−1), Theorem 7.9
guarantees that there exists some threshold δ ∈ (0, 1), whose nature is as specified in
the statement of the theorem, with the property that if � is a δ-AR domain then the
operator − η+1

2 I +(1−η)K#
A� is invertible on

[
Mp,λ(∂�, σ)

]M ,
[
M̊p,λ(∂�, σ)

]M ,

and
[
Bq,λ(∂�, σ)

]M . With this in hand, the same type of argument as in the proof
of Theorem 6.15 (which now relies on Theorems 7.2, 7.4, 7.5, 7.9, 7.12, 7.13) and
the proof of Theorem 6.4 (which now makes use of Theorem 7.10) yields all desired
conclusions. ��

We close by noting that, in the formulation of the Transmission Problem (7.283)
for the two-dimensional Lamé system, we may allow conormal derivatives asso-
ciated with coefficient tensors of the form A = A(ζ ) as in (4.401) for any ζ as
in (6.262) (see Remarks 7.4 and 6.16 in this regard).
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