
Chapter 6
Boundary Value Problems in
Muckenhoupt Weighted Spaces

This chapter is devoted to studying the Dirichlet, Regularity, Neumann, and
Transmission boundary value problems in δ-AR domains with boundary data in
Muckenhoupt weighted Lebesgue and Sobolev spaces. The technology that we
bring to bear on such problems also allows us to deal with similar boundary
value problems formulated in terms of ordinary Lorentz spaces and Lorentz-based
Sobolev spaces.

As a preamble, in Theorem 6.1 below we recall from [113, §4.4] a Poisson
integral representation formula for solutions of the Dirichlet Problem for a given
weakly elliptic second-order system L, in domains of a very general geometric
nature, which involves the conormal derivative of the Green function for the
transpose system L� as integral kernel. Stating this requires that we review a
definition and a couple of related results. Specifically, following [111, §8.9] we shall
say that a set � is globally pathwise nontangentially accessible
provided � is an open nonempty proper subset of Rn such that:

given any κ > 0 there exist κ̃ ≥ κ along with c ∈ [1,∞)

such that σ -a.e. point x ∈ ∂� has the property that any
y ∈ �κ(x) may be joined by a rectifiable curve γx,y such that
γx,y \ {x} ⊂ �κ̃(x) and whose length is ≤ c|x − y|.

(6.1)

It has been noted in [111, §8.9] that

any one-sided NTA domain with unbounded boundary
is a globally pathwise nontangentially accessible set,

(6.2)

and that

any semi-uniform set (in the sense of Aikawa-Hirata; cf.
[4]) is a globally pathwise nontangentially accessible set.

(6.3)
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We are now ready to state the Poisson integral representation formula advertised
earlier (for a proof see [113, §4.4]).

Theorem 6.1 Let � be an open nonempty proper subset of Rn (where n ∈ N with
n ≥ 2) which is globally pathwise nontangentially accessible (in the sense of (6.1)),
and such that ∂� is unbounded and Ahlfors regular. Abbreviate σ := Hn−1�∂�

and denote by ν = (ν1, . . . , νn) the geometric measure theoretic outward unit
normal to �. Next, suppose L is a weakly elliptic, homogeneous, constant (complex)
coefficient, second-order, M × M system in R

n. Fix a parameter κ ∈ (0,∞), along
with an arbitrary point x0 ∈ �, and suppose 0 < ρ < 1

4 dist(x0, ∂�). Finally,
define K := B(x0, ρ).

Then there exists some κ̃ > 0, which depends only on � and κ , with the following
significance. Assume G is a matrix-valued function satisfying
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⎪

⎩

G = (

Gαβ

)

1≤α,β≤M
∈ [

L1
loc(�,Ln)

]M×M
,

(

L�G.β
)

α
= −δx0δαβ in

[D′(�)
]M

for all α, β ∈ {1, . . . ,M},
(∇G

)∣

∣

κ̃−n.t.

∂�
exists (in C n·M2

) at σ -a.e. point on ∂�,

G
∣

∣

κ̃−n.t.

∂�
= 0 ∈ C

M×M at σ − a.e. point on ∂�,

N�\K
κ̃ (∇G) < +∞ at σ − a.e. point on ∂�,

(6.4)

and assume u = (uβ)1≤β≤M is a CM -valued function in � satisfying
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⎪

⎪
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⎪
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u ∈ [

C∞(�)
]M

, Lu = 0 in �,

u
∣

∣

κ−n.t.

∂�
exists at σ -a.e. point on ∂�,

Nκu < +∞ at σ − a.e. point on ∂�,

ˆ
∂�

Nκu · N�\K
κ̃ (∇G) dσ < +∞.

(6.5)

Then for any choice of a coefficient tensor A = (

a
αβ
rs

)

1≤r,s≤n
1≤α,β≤M

∈ AL one has the

Poisson integral representation formula

uβ(x0) = −
ˆ

∂∗�

〈

u
∣

∣

κ−n.t.

∂�
, ∂A�

ν G.β
〉

dσ, ∀β ∈ {1, . . . , M}, (6.6)

where ∂A�
ν stands for the conormal derivative associated with A�, acting on the

columns of the matrix-valued function G according to (compare with (3.66))

∂A�
ν G.β :=

(

νra
γα
sr

(

∂sGγβ

)∣

∣

κ̃−n.t.

∂�

)

1≤α≤M
at σ -a.e. point on ∂∗�, (6.7)

for each β ∈ {1, . . . ,M}.
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One remarkable feature of this result is that the only quantitative aspect of the
hypotheses made in its statement is the finiteness condition in the fourth line of (6.5).
Not only is this most natural (in view of the conclusion in (6.6)), but avoiding to
specify separate memberships of Nκu and N�\K

κ̃ (∇G) to concrete dual function
spaces on ∂� gives Theorem 6.1 a wide range of applicability. In particular, the
various Poisson integral representation formulas this provides in a multitude of
contexts permit us to derive, rather painlessly, uniqueness results for the Dirichlet
Problem.

6.1 The Dirichlet Problem in Weighted Lebesgue Spaces

Theorem 6.2 below describes solvability, regularity, and well-posedness results for
the Dirichlet Problem in δ-AR domains � ⊆ R

n with boundary data in Mucken-
houpt weighted Lebesgue spaces for weakly elliptic second-order homogeneous
constant coefficient systems L in R

n with the property that Adis
L �= ∅ and/or

Adis
L� �= ∅. Examples of such systems include the Laplacian, all scalar weakly

elliptic operators when n ≥ 3, as well as the complex Lamé system given by
Lμ,λ := μ� + (λ + μ)∇div with μ ∈ C \ {0} and λ ∈ C \ {−2μ,−3μ}. In
particular, the well-posedness result described in item (e) of Theorem 6.2 holds in
all these cases. Furthermore, we provide counterexamples showing that our results
are optimal, in the sense that the aforementioned assumptions on the existence of
distinguished coefficient tensors cannot be dispensed with.

Theorem 6.2 Let � ⊆ R
n be an Ahlfors regular domain. Set σ := Hn−1�∂�,

denote by ν the geometric measure theoretic outward unit normal to �, and fix an
aperture parameter κ > 0. Also, pick an exponent p ∈ (1,∞) and a Muckenhoupt
weight w ∈ Ap(∂�, σ). Given a homogeneous, second-order, constant complex
coefficient, weakly elliptic M × M system L in Rn, consider the Dirichlet Problem

⎧
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⎪

⎪

⎨
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⎪

⎪

⎪

⎪

⎪

⎩

u ∈ [

C∞(�)
]M

,

Lu = 0 in �,

Nκu ∈ Lp(∂�,w),

u
∣

∣

κ−n.t.

∂�
= f ∈ [

Lp(∂�,w)
]M

.

(6.8)

The following claims are true:

(a) [Existence, Estimates, and Integral Representation] If Adis
L �= ∅ and A ∈ Adis

L ,
then there exists δ ∈ (0, 1) depending only on n, p, [w]Ap , A, and the Ahlfors
regularity constant of ∂� with the property that if ‖ν‖[BMO(∂�,σ)]n < δ (a
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scenario which ensures that � is a δ-AR domain; cf. Definition 2.15) then the
operator 1

2I + KA is invertible on the weighted Lebesgue space
[

Lp(∂�,w)
]M

and the function u : � → C
M defined as

u(x) :=
(

DA

(

1
2I + KA

)−1
f

)

(x) for all x ∈ �, (6.9)

is a solution of the Dirichlet Problem (6.8). Moreover, there exists some constant
C ∈ (0,∞) independent of f with the property that

‖f ‖[Lp(∂�,w)]M ≤ ‖Nκu‖Lp(∂�,w) ≤ C‖f ‖[Lp(∂�,w)]M . (6.10)

(b) [Additional Integrability] Under the background assumptions made in item (a),
for the solution u of the Dirichlet Problem (6.8) defined in (6.9), one has the
following integrability result: For any given q ∈ (1,∞) and ω ∈ Aq(∂�, σ),
after eventually further decreasing δ ∈ (0, 1) (relative to q and [ω]Aq ), one has

Nκu ∈ Lq(∂�,ω) ⇐⇒ f ∈ [

Lq(∂�,ω)
]M (6.11)

and if either of these conditions holds then

‖Nκu‖Lq(∂�,ω) ≈ ‖f ‖[Lq(∂�,ω)]M . (6.12)

(c) [Regularity] Under the background assumptions made in item (a), for the
solution u of the Dirichlet Problem (6.8) defined in (6.9), one has the following
regularity result: For any given q ∈ (1,∞) and ω ∈ Aq(∂�, σ), after eventually
further decreasing δ ∈ (0, 1) (relative to q and [ω]Aq ), one has

Nκ(∇u) ∈ Lq(∂�,ω) ⇐⇒ ∂τjk
f ∈ [

Lq(∂�,ω)
]M

, 1 ≤ j, k ≤ n, (6.13)

and if either of these conditions holds then

(∇u
)∣

∣

κ−n.t.

∂�
exists (in Cn·M ) at σ -a.e. point on ∂�,

and ‖Nκ(∇u)‖Lq(∂�,ω) ≈ ‖∇tanf ‖[Lq(∂�,ω)]n·M .
(6.14)

In particular, corresponding to q := p and ω := w, if δ ∈ (0, 1) is sufficiently
small to begin with then

Nκ(∇u) belongs to Lp(∂�,w) if and only if f belongs to
[

L
p

1 (∂�,w)]M , and if either of these conditions holds then
‖Nκu‖Lp(∂�,w) + ‖Nκ(∇u)‖Lp(∂�,w) ≈ ‖f ‖[Lp

1 (∂�,w)]M .
(6.15)
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(d) [Uniqueness] Whenever Adis
L� �= ∅, there exists δ ∈ (0, 1) which depends only on

n, p, [w]Ap , L, and the Ahlfors regularity constant of ∂� with the property that
if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) then the Dirichlet Problem
(6.8) has at most one solution.

(e) [Well-Posedness] If Adis
L �= ∅ and Adis

L� �= ∅ then there exists δ ∈ (0, 1) which
depends only on n, p, [w]Ap , L, and the Ahlfors regularity constant of ∂� such
that if ‖ν‖[BMO(∂�,σ)]n < δ (in other words, if � is a δ-AR domain) then the
Dirichlet Problem (6.8) is well posed (i.e., it is uniquely solvable and the solution
satisfies the naturally accompanying estimate formulated in (6.10)).

(f) [Sharpness] If Adis
L = ∅ then the Dirichlet Problem (6.8) may not be solvable.

Also, if Adis
L� = ∅ then the Dirichlet Problem (6.8) may have more than

one solution. In fact, there exists a homogeneous, second-order, constant real
coefficient, weakly elliptic n × n system L in R

n with Adis
L = Adis

L� = ∅ and
which satisfies the following two properties: (i) the Dirichlet Problem formulated
for this system as in (6.8) with � := R

n+ fails to have a solution for each
non-zero boundary datum belonging to an infinite dimensional linear subspace
of

[

Lp(∂�,w)
]n
, and (ii) the linear space of null-solutions for the Dirichlet

Problem formulated for the system L as in (6.8) with � := R
n+ is actually infinite

dimensional.

From Example 2.12 we know that, once a point x0 ∈ ∂� has been fixed, then for
each power a ∈ (

1 − n, (p − 1)(n − 1)
)

the function

w : ∂� → [0,∞], w(x) := |x − x0|a for x ∈ ∂�, (6.16)

is a Muckenhoupt weight in the class Ap(∂�, σ). Boundary value problems for
a real constant coefficient system L satisfying the Legendre–Hadamard strong
ellipticity condition in a bounded Lipschitz domain � ⊆ R

n with boundary data
in weighted (Lebesgue and Sobolev) spaces on ∂� for a weight of the form (6.16)
have been considered in [128].

More generally, Proposition 2.21 tells us that, for each d-set E ⊆ ∂� with d ∈
[0, n − 1) and each power a ∈ (

d + 1 − n, (p − 1)(n − 1 − d)
)

, the function
w := [

dist(·, E)
]a is a Muckenhoupt weight in the class Ap(∂�, σ). Theorem 6.2

may therefore be specialized to this type of weights. A natural choice corresponds to
the case when E is a subset of the set of singularities of the “surface” ∂�. Weighted
boundary value problems in which the weight is a power of the distance to the
singular set (of the boundary) have been studied extensively in the setting of conical
and polyhedral domains, for which there is a vast amount of literature (see, e.g.,
[80, 81], and the references therein).

Finally, we wish to mention that, in the class of systems considered in Theo-
rem 6.2, the ensuing solvability, regularity, uniqueness, and well-posedness results
are new even in the standard case when � = R

n+.
Here is the proof of Theorem 6.2.

Proof of Theorem 6.2 To deal with the claims made in item (a) assume Adis
L �= ∅

and pick some A ∈ Adis
L . Then Theorems 2.3 and 4.8 guarantee the existence of
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some threshold δ ∈ (0, 1), whose nature is as specified in the statement of the
theorem, such that if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) then the
set ∂� is unbounded, � satisfies a two-sided local John condition with constants
which depend only on the Ahlfors regularity constant of ∂� and the dimension n

(in particular, the UR constants of ∂� are also controlled solely in terms of the
dimension n and the Ahlfors regularity constant of ∂�), and the operator 1

2I + KA

is invertible on
[

Lp(∂�,w)
]M . Granted this, from (3.23) and Proposition 3.5 (also

keeping in mind (2.575)) we conclude that the function u defined as in (6.9) solves
the Dirichlet Problem (6.8) and satisfies (6.10).

Consider next the claim made in item (b), regarding additional integrability prop-
erties for the solution constructed in (6.9). The right-pointing implication in (6.11)
together with the right-pointing inequality in (6.12) are simple consequences of the

fact that we have |f | = ∣

∣u
∣

∣

κ−n.t.

∂�

∣

∣ ≤ Nκu at σ -a.e. point on ∂�. The left-pointing
implication in (6.11) along with the left-pointing inequality in (6.12) are seen from
(6.9), (4.340), and Proposition 3.5.

Let us now prove the claims made in item (c) pertaining to the regularity of the
solution u just constructed. Retain the background assumptions made in item (a)
and fix some exponent q ∈ (1,∞) along with some weight ω ∈ Aq(∂�, σ). As

regards the equivalence claimed in (6.13), assume first that f ∈ [

Lp(∂�,w)
]M is

such that ∂τjk
f ∈ [

Lq(∂�,ω)
]M for each j, k ∈ {1, . . . , n}. To proceed, define

g :=
(

1
2I + KA

)−1
f ∈ [

Lp(∂�,w)
]M where the inverse is considered in the

space
[

Lp(∂�,w)
]M . As noted in Remark 4.16 (assuming δ > 0 is sufficiently

small), the operator 1
2I + KA is also invertible on the off-diagonal Muckenhoupt

weighted Sobolev space
[

L
p;q
1 (∂�,w;ω)

]M (cf. (4.306)–(4.307)). Moreover, since

the latter is a subspace of
[

Lp(∂�,w)
]M , it follows that the inverse of 1

2I + KA on
[

L
p;q
1 (∂�,w;ω)

]M is compatible with the inverse of 1
2I + KA on

[

Lp(∂�,w)
]M .

In particular, since we are currently assuming that f ∈ [

L
p;q
1 (∂�,w;ω)

]M , we

conclude that g ∈ [

L
p;q
1 (∂�,w;ω)

]M . As a consequence of this membership
and (2.575), we have

g = (gα)1≤α≤M ∈
[

L1
(

∂�,
σ(x)

1 + |x|n−1

)]M

and

∂τjk
g ∈

[

L1
(

∂�,
σ(x)

1 + |x|n−1

)]M

for all j, k ∈ {1, . . . , n}.
(6.17)

Granted these, we may invoke Proposition 3.1 and from (3.34) we conclude that the

nontangential boundary trace (∇u
)∣

∣

κ−n.t.

∂�
= (∇DAg

)∣

∣

κ−n.t.

∂�
exists (in C

n·M ) at σ -a.e.
point on ∂� (hence, the first property listed in (6.14) holds). Also, formula (3.33)
gives that for each index � ∈ {1, . . . , n} and each point x ∈ � we have
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(∂�u)(x) = ∂�

(DAg
)

(x)

=
( ˆ

∂�

aβα
rs (∂rEγβ)(x − y)(∂τ�s

gα)(y) dσ(y)

)

1≤γ≤M

(6.18)

if the coefficient tensor A is expressed as
(

a
αβ
rs

)

1≤r,s≤n
1≤α,β≤M

, and if the fundamental

solution E = (Eαβ)1≤α,β≤M is as in Theorem 3.1. In concert with (3.85)
and (2.586), this proves that

‖Nκ(∇u)‖Lq(∂�,ω) ≤ C‖∇tang‖[Lq(∂�,ω)]n·M

for some constant C ∈ (0,∞) independent of g.
(6.19)

In particular, Nκ(∇u) belongs to the space Lq(∂�,ω), which finishes the justifica-
tion of the right-to-left implication in (6.13). Also, from (4.343) we know that, for
some constant C ∈ (0,∞) independent of f ,

‖∇tang‖[Lq(∂�,ω)]n·M ≤ C‖∇tanf ‖[Lq(∂�,ω)]n·M . (6.20)

In light of (6.19), this justifies the left-pointing inequality in the equivalence claimed
in (6.14). To complete the treatment of item (b), there remains to observe that the
right-pointing implication in (6.13) together with the right-pointing inequality in
the equivalence claimed in (6.14) are consequences of Proposition 2.23 (bearing in
mind (2.585)).

Consider next the uniqueness result claimed in item (d). Suppose Adis
L� �= ∅ and

pick some A ∈ AL such that A� ∈ Adis
L� . Also, denote by p′ ∈ (1,∞) the Hölder

conjugate exponent of p, and set w′ := w1−p′ ∈ Ap′(∂�, σ). From Theorem 4.8,
presently used with L replaced by L�, p′ in place of p, and w′ in place of w, we
know that there exists δ ∈ (0, 1), which depends only on n, p, [w]Ap , A, and the
Ahlfors regularity constant of ∂�, such that if � is a δ-AR domain then

1
2I + KA� : [

L
p′
1 (∂�,w′)

]M −→ [

L
p′
1 (∂�,w′)

]M (6.21)

is an invertible operator.
By eventually decreasing the value of δ ∈ (0, 1) if necessary, we may ensure

that � is an NTA domain with unbounded boundary (cf. Theorem 2.3). In such a
case, (6.2) guarantees that � is globally pathwise nontangentially accessible.

To proceed, let E = (

Eαβ

)

1≤α,β≤M
be the fundamental solution associated with

the system L as in Theorem 3.1. Fix x� ∈ R
n \� along with x0 ∈ �, arbitrary. Also,

pick ρ ∈ (

0, 1
4 dist(x0, ∂�)

)

and define K := B(x0, ρ). Finally, recall the aperture
parameter κ̃ > 0 associated with � and κ as in Theorem 6.1. Next, for each fixed
β ∈ {1, . . . ,M}, consider the C

M -valued function
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f (β)(x) := (

Eβα(x − x0) − Eβα(x − x�)
)

1≤α≤M
, ∀ x ∈ ∂�. (6.22)

From (6.22), (2.587), (2.579), (2.572), (3.16), and the Mean Value Theorem we then
conclude that

f (β) ∈ [

L
p′
1 (∂�,w′)

]M
. (6.23)

As a consequence, with
(

1
2I + KA�

)−1
denoting the inverse of the operator

in (6.21),

vβ := (

vβα

)

1≤α≤M
:= DA�

( (

1
2I + KA�

)−1
f (β)

)

(6.24)

is a well-defined C
M -valued function in � which, thanks to Proposition 3.5, satisfies

vβ ∈ [

C∞(�)
]M

, L�vβ = 0 in �,

Nκ̃ vβ ∈ Lp′
(∂�,w′), Nκ̃ (∇vβ) ∈ Lp′

(∂�,w′),

and vβ

∣

∣

κ̃−n.t.

∂�
= f (β) at σ -a.e. point on ∂�.

(6.25)

Moreover, from (6.23)–(6.24) and (3.114) we see that

(∇vβ

)∣

∣

κ̃−n.t.

∂�
exists (inCn·M) at σ -a.e. point on ∂�. (6.26)

Subsequently, for each pair of indices α, β ∈ {1, . . . , M} define

Gαβ(x) := vβα(x)− (

Eβα(x −x0)−Eβα(x −x�)
)

, ∀ x ∈ �\ {x0}. (6.27)

If we now consider G := (

Gαβ

)

1≤α,β≤M
regarded as a C

M×M -valued function
defined Ln-a.e. in �, then from (6.27) and Theorem 3.1 we see that G belongs to
the space

[

L1
loc(�,Ln)

]M×M . Also, by design,

L�G = −δx0IM×M in
[D′(�)

]M×M and

G
∣

∣

κ̃−n.t.

∂�
= 0 at σ -a.e. point on ∂�,

(∇G
)∣

∣

κ̃−n.t.

∂�
exists at σ -a.e. point on ∂�,

(6.28)

while if v := (

vβα

)

1≤α,β≤M
then from (2.8), (3.16), and the Mean Value Theorem

it follows that at each point x ∈ ∂� we have



6.1 The Dirichlet Problem in Weighted Lebesgue Spaces 373

(N�\K
κ̃ G

)

(x) ≤ (Nκ̃ v
)

(x) + Cx0,ρ(1 + |x|)1−n and
(N�\K

κ̃ (∇G)
)

(x) ≤ (Nκ̃ (∇v)
)

(x) + Cx0,ρ(1 + |x|)−n,

(6.29)

where Cx0,ρ ∈ (0,∞) is independent of x. In view of (6.25), (6.29), and (2.572) we
see that the conditions listed in (6.4) are presently satisfied and, in fact,

N�\K
κ̃ (∇G) ∈ Lp′

(∂�,w′) = (

Lp(∂�,w)
)∗

. (6.30)

Suppose now that u = (uβ)1≤β≤M is a C
M -valued function in � satisfying

u ∈ [

C∞(�)
]M

, Lu = 0 in �,

u
∣

∣

κ−n.t.

∂�
exists at σ -a.e. point on ∂�,

and Nκu belongs to the space Lp(∂�,w).

(6.31)

Since (6.30) implies

ˆ
∂�

Nκu · N�\K
κ̃ (∇G) dσ < +∞, (6.32)

we may then invoke Theorem 6.1 to conclude that the Poisson integral represen-

tation formula (6.6) holds. In particular, this proves that whenever u
∣

∣

κ−n.t.

∂�
= 0 at

σ -a.e. point on ∂� we necessarily have u(x0) = 0. Given that x0 has been arbitrarily
chosen in �, this ultimately shows such a function u is actually identically zero in
�. This finishes the proof of the claim made in item (d).

Next, the well-posedness claim in item (e) is a consequence of what we have
proved in items (a) and (d). Finally, the two optimality results formulated in
item (f) are seen from (3.381), (3.393), and (3.406) (cf. also Proposition 3.10 and
Example 3.5 in the two-dimensional setting). ��

Remark 6.1 The approach used to prove Theorem 6.2 relies on mapping properties
and invertibility results for boundary layer potentials on Muckenhoupt weighted
Lebesgue and Sobolev spaces. Given that analogous of these results are also valid on
Lorentz spaces and Lorentz-based Sobolev spaces (cf. Remark 4.16, and the Lorentz
space version of (3.85) obtained via real interpolation), the type of argument used to
establish Theorem 6.2 produces similar results for the Dirichlet Problem with data
in Lorentz spaces, i.e., for
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⎩

u ∈ [

C∞(�)
]M

,

Lu = 0 in �,

Nκu ∈ Lp,q(∂�, σ),

u
∣

∣

κ−n.t.

∂�
= f ∈ [

Lp,q(∂�, σ)
]M

.

(6.33)

More specifically, for this boundary problem existence holds in the setting of item
(a) of Theorem 6.2 whenever p ∈ (1,∞) and q ∈ (0,∞], whereas uniqueness
holds in the setting of item (d) of Theorem 6.2 provided p ∈ (1,∞) and q ∈ (0,∞]
(see [55, Theorem 1.4.17, p. 52] for duality results for Lorentz spaces).

In particular, corresponding to q = ∞, whenever Adis
L �= ∅ and Adis

L� �= ∅ it
follows that for each p ∈ (1,∞) the weak-Lp Dirichlet Problem
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⎪
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⎪

⎪

⎪

⎪

⎪

⎪

⎩

u ∈ [

C∞(�)
]M

,

Lu = 0 in �,

Nκu ∈ Lp,∞(∂�, σ),

u
∣

∣

κ−n.t.

∂�
= f ∈ [

Lp,∞(∂�, σ)
]M

(6.34)

is well posed assuming � is a δ-AR domain for a sufficiently small δ ∈ (0, 1),
relative to n, p, L, and the Ahlfors regularity constant of ∂�. As in the proof of
Theorem 6.2, uniqueness is obtained relying on the Poisson integral representation
formula from Theorem 6.1. This requires checking that the Green function with
components as in (6.27) is well defined and satisfies N�\K

κ̃ (∇G) ∈ Lp′,1(∂�, σ),
where p′ is the Hölder conjugate exponents of p. Once this task is accomplished,
the fact that we presently have Nκu ∈ Lp,∞(∂�, σ) = (

Lp′,1(∂�, σ)
)∗ (cf. [55,

Theorem 1.4.17(v), p. 52]) guarantees that the finiteness condition (6.32) presently
holds, and the desired conclusion follows. In turn, the membership of N�\K

κ̃ (∇G)

to Lp′,1(∂�, σ) is seen from (6.29) and (6.24), keeping in mind that the operator
1
2I + KA� (where A ∈ AL is such that A� ∈ Adis

L� ) is invertible on the Lorentz-

based Sobolev space
[

L
p′,1
1 (∂�, σ)

]M and, as seen from standard real interpolation
inclusions, (1 + |x|)−N ∈ Lp,q(∂�, σ) whenever N ≥ n − 1, p ∈ (1,∞), and
q ∈ (0,∞].

See Theorem 8.18 (and also Examples 8.2, 8.6) for a more general perspective
on this topic.

To offer an example, let � ⊆ R
n be a δ-AR domain and fix an arbitrary aperture

parameter κ > 0 along with a power a ∈ (0, n − 1). Set p := (n − 1)/a ∈ (1,∞).
Then, if δ ∈ (0, 1) is sufficiently small (relative to n, a, and the Ahlfors regularity
constant of ∂�, it follows that for each point xo ∈ ∂� the Dirichlet Problem
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⎧

⎨

⎩

u ∈ C∞(�), �u = 0 in �, Nκu ∈ Lp,∞(∂�, σ),
(

u
∣

∣

κ−n.t.

∂�

)

(x) = |x − xo|−a at σ -a.e. point x ∈ ∂�,
(6.35)

is uniquely solvable. In addition, there exists a constant C(�, n, κ, a) ∈ (0,∞)

with the property that if uxo denotes the unique solution of (6.35) then we have the
estimate ‖Nκuxo‖Lp,∞(∂�,σ) ≤ C(�, n, κ, a) for each xo ∈ ∂�. Indeed, since the
function fxo(x) := |x − xo|−a for σ -a.e. point x ∈ ∂� belongs to the Lorentz
space Lp,∞(∂�, σ) and supxo∈∂� ‖fxo‖Lp,∞(∂�,σ) < ∞, the solvability result in
Remark 6.1 applies. This example is particularly relevant in view of the fact that the
boundary datum | · −xo|−a does not belong to any ordinary Lebesgue space on ∂�

with respect to the “surface measure” σ . In addition, since for each j, k ∈ {1, . . . , n}
the boundary datum fxo satisfies

∂τjk
fxo ∈ Lq,∞(∂�, σ) and supxo∈∂�

∥

∥∂τjk
fxo

∥

∥

Lq,∞(∂�,σ)
< ∞,

where q := (n − 1)/(a + 1) ∈ (1,∞),
(6.36)

given that, if (νi)1≤i≤n are the components of the geometric outward unit normal
vector to �,

(

∂τjk
fxo

)

(x) = a
(x − xo)j νk(x) − (x − xo)kνj (x)

|x − xo|a+2 for σ -a.e. x ∈ ∂�,

(6.37)
then the analogues of (6.13)–(6.14) in the current setting imply that the unique solu-
tion uxo of the Dirichlet Problem (6.35) enjoys additional regularity. Specifically, if
δ ∈ (0, 1) is sufficiently small to begin with, then

for each xo ∈ ∂�, the nontangential boundary trace

(∇uxo

)∣

∣

κ−n.t.

∂�
exists (in R

n) at σ -a.e. point on ∂�,

and sup
xo∈∂�

∥

∥Nκ(∇uxo)
∥

∥

Lq,∞(∂�,σ)
< +∞ if q := n−1

a+1 .

(6.38)

In relation to the Dirichlet Problem with data in weak-Lebesgue spaces formu-
lated in (6.34), we also wish to note that, in contrast to the well-posedness result in
the range p ∈ (1,∞), uniqueness no longer holds in the limiting case when p = 1.
Indeed, if we take � := R

n+ and u(x) := xn/|x|n for each x = (x1, . . . , xn) ∈ �

then, since under the identification ∂� ≡ R
n−1 we have

(Nκu
)

(x′) ≈ |x′|1−n

uniformly for x′ ∈ R
n−1 \ {0}, we see that
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⎪

⎪

⎩

u ∈ C∞(�),

�u = 0 in �,

Nκu ∈ L1,∞(∂�, σ),

u
∣

∣

κ−n.t.

∂�
= 0 at σ -a.e. point x ∈ ∂�,

(6.39)

and yet, obviously, u �≡ 0 in �.
We may also establish solvability results for the Dirichlet Problem formulated

for boundary data belonging to sums of Muckenhoupt weighted Lebesgue spaces,
of the sort described below.

Theorem 6.3 Let � ⊆ R
n be an Ahlfors regular domain. Set σ := Hn−1�∂� and

fix an aperture parameter κ > 0. Also, pick p0, p1 ∈ (1,∞) along with a pair of
Muckenhoupt weights w0 ∈ Ap0(∂�, σ) and w1 ∈ Ap1(∂�, σ). Finally, consider
a homogeneous, second-order, constant complex coefficient, M × M weakly elliptic
system L in Rn.

Then similar results, concerning existence, integral representation formulas, esti-
mates, additional integrability properties, regularity, uniqueness, well-posedness,
and sharpness, as in Theorem 6.2, are valid for the Dirichlet Problem:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

u ∈ [

C∞(�)
]M

,

Lu = 0 in �,

Nκu ∈ Lp0(∂�,w0) + Lp1(∂�,w1),

u
∣

∣

κ−n.t.

∂�
= f ∈ [

Lp0(∂�,w0) + Lp1(∂�,w1)
]M

.

(6.40)

Proof Assume Adis
L �= ∅ and A ∈ Adis

L . Then, as noted in the proof of
Proposition 4.2, if � is a δ-AR domain with δ ∈ (0, 1) small enough matters
may be arranged so that � satisfies a two-sided local John condition with constants
which depend only on the Ahlfors regularity constant of ∂� and the dimension n

(in particular, the UR constants of ∂� are also controlled solely in terms of the
dimension n and the Ahlfors regularity constant of ∂�), and the operator 1

2I + KA

is invertible when acting on the space
[

Lp0(∂�,w0) + Lp1(∂�,w1)
]M . Granted

this, we claim that the function u : � → C
M defined as in (6.9) (with this

interpretation of the inverse and for the current boundary datum f ) solves (6.40).
Thanks to (3.23), (3.31), (2.575), this function u satisfies the conditions in the first,
second, and last line of (6.40). To verify the condition stipulated in the penultimate
line of (6.40), decompose

( 1
2I + KA

)−1
f ∈ [

Lp0(∂�,w0) + Lp1(∂�,w1)
]M (6.41)

as

( 1
2I + KA

)−1
f = g0 + g1 with gi ∈ [

Lpi (∂�,wi)
]M for i ∈ {0, 1}. (6.42)
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Then u = DAg0 +DAg1 so Nκu ≤ Nκ(DAg0)+Nκ(DAg1) on ∂�. Consequently,

U0 := (Nκu
) · 1{Nκ (DAg0)≥Nκ (DAg1)} ∈ Lp0(∂�,w0), (6.43)

U1 := (Nκu
) · 1{Nκ (DAg0)<Nκ (DAg1)} ∈ Lp1(∂�,w1), (6.44)

and

Nκu = U0 + U1 ∈ Lp0(∂�,w0) + Lp1(∂�,w1). (6.45)

This establishes the membership in the third line of (6.40). Incidentally, the
argument above also yields a naturally accompanying estimate, namely

‖Nκu‖Lp0 (∂�,w0)+Lp1 (∂�,w1) ≤ C‖f ‖Lp0 (∂�,w0)+Lp1 (∂�,w1) (6.46)

for some C ∈ (0,∞) independent of f .
To prove uniqueness for the boundary problem (6.40) under the assumption that

Adis
L� �= ∅ and � is a δ-AR domain with δ ∈ (0, 1) sufficiently small, we reason as

in the proof of item (d) of Theorem 6.2. The chief novel aspect is that since for f (β)

as in (6.22) we have

f (β) ∈ [

L
p′

0
1 (∂�,w′

0) ∩ L
p′

1
1 (∂�,w′

1)
]M (6.47)

(where p′
0, p

′
1 are the Hölder conjugate exponents of p0, p1, and w′

0, w
′
1 are the

dual weights for w0, w1), from the compatibility property recorded in (4.341)
we conclude that the function vβ defined as in (6.24) enjoys additional regular-
ity/integrability properties compared to (6.25), namely:

vβ ∈ [

C∞(�)
]M

, L�vβ = 0 in �,

Nκ̃ vβ ∈ Lp′
0(∂�,w′

0) ∩ Lp′
1(∂�,w′

1),

Nκ̃ (∇vβ) ∈ Lp′
0(∂�,w′

0) ∩ Lp′
1(∂�,w′

1),

and vβ

∣

∣

κ̃−n.t.

∂�
= f (β) at σ -a.e. point on ∂�.

(6.48)

In turn, this permits us to improve (6.30) to

N�\K
κ̃ (∇G) ∈ Lp′

0(∂�,w′
0)∩Lp′

1(∂�,w′
1)

↪→ (

Lp0(∂�,w0) + Lp1(∂�,w1)
)∗ (6.49)
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which ultimately goes to show that the finiteness condition from (6.32) continues to
hold in the present setting. As such, we may once again rely on the Poisson integral
representation formula from Theorem 6.1 to conclude that the solution u of (6.40)
vanishes in � whenever f = 0.

All other claims in the statement of the present theorem have proofs very similar
to their counterparts in Theorem 6.2. ��

Moving on, it is remarkable that the solvability results described in Theorem 6.2
turn out to be stable under small perturbations. This is made precise in the next
theorem.

Theorem 6.4 Retain the original background assumptions on the set � from
Theorem 6.2 and, as before, fix an integrability exponent p ∈ (1,∞) along with
a Muckenhoupt weight w ∈ Ap(∂�, σ). Then the following statements are true.

(a) [Existence] For each given system Lo ∈ Ldis (cf. (3.195)) there exist some small
threshold δ ∈ (0, 1) and some open neighborhood U of Lo in L, both of which
depend only on n, p, [w]Ap , Lo, and the Ahlfors regularity constant of ∂�, with
the property that if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) then for
each system L ∈ U the Dirichlet Problem (6.8) formulated for L is solvable.

(b) [Uniqueness] For each given system Lo ∈ L with L�
o ∈ Ldis there exist some

small threshold δ ∈ (0, 1) and some open neighborhood U of Lo in L, both of
which depend only on n, p, [w]Ap , Lo, and the Ahlfors regularity constant of ∂�,
with the property that if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) then
for each system L ∈ U the Dirichlet Problem (6.8) formulated for L has at most
one solution.

(c) [Well-Posedness] For each given system Lo ∈ Ldis with L�
o ∈ Ldis there exist

some small threshold δ ∈ (0, 1) and some open neighborhoodU of Lo in L, both
of which depend only on n, p, [w]Ap , Lo, and the Ahlfors regularity constant of
∂�, with the property that if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain)
then for each system L ∈ U the Dirichlet Problem (6.8) formulated for L is well
posed.

Proof To deal with the claim made in item (a), start by observing that the
assumption Lo ∈ Ldis guarantees the existence of some Ao ∈ Adis

Lo
. Theorem 4.9

(used with, say, ε := 1/4) ensures the existence of some small threshold δ ∈ (0, 1)

along with some open neighborhood O of Ao in AWE , both of which depend only on
n, p, [w]Ap , Ao, and the Ahlfors regularity constant of ∂�, with the property that

if ‖ν‖[BMO(∂�,σ)]n < δ then for each ˜A ∈ O the operator 1
2I + K

˜A is invertible on
[

Lp(∂�,w)
]M . Pick ε > 0 such that {A ∈ A : ‖A − Ao‖ < ε} ⊆ O, and define

U := {L ∈ L : ‖L − Lo‖ < ε}. Choose now an arbitrary system L ∈ U. By
design, there exist A ∈ AL and B ∈ Aant such that ‖A−Ao −B‖ < ε. Hence, if we
now introduce ˜A := A − B, then ˜A ∈ AL and the fact that ‖˜A − Ao‖ < ε implies
that ˜A ∈ O. In particular, the latter property permits us to conclude (in light of our
earlier discussion) that the operator 1

2I +K
˜A is invertible on

[

Lp(∂�,w)
]M . Given

that we also have ˜A ∈ AL, it follows (much as in the proof of Theorem 6.2) that the
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function u : � → C
M defined as

u(x) :=
(

D
˜A

(

1
2I + K

˜A

)−1
f

)

(x) for all x ∈ � (6.50)

is a solution of the Dirichlet Problem (6.8) formulated for the current system L. This
finishes the proof of the claim made in item (a).

On to the claim in item (b), pick some Ao ∈ ALo with A�
o ∈ Adis

L�
o

. Running

the same argument as above (with L�
o playing the role of Lo, A�

o playing the role
of Ao, and keeping in mind that transposition is an isometry) yields some small
threshold δ ∈ (0, 1) along with some open neighborhood U of Lo in L, both of
which depend only on n, p, [w]Ap , Ao, and the Ahlfors regularity constant of ∂�,
with the property that if ‖ν‖[BMO(∂�,σ)]n < δ then for each system L ∈ U we may
find a coefficient tensor ˜A ∈ AL with the property that the operator 1

2I + K(˜A)� is

invertible on the Muckenhoupt weighted Sobolev space
[

L
p′
1 (∂�,w′)

]M . This is a
perturbation of the invertibility result in (6.21) and, once this has been established,
the same argument as in the proof of item (c) of Theorem 6.2 applies and gives the
conclusion we presently seek. Finally, the claim in item (c) is a direct consequence
of what we have proved in items (a)–(b). ��

6.2 The Regularity Problem in Weighted Sobolev Spaces

Traditionally, the label “Regularity Problem” is intended for a version of the
Dirichlet Problem in which both the boundary datum and the solution sought are
more “regular” than in the standard formulation of the Dirichlet Problem. For
us here, this means that we shall now select boundary data from Muckenhoupt
weighted Sobolev spaces and also demand control of the nontangential maximal
operator of the gradient of the solution. Given that this involves an inhomogeneous
Sobolev space, we shall label it the Inhomogeneous Regularity Problem.

The specific manner in which we have formulated the solvability result for
the Dirichlet Problem in Theorem 6.2, in particular, having already elaborated on
how extra regularity of the boundary datum affects the regularity of the solution
(cf. (6.13)), renders the Inhomogeneous Regularity Problem a “sub-problem” of
the Dirichlet Problem. As seen below, this makes light work of the treatment
of the Inhomogeneous Regularity Problem. Later on, in Theorem 6.8, we shall
consider what we call the Homogeneous Regularity Problem which is related to,
yet fundamentally distinct, from the Inhomogeneous Regularity Problem dealt with
in the following theorem:

Theorem 6.5 Let � ⊆ R
n be an Ahlfors regular domain. Set σ := Hn−1�∂�,

denote by ν the geometric measure theoretic outward unit normal to �, and fix an
aperture parameter κ > 0. Also, pick an exponent p ∈ (1,∞) and a Muckenhoupt
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weight w ∈ Ap(∂�, σ). Given a homogeneous, second-order, constant complex
coefficient, weakly elliptic M × M system L in R

n, consider the Inhomogeneous
Regularity Problem

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

u ∈ [

C∞(�)
]M

,

Lu = 0 in �,

Nκu, Nκ(∇u) ∈ Lp(∂�,w),

u
∣

∣

κ−n.t.

∂�
= f ∈ [

L
p

1 (∂�,w)
]M

.

(6.51)

The following statements are true:

(a) [Existence, Estimates, and Integral Representation] If Adis
L �= ∅ and A ∈ Adis

L ,
then there exists δ ∈ (0, 1) which depends only on n, p, [w]Ap , A, and the
Ahlfors regularity constant of ∂� with the property that if ‖ν‖[BMO(∂�,σ)]n < δ

(a scenario which ensures that � is a δ-AR domain; cf. Definition 2.15) then
1
2I + KA is an invertible operator on the Muckenhoupt weighted Sobolev space
[

L
p

1 (∂�,w)
]M

and the function

u(x) :=
(

DA

(

1
2I + KA

)−1
f

)

(x), ∀ x ∈ �, (6.52)

is a solution of the Inhomogeneous Regularity Problem (6.51). In addition,

‖Nκu‖Lp(∂�,w) ≈ ‖f ‖[Lp(∂�,w)]M , (6.53)

and

‖Nκ(∇u)‖Lp(∂�,w) ≈ ‖∇tanf ‖[Lp(∂�,w)]n·M . (6.54)

In particular,

‖Nκu‖Lp(∂�,w) + ‖Nκ(∇u)‖Lp(∂�,w) ≈ ‖f ‖[Lp
1 (∂�,w)]M . (6.55)

(b) [Uniqueness] Whenever Adis
L� �= ∅, there exists δ ∈ (0, 1) which depends only on

n, p, [w]Ap , A, and the Ahlfors regularity constant of ∂� with the property that
if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., � is a δ-AR domain; cf. Definition 2.15) then the
Inhomogeneous Regularity Problem (6.51) has at most one solution.

(c) [Well-Posedness] If Adis
L �= ∅ and Adis

L� �= ∅ then there exists δ ∈ (0, 1)

which depends only on n, p, [w]Ap , A, and the Ahlfors regularity constant of
∂� with the property that if ‖ν‖[BMO(∂�,σ)]n < δ (hence � is a δ-AR domain; cf.
Definition 2.15) then the Inhomogeneous Regularity Problem (6.51) is uniquely
solvable and the solution satisfies (6.53)–(6.55).
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(d) [Sharpness] If Adis
L = ∅ the Inhomogeneous Regularity Problem (6.51) may fail

to be solvable (actually for boundary data belonging to an infinite dimensional
subspace of the corresponding weighted Sobolev space) even when � is a half-
space, and if Adis

L� = ∅ the Inhomogeneous Regularity Problem (6.51) may
possess more than one solution (in fact, the linear space of null-solutions may
actually be infinite dimensional) even when � is a half-space. In particular, if
eitherAdis

L = ∅ orAdis
L� = ∅, then the Inhomogeneous Regularity Problem (6.51)

may fail to be well posed even when � is a half-space.

Under the assumption that � is a δ-AR domain for some sufficiently small δ ∈
(0, 1) (which is in effect for items (a)–(c) of the theorem), it follows from Proposi-
tion 2.24, Theorem 2.3, Proposition 2.23, and (2.576) that the first three assumptions

in (6.51) always imply that u
∣

∣

κ−n.t.

∂�
exists and belongs to

[

L
p

1 (∂�,w)
]M . It is there-

fore natural that the boundary datum f is currently taken from this Muckenhoupt
weighted boundary Sobolev space.

Proof of Theorem 6.5 All claims made in items (a)–(c) are direct consequences
of Theorem 4.8 and Theorem 6.2. As regards the sharpness results formulated in
item (d), the fact that the Inhomogeneous Regularity Problem (6.51) may fail to be
solvable when Adis

L = ∅ is seen from Proposition 3.11 and (3.268). Finally, that the
Inhomogeneous Regularity Problem (6.51) for L may have more than one solution
if Adis

L� = ∅ is seen from (3.383), (3.392), and (3.406) (cf. also Example 3.5 and
Proposition 3.10 in the two-dimensional setting). ��

Remark 6.2 From Remark 6.1 we see that the Inhomogeneous Regularity Problem
with data in Lorentz-based Sobolev spaces, i.e.,

⎧
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⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

u ∈ [

C∞(�)
]M

,

Lu = 0 in �,

Nκu, Nκ(∇u) ∈ Lp,q(∂�, σ),

u
∣

∣

κ−n.t.

∂�
= f ∈ [

L
p,q

1 (∂�, σ)
]M

,

(6.56)

enjoys similar solvability and well-posedness results to those described in Theo-
rem 6.5. Concretely, for this boundary problem we have existence in the setting
of item (a) of Theorem 6.5 whenever p ∈ (1,∞) and q ∈ (0,∞], and we have
uniqueness in the setting of item (b) of Theorem 6.5 whenever p, q ∈ (1,∞).

See Theorem 8.19 (as well as Examples 8.2 and 8.6) for more general results of
this nature.

Remark 6.3 An inspection of the proof of Theorem 6.5 reveals that similar solvabil-
ity and well-posedness results are valid in the case when the boundary data belong
to the off-diagonal Muckenhoupt weighted Sobolev spaces discussed in (4.306)–
(4.307). More specifically, given two integrability exponents p1, p2 ∈ (1,∞) along
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with two Muckenhoupt weights w1 ∈ Ap1(∂�, σ) and w2 ∈ Ap2(∂�, σ), the off-
diagonal Inhomogeneous Regularity Problem

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

u ∈ [

C∞(�)
]M

,

Lu = 0 in �,

Nκu ∈ Lp1(∂�,w1),

Nκ(∇u) ∈ Lp2(∂�,w2),

u
∣

∣

κ−n.t.

∂�
= f ∈ [

L
p1;p2
1 (∂�,w1;w2)

]M
,

(6.57)

continues to enjoy similar solvability and well-posedness results to those described
in Theorem 6.5. Of course, this time, the a priori estimates (6.53)–(6.54) read

‖Nκu‖Lp1 (∂�,w1)
≈ ‖f ‖[Lp1 (∂�,w1)]M , (6.58)

and

‖Nκ(∇u)‖Lp2 (∂�,w2)
≈ ‖∇tanf ‖[Lp2 (∂�,w2)]n·M . (6.59)

Remark 6.4 Once again, in the class of systems considered in Theorem 6.5,
the solvability, uniqueness, and well-posedness results for the Inhomogeneous
Regularity Problem (6.51) are new even in the standard case when � = R

n+.

As in the case of the Dirichlet Problem, it turns out that the solvability results
presented in Theorem 6.5 are stable under small perturbations, of the sort described
below.

Theorem 6.6 Retain the original background assumptions on the set � from
Theorem 6.5 and, as before, fix an integrability exponent p ∈ (1,∞) along with
a Muckenhoupt weight w ∈ Ap(∂�, σ). Then the following statements are true.

(a) [Existence] Given any system Lo ∈ Ldis (cf. (3.195)), there exist a threshold
δ ∈ (0, 1) and an open neighborhoodU of Lo in L, both of which depend only on
n, p, [w]Ap , Lo, and the Ahlfors regularity constant of ∂�, with the property that
if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) then for each system L ∈ U
the Inhomogeneous Regularity Problem (6.51) formulated for L is solvable.

(b) [Uniqueness] Given any system Lo ∈ L with L�
o ∈ Ldis there exist a threshold

δ ∈ (0, 1) and an open neighborhood U of Lo in L, both of which depend only
on n, p, [w]Ap , Lo, and the Ahlfors regularity constant of ∂�, with the property
that if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) then for each system
L ∈ U the Inhomogeneous Regularity Problem (6.51) formulated for L has at
most one solution.
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(c) [Well-Posedness] Given any system Lo ∈ Ldis with L�
o ∈ Ldis there exist a

threshold δ ∈ (0, 1) and an open neighborhood U of Lo in L, both of which
depend only on n, p, [w]Ap , Lo, and the Ahlfors regularity constant of ∂�, with
the property that if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) then for
each system L ∈ U the Inhomogeneous Regularity Problem (6.51) formulated
for L is well posed.

Proof The same type of argument used in the proof of Theorem 6.4 continues to
work in this setting. ��

The integral representation contained in the theorem below, itself proved in [113,
§1.5], is going to be of great relevance in dealing with the issue of uniqueness in
boundary value problems where only assumptions on the nontangential maximal
operator of the gradient of the solution are made.

Theorem 6.7 Let � ⊆ R
n, where n ≥ 2, be an Ahlfors regular domain with

∂� unbounded. Abbreviate σ := Hn−1�∂� and denote by ν = (ν1, . . . , νn)

the geometric measure theoretic outward unit normal to �. With the summation
convention over repeated indices understood throughout, let

L = (

aαβ
rs ∂r∂s

)

1≤α,β≤M
(6.60)

be a homogeneous, weakly elliptic, second-order M × M system in R
n, with

complex constant coefficients, and denote by E = (Eγβ)1≤γ,β≤M the matrix-valued
fundamental solution associated with L as in Theorem 3.1.

In this setting, assume u = (uβ)1≤β≤M ∈ [

C∞(�)
]M

is a vector-valued function
which, for some κ > 0, satisfies

Lu = 0 in �, (∇u)
∣

∣

κ−n.t.

∂�
exists at σ -a.e. point on ∂�,

and Nκ(∇u) ∈ L1(∂�,
σ(x)

1+|x|n−1

)

.

(6.61)

Then for each � ∈ {1, . . . , n} and each γ ∈ {1, . . . ,M} one has

(∂�uγ )(x) =
ˆ

∂�

aβα
rs (∂rEγβ)(x − y)

{

ν�(y)
(

(∂suα)
∣

∣

κ−n.t.

∂�

)

(y) (6.62)

− νs(y)
(

(∂�uα)
∣

∣

κ−n.t.

∂�

)

(y)
}

dσ(y)

−
ˆ

∂�

(∂�Eγα)(x − y)νr(y)aαβ
rs

(

(∂suβ)
∣

∣

κ−n.t.

∂�

)

(y) dσ(y)

at every point x ∈ �, and

0 =
ˆ

∂�

aβα
rs (∂rEγβ)(x − y)

{

ν�(y)
(

(∂suα)
∣

∣

κ−n.t.

∂�

)

(y) (6.63)
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− νs(y)
(

(∂�uα)
∣

∣

κ−n.t.

∂�

)

(y)
}

dσ(y)

−
ˆ

∂�

(∂�Eγα)(x − y)νr(y)aαβ
rs

(

(∂suβ)
∣

∣

κ−n.t.

∂�

)

(y) dσ(y)

at every point x ∈ R
n \ �.

We are now ready to formulate and solve the Homogeneous Regularity
Problem. Compared to its inhomogeneous counterpart, considered in (6.51), this
boundary value problem involves boundary data from homogeneous Muckenhoupt
weighted Sobolev spaces and only requires control of the nontangential maximal
operator of the gradient of the solution. This being said, it turns out that the Homoge-
neous Regularity Problem “contains” the Inhomogeneous Regularity Problem in the
sense that the latter becomes equivalent to the former whenever the boundary data
are prescribed from the (smaller) inhomogeneous Muckenhoupt weighted Sobolev
space. Here is a formal statement of our result, which sheds light on the issue singled
out as Question 2.5 in [137]:

Theorem 6.8 Let � ⊆ R
n be an Ahlfors regular domain. Set σ := Hn−1�∂�,

denote by ν the geometric measure theoretic outward unit normal to �, and fix an
aperture parameter κ > 0. Also, pick an exponent p ∈ (1,∞) and a Muckenhoupt
weight w ∈ Ap(∂�, σ). Given a homogeneous, second-order, constant complex
coefficient, weakly elliptic M × M system L in R

n, consider the Homogeneous
Regularity Problem

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

u ∈ [

C∞(�)
]M

,

Lu = 0 in �,

Nκ(∇u) ∈ Lp(∂�,w),

u
∣

∣

κ−n.t.

∂�
= f ∈ [ .

L
p

1 (∂�,w)
]M

,

(6.64)

where
.
L

p

1 (∂�,w) is the homogeneous Muckenhoupt weighted boundary Sobolev
space defined in (2.598). The following statements are true:

(a) [Existence, Estimates, and Integral Representations] If Adis
L �= ∅ then there exists

δ ∈ (0, 1) which depends only on n, p, [w]Ap , L, and the Ahlfors regularity
constant of ∂� with the property that if ‖ν‖[BMO(∂�,σ)]n < δ (a scenario
which ensures that � is a δ-AR domain; cf. Definition 2.15) then the following
properties are true. First, the operator

[

Smod

] : [

Lp(∂�,w)
]M −→ [ .

L
p

1 (∂�,w)
/ ∼ ]M (6.65)

is surjective and the Homogeneous Regularity Problem (6.64) is solvable. More
specifically, with [f ] ∈ [ .

L
p

1 (∂�,w)
/ ∼ ]M

denoting the equivalence class
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(modulo constants) of the boundary datum f , and with

g ∈ [

Lp(∂�,w)
]M

chosen so that
[

Smod

]

g = [f ], (6.66)

there exists a constant c ∈ C
M such that the function

u := Smodg + c in � (6.67)

is a solution of the Homogeneous Regularity Problem (6.64). In addition, this
solution satisfies (with implicit constants independent of f )

‖Nκ(∇u)‖Lp(∂�,w) ≈ ‖∇tanf ‖[Lp(∂�,w)]n·M . (6.68)

Second, for each coefficient tensor A ∈ Adis
L the operator

1
2I + [

K
A,mod

] : [ .
L

p

1 (∂�,w)/ ∼ ]M −→ [ .
L

p

1 (∂�,w)/ ∼ ]M (6.69)

is an isomorphism, and the Homogeneous Regularity Problem (6.64) may be
solved as

u := D
A,modh + c in �, (6.70)

for a suitable constant c ∈ C
M and with

h ∈ [ .
L

p

1 (∂�,w)
]M

such that [h] =
(

1
2I + [

K
A,mod

]

)−1[f ]. (6.71)

Moreover, this solution continues to satisfy (6.68).
(b) [Uniqueness] Whenever Adis

L� �= ∅, there exists δ ∈ (0, 1) which depends only
on n, p, [w]Ap , L, and the Ahlfors regularity constant of ∂� with the property
that if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) then the Homogeneous
Regularity Problem (6.64) has at most one solution.

(c) [Well-Posedness and Additional Integrability/Regularity] Whenever Adis
L �= ∅

and Adis
L� �= ∅ it follows that there exists δ ∈ (0, 1) which depends only on n,

p, [w]Ap , L, and the Ahlfors regularity constant of ∂� with the property that
if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) then the Homogeneous
Regularity Problem (6.64) is uniquely solvable. Moreover, for each q ∈ (1,∞)

and ω ∈ Aq(∂�, σ), the unique solution u of (6.64) satisfies (in a quantitative
fashion)

Nκu ∈ Lq(∂�,ω) ⇐⇒ f ∈ [

L
q;p
1 (∂�,ω;w)

]M (6.72)

with the off-diagonal weighted Sobolev space L
q;p
1 (∂�,ω;w) defined as

in (4.306), as well as
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Nκ(∇u) ∈ Lq(∂�,ω) ⇐⇒ f ∈ [ .
L

q

1(∂�,ω)
]M

, (6.73)

provided δ ∈ (0, 1) is sufficiently small to begin with, relative to q and [ω]Aq .
In particular, corresponding to q := p, the equivalence in (6.72) proves

that the unique solution of the Homogeneous Regularity Problem (6.64) for
a boundary datum f belonging to

[

L
p

1 (∂�,w)
]M (which is a subspace of

[ .
L

p

1 (∂�,w)
]M

; cf. (2.600)) is actually the unique solution of the Inhomogeneous
Regularity Problem (6.51) for the boundary datum f .

(d) [Sharpness] If Adis
L = ∅ the Homogeneous Regularity Problem (6.64) may fail

to be solvable (actually for boundary data belonging to an infinite dimensional
subspace of the corresponding weighted homogeneous Sobolev space), and if
Adis

L� = ∅ the Homogeneous Regularity Problem (6.64) may possess more than
one solution (in fact, the linear space of null-solutions may actually be infinite
dimensional), even in the case when � = R

n+. In particular, if either Adis
L = ∅ or

Adis
L� = ∅, then the Homogeneous Regularity Problem (6.64) may fail to be well

posed, again, even in the case when � = R
n+.

In the context of the Homogeneous Regularity Problem (6.64) it is natural that the
boundary datum is selected from a homogeneous Muckenhoupt weighted boundary
Sobolev space. More concretely, from Proposition 2.24 we see that if � ⊆ R

n is
an NTA domain with an unbounded Ahlfors regular boundary then for any weight
w ∈ Ap(∂�, σ), with p ∈ (1,∞) and σ := Hn−1�∂�, any aperture κ ∈ (0,∞),
and any truncation parameter ε ∈ (0,∞) we have:

u ∈ C 1(�)

Nκ(∇u) ∈ Lp(∂�,w)

}

�⇒

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

u
∣

∣

κ−n.t.

∂�
exists σ -a.e. on ∂�,

u
∣

∣

κ−n.t.

∂�
belongs to

.
L

p

1 (∂�,w),

Nε
κu belongs to L

p

loc(∂�,w),

∥

∥u
∣

∣

κ−n.t.

∂�

∥

∥ .
L

p
1 (∂�,w)

≤ C
∥

∥Nκ(∇u)
∥

∥

Lp(∂�,w)
,

(6.74)
for some dimensional constant C ∈ (0,∞). In particular, Theorem 2.3 gives that
(6.74) holds whenever � ⊆ R

n is a δ-AR domain with δ ∈ (0, 1) sufficiently small
(relative to the dimension n and the Ahlfors regularity constant of ∂�).

We now present the proof of Theorem 6.8.

Proof of Theorem 6.8 To deal with the claims in item (a), work under the assump-
tion that Adis

L �= ∅. Theorem 4.11 then implies that there exists δ ∈ (0, 1) (whose
nature is as in the statement of the theorem) such that if ‖ν‖[BMO(∂�,σ)]n < δ (which
we shall henceforth assume) then the operator (6.65) is onto. In particular, there
exists a function g ∈ [

Lp(∂�,w)
]M as in (6.66). In fact (cf. (4.386)), matters may

be arranged so that this function satisfies

‖g‖[Lp(∂�,w)]M ≤ C‖∇tanf ‖[Lp(∂�,w)]n·M , (6.75)
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for some C ∈ (0,∞) independent of f . Also, since
[

Smodg
] = [

Smod

]

g = [f ], it
follows that c := f − Smodg is a constant in C

M (since ∂� is a connected set; cf.
Theorem 2.4). If we then define u as in (6.67) for this choice of c, from (3.124),
(3.127), (3.47), and (2.575) we see that all conditions in (6.64) are satisfied.
Collectively, (6.67), (3.127), (6.74), and (6.75) also guarantee that (6.68) holds.

If A ∈ Adis
L , then taking δ ∈ (0, 1) sufficiently small also allows us to invoke

Theorem 4.12 which guarantees that the operator (6.69) is an isomorphism. In turn,
this implies that there exists a unique function h as in (6.71). In particular, we have

[f ] =
(

1
2I + [

K
A,mod

]

)

[h] =
[

( 1
2I + K

A,mod

)

h
]

(6.76)

so

c := f − ( 1
2I + K

A,mod

)

h is a constant in C
M. (6.77)

If we now define the function u as in (6.70), we conclude from Theorem 3.5 that
u solves the Homogeneous Regularity Problem (6.64) and satisfies (6.68). This
completes the treatment of item (a).

To deal with the uniqueness issue claimed in item (b), assume Adis
L� �= ∅. Let

u = (uγ )1≤γ≤M solve the version of the Homogeneous Regularity Problem (6.64)
corresponding to f = 0. From Theorem 3.4, (2.48), and (2.576) we see that

(∇u)
∣

∣

κ−n.t.

∂�
exists at σ -a.e. point on ∂�, and

is a σ -measurable function on ∂�.
(6.78)

Granted this, if ν = (ν1, . . . , νn) denotes the geometric measure theoretic outward
unit normal to �, we may then invoke Proposition 2.22 (whose applicability in the
present setting is ensured by Proposition 2.24) to write

νj

(

(∂ku)
∣

∣

κ−n.t.

∂�

)

− νk

(

(∂ju)
∣

∣

κ−n.t.

∂�

)

= ∂τjk

(

u
∣

∣

κ−n.t.

∂�

)

= 0, (6.79)

for each j, k ∈ {1, . . . , n}.
To proceed, pick a coefficient tensor A = (

a
αβ
rs

)

1≤α,β≤M
1≤r,s≤n

∈ AL such that

A� ∈ Adis
L� . (6.80)

Theorem 4.8 then ensures (cf. (4.311) with z := 1/2 and with A replaced by A�)
that, if δ is sufficiently small to begin with, it follows that

1
2I + K#

A� : [

Lp(∂�,w)
]M −→ [

Lp(∂�,w)
]M

is an invertible operator.
(6.81)
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From (6.78), (2.13), and (3.66) we also see that

∂A
ν u ∈ [

Lp(∂�,w)
]M

. (6.82)

Next, let E = EL be the fundamental solution associated with the system L as
in Theorem 3.1. Keeping in mind (6.79) and (3.66), formula (6.62) implies that for
each pair of indices, say � ∈ {1, . . . , n} and γ ∈ {1, . . . , M}, we have

(∂�uγ )(x) = −
ˆ

∂�

(∂�Eγα)(x − y)
(

∂A
ν u

)

α
(y) dσ(y) (6.83)

at every point x ∈ �. Going nontangentially to the boundary in (6.83) then yields
(on account of (3.86)) that at σ -a.e. x ∈ ∂� we have

(

(∂�uγ )
∣

∣

κ−n.t.

∂�

)

(x) = − 1

2i
∂̂�Eγα

(

ν(x)
)(

∂A
ν u

)

α
(x)

− lim
ε→0+

ˆ

y∈∂�
|x−y|>ε

(∂�Eγα)(x − y)
(

∂A
ν u

)

α
(y) dσ(y) (6.84)

for each � ∈ {1, . . . , n} and γ ∈ {1, . . . , M}. Based on this and (3.66), at σ -a.e.
point x ∈ ∂� we may then write

(

∂A
ν u

)

μ
(x) = νr(x)aμβ

rs

(

(

∂suβ

)∣

∣

κ−n.t.

∂�

)

(x)

= − 1

2i
∂̂sEβα

(

ν(x)
)(

∂A
ν u

)

α
(x)νr (x)aμβ

rs

− lim
ε→0+

ˆ

y∈∂�
|x−y|>ε

νr(x)aμβ
rs (∂sEβα)(x − y)

(

∂A
ν u

)

α
(y) dσ(y)

(6.85)

for each μ ∈ {1, . . . ,M}. Note that, thanks to (3.17),

− 1

2i
∂̂sEβα

(

ν(x)
)(

∂A
ν u

)

α
(x)νr (x)aμβ

rs

= −1

2

(

aμβ
rs νr (x)νs(x)

)

̂Eβα

(

ν(x)
)(

∂A
ν u

)

α
(x)

= 1

2

[

L
(

ν(x)
)]

μβ

[

L
(

ν(x)
)]−1

βα

(

∂A
ν u

)

α
(x)

= 1

2
δμα

(

∂A
ν u

)

α
(x) = 1

2

(

∂A
ν u

)

μ
(x), (6.86)
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at σ -a.e. point x ∈ ∂�, for each μ ∈ {1, . . . ,M}. Also, from (3.25) and the first
equality in (3.20) we see that

lim
ε→0+

ˆ

y∈∂�
|x−y|>ε

νr(x)aμβ
rs (∂sEβα)(x − y)

(

∂A
ν u

)

α
(y) dσ(y)

=
(

K#
A�

(

∂A
ν u

)

)

μ
(x) (6.87)

at σ -a.e. point x ∈ ∂�, for each μ ∈ {1, . . . ,M}. Altogether, from (6.85), (6.86),
and (6.87) we conclude that

∂A
ν u = 1

2
∂A
ν u − K#

A�
(

∂A
ν u

)

at σ -a.e. point on ∂�. (6.88)

Hence,

( 1
2I + K#

A�
)(

∂A
ν u

) = 0 (6.89)

which, in view of (6.81) and (6.82), forces ∂A
ν u = 0. In concert with (6.83), this

ultimately implies that

∇u = 0 in �. (6.90)

Hence, u is a constant in � (since the latter is a connected set if δ ∈ (0, 1) is small

enough; cf. Theorem 2.4). The fact that we are currently assuming u
∣

∣

κ−n.t.

∂�
= 0 at

σ -a.e. point on ∂� then allows us to conclude that u ≡ 0 in �. This proves the claim
in item (b).

Another proof of the claim made in item (b) is as follows. Pick a coefficient
tensor A ∈ AL such that A� ∈ Adis

L� . Choosing δ ∈ (0, 1) small guarantees
(cf. Theorem 2.3) that � is an NTA domain with an unbounded connected
boundary. As such, Corollary 3.1 applies. In particular, for any null-solution u of
the Homogeneous Regularity Problem (6.64) the conormal derivative ∂A

ν u belongs

to
[

Lp(∂�,w)
]M and the integral representation formula (3.75) presently becomes

u = −Smod

(

∂A
ν u

) + c in �, (6.91)

for some constant c ∈ C
M . Taking the conormal derivative ∂A

ν of both sides of (6.91)
yields (in light of the jump-formula (3.126))

∂A
ν u = −( − 1

2I + K#
A�

)(

∂A
ν u

)

(6.92)
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or, equivalently,

( 1
2I + K#

A�
)(

∂A
ν u

) = 0. (6.93)

Since 1
2I+K#

A� is an invertible operator on
[

Lp(∂�,w)
]M (cf. (6.81)), we conclude

that ∂A
ν u. When used back in (6.91) this ultimately proves that u = c in �, as

wanted.
Next we turn attention to item (c). Thus, we work under the assumption Adis

L �= ∅

and Adis
L� �= ∅. Choose δ ∈ (0, 1) small enough so that all the conclusions so

far hold. Then from item (a)–(b) we conclude that the Homogeneous Regularity
Problem (6.64) is uniquely solvable. Next, the right-pointing implication in (6.72)
is a direct consequence of the last property in (6.64) and (2.13). As for the converse
implication, start by assuming that f ∈ [

L
q;p
1 (∂�,ω;w)

]M . Choose A ∈ Adis
L and

observe that if δ ∈ (0, 1) is small enough to begin with, then (see Remark 4.16)

1
2I + KA : [

L
q;p
1 (∂�,ω;w)

]M −→ [

L
q;p
1 (∂�,ω;w)

]M

is an invertible operator.
(6.94)

In particular, it is meaningful to consider

g := ( 1
2I + KA

)−1 ∈ [

L
q;p
1 (∂�,ω;w)

]M
. (6.95)

Then (3.23), (2.575), (3.112), Propositions 3.1, 3.4, and (3.123) guarantee that the
function ũ := DAg in � satisfies

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ũ ∈ [

C∞(�)
]M

,

Lũ = 0 in �,

Nκ ũ ∈ Lq(∂�,ω),

Nκ(∇ũ ) ∈ Lp(∂�,w),

ũ
∣

∣

κ−n.t.

∂�
= f at σ -a.e. point on ∂�.

(6.96)

The uniqueness in the Homogeneous Regularity Problem established in item (b)
then allows us to conclude that u = ũ. Hence, Nκu = Nκ ũ ∈ Lq(∂�,ω), finishing
the proof of (6.72). Finally, the right-pointing implication in (6.73) is a consequence
of (6.74), while the left-pointing implication in (6.73) follows from Remark 4.21.

Lastly, the claims in item (d) are seen from (3.391), (3.385), and (3.406) (cf.
also Proposition 3.12 and Example 3.5 in the two-dimensional setting). The proof
of Theorem 6.8 is therefore complete. ��
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We next discuss a variant of the Homogeneous Regularity Problem (6.64),
dubbed the Tangential Derivative Problem, which involves as boundary data tan-
gential derivatives of functions from homogeneous Muckenhoupt weighted Sobolev
spaces.

Theorem 6.9 Let � ⊆ R
n be an Ahlfors regular domain. Set σ := Hn−1�∂� and

denote by ν = (ν1, . . . , νn) the geometric measure theoretic outward unit normal to
�. Also, for someM ∈ N, consider a homogeneous, second-order, constant complex
coefficient, weakly elliptic M ×M system L in Rn, fix an aperture parameter κ > 0,
pick an integrability exponent p ∈ (1,∞), and select a Muckenhoupt weight w ∈
Ap(∂�, σ). In this setting, consider the Tangential Derivative Problem

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

u ∈ [

C∞(�)
]M

,

Lu = 0 in �,

Nκ(∇u) ∈ Lp(∂�,w),

νj

(

(∂ku)
∣

∣

κ−n.t.

∂�

)

− νk

(

(∂ju)
∣

∣

κ−n.t.

∂�

)

= ∂τjk
f

σ -a.e. on ∂�, for each j, k ∈ {1, . . . , n},

(6.97)

where f belongs to
[ .
L

p

1 (∂�,w)
]M

, the homogeneous Muckenhoupt weighted
boundary Sobolev space defined in (2.598). The following statements are then valid:

(a) [Existence, Estimates, and Integral Representations] If Adis
L �= ∅ then there exists

δ ∈ (0, 1) which depends only on n, p, [w]Ap , L, and the Ahlfors regularity
constant of ∂� with the property that if ‖ν‖[BMO(∂�,σ)]n < δ (a scenario
which ensures that � is a δ-AR domain; cf. Definition 2.15) then the Tangential
Derivative Problem (6.97) is solvable for each given f ∈ [ .

L
p

1 (∂�,w)
]M

.
Moreover, a solution u may be found so that

‖Nκ(∇u)‖Lp(∂�,w) ≈ ‖∇tanf ‖[Lp(∂�,w)]n·M , (6.98)

where the implicit constants are independent of f . Specifically, one may take u

as in (6.66)–(6.67), or as in (6.70)–(6.71).
(b) [Uniqueness (modulo constants)] Whenever Adis

L� �= ∅, there exists δ ∈ (0, 1)

which depends only on n, p, [w]Ap , L, and the Ahlfors regularity constant of
∂� with the property that if ‖ν‖[BMO(∂�,σ)]n < δ (hence � is a δ-AR domain;
cf. Definition 2.15) then any two solutions of the Tangential Derivative Problem
(6.97) differ by a constant (from C

M ).
(c) [Well-Posedness and Additional Integrability/Regularity] Whenever Adis

L �= ∅

and Adis
L� �= ∅ it follows that there exists δ ∈ (0, 1) which depends only on n,

p, [w]Ap , L, and the Ahlfors regularity constant of ∂� with the property that
if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., � is a δ-AR domain; cf. Definition 2.15) then
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the Homogeneous Regularity Problem (6.64) is always solvable and any two
solutions differ by a constant from C

M . In addition, for each q ∈ (1,∞) and
ω ∈ Aq(∂�, σ), if δ ∈ (0, 1) is sufficiently small relative to q and [ω]Aq then
any solution u of (6.97) satisfies (in a quantitative fashion)

Nκ(∇u) ∈ Lq(∂�,ω) ⇐⇒ f ∈ [ .
L

q

1(∂�,ω)
]M

, (6.99)

as well as

there exists c ∈ C
M such that Nκ(u − c) ∈ Lq(∂�,ω) if and only

if there exists c ∈ C
M such that f − c belongs to the off-diagonal

weighted Sobolev space
[

L
q;p
1 (∂�,ω;w)

]M
.

(6.100)

(d) [Sharpness] If Adis
L = ∅ the Tangential Derivative Problem (6.97) may fail to

be solvable, whereas if Adis
L� = ∅ the Tangential Derivative Problem (6.97) may

possess infinitely many solutions, even when � = R
n+.

Thanks to Theorem 3.4, (2.576), and Theorem 2.3 we see that whenever � is
a δ-AR domain with δ ∈ (0, 1) sufficiently small (as assumed in items (a)–(c) in
the statement of the theorem) then the first three assumptions in (6.97) guarantee

that the nontangential boundary trace (∇u)
∣

∣

κ−n.t.

∂�
exists at σ -a.e. point on ∂�. This

ensures that in all these cases the boundary conditions in (6.97) are meaningfully
formulated, without having to a priori demand that the first-order partial derivatives
of u have nontangential traces at σ -a.e. point on ∂�.

Proof of Theorem 6.9 To deal with the claims in item (a), work under the assump-
tion that Adis

L �= ∅, and suppose ‖ν‖[BMO(∂�,σ)]n < δ where δ ∈ (0, 1) is sufficiently
small relative to n, p, [w]Ap , L, and the Ahlfors regularity constant of ∂�. Given

f ∈ [ .
L

p

1 (∂�,w)
]M let u solve the Homogeneous Regularity Problem (6.64)

constructed in (6.67). From (6.74) we see that Nε
κu ∈ L

p

loc(∂�,w) for each

truncation parameter ε > 0, the nontangential trace u
∣

∣

κ−n.t.

∂�
exists at σ -a.e. point

on ∂� and, in fact, u
∣

∣

κ−n.t.

∂�
∈ [ .

L
p

1 (∂�,w)
]M . We may then rely on Proposition 2.22

(bearing (2.576) in mind) and the last condition in (6.64) to write

νj

(

(∂ku)
∣

∣

κ−n.t.

∂�

)

− νk

(

(∂ju)
∣

∣

κ−n.t.

∂�

)

= ∂τjk

(

u
∣

∣

κ−n.t.

∂�

)

= ∂τjk
f,

at σ -a.e. point on ∂�, for each j, k ∈ {1, . . . , n}.
(6.101)

Hence, the boundary conditions in (6.97) are satisfied, which goes to show that
u is a solution of the Tangential Derivative Problem (6.97). That this solution
satisfies (6.98) is then clear from (6.68).
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Assume next that Adis
L� �= ∅. Let u1, u2 be two solutions of the Tangential

Derivative Problem (6.97) and set u := u1−u2. Then the same proof which, starting
with (6.79) has let to (6.90), shows that if δ ∈ (0, 1) is small enough then u is a
constant in �. The claim in item (b) then follows from this. Finally, the claims in
the current items (c)–(d) are consequences of items (c)–(d) in Theorem 6.8. ��

Remark 6.5 Retain the background assumptions made in Theorem 6.9 and recall
that the tangential gradient operator has been defined in (2.585). In light of (2.585)–
(2.586) we may then equivalently reformulate the Tangential Derivative Prob-
lem (6.97) as
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⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

u ∈ [

C∞(�)
]M

,

Lu = 0 in �,

Nκ(∇u) ∈ Lp(∂�,w),

(∂ju)
∣

∣

κ−n.t.

∂�
− νj νk

(

(∂ku)
∣

∣

κ−n.t.

∂�

)

= (∇tanf )j

σ -a.e. on ∂�, for each j ∈ {1, . . . , n},

(6.102)

where, as before, f belongs to
[ .
L

p

1 (∂�,w)
]M . Then, for this boundary value

problem, the same results as in Theorem 6.9 are valid.

We continue by discussing the following notable consequence of Theorem 6.8:

Corollary 6.1 Let � ⊆ R
n be an Ahlfors regular domain. Denote by ν the geomet-

ric measure theoretic outward unit normal to � and abbreviate σ := Hn−1�∂�.
Also, fix an aperture parameter κ > 0. Next, suppose L is a homogeneous, second-
order, constant complex coefficient, weakly elliptic M × M system in R

n, with the
property that Adis

L �= ∅ and Adis
L� �= ∅. Finally, pick an integrability exponent

p ∈ (1,∞) and a Muckenhoupt weight w ∈ Ap(∂�, σ).
Then there exists δ ∈ (0, 1) which depends only on n, p, [w]Ap , L, and the

Ahlfors regularity constant of ∂� with the property that if ‖ν‖[BMO(∂�,σ)]n < δ

(hence � is a δ-AR domain; cf. Definition 2.15) it follows that each function u

satisfying

⎧

⎪

⎪

⎨

⎪

⎪

⎩

u ∈ [

C∞(�)
]M

,

Lu = 0 in �,

Nκ(∇u) ∈ Lp(∂�,w)

(6.103)

may be represented as

u = Smodf + c in � (6.104)
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for some function f ∈ [

Lp(∂�,w)
]M

and some constant c ∈ C
M . Moreover, both

f and c are uniquely determined by u, and there exists C ∈ (0,∞) independent of
u such that

‖f ‖[Lp(∂�,w)]M ≤ C‖Nκ(∇u)‖Lp(∂�,w). (6.105)

Additionally, for any given coefficient tensor A ∈ Adis
L there exists some function

h ∈ [ .
Lp(∂�,w)

]M
and some constant c ∈ C

M with the property that

u = D
A,modh + c in �. (6.106)

Once again, both h and c are uniquely determined by the function u, and there exists
a constant C ∈ (0,∞) independent of u such that

‖h‖[ .Lp(∂�,w)]M ≤ C‖Nκ(∇u)‖Lp(∂�,w). (6.107)

Proof Assume ‖ν‖[BMO(∂�,σ)]n < δ, for some threshold δ ∈ (0, 1) sufficiently
small so that the conclusions in Theorem 4.11 and Theorem 6.8 hold in the
current setting. From (6.74) we know that g := u

∣

∣

κ−n.t.

∂�
exists σ -a.e. on ∂�

and belongs to
[ .
L

p

1 (∂�,w)
]M . Since, tautologically, u solves the Homogeneous

Dirichlet Problem (6.64) with the boundary datum g, Theorem 6.8 implies that there
exists a function f ∈ [

Lp(∂�,w)
]M along with a constant c ∈ C

M such that u may
be represented as in (6.104). Note that (6.105) holds by virtue of (6.65)–(6.68). To
show that f and c are uniquely determined by u, assume f1, f2 ∈ [

Lp(∂�,w)
]M

and c1, c2 ∈ C
M are such that

Smodf1 + c1 = Smodf2 + c2 in �. (6.108)

Then, with f := f1 − f2 ∈ [

Lp(∂�,w)
]M and c := c2 − c1 ∈ C

M , we have

Smodf = c in �. (6.109)

From (6.109), (2.575), and (3.47) we next conclude that

Smodf = c at σ -a.e. point on ∂�, (6.110)

hence
[

Smod

]

f = [

Smodf
] = [c] = [0] ∈ [ .

L
p

1 (∂�,w)
/ ∼ ]M . Since Adis

L� �= ∅,
by virtue of item (2) in Theorem 4.11 this implies that f = 0. Once this has been
established then (6.110) gives that c = 0. Thus,

f = 0 and c = 0, (6.111)

from which we conclude that f1 = f2 and c1 = c2.
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Finally, the fact that u solves the Homogeneous Dirichlet Problem (6.64) formu-
lated for the boundary datum g implies, in light of (6.70)–(6.71) and Theorem 4.12
(with z = 1

2 ), that u may be uniquely represented as in (6.106) for some constant

c ∈ C
M and some function h ∈ [ .

Lp(∂�,w)
]M satisfying (6.107). ��

As with the Dirichlet Problem and the Inhomogeneous Regularity Problem (cf.
Theorem 6.4 and Theorem 6.6), the solvability results derived in Theorem 6.8 are
stable under small perturbations. We leave the formulation of such a result to the
interested reader and, instead, prove the following brand of stability result, which
does not require flatness for the underlying domain, nor does it explicitly ask for the
existence of a distinguished coefficient tensor.

Theorem 6.10 Let � ⊆ R
n be an NTA domain with an unbounded Ahlfors regular

boundary. Abbreviate σ := Hn−1�∂� and fix an aperture parameter κ > 0.
Also, pick some integrability exponent p ∈ (1,∞) and some Muckenhoupt weight
w ∈ Ap(∂�, σ). Finally, consider a homogeneous, second-order, constant complex
coefficient, weakly elliptic M × M system Lo in R

n with the property that the
Homogeneous Regularity Problem formulated for Lo in � as in (6.64) is solvable.

Then there exists an open neighborhood U of Lo in L which depends only on n,
p, [w]Ap , Lo, and the Ahlfors regularity constant of ∂�, with the property that for
each system L ∈ U the Homogeneous Regularity Problem formulated for L in � as
in (6.64) continues to be solvable.

Proof For each coefficient tensor A ∈ AWE define the operator

TA : [ .
L

p

1 (∂�,w)
/ ∼ ]M ⊕ [

Lp(∂�,w)
]M −→ [ .

L
p

1 (∂�,w)
/ ∼ ]M (6.112)

given by

TA([g], h) :=
(

1
2I + [

K
A,mod

]

)

[g] + [

Smod

]

h

for all [g] ∈ [ .
L

p

1 (∂�,w)
/ ∼ ]M and h ∈ [

Lp(∂�,w)
]M

.

(6.113)

With the piece of notation introduced in (3.13), from (6.113) and (3.143) we see that

the operator-valued assignment mapping each A ∈ AWE into

TA ∈ Bd
(

[ .
L

p

1 (∂�,w)
/ ∼ ]M ⊕ [

Lp(∂�,w)
]M −→ [ .

L
p

1 (∂�,w)
/ ∼ ]M

)

(6.114)

is continuous. To proceed, pick an arbitrary Ao ∈ ALo . From Proposition 3.6 we see
that the solvability of the Homogeneous Regularity Problem formulated for Lo in
� as in (6.64) is equivalent to having TAo surjective. Since the set of linear bounded
surjective operators between two Banach spaces is open (cf. [70, Lemma 2.4]), we
conclude from (6.114) that there exists some small ε > 0 such that TA in (6.112) is
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surjective whenever A ∈ A satisfies ‖A−Ao‖ < ε. Having established this, another
appeal to Proposition 3.6 then proves that there exists an open neighborhood U of
Lo in L, which depends only on n, p, [w]Ap , Lo, and the Ahlfors regularity constant
of ∂�, with the property that for each system L ∈ U the Homogeneous Regularity
Problem formulated for L in � as in (6.64) continues to be solvable. ��

6.3 The Neumann Problem in Weighted Lebesgue Spaces

To set the stage, recall the definition of the conormal derivative operator from (3.66).

Theorem 6.11 Let � ⊆ R
n be a UR domain. Denote by ν the geometric measure

theoretic outward unit normal to �, abbreviate σ := Hn−1�∂�, and fix an
aperture parameter κ > 0. Also, pick an integrability exponent p ∈ (1,∞) and
a Muckenhoupt weight w ∈ Ap(∂�, σ).

Suppose L is a homogeneous, second-order, constant complex coefficient, weakly
elliptic M × M system in R

n. Select A ∈ AL and consider the Neumann Problem

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

u ∈ [

C∞(�)
]M

,

Lu = 0 in �,

Nκ(∇u) ∈ Lp(∂�,w),

∂A
ν u = f ∈ [

Lp(∂�,w)
]M

.

(6.115)

Then the following statements are valid:

(a) [Existence, Estimates, and Integral Representations] Whenever A� ∈ Adis
L� there

exists some threshold δ ∈ (0, 1) which depends only on n, p, [w]Ap , A, and
the Ahlfors regularity constant of ∂� such that if ‖ν‖[BMO(∂�,σ)]n < δ (a
scenario which ensures that � is a δ-AR domain; cf. Definition 2.15) then
− 1

2I + K#
A� is an invertible operator on the Muckenhoupt weighted Lebesgue

space
[

Lp(∂�,w)
]M

and the function u : � → C
M defined as

u(x) :=
(

Smod

(

− 1
2I + K#

A�
)−1

f
)

(x) for all x ∈ � (6.116)

is a solution of the Neumann Problem (6.115) which satisfies

‖Nκ(∇u)‖Lp(∂�,w) ≈ ‖f ‖[Lp(∂�,w)]M , (6.117)

where the implicit proportionality constants are independent of f . Also, the
operator ∂A

ν DA,mod in (4.392) is surjective which implies that, for some constant
C ∈ (0,∞),
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there exists g ∈ [ .
L

p

1 (∂�,w)
]M

with ∂A
ν (D

A,modg) = f

and such that ‖g‖[ .Lp
1 (∂�,w)]M ≤ C‖f ‖[Lp(∂�,w)]M .

(6.118)

Consequently, the function

u := D
A,modg in � (6.119)

is a solution of the Neumann Problem (6.115) which continues to satisfy (6.117).
(b) [Additional Integrability] Under the background assumptions made in item (a),

for the solution u of the Neumann Problem (6.115) defined in (6.116), one has
the following integrability result: For any given q ∈ (1,∞) and ω ∈ Aq(∂�, σ),
further decreasing δ ∈ (0, 1) (relative to q and [ω]Aq ) one has

Nκ(∇u) ∈ Lq(∂�,ω) ⇐⇒ f ∈ [

Lq(∂�,ω)
]M (6.120)

and if either of these conditions holds then

‖Nκ(∇u)‖Lq(∂�,ω) ≈ ‖f ‖[Lq(∂�,ω)]M . (6.121)

(c) [Uniqueness (modulo constants)] Assume A ∈ Adis
L . Then there exists δ ∈ (0, 1)

which depends only on n, p, [w]Ap , A, and the Ahlfors regularity constant of
∂� such that whenever ‖ν‖[BMO(∂�,σ)]n < δ (hence, whenever � is a δ-AR
domain; cf. Definition 2.15) it follows that any two solutions of the Neumann
Problem (6.115) differ by a constant from C

M .
(d) [Well-Posedness] Whenever A ∈ Adis

L and A� ∈ Adis
L� there exists δ ∈ (0, 1)

which depends only on n, p, [w]Ap , A, and the Ahlfors regularity constant of ∂�

such that if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain; cf. Definition 2.15)
then the Neumann Problem (6.115) is solvable, the solution is unique modulo
constants from C

M , and each solution satisfies (6.117).
(e) [Sharpness] If A� /∈ Adis

L� then the Neumann Problem (6.115) may not be

solvable. In addition, if A /∈ Adis
L then the Neumann Problem (6.115) may

have more than one solution. In fact, even the two-dimensional Laplacian may
be written as � = div A∇ for some matrix A ∈ C

2×2 (not belonging to
Adis

� = {I2×2}) such that the Neumann Problem formulated for this as in (6.115)
for this choice of A and with � := R

2+ fails to have a solution for each non-
zero boundary datum belonging to an infinite dimensional linear subspace of
Lp(∂�,w), and the linear space of null-solutions for the Neumann Problem
formulated as in (6.115) for this choice of A and with � := R

2+ is actually
infinite dimensional.

Remark 6.6 In view of (2.576), (3.66), and the Fatou-type result described in
Theorem 3.4 it follows that the conormal derivative ∂A

ν u is well defined in the
context of (6.115).
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Remark 6.7 In special circumstances, the statement of Theorem 6.11 may be further
streamlined. For example, Theorem 3.8 gives that if the system L actually satisfies
the strong Legendre–Hadamard ellipticity condition then for the well-posedness
formulated in item (d) it suffices to assume that A ∈ Adis

L , and if n ≥ 3, M = 1, it
suffices to assume that the matrix A ∈ AL is symmetric.

Remark 6.8 The solvability result presented in Theorem 6.11 is relevant in relation
to the issue singled out as Question 2.5 in [137].

We now turn to the task of presenting the proof of Theorem 6.11.

Proof of Theorem 6.11 Assume first that the coefficient tensor A ∈ AL is such that
A� ∈ Adis

L� . From the current assumptions and Theorem 4.8 we know that there
exists some threshold δ ∈ (0, 1), whose nature is as specified in the statement of the
theorem, such that if ‖ν‖[BMO(∂�,σ)]n < δ then the operator − 1

2I+K#
A� is invertible

on
[

Lp(∂�,w)
]M . Granted this, item (c) in Proposition 3.5 then guarantees that the

function (6.116) solves the Neumann Problem (6.115) and satisfies (6.117).
Next, the claims in (6.118) are consequences of the surjectivity of the operator

(4.392) (itself implied by item (2) of Theorem 4.13), and the Open Mapping
Theorem. In turn, (6.118) and Theorem 3.5 guarantee that the function u in (6.119)
solves the Neumann Problem (6.115) and satisfies (6.117). This takes care of the
claims in item (a).

Let us now turn our attention to the claim made in item (b), concerning additional
integrability properties for the solution constructed in (6.116). The right-pointing
implication in (6.120) together with the right-pointing inequality in (6.121) are
simple consequences of the fact that we have |f | = ∣

∣∂A
ν u

∣

∣ ≤ CNκ(∇u) at σ -a.e.
point on ∂�. The left-pointing implication in (6.120) along with the left-pointing
inequality in (6.121) are seen from (6.116), (4.342), and Proposition 3.5.

To prove uniqueness modulo constants in the case when A ∈ Adis
L , suppose u

solves the homogeneous version of the Neumann Problem (6.115) (corresponding
to f = 0). Also, fix two arbitrary indices � ∈ {1, . . . , n} and γ ∈ {1, . . . , M}. Since

by (3.66) the second integral in (6.62) involves νra
αβ
rs (∂suβ)

∣

∣

κ−n.t.

∂�
= (

∂A
ν u

)

α
= 0

for each α ∈ {1, . . . , M}, we conclude that we presently have

(∂�uγ )(x) =
ˆ

∂�

aβα
rs (∂rEγβ)(x − y)

{

ν�(y)
(

(∂suα)
∣

∣

κ−n.t.

∂�

)

(y) (6.122)

− νs(y)
(

(∂�uα)
∣

∣

κ−n.t.

∂�

)

(y)
}

dσ(y)

at every point x ∈ �. On account of (3.86), going nontangentially to the boundary
in (6.122) then yields

(

(∂�uγ )
∣

∣

κ−n.t.

∂�

)

(x) = 1

2i
aβα
rs ∂̂rEγβ

(

ν(x)
)

{

ν�(x)
(

(∂suα)
∣

∣

κ−n.t.

∂�

)

(x) (6.123)
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− νs(x)
(

(∂�uα)
∣

∣

κ−n.t.

∂�

)

(x)
}

+ lim
ε→0+

ˆ

y∈∂�
|x−y|>ε

aβα
rs (∂rEγβ)(x − y)

{

ν�(y)
(

(∂suα)
∣

∣

κ−n.t.

∂�

)

(y)

− νs(y)
(

(∂�uα)
∣

∣

κ−n.t.

∂�

)

(y)
}

dσ(y)

at σ -a.e. x ∈ ∂�. For each r ∈ {1, . . . , n} and β ∈ {1, . . . ,M} we may rely
on (3.17) to write

∂̂rEγβ

(

ν(x)
) = iνr(x)̂Eγβ

(

ν(x)
) = iνr(x)

[

L
(

ν(x)
)]−1

γβ
(6.124)

at σ -a.e. x ∈ ∂�. For ease of notation, henceforth we agree to abbreviate

(

∂Tjk
uα

)

(x) := νj (x)
(

(∂kuα)
∣

∣

κ−n.t.

∂�

)

(x) − νk(x)
(

(∂juα)
∣

∣

κ−n.t.

∂�

)

(x)

for each j, k ∈ {1, . . . , n}, α ∈ {1, . . . ,M}, and σ -a.e. x ∈ ∂�.

(6.125)

Bring in an additional index t ∈ {1, . . . , n}. If we now multiply (6.123) by νt (x)

then subtract from the resulting formula its version with � and t interchanged we
then arrive, bearing in mind (6.124), (6.125), (3.2), at the identity

(

∂Tt�
uγ

)

(x) = 1

2

[

L
(

ν(x)
)]

βα

[

L
(

ν(x)
)]−1

γβ

(

∂Tt�
uα

)

(x) (6.126)

− lim
ε→0+

ˆ

y∈∂�
|x−y|>ε

νs(y)aβα
rs (∂rEγβ)(x − y)

(

∂Tt�
uα

)

(y) dσ(y)

+ lim
ε→0+

ˆ

y∈∂�
|x−y|>ε

(

νt (x) − νt (y)
)

aβα
rs (∂rEγβ)(x − y)

(

∂T�s
uα

)

(y) dσ(y)

+ lim
ε→0+

ˆ

y∈∂�
|x−y|>ε

(

ν�(x) − ν�(y)
)

aβα
rs (∂rEγβ)(x − y)

(

∂Tst uα

)

(y) dσ(y),

valid for each t, � ∈ {1, . . . , n}, each γ ∈ {1, . . . ,M}, and σ -a.e. x ∈ ∂�. In relation
to (6.126), we make several observations. For starters, the first line in the right-hand
side of (6.126) is
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1

2

[

L
(

ν(x)
)]

βα

[

L
(

ν(x)
)]−1

γβ

(

∂Tt�
uα

)

(x)

= 1

2
δγα

(

∂Tt�
uα

)

(x) = 1

2

(

∂Tt�
uγ

)

(x). (6.127)

This may be absorbed in the left-hand side of (6.126), which subsequently becomes
1
2

(

∂Tt�
uγ

)

(x). The second observation is that, as is visible from (3.24), the second
line in the right-hand side of (6.126) is precisely

(

KA

(

∂Tt�
u
)

)

γ
(x), where ∂Tt�

u := (

∂Tt�
uα

)

1≤α≤M
. (6.128)

The final observation we wish to make with regard to (6.126) is that the third and
fourth lines in the right-hand side of (6.126) are commutators of the form

(

[

Mν, T
](

∂T u
)

)

(x). (6.129)

Above, Mν denotes the operator of pointwise multiplication by generic scalar
components of ν. Also, T stands for the principal-value singular integral operator
of formal convolution type with a suitable matrix-valued kernel whose entries are
linear combinations with coefficients which are entries from A of generic first-order
partial derivatives of generic entries of the matrix E. Finally, ∂T u stands for generic
functions of the form ∂Tt�

uα with 1 ≤ �, t ≤ n and 1 ≤ α ≤ M .
In view of these observations, we may recast (6.126) as

1
2∂Tt�

u = KA

(

∂Tt�
u
) + [

Mν, T
](

∂T u
)

at σ -a.e. point on ∂�, for each t, � ∈ {1, . . . , n}.
(6.130)

Since we are currently assuming that A ∈ Adis
L , from (6.130), (4.299), and

Theorem 4.3 (whose applicability in the present context takes into account the
format of T specified above as well as Proposition 3.4) we then conclude that for
each t, � ∈ {1, . . . , n} we have

1

2

∥

∥∂Tt�
u
∥

∥[Lp(∂�,w)]M ≤ Cδ

∥

∥∂Tt�
u
∥

∥[Lp(∂�,w)]M + Cδ

n
∑

j,k=1

∥

∥∂Tjk
u
∥

∥[Lp(∂�,w)]M

where Cδ = o(1) as δ → 0+. (6.131)

After summing up in all t, � ∈ {1, . . . , n} we conclude from (6.131) that

1

2

n
∑

t,�=1

∥

∥∂Tt�
u
∥

∥[Lp(∂�,w)]M ≤ Cδ

n
∑

t,�=1

∥

∥∂Tt�
u
∥

∥[Lp(∂�,w)]M
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with Cδ = o(1) as δ → 0+. (6.132)

Assuming δ ∈ (0, 1) is sufficiently small to begin with, it follows from (6.132) that

n
∑

t,�=1

∥

∥∂Tt�
u
∥

∥[Lp(∂�,w)]M ≤ 0 (6.133)

hence, necessarily,

∂Tt�
uα = 0 for each t, � ∈ {1, . . . , n} and α ∈ {1, . . . ,M}. (6.134)

In concert with (6.125) and (6.122) this ultimately shows that

∂�uγ = 0 in � for each � ∈ {1, . . . , n} and γ ∈ {1, . . . , M}. (6.135)

Thus, the function u is locally constant in �. Since the latter is a connected set (cf.
Theorem 2.4), we conclude that there exists a constant c ∈ C

M such that u ≡ c in
�.

An alternative proof of uniqueness modulo constants in the case when A ∈ Adis
L

goes as follows. Suppose u ∈ [

C∞(�)
]M is a function satisfying Lu = 0 in �,

as well as Nκ(∇u) ∈ Lp(∂�,w), and ∂A
ν u = 0. Then Corollary 3.1 implies that

g := u
∣

∣

κ−n.t.

∂�
exists σ -a.e. on ∂�, belongs to

[ .
L

p

1 (∂�,w)
]M , and

u = D
A,modg + c in �, (6.136)

for some constant c ∈ C
M (recall that the present assumptions ensure that � is

a connected set; cf. Theorem 2.4). In light of the jump-formula (3.134), going
nontangentially to the boundary in (6.136) then yields

( − 1
2I + K

A,mod

)

g = −c,
hence

[g] ∈ [ .
L

p

1 (∂�,w)
]M

/ ∼ satisfies
( − 1

2I + [

K
A,mod

])[g] = 0. (6.137)

Since we are currently assuming that A ∈ Adis
L , from this and Theorem 4.12 (with

z = − 1
2 ) we conclude that [g] = 0 ∈ [ .

L
p

1 (∂�,w)
]M

/ ∼, i.e., g is a constant on
∂�. Having established this, from (6.136) and (3.54) we then conclude that u is a
constant in �, as wanted.

Next, the claims in (d) are direct consequences of results established in items (a)
and (c). As regards the claims made in item (e), consider the Laplacian � in R

2 ≡ C,
written as � = ajk∂j ∂k , where the coefficient tensor A = (

ajk

)

1≤j,k≤2 is the 2 × 2
complex matrix
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A :=
(

1 −i
i 1

)

. (6.138)

Fix an aperture parameter κ ∈ (0,∞), an integrability exponent p ∈ (1,∞), and
a Muckenhoupt weight w ∈ Ap(R,L1). We claim that the space of admissible
boundary data for the Lp-Neumann boundary value problem for the Laplacian in
the upper-half plane where the prescribed conormal derivative is the one associated
with the matrix A may be described as

{

∂A
ν u : u ∈ C∞(R2+), �u = 0 in R

2+, Nκ(∇u) ∈ Lp(R, w)
}

=
{

f ∈ Lp(R, w) : Hf = −if
}

, (6.139)

where H is the Hilbert transform on the real line (cf. (1.24)). Given that the latter
space has infinite codimension in Lp(R, w) (since H 2 = −I on this space), the
identification in (6.139) suits our present purposes.

To prove the left-to-right inclusion in (6.139), pick a complex-valued function u

satisfying

u ∈ C∞(R2+), �u = 0 in R
2+, Nκ(∇u) ∈ Lp(R, w). (6.140)

On account of the Fatou-type result recalled in Theorem 3.4, these properties

guarantee that (∇u)
∣

∣

κ−n.t.

∂R2+
exists at L1-a.e. point on ∂R2+. In particular, f := ∂A

ν u

is a well-defined function in Lp(R, w). More specifically, bearing in mind that the
outward unit normal for the upper-half plane is ν = (ν1, ν2) = (0,−1) ≡ −i,
from (3.66) we see that

f = ∂A
ν u = νrars

(

∂su
)∣

∣

κ−n.t.

∂R2+

= ν1
(

∂1u
)∣

∣

κ−n.t.

∂R2+
− iν1

(

∂2u
)∣

∣

κ−n.t.

∂R2+
+ iν2

(

∂1u
)∣

∣

κ−n.t.

∂R2+
+ ν2

(

∂2u
)∣

∣

κ−n.t.

∂R2+

= (ν1 + iν2)
(

(∂1u)
∣

∣

κ−n.t.

∂R2+
− i(∂2u)

∣

∣

κ−n.t.

∂R2+

)

= 2ν(∂zu)
∣

∣

κ−n.t.

∂R2+

= −2i(∂zu)
∣

∣

κ−n.t.

∂R2+
at L1-a.e. point on ∂R2+ ≡ R, (6.141)

where ∂z := 1
2 (∂x − i∂y) is the complex conjugate of the Cauchy–Riemann operator

∂z̄ := 1
2 (∂x + i∂y). Hence, if we define

U := 2∂zu in R
2+, (6.142)
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upon recalling that � = 4∂z̄∂z, the properties in (6.140) imply

U ∈ C∞(R2+), ∂z̄w = 0 in R
2+, Nκw ∈ Lp(R, w). (6.143)

These simply amount to stating that U is a holomorphic function belonging to
the Muckenhoupt weighted Hardy space Hp(R2+, w) associated with the Cauchy–
Riemann operator in the upper-half plane. In addition, (6.141) tells us that

U
∣

∣

κ−n.t.

∂R2+
= if at L1-a.e. point on ∂R2+ ≡ R. (6.144)

Together with Cauchy’s reproducing formula for holomorphic functions in the
aforementioned Hardy space, this gives

U(z) = 1

2π

ˆ
R

f (t)

t − z
dt for each z ∈ C+. (6.145)

After taking the nontangential trace to the boundary in (6.145) we arrive at the
conclusion that if = i

( 1
2I + − 1

2iH
)

f at L1-a.e. point in R. This ultimately proves
that f must satisfy the compatibility condition

Hf = −if at L1-a.e. point in R. (6.146)

The left-to-right inclusion in (6.139) is therefore established.
To justify the converse inclusion, consider f ∈ Lp(R, w) satisfying Hf = −if

at L1-a.e. point in R. Bring Smod , the modified boundary-to-domain harmonic
single layer potential operator associated with the Laplacian in the upper-half plane
(cf. (3.38)), and note that

2i∂z(Smodf )(z) = 1

2π i

ˆ
R

f (t)

t − z
dt for each z ∈ C+. (6.147)

If we define u := Smodf in R
2+, then this function belongs to C∞(R2+), satisfies

�u = 0 in R
2+, has Nκ(∇u) ∈ Lp(R, w), and (6.147) permits us to compute

∂A
ν u = 2i

(

∂zu
)∣

∣

κ−n.t.

∂R2+
= 2i(∂zSmodf )

∣

∣

κ−n.t.

∂R2+

= 1
2f − 1

2iHf = 1
2f + 1

2f = f, (6.148)

as wanted.
As regards the space of null-solutions for the Lp-Neumann Problem (6.115) in

the case when n = 2, M = 1, L = � (the two-dimensional Laplacian), � = R
2+,

and A as in (6.138), we claim that
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{

u ∈ C∞(R2+) : �u = 0 in R
2+, Nκ(∇u) ∈ Lp(R, w), ∂A

ν u = 0
}

(6.149)

=
{

U : U holomorphic in R
2+, with Nκ(∇U) ∈ Lp(R, w)

}

.

To justify this identification, pick an arbitrary function belonging to the space
in the left side of (6.149). Then ∂zu is holomorphic in R

2+ (since ∂z̄∂z = 1
4�),

and satisfies Nκ(∂zu) ∈ Lp(R, w). As such, ∂zu belongs to Hp(R2+, w), the
Muckenhoupt weighted Hardy space in the upper-half plane for the Cauchy–
Riemann operator. Since from (6.141) we have

(∂zu)
∣

∣

κ−n.t.

∂R2+
= 0 at L1-a.e. point on ∂R2+ ≡ R, (6.150)

we may rely on Cauchy’s reproducing formula to conclude that ∂zu vanishes
identically in R

2+. Hence, U := u is a holomorphic function in R
2+. This places U

(and, ultimately, u) in the space in the right side of (6.149). In the opposite direction,
given any holomorphic function U in R

2+ satisfying Nκ(∇U) ∈ Lp(R, w), the
function u := U is harmonic in R

2+, has Nκ(∇u) ∈ Lp(R, w) and, much as
in (6.141), we see that

∂A
ν u = −2i(∂zu)

∣

∣

κ−n.t.

∂R2+
= −2i(∂z̄u)

∣

∣

κ−n.t.

∂R2+

= −2i(∂z̄U)
∣

∣

κ−n.t.

∂R2+
= 0 at L1-a.e. point on ∂R2+ ≡ R, (6.151)

given that U is holomorphic in R
2+ ≡ C+. This completes the proof of (6.149). The

space in the right side of (6.149) is infinite dimensional since, for example, for each
m ∈ N the function C+ � z �→ (z̄ − i)−m ∈ C belongs to this space. We therefore
conclude that the space of null-solutions for the Lp-Neumann Problem (6.115) is,
as claimed, infinite dimensional. ��

Remark 6.9 For similar reasons as in past situations, a solvability result which
is analogous to the one described in Theorem 6.11 also holds for the Neumann
Problem with data in Lorentz spaces, i.e., for

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

u ∈ [

C∞(�)
]M

,

Lu = 0 in �,

Nκ(∇u) ∈ Lp,q(∂�, σ),

∂A
ν u = f ∈ [

Lp,q(∂�, σ)
]M

,

(6.152)

with p ∈ (1,∞) and q ∈ (0,∞].
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See Theorem 8.21 (and also Examples 8.2, 8.6) for more general results of this
flavor.

Remark 6.10 In light of the remarks made in (3.228)–(3.229), Theorem 6.11 applies
in the case of the Lamé system Lμ,λ = μ� + (λ + μ)∇div in R

n with n ≥ 2,
assuming μ �= 0, 2μ + λ �= 0, and 3μ + λ �= 0. Specifically, if � ⊆ R

n is a δ-AR
domain, and w ∈ Ap(∂�, σ) with p ∈ (1,∞), then if δ ∈ (0, 1) sufficiently small
(relative to μ, λ, p, [w]Ap , and the Ahlfors regularity constant of ∂�) the Neumann
Problem (6.115), which in this case reads

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

u ∈ [

C∞(�)
]n

,

μ�u + (λ + μ)∇divu = 0 in �,

Nκ(∇u) ∈ Lp(∂�,w),

∂
A(ζ )
ν u =

[

μ(∇u)� + ζ(∇u)
]∣

∣

∣

κ−n.t.

∂�
ν + (μ + λ − ζ )(divu)

∣

∣

κ−n.t.

∂�
ν = f

(6.153)
is solvable (in the explicit manner described in (6.116)) for each given function
f ∈ [

Lp(∂�,w)
]n, provided the coefficient tensor A(ζ ) is as in (3.226) with

ζ := μ(μ + λ)

3μ + λ
. (6.154)

Moreover, the solution is unique modulo constants from C
n and each solution

satisfies (6.117) (with M := n).
By way of contrast, in the two-dimensional case, Corollary 4.3 ensures that the

Neumann Problem (6.153) is actually solvable (again, in the manner described in
(6.116), the solution being unique modulo constants from C

2 and each solution
satisfying a naturally accompanying estimate) for each given function f in the space
[

Lp(∂�,w)
]2, in the larger range

ζ ∈ C \
{

− μ,
μ(5μ+3λ)

3μ+λ

}

. (6.155)

In particular, if we also demand that μ + λ �= 0 then ζ := μ becomes an admissible
value, as far as (6.155) is concerned, and from (4.438), (6.116) we see that the
Neumann Problem (6.153) with ζ := μ is solvable uniquely (modulo constants)
for each given function f ∈ [

Lp(∂�,w)
]2. This is of interest since said problem

involves the so-called traction conormal derivative, i.e.,

∂A(μ)
ν u = μ

[

(∇u)� + (∇u)
]∣

∣

∣

κ−n.t.

∂�
ν + λ(divu)

∣

∣

κ−n.t.

∂�
ν, (6.156)

which is particularly relevant in physics and engineering.
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It is also of interest to note that the solvability result from Theorem 6.11 is
stable under small perturbations. Specifically, by reasoning similarly as in the proof
of Theorem 6.4 (while also bearing in mind Theorem 3.9) yields the following
theorem.

Theorem 6.12 Retain the original background assumptions on the set � from
Theorem 6.11 and, as before, fix an integrability exponent p ∈ (1,∞) along with a
Muckenhoupt weight w ∈ Ap(∂�, σ). Then the following statements are true.

(a) [Existence] Given any system Lo ∈ L with L�
o ∈ Ldis (cf. (3.195)), it follows

that for each Ao ∈ ALo with A�
o ∈ Adis

L�
o
there exist a threshold δ ∈ (0, 1)

and an open neighborhood U of Ao in A, both of which depend only on n, p,
[w]Ap , Ao, and the Ahlfors regularity constant of ∂�, with the property that if
‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) then for each coefficient tensor
A ∈ U the Neumann Problem (6.115) formulated for the system LA (cf. (3.7))
and the conormal derivative associated with A (cf. (3.66)) is actually solvable.

(b) [Uniqueness] Assume Lo ∈ Ldis and fix some Ao ∈ Adis
Lo
. Then there exist a

threshold δ ∈ (0, 1) and an open neighborhood U of Ao in A, both of which
depend only on n, p, [w]Ap , Lo, and the Ahlfors regularity constant of ∂�, with
the following significance: Whenever ‖ν‖[BMO(∂�,σ)]n < δ (i.e., � is a δ-AR
domain) then for each coefficient tensor A ∈ U it follows that any two solutions
of the Neumann Problem (6.115) formulated for the system LA (cf. (3.7)) and the
conormal derivative associated with A (cf. (3.66)) differ by a constant in CM .

(c) [Well-Posedness] Assuming Lo ∈ Ldis and L�
o ∈ Ldis, fix some Ao ∈ Adis

Lo
. Then

there exist a threshold δ ∈ (0, 1) and an open neighborhood U of Ao in A, both
of which depend only on n, p, [w]Ap , Lo, and the Ahlfors regularity constant
of ∂�, with the following significance: Whenever ‖ν‖[BMO(∂�,σ)]n < δ (i.e., �

is a δ-AR domain) then for each coefficient tensor A ∈ U it follows that any
two solutions of the Neumann Problem (6.115) formulated for the system LA

(cf. (3.7)) and the conormal derivative associated with A (cf. (3.66)) is solvable,
and any two solutions differ by a constant from C

M .

In addition to Theorem 6.12, there is yet another type of stability result for the
Neumann problem which does not require flatness for the underlying domain, nor
does it explicitly ask for the existence of a distinguished coefficient tensor (compare
with Theorem 6.10).

Theorem 6.13 Let � ⊆ R
n be an NTA domain with an unbounded Ahlfors regular

boundary. Abbreviate σ := Hn−1�∂� and denote by ν the geometric measure
theoretic outward unit normal to �. Also, fix an aperture parameter κ > 0, pick
an integrability exponent p ∈ (1,∞), and choose some arbitrary Muckenhoupt
weight w ∈ Ap(∂�, σ). Finally, consider a coefficient tensor Ao ∈ AWE with the
property that the Neumann Problem formulated for the system L := LAo (cf. (3.7))
and the conormal derivative associated with Ao (cf. (3.66)) as in (6.115) is solvable.

Then there exists an open neighborhood U of Ao in A which depends only on
n, p, [w]Ap , Ao, and the Ahlfors regularity constant of ∂�, with the property that
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for each coefficient tensor A ∈ U the Neumann Problem formulated for the system
L := LA (cf. (3.7)) and the conormal derivative associated with A (cf. (3.66)) as
in (6.115) continues to be solvable.

Proof For each coefficient tensor A ∈ AWE define the operator

QA : [ .
L

p

1 (∂�,w)
/ ∼ ]M ⊕ [

Lp(∂�,w)
]M −→ [

Lp(∂�,w)
]M (6.157)

given by

QA([g], h) := [

∂A
ν DA,mod

][g] + ( − 1
2I + K#

A�
)

h

for all [g] ∈ [ .
L

p

1 (∂�,w)
/ ∼ ]M and h ∈ [

Lp(∂�,w)
]M

.
(6.158)

Recall the piece of notation introduced in (3.13). From (6.158), (3.139), and (3.122)
we see that

the operator-valued assignment mapping each A ∈ AWE into

QA ∈ Bd
(

[ .
L

p

1 (∂�,w)
/ ∼ ]M ⊕ [

Lp(∂�,w)
]M → [

Lp(∂�,w)
]M

)

(6.159)

is continuous. To proceed, fix Ao ∈ AWE as in the statement. From Proposition 3.7
it follows that QAo is surjective. Since the set of linear bounded surjective
operators between two Banach spaces is open (cf. [70, Lemma 2.4]), we conclude
from (6.159) that there exists an open neighborhood U of Ao in A (whose nature
is as in the statement of the theorem) with the property that QA continues to be
surjective in the context of (6.157) for each A ∈ U. We may then once again employ
Proposition 3.7 to conclude that the Neumann Problem formulated for the system
L := LA and the conormal derivative associated with A as in (6.115) is solvable.

��
Solvability results for the Neumann Problem formulated for boundary data

belonging to sums of Muckenhoupt weighted Lebesgue spaces are described in the
theorem below.

Theorem 6.14 Let � ⊆ R
n be a UR domain. Abbreviate σ := Hn−1�∂� and fix

an aperture parameter κ > 0. Also, pick p0, p1 ∈ (1,∞) along with a pair of
Muckenhoupt weights w0 ∈ Ap0(∂�, σ) and w1 ∈ Ap1(∂�, σ). Finally, consider
a homogeneous, second-order, constant complex coefficient, M × M weakly elliptic
system L in Rn, and select some coefficient tensor A ∈ AL

Then similar results, concerning existence, integral representation formulas, esti-
mates, additional integrability properties, and well-posedness, as in Theorem 6.11,
are valid for the Neumann Problem
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⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

u ∈ [

C∞(�)
]M

,

Lu = 0 in �,

Nκ(∇u) ∈ Lp0(∂�,w0) + Lp1(∂�,w1),

∂A
ν u = f ∈ [

Lp0(∂�,w0) + Lp1(∂�,w1)
]M

.

(6.160)

Proof This is seen by reasoning as in the proof of Theorem 6.11, now making use
of (4.336) and bearing in mind that the commutator estimates from Theorem 4.3
also extend to sums of Muckenhoupt weighted Lebesgue spaces (cf. (4.332)). ��

We conclude with a result to the effect that solvability of the Neumann problem
for a system L implies uniqueness (modulo locally constant functions) for the
Neumann problem formulated for the transpose system L�.

Proposition 6.1 Let � ⊆ R
n, with n ≥ 3, be an NTA domain with an unbounded

Ahlfors regular boundary. Denote by ν the geometric measure theoretic outward unit
normal to �, abbreviate σ := Hn−1�∂�. Also, fix an aperture parameter κ > 0 and
consider two integrability exponents

p, q ∈ (1, n − 1) satisfying 1
p

+ 1
q

= 1 + 1
n−1 . (6.161)

Finally, pick a coefficient tensor A ∈ AWE with the property that the Neumann
Problem

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

u ∈ [

C∞(�)
]M

,

LAu = 0 in �,

Nκ(∇u) ∈ Lp(∂�, σ),

∂A
ν u = f at σ -a.e. point on ∂�

(6.162)

is solvable for each f ∈ [

Lp(∂�, σ)
]M

. Then having

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

w ∈ [

C∞(�)
]M

,

LA�w = 0 in �,

Nκ(∇w) ∈ Lq(∂�, σ),

∂A�
ν w = 0 at σ -a.e. point on ∂�

(6.163)

forces w to be a locally constant function in �.

Proof Fix an arbitrary f ∈ [

Lp(∂�, σ)
]M and assume that u solves (6.162) for

this choice of boundary datum. Also, let w be as in (6.163). Granted the present
assumptions, Proposition 2.24 implies that the nontangential boundary traces
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u
∣

∣

κ−n.t.

∂�
, w

∣

∣

κ−n.t.

∂�
exist σ -a.e. on ∂�. (6.164)

Also, work in [114, §2.2] guarantees that there exist two constants c, c̃ ∈ C
M such

that

u
∣

∣

κ−n.t.

∂�
− c ∈ [

Lp∗
(∂�, σ)

]M and Nκ(u − c) ∈ Lp∗
(∂�, σ)

where p∗ := ( 1
p

− 1
n−1

)−1 ∈ (1,∞),

(6.165)

as well as

w
∣

∣

κ−n.t.

∂�
− c̃ ∈ [

Lq∗
(∂�, σ)

]M and Nκ(w − c̃ ) ∈ Lq∗
(∂�, σ)

where q∗ := ( 1
q

− 1
n−1

)−1 ∈ (1,∞).

(6.166)

Let
(

a
αβ
jk

)

1≤j,k≤n
1≤α,β≤M

be the entries of the given coefficient tensor A ∈ AWE. Also,

denote by (uα)1≤α≤M and (wβ)1≤β≤M , respectively, the scalar components of the
vector-valued functions u,w. Define the vector field

�F :=
(

a
αβ
jk (∂kuβ)(w − c̃ )α − a

αβ
kj (u − c)β(∂kwα)

)

1≤j≤n
, (6.167)

where the summation convention over repeated indices is in effect. Then

�F ∈ [

C∞(�)
]n (6.168)

and

div �F = a
αβ
jk (∂j ∂kuβ)(w − c̃ )α + a

αβ
jk (∂kuβ)(∂jwα)

− a
αβ
kj (∂juβ)(∂kwα) − a

αβ
kj (u − c)β(∂j ∂kwα)

= (LAu)α(w − c̃ )α − (u − c)β(LA�w)β

= 0 − 0 = 0 in �, (6.169)

thanks to (6.162) and (6.163). Also, from (6.167), (6.165), (6.166), and the fact that,
as seen from (6.161), we have

1
p∗ + 1

q
= 1 and 1

p
+ 1

q∗ = 1, (6.170)

we conclude that
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Nκ
�F ∈ L1(∂�, σ). (6.171)

Finally, from (6.167) and (6.164) we see that the nontangential boundary trace
�F ∣

∣

κ−n.t.

∂�
exists at σ -a.e. point on ∂� and, in fact,

�F ∣

∣

κ−n.t.

∂�
=

(

a
αβ
jk (∂kuβ)

∣

∣

κ−n.t.

∂�

(

w
∣

∣

κ−n.t.

∂�
− c̃

)

α

− a
αβ
kj

(

u
∣

∣

κ−n.t.

∂�
− c

)

β
(∂kwα)

∣

∣

κ−n.t.

∂�

)

1≤j≤n

. (6.172)

In particular, (6.172) and (3.66) imply that at σ -a.e. point on ∂� we have

ν ·
( �F ∣

∣

κ−n.t.

∂�

)

= νja
αβ
jk (∂kuβ)

∣

∣

κ−n.t.

∂�

(

w
∣

∣

κ−n.t.

∂�
− c̃

)

α

− νja
αβ
kj

(

u
∣

∣

κ−n.t.

∂�
− c

)

β
(∂kwα)

∣

∣

κ−n.t.

∂�

=
〈

∂A
ν u,w

∣

∣

κ−n.t.

∂�
− c̃

〉

−
〈

u
∣

∣

κ−n.t.

∂�
− c, ∂A�

ν w
〉

=
〈

f,w
∣

∣

κ−n.t.

∂�
− c̃

〉

, (6.173)

where the last equality takes into account the boundary conditions in (6.162)
and (6.163). Granted (6.168), (6.169), (6.170), (6.172), and the current assumptions
on �, a version of the Divergence Theorem proved in [111, §1.2] applies and gives

ˆ
∂�

ν ·
( �F ∣

∣

κ−n.t.

∂�

)

dσ = 0. (6.174)

In concert with (6.173) this further implies

ˆ
∂�

〈

f,w
∣

∣

κ−n.t.

∂�
− c̃

〉

dσ = 0 (6.175)

which, in view of the arbitrariness of f ∈ [

Lp(∂�, σ)
]M forces w

∣

∣

κ−n.t.

∂�
= c̃ at σ -

a.e. point on ∂�. With this in hand, the integral representation formula from (3.75)
gives that, for some C

M -valued locally constant function cw in �, we have

w = D
A�,mod

(

w
∣

∣

κ−n.t.

∂�

) − Smod

(

∂A�
ν w

) + cw

= D
A�,mod

(

c̃
) + cw in �. (6.176)
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Thanks to (3.54) we then conclude that w is indeed a locally constant function in
the set �. ��

6.4 The Transmission Problem in Weighted Lebesgue Spaces

The trademark characteristic of a Transmission Problem is the fact that one now
seeks two functions, defined on either side of an interface, whose traces and
conormal derivatives couple in a specific fashion along the common interface.

Theorem 6.15 Let � ⊆ R
n be a UR domain. Denote by ν the geometric measure

theoretic outward unit normal to �, abbreviate σ := Hn−1�∂�, and set

�+ := �, �− := R
n \ �. (6.177)

In addition, pick an integrability exponent p ∈ (1,∞), some Muckenhoupt weight
w ∈ Ap(∂�, σ), an aperture parameter κ ∈ (0,∞), and a transmission (or
coupling) parameter η ∈ C.

Next, assume L is a homogeneous, second-order, constant complex coefficient,
weakly elliptic M × M system in Rn. Finally, select some coefficient tensor A ∈ AL

and consider the Transmission Problem:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

u± ∈ [

C∞(�±)
]M

,

Lu± = 0 in �±,

Nκ(∇u±) ∈ Lp(∂�,w),

u+∣

∣

κ−n.t.

∂�
− u−∣

∣

κ−n.t.

∂�
= g ∈ [ .

L
p

1 (∂�,w)
]M

,

∂A
ν u+ − η · ∂A

ν u− = f ∈ [

Lp(∂�,w)
]M

.

(6.178)

Then, in relation to this, the following statements are valid:

(a) [Uniqueness (modulo constants)] Assume that either

A� ∈ Adis
L� and η ∈ C \ {−1} (6.179)

or

A ∈ Adis
L and η ∈ C \ {0,−1}. (6.180)

Then there exists δ ∈ (0, 1) which depends only on n, p, [w]Ap , A, η, and
the Ahlfors regularity constant of ∂� so that whenever ‖ν‖[BMO(∂�,σ)]n < δ (a
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scenario which renders � a δ-AR domain; cf. Definition 2.15) it follows any two
solutions of the Transmission Problem (6.178) differ by a constant (from C

M ).
(b) [Well-Posedness, Integral Representations, and Additional Regularity] Assume 1

A ∈ Adis
L ,A� ∈ Adis

L� , and η ∈ C \ {−1}. (6.181)

Then there exists some δ ∈ (0, 1) which depends only on n, p, [w]Ap , A, η,
and the Ahlfors regularity constant of ∂� such that if ‖ν‖[BMO(∂�,σ)]n < δ (a
scenario which ensures that � is a δ-AR domain; cf. Definition 2.15) it follows
that the Transmission Problem (6.178) is solvable. Specifically, in the scenario
described in (6.181), the operator − η+1

2 I + (1 − η)K#
A� is invertible on the

Muckenhoupt weighted Lebesgue space
[

Lp(∂�,w)
]M

, the operator
[

Smod

]

is

invertible from
[

Lp(∂�,w)
]M

onto the space
[ .
L

p

1 (∂�,w)
/ ∼ ]M

, and the
functions u± : �± → C

M defined as

u+ := S +
mod

h0 + S +
mod

h1 − c in �+,

u− := S −
mod

h0 in �−,
(6.182)

where the superscripts ± indicate that the modified single layer potentials are
associated with the sets �± and

h1 := [

Smod

]−1[g] ∈ [

Lp(∂�,w)
]M

, c := Smodh1 − g ∈ C
M,

h0 :=
(

− η+1
2 I + (1 − η)K#

A�
)−1 (

f − ( − 1
2I + K#

A�
)

h1

)

,

(6.183)

solve the Transmission Problem (6.178) and satisfy, for a finite constant C > 0
independent of f and g,

∥

∥Nκ(∇u±)
∥

∥

Lp(∂�,w)
≤ C

(

‖f ‖[Lp(∂�,w)]M + ‖g‖[ .Lp
1 (∂�,w)]M

)

. (6.184)

Moreover, any two solutions of the Transmission Problem (6.178) differ by a con-
stant (from C

M ). In particular, any solution of the Transmission Problem (6.178)
satisfies (6.184).

Alternatively, under the conditions imposed in (6.181) and, again, assuming�

is a δ-AR domain with δ ∈ (0, 1) sufficiently small, a solution of the Transmission
Problem (6.178) may also be found in the form

1 According to Theorem 3.9, the set of demands made in (6.181) is further equivalent to Adis
L �= ∅,

A� ∈ Adis
L� , and η ∈ C \ {−1}, and also equivalent to A ∈ Adis

L , Adis
L� �= ∅, and η ∈ C \ {−1}.
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u+ := D+
A,mod

ψ0 + c in �+,

u− := D−
A,mod

ψ1 in �−,
(6.185)

where the superscripts ± indicate that the modified double layer potentials are
associated with the sets �±, where c ∈ C

M is a suitable constant, and where

ψ0, ψ1 ∈ [ .
L

p

1 (∂�,w)
]M

are two suitable functions satisfying

‖ψ0‖[ .Lp
1 (∂�,w)]M + ‖ψ1‖[ .Lp

1 (∂�,w)]M

≤ C
(

‖f ‖[Lp(∂�,w)]M + ‖g‖[ .Lp
1 (∂�,w)]M

)

, (6.186)

for some constant C ∈ (0,∞) independent of f and g. In particular, u±
in (6.185) also satisfy (6.184).

Finally, for any given q ∈ (1,∞) and ω ∈ Aq(∂�, σ) (after possibly further
decreasing δ ∈ (0, 1) relative to q and [ω]Aq ) one has

Nκ(∇u+),Nκ(∇u−) ∈ Lq(∂�,ω)

⇐⇒ f ∈ [

Lq(∂�,ω)
]M

and g ∈ [ .
L

q

1(∂�,ω)
]M

, (6.187)

and if either of these conditions holds then

∥

∥Nκ(∇u+)
∥

∥

Lq(∂�,ω)
+ ∥

∥Nκ(∇u−)
∥

∥

Lq(∂�,ω)

≈ ‖f ‖[Lq(∂�,ω)]M + ‖g‖[ .Lq
1 (∂�,ω)]M . (6.188)

(c) [Sharpness] Fix some transmission parameter η ∈ C\{−1}. Then even forL = �

and � = R
n+, if A /∈ Adis

L it may happen that the Transmission Problem (6.178)
fails to be solvable when p = 2 and w ≡ 1.

(d) [Well-Posedness for η = 1] In the case when

η = 1 and � is a two-sided NTA domain with an unbounded
Ahlfors regular boundary

(6.189)

the Transmission Problem (6.178) is solvable, and any two solutions of the
Transmission Problem (6.178) differ by a constant. Any solution is given by

u+ := D+
A,mod

g − S +
mod

f + c in �+,

u− := −D−
A,mod

g − S −
mod

f + c in �−,
(6.190)
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for some c ∈ C
M , where the superscripts ± indicate that the modified layer

potentials are associated with the sets �± introduced in (6.177). In addition, any
solution satisfies (6.184).

A few clarifications pertaining to the nature of the above theorem are in order
here. First, Lemma 2.3 and definitions imply that

�− is a UR domain whose topological boundary actually coin-
cides with ∂�, and whose geometric measure theoretic boundary
agrees with that of � (hence, ∂(�−) = ∂� and ∂∗(�−) = ∂∗�);
also, the geometric measure theoretic outward unit normal to �−
is −ν at σ -a.e. point on ∂�.

(6.191)

In particular, this makes it meaningful to talk about the nontangential boundary

trace u−∣

∣

κ−n.t.

∂�
, here understood as u−∣

∣

κ−n.t.

∂(�−)
. Second, the existence of u±∣

∣

κ−n.t.

∂�
at

σ -a.e. point on ∂� is an implicit demand in the formulation of the Transmission
Problem (6.178). Third, the conormal derivative ∂A

ν u+ is defined as in (3.66), while
in light of the last property in (6.191) we take ∂A

ν u− to be the opposite of (i.e.,−1
times) the conormal derivative operator from (3.66) for the domain �− acting on
the function u−, i.e.,

∂A
ν u− := −∂A

(−ν)u
−. (6.192)

Collectively, (2.576), (2.48), (3.66), and the Fatou-type result from Theorem 3.4
imply that the conormal derivatives ∂A

ν u± are well defined in the context of (6.178).
We now turn to the task of proving Theorem 6.15.

Proof of Theorem 6.15 As regards item (a), we need to address the issue of
uniqueness (modulo constants) in either of the scenarios specified in (6.179)–
(6.180), assuming that � is a δ-AR domain for some sufficiently small δ ∈ (0, 1).
In all cases, the goal is to show that

if u± solve the homogeneous version of the Transmission Prob-
lem (6.178) (corresponding to having f = 0 and g = 0) then
there exists a constant c ∈ C

M with the property that u± = c in
�±.

(6.193)

Let us first justify (6.193) in the case when (6.179) holds. Suppose u± solve the
homogeneous version of the Transmission Problem (6.178). Assuming that � is a
δ-AR domain with δ ∈ (0, 1) sufficiently small, Theorem 2.3, Propositions 2.24,
2.22 (keeping in mind (2.576)), and the homogeneous version of the first boundary
condition in (6.178), to the effect that

u+∣

∣

κ−n.t.

∂�
= u−∣

∣

κ−n.t.

∂�
at σ -a.e. point on ∂�, (6.194)
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for each j, k ∈ {1, . . . , n}, allow us to write

νj

(

(∂ku
+)

∣

∣

κ−n.t.

∂�

)

− νk

(

(∂ju
+)

∣

∣

κ−n.t.

∂�

)

= ∂τjk

(

u+∣

∣

κ−n.t.

∂�

)

(6.195)

= ∂τjk

(

u−∣

∣

κ−n.t.

∂�

)

= νj

(

(∂ku
−)

∣

∣

κ−n.t.

∂�

)

− νk

(

(∂ju
−)

∣

∣

κ−n.t.

∂�

)

at σ -a.e. point on ∂�. In terms of the abbreviation introduced in (6.125) we agree
to recast this as

∂Tjk
u+

α = ∂Tjk
u−

α at σ -a.e. point on ∂�,

for each j, k ∈ {1, . . . , n} and α ∈ {1, . . . ,M}.
(6.196)

Also, from (6.62) (written for u+ and �+), (6.196), the fact that we are presently
assuming

∂A
ν u+ = η · ∂A

ν u−, (6.197)

and (6.63) (written for u− and �−) we see that for each integer � ∈ {1, . . . , n} and
each γ ∈ {1, . . . ,M}, and each point x ∈ � we have

(∂�u
+
γ )(x) =

ˆ
∂�

aβα
rs (∂rEγβ)(x − y)

(

∂T�s
u+

α

)

(y) dσ(y)

−
ˆ

∂�

(∂�Eγα)(x − y)
(

∂A
ν u+)

α
(y) dσ(y)

=
ˆ

∂�

aβα
rs (∂rEγβ)(x − y)

(

∂T�s
u−

α

)

(y) dσ(y)

− η

ˆ
∂�

(∂�Eγα)(x − y)
(

∂A
ν u−)

α
(y) dσ(y)

= (1 − η)

ˆ
∂�

(∂�Eγα)(x − y)
(

∂A
ν u−)

α
(y) dσ(y). (6.198)

Granted this, the same type of argument which, starting with (6.83), has pro-
duced (6.88) presently yields

∂A
ν u+ = (1 − η)

( − 1
2I + K#

A�
)(

∂A
ν u−)

(6.199)

which, given that we are currently assuming ∂A
ν u+ = η · ∂A

ν u− (cf. (6.197)), further
implies
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(

− η+1
2 I + (1 − η)K#

A�
)

(

∂A
ν u−) = 0. (6.200)

Since we are presently assuming A� ∈ Adis
L� and η ∈ C\{−1}, Theorem 4.8 ensures

(taking δ ∈ (0, 1) sufficiently small, to begin with) that − η+1
2 I + (1 − η)K#

A� is an

invertible operator on
[

Lp(∂�,w)
]M . Together with (6.200) this forces

∂A
ν u− = 0. (6.201)

Going back with this in (6.198) then yields ∇u+ = 0 in �+. In concert with
Theorem 2.4 this goes to show that u+ is a constant in �+, say u+ ≡ c ∈ C

M

in �+. Based on this and (6.194) we then conclude that

u−∣

∣

κ−n.t.

∂�
= u+∣

∣

κ−n.t.

∂�
= c at σ -a.e. point on ∂�, (6.202)

hence also

νj

(

(∂ku
−)

∣

∣

κ−n.t.

∂�

)

− νk

(

(∂ju
−)

∣

∣

κ−n.t.

∂�

)

= ∂τjk

(

u−∣

∣

κ−n.t.

∂�

)

= 0 (6.203)

for each j, k ∈ {1, . . . , n} (cf. (6.195)). Keeping (6.201) and (6.203) in mind and
writing (6.62) for u− and �−, we then see that ∇u− = 0 in �−. By once again
relying on Theorem 2.4, we infer that u− is a constant in �−. In concert with (6.202)
this shows that u− ≡ c in �−, finishing the proof of (6.193) under the assumptions
made in (6.179).

Going further, the goal is to prove (6.193) when � is a δ-AR domain for
some sufficiently small δ ∈ (0, 1), under the assumptions made in (6.180). As
before, (6.194)–(6.196) and (6.197) are presently true. Also, from (6.62) (written
for u+ and �+), (6.196), (6.197), and (6.63) (written for u− and �−) we see that
for each pair of indices, � ∈ {1, . . . , n} and γ ∈ {1, . . . , M}, and each point x ∈ �

we have

(∂�u
+
γ )(x) =

ˆ
∂�

aβα
rs (∂rEγβ)(x − y)

(

∂T�s
u+

α

)

(y) dσ(y)

−
ˆ

∂�

(∂�Eγα)(x − y)
(

∂A
ν u+)

α
(y) dσ(y)

=
ˆ

∂�

aβα
rs (∂rEγβ)(x − y)

(

∂T�s
u−

α

)

(y) dσ(y)

− η

ˆ
∂�

(∂�Eγα)(x − y)
(

∂A
ν u−)

α
(y) dσ(y)
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= (1 − η)

ˆ
∂�

aβα
rs (∂rEγβ)(x − y)

(

∂T�s
u−

α

)

(y) dσ(y)

= (1 − η)

ˆ
∂�

aβα
rs (∂rEγβ)(x − y)

(

∂T�s
u+

α

)

(y) dσ(y). (6.204)

Having established this, the same type of argument which, starting with (6.122), has
produced (6.130) currently gives (with the factor 1 − η absorbed in T )

∂Tt�
u+ = (1 − η)

( 1
2I + KA

)(

∂Tt�
u+) + [

Mν, T
](

∂T u+)

at σ -a.e. point on ∂�, for each t, � ∈ {1, . . . , n}.
(6.205)

Hence, for each t, � ∈ {1, . . . , n} we have

(

1+η
2

)

∂Tt�
u+ = (1 − η)KA

(

∂Tt�
u+) + [

Mν, T
](

∂T u+)

on ∂�. (6.206)

Since η �= −1 and A ∈ Adis
L , much as in (6.131)–(6.134) this forces

∂Tt�
u+

α = 0 for each t, � ∈ {1, . . . , n} and α ∈ {1, . . . ,M} (6.207)

if δ ∈ (0, 1) is sufficiently small to begin with. Feeding this back into (6.204) then
proves that ∇u+ = 0 in �+, hence (cf. Theorem 2.4), u+ is a constant in �+, say

u+ ≡ c+ ∈ C
M in �+. (6.208)

Based on this, (6.197), (6.195), and keeping in mind that η �= 0, we then obtain

∂A
ν u− = η−1 · ∂A

ν u+ = 0 at σ -a.e. point on ∂�,

and ∂Tjk
u−

α = 0 at σ -a.e. point on ∂�,

for each j, k ∈ {1, . . . , n} and α ∈ {1, . . . ,M}.
(6.209)

With this in hand, the integral representation formula (6.62) written for u− in �−,
then shows that ∇u− = 0 in �− thus, as before, the function u− is a constant in
�−, say u− = c− ∈ C

M in �−. The final step is to invoke equality (6.194) to write

c+ = u+∣

∣

κ−n.t.

∂�
= u−∣

∣

κ−n.t.

∂�
= c−, which completes the proof of (6.193) under the

assumptions made in (6.180). This completes the treatment of item (a).
To deal with the claims in item (b), work under the assumptions made in (6.181),

i.e., A ∈ Adis
L , A� ∈ Adis

L� , and η ∈ C\{−1}. Then Theorems 4.8 and 4.11 ensure the
existence of some threshold δ ∈ (0, 1), whose nature is as specified in the statement
of the present theorem, such that if ‖ν‖[BMO(∂�,σ)]n < δ it follows that the operators
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− η+1
2 I + (η − 1)K#

A� : [

Lp(∂�,w)
]M −→ [

Lp(∂�,w)
]M

, (6.210)

and

[

Smod

] : [

Lp(∂�,w)
]M −→ [ .

L
p

1 (∂�,w)/ ∼ ]M
, (6.211)

are invertible. Assuming this is the case, it is meaningful to define u± as in (6.182)–
(6.183). In view of (6.191) and item (c) in Proposition 3.5 (used both for �+
and �−), these functions satisfy the first three conditions in (6.178), the estimates
claimed in (6.184), and we have (keeping (6.192) and (6.191) in mind)

∂A
ν u+ − η · ∂A

ν u− = ( − 1
2I + K#

A�
)

h0 + ( − 1
2I + K#

A�
)

h1

− η(−1)
( − 1

2I − K#
A�

)

h0

=
(

− η+1
2 I + (1 − η)K#

A�
)

h0 + ( − 1
2I + K#

A�
)

h1

= f − ( − 1
2I + K#

A�
)

h1 + ( − 1
2I + K#

A�
)

h1

= f at σ -a.e. point on ∂�. (6.212)

Finally, thanks to (3.42)–(3.47), (2.575), and (6.191), we see that

u+∣

∣

κ−n.t.

∂�
− u−∣

∣

κ−n.t.

∂�
= Smodh0 + Smodh1 + c − Smodh0

= Smodh1 + c = g at σ -a.e. point on ∂�. (6.213)

Hence, the functions u± defined as in (6.182)–(6.183) solve the Transmission
Problem (6.178) and satisfy the estimates demanded in (6.184).

An alternative proof of the solvability of the Transmission Problem (6.178) in
the case when A ∈ Adis

L , A� ∈ Adis
L� , and η ∈ C \ {−1}, which now employs double

layers in the integral representation of the solution, goes as follows. First, item (2)
in Theorem 4.13 guarantees that the operator (4.392) is surjective. Together with the
Open Mapping Theorem this implies that, for some constant C ∈ (0,∞),

there exists k ∈ [ .
L

p

1 (∂�,w)
]M with ∂A

ν (D
A,modk) = f and such

that ‖k‖[ .Lp
1 (∂�,w)]M ≤ C‖f ‖[Lp(∂�,w)]M .

(6.214)

Also, since A ∈ Adis
L and η ∈ C \ {−1}, from Theorem 4.12 we see that

− η+1
2 I + (1 − η)

[

K
A,mod

] : [ .
L

p

1 (∂�,w)/ ∼ ]M −→ [ .
L

p

1 (∂�,w)/ ∼ ]M

(6.215)
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is an invertible operator. Consequently, there exists ψ1 ∈ [ .
L

p

1 (∂�,w)
]M such that

( − η+1
2 I + (1 − η)K

A,mod

)

ψ1 = g − ( 1
2I + K

A,mod

)

k − c (6.216)

for some constant c ∈ C
M , and

‖ψ1‖[ .Lp
1 (∂�,w)]M ≤ C

∥

∥

∥g − ( 1
2I + K

A,mod

)

k

∥

∥

∥[ .Lp
1 (∂�,w)]M (6.217)

for some constant C ∈ (0,∞) independent of f, g. To proceed, introduce

ψ0 := k − η · ψ1 ∈ [ .
L

p

1 (∂�,w)
]M (6.218)

and, finally, define the functions u± as in (6.185) for these choices of ψ0, ψ1, and
c. Then Theorem 3.5 gives that u± ∈ [

C∞(�±)
]M satisfy Lu± = 0 in �± and

Nκ(∇u±) ∈ Lp(∂�,w). Moreover,

u+∣

∣

κ−n.t.

∂�
− u−∣

∣

κ−n.t.

∂�
= ( 1

2I + K
A,mod

)

ψ0 + c − ( 1
2I − K

A,mod

)

ψ1

= ( 1
2I + K

A,mod

)

(k − η · ψ1) + c − ( 1
2I − K

A,mod

)

ψ1

= ( 1
2I + K

A,mod

)

k + ( − η+1
2 I + (1 − η)K

A,mod

)

ψ1 + c

= (g − c) + c = g, (6.219)

by (6.185), (3.134), and (6.216) (keeping in mind (6.191)). In addition,

∂A
ν u+ − η · ∂A

ν u− = (

∂A
ν DA,mod

)

ψ0 + η
(

∂A
ν DA,mod

)

ψ1

= (

∂A
ν DA,mod

)

(ψ0 + η · ψ1) = (

∂A
ν DA,mod

)

k = f, (6.220)

thanks to (6.192), (3.135), and (6.214). This goes to show that (u+, u−) is, as
claimed, a solution of the Transmission Problem (6.178). Furthermore, the estimate
recorded in (6.186) is a consequence of (6.214), (6.217), (6.218), and Theorem 3.6.

At this stage, all claims pertaining to existence and estimates in item (b)
have been established. The fact that, in the current setting, any two solutions of
the Transmission Problem (6.178) differ by a constant is a consequence of the
assumptions in (6.181) and item (a). As regards additional integrability properties
for the solution of the Transmission Problem (6.178), the right-pointing implication
in (6.187) together with the right-pointing inequality in (6.188) are consequences
of (6.74) and the fact that we have
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|f | = ∣

∣∂A
ν u+ − η · ∂A

ν u−∣

∣ ≤ C
(Nκ(∇u+) + Nκ(∇u−)

)

at σ − a.e. point on ∂�.
(6.221)

The left-pointing implication in (6.187) along with the left-pointing inequality in
(6.188) are seen from (7.290), (6.182), (4.342), Remarks 4.21, 4.22, Theorem 3.5,
and Proposition 3.5.

Let us now justify the claim made in item (c). Fix some arbitrary transmission
parameter η ∈ C \ {−1}. Also, pick a coefficient matrix A = (ajk)1≤j,k≤n ∈ C

n×n

whose entries satisfy

ajk + akj = 2δjk for each j, k ∈ {1, . . . , n}. (6.222)

This condition simply ensures that

� = ajk∂j ∂k. (6.223)

The goal is to show that we may choose a coefficient matrix A as above together with
some boundary datum f ∈ L2(Rn−1,Ln−1) such that the Transmission Problem

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

u± ∈ C∞(Rn±),

�u± = 0 in R
n±,

Nκ(∇u±) ∈ L2(Rn−1,Ln−1),

u+∣

∣

κ−n.t.

∂Rn+
− u−∣

∣

κ−n.t.

∂Rn−
= 0 at Ln−1-a.e. point on R

n−1,

∂A
ν u+ − η · ∂A

ν u− = f at Ln−1-a.e. point on R
n−1

(6.224)

does not have a solution. To this end, observe that the first three conditions above
guarantee that there exists a function h ∈ L2(Rn−1,Ln−1) such that

u± = Smodh in R
n±. (6.225)

Indeed, if Ao := In×n, then the function fo := ∂
Ao
ν u+ − η · ∂

Ao
ν u− belongs to

L2(Rn−1,Ln−1) and u± solve the Transmission problem (6.178) in the case when
L = �, � = R

n+, p = 2, w ≡ 1, and corresponding to the boundary data
g := 0 and f := fo. Then what we have proved in item (b) (cf. (6.182)–(6.183))
implies (6.225). Granted (6.225), using the last boundary condition in (6.224) and
reasoning as in (6.212) shows that we have

f = ∂A
ν u+ − η · ∂A

ν u− = ( − 1
2I + K#

A�
)

h − η(−1)
( − 1

2I − K#
A�

)

h

=
(

− η+1
2 I + (1 − η)K#

A�
)

h at Ln−1-a.e. point on R
n−1. (6.226)
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Thus, in order for the Transmission Problem (6.224) to be solvable, f must
necessarily be in the range of the operator η+1

2(η−1)
I+K#

A� acting on L2(Rn−1,Ln−1).
As such, in order to find an example for which the Transmission Problem (6.224)
may not be solvable for arbitrary boundary data f in L2(Rn−1,Ln−1), it suffices
to produce an example of a coefficient matrix A = (ajk)1≤j,k≤n ∈ C

n×n whose
entries satisfy (6.222) for which the operator η+1

2(η−1)
I + K#

A� fails to be surjective

on L2(Rn−1,Ln−1). In this regard, first note that, straight from definitions, for any
function φ ∈ L2(Rn−1,Ln−1) we have

(

K#
A�φ

)

(x′) = lim
ε→0+

ˆ

y′∈Rn−1

|x′−y′|>ε

ajn(∂jE�)(x′ − y′, 0)φ(y′) dy′

= 1

2

n−1
∑

j=1

ajn(Rjφ)(x′) at Ln−1-a.e. x′ ∈ R
n−1, (6.227)

where E� is the standard fundamental solution for the Laplacian (cf. (3.404)), and
where Rj is the j -th Riesz transform in R

n−1. In view of this, we may reformulate
our goal as the task of finding a coefficient matrix A = (ajk)1≤j,k≤n ∈ C

n×n whose
entries satisfy (6.222) for which the operator

T := η + 1

η − 1
I +

n−1
∑

j=1

ajnRj (6.228)

fails to be surjective on L2(Rn−1,Ln−1). Bring in the Fourier transform F′ in R
n−1.

Since, as is well known (see, e.g., [102, (4.9.15), p. 183]), for each given function
φ ∈ L2(Rn−1,Ln−1) and each j ∈ {1, . . . , n − 1} we have

F′(Rjφ
)

(ξ ′) = (−i)
ξj

|ξ ′|
(F′φ

)

(ξ ′), ξ ′ ∈ R
n−1 \ {0}, (6.229)

it follows that

F′(T φ
) = mF′φ for each φ ∈ L2(Rn−1,Ln−1), (6.230)

where, for each xi′ = (ξ1, . . . , ξn−1) ∈ R
n−1 \ {0}, we have set

m(ξ ′) := η + 1

η − 1
+ (−i)

n−1
∑

j=1

ajnξj

|ξ ′| . (6.231)
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Thanks to (6.230) and Plancherel’s theorem, the operator T is surjective if and only
if m only vanishes of a set of Lebesgue measure zero in R

n−1 and 1/m is essentially
bounded in R

n−1. To prevent T from being surjective, it therefore suffices to choose
A so that m vanishes somewhere in R

n−1\{0}. For example, this is the case whenever

A = In×n + C with C = (cjk)1≤j,k≤n ∈ C
n×n

satisfying C� = −C as well as (cjn)1≤j≤n−1 ∈ i Sn−2.
(6.232)

In particular, this precludes A from being the identity, hence from being a
distinguished coefficient tensor for the Laplacian. Ultimately, the conclusion is that,
even for L = � and � = R

n+, if A /∈ Adis
L then the Transmission Problem (6.178)

may fail to be solvable when p = 2 and w ≡ 1. This concludes the treatment of
item (c).

To deal with the claims in item (d), suppose for the remainder of the proof that
η = 1 and that � is a two-sided NTA domain with an unbounded Ahlfors regular
boundary. Consider u± defined as in (6.190). Since we are presently assuming that
� is a UR domain, from Theorem 3.5 and item (c) in Proposition 3.5 we see that
u± ∈ [

C∞(�±)
]M satisfy Lu± = 0 in �± as well as Nκ(∇u±) ∈ Lp(∂�,w). In

addition,

u+∣

∣

κ−n.t.

∂�
− u−∣

∣

κ−n.t.

∂�
= ( 1

2I + K
A,mod

)

g − S
A,modf

− ( − 1
2I + K

A,mod

)

g + S
A,modf = g, (6.233)

by (3.134) and (3.47) (also keeping in mind (2.575)). Also,

∂A
ν u+ − ∂A

ν u− = (

∂A
ν DA,mod

)

g − ( − 1
2I + K#

A�
)

f

− (

∂A
ν DA,mod

)

g + ( 1
2I + K#

A�
)

f = f, (6.234)

thanks to (6.192), (3.126), and (3.135). The conclusion is that (u+, u−) is indeed a
solution of the Transmission Problem (6.178).

Let us next justify (6.193) in the case when (6.189) holds (hence η = 1 and � is a
two-sided NTA domain with an unbounded Ahlfors regular boundary). To this end,
assume u± solve the homogeneous version of the Transmission Problem (6.178)
formulated with η = 1. The off-diagonal Carleson measure estimate of reverse
Hölder type from Proposition 2.5 ensures the existence of a constant C ∈ (0,∞)

with the property that for every point x ∈ ∂� and every radius r ∈ (0,∞) we have

(

 
�±∩B(x,r)

|∇u±| np
n−1 dLn

) n−1
np ≤ C

(

 
∂�∩B(x,Cr)

(Nκ(∇u±)
)p dσ

) 1
p
.

(6.235)
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In concert with (2.525), this permits us to estimate

(

 
�±∩B(x,r)

|∇u±| np
n−1 dLn

) n−1
np ≤ C[w]1/p

Ap

(

 
∂�∩B(x,Cr)

(Nκ(∇u±)
)p dw

) 1
p

≤
C[w]1/p

Ap

w
(

∂� ∩ B(x,Cr)
) 1

p

· ∥

∥Nκ(∇u±)
∥

∥

Lp(∂�,w)

(6.236)

for every x ∈ ∂� and every r ∈ (0,∞); in particular,

∇u± ∈ [

Lnp/(n−1)(�± ∩ B(x, r),Ln)
]M·n

for each x ∈ ∂� and r ∈ (0,∞).
(6.237)

Likewise, from Proposition 2.5 and (2.525) we see that there exists some constant
C ∈ (0,∞) such that for every point x ∈ ∂� and every radius r ∈ (0,∞) we have

(

 
�±∩B(x,r)

|u±| np
n−1 dLn

) n−1
np

≤ C[w]1/p
Ap

(

 
∂�∩B(x,Cr)

(NCr
κ u±)p dw

) 1
p

< +∞, (6.238)

since (cf. (6.178) and (6.74))

NCr
κ u ∈ L

p

loc(∂�,w). (6.239)

In particular,

u± ∈ [

Lnp/(n−1)(�± ∩ B(x, r),Ln)
]M

for each x ∈ ∂� and r ∈ (0,∞).
(6.240)

Also, if we consider the function defined Ln-a.e. in R
n as

u :=
{

u+ in �+,

u− in �−,
(6.241)

then u is Ln-measurable and (6.238) implies that

u ∈ [

L
np/(n−1)

loc (Rn,Ln)
]M

↪→ [

L1
loc(R

n,Ln)
]M

. (6.242)
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Let (ν1, . . . , νn) denote the scalar components of the geometric measure theoretic
outward unit normal ν to �. Then for each index j ∈ {1, . . . , n} and each vector-
valued test function ϕ ∈ [

C∞
0 (Rn)

]M , we may compute (with the first two pairings
considered in the sense of distributions in R

n)

〈∂ju, ϕ〉 = −〈u, ∂jϕ〉 = −
ˆ
R

n
〈u, ∂jϕ〉 dLn

= −
ˆ

�+
〈u+, ∂jϕ〉 dLn −

ˆ
�−

〈u−, ∂jϕ〉 dLn

=
ˆ

�+
〈∂ju

+, ϕ〉 dLn −
ˆ

∂�

νj

〈(

u+∣

∣

κ−n.t.

∂�

)

, ϕ
〉

dσ

+
ˆ

�−
〈∂ju

−, ϕ〉 dLn +
ˆ

∂�

νj

〈(

u−∣

∣

κ−n.t.

∂�

)

, ϕ
〉

dσ

=
ˆ

�+
〈∂ju

+, ϕ〉 dLn +
ˆ

�−
〈∂ju

−, ϕ〉 dLn. (6.243)

Above, the fourth equality is provided by the integration by parts formula proved
in [111, §1.7], whose present applicability is ensured by (6.178), (6.74), (6.237),
(6.240), and the fact that (6.239) together with (2.576) imply

NCr
κ u ∈ L1

loc(∂�, σ) for each r ∈ (0,∞). (6.244)

Also, the last equality in (6.243) uses (6.191) and the fact that we are currently

assuming u+∣

∣

κ−n.t.

∂�
= u−∣

∣

κ−n.t.

∂�
. In turn, from (6.243) and (6.237) we conclude that,

with the derivatives computed in the sense of distributions, for each j ∈ {1, . . . , n}
we have

∂ju ∈ [

L
np/(n−1)

loc (Rn,Ln)
]M (6.245)

and, in fact,

∂ju =
{

∂ju
+ in �+,

∂ju
− in �−.

(6.246)

Moreover, combining (6.246) with (6.236) shows that there exists some constant
C ∈ (0,∞) with the property that for every x ∈ ∂� and every r ∈ (0,∞) we have
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(

 
B(x,r)

|∇u| np
n−1 dLn

) n−1
np

≤ C
(

 
�+∩B(x,r)

|∇u+| np
n−1 dLn

) n−1
np

+ C
(

 
�−∩B(x,r)

|∇u−| np
n−1 dLn

) n−1
np

(6.247)

≤
C[w]1/p

Ap

w
(

∂� ∩ B(x,Cr)
) 1

p

(

∥

∥Nκ(∇u+)
∥

∥

Lp(∂�,w)
+ ∥

∥Nκ(∇u−)
∥

∥

Lp(∂�,w)

)

.

To proceed, consider now an arbitrary point x ∈ R
n and pick some x∗ ∈ ∂� such

that dist(x, ∂�) = |x − x∗|. Since B(x, r) ⊆ B(x∗, 2r) for each r > dist(x, ∂�),
we conclude from (6.247) that there exists C ∈ (0,∞) such that

(

 
B(x,r)

|∇u| np
n−1 dLn

) n−1
np

≤ C
(

 
B(x∗,2r)

|∇u| np
n−1 dLn

) n−1
np

(6.248)

≤
C[w]1/p

Ap

w
(

∂� ∩ B(x∗, Cr)
) 1

p

(

∥

∥Nκ(∇u+)
∥

∥

Lp(∂�,w)
+ ∥

∥Nκ(∇u−)
∥

∥

Lp(∂�,w)

)

for every point x ∈ R
n and every radius r > dist(x, ∂�), where x∗ ∈ ∂� is such

that dist(x, ∂�) = |x − x∗|.
We next claim that

Lu = 0 in the sense of distributions in R
n. (6.249)

To justify this, pick an arbitrary vector-valued test function ϕ ∈ [

C∞
0 (Rn)

]M and
write (with the first two pairings considered in the sense of distributions in R

n)

〈Lu, ϕ〉 = 〈u,L�ϕ〉 =
ˆ
R

n
〈u,L�ϕ〉 dLn

=
ˆ

�+
〈u+, L�ϕ〉 dLn +

ˆ
�−

〈u−, L�ϕ〉 dLn
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=
ˆ

�+
〈Lu+, ϕ〉 dLn +

ˆ
∂�

〈

u+∣

∣

κ−n.t.

∂�
, ∂A�

ν ϕ
〉

dσ −
ˆ

∂�

〈

∂A
ν u+, ϕ

〉

dσ

+
ˆ

�−
〈Lu−, ϕ〉 dLn −

ˆ
∂�

〈

u−∣

∣

κ−n.t.

∂�
, ∂A�

ν ϕ
〉

dσ +
ˆ

∂�

〈

∂A
ν u−, ϕ

〉

dσ

= 0. (6.250)

The fourth equality in (6.250) is a consequence of the Green type formula for
second-order systems established in [113, §1.7], whose present applicability is guar-
anteed by (6.178), (6.74), Theorem 3.4, (6.237), (6.240), and the fact that (6.239)
together with (2.576) entail

Nκ(∇u) ∈ L1
loc(∂�, σ) and NCr

κ u ∈ L1
loc(∂�, σ) for all r ∈ (0,∞).

(6.251)
In addition, the last equality in (6.250) uses (6.178), (6.191), plus the fact that we

are now assuming u+∣

∣

κ−n.t.

∂�
= u−∣

∣

κ−n.t.

∂�
and ∂A

ν u+ = ∂A
ν u−. This establishes (6.250)

which, in turn, proves (6.249).
As a consequence of (6.249) and elliptic regularity, u ∈ [

C∞(Rn)
]M . In

particular, for each index j ∈ {1, . . . , n} we have ∂ju ∈ [

C∞(Rn)
]M as well as

L(∂ju) = ∂j (Lu) = 0, since L has constant coefficients. Bearing this in mind,
interior estimates for weakly elliptic systems proved in [102, Theorem 11.12, p. 415]
give

|(∇u)(x)| ≤ C
(

 
B(x,r)

|∇u| np
n−1 dLn

) n−1
np

(6.252)

for every point x ∈ R
n and every radius r ∈ (0,∞). Together with (6.248) this

implies

|(∇u)(x)| (6.253)

≤
C[w]1/p

Ap

w
(

∂� ∩ B(x∗, Cr)
) 1

p

(

∥

∥Nκ(∇u+)
∥

∥

Lp(∂�,w)
+ ∥

∥Nκ(∇u−)
∥

∥

Lp(∂�,w)

)

for every point x ∈ R
n and every radius r > dist(x, ∂�), where x∗ ∈ ∂� is such

that dist(x, ∂�) = |x − x∗|. At this stage, upon recalling (2.540) and the fact that
Nκ(∇u±) ∈ Lp(∂�,w) (cf. (6.178)), after passing to limit r → ∞ in (6.253) we
arrive at the conclusion that

(∇u)(x) = 0 for each point x ∈ R
n. (6.254)
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Hence, u is constant in R
n, from which (6.193) readily follows on account

of (6.241). This finishes the proof of (6.193) under the assumption made in (6.189).
The proof of Theorem 6.15 is therefore complete. ��
We continue by making a series of remarks aimed at further exploring the nature

of Theorem 6.15.

Remark 6.11 In various special circumstances, the statement of Theorem 6.15 may
be further streamlined. For example, Theorem 3.8 gives that if the system L actually
satisfies the strong Legendre–Hadamard ellipticity condition then in place of either
set of conditions specified in (6.179), (6.180), (6.181) we may simply assume

A ∈ Adis
L and η ∈ C \ {−1}. (6.255)

Also, if n ≥ 3, M = 1, and the matrix A ∈ AL is symmetric then, thanks to (3.223),
either set of conditions specified in (6.179), (6.180), (6.255) may simply be replaced
by just the demand that η ∈ C \ {−1}.

Remark 6.12 There is another boundary value problem, closely related to the
Transmission Problem (6.178), in which the transmission parameter shows up in
the formulation of the Dirichlet boundary condition (as opposed to the Neumann
boundary condition, as was the case in (6.178)). Specifically, retaining the back-
ground assumptions made in Theorem 6.15 now consider

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

u± ∈ [

C∞(�±)
]M

,

Lu± = 0 in �±,

Nκ(∇u±) ∈ Lp(∂�,w),

u+∣

∣

κ−n.t.

∂�
− η · u−∣

∣

κ−n.t.

∂�
= g ∈ [ .

L
p

1 (∂�,w)
]M

,

∂A
ν u+ − ∂A

ν u− = f ∈ [

Lp(∂�,w)
]M

.

(6.256)

When η �= 0, working with the functions v+ := u+ in �+ and v− := η · u− in
�−, matters are readily reduced to the “standard” Transmission Problem (6.178)
written with η−1 in place of η. When η = 0 it follows that (6.256) decouples into
a Homogeneous Regularity Problem for the function u+ in �+, and a Neumann
Problem for the function u− in �− with boundary datum ∂A

ν u+ − f . In particular,
we have solvability results for (6.256) which are similar to those in Theorem 6.15.

Remark 6.13 Much as in the case of the Tangential Derivative Problem (6.97), we
may re-fashion the Transmission Problem (6.178) as
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⎧

⎪
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⎪

⎪

⎪

⎪

⎪
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⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

u± ∈ [

C∞(�±)
]M

,

Lu± = 0 in �±,

Nκ(∇u±) ∈ Lp(∂�,w),
{

νj

(

(∂ku
+)

∣

∣

κ−n.t.

∂�

)

− νk

(

(∂ju
+)

∣

∣

κ−n.t.

∂�

)}

−
{

νj

(

(∂ku
−)

∣

∣

κ−n.t.

∂�

)

− νk

(

(∂ju
−)

∣

∣

κ−n.t.

∂�

)}

= ∂τjk
g,

at σ − a.e. point on ∂�, for each j, k ∈ {1, . . . , n},
∂A
ν u+ − η · ∂A

ν u− = f ∈ [

Lp(∂�,w)
]M

,

(6.257)

where the function g is arbitrarily specified in
[ .
L

p

1 (∂�,w)
]M , the homogeneous

Muckenhoupt weighted boundary Sobolev space defined in (2.598). For this
boundary value problem, similar results as in Theorem 6.15 continue to be valid.

Remark 6.14 Under the same background assumptions made in Theorem 6.15
(and with the same conventions adopted there), it is of interest to single out the
special case corresponding to having g = 0 in (6.178), i.e., consider the following
Reduced Transmission Problem:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

u± ∈ [

C∞(�±)
]M

,

Lu± = 0 in �±,

Nκ(∇u±) ∈ Lp(∂�,w),

u+∣

∣

κ−n.t.

∂�
= u−∣

∣

κ−n.t.

∂�
at σ -a.e. point on ∂�,

∂A
ν u+ − η · ∂A

ν u− = f ∈ [

Lp(∂�,w)
]M

.

(6.258)

Running the same argument as in the proof of Theorem 6.15, this time we no
longer need to assume that the operator in (6.211) is an isomorphism, ultimately
allows us to impose lighter demands on the nature of the system L and the coefficient
tensor A. Specifically, now working under the sole assumption that A� ∈ Adis

L� and
η ∈ C \ {−1}, the same proof as before shows that there exists δ ∈ (0, 1) which
depends only on n, p, [w]Ap , A, η, and the Ahlfors regularity constant of ∂� such
that if ‖ν‖[BMO(∂�,σ)]n < δ (hence the set � is a δ-AR domain) then the operator

− η+1
2 I + (1 − η)K#

A� is invertible on the Muckenhoupt weighted Lebesgue space
[

Lp(∂�,w)
]M and the functions u± : �± → C

M defined as

u±(x) :=
(

Smod

(

− η+1
2 I + (1 − η)K#

A�
)−1

f
)

(x) for x ∈ �± (6.259)
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solve the Reduced Transmission Problem formulated in (6.258) and satisfy, for some
constant C ∈ (0,∞) independent of f ,

∥

∥Nκ(∇u±)
∥

∥

Lp(∂�,w)
≤ C‖f ‖[Lp(∂�,w)]M . (6.260)

Moreover, the result established in item (a) of Theorem 6.15 working under
the hypotheses in (6.179) gives uniqueness (modulo constants) for the Reduced
Transmission Problem (6.258). Hence, well posedness follows by simply assuming
that A� ∈ Adis

L� .

Remark 6.15 Once again, for familiar reasons, a similar solvability result to the one
established in Theorem 6.15 turns out to be true for the Transmission Problem with
data in Lorentz spaces, i.e., for

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

u± ∈ [

C∞(�±)
]M

,

Lu± = 0 in �±,

Nκ(∇u±) ∈ Lp,q(∂�, σ),

u+∣

∣

κ−n.t.

∂�
− u−∣

∣

κ−n.t.

∂�
= g ∈ [ .

L
p,q

1 (∂�, σ)
]M

,

∂A
ν u+ − η · ∂A

ν u− = f ∈ [

Lp,q(∂�, σ)
]M

,

(6.261)

with p ∈ (1,∞) and q ∈ (0,∞], where
.
L

p,q

1 (∂�, σ) is the Lorentz-based
homogeneous Sobolev space defined in an analogous fashion to (2.598). The reader
is referred to Theorem 7.23 (and also Examples 8.2, 8.6) for more general results of
this type.

Remark 6.16 Thanks to (3.228)–(3.229), Theorem 6.15 is applicable to the Lamé
system Lμ,λ = μ�+ (λ+μ)∇div in R

n with n ≥ 2, assuming μ �= 0, 2μ+λ �= 0,
3μ+λ �= 0, provided we work with the coefficient tensor A(ζ ) defined as in (3.226)
for the choice ζ = μ(μ+λ)

3μ+λ
. In addition, when n = 2, we may rely on the invertibility

result from Theorem 4.14 (and duality) to conclude that the transmission boundary
problem for the two-dimensional Lamé system in sufficiently flat Ahlfors regular
domains in the plane is solvable when formulated in a similar fashion to (6.178)
with A := A(ζ ) and η ∈ C \ {±1}, for a larger range of ζ ’s, namely

ζ ∈ C \
{

± η + 1

η − 1

[2μ(2μ + λ)

3μ + λ

]

+ μ(μ + λ)

3μ + λ

}

. (6.262)

Remark 6.17 The case of the Transmission Problem for the Laplacian in upper-
graph Lipschitz domains in R

n, with n ≥ 2 arbitrary, has been treated in [46]. In the
two-dimensional setting, for L = � the Laplacian and � an infinite sector in the
plane, counterexamples to the well-posedness of the Transmission Problem (6.178)
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for certain values of p (related to the aperture of � and the transmission parameter
appearing in the formulation of the problem) have been given in [105].

Remark 6.18 It is of interest to observe that

lack of uniqueness (modulo constants) for the Homogeneous
Regularity Problem for the system L in �− (cf. (6.64)) implies
lack of uniqueness (modulo constants) for the Transmission
Problem (6.178) in the case when η = 0.

(6.263)

Indeed, if u− is such that

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

u− ∈ [

C∞(�−)
]M

,

Lu− = 0 in �−,

Nκ(∇u−) ∈ Lp(∂�,w),

u−∣

∣

κ−n.t.

∂�
= c at σ -a.e. point on ∂�,

(6.264)

for some constant c ∈ C
M , then setting u+ := c in �+ yields a pair (u+, u−) which

is a null-solution of the Transmission Problem (6.178) formulated for η = 0.
There are two scenarios under which uniqueness (modulo constants) for the

Transmission Problem (6.178) has been established in item (a) of Theorem 6.15.
First, it was assumed that (6.179) holds and, in this case, condition Adis

L� �= ∅ alone
ensures uniqueness (modulo constants) for the Homogeneous Regularity Problem
for the system L in �−, as noted in item (b) of Theorem 6.8. Second, when (6.180)
is assumed, in principle it may happen that the Homogeneous Regularity Problem
for the system L in �− lacks uniqueness (modulo constants). However, this time (as
opposed to (6.179)), we are asking that η �= 0, so the issue singled out in (6.263)
becomes a moot point. This is a heuristic explanation of the perceived asymmetry
in the manner in which the sets of hypotheses (6.179) and (6.180) have been
formulated.

It is possible to enhance the solvability result from Theorem 6.15 via perturba-
tions, and our next theorem elaborates on this aspect.

Theorem 6.16 Retain the original background assumptions on the set � from
Theorem 6.15 and, as before, fix an integrability exponent p ∈ (1,∞) along with a
Muckenhoupt weight w ∈ Ap(∂�, σ) and a transmission parameter η ∈ C \ {−1}.
Consider a system Lo ∈ Ldis with L�

o ∈ Ldis (cf. (3.195)), and fix some Ao ∈ Adis
Lo
.

Then there exist a threshold δ ∈ (0, 1) and an open neighborhood U of Ao in
A, both of which depend only on n, η, p, [w]Ap , Ao, and the Ahlfors regularity
constant of ∂�, with the property that if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR
domain) then for each coefficient tensor A ∈ U the Transmission Problem (6.178)
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formulated for the system LA (cf. (3.7)) and the conormal derivative associated
with A (cf. (3.66)) is actually solvable, and any two solutions differ by a constant
from C

M .

Proof This is seen by reasoning as in the proofs of Theorems 6.4 and 6.15, keeping
in mind Theorem 3.9. ��

We may also establish solvability results for the version of the Reduced
Transmission Problem (6.258) now formulated for boundary data belonging to sums
of Muckenhoupt weighted Lebesgue spaces.

Theorem 6.17 Let � ⊆ R
n be a UR domain. Abbreviate σ := Hn−1�∂� and

fix an aperture parameter κ > 0. Also, pick a pair of integrability exponents
p0, p1 ∈ (1,∞) along with a pair of Muckenhoupt weights w0 ∈ Ap0(∂�, σ)

and w1 ∈ Ap1(∂�, σ). Finally, consider a homogeneous, second-order, constant
complex coefficient, M × M weakly elliptic system L in R

n, and select some
coefficient tensor A ∈ AL.

Then similar results, concerning existence, integral representation formulas, esti-
mates, additional integrability properties, and well-posedness, as in Theorem 6.15,
are valid for the Reduced Transmission Problem
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⎪
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⎪

⎩

u± ∈ [

C∞(�±)
]M

,

Lu± = 0 in �±,

Nκ(∇u±) ∈ Lp0(∂�,w0) + Lp1(∂�,w1),

u+∣

∣

κ−n.t.

∂�
= u−∣

∣

κ−n.t.

∂�
at σ -a.e. point on ∂�,

∂A
ν u+ − η · ∂A

ν u− = f ∈ [

Lp0(∂�,w0) + Lp1(∂�,w1)
]M

.

(6.265)

Proof Existence, estimates, and an integral representation formula are all estab-
lished reasoning as in the proof of Theorem 6.15, using the fact that the operator
− η+1

2 I + (1 − η)K#
A� is invertible on the space

[

Lp0(∂�,w0) + Lp1(∂�,w1)
]M

under the assumption made in item (b) of Theorem 6.15 (see Proposition 4.2). For
uniqueness (modulo constants), we reason much as in the treatment of item (a)
in Theorem 6.15, working under the hypotheses in (6.179). Specifically, (6.194)–
(6.200) goes through since Lp0(∂�,w0) + Lp1(∂�,w1) embeds into the space
L1

(

∂�,
σ(x)

1+|x|n−1

)

(cf. (2.575)), and then (4.336) used in concert with (6.200) gives
(6.201). The rest is as before, and the conclusion is that any null-solution of (6.265)
is a pair of identical constants. ��
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