
Chapter 5
Controlling the BMO Semi-Norm of the
Unit Normal

In the previous chapter we have succeeded in estimating the size of a certain brand
of singular integrals operators (which includes the harmonic double layer operator;
cf. Theorem 4.7) in terms of the geometry of the underlying “surface.” A key
characteristic of these estimates (originating with Theorem 4.2) is the presence
of the BMO semi-norm of the unit normal to the surface as a factor in the right
side. In particular, the flatter said surface, the smaller the norm of the singular
integral operators in question. Similar results are also valid for a specific type of
commutators, of the sort described in Theorem 4.3.

By way of contrast, the principal goal in this chapter is to proceed in the opposite
direction, and control geometry in terms of analysis. More specifically, we seek
to quantify flatness of a given “surface” (by estimating the BMO semi-norm of its
unit normal) in terms of analytic entities, such as the operator norms of the harmonic
double layer and the commutators of Riesz transforms with the operator of pointwise
multiplication by the (scalar components of the) unit normals, or various natural
algebraic combinations of Riesz transforms (where all singular integral operators
just mentioned are intrinsically defined on the given “surface”).

In this endeavor, the catalyst is the language of Clifford algebras which allows us
to glue together singular integral operators of the sort described above into a single,
Cauchy-like, singular integral which exhibits excellent non-degeneracy properties
(i.e., up to normalization, such a Cauchy-Clifford operator is its own inverse; cf.
(5.20)). We therefore begin with a brief tutorial about Clifford algebras, which
are a highly non-commutative higher-dimensional version of the field of complex
numbers, where some of the magic cancellations and algebraic miracles typically
associated with the complex plane still occur. This chapter ends with Sect. 5.4 which
contains results characterizing Muckenhoupt weights in terms of the boundedness
Riesz transforms. The Clifford algebra formalism turns out to be useful in this
regard, both as tool and as a mean to bring into play other types of operators, like
the Cauchy–Clifford singular integral operator alluded to above.
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340 5 Controlling the BMO Semi-Norm of the Unit Normal

5.1 Clifford Algebras and Cauchy–Clifford Operators

The Clifford algebra with n imaginary units is the minimal enlargement of Rn to a
unitary real algebra (C�n,+,�), which is not generated as an algebra by any proper
subspace of Rn and such that

x � x = −|x|2 for every x ∈ R
n ↪→ C�n. (5.1)

In particular, with {ej }1≤j≤n denoting the standard orthonormal basis in R
n, we

have

ej � ej = −1 for all j ∈ {1, . . . , n} and

ej � ek = −ek � ej for each distinct j, k ∈ {1, . . . , n}.
(5.2)

This allows us to define an embedding R
n ↪→ C�n by identifying

R
n � x = (x1, . . . , xn) ≡

n∑

j=1

xj ej ∈ C�n. (5.3)

In particular, {ej }1≤j≤n become n imaginary units in C�n, and (5.2) implies

a � b + b � a = −2〈a, b〉 for all a, b ∈ R
n ↪→ C�n. (5.4)

Moving on, any element u ∈ C�n has a unique representation of the form

u =
n∑

�=0

∑′

|I |=�

uI eI , uI ∈ R, (5.5)

where
∑′ indicates that the sum is performed only over strictly increasing multi-

indices I , i.e., I = (i1, i2, . . . , i�) with 1 ≤ i1 < i2 < · · · < i� ≤ n, and eI denotes
the Clifford algebra product eI := ei1 � ei2 � · · · � ei� . Write e0 := e∅ := 1 for
the multiplicative unit in C�n. For each u ∈ C�n represented as in (5.5) define the
vector part of u as

uvect :=
n∑

j=1

uj ej ∈ R
n, (5.6)

and denote by

uscal := u∅e∅ = u∅ ∈ R, the scalar part of u. (5.7)

We endow C�n with the natural Euclidean metric, hence
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|u| :=
⎛

⎝
n∑

�=0

∑′

|I |=�

|uI |2
⎞

⎠
1/2

for each u =
n∑

�=0

∑′

|I |=�

uI eI ∈ C�n. (5.8)

Next, define the conjugate of each eI as the unique element eI ∈ C�n such that
eI � eI = eI � eI = 1. Thus, if I = (i1, . . . , i�) with 1 ≤ i1 < i2 < · · · < i� ≤ n,
then the conjugate of eI is given by eI = (−1)�ei� � · · · � e2 � e1. More generally,
for an arbitrary element u ∈ C�n represented as in (5.5) we define

u :=
n∑

�=0

∑′

|I |=�

uI eI . (5.9)

Note that x = −x for every x ∈ R
n ↪→ C�n, and |u| = |u| for every u ∈ C�n. One

may also check that for any u, v ∈ C�n we have

|u � v| ≤ 2n/2|u||v|, u � v = v � u, (5.10)

and, in fact,

|u � v| = |u||v| if either

u ∈ R
n ↪→ C�n or v ∈ R

n ↪→ C�n.
(5.11)

For further details on Clifford algebras, the reader is referred to [101].
Consider an arbitrary UR domain � ⊆ R

n. Abbreviate σ := Hn−1�∂� and
denote by ν = (ν1, . . . , νn) its geometric measure theoretic outward unit normal.
For the goals we have in mind, it is natural to identify ν with the Clifford algebra-
valued function ν = ν1e1 + · · · + νnen. Bearing this identification in mind, we then
proceed to define the action of the boundary-to-boundary Cauchy–Clifford operator
of any given C�n-valued function f ∈ L1

(
∂�,

σ(x)

1+|x|n−1

)⊗ C�n as

Cf (x) := lim
ε→0+

1

ωn−1

ˆ

y∈∂�
|x−y|>ε

x − y

|x − y|n � ν(y) � f (y) dσ(y), (5.12)

for σ -a.e. point x ∈ ∂�. In particular, with Riesz transforms {Rj }1≤j≤n on ∂�

defined as in (4.297), for each function f ∈ L1
(
∂�,

σ(x)

1+|x|n−1

)⊗ C�n we have

Cf = 1

2

∑

1≤j,k≤n

ej � ek � Rj(νkf ) at σ -a.e. point on ∂�. (5.13)

Another closely related integral operator which is of interest to us acts on each given
function f ∈ L1

(
∂�,

σ(x)

1+|x|n−1

)⊗ C�n according to
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C#f (x) := − lim
ε→0+

1

ωn−1

ˆ

y∈∂�
|x−y|>ε

ν(x) � x − y

|x − y|n � f (y) dσ(y) (5.14)

for σ -a.e. x ∈ ∂�. Analogously to (5.13), for each f ∈ L1
(
∂�,

σ(x)

1+|x|n−1

)⊗C�n we
have

C#f = −1

2

∑

1≤j,k≤n

ek � ej � νkRjf at σ -a.e. point on ∂�. (5.15)

As is apparent from (5.13), (5.15), both C and C# are amenable to Proposition 3.4.
Hence, whenever p ∈ (1,∞) and w ∈ Ap(∂�, σ),

C : Lp(∂�,w) ⊗ C�n −→ Lp(∂�,w) ⊗ C�n (5.16)

and

C# : Lp(∂�,w) ⊗ C�n −→ Lp(∂�,w) ⊗ C�n (5.17)

are well-defined, linear, and bounded operators, with

‖C‖Lp(∂�,w)⊗C�n→Lp(∂�,w)⊗C�n
, ‖C#‖Lp(∂�,w)⊗C�n→Lp(∂�,w)⊗C�n

controlled in terms of n, p, [w]Ap , and the UR constants of ∂∂�.
(5.18)

In fact (see [61, Sections 4.6-4.7] and [114, §1.6]),

the transpose of C from (5.16) is the operator C# acting in the
context of (5.17) with the exponent p replaced by its Hölder
conjugate p′ ∈ (1,∞) and with the given weight w replaced
by w1−p′ ∈ Ap′(∂�, σ).

(5.19)

For this reason, it is natural to refer to C# as the “transpose” Cauchy–Clifford
operator. Moreover, with I denoting the identity operator, we have

C2 = 1
4I and

(
C#)2 = 1

4I, (5.20)

on Lp(∂�, σ)⊗C�n with p ∈ (1,∞) (cf. [61, Sections 4.6-4.7]). In view of (5.16)–
(5.18), a standard density argument then shows that these formulas remain valid on
Lp(∂�,w) ⊗ C�n whenever p ∈ (1,∞) and w ∈ Ap(∂�, σ).

Here we are interested in the difference C − C# which, up to multiplication by
2−1, may be thought of as the antisymmetric part of the Cauchy–Clifford operator C.
The following lemma elaborates on the relationship between the antisymmetric part
of the Cauchy–Clifford operator, i.e., C − C#, and the harmonic boundary double
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layer potential (cf. (3.29)) together with commutators between Riesz transforms (cf.
(4.297)) and operators of pointwise multiplication by scalar components of the unit
vector. For a proof see [61, Lemma 4.45].

Lemma 5.1 Let � ⊆ R
n be a UR domain. Abbreviate σ := Hn−1�∂� and

denote by ν = (ν1, . . . , νn) the geometric measure theoretic outward unit normal
to �. For each index j ∈ {1, . . . , n}, denote by Mνj

the operator of pointwise
multiplication by νj . Also, recall the boundary-to-boundary harmonic double layer
potential operator K
 from (3.29) and the family of Riesz transforms {Rj }1≤j≤n

from (4.297). Then

(C − C#)f = 2
n∑

�=0

∑′

|I |=�

(K
fI )eI

+
n∑

�=0

∑′

|I |=�

n∑

j,k=1

([Mνj
, Rk]fI

)
ej � ek � eI (5.21)

for each C�n-valued function f =∑n
�=0
∑′

|I |=� fI � eI belonging to the weighted

Lebesgue space L1
(
∂�,

σ(x)

1+|x|n−1

)⊗ C�n.

In turn, the structural result from Lemma 5.1 is a basic ingredient in the proof of
the following corollary.

Corollary 5.1 Let � ⊆ R
n be a UR domain. Abbreviate σ := Hn−1�∂� and

denote by ν the geometric measure theoretic outward unit normal to �. Also, fix
an integrability exponent p ∈ (1,∞) and a Muckenhoupt weight w ∈ Ap(∂�, σ).
Then for each m ∈ N there exists some constant Cm ∈ (0,∞) which depends only
on m, n, p, [w]Ap , and the UR constants of ∂� such that, with the piece of notation
introduced in (4.93), one has

∥∥∥C − C#
∥∥∥

Lp(∂�,w)⊗C�n→Lp(∂�,w)⊗C�n

≤ Cm‖ν‖〈m〉
[BMO(∂�,σ)]n . (5.22)

Moreover, if ‖ν‖[BMO(∂�,σ)]n is sufficiently small relative to n, p, [w]Ap , and the
Ahlfors regularity constant of ∂� one may take Cm ∈ (0,∞) appearing in (5.22)
to depend only on said entities (i.e., n, p, [w]Ap , the Ahlfors regularity constant of
∂�), and m.

Proof This is a consequence of Lemmas 5.1, 2.15, (3.29), Corollary 4.2, (4.297),
Proposition 3.4, Theorems 4.3, and 2.3. ��
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5.2 Estimating the BMO Semi-Norm of the Unit Normal

The next goal is to establish a bound from below for the operator norm of C−C# on
Muckenhoupt weighted Lebesgue spaces on the boundary of a UR domain in terms
of the BMO semi-norm of the geometric measure theoretic outward unit normal
vector to said domain.

Theorem 5.1 Let � ⊆ R
n be a UR domain such that ∂� is unbounded. Abbreviate

σ := Hn−1�∂� and denote by ν the geometric measure theoretic outward
unit normal to �. Also, fix an integrability exponent p ∈ (1,∞) along with a
Muckenhoupt weight w ∈ Ap(∂�, σ). Then there exists some C ∈ (0,∞) which
depends only on n, p, [w]Ap , and the Ahlfors regularity constant of ∂� with the
property that

‖ν‖[BMO(∂�,σ)]n ≤ C

∥∥∥C − C#
∥∥∥

Lp(∂�,w)⊗C�n→Lp(∂�,w)⊗C�n

. (5.23)

A couple of comments are in order. First, as a consequence of (5.23), definitions,
and a result from [111, §5.10] (based on work in [59]) to the effect that an Ahlfors
regular domain is a half-space if and only if its geometric measure theoretic outward
unit normal is a constant vector, we see that

given a UR domain � ⊆ R
n such that ∂� is unbounded, and given p ∈ (1,∞)

together with w ∈ Ap(∂�, σ), we have C = C# as operators on Lp(∂�,w) ⊗
C�n if and only if � is a half-space.

(5.24)
Second, estimate (5.23) may fail without the assumption that ∂� is unbounded.
Indeed, from (5.12)–(5.14) one may easily check that C = C# if � is an open ball,
or the complement of a closed ball, in R

n and yet ‖ν‖[BMO(∂�,σ)]n > 0 in either
case. In fact, open balls, complements of closed balls, and half-spaces in R

n are the
only UR domains for which C = C# (see [60] for more on this).

We now turn to the task of presenting the proof of Theorem 5.1.

Proof of Theorem 5.1 Fix a location x0 ∈ ∂� along with a scale R > 0. Also,
pick a sufficiently large number � ∈ (10,∞), which ultimately will depend only
on n and the Ahlfors regularity constant of ∂�, in a manner to be specified later. Let
C ∈ [1,∞) be the Ahlfors regularity constant of ∂� (cf. (2.32)) and choose

λ := (2C)2/(n−1). (5.25)

We may then write (making use of the fact that no smallness condition on the scale
is necessary since ∂� is unbounded)

σ
(

(x0, λ(�R)) \ 
(x0,�R)

) = σ
(

(x0, λ(�R))

)− σ
(

(x0,�R)

)

≥
( 1

C
λn−1 − C

)
(�R)n−1 > 0. (5.26)
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In turn, this guarantees that 
(x0, λ(�R))\
(x0,�R) �= ∅, hence we may choose
some point

y0 ∈ 
(x0, λ(�R)) \ 
(x0,�R). (5.27)

As a consequence,

�R ≤ |x0 − y0| < λ(�R). (5.28)

Next, fix a point x ∈ 
(x0, R) and note that this entails |x0 −y| ≥ (�−1)R > 0
for all y ∈ 
(y0, R). As such, we may write

ˆ

(y0,R)

{
x0 − y

|x0 − y|n � ν(y) + ν(x) � x0 − y

|x0 − y|n
}

dσ(y)

=
ˆ


(y0,R)

{
x0 − y

|x0 − y|n � ν(y) − x − y

|x − y|n � ν(y)

}
dσ(y)

+
ˆ


(y0,R)

{
x − y

|x − y|n � ν(y) + ν(x) � x − y

|x − y|n
}

dσ(y)

+
ˆ


(y0,R)

{
ν(x) � x0 − y

|x0 − y|n − ν(x) � x − y

|x − y|n
}

dσ(y)

=: I + II + III. (5.29)

Note that for each y ∈ 
(y0, R) we have

�R ≤ |x0 − y0| ≤ |x0 − x| + |x − y| + |y − y0| < |x − y| + 2R. (5.30)

Based on definitions (cf. (5.12) and (5.14)), and the fact that, as seen from (5.30),
we have |x − y| > (� − 2)R for each y ∈ 
(y0, R), the second term in (5.29) is
identified as

II = ωn−1 (C − C#)1
(y0,R)(x). (5.31)

If for each u,w, z ∈ R
n with z �∈ {u,w} we now abbreviate

E(u,w; z) := u − z

|u − z|n − w − z

|w − z|n , (5.32)

and if we set

ν
(z,r) :=
 

∂�∩B(z,r)

ν dσ for each z ∈ ∂� and r > 0, (5.33)
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then, on account of (5.4),

I + III =
ˆ


(y0,R)

{
E(x0, x; y) � ν(y) + ν(x) � E(x0, x; y)

}
dσ(y)

= −2
ˆ


(y0,R)

〈
E(x0, x; y), ν
(x0,R)

〉
dσ(y)

+
ˆ


(y0,R)

E(x0, x; y) � (ν(y) − ν
(x0,R)

)
dσ(y)

+
ˆ


(y0,R)

(
ν(x) − ν
(x0,R)

)� E(x0, x; y) dσ(y)

=: IV + V + VI. (5.34)

Since

E(x0, x; y) = x0 − y

|x0 − y|n − (x − x0) − (y − x0)

|x − y|n

= − x − x0

|x − y|n + (x0 − y)
( 1

|x0 − y|n − 1

|x − y|n
)

(5.35)

for each y ∈ 
(y0, R), it follows that

IV = 2
ˆ


(y0,R)

〈
x − x0, ν
(x0,R)

〉

|x − y|n dσ(y)

+ 2
ˆ


(y0,R)

〈
y − x0, ν
(x0,R)

〉( 1

|x0 − y|n − 1

|x − y|n
)

dσ(y)

=: IVa + IVb. (5.36)

In view of (5.30) for each y ∈ 
(y0, R) we have (�/2)R < (� − 2)R < |x − y|
which, together with Proposition 2.15, permits us to estimate

|IVa| = 2
∣∣〈x − x0, ν
(x0,R)

〉∣∣
ˆ


(y0,R)

1

|x − y|n dσ(y)

≤ C�−n‖ν‖[BMO(∂�,σ)]n , (5.37)

where C ∈ (0,∞) depends only on n and the Ahlfors regularity constant of ∂�.
Also, since the Mean Value Theorem gives that for each point y ∈ 
(y0, R) we
have, for some purely dimensional constant C ∈ (0,∞),
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∣∣∣
1

|x0 − y|n − 1

|x − y|n
∣∣∣ ≤ CR

(�R)n+1 = C�−n−1R−n, (5.38)

we may use Proposition 2.15 and the fact that y ∈ 
(y0, R) ⊆ 

(
x0, (1 + λ�)R

)

to conclude that

∣∣IVb

∣∣ ≤ C(�R ln �)‖ν‖[BMO(∂�,σ)]n�−n−1R−nσ
(

(x0, R)

)

≤ C(�−n ln �)‖ν‖[BMO(∂�,σ)]n , (5.39)

where C ∈ (0,∞) depends only on n and the Ahlfors regularity constant of ∂�.
Next, the Mean Value Theorem shows that for each y ∈ 
(y0, R) we have

|E(x0, x; y)| =
∣∣∣

x0 − y

|x0 − y|n − x − y

|x − y|n
∣∣∣ ≤ CR

(�R)n
= C�−nR1−n, (5.40)

for some purely dimensional constant C ∈ (0,∞). In addition, (2.104), (2.105), and
(2.106) permit us to write

∣∣ν
(x0,R) − ν
(y0,R)

∣∣ ≤ ∣∣ν
(x0,R) − ν
(x0,λ�R)

∣∣+ ∣∣ν
(x0,λ�R) − ν
(y0,λ�R)

∣∣

+ ∣∣ν
(y0,λ�R) − ν
(y0,R)

∣∣

≤ C(ln �)‖ν‖[BMO(∂�,σ)]n (5.41)

for some C ∈ (0,∞) which depends only on n and the Ahlfors regularity constant
of ∂�. Based on (5.40) and (5.41) we may then estimate

∣∣V
∣∣ ≤

ˆ

(y0,R)

|E(x0, x; y)|∣∣ν(y) − ν
(x0,R)

∣∣ dσ(y)

≤ C�−n

 

(y0,R)

∣∣ν(y) − ν
(x0,R)

∣∣ dσ(y)

≤ C�−n

 

(y0,R)

∣∣ν(y) − ν
(y0,R)

∣∣ dσ(y) + C�−n
∣∣ν
(x0,R) − ν
(y0,R)

∣∣

≤ C(�−n ln �)‖ν‖[BMO(∂�,σ)]n , (5.42)

where C ∈ (0,∞) depends only on n and the Ahlfors regularity constant of ∂�.
Finally, (5.40) implies that for some purely dimensional constant C ∈ (0,∞) we
have

∣∣VI
∣∣ ≤

ˆ

(y0,R)

|E(x0, x; y)|∣∣ν(x) − ν
(x0,R)

∣∣ dσ(y)



348 5 Controlling the BMO Semi-Norm of the Unit Normal

≤ C�−n
∣∣ν(x) − ν
(x0,R)

∣∣. (5.43)

For further use, let us note here that (2.538) plus the John-Nirenberg inequality
(cf. (2.102)) allow to estimate (for some exponent q ′ ∈ (1,∞) which depends only
on p, [w]Ap , n, and the Ahlfors regularity constant of ∂�)

 

(x0,R)

∣∣ν(x)−ν
(x0,R)

∣∣p dw(x) =
 


(x0,R)

∣∣∣ν −
 


(x0,R)

ν dσ

∣∣∣
p

dw

≤ C

( 

(x0,R)

∣∣∣ν −
 


(x0,R)

ν dσ

∣∣∣
pq ′

dσ

)1/q ′

≤ C‖ν‖p

[BMO(∂�,σ)]n (5.44)

for some constant C ∈ (0,∞) of the same nature as before. It is also useful to note
that we may use (2.535) to estimate

 

(x0,R)

|(C − C#)1
(y0,R)(x)|p dw(x)

≤
∥∥1
(y0,R)

∥∥p
Lp(∂�,w)⊗C�n

w(
(x0, R)
)

∥∥C − C#
∥∥p

Lp(∂�,w)⊗C�n→Lp(∂�,w)⊗C�n

= w(
(y0, R)
)

w(
(x0, R)
)
∥∥C − C#

∥∥p
Lp(∂�,w)⊗C�n→Lp(∂�,w)⊗C�n

≤ w(
(x0, 2λ�R)
)

w(
(x0, R)
)
∥∥C − C#

∥∥p
Lp(∂�,w)⊗C�n→Lp(∂�,w)⊗C�n

≤ [w]Ap

(σ(
(x0, 2λ�R)
)

σ(
(x0, R)
)
)p∥∥C − C#

∥∥p
Lp(∂�,w)⊗C�n→Lp(∂�,w)⊗C�n

≤ C�(n−1)p
∥∥C − C#

∥∥p
Lp(∂�,w)⊗C�n→Lp(∂�,w)⊗C�n

, (5.45)

where C ∈ (0,∞) depends only on n, p, [w]Ap , and the Ahlfors regularity constant
of ∂�.

Altogether, from (5.29), (5.31), (5.34), (5.36), (5.37), (5.39), (5.42), (5.43),
(5.44), and (5.45) we conclude that

 

(x0,R)

∣∣∣∣
ˆ


(y0,R)

{
x0 − y

|x0 − y|n � ν(y) + ν(x) � x0 − y

|x0 − y|n
}

dσ(y)

∣∣∣∣
p

dw(x)
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≤ C(�−n ln �)p‖ν‖p

[BMO(∂�,σ)]n + Cn,p

 

(x0,R)

|(C − C#)1
(y0,R)(x)|p dw(x)

+ C�−np

 

(x0,R)

∣∣ν(x) − ν
(x0,R)

∣∣p dw(x)

≤ C(�−n ln �)p‖ν‖p

[BMO(∂�,σ)]n

+ C�(n−1)p
∥∥C − C#

∥∥p
Lp(∂�,w)⊗C�n→Lp(∂�,w)⊗C�n

(5.46)

where C ∈ (0,∞) depends only on n, p, [w]Ap , and the Ahlfors regularity constant
of ∂�.

Going further, define

a :=
 


(y0,R)

x0 − y

|x0 − y|n dσ(y) ∈ R
n ↪→ C�n (5.47)

and

b :=
 


(y0,R)

x0 − y

|x0 − y|n � ν(y) dσ(y) ∈ C�n. (5.48)

Note that

a = x0 − y0

|x0 − y0|n +
 


(y0,R)

( x0 − y

|x0 − y|n − x0 − y0

|x0 − y0|n
)

dσ(y) (5.49)

and observe that the Mean Value Theorem gives, for some purely dimensional
constant C ∈ (0,∞),

∣∣∣
x0 − y

|x0 − y|n − x0 − y0

|x0 − y0|n
∣∣∣ ≤ CR

(�R)n
= C�−nR1−n, (5.50)

for each y ∈ 
(y0, R). As a consequence of this and (5.28),

|a| ≥
∣∣∣

x0 − y0

|x0 − y0|n
∣∣∣−

 

(y0,R)

∣∣∣
x0 − y

|x0 − y|n − x0 − y0

|x0 − y0|n
∣∣∣ dσ(y)

≥ 1

|x0 − y0|n−1
− C�−nR1−n ≥ (�R)1−n − C�−nR1−n

≥ 2−1(�R)1−n, (5.51)

if � > 2C. Hence, if we also introduce
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A := b �
( a

|a|2
)

∈ C�n, (5.52)

we may now estimate, using (5.6), (5.52), (5.51), (5.11), (5.1), (5.47), (5.48), and
(5.46),

 

(x0,R)

|ν(x) − Avect|p dw(x) ≤
 


(x0,R)

|ν(x) − A|p dw(x)

=
 


(x0,R)

∣∣∣ν(x) − b � (a/|a|2)
∣∣∣
p

dw(x)

≤ C(�R)(n−1)p

 

(x0,R)

∣∣∣ν(x) − b � (a/|a|2)
∣∣∣
p |a|p dw(x)

= C(�R)(n−1)p

 

(x0,R)

∣∣∣(ν(x) − b � (a/|a|2)) � a

∣∣∣
p

dw(x)

= C(�R)(n−1)p

 

(x0,R)

|ν(x) � a + b|p dw(x)

= C(�R)(n−1)p

 

(x0,R)

∣∣∣∣ν(x) �
(  


(y0,R)

x0 − y

|x0 − y|n dσ(y)
)

+
( 


(y0,R)

x0 − y

|x0 − y|n � ν(y) dσ(y)
)∣∣∣∣

p

dw(x)

= C(�R)(n−1)p

 

(x0,R)

∣∣∣∣
 


(y0,R)

{
ν(x) � x0 − y

|x0 − y|n

+ x0 − y

|x0 − y|n � ν(y)
}

dσ(y)

∣∣∣∣
p

dw(x)

≤ C�(n−1)p

 

(x0,R)

∣∣∣∣
ˆ


(y0,R)

{
ν(x) � x0 − y

|x0 − y|n

+ x0 − y

|x0 − y|n � ν(y)
}

dσ(y)

∣∣∣∣
p

dw(x)

≤ C(�−1 ln �)p‖ν‖p

[BMO(∂�,σ)]n

+ C�2(n−1)p
∥∥C − C#

∥∥p
Lp(∂�,w)⊗C�n→Lp(∂�,w)⊗C�n

, (5.53)

for some C ∈ (0,∞) which depends only on n, p, [w]Ap , and the Ahlfors regularity
constant of ∂�. From this, (2.109), and Lemma 2.14 we then deduce that
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‖ν‖[BMO(∂�,σ)]n ≤ C(�−1 ln �)‖ν‖[BMO(∂�,σ)]n

+ C�2(n−1)
∥∥C − C#

∥∥
Lp(∂�,w)⊗C�n→Lp(∂�,w)⊗C�n

, (5.54)

where C ∈ (0,∞) depends only on n, p, [w]Ap , and the Ahlfors regularity constant
of ∂�. By eventually further increasing the value of � as to ensure that we also have
�−1 ln � < 1/(2C), we finally conclude from (5.54) that

‖ν‖[BMO(∂�,σ)]n ≤ C
∥∥C − C#

∥∥
Lp(∂�,w)⊗C�n→Lp(∂�,w)⊗C�n

, (5.55)

where C ∈ (0,∞) depends only on n, p, [w]Ap , and the Ahlfors regularity constant
of ∂�. ��

Our next result contains estimates in the opposite direction to those given in
Theorem 4.6.

Theorem 5.2 Let� ⊆ R
n be a UR domain. Abbreviate σ := Hn−1�∂� and denote

by ν = (νk)1≤k≤n the geometric measure theoretic outward unit normal to �.
Also, fix an integrability exponent p ∈ (1,∞) along with a Muckenhoupt weight
w ∈ Ap(∂�, σ). Finally, recall the boundary-to-boundary harmonic double layer
potential operator K
 from (3.29), the Riesz transforms {Rj }1≤j≤n on ∂� from
(4.297), and for each index k ∈ {1, . . . , n} denote by Mνk

the operator of pointwise
multiplication by the k-th scalar component of ν.

Then there exists some C ∈ (0,∞) which depends only on n, p, [w]Ap , and the
Ahlfors regularity constant of ∂� with the property that

‖ν‖[BMO(∂�,σ)]n ≤ C
{

‖K
‖Lp(∂�,w)→Lp(∂�,w) (5.56)

+ max
1≤j,k≤n

∥∥[Mνk
, Rj ]
∥∥

Lp(∂�,w)→Lp(∂�,w)

}
.

Proof If ∂� is unbounded, then the estimate claimed in (5.56) is a direct con-
sequence of Theorem 5.1 and Lemma 5.1 (also bearing in mind Lemma 2.15).
In the case when ∂� is bounded, we have K
1 = ± 1

2 (cf. [114, §1.5]) with
the sign plus if � is bounded, and the sign minus if � is unbounded, hence
‖K
‖Lp(∂�,w)→Lp(∂�,w) ≥ 1

2 in such a scenario. Since from (2.118) we know that
we always have ‖ν‖[BMO(∂�,σ)]n ≤ 1, the estimate claimed in (5.56) holds in this
case if we take C ≥ 2. ��

We conclude this section by presenting a characterization of δ-flat Ahlfors regular
domains in terms of the size of the operator norms of the classical harmonic double
layer and commutators of Riesz transforms with pointwise multiplication by the
scalar components of the unit normal.

Corollary 5.2 Let � ⊆ R
n be a UR domain. Abbreviate σ := Hn−1�∂� and

denote by ν = (νk)1≤k≤n the geometric measure theoretic outward unit normal to
�. Also, fix an integrability exponent p ∈ (1,∞) along with a Muckenhoupt weight
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w ∈ Ap(∂�, σ). Finally, recall the boundary-to-boundary harmonic double layer
potential operator K
 on ∂� from (3.29), the Riesz transforms {Rj }1≤j≤n on ∂�

from (4.297), and for each k ∈ {1, . . . , n} denote by Mνk
the operator of pointwise

multiplication by the k-th scalar component of ν.
Then there exists some C ∈ (0,∞) which depends only on n, p, [w]Ap , and the

Ahlfors regularity constant of ∂� with the property that if

‖K
‖Lp(∂�,w)→Lp(∂�,w) + max
1≤j,k≤n

∥∥[Mνk
, Rj ]
∥∥

Lp(∂�,w)→Lp(∂�,w)
< δ

(5.57)

then � is a (Cδ)–flat Ahlfors regular domain.

Proof All desired conclusions follow from Theorem 5.2 and Definition 2.15. ��

5.3 Using Riesz Transforms to Quantify Flatness

Recall from (1.16) that for each j ∈ {1, . . . , n} the j -th Riesz transform Rj

associated with a UR domain � ⊆ R
n is the formal convolution operator on ∂�

with the kernel kj (x) := 2
ωn−1

xj

|x|n for x ∈ R
n \ {0}. From Proposition 3.4 we

know that these are bounded operators on Lp(∂�,w) for each p ∈ (1,∞) and
w ∈ Ap(∂�, σ). The most familiar setting is when � = R

n+, in which case it is
well known that

n∑

j=1

R2
j = −I and RjRk = RkRj for all j, k ∈ {1, . . . , n}, (5.58)

when all operators are considered on Muckenhoupt weighted Lebesgue spaces.
Indeed, in such a setting, for the integrability exponent p = 2 and the weight
w = 1 these are immediate consequences of the fact that each Rj is a Fourier
multiplier in ∂� ≡ R

n−1 corresponding to the symbol iξj /|ξ |, then said identities
extend to Lp(∂�,w) via a density argument. For ease of reference, we shall refer
to the formulas in (5.58) as being URTI, i.e., the usual Riesz transform
identities.

Remarkably, Theorem 5.3 below provides a stability result to the effect that if
� ⊆ R

n is a UR domain with an unbounded boundary for which the URTI are
“almost” true in the context of a Muckenhoupt weighted Lebesgue space, then ∂�

is “almost” flat, in that the BMO semi-norm of the outward unit normal to � is
small.

Theorem 5.3 Let � ⊆ R
n be a UR domain with an unbounded boundary.

Abbreviate σ := Hn−1�∂� and denote by ν the geometric measure theoretic
outward unit normal to �. Also, fix an integrability exponent p ∈ (1,∞) along with
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a Muckenhoupt weight w ∈ Ap(∂�, σ), and recall the Riesz transforms {Rj }1≤j≤n

on ∂� from (4.297). Then there exists some C ∈ (0,∞) which depends only on n,
p, [w]Ap , and the UR constants of ∂� with the property that

‖ν‖[BMO(∂�,σ)]n ≤ C
{∥∥∥I +

n∑

j=1

R2
j

∥∥∥
Lp(∂�,w)→Lp(∂�,w)

(5.59)

+ max
1≤j,k≤n

∥∥[Rj ,Rk]
∥∥

Lp(∂�,w)→Lp(∂�,w)

}
.

It is perhaps surprising (but nonetheless true; cf. [60]) that URTI are also valid
in the context of Muckenhoupt weighted Lebesgue spaces when � is an open
ball, or the complement of a closed ball in R

n. This shows that, in the context of
Theorem 5.3, our assumption that ∂� is unbounded is warranted, since otherwise
(5.59) may fail.

Proof of Theorem 5.3 Formula [61, (4.6.46), p. 2752] (which is valid in any UR
domain, irrespective of whether its boundary is compact or not) tells us that for each
f ∈ Lp(∂�, σ) ⊗ C�n we have

(C − C#)f = C
(
I +

n∑

j=1

R2
j

)
f +

∑

1≤j<k≤n

C
([Rj ,Rk](ej � ek � f )

)
. (5.60)

Since
(
Lp(∂�, σ) ∩ Lp(∂�,w)

)⊗ C�n is a dense subspace of Lp(∂�,w) ⊗ C�n

and since all operators involved are continuous on Lp(∂�,w) ⊗ C�n, we conclude
that formula (5.60) continues to hold for each f ∈ Lp(∂�,w) ⊗ C�n. From this
version of (5.60) we then see that

(C − C#)f = C
(
I +

n∑

j=1

R2
j

)
f +

∑

1≤j<k≤n

C
([Rj ,Rk](ej � ek � f )

)
(5.61)

for each f ∈ Lp(∂�,w) ⊗ C�n. In concert with (5.18), this implies

‖C − C#‖Lp(∂�,w)⊗C�n→Lp(∂�,w)⊗C�n

≤ C

∥∥∥I +
n∑

j=1

R2
j

∥∥∥
Lp(∂�,w)→Lp(∂�,w)

+ C
∑

1≤j<k≤n

∥∥[Rj ,Rk]
∥∥

Lp(∂�,w)→Lp(∂�,w)
(5.62)

Then (5.59) becomes a consequence of (5.62) and Theorem 5.1. ��
Our next result contains estimates in the opposite direction to those from

Theorem 5.3. Collectively, Theorems 5.4 and 5.3 amount to saying that, under
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natural background geometric assumptions on the set �, the URTI are “almost”
true in the context of a Muckenhoupt weighted Lebesgue space if and only if ∂� is
“almost” flat (in that the BMO semi-norm of the outward unit normal to � is small).

Theorem 5.4 Let � ⊆ R
n be a UR domain. Abbreviate σ := Hn−1�∂� and

denote by ν the geometric measure theoretic outward unit normal to �. Also, fix
an exponent p ∈ (1,∞) along with a Muckenhoupt weight w ∈ Ap(∂�, σ), and
recall the Riesz transforms {Rj }1≤j≤n on ∂� from (4.297).

Then for each m ∈ N there exists some constant Cm ∈ (0,∞) which depends
only on m, n, p, [w]Ap , and the Ahlfors regularity constant of ∂� such that, with
the piece of notation introduced in (4.93), one has

∥∥∥I +
n∑

j=1

R2
j

∥∥∥
Lp(∂�,w)→Lp(∂�,w)

≤ Cm‖ν‖〈m〉
[BMO(∂�,σ)]n , (5.63)

and

max
1≤j<k≤n

∥∥[Rj ,Rk]
∥∥

Lp(∂�,w)→Lp(∂�,w)
≤ Cm‖ν‖〈m〉

[BMO(∂�,σ)]n . (5.64)

Furthermore, if ‖ν‖[BMO(∂�,σ)]n is sufficiently small relative to n, p, [w]Ap , and
the Ahlfors regularity constant of ∂� one may take Cm ∈ (0,∞) appearing in
(5.63)–(5.64) to depend only on said entities (i.e., n, p, [w]Ap , the Ahlfors regularity
constant of ∂�) and m.

Proof From the Muckenhoupt version of (5.20) and (5.61) we see that for each
function f ∈ Lp(∂�, σ) ⊗ C�n we have

C(C# − C)f = − 1
4

(
I +

n∑

j=1

R2
j

)
f − 1

4

∑

1≤j<k≤n

[Rj ,Rk](ej � ek � f ).

(5.65)

Fix a scalar function f ∈ Lp(∂�,w) normalized so that ‖f ‖Lp(∂�,w) = 1. In
particular, this shows that the function f belongs to the space Lp(∂�,w) ⊗ C�n

and ‖f ‖Lp(∂�,w)⊗C�n
= 1. Bearing this in mind, for each m ∈ N we may then write

max

{∥∥∥ 1
4

(
I +

n∑

j=1

R2
j

)
f

∥∥∥
Lp(∂�,w)

, max
1≤j<k≤n

∥∥∥ 1
4 [Rj ,Rk]f

∥∥∥
Lp(∂�,w)

}

≤
∥∥∥∥

⎧
⎨

⎩

∣∣∣ 14
(
I +

n∑

j=1

R2
j

)
f

∣∣∣
2 +

∑

1≤j<k≤n

∣∣∣ 14 [Rj ,Rk]f
∣∣∣
2

⎫
⎬

⎭

1/2 ∥∥∥∥
Lp(∂�,w)
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=
∥∥∥ 1

4

(
I +

n∑

j=1

R2
j

)
f + 1

4

∑

1≤j<k≤n

([Rj ,Rk]f )ej � ek

∥∥∥
Lp(∂�,w)⊗C�n

= ‖C(C# − C)f ‖Lp(∂�,w)⊗C�n

≤ ‖C‖Lp(∂�,w)⊗C�n→Lp(∂�,w)⊗C�n

∥∥∥C − C#
∥∥∥

Lp(∂�,w)⊗C�n→Lp(∂�,w)⊗C�n

≤ Cm‖ν‖〈m〉
[BMO(∂�,σ)]n , (5.66)

where the first inequality is trivial, the subsequent equality is implied by (5.8),
the second equality is seen from formula (5.65) (since f is scalar-valued), the
penultimate estimate uses the normalization of f , while the last inequality is
provided by (5.18) and (5.22). With estimate (5.66) in hand, the claims in (5.63)–
(5.64) readily follow (in view of the arbitrariness of the scalar-valued function
f ∈ Lp(∂�,w) with ‖f ‖Lp(∂�,w) = 1). The final claim in the statement is a
direct consequence of Theorem 2.3. ��

5.4 Using Riesz Transforms to Characterize Muckenhoupt
Weights

Assume � ⊆ R
n, where n ∈ N with n ≥ 2, is a closed UR set and abbreviate

σ := Hn−1��. For j ∈ {1, . . . , n}, the j -th Riesz transform Rj on � is defined as
the operator acting on each f ∈ L1

(
�,

σ(x)

1+|x|n−1

)
according to

Rjf (x) := lim
ε→0+

2

ωn−1

ˆ

y∈�
|x−y|>ε

xj − yj

|x − y|n f (y) dσ(y) for σ -a.e. x ∈ �. (5.67)

From Proposition 3.4 we know that these Riesz transforms are well defined in this
context, and that for each integrability exponent p ∈ (1,∞) and Muckenhoupt
weight w ∈ Ap(�, σ) they induce linear and bounded mappings on Lp(�,w). The
goal in this section is to show that the class of Muckenhoupt weights is the largest
class of weights for which the latter boundedness properties hold.

As a preamble, we note that for a variety of purposes it is convenient to glue
together all Riesz transforms {Rj }1≤j≤n from (5.67) into a unique operator now
acting on Clifford algebra-valued functions f ∈ L1

(
�,

σ(x)

1+|x|n−1

) ⊗ C�n according
to
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Rf (x) := lim
ε→0+

2

ωn−1

ˆ

y∈�
|x−y|>ε

x − y

|x − y|n � f (y) dσ(y)

= e1 � R1f (x) + · · · + en � Rnf (x) for σ -a.e. x ∈ �. (5.68)

Theorem 5.5 Suppose � ⊆ R
n is a closed UR set and abbreviate σ := Hn−1��.

Fix p ∈ (1,∞) and consider a weight w on � which belongs to L1
loc(�, σ ) and

has the property that, for each j ∈ {1, . . . , n}, the j -th Riesz transform Rj on
� originally defined as in (5.67) extends to a linear and bounded operator on
Lp(�,w). Then necessarily w ∈ Ap(�, σ) and there exists C ∈ (0,∞) which
depends only on the Ahlfors regularity constant of �, n, and p with the property
that

[w]Ap ≤ C

⎧
⎨

⎩
max1≤j≤n ‖Rj‖2p

Lp(�,w)→Lp(�,w) if � unbounded,

max1≤j≤n ‖Rj‖5p

Lp(�,w)→Lp(�,w) if � bounded.
(5.69)

From assumptions and (2.508) we know that σ is a complete, locally finite
(hence also sigma-finite), separable, Borel-regular measure on �. Since the weight
w belongs to L1

loc(�, σ ), it follows that

the measure dw := w dσ is complete, locally finite (hence also
sigma-finite), separable, and Borel-regular on �.

(5.70)

Granted this, results in [7], [111, §3.7] then guarantee that the natural inclusion

X := {φ∣∣
�

: φ ∈ C∞
0 (Rn)

}
↪→ Lp(�,w) has dense range. (5.71)

From the preamble to Theorem 5.5 we know that the Riesz transforms (5.67) act in
a meaningful fashion on X , and this is the manner in which the Rj ’s are originally
considered in the context of Theorem 5.5. The point of the latter theorem is that
if the Rj ’s originally defined on X extend via density (cf. (5.71)) to linear and
bounded operators on Lp(�,w) then necessarily w ∈ Ap(�, σ).

Let us now present the proof of Theorem 5.5.

Proof of Theorem 5.5 The fact that all Riesz transforms on � originally defined as
in (5.67) on functions f ∈ X := {φ∣∣

�
: φ ∈ C∞

0 (Rn)
}

induce (via density; cf.
(5.71)) linear and bounded mappings on Lp(�,w), implies that the operator R from
(5.68), originally defined on functions f ∈ X ⊗ C�n induces (via density) a linear
and bounded mapping on Lp(�,w) ⊗ C�n. Henceforth abbreviate

C0 := ‖R‖Lp(�,w)⊗C�n→Lp(�,w)⊗C�n
(5.72)
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and note that there exists a dimensional constant Cn ∈ (0,∞) with the property that

C0 ≤ Cn · max
1≤j≤n

‖Rj‖Lp(�,w)→Lp(�,w). (5.73)

To proceed in earnest, denote by CAR ∈ [1,∞) the Ahlfors regularity constant
of � and fix a number λ ∈ (1,∞) which is sufficiently large relative to the Ahlfors
regularity constant of � as to ensure that


(x, λρ) \ 
(x, ρ) �= ∅ for each x ∈ � and ρ ∈ (0, diam(�)
/
λ
)
. (5.74)

For example, any λ > C2/(n−1)
AR

will do. Fix r ∈ (0, diam(�)
/
(10λ)
)

and suppose
x1, x2 ∈ � are such that

10 r ≤ |x1 − x2| ≤ 200λr. (5.75)

Abbreviate


1 := 
(x1, r) and 
2 := 
(x2, r). (5.76)

Next, select a real-valued function f ∈ X and set f± := max{±f, 0}. We then
have 0 ≤ f± ≤ |f | = f+ + f− on �, and f± ∈ Lp(�,w) since X ⊆ Lp(�,w).
For each y ∈ � define

g±(y) :=
⎧
⎨

⎩
− x2 − y

|x2 − y|f±(y) if y ∈ 
1,

0 if y ∈ � \ 
1,

(5.77)

so g± belong to Lp(�,w) ⊗ C�n and are supported in 
1. Consequently,

Rg±(x) = 2

ωn−1

ˆ

1

x − y

|x − y|n � −(x2 − y)

|x2 − y| f±(y) dσ(y) for each x ∈ 
2.

(5.78)
Recall that the scalar component uscal of a Clifford algebra element u ∈ C�n is
defined as in (5.7). For each x ∈ 
2 and y ∈ 
1 we may use (5.1), (5.8), (5.11), as
well as (5.75) to compute

( x − y

|x − y|n � −(x2 − y)

|x2 − y|
)

scal
=
( x − y

|x − y|n � −(x − y)

|x2 − y|
)

scal

+
( x − y

|x − y|n � x − x2

|x2 − y|
)

scal

= 1

|x − y|n−2 · |x2 − y| +
( x − y

|x − y|n � x − x2

|x2 − y|
)

scal
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≥ 1

|x − y|n−2 · |x2 − y| − |x − x2|
|x − y|n−1 · |x2 − y|

= |x − y| − |x − x2|
|x − y|n−1 · |x2 − y|

≥ 7r

(200λr + 2r)n−1(200λr + r)
= cn,λ · r1−n,

(5.79)

where the last equality defines cn,λ. Based on (5.78) and (5.79) we then conclude
that we have the pointwise lower bound

∣∣Rg±
∣∣ ≥ (Rg±

)
scal ≥ cn,λ · C−1

AR

 

1

f± dσ on 
2. (5.80)

In concert with the boundedness of R on Lp(�,w) ⊗ C�n (mentioned in the first
part of the proof) and the piece of notation introduced in (5.72), this permits us to
estimate

c
p
n,λ · C−p

AR

( 

1

f± dσ
)p ≤ 1

w(
2)

ˆ

2

∣∣Rg±
∣∣p dw ≤ 1

w(
2)

ˆ
�

∣∣Rg±
∣∣p dw

≤ C
p

0

w(
2)

ˆ
�

∣∣g±
∣∣p dw ≤ C

p

0

w(
2)

ˆ

1

|f |p dw.

(5.81)

Combining the two versions of (5.81), corresponding to f+ and f−, yields

c
p
n,λ · C−p

AR

( 

1

|f | dσ
)p ≤ 2p−1 · C

p

0

w(
2)

ˆ

1

|f |p dw. (5.82)

Specializing (5.82) to the case when the real-valued function f ∈ X is chosen such
that f ≡ 1 on 
1 then yields

c
p
n,λ · C−p

AR
≤ 2p−1 · C

p

0
w(
1)

w(
2)
. (5.83)

Running the same type of argument as above but with the roles of x1 and x2 (which
are interchangeable) reversed then produces, in place of (5.83),

c
p
n,λ · C−p

AR
≤ 2p−1 · C

p

0
w(
2)

w(
1)
. (5.84)



5.4 Using Riesz Transforms to Characterize Muckenhoupt Weights 359

From (5.84) and (5.82) we then conclude that for each real-valued function f ∈ X
we have

 

1

|f | dσ ≤ C1

( 

1

|f |p dw
)1/p

, (5.85)

with

C1 := (21−1/p · C0 · c−1
n,λ · CAR

)2
. (5.86)

Consider now an arbitrary function h ∈ L
p

loc(�,w). In particular, the extension
of h
∣∣

1

by zero to the rest of � belongs to Lp(�,w). Granted this, (5.71) guarantees
the existence of a sequence of functions {fj }j∈N ⊆ X such that

fj

∣∣

1

→ h
∣∣

1

in Lp(
1, w) as j → ∞. (5.87)

By eventually passing to sub-sequences there is no loss of generality in also
assuming that lim

j→∞ fj (x) = h(x) for σ -a.e. x ∈ 
1. Based on this, Fatou’s lemma,

and (5.85) we may then write

 

1

|h| dσ ≤ lim inf
j→∞

 

1

|fj | dσ ≤ C1 · lim inf
j→∞

( 

1

|fj |p dw
)1/p

≤ C1

( 

1

|h|p dw
)1/p

. (5.88)

Ultimately, this goes to show that for each h ∈ L
p

loc(�,w) we have

 

1

|h| dσ ≤ C1

(  

1

|h|p dw
)1/p

, (5.89)

with C1 ∈ (0,∞) as in (5.86) (hence, in particular, independent of h, x1, and r).
Start now with an arbitrary point x ∈ �, and continue to assume that the scale

r belongs to
(
0, diam(�)

/
(10λ)
)
. We may then employ (5.74) with ρ := 10 r to

conclude that there exists some x̃ ∈ 
(x, 10λr) \ 
(x, 10 r). For such a choice we
then have 10 r ≤ |x − x̃| < 10λr which, in light of (5.75), shows that we may run
the argument so far with x1 := x and x2 := x̃. In place of (5.89) we then arrive at
the conclusion that, with C1 ∈ (0,∞) as in (5.86),

 

(x,r)

|h| dσ ≤ C1

( 

(x,r)

|h|p dw
)1/p

for each

h ∈ L
p

loc(�,w), x ∈ �, r ∈ (0, diam(�)
/
(10λ)
)
.

(5.90)
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In the case when � is unbounded, from (5.90) (which now holds with no
restriction on the size of the scale r since diam(�) = ∞) and the second part
of Lemma 2.12 we conclude that

w ∈ Ap(�, σ) and [w]Ap ≤ C
p

1 . (5.91)

There remains to treat the scenario in which � is bounded. When this is the case,
starting with (5.90), the argument in the proof of Lemma 2.12 that has led to (2.529)
presently gives (with p′ denoting the Hölder conjugate exponent of p)

( 

(x,r)

w dσ

)( 

(x,r)

w1−p′
dσ

)p−1

≤ C
p

1

for each x ∈ � and r ∈ (0, diam(�)
/
(10λ)
)
.

(5.92)

To obtain a similar inequality in the regime

diam(�)
/
(10λ) ≤ r ≤ diam(�), (5.93)

observe that for each x ∈ � we may estimate, using the Ahlfors regularity of � and
the fact that r is comparable with diam(�),

( 

(x,r)

w dσ

)( 

(x,r)

w1−p′
dσ

)p−1

(5.94)

≤ C2p
AR

· (10λ)(n−1)p

( 
�

w dσ

)( 
�

w1−p′
dσ

)p−1

.

At this stage, there remains to bound the right-hand side of (5.94) by a suitable
finite constant which is independent of w. To this end, introduce the following
threshold r0 := diam(�)

/
(20λ). We claim that there exist an integer

N ∈ N with N ≤ C2
AR

· (40λ)n−1 (5.95)

along with a family of points {xj }Nj=1 ⊆ � satisfying

|xj − xk| ≥ r0 for every j, k ∈ {1, . . . , N} with j �= k

and � ⊆
N⋃

j=1


(xj , r0).
(5.96)

To justify this claim, observe that
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A :=
{
A ⊆ � : |x − x′| ≥ r0 for all x, x′ ∈ A with x �= x′} (5.97)

is a partially ordered set with respect to the canonical inclusion of sets. It is also clear
that any totally ordered subset B of A has an upper bound in A, namely

⋃
B∈B B.

By Zorn’s lemma, there exists a maximal element Amax in A. By maximality we
necessarily have

� ⊆
⋃

x∈Amax


(x, r0). (5.98)

Since � ⊆ R
n is currently assumed to be compact, there exist {xj }Nj=1 ⊆ Amax such

that � ⊆
N⋃

j=1

(xj , r0). This takes care of (5.96). To estimate N as in (5.95), start

by observing that the balls
{
B(xj , r0/2)

}N
j=1 are, thanks to the first line in (5.96),

mutually disjoint. Bearing this in mind, we may use the Ahlfors regularity of � to
write

CAR · (diam(�)
)n−1 ≥ σ(�) ≥

N∑

j=1

σ
(
B(xj , r0/2) ∩ �

)
(5.99)

≥ N · C−1
AR

· (r0/2)n−1 = N · C−1
AR

· (diam(�)
/
(40λ)
)n−1

from which (5.95) readily follows.
Moving on, note that for every j, k ∈ {1, . . . , N} with j �= k one has

r0 ≤ |xj − xk| ≤ diam(�) = 20λr0. (5.100)

Thus, (5.75) holds with r := r0/10 = diam(�)/(200λ), and xj , xk playing the role
of x1 and x2. As such, (5.76) and (5.83) yield

w
(

(xk, r0/10)

)

w
(

(xj , r0/10)

) ≤ 2p−1 · C
p

0 · c
−p
n,λ · Cp

AR
. (5.101)

On the other hand, Ahlfors regularity and (5.90) applied to 
(xk, r0) and the
function h = 1
(xk,r0/10) readily gives

C−2p
AR

· 10−(n−1)p ≤
(

σ
(

(xk, r0/10)

)

σ
(

(xk, r0)

)
)p

≤ C
p

1 · w
(

(xk, r0/10)

)

w
(

(xk, r0)

) . (5.102)

Collecting then (5.101) and (5.102) we conclude that
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w
(

(xk, r0)

)

w
(

(xj , r0)

) ≤ C2p
AR

· 10(n−1)p · C
p

1 · w
(

(xk, r0/10)

)

w
(

(xj , r0/10)

) ≤ C2, (5.103)

with

C2 := 23p−3 · 10(n−1)p · C5p
AR

· C
3p

0 · c
−3p
n,λ . (5.104)

Since the latter estimate holds for every j, k ∈ {1, . . . , N} with j �= k we obtain
that for every j ∈ {1, . . . , N}

w(�) ≤
N∑

j=1

w
(

(xk, r0)

) ≤ N · C2 · w
(

(xj , r0)

) ≤ C3 · w
(

(xj , r0)

)
,

(5.105)
where

C3 := 23p−3 · 10(n−1)p · (40λ)n−1 · C5p+2
AR

· C
3p

0 · c
−3p
n,λ . (5.106)

From (5.105) and (5.90) used with r := r0 ∈ (0, diam(�)
/
(10λ)
)

we then obtain
that for each h ∈ Lp(�,w) we have

ˆ

(xj ,r0)

|h| dσ ≤ σ(�) · C1 · C
1/p

3

(  
�

|h|p dw
)1/p

for j ∈ {1, . . . , N}.
(5.107)

Summing up in j further yields

 
�

|h| dσ ≤ N · C1 · C
1/p

3

(  
�

|h|p dw
)1/p

for each h ∈ Lp(�,w). (5.108)

Having established (5.108), the argument in the proof of Lemma 2.12 that has
produced (2.529) (used with 
 := �) then currently gives

( 
�

w dσ

)( 
�

w1−p′
dσ

)p−1

≤ (N · C1 · C
1/p

3 )p = Np · C
p

1 · C3

≤ 25p−5 · 10(n−1)p · (40λ)(n−1)(p+1) · C9p+2
AR

· C
5p

0 · c
−5p
n,λ . (5.109)

Together with (5.94) this finally proves that w ∈ Ap(�, σ) and that

[w]Ap ≤ C‖R‖5p

Lp(�,w)⊗C�n→Lp(�,w)⊗C�n
(5.110)

for C ∈ (0,∞) depending only on the Ahlfors regularity constant of �, n, and p.
Finally, from (5.91), (5.86), (5.110), and (5.73) we conclude that (5.69) holds.

��
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In concert with earlier results, Theorem 5.5 yields the following remarkable
characterization of Muckenhoupt weights.

Theorem 5.6 Let � ⊆ R
n be a UR domain and abbreviate σ := Hn−1�∂�. Fix

a function w ∈ L1
loc(∂�, σ) which is strictly positive σ -a.e. on ∂�, along with an

integrability exponent p ∈ (1,∞). Then the following statements are equivalent.

(1) The weight w belongs to the Muckenhoupt class Ap(∂�, σ).
(2) For each j ∈ {1, . . . , n}, the j -th Riesz transform Rj on ∂� (cf. (4.297))

induces a linear and bounded operator on Lp(∂�,w).
(3) The Cauchy–Clifford operator C from (5.12) induces a linear and bounded

mapping on Lp(∂�,w) ⊗ C�n.
(4) The “transpose” Cauchy–Clifford operatorC# from (5.14) induces a linear and

bounded mapping on Lp(∂�,w) ⊗ C�n.
(5) For each complex-valued function k ∈ C∞(

R
n \ {0}) which is odd and positive

homogeneous of degree 1 − n, the integral operator originally defined for each
function f ∈ L1

(
∂�,

σ(x)

1+|x|n−1

)
as

Tf (x) := lim
ε→0+

ˆ

y∈∂�
|x−y|>ε

k(x − y)f (y) dσ(y) for σ -a.e. x ∈ ∂� (5.111)

induces a linear and bounded mapping on Lp(∂�,w).

Proof The implications (1)⇒ (2) and (1)⇒ (5) are direct consequences of Propo-
sition 3.4 and (4.297). From (4.297) it is also clear that (5)⇒ (2). To proceed, let
ν = (ν1, . . . , νn) denote the geometric measure theoretic outward unit normal to
�. Then (5.13) and (5.15) imply that the Cauchy–Clifford operator C from (5.12)
as well as the “transpose” Cauchy–Clifford operator C# from (5.14) induce linear
and bounded mappings on Lp(∂�,w)⊗C�n whenever all Riesz transforms on ∂�,
i.e., Rj as in (4.297) with 1 ≤ j ≤ n, induce linear and bounded operators on
Lp(∂�,w). This takes care of the implications (2)⇒ (3) and (2)⇒ (4).

Going further, bring in the integral operator R defined as in (5.68) for � := ∂�,
i.e., Rf = e1 � R1f + · · · + en � Rnf for each f ∈ L1

(
∂�,

σ(x)

1+|x|n−1

) ⊗ C�n,
where {Rj }1≤j≤n are Riesz transforms on ∂� defined in (4.297). From definitions
and the fact that ν � ν = −1 at σ -a.e. point of ∂� (cf. (5.1)) we then see that for
each f ∈ L1

(
∂�,

σ(x)

1+|x|n−1

)⊗ C�n we have

ν � C#f = 1
2Rf, −C(ν � f ) = 1

2Rf, Cf = ν � C#(ν � f ),

C#f = − 1
2ν � Rf, Cf = 1

2R(ν � f ), C#f = ν � C(ν � f ).
(5.112)
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It is also clear that the statement in item (2) is equivalent to the demand that R

induces a linear and bounded operator on Lp(∂�,w)⊗C�n. On account of this and
(5.112) we then conclude that the implications (3)⇒ (2) and (4)⇒ (2) are valid.
Finally, Theorem 5.5 gives the implication (2)⇒ (1). The proof of Theorem 5.6 is
therefore complete. ��
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