
Chapter 4
Boundedness and Invertibility of Layer
Potential Operators

The key result in this work is Theorem 4.2 which elaborates on the nature of the
operator norm of a singular integral operator T defined on the boundary of a UR
domain�whose integral kernel has a special algebraic format, through the presence
of the inner product between the outward unit normal ν to � and the chord, as a
factor. Proving this theorem requires extensive preparations and takes quite a bit of
effort, but the redeeming feature of Theorem 4.2 is that said operator norm estimate
involves the BMO semi-norm of ν as a factor. This hallmark attribute (which is
shared by the double layer operator KA associated with a distinguished coefficient
tensor A) entails that the flatter ∂� is, the smaller ‖T ‖ is. In particular, having ∂�

sufficiently flat ultimately allows us to invert 1
2I + KA on Muckenhoupt weighted

Lebesgue spaces via a Neumann series, and this is of paramount importance later
on, when dealing with boundary value problems via the method of boundary
layer potentials. Subsequently, via operator identities relating the single and double
layers, we also succeed in inverting the single layer potential operator in a similar
geometric and algebraic setting.

4.1 Estimates for Euclidean Singular Integral Operators

We begin with a few generalities of functional analytic nature. Given two normed
vector spaces

(
X, ‖·‖X

)
and
(
Y, ‖·‖Y

)
, consider a positively homogeneous mapping

T : X → Y , i.e., a function T sending X into Y and satisfying T (λu) = λT (u) for
each u ∈ X and each λ ∈ (0,∞) (note that taking u := 0 ∈ X and λ := 2 implies
T (0) = 0 ∈ Y ). We shall denote by

‖T ‖X→Y := sup
{‖T u‖Y : u ∈ X, ‖u‖X = 1

} ∈ [0,∞] (4.1)

the operator norm of such a mapping T ; in particular,
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242 4 Boundedness and Invertibility of Layer Potential Operators

‖T u‖Y ≤ ‖T ‖X→Y ‖u‖X for each u ∈ X. (4.2)

It is then straightforward to see that a positively homogeneous mapping T : X → Y

is continuous at 0 ∈ X if and only if T is bounded (i.e., it maps bounded subsets of
X into bounded subsets of Y ) if and only if ‖T ‖X→Y < +∞.

Consider now the special case when X, Y are Lebesgue spaces (associated with a
generic measure space) and T is a sub-linear mapping of X into Y (i.e., T : X → Y

satisfies the property T (λu) = |λ|T (u) for each scalar λ and each function u ∈ X,
as well as T (u + w) ≤ T u + T w at a.e. point, for each u,w ∈ X). Then, for each
u,w ∈ X we have |T u−T w| ≤ |T (u−w)| at a.e. point, which further implies that
‖T u− T w‖Y ≤ ‖T (u− w)‖Y ≤ ‖T ‖X→Y ‖u− w‖X. Consequently,

a sub-linear map T : X → Y is continuous

if and only if ‖T ‖X→Y < +∞.
(4.3)

Let us now start in earnest. To facilitate dealing with Theorem 4.1 a little later,
we first isolate a useful estimate in the lemma below.

Lemma 4.1 Fix an integrability exponent p ∈ (1,∞) along with a Muckenhoupt
weight w ∈ Ap(Rn,Ln). Then there exists a constant C ∈ (0,∞) which only
depends on n, p, and [w]Ap , with the property that for each point x ∈ R

n, each

radius r ∈ (0,∞), and real-valued function A ∈ W
1,1
loc (Rn) with

∇A ∈ [BMO(Rn,Ln)
]n (4.4)

one has

ˆ

y∈Rn

|x−y|>r

∣
∣A(x)− A(y)− 〈∇A(y), x − y〉∣∣p

|x − y|(n+1)p dw(y)

≤ Crp w
(
B(x, r)

)∥∥∇A
∥∥p[BMO(Rn,Ln)]n . (4.5)

Proof Fix a function A as in the statement of the lemma. From Lemma 2.13 and
(4.4) we see that

∇A ∈ [L1
loc(R

n,w)
]n

. (4.6)

Next, recall from (2.533) that there exists ε ∈ (0, p − 1) which depends only on p,
n, and [w]Ap , such that

w ∈ Ap−ε(R
n,Ln). (4.7)

Fix x ∈ R
n and r ∈ (0,∞). By breaking up the integral dyadically, estimating the

denominator, and using the doubling property of w ∈ Ap−ε(R
n,Ln) (cf. item (5) of
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Proposition 2.20) we may dominate

ˆ

y∈Rn

|x−y|>r

∣∣A(x)− A(y)− 〈∇A(y), x − y〉∣∣p
|x − y|(n+1)p dw(y)

≤ Cn,p

∞∑

j=1

w(B(x, 2j r))

2j (n+1)p · Ij ≤ Cn,p,w

∞∑

j=1

2jn(p−ε)w(B(x, r))

2j (n+1)p · Ij , (4.8)

where, for each j ∈ N,

Ij := 1

w(B(x, 2j r))

ˆ

2j−1r<|x−y|≤2j r

∣∣A(x)− A(y)− 〈∇A(y), x − y〉∣∣p dw(y).

(4.9)

To proceed, for each j ∈ N introduce

Aj(z) := A(z)−
( 

B(x,2j r)

∇A dw
)
· z for each z ∈ R

n (4.10)

(making use of (4.6) to ensure that this is meaningful), and observe that Ij , originally
defined in (4.9), does not change if the function A is replaced by Aj . Consequently,
for each j ∈ N we have

Ij ≤ Cp · IIj + Cp · IIIj , (4.11)

where

IIj := 1

w(B(x, 2j r))

ˆ

2j−1r<|x−y|≤2j r

∣∣Aj(x)− Aj(y)|p dw(y), (4.12)

and

IIIj := 2jprp

w(B(x, 2j r))

ˆ

2j−1r<|x−y|≤2j r

∣∣∇Aj(y)
∣∣p dw(y). (4.13)

Fix an integrability exponent q ∈ (n,∞) and pick j ∈ N arbitrary. Then for each
y ∈ R

n such that 2j−1r < |x − y| ≤ 2j r we may estimate

|Aj(x)− Aj(y)| ≤ Cq,n|x − y|
(  

|x−z|≤2|x−y|
|∇Aj(z)|q dz

)1/q
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≤ Cq,n,w · 2j r
( 

B(x,2|x−y|)
|∇Aj |pq dw

)1/(pq)

≤ Cq,n,w · 2j r
( 

B(x,2|x−y|)

∣∣∣∇A−
 

B(x,2|x−y|)
∇A dw

∣∣∣
pq

dw
)1/(pq)

+ Cq,n,w · 2j r

∣
∣∣
 

B(x,2j r)

∇A dw −
 

B(x,2|x−y|)
∇A dw

∣
∣∣

≤ Cq,n,w · 2j r‖∇A‖[BMO(Rn,w)]n

≤ Cq,n,w · 2j r‖∇A‖[BMO(Rn,Ln)]n . (4.14)

Above, the first estimate is provided by Mary Weiss’ Lemma (cf. [24, Lemma 1.4,
p. 144], or [58, Lemma 2.10, p. 477]), the second estimate uses the fact that we have
|x − y| ≤ 2j r and Lemma 2.12, the third estimate is implied by (4.10) which gives
∇Aj = ∇A − ffl

B(x,2j r)
∇A dw, the penultimate estimate is a consequence of the

John-Nirenberg inequality, (2.103) (written with w in place of σ ), and the doubling
property of w, while the final estimate in (4.14) comes from Lemma 2.14. In turn,
(4.12) and (4.14) yield

IIj ≤ C · 2jprp‖∇A‖p[BMO(Rn,Ln)]n . (4.15)

By combining (4.13) and (4.10) we also see that

IIIj ≤ 2jprp

 
B(x,2j r)

∣∣∣∇A−
 

B(x,2j r)

∇A dw
∣∣∣
p

dw

≤ C · 2jprp‖∇A‖[BMO(Rn,w)]n ≤ C · 2jprp‖∇A‖p[BMO(Rn,Ln)]n , (4.16)

where the last inequality is once again provided by Lemma 2.14. From (4.15)–(4.16)
and (4.11) we then conclude that

Ij ≤ C · 2jprp‖∇A‖p[BMO(Rn,Ln)]n for each j ∈ N. (4.17)

Using this back in (4.8) now readily yields (4.5), since
∑∞

j=1 2−jnε <∞. 
�
The next result, dealing with boundedness for certain type of singular integral

operators in the Euclidean context, refines work in [61, Theorem 4.34, p. 2725].

Theorem 4.1 Pick an integrability exponent p ∈ (1,∞) along with a Muckenhoupt
weight w ∈ Ap(Rn−1,Ln−1). Denote by p′ ∈ (1,∞) the Hölder conjugate
exponent of p and by w′ the dual weight w′ := w1−p′ ∈ Ap′(Rn−1,Ln−1) of
w. Next, fix three numbers n,m, d ∈ N with n ≥ 2, and let N = N(n,m) ∈ N be
a sufficiently large integer. Let A ∈ W

1,1
loc (Rn−1) be a complex-valued function with
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the property that

∇A ∈ [BMO(Rn−1,Ln−1)
]n−1

. (4.18)

Also, for each j ∈ {1, . . . , m} consider a real-valued function Bj ∈ W
1,1
loc (Rn−1)

with the property that

∇Bj ∈
[
BMO(Rn−1,Ln−1)

]n−1
, (4.19)

and set B := (B1, . . . , Bm). In addition, consider a function � : Rn−1 → R
d for

which there exists c ∈ (0, 1] such that

c|x′ − y′| ≤ |�(x′)−�(y′)| ≤ c−1|x′ − y′| for all x′, y′ ∈ R
n−1; (4.20)

hence, � is bi-Lipschitz. Going further, suppose F ∈ CN+2(Rm) is a complex-
valued function which is even, has the property that ∂αF belongs to L1(Rm,Lm)

for every multi-index α ∈ N
n
0 with |α| ≤ N + 2, and

sup
X∈Rm

[
(1+ |X|)|F(X)|] < +∞. (4.21)

Finally, for each function g ∈ Lp(Rn−1, wLn−1) and each point x′ ∈ R
n−1 define

T
A,B
�,∗ g(x′) := sup

ε>0

∣
∣∣∣

ˆ

y′∈Rn−1
|�(x′)−�(y′)|>ε

A(x′)− A(y′)− 〈∇A(y′), x′ − y′〉
|x′ − y′|n ×

× F
(B(x′)− B(y′)

|x′ − y′|
)
g(y′) dy′

∣∣∣∣. (4.22)

Then T
A,B
�,∗ is a well-defined, continuous, sub-linear mapping of the Muckenhoupt

weighted Lebesgue space Lp(Rn−1, wLn−1) into itself, and there exists some
constant C(n, p,w) ∈ (0,∞) which depends only on n, p, and [w]Ap with the
property that

∥
∥∥T A,B

�,∗
∥
∥∥

Lp(Rn−1,wLn−1)→Lp(Rn−1,wLn−1)
(4.23)

≤ C(n, p,w) · c−3n
( ∑

|α|≤N+2

∥∥∂αF
∥∥

L1(Rm,Lm)
+ sup

X∈Rm
(1+ |X|)|F(X)|

)

× ‖∇A‖[BMO(Rn−1,Ln−1)]n−1
(
1+

m∑

j=1

∥∥∇Bj

∥∥[BMO(Rn−1,Ln−1)]n−1
)N

.
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Theorem 4.1 is an intricate piece of machinery allowing us to estimate, in a rather
detailed and specific manner, the maximal operator associated with integral kernels
that exhibit a certain type of algebraic structure. We shall put this to good use in
Lemma 4.2 which, in turn, is a basic ingredient in the proof of Theorem 4.2 (the
main result in this section). This being said, Theorem 4.1 is useful for a variety of
other purposes.

To give a significant example in this regard, work in the one-dimensional setting
and recall the Hilbert transform H on the real line from (1.24). Consider a complex-
valued function A ∈ W

1,1
loc (R) with the property that A′ ∈ BMO(R,L1). Let

MA stand for the operator of pointwise multiplication by A, and denote by D the
one-dimensional derivative operator f �→ df/dx on the real line. Also, fix an inte-
grability exponent p ∈ (1,∞) and a Muckenhoupt weight w ∈ Ap(R,L1). Then
the commutator [H,MAD], originally defined on functions from C∞0 (R), extends
to a bounded linear mapping on Lp(R, w) with operator norm ≤ C

∥
∥A′
∥
∥
BMO(R,L1)

where C ∈ (0,∞) is an absolute constant. Indeed, given any function f ∈ C∞0 (R),
atL1-a.e. differentiability point x ∈ R for A (hence, atL1-a.e. x ∈ R) we may write
(keeping in mind that, since the Hilbert transform is a multiplier, H commutes with
differentiation):

[H,MAD]f (x) = H(Af ′)(x)− A(x)
d

dx
(Hf (x)) = H(Af ′)(x)− A(x)(Hf ′)(x)

= lim
ε→0+

1

π

ˆ

y∈R
|x−y|>ε

A(y)− A(x)

x − y
f ′(y) dy

= − lim
ε→0+

(A(y)− A(x)

x − y
f (y)

∣∣∣
y=x+ε

y=x−ε

)

− lim
ε→0+

1

π

ˆ

y∈R
|x−y|>ε

d

dy

(A(y)− A(x)

x − y

)
f (y) dy

= lim
ε→0+

1

π

ˆ

y∈R
|x−y|>ε

A(x)− A(y)− A′(y)(x − y)

(x − y)2
f (y) dy.

(4.24)

(The fact that the limit in the third line of (4.24) vanishes is ensured by the
differentiability of A at x, and the continuity of f at x.) Granted this formula,
Theorem 4.1 applies with n = 2, m = 1, � the identity, B ≡ 0, and taking
F ∈ C∞0 (R) to be an even function with F(0) = 1. The desired conclusion then
follows from (4.23).



4.1 Estimates for Euclidean Singular Integral Operators 247

To offer another example where Theorem 4.1 plays a decisive role, fix some
� ∈ (0,∞) and suppose � is a �-CAC passing through infinity in C. Recall the

Cauchy integral operator on the chord-arc curve � acts on f ∈ L1
(
�,

dH1(ζ )
1+|ζ |

)

according to

(C�f )(z) := lim
ε→0+

1

2π i

ˆ

ζ∈�
|z−ζ |>ε

f (ζ )

ζ − z
dζ forH1-a.e. z ∈ �. (4.25)

Since from Proposition 2.10 we know that � is the topological boundary of a UR
domain, Proposition 3.4 guarantees that C� is a well-defined, linear, and bounded
operator on the space Lp(�,w) whenever p ∈ (1,∞) and w ∈ Ap(�, σ), where
σ := H1��. Let us indicate how Theorem 4.1 may be used to show that

the flatter the chord-arc curve � becomes, the closer the corre-
sponding Cauchy operator becomes (with proximity measured in
the operator norm on Muckenhoupt weighted Lebesgue spaces)
to the (suitably normalized) Hilbert transform on the real line.

(4.26)

A brief discussion on this topic may be found in [33, pp. 138-139]. In order to
facilitate a direct comparison between the two singular integral operators mentioned
in (4.26), it is natural to consider the pull-back of C� to R under the arc-length
parametrization R � s �→ z(s) ∈ C of �. After natural adjustments in notation, this
corresponds to the mapping sending each f ∈ Lp(R, w) into

(C
R
f )(t) := lim

ε→0+
i

2π

ˆ

s∈R|z(t)−z(s)|>ε

z′(s)
z(t)− z(s)

f (s) ds for L1-a.e. t ∈ R,

(4.27)
where p ∈ (1,∞) and w ∈ Ap(R,L1). Recall from (2.219) that the function z(·) is
bi-Lipschitz, specifically,

(1+ �)−1|t − s| ≤ |z(t)− z(s)| ≤ |t − s| for all t, s ∈ R. (4.28)

Keeping this in mind, a suitable application1 of [62, Proposition B.2] allows to
change the truncation in (4.27) to

(C
R
f )(t) = lim

ε→0+
i

2π

ˆ

s∈R|t−s|>ε

z′(s)
z(t)− z(s)

f (s) ds for L1-a.e. t ∈ R, (4.29)

1 While [62, Proposition B.2] is stated for ordinary Lebesgue spaces, the same type of result holds
in the class of Muckenhoupt weighted Lebesgue spaces (thanks to the fact that the phenomenon in
question is local in nature, and (2.576)).
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for each f ∈ Lp(R, w) with p ∈ (1,∞) and w ∈ Ap(R,L1). We wish to compare
the operator written in this form with the (suitably normalized) Hilbert transform on
the real line, acting on arbitrary functions f ∈ Lp(R, w), where p ∈ (1,∞) and
w ∈ Ap(R,L1), according to

(Hf )(t) := lim
ε→0+

1

π

ˆ

s∈R|t−s|>ε

f (s)

t − s
ds for L1-a.e. t ∈ R. (4.30)

Fix p ∈ (1,∞), w ∈ Ap(R,L1), and f ∈ Lp(R, w). Then at L1-a.e. t ∈ R we may
express

(
C

R
− (i/2)H

)
f (t) = lim

ε→0+
i

2π

ˆ

s∈R|t−s|>ε

( z′(s)
z(t)− z(s)

− 1

t − s

)
f (s) ds

= lim
ε→0+

1

2π i

ˆ

s∈R|t−s|>ε

z(t)− z(s)− z′(s)(t − s)

(z(t)− z(s))(t − s)
f (s) ds.

(4.31)

Pick an even function φ ∈ C∞0 (C) satisfying (with � as in (4.28))

0 ≤ φ ≤ 1 and suppφ ⊆ B(0, 2),

φ ≡ 1 on B(0, 1) \ B
(
0, (1+ �)−1

)
,

φ ≡ 0 on B
(
0, (2+ 2�)−1

)
,

(4.32)

along with a function ψ ∈ C∞0 (R) which is even and satisfies

0 ≤ ψ ≤ 1, suppψ ⊆ [−4, 4], and ψ ≡ 1 on [−2, 2] \ [− 1
2 ,

1
2

]
. (4.33)

We may then invoke Theorem 4.1 with n := 2, m := 3, and

�(t) := t, A(t) := z(t), B(t) := (Re z(t), Im z(t), t
)
for all t ∈ R,

F (a, b, c) := c

a + ib
φ(a + ib)ψ(c) for all (a, b, c) ∈ R

3,
(4.34)

and conclude from (4.23) and (2.228) that there exist some integer Ñ ∈ N and some
constant Cp,w ∈ (0,∞) such that, with � as in (4.28), we have

∥∥C
R
− (i/2)H

∥∥
Lp(R,w)→Lp(R,w)

≤ Cp,w(1+ �)Ñ
√

�. (4.35)
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This lends credence to (4.26) since it implies

∥∥C
R
− (i/2)H

∥∥
Lp(R,w)→Lp(R,w)

= O(
√

� ) as � → 0+. (4.36)

After this preamble, we are ready to present the proof of Theorem 4.1.

Proof of Theorem 4.1 Throughout, let us abbreviate

K(x′, y′) := A(x′)− A(y′)− 〈∇A(y′), x′ − y′〉
|x′ − y′|n F

(B(x′)− B(y′)
|x′ − y′|

)
, (4.37)

for each x′ ∈ R
n−1 and Ln−1-a.e. y′ ∈ R

n−1. Having T
A,B∗ g(x′) in (4.56) well

defined for each g ∈ Lp(Rn−1, wLn−1) and each x′ ∈ R
n−1 is ensured by observing

that

K(·, ·) is an Ln−1 ⊗Ln−1-measurable function on R
n−1 × R

n−1, (4.38)

which is clear from (4.37), and

for each g ∈ Lp(Rn−1, wLn−1), ε > 0, x′ ∈ R
n−1,

one has
ˆ

y′∈Rn−1
|x′−y′|>ε

|K(x′, y′)||g(y′)| dy′ < +∞. (4.39)

The finiteness property in (4.39) is a consequence of Hölder’s inequality, (4.37),
the fact that F is bounded, and Lemma 4.1 (used with n replaced by n − 1, p′ in
place of p, and with w′ in place of w). In concert, these give that for each function
g ∈ Lp(Rn−1, wLn−1), each ε > 0, and each x′ ∈ R

n−1 we have
ˆ

y′∈Rn−1
|x′−y′|>ε

|K(x′, y′)||g(y′)| dy′ ≤ Cε
[
w′
(
B(x′, ε)

)]1/p′( sup
X∈Rm

|F(X)|
)
× (4.40)

× ‖g‖Lp(Rn−1,wLn−1)
∥∥∇A

∥∥[BMO(Rn−1,Ln−1)]n−1 <∞.

To proceed, for each function g ∈ Lp(Rn−1, wLn−1), each truncation parameter
ε > 0, and each point x′ ∈ R

n−1 define

T
A,B
�,ε g(x′) :=

ˆ

y′∈Rn−1
|�(x′)−�(y′)|>ε

K(x′, y′)g(y′) dy′. (4.41)

Thanks to (4.20) and (4.38)–(4.39), the above integral is absolutely convergent,
which means that T A,B

�,ε g(x′) is a well-defined number. If Q+ denotes the collection
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of all positive rational numbers, we next make the claim that for each arbitrary
function g ∈ Lp(Rn−1, wLn−1) we have

(
T

A,B
�,∗ g

)
(x′) = sup

ε∈Q+

∣
∣(T A,B

�,ε g
)
(x′)
∣
∣ for every x′ ∈ R

n−1. (4.42)

To justify this, pick some g ∈ Lp(Rn−1, wLn−1). The idea is to show that if
the point x′ ∈ R

n−1 is arbitrary and fixed then for every ε ∈ (0,∞) and for every
sequence {εj }j∈N ⊆ (0,∞) such that εj ↘ ε as j →∞ we have

lim
j→∞

(
T

A,B
�,εj

g
)
(x′) = (T A,B

�,ε g
)
(x′). (4.43)

To justify (4.43) note that

{y′ ∈ R
n−1 : |�(x′)−�(y′)| > εj } ↗ {y′ ∈ R

n−1 : |�(x′)−�(y′)| > ε}
(4.44)

as j →∞, in the sense that

{y′ ∈ R
n−1 : |�(x′)−�(y′)| > ε}

=
⋃

j∈N
{y′ ∈ R

n−1 : |�(x′)−�(y′)| > εj } (4.45)

and

{y′ ∈ R
n−1 : |�(x′)−�(y′)| > εj }

⊆{y′ ∈ R
n−1 : |�(x′)−�(y′)| > εj+1} (4.46)

for every j ∈ N. Then (4.43) follows from (4.44) and Lebesgue’s Dominated
Convergence Theorem (whose applicability is ensured by (4.38)–(4.39)). Having
established this, (4.42) readily follows on account of the density of Q+ in (0,∞).

Moving on, we claim that

for each fixed threshold ε > 0, the function

R
n−1 × R

n−1 � (x′, y′) �−→ (
1{y′∈Rn−1, |�(x′)−�(y′)|>ε}

)
(y′) ∈ R

is lower-semicontinuous, hence Ln−1 ⊗Ln−1-measurable.

(4.47)

To justify this claim, observe that for every number λ ∈ R the set of points in
R

n−1 × R
n−1 where the given function is > λ may be described as
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⎧
⎪⎪⎨

⎪⎪⎩

∅ if λ ≥ 1,
{
(x′, y′) ∈ R

n−1 × R
n−1 : |�(x′)−�(y′)| > ε

}
if λ ∈ [0, 1),

R
n−1 × R

n−1 if λ < 0.

(4.48)

Thanks to the fact that � is a continuous function, all sets appearing in (4.48)
are open in R

n−1 × R
n−1. This proves that the function (4.47) is indeed lower-

semicontinuous.
We next claim that

given any g ∈ Lp(Rn−1, wLn−1), the function T
A,B
�,∗ g is

Ln−1-measurable.
(4.49)

To see that this is the case, granted (4.42) and since the supremum of some countable
family of Ln−1-measurable functions is itself a Ln−1-measurable function, it
suffices to show that

T
A,B
�,ε g is a Ln−1-measurable function, for each fixed

ε ∈ (0,∞) and each fixed g ∈ Lp(Rn−1, wLn−1).
(4.50)

With this goal in mind, fix ε ∈ (0,∞) along with g ∈ Lp(Rn−1, wLn−1), and for
each j ∈ N define

Gj : Rn−1 × R
n−1 −→ R given at every (x′, y′) ∈ R

n−1 × R
n−1 by

Gj(x
′, y′) := (1B(0′,j)

)
(x′)K(x′, y′)g(y′)

(
1{y′∈Rn−1, |�(x′)−�(y′)|>ε}

)
(y′).

(4.51)
Then, thanks to (4.38) and (4.47), it follows that Gj is an Ln−1⊗Ln−1-measurable
function for each j ∈ N. In addition, from (4.51), (4.39), and since balls have finite
measure, we see that

ˆ
R

n−1×Rn−1
|Gj(x

′, y′)| dx′dy′ < +∞. (4.52)

Granted these properties, Fubini’s Theorem (whose applicability is ensured by the
fact that

(
R

n−1,Ln−1) is a sigma-finite measure space) then guarantees that

gj : Rn−1 → R, gj (x
′) :=

ˆ
R

n−1
Gj(x

′, y′) dy′, ∀ x′ ∈ R
n−1,

is an Ln−1-measurable function, for each integer j ∈ N.

(4.53)

On the other hand, from (4.51), (4.53), and (4.41) it is apparent that for each j ∈ N

we have
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gj = 1B(0′,j) T
A,B
�,ε g everywhere in R

n−1. (4.54)

In particular, this implies

lim
j→∞ gj = T

A,B
�,ε g pointwise everywhere in R

n−1. (4.55)

At this stage, the fact that T
A,B
�,ε g is an Ln−1-measurable function follows from

(4.55) and (4.53). The claim in (4.49) is therefore established.
We next turn our attention to the main claim made in (4.23). The special case

when d := n − 1 and �(x′) := x′ for each x′ ∈ R
n−1 has been treated in [61],

following basic work in [58]. Specifically, from [61, Theorem 4.34, p. 2725] we
know that if for each g ∈ Lp(Rn−1, wLn−1) we define

T A,B∗ g(x′) := sup
ε>0

∣∣∣∣

ˆ

y′∈Rn−1
|x′−y′|>ε

K(x′, y′)g(y′) dy′
∣∣∣∣ at each x′ ∈ R

n−1, (4.56)

then

T
A,B∗ is a well-defined sub-linear operator

from the space Lp(Rn−1, wLn−1) into itself
(4.57)

and there exists a constant C(n, p,w) ∈ (0,∞) with the property that

∥∥
∥T A,B∗

∥∥
∥

Lp(Rn−1,wLn−1)→Lp(Rn−1,wLn−1)
(4.58)

≤ C(n, p,w)
( ∑

|α|≤N+2

∥∥∂αF
∥∥

L1(Rm,Lm)
+ sup

X∈Rm
(1+ |X|)|F(X)|

)

× ‖∇A‖[BMO(Rn−1,Ln−1)]n−1
(
1+

m∑

j=1

∥∥∇Bj

∥∥[BMO(Rn−1,Ln−1)]n−1
)N

.

To deal with the present case, in which the truncation is performed in the more
general fashion described in (4.22), for each ε > 0 and each x′ ∈ R

n−1 abbreviate

Dε(x
′) :={y′ ∈ R

n−1 : |�(x′)−�(y′)| > ε and |x′ − y′| ≤ ε
}

⋃{
y′ ∈ R

n−1 : |�(x′)−�(y′)| ≤ ε and |x′ − y′| > ε
}
. (4.59)

Fix an arbitrary g ∈ Lp(Rn−1, wLn−1) and define
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Rg(x′) := sup
ε>0

ˆ
Dε(x′)

∣
∣∣∣
A(x′)− A(y′)− 〈∇A(y′), x′ − y′〉

|x′ − y′|n × (4.60)

× F
(B(x′)− B(y′)

|x′ − y′|
)
g(y′)

∣∣
∣∣ dy

′

at each point x′ ∈ R
n−1. The above definitions now imply that for each given

function g ∈ Lp(Rn−1, wLn−1) we have

T
A,B
�,∗ g(x′) ≤ T A,B∗ g(x′)+ Rg(x′) for every x′ ∈ R

n−1. (4.61)

To estimate the last term appearing in the right-hand side of (4.61), pick some

γ ∈ (0, p − 1) such that w ∈ Ap/(1+γ )(R
n−1,Ln−1), (4.62)

fix an arbitrary point x′ ∈ R
n−1, consider an arbitrary threshold ε > 0, and select a

function g ∈ Lp(Rn−1, wLn−1). Also, abbreviate

Q := Qx′,ε :=
{
y′ ∈ R

n−1 : |x′ − y′| < ε
}

(4.63)

and introduce

AQ(z′) := A(z′)−
(  

Q

∇A dLn−1) · z′ for each z′ ∈ R
n−1. (4.64)

Observe that the number Rg(x′), originally defined in (4.60), does not change if the
function A is replaced by AQ. Consequently,

Rg(x′) ≤ R1g(x′)+ R2g(x′), (4.65)

where

R1g(x′) := sup
ε>0

ˆ
Dε(x′)

∣∣∣
∣
AQ(x′)− AQ(y′)

|x′ − y′|n F
(B(x′)− B(y′)

|x′ − y′|
)
g(y′)

∣∣∣
∣ dy

′

(4.66)

and

R2g(x′) := sup
ε>0

ˆ
Dε(x′)

∣∣∣
∣
〈∇AQ(y′), x′ − y′〉

|x′ − y′|n F
(B(x′)− B(y′)

|x′ − y′|
)
g(y′)

∣∣∣
∣ dy

′.

(4.67)

Note that, thanks to (4.20) and (4.59), we have
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c ε ≤ |x′ − y′| ≤ c−1ε for each y′ ∈ Dε(x
′). (4.68)

Having fixed an integrability exponent q ∈ (n−1,∞), for each y′ ∈ Dε(x
′)we may

rely on Mary Weiss’ Lemma (cf. [24, Lemma 1.4, p. 144]) in concert with (2.102),
(2.103), (4.63), and (4.68) to estimate

|AQ(x′)− AQ(y′)|
|x′ − y′| ≤ Cq,n

(  
|x′−z′|≤2|x′−y′|

|∇AQ(z′)|q dz′
)1/q

≤ Cq,n

(  
|x′−z′|≤2|x′−y′|

∣∣
∣∇A(z′)−

 
|x′−ζ ′|≤2|x′−y′|

∇A(ζ ′) dζ ′
∣∣
∣
q

dz′
)1/q

+ Cq,n

∣∣∣
 

Q

∇A dLn−1 −
 
|x′−ζ ′|≤2|x′−y′|

∇A(ζ ′) dζ ′
∣∣∣

≤ Cq,n · c−2(n−1)/q‖∇A‖[BMO(Rn−1,Ln−1)]n−1 . (4.69)

Choosing q := 2(n − 1) it follows that there exists a constant Cn ∈ (0,∞), which
depends only on n, such that

|AQ(x′)− AQ(y′)| ≤ (Cn/c)|x′ − y′|‖∇A‖[BMO(Rn−1,Ln−1)]n−1

for each point y′ ∈ Dε(x
′).

(4.70)

In concert, (4.66), (4.68), and (4.70) allow us to conclude that

R1g(x′) ≤ Cn · c1−2n
(
sup

X∈Rm
|F(X)|)‖∇A‖[BMO(Rn−1,Ln−1)]n−1×

× sup
ε>0

( 
|x′−y′|<c−1ε

|g(y′)| dy′
)
. (4.71)

To estimate R2g(x′), bring in a brand of the Hardy–Littlewood maximal operator
which associates to each Ln−1-measurable function f on R

n−1 the function Mγ f

defined as

Mγ f (x′) := sup
r>0

(  
|x′−y′|<r

|f (y′)|1+γ dy′
)1/(1+γ )

for each x′ ∈ R
n−1.

(4.72)
Then, using (4.67), (4.64), Hölder’s inequality, and (2.103) we may write

R2g(x′) ≤ Cn · c2−2n
(
sup

X∈Rm
|F(X)|)×

× sup
ε>0

( 
|x′−y′|<c−1ε

∣∣∣∇A(y′)−
 

Q

∇A dLn−1
∣∣∣|g(y′)| dy′

)
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≤ Cn · c2−2n
(
sup

X∈Rm
|F(X)|)Mγ g(x′)×

× sup
ε>0

( 
|x′−y′|<c−1ε

∣∣∣∇A(y′)−
 

Q

∇A dLn−1
∣∣∣
(1+γ )/γ

dy′
)γ /(1+γ )

≤ Cn,γ · c3−3n
(
sup

X∈Rm
|F(X)|)‖∇A‖[BMO(Rn−1,Ln−1)]n−1Mγ g(x′). (4.73)

Collectively, (4.65), (4.71), and (4.73), and Hölder’s inequality imply

Rg(x′) ≤ Cn,γ · c−3n
(
sup

X∈Rm
|F(X)|)‖∇A‖[BMO(Rn−1,Ln−1)]n−1Mγ g(x′).

(4.74)

In turn, from (4.74) and (4.61) we conclude that for every x′ ∈ R
n−1 we have

0 ≤T
A,B
�,∗ g(x′) (4.75)

≤ T A,B∗ g(x′)+ Cn,γ · c−3n
(
sup

X∈Rm
|F(X)|)‖∇A‖[BMO(Rn−1,Ln−1)]n−1Mγ g(x′).

Granted (4.62), the maximal operator Mγ is a well-defined sub-linear bounded
mapping from Lp(Rn−1, wLn−1) into itself. Bearing this in mind, from (4.75),
(4.57), (4.58), and (2.575), and the fact that the space Lp(Rn−1, wLn−1) is a lattice,
the estimate claimed in (4.23) now follows. As a consequence, T A,B

�,∗ is a sub-linear

mapping of finite operator norm on Lp(Rn−1, wLn−1). Hence, as remarked in (4.3),
the operator T

A,B
�,∗ is continuous from Lp(Rn−1, wLn−1) into itself. 
�

The next step is to transfer the Euclidean result from Theorem 4.1 to singular
integral operators on Lipschitz graphs, a task accomplished in the following lemma.

Lemma 4.2 Having fixed an arbitrary unit vector �n ∈ Sn−1, consider the
hyperplane H := 〈�n〉⊥ ⊆ R

n−1 and suppose h : H → R is a function satisfying

M := sup
x,y∈H
x �=y

|h(x)− h(y)|
|x − y| < +∞. (4.76)

Fix an arbitrary point x0 ∈ R
n and let

G := {x0 + x + h(x)�n : x ∈ H
} ⊆ R

n (4.77)

denote the graph of h in the coordinate system X = (x, t) ⇔ X = x0+x+ t �n, with
x ∈ H and t ∈ R. Abbreviate σ := Hn−1�G and denote by ν the unique unit normal
to G satisfying ν · �n < 0 at σ -a.e. point on G. Also, fix some integrability exponent
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p ∈ (1,∞). Given a complex-valued function k ∈ CN+2(
R

n \ {0}), for some
sufficiently large integer N = N(n) ∈ N, which is even and positive homogeneous
of degree −n, consider the maximal singular integral operator T acting on each
f ∈ Lp(G, σ ) as

T∗f (x) := sup
ε>0

∣∣∣
∣

ˆ

y∈G
|x−y|>ε

〈x − y, ν(y)〉k(x − y)f (y) dσ(y)

∣∣∣
∣, ∀ x ∈ G. (4.78)

Then T∗ is a well-defined continuous sub-linear mapping from the space
Lp(G, σ ) into itself and there exists a constant C(n, p) ∈ (0,∞), which depends
only on n, p, with the property that

‖T∗‖Lp(G,σ )→Lp(G,σ ) ≤ C(n, p)M(1+M)4n+N

( ∑

|α|≤N+2
sup
Sn−1

∣∣∂αk
∣∣
)

. (4.79)

Moreover, corresponding to the end-point case p = 1, the operator T∗ induces a
well-defined continuous sub-linear mapping from the space L1(G, σ ) into the space
L1,∞(G, σ ) and there exists a constant Cn ∈ (0,∞) along with some large exponent
Nn ∈ N, which depend only on n, with the property that

‖T∗‖L1(G,σ )→L1,∞(G,σ ) ≤ Cn(1+M)Nn

( ∑

|α|≤Nn

sup
Sn−1

∣∣∂αk
∣∣
)

. (4.80)

Proof Recall that {ej }1≤j≤n stands for the standard orthonormal basis in Rn. Let us
first treat the case when x0 = 0 ∈ R

n and �n := en, a scenario in which H = 〈en〉⊥
may be canonically identified with R

n−1. Assume this is the case, and consider an
even function ψ ∈ C∞(Rn) with the property that

0 ≤ ψ ≤ 1, ψ vanishes identically in R
n \ B

(
0, 2
√
1+M2

)
,

ψ ≡ 1 on B(0,
√
1+M2) \ B(0, 1), ψ ≡ 0 on B(0, 1/2),

and for each α ∈ N
n
0 there exists Cα ∈ (0,∞), depending only

on the given multi-index α, so that supx∈Rn |(∂αψ)(x)| ≤ Cα.

(4.81)

Then F := ψk is an even function belonging to CN+2(Rn), and satisfying

∑

|α|≤N+2

∥∥∂αF
∥∥

L1(Rn,Ln)
+ sup

x∈Rn
(1+ |x|)|F(x)|

≤ Cn(1+M)n
( ∑

|α|≤N+2
sup
Sn−1

∣∣∂αk
∣∣
)

, (4.82)
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for some purely dimensional constant Cn ∈ (0,∞). Moreover, if for each point
x′ ∈ R

n−1 we set �(x′) := (x′, h(x′)) then � : Rn−1 → R
n is a bi-Lipschitz

function and (4.81) implies that

k

(
�(x′)−�(y′)
|x′ − y′|

)
= F

(
�(x′)−�(y′)
|x′ − y′|

)

for each x′, y′ ∈ R
n−1 with x′ �= y′.

(4.83)

To proceed, note that for each σ -measurable set E ⊆ G and each g ∈ L1(E, σ )

we have
ˆ

E

g dσ =
ˆ
{y′∈Rn−1: (y′,h(y′))∈E}

g(y′, h(y′))
√
1+ |(∇h)(y′)|2 dy′, (4.84)

(cf., e.g., [136, Proposition 12.9, p. 164]) and

ν(y′, h(y′)) = ((∇h)(y′),−1)
√
1+ |(∇h)(y′)|2 for Ln−1-a.e. y′ ∈ R

n−1. (4.85)

Also, fix f ∈ Lp(G, σ ) and define f̃ (x′) := f (x′, h(x′)) for each x′ ∈ R
n−1. In

particular, from (4.84) we conclude that

f̃ ∈ Lp(Rn−1,Ln−1) and
∥∥f̃
∥∥

Lp(Rn−1,Ln−1) ≤ ‖f ‖Lp(G,σ ). (4.86)

Then based on (4.78), (4.84), (4.85), the homogeneity of k, and (4.83) we may write

(T∗f )(x′, h(x′))

= sup
ε>0

∣∣∣∣

ˆ

y′∈Rn−1 with√
|x′−y′|2+(h(x′)−h(y′))2>ε

(〈∇h(y′), x′ − y′〉 + h(y′)− h(x′)
)×

× k
(
x′ − y′, h(x′)− h(y′)

)
f̃ (y′) dy′

∣∣∣∣

= sup
ε>0

∣∣∣
∣

ˆ

y′∈Rn−1
|�(x′)−�(y′)|>ε

h(x′)− h(y′)− 〈∇h(y′), x′ − y′〉
|x′ − y′|n ×
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× F
(�(x′)−�(y′)

|x′ − y′|
)
f̃ (y′) dy′

∣∣∣∣.

(4.87)

From (4.87), Theorem 4.1 (used with m := n, d := n, A := h, B := �, and w ≡ 1),
(4.82), and (4.84) we then conclude that (4.79) holds in this case.

To treat the case when x0 = 0 but �n ∈ Sn−1 is arbitrary, pick an orthonormal
basis {vj }1≤j≤n−1 in H and consider the unitary transformation in R

n uniquely
defined by the demand that Uvj = ej for j ∈ {1, . . . , n − 1} and U �n = en. Then
G̃ := UG becomes the graph of h̃ := h ◦ U−1 : Rn−1 → R, which is a Lipschitz
function with the same Lipschitz constant M as the original function h. Since the
Hausdorff measure is rotation invariant, for each g ∈ L1(G, σ ) we have

ˆ
y∈G

g(y) dσ(y) =
ˆ

ỹ∈G̃
(g ◦ U−1)(ỹ) dσ̃ (ỹ), (4.88)

where σ̃ := Hn−1�G̃. Moreover, the unique unit normal ν̃ to G̃ satisfying ν̃ · en < 0
at Hn−1-a.e. point on G̃ is ν̃ = U(ν ◦ U−1). Consider k̃ := k ◦ U−1 and note
that this is a complex-valued function of class CN+2(

R
n \ {0}), which is even and

positive homogeneous of degree −n. Finally, fix some function f ∈ Lp(G, σ ) and
abbreviate f̃ := f ◦ U−1. Bearing in mind the fact that U is a linear isometry
satisfying U−1 = U�, from (4.78) and (4.88) we see that if x ∈ G and x̃ := Ux

then

T∗f (x) = sup
ε>0

∣∣∣
∣

ˆ

ỹ∈G̃
|̃x−ỹ|>ε

〈̃x − ỹ, ν̃(ỹ)〉̃k(̃x − ỹ)f̃ (ỹ) dσ̃ (ỹ)

∣∣∣
∣. (4.89)

Hence,

T∗f (x) = T̃∗f̃ (̃x) whenever x ∈ G and x̃ = Ux, (4.90)

where T̃∗ is the maximal operator associated as in (4.78) with the Lipschitz graph G̃
and the kernel k̃. In particular, given that (4.90) and (4.88) imply

ˆ
G
(T∗f )(x)p dσ(x) =

ˆ
G̃
(T̃∗f̃ )(̃x)p dσ̃ (̃x), (4.91)

the estimate claimed in (4.79) becomes a consequence of the corresponding estimate
for the maximal operator T̃∗ established in the first part of the current proof.

The case when both x0 ∈ R
n and �n ∈ Sn−1 are arbitrary follows from what we

have proved so far using the natural invariance of the maximal operator (4.78) to
translations.
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Finally, the estimate claimed in (4.80) becomes a consequence of (4.79) (with,
say, the choice p = 2), and standard Calderón–Zygmund theory (based on the
classical Calderón–Zygmund Lemma, and Cotlar’s inequality). See, for example,
[56, Theorem 8.2.1, p. 584] for more details in the standard Euclidean setting. 
�

4.2 Estimates for Certain Classes of Singular Integrals on
UR Sets

Theorem 4.2, which is central for the present work, is the main result regarding
the size of the operator norm of certain maximal integral operators acting on
Muckenhoupt weighted Lebesgue spaces on the boundary of UR domains. In turn,
this is going to be the key ingredient in obtaining invertibility results for the brand
of boundary double layer potential operators considered in this work.

To facilitate stating Theorem 4.2 we first introduce some notation and make
some remarks. Specifically, with e denoting the base of natural logarithms, for each
number m ∈ N0 and t ∈ [0,∞) let us define

t 〈0〉 := 1 (4.92)

and, if m ≥ 1,

t 〈m〉 :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if t = 0,

t · ln
(
· · · ln ( ln(

︸ ︷︷ ︸
m natural logarithms

1/t)
) · · ·

)
if 0 < t ≤ (me)−1,

(me)−1 if t > (me)−1,

(4.93)

where me is the m-th tetration of e (involving m copies of e, combined by
exponentiation), i.e.,

me := ee
. .

.e

︸︷︷︸
m copies of e

, the m-th fold exponentiation of e. (4.94)

We also agree to set 0e := 1. Hence, inductively, for each integer m ∈ N0 and each
t ∈ [0,∞) we have
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t 〈m+1〉 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if t = 0,

t · ln (t 〈m〉/t
)
if 0 < t ≤ (m+1e)−1,

(m+1e)−1 if t > (m+1e)−1.

(4.95)

For further reference, it is useful to note that elementary calculus gives that this
function enjoys the following properties:

[0,∞) � t �−→ t 〈m〉 ∈ [0,∞) is continuous, non-decreasing, (4.96)

t 〈m〉 ≤ t 〈m−1〉 ≤ · · · ≤ t 〈1〉 ≤ (eε−1/ε
) · t1−ε

for each t ∈ [0,∞), m ∈ N, ε ∈ (0, 1),
(4.97)

t ≤ max{1, (me)t} · t 〈m〉 for all t ∈ [0,∞) and m ∈ N0, (4.98)

(λt)〈m〉 ≤ λt 〈m〉 for all t ∈ [0,∞), m ∈ N0, and λ ∈ [1,∞), (4.99)

(tα)〈m〉 ≤ tα · ln
(
· · · ln ( ln(

︸ ︷︷ ︸
m natural logarithms

1/min{t, (me)−1})) · · ·
)

for all t ∈ [0,∞), m ∈ N, and α ∈ (0, 1]
(4.100)

(with the convention that the value at t = 0 for the function in the right-hand side
of the inequality in (4.100) is its limit as t → 0+). In particular,

t 〈m〉 ≤ t · ln
(
· · · ln ( ln(

︸ ︷︷ ︸
m natural logarithms

me/t)
) · · ·

)
for all t ∈ [0, 1], m ∈ N. (4.101)

In fact, up to a multiplicative constant, the opposite inequality in (4.101) is true as
well. Specifically,

(me)−1 · t · ln
(
· · · ln ( ln(

︸ ︷︷ ︸
m natural logarithms

me/t)
) · · ·

)
≤ t 〈m〉 for all t ∈ [0, 1], m ∈ N,

(4.102)
hence for each fixed m ∈ N we have

t 〈m〉 ≈ t · ln
(
· · · ln ( ln(

︸ ︷︷ ︸
m natural logarithms

me/t)
) · · ·

)
, uniformly for t ∈ [0, 1]. (4.103)
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Here is the basic result mentioned earlier. Its proof is inspired by that of [61,
Theorem 4.36, pp. 2728-2729].

Theorem 4.2 Let � ⊆ R
n be a UR domain. Abbreviate σ := Hn−1�∂� and denote

by ν the geometric measure theoretic outward unit normal to �. Fix an integrability
exponent p ∈ (1,∞) along with a Muckenhoupt weight w ∈ Ap(∂�, σ), and recall
the earlier convention of using the same symbol w for the measure associated with
the given weight w as in (2.509).

Next, consider a complex-valued function k ∈ CN(Rn \ {0}) which is even and
positive homogeneous of degree −n, where N = N(n) ∈ N is a sufficiently large
integer. Associate with this function and the set � the maximal operator T∗ whose
action on each given function f ∈ Lp(∂�,w) is defined as

T∗f (x) := sup
ε>0

∣∣Tεf (x)
∣∣ for each x ∈ ∂�, (4.104)

where, for each ε > 0,

Tεf (x) :=
ˆ

y∈∂�
|x−y|>ε

〈x − y, ν(y)〉k(x − y)f (y) dσ(y) for all x ∈ ∂�. (4.105)

Then for each m ∈ N there exists some Cm ∈ (0,∞), which depends only on
m, n, p, [w]Ap , and the UR constants of ∂� such that, with the piece of notation
introduced in (4.93), one has

‖T∗‖Lp(∂�,w)→Lp(∂�,w) ≤ Cm

( ∑

|α|≤N

sup
Sn−1

|∂αk|
)
‖ν‖〈m〉[BMO(∂�,σ)]n . (4.106)

Moreover, when ‖ν‖[BMO(∂�,σ)]n is sufficiently small relative to n, p, [w]Ap , and
the Ahlfors regularity constant of ∂� one may take Cm ∈ (0,∞) appearing in
(4.106) to depend itself only on said entities (i.e., n, p, [w]Ap , the Ahlfors regularity
constant of ∂�) and m.

Before presenting the proof of this theorem, several comments are in order.

Remark 4.1 It is of interest to compare the estimate in the above theorem with the
corresponding estimate from Proposition 3.4. Specifically, estimate (3.79) applied
with � := ∂� gives that for T∗ as in (4.104) we have

‖T∗‖Lp(∂�,w)→Lp(∂�,w) ≤ C(∂�, p, [w]Ap)
∥
∥k
∣
∣
S n−1
∥
∥
C N(Sn−1), (4.107)

where C(∂�, p, [w]Ap) ∈ (0,∞) depends on ∂� solely through its UR constants.
We observe that, in sharp contrast to this estimate, (4.106) features in the right-hand
side ‖ν‖〈m〉[BMO(∂�,σ)]n as a multiplicative factor, something which the UR constants
of ∂� cannot control.
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Indeed, for (3.79) no provisions are in place to take advantage of the specific alge-
braic format of the present integral kernel 〈x−y, ν(y)〉k(x−y). For Proposition 3.4
to apply, this integral kernel needs to be dismantled into its most primordial building
blocks, i.e., as

∑n
j=1 kj (x−y)νj (y)with kj (z) := zj k(z) for each point z ∈ R

n\{0}
and j ∈ {1, . . . , n}. Since multiplication by νj may be absorbed with the function
f (without changing its membership, or increasing its size, in the Muckenhoupt
weighted Lebesgue space Lp(∂�,w)), Proposition 3.4 may then finally be invoked
in relation to each maximal operator associated with the kernel kj . Estimate (3.79),
the end-product of such an approach, is then rendered insensitive to the flatness of
∂�.

As an example, consider the scenario in which � is a half-space in R
n. While

is apparent from (4.104)–(4.105) that in this case ‖T∗‖Lp(∂�,w)→Lp(∂�,w) = 0,
estimate (3.79) only gives ‖T∗‖Lp(∂�,w)→Lp(∂�,w) < +∞. By way of contrast,
since in this case ‖ν‖[BMO(∂�,σ)]n = 0 given that ν is a constant vector, (4.106)
accurately predicts ‖T∗‖Lp(∂�,w)→Lp(∂�,w) = 0.

Remark 4.2 In view of (2.118) and (4.103), in the estimate recorded in (4.106) we
could use

‖ν‖[BMO(∂�,σ)]n · ln
(
· · · ln ( ln(

︸ ︷︷ ︸
m natural logarithms

me/‖ν‖[BMO(∂�,σ)]n)
) · · ·

)
(4.108)

in place of ‖ν‖〈m〉[BMO(∂�,σ)]n . In particular, if we abbreviate

‖ν‖∗ := ‖ν‖[BMO(∂�,σ)]n , (4.109)

then corresponding to m = 1 we thus obtain

‖T∗‖Lp(∂�,w)→Lp(∂�,w) ≤ C�

( ∑

|α|≤N

sup
Sn−1

|∂αk|
)
‖ν‖∗ ln

(
e/‖ν‖∗

)
, (4.110)

corresponding to m = 2 we have

‖T∗‖Lp(∂�,w)→Lp(∂�,w) ≤ C�

( ∑

|α|≤N

sup
Sn−1

|∂αk|
)
‖ν‖∗ ln

(
ln
(
ee/‖ν‖∗

))
,

(4.111)

etc., where in each case C� ∈ (0,∞) depends only on n, p, [w]Ap , and the UR
constants of ∂�. In particular, all the aforementioned operator norms have at most
linear growth in ‖ν‖∗, up to arbitrarily many iterated logarithms.

In the same vein, we may rely on the property recorded in (4.97) and we deduce
from (4.106) that for each ε ∈ (0, 1) we have
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‖T∗‖Lp(∂�,w)→Lp(∂�,w) ≤
(
eε−1/ε

) · C�

( ∑

|α|≤N

sup
Sn−1

|∂αk|
)
‖ν‖1−ε

[BMO(∂�,σ)]n ,

(4.112)

where C� ∈ (0,∞) depends only on n, p, [w]Ap , and the UR constants of ∂�.

Remark 4.3 In the context of Theorem 4.2, estimate (4.106) continues to hold with
a fixed constant Cm ∈ (0,∞) when the integrability exponent and the Muckenhoupt
weight are allowed to vary with control. Specifically, an inspection of the proof of
Theorem 4.2 given below shows that for each compact interval I ⊂ (0,∞) and each
number W ∈ (0,∞) there exists a constant Cm ∈ (0,∞), which depends only on
m, n, I , W , and the UR constants of ∂�, with the property that (4.106) holds for
each p ∈ I and each w ∈ Ap(∂�, σ) with [w]Ap ≤ W .

Remark 4.4 From Proposition 3.4 we already know that T∗ is bounded on
Lp(∂�,w), with norm controlled in terms of n, k, p, [w]Ap , and the UR constants
of ∂�. The crux of the matter here is the more refined version of the estimate of the
operator norm of T∗ given in (4.106).

Remark 4.5 We focus on establishing the estimate claimed in (4.106) in the class of
operators whose integral kernel factors as the product of 〈x−y, ν(y)〉, i.e., the inner
product between the unit normal ν(y) and the “chord” x − y, with some matrix-
valued function k ∈ CN(Rn \ {0}) which is even and positive homogeneous of
degree −n, since it has been noted in (1.50) that this is the only type of kernel (in
the class of double layer-like integral operators) for which said estimate has a chance
of materializing.

Remark 4.6 The class of domains to which Theorem 4.2 applies includes all NTA
domains with an Ahlfors regular boundary.

Remark 4.7 In the unweighted case, i.e., for w ≡ 1 (or, equivalently, when the
measure w coincides with σ ), estimate (4.106) simply reads

‖T∗‖Lp(∂�,σ)→Lp(∂�,σ) ≤ Cm

( ∑

|α|≤N

sup
Sn−1

|∂αk|
)
‖ν‖〈m〉[BMO(∂�,σ)]n . (4.113)

It turns out that whenever (4.113) is available one may produce a weighted version
of such an estimate via interpolation. Specifically, recall the interpolation theorem
of Stein-Weiss (cf. [14, Theorem 5.4.1, p. 115]) according to which for any two
σ -measurable functions w0, w1 : ∂�→ [0,∞] and any θ ∈ (0, 1) we have

(
Lp(∂�,w0σ) , Lp(∂�,w1σ)

)
θ,p
= Lp(∂�, w̃σ ) where w̃ := w1−θ

0 · wθ
1 .

(4.114)
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Now, given a Muckenhoupt weight w ∈ Ap(∂�, σ), from (2.533) we know that
there exists some τ ∈ (1,∞) (which depends only on n, p, [w]Ap , and the Ahlfors
regularity constant of ∂�) such that wτ ∈ Ap(∂�, σ). Upon specializing (4.114) to
the case when θ := 1− τ−1 ∈ (0, 1), w0 := wτ , and w1 := 1 we therefore obtain

(
Lp(∂�,wτσ) , Lp(∂�, σ)

)
θ,p
= Lp(∂�,w). (4.115)

As a result, since T∗ is a sub-linear operator which is bounded both onLp(∂�,wτσ)

(given that wτ ∈ Ap(∂�, σ)), and on Lp(∂�, σ) we may write

‖T∗‖Lp(∂�,w)→Lp(∂�,w)

≤ ‖T∗‖1−θ
Lp(∂�,wτ σ)→Lp(∂�,wτ σ)

‖T∗‖θLp(∂�,σ)→Lp(∂�,σ)

≤ C�,m,n,p,k,[w]Ap

(‖ν‖〈m〉[BMO(∂�,σ)]n
)θ

, (4.116)

with the last inequality provided by (4.113).
While the weighted norm inequality established in (4.116) is in the spirit of

(4.106), the manner in which the BMO semi-norm of the outward unit normal
vector ν is involved is less optimal, as the small exponent θ tempers the rate at
which the right-hand side of (4.116) vanishes as ‖ν‖[BMO(∂�,σ)]n → 0+ (indeed,
we have lim

t→0+
(t 〈m〉)θ /t 〈m〉 = +∞ for each fixed θ ∈ (0, 1)). Hence, a two-step

approach consisting first of proving the plain estimate (4.113) and, second, deriving
a weighted version based on the procedure based on interpolation described above,
only yields a weaker result than the one advertised in (4.106). Given this, in the proof
of (4.106) presented below we shall devise an alternative approach, which deals
with the weighted case directly, incorporating the weight in all relevant intermediary
steps.

We are ready to proceed to the task of providing the proof of Theorem 4.2.

Proof of Theorem 4.2 We shall write the proof of Theorem 4.2 using an approach
designed to shed light on the specific manner in which the right-hand side of (4.106)
depends on the BMO semi-norm of the geometric measure theoretic outward unit
normal vector ν to the set �.

The bulk of the proof is occupied by the justification of the following result
(strongly reminiscent of an induction step, that allows us to boot-strap a weaker
bound on ‖T∗‖Lp(∂�,w)→Lp(∂�,w) to a stronger one): knowing that there exists a
function

ψ : [0,∞) −→ [0,∞) (4.117)

which is quasi-increasing near the origin, i.e.,
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there exist t∗ > 0 and C ∈ [1,∞) such that

ψ(t0) ≤ Cψ(t1) whenever 0 ≤ t0 < t1 < t∗,
(4.118)

such that for each exponent p ∈ (1,∞) and each weight w ∈ Ap(∂�, σ) there
exists a constant C ∈ (0,∞), depending only on n, p, [w]Ap , the UR constants of
∂�, and ψ , with the property that

‖T∗‖Lp(∂�,w)→Lp(∂�,w) ≤ C
( ∑

|α|≤N

sup
Sn−1

|∂αk|
)
ψ
(‖ν‖[BMO(∂�,σ)]n

)
, (4.119)

implies that for each given integrability exponent p ∈ (1,∞), each Muckenhoupt
weight w ∈ Ap(∂�, σ), and each function

φ : [0,∞) −→ [0,∞) (4.120)

satisfying

inf{φ(t) : t ≥ t̃ } > 0 for each t̃ > 0,

φ(̃t) ≥ lim inf
t↘t̃

φ(t) for each t̃ > 0,

φ(0) = lim
t→0+

φ(t) = 0, φ′(0) := lim
t→0+

φ(t)/t = ∞,

and ψ(t) · φ(t)−1 · e−φ(t)/t = O(1) as t → 0+,

(4.121)

there exists a constant C ∈ (0,∞) depending only on n, p, [w]Ap , the UR constants
of ∂�, ψ , and φ, such that we also have

‖T∗‖Lp(∂�,w)→Lp(∂�,w) ≤ C
( ∑

|α|≤N

sup
Sn−1

|∂αk|
)
φ
(‖ν‖[BMO(∂�,σ)]n

)
. (4.122)

Henceforth we shall summarize the above claim by simply saying that “(4.119)
implies (4.122).”

In connection with (4.121) we wish to make two remarks. Our first remark
pertains to the case when we assume

lim
t→0+

ψ(t)/t = ∞. (4.123)

In particular,

te := sup
{
to ∈ (0,∞) : ψ(t)/t > e for all t ∈ (0, to)

} ∈ (0,∞] (4.124)

is well defined and



266 4 Boundedness and Invertibility of Layer Potential Operators

ψ(t)/t > e for all t ∈ (0, te). (4.125)

Then among all functions φ : [0,∞) → [0,∞) satisfying the last property in
(4.121) the smallest (up to multiplicative constants) in terms of behavior near the
origin is actually the function

ψ̂ : [0,∞) −→ [0,∞) given for each t ≥ 0 by

ψ̂(0) := 0, ψ̂(t) := t ln(ψ(t)/t) if t ∈ (0, te),

and ψ̂(t) := te ln(ψ(te)/te) for all t ∈ [te,∞).

(4.126)

To justify the minimality of (4.126), observe that the property in the last line of
(4.121) implies that there exist tb,M ∈ (0,∞) such that

ψ(t) ≤ Mφ(t) · eφ(t)/t for each t ∈ (0, tb). (4.127)

Elementary calculus gives

xex ≤ e2x−1 for each x ∈ [0,∞). (4.128)

From this used with x := φ(t)/t and (4.127) we then obtain

ψ(t)/t ≤ Me2φ(t)/t−1 for each t ∈ (0, tb). (4.129)

In turn, this forces

1
2 t ln

(
eψ(t)/Mt

) ≤ φ(t) for each t ∈ (0, tb), (4.130)

and since thanks to (4.123) we have

lim
t→0+

1
2 t ln

(
eψ(t)/Mt

)

t ln(ψ(t)/t)
= lim

t→0+

1
2 ln(e/M)+ 1

2 ln(ψ(t)/t)

ln(ψ(t)/t)

= 1

2
+ 1

2
ln(e/M) lim

t→0+
1

ln(ψ(t)/t)
= 1

2
, (4.131)

we ultimately conclude that

given any φ : [0,∞) → [0,∞) satisfying the last property
in (4.121) it follows that φ(t) dominates, up to a multiplicative
constant, ψ̂(t) for all t ≥ 0 sufficiently close to 0.

(4.132)

This justifies the claim about the minimality of ψ̂ made in the previous paragraph.
The second remark we wish to make in connection with (4.121) is that if in

addition to (4.118) and (4.123) we also assume that
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ψ is continuous and lim
t→0+

t ln(ψ(t)/t) = 0, (4.133)

then

the function ψ̂ defined in (4.126) is continuous, quasi-increasing
near the origin (in the sense of (4.118)), lim

t→0+
t ln(ψ̂(t)/t) = 0,

and the function φ := ψ̂ satisfies all properties listed in (4.121).

(4.134)

That ψ̂ is continuous is clear from (4.126) and (4.133). In particular, φ := ψ̂

satisfies the second property listed in (4.121). To check the second claim made in
(4.134), observe that

(0,∞) � y �−→ x ln(y/x) is a strictly increasing function for
each fixed x ∈ (0,∞), and each fixed y ∈ (0,∞) the function
(0, y/e) � x �−→ x ln(y/x) is also strictly increasing.

(4.135)

If t∗ > 0 and C ∈ (0,∞) are as in (4.118), if te ∈ (0,∞) is as in (4.125), and if
t∗ > 0 is small enough such that

max{C, e/C} ≤ ψ(t)/t for each t ∈ (0, t∗), (4.136)

(something we may always arrange, thanks to the property assumed in (4.123)) then
whenever 0 ≤ t0 < t1 < min{t∗, t∗, te} we may write (using (4.126), (4.118),
(4.125), (4.135), and (4.136))

ψ̂(t0) = t0 ln(ψ(t0)/t0) ≤ t0 ln(Cψ(t1)/t0) ≤ t1 ln(Cψ(t1)/t1)

= t1 ln(C)+ t1 ln(ψ(t1)/t1) ≤ 2t1 ln(ψ(t1)/t1) = 2ψ̂(t1), (4.137)

ultimately proving that ψ̂ is, as claimed, quasi-increasing near the origin. In fact,
the same type of argument as in (4.137) (with C := 1) shows that

if the original function ψ is genuinely non-decreasing, then the
function ψ̂ associated with ψ as in (4.126) is strictly increasing
on (0, te) and constant thereafter.

(4.138)

Next, (4.125) and (4.126) readily imply (bearing in mind that the function ψ is
continuous) that inf{ψ̂(t) : t ≥ t̃ } > 0 for each t̃ > 0. The fact that ψ̂ is continuous
at the origin is seen from (4.126) and (4.133). Furthermore, (4.123) implies

lim
t→0+

ψ̂(t)/t = lim
t→0+

ln(ψ(t)/t) = ∞. (4.139)

Let us also note here that (4.139), (4.126), the fact that ln(ln x) ≤ ln x for each
x > 1, and (4.133) allow us to write
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0 ≤ lim inf
t→0+

t ln(ψ̂(t)/t) ≤ lim sup
t→0+

t ln(ψ̂(t)/t) = lim sup
t→0+

t ln
(
ln(ψ(t)/t)

)

≤ lim sup
t→0+

t ln(ψ(t)/t) = 0, (4.140)

ultimately proving that, as claimed, lim
t→0+

t ln(ψ̂(t)/t) = 0. Finally, (4.126) and

(4.123) give

ψ(t) · ψ̂(t)−1 · e−ψ̂(t)/t = ψ(t) · 1

t ln(ψ(t)/t)
· e− ln(ψ(t)/t)

= 1

ln(ψ(t)/t)
= o(1) as t → 0+. (4.141)

This completes the proof of (4.134).
Assuming for the time being that (4.119) implies (4.122), let us explain how

this inductive step may be used to establish (4.106). From Proposition 3.4 (which
guarantees that the maximal operator T∗ is bounded inLp(∂�,w) for each exponent
p ∈ (1,∞) and each weight w ∈ Ap(∂�, σ) with norm controlled solely in terms
of n, p, [w]Ap , and the UR constants of ∂�) we conclude that (4.119) holds for the
constant function

ψ0(t) := 1 for each t ∈ [0,∞). (4.142)

Incidentally, we may recast this as ψ0(t) = t 〈0〉 for each t ∈ [0,∞) (cf. (4.92)).
This choice of function satisfies (4.118) (in fact, ψ0 is non-decreasing), as well as
(4.123) and (4.133). Granted these, we may then conclude from (4.134) and the
working hypothesis, according to which (4.119) implies (4.122), that (4.122) holds
with

ψ1 := ψ̂0 (4.143)

playing the role of the function φ. This selection of the function φ is actually
optimal, since ψ̂0 enjoys the minimality property described in (4.132). Specifically,
given any φ : [0,∞) → [0,∞) satisfying the last property in (4.121) with
ψ := ψ0 it follows that φ(t) dominates, up to a multiplicative constant, the quantity
ψ1(t) = ψ̂0(t) for all t ≥ 0 sufficiently close to 0.

In addition, from (4.134) and (4.138) we see that

the function ψ1 is continuous, strictly increasing near the origin,
globally nondecreasing, and satisfies lim

t→0+
ψ1(t)/t = ∞ as well

as lim
t→0+

t ln(ψ1(t)/t) = 0.
(4.144)
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In fact, according to (4.124)–(4.126), we have

ψ1 : [0,∞) −→ [0,∞) is given for each t ≥ 0 by

ψ1(0) := 0, ψ1(t) := t ln(1/t) if t ∈ (0, 1/e),

and ψ1(t) := 1/e for all t ∈ [1/e,∞),

(4.145)

hence (cf. (4.93))

ψ1(t) = t 〈1〉 for each t ∈ [0,∞). (4.146)

In view of the aforementioned properties of ψ1 and the fact that (4.122) holds with
ψ1 playing the role of the function φ, the present working hypothesis (according to
which (4.119) implies (4.122)) shows that (4.122) also holds with ψ2 := ψ̂1 playing
the role of the function φ, and that ψ2 satisfies similar properties to those listed in
(4.144). Actually, (4.145) and (4.124)–(4.126) yield a concrete description of ψ2,
namely:

ψ2 : [0,∞) −→ [0,∞) is given for each t ≥ 0 by

ψ2(0) := 0, ψ2(t) := t ln
(
ln(1/t)) if t ∈ (0, 1/ee),

and ψ2(t) := 1/ee for all t ∈ [1/ee,∞).

(4.147)

Equivalently (cf. (4.93)),

ψ2(t) = t 〈2〉 for each t ∈ [0,∞). (4.148)

Iterating this scheme m times then proves (see (4.95)) that (4.122) holds with φ

replaced by the function described (using notation introduced in (4.93)–(4.94)) as

ψm : [0,∞) −→ [0,∞) given by

ψm(t) = t 〈m〉 for each t ∈ [0,∞).
(4.149)

This induction establishes (4.106), modulo the proof of the fact that (4.119)
implies (4.122) (which we shall deal with momentarily). The above line of reasoning
explains the format of the conclusion in (4.106), while it also makes it clear that
(4.106) is the best outcome one can produce working under the assumption that
(4.119) implies (4.122).

On to the proof of the fact that (4.119) implies (4.122). Our working hypothesis
is that there exists some function ψ : [0,∞) → [0,∞) which is quasi-increasing
near the origin (in the sense of (4.118)) such that for each exponent p ∈ (1,∞)

and each weight w ∈ Ap(∂�, σ) the estimate recorded in (4.119) holds for some
constant C ∈ (0,∞) depending only on n, p, [w]Ap , the UR constants of ∂�, and
ψ . Having fixed a function φ as in (4.120)–(4.121), the goal is to prove (4.122).
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To get started, it is visible from (4.104)–(4.105) that the maximal operator
T∗ depends in a homogeneous fashion on the kernel function k. As such, by
working with k/K (in the case when k is not identically zero) for the choice
K := ∑|α|≤N supSn−1 |∂αk|, matters are reduced to proving that whenever (4.118)
holds for any p ∈ (1,∞) and, in addition, we have

∑

|α|≤N

sup
Sn−1

|∂αk| ≤ 1 (4.150)

then for each integrability exponent p ∈ (1,∞) and each Muckenhoupt weight w

in Ap(∂�, σ) it is possible to find a constant C ∈ (0,∞) which depends only on n,
p, [w]Ap , ψ , φ, and the UR constants of ∂� such that

‖T∗‖Lp(∂�,w)→Lp(∂�,w) ≤ Cφ
(‖ν‖[BMO(∂�,σ)]n

)
. (4.151)

Henceforth, assume (4.150).
To proceed, fix an integrability exponent p ∈ (1,∞) and a Muckenhoupt weight

w ∈ Ap(∂�, σ). Pick a parameter δ∗ ∈ (0, 1). Along the way, we will impose
further restrictions on the size of δ∗, depending only on n, p, [w]Ap , the UR
constants of ∂�, and the functions ψ , φ. In the case when ‖ν‖[BMO(∂�,σ)]n ≥ δ∗,
the estimate claimed in (4.151) follows directly (simply by adjusting constants) from
the first line in (4.121) and Proposition 3.4, which ensures that the maximal operator
T∗ is bounded in Lp(∂�,w). Therefore, there remains to consider the case when
‖ν‖[BMO(∂�,σ)]n < δ∗. Assume this is the case and pick some δ such that

‖ν‖[BMO(∂�,σ)]n < δ < δ∗. (4.152)

Recall that our long-term goal is to prove (4.151) for some constant C ∈ (0,∞)

which depends only on n, p, [w]Ap , ψ , φ, and the UR constants of ∂�. Since we
may assume that δ∗ is sufficiently small relative to the Ahlfors regularity constant
of ∂� and the dimension n, we may invoke Theorem 2.3 which guarantees that

the set ∂� is unbounded and � satisfies a two-sided local John
condition with constants which depend only on the Ahlfors
regularity constant of ∂� and the dimension n; in particular, the
UR constants of ∂� are also controlled solely in terms of the
dimension n and the Ahlfors regularity constant of ∂�.

(4.153)

In addition, Proposition 2.15 ensures that there exists some constant C� ∈ (0,∞),
which depends only on n and the Ahlfors regularity constant of ∂�, such that for
each dilation factor μ ∈ [1,∞) we have

sup
z∈∂�

sup
R>0

sup
x,y∈�(x,μR)

R−1
∣∣〈x − y, ν�(z,R)

〉∣∣ ≤ C� · μ(1+ log2 μ)δ. (4.154)
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For reasons which are going to be clear momentarily, in addition to the truncated
operators Tε from (4.105) we shall need a version in which the truncation is
performed using a smooth cutoff function (rather than a characteristic function).
Specifically, fix a function ζ ∈ C∞(R) satisfying 0 ≤ ζ ≤ 1 on R and with the
property that ζ ≡ 0 in (−∞, 1] and ζ ≡ 1 in [2,∞). For each ε > 0 then define the
action of the smoothly truncated operator T(ε) on each f ∈ Lp(∂�,w) by setting

T(ε)f (x) :=
ˆ

∂�

ζ
( |x − y|

ε

)
〈x − y, ν(y)〉 k(x − y)f (y) dσ(y) (4.155)

for each x ∈ ∂�. Let us also define a smoothly truncated version of the maximal
operator (4.104) by setting, for each f ∈ Lp(∂�,w),

T(∗)f (x) := sup
ε>0

∣
∣T(ε)f (x)

∣
∣ at every point x ∈ ∂�. (4.156)

For the time being, the goal is to compare roughly truncated singular integral
operators with their smoothly truncated counterparts. To accomplish this task, for
each fixed γ ≥ 0 bring in a brand of Hardy–Littlewood maximal operator which
associates to each σ -measurable function f on ∂� the function Mγ f defined as

Mγ f (x) := sup
��x

( 
�

|f |1+γ dσ
)1/(1+γ )

for each x ∈ ∂�, (4.157)

where the supremum is taken over all surface balls � ⊆ ∂� containing the point x.
On to the task at hand, having fixed some ε > 0, for each f ∈ Lp(∂�,w) and each
x ∈ ∂� we may estimate

∣∣(Tεf − T(ε)f )(x)
∣∣ ≤

ˆ
�(x,2ε)\�(x,ε)

∣∣〈x − y, ν(y)〉∣∣ |k(x − y)||f (y)| dσ(y)

≤ Cε−1
 

�(x,2ε)

∣∣〈x − y, ν(y)〉∣∣ |f (y)| dσ(y)

≤ Cε−1
 

�(x,2ε)

∣∣〈x − y, ν(y)− ν�(x,2ε)
〉∣∣|f (y)| dσ(y)

+ Cε−1
 

�(x,2ε)

∣∣〈x − y, ν�(x,2ε)
〉∣∣|f (y)| dσ(y)

≤ C

( 
�(x,2ε)

∣∣ν(y)− ν�(x,2ε)
∣∣

γ+1
γ dσ(y)

) γ
1+γ
( 

�(x,2ε)
|f (y)|1+γ dσ(y)

) 1
1+γ
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+ C
(

sup
y∈�(x,2ε)

ε−1
∣∣〈x − y, ν�(x,2ε)

〉∣∣
) ( 

�(x,2ε)
|f (y)|1+γ dσ(y)

) 1
1+γ

≤ Cδ · inf
�(x,2ε)

Mγ f, (4.158)

using Hölder’s inequality, (2.102), (4.152), (4.154), and (4.157). Ultimately, the
estimate recorded in (4.158) implies that there exists some C ∈ (0,∞), which
depends only on γ , n, and the Ahlfors regularity constant of ∂�, with the property
that for each function f ∈ Lp(∂�,w) we have

∣∣T∗f (x)− T(∗)f (x)
∣∣ ≤ Cδ ·Mγ f (x) for each x ∈ ∂�. (4.159)

Henceforth we agree to fix γ ∈ (0, p − 1), which depends only on n, p, [w]Ap ,
and the Ahlfors regularity constant of ∂�, such that w ∈ Ap/(1+γ )(∂�, σ), with
[w]Ap/(1+γ )

controlled in terms of n, p, [w]Ap , and the Ahlfors regularity constant
of ∂�. From (2.533) we know that such a choice is possible.

To proceed, consider a dyadic grid D(∂�) on the Ahlfors regular set ∂� (as
in Proposition 2.19, presently used with � := ∂�). Also, choose a compactly
supported function f ∈ Lp(∂�,w). Note that for each ε > 0 the function T(ε)f

is continuous on ∂�, by Lebesgue’s Dominated Convergence Theorem (whose
applicability in the present setting is ensured by Lemma 2.15). Since the pointwise
supremum of any collection of continuous functions is lower-semicontinuous, we
conclude that for each λ > 0 the set

{
x ∈ ∂� : T(∗)f (x) > λ

}
is relatively open in ∂�. (4.160)

Next, fix a reference point x0 ∈ ∂� and abbreviate �0 := �(x0, 2−m) for some
m ∈ Z chosen so that

supp f ⊆ 2�0. (4.161)

We emphasize that all subsequent constants are going to be independent of the
function f , the point x0, and the integer m. Upon recalling (2.500), define

Q0 :=
{
Q ∈ Dm(∂�) : Q ∩ 2�0 �= ∅

}
(4.162)

then introduce

I0 :=
⋃

Q∈Q0

Q. (4.163)

By design, I0 is a relatively open subset of ∂�. Recall the parameter a1 > 0
appearing in (2.502) of Proposition 2.19. We claim that
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I0 ⊆ a�0 where a := 2(1+ a1) > 2. (4.164)

Indeed, if x ∈ I0 then x ∈ Q for some Q ∈ Q0. In particular, Q ∩ 2�0 �= ∅ so we
may pick some y ∈ Q∩2�0. Then x, y ∈ Q ⊆ �(xQ, a12−m) by (2.502), where xQ

denotes the “center” of the dyadic cube Q. Consequently, |x−y| < a12−m+1 which
permits us to estimate |x−x0| ≤ |x−y|+ |y−x0| < a12−m+1+2−m+1 = a ·2−m.
Thus x ∈ B(x0, a · 2−m) ∩ ∂� = a�0, proving the inclusion in (4.164).

We also claim that

there exists a σ -measurable set N ⊆ ∂� with the property that
σ(N) = 0 and 2�0 \N ⊆ I0.

(4.165)

To justify this, recall from (2.504) that

N := ∂� \ (⋃Q∈Dm(∂�) Q
)
is a σ -measurable set satisfying

σ(N) = 0 and ∂� \N =⋃Q∈Dm(∂�) Q.
(4.166)

Intersecting both sides of the last equality in (4.166) with 2�0 while bearing in mind
(4.162)–(4.163) then yields

2�0 \N =
⋃

Q∈Dm(∂�)

(
Q ∩ 2�0

) =
⋃

Q∈Q0

(
Q ∩ 2�0

) ⊆
⋃

Q∈Q0

Q = I0, (4.167)

ultimately proving (4.165).
Let us now define

A := θ · φ(δ)−1 ∈ (0,∞) for some fixed small θ ∈ (0, 1). (4.168)

At various stages in the proof we shall make specific demands on the size of θ ,
though always in relation to the background geometric parameters, the weight, and
the function φ, namely n, p, [w]Ap , φ, and the Ahlfors regularity constant of ∂�

(the final demand of this nature is made in connection with (4.240)). We find it
convenient to abbreviate

η(θ, δ) (4.169)

:= C

{
θ1+γ + θ1+γ /2

(ψ(δ)

φ(δ)
· e−φ(δ)/δ

)1+γ /2 + e−(3+γ+2/γ )φ(δ)/δ

}
,

where C ∈ (0,∞) is a constant which depends only on n, p, [w]Ap , ψ , φ, and
the Ahlfors regularity constant of ∂�. We agree to retain the notation η(θ, δ) even
when C ∈ (0,∞) may occasionally change in size (while retaining the same nature,
however).

Since w ∈ Ap(∂�, σ) ⊆ A∞(∂�, σ), there exists some small number τ > 0
such that (2.537) holds. Our long-term goal is to obtain the following type of good-



274 4 Boundedness and Invertibility of Layer Potential Operators

λ inequality: there exists C ∈ (0,∞) as above (entering the makeup of the entity
η(θ, δ) defined in (4.169)) such that for each λ > 0 we have

w
({

x ∈ I0 : T∗f (x) > 4λ and Mγ f (x) ≤ Aλ
})

≤ η(θ, δ)τ · w
({

x ∈ I0 : T(∗)f (x) > λ
})

.

(4.170)

Here and elsewhere, we employ our earlier convention of using the same symbol
w for the measure associated with the given weight w as in (2.509). The reader is
also alerted to the fact that the maximal operator appearing in the right-hand side of
(4.170) employs smooth truncations (as in (4.156)).

To prove (4.170), fix an arbitrary λ > 0 and abbreviate

Fλ :=
{
x ∈ I0 : T∗f (x) > 4λ and Mγ f (x) ≤ Aλ

}
. (4.171)

Proposition 3.4 implies that T∗f is a σ -measurable function. Since so is Mγ f (cf.
[7] or [111, §7.6] for a proof), it follows that Fλ is necessarily a σ -measurable
set. From (4.160) and the fact that I0 is a relatively open subset of ∂� we also
conclude that

{
x ∈ I0 : T(∗)f (x) > λ

}
is a relatively open subset of ∂� (hence, σ -

measurable). As such, the good-λ inequality is meaningfully formulated in (4.170).
Clearly, it is enough to consider the case Fλ �= ∅ since otherwise (4.170) is

trivially satisfied by any choice of C ∈ (0,∞). For the remainder of the proof,
assume this is the case. Since Fλ ⊆ I0 and I0 ⊆ a�0, we conclude that

Fλ ⊆ I0 ⊆ a�0 and sup
Fλ

Mγ f ≤ Aλ. (4.172)

To proceed, decompose I0 = Pλ ∪ Sλ (disjoint union) where, with the smoothly
truncated maximal operator T(∗) as in (4.156),

Pλ :=
{
x ∈ I0 : T(∗)f (x) ≤ λ

}
and Sλ :=

{
x ∈ I0 : T(∗)f (x) > λ

}
. (4.173)

As a consequence of (4.160) and the fact that I0 is a relatively open subset of ∂�, the
set Sλ is itself a relatively open subset of ∂�. Moreover, using (4.159) and (4.172),
for each point x ∈ Fλ we may estimate

4λ < T∗f (x) ≤ T(∗)f (x)+ Cδ ·Mγ f (x) ≤ T(∗)f (x)+ CδAλ

= T(∗)f (x)+ Cθ
( δ

φ(δ)

)
λ < T(∗)f (x)+ 3λ, (4.174)

by our choice of A in (4.168), the fact that θ ∈ (0, 1), and taking δ∗ small enough
to begin with (while keeping in mind that limt→0+ t/φ(t) = 0; cf. (4.121)). From
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(4.174) we see that T(∗)f (x) > λ, hence x ∈ Sλ which ultimately goes to show that
Fλ ⊆ Sλ. Thus,

Sλ is a nonempty relatively open subset of
∂�, with the property that Fλ ⊆ Sλ ⊆ I0.

(4.175)

We first treat the case in which there exists Q0 ∈ Q0 such that Pλ ∩Q0 = ∅ or,
equivalently,

Q0 ⊆ Sλ. (4.176)

Apply Theorem 2.6 to the (center and radius of the) surface ball a�0. This
guarantees the existence of three constants C0, C1, C2 ∈ (0,∞) of a purely
geometric nature (i.e., depending only on n and the Ahlfors regularity constant of
∂�) with the following significance. Take

φ̃ := (1+ γ )(1+ γ /2)

C2(γ /2)
φ = 3+ γ + 2/γ

C2
φ (4.177)

to play the role of the function in (2.360)–(2.361)). Assuming δ∗ ∈ (0, 1) to be
sufficiently small to begin with, we then have the decomposition

a�0 ⊆ G ∪ E, (4.178)

where G and E are disjoint σ -measurable subsets of ∂� satisfying properties
implied by (2.363)–(2.368) (relative to x0 and the scale r := a2−m) in the present
setting. Also, G is contained in the graph G = {x0 + x + h(x)�n : x ∈ H

}
of a

Lipschitz function h : H → R (where �n ∈ Sn−1 is a unit vector and H = 〈�n〉⊥ is
the hyperplane in Rn orthogonal to �n) such that

sup
x,y∈H
x �=y

|h(x)− h(y)|
|x − y| ≤ C0φ̃(δ), (4.179)

whereas E satisfies

σ(E) ≤ C1e
−C2φ̃(δ)/δσ (a�0). (4.180)

Since supp f ⊆ 2�0 and a > 2 it follows that f = f 1a�0 . Based on this
observation and the fact that I0 ⊆ a�0 (cf. (4.172)), we may then estimate

σ(Fλ) ≤ σ
({

x ∈ a�0 : T∗
(
f 1a�0

)
(x) > 4λ

})
. (4.181)

By further decomposing f 1a�0 = f 1G+f 1E (cf. (4.178) and the fact that we have
f = f 1a�0 ), then using the sub-linearity of T∗, as well as (4.178), (4.180), and
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(4.177) we obtain

σ
({

x ∈ a�0 : T∗
(
f 1a�0

)
(x) > 4λ

})

≤ σ
({

x ∈ G : T∗
(
f 1G

)
(x) > 2λ

})

+ σ
({

x ∈ G : T∗
(
f 1E

)
(x) > 2λ

})

+ C1e
−(3+γ+2/γ )φ(δ)/δσ (a�0). (4.182)

To bound the first term in the right-hand side of (4.182), the idea is to use the fact
that G is contained in the graph G of the function h, then employ Lemma 4.2 while
taking advantage of (4.179). Turning to specifics, denote by σ̃ the surface measure
on G, and by T̃∗ the maximal operator associated with G as in (4.78) (much as T∗ in
(4.104)–(4.105) is associated with ∂�). That is, for each f̃ ∈ Lp(G, σ̃ ) set

T̃∗f̃ (x) := sup
ε>0

∣∣T̃εf̃ (x)
∣∣, ∀ x ∈ G, (4.183)

where for each ε > 0 we have set

T̃εf̃ (x) :=
ˆ

y∈G
|x−y|>ε

〈x − y, ν̃(y)〉k(x − y)f̃ (y) dσ̃ (y), ∀ x ∈ G, (4.184)

with ν̃ denoting the unit normal vector to the Lipschitz graph G, pointing toward the
upper-graph of the function h. From (2.377) we know that

ν(x) = ν̃(x) at σ -a.e. point x ∈ G. (4.185)

We continue by fixing a point x̃ ∈ Fλ (which, according to (4.172), also places
x̃ into a�0). As regards the first term in the right-hand side of (4.182), we may rely
on (4.185), the fact that the measures σ and σ̃ agree on ∂� ∩ G (as they are both
manifestations ofHn−1), (4.183)–(4.184), (4.104)–(4.105), Chebyshev’s inequality,
Lemma 4.2, (4.177), (4.161) (and the fact that a > 2), (4.178), (4.157), (4.172), and
(4.168) to estimate

σ
({

x ∈ G : T∗
(
f 1G

)
(x) > 2λ

}) = σ̃
({

x ∈ G : T̃∗
(
f 1G

)
(x) > 2λ

})

≤ σ̃
({

x ∈ G : T̃∗
(
f 1G

)
(x) > 2λ

})

≤ 1

(2λ)1+γ

ˆ
G
|T̃∗(f 1G)|1+γ dσ̃ ≤ C

φ̃(δ)1+γ

λ1+γ

ˆ
G
|f 1G|1+γ dσ̃
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= C
φ(δ)1+γ

λ1+γ

ˆ
G

|f |1+γ dσ ≤ Cφ(δ)1+γ σ (a�0)

λ1+γ

 
a�0

|f |1+γ dσ

≤ Cφ(δ)1+γ σ (a�0)

λ1+γ

[
Mγ f (̃x)

]1+γ ≤ C (Aφ(δ))1+γ σ (a�0)

= C θ1+γ σ (a�0), (4.186)

for some constant C ∈ (0,∞) which depends only on n, p, [w]Ap , ψ , φ, and the
Ahlfors regularity constant of ∂�.

As regards the second term in the right-hand side of (4.182), once again fix a
point x̃ ∈ Fλ (which then also belongs to a�0). Also, assume that δ∗ ∈ (0, t∗). We
may then use Chebyshev’s inequality, the hypothesis made in (4.119) (used with
p := 1 + γ /2 and w := 1), the assumption (4.150), (4.118), (4.152), the fact that
0 < δ∗ < t∗, Hölder’s inequality, (4.180), (4.157), (4.177), (4.172), and (4.168) to
obtain2

σ
({

x ∈ G : T∗
(
f 1E

)
(x) > 2λ

})

≤ σ
({

x ∈ ∂� : T∗
(
f 1E

)
(x) > 2λ

})

≤ 1

(2λ)1+γ /2

ˆ
∂�

(
T∗
(
f 1E

))1+γ /2 dσ

≤
( ‖T∗‖L1+γ /2(∂�,σ)→L1+γ /2(∂�,σ)

)1+γ /2

(2λ)1+γ /2

ˆ
∂�

(|f | 1E

)1+γ /2 dσ

≤ (Cψ(δ))1+γ /2

λ1+γ /2

ˆ
a�0

|f |1+γ /2 1E dσ

≤ (Cψ(δ))1+γ /2

λ1+γ /2
σ(E)

γ/2
1+γ

(ˆ
a�0

|f |1+γ dσ

) 1+γ /2
1+γ

= (Cψ(δ))1+γ /2

λ1+γ /2

( σ(E)

σ(a�0)

) γ /2
1+γ

( 
a�0

|f |1+γ dσ

) 1+γ /2
1+γ

σ (a�0)

2 It is from the format of (4.187) that the value of having the last property in (4.121) is most
apparent. Indeed, since the left-most side of (4.187) is obviously dominated by σ(G) ≤ σ(a�0)

(cf. (4.178)), the estimate derived in (4.187) is only useful if ψ(δ)φ(δ)−1 · exp
{
− φ(δ)

δ

}
stays

bounded for δ close to 0.
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≤ C
ψ(δ)1+γ /2

λ1+γ /2
exp
{
− C2(γ /2)φ̃(δ)

(1+ γ )δ

} [
Mγ f (̃x)

]1+γ /2
σ(a�0)

≤ C
(
Aψ(δ)

)1+γ /2 · exp
{
− (1+ γ /2)φ(δ)

δ

}
σ(a�0)

= Cθ1+γ /2
[
ψ(δ)φ(δ)−1 · exp

{
− φ(δ)

δ

}]1+γ /2

σ(a�0), (4.187)

where C ∈ (0,∞) depends only on n, p, [w]Ap , ψ , φ, and the Ahlfors regularity
constant of ∂�. Gathering (4.182), (4.186), and (4.187) then yields

σ
({

x ∈ a�0 : T∗
(
f 1a�0

)
(x) > 4λ

})

≤ C

{
θ1+γ + θ1+γ /2

(ψ(δ)

φ(δ)
· e−φ(δ)/δ

)1+γ /2 + e−(3+γ+2/γ )φ(δ)/δ

}
σ(a�0)

= η(θ, δ)σ (a�0), (4.188)

where η(θ, δ) ∈ (0,∞) is as in (4.169). Finally, from (4.188) and (4.181) we see
that

σ(Fλ) ≤ η(θ, δ)σ (a�0), (4.189)

where η(θ, δ) ∈ (0,∞) is as in (4.169).
Moving on, observe that (2.502) implies that there exists a point xQ0 ∈ ∂� with

the property that

�(xQ0 , a02
−m) ⊆ Q0 ⊆ �(xQ0 , a12

−m). (4.190)

From this inclusion and (4.162) we then conclude that there exists some c ∈ (0,∞),
which only depends on the Ahlfors regularity constant of ∂�, with the property that
a�0 ⊆ c�(xQ0 , a12

−m). As a consequence of this inclusion we may write (for
some C ∈ (0,∞) which depends only on n, p, [w]Ap , and the Ahlfors regularity
constant of ∂�)

w(a�0) ≤ w
(
c�(xQ0 , a12

−m)
) ≤ C w

(
�(xQ0 , a02

−m)
) ≤ Cw(Q0), (4.191)

where we have also used the fact that w is a doubling measure (cf. (2.535)) and
(4.190). With this in hand, we may now estimate

w(Fλ) ≤ η(θ, δ)τ · w(a�0) ≤ η(θ, δ)τ · w(Q0)

≤ η(θ, δ)τ · w(Sλ), (4.192)
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where the first inequality uses (2.537), the fact that Fλ ⊆ a�0 (cf. (4.172)), and
(4.189), the second inequality is based on (4.191), while the last inequality is a
consequence of (4.176). Therefore (4.170) holds whenever there exists Q0 ∈ Q0
such that Pλ ∩Q0 = ∅.

To complete the proof of (4.170), it remains to consider the case Pλ ∩ Q �= ∅

for each Q ∈ Q0. In this scenario, consider an arbitrary dyadic cube Q ∈ Q0. From
(4.163) we know that Q ⊆ I0. Subdivide Q dyadically and stop when Pλ∩Q′ = ∅.
This process produces a family of pairwise disjoint (stopping time) dyadic cubes
{Qj }j∈JQ

⊂ D(∂�) such that Qj ∩ Pλ = ∅, Qj ⊆ Q but Qj �= Q (since we have
Qj ∩ Pλ = ∅ but Q ∩ Pλ �= ∅), and Q′ ∩ Pλ �= ∅ for all Q′ ∈ D(∂�) such that
Qj

� Q′ ⊆ Q. In particular Qj
� Q for every j ∈ JQ and Q̃j , the dyadic parent

of Qj , satisfies Q̃j ⊆ Q. With the σ -nullset N as in (2.505), we now claim that

⋃

j∈JQ

Qj ⊆ Sλ ∩Q ⊆
( ⋃

j∈JQ

Qj
)
∪N. (4.193)

To justify the first inclusion above, observe that if j ∈ JQ then Qj ⊆ Sλ ∩ Q,
since Qj ⊆ Q ⊆ I0 and Qj ∩ Pλ = ∅ imply that Qj ⊆ Q \ Pλ = Q ∩ Sλ. This
establishes the first inclusion in (4.193). As regards the second inclusion claimed in
(4.193), consider an arbitrary point x ∈ (Sλ ∩Q

) \ N . Then T(∗)f (x) > λ which,
in view of (4.160), ensures that we may find a surface ball �x := �(x, rx) such that
T(∗)f (y) > λ for every y ∈ �x . Thanks to (2.502) and (2.504) we may then choose
a dyadic cube Qx ∈ D(∂�) such that x ∈ Qx and Qx ⊆ �x ∩Q ⊆ I0. This forces
Qx ⊆ Sλ∩Q, hence Qx ∩Pλ = ∅. By the maximality of the family chosen above,
Qx ⊆ Qj for some j ∈ JQ which goes to show that x ∈ Qj . Ultimately, this proves
the second inclusion in (4.193).

Going further, the idea is to carry out the stopping time argument just described
for each dyadic cubeQ ∈ Q0. For ease of reference, organize the resulting collection
of dyadic cubes

{
Qj : Q ∈ Q0 and j ∈ JQ

}
(which is an at most countable set) as

a single-index family
{
Q�

}
�∈I of mutually disjoint dyadic cubes; in particular,

⋃

Q∈Q0

⋃

j∈JQ

Qj =
⋃

�∈I
Q�, (4.194)

with the latter union comprised of pairwise disjoint dyadic cubes in ∂�. Note that
Sλ ∩Q might be empty for some Q ∈ Q0 and in this case JQ = ∅ (i.e., the family
of cubes {Qj }j∈JQ

is empty, since there are no stopping time dyadic cubes produced
in this case). However, (4.163) and (4.175) imply that Sλ ∩Q cannot be empty for
every Q ∈ Q0 and, as a consequence, I �= ∅. Going further, using (4.163) and the
fact that Sλ ⊆ I0 (cf. (4.173)) we may write

⋃

Q∈Q0

(Sλ ∩Q) = Sλ (4.195)
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which further entails, on account of (4.194) and (4.193), that

⋃

�∈I
Q� ⊆ Sλ ⊆

(⋃

�∈I
Q�

)
∪N. (4.196)

By construction, for each index � ∈ I there exists a point x∗� such that

x∗� ∈ Q̃� ∩ Pλ = Q̃� ∩
(
I0 \ Sλ

)
, (4.197)

where Q̃� denotes the dyadic parent of Q� (cf. item (4) in Proposition 2.19). For
each � ∈ I we let �� := �Q�

and �̃� := �Q̃�
be as in (2.502). Pressing on, split

the collection {��}�∈I into two sub-classes. Specifically, bring in

I1 :=
{
� ∈ I : there exists x∗∗� ∈ �� such that Mγ f (x∗∗� ) ≤ Aλ

}

and I2 := I \ I1.
(4.198)

Hence, by design, Fλ ∩ �� = ∅ for each � ∈ I2. Recall now from (4.175) that
Fλ ⊆ Sλ. From this, (4.196), and (2.502) we then obtain (bearing in mind that
σ(N) = 0; cf. (2.505))

w(Fλ) =
∑

�∈I
w(Fλ ∩Q�) ≤

∑

�∈I1

w(Fλ ∩��). (4.199)

Let us also consider

F� :=
{
x ∈ �� : T∗f (x) > 4λ

}
for each � ∈ I1, (4.200)

and observe that this entails

Fλ ∩�� ⊆ F� for each � ∈ I1. (4.201)

Our next goal is to prove that

σ(F�) ≤ η(θ, δ) · σ(��) for each � ∈ I1. (4.202)

Granted this, using (2.537) it would follow that

w(F�) ≤ η(θ, δ)τ · w(��) for each � ∈ I1 (4.203)

which, in concert with (4.199), (4.201), (2.502) plus the fact that w is a doubling
measure, and (4.196), would then imply

w(Fλ) ≤
∑

�∈I1

w(Fλ ∩��) ≤
∑

�∈I1

w(F�) ≤ η(θ, δ)τ ·
∑

�∈I1

w(��)
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≤ η(θ, δ)τ ·
∑

�∈I1

w(Q�) ≤ η(θ, δ)τ ·
∑

�∈I
w(Q�)

= η(θ, δ)τ · w(Sλ), (4.204)

finishing the justification of (4.170).
We now turn to the proof of (4.202). Fix � ∈ I1 and, in order to lighten notation,

in the sequel we agree to suppress the dependence of ��, �̃�, F�, x∗� , and x∗∗� on the
index �, and simply write �, �̃, F , x∗, and x∗∗, respectively. With this convention
in mind, observe first that

� ⊆ 2�̃. (4.205)

To justify this inclusion, recall from (2.502) that we may write � = B(xQ, rQ)∩∂�

and �̃ = B(xQ̃, rQ̃)∩∂�; moreover, since Q̃ is the parent of Q, we have rQ̃ = 2rQ.
Then for each x ∈ � we have

|x − xQ̃| ≤ |x − xQ| + |xQ − xQ̃| < rQ + rQ̃ = (3/2)rQ̃ < 2rQ̃ (4.206)

which ultimately proves (4.205). Going forward, let us also denote by�∗ the surface
ball of center x∗ and radius R := �·rQ, for a sufficiently large constant � ∈ (2,∞)

(depending only on the implicit constants in the dyadic grid construction, which in
turn depend only on the Ahlfors regularity constant of ∂�) chosen so that

2�̃ ⊆ �∗. (4.207)

We then decompose

f = f1 + f2 where f1 := f 12�∗ and f2 := f 1∂�\2�∗ . (4.208)

By virtue of the sub-linearity of T∗ and the fact that � ⊆ �∗ ⊆ 4�∗ (cf. (4.205)–
(4.207)) this implies

σ(F ) ≤ σ
({

x ∈ � : T∗f1(x) > 2λ
})+ σ

({
x ∈ � : T∗f2(x) > 2λ

})

≤ σ
({

x ∈ 4�∗ : T∗f1(x) > 2λ
})+ σ

({
x ∈ � : T∗f2(x) > 2λ

})
.

(4.209)

The contribution from f1 in the last line above is handled as in (4.178)–(4.180),
(4.182)–(4.188) by performing a decomposition of 4�∗ as in Theorem 2.6. Indeed,
a�0, x̃, f , and λ are replaced by 4�∗, x∗∗, f1, and 1

2λ, respectively, and we use the
fact that Mγ f (x∗∗) ≤ Aλ (cf. (4.198)), supp f1 ⊆ 2�∗ ⊆ 4�∗ (cf. (4.208)), and
σ(4�∗) ≤ c · σ(�) for some c ∈ (0,∞) depending only on the Ahlfors regularity
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constant of ∂� (since ∂� is Ahlfors regular and the surface balls 4�∗, � have
comparable radii) to run the same proof as before. The conclusion is that

σ
({

x ∈ 4�∗ : T∗f1(x) > 2λ
}) ≤ η(θ, δ) · σ(�). (4.210)

In view of the conclusion we seek (cf. (4.202)), this suits our purposes.
As for f2, recall that R is the radius of the surface ball �∗, and for each ε > 0 set

ε′ := max{ε, 2R}. Based on this choice of ε′, the definition of the truncated singular
integral operators in (4.105), the truncation in the definition of the function f2, the
estimate in (4.158) (presently used with x∗ in place of x and ε′ in place of ε), the
fact that x∗∗ ∈ � ⊆ �∗ ⊆ �(x∗, 2ε′) (cf. (4.198) and (4.205)–(4.207)), the fact
that Mγ f (x∗∗) ≤ Aλ (cf. (4.198)), the definition of T(∗)f (x∗) (cf. (4.156)), the
membership of x∗ to Pλ (cf. (4.197)), and the first formula in (4.173), we may write

∣
∣Tεf2(x

∗)
∣
∣ = ∣∣Tε′f (x∗)

∣
∣ ≤ |Tε′f (x∗)− T(ε′)f (x∗)

∣
∣+ ∣∣T(ε′)f (x∗)

∣
∣

≤ Cδ ·Mγ f (x∗∗)+ T(∗)f (x∗) ≤ CδAλ+ λ

= Cθ
( δ

φ(δ)

)
λ+ λ ≤ 3

2λ, (4.211)

with the last line a consequence of our choice ofA in (4.168), the fact that θ ∈ (0, 1),
and the ability of taking δ∗ ∈ (0, 1) small enough to begin with (while bearing in
mind that limt→0+ t/φ(t) = 0; cf. (4.121)). With ε > 0 momentarily fixed, consider
now an arbitrary point x ∈ � and bound

∣∣Tεf2(x)− Tεf2(x
∗)
∣∣ ≤ I+ II+ III, (4.212)

where

I :=
ˆ

y∈∂�\2�∗
|x−y|>ε, |x∗−y|>ε

∣∣∣〈x − y, ν(y)〉k(x − y)

− 〈x∗ − y, ν(y)〉k(x∗ − y)

∣∣∣|f (y)| dσ(y),

II :=
ˆ

y∈∂�\2�∗
|x−y|>ε, |x∗−y|≤ε

|〈x − y, ν(y)〉||k(x − y)||f (y)| dσ(y),
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III :=
ˆ

y∈∂�\2�∗
|x∗−y|>ε, |x−y|≤ε

|〈x∗ − y, ν(y)〉||k(x∗ − y)||f (y)| dσ(y). (4.213)

In preparation for estimating the term I, we will first analyze the difference
between I and a similar expression in which ν(y) has been replaced by the integral
average ν�∗ :=

ffl
�∗ ν dσ . To set the stage, for each fixed y ∈ ∂�\2�∗ consider the

function

Fy(z) := 〈z− y, ν(y)− ν�∗〉k(z− y) for each z ∈ B(x∗, R). (4.214)

Then

|(∇Fy)(z)| ≤
( ∑

|α|≤1
sup
Sn−1

|∂αk|
)∣∣ν(y)− ν�∗

∣∣

|z− y|n for each z ∈ B(x∗, R). (4.215)

Keeping in mind that x ∈ � ⊆ �∗ = B(x∗, R)∩ ∂� (cf. (4.205)–(4.207)), we have

|x − x∗| < R. (4.216)

Also, (recall that [x, x∗] denotes the line segment with endpoints x, x∗),

|x∗ − y| ≤ 2|ξ − y| for each y ∈ ∂� \ 2�∗ and each ξ ∈ [x, x∗]. (4.217)

Hence, by (4.214)–(4.215), the Mean Value Theorem (bearing in mind (4.150)),
(4.216)–(4.217), and Hölder’s inequality it follows that

ˆ
∂�\2�∗

∣∣∣〈x − y, ν(y)− ν�∗〉k(x − y)− 〈x∗ − y, ν(y)− ν�∗〉k(x∗ − y)

∣∣∣|f (y)| dσ(y)

=
ˆ

∂�\2�∗
∣∣Fy(x)− Fy(x

∗)
∣∣|f (y)| dσ(y)

≤
ˆ

∂�\2�∗
|x − x∗| · sup

ξ∈[x,x∗]
∣∣(∇Fy)(ξ)

∣∣|f (y)| dσ(y)

≤ C

ˆ
∂�\2�∗

R

|x∗ − y|n
∣
∣ν(y)− ν�∗

∣
∣|f (y)| dσ(y)

≤ C

∞∑

j=1
2−j

 
2j+1�∗\2j �∗

∣∣ν(y)− ν�∗
∣∣|f (y)| dσ(y)
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≤ C

∞∑

j=1
2−j

( 
2j+1�∗

(∣∣ν(y)− ν2j+1�∗
∣
∣+ ∣∣ν2j+1�∗ − ν�∗

∣
∣)

1+γ
γ dσ(y)

) γ
1+γ ×

×
( 

2j+1�∗
|f (y)|1+γ dσ(y)

) 1
1+γ

≤ C
( ∞∑

j=1
(j + 2) 2−j

)
‖ν‖[BMO(∂�,σ)]n Mγ f (x∗∗)

≤ CAδλ, (4.218)

for some C ∈ (0,∞) which depends only on n, p, [w]Ap , and the Ahlfors regularity
constant of ∂�. Above, the fifth inequality relies on (2.102) and the fact that

∣∣ν2j+1�∗ − ν�∗
∣∣ ≤ C (j + 1) ‖ν‖[BMO(∂�,σ)]n for each j ∈ N (4.219)

for some C ∈ (0,∞) depending only on n and the Ahlfors regular constant of ∂�,
which is a direct consequence of (2.105). The fifth inequality in (4.218) also uses
the fact that x∗∗ ∈ � ⊆ �∗ ⊆ 2j+1�∗ for each integer j ∈ N. The last inequality
in (4.218) is a consequence of the fact that Mγ f (x∗∗) ≤ Aλ (cf. (4.198)).

On the other hand, from the properties of the kernel k and the Mean Value
Theorem we obtain
ˆ

∂�\2�∗

∣
∣∣〈x − y, ν�∗ 〉k(x − y)− 〈x∗ − y, ν�∗ 〉k(x∗ − y)

∣
∣∣|f (y)| dσ(y)

=
ˆ

∂�\2�∗

∣∣∣
(〈x − y, ν�∗ 〉 − 〈x∗ − y, ν�∗ 〉

)
k(x∗ − y)

+ 〈x − y, ν�∗ 〉
(
k(x − y)− k(x∗ − y)

) ∣∣∣|f (y)| dσ(y)

≤ Cn

∞∑

j=1

ˆ
2j+1�∗\2j �∗

( |〈x − x∗, ν�∗ 〉|
|x∗ − y|n + R

|〈x − y, ν�∗ 〉|
|x∗ − y|n+1

)
|f (y)| dσ(y)

≤ Cn

∞∑

j=1

ˆ
2j+1�∗\2j �∗

|〈x − x∗, ν�∗ 〉|
|x∗ − y|n |f (y)| dσ(y)

+ CnR

∞∑

j=1

ˆ
2j+1�∗\2j �∗

|〈x − y, ν�∗ − ν2j+1�∗〉|
|x∗ − y|n+1 |f (y)| dσ(y)
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+ CnR

∞∑

j=1

ˆ
2j+1�∗\2j �∗

|〈x − y, ν2j+1�∗〉|
|x∗ − y|n+1 |f (y)| dσ(y)

=: I1 + I2 + I3. (4.220)

To estimate I1, write

I1 ≤ CnR
−1|〈x − x∗, ν�∗〉|

∞∑

j=1
2−j

 
2j+1�∗

|f (y)| dσ(y)

≤ Cδ

∞∑

j=1
2−jMγ f (x∗∗) ≤ CδMγ f (x∗∗)

≤ CAδλ, (4.221)

where C ∈ (0,∞) depends only on n, and the Ahlfors regularity constant of ∂�.
The second inequality above is a consequence of (4.154) used here with z := x∗,
y := x∗, μ := 2 (a valid choice given that x ∈ �(x∗, 2R) since, as seen from
(4.205)–(4.207), we have x ∈ � ⊆ �∗ = �(x∗, R)) and x∗∗ ∈ � ⊆ �∗ ⊆ 2j+1�∗
for each j ∈ N. The last inequality (4.221) uses Mγ f (x∗∗) ≤ Aλ (cf. (4.198)).

To treat I2, we write (for some C ∈ (0,∞) which depends only on n, and the
Ahlfors regularity constant of ∂�),

I2 ≤ CR

∞∑

j=1

ˆ
2j+1�∗\2j �∗

|ν�∗ − ν2j+1�∗ |
|x∗ − y|n |f (y)| dσ(y)

≤ C

∞∑

j=1
(j + 1) ‖ν‖[BMO(∂�,σ)]n 2−j

 
2j+1�∗

|f (y)| dσ(y)

≤ CδMγ f (x∗∗) ≤ CAδλ, (4.222)

where the first inequality uses the definition of I2 (given in (4.220)) as well as the
estimate |x−y| ≤ (3/2)|x∗−y| valid for each y ∈ ∂�\2�∗, the second inequality
takes into account (4.219) and the Ahlfors regularity of ∂�, while the remaining
inequalities are justified as in (4.221).

As regards I3, write (again, with C ∈ (0,∞) depending only on n, and the
Ahlfors regularity constant of ∂�)

I3 ≤ C

∞∑

j=1
2−j

 
2j+1�∗

|〈x − y, ν2j+1�∗〉|
2j+1R

|f (y)| dσ(y)
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≤ Cδ

∞∑

j=1
2−j

 
2j+1�∗

|f (y)| dσ(y) ≤ CδMγ f (x∗∗)

≤ CAδλ. (4.223)

The second inequality in (4.223) is based on (4.154) used with z := x∗ and R

replaced by 2j+1R. The remaining inequalities in (4.223) are then justified much as
in (4.221).

At this stage, by combining (4.218) and (4.220)–(4.223) we conclude that there
exists some C ∈ (0,∞) which depends only on n, and the Ahlfors regularity
constant of ∂�, such that

I ≤ CAδλ. (4.224)

To bound II in (4.213), recall that x, x∗∗ ∈ � and assume y ∈ ∂� \ 2�∗ is such
that |x∗ − y| ≤ ε and |x − y| > ε. Then, 2R < |x∗ − y| ≤ ε and since x, x∗∗ ∈
� ⊆ B(xQ, rQ) (where xQ and rQ are, respectively, the center and radius of the
surface ball �) and R = � · rQ with � > 2, we have |x − x∗∗| < 2rQ < R < ε/2.
Hence, the point x∗∗ belongs to the surface ball �(x, ε/2). Moreover, on account
of (4.216) we may write |x − y| ≤ |x − x∗| + |x∗ − y| < R + ε < (3/2)ε which,
in particular, guarantees that y ∈ �(x, 2ε). Consequently, ε < |x − y| < 2ε hence
|k(x − y)| ≤ ε−n and (for some C ∈ (0,∞) which depends only on depends only
on n and the Ahlfors regularity constant of ∂�),

II ≤ Cε−1
 

�(x,2ε)
|〈x − y, ν(y)〉| |f (y)| dσ(y)

≤ Cε−1
 

�(x,2ε)
|〈x − y, ν(y)− ν�(x,2ε)〉| |f (y)| dσ(y)

+ Cε−1
 

�(x,2ε)
|〈x − y, ν�(x,2ε)〉| |f (y)| dσ(y)

=: II1 + II2. (4.225)

Using Hölder’s inequality, (2.102), (4.198), and (4.152) we obtain that there exists
some C ∈ (0,∞) which depends only on n, p, [w]Ap , and the Ahlfors regularity
constant of ∂�, such that

II1 ≤ C

( 
�(x,2ε)

|ν(y)− ν�(x,2ε)|
1+γ
γ dσ(y)

) γ
1+γ
( 

�(x,2ε)
|f (y)|1+γ dσ(y)

) 1
1+γ

≤ C ‖ν‖[BMO(∂�,σ)]n Mγ f (x∗∗) ≤ CAδλ, (4.226)
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since x∗∗ is contained in �(x, ε/2) ⊆ �(x, 2ε) and Mγ f (x∗∗) ≤ CAλ, as
already noted earlier. As for II2, invoking (4.154), Hölder’s inequality, and (4.198),
it follows that (with C ∈ (0,∞) as above)

II2 ≤ C
(

sup
y∈�(x,2ε)

ε−1|〈x − y, ν�(x,2ε)〉|
)  

�(x,2ε)
|f (y)| dσ(y)

≤ Cδ
(  

�(x,2ε)
|f (y)|1+γ dσ(y)

) 1
1+γ

≤ Cδ ·Mγ f (x∗∗) ≤ CAδλ. (4.227)

From (4.225)–(4.227) we see that there exists C ∈ (0,∞) which depends only on
n, p, [w]Ap , and the Ahlfors regularity constant of ∂�, such that

II ≤ CAδλ. (4.228)

Turning our attention to III, recall that x, x∗∗ ∈ � and suppose y ∈ ∂� \ 2�∗ is
such that |x∗ − y| > ε and |x − y| ≤ ε. Then |x∗ − y| > 2R > R + |x − x∗| by
(4.216) which further entails ε ≥ |x − y| ≥ |x∗ − y| − |x − x∗| > R. In particular,
R < ε. If we now abbreviate R̃ := R + ε then, on the one hand, we may write the
estimate |x∗ − y| ≤ |x∗ − x| + |x − y| < R + ε = R̃, while on the other hand
having |x∗ − y| > ε and |x∗ − y| > 2R implies |x∗ − y| > R + (ε/2) > 1

2 R̃. As
such, |k(x∗ − y)| ≤ R̃−n and

III ≤ CnR̃
−1

 
�(x∗,R̃)

|〈x∗ − y, ν(y)〉| |f (y)| dσ(y). (4.229)

Granted this, the same type of argument which, starting with the first line in (4.225)
has produced (4.228) (reasoning with R̃/2 replacing ε and with x∗ replacing x)
will now yield (for some C ∈ (0,∞) which depends only on n, p, [w]Ap , and the
Ahlfors regularity constant of ∂�)

III ≤ CAδλ, (4.230)

as soon as we show that x∗∗ ∈ �(x∗, R̃). To justify this membership, start by
recalling that |x − x∗∗| < 2rQ < R and then use (4.216), the triangle inequality,
and the fact that R < ε to estimate |x∗ − x∗∗| ≤ |x − x∗| + |x − x∗∗| < 2R < R̃.
The proof of (4.230) is therefore complete.

Let us summarize our progress. From (4.212), (4.224), (4.228), (4.230), and our
choice of A in (4.168) we conclude that there exists some C ∈ (0,∞), which
depends only on n, p, [w]Ap , and the Ahlfors regularity constant of ∂�, such that
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∣∣∣Tεf2(x)− Tεf2(x
∗)
∣∣∣ ≤ C Aδλ = Cθ

( δ

φ(δ)

)
λ, ∀ x ∈ �, ∀ ε > 0.

(4.231)
In view of the fact that θ ∈ (0, 1), and taking δ∗ ∈ (0, 1) small enough to begin
with (again, keeping in mind that limt→0+ t/φ(t) = 0; cf. (4.121)), from (4.231) we
conclude that

∣∣∣Tεf2(x)− Tεf2(x
∗)
∣∣∣ ≤ 1

2λ, ∀ x ∈ �, ∀ ε > 0. (4.232)

By combining (4.211), (4.232), and (4.104) we thus obtain

T∗f2(x) ≤ 2λ for all x ∈ �, (4.233)

whenever δ∗ ∈ (0, 1) is small enough. Therefore, for this choice of δ∗, we conclude
that

σ
({

x ∈ � : T∗f2(x) > 2λ
}) = 0 (4.234)

which, in concert with (4.209) and (4.210), establishes (4.202). This finishes the
proof of the good-λ inequality (4.170).

Once (4.170) has been established, we proceed to prove (4.151). First, using
(4.159), by our definition of A, and by possibly choosing a smaller δ∗ ∈ (0, 1)
(again, bearing in mind that limt→0+ t/φ(t) = 0; cf. (4.121)), for each point x ∈ I0
with T(∗)f (x) > λ and Mγ f (x) ≤ Aλ we may write

λ < T(∗)f (x) ≤ T∗f (x)+ Cδ ·Mγ f (x)

≤ T∗f (x)+ CδAλ = T∗f (x)+ Cθ
( δ

φ(δ)

)
λ

< T∗f (x)+ 1
2λ. (4.235)

Hence, for such a choice of δ∗ ∈ (0, 1) we have

1
2λ < T∗f (x) whenever the point x ∈ I0 is
such that T(∗)f (x) > λ and Mγ f (x) ≤ Aλ.

(4.236)

Consequently,

{
x ∈ I0 : T(∗)f (x) > λ and Mγ f (x) ≤ Aλ

}

⊆ {x ∈ I0 : T∗f (x) > λ
2

}
(4.237)

which, in turn, permits us to estimate
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w
({

x ∈ I0 : T(∗)f (x) > λ
}) ≤ w

({
x ∈ I0 : T(∗)f (x) > λ and Mγ f (x) ≤ Aλ

})

+ w
({

x ∈ I0 : Mγ f (x) > Aλ
})

≤ w
({

x ∈ I0 : T∗f (x) > λ
2

})

+ w
({

x ∈ I0 : Mγ f (x) > Aλ
})

. (4.238)

From (4.169) and (4.121) it is clear that for each fixed θ we have

η(θ, δ) = C
(
θ1+γ + θ1+γ /2 ·O(1)+ o(1)

)
as δ → 0+. (4.239)

This makes it is possible to first choose the threshold δ∗ ∈ (0, 1), then pick the
coefficient θ ∈ (0, 1) small enough depending only on n, p, [w]Ap , φ, and the
Ahlfors regularity constant of ∂�, so that

η(θ, δ)τ < (2 · 8p)−1. (4.240)

This is the last demand imposed on δ∗, θ , and the totality of all these size
specifications imply that the final choice of these parameters ultimately depends
only on n, p, [w]Ap , φ, and the Ahlfors regularity constant of ∂�. Combining
(4.238) with (4.170) and keeping (4.240) in mind we then get

w
({

x ∈ I0 : T∗f (x) > 4λ
})

≤ w
({

x ∈ I0 : T∗f (x) > 4λ and Mγ f (x) ≤ Aλ
})

+ w
({

x ∈ I0 : Mγ f (x) > Aλ
})

≤ η(θ, δ)τ · w
({

x ∈ I0 : T(∗)f (x) > λ
})

+ w
({

x ∈ I0 : Mγ f (x) > Aλ
})

< (2 · 8p)−1 w
({

x ∈ I0 : T∗f (x) > λ
2

})

+ (1+ (2 · 8p)−1
)
w
({

x ∈ I0 : Mγ f (x) > Aλ
})

. (4.241)

Recall that γ ∈ (0, p−1) has been chosen so thatw ∈ Ap/(1+γ )(∂�, σ), henceMγ

is bounded onLp(∂�,w). Multiply the most extreme sides of (4.241) by pλp−1 and
integrate over λ ∈ (0,∞). Bearing in mind that A = θ · φ(δ)−1, after three natural
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changes of variables (namely, λ̃ := 4λ in the first integral, λ̃ := 1
2λ in the second

integral, and λ̃ := θφ(δ)−1λ in the third integral) we therefore obtain

ˆ
I0

|T∗f |p dw ≤ 1

2

ˆ
I0

|T∗f |p dw + φ(δ)pθ−p
(
22p + 2−p−1)

ˆ
I0

(Mγ f )p dw

≤ 1

2

ˆ
I0

|T∗f |p dw + C φ(δ)p
ˆ

∂�

|f |p dw, (4.242)

for some constant C ∈ (0,∞) which depends only on n, p, [w]Ap , φ, and the
Ahlfors regularity constant of ∂� (hence, in particular, independent of the function
f , the quantity δ, as well as the parameters x0,m defining the set I0). Since
f ∈ Lp(∂�,w) and the operator T∗ maps the space Lp(∂�,w) into itself (cf.
Proposition 3.4), it follows that

´
I0
|T∗f |p dw ≤ ‖T∗f ‖pLp(∂�,w) < ∞. Hence, the

first integral in the right-most side of (4.242) may be absorbed in the left-most side.
By also taking into account (4.165), we therefore obtain

ˆ
2�0

|T∗f |p dw ≤
ˆ

I0

|T∗f |p dw ≤ Cφ(δ)p
ˆ

∂�

|f |p dw. (4.243)

Recall that 2�0 = �(x0, 2−m+1) and the only constraint on the integer m ∈ Z

has been that supp f ⊆ 2�0. Upon letting m → −∞ and invoking Lebesgue’s
Monotone Convergence Theorem we arrive at the conclusion that, for some constant
C ∈ (0,∞) which depends only on n, p, [w]Ap , ψ , φ, and the Ahlfors regularity
constant of ∂�, we have the estimate

ˆ
∂�

|T∗f |p dw ≤ Cφ(δ)p
ˆ

∂�

|f |p dw,

for every f ∈ Lp(∂�,w) with compact support.
(4.244)

To treat the case when the function f ∈ Lp(∂�,w) is now arbitrary, for each
j ∈ N define fj := 1�(x0,j)f . Then Lebesgue’s Dominated Convergence Theorem
implies that fj → f in Lp(∂�,w) as j → ∞, and since T∗ is continuous on
Lp(∂�,w) we also have T∗fj → T∗f in Lp(∂�,w) as j → ∞. Writing the
estimate in (4.244) for fj in place of f and passing to limit j →∞ then yields

ˆ
∂�

|T∗f |p dw ≤ Cφ(δ)p
ˆ

∂�

|f |p dw for each f ∈ Lp(∂�,w), (4.245)

where C ∈ (0,∞) depends only on n, p, [w]Ap , ψ , φ, and the Ahlfors regularity
constant of ∂�. Sending δ ↘ ‖ν‖[BMO(∂�,σ)]n (cf. (4.152) and the second line in
(4.121)), then finishes the proof of (4.151).

Finally, the very last claim in the statement of Theorem 4.2 follows from (4.153).
The proof of Theorem 4.2 is therefore complete. 
�
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Recall the notion of chord-arc domain introduced, in the two-dimensional setting,
in Definition 2.16.

Corollary 4.1 Fix �∗ ∈ (0,∞) and let � ⊆ R
2 be a �-CAD for some � ∈ [0, �∗).

Abbreviate σ := H1�∂� and denote by ν the geometric measure theoretic outward
unit normal to �. In addition, select some integrability exponent p ∈ (1,∞) along
with a Muckenhoupt weight w ∈ Ap(∂�, σ). Consider next a complex-valued
function k ∈ CN(R2 \ {0}), for a sufficiently large integer N ∈ N, which is even and
positive homogeneous of degree −2, and define the maximal operator T∗ acting on
each function f ∈ Lp(∂�,w) according to

T∗f (x) := sup
ε>0

∣∣Tεf (x)
∣∣ for each x ∈ ∂�, (4.246)

where, for each ε > 0,

Tεf (x) :=
ˆ

y∈∂�
|x−y|>ε

〈x − y, ν(y)〉k(x − y)f (y) dσ(y) for all x ∈ ∂�. (4.247)

Then for each m ∈ N there exists some Cm ∈ (0,∞), which depends only on m,
�∗, p, and [w]Ap such that

‖T∗‖Lp(∂�,w)→Lp(∂�,w) ≤ Cm

( ∑

|α|≤N

sup
S1
|∂αk|

)
× (4.248)

×√� · ln
(
· · · ln ( ln(

︸ ︷︷ ︸
m natural logarithms

1/min{�, (me)−1})) · · ·
)
.

Of course, the crux of the matter is the presence of
√

� as a multiplicative
factor in the right-hand side of (4.248). As a consequence, ‖T∗‖Lp(∂�,w)→Lp(∂�,w)

is as small as we please if � ⊆ R
2 is a �-CAD whose constant � ∈ (0, 1) is

sufficiently small (relative to the integral exponent p, the characteristic [w]Ap of the
Muckenhoupt weight, and the integral kernel k).

Proof of Corollary 4.1 From (2.229) and (2.118) we deduce that

‖ν‖[BMO(∂�,σ)]2 ≤ min
{
1, 2
√

�(2+ �)
} ≤
√
4+√20 · √�. (4.249)

Also, Proposition 2.10 implies that � is a UR domain, with the UR constants of ∂�

controlled in terms of �∗. Granted these properties, Theorem 4.2 applies and (4.106)
together with (4.100) give (4.248). 
�

Theorem 4.2 readily implies similar operator norm estimates for principal-value
singular integral operators whose integral kernel has a special algebraic format, in
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that it involves the inner product between the outward unit normal and the chord, as
a factor. This is made precise later on (see Theorem 4.7). Specifically, for a given
second-order, homogeneous, constant complex coefficient system L with Adis

L �= ∅,
and a given UR domain � ⊆ R

n, we shall employ Corollary 4.2 below with T

either the boundary-to-boundary double layer potential operator KA associated with
a coefficient tensor A ∈ Adis

L or its “transpose” version K#
A, acting on Muckenhoupt

weighted Lebesgue spaces on ∂�.

Corollary 4.2 Let � ⊆ R
n be a UR domain. Abbreviate σ := Hn−1�∂� and

denote by ν the geometric measure theoretic outward unit normal to �. Fix
an integrability exponent p ∈ (1,∞) along with a Muckenhoupt weight w in
Ap(∂�, σ), and recall the earlier convention of using the same symbol w for
the measure associated with the given weight w as in (2.509). Also, consider a
sufficiently large integer N = N(n) ∈ N and suppose k ∈ CN(Rn \ {0}) is a
complex-valued function which is even and positive homogeneous of degree −n. In
this setting consider the principal-value singular integral operators T , T # acting on
each function f ∈ Lp(∂�,w) according to

Tf (x) := lim
ε→0+

ˆ

y∈∂�
|x−y|>ε

〈x − y, ν(y)〉k(x − y)f (y) dσ(y), (4.250)

and

T #f (x) := lim
ε→0+

ˆ

y∈∂�
|x−y|>ε

〈y − x, ν(x)〉k(x − y)f (y) dσ(y), (4.251)

at σ -a.e. point x ∈ ∂�. Then for each m ∈ N there exists a constant Cm ∈ (0,∞),
which depends only on m, n, p, [w]Ap , and the UR constants of ∂� such that, with
the piece of notation introduced in (4.93), one has

‖T ‖Lp(∂�,w)→Lp(∂�,w) ≤ Cm

( ∑

|α|≤N

sup
Sn−1

|∂αk|
)
‖ν‖〈m〉[BMO(∂�,σ)]n (4.252)

and
∥
∥∥T #
∥
∥∥

Lp(∂�,w)→Lp(∂�,w)
≤ Cm

( ∑

|α|≤N

sup
Sn−1

|∂αk|
)
‖ν‖〈m〉[BMO(∂�,σ)]n . (4.253)

Also, if ‖ν‖[BMO(∂�,σ)]n is sufficiently small relative to n, p, [w]Ap , and the Ahlfors
regularity constant of ∂� one may take Cm ∈ (0,∞) appearing in (4.252)–(4.253)
to depend only on said entities (i.e., n, p, [w]Ap , the Ahlfors regularity constant of
∂�) and m.
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In addition, with p′ ∈ (1,∞) denoting the Hölder conjugate exponent of p and
with w′ := w1−p′ ∈ Ap′(∂�, σ), it follows that

the (real) transpose of T : Lp(∂�,w) → Lp(∂�,w)

is the operator T # : Lp′(∂�,w′)→ Lp′(∂�,w′). (4.254)

Proof Fix m ∈ N. In view of the fact that

‖T ‖Lp(∂�,w)→Lp(∂�,w) ≤ ‖T∗‖Lp(∂�,w)→Lp(∂�,w) , (4.255)

the estimate claimed in (4.252) follows directly from (4.106). The claim in the
subsequent paragraph in the statement follows from Theorem 2.3. Next, observe
that (4.254) is implied by (4.250)–(4.251) and (3.83). To justify the claim made in
(4.253), we write

∥∥∥T #
∥∥∥

Lp(∂�,w)→Lp(∂�,w)
= ‖T ‖

Lp′ (∂�,w′)→Lp′ (∂�,w′)

≤ Cm

( ∑

|α|≤N

sup
Sn−1

|∂αk|
)
‖ν‖〈m〉[BMO(∂�,σ)]n , (4.256)

thanks to (4.252) used with p′, w′ in place of p,w. 
�

Remark 4.8 Of course, in the special case when w ≡ 1, Theorem 4.2 and Corol-
lary 4.2 yield estimates on ordinary Lebesgue spaces, Lp(∂�, σ) with p ∈ (1,∞).
Via real interpolation, these further imply similar estimates on the scale of Lorentz
spaces on ∂�. Specifically, from (4.106), (4.252)–(4.253), and real interpolation (for
sub-linear operators) we conclude that for each m ∈ N, p ∈ (1,∞), and q ∈ (0,∞]
there exists a constant Cm ∈ (0,∞), which depends only on m, n, p, q, and the UR
constants of ∂�, with the property that

‖T∗‖Lp,q (∂�,σ)→Lp,q (∂�,σ) ≤ Cm

( ∑

|α|≤N

sup
Sn−1

|∂αk|
)
‖ν‖〈m〉[BMO(∂�,σ)]n , (4.257)

‖T ‖Lp,q (∂�,σ)→Lp,q (∂�,σ) ≤ Cm

( ∑

|α|≤N

sup
Sn−1

|∂αk|
)
‖ν‖〈m〉[BMO(∂�,σ)]n , (4.258)

and
∥∥∥T #
∥∥∥

Lp,q (∂�,σ)→Lp,q (∂�,σ)
≤ Cm

( ∑

|α|≤N

sup
Sn−1

|∂αk|
)
‖ν‖〈m〉[BMO(∂�,σ)]n . (4.259)

More general results of this type are discussed later, in Theorem 8.8 (cf. also
Examples 8.2 and 8.6).
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Remark 4.9 In the context of Corollary 4.2, estimates (4.252)–(4.253) remain valid
with a fixed constant Cm ∈ (0,∞) when the integrability exponent and the
corresponding Muckenhoupt weight are allowed to vary while retaining control.
Concretely, Remark 4.3 implies that for each compact interval I ⊂ (0,∞) and each
number W ∈ (0,∞) there exists a constant Cm ∈ (0,∞), which depends only on
m, n, I , W , and the UR constants of ∂�, with the property that (4.252)–(4.253) hold
for each p ∈ I and each w ∈ Ap(∂�, σ) with [w]Ap ≤ W .

Similar considerations apply to the estimates in (4.257)–(4.259).

4.3 Norm Estimates and Invertibility Results for Double
Layers

We first recall a result (cf. [61, Theorem 2.16, p. 2603]) which is a combination
of the extrapolation theorem of Rubio de Francia and the commutator theorem of
Coifman et al., [31], suitably adapted to the setting of spaces of homogeneous type.

Theorem 4.3 Make the assumption that � ⊆ R
n is a closed Ahlfors regular set,

and abbreviate σ := Hn−1��. Fix p0 ∈ (1,∞) along with some non-decreasing
function � : (0,∞) → (0,∞) and let T be a linear operator which is bounded on
Lp0(�,w) for every w ∈ Ap0(�, σ ), with operator norm ≤ �

([w]Ap0

)
.

Then for each integrability exponent p ∈ (1,∞) there exist C1, C2 ∈ (0,∞)

which depend exclusively on the dimension n, the exponents p0, p, and the Ahlfors
regularity constant of �, such that for any Muckenhoupt weight w ∈ Ap(�, σ) the
operator

T : Lp(�,w) −→ Lp(�,w) (4.260)

is well defined, linear, and bounded, with operator norm

‖T ‖Lp(�,w)→Lp(�,w) ≤ C1 ·�
(
C2 · [w]1+(p0−1)/(p−1)

Ap

)
. (4.261)

In addition, given any p ∈ (1,∞) along with some w ∈ Ap(�, σ), there exists
a constant C = C(�, n, p0, p, [w]Ap) ∈ (0,∞) with the property that for every
complex-valued function b ∈ L∞(�, σ ) one has (with C1 as before)

‖[Mb, T ]‖Lp(�,w)→Lp(�,w) ≤ C1 ·�(C) ‖b‖BMO(�,σ) , (4.262)

where [Mb, T ] is the commutator of T considered as in (4.260) and the operator
Mb of pointwise multiplication on Lp(�,w) by the function b, i.e.,

[Mb, T ]f := b(Tf )− T (bf ) for each f ∈ Lp(�,w). (4.263)
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In particular, from (4.262) with w ≡ 1 and real interpolation it follows that, for
any p ∈ (1,∞) and q ∈ (0,∞], there exists some C = C(�, n, p, q) ∈ (0,∞)

with the property that for every complex-valued function b ∈ L∞(�, σ ) one has

‖[Mb, T ]‖Lp,q (�,σ)→Lp,q (�,σ) ≤ C1 ·�(C) ‖b‖BMO(�,σ) . (4.264)

Theorem 4.3 is a particular case of a more general result proved in Theorem 4.4,
stated just after the following remark.

Remark 4.10 Even though Theorem 4.3 suffices for the purposes we have in mind,
it is worth noting that there is a version of (4.262) in which the pointwise multiplier
b is allowed to belong to the larger space BMO(�, σ ). The price to pay is that we
now no longer may regard [Mb, T ] as in (4.263) and, instead, have to interpret this
as an abstract extension (by density) of a genuine commutator. Specifically, given a
real-valued function b ∈ BMO(�, σ ), for each N ∈ N define

bN := min
{
max{b,−N}, N

}
= max

{
min{b,N},−N

}
, (4.265)

and note that there exists C ∈ (0,∞) such that

bN ∈ L∞(�, σ ), thus bN ∈ BMO(�, σ ), and

‖bN‖BMO(�,σ) ≤ 2‖b‖BMO(�,σ) for all N ∈ N,

|bN(x)| ≤ |b(x)| for all x ∈ � and N ∈ N,

lim
N→∞ bN(x) = b(x) for each x belonging to �.

(4.266)

Fix an exponent p ∈ (1,∞) along with a Muckenhoupt weight w ∈ Ap(�, σ)

and pick a function f ∈ Lp(�,w) with the property that bf ∈ Lp(�,w). Then
Lebesgue’s Dominated Convergence Theorem implies bNf → bf in Lp(�,w) as
N →∞, hence also T (bNf ) → T (bf ) in Lp(�,w) as N →∞ by (4.260). Since
we also have bNT (f ) → bT (f ) at each point in � as N → ∞, we ultimately
conclude that

for each function f ∈ Lp(�,w) such that bf ∈ Lp(�,w) there
exists a strictly increasing sequence {Nj }j∈N ⊆ N for which[
MbNj

, T
]
f → [

Mb, T
]
f at σ -a.e. point in � as j →∞.

(4.267)

For example, the fact that we have BMO(�, σ ) ⊆ L
p

loc(�,w) (cf. Lemma 2.13)
means that the pointwise convergence result in (4.267) is valid for each function
f belonging to L∞comp(�,w) = L∞comp(�, σ ), the space of essentially bounded
functions with compact support in �.

Granted (4.267), for each such function f ∈ Lp(�,w) such that bf ∈ Lp(�,w)

we may now write (bearing in mind that w and σ have the same nullsets)
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ˆ
�

∣∣[Mb, T ]f
∣∣p dw =

ˆ
�

lim inf
j→∞

∣∣
∣
[
MbNj

, T
]
f

∣∣
∣
p

dw

≤ lim inf
j→∞

ˆ
�

∣
∣∣
[
MbNj

, T
]
f

∣
∣∣
p

dw

≤ lim inf
j→∞

(
C1 ·�(C)

∥∥bNj

∥∥
BMO(�,σ)

)p‖f ‖pLp(�,w)

≤
(
2C1 ·�(C) ‖b‖BMO(�,σ)

)p‖f ‖pLp(�,w), (4.268)

where the equality comes from (4.267), the first inequality is implied by Fatou’s
Lemma, the second inequality is a consequence of (4.262) (bearing in mind the first
property in (4.266)), and the last inequality follows from the second line of (4.266).

In turn, (4.268) proves that

the operator [Mb, T ] := b(T ·) − T (b ·) maps the linear space{
f ∈ Lp(�,w) : bf ∈ Lp(�,w)

}
boundedly into Lp(�,w). (4.269)

Given that
{
f ∈ Lp(�,w) : bf ∈ Lp(�,w)

}
is dense in Lp(�,w) (since, as

already noted, this contains L∞comp(�,w) which is itself dense in Lp(�,w)), we
finally conclude that [Mb, T ], originally acting as a commutator in the manner
described in (4.269), extends by density to a linear and bounded mapping from
Lp(�,w) into itself.

Here is a generalization of Theorem 4.3, involving the “maximal commutator”
associated with a given family of linear and bounded operators.

Theorem 4.4 Suppose � ⊆ R
n is a closed Ahlfors regular set, and abbreviate

σ := Hn−1��. Fix p0 ∈ (1,∞) and let {Tj }j∈N be a family of linear operators
which are bounded on Lp0(�,w) for every w ∈ Ap0(�, σ ). Define the action of
the maximal operator associated with this family on each function f ∈ Lp0(�,w)

with w ∈ Ap0(�, σ ) as

Tmaxf (x) := sup
j∈N

|Tjf (x)| for each x ∈ �. (4.270)

Assume that for each w ∈ Ap0(�, σ ) the sub-linear operator Tmax maps Lp0(�,w)

into itself, and that there exists some non-decreasing function � : (0,∞) → (0,∞)

with the property that

‖Tmax‖Lp0 (�,w)→Lp0 (�,w) ≤ �
([w]Ap0

)
for each w ∈ Ap0(�, σ ). (4.271)

Then the following statements are true.
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(i) For each integrability exponent p ∈ (1,∞) there exist C1, C2 ∈ (0,∞) which
depend exclusively on the dimension n, the exponents p0, p, and the Ahlfors
regularity constant of �, with the property that for any Muckenhoupt weight
w ∈ Ap(�, σ) the operator

Tmax : Lp(�,w) −→ Lp(�,w) (4.272)

is well defined, sub-linear, and bounded, with operator norm

‖Tmax‖Lp(�,w)→Lp(�,w) ≤ C1 ·�
(
C2 · [w]1+(p0−1)/(p−1)

Ap

)
. (4.273)

In particular, for each j ∈ N the operator Tj is a well-defined, linear, and
bounded mapping on Lp(�,w) with operator norm satisfying a similar estimate
to (4.273).

(ii) Pick an arbitrary p ∈ (1,∞) along with some w ∈ Ap(�, σ), and fix an
arbitrary complex-valued function b ∈ L∞(�, σ ). Define the action of the
“maximal commutator” (associated with the given function b and the family
{Tj }j∈N) on each function f ∈ Lp(�,w) as

Cmaxf (x) := sup
j∈N
∣∣[Mb, Tj ]f (x)

∣∣ for each x ∈ �, (4.274)

where Mb denotes the operator of pointwise multiplication by the function b.
Then there exist two constants Ci = Ci(�, n, p0, p, [w]Ap) ∈ (0,∞), i ∈ {1, 2},
independent of the function b and the family {Tj }j∈N, with the property that

‖Cmax‖Lp(�,w)→Lp(�,w) ≤ C1 ·�(C2) ‖b‖BMO(�,σ) . (4.275)

The particular case when all operators in the family {Tj }j∈N are identical to one
another corresponds to Theorem 4.3.

Proof of Theorem 4.4 The fact that for each p ∈ (1,∞) and w ∈ Ap(�, σ) the
sub-linear operator Tmax induces a bounded mapping on Lp(�,w) whose operator
norm may be estimated as in (4.273) follows from Rubio de Francia’s extrapolation
theorem, in the format presented in [111, §7.7] (this is responsible for the specific
format of the constant in (4.273); see also [34, Theorem 3.22, p.40] and [42,
Theorem 3.2] for the Euclidean setting). This takes care of item (i).

To deal with item (ii), we shall adapt the argument in [31], [69], [61], [13].
First, from simple linearity and homogeneity considerations, there is no loss of
generality in assuming that b ∈ L∞(�, σ ) is actually real-valued and satisfies
‖b‖BMO (�,σ) = 1 (the case when b is constant is trivial). Fix now p ∈ (1,∞) and
w ∈ Ap(�, σ). From item (8) of Proposition 2.20 we know that there exists some
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small ε = ε(�, p, [w]Ap) > 0 with the property that for each complex number z

with |z| ≤ ε we have

w · e(Re z)b ∈ Ap(�, σ) with
[
w · e(Re z)b

]
Ap
≤ C, (4.276)

where the constant C = C(�, p, [w]Ap) ∈ (0,∞) is independent of z.
To proceed, denote byL (L

p
w) the space of all linear and bounded operators from

Lp(�,w) into itself, equipped with the operator norm ‖ · ‖Lp(�,w)→Lp(�,w). The
idea is now to observe that, for each j ∈ N,

�j :
{
z ∈ C : |z| < ε/2

} −→ L (L
p
w) defined as

�j(z) := MezbTjMe−zb for each z ∈ C with |z| < ε/2
(4.277)

is an analytic map which, for each z ∈ C with |z| < ε/2 and each f ∈ Lp(�,w),
satisfies

ˆ

�

sup
j∈N
∣∣�j(z)f (x)

∣∣p w(x) dσ(x)

=
ˆ

�

sup
j∈N
∣∣Tj (e

−zbf )(x)
∣∣p w(x) · e(Re z)b(x) dσ(x)

=
ˆ

�

∣∣Tmax(e
−zbf )(x)

∣∣p w(x) · e(Re z)b(x) dσ(x)

≤ ‖Tmax‖pLp(�,w·e(Re z)b)→Lp(�,w·e(Re z)b)
×

×
ˆ

�

∣∣e−zb(x)f (x)
∣∣p w(x) · e(Re z)b(x) dσ(x)

≤ C
p

1 ·�
(
C2 · C1+(p0−1)/(p−1)

)p‖f ‖pLp(�,w), (4.278)

thanks to (4.277), (4.270), (4.276), and (4.273). In addition, from (4.277) and
Cauchy’s reproducing formula for analytic functions we see that for each j ∈ N

we have

[Mb, Tj ] = �′j (0) =
1

2π i

ˆ
|z|=ε/4

�j(z)

z2
dz. (4.279)

Consequently, for each f ∈ Lp(�,w) and x ∈ �, we have
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Cmaxf (x) = sup
j∈N
∣∣[Mb, Tj ]f (x)

∣∣ ≤ 8

πε2

ˆ
|z|=ε/4

sup
j∈N
∣∣�j(z)f (x)

∣∣ dH1(z),

(4.280)
hence

∣∣Cmaxf (x)
∣∣p ≤

( 8

πε2

)p ˆ
|z|=ε/4

sup
j∈N
∣∣�j(z)f (x)

∣∣p dH1(z). (4.281)

From the last property in item (i) and (4.274) we see that for each f ∈ Lp(�,w) the
function Cmaxf is σ -measurable. In concert with (4.281) and (4.278), this permits
us to estimate

ˆ

�

∣∣Cmaxf (x)
∣∣p dw(x)

≤
( 8

πε2

)p ˆ

�

( ˆ

|z|=ε/4

sup
j∈N
∣∣�j(z)f (x)

∣∣p dH1(z)

)
dw(x)

=
( 8

πε2

)p ˆ

|z|=ε/4

(ˆ

�

sup
j∈N
∣∣�j(z)f (x)

∣∣p dw(x)

)
dH1(z)

≤
( 23p−1

πp−1ε2p−1
)
C

p

1 ·�
(
C2 · C1+(p0−1)/(p−1)

)p‖f ‖pLp(�,w),

(4.282)

and (4.275) readily follows from this. 
�
We next discuss a companion result to Theorem 4.2, the novelty being the

consideration of a maximal “transpose” operator as defined below in (4.283).

Theorem 4.5 Let � ⊆ R
n be a UR domain. Abbreviate σ := Hn−1�∂� and denote

by ν the geometric measure theoretic outward unit normal to �. Fix an integrability
exponent p ∈ (1,∞) along with a Muckenhoupt weight w ∈ Ap(∂�, σ), and
recall the earlier convention of using the same symbol w for the measure associated
with the given weight w as in (2.509). Also, consider a sufficiently large integer
N = N(n) ∈ N. Given a complex-valued function k ∈ CN(Rn \ {0}) which is even
and positive homogeneous of degree −n, consider the maximal operator T #∗ whose
action on each given function f ∈ Lp(∂�,w) is defined as

T #∗ f (x) := sup
ε>0

∣∣T #
ε f (x)

∣∣ for σ -a.e. x ∈ ∂�, (4.283)

where, for each ε > 0,
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T #
ε f (x) :=

ˆ

y∈∂�
|x−y|>ε

〈y − x, ν(x)〉k(x − y)f (y) dσ(y) for σ -a.e. x ∈ ∂�.

(4.284)
Then for each m ∈ N there exists some Cm ∈ (0,∞), which depends only on

m, n, p, [w]Ap , and the UR constants of ∂� such that, with the piece of notation
introduced in (4.93), one has

∥∥∥T #∗
∥∥∥

Lp(∂�,w)→Lp(∂�,w)
≤ Cm

( ∑

|α|≤N

sup
Sn−1

|∂αk|
)
‖ν‖〈m〉[BMO(∂�,σ)]n . (4.285)

Furthermore, when ‖ν‖[BMO(∂�,σ)]n is sufficiently small relative to n, p, [w]Ap ,
and the Ahlfors regularity constant of ∂� one may take Cm ∈ (0,∞) appearing
in (4.285) to depend itself only on said entities (i.e., n, p, [w]Ap , and the Ahlfors
regularity constant of ∂�) and m.

In particular, Theorem 4.5 may be used to give a direct proof of (4.253), without
having to rely on duality.

Proof of Theorem 4.5 To get started, we observe that if Q+ denotes the collection
of all positive rational numbers, then for each f ∈ L1

(
∂�,

σ(x)

1+|x|n−1
)
we have

(T #∗ f )(x) = sup
ε∈Q+

∣∣(T #
ε f )(x)

∣∣ for every x ∈ ∂∗�. (4.286)

To justify this, pick some f ∈ L1
(
∂�,

σ(x)

1+|x|n−1
)
. We claim that if x ∈ ∂∗� is

arbitrary and fixed then for each ε ∈ (0,∞) and each sequence {εj }j∈N ⊆ (0,∞)

such that εj ↘ ε as j →∞ we have

lim
j→∞

ˆ

y∈∂�
|x−y|>εj

〈y − x, ν(x)〉k(x − y)f (y) dσ(y)

=
ˆ

y∈∂�
|x−y|>ε

〈y − x, ν(x)〉k(x − y)f (y) dσ(y). (4.287)

To justify (4.287) note that

{y ∈ ∂� : |x − y| > εj } ↗ {y ∈ ∂� : |x − y| > ε} as j →∞, (4.288)

in the sense that
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{y ∈ ∂� : |x − y| > ε} =
⋃

j∈N
{y ∈ ∂� : |x − y| > εj } and

{y ∈ ∂� : |x − y| > εj } ⊆ {y ∈ ∂� : |x − y| > εj+1} for every j ∈ N.

(4.289)
Then (4.287) follows from (4.288), the properties of k, and Lebesgue’s Dominated
Convergence Theorem. What we have just proved amounts to saying that for every
function f ∈ L1

(
∂�,

σ(x)

1+|x|n−1
)
we have

lim
j→∞(T #

εj
f )(x) = (T #

ε f )(x) for every x ∈ ∂∗�, (4.290)

whenever ε ∈ (0,∞) and {εj }j∈N ⊆ (0,∞) are such that εj ↘ ε as j → ∞.
Having established this, (4.286) readily follows on account of the density of Q+ in
(0,∞).

To proceed, let {εj }j∈N be an enumeration of Q+. Also, bring back the operators
(4.105) and observe that for each j ∈ N, each f ∈ Lp(∂�,w), and each x ∈ ∂∗�
we have

T #
εj

f (x)+Tεj
f (x) =

ˆ

y∈∂�
|x−y|>εj

〈y−x, ν(x)−ν(y)〉k(x−y)f (y) dσ(y). (4.291)

Write (νi)1≤i≤n for the scalar components of the geometric measure theoretic
outward unit normal ν to � and, for every i ∈ {1, . . . , n}, every j ∈ N, and every
f ∈ Lp(∂�,w) set

T
(i)
j f (x) :=

ˆ

y∈∂�
|x−y|>εj

(yi − xi)k(x − y)f (y) dσ(y) for each x ∈ ∂�. (4.292)

Then, for each j ∈ N and each f ∈ Lp(∂�,w) we may recast (4.291) as

T #
εj

f (x)+ Tεj
f (x) =

n∑

i=1

[
Mνi

,T
(i)
j

]
f (x) for each x ∈ ∂∗�. (4.293)

If for each i ∈ {1, . . . , n} and each f ∈ Lp(∂�,w) we now define

C(i)
maxf (x) := sup

j∈N

∣∣
∣
[
Mνi

,T
(i)
j

]
f (x)

∣∣
∣ for each x ∈ ∂∗�, (4.294)

then, thanks to Proposition 3.4, for each i ∈ {1, . . . , n} we may invoke Theorem 4.4
for the family

{
T

(i)
j

}
j∈N to conclude that
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∥∥∥C(i)
max

∥∥∥
Lp(∂�,w)→Lp(∂�,w)

≤ C
( ∑

|α|≤N

sup
Sn−1

|∂αk|
)
‖ν‖[BMO(∂�,σ)]n , (4.295)

where C ∈ (0,∞) depends only on n, p, [w]Ap , and the UR constants of ∂�. Also,
from (4.293), (4.294), (4.286), and (4.104) we deduce that for each f ∈ Lp(∂�,w)

we have

T #∗ f (x) ≤ T∗f (x)+
n∑

i=1
C(i)
maxf (x) for each x ∈ ∂∗�. (4.296)

At this stage, the estimate in (4.285) becomes a consequence of (4.296), (4.106),
(4.295), (4.98), and (2.118), keeping in mind that, as is apparent from (4.286), the
function T #∗ f is σ -measurable, and that we currently have σ

(
∂� \ ∂∗�

) = 0 (cf.
Definition 2.4 and (2.24)). Finally, the very last claim in the statement is seen from
Theorem 2.3. 
�

To discuss a significant application of Theorem 4.3 let us first formally introduce
the family of Riesz transforms {Rj }1≤j≤n on the boundary a UR domain � ⊆ R

n.
Specifically, with σ := Hn−1�∂�, for each j ∈ {1, . . . , n} the j -th Riesz transform
Rj acts on any given function f ∈ L1

(
∂�,

σ(x)

1+|x|n−1
)
according to

Rjf (x) := lim
ε→0+

2

ωn−1

ˆ

y∈∂�
|x−y|>ε

xj − yj

|x − y|n f (y) dσ(y) (4.297)

at σ -a.e. point x ∈ ∂�.

Theorem 4.6 Let � ⊆ R
n be a UR domain. Abbreviate σ := Hn−1�∂� and

denote by ν = (νk)1≤k≤n the geometric measure theoretic outward unit normal
to �. Also, fix an integrability exponent p ∈ (1,∞) and a Muckenhoupt weight
w ∈ Ap(∂�, σ). Finally, recall the boundary-to-boundary harmonic double layer
potential operator K� from (3.29), the Riesz transforms {Rj }1≤j≤n from (4.297),
and for each index k ∈ {1, . . . , n} denote by Mνk

the operator of pointwise
multiplication by νk , the k-th scalar component of the vector ν.

Then there exists some C ∈ (0,∞) which depends only on n, p, [w]Ap , and the
UR constants of ∂� and, for each m ∈ N, there exists some Cm ∈ (0,∞) which
depends only on m, n, p, [w]Ap , and the UR constants of ∂� with the property that,
with the piece of notation introduced in (4.93), one has

‖K�‖Lp(∂�,w)→Lp(∂�,w) ≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n and

max
1≤j,k≤n

∥
∥[Mνk

, Rj ]
∥
∥

Lp(∂�,w)→Lp(∂�,w)
≤ C‖ν‖[BMO(∂�,σ)]n .

(4.298)
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Also, when ‖ν‖[BMO(∂�,σ)]n is sufficiently small relative to n, p, [w]Ap , and the
Ahlfors regularity constant of ∂� one may take the constants C,Cm ∈ (0,∞)

appearing in (4.298) to depend only on said entities (i.e., n, p, [w]Ap , and the
Ahlfors regularity constant of ∂�) and, in the case of Cm, also on m.

Proof The estimate claimed in (4.298) is implied by (3.29), Corollary 4.2, (4.297),
Proposition 3.4, and Theorem 4.3. The very last claim in the statement is implied by
Theorem 2.3. 
�

We shall, once again, see Theorem 4.3 in action shortly, in the proof of Theo-
rem 4.7. In the latter result the focus is obtaining operator norm estimates for double
layer potentials associated with distinguished coefficient tensors on Muckenhoupt
weighted Lebesgue and Sobolev spaces, exhibiting explicit dependence on the
BMO semi-norm of the geometric measure theoretic outward unit normal to the
underlying domain.

Theorem 4.7 Let � ⊆ R
n be a UR domain. Set σ := Hn−1�∂� and denote

by ν the geometric measure theoretic outward unit normal to �. Also, let L be a
homogeneous, second-order, constant complex coefficient, weakly elliptic M × M

system in R
n for which Adis

L �= ∅. Pick A ∈ Adis
L and consider the boundary-

to-boundary double layer potential operators KA,K#
A associated with � and the

coefficient tensor A as in (3.24) and (3.25), respectively. Finally, fix an integrability
exponent p ∈ (1,∞) and a Muckenhoupt weight w ∈ Ap(∂�, σ).

Then for each m ∈ N there exists some Cm ∈ (0,∞) which depends only on m,
n, A, p, [w]Ap , and the UR constants of ∂� such that, with the piece of notation
introduced in (4.93), one has

‖KA‖[Lp(∂�,w)]M→[Lp(∂�,w)]M ≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n , (4.299)

‖KA‖[Lp
1 (∂�,w)]M→[Lp

1 (∂�,w)]M ≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n , (4.300)

and

∥∥K#
A

∥∥[Lp(∂�,w)]M→[Lp(∂�,w)]M ≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n . (4.301)

In addition, when ‖ν‖[BMO(∂�,σ)]n is sufficiently small relative to n, p, [w]Ap ,
and the Ahlfors regularity constant of ∂� one may take Cm ∈ (0,∞) appearing in
(4.299)–(4.301) to depend itself only on said entities (i.e., n, p, [w]Ap , the Ahlfors
regularity constant of ∂�) and m.

Note that the estimate in (4.299) implies that the operatorKA becomes identically
zero whenever � is a half-space in R

n. From (i)⇔ (ii) in Proposition 3.9 we know
that this may only occur if A ∈ Adis

L . Hence, the assumption Adis
L �= ∅ is actually

necessary in light of the conclusion in Theorem 4.7.
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Proof of Theorem 4.7 The estimates claimed in (4.299) and (4.301) are direct
consequences of Corollary 4.2 and Proposition 3.9, bearing in mind (3.24) and
(3.25).

Turning to the task of proving (4.300), it is apparent from (3.35) that each Ujk

is a sum of operators of commutator type. Then, given any integer m ∈ N along
with any function f ∈ [Lp

1 (∂�,w)
]M , based on (3.37), (4.299), Theorem 4.3, and

(4.98) we may write

‖KAf ‖[Lp
1 (∂�,w)]M = ‖KAf ‖[Lp(∂�,w)]M +

n∑

j,k=1

∥∥∂τjk
(KAf )

∥∥[Lp(∂�,w)]M

= ‖KAf ‖[Lp(∂�,w)]M

+
n∑

j,k=1

(∥∥KA(∂τjk
f )
∥∥[Lp(∂�,w)]M +

∥∥Ujk(∇tanf )
∥∥[Lp(∂�,w)]M

)

≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n ‖f ‖[Lp(∂�,w)]M

+ Cm‖ν‖〈m〉[BMO(∂�,σ)]n
n∑

j,k=1

∥∥∂τjk
f
∥∥[Lp(∂�,w)]M

+ C ‖ν‖[BMO(∂�,σ)]n ‖∇tanf ‖[Lp(∂�,w)]M

≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n ‖f ‖[Lp
1 (∂�,w)]M , (4.302)

which establishes (4.300). The very last claim in the statement is a consequence of
Theorem 2.3. 
�

Remark 4.11 The unweighted case (i.e., the scenario in which w ≡ 1) of Theo-
rem 4.7 gives norm estimates for the double layer operator and its formal transpose
on ordinary Lebesgue and Sobolev spaces. By relying on (4.258)–(4.259), Propo-
sition 3.2, (4.264), and (2.589) we may also obtain similar estimates on Lorentz
spaces and Lorentz-based Sobolev spaces (cf. (2.590)–(2.591)). Specifically, in the
same setting as Theorem 4.7, the aforementioned results imply that for each m ∈ N,
p ∈ (1,∞) and q ∈ (0,∞] there exists some Cm ∈ (0,∞) which depends only on
m, n, A, p, q, and UR constants of ∂�, such that

‖KA‖[Lp,q (∂�,σ)]M→[Lp,q (∂�,σ)]M ≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n , (4.303)

‖KA‖[Lp,q
1 (∂�,σ)]M→[Lp,q

1 (∂�,σ)]M ≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n , (4.304)
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and

∥∥K#
A

∥∥[Lp,q (∂�,σ)]M→[Lp,q (∂�,σ)]M ≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n . (4.305)

More general results of this type are discussed later, in Theorem 8.9 (see also
Examples 8.2 and 8.6).

Remark 4.12 By reasoning much as in the proof of Theorem 4.7, we may also
obtain operator norm estimates for the double layer KA with A ∈ Adis

L on off -
diagonal weighted Sobolev spaces, i.e., when the integrability exponents and the
weights for the Lebesgue spaces to which the actual function and its tangential
derivatives belong to are allowed to be different. Specifically, given two integrability
exponents p1, p2 ∈ (1,∞) along with twoMuckenhoupt weightsw1 ∈ Ap1(∂�, σ)

and w2 ∈ Ap2(∂�, σ), define the off-diagonal weighted Sobolev space

L
p1;p2
1 (∂�,w1;w2) :=

{
f ∈Lp1(∂�,w1) : (4.306)

∂τjk
f ∈ Lp2(∂�,w2), 1 ≤ j, k ≤ n

}
,

equipped with the natural norm defined for each f ∈ L
p1;p2
1 (∂�,w1;w2) as

‖f ‖
L

p1;p2
1 (∂�,w1;w2)

:= ‖f ‖Lp1 (∂�,w1)
+

n∑

j,k=1

∥∥∂τjk
f
∥∥

Lp2 (∂�,w2)
. (4.307)

Then much as in (4.302), for each m ∈ N we now obtain

‖KA‖[Lp1;p2
1 (∂�,w1;w2)]M→[Lp1;p2

1 (∂�,w1;w2)]M ≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n , (4.308)

for some Cm ∈ (0,∞) which depends only on m, n, A, p1, p2, [w1]Ap1
, [w2]Ap2

,
and the UR constants of ∂�.

Remark 4.13 In the setting of Theorem 4.7, estimates (4.299)–(4.301) continue to
hold with a fixed constant Cm ∈ (0,∞) when the integrability exponent and the
corresponding Muckenhoupt weight are permitted to vary with control. Specifically,
from Remark 4.9 and the proof of Theorem 4.7 we see that for each m ∈ N, each
compact interval I ⊂ (0,∞), and each number W ∈ (0,∞) there exists a constant
Cm ∈ (0,∞), which depends only on n, I , W , and the UR constants of ∂�, with the
property that (4.299)–(4.301) hold for each p ∈ I and each w ∈ Ap(∂�, σ) with
[w]Ap ≤ W .

Having proved Theorem 4.7, we may now establish invertibility results for
boundary double layer potentials associated with distinguished coefficient tensors,
assuming � is a δ-flat Ahlfors regular domain with δ suitably small relative to n

and the Ahlfors regularity constant of ∂�. By means of counterexamples we show



306 4 Boundedness and Invertibility of Layer Potential Operators

that assuming that the double layer potentials are associated with distinguished
coefficient tensors is a hypothesis one cannot simply omit. Also, as explained a
little later, in Remark 4.19, the flatness condition imposed on the domain is actually
in the nature of best possible as far as the invertibility results from Theorem 4.8 are
concerned.

Theorem 4.8 Let � ⊆ R
n be an Ahlfors regular domain. Set σ := Hn−1�∂�

and denote by ν the geometric measure theoretic outward unit normal to �. Also,
let L be a homogeneous, second-order, constant complex coefficient, weakly elliptic
M×M system in R

n for which Adis
L �= ∅. Pick A ∈ Adis

L and consider the boundary-
to-boundary double layer potential operators KA,K#

A associated with � and the
coefficient tensor A as in (3.24) and (3.25), respectively. Finally, fix an integrability
exponent p ∈ (1,∞), a Muckenhoupt weight w ∈ Ap(∂�, σ), and some number
ε ∈ (0,∞).

Then there exists some small threshold δ ∈ (0, 1) which depends only on n, p,
[w]Ap , A, ε, and the Ahlfors regularity constant of ∂�, with the property that if
‖ν‖[BMO(∂�,σ)]n < δ it follows that for each spectral parameter z ∈ C with |z| ≥ ε

the following operators are linear, bounded, and invertible:

zI +KA :
[
Lp(∂�,w)

]M −→ [
Lp(∂�,w)

]M
, (4.309)

zI +KA :
[
L

p

1 (∂�,w)
]M −→ [

L
p

1 (∂�,w)
]M

, (4.310)

zI +K#
A :
[
Lp(∂�,w)

]M −→ [
Lp(∂�,w)

]M
. (4.311)

Furthermore, the above result is optimal in the sense that if A /∈ Adis
L then either

of the operators (4.309)–(4.311) may fail to be invertible even when z = 1/2 and
� = R

n+.

Proof Let C denote the constant appearing in estimates (4.299)–(4.301), for the
choice m := 1, and choose tε ∈ (0, 1/e) small enough so that tε · ln(1/tε) < ε/C.
To get going, pick δ ∈ (0, tε). By decreasing δ if necessary, we may insure that
� is a UR domain, with the UR constants of ∂� controlled solely in terms of the
dimension n and the Ahlfors regularity constant of ∂� (cf. Theorem 2.3). Granted
this, Theorem 4.7 applies and gives that

‖KA‖[Lp(∂�,w)]M→[Lp(∂�,w)]M ≤ Cδ〈1〉 ≤ C(tε)
〈1〉 < ε. (4.312)

Analogously,

‖KA‖[Lp
1 (∂�,w)]M→[Lp

1 (∂�,w)]M < ε, (4.313)

∥
∥K#

A

∥
∥[Lp(∂�,w)]M→[Lp(∂�,w)]M < ε. (4.314)
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In particular, the operators in (4.309)–(4.311) are invertible for each given z ∈ C

with |z| ≥ ε using a Neumann series, i.e.,

(
zI +KA

)−1 = z−1
∞∑

m=0

(− z−1KA

)m (4.315)

with convergence in the space of linear and bounded operators on
[
Lp(∂�,w)

]M

as well as on
[
L

p

1 (∂�,w)
]M , and

(
zI +K#

A

)−1 = z−1
∞∑

m=0

(− z−1K#
A

)m (4.316)

with convergence in the space of linear and bounded operators on
[
Lp(∂�,w)

]M .
There remains to address the optimality claim in the last part of the statement.

To this end, recall the second-order, weakly elliptic, constant (real) coefficient,
symmetric, n × n system LD defined in (3.371). From (3.23), (3.31), (2.575),
(3.112), and (3.377) we see that ifKA,K#

A are the boundary layer potential operators
associated as in (3.24), (3.25) with � := R

n+ and any coefficient tensor A ∈ ALD

then
{( 1

2I +KA

)
f : f ∈ [Lp(Rn−1, w)

]n}

⊆
{
(f1, . . . , fn) ∈

[
Lp(Rn−1, w)

]n : fn =
n−1∑

j=1
Rjfj

}
.

(4.317)

Thus,
{
(0, . . . , 0, f ) : f ∈ Lp(Rn−1, w)

}
is an infinite dimensional subspace of

[
Lp(Rn−1, w)

]n whose intersection with
{( 1

2I +KA

)
f : f ∈ [Lp(Rn−1, w)

]n} is

{0}. Consequently, 1
2I +KA acting on

[
Lp(Rn−1, w)

]n has an infinite dimensional
cokernel for each p ∈ (1,∞) and each w ∈ Ap(Rn−1,Ln−1). By duality
(cf. (3.119)), it follows that 1

2I + K#
A acting on

[
Lp(Rn−1, w)

]n has an infinite
dimensional kernel for each p ∈ (1,∞) and each w ∈ Ap(Rn−1,Ln−1). In
particular, the operators in (4.309), (4.311) corresponding to z = 1/2 and � = R

n+
fail to be invertible in this case.

Likewise, from (3.23), (3.31), (2.575), (3.112), (3.113), and (3.378) it follows
that ifKA is the double layer potential operator associated as in (3.24) with� := R

n+
and any coefficient tensor A ∈ ALD

then

{( 1
2I +KA

)
f : f ∈ [Lp

1 (Rn−1, w)
]n}
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⊆
{
(f1, . . . , fn) ∈

[
L

p

1 (Rn−1, w)
]n : fn =

n−1∑

j=1
Rjfj

}
.

(4.318)

Much as before, this shows that 1
2I +KA acting on

[
L

p

1 (Rn−1, w)
]n has an infinite

dimensional cokernel for each p ∈ (1,∞) and each w ∈ Ap(Rn−1,Ln−1). In
particular, the operator in (4.310) corresponding to z = 1/2 and � = R

n+ also fails
to be invertible in this case.

In all cases, the source of the failure for invertibility is the fact that any coefficient
tensor A ∈ ALD

fails to be distinguished (cf. (3.406)). 
�
In Remarks 4.14–4.15 we continue to elaborate on the nature of the optimality

claim in the last portion of the statement of Theorem 4.8.

Remark 4.14 Work with a scalar operator in the two-dimensional setting (i.e., when
n = 2 and M = 1). Specifically, take L := �, the Laplacian in the plane, written as
� = ajk∂j ∂k for the matrix A = (ajk)1≤j,k≤2 given by

A :=
(
1 i
−i 1
)
∈ C

2×2. (4.319)

Then, as noted in (1.23)–(1.24), the boundary-to-boundary double layer potential
operator KA associated as in (3.24) with this coefficient tensor and the domain
� := R

2+ is KA = (i/2)H where H is the Hilbert transform on the real line.
Fix an integrability exponent p ∈ (1,∞) along with a Muckenhoupt weight
w ∈ Ap(R,L1). Since −H 2 = I , the identity operator on Lp(R, w), it follows

that we currently have
(
KA

)2 = 4−1I on Lp(R, w). This further entails

( 1
2I +KA

)(− 1
2I +KA

) = 0 on Lp(R, w) (4.320)

which, in view of the fact that KA �= ± 1
2I , ultimately proves that the operator

1
2I+KA is not invertible3 on anyMuckenhoupt weighted Lebesgue spaceLp(R, w).

From what we have just proved and duality (cf. (3.119)) we then see that the
operator 1

2I + K#
A fails to be invertible on any Muckenhoupt weighted Lebesgue

space Lp(Rn−1, w) as well. Finally, given that (4.320) implies

( 1
2I +KA

)(− 1
2I +KA

) = 0 on L
p

1 (R, w), (4.321)

we also infer that the operator 1
2I + KA fails to be invertible when acting on any

Muckenhoupt weighted Sobolev space L
p

1 (R, w).

3 In fact, 1
2 I + KA acting on Lp(R, w) has an infinite dimensional kernel and an infinite

dimensional cokernel.
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Since A �= I2×2 and Adis
� = {I2×2

}
, the above analysis shows that for coefficient

tensors A ∈ A� \ Adis
� it may actually happen that the conclusions in Theorem 4.8

corresponding to z := 1/2 and � := R
2+ fail.

The following is a higher-dimensional version of Remark 4.14.

Remark 4.15 Fix n ∈ N with n ≥ 2 and define M := 2n. Bring back the M ×M

second-order system L := � · IM×M in R
n (cf. (1.31)). In particular, from (3.396)

and Proposition 3.9 we see that Adis
L = {IM×M}. Consequently, the coefficient tensor

A := (aαβ
jk

)
1≤α,β≤M
1≤j,k≤n

with entries as in (1.33) satisfies

A ∈ AL \ Adis
L . (4.322)

To proceed, let KA be the boundary-to-boundary double layer potential operator
associated as in (3.24) with the coefficient tensor (4.322) and the domain � := R

n+.
Given some arbitrary integrability exponent p ∈ (1,∞) along with some arbitrary
Muckenhoupt weight w ∈ Ap(Rn−1,Ln−1), the same type of argument as in (1.39)
gives

(
KA

)2 = 1
4I on

[
Lp(Rn−1, w)

]M
, (4.323)

where I is the identity operator on
[
Lp(Rn−1, w)

]M . Thus,

( 1
2I +KA

)(− 1
2I +KA

) = 0 on
[
Lp(Rn−1, w)

]M
. (4.324)

In view of the fact that4 KA �= ± 1
2I , the above identity ultimately proves that the

operator 1
2I +KA is not invertible5 on

[
Lp(Rn−1, w)

]M .
Ultimately, this discussion shows that for coefficient tensors as in (4.322) it

may well happen that the operator 1
2I + KA is not invertible on any Muckenhoupt

weighted Lebesgue space
[
Lp(Rn−1, w)

]M . Via duality (cf. (3.119)) we conclude
that the operator 1

2I + K#
A fails to be invertible on any Muckenhoupt weighted

Lebesgue space
[
Lp(Rn−1, w)

]M as well. Finally, since (4.324) implies

( 1
2I +KA

)(− 1
2I +KA

) = 0 on
[
L

p

1 (Rn−1, w)
]M

, (4.325)

4 Since KA is a Fourier multiplier operator with symbol m(ξ ′) := ξj

2|ξ ′ |EnEj for ξ ′ ∈ R
n−1 \ {0}.

5 In fact, 1
2 I + KA acting on

[
Lp(Rn−1, w)

]M has both an infinite dimensional kernel and an
infinite dimensional cokernel.
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we also conclude that the operator 1
2I + KA is not invertible when acting on any

Muckenhoupt weighted Sobolev space
[
L

p

1 (Rn−1, w)
]M . Hence, all conclusions in

Theorem 4.8 corresponding to z := 1/2 and � := R
2+ fail.

Remark 4.16 In view of (4.303)–(4.305), and (4.308), invertibility results which are
similar to those proved in Theorem 4.8 may be established on Lorentz spaces and
Lorentz-based Sobolev spaces, as well as on the brand of off-diagonal Muckenhoupt
weighted Sobolev spaces defined as in (4.306)–(4.307).

Remark 4.17 It is of interest to contrast Theorem 4.8 with the precise invertibility
results known in the particular case when � is an infinite sector in the plane, with
opening angle θ ∈ (0, 2π) and when L = � (the two-dimensional Laplacian). In
such a setting, it is known (cf. [48], [115, §4.2], [126, Theorem 5, p. 192]) that

given p ∈ (1,∞), the operators ± 1
2I + K� are invertible on

Lp(∂�, σ) if and only if p �= 1+ |π − θ |/π (which amounts to
saying that necessarily p �= 2π−θ

π
for θ ∈ (0, π) and p �= θ

π
for

θ ∈ (π, 2π)).

(4.326)

When θ = π (i.e., when � is a half-plane) then, of course, any p ∈ (1,∞) will
do. In this vein, see also [105, Lemma 4.5, p. 2042]. Consider next the case of the
two-dimensional Lamé system in an infinite sector of aperture θ ∈ (0, 2π), and
recall from the discussion at the end of Example 3.4 that the pseudo-stress double
layer potential operator for the Lamé system is denoted by K� . Then there are two
critical values of the integrability exponent p ∈ (1,∞), which depend on θ and a
specific combination of the Lamé moduli, for which the invertibility of the operators
± 1

2I +K� on
[
Lp(∂�, σ)

]2 fails. See [110, Theorem 1.1(A.2) on pp. 153-154, and
Theorem 1.3 on pp. 157-158] for more precise information in this regard (including
the location of these critical values, which are no longer as explicit as in the case of
the Laplacian, and certain monotonicity properties with respect to the angle θ and
the Lamé moduli). We shall revisit the case of the two-dimensional Lamé system in
Sect. 4.5.

Remark 4.18 In the context of Theorem 4.8, the operators in (4.309)–(4.311)
continue to be invertible when the integrability exponent and the corresponding
Muckenhoupt weight are permitted to vary while retaining control. More specif-
ically, from Remark 4.13 and the proof of Theorem 4.8 it follows that for each
compact interval I ⊂ (0,∞) and each number W ∈ (0,∞) there exists a threshold
δ ∈ (0, 1), which depends only on n, I , W , and the Ahlfors regularity constant of
∂�, with the property that if

‖ν‖[BMO(∂�,σ)]n < δ (4.327)
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then the operators (4.309)–(4.311) are linear, bounded, and invertible for each p ∈ I

and each w ∈ Ap(∂�, σ) with [w]Ap ≤ W .

Remark 4.19 The more general version of Theorem 4.8 from Remark 4.18 is in
the nature of best possible, in the sense that the simultaneous invertibility result
described in Remark 4.18 forces ‖ν‖[BMO(∂�,σ)]n to be small (relative to the other
geometric characteristics of �). To illustrate this, consider the case when � = �θ ,
an infinite sector in the plane with opening angle θ ∈ (0, 2π) (cf. (2.289)), and
when L = �, the two-dimensional Laplacian. We are interested in the geometric
implications of having the operators ± 1

2I + K� invertible on Lp(∂�θ , σθ ) (where

σθ := H1�∂�θ ) for all p’s belonging to a compact sub-interval of (1,∞).
Specifically, suppose said operators are invertible whenever p ∈ Iη := [1+ η, 2]

for some fixed η ∈ (0, 1). From (4.326) we see that this forces θ �= π(2 − p) if
θ ∈ (0, π) and θ �= πp if θ ∈ (π, 2π). As p swipes the interval [1+η, 2], the set of
prohibited values for the aperture θ becomes

(
0, (1−η)π

]∪[(1+η)π, 2π
)
. Hence,

we necessarily have θ ∈ ((1− η)π, (1+ η)π
)
which further entails

−sin (ηπ
2

) = cos
(
(1+η)π

2

)
< cos(θ/2) < cos

(
(1−η)π

2

) = sin
(
ηπ
2

)
. (4.328)

If ν denotes the outward unit normal vector to �θ , then from (4.328) and (2.290)
we conclude that

‖ν‖[BMO(∂�θ ,σθ )]2 = | cos(θ/2)| < sin
(
ηπ
2

) −→ 0+ as η → 0+. (4.329)

This goes to show that, in general, the smallness of the BMO semi-norm of the
geometric measure theoretic outward unit normal stipulated in (4.327) cannot be
dispensed with, as far as the invertibility of the operator in (4.309) (in this case,
with z ∈ {± 1

2 }, L = �, A the identity matrix, M = 1, and w ≡ 1) for each p ∈ Iη

is concerned.

The invertibility results from Theorem 4.8 may be further enhanced by allowing
the coefficient tensor to be a small perturbation of any distinguished coefficient
tensor of the given system. Concretely, by combining Theorem 4.7 with the
continuity of the operator-valued assignments in (3.120)–(3.122), we obtain the
following result.

Theorem 4.9 Retain the original background assumptions on the set � from The-
orem 4.8 and, as before, fix an integrability exponent p ∈ (1,∞), a Muckenhoupt
weight w ∈ Ap(∂�, σ), and some number ε ∈ (0, 1). Consider L ∈ Ldis (cf.
(3.195)) and pick an arbitrary Ao ∈ Adis

L . Then there exist some small threshold
δ ∈ (0, 1) along with some open neighborhood O of Ao in AWE , both of which
depend only on n, p, [w]Ap , Ao, ε, and the Ahlfors regularity constant of ∂�, with
the property that if ‖ν‖[BMO(∂�,σ)]n < δ then for each A ∈ O and each spectral
parameter z ∈ C with |z| ≥ ε, the operators (4.309)–(4.311) are linear, bounded,
and invertible.
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In the last portion of this section we discuss the issue of the compatibility
of the inverses of the integral operators from Theorem 4.8 when simultaneously
considered on different spaces. This requires that we briefly digress for the purpose
of bringing in useful language and basic results of general functional analytic
nature. Specifically, call two linear normed spaces, X0 = (

X0, ‖ · ‖X0

)
and

X1 =
(
X1, ‖ · ‖X1

)
, compatible if there exists a Hausdorff topological vector

space X such that

Xi ↪→ X continuously, i ∈ {0, 1}. (4.330)

Note that, in this scenario, we can talk about the algebraic sum X0+X1(⊆ X). This
becomes a linear normed space when equipped with

‖x‖X0+X1 := inf
x=x0+x1

x0∈X0, x1∈X1

(‖x0‖X0 + ‖x1‖X1

)
, ∀ x ∈ X0 +X1, (4.331)

and X0 + X1 ↪→ X continuously. Furthermore, Xi ↪→ X0 + X1 continuously, for
i ∈ {0, 1}. One may check that if X0, X1 are complete then so is X0 +X1 equipped
with ‖·‖X0+X1 . Hence, X0+X1 turns out to be a Banach space ifX0,X1 are Banach
spaces to begin with.

We continue by recording two useful basic results of functional analytic nature.
To state the first such result, suppose X0 =

(
X0, ‖ · ‖X0

)
and X1 =

(
X1, ‖ · ‖X1

)
on

the one hand, and Y0 =
(
Y0, ‖ · ‖Y0

)
and Y1 =

(
Y1, ‖ · ‖Y1

)
on the other hand, are

two pairs of compatible linear normed spaces. Then

having a linear mapping T : X0+X1 → Y0+Y1 which satisfies
T Xi ⊆ Yi for i ∈ {0, 1} is equivalent to having two linear maps
Ti : Xi → Yi for i ∈ {0, 1} that are compatible with one another,
in the sense that T0

∣∣
X0∩X1

= T1
∣∣
X0∩X1

; in this case one has

‖T ‖X0+X1→Y0+Y1 ≤ max
{‖T0‖X0→Y0, ‖T1‖X1→Y1

}
.

(4.332)

To state our second result alluded to above, assume now that X, Y are two Banach
spaces with the property that Y ⊆ X. One may check without difficulty that

if T : X → X is a linear isomorphism with the property that
T (Y ) ⊆ Y and T

∣∣
Y
: Y → Y is also an isomorphism, then

T −1(Y ) ⊆ Y and
(
T
∣∣
Y

)−1 = T −1
∣∣
Y
as operators on Y .

(4.333)

We are now ready to establish norm estimates for double layer operators acting
on sums of Muckenhoupt weighted Lebesgue and Sobolev spaces.

Proposition 4.1 Let � ⊆ R
n be a UR domain. Abbreviate σ := Hn−1�∂� and

denote by ν the geometric measure theoretic outward unit normal to �. Also, let
L be a homogeneous, second-order, constant complex coefficient, weakly elliptic
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M × M system in R
n for which Adis

L �= ∅. Pick a coefficient tensor A ∈ Adis
L

and consider the boundary-to-boundary double layer potential operators KA,K#
A

associated with � and the coefficient tensor A as in (3.24) and (3.25), respectively.
Finally, fix some pair of integrability exponents p0, p1 ∈ (1,∞) along with some
pair of Muckenhoupt weights w0 ∈ Ap0(∂�, σ) and w1 ∈ Ap1(∂�, σ).

Then for each m ∈ N there exists some constant C ∈ (0,∞) which depends only
on m, n, A, p0, p1, [w0]Ap0

, [w1]Ap1
, and the UR constants of ∂� such that, with

the piece of notation introduced in (4.93), one has

‖KA‖[Lp0 (∂�,w0)+Lp1 (∂�,w1)]M→[Lp0 (∂�,w0)+Lp1 (∂�,w1)]M

≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n , (4.334)

‖KA‖[Lp0
1 (∂�,w0)+L

p1
1 (∂�,w1)]M→[Lp0

1 (∂�,w0)+L
p1
1 (∂�,w1)]M

≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n , (4.335)

∥∥K#
A

∥∥[Lp0 (∂�,w0)+Lp1 (∂�,w1)]M→[Lp0 (∂�,w0)+Lp1 (∂�,w1)]M

≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n . (4.336)

Also, if ‖ν‖[BMO(∂�,σ)]n is sufficiently small relative to n, p, [w]Ap , and the
Ahlfors regularity constant of ∂� one may take Cm ∈ (0,∞) appearing in (4.334)–
(4.336) to depend only on said entities (i.e., n, p, [w]Ap , the Ahlfors regularity
constant of ∂�) and m.

Proof This is a consequence of Theorems 4.7, (4.332), and 2.3. In the case of
(4.334) and (4.336) take Xi := Yi :=

[
Lpi (∂�,wi)

]M for i ∈ {0, 1}, in which case

(4.330) is satisfied if we choose X :=
[
L1
(
∂�,

σ(x)

1+|x|n−1
)]M

(cf. (2.575)). Finally,

for the estimate claimed in (4.335), take Xi := Yi :=
[
L

pi

1 (∂�,wi)
]M for each

i ∈ {0, 1}, so now the inclusion in (4.330) holds if X :=
[
L1
1

(
∂�,

σ(x)

1+|x|n−1
)]M

where

L1
1

(
∂�,

σ(x)

1+|x|n−1
) :=
{
f ∈ L1(∂�,

σ(x)

1+|x|n−1
) : (4.337)

∂τjk
f ∈ L1(∂�,

σ(x)

1+|x|n−1
)
for each j, k ∈ {1, . . . , n}

}
,

equipped with the norm
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‖f ‖
L1
1

(
∂�,

σ(x)

1+|x|n−1
) := ‖f ‖

L1
(
∂�,

σ(x)

1+|x|n−1
) +

n∑

j,k=1

∥
∥∂τjk

f
∥
∥

L1
(
∂�,

σ(x)

1+|x|n−1
)

(4.338)
for each f ∈ L1

1

(
∂�,

σ(x)

1+|x|n−1
)
. 
�

Here are the compatibility results for the inverses of integral operators from
Theorem 4.8 when simultaneously considered on different Muckenhoupt weighted
Lebesgue and Sobolev spaces.

Proposition 4.2 Let � ⊆ R
n be an Ahlfors regular domain. Denote by ν the geo-

metric measure theoretic outward unit normal to � and abbreviate σ := Hn−1�∂�.
Also, let L be a homogeneous, second-order, constant complex coefficient, weakly
elliptic M ×M system in R

n for which Adis
L �= ∅. Pick A ∈ Adis

L and consider the
boundary-to-boundary double layer potential operators KA,K#

A associated with
� and the coefficient tensor A as in (3.24) and (3.25), respectively. Finally, fix
some pair of integrability exponents p0, p1 ∈ (1,∞) along with some pair of
Muckenhoupt weights w0 ∈ Ap0(∂�, σ) and w1 ∈ Ap1(∂�, σ), and some number
ε ∈ (0, 1).

Then there exists some small threshold δ ∈ (0, 1) which depends only on n,
p0, p1, [w0]Ap0

, [w1]Ap1
, A, ε, and the Ahlfors regularity constant of ∂�, with the

property that if ‖ν‖[BMO(∂�,σ)]n < δ it follows that for each spectral parameter
z ∈ C with |z| ≥ ε the following properties hold:

the operator zI+KA is invertible both as a mapping from the
space

[
Lp0(∂�,w0) + Lp1(∂�,w1)

]M
onto itself and also

from the space
[
L

p0
1 (∂�,w0)+ L

p1
1 (∂�,w1)

]M
onto itself;

(4.339)

the operator zI + KA is invertible both as a mapping from[
Lp0(∂�,w0)

]M
onto itself and also as a mapping from

[
Lp1(∂�,w1)

]M
onto itself, and the two inverses are in fact

compatible with one another on the intersection;

(4.340)

the operator zI + KA is invertible both as a mapping from[
L

p0
1 (∂�,w0)

]M
onto itself and also as a mapping from

[
L

p1
1 (∂�,w1)

]M
onto itself, and the two inverses are in fact

compatible with one another on the intersection;

(4.341)

the operator zI + K#
A is invertible both as a mapping from

[
Lp0(∂�,w0)

]M
onto itself and also as a mapping from

[
Lp1(∂�,w1)

]M
onto itself, and the two inverses are in fact

compatible with one another on the intersection.

(4.342)
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Proof Bring in the constant C appearing in estimates (4.334)–(4.336) (correspond-
ing to m := 1), and denote by tε ∈ (0, 1) the unique solution of the equation
t · ln(e/t) = ε/max{C, 1}. Pick δ ∈ (0, tε) and, if necessary, further decrease δ as to
insure that� is a UR domain, with the UR constants of ∂� controlled solely in terms
of the dimension n and the Ahlfors regularity constant of ∂� (cf. Theorem 2.3).

Then, via a Neumann series argument (much as in the proof of Theorem 4.8)
it follows that zI + KA is invertible when considered from

[
Lp0(∂�,w0)

]M onto

itself, from
[
Lp1(∂�,w1)

]M onto itself, from
[
Lp0(∂�,w0)+Lp1(∂�,w1)

]M onto

itself, and also from
[
L

p0
1 (∂�,w0)+ L

p1
1 (∂�,w1)

]M onto itself. Invoking (4.333)

with X := [Lp0(∂�,w0)+Lp1(∂�,w1)
]M and with Y either

[
Lp0(∂�,w0)

]M or
[
Lp1(∂�,w1)

]M , then proves that both the inverse of zI +KA on
[
Lp0(∂�,w0)

]M

and the inverse of zI + KA on
[
Lp1(∂�,w1)

]M arise as restrictions to these
respective spaces of a common operator, namely the inverse of the operator zI+KA

on the bigger space
[
Lp0(∂�,w0) + Lp1(∂�,w1)

]M . As such, they agree with
one another so the conclusion in (4.340) follows. The claims in (4.341)–(4.342) are
proved in a similar fashion. 
�

Remark 4.20 Compatibility results similar in spirit to the ones proved in Propo-
sition 4.2 are also valid for other spaces of interest. For example, in the context
of Proposition 4.2, taking the threshold δ ∈ (0, 1) sufficiently small ensures that
the operator zI +KA is invertible on the hybrid space

[
L

p1;p2
1 (∂�,w1;w2)

]M (cf.
Remark 4.12) and its inverse continues to be compatible with the inverse of zI+KA

on any other (a priori) given Muckenhoupt weighted Lebesgue space or Sobolev
space on ∂�. In this vein, we also claim that there exists some constant C ∈ (0,∞)

with the property that

whenever f ∈ [Lp1;p2
1 (∂�,w1;w2)

]M

and g := (zI +KA)−1 f ∈ [Lp1;p2
1 (∂�,w1;w2)

]M

then ‖∇tang‖[Lp2 (∂�,w2)]n·M ≤ C ‖∇tanf ‖[Lp2 (∂�,w2)]n·M .

(4.343)

To justify this, use (3.37) to write, for each j, k ∈ {1, . . . , n},

∂τjk
f = ∂τjk

[(
zI +KA

)
g
] = (zI +KA

)
(∂τjk

g)+ Ujk(∇tang)

= (zI +KA

)
(∂τjk

g)+ Ujk

((
νr∂τrs gα

)
1≤α≤M
1≤s≤n

)
(4.344)

at σ -a.e. point on ∂�, where ν = (νr )1≤r≤n is the geometric measure theoretic
outward unit normal to �. Using the abbreviations

∇τ f :=
(
∂τjk

f
)
1≤j,k≤n

, ∇τ g :=
(
∂τjk

g
)
1≤j,k≤n

, (4.345)
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we find it convenient to recast the collection of all formulas as in (4.344),
corresponding to all indices j, k ∈ {1, . . . , n}, simply as

∇τ f =
(
zI + R

)
(∇τ g), (4.346)

where I is the identity and R is the operator acting from
[
Lp2(∂�,w2)

]M·n2 into
itself according to

R := KA +
(
Ujk ◦

(
Mνr ◦ πα

rs

)
1≤α≤M
1≤s≤n

)

1≤j,k≤n
. (4.347)

Above, we let KA act on each F = (Fα
rs

)
1≤α≤M
1≤r,s≤n

∈ [Lp2(∂�,w2)
]M·n2 by setting

KAF :=
(
KA

(
Fα

rs

)
1≤α≤M

)

1≤r,s≤n
. (4.348)

Also recall that, much as in the past, each Mνr denotes the operator of pointwise
multiplication by νr , the r-th scalar component of ν. Finally, in (4.347) we let each
πα

rs be the “coordinate-projection” operator which acts as πα
rs(X) := Xα

rs for every

X = (Xα
rs

)
1≤α≤M
1≤r,s≤n

∈ C
M·n2 . From (4.347), (4.299), (3.35), Theorem 4.3, and (3.81),

we then conclude that

‖R‖[Lp2 (∂�,w2)]M·n2→[Lp2 (∂�,w2)]M·n2 ≤ C‖ν‖〈1〉[BMO(∂�,σ)]n (4.349)

for some C ∈ (0,∞) which depends only on n, A, p2, [w2]Ap2
, and the Ahlfors

regularity constant of ∂�. As a consequence of this, if we assume δ > 0 to be
sufficiently small to begin with, a Neumann series argument gives that

zI + R is invertible on
[
Lp2(∂�,w2)

]M·n2 (4.350)

and provides an estimate for the norm of the inverse. At this stage, the estimate
claimed in (4.343) follows from (4.346), (4.350), (4.345), and (2.585)–(2.586).

We conclude this section by proving estimates for the operator norm of the
modified boundary-to-boundary double layer operator acting on homogeneous
Muckenhoupt weighted Sobolev spaces in terms of the BMO semi-norm of
the geometric measure theoretic outward unit normal to the underlying domain,
complementing results in Theorem 4.7.

Theorem 4.10 Let � ⊆ R
n be a two-sided NTA domain whose boundary is

an unbounded Ahlfors regular set. Abbreviate σ := Hn−1�∂� and denote by
ν the geometric measure theoretic outward unit normal to �. Also, let L be a
homogeneous, second-order, constant complex coefficient, weakly elliptic M × M

system in R
n for which Adis

L �= ∅. Pick A ∈ Adis
L and consider the modified
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boundary-to-boundary double layer potential operator
[
K

A,mod

]
associated with �

and the coefficient tensor A as in (3.142). Finally, fix an integrability exponent
p ∈ (1,∞) and a Muckenhoupt weight w ∈ Ap(∂�, σ).

Then for each m ∈ N there exists some Cm ∈ (0,∞) which depends only on m,
n, A, p, [w]Ap , and the Ahlfors regularity constant of ∂�, such that

∥∥[K
A,mod

]∥∥[ .Lp
1 (∂�,w)/∼]M→[ .Lp

1 (∂�,w)/∼]M ≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n . (4.351)

Furthermore, the above result is optimal in the sense that, given any A ∈ AL,
having (4.351) valid for every half-space in R

n implies that actually A ∈ Adis
L .

Proof From (2.88) we know that � satisfies a two-sided local John condition. Pick
an arbitrary function f ∈ [ .Lp

1 (∂�,w)
]M . In particular, from (2.598) and (2.576)

we see that

f ∈ [Lq

loc(∂�, σ)
]M for some q ∈ (1,∞). (4.352)

Keeping this in mind, we may rely on (3.142), Propositions 2.26, 3.3, (4.299),
Theorem 4.3, and (4.98) to write, for each given m ∈ N,

∥∥[K
A,mod

][f ]∥∥[ .Lp
1 (∂�,w)/∼]M =

∥∥[K
A,modf

]∥∥
[ .Lp

1 (∂�,w)/∼]M

=
n∑

j,k=1

∥
∥∂τjk

(K
A,modf )

∥
∥[Lp(∂�,w)]M

≤
n∑

j,k=1

(∥∥KA(∂τjk
f )
∥∥[Lp(∂�,w)]M +

∥∥Ujk(∇tanf )
∥∥[Lp(∂�,w)]M

)

≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n
n∑

j,k=1

∥∥∂τjk
f
∥∥[Lp(∂�,w)]M

+ C‖ν‖[BMO(∂�,σ)]n‖∇tanf ‖[Lp(∂�,w)]nṀ

≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n ‖[f ]‖[ .Lp
1 (∂�,w)/∼]M , (4.353)

bearing in mind that each Ujk is a sum of operators of commutator type (cf. (3.35)).
There remain to address the optimality claim made in the last portion of the

statement of the theorem. To this end, suppose A ∈ AL is such that (4.351) is valid
in every half-space � in R

n. In view of the fact that the BMO semi-norm of the
normal vanishes in such cases, this amounts to having the modified boundary-to-
boundary double layer operator K

A,mod map each function from
[
C∞c (∂�)

]M into
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a constant in C
M . Granted this, the implication (iii’)⇒ (i) in Proposition 3.9 gives

that actually A ∈ Adis
L . 
�

4.4 Invertibility on Muckenhoupt Weighted Homogeneous
Sobolev Spaces

Earlier in (3.132), we have considered the boundary-to-boundary single layer
operator

[
Smod

] : [Lp(∂�,w)
]M → [ .

L
p

1 (∂�,w)
/ ∼ ]M . Its invertibility

properties are going to be of basic importance in the context of boundary value
problems for the system L in �. For example, under suitable geometric assumptions
on the set �, if

[
Smod

]
is injective then the Homogeneous Regularity Problem for L

in � has at most one solution, and if
[
Smod

]
is surjective then the Homogeneous

Regularity Problem for L in � is solvable. In particular, having
[
Smod

]
bijective

guarantees the well-posedness of the Homogeneous Regularity Problem for L in �.
Lemma 4.3 and Proposition 4.3 elaborate on this topic.

Lemma 4.3 Let � ⊆ R
n be a UR domain and abbreviate σ := Hn−1�∂�. Fix

an aperture parameter κ > 0, an integrability exponent p ∈ (1,∞), and a
Muckenhoupt weight w ∈ Ap(∂�, σ). Also, suppose L is a homogeneous, second-
order, constant complex coefficient, weakly elliptic M ×M system in R

n. Consider
the Homogeneous Regularity Problem for L in �, with boundary data prescribed in
homogeneous Muckenhoupt weighted Sobolev spaces, i.e.,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u ∈ [C∞(�)
]M

,

Lu = 0 in �,

Nκ(∇u) ∈ Lp(∂�,w),

u
∣∣κ−n.t.
∂�

= f ∈ [ .Lp

1 (∂�,w)
]M

,

(4.354)

where
.
L

p

1 (∂�,w) is the homogeneous Muckenhoupt weighted boundary Sobolev
space defined in (2.598). Also, consider the operator (cf. (3.132))

[
Smod

] : [Lp(∂�,w)
]M −→ [ .

L
p

1 (∂�,w)
/ ∼ ]M. (4.355)

Then the following statements are true:

(a) If
[
Smod

]
as in (4.355) is surjective then the Homogeneous Regularity Problem

(4.354) has a solution.
(b) If � is actually an NTA domain with an unbounded Ahlfors regular boundary

and if
[
Smod

]
as in (4.355) is injective then the Homogeneous Regularity Problem

(4.354) has at most one solution modulo constants.
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Proof Suppose the operator in (4.355) is surjective and let f ∈ [ .Lp

1 (∂�,w)
]M be

arbitrary. Then there exists g ∈ [Lp(∂�,w)
]M such that Smodg = f + c for some

c ∈ C
M . If we now define u := Smodg − c then item (c) in Proposition 3.5, (3.47),

and (2.575) imply that this is a solution of (4.354) for the boundary datum f .
To deal with the claim in item (b), strengthen the original hypotheses on � by

assuming now that � is actually an NTA domain with an unbounded Ahlfors regular
boundary (in particular, � is connected; see (2.65)). Also, suppose

[
Smod

]
defined

as in (4.355) is an injective operator. To proceed, denote by ν = (ν1, . . . , νn)

the geometric measure theoretic outward unit normal to � and pick an arbitrary
coefficient tensor A = (

a
αβ
rs

)
1≤r,s≤n
1≤α,β≤M

∈ AL. Let u be a solution of (4.354)

corresponding to f := c ∈ C
M . From the current assumptions and the Fatou-type

result recalled in Theorem 3.4 (whose present applicability is ensured by (2.576))
we conclude that

the trace (∇u)
∣∣κ−n.t.
∂�

exists and belongs to
[
Lp(∂�,w)

]M×n
. (4.356)

In view of this and (3.66), the conormal derivative

∂A
ν u :=

(
νra

αβ
rs

(
∂suβ

)∣∣κ−n.t.
∂�

)

1≤α≤M
exists σ -a.e. on ∂�

and belongs to
[
Lp(∂�,w)

]M
.

(4.357)

Based on (4.354), (2.575), (3.54), Proposition 2.24, the fact that u
∣∣κ−n.t.
∂�

= c, the
integral representation formula (3.69), and the fact that we are presently assuming
that � is connected, we may write

u = −Smod

(
∂A
ν u
)+ cu in �, (4.358)

for some constant cu ∈ C
M (depending on u). By taking the nontangential trace to

the boundary (recall (3.47)) the latter implies c = −Smod

(
∂A
ν u
)+ cu, hence

[
Smod

](
∂A
ν u
) = 0. (4.359)

Since ∂A
ν u ∈ [Lp(∂�,w)

]M and since we are assuming that the operator
[
Smod

]
is

injective in the context of (4.355), this forces ∂A
ν u = 0. When used back in (4.358),

this proves that u is constant in �. The claim in (b) is therefore established. 
�
Our next result builds on Lemma 4.3 by establishing a two-way street between

invertibility of the single layer potential operator and the well-posedness of the
Homogeneous Regularity Problem.

Proposition 4.3 Let � ⊆ R
n be a two-sided NTA domain with an unbounded

Ahlfors regular boundary, and abbreviate σ := Hn−1�∂�. Fix an aperture
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parameter κ > 0, an integrability exponent p ∈ (1,∞), and a Muckenhoupt weight
w ∈ Ap(∂�, σ). Next, assume L is a homogeneous, second-order, constant complex
coefficient, weakly elliptic M×M system in R

n and denote by (HRP+) and (HRP−)

the Homogeneous Regularity Problems formulated as in (4.354) corresponding to
�+ := � and to �− := R

n \ �, respectively. Finally, recall the operator
[
Smod

]

from (4.355). Then the following statements are true:

(a) The operator
[
Smod

]
is injective in the context of (4.355) if and only if (HRP+)

and (HRP−) have at most one solution modulo constants.
(b) The operator

[
Smod

]
is surjective in the context of (4.355) if and only if (HRP+)

and (HRP−) have a solution.
(c) The operator

[
Smod

]
is an isomorphism in the context of (4.355) if and only if

(HRP+) and (HRP−) are well-posed.

Proof Suppose (HRP+) and (HRP−) have at most one solution modulo constants
and let f ∈ [Lp(∂�,w)

]M be such that Smodf = c ∈ C
M . Then u+ := Smodf

in �+ and u− := Smodf in �− solve (HRP+) and (HRP−), respectively, for the
boundary datum c (see item (c) in Proposition 3.5, (3.47), and (2.575)). In view
of the current working hypothesis, this forces u± to be constant functions in �±.
Picking A ∈ AL and invoking (3.126) as well as (6.191)–(6.192), we obtain that
f = ∂A

ν u− − ∂A
ν u+ = 0, where the last equality is implied by the fact that the

functions u± are constant in �± and (3.66). Hence,
[
Smod

]
is injective in the context

of (4.355). The converse implication stated in (a) is a consequence of item (b) in
Lemma 4.3 (used both for �+ and �−).

Moving on to the claim made in item (b), suppose (HRP+) and (HRP−) are
solvable and pick f ∈ [ .Lp

1 (∂�,w)
]M arbitrary. Denote by u+ and u− a solution

of (HRP+) and of (HRP−), respectively, for the boundary datum f . Also, fix a
coefficient tensor A ∈ AL. Collectively, the current assumptions, the Fatou-type
result recalled in Theorem 3.4 (whose present applicability is ensured by (2.576)),
(2.575), and Proposition 2.24 guarantee that the integral representation formula
(3.69) holds both for u+ in �+ and for u− in �−. Specifically,

u+ = D
A,mod

(
u+
∣∣κ−n.t.
∂�

)−Smod

(
∂A
ν u+

)+ c+ in �+,

u− = −D
A,mod

(
u−
∣
∣κ−n.t.
∂�

)+Smod

(
∂A
ν u−

)+ c− in �−,

(4.360)

for some constants c± ∈ C
M (keep in mind that both �+ and �− are connected; cf.

(2.65)). Taking nontangential boundary traces in (4.360) yields

f = ( 12I +K
A,mod

)
f − Smod

(
∂A
ν u+

)+ c+ on ∂�,

f = −(− 1
2I +K

A,mod

)
f + Smod

(
∂A
ν u−

)+ c− on ∂�,
(4.361)

on account of (3.61) and (3.47). After adding the two equalities in (4.361) we arrive
at
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f = Smod

(− ∂A
ν u+ + ∂A

ν u−
)+ c+ + c− on ∂�, (4.362)

hence [f ] = [Smod

]( − ∂A
ν u+ + ∂A

ν u−
)
. The latter proves that the operator Smod is

surjective in the context of (4.355), since −∂A
ν u+ + ∂A

ν u− ∈ [Lp(∂�,w)
]M . The

converse implication stated in (b) is a consequence of Lemma 4.3 (used both for
�+ and �−). Finally, the claim in item (c) follows from (a)-(b), so the proof of the
proposition is complete. 
�

We next turn our attention to the issue of invertibility (or lack thereof) for the
operator

[
Smod

]
in the context of (4.355). We begin with the following proposition,

which offers an example of the failure of the operator (4.355) to be Fredholm (in
every single respect:

[
Smod

]
has an infinite dimensional kernel, as well as an infinite

dimensional cokernel) even when the underlying domain is a half-space and when
the system involved is symmetric. As we shall see a little later, in Theorem 4.11, the
source of this failure is the lack of a distinguished coefficient tensor for said system.

Proposition 4.4 Consider the second-order n× n system LD := �− 2∇div in R
n

with n ≥ 2. Fix an integrability exponent p ∈ (1,∞) along with a Muckenhoupt
weight w ∈ Ap(Rn−1,Ln−1). Then the single layer potential operator

[
Smod

]
,

associated as in (3.42) with the system LD and the domain � := R
n+, acting in

the context

[
Smod

] : [Lp(Rn−1, w)
]n −→ [ .

L
p

1 (Rn−1, w)
/ ∼ ]n (4.363)

has an infinite dimensional kernel and an infinite dimensional cokernel.

Proof Denote by Ker
(
HRPLD

)
the space of null-solutions of the Homogeneous

Regularity Problem for the system LD in the upper half-space, i.e., the space of
functions u satisfying

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u ∈ [C∞(Rn+)
]n

,

LDu = 0 in R
n+,

Nκ(∇u) ∈ Lp(Rn−1, w),

u
∣∣κ−n.t.
R

n−1 = 0.

(4.364)

Also, denote by Ker[Smod

]
the kernel of the operator (4.363) and fix a coefficient

tensor A ∈ ALD
. Then, as seen from the proof of part (b) in Lemma 4.3 (see the

reasoning leading up to (4.359)), the mapping

Ker
(
HRPLD

) � u �−→ ∂A
ν u ∈ Ker[Smod

]
(4.365)

is well defined and injective. Being also linear, this entails

dim
(
Ker[Smod

]) ≥ dim
(
Ker
(
HRPLD

))
. (4.366)
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The later when combined with (3.391) shows that dim
(
Ker[Smod

]) = +∞.
Also, much as in the proof of item (a) in Lemma 4.3, from item (c) in

Proposition 3.5, (3.47), and (2.575) we see that Im[Smod

]
, the image of the operator

(4.363), is a subspace of

{
u
∣∣κ−n.t.
∂Rn+

: u ∈ [C∞(Rn+)
]n

, LDu = 0 in R
n+, Nκ(∇u) ∈ Lp(Rn−1, w)

}
.

(4.367)

Recalling (3.385), this proves that dim
(
CoKer[Smod

]) = +∞, where CoKer[Smod

]

denotes the cokernel of the operator (4.363). 
�
We now turn our attention to the issue of identifying concrete algebraic and

geometric conditions guaranteeing the injectivity, surjectivity, and the eventual
invertibility of the modified single layer potential operator in the context of (3.132).

Theorem 4.11 Let � ⊆ R
n (where n ∈ N satisfies n ≥ 2) be a UR domain.

Abbreviate σ := Hn−1�∂� and denote by ν the geometric measure theoretic
outward unit normal to �. Also, let L be a homogeneous, second-order, constant
complex coefficient, weakly elliptic M × M system in R

n. Consider the modified
boundary-to-boundary single layer potential operator Smod associated with � and
the system L as in (3.42). Fix some exponent p ∈ (1,∞) along with some
Muckenhoupt weight w ∈ Ap(∂�, σ).

Finally, recall that
[ .
L

p

1 (∂�,w)
/ ∼ ]M denotes the M-th power of the quotient

space of classes [ · ] of equivalence modulo constants of functions in
.
L

p

1 (∂�,w),
equipped with the semi-norm defined in (2.601) and, additionally, recall the
operator

[
Smod

] : [Lp(∂�,w)
]M → [ .

L
p

1 (∂�,w)
/ ∼ ]M defined as in (3.132).

In relation to this, the following statements are valid.

(1) [Surjectivity] Whenever Adis
L �= ∅, there exists some small threshold δ ∈ (0, 1)

which depends only on n, p, [w]Ap , L, and the Ahlfors regularity constant of ∂�,
with the property that if ‖ν‖[BMO(∂�,σ)]n < δ it follows that (2.601) is a genuine
norm and the operator (3.132) is surjective.

(2) [Injectivity] Whenever Adis
L� �= ∅, there exists some small threshold δ ∈ (0, 1)

which depends only on n, p, [w]Ap , L, and the Ahlfors regularity constant of ∂�,
with the property that if ‖ν‖[BMO(∂�,σ)]n < δ it follows that the operator (3.132)
is injective.

(3) [Isomorphism] Whenever both Adis
L �= ∅ and Adis

L� �= ∅, there exists some small
threshold δ ∈ (0, 1) which depends only on n, p, [w]Ap , L, and the Ahlfors
regularity constant of ∂�, with the property that if ‖ν‖[BMO(∂�,σ)]n < δ it follows

that
[ .
L

p

1 (∂�,w)
/ ∼ ]M is a Banach space when equipped with the norm (2.601)

and the operator (3.132) is an isomorphism.

(4) [Optimality] If Adis
L = ∅ then the operator (3.132) may fail to be surjective (in

fact, may have an infinite dimensional cokernel) even in the case when � is a
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half-space, and if Adis
L� = ∅ then the operator (3.132) may fail to be injective

(in fact, may have an infinite dimensional kernel) even in the case when � is a
half-space.

We wish to note that, corresponding to the case when � is the upper-graph of a
real-valued Lipschitz function defined in R

n−1, the operator L is the Laplacian �

in R
n (hence, M = 1), and for the integrability exponent p = 2, the invertibility of

the harmonic single layer has been treated in [35, Lemma 3.1, p. 451] using Rellich
estimates.

Proof of Theorem 4.11 To deal with item (1), assume Adis
L �= ∅. Pick a coefficient

tensor A ∈ Adis
L then select some threshold δ ∈ (0, 1) small enough so that if

‖ν‖[BMO(∂�,σ)]n < δ (a condition which we shall henceforth assume) then

� is a two-sided NTA domain with an unbounded boundary, (4.368)

and

the operators ± 1
2I +KA are invertible on

[
L

p

1 (∂�,w)
]M

. (4.369)

Theorem 2.3 together with Theorems 2.4 and 4.8 ensure that this is indeed possible.
To proceed, choose a scalar-valued function φ ∈ C∞0 (Rn) with φ ≡ 1 on B(0, 1)
and suppφ ⊆ B(0, 2). Having fixed a reference point x0 ∈ ∂�, for each scale
r ∈ (0,∞) define

φr(x) := φ
(x − x0

r

)
for each x ∈ R

n, (4.370)

and use the same notation to denote the restriction of φr to ∂�. Suppose now some
arbitrary function g ∈ [ .Lp

1 (∂�,w)
]M has been given. Hence, from (2.598) we have

g ∈ [Lp

loc(∂�,w) ∩ L1
(
∂�,

σ(x)
1+|x|n

)]M and

∂τjk
g ∈ [Lp(∂�,w)

]M for 1 ≤ j, k ≤ n.
(4.371)

For each r ∈ (0,∞) set �r := ∂� ∩ B(x0, r) and define g�r :=
ffl
�r

g dσ ∈ C
M

then set

gr := φr ·
(
g − g�2r

)
on ∂�. (4.372)

From Proposition 2.25 (whose applicability in the current setting is ensured by
(4.368) and (4.371)) we know that there exists C = C(�,p,w, x0) ∈ (0,∞),
independent of the function g, with the property that

sup
r>0

1

r

( ˆ
�r

∣∣g − g�r

∣∣p dw
)1/p ≤ C

n∑

j,k=1

∥∥∂τjk
g
∥∥[Lp(∂�,w)]M . (4.373)
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Also, from (4.371)–(4.372) we see that for each radius r ∈ (0,∞) and all indices
j, k ∈ {1, . . . , n} we have

gr ∈
[
L

p

1 (∂�,w)
]M and ∂τjk

gr =
(
∂τjk

φr

) · (g − g�2r

)+ φr · ∂τjk
g. (4.374)

Since there exists a constant C ∈ (0,∞) such that for each j, k ∈ {1, . . . , n} and
each r ∈ (0,∞) we have

supp
(
∂τjk

φr

) ⊆ �2r and
∣∣∂τjk

φr

∣∣ ≤ C/r at σ -a.e. point on ∂�, (4.375)

it follows that for each j, k ∈ {1, . . . , n} and each r ∈ (0,∞) we may estimate,
making use of the version of the Poincaré inequality recorded in (4.373),

∥∥∥
(
∂τjk

φr

) · (g − g�2r

)∥∥∥[Lp(∂�,w)]M ≤ Cr−1
( ˆ

�2r

∣∣g − g�2r

∣∣p dw
)1/p

≤ C

n∑

j,k=1

∥∥∂τjk
g
∥∥[Lp(∂�,w)]M , (4.376)

for some constantC ∈ (0,∞) independent of g and r . In turn, from (4.374), (4.376),
(2.585)–(2.586), and (2.576) we conclude that

∥∥∇tan gr

∥∥[Lp(∂�,w)]n·M ≤ C
∥∥∇tan g

∥∥[Lp(∂�,w)]n·M (4.377)

for some C ∈ (0,∞) independent of g and r . If for each r ∈ (0,∞) we now define

hr :=
( 1
2I +KA

)−1(− 1
2I +KA

)−1
gr (4.378)

then from the membership in (4.374) and the invertibility results in (4.369) it follows
that hr is a meaningfully defined function which belongs to

[
L

p

1 (∂�,w)
]M . In

addition, from (4.378), (4.343), and (4.377) we conclude that there exists a constant
C ∈ (0,∞), independent of g, such that

‖∇tanhr‖[Lp(∂�,w)]n·M ≤ C ‖∇tang‖[Lp(∂�,w)]n·M for each r ∈ (0,∞).

(4.379)
Going further, for each r ∈ (0,∞) define

fr := ∂A
ν

(DAhr

)
at σ -a.e. point on ∂�. (4.380)

Since hr ∈
[
L

p

1 (∂�,w)
]M , the boundedness result recorded in (3.115) together

with (4.379) imply that fr ∈
[
Lp(∂�,w)

]M and for each r ∈ (0,∞) we have
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‖fr‖[Lp(∂�,w)]M ≤ C‖∇tanhr‖[Lp(∂�,w)]n·M ≤ C ‖∇tang‖[Lp(∂�,w)]n·M ,

(4.381)

where C ∈ (0,∞) is independent of g and r . Collectively, (3.130), (4.378), (4.380),
and Theorem 2.4 also ensure that for each r ∈ (0,∞) there exists some constant
cr ∈ C

M such that

Smodfr = gr + cr on ∂�. (4.382)

Select now a sequence {rj }j∈N ⊆ (0,∞) which converges to infinity. Since from

(4.381) we know that {frj }j∈N is a bounded sequence in
[
Lp(∂�,w)

]M , we may
rely on the Banach–Alaoglu Theorem to assume, without loss of generality, that
{frj }j∈N is actually weak-∗ convergent to some f ∈ [Lp(∂�,w)

]M . On account of

(3.46), (4.382), and (4.372), for each test function ψ ∈ [Lip(∂�)
]M with compact

support we may write

ˆ
∂�

〈
Smodf,ψ

〉
dσ = lim

j→∞

ˆ
∂�

〈
Smodfrj , ψ

〉
dσ = lim

j→∞

ˆ
∂�

〈
grj + crj , ψ

〉
dσ

= lim
j→∞

ˆ
∂�

〈
φrj ·

(
g − g�2rj

)+ crj , ψ
〉
dσ

= lim
j→∞

ˆ
∂�

〈
g − g�2rj

+ crj , ψ
〉
dσ

=
ˆ

∂�

〈g,ψ〉 dσ + lim
j→∞

〈
crj − g�2rj

,

ˆ
∂�

ψ dσ
〉
. (4.383)

In view of the arbitrariness ofψ , this forces the sequence
{
crj−g�2rj

}
j∈N ⊆ C

M

to converge to some constant c ∈ C
M . Bearing this in mind, we may then conclude

from (4.383) that

ˆ
∂�

〈
Smodf,ψ

〉
dσ =

ˆ
∂�

〈g + c, ψ〉 dσ (4.384)

for each function ψ ∈ [Lip(∂�)
]M with compact support. Ultimately, from (4.384)

and (2.578) we obtain

Smodf = g + c at σ -a.e. point on ∂�. (4.385)

Hence,
[
Smod

]
f = [Smodf

] = [g] and since [g] ∈ [ .Lp(∂�,w)
/ ∼ ]M is arbitrary,

it follows that the operator (3.132) is surjective. Moreover, from (4.381) we see that



326 4 Boundedness and Invertibility of Layer Potential Operators

‖f ‖[Lp(∂�,w)]M ≤ lim sup
j→∞

‖frj ‖[Lp(∂�,w)]M ≤ C ‖∇tang‖[Lp(∂�,w)]n·M

≤ C ‖[g]‖[ .Lp
1 (∂�,w)/∼]M , (4.386)

for some constant C ∈ (0,∞) independent of g, so the surjectivity of (3.132) comes
with quantitative control.

Let us also observe that the fact that (2.601) is, as claimed, a genuine norm is
clear from (4.368) and Proposition 2.26.

Moving on, we treat item (2), now working under the assumption that Adis
L� �= ∅.

Select a coefficient tensor Ã ∈ AL such that Ã� ∈ Adis
L� , then choose δ ∈ (0, 1) small

enough so that if ‖ν‖[BMO(∂�,σ)]n < δ (something we shall henceforth assume)
then

the operators ± 1
2I +K#

Ã� are invertible on
[
Lp(∂�,w)

]M .
(4.387)

That this is indeed possible is guaranteed by Theorem 4.8. The goal is to show that
the operator (3.132) is injective. To this end, suppose f ∈ [Lp(∂�,w)

]M is such
that
[
Smod

]
f = [0]. Hence, [Smodf

] = [0] which implies that there exists some
constant c ∈ C

M for which

Smodf = c at σ -a.e. point on ∂�. (4.388)

In concert with (3.129), this further implies

( 1
2I +K#

Ã�
)((− 1

2I +K#
Ã�
)
f
)
= 0 at σ -a.e. point on ∂� (4.389)

which, in view of (4.387), forces f = 0. Since the operator (3.132) is linear, it
follows that this is indeed injective.

As far as the claims in item (3) are concerned, assume that Adis
L �= ∅ and

Adis
L� �= ∅. Results established earlier then guarantee that the operator (3.132)

is a continuous bijection. Since
[ .
L

p

1 (∂�,w)
/ ∼ ]M is a Banach space (cf.

Proposition 2.26 and (4.368)) it follows that the operator (3.132) is a linear
isomorphism.

Finally, the claims in item (4) are clear from Proposition 4.4 and (3.406). The
proof of Theorem 4.11 is therefore complete. 
�

Here is a useful variant of Theorem 4.11:

Remark 4.21 Let �, L, be as in Theorem 4.11 and assume Adis
L �= ∅. Fix some pair

of integrability exponents p0, p1 ∈ (1,∞) along with some pair of Muckenhoupt
weights w0 ∈ Ap0(∂�, σ) and w1 ∈ Ap1(∂�, σ). From (4.341) and the proof
of Theorem 4.11 (cf. (4.378)) it follows that there exists some small threshold
δ ∈ (0, 1) which depends only on n, p0, p1, [w0]Ap0

, [w1]Ap1
, L, and the Ahlfors
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regularity constant of ∂�, with the property that if ‖ν‖[BMO(∂�,σ)]n < δ then

for every given function g in
[ .
L

p0
1 (∂�,w0) ∩

.
L

p1
1 (∂�,w1)

]M there exist some

function f ∈ [Lp0(∂�,w0) ∩ Lp1(∂�,w1)
]M and a constant c ∈ C

M such that
Smodf = g + c.

As a consequence of Theorem 4.10 we shall prove the invertibility result
contained in the next theorem, for modified boundary-to-boundary double layer
operators associated with weakly elliptic systems possessing a distinguished coeffi-
cient tensor acting on homogeneous Muckenhoupt weighted Sobolev spaces on the
boundary of sufficiently flat Ahlfors regular domains. Moreover, we show that this
is optimal in the sense that in the absence of a distinguished coefficient tensor the
modified boundary-to-boundary double layer operator may actually have an infinite
dimensional cokernel, even when the underlying domain is a half-space.

Theorem 4.12 Assume � ⊆ R
n is an Ahlfors regular domain. Denote by ν the geo-

metric measure theoretic outward unit normal to � and abbreviate σ := Hn−1�∂�.
Also, let L be a homogeneous, second-order, constant complex coefficient, weakly
elliptic M ×M system in R

n for which Adis
L �= ∅. Pick A ∈ Adis

L and consider the
modified boundary-to-boundary double layer potential operator

[
K

A,mod

]
associated

with � and the coefficient tensor A as in (3.142). Finally, fix an integrability
exponent p ∈ (1,∞), a Muckenhoupt weight w ∈ Ap(∂�, σ), and some number
ε ∈ (0,∞).

Then there exists some small threshold δ ∈ (0, 1) which depends only on n, p,
[w]Ap , A, ε, and the Ahlfors regularity constant of ∂�, with the property that if
‖ν‖[BMO(∂�,σ)]n < δ it follows that for each spectral parameter z ∈ C with |z| ≥ ε

the operator

zI + [K
A,mod

] : [ .Lp

1 (∂�,w)/ ∼ ]M −→ [ .
L

p

1 (∂�,w)/ ∼ ]M (4.390)

is invertible. Moreover, this conclusion may fail when Adis
L = ∅ even when � is

a half-space (in fact, in such a scenario it may happen that 1
2I +

[
K

A,mod

]
has an

infinite dimensional cokernel when acting on the space
[ .
L

p

1 (∂�,w)/ ∼ ]M ).

Proof Theorems 2.3 and 2.4 imply that there exists some threshold δ ∈ (0, 1) small
enough so that if ‖ν‖[BMO(∂�,σ)]n < δ then � is a two-sided NTA domain with an
unbounded boundary. Granted this, the desired invertibility result pertaining to the
operator (4.390) follows from Theorem 4.10, via a Neumann series argument.

In addition, from (3.133)–(3.134), (3.385), and (3.406) we conclude that the
operator 1

2I +
[
K

A,mod

]
associated with the n × n system LD defined in (3.371)

and the set � := R
n+ has an infinite dimensional cokernel when acting on the space

[ .
L

p

1 (∂�,w)/ ∼ ]n. 
�
Here is another useful version of Theorem 4.12:

Remark 4.22 Let �, L, be as in Theorem 4.12 and assume Adis
L �= ∅. Fix some pair

of integrability exponents p0, p1 ∈ (1,∞) along with some pair of Muckenhoupt
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weights w0 ∈ Ap0(∂�, σ) and w1 ∈ Ap1(∂�, σ), and some number ε ∈ (0, 1).
From the proof of Theorem 4.12 (which produces a Neumann series representation
for the inverse) we see that there exists some small threshold δ ∈ (0, 1) which
depends only on n, p0, p1, [w0]Ap0

, [w1]Ap1
, L, ε, and the Ahlfors regularity

constant of ∂�, with the property that if ‖ν‖[BMO(∂�,σ)]n < δ then for each spectral
parameter z ∈ C with |z| ≥ ε it follows that

the operator zI + [K
A,mod

]
is invertible both as a mapping

from
[ .
L

p0
1 (∂�,w0)/ ∼

]M onto itself and also as a mapping

from
[ .
L

p1
1 (∂�,w1)/ ∼

]M onto itself, and the two inverses
are in fact compatible with one another on the intersection.

(4.391)

See the proof of Proposition 4.2 for details in similar circumstances.

We next discuss invertibility results for the conormal of the double layer operator
acting from homogeneous Muckenhoupt weighted Sobolev spaces.

Theorem 4.13 Let � ⊆ R
n be a UR domain. Abbreviate σ := Hn−1�∂� and

denote by ν the geometric measure theoretic outward unit normal to �. Also, let
L be a homogeneous, second-order, constant complex coefficient, weakly elliptic
M×M system in R

n. Fix some exponent p ∈ (1,∞) along with some Muckenhoupt
weight w ∈ Ap(∂�, σ). Pick some coefficient tensor A ∈ AL and consider the
modified conormal derivative of the modified double layer operator in the context
of (3.138), i.e.,

[
∂A
ν DA,mod

] : [ .Lp

1 (∂�,w)
/ ∼ ]M −→ [

Lp(∂�,w)
]M

defined as
[
∂A
ν DA,mod

][f ] := ∂A
ν (D

A,modf ) for each f ∈ [ .Lp

1 (∂�,w)/ ∼ ]M.
(4.392)

From Theorem 3.5 this is known to be a well-defined, linear, and bounded operator
when the quotient space is equipped with the norm (2.601). In relation to this, the
following statements are valid.

(1) [Injectivity] Whenever Adis
L �= ∅ and actually A ∈ Adis

L it follows that there exists
some small threshold δ ∈ (0, 1) which depends only on n, p, [w]Ap , L, and the
Ahlfors regularity constant of ∂�, with the property that if ‖ν‖[BMO(∂�,σ)]n < δ

then the operator (4.392) is injective.

(2) [Surjectivity] Whenever Adis
L� �= ∅ and actually A� ∈ Adis

L� it follows that there
exists a small threshold δ ∈ (0, 1) which depends only on n, p, [w]Ap , L, and the
Ahlfors regularity constant of ∂�, with the property that if ‖ν‖[BMO(∂�,σ)]n < δ

then the operator (4.392) is surjective.

(3) [Isomorphism] If Adis
L �= ∅, Adis

L� �= ∅, and A ∈ Adis
L , it follows that there exists

some small threshold δ ∈ (0, 1) which depends only on n, p, [w]Ap , L, and the
Ahlfors regularity constant of ∂�, with the property that if ‖ν‖[BMO(∂�,σ)]n < δ

then the operator (4.392) is an isomorphism.
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Proof To deal with the claim made in item (1), assume A ∈ Adis
L . From Theo-

rems 2.3, 2.4, and 4.12 we know that it is possible to pick some threshold δ ∈ (0, 1)
small enough so that if ‖ν‖[BMO(∂�,σ)]n < δ then

� is a two-sided NTA domain with an unbounded connected
boundary,

(4.393)

and

± 1
2I +

[
K

A,mod

]
are invertible operators

on the Banach space
[ .
L

p

1 (∂�,w)/ ∼ ]M.
(4.394)

Granted these, (3.149) then implies that the operator (4.392) is injective.
To justify the claim made in item (2), suppose next that A� ∈ Adis

L� . By relying
on Theorems 2.3 and 4.8 we may choose δ ∈ (0, 1) small enough such that if
‖ν‖[BMO(∂�,σ)]n < δ then � is a two-sided NTA domain with an unbounded
boundary and

± 1
2I +K#

A� are invertible operators on
[
Lp(∂�,w)

]M
. (4.395)

Once these properties are satisfied, we may invoke (3.153) to conclude that the
operator (4.392) is surjective. Finally, the claim made in item (3) is a direct
consequence of the current items (1)-(2) and Theorem 3.9. 
�

Remark 4.23 Let �, L, be as in Theorem 4.13. Also, assume A ∈ Adis
L is such that

A� ∈ Adis
L� . Finally, fix some pair of exponents p0, p1 ∈ (1,∞) along with some

pair of Muckenhoupt weights w0 ∈ Ap0(∂�, σ) and w1 ∈ Ap1(∂�, σ). From the
proof of Theorem 4.13 (cf. (4.394), (4.395), Remark 4.22, and Proposition 4.2) it
follows that there exists some small threshold δ ∈ (0, 1) which depends only on
n, p0, p1, [w0]Ap0

, [w1]Ap1
, L, and the Ahlfors regularity constant of ∂�, with the

property that if ‖ν‖[BMO(∂�,σ)]n < δ then

the operator
[
∂A
ν DA,mod

]
is invertible both as a mapping from

[ .
L

p0
1 (∂�,w0)/ ∼

]M onto
[
L

p0
1 (∂�,w0)

]M and as a mapping

from
[ .
L

p1
1 (∂�,w1)/ ∼

]M onto
[
Lp1(∂�,w1)

]M , and these
two inverses are compatible with one another on the intersec-
tion.

(4.396)

Remark 4.24 An alternative proof of Theorem 4.11 can be obtained by taking
collectively, (3.149), Theorem 4.12 (with z = ± 1

2 ), (3.153), Theorem 4.8 (with
z = ± 1

2 ), (3.138), Theorems 2.3, and 2.4.
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4.5 Another Look at Double Layers for the Two-Dimensional
Lamé System

Throughout this section, we shall work in the two-dimensional case, i.e., in the case
n = 2. As a preamble, we introduce a singular integral operator which is going to
be relevant shortly. To set the stage, suppose � ⊆ R

2 is a UR domain, abbreviate
σ := H1�∂�, and denote by ν = (ν1, ν2) the geometric measure theoretic outward
unit normal to �. Then for each function f ∈ L1

(
∂�,

σ(x)
1+|x|

)
define

R�f (x) := lim
ε→0+

1

2π

ˆ

y∈∂�
|x−y|>ε

ν1(y)(y2 − x2)− ν2(y)(y1 − x1)

|x − y|2 f (y) dσ(y),

(4.397)

at σ -a.e. point x ∈ ∂�. Let us fix an integrability exponent p ∈ (1,∞) along with
a Muckenhoupt weight w ∈ Ap(∂�, σ). It has been proved in [113, §2.5] that the
singular integral operator R� introduced in (4.397) is bounded on Lp(∂�,w) and
satisfies

(R�)2 = ( 12I +K�

)(− 1
2I +K�

)
on Lp(∂�,w), (4.398)

K�R� + R�K� = 0 on Lp(∂�,w), (4.399)

where K� is the harmonic double layer potential operator in this setting (i.e., K� is
as in (3.29) with n := 2).

Our main result in this section is Theorem 4.14 below, which elaborates on the
spectra of double layer potential operators, associated with the two-dimensional
complex Lamé system, when acting on Muckenhoupt weighted Lebesgue and
Sobolev spaces on the boundary of a δ-AR unbounded domain in the plane.

Theorem 4.14 Let � ⊆ R
2 be an Ahlfors regular domain. Abbreviate σ := H1�∂�

and denote by ν the geometric measure theoretic outward unit normal to �. Fix two
Lamé moduli μ, λ ∈ C satisfying

μ �= 0, 2μ+ λ �= 0, (4.400)

and bring back the one-parameter family coefficient tensors from (3.226) (corre-
sponding to n = 2), i.e.,
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A(ζ ) = (aαβ
jk (ζ )

)
1≤j,k≤2
1≤α,β≤2

defined for each ζ ∈ C according to

a
αβ
jk (ζ ) := μδjkδαβ + (μ+ λ− ζ )δjαδkβ + ζ δjβδkα,

for 1 ≤ j, k, α, β ≤ 2,

(4.401)

which allows to represent the 2× 2 Lamé system Lμ,λ = μ�+ (λ+ μ)∇div in R
2

as

Lμ,λ =
(
a

αβ
jk (ζ )∂j ∂k

)

1≤α,β≤2 for each ζ ∈ C. (4.402)

Fix some integrability exponent p ∈ (1,∞) along with some Muckenhoupt weight
w ∈ Ap(∂�, σ). Finally, suppose z, ζ ∈ C are such that

z �= ±μ(μ+ λ)− ζ(3μ+ λ)

4μ(2μ+ λ)
, (4.403)

and associate the double layer potential operator KA(ζ) with the coefficient tensor
A(ζ ) and the domain � as in (3.24).

Then there exists some small threshold δ ∈ (0, 1) which depends only on μ, λ,
p, [w]Ap , z, ζ , and the Ahlfors regular constant of ∂�, with the property that if
‖ν‖[BMO(∂�,σ)]2 < δ it follows that

the operator zI2×2 +KA(ζ) is invertible

both on
[
Lp(∂�,w)

]2
and on

[
L

p

1 (∂�,w)
]2

.
(4.404)

Before presenting the proof of this theorem, a few clarifications are in order.
From (4.309)–(4.310) in Theorem 4.8 and (3.228)–(3.229) we already know that,
under suitable geometric assumptions, the conclusion in (4.404) holds (and this is
true in all dimensions n ≥ 2) when

3μ+ λ �= 0 and ζ = μ(μ+ λ)

3μ+ λ
. (4.405)

The point of Theorem 4.14 is that, for the two-dimensional Lamé system, the
invertibility results from (4.309)–(4.310) holds with A = A(ζ ) as in (3.226) for a
much larger range of ζ ’s than the singleton in (4.405). (Parenthetically we wish
to note that what is special about the scenario described in (4.405) is that this
makes ±μ(μ+λ)−ζ(3μ+λ)

4μ(2μ+λ)
zero, so (4.403) simply reads z ∈ C \ {0} in this case,

as was assumed in Theorem 4.8.) It should be also remarked that, in the setting
on Theorem 4.14, the double layer KA(ζ) does not necessarily have small operator
norm, and this is in stark contrast with the case of the double layer operators
considered in Theorem 4.8. References to other related results may be found in
[82, Chapter 7]; in this vein, see also [99].
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We are now ready to present the proof of Theorem 4.14.

Proof of Theorem 4.14 From Theorem 2.3 we know that it is possible to pick some
threshold δ ∈ (0, 1) small enough so that if ‖ν‖[BMO(∂�,σ)]2 < δ then � is a UR
domain, with the UR constants of ∂� controlled solely in terms of the Ahlfors
regularity constant of ∂�. Henceforth, assume this is the case.

Recall the numbers C1(ζ ), C2(ζ ) ∈ C associated with ζ, μ, λ as in (3.234). From
(3.29), (3.235), (3.236), and (4.397) we see that for each ζ ∈ C we have

KA(ζ) = C1(ζ )K�I2×2 − (1− C1(ζ ))Q+ C2(ζ )

(
0 R�

−R� 0

)

(4.406)

as operators on
[
Lp(∂�,w)

]2. Note that (4.398) implies

(
0 R�

−R� 0

)2
= ( 14I − (K�)2

)
I2×2 on

[
Lp(∂�,w)

]2
. (4.407)

Staring with (4.406) and then using (4.407), (4.399) we may write, with all operators
acting on the space

[
Lp(∂�,w)

]2,

(
zI2×2 +KA(ζ)

)(− zI2×2 +KA(ζ)

) = (KA(ζ))
2 − z2I2×2

= [ 14C2(ζ )2 − z2
]
I2×2 + Tζ , (4.408)

for all z, ζ ∈ C, where Tζ is the operator

Tζ =
(
C1(ζ )2 − C2(ζ )2

)
K2

�I2×2 + (1− C1(ζ ))2Q2 (4.409)

− C1(ζ )(1− C1(ζ ))(K�I2×2)Q− C1(ζ )(1− C1(ζ ))Q(K�I2×2)

− C2(ζ )(1− C1(ζ ))Q

(
0 R�

−R� 0

)

− C2(ζ )(1− C1(ζ ))

(
0 R�

−R� 0

)

Q.

Fix now ζ ∈ C along with ε > 0 arbitrary. Note that Tζ in (4.409) is a finite linear
combination of compositions of pairs of singular integral operators such that, in each
case, at least one of them falls under the scope of Corollary 4.2. As a consequence of
this and Proposition 3.4, it follows that there exists δ ∈ (0, 1) small enough (relative
to μ, λ, ζ , ε, p, [w]Ap , and the Ahlfors regularity constant of ∂�), matters may be
arranged so that, under the additional assumption that

‖ν‖[BMO(∂�,σ)]2 < δ, (4.410)

we have
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‖Tζ‖[Lp(∂�,w)]2→[Lp(∂�,w)]2 ≤ ε2/2. (4.411)

Consider now

z ∈ C \
{
B
( 1
2C2(ζ ), ε

) ∪ B
(− 1

2C2(ζ ), ε
)}

, (4.412)

which entails

∣
∣ 1
4C2(ζ )2 − z2

∣
∣ = ∣∣ 12C2(ζ )− z

∣
∣
∣
∣ 1
2C2(ζ )+ z

∣
∣ ≥ ε2. (4.413)

Then from (4.413), (4.411) it follows that

[ 1
4C2(ζ )2 − z2

]
I2×2 + Tζ is invertible on

[
Lp(∂�,w)

]2

for each z as in (4.412),
(4.414)

and
∥∥∥
([ 1

4C2(ζ )2 − z2
]
I2×2 + Tζ

)−1∥∥∥[Lp(∂�,w)]2→[Lp(∂�,w)]2 ≤ (ε2/2)−1

for each z as in (4.412).

(4.415)

Since the operators zI2×2+KA(ζ) and −zI2×2+KA(ζ) commute with one another,
from (4.408) and (4.414) we ultimately conclude that

zI2×2 +KA(ζ) is invertible on
[
Lp(∂�,w)

]2 for each z as in (4.412).
(4.416)

In relation to (4.416) we also claim that there exists some small number

c := c
(
�, ε, ζ, p, [w]Ap

) ∈ (0, 1], (4.417)

where the dependence of c on � manifests itself only through the Ahlfors regularity
constant of ∂�, with the property that

c‖f ‖[Lp(∂�,w)]2 ≤
∥∥(zI2×2 +KA(ζ)

)
f
∥∥[Lp(∂�,w)]2

for each z as in (4.412) and each f ∈ [Lp(∂�,w)
]2

.
(4.418)

To prove this, first observe that
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whenever |z| > 1+ ∥∥KA(ζ)

∥∥[Lp(∂�,w)]2→[Lp(∂�,w)]2 then

zI2×2 +KA(ζ) is invertible on
[
Lp(∂�,w)

]2 and
∥∥∥
(
zI2×2 +KA(ζ)

)−1∥∥∥[Lp(∂�,w)]2→[Lp(∂�,w)]2 < 1.

(4.419)

Hence, as long as |z| > 1+∥∥KA(ζ)

∥∥[Lp(∂�,w)]2→[Lp(∂�,w)]2 , the estimate in (4.418)
is true for any choice of c ∈ (0, 1]. As such, there remains to study the case in which

z is as in (4.412) and also satisfies

|z| ≤ 1+ ∥∥KA(ζ)

∥∥[Lp(∂�,w)]2→[Lp(∂�,w)]2 .
(4.420)

Henceforth assume z is as in (4.420). From (4.408) and (4.415) we know that

∥∥∥
(
zI2×2 +KA(ζ)

)−1(− zI2×2 +KA(ζ)

)−1∥∥∥[Lp(∂�,w)]2→[Lp(∂�,w)]2

≤ (ε2/2)−1. (4.421)

Write
(
zI2×2 +KA(ζ)

)−1 as
[(

zI2×2 +KA(ζ)

)−1(− zI2×2 +KA(ζ)

)−1](− zI2×2 +KA(ζ)

)
, (4.422)

then use this formula and (4.421) to estimate

∥
∥∥
(
zI2×2 +KA(ζ)

)−1∥∥∥[Lp(∂�,w)]2→[Lp(∂�,w)]2

≤ (ε2/2)−1
∥∥− zI2×2 +KA(ζ)

∥∥[Lp(∂�,w)]2→[Lp(∂�,w)]2

≤ (ε2/2)−1
(
|z| + ∥∥KA(ζ)

∥∥[Lp(∂�,w)]2→[Lp(∂�,w)]2
)

≤ C
(
�, ε, ζ, p, [w]Ap

)
, (4.423)

where the last inequality comes from (4.420), and

C
(
�, ε, ζ, p, [w]Ap

) := 2ε−2 + 4ε−2
∥
∥KA(ζ)

∥
∥[Lp(∂�,w)]2→[Lp(∂�,w)]2 .

(4.424)

Hence, if we define
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c := c
(
�, ε, ζ, p, [w]Ap

) := min
{
1,
[
C(�, ε, ζ, p, [w]Ap)

]−1} ∈ (0, 1],
(4.425)

we may rely on (4.423) to write

c‖f ‖[Lp(∂�,w)]2 ≤
∥∥(zI2×2 +KA(ζ)

)
f
∥∥[Lp(∂�,w)]2 ,

for all f ∈ [Lp(∂�,w)
]2

, (4.426)

finishing the proof of (4.418).
We next claim that, if the threshold δ ∈ (0, 1) appearing in (4.410) is taken

sufficiently small to begin with, we also have

zI2×2 +KA(ζ) invertible on
[
L

p

1 (∂�,w)
]2

for each z as in (4.412).
(4.427)

For starters, observe that for each point z ∈ C, and each f ∈ [Lp

1 (∂�,w)
]2,

Proposition 3.2 gives

∂τ12

[(
zI2×2 +KA(ζ)

)
f
] = (zI2×2 +KA(ζ)

)
(∂τ12f )+ U

ζ
12(∇tanf ), (4.428)

where the commutator U
ζ
12 is defined as in (3.35) with n = 2, j = 1, k = 2, and

the coefficient tensor A(ζ ) as in (4.401). If z is as in (4.412) then, on account of
(4.428), (4.418), and Theorem 4.3 (also keeping in mind Proposition 3.4) for each
f ∈ [Lp

1 (∂�,w)
]2 we may estimate

c‖∂τ12f ‖[Lp(∂�,w)]2 ≤
∥∥(zI2×2 +KA(ζ)

)
(∂τ12f )

∥∥[Lp(∂�,w)]2

≤ ∥∥∂τ12

[(
zI2×2 +KA(ζ)

)
f
]∥∥[Lp(∂�,w)]2 +

∥
∥Uζ

12(∇tanf )
∥
∥[Lp(∂�,w)]2

≤ ∥∥(zI2×2 +KA(ζ)

)
f
∥
∥[Lp

1 (∂�,w)]2 + Cδ‖∂τ12f ‖[Lp(∂�,w)]2 , (4.429)

(since we presently have ∂τ11 = ∂τ22 = 0 and ∂τ12 = −∂τ21 ), where C ∈ (0,∞)

depends only on μ, λ, ζ , p, [w]Ap , and the Ahlfors regularity constant of ∂�.
Assuming δ < c/(2C) to begin with, the very last term above may be absorbed
in the left-most side of (4.429). By combining the resulting inequality with (4.418)
we therefore arrive at the conclusion that if δ in (4.410) is small enough then we
may find some small η > 0 with the property that
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η‖f ‖[Lp
1 (∂�,w)]2 ≤

∥∥(zI2×2 +KA(ζ)

)
f
∥∥[Lp

1 (∂�,w)]2

for each z as in (4.412) and each f ∈ [Lp

1 (∂�,w)
]2

.
(4.430)

In such a scenario, (4.430) implies that the operator zI2×2 + KA(ζ) acting on
[
L

p

1 (∂�,w)
]2 is injective and has closed range for each z as in (4.412). Conse-

quently, the operator zI2×2 + KA(ζ) acting on
[
L

p

1 (∂�,w)
]2 is semi-Fredholm for

each z as in (4.412). Since this depends continuously on z, the homotopic invariance
of the index on connected sets then ensures that the index of zI2×2 + KA(ζ) on
[
L

p

1 (∂�,w)
]2 is independent of z in said range. Given that, via a Neumann series

argument,

zI2×2 +KA(ζ) is invertible on
[
L

p

1 (∂�,w)
]2

if |z| > ∥∥KA(ζ)

∥∥[Lp
1 (∂�,w)]2→[Lp

1 (∂�,w)]2 ,
(4.431)

we may therefore conclude that the index of zI2×2+KA(ζ) on
[
L

p

1 (∂�,w)
]2 is zero

for each z as in (4.412). In view of the fact that, as already noted from (4.430), the
operator zI2×2 + KA(ζ) is injective on

[
L

p

1 (∂�,w)
]2 for each z as in (4.412), this

ultimately proves that zI2×2 +KA(ζ) is invertible on
[
L

p

1 (∂�,w)
]2 for each z as in

(4.412). Hence, the claim made in (4.427) is true. At this stage, the claim made in
(4.404) readily follows from (4.416) and (4.427). 
�

It is of interest to single out the case z = ± 1
2 in (4.404), and in Corollary 4.3

stated next we do just that.

Corollary 4.3 Let � ⊆ R
2 be an Ahlfors regular domain. Abbreviate σ := H1�∂�

and denote by ν the geometric measure theoretic outward unit normal to �. Fix two
Lamé moduli μ, λ ∈ C satisfying

μ �= 0, 2μ+ λ �= 0, 3μ+ λ �= 0, (4.432)

and recall the one-parameter family coefficient tensors A(ζ ) defined for each ζ ∈ C

as in (4.401). Fix an integrability exponent p ∈ (1,∞) along with a Muckenhoupt
weight w ∈ Ap(∂�, σ). Finally, pick some

ζ ∈ C \
{
− μ,

μ(5μ+3λ)
3μ+λ

}
(4.433)

and associate double layer potential operator KA(ζ) with the coefficient tensor A(ζ )

and the domain � as in (3.24).
Then there exists some small threshold δ ∈ (0, 1) which depends only on μ, λ,

p, [w]Ap , ζ , and the Ahlfors regularity constant of ∂�, with the property that if
‖ν‖[BMO(∂�,σ)]2 < δ it follows that



4.5 Another Look at Double Layers for the Two-Dimensional Lamé System 337

the operators ± 1
2I2×2 +KA(ζ) are invertible

both on
[
Lp(∂�,w)

]2
and on

[
L

p

1 (∂�,w)
]2

,
(4.434)

and

the operators ± 1
2I2×2 +K#

A(ζ ) are invertible on
[
Lp(∂�,w)

]2
. (4.435)

As seen from (4.433) (also keeping in mind (4.432)), under the additional
assumption that μ+ λ �= 0 the value ζ := μ becomes acceptable in the formulation
of the conclusions in (4.434)–(4.435). This special choice leads to the conclusion
that, if � is sufficiently flat (relative to μ, λ, p, [w]Ap , and the Ahlfors regularity
constant of ∂�) then the operators

± 1
2I2×2 +KA(μ) :

[
Lp(∂�,w)

]2 −→ [
Lp(∂�,w)

]2
, (4.436)

± 1
2I2×2 +KA(μ) :

[
L

p

1 (∂�,w)
]2 −→ [

L
p

1 (∂�,w)
]2

, (4.437)

± 1
2I2×2 +K#

A(μ) :
[
Lp(∂�,w)

]2 −→ [
Lp(∂�,w)

]2
, (4.438)

are all invertible whenever

μ �= 0, μ+ λ �= 0, 2μ+ λ �= 0, 3μ+ λ �= 0. (4.439)

This is relevant in the context of Remark 6.10.

Proof of Corollary 4.3 The claim in (4.434) is a direct consequence of Theo-
rem 4.14, upon observing that when z = ±1/2 the demand in (4.403) becomes
equivalent to the condition stipulated in (4.433). The claim in (4.435) then follows
from (4.434) and duality. 
�
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