
Chapter 3
Calderón–Zygmund Theory for
Boundary Layers in UR Domains

In [25], A.P. Calderón has initiated a breakthrough by proving the Lp-boundedness
of the principal-value Cauchy integral operator on Lipschitz curves with small
Lipschitz constant. Subsequently, R. Coifman, A. McIntosh, and Y. Meyer have
successfully extended Calderón’s estimate on Cauchy integrals to general Lipschitz
curves in [32] and used this to establish the boundedness of higher-dimensional
singular integral operators (such as the harmonic double layer K�) on Lebesgue
spaces Lp(�,Hn−1) with p ∈ (1,∞), whenever � is a strongly Lipschitz surface
in R

n. This gave the impetus for studying such singular integral operators on
surfaces more general than the boundaries of Lipschitz domains. Works of G. David
[37, 38], G. David and D. Jerison [39], G. David and S. Semmes [40, 41], and
S. Semmes [122] yield such boundedness when the � ⊆ R

n is a UR set, i.e., �

is a closed Ahlfors regular set which contains “big pieces” of Lipschitz images in a
quantitative, uniform, scale-invariant fashion (cf. Definition 2.5).

This body of results, which interfaced tightly with geometric measure theory, has
been applied to problems in PDEs for the first time by S. Hofmann, M. Mitrea, and
M. Taylor in [61] (see also [109] for PDEs in the setting of Riemannian manifolds).
Here we continue this line of work with two specific goals in mind. First, we
consider singular integral operators (SIOs) acting on a larger variety of function
spaces and, second, we seek finer bounds on the operator norm of the singular
integrals of double layer type. We begin by discussing the general setup.

3.1 Boundary Layer Potentials: The Setup

Fix n ∈ N with n ≥ 2 along with some M ∈ N, and denote by L the collection of all
homogeneous constant complex coefficient second-order M × M systems L in R

n.
Hence, any element L in L may be written as a matrix of differential operators of the
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form L =
(
a

αβ
jk ∂j ∂k

)
1≤α,β≤M

for some complex numbers a
αβ
jk (here and elsewhere,

we shall use the usual convention of summation over repeated indices). In particular,
the action of L on any given vector-valued distribution u = (uβ)1≤β≤M may be
described as

Lu =
(
a

αβ
jk ∂j ∂kuβ

)
1≤α≤M

, (3.1)

and we denote by L� :=
(
a

βα
kj ∂j ∂k

)
1≤α,β≤M

the (real) transpose of L. We also

define the characteristic matrix of L as

L(ξ) :=
[( − a

αβ
jk ξj ξk

)
1≤α,β≤M

]
for each ξ = (ξi)1≤i≤n ∈ R

n (3.2)

and introduce

L∗ := {
L ∈ L : det[L(ξ)] 	= 0 for each ξ ∈ R

n \ {0}}. (3.3)

We shall refer to a system L ∈ L as being weakly elliptic if actually
L ∈ L∗. This should be contrasted with the more stringent Legendre-Hadamard
(strong) ellipticity condition which asks for the existence of some c > 0
such that

Re
〈 − L(ξ)ζ , ζ

〉 ≥ c |ξ |2 |ζ |2 for all ξ ∈ R
n and ζ ∈ C

M. (3.4)

Next, let us consider

A :=
{
A = (

a
αβ
jk

)
1≤α,β≤M
1≤j,k≤n

: each a
αβ
jk belongs to C

}
, (3.5)

the collection of coefficient tensors with constant complex entries. Adopting
natural operations (i.e., componentwise addition and multiplication by scalars), this
becomes a finite dimensional vector space (over C), which we endow with the norm

‖A‖ :=
∑

1≤α,β≤M
1≤j,k≤n

∣∣aαβ
jk

∣∣ for each A = (
a

αβ
jk

)
1≤α,β≤M
1≤j,k≤n

∈ A. (3.6)

Hence, if the transpose of each given A = (
a

αβ
jk

)
1≤α,β≤M
1≤j,k≤n

∈ A is the coefficient

tensor A� := (
a

βα
kj

)
1≤α,β≤M
1≤j,k≤n

, then A � A �→ A� ∈ A is an isometry. With each

coefficient tensor A = (
a

αβ
jk

)
1≤α,β≤M
1≤j,k≤n

∈ A associate the system LA ∈ L according

to
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LA :=
(
a

αβ
jk ∂j ∂k

)
1≤α,β≤M

. (3.7)

Then the map

A � A �−→ LA ∈ L (3.8)

is linear and surjective, though it fails to be injective. Specifically, if we introduce

Aant :=
{
B = (

b
αβ
jk

)
1≤α,β≤M
1≤j,k≤n

∈ A : b
αβ
jk = −b

αβ
kj whenever

1 ≤ j, k ≤ n and 1 ≤ α, β ≤ M
}
, (3.9)

the collection of all coefficient tensors that are antisymmetric in the lower indices,
then Aant is a closed linear subspace of A, and for each A, Ã ∈ A, we have

LA = LÃ ⇐⇒ A − Ã ∈ Aant. (3.10)

If we now define

AL := {
A ∈ A : L = LA

}
for each L ∈ L, (3.11)

and for each L ∈ L, we set (with the distance considered in the normed vector space
A)

‖L‖ := dist
(
A,Aant) for each/some A ∈ AL, (3.12)

then L � L �→ ‖L‖ is an unambiguously defined norm on the vector space L. In the
topology induced by this norm, L∗ from (3.3) is an open subset of L, the mapping
(3.8) is continuous, and L � L �→ L� ∈ L is an isometry.

Finally, we denote by AWE the collection of all coefficient tensors A with the
property that the M × M homogeneous second-order system LA associated with A

in R
n as in (3.7) is weakly elliptic, i.e.,

AWE := {
A ∈ A : LA ∈ L∗

}
. (3.13)

Then AWE is an open subset of A.
The following theorem, itself a special case of [102, Theorem 11.1, p. 393],

summarizes some of the main properties of a certain type of fundamental solution
canonically associated with any given homogeneous, constant complex coefficient,
weakly elliptic second-order system in R

n.

Theorem 3.1 Let L be a homogeneous, second-order, constant complex coefficient,
M ×M system in Rn, which is weakly elliptic (cf. (1.2)). Then there exists an M ×M
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matrix-valued function E = (
Eαβ

)
1≤α,β≤M

, canonically associated with the given
system L, such that the following properties are true:

1. For any two indices α, β ∈ {1, . . . ,M}, one has Eαβ ∈ C∞(
R

n \ {0}) as well as
Eαβ(x) = Eαβ(−x) for every x ∈ R

n \ {0}.
2. For each fixed point y ∈ R

n, one has L
[
E(· − y)

] = δyIM×M in the sense of
distributions in Rn, where IM×M is the M ×M identity matrix and δy denotes the
Dirac distribution with mass at y in R

n. That is, using the standard Kronecker
delta notation,

a
αβ
jk ∂xj

∂xk

[
Eβγ (x − y)

] = δαγ δy(x), x ∈ R
n, (3.14)

in the sense of distributions, for every α, γ ∈ {1, . . . ,M}.
3. The transpose of E, i.e., E� = (Eβα)1≤α,β≤M , is a fundamental solution for

the transpose system L�. In other words, for each fixed point y ∈ R
n, one has

L�[E�(· − y)
] = δyIM×M in the sense of distributions in R

n, i.e.,

a
βα
kj ∂xj

∂xk

[
Eγβ(x − y)

] = δαγ δy(x), x ∈ R
n, (3.15)

in the sense of distributions, for every α, γ ∈ {1, . . . ,M}.
4. For every multi-index α ∈ N

n
0 with n + |α| > 2, the function ∂αE is positive

homogeneous of degree 2 −n−|α| and there exists a constant Cα ∈ (0,∞) with
the property that

∣∣(∂αE)(x)
∣∣ ≤ Cα|x|2−n−|α| for all x ∈ R

n \ {0}. (3.16)

Finally, corresponding to n = 2 and α = (0, . . . , 0), there exists C ∈ (0,∞)

such that |E(x)| ≤ C
(
1 + ∣∣ ln |x|∣∣) for every x ∈ R

2 \ {0}.
5. Let ‘hat’ denote the Fourier transform in R

n (originally defined on Schwartz
functions and then extended to tempered distributions via duality). Then Ê is
a tempered distribution in R

n (which is positive homogeneous of degree −2 if
n ≥ 3), whose restriction to R

n \ {0} is a (matrix-valued) function of class C∞.
In fact,

Ê(ξ) = [
L(ξ)

]−1
for every ξ ∈ R

n \ {0}. (3.17)

More generally, given any γ ∈ N
n
0 , it follows that the tempered distribution ∂̂γ E

is a function of class C∞ when restricted to R
n \ {0}, which, regarded as such,

satisfies

∂̂γ E(ξ) = i|γ | ξγ
[
L(ξ)

]−1
for every ξ ∈ R

n \ {0}, (3.18)

and
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if γ ∈ N
n
0 , then ∂̂γ E = i|γ | ξγ

[
L(ξ)

]−1
as tempered distributions

in Rn when either |γ | > 0 or n ≥ 3.
(3.19)

6. Writing EL in place of E to emphasize the dependence on L, matters may be
arranged so that

(
EL

)� = EL� ,
(
EL

) = EL,
(
EL

)∗ = EL∗ ,

as well as EλL = λ−1EL for each λ ∈ C \ {0},
(3.20)

where �, ·, and ∗ denote, respectively, transposition, complex conjugation, and
complex (or Hermitian) adjunction.

Moving on, assume � ⊆ R
n is a given UR domain. Abbreviate σ := Hn−1�∂�

and denote by ν = (ν1, . . . , νn) the geometric measure theoretic outward unit
normal to �. In addition, consider a homogeneous, second-order, constant complex
coefficient, weakly elliptic M × M system L in R

n, and consider the matrix-valued
fundamental solution E = (Eαβ)1≤α,β≤M associated with L as in Theorem 3.1.

Finally, fix a coefficient tensor A = (
a

αβ
jk

)
1≤α,β≤M
1≤j,k≤n

∈ AL, and pick an arbitrary

function

f = (fα)1≤α≤M ∈
[
L1(∂�,

σ(x)

1+|x|n−1

)]M

. (3.21)

In this setting, define the action of the boundary-to-domain double layer potential
operator DA on f as

DAf (x) :=
(

−
ˆ

∂�

νk(y)a
βα
jk

(
∂jEγβ

)
(x − y)fα(y) dσ(y)

)

1≤γ≤M

, (3.22)

at each point x ∈ �. From (3.16), we see that (3.21) is the most general functional
analytic setting in which the integral in (3.22) is absolutely convergent. The double
layer operator D may be regarded as a mechanism for generating lots of null-
solutions for the given system L in � since, as is apparent from (3.22) and
Theorem 3.1,

for each function f as in (3.21), we have

DAf ∈ [
C∞(�)

]M and L(DAf ) = 0 in �.
(3.23)

Going further, let us define the action of the boundary-to-boundary double layer
potential operator KA on f as in (3.21) by setting
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KAf (x) :=
(

− lim
ε→0+

ˆ

y∈∂�
|x−y|>ε

νk(y)a
βα
jk

(
∂jEγβ

)
(x − y)fα(y) dσ(y)

)

1≤γ≤M

,

(3.24)

at σ -a.e. point x ∈ ∂�. Another singular integral operator that is closely related to
(3.24) is the so-called transpose double layer operator K#

A defined by setting

K#
Af (x) :=

(
lim

ε→0+

ˆ

y∈∂�
|x−y|>ε

νk(x)a
βα
jk (∂jEγβ)(x − y)fγ (y) dσ(y)

)

1≤α≤M

(3.25)

at σ -a.e. x ∈ ∂�, for each function f as in (3.21). Since we are presently assuming
that � is a UR domain, work in [114, Chapter 1] guarantees that the above singular
integral operators are well defined in a σ -a.e. pointwise fashion for each function as
in (3.21). Also, it is clear from definitions and the last line in (3.20) that

DλA = DA, KλA = KA, K#
λA = K#

A

for each λ ∈ C with λ 	= 0.
(3.26)

Example 3.1 The standard fundamental solution for the Laplacian in R
n is defined

for x ∈ R
n \ {0} by

E�(x) :=

⎧⎪⎪⎨
⎪⎪⎩

1

ωn−1(2 − n)

1

|x|n−2 , if n ≥ 3,

1

2π
ln |x|, if n = 2,

(3.27)

where, as usual, ωn−1 denotes the surface area of the unit sphere in R
n (cf. [102,

Section 7.1]). Given an Ahlfors regular domain � ⊆ R
n, abbreviate σ := Hn−1�∂�

and denote by ν the geometric measure theoretic outward unit normal to �. Set
a

αβ
jk := ajk := δjk in (3.1) so that L = �, and refer to D�, K� (constructed

as in (3.22) and (3.24)) for this choice of coefficient tensor, i.e., for A := In×n,
the identity matrix) as being the (classical) harmonic double layer potentials.
Concretely, for each function f ∈ L1

(
∂�,

σ(x)

1+|x|n−1

)
, we have (writing, in this case,

D�,K�,K#
� in place of DIn×n ,KIn×n ,K

#
In×n

)

D�f (x) = 1

ωn−1

ˆ
∂�

〈ν(y), y − x〉
|x − y|n f (y) dσ(y), ∀ x ∈ �, (3.28)

and, at σ -a.e. point x ∈ ∂�,
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K�f (x) = lim
ε→0+

1

ωn−1

ˆ

y∈∂�
|x−y|>ε

〈ν(y), y − x〉
|x − y|n f (y) dσ(y), (3.29)

K#
�f (x) = lim

ε→0+
1

ωn−1

ˆ

y∈∂�
|x−y|>ε

〈ν(x), x − y〉
|x − y|n f (y) dσ(y). (3.30)

Returning to the mainstream discussion, continue to assume that � ⊆ R
n is a

UR domain and set σ := Hn−1�∂�. Also, as before, continue to assume that L is
a homogeneous constant complex coefficient weakly elliptic second-order M × M

system in R
n. Then, for each coefficient tensor A ∈ AL, a basic identity relating

the boundary-to-domain double layer potential operator DA to the boundary-to-
boundary double layer potential operator KA is the jump-formula (proved in [114,
§1.5]), to the effect that if I denotes the identity operator and κ > 0 is an arbitrary
aperture parameter, then

DAf
∣∣κ−n.t.

∂�
= ( 1

2I + KA

)
f at σ -a.e. point on ∂�,

for each given function f ∈
[
L1

(
∂�,

σ(x)

1+|x|n−1

)]M

.

(3.31)

Another fundamental property of the boundary-to-domain double layer potential
operator is the ability of absorbing an arbitrary spacial derivative and eventually
relocating it, via integration by parts on the boundary, all the way to the function on
which this was applied to begin with. This is made precise in the following basic
proposition, proved in [114, §1.3].

Proposition 3.1 Let � ⊆ R
n be an Ahlfors regular domain. Set σ := Hn−1�∂�,

and denote by ν = (ν1, . . . , νn) the geometric measure theoretic outward unit
normal to �. Also, for some M ∈ N, consider a weakly elliptic, homogeneous,
constant (complex) coefficient, second-order, M × M system L in R

n, written as in
(3.1) for some choice of a coefficient tensor A = (

a
αβ
rs

)
1≤r,s≤n

1≤α,β≤M

. Finally, associate

with A and � the double layer potential operator DA as in (3.22), and consider a
function

f = (fα)1≤α≤M ∈
[
L1

(
∂�,

σ(x)

1 + |x|n−1

)]M

with the property that

∂τjk
fα ∈ L1

(
∂�,

σ(x)

1 + |x|n−1

)
for 1 ≤ j, k ≤ n and 1 ≤ α ≤ M.

(3.32)

Then, for each index � ∈ {1, . . . , n} and each point x ∈ �, one has
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∂�

(
DAf

)
(x) =

( ˆ
∂�

aβα
rs (∂rEγβ)(x − y)(∂τ�s

fα)(y) dσ(y)

)

1≤γ≤M

. (3.33)

As a consequence, if Ω is actually a UR domain then for each aperture parameter
κ > 0, the nontangential boundary trace

(∇DAf
)∣∣κ−n.t.

∂�
exists (in Cn·M ) at σ -a.e. point on ∂�. (3.34)

We next recall the following result from [114, §1.5], which identifies the
commutator between the double layer potential operator KA from (3.24) and the
first-order tangential derivative operators ∂τjk

from (2.582) as being yet another
commutator, of the sort considered in detail later, in Theorem 4.3 (with the function
b a scalar component of the outward unit normal ν).

Proposition 3.2 Suppose � ⊆ R
n is a UR domain. Abbreviate σ := Hn−1�∂�

and denote by ν = (ν1, . . . , νn) the geometric measure theoretic outward unit
normal to �. Let L be a homogeneous, second-order, constant complex coefficient,
weakly elliptic M × M system in R

n and consider the matrix-valued fundamental
solution E = (Eαβ)1≤α,β≤M associated with L as in Theorem 3.1. Also, pick a

coefficient tensor A = (
a

αβ
jk

)
1≤α,β≤M
1≤j,k≤n

∈ AL and bring in KA the boundary-to-

boundary double layer potential operator associated with � and A as in (3.24).
In addition, for each j, k ∈ {1, . . . , n}, define the singular integral operator
Ujk acting on each given matrix-valued function F = (Fαs)1≤α≤M

1≤s≤n

with entries

belonging to L1
(
∂�,

σ(x)

1+|x|n−1

)
as UjkF = (

(UjkF )γ
)

1≤γ≤M
where, for each index

γ ∈ {1, . . . , M},

(UjkF )γ (x)

:= − lim
ε→0+

ˆ

y∈∂�

|x−y|>ε

[νk(x) − νk(y)]νj (y)aβα
rs (∂rEγβ)(x − y)Fαs(y) dσ(y)

+ lim
ε→0+

ˆ

y∈∂�

|x−y|>ε

[νj (x) − νj (y)]νk(y)aβα
rs (∂rEγβ)(x − y)Fαs(y) dσ(y)

+ lim
ε→0+

ˆ

y∈∂�

|x−y|>ε

[νk(y) − νk(x)]νs(y)aβα
rs (∂rEγβ)(x − y)Fαj (y) dσ(y)
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− lim
ε→0+

ˆ

y∈∂�

|x−y|>ε

[νj (y) − νj (x)]νs(y)aβα
rs (∂rEγβ)(x − y)Fαk(y) dσ(y)

(3.35)

at σ -a.e. point x ∈ ∂�. Finally, fix some integrability exponents p, q ∈ (1,∞] and
consider a function

f ∈
[
L1

(
∂�,

σ(x)

1+|x|n−1

) ∩ L
p

loc(∂�, σ)
]M

with the property that

∂τjk
f ∈

[
L1

(
∂�,

σ(x)

1+|x|n−1

) ∩ L
q

loc(∂�, σ)
]M

for all j, k ∈ {1, . . . , n}.
(3.36)

Then, for each j, k ∈ {1, . . . , n}, one has

∂τjk
(KAf ) = KA(∂τjk

f ) + Ujk(∇tanf ) at σ -a.e. point on ∂�, (3.37)

where ∇tanf is regarded as the M × n matrix-valued function F = (Fαs)1≤α≤M
1≤s≤n

whose entry Fαs is the s-th component of ∇tanfα .

Once again, assume � ⊆ R
n is a UR domain and set σ := Hn−1�∂�. Also, as

before, continue to assume that L is a homogeneous constant complex coefficient
weakly elliptic second-order M × M system in R

n. In general, different choices
of the coefficient tensor A ∈ AL yield different double layer potential operators,
so it makes sense to use the subscript A to highlight the dependence on the choice
of the coefficient tensor A. One integral operator of layer potential variety which is
intrinsically associated with the given system L is the so-called single layer potential
operator S , whose integral kernel is the matrix-valued function E(x − y), for all
points x, y ∈ ∂�. In order to make sense of the action of such an operator on any
function as in (3.21), it is necessary to alter said integral kernel and consider the
following modified single layer potential operator

Smodf (x) :=
ˆ

∂�

{
E(x − y) − E∗(−y)

}
f (y) dσ(y) for each x ∈ �,

for each f ∈ [
L1

(
∂�,

σ(x)

1+|x|n−1

)]M
, where E∗ := E · 1Rn\B(0,1).

(3.38)

In this regard, it is worth noting that for each f ∈
[
L1

(
∂�,

σ(x)

1+|x|n−1

)]M

the function

Smodf is well defined, belongs to the space
[
C∞(�)

]M , and for each multi-index
α ∈ N

n
0 with |α| ≥ 1, one has

∂α(Smodf )(x) =
ˆ

∂�

(∂αE)(x − y)f (y) dσ(y) for each x ∈ �. (3.39)
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In particular,

L
(
Smodf

) = 0 in � for each f ∈
[
L1(∂�,

σ(x)

1+|x|n−1

)]M

. (3.40)

As noted in [114, §1.5], if n ≥ 3 then for each aperture parameter κ > 0 and each
truncation parameter ε > 0 we have

Nε
κ (Smodf ) ∈

⋂

0<p< n−1
n−2

L
p

loc(∂�, σ) for each f ∈
[
L1(∂�,

σ(x)

1+|x|n−1

)]M

.

(3.41)

Analogously to (3.38), let us now define the following modified version of the
boundary-to-boundary single layer operator

Smodf (x) :=
ˆ

∂�

{
E(x − y) − E∗(−y)

}
f (y) dσ(y) at σ -a.e. x ∈ ∂�,

for each f ∈ [
L1

(
∂�,

σ(x)

1+|x|n−1

)]M
, where E∗ := E · 1Rn\B(0,1).

(3.42)

Then this operator is meaningfully defined, via an absolutely convergent integral,
at σ -a.e. point in ∂�, and it has been shown in [114, §1.5] that for each ε > 0 the
operator

Smod :
[
L1(∂�,

σ(x)

1+|x|n−1−ε

)]M −→
[
L1(∂�,

σ(x)
1+|x|n

)]M

(3.43)

is well defined, linear, and bounded. In particular, from (3.43) and the embedding in
(2.573) we see that for each weight w ∈ Ap(∂�, σ) with p ∈ (1,∞) the following
mapping is well defined, linear, and bounded:

Smod : [Lp(∂�,w)
]M −→

[
L1

(
∂�,

σ(x)

1 + |x|n
)]M

. (3.44)

In addition, it has been shown in [114, §1.5] that

Smod :
[
L1

(
∂�,

σ(x)

1+|x|n−1

) ∩ L
p

loc(∂�,w)
]M −→ [

L
p

loc(∂�,w)
]M

is a well-defined, linear, and continuous mapping

for each weight w ∈ Ap(∂�, σ) with p ∈ (1,∞),

(3.45)

and (with Lip(∂�) denoting the space of scalar-valued Lipschitz functions on ∂�)
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given an arbitrary Muckenhoupt weight w ∈ Ap(∂�, σ) with
p ∈ (1,∞), it follows that for each sequence of functions
{fj }j∈N ⊆ [

Lp(∂�,w)
]M which is weak-∗ convergent to

some function f ∈ [
Lp(∂�,w)

]M , one has that the limit
lim

j→∞
´
∂�

〈
Smodfj , φ

〉
dσ = ´

∂�

〈
Smodf, φ

〉
dσ holds for each test

function φ ∈ [
Lip(∂�)

]M with compact support.

(3.46)

Also, with the modified boundary-to-domain single layer operator Smod as in (3.38),

for each aperture parameter κ > 0 and each f ∈ [
L1

(
∂�,

σ(x)

1+|x|n−1

)]M , one has

((
Smodf

)∣∣∣
κ−n.t.

∂�

)
(x) = (Smodf )(x) at σ -a.e. point x ∈ ∂�. (3.47)

See [114, §1.5] for proofs of all these claims, and for a more in-depth discussion on
this topic.

Theorem 3.2 Let � ⊆ R
n (where n ∈ N, n ≥ 2) be a UR domain. Denote

by ν = (ν1, . . . , νn) the geometric measure theoretic outward unit normal to
� and abbreviate σ := H n−1�∂�. Also, let L = (

a
αβ
rs ∂r∂s

)
1≤α,β≤M

be a
homogeneous, weakly elliptic, constant (complex) coefficient, second-order M × M

system in R
n (for some M ∈ N). Recall the matrix-valued fundamental solution

E = (Eαβ)1≤α,β≤M associated with L as in Theorem 3.1 and define

k
(rγβ)
ε := (∂rEγβ) · 1

R
n\B(0,ε) for each ε > 0,

each γ, β ∈ {1, . . . ,M} and r ∈ {1, . . . , n}.
(3.48)

In this setting, consider the following modified version of the double layer
operator (3.22)

(
D

A,modf
)
(x)

:=
(

−
ˆ

∂�

νs(y)aβ α
rs

{
(∂rEγβ)(x − y) − k

(rγβ)

1 (−y)
}
fα(y) dσ(y)

)

1≤γ ≤M

for each f = (fα)1≤α≤M ∈
[
L1(∂�,

σ(x)
1+|x|n

)]M

and x ∈ �, (3.49)

and consider the following modified boundary-to-boundary double layer potential
operator (3.24)
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K
A,modf (x)

:=
(

− lim
ε→0+

ˆ

∂�

νs(y)aβ α
rs

{
k(rγβ)
ε (x − y) − k

(rγβ)

1 (−y)
}
fα(y) dσ(y)

)

1≤γ ≤M

for each f = (fα)1≤α≤M ∈
[
L1(∂�,

σ(x)
1+|x|n

)]M

and σ -a.e. x ∈ ∂�, (3.50)

Then the following properties hold.

(1) The operator D
A,mod is meaningfully defined, and satisfies

D
A,modf ∈ [

C∞(�)
]M

and L(D
A,modf ) = 0 in �,

for each f ∈
[
L1

(
∂�,

σ(x)
1+|x|n

)]M

.

(3.51)

In addition, the operator D
A,mod is compatible with DA from (3.22), in the sense

that for each function f belonging to the smaller space
[
L1

(
∂�,

σ(x)

1+|x|n−1

)]M
the

difference

Cf := D
A,modf − Df is a constant (belonging to CM ) in �. (3.52)

As a consequence,

∇D
A,modf = ∇Df in � for each f ∈

[
L1(∂�,

σ(x)

1+|x|n−1

)]M

. (3.53)

Moreover,

D
A,mod maps constant (CM -valued) functions on ∂� into con-

stant (CM -valued) functions in �.
(3.54)

In addition, at each point x ∈ � one may express

∂j

(
D

A,modf
)
(x) =

(
−
ˆ

∂∗�
νs(y)aβ α

rs (∂j ∂rEγβ)(x − y)fα(y) dσ(y)

)

1≤γ ≤M

for each j ∈ {1, . . . , n} and f = (fα)1≤α≤M ∈ [
L1(∂�,

σ(x)
1+|x|n

)]M
.

(3.55)
Finally, given any function
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f = (fα)1≤α≤M ∈
[
L1(∂�,

σ(x)
1+|x|n

)]M

with the property that

∂τjk
fα ∈ L1(∂�,

σ(x)

1+|x|n−1

)
for all j, k ∈ {1, . . . , n} and α ∈ {1, . . . ,M},

(3.56)

it follows that for each index � ∈ {1, . . . , n} and each point x ∈ �, one has

∂�

(
D

A,modf
)
(x) =

( ˆ
∂�

aβ α
rs (∂rEγβ)(x − y)(∂τ�s

fα)(y) dσ(y)

)

1≤γ ≤M

.

(3.57)

(2) Fix an aperture parameter κ ∈ (0,∞), a truncation parameter ε > 0, and an
integrability exponent p ∈ (1,∞). Then the nontangential boundary trace

(
∂�DA,modf

)∣∣κ−n.t.

∂�
exists (in CM ) at σ -a.e. point on ∂�,

for each function f as in (3.56) and each index � ∈ {1, . . . , n}.
(3.58)

Also, one has

Nε
κ

(∇(D
A,modf )

) ∈ L
p

loc(∂�, σ) for each function

f = (fα)1≤α≤M ∈
[
L1(∂�,

σ(x)
1+|x|n

)]M

such that

∂τjk
fα ∈ L1(∂�,

σ(x)

1+|x|n−1

) ∩ L
p

loc(∂�, σ)

for all j, k ∈ {1, . . . , n} and all α ∈ {1, . . . ,M}.

(3.59)

In addition,

Nε
κ (D

A,modf ) ∈ L
p

loc(∂�, σ) for each function

f ∈
[
L1

(
∂�,

σ(x)
1+|x|n

) ∩ L
p

loc(∂�, σ)
]M

.
(3.60)

Furthermore, the following jump-formula holds:

(
D

A,modf
)∣∣∣

κ−n.t.

∂�
= ( 1

2I + K
A,mod

)
f at σ -a.e. point on ∂�,

for each given function f ∈
[
L1(∂�,

σ(x)
1+|x|n

)]M

,

(3.61)

where, as usual, I is the identity operator. As a consequence of (3.61) and (3.54),
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the operator K
A,mod maps constant (CM -valued) functions on ∂� into

constant (CM -valued) functions on ∂�.
(3.62)

Finally, the operator K
A,mod (from (3.50)) is compatible with K (acting on

functions from
[
L1

(
∂�,

σ(x)

1+|x|n−1

)]M
as in (3.24)) in the sense that

for each function f ∈ [
L1

(
∂�,

σ(x)

1+|x|n−1

)]M
the difference

cf := Kmodf − Kf is a constant (belonging to CM ) on ∂�.
(3.63)

Moving on, in view of (3.63) and the fact that tangential derivatives annihilate
locally constant functions, the following result from [114, §1.8] may be regarded as
a generalization of Proposition 3.2.

Proposition 3.3 Assume � ⊆ R
n is a UR domain and abbreviate σ := H n−1�∂�.

Consider an M × M homogeneous, second-order, constant complex coefficient,

weakly elliptic system L in Rn, and pick some coefficient tensorA =
(
a

αβ
rs

)
1≤α,β≤M
1≤r,s≤n

for which LA = L. Let KA be the boundary-to-boundary double layer potential
operator associated with � and A as in (3.24), and bring in its modified version
K

A,mod from (3.50). Finally, recall the family of singular integral operators Ujk with
j, k ∈ {1, . . . , n} defined in (3.35) and fix some integrability exponent p ∈ (1,∞).
Then for each function

f = (fα)1≤α≤M ∈
[
L1

(
∂�,

σ(x)
1+|x|n

) ∩ L
p

loc(∂�, σ)
]M

such that

∂τjk
fα belongs to L1

(
∂�,

σ(x)

1+|x|n−1

) ∩ L
p

loc(∂�, σ)

for all j, k ∈ {1, . . . , n} and α ∈ {1, . . . ,M},
(3.64)

and each pair of indices j, k,∈ {1, . . . , n}, one has

∂τjk

(
K

A,modf
) = KA(∂τjk

f ) + Ujk(∇tanf ) (3.65)

where, as in the case of (3.37), ∇tanf is regarded as the M × n matrix-valued
function whose (α, s) entry is the s-th component of the tangential gradient ∇tanfα .

We next introduce (and briefly elaborate on) the notion of conormal derivative
operator associated with a given domain and a given coefficient tensor. Specifically,
suppose � ⊆ R

n is an Ahlfors regular domain and abbreviate σ := Hn−1�∂�. In
particular, � is a set of locally finite perimeter, and its geometric measure theoretic
outward unit normal ν = (ν1, . . . , νn) is defined σ -a.e. on ∂�. Also, fix a coefficient
tensor A = (

a
αβ
rs

)
1≤r,s≤n

1≤α,β≤M

along with some aperture parameter κ > 0. In such a

setting, for any function u = (uβ)1≤β≤M ∈ [
W

1,1
loc (�)

]M with the property that
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the nontangential boundary trace (∇u)
∣∣κ−n.t.

∂�
exists (in C

M×n) at σ -a.e. point on ∂�

define the conormal derivative ∂A
ν u as the C

M -valued function

∂A
ν u :=

(
νra

αβ
rs

(
∂suβ

)∣∣κ−n.t.

∂�

)
1≤α≤M

at σ -a.e. point on ∂�. (3.66)

In relation to this, it has been proved in [114, §1.5] that if � ⊆ R
n is a UR domain

and σ := Hn−1�∂� then for each function f ∈
[
L1

(
∂�,

σ(x)

1+|x|n−1

)]M

the conormal

derivative ∂A
ν Smodf may be meaningfully considered in the sense of (3.66), and

∂A
ν Smodf = ( − 1

2I + K#
A�

)
f at σ -a.e. point in ∂�, (3.67)

where I is the identity, and K#
A� is the operator associated as in (3.25) with the UR

domain � and the transpose coefficient tensor A�.
We shall also need the following basic integral representation formula, estab-

lished in [114, §1.8], for null-solutions of weakly elliptic systems in Ahlfors regular
domains, in terms of modified boundary-to-domain layer potential operators.

Theorem 3.3 Let � ⊆ R
n (where n ∈ N, n ≥ 2) be an Ahlfors regular domain

which is either bounded, or has an unbounded boundary. Denote by ν the geometric
measure theoretic outward unit normal to � and abbreviate σ := H n−1�∂�. Also,
for some M ∈ N, consider A = (

a
αβ
rs

)
1≤r,s≤n

1≤α,β≤M

a complex coefficient tensor with

the property that L := LA is a weakly elliptic M × M system in R
n. In this setting,

recall the modified version of the double layer operator D
A,mod from (3.49), and

the modified version of the single layer operator Smod from (3.38). Finally, fix an
aperture parameter κ ∈ (0,∞), a truncation parameter ε ∈ (0,∞), and consider
a function u : � → C

M satisfying

u ∈ [
C∞(�)

]M
, Lu = 0 in �, Nε

κu ∈ L1
loc(∂�, σ),

u
∣∣κ−n.t.

∂�
exists σ -a.e. on ∂� and u

∣∣κ−n.t.

∂�
∈ [

L1(∂�,
σ(x)

1+|x|n
)]M

,

(∇u)
∣∣κ−n.t.

∂�
exists σ -a.e. on ∂� and Nκ(∇u) ∈ L1(∂�,

σ(x)

1+|x|n−1

)
.

(3.68)

Then there exists some C
M -valued locally constant function cu in � with the

property that

u = D
A,mod

(
u
∣∣κ−n.t.

∂�

) − Smod

(
∂A
ν u

) + cu in �. (3.69)

We proceed by recalling the following Fatou-type theorem established in [113,
§3.3].
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Theorem 3.4 Suppose � ⊆ R
n, where n ∈ N with n ≥ 2, is an arbitrary UR

domain and abbreviate σ := H n−1�∂�. Also, consider a homogeneous constant
(complex) coefficient second-order M ×M system L in Rn (for some M ∈ N) which
is weakly elliptic, and assume u ∈ [

C∞(�)
]M

is a vector-valued function which,
for some aperture parameter κ > 0, satisfies

Nκ(∇u) ∈ L
p

loc(∂�, σ) for some p ∈ (1,∞]
and Lu = 0 in �.

(3.70)

Then the nontangential boundary trace
(
(∇u)

∣∣κ−n.t.

∂�

)
(x) exists (in C

M×n) at σ -

a.e. point x ∈ ∂�,

the function (∇u)
∣∣κ−n.t.

∂�
belongs to the space

[
L

p

loc(∂�, σ)
]M×n

, (3.71)

and
∣∣∣(∇u)

∣∣κ−n.t.

∂�

∣∣∣ ≤ Nκ(∇u) at σ -a.e. point on ∂�. (3.72)

A combination of Theorems 3.3 and 3.4 gives the following basic result.

Corollary 3.1 Let � ⊆ R
n (where n ∈ N, n ≥ 2) be an NTA domain with an

unbounded Ahlfors regular boundary. Abbreviate σ := H n−1�∂� and denote by ν

the geometric measure theoretic outward unit normal to �. For M ∈ N, consider
A = (

a
αβ
rs

)
1≤r,s≤n

1≤α,β≤M

a complex coefficient tensor with the property that L := LA is

a weakly elliptic M × M system in Rn.
Once again, recall the modified version of the double layer operator D

A,mod

from (3.49), and the modified version of the single layer operator Smod from (3.38).
Finally, fix an aperture parameter κ ∈ (0,∞) along with an integrability exponent
p ∈ (1,∞) and some Muckenhoupt weight w ∈ Ap(∂�, σ). In this setting,
consider a function u : � → C

M satisfying

u ∈ [
C∞(�)

]M
, Lu = 0 in �, Nκ(∇u) ∈ Lp(∂�,w). (3.73)

Then

u
∣∣κ−n.t.

∂�
exists σ -a.e. on ∂� and belongs to

[ •
L

p

1 (∂�,w)
]M

,

(∇u)
∣∣κ−n.t.

∂�
exists σ -a.e. on ∂�, and ∂A

ν u belongs to
[
Lp(∂�,w)

]M
,

(3.74)
and there exists some cu ∈ C

M with the property that

u = D
A,mod

(
u
∣∣κ−n.t.

∂�

) − Smod

(
∂A
ν u

) + cu in �. (3.75)
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Proof From Proposition 2.24, we see that u
∣∣κ−n.t.

∂�
exists at σ -a.e. point on ∂� and

belongs to
[ •
L

p

1 (∂�,w)
]M . In concert, the membership in (3.73), (2.608), (2.11)

(used with σ := w), and (2.576) also implies that Nε
κu ∈ L1

loc(∂�, σ) for each
ε > 0. Next, the present hypotheses on � ensure (cf. (2.48)) that � is a UR domain.
Keeping this in mind, the Fatou-type result from Theorem 3.4 guarantees that the

nontangential boundary trace (∇u)
∣∣κ−n.t.

∂�
exists (in C

M·n) at σ -a.e. point on ∂�. In

particular, ∂A
ν u is well defined and belongs to the space

[
Lp(∂�,w)

]M (cf. (3.66),
(3.71)–(3.72)). Hence, all conditions in (3.68) are satisfied, and this permits us to
invoke Theorem 3.3 to conclude that (3.75) holds (for some constant cu ∈ C

M ,
given that the hypotheses on � ensure that this set is connected). ��

3.2 SIOs on Muckenhoupt Weighted Lebesgue and Sobolev
Spaces

We begin by considering garden variety Calderón–Zygmund singular integral oper-
ators (SIOs), i.e., operators of convolution-type with odd, homogeneous, sufficiently
smooth kernels, which otherwise lack any particular algebraic characteristics. The
goal is to obtain estimates in Muckenhoupt weighted Lebesgue spaces on UR sets
in R

n.

Proposition 3.4 Let � ⊆ R
n be a closed UR set and abbreviate σ := Hn−1��.

AssumeN = N(n) ∈ N is a sufficiently large integer and consider a complex-valued
function k ∈ CN

(
R

n \ {0}) which is odd and positive homogeneous of degree 1 − n.
Also, fix an integrability exponent p ∈ (1,∞), along with a Muckenhoupt weight
w ∈ Ap(�, σ). In this setting, for each f ∈ L1

(
�,

σ(x)

1+|x|n−1

)
, define

Tεf (x) :=
ˆ

y∈�
|x−y|>ε

k(x − y)f (y) dσ(y) for all x ∈ � and ε > 0, (3.76)

T∗f (x) := sup
ε>0

|Tεf (x)| for each x ∈ �, (3.77)

Tf (x) := lim
ε→0+ Tεf (x) for σ -a.e. x ∈ �. (3.78)

Then there exists a constant C ∈ (0,∞) which depends exclusively on n,
p, [w]Ap , and the UR constants of � (and which stays bounded as [w]Ap stays
bounded) with the property that for each f ∈ Lp(�,w), one has
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‖T∗f ‖Lp(�,w) ≤ C
( ∑

|α|≤N

sup
Sn−1

|∂αk|
)

‖f ‖Lp(�,w) . (3.79)

In particular,

the truncated integral operators Tε : Lp(�,w) → Lp(�,w) are well
defined, linear, and bounded in a uniform fashion with respect to the
truncation parameter ε > 0.

(3.80)

Moreover, for each function f ∈ L1
(
�,

σ(x)

1+|x|n−1

)
, the limit defining Tf (x) in (3.78)

exists at σ -a.e. x ∈ � and the operator

T : Lp(�,w) −→ Lp(�,w) (3.81)

is well defined, linear, and bounded. Let p′ ∈ (1,∞) denote the Hölder conjugate
exponent of p, and, with w′ := w1−p′ ∈ Ap′(�, σ ), consider the natural
identification

(
Lp(�,w)

)∗ = Lp′
(�,w′). (3.82)

Then, under the canonical integral pairing (f, g) �→ ´
�

fg dσ , it follows that

the (real) transpose of the operator (3.81) is
the operator −T : Lp′

(�,w′) → Lp′
(�,w′). (3.83)

Finally, assume � ⊆ R
n is an open set such that ∂� is a UR set and

abbreviate σ := Hn−1�∂�. Fix an integrability exponent p ∈ (1,∞) along with a
Muckenhoupt weight w ∈ Ap(∂�, σ), and pick an aperture parameter κ > 0. With
the integral kernel k as before, for each f ∈ Lp(∂�,w), define

Tf (x) :=
ˆ

∂�

k(x − y)f (y) dσ(y) for each x ∈ �. (3.84)

Then there exists a constant C ∈ (0,∞) which depends exclusively on n, p, [w]Ap ,
and the UR constants of ∂� with the property that for each f ∈ Lp(∂�,w), one
has

‖Nκ(Tf )‖Lp(∂�,w) ≤ C
( ∑

|α|≤N

sup
Sn−1

|∂αk|
)

‖f ‖Lp(∂�,w) . (3.85)

Also, for each function f ∈ L1
(
∂�,

σ(x)

1+|x|n−1

)
, one has the jump-formula

(
Tf

∣∣κ−n.t.

∂�

)
(x) = 1

2i
k̂
(
ν(x)

)
f (x) + (Tf )(x) at σ -a.e. x ∈ ∂∗�, (3.86)
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where k̂ denotes the Fourier transform of k. In particular, the jump-formula (3.86)
is valid for each function f ∈ Lp(∂�,w).

The above proposition points to uniform rectifiability as being intimately con-
nected with the boundedness of a large class of Calderón–Zygmund like operators
on Muckenhoupt weighted Lebesgue spaces. From the work of G. David and
S. Semmes (cf. [40, 41]) and F. Nazarov, X. Tolsa, and A. Volberg in [118] (see
also [96] for similar results proved earlier in the plane), we know that UR sets make
up the most general context in which convolution-like singular integral operators are
bounded on ordinary Lebesgue spaces. Moreover, under the background assumption
of Ahlfors regularity, uniform rectifiability is implied1 by the simultaneous L2

boundedness of all truncated integral convolution type operators Tε on � (cf. (3.76))
uniformly with respect to the truncation ε > 0, whose kernels are smooth, odd, and
positive homogeneous of degree 1 − n in R

n \ {0}. In light of (3.80), the above
discussion highlights the optimality of demanding that � is a UR set in the context
of Proposition 3.4. One of the early works on the higher-dimensional theory of
singular integral operators in rough geometric settings is [23]; see also the survey
paper [97] for an informative account of the development of this topic.

Results like Proposition 3.4 have been recently established in [113, §2.3-§2.5].
Here we present an alternative approach that makes essential use of the Fefferman–
Stein sharp maximal function, considered in the setting of spaces of homogeneous
type (for the Euclidean context, see [69, p. 52], [52, Theorem 3.6, p. 161]).

Proof of Proposition 3.4 To set the stage, recall the Fefferman–Stein sharp maxi-
mal operator M# on �, acting on each function f ∈ L1

loc(�, σ ) according to

M#f (x) := sup
��x

 
�

∣∣∣∣f −
 

�

f dσ

∣∣∣∣ dσ, ∀ x ∈ �, (3.87)

where the supremum is taken over all surface balls � ⊆ � containing the point
x ∈ �. Clearly, for each f ∈ L1

loc(�, σ ) and each x ∈ �, we have

sup
��x

inf
a∈C

 
�

|f − a| dσ ≤ M#f (x) ≤ 2 sup
��x

inf
a∈C

 
�

|f − a| dσ. (3.88)

Also, given α ∈ (0, 1), for each f ∈ L1
loc(�, σ ), set

M#
αf (x) := M#(|f |α)(x)1/α for all x ∈ �. (3.89)

1 In [40], the authors have dealt with the class of truncated singular integral operators associated

with kernels in R
n \ {0} which are smooth, odd, and satisfy supx∈Rn\{0}

[
|x|(n−1)+|α|∣∣(∂αk)(x)

∣∣] <

+∞ for all α ∈ N
n
0. In [118], it was shown that the truncated Riesz transforms on � alone will do.
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Since having 0 < α < 1 ensures that |Xα − Yα| ≤ |X − Y |α for all X, Y ∈ [0,∞),
from (3.89) and the last inequality in (3.88), one may readily check that

M#
αf (x) ≤ 21/α sup

��x

inf
a∈C

( 
�

|f − a|α dσ

)1/α

(3.90)

for each f ∈ L1
loc(�, σ ) and each x ∈ �. Finally, recall from (2.522) the (non-

centered) Hardy–Littlewood maximal operator M on �.
From (3.76)–(3.78), it is clear that the maximal operator T∗ and the principal-

value singular integral operator T depend in a homogeneous fashion on the kernel
function k. In view of this observation, by working with k/K (in the case when
k is not identically zero) where K := ∑

|α|≤N supSn−1 |∂αk|, there is no loss of
generality in assuming that

∑
|α|≤N

sup
Sn−1

|∂αk| = 1. (3.91)

The fact that for each function f ∈ L1
(
�,

σ(x)

1+|x|n−1

)
, the limit defining Tf (x)

in (3.78) exists at σ -a.e. x ∈ � has been proved in [113, §2.3]. To proceed, denote
by L∞

comp(�, σ ) the subspace of L∞(�, σ ) consisting of functions with compact
support. Also, fix a power α ∈ (0, 1). We will first show that there exists a constant
C = C(�, n, α) ∈ (0,∞) such that

M#
α(Tf )(x) ≤ C · Mf (x)

for all f ∈ L∞
comp(�, σ ) and x ∈ �.

(3.92)

To this end, fix a function f ∈ L∞
comp(�, σ ) along with a point x ∈ �, and consider

a surface ball � = �(x0, r0), with center at x0 ∈ � and radius r0 > 0, containing
the point x. Decompose f = f1 + f2, where f1 := f 12� and f2 := f 1�\2�. Then∣∣Tf2(x0)

∣∣ < +∞ and we abbreviate a := Tf2(x0) ∈ C. Note that

 
�

|Tf − a|α dσ ≤
 

�

|Tf1|α dσ +
 

�

|Tf2 − a|α dσ. (3.93)

For the first term in the right-hand side of (3.93), using Kolmogorov’s inequality,
the fact that T is bounded from L1(�, σ ) to L1,∞(�, σ ) (cf. [113, §2.3], [61,
Proposition 3.19]), and the fact that � is an Ahlfors regular set to write

 
�

|Tf1|α dσ ≤ Cα

σ(�)α
‖Tf1‖α

L1,∞(�,σ)
≤ Cα

σ(�)α
‖f1‖α

L1(�,σ)

≤ Cα

( 
2�

|f | dσ

)α

≤ Cα · Mf (x)α. (3.94)
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For the second term in the right-hand side of (3.93), note that the properties of k and
(3.91) entail

|(∇k)(z)| =
∣∣∣(∇k)

( z

|z| |z|
)∣∣∣ ≤ |z|−n sup

|ω|=1
|(∇k)(ω)| = Cn|z|−n, (3.95)

for each z ∈ R
n \ {0}, where Cn ∈ (0,∞) is a purely dimensional constant.

On account of (3.95) and the Mean Value Theorem, we see that there exists a
dimensional constant Cn ∈ (0,∞) with the property that for each y ∈ � and
z ∈ � \ 2� we have

|k(y − z) − k(x0 − z)| ≤ Cn

|y − x0|
|x0 − z|n ≤ Cnr0

|x0 − z|n . (3.96)

Using this, for every y ∈ �, we may write

|Tf2(y) − a| = |Tf2(y) − Tf2(x0)|

≤
ˆ

�\2�

|k(y − z) − k(x0 − z)||f (z)| dσ(z)

≤ Cr0

∞∑
j=1

ˆ
2j r0≤|x0−z|<2j+1r0

|f (z)|
|x0 − z|n dσ(z)

≤ C

∞∑
j=1

2−j

 
2j+1�

|f (z)| dσ(z)

≤ C · Mf (x), (3.97)

where C ∈ (0,∞) depends only on dimension and the Ahlfors regularity constant
of �. At this stage, the claim in (3.92) follows by combining (3.90), (3.93), (3.94),
and (3.97).

We shall now analyze two cases, depending on whether � is bounded or not.
Consider first the case when � is unbounded. In such a setting, the A∞-weighted
version of the Fefferman–Stein inequality for spaces of homogeneous type (cf.,
e.g., [8, Sections 3.2 and 5]) gives that for every q ∈ (0,∞) there exists some
constant Cw ∈ (0,∞), which depends on the weight w ∈ Ap(�, σ) ⊆ A∞(�, σ )

only through its characteristic [w]Ap (indeed, it can be expressed as an increasing
function of [w]Ap ), such that

‖Mg‖Lq(�,w) ≤ Cw

∥∥M#g
∥∥

Lq(�,w)
for each

g ∈ L1
loc(�, σ ) such that Mg ∈ Lq(�,w).

(3.98)
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To proceed, fix α ∈ (0, 1) and f ∈ L∞
comp(�, σ ). Let us momentarily work under

the additional assumption that the weight w belongs to L∞(�, σ ). This permits us
to estimate

∥∥M(|Tf |α)
∥∥

Lp/α(�,w)
≤ ‖w‖α/p

L∞(�,σ)

∥∥M(|Tf |α)
∥∥

Lp/α(�,σ)

≤ C ‖w‖α/p

L∞(�,σ)
‖Tf ‖α

Lp(�,σ)

≤ C ‖w‖α/p

L∞(�,σ)
‖f ‖α

Lp(�,σ) < +∞, (3.99)

where we have used the boundedness of M on Lp/α(�, σ) and the boundedness
of T on Lp(�, σ) (cf. [61, Proposition 3.18]). This allows us to use (3.98) (with
g := |Tf |α and q := p/α) to obtain, for some constant Cw ∈ (0,∞) (again,
depending in an increasing fashion on [w]Ap ),

‖Tf ‖Lp(�,w) ≤
∥∥∥M(|Tf |α)1/α

∥∥∥
Lp(�,w)

= ∥∥M(|Tf |α)
∥∥1/α

Lp/α(�,w)

≤ Cw

∥∥∥M#(|Tf |α)

∥∥∥
1/α

Lp/α(�,w)
= Cw

∥∥∥M#
α(Tf )

∥∥∥
Lp(�,w)

≤ Cw ‖Mf ‖Lp(�,w) ≤ Cw ‖f ‖Lp(�,w) , (3.100)

where the first inequality follows from Lebesgue’s Differentiation Theorem (cf.
[7]), the last equality is a consequence of (3.89), the penultimate inequality comes
from (3.92), and the last inequality is implied by the boundedness of the Hardy–
Littlewood operator M on Lp(�,w).

To remove the restriction w ∈ L∞(�, σ ), we proceed as follows. For each
integer j ∈ N, let wj := min{w, j} ∈ L∞(�, σ ). Moreover, as in [57, Ex. 9.1.9],
we have

[wj ]Ap ≤ Cp(1 + [w]Ap) (3.101)

for some Cp ∈ (0,∞) independent of j ∈ N. As such, we may invoke (3.100)
written for each wj (which now involves a constant whose dependence of wj may
be expressed in terms of a non-decreasing function acting on [wj ]Ap ) to conclude
that

‖Tf ‖Lp(�,wj ) ≤ C ‖f ‖Lp(�,wj ) ≤ C ‖f ‖Lp(�,w) , (3.102)

for some constant C ∈ (0,∞) independent of j ∈ N. Upon letting j → ∞
and relying on Lebesgue’s Monotone Convergence Theorem, we arrive at the
conclusion that ‖Tf ‖Lp(�,w) ≤ C ‖f ‖Lp(�,w) for every f ∈ L∞

comp(�, σ ). Given
that L∞

comp(�, σ ) is dense in Lp(�,w), this ultimately establishes the boundedness
of the operator T in the context of (3.81) when � is unbounded.
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Let us now consider the case when � is bounded. In this case, compared to (3.98),
the A∞-weighted version of the Fefferman–Stein inequality includes an extra term;
namely, it now reads (cf. [8, Sections 3.2 and 5])

‖Mg‖Lq(�,w) ≤ Cw

∥∥∥M#g

∥∥∥
Lq(�,w)

+ Cσ(�)−1
( ˆ

�

w dσ
)1/q‖g‖L1(�,σ) (3.103)

for all g ∈ L1(�, σ ) with Mg ∈ Lq(�,w),

where Cw ∈ (0,∞) is as before and C ∈ (0,∞) is a purely geometric constant. Fix
α ∈ (0, 1) and f ∈ L∞

comp(�, σ ). Assume first that w ∈ L∞(�, σ ) and note that
(3.99) holds in the same way. This permits us to invoke (3.103) (with g := |Tf |α
and q := p/α), so in place of (3.100), we now get

‖Tf ‖Lp(�,w) ≤ ∥∥M(|Tf |α)
∥∥1/α

Lp/α(�,w)

≤ Cw

∥∥M#(|Tf |α)
∥∥1/α

Lp/α(�,w)
+ Cσ(�)−1/α

(ˆ
�

w dσ
)1/p∥∥|Tf |α∥∥1/α

L1(�,σ)

≤ Cw ‖f ‖Lp(�,w) + Cσ(�)−1/α
( ˆ

�

w dσ
)1/p ‖Tf ‖Lα(�,σ) , (3.104)

where the first and last estimates follow as before. Here, the constant Cw ∈ (0,∞)

depends on w only through its characteristic [w]Ap (again, this may be expressed as
an increasing function of [w]Ap ), while C ∈ (0,∞) depends just on p, α, n, and the
Ahlfors regularity constant of �.

It remains to estimate ‖Tf ‖Lα(�,σ) in a satisfactory manner. Using
Kolmogorov’s inequality and the fact that T is bounded from L1(�, σ ) into
L1,∞(�, σ ) (cf. [113, §2.3], [61, Proposition 3.19]) and Hölder’s inequality, we
obtain

‖Tf ‖Lα(�,σ) ≤ (1 − α)−1/ασ (�)(1−α)/α ‖Tf ‖L1,∞(�,σ)

≤ Cσ(�)(1−α)/α ‖f ‖L1(�,σ)

≤ Cσ(�)(1−α)/α
( ˆ

�

w1−p′
dσ

)1/p′
‖f ‖Lp(�,w) . (3.105)

Let us record our progress. The argument so far proves that, if � is bounded, then
for each f ∈ L∞

comp(�, σ ) we have
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‖Tf ‖Lp(�,w) ≤
(

Cw + C σ(�)−1
( ˆ

�

w dσ
)1/p( ˆ

�

w1−p′
dσ

)1/p′)
‖f ‖Lp(�,w)

≤ (
Cw + C [w]1/p

Ap

) ‖f ‖Lp(�,w) , (3.106)

where Cw ∈ (0,∞) is as above. As before, to remove the restriction w ∈ L∞(�, σ ),
we work with wj := min{w, j} for j ∈ N. Thanks to (3.101) the constant in the
right-hand side of (3.106) may be controlled uniformly in j . After passing to limit
j → ∞ and once again relying on the density L∞

comp(�, σ ) into Lp(�,w), we
eventually conclude that the operator T is bounded in the context of (3.81) in this
case as well. Moreover,

‖T ‖Lp(�,w)→Lp(�,w) ≤ C, (3.107)

where C ∈ (0,∞) depends only on n, p, [w]Ap , and the UR constants of �. This
finishes the proof of (3.81).

Next, recall Cotlar’s inequality, to the effect that there exists some C ∈ (0,∞)

which depends only on n, and the Ahlfors regularity constant of �, with the property
that for every function f ∈ L∞

comp(�, σ ), we have

(T∗f )(x) ≤ C · M(Tf )(x) + C · Mf (x) for each x ∈ �. (3.108)

Then (3.79) follows from (3.81), (3.108), the boundedness of the Hardy–Littlewood
operator M on Lp(�,w), and a density argument. Going further, (3.83) may be
justified by first establishing a similar claim for the truncated operators (3.76) using
Fubini’s theorem and then invoking Lebesgue’s Dominated Convergence Theorem
(whose applicability is guaranteed by (3.79)) to pass to limit as ε → 0+.

Consider next the claims made in the last part of the statement. It is apparent
from (3.84) that the boundary-to-domain operator T depends in a homogeneous
fashion on the kernel function k. Much as before, this permits us to work under the
additional assumption that (3.91) holds. Granted this, the estimate claimed in (3.85)
is a direct consequence of inequality (3.79) and the formula (cf. [61, eq. (3.2.22)])

Nκ

(
Tf )(x) ≤ C · T∗f (x) + C · Mf (x) for each x ∈ �, (3.109)

where C ∈ (0,∞) depends only on n and the Ahlfors regularity constant of � and
where the maximal operator T∗ and the Hardy–Littlewood maximal function M are
now associated with the UR set � := ∂�.

That the jump-formula (3.86) holds for each f ∈ L1
(
∂�,

σ(x)

1+|x|n−1

)
has been

established in [113, §2.5]. With this in hand, the very last claim in the statement of
Proposition 3.4 is implied by (2.575). ��

The stage has been set for considering the action of the boundary layer potentials
associated with a given weakly elliptic system L and a given UR domain � in R

n

as in (3.22)–(3.25) and (3.38) on Muckenhoupt weighted Lebesgue and Sobolev
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spaces on ∂�. To state our main result in this regard, given any two Banach spaces
(X, ‖ · ‖X), (Y, ‖ · ‖Y ), denote

Bd
(
X → Y

) := {
T : X → Y : T linear and bounded

}
, (3.110)

and equip it with the standard operator norm Bd
(
X → Y

) � T �→ ‖T ‖X→Y (cf.
(4.1)). Finally, corresponding to the case when Y = X, we agree to abbreviate

Bd(X) := Bd
(
X → X

)
. (3.111)

Proposition 3.5 Suppose � ⊆ R
n (where n ∈ N, n ≥ 2) is a UR domain and

abbreviate σ := Hn−1�∂�. Also, let L be a homogeneous, second-order, constant
complex coefficient, weakly elliptic M ×M system in Rn. Pick A ∈ AL and consider
the boundary layer potential operators DA,KA,K#

A associated with � and the
coefficient tensor A as in (3.22), (3.24), and (3.25). Also, recall the modified single
layer potential operator Smod associated with � and L as in (3.38). Finally, fix an
integrability exponent p ∈ (1,∞), a Muckenhoupt weight w ∈ Ap(∂�, σ), and an
aperture parameter κ > 0.

1. The following operators are well defined, sub-linear, and bounded:

[
Lp(∂�,w)

]M � f �−→ Nκ

(
DAf

) ∈ Lp(∂�,w), (3.112)

[
L

p

1 (∂�,w)
]M � f �−→ Nκ (∇DAf ) ∈ Lp(∂�,w). (3.113)

Also,

for each f ∈ [
L

p

1 (∂�,w)
]M

the nontangential trace
(∇DAf

)∣∣κ−n.t.

∂�
exists (in Cn·M ) at σ -a.e. point on ∂�.

(3.114)

As a consequence of (3.114), (3.33), (3.66), (2.586), and Proposition 3.4,

the map
[
L

p

1 (∂�,w)
]M � f �−→ ∂A

ν

(
DAf

) ∈ [
Lp(∂�,w)

]M
is

well defined, linear, and bounded, and there exists C ∈ (0,∞) so
that

∥∥∂A
ν

(
DAf

)∥∥[Lp(∂�,w)]M ≤ C‖∇tanf ‖[Lp(∂�,w)]n·M for each

f in the Muckenhoupt weighted Sobolev space
[
L

p

1 (∂�,w)
]M

.

(3.115)

2. For every f ∈ [
Lp(∂�,w)

]M
, the limits in (3.24) and (3.25) exist at σ -a.e.

point on ∂�. Moreover, the operators KA and K#
A are well defined, linear, and

bounded in the following contexts:

KA : [Lp(∂�,w)
]M −→ [

Lp(∂�,w)
]M

, (3.116)
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KA : [Lp

1 (∂�,w)
]M −→ [

L
p

1 (∂�,w)
]M

, (3.117)

K#
A : [Lp(∂�,w)

]M −→ [
Lp(∂�,w)

]M
. (3.118)

Moreover, under the canonical integral pairing (f, g) �→ ´
∂�

〈f, g〉 dσ , it follows
that

the (real) transpose of the operator KA acting on the
space

[
Lp(∂�,w)

]M
is the operator K#

A acting on the

space
[
Lp′

(∂�,w′)
]M

where p′ ∈ (1,∞) is the Hölder

conjugate exponent of p and w′ := w1−p′ ∈ Ap′(�, σ ).

(3.119)

Additionally, the operators KA,K#
A in (3.116)–(3.118) depend continuously

on the underlying coefficient tensor A. More specifically, with the piece of
notation introduced in (3.13), the following operator-valued assignments are
continuous:

AWE � A �−→ KA ∈ Bd
([

Lp(∂�,w)
]M)

, (3.120)

AWE � A �−→ KA ∈ Bd
([

L
p

1 (∂�,w)
]M)

, (3.121)

AWE � A �−→ K#
A ∈ Bd

([
Lp(∂�,w)

]M)
. (3.122)

Furthermore, the nontangential boundary trace of the boundary-to-domain
double layer is related to the boundary-to-boundary double layer via a jump-
formula, to the effect that for every f ∈ [

Lp(∂�,w)
]M

and σ -a.e. in ∂�, one
has

DAf
∣∣κ−n.t.

∂�
= ( 1

2I + KA

)
f, (3.123)

where I is the identity operator.

3. For each f ∈ [
Lp(∂�,w)

]M
, one has

Smodf ∈ [
C∞(�)

]M
, L

(
Smodf

) = 0 in �. (3.124)

In addition, the trace

(∇Smodf
)∣∣κ−n.t.

∂�
exists (in CM·n) at σ -a.e. point on ∂�, (3.125)

and the conormal derivative of the modified boundary-to-domain single layer
satisfies the following jump-formula:
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∂A
ν Smodf = ( − 1

2I + K#
A�

)
f at σ -a.e. point in ∂�, (3.126)

where I is the identity, and K#
A� is the operator associated as in (3.25) with the

UR domain � and the transpose coefficient tensor A�. Also, there exists some
constant C = C(�,p,w,L, κ) ∈ (0,∞) independent of f such that

∥∥Nκ(∇Smodf )
∥∥

Lp(∂�,w)
≤ C‖f ‖[Lp(∂�,w)]M . (3.127)

4. For each function f ∈ [
Lp(∂�,w)

]M
and σ -a.e. point x ∈ ∂�, one has

∂τjk

(
Smodf

)
(x) = lim

ε→0+

ˆ

y∈∂�
|x−y|>ε

{
νj (x)(∂kE)(x − y) (3.128)

− νk(x)(∂jE)(x − y)
}
f (y) dσ(y)

for each j, k ∈ {1, . . . , n}, and
( 1

2I + K#
A�

)(( − 1
2I + K#

A�
)
f
)
(x) (3.129)

=
(

lim
ε→0+

ˆ

y∈∂�
|x−y|>ε

νi(x)a
μγ

ij aβα
rs (∂rEγβ)(x − y)∂τjs

(
Smodf

)
α
(y) dσ(y)

)

1≤μ≤M

.

5. For each f ∈ [
L

p

1 (∂�,w)
]M

, there exists cf , which is the nontangential trace
on ∂� of some CM -valued locally constant function in �, with the property that
at σ -a.e. point on ∂�, one has

( 1
2I + KA

)(( − 1
2I + KA

)
f
)

= Smod

(
∂A
ν

(
DAf

)) + cf . (3.130)

6. The operator

Smod : [Lp(∂�,w)
]M −→ [ •

L
p

1 (∂�,w)
]M (3.131)

is well defined, linear, and bounded, when the target space is endowed with the
semi-norm introduced in (2.599). As a consequence, if

[ •
L

p

1 (∂�,w)
/ ∼ ]M

denotes the M-th power of the quotient space of classes [ · ] of equivalence
modulo constants of functions in

•
L

p

1 (∂�,w), equipped with the semi-norm
(2.601), then the operator

[
Smod

] : [Lp(∂�,w)
]M −→ [ •

L
p

1 (∂�,w)
/ ∼ ]M

defined as
[
Smod

]
f := [

Smodf
] ∈ [ •

L
p

1 (∂�,w)
/ ∼ ]M

, ∀ f ∈ [
Lp(∂�,w)

]M
(3.132)
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is well defined, linear, and bounded.

Proof With the exception of (3.120)–(3.122) and (3.128)–(3.131), all claims may
be justified based on (3.22)–(3.40), Lemma 2.15, Proposition 3.1, Proposition 2.22,
Proposition 3.4, and Theorem 3.1. The continuity properties of the operator-valued
maps in (3.120)–(3.122), as well as formulas (3.128), (3.129), (3.130) have been
proved in [114, §1.5]. Finally, (3.131) is a consequence of (2.598)–(2.599), (3.44)–
(3.45), (3.128), and (3.81) in Proposition 3.4. ��

Our next theorem contains fundamental properties of modified double layer
potential operators acting on homogeneous Muckenhoupt weighted Sobolev spaces,
considered on boundaries of uniformly rectifiable domains.

Theorem 3.5 Assume � ⊆ R
n (where n ∈ N, n ≥ 2) is a UR domain. Denote

by ν = (ν1, . . . , νn) the geometric measure theoretic outward unit normal to � and
abbreviate σ := H n−1�∂�. In addition, for someM ∈ N, letA = (

a
αβ
rs

)
1≤r,s≤n

1≤α,β≤M

be

a complex coefficient tensor with the property that L := LA as in (3.7) is a weakly
elliptic M × M system in R

n. Also, let E = (Eγβ)1≤γ,β≤M be the matrix-valued
fundamental solution associated with L as in Theorem 3.1. In this setting, recall
the modified version of the double layer operator D

A,mod acting on functions from[
L1

(
∂�,

σ(x)
1+|x|n

)]M
as in (3.49). Finally, fix some aperture parameter κ ∈ (0,∞)

along with an integrability exponent p ∈ (1,∞) and some Muckenhoupt weight
w ∈ Ap(∂�, σ).

Then there exists some constant C = C(�, n, p, κ) ∈ (0,∞) with the property
that for each function f ∈ [ •

L
p

1 (∂�,w)
]M

it follows that

D
A,modf ∈ [

C∞(�)
]M

, L
(
D

A,modf
) = 0 in �,

(
D

A,modf
)∣∣κ−n.t.

∂�
,
(∇D

A,modf
)∣∣κ−n.t.

∂�
exist σ -a.e. on ∂�,

Nκ

(∇D
A,modf

)
belongs to Lp(∂�,w) and

∥∥Nκ

(∇D
A,modf

)∥∥
Lp(∂�,w)

≤ C‖f ‖[ •
L

p
1 (∂�,w)]M .

(3.133)

In fact, for each function f ∈ [ •
L

p

1 (∂�,w)
]M

, one has

(D
A,modf )

∣∣κ−n.t.

∂�
= ( 1

2I + K
A,mod

)
f at σ -a.e. point on ∂�, (3.134)

where I is the identity operator on
[ •
L

p

1 (∂�,w)
]M

, and K
A,mod is the modified

boundary-to-boundary double layer potential operator from (3.50).
Moreover, given any function f = (fα)1≤α≤M belonging to the homogeneous

boundary Sobolev space
[ •
L

p

1 (∂�,w)
]M

, at σ -a.e. point x ∈ ∂�, one has
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(
∂A
ν (D

A,modf )
)
(x) (3.135)

=
(

lim
ε→0+

ˆ

y∈∂�
|x−y|>ε

νi(x)a
μγ

ij aβα
rs (∂rEγβ)(x − y)

(
∂τjs

fα

)
(y) dσ(y)

)

1≤μ≤M

,

where the conormal derivative is considered as in (3.66).
Furthermore, the operator

∂A
ν DA,mod : [ •

L
p

1 (∂�,w)
]M −→ [

Lp(∂�,w)
]M

defined as
(
∂A
ν DA,mod)f := ∂A

ν (D
A,modf ) for each f ∈ [ •

L
p

1 (∂�,w)
]M (3.136)

is well defined, linear, bounded (when the domain space is equipped with the semi-
norm (2.599)), and

∂A
ν DA,mod annihilates constant

(CM -valued) functions on ∂�.
(3.137)

As a consequence of (3.136) and (3.137), the following operator is well defined and
linear:

[
∂A
ν DA,mod

] : [ •
L

p

1 (∂�,w)
/ ∼ ]M −→ [

Lp(∂�,w)
]M

defined as
[
∂A
ν DA,mod

][f ] := ∂A
ν (D

A,modf ) for each f ∈ [ •
L

p

1 (∂�,w)
]M

.
(3.138)

Finally, if � ⊆ R
n is an open set satisfying a two-sided local John condition and

whose boundary is an unbounded Ahlfors regular set, then the operator (3.138)
is also bounded, when the quotient space is equipped with the norm (2.601).
Moreover, in this setting the operator

[
∂A
ν DA,mod

]
in (3.138) depends continuously

on the underlying coefficient tensor A, in the sense that (with the piece of notation
introduced in (3.13)) the following operator-valued assignment is continuous:

AWE � A �−→ [
∂A
ν DA,mod

] ∈ Bd
([ •

L
p

1 (∂�,w)
/ ∼ ]M → [

Lp(∂�,w)
]M)

.

(3.139)

Proof For each function f ∈ [ •
L

p

1 (∂�,w)
]M , the jump-formula (3.134) is seen

from (3.61) (keeping in mind (2.598)). The claims in (3.133) are consequences of
(2.598), (3.51), (3.61), (3.58), (3.57), (3.85), and Theorem 3.1. In particular, given
an arbitrary function f = (fα)1≤α≤M ∈ [ •

L
p

1 (∂�,w)
]M , the conormal derivative

∂A
ν (D

A,modf ) may be meaningfully defined, as in (3.66). Specifically, at σ -a.e. point
x ∈ ∂�, we have
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(
∂A
ν (D

A,modf )
)
(x) =

(
νi(x)

(
a

μγ

ij ∂j (DA,modf )γ
)∣∣κ−n.t.

∂�
(x)

)
1≤μ≤M

(3.140)

=
(

lim
ε→0+

ˆ

y∈∂�
|x−y|>ε

νi(x)a
μγ

ij aβα
rs (∂rEγβ)(x − y)

(
∂τjs

fα

)
(y) dσ(y)

)

1≤μ≤M

,

where the first equality comes from (3.66) and the second equality is a consequence
of (3.57) and the jump-formula (3.86). Having established (3.135), the claims made
in relation to (3.136) follow with the help of Proposition 3.4 and Theorem 3.1. Note
that (3.137) is also a consequence of (3.135). Next, the claims pertaining to (3.138)
are consequences of what we have proved so far and (3.137). Finally, the continuity
of the operator-valued assignment (3.139) follows from (3.135), Theorem 3.1, and
work in [114, §1.8]. ��

The modified boundary-to-boundary double layer potential operator on homoge-
neous Muckenhoupt weighted Sobolev spaces is studied next.

Theorem 3.6 Let � ⊆ R
n (where n ∈ N, n ≥ 2) be an NTA domain such that ∂�

is an Ahlfors regular set, and abbreviate σ := H n−1�∂�. Also, with M ∈ N, let
A = (

a
αβ
rs

)
1≤r,s≤n

1≤α,β≤M

be a complex coefficient tensor with the property that L := LA

as in (3.7) is a weakly elliptic M × M system in R
n. In this context, consider the

modified boundary-to-boundary double layer potential operator K
A,mod from (3.50).

Finally, select an integrability exponent p ∈ (1,∞) along with some Muckenhoupt
weight w ∈ Ap(∂�, σ).

Then the operator

K
A,mod : [ •

L
p

1 (∂�,w)
]M −→ [ •

L
p

1 (∂�,w)
]M (3.141)

is well defined, linear, and bounded, when the spaces involved are endowed with the
semi-norm (2.599).

As a consequence of (3.141) and (3.62), the following is a well-defined and linear
operator:

[
K

A,mod

] : [ •
L

p

1 (∂�,w)
/ ∼ ]M −→ [ •

L
p

1 (∂�,w)
/ ∼ ]M

defined as
[
K

A,mod

][f ] := [
K

A,modf
] ∈ [ •

L
p

1 (∂�,w)
/ ∼ ]M

, ∀ f ∈ [ •
L

p

1 (∂�,w)
]M
(3.142)

Finally, if � ⊆ R
n is actually a two-sided NTA domain whose boundary is an

unbounded Ahlfors regular set, then the operator (3.142) is also bounded when
all quotient spaces are endowed with the norm introduced in (2.601). Moreover, in
this setting, the operator

[
K

A,mod

]
in (3.142) depends continuously on the underlying

coefficient tensorA, in the sense that (with the piece of notation introduced in (3.13))
the following operator-valued assignment is continuous:

AWE � A �−→ [
K

A,mod

] ∈ Bd
([ •

L
p

1 (∂�,w)
/ ∼ ]M)

. (3.143)
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Proof The present hypotheses guarantee (cf. (2.48)) that � is a UR domain. Pick an
integrability exponent p ∈ (1,∞) and fix an aperture parameter κ ∈ (0,∞). Next,
consider a function f = (fα)1≤α≤M ∈ [ •

L
p

1 (∂�,w)
]M and define u := D

A,modf in

�. Then u ∈ [
C∞(�)

]M (cf. (3.51)), and the jump-formula (3.134) gives

u
∣∣κ−n.t.

∂�
= ( 1

2I + K
A,mod

)
f at σ -a.e. point on ∂�. (3.144)

From (3.133), we also know that

Nκ(∇u) ∈ Lp(∂�,w) and
∥∥Nκ(∇u)

∥∥
Lp(∂�,w)

≤ C‖f ‖[ •
L

p
1 (∂�,w)]M (3.145)

for some constant C ∈ (0,∞) independent of f . Granted these properties, we may
invoke Proposition 2.24 to conclude that

u
∣∣κ−n.t.

∂�
belongs to the space

[ •
L

p

1 (∂�,w)
]M

and
∥∥u∣∣κ−n.t.

∂�

∥∥
[ •
L

p
1 (∂�,w)]M ≤ C‖f ‖[ •

L
p
1 (∂�,w)]M .

(3.146)

Collectively, (3.144) and (3.146) then prove that

K
A,modf belongs to the space

[ •
L

p

1 (∂�,w)
]M

and
∥∥K

A,modf
∥∥

[ •
L

p
1 (∂�,w)]M ≤ C‖f ‖[ •

L
p
1 (∂�,w)]M ,

(3.147)

from which the claims pertaining to (3.141) follow. Next, the claims regarding the
operator (3.142) are readily seen from what we have just proved and definitions.
Finally, the fact that the operator-valued assignment (3.143) is continuous is seen
from (2.598), (2.601), (3.65), (2.576), (3.35), (3.120), Theorem 3.1, and work in
[114, §1.8]. ��

We shall now use Corollary 3.1 to derive some useful operator identities,
involving boundary layer potentials, of the sort described below.

Theorem 3.7 Suppose � ⊆ R
n (where n ∈ N, n ≥ 2) is an NTA domain whose

boundary is an unbounded Ahlfors regular set. Denote by ν the geometric measure
theoretic outward unit normal to � and abbreviate σ := H n−1�∂�. Next, for some
M ∈ N, let A = (

a
αβ
rs

)
1≤r,s≤n

1≤α,β≤M

be a complex coefficient tensor with the property

that L := LA as in (3.7) is a weakly elliptic M × M system in R
n. Having fixed

some integrability exponent p ∈ (1,∞) along with some Muckenhoupt weight
w ∈ Ap(∂�, σ), recall the operators Smod from (3.131), ∂A

ν DA,mod from (3.136), and
K

A,mod from (3.141). Finally, let K#
A� be the operator associated with the coefficient

tensor A� and the set � as in (3.25). Then the following statements are true.
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(1) For each f ∈ [ •
L

p

1 (∂�,w)
]M

, there exists some cf ∈ C
M with the property

that at σ -a.e. point on ∂�, one has

( 1
2I + K

A,mod

)(( − 1
2I + K

A,mod

)
f
)

= Smod

((
∂A
ν DA,mod

)
f
)

+ cf . (3.148)

In particular,

( 1
2I + [

K
A,mod

])( − 1
2I + [

K
A,mod

]) = [
Smod ]

[
∂A
ν DA,mod

]

as operators acting from
[ •
L

p

1 (∂�,w)/ ∼ ]M
.

(3.149)

(2) For each function f ∈ [ •
L

p

1 (∂�,w)
]M

, one has

(
∂A
ν DA,mod

)(
K

A,modf
) = K#

A�
(
∂A
ν DA,mod

)
f at σ -a.e. point on ∂�.

(3.150)

(3) For each f ∈ [
Lp(∂�,w)

]M
, there exists some cf ∈ C

M with the property
that

Smod

(
K#

A�f
) = K

A,mod

(
Smodf

) + cf at σ -a.e. point on ∂�. (3.151)

In particular,

[
Smod

]
K#

A� = [
K

A,mod

][
Smod

]

as operators acting from
[
Lp(∂�,w)

]M
.

(3.152)

(4) For each f ∈ [
Lp(∂�,w)

]M
, at σ -a.e. point on ∂�, one has

( 1
2I + K#

A�
)(( − 1

2I + K#
A�

)
f
)

= (
∂A
ν DA,mod

)(
Smodf

)
. (3.153)

Proof The present hypotheses imply that � is a connected UR domain (see (2.48)).
Select an aperture parameter κ ∈ (0,∞). To justify the claims made in items (1)–
(2), pick an arbitrary function f ∈ [ •

L
p

1 (∂�,w)
]M and define u := D

A,modf in �.
Then, from (3.133) and (3.134), we know that

u ∈ [
C∞(�)

]M
, Lu = 0 in �, Nκ(∇u) ∈ Lp(∂�,w),

the boundary traces u
∣∣κ−n.t.

∂�
, (∇u)

∣∣κ−n.t.

∂�
exist σ -a.e. on ∂�,

u
∣∣κ−n.t.

∂�
= ( 1

2I + K
A,mod

)
f and ∂A

ν u = (
∂A
ν DA,mod

)
f.

(3.154)
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Then Corollary 3.1 applies and gives that ∂A
ν u belongs to

[
Lp(∂�,w)

]M , the trace

u
∣∣κ−n.t.

∂�
belongs to

[ •
L

p

1 (∂�,w)
]M , and there exists some cf ∈ C

M with the property
that

u = D
A,mod

(
u
∣∣κ−n.t.

∂�

) − Smod

(
∂A
ν u

) + cu

= D
A,mod

(( 1
2I + Kmod

)
f
)

− Smod

((
∂A
ν DA,mod

)
f
)

+ cf in �. (3.155)

Going nontangentially to the boundary in (3.155) then yields, on account of (3.154),
(3.134), (3.47), (3.141), and (3.136),

( 1
2I + K

A,mod

)
f = ( 1

2I + K
A,mod

)(( 1
2I + K

A,mod

)
f
)

− Smod

((
∂A
ν DA,mod

)
f
)

+ cf (3.156)

at σ -a.e. point on ∂�. From this, (3.148) readily follows. This takes care of the claim
in item (1).

To deal with the claim in item (2), take the conormal derivative ∂A
ν of the most

extreme sides of (3.155) and use (3.67), (3.136), and the fact that ∂A
ν cu = 0 (cf.

(3.66)) to arrive at the conclusion that

(
∂A
ν DA,mod

)
f = (

∂A
ν DA,mod

)(( 1
2I + K

A,mod

)
f
)

− ( − 1
2I + K#

A�
)((

∂A
ν DA,mod

)
f
)

(3.157)

at σ -a.e. point on ∂�, from which (3.150) readily follows.
Let us now turn our attention to the claims made in items (3)-(4). Start with an

arbitrary function f ∈ [
Lp(∂�,w)

]M , and then consider u := Smodf in �. From
(2.575), item (c) of Proposition 3.5, and (3.47), we see that

u ∈ [
C∞(�)

]M
, Lu = 0 in �, Nκ(∇u) ∈ Lp(∂�,w),

the traces u
∣∣κ−n.t.

∂�
, (∇u)

∣∣κ−n.t.

∂�
exist σ -a.e. on ∂�,

u
∣∣κ−n.t.

∂�
= Smodf and ∂A

ν u = ( − 1
2I + K#

A�
)
f.

(3.158)

Again, Corollary 3.1 applies and gives that ∂A
ν u belongs to

[
Lp(∂�,w)

]M , the trace

u
∣∣κ−n.t.

∂�
belongs to

[ •
L

p

1 (∂�,w)
]M , and there exists some cf ∈ C

M such that

u = D
A,mod

(
u
∣∣κ−n.t.

∂�

) − Smod

(
∂A
ν u

) + cu
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= D
A,mod

(
Smodf

) − Smod

(( − 1
2I + K#

A�
)
f
)

+ cf in �. (3.159)

Taking nontangential boundary traces in (3.159) then gives, thanks to (3.158),
(3.47), (3.134), (3.131), and (3.118),

Smodf = ( 1
2I + K

A,mod

)(
Smodf

) − Smod

(( − 1
2I + K#

A�
)
f
)

+ cf (3.160)

at σ -a.e. point on ∂�. With this in hand, (3.151) follows after simple algebra. This
justifies the claim made in item (3).

As regards item (4), take the conormal derivative ∂A
ν of the most extreme sides

of (3.159) and rely on (3.158), (3.136), (3.126), (3.131), (3.118), and the fact that
∂A
ν cu = 0 (cf. (3.66)) to conclude that

( − 1
2I + K#

A�
)
f = (

∂A
ν DA,mod

)(
Smodf

)

− ( − 1
2I + K#

A�
)(( − 1

2I + K#
A�

)
f
)

(3.161)

at σ -a.e. point on ∂�, from which (3.153) readily follows. ��
There are direct links between the layer potential operators discussed so far in this

section and boundary value problems. To elaborate on this, we introduce a piece of
notation. Given two vector spaces X, Y , for linear operator T : X → Y denote by

Im
(
T : X → Y

) := {
T x : x ∈ X

}
(3.162)

the image of T . Moreover, corresponding to the special case when X = Y , we agree
to abbreviate Im

(
T ;X

) := Im
(
T : X → X

)
.

Proposition 3.6 Let � ⊆ R
n be an NTA domain with the property that ∂� is an

unbounded Ahlfors regular set. Abbreviate σ := Hn−1�∂� and fix an aperture
parameter κ > 0. Also, pick some integrability exponent p ∈ (1,∞) and some
Muckenhoupt weight w ∈ Ap(∂�, σ). Finally, consider a homogeneous, second-
order, constant complex coefficient, weakly elliptic M × M system L in R

n, and fix
a coefficient tensor A ∈ AL.

Then for each given function f belonging to
[ •
L

p

1 (∂�,w)
]M

, the homogeneous
Muckenhoupt weighted boundary Sobolev space defined in (2.598), the following
statements are equivalent:

(a) The boundary value problem
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u ∈ [
C∞(�)

]M
,

Lu = 0 in �,

Nκ(∇u) ∈ Lp(∂�,w),

u
∣∣κ−n.t.

∂�
= f at σ -a.e. point on ∂�

(3.163)

has a solution.
(b) The equivalence class of the function f modulo constants, denoted by [f ],

belongs to the space

Im
(

1
2I + [

K
A,mod

]; [ •
L

p

1 (∂�,w)
/ ∼ ]M)

+ Im
([

Smod

] : [Lp(∂�,w)
]M −→ [ •

L
p

1 (∂�,w)
/ ∼ ]M)

.

(3.164)

(c) Again, with [f ] denoting the equivalence class of the function f modulo
constants,

(
− 1

2I + [
K

A,mod

])[f ] belongs to the space

Im
([

Smod

] : [Lp(∂�,w)
]M −→ [ •

L
p

1 (∂�,w)
/ ∼ ]M)

.
(3.165)

Proof Assume u solves (3.163). Then Corollary 3.1 guarantees that ∂A
ν u belongs

to
[
Lp(∂�,w)

]M and that there exists some cu ∈ C
M such that (3.75) holds.

Going nontangentially to the boundary then yields, on account of (3.134), (3.47),
and (2.575),

f = ( 1
2I + K

A,mod

)
f − Smod

(
∂A
ν u

) + cu on ∂�. (3.166)

Taking equivalence classes modulo constants and keeping in mind (3.142), (3.132),
we may recast (3.166) as

( − 1
2I + [

K
A,mod

])[f ] = [
Smod

](
∂A
ν u

)
. (3.167)

From this, we conclude that (3.165) holds, hence (a)⇒ (c).
Next, assume (3.165) holds. Since

[f ] =
(

1
2I + [

K
A,mod

])[f ] −
(

− 1
2I + [

K
A,mod

])[f ], (3.168)

this implies that [f ] belongs to the space in (3.164). Thus, (c)⇒ (b).
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Finally, if [f ] belongs to the space in (3.164), it follows from (3.142) and (3.132)
that

f = ( 1
2I + K

A,mod

)
g + Smodh + c (3.169)

for some

g ∈ [ •
L

p

1 (∂�,w)
]M

, h ∈ [
Lp(∂�,w)

]M
, c ∈ C

M. (3.170)

In view of this, (3.133), (3.134), (3.124), (3.127), (3.47), and (2.575), we then see
that the function

u := D
A,modg + Smodh + c in � (3.171)

solves the boundary value problem (3.163). Hence, (b)⇒ (a), finishing the proof of
the proposition. ��

Here is a companion result to Proposition 3.6 for a Neumann type boundary value
problem.

Proposition 3.7 Let � ⊆ R
n be an NTA domain such that its topological boundary,

∂�, is an unbounded Ahlfors regular set. Set σ := Hn−1�∂� and denote by ν

the geometric measure theoretic outward unit normal to �. Also, fix an aperture
parameter κ ∈ (0,∞), pick some integrability exponent p ∈ (1,∞), and consider
some Muckenhoupt weight w ∈ Ap(∂�, σ). Finally, let L be a homogeneous,
second-order, constant complex coefficient, weakly elliptic M × M system in R

n,
and fix a coefficient tensor A ∈ AL.

Then, for each function f ∈ [
Lp(∂�,w)

]M
, the following statements are

equivalent:

(a) The boundary value problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u ∈ [
C∞(�)

]M
,

Lu = 0 in �,

Nκ(∇u) ∈ Lp(∂�,w),

∂A
ν u = f at σ -a.e. point on ∂�

(3.172)

has a solution.
(b) The function f belongs to the space

Im
([

∂A
ν DA,mod

] : [ •
L

p

1 (∂�,w)
/ ∼ ]M −→ [

Lp(∂�,w)
]M)

+ Im
(

− 1
2I + K#

A�; [Lp(∂�,w)
]M)

. (3.173)
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(c) One has

( 1
2I + K#

A�
)
f belongs to the space

Im
([

∂A
ν DA,mod

] : [ •
L

p

1 (∂�,w)
/ ∼ ]M −→ [

Lp(∂�,w)
]M)

.
(3.174)

Proof Suppose u solves (3.172). Then Corollary 3.1 gives that the nontangential

boundary trace u
∣∣κ−n.t.

∂�
exists σ -a.e. on ∂� and belongs to

[ •
L

p

1 (∂�,w)
]M and that

the integral representation formula in (3.75) holds for some cu ∈ C
M . Taking the

conormal derivative of both sides then yields, in view of (3.126),

f = ∂A
ν

(
D

A,mod

(
u
∣∣κ−n.t.

∂�

)) − ( − 1
2I + K#

A�
)
f on ∂�. (3.175)

From this and (3.138), we then conclude that

( 1
2I + K#

A�
)
f = ∂A

ν

(
D

A,mod

(
u
∣∣κ−n.t.

∂�

))
belongs to the space

Im
([

∂A
ν DA,mod

] : [ •
L

p

1 (∂�,w)
/ ∼ ]M −→ [

Lp(∂�,w)
]M)

,
(3.176)

hence (a)⇒ (c). Going further, assume (3.174) holds. Since

f = ( 1
2I + K#

A�
)
f − ( − 1

2I + K#
A�

)
f, (3.177)

this implies that f belongs to the space in (3.173). As such, (c)⇒ (b).
Finally, suppose the function f belongs to the space in (3.173), say

f = [
∂A
ν DA,mod

][g] + ( − 1
2I + K#

A�
)
h (3.178)

for some

g ∈ [ •
L

p

1 (∂�,w)
]M and h ∈ [

Lp(∂�,w)
]M

. (3.179)

Then (3.178), (3.179), (3.138), (3.133), (3.124), (3.126), and (3.127) collectively
imply that the function

u := D
A,modg + Smodh in � (3.180)

solves the boundary value problem (3.172). Thus, (b)⇒ (a), and the proof of the
proposition is complete. ��
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3.3 Distinguished Coefficient Tensors

To each weakly elliptic system L, we may canonically associate a fundamental
solution E as in Theorem 3.1. Having fixed a UR domain, this is then used
to create a variety of double layer potential operators KA, in relation to each
choice of a coefficient tensor A ∈ AL. While any such double layer KA has a
rich Calderón–Zygmund theory (as discussed in Proposition 3.5), seeking more
specialized properties requires placing additional demands on the coefficient tensor
A. We begin by recording a result proved in [115, §1.2] describing said demands
phrased in several equivalent forms.

Proposition 3.8 Let L be a homogeneous, second-order, constant complex coeffi-
cient, weakly elliptic M ×M system in Rn, and consider the matrix-valued function
defined for each ξ ∈ R

n \ {0} as
(
Eγβ(ξ)

)
1≤γ,β≤M

:= [
L(ξ)

]−1 ∈ C
M×M (3.181)

(recall that the characteristic matrix L(ξ) of L has been defined in (3.2)). Also, let
E = (

Eαβ)1≤α,β≤M be the fundamental solution associated with the given system
L as in Theorem 3.1.

Then, for each coefficient tensor A = (
a

αβ
jk

)
1≤α,β≤M
1≤j,k≤n

∈ AL (cf. (3.11)), the

following conditions are equivalent:

(a) For each k, k′ ∈ {1, . . . , n} and each α, γ ∈ {1, . . . ,M}, there holds
(
xk′aβα

jk − xka
βα

jk′
)
(∂jEγβ)(x) = 0 for all x = (xi)1≤i≤n ∈ R

n \ {0}.
(3.182)

(b) For each s, s′ ∈ {1, . . . , n} and each α, γ ∈ {1, . . . ,M}, in the sense of
tempered distributions in R

n, one has

[
aβα
rs ∂ξs′ − a

βα

rs′ ∂ξs

][
ξrEγβ(ξ)

] = 0. (3.183)

(c) For each k, k′ ∈ {1, . . . , n} and each α, γ ∈ {1, . . . ,M}, one has
(
a

βα

k′k−a
βα

kk′ +ξj a
βα
jk ∂ξk′ −ξj a

βα

jk′∂ξk

)
Eγβ(ξ) = 0 for all ξ ∈ R

n\{0} (3.184)

and also
ˆ

S1

(
a

βα
jk ξk′ − a

βα

jk′ξk

)
ξj Eγβ(ξ) dH1(ξ) = 0 if n = 2. (3.185)

(d) One has
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ξrξj

[
a

βα

rs′
(
a

λμ
sj + a

λμ
js

) − a
βα
rs

(
a

λμ

s′j + a
λμ

js′
)]
Eμβ(ξ) + aλα

ss′ − aλα
s′s = 0

for all ξ ∈ Sn−1, all s, s′ ∈ {1, . . . , n}, and all α, λ ∈ {1, . . . , M},
(3.186)

with the cancellation condition
ˆ

S1

(
aβα
rs ξs′ − a

βα

rs′ ξs

)
ξrEλβ(ξ) dH1(ξ) = 0

for all s, s′ ∈ {1, . . . , n} and α, λ ∈ {1, . . . ,M},
(3.187)

additionally imposed in the case when n = 2.
(e) For each ξ ∈ Sn−1 and each α, λ ∈ {1, . . . ,M},

the expression
(
a

λμ
sj + a

λμ
js

)
Eμβ(ξ)ξj ξra

βα

rs′ − aλα
s′s

is symmetric in the indices s, s′ ∈ {1, . . . , n},
(3.188)

with the condition that for each α, λ ∈ {1, . . . ,M}

the expression
ˆ

S1
aβα
rs ξs′ξrEλβ(ξ) dH1(ξ)

is symmetric in the indices s, s′ ∈ {1, 2},
(3.189)

also imposed in the case when n = 2.
(f) There exists a matrix-valued function

k = {
kγα

}
1≤γ,α≤M

: Rn \ {0} −→ C
M×M (3.190)

with the property that for each γ, α ∈ {1, . . . ,M} and s ∈ {1, . . . , n}, one has

aβα
rs (∂rEγβ)(x) = xskγα(x) for all x ∈ R

n \ {0}. (3.191)

It is worth noting that the conditions in items (a)–(f) above are intrinsically
formulated in terms of the given weakly elliptic system L. Observe that for each
x∗ ∈ R

n \ {0}, we may find an open neighborhood O of the point x∗ and an index
s ∈ {1, . . . , n} with the property that xs 	= 0 for each x ∈ O. From this observation,
(3.191), and Theorem 3.1, it follows that

all entries of the matrix-valued function k from (3.190) belong
to C∞(Rn \ {0}), are even, as well as positive homogeneous of
degree −n.

(3.192)
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Definition 3.1 Given a second-order, weakly elliptic, homogeneous, M×M system
L in R

n, with constant complex coefficients, call

A = (
aαβ
rs

)
1≤r,s≤n

1≤α,β≤M

∈ AL (3.193)

a distinguished coefficient tensor for the system L provided any of
the conditions (a)-(f) in Proposition 3.8 holds. Also, denote by Adis

L the family of
such distinguished coefficient tensors for L, say,

Adis
L :=

{
A =(

aαβ
rs

)
1≤r,s≤n

1≤α,β≤M

∈ AL : conditions (3.184)–(3.185) (3.194)

hold for each k, k′ ∈ {1, . . . , n} and α, γ ∈ {1, . . . ,M}
}
.

Finally, introduce the class of weakly elliptic systems which posses a distin-
guished coefficient tensor, by setting

Ldis := {
L ∈ L∗ : Adis

L 	= ∅

}
. (3.195)

For example, from Proposition 3.8 and the second line in (3.20), we see that

for any weakly elliptic, homogeneous, second-order, constant
complex coefficient, M × M system L in R

n, any coefficient
tensor A ∈ AL, and any complex number λ ∈ C \ {0}, it follows
that A ∈ Adis

L if and only if λA ∈ Adis
λL.

(3.196)

The relevance of the distinguished coefficient tensors is most apparent from the
following result proved in [115, §1.3].

Proposition 3.9 Let L be a homogeneous, second-order, constant complex coeffi-
cient, weakly elliptic M ×M system in Rn, and suppose A ∈ AL. Then the following
statements are equivalent:

(i) The coefficient tensor A belongs to Adis
L .

(ii) Whenever � is a half-space in R
n, the boundary-to-boundary double layer

potential KA associated with A and � as in (3.24) is the zero operator.
(iii) Whenever � is a half-space in Rn with the property that 0 ∈ ∂�, the modified

boundary-to-boundary double layer operator K
A,mod associated as in (3.50)

with the set � and the given coefficient tensor A is actually the zero operator.
(iii’) Whenever � is a half-space in Rn, the modified boundary-to-boundary double

layer operator K
A,mod associated as in (3.50) with the set � and the given

coefficient tensor A maps each function from
[
C∞

c (∂�)
]M

into a constant in
C

M .
(iv) There exists a matrix-valued function k ∈ [

C∞(Rn \ {0})]M×M
which is

even, positive homogeneous of degree −n, and with the property that for each
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UR domain � ⊆ R
n, the (matrix-valued) integral kernel of the double layer

potential operator KA associated with A and � as in (3.24) has the form

〈ν(y), x − y〉k(x − y)

for each x ∈ ∂� and Hn−1-a.e. y ∈ ∂�,
(3.197)

where ν is the geometric measure theoretic outward unit normal to �.
(v) Whenever � is a half-space in Rn, the “transpose” double layer potential K#

A

associated with A and � as in (3.25) is the zero operator.
(vi) There exists a matrix-valued function k# ∈ [

C∞(Rn \ {0})]M×M
which is

even, positive homogeneous of degree −n, and with the property that for each
UR domain � ⊆ R

n, the (matrix-valued) integral kernel of the “transpose”
double layer potential operator K#

A associated with A and � as in (3.25) has
the form

〈ν(x), y − x〉k#(x − y)

for Hn−1-a.e. x ∈ ∂� and each y ∈ ∂�,
(3.198)

where ν is the geometric measure theoretic outward unit normal to �.

Moreover, whenever either (hence all) of the above conditions materializes, the
matrices k, k# in items (iv), (vi) above are related to each other via k# = k�, where
the superscript � indicates transposition.

In light of Proposition 3.9 and (1.50), we are particularly interested in the class
of weakly elliptic homogeneous constant complex coefficient second-order systems
L with Adis

L 	= ∅. The following example shows that the latter condition is always
satisfied by strongly elliptic scalar operators.

Example 3.2 Assume L is a second-order, homogeneous, constant complex coef-
ficient, scalar differential operator in R

n (i.e., as in (3.1) with M = 1), which is
strongly elliptic. Specifically, suppose L = ajk∂j ∂k with ajk ∈ C for
j, k ∈ {1, . . . , n} having the property that there exists a constant c ∈ (0,∞) such
that

Re
[ n∑

j,k=1

ajkξj ξk

]
≥ c|ξ |2, ∀ ξ = (ξ1, . . . , ξn) ∈ R

n. (3.199)

Introduce A := (ajk)1≤j,k≤n ∈ C
n×n and then define

(̃ajk)1≤j,k≤n := sym A := A + A�

2
, (bjk)1≤j,k≤n := (sym A)−1. (3.200)
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In particular, L = Lsym A := ãjk∂j ∂k , i.e., the coefficient matrix sym A may
be used to represent the given differential operator L. In this case, it turns out
that the fundamental solution E canonically associated with the operator L as in
Theorem 3.1 may be explicitly identified (cf. [102, Theorem 7.68, pp. 314-315]) as
the function E ∈ L1

loc(R
n,Ln) given at each point x ∈ R

n \ {0} by

E(x) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− 1

(n − 2) ωn−1
√

det(sym A)
〈(sym A)−1x, x〉− n−2

2 if n ≥ 3,

1

4π
√

det(sym A)
log(〈(sym A)−1x, x〉) + cA if n = 2,

(3.201)
where log denotes the principal branch of the complex logarithm (defined for
complex numbers z ∈ C \ (−∞, 0] so that za = ea log z for each a ∈ R),
and cA is a complex constant which depends solely on A. As both sym A and
(sym A)−1 are symmetric matrices, for each index j ∈ {1, . . . , n} and each point
x = (xi)1≤i≤n ∈ R

n \ {0}, we therefore have (in all dimensions n ≥ 2)

(∂jE)(x) = 〈(sym A)−1x, x〉− n
2 (δrj brsxs + δsj brsxr )

2ωn−1
√

det(sym A)

= 〈(sym A)−1x, x〉− n
2 brj xr

ωn−1
√

det(sym A)
. (3.202)

Thus, with CA,n abbreviating
(
ωn−1

√
det(sym A)

)−1 ∈ C, for each pair of integers
k, k′ ∈ {1, . . . , n}, we may compute

(
xk′ ãjk − xkãjk′

)
(∂jE)(x) = CA,n〈(sym A)−1x, x〉− n

2
(
xk′ ãkj − xkãk′j

)(
bjrxr

)

= CA,n〈(sym A)−1x, x〉− n
2
(
xk′δkr − xkδk′r

)
xr

= CA,n〈(sym A)−1x, x〉− n
2
(
xk′xk − xkxk′

) = 0. (3.203)

This shows that condition (3.182) is presently verified for the choice of coefficient
tensor sym A in the representation of the given differential operator L. Hence,
sym A ∈ Adis

L , which proves that, in the case when M = 1, we have

Adis
L 	= ∅ for every scalar, strongly elliptic, homogeneous,

second-order, constant complex coefficient operator L in R
n.

(3.204)

Consequently, Proposition 3.9 guarantees that for each UR domain � ⊆ R
n the

integral kernel of the double layer potential operator Ksym A associated with sym A

and � as in (3.24) has the form (3.197). This being said, it is actually of interest to
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identify said integral kernel explicitly. Based on (3.200)–(3.202) and (3.24), we see
that the kernel of if ν = (ν1, . . . , νn) is the geometric measure theoretic outward
unit normal to �, then the integral kernel of the double layer potential operator
Ksym A is

−νk(y)̃ajk

(
∂jE

)
(x − y) = −〈(sym A)−1(x − y), x − y〉− n

2 νk(y)brj ãjk(x − y)r

ωn−1
√

det(sym A)

= −〈(sym A)−1(x − y), x − y〉− n
2 〈ν(y), x − y〉

ωn−1
√

det(sym A)
(3.205)

for each x ∈ ∂� and Hn−1-a.e. y ∈ ∂�,

which, as already anticipated, is of the form (3.197) with

k(z) := −〈(sym A)−1z, z〉− n
2

ωn−1
√

det(sym A)
, ∀ z ∈ R

n \ {0}. (3.206)

In the same scenario as above, we also wish to elaborate on the nature of Adis
L

(see the conclusion reached in (3.218) below). To set the stage, recall that any
given matrix A = (ajk)1≤j,k≤n ∈ C

n×n may be decompose into its symmetric
and antisymmetric parts, i.e.,

A = sym A + asym A where asym A := A − sym A = A − A�

2
. (3.207)

Consequently, for each UR domain � ⊆ R
n with geometric measure theoretic

outward unit normal ν = (ν1, . . . , νn), the integral kernel of the double layer
potential operator KA is given by

− νk(y)̃ajk

(
∂jE

)
(x − y) − νk(y)̂ajk

(
∂jE

)
(x − y), (3.208)

where E is as in (3.201), the entries (̃ajk)1≤j,k≤n are as in (3.200), and

(̂ajk)1≤j,k≤n := asym A. (3.209)

If � is a half-space, then, as seen from (3.205) and (3.208), the integral kernel of
the double layer potential operator KA reduces to

− νk(y)̂ajk

(
∂jE

)
(x − y). (3.210)

From this and Proposition 3.9, we then conclude that A ∈ Adis
L if and only if
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−νk(y)̂ajk

(
∂jE

)
(x − y) = 0 for Hn−1-a.e. x, y ∈ ∂�

whenever � is a half-space in R
n.

(3.211)

The same type of argument which, starting with (1.44), has produced (1.47) now
shows that (3.211) implies the existence of a function k ∈ C∞(Rn \ {0}) which is
even, positive homogeneous of degree −n, and such that

ârs (∂rE) (x) = xsk(x) for each x ∈ R
n \ {0} and each s ∈ {1, . . . , n}.

(3.212)
Multiply this equality by (∂sE)(x), and summing up in s ∈ {1, . . . , n} yields, on
account of the antisymmetry of (̂ars)1≤r,s≤n = asym A,

xs(∂sE)(x)k(x) = 0 for each x ∈ R
n \ {0}. (3.213)

On the other hand, if n ≥ 3, it follows that E ∈ C∞(Rn \ {0}) is positive
homogeneous of degree 2 − n (cf. (3.201)), so Euler’s formula gives in this case

xs(∂sE)(x) = (2 − n)E(x) for each x ∈ R
n \ {0}. (3.214)

By combining (3.213)–(3.214), we therefore arrive at the conclusion that

if n ≥ 3 then E(x)k(x) = 0 for each x ∈ R
n \ {0}. (3.215)

Since as is apparent from (3.201), at each point x ∈ R
n \ {0}, we have E(x) 	= 0,

this ultimately forces k(x) = 0 for each x ∈ R
n \ {0}. When used back in (3.212),

this permits us to conclude (assuming n ≥ 3) that

ârs (∂rE) (x) = 0 for each x ∈ R
n \ {0} and each s ∈ {1, . . . , n}. (3.216)

Together, (3.216) and (3.202) prove (again, assuming n ≥ 3) that for each index
s ∈ {1, . . . , n}, we have

〈(sym A)−1x, x〉− n
2 ârsbkrxk

ωn−1
√

det(sym A)
= 0 for all x = (xk)1≤k≤n ∈ R

n \ {0}, (3.217)

where (bjk)1≤j,k≤n := (sym A)−1 (cf. (3.200)). Thus, assuming n ≥ 3, we deduce
from (3.217) that in fact (asym A)(sym A)−1 = 0. This is equivalent to having
asym A = 0, i.e., the matrix A ∈ Adis

L is necessarily symmetric. In concert with
(3.204) and its proof, the above argument shows that

assuming n ≥ 3, it follows that for each given strongly elliptic,
scalar, homogeneous, second-order operator L = div A∇ in
R

n with constant complex coefficients, the class Adis
L consists

precisely of one matrix, namely sym A := (A + A�)/2.

(3.218)
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Our next example shows that, for scalar operators in dimensions n ≥ 3, weak
ellipticity itself guarantees the existence of a unique distinguished coefficient tensor.

Example 3.3 Suppose n ≥ 3, and consider an arbitrary second-order, homoge-
neous, constant complex coefficient, scalar differential operator L in R

n (i.e., as
in (3.1) with M = 1), which is merely weakly elliptic. Recall (cf. (1.2)) that this
means that we may express L = ajk∂j ∂k with ajk ∈ C for j, k ∈ {1, . . . , n} having
the property that

n∑
j,k=1

ajkξj ξk 	= 0, ∀ ξ = (ξ1, . . . , ξn) ∈ R
n \ {0}. (3.219)

Introduce A := (ajk)1≤j,k≤n ∈ C
n×n. It has been shown in [113, §1.4] that (here is

where n ≥ 3 is used)

there exists an angle θ ∈ [0, 2π) such that if we set Aθ := eiθA

then the matrix symAθ := (Aθ + A�
θ )/2 ∈ C

n×n is strongly
elliptic, in the sense that there exists some c ∈ (0,∞) such that
Re 〈(sym Aθ)ξ, ξ 〉 ≥ c|ξ |2 for each ξ ∈ R

n (cf. (3.199)).

(3.220)

From this and (3.201), we conclude that the fundamental solution E ∈ L1
loc(R

n,Ln)

canonically associated as in Theorem 3.1 with the operator

L := e−iθLAθ = e−iθLsymAθ (3.221)

presently may be expressed at each point x ∈ R
n \ {0} as

E(x) = − eiθ

(n − 2)ωn−1
√

det (sym Aθ)

〈
(sym Aθ)

−1x, x
〉 2−n

2 . (3.222)

In view of this formula and the fact that sym A := (A + A�)/2 is related to sym Aθ

via sym Aθ = eiθ sym A, we conclude from (3.201)–(3.203) that condition (3.182)
currently holds for the choice of coefficient matrix sym A in the representation of
the given differential operator L. Thus, sym A ∈ Adis

L . In concert with (3.196) and
(3.218), this goes to show that the following sharper version of (3.218) holds:

if n ≥ 3 then for each weakly elliptic, scalar, homogeneous,
second-order operator L = div A∇ in R

n with constant
complex coefficients, the class Adis

L consists precisely of one
matrix, namely sym A := (A + A�)/2.

(3.223)

Turning our attention to genuine systems, below we pay special attention to the
Lamé system of elasticity.
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Example 3.4 Consider the following complexified version of the Lamé system
(originally arising in the study of linear elasticity), defined for any two parameters
μ, λ ∈ C (referred to as Lamé moduli) as

L := Lμ,λ := μ� + (μ + λ)∇div, (3.224)

acting on vector fields u = (uβ)1≤β≤n defined in (open subsets of) Rn, with the
Laplacian applied componentwise. Hence, L = L�, and one may check (cf. [102,
Proposition 10.14, p. 366]) that

the complex Lamé system (3.224) is weakly elliptic
if and only if one has μ 	= 0 as well as 2μ + λ 	= 0.

(3.225)

We may express the complex Lamé system L as in (3.1) (with M := n) using a
variety of coefficient tensors, such as those belonging to the one-parameter family

A(ζ ) = (
a

αβ
jk (ζ )

)
1≤j,k≤n
1≤α,β≤n

defined for each ζ ∈ C according to

a
αβ
jk (ζ ) := μδjkδαβ + (μ + λ − ζ )δjαδkβ + ζ δjβδkα, 1 ≤ j, k, α, β ≤ n.

(3.226)
In other words, for each vector field u = (uβ)1≤β≤n ∈ [

D′(Rn)
]n and each

parameter ζ ∈ C, the Lamé system (3.224) satisfies

Lu =
(
a

αβ
jk (ζ )∂j ∂kuβ

)
1≤α≤n

in
[
D′(Rn)

]n
. (3.227)

In relation to the coefficient tensor (3.226), it turns out that, for any μ, λ, ζ ∈ C

with μ 	= 0 and 2μ + λ 	= 0, if L is as in (3.224), then we have (cf. [61] for specific
details)

A(ζ ) ∈ Adis
L ⇐⇒ 3μ + λ 	= 0 and ζ = μ(μ + λ)

3μ + λ
. (3.228)

This ultimately shows that

whenever the Lamé moduli μ, λ ∈ C satisfy μ 	= 0, 2μ + λ 	= 0,
and 3μ + λ 	= 0, the Lamé operator L defined as in (3.227) has
the property that Adis

L = Adis
L� 	= ∅.

(3.229)

It is of interest to concretely identify the format of the double layer potential
operators associated with the complex Lamé system Lμ,λ = μ� + (λ + μ)∇div in
R

n, associated as in (1.52) with the Lamé moduli μ, λ ∈ C satisfying

μ 	= 0 and 2μ + λ 	= 0 (3.230)
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(thus ensuring the weak ellipticity of Lμ,λ; cf. (3.225)). For this system, the
fundamental solution E of Lμ,λ from Theorem 3.1 has the explicit form
E = (Ejk)1≤j,k≤n, a matrix whose (j, k) entry is defined at each point
x = (x1, . . . , xn) ∈ R

n \ {0} according to

Ejk(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1

2μ(2μ + λ)ωn−1

[
δjk(3μ + λ)

(n − 2)|x|n−2
+ (μ + λ)xjxk

|x|n
]

if n ≥ 3,

1

4πμ(2μ + λ)

[
δjk(3μ + λ)ln |x| − (μ + λ)xjxk

|x|2
]

+ cμ,λδjk if n = 2,

(3.231)
for every j, k ∈ {1, . . . , n}, where cμ,λ ∈ C is the constant given by

cμ,λ := (1 + ln 4)(λ + μ)

8πμ(λ + 2μ)
− ln 2

2πμ
. (3.232)

Let us now fix an arbitrary UR domain � ⊆ R
n, abbreviate σ := Hn−1�∂�, and

denote by ν = (ν1, . . . , νn) the geometric measure theoretic outward unit normal to
�. In such a setting, with each choice of ζ ∈ C, associate a double layer potential
operator KA(ζ) as in (3.24). A direct computation based on (3.231), (3.226), and
(3.24) then shows that the integral kernel �ζ (x, y) of the principal-value double
layer potential operator KA(ζ) is an n × n matrix whose (j, k) entry, 1 ≤ j, k ≤ n,
is explicitly given by

�
ζ
jk(x, y) = −C1(ζ )

δjk

ωn−1

〈x − y, ν(y)〉
|x − y|n

− (1 − C1(ζ ))
n

ωn−1

〈x − y, ν(y)〉(xj − yj )(xk − yk)

|x − y|n+2

− C2(ζ )
1

ωn−1

(xj − yj )νk(y) − (xk − yk)νj (y)

|x − y|n , (3.233)

for σ -a.e. x, y ∈ ∂�, where the constants C1(ζ ), C2(ζ ) ∈ C are defined as

C1(ζ ) := μ(3μ + λ) − ζ(μ + λ)

2μ(2μ + λ)
, C2(ζ ) := μ(μ + λ) − ζ(3μ + λ)

2μ(2μ + λ)
.

(3.234)
Thus, with notation introduced in (2.3), for each ζ ∈ C, the integral kernel �ζ (x, y)

of KA(ζ) may be recast as

�ζ (x, y) = −C1(ζ )
1

ωn−1

〈x − y, ν(y)〉
|x − y|n In×n
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− (1 − C1(ζ ))
n

ωn−1

〈x − y, ν(y)〉(x − y) ⊗ (x − y)

|x − y|n+2

− C2(ζ )
1

ωn−1

(x − y) ⊗ ν(y) − ν(y) ⊗ (x − y)

|x − y|n , (3.235)

for σ -a.e. x, y ∈ ∂�, where In×n is the n × n identity matrix. The penultimate term
above suggests that for each function f ∈ [

L1
(
∂�,

σ(x)

1+|x|n−1

)]n, we define

Qf (x) := lim
ε→0+

n

ωn−1

ˆ

y∈∂�
|x−y|>ε

〈x − y, ν(y)〉(x − y) ⊗ (x − y)

|x − y|n+2 f (y) dσ(y)

= lim
ε→0+

n

ωn−1

ˆ

y∈∂�
|x−y|>ε

〈x − y, ν(y)〉〈x − y, f (y)〉
|x − y|n+2 (x − y) dσ(y),

(3.236)

at σ -a.e. point x ∈ ∂�. Then, if

3μ + λ 	= 0 and ζ∗ := μ(μ + λ)

3μ + λ
, (3.237)

from (3.234), we see that C2(ζ∗) = 0, so the last term in (3.235) drops out and the
principal-value double layer potential operator KA(ζ∗) becomes

KA(ζ∗) = C1(ζ∗)K�In×n − (1 − C1(ζ∗))Q

= 2μ

3μ + λ
K�In×n − μ + λ

3μ + λ
Q, (3.238)

where K� is the harmonic double layer potential operator (cf. (3.29)). In view of
(3.29) and (3.236), this is in agreement with the prediction made in item (iv) of
Proposition 3.9.

Traditionally, the singular integral operator KA(ζ∗) from (3.238) has been called
the (boundary-to-boundary) pseudo-stress double layer potential operator for
the Lamé system, and the alternative notation K� has been occasionally employed.

We conclude this series of examples by discussing a case of a second-order,
homogeneous, real constant coefficient, and weakly elliptic system which does not
possess a distinguished coefficient tensor.

Example 3.5 Work in the plane R
2 ≡ C, and consider the second-order, homoge-

neous, real constant coefficient, 2 × 2 system
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L = 1

4

(
∂2
x − ∂2

y −2∂x∂y

2∂x∂y ∂2
x − ∂2

y

)
. (3.239)

An example of a coefficient tensor in AL is given by A = (
a

αβ
jk

)
1≤j,k≤2
1≤α,β≤2

with

a11
11 = a22

11 = 1
4 , a11

22 = a22
22 = − 1

4 , a11
12 = a11

21 = a22
12 = a22

21 = 0,

a12
12 = a12

21 = − 1
4 , a21

12 = a21
21 = 1

4 , a21
11 = a21

22 = a12
22 = a12

11 = 0.
(3.240)

The characteristic matrix of the system L is given by (cf. (3.2))

L(ξ) = −1

4

(
ξ2

1 − ξ2
2 −2ξ1ξ2

2ξ1ξ2 ξ2
1 − ξ2

2

)
at each ξ = (ξ1, ξ2) ∈ R

2. (3.241)

Hence, at each ξ = (ξ1, ξ2) ∈ R
2 \ {0}, we have

det [L(ξ)] = 1
16

[
(ξ2

1 − ξ2
2 )2 + (2ξ1ξ2)

2] = 1
16 (ξ2

1 + ξ2
2 )2 = 1

16 |ξ |4 	= 0, (3.242)

which goes to show that

the system L from (3.239) is weakly elliptic. (3.243)

In particular, L has a fundamental solution as in Theorem 3.1, which, once a UR
domain in the plane has been fixed, may then be used to associate double layer
potential operators KA with any coefficient tensor A ∈ AL as in (3.24), and all these
singular integral operators enjoy the properties discussed in Proposition 3.5.

This being said, since with η := (1, 0) ∈ C
2, we have

〈−L(ξ)η, η〉 = 1
4 (ξ2

1 − ξ2
2 ) for each ξ = (ξ1, ξ2) ∈ R

2, (3.244)

and since the last expression above vanishes identically on the diagonal of R2, it
follows that the system L from (3.239) fails to satisfy the Legendre–Hadamard
strong ellipticity condition (cf. (3.4)).

To better understand this system, observe that its transpose is

L� = 1

4

(
∂2
x − ∂2

y 2∂x∂y

−2∂x∂y ∂2
x − ∂2

y

)
, (3.245)

and, if π1, π2 : C2 → C are the canonical coordinate projections, defined as

π1(z1, z2) := z1 and π2(z1, z2) = z2 for each (z1, z2) ∈ C
2, (3.246)
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then

L(u1, u2) =
(
π1L

�(u1,−u2),−π2L
�(u1,−u2)

)

for any open set � ⊆ R
2 ≡ C and any two

complex-valued functions u1, u2 ∈ C 2(�).

(3.247)

As a consequence,

L(u1, u2) = 0 ⇐⇒ L�(u1,−u2) = 0

for any open set � ⊆ R
2 ≡ C and any

complex-valued functions u1, u2 ∈ C 2(�).

(3.248)

Pressing on, recall the Cauchy–Riemann operator and its conjugate

∂z̄ := 1
2

(
∂x + i∂y

)
, ∂z := 1

2

(
∂x − i∂y

)
, where z = x + iy, (3.249)

then bring in Bitsadze’s operator (cf. [16, 17]), which is simply the square of ∂z̄, i.e.,

L := ∂2
z̄ = 1

4∂2
x + i

2∂x∂y − 1
4∂2

y , z = x + iy. (3.250)

To place things into a broader perspective, recall that there are three basic prototypes
of scalar, constant coefficient, second-order, elliptic operators in the plane: the
Laplacian 4∂z∂z̄, plus Bitsadze’s operator ∂2

z̄ and its complex conjugate ∂2
z . With

π1, π2 : C2 → C the canonical coordinate projections from (3.246), the system L

introduced in (3.239) is related to Bitsadze’s operator L = ∂2
z̄ via

L(u1 + iu2) = π1L(u1, u2) + iπ2L(u1, u2)

for any open set � ⊆ R
2 ≡ C and any two

complex-valued functions u1, u2 ∈ C 2(�).

(3.251)

In particular,

L
(
Re U, Im U

) = (
Re(LU), Im(LU)

)

for any open set � ⊆ R
2 ≡ C and any

complex-valued function U ∈ C 2(�).

(3.252)

On the other hand, given any open set � ⊆ R
2 ≡ C along with any complex-

valued function U ∈ C 2(�), we have ∂2
z̄ U = 0 if and only if f := −∂z̄U is

holomorphic in �, and the latter condition is further equivalent to the demand that
g(z) := U(z) + z̄f (z) for each z ∈ � is a holomorphic function in �. As such, the
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general format of null-solution of ∂2
z̄ in an open set � ⊆ R

2 ≡ C is

U(z) = g(z) − z̄f (z) for all z ∈ �, where

f and g are holomorphic functions in �.
(3.253)

This is akin to the description of affine functions on the real line as null-solutions
of the one-dimensional Laplacian d2/dx2, with the role of d/dx now played by the
Cauchy–Riemann operator ∂z̄, with z̄ now playing the role of the variable x, and
with holomorphic functions playing the role of constants.

Specializing the expression of U in (3.253) to the case when g(z) := zf (z)

for each z ∈ �, we obtain the following particular family of null-solutions for
Bitsadze’s operator L in any given open set � ⊆ R

2 ≡ C:

U(z) = (z − z̄)f (z), where f

is any holomorphic function in �.
(3.254)

From this and (3.252), we then conclude that

given any holomorphic function f in an open set � ⊆ C, the
vector-valued function u = (u1, u2) with components given by
u1(z) := Re

[
(z − z̄)f (z)

]
and u2(z) := Im

[
(z − z̄)f (z)

]
for

each z ∈ � is a null-solution of the system L from (3.239).

(3.255)

In particular, by further specializing this property to the case when � := R
2+ ≡ C+

and the holomorphic function f (z) := (z + i)−m for z ∈ C+, where the integer
m ∈ N is arbitrary, shows that the vector-valued function u(m) = (

u
(m)
1 , u

(m)
2

)
with

components defined at each z ∈ C+ as

u
(m)
1 (z) := Re

[
(z− z̄)(z+i)−m

]
and u

(m)
2 (z) := Im

[
(z− z̄)(z+i)−m

]
(3.256)

is a null-solution of the system L from (3.239). Note that each function u(m) belongs

to
[
C∞(R2+ )

]2 and vanishes identically on ∂R2+ ≡ R (since z − z̄ = 0 for each
z ∈ R), and for each multi-index α ∈ N

2
0, there exists some Cα ∈ (0,∞) with the

property that

∣∣∂αu(m)(z)
∣∣ ≤ Cα(1 + |z|)1−m−|α| for all z ∈ R

2+. (3.257)

The estimate above implies that, having fixed an aperture parameter κ > 0, for each
multi-index α ∈ N

2
0 there exists some Cα ∈ (0,∞) such that

Nκ

(
∂αu(m)

)
(x) ≤ Cα(1 + |x|)1−m−|α| for all x ∈ R ≡ ∂R2+. (3.258)
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As such, for any given p ∈ (1,∞), any Muckenhoupt weight w ∈ Ap(R,L1), and
any multi-index α ∈ N

2
0, we have Nκ

(
∂αu(m)

) ∈ Lp(R, w) as long as m + |α| ≥ 2
(cf. (2.572)). Let us also observe that for each m ∈ N, we have

u
(2m)
2 (iy) = 2(−1)my(y + 1)−2m for each y ∈ (0,∞) (3.259)

and that the functions

{
y(y + 1)−2m

}
m∈N, for 0 < y < ∞, are linearly independent. (3.260)

Indeed, suppose that for some family of positive integers m1 < m2 < · · · < mN

and nonzero constants c1, . . . , cN , we have
∑N

j=1 cj y(y + 1)−2mj = 0 for each

y > 0. Divide by y(y + 1)−2m1 to obtain c1 + ∑N
j=2 cj (y + 1)−2(mj −m1) = 0 for

each y ∈ (0,∞). Sending y → ∞ yields c1 = 0, a contradiction that establishes
(3.260). Ultimately, this proves that the linear space of all vector-valued functions u

satisfying

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

u ∈ [
C∞(R2+)

]2
, Lu = 0 in R

2+,

Nκ

(
∂αu

) ∈ Lp(R, w) for all α ∈ N
2
0,

u
∣∣κ−n.t.

∂R2+
= 0 at L1-a.e. point on R

(3.261)

is infinite dimensional, i.e.,

the null-space of the Infinite-Order Regularity Problem for
the system L (from (3.239)) in R

2+ is infinite dimensional. (3.262)

In particular,

the space of null-solutions of the corresponding Dirichlet Prob-
lem for the system L in R

2+ (formulated as in (1.76) with n = 2,
M = 2, L as in (3.239), and � := R

2+) is infinite dimensional.
(3.263)

Since in item (d) of Theorem 6.2 we shall learn that this cannot happen if Adis
L� 	= ∅,

we then conclude that we necessarily have Adis
L� = ∅ in this case. In other words,

L� from (3.245) is a weakly elliptic, second-order, homogeneous, real constant
coefficient, 2 × 2 system in R

2 which does not possess any distinguished coefficient
tensor.

We may also run a variant of this argument, in which we now start with L�
instead of L. If

L = ∂2
z = 1

4∂2
x − i

2∂x∂y − 1
4∂2

y (3.264)
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is the complex conjugate of Bitsadze’s operator L from (3.250), then in place of
(3.251)–(3.252) we now have

L(u1 + iu2) = π1L
�(u1, u2) + iπ2L

�(u1, u2)

for any open set � ⊆ R
2 ≡ C and any two

complex-valued functions u1, u2 ∈ C 2(�),

(3.265)

and, respectively,

L�(Re U, Im U
) = (

Re(LU), Im (LU)
)

for any open set � ⊆ R
2 ≡ C and any

complex-valued function U ∈ C 2(�).

(3.266)

Keeping in mind that U is a null-solution of L if and only if U is a null-solution
of L and reasoning as before, we conclude that, for each m ∈ N, the vector-valued
function v(m) = (

v
(m)
1 , v

(m)
2

)
with components defined at each z ∈ C+ as

v
(m)
1 (z) := Re

[
(z̄−z)(z̄− i)−m

]
and v

(m)
2 (z) := Im

[
(z̄−z)(z̄− i)−m

]
(3.267)

is a null-solution of the system L� from (3.245). In turn, this goes to show that
the null-space of the Infinite-Order Regularity Problem for the system L� in R

2+
(formulated as in (3.261) with L� now replacing L) is infinite dimensional. Once
this has been established, from item (c) in Theorem 6.2 we conclude that Adis

L = ∅.
The bottom line is that

L in (3.239) is an example of a weakly elliptic, second-order,
homogeneous, real constant coefficient, 2×2 system in R

2, with
the property that Adis

L = ∅ and Adis
L� = ∅.

(3.268)

In particular, this goes to show that not every weakly elliptic, second-order,
homogeneous, real constant coefficient, system has a distinguished coefficient
tensor.

Remark 3.1 There is yet another proof of (3.268) which is not based on well-
posedness results, but instead uses directly the algebraic characterization of dis-
tinguished coefficient tensors in Proposition 3.8. Specifically, to conclude that
Adis

L = ∅, from (3.185), it suffices to show that for every coefficient tensor

B = (
b

αβ
jk

)
1≤α,β≤M
1≤j,k≤n

such that L = LB there exist indices k, k′ ∈ {1, . . . , n} as

well as α, γ ∈ {1, . . . ,M} such that

ˆ
S1

(
b

βα
jk ξk′ − b

βα

jk′ξk

)
ξj Eγβ(ξ) dH1(ξ) 	= 0. (3.269)
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To this end, we first note that, using (3.181), (3.241), and (3.242), we have

(
Eγβ(ξ)

)
1≤γ,β≤M

= [
L(ξ)

]−1 =
[−1

4

(
ξ2

1 − ξ2
2 −2ξ1ξ2

2ξ1ξ2 ξ2
1 − ξ2

2

)]−1

= −4

|ξ |4
(

ξ2
1 − ξ2

2 2ξ1ξ2

−2ξ1ξ2 ξ2
1 − ξ2

2

)
. (3.270)

In particular, if ξ ∈ S1, then ξ = (cos θ, sin θ) for some θ ∈ [0, 2π) and hence

(
Eγβ(ξ)

)
1≤γ,β≤M

= −4

(
cos2(θ) − sin2(θ) 2 cos(θ) sin(θ)

−2 cos(θ) sin(θ) cos2(θ) − sin2(θ)

)

= −4

(
cos(2θ) sin(2θ)

− sin(2θ) cos(2θ)

)
. (3.271)

In order to facilitate the presentation, for each j, k, γ, β ∈ {1, 2} introduce

Iγβ

jk :=
ˆ

S1
ξj ξk Eγβ dH1(ξ). (3.272)

Then using elementary trigonometric formulas, we obtain

I11
11 = −4

ˆ 2π

0
cos2(θ) cos(2θ) dθ = −

ˆ 2π

0

(
2 cos(2θ) + cos(4θ) + 1

)
dθ = −2π,

(3.273)

I11
12 = −4

ˆ 2π

0
sin(θ) cos(θ) cos(2θ) dθ = −

ˆ 2π

0
sin(4θ) dθ = 0, (3.274)

I11
22 = −4

ˆ 2π

0
sin2(θ) cos(2θ) dθ = −4

ˆ 2π

0
cos(2θ) dθ + I11

11 = 2π, (3.275)

I12
22 = −8

ˆ 2π

0
sin3(θ) cos(θ) dθ = −2(sin4(2π) − sin4(0)) = 0, (3.276)

I12
12 = −8

ˆ 2π

0
sin2(θ) cos2(θ) dθ = −

ˆ 2π

0

(
1 − cos(4θ)

)
dθ = −2π, (3.277)

I12
11 = −8

ˆ 2π

0
sin(θ) cos3(θ) dθ = 2(cos4(2π) − cos4(0)) = 0. (3.278)
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Finally, from (3.271)–(3.272), it follows that

I22
11 = I11

11 = −2π, I22
12 = I11

12 = 0, I22
22 = I11

22 = 2π,

I21
11 = −I12

11 = 0, I21
12 = −I12

12 = 2π, I21
22 = −I12

22 = 0.
(3.279)

We are now ready to compute the integral in (3.269) with k = α = 1 and k′ =
γ = 2:

ˆ
S1

(
b

β1
j1 ξ2 − b

β1
j2 ξ1

)
ξj E2β(ξ) dH1(ξ) = b11

11 · I21
12 + b11

21 · I21
22 + b21

11 · I22
12

+ b21
21 · I22

22 − b11
12 · I21

11 − b11
22 · I21

12 − b21
12 · I22

11 − b21
22 · I22

12

= 2π(b11
11 + b21

21 − b11
22 + b21

12). (3.280)

Next, we use the fact that B may be expressed as B = A + C, where A is
a fixed coefficient tensor such that L = LA and C is a coefficient tensor which is
antisymmetric in the lower indices. In particular, taking A as in (3.240), we conclude
from (3.280) that

ˆ
S1

(
b

β1
j1 ξ2 − b

β1
j2 ξ1

)
ξj E2β(ξ) dH1(ξ)

= 2π(a11
11 + a21

21 − a11
22 + a21

12 + c11
11 + c21

21 − c11
22 + c21

12)

= 2π
(1

4
+ 1

4
+ 1

4
+ 1

4
+ 0 + c21

21 − 0 + c21
12

)

= 2π 	= 0. (3.281)

This justifies (3.269) and ultimately proves that Adis
L = ∅. The same argument as

above works for L�, so we also conclude that Adis
L� = ∅.

In relation to the system L from (3.239), it is of interest to identify the space
of boundary traces of its null-solutions in the upper half-plane whose nontangential
maximal function belongs to a Muckenhoupt weighted Lebesgue space.

Proposition 3.10 Fix an integrability index p ∈ (1,∞) along with a Muckenhoupt
weight w ∈ Ap(R,L1), and choose an aperture parameter κ > 0. Also, recall the
2 × 2 system L defined in the plane as in (3.239).

Then if u ∈ [
C∞(R2+)

]2
is a vector-valued function satisfying

Lu = 0 in R
2+, Nκu ∈ Lp(R, w), (3.282)

and such that the nontangential boundary trace
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f := u
∣∣κ−n.t.

∂R2+
exists (in C2) at L1-a.e. point on R, (3.283)

it follows that the function f belongs to
[
Lp(R, w)

]2
and, if f1, f2 ∈ Lp(R, w) are

the scalar components of f (i.e., f = (f1, f2)), then with H denoting the Hilbert
transform on the real line (cf. (1.24)) one has

Hf1 = f2 at L1-a.e. point on R. (3.284)

In the converse direction, for any given f ∈ Lp(R, w), there exists a vector-
valued function u ∈ [

C∞(R2+)
]2

satisfying

Lu = 0 in R
2+, Nκu ∈ Lp(R, w), and

u
∣∣κ−n.t.

∂R2+
= (f,Hf ) at L1-a.e. point on R.

(3.285)

Altogether, the space of admissible boundary data for the Dirichlet Problem
formulated in terms of Muckenhoupt weighted Lebesgue spaces for the system L

in the upper half-plane, i.e.,

{
u
∣∣κ−n.t.

∂R2+
: u ∈ [

C∞(R2+)
]2

, Lu = 0 in R
2+, Nκu ∈ Lp(R, w), (3.286)

and u
∣∣κ−n.t.

∂R2+
exists at L1-a.e. point on R

}
,

is precisely

{
(f,Hf ) : f ∈ Lp(R, w)

}
. (3.287)

As a consequence of this and (3.248), one also has

{
u
∣∣κ−n.t.

∂R2+
: u ∈ [

C∞(R2+)
]2

, L�u = 0 in R
2+, Nκu ∈ Lp(R, w),

and u
∣∣κ−n.t.

∂R2+
exists at L1-a.e. point on R

}

= {
(f,−Hf ) : f ∈ Lp(R, w)

}
. (3.288)

Proof That the function f belongs to
[
Lp(R, w)

]2 is clear from
∣∣u∣∣κ−n.t.

∂R2+

∣∣ ≤ Nκu,

the fact that u
∣∣κ−n.t.

∂R2+
is L1-measurable (cf. [111, §8.9]), and the last property in

(3.282).
To proceed, fix a function u ∈ [

C∞(R2+)
]2 satisfying (3.282)–(3.283) and denote

by u1, u2 ∈ C∞(R2+) its scalar components. Hence, u = (u1, u2) in R
2+. Also, pick

an arbitrary ε > 0 and define
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Uε(z) := u1(z + εi) + iu2(z + εi) for each z ∈ (
R

2+ − εi
)
. (3.289)

Then Uε ∈ C∞(R2+ − εi) and, as seen from (3.251), the fact that Lu = 0 in R
2+

translates into ∂2
z̄ Uε = 0 in R

2+ − εi. Granted this, (3.253) then guarantees the
existence of two holomorphic functions fε, gε in R

2+ − εi with the property that

Uε(z) = gε(z) − z̄fε(z) for each z ∈ (
R

2+ − εi
)
. (3.290)

More specifically, the unique holomorphic functions fε, gε which do the job in
(3.290) are

fε(z) := −∂z̄Uε(z) and gε(z) := Uε(z) + z̄fε(z) for each z ∈ (
R

2+ − εi
)
.

(3.291)
Henceforth, we agree to restrict Uε, fε, gε to R

2+. With this interpretation, introduce

Wε(z) := gε(z) − zfε(z) for each z ∈ R
2+. (3.292)

Hence, Wε is holomorphic in R
2+ and extends continuously to R

2+, and

Uε(z) − Wε(z) = 2iyfε(z) = −2iy
(
∂z̄Uε

)
(z)

for each z = x + iy ∈ R
2+.

(3.293)

From the fact that ∂2
z̄ Uε = 0 in R

2+, we also conclude that 0 = ∂2
z ∂2

z̄ Uε = 1
16�2Uε,

i.e., the function Uε is bi-harmonic in R
2+. Select θ ∈ (0, 1) and κ̃ ∈ (0, κ) both

small so that

1 + θ + κ̃

1 − θ
< 1 + κ. (3.294)

Fix an arbitrary point x ∈ R ≡ ∂R2+ and pick some zo = xo + iyo ∈ �κ̃(x). The
inequality demanded in (3.294) ensures that

B(zo, θyo) ⊆ �κ(x). (3.295)

Based on interior estimates for bi-harmonic functions (cf. [102, Theorem 11.12,
p. 415]), (3.293), and (3.295), we may then write

∣∣Uε(zo) − Wε(zo)
∣∣ = 2yo

∣∣(∂z̄Uε

)
(zo)

∣∣ ≤ √
2yo|(∇Uε)(zo)|

≤ C

 
B(zo,θyo)

|Uε| dL2 ≤ C
(
NκUε

)
(x), (3.296)
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for some constant C = C(θ) ∈ (0,∞). Taking the supremum over all zo ∈ �κ̃(x)

this ultimately yields

(
Nκ̃ (Uε − Wε)

)
(x) ≤ C

(
NκUε

)
(x) for each x ∈ R ≡ ∂R2+. (3.297)

In turn, (3.297) implies

Nκ̃Wε ≤ Nκ̃Uε + Nκ̃ (Uε − Wε) ≤ NκUε + CNκUε

= (1 + C)NκUε ≤ (1 + C)Nκu on R ≡ ∂R2+. (3.298)

Upon recalling that the nontangential maximal function Nκ̃Wε is non-negative and
lower-semicontinuous, we then conclude from (3.298), the last property in (3.282),
and (2.575) that

Nκ̃Wε ∈ L1
(
R,

L1(x)
1+|x|

)
. (3.299)

Let us record our progress. The argument so far shows that the function Wε is

holomorphic in R
2+ and extends continuously to R

2+, and there exists some aperture

parameter κ̃ > 0 such that Nκ̃Wε belongs to L1
(
R,

L1(x)
1+|x|

)
. These properties allow

us to invoke the Cauchy reproducing formula (proved in [113, §1.1] in much more
general geometric settings) which asserts that

Wε(z) = 1

2π i

ˆ
R

(
Wε

∣∣
R

)
(y)

y − z
dy, for each z ∈ R

2+. (3.300)

Since fε, gε extend continuously to R
2+, from (3.290), (3.292), and the fact that

z = z̄ on R ≡ ∂R2+, we conclude that

Wε

∣∣
R

= Uε

∣∣
R

on R ≡ ∂R2+. (3.301)

As such, if we abbreviate

hε := Uε

∣∣
R

on R ≡ ∂R2+, (3.302)

after taking the nontangential boundary traces of both sides in (3.300) and using the
Plemelj jump-formula for the Cauchy operator (which continues to be valid in this
setting; see [114, §1.6]), we arrive at

hε = ( 1
2I + i

2H
)
hε at L1-a.e. point on R, (3.303)

where I is the identity and H is the Hilbert transform on R. Hence, on the one hand,
we may rewrite (3.303) simply as
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Hhε = −ihε at L1-a.e. point on R. (3.304)

On the other hand, from (3.302) and (3.289), we see that

hε(x) = u1(x + εi) + iu2(x + εi) for L1-a.e. x ∈ R. (3.305)

In turn, this implies

|hε(x)| ≤ √
2
(
Nκu

)
(x) for L1-a.e. x ∈ R (3.306)

and, when used in concert with (3.283), that

lim
ε→0+ hε(x) = (

u1
∣∣κ−n.t.

∂R2+

)
(x) + i

(
u2
∣∣κ−n.t.

∂R2+

)
(x)

= f1(x) + if2(x) for L1-a.e. x ∈ R. (3.307)

Thanks to (3.306)–(3.307) and the last property in (3.282), we may invoke
Lebesgue’s Dominated Convergence Theorem to conclude that

lim
ε→0+ hε = f1 + if2 in Lp(R, w). (3.308)

Having established this, on account of (3.304) and the continuity of the Hilbert
transform H on the Muckenhoupt weighted Lebesgue space Lp(R, w), we obtain

H(f1 + if2) = −i(f1 + if2) at L1-a.e. point on R. (3.309)

The idea is now write u = Re u + iIm u and observe that, since the coefficients
of the system L are real, Re u ∈ [

C∞(R2+)
]2 and Im u ∈ [

C∞(R2+)
]2 enjoy the

same properties as the function u in (3.282)–(3.283). Granted what we have proved

already, it follows that if φ1, φ2 are the scalar components of (Re u)
∣∣κ−n.t.

∂R2+
and if

ψ1, ψ2 are the scalar components of (Im u)
∣∣κ−n.t.

∂R2+
then φ1, φ2, ψ1, ψ2 are real-valued

functions belonging to Lp(R, w), and the conclusion in (3.309) written separately
for Re u and Im u gives

H(φ1 + iφ2) = −i(φ1 + iφ2) at L1-a.e. point on R, (3.310)

and, respectively,

H(ψ1 + iψ2) = −i(ψ1 + iψ2) at L1-a.e. point on R. (3.311)

In particular, taking the real parts in (3.310)–(3.311) (keeping in mind that H maps
real-valued functions into real-valued functions) leads to the conclusion that
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Hφ1 = φ2 and Hψ1 = ψ2. (3.312)

Upon observing that u
∣∣κ−n.t.

∂R2+
= (Re u)

∣∣κ−n.t.

∂R2+
+ i(Im u)

∣∣κ−n.t.

∂R2+
implies f1 = φ1 + iψ1

and f2 = φ2 + iψ2, from (3.312), we readily obtain the formula claimed in (3.284).
In the converse direction, suppose first that the function f ∈ Lp(R, w) is real-

valued. Then Hf ∈ Lp(R, w) and work in [114, §1.5-§1.6] ensures that

U(z) := 1

2π i

ˆ
R

(f + iHf )(y)

y − z
dy, for each z ∈ R

2+, (3.313)

is a holomorphic function in R
2+ satisfying NκU ∈ Lp(R, w) and

U
∣∣κ−n.t.

∂R2+
= ( 1

2I + i
2H

)
(f + iHf ) = f + iHf at L1-a.e. point on R, (3.314)

since the Hilbert transform satisfies H 2 = −I on Lp(R, w). If we now introduce
u1 := Re U and u2 := Im U , then u := (u1, u2) ∈ [

C∞(R2+)
]2 is a vector-valued

function with real-valued scalar components. Thanks to (3.252), we have

Lu = L
(
Re U, Im U

) = (
Re(∂2

z̄ U), Im (∂2
z̄ U)

) = 0 ∈ C
2 in R

2+, (3.315)

since ∂z̄U = 0 in R
2+ by the Cauchy–Riemann equations. In addition, we observe

that Nκu = NκU ∈ Lp(R, w) given that, by design, |u| = |U |. Finally, at L1-a.e.
point on R we have

u
∣∣κ−n.t.

∂R2+
=
(

Re U
∣∣κ−n.t.

∂R2+
, Im U

∣∣κ−n.t.

∂R2+

)
= (f,Hf ), (3.316)

by virtue of (3.314) and the fact that f is real-valued. Thus, u satisfies all
requirements in (3.285).

To deal with an arbitrary function f ∈ Lp(R, w), which is not necessarily real-
valued, denote by φ and ψ its real and imaginary parts so that f = φ + iψ . From
what we have proved so far, there exist v, ω ∈ [

C∞(R2+)
]2 as in (3.285) such

that v
∣∣κ−n.t.

∂R2+
= (φ,Hφ) and ω

∣∣κ−n.t.

∂R2+
= (ψ,Hψ). Then it follows that the function

u := v + iω ∈ [
C∞(R2+)

]2 is as in (3.285) and satisfies u
∣∣κ−n.t.

∂R2+
= (f,Hf ), as

wanted. ��
We continue by making four remarks in relation to Proposition 3.10 and its proof.

Remark 3.2 Suppose w ∈ Ap(R,L1) for some exponent p ∈ (1,∞) and choose
an aperture parameter κ > 0. Also, let L be the 2 × 2 system from (3.239), and
assume u : R2+ → C

2 is a function satisfying
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u ∈ [
C∞(R2+)

]2
, Lu = 0 in R

2+, Nκu ∈ Lp(R, w),

and u
∣∣κ−n.t.

∂R2+
= 0 at L1-a.e. point on R.

(3.317)

In particular, u satisfies (3.282)–(3.283) with f = (f1, f2) = (0, 0). Retaining
notation introduced during the proof of Proposition 3.10, from (3.300), (3.301), and
(3.302), we see that

Wε(z) = 1

2π i

ˆ
R

hε(y)

y − z
dy, for each z ∈ R

2+. (3.318)

Let U := u1 + iu2, where u1 and u2 are the two scalar components of the C2-valued
function u. On the one hand, from (3.289)–(3.292), it is clear that

lim
ε→0+ Wε(z) = U(z) + (z − z̄)

(
∂z̄U

)
(z) for fixed each z ∈ R

2+. (3.319)

On the other hand, for each fixed z ∈ R
2+, on account of (3.308) and the fact that we

currently have f1 + if2 = 0, we conclude that the limit as ε → 0+ of the integral
in (3.318) is zero. Based on these observations and (3.318), we ultimately conclude
that

if u is as in (3.317) then the C-valued function U := u1 + iu2
(where u1, u2 are the two scalar components of the C

2-valued
function u) satisfies U(z) = (z̄ − z)

(
∂z̄U

)
(z) for each z ∈ R

2+.
(3.320)

The same type of argument also shows that

U ∈ C∞(R2+)

∂2
z̄ U = 0 in R

2+
NκU ∈ Lp(R, w)

U
∣∣κ−n.t.

∂R2+
= 0 on R

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

�⇒
{

U(z) = (z̄ − z)
(
∂z̄U

)
(z)

for all z ∈ R
2+.

(3.321)

Bearing in mind that for any U as in the left side of (3.321) the function f := −∂z̄U

is holomorphic in R
2+, we may recast the conclusion in (3.321) as saying that there

exists some holomorphic function f in R
2+ such that U(z) = (z − z̄)f (z) for each

z ∈ R
2+. In particular, this shows that the choice g(z) := zf (z) which has led

to the conclusion in (3.254) is actually canonical in the case when � = R
2+, the

nontangential trace of U vanishes, and the nontangential maximal function of U

belongs to a Muckenhoupt weighted Lebesgue space.

Remark 3.3 A version of (3.321) which involves the nontangential maximal opera-
tor of the gradient of the function U goes as follows:
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given any function U ∈ C∞(R2+) with ∂2
z̄ U = 0 in R

2+ and
Nκ(∇U) ∈ Lp(R, w) for some p ∈ (1,∞), w ∈ Ap(R,L1),

and κ ∈ (0,∞) then U
∣∣κ−n.t.

∂R2+
= 0 at L1-a.e. point on R if and

only if U(z) = (z̄ − z)
(
∂z̄U

)
(z) for all z ∈ R

2+.

(3.322)

Indeed, the left-pointing implication is a consequence of the fact that (see the Fatou-
type result recalled in Theorem 3.4) the nontangential boundary trace

(∂z̄U)
∣∣κ−n.t.

∂R2+
exists at L1-a.e. point on R. (3.323)

To justify the right-pointing implication in (3.322), define

W(z) := U(z) − (z̄ − z)
(
∂z̄U

)
(z) for all z ∈ R

2+, (3.324)

and note that, from assumptions and (3.323), we have

W ∈ C∞(R2+), ∂z̄W = 0 in R
2+, and

W
∣∣κ−n.t.

∂R2+
= 0 at L1-a.e. point on R.

(3.325)

In addition, based on assumptions and interior estimates, we conclude (by reasoning
much as in (3.293)–(3.297)) that

Nκ(∇W) ∈ Lp(R, w). (3.326)

To proceed, we find it useful to bring in a modified boundary-to-domain Cauchy
integral operator for the upper half-plane acting on each f ∈ •

L
p

1 (R, w) according
to

Cmodf (z) := 1

2π i

ˆ

R

{
1

y − z
− 1R\[−1,1](y)

y

}
f (y) dy for all z ∈ R

2+. (3.327)

Work in [114, §1.8] then shows that W may be recovered, up to an additive constant,
from the action of this modified Cauchy operator on the boundary trace of W . In the
present case, this guarantees the existence of some c ∈ C such that

W = Cmod

(
W
∣∣κ−n.t.

∂R2+

)
+ c in R

2+, (3.328)

hence W ≡ c in R
2+, thanks to the last property recorded in (3.325). In turn, this

forces c = W
∣∣κ−n.t.

∂R2+
= 0 hence, ultimately, W = 0 in R

2+. In view of the definition

of W , this finishes the proof of the right-pointing implication in (3.322). In closing,
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we wish to note that, having fixed p ∈ (1,∞), w ∈ Ap(R,L1), and κ ∈ (0,∞),
from (3.322) and the fact that

for each holomorphic function h in R
2+ with Nκh ∈ Lp(R, w),

the nontangential boundary trace h
∣∣κ−n.t.

∂R2+
exists L1-a.e. on R

(3.329)

(e.g., this is implied by the Fatou results proved in [113, §3.1]), we conclude that

{
U ∈ C∞(R2+) : ∂2

z̄ U = 0 in R
2+, Nκ(∇U) ∈ Lp(R, w), and (3.330)

U
∣∣κ−n.t.

∂R2+
= 0 at L1-a.e. point on R

}

=
{
(z̄ − z)h(z) : h holomorphic in R

2+ with Nκh ∈ Lp(R, w)
}
.

This provides an explicit description of the space of null-solutions of the Homoge-
neous Regularity Problem for the operator ∂2

z̄ in the upper half-plane. In turn, this
readily implies that the space of null-solutions of the Inhomogeneous Regularity
Problem for the operator ∂2

z̄ in the upper half-plane may be described as

{
U ∈ C∞(R2+) : ∂2

z̄ U = 0 in R
2+, NκU, Nκ(∇U) ∈ Lp(R, w), and

(3.331)

U
∣∣κ−n.t.

∂R2+
= 0 at L1-a.e. point on R

}

=
{
(z̄ − z)h(z) : h holomorphic in R

2+ with Nκh ∈ Lp(R, w)

and Nκ

(
R

2+ � z �→ (z̄ − z)h(z)
) ∈ Lp(R, w)

}
.

Finally, we wish to mention that it is also possible to describe the space of null-
solutions of the Dirichlet Problem for the operator ∂2

z̄ in the upper half-plane,
namely

{
U ∈ C∞(R2+) : ∂2

z̄ U = 0 in R
2+, NκU ∈ Lp(R, w), and U

∣∣κ−n.t.

∂R2+
= 0

}

=
{
(z̄ − z)h(z) : h holomorphic in R

2+ with (3.332)

[
R

2+ � z �→ (z̄ − z)h(z)
]∣∣κ−n.t.

∂R2+
= 0

and Nκ

(
R

2+ � z �→ (z̄ − z)h(z)
) ∈ Lp(R, w)

}
.
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See [115, Chapter 2] for this and other similar results in the higher-dimensional
setting (some of which we will review a little further).

Remark 3.4 Bring in the complexified Cauchy–Riemann equations in the upper
half-plane, i.e., consider

A,B : R2+ → C of class C∞, satisfying

∂xA = ∂yB and ∂yA = −∂xB in R
2+.

(3.333)

Write (A,B) ∈ CR(R2+) whenever A,B are as in (3.333). Hence, CR(R2+) is a
complex vector space with the property that for each (A,B) ∈ CR(R2+) we have

(
Re A, Re B

) ∈ CR(R2+),
(
Im A, Im B

) ∈ CR(R2+),

and A + iB is a holomorphic function in R
2+.

(3.334)

Also,

(
Re U, Im U

) ∈ CR(R2+) for each

holomorphic function U in R
2+.

(3.335)

Having fixed some p ∈ (1,∞) along with a Muckenhoupt weight w ∈ Ap(R,L1)

and an aperture parameter κ > 0, we claim that

{
(f,Hf ) : f ∈ Lp(R, w)

}
(3.336)

=
{(

A
∣∣κ−n.t.

∂R2+
, B

∣∣κ−n.t.

∂R2+

) : (A,B) ∈ CR(R2+), NκA, NκB ∈ Lp(R, w)
}
.

Formula (3.336) carries special significance in the present context. Indeed, in
view of Proposition 3.10, we conclude that

the space (described in (3.286)) of admissible boundary data
for the Dirichlet Problem in the upper half-plane formulated in
terms of Muckenhoupt weighted Lebesgue spaces for the system
L defined in (3.239) coincides with the space of nontangential
boundary traces of pairs of functions satisfying the complexified
Cauchy–Riemann equations (3.333) whose nontangential maxi-
mal functions belong to said Muckenhoupt weighted Lebesgue
spaces.

(3.337)

Hence, in the big picture, the space of admissible boundary data for the Dirichlet
Problem for the second-order system L from (3.239) coincides with the space of
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boundary traces of null-solutions of a first-order system, namely the complexified
Cauchy–Riemann equations (3.333).

To justify (3.336), observe that since both sets involved are actually vector spaces
over the field of complex numbers and since (3.334)–(3.335) hold, it suffices to show
that

{
(f,Hf ) : f ∈ Lp(R, w) real-valued

}
(3.338)

=
{(

Re U
∣∣κ−n.t.

∂R2+
, Im U

∣∣κ−n.t.

∂R2+

) : U holomorphic in R
2+, NκU ∈ Lp(R, w)

}
.

As far as the equality in (3.338) is concerned, work in [113, §3.1] implies that for any
holomorphic function U in R

2+ with NκU ∈ Lp(R, w) the nontangential boundary

trace u
∣∣κ−n.t.

∂R2+
exists at L1-a.e. point on R. Also, this trace belongs to Lp(R, w) and

the following Cauchy reproducing formula holds:

U(z) = 1

2π i

ˆ
R

(
U
∣∣κ−n.t.

∂R2+

)
(y)

y − z
dy, for each z ∈ R

2+. (3.339)

Going nontangentially to the boundary then yields

U
∣∣κ−n.t.

∂R2+
= ( 1

2I + i
2H

)(
U
∣∣κ−n.t.

∂R2+

)
. (3.340)

Hence U
∣∣κ−n.t.

∂R2+
= iH

(
U
∣∣κ−n.t.

∂R2+

)
, from which we deduce that

Im U
∣∣κ−n.t.

∂R2+
= H

(
Re U

∣∣κ−n.t.

∂R2+

)
. (3.341)

This proves the right-to-left inclusion in (3.338). As regards the left-to-right
inclusion in (3.338), given any real-valued function f ∈ Lp(R, w), it follows that

U(z) := 1

π i

ˆ
R

f (y)

y − z
dy, for each z ∈ R

2+, (3.342)

is holomorphic in R
2+, has NκU ∈ Lp(R, w), and satisfies U

∣∣κ−n.t.

∂R2+
= (I + iH)f . In

particular,
(
Re U

∣∣κ−n.t.

∂R2+
, Im U

∣∣κ−n.t.

∂R2+

) = (f,Hf ), finishing the proof of (3.338).

Remark 3.5 The space
{
(f,Hf ) : f ∈ Lp(R, w)

}
appearing in (3.287) is the

complexification of the space appearing in the first line of (3.338). In turn, via the
identification R

2 � (a, b) ≡ a + ib ∈ C, the latter space may be viewed as

{
f + iHf : f ∈ Lp(R, w) real-valued

}
, (3.343)
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which, by virtue of (3.338), is further equal to the Muckenhoupt weighted Hardy
space

{
U
∣∣κ−n.t.

∂R2+
: U holomorphic in R

2+, NκU ∈ Lp(R, w)
}
. (3.344)

From Proposition 3.10, we then conclude that the space of admissible boundary data
for the Dirichlet Problem formulated in terms of Muckenhoupt weighted Lebesgue
spaces for the system L in the upper half-plane (cf. (3.286)) is ultimately linked to
the Muckenhoupt weighted Hardy space (3.344) in the manner detailed in the above
discussion.

By further building on Proposition 3.10, below we identify the space of admissi-
ble boundary data for the Muckenhoupt weighted version of the Regularity Problem
for the system L from (3.239) in the upper half-plane.

Proposition 3.11 Fix an integrability index p ∈ (1,∞) along with a Muckenhoupt
weight w ∈ Ap(R,L1), and choose an aperture parameter κ > 0. Also, recall the
2 × 2 system L defined in the plane as in (3.239). Then the space of admissible
boundary data for the Muckenhoupt weighted version of the Regularity Problem for
the system L in the upper half-plane, i.e.,

{
u
∣∣κ−n.t.

∂R2+
: u ∈ [

C∞(R2+)
]2

, Lu = 0 in R
2+, Nκu,Nκ(∇u) ∈ Lp(R, w)

}
,

(3.345)

coincides with

{
(f,Hf ) : f ∈ L

p

1 (R, w)
}
. (3.346)

As a consequence of this and (3.248), one also has

{
u
∣∣κ−n.t.

∂R2+
: u ∈ [

C∞(R2+)
]2

, L�u = 0 in R
2+, Nκu,Nκ(∇u) ∈ Lp(R, w)

}

= {
(f,−Hf ) : f ∈ L

p

1 (R, w)
}
. (3.347)

That the nontangential boundary traces exist in the context of (3.345), (3.347) is
a consequence of Proposition 2.24.

Proof of Proposition 3.11 Consider some function u = (u1, u2) ∈ [
C∞(R2+)

]2

satisfying Lu = 0 in R
2+, with Nκu,Nκ(∇u) ∈ Lp(R, w), and such that u

∣∣κ−n.t.

∂R2+
exists at L1-a.e. point on R. Proposition 3.10 guarantees that u

∣∣κ−n.t.

∂R2+
= (f,Hf )

for some f ∈ Lp(R, w). Then actually f = u1
∣∣κ−n.t.

∂R2+
∈ L

p

1 (R, w), thanks to

Proposition 2.22 whose applicability with u1 in place of u and with � := R
2+ is
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ensured by Theorem 3.4. This proves that the nontangential boundary trace u
∣∣κ−n.t.

∂R2+
belongs to the space in (3.346).

Conversely, start with a function f ∈ L
p

1 (R, w), which is first assumed to be real-
valued. Work in [114, §1.6] (in more general settings) ensures that Hf ∈ L

p

1 (R, w)

and

U(z) := 1

2π i

ˆ
R

(f + iHf )(y)

y − z
dy, for each z ∈ R

2+, (3.348)

is a holomorphic function in R
2+ satisfying NκU, Nκ(∇U) ∈ Lp(R, w) and, much

as in (3.314), U
∣∣κ−n.t.

∂R2+
= f + iHf . Then u := (

Re U, Im U) ∈ [
C∞(R2+)

]2 is a

vector-valued function with real-valued scalar components, with the property that
Nκu, Nκ(∇u) ∈ Lp(R, w) and

u
∣∣κ−n.t.

∂R2+
=
(

Re U
∣∣κ−n.t.

∂R2+
, Im U

∣∣κ−n.t.

∂R2+

)
= (f,Hf ), (3.349)

since f is real-valued. Given that, much as for (3.315), we also have Lu = 0 in
R

2+, it follows that (f,Hf ) belongs to the space in (3.345). Finally, the general case
when f ∈ L

p

1 (R, w) is not necessarily real-valued is dealt with based on what we
have just proved, decomposing f into its real and imaginary parts. This eventually
shows that the space from (3.346) is contained in the space from (3.345). By double
inclusion, we may therefore conclude that these spaces are in fact equal. ��

There is also a version of Proposition 3.11 for the Homogeneous Regularity
Problem, involving homogeneous Muckenhoupt weighted Sobolev spaces. To state
this result, we shall need the homogeneous Muckenhoupt weighted Sobolev space
•
L

p

1 (R, w) defined for each integrability exponent p ∈ (1,∞) and for each weight
w ∈ Ap(R,L1) as (compare with (2.598))

•
L

p

1 (R, w) :=
{
f ∈ L1(

R, dx
1+|x|2

) ∩ L
p

loc(R, w) : f ′ ∈ Lp(R, w)
}
, (3.350)

where the derivative is taken in the sense of distributions. We shall also need the
operator Hmod , the modified version of the classical Hilbert transform H on the real

line from (3.351), whose action on functions f ∈ •
L

p

1 (R, w) is given by

Hmodf (x) := lim
ε→0+

1

π

ˆ

R

{
1R\[x−ε,x+ε](y)

x − y
− 1R\[−1,1](y)

−y

}
f (y) dy (3.351)

at L1-a.e. point x ∈ R.

Proposition 3.12 Pick an integrability index p ∈ (1,∞), fix a Muckenhoupt
weight w ∈ Ap(R,L1), and choose an aperture parameter κ > 0. Then the
space of admissible boundary data for the Muckenhoupt weighted version of the
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Homogeneous Regularity Problem in the upper half-plane for the 2 × 2 system L

from (3.239), i.e.,

{
u
∣∣κ−n.t.

∂R2+
: u ∈ [

C∞(R2+)
]2

, Lu = 0 in R
2+, Nκ(∇u) ∈ Lp(R, w)

}
(3.352)

is equal to

{
f = (f1, f2) ∈ [ •

L
p

1 (R, w)
]2 : H(f ′

1) = f ′
2 at L1-a.e. point on R

}
(3.353)

=
{
(f,Hmodf + c) ∈ [ •

L
p

1 (R, w)
]2 : f ∈ •

L
p

1 (R, w) and c ∈ C

}
.

The fact that the nontangential boundary traces exist in the context of (3.352) is
a consequence of Proposition 2.24.

Proof of Proposition 3.12 Consider a vector-valued function

u ∈ [
C∞(R2+)

]2 satisfying

Lu = 0 in R
2+, Nκ(∇u) ∈ Lp(R, w).

(3.354)

From Theorem 3.4, Proposition 2.24, and (2.576), we know that

u
∣∣κ−n.t.

∂R2+
exists and belongs to

[ •
L

p

1 (R, w)
]2, the nontangential

boundary trace (∇u)
∣∣κ−n.t.

∂R2+
exists at L1-a.e. point on R, and

Nκu, Nκ(∇u) belong to the space L1
loc(R,L1).

(3.355)

In particular, if we set ũ := ∂xu ∈ [
C∞(R2+)

]2, then

Lũ = 0 in R
2+, Nκ ũ ∈ Lp(R, w), and

ũ
∣∣κ−n.t.

∂R2+
exists at L1-a.e. point on R.

(3.356)

In addition, if at L1-a.e. point x ∈ R we set

f (x) = (
f1(x), f2(x)) :=

(
u
∣∣κ−n.t.

∂R2+

)
(x) ∈ C

2, (3.357)

then (3.355) gives f ∈ [ •
L

p

1 (R, w)
]2, and Proposition 2.22 tells us that

f ′ = ∂x

(
u
∣∣κ−n.t.

∂R2+

)
=
(
(∂xu)

∣∣κ−n.t.

∂R2+

)
= ũ

∣∣κ−n.t.

∂R2+
at L1-a.e. point on x ∈ R.

(3.358)
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Granted these properties, Proposition 3.10 applies to ũ and, with H denoting the
Hilbert transform on the real line (cf. (1.24)), implies that we necessarily have

H(f ′
1) = f ′

2 at L1-a.e. point on R. (3.359)

This proves that the set from (3.352) is included in the set described in the first line
of (3.353).

To proceed, we need to recall some results from [114, Chapter 1]. First, Hmod

maps
•
L

p

1 (R, w) boundedly into itself, and for each f ∈ •
L

p

1 (R, w) we have

d

dx

[
Hmodf

] = H(f ′) at L1-a.e. point in R. (3.360)

In particular,

Hmod maps constants into constants. (3.361)

In addition, for each f ∈ •
L

p

1 (R, w), there exists some constant cf ∈ C with the
property that

Hmod

(
Hmodf ) = −f + cf . (3.362)

Finally, recall the modified boundary-to-domain Cauchy integral operator for the
upper half-plane from (3.327). Then, for each given function f ∈ •

L
p

1 (R, w), we
have

Cmodf is holomorphic in R
2+, Nκ

(∇Cmodf
) ∈ Lp(R, w), and

at L1-a.e. point on R we have (Cmodf )
∣∣κ−n.t.

∂R2+
= ( 1

2I + i
2Hmod

)
f .

(3.363)

Next, note that for each f1, f2 ∈ •
L

p

1 (R, w) having H(f ′
1) = f ′

2 at L1-a.e. point
on R amounts (cf. (3.360)) to having d

dx

(
Hmodf1 − f2

) = 0 at L1-a.e. point on R.
Hence, in this case we have f2 = Hmodf1 + c for some constant c ∈ C, proving that
the set in the first line of (3.353) is contained in the set in the second line of (3.353).

At this stage, there remains to show that the set from the second line of (3.353) is
contained in (3.352). To deal with this inclusion, observe that both sets are actually
vector spaces over the field of complex numbers. Moreover, the vector space in the
second line of (3.353) is the linear span of pairs of the form (f,Hmodf + c) with

f ∈ •
L

p

1 (R, w) real-valued function and c ∈ R. As such, it suffices to prove that for

any real-valued function f ∈ •
L

p

1 (R, w) and any number c ∈ R, there exists some
vector-valued function u as in (3.354) such that

u
∣∣κ−n.t.

∂R2+
= (f,Hmodf + c). (3.364)
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To this end, define

U(z) := 2Cmodf (z) + ic for each z ∈ R
2+. (3.365)

Then (3.363) guarantees that U is a holomorphic function in R
2+, with the property

that Nκ(∇U) ∈ Lp(R, w) and that at L1-a.e. point on R we have

U
∣∣κ−n.t.

∂R2+
= (

I + iHmod

)
f + ic. (3.366)

If we now set u1 := Re U and u2 := Im U , then u := (u1, u2) ∈ [
C∞(R2+)

]2 is a
vector-valued function, with real-valued scalar components, satisfying

Lu = L
(
Re U, Im U

) = (
Re(∂2

z̄ U), Im (∂2
z̄ U)

) = 0 ∈ C
2 in R

2+, (3.367)

thanks to (3.252) and the fact that ∂z̄U = 0 in R
2+, by the Cauchy–Riemann

equations. Also, Nκ(∇u) ∈ Lp(R, w) given that Nκ(∇U) ∈ Lp(R, w). Finally,
bearing in mind that f,Hmodf are real-valued and that c ∈ R, at L1-a.e. point on R

we may use (3.366) to compute

u
∣∣κ−n.t.

∂R2+
=
(

Re U
∣∣κ−n.t.

∂R2+
, Im U

∣∣κ−n.t.

∂R2+

)
= (

f,Hmodf + c
)
, (3.368)

proving (3.364). ��
A higher-dimensional version of the theory presented in connection with the

planar 2 × 2 system L from (3.239) has been worked out in [115, Chapter 2],
where analogous results to Proposition 3.10 have been established. In order to
describe them, we need some notation in the n-dimensional Euclidean space, where
n ∈ N with n ≥ 2. First, recall the family of Riesz transforms (Rj )1≤j≤n−1 in
the hyperplane R

n−1 × {0} ≡ R
n−1. Specifically, the j -th Riesz transform Rj on

R
n−1, with j ∈ {1, . . . , n − 1}, is the singular integral operator acting on any given

function f ∈ L1
(
R

n−1,
Ln−1(x′)
1+|x′|n−1

)
at Ln−1-a.e. point x′ ∈ R

n−1 according to

Rjf (x′) := lim
ε→0+

2

ωn−1

ˆ

y′∈Rn−1

|x′−y′|>ε

xj − yj

|x′ − y′|n f (y′) dLn−1(y′). (3.369)

We shall also need the j -th modified Riesz transform R
mod

j , acting on each function

f ∈ L1
(
R

n−1,
Ln−1(x′)
1+|x′|n

)
at Ln−1-a.e. point x′ ∈ R

n−1 according to

R
mod

j f (x′) := lim
ε→0+

2

ωn−1

ˆ

R
n−1

{
xj − yj

|x′ − y′|n 1
R

n−1\B((x′,0),ε)
(y′) (3.370)
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− −yj

| − y′|n 1
R

n−1\B(0,1)(y
′)
}
f (y′) dLn−1(y′).

Finally, following [115, Chapter 2], we shall consider a special system, namely
the homogeneous, constant real coefficient, symmetric, n × n second-order system
acting on each vector-valued distribution �u = (u1, . . . , un) (defined in an open
subset of Rn) according to

LD �u := ��u − 2∇div �u. (3.371)

That is,

LD = (
a

αβ
jk ∂j ∂k

)
1≤α,β≤n

with

a
αβ
jk = δjkδαβ − 2δjαδkβ for all α, β, j, k ∈ {1, . . . , n}.

(3.372)

Here is the result which amounts to a higher-dimensional version of Proposi-
tions 3.10, 3.11, and 3.12.

Proposition 3.13 Fix n ∈ N, with n ≥ 2. Pick an integrability index p ∈ (1,∞)

along with a Muckenhoupt weight w ∈ Ap(Rn−1,Ln−1), and choose some aperture
parameter κ > 0. Also, recall the second-order, weakly elliptic, constant (real)
coefficient, symmetric, n × n system LD defined in (3.371).

Then if �u ∈ [
C∞(Rn+)

]n
is a vector-valued function satisfying

LD �u = 0 in R
n+, Nκ �u ∈ Lp(Rn−1, w), (3.373)

and such that the nontangential boundary trace

�f = (f1, . . . , fn) := �u∣∣κ−n.t.

∂Rn+
exists (in Cn) at Ln−1-a.e. point on R

n−1,

(3.374)
it follows that the vector-valued function �f belongs to

[
Lp(Rn−1, w)

]n
and

fn = −
n−1∑
j=1

Rjfj at Ln−1-a.e. point on R
n−1. (3.375)

In the converse direction, for any given �f = (f1, . . . , fn) ∈ [
Lp(Rn−1, w)

]n
satisfying (3.375), there exists a vector-valued function �u ∈ [

C∞(Rn+)
]n

satisfying

LD �u = 0 in R
n+, Nκ �u ∈ Lp(Rn−1, w), and

�u∣∣κ−n.t.

∂Rn+
= �f at Ln−1-a.e. point on R

n−1.
(3.376)
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Altogether, the space of admissible boundary data for the Dirichlet Problem
formulated in terms of Muckenhoupt weighted Lebesgue spaces for the system LD

in the upper half-space may be described as follows:

{
�u∣∣κ−n.t.

∂Rn+
: �u ∈ [

C∞(Rn+)
]n

, LD �u = 0 in R
n+, Nκ �u ∈ Lp(Rn−1, w),

and u
∣∣κ−n.t.

∂Rn+
exists at Ln−1-a.e. point on R

n−1
}

=
{
(f1, . . . , fn) ∈ [

Lp(Rn−1, w)
]n : fn = −

n−1∑
j=1

Rjfj

}
. (3.377)

Furthermore, the space of admissible boundary data for the Inhomogeneous
Regularity Dirichlet Problem with boundary data in Muckenhoupt weighted Sobolev
spaces for the system LD in the upper half-space is given by2

{
�u∣∣κ−n.t.

∂Rn+
: �u ∈ [

C∞(Rn+)
]n

, LD �u = 0 in R
n+, Nκ �u, Nκ(∇�u) ∈ Lp(Rn−1, w)

}

=
{
(f1, . . . , fn) ∈ [

L
p

1 (Rn−1, w)
]n : fn = −

n−1∑
j=1

Rjfj

}
. (3.378)

Also, the space of admissible boundary data for the Homogeneous Regularity
Dirichlet Problem with boundary data in homogeneous Muckenhoupt weighted
Sobolev spaces for the system LD in the upper half-space may be characterized
as follows:3

{
�u∣∣κ−n.t.

∂Rn+
: �u ∈ [

C∞(Rn+)
]n

, LD �u = 0 in R
n+, Nκ(∇�u) ∈ Lp(Rn−1, w)

}

=
{
(f1, . . . , fn) ∈ [ •

L
p

1 (Rn−1, w)
]n : fn +

n−1∑
j=1

R
mod

j fj is constant
}
.

(3.379)

Finally, similar results are valid on the scales of Morrey spaces and block spaces
(cf. Sect. 7.1).

In particular, it is apparent from (3.377) that no nonzero vector-valued function
from the space

2 With the existence of the nontangential boundary traces guaranteed by Proposition 2.24.
3 The existence of the nontangential boundary traces here being guaranteed by Proposition 2.24.
Also, the homogeneous Muckenhoupt weighted Sobolev space

•
L

p

1 (Rn−1, w) is defined as in
(2.598) with � := R

n+.
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{
(0, . . . , 0, f ) : f ∈ Lp(Rn−1, w)

}
(3.380)

can possibly be an admissible boundary datum for the Dirichlet Problem for system
LD in the upper half-space. As such,

the codimension of the admissible boundary data for the Dirich-
let Problem for system LD in the upper half-space (i.e., the
space in the first line of (3.377)) into the full data space[
Lp(Rn−1, w)

]n is +∞.

(3.381)

Likewise, since no nonzero vector-valued function from the space

{
(0, . . . , 0, f ) : f ∈ L

p

1 (Rn−1, w)
}

(3.382)

can possibly be an admissible boundary datum for the Inhomogeneous Regularity
Problem for system LD in the upper half-space, it follows that

the codimension of the admissible boundary data for the Inho-
mogeneous Regularity Problem for system LD in the upper
half-space (i.e., the space in the first line of (3.378)) into the
full data space

[
L

p

1 (Rn−1, w)
]n is +∞.

(3.383)

Finally, given that no nonzero vector-valued function from the space

{
(0, . . . , 0, f ) : f ∈ •

L
p

1 (Rn−1, w)
}

(3.384)

can possibly be an admissible boundary datum for the Homogeneous Regularity
Problem for system LD in the upper half-space, we see that

the codimension of the admissible boundary data for the Homo-
geneous Regularity Problem for system LD in the upper half-
space (i.e., the space in the first line of (3.379)) into the full data
space

[ •
L

p

1 (Rn−1, w)
]n is +∞.

(3.385)

It has also been noted in [115, §2.6] that for each scalar function

ω ∈ C∞(Rn+) with �ω = 0 in R
n+ and Nκ(∇ω) ∈ Lp(Rn−1, w), (3.386)

the vector-valued function

�u : Rn+ −→ C
n given by

�u(x) := xn(∇ω)(x) for each x = (x1, . . . , xn) ∈ R
n+

(3.387)

satisfies
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�u ∈ [
C∞(Rn+)

]n
, LD �u = 0 in R

n+, Nκ(∇�u) ∈ Lp(Rn−1, w),

and �u∣∣κ−n.t.

∂Rn+
= 0 at Ln−1-a.e. point on R

n−1.
(3.388)

In the converse direction, each vector-valued function �u as in (3.388) has the format
described in the second line of (3.387) for some scalar function ω as in (3.386).
Finally, it has been noted in [115, §2.6] that if in place of (3.386), one now assumes

ω ∈ C∞(Rn+) with �ω = 0 in R
n+ and

Nκω ∈ Lp(Rn−1, w), Nκ(∇ω) ∈ Lp(Rn−1, w),
(3.389)

then the vector-valued function �u defined as in (3.387) for this choice of ω has the
additional property that Nκ �u ∈ Lp(Rn−1, w), i.e., satisfies

�u ∈ [
C∞(Rn+)

]n
, LD �u = 0 in R

n+, Nκ �u, Nκ(∇�u) ∈ Lp(Rn−1, w),

and �u∣∣κ−n.t.

∂Rn+
= 0 at Ln−1-a.e. point on R

n−1.

(3.390)
In particular, these considerations readily imply that

the space of null-solutions for the Homogeneous Regularity
Problem for the system LD in the upper half-space (i.e., the
space of functions as in (3.388)) is infinite dimensional

(3.391)

and that

the space of null-solutions for the Inhomogeneous Regularity
Problem for the system LD in the upper half-space (i.e., the
space of functions as in (3.390)) is infinite dimensional.

(3.392)

As a corollary of (3.392), we also see that

the space of null-solutions for the Dirichlet Problem for the
system LD in the upper half-space is infinite dimensional.

(3.393)

We next turn our attention to the issue of existence and uniqueness of distin-
guished coefficient tensors for a given weakly elliptic system and its transposed.
The starting point is the following result, proved in [115, §1.5], for strongly elliptic
systems.

Theorem 3.8 Fix M,n ∈ N with n ≥ 2. Let L be a homogeneous, second-
order, constant complex coefficient, M × M system in R

n which satisfies the strong
Legendre–Hadamard ellipticity condition (3.4). Then either

Adis
L = ∅ and Adis

L� = ∅, (3.394)
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or

Adis
L = {A} and Adis

L� = {A�} for some A ∈ AL. (3.395)

As a corollary, if M,n ∈ N with n ≥ 2 and L is a homogeneous, second-order,
constant complex coefficient, M × M system in R

n satisfying the Legendre–
Hadamard (strong) ellipticity condition, then

Adis
L is either empty or a singleton. (3.396)

We next state a result, augmenting Theorem 3.8, pertaining to weakly elliptic
systems, also established in [115, §1.5].

Theorem 3.9 Let M,n ∈ N with n ≥ 2 and consider a weakly elliptic,
homogeneous, second-order, constant complex coefficient, M × M system L in
R

n with the property that Adis
L 	= ∅ and Adis

L� 	= ∅. Then both Adis
L and Adis

L� are

singletons. In fact, Adis
L = {A} and Adis

L� = {A�} for some A ∈ AL.
In particular, if M,n ∈ N with n ≥ 2 and L is a symmetric, weakly elliptic,

homogeneous, second-order, constant complex coefficient, M × M system in R
n,

then Adis
L is either empty or a singleton, and, in the latter case, one has Adis

L = {A}
for some A ∈ AL satisfying A� = A.

For example, from (3.223), we know that

Adis
� = {In×n} where � is the Laplacian in R

n with n ≥ 2, (3.397)

Adis
div A∇ = {(A + A�)/2} if n ≥ 3 and A ∈ C

n×n is invertible, (3.398)

while Theorem 3.9 and (3.228) imply that, for the complex Lamé system Lμ,λ

defined in (3.224), we have

Adis
Lμ,λ

=
{(

a
αβ
jk

)
1≤j,k≤n
1≤α,β≤n

}
if μ 	= 0, 2μ + λ 	= 0, and 3μ + λ 	= 0, where

a
αβ
jk := μδjkδαβ + (μ+λ)(2μ+λ)

3μ+λ
δjαδkβ + μ(μ+λ)

3μ+λ
δjβδkα,

for 1 ≤ j, k, α, β ≤ n.

(3.399)
Here is an equivalent characterization of the existence of a distinguished

coefficient tensor proved in [115, §1.6].

Theorem 3.10 Fix M,n ∈ N with n ≥ 2. Let L be an M × M second-order,
homogeneous, constant complex coefficient, weakly elliptic system in R

n. Then the
following statements are equivalent:

(i) The system L possesses a distinguished coefficient tensor, i.e., Adis
L 	= ∅.
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(ii) There exists a matrix-valued function k ∈ [
C∞(Rn \ {0})]M×M

which is positive
homogeneous of degree −n and satisfies

ˆ
Sn−1

k dHn−1 = IM×M (3.400)

(where IM×M is the M × M identity matrix), as well as

L
(
xsk(x)

) = 0 · IM×M in R
n \ {0} for each s ∈ {1, . . . , n}. (3.401)

Moreover, if L has a unique distinguished coefficient tensor (i.e., if #Adis
L = 1),

then there is only one function k as in item (ii).

It has been noted in [115, §1.6] that Theorem 3.10 has the following noteworthy
consequence:

Corollary 3.2 Fix M,n ∈ N with n ≥ 2. Let L be an M × M second-order,
homogeneous, constant complex coefficient, weakly elliptic system in R

n. Assume
that there exists a matrix-valued function k∗ ∈ [

C∞(Rn \ {0})]M×M
which is

positive homogeneous of degree −n, is not identically zero, and satisfies

ˆ
Sn−1

k∗ dHn−1 = 0 · IM×M (3.402)

(where IM×M is the M × M identity matrix), as well as

L
(
xsk∗(x)

) = 0 · IM×M in R
n \ {0} for each s ∈ {1, . . . , n}. (3.403)

Then either Adis
L = ∅, or Adis

L� = ∅.

To proceed, we revisit the special system LD from (3.371) which turns out not to
have any distinguished coefficient tensors. Indeed, it has been noted in [115, §1.6]
that if E� is the standard fundamental solution for the Laplacian in R

n, defined at
each point x ∈ R

n \ {0} according to

E�(x) :=

⎧⎪⎪⎨
⎪⎪⎩

1

(2 − n)ωn−1

1

|x|n−2
if n ≥ 3,

1

2π
ln |x| if n = 2,

(3.404)

and if k∗ is the Hessian matrix of E�, defined at each point x ∈ R
n \ {0} by
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k∗(x) := (
(∂i∂jE�)(x)

)
1≤i,j≤n

=
( δij

ωn−1

1

|x|n − n

ωn−1

xixj

|x|n+2

)
1≤i,j≤n

,

(3.405)
then (3.403)–(3.402) hold for L = LD , the special system LD from (3.371). In view
of the fact that LD is symmetric, Corollary 3.2 then gives

for each n ∈ N with n ≥ 2, the n × n system LD in R
n from

(3.371) is weakly elliptic, second-order, homogeneous, constant
real coefficient, symmetric, and Adis

LD
= Adis

L�
D

= ∅.
(3.406)

Remark 3.6 Consider the complex Lamé system Lμ,λ, defined earlier in (3.224), in
the regime μ, λ ∈ C with μ 	= 0 and 2μ + λ 	= 0. From (3.225), we know that this
is equivalent with the weak ellipticity of Lμ,λ. Hence, this is the range in which we
may consider the issue of whether Lμ,λ possesses distinguished coefficient tensors.
In this regard, we wish to note that from (3.229) and Theorem 3.9, it follows that
Adis

Lμ,λ
is a singleton when 3μ+λ 	= 0. In addition, from (3.406) and (3.371), we see

that Adis
Lμ,λ

is empty when 3μ + λ = 0. Collectively, these observations prove that

given any μ, λ ∈ C with μ 	= 0 and 2μ + λ 	= 0, then
Adis

Lμ,λ
	= ∅ if and only if 3μ + λ 	= 0 if and only if Adis

Lμ,λ

is a singleton (namely the coefficient tensor A(ζ ) described in
(3.226), corresponding to the choice ζ = μ(μ+λ)

3μ+λ
).

(3.407)

One final remark is as follows. Consider an arbitrary second-order, weakly
elliptic, homogeneous, constant complex coefficient, M × M system L in R

n, and
pick a coefficient tensor A = (

a
αβ
jk

)
1≤α,β≤M
1≤j,k≤n

∈ AL. For each invertible matrix

C = (cjk)1≤j,k≤n ∈ C
M×M , define

AC := (
a

αβ
j� c�k

)
1≤α,β≤M
1≤j,k≤n

∈ ALC (3.408)

and

CA := (
cj�a

αβ
�k

)
1≤α,β≤M
1≤j,k≤n

∈ ACL, (3.409)

with the systems LC and CL naturally interpreted in the sense of multiplication of
M × M matrices. With this notation, it has been noted in [115, §1.2] that for each
invertible matrix C ∈ C

M×M we have

A ∈ Adis
L ⇐⇒ AC ∈ Adis

LC, (3.410)

and
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A ∈ Adis
L ⇐⇒ CA ∈ Adis

CL. (3.411)

A useful consequence of (3.410)–(3.411) and Corollary 3.2 is as follows. Bring
back the second-order, homogeneous, real constant coefficient, 2 × 2 system in the
plane

LB = 1

4

(
∂2
x − ∂2

y −2∂x∂y

2∂x∂y ∂2
x − ∂2

y

)
, (3.412)

which is matrix representation of Bitsadze’s operator L from (3.250). Also, recall
the two-dimensional version of the special system LD from (3.371), i.e.,

LD =
(

∂2
y − ∂2

x −2∂x∂y

−2∂x∂y ∂2
x − ∂2

y

)
. (3.413)

Hence, if we let

V :=
(−1 0

0 1

)
, (3.414)

then V � = V = V −1 and

LB = 1
4LDV and L�

B = 1
4V LD. (3.415)

These together with (3.410) and (3.411) imply

A ∈ Adis
LD

⇐⇒ AV ∈ Adis
LB

(3.416)

and

A ∈ Adis
LD

⇐⇒ V A ∈ Adis
L�

B

. (3.417)

Since we have proved that Adis
LD

= ∅ (cf. (3.406)), the equivalences in (3.416)–
(3.417) imply that

Adis
LB

= ∅ and Adis
L�

B

= ∅. (3.418)
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