
Chapter 2
Geometric Measure Theory

We begin with a quick review of notational conventions used in the monograph.
Throughout, N0 := N∪{0}, n ∈ N with n ≥ 2, and Ln stands for the n-dimensional
Lebesgue measure in R

n. Also, we shall denote by Hn−1 the (n − 1)-dimensional
Hausdorff measure in R

n. It is a well-known fact (cf. [47, Theorem 1, p. 61]) that the
(n − 1)-dimensional Hausdorff outer-measure is a Borel-regular outer-measure in
R

n. Since the measure induced by an arbitrary outer-measure (as in Carathéodory’s
theorem) is automatically complete, it follows that

Hn−1 is a complete Borel-regular measure in R
n. (2.1)

Next, for each set E ⊆ R
n, we let 1E denote the characteristic function of E (defined

as 1E(x) = 1 if x ∈ E and 1E(x) = 0 if x ∈ R
n \ E). Also, δjk is the Kronecker

symbol (i.e., δjk := 1 if j = k and δjk := 0 if j �= k). By {ej }1≤j≤n we shall denote
the standard orthonormal basis in R

n, i.e., ej := (δjk)1≤k≤n for each j ∈ {1, . . . , n}.
For each x ∈ R

n and r ∈ (0,∞) set B(x, r) := {y ∈ R
n : |x − y| < r}. The dot

product of two vectors u, v ∈ R
n is denoted by u · v = 〈u, v〉, and for each vector

v ∈ R
n we set 〈v〉⊥ := {u ∈ R

n : u · v = 0}. Next, Rn± := {x ∈ R
n : ±〈x, en〉 > 0}

denote, respectively, the upper half-space and the lower half-space in R
n.

Given an arbitrary set � ⊆ R
n, we shall denote by C 0(�) the space of continuous

scalar-valued functions defined on �. Assuming now that � ⊆ R
n is actually open,

for each k ∈ N∪ {0} we shall denote by C k(�) the space of scalar-valued functions
which have continuous partial derivatives of order ≤ k in �. Also, C∞

0 (�) stands
for the space of compactly supported functions from C∞(�). We shall let D′(�)

stand for the space of distributions in the set � and, for each integrability exponent
p ∈ [1,∞] and integer k ∈ N, we shall define the local Lp-based Sobolev space
of order k in � as W

k,p

loc (�) := {
u ∈ D′(�) : ∂αu ∈ L

p

loc(�,Ln), |α| ≤ k
}
. The

Jacobian matrix of a differentiable C
M -valued function u = (uα)1≤α≤M defined in

an open subset of Rn is the C
M·n-valued function
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∇u := (
∂juα

)
1≤α≤M
1≤j≤n

=
⎡

⎢
⎣

∂1u1 · · · ∂nu1
...

...
...

∂1uM · · · ∂nuM

⎤

⎥
⎦ . (2.2)

We shall retain the same symbol ∇u when the components of u are actually
distributions. Next, we agree to denote by Sn−1 := ∂B(0, 1) the unit sphere in R

n,
and use ωn−1 := Hn−1(Sn−1) for the surface area of Sn−1. In addition, we shall let
υn−1 denote the volume of the unit ball in R

n−1. Given any x, y ∈ R
n, by [x, y] we

shall denote the line segment with endpoints x, y. We shall also need dist(x, E) :=
inf{|x − y| : y ∈ E}, the distance from a given point x ∈ R

n to a nonempty set
E ⊆ R

n. If (X, μ) is a given measure space, for each p ∈ (0,∞] we shall denote
by Lp(X, μ) the Lebesgue space of μ-measurable functions which are p-th power
integrable on X with respect to μ. Also, by Lp,q(X, μ) with p, q ∈ (0,∞] we shall
denote the scale of Lorentz spaces on X with respect to the measure μ. In the same
setting, for each μ-measurable set E ⊆ X with 0 < μ(E) < ∞ and each function
f which is absolutely integrable on E we set

ffl
E

f dμ := μ(E)−1
´
E

f dμ. For two
operators T and S, the symbol [T , S] := T ◦S−S ◦T denotes the commutator of T

and S. For a measurable function b, we let Mb be the pointwise multiplication by b,
that is, Mb(f )(x) := b(x) ·f (x). Given N, M ∈ N, for any a = (a1, . . . , aN) ∈ C

N

and b = (b1, . . . , bM) ∈ C
M , we agree to define a ⊗ b to be the N ×M matrix

a ⊗ b := (
ajbk

)
1≤j≤N
1≤k≤M

∈ C
N×M. (2.3)

Finally, we adopt the common convention of writing A ≈ B if there exists a constant
C ∈ (1,∞) with the property that A/C ≤ B ≤ CA for all values of the relevant
parameters entering the definitions of A, B (something that is self-evident in each
context we employ this notation).

2.1 Classes of Euclidean Sets of Locally Finite Perimeter

Given an open set � ⊆ R
n and an aperture parameter κ ∈ (0,∞), define the

nontangential approach regions

	κ(x) := {
y ∈ � : |y − x| < (1 + κ) dist(y, ∂�)

}
for each x ∈ ∂�. (2.4)

In turn, these are used to define the nontangential maximal operator Nκ , acting on
each Ln-measurable function u defined in � according to

(Nκu
)
(x) := ‖u‖L∞(	κ (x),Ln) for each x ∈ ∂�, (2.5)
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with the convention that
(Nκu

)
(x) := 0 whenever x ∈ ∂� is such that 	κ(x) = ∅.

Note that, if we work (as one usually does) with equivalence classes, obtained by
identifying functions which coincide Ln-a.e., the nontangential maximal operator is
independent of the specific choice of a representative in a given equivalence class.
It turns out that (see [111, §8.2] for a proof)

Nκu : ∂� → [0,+∞] is a lower-semicontinuous function. (2.6)

Also, it is apparent from definitions that

whenever u ∈ C 0(�) one actually has
(Nκu

)
(x) = sup

y∈	κ(x)

|u(y)| for all x ∈ ∂�.
(2.7)

More generally, if u : � → R is a Lebesgue measurable function and E ⊆ � is
a Ln-measurable set, we denote by NE

κ u the nontangential maximal function of u

restricted to E, i.e.,

NE
κ u : ∂� −→ [0,+∞] defined as

(NE
κ u)(x) := ‖u‖L∞(	κ (x)∩E,Ln) for each x ∈ ∂�.

(2.8)

Hence, NE
κ u = Nκ(u · 1E). Throughout, we agree to use the simpler notation Nδ

κ in
the case when E = {x ∈ � : dist(x, ∂�) < δ} for some δ ∈ (0,∞), i.e.,

Nδ
κu := Nκ

(
u1Oδ

)
where Oδ := {x ∈ � : dist(x, ∂�) < δ}. (2.9)

It turns out that, when the background measure is doubling, membership of the
nontangential maximal function to Lorentz spaces is not contingent on the size of
the aperture parameter. This is made precise in the proposition below (see [111,
§8.4] for a proof).

Proposition 2.1 Assume that � is an open nonempty proper subset of Rn and
consider a doubling Borel measure σ on ∂�. Fix two integrability exponents
p, q ∈ (0,∞]. Then for each Lebesgue measurable function u : � → C and
any two aperture parameters κ1, κ2 ∈ (0,∞) one has, in a quantitative sense,

Nκ1u ∈ Lp,q(∂�, σ) if and only if Nκ2u ∈ Lp,q(∂�, σ), (2.10)

and, for each truncation parameter δ ∈ (0,∞),

Nδ
κ1

u ∈ L
p
loc(∂�, σ) if and only if Nδ

κ2
u ∈ L

p
loc(∂�, σ). (2.11)

Continue to assume that � is an arbitrary open, nonempty, proper subset of Rn

and suppose u is some vector-valued Ln-measurable function defined in �. Also,
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fix an aperture parameter κ > 0 and consider a point x ∈ ∂� such that x ∈ 	κ(x)

(i.e., x is an accumulation point for the nontangential approach region 	κ(x)). In
this context, we shall say that the nontangential limit of u at x from within 	κ(x)

exists, and its value is the vector a ∈ C
M , provided

for every ε > 0 there exists r > 0 with the property
|u(y)− a| < ε for Ln-a.e. point y ∈ 	κ(x) ∩ B(x, r).

(2.12)

Whenever the nontangential limit of u at x from within 	κ(x) exists, we agree to

denote its value by the symbol
(
u
∣∣κ−n.t.

∂�

)
(x). It is then clear from definitions that

whenever the latter exists we have
∣∣∣
(
u
∣∣κ−n.t.

∂�

)
(x)

∣∣∣ ≤ (Nδ
κu
)
(x) ≤ (Nκu

)
(x), for all δ > 0. (2.13)

Moving on, recall that an Ln-measurable set � ⊆ R
n has locally finite

perimeter if its measure theoretic boundary, i.e.,

∂∗� :=
{
x ∈ ∂� : lim sup

r→0+

Ln(B(x, r) ∩�)

rn
> 0, lim sup

r→0+

Ln(B(x, r) \�)

rn
> 0

}
,

(2.14)
satisfies

Hn−1(∂∗� ∩K
)

< +∞ for each compact K ⊆ R
n (2.15)

(cf. [47, Sections 5.7 and 5.11]). Alternatively, an Ln-measurable set � ⊆ R
n has

locally finite perimeter if, with the gradient taken in the sense of distributions in R
n,

μ� := −∇1� (2.16)

is an R
n-valued Borel measure in R

n of locally finite total variation. Occasionally,
μ� is referred to as the Gauss-Green measure of � (see, e.g., [89, Remark 12.2,
p. 122]). Fundamental work of De Giorgi-Federer (cf., e.g., [47], [89] for modern
accounts) then gives the following Polar Decomposition of the Radon measure μ�:

μ� = −∇1� = ν |∇1�|, (2.17)

where |∇1�|, the total variation measure of the measure ∇1�, is given by

|∇1�| = Hn−1�∂∗�, (2.18)

and where

ν ∈ [L∞(∂∗�,Hn−1)
]n is an R

n-valued function

satisfying |ν(x)| = 1 at Hn−1-a.e. point x ∈ ∂∗�.
(2.19)
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We shall refer to ν above as the geometric measure theoretic outward
unit normal to �. Note here that by simply eliminating the distribution theory
jargon implicit in the interpretation of (2.17) (and using a straightforward limiting
argument involving a mollifier) one already arrives at the formula

ˆ

�

div �F dLn =
ˆ

∂∗�
ν · ( �F ∣∣

∂�

)
dHn−1

for each vector field �F ∈ [C 1
0 (Rn)

]n
.

(2.20)

For a set � ⊆ R
n of locally finite perimeter, we let ∂∗� denote the reduced

boundary of �, that is,

∂∗� consists of all points x ∈ ∂� satisfying the following two
properties: 0 < Hn−1(B(x, r) ∩ ∂∗�

)
< +∞ for each radius

r ∈ (0,∞), and lim
r→0+

ffl
B(x,r)∩∂∗� ν dHn−1 = ν(x) ∈ Sn−1.

(2.21)

From [47, Lemma 2, p. 222] we know that

any Ln-measurable set � ⊆ R
n has the property that ∂∗� is

a Borel set in R
n (in particular, ∂∗� is Hn−1-measurable).

(2.22)

In addition, given any set � ⊆ R
n of locally finite perimeter, from the structure

theorem for sets of locally finite perimeter (cf. [47, Theorem 2, p. 205]) it follows
that

∂∗� is countably rectifiable, of dimension n− 1

(hence, the set ∂∗� is also Hn−1-measurable).
(2.23)

Moreover, for any set � ⊆ R
n of locally finite perimeter we have (cf. [47, p. 208])

∂∗� ⊆ ∂∗� ⊆ ∂� and Hn−1(∂∗� \ ∂∗�
) = 0. (2.24)

It is also useful to note that, as remarked in [111, §5.6],

if � ⊆ R
n is a set of locally finite perimeter and m ∈ N, then

�̃ := R
m × � ⊆ R

m+n is a set of locally finite perimeter,
satisfying ∂∗�̃ = R

m × ∂∗�, and whose geometric measure
theoretic outward unit normal ν̃ is ν̃(x, y) = (0, ν(y)) for
(Lm ⊗ Hn−1)-a.e. point (x, y) ∈ ∂∗�̃ = R

m × ∂∗�, where
0 ∈ R

m and ν is the geometric measure theoretic outward unit
normal to the set �.

(2.25)

The following result, comparing the geometric measure theoretic outward unit
normals of two sets of locally finite perimeter (on the intersection of their reduced
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boundaries), is going to be relevant for us later on, in Theorem 2.6 (and, by
extension, in the proof of Theorem 4.2).

Proposition 2.2 Let E, F be two sets of locally finite perimeter in Rn. If νE and νF

denote the geometric measure theoretic outward unit normal vectors to E and F ,
respectively, then atHn−1-a.e. point x ∈ ∂∗E ∩ ∂∗F one has either νE(x) = νF (x)

or νE(x) = −νF (x).

Proof This is a consequence of [89, Proposition 10.5, p. 101] according to which

any two locally Hn−1-rectifiable sets M1, M2 ⊆ R
n have identi-

cal approximate tangent planes at Hn−1-a.e. point in M1 ∩M2,
(2.26)

and [129, Theorem 14.3, (1), pp. 72-73] where it has been shown that

given any set of locally finite perimeter � ⊆ R
n, its approximate

tangent plane exists at each point x ∈ ∂∗� and is equal
to 〈ν(x)〉⊥ (where ν denotes the geometric measure theoretic
outward unit normal vector to �).

(2.27)

Indeed, (2.15) and (2.24) tell us that ∂∗E, ∂∗F are locally Hn−1-rectifiable sets (cf.
[89, p. 96]), so (2.26) (used with M1 := ∂∗E and M2 := ∂∗F ) together with (2.27)
imply that 〈νE(x)〉⊥ = 〈νF (x)〉⊥ at Hn−1-a.e. point x ∈ ∂∗E ∩ ∂∗F , from which
the desired conclusion follows. ��

Given a set � ⊆ R
n of locally finite perimeter, another piece of notation

commonly used (cf., e.g., [47, p. 169]) is

‖∂�‖ := Hn−1�∂∗�. (2.28)

From (2.28), (2.24), and (2.18) (cf. also [89, (15.10), p. 170]) we then see that

‖∂�‖ agrees with the total variation of μ�,

the Gauss-Green measure of �,
(2.29)

and we also claim that1

supp ‖∂�‖ = ∂∗�. (2.30)

Indeed, from (2.28), (2.24), (2.21) we see that ∂∗� ⊆ supp ‖∂�‖ and, as a
consequence, ∂∗� ⊆ supp ‖∂�‖ since the latter set is closed. This proves the right-

1 Given a topological space X along with some (non-negative) Borel measure μ on X, the support
of μ is denoted by supp μ and is defined as the set of all points x ∈ X with the property that
μ(O) > 0 for each open set O ⊆ X containing x.
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to-left inclusion in (2.30). As for the opposite inclusion, if x ∈ R
n \ ∂∗�, then there

exists r > 0 with the property that B(x, r) ∩ ∂∗� = ∅. In concert with (2.28), this
implies ‖∂�‖(B(x, r)

) = 0, hence x /∈ supp ‖∂�‖. The proof of (2.30) is therefore
complete. As a consequence of this, (2.29), and definitions2 we therefore have

supp μ� = supp ‖∂�‖ = ∂∗�. (2.31)

See also [89, p. 168] in this regard.

Definition 2.1 A closed set 
 ⊆ R
n is called an Ahlfors regular set (or an

Ahlfors-David regular set) if there exists a constant C ∈ [1,∞) such that

rn−1/C ≤ Hn−1(B(x, r) ∩

) ≤ Crn−1, ∀ r ∈ (0, 2 diam(
)

)
, ∀ x ∈ 
.

(2.32)
Also, given a closed set 
 ⊆ R

n and some R ∈ (0,∞], say that 
 is Ahlfors
regular up to scale R, with constant C ∈ [1,∞), provided the double
inequality in (2.32) is valid for each r ∈ (0, R).

Finally, the labels lower Ahlfors regular and upper Ahlfors
regular are employed when only the lower, respectively, upper, inequality in
(2.32) is required to hold.

For a given closed set 
 ⊆ R
n, the quality of being Ahlfors regular is not a

regularity condition in a traditional analytic sense, but rather a property guaranteeing
that, at all locations, 
 behaves (in a quantitative, scale-invariant fashion) like an
(n − 1)-dimensional “surface,” with respect to the Hausdorff measure Hn−1. For
example, the classical four-corner Cantor set in the plane is an Ahlfors regular set
(cf., e.g., [108, Proposition 4.79, p. 238]). Let us also observe that

if � ⊆ R
n is an Ln-measurable set whose boundary is upper

Ahlfors regular up to some scale R ∈ (0,∞] with some constant
C ∈ [1,∞) then necessarily � is of locally finite perimeter.

(2.33)

Indeed, this follows from (2.15) (bearing in mind that ∂∗� ⊆ ∂�; cf. (2.14)) and
Definition 2.1.

Lemma 2.1 Let 
 ⊆ R
n be a closed set which is lower Ahlfors regular with some

constant C ∈ [1,∞) up to some scale R ∈ (0,∞]. Then any set E ⊆ 
 satisfying
Hn−1(
 \ E) = 0 is necessarily dense in 
, i.e., E = 
.

Proof Seeking a contradiction, assume E is not dense in 
. Then 
 \E �= ∅. This
means that there exist x ∈ 
 and r > 0 such that B(x, r) ∩ E = ∅. Without loss
of generality we may assume that r ∈ (0, R). We may then use the lower Ahlfors
regularity property of 
 and the fact that B(x, r) ∩
 ⊆ 
 \ E to write

2 Recall that the support of a vector measure μ is defined as the support of its total variation, i.e.,
supp μ := supp |μ|.
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rn−1/C ≤ Hn−1(B(x, r) ∩

) ≤ Hn−1(
 \ E) = 0, (2.34)

a contradiction. ��
In analogy with Definition 2.1 we introduce the notion of Ahlfors regularity for

measures:

Definition 2.2 A (non-negative) Borel measure μ in R
n is said to be Ahlfors

regular up to scale R ∈ (0,∞], with constant C ∈ [1,∞), provided

rn−1/C ≤ μ
(
B(x, r)

) ≤ Crn−1, ∀ r ∈ (0, R), ∀ x ∈ supp μ. (2.35)

Also, say that μ is lower Ahlfors regular, or upper Ahlfors
regular, when only the lower, respectively, upper, inequality in (2.35) is required
to hold.

One may check straight from definitions that if 
 ⊆ R
n is a closed set, then


 is an Ahlfors regular set up to scale R ∈ (0,∞] with constant C ∈ [1,∞) if
and only if μ := Hn−1�
 is an Ahlfors regular measure up to scale R ∈ (0,∞]
with constant C ∈ [1,∞). Moreover, similar considerations apply to lower/upper
Ahlfors regularity.

Next, we recall the notion of Radon measure:

Definition 2.3 Let (X, τ) be a topological space, and let M be a sigma-algebra of
subsets of X containing all Borel sets in X. Call a measure μ : M → [0,+∞]
Radon provided μ is locally finite (i.e., μ(K) < +∞ for every compact K ⊆ X),
every open set is inner-regular, i.e.,

μ(O) = sup
K compact

K⊆O

μ(K) for each open set O ⊆ X, (2.36)

and every Borel set is outer-regular, i.e.,

μ(E) = inf
O open
E⊆O

μ(O) for all Borel sets E ⊆ X. (2.37)

We have the following well-known regularity result (cf., e.g., [51, Theorem 7.8,
p. 217]).

Proposition 2.3 Let (X, τ) be a locally compact Hausdorff topological space in
which every open set is sigma-compact (recall that the latter condition automati-
cally holds if (X, τ) is second countable hence, in particular, if (X, τ) is metrizable
and separable). Then every locally finite Borel measure μ on X is a Radon measure.

Let μ be a locally finite Borel measure in R
n. In particular, Proposition 2.3

guarantees that μ is a Radon measure. If μ is also assumed to be lower Ahlfors
regular up to scale R ∈ (0,∞] with constant C ∈ [1,∞), we may invoke [95,



2.1 Classes of Euclidean Sets of Locally Finite Perimeter 35

Theorem 6.9(2), p. 95] to conclude that

Hn−1(A) ≤ 2n−1Cμ(A) for each μ-measurable set A ⊆ supp μ. (2.38)

In particular,

Hn−1(A) = 0 whenever A ⊆ supp μ

is a μ-measurable set with μ(A) = 0.
(2.39)

Given a set � ⊆ R
n of locally finite perimeter, we are interested when the

measure ‖∂�‖ is Ahlfors regular.

Proposition 2.4 Let � ⊆ R
n be a set of locally finite perimeter, and fix some scale

R ∈ (0,∞] along with a constant C ∈ [1,∞). Then the measure ‖∂�‖ is lower
Ahlfors regular with constant C up to scale R if and only if

Hn−1(∂∗� \ ∂∗�
) = 0 (2.40)

and the set ∂∗� is lower Ahlfors regular with constant C up to scale R.
Furthermore, the measure ‖∂�‖ is actually Ahlfors regular with constantC up to

scale R if and only if (2.40) holds and the set ∂∗� is Ahlfors regular with constant
C up to scale R.

Proof Since � ⊆ R
n is a set of locally finite perimeter, it follows that μ := ‖∂�‖

is a locally finite Borel measure in R
n (cf. (2.15), (2.24), and (2.28)). In addition,

A := ∂∗� \ ∂∗� is a μ-measurable set contained in supp μ with μ(A) = 0 (cf.
(2.22), (2.23), (2.30), (2.28)). Let us also note that, as apparent from (2.28), we have

‖∂�‖(B(x, r)
) = Hn−1(∂∗� ∩ B(x, r)

)

for each x ∈ R
n and each r ∈ (0,∞).

(2.41)

In one direction, assume the measure ‖∂�‖ is lower Ahlfors regular with constant
C up to scale R. Then (2.39) (used with μ and A as above) implies (2.40). Also, from
Definition 2.2, (2.30), (2.41), and (2.40) we see that the set ∂∗� is lower Ahlfors
regular with constant C up to scale R. In the opposite direction, if (2.40) holds and
the set ∂∗� is lower Ahlfors regular with constant C up to scale R, we conclude from
(2.41), Definition 2.2, and (2.30) that the measure ‖∂�‖ is lower Ahlfors regular
with constant C up to scale R. This finishes the proof of the first equivalence claimed
in the statement of the proposition.

As regards the equivalence in the last part of the statement, assume the measure
‖∂�‖ is in fact Ahlfors regular with constant C up to scale R. Then, from what
we have proved already, the set ∂∗� is lower Ahlfors regular with constant C up to
scale R and (2.40) holds. Since now the measure ‖∂�‖ is additionally assumed to be
upper Ahlfors regular with constant C up to scale R, we deduce from Definition 2.2,
(2.30), (2.40), and (2.41) that the set ∂∗� is also upper Ahlfors regular with constant
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C up to scale R. This establishes one implication. Finally, the opposite implication
is seen from Definition 2.2, (2.30), (2.41), and (2.40). ��

For future use, let us record here the following off-diagonal Carleson measure
estimate of reverse Hölder type, proved in [111, §8.6].

Proposition 2.5 Let � be an open subset of Rn with an unbounded Ahlfors regular
boundary and define σ := H n−1�∂�. Fix κ ∈ (0,∞), and pick θ ∈ (0, 1) along
with p ∈ (0,∞), all arbitrary. Then there exists C ∈ (0,∞) with the property that
for everyLn-measurable function u : � → R, every point x ∈ ∂�, and every radius
r ∈ (0,∞) one has

(ˆ

�∩B(x,r)

|u| np
n−1 dLn

) n−1
np ≤ C

( ˆ

∂�∩B(x,Cr)

(NCr
κ u

)p
dσ
) 1

p
, (2.42)

where NCr
κ is the truncated nontangential maximal operator (defined as in (2.9)

with δ := Cr).

Following [61] we now introduce the class of Ahlfors regular domains.

Definition 2.4 An open, nonempty, proper subset � of Rn is called an Ahlfors
regular domain provided ∂� is an Ahlfors regular set and Hn−1(∂�\∂∗�

) = 0.

If � ⊆ R
n is an Ahlfors regular domain, then the upper Ahlfors regularity

condition satisfied by ∂� (i.e., the second inequality in (2.32) with 
 := ∂�)
guarantees that (2.15) holds, hence � is a set of locally finite perimeter. Also, the fact
that the measure theoretic boundary ∂∗� is presently assumed to have full measure
(with respect to Hn−1) in the topological boundary ∂� ensures that the geometric
measure theoretic outward unit normal ν to � (cf. (2.19)) is actually well defined at
Hn−1-a.e. point on ∂�. Ultimately,

if � ⊆ R
n is an Ahlfors regular domain then

ν ∈ [L∞(∂�,Hn−1)
]n is an R

n-valued function

satisfying |ν(x)| = 1 at Hn−1-a.e. point x ∈ ∂�.

(2.43)

From [61, Proposition 2.9, p. 2588] we also know that

if � ⊆ R
n is an Ahlfors regular domain, and if κ ∈ (0,∞) is

an arbitrary aperture parameter, then x ∈ 	κ(x) (that is, x is an
accumulation point for the nontangential approach region 	κ(x))
for Hn−1-a.e. point x in the topological boundary ∂�.

(2.44)

In particular, if � ⊆ R
n is an Ahlfors regular domain and u is an Ln-measurable

function defined in �, then for any fixed aperture parameter κ > 0 it is meaningful

to attempt to define the nontangential boundary trace
(
u
∣∣κ−n.t.

∂�

)
(x) at Hn−1-a.e. point

x ∈ ∂�.
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It turns out that the class of Ahlfors regular domains is bi-Lipschitz invariant.

Lemma 2.2 Assume � ⊆ R
n is an Ahlfors regular domain, and O ⊆ R

n is an
open neighborhood of �. Then for any given bi-Lipschitz mapping F : O → R

n

the set �̃ := F(�) is also an Ahlfors regular domain, with the Ahlfors regularity
constant of ∂�̃ controlled in terms of the Ahlfors regularity constant of ∂� and the
bi-Lipschitz constants of F .

Proof This is a consequence of [59, Proposition 3.1, p. 610] and the proof of [59,
Proposition 3.7, (3.88), p. 621]. ��

We shall also need the following result, appearing in [111, §5.10].

Lemma 2.3 If � ⊂ R
n is an Ahlfors regular domain (in the sense of Definition 2.4)

then �− := R
n \� is also an Ahlfors regular domain, whose topological boundary

coincides with that of �, and whose geometric measure theoretic boundary agrees
with that of �, i.e.,

∂(�−) = ∂� and ∂∗(�−) = ∂∗�. (2.45)

Moreover, the geometric measure theoretic outward unit normal to �− is −ν at
σ -a.e. point on ∂�.

The following definition is due to G. David and S. Semmes (cf. [41]).

Definition 2.5 A closed set 
 ⊆ R
n is said to be a uniformly rectifiable

set (or simply a UR set) if 
 is an Ahlfors regular set and there exist ε, M ∈ (0,∞)

such that for each location x ∈ 
 and each scale R ∈ (0, 2 diam(
)
)

it is possible
to find a Lipschitz map ϕ : Bn−1

R → R
n (where Bn−1

R is a ball of radius R in R
n−1)

with Lipschitz constant ≤ M and such that

Hn−1(
 ∩ B(x, R) ∩ ϕ(Bn−1
R )

) ≥ εRn−1. (2.46)

Collectively, ε, M are referred to as the UR constants of 
.

The following definition appears in [61].

Definition 2.6 An open, nonempty, proper subset � of Rn is called a UR domain
(short for uniformly rectifiable domain) provided ∂� is a UR set (in the sense of
Definition 2.5) and Hn−1(∂� \ ∂∗�

) = 0.

By design, any UR domain is an Ahlfors regular domain. A basic subclass of UR
domains has been identified by G. David and D. Jerison in [39]. To state (a version
of) their result, we first recall the following definition.

Definition 2.7 Fix R ∈ (0,∞] and c ∈ (0, 1). A nonempty proper subset � of Rn

is said to satisfy the (R, c)-corkscrew condition (or, simply, a corkscrew
condition if the particular values of R, c are not important) if for each location
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x ∈ ∂� and each scale r ∈ (0, R) there exists a point z ∈ � (called a corkscrew
point relative to x and r) with the property that B(z, c r) ⊆ B(x, r) ∩�.

Also, a nonempty proper subset � of Rn is said to satisfy the (R, c)-two-sided
corkscrew condition provided both � and R

n\� satisfy the (R, c)-corkscrew
condition (with the same convention regarding the omission of R, c).

It is then clear from definitions that we have

∂∗� = ∂� for any Ln-measurable set � ⊆ R
n satisfying a two-

sided corkscrew condition.
(2.47)

Also, [39, Theorem 1, p. 840] implies that, in a quantitative fashion,

if � is a nonempty proper open subset of Rn satisfying a
two-sided corkscrew condition and whose boundary is an
Ahlfors regular set, then � is a UR domain.

(2.48)

Following [66], we define the class of nontangentially accessible domains as
those open sets satisfying a two-sided corkscrew condition and the following
Harnack chain condition.

Definition 2.8 Fix R ∈ (0,∞] and N ∈ N. An open set � ⊆ R
n is said to

satisfy the (R, N)-Harnack chain condition (or, simply, a Harnack chain
condition if the particular values of R, N are irrelevant) provided whenever
ε > 0, k ∈ N, z ∈ ∂�, and x, y ∈ � with max

{|x − z|, |y − z|} < R/4 as well
as |x − y| ≤ 2kε and min

{
dist(x, ∂�) , dist(y, ∂�)

} ≥ ε, one may find a chain of
balls B1, B2, . . . , BK with K ≤ Nk, such that x ∈ B1, y ∈ BK , Bi ∩ Bi+1 �= ∅ for
every i ∈ {1, . . . , K − 1}, and

N−1 · diam(Bi) ≤ dist(Bi, ∂�) ≤ N · diam(Bi), (2.49)

diam(Bi) ≥ N−1 · min
{
dist(x, Bi) , dist(y, Bi)

}
, (2.50)

for every i ∈ {1, . . . , K}.
Note that, in the context of Definition 2.8, consecutive balls must have compara-

ble radii. The “nontangentiality” condition (2.49) further implies that

λBi ⊆ � for each λ ∈ (0, 2N−1 + 1] and i ∈ {1, . . . , K}. (2.51)

The Harnack chain condition described in Definition 2.8 should be thought of as a
quantitative local connectivity condition. In particular,

any open set � ⊆ R
n satisfying an (∞, N)-Harnack chain

condition (for some N ∈ N) is pathwise connected (hence
also connected) in a quantitative fashion.

(2.52)
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To elaborate on the latter aspect, we find it convenient to eliminate the parameter
ε > 0 and also relabel 2k simply as k in Definition 2.8. Assuming R = ∞, this
implies that for each k ≥ 2 there exists Lk ∈ N (which is bounded by N · log2 k)
with the property that for each

x1, x2 ∈ � with |x1 − x2| ≤ k · min
{
dist(x1, ∂�) , dist(x2, ∂�)

}
(2.53)

one can find a sequence of balls

Bj := B(yj , rj ) with 1 ≤ j ≤ �, where � ∈ N satisfies � ≤ Lk ,
such that B

(
yj , (2N−1 + 1)rj

) ⊆ � for every j ∈ {1, . . . , �},
x1 ∈ B(y1, r1), x2 ∈ B(y�, r�), and such that there exists a point
zj ∈ B(yj , rj ) ∩ B(yj+1, rj+1) for each j ∈ {1, . . . , �− 1}.

(2.54)

The fact that Lk = O(log2 k) as k →∞ quantifies the intuitive idea that the closer
to the boundary the points x1, x2 are, and the further apart from each other they
happen to be, the larger the numbers of balls in the Harnack chain joining them. To
proceed, we agree to abbreviate

δ∂�(x) := dist(x, ∂�) for each x ∈ �. (2.55)

Then the first property in (2.54) implies that we have

δ∂�(x) ≥ 2N−1rj for all j ∈ {1, . . . , �} and all x ∈ B(yj , rj ). (2.56)

In concert with the second inequality in (2.49) this further permits us to estimate

δ∂�(a) ≤ (N + 1) · δ∂�(b) for all j ∈ {1, . . . , �} and a, b ∈ B(yj , rj ). (2.57)

Indeed, whenever a, b ∈ B(yj , rj ) with j ∈ {1, . . . , �} we may use (2.56) to write

δ∂�(a) ≤ |a − b| + δ∂�(b) ≤ 2rj + δ∂�(b)

≤ N · δ∂�(b)+ δ∂�(b) = (N + 1) · δ∂�(b), (2.58)

proving (2.57). In particular, for each index j ∈ {1, . . . , �− 1} we have

(N + 1)−1 · δ∂�(zj ) ≤ δ∂�(zj+1) ≤ (N + 1) · δ∂�(zj ). (2.59)

Joining x1, y1, z1, y2, z2, y3, . . . , y�−1, z�−1, y�, x2 with line segments yields a
polygonal arc γ joining x1 with x2 in �, whose length may be estimated as follows:

length(γ ) ≤
�∑

j=1

2rj ≤ N · δ∂�(x1)+N

�−1∑

j=1

δ∂�(zj )
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≤ N · δ∂�(x1)+N

�−1∑

j=1

(N + 1)j−1 · δ∂�(z1)

≤ N · δ∂�(x1)+N

�−1∑

j=1

(N + 1)j · δ∂�(x1)

= N

�−1∑

j=0

(N + 1)j · δ∂�(x1) = N
(N + 1)� − 1

N
δ∂�(x1)

≤ (N + 1)Lk · δ∂�(x1), (2.60)

thanks to (2.56) (used with x replaced by x1, z1, . . . , z�−1), iterations of (2.59), and
(2.57) (with j := 1, a := z1, b := x1), while also keeping in mind that � ≤ Lk . In a
similar fashion, emphasizing x2 in place of x1 yields length(γ ) ≤ (N+1)Lk ·δ∂�(x2)

hence, ultimately,

length(γ ) ≤ (N + 1)Lk · min
{
δ∂�(x1) , δ∂�(x2)

}
. (2.61)

In addition, for each x ∈ γ there exists jx ∈ {1, . . . , �} such that x ∈ B(yjx , rjx ). If
jx ≥ 2 we write

δ∂�(x) ≥ (N + 1)−1 · δ∂�(zjx−1) ≥ (N + 1)1−jx · δ∂�(z1)

≥ (N + 1)−jx · δ∂�(x1) ≥ (N + 1)−Lk · δ∂�(x1), (2.62)

by (2.57) with b := x and a := zjx−1, iterations of (2.59), and (2.57) applied with
b := z1 and a := x1. If jx = 1 we simply have

δ∂�(x) ≥ (N + 1)−1 · δ∂�(x1) ≥ (N + 1)−Lk · δ∂�(x1). (2.63)

Thus, in all cases we reach the conclusion that δ∂�(x) ≥ (N + 1)−Lk · δ∂�(x1).
Analogously, δ∂�(x) ≥ (N + 1)−Lk · δ∂�(x2) which goes to show that

δ∂�(x) ≥ (N + 1)−Lk · max
{
δ∂�(x1) , δ∂�(x2)

}
for each x ∈ γ. (2.64)

The existence of such a path γ is going to be used in Lemma 2.4 and Lemma 2.5
which, in turn, play a significant role in the proof of Theorem 2.7. For now,
following [66, pp. 93-94] (cf. also [75, Definition 2.1, p. 3]), we introduce the class
of NTA domains.

Definition 2.9 Fix R ∈ (0,∞] and N ∈ N. An open, nonempty, proper subset �

of Rn is said to be an (R, N)-nontangentially accessible domain (or
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simply an NTA domain if the particular values of R, N are not important) if �

satisfies both the (R, N−1)-two-sided corkscrew condition and the (R, N)-Harnack
chain condition.

Call � a (R, N)-two-sided nontangentially accessible domain
(or, simply, a two-sided NTA domain if the particular values of R, N are not
relevant) provided � is an open, nonempty, proper subset of Rn with the property
that both � and R

n \� are (R, N)-nontangentially accessible domains.
A set � ⊆ R

n is said to be an (R, N)-one-sided NTA domain provided �

satisfies the (R, N)-Harnack chain condition and the (R, N−1)-corkscrew condition
(once again, with the convention that the parameters R, N are dropped if theirs
values are not relevant).

Finally, it is agreed that, in all cases, one takes R = ∞ if and only if ∂� is
unbounded.

For example, the complement of the classical four-corner Cantor set in the plane
is a one-sided NTA domain with an Ahlfors regular boundary. Also, from the last
convention in Definition 2.9 and (2.52) we see that

any NTA domain with an unbounded boundary (or, equivalently,
any (∞, N)-nontangentially accessible domain for some num-
ber N ∈ N) is pathwise connected, hence also connected.

(2.65)

It turns out that from any point in a given one-sided NTA domain one may
proceed along a path toward to the interior of said domain, which progressively
distances itself from the boundary. This is made precise in the lemma below.

Lemma 2.4 Let � ⊂ R
n be an (∞, N)-one-sided NTA domain for some N ∈ N.

Then there exists a constant CN ∈ (1,∞) with the following significance. For each
location x ∈ � and each scale r ∈ (0,∞) there exists a point x∗ ∈ � and a
polygonal arc γ joining x with x∗ in � such that

|x − x∗| < 2r, δ∂�(x∗) ≥ r/N2, length(γ ) ≤ CN · r,
and length(γx,y) ≤ CN · δ∂�(y) for each point y ∈ γ,

(2.66)

where γx,y is the sub-arc of γ joining x with y.

Proof Without loss of generality assume N ≥ 2. In the case when δ∂�(x) ≥ r/N ,
we shall simply take x∗ := x and γ := {x}. If δ∂�(x) < r/N , there exists m ∈ N

such that r/Nm+1 ≤ δ∂�(x) < r/Nm. Pick some z ∈ ∂� so that δ∂�(x) = |x − z|
and define rj := Nj · δ∂�(x) ∈ (0,∞) for each j ∈ {1, . . . , m}. The fact that
� satisfies (∞, N−1)-corkscrew condition guarantees that for each j ∈ {1, . . . , m}
there exists a corkscrew point xj ∈ � relative to the location z and scale rj . Hence,
for each j ∈ {1, . . . , m} we have B(xj , rj /N) ⊆ B(z, rj ) ∩� which entails
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Nj · δ∂�(x) = rj > δ∂�(xj ) > rj /N = Nj−1 · δ∂�(x)

and |xj − z| < rj = Nj · δ∂�(x) for each j ∈ {1, . . . , m}.
(2.67)

Denote x0 := x and observe that for each j ∈ {1, . . . , m} we have that the points
xj−1, xj ∈ B(z, rj ). Together with (2.67), for each j ∈ {1, . . . , m} this permits us
to estimate

|xj−1 − xj | < 2rj = 2Nj · δ∂�(x) ≤ 2N2 ·min
{
δ∂�(xj−1) , δ∂�(xj )

}
. (2.68)

Hence, we are in the scenario described in (2.53) with xj−1, xj playing the roles
of x1, x2, and with k := 2N2. From (2.61), (2.64) we then conclude that there
exists C̃N ∈ (1,∞) with the property that for each j ∈ {1, . . . , m} we may find a
polygonal arc γj joining xj−1 with xj in � such that

length(γj ) ≤ C̃N · min
{
δ∂�(xj−1) , δ∂�(xj )

} ≤ C̃N ·Nj · δ∂�(x), (2.69)

and

C̃N · δ∂�(y) ≥ max
{
δ∂�(xj−1) , δ∂�(xj )

} ≥ Nj−1 · δ∂�(x) for each y ∈ γj .

(2.70)
If we now define x∗ := xm and take γ := γ1 ∪ γ2 ∪ · · · ∪ γm then γ is a polygonal
arc joining x = x0 with x∗ = xm in � whose length satisfies

length(γ ) =
m∑

j=1

length(γj ) ≤
m∑

j=1

C̃N ·Nj · δ∂�(x)

≤ N · C̃N

N − 1
Nm · δ∂�(x) ≤

(N · C̃N

N − 1

)
r, (2.71)

thanks to (2.69) and our choice of m. Also, for each point y ∈ γ there exists some
jy ∈ {1, . . . , m} such that y ∈ γjy , hence we may use (2.70) to bound the length of
the sub-arc γx,y of γ joining x with y by

length(γx,y) ≤
jy∑

j=1

length(γj ) ≤
jy∑

j=1

C̃N ·Nj · δ∂�(x)

≤ N2 · C̃N

N − 1
Njy−1 · δ∂�(x) ≤

(N2 · C̃2
N

N − 1

)
δ∂�(y). (2.72)

Our choice of x∗, the first line in (2.67), and our choice of m also permit us to
conclude that
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δ∂�(x∗) = δ∂�(xm) > Nm−1 · δ∂�(x) ≥ r/N2. (2.73)

Finally, since x, x∗ ∈ B(z, rm) it follows that |x−x∗| < 2rm = 2Nm · δ∂�(x) < 2r ,
so all properties claimed in (2.66) are verified. ��

Our next lemma shows that one-sided NTA domains satisfy a quantitative con-
nectivity property of the sort considered by O. Martio and J. Sarvas in [93], where
the class of uniform domains has been introduced. See also [10, Theorem 2.15] in
this regard.

Lemma 2.5 Let � ⊂ R
n be an (∞, N)-one-sided NTA domain for some N ∈ N.

Then there exists a constant CN ∈ (1,∞) with the following significance. For any
two points x, x̃ ∈ � and any scale r ∈ (0,∞) with r ≥ |x − x̃| there exists a
polygonal arc 	 joining x with x̃ in � such that

length(	) ≤ CN · r, and for each point y ∈ 	

min
{
length(	x,y) , length(	y,̃x)

} ≤ CN · δ∂�(y),
(2.74)

where 	x,y and 	y,̃x are the sub-arcs of 	 joining x with y and, respectively, y with
x̃.

Proof Fix two points x, x̃ ∈ � and pick a scale r ∈ (0,∞) with r ≥ |x − x̃|. If
δ∂�(x) > 2r then x̃ ∈ B(x, r) ⊆ B(x, 2r) ⊆ �. In such a scenario, take 	 to be the
line segment with endpoints x, x̃ and all desired properties follow. There remains to
treat the case when

δ∂�(x) ≤ 2r. (2.75)

To proceed, let x∗, x̃∗ be associated with the given points x, x̃ as in Lemma 2.4,
and denote by γ, γ̃ the polygonal arcs joining x with x∗ and x̃ with x̃∗ in �, having
the properties described in (2.66), for the current scale r . Specifically, for this choice
of the scale, (2.66) gives

|x − x∗| < 2r, |̃x − x̃∗| < 2r,

δ∂�(x∗) ≥ r/N2, δ∂�(̃x∗) ≥ r/N2,

length(γ ) ≤ CN · r, length(γ̃ ) ≤ CN · r,
length(γx,y) ≤ CN · δ∂�(y) for each y ∈ γ,

length(γ̃x̃,y) ≤ CN · δ∂�(y) for each y ∈ γ̃ .

(2.76)

Note that

|x∗ − x̃∗| ≤ |x∗ − x| + |x − x̃| + |̃x − x̃∗| < 2r + r + 2r = 5r. (2.77)
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From (2.77) and the second line in (2.76) we then see that

|x∗ − x̃∗| < 5r ≤ 5N2 · min
{
δ∂�(x∗) , δ∂�(̃x∗)

}
. (2.78)

Thus, we are in the scenario described in (2.53) with x1 := x∗, x2 := x̃∗, and
with k := 5N2. From (2.61), (2.64) we then conclude that there exist a constant
CN ∈ (1,∞) along with a polygonal arc γ̂ joining x∗ with x̃∗ in � such that

length(γ̂ ) ≤ CN · min
{
δ∂�(x∗) , δ∂�(̃x∗)

} ≤ 2CN · r, (2.79)

where the last inequality comes from (2.75), and

CN · δ∂�(y) ≥ max
{
δ∂�(x∗) , δ∂�(̃x∗)

} ≥ r/N2 for each y ∈ γ̂ , (2.80)

with the last inequality provided by the second line in (2.76).
If we now define

	 := γ ∪ γ̂ ∪ γ̃ , (2.81)

then 	 is a polygonal arc joining x with x̃ in �. Also, (2.76) and (2.79) allow us to
estimate

length(	) = length(γ )+ length(γ̂ )+ length(γ̃ ) ≤ CN · r, (2.82)

proving the first estimate in (2.74). Fix now a point y ∈ 	. If y belongs to γ , then
	x,y = γx,y which further entails length(	x,y) = length(γx,y) ≤ CN · δ∂�(y) by
(2.76). Thus, the last estimate in (2.74) holds in this case. Similarly, if y ∈ γ̃ , then
length(	y,̃x) = length(γ̃x̃,y) ≤ CN · δ∂�(y) again by (2.76), so the last estimate in
(2.74) holds in this case as well. Finally, in the case when y ∈ γ̂ we may write

min
{
length(	x,y) , length(	y,̃x)

} ≤ length(	) ≤ CN ·r ≤ CN ·δ∂�(y), (2.83)

by (2.82) and (2.80). ��
When its endpoints belong to a suitable neighborhood of infinity, the polygonal

arc constructed in Lemma 2.5 may be chosen as to avoid any given bounded set.
This property, established in the next lemma, is going to be relevant later on, in the
course of the proof of Theorem 2.7.

Lemma 2.6 Let � ⊂ R
n be an (∞, N)-one-sided NTA domain for some N ∈ N

such that Rn \ � �= ∅. Fix some point z0 ∈ R
n \ � and some radius R ∈ (0,∞).

Then there exist a large constant C = C(N) ∈ (0,∞) together with a small number
ε = ε(N) ∈ (0, 1) with the property that for any two points x, x̃ ∈ � \ B(z0, R)

and any scale r ∈ (0,∞) with r ≥ max
{|x− x̃|, C ·R} the polygonal arc 	 joining

x with x̃ in � as in Lemma 2.5 is disjoint from B(z0, εR).
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Proof Consider ε ∈ (0, 1) and C ∈ (0,∞) to be specified momentarily. Recall
formula (2.81). Assume there exists a point y ∈ γ ∩ B(z0, εR). Then y ∈ γ ⊆ �

so the line segment with endpoints y and z0 intersects ∂�. As such, δ∂�(y) ≤ εR.
Also, γx,y joins the point x ∈ R

n \ B(z0, R) with the point y ∈ B(z0, εR), which
forces length(γx,y) ≥ (1 − ε)R. In concert with the last line in (2.66) this permits
us to write

(1 − ε)R ≤ length(γx,y) ≤ CN · δ∂�(y) ≤ CN · εR, (2.84)

which leads to a contradiction if we choose ε := 1/[2(CN + 1)]. Thus, for this
choice of ε we have γ ∩ B(z0, εR) = ∅. In a similar fashion, γ̃ ∩ B(z0, εR) = ∅.
Finally, if there exists a point y ∈ γ̂ ∩B(z0, εR) then based on (2.80) and the nature
of the scale r we may estimate

εR ≥ δ∂�(y) ≥ r/(N2 · CN) ≥ (C · R)/(N2 · CN) (2.85)

which leads to a contradiction if C = C(N) ∈ (0,∞) is sufficiently large. ��
The following definition of yet another brand of local path connectivity condition

first appeared in [61].

Definition 2.10 An open, nonempty, proper subset � of R
n is said to satisfy a

local John condition if there exist θ ∈ (0, 1) and R ∈ (0,∞] (with the
requirement that R = ∞ if ∂� is unbounded) such that for every point x ∈ ∂� and
every scale r ∈ (0, R) one may find xr ∈ B(x, r) ∩ � such that B(xr , θr) ⊆ �

and with the property that for each y ∈ B(x, r) ∩ ∂� there exists a rectifiable path
γy : [0, 1] → � whose length is ≤ θ−1r and such that

γy(0) = y, γy(1) = xr , dist
(
γy(t), ∂�

)
> θ |γy(t)− y| for all t ∈ (0, 1].

(2.86)
Finally, a nonempty open set � ⊆ R

n which is not dense in R
n is said to satisfy a

two-sided local John condition if both � and R
n \� satisfy a local John

condition.

It is clear from the definitions that, in a quantitative sense,

any set satisfying a local John condition (respectively, a two-
sided local John condition) also satisfies a corkscrew condition
(respectively, a two-sided corkscrew condition).

(2.87)

Moreover, given any R ∈ (0,∞] and N ∈ N, from [61, Lemma 3.13, p. 2634] we
know that

any (R, N)-nontangentially accessible domain satisfies a local
John condition, and any (R, N)-two-sided nontangentially
accessible domain satisfies a two-sided local John condition.

(2.88)
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To be able to define the class of δ-flat Ahlfors regular domains we first need
to formally introduce the John-Nirenberg space of functions of bounded mean
oscillations on Ahlfors regular sets. Specifically, given a closed set 
 ⊆ R

n, for
each x ∈ 
 and r > 0define the surface ball � := �(x, r) := B(x, r)∩
. For any
constant λ > 0 we also agree to define λ� := �(x, λr) := B(x, λr) ∩ 
. Make
the assumption that 
 is Ahlfors regular and abbreviate σ := Hn−1�
. For each
f ∈ L1

loc(
, σ ) introduce

f� :=
 

�

f dσ for each surface ball � ⊆ 
, (2.89)

then consider the semi-norm

‖f ‖BMO(
,σ) := sup
�⊆


 

�

∣∣f − f�

∣∣ dσ, (2.90)

where the supremum in the right side of (2.90) is taken over all surface balls � ⊆ 
.
We shall then denote by BMO(
, σ ) the space of all functions f ∈ L1

loc(
, σ ) with
the property that ‖f ‖BMO(
,σ) < ∞.

The above considerations may be naturally adapted to the case of vector-valued
functions. Specifically, given N ∈ N, for each f : 
 → C

N with locally integrable
scalar components, we define

‖f ‖[BMO(
,σ)]N := sup
�⊆


 

�

∣∣f − f�

∣∣ dσ, (2.91)

where the supremum in the right side of (2.91) is taken over all surface balls � ⊆ 
,
the integral average f� ∈ C

N is taken componentwise, and | · | is the standard
Euclidean norm in C

N . In an analogous fashion, we then define
[
BMO(
, σ )

]N

as the space of all CN -valued functions f ∈ [
L1

loc(
, σ )
]N with the property that

‖f ‖[BMO(
,σ)]N < ∞.
A natural version of the classical John-Nirenberg inequality concerning expo-

nential integrability of functions of bounded mean oscillations remains valid in this
setting. Specifically, [88, Theorem 1.4, p. 2000] (see also [5], [30], [135, Theorem 2,
p. 33]) implies that there exists a small constant c ∈ (0,∞) and a large constant
C ∈ (0,∞), both of which depend only on the doubling character of σ , with the
property that

 

�

exp

{
c |f − f�|
‖f ‖BMO(
,σ)

}
dσ ≤ C (2.92)

for each non-constant function f ∈ BMO(
, σ ) and each surface ball � ⊆ 
. Note
that, trivially, for each surface ball � ⊆ 
 and each λ ∈ (0,∞) we have
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1 ≤ exp
{
− cλ

‖f ‖BMO(
,σ )

}
· exp

{
c |f (x)−f�|‖f ‖BMO(
,σ )

}

for every x ∈ � with |f (x)− f�| > λ.
(2.93)

This shows that (2.92) implies the following level set estimate with exponential
decay:

σ
({

x ∈ � : |f (x)− f�| > λ
})

≤ exp
{
− cλ

‖f ‖BMO(
,σ )

}ˆ

�

exp

{
c |f − f�|
‖f ‖BMO(
,σ)

}
dσ

≤ C · exp
{
− cλ

‖f ‖BMO(
,σ )

}
σ(�) (2.94)

for each non-constant function f ∈ BMO(
, σ ), each surface ball � ⊆ 
, and
each λ ∈ (0,∞). Conversely, (2.94) implies an estimate like (2.92), namely

 

�

exp

{
co |f − f�|
‖f ‖BMO(
,σ)

}
dσ ≤ 1 + C

c/co − 1
, (2.95)

for each non-constant function f ∈ BMO(
, σ ) and each surface ball � ⊆ 
, as
long as co ∈ (0, c). See also [18, Theorem 3.15], [44, Theorem 3.1, p. 1397], [77,
Lemma 2.4, p. 409], [94], and [135, Theorem 2, p. 33] in this regard. Here we wish
to emphasize that only the doubling property of the underlying measure plays a role.
In turn, the John-Nirenberg level set estimate (2.94) has many notable consequences.
For one thing, (2.92) implies that ef ∈ L1

loc(
, σ ) if f is a σ -measurable function
on 
 with ‖f ‖BMO(
,σ) small enough (with ln | · | a representative example of this
local exponential integrability phenomenon). Second, (2.94) guarantees that

BMO(
, σ ) ⊆ L
p

loc(
, σ ) for each p ∈ (0,∞). (2.96)

Third, (2.94) allows for more flexibility in describing the size of the BMO semi-
norm. Specifically, for each p ∈ [1,∞) and f ∈ L1

loc(
, σ ) define

‖f ‖BMOp(
,σ) := sup
�⊆


(  

�

|f − f�|p dσ
)1/p

, (2.97)

where the supremum in (2.97) is taken over all surface balls � ⊆ 
. Then for each
integrability exponent p ∈ [1,∞) there exists some constant C
,p ∈ (0,∞) with
the property that for each function f ∈ L1

loc(
, σ ) we have

‖f ‖BMO(
,σ) ≤ ‖f ‖BMOp(
,σ) ≤ C
,p‖f ‖BMO(
,σ). (2.98)
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Indeed, the first estimate in (2.98) is a direct consequence of definitions and
Hölder’s inequality, while the second estimate in (2.98) relies on the John-Nirenberg
inequality (2.94). Parenthetically, we wish to note that when 
 := R (hence
σ = L1) and p := 2 the value of the optimal constant in (2.98) is known.
Concretely, for each f ∈ L1

loc(R,L1) we have

‖f ‖BMO(R,L1) ≤ ‖f ‖BMO2(R,L1) ≤ 1
2 e1+(2/e)‖f ‖BMO(R,L1). (2.99)

The justification of the second estimate in (2.99) uses a sharp version of the one-
dimensional version of the John-Nirenberg inequality (cf. [86]) according to which
for each function f ∈ BMO(R,L1), each nonempty finite sub-interval I ⊂ R, and
each λ ∈ (0,∞) we have (with fI :=

ffl
I
f dL1)

L1
({

t ∈ I : |f (t)− fI | > λ
}) ≤ 1

2
e4/eL1(I ) · exp

{
− 2λ/e

‖f ‖BMO(R,L1)

}
.

(2.100)

Specifically, for each nonempty finite sub-interval I ⊂ R we may write

 

I

|f (t)− fI |2 dt = 1

L1(I )

ˆ ∞

0
2λ ·L1

({
t ∈ I : |f (t)− fI | > λ

})
dλ

≤ e4/e
ˆ ∞

0
λ · exp

{
− 2λ/e

‖f ‖BMO(R,L1)

}
dλ

= e4/e(e/2)2 ‖f ‖2
BMO(R,L1)

ˆ ∞

0
λ · e−λ dλ

= e4/e(e/2)2 ‖f ‖2
BMO(R,L1)

, (2.101)

thanks to (2.100) and some natural changes of variables, so the second estimate in
(2.99) readily follows from (2.101) and (2.97).

Returning to the mainstream discussion, observe that (2.98) implies that for each
integrability exponent p ∈ [1,∞) we have

‖f ‖BMO(
,σ) ≈ sup
�⊆


( 

�

∣∣f − f�

∣∣p dσ

) 1
p ≈ sup

�⊆


inf
c∈R

( 

�

∣∣f − c
∣∣p dσ

) 1
p

,

(2.102)

uniformly for f ∈ L1
loc(
, σ ). For further use, let us also note here that if � and

�′ are two concentric surface balls in 
 then for any f ∈ L1
loc(
, σ ) and any

q ∈ [1,∞) we have
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(  

�

|f − f�′ |q dσ
) 1

q ≤ Cq,n

[
1 +

(σ(� ∪�′)
σ (� ∩�′)

) 1
q
]
‖f ‖BMO(
,σ) . (2.103)

In particular, (2.103) readily implies that there exists some constant C ∈ (0,∞)

which depends only on n and the Ahlfors regular constant of 
 with the property
that for each function f ∈ L1

loc(
, σ ) and each surface ball � ⊆ 
 we have

∣∣f2� − f�

∣∣ ≤ C ‖f ‖BMO(
,σ) . (2.104)

In turn, (2.104) may be used to estimate

∣∣f2j � − f�

∣∣ ≤
j∑

k=1

∣∣f2k� − f2k−1�

∣∣ ≤ Cj ‖f ‖BMO(
,σ) , (2.105)

for each function f ∈ L1
loc(
, σ ), each surface ball � ⊆ 
, and each integer

j ∈ N. For future use, let us also note here that there exists some C ∈ (0,∞)

which depends only on n and the Ahlfors regular constant of 
 with the property
that for each function f ∈ L1

loc(
, σ ), each pair of points x, y ∈ 
, and each radius
R > |x − y| we have

∣∣f�(x,R) − f�(y,R)

∣∣ ≤ C ‖f ‖BMO(
,σ) . (2.106)

More generally, suppose 
 ⊆ R
n is a closed set and assume μ is a doubling

Borel measure on 
. This means that there exists C ∈ (0,∞) with the property that
for each surface ball � ⊆ 
 we have

0 < μ(2�) ≤ Cμ(�) < +∞. (2.107)

In this setting, we shall denote by BMO(
, μ) the space consisting of all functions
f ∈ L1

loc(
, μ) with the property that

‖f ‖BMO(
,μ) := sup
�⊆


 

�

∣∣∣f −
 

�

f dμ

∣∣∣ dμ < +∞, (2.108)

where the supremum is once again taken over all surface balls � ⊆ 
. Much as
before, since the John-Nirenberg inequality holds for generic Borel doubling mea-
sures (as noted in the discussion pertaining to (2.92)–(2.94)), for each integrability
exponent p ∈ [1,∞) we then have

‖f ‖BMO(
,μ) ≈ ‖f ‖BMOp(
,μ)

≈ sup
�⊆


( 

�

 

�

|f (x)− f (y)|p dμ(x)dμ(y)

) 1
p
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≈ sup
�⊆


inf
c∈R

( 

�

∣∣f − c
∣∣p dμ

) 1
p

, (2.109)

uniformly for f ∈ L1
loc(
, μ), where

‖f ‖BMOp(
,μ) := sup
�⊆


( 

�

∣∣∣f −
 

�

f dμ

∣∣∣
p

dμ
)1/p

, (2.110)

with the supremum above taken over all surface balls � ⊆ 
. As before, for
any given integer N ∈ N, we shall denote by

[
BMO(
, μ)

]N the space of C
N -

valued functions f ∈ [
L1

loc(
, μ)
]N with the property that ‖f ‖[BMO(
,μ)]N < ∞,

where the semi-norm ‖·‖[BMO(
,μ)]N is defined much as in (2.91). Finally, given a

function f ∈ [L1
loc(
, μ)

]N we agree to define ‖f ‖[BMOp(
,μ)]N as in (2.110), now

interpreting | · | as the standard Euclidean norm in C
N .

Let us also briefly discuss the space VMO which, heuristically, should be thought
of as an integral version3 of uniform continuity. Specifically, let 
 be a closed
Ahlfors regular subset of Rn and abbreviate σ := H n−1�
. In this setting, define the
Sarason space VMO(
, σ ) of functions of vanishing mean oscillations (cf. [121])
as

VMO(
, σ ) := the closure of UC(
) ∩ BMO(
, σ ) in BMO(
, σ ), (2.111)

where UC(
) stands for the space of uniformly continuous functions on 
. Then
for each given function f ∈ BMO(
, σ ) one has the equivalence

f ∈ VMO(
, σ ) ⇐⇒ lim
R→0+

sup
x∈
 and
r∈(0,R)

( 

�(x,r)

∣∣∣f −
 

�(x,r)

f dσ

∣∣∣
p

dσ

) 1
p

= 0

(2.112)
for some (or all) p ∈ [1,∞). See [112, §3.1] for a proof.

Moving on, in the lemma below we collect a number of useful formulas and
estimates for unimodular functions (i.e., vector-valued functions of modulus one).

Lemma 2.7 Let (X, μ) be a measure space with the property that 0 < μ(X) < ∞.
Also, fix an integer N ∈ N and suppose f ∈ [L1(X, μ)

]N
. Then

 

X

∣∣∣f −
 

X

f dμ
∣∣∣
2
dμ =

 

X

|f |2 dμ−
∣∣∣
 

X

f dμ
∣∣∣
2
. (2.113)

In particular,

3 As opposed to a pointwise version.
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if |f (x)| = 1 for μ-a.e. x ∈ X then
 

X

∣∣∣f −
 

X

f dμ
∣∣∣
2
dμ = 1 −

∣∣∣
 

X

f dμ
∣∣∣
2

and

(
1 −

∣∣∣
 

X

f dμ
∣∣∣
)2 ≤

 

X

∣∣∣f −
 

X

f dμ
∣∣∣
2
dμ ≤ 2

(
1 −

∣∣∣
 

X

f dμ
∣∣∣
)
,

0 ≤ 1 −
∣∣∣
 

X

f dμ
∣∣∣ ≤

 

X

∣∣∣f −
 

X

f dμ
∣∣∣ dμ ≤ √

2

√

1 −
∣∣∣
 

X

f dμ
∣∣∣.

(2.114)

Proof Keeping in mind that |Z − W |2 = |Z|2 − 2Re(Z · W) + |W |2 for each
Z, W ∈ C

N , we may compute

 

X

∣∣∣f −
 

X

f dμ

∣∣∣
2

dμ =
 

X

(
|f |2 − 2Re

[
f ·

(  

X

f dμ
)]
+
∣∣∣
 

X

f dμ

∣∣∣
2)

dμ

=
 

X

|f |2 dμ− 2Re
 

X

f ·
(  

X

f dμ
)

dμ+
∣∣∣
 

X

f dμ

∣∣∣
2

=
 

X

|f |2 dμ−
∣∣∣
 

X

f dμ

∣∣∣
2
, (2.115)

proving (2.113). Then (2.114) follows from this by observing that

1 −
∣∣∣
 

X

f dμ

∣∣∣
2 =

(
1 +

∣∣∣
 

X

f dμ

∣∣∣
)(

1 −
∣∣∣
 

X

f dμ

∣∣∣
)
≤ 2

(
1 −

∣∣∣
 

X

f dμ

∣∣∣
)

(2.116)

and

0 ≤ 1 −
∣∣∣
 

X

f dμ

∣∣∣ =
 

X

|f | dμ−
∣∣∣
 

X

f dμ

∣∣∣

≤
 

X

∣∣∣f −
 

X

f dμ

∣∣∣ dμ ≤
(  

X

∣∣∣f −
 

X

f dμ

∣∣∣
2

dμ
)1/2

, (2.117)

by the fact that |f | = 1, the reverse triangle inequality, and the Cauchy–Schwarz
inequality. ��

Given an Ahlfors regular domain � ⊆ R
n, Lemma 2.7 applies to the geometric

measure theoretic outward unit normal ν to �, in the setting in which X := �, an
arbitrary surface ball on ∂�, and the measure is μ := Hn−1��. As indicated below,
this yields a better bound for the BMO semi-norm of ν than directly estimating
‖ν‖[BMO(∂�,σ)]n ≤ 2 ‖ν‖[L∞(∂�,σ)]n = 2.
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Lemma 2.8 Let � ⊆ R
n be an Ahlfors regular domain. Set σ := Hn−1�∂� and

denote by ν the geometric measure theoretic outward unit normal to �. Then

‖ν‖[BMO(∂�,σ)]n ≤ ‖ν‖[BMO2(∂�,σ)]n ≤ 1, (2.118)

and

1 − inf
�⊆∂�

∣∣∣
 

�

ν dσ
∣∣∣ ≤ ‖ν‖[BMO(∂�,σ)]n ≤

√
2

√

1 − inf
�⊆∂�

∣∣∣
 

�

ν dσ
∣∣∣, (2.119)

where the two infima are taken over all surface balls � ⊆ ∂�. In particular,

1 ≥
∣∣∣
 

�

ν dσ
∣∣∣ ≥ 1 − ‖ν‖[BMO(∂�,σ)]n for each surface ball � ⊆ ∂�. (2.120)

Also,

if ∂� is bounded then ‖ν‖[BMO(∂�,σ)]n = ‖ν‖[BMO2(∂�,σ)]n = 1. (2.121)

As a consequence,

∂� is unbounded whenever ‖ν‖[BMO(∂�,σ)]n < 1. (2.122)

In relation to (2.121) we wish to note that, in the class of Ahlfors regular domains,
having the BMO semi-norm of its geometric measure theoretic outward unit normal
precisely 1 is not an exclusive attribute of bounded domains. For example, a
straightforward computation shows that an infinite strip in R

n (i.e., the region in
between two parallel hyperplanes in R

n) is an unbounded Ahlfors regular domain
with the property that the BMO semi-norm of its outward unit normal is equal to 1.

Proof of Lemma 2.8 Hölder’s inequality and Lemma 2.7 imply that for each
surface ball � ⊆ ∂� we have

(  

�

∣∣ν − ν�

∣∣ dσ
)2 ≤

 

�

∣∣ν − ν�

∣∣2 dσ = 1 −
∣∣∣
 

�

ν dσ

∣∣∣
2 ≤ 1, (2.123)

from which (2.118) follows on account of (2.91), (2.97), and (2.98). Next, (2.119)
follows from (2.114), used with X := �, arbitrary surface ball on ∂�, and with
μ := Hn−1��.

To justify the claim made in (2.121), assume first that the set � is bounded. In
such a case, fix some point x0 ∈ ∂� along with some real number r0 > diam(∂�)

and note that the latter choice entails �0 := B(x0, r0) ∩ ∂� = ∂�. Also, since
Hn−1(∂� \ ∂∗�

) = 0 (cf. Definition 2.4) the Divergence Formula (2.20) gives
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ν�0 =
( 1

σ(∂�)

ˆ

∂�

ν · ej dσ
)

1≤j≤n
=
( 1

σ(∂�)

ˆ

�

divej dLn
)

1≤j≤n
= 0.

(2.124)
In concert with (2.19) this implies (bearing in mind that Hn−1(∂� \ ∂∗�

) = 0)

‖ν‖[BMO(∂�,σ)]n = sup
�⊆∂�

 

�

∣∣ν − ν�

∣∣ dσ ≥
 

∂�

∣∣ν − ν�0

∣∣ dσ = 1. (2.125)

In light of (2.118), we then conclude that ‖ν‖[BMO(∂�,σ)]n = ‖ν‖[BMO2(∂�,σ)]n = 1
in this case. When � is an unbounded Ahlfors regular domain with compact
boundary in R

n, having n ≥ 2 implies that Rn \ � is a bounded Ahlfors regular
domain whose topological boundary coincides with that of �, whose geometric
measure theoretic boundary agrees with that of �, and whose geometric measure
theoretic outward unit normal is −ν at σ -a.e. point on ∂� (cf. [111, §5.10] for
a proof). Granted these properties, we may run the same argument as in (2.124)–
(2.125) with R

n \ � in place of � and conclude that ‖ν‖[BMO(∂�,σ)]n = 1 in this
case as well. This finishes the proof of (2.121). ��

To close this section, recall for further use that CMO(Rn,Ln) is the closure of
C∞

0 (Rn) in BMO(Rn,Ln). As may be seen with the help of [22, Théorème 7,
p. 198], the space CMO(Rn,Ln) may be alternatively described as the linear
subspace of BMO(Rn,Ln) consisting of functions f satisfying the following three
conditions:

lim
r→0+

[
sup
x∈Rn

(  

B(x,r)

∣∣∣f −
 

B(x,r)

f dLn
∣∣∣ dLn

)]
= 0, (2.126)

lim
r→∞

[
sup
x∈Rn

(  

B(x,r)

∣∣∣f −
 

B(x,r)

f dLn
∣∣∣ dLn

)]
= 0, (2.127)

and

lim|x|→∞

[

sup
r∈[R0,R1]

( 

B(x,r)

∣∣∣f −
 

B(x,r)

f dLn
∣∣∣ dLn

)]

= 0

for each R0, R1 ∈ (0,∞) with R0 < R1.

(2.128)

This is going to be relevant later on, in Proposition 2.11.

2.2 Reifenberg Flat Domains

In this section we explore the notion of flatness (in the Reifenberg sense). To
facilitate the subsequent discussion, the reader is reminded that the Hausdorff
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distance between two arbitrary nonempty sets A, B ⊂ R
n is defined as

Dist[A, B] := max
{

sup{dist(a, B) : a ∈ A} , sup{dist(b, A) : b ∈ B}
}
.

(2.129)
We start by recalling the following definitions from [72].

Definition 2.11 Fix R ∈ (0,∞] along with δ ∈ (0,∞) and let 
 ⊂ R
n be a closed

set. Then 
 is said to be a (R, δ)-Reifenberg flat set if for each x ∈ 


and each r ∈ (0, R) there exists an (n− 1)-dimensional plane π(x, r) in R
n which

contains x and satisfies

Dist
[

 ∩ B(x, r) , π(x, r) ∩ B(x, r)

] ≤ δ r. (2.130)

For example, given δ > 0, the graph of a real-valued Lipschitz function defined in
R

n−1 with a sufficiently small Lipschitz constant is a (∞, δ)-Reifenberg flat set.

Definition 2.12 Fix R ∈ (0,∞] along with δ ∈ (0,∞). A nonempty, proper subset
� of Rn is said to satisfy the (R, δ)-separation property if for each x ∈ ∂�

and r ∈ (0, R) there exists an (n − 1)-dimensional plane π̃(x, r) in R
n passing

through x and a choice of unit normal vector �nx,r to π̃(x, r) such that

{
y + t �nx,r ∈ B(x, r) : y ∈ π̃(x, r), t > 2δr

} ⊂ � and

{
y + t �nx,r ∈ B(x, r) : y ∈ π̃(x, r), t < −2δr

} ⊂ R
n \�.

(2.131)

Definition 2.13 Fix R ∈ (0,∞] along with δ ∈ (0,∞). A nonempty, proper
subset � of R

n is called an (R, δ)-Reifenberg flat domain (or simply a
Reifenberg flat domain if the particular values of R, δ are not important)
provided � satisfies the (R, δ)-separation property and ∂� is an (R, δ)-Reifenberg
flat set.

Recall the two-sided corkscrew condition from Definition 2.7.

Proposition 2.6 Let � be a nonempty proper subset of Rn with the property that it
satisfies the (R, c)-two-sided corkscrew condition for some R ∈ (0,∞] and some
c ∈ (0, 1). In addition, suppose ∂� is an (R, δ)-Reifenberg flat set for some number

δ ∈ (0,
√

3
4 c

)
. Then � is an (R, δ)-Reifenberg flat domain.

Proof Pick a location x ∈ ∂� along with a scale r ∈ (0, R). Definition 2.11 ensures
the existence of an (n − 1)-dimensional plane π(x, r) in R

n passing through x

which satisfies (2.130). Make a choice of a unit normal vector �nx,r to π(x, r) and
abbreviate

C+(x, r) := {
y + t �nx,r ∈ B(x, r) : y ∈ π(x, r), t > 2δr

}
,

C−(x, r) := {
y + t �nx,r ∈ B(x, r) : y ∈ π(x, r), t < −2δr

}
.

(2.132)
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We claim that matters may be arranged (by taking δ ∈ (
0,

√
3

4 c
)

and by making a
judicious choice of the orientation of �nx,r ) so that

C+(x, r) ⊂ � and C−(x, r) ⊂ R
n \�. (2.133)

To prove this claim, first observe that (2.130) guarantees that the connected sets
C±(x, r) do not intersect ∂�. As such, �+ := � and �− := R

n \� form a disjoint,
open cover of C±(x, r), hence

C+(x, r) is entirely contained in either �+ or �−, and
C−(x, r) is entirely contained in either �+ or �−.

(2.134)

To proceed, denote by x±r ∈ �± the two corkscrew points corresponding to the
location x and scale r . In particular,

|x±r − x| < r and B
(
x±r , cr

) ⊆ �±, (2.135)

where the constant c ∈ (0, 1) is as in Definition 2.7. Hence, if we consider the balls
B
(
x+r , c r

)
, B

(
x−r , c r

)
, their centers x±r belong to B(x, r). The fact that we are

presently assuming 0 < δ <
√

3
4 c with c ∈ (0, 1) ensures that δ < (c/2)

√
1 − c2/4

which, as some elementary geometry shows, forces each of the balls B
(
x+r , c r

)
,

B
(
x−r , c r

)
to intersect one of the sets C+(x, r), C−(x, r). As such, one of the

following four alternatives is true:

B
(
x+r , c r

) ∩ C+(x, r) �= ∅ and B
(
x−r , c r

) ∩ C+(x, r) �= ∅, (2.136)

B
(
x+r , c r

) ∩ C−(x, r) �= ∅ and B
(
x−r , c r

) ∩ C−(x, r) �= ∅, (2.137)

B
(
x+r , c r

) ∩ C+(x, r) �= ∅ and B
(
x−r , c r

) ∩ C−(x, r) �= ∅, (2.138)

B
(
x+r , c r

) ∩ C−(x, r) �= ∅ and B
(
x−r , c r

) ∩ C+(x, r) �= ∅. (2.139)

Observe that the alternative described in (2.136) cannot hold. Otherwise, the
existence of points z1 ∈ B

(
x+r , c r

) ∩ C+(x, r) and z2 ∈ B
(
x−r , c r

) ∩ C+(x, r)

would imply that, on the one hand, the line segment [z1, z2] lies in the convex
set C+(x, r), hence also either in �+ or in �− by (2.134). This being said, the
fact that z1 ∈ B

(
x+r , c r

) ⊆ �+ and z2 ∈ B
(
x−r , c r

) ⊆ �− prevents either
one of these eventualities form materializing. This contradiction therefore excludes
(2.136). Reasoning in a similar fashion we may rule out (2.137). When (2.138)
holds, from (2.134) and the fact that B

(
x±r , c r

) ⊆ �± (cf. (2.135)) we conclude
that the inclusions in (2.133) hold as stated. Finally, when (2.139) holds, from
(2.426) and (2.135) we deduce that C+(x, r) ⊆ �− and C−(x, r) ⊆ �+. In
such a scenario, we may ensure that the inclusions in (2.133) are valid simply by
re-denoting �nx,r as −�nx,r which amounts to reversing the roles of C+(x, r) and
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C−(x, r). This concludes the proof of (2.133). In turn, from (2.133) and (2.132) we
conclude that (2.131) holds with π̃(x, r) := π(x, r). Definition 2.12 then implies
that � is, indeed, an (R, δ)-Reifenberg flat domain. ��

It turns out that sufficiently flat Reifenberg domains are NTA domains. More
specifically, from [72, Theorem 3.1, p. 524] and its proof we see that:

there exists a purely dimensional constant δn ∈ (0,∞) with
the property that for each δ ∈ (0, δn) and R ∈ (0,∞] one
may find some number N = N(δ, R) ∈ N such that any
(R, δ)-Reifenberg flat domain � ⊆ R

n also happens to be
an (R, N)-nontangentially accessible domain (in the sense of
Definition 2.9).

(2.140)

The result recorded in (2.140) has a number of useful consequences. For
example, it allows us to conclude that any open set satisfying a two-sided corkscrew
condition and whose topological boundary is a sufficiently flat Reifenberg set is
actually an NTA domain.

Proposition 2.7 Let� be a nonempty proper subset ofRn satisfying the (R, c)-two-
sided corkscrew condition for some R ∈ (0,∞] and c ∈ (0, 1). In addition, suppose
∂� is a (R, δ)-Reifenberg flat set with 0 < δ < min{c/2, δn}, where δn ∈ (0,∞) is
the purely dimensional constant from (2.140). Then there exists N = N(δ, R) ∈ N

with the property that � is an (R, N)-nontangentially accessible domain.

Proof The desired conclusion is a direct consequence of Proposition 2.6, (2.140),
and Definition 2.9. ��

Moving on, recall the Gauss-Green measure associated with sets of locally finite
perimeter as in (2.16). As in [20], given C ∈ [1,∞) and R ∈ (0,∞] define

A (C, R) :=
{
� ⊆ R

n :� has locally finite perimeter, supp μ� = ∂�,

and ‖∂�‖ is an Ahlfors regular measure

with constant C up to scale R
}
. (2.141)

Proposition 2.8 Fix C ∈ [1,∞) along with R ∈ (0,∞], and consider an arbitrary
set� ⊆ R

n. Then� ∈ A (C, R) if and only if� isLn-measurable, ∂� is an Ahlfors
regular set with constant C ∈ [1,∞) up to scale R ∈ (0,∞], and

Hn−1(∂� \ ∂∗�
) = 0. (2.142)

Proof The left-to-right implication is deduced from (2.141), (2.31), and Proposi-
tion 2.4, while the right-to-left implication follows from (2.141), (2.33), (2.24),
(2.31), Proposition 2.4, and Lemma 2.1. ��
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In particular, the above result ensures that Ahlfors regular domains (and the
complements of their closures) belong to the class (2.141). A formal statement to
this effect is recorded below.

Proposition 2.9 Suppose � ⊆ R
n is an Ahlfors regular domain (in the sense of

Definition 2.4), and denote by C ∈ [1,∞) the Ahlfors regularity constant of ∂�.
Also, define

�+ := � and �− := R
n \�. (2.143)

Then

�± ∈
⋂

0<R≤2 diam(∂�)

A (C, R). (2.144)

Proof This is a consequence of Definition 2.4, Proposition 2.8, and Lemma 2.3.
��

To be able to continue, we shall need more notation. The cylinder C(x0, r, ω)

with center at x0 ∈ R
n, radius r ∈ (0,∞), and axial direction ω ∈ Sn−1 is defined

as

C(x0, r, ω) :=
{
x ∈ R

n : |〈x − x0, ω〉| < r and
∣∣x − x0 − 〈x − x0, ω〉ω∣∣ < r

}
.

(2.145)
As in [89, p. 290], given a set of locally finite perimeter � ⊆ R

n, the
cylindrical excess of � at the point x0 ∈ ∂�, for the scale r ∈ (0,∞),
and with respect to the direction ω ∈ Sn−1 is defined as

e(�, x0, r, ω) := 1

rn−1

ˆ

C(x0,r,ω)∩∂∗�

|ν(x)− ω|2
2

dHn−1(x), (2.146)

where ν is the geometric measure theoretic outward unit normal to �. This notion
is studied at length in [89, Chapter 22], where a number of basic properties of the
excess (having to do with rescaling, change of direction, lower-semicontinuity) are
established. Here, we shall need the following result.

Lemma 2.9 Let � ⊂ R
n be a set of locally finite perimeter. Then for every point

x0 ∈ ∂�, every radius r ∈ (0,∞), and every vector ω ∈ R
n \ {0} there holds

e
(
�, x0, r,

ω

|ω|
)
≤ 2

rn−1

ˆ

C(x0,r,ω/|ω|)∩∂∗�
|ν(x)− ω|2 dHn−1(x), (2.147)

where ν is the geometric measure theoretic outward unit normal to �.

This lemma facilitates estimating the excess in terms of the BMO semi-norm
of the geometric measure theoretic outward unit normal. Specifically, suppose
� ⊂ R

n is actually an Ahlfors regular domain and write σ := Hn−1�∂�.
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Having fixed a point x0 ∈ ∂� along with a radius r ∈ (
0, 2 diam(∂�)

)
,

denote �(x0, r) := B(x0, r) ∩ ∂� and ν�(x0,r) := ffl
�(x0,r)

ν dσ . Then since

C(x0, r, ω/|ω|) ⊆ B(x0,
√

2r) for each ω ∈ R
n \ {0}, we conclude from (2.147)

that whenever

ν�(x0,r) �= 0 (2.148)

we have (with the piece of notation introduced in (2.110))

e
(
�, x0, r,

ν�(x0,r)

|ν�(x0,r)|
)
≤ 2

n+1
2 CA

{(  

�(x0,
√

2r)

|ν − ν�(x0,r)|2 dσ
)1/2

}2

≤ 2
n+1

2 CA

{(  

�(x0,
√

2r)

|ν − ν
�(x0,

√
2r)
|2 dσ

)1/2

+
(  

�(x0,
√

2r)

|ν�(x0,r) − ν
�(x0,

√
2r)
|2 dσ

)1/2
}2

≤ 2
n+1

2 CA

{
‖ν‖[BMO2(∂�,σ)]n + |ν�(x0,r) − ν

�(x0,
√

2r)
|
}2

≤ 2
n+1

2 CA

{
‖ν‖[BMO2(∂�,σ)]n +

 

�(x0,r)

|ν − ν
�(x0,

√
2r)
| dσ

}2

≤ 2
n+1

2 CA

{
‖ν‖[BMO2(∂�,σ)]n +

(σ
(
�(x0,

√
2r)

)

σ
(
�(x0, r)

)
)1/2×

×
(  

�(x0,
√

2r)

|ν − ν
�(x0,

√
2r)
|2 dσ

)1/2}2

≤ 2
n+1

2 CA

{
‖ν‖[BMO2(∂�,σ)]n + CA · (

√
2)

n−1
2 ‖ν‖[BMO2(∂�,σ)]n

}2

= 2
n+1

2 CA

(
1 + CA · 2

n−1
4
)2‖ν‖2

[BMO2(∂�,σ)]n , (2.149)

where CA ∈ [1,∞) is the Ahlfors regularity constant of ∂�.

Here is the proof of Lemma 2.9:

Proof of Lemma 2.9 Abbreviate ω0 := ω/|ω| ∈ Sn−1 and observe that we have the
equality |ω − ω0| =

∣∣1 − |ω|∣∣. Hence,

|ω − ω0|2·Hn−1(C(x0, r, ω0) ∩ ∂∗�
)
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= ∣∣1 − |ω|∣∣2 ·Hn−1(C(x0, r, ω0) ∩ ∂∗�
)

=
ˆ

C(x0,r,ω0)∩∂∗�

∣∣|ν(x)| − |ω|∣∣2 dHn−1(x)

≤
ˆ

C(x0,r,ω0)∩∂∗�
|ν(x)− ω|2 dHn−1(x). (2.150)

Also, |ν − ω0|2/2 ≤ |ν − ω|2 + |ω − ω0|2. Based on these observations we may
then write

e(�, x0, r, ω0) = 1

rn−1

ˆ

C(x0,r,ω0)∩∂∗�

|ν(x)− ω0|2
2

dHn−1(x)

≤ 1

rn−1

ˆ

C(x0,r,ω0)∩∂∗�
|ν(x)− ω|2 dHn−1(x)

+ Hn−1(C(x0, r, ω0) ∩ ∂∗�
)

rn−1
|ω − ω0|2

≤ 2

rn−1

ˆ

C(x0,r,ω0)∩∂∗�
|ν(x)− ω|2 dHn−1(x), (2.151)

which is the desired estimate. ��
The basic height bound, recorded in (2.153) below, has been proved in [89,

Theorem 22.8, p. 294] for sets � in a class of perimeter minimizers (a notion
discussed at length in [89, Chapter 21, pp. 278–289]). In [20] the authors have
observed that this height bound continues to hold for sets � in A (C, R), the class
recalled in (2.141). Specifically, the following result has been proved in [20] along
the lines of the argument in [89, Section 22.2, pp. 294–302]:

Theorem 2.1 Given any C0 ∈ [1,∞) and n ∈ N with n ≥ 2, there exist two
constants, ε1 ∈ (0, 1) and C1 ∈ [1,∞), depending only on n and C0 such that if
� ∈ A (C0, R0) for some R0 ∈ (0,∞], and x0 ∈ ∂�, r ∈ (0, R0/2), ω ∈ Sn−1 are
such that

e(�, x0, 2r, ω) ≤ ε1, (2.152)

then the following conditions hold (with the cylinder C(x0, r, ω) defined as in
(2.145)):

C(x0,r, ω) ∩ ∂�
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⊆
{
x ∈ C(x0, r, ω) : |〈x − x0, ω〉| ≤ C1r · e(�, x0, 2r, ω)

1
2(n−1)

}
,

(2.153)

{
x ∈ C(x0, r, ω)∩� : 〈x−x0, ω〉 > C1r · e(�, x0, 2r, ω)

1
2(n−1)

}
= ∅, (2.154)

{
x ∈ C(x0, r, ω)\� : 〈x−x0, ω〉 < −C1r ·e(�, x0, 2r, ω)

1
2(n−1)

}
= ∅. (2.155)

Recall the class of (R, δ)-Reifenberg flat domains from Definition 2.13.

Corollary 2.1 Fix n ∈ N with n ≥ 2. Then for each given C0 ∈ [1,∞) there exist
two constants, ε2 ∈ (0, 1) and C2 ∈ [1,∞), depending only on n and C0 with the
following significance. Whenever R0 ∈ (0,∞],R ∈ (0, R0/2), and� ∈ A (C0, R0)

are such that

δ := sup
x0∈∂�

sup
r∈(0,R)

inf
ω∈Sn−1

e(�, x0, 2r, ω) < ε2 (2.156)

it follows that � is a
(
R, C2 · δ

1
2(n−1)

)
-Reifenberg flat domain.

Proof Let ε1 = ε1(C0, n) ∈ (0, 1) and C1 = C1(C0, n) ∈ (0,∞) be as in
Theorem 2.1. Take

ε2 := min
{
ε1, 2−1C

2(1−n)
1

}
. (2.157)

Fix an arbitrary location x0 ∈ ∂� along with an arbitrary scale r ∈ (0, R). Since
having 0 ≤ δ < ε2 (cf. (2.156)) ensures that 1 < (2ε2)/(ε2 + δ) ≤ 2, it is possible
to choose some ωx0,r ∈ Sn−1 such that

e
(
�, x0, 2r, ωx0,r

)
<
( 2ε2

ε2 + δ

)
· inf

ω∈Sn−1
e(�, x0, 2r, ω)

≤ 2 · inf
ω∈Sn−1

e(�, x0, 2r, ω) ≤ 2δ, (2.158)

the last inequality being a consequence of (2.156). Thanks to (2.156), the first
inequality in (2.158) forces

e
(
�, x0, 2r, ωx0,r

)
<
( 2ε2

ε2 + δ

)
· δ < ε2 < ε1. (2.159)

Granted this, Theorem 2.1 guarantees that the properties (2.153)–(2.155) hold for
the vector ω := ωx0,r ∈ Sn−1. In particular, from this version of (2.153) and the
last inequality in (2.158) it follows that for each x0 ∈ ∂� and r ∈ (0, R) we have
identified a vector ωx0,r ∈ Sn−1 such that
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the set C(x0, r, ωx0,r ) ∩ ∂� is contained in
{
x ∈ C(x0, r, ωx0,r ) : |〈x − x0, ωx0,r 〉| ≤ C1r · (2δ)

1
2(n−1)

}
.

(2.160)

For each location x0 ∈ ∂� and scale r ∈ (0, R), the versions of (2.154)–(2.155)
written for ω := ωx0,r ∈ Sn−1 also prove (once again keeping in mind the last
inequality in (2.158)) that

�c := R
n \� contains the set

C− :=
{
x ∈ C(x0, r, ωx0,r ) : 〈x − x0, ωx0,r 〉 > C1r · (2δ)

1
2(n−1)

} (2.161)

and

� contains the set

C+ :=
{
x ∈ C(x0, r, ωx0,r ) : 〈x − x0, ωx0,r 〉 < −C1r · (2δ)

1
2(n−1)

}
.

(2.162)

Moreover, from (2.156) and (2.157) we see that

C1 · (2δ)
1

2(n−1) < 1, (2.163)

hence

C± �= ∅. (2.164)

To proceed, introduce

π(x0, r) := x0 + 〈ωx0,r 〉� (2.165)

which is an (n − 1)-dimensional plane in R
n containing the point x0. Given that

B(x0, r) ⊆ C(x0, r, ωx0,r ), from (2.160) we see that

sup
x∈B(x0,r)∩∂�

dist
(
x, π(x0, r) ∩ B(x0, r)

) ≤ C1r · (2δ)
1

2(n−1) . (2.166)

We also claim that

sup
x∈B(x0,r)∩π(x0,r)

dist
(
x, ∂� ∩ B(x0, r)

) ≤ 2C1r · (2δ)
1

2(n−1) . (2.167)

To justify (2.167), consider an arbitrary point x ∈ B(x0, r) ∩ π(x0, r). We
distinguish two cases.

Case 1: Assume first that
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|x − x0| < r

√
1 − C2

1 · (2δ)
1

(n−1) . (2.168)

Note that (2.163) ensures that (2.168) is a meaningful demand. In this case,
denote by L the line passing through x in the direction of ωx0,r . Thanks to
(2.164), it is possible to pick points x± ∈ C± ∩L. Then since x+ ∈ C+ ⊆ � and
x− ∈ C− ⊆ �c, it follows that the line segment [x−, x+] intersects ∂�. Thus,
there exists y ∈ [x−, x+]∩∂�. Given that [x−, x+] is contained in C(x0, r, ωx0,r )

and that C(x0, r, ωx0,r )∩∂� is contained in the set described in the second line of

(2.160), we conclude that y belongs to said set, hence |x − y| ≤ C1r · (2δ)
1

2(n−1) .
We may now use the Pythagorean theorem to compute

|y − x0|2 = |x − x0|2 + |x − y|2

< r 2(1 − C2
1 · (2δ)

1
(n−1)

)+ C2
1 r2 · (2δ)

1
(n−1) = r2, (2.169)

which places y in B(x0, r). Ultimately, y ∈ B(x0, r)∩∂� ⊆ C(x0, r, ωx0,r )∩∂�.
Keeping in mind that the vector x − y is parallel to ωx0,r and that x − x0 is
orthogonal to ωx0,r , we may then use (2.160) to compute

dist
(
x, ∂� ∩ B(x0, r)

) ≤ |x − y| = |〈x − y, ωx0,r 〉|

= |〈y − x0, ωx0,r 〉| < C1r · (2δ)
1

2(n−1) . (2.170)

Case 2: Assume x ∈ B(x0, r) ∩ π(x0, r) is arbitrary. In this scenario, define

x̃ := x0 + (x − x0)

√
1 − C2

1 · (2δ)
1

(n−1) . (2.171)

Then x̃ ∈ π(x0, r) and

|̃x − x0| ≤ |x − x0|
√

1 − C2
1 · (2δ)

1
(n−1) < r

√
1 − C2

1 · (2δ)
1

(n−1) . (2.172)

This proves two things. First, we see that x̃ ∈ B(x0, r) ∩ π(x0, r). Granted this,
from (2.172) and the analysis in Case 1 (cf. (2.170)) we conclude that

dist
(
x̃, ∂� ∩ B(x0, r)

)
< C1r · (2δ)

1
2(n−1) . (2.173)

Since we also have

|̃x − x| =
∣∣∣x − x0 − (x − x0)

√
1 − C2

1 · (2δ)
1

(n−1)

∣∣∣
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= |x − x0|
∣∣∣1 −

√
1 − C2

1 · (2δ)
1

(n−1)

∣∣∣

≤ r
C2

1 · (2δ)
1

(n−1)

1 +
√

1 − C2
1 · (2δ)

1
(n−1)

≤ C2
1 r · (2δ)

1
(n−1) , (2.174)

we may avail ourselves of (2.173) to conclude that

dist
(
x, ∂� ∩ B(x0, r)

) ≤ dist
(
x̃, ∂� ∩ B(x0, r)

)+ |̃x − x|

≤ C1r · (2δ)
1

2(n−1) + C2
1 r · (2δ)

1
(n−1)

≤ 2C1r · (2δ)
1

2(n−1) , (2.175)

where the last inequality comes from (2.163).
This finishes the proof of (2.167). In concert with (2.166) and (2.129) this
establishes

Dist
[
∂� ∩ B(x0, r) , π(x0, r) ∩ B(x0, r)

] ≤ 2C1r · (2δ)
1

2(n−1) . (2.176)

In view of Definition 2.11, we conclude that ∂� is a
(
R, 2C1 · (2δ)

1
2(n−1)

)
-

Reifenberg flat set. Together with the separation property implied by (2.161)–

(2.162) (cf. Definition 2.12) we conclude that � is a
(
R, C2 · δ

1
2(n−1)

)
-Reifenberg

flat domain (see Definition 2.13) for some constant C2 ∈ [1,∞) depending only
on n and C0.

��
We are now ready to state an important result, asserting that any Ahlfors regular

domain whose geometric measure theoretic outward unit normal has a sufficiently
small BMO semi-norm is necessarily a Reifenberg flat domain.

Theorem 2.2 For each n ∈ N with n ≥ 2 and each C0 ∈ [1,∞) there exist some
small threshold δ∗ ∈ (0, 1) along with some large constant C∗ ∈ [1,∞), both
depending only on n and C0, with the following significance.

Suppose � ⊆ R
n is an Ahlfors regular domain (in the sense of Definition 2.4),

with the Ahlfors regularity constant of ∂� less than or equal to C0, and such that
the geometric measure theoretic outward unit normal to � satisfies (where, as usual,
σ := Hn−1�∂�)

‖ν‖[BMO(∂�,σ)]n ≤ δ for some δ ∈ (0, δ∗). (2.177)
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Then ∂� is unbounded and

both �+ := � and �− := R
n \� are

(∞, C∗ · δ
1

2(n−1)
)
-Reifenberg flat domains.

(2.178)

Proof The fact that the set ∂� is unbounded follows from (2.177) (bearing in mind
that δ∗ < 1) and Lemma 2.8. From (2.120) we also see that

ν�(x0,r) :=
 

�(x0,r)

ν dσ �= 0 for each x0 ∈ ∂� and r > 0. (2.179)

Fix an arbitrary location x0 ∈ ∂� and an arbitrary scale r ∈ (0,∞). Keeping
(2.179) in mind, we then deduce from (2.148)–(2.149), Lemma 2.3, and (2.98) that
whenever (2.177) holds we necessarily have

e
(
�±, x0, r,

±ν�(x0,r)

|ν�(x0,r)|
)
≤ C‖ν‖2

[BMO(∂�,σ)]n ≤ Cδ 2, (2.180)

where C ∈ (0,∞) depends only on the dimension n and C0. Since 0 < δ < δ∗, we
see that (2.180) implies

sup
x0∈∂�

sup
r∈(0,∞)

inf
ω∈Sn−1

e(�±, x0, 2r, ω) ≤ Cδ 2∗ . (2.181)

With ε2 = ε2(C0, n) ∈ (0, 1) as in Corollary 2.1, choose δ∗ ∈ (0, 1) such that

Cδ 2∗ < ε2. (2.182)

Given that from Proposition 2.9 we also know that

�± ∈ A (C0,∞), (2.183)

we may invoke Corollary 2.1 to conclude that there exists C∗ ∈ [1,∞), depending

only on n and C0, such that �± are
(∞, C∗ · δ

1
2(n−1)

)
-Reifenberg flat domains. ��

Some useful consequences of Theorem 2.2 are brought to light in the result
below.

Theorem 2.3 Let � ⊆ R
n be an Ahlfors regular domain (in the sense described in

Definition 2.4). Denote by ν the geometric measure theoretic outward unit normal
to � and abbreviate σ := Hn−1�∂�.

Then there exists a threshold δ∗ ∈ (0, 1) and a number N ∈ N, both depending
only on the Ahlfors regularity constant of ∂� and the dimension n, with the property
that if
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‖ν‖[BMO(∂�,σ)]n < δ∗, (2.184)

then ∂� is an unbounded set and � is an (∞, N)-two-sided nontangentially
accessible domain (in the sense of Definition 2.9). In particular,

� satisfies a two-sided local John condition with constants
which depend only on the dimension n and the Ahlfors regularity
constant of ∂�,

(2.185)

also

� is a UR domain, with the UR constants of ∂� controlled solely
in terms of the dimension n and the Ahlfors regularity constant
of ∂�,

(2.186)

and, finally,

� is a uniform domain, in the sense that it satisfies the quan-
titative connectivity condition described in Lemma 2.5, with a
constant controlled solely in terms of the dimension n and the
Ahlfors regularity constant of ∂�.

(2.187)

Proof This is a consequence of Lemma 2.8, Theorem 2.2, (2.140), (2.88), (2.87),
(2.48), and Lemma 2.5. ��

We are now in a position to show that for an Ahlfors regular domain � ⊆ R
n

the demand that the BMO semi-norm of its geometric measure theoretic outward
unit normal is suitably small relative to the Ahlfors regularity constant of ∂� has a
string of remarkable topological and metric consequences for the set �. To set the
stage, from [83, Theorem 2 in 49.VI, 57.I.9(i), 57.III.1] (cf. also [78, Lemma 4(1)
and Lemma 5, p. 1702]) we first note that

if O ⊆ R
n is some arbitrary connected open set, then any

connected component of Rn \ O has a connected boundary.
(2.188)

Theorem 2.4 Let � ⊆ R
n be an Ahlfors regular domain. Set σ := Hn−1�∂� and

denote by ν the geometric measure theoretic outward unit normal to �.
Then there exists a threshold δ∗ ∈ (0, 1) depending only on the ambient dimen-

sion n and the Ahlfors regularity constant of ∂�, such that if ‖ν‖[BMO(∂�,σ)]n < δ∗
it follows that �, �, ∂�, Rn \ �, and R

n \ � are all unbounded connected sets,
∂(� ) = ∂�, ∂(Rn \� ) = ∂�, and ∂(Rn \�) = ∂�.

As is apparent from Example 2.11, the demand that the parameter δ > 0 is
sufficiently small cannot be dispense with in the context of Theorem 2.4. This being
said, it has been shown in [112, §11.5] that
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if � ⊆ R
n is an open set satisfying a two-sided local John

condition and whose boundary happens to be an unbounded
Ahlfors regular set, then actually ∂� is connected.

(2.189)

Proof of Theorem 2.4 Bring in the threshold δ∗ ∈ (0, 1) from Theorem 2.3
and assume that ‖ν‖[BMO(∂�,σ)]n < δ∗. From Theorem 2.3, Definition 2.9, and
Definition 2.8 we then conclude that both � and R

n \ � are pathwise connected
open sets (hence, connected open sets). Having established this, from (2.188) we
then see that ∂

(
R

n \ �
) = ∂(� ) is connected. The fact that � satisfies an exterior

corkscrew condition further implies ∂(� ) = ∂�. Since δ∗ < 1, Lemma 2.8 ensures
that ∂� is unbounded, and this forces both � and R

n\� to be unbounded (given that
they have ∂� as their topological boundary). Also, the fact that Rn \� is connected

implies that its closure is connected. However, Rn \� = R
n \ �̊ and

�̊ = � \ ∂(� ) = � \ ∂� = �̊ = �, (2.190)

so R
n \� = R

n \� is connected. ��
In the two-dimensional setting, it turns out that having an outward unit normal

with small BMO semi-norm implies (under certain background assumptions) that
the domain in question is actually simply connected. This makes the object of
Corollary 2.2, which augments Theorem 2.4.

Corollary 2.2 Let � ⊆ R
2 be an Ahlfors regular domain. Abbreviate σ := H1�∂�

and denote by ν the geometric measure theoretic outward unit normal to �. Then
there exists a threshold δ∗ ∈ (0, 1), depending only on the Ahlfors regularity
constant of ∂�, such that if ‖ν‖[BMO(∂�,σ)]2 < δ∗ it follows that � is an unbounded

connected set which is simply connected, ∂� is an unbounded connected set, R2 \�

is an unbounded connected set which is simply connected, and ∂(R2 \� ) = ∂�.

Proof All claims are consequences of Theorem 2.4 together with (2.193), (2.194),
and (2.195) below. ��

2.3 Chord-Arc Curves in the Plane

Shifting gears, in this section we shall work in the two-dimensional setting. We
begin by recalling some known results of topological flavor. First, for bounded sets,
we know from [12, Corollary 1, p. 352] that

an open bounded connected set � ⊆ R
2 is simply connected if

and only if its complement R2 \� is a connected set,
(2.191)

and
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an open bounded connected set � ⊆ R
2 is simply connected if

and only if its topological boundary, ∂�, is a connected set.
(2.192)

For unbounded sets, [12, Corollary 2, p. 352] gives

an open unbounded connected set � ⊆ R
2 is simply connected if

and only if every connected component of R2 \� is unbounded,
(2.193)

and

an open unbounded connected set � ⊆ R
2 is simply connected if

and only if every connected component 
 of ∂� is unbounded.
(2.194)

(Parenthetically, it is worth noting that the boundary of an open set � ⊆ R
2 which is

both connected and simply connected is not necessarily connected: for example take
� := R

2 \ E where E := [0,∞) × {0, 1}.) Finally, according to [12, Corollary 3,
p. 352],

if E ⊆ R
2 is a closed set such that each connected component

of E is unbounded, then R
2 \ E is a simply connected set,

(2.195)

and according to [120, Theorem 13.11, p. 274]

an open connected set � ⊆ R
2 ≡ C is simply connected if

and only if Ĉ \ � is connected, where Ĉ := C ∪ {∞} is the
extended complex plane (i.e., the one-point compactification of
C, aka Riemann’s sphere).

(2.196)

Next, recall that a (compact) curve in the Euclidean plane R
2 (canonically

identified with C) is a set of the form 
 = γ ([a, b]), where a, b ∈ R are two
numbers satisfying a < b, and γ : [a, b] → R

2 is a continuous function, called a
parametrization of 
. We shall call the curve 
 simple if 
 has a parametrization
γ : [a, b] → R

2 whose restriction to [a, b) is injective (hence, 
 is simple if
it is non self-intersecting). We shall say that the curve 
 is closed if it has a
parametrization γ : [a, b] → R

2 satisfying γ (a) = γ (b). Also, we shall call 
 ⊂ C

a Jordan curve, if 
 is a simple closed curve. Thus, a curve is Jordan if and only
if it is the homeomorphic image of the unit circle S1. The classical Jordan curve
theorem asserts that

the complement of a Jordan curve 
 ⊂ C consists precisely
of two connected components, one bounded �+, and one
unbounded �−, called the inner and outer domains of 
,
satisfying ∂�± = 
.

(2.197)

In light of (2.192), we also conclude that
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the inner domain �+ of a Jordan curve 
 ⊂ C is simply connected. (2.198)

We are also going to be interested in Jordan curves passing through
infinity in the plane. This class consists of sets of the form 
 = γ (R),
where γ : R → R

2 is a continuous injective function with the property that
lim

t→±∞ |γ (t)| = ∞. For this class of curves a version of the Jordan separation

theorem is also valid, namely

if 
 is a Jordan curve passing through infinity, then its comple-
ment in C consists precisely of two open connected components,
called �±, which satisfy ∂�+ = 
 = ∂�−.

(2.199)

Once (2.199) has been established, we deduce from (2.194) that

in the context of (2.199), the sets �± are simply connected. (2.200)

To justify (2.199), let 
 be a Jordan curve passing through infinity. From
definitions, it follows that 
 is a closed subset of C. Fix an arbitrary point zo ∈ C\

and consider the homeomorphisms

� : C \ {zo} −→ C \ {0}, �(z) := (z− zo)
−1 for all z ∈ C \ {zo},

�−1 : C \ {0} −→ C \ {zo}, �−1(ζ ) := zo + ζ−1 for all ζ ∈ C \ {0},
(2.201)

which are inverse to each other. We then claim that


̃ := �(
) ∪ {0} (2.202)

is a simple closed curve which contains the origin in C. To see that this is indeed
the case, start by expressing 
 = γ (R) where γ : R→ R

2 is a continuous injective
function with the property that lim

t→±∞ |γ (t)| = ∞. Then γ̃ : [ − π/2, π/2
] → C

defined for each t ∈ [− π/2, π/2
]

as

γ̃ (t) :=
⎧
⎨

⎩

(
γ (tan t)− zo

)−1 if t ∈ (− π/2, π/2
)
,

0 if t ∈ {± π/2
} (2.203)

is a continuous function whose restriction to
[ − π/2, π/2

)
is injective, and whose

image is precisely 
̃. Also, 0 ∈ 
̃ by design. Hence, as claimed, 
̃ is a simple
closed curve passing through 0 ∈ C. The classical Jordan curve theorem recalled
in (2.197) then ensures that C \ 
̃ consists precisely of two open connected
components, one bounded �̃+, and one unbounded �̃−, satisfying ∂�̃± = 
̃. In
particular,
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C \ {0} = �̃+ �
(

̃ \ {0}) � �̃− (disjoint unions). (2.204)

Then O± := �−1(�̃±) are open connected subsets of C \ {zo}, and applying the
homeomorphism �−1 to (2.204) yields

C \ {zo} = O+ �
 �O− (disjoint unions). (2.205)

Let us also observe that since �̃− is unbounded, there exists a sequence {ζj }j∈N in
�̃− with |ζj | → ∞ as j → ∞. Consequently, the sequence {zj }j∈N defined for
each j ∈ N as zj := �−1(ζj ) = zo + ζ−1

j is contained in �−1(�̃−) = O− and
converges to zo. This shows that

zo ∈ O−. (2.206)

Next, since 
 is a closed set, the fact that zo ∈ C \
 guarantees the existence of
some r > 0 with the property that B(zo, r) ∩ 
 = ∅. In the context of (2.205) this
shows that the connected set B(zo, r)\{zo} is covered by the open sets O±. As such,
B(zo, r)\{zo} is fully contained in either O+ or O−. In view of (2.206) we ultimately
conclude that B(zo, r) \ {zo} ⊆ O−. Then �+ := O+ and �− := O− ∪ {zo} are
open, connected, disjoint subsets of C, with

C = �+ �
 ��− (disjoint unions), (2.207)

and

∂�± = ∂O± \ {zo} = �−1(∂�̃± \ {0}
) = �−1(
̃ \ {0}) = 
. (2.208)

This finishes the proof of (2.199).
Moving on, the length L ∈ [0,+∞] of a given compact curve 
 = γ ([a, b])

is defined as

L := sup
N∑

j=1

|γ (tj )− γ (tj−1)|, (2.209)

the supremum being taken over all partitions a = t0 < t1 < · · · < tN−1 < tN = b

of the interval [a, b]. As is well known (cf., e.g., [85, Theorem 4.38, p. 135]), the
length L of any simple compact curve 
 may be expressed in terms of the Hausdorff
measure by

L = H1(
), (2.210)

and
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|z1 − z2| ≤ H1(
) for any compact curve

 in the plane with endpoints z1, z2 ∈ C.

(2.211)

Call a curve 
 rectifiable provided its length is finite (i.e., L < +∞), and call

 locally rectifiable if each of its compact sub-curves is rectifiable. The
latter condition is equivalent to demanding that γ (I) is a rectifiable curve for each
compact sub-interval I of the domain of definition of some (or any) parametrization
on 
. In particular, a Jordan curve 
 passing through infinity in the plane, with
parametrization γ : R → 
, is locally rectifiable if and only if γ (I) is a rectifiable
curve for any compact sub-interval I of R.

Suppose 
 is a rectifiable, simple, compact curve in the plane, and denote by
L its length. Then there exists a parametrization [0, L]  s !→ z(s) ∈ 
 of 
,
called the arc-length parametrization of 
, with the property that for
each s1, s2 ∈ [0, L] with s1 < s2 the length of the curve with endpoints at z(s1) and
z(s2) is s2 − s1. It is well known (see, e.g., [85, Definition 4.21 and Theorem 4.22,
pp. 128–129]) that the arch-length parametrization exists and satisfies

z(·) is differentiable at L1-a.e. point in [0, L]
and |z′(s)| = 1 for L1-a.e. s ∈ [0, L].

(2.212)

Also, (2.210)–(2.211) imply

|z(s1)− z(s2)| ≤ |s1 − s2|, ∀ s1, s2 ∈ [0, L]. (2.213)

Lemma 2.10 Let 
 be a rectifiable, simple, compact curve in the plane. Denote by
L its length, and let [0, L]  s !→ z(s) ∈ 
 be its arc-length parametrization. Given
s1, s2 ∈ [0, L] with s1 < s2, abbreviate I := [s1, s2] and set z′I :=

ffl
I
z′(s) ds. Then

 

I

|z′(s)− z′I |2 ds = 1 −
∣∣∣
z(s2)− z(s1)

s2 − s1

∣∣∣
2
. (2.214)

Proof Upon observing that

z′I =
 

I

z′(s) ds = 1

s2 − s1

ˆ s2

s1

z′(s) ds = z(s2)− z(s1)

s2 − s1
, (2.215)

this is a direct consequence of the formula in the second line of (2.114). ��

Remark 2.1 The arch-length parametrization of a locally rectifiable Jordan curve
passing through infinity in the plane is defined similarly, with R now playing the
role of the interval [0, L], and satisfies properties analogous to (2.212), (2.213), and
Lemma 2.10.
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We continue by recalling an important category of curves, introduced in 1936 by
Mikhail A. Lavrentiev in [84] (also known as the class of Lavrentiev curves).

Definition 2.14 Given some number � ∈ [0,∞), recall that a set 
 ⊂ C is said
to be a �-CAC, or simply CAC (acronym for chord-arc curve) if the parameter �

is de-emphasized, provided 
 is a locally rectifiable Jordan curve passing through
infinity with the property that

�(z1, z2) ≤ (1 + �)|z1 − z2| for all z1, z2 ∈ 
, (2.216)

where �(z1, z2) denotes the length of the sub-arc of 
 joining z1 and z2.

In general, the presence of a cusp prevents a curve from being chord-arc. For
example, 
 := {

(x,
√|x|) : x ∈ R} is a Jordan curve passing through infinity

in R
2 ≡ C which nonetheless fails to be chord-arc. Indeed, if for x > 0 we set

z1 := x + i
√

x ∈ 
 and z2 := −x + i
√

x ∈ 
 then L’Hôspital’s Rule gives

lim
x→0+

�(z1, z2)

|z1 − z2| = lim
x→0+

2
´ x

0

√
1 + 1

4t
dt

2x
= lim

x→0+

√

1 + 1

4x
= +∞, (2.217)

which shows that condition (2.216) is violated for each � ∈ [0,∞).
There are fundamental links between chord-arc curves in the plane and the John-

Nirenberg space BMO on the real line. Such connections, along with other basic
properties of chord-arc curves, are brought to the forefront in Proposition 2.10
below. To facilitate stating and proving it, we first wish to recall the following
version for bi-Lipschitz maps of the classical Kirszbraun extension theorem proved
in [79, Theorem 1.2] with a linear bound on the distortion:

any function f : R → C with the property that there exist C, C′
in (0,∞) such that C|t1 − t2| ≤ |f (t1) − f (t2)| ≤ C′|t1 − t2|
for all t1, t2 ∈ R extends to a homeomorphism F : C → C with
(C/120)|z1 − z2| ≤ |F(z1) − F(z2)| ≤ (2000C′)|z1 − z2| for
all z1, z2 ∈ C.

(2.218)

Results of this nature have also been proved in [138], [139], [67, Proposition 1.13,
p. 227] (see also [119, Theorem 7.10, p. 166] and [36] in the case when the real line
is replaced by the unit circle), though the quantitative aspect is less precise, or not
explicitly mentioned, in these works.

Here is the proposition dealing with basic properties of chord-arc curves
mentioned above.

Proposition 2.10 Let 
 ⊂ C be a �-CAC in the plane, for some � ∈ [0,∞), and
consider its arc-length parametrization R  s !→ z(s) ∈ 
. Then the following
statements are true.

(i) For each s1, s2 ∈ R one has
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|z(s1)− z(s2)| ≤ |s1 − s2| ≤ (1 + �)|z(s1)− z(s2)|, (2.219)

and

z(·) is differentiable at L1-a.e. point in R,

with |z′(s)| = 1 for L1-a.e. s ∈ R.
(2.220)

(ii) For each zo ∈ 
 and r ∈ (0,∞) abbreviate �(zo, r) := B(zo, r) ∩ 
. Then
for each so ∈ R and r ∈ (0,∞) one has

(so−r, so+r) ⊆ z−1(�(z(so), r)
) ⊆ (

so−(1+�)r , so+(1+�)r
)
. (2.221)

(iii) For every Lebesgue measurable set A ⊆ R one has

H1(z(A)
) = L1(A), (2.222)

and for each H1-measurable set E ⊆ 
 one has

H1(E) = L1(z−1(E)
)
. (2.223)

(iv) With the arc-length measure σ on 
 defined as

σ := H1�
, (2.224)

for each σ -measurable set E ⊆ 
 and each non-negative σ -measurable
function g on E one has

ˆ

E

g dσ =
ˆ

z−1(E)

g(z(s)) ds. (2.225)

(v) Denote by � the region of the plane that is lying to the left of the curve

 (relative to the orientation 
 inherits from its arc-length parametrization
given by R  s !→ z(s) ∈ 
). Then � is a set of locally finite perimeter and
its geometric measure theoretic outward unit normal ν is given by

ν(z(s)) = −iz′(s) for L1-a.e. s ∈ R. (2.226)

As a consequence, for L1-a.e. s ∈ R the line {z(s) + t z′(s) : t ∈ R} is an
approximate tangent line to 
 at the point z(s). Hence, � has an approximate
tangent line at H1-almost every point on ∂�.

(vi) The set � introduced in item (v) is a connected, simply connected, unbounded,
two-sided NTA domain with an Ahlfors regular boundary (hence also an
Ahlfors regular domain which satisfies a two-sided local John condition and,
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in particular, a UR domain) and whose topological boundary is precisely 
,
i.e., ∂� = 
. In fact,

there exists a bi-Lipschitz homeomorphism F : R2 → R
2 such

that 120−1(1+�)−1|z1−z2| ≤ |F(z1)−F(z2)| ≤ 2000|z1−z2|
for all points z1, z2 ∈ C, and with the property that � = F(R2+),
R

2 \� = F(R2−), as well as ∂� = F(R× {0}).
(2.227)

(vii) With the piece of notation introduced in (2.97) one has

1

2(1 + �)
‖ν‖BMO(
,σ) ≤ ‖z′‖BMO(R,L1)

≤ ‖z′‖BMO2(R,L1) ≤
√

�(2 + �)

1 + �
< 1 (2.228)

and

1

2(1 + �)
‖z′‖BMO(R,L1) ≤ ‖ν‖BMO(
,σ) ≤ 2

√
�(2 + �). (2.229)

Moreover, 
 is a �∗-CAC with �∗ ∈ [0, �] defined as

�∗ := 1
√

1 − ‖z′‖2
BMO2(R,L1)

− 1

=
‖z′‖2

BMO2(R,L1)√
1 − ‖z′‖2

BMO2(R,L1)

(
1 +

√
1 − ‖z′‖2

BMO2(R,L1)

) . (2.230)

Proof The claims in item (i) are seen from definitions and Remark 2.1, while
the claim in item (ii) is an elementary consequence of (2.219). Next, in view of
(2.220), the area formula (cf. [47, Theorem 1, p. 96]) gives (2.222), which may
be equivalently recast as in (2.223). Also, the change of variable formula (cf. [47,
Theorem 2, p. 99]) gives (2.225). This takes care of items (iii)-(iv).

To proceed from the version of the Jordan curve theorem recorded in (2.199) we
conclude that

the complement of the curve 
 in C consists of only two open
connected components, namely �+ := � and �− := C \ �,
satisfying ∂�+ = 
 = ∂�−.

(2.231)

In addition, from (2.221) and (2.223) we see that for each so ∈ R and r ∈ (0,∞)

we have
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H1(�(z(so), r)
) = L1

(
z−1(�(z(so), r)

))

≤ L1
((

so − (1 + �)r , so + (1 + �)r
))

= 2(1 + �)r. (2.232)

Based on this and the criterion for finite perimeter from [47, Theorem 1, p. 222] we
then conclude that � is a set of locally finite perimeter. Next, if so ∈ R is a point
of differentiability for the complex-valued function z(·), then for every ε > 0 there
exists δ > 0 such that

z(so + s) ∈ B
(
z(so)+ s z′(so) , ε|s|) for each s ∈ (−δ, δ). (2.233)

In turn, from this geometric property we deduce that for each angle θ ∈ (0, π) there
exists a height h = h(θ) > 0 such that if 	±

θ,h denote the open truncated plane
sectors with common vertex at z(so), common aperture θ , common height h, and
symmetry axes along the vectors ±i z′(so), then

	+
θ,h ⊆ � = �+ and 	−

θ,h ⊆ C \� = �−. (2.234)

To proceed, observe that the measure theoretic boundary of � (cf. (2.14)) may be
presently described as

∂∗� =
{
z ∈ ∂� : lim sup

r→0+

L2(B(z, r) ∩�±
)

r2
> 0

}
. (2.235)

Together, (2.234) and (2.235) imply that

A := {
z(so) : so ∈ A

} ⊆ ∂∗�, where we have set

A := {
so ∈ R : so differentiability point for z(·)}.

(2.236)

Meanwhile, from (2.222) and the fact that z(·) is differentiable at L1-a.e. point in R

we deduce (also using ∂� = 
) that

H1(∂� \A) = H1(
 \A) = H1(z(R \ A)
) = L1(

R \ A
) = 0. (2.237)

With this in hand, formula

H1(∂� \ ∂∗�) = 0 (2.238)

follows by combining (2.236) with (2.237). As a consequence of (2.237)–(2.238)
and (2.24) we then conclude that
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A ∩ ∂∗� has full H1-measure in ∂�. (2.239)

Next, pick an arbitrary point zo ∈ A and recall that (2.234) holds. From this and
[59, Proposition 2.14, p. 606] it follows that if 	π−θ is the infinite open plane sector
with vertex at zo, aperture π − θ , and symmetry axis along the vector −iz′(so), then
the geometric measure theoretic outward unit normal to � satisfies

ν(z(so)) ∈ 	π−θ (2.240)

provided ν(z(so)) exists, i.e., if z(so) ∈ ∂∗�. The fact that the angle θ ∈ (0, π)

may be chosen arbitrarily close to π then forces ν(z(so)) = −iz′(so) whenever
z(so) ∈ ∂∗�, i.e., for so ∈ z−1(A ∩ ∂∗�). Given that by (2.239) and (2.222) the
latter set has full one-dimensional Lebesgue measure in R, the claim in (2.226) is
established. This finishes the treatment of item (v).

Turning our attention to item (vi), first observe that (2.219) implies

(1 + �)−1|s1 − s2| ≤ |z(s1)− z(s2)| ≤ |s1 − s2| for all s1, s2 ∈ R, (2.241)

hence R  s !→ z(s) ∈ C is a bi-Lipschitz map. When used in conjunction with
(2.241), the extension result recalled in (2.218) gives that

R  s !→ z(s) ∈ 
 extends to a bi-Lipschitz homeomorphism
F : C → C with the property that for any points z1, z2 ∈ C one
has [120(1+�)]−1|z1−z2| ≤ |F(z1)−F(z2)| ≤ 2000|z1−z2|.

(2.242)

As a consequence, work in [59] implies that � is a connected two-sided NTA
domain with an Ahlfors regular boundary (hence also a connected Ahlfors regular
domain which satisfies a two-sided local John condition; cf. (2.47) and (2.88)). As
far as item (vi) is concerned, there remains to observe that ∂� = 
 has been noted
earlier in (2.231).

Turning our attention to item (vii), fix two numbers s1, s2 ∈ R with s1 < s2,
abbreviate I := [s1, s2] and set z′I :=

ffl
I
z′(s) ds. We may then use Lemma 2.10 and

(2.219) to estimate

 

I

|z′(s)− z′I |2 ds = 1 −
∣∣∣
z(s2)− z(s1)

s2 − s1

∣∣∣
2 ≤ 1 −

( 1

1 + �

)2 = �(2 + �)

(1 + �)2 .

(2.243)
In view of (2.97), this readily yields the penultimate inequality in (2.228). The
second inequality in (2.228) is seen directly from the first inequality in (2.99).

To prove the very first inequality in (2.228), fix an arbitrary point zo ∈ 
 along
with a radius r ∈ (0,∞), and set � := B(zo, r) ∩ 
. Then there exists a unique
number so ∈ R such that zo = z(so) ∈ 
, and in the current setting we abbreviate
I := (

so − (1 + �)r , so + (1 + �)r
)
. In particular, (2.221) and (2.223) imply
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σ(�) = H1(�(z(so), r)
) = L1

(
z−1(�(z(so), r)

))

≥ L1
((

so − r, so + r
)) = 2r = (1 + �)−1L1(I). (2.244)

With c := −i
ffl
I z′(s) ds ∈ C we may then write

 

�

|ν − c| dσ = 1

σ(�)

ˆ

�

|ν − c| dσ = 1

σ(�)

ˆ

z−1(�)

|ν(z(s))− c| ds

≤ 1

σ(�)

ˆ

I
|ν(z(s))− c| ds = L1(I)

σ (�)

 

I
|ν(z(s))− c| ds

= L1(I)

σ (�)

 

I
|z′(s)− ic| ds ≤ (1 + �)

 

I
|z′(s)− ic| ds

≤ (1 + �)‖z′‖BMO (R,L1), (2.245)

making use of (2.225), (2.221), (2.226), (2.244), and the choice of c. With (2.245)
in hand, the first inequality in (2.228) readily follows. The last estimate in (2.229) is
implicit in (2.228). To prove the first estimate in (2.229), retain notation introduced
above and, now with the choice c := ffl

�
ν dσ ∈ C, estimate

 so+r

so−r

|z′(s)− ic| ds = 1

2r

ˆ so+r

so−r

|z′(s)− ic| ds ≤ 1

2r

ˆ

z−1(�)

|z′(s)− ic| ds

= 1

2r

ˆ

z−1(�)

|ν(z(s))− c| ds = 1

2r

ˆ

�

|ν − c| dσ

= σ(�)

2r

 

�

|ν − c| dσ ≤ (1 + �)

 

�

|ν − c| dσ

≤ (1 + �)‖ν‖BMO (
,σ), (2.246)

thanks to (2.221), (2.226), (2.225), and (2.232). This readily yields the first estimate
in (2.229).

To deal with the very last claim in item (vii), fix some s1, s2 ∈ R with s1 < s2,
set I := [s1, s2] and abbreviate z′I := ffl

I
z′(s) ds. Lemma 2.10 then permits us to

estimate

‖z′‖2
BMO2(R,L1)

≥
 

I

|z′(s)− z′I |2 ds = 1 −
∣∣∣
z(s2)− z(s1)

s2 − s1

∣∣∣
2
. (2.247)

In turn, this implies
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|s1 − s2| ≤ |z(s1)− z(s2)|√
1 − ‖z′‖2

BMO2(R,L1)

= (1 + �∗)|z(s1)− z(s2)|, (2.248)

provided �∗ is defined as in (2.230). This shows that, indeed, 
 is a �∗-CAC. ��
Having discussed a number of basic properties of chord-arc curves in Proposi-

tion 2.10, we now wish to elaborate on the manner in which concrete examples of
chord-arc curves may be produced. To set the stage for the subsequent discussion
observe that, when specialized to the one-dimensional setting, (2.126)–(2.128)
imply that for each function f ∈ CMO(R,L1) we have

lim−∞<s1<s2<+∞
|s1|+|s2|→∞

(  s2

s1

∣∣∣f −
 s2

s1

f dL1
∣∣∣ dL1

)
= 0, (2.249)

and

lim−∞<s1<s2<+∞
s2−s1→0+

(  s2

s1

∣∣∣f −
 s2

s1

f dL1
∣∣∣ dL1

)
= 0. (2.250)

These properties are relevant in the context of the next proposition, describing a
wealth of examples of chord-arc curves in the plane.

Proposition 2.11 Suppose b ∈ CMO(R,L1) is a real-valued function and consider
the assignment

R  s !−→ z(s) :=
ˆ s

0
eib(t) dt ∈ C. (2.251)

If said assignment is injective then R  s !→ z(s) ∈ C is, in fact, the arc-length
parametrization of a chord-arc curve (which, in particular, passes through infinity
in the plane).

Proof Introduce

F(s1, s2) := z(s1)− z(s2)

s1 − s2
for each s1, s2 ∈ R with s1 �= s2. (2.252)

Then, whenever −∞ < s1 < s2 < +∞ and with bI abbreviating
ffl s2
s1

b(t) dt , we
may write

F(s1, s2) =
 s2

s1

eib(t) dt =
 s2

s1

(
eib(t) − eibI

)
dt + eibI . (2.253)

Recall that
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|eiθ − 1| =
∣∣∣
ˆ θ

0
ieit dt

∣∣∣ ≤
∣∣∣
ˆ θ

0

∣∣ieit
∣∣ dt

∣∣∣ = |θ | for each θ ∈ R. (2.254)

Then, since b is real-valued, we may use (2.254) to estimate

∣∣∣
 s2

s1

(
eib(t) − eibI

)
dt

∣∣∣ =
∣∣∣
 s2

s1

(
ei(b(t)−bI ) − 1

)
dt

∣∣∣

≤
 s2

s1

∣∣ei(b(t)−bI ) − 1
∣∣ dt ≤

 s2

s1

|b(t)− bI | dt.

(2.255)

According to (2.249)–(2.250) (written for b in place of f ), the last integral in (2.255)
converges to zero as either |s1| + |s2| → ∞ or s2 − s1 → 0+. Since

∣∣eibI
∣∣ = 1, we

conclude that

lim−∞<s1 �=s2<+∞
|s1|+|s2|→∞

|F(s1, s2)| = 1 and lim−∞<s1 �=s2<+∞
|s1−s2|→0+

|F(s1, s2)| = 1. (2.256)

Given that, by assumption, the assignment R  s !→ z(s) ∈ C is injective, we also
have

F(s1, s2) �= 0 whenever −∞ < s1 �= s2 < +∞. (2.257)

From (2.256), (2.257), and the fact that F : {(s1, s2) ∈ R
2 : s1 �= s2} → C

is continuous, we conclude that there exists c ∈ (0, 1) with the property that
|F(s1, s2)| ≥ c for each s1, s2 ∈ R with s1 �= s2. In view of (2.252), this implies

|s1 − s2| ≤ c−1|z(s1)− z(s2)| for each s1, s2 ∈ R. (2.258)

In particular, this entails lim
s→±∞ |z(s)| = ∞. Also, the assignment R  s !→ z(s) ∈

C is continuous, and it is assumed to be injective. Given that |z′(s)| = ∣∣eib(s)
∣∣ = 1

for L1-a.e. s ∈ R, since b is real-valued, it follows that R  s !→ z(s) ∈ C is
the arc-length parametrization of a Jordan curve in the plane which passes through
infinity. ��

Here is a version of Proposition 2.11 in which the membership of b to
CMO(R,L1) is replaced by the demand that ‖b‖L∞(R,L1) < π

2 . In an interesting
twist, this forces the image of (2.251) to be a Lipschitz graph.

Proposition 2.12 If b ∈ L∞(R,L1) is a real-valued function with the property
that ‖b‖L∞(R,L1) < π

2 then the assignment (2.251) is actually the arc-length
parametrization of a Lipschitz graph in the plane (hence, in particular, a chord-arc
curve).
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Proof Suppose there exists θ ∈ (0, π/2) such that b(t) ∈ (−θ, θ) for L1-a.e. t ∈ R.
Since for L1-a.e. t ∈ R we have z′(t) = eib(t) = cos(b(t))+ i sin(b(t)) given that b

is real-valued, it follows that

Re z′(t) = cos(b(t)) ≥ cos θ > 0 for L1-a.e. t ∈ R. (2.259)

Granted this, whenever −∞ < s1 < s2 < +∞ we may estimate

|z(s2)− z(s1)| ≥ Re
(
z(s2)− z(s1)

) = Re
ˆ s2

s1

z′(t) dt =
ˆ s2

s1

Rez′(t) dt

≥
ˆ s2

s1

cos θ dt = (cos θ)(s2 − s1), (2.260)

which, as in the end-game of the proof of Proposition 2.11, implies that the image
of z(·) is a chord-arc curve 
 in the plane. As such, Proposition 2.10 applies and
gives that if � denotes the region in C lying to the left of the curve 
 (relative to
the orientation 
 inherits from its arc-length parametrization R  s !→ z(s) ∈ 
),
then � is an Ahlfors regular domain whose topological boundary is 
, and whose
geometric measure theoretic outward unit normal ν is given at L1-a.e. s ∈ R by
ν(z(s)) = −iz′(s). Consider next the constant vector field h := (0,−1) ≡ −i in C

and regard ν as a R
2-valued function. Then, with 〈·, ·〉 denoting the standard inner

product in R
2, we have

〈
ν(z(s)), h(z(s))

〉 = Re
(
iν(z(s))

)

= Re z′(s) ≥ cos θ > 0 for L1-a.e. s ∈ R. (2.261)

This goes to show that there exists a constant vector field which is transverse to �

and, as a consequence of work in [59], we conclude that � is the upper-graph of a
Lipschitz function ϕ : R→ R. The desired conclusion now follows. ��

Another sub-category of chord-arc curves is offered by graphs of real-valued
BMO1 functions defined on the real line.

Proposition 2.13 Let ϕ ∈ W
1,1
loc (R) be such that ϕ′ ∈ BMO (R,L1) and consider

its graph 
 := {(
x, ϕ(x)

) : x ∈ R
} ⊆ R

2. Then 
 is a �-CAC corresponding to
� = ‖ϕ′‖BMO (R,L1).

Proof Throughout, identify R
2 with C. Since functions in W

1,1
loc (R) are locally

absolutely continuous (cf., e.g., [85, Corollary 7.14, p. 223]), we conclude that 


is a curve in the plane, with parametrization R  x !→ x + iϕ(x) ∈ 
. Hence, 


is a Jordan curve that passes through infinity in the plane. From [61, Proposition
2.25, p. 2616] we know that 
 is an Ahlfors regular set which, in light of (2.210)
implies that the curve 
 is also locally rectifiable. Consider two arbitrary points
z1, z2 ∈ 
, say z1 :=

(
a, ϕ(a)

)
and z2 :=

(
b, ϕ(b)

)
for some a, b ∈ R with a < b,
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and denote by 
z1,z2 the sub-arc of 
 with endpoints z1, z2. From [61, Proposition
2.25, p. 2616] we also know that the arc-length measure σ := H1�
 on the curve

 satisfies

�(z1, z2) = σ(
z1,z2) =
ˆ b

a

√
1 + |ϕ′(x)|2 dx. (2.262)

Observe that the function F : R → R defined as F(t) := √
1 + t2 for each t ∈ R

is Lipschitz, with Lipschitz constant ≤ 1, since |F ′(t)| = |t |/√1 + t2 ≤ 1 for each
t ∈ R. Consequently, if we set

ϕ′I :=
 b

a

ϕ′ dL1 = ϕ(b)− ϕ(a)

b − a
, (2.263)

then

ˆ b

a

√
1 + |ϕ′(x)|2 dx =

ˆ b

a

F (ϕ′(x)) dx

≤
ˆ b

a

|F(ϕ′(x))− F(ϕ′I )| dx + (b − a)F (ϕ′I )

≤
ˆ b

a

|ϕ′(x)− ϕ′I | dx + (b − a)

√
1 + (ϕ′I )2

≤ (b − a)‖ϕ′‖BMO (R,L1) + (b − a)

√

1 +
(ϕ(b)− ϕ(a)

b − a

)2

≤ |z1 − z2|‖ϕ′‖BMO (R,L1) + |z1 − z2|

= (
1 + ‖ϕ′‖BMO (R,L1)

)|z1 − z2|. (2.264)

From (2.262) and (2.264) we therefore conclude that (2.216) holds for the choice
� := ‖ϕ′‖BMO (R,L1), and the desired conclusion follows. ��

Another basic link between chord-arc curves in the plane and the John-Nirenberg
space BMO on the real line has been noted by R. Coifman and Y. Meyer.
Specifically, [28] contains the following result: if 
 ⊆ C is a chord-arc curve then
its arc-length parametrization R  s !→ z(s) ∈ 
 satisfies z′(s) = eib(s) for L1-
a.e. s ∈ R for some real-valued function b ∈ BMO(R,L1) and, in the converse
direction, for any given real-function b ∈ BMO(R,L1) whose BMO semi-norm
is sufficiently small, the function R  s !→ z(s) := ´ s

0 eib(t) dt ∈ C is the arc-
length parametrization of a chord-arc curve (cf. also [29] for related results). Below
we further elaborate on this last part of Coifman-Meyer’s result. In particular, the
analysis contained in our next proposition (which may be thought of as a quantitative
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version of Proposition 2.11) is going to be instrumental in producing a large variety
of examples of δ-AR domains a little later (see Example 2.7).

Proposition 2.14 Let b ∈ BMO (R,L1) be a real-valued function with

‖b‖BMO (R,L1) < 1 (2.265)

and introduce

� := ‖b‖BMO (R,L1)

1 − ‖b‖BMO (R,L1)

∈ [0,∞). (2.266)

Define z : R→ C by setting

z(s) :=
ˆ s

0
eib(t) dt for each s ∈ R. (2.267)

Finally, consider 
 := z(R), the image of R under the mapping z(·). Then the
following statements are true.

(i) The set 
 is a �-CAC which contains the origin 0 ∈ C, and the mapping given
by R  s !−→ z(s) ∈ 
 is its arc-length parametrization. In addition,

‖z′‖BMO (R,L1) ≤ 2‖b‖BMO (R,L1). (2.268)

(ii) Denote by � the region of the plane that is lying to the left of the curve 


(relative to the orientation 
 inherits from its arc-length parametrization given
by R  s !→ z(s) ∈ 
). Then the set � is the image of the upper half-plane
under a global bi-Lipschitz homeomorphism of C, and

the Ahlfors regularity constant of ∂� and the local John con-
stants of � stay bounded as ‖b‖BMO (R,L1) −→ 0+. (2.269)

Furthermore, the geometric measure theoretic outward unit normal ν of �

satisfies

‖ν‖BMO(
,σ) ≤ 4�. (2.270)

(iii) With the piece of notation introduced in (2.97), if in place of (2.265) one now
assumes

‖b‖BMO2(R,L1) <
√

2, (2.271)

then 
 is a �2-CAC with
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�2 :=
‖b‖2

BMO2(R,L1)

2 − ‖b‖2
BMO2(R,L1)

∈ [0,∞). (2.272)

As a consequence of this and (2.229), in such a scenario one has

‖ν‖BMO(
,σ) ≤ 2
√

�2(2 + �2). (2.273)

Proof The fact that b is real-valued entails that eib(·) ∈ L∞(R,L1). In turn, this
membership guarantees that z(·) in (2.267) is a well-defined Lipschitz function on
R, with z(0) = 0 ∈ C, and such that z′(s) = eib(s) for L1-a.e. s ∈ R. In particular,

|z′(s)| = 1 for L1-a.e. s ∈ R. (2.274)

We claim that the inequalities in (2.219) hold. To see this, for each s1, s2 ∈ R we
write (keeping in mind that b is real-valued)

|z(s1)− z(s2)| =
∣∣∣
ˆ s1

0
eib(t) dt −

ˆ s2

0
eib(t) dt

∣∣∣ =
∣∣∣
ˆ s1

s2

eib(t) dt

∣∣∣

≤
∣∣∣
ˆ s1

s2

∣∣eib(t)
∣∣ dt

∣∣∣ = |s1 − s2|, (2.275)

justifying the first inequality in (2.219). To prove the second inequality in (2.219),
for each finite, non-trivial, sub-interval I of R introduce

bI :=
 

I

b(t) dt, mI := eibI , (2.276)

and note that the fact that b is real-valued implies |mI | = 1. Also, m−1
I = e−ibI .

Assume −∞ < s1 < s2 < +∞ and set I := [s1, s2]. We may then estimate

∣∣z(s1)− z(s2)−mI · (s1 − s2)
∣∣ =

∣∣∣
ˆ s2

s1

(z′(t)−mI ) dt

∣∣∣

=
∣∣∣
ˆ s2

s1

(
z′(t)m−1

I − 1
)

dt

∣∣∣ =
∣∣∣
ˆ s2

s1

(
ei(b(t)−bI ) − 1

)
dt

∣∣∣

≤
ˆ s2

s1

∣∣ei(b(t)−bI ) − 1
∣∣ dt ≤

ˆ s2

s1

|b(t)− bI | dt

= |s1 − s2|
 

I

|b(t)− bI | dt ≤ |s1 − s2|‖b‖BMO (R,L1)
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=
( �

1 + �

)
|s1 − s2|, (2.277)

where we have used the fact that Lipschitz functions are locally absolutely continu-
ous (hence, the fundamental theorem of calculus applies), as well as the elementary
inequality from (2.254). From (2.277), we obtain

|s1 − s2| = |mI · (s1 − s2)| ≤ |z(s1)− z(s2)| + |z(s1)− z(s2)−mI · (s1 − s2)|

≤ |z(s1)− z(s2)| +
( �

1 + �

)
|s1 − s2|, (2.278)

which then readily yields the second estimate in (2.219). In particular, (2.219)
implies that R  s !→ z(s) ∈ 
 is a bi-Lipschitz bijection. The argument so far
shows that 
 is a �-CAC passing through the origin 0 ∈ C, and R  s !−→ z(s) ∈ 


is its arc-length parametrization. To finish the treatment of the claims in item (i),
there remains to justify (2.268). To this end, given any finite interval I ⊂ R, set
bI := ffl

I
b(t) dt ∈ R and mI := eibI ∈ S1 (with the two memberships being a

consequence of the fact that b is real-valued). With z′I :=
ffl
I

z′(s) ds ∈ C we may
then estimate (bearing in mind that m−1

I = e−ibI and the inequality in (2.254))

 

I

∣∣z′(s)− z′I
∣∣ ds ≤ 2

 

I

∣∣z′(s)−mI

∣∣ ds = 2
 

I

∣∣z′(s)m−1
I − 1

∣∣ ds

= 2
 

I

∣∣ei(b(s)−bI ) − 1
∣∣ ds ≤ 2

 

I

|b(s)− bI | ds

≤ 2‖b‖BMO (R,L1), (2.279)

and (2.268) readily follows from this. Next, all but the last claim in item (ii) are
consequences of (2.227). The estimate in (2.270) is obtained by combining the first
inequality in (2.228) with (2.268) and (2.266).

To deal with the claims in item (iii), make the assumption that (2.271) holds and
define �2 as in (2.272). Whenever −∞ < s1 < s2 < +∞ and I := [s1, s2] we may
estimate

s2 − s1 ≤
√

(s2 − s1)2 +
∣∣∣
ˆ s2

s1

(b(t)− bI ) dt

∣∣∣
2

=
∣∣∣(s2 − s1)+ i

ˆ s2

s1

(b(t)− bI ) dt

∣∣∣

=
∣∣∣mI · (s2 − s1)+mI ·

ˆ s2

s1

i(b(t)− bI ) dt

∣∣∣
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≤ |z(s2)− z(s1)|

+
∣∣∣z(s2)− z(s1)−mI · (s2 − s1)−mI ·

ˆ s2

s1

i(b(t)− bI ) dt

∣∣∣. (2.280)

Note that the last term above may be written as

∣∣∣z(s2)− z(s1)−mI · (s2 − s1)−mI ·
ˆ s2

s1

i(b(t)− bI ) dt

∣∣∣

=
∣∣∣
ˆ s2

s1

(
z′(t)−mI −mI · i(b(t)− bI )

)
dt

∣∣∣

=
∣∣∣
ˆ s2

s1

(
z′(t)m−1

I − 1 − i(b(t)− bI )
)

dt

∣∣∣

=
∣∣∣
ˆ s2

s1

(
ei(b(t)−bI ) − 1 − i(b(t)− bI )

)
dt

∣∣∣. (2.281)

Also, for each θ ∈ R we may use (2.254) to write

|eiθ − 1 − iθ | =
∣∣∣
ˆ θ

0
i(eit − 1) dt

∣∣∣ ≤
∣∣∣
ˆ θ

0

∣∣i(eit − 1)
∣∣ dt

∣∣∣

≤
∣∣∣
ˆ θ

0
|t | dt

∣∣∣ = θ2/2. (2.282)

From (2.280), (2.281), (2.282), (2.97), and (2.272) we then conclude that

s2 − s1 ≤ |z(s2)− z(s1)| + 1

2

ˆ s2

s1

|b(t)− bI |2 dt

≤ |z(s2)− z(s1)| + 1
2 (s2 − s1)‖b‖2

BMO2(R,L1)

= |z(s2)− z(s1)| +
( �2

1 + �2

)
(s2 − s1). (2.283)

From (2.283) we conclude that the version of (2.219) with � replaced by �2 holds.
In particular, 
 is a �2-CAC. The proof of Proposition 2.14 is therefore complete.

��
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2.4 The Class of Delta-Flat Ahlfors Regular Domains

We begin by making the following definition which is central for the present work.
This should be compared with [61, Definitions 4.7-4.9, p. 2690] where related,
yet rather distinct, variants have been considered. Specifically, the definitions
in [61] contain additional geometric hypotheses and are designed to work well
when dealing with domains with compact boundaries (as opposed to the present
endeavors, where we shall mostly consider domains with unbounded boundaries).

Definition 2.15 Consider a parameter δ > 0. Call a nonempty, proper subset
� of R

n a δ-flat Ahlfors regular domain (or δ-flat AR domain, or
simply δ-AR domain) provided � is an Ahlfors regular domain (in the sense of
Definition 2.4) whose geometric measure theoretic outward unit normal ν satisfies
(with σ := Hn−1�∂�)

‖ν‖[BMO(∂�,σ)]n < δ. (2.284)

In the class of Ahlfors regular domains we always have ‖ν‖[BMO(∂�,σ)]n ≤ 1 (as
noted in (2.118)), so condition (2.284) is redundant when δ > 1. We will primarily
be interested in the case when δ is small. In particular, when δ ∈ (0, 1), Lemma 2.8
ensures that ∂� is an unbounded set.

Let us also note here that, as is visible from the first inequality in (2.119),
whenever � ⊆ R

n is a δ-AR domain with δ ∈ (0, 1) then its geometric measure
theoretic outward unit normal ν satisfies (with the infimum taken over all surface
balls � ⊆ ∂�)

inf
�⊆∂�

∣∣∣
 

�

ν dσ

∣∣∣ > 1 − δ. (2.285)

Conversely, given any Ahlfors regular domain � ⊆ R
n, it follows from the second

inequality in (2.119) that � is a δ-AR domain whenever

δ >
√

2

√

1 − inf
�⊆∂�

∣∣∣
 

�

ν dσ

∣∣∣, (2.286)

where the infimum is taken over all surface balls � ⊆ ∂�.
The discussion surrounding (2.285)–(2.286) shows that the condition that

the number inf
�⊆∂�

∣∣∣
 

�

ν dσ

∣∣∣ is sufficiently close to 1 (2.287)

is, in many regards, a good substitute for the demand that ‖ν‖[BMO(∂�,σ)]n is small.
Our next theorem describes some of the basic topological and geometric measure

theoretic properties of sets in the class of δ-flat Ahlfors regular domains, with
parameter δ ∈ (0, 1) small.
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Theorem 2.5 Let � ⊆ R
n, where n ∈ N satisfies n ≥ 2, be a δ-flat Ahlfors regular

domain (aka δ-AR domain), in the sense of Definition 2.15. Make the assumption
that δ ∈ (0, 1) is sufficiently small relative to the Ahlfors regularity constant of ∂�

and the dimension n.
Then � is a two-sided NTA domain, in particular, a UR domain satisfying a

two-sided local John condition (hence also a two-sided cork screw condition). In
all cases, the intervening constants may be controlled solely in terms of Ahlfors
regularity constant of ∂� and the dimension n.

In addition, �, �, ∂�, Rn \ �, and R
n \ � are all unbounded connected sets,

∂(� ) = ∂�, ∂(Rn \� ) = ∂�, and ∂(Rn \�) = ∂�.
Finally, in the case when n = 2, both � and R

2 \� are simply connected.

Proof All claims made in the statement of the theorem are consequences of
Corollary 2.2, Theorem 2.4, and Corollary 2.2. ��

Examples and counterexamples of δ-AR domains in R
n are as follows.

Example 2.1 The set � := R
n+ is a δ-AR domain for each δ > 0. Indeed, the

outward unit normal ν = −en = (0, . . . , 0,−1) to � is constant, hence its BMO
semi-norm vanishes. More generally, any half-space in R

n, i.e., any set of the form

�xo,ξ :=
{
x ∈ R

n : 〈x − xo, ξ 〉 > 0
}

with xo ∈ R
n and ξ ∈ Sn−1,

(2.288)

is a δ-AR domain for each δ > 0.
Consider next a sector of aperture θ ∈ (0, 2π) in the two-dimensional space, i.e.,

a planar set of the form

�θ :=
{
x ∈ R

2 \ {xo} : x−xo|x−xo| · ξ > cos(θ/2)
}

with xo ∈ R
2, θ ∈ (0, 2π), and ξ ∈ S1,

(2.289)

and abbreviate σθ := H1�∂�θ . Then a direct computation shows that the outward
unit normal vector ν to �θ , regarded as a complex-valued function, satisfies

‖ν‖BMO(∂�θ ,σθ ) = | cos(θ/2)|. (2.290)

Hence,

�θ is a δ-AR domain if and only if δ > | cos(θ/2)|. (2.291)

One last example in the same spirit is offered by the cone of aperture θ ∈ (0, 2π)

in R
n with vertex at the origin and axis along en, i.e.,

�θ :=
{
x ∈ R

n \ {0} : xn

|x| > cos(θ/2)
}
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= {
x = (x′, xn) ∈ R

n−1 × R : xn > φ(x′)
}
, (2.292)

where φ : Rn−1 → R is given by φ(x′) := |x′| cot(θ/2) for each x′ ∈ R
n−1. If

we abbreviate σθ := Hn−1�∂�θ , then a direct computation (using (2.295) below)
shows that the outward unit normal vector ν to �θ satisfies

‖ν‖[BMO(∂�θ ,σθ )]n = | cos(θ/2)|, hence once again

�θ is a δ-AR domain if and only if δ > | cos(θ/2)|.
(2.293)

Example 2.2 If � ⊆ R
n is a δ-AR domain for some δ > 0, then R

n \ � is also a
δ-AR domain (having the same topological and measure theoretic boundaries as �,
and whose geometric measure theoretic outward unit normal is the opposite of the
one for �). Also, we note that any rigid transformation of Rn preserves the class of
δ-AR domains. One may also check from definitions that there exists a dimensional
constant cn ∈ (0,∞) with the property that if � is a δ-AR domain in R

n for some
δ > 0 then �× R is a (cnδ)-AR domain in R

n+1.

Example 2.3 Given δ > 0, the region � := {
(x′, t) ∈ R

n−1 × R : t > φ(x′)
}

above the graph of a Lipschitz function φ : Rn−1 → R whose Lipschitz constant is
< 2−3/2δ is a δ-AR domain. To see this is indeed the case, it is relevant to note that

F : Rn → R
n defined for all x = (x′, xn) ∈ R

n−1 × R = R
n

as F(x′, xn) := x + φ(x′)en =
(
x′, xn + φ(x′)

) (2.294)

is a bijective function with inverse F−1 : Rn → R
n given at each point y = (y′, yn)

in R
n−1 ×R = R

n by F−1(y′, yn) = y−φ(y′)en =
(
y′, yn − φ(y′)

)
, and that both

F, F−1 are Lipschitz functions with constant≤ 1+‖∇φ‖[L∞(Rn−1,Ln−1)]n−1 . Hence,
� is the image of the upper half-space R

n+ under the bi-Lipschitz homeomorphism
F , which also maps Rn− onto R

n \� and R
n−1×{0} onto ∂�. This goes to show that

� is an open set satisfying a two-sided cork screw condition and with an Ahlfors
regular boundary, hence also an Ahlfors regular domain (cf. (2.47)). To conclude
that � is a δ-AR domain we need to estimate the BMO semi-norm of its geometric
measure theoretic outward unit normal. Since this satisfies

ν
(
x′, φ(x′)

) = (∇φ(x′),−1)
√

1 + |∇φ(x′)|2 for Ln−1-a.e. x′ ∈ R
n−1, (2.295)

it follows that for Ln−1-a.e. point x′ ∈ R
n−1 we have

ν
(
x′, φ(x′)

)+ en =
(

∇φ(x′)
√

1 + |∇φ(x′)|2 , 1 − 1
√

1 + |∇φ(x′)|2
)

(2.296)
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=
(

∇φ(x′)
√

1 + |∇φ(x′)|2 ,
|∇φ(x′)|2

√
1 + |∇φ(x′)|2(1 +√

1 + |∇φ(x′)|2)

)

.

Therefore, with σ := Hn−1�∂�, we may estimate

‖ν‖[BMO(∂�,σ)]n = ‖ν + en‖[BMO(∂�,σ)]n ≤ 2 ‖ν + en‖[L∞(∂�,σ)]n

= 23/2

∥∥∥∥∥
|∇φ|

(1 + |∇φ|2)1/4(1 +√
1 + |∇φ|2)1/2

∥∥∥∥∥
L∞(Rn−1,Ln−1)

≤ 23/2 ‖∇φ‖[L∞(Rn−1,Ln−1)]n−1 < δ. (2.297)

All things considered, this analysis establishes that � ⊆ R
n is a δ-AR domain, with

δ = O
(
‖∇φ‖[L∞(Rn−1,Ln−1)]n−1

)
as ‖∇φ‖[L∞(Rn−1,Ln−1)]n−1 −→ 0+. In addition,

since the Lipschitz constants of the functions F, F−1 stay bounded when the
Lipschitz constant of φ, i.e., ‖∇φ‖[L∞(Rn−1,Ln−1)]n−1 , stays bounded, we ultimately
conclude that

by taking ‖∇φ‖[L∞(Rn−1,Ln−1)]n−1 sufficiently small, matters
may be arranged so that the above set � ⊆ R

n is a δ-AR domain
with δ > 0 as small as desired, relative to the Ahlfors regularity
constant of ∂�.

(2.298)

Example 2.4 To illustrate the scope of Example 2.5 discussed above, work in the
two-dimensional setting and consider upper-graphs of piecewise linear functions
with (relatively) small slopes. Concretely, fix a parameter ε ∈ (0,∞) and suppose
φ : R→ R is a function whose graph is a concatenation of line segments with slope
belonging to [−ε, ε]. Then φ ∈ C 0(R) and its distributional derivative φ′ is a simple
function taking values in the interval [−ε, ε]. Then

φ′ ∈ L∞(R,L1) and ‖φ′‖L∞(R,L1) ≤ ε. (2.299)

As such, φ is a Lipschitz function. In particular, � := {
(x, y) ∈ R

2 : y > φ(x)
}

is an Ahlfors regular domain. If ν denotes its geometric measure theoretic outward
unit normal, and σ := H1�∂�, then (2.297) presently implies

‖ν‖[BMO(∂�,σ)]2 ≤ 23/2ε. (2.300)

Granted this, from (2.298) we then conclude that

given any δ ∈ (0, 1), by taking ε ∈ (0, 2−3/2δ) ensures that the
above set � ⊆ R

2 is a δ-AR domain with the Ahlfors regularity
constant of ∂� bounded independently of δ.

(2.301)
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Finally, we note that if the graph of φ : R → R is a concatenation of line
segments with slope alternating between +ε and −ε, then (2.300) together with
(2.290) imply

ε√
1 + ε2

≤ ‖ν‖[BMO(∂�,σ)]2 ≤ 23/2ε. (2.302)

Example 2.5 Given any δ > 0, the region � := {
(x′, t) ∈ R

n−1 × R : t > φ(x′)
}

above the graph of some BMO1 function φ : R
n−1 → R, (namely, a function

φ ∈ L1
loc(R

n−1,Ln−1) with ∇φ belonging to
[
BMO(Rn−1,Ln−1)

]n−1), satisfying
(for some purely dimensional constant Cn ∈ (1,∞))

‖∇φ‖[BMO(Rn−1,Ln−1)]n−1 < min{1, δ/Cn

}
(2.303)

is a δ-AR domain. Indeed, BMO1 domains are contained in the class of Zygmund
domains (cf. [61, Proposition 3.15, p. 2637]) which, in turn, are NTA domains
(cf. [66, Proposition 3.6, p. 94]). In particular, � satisfies a two-sided cork screw
condition, hence ∂∗� = ∂� (cf. (2.47)). From [61, Corollary 2.26, p. 2622] we
also know that ∂� is an Ahlfors regular set. Finally, [61, Proposition 2.27, p. 2622]
guarantees the existence of a purely dimensional constant C ∈ (0,∞) such that

‖ν‖[BMO(∂�,σ)]n (2.304)

≤ C ‖∇φ‖[BMO(Rn−1,Ln−1)]n−1 ·
(

1 + ‖∇φ‖[BMO(Rn−1,Ln−1)]n−1

)
.

Hence ‖ν‖[BMO(∂�,σ)]n < δ if (2.303) is satisfied with Cn := 2C, proving that a �

is indeed a δ-AR domain. In addition,

taking ‖∇φ‖[BMO(Rn−1,Ln−1)]n−1 small enough ensures that the
above set � ⊆ R

n is a δ-AR domain with δ > 0 as small as
wanted, relative to the Ahlfors regularity constant of ∂�.

(2.305)

To offer concrete, interesting examples and counterexamples pertaining to
BMO1, work in the two-dimensional setting, i.e., when n = 2. For a fixed arbitrary
number ε ∈ (0,∞) consider the continuous odd function φε : R→ R defined as

φε(x) :=
{

ε x
(

ln |x| − 1
)

if x ∈ R \ {0},
0 if x = 0,

for each x ∈ R. (2.306)

Then from [102, Exercise 2.127, p. 89] we know that the distributional derivative of
this function is φ′ε = ε ln | · |. Hence, for some absolute constant C ∈ (0,∞),

∥∥φ′ε
∥∥

BMO(R,L1)
≤ Cε (2.307)
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Fig. 2.1 The prototype of a non-Lipschitz δ-AR domain �ε for which δ = O(ε) as ε → 0+ and
such that the Ahlfors regularity constant of ∂�ε and the local John constants of �ε are uniformly
bounded in ε

so φε is indeed in BMO1. This being said, φε is not a Lipschitz function, so this
example is outside the scope of Example 2.3. Consequently, the region �ε lying
above the graph of φε is a non-Lipschitz δ-AR domain in the plane with δ = O(ε)

as ε → 0+ (as seen from (2.304) and (2.307)). See Fig. 2.1.
On the other hand, the distributional derivative of the function ψε : R → R

defined as

ψε(x) :=
{

ε x
(

ln |x| − 1
)

if x > 0,

0 if x ≤ 0,
for each x ∈ R, (2.308)

is ψ ′
ε = ε

(
ln |·|)1(0,∞) which fails to be in BMO(R, L1) (recall that the latter space

is not stable under multiplication by cutoff functions). Hence, ψε does not belong to
BMO1. In this vein, we wish to note that while the planar region �̃ε lying above the
graph of ψε continues to be an Ahlfors regular domain satisfying a two-sided local
John condition for each ε > 0, its (complex-valued) geometric measure theoretic
outward unit normal ν satisfies, due to the corner singularity at 0 ∈ ∂�̃ε and (2.290)
with θ = π/2,
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Fig. 2.2 A family
{
�̃ε

}
ε>0 of Ahlfors regular domains, with bounded Ahlfors regularity con-

stants, which does not contain a δ-AR domain with δ ∈ (0, 1/
√

2)

‖ν‖BMO(∂�̃ε ,̃σε)
≥ 1√

2
for each ε > 0, (2.309)

where σ̃ε := H1�∂�̃ε. Consequently, as ε → 0+, the set �̃ε never becomes a δ-AR
domain if δ ∈ (0, 1/

√
2). See Fig. 2.2.

Example 2.6 From [72, Theorem 2.1, p. 515] and [72, Remark 2.2, pp. 514-515]
we know that there exist dimensional constants δn ∈ (0,∞) and Cn ∈ (0,∞), with
the property that if � ⊆ R

n is a δo-Reifenberg flat domain, in the sense of [72,
Definition 1.2, pp. 509–510] with R = ∞ and with 0 < δo ≤ δn, and if the surface
measure σ := Hn−1�∂� satisfies

σ
(
B(x, r) ∩ ∂�

) ≤ (1 + δo)υn−1r
n−1

for each x ∈ ∂� and r > 0,
(2.310)

(with υn−1 denoting the volume of the unit ball in R
n−1), then � is an Ahlfors

regular domain whose geometric measure theoretic outward unit normal ν satisfies
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‖ν‖[BMO(∂�,σ)]n ≤ Cn

√
δo. (2.311)

See also [26, p. 11] and [123] in this regard. Consequently, given any number δ > 0,
any δo-Reifenberg flat domain with 0 < δo < min

{
δn, (δ/Cn)2

}
which satisfies

(2.310) is a δ-AR domain.

Example 2.7 Denote by � the region of the plane lying to one side of 
, a �-CAC in
C. Then Proposition 2.10 implies that � is a δ-AR domain for any δ > 2

√
�(2 + �).

To offer a concrete example, consider a real-valued function b ∈ BMO (R,L1)

with ‖b‖BMO (R,L1) < 1 and define z : R→ C by setting

z(s) :=
ˆ s

0
eib(t) dt for each s ∈ R. (2.312)

If � ⊆ C ≡ R
2 is the region of the plane to one side of the curve 
 := z(R), then

Proposition 2.10 and Proposition 2.14 imply that � is a connected Ahlfors regular
domain with ∂� = 
, and whose geometric measure theoretic outward unit normal
ν to � is given by

ν(z(s)) = −ieib(s) for L1-a.e. s ∈ R. (2.313)

In addition, if we set σ := H1�∂� then (2.270) gives

‖ν‖BMO(∂�,σ) ≤
4‖b‖BMO (R,L1)

1 − ‖b‖BMO (R,L1)

. (2.314)

As a consequence, � is a δ-AR domain in R
2 for each δ ∈ (0,∞) bigger than the

number in the right-hand side of (2.314).
For instance, we may take b to be a small multiple of the logarithm on the real

line, i.e.,

b(s) := ε ln |s| for each s ∈ R \ {0},
with 0 < ε < ‖ln | · |‖−1

BMO (R,L1)

(2.315)

(e.g., the computation on [55, p. 520] shows that ‖ln | · |‖BMO (R,L1) ≤ 3 ln(3/2),

so taking 0 < ε < [3 ln(3/2)]−1 ≈ 0.8221 will do). Such a choice makes b a
real-valued function with small BMO semi-norm which nonetheless maps R \ {0}
onto R. In view of the formula given in (2.313), this goes to show that Gauss’ map

  z !→ ν(z) ∈ S1 is surjective, which may be interpreted as saying that the
unit normal rotates arbitrarily much along the boundary. In particular, the chord-arc
curve 
 produced in this fashion, which is actually the topological boundary of a
δ-AR domain � ⊆ R

2 (with δ > 0 which can be made as small as one pleases by
taking ε > 0 appropriately small), fails to be a rotation of the graph of a function



2.4 The Class of Delta-Flat Ahlfors Regular Domains 93

Fig. 2.3 Zooming in the curve s !→ z(s) at the point 0 ∈ C

(even locally, near the origin). This being said, from Proposition 2.10 we know that

the set � ⊆ R
2 is actually bi-Lipschitz homeomorphic to the

upper half-plane.
(2.316)

Figure 2.3 depicts an unbounded δ-AR domain � ⊆ R
2 which is not the upper-

graph of a function (in any system of coordinates isometric to the standard one in
the plane). The set � is the region lying to one side of the curve 
 = z(R) with
R  s !→ z(s) ∈ C defined by the formula given in (2.312) for the real-valued
function b as in (2.315) with 0 < ε < ‖ln | · |‖−1

BMO (R,L1)
. As visible from (2.314),

we have δ = O(ε) as ε → 0+.
In the above pictures we have taken ε = 0.4 < 1

2 ‖ln | · |‖−1
BMO (R,L1)

and

progressively zoomed in at the point 0 ∈ ∂�. The boundary of the set � is the
plot of the curve R  s !→ z(s) ∈ C with

z(s) =
ˆ s

0
eiε ln |t | dt =

{
(iε + 1)−1s eiε ln |s| if s ∈ R \ {0},
0 ∈ C if s = 0.

(2.317)
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Here, (iε+1)−1 is merely a complex constant, s is the scaling factor that determines
how far z(s) is from the origin (specifically, |z(s)| = |s|/√ε2 + 1), and eiε ln |s| is the
factor that determines how the two spirals (making up ∂�\ {0}, namely z((−∞, 0))

and z((0,+∞))) spin about the point 0 ∈ C. Note that |z(s)| growths linearly (with
respect to s) which is very fast compared to the spinning rate (which is logarithmic)
and this is why we have chosen to zoom in at the point 0 ∈ C in several distinct
frames to get a better understanding of how ∂� looks near 0. The fact that ∂� is
symmetric with respect to the origin is a direct consequence of R  s !→ z(s) ∈ C

being odd. If z(s) = reiθ is the polar representation of (2.317) for s ∈ (0,∞) then,
by taking ω := 2π − arccos

( 1√
ε2+1

)
, it follows that θ = ω + ε ln |s| and that

r = |z(s)| = (ε2 + 1)−1/2 |s| = (ε2 + 1)−1/2e(θ−ω)/ε.
In polar coordinates, the curve 
+ := z

(
(0,+∞)

)
has the equation r = αeβθ

with α := (ε2 + 1)−1/2e−ω/ε ∈ (0,∞) and β := ε−1 ∈ (0,∞) which identifies it
precisely as a logarithmic spiral. In a similar fashion, the polar equation of the curve

− := z

(
(−∞, 0)

)
is r = αeβθ with α := (ε2 + 1)−1/2e−(ω+π)/ε ∈ (0,∞) and

β := ε−1 ∈ (0,∞) which once again identifies it as a logarithmic spiral.
The MATLAB code that generated these pictures reads as follows:

s = [−100 : 0.001 : 100];
p = 0.4;
z=(1/(i*p+1.0))*s.*exp(i*p*log(abs(s)));
plot(real(z), imag(z),’LineWidth’, 2), grid on, axis equal

Finally, we wish to elaborate on (2.316) and, in the process, get independent
confirmation of (2.227) and (2.269). First, we observe that the δ-AR domain � ⊆ C

described above is the image of the upper half-plane R
2+ under map F : C → C

defined for each z ∈ C by

F(z) :=
{

(iε + 1)−1z eiε ln |z| if z ∈ C \ {0},
0 ∈ C if z = 0.

(2.318)

Note that F is a bijective, odd function, with inverse F−1 : C → C given at each
ζ ∈ C by

F−1(ζ ) =
{

(iε + 1)ζ e−iε ln(|ζ |
√

ε2+1) if ζ ∈ C \ {0},
0 ∈ C if ζ = 0.

(2.319)

Also, whenever z1, z2 ∈ C are such that |z1| ≥ |z2| > 0 we may estimate

|F(z1)− F(z2)| ≤ 1√
ε2 + 1

{
|z1 − z2| + |z2|

∣∣eiε ln |z1| − eiε ln |z2|∣∣
}

(2.320)
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and

∣∣eiε ln |z1| − eiε ln |z2|∣∣ = ∣∣eiε(ln |z1|−ln |z2|) − 1
∣∣ ≤ ε

∣∣ ln |z1| − ln |z2|
∣∣

= ε ln
( |z1||z2|

) ≤ ε
( |z1||z2| − 1

) = ε
( |z1|−|z2||z2|

)

≤ ε
|z1−z2||z2| , (2.321)

using the fact that |eiθ − 1| ≤ |θ | for each θ ∈ R (cf. (2.254)) and 0 ≤ ln x ≤ x − 1
for each x ∈ [1,∞). From this we then eventually deduce that

|F(z1)− F(z2)| ≤ ε + 1√
ε2 + 1

|z1 − z2| for all z1, z2 ∈ C, (2.322)

hence F is Lipschitz. The same type of argument also shows that F−1 is also
Lipschitz, namely

|F−1(ζ1)− F−1(ζ2)| ≤ (ε + 1)
√

ε2 + 1 |ζ1 − ζ2| for all ζ1, ζ2 ∈ C, (2.323)

so we ultimately conclude that F : C → C is an odd bi-Lipschitz homeomorphism
of the complex plane. In summary,

the δ-AR domain � ⊆ C defined as the region of the complex
plane lying to the left of the curve R  s !→ z(s) ∈ C defined in
(2.317) is in fact the image of the upper half-plane R2+ under the
odd bi-Lipschitz homeomorphism F : C→ C from (2.318).

(2.324)

Note that F also maps the lower half-plane R
2− onto R

2 \ �, and R × {0} onto
∂�. This is in agreement with (2.227). Moreover, since the Lipschitz constants of
F, F−1 stay bounded uniformly in ε ∈ (0, 1) (as is clear from (2.322), (2.323))
while, as noted earlier, δ = O(ε) as ε → 0+, we see that (as predicted in (2.269))

by taking ε ∈ (0, 1) sufficiently small, matters may be arranged
so the above set � ⊆ R

2 is a δ-AR domain with δ > 0 as small
as one wishes, relative to the Ahlfors regularity constant of ∂�.

(2.325)

Example 2.8 We may also construct examples of δ-AR domains exhibiting multiple
spiral points. Specifically, suppose −∞ < t1 < t2 < · · · < tN−1 < tN < +∞, for
some N ∈ N, and consider

b(t) := ε

N∑

j=1

ln |t − tj | for each t ∈ R \ {t1, . . . , tN }, (2.326)
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for some sufficiently small ε > 0. Next, define z : R → C as in (2.312) for this
choice of the function b. Then Proposition 2.14 and Proposition 2.10 imply that the
region � in R

2 lying to one side of the curve 
 := z(R) is indeed a δ-AR domain
and, in fact, δ = O(ε) as ε → 0+. Moreover, from (2.313) and (2.326) we see that
∂� = 
 looks like a spiral at each of the points z(t1), . . . , z(tN ) (cf. Fig. 1.1). Yet,
once again, there exists a bi-Lipschitz homeomorphism F : R2 → R

2 such that
� = F(R2+), R2 \ � = F(R2−), and ∂� = F(R × {0}) (cf. (2.227)). Also, (2.269)
presently entails

by choosing ε ∈ (0, 1) appropriately small, we may ensure that
� is a δ-AR domain in R

2 with δ > 0 as small as desired, relative
to the Ahlfors regularity constant of ∂�.

(2.327)

Example 2.9 We wish to note that the construction in Example 2.8 may be modified
as to allow infinitely many spiral points. Specifically, assume {tj }j∈N ⊆ R is a given
sequence of real numbers and consider

0 < λj < 2−j min
{

1,
∥∥ln | · −tj |

∥∥−1
L1([−j,j ],L1)

}
for each j ∈ N. (2.328)

Also, suppose 0 < ε < ‖ln | · |‖−1
BMO(R,L1)

and define

b(t) := ε

∞∑

j=1

λj ln |t − tj | for each t ∈ R \ {tj }j∈N. (2.329)

The choice in (2.328) ensures that the above series converges absolutely in
L1(K,L1) for any compact subset K of R. This has two notable consequences.
First, the series in (2.329) converges absolutely in a pointwise sense L1-a.e. in R; in
particular, b is well defined at L1-a.e. point in R and takes real values. Second,

‖b‖BMO(R,L1) ≤ ε

∞∑

j=1

λj

∥∥ln | · −tj |
∥∥

BMO(R,L1)

= ε ‖ln | · |‖BMO(R,L1)

∞∑

j=1

λj < 1. (2.330)

Granted this, if we now define z : R→ C as in (2.312) for this choice of the function
b then Proposition 2.14 and Proposition 2.10 imply that the region � in R

2 lying to
one side of the curve 
 := z(R) is a δ-AR domain with δ = O(ε) as ε → 0+. In
fact, there exists a bi-Lipschitz homeomorphism F : R2 → R

2 as in (2.227), and
(2.269) holds. We claim that matters may be arranged so that ∂� = 
 develops a
spiral at each of the points {z(tj )}j∈N. To this end, start by making the assumption
that the sequence {tj }j∈N does not have any finite accumulation points. Inductively,
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we may then select a sequence of small positive numbers {rj }j∈N ⊆ (0, 1) with the
property that the family of intervals Ij := (tj − rj , tj + rj ), j ∈ N, are mutually
disjoint. For each j ∈ N consider the nonempty compact set Kj := [−j, j ]\Ij and,
in addition to (2.328), impose the condition that

0 < λj < 2−j
∥∥ln | · −tj |

∥∥−1
L∞(Kj ,L1)

for each j ∈ N. (2.331)

Pick now jo ∈ N arbitrary. Then for each t ∈ Ijo decompose b(t) = f (t) + g(t)

where

f (t) := ελjo ln |t − tjo | and g(t) := ε
∑

j∈N\{jo}
λj ln |t − tj |. (2.332)

In view of (2.331), the series defining g converges uniformly on Ijo , hence g is
a continuous and bounded function on Ijo . Since f is continuous and unbounded
from below on (tjo , tjo + rjo ), it follows that the restriction of b to (tjo , tjo + rjo ) is
continuous and unbounded from below. This implies that b

(
(tjo , tjo + rjo )

)
contains

an interval of the form (−∞, ajo ), for some ajo ∈ R. Similarly, b
(
(tjo − rjo , tjo )

)

contains an interval of the form (−∞, cjo ), for some cjo ∈ R. Based on this and
(2.313) we then conclude that the normal ν(z(t)) completes infinitely many rotations
on the unit circle as t approaches tjo either from the left or from the right. Hence,
∂� = 
 develops a spiral at the point z(tjo ).

Example 2.10 Here we discuss a higher-dimensional analogue of (2.324). To set
the stage, fix an integer n ∈ N with n ≥ 3. With � ⊆ R

2 ≡ C denoting the region
of the plane lying to the left of the curve R  s !−→ z(s) ∈ C defined in (2.317),
consider

�̃ := R
n−2 ×� ⊆ R

n. (2.333)

Bring back the odd bi-Lipschitz homeomorphism F : R2 ≡ C → C ≡ R
2 from

(2.318), and consider

F̃ : Rn → R
n defined as F̃ (x) := (

x′′, F (xn−1, xn)
)

for each point x = (x′′, xn−1, xn) ∈ R
n−2 × R× R.

(2.334)

Then one may check without difficulty that

F̃ is an odd bi-Lipschitz homeomorphism of Rn, and the set �̃

defined in (2.333) is, in fact, the image of the upper half-space
R

n+ under the mapping F̃ : Rn → R
n.

(2.335)

From this and Lemma 2.2 we may then conclude that
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�̃ is an Ahlfors regular domain, with the Ahlfors regularity
constant of ∂�̃ controlled solely in terms of the dimension n.

(2.336)

Since, as noted earlier, F also maps the lower half-plane R
2− onto R

2 \ �, and
R× {0} onto ∂�, it follows from (2.334) and (2.333) that

F̃ (Rn−) = R
n \ �̃ and F̃ (Rn−1 × {0}) = ∂�̃. (2.337)

From (2.25) and (2.336) we also know that

the geometric measure theoretic outward unit normal ν̃ to the set
�̃ := R

n−2 × � ⊆ R
n is given by ν̃(x) = (0′′, ν(xn−1, xn)) for

(Ln−2 ⊗H1)-a.e. point x = (x′′, xn−1, xn) ∈ ∂�̃ = R
n−2 × ∂�,

where 0′′ ∈ R
n−2 and ν is the geometric measure theoretic outward

unit normal to the set �.

(2.338)

From this it readily follows that there exists some purely dimensional constant
Cn in (0,∞) such that

‖̃ν‖[BMO(∂�̃,̃σ )]n ≤ Cn‖ν‖BMO(∂�,σ). (2.339)

By combining (2.339) with (2.314) we arrive at the conclusion that, for some purely
dimensional constant Cn ∈ (0,∞),

‖̃ν‖[BMO(∂�̃,̃σ )]n ≤ Cn

4‖b‖BMO (R,L1)

1 − ‖b‖BMO (R,L1)

, (2.340)

where σ̃ := Hn−1�∂�̃. As a consequence, �̃ is a δ-AR domain in R
n for each

δ ∈ (0,∞) bigger than the number in the right-hand side of (2.340). In particular,
choosing the function b as in (2.315) allows us to conclude that �̃ is a δ-AR domain
in R

n with δ = O(ε) as ε → 0+.
In addition, since the Lipschitz constants of F̃ , F̃−1 stay bounded uniformly in

the parameter ε ∈ (0, 1) (as is clear from (2.334), (2.322), (2.323)) while, as just
noted, δ = O(ε) as ε → 0+, we see that

by taking ε ∈ (0, 1) sufficiently small, matters may be arranged
so that the set �̃ ⊆ R

n defined in (2.333) is a δ-AR domain with
δ > 0 as small as one wishes, relative to the Ahlfors regularity
constant of ∂�̃.

(2.341)

Example 2.11 All sets considered so far have been connected. In the class of
disconnected sets in the complex plane consider a double sector of arbitrary aperture
θ ∈ (0, π), i.e., a set of the form
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� :=
{
x ∈ R

2 \ {x0} :
∣∣ x−x0|x−x0| · ξ

∣∣ > cos(θ/2)
}

with x0 ∈ R
2, θ ∈ (0, π), and ξ ∈ S1,

(2.342)

and abbreviate σ := H1�∂�. Then simple symmetry considerations show that for
each r ∈ (0,∞) the geometric measure theoretic outward unit normal ν to �

satisfies
ffl
B(xo,r)∩∂�

ν dσ = 0, hence

‖ν‖[BMO(∂�,σ)]2 ≥
 

B(xo,r)∩∂�

∣∣∣ν −
 

B(xo,r)∩∂�

ν dσ

∣∣∣ dσ

=
 

B(xo,r)∩∂�

|ν| dσ = 1. (2.343)

As a consequence,

the double sector � from (2.342) is a disconnected Ahlfors
regular domain which satisfies a two-sided local John condition
but fails to be a δ-AR domain for each δ ∈ (0, 1].

(2.344)

We may even arrange matters so that the set in question has a disconnected
boundary. Specifically, given any two distinct points x0, x1 ∈ R

2, along with an
angle θ ∈ (0, π), and a direction vector ξ ∈ S1, such that

x1 − x0

|x1 − x0| · ξ < cos(θ/2), (2.345)

consider

� :=
{
x ∈ R

2 \ {x0} : x − x0

|x − x0| · ξ > cos(θ/2)
}

(2.346)

⋃{
x ∈ R

2 \ {x1} : x − x1

|x − x1| · (−ξ) > cos(θ/2)
}
.

This is the union of two planar sectors with vertices at x0 and x1, axes along ξ and
−ξ , and common aperture θ . The condition in (2.345) ensures that said sectors are
disjoint, hence � is disconnected, with disconnected boundary. Note that if we set
σ := H1�∂� and ν stands for the geometric measure theoretic outward unit normal
to � then

lim
r→∞

 

B(xo,r)∩∂�

ν dσ = 0 (2.347)

which, much as in (2.343), once again implies that ‖ν‖[BMO(∂�,σ)]2 ≥ 1. Conse-
quently,



100 2 Geometric Measure Theory

the set � from (2.346) is an Ahlfors regular domain satisfying a
two-sided local John condition which is disconnected and has a
disconnected boundary, and which fails to be a δ-AR domain for
each δ ∈ (0, 1].

(2.348)

Similar considerations apply virtually verbatim in R
n with n ≥ 2 (working with

cones in place of sectors).
These examples are particularly relevant in the context of Theorem 2.4.

2.5 The Decomposition Theorem

Our first result in this section, which slightly refines work in [61], identifies general
geometric conditions on a set � ⊆ R

n of locally finite perimeter so that the inner
product between the integral average ν� of outward unit normal ν to � in any given
surface ball � ⊆ ∂� and the “chord” x − y with x, y ∈ � may be controlled in
terms of the radius of said ball and the BMO semi-norm of the outward unit normal
ν.

Proposition 2.15 Let � ⊆ R
n be an Ahlfors regular domain. Set σ := Hn−1�∂�

and denote by ν the geometric measure theoretic outward unit normal to �. Then
there exists C∗ ∈ (0,∞) depending only on the dimension n and the Ahlfors
regularity constant of ∂� such that for each dilation parameter λ ∈ [1,∞) one
has

sup
z∈∂�

sup
R>0

sup
x,y∈�(z,λR)

R−1|〈x − y, ν�(z,R)〉| ≤ C∗λ
(
1 + log2 λ)‖ν‖[BMO(∂�,σ)]n ,

(2.349)
where ν�(z,R) :=

ffl
�(z,R)

ν dσ for each z ∈ ∂� and R > 0.

Proof Let δ∗ ∈ (0, 1) be the threshold associated with the set � as in Theorem 2.3.
In particular, δ∗ depends only on n and the Ahlfors regularity constant of ∂�.

Case I. Assume ‖ν‖[BMO(∂�,σ)]n ≥ δ∗. For each location z ∈ ∂�, each radius
R ∈ (0,∞), each dilation parameter λ ∈ [1,∞), and any points x, y ∈ �(z, λR)

we then have

R−1|〈x − y, ν�(z,R)〉| ≤ R−1|x − y||ν�(z,R)| ≤ R−1(2λR)

≤ C∗λ
(
1 + log2 λ)‖ν‖[BMO(∂�,σ)]n (2.350)

provided C∗ := 2δ−1∗ . This establishes (2.349) in this case.
Case II. Assume ‖ν‖[BMO(∂�,σ)]n < δ∗. In this scenario, (2.185) ensures that
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� satisfies a two-sided local John condition with constants which
depend only on the dimension n and the Ahlfors regularity
constant of ∂�.

(2.351)

Granted this, [61, Corollary 4.15, pp. 2697–2698] applies and guarantees the
existence of some constant C ∈ (0,∞) depending only on n and the Ahlfors
regularity constant of ∂� such that

sup
x∈∂�

sup
R>0

sup
y∈�(x,2R)

R−1|〈x − y, ν�(x,R)〉| ≤ C ‖ν‖[BMO(∂�,σ)]n . (2.352)

Fix a number λ ∈ [1,∞) along with an arbitrary point z ∈ ∂�, R > 0, and
x, y ∈ �(z, λR). Then |x − y| ≤ 2λR, hence y ∈ �(x, 2λR), so

|〈x − y, ν�(z,R)〉| ≤ |〈x − y, ν�(x,2λR)〉| + |x − y||ν�(x,2λR) − ν�(z,R)|

≤ CλR ‖ν‖[BMO(∂�,σ)]n + 2λR|ν�(x,2λR) − ν�(z,3λR)|

+ 2λR|ν�(z,3λR) − ν�(z,R)|

≤ CRλ
(
1 + log2 λ) ‖ν‖[BMO(∂�,σ)]n , (2.353)

by (2.352) and elementary estimates involving integral averages (cf. (2.103),
(2.105)). After dividing the most extreme sides by R, then taking the supremum
over all z ∈ ∂�, R > 0, and x, y ∈ �(z, λR), we arrive at (2.349). ��

Remark 2.2 It is natural to attempt to quantify the global “tilt” of a given Ahlfors
regular domain � ⊆ R

n, envisioned as the maximal deviation of a chord x − y with
x, y ∈ � where � is an arbitrary surface ball on ∂� from being perpendicular to ν�,
the integral average in � of the geometric measure theoretic outward unit normal ν

to �.
More specifically, we shall define the global tilt of � with amplitude λ ∈ [1,∞)

to be

tλ(�) := sup
z∈∂�

sup
R>0

sup
x,y∈�(z,λR)

∣∣∣
〈
ν�(z,R) ,

x − y

λR

〉∣∣∣, (2.354)

where for each z ∈ ∂� and R > 0 we have set ν�(z,R) := ffl
�(z,R)

ν dσ , with

σ := Hn−1�∂� playing the role of surface measure on ∂�.
As an example, consider the cone of aperture θ ∈ (0, 2π) in R

n with vertex at
the origin and axis along en, i.e.,

�θ :=
{
x ∈ R

n \ {0} : xn

|x| > cos(θ/2)
}
. (2.355)
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Denote by ν the geometric measure theoretic outward unit normal to �θ and
abbreviate σθ := Hn−1�∂�θ . It may then be checked directly from the definition
given in (2.354) that, on the one hand,

tλ(�θ ) = | cos(θ/2)| for each λ ∈ [1,∞). (2.356)

On the other hand, as noted in (2.293), the outward unit normal vector ν to �θ

satisfies

‖ν‖[BMO(∂�θ ,σθ )]n = | cos(θ/2)|. (2.357)

In particular, in this special case we simply have

tλ(�θ ) = ‖ν‖[BMO(∂�θ ,σθ )]n for each λ ∈ [1,∞). (2.358)

For a general Ahlfors regular domain � ⊆ R
n, the best we can hope for is merely

to control the global tilt tλ(�), for each fixed amplitude parameter λ ∈ [1,∞),
in terms of the BMO-seminorm of the geometric measure theoretic outward unit
normal ν to �.

Remarkably, this is possible, as (2.349) asserts that there exists some constant
C∗ ∈ (0,∞) depending only on the dimension n and the Ahlfors regularity constant
of ∂� such that for each amplitude parameter λ ∈ [1,∞) we have

tλ(�) ≤ C∗
(
1 + log2 λ)‖ν‖[BMO(∂�,σ)]n . (2.359)

We continue by discussing a basic decomposition theorem. The general idea
originated in [123, Proposition 5.1, p. 212] where such a decomposition result
has been stated for surfaces of class C 2, via a proof which makes essential use
of smoothness, though the main quantitative aspects only depend on the rough
character of said surface. A formulation in which the C 2 smoothness assumption
is replaced by Reifenberg flatness is stated in [73, Theorem 4.1, p. 398] (see also
the comments on [26, p. 66]). A yet more potent version of such a decomposition
result has been proved in [61, Theorem 4.16, p. 2701], starting with a different set of
hypotheses which, a priori, do not specifically require the domain in question to be
Reifenberg flat. The formulation of said result does require that the set in question
satisfies a two-sided local John condition.

Below we present the most general variant of this result, valid in the class of
Ahlfors regular domains � ⊆ R

n for which the BMO semi-norm of its geometric
measure theoretic outward unit normal is suitably small relative to the Ahlfors
regularity constant of ∂�. Stated as such, this result is well suited to the applications
we have in mind.

Theorem 2.6 Let � ⊆ R
n be an Ahlfors regular domain. Set σ := Hn−1�∂�

and denote by ν the geometric measure theoretic outward unit normal to �. Then
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there exist C0, C1, C2, C3, C4 ∈ (0,∞), depending only on the dimension n and the
Ahlfors regularity constant of ∂�, with the following significance.

For each choice of a function

φ : (0, 1) −→ (0,∞) (2.360)

with

lim
t→0+

φ(t) = 0 and lim
t→0+

φ(t)

t
∈ (1,∞], (2.361)

there exists a threshold δ∗ ∈
(
0, min{1, 1/C0}

)
, depending only on the dimension n,

the Ahlfors regularity constant of ∂�, and the function φ, such that whenever

‖ν‖[BMO(∂�,σ)]n < δ < δ∗ (2.362)

one has the following property:
For every location x0 ∈ ∂� and every scale r > 0 there exists a unit vector

�nx0,r ∈ Sn−1 along with a Lipschitz function

h : H(x0, r) := 〈�nx0,r 〉⊥ → R with sup
y1,y2∈H(x0,r)

y1 �=y2

|h(y1)− h(y2)|
|y1 − y2| ≤ C0φ(δ),

(2.363)
whose graph

G := {
x = x0 + x′ + t �nx0,r : x′ ∈ H(x0, r), t = h(x′)

}
(2.364)

(in the coordinate system x = (x′, t) ⇔ x = x0+x′ + t �nx0,r , x′ ∈ H(x0, r), t ∈ R)
is a good approximation of ∂� inside the cylinder

C(x0, r) := {
x0 + x′ + t �nx0,r : x′ ∈ H(x0, r), |x′| < r, |t | < r

}
(2.365)

in the precise sense described below:
First, with # denoting the symmetric set-theoretic difference and with υn−1

denoting the volume of the unit ball in R
n−1,

Hn−1 (C(x0, r) ∩ (∂�#G)) ≤ C1υn−1r
n−1e−C2φ(δ)/δ. (2.366)

Second, there exist two disjoint σ -measurable subsets of ∂�, call them G(x0, r) and
E(x0, r), such that

C(x0, r) ∩ ∂� = G(x0, r) ∪ E(x0, r), (2.367)
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G(x0, r) ⊆ G, σ
(
E(x0, r)

) ≤ C1υn−1r
n−1e−C2φ(δ)/δ. (2.368)

Third, if � : Rn → H(x0, r) is defined by �(x) := x′ for x = x0+x′ + t �nx0,r ∈ R
n

with x′ ∈ H(x0, r) and t ∈ R, then

∣∣x − (
x0 +�(x)+ h(�(x))�nx0,r

) ∣∣ ≤ 2C0φ(δ) · dist(�(x), �(G(x0, r))
)

for each point x ∈ E(x0, r),

(2.369)
and

C(x0, r) ∩ ∂� ⊆ {
x0 + x′ + t �nx0,r : |t | ≤ C0δr, x′ ∈ H(x0, r)

}
, (2.370)

�
(C(x0, r) ∩ ∂�

) = {
x′ ∈ H(x0, r) : |x′| < r

}
. (2.371)

Fourth, if

C+(x0, r) := {
x0 + x′ + t �nx0,r : x′ ∈ H(x0, r), |x′| < r, −r < t < −C0δ r

}
,

C−(x0, r) := {
x0 + x′ + t �nx0,r : x′ ∈ H(x0, r), |x′| < r, C0δ r < t < r

}
,

(2.372)
(having 0 < δ < δ∗ < 1/C0 ensures that C± �= ∅) then

C+(x0, r) ⊆ � and C−(x0, r) ⊆ R
n \�. (2.373)

Fifth,

any line in the direction of �nx0,r passing through a point on
G(x0, r) intersects ∂� ∩ C(x0, r) only at said point.

(2.374)

Sixth, with �(x0, r) := B(x0, r) ∩ ∂� one has

(
1 − C3δ − C1exp

(− C2φ(δ)/δ
))

υn−1r
n−1 (2.375)

≤ σ
(
�(x0, r)

) ≤
(

1 + C3φ(δ)+ C1exp
(− C2φ(δ)/δ

))
υn−1r

n−1.

Finally, if ν̃ is the unit normal vector to the Lipschitz graph G, pointing toward
the upper-graph of the function h then

at Hn−1-a.e. point x ∈ ∂� ∩ G one has either ν(x) = ν̃(x) or
ν(x) = −ν̃(x),

(2.376)

ν(x) = ν̃(x) atHn−1-a.e. point x ∈ G(x0, r), (2.377)
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σ
({

x ∈ G ∩�(x0, 4r) : ν(x) = −ν̃(x)
}) ≤ C4 · φ(δ)rn−1, (2.378)

and
 

�(x0,4r)

(
sup
y∈G

|ν(x)− ν̃(y)|
)
dσ(x) ≤ C4 · φ(δ). (2.379)

Before proving Theorem 2.6 we make a remark and record one of its immediate
consequences in Corollary 2.3 below.

Remark 2.3 It is well known (cf., e.g., [47, Theorem 1, p. 251]) that there exists
some Cn ∈ (0,∞) with the property that for each real-valued Lipschitz function
h : H → R, where H is a hyperplane in R

n and each given ε > 0 there exists
h̃ ∈ C 1(H) with Lipschitz constant no larger than Cn times the Lipschitz constant
of h such that

Hn−1
({

x ∈ H : h(x) �= h̃(x) or (∇h)(x) �= (∇h̃)(x)
})

< ε. (2.380)

Based on this, Theorem 2.6 is readily seen to self-improve to a version of itself in
which the function in (2.363) is, additionally, of class C 1.

Here is the corollary of Theorem 2.6 alluded to earlier.

Corollary 2.3 Let � ⊆ R
n be an Ahlfors regular domain. Set σ := Hn−1�∂� and

denote by ν the geometric measure theoretic outward unit normal to �. Then there
exists some C ∈ (0,∞) which depends only on the dimension n and the Ahlfors
regularity constant of ∂� with the property that

sup
x∈∂�, r>0

∣∣∣∣∣
σ
(
�(x, r)

)

υn−1rn−1 − 1

∣∣∣∣∣
≤ C‖ν‖[BMO(∂�,σ)]n

(
1 − ln ‖ν‖[BMO(∂�,σ)]n

)

(2.381)
where υn−1 stands for the volume of the unit ball in Rn−1.

Proof In the context of (2.375) choose

φ : (0, 1) → (0,∞) given for each t ∈ (0, 1)

by φ(t) := C −1
2 t ln(1/t).

(2.382)

This proves that there exists a threshold δ∗ ∈ (0, 1), depending only on the
dimension n and the Ahlfors regularity constant of ∂�, such that whenever (2.362)
holds it follows that for each x ∈ ∂� and each r > 0 we have

(
1 − (C1 + C3)δ

)
υn−1r

n−1 ≤ σ
(
�(x, r)

)
(2.383)

≤ (
1 + (C3/C2)δ ln(1/δ)+ C1δ

)
υn−1r

n−1.
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After sending δ ↘ ‖ν‖[BMO(∂�,σ)]n , this readily implies the estimate claimed in
(2.381) (with C := max{C3/C2, C1 + C3}) in this case. Finally, (2.381) is a simple
consequence of the upper Ahlfors regularity of ∂� when ‖ν‖[BMO(∂�,σ)]n ≥ δ∗.

��
We shall establish Theorem 2.6 by reasoning along the lines of the argument

in [61, pp. 2703–2709], with (2.362) replacing the small local BMO assumption
(which, in particular, frees us from having to restrict x0 to a compact subset of
∂�). A key observation is that, in the present context, the parameter R∗ from [61,
Theorem 4.16, p. 2701] (which limits the size of the scale r) may be taken to be
+∞.

Proof of Theorem 2.6 Throughout, for each given point x ∈ ∂� and each given
radius R > 0 we agree to abbreviate �(x, R) := B(x, R) ∩ ∂� and also use the
notation ν�(x,R) :=

ffl
�(x,R)

ν dσ .
Assume (2.362) holds for some δ ∈ (0, δ∗) with δ∗ ∈ (0, 1/10), a threshold

on which we are going to impose a number of other smallness conditions, to be
specified later. For now, we note that Lemma 2.8 guarantees that ∂� is an unbounded
set, and that

1 ≥
∣∣∣
 

�

ν dσ

∣∣∣ ≥ 9

10
for each surface ball � ⊆ ∂�. (2.384)

Recall that the constant C∗ ∈ (0,∞) appearing in the statement of Proposi-
tion 2.15 is controlled solely in terms of the Ahlfors regularity constant of ∂� and
the dimension n. Keeping this in mind, from (2.349) used with λ = 4 we see that

sup
R>0

sup
x∈∂�

sup
y∈�(x,4R)

R−1|〈x − y, ν�(x,R)〉| ≤ 12C∗δ (2.385)

with C∗ ∈ (0,∞) depending only on the Ahlfors regularity constant of ∂� and the
dimension n. Choose

C0 := max
{
14C∗ + 4, 60C∗

}
(2.386)

and, for the remainder of the proof, make the assumption that

δ∗ ∈
(
0, min{1/10, 1/C0}

)
(2.387)

and that δ∗ is also small enough, depending on φ, so that

δ ≤ φ(δ) ≤ (14C∗ + 4)−1 for all δ ∈ (0, δ∗). (2.388)

That (2.388) may be accommodated is ensured by (2.361). (The choice made in
(2.386) as well as the nature of the right-most expression in (2.388) are dictated by
future considerations; see (2.418).)
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To proceed, for each x ∈ ∂� and R > 0 set

ν∗x,R(y) := sup
0<ρ<R

 

�(y,ρ)

|ν(z)− ν�(x,2R)| dσ(z), ∀ y ∈ ∂�. (2.389)

Then (2.389) implies that for each x ∈ ∂� and R > 0 we have

ν∗x,R(y) ≤M
(
|ν − ν�(x,2R)| · 1�(x,2R)

)
(y), ∀ y ∈ �(x, R), (2.390)

where M is the Hardy–Littlewood maximal operator on ∂�. For further reference
let us also note that Lebesgue’s Differentiation Theorem and (2.389) imply that

for each fixed x ∈ ∂� and R > 0 we have

|ν(y)− ν�(x,2R)| ≤ ν∗x,R(y) for σ -a.e. y ∈ ∂�.
(2.391)

Henceforth, fix a location x0 ∈ ∂� along with a scale r > 0. From (2.384) we
know that

9
10 ≤ |ν�(x0,2r)| ≤ 1. (2.392)

We may also conclude from (2.384) that

�nx0,r := ν�(x0,4r)

|ν�(x0,4r)| (2.393)

is a well-defined unit vector in R
n. Consider

H(x0, r) := {
x ∈ R

n : 〈x, �nx0,r 〉 = 0
}

(2.394)

and introduce a new system of coordinates in R
n by setting

x = (ζ, t) ⇐⇒ x = x0 + t �nx0,r + ζ, t ∈ R, ζ ∈ H(x0, r). (2.395)

We agree to write ζ(x), t (x) in place of ζ, t whenever necessary to stress the
dependence of the new coordinates on the point x ∈ R

n. Let us also define the
projection

� : Rn → H(x0, r) with �(x) := ζ for each x = (ζ, t) ∈ R
n. (2.396)

Finally, consider the cylinder C(x0, r) defined as in (2.365) and, with the function φ

as in (2.360)–(2.361), introduce
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G(x0, r) := {
x ∈ C(x0, r) ∩ ∂� : ν∗x0,2r (x) ≤ φ(δ)

}
,

E(x0, r) := (C(x0, r) ∩ ∂�
) \G(x0, r).

(2.397)

Since C(x0, r) ⊆ B(x0,
√

2r) (as seen from its definition), it follows from (2.397)
that G(x0, r), E(x0, r) are disjoint σ -measurable subsets of �(x0,

√
2r), satisfying

G(x0, r) ∪ E(x0, r) = C(x0, r) ∩ ∂�. In particular, (2.367) holds.
Next, we claim that there exist c, C ∈ (0,∞), which depend only on n and the

Ahlfors regularity constant of ∂�, with the property that

 

�(x0,2r)

exp
(
c δ−1 ν∗x0,2r

)
dσ ≤ C. (2.398)

Granted this, we may then conclude that

exp
(
c φ(δ)/δ

) σ
(
E(x0, r)

)

σ
(
�(x0, 2r)

) ≤ 1

σ
(
�(x0, 2r)

)
ˆ

E(x0,r)

exp
(
c δ−1 ν∗x0,2r

)
dσ ≤ C.

(2.399)
This implies

σ
(
E(x0, r)

) ≤ C exp
(− c φ(δ)/δ

)
σ
(
�(x0, 2r)

)

≤ 2n−1CAC rn−1 · exp
(− c φ(δ)/δ

)
, (2.400)

where CA is the Ahlfors regularity constant of ∂�. In particular, the estimate
claimed in (2.368) follows as long as

C2 := c and C1 ≥ 2n−1CAC/υn−1. (2.401)

To justify the claim made in (2.398), let us abbreviate

f :=M(|ν − ν�(x0,4r)| · 1�(x0,4r)

)
(2.402)

and note that, thanks to (2.390) with R := 2r , this entails

ν∗x0,2r (x) ≤ f (x) whenever x ∈ �(x0, 2r). (2.403)

We also make the sub-claim that there exist A1, A2 ∈ (0,∞), depending only on n

and the Ahlfors regularity constant of ∂�, such that for each p ∈ [1,∞) we have

 

�(x0,4r)

|ν(x)− ν�(x0,4r)|p dσ(x) ≤ A1	(p + 1)
(
A2‖ν‖[BMO(∂�,σ)]n

)p

,

(2.404)
where 	(t) := ´∞

0 λt−1e−λ dλ for all t ∈ (0,∞) is the classical Gamma function.
Taking this inequality for granted for the time being, we now proceed to show that
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(2.398) holds for the choice

c := 2−1A−1
2 ∈ (0,∞) (2.405)

and with C ∈ (0,∞) to be determined momentarily (see (2.409)). To implement this
plan, use (2.403) plus a change of variables, then expand the exponential function
into an infinite power series to write

 

�(x0,2r)

exp
(
c δ−1 ν∗x0,r

)
dσ ≤

 

�(x0,2r)

exp
(
c δ−1 f

)
dσ (2.406)

= 1

σ
(
�(x0, 2r)

)
ˆ ∞

0
σ
({

x ∈ �(x0, 2r) : exp
(
c δ−1 f (x)

)
> λ

})
dλ

≤ 1 + 1

σ
(
�(x0, 2r)

)
ˆ ∞

1
σ
({

x ∈ �(x0, 2r) : exp
(
c δ−1 f (x)

)
> λ

})
dλ

= 1 + 1

σ
(
�(x0, 2r)

)
ˆ ∞

0
σ
({

x ∈ �(x0, 2r) : c δ−1 f (x) > s
})

es ds

≤ e + 1

σ
(
�(x0, 2r)

)
∞∑

k=0

1

k!
ˆ ∞

1
σ
({

x ∈ �(x0, 2r) : f (x) > s δ/c
})

sk ds.

To continue, fix an arbitrary integrability exponent p ∈ [2,∞) along with an
arbitrary number s ∈ (0,∞). Chebysheff’s inequality, the Lp-boundedness of the
Hardy–Littlewood maximal operator (with bounds independent of p, as seen by
interpolation), and (2.402) then allow us to estimate

σ
(
{x ∈ �(x0, 2r) : f (x) > s δ/c}

)

σ
(
�(x0, 2r)

)

≤
( c

s δ

)p
 

�(x0,2r)

f (x)p dσ(x)

≤
( c

s δ

)p 1

σ
(
�(x0, 2r)

)
ˆ

∂�

M(|ν − ν�(x0,4r)| · 1�(x0,4r)

)
(x)p dσ(x)

≤
( c

s δ

)p C′

σ
(
�(x0, 2r)

)
ˆ

∂�

(|ν(x)− ν�(x0,4r)| · 1�(x0,4r)(x)
)p dσ(x)

≤ C′′( c

s δ

)p
 

�(x0,4r)

|ν(x)− ν�(x0,4r)|p dσ(x), (2.407)
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where C′, C′′ ∈ (0,∞) depend only on n and the Ahlfors regularity constant of ∂�.
Combine (2.404), (2.407), (2.405) and recall that ‖ν‖[BMO(∂�,σ)]n < δ to obtain

σ
(
{x ∈ �(x0, 4r) : f (x) > s δ/c}

)

σ
(
�(x0, 4r)

) ≤ C′′ A1	(p + 1)
(c A2

s

)p

= C′′ A1	(p + 1)
( 1

2s

)p

, (2.408)

for each p ∈ [2,∞) and each s ∈ (0,∞). Utilizing (2.408), in which we take
p := k + 2 with k = 0, 1, . . . , back into (2.406) then yields (upon noting that
	(k + 3) = (k + 2)!)

 

�(x0,2r)

exp
(
c δ−1 ν∗x0,4r

)
dσ (2.409)

≤ e + C′′ A1

∞∑

k=0

(k + 1)(k + 2)

2k+2

(ˆ ∞

1

ds

s2

)
=: C < ∞.

This finishes the proof of (2.398), modulo that of (2.404). As regards the latter, we
use following the John-Nirenberg level set estimate with exponential bound from
(2.94). This ensures that there exist some large constant A ∈ (0,∞) and some small
constant a ∈ (0,∞), both depending only on the Ahlfors regularity constant of ∂�

and the dimension n, such that

σ
(
{x ∈ �(x0, 4r) : |ν(x)− ν�(x0,4r)| > λ}

)

σ
(
�(x0, 4r)

) ≤ A · exp
( −aλ

‖ν‖[BMO(∂�,σ)]n
)

(2.410)
for every λ > 0. In turn, (2.410) and a natural change of variables permit us to write

 

�(x0,4r)

|ν(x)− ν�(x0,4r)|p dσ(x)

= p

ˆ ∞

0
λp−1

σ
({

x ∈ �(x0, 4r) : |ν(x)− ν�(x0,4r)| > λ
})

σ
(
�(x0, 4r)

) dλ

≤ Ap

ˆ ∞

0
λp−1exp

( −aλ

‖ν‖[BMO(∂�,σ)]n
)

dλ

= Ap
(
a−1‖ν‖[BMO(∂�,σ)]n

)p
ˆ ∞

0
tp−1e−t dt
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= Ap	(p)
(
a−1‖ν‖[BMO(∂�,σ)]n

)p

. (2.411)

Since p 	(p) = 	(p + 1), this justifies (2.404) with A1 := A and A2 := a−1, and
concludes the proof of (2.398).

We now turn to the task of constructing the Lipschitz function h. As a preliminary
matter, we remark that

|〈x − y, ν�(x0,4r)〉| ≤
(
6C∗δ + ν∗x0,2r (x)

)|x − y|
for each x ∈ ∂� and y ∈ �(x, 4r).

(2.412)

To justify this, observe that (2.412) is trivially true when x = y, so it suffices to
consider the case when x ∈ ∂� and y ∈ �(x, 4r) satisfy x �= y. Assuming this
is the case, based on (2.385) (used with R := |x − y|/2 > 0) and (2.389) we may
write

|〈x − y, ν�(x0,4r)〉| ≤ |〈x − y, ν�(x,|x−y|/2)〉| + |x − y||ν�(x,|x−y|/2) − ν�(x0,4r)|

≤ 6C∗δ |x − y| + |x − y|
 

�(x,|x−y|/2)

|ν − ν�(x0,4r)| dσ

≤ (
6C∗δ + ν∗x0,2r (x)

)|x − y|, (2.413)

as desired. Moving on, observe from (2.395) that

t (x) = 〈x − x0, �nx0,r 〉 for each x ∈ R
n. (2.414)

In concert, (2.414), (2.392)–(2.393), (2.412), (2.397), and (2.388) then allow us to
control

|t (x)− t (y)| = |〈x − y, �nx0,r 〉| ≤ 10
9 |〈x − y, ν�(x0,4r)〉|

≤ 10
9

(
6C∗δ + φ(δ)

)|x − y|

≤ 10
9 (6C∗ + 1)φ(δ)|x − y|

≤ (7C∗ + 2)φ(δ)|x − y|
whenever x ∈ G(x0, r) and y ∈ �(x, 4r). (2.415)

In turn, since for each x, y ∈ R
n we have (see (2.395))

ζ(x)− ζ(y) = x − y − (
t (x)− t (y)

)�nx0,r , (2.416)

this permits us to estimate
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|ζ(x)− ζ(y)| ≥ |x − y| − |t (x)− t (y)| ≥ (
1 − (7C∗ + 2)φ(δ)

)|x − y|,
for each x ∈ G(x0, r) and each y ∈ �(x, 4r).

(2.417)
Combining (2.415) and (2.417) (while keeping (2.388) and (2.386) in mind) then
proves that

|t (x)− t (y)| ≤ (7C∗ + 2)φ(δ)

1 − (7C∗ + 2)φ(δ)
|ζ(x)− ζ(y)|

≤ (14C∗ + 4)φ(δ)|ζ(x)− ζ(y)|

≤ C0φ(δ)|ζ(x)− ζ(y)|, (2.418)

for each x ∈ G(x0, r) and y ∈ �(x, 4r).

We now claim that

if x ∈ C(x0, r) ∩ ∂� and �(x) ∈ �
(
G(x0, r)

)

then x ∈ G(x0, r).
(2.419)

Indeed, assume x ∈ C(x0, r) ∩ ∂� and y ∈ G(x0, r) are such that �(x) = �(y).
In view of (2.396), the latter condition means ζ(x) = ζ(y). Since x, y ∈ C(x0, r),
it follows that |y − x| ≤ diam

(C(x0, r)
) = 2

√
2r < 4r , hence x ∈ �(y, 4r). As

such, we may invoke (2.418) (with the roles of x and y reversed) to conclude that
t (x) = t (y). Thus, x = (

ζ(x), t (x)
) = (

ζ(y), t (y)
) = y ∈ G(x0, r), ultimately

proving (2.419).
As a consequence of the proof of (2.419) we also see that

the projection � is one-to-one on G(x0, r). (2.420)

In turn, (2.420) guarantees that the mapping

h : �(G(x0, r)
) −→ R given by

h
(
ζ(x)

) := t (x) for each x ∈ G(x0, r)
(2.421)

is well defined. By (2.418), this mapping satisfies a Lipschitz condition with
constant ≤ C0φ(δ) on the set �

(
G(x0, r)

)
. Indeed, given any x, y ∈ G(x0, r), the

fact that G(x0, r) ⊆ �(x0,
√

2r) implies |x−y| < 2
√

2r < 4r , hence y ∈ �(x, 4r).
As such, (2.418) applies and, in view of (2.421), proves that

|h(x′)− h(y′)| ≤ C0φ(δ)|x′ − y′| for each x′, y′ ∈ �
(
G(x0, r)

)
.
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We may therefore extend h (using Kirszbraun’s theorem; see, e.g., the discussion
in [108]) as a Lipschitz function, which we continue to denote by h, to the entire
hyperplane H(x0, r), with Lipschitz constant ≤ C0φ(δ). Note that its graph G,
considered in the (ζ, t)-system of coordinates introduced in (2.395), contains the
set

{(ζ(x), t (x)) : x ∈ G(x0, r)} = G(x0, r). (2.422)

This proves the inclusion in (2.368). Together, (2.368) and (2.419) also prove that

if x ∈ C(x0, r) ∩ ∂� and �(x) ∈ �
(
G(x0, r)

)

then x ∈ G.
(2.423)

In turn, the above property implies the claim made in (2.374). Specifically, assume
x ∈ G(x0, r) and y ∈ C(x0, r)∩∂� are such that �(y) = �(x). Then �(y) belongs
to �

(
G(x0, r)

)
which, by virtue of (2.419), places y in G(x0, r). In particular,

x, y ∈ G (cf. (2.368)) have the same projection. Thus, necessarily, x = y since
otherwise the Vertical Line Test would be violated for the graph G.

To prove the inclusion claimed in (2.370), start by considering some arbitrary
point x ∈ C(x0, r)∩ ∂�. Then x belongs to B(x0,

√
2r)∩ ∂� = �(x0,

√
2r). Also,

the convention made in (2.395) allows us to express x = x0+ t (x)�nx0,r +ζ(x), with
ζ(x) ∈ H(x0, r) satisfying |ζ(x)| < r (given that x ∈ C(x0, r)) and with

t (x) = 〈x − x0, �nx0,r 〉 = 〈x − x0, ν�(x0,4r)〉
|ν�(x0,4r)| , (2.424)

thanks to (2.414) and (2.393). In turn, (2.424), (2.392), and (2.385) (presently used
with R := 4r , x := x0, y := x) permit us to estimate

|t (x)| ≤
∣∣〈x − x0, ν�(x0,4r)〉

∣∣

|ν�(x0,4r)| ≤ 10
9 (4r)12C∗δ ≤ C0δ r, (2.425)

since (2.386) guarantees that C0 ≥ 60C∗. The proof of (2.370) is therefore
complete.

From (2.370) it follows that the connected sets C±(x0, r) introduced in (2.372)
do not intersect ∂�. As such, �+ := � and �− := R

n \ � form a disjoint, open
cover of C±(x0, r), hence

C+(x0, r) is fully contained in either �+ or �−,
and also C−(x0, r) is fully contained in either �+
or �−.

(2.426)

By further decreasing δ∗ ∈ (0, 1) we may ensure (see Theorem 2.3) that
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� satisfies a two-sided local John condition with constants which
depend only on the Ahlfors regularity constant of ∂� and the
dimension n.

(2.427)

In view of (2.427) and (2.87), it follows that � satisfies a two-sided cork screw
condition (cf. Definition 2.10) for some parameter θ ∈ (0, 1) which depends only
on the Ahlfors regularity constant of ∂� and the dimension n. Denote by x±r ∈ �±
the two corkscrew points corresponding to the location x0 and scale r . In particular,

|x±r − x0| < r and B
(
x±r , θr

) ⊆ �±. (2.428)

Assume 0 < δ∗ < θ/C0 to begin with. Given that we are taking δ ∈ (0, δ∗), this
condition makes it impossible to contain either of the balls B

(
x+r , θr

)
, B

(
x−r , θr

)

in the strip
{
x0 + x′ + t �nx0,r : |t | ≤ C0δr, x′ ∈ H(x0, r)

}
. Since, as seen from

(2.428), their centers x±r belong to B(x0, r) ⊂ C(x0, r), in turn this forces one of
the following four alternatives to be true:

B
(
x+r , θr

) ∩ C+(x0, r) �= ∅ and B
(
x−r , θr

) ∩ C+(x0, r) �= ∅, (2.429)

B
(
x+r , θr

) ∩ C−(x0, r) �= ∅ and B
(
x−r , θr

) ∩ C−(x0, r) �= ∅, (2.430)

B
(
x+r , θr

) ∩ C+(x0, r) �= ∅ and B
(
x−r , θr

) ∩ C−(x0, r) �= ∅, (2.431)

B
(
x+r , θr

) ∩ C−(x0, r) �= ∅ and B
(
x−r , θr

) ∩ C+(x0, r) �= ∅. (2.432)

Note that the alternative described in (2.429) cannot possibly hold. Indeed, the
existence of two points z1 ∈ B

(
x+r , θr

)∩C+(x0, r) and z2 ∈ B
(
x−r , θr

)∩C+(x0, r)

would imply that, on the one hand, the line segment [z1, z2] lies in the convex
set C+(x0, r), hence also either in �+ or in �− by (2.426). Nonetheless, the fact
that we have z1 ∈ B

(
x+r , θr

) ⊆ �+ and z2 ∈ B
(
x−r , θr

) ⊆ �− prevents either
one of these eventualities form materializing. This contradiction therefore excludes
(2.429). Reasoning in a similar fashion we may rule out (2.430). When (2.431)
holds, from the fact that B

(
x±r , θr

) ⊆ �± (cf. (2.428)) we conclude that

∅ �= C+(x0, r) ∩ B
(
x+r , θr

) ⊆ B
(
x+r , θr

) ⊆ �+ (2.433)

hence C+(x0, r) ∩ �+ �= ∅ which, in light of (2.426), forces C+(x0, r) ⊆ �+.
Similarly, C−(x0, r) ⊆ �− so the inclusions in (2.373) hold as stated. Finally,
when (2.432) holds, from (2.426) and (2.428) we deduce that C+(x0, r) ⊆ �−
and C−(x0, r) ⊆ �+. In such a scenario, we may ensure that the inclusions in
(2.373) are valid simply by re-denoting �nx0,r as−�nx0,r (and considering the function
−h in place of the original h), which amounts to reversing the roles of C+(x0, r)

and C−(x0, r) (without affecting the other properties). This concludes the proof of
(2.373).

Next, observe that



2.5 The Decomposition Theorem 115

�
(C(x0, r) ∩ ∂�

) ⊆ �
(C(x0, r)

) = {ζ ∈ H(x0, r) : |ζ | < r}. (2.434)

The opposite inclusion fails only when there exists a line segment parallel to �nx0,r

whose two endpoints belong to C+(x0, r) and to C−(x0, r), respectively, and which
does not intersect ∂� (here we implicitly use the fact that C±(x0, r) �= ∅, itself
a result of having imposed the condition that 0 < δ < δ∗ < 1/C0; cf. (2.387)).
However, (2.373) and simple connectivity arguments rule out this scenario, hence
(2.371) is proved.

Going further, we note that (2.371) implies

{ζ ∈ H(x0, r) : |ζ | < r} \�
(
G(x0, r)

) ⊆ �
(
E(x0, r)

)
. (2.435)

The fact that � : Rn → H(x0, r) is a Lipschitz function, with Lipschitz constant 1,
implies (cf., e.g., [47, Theorem 1, p. 75]) that

Hn−1(�(S)
) ≤ Hn−1(S) for each Borel set S ⊆ R

n. (2.436)

Based on (2.435), (2.436), the definition σ := Hn−1�∂�, (2.367), and (2.400) we
then conclude that

Hn−1
(
{ζ ∈ H(x0, r) : |ζ | < r} \�

(
G(x0, r)

))

≤ Hn−1
(
�
(
E(x0, r)

)) ≤ Hn−1(E(x0, r)
)

≤ 2n−1CAC r n−1 · exp
(− C2φ(δ)/δ

)
. (2.437)

In addition, (2.419) gives

C(x0, r) ∩ (G \ ∂�
) ⊆ G ∩�−1

(
{ζ ∈ H(x0, r) : |ζ | < r} \�

(
G(x0, r)

))
.

(2.438)
Keeping also in mind that

Hn−1(S) ≤ √
1 + (C0φ(δ))2 Hn−1(�(S)

)
,

for each Borel set S ⊆ G,
(2.439)

(since G is the graph of a Lipschitz function), we deduce that

Hn−1(C(x0, r) ∩ (G \ ∂�)
)

≤ Hn−1
(
G ∩�−1({ζ ∈ H(x0, r) : |ζ | < r} \�

(
G(x0, r)

)))

≤
√

1 + (C0φ(δ))2 Hn−1
(
�
(
G ∩�−1({ζ ∈ H(x0, r) : |ζ | < r} \�

(
G(x0, r)

))))
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≤
√

1 + (C0φ(δ))2 Hn−1
(
{ζ ∈ H(x0, r) : |ζ | < r} \�

(
G(x0, r)

))

≤
√

1 + (C0φ(δ))2 2n−1CAC r n−1 · exp
(− C2φ(δ)/δ

)

≤
√

1 + C2
0 (14C∗ + 4)−2 2n−1CAC r n−1 · exp

(− C2φ(δ)/δ
)
, (2.440)

by (2.437) and (2.388). Upon observing that C(x0, r) ∩ (
∂� \ G) is contained in

E(x0, r), the estimate claimed in (2.366) now follows from (2.440) and (2.400) if
we choose (recall that C2 := c; cf. (2.401))

C1 :=
√

1 + C2
0(14C∗ + 4)−2 2n−1CAC/υn−1 (2.441)

(a choice in line with the demand formulated in (2.401)), where C is as in (2.409),
and where CA is the Ahlfors regularity constant of ∂�.

Let us now justify the proximity condition formulated in (2.369). To this end, fix
x ∈ E(x0, r) = (C(x0, r) ∩ ∂�

) \G(x0, r) and pick an arbitrary x∗ ∈ G(x0, r). In
particular, x, x∗ ∈ C(x0, r) hence |x − x∗| < diam

(C(x0, r)
) = 2

√
2r . Given that

we have x∗ ∈ G(x0, r) and x ∈ �(x∗, 4r), estimate (2.418) applies and presently
gives

∣∣t (x)− h
(
�(x∗)

)∣∣ = |t (x)− t (x∗)| ≤ C0φ(δ)|�(x)−�(x∗)|. (2.442)

Consequently, since x = (
�(x), t (x)

)
, we may write

∣∣x − (
�(x), h(�(x))

)∣∣ = ∣∣t (x)− h
(
�(x)

)∣∣

≤ ∣∣t (x)− h
(
�(x∗)

)∣∣+ ∣∣h
(
�(x∗)

)− h
(
�(x)

)∣∣

≤ 2C0φ(δ)|�(x)−�(x∗)|, (2.443)

by (2.442) and the Lipschitz condition on h (cf. (2.363)). Taking the infimum over
x∗ ∈ G(x0, r) now yields (2.369).

Let us now deal with (2.375). Recall that υn−1 denotes the volume of the unit
ball in R

n−1. Using (2.366) and (2.439) we may estimate

σ
(
�(x0, r)

) = Hn−1(B(x0, r) ∩ ∂�
) ≤ Hn−1(C(x0, r) ∩ ∂�

)

≤ Hn−1(C(x0, r) ∩ G)+Hn−1
(
C(x0, r) ∩ (∂� \ G)

)

≤
√

1 + (C0φ(δ))2 Hn−1(�(C(x0, r) ∩ G)
)+Hn−1

(
C(x0, r) ∩ (∂�#G)

)

≤ (
1 + C0φ(δ)

)Hn−1(�(C(x0, r))
)+ C1υn−1 r n−1 exp

(− C2φ(δ)/δ
)
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=
(

1 + C0φ(δ)+ C1exp
(− C2φ(δ)/δ

))
υn−1 r n−1. (2.444)

Also, by employing (2.371), (2.436), (2.366), (2.439), (2.373), and (2.388) we may
write

υn−1 r n−1 = Hn−1({ζ ∈ H(x0, r) : |ζ | < r}) ≤ Hn−1(C(x0, r) ∩ ∂�
)

(2.445)

= Hn−1(B(x0, r) ∩ ∂�
)+Hn−1

((C(x0, r) ∩ ∂�
) \ B(x0, r)

)

≤ σ
(
�(x0, r)

)+Hn−1
(
C(x0, r) ∩ (∂� \ G)

)

+Hn−1
((C(x0, r) ∩ G) \ (B(x0, r) ∪ C+(x0, r) ∪ C−(x0, r)

)))

≤ σ
(
�(x0, r)

)+Hn−1
(
C(x0, r) ∩ (∂�#G)

)

+
√

1 + (C0φ(δ))2 υn−1 r n−1
(

1 − (√
1 − C2

0δ2
)n−1

)

≤ σ
(
�(x0, r)

)+ C1υn−1 r n−1 exp
(− C2φ(δ)/δ

)+ C3δ υn−1 r n−1,

where C3 := Cn C0

√
1 + C2

0(14C∗ + 4)−2 with Cn ∈ [1,∞) depending only on
the dimension n. This further implies

(
1 − C3δ − C1exp

(− C2φ(δ)/δ
))

υn−1 r n−1 ≤ σ
(
�(x0, r)

)
. (2.446)

Now, (2.375) follows from (2.444), (2.446), and (2.388).
Next, (2.376) is a direct consequence of Proposition 2.2 applied to � and the

upper-graph of the function h (both of which are Ahlfors regular domains). There
remains to prove the claims made in (2.377) and (2.378). To get started, we make
two observations. First, (2.362) implies

 

�(x0,4r)

|ν − ν�(x0,4r)| dσ ≤ δ. (2.447)

Second, at σ -a.e. point on ∂� we may estimate

|ν − �nx0,r | ≤ |ν − ν�(x0,4r)| + |ν�(x0,4r) − �nx0,r | (2.448)

and, thanks to (2.393), the fact that |ν| = 1 at σ -a.e. point on ∂�, and the reverse
triangle inequality, we have
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|ν�(x0,4r) − �nx0,r | =
∣∣∣∣ν�(x0,4r) − ν�(x0,4r)

|ν�(x0,4r)|
∣∣∣∣ =

∣∣∣∣
(

1 − 1

|ν�(x0,4r)|
)
ν�(x0,4r)

∣∣∣∣

=
∣∣∣∣1 −

1

|ν�(x0,4r)|
∣∣∣∣
∣∣ν�(x0,4r)

∣∣ = ∣∣1 − |ν�(x0,4r)|
∣∣

= ∣∣|ν| − |ν�(x0,4r)|
∣∣ ≤ ∣∣ν − ν�(x0,4r)

∣∣. (2.449)

By combining (2.448) with (2.449) we arrive at the conclusion that

|ν − �nx0,r | ≤ 2|ν − ν�(x0,4r)| at σ -a.e. point on ∂�. (2.450)

Recall that ν̃ denotes the unit normal vector to the Lipschitz graph G, pointing
toward the upper-graph of the function h. This is well-defined at Hn−1-a.e. point
on G, and we claim that

|̃ν − �nx0,r | ≤ C0φ(δ) at Hn−1-a.e. point on G. (2.451)

To justify this, after performing a rotation, there is no loss of generality in assuming
that

�nx0,r = en = (0, . . . , 0, 1) ∈ R
n. (2.452)

Then the hyperplane

H(x0, r) = 〈�nx0,r 〉⊥ = 〈en〉⊥ = R
n−1 × {0} (2.453)

may be canonically identified with R
n−1, a scenario in which

ν̃
(
x′, h(x′)

) =
(− (∇′h)(x′), 1

)

√
1 + |(∇′h)(x′)|2 for Ln−1-a.e. x′ ∈ R

n−1, (2.454)

where ∇′ denotes the gradient operator in R
n−1. From (2.452) and (2.454) we then

see that at Hn−1-a.e. point x ∈ G, say x = (
x′, h(x′)

)
with x′ ∈ R

n−1, we have

∣∣̃ν(x)− �nx0,r

∣∣2 = 2 − 2〈̃ν(x), �nx0,r 〉 = 2

(
1 − 1

√
1 + |(∇′h)(x′)|2

)

= 2|(∇′h)(x′)|2
1 + |(∇′h)(x′)|2 +√

1 + |(∇′h)(x′)|2

≤ |(∇′h)(x′)|2 ≤ (
C0φ(δ)

)2
, (2.455)



2.5 The Decomposition Theorem 119

where the last inequality comes from (2.363). Ultimately, this establishes (2.451).
Collectively, (2.450) and (2.451) prove that

|ν − ν̃| ≤ 2|ν − ν�(x0,4r)| + C0φ(δ) at σ -a.e. point on G ∩ ∂�. (2.456)

From (2.391) and (2.397) we also see that

|ν(x)− ν�(x0,4r)| ≤ ν∗x0,2r (x) ≤ φ(δ) for σ -a.e. x ∈ G(x0, r). (2.457)

Combining (2.456) with (2.457) and keeping in mind that G(x0, r) ⊆ G∩ ∂� leads
to the conclusion that

|ν − ν̃| ≤ (2 + C0)φ(δ) at σ -a.e. point on G(x0, r). (2.458)

If δ∗ > 0 is taken small enough so that φ(t) < 2(2 + C0)
−1 for all t ∈ (0, δ∗)

(something that may always be arranged, thanks to (2.361)), we conclude from
(2.458) and (2.376) (again, mindful of the fact that G(x0, r) ⊆ G ∩ ∂�) that

ν(x) = ν̃(x) at σ -a.e. point x ∈ G(x0, r). (2.459)

This proves (2.377).
Let us now deal with (2.378). Together, (2.376), (2.456), (2.447), and the first

inequality in (2.388) yield

σ
({

x ∈ G ∩�(x0, 4r) : ν(x) = −ν̃(x)
}) = 1

2

ˆ

G∩�(x0,4r)

|ν − ν̃| dσ

≤ (
δ + 2−1C0 · φ(δ)

) · σ (�(x0, 4r)
)

≤ C4 · φ(δ)rn−1 (2.460)

provided C4 := 4n−1(1 + 2−1C0)CA, where CA is the Ahlfors regularity constant
of �. Hence, (2.378) is established.

There remains to prove (2.379). To this end, combine (2.450) and (2.451) to
obtain

supy∈G |ν(x)− ν̃(y)| ≤ 2|ν(x)− ν�(x0,4r)| + C0φ(δ)

at σ -a.e. point x ∈ ∂�.
(2.461)

Based on (2.461), (2.447), and (2.388) we then conclude that

 

�(x0,4r)

(
sup
y∈G

|ν(x)− ν̃(y)|
)

dσ(x) ≤ 2δ + C0φ(δ) ≤ C4 · φ(δ), (2.462)
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since our earlier choice of C4 ensures that C4 ≥ 2 + C0. This justifies (2.379), so
the proof of Theorem 2.6 is now complete. ��

2.6 Chord-Arc Domains in the Plane

In the two-dimensional setting, an important category of sets is the class of chord-
arc domains, discussed next.

Definition 2.16 Given a nonempty, proper, open subset � of R2 and � ∈ [0,∞),
one calls � a �-CAD (or simply chord-arc domain, if the value of � is not
important) provided ∂� is a locally rectifiable simple curve, which is either a closed
curve or a Jordan curve passing through infinity in C ≡ R

2, with the property that

�(z1, z2) ≤ (1 + �)|z1 − z2| for all z1, z2 ∈ ∂�, (2.463)

where �(z1, z2) denotes the length of the shortest arc of ∂� joining z1 and z2.

For example, a planar sector �θ of full aperture θ ∈ (0, 2π) (cf. (2.289)) is a
�-CAD with constant � := [sin(θ/2)]−1 − 1. While Proposition 2.13 shows that
the upper-graph of any real-valued BMO1 function defined on the real line is a
chord-arc domain (hence, in particular, any Lipschitz domain in the plane is a chord-
arc domain), from our earlier discussion (see, e.g., Example 2.7) we know that the
boundaries of chord-arc domains may actually contain spiral points. As such, chord-
arc domains may fail to be of “upper-graph type.” There are also subtle connections
between the quality of being a chord-arc domain and the behavior of the conformal
mapping (see, e.g., [26] and the references therein).

Our next major goal is to establish, in the two-dimensional setting, the coinci-
dence of the class of �-CAD domains with � ≥ 0 small constant with that of δ-AR
domains with δ > 0 small. This is accomplished in Theorem 2.7. For now recall the
concept of UR domain from Definition 2.6.

Proposition 2.16 Assume � ⊆ R
2 ≡ C is a chord-arc domain. Then � is

a connected UR domain, satisfying a two-sided local John condition. Moreover,
∂� = ∂( � ) and if either ∂� is unbounded or � is bounded, then � is also simply
connected.

Proof If ∂� is a Jordan curve passing through infinity in C then the desired
conclusions follow from item (vi) of Proposition 2.10 and (2.194). If ∂� is bounded,
then there exists a bi-Lipschitz homeomorphism F of the complex plane onto itself
such that F

(
∂B(0, 1)

) = ∂� (cf. [119, Theorem 7.9, p. 165]). This implies that each
of the connected sets F

(
B(0, 1)

)
, F

(
C \ B(0, 1)

)
is contained in the disjoint union

of � with C \�. Since F is surjective, this forces that either

F
(
B(0, 1)

) = � and F
(
C \ B(0, 1)

) = C \� (2.464)
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or

F
(
B(0, 1)

) = C \� and F
(
C \ B(0, 1)

) = �. (2.465)

All desired conclusions readily follow from this and the transformational properties
under bi-Lipschitz maps established in [59]. ��

A chord-arc domain with a sufficiently small constant is necessarily unbounded
(and, in fact, has an unbounded boundary).

Proposition 2.17 If � ⊆ R
2 is a �-CAD with � ∈ [

0,
√

2 − 1
)
then ∂� is

unbounded.

Proof Seeking a contradiction, assume � ⊆ R
2 is a �-CAD with � ∈ [

0,
√

2 − 1
)

and such that ∂� is a bounded set. In particular, ∂� is a rectifiable closed curve.
Abbreviate L := H1(∂�) ∈ (0,∞) and let [0, L]  s !→ z(s) ∈ ∂� be the arc-
length parametrization of ∂�. Define z0 := z(0), z1/4 := z(L/4), z1/2 := z(L/2),
z3/4 := z(3L/4). Since

|z0 − z1/4| ≤ �(z0, z1/4) = L/4, |z3/4 − z0| ≤ �(z3/4, z0) = L/4,

|z1/2 − z3/4| ≤ �(z1/2, z3/4) = L/4, |z1/4 − z1/2| ≤ �(z1/4, z1/2) = L/4,

(2.466)
it follows that

z1/4, z3/4 ∈ D := B(z0, L/4) ∩ B(z1/2, L/4), (2.467)

hence

|z1/4 − z3/4| ≤ diam(D). (2.468)

On the one hand, with R := |z0 − z1/2|, elementary geometry gives that

diam(D) = 2
√

(L/4)2 − (R/2)2 =
√

L2/4 − R2. (2.469)

On the other hand, L/2 = �(z0, z1/2) ≤ (1 + �)|z0 − z1/2| = (1 + �)R so

diam(D) ≤
√

L2/4 − (L/(2 + 2�))2 = L

2

√

1 −
( 1

1 + �

)2
. (2.470)

Based on the chord-arc property, (2.468), and (2.470) we then conclude that

L

2
= �(z1/4, z3/4) ≤ (1 + �)|z1/4 − z3/4|

≤ (1 + �)diam(D) ≤ L

2

√
(1 + �)2 − 1, (2.471)
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which further implies that � ≥ √
2 − 1, a contradiction. ��

By design, the boundary of any chord-arc domain is a simple curve, and this
brings into focus the question: when is the boundary of an open, connected, simply
connected planar set a Jordan curve? According to the classical Carathéodory
theorem, this is the case if and only if some (or any) conformal mapping ϕ : D→ �

(where D is the unit disk in C) extends to a homeomorphism ϕ : D → � (see,
e.g., [53, Theorem 3.1, p. 13]). A characterization of bounded planar Jordan regions
in terms of properties having no reference to their boundaries has been given by
R.L. Moore in 1918. According to [116],

given an open, bounded, connected, simply connected subset �

of R2, in order for ∂� to be a simple closed curve it is necessary
and sufficient that � is uniformly connected im kleinen (i.e., if
for every εo > 0 there exists δo > 0 such that any two points
P, P̃ ∈ � with |P − P̃ | < δo lie in a connected subset 	 of �

satisfying |P −Q| < εo for each point Q ∈ 	).

(2.472)

A moment’s reflection shows that the uniform connectivity condition (im kleinen)
formulated above is equivalent to the demand that for every εo > 0 there exists
δo > 0 such that any two points P, P̃ ∈ � with |P − P̃ | < δo lie in a connected
subset 	 of � with diam(	) < εo. This condition is meant to prevent the boundary
of � to “branch out” (like in the case of a partially slit disk).

We are now in a position to establish the coincidence of the class of �-CAD
domains with � ≥ 0 small constant with that of δ-AR domains with δ > 0 small, in
the two-dimensional Euclidean setting.

Theorem 2.7 If � ⊆ R
2 is a �-CAD with � ∈ [

0,
√

2 − 1
)
then � satisfies a

two-sided local John condition and is a δ-AR domain for any δ > 2
√

�(2 + �).

In particular, � is a δ-AR domain for, say, δ := 2
√√

2 + 1
√

�, a choice which
satisfies δ = O(

√
� ) as � → 0+.

Conversely, given any M ∈ (0,∞) there exists δ∗ ∈ (0, 1) with the property
that whenever δ ∈ (0, δ∗) it follows that any δ-AR domain � ⊆ R

2 with Ahlfors
regularity constant ≤ M is a �-CAD with � = O

(
δ ln(1/δ)

)
as δ → 0+.

Proof Suppose � ⊆ R
2 is a �-CAD with � ∈ [

0,
√

2 − 1
)
. Proposition 2.17 then

ensures that ∂� is an unbounded set. Keeping this in mind, from Definition 2.16 we
then conclude that ∂� is a Jordan curve passing through infinity in C ≡ R

2. Granted
(2.463), it follows that ∂� is a �-CAC. From Proposition 2.10 and (2.199) we then
see that � satisfies a two-sided local John condition and has an Ahlfors regular
boundary. Moreover, if σ := H1�∂� and ν is the geometric measure theoretic
outward unit normal to �, from (2.228) we deduce that

‖ν‖[BMO(∂�,σ)]2 ≤ 2
√

�(2 + �). (2.473)
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It follows from Definition 2.15 and (2.473) that � is a δ-AR domain whenever
δ > 2

√
�(2 + �). This completes the proof of the claim made in the first part of the

statement of the theorem.
In the converse direction, let � ⊆ R

2 be a δ-AR domain with δ ∈ (0, 1) suffi-
ciently small relative to the Ahlfors regularity constant of ∂�. Then Theorem 2.3
implies that � is an (∞, N)-two-sided nontangentially accessible domain (in the
sense of Definition 2.9), for some N ∈ N. From Corollary 2.2 we also know that �

is an unbounded connected set which is simply connected, and whose topological
boundary is an unbounded connected set.

The first order of business is to show that actually ∂� is a simple curve. To
establish this, we intend to make use of Moore’s criterion recalled in (2.472). Since
this pertains to bounded sets, as a preliminary step we fix a point z0 ∈ C \ � and
consider

�̃ := �(�) ⊆ C, (2.474)

where

� : C \ {z0} −→ C \ {0}
�(z) := (z− z0)

−1 for each z ∈ C \ {z0}.
(2.475)

Note that, when restricted to �, the function � satisfies a Lipschitz condition.
Specifically, if r0 := dist(z0, ∂�) then r0 ∈ (0,∞) and we may estimate

∣∣�(z1)−�(z2)
∣∣ = |z1 − z2|

|z1 − z0||z2 − z0| ≤ r−2
0 |z1 − z2| for all z1, z2 ∈ �.

(2.476)
Also, since � is a homeomorphism and � ⊆ C\{z0} it follows that �̃ = �(�) is an
open, connected, simply connected subset of C \ {0}. Moreover, � ⊆ C \ B(z0, r0)

and since � maps C \ B(z0, r0) into B(0, 1/r0) it follows that �̃ ⊆ B(0, 1/r0),
hence �̃ is also bounded. The idea is then to check Moore’s criterion (cf. (2.472))
for �̃, conclude that ∂�̃ is a simple curve, then use �−1 to reach a similar conclusion
for ∂�. Since �−1 is singular at 0 ∈ ∂�̃, special care is required when checking
the uniform connectivity condition (im kleinen) near the origin. This requires some
preparations.

To proceed, fix some large number R ∈ (0,∞), to be specified later in the
proof. Pick two points P, P̃ ∈ �̃ ∩ B(0, 1/R) then define x := �−1(P ) and
x̃ := �−1(P̃ ). It follows that x, x̃ ∈ � \ B(z0, R). Bring in the polygonal arc
	 joining x with x̃ in � as in Lemma 2.5. As noted in Lemma 2.6, there exists
ε = ε(N) ∈ (0, 1) with the property that this curve is disjoint from B(z0, εR).
Next, abbreviate L := length(	) ∈ (0,∞) and let [0, L]  s !→ 	(s) ∈ 	 be the
arc-length parametrization of 	. In particular,

∣∣	′(s)
∣∣ = 1 for L1-a.e. s ∈ (0, L). If

we define
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	̃(s) := �(	(s)) = 1

	(s)− z0
for each s ∈ [0, L], (2.477)

then the image of 	̃ is a rectifiable curve joining P with P̃ in �̃. In particular, this
curve is a connected subset of �̃ containing P, P̃ and, with (2.472) in mind, the
immediate goal is to estimate the length of this curve. Retaining the symbol 	̃ for
said curve, we have

length(	̃) =
ˆ L

0

∣∣	̃′(s)
∣∣ ds =

ˆ L

0

∣∣�′(	(s))
∣∣ · ∣∣	′(s)

∣∣ ds

=
ˆ L

0

ds

|	(s)− z0|2 . (2.478)

For each s ∈ [0, L] we have 	(s) ∈ �. Given that z0 /∈ �, the line segment joining
	(s) with z0 intersects ∂�, hence |	(s)− z0| ≥ δ∂�(	(s)). On the other hand, for
each s ∈ [0, L] the last line in (2.74) implies that CN · δ∂�(	(s)) ≥ min{s, L− s}.
Altogether, CN · |	(s) − z0| ≥ min{s, L − s} for each s ∈ [0, L]. Upon recalling
that the polygonal arc 	 is disjoint from B(z0, εR), we also have |	(s)− z0| ≥ εR

for each s ∈ [0, L]. Ultimately, this proves that there exists some cN ∈ (0,∞) with
the property that

|	(s)− z0| ≥ cN · (R + min{s, L− s}) for each s ∈ [0, L]. (2.479)

Combining (2.478) with (2.479) then gives

length(	̃) =
ˆ L

0

ds

|	(s)− z0|2 ≤ CN

ˆ L

0

ds
(
R + min{s, L− s})2

= CN

ˆ L/2

0

ds
(
R + min{s, L− s})2 + CN

ˆ L

L/2

ds
(
R + min{s, L− s})2

= 2CN

ˆ L/2

0

ds

(R + s)2
≤ 2CN

ˆ ∞

0

ds

(R + s)2
= 2CN

R
. (2.480)

Armed with (2.480), we now proceed to check that the set �̃ is uniformly
connected im kleinen (in the sense made precise in (2.472)). To get started, suppose
some threshold εo > 0 has been given. Make the assumption that

R > max
{
r0,

2CN

εo

}
and pick δo ∈

(
0, 1/(2R)

)
, (2.481)
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reserving the right to make further specifications regarding the size of δo. Consider
two points P, P̃ ∈ �̃ with |P − P̃ | < δo. The goal is to find a connected subset of
�̃ whose every point is at distance ≤ εo from P . To this end, we distinguish two
cases.

Case I: Assume P, P̃ ∈ �̃ ∩ B(0, 1/R). Then 	̃, the curve introduced in
(2.477), is a connected subset of �̃ containing P, P̃ , and (2.480) implies (in
view of (2.481)) that length(	̃) < εo. In particular, for any point Q ∈ 	̃ we have
|P −Q| ≤ length(	̃) < εo, as wanted.

Case II: Assume either P /∈ �̃ ∩ B(0, 1/R) or P̃ /∈ �̃ ∩ B(0, 1/R). Since
|P − P̃ | < δo < 1/(2R) to begin with, this forces P, P̃ ∈ �̃ \ B(0, 1/(2R)). To
proceed, observe that the restriction of � : � → �̃ to � ∩ B(z0, 2R), i.e., the
function

�̃ : � ∩ B(z0, 2R) −→ �̃ \ B(0, 1/(2R)),

�̃(z) := (z− z0)
−1 for each z ∈ � ∩ B(z0, 2R),

(2.482)

is a bijection, whose inverse

�̃−1 : �̃ \ B(0, 1/(2R)) −→ � ∩ B(z0, 2R),

�̃−1(ζ ) := ζ−1 + z0 for each ζ ∈ �̃ \ B(0, 1/(2R)),
(2.483)

is Lipschitz since for each ζ1, ζ2 ∈ �̃ \ B(0, 1/(2R)) we may estimate

∣∣�̃−1(ζ1)− �̃−1(ζ2)
∣∣ = |ζ1 − ζ2|

|ζ1||ζ2| ≤ (2R)2|ζ1 − ζ2|. (2.484)

In particular, if we set x := �̃−1(P ) ∈ � and x̃ := �̃−1(P̃ ) ∈ �, it follows that

|x − x̃| = ∣∣�̃−1(P )− �̃−1(P̃ )
∣∣ ≤ (2R)2|P − P̃ | ≤ (2R)2δo. (2.485)

Let 	 be the polygonal arc joining x with x̃ in � as in Lemma 2.5 with the scale
r := |x − x̃|. The first inequality in (2.74) tells us that length(	) ≤ CN · |x − x̃|,
so L := length(	) ≤ CN · (2R)2δo by (2.485). Let [a, b]  t !→ γ (t) ∈ 	 be a
parametrization of the curve 	 and define 	̃ := � ◦ γ . Then the image of 	̃ is a
rectifiable curve joining P with P̃ in �̃. Indeed, �(	) ⊆ �(�) = �̃ and

�(γ (a)) = �(x) = �
(
�̃−1(P )

) = �̃
(
�̃−1(P )

) = P,

�(γ (b)) = �(̃x) = �
(
�̃−1(P̃ )

) = �̃
(
�̃−1(P̃ )

) = P̃ ,
(2.486)

given that �̃−1(P ), �̃−1(P̃ ) belong to � ∩ B(z0, 2R) where � agrees with �̃.
Retaining the symbol 	̃ for said curve, we may estimate
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length(	̃) ≤ r−2
0 · length(	) = L/r2

0 ≤ CN · (2R)2δo/r2
0 , (2.487)

where the first inequality follows from (2.209) and the fact that � : � → �̃

is a Lipschitz function with constant ≤ r−2
0 (cf. (2.476)). Choosing δo > 0

sufficiently small, to begin with, so that CN · (2R)2δo/r2
0 < εo, we ultimately

conclude that length(	̃) < εo. Hence, once again, 	̃ is a connected subset of �̃

containing P, P̃ , and with the property that |P −Q| ≤ length(	̃) < εo for each
point Q ∈ 	̃.
Let us summarize our progress. In view of (2.472), the proof so far gives that

∂�̃ a simple closed curve in the plane. (2.488)

Moreover, since �(∂�) ⊆ ∂�̃, the origin 0 ∈ C is an accumulation point for
�(∂�) (as is visible from (2.475), keeping in mind that ∂� is unbounded), and
∂�̃ is a closed set, we conclude that 0 ∈ ∂�̃. In turn, this implies that ∂�̃ \ {0} is
a simple curve, and that the function given in (2.475) induces a homeomorphism
� : ∂� → ∂�̃ \ {0}. As a consequence, ∂� = �−1(∂�̃ \ {0}) is a simple curve
in the plane. In addition, the (upper) Ahlfors regularity property of ∂� ensures
that the curve ∂� is locally rectifiable, hence

∂� = �−1(∂�̃ \ {0}) is a locally rectifiable simple curve in the plane.
(2.489)

Next, if γ̃ : [ − π
2 , π

2

] → ∂�̃ is a parametrization of ∂�̃ with γ̃ (±π/2) = 0,
then

γ : R→ ∂�, γ (t) := �−1(γ̃ (arctan t)
)

for each t ∈ R, (2.490)

becomes a parametrization of the curve ∂�. Given that lim
t→±∞ |γ (t)| = 0, we

ultimately conclude that

∂� is a Jordan curve passing through infinity in the plane. (2.491)

At this stage, there remains to prove that ∂� satisfies the chord-arc condition
(2.463) with a constant � = O

(
δ ln(1/δ)

)
as δ → 0+. In this regard, we note that

(2.381) with n = 2 gives that there exists a finite geometrical constant Co > 1,
independent of δ, with the property that

∣∣∣∣∣
H1(B(z, r) ∩ ∂�

)

2r
− 1

∣∣∣∣∣
≤ Co δ ln(1/δ), ∀z ∈ ∂�, ∀r ∈ (0,∞).

(2.492)
Without loss of generality, for the remainder of the proof assume δ ∈ (0, 1)

is small enough so that 0 < δ ln(1/δ) < 1/(4Co). Consider now two points
z1, z2 ∈ ∂�. Abbreviate r := �(z1, z2) and denote by z3 the first exit point of
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the curve ∂� out of B(z1, r). Hence, |z1 − z3| = r and the ordering z1, z2, z3
conforms with the positive orientation of ∂�. Moreover,

the portion of ∂� between z1 and z3 is contained inside B(z1, r). (2.493)

To proceed, introduce � := B(z1, r) ∩ ∂� and decompose � = �+ ∪ �−
(disjoint union), where �± denote the sets of points in � lying, respectively, to
the left and to the right of z1. Also, denote by �(�±) the arc-lengths of �±. Then

H1(B(z1, r) ∩ ∂�
) = �(�−)+ �(�+) and �(�±) ≥ r. (2.494)

Making use of (2.492) and (2.494) we may therefore estimate

Co δ ln(1/δ) ≥
∣∣∣∣∣
H1(B(z, r) ∩ ∂�

)

2r
− 1

∣∣∣∣∣
=
∣∣∣∣
�(�−)− r

2r
+ �(�+)− r

2r

∣∣∣∣

= �(�−)− r

2r
+ �(�+)− r

2r
≥ �(�+)− r

2r
. (2.495)

Hence, by (2.493) and (2.495),

|z2 − z3| ≤ �(�+)− r ≤ 2rCo δ ln(1/δ) (2.496)

which further implies

|z1 − z2| ≥ |z1 − z3| − |z2 − z3| ≥ r − 2rCo δ ln(1/δ)

= (
1 − 2Co δ ln(1/δ)

)
�(z1, z2). (2.497)

This proves that

�(z1, z2) ≤ (1 + �)|z1 − z2| with � := 2Co δ ln(1/δ)

1 − 2Co δ ln(1/δ)
, (2.498)

which goes to show that ∂� is a chord-arc curve. Moreover, the fact that we
have assumed 0 < δ ln(1/δ) < 1/(4Co) implies 0 < � < 4Coδ ln(1/δ). In
particular, we have � = O

(
δ ln(1/δ)

)
as δ → 0+. Hence, � is a �-CAD with

� = O
(
δ ln(1/δ)

)
as δ → 0+, finishing the proof of Theorem 2.7.

��
In closing, we briefly elaborate on a distinguished sub-class of the category of

planar chord-arc domains, described in the next definition.

Definition 2.17 Say that � ⊆ R
2 is a chord-arc domain with vanishing

constant (CAD with vanishing constant, for short) provided � is a chord-arc
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domain in the sense of Definition 2.16 and

lim
R→0+

{
sup

z1,z2∈∂�
|z1−z2|<R

( �(z1, z2)

|z1 − z2| − 1
)}

= 0, (2.499)

where �(·, ·) denotes the shortest arc-length between points on ∂�.

The proposition below shows that, in the two-dimensional setting, VMO1
domains (of upper-graph type) are chord-arc domains with vanishing constant.
Before stating it, the reader is reminded that the Sarason space of functions of
vanishing mean oscillations has been introduced in (2.111).

Proposition 2.18 Let ϕ ∈ W
1,1
loc (R) be such that ϕ′ ∈ VMO (R,L1) and consider

its upper-graph � := {(
x, y

) : x ∈ R, y > ϕ(x)
} ⊆ R

2. Then � is a chord-arc
domain with vanishing constant.

Proof That � is a chord-arc domain follows from Definition 2.16 and Proposi-
tion 2.13. Finally, the vanishing property (2.499) is seen from Definition 2.17 and
an inspection of the proof of Proposition 2.13, bearing in mind (2.112). ��

2.7 Dyadic Grids and Muckenhoupt Weights on Ahlfors
Regular Sets

The following result, pertaining to the existence of a dyadic grid structure on a
given Ahlfors regular set, is essentially due to M. Christ [27] (cf. also [40], [41]),
with some refinements worked out in [63, Proposition 2.11, pp. 19-20].

Proposition 2.19 Let 
 ⊆ R
n be a closed, unbounded, Ahlfors regular set, and

abbreviate σ := Hn−1�
. Then there are finite constants a1 ≥ a0 > 0 such that for
each m ∈ Z there exists a collection

Dm(
) := {Qm
α }α∈Im (2.500)

of subsets of 
 indexed by a nonempty, at most countable set of indices Im, as well
as a family {xm

α }α∈Im of points in 
, for which the collection of all dyadic cubes in

, i.e.,

D(
) :=
⋃

m∈Z
Dm(
), (2.501)

has the following properties:

(1) [All dyadic cubes are open] For each m ∈ Z and each α ∈ Im the set Qm
α is

relatively open in 
.
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(2) [Dyadic cubes are mutually disjoint within the same generation] For each
integer m ∈ Z and each α, β ∈ Im with α �= β there holds Qm

α ∩Qm
β = ∅.

(3) [No partial overlap across generations] For each m, � ∈ Z with � > m and each
α ∈ Im, β ∈ I�, either Q�

β ⊆ Qm
α or Qm

α ∩Q�
β = ∅.

(4) [Any dyadic cube has a unique ancestor in any earlier generation] For each
integers m, � ∈ Z with m > � and each α ∈ Im there is a unique β ∈ I� such
that Qm

α ⊆ Q�
β . In particular, for each m ∈ Z and each α ∈ Im there exists a

unique β ∈ Im−1 such that Qm
α ⊆ Qm−1

β (a scenario in which Qm−1
β is referred

to as the parent of Qm
α ).

(5) [The size is dyadically related to the generation] For each m ∈ Z and each
α ∈ Im one has

�(xm
α , a02−m) ⊆ Qm

α ⊆ �Qm
α
:= �(xm

α , a12−m). (2.502)

(6) [Control of the number of children] There exists an integer M ∈ N with the
property that for each m ∈ Z and each α ∈ Im one has

#
{
β ∈ Im+1 : Qm+1

β ⊆ Qm
α

} ≤ M. (2.503)

Also, this integer may be chosen such that for each m ∈ Z, each x ∈ 
, and
each r ∈ (0, 2−m) the number of Q’s in Dm(
) that intersect �(x, r) is at most
M .

(7) [Each generation covers the space σ -a.e.] For each m ∈ Z one has

σ
(

 \

⋃

α∈Im

Qm
α

)
= 0. (2.504)

In particular,

N :=
⋃

m∈Z

(

 \

⋃

α∈Im

Qm
α

)
&⇒ σ(N) = 0, (2.505)

and for each m ∈ Z and each α ∈ Im one has

σ
(
Qm

α \
⋃

β∈Im+1, Qm+1
β ⊆Qm

α

Qm+1
β

)
= 0. (2.506)

(8) [Dyadic cubes have thin boundaries] There exist some small ϑ ∈ (0, 1) along
with some large C ∈ (0,∞), such that for each m ∈ Z, each α ∈ Im, and each
t > 0 one has

σ
({

x ∈ Qm
α : dist(x, 
 \Qm

α ) ≤ t · 2−m
}) ≤ Ctϑ · σ(Qm

α ). (2.507)
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Moving on, assume 
 ⊆ R
n is a closed set and abbreviate σ := Hn−1�
. It has

been noted in [111, §3.6] that

if Hn−1(K∩
) < +∞ for each compact subset K of Rn then σ

is a complete, locally finite (hence also sigma-finite), separable,
Borel-regular measure on 
, where the latter set is endowed with
the topology canonically inherited from the ambient space.

(2.508)

Let w be a weight on 
, i.e., a σ -measurable function satisfying 0 < w(x) < ∞
for σ -a.e. point x ∈ 
. We agree to also use the symbol w for the weighted measure
w σ , i.e., define

w(E) :=
ˆ

E

w dσ for each σ -measurable set E ⊆ 
. (2.509)

Then the measures w and σ have the same sigma-algebra of measurable sets, and are
mutually absolutely continuous with each other. Recall that, for a generic measure
space (X, μ), the measure μ is said to be semi-finite if for each μ-measurable
set E ⊆ X with μ(E) = ∞ there exists some μ-measurable set F ⊆ E such that
0 < μ(F) < ∞ (cf., e.g., [51, p. 25]).

Lemma 2.11 Suppose 
 ⊆ R
n is a closed set and abbreviate σ := Hn−1�
. Let

w be an arbitrary weight on 
 and pick an arbitrary σ -measurable set � ⊆ 
 with
σ(�) < ∞. Then the measure w�� is semi-finite and, whenever p, p′ ∈ (1,∞) are
such that 1/p + 1/p′ = 1, it follows that

‖w−1‖
Lp′ (�,w)

= sup
f∈Lp(�,w)
‖f ‖Lp(�,w)=1

ˆ

�

|f | dσ. (2.510)

Proof Consider a w-measurable set E ⊆ � with w(E) = ∞. In particular, the set
E is σ -measurable. If for each N ∈ N we define EN := {x ∈ E : w(x) < N} then
EN is a σ -measurable subset of � and the inclusion EN ⊆ EN+1 holds. In addition,⋃

N∈N EN = {x ∈ E : w(x) < ∞} hence σ
(
E \⋃N∈N EN

) = 0. Consequently,

lim
N→∞w(EN) = lim

N→∞

ˆ

EN

w dσ =
ˆ

E

w dσ = w(E) = ∞, (2.511)

by Lebesgue’s Monotone Convergence Theorem. In turn, (2.511) implies that there
exists No ∈ N such that w(ENo) > 0. Since we also have

w(ENo) =
ˆ

ENo

w dσ ≤ No · σ(ENo) ≤ No · σ(�) < ∞, (2.512)

we conclude that ENo is a w-measurable subset of E with 0 < w(ENo) < ∞. This
implies that w�� is indeed a semi-finite measure.
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With an eye on the claim made in (2.510), define Sfin(�, w) to be the vector
space of all complex-valued functions defined on � which may be expressed in the
form f = ∑N

j=1 λj1Ej
where N ∈ N, each λj is a complex number, the family of

sets {Ej }1≤j≤N consists of w-measurable mutually disjoint subsets of � which also
satisfies w

(⋃N
j=1 Ej

)
< +∞. Note that each such function f happens to be σ -

measurable and, for each q ∈ (0,∞), satisfies
´
�
|f |q ≤∑N

j=1 |λj |q · σ(�) < ∞.
Hence,

Sfin(�, w) ⊆
⋂

0<q<∞
Lq(�, σ) (2.513)

and, in particular,

f w−1 ∈ L1(�, w) for each f ∈ Sfin(�, w). (2.514)

Having picked p, p′ ∈ (1,∞) with 1/p + 1/p′ = 1, we may then write

‖w−1‖
Lp′ (�,w)

= sup
f∈Sfin(�,w)
‖f ‖Lp(�,w)=1

∣∣∣
ˆ

�

f w−1 dw

∣∣∣ = sup
f∈Sfin(�,w)
‖f ‖Lp(�,w)=1

∣∣∣
ˆ

�

f dσ

∣∣∣

≤ sup
f∈Lp(�,w)
‖f ‖Lp(�,w)=1

ˆ

�

|f | dσ. (2.515)

The first equality above is a consequence of [51, Theorem 6.14, p. 189], whose
applicability in the present setting is ensured by (2.514) and the fact that the measure
w�� is semi-finite. The second equality in (2.515) is justified upon recalling that
dw = wdσ , and the inequality in (2.515) is trivial. There remains to observe that
for each f ∈ Lp(�, w) with ‖f ‖Lp(�,w) = 1 Hölder’s inequality gives

ˆ

�

|f | dσ =
ˆ

�

|f |w−1 dw ≤ ‖w−1‖
Lp′ (�,w)

. (2.516)

At this stage, (2.510) becomes a consequence of (2.515) and (2.516). ��
Next, assume that 
 ⊆ R

n, where n ∈ N with n ≥ 2, is a closed set which is
Ahlfors regular, and abbreviate σ := Hn−1�
. Given p ∈ (1,∞), we say that a
weight w on 
 belongs to the Muckenhoupt class Ap(
, σ) if

[w]Ap := sup
�⊆


( 

�

w(x) dσ(x)

)( 

�

w(x)1−p′ dσ(x)

)p−1

< ∞, (2.517)

where p′ is the conjugate exponent of p (i.e., p′ ∈ (1,∞) satisfies 1/p+1/p′ = 1)
and the supremum runs over all surface balls � in 
. The expression in (2.517)
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arises naturally since for each weight function and each surface ball � ⊆ 
 Hölder’s
inequality gives

1 =
 

�

1 dσ =
 

�

w1/pw−1/p dσ

≤
( 

�

w dσ

)1/p ( 

�

w1−p′ dσ

)1/p′

, (2.518)

hence

1 ≤ inf
�⊆


( 

�

w dσ

)( 

�

w1−p′ dσ

)p−1

≤ [w]Ap ≤ ∞. (2.519)

For further use it is useful to note that (2.517) entails that, given any w ∈ Ap(
, σ)

with p ∈ (1,∞), for each surface ball � ⊆ 
 we have

(ˆ

�

w−p′/p dσ

)1/p′

≤ [w]1/p
Ap

σ (�)

w(�)1/p
. (2.520)

Corresponding to p = 1, we say that w ∈ A1(
, σ ) if

[w]A1 := sup
�⊆


(
ess inf

x∈�
w(x)

)−1 ( 

�

w dσ

)
< ∞. (2.521)

It is clear from the above definition that [w]A1 ≥ 1 for each weight w on 
. Recall
that the (non-centered) Hardy–Littlewood maximal operator M on 
 acts on each
given σ -measurable function f on 
 according to

Mf (x) := sup
� x

 

�

|f | dσ, ∀ x ∈ 
, (2.522)

where the supremum is taken over all surface balls � in 
 which contain the point
x. In particular,

a weight w on 
 belongs to A1(
, σ ) if and only if there exists
a constant C ∈ (0,∞) with the property that Mw(x) ≤ Cw(x)

at σ -a.e. point x ∈ 
, and the best constant is actually [w]A1 .
(2.523)

Corresponding to the end-point p = ∞,

the class A∞(
, σ ) is defined as the union
of all Ap(
, σ) with p ∈ [1,∞). (2.524)
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Lemma 2.12 Suppose 
 ⊆ R
n is a closed set which is Ahlfors regular, and

abbreviate σ := Hn−1�
. Then for each p ∈ (1,∞), each Muckenhoupt weight
w ∈ Ap(
, σ), and each σ -measurable function f on 
 one has

 

�

|f | dσ ≤ [w]1/p
Ap

(  

�

|f |p dw
)1/p

,

for each surface ball � ⊆ 
.

(2.525)

Conversely, if p ∈ (1,∞) and w is a weight on 
 with the property that there
exists a constant C ∈ (0,∞) such that

 

�

|f | dσ ≤ C
(  

�

|f |p dw
)1/p

for each

function f ∈ L
p
loc(
, w) and surface ball � ⊆ 
,

(2.526)

then actually w ∈ Ap(
, σ) and [w]Ap ≤ Cp.

Proof Let p′ ∈ (1,∞) denote the Hölder conjugate exponent of p and fix an
arbitrary σ -measurable function f on 
. Then for each surface ball � ⊆ 
 we
may estimate

 

�

|f | dσ = 1

σ(�)

ˆ

�

|f |w1/pw−1/p dσ

≤ 1

σ(�)

( ˆ

�

|f |p w dσ
)1/p( ˆ

�

w−p′/p dσ
)1/p′

=
(  

�

w1−p′ dσ

)1/p′(  

�

w dσ

)1/p( 

�

|f |p dw
)1/p

≤ [w]1/p
Ap

(  

�

|f |p dw
)1/p

, (2.527)

by Hölder’s inequality and (2.517). This proves (2.525).
As for the converse, fix p ∈ (1,∞) and suppose w is a generic weight function

on 
 for which there exists a constant C ∈ (0,∞) such that (2.526) holds. Once
again, denote p′ ∈ (1,∞) the Hölder conjugate exponent of p and fix an arbitrary
surface ball � ⊆ 
. Then, with tilde denoting the extension by zero of a function
originally defined on � to the entire set 
, we may write

‖w−1‖
Lp′ (�,w)

= sup
f∈Lp(�,w)
‖f ‖Lp(�,w)=1

ˆ

�

|f | dσ = σ(�) · sup
f∈Lp(�,w)
‖f ‖Lp(�,w)=1

 

�

|f̃ | dσ
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≤ Cσ(�) · sup
f∈Lp(�,w)
‖f ‖Lp(�,w)=1

(  

�

|f̃ |p dw
)1/p

≤ C
σ(�)

w(�)1/p
, (2.528)

where the first equality comes from Lemma 2.11, and the first inequality is implied
by (2.526). This proves that ‖w−1‖

Lp′ (�,w)
≤ C · σ(�)/w(�)1/p which, after

unraveling notation, yields

( 

�

w dσ

)( 

�

w1−p′ dσ

)p−1

≤ Cp. (2.529)

Ultimately, in view of the arbitrariness of the surface ball � ⊆ 
, this implies that
w ∈ Ap(
, σ) and [w]Ap ≤ Cp. ��

In this work we are particularly interested in the scale of weighted Lebesgue
space Lp(
, w) := Lp(
, wσ) with p ∈ (1,∞) and w ∈ Ap(
, σ). As in the
Euclidean setting,

given a weight w on 
 and an integrability exponent p ∈ (1,∞),
the Hardy–Littlewood maximal operator M is bounded on the
space Lp(
, w) if and only if w ∈ Ap(
, σ),

(2.530)

in which case there exists some constant C = C(
, n, p) ∈ (0,∞) (which depends
on 
 only through its Ahlfors regularity constant) with the property that

‖Mf ‖Lp(
,w) ≤ C[w]1/(p−1)
Ap

‖f ‖Lp(
,w) for all f ∈ Lp(
, w) (2.531)

(see, e.g., [64, Proposition 7.13]). Also, corresponding to p = 1, the operator M
satisfies the weak-(1, 1) inequality

sup0<λ<∞ λ · w({x ∈ 
 : Mf (x) > λ}) ≤ C‖f ‖L1(
,w)

for all f ∈ L1(
, w), with C ∈ (0,∞) independent of f,
(2.532)

if and only if w ∈ A1(
, σ ). For the reader’s convenience, other useful properties
of Muckenhoupt weights are summarized in the proposition below (for a more
extensive discussion pertaining to the theory of weights in the general context of
spaces of homogeneous type the reader is referred to [6, 54, 65, 76, 135]).

Proposition 2.20 Suppose 
 ⊆ R
n is a closed Ahlfors regular set and abbreviate

σ := Hn−1�
. Then the following properties hold.

(1) [Openness/Self-Improving] If w ∈ Ap(
, σ) with p ∈ (1,∞) then there exist
some τ ∈ (1,∞) and some ε ∈ (0, p − 1) (both of which depend only on p,
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[w]Ap , n, and the Ahlfors regularity constant of 
) such that

wτ ∈ Ap(
, σ) and w ∈ Ap−ε(
, σ ). (2.533)

In addition, both
[
wτ
]
Ap

and [w]Ap−ε are controlled in terms of p, [w]Ap , n,

and the Ahlfors regularity constant of 
. In fact, matters may be arranged so
that, in a quantitative fashion,

wθ ∈ Aq(
, σ) for each θ ∈ (τ−1, τ ) and q ∈ (p − ε,∞). (2.534)

(2) [Monotonicity] If 1 ≤ p ≤ q ≤ ∞ then Ap(
, σ) ⊆ Aq(
, σ) and if q < ∞
then [w]Aq ≤ [w]Ap for each w ∈ Ap(
, σ).

(3) [Dual Weights] Given any w ∈ Ap(
, σ) with p ∈ (1,∞), it follows that

w1−p′ belongs to Ap′(
, σ ) and [w1−p′ ]Ap′ = [w]1/(p−1)
Ap

, where p′ ∈ (1,∞)

is the Hölder conjugate exponent of p.
(4) [Products/Factorization] If w1, w2 ∈ A1(
, σ ) then for every p ∈ (1,∞) one

has w1 ·w1−p

2 ∈ Ap(
, σ) and [w1 ·w1−p

2 ]Ap ≤ [w1]A1 · [w2]p−1
A1

. Also, given
w1, w2 ∈ Ap(
, σ) with p ∈ (1,∞) along with some α ∈ [0, 1], it follows that
wα

1 · w1−α
2 ∈ Ap(
, σ) and [wα

1 · w1−α
2 ]Ap ≤ [w1]αAp

· [w2]1−α
Ap

.
(5) [Doubling] If w ∈ Ap(
, σ) with p ∈ (1,∞) then for every surface ball � in


 and every σ -measurable set E ⊆ � one has

(
σ(E)

σ(�)

)p

≤ [w]Ap ·
w(E)

w(�)
. (2.535)

In particular, the measure w is doubling, that is, there exists some C ∈ (0,∞)

which depends only on p, n, and the Ahlfors regularity constant of 
, such that
w(2�) ≤ C[w]Ap · w(�) for every surface ball � ⊆ 
. More generally, with
the constant C ∈ (0,∞) of the same nature as above, one has the inequality
w(λ�) ≤ C[w]Ap · λp(n−1) · w(�) for each λ ∈ (1,∞) and each surface ball
� ⊆ 
 (where λ� denotes the concentric dilate of � by a factor of λ).

(6) [Reverse Hölder Inequalities] For every w ∈ A∞(
, σ ) there exist q ∈ (1,∞)

and some C ∈ (0,∞) (which both depend only on p, [w]Ap , n, and the Ahlfors
regularity constant of 
, for some p ∈ (1,∞) for which w ∈ Ap(
, σ)) such
that

( 

�

wq dσ

)1/q

≤ C

 

�

w dσ, (2.536)

for every surface ball � ⊆ 
. This has several remarkable consequences. First,
there exist some power τ > 0 and some constant C ∈ (0,∞) (in fact, C is
the same as in (2.536) and τ = 1/q ′ where q ′ is the Hölder conjugate of the
exponent q from (2.536)) such that
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w(E)

w(�)
≤ C

(
σ(E)

σ(�)

)τ

(2.537)

for every surface ball � ⊆ 
 and every σ -measurable set E ⊆ �. Another
useful consequence of the inequality in (2.536) and Hölder’s inequality is that
for each σ -measurable function f on 
 and each surface ball � ⊆ 
 one has

 

�

|f | dw ≤ C

( 

�

|f |q ′ dσ
)1/q ′

, (2.538)

where q ′ ∈ (1,∞) is the Hölder conjugate exponent of q from (2.536), and the
constant C ∈ (0,∞) is as in (2.536). Finally, in the case when 
 is unbounded,
(2.537) (used with � = �(x, r) and E = �(x, 1)) proves that there exists some
c ∈ (0,∞) such that

w
(
�(x, r)

) ≥ c r(n−1)τ · w(�(x, 1)
)

for each x ∈ 
 and r ∈ (1,∞).
(2.539)

In particular,

w(
) = +∞ if 
 is unbounded. (2.540)

(7) [Building A1 Weights] There exists C ∈ (0,∞) which depends only on n and 
,
with the property that if f ∈ L1

loc(
, σ ) is not identically zero and Mf < ∞
at σ -a.e. point on 
 then for each θ ∈ (0, 1) one has (Mf )θ ∈ A1(
, σ )

and
[
(Mf )θ

]
A1

≤ C(1 − θ)−1. In addition, for each power θ ∈ (0, 1) the

weight w := (Mf )θ satisfies a reverse Hölder inequality (as in (2.536)) for
each exponent q ∈ (1, θ−1).

(8) [BMO and Weights] For each p ∈ (1,∞) and w ∈ Ap(
, σ) there exist some
small ε = ε(
, p, [w]Ap) > 0 and some large C = C(
, p, [w]Ap) ∈ (0,∞)

such that for each function b ∈ BMO(
, σ ) with ‖b‖BMO(
,σ) < ε one has
w ·eb ∈ Ap(
, σ) and

[
w ·eb

]
Ap

≤ C. In particular, for each fixed integrability

exponent p ∈ (1,∞) the set Up := {
b ∈ BMO(
, σ ) : eb ∈ Ap(
, σ)

}
is

open in BMO(
, σ ). Also, for each weight w ∈ A1(
, σ ), the function log w

belongs to BMO(
, σ ) and ‖ log w‖BMO(
,σ) ≤ C(
, n, [w]A1). Finally, for
each function b ∈ BMO(
, σ ) and each exponent p ∈ (1,∞), the function
max{1, |b|} belongs to Ap(
, σ) and there exists C
,p ∈ (0,∞), independent
of b, such that [max{1, |b|}]Ap ≤ C
,p(1 + ‖b‖BMO(
,σ)).

(9) [Dyadic Cubes] If
 is unbounded, then properties (2.535), (2.536), and (2.537)
also hold if surface balls � are replaced by dyadic “cubes,” as described in
Proposition 2.19.

Proof For the memberships in (2.533), (2.534) (including their quantitative aspects)
see [65, Theorems 1.1-1.2], [21, Theorem 2.31, p. 58].
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To deal with item (2), suppose 1 ≤ p ≤ q < ∞ and denote by p′, q ′ the
Hölder conjugate exponents of p and q, respectively. Also, fix an arbitrary weight
w ∈ Ap(
, σ). Then r := (1− p′)/(1− q ′) belongs to [1,∞), so for each surface
ball � in 
 we may employ Hölder’s inequality to write

( 

�

w dσ

)( 

�

w1−q ′ dσ

)q−1

≤
( 

�

w dσ

)( 

�

wr(1−q ′) dσ

)(q−1)/r

=
( 

�

w dσ

)( 

�

w1−p′ dσ

)p−1

≤ [w]Ap < +∞, (2.541)

since (q − 1)/r = p − 1. In view of (2.517), this shows that w ∈ Aq(
, σ) and
we have [w]Aq ≤ [w]Ap . Finally, the fact that the inclusion Ap(
, σ) ⊆ Aq(
, σ)

also holds if q = ∞ is clear from (2.524).
Going further, to justify the claim made in item (3), fix some w ∈ Ap(
, σ) with

p ∈ (1,∞), and denote by p′ ∈ (1,∞) the Hölder conjugate exponent of p. Then
for each surface ball � in 
 we may write

( 

�

w1−p′ dσ

)( 

�

(w1−p′)1−p dσ

)p′−1

=
( 

�

w1−p′ dσ

)( 

�

w dσ

)p′−1

≤ [w]p′−1
Ap

= [w]1/(p−1)
Ap

< +∞, (2.542)

thanks to (2.517). This implies that w1−p′ belongs to Ap′(
, σ ) and that we have

[w1−p′ ]Ap′ ≤ [w]1/(p−1)
Ap

. Writing this last inequality with p replaced by p′ and with

w replaced by w1−p′ yields [(w1−p′)1−p]Ap ≤ [w1−p′ ]1/(p′−1)
Ap′ . Hence, we have

[w]1/(p−1)
Ap

≤ [w1−p′ ]Ap′ which ultimately proves that [w1−p′ ]Ap′ = [w]1/(p−1)
Ap

.
To deal with the first claim made in item (4), recall from (2.521) that, since

w2 ∈ A1(
, σ ), for each surface ball � in 
 we have

 

�

w2 dσ ≤ [w2]A1 · w2 at σ -a.e. point in �. (2.543)

Given that 1 − p < 0, this entails
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w
1−p

2 ≤ [w2]p−1
A1

·
(  

�

w2 dσ
)1−p

at σ -a.e. point in �, (2.544)

which further implies

 

�

w1 · w1−p

2 dσ ≤ [w2]p−1
A1

·
(  

�

w1 dσ
)(  

�

w2 dσ
)1−p

. (2.545)

In a similar manner, the fact that w1 ∈ A1(
, σ ) implies

w
−1/(p−1)

1 ≤ [w1]1/(p−1)
A1

·
( 

�

w1 dσ
)−1/(p−1)

at σ -a.e. point in �, (2.546)

hence

(  

�

(w1 · w1−p

2 )−1/(p−1) dσ
)p−1 =

(  

�

w
−1/(p−1)

1 · w2 dσ
)p−1

(2.547)

≤ [w1]A1 ·
(  

�

w1 dσ
)−1(  

�

w2 dσ
)p−1

.

By combining (2.545) with (2.547) we therefore arrive at the conclusion that, with
p′ denoting the Hölder conjugate exponent of p,

( 

�

w1 · w1−p

2 dσ

)( 

�

(w1 · w1−p

2 )1−p′ dσ

)p−1

=
( 

�

w1 · w1−p

2 dσ

)( 

�

(w1 · w1−p

2 )−1/(p−1) dσ

)p−1

≤ [w2]p−1
A1

·
(  

�

w1 dσ
)(  

�

w2 dσ
)1−p×

× [w1]A1 ·
(  

�

w1 dσ
)−1( 

�

w2 dσ
)p−1

= [w1]A1 · [w2]p−1
A1

. (2.548)

Thus, with the supremum running over all surface balls � in 
, we have (cf. (2.517))

[w1 · w1−p

2 ]Ap = sup
�⊆


( 

�

w1 · w1−p

2 dσ

)( 

�

(w1 · w1−p

2 )1−p′ dσ

)p−1
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= [w1]A1 · [w2]p−1
A1

< +∞, (2.549)

proving that the weight w1 ·w1−p

2 belongs to the Muckenhoupt class Ap(
, σ) and

that we have [w1 · w1−p

2 ]Ap ≤ [w1]A1 · [w2]p−1
A1

.
As regards the second claim in item (4), pick two weights w1, w2 ∈ Ap(
, σ)

with p ∈ (1,∞) fix some α ∈ [0, 1]. If α = 0 or α = 1 there is nothing to prove, so
assume α ∈ (0, 1). With “prime” indicating a conjugate exponent, for each surface
ball � in 
 Hölder’s inequality gives

 

�

wα
1 · w1−α

2 dσ ≤
( 

�

(wα
1 )1/α dσ

)α(  

�

(w1−α
2 )(1/α)′ dσ

)1/(1/α)′

=
(  

�

w1 dσ
)α( 

�

w2 dσ
)1−α

, (2.550)

since (1/α)′ = (1 − α)−1. Similarly,

( 

�

(wα
1 · w1−α

2 )1−p′ dσ
)p−1

≤
(  

�

w
1−p′
1 dσ

)α(p−1)(  

�

w
1−p′
2 dσ

)(1−α)(p−1)

. (2.551)

Together, (2.550) and (2.551) show that

( 

�

wα
1 · w1−α

2 dσ
)(  

�

(wα
1 · w1−α

2 )1−p′ dσ
)p−1

≤
[(  

�

w1 dσ
)( 

�

w
1−p′
1 dσ

)p−1
]α[(  

�

w2 dσ
)( 

�

w
1−p′
2 dσ

)p−1
]1−α

≤ [w1]αAp
· [w2]1−α

Ap
< +∞. (2.552)

After taking the supremum over all surface balls � ⊆ 
, we then conclude from
(2.552) that wα

1 · w1−α
2 ∈ Ap(
, σ) and [wα

1 · w1−α
2 ]Ap ≤ [w1]αAp

· [w2]1−α
Ap

.
Moving on, the estimate in (2.535) may be seen from Lemma 2.12, used here with

f := 1E . In concert with the Ahlfors regularity of 
, this implies all subsequent
claims in item (5).

The reverse Hölder inequality claimed in (2.536) is contained in [65, Theo-
rem 2.3], [135, Theorem 15, p. 9]. Moreover, if q ′ is the Hölder conjugate of the
exponent q from (2.536) then for every surface ball � ⊆ 
 and every σ -measurable
set E ⊆ � we may estimate
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w(E)

w(�)
=
 

�

1E dw = σ(�)

w(�)

 

�

1E w dσ

≤ σ(�)

w(�)

(  

�

1E dσ
)1/q ′(  

�

wq dσ
)1/q

≤ C
σ(�)

w(�)

(  

�

1E dσ
)1/q ′( 

�

w dσ
)
= C

(
σ(E)

σ(�)

)1/q ′

, (2.553)

thanks to Hölder’s inequality and (2.536). This proves (2.537) with τ := 1/q ′ > 0
and C ∈ (0,∞) the same constant as in (2.536).

Consider next the first claim made in item (7). Suppose f ∈ L1
loc(
, σ ) is not

identically zero and has the property that Mf < ∞ at σ -a.e. point on 
. Fix an
arbitrary surface ball � ⊆ 
 and decompose f = f1 + f2 with f1 := f 12� and
f2 := f 1
\2�. Having Mf < ∞ at σ -a.e. point on 
 entails f1 ∈ L1(
, σ ). Since
0 < θ < 1 and 0 ≤Mf ≤Mf1 +Mf2, we conclude that

(Mf )θ ≤ (Mf1)
θ + (Mf2)

θ on 
. (2.554)

Based on Kolmogorov’s inequality, the fact that M satisfies the weak-(1, 1)

inequality, the membership of f1 to L1(
, σ ), and the fact that the measure σ is
doubling we may estimate

(  

�

|Mf1|θ dσ
)1/θ ≤

( 1

1 − θ

) 1
θ
σ (�)−1‖Mf1‖L1,∞(
,σ)

≤ C
( 1

1 − θ

) 1
θ
σ (�)−1‖f1‖L1(
,σ)

≤ C
( 1

1 − θ

) 1
θ

 

2�

|f | dσ

≤ C
( 1

1 − θ

) 1
θ

inf
x∈2�

(Mf )(x). (2.555)

Hence, on the one hand,

 

�

|Mf1|θ dσ ≤ C

1 − θ

(
inf

x∈2�
(Mf )(x)

)θ

. (2.556)

On the other hand, the fact that

for each surface ball �′ ⊆ 
 so that �′ ∩� �= ∅

and �′ ∩ (
 \ 2�) �= ∅ it follows that � ⊆ 6�′ (2.557)
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readily implies that there exists a geometric constant C ∈ (0,∞) with the property
that

(Mf2)(y) ≤ C(Mf2)(x) for each x, y ∈ �. (2.558)

In turn, this forces

 

�

|Mf2|θ dσ ≤ C
(

inf
x∈�

(Mf2)(x)
)θ ≤ C

(
inf
x∈�

(Mf )(x)
)θ

(2.559)

which, in concert with (2.556) and (2.554) proves that

 

�

|Mf |θ dσ ≤ C

1 − θ
· inf

x∈�
[(Mf )(x)]θ . (2.560)

Since 0 < [(Mf )(x)]θ < ∞ for σ -a.e. point x ∈ 
, ultimately (2.560) implies that
(Mf )θ ∈ A1(
, σ ) and

[
(Mf )θ

]
A1
≤ C(1 − θ)−1.

To show that for each θ ∈ (0, 1) and q ∈ (1, θ−1) the weight w := (Mf )θ

satisfies (2.536), observe that θ̃ := θq ∈ (0, 1) so we may invoke (2.560) (for θ̃ ) to
write, for every surface ball � ⊆ 
,

( 

�

wq dσ

)1/q

=
( 

�

|Mf |θ̃ dσ

)1/q

≤
(

C

1 − θ̃

)1/q

·
(

inf
�

(Mf )θ̃
)1/q

=
(

C

1 − θq

)1/q

·
(

inf
�

(Mf )θ
)

≤
(

C

1 − θq

)1/q  

�

|Mf |θ =
(

C

1 − θq

)1/q  

�

w dσ, (2.561)

as wanted. This completes the treatment of item (7).
For the first two claims in item (8) see [69, p. 33 and p. 60] for a proof in the

Euclidean ambient which readily adapts to the present setting, given the availability
of a John-Nirenberg inequality for doubling measures (see the discussion pertaining
to (2.92)–(2.94)) and the results in the current items (1)-(6). For the third claim in
item (8) see [52, Theorem 3.3, p. 157] for a proof in the Euclidean space which goes
through in the present setting as well. We may justify the very last claim in item (8)
by arguing along the lines of the proof of [58, Lemma 1.12, p. 471]. Specifically,
given b ∈ BMO(
, σ ) set w := max{1, |b|} and fix some p ∈ (1,∞). Then for an
arbitrary surface ball � in 
 we may write

( 

�

w dσ

)( 

�

w
− 1

p−1 dσ

)p−1
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≤
( 

�

[
1 + |b − b�|

]
dσ

)( 

�

( 1

max{1, |b|}
) 1

p−1
dσ

)p−1

+ |b�|
( 

�

( 1

max{1, |b|}
) 1

p−1
dσ

)p−1

≤ 1 + ‖b‖BMO(
,σ) +
( 

�

( |b�|
max{1, |b|}

) 1
p−1

dσ

)p−1

. (2.562)

Also, if E0 := {x ∈ � : |b(x)| > |b�|/2} and E1 := {x ∈ � : |b(x)| ≤ |b�|/2},
then for each point x ∈ E0 we have |b�|/|b(x)| ≤ 2 while for each point x ∈ E1
we have |b�| ≤ 2|b(x)− b�|. Consequently,

( 

�

( |b�|
max{1, |b|}

) 1
p−1

dσ

)p−1

≤ max
{
1, 2p−2} ·

(
1

σ(�)

ˆ

E0

( |b�|
|b|

) 1
p−1

dσ

)p−1

+ max
{
1, 2p−2} ·

(
1

σ(�)

ˆ

E1

|b�|
1

p−1 dσ

)p−1

≤ max
{
2, 2p−1} ·

(σ(E0)

σ (�)

)p−1

+ max
{
2, 2p−1} ·

( 

�

|b − b�|
1

p−1 dσ

)p−1

≤ C
,p

(
1 + ‖b‖BMO(
,σ)

)
, (2.563)

where the last step above uses the John-Nirenberg inequality. In view of the
arbitrariness of the surface ball �, from the estimates in (2.562)–(2.563) we may
conclude that w ∈ Ap(
, σ) and [w]Ap ≤ C
,p(1 + ‖b‖BMO(
,σ)) for some
constant C
,p ∈ (0,∞) which is independent of b. This takes care of the very
last claim in item (8). Finally, the claim in item (9) is a consequence of (2.502) and
the doubling properties of σ and w (for the latter see item (5) above). ��

Given that the class of Muckenhoupt weights is going to play a prominent role in
this work, it is appropriate to include some relevant concrete examples of interest.

Example 2.12 Suppose 
 ⊆ R
n (where n ≥ 2) is a closed set which is Ahlfors

regular, and abbreviate σ := Hn−1�
. Also, fix some p ∈ (1,∞) along with an
arbitrary point x0 ∈ 
 and a power a ∈ R. Then the function

w : 
 → [0,∞], w(x) := |x − x0|a for each x ∈ 
 (2.564)
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is a Muckenhoupt weight in Ap(
, σ) if and only if a ∈ (
1 − n, (p − 1)(n − 1)

)
.

Furthermore, whenever this happens, [w]Ap depends only on the Ahlfors regularity
constant of 
, p, and a.

See, for example, [54, Proposition 1.5.9, p. 42]. In a more general geometric
setting, we have the following result, implied by work in [45].

Proposition 2.21 Assume 
 ⊆ R
n is a closed set which is Ahlfors regular, and

abbreviate σ := Hn−1�
. Fix d ∈ [0, n − 1) and consider a d-set E ⊆ 
, i.e., a
closed subset E of 
 with the property that there exists some Borel outer-measure
μ on E satisfying

μ
(
B(x, r) ∩ E

) ≈ rd, uniformly for x ∈ E and r ∈ (0, 2 diam(E)
)
. (2.565)

Then for each p ∈ (1,∞) and each a ∈ (d+1−n, (p−1)(n−1−d)
)
the function

w := [
dist(·, E)

]a
is a Muckenhoupt weight in the classAp(
, σ). Moreover, [w]Ap

depends only on the Ahlfors regularity constant of 
, the proportionality constants
in (2.565), d, p, and a.

We continue to explore properties of Muckenhoupt weights in the context of
Ahlfors regular sets which are relevant for this work.

Lemma 2.13 Let
 ⊆ R
n be a closed Ahlfors regular set and define σ := Hn−1�
.

Then for each w ∈ A∞(
, σ ) one has

BMO(
, σ ) ⊆ L1
loc(
, w). (2.566)

Proof This is a direct consequence of (2.524), item (2) in Proposition 2.20, (2.538),
and (2.96). ��

If 
 ⊆ R
n is a closed Ahlfors regular set and σ := Hn−1�
, then for each

weight function w on 
 we have L∞(
, σ ) = L∞(
, w), i.e., these vector spaces
coincide and they have identical norms. Remarkably, whenever w ∈ A∞(
, σ ) it
follows that the BMO spaces on 
 with respect to σ and w are once again identical.
Here is a formal statement of this fact (compare with [117, Theorem 5, p. 236]).

Lemma 2.14 Suppose 
 ⊆ R
n is a closed set which is Ahlfors regular, and

abbreviate σ := Hn−1�
. Also, fix some weight w ∈ A∞(
, σ ) (hence, there
exists some p ∈ (1,∞) for which w ∈ Ap(
, σ)). Then there exists a constant
C ∈ [1,∞) which depends only on p, [w]Ap , n, and the Ahlfors regularity constant
of 
 such that

C−1 ‖f ‖BMO(
,σ) ≤ ‖f ‖BMO(
,w) ≤ C ‖f ‖BMO(
,σ) (2.567)

for each function f ∈ L1
loc(
, σ ) ∩ L1

loc(
, w).
Moreover, for each σ -measurable function f on 
 one has the equivalence
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f ∈ BMO(
, σ ) ⇐⇒ f ∈ BMO(
, w) (2.568)

and if either of these memberships materializes then ‖f ‖BMO(
,σ) ≈ ‖f ‖BMO(
,w)

where the implicit proportionality constants depend only on p, [w]Ap , n, and the
Ahlfors regularity constant of 
. Succinctly put,

the spaces BMO(
, σ ) and BMO(
, w) coincide as sets

and have equivalent semi-norms.
(2.569)

Proof Pick a function f ∈ L1
loc(
, σ )∩L1

loc(
, w). To prove the first inequality in
(2.567), start by writing (2.525) with f replaced by f − ffl

�
f dw for some arbitrary

surface ball � ⊆ 
, then invoke (2.102) to obtain

‖f ‖BMO(
,σ) ≤ 2 sup
�⊆


inf
c∈R

( 

�

∣∣f − c
∣∣ dσ

)
≤ 2 sup

�⊆


 

�

∣∣∣f −
 

�

f dw

∣∣∣ dσ

≤ 2[w]1/p
Ap

· sup
�⊆


(  

�

∣∣∣f −
 

�

f dw

∣∣∣
p

dw
)1/p

≤ C ‖f ‖BMO(
,w) , (2.570)

for some constant C ∈ (0,∞) as in the statement. To prove the second inequality in
(2.567), observe first that w belongs to some Reverse Hölder class, say w satisfies
(2.536) for some q ∈ (1,∞). If q ′ ∈ (1,∞) denotes the Hölder conjugate exponent
of q, then (2.538) allows to estimate

inf
c∈R

( 

�

∣∣f − c
∣∣ dw

)
≤
 

�

∣∣∣f −
 

�

f dσ

∣∣∣ dw

≤ C

( 

�

∣∣∣f −
 

�

f dσ

∣∣∣
q ′

dσ

)1/q ′

, (2.571)

for some constant C ∈ (0,∞) of the same nature as before. Taking the supremum
over all surface balls � ⊆ 
 and then using John-Nirenberg’s inequality, we
ultimately obtain ‖f ‖BMO(
,w) ≤ C ‖f ‖BMO(
,σ), as desired.

As regards the equivalence in (2.568), assume first that f ∈ BMO(
, σ ). Then
(2.566) implies that f ∈ L1

loc(
, σ ) ∩ L1
loc(
, w), so (2.567) holds. Conversely,

assume the function f belongs to BMO(
, w). In particular, f ∈ L1
loc(
, w) and

the John-Nirenberg inequality (for the doubling measure w) guarantees that we also
have f ∈ L

p

loc(
, w). In concert with (2.525) the latter membership implies that
f ∈ L1

loc(
, σ ), hence once again (2.567) applies. ��
The doubling and self-improving properties of Muckenhoupt weights yield the

following result (see [111, §7.7] for a proof).
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Lemma 2.15 Suppose 
 ⊆ R
n, where n ∈ N with n ≥ 2, is a closed set which is

Ahlfors regular, and abbreviate σ := Hn−1�
. In this setting, fix some p ∈ (1,∞)

along with a Muckenhoupt weight w ∈ Ap(
, σ). Then

ˆ




w(x)

(1 + |x|n−1)p
dσ(x) < +∞. (2.572)

Also,

there exists ε ∈ (0, 1) such that

Lp(
, w) ↪→ L1
(

,

σ(x)

1 + |x|n−1−ε

)
,

(2.573)

and there exists an exponent po ∈ (1, p] with the property that

Lp(
, w) ↪→ Lq
(

,

σ(x)

1 + |x|n−1

)

continuously, for each fixed q ∈ (0, po).

(2.574)

As a consequence,

Lp(
, w) ↪→ L1
(

,

σ(x)

1 + |x|n−1

)
continuously, (2.575)

and

Lp(
, w) ⊆ L
p
loc(
, w) ⊆

⋃

1<q<p

L
q
loc(
, σ ) ⊆ L1

loc(
, σ ). (2.576)

2.8 Sobolev Spaces on Ahlfors Regular Sets

Consider an Ahlfors regular domain � ⊆ R
n. Denote by ν = (ν1, . . . , νn) the

geometric measure theoretic outward unit normal to �, and set σ := Hn−1�∂�. In
particular, (2.508) implies that

σ is a complete, locally finite (hence also sigma-finite), sep-
arable, Borel-regular measure on ∂�, where the latter set is
endowed with the topology canonically inherited from R

n.
(2.577)

Among other things, this implies (cf. [111, §3.7]) that for every f ∈ L1
loc(∂�, σ)

we have
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f = 0 at σ -a.e. point on ∂� ⇐⇒
ˆ

∂�

f φ dσ = 0 for every φ ∈ C∞
0 (Rn).

(2.578)
In this context, define the family of first-order tangential derivative operators, ∂τjk

with j, k ∈ {1, . . . , n}, acting on functions ϕ ∈ C∞
0 (Rn) according to

∂τjk
ϕ := νj (∂kϕ)

∣∣
∂�

− νk(∂jϕ)
∣∣
∂�

for all j, k ∈ {1, . . . , n}. (2.579)

The starting point in the development of a brand of first-order Sobolev spaces on
∂� is the observation that for any two functions ϕ, ψ ∈ C∞

0 (Rn) and every pair of
indices j, k ∈ {1, . . . , n} one has the boundary integration by parts formula

ˆ

∂�

(∂τjk
ϕ)ψ dσ = −

ˆ

∂�

ϕ(∂τjk
ψ) dσ. (2.580)

Indeed, identity (2.580) is a consequence of the Divergence Formula (2.20) applied
to a suitable vector field, namely �F := ∂k(ϕψ)ej − ∂j (ϕψ)ek (where {ei}1≤i≤n

is the standard orthonormal basis in R
n), which is smooth, compactly supported,

divergence-free, and satisfies ν · �F = (∂τjk
ϕ)ψ + ϕ(∂τjk

ψ) at σ -a.e. point on ∂�.
Next, given a function f ∈ L1

loc(∂�, σ) along with two indices j, k ∈ {1, . . . , n},
we shall say that ∂τjk

f exists in (or, belongs to) the space L1
loc(∂�, σ) if there exists

a function fjk ∈ L1
loc(∂�, σ) such that

ˆ

∂�

(∂τjk
ϕ)f dσ = −

ˆ

∂�

ϕfjk dσ for all ϕ ∈ C∞
0 (Rn). (2.581)

In view of (2.578), we conclude that the function fjk is unambiguously defined
(σ -a.e.) by the demand in (2.581). Henceforth we shall favor the notation

∂τjk
f := fjk (2.582)

which, in particular, allows us to recast (2.581) more in line with (2.580), namely as
ˆ

∂�

f (∂τjk
ϕ) dσ = −

ˆ

∂�

(∂τjk
f )ϕ dσ for all ϕ ∈ C∞

0 (Rn). (2.583)

In analogy with the classical flat, Euclidean case, it is natural to regard ∂τjk
f as a

weak (tangential) derivative of the function f . The developments so far allow us
to define a convenient functional analytic environment within which is possible to
consider such weak (tangential) derivatives of functions in L1

loc(∂�, σ). Specifi-
cally, for each p ∈ [1,∞] we introduce the local Sobolev space L

p

1,loc(∂�, σ) as

L
p

1,loc(∂�, σ) := {
f ∈ L

p

loc(∂�, σ) : ∂τjk
f ∈ L

p

loc(∂�, σ), 1 ≤ j, k ≤ n
}
.

(2.584)
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In such a context, we define the tangential gradient operator as (with the summation
convention over repeated indices in effect)

L
p

1,loc(∂�, σ)  f !→ ∇tanf := (
νk∂τkj

f
)

1≤j≤n
. (2.585)

If � is actually a UR domain, we may recover the weak tangential derivatives
from the components of the tangential gradient operator via (cf. [112, §11.4], [61,
Lemma 3.40])

∂τjk
f = νj (∇tanf )k − νk(∇tanf )j , 1 ≤ j, k ≤ n,

for every f ∈ L
p

1,loc(∂�, σ) with p ∈ (1,∞).
(2.586)

Going further, having fixed an integrability exponent p ∈ (1,∞) along with
a Muckenhoupt weight w ∈ Ap(∂�, σ), define the (boundary) weighted Sobolev
space

L
p

1 (∂�, w) := {
f ∈ Lp(∂�, w) : ∂τjk

f ∈ Lp(∂�, w), 1 ≤ j, k ≤ n
}

(2.587)
which is a Banach space when equipped with the norm

L
p

1 (∂�, w)  f !→ ‖f ‖L
p
1 (∂�,w) := ‖f ‖Lp(∂�,w) +

n∑

j,k=1

∥∥∂τjk
f
∥∥

Lp(∂�,w)
.

(2.588)
Since there exists q ∈ (1,∞) such that Lp(∂�, w) ↪→ L

q

loc(∂�, σ) (cf.
Lemma 2.15), we see that L

p

1 (∂�, w) ↪→ L
q

1,loc(∂�, σ) for such an exponent q. In

particular, the equality in (2.586) holds for every function f ∈ L
p

1 (∂�, w) whenever
� is actually a UR domain.

In the same geometric setting, recall that Lp,q(∂�, σ) with p, q ∈ (0,∞]
stands for the scale of Lorentz spaces on ∂�, with respect to the measure σ .
These are quasi-Banach spaces which arise naturally as intermediate spaces for the
real interpolation method used within the scale of ordinary Lebesgue spaces. In
particular, this implies that

Lp,q(∂�, σ) ↪→ L1
(
∂�,

σ(x)

1+|x|n−1

) ∩
(⋂

1<s<p Ls
loc(∂�, σ)

)

whenever p ∈ (1,∞) and q ∈ (0,∞].
(2.589)

In relation to this scale of spaces, it is also of interest to consider (boundary)
Lorentz-based Sobolev spaces. Specifically, following work in [112, §11.1], for each
p ∈ (1,∞) and q ∈ (0,∞] we set

L
p,q

1 (∂�, σ) := {
f ∈ Lp,q(∂�, σ) : ∂τjk

f ∈ Lp,q(∂�, σ), 1 ≤ j, k ≤ n
}

(2.590)
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which is a quasi-Banach space when equipped with the quasi-norm

L
p,q

1 (∂�, σ)  f !→ ‖f ‖L
p,q
1 (∂�,σ) := ‖f ‖Lp,q (∂�,σ) +

n∑

j,k=1

∥∥∂τjk
f
∥∥

Lp,q (∂�,σ)
.

(2.591)
In the proposition below, which refines [61, Lemma 3.36, p. 2678], we study the

manner in which weak tangential derivatives interact with pointwise nontangential
traces. See [112, §11.3] for a proof.

Proposition 2.22 Let � ⊆ R
n be an Ahlfors regular domain. Set σ := Hn−1�∂�

and denote by ν = (ν1, . . . , νn) the geometric measure theoretic outward unit
normal to �. Also, fix an integrability exponent p ∈ [1,∞], an aperture parameter
κ ∈ (0,∞), and a truncation parameter ε > 0. In this context, assume the function
u ∈ W

1,1
loc (�) satisfies

Nε
κu ∈ L

p
loc(∂�, σ), Nε

κ (∇u) ∈ L
p
loc(∂�, σ), (2.592)

and the nontangential traces

u
∣∣κ−n.t.
∂�

and (∂ju)
∣∣κ−n.t.
∂�

for j ∈ {1, . . . , n}
exist at σ -a.e. point on ∂�.

(2.593)

Then u
∣∣κ−n.t.
∂�

belongs to L
p

1,loc(∂�, σ), the functions (∂1u)
∣∣κ−n.t.
∂�

, . . . , (∂nu)
∣∣κ−n.t.
∂�

belong to L
p
loc(∂�, σ) and, for each j, k ∈ {1, . . . , n} and for σ -a.e. point on ∂�,

one has

∂τjk

(
u
∣∣κ−n.t.
∂�

)
= νj

(
(∂ku)

∣∣κ−n.t.
∂�

)
− νk

(
(∂ju)

∣∣κ−n.t.
∂�

)
. (2.594)

In particular, for each j, k ∈ {1, . . . , n} one has
∣∣∣∂τjk

(
u
∣∣κ−n.t.
∂�

)∣∣∣ ≤ 2Nε
κ (∇u) at σ -a.e. point on ∂�. (2.595)

The following result from [112, §11.3] may be regarded as a weighted counter-
part of Proposition 2.22, in which no assumptions are made regarding the existence
of the nontangential boundary traces of the derivatives of the function involved. The
reader is reminded that the truncated nontangential maximal operator Nε

κ has been
defined in (2.9).

Proposition 2.23 Given an Ahlfors regular domain � ⊆ R
n, set σ := Hn−1�∂�.

Fix an aperture parameter κ ∈ (0,∞) and an integrability exponent p ∈ (1,∞).
Assume w : ∂� → [0,+∞] is a σ -measurable function with 0 < w(x) < ∞ for

σ -a.e. x ∈ ∂� and w−1/p ∈ L
p′
loc(∂�, σ), where p′ ∈ (1,∞) denotes the Hölder

conjugate exponent of p; in particular, Lp(∂�, wσ) ↪→ L1
loc(∂�, σ). Finally, fix
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a truncation parameter ε > 0. In this setting, suppose that some complex-valued
function u ∈ W

1,1
loc (�) has been given which satisfies the following conditions:

u
∣∣κ−n.t.
∂�

exists at σ -a.e. point on ∂� and

Nε
κu ∈ L1

loc(∂�, σ), Nε
κ (∇u) ∈ Lp(∂�, wσ).

(2.596)

Then the nontangential trace u
∣∣κ−n.t.
∂�

belongs to L1
1,loc(∂�, σ) and satisfies

∂τjk

(
u
∣∣κ−n.t.
∂�

)
∈ Lp(∂�, wσ) for each j, k ∈ {1, . . . , n}

and
n∑

j,k=1

∥∥∥∂τjk

(
u
∣∣κ−n.t.
∂�

)∥∥∥
Lp(∂�,wσ)

≤ C
∥∥Nε

κ (∇u)
∥∥

Lp(∂�,wσ)

(2.597)

for some constant C ∈ (0,∞) independent of u.

For further use, let us also consider homogeneous Muckenhoupt
weighted boundary Sobolev spaces. Specifically, we make the following
definition.

Definition 2.18 Let � ⊆ R
n be an Ahlfors regular domain and set σ := Hn−1�∂�.

Given some integrability exponent p ∈ (1,∞) along with a Muckenhoupt weight
w ∈ Ap(∂�, σ), define

.
L

p

1 (∂�, w) :=
{
f ∈ L1(∂�,

σ(x)
1+|x|n

) ∩ L
p

loc(∂�, w) : (2.598)

∂τjk
f ∈ Lp(∂�, w) for each j, k ∈ {1, . . . , n}

}
,

and equip this space with the semi-norm

.
L

p

1 (∂�, w)  f !−→ ‖f ‖ .
L

p
1 (∂�,w)

:=
n∑

j,k=1

∥∥∂τjk
f
∥∥

Lp(∂�,w)
. (2.599)

It is clear from definitions and (2.575) that we have a continuous embedding

L
p

1 (∂�, w) ↪→ .
L

p

1 (∂�, w). (2.600)

Also, all constant functions on ∂� belong to
.
L

p

1 (∂�, w) and their semi-norm

vanishes. As such, we will occasionally find it useful to work with
.
L

p

1 (∂�, w)
/ ∼,

the quotient space of classes [ · ] of equivalence modulo constants of functions in.
L

p

1 (∂�, w), which we equip with the semi-norm
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.
L

p

1 (∂�, w)
/ ∼ [f ] !→ ‖[f ]‖ .

L
p
1 (∂�,w)/∼ :=

n∑

j,k=1

∥∥∂τjk
f
∥∥

Lp(∂�,w)
. (2.601)

We shall next prove a membership criterion to a global weighted Lebesgue space,
formulated in the lemma below.

Lemma 2.16 Let 
 ⊆ R
n be a closed, unbounded set, which is Ahlfors regular,

and abbreviate σ := Hn−1�∂�. Pick p ∈ (1,∞) along with w ∈ Ap(
, σ), and
fix a reference point x0 ∈ 
. Suppose f ∈ L1

loc(
, w) is such that

C∗ := sup
r>0

1

r

( ˆ

�r

|f − fr,w|p dw
)1/p

< +∞, (2.602)

where, for each r ∈ (0,∞),

�r := B(x0, r) ∩
 and fr,w :=
 

�r

f dw. (2.603)

Then there exists some constant C = C
(

, n, p, [w]Ap

) ∈ (0,∞) with the
property that for each r ∈ (0,∞) one has

ˆ




|f (x)− fr,w|
(r + |x − x0|)n dσ(x) ≤ C · C∗

w(�r)1/p
. (2.604)

In particular, f belongs to the space L1
(

,

σ(x)
1+|x|n

)
.

Proof For starters, observe that for each r > 0 we have

|f2r,w − fr,w| ≤
 

�r

|f − f2r,w| dw ≤ C

 

�2r

|f − f2r,w| dw

≤ C
(  

�2r

|f − f2r,w|p dw
)1/p ≤ C · C∗ · r

w(�2r )1/p
, (2.605)

thanks to the fact that w is doubling, Hölder’s inequality, and (2.602). With this in
hand (and keeping in mind that both σ and w are doubling), for each given r > 0
we may then estimate

ˆ


\�r

|f (x)− fr,w|
|x − x0|n dσ(x) ≤ C

∞∑

j=0

1

(2j r)n

ˆ

�2j+1r
\�2j r

|f − fr,w|w1/pw−1/p dσ
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≤ C

∞∑

j=0

1

(2j r)n

( ˆ

�2j+1r

|f − fr,w|p dw
)1/p( ˆ

�2j+1r

w−p′/p dσ
)1/p′

≤ C

∞∑

j=0

1

(2j r)n

∥∥f − fr,w

∥∥
Lp(�2j+1r

,w)
· σ

(
�2j+1r

)

w
(
�2j+1r

)1/p

≤ C

∞∑

j=0

1

2j r · w(�2j r

)1/p

{ ∥∥f − f2j+1r,w

∥∥
Lp(�2j+1r

,w)

+
j∑

k=0

∥∥f2k+1r,w − f2kr,w

∥∥
Lp(�2j+1r

,w)

}

≤ C

∞∑

j=0

1

2j r · w(�2j r

)1/p

{
C∗ · 2j+1r

+
j∑

k=0

|f2k+1r,w − f2kr,w| · w
(
�2j+1r

)1/p
}

≤ C

∞∑

j=0

1

2j r · w(�2j r

)1/p

{
C∗ · 2j+1r

+
j∑

k=0

C · C∗ · 2kr

w(�2k+1r )
1/p

· w(�2j+1r

)1/p
}

≤ C

∞∑

j=0

1

2j r · w(�2j r

)1/p

{ j∑

k=0

C∗ · 2kr

w(�2k+1r )
1/p

· w(�2j+1r

)1/p
}

≤ C · C∗
∞∑

j=0

1

2j

{ j∑

k=0

2k

w(�2k+1r )
1/p

}

≤ C · C∗
∞∑

k=0

{ ∞∑

j=k

1

2j

} 2k

w(�2k+1r )
1/p

≤ C · C∗
∞∑

k=0

1

w(�2k+1r )
1/p
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= C · C∗
1

w(�r)1/p

∞∑

k=0

( w(�r)

w(�2k+1r )

)1/p

≤ C · C∗
1

w(�r)1/p

∞∑

k=0

( σ(�r)

σ (�2k+1r )

)τ/p

≤ C · C∗
1

w(�r)1/p

∞∑

k=0

( 1

2k

)(n−1)τ/p = C · C∗
w(�r)1/p

, (2.606)

where τ > 0 is as in (2.537). Above, the second inequality is a consequence of
Hölder’s inequality, the third inequality uses (2.520), the fifth and sixth inequalities
are based on (2.602) and (2.605), while the penultimate inequality is implied by
(2.537).

In addition, as a consequence of (2.602), (2.520), and Hölder’s inequality we
have
ˆ

�r

|f (x)− fr,w|
rn

dσ(x) = r−n

ˆ

�r

|f − fr,w|w1/pw−1/p dσ

= r−n
( ˆ

�r

|f − fr,w|p dw
)1/p( ˆ

�r

w−p′/p dσ
)1/p′

≤ C∗ · r1−n[w]1/p
Ap

σ (�r)

w(�r)1/p

≤ C · C∗
w(�r)1/p

. (2.607)

Together, (2.606) and (2.607) prove (2.604). ��
In the proposition below we explore consequences of the integrability of the

nontangential maximal operator of the gradient of a given function.

Proposition 2.24 Make the assumption that � ⊆ R
n is an NTA domain with the

property that σ := H n−1�∂� is a doubling measure on ∂�. Pick an arbitrary
aperture parameter κ > 0 and fix a reference point xo ∈ ∂�. Finally, select a
function u ∈ C 1(�).

Then there exist κ̃ > 0 large enough along with some threshold R ∈ (0,+∞]
(which may be taken +∞ if ∂� is unbounded) and some constant C ∈ (1,∞), all
independent of the given function u, such that for each δ ∈ (0, R) one may find a
compact subset Kδ of �, of diameter ≈ δ and distance to the boundary ≈ δ, with
the property that
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(Nδ
κu
)
(x) ≤ Cδ ·NCδ

κ̃ (∇u)(x)+ sup
Kδ

|u|, ∀ x ∈ B(xo, δ) ∩ ∂�. (2.608)

Moreover, there exists some sufficiently large C > 1 such that

if Nε
κ (∇u) belongs to L

p
loc(∂�, σ) for some p ∈ (0,∞] and

some ε > 0 then Nε/C
κ u ∈ L

p
loc(∂�, σ), the nontangential trace

(
u
∣∣κ−n.t.
∂�

)
(x) exists at σ -a.e. x ∈ ∂�, and the function u

∣∣κ−n.t.
∂�

is
σ -measurable on ∂�.

(2.609)

In addition, if ∂� is unbounded then there exists C = C(�) ∈ (0,∞) such that

∣∣∣
(
u
∣∣κ−n.t.
∂�

)
(x)− (

u
∣∣κ−n.t.
∂�

)
(y)

∣∣∣ ≤ C|x − y| · [Nκ(∇u)(x)+Nκ(∇u)(y)
]

for σ -a.e. points x, y ∈ ∂�.

(2.610)
Finally, if the original hypotheses are strengthened by now assuming that ∂� is

an unbounded Ahlfors regular set and that the nontangential maximal function of
the Jacobian of u satisfies Nκ(∇u) ∈ Lp(∂�, w) for some integrability exponent
p ∈ (1,∞) and some weight w ∈ Ap(∂�, σ) then

the nontangential trace u
∣∣κ−n.t.
∂�

belongs to the Muckenhoupt

weighted homogeneous boundary Sobolev space
.
L

p

1 (∂�, w)

and one has
∥∥∥u
∣∣κ−n.t.
∂�

∥∥∥ .
L

p
1 (∂�,w)

≤ C ‖Nκ(∇u)‖Lp(∂�,w) for a

constant C ∈ (0,∞) independent of the function u.

(2.611)

Proof The claims in (2.608)–(2.610) have been established in [111, §8.4]. To
justify (2.611), work under the additional assumptions that ∂� is an unbounded
Ahlfors regular set and that Nκ(∇u) ∈ Lp(∂�, w) for some w ∈ Ap(∂�, σ)

with p ∈ (1,∞). Observe that the latter condition implies, in light of (2.576), that
Nκ(∇u) ∈ L1

loc(∂�, σ), so the current assumptions are indeed stronger. To lighten
the exposition, abbreviate

f := u
∣∣κ−n.t.

∂�
and g := Nκ(∇u). (2.612)

From (2.609), (2.13), (2.608), (2.11) (used with σ := w), and Proposition 2.23
(whose applicability is ensured by (2.576)) it follows that

f ∈ L
p

loc(∂�, w), ∂τjk
f ∈ Lp(∂�, w) for all j, k ∈ {1, . . . , n},

and
n∑

j,k=1

∥∥∂τjk
f
∥∥

Lp(∂�,w)
≤ C ‖Nκ(∇u)‖Lp(∂�,w) ,

(2.613)
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for some constant C ∈ (0,∞) independent of u. Also, we may recast (2.610) as

|f (x)− f (y)| ≤ C|x − y| · [g(x)+ g(y)
]

for σ -a.e. x, y ∈ ∂�. (2.614)

To proceed, fix a reference point x0 ∈ ∂� and for each given scale r ∈ (0,∞)

define �r := B(x0, r)∩∂� and fr,w := ffl
�r

f dw. Then using (2.614) and Hölder’s
inequality for each r ∈ (0,∞) we may estimate

( ˆ

�r

|f (x)− fr,w|p dw(x)
)1/p

=
( ˆ

�r

∣∣∣f (x)−
 

�r

f (y) dw(y)

∣∣∣
p

dw(x)
)1/p

≤
( ˆ

�r

 

�r

|f (x)− f (y)|p dw(x) dw(y)
)1/p

≤ C
( ˆ

�r

 

�r

|x − y|p(g(x)+ g(y)
)p dw(x) dw(y)

)1/p

≤ Cr
(ˆ

�r

gp dw
)1/p ≤ Cr

(ˆ

∂�

gp dw
)1/p

= Cr ‖Nκ(∇u)‖Lp(∂�,w) , (2.615)

since x, y ∈ �r forces |x − y| < 2r . As a consequence,

sup
r>0

1

r

( ˆ

�r

|f − fr,w|p dw
)1/p ≤ C ‖Nκ(∇u)‖Lp(∂�,w) < +∞. (2.616)

Having established estimate (2.616), from Lemma 2.16 we conclude that the
function f ∈ L1

(
∂�,

σ(x)
1+|x|n

)
. In view of this, (2.598)–(2.599), and (2.613) we then

deduce that all claims in (2.611) are true. ��
We next discuss the equivalence between membership to a global weighted

Lebesgue space and certain Poincaré-type inequalities.

Proposition 2.25 Suppose � ⊆ R
n is a two-sided NTA domain such that ∂� is an

unbounded Ahlfors regular set, and abbreviate σ := H n−1�∂�. Fix some reference
point x0 ∈ ∂�, along with some integrability exponent p ∈ (1,∞) and some
Muckenhoupt weight w ∈ Ap(∂�, σ). Finally, assume that

f is a function belonging to L1
loc(∂�, σ) with the property that

∂τjk
f ∈ Lp(∂�, w) for all j, k ∈ {1, . . . , n}. (2.617)
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Then the following statements are equivalent:

(i) The function f belongs to the space L1
(
∂�,

σ(x)
1+|x|n

)
.

(ii) There exists a constant C = C(�, p, [w]Ap , x0) ∈ (0,∞) which stays
bounded when [w]Ap stays bounded and which is independent of the function
f , with the property that if for each scale r ∈ (0,∞) one defines the surface
ball �r := B(x0, r) ∩ ∂� and fr,σ :=

ffl
�r

f dσ then

sup
r>0

1

r

(ˆ

�r

|f − fr,σ |p dw

)1/p

≤ C

n∑

j,k=1

∥∥∂τjk
f
∥∥

Lp(∂�,w)
. (2.618)

(ii)’ The function f belongs to the space L1
loc(∂�, w) and there exists some

constant C = C(�, p, [w]Ap , x0) ∈ (0,∞) which stays bounded when
[w]Ap stays bounded and which is independent of the function f , with the
property that if for each r ∈ (0,∞) one defines �r := B(x0, r) ∩ ∂� and
fr,w := ffl

�r
f dw then

sup
r>0

1

r

(ˆ

�r

|f − fr,w|p dw

)1/p

≤ C

n∑

j,k=1

∥∥∂τjk
f
∥∥

Lp(∂�,w)
. (2.619)

(iii) For each r ∈ (0,∞) there exists a constant Cr ∈ (0,∞) which depends only
on �, p, [w]Ap , x0, and r such that, with fr,σ as before, one has

ˆ

∂�

|f (x)− fr,σ |
1 + |x|n dσ(x) ≤ Cr

w(�r)1/p

n∑

j,k=1

∥∥∂τjk
f
∥∥

Lp(∂�,w)
. (2.620)

(iii)’ The function f belongs to L1
loc(∂�, w) and for each r ∈ (0,∞) there exists

a constant Cr ∈ (0,∞) which depends only on �, p, [w]Ap , x0, and r such
that, with fr,w as before,

ˆ

∂�

|f (x)− fr,w|
1 + |x|n dσ(x) ≤ Cr

w(�r)1/p

n∑

j,k=1

∥∥∂τjk
f
∥∥

Lp(∂�,w)
. (2.621)

(iv) There exists a constant C = C(�, p, w, x0) ∈ (0,∞) independent of f , and
some constant cf ∈ C which is allowed to depend on f , such that

‖f − cf ‖
L1
(
∂�,

σ(x)
1+|x|n

) ≤ C

n∑

j,k=1

∥∥∂τjk
f
∥∥

Lp(∂�,w)
. (2.622)

(v) The function f belongs to the space
.
L

p

1 (∂�, w).
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Proof We start by proving the implication (i)⇒ (ii). To this end, assume that in
addition to (2.617) we have f ∈ L1

(
∂�,

σ(x)
1+|x|n

)
. Denote by ν the geometric

measure theoretic outward unit normal to � and set

�+ := �, �− := R
n \�. (2.623)

With ωn−1 denoting the surface area of the unit sphere in R
n, at each point x ∈ �±

define

u±(x) := 1

ωn−1

ˆ

∂�

{ 〈ν(y), y − x〉
|x − y|n − 〈ν(y), y〉

|y|n · 1Rn\B(0,1)(y)
}
f (y) dσ(y).

(2.624)
Then work in [114, §1.5] ensures that for an arbitrary, fixed, aperture parameter
κ > 0 there exists a constant C ∈ (0,∞) independent of f and which stays bounded
when [w]Ap stays bounded, such that

u± ∈ C∞(�±), Nκ(∇u±) ∈ Lp(∂�, w),

‖Nκ(∇u±)‖Lp(∂�,w) ≤ C

n∑

j,k=1

∥∥∂τjk
f
∥∥

Lp(∂�,w)
,

f = u+
∣∣κ−n.t.

∂�
− u−

∣∣κ−n.t.

∂�
at σ -a.e. point on ∂�.

(2.625)

Hence,

g := Nκ(∇u+)+Nκ(∇u−) ∈ Lp(∂�, w)

has ‖g‖Lp(∂�,w) ≤ C

n∑

j,k=1

∥∥∂τjk
f
∥∥

Lp(∂�,w)
,

(2.626)

for some constant C ∈ (0,∞) independent of f and which stays bounded when
[w]Ap stays bounded. In addition, thanks to (2.610), the function g satisfies

|f (x)− f (y)| ≤ C|x − y| · [g(x)+ g(y)
]

for σ -a.e. x, y ∈ ∂�. (2.627)

Granted these properties, we may proceed as in (2.615) to conclude that

(ˆ

�r

|f (x)− fr,σ |p dw(x)
)1/p

=
(ˆ

�r

∣∣∣f (x)−
 

�r

f (y) dσ(y)

∣∣∣
p

dw(x)
)1/p

≤
( ˆ

�r

( 

�r

|f (x)− f (y)| dσ(y)
)p

dw(x)
)1/p
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≤ C
( ˆ

�r

(  

�r

|x − y|(g(x)+ g(y)
)

dσ(y)
)p

dw(x)
)1/p

≤ Cr
(ˆ

�r

gp dw
)1/p + w(�r)

1
p

 

�r

g dσ(y)

≤ Cr
(ˆ

∂�

gp dw
)1/p

, (2.628)

since x, y ∈ �r forces |x − y| < 2r and we have used (2.525). Eventually we
conclude that, for some constant C ∈ (0,∞) independent of f and which stays
bounded when [w]Ap stays bounded, we have

sup
r>0

1

r

( ˆ

�r

|f − fr,σ |p dw
)1/p ≤ C‖g‖Lp(∂�,w) ≤ C

n∑

j,k=1

∥∥∂τjk
f
∥∥

Lp(∂�,w)
.

(2.629)
This completes the proof of the implication (i)⇒ (ii).

To see that (ii)⇒ (ii)’ we first note that (2.617) and (2.618) imply that for each
r > 0 we have

( ˆ

�r

|f |p dw
)1/p ≤

( ˆ

�r

|f − fr,σ |p dw
)1/p + w(�r)

1/p|fr,σ |

≤ C r

n∑

j,k=1

∥∥∂τjk
f
∥∥

Lp(∂�,w)
+ w(�r)

1/p

 

�r

|f | dσ < ∞.

(2.630)

This goes to show that f ∈ L
p

loc(∂�, w) ⊆ L1
loc(∂�, w). Granted this, for each

r > 0 we may estimate

( ˆ

�r

|f − fr,w|p dw
)1/p ≤

(ˆ

�r

|f − fr,σ |p dw
)1/p + w(�r)

1/p |fr,σ − fr,w|

≤ 2
( ˆ

�r

|f − fr,σ |p dw
)1/p

. (2.631)

With (2.631) in hand, (2.618) readily gives (2.619).
We next note that the implication (ii)’⇒ (iii)’ is seen from Lemma 2.16, the

implication (iii)’⇒ (iv) (respectively, (iii)⇒ (iv)) follows by taking r := 1 and
cf := f1,w (respectively, cf := f1,σ ), while the implication (iv)⇒ (i) is a direct
consequence that any constant belongs to the space L1

(
∂�,

σ(x)
1+|x|n

)
. The fact that

(iii)’⇒ (iii) may be justified writing (using the Ahlfors regularity of ∂�; cf. (2.32))
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ˆ

∂�

|f (x)− fr,σ |
1 + |x|n dσ(x) ≤

ˆ

∂�

|f (x)− fr,w|
1 + |x|n dσ(x)+ C |fr,σ − fr,w|

≤
ˆ

∂�

|f (x)− fr,w|
1 + |x|n dσ(x)+ C

 

�r

|f − fr,w| dσ

≤ C

ˆ

∂�

|f (x)− fr,w|
1 + |x|n dσ(x), (2.632)

where the constant C ∈ (0,∞) depends only on �, x0, and r .
Hence, the claims in items (i), (ii), (ii)’, (iii), (iii)’, and (iv) are all equivalent.

In view of (2.598) it follows that the implication (v)⇒ (i) also holds. To finish the
proof of the proposition it suffices to check that, collectively, (2.617) and items (i)-
(ii)’ imply the claim in item (v). This, however, is apparent from (2.598) and the fact
that (2.619) guarantees that f ∈ L

p

loc(∂�, w). ��

Remark 2.4 Consider a two-sided NTA domain � ⊆ R
n such that ∂� is an

unbounded Ahlfors regular set and abbreviate σ := Hn−1�∂�. Also, fix an
integrability exponent p ∈ (1,∞) and a Muckenhoupt weight w ∈ Ap(∂�, σ).
Then Proposition 2.25 implies that the local Lp integrability property with respect to
the measure w for functions in the homogeneous Muckenhoupt weighted boundary
Sobolev space

.
L

p

1 (∂�, w) may be replaced by a (seemingly weaker) local absolute
integrability property with respect to the measure w, or may be even suppressed
altogether. Specifically, in such a setting we have (compare with (2.598))

.
L

p

1 (∂�, w) =
{
f ∈ L1(∂�,

σ(x)
1+|x|n

) ∩ L1
loc(∂�, w) : (2.633)

∂τjk
f ∈ Lp(∂�, w) for each j, k ∈ {1, . . . , n}

}

=
{
f ∈ L1(∂�,

σ(x)
1+|x|n

) : ∂τjk
f ∈ Lp(∂�, w) (2.634)

for each j, k ∈ {1, . . . , n}
}
.

When considered on the boundaries of two-sided NTA domains, the quotient
space

.
L

p

1 (∂�, w)
/ ∼ turns out to be Banach. Here is a formal statement:

Proposition 2.26 Suppose � ⊆ R
n is a two-sided NTA domain such that ∂� is

an unbounded Ahlfors regular set, and abbreviate σ := H n−1�∂�. Pick some
integrability exponent p ∈ (1,∞) and some Muckenhoupt weight w ∈ Ap(∂�, σ).

Recall that
.
L

p

1 (∂�, w)
/ ∼ denotes the quotient space of classes [ · ] of equivalence

modulo constants of functions in
.
L

p

1 (∂�, w), equipped with the semi-norm (2.601).
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Then (2.601) is a genuine norm on
.
L

p

1 (∂�, w)
/ ∼, and .

L
p

1 (∂�, w)
/ ∼ is a

Banach space when equipped with the norm (2.601).

Proof The fact that the semi-norm (2.601) is actually a norm on the space.
L

p

1 (∂�, w)
/ ∼ follows from (2.621).

To prove that
.
L

p

1 (∂�, w)
/ ∼ is complete when equipped with the norm (2.601),

let {fα}α∈N ⊆ .
L

p

1 (∂�, w) be such that
{[fα]

}
α∈N is a Cauchy sequence in the

quotient space
.
L

p

1 (∂�, w)
/ ∼. Then for each fixed j, k ∈ {1, . . . , n} it follows that{

∂τjk
fα

}
α∈N is a Cauchy sequence in Lp(∂�, w). Since the latter is complete, it

follows that there exists gjk ∈ Lp(∂�, w) such that

∂τjk
fα → gjk in Lp(∂�, w) as α →∞. (2.635)

Fix a reference point x0 ∈ ∂� and, for each r ∈ (0,∞), define �r := B(x0, r)∩∂�.
Also, set fα,r,w := ffl

�r
fα dw for each r ∈ (0,∞) and each α ∈ N. From (2.621)

(written for f := fα−fβ ) it follows that for each r ∈ (0,∞) there exists a constant
Cr ∈ (0,∞) which depends on �, p, [w]Ap , and r such that for each α, β ∈ N we
have

∥∥(fα − fα,r,w

)− (
fβ −fβ,r,w

)∥∥
L1
(
∂�,

σ(x)
1+|x|n

)

≤ Cr

w(�r)1/p

n∑

j,k=1

∥∥∂τjk
fα − ∂τjk

fβ

∥∥
Lp(∂�,w)

. (2.636)

In view of (2.635), this estimate implies that for each fixed r ∈ (0,∞) the sequence{
fα − fα,r,w

}
α∈N is Cauchy in the Banach space L1

(
∂�,

σ(x)
1+|x|n

)
. Hence, for each

fixed r ∈ (0,∞) there exists hr ∈ L1
(
∂�,

σ(x)
1+|x|n

)
such that

fα − fα,r,w → hr in L1(∂�,
σ(x)

1+|x|n
)

as α →∞. (2.637)

Next, the estimate recorded in (2.619) (written for f := fα − fβ ) implies that there
exists some constant C = C(�, p, [w]Ap , x0) ∈ (0,∞) with the property that for
each fixed r ∈ (0,∞) we have

( ˆ

�r

∣∣(fα − fα,r,w

)− (
fβ − fβ,r,w

)∣∣p dw
)1/p

≤ C · r
n∑

j,k=1

∥∥∂τjk
fα − ∂τjk

fβ

∥∥
Lp(∂�,w)

. (2.638)

By once again relying on (2.635), we conclude that for each fixed r ∈ (0,∞) the
sequence

{
fα

∣∣
�r
− fα,r,w

}
α∈N is Cauchy in the Banach space Lp(�r, w). As such,
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for each r ∈ (0,∞) there exists some kr ∈ Lp(�r, w)

such that fα

∣∣
�r
− fα,r,w → kr in Lp(�r, w) as α →∞.

(2.639)

Since convergence in Lebesgue spaces implies, after eventually passing to a sub-
sequence, pointwise a.e. convergence, from (2.637) and (2.639) we see that, in fact,

hr

∣∣
�r

= kr ∈ Lp(�r, w) for each r ∈ (0,∞). (2.640)

From (2.637) we also see that for each fixed r1, r2 ∈ (0,∞) we have

fα,r2,w − fα,r1,w → hr1 − hr2 in L1(∂�,
σ(x)

1+|x|n
)

as α →∞. (2.641)

This forces hr1 − hr2 to be a constant which, in concert with (2.640), ultimately
shows that actually

hr ∈ L1(∂�,
σ(x)

1+|x|n
) ∩ L

p

loc(∂�, w) for each r ∈ (0,∞). (2.642)

Henceforth, we agree to simply write h for hr with r = 1, and cα for fα,r,w with
r = 1. Then (2.642), (2.637) tell us that the function

h belongs to L1(∂�,
σ(x)

1+|x|n
) ∩ L

p

loc(∂�, w), (2.643)

and the sequence {cα}α∈N ⊆ C is such that

fα − cα → h in L1(∂�,
σ(x)

1+|x|n
)

as α →∞. (2.644)

For each j, k ∈ {1, . . . , n} and each test function ϕ ∈ C∞
0 (Rn) we may then write

ˆ

∂�

h(∂τjk
ϕ) dσ = lim

α→∞

ˆ

∂�

(fα − cα)(∂τjk
ϕ) dσ

= − lim
α→∞

ˆ

∂�

∂τjk
(fα − cα)ϕ dσ = − lim

α→∞

ˆ

∂�

(∂τjk
fα)ϕ dσ

= −
ˆ

∂�

gjkϕ dσ, (2.645)

thanks to (2.644), (2.583), and (2.635). From this and (2.581)–(2.582) we then
conclude that

∂τjk
h = gjk ∈ Lp(∂�, w) for each j, k ∈ {1, . . . , n}. (2.646)
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Collectively, (2.643) and (2.646) prove that h ∈ .
L

p

1 (∂�, w). Finally, from (2.635),
(2.646), and (2.601) we conclude that the sequence

{[fα]
}
α∈N converges to [h], the

class of h, in the quotient space
.
L

p

1 (∂�, w)
/ ∼. ��
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