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Preface

We develop the theory of layer potentials in the context of δ-AR domains in Rn

(aka δ-flat Ahlfors regular domains) where the parameter δ > 0, regulating the
size of the BMO semi-norm of the outward unit normal ν to �, is assumed to be
small. This is a sub-category of the class of two-sided NTA domains with Ahlfors
regular boundaries, and our results complement work carried out [61] in regular
SKT domains (with SKT acronym for Semmes-Kenig-Toro). The latter brand was
designed to work well when the domains in question have compact boundaries.
By way of contrast, the fact that we are now demanding ||ν||[BMO(∂�,σ)]n is small
enough (where σ is the “surface measure” Hn−1�∂�) has topological and metric
implications for �, namely � is a connected unbounded open set, with a connected
unbounded boundary and an unbounded connected complement. For example, in the
two-dimensional setting, we show that the class of δ-AR domains with δ ∈ (0, 1)
small agrees with the category of chord-arc domains with small constant.

Assuming � ⊆ Rn to be a δ-AR domain with δ ∈ (0, 1) sufficiently small
(relative to the dimension n and the Ahlfors regularity constant of ∂�), we prove that
the operator norm of Calderón-Zygmund singular integrals whose kernels exhibit a
certain algebraic structure (specifically, they contain the inner product of the normal
ν(y) with the “chord” x − y as a factor) is O

(
δ ln(1/δ)

)
as δ → 0+. This is

true in the context of Muckenhoupt weighted Lebesgue spaces, Lorentz spaces,
Morrey spaces, vanishing Morrey spaces, block spaces, (weighted) Banach function
spaces, as well as for the brands of Sobolev spaces naturally associated with these
scales. Simply put, the problem that we solve here is that of determining when
(and how) singular integral operators of double-layer type have small operator norm
on domains which are relatively “flat.” We also establish estimates in the opposite
direction, quantifying the flatness of a “surface” by estimating the BMO semi-
norm of its unit normal in terms of the operator norms of certain singular integrals
canonically associated with the given surface (such as the harmonic double layer,
the family of Riesz transforms, and commutators between Riesz transforms and
pointwise multiplication by the components of the unit normal). Ultimately, this
goes to show that the two-way bridge between geometry and analysis constructed
here is in the nature of best possible.

v
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Significantly, the operator norm estimates described in the previous paragraph
permit us to invert the boundary double-layer potentials associated with certain
classes of second-order PDE (such as the Laplacian, any scalar homogeneous
constant complex coefficient second-order operator which is weakly elliptic when
n ≥ 3 or strongly elliptic in any dimension, the Lamé system of elasticity, and,
most generally, any weakly elliptic homogeneous constant complex coefficient
second-order system having a certain distinguished coefficient tensor), acting on
a large variety of function spaces considered on the boundary of a sufficiently flat
domain (specifically, a δ-AR domain with δ ∈ (0, 1) suitably small relative to other
geometric characteristics of said domain). In particular, this portion of our work goes
in the direction of answering the question posed by C. Kenig in [71, Problem 3.2.2,
p. 117] asking to invert layer potentials in appropriate spaces on certain uniformly
rectifiable sets.

In turn, these invertibility results allow us to establish solvability results for
boundary value problems in the class of weakly elliptic second-order systems
mentioned above, in a sufficiently flat Ahlfors regular domain, with boundary data
from Muckenhoupt weighted Lebesgue spaces, Lorentz spaces, Morrey spaces,
vanishing Morrey spaces, block spaces, Banach function spaces, and from Sobolev
spaces naturally associated with these scales.

In summary, a central theme in Geometric Measure Theory is understanding
how geometric properties translate into analytical ones, and here we explore the
implications of demanding that Gauss’ map ∂� � x �→ ν(x) ∈ Sn−1 has small
BMO semi-norm in the realm of singular integral operators and boundary value
problems. The theory developed here complements the results of S. Hofmann,
M. Mitrea, and M. Taylor obtained in [61] and extends previously known well-
posedness results for elliptic PDE in the upper half-space to the considerably more
inclusive realm of δ-AR domains with δ ∈ (0, 1).
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Chapter 1
Introduction

More than 25 years ago, in [71, Problem 3.2.2, p. 117], C. Kenig asked to “Prove that
the layer potentials are invertible in appropriate [. . . ] spaces in [suitable subclasses
of uniformly rectifiable] domains.” Kenig’s main motivation in this regard stems
from the desire of establishing solvability results for boundary value problems
formulated in a rather inclusive geometric setting. In the buildup to this open
question on [71, p. 116], it is remarked that there exist some rather general classes
of open sets � ⊆ Rn with the property that if σ := Hn−1�∂� (where Hn−1 stands
for the (n− 1)-dimensional Hausdorff measure in Rn) then said layer potentials are
bounded operators on Lp(∂�, σ) for each exponent p ∈ (1,∞). Remarkably, this
is the case whenever � ⊆ Rn is an open set with a uniformly rectifiable boundary
(cf. [40]).

To further elaborate on this issue, we need some notation. Fix n ∈ N with n ≥ 2,
along with M ∈ N, and consider a second-order, homogeneous, constant complex
coefficient, weakly elliptic, M ×M system in Rn

L = (
a
αβ
jk ∂j ∂k

)
1≤α,β≤M, (1.1)

where the summation convention over repeated indices is in effect (here and
elsewhere in the manuscript). The weak ellipticity of the system L amounts to
demanding that

the characteristic matrix L(ξ) := ( − a
αβ
jk ξj ξk

)
1≤α,β≤M is

invertible for each vector ξ = (ξ1, . . . , ξn) ∈ Rn \ {0}.
(1.2)

This should be contrasted with the more stringent Legendre–Hadamard (strong)
ellipticity condition which asks for the existence of some c > 0 such that

Re
〈− L(ξ)ζ , ζ

〉 ≥ c |ξ |2 |ζ |2 for all ξ ∈ Rn and ζ ∈ CM. (1.3)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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2 1 Introduction

Nonetheless, the weak ellipticity assumption which we shall enforce throughout
ensures that the system L has a well-behaved fundamental solution, which is an
even matrix-valued function E = (Eαβ)1≤α,β≤M ∈ [

C∞(Rn \ {0})]M whose first-
order derivatives are positive homogeneous of degree 1− n, of the sort discussed at
length in [102] (see Theorem 3.1 for a brief review).

The given system L does not determine uniquely the coefficient tensor

A := (
a
αβ
jk

)
1≤j,k≤n

1≤α,β≤M
(1.4)

since employing Ã := (
ã
αβ
jk

)
1≤j,k≤n

1≤α,β≤M
in place of A in the right-hand side of (1.1)

yields the same system whenever the difference a
αβ
jk − ã

αβ
jk is antisymmetric in

the indices j, k (for each α, β ∈ {1, . . . ,M}). Hence, there are a multitude of
coefficient tensors A which may be used to represent the given system L as in
(1.1). For each such coefficient tensor A := (

a
αβ
jk

)
1≤j,k≤n

1≤α,β≤M
we shall associate a

double layer potential operator KA on the boundary of a given uniformly rectifiable
domain � ⊆ Rn (see Definition 2.6). Specifically, if σ := Hn−1�∂� is the “surface
measure” on ∂� and if ν = (ν1, . . . , νn) denotes the geometric measure theoretic
outward unit normal to �, then for each function

f = (fα)1≤α≤M ∈
[
L1

(
∂�,

σ(x)

1 + |x|n−1

)]M
(1.5)

we define, at σ -a.e. point x ∈ ∂�,

KAf (x) :=
(
− lim

ε→0+

ˆ
∂�\B(x,ε)

νk(y)a
βα
jk

(
∂jEγβ

)
(x − y)fα(y) dσ(y)

)

1≤γ≤M
.

(1.6)

(Note that (1.5) is the most general environment in which each truncated integral in
(1.6) is absolutely convergent.)

To offer a simple example, consider the case when L = , the Laplacian, in R2.
Then n = 2 and M = 1. In this scalar case, we agree to drop the Greek superscripts
labeling the entries of the coefficient tensor (1.4) used to express L as in (1.1).
Hence, we shall consider writings  = ajk∂j ∂k corresponding to various choices
of the matrix A = (ajk)1≤j,k≤2 ∈ C2×2. Two such natural choices are

A0 :=
(

1 0
0 1

)
, A1 :=

(
1 i
−i 1

)
, (1.7)

corresponding to which the recipe given in (1.6) yields
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KA0f (x) = lim
ε→0+

1

2π

ˆ
∂�\B(x,ε)

〈ν(y), y − x〉
|x − y|2 f (y) dσ(y) for σ -a.e. x ∈ ∂�,

(1.8)

i.e., the (two-dimensional) harmonic boundary-to-boundary double layer potential
operator and, under the natural identification R2 ≡ C,

KA1f (z) = lim
ε→0+

1

2π i

ˆ
∂�\B(z,ε)

f (ζ )

ζ − z
dζ for σ -a.e. z ∈ ∂�, (1.9)

i.e., the boundary-to-boundary Cauchy integral operator, respectively.
Returning to the mainstream discussion in the general setting considered earlier,

fundamental work in [40] guarantees that, if � ⊆ Rn is a uniformly rectifiable
domain, then for each coefficient tensor A as in (1.4) which may be employed to
write the given system L as in (1.1), the boundary-to-boundary double layer poten-
tial KA from (1.6) is a well-defined, linear, and bounded operator on

[
Lp(∂�, σ)

]M

for each p ∈ (1,∞). This property is particularly relevant in the treatment of the
Dirichlet Problem for the system L in the uniformly rectifiable domain � when the
boundary data are selected from the space

[
Lp(∂�, σ)

]M with p ∈ (1,∞), i.e.,

(D)p

⎧
⎪⎪⎨

⎪⎪⎩

u ∈ [
C∞(�)

]M
, Lu = 0 in �,

Nκu ∈ Lp(∂�, σ),

u
∣∣κ−n.t.

∂�
= g ∈ [

Lp(∂�, σ)
]M

,

(1.10)

where Nκu is the nontangential maximal function, and u
∣∣κ−n.t.

∂�
is the nontangential

boundary trace, of the solution u (see the body of the manuscript for precise
definitions; cf. (2.5) and (2.12)). Indeed, the essence of the boundary layer method
is to consider as a candidate for the solution of the Dirichlet Problem (1.10) the
C
M -valued function u defined at each point x ∈ � by

u(x) :=
(
−
ˆ
∂�

νk(y)a
βα
jk

(
∂jEγβ

)
(x − y)fα(y) dσ(y)

)

1≤γ≤M
, (1.11)

for some yet-to-be-determined function f = (fα)1≤α≤M ∈ [
Lp(∂�, σ)

]M . In
light of the special format of u (in particular, thanks to the jump-formula (3.123)),
this ultimately reduces the entire aforementioned Dirichlet Problem to the issue of
solving the boundary integral equation

( 1
2I +KA

)
f = g on ∂�, (1.12)

where I is the identity operator (see Sect. 6 for the actual implementation of this
approach). As such, having the operator KA well defined, linear, and bounded on
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[
Lp(∂�, σ)

]M with p ∈ (1,∞) opens the door for bringing in functional analytic

techniques for inverting 1
2I +KA on

[
Lp(∂�, σ)

]M and eventually expressing the

solution f as
( 1

2I +KA

)−1
g.

A breakthrough in this regard has been registered by S. Hofmann, M. Mitrea, and
M. Taylor in [61], where they have employed Fredholm theory in order to solve the
boundary integral equation (1.12). To describe one of their main results, suppose
L = , the Laplacian in Rn, is written as  = ajk∂j ∂k for A := (δjk)1≤j,k≤n.
The blueprint provided in (1.6) then produces the classical harmonic double layer
potential operator K, acting on each f ∈ Lp(∂�, σ) with p ∈ (1,∞) according
to

Kf (x) := lim
ε→0+

1

ωn−1

ˆ
∂�\B(x,ε)

〈ν(y), y − x〉
|x − y|n f (y) dσ(y) for σ -a.e. x ∈ ∂�,

(1.13)
where ωn−1 is the surface area of the unit sphere in Rn. In regard to this operator,
S. Hofmann, M. Mitrea, and M. Taylor have proved in [61, Theorem 4.36, pp. 2728-
2729] that if � ⊆ Rn is a bounded open set satisfying a two-sided local John
condition and whose boundary is Ahlfors regular, then for every threshold ε > 0
there exists some δ > 0 (which depends only on said geometric characteristics of
�, n, p, and ε) such that

dist
(
ν,

[
VMO(∂�, σ)

]n)
< δ �⇒ dist

(
K,Cp(Lp(∂�, σ))

)
< ε. (1.14)

The distance in the left-hand side of (1.14) is measured in the John-Nirenberg space[
BMO(∂�, σ)

]n of vector-valued functions of bounded mean oscillations on ∂�

(with respect to the surface measure σ ), from the unit vector ν ∈ [
L∞(∂�, σ)

]n

to the Sarason space
[
VMO(∂�, σ)

]n of vector-valued functions of vanishing
mean oscillations on ∂� (with respect to the surface measure σ ), which is a
closed subspace of

[
BMO(∂�, σ)

]n (cf. (2.111)). The distance in the right-hand
side of (1.14) is considered from K ∈ Bd(Lp(∂�, σ)), the Banach space
of all linear and bounded operators on Lp(∂�, σ) equipped with the operator
norm, to Cp(Lp(∂�, σ)) which is the closed linear subspace of Bd(Lp(∂�, σ))
consisting of all compact operators on Lp(∂�, σ). In particular, in the class of
domains currently considered, K is a compact operator on Lp(∂�, σ) whenever ν
belongs to

[
VMO(∂�, σ)

]n. This is remarkable in as much that a purely geometric
condition implies a functional analytic property of a singular integral operator. Most
importantly, (1.14) ensures the existence of some small threshold δ > 0 (which
depends only on said geometric characteristics of �, n, and p) with the property
that

dist
(
ν,

[
VMO(∂�, σ)

]n)
< δ �⇒ dist

(
K,Cp(Lp(∂�, σ))

)
< 1

2 (1.15)

�⇒ 1
2I +K Fredholm operator with index zero on Lp(∂�, σ).
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This is the main step in establishing that 1
2I +K is actually an invertible operator

on Lp(∂�, σ) in said geometric setting, under the additional assumption that Rn\�
is connected (see [61, Theorem 6.13, p. 2806]).

Another key result of a similar flavor to (1.14) proved in [61] pertains to the
commutators

[
Mνk , Rj

] := MνkRj − RjMνk , where j, k ∈ {1, . . . , n}, between
the operator Mνk of pointwise multiplication by νk , the k-th scalar component of
the geometric measure theoretic outward unit normal ν to �, and the j -th Riesz
transform Rj on ∂�, acting on any given function f ∈ L1

(
∂�,

σ(x)

1+|x|n−1

)
according

to

Rjf (x) := lim
ε→0+

2

ωn−1

ˆ
∂�\B(x,ε)

xj − yj

|x − y|n f (y) dσ(y) for σ -a.e. x ∈ ∂�.

(1.16)
Specifically, [61, Theorem 2.19, p. 2608] states that if � ⊆ Rn is a bounded open set
satisfying a two-sided local John condition and whose boundary is Ahlfors regular,
and if some p ∈ (1,∞) has been fixed, then there exists some C ∈ (0,∞)

(depending only on the aforementioned geometric characteristics of �, n, and p)
such that

n∑

j,k=1

dist
([
Mνk , Rj

]
,Cp(Lp(∂�, σ))

) ≤ Cdist
(
ν,

[
VMO(∂�, σ)

]n)
. (1.17)

Estimates of this type (with the Riesz transforms replaced by more general singular
integral operators of the same nature) turned out to be a key ingredient in the proof
of the fact that, if � is as above and p ∈ (1,∞), then for every threshold ε > 0
there exists some δ > 0 (of the same nature as before) such that

dist
(
ν,

[
VMO(∂�, σ)

]n)
< δ �⇒ dist

(
K,Cp(Lp1 (∂�, σ))

)
< ε, (1.18)

where Lp1 (∂�, σ) is a certain brand of Lp-based Sobolev space of order one on ∂�,
introduced in [61] (and further developed in [109], [112, Chapter 11]).

These considerations have led to the development of a theory of boundary layer
potentials in what was labeled in [61] as δ-regular SKT domains, a subclass of the
family of bounded uniformly rectifiable domains inspired by work of S. Semmes
[123, 124], and C. Kenig and T. Toro [72–74], whose trademark feature is the
fact that the distance dist

(
ν,

[
VMO(∂�, σ)

]n), measured in the John-Nirenberg
space

[
BMO(∂�, σ)

]n, is < δ. In turn, this was used in [61] to establish the
well-posedness of the Dirichlet, Regularity, Neumann, and Transmission Problems
for the Laplacian in the class of δ-regular SKT domains with δ sufficiently small
(relative to other geometric characteristics of �). Quite recently, this theory has
been extended in [90] to the case when the boundary data belong to Muckenhoupt
weighted Lebesgue and Sobolev spaces.

In addition, the class of δ-regular SKT domains also turns out to be in the nature
of best possible as far as the “close-to-compactness” results mentioned in (1.14) and
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(1.17) are concerned. Indeed, [61, Theorem 4.41, p. 2743] states that, if � ⊆ Rn is
a uniformly rectifiable domain with compact boundary and if some p ∈ (1,∞)

has been fixed, then there exists some C ∈ (0,∞) (depending only on the uniform
rectifiability character of �, n, and p) such that

dist
(
ν,

[
VMO(∂�, σ)

]n) ≤ C
{

dist
(
K,Cp(Lp(∂�, σ))

)
(1.19)

+
n∑

j,k=1

dist
([
Mνk , Rj

]
,Cp(Lp(∂�, σ))

)}1/n
.

In particular, if K and all commutators
[
Mνk , Rj

]
are compact on Lp(∂�, σ) then

ν belongs to
[
VMO(∂�, σ)

]n.
The stated goal of [61] was to “find the optimal geometric measure theoretic

context in which Fredholm theory can be successfully implemented, along the lines
of its original development, for solving boundary value problems with Lp data via
the method of layer potentials [in domains with compact boundaries].” In particular,
[61] may be regarded as a sharp version of the fundamental work of E. Fabes,
M. Jodeit, and N. Rivière in [49], dealing with the method of boundary layer
potentials in bounded C 1 domains. As such, the theory developed in [61] goes some
way toward answering Kenig’s open question formulated at the beginning of this
introduction.

However, the insistence on ∂� being a compact set is prevalent in this work. In
particular, the classical fact that the Dirichlet Problem (1.10) is uniquely solvable
in the case when � = Rn+ (by taking the convolution of the boundary datum
g with the harmonic Poisson kernel in the upper half-space; cf. [9], [52], [132],
[134]) does not fall under the tutelage of [61]. The issue is that once the uniformly
rectifiable domain � is allowed to have an unbounded boundary then, generally
speaking, singular integral operators like the harmonic double layer (1.13) are no
longer (close to being) compact on Lp(∂�, σ), though they remain well defined,
linear, and bounded on this space, as long as 1 < p < ∞. The fact that the
theory developed in [61] is not applicable in this scenario leads one to speculate
whether the treatment of layer potentials may be extended to a class of unbounded
domains that includes the upper half-space. In particular, it is natural to ask whether
there is a parallel theory for unbounded domains � ⊆ Rn in which we control the
mean oscillations of its outward unit normal ν by suitably adapting the condition
dist

(
ν,

[
VMO(∂�, σ)

]n)
< δ which is ubiquitous in [61]. This is indeed the main

goal in the present monograph.
A seemingly peculiar aspect of the harmonic double layer operator (which, in

hindsight turns out to be one of its salient features) is that, as visible from (1.13),
if � = Rn+ then K = 0. Indeed, in such a case we have ∂� = Rn−1 × {0} and
ν = (0, . . . , 0,−1), hence 〈ν(y), y − x〉 = 0 for all x, y ∈ ∂�. This observation
lends some credence to the conjecture loosely formulated as follows:
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if � ⊆ Rn is a uniformly rectifiable domain and 1 < p < ∞,
then the operator norm ‖K‖Lp(∂�,σ)→Lp(∂�,σ) is small if � is
close to being a half-space in Rn.

(1.20)

To make this precise, one needs to choose an appropriate way of quantifying
the proximity of a uniformly rectifiable domain � ⊆ Rn to a half-space in Rn.
Since a result from [111, §5.10] (based on work in [59]) gives that a uniformly
rectifiable domain � � Rn actually is a half-space in Rn if and only if its geometric
measure theoretic outward unit normal ν is a constant vector field, in which scenario
‖ν‖[BMO(∂�,σ)]n = 0, it is natural to formulate the following problem (which is a
precise, quantitative version of (1.20)):

find a continuous non-decreasing function φ : [0, 1] → [0,∞)

which vanishes at the origin with the property that for any
given uniformly rectifiable domain � ⊆ R

n and any given
integrability exponent p ∈ (1,∞) there exists some constant
C ∈ (0,∞) (which depends only on the uniform rectifiability
character of �, the dimension n, and the exponent p) such that
‖K‖Lp(∂�,σ)→Lp(∂�,σ) ≤ Cφ(‖ν‖[BMO(∂�,σ)]n).

(1.21)

We may go a step further and adopt a broader perspective, by replacing the Laplacian
with a more general system of the sort discussed in (1.1). Specifically, consider a
second-order, homogeneous, constant complex coefficient, weakly elliptic, M ×M

system L in Rn written as in (1.1) for some coefficient tensor A as in (1.4). Then
one may speculate whether there exists some continuous non-decreasing function
φ : [0, 1] → [0,∞)which vanishes at the origin with the property that for any given
uniformly rectifiable domain � ⊆ Rn and any given exponent p ∈ (1,∞) there
exists some constant C ∈ (0,∞) (which depends only on the uniform rectifiability
character of �, the dimension n, the exponent p, and the coefficient tensor A)
such that the double layer potential operator KA associated with the set � and the
coefficient tensor A as in (1.6) satisfies

‖KA‖[Lp(∂�,σ)]M→[Lp(∂�,σ)]M ≤ Cφ(‖ν‖[BMO(∂�,σ)]n). (1.22)

It turns out that the choice of the coefficient tensor A used to write the given
system L drastically affects the veracity of (1.22). Indeed, consider the case when
L :=  is the Laplacian in R2, and � := R2+. Observe that ‖ν‖[BMO(∂�,σ)]2 = 0
in this case, since ν is constant. From (1.7)–(1.8) we see that KA0 = 0, which is
in agreement with what (1.22) predicts in this case. On the other hand, the operator
KA1 from (1.9) becomes (under the natural identification ∂� ≡ R)

KA1f (x) = lim
ε→0+

1

2π i

ˆ
R\[x−ε,x+ε]

f (y)

y − x
dy for L1-a.e. x ∈ R, (1.23)

i.e., KA1 = (i/2)H where
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Hf (x) := lim
ε→0+

1

π

ˆ

y∈R
|x−y|>ε

f (y)

x − y
dy for L1-a.e. x ∈ R (1.24)

is the classical Hilbert transform on the real line. In particular, since H 2 = −I we
have

(
KA1

)2 = 4−1I which goes to show that

∥∥KA1

∥∥
Lp(R,L1)→Lp(R,L1)

≥ 2−1 (1.25)

invalidating (1.22) in this case.
A higher-dimensional version of the above considerations goes as follows. Given

n ∈ N with n ≥ 2, let {Ej }1≤j≤n be a family of 2n × 2n matrices satisfying, with
I2n×2n denoting the 2n × 2n identity matrix,

(
Ej

)2 = −I2n×2n for each j ∈ {1, . . . , n} and

EjEk = −EkEj for all j, k ∈ {1, . . . , n} with j �= k.
(1.26)

Specifically, consider the double-indexed family of matrices
{
Em
j

}
1≤m≤n
1≤j≤m

defined

inductively by

E1
1 :=

(
0 −1
1 0

)
∈ R2×2 (1.27)

and, in general, given any m ∈ {1, . . . , n− 1},

Em+1
j :=

(
Em
j 0

0 −Em
j

)

∈ R2m+1×2m+1
for each j ∈ {1, . . . , m}, (1.28)

and

Em+1
m+1 :=

(
0 −I2m×2m

I2m×2m 0

)
∈ R2m+1×2m+1

, (1.29)

where I2m×2m denotes the 2m × 2m identity matrix. Induction then shows that for
each m ∈ {1, . . . , n} we have

(
Em
j

)2 = −I2m×2m for each j ∈ {1, . . . , m} and

Em
j E

m
k = −Em

k E
m
j for all j, k ∈ {1, . . . , m} with j �= k.

(1.30)

In particular, abbreviating Ej := En
j for each j ∈ {1, . . . , n} then guarantees that

the conditions in (1.26) are satisfied.



1 Introduction 9

To proceed, define M := 2n and denote by IM×M the M ×M identity matrix.
Consider the M ×M second-order system in Rn defined as

L :=  · IM×M, (1.31)

where  = ∂2
1 + · · · + ∂2

n is the Laplacian in Rn. In particular, the fundamental
solution EL associated with the weakly elliptic system L as in Theorem 3.1 is given
by

EL := E · IM×M, (1.32)

where E is the standard fundamental solution for the Laplacian in Rn, defined in
(3.27).

Next, for each j, k ∈ {1, . . . , n} let us denote by (aαβjk )1≤α,β≤M the entries of the
M ×M matrix −EjEk , i.e.,

− EjEk =
(
a
αβ
jk

)

1≤α,β≤M ∈ RM×M for each j, k ∈ {1, . . . , n}. (1.33)

Then, with the summation convention over repeated indices in effect, we have

(
a
αβ
jk ∂j ∂k

)
1≤α,β≤M = −EjEk∂j ∂k = −(Ej )

2∂2
j =  · IM×M, (1.34)

thanks to (1.26). Hence,

L = (
a
αβ
jk ∂j ∂k

)
1≤α,β≤M. (1.35)

Consider next the boundary-to-boundary double layer potential operator KA1

associated as in (1.6) with the coefficient tensor

A1 :=
(
a
αβ
jk

)
1≤α,β≤M
1≤j,k≤n

with entries as in (1.33) (1.36)

and the domain � := Rn+. In view of (1.32) and the fact that the outward unit
normal vector to Rn+ is given by ν = (0, . . . , 0,−1), the action of said double layer

potential operator on each function f = (fα)1≤α≤M ∈ [
L1

(
R
n−1, dx′

1+|x′|n−1

)]M is

given at Ln−1-a.e. point x′ ∈ Rn−1 by

KA1f (x
′) =

(
lim
ε→0+

ˆ

y∈Rn−1

|x′−y′|>ε

a
βα
jn

(
∂jE

)
(x′ − y′)fα(y′) dy′

)

1≤β≤M
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= lim
ε→0+

ˆ

y∈Rn−1

|x′−y′|>ε

(
∂jE

)
(x′ − y′)EjEnf (y

′) dy′. (1.37)

Hence, with (Rj )1≤j≤n−1 denoting the Riesz transforms in Rn−1 (cf. (1.16)), we
may recast (1.37) simply as

KA1 =
n−1∑

j=1

1
2EjEnRj on

[
L1(
R
n−1, dx′

1+|x′|n−1

)]M
. (1.38)

Fix now an arbitrary integrability exponent p ∈ (1,∞). Then (1.38), (1.26),
together with the usual Riesz transform identities (i.e.,

∑n−1
j=1 R

2
j = −I and

RjRk = RkRj for each j, k ∈ {1, . . . , n}) imply that

(
KA1

)2 =
( n−1∑

j=1

1
2EjEnRj

)2 = 1

4

n−1∑

j,k=1

EjEnEkEnRjRk

= 1

4

n−1∑

j,k=1

EjEkRjRk = 1

4

n−1∑

j=1

E2
jR

2
j

= 1

4

(
−

n−1∑

j=1

R2
j

)
IM×M = 1

4IM×M (1.39)

as operators on
[
Lp(Rn−1,Ln−1)

]M . Much as with its two-dimensional counterpart
in (1.25), this goes to show that

∥∥KA1

∥∥[Lp(Rn−1,Ln−1)]M→[Lp(Rn−1,Ln−1)]M ≥ 2−1 (1.40)

once again invalidating (1.22) for the current choice of coefficient tensor. On the
other hand, the choice of the coefficient tensor

A0 :=
(
a
αβ
jk

)
1≤α,β≤M
1≤j,k≤n

with aαβjk := δαβδjk

for all 1 ≤ α, β ≤ M and 1 ≤ j, k ≤ n

(1.41)

allows the system (1.31) to be written as in (1.35) and the boundary-to-boundary
double layer potential operator KA0 associated as in (1.6) with the coefficient tensor
A0 and the domain � := Rn+ is KA0 = 0 (cf. the first line in (1.37)).

The above considerations bring up the question of determining which of the many
coefficient tensors A that may be used in the representation of the given system
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L as in (1.1) actually give rise to double layer potential operators KA (via the
blueprint (1.6)) that have a chance of satisfying the estimate formulated in (1.22).
This question is of an algebraic nature. To answer it, we find it convenient to adopt
a more general point of view and consider the class of singular integral operators
acting at σ -a.e. point x ∈ ∂� on functions f as in (1.5) according to

T�f (x) :=
(

lim
ε→0+

ˆ
∂�\B(x,ε)

〈
�γ (x − y)ν(y), f (y)

〉
dσ(y)

)

1≤γ≤M
, (1.42)

where

� = (�γ )1≤γ≤M with each �γ ∈
[
C∞(Rn \ {0})]M×n

odd and positive homogeneous of degree 1 − n.
(1.43)

Note that KA fits into this class, as it corresponds to (1.42) with � = (�γ )1≤γ≤M
given by �γ :=

(− a
βα
jk ∂jEγβ

)
1≤α≤M
1≤k≤n

for each index γ ∈ {1, . . . ,M}.
In this notation, the question is to find what additional condition should be

imposed on � = (�γ )1≤γ≤M so that the analogue of (1.22) holds with the operator
KA replaced by T�. The latter inequality implies that

T� must vanish whenever � is a half-space in Rn. (1.44)

Choosing � := {z ∈ Rn : 〈z, ω〉 > 0} with ω ∈ Sn−1 arbitrary then leads to the
conclusion that for each index γ ∈ {1, . . . ,M} we have

�γ (x − y)ω = 0 for each ω ∈ Sn−1 and each x, y ∈ 〈ω〉⊥ with x �= y. (1.45)

Specializing this to the case when y = 0 and observing that x ∈ 〈ω〉⊥ is equivalent
to having ω ∈ 〈x〉⊥, we arrive at

�γ (x)ω = 0 ∈ CM whenever x �= 0 and ω ∈ 〈x〉⊥, (1.46)

which is the same as saying that for each vector x ∈ Rn \ {0} the rows of the matrix
�γ (x) ∈ CM×n are scalar multiples of x. Thus, there exists a family of scalar
functions kγ,1, . . . , kγ,M defined in Rn \ {0} such that

for each x ∈ Rn \ {0}, the rows of �γ (x)

are kγ,1(x)x, . . . , kγ,M(x)x.
(1.47)

Ultimately, this implies that k := (
kγ,α

)
1≤γ≤M
1≤α≤M

is a matrix-valued function

belonging to
[
C∞(Rn \ {0})]M×M which is even, positive homogeneous of degree

−n, and such that for each γ ∈ {1, . . . ,M} we have
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�γ (x)ω = 〈x, ω〉kγ ·(x) for each x ∈ Rn \ {0} and ω ∈ Rn. (1.48)

Consequently, T� from (1.42) may be simply recast as

Tf (x) = lim
ε→0+

ˆ
∂�\B(x,ε)

〈x − y, ν(y)〉k(x − y)f (y) dσ(y) for σ -a.e. x ∈ ∂�.

(1.49)

In terms of the original double layer potential operator KA, the above argument
proves that

if (1.22) holds then the integral kernel of KA is necessarily
of the form 〈x − y, ν(y)〉k(x − y) for some matrix-valued
function k ∈ [

C∞(Rn\{0})]M×M which is even and positive
homogeneous of degree −n.

(1.50)

Algebraic conditions, formulated solely in terms of A, guaranteeing that the integral
kernel of KA has the distinguished structure singled out in (1.50) have been
identified in [115, Chapter 1] (see Definition 3.1). Henceforth, we shall refer to
such a coefficient tensor A as being “distinguished,” and we shall denote by Adis

L

the collection of all distinguished coefficient tensors which may be employed in the
writing of a given system L.

In (3.223) we show that all scalar second-order homogeneous constant complex
coefficient weakly elliptic operators L in Rn with n ≥ 3 possess precisely
one distinguished coefficient tensor. Consequently, Adis

L is nonempty (in fact, a
singleton) whenever L = divA∇ in Rn with n ≥ 3, with the coefficient matrix
A = (ajk)1≤j,k≤n ∈ Cn×n satisfying the weak ellipticity condition

n∑

j,k=1

ajkξj ξk �= 0, ∀ ξ = (ξ1, . . . , ξn) ∈ Rn \ {0}. (1.51)

In particular, this is the case for the Laplacian  =
n∑

j=1
∂2
j .

Other examples of weakly elliptic second-order homogeneous constant coef-
ficient systems which possess distinguished coefficient tensors are obtained by
considering the complex version of the Lamé system of elasticity in Rn, with n ≥ 2,

Lμ,λ := μ+ (λ+ μ)∇div, (1.52)

where the Lamé moduli λ,μ ∈ C are assumed to satisfy

μ �= 0, 2μ+ λ �= 0, 3μ+ λ �= 0. (1.53)
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The first two requirements in (1.53) are equivalent to having the systemLμ,λ weakly
elliptic (in the sense of (1.2)), while the last requirement in (1.53) ensures the
existence of a distinguished coefficient tensor for Lμ,λ. It turns out that if the last
condition in (1.53) is violated then Lμ,λ fails to have a distinguished coefficient
tensor.

It is of interest to remark that the (strong) Legendre–Hadamard ellipticity
condition (1.3) holds for the complex Lamé system Lμ,λ if and only if

Reμ > 0 and Re(2μ+ λ) > 0. (1.54)

As such, our results apply to certain classes of weakly elliptic second-order systems
which are not necessarily strongly elliptic (in the sense of Legendre–Hadamard).
Also, while the Lamé system is symmetric, we stress that the main results in this
monograph require no symmetry for the systems involved.

Recall that me denotes the m-th tetration of e (involving m copies of e, combined
via exponentiation), i.e.,

me := ee.
. .

e

︸︷︷︸
m copies of e

, the m-th fold exponentiation of e. (1.55)

For each t ≥ 0 let us define

t 〈m〉 :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if t = 0,

t · ln
(
· · · ln (

ln(
︸ ︷︷ ︸
m natural logarithms

1/t)
) · · ·

)
if 0 < t ≤ (me)−1,

(me)−1 if t > (me)−1.

(1.56)

One of the main results in this work asserts that ifL is a second-order, homogeneous,
constant complex coefficient, weakly elliptic, M × M system in Rn, with the
property that Adis

L �= ∅, and if � ⊆ Rn is a uniformly rectifiable domain, then
for each m ∈ N, each A ∈ Adis

L , and each p ∈ (1,∞) there exists a constant
Cm ∈ (0,∞) (which depends only on m, n, p, A, and the uniform rectifiability
character of�) such that estimate (1.22) actually holds for the choice of the function
φ : [0,∞) → [0,∞) given by φ(t) := t 〈m〉 for each t ∈ [0,∞). In particular, this
offers a solution to the problem formulated in (1.21).

See Theorem 4.7 for a result of a more general flavor, formulated in terms
of Muckenhoupt weighted Lebesgue spaces. Specifically, if the system L, the
coefficient tensor A, and the set � are as just described, then for each m ∈ N
and Muckenhoupt weight w ∈ Ap(∂�, σ) with 1 < p <∞ there exists a constant
Cm ∈ (0,∞) (which now also depends on [w]Ap , defined in (2.517)) with the
property that
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‖KA‖[Lp(∂�,w)]M→[Lp(∂�,w)]M ≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n . (1.57)

In turn, Theorem 4.7 is painlessly implied by the even more general result
presented in Theorem 4.2 which is one of the focal points of this monograph.
The proof of Theorem 4.2 uses a combination of tools of a purely geometric
nature (such as Theorem 2.6 containing a versatile version of a decomposition
result originally established by S. Semmes for smooth surfaces in [123] then
subsequently strengthened as to apply to rough settings in [61], and the estimate
from Proposition 2.15 controlling the inner product between the integral average of
the outward unit normal and the “chord” in terms of the BMO semi-norm of the
outward unit normal to a domain), techniques of a purely harmonic analytic nature
(like good-λ inequalities, maximal operator estimates, stopping time arguments, and
Muckenhoupt weight theory), and a bootstrap argument designed to successively
improve the nature of the function φ in (1.22).

These considerations lead us to adopt (as we do in Definition 2.15) the following
basic piece of terminology. Given δ > 0, an open, nonempty, proper subset � of
R
n is said to be a δ-flat Ahlfors regular domain (or δ-AR domain, for

short) if ∂� is an Ahlfors regular set, and if σ := Hn−1�∂�, then the geometric
measure theoretic outward unit normal ν to � is well defined at σ -a.e. point on ∂�
and satisfies

‖ν‖[BMO(∂�,σ)]n < δ. (1.58)

Remarkably, demanding that δ in (1.58) is small has topological and metric
implications for the underlying domain, namely � is two-sided NTA domain, which
is a connected unbounded open set, with a connected unbounded boundary, and
an unbounded connected complement (see Theorem 2.4). In the two-dimensional
setting we actually show that the class of δ-AR domains with δ ∈ (0, 1) small agrees
with the category of chord-arc domains with small constant (see Theorem 2.7 for a
precise statement). Most importantly, (1.57) shows that the oscillatory behavior of
the outward unit normal is a key factor in determining the size of the operator norm
for the double layer potential operator KA on

[
Lp(∂�,w)

]M .
Inspired by the format of a double layer operator (cf. (1.6)), so far we have been

searching for singular integral operators fitting the general template in (1.42) for
which it may be possible to control their operator norm in terms of ‖ν‖[BMO(∂�,σ)]n .
While {T� : � as in (1.43)} is a linear space, this is not stable under transposition
(which is an isometric transformation and, hence, preserves the quality of having a
small norm). This suggests that we cast a wider net and consider the class of singular
integrals acting at σ -a.e. point x ∈ ∂� on functions f as in (1.5) according to
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T�1,�2f (x)

:=
(

lim
ε→0+

ˆ

∂�\B(x,ε)

〈
�1
γ (x − y)ν(y)−�2

γ (x − y)ν(x), f (y)
〉

dσ(y)

)

1≤γ≤M

(1.59)

where �1 = (�1
γ )1≤γ≤M and �2 = (�2

γ )1≤γ≤M are as in (1.43). The latter
condition ensures that T�1,�2 is a well-defined, linear, and bounded operator on
[
Lp(∂�,w)

]M (recall that we are assuming� to be a uniformly rectifiable domain).
Consequently, {T�1,�2 : �1,�2 as in (1.43)} is a linear subspace of the space of

linear and bounded operators on
[
Lp(∂�,w)

]M which contains each double layer
KA as in (1.6) as well as its formal transpose K#

A, whose action on each function f
as in (1.5) at σ -a.e. x ∈ ∂� is given by

K#
Af (x) :=

(
lim
ε→0+

ˆ

∂�\B(x,ε)
νk(x)a

β α
jk (∂jEγ β)(x − y)fγ (y) dσ(y)

)

1≤α≤M
.

(1.60)

If an estimate like (1.57) would hold for the operator (1.59), then we would have
T�1,�2 = 0 whenever � ⊆ Rn is a half-space. Taking � := {z ∈ Rn : 〈z, ω〉 > 0}
with ω ∈ Sn−1 arbitrary then forces that for each index γ ∈ {1, . . . ,M} we have

[
�1
γ (x − y)−�2

γ (x − y)
]
ω = 0 for each ω ∈ Sn−1

and each x, y ∈ 〈ω〉⊥ with x �= y.
(1.61)

The same type of reasoning which, starting with (1.45), has produced (1.48) then
shows that there exists a matrix-valued function k ∈ [

C∞(Rn \ {0})]M×M , which
is even as well as positive homogeneous of degree −n, such that for each index
γ ∈ {1, . . . ,M} we have

[�1
γ (z)−�2

γ (z)]ω = 〈x, ω〉kγ ·(x) for each x ∈ Rn \ {0} and ω ∈ Rn.
(1.62)

In turn, this implies that (1.59) may be recast as

T�1,�2f (x) = lim
ε→0+

ˆ
∂�\B(x,ε)

〈x − y, ν(y)〉k(x − y)f (y) dσ(y) (1.63)

+
(

lim
ε→0+

ˆ
∂�\B(x,ε)

〈�2
γ (x − y)(ν(y)− ν(x)), f (y)〉 dσ(y)

)

1≤γ≤M
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for σ -a.e. x ∈ ∂�. The first principal-value integral in (1.63) has been encountered
earlier in (1.49), while the second one is of commutator type. Specifically, the
second principal-value integral in (1.63) may be thought of as a finite linear
combination of commutators between singular integral operators of convolution
type with kernels which are odd and positive homogeneous of degree 1 − n (like
the entries in any of the matrices �2

γ ) and operators Mνj of pointwise multiplication
with the scalar components νj , 1 ≤ j ≤ n, of the outward unit normal ν.

The ultimate conclusion is that, in addition to the family of operators described
in (1.49), the class of commutators of the sort just described provides the only
other viable candidates for operators whose norms become small when the ambient
surface on which they are defined becomes flatter. That such an eventuality actually
materializes is implied by Hofmann et al. [61, Theorem 2.16, p. 2603] which, in
particular, gives (in the same setting as above)

n∑

j,k=1

∥∥[Mνk , Rj
]∥∥

Lp(∂�,w)→Lp(∂�,w)
≤ C ‖ν‖[BMO(∂�,σ)]n . (1.64)

In the opposite direction, in Theorem 5.2 we prove that whenever � ⊆ Rn is a
uniformly rectifiable domain, 1 < p < ∞, and w ∈ Ap(∂�, σ), there exists some
C ∈ (0,∞) which depends only on n, p, [w]Ap , and the Ahlfors regularity constant
of ∂� with the property that

‖ν‖[BMO(∂�,σ)]n ≤ C
{
‖K‖Lp(∂�,w)→Lp(∂�,w) (1.65)

+ max
1≤j,k≤n

∥∥[Mνk , Rj ]
∥∥
Lp(∂�,w)→Lp(∂�,w)

}
.

This is done using the Clifford algebra machinery (briefly recalled in Sect. 5.1) and
exploiting the relationship between the Cauchy–Clifford operator (cf. (5.12)) and
the operators K, [Mνk , Rj ] with 1 ≤ j, k ≤ n, intervening in (1.65). Collectively,
these results point to the optimality of the class of δ-AR domains with δ ∈ (0, 1)
small as the geometric environment in which ‖K‖[Lp(∂�,w)]M→[Lp(∂�,w)]M and∥∥[Mνk , Rj

]∥∥
Lp(∂�,w)→Lp(∂�,w)

for 1 ≤ j, k ≤ n can possibly be small (relative to
n, p, [w]Ap , and the uniform rectifiability character of ∂�).

We also succeed in characterizing flatness solely in terms of the behavior of the
Riesz transforms {Rj }1≤j≤n (defined in (1.16)). In one direction, in Theorem 5.3 we
show that if � ⊆ Rn is a uniformly rectifiable domain with an unbounded boundary
and w ∈ Ap(∂�, σ) with p ∈ (1,∞), then there exists some C ∈ (0,∞) which
depends only on n, p, [w]Ap , and the uniform rectifiability character of ∂� with the
property that

‖ν‖[BMO(∂�,σ)]n ≤ C
{∥∥∥I +

n∑

j=1

R2
j

∥∥∥
Lp(∂�,w)→Lp(∂�,w)

(1.66)
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+ max
1≤j,k≤n

∥∥[Rj ,Rk]
∥∥
Lp(∂�,w)→Lp(∂�,w)

}
.

In the opposite direction, in Theorem 5.4 we prove that if � ⊆ Rn is an open
set satisfying a two-sided local John condition and whose topological boundary is
an Ahlfors regular set, then for each Muckenhoupt weight w ∈ Ap(∂�, σ) with
p ∈ (1,∞) and eachm ∈ N there exists some constantCm ∈ (0,∞)which depends
only on m, n, p, [w]Ap , and the Ahlfors regularity constant of ∂� such that

∥
∥∥I +

n∑

j=1

R2
j

∥
∥∥
Lp(∂�,w)→Lp(∂�,w)

≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n , (1.67)

and

max
1≤j<k≤n

∥∥[Rj ,Rk]
∥∥
Lp(∂�,w)→Lp(∂�,w)

≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n . (1.68)

Collectively, (1.66)–(1.68) give a fully satisfactory answer to the question of
quantifying flatness of a given “surface” � (thought of as the boundary of a
uniformly rectifiable domain � ⊆ Rn) in terms of the operator theoretic nature
of the Riesz transforms on �. Informally, these estimates amount to saying that
the flatter � is, the closer {Rj }1≤j≤n are to satisfying the “usual” Riesz transform
identities

n∑

j=1

R2
j = −I and RjRk = RkRj for all j, k ∈ {1, . . . , n}, (1.69)

when all operators are considered on Muckenhoupt weighted Lebesgue spaces on
�, and vice versa. In the limit case when � is genuinely flat (manifested through
the vanishing of the BMO semi-norm of its unit normal), all formulas in (1.69) hold
as stated. The best known case is that when � is the hyperplane Rn−1 ×{0} in Rn, a
scenario in which (1.69) may be readily checked when p = 2 and w ≡ 1 based on
the fact that each Rj is a Fourier multiplier corresponding to the symbol iξj /|ξ |.

The insistence on Muckenhoupt weights is justified by the fact that the bounded-
ness of the Riesz transforms on a weighted Lebesgue space Lp with p ∈ (1,∞)

actually forces the intervening weight to belong to the Muckenhoupt class Ap. See
the discussion in Sect. 5.4 in this regard, where other related results may be found.

While estimate (1.57) is valid irrespective of whether ∂� is bounded or not, its
usefulness is most apparent when ‖ν‖[BMO(∂�,σ)]n is sufficiently small (relative to
the geometry of � and the weight w) since, in the context of (1.57),
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having ‖ν‖[BMO(∂�,σ)]n small implies that 1
2I +KA is invertible

on
[
Lp(∂�,w)

]M and ( 1
2I + KA)

−1 may be expressed as the
Neumann series 2−1 ∑∞

j=0(−2KA)
j , which is convergent in the

operator norm,

(1.70)

and one can actually show that having ‖ν‖[BMO(∂�,σ)]n < 1 forces ∂� to be
unbounded (see Lemma 2.8). We may therefore recast (1.70) as saying that we may
invert 1

2I + KA on
[
Lp(∂�,w)

]M whenever � ⊆ Rn is a δ-AR domain for some
δ ∈ (0, 1) sufficiently small (relative to the dimension n, the Ahlfors regularity
constant of ∂�, the exponent p, and the weight w), and the latter condition implies
that ∂� is unbounded.

A precise formulation of this result goes as follows: Fix n,M ∈ N and consider
a weakly elliptic homogeneous constant complex coefficient second-order M ×M

system L in Rn with Adis
L �= ∅. Then for each constants CA,CW ∈ (0,∞), each

compact interval I ⊂ (1,∞), and each coefficient tensor A ∈ Adis
L there exists

a threshold δ ∈ (0, 1) which depends only on n, CA, CW , I , and A with the
following significance. Assume � ⊆ Rn is an Ahlfors regular domain such that
the Ahlfors regularity constant of ∂� is ≤ CA. Abbreviate σ := Hn−1�∂� and
denote by ν the geometric measure theoretic outward unit normal to �. Also, fix
an integrability exponent p ∈ I and a Muckenhoupt weight w ∈ Ap(∂�, σ) with
[w]Ap ≤ CW . Finally, consider the boundary-to-boundary double layer potential
operator KA, associated with the set � and the coefficient tensor A as in (1.6). Then
1
2I +KA is invertible on

[
Lp(∂�,w)

]M provided ‖ν‖[BMO(∂�,σ)]n < δ.
Estimate (1.57) then becomes a powerful tool in the proof of similar results on

other function spaces. First, in concert with the homogeneous space version of the
commutator theorem of Coifman et al. [31], proved in [61, Theorem 2.16, p. 2603],
this implies an analogous estimate on Muckenhoupt weighted Sobolev spaces (see
(2.587)). That is, retaining the assumptions on the domain � and the system L

made in the buildup to (1.57), whenever A ∈ Adis
L , m ∈ N, and w ∈ Ap(∂�, σ)

with 1 < p <∞ we have

‖KA‖[Lp1 (∂�,w)]M→[Lp1 (∂�,w)]M ≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n , (1.71)

for some constant Cm ∈ (0,∞) of the same nature as before. To elaborate on this
crucial estimate, one should think of our Muckenhoupt weighted Sobolev space
L
p

1 (∂�,w) as being naturally associated with a family
{
∂τjk

}
1≤j,k≤n of first-order

“tangential” differential operators along ∂�, which may loosely be described as
∂τjk = νj ∂k − νk∂j for each j, k ∈ {1, . . . , n}. Specifically, Lp1 (∂�,w) is the
linear space consisting of functions f ∈ Lp(∂�,w) with ∂τjkf ∈ Lp(∂�,w)

for each j, k ∈ {1, . . . , n} (see the discussion in Sect. 2.8 in this regard). From this
perspective it is then of paramount importance to understand the manner in which a
double layer operator KA commutes with a generic tangential differential operators
∂τjk . It turns out that
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each commutator [KA, ∂τjk ] acting on a function f belonging
to a Muckenhoupt weighted Sobolev space may be expressed as
a finite linear combination of commutators of the form [Mν,R]
acting on the components of ∇tanf , the tangential gradient of
f , where Mν stands for the operator of pointwise multiplication
by (generic components of) the unit normal ν, and R is a
convolution type singular integral operator on ∂� of similar
nature as the Riesz transforms on ∂� (cf. (1.16)).

(1.72)

Based on this, (1.57), and a suitable analogue of (1.64), we then conclude that the
key estimate stated in (1.71) holds. In turn, (1.71) permits us to invert 1

2I+KA on the

Muckenhoupt weighted Sobolev space
[
L
p

1 (∂�,w)
]M , for each w ∈ Ap(∂�, σ)

with 1 < p <∞, via a Neumann series converging in the operator norm, whenever
� ⊆ Rn is a δ-AR domain for some δ ∈ (0, 1) sufficiently small (a condition that
forces ∂� to be unbounded) relative to the Ahlfors regularity constant of ∂� and
the weight w.

Second, we use the operator norm estimate on Muckenhoupt weighted Lebesgue
spaces from (1.57) as a gateway to establishing similar estimates via extrapolation
procedures. One of the best known embodiments of this principle is Rubio de
Francia’s celebrated extrapolation theorem, according to which estimates on Muck-
enhoupt weighted Lebesgue spaces for a fixed integrability exponent and all weights
imply similar estimates for all integrability exponents (prompting Antonio Córdoba
to famously declare that “there are no Lp spaces, only weighted L2 spaces”). Here
we use (1.57) together with an extrapolation procedure from [112, §6.2] (recalled in
Proposition 7.4) to obtain norm estimates for double layer operators on the scale of
Morrey spaces on the boundary of a uniformly rectifiable domain � ⊆ Rn, i.e.,

Mp,λ(∂�, σ) := {
f ∈ L1

loc(∂�, σ) : ‖f ‖Mp,λ(∂�,σ) <∞}
(1.73)

with p ∈ (1,∞) and λ ∈ (0, n− 1), where1

‖f ‖Mp,λ(∂�,σ) := sup
x∈∂� and

0<R<2 diam(∂�)

{
R
n−1−λ

p
(  

∂�∩B(x,R)
|f |p dσ

) 1
p

}
. (1.74)

(Note that the scale of ordinary Lebesgue spaces on ∂� corresponds to the end-point
case λ = 0, while the end-point λ = n − 1 corresponds to the space of essentially
bounded functions on ∂�.) Retaining the same geometric context as before and
assuming A ∈ Adis

L , the extrapolation procedure alluded to above yields, for each
m ∈ N,

‖KA‖[Mp,λ(∂�,σ)]M→[Mp,λ(∂�,σ)]M ≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n , (1.75)

1 throughout, given any nonempty set E ⊆ Rn, we let diam(E) denote the diameter of E.
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for some constant Cm ∈ (0,∞) of the same nature as before (cf. Theorem 7.8
for this, and other related results). We may take this a step further and estab-
lish a similar operator norm estimate involving the Morrey-based Sobolev space
M

p,λ

1 (∂�, σ). These, in turn, allow us to invert 1
2I + KA both on the Morrey

space
[
Mp,λ(∂�, σ)

]M and on the Morrey-based Sobolev space
[
M

p,λ

1 (∂�, σ)
]M ,

under similar assumptions as before. See Theorem 7.9 where this and other
invertibility results on related spaces are proved. In addition, (1.57) implies (via
real interpolation) norm estimates and invertibility results for double layer potential
operators on Lorentz spaces and Lorentz-based Sobolev spaces (cf. Remarks 4.11
and 4.16).

Concisely put, in this work we are able to answer Kenig’s open question
(formulated at the outset of the introduction) pertaining to any given weakly
elliptic homogeneous constant complex coefficient second-order system L in Rn

with Adis
L �= ∅, in the setting of δ-AR domains � ⊆ Rn with δ ∈ (0, 1) small

(relative to n and the Ahlfors regularity constant of ∂�), for ordinary Lebesgue
spaces, Lorentz spaces, Muckenhoupt weighted Lebesgue, Morrey spaces, as well
as Sobolev spaces on ∂� suitably defined in relation to each of the aforementioned
scales (see Theorem 4.8, Remark 4.16, Theorems 4.9, 7.9, 7.10). As indicated in
Remark 4.19, the smallness condition imposed on the parameter δ is actually in the
nature of best possible as far as these invertibility results are concerned.

In turn, the aforementioned invertibility results open the door for solving
boundary value problems of Dirichlet, Regularity, Neumann, and Transmission type
in the class of δ-AR domains with δ ∈ (0, 1) small (relative to the dimension n, the
Ahlfors regularity constant of ∂�, and the specific nature of the space of boundary
data) for second-order weakly elliptic constant complex coefficient systems which
(either themselves and/or their transpose) possess distinguished coefficient tensors.

For example, in such a setting, we succeed in establishing the well-posedness of
the Muckenhoupt weighted Dirichlet Problem and the Muckenhoupt weighted Reg-
ularity Problem (formulated using the nontangential maximal operator introduced in
(2.5), and nontangential boundary traces defined as in (2.12), for some fixed aperture
parameter κ > 0):

(D)p,w

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u ∈ [
C∞(�)

]M
,

Lu = 0 in �,

Nκu ∈ Lp(∂�,w),

u
∣∣κ−n.t.

∂�
= f ∈ [

Lp(∂�,w)
]M

,

(R)p,w

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u ∈ [
C∞(�)

]M
,

Lu = 0 in �,

Nκu ∈ Lp(∂�,w),

Nκ(∇u) ∈ Lp(∂�,w),

u
∣∣κ−n.t.

∂�
= f ∈ [

L
p

1 (∂�,w)
]M

,

(1.76)
for each given integrability exponent p ∈ (1,∞) and each given Muckenhoupt

weight w ∈ Ap(∂�, σ), under the assumption that both L and L� have a dis-
tinguished coefficient tensor. Moreover, we provide counterexamples which show
that the well-posedness result just described may fail if these assumptions on the
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Ω

Fig. 1.1 A prototype of an unbounded δ-AR domain for which δ > 0 may be made as small as
desired, relative to the Ahlfors regularity constant of ∂� (cf. (2.325), (2.327))

existence of distinguished coefficient tensors are simply dropped. See Theorems 6.2
and 6.5 for more nuanced statements. Our results are therefore optimal in this regard.
We wish to note that the present work marks the first occasion when boundary
problems like (1.76) have been treated in a class of sets large enough as to contain
domains with spiral points of the sort described in Fig. 1.1. This being said, even in
the scalar (i.e., M = 1), unweighted case (i.e., w ≡ 1), the well-posedness of the
problems in (1.76) would still be new for such basic constant complex coefficient
differential operators as

L = ∂2
1 + · · · + ∂2

n−1 + i∂2
n. (1.77)

Existence for the boundary value problems (D)p,w, (R)p,w is established by
looking for a solution which is expressed as in (1.11), making use of the jump-
formula (3.123), and the fact that 1

2I + KA is invertible both on the Muckenhoupt

weighted Lebesgue space
[
Lp(∂�,w)

]M as well as on the Muckenhoupt weighted

Sobolev space
[
L
p

1 (∂�,w)
]M . The issue of uniqueness requires a new set of

techniques, and this is subtle even in the classical setting of the upper half-space
� := Rn+. In the particular case when L = , the Laplacian in Rn, the Dirichlet
boundary value problem (D)p,w in � := Rn+ has been treated at length in a number
of monographs in the unweighted case (i.e., whenw = 1), including [9], [52], [132],
[133], and [134]. In all these works, the existence part makes use of the explicit form
of the harmonic Poisson kernel, while the uniqueness relies on either the Maximum
Principle or the Schwarz reflection principle for harmonic functions. Neither of
these techniques may be adapted successfully to prove uniqueness in the case of
general systems treated here. Subsequently, the Dirichlet boundary value problem
(D)p,w in � := Rn+ for a general strongly elliptic, second-order, homogeneous,
constant complex coefficient, system L, and for an arbitrary Muckenhoupt weight
w has been treated in [92], where existence employs the Agmon-Douglis-Nirenberg
Poisson kernel for L, while uniqueness relies on special properties of the Green
function for L in the upper half-space Rn+.

In the present setting, when � is merely a δ-AR domain with δ ∈ (0, 1) small
(relative to n, p, w, and the Ahlfors regularity constant of ∂�), in order to deal
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with the issue of uniqueness for the Muckenhoupt weighted Dirichlet Problem
(D)p,w we construct a Green function G for L in � by correcting the fundamental
solution E of L in Rn (as to ensure its boundary trace on ∂� vanishes) using the
existence part for the Regularity Problem (R)p′,w′ (formulated for the transpose
system L�, the conjugate exponent p′, and the dual weight w′) and then employ a
rather general Poisson integral representation formula recently established in [113,
§4.4] (cf. Theorem 6.1 for a precise statement).

For each given integrability exponent p ∈ (1,∞) and each given Muckenhoupt
weight w ∈ Ap(∂�, σ) we also prove (see Theorem 6.8) that what we call the
Homogeneous Regularity Problem, namely the boundary value problem

(HR)p,w

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u ∈ [
C∞(�)

]M
,

Lu = 0 in �,

Nκ(∇u) ∈ Lp(∂�,w),

u
∣∣κ−n.t.

∂�
= f ∈ [ .

L
p

1 (∂�,w)
]M

,

(1.78)

whose formulation involves a homogeneous Muckenhoupt weighted Sobolev space,
denoted by

.
L
p

1 (∂�,w) (introduced in Definition 2.18), is well posed provided both
L and L� have a distinguished coefficient tensor and the Ahlfors regular domain �
is sufficiently flat.

In the same geometric setting, of δ-AR domains, we also discuss the solvability
of the Muckenhoupt weighted Neumann Problem (in Theorem 6.11) and the
Muckenhoupt weighted Transmission Problem (in Theorem 6.15), i.e.,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u ∈ [
C∞(�)

]M
,

Lu = 0 in �,

Nκ(∇u) ∈ Lp(∂�,w),

∂Aν u = f ∈ [
Lp(∂�,w)

]M
,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u± ∈ [
C∞(�±)

]M
,

Lu± = 0 in �±,
Nκ(∇u±) ∈ Lp(∂�,w),

u+
∣∣κ−n.t.

∂�
= u−

∣∣κ−n.t.

∂�
σ -a.e. on ∂�,

∂Aν u
+ − μ · ∂Aν u− = f ∈ [

Lp(∂�,w)
]M

,

(1.79)
(where ∂Aν is the conormal derivative operator associated with the coefficient
tensor A used to represent the given system L, and μ ∈ C is a transmission,
or coupling, parameter), as well as variants of those boundary value problems
involving Lorentz spaces. In all cases, we show that the boundary layer method may
be successfully implemented for any second-order homogeneous constant complex
coefficient weakly elliptic systemL inRn whose transpose possesses a distinguished
coefficient tensor, assuming A ∈ Adis

L� . Moreover, in the two-dimensional setting we
show that the Neumann and Transmission Problems (1.79) remain solvable for a
larger spectrum of choices of the coefficient tensor for the Lamé system (see the
results in Sect. 4.5, as well as Remarks 6.10 and 6.16, in this regard).
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In [114], a robust Calderón-Zygmund theory for singular integral operators
of boundary layer type associated with weakly elliptic systems and uniformly
rectifiable domains has been developed. Here we use such a platform (consisting
of results recalled in Proposition 7.5, Theorems 7.1, and 7.2) to prove solvability
results for a variety of boundary value problems of Dirichlet, (inhomogeneous and
homogeneous) Regularity, Neumann, and Transmission type (akin those formulated
in (1.76), (1.78), and (1.79)) with data in Morrey spaces, vanishing Morrey spaces,
and block spaces (cf. Theorems 7.18, 7.20, 7.21, 7.22, and 7.23).

In addition, we develop a perturbation theory to the effect that, in all cases
discussed so far in this narrative, solvability of a boundary value problem for a
certain system Lo implies solvability for any other system L which is sufficiently
close to Lo (with proximity quantified using the norm introduced in (3.12)). For
results of this nature, the reader is referred to Theorems 6.4, 6.6, 6.12, 6.16, and
7.19.

Lastly, in Sect. 8 we study singular integral operators in more general functional
analytic settings. The goal here is to show that these are effective tools in obtaining
well-posedness results for boundary problems for second-order systems, formulated
in sufficiently flat Ahlfors regular domains, and with boundary data from abstract
weighted Banach function spaces. A key result in this regard is a remarkable link
between this class of abstract spaces and concrete Muckenhoupt weighted Lebesgue
spaces. To briefly elaborate on this topic, we need some notation. Suppose � ⊆ Rn
is a closed Ahlfors regular set and define σ := Hn−1��. LetX be a Banach function
space over (�, σ ), i.e., the space associated with a function norm as in (8.5) (also
referred to as a Köthe function space). With X′ denoting the Köthe dual of X (also
known as the associated space of X in the terminology of [15]; cf. (8.6)), and with
M denoting the Hardy–Littlewood maximal operator on (�, σ ), assume that

M is bounded both on X and on X′. (1.80)

In this setting we then show that (see Proposition 8.1 for a more general and precise
result), in a quantitative fashion, for each fixed p0 ∈ [1,∞) we have

X ⊆
⋃

w∈Ap0 (�,σ)

Lp0(�,w). (1.81)

Subsequently, in Theorem 8.1, we show that for each pair of σ -measurable functions
f, g on �, having an inequality of the form

‖f ‖Lp0 (�,w) ≤ Cw ‖g‖Lp0 (�,w) (1.82)

valid for some fixed integrability exponent p0 ∈ [1,∞) and arbitrary Muckenhoupt
weights w ∈ Ap0(�, σ ) (where the constant Cw depends in a non-decreasing
fashion on [w]Ap0

) implies
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‖f ‖X ≤ C ‖g‖X , (1.83)

where C ∈ (0,∞) depends only on p0 and the operator norms of M on
X and X′. This result, which is in the spirit of Rubio de Francia’s celebrated
extrapolation theorem, then opens the door for transferring our earlier results in
ordinary Muckenhoupt weighted Lebesgue spaces to the setting of abstract weighted
Banach function spaces. We methodically explore this venue, and the theory we
develop ultimately shows the effectiveness of the boundary layer approach in the
treatment of boundary problems for second-order systems, formulated in sufficiently
flat Ahlfors regular domains, and with boundary data in abstract Banach function
spaces. See Sect. 8 for details; here we only mention that in the last part of this
chapter we provide a multitude of relevant examples, including variable exponent
Lebesgue spaces, generic rearrangement invariant Banach function spaces (RIBFS
for short), Orlicz spaces, Zygmund space, Lorentz spaces, and their weighted
versions.

To close, we wish to emphasize that it is natural to consider boundary value
problems with boundary data from a large library of function spaces (as done here:
Muckenhoupt weighted Lebesgue spaces, Lorentz spaces, Morrey spaces, block
spaces, abstract weighted Banach function spaces, as well as various Sobolev spaces
naturally adapted to these scales, among others). To elaborate on this aspect, assume
� ⊆ Rn is a δ-AR domain with δ ∈ (0, 1) and abbreviate σ := Hn−1�∂�. Also,
fix an arbitrary aperture parameter κ > 0 along with some power a ∈ (0, n − 1),
and pick some point xo ∈ ∂�. In this setting, consider the Dirichlet Problem for the
Laplacian in �, corresponding to the boundary datum

f (x) := |x − xo|−a for each x ∈ ∂� \ {xo}, (1.84)

assumed in a nontangential fashion, i.e.,

{
u ∈ C∞(�), u = 0 in �,

u
∣∣κ−n.t.

∂�
= f at σ -a.e. point on ∂�.

(1.85)

The question which naturally arises is: what size/regularity conditions is the solution
u expected to satisfy? The answer very much depends on the actual qualities of the
boundary datum f and on the specific frameworks in which we know the Dirichlet
Problem to be well-posed. For example, f from (1.84) does not belong to any
Lebesgue space Lp(∂�, σ) with p ∈ (1,∞), so one does not expect Nκu to belong
to any ordinary Lebesgue space Lp(∂�, σ) with p ∈ (1,∞). This being said, for
each fixed point x∗ ∈ ∂� and each exponent b ∈ (0, n− 1) the function

w(x) := |x − x∗|−b, ∀ x ∈ ∂� \ {x∗} (1.86)

is a Muckenhoupt weight, in the class Ap(∂�, σ), and the function f from (1.84)
belongs to the Muckenhoupt weighted Lebesgue space Lp(∂�,w) if x∗ �= xo and
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max
{

1,
n− 1 − b

a

}
< p <

n− 1

a
. (1.87)

Assuming δ ∈ (0, 1) is sufficiently small, the theory developed here then guarantees
that there exists a unique function u solving (1.85) with the additional property that

Nκu ∈ Lp(∂�,w). (1.88)

Since the boundary datum f also belongs to the Lorentz space L(n−1)/a,∞(∂�, σ)
which turns out to be an environment in which we are able to establish the
well-posedness of the Dirichlet Problem with appropriate nontangential maximal
function control, we then conclude that for the unique function u satisfying (1.85)
and (1.88) we also have (assuming δ ∈ (0, 1) is sufficiently small)

Nκu ∈ L(n−1)/a,∞(∂�, σ). (1.89)

Likewise, the fact that the boundary datum f from (1.84) also belongs to the Morrey
space M(n−1−λ)/a,λ(∂�, σ) whenever λ ∈ (0, n − 1 − a) further entails (again,
assuming δ ∈ (0, 1) is sufficiently small)

Nκu ∈ M(n−1−λ)/a,λ(∂�, σ) for each λ ∈ (0, n− 1 − a). (1.90)

The tangential derivatives of the boundary datum f also enjoy integrability prop-
erties which translate well in terms of regularity properties for the solution u of
(1.85)–(1.88). For example, if

a ∈ (0, n− 2), λ ∈ (0, n− 2 − a),

and max
{

1, n−1−b
a+1

}
< q < n−1

a+1 ,
(1.91)

then for each j, k ∈ {1, . . . , n} we have

∂τjkf ∈ Lq(∂�,w) ∩ L(n−1)/(a+1),∞(∂�, σ) ∩M(n−1−λ)/(a+1),λ(∂�, σ),

(1.92)
which, granted that δ ∈ (0, 1) is sufficiently small, ultimately imply

Nκ(∇u) ∈ Lq(∂�,w) ∩ L(n−1)/(a+1),∞(∂�, σ) ∩M(n−1−λ)/(a+1),λ(∂�, σ).

(1.93)
It is also interesting to ponder on the nature of the nontangential maximal func-

tion for solutions of (1.85) in the case when the boundary datum is a characteristic
function, say, f = 1E for some bounded σ -measurable set E ⊆ ∂�. If one
regards the latter merely as a function in Lp(∂�, σ) with p ∈ (1,∞), then the
best one can say is that Nκu ∈ Lp(∂�, σ), assuming δ ∈ (0, 1) is sufficiently
small. However, through the consideration of weights, one may find solutions of said
boundary problem for which the nontangential maximal function has better decay
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properties at infinity. Specifically, fix a point x∗ ∈ ∂�, an integrability exponent
p ∈ (1,∞), a power b ∈ ( − (p − 1)(n − 1), n − 1

)
, and define the weight w as

in (1.86). In particular, we have f = 1E ∈ Lp(∂�,w), and since w ∈ Ap(∂�, σ)

the well-posedness of the Dirichlet problem with data in Muckenhoupt weighted
Lebesgue spaces implies we may find a solution u of the boundary value problem
(1.85) satisfying

ˆ
∂�

(Nκu)(x)
p

|x − x∗|b dσ(x) < +∞, (1.94)

once more, assuming δ ∈ (0, 1) is sufficiently small (relative to n, p, b, and the
Ahlfors regularity constant of ∂�).

Lastly, we wish to note that there is a wealth of sources for boundary value
problems in non-smooth domains with boundary data and solutions in Besov and
Triebel-Lizorkin spaces, including [11], [50], [68], [100], [98], [103], [104], [106],
[107], [115], and the references therein.



Chapter 2
Geometric Measure Theory

We begin with a quick review of notational conventions used in the monograph.
Throughout, N0 := N∪{0}, n ∈ N with n ≥ 2, and Ln stands for the n-dimensional
Lebesgue measure in Rn. Also, we shall denote by Hn−1 the (n − 1)-dimensional
Hausdorff measure in Rn. It is a well-known fact (cf. [47, Theorem 1, p. 61]) that the
(n − 1)-dimensional Hausdorff outer-measure is a Borel-regular outer-measure in
R
n. Since the measure induced by an arbitrary outer-measure (as in Carathéodory’s

theorem) is automatically complete, it follows that

Hn−1 is a complete Borel-regular measure in Rn. (2.1)

Next, for each setE ⊆ Rn, we let 1E denote the characteristic function ofE (defined
as 1E(x) = 1 if x ∈ E and 1E(x) = 0 if x ∈ Rn \ E). Also, δjk is the Kronecker
symbol (i.e., δjk := 1 if j = k and δjk := 0 if j �= k). By {ej }1≤j≤n we shall denote
the standard orthonormal basis in Rn, i.e., ej := (δjk)1≤k≤n for each j ∈ {1, . . . , n}.
For each x ∈ Rn and r ∈ (0,∞) set B(x, r) := {y ∈ Rn : |x − y| < r}. The dot
product of two vectors u, v ∈ Rn is denoted by u · v = 〈u, v〉, and for each vector
v ∈ Rn we set 〈v〉⊥ := {u ∈ Rn : u · v = 0}. Next, Rn± := {x ∈ Rn : ±〈x, en〉 > 0}
denote, respectively, the upper half-space and the lower half-space in Rn.

Given an arbitrary set� ⊆ Rn, we shall denote by C 0(�) the space of continuous
scalar-valued functions defined on �. Assuming now that � ⊆ Rn is actually open,
for each k ∈ N∪ {0} we shall denote by C k(�) the space of scalar-valued functions
which have continuous partial derivatives of order ≤ k in �. Also, C∞

0 (�) stands
for the space of compactly supported functions from C∞(�). We shall let D′(�)
stand for the space of distributions in the set � and, for each integrability exponent
p ∈ [1,∞] and integer k ∈ N, we shall define the local Lp-based Sobolev space
of order k in � as Wk,p

loc (�) :=
{
u ∈ D′(�) : ∂αu ∈ L

p

loc(�,L
n), |α| ≤ k

}
. The

Jacobian matrix of a differentiable CM -valued function u = (uα)1≤α≤M defined in
an open subset of Rn is the CM·n-valued function
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∇u := (
∂juα

)
1≤α≤M
1≤j≤n

=
⎡

⎢
⎣

∂1u1 · · · ∂nu1
...

...
...

∂1uM · · · ∂nuM

⎤

⎥
⎦ . (2.2)

We shall retain the same symbol ∇u when the components of u are actually
distributions. Next, we agree to denote by Sn−1 := ∂B(0, 1) the unit sphere in Rn,
and use ωn−1 := Hn−1(Sn−1) for the surface area of Sn−1. In addition, we shall let
υn−1 denote the volume of the unit ball in Rn−1. Given any x, y ∈ Rn, by [x, y] we
shall denote the line segment with endpoints x, y. We shall also need dist(x, E) :=
inf{|x − y| : y ∈ E}, the distance from a given point x ∈ Rn to a nonempty set
E ⊆ Rn. If (X,μ) is a given measure space, for each p ∈ (0,∞] we shall denote
by Lp(X,μ) the Lebesgue space of μ-measurable functions which are p-th power
integrable on X with respect to μ. Also, by Lp,q(X,μ) with p, q ∈ (0,∞] we shall
denote the scale of Lorentz spaces on X with respect to the measure μ. In the same
setting, for each μ-measurable set E ⊆ X with 0 < μ(E) < ∞ and each function
f which is absolutely integrable on E we set

ffl
E
f dμ := μ(E)−1

´
E
f dμ. For two

operators T and S, the symbol [T , S] := T ◦S−S ◦T denotes the commutator of T
and S. For a measurable function b, we let Mb be the pointwise multiplication by b,
that is, Mb(f )(x) := b(x) ·f (x). Given N,M ∈ N, for any a = (a1, . . . , aN) ∈ CN
and b = (b1, . . . , bM) ∈ CM , we agree to define a ⊗ b to be the N ×M matrix

a ⊗ b := (
ajbk

)
1≤j≤N
1≤k≤M

∈ CN×M. (2.3)

Finally, we adopt the common convention of writingA ≈ B if there exists a constant
C ∈ (1,∞) with the property that A/C ≤ B ≤ CA for all values of the relevant
parameters entering the definitions of A,B (something that is self-evident in each
context we employ this notation).

2.1 Classes of Euclidean Sets of Locally Finite Perimeter

Given an open set � ⊆ Rn and an aperture parameter κ ∈ (0,∞), define the
nontangential approach regions

�κ(x) :=
{
y ∈ � : |y − x| < (1 + κ) dist(y, ∂�)

}
for each x ∈ ∂�. (2.4)

In turn, these are used to define the nontangential maximal operator Nκ , acting on
each Ln-measurable function u defined in � according to

(
Nκu

)
(x) := ‖u‖L∞(�κ (x),Ln) for each x ∈ ∂�, (2.5)
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with the convention that
(
Nκu

)
(x) := 0 whenever x ∈ ∂� is such that �κ(x) = ∅.

Note that, if we work (as one usually does) with equivalence classes, obtained by
identifying functions which coincide Ln-a.e., the nontangential maximal operator is
independent of the specific choice of a representative in a given equivalence class.
It turns out that (see [111, §8.2] for a proof)

Nκu : ∂�→ [0,+∞] is a lower-semicontinuous function. (2.6)

Also, it is apparent from definitions that

whenever u ∈ C 0(�) one actually has
(
Nκu

)
(x) = sup

y∈�κ(x)
|u(y)| for all x ∈ ∂�.

(2.7)

More generally, if u : � → R is a Lebesgue measurable function and E ⊆ � is
a Ln-measurable set, we denote by NE

κ u the nontangential maximal function of u
restricted to E, i.e.,

NE
κ u : ∂� −→ [0,+∞] defined as

(NE
κ u)(x) := ‖u‖L∞(�κ (x)∩E,Ln) for each x ∈ ∂�.

(2.8)

Hence, NE
κ u = Nκ(u · 1E). Throughout, we agree to use the simpler notation Nδ

κ in
the case when E = {x ∈ � : dist(x, ∂�) < δ} for some δ ∈ (0,∞), i.e.,

Nδ
κu := Nκ

(
u1Oδ

)
where Oδ := {x ∈ � : dist(x, ∂�) < δ}. (2.9)

It turns out that, when the background measure is doubling, membership of the
nontangential maximal function to Lorentz spaces is not contingent on the size of
the aperture parameter. This is made precise in the proposition below (see [111,
§8.4] for a proof).

Proposition 2.1 Assume that � is an open nonempty proper subset of Rn and
consider a doubling Borel measure σ on ∂�. Fix two integrability exponents
p, q ∈ (0,∞]. Then for each Lebesgue measurable function u : � → C and
any two aperture parameters κ1, κ2 ∈ (0,∞) one has, in a quantitative sense,

Nκ1u ∈ Lp,q(∂�, σ) if and only if Nκ2u ∈ Lp,q(∂�, σ), (2.10)

and, for each truncation parameter δ ∈ (0,∞),

Nδ
κ1
u ∈ L

p
loc(∂�, σ) if and only if Nδ

κ2
u ∈ L

p
loc(∂�, σ). (2.11)

Continue to assume that � is an arbitrary open, nonempty, proper subset of Rn

and suppose u is some vector-valued Ln-measurable function defined in �. Also,
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fix an aperture parameter κ > 0 and consider a point x ∈ ∂� such that x ∈ �κ(x)

(i.e., x is an accumulation point for the nontangential approach region �κ(x)). In
this context, we shall say that the nontangential limit of u at x from within �κ(x)

exists, and its value is the vector a ∈ CM , provided

for every ε > 0 there exists r > 0 with the property
|u(y)− a| < ε for Ln-a.e. point y ∈ �κ(x) ∩ B(x, r). (2.12)

Whenever the nontangential limit of u at x from within �κ(x) exists, we agree to

denote its value by the symbol
(
u
∣∣κ−n.t.

∂�

)
(x). It is then clear from definitions that

whenever the latter exists we have
∣
∣∣
(
u
∣∣κ−n.t.

∂�

)
(x)

∣
∣∣ ≤ (

Nδ
κu

)
(x) ≤ (

Nκu
)
(x), for all δ > 0. (2.13)

Moving on, recall that an Ln-measurable set � ⊆ Rn has locally finite
perimeter if its measure theoretic boundary, i.e.,

∂∗� :=
{
x ∈ ∂� : lim sup

r→0+

Ln(B(x, r) ∩�)
rn

> 0, lim sup
r→0+

Ln(B(x, r) \�)
rn

> 0
}
,

(2.14)
satisfies

Hn−1(∂∗� ∩K)
< +∞ for each compact K ⊆ Rn (2.15)

(cf. [47, Sections 5.7 and 5.11]). Alternatively, an Ln-measurable set � ⊆ Rn has
locally finite perimeter if, with the gradient taken in the sense of distributions in Rn,

μ� := −∇1� (2.16)

is an Rn-valued Borel measure in Rn of locally finite total variation. Occasionally,
μ� is referred to as the Gauss-Green measure of� (see, e.g., [89, Remark 12.2,
p. 122]). Fundamental work of De Giorgi-Federer (cf., e.g., [47], [89] for modern
accounts) then gives the following Polar Decomposition of the Radon measure μ�:

μ� = −∇1� = ν |∇1�|, (2.17)

where |∇1�|, the total variation measure of the measure ∇1�, is given by

|∇1�| = Hn−1�∂∗�, (2.18)

and where

ν ∈ [
L∞(∂∗�,Hn−1)

]n is an Rn-valued function

satisfying |ν(x)| = 1 at Hn−1-a.e. point x ∈ ∂∗�.
(2.19)



2.1 Classes of Euclidean Sets of Locally Finite Perimeter 31

We shall refer to ν above as the geometric measure theoretic outward
unit normal to �. Note here that by simply eliminating the distribution theory
jargon implicit in the interpretation of (2.17) (and using a straightforward limiting
argument involving a mollifier) one already arrives at the formula

ˆ
�

div �F dLn =
ˆ
∂∗�

ν · ( �F ∣∣
∂�

)
dHn−1

for each vector field �F ∈ [
C 1

0 (R
n)
]n
.

(2.20)

For a set � ⊆ Rn of locally finite perimeter, we let ∂∗� denote the reduced
boundary of �, that is,

∂∗� consists of all points x ∈ ∂� satisfying the following two
properties: 0 < Hn−1(B(x, r) ∩ ∂∗�

)
< +∞ for each radius

r ∈ (0,∞), and lim
r→0+

ffl
B(x,r)∩∂∗� ν dHn−1 = ν(x) ∈ Sn−1.

(2.21)

From [47, Lemma 2, p. 222] we know that

any Ln-measurable set � ⊆ Rn has the property that ∂∗� is
a Borel set in Rn (in particular, ∂∗� is Hn−1-measurable).

(2.22)

In addition, given any set � ⊆ Rn of locally finite perimeter, from the structure
theorem for sets of locally finite perimeter (cf. [47, Theorem 2, p. 205]) it follows
that

∂∗� is countably rectifiable, of dimension n− 1

(hence, the set ∂∗� is also Hn−1-measurable).
(2.23)

Moreover, for any set � ⊆ Rn of locally finite perimeter we have (cf. [47, p. 208])

∂∗� ⊆ ∂∗� ⊆ ∂� and Hn−1(∂∗� \ ∂∗�) = 0. (2.24)

It is also useful to note that, as remarked in [111, §5.6],

if � ⊆ Rn is a set of locally finite perimeter and m ∈ N, then
�̃ := Rm × � ⊆ Rm+n is a set of locally finite perimeter,
satisfying ∂∗�̃ = Rm × ∂∗�, and whose geometric measure
theoretic outward unit normal ν̃ is ν̃(x, y) = (0, ν(y)) for
(Lm ⊗ Hn−1)-a.e. point (x, y) ∈ ∂∗�̃ = Rm × ∂∗�, where
0 ∈ Rm and ν is the geometric measure theoretic outward unit
normal to the set �.

(2.25)

The following result, comparing the geometric measure theoretic outward unit
normals of two sets of locally finite perimeter (on the intersection of their reduced
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boundaries), is going to be relevant for us later on, in Theorem 2.6 (and, by
extension, in the proof of Theorem 4.2).

Proposition 2.2 Let E,F be two sets of locally finite perimeter in Rn. If νE and νF
denote the geometric measure theoretic outward unit normal vectors to E and F ,
respectively, then atHn−1-a.e. point x ∈ ∂∗E ∩ ∂∗F one has either νE(x) = νF (x)

or νE(x) = −νF (x).
Proof This is a consequence of [89, Proposition 10.5, p. 101] according to which

any two locally Hn−1-rectifiable sets M1,M2 ⊆ Rn have identi-
cal approximate tangent planes at Hn−1-a.e. point in M1 ∩M2,

(2.26)

and [129, Theorem 14.3, (1), pp. 72-73] where it has been shown that

given any set of locally finite perimeter � ⊆ Rn, its approximate
tangent plane exists at each point x ∈ ∂∗� and is equal
to 〈ν(x)〉⊥ (where ν denotes the geometric measure theoretic
outward unit normal vector to �).

(2.27)

Indeed, (2.15) and (2.24) tell us that ∂∗E, ∂∗F are locally Hn−1-rectifiable sets (cf.
[89, p. 96]), so (2.26) (used with M1 := ∂∗E and M2 := ∂∗F ) together with (2.27)
imply that 〈νE(x)〉⊥ = 〈νF (x)〉⊥ at Hn−1-a.e. point x ∈ ∂∗E ∩ ∂∗F , from which
the desired conclusion follows. � 

Given a set � ⊆ R
n of locally finite perimeter, another piece of notation

commonly used (cf., e.g., [47, p. 169]) is

‖∂�‖ := Hn−1�∂∗�. (2.28)

From (2.28), (2.24), and (2.18) (cf. also [89, (15.10), p. 170]) we then see that

‖∂�‖ agrees with the total variation of μ�,

the Gauss-Green measure of �,
(2.29)

and we also claim that1

supp ‖∂�‖ = ∂∗�. (2.30)

Indeed, from (2.28), (2.24), (2.21) we see that ∂∗� ⊆ supp ‖∂�‖ and, as a
consequence, ∂∗� ⊆ supp ‖∂�‖ since the latter set is closed. This proves the right-

1 Given a topological space X along with some (non-negative) Borel measure μ on X, the support
of μ is denoted by suppμ and is defined as the set of all points x ∈ X with the property that
μ(O) > 0 for each open set O ⊆ X containing x.
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to-left inclusion in (2.30). As for the opposite inclusion, if x ∈ Rn \ ∂∗�, then there
exists r > 0 with the property that B(x, r) ∩ ∂∗� = ∅. In concert with (2.28), this
implies ‖∂�‖(B(x, r)) = 0, hence x /∈ supp ‖∂�‖. The proof of (2.30) is therefore
complete. As a consequence of this, (2.29), and definitions2 we therefore have

suppμ� = supp ‖∂�‖ = ∂∗�. (2.31)

See also [89, p. 168] in this regard.

Definition 2.1 A closed set � ⊆ Rn is called an Ahlfors regular set (or an
Ahlfors-David regular set) if there exists a constant C ∈ [1,∞) such that

rn−1/C ≤ Hn−1(B(x, r) ∩�) ≤ Crn−1, ∀ r ∈ (
0, 2 diam(�)

)
, ∀ x ∈ �.

(2.32)
Also, given a closed set � ⊆ Rn and some R ∈ (0,∞], say that � is Ahlfors

regular up to scale R, with constant C ∈ [1,∞), provided the double
inequality in (2.32) is valid for each r ∈ (0, R).

Finally, the labels lower Ahlfors regular and upper Ahlfors
regular are employed when only the lower, respectively, upper, inequality in
(2.32) is required to hold.

For a given closed set � ⊆ Rn, the quality of being Ahlfors regular is not a
regularity condition in a traditional analytic sense, but rather a property guaranteeing
that, at all locations, � behaves (in a quantitative, scale-invariant fashion) like an
(n − 1)-dimensional “surface,” with respect to the Hausdorff measure Hn−1. For
example, the classical four-corner Cantor set in the plane is an Ahlfors regular set
(cf., e.g., [108, Proposition 4.79, p. 238]). Let us also observe that

if � ⊆ Rn is an Ln-measurable set whose boundary is upper
Ahlfors regular up to some scale R ∈ (0,∞] with some constant
C ∈ [1,∞) then necessarily � is of locally finite perimeter.

(2.33)

Indeed, this follows from (2.15) (bearing in mind that ∂∗� ⊆ ∂�; cf. (2.14)) and
Definition 2.1.

Lemma 2.1 Let � ⊆ Rn be a closed set which is lower Ahlfors regular with some
constant C ∈ [1,∞) up to some scale R ∈ (0,∞]. Then any set E ⊆ � satisfying
Hn−1(� \ E) = 0 is necessarily dense in �, i.e., E = �.

Proof Seeking a contradiction, assume E is not dense in �. Then � \E �= ∅. This
means that there exist x ∈ � and r > 0 such that B(x, r) ∩ E = ∅. Without loss
of generality we may assume that r ∈ (0, R). We may then use the lower Ahlfors
regularity property of � and the fact that B(x, r) ∩� ⊆ � \ E to write

2 Recall that the support of a vector measure μ is defined as the support of its total variation, i.e.,
suppμ := supp |μ|.
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rn−1/C ≤ Hn−1(B(x, r) ∩�) ≤ Hn−1(� \ E) = 0, (2.34)

a contradiction. � 
In analogy with Definition 2.1 we introduce the notion of Ahlfors regularity for

measures:

Definition 2.2 A (non-negative) Borel measure μ in Rn is said to be Ahlfors
regular up to scale R ∈ (0,∞], with constant C ∈ [1,∞), provided

rn−1/C ≤ μ
(
B(x, r)

) ≤ Crn−1, ∀ r ∈ (0, R), ∀ x ∈ suppμ. (2.35)

Also, say that μ is lower Ahlfors regular, or upper Ahlfors
regular, when only the lower, respectively, upper, inequality in (2.35) is required
to hold.

One may check straight from definitions that if � ⊆ Rn is a closed set, then
� is an Ahlfors regular set up to scale R ∈ (0,∞] with constant C ∈ [1,∞) if
and only if μ := Hn−1�� is an Ahlfors regular measure up to scale R ∈ (0,∞]
with constant C ∈ [1,∞). Moreover, similar considerations apply to lower/upper
Ahlfors regularity.

Next, we recall the notion of Radon measure:

Definition 2.3 Let (X, τ) be a topological space, and let M be a sigma-algebra of
subsets of X containing all Borel sets in X. Call a measure μ : M → [0,+∞]
Radon provided μ is locally finite (i.e., μ(K) < +∞ for every compact K ⊆ X),
every open set is inner-regular, i.e.,

μ(O) = sup
K compact
K⊆O

μ(K) for each open set O ⊆ X, (2.36)

and every Borel set is outer-regular, i.e.,

μ(E) = inf
O open
E⊆O

μ(O) for all Borel sets E ⊆ X. (2.37)

We have the following well-known regularity result (cf., e.g., [51, Theorem 7.8,
p. 217]).

Proposition 2.3 Let (X, τ) be a locally compact Hausdorff topological space in
which every open set is sigma-compact (recall that the latter condition automati-
cally holds if (X, τ) is second countable hence, in particular, if (X, τ) is metrizable
and separable). Then every locally finite Borel measure μ onX is a Radon measure.

Let μ be a locally finite Borel measure in Rn. In particular, Proposition 2.3
guarantees that μ is a Radon measure. If μ is also assumed to be lower Ahlfors
regular up to scale R ∈ (0,∞] with constant C ∈ [1,∞), we may invoke [95,
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Theorem 6.9(2), p. 95] to conclude that

Hn−1(A) ≤ 2n−1Cμ(A) for each μ-measurable set A ⊆ suppμ. (2.38)

In particular,

Hn−1(A) = 0 whenever A ⊆ suppμ

is a μ-measurable set with μ(A) = 0.
(2.39)

Given a set � ⊆ Rn of locally finite perimeter, we are interested when the
measure ‖∂�‖ is Ahlfors regular.

Proposition 2.4 Let � ⊆ Rn be a set of locally finite perimeter, and fix some scale
R ∈ (0,∞] along with a constant C ∈ [1,∞). Then the measure ‖∂�‖ is lower
Ahlfors regular with constant C up to scale R if and only if

Hn−1(∂∗� \ ∂∗�) = 0 (2.40)

and the set ∂∗� is lower Ahlfors regular with constant C up to scale R.
Furthermore, the measure ‖∂�‖ is actually Ahlfors regular with constantC up to

scale R if and only if (2.40) holds and the set ∂∗� is Ahlfors regular with constant
C up to scale R.

Proof Since � ⊆ Rn is a set of locally finite perimeter, it follows that μ := ‖∂�‖
is a locally finite Borel measure in Rn (cf. (2.15), (2.24), and (2.28)). In addition,
A := ∂∗� \ ∂∗� is a μ-measurable set contained in suppμ with μ(A) = 0 (cf.
(2.22), (2.23), (2.30), (2.28)). Let us also note that, as apparent from (2.28), we have

‖∂�‖(B(x, r)) = Hn−1(∂∗� ∩ B(x, r))

for each x ∈ Rn and each r ∈ (0,∞).
(2.41)

In one direction, assume the measure ‖∂�‖ is lower Ahlfors regular with constant
C up to scaleR. Then (2.39) (used withμ andA as above) implies (2.40). Also, from
Definition 2.2, (2.30), (2.41), and (2.40) we see that the set ∂∗� is lower Ahlfors
regular with constant C up to scale R. In the opposite direction, if (2.40) holds and
the set ∂∗� is lower Ahlfors regular with constantC up to scaleR, we conclude from
(2.41), Definition 2.2, and (2.30) that the measure ‖∂�‖ is lower Ahlfors regular
with constantC up to scaleR. This finishes the proof of the first equivalence claimed
in the statement of the proposition.

As regards the equivalence in the last part of the statement, assume the measure
‖∂�‖ is in fact Ahlfors regular with constant C up to scale R. Then, from what
we have proved already, the set ∂∗� is lower Ahlfors regular with constant C up to
scaleR and (2.40) holds. Since now the measure ‖∂�‖ is additionally assumed to be
upper Ahlfors regular with constant C up to scale R, we deduce from Definition 2.2,
(2.30), (2.40), and (2.41) that the set ∂∗� is also upper Ahlfors regular with constant
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C up to scale R. This establishes one implication. Finally, the opposite implication
is seen from Definition 2.2, (2.30), (2.41), and (2.40). � 

For future use, let us record here the following off-diagonal Carleson measure
estimate of reverse Hölder type, proved in [111, §8.6].

Proposition 2.5 Let � be an open subset of Rn with an unbounded Ahlfors regular
boundary and define σ := H n−1�∂�. Fix κ ∈ (0,∞), and pick θ ∈ (0, 1) along
with p ∈ (0,∞), all arbitrary. Then there exists C ∈ (0,∞) with the property that
for everyLn-measurable function u : �→ R, every point x ∈ ∂�, and every radius
r ∈ (0,∞) one has

(ˆ
�∩B(x,r)

|u| np
n−1 dLn

) n−1
np ≤ C

( ˆ
∂�∩B(x,Cr)

(
NCr
κ u

)p
dσ

) 1
p
, (2.42)

where NCr
κ is the truncated nontangential maximal operator (defined as in (2.9)

with δ := Cr).

Following [61] we now introduce the class of Ahlfors regular domains.

Definition 2.4 An open, nonempty, proper subset � of Rn is called an Ahlfors
regular domain provided ∂� is an Ahlfors regular set and Hn−1(∂�\∂∗�

) = 0.

If � ⊆ Rn is an Ahlfors regular domain, then the upper Ahlfors regularity
condition satisfied by ∂� (i.e., the second inequality in (2.32) with � := ∂�)
guarantees that (2.15) holds, hence� is a set of locally finite perimeter. Also, the fact
that the measure theoretic boundary ∂∗� is presently assumed to have full measure
(with respect to Hn−1) in the topological boundary ∂� ensures that the geometric
measure theoretic outward unit normal ν to � (cf. (2.19)) is actually well defined at
Hn−1-a.e. point on ∂�. Ultimately,

if � ⊆ Rn is an Ahlfors regular domain then

ν ∈ [
L∞(∂�,Hn−1)

]n is an Rn-valued function

satisfying |ν(x)| = 1 at Hn−1-a.e. point x ∈ ∂�.

(2.43)

From [61, Proposition 2.9, p. 2588] we also know that

if � ⊆ Rn is an Ahlfors regular domain, and if κ ∈ (0,∞) is
an arbitrary aperture parameter, then x ∈ �κ(x) (that is, x is an
accumulation point for the nontangential approach region �κ(x))
for Hn−1-a.e. point x in the topological boundary ∂�.

(2.44)

In particular, if � ⊆ Rn is an Ahlfors regular domain and u is an Ln-measurable
function defined in �, then for any fixed aperture parameter κ > 0 it is meaningful

to attempt to define the nontangential boundary trace
(
u
∣∣κ−n.t.

∂�

)
(x) at Hn−1-a.e. point

x ∈ ∂�.
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It turns out that the class of Ahlfors regular domains is bi-Lipschitz invariant.

Lemma 2.2 Assume � ⊆ Rn is an Ahlfors regular domain, and O ⊆ Rn is an
open neighborhood of �. Then for any given bi-Lipschitz mapping F : O → R

n

the set �̃ := F(�) is also an Ahlfors regular domain, with the Ahlfors regularity
constant of ∂�̃ controlled in terms of the Ahlfors regularity constant of ∂� and the
bi-Lipschitz constants of F .

Proof This is a consequence of [59, Proposition 3.1, p. 610] and the proof of [59,
Proposition 3.7, (3.88), p. 621]. � 

We shall also need the following result, appearing in [111, §5.10].

Lemma 2.3 If� ⊂ Rn is an Ahlfors regular domain (in the sense of Definition 2.4)
then �− := Rn \� is also an Ahlfors regular domain, whose topological boundary
coincides with that of �, and whose geometric measure theoretic boundary agrees
with that of �, i.e.,

∂(�−) = ∂� and ∂∗(�−) = ∂∗�. (2.45)

Moreover, the geometric measure theoretic outward unit normal to �− is −ν at
σ -a.e. point on ∂�.

The following definition is due to G. David and S. Semmes (cf. [41]).

Definition 2.5 A closed set � ⊆ Rn is said to be a uniformly rectifiable
set (or simply a UR set) if � is an Ahlfors regular set and there exist ε,M ∈ (0,∞)

such that for each location x ∈ � and each scale R ∈ (0, 2 diam(�)
)

it is possible
to find a Lipschitz map ϕ : Bn−1

R → Rn (where Bn−1
R is a ball of radius R in Rn−1)

with Lipschitz constant ≤ M and such that

Hn−1(� ∩ B(x,R) ∩ ϕ(Bn−1
R )

) ≥ εRn−1. (2.46)

Collectively, ε,M are referred to as the UR constants of �.

The following definition appears in [61].

Definition 2.6 An open, nonempty, proper subset � of Rn is called a UR domain
(short for uniformly rectifiable domain) provided ∂� is a UR set (in the sense of
Definition 2.5) and Hn−1(∂� \ ∂∗�

) = 0.

By design, any UR domain is an Ahlfors regular domain. A basic subclass of UR
domains has been identified by G. David and D. Jerison in [39]. To state (a version
of) their result, we first recall the following definition.

Definition 2.7 Fix R ∈ (0,∞] and c ∈ (0, 1). A nonempty proper subset � of Rn

is said to satisfy the (R, c)-corkscrew condition (or, simply, a corkscrew
condition if the particular values of R, c are not important) if for each location
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x ∈ ∂� and each scale r ∈ (0, R) there exists a point z ∈ � (called a corkscrew
point relative to x and r) with the property that B(z, c r) ⊆ B(x, r) ∩�.

Also, a nonempty proper subset � of Rn is said to satisfy the (R, c)-two-sided
corkscrew condition provided both� andRn\� satisfy the (R, c)-corkscrew
condition (with the same convention regarding the omission of R, c).

It is then clear from definitions that we have

∂∗� = ∂� for any Ln-measurable set � ⊆ Rn satisfying a two-
sided corkscrew condition.

(2.47)

Also, [39, Theorem 1, p. 840] implies that, in a quantitative fashion,

if � is a nonempty proper open subset of Rn satisfying a
two-sided corkscrew condition and whose boundary is an
Ahlfors regular set, then � is a UR domain.

(2.48)

Following [66], we define the class of nontangentially accessible domains as
those open sets satisfying a two-sided corkscrew condition and the following
Harnack chain condition.

Definition 2.8 Fix R ∈ (0,∞] and N ∈ N. An open set � ⊆ Rn is said to
satisfy the (R,N)-Harnack chain condition (or, simply, a Harnack chain
condition if the particular values of R,N are irrelevant) provided whenever
ε > 0, k ∈ N, z ∈ ∂�, and x, y ∈ � with max

{|x − z|, |y − z|} < R/4 as well
as |x − y| ≤ 2kε and min

{
dist(x, ∂�) , dist(y, ∂�)

} ≥ ε, one may find a chain of
balls B1, B2, . . . , BK with K ≤ Nk, such that x ∈ B1, y ∈ BK , Bi ∩ Bi+1 �= ∅ for
every i ∈ {1, . . . , K − 1}, and

N−1 · diam(Bi) ≤ dist(Bi, ∂�) ≤ N · diam(Bi), (2.49)

diam(Bi) ≥ N−1 · min
{
dist(x, Bi) , dist(y, Bi)

}
, (2.50)

for every i ∈ {1, . . . , K}.
Note that, in the context of Definition 2.8, consecutive balls must have compara-

ble radii. The “nontangentiality” condition (2.49) further implies that

λBi ⊆ � for each λ ∈ (0, 2N−1 + 1] and i ∈ {1, . . . , K}. (2.51)

The Harnack chain condition described in Definition 2.8 should be thought of as a
quantitative local connectivity condition. In particular,

any open set � ⊆ Rn satisfying an (∞, N)-Harnack chain
condition (for some N ∈ N) is pathwise connected (hence
also connected) in a quantitative fashion.

(2.52)
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To elaborate on the latter aspect, we find it convenient to eliminate the parameter
ε > 0 and also relabel 2k simply as k in Definition 2.8. Assuming R = ∞, this
implies that for each k ≥ 2 there exists Lk ∈ N (which is bounded by N · log2 k)
with the property that for each

x1, x2 ∈ � with |x1 − x2| ≤ k · min
{
dist(x1, ∂�) , dist(x2, ∂�)

}
(2.53)

one can find a sequence of balls

Bj := B(yj , rj ) with 1 ≤ j ≤ �, where � ∈ N satisfies � ≤ Lk ,
such that B

(
yj , (2N−1 + 1)rj

) ⊆ � for every j ∈ {1, . . . , �},
x1 ∈ B(y1, r1), x2 ∈ B(y�, r�), and such that there exists a point
zj ∈ B(yj , rj ) ∩ B(yj+1, rj+1) for each j ∈ {1, . . . , �− 1}.

(2.54)

The fact that Lk = O(log2 k) as k →∞ quantifies the intuitive idea that the closer
to the boundary the points x1, x2 are, and the further apart from each other they
happen to be, the larger the numbers of balls in the Harnack chain joining them. To
proceed, we agree to abbreviate

δ∂�(x) := dist(x, ∂�) for each x ∈ �. (2.55)

Then the first property in (2.54) implies that we have

δ∂�(x) ≥ 2N−1rj for all j ∈ {1, . . . , �} and all x ∈ B(yj , rj ). (2.56)

In concert with the second inequality in (2.49) this further permits us to estimate

δ∂�(a) ≤ (N + 1) · δ∂�(b) for all j ∈ {1, . . . , �} and a, b ∈ B(yj , rj ). (2.57)

Indeed, whenever a, b ∈ B(yj , rj ) with j ∈ {1, . . . , �} we may use (2.56) to write

δ∂�(a) ≤ |a − b| + δ∂�(b) ≤ 2rj + δ∂�(b)

≤ N · δ∂�(b)+ δ∂�(b) = (N + 1) · δ∂�(b), (2.58)

proving (2.57). In particular, for each index j ∈ {1, . . . , �− 1} we have

(N + 1)−1 · δ∂�(zj ) ≤ δ∂�(zj+1) ≤ (N + 1) · δ∂�(zj ). (2.59)

Joining x1, y1, z1, y2, z2, y3, . . . , y�−1, z�−1, y�, x2 with line segments yields a
polygonal arc γ joining x1 with x2 in �, whose length may be estimated as follows:

length(γ ) ≤
�∑

j=1

2rj ≤ N · δ∂�(x1)+N

�−1∑

j=1

δ∂�(zj )
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≤ N · δ∂�(x1)+N

�−1∑

j=1

(N + 1)j−1 · δ∂�(z1)

≤ N · δ∂�(x1)+N

�−1∑

j=1

(N + 1)j · δ∂�(x1)

= N

�−1∑

j=0

(N + 1)j · δ∂�(x1) = N
(N + 1)� − 1

N
δ∂�(x1)

≤ (N + 1)Lk · δ∂�(x1), (2.60)

thanks to (2.56) (used with x replaced by x1, z1, . . . , z�−1), iterations of (2.59), and
(2.57) (with j := 1, a := z1, b := x1), while also keeping in mind that � ≤ Lk . In a
similar fashion, emphasizing x2 in place of x1 yields length(γ ) ≤ (N+1)Lk ·δ∂�(x2)

hence, ultimately,

length(γ ) ≤ (N + 1)Lk · min
{
δ∂�(x1) , δ∂�(x2)

}
. (2.61)

In addition, for each x ∈ γ there exists jx ∈ {1, . . . , �} such that x ∈ B(yjx , rjx ). If
jx ≥ 2 we write

δ∂�(x) ≥ (N + 1)−1 · δ∂�(zjx−1) ≥ (N + 1)1−jx · δ∂�(z1)

≥ (N + 1)−jx · δ∂�(x1) ≥ (N + 1)−Lk · δ∂�(x1), (2.62)

by (2.57) with b := x and a := zjx−1, iterations of (2.59), and (2.57) applied with
b := z1 and a := x1. If jx = 1 we simply have

δ∂�(x) ≥ (N + 1)−1 · δ∂�(x1) ≥ (N + 1)−Lk · δ∂�(x1). (2.63)

Thus, in all cases we reach the conclusion that δ∂�(x) ≥ (N + 1)−Lk · δ∂�(x1).
Analogously, δ∂�(x) ≥ (N + 1)−Lk · δ∂�(x2) which goes to show that

δ∂�(x) ≥ (N + 1)−Lk · max
{
δ∂�(x1) , δ∂�(x2)

}
for each x ∈ γ. (2.64)

The existence of such a path γ is going to be used in Lemma 2.4 and Lemma 2.5
which, in turn, play a significant role in the proof of Theorem 2.7. For now,
following [66, pp. 93-94] (cf. also [75, Definition 2.1, p. 3]), we introduce the class
of NTA domains.

Definition 2.9 Fix R ∈ (0,∞] and N ∈ N. An open, nonempty, proper subset �
of Rn is said to be an (R,N)-nontangentially accessible domain (or
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simply an NTA domain if the particular values of R,N are not important) if �
satisfies both the (R,N−1)-two-sided corkscrew condition and the (R,N)-Harnack
chain condition.

Call � a (R,N)-two-sided nontangentially accessible domain
(or, simply, a two-sided NTA domain if the particular values of R,N are not
relevant) provided � is an open, nonempty, proper subset of Rn with the property
that both � and Rn \� are (R,N)-nontangentially accessible domains.

A set � ⊆ Rn is said to be an (R,N)-one-sided NTA domain provided �

satisfies the (R,N)-Harnack chain condition and the (R,N−1)-corkscrew condition
(once again, with the convention that the parameters R,N are dropped if theirs
values are not relevant).

Finally, it is agreed that, in all cases, one takes R = ∞ if and only if ∂� is
unbounded.

For example, the complement of the classical four-corner Cantor set in the plane
is a one-sided NTA domain with an Ahlfors regular boundary. Also, from the last
convention in Definition 2.9 and (2.52) we see that

any NTA domain with an unbounded boundary (or, equivalently,
any (∞, N)-nontangentially accessible domain for some num-
ber N ∈ N) is pathwise connected, hence also connected.

(2.65)

It turns out that from any point in a given one-sided NTA domain one may
proceed along a path toward to the interior of said domain, which progressively
distances itself from the boundary. This is made precise in the lemma below.

Lemma 2.4 Let � ⊂ Rn be an (∞, N)-one-sided NTA domain for some N ∈ N.
Then there exists a constant CN ∈ (1,∞) with the following significance. For each
location x ∈ � and each scale r ∈ (0,∞) there exists a point x∗ ∈ � and a
polygonal arc γ joining x with x∗ in � such that

|x − x∗| < 2r, δ∂�(x∗) ≥ r/N2, length(γ ) ≤ CN · r,
and length(γx,y) ≤ CN · δ∂�(y) for each point y ∈ γ,

(2.66)

where γx,y is the sub-arc of γ joining x with y.

Proof Without loss of generality assume N ≥ 2. In the case when δ∂�(x) ≥ r/N ,
we shall simply take x∗ := x and γ := {x}. If δ∂�(x) < r/N , there exists m ∈ N
such that r/Nm+1 ≤ δ∂�(x) < r/Nm. Pick some z ∈ ∂� so that δ∂�(x) = |x − z|
and define rj := Nj · δ∂�(x) ∈ (0,∞) for each j ∈ {1, . . . , m}. The fact that
� satisfies (∞, N−1)-corkscrew condition guarantees that for each j ∈ {1, . . . , m}
there exists a corkscrew point xj ∈ � relative to the location z and scale rj . Hence,
for each j ∈ {1, . . . , m} we have B(xj , rj /N) ⊆ B(z, rj ) ∩� which entails



42 2 Geometric Measure Theory

Nj · δ∂�(x) = rj > δ∂�(xj ) > rj /N = Nj−1 · δ∂�(x)
and |xj − z| < rj = Nj · δ∂�(x) for each j ∈ {1, . . . , m}.

(2.67)

Denote x0 := x and observe that for each j ∈ {1, . . . , m} we have that the points
xj−1, xj ∈ B(z, rj ). Together with (2.67), for each j ∈ {1, . . . , m} this permits us
to estimate

|xj−1 − xj | < 2rj = 2Nj · δ∂�(x) ≤ 2N2 ·min
{
δ∂�(xj−1) , δ∂�(xj )

}
. (2.68)

Hence, we are in the scenario described in (2.53) with xj−1, xj playing the roles
of x1, x2, and with k := 2N2. From (2.61), (2.64) we then conclude that there
exists C̃N ∈ (1,∞) with the property that for each j ∈ {1, . . . , m} we may find a
polygonal arc γj joining xj−1 with xj in � such that

length(γj ) ≤ C̃N · min
{
δ∂�(xj−1) , δ∂�(xj )

} ≤ C̃N ·Nj · δ∂�(x), (2.69)

and

C̃N · δ∂�(y) ≥ max
{
δ∂�(xj−1) , δ∂�(xj )

} ≥ Nj−1 · δ∂�(x) for each y ∈ γj .

(2.70)
If we now define x∗ := xm and take γ := γ1 ∪ γ2 ∪ · · · ∪ γm then γ is a polygonal
arc joining x = x0 with x∗ = xm in � whose length satisfies

length(γ ) =
m∑

j=1

length(γj ) ≤
m∑

j=1

C̃N ·Nj · δ∂�(x)

≤ N · C̃N
N − 1

Nm · δ∂�(x) ≤
(N · C̃N
N − 1

)
r, (2.71)

thanks to (2.69) and our choice of m. Also, for each point y ∈ γ there exists some
jy ∈ {1, . . . , m} such that y ∈ γjy , hence we may use (2.70) to bound the length of
the sub-arc γx,y of γ joining x with y by

length(γx,y) ≤
jy∑

j=1

length(γj ) ≤
jy∑

j=1

C̃N ·Nj · δ∂�(x)

≤ N2 · C̃N
N − 1

Njy−1 · δ∂�(x) ≤
(N2 · C̃2

N

N − 1

)
δ∂�(y). (2.72)

Our choice of x∗, the first line in (2.67), and our choice of m also permit us to
conclude that
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δ∂�(x∗) = δ∂�(xm) > Nm−1 · δ∂�(x) ≥ r/N2. (2.73)

Finally, since x, x∗ ∈ B(z, rm) it follows that |x−x∗| < 2rm = 2Nm · δ∂�(x) < 2r ,
so all properties claimed in (2.66) are verified. � 

Our next lemma shows that one-sided NTA domains satisfy a quantitative con-
nectivity property of the sort considered by O. Martio and J. Sarvas in [93], where
the class of uniform domains has been introduced. See also [10, Theorem 2.15] in
this regard.

Lemma 2.5 Let � ⊂ Rn be an (∞, N)-one-sided NTA domain for some N ∈ N.
Then there exists a constant CN ∈ (1,∞) with the following significance. For any
two points x, x̃ ∈ � and any scale r ∈ (0,∞) with r ≥ |x − x̃| there exists a
polygonal arc � joining x with x̃ in � such that

length(�) ≤ CN · r, and for each point y ∈ �

min
{
length(�x,y) , length(�y,̃x)

} ≤ CN · δ∂�(y),
(2.74)

where �x,y and �y,̃x are the sub-arcs of � joining x with y and, respectively, y with
x̃.

Proof Fix two points x, x̃ ∈ � and pick a scale r ∈ (0,∞) with r ≥ |x − x̃|. If
δ∂�(x) > 2r then x̃ ∈ B(x, r) ⊆ B(x, 2r) ⊆ �. In such a scenario, take � to be the
line segment with endpoints x, x̃ and all desired properties follow. There remains to
treat the case when

δ∂�(x) ≤ 2r. (2.75)

To proceed, let x∗, x̃∗ be associated with the given points x, x̃ as in Lemma 2.4,
and denote by γ, γ̃ the polygonal arcs joining x with x∗ and x̃ with x̃∗ in �, having
the properties described in (2.66), for the current scale r . Specifically, for this choice
of the scale, (2.66) gives

|x − x∗| < 2r, |̃x − x̃∗| < 2r,

δ∂�(x∗) ≥ r/N2, δ∂�(̃x∗) ≥ r/N2,

length(γ ) ≤ CN · r, length(γ̃ ) ≤ CN · r,
length(γx,y) ≤ CN · δ∂�(y) for each y ∈ γ,

length(γ̃x̃,y) ≤ CN · δ∂�(y) for each y ∈ γ̃ .

(2.76)

Note that

|x∗ − x̃∗| ≤ |x∗ − x| + |x − x̃| + |̃x − x̃∗| < 2r + r + 2r = 5r. (2.77)
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From (2.77) and the second line in (2.76) we then see that

|x∗ − x̃∗| < 5r ≤ 5N2 · min
{
δ∂�(x∗) , δ∂�(̃x∗)

}
. (2.78)

Thus, we are in the scenario described in (2.53) with x1 := x∗, x2 := x̃∗, and
with k := 5N2. From (2.61), (2.64) we then conclude that there exist a constant
CN ∈ (1,∞) along with a polygonal arc γ̂ joining x∗ with x̃∗ in � such that

length(γ̂ ) ≤ CN · min
{
δ∂�(x∗) , δ∂�(̃x∗)

} ≤ 2CN · r, (2.79)

where the last inequality comes from (2.75), and

CN · δ∂�(y) ≥ max
{
δ∂�(x∗) , δ∂�(̃x∗)

} ≥ r/N2 for each y ∈ γ̂ , (2.80)

with the last inequality provided by the second line in (2.76).
If we now define

� := γ ∪ γ̂ ∪ γ̃ , (2.81)

then � is a polygonal arc joining x with x̃ in �. Also, (2.76) and (2.79) allow us to
estimate

length(�) = length(γ )+ length(γ̂ )+ length(γ̃ ) ≤ CN · r, (2.82)

proving the first estimate in (2.74). Fix now a point y ∈ �. If y belongs to γ , then
�x,y = γx,y which further entails length(�x,y) = length(γx,y) ≤ CN · δ∂�(y) by
(2.76). Thus, the last estimate in (2.74) holds in this case. Similarly, if y ∈ γ̃ , then
length(�y,̃x) = length(γ̃x̃,y) ≤ CN · δ∂�(y) again by (2.76), so the last estimate in
(2.74) holds in this case as well. Finally, in the case when y ∈ γ̂ we may write

min
{
length(�x,y) , length(�y,̃x)

} ≤ length(�) ≤ CN ·r ≤ CN ·δ∂�(y), (2.83)

by (2.82) and (2.80). � 
When its endpoints belong to a suitable neighborhood of infinity, the polygonal

arc constructed in Lemma 2.5 may be chosen as to avoid any given bounded set.
This property, established in the next lemma, is going to be relevant later on, in the
course of the proof of Theorem 2.7.

Lemma 2.6 Let � ⊂ Rn be an (∞, N)-one-sided NTA domain for some N ∈ N
such that Rn \ � �= ∅. Fix some point z0 ∈ Rn \ � and some radius R ∈ (0,∞).
Then there exist a large constant C = C(N) ∈ (0,∞) together with a small number
ε = ε(N) ∈ (0, 1) with the property that for any two points x, x̃ ∈ � \ B(z0, R)

and any scale r ∈ (0,∞) with r ≥ max
{|x− x̃|, C ·R}

the polygonal arc � joining
x with x̃ in � as in Lemma 2.5 is disjoint from B(z0, εR).
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Proof Consider ε ∈ (0, 1) and C ∈ (0,∞) to be specified momentarily. Recall
formula (2.81). Assume there exists a point y ∈ γ ∩ B(z0, εR). Then y ∈ γ ⊆ �

so the line segment with endpoints y and z0 intersects ∂�. As such, δ∂�(y) ≤ εR.
Also, γx,y joins the point x ∈ Rn \ B(z0, R) with the point y ∈ B(z0, εR), which
forces length(γx,y) ≥ (1 − ε)R. In concert with the last line in (2.66) this permits
us to write

(1 − ε)R ≤ length(γx,y) ≤ CN · δ∂�(y) ≤ CN · εR, (2.84)

which leads to a contradiction if we choose ε := 1/[2(CN + 1)]. Thus, for this
choice of ε we have γ ∩ B(z0, εR) = ∅. In a similar fashion, γ̃ ∩ B(z0, εR) = ∅.
Finally, if there exists a point y ∈ γ̂ ∩B(z0, εR) then based on (2.80) and the nature
of the scale r we may estimate

εR ≥ δ∂�(y) ≥ r/(N2 · CN) ≥ (C · R)/(N2 · CN) (2.85)

which leads to a contradiction if C = C(N) ∈ (0,∞) is sufficiently large. � 
The following definition of yet another brand of local path connectivity condition

first appeared in [61].

Definition 2.10 An open, nonempty, proper subset � of Rn is said to satisfy a
local John condition if there exist θ ∈ (0, 1) and R ∈ (0,∞] (with the
requirement that R = ∞ if ∂� is unbounded) such that for every point x ∈ ∂� and
every scale r ∈ (0, R) one may find xr ∈ B(x, r) ∩ � such that B(xr , θr) ⊆ �

and with the property that for each y ∈ B(x, r) ∩ ∂� there exists a rectifiable path
γy : [0, 1] → � whose length is ≤ θ−1r and such that

γy(0) = y, γy(1) = xr , dist
(
γy(t), ∂�

)
> θ |γy(t)− y| for all t ∈ (0, 1].

(2.86)
Finally, a nonempty open set � ⊆ Rn which is not dense in Rn is said to satisfy a

two-sided local John condition if both � and Rn \� satisfy a local John
condition.

It is clear from the definitions that, in a quantitative sense,

any set satisfying a local John condition (respectively, a two-
sided local John condition) also satisfies a corkscrew condition
(respectively, a two-sided corkscrew condition).

(2.87)

Moreover, given any R ∈ (0,∞] and N ∈ N, from [61, Lemma 3.13, p. 2634] we
know that

any (R,N)-nontangentially accessible domain satisfies a local
John condition, and any (R,N)-two-sided nontangentially
accessible domain satisfies a two-sided local John condition.

(2.88)
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To be able to define the class of δ-flat Ahlfors regular domains we first need
to formally introduce the John-Nirenberg space of functions of bounded mean
oscillations on Ahlfors regular sets. Specifically, given a closed set � ⊆ Rn, for
each x ∈ � and r > 0define the surface ball  := (x, r) := B(x, r)∩�. For any
constant λ > 0 we also agree to define λ := (x, λr) := B(x, λr) ∩ �. Make
the assumption that � is Ahlfors regular and abbreviate σ := Hn−1��. For each
f ∈ L1

loc(�, σ ) introduce

f :=
 


f dσ for each surface ball  ⊆ �, (2.89)

then consider the semi-norm

‖f ‖BMO(�,σ) := sup
⊆�

 


∣∣f − f
∣∣ dσ, (2.90)

where the supremum in the right side of (2.90) is taken over all surface balls ⊆ �.
We shall then denote by BMO(�, σ ) the space of all functions f ∈ L1

loc(�, σ ) with
the property that ‖f ‖BMO(�,σ) <∞.

The above considerations may be naturally adapted to the case of vector-valued
functions. Specifically, given N ∈ N, for each f : � → CN with locally integrable
scalar components, we define

‖f ‖[BMO(�,σ)]N := sup
⊆�

 


∣∣f − f
∣∣ dσ, (2.91)

where the supremum in the right side of (2.91) is taken over all surface balls ⊆ �,
the integral average f ∈ CN is taken componentwise, and | · | is the standard
Euclidean norm in CN . In an analogous fashion, we then define

[
BMO(�, σ )

]N

as the space of all CN -valued functions f ∈ [
L1

loc(�, σ )
]N with the property that

‖f ‖[BMO(�,σ)]N <∞.
A natural version of the classical John-Nirenberg inequality concerning expo-

nential integrability of functions of bounded mean oscillations remains valid in this
setting. Specifically, [88, Theorem 1.4, p. 2000] (see also [5], [30], [135, Theorem 2,
p. 33]) implies that there exists a small constant c ∈ (0,∞) and a large constant
C ∈ (0,∞), both of which depend only on the doubling character of σ , with the
property that

 



exp

{
c |f − f|
‖f ‖BMO(�,σ)

}
dσ ≤ C (2.92)

for each non-constant function f ∈ BMO(�, σ ) and each surface ball  ⊆ �. Note
that, trivially, for each surface ball  ⊆ � and each λ ∈ (0,∞) we have
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1 ≤ exp
{
− cλ

‖f ‖BMO(�,σ )

}
· exp

{
c |f (x)−f|‖f ‖BMO(�,σ )

}

for every x ∈  with |f (x)− f| > λ.
(2.93)

This shows that (2.92) implies the following level set estimate with exponential
decay:

σ
({
x ∈  : |f (x)− f| > λ

})

≤ exp
{
− cλ

‖f ‖BMO(�,σ )

}ˆ



exp

{
c |f − f|
‖f ‖BMO(�,σ)

}
dσ

≤ C · exp
{
− cλ

‖f ‖BMO(�,σ )

}
σ() (2.94)

for each non-constant function f ∈ BMO(�, σ ), each surface ball  ⊆ �, and
each λ ∈ (0,∞). Conversely, (2.94) implies an estimate like (2.92), namely

 



exp

{
co |f − f|
‖f ‖BMO(�,σ)

}
dσ ≤ 1 + C

c/co − 1
, (2.95)

for each non-constant function f ∈ BMO(�, σ ) and each surface ball  ⊆ �, as
long as co ∈ (0, c). See also [18, Theorem 3.15], [44, Theorem 3.1, p. 1397], [77,
Lemma 2.4, p. 409], [94], and [135, Theorem 2, p. 33] in this regard. Here we wish
to emphasize that only the doubling property of the underlying measure plays a role.
In turn, the John-Nirenberg level set estimate (2.94) has many notable consequences.
For one thing, (2.92) implies that ef ∈ L1

loc(�, σ ) if f is a σ -measurable function
on � with ‖f ‖BMO(�,σ) small enough (with ln | · | a representative example of this
local exponential integrability phenomenon). Second, (2.94) guarantees that

BMO(�, σ ) ⊆ L
p

loc(�, σ ) for each p ∈ (0,∞). (2.96)

Third, (2.94) allows for more flexibility in describing the size of the BMO semi-
norm. Specifically, for each p ∈ [1,∞) and f ∈ L1

loc(�, σ ) define

‖f ‖BMOp(�,σ) := sup
⊆�

(  


|f − f|p dσ
)1/p

, (2.97)

where the supremum in (2.97) is taken over all surface balls  ⊆ �. Then for each
integrability exponent p ∈ [1,∞) there exists some constant C�,p ∈ (0,∞) with
the property that for each function f ∈ L1

loc(�, σ ) we have

‖f ‖BMO(�,σ) ≤ ‖f ‖BMOp(�,σ) ≤ C�,p‖f ‖BMO(�,σ). (2.98)
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Indeed, the first estimate in (2.98) is a direct consequence of definitions and
Hölder’s inequality, while the second estimate in (2.98) relies on the John-Nirenberg
inequality (2.94). Parenthetically, we wish to note that when � := R (hence
σ = L1) and p := 2 the value of the optimal constant in (2.98) is known.
Concretely, for each f ∈ L1

loc(R,L
1) we have

‖f ‖BMO(R,L1) ≤ ‖f ‖BMO2(R,L1) ≤ 1
2 e1+(2/e)‖f ‖BMO(R,L1). (2.99)

The justification of the second estimate in (2.99) uses a sharp version of the one-
dimensional version of the John-Nirenberg inequality (cf. [86]) according to which
for each function f ∈ BMO(R,L1), each nonempty finite sub-interval I ⊂ R, and
each λ ∈ (0,∞) we have (with fI :=

ffl
I
f dL1)

L1
({
t ∈ I : |f (t)− fI | > λ

}) ≤ 1

2
e4/eL1(I ) · exp

{
− 2λ/e

‖f ‖BMO(R,L1)

}
.

(2.100)

Specifically, for each nonempty finite sub-interval I ⊂ R we may write

 
I

|f (t)− fI |2 dt = 1

L1(I )

ˆ ∞

0
2λ ·L1

({
t ∈ I : |f (t)− fI | > λ

})
dλ

≤ e4/e
ˆ ∞

0
λ · exp

{
− 2λ/e

‖f ‖BMO(R,L1)

}
dλ

= e4/e(e/2)2 ‖f ‖2
BMO(R,L1)

ˆ ∞

0
λ · e−λ dλ

= e4/e(e/2)2 ‖f ‖2
BMO(R,L1)

, (2.101)

thanks to (2.100) and some natural changes of variables, so the second estimate in
(2.99) readily follows from (2.101) and (2.97).

Returning to the mainstream discussion, observe that (2.98) implies that for each
integrability exponent p ∈ [1,∞) we have

‖f ‖BMO(�,σ) ≈ sup
⊆�

( 


∣
∣f − f

∣
∣p dσ

) 1
p ≈ sup

⊆�
inf
c∈R

( 


∣
∣f − c

∣
∣p dσ

) 1
p

,

(2.102)

uniformly for f ∈ L1
loc(�, σ ). For further use, let us also note here that if  and

′ are two concentric surface balls in � then for any f ∈ L1
loc(�, σ ) and any

q ∈ [1,∞) we have
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(  


|f − f′ |q dσ
) 1
q ≤ Cq,n

[
1 +

(σ( ∪′)
σ ( ∩′)

) 1
q
]
‖f ‖BMO(�,σ) . (2.103)

In particular, (2.103) readily implies that there exists some constant C ∈ (0,∞)

which depends only on n and the Ahlfors regular constant of � with the property
that for each function f ∈ L1

loc(�, σ ) and each surface ball  ⊆ � we have

∣∣f2 − f
∣∣ ≤ C ‖f ‖BMO(�,σ) . (2.104)

In turn, (2.104) may be used to estimate

∣∣f2j − f
∣∣ ≤

j∑

k=1

∣∣f2k − f2k−1

∣∣ ≤ Cj ‖f ‖BMO(�,σ) , (2.105)

for each function f ∈ L1
loc(�, σ ), each surface ball  ⊆ �, and each integer

j ∈ N. For future use, let us also note here that there exists some C ∈ (0,∞)

which depends only on n and the Ahlfors regular constant of � with the property
that for each function f ∈ L1

loc(�, σ ), each pair of points x, y ∈ �, and each radius
R > |x − y| we have

∣∣f(x,R) − f(y,R)
∣∣ ≤ C ‖f ‖BMO(�,σ) . (2.106)

More generally, suppose � ⊆ Rn is a closed set and assume μ is a doubling
Borel measure on �. This means that there exists C ∈ (0,∞) with the property that
for each surface ball  ⊆ � we have

0 < μ(2) ≤ Cμ() < +∞. (2.107)

In this setting, we shall denote by BMO(�,μ) the space consisting of all functions
f ∈ L1

loc(�,μ) with the property that

‖f ‖BMO(�,μ) := sup
⊆�

 


∣
∣∣f −

 


f dμ
∣
∣∣ dμ < +∞, (2.108)

where the supremum is once again taken over all surface balls  ⊆ �. Much as
before, since the John-Nirenberg inequality holds for generic Borel doubling mea-
sures (as noted in the discussion pertaining to (2.92)–(2.94)), for each integrability
exponent p ∈ [1,∞) we then have

‖f ‖BMO(�,μ) ≈ ‖f ‖BMOp(�,μ)

≈ sup
⊆�

( 


 


|f (x)− f (y)|p dμ(x)dμ(y)

) 1
p
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≈ sup
⊆�

inf
c∈R

( 


∣∣f − c
∣∣p dμ

) 1
p

, (2.109)

uniformly for f ∈ L1
loc(�,μ), where

‖f ‖BMOp(�,μ) := sup
⊆�

( 


∣∣
∣f −

 


f dμ
∣∣
∣
p

dμ
)1/p

, (2.110)

with the supremum above taken over all surface balls  ⊆ �. As before, for
any given integer N ∈ N, we shall denote by

[
BMO(�,μ)

]N the space of CN -

valued functions f ∈ [
L1

loc(�,μ)
]N with the property that ‖f ‖[BMO(�,μ)]N < ∞,

where the semi-norm ‖·‖[BMO(�,μ)]N is defined much as in (2.91). Finally, given a

function f ∈ [
L1

loc(�,μ)
]N we agree to define ‖f ‖[BMOp(�,μ)]N as in (2.110), now

interpreting | · | as the standard Euclidean norm in CN .
Let us also briefly discuss the space VMO which, heuristically, should be thought

of as an integral version3 of uniform continuity. Specifically, let � be a closed
Ahlfors regular subset ofRn and abbreviate σ := H n−1��. In this setting, define the
Sarason space VMO(�, σ ) of functions of vanishing mean oscillations (cf. [121])
as

VMO(�, σ ) := the closure of UC(�) ∩ BMO(�, σ ) in BMO(�, σ ), (2.111)

where UC(�) stands for the space of uniformly continuous functions on �. Then
for each given function f ∈ BMO(�, σ ) one has the equivalence

f ∈ VMO(�, σ )⇐⇒ lim
R→0+

sup
x∈� and
r∈(0,R)

( 
(x,r)

∣
∣∣f −

 
(x,r)

f dσ
∣
∣∣
p

dσ

) 1
p

= 0

(2.112)
for some (or all) p ∈ [1,∞). See [112, §3.1] for a proof.

Moving on, in the lemma below we collect a number of useful formulas and
estimates for unimodular functions (i.e., vector-valued functions of modulus one).

Lemma 2.7 Let (X,μ) be a measure space with the property that 0 < μ(X) <∞.
Also, fix an integer N ∈ N and suppose f ∈ [

L1(X,μ)
]N

. Then

 
X

∣∣∣f −
 
X

f dμ
∣∣∣
2
dμ =

 
X

|f |2 dμ−
∣∣∣
 
X

f dμ
∣∣∣
2
. (2.113)

In particular,

3 As opposed to a pointwise version.
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if |f (x)| = 1 for μ-a.e. x ∈ X then
 
X

∣∣
∣f −

 
X

f dμ
∣∣
∣
2
dμ = 1 −

∣∣
∣
 
X

f dμ
∣∣
∣
2

and

(
1 −

∣∣∣
 
X

f dμ
∣∣∣
)2 ≤

 
X

∣∣∣f −
 
X

f dμ
∣∣∣
2
dμ ≤ 2

(
1 −

∣∣∣
 
X

f dμ
∣∣∣
)
,

0 ≤ 1 −
∣∣∣
 
X

f dμ
∣∣∣ ≤

 
X

∣∣∣f −
 
X

f dμ
∣∣∣ dμ ≤ √

2

√

1 −
∣∣∣
 
X

f dμ
∣∣∣.

(2.114)

Proof Keeping in mind that |Z − W |2 = |Z|2 − 2Re(Z · W) + |W |2 for each
Z,W ∈ CN , we may compute

 
X

∣∣∣f −
 
X

f dμ
∣∣∣
2

dμ =
 
X

(
|f |2 − 2Re

[
f ·

(  
X

f dμ
)]
+

∣∣∣
 
X

f dμ
∣∣∣
2)

dμ

=
 
X

|f |2 dμ− 2Re
 
X

f ·
(  

X

f dμ
)

dμ+
∣∣∣
 
X

f dμ
∣∣∣
2

=
 
X

|f |2 dμ−
∣∣∣
 
X

f dμ
∣∣∣
2
, (2.115)

proving (2.113). Then (2.114) follows from this by observing that

1 −
∣
∣∣
 
X

f dμ
∣
∣∣
2 =

(
1 +

∣
∣∣
 
X

f dμ
∣
∣∣
)(

1 −
∣
∣∣
 
X

f dμ
∣
∣∣
)
≤ 2

(
1 −

∣
∣∣
 
X

f dμ
∣
∣∣
)

(2.116)

and

0 ≤ 1 −
∣∣∣
 
X

f dμ
∣∣∣ =

 
X

|f | dμ−
∣∣∣
 
X

f dμ
∣∣∣

≤
 
X

∣∣
∣f −

 
X

f dμ
∣∣
∣ dμ ≤

(  
X

∣∣
∣f −

 
X

f dμ
∣∣
∣
2

dμ
)1/2

, (2.117)

by the fact that |f | = 1, the reverse triangle inequality, and the Cauchy–Schwarz
inequality. � 

Given an Ahlfors regular domain � ⊆ Rn, Lemma 2.7 applies to the geometric
measure theoretic outward unit normal ν to �, in the setting in which X := , an
arbitrary surface ball on ∂�, and the measure is μ := Hn−1�. As indicated below,
this yields a better bound for the BMO semi-norm of ν than directly estimating
‖ν‖[BMO(∂�,σ)]n ≤ 2 ‖ν‖[L∞(∂�,σ)]n = 2.



52 2 Geometric Measure Theory

Lemma 2.8 Let � ⊆ Rn be an Ahlfors regular domain. Set σ := Hn−1�∂� and
denote by ν the geometric measure theoretic outward unit normal to �. Then

‖ν‖[BMO(∂�,σ)]n ≤ ‖ν‖[BMO2(∂�,σ)]n ≤ 1, (2.118)

and

1 − inf
⊆∂�

∣∣∣
 


ν dσ
∣∣∣ ≤ ‖ν‖[BMO(∂�,σ)]n ≤

√
2

√

1 − inf
⊆∂�

∣∣∣
 


ν dσ
∣∣∣, (2.119)

where the two infima are taken over all surface balls  ⊆ ∂�. In particular,

1 ≥
∣∣∣
 


ν dσ
∣∣∣ ≥ 1 − ‖ν‖[BMO(∂�,σ)]n for each surface ball  ⊆ ∂�. (2.120)

Also,

if ∂� is bounded then ‖ν‖[BMO(∂�,σ)]n = ‖ν‖[BMO2(∂�,σ)]n = 1. (2.121)

As a consequence,

∂� is unbounded whenever ‖ν‖[BMO(∂�,σ)]n < 1. (2.122)

In relation to (2.121) we wish to note that, in the class of Ahlfors regular domains,
having the BMO semi-norm of its geometric measure theoretic outward unit normal
precisely 1 is not an exclusive attribute of bounded domains. For example, a
straightforward computation shows that an infinite strip in Rn (i.e., the region in
between two parallel hyperplanes in Rn) is an unbounded Ahlfors regular domain
with the property that the BMO semi-norm of its outward unit normal is equal to 1.

Proof of Lemma 2.8 Hölder’s inequality and Lemma 2.7 imply that for each
surface ball  ⊆ ∂� we have

(  


∣∣ν − ν
∣∣ dσ

)2 ≤
 


∣∣ν − ν
∣∣2 dσ = 1 −

∣∣∣
 


ν dσ
∣∣∣
2 ≤ 1, (2.123)

from which (2.118) follows on account of (2.91), (2.97), and (2.98). Next, (2.119)
follows from (2.114), used with X := , arbitrary surface ball on ∂�, and with
μ := Hn−1�.

To justify the claim made in (2.121), assume first that the set � is bounded. In
such a case, fix some point x0 ∈ ∂� along with some real number r0 > diam(∂�)
and note that the latter choice entails 0 := B(x0, r0) ∩ ∂� = ∂�. Also, since
Hn−1(∂� \ ∂∗�

) = 0 (cf. Definition 2.4) the Divergence Formula (2.20) gives
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ν0 =
( 1

σ(∂�)

ˆ
∂�

ν · ej dσ
)

1≤j≤n =
( 1

σ(∂�)

ˆ
�

divej dLn
)

1≤j≤n = 0.

(2.124)
In concert with (2.19) this implies (bearing in mind that Hn−1(∂� \ ∂∗�

) = 0)

‖ν‖[BMO(∂�,σ)]n = sup
⊆∂�

 


∣∣ν − ν
∣∣ dσ ≥

 
∂�

∣∣ν − ν0

∣∣ dσ = 1. (2.125)

In light of (2.118), we then conclude that ‖ν‖[BMO(∂�,σ)]n = ‖ν‖[BMO2(∂�,σ)]n = 1
in this case. When � is an unbounded Ahlfors regular domain with compact
boundary in Rn, having n ≥ 2 implies that Rn \ � is a bounded Ahlfors regular
domain whose topological boundary coincides with that of �, whose geometric
measure theoretic boundary agrees with that of �, and whose geometric measure
theoretic outward unit normal is −ν at σ -a.e. point on ∂� (cf. [111, §5.10] for
a proof). Granted these properties, we may run the same argument as in (2.124)–
(2.125) with Rn \ � in place of � and conclude that ‖ν‖[BMO(∂�,σ)]n = 1 in this
case as well. This finishes the proof of (2.121). � 

To close this section, recall for further use that CMO(Rn,Ln) is the closure of
C∞

0 (Rn) in BMO(Rn,Ln). As may be seen with the help of [22, Théorème 7,
p. 198], the space CMO(Rn,Ln) may be alternatively described as the linear
subspace of BMO(Rn,Ln) consisting of functions f satisfying the following three
conditions:

lim
r→0+

[
sup
x∈Rn

(  
B(x,r)

∣∣∣f −
 
B(x,r)

f dLn
∣∣∣ dLn

)]
= 0, (2.126)

lim
r→∞

[
sup
x∈Rn

(  
B(x,r)

∣∣
∣f −

 
B(x,r)

f dLn
∣∣
∣ dLn

)]
= 0, (2.127)

and

lim|x|→∞

[

sup
r∈[R0,R1]

( 
B(x,r)

∣∣∣f −
 
B(x,r)

f dLn
∣∣∣ dLn

)]

= 0

for each R0, R1 ∈ (0,∞) with R0 < R1.

(2.128)

This is going to be relevant later on, in Proposition 2.11.

2.2 Reifenberg Flat Domains

In this section we explore the notion of flatness (in the Reifenberg sense). To
facilitate the subsequent discussion, the reader is reminded that the Hausdorff
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distance between two arbitrary nonempty sets A,B ⊂ Rn is defined as

Dist[A,B] := max
{

sup{dist(a, B) : a ∈ A} , sup{dist(b,A) : b ∈ B}
}
.

(2.129)
We start by recalling the following definitions from [72].

Definition 2.11 Fix R ∈ (0,∞] along with δ ∈ (0,∞) and let � ⊂ Rn be a closed
set. Then � is said to be a (R, δ)-Reifenberg flat set if for each x ∈ �

and each r ∈ (0, R) there exists an (n− 1)-dimensional plane π(x, r) in Rn which
contains x and satisfies

Dist
[
� ∩ B(x, r) , π(x, r) ∩ B(x, r)] ≤ δ r. (2.130)

For example, given δ > 0, the graph of a real-valued Lipschitz function defined in
R
n−1 with a sufficiently small Lipschitz constant is a (∞, δ)-Reifenberg flat set.

Definition 2.12 Fix R ∈ (0,∞] along with δ ∈ (0,∞). A nonempty, proper subset
� of Rn is said to satisfy the (R, δ)-separation property if for each x ∈ ∂�

and r ∈ (0, R) there exists an (n − 1)-dimensional plane π̃(x, r) in Rn passing
through x and a choice of unit normal vector �nx,r to π̃(x, r) such that

{
y + t �nx,r ∈ B(x, r) : y ∈ π̃(x, r), t > 2δr

} ⊂ � and

{
y + t �nx,r ∈ B(x, r) : y ∈ π̃(x, r), t < −2δr

} ⊂ Rn \�.
(2.131)

Definition 2.13 Fix R ∈ (0,∞] along with δ ∈ (0,∞). A nonempty, proper
subset � of Rn is called an (R, δ)-Reifenberg flat domain (or simply a
Reifenberg flat domain if the particular values of R, δ are not important)
provided � satisfies the (R, δ)-separation property and ∂� is an (R, δ)-Reifenberg
flat set.

Recall the two-sided corkscrew condition from Definition 2.7.

Proposition 2.6 Let � be a nonempty proper subset of Rn with the property that it
satisfies the (R, c)-two-sided corkscrew condition for some R ∈ (0,∞] and some
c ∈ (0, 1). In addition, suppose ∂� is an (R, δ)-Reifenberg flat set for some number

δ ∈ (
0,

√
3

4 c
)
. Then � is an (R, δ)-Reifenberg flat domain.

Proof Pick a location x ∈ ∂� along with a scale r ∈ (0, R). Definition 2.11 ensures
the existence of an (n − 1)-dimensional plane π(x, r) in Rn passing through x

which satisfies (2.130). Make a choice of a unit normal vector �nx,r to π(x, r) and
abbreviate

C+(x, r) := {
y + t �nx,r ∈ B(x, r) : y ∈ π(x, r), t > 2δr

}
,

C−(x, r) := {
y + t �nx,r ∈ B(x, r) : y ∈ π(x, r), t < −2δr

}
.

(2.132)
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We claim that matters may be arranged (by taking δ ∈ (
0,

√
3

4 c
)

and by making a
judicious choice of the orientation of �nx,r ) so that

C+(x, r) ⊂ � and C−(x, r) ⊂ Rn \�. (2.133)

To prove this claim, first observe that (2.130) guarantees that the connected sets
C±(x, r) do not intersect ∂�. As such, �+ := � and �− := Rn \� form a disjoint,
open cover of C±(x, r), hence

C+(x, r) is entirely contained in either �+ or �−, and
C−(x, r) is entirely contained in either �+ or �−.

(2.134)

To proceed, denote by x±r ∈ �± the two corkscrew points corresponding to the
location x and scale r . In particular,

|x±r − x| < r and B
(
x±r , cr

) ⊆ �±, (2.135)

where the constant c ∈ (0, 1) is as in Definition 2.7. Hence, if we consider the balls
B
(
x+r , c r

)
, B

(
x−r , c r

)
, their centers x±r belong to B(x, r). The fact that we are

presently assuming 0 < δ <
√

3
4 c with c ∈ (0, 1) ensures that δ < (c/2)

√
1 − c2/4

which, as some elementary geometry shows, forces each of the balls B
(
x+r , c r

)
,

B
(
x−r , c r

)
to intersect one of the sets C+(x, r), C−(x, r). As such, one of the

following four alternatives is true:

B
(
x+r , c r

) ∩ C+(x, r) �= ∅ and B
(
x−r , c r

) ∩ C+(x, r) �= ∅, (2.136)

B
(
x+r , c r

) ∩ C−(x, r) �= ∅ and B
(
x−r , c r

) ∩ C−(x, r) �= ∅, (2.137)

B
(
x+r , c r

) ∩ C+(x, r) �= ∅ and B
(
x−r , c r

) ∩ C−(x, r) �= ∅, (2.138)

B
(
x+r , c r

) ∩ C−(x, r) �= ∅ and B
(
x−r , c r

) ∩ C+(x, r) �= ∅. (2.139)

Observe that the alternative described in (2.136) cannot hold. Otherwise, the
existence of points z1 ∈ B

(
x+r , c r

) ∩ C+(x, r) and z2 ∈ B
(
x−r , c r

) ∩ C+(x, r)
would imply that, on the one hand, the line segment [z1, z2] lies in the convex
set C+(x, r), hence also either in �+ or in �− by (2.134). This being said, the
fact that z1 ∈ B

(
x+r , c r

) ⊆ �+ and z2 ∈ B
(
x−r , c r

) ⊆ �− prevents either
one of these eventualities form materializing. This contradiction therefore excludes
(2.136). Reasoning in a similar fashion we may rule out (2.137). When (2.138)
holds, from (2.134) and the fact that B

(
x±r , c r

) ⊆ �± (cf. (2.135)) we conclude
that the inclusions in (2.133) hold as stated. Finally, when (2.139) holds, from
(2.426) and (2.135) we deduce that C+(x, r) ⊆ �− and C−(x, r) ⊆ �+. In
such a scenario, we may ensure that the inclusions in (2.133) are valid simply by
re-denoting �nx,r as −�nx,r which amounts to reversing the roles of C+(x, r) and
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C−(x, r). This concludes the proof of (2.133). In turn, from (2.133) and (2.132) we
conclude that (2.131) holds with π̃(x, r) := π(x, r). Definition 2.12 then implies
that � is, indeed, an (R, δ)-Reifenberg flat domain. � 

It turns out that sufficiently flat Reifenberg domains are NTA domains. More
specifically, from [72, Theorem 3.1, p. 524] and its proof we see that:

there exists a purely dimensional constant δn ∈ (0,∞) with
the property that for each δ ∈ (0, δn) and R ∈ (0,∞] one
may find some number N = N(δ,R) ∈ N such that any
(R, δ)-Reifenberg flat domain � ⊆ R

n also happens to be
an (R,N)-nontangentially accessible domain (in the sense of
Definition 2.9).

(2.140)

The result recorded in (2.140) has a number of useful consequences. For
example, it allows us to conclude that any open set satisfying a two-sided corkscrew
condition and whose topological boundary is a sufficiently flat Reifenberg set is
actually an NTA domain.

Proposition 2.7 Let� be a nonempty proper subset ofRn satisfying the (R, c)-two-
sided corkscrew condition for some R ∈ (0,∞] and c ∈ (0, 1). In addition, suppose
∂� is a (R, δ)-Reifenberg flat set with 0 < δ < min{c/2, δn}, where δn ∈ (0,∞) is
the purely dimensional constant from (2.140). Then there exists N = N(δ,R) ∈ N
with the property that � is an (R,N)-nontangentially accessible domain.

Proof The desired conclusion is a direct consequence of Proposition 2.6, (2.140),
and Definition 2.9. � 

Moving on, recall the Gauss-Green measure associated with sets of locally finite
perimeter as in (2.16). As in [20], given C ∈ [1,∞) and R ∈ (0,∞] define

A (C,R) :=
{
� ⊆ Rn :� has locally finite perimeter, suppμ� = ∂�,

and ‖∂�‖ is an Ahlfors regular measure

with constant C up to scale R
}
. (2.141)

Proposition 2.8 Fix C ∈ [1,∞) along with R ∈ (0,∞], and consider an arbitrary
set� ⊆ Rn. Then� ∈ A (C,R) if and only if� isLn-measurable, ∂� is an Ahlfors
regular set with constant C ∈ [1,∞) up to scale R ∈ (0,∞], and

Hn−1(∂� \ ∂∗�
) = 0. (2.142)

Proof The left-to-right implication is deduced from (2.141), (2.31), and Proposi-
tion 2.4, while the right-to-left implication follows from (2.141), (2.33), (2.24),
(2.31), Proposition 2.4, and Lemma 2.1. � 
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In particular, the above result ensures that Ahlfors regular domains (and the
complements of their closures) belong to the class (2.141). A formal statement to
this effect is recorded below.

Proposition 2.9 Suppose � ⊆ Rn is an Ahlfors regular domain (in the sense of
Definition 2.4), and denote by C ∈ [1,∞) the Ahlfors regularity constant of ∂�.
Also, define

�+ := � and �− := Rn \�. (2.143)

Then

�± ∈
⋂

0<R≤2 diam(∂�)

A (C,R). (2.144)

Proof This is a consequence of Definition 2.4, Proposition 2.8, and Lemma 2.3.
� 

To be able to continue, we shall need more notation. The cylinder C(x0, r, ω)

with center at x0 ∈ Rn, radius r ∈ (0,∞), and axial direction ω ∈ Sn−1 is defined
as

C(x0, r, ω) :=
{
x ∈ Rn : |〈x − x0, ω〉| < r and

∣∣x − x0 − 〈x − x0, ω〉ω
∣∣ < r

}
.

(2.145)
As in [89, p. 290], given a set of locally finite perimeter � ⊆ R

n, the
cylindrical excess of � at the point x0 ∈ ∂�, for the scale r ∈ (0,∞),
and with respect to the direction ω ∈ Sn−1 is defined as

e(�, x0, r, ω) := 1

rn−1

ˆ
C(x0,r,ω)∩∂∗�

|ν(x)− ω|2
2

dHn−1(x), (2.146)

where ν is the geometric measure theoretic outward unit normal to �. This notion
is studied at length in [89, Chapter 22], where a number of basic properties of the
excess (having to do with rescaling, change of direction, lower-semicontinuity) are
established. Here, we shall need the following result.

Lemma 2.9 Let � ⊂ Rn be a set of locally finite perimeter. Then for every point
x0 ∈ ∂�, every radius r ∈ (0,∞), and every vector ω ∈ Rn \ {0} there holds

e
(
�, x0, r,

ω

|ω|
)
≤ 2

rn−1

ˆ
C(x0,r,ω/|ω|)∩∂∗�

|ν(x)− ω|2 dHn−1(x), (2.147)

where ν is the geometric measure theoretic outward unit normal to �.

This lemma facilitates estimating the excess in terms of the BMO semi-norm
of the geometric measure theoretic outward unit normal. Specifically, suppose
� ⊂ R

n is actually an Ahlfors regular domain and write σ := Hn−1�∂�.
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Having fixed a point x0 ∈ ∂� along with a radius r ∈ (
0, 2 diam(∂�)

)
,

denote (x0, r) := B(x0, r) ∩ ∂� and ν(x0,r) := ffl
(x0,r)

ν dσ . Then since

C(x0, r, ω/|ω|) ⊆ B(x0,
√

2r) for each ω ∈ Rn \ {0}, we conclude from (2.147)
that whenever

ν(x0,r) �= 0 (2.148)

we have (with the piece of notation introduced in (2.110))

e
(
�, x0, r,

ν(x0,r)

|ν(x0,r)|
)
≤ 2

n+1
2 CA

{(  
(x0,

√
2r)
|ν − ν(x0,r)|2 dσ

)1/2
}2

≤ 2
n+1

2 CA

{(  
(x0,

√
2r)
|ν − ν

(x0,
√

2r)|2 dσ
)1/2

+
(  

(x0,
√

2r)
|ν(x0,r) − ν

(x0,
√

2r)|2 dσ
)1/2

}2

≤ 2
n+1

2 CA

{
‖ν‖[BMO2(∂�,σ)]n + |ν(x0,r) − ν

(x0,
√

2r)|
}2

≤ 2
n+1

2 CA

{
‖ν‖[BMO2(∂�,σ)]n +

 
(x0,r)

|ν − ν
(x0,

√
2r)| dσ

}2

≤ 2
n+1

2 CA

{
‖ν‖[BMO2(∂�,σ)]n +

(σ
(
(x0,

√
2r)

)

σ
(
(x0, r)

)
)1/2×

×
(  

(x0,
√

2r)
|ν − ν

(x0,
√

2r)|2 dσ
)1/2}2

≤ 2
n+1

2 CA

{
‖ν‖[BMO2(∂�,σ)]n + CA · (

√
2)

n−1
2 ‖ν‖[BMO2(∂�,σ)]n

}2

= 2
n+1

2 CA
(
1 + CA · 2

n−1
4
)2‖ν‖2

[BMO2(∂�,σ)]n , (2.149)

where CA ∈ [1,∞) is the Ahlfors regularity constant of ∂�.

Here is the proof of Lemma 2.9:

Proof of Lemma 2.9 Abbreviate ω0 := ω/|ω| ∈ Sn−1 and observe that we have the
equality |ω − ω0| =

∣∣1 − |ω|∣∣. Hence,

|ω − ω0|2·Hn−1(C(x0, r, ω0) ∩ ∂∗�
)
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= ∣∣1 − |ω|∣∣2 ·Hn−1(C(x0, r, ω0) ∩ ∂∗�
)

=
ˆ
C(x0,r,ω0)∩∂∗�

∣∣|ν(x)| − |ω|∣∣2 dHn−1(x)

≤
ˆ
C(x0,r,ω0)∩∂∗�

|ν(x)− ω|2 dHn−1(x). (2.150)

Also, |ν − ω0|2/2 ≤ |ν − ω|2 + |ω − ω0|2. Based on these observations we may
then write

e(�, x0, r, ω0) = 1

rn−1

ˆ
C(x0,r,ω0)∩∂∗�

|ν(x)− ω0|2
2

dHn−1(x)

≤ 1

rn−1

ˆ
C(x0,r,ω0)∩∂∗�

|ν(x)− ω|2 dHn−1(x)

+ Hn−1(C(x0, r, ω0) ∩ ∂∗�
)

rn−1
|ω − ω0|2

≤ 2

rn−1

ˆ
C(x0,r,ω0)∩∂∗�

|ν(x)− ω|2 dHn−1(x), (2.151)

which is the desired estimate. � 
The basic height bound, recorded in (2.153) below, has been proved in [89,

Theorem 22.8, p. 294] for sets � in a class of perimeter minimizers (a notion
discussed at length in [89, Chapter 21, pp. 278–289]). In [20] the authors have
observed that this height bound continues to hold for sets � in A (C,R), the class
recalled in (2.141). Specifically, the following result has been proved in [20] along
the lines of the argument in [89, Section 22.2, pp. 294–302]:

Theorem 2.1 Given any C0 ∈ [1,∞) and n ∈ N with n ≥ 2, there exist two
constants, ε1 ∈ (0, 1) and C1 ∈ [1,∞), depending only on n and C0 such that if
� ∈ A (C0, R0) for some R0 ∈ (0,∞], and x0 ∈ ∂�, r ∈ (0, R0/2), ω ∈ Sn−1 are
such that

e(�, x0, 2r, ω) ≤ ε1, (2.152)

then the following conditions hold (with the cylinder C(x0, r, ω) defined as in
(2.145)):

C(x0,r, ω) ∩ ∂�



60 2 Geometric Measure Theory

⊆
{
x ∈ C(x0, r, ω) : |〈x − x0, ω〉| ≤ C1r · e(�, x0, 2r, ω)

1
2(n−1)

}
,

(2.153)

{
x ∈ C(x0, r, ω)∩� : 〈x−x0, ω〉 > C1r · e(�, x0, 2r, ω)

1
2(n−1)

}
= ∅, (2.154)

{
x ∈ C(x0, r, ω)\� : 〈x−x0, ω〉 < −C1r ·e(�, x0, 2r, ω)

1
2(n−1)

}
= ∅. (2.155)

Recall the class of (R, δ)-Reifenberg flat domains from Definition 2.13.

Corollary 2.1 Fix n ∈ N with n ≥ 2. Then for each given C0 ∈ [1,∞) there exist
two constants, ε2 ∈ (0, 1) and C2 ∈ [1,∞), depending only on n and C0 with the
following significance. WheneverR0 ∈ (0,∞],R ∈ (0, R0/2), and� ∈ A (C0, R0)

are such that

δ := sup
x0∈∂�

sup
r∈(0,R)

inf
ω∈Sn−1

e(�, x0, 2r, ω) < ε2 (2.156)

it follows that � is a
(
R,C2 · δ

1
2(n−1)

)
-Reifenberg flat domain.

Proof Let ε1 = ε1(C0, n) ∈ (0, 1) and C1 = C1(C0, n) ∈ (0,∞) be as in
Theorem 2.1. Take

ε2 := min
{
ε1, 2−1C

2(1−n)
1

}
. (2.157)

Fix an arbitrary location x0 ∈ ∂� along with an arbitrary scale r ∈ (0, R). Since
having 0 ≤ δ < ε2 (cf. (2.156)) ensures that 1 < (2ε2)/(ε2 + δ) ≤ 2, it is possible
to choose some ωx0,r ∈ Sn−1 such that

e
(
�, x0, 2r, ωx0,r

)
<

( 2ε2

ε2 + δ

)
· inf
ω∈Sn−1

e(�, x0, 2r, ω)

≤ 2 · inf
ω∈Sn−1

e(�, x0, 2r, ω) ≤ 2δ, (2.158)

the last inequality being a consequence of (2.156). Thanks to (2.156), the first
inequality in (2.158) forces

e
(
�, x0, 2r, ωx0,r

)
<

( 2ε2

ε2 + δ

)
· δ < ε2 < ε1. (2.159)

Granted this, Theorem 2.1 guarantees that the properties (2.153)–(2.155) hold for
the vector ω := ωx0,r ∈ Sn−1. In particular, from this version of (2.153) and the
last inequality in (2.158) it follows that for each x0 ∈ ∂� and r ∈ (0, R) we have
identified a vector ωx0,r ∈ Sn−1 such that
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the set C(x0, r, ωx0,r ) ∩ ∂� is contained in
{
x ∈ C(x0, r, ωx0,r ) : |〈x − x0, ωx0,r 〉| ≤ C1r · (2δ)

1
2(n−1)

}
.

(2.160)

For each location x0 ∈ ∂� and scale r ∈ (0, R), the versions of (2.154)–(2.155)
written for ω := ωx0,r ∈ Sn−1 also prove (once again keeping in mind the last
inequality in (2.158)) that

�c := Rn \� contains the set

C− :=
{
x ∈ C(x0, r, ωx0,r ) : 〈x − x0, ωx0,r 〉 > C1r · (2δ)

1
2(n−1)

} (2.161)

and

� contains the set

C+ :=
{
x ∈ C(x0, r, ωx0,r ) : 〈x − x0, ωx0,r 〉 < −C1r · (2δ)

1
2(n−1)

}
.

(2.162)

Moreover, from (2.156) and (2.157) we see that

C1 · (2δ)
1

2(n−1) < 1, (2.163)

hence

C± �= ∅. (2.164)

To proceed, introduce

π(x0, r) := x0 + 〈ωx0,r 〉� (2.165)

which is an (n − 1)-dimensional plane in Rn containing the point x0. Given that
B(x0, r) ⊆ C(x0, r, ωx0,r ), from (2.160) we see that

sup
x∈B(x0,r)∩∂�

dist
(
x, π(x0, r) ∩ B(x0, r)

) ≤ C1r · (2δ)
1

2(n−1) . (2.166)

We also claim that

sup
x∈B(x0,r)∩π(x0,r)

dist
(
x, ∂� ∩ B(x0, r)

) ≤ 2C1r · (2δ)
1

2(n−1) . (2.167)

To justify (2.167), consider an arbitrary point x ∈ B(x0, r) ∩ π(x0, r). We
distinguish two cases.

Case 1: Assume first that
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|x − x0| < r

√
1 − C2

1 · (2δ) 1
(n−1) . (2.168)

Note that (2.163) ensures that (2.168) is a meaningful demand. In this case,
denote by L the line passing through x in the direction of ωx0,r . Thanks to
(2.164), it is possible to pick points x± ∈ C± ∩L. Then since x+ ∈ C+ ⊆ � and
x− ∈ C− ⊆ �c, it follows that the line segment [x−, x+] intersects ∂�. Thus,
there exists y ∈ [x−, x+]∩∂�. Given that [x−, x+] is contained in C(x0, r, ωx0,r )

and that C(x0, r, ωx0,r )∩∂� is contained in the set described in the second line of

(2.160), we conclude that y belongs to said set, hence |x − y| ≤ C1r · (2δ)
1

2(n−1) .
We may now use the Pythagorean theorem to compute

|y − x0|2 = |x − x0|2 + |x − y|2

< r 2(1 − C2
1 · (2δ) 1

(n−1)
)+ C2

1 r
2 · (2δ) 1

(n−1) = r2, (2.169)

which places y inB(x0, r). Ultimately, y ∈ B(x0, r)∩∂� ⊆ C(x0, r, ωx0,r )∩∂�.
Keeping in mind that the vector x − y is parallel to ωx0,r and that x − x0 is
orthogonal to ωx0,r , we may then use (2.160) to compute

dist
(
x, ∂� ∩ B(x0, r)

) ≤ |x − y| = |〈x − y, ωx0,r 〉|

= |〈y − x0, ωx0,r 〉| < C1r · (2δ)
1

2(n−1) . (2.170)

Case 2: Assume x ∈ B(x0, r) ∩ π(x0, r) is arbitrary. In this scenario, define

x̃ := x0 + (x − x0)

√
1 − C2

1 · (2δ) 1
(n−1) . (2.171)

Then x̃ ∈ π(x0, r) and

|̃x − x0| ≤ |x − x0|
√

1 − C2
1 · (2δ) 1

(n−1) < r

√
1 − C2

1 · (2δ) 1
(n−1) . (2.172)

This proves two things. First, we see that x̃ ∈ B(x0, r) ∩ π(x0, r). Granted this,
from (2.172) and the analysis in Case 1 (cf. (2.170)) we conclude that

dist
(
x̃, ∂� ∩ B(x0, r)

)
< C1r · (2δ)

1
2(n−1) . (2.173)

Since we also have

|̃x − x| =
∣∣∣x − x0 − (x − x0)

√
1 − C2

1 · (2δ) 1
(n−1)

∣∣∣
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= |x − x0|
∣
∣∣1 −

√
1 − C2

1 · (2δ) 1
(n−1)

∣
∣∣

≤ r
C2

1 · (2δ) 1
(n−1)

1 +
√

1 − C2
1 · (2δ) 1

(n−1)

≤ C2
1 r · (2δ)

1
(n−1) , (2.174)

we may avail ourselves of (2.173) to conclude that

dist
(
x, ∂� ∩ B(x0, r)

) ≤ dist
(
x̃, ∂� ∩ B(x0, r)

)+ |̃x − x|

≤ C1r · (2δ)
1

2(n−1) + C2
1 r · (2δ)

1
(n−1)

≤ 2C1r · (2δ)
1

2(n−1) , (2.175)

where the last inequality comes from (2.163).
This finishes the proof of (2.167). In concert with (2.166) and (2.129) this
establishes

Dist
[
∂� ∩ B(x0, r) , π(x0, r) ∩ B(x0, r)

] ≤ 2C1r · (2δ)
1

2(n−1) . (2.176)

In view of Definition 2.11, we conclude that ∂� is a
(
R, 2C1 · (2δ)

1
2(n−1)

)
-

Reifenberg flat set. Together with the separation property implied by (2.161)–

(2.162) (cf. Definition 2.12) we conclude that � is a
(
R,C2 · δ

1
2(n−1)

)
-Reifenberg

flat domain (see Definition 2.13) for some constant C2 ∈ [1,∞) depending only
on n and C0.

� 
We are now ready to state an important result, asserting that any Ahlfors regular

domain whose geometric measure theoretic outward unit normal has a sufficiently
small BMO semi-norm is necessarily a Reifenberg flat domain.

Theorem 2.2 For each n ∈ N with n ≥ 2 and each C0 ∈ [1,∞) there exist some
small threshold δ∗ ∈ (0, 1) along with some large constant C∗ ∈ [1,∞), both
depending only on n and C0, with the following significance.

Suppose � ⊆ Rn is an Ahlfors regular domain (in the sense of Definition 2.4),
with the Ahlfors regularity constant of ∂� less than or equal to C0, and such that
the geometric measure theoretic outward unit normal to� satisfies (where, as usual,
σ := Hn−1�∂�)

‖ν‖[BMO(∂�,σ)]n ≤ δ for some δ ∈ (0, δ∗). (2.177)
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Then ∂� is unbounded and

both �+ := � and �− := Rn \� are
(∞, C∗ · δ

1
2(n−1)

)
-Reifenberg flat domains.

(2.178)

Proof The fact that the set ∂� is unbounded follows from (2.177) (bearing in mind
that δ∗ < 1) and Lemma 2.8. From (2.120) we also see that

ν(x0,r) :=
 
(x0,r)

ν dσ �= 0 for each x0 ∈ ∂� and r > 0. (2.179)

Fix an arbitrary location x0 ∈ ∂� and an arbitrary scale r ∈ (0,∞). Keeping
(2.179) in mind, we then deduce from (2.148)–(2.149), Lemma 2.3, and (2.98) that
whenever (2.177) holds we necessarily have

e
(
�±, x0, r,

±ν(x0,r)

|ν(x0,r)|
)
≤ C‖ν‖2

[BMO(∂�,σ)]n ≤ Cδ 2, (2.180)

where C ∈ (0,∞) depends only on the dimension n and C0. Since 0 < δ < δ∗, we
see that (2.180) implies

sup
x0∈∂�

sup
r∈(0,∞)

inf
ω∈Sn−1

e(�±, x0, 2r, ω) ≤ Cδ 2∗ . (2.181)

With ε2 = ε2(C0, n) ∈ (0, 1) as in Corollary 2.1, choose δ∗ ∈ (0, 1) such that

Cδ 2∗ < ε2. (2.182)

Given that from Proposition 2.9 we also know that

�± ∈ A (C0,∞), (2.183)

we may invoke Corollary 2.1 to conclude that there exists C∗ ∈ [1,∞), depending

only on n and C0, such that �± are
(∞, C∗ · δ

1
2(n−1)

)
-Reifenberg flat domains. � 

Some useful consequences of Theorem 2.2 are brought to light in the result
below.

Theorem 2.3 Let � ⊆ Rn be an Ahlfors regular domain (in the sense described in
Definition 2.4). Denote by ν the geometric measure theoretic outward unit normal
to � and abbreviate σ := Hn−1�∂�.

Then there exists a threshold δ∗ ∈ (0, 1) and a number N ∈ N, both depending
only on the Ahlfors regularity constant of ∂� and the dimension n, with the property
that if
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‖ν‖[BMO(∂�,σ)]n < δ∗, (2.184)

then ∂� is an unbounded set and � is an (∞, N)-two-sided nontangentially
accessible domain (in the sense of Definition 2.9). In particular,

� satisfies a two-sided local John condition with constants
which depend only on the dimension n and the Ahlfors regularity
constant of ∂�,

(2.185)

also

� is a UR domain, with the UR constants of ∂� controlled solely
in terms of the dimension n and the Ahlfors regularity constant
of ∂�,

(2.186)

and, finally,

� is a uniform domain, in the sense that it satisfies the quan-
titative connectivity condition described in Lemma 2.5, with a
constant controlled solely in terms of the dimension n and the
Ahlfors regularity constant of ∂�.

(2.187)

Proof This is a consequence of Lemma 2.8, Theorem 2.2, (2.140), (2.88), (2.87),
(2.48), and Lemma 2.5. � 

We are now in a position to show that for an Ahlfors regular domain � ⊆ Rn
the demand that the BMO semi-norm of its geometric measure theoretic outward
unit normal is suitably small relative to the Ahlfors regularity constant of ∂� has a
string of remarkable topological and metric consequences for the set �. To set the
stage, from [83, Theorem 2 in 49.VI, 57.I.9(i), 57.III.1] (cf. also [78, Lemma 4(1)
and Lemma 5, p. 1702]) we first note that

if O ⊆ Rn is some arbitrary connected open set, then any
connected component of Rn \ O has a connected boundary.

(2.188)

Theorem 2.4 Let � ⊆ Rn be an Ahlfors regular domain. Set σ := Hn−1�∂� and
denote by ν the geometric measure theoretic outward unit normal to �.

Then there exists a threshold δ∗ ∈ (0, 1) depending only on the ambient dimen-
sion n and the Ahlfors regularity constant of ∂�, such that if ‖ν‖[BMO(∂�,σ)]n < δ∗
it follows that �, �, ∂�, Rn \ �, and Rn \ � are all unbounded connected sets,
∂(� ) = ∂�, ∂(Rn \�) = ∂�, and ∂(Rn \�) = ∂�.

As is apparent from Example 2.11, the demand that the parameter δ > 0 is
sufficiently small cannot be dispense with in the context of Theorem 2.4. This being
said, it has been shown in [112, §11.5] that
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if � ⊆ Rn is an open set satisfying a two-sided local John
condition and whose boundary happens to be an unbounded
Ahlfors regular set, then actually ∂� is connected.

(2.189)

Proof of Theorem 2.4 Bring in the threshold δ∗ ∈ (0, 1) from Theorem 2.3
and assume that ‖ν‖[BMO(∂�,σ)]n < δ∗. From Theorem 2.3, Definition 2.9, and
Definition 2.8 we then conclude that both � and Rn \ � are pathwise connected
open sets (hence, connected open sets). Having established this, from (2.188) we
then see that ∂

(
R
n \ � ) = ∂(� ) is connected. The fact that � satisfies an exterior

corkscrew condition further implies ∂(� ) = ∂�. Since δ∗ < 1, Lemma 2.8 ensures
that ∂� is unbounded, and this forces both� and Rn\� to be unbounded (given that
they have ∂� as their topological boundary). Also, the fact that Rn \� is connected

implies that its closure is connected. However, Rn \� = Rn \ �̊ and

�̊ = � \ ∂(� ) = � \ ∂� = �̊ = �, (2.190)

so Rn \� = Rn \� is connected. � 
In the two-dimensional setting, it turns out that having an outward unit normal

with small BMO semi-norm implies (under certain background assumptions) that
the domain in question is actually simply connected. This makes the object of
Corollary 2.2, which augments Theorem 2.4.

Corollary 2.2 Let� ⊆ R2 be an Ahlfors regular domain. Abbreviate σ := H1�∂�
and denote by ν the geometric measure theoretic outward unit normal to �. Then
there exists a threshold δ∗ ∈ (0, 1), depending only on the Ahlfors regularity
constant of ∂�, such that if ‖ν‖[BMO(∂�,σ)]2 < δ∗ it follows that � is an unbounded

connected set which is simply connected, ∂� is an unbounded connected set, R2 \�
is an unbounded connected set which is simply connected, and ∂(R2 \�) = ∂�.

Proof All claims are consequences of Theorem 2.4 together with (2.193), (2.194),
and (2.195) below. � 

2.3 Chord-Arc Curves in the Plane

Shifting gears, in this section we shall work in the two-dimensional setting. We
begin by recalling some known results of topological flavor. First, for bounded sets,
we know from [12, Corollary 1, p. 352] that

an open bounded connected set � ⊆ R2 is simply connected if
and only if its complement R2 \� is a connected set,

(2.191)

and
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an open bounded connected set � ⊆ R2 is simply connected if
and only if its topological boundary, ∂�, is a connected set.

(2.192)

For unbounded sets, [12, Corollary 2, p. 352] gives

an open unbounded connected set� ⊆ R2 is simply connected if
and only if every connected component of R2 \� is unbounded,

(2.193)

and

an open unbounded connected set� ⊆ R2 is simply connected if
and only if every connected component � of ∂� is unbounded.

(2.194)

(Parenthetically, it is worth noting that the boundary of an open set � ⊆ R2 which is
both connected and simply connected is not necessarily connected: for example take
� := R2 \ E where E := [0,∞) × {0, 1}.) Finally, according to [12, Corollary 3,
p. 352],

if E ⊆ R2 is a closed set such that each connected component
of E is unbounded, then R2 \ E is a simply connected set,

(2.195)

and according to [120, Theorem 13.11, p. 274]

an open connected set � ⊆ R2 ≡ C is simply connected if
and only if Ĉ \ � is connected, where Ĉ := C ∪ {∞} is the
extended complex plane (i.e., the one-point compactification of
C, aka Riemann’s sphere).

(2.196)

Next, recall that a (compact) curve in the Euclidean plane R2 (canonically
identified with C) is a set of the form � = γ ([a, b]), where a, b ∈ R are two
numbers satisfying a < b, and γ : [a, b] → R

2 is a continuous function, called a
parametrization of �. We shall call the curve � simple if � has a parametrization
γ : [a, b] → R

2 whose restriction to [a, b) is injective (hence, � is simple if
it is non self-intersecting). We shall say that the curve � is closed if it has a
parametrization γ : [a, b] → R2 satisfying γ (a) = γ (b). Also, we shall call � ⊂ C
a Jordan curve, if � is a simple closed curve. Thus, a curve is Jordan if and only
if it is the homeomorphic image of the unit circle S1. The classical Jordan curve
theorem asserts that

the complement of a Jordan curve � ⊂ C consists precisely
of two connected components, one bounded �+, and one
unbounded �−, called the inner and outer domains of �,
satisfying ∂�± = �.

(2.197)

In light of (2.192), we also conclude that
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the inner domain �+ of a Jordan curve � ⊂ C is simply connected. (2.198)

We are also going to be interested in Jordan curves passing through
infinity in the plane. This class consists of sets of the form � = γ (R),
where γ : R → R

2 is a continuous injective function with the property that
lim

t→±∞ |γ (t)| = ∞. For this class of curves a version of the Jordan separation

theorem is also valid, namely

if � is a Jordan curve passing through infinity, then its comple-
ment in C consists precisely of two open connected components,
called �±, which satisfy ∂�+ = � = ∂�−.

(2.199)

Once (2.199) has been established, we deduce from (2.194) that

in the context of (2.199), the sets �± are simply connected. (2.200)

To justify (2.199), let � be a Jordan curve passing through infinity. From
definitions, it follows that� is a closed subset of C. Fix an arbitrary point zo ∈ C\�
and consider the homeomorphisms

� : C \ {zo} −→ C \ {0}, �(z) := (z− zo)
−1 for all z ∈ C \ {zo},

�−1 : C \ {0} −→ C \ {zo}, �−1(ζ ) := zo + ζ−1 for all ζ ∈ C \ {0},
(2.201)

which are inverse to each other. We then claim that

�̃ := �(�) ∪ {0} (2.202)

is a simple closed curve which contains the origin in C. To see that this is indeed
the case, start by expressing � = γ (R) where γ : R→ R2 is a continuous injective
function with the property that lim

t→±∞ |γ (t)| = ∞. Then γ̃ : [ − π/2, π/2
] → C

defined for each t ∈ [− π/2, π/2
]

as

γ̃ (t) :=
⎧
⎨

⎩

(
γ (tan t)− zo

)−1 if t ∈ (− π/2, π/2
)
,

0 if t ∈ {± π/2
} (2.203)

is a continuous function whose restriction to
[ − π/2, π/2

)
is injective, and whose

image is precisely �̃. Also, 0 ∈ �̃ by design. Hence, as claimed, �̃ is a simple
closed curve passing through 0 ∈ C. The classical Jordan curve theorem recalled
in (2.197) then ensures that C \ �̃ consists precisely of two open connected
components, one bounded �̃+, and one unbounded �̃−, satisfying ∂�̃± = �̃. In
particular,



2.3 Chord-Arc Curves in the Plane 69

C \ {0} = �̃+  
(
�̃ \ {0})  �̃− (disjoint unions). (2.204)

Then O± := �−1(�̃±) are open connected subsets of C \ {zo}, and applying the
homeomorphism �−1 to (2.204) yields

C \ {zo} = O+  �  O− (disjoint unions). (2.205)

Let us also observe that since �̃− is unbounded, there exists a sequence {ζj }j∈N in
�̃− with |ζj | → ∞ as j → ∞. Consequently, the sequence {zj }j∈N defined for
each j ∈ N as zj := �−1(ζj ) = zo + ζ−1

j is contained in �−1(�̃−) = O− and
converges to zo. This shows that

zo ∈ O−. (2.206)

Next, since � is a closed set, the fact that zo ∈ C \� guarantees the existence of
some r > 0 with the property that B(zo, r) ∩ � = ∅. In the context of (2.205) this
shows that the connected set B(zo, r)\{zo} is covered by the open sets O±. As such,
B(zo, r)\{zo} is fully contained in eitherO+ orO−. In view of (2.206) we ultimately
conclude that B(zo, r) \ {zo} ⊆ O−. Then �+ := O+ and �− := O− ∪ {zo} are
open, connected, disjoint subsets of C, with

C = �+  �  �− (disjoint unions), (2.207)

and

∂�± = ∂O± \ {zo} = �−1(∂�̃± \ {0}
) = �−1(�̃ \ {0}) = �. (2.208)

This finishes the proof of (2.199).
Moving on, the length L ∈ [0,+∞] of a given compact curve � = γ ([a, b])

is defined as

L := sup
N∑

j=1

|γ (tj )− γ (tj−1)|, (2.209)

the supremum being taken over all partitions a = t0 < t1 < · · · < tN−1 < tN = b

of the interval [a, b]. As is well known (cf., e.g., [85, Theorem 4.38, p. 135]), the
lengthL of any simple compact curve� may be expressed in terms of the Hausdorff
measure by

L = H1(�), (2.210)

and
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|z1 − z2| ≤ H1(�) for any compact curve
� in the plane with endpoints z1, z2 ∈ C.

(2.211)

Call a curve � rectifiable provided its length is finite (i.e., L < +∞), and call
� locally rectifiable if each of its compact sub-curves is rectifiable. The
latter condition is equivalent to demanding that γ (I) is a rectifiable curve for each
compact sub-interval I of the domain of definition of some (or any) parametrization
on �. In particular, a Jordan curve � passing through infinity in the plane, with
parametrization γ : R→ �, is locally rectifiable if and only if γ (I) is a rectifiable
curve for any compact sub-interval I of R.

Suppose � is a rectifiable, simple, compact curve in the plane, and denote by
L its length. Then there exists a parametrization [0, L] � s �→ z(s) ∈ � of �,
called the arc-length parametrization of �, with the property that for
each s1, s2 ∈ [0, L] with s1 < s2 the length of the curve with endpoints at z(s1) and
z(s2) is s2 − s1. It is well known (see, e.g., [85, Definition 4.21 and Theorem 4.22,
pp. 128–129]) that the arch-length parametrization exists and satisfies

z(·) is differentiable at L1-a.e. point in [0, L]
and |z′(s)| = 1 for L1-a.e. s ∈ [0, L].

(2.212)

Also, (2.210)–(2.211) imply

|z(s1)− z(s2)| ≤ |s1 − s2|, ∀ s1, s2 ∈ [0, L]. (2.213)

Lemma 2.10 Let � be a rectifiable, simple, compact curve in the plane. Denote by
L its length, and let [0, L] � s �→ z(s) ∈ � be its arc-length parametrization. Given
s1, s2 ∈ [0, L] with s1 < s2, abbreviate I := [s1, s2] and set z′I :=

ffl
I
z′(s) ds. Then

 
I

|z′(s)− z′I |2 ds = 1 −
∣∣
∣
z(s2)− z(s1)

s2 − s1

∣∣
∣
2
. (2.214)

Proof Upon observing that

z′I =
 
I

z′(s) ds = 1

s2 − s1

ˆ s2

s1

z′(s) ds = z(s2)− z(s1)

s2 − s1
, (2.215)

this is a direct consequence of the formula in the second line of (2.114). � 

Remark 2.1 The arch-length parametrization of a locally rectifiable Jordan curve
passing through infinity in the plane is defined similarly, with R now playing the
role of the interval [0, L], and satisfies properties analogous to (2.212), (2.213), and
Lemma 2.10.
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We continue by recalling an important category of curves, introduced in 1936 by
Mikhail A. Lavrentiev in [84] (also known as the class of Lavrentiev curves).

Definition 2.14 Given some number � ∈ [0,∞), recall that a set � ⊂ C is said
to be a �-CAC, or simply CAC (acronym for chord-arc curve) if the parameter �
is de-emphasized, provided � is a locally rectifiable Jordan curve passing through
infinity with the property that

�(z1, z2) ≤ (1 + �)|z1 − z2| for all z1, z2 ∈ �, (2.216)

where �(z1, z2) denotes the length of the sub-arc of � joining z1 and z2.

In general, the presence of a cusp prevents a curve from being chord-arc. For
example, � := {

(x,
√|x|) : x ∈ R} is a Jordan curve passing through infinity

in R2 ≡ C which nonetheless fails to be chord-arc. Indeed, if for x > 0 we set
z1 := x + i

√
x ∈ � and z2 := −x + i

√
x ∈ � then L’Hôspital’s Rule gives

lim
x→0+

�(z1, z2)

|z1 − z2| = lim
x→0+

2
´ x

0

√
1 + 1

4t dt

2x
= lim

x→0+

√

1 + 1

4x
= +∞, (2.217)

which shows that condition (2.216) is violated for each � ∈ [0,∞).
There are fundamental links between chord-arc curves in the plane and the John-

Nirenberg space BMO on the real line. Such connections, along with other basic
properties of chord-arc curves, are brought to the forefront in Proposition 2.10
below. To facilitate stating and proving it, we first wish to recall the following
version for bi-Lipschitz maps of the classical Kirszbraun extension theorem proved
in [79, Theorem 1.2] with a linear bound on the distortion:

any function f : R→ C with the property that there exist C,C′
in (0,∞) such that C|t1 − t2| ≤ |f (t1) − f (t2)| ≤ C′|t1 − t2|
for all t1, t2 ∈ R extends to a homeomorphism F : C→ C with
(C/120)|z1 − z2| ≤ |F(z1) − F(z2)| ≤ (2000C′)|z1 − z2| for
all z1, z2 ∈ C.

(2.218)

Results of this nature have also been proved in [138], [139], [67, Proposition 1.13,
p. 227] (see also [119, Theorem 7.10, p. 166] and [36] in the case when the real line
is replaced by the unit circle), though the quantitative aspect is less precise, or not
explicitly mentioned, in these works.

Here is the proposition dealing with basic properties of chord-arc curves
mentioned above.

Proposition 2.10 Let � ⊂ C be a �-CAC in the plane, for some � ∈ [0,∞), and
consider its arc-length parametrization R � s �→ z(s) ∈ �. Then the following
statements are true.

(i) For each s1, s2 ∈ R one has
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|z(s1)− z(s2)| ≤ |s1 − s2| ≤ (1 + �)|z(s1)− z(s2)|, (2.219)

and

z(·) is differentiable at L1-a.e. point in R,

with |z′(s)| = 1 for L1-a.e. s ∈ R. (2.220)

(ii) For each zo ∈ � and r ∈ (0,∞) abbreviate (zo, r) := B(zo, r) ∩ �. Then
for each so ∈ R and r ∈ (0,∞) one has

(so−r, so+r) ⊆ z−1((z(so), r)
) ⊆ (

so−(1+�)r , so+(1+�)r
)
. (2.221)

(iii) For every Lebesgue measurable set A ⊆ R one has

H1(z(A)
) = L1(A), (2.222)

and for each H1-measurable set E ⊆ � one has

H1(E) = L1(z−1(E)
)
. (2.223)

(iv) With the arc-length measure σ on � defined as

σ := H1��, (2.224)

for each σ -measurable set E ⊆ � and each non-negative σ -measurable
function g on E one has

ˆ
E

g dσ =
ˆ
z−1(E)

g(z(s)) ds. (2.225)

(v) Denote by � the region of the plane that is lying to the left of the curve
� (relative to the orientation � inherits from its arc-length parametrization
given by R � s �→ z(s) ∈ �). Then � is a set of locally finite perimeter and
its geometric measure theoretic outward unit normal ν is given by

ν(z(s)) = −iz′(s) for L1-a.e. s ∈ R. (2.226)

As a consequence, for L1-a.e. s ∈ R the line {z(s) + t z′(s) : t ∈ R} is an
approximate tangent line to � at the point z(s). Hence, � has an approximate
tangent line at H1-almost every point on ∂�.

(vi) The set� introduced in item (v) is a connected, simply connected, unbounded,
two-sided NTA domain with an Ahlfors regular boundary (hence also an
Ahlfors regular domain which satisfies a two-sided local John condition and,
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in particular, a UR domain) and whose topological boundary is precisely �,
i.e., ∂� = �. In fact,

there exists a bi-Lipschitz homeomorphism F : R2 → R
2 such

that 120−1(1+�)−1|z1−z2| ≤ |F(z1)−F(z2)| ≤ 2000|z1−z2|
for all points z1, z2 ∈ C, and with the property that� = F(R2+),
R

2 \� = F(R2−), as well as ∂� = F(R× {0}).
(2.227)

(vii) With the piece of notation introduced in (2.97) one has

1

2(1 + �)
‖ν‖BMO(�,σ) ≤ ‖z′‖BMO(R,L1)

≤ ‖z′‖BMO2(R,L1) ≤
√
�(2 + �)

1 + �
< 1 (2.228)

and

1

2(1 + �)
‖z′‖BMO(R,L1) ≤ ‖ν‖BMO(�,σ) ≤ 2

√
�(2 + �). (2.229)

Moreover, � is a �∗-CAC with �∗ ∈ [0, �] defined as

�∗ := 1
√

1 − ‖z′‖2
BMO2(R,L1)

− 1

=
‖z′‖2

BMO2(R,L1)√
1 − ‖z′‖2

BMO2(R,L1)

(
1 +

√
1 − ‖z′‖2

BMO2(R,L1)

) . (2.230)

Proof The claims in item (i) are seen from definitions and Remark 2.1, while
the claim in item (ii) is an elementary consequence of (2.219). Next, in view of
(2.220), the area formula (cf. [47, Theorem 1, p. 96]) gives (2.222), which may
be equivalently recast as in (2.223). Also, the change of variable formula (cf. [47,
Theorem 2, p. 99]) gives (2.225). This takes care of items (iii)-(iv).

To proceed from the version of the Jordan curve theorem recorded in (2.199) we
conclude that

the complement of the curve � in C consists of only two open
connected components, namely �+ := � and �− := C \ �,
satisfying ∂�+ = � = ∂�−.

(2.231)

In addition, from (2.221) and (2.223) we see that for each so ∈ R and r ∈ (0,∞)

we have
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H1((z(so), r)
) = L1

(
z−1((z(so), r)

))

≤ L1
((
so − (1 + �)r , so + (1 + �)r

))

= 2(1 + �)r. (2.232)

Based on this and the criterion for finite perimeter from [47, Theorem 1, p. 222] we
then conclude that � is a set of locally finite perimeter. Next, if so ∈ R is a point
of differentiability for the complex-valued function z(·), then for every ε > 0 there
exists δ > 0 such that

z(so + s) ∈ B
(
z(so)+ s z′(so) , ε|s|

)
for each s ∈ (−δ, δ). (2.233)

In turn, from this geometric property we deduce that for each angle θ ∈ (0, π) there
exists a height h = h(θ) > 0 such that if �±θ,h denote the open truncated plane
sectors with common vertex at z(so), common aperture θ , common height h, and
symmetry axes along the vectors ±i z′(so), then

�+θ,h ⊆ � = �+ and �−θ,h ⊆ C \� = �−. (2.234)

To proceed, observe that the measure theoretic boundary of � (cf. (2.14)) may be
presently described as

∂∗� =
{
z ∈ ∂� : lim sup

r→0+

L2(B(z, r) ∩�±
)

r2
> 0

}
. (2.235)

Together, (2.234) and (2.235) imply that

A := {
z(so) : so ∈ A

} ⊆ ∂∗�, where we have set

A := {
so ∈ R : so differentiability point for z(·)}.

(2.236)

Meanwhile, from (2.222) and the fact that z(·) is differentiable at L1-a.e. point in R
we deduce (also using ∂� = �) that

H1(∂� \A) = H1(� \A) = H1(z(R \ A)) = L1(
R \ A) = 0. (2.237)

With this in hand, formula

H1(∂� \ ∂∗�) = 0 (2.238)

follows by combining (2.236) with (2.237). As a consequence of (2.237)–(2.238)
and (2.24) we then conclude that
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A ∩ ∂∗� has full H1-measure in ∂�. (2.239)

Next, pick an arbitrary point zo ∈ A and recall that (2.234) holds. From this and
[59, Proposition 2.14, p. 606] it follows that if �π−θ is the infinite open plane sector
with vertex at zo, aperture π − θ , and symmetry axis along the vector −iz′(so), then
the geometric measure theoretic outward unit normal to � satisfies

ν(z(so)) ∈ �π−θ (2.240)

provided ν(z(so)) exists, i.e., if z(so) ∈ ∂∗�. The fact that the angle θ ∈ (0, π)
may be chosen arbitrarily close to π then forces ν(z(so)) = −iz′(so) whenever
z(so) ∈ ∂∗�, i.e., for so ∈ z−1(A ∩ ∂∗�). Given that by (2.239) and (2.222) the
latter set has full one-dimensional Lebesgue measure in R, the claim in (2.226) is
established. This finishes the treatment of item (v).

Turning our attention to item (vi), first observe that (2.219) implies

(1 + �)−1|s1 − s2| ≤ |z(s1)− z(s2)| ≤ |s1 − s2| for all s1, s2 ∈ R, (2.241)

hence R � s �→ z(s) ∈ C is a bi-Lipschitz map. When used in conjunction with
(2.241), the extension result recalled in (2.218) gives that

R � s �→ z(s) ∈ � extends to a bi-Lipschitz homeomorphism
F : C→ C with the property that for any points z1, z2 ∈ C one
has [120(1+�)]−1|z1−z2| ≤ |F(z1)−F(z2)| ≤ 2000|z1−z2|.

(2.242)

As a consequence, work in [59] implies that � is a connected two-sided NTA
domain with an Ahlfors regular boundary (hence also a connected Ahlfors regular
domain which satisfies a two-sided local John condition; cf. (2.47) and (2.88)). As
far as item (vi) is concerned, there remains to observe that ∂� = � has been noted
earlier in (2.231).

Turning our attention to item (vii), fix two numbers s1, s2 ∈ R with s1 < s2,
abbreviate I := [s1, s2] and set z′I :=

ffl
I
z′(s) ds. We may then use Lemma 2.10 and

(2.219) to estimate

 
I

|z′(s)− z′I |2 ds = 1 −
∣∣∣
z(s2)− z(s1)

s2 − s1

∣∣∣
2 ≤ 1 −

( 1

1 + �

)2 = �(2 + �)

(1 + �)2
.

(2.243)
In view of (2.97), this readily yields the penultimate inequality in (2.228). The
second inequality in (2.228) is seen directly from the first inequality in (2.99).

To prove the very first inequality in (2.228), fix an arbitrary point zo ∈ � along
with a radius r ∈ (0,∞), and set  := B(zo, r) ∩ �. Then there exists a unique
number so ∈ R such that zo = z(so) ∈ �, and in the current setting we abbreviate
I := (

so − (1 + �)r , so + (1 + �)r
)
. In particular, (2.221) and (2.223) imply
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σ() = H1((z(so), r)
) = L1

(
z−1((z(so), r)

))

≥ L1
((
so − r, so + r

)) = 2r = (1 + �)−1L1(I). (2.244)

With c := −i
ffl
I z

′(s) ds ∈ C we may then write

 


|ν − c| dσ = 1

σ()

ˆ


|ν − c| dσ = 1

σ()

ˆ
z−1()

|ν(z(s))− c| ds

≤ 1

σ()

ˆ
I
|ν(z(s))− c| ds = L1(I)

σ ()

 
I
|ν(z(s))− c| ds

= L1(I)
σ ()

 
I
|z′(s)− ic| ds ≤ (1 + �)

 
I
|z′(s)− ic| ds

≤ (1 + �)‖z′‖BMO (R,L1), (2.245)

making use of (2.225), (2.221), (2.226), (2.244), and the choice of c. With (2.245)
in hand, the first inequality in (2.228) readily follows. The last estimate in (2.229) is
implicit in (2.228). To prove the first estimate in (2.229), retain notation introduced
above and, now with the choice c := ffl


ν dσ ∈ C, estimate

 so+r

so−r
|z′(s)− ic| ds = 1

2r

ˆ so+r

so−r
|z′(s)− ic| ds ≤ 1

2r

ˆ
z−1()

|z′(s)− ic| ds

= 1

2r

ˆ
z−1()

|ν(z(s))− c| ds = 1

2r

ˆ


|ν − c| dσ

= σ()

2r

 


|ν − c| dσ ≤ (1 + �)

 


|ν − c| dσ

≤ (1 + �)‖ν‖BMO (�,σ), (2.246)

thanks to (2.221), (2.226), (2.225), and (2.232). This readily yields the first estimate
in (2.229).

To deal with the very last claim in item (vii), fix some s1, s2 ∈ R with s1 < s2,
set I := [s1, s2] and abbreviate z′I :=

ffl
I
z′(s) ds. Lemma 2.10 then permits us to

estimate

‖z′‖2
BMO2(R,L1)

≥
 
I

|z′(s)− z′I |2 ds = 1 −
∣
∣∣
z(s2)− z(s1)

s2 − s1

∣
∣∣
2
. (2.247)

In turn, this implies
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|s1 − s2| ≤ |z(s1)− z(s2)|√
1 − ‖z′‖2

BMO2(R,L1)

= (1 + �∗)|z(s1)− z(s2)|, (2.248)

provided �∗ is defined as in (2.230). This shows that, indeed, � is a �∗-CAC. � 
Having discussed a number of basic properties of chord-arc curves in Proposi-

tion 2.10, we now wish to elaborate on the manner in which concrete examples of
chord-arc curves may be produced. To set the stage for the subsequent discussion
observe that, when specialized to the one-dimensional setting, (2.126)–(2.128)
imply that for each function f ∈ CMO(R,L1) we have

lim−∞<s1<s2<+∞|s1|+|s2|→∞

(  s2

s1

∣∣∣f −
 s2

s1

f dL1
∣∣∣ dL1

)
= 0, (2.249)

and

lim−∞<s1<s2<+∞
s2−s1→0+

(  s2

s1

∣
∣∣f −

 s2

s1

f dL1
∣
∣∣ dL1

)
= 0. (2.250)

These properties are relevant in the context of the next proposition, describing a
wealth of examples of chord-arc curves in the plane.

Proposition 2.11 Suppose b ∈ CMO(R,L1) is a real-valued function and consider
the assignment

R � s �−→ z(s) :=
ˆ s

0
eib(t) dt ∈ C. (2.251)

If said assignment is injective then R � s �→ z(s) ∈ C is, in fact, the arc-length
parametrization of a chord-arc curve (which, in particular, passes through infinity
in the plane).

Proof Introduce

F(s1, s2) := z(s1)− z(s2)

s1 − s2
for each s1, s2 ∈ R with s1 �= s2. (2.252)

Then, whenever −∞ < s1 < s2 < +∞ and with bI abbreviating
ffl s2
s1
b(t) dt , we

may write

F(s1, s2) =
 s2

s1

eib(t) dt =
 s2

s1

(
eib(t) − eibI

)
dt + eibI . (2.253)

Recall that
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|eiθ − 1| =
∣∣∣
ˆ θ

0
ieit dt

∣∣∣ ≤
∣∣∣
ˆ θ

0

∣∣ieit
∣∣ dt

∣∣∣ = |θ | for each θ ∈ R. (2.254)

Then, since b is real-valued, we may use (2.254) to estimate

∣∣∣
 s2

s1

(
eib(t) − eibI

)
dt
∣∣∣ =

∣∣∣
 s2

s1

(
ei(b(t)−bI ) − 1

)
dt
∣∣∣

≤
 s2

s1

∣∣ei(b(t)−bI ) − 1
∣∣ dt ≤

 s2

s1

|b(t)− bI | dt.
(2.255)

According to (2.249)–(2.250) (written for b in place of f ), the last integral in (2.255)
converges to zero as either |s1| + |s2| → ∞ or s2 − s1 → 0+. Since

∣∣eibI
∣∣ = 1, we

conclude that

lim−∞<s1 �=s2<+∞|s1|+|s2|→∞
|F(s1, s2)| = 1 and lim−∞<s1 �=s2<+∞

|s1−s2|→0+
|F(s1, s2)| = 1. (2.256)

Given that, by assumption, the assignment R � s �→ z(s) ∈ C is injective, we also
have

F(s1, s2) �= 0 whenever −∞ < s1 �= s2 < +∞. (2.257)

From (2.256), (2.257), and the fact that F : {(s1, s2) ∈ R2 : s1 �= s2} → C

is continuous, we conclude that there exists c ∈ (0, 1) with the property that
|F(s1, s2)| ≥ c for each s1, s2 ∈ R with s1 �= s2. In view of (2.252), this implies

|s1 − s2| ≤ c−1|z(s1)− z(s2)| for each s1, s2 ∈ R. (2.258)

In particular, this entails lim
s→±∞ |z(s)| = ∞. Also, the assignment R � s �→ z(s) ∈

C is continuous, and it is assumed to be injective. Given that |z′(s)| = ∣∣eib(s)
∣∣ = 1

for L1-a.e. s ∈ R, since b is real-valued, it follows that R � s �→ z(s) ∈ C is
the arc-length parametrization of a Jordan curve in the plane which passes through
infinity. � 

Here is a version of Proposition 2.11 in which the membership of b to
CMO(R,L1) is replaced by the demand that ‖b‖L∞(R,L1) <

π
2 . In an interesting

twist, this forces the image of (2.251) to be a Lipschitz graph.

Proposition 2.12 If b ∈ L∞(R,L1) is a real-valued function with the property
that ‖b‖L∞(R,L1) < π

2 then the assignment (2.251) is actually the arc-length
parametrization of a Lipschitz graph in the plane (hence, in particular, a chord-arc
curve).



2.3 Chord-Arc Curves in the Plane 79

Proof Suppose there exists θ ∈ (0, π/2) such that b(t) ∈ (−θ, θ) for L1-a.e. t ∈ R.
Since for L1-a.e. t ∈ R we have z′(t) = eib(t) = cos(b(t))+ i sin(b(t)) given that b
is real-valued, it follows that

Re z′(t) = cos(b(t)) ≥ cos θ > 0 for L1-a.e. t ∈ R. (2.259)

Granted this, whenever −∞ < s1 < s2 < +∞ we may estimate

|z(s2)− z(s1)| ≥ Re
(
z(s2)− z(s1)

) = Re
ˆ s2

s1

z′(t) dt =
ˆ s2

s1

Rez′(t) dt

≥
ˆ s2

s1

cos θ dt = (cos θ)(s2 − s1), (2.260)

which, as in the end-game of the proof of Proposition 2.11, implies that the image
of z(·) is a chord-arc curve � in the plane. As such, Proposition 2.10 applies and
gives that if � denotes the region in C lying to the left of the curve � (relative to
the orientation � inherits from its arc-length parametrization R � s �→ z(s) ∈ �),
then � is an Ahlfors regular domain whose topological boundary is �, and whose
geometric measure theoretic outward unit normal ν is given at L1-a.e. s ∈ R by
ν(z(s)) = −iz′(s). Consider next the constant vector field h := (0,−1) ≡ −i in C
and regard ν as a R2-valued function. Then, with 〈·, ·〉 denoting the standard inner
product in R2, we have

〈
ν(z(s)), h(z(s))

〉 = Re
(
iν(z(s))

)

= Re z′(s) ≥ cos θ > 0 for L1-a.e. s ∈ R. (2.261)

This goes to show that there exists a constant vector field which is transverse to �
and, as a consequence of work in [59], we conclude that � is the upper-graph of a
Lipschitz function ϕ : R→ R. The desired conclusion now follows. � 

Another sub-category of chord-arc curves is offered by graphs of real-valued
BMO1 functions defined on the real line.

Proposition 2.13 Let ϕ ∈ W
1,1
loc (R) be such that ϕ′ ∈ BMO (R,L1) and consider

its graph � := {(
x, ϕ(x)

) : x ∈ R} ⊆ R2. Then � is a �-CAC corresponding to
� = ‖ϕ′‖BMO (R,L1).

Proof Throughout, identify R2 with C. Since functions in W
1,1
loc (R) are locally

absolutely continuous (cf., e.g., [85, Corollary 7.14, p. 223]), we conclude that �
is a curve in the plane, with parametrization R � x �→ x + iϕ(x) ∈ �. Hence, �
is a Jordan curve that passes through infinity in the plane. From [61, Proposition
2.25, p. 2616] we know that � is an Ahlfors regular set which, in light of (2.210)
implies that the curve � is also locally rectifiable. Consider two arbitrary points
z1, z2 ∈ �, say z1 :=

(
a, ϕ(a)

)
and z2 :=

(
b, ϕ(b)

)
for some a, b ∈ R with a < b,
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and denote by �z1,z2 the sub-arc of � with endpoints z1, z2. From [61, Proposition
2.25, p. 2616] we also know that the arc-length measure σ := H1�� on the curve
� satisfies

�(z1, z2) = σ(�z1,z2) =
ˆ b

a

√
1 + |ϕ′(x)|2 dx. (2.262)

Observe that the function F : R → R defined as F(t) := √
1 + t2 for each t ∈ R

is Lipschitz, with Lipschitz constant ≤ 1, since |F ′(t)| = |t |/√1 + t2 ≤ 1 for each
t ∈ R. Consequently, if we set

ϕ′I :=
 b

a

ϕ′ dL1 = ϕ(b)− ϕ(a)

b − a
, (2.263)

then

ˆ b

a

√
1 + |ϕ′(x)|2 dx =

ˆ b

a

F (ϕ′(x)) dx

≤
ˆ b

a

|F(ϕ′(x))− F(ϕ′I )| dx + (b − a)F (ϕ′I )

≤
ˆ b

a

|ϕ′(x)− ϕ′I | dx + (b − a)

√
1 + (ϕ′I )2

≤ (b − a)‖ϕ′‖BMO (R,L1) + (b − a)

√

1 +
(ϕ(b)− ϕ(a)

b − a

)2

≤ |z1 − z2|‖ϕ′‖BMO (R,L1) + |z1 − z2|

= (
1 + ‖ϕ′‖BMO (R,L1)

)|z1 − z2|. (2.264)

From (2.262) and (2.264) we therefore conclude that (2.216) holds for the choice
� := ‖ϕ′‖BMO (R,L1), and the desired conclusion follows. � 

Another basic link between chord-arc curves in the plane and the John-Nirenberg
space BMO on the real line has been noted by R. Coifman and Y. Meyer.
Specifically, [28] contains the following result: if � ⊆ C is a chord-arc curve then
its arc-length parametrization R � s �→ z(s) ∈ � satisfies z′(s) = eib(s) for L1-
a.e. s ∈ R for some real-valued function b ∈ BMO(R,L1) and, in the converse
direction, for any given real-function b ∈ BMO(R,L1) whose BMO semi-norm
is sufficiently small, the function R � s �→ z(s) := ´ s

0 eib(t) dt ∈ C is the arc-
length parametrization of a chord-arc curve (cf. also [29] for related results). Below
we further elaborate on this last part of Coifman-Meyer’s result. In particular, the
analysis contained in our next proposition (which may be thought of as a quantitative
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version of Proposition 2.11) is going to be instrumental in producing a large variety
of examples of δ-AR domains a little later (see Example 2.7).

Proposition 2.14 Let b ∈ BMO (R,L1) be a real-valued function with

‖b‖BMO (R,L1) < 1 (2.265)

and introduce

� := ‖b‖BMO (R,L1)

1 − ‖b‖BMO (R,L1)

∈ [0,∞). (2.266)

Define z : R→ C by setting

z(s) :=
ˆ s

0
eib(t) dt for each s ∈ R. (2.267)

Finally, consider � := z(R), the image of R under the mapping z(·). Then the
following statements are true.

(i) The set � is a �-CAC which contains the origin 0 ∈ C, and the mapping given
by R � s �−→ z(s) ∈ � is its arc-length parametrization. In addition,

‖z′‖BMO (R,L1) ≤ 2‖b‖BMO (R,L1). (2.268)

(ii) Denote by � the region of the plane that is lying to the left of the curve �
(relative to the orientation� inherits from its arc-length parametrization given
by R � s �→ z(s) ∈ �). Then the set � is the image of the upper half-plane
under a global bi-Lipschitz homeomorphism of C, and

the Ahlfors regularity constant of ∂� and the local John con-
stants of � stay bounded as ‖b‖BMO (R,L1) −→ 0+. (2.269)

Furthermore, the geometric measure theoretic outward unit normal ν of �
satisfies

‖ν‖BMO(�,σ) ≤ 4�. (2.270)

(iii) With the piece of notation introduced in (2.97), if in place of (2.265) one now
assumes

‖b‖BMO2(R,L1) <
√

2, (2.271)

then � is a �2-CAC with
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�2 :=
‖b‖2

BMO2(R,L1)

2 − ‖b‖2
BMO2(R,L1)

∈ [0,∞). (2.272)

As a consequence of this and (2.229), in such a scenario one has

‖ν‖BMO(�,σ) ≤ 2
√
�2(2 + �2). (2.273)

Proof The fact that b is real-valued entails that eib(·) ∈ L∞(R,L1). In turn, this
membership guarantees that z(·) in (2.267) is a well-defined Lipschitz function on
R, with z(0) = 0 ∈ C, and such that z′(s) = eib(s) for L1-a.e. s ∈ R. In particular,

|z′(s)| = 1 for L1-a.e. s ∈ R. (2.274)

We claim that the inequalities in (2.219) hold. To see this, for each s1, s2 ∈ R we
write (keeping in mind that b is real-valued)

|z(s1)− z(s2)| =
∣∣
∣
ˆ s1

0
eib(t) dt −

ˆ s2

0
eib(t) dt

∣∣
∣ =

∣∣
∣
ˆ s1

s2

eib(t) dt
∣∣
∣

≤
∣∣∣
ˆ s1

s2

∣∣eib(t)
∣∣ dt

∣∣∣ = |s1 − s2|, (2.275)

justifying the first inequality in (2.219). To prove the second inequality in (2.219),
for each finite, non-trivial, sub-interval I of R introduce

bI :=
 
I

b(t) dt, mI := eibI , (2.276)

and note that the fact that b is real-valued implies |mI | = 1. Also, m−1
I = e−ibI .

Assume −∞ < s1 < s2 < +∞ and set I := [s1, s2]. We may then estimate

∣∣z(s1)− z(s2)−mI · (s1 − s2)
∣∣ =

∣∣∣
ˆ s2

s1

(z′(t)−mI ) dt
∣∣∣

=
∣∣∣
ˆ s2

s1

(
z′(t)m−1

I − 1
)

dt
∣∣∣ =

∣∣∣
ˆ s2

s1

(
ei(b(t)−bI ) − 1

)
dt
∣∣∣

≤
ˆ s2

s1

∣
∣ei(b(t)−bI ) − 1

∣
∣ dt ≤

ˆ s2

s1

|b(t)− bI | dt

= |s1 − s2|
 
I

|b(t)− bI | dt ≤ |s1 − s2|‖b‖BMO (R,L1)
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=
( �

1 + �

)
|s1 − s2|, (2.277)

where we have used the fact that Lipschitz functions are locally absolutely continu-
ous (hence, the fundamental theorem of calculus applies), as well as the elementary
inequality from (2.254). From (2.277), we obtain

|s1 − s2| = |mI · (s1 − s2)| ≤ |z(s1)− z(s2)| + |z(s1)− z(s2)−mI · (s1 − s2)|

≤ |z(s1)− z(s2)| +
( �

1 + �

)
|s1 − s2|, (2.278)

which then readily yields the second estimate in (2.219). In particular, (2.219)
implies that R � s �→ z(s) ∈ � is a bi-Lipschitz bijection. The argument so far
shows that � is a �-CAC passing through the origin 0 ∈ C, and R � s �−→ z(s) ∈ �

is its arc-length parametrization. To finish the treatment of the claims in item (i),
there remains to justify (2.268). To this end, given any finite interval I ⊂ R, set
bI := ffl

I
b(t) dt ∈ R and mI := eibI ∈ S1 (with the two memberships being a

consequence of the fact that b is real-valued). With z′I :=
ffl
I
z′(s) ds ∈ C we may

then estimate (bearing in mind that m−1
I = e−ibI and the inequality in (2.254))

 
I

∣∣z′(s)− z′I
∣∣ ds ≤ 2

 
I

∣∣z′(s)−mI

∣∣ ds = 2
 
I

∣∣z′(s)m−1
I − 1

∣∣ ds

= 2
 
I

∣∣ei(b(s)−bI ) − 1
∣∣ ds ≤ 2

 
I

|b(s)− bI | ds

≤ 2‖b‖BMO (R,L1), (2.279)

and (2.268) readily follows from this. Next, all but the last claim in item (ii) are
consequences of (2.227). The estimate in (2.270) is obtained by combining the first
inequality in (2.228) with (2.268) and (2.266).

To deal with the claims in item (iii), make the assumption that (2.271) holds and
define �2 as in (2.272). Whenever −∞ < s1 < s2 < +∞ and I := [s1, s2] we may
estimate

s2 − s1 ≤
√

(s2 − s1)2 +
∣∣∣
ˆ s2

s1

(b(t)− bI ) dt
∣∣∣
2

=
∣∣∣(s2 − s1)+ i

ˆ s2

s1

(b(t)− bI ) dt
∣∣∣

=
∣
∣∣mI · (s2 − s1)+mI ·

ˆ s2

s1

i(b(t)− bI ) dt
∣
∣∣
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≤ |z(s2)− z(s1)|

+
∣∣
∣z(s2)− z(s1)−mI · (s2 − s1)−mI ·

ˆ s2

s1

i(b(t)− bI ) dt
∣∣
∣. (2.280)

Note that the last term above may be written as

∣∣∣z(s2)− z(s1)−mI · (s2 − s1)−mI ·
ˆ s2

s1

i(b(t)− bI ) dt
∣∣∣

=
∣
∣∣
ˆ s2

s1

(
z′(t)−mI −mI · i(b(t)− bI )

)
dt
∣
∣∣

=
∣∣∣
ˆ s2

s1

(
z′(t)m−1

I − 1 − i(b(t)− bI )
)

dt
∣∣∣

=
∣∣
∣
ˆ s2

s1

(
ei(b(t)−bI ) − 1 − i(b(t)− bI )

)
dt
∣∣
∣. (2.281)

Also, for each θ ∈ R we may use (2.254) to write

|eiθ − 1 − iθ | =
∣
∣∣
ˆ θ

0
i(eit − 1) dt

∣
∣∣ ≤

∣
∣∣
ˆ θ

0

∣∣i(eit − 1)
∣∣ dt

∣
∣∣

≤
∣∣∣
ˆ θ

0
|t | dt

∣∣∣ = θ2/2. (2.282)

From (2.280), (2.281), (2.282), (2.97), and (2.272) we then conclude that

s2 − s1 ≤ |z(s2)− z(s1)| + 1

2

ˆ s2

s1

|b(t)− bI |2 dt

≤ |z(s2)− z(s1)| + 1
2 (s2 − s1)‖b‖2

BMO2(R,L1)

= |z(s2)− z(s1)| +
( �2

1 + �2

)
(s2 − s1). (2.283)

From (2.283) we conclude that the version of (2.219) with � replaced by �2 holds.
In particular, � is a �2-CAC. The proof of Proposition 2.14 is therefore complete.

� 
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2.4 The Class of Delta-Flat Ahlfors Regular Domains

We begin by making the following definition which is central for the present work.
This should be compared with [61, Definitions 4.7-4.9, p. 2690] where related,
yet rather distinct, variants have been considered. Specifically, the definitions
in [61] contain additional geometric hypotheses and are designed to work well
when dealing with domains with compact boundaries (as opposed to the present
endeavors, where we shall mostly consider domains with unbounded boundaries).

Definition 2.15 Consider a parameter δ > 0. Call a nonempty, proper subset
� of Rn a δ-flat Ahlfors regular domain (or δ-flat AR domain, or
simply δ-AR domain) provided � is an Ahlfors regular domain (in the sense of
Definition 2.4) whose geometric measure theoretic outward unit normal ν satisfies
(with σ := Hn−1�∂�)

‖ν‖[BMO(∂�,σ)]n < δ. (2.284)

In the class of Ahlfors regular domains we always have ‖ν‖[BMO(∂�,σ)]n ≤ 1 (as
noted in (2.118)), so condition (2.284) is redundant when δ > 1. We will primarily
be interested in the case when δ is small. In particular, when δ ∈ (0, 1), Lemma 2.8
ensures that ∂� is an unbounded set.

Let us also note here that, as is visible from the first inequality in (2.119),
whenever � ⊆ Rn is a δ-AR domain with δ ∈ (0, 1) then its geometric measure
theoretic outward unit normal ν satisfies (with the infimum taken over all surface
balls  ⊆ ∂�)

inf
⊆∂�

∣∣∣
 


ν dσ
∣∣∣ > 1 − δ. (2.285)

Conversely, given any Ahlfors regular domain � ⊆ Rn, it follows from the second
inequality in (2.119) that � is a δ-AR domain whenever

δ >
√

2

√

1 − inf
⊆∂�

∣∣∣
 


ν dσ
∣∣∣, (2.286)

where the infimum is taken over all surface balls  ⊆ ∂�.
The discussion surrounding (2.285)–(2.286) shows that the condition that

the number inf
⊆∂�

∣∣∣
 


ν dσ
∣∣∣ is sufficiently close to 1 (2.287)

is, in many regards, a good substitute for the demand that ‖ν‖[BMO(∂�,σ)]n is small.
Our next theorem describes some of the basic topological and geometric measure

theoretic properties of sets in the class of δ-flat Ahlfors regular domains, with
parameter δ ∈ (0, 1) small.
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Theorem 2.5 Let � ⊆ Rn, where n ∈ N satisfies n ≥ 2, be a δ-flat Ahlfors regular
domain (aka δ-AR domain), in the sense of Definition 2.15. Make the assumption
that δ ∈ (0, 1) is sufficiently small relative to the Ahlfors regularity constant of ∂�
and the dimension n.

Then � is a two-sided NTA domain, in particular, a UR domain satisfying a
two-sided local John condition (hence also a two-sided cork screw condition). In
all cases, the intervening constants may be controlled solely in terms of Ahlfors
regularity constant of ∂� and the dimension n.

In addition, �, �, ∂�, Rn \ �, and Rn \ � are all unbounded connected sets,
∂(� ) = ∂�, ∂(Rn \�) = ∂�, and ∂(Rn \�) = ∂�.

Finally, in the case when n = 2, both � and R2 \� are simply connected.

Proof All claims made in the statement of the theorem are consequences of
Corollary 2.2, Theorem 2.4, and Corollary 2.2. � 

Examples and counterexamples of δ-AR domains in Rn are as follows.

Example 2.1 The set � := Rn+ is a δ-AR domain for each δ > 0. Indeed, the
outward unit normal ν = −en = (0, . . . , 0,−1) to � is constant, hence its BMO
semi-norm vanishes. More generally, any half-space in Rn, i.e., any set of the form

�xo,ξ :=
{
x ∈ Rn : 〈x − xo, ξ 〉 > 0

}

with xo ∈ Rn and ξ ∈ Sn−1,
(2.288)

is a δ-AR domain for each δ > 0.
Consider next a sector of aperture θ ∈ (0, 2π) in the two-dimensional space, i.e.,

a planar set of the form

�θ :=
{
x ∈ R2 \ {xo} : x−xo|x−xo| · ξ > cos(θ/2)

}

with xo ∈ R2, θ ∈ (0, 2π), and ξ ∈ S1,
(2.289)

and abbreviate σθ := H1�∂�θ . Then a direct computation shows that the outward
unit normal vector ν to �θ , regarded as a complex-valued function, satisfies

‖ν‖BMO(∂�θ ,σθ ) = | cos(θ/2)|. (2.290)

Hence,

�θ is a δ-AR domain if and only if δ > | cos(θ/2)|. (2.291)

One last example in the same spirit is offered by the cone of aperture θ ∈ (0, 2π)
in Rn with vertex at the origin and axis along en, i.e.,

�θ :=
{
x ∈ Rn \ {0} : xn

|x| > cos(θ/2)
}
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= {
x = (x′, xn) ∈ Rn−1 × R : xn > φ(x′)

}
, (2.292)

where φ : Rn−1 → R is given by φ(x′) := |x′| cot(θ/2) for each x′ ∈ Rn−1. If
we abbreviate σθ := Hn−1�∂�θ , then a direct computation (using (2.295) below)
shows that the outward unit normal vector ν to �θ satisfies

‖ν‖[BMO(∂�θ ,σθ )]n = | cos(θ/2)|, hence once again

�θ is a δ-AR domain if and only if δ > | cos(θ/2)|.
(2.293)

Example 2.2 If � ⊆ Rn is a δ-AR domain for some δ > 0, then Rn \ � is also a
δ-AR domain (having the same topological and measure theoretic boundaries as �,
and whose geometric measure theoretic outward unit normal is the opposite of the
one for �). Also, we note that any rigid transformation of Rn preserves the class of
δ-AR domains. One may also check from definitions that there exists a dimensional
constant cn ∈ (0,∞) with the property that if � is a δ-AR domain in Rn for some
δ > 0 then �× R is a (cnδ)-AR domain in Rn+1.

Example 2.3 Given δ > 0, the region � := {
(x′, t) ∈ Rn−1 × R : t > φ(x′)

}

above the graph of a Lipschitz function φ : Rn−1 → R whose Lipschitz constant is
< 2−3/2δ is a δ-AR domain. To see this is indeed the case, it is relevant to note that

F : Rn → Rn defined for all x = (x′, xn) ∈ Rn−1 × R = Rn
as F(x′, xn) := x + φ(x′)en =

(
x′, xn + φ(x′)

) (2.294)

is a bijective function with inverse F−1 : Rn → Rn given at each point y = (y′, yn)
in Rn−1 ×R = Rn by F−1(y′, yn) = y−φ(y′)en =

(
y′, yn− φ(y′)

)
, and that both

F,F−1 are Lipschitz functions with constant≤ 1+‖∇φ‖[L∞(Rn−1,Ln−1)]n−1 . Hence,
� is the image of the upper half-space Rn+ under the bi-Lipschitz homeomorphism
F , which also maps Rn− onto Rn \� and Rn−1×{0} onto ∂�. This goes to show that
� is an open set satisfying a two-sided cork screw condition and with an Ahlfors
regular boundary, hence also an Ahlfors regular domain (cf. (2.47)). To conclude
that � is a δ-AR domain we need to estimate the BMO semi-norm of its geometric
measure theoretic outward unit normal. Since this satisfies

ν
(
x′, φ(x′)

) = (∇φ(x′),−1)
√

1 + |∇φ(x′)|2 for Ln−1-a.e. x′ ∈ Rn−1, (2.295)

it follows that for Ln−1-a.e. point x′ ∈ Rn−1 we have

ν
(
x′, φ(x′)

)+ en =
(

∇φ(x′)
√

1 + |∇φ(x′)|2 , 1 − 1
√

1 + |∇φ(x′)|2
)

(2.296)
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=
(

∇φ(x′)
√

1 + |∇φ(x′)|2 ,
|∇φ(x′)|2

√
1 + |∇φ(x′)|2(1 +√

1 + |∇φ(x′)|2)

)

.

Therefore, with σ := Hn−1�∂�, we may estimate

‖ν‖[BMO(∂�,σ)]n = ‖ν + en‖[BMO(∂�,σ)]n ≤ 2 ‖ν + en‖[L∞(∂�,σ)]n

= 23/2

∥
∥∥∥∥

|∇φ|
(1 + |∇φ|2)1/4(1 +√

1 + |∇φ|2)1/2

∥
∥∥∥∥
L∞(Rn−1,Ln−1)

≤ 23/2 ‖∇φ‖[L∞(Rn−1,Ln−1)]n−1 < δ. (2.297)

All things considered, this analysis establishes that � ⊆ Rn is a δ-AR domain, with

δ = O
(
‖∇φ‖[L∞(Rn−1,Ln−1)]n−1

)
as ‖∇φ‖[L∞(Rn−1,Ln−1)]n−1 −→ 0+. In addition,

since the Lipschitz constants of the functions F,F−1 stay bounded when the
Lipschitz constant of φ, i.e., ‖∇φ‖[L∞(Rn−1,Ln−1)]n−1 , stays bounded, we ultimately
conclude that

by taking ‖∇φ‖[L∞(Rn−1,Ln−1)]n−1 sufficiently small, matters
may be arranged so that the above set � ⊆ Rn is a δ-AR domain
with δ > 0 as small as desired, relative to the Ahlfors regularity
constant of ∂�.

(2.298)

Example 2.4 To illustrate the scope of Example 2.5 discussed above, work in the
two-dimensional setting and consider upper-graphs of piecewise linear functions
with (relatively) small slopes. Concretely, fix a parameter ε ∈ (0,∞) and suppose
φ : R→ R is a function whose graph is a concatenation of line segments with slope
belonging to [−ε, ε]. Then φ ∈ C 0(R) and its distributional derivative φ′ is a simple
function taking values in the interval [−ε, ε]. Then

φ′ ∈ L∞(R,L1) and ‖φ′‖L∞(R,L1) ≤ ε. (2.299)

As such, φ is a Lipschitz function. In particular, � := {
(x, y) ∈ R2 : y > φ(x)

}

is an Ahlfors regular domain. If ν denotes its geometric measure theoretic outward
unit normal, and σ := H1�∂�, then (2.297) presently implies

‖ν‖[BMO(∂�,σ)]2 ≤ 23/2ε. (2.300)

Granted this, from (2.298) we then conclude that

given any δ ∈ (0, 1), by taking ε ∈ (0, 2−3/2δ) ensures that the
above set � ⊆ R2 is a δ-AR domain with the Ahlfors regularity
constant of ∂� bounded independently of δ.

(2.301)
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Finally, we note that if the graph of φ : R → R is a concatenation of line
segments with slope alternating between +ε and −ε, then (2.300) together with
(2.290) imply

ε√
1 + ε2

≤ ‖ν‖[BMO(∂�,σ)]2 ≤ 23/2ε. (2.302)

Example 2.5 Given any δ > 0, the region � := {
(x′, t) ∈ Rn−1 × R : t > φ(x′)

}

above the graph of some BMO1 function φ : Rn−1 → R, (namely, a function
φ ∈ L1

loc(R
n−1,Ln−1) with ∇φ belonging to

[
BMO(Rn−1,Ln−1)

]n−1), satisfying
(for some purely dimensional constant Cn ∈ (1,∞))

‖∇φ‖[BMO(Rn−1,Ln−1)]n−1 < min{1, δ/Cn
}

(2.303)

is a δ-AR domain. Indeed, BMO1 domains are contained in the class of Zygmund
domains (cf. [61, Proposition 3.15, p. 2637]) which, in turn, are NTA domains
(cf. [66, Proposition 3.6, p. 94]). In particular, � satisfies a two-sided cork screw
condition, hence ∂∗� = ∂� (cf. (2.47)). From [61, Corollary 2.26, p. 2622] we
also know that ∂� is an Ahlfors regular set. Finally, [61, Proposition 2.27, p. 2622]
guarantees the existence of a purely dimensional constant C ∈ (0,∞) such that

‖ν‖[BMO(∂�,σ)]n (2.304)

≤ C ‖∇φ‖[BMO(Rn−1,Ln−1)]n−1 ·
(

1 + ‖∇φ‖[BMO(Rn−1,Ln−1)]n−1

)
.

Hence ‖ν‖[BMO(∂�,σ)]n < δ if (2.303) is satisfied with Cn := 2C, proving that a �
is indeed a δ-AR domain. In addition,

taking ‖∇φ‖[BMO(Rn−1,Ln−1)]n−1 small enough ensures that the
above set � ⊆ Rn is a δ-AR domain with δ > 0 as small as
wanted, relative to the Ahlfors regularity constant of ∂�.

(2.305)

To offer concrete, interesting examples and counterexamples pertaining to
BMO1, work in the two-dimensional setting, i.e., when n = 2. For a fixed arbitrary
number ε ∈ (0,∞) consider the continuous odd function φε : R→ R defined as

φε(x) :=
{
ε x

(
ln |x| − 1

)
if x ∈ R \ {0},

0 if x = 0,
for each x ∈ R. (2.306)

Then from [102, Exercise 2.127, p. 89] we know that the distributional derivative of
this function is φ′ε = ε ln | · |. Hence, for some absolute constant C ∈ (0,∞),

∥∥φ′ε
∥∥

BMO(R,L1)
≤ Cε (2.307)
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Fig. 2.1 The prototype of a non-Lipschitz δ-AR domain �ε for which δ = O(ε) as ε → 0+ and
such that the Ahlfors regularity constant of ∂�ε and the local John constants of �ε are uniformly
bounded in ε

so φε is indeed in BMO1. This being said, φε is not a Lipschitz function, so this
example is outside the scope of Example 2.3. Consequently, the region �ε lying
above the graph of φε is a non-Lipschitz δ-AR domain in the plane with δ = O(ε)

as ε → 0+ (as seen from (2.304) and (2.307)). See Fig. 2.1.
On the other hand, the distributional derivative of the function ψε : R → R

defined as

ψε(x) :=
{
ε x

(
ln |x| − 1

)
if x > 0,

0 if x ≤ 0,
for each x ∈ R, (2.308)

isψ ′
ε = ε

(
ln |·|)1(0,∞) which fails to be in BMO(R, L1) (recall that the latter space

is not stable under multiplication by cutoff functions). Hence, ψε does not belong to
BMO1. In this vein, we wish to note that while the planar region �̃ε lying above the
graph of ψε continues to be an Ahlfors regular domain satisfying a two-sided local
John condition for each ε > 0, its (complex-valued) geometric measure theoretic
outward unit normal ν satisfies, due to the corner singularity at 0 ∈ ∂�̃ε and (2.290)
with θ = π/2,
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Fig. 2.2 A family
{
�̃ε

}
ε>0 of Ahlfors regular domains, with bounded Ahlfors regularity con-

stants, which does not contain a δ-AR domain with δ ∈ (0, 1/
√

2)

‖ν‖BMO(∂�̃ε ,̃σε)
≥ 1√

2
for each ε > 0, (2.309)

where σ̃ε := H1�∂�̃ε. Consequently, as ε → 0+, the set �̃ε never becomes a δ-AR
domain if δ ∈ (0, 1/

√
2). See Fig. 2.2.

Example 2.6 From [72, Theorem 2.1, p. 515] and [72, Remark 2.2, pp. 514-515]
we know that there exist dimensional constants δn ∈ (0,∞) and Cn ∈ (0,∞), with
the property that if � ⊆ Rn is a δo-Reifenberg flat domain, in the sense of [72,
Definition 1.2, pp. 509–510] with R = ∞ and with 0 < δo ≤ δn, and if the surface
measure σ := Hn−1�∂� satisfies

σ
(
B(x, r) ∩ ∂�) ≤ (1 + δo)υn−1r

n−1

for each x ∈ ∂� and r > 0,
(2.310)

(with υn−1 denoting the volume of the unit ball in Rn−1), then � is an Ahlfors
regular domain whose geometric measure theoretic outward unit normal ν satisfies
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‖ν‖[BMO(∂�,σ)]n ≤ Cn
√
δo. (2.311)

See also [26, p. 11] and [123] in this regard. Consequently, given any number δ > 0,
any δo-Reifenberg flat domain with 0 < δo < min

{
δn, (δ/Cn)

2
}

which satisfies
(2.310) is a δ-AR domain.

Example 2.7 Denote by� the region of the plane lying to one side of�, a �-CAC in
C. Then Proposition 2.10 implies that � is a δ-AR domain for any δ > 2

√
�(2 + �).

To offer a concrete example, consider a real-valued function b ∈ BMO (R,L1)

with ‖b‖BMO (R,L1) < 1 and define z : R→ C by setting

z(s) :=
ˆ s

0
eib(t) dt for each s ∈ R. (2.312)

If � ⊆ C ≡ R2 is the region of the plane to one side of the curve � := z(R), then
Proposition 2.10 and Proposition 2.14 imply that � is a connected Ahlfors regular
domain with ∂� = �, and whose geometric measure theoretic outward unit normal
ν to � is given by

ν(z(s)) = −ieib(s) for L1-a.e. s ∈ R. (2.313)

In addition, if we set σ := H1�∂� then (2.270) gives

‖ν‖BMO(∂�,σ) ≤
4‖b‖BMO (R,L1)

1 − ‖b‖BMO (R,L1)

. (2.314)

As a consequence, � is a δ-AR domain in R2 for each δ ∈ (0,∞) bigger than the
number in the right-hand side of (2.314).

For instance, we may take b to be a small multiple of the logarithm on the real
line, i.e.,

b(s) := ε ln |s| for each s ∈ R \ {0},
with 0 < ε < ‖ln | · |‖−1

BMO (R,L1)

(2.315)

(e.g., the computation on [55, p. 520] shows that ‖ln | · |‖BMO (R,L1) ≤ 3 ln(3/2),

so taking 0 < ε < [3 ln(3/2)]−1 ≈ 0.8221 will do). Such a choice makes b a
real-valued function with small BMO semi-norm which nonetheless maps R \ {0}
onto R. In view of the formula given in (2.313), this goes to show that Gauss’ map
� � z �→ ν(z) ∈ S1 is surjective, which may be interpreted as saying that the
unit normal rotates arbitrarily much along the boundary. In particular, the chord-arc
curve � produced in this fashion, which is actually the topological boundary of a
δ-AR domain � ⊆ R2 (with δ > 0 which can be made as small as one pleases by
taking ε > 0 appropriately small), fails to be a rotation of the graph of a function
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Fig. 2.3 Zooming in the curve s �→ z(s) at the point 0 ∈ C

(even locally, near the origin). This being said, from Proposition 2.10 we know that

the set � ⊆ R2 is actually bi-Lipschitz homeomorphic to the
upper half-plane.

(2.316)

Figure 2.3 depicts an unbounded δ-AR domain � ⊆ R2 which is not the upper-
graph of a function (in any system of coordinates isometric to the standard one in
the plane). The set � is the region lying to one side of the curve � = z(R) with
R � s �→ z(s) ∈ C defined by the formula given in (2.312) for the real-valued
function b as in (2.315) with 0 < ε < ‖ln | · |‖−1

BMO (R,L1)
. As visible from (2.314),

we have δ = O(ε) as ε → 0+.
In the above pictures we have taken ε = 0.4 < 1

2 ‖ln | · |‖−1
BMO (R,L1)

and

progressively zoomed in at the point 0 ∈ ∂�. The boundary of the set � is the
plot of the curve R � s �→ z(s) ∈ C with

z(s) =
ˆ s

0
eiε ln |t | dt =

{
(iε + 1)−1s eiε ln |s| if s ∈ R \ {0},
0 ∈ C if s = 0.

(2.317)
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Here, (iε+1)−1 is merely a complex constant, s is the scaling factor that determines
how far z(s) is from the origin (specifically, |z(s)| = |s|/√ε2 + 1), and eiε ln |s| is the
factor that determines how the two spirals (making up ∂�\ {0}, namely z((−∞, 0))
and z((0,+∞))) spin about the point 0 ∈ C. Note that |z(s)| growths linearly (with
respect to s) which is very fast compared to the spinning rate (which is logarithmic)
and this is why we have chosen to zoom in at the point 0 ∈ C in several distinct
frames to get a better understanding of how ∂� looks near 0. The fact that ∂� is
symmetric with respect to the origin is a direct consequence of R � s �→ z(s) ∈ C
being odd. If z(s) = reiθ is the polar representation of (2.317) for s ∈ (0,∞) then,
by taking ω := 2π − arccos

( 1√
ε2+1

)
, it follows that θ = ω + ε ln |s| and that

r = |z(s)| = (ε2 + 1)−1/2 |s| = (ε2 + 1)−1/2e(θ−ω)/ε.
In polar coordinates, the curve �+ := z

(
(0,+∞)

)
has the equation r = αeβθ

with α := (ε2 + 1)−1/2e−ω/ε ∈ (0,∞) and β := ε−1 ∈ (0,∞) which identifies it
precisely as a logarithmic spiral. In a similar fashion, the polar equation of the curve
�− := z

(
(−∞, 0)

)
is r = αeβθ with α := (ε2 + 1)−1/2e−(ω+π)/ε ∈ (0,∞) and

β := ε−1 ∈ (0,∞) which once again identifies it as a logarithmic spiral.
The MATLAB code that generated these pictures reads as follows:

s = [−100 : 0.001 : 100];
p = 0.4;
z=(1/(i*p+1.0))*s.*exp(i*p*log(abs(s)));
plot(real(z), imag(z),’LineWidth’, 2), grid on, axis equal

Finally, we wish to elaborate on (2.316) and, in the process, get independent
confirmation of (2.227) and (2.269). First, we observe that the δ-AR domain � ⊆ C
described above is the image of the upper half-plane R2+ under map F : C → C

defined for each z ∈ C by

F(z) :=
{
(iε + 1)−1z eiε ln |z| if z ∈ C \ {0},
0 ∈ C if z = 0.

(2.318)

Note that F is a bijective, odd function, with inverse F−1 : C → C given at each
ζ ∈ C by

F−1(ζ ) =
{
(iε + 1)ζ e−iε ln(|ζ |

√
ε2+1) if ζ ∈ C \ {0},

0 ∈ C if ζ = 0.
(2.319)

Also, whenever z1, z2 ∈ C are such that |z1| ≥ |z2| > 0 we may estimate

|F(z1)− F(z2)| ≤ 1√
ε2 + 1

{
|z1 − z2| + |z2|

∣∣eiε ln |z1| − eiε ln |z2|∣∣
}

(2.320)
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and

∣∣eiε ln |z1| − eiε ln |z2|∣∣ = ∣∣eiε(ln |z1|−ln |z2|) − 1
∣∣ ≤ ε

∣∣ ln |z1| − ln |z2|
∣∣

= ε ln
( |z1||z2|

) ≤ ε
( |z1||z2| − 1

) = ε
( |z1|−|z2||z2|

)

≤ ε
|z1−z2||z2| , (2.321)

using the fact that |eiθ − 1| ≤ |θ | for each θ ∈ R (cf. (2.254)) and 0 ≤ ln x ≤ x − 1
for each x ∈ [1,∞). From this we then eventually deduce that

|F(z1)− F(z2)| ≤ ε + 1√
ε2 + 1

|z1 − z2| for all z1, z2 ∈ C, (2.322)

hence F is Lipschitz. The same type of argument also shows that F−1 is also
Lipschitz, namely

|F−1(ζ1)− F−1(ζ2)| ≤ (ε + 1)
√
ε2 + 1 |ζ1 − ζ2| for all ζ1, ζ2 ∈ C, (2.323)

so we ultimately conclude that F : C→ C is an odd bi-Lipschitz homeomorphism
of the complex plane. In summary,

the δ-AR domain � ⊆ C defined as the region of the complex
plane lying to the left of the curve R � s �→ z(s) ∈ C defined in
(2.317) is in fact the image of the upper half-plane R2+ under the
odd bi-Lipschitz homeomorphism F : C→ C from (2.318).

(2.324)

Note that F also maps the lower half-plane R2− onto R2 \ �, and R × {0} onto
∂�. This is in agreement with (2.227). Moreover, since the Lipschitz constants of
F,F−1 stay bounded uniformly in ε ∈ (0, 1) (as is clear from (2.322), (2.323))
while, as noted earlier, δ = O(ε) as ε → 0+, we see that (as predicted in (2.269))

by taking ε ∈ (0, 1) sufficiently small, matters may be arranged
so the above set � ⊆ R2 is a δ-AR domain with δ > 0 as small
as one wishes, relative to the Ahlfors regularity constant of ∂�.

(2.325)

Example 2.8 We may also construct examples of δ-AR domains exhibiting multiple
spiral points. Specifically, suppose −∞ < t1 < t2 < · · · < tN−1 < tN < +∞, for
some N ∈ N, and consider

b(t) := ε

N∑

j=1

ln |t − tj | for each t ∈ R \ {t1, . . . , tN }, (2.326)
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for some sufficiently small ε > 0. Next, define z : R → C as in (2.312) for this
choice of the function b. Then Proposition 2.14 and Proposition 2.10 imply that the
region � in R2 lying to one side of the curve � := z(R) is indeed a δ-AR domain
and, in fact, δ = O(ε) as ε → 0+. Moreover, from (2.313) and (2.326) we see that
∂� = � looks like a spiral at each of the points z(t1), . . . , z(tN ) (cf. Fig. 1.1). Yet,
once again, there exists a bi-Lipschitz homeomorphism F : R2 → R

2 such that
� = F(R2+), R2 \ � = F(R2−), and ∂� = F(R × {0}) (cf. (2.227)). Also, (2.269)
presently entails

by choosing ε ∈ (0, 1) appropriately small, we may ensure that
� is a δ-AR domain in R2 with δ > 0 as small as desired, relative
to the Ahlfors regularity constant of ∂�.

(2.327)

Example 2.9 We wish to note that the construction in Example 2.8 may be modified
as to allow infinitely many spiral points. Specifically, assume {tj }j∈N ⊆ R is a given
sequence of real numbers and consider

0 < λj < 2−j min
{

1,
∥∥ln | · −tj |

∥∥−1
L1([−j,j ],L1)

}
for each j ∈ N. (2.328)

Also, suppose 0 < ε < ‖ln | · |‖−1
BMO(R,L1)

and define

b(t) := ε

∞∑

j=1

λj ln |t − tj | for each t ∈ R \ {tj }j∈N. (2.329)

The choice in (2.328) ensures that the above series converges absolutely in
L1(K,L1) for any compact subset K of R. This has two notable consequences.
First, the series in (2.329) converges absolutely in a pointwise sense L1-a.e. in R; in
particular, b is well defined at L1-a.e. point in R and takes real values. Second,

‖b‖BMO(R,L1) ≤ ε

∞∑

j=1

λj
∥∥ln | · −tj |

∥∥
BMO(R,L1)

= ε ‖ln | · |‖BMO(R,L1)

∞∑

j=1

λj < 1. (2.330)

Granted this, if we now define z : R→ C as in (2.312) for this choice of the function
b then Proposition 2.14 and Proposition 2.10 imply that the region � in R2 lying to
one side of the curve � := z(R) is a δ-AR domain with δ = O(ε) as ε → 0+. In
fact, there exists a bi-Lipschitz homeomorphism F : R2 → R

2 as in (2.227), and
(2.269) holds. We claim that matters may be arranged so that ∂� = � develops a
spiral at each of the points {z(tj )}j∈N. To this end, start by making the assumption
that the sequence {tj }j∈N does not have any finite accumulation points. Inductively,
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we may then select a sequence of small positive numbers {rj }j∈N ⊆ (0, 1) with the
property that the family of intervals Ij := (tj − rj , tj + rj ), j ∈ N, are mutually
disjoint. For each j ∈ N consider the nonempty compact set Kj := [−j, j ]\Ij and,
in addition to (2.328), impose the condition that

0 < λj < 2−j
∥∥ln | · −tj |

∥∥−1
L∞(Kj ,L1)

for each j ∈ N. (2.331)

Pick now jo ∈ N arbitrary. Then for each t ∈ Ijo decompose b(t) = f (t) + g(t)

where

f (t) := ελjo ln |t − tjo | and g(t) := ε
∑

j∈N\{jo}
λj ln |t − tj |. (2.332)

In view of (2.331), the series defining g converges uniformly on Ijo , hence g is
a continuous and bounded function on Ijo . Since f is continuous and unbounded
from below on (tjo , tjo + rjo ), it follows that the restriction of b to (tjo , tjo + rjo ) is
continuous and unbounded from below. This implies that b

(
(tjo , tjo + rjo )

)
contains

an interval of the form (−∞, ajo ), for some ajo ∈ R. Similarly, b
(
(tjo − rjo , tjo )

)

contains an interval of the form (−∞, cjo ), for some cjo ∈ R. Based on this and
(2.313) we then conclude that the normal ν(z(t)) completes infinitely many rotations
on the unit circle as t approaches tjo either from the left or from the right. Hence,
∂� = � develops a spiral at the point z(tjo ).

Example 2.10 Here we discuss a higher-dimensional analogue of (2.324). To set
the stage, fix an integer n ∈ N with n ≥ 3. With � ⊆ R2 ≡ C denoting the region
of the plane lying to the left of the curve R � s �−→ z(s) ∈ C defined in (2.317),
consider

�̃ := Rn−2 ×� ⊆ Rn. (2.333)

Bring back the odd bi-Lipschitz homeomorphism F : R2 ≡ C → C ≡ R2 from
(2.318), and consider

F̃ : Rn → Rn defined as F̃ (x) := (
x′′, F (xn−1, xn)

)

for each point x = (x′′, xn−1, xn) ∈ Rn−2 × R× R. (2.334)

Then one may check without difficulty that

F̃ is an odd bi-Lipschitz homeomorphism of Rn, and the set �̃
defined in (2.333) is, in fact, the image of the upper half-space
R
n+ under the mapping F̃ : Rn → Rn.

(2.335)

From this and Lemma 2.2 we may then conclude that
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�̃ is an Ahlfors regular domain, with the Ahlfors regularity
constant of ∂�̃ controlled solely in terms of the dimension n.

(2.336)

Since, as noted earlier, F also maps the lower half-plane R2− onto R2 \ �, and
R× {0} onto ∂�, it follows from (2.334) and (2.333) that

F̃ (Rn−) = Rn \ �̃ and F̃ (Rn−1 × {0}) = ∂�̃. (2.337)

From (2.25) and (2.336) we also know that

the geometric measure theoretic outward unit normal ν̃ to the set
�̃ := Rn−2 × � ⊆ Rn is given by ν̃(x) = (0′′, ν(xn−1, xn)) for
(Ln−2 ⊗H1)-a.e. point x = (x′′, xn−1, xn) ∈ ∂�̃ = Rn−2 × ∂�,
where 0′′ ∈ Rn−2 and ν is the geometric measure theoretic outward
unit normal to the set �.

(2.338)

From this it readily follows that there exists some purely dimensional constant
Cn in (0,∞) such that

‖̃ν‖[BMO(∂�̃,̃σ )]n ≤ Cn‖ν‖BMO(∂�,σ). (2.339)

By combining (2.339) with (2.314) we arrive at the conclusion that, for some purely
dimensional constant Cn ∈ (0,∞),

‖̃ν‖[BMO(∂�̃,̃σ )]n ≤ Cn
4‖b‖BMO (R,L1)

1 − ‖b‖BMO (R,L1)

, (2.340)

where σ̃ := Hn−1�∂�̃. As a consequence, �̃ is a δ-AR domain in Rn for each
δ ∈ (0,∞) bigger than the number in the right-hand side of (2.340). In particular,
choosing the function b as in (2.315) allows us to conclude that �̃ is a δ-AR domain
in Rn with δ = O(ε) as ε → 0+.

In addition, since the Lipschitz constants of F̃ , F̃−1 stay bounded uniformly in
the parameter ε ∈ (0, 1) (as is clear from (2.334), (2.322), (2.323)) while, as just
noted, δ = O(ε) as ε → 0+, we see that

by taking ε ∈ (0, 1) sufficiently small, matters may be arranged
so that the set �̃ ⊆ Rn defined in (2.333) is a δ-AR domain with
δ > 0 as small as one wishes, relative to the Ahlfors regularity
constant of ∂�̃.

(2.341)

Example 2.11 All sets considered so far have been connected. In the class of
disconnected sets in the complex plane consider a double sector of arbitrary aperture
θ ∈ (0, π), i.e., a set of the form
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� :=
{
x ∈ R2 \ {x0} :

∣∣ x−x0|x−x0| · ξ
∣∣ > cos(θ/2)

}

with x0 ∈ R2, θ ∈ (0, π), and ξ ∈ S1,
(2.342)

and abbreviate σ := H1�∂�. Then simple symmetry considerations show that for
each r ∈ (0,∞) the geometric measure theoretic outward unit normal ν to �

satisfies
ffl
B(xo,r)∩∂� ν dσ = 0, hence

‖ν‖[BMO(∂�,σ)]2 ≥
 
B(xo,r)∩∂�

∣∣∣ν −
 
B(xo,r)∩∂�

ν dσ
∣∣∣ dσ

=
 
B(xo,r)∩∂�

|ν| dσ = 1. (2.343)

As a consequence,

the double sector � from (2.342) is a disconnected Ahlfors
regular domain which satisfies a two-sided local John condition
but fails to be a δ-AR domain for each δ ∈ (0, 1].

(2.344)

We may even arrange matters so that the set in question has a disconnected
boundary. Specifically, given any two distinct points x0, x1 ∈ R2, along with an
angle θ ∈ (0, π), and a direction vector ξ ∈ S1, such that

x1 − x0

|x1 − x0| · ξ < cos(θ/2), (2.345)

consider

� :=
{
x ∈ R2 \ {x0} : x − x0

|x − x0| · ξ > cos(θ/2)
}

(2.346)

⋃{
x ∈ R2 \ {x1} : x − x1

|x − x1| · (−ξ) > cos(θ/2)
}
.

This is the union of two planar sectors with vertices at x0 and x1, axes along ξ and
−ξ , and common aperture θ . The condition in (2.345) ensures that said sectors are
disjoint, hence � is disconnected, with disconnected boundary. Note that if we set
σ := H1�∂� and ν stands for the geometric measure theoretic outward unit normal
to � then

lim
r→∞

 
B(xo,r)∩∂�

ν dσ = 0 (2.347)

which, much as in (2.343), once again implies that ‖ν‖[BMO(∂�,σ)]2 ≥ 1. Conse-
quently,
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the set � from (2.346) is an Ahlfors regular domain satisfying a
two-sided local John condition which is disconnected and has a
disconnected boundary, and which fails to be a δ-AR domain for
each δ ∈ (0, 1].

(2.348)

Similar considerations apply virtually verbatim in Rn with n ≥ 2 (working with
cones in place of sectors).

These examples are particularly relevant in the context of Theorem 2.4.

2.5 The Decomposition Theorem

Our first result in this section, which slightly refines work in [61], identifies general
geometric conditions on a set � ⊆ Rn of locally finite perimeter so that the inner
product between the integral average ν of outward unit normal ν to � in any given
surface ball  ⊆ ∂� and the “chord” x − y with x, y ∈  may be controlled in
terms of the radius of said ball and the BMO semi-norm of the outward unit normal
ν.

Proposition 2.15 Let � ⊆ Rn be an Ahlfors regular domain. Set σ := Hn−1�∂�
and denote by ν the geometric measure theoretic outward unit normal to �. Then
there exists C∗ ∈ (0,∞) depending only on the dimension n and the Ahlfors
regularity constant of ∂� such that for each dilation parameter λ ∈ [1,∞) one
has

sup
z∈∂�

sup
R>0

sup
x,y∈(z,λR)

R−1|〈x − y, ν(z,R)〉| ≤ C∗λ
(
1 + log2 λ)‖ν‖[BMO(∂�,σ)]n ,

(2.349)
where ν(z,R) :=

ffl
(z,R)

ν dσ for each z ∈ ∂� and R > 0.

Proof Let δ∗ ∈ (0, 1) be the threshold associated with the set � as in Theorem 2.3.
In particular, δ∗ depends only on n and the Ahlfors regularity constant of ∂�.

Case I. Assume ‖ν‖[BMO(∂�,σ)]n ≥ δ∗. For each location z ∈ ∂�, each radius
R ∈ (0,∞), each dilation parameter λ ∈ [1,∞), and any points x, y ∈ (z, λR)

we then have

R−1|〈x − y, ν(z,R)〉| ≤ R−1|x − y||ν(z,R)| ≤ R−1(2λR)

≤ C∗λ
(
1 + log2 λ)‖ν‖[BMO(∂�,σ)]n (2.350)

provided C∗ := 2δ−1∗ . This establishes (2.349) in this case.
Case II. Assume ‖ν‖[BMO(∂�,σ)]n < δ∗. In this scenario, (2.185) ensures that
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� satisfies a two-sided local John condition with constants which
depend only on the dimension n and the Ahlfors regularity
constant of ∂�.

(2.351)

Granted this, [61, Corollary 4.15, pp. 2697–2698] applies and guarantees the
existence of some constant C ∈ (0,∞) depending only on n and the Ahlfors
regularity constant of ∂� such that

sup
x∈∂�

sup
R>0

sup
y∈(x,2R)

R−1|〈x − y, ν(x,R)〉| ≤ C ‖ν‖[BMO(∂�,σ)]n . (2.352)

Fix a number λ ∈ [1,∞) along with an arbitrary point z ∈ ∂�, R > 0, and
x, y ∈ (z, λR). Then |x − y| ≤ 2λR, hence y ∈ (x, 2λR), so

|〈x − y, ν(z,R)〉| ≤ |〈x − y, ν(x,2λR)〉| + |x − y||ν(x,2λR) − ν(z,R)|

≤ CλR ‖ν‖[BMO(∂�,σ)]n + 2λR|ν(x,2λR) − ν(z,3λR)|

+ 2λR|ν(z,3λR) − ν(z,R)|

≤ CRλ
(
1 + log2 λ) ‖ν‖[BMO(∂�,σ)]n , (2.353)

by (2.352) and elementary estimates involving integral averages (cf. (2.103),
(2.105)). After dividing the most extreme sides by R, then taking the supremum
over all z ∈ ∂�, R > 0, and x, y ∈ (z, λR), we arrive at (2.349). � 

Remark 2.2 It is natural to attempt to quantify the global “tilt” of a given Ahlfors
regular domain � ⊆ Rn, envisioned as the maximal deviation of a chord x − y with
x, y ∈ where is an arbitrary surface ball on ∂� from being perpendicular to ν,
the integral average in  of the geometric measure theoretic outward unit normal ν
to �.

More specifically, we shall define the global tilt of � with amplitude λ ∈ [1,∞)

to be

tλ(�) := sup
z∈∂�

sup
R>0

sup
x,y∈(z,λR)

∣∣∣
〈
ν(z,R) ,

x − y

λR

〉∣∣∣, (2.354)

where for each z ∈ ∂� and R > 0 we have set ν(z,R) :=
ffl
(z,R)

ν dσ , with

σ := Hn−1�∂� playing the role of surface measure on ∂�.
As an example, consider the cone of aperture θ ∈ (0, 2π) in Rn with vertex at

the origin and axis along en, i.e.,

�θ :=
{
x ∈ Rn \ {0} : xn

|x| > cos(θ/2)
}
. (2.355)
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Denote by ν the geometric measure theoretic outward unit normal to �θ and
abbreviate σθ := Hn−1�∂�θ . It may then be checked directly from the definition
given in (2.354) that, on the one hand,

tλ(�θ ) = | cos(θ/2)| for each λ ∈ [1,∞). (2.356)

On the other hand, as noted in (2.293), the outward unit normal vector ν to �θ

satisfies

‖ν‖[BMO(∂�θ ,σθ )]n = | cos(θ/2)|. (2.357)

In particular, in this special case we simply have

tλ(�θ ) = ‖ν‖[BMO(∂�θ ,σθ )]n for each λ ∈ [1,∞). (2.358)

For a general Ahlfors regular domain � ⊆ Rn, the best we can hope for is merely
to control the global tilt tλ(�), for each fixed amplitude parameter λ ∈ [1,∞),
in terms of the BMO-seminorm of the geometric measure theoretic outward unit
normal ν to �.

Remarkably, this is possible, as (2.349) asserts that there exists some constant
C∗ ∈ (0,∞) depending only on the dimension n and the Ahlfors regularity constant
of ∂� such that for each amplitude parameter λ ∈ [1,∞) we have

tλ(�) ≤ C∗
(
1 + log2 λ)‖ν‖[BMO(∂�,σ)]n . (2.359)

We continue by discussing a basic decomposition theorem. The general idea
originated in [123, Proposition 5.1, p. 212] where such a decomposition result
has been stated for surfaces of class C 2, via a proof which makes essential use
of smoothness, though the main quantitative aspects only depend on the rough
character of said surface. A formulation in which the C 2 smoothness assumption
is replaced by Reifenberg flatness is stated in [73, Theorem 4.1, p. 398] (see also
the comments on [26, p. 66]). A yet more potent version of such a decomposition
result has been proved in [61, Theorem 4.16, p. 2701], starting with a different set of
hypotheses which, a priori, do not specifically require the domain in question to be
Reifenberg flat. The formulation of said result does require that the set in question
satisfies a two-sided local John condition.

Below we present the most general variant of this result, valid in the class of
Ahlfors regular domains � ⊆ Rn for which the BMO semi-norm of its geometric
measure theoretic outward unit normal is suitably small relative to the Ahlfors
regularity constant of ∂�. Stated as such, this result is well suited to the applications
we have in mind.

Theorem 2.6 Let � ⊆ Rn be an Ahlfors regular domain. Set σ := Hn−1�∂�
and denote by ν the geometric measure theoretic outward unit normal to �. Then
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there exist C0, C1, C2, C3, C4 ∈ (0,∞), depending only on the dimension n and the
Ahlfors regularity constant of ∂�, with the following significance.

For each choice of a function

φ : (0, 1) −→ (0,∞) (2.360)

with

lim
t→0+

φ(t) = 0 and lim
t→0+

φ(t)

t
∈ (1,∞], (2.361)

there exists a threshold δ∗ ∈
(
0,min{1, 1/C0}

)
, depending only on the dimension n,

the Ahlfors regularity constant of ∂�, and the function φ, such that whenever

‖ν‖[BMO(∂�,σ)]n < δ < δ∗ (2.362)

one has the following property:
For every location x0 ∈ ∂� and every scale r > 0 there exists a unit vector

�nx0,r ∈ Sn−1 along with a Lipschitz function

h : H(x0, r) := 〈�nx0,r 〉⊥ → R with sup
y1,y2∈H(x0,r)

y1 �=y2

|h(y1)− h(y2)|
|y1 − y2| ≤ C0φ(δ),

(2.363)
whose graph

G := {
x = x0 + x′ + t �nx0,r : x′ ∈ H(x0, r), t = h(x′)

}
(2.364)

(in the coordinate system x = (x′, t)⇔ x = x0+x′ + t �nx0,r , x
′ ∈ H(x0, r), t ∈ R)

is a good approximation of ∂� inside the cylinder

C(x0, r) :=
{
x0 + x′ + t �nx0,r : x′ ∈ H(x0, r), |x′| < r, |t | < r

}
(2.365)

in the precise sense described below:
First, with $ denoting the symmetric set-theoretic difference and with υn−1

denoting the volume of the unit ball in Rn−1,

Hn−1 (C(x0, r) ∩
(
∂�$G

)) ≤ C1υn−1r
n−1e−C2φ(δ)/δ. (2.366)

Second, there exist two disjoint σ -measurable subsets of ∂�, call themG(x0, r) and
E(x0, r), such that

C(x0, r) ∩ ∂� = G(x0, r) ∪ E(x0, r), (2.367)
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G(x0, r) ⊆ G, σ
(
E(x0, r)

) ≤ C1υn−1r
n−1e−C2φ(δ)/δ. (2.368)

Third, if� : Rn → H(x0, r) is defined by�(x) := x′ for x = x0+x′ + t �nx0,r ∈ Rn
with x′ ∈ H(x0, r) and t ∈ R, then

∣
∣x − (

x0 +�(x)+ h(�(x))�nx0,r

) ∣∣ ≤ 2C0φ(δ) · dist
(
�(x),�(G(x0, r))

)

for each point x ∈ E(x0, r),

(2.369)
and

C(x0, r) ∩ ∂� ⊆ {
x0 + x′ + t �nx0,r : |t | ≤ C0δr, x

′ ∈ H(x0, r)
}
, (2.370)

�
(
C(x0, r) ∩ ∂�

) = {
x′ ∈ H(x0, r) : |x′| < r

}
. (2.371)

Fourth, if

C+(x0, r) :=
{
x0 + x′ + t �nx0,r : x′ ∈ H(x0, r), |x′| < r, −r < t < −C0δ r

}
,

C−(x0, r) :=
{
x0 + x′ + t �nx0,r : x′ ∈ H(x0, r), |x′| < r, C0δ r < t < r

}
,

(2.372)
(having 0 < δ < δ∗ < 1/C0 ensures that C± �= ∅) then

C+(x0, r) ⊆ � and C−(x0, r) ⊆ Rn \�. (2.373)

Fifth,

any line in the direction of �nx0,r passing through a point on
G(x0, r) intersects ∂� ∩ C(x0, r) only at said point.

(2.374)

Sixth, with (x0, r) := B(x0, r) ∩ ∂� one has

(
1 − C3δ − C1exp

(− C2φ(δ)/δ
))
υn−1r

n−1 (2.375)

≤ σ
(
(x0, r)

) ≤
(

1 + C3φ(δ)+ C1exp
(− C2φ(δ)/δ

))
υn−1r

n−1.

Finally, if ν̃ is the unit normal vector to the Lipschitz graph G, pointing toward
the upper-graph of the function h then

at Hn−1-a.e. point x ∈ ∂� ∩ G one has either ν(x) = ν̃(x) or
ν(x) = −ν̃(x), (2.376)

ν(x) = ν̃(x) atHn−1-a.e. point x ∈ G(x0, r), (2.377)
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σ
({
x ∈ G ∩(x0, 4r) : ν(x) = −ν̃(x)}

)
≤ C4 · φ(δ)rn−1, (2.378)

and
 
(x0,4r)

(
sup
y∈G

|ν(x)− ν̃(y)|
)
dσ(x) ≤ C4 · φ(δ). (2.379)

Before proving Theorem 2.6 we make a remark and record one of its immediate
consequences in Corollary 2.3 below.

Remark 2.3 It is well known (cf., e.g., [47, Theorem 1, p. 251]) that there exists
some Cn ∈ (0,∞) with the property that for each real-valued Lipschitz function
h : H → R, where H is a hyperplane in Rn and each given ε > 0 there exists
h̃ ∈ C 1(H) with Lipschitz constant no larger than Cn times the Lipschitz constant
of h such that

Hn−1
({
x ∈ H : h(x) �= h̃(x) or (∇h)(x) �= (∇h̃)(x)}

)
< ε. (2.380)

Based on this, Theorem 2.6 is readily seen to self-improve to a version of itself in
which the function in (2.363) is, additionally, of class C 1.

Here is the corollary of Theorem 2.6 alluded to earlier.

Corollary 2.3 Let � ⊆ Rn be an Ahlfors regular domain. Set σ := Hn−1�∂� and
denote by ν the geometric measure theoretic outward unit normal to �. Then there
exists some C ∈ (0,∞) which depends only on the dimension n and the Ahlfors
regularity constant of ∂� with the property that

sup
x∈∂�, r>0

∣
∣∣∣∣
σ
(
(x, r)

)

υn−1rn−1 − 1

∣
∣∣∣∣
≤ C‖ν‖[BMO(∂�,σ)]n

(
1 − ln ‖ν‖[BMO(∂�,σ)]n

)

(2.381)
where υn−1 stands for the volume of the unit ball in Rn−1.

Proof In the context of (2.375) choose

φ : (0, 1)→ (0,∞) given for each t ∈ (0, 1)

by φ(t) := C −1
2 t ln(1/t).

(2.382)

This proves that there exists a threshold δ∗ ∈ (0, 1), depending only on the
dimension n and the Ahlfors regularity constant of ∂�, such that whenever (2.362)
holds it follows that for each x ∈ ∂� and each r > 0 we have

(
1 − (C1 + C3)δ

)
υn−1r

n−1 ≤ σ
(
(x, r)

)
(2.383)

≤ (
1 + (C3/C2)δ ln(1/δ)+ C1δ

)
υn−1r

n−1.
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After sending δ ↘ ‖ν‖[BMO(∂�,σ)]n , this readily implies the estimate claimed in
(2.381) (with C := max{C3/C2, C1 + C3}) in this case. Finally, (2.381) is a simple
consequence of the upper Ahlfors regularity of ∂� when ‖ν‖[BMO(∂�,σ)]n ≥ δ∗.

� 
We shall establish Theorem 2.6 by reasoning along the lines of the argument

in [61, pp. 2703–2709], with (2.362) replacing the small local BMO assumption
(which, in particular, frees us from having to restrict x0 to a compact subset of
∂�). A key observation is that, in the present context, the parameter R∗ from [61,
Theorem 4.16, p. 2701] (which limits the size of the scale r) may be taken to be
+∞.

Proof of Theorem 2.6 Throughout, for each given point x ∈ ∂� and each given
radius R > 0 we agree to abbreviate (x,R) := B(x,R) ∩ ∂� and also use the
notation ν(x,R) :=

ffl
(x,R)

ν dσ .
Assume (2.362) holds for some δ ∈ (0, δ∗) with δ∗ ∈ (0, 1/10), a threshold

on which we are going to impose a number of other smallness conditions, to be
specified later. For now, we note that Lemma 2.8 guarantees that ∂� is an unbounded
set, and that

1 ≥
∣∣
∣
 


ν dσ
∣∣
∣ ≥ 9

10
for each surface ball  ⊆ ∂�. (2.384)

Recall that the constant C∗ ∈ (0,∞) appearing in the statement of Proposi-
tion 2.15 is controlled solely in terms of the Ahlfors regularity constant of ∂� and
the dimension n. Keeping this in mind, from (2.349) used with λ = 4 we see that

sup
R>0

sup
x∈∂�

sup
y∈(x,4R)

R−1|〈x − y, ν(x,R)〉| ≤ 12C∗δ (2.385)

with C∗ ∈ (0,∞) depending only on the Ahlfors regularity constant of ∂� and the
dimension n. Choose

C0 := max
{
14C∗ + 4, 60C∗

}
(2.386)

and, for the remainder of the proof, make the assumption that

δ∗ ∈
(
0,min{1/10, 1/C0}

)
(2.387)

and that δ∗ is also small enough, depending on φ, so that

δ ≤ φ(δ) ≤ (14C∗ + 4)−1 for all δ ∈ (0, δ∗). (2.388)

That (2.388) may be accommodated is ensured by (2.361). (The choice made in
(2.386) as well as the nature of the right-most expression in (2.388) are dictated by
future considerations; see (2.418).)
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To proceed, for each x ∈ ∂� and R > 0 set

ν∗x,R(y) := sup
0<ρ<R

 
(y,ρ)

|ν(z)− ν(x,2R)| dσ(z), ∀ y ∈ ∂�. (2.389)

Then (2.389) implies that for each x ∈ ∂� and R > 0 we have

ν∗x,R(y) ≤M
(
|ν − ν(x,2R)| · 1(x,2R)

)
(y), ∀ y ∈ (x,R), (2.390)

where M is the Hardy–Littlewood maximal operator on ∂�. For further reference
let us also note that Lebesgue’s Differentiation Theorem and (2.389) imply that

for each fixed x ∈ ∂� and R > 0 we have

|ν(y)− ν(x,2R)| ≤ ν∗x,R(y) for σ -a.e. y ∈ ∂�.
(2.391)

Henceforth, fix a location x0 ∈ ∂� along with a scale r > 0. From (2.384) we
know that

9
10 ≤ |ν(x0,2r)| ≤ 1. (2.392)

We may also conclude from (2.384) that

�nx0,r :=
ν(x0,4r)

|ν(x0,4r)|
(2.393)

is a well-defined unit vector in Rn. Consider

H(x0, r) :=
{
x ∈ Rn : 〈x, �nx0,r 〉 = 0

}
(2.394)

and introduce a new system of coordinates in Rn by setting

x = (ζ, t)⇐⇒ x = x0 + t �nx0,r + ζ, t ∈ R, ζ ∈ H(x0, r). (2.395)

We agree to write ζ(x), t (x) in place of ζ, t whenever necessary to stress the
dependence of the new coordinates on the point x ∈ Rn. Let us also define the
projection

� : Rn → H(x0, r) with �(x) := ζ for each x = (ζ, t) ∈ Rn. (2.396)

Finally, consider the cylinder C(x0, r) defined as in (2.365) and, with the function φ
as in (2.360)–(2.361), introduce
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G(x0, r) :=
{
x ∈ C(x0, r) ∩ ∂� : ν∗x0,2r

(x) ≤ φ(δ)
}
,

E(x0, r) :=
(
C(x0, r) ∩ ∂�

) \G(x0, r).
(2.397)

Since C(x0, r) ⊆ B(x0,
√

2r) (as seen from its definition), it follows from (2.397)
that G(x0, r), E(x0, r) are disjoint σ -measurable subsets of (x0,

√
2r), satisfying

G(x0, r) ∪ E(x0, r) = C(x0, r) ∩ ∂�. In particular, (2.367) holds.
Next, we claim that there exist c, C ∈ (0,∞), which depend only on n and the

Ahlfors regularity constant of ∂�, with the property that

 
(x0,2r)

exp
(
c δ−1 ν∗x0,2r

)
dσ ≤ C. (2.398)

Granted this, we may then conclude that

exp
(
c φ(δ)/δ

) σ
(
E(x0, r)

)

σ
(
(x0, 2r)

) ≤ 1

σ
(
(x0, 2r)

)
ˆ
E(x0,r)

exp
(
c δ−1 ν∗x0,2r

)
dσ ≤ C.

(2.399)
This implies

σ
(
E(x0, r)

) ≤ C exp
(− c φ(δ)/δ

)
σ
(
(x0, 2r)

)

≤ 2n−1CAC rn−1 · exp
(− c φ(δ)/δ

)
, (2.400)

where CA is the Ahlfors regularity constant of ∂�. In particular, the estimate
claimed in (2.368) follows as long as

C2 := c and C1 ≥ 2n−1CAC/υn−1. (2.401)

To justify the claim made in (2.398), let us abbreviate

f :=M
(|ν − ν(x0,4r)| · 1(x0,4r)

)
(2.402)

and note that, thanks to (2.390) with R := 2r , this entails

ν∗x0,2r (x) ≤ f (x) whenever x ∈ (x0, 2r). (2.403)

We also make the sub-claim that there exist A1, A2 ∈ (0,∞), depending only on n
and the Ahlfors regularity constant of ∂�, such that for each p ∈ [1,∞) we have

 
(x0,4r)

|ν(x)− ν(x0,4r)|p dσ(x) ≤ A1�(p + 1)
(
A2‖ν‖[BMO(∂�,σ)]n

)p
,

(2.404)
where �(t) := ´∞

0 λt−1e−λ dλ for all t ∈ (0,∞) is the classical Gamma function.
Taking this inequality for granted for the time being, we now proceed to show that
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(2.398) holds for the choice

c := 2−1A−1
2 ∈ (0,∞) (2.405)

and withC ∈ (0,∞) to be determined momentarily (see (2.409)). To implement this
plan, use (2.403) plus a change of variables, then expand the exponential function
into an infinite power series to write

 
(x0,2r)

exp
(
c δ−1 ν∗x0,r

)
dσ ≤

 
(x0,2r)

exp
(
c δ−1 f

)
dσ (2.406)

= 1

σ
(
(x0, 2r)

)
ˆ ∞

0
σ
({
x ∈ (x0, 2r) : exp

(
c δ−1 f (x)

)
> λ

})
dλ

≤ 1 + 1

σ
(
(x0, 2r)

)
ˆ ∞

1
σ
({
x ∈ (x0, 2r) : exp

(
c δ−1 f (x)

)
> λ

})
dλ

= 1 + 1

σ
(
(x0, 2r)

)
ˆ ∞

0
σ
({
x ∈ (x0, 2r) : c δ−1 f (x) > s

})
es ds

≤ e + 1

σ
(
(x0, 2r)

)
∞∑

k=0

1

k!
ˆ ∞

1
σ
({
x ∈ (x0, 2r) : f (x) > s δ/c

})
sk ds.

To continue, fix an arbitrary integrability exponent p ∈ [2,∞) along with an
arbitrary number s ∈ (0,∞). Chebysheff’s inequality, the Lp-boundedness of the
Hardy–Littlewood maximal operator (with bounds independent of p, as seen by
interpolation), and (2.402) then allow us to estimate

σ
(
{x ∈ (x0, 2r) : f (x) > s δ/c}

)

σ
(
(x0, 2r)

)

≤
( c

s δ

)p  
(x0,2r)

f (x)p dσ(x)

≤
( c

s δ

)p 1

σ
(
(x0, 2r)

)
ˆ
∂�

M
(|ν − ν(x0,4r)| · 1(x0,4r)

)
(x)p dσ(x)

≤
( c

s δ

)p C′

σ
(
(x0, 2r)

)
ˆ
∂�

(|ν(x)− ν(x0,4r)| · 1(x0,4r)(x)
)p dσ(x)

≤ C′′( c

s δ

)p  
(x0,4r)

|ν(x)− ν(x0,4r)|p dσ(x), (2.407)
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where C′, C′′ ∈ (0,∞) depend only on n and the Ahlfors regularity constant of ∂�.
Combine (2.404), (2.407), (2.405) and recall that ‖ν‖[BMO(∂�,σ)]n < δ to obtain

σ
(
{x ∈ (x0, 4r) : f (x) > s δ/c}

)

σ
(
(x0, 4r)

) ≤ C′′A1�(p + 1)
(c A2

s

)p

= C′′A1�(p + 1)
( 1

2s

)p
, (2.408)

for each p ∈ [2,∞) and each s ∈ (0,∞). Utilizing (2.408), in which we take
p := k + 2 with k = 0, 1, . . . , back into (2.406) then yields (upon noting that
�(k + 3) = (k + 2)!)

 
(x0,2r)

exp
(
c δ−1 ν∗x0,4r

)
dσ (2.409)

≤ e + C′′A1

∞∑

k=0

(k + 1)(k + 2)

2k+2

(ˆ ∞

1

ds

s2

)
=: C <∞.

This finishes the proof of (2.398), modulo that of (2.404). As regards the latter, we
use following the John-Nirenberg level set estimate with exponential bound from
(2.94). This ensures that there exist some large constant A ∈ (0,∞) and some small
constant a ∈ (0,∞), both depending only on the Ahlfors regularity constant of ∂�
and the dimension n, such that

σ
(
{x ∈ (x0, 4r) : |ν(x)− ν(x0,4r)| > λ}

)

σ
(
(x0, 4r)

) ≤ A · exp
( −aλ
‖ν‖[BMO(∂�,σ)]n

)

(2.410)
for every λ > 0. In turn, (2.410) and a natural change of variables permit us to write

 
(x0,4r)

|ν(x)− ν(x0,4r)|p dσ(x)

= p

ˆ ∞

0
λp−1

σ
({
x ∈ (x0, 4r) : |ν(x)− ν(x0,4r)| > λ

})

σ
(
(x0, 4r)

) dλ

≤ Ap

ˆ ∞

0
λp−1exp

( −aλ
‖ν‖[BMO(∂�,σ)]n

)
dλ

= Ap
(
a−1‖ν‖[BMO(∂�,σ)]n

)p ˆ ∞

0
tp−1e−t dt
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= Ap�(p)
(
a−1‖ν‖[BMO(∂�,σ)]n

)p
. (2.411)

Since p �(p) = �(p + 1), this justifies (2.404) with A1 := A and A2 := a−1, and
concludes the proof of (2.398).

We now turn to the task of constructing the Lipschitz function h. As a preliminary
matter, we remark that

|〈x − y, ν(x0,4r)〉| ≤
(
6C∗δ + ν∗x0,2r

(x)
)|x − y|

for each x ∈ ∂� and y ∈ (x, 4r).
(2.412)

To justify this, observe that (2.412) is trivially true when x = y, so it suffices to
consider the case when x ∈ ∂� and y ∈ (x, 4r) satisfy x �= y. Assuming this
is the case, based on (2.385) (used with R := |x − y|/2 > 0) and (2.389) we may
write

|〈x − y, ν(x0,4r)〉| ≤ |〈x − y, ν(x,|x−y|/2)〉| + |x − y||ν(x,|x−y|/2) − ν(x0,4r)|

≤ 6C∗δ |x − y| + |x − y|
 
(x,|x−y|/2)

|ν − ν(x0,4r)| dσ

≤ (
6C∗δ + ν∗x0,2r (x)

)|x − y|, (2.413)

as desired. Moving on, observe from (2.395) that

t (x) = 〈x − x0, �nx0,r 〉 for each x ∈ Rn. (2.414)

In concert, (2.414), (2.392)–(2.393), (2.412), (2.397), and (2.388) then allow us to
control

|t (x)− t (y)| = |〈x − y, �nx0,r 〉| ≤ 10
9 |〈x − y, ν(x0,4r)〉|

≤ 10
9

(
6C∗δ + φ(δ)

)|x − y|

≤ 10
9 (6C∗ + 1)φ(δ)|x − y|

≤ (7C∗ + 2)φ(δ)|x − y|
whenever x ∈ G(x0, r) and y ∈ (x, 4r). (2.415)

In turn, since for each x, y ∈ Rn we have (see (2.395))

ζ(x)− ζ(y) = x − y − (
t (x)− t (y)

)�nx0,r , (2.416)

this permits us to estimate
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|ζ(x)− ζ(y)| ≥ |x − y| − |t (x)− t (y)| ≥ (
1 − (7C∗ + 2)φ(δ)

)|x − y|,
for each x ∈ G(x0, r) and each y ∈ (x, 4r).

(2.417)
Combining (2.415) and (2.417) (while keeping (2.388) and (2.386) in mind) then
proves that

|t (x)− t (y)| ≤ (7C∗ + 2)φ(δ)

1 − (7C∗ + 2)φ(δ)
|ζ(x)− ζ(y)|

≤ (14C∗ + 4)φ(δ)|ζ(x)− ζ(y)|

≤ C0φ(δ)|ζ(x)− ζ(y)|, (2.418)

for each x ∈ G(x0, r) and y ∈ (x, 4r).

We now claim that

if x ∈ C(x0, r) ∩ ∂� and �(x) ∈ �
(
G(x0, r)

)

then x ∈ G(x0, r).
(2.419)

Indeed, assume x ∈ C(x0, r) ∩ ∂� and y ∈ G(x0, r) are such that �(x) = �(y).
In view of (2.396), the latter condition means ζ(x) = ζ(y). Since x, y ∈ C(x0, r),
it follows that |y − x| ≤ diam

(
C(x0, r)

) = 2
√

2r < 4r , hence x ∈ (y, 4r). As
such, we may invoke (2.418) (with the roles of x and y reversed) to conclude that
t (x) = t (y). Thus, x = (

ζ(x), t (x)
) = (

ζ(y), t (y)
) = y ∈ G(x0, r), ultimately

proving (2.419).
As a consequence of the proof of (2.419) we also see that

the projection � is one-to-one on G(x0, r). (2.420)

In turn, (2.420) guarantees that the mapping

h : �(
G(x0, r)

) −→ R given by

h
(
ζ(x)

) := t (x) for each x ∈ G(x0, r)
(2.421)

is well defined. By (2.418), this mapping satisfies a Lipschitz condition with
constant ≤ C0φ(δ) on the set �

(
G(x0, r)

)
. Indeed, given any x, y ∈ G(x0, r), the

fact thatG(x0, r) ⊆ (x0,
√

2r) implies |x−y| < 2
√

2r < 4r , hence y ∈ (x, 4r).
As such, (2.418) applies and, in view of (2.421), proves that

|h(x′)− h(y′)| ≤ C0φ(δ)|x′ − y′| for each x′, y′ ∈ �
(
G(x0, r)

)
.
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We may therefore extend h (using Kirszbraun’s theorem; see, e.g., the discussion
in [108]) as a Lipschitz function, which we continue to denote by h, to the entire
hyperplane H(x0, r), with Lipschitz constant ≤ C0φ(δ). Note that its graph G,
considered in the (ζ, t)-system of coordinates introduced in (2.395), contains the
set

{(ζ(x), t (x)) : x ∈ G(x0, r)} = G(x0, r). (2.422)

This proves the inclusion in (2.368). Together, (2.368) and (2.419) also prove that

if x ∈ C(x0, r) ∩ ∂� and �(x) ∈ �
(
G(x0, r)

)

then x ∈ G.
(2.423)

In turn, the above property implies the claim made in (2.374). Specifically, assume
x ∈ G(x0, r) and y ∈ C(x0, r)∩∂� are such that�(y) = �(x). Then�(y) belongs
to �

(
G(x0, r)

)
which, by virtue of (2.419), places y in G(x0, r). In particular,

x, y ∈ G (cf. (2.368)) have the same projection. Thus, necessarily, x = y since
otherwise the Vertical Line Test would be violated for the graph G.

To prove the inclusion claimed in (2.370), start by considering some arbitrary
point x ∈ C(x0, r)∩ ∂�. Then x belongs to B(x0,

√
2r)∩ ∂� = (x0,

√
2r). Also,

the convention made in (2.395) allows us to express x = x0+ t (x)�nx0,r+ζ(x), with
ζ(x) ∈ H(x0, r) satisfying |ζ(x)| < r (given that x ∈ C(x0, r)) and with

t (x) = 〈x − x0, �nx0,r 〉 =
〈x − x0, ν(x0,4r)〉

|ν(x0,4r)|
, (2.424)

thanks to (2.414) and (2.393). In turn, (2.424), (2.392), and (2.385) (presently used
with R := 4r , x := x0, y := x) permit us to estimate

|t (x)| ≤
∣∣〈x − x0, ν(x0,4r)〉

∣∣

|ν(x0,4r)|
≤ 10

9 (4r)12C∗δ ≤ C0δ r, (2.425)

since (2.386) guarantees that C0 ≥ 60C∗. The proof of (2.370) is therefore
complete.

From (2.370) it follows that the connected sets C±(x0, r) introduced in (2.372)
do not intersect ∂�. As such, �+ := � and �− := Rn \ � form a disjoint, open
cover of C±(x0, r), hence

C+(x0, r) is fully contained in either �+ or �−,
and also C−(x0, r) is fully contained in either �+
or �−.

(2.426)

By further decreasing δ∗ ∈ (0, 1) we may ensure (see Theorem 2.3) that
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� satisfies a two-sided local John condition with constants which
depend only on the Ahlfors regularity constant of ∂� and the
dimension n.

(2.427)

In view of (2.427) and (2.87), it follows that � satisfies a two-sided cork screw
condition (cf. Definition 2.10) for some parameter θ ∈ (0, 1) which depends only
on the Ahlfors regularity constant of ∂� and the dimension n. Denote by x±r ∈ �±
the two corkscrew points corresponding to the location x0 and scale r . In particular,

|x±r − x0| < r and B
(
x±r , θr

) ⊆ �±. (2.428)

Assume 0 < δ∗ < θ/C0 to begin with. Given that we are taking δ ∈ (0, δ∗), this
condition makes it impossible to contain either of the balls B

(
x+r , θr

)
, B

(
x−r , θr

)

in the strip
{
x0 + x′ + t �nx0,r : |t | ≤ C0δr, x

′ ∈ H(x0, r)
}
. Since, as seen from

(2.428), their centers x±r belong to B(x0, r) ⊂ C(x0, r), in turn this forces one of
the following four alternatives to be true:

B
(
x+r , θr

) ∩ C+(x0, r) �= ∅ and B
(
x−r , θr

) ∩ C+(x0, r) �= ∅, (2.429)

B
(
x+r , θr

) ∩ C−(x0, r) �= ∅ and B
(
x−r , θr

) ∩ C−(x0, r) �= ∅, (2.430)

B
(
x+r , θr

) ∩ C+(x0, r) �= ∅ and B
(
x−r , θr

) ∩ C−(x0, r) �= ∅, (2.431)

B
(
x+r , θr

) ∩ C−(x0, r) �= ∅ and B
(
x−r , θr

) ∩ C+(x0, r) �= ∅. (2.432)

Note that the alternative described in (2.429) cannot possibly hold. Indeed, the
existence of two points z1 ∈ B

(
x+r , θr

)∩C+(x0, r) and z2 ∈ B
(
x−r , θr

)∩C+(x0, r)

would imply that, on the one hand, the line segment [z1, z2] lies in the convex
set C+(x0, r), hence also either in �+ or in �− by (2.426). Nonetheless, the fact
that we have z1 ∈ B

(
x+r , θr

) ⊆ �+ and z2 ∈ B
(
x−r , θr

) ⊆ �− prevents either
one of these eventualities form materializing. This contradiction therefore excludes
(2.429). Reasoning in a similar fashion we may rule out (2.430). When (2.431)
holds, from the fact that B

(
x±r , θr

) ⊆ �± (cf. (2.428)) we conclude that

∅ �= C+(x0, r) ∩ B
(
x+r , θr

) ⊆ B
(
x+r , θr

) ⊆ �+ (2.433)

hence C+(x0, r) ∩ �+ �= ∅ which, in light of (2.426), forces C+(x0, r) ⊆ �+.
Similarly, C−(x0, r) ⊆ �− so the inclusions in (2.373) hold as stated. Finally,
when (2.432) holds, from (2.426) and (2.428) we deduce that C+(x0, r) ⊆ �−
and C−(x0, r) ⊆ �+. In such a scenario, we may ensure that the inclusions in
(2.373) are valid simply by re-denoting �nx0,r as−�nx0,r (and considering the function
−h in place of the original h), which amounts to reversing the roles of C+(x0, r)

and C−(x0, r) (without affecting the other properties). This concludes the proof of
(2.373).

Next, observe that
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�
(
C(x0, r) ∩ ∂�

) ⊆ �
(
C(x0, r)

) = {ζ ∈ H(x0, r) : |ζ | < r}. (2.434)

The opposite inclusion fails only when there exists a line segment parallel to �nx0,r

whose two endpoints belong to C+(x0, r) and to C−(x0, r), respectively, and which
does not intersect ∂� (here we implicitly use the fact that C±(x0, r) �= ∅, itself
a result of having imposed the condition that 0 < δ < δ∗ < 1/C0; cf. (2.387)).
However, (2.373) and simple connectivity arguments rule out this scenario, hence
(2.371) is proved.

Going further, we note that (2.371) implies

{ζ ∈ H(x0, r) : |ζ | < r} \�(
G(x0, r)

) ⊆ �
(
E(x0, r)

)
. (2.435)

The fact that � : Rn → H(x0, r) is a Lipschitz function, with Lipschitz constant 1,
implies (cf., e.g., [47, Theorem 1, p. 75]) that

Hn−1(�(S)
) ≤ Hn−1(S) for each Borel set S ⊆ Rn. (2.436)

Based on (2.435), (2.436), the definition σ := Hn−1�∂�, (2.367), and (2.400) we
then conclude that

Hn−1
(
{ζ ∈ H(x0, r) : |ζ | < r} \�(

G(x0, r)
))

≤ Hn−1
(
�
(
E(x0, r)

)) ≤ Hn−1(E(x0, r)
)

≤ 2n−1CAC r n−1 · exp
(− C2φ(δ)/δ

)
. (2.437)

In addition, (2.419) gives

C(x0, r) ∩
(
G \ ∂�) ⊆ G ∩�−1

(
{ζ ∈ H(x0, r) : |ζ | < r} \�(

G(x0, r)
))
.

(2.438)
Keeping also in mind that

Hn−1(S) ≤ √
1 + (C0φ(δ))2 Hn−1(�(S)

)
,

for each Borel set S ⊆ G,
(2.439)

(since G is the graph of a Lipschitz function), we deduce that

Hn−1(C(x0, r) ∩ (G \ ∂�))

≤ Hn−1
(
G ∩�−1({ζ ∈ H(x0, r) : |ζ | < r} \�(

G(x0, r)
)))

≤
√

1 + (C0φ(δ))2 Hn−1
(
�
(
G ∩�−1({ζ ∈ H(x0, r) : |ζ | < r} \�(

G(x0, r)
))))
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≤
√

1 + (C0φ(δ))2 Hn−1
(
{ζ ∈ H(x0, r) : |ζ | < r} \�(

G(x0, r)
))

≤
√

1 + (C0φ(δ))2 2n−1CAC r n−1 · exp
(− C2φ(δ)/δ

)

≤
√

1 + C2
0 (14C∗ + 4)−2 2n−1CAC r n−1 · exp

(− C2φ(δ)/δ
)
, (2.440)

by (2.437) and (2.388). Upon observing that C(x0, r) ∩
(
∂� \ G)

is contained in
E(x0, r), the estimate claimed in (2.366) now follows from (2.440) and (2.400) if
we choose (recall that C2 := c; cf. (2.401))

C1 :=
√

1 + C2
0(14C∗ + 4)−2 2n−1CAC/υn−1 (2.441)

(a choice in line with the demand formulated in (2.401)), where C is as in (2.409),
and where CA is the Ahlfors regularity constant of ∂�.

Let us now justify the proximity condition formulated in (2.369). To this end, fix
x ∈ E(x0, r) =

(
C(x0, r) ∩ ∂�

) \G(x0, r) and pick an arbitrary x∗ ∈ G(x0, r). In
particular, x, x∗ ∈ C(x0, r) hence |x − x∗| < diam

(
C(x0, r)

) = 2
√

2r . Given that
we have x∗ ∈ G(x0, r) and x ∈ (x∗, 4r), estimate (2.418) applies and presently
gives

∣∣t (x)− h
(
�(x∗)

)∣∣ = |t (x)− t (x∗)| ≤ C0φ(δ)|�(x)−�(x∗)|. (2.442)

Consequently, since x = (
�(x), t (x)

)
, we may write

∣
∣x − (

�(x), h(�(x))
)∣∣ = ∣

∣t (x)− h
(
�(x)

)∣∣

≤ ∣∣t (x)− h
(
�(x∗)

)∣∣+ ∣∣h
(
�(x∗)

)− h
(
�(x)

)∣∣

≤ 2C0φ(δ)|�(x)−�(x∗)|, (2.443)

by (2.442) and the Lipschitz condition on h (cf. (2.363)). Taking the infimum over
x∗ ∈ G(x0, r) now yields (2.369).

Let us now deal with (2.375). Recall that υn−1 denotes the volume of the unit
ball in Rn−1. Using (2.366) and (2.439) we may estimate

σ
(
(x0, r)

) = Hn−1(B(x0, r) ∩ ∂�
) ≤ Hn−1(C(x0, r) ∩ ∂�

)

≤ Hn−1(C(x0, r) ∩ G
)+Hn−1

(
C(x0, r) ∩ (∂� \ G)

)

≤
√

1 + (C0φ(δ))2 Hn−1(�(C(x0, r) ∩ G)
)+Hn−1

(
C(x0, r) ∩ (∂�$G)

)

≤ (
1 + C0φ(δ)

)
Hn−1(�(C(x0, r))

)+ C1υn−1 r
n−1 exp

(− C2φ(δ)/δ
)
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=
(

1 + C0φ(δ)+ C1exp
(− C2φ(δ)/δ

))
υn−1 r

n−1. (2.444)

Also, by employing (2.371), (2.436), (2.366), (2.439), (2.373), and (2.388) we may
write

υn−1 r
n−1 = Hn−1({ζ ∈ H(x0, r) : |ζ | < r}) ≤ Hn−1(C(x0, r) ∩ ∂�

)

(2.445)

= Hn−1(B(x0, r) ∩ ∂�
)+Hn−1

((
C(x0, r) ∩ ∂�

) \ B(x0, r)
)

≤ σ
(
(x0, r)

)+Hn−1
(
C(x0, r) ∩

(
∂� \ G))

+Hn−1
((
C(x0, r) ∩ G

) \ (B(x0, r) ∪ C+(x0, r) ∪ C−(x0, r)
)))

≤ σ
(
(x0, r)

)+Hn−1
(
C(x0, r) ∩

(
∂�$G

))

+
√

1 + (C0φ(δ))2 υn−1 r
n−1

(
1 − (√

1 − C2
0δ

2
)n−1

)

≤ σ
(
(x0, r)

)+ C1υn−1 r
n−1 exp

(− C2φ(δ)/δ
)+ C3δ υn−1 r

n−1,

where C3 := Cn C0

√
1 + C2

0(14C∗ + 4)−2 with Cn ∈ [1,∞) depending only on
the dimension n. This further implies

(
1 − C3δ − C1exp

(− C2φ(δ)/δ
))
υn−1 r

n−1 ≤ σ
(
(x0, r)

)
. (2.446)

Now, (2.375) follows from (2.444), (2.446), and (2.388).
Next, (2.376) is a direct consequence of Proposition 2.2 applied to � and the

upper-graph of the function h (both of which are Ahlfors regular domains). There
remains to prove the claims made in (2.377) and (2.378). To get started, we make
two observations. First, (2.362) implies

 
(x0,4r)

|ν − ν(x0,4r)| dσ ≤ δ. (2.447)

Second, at σ -a.e. point on ∂� we may estimate

|ν − �nx0,r | ≤ |ν − ν(x0,4r)| + |ν(x0,4r) − �nx0,r | (2.448)

and, thanks to (2.393), the fact that |ν| = 1 at σ -a.e. point on ∂�, and the reverse
triangle inequality, we have
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|ν(x0,4r) − �nx0,r | =
∣∣∣∣ν(x0,4r) −

ν(x0,4r)

|ν(x0,4r)|
∣∣∣∣ =

∣∣∣∣
(

1 − 1

|ν(x0,4r)|
)
ν(x0,4r)

∣∣∣∣

=
∣∣∣∣1 −

1

|ν(x0,4r)|
∣∣∣∣
∣∣ν(x0,4r)

∣∣ = ∣∣1 − |ν(x0,4r)|
∣∣

= ∣∣|ν| − |ν(x0,4r)|
∣∣ ≤ ∣∣ν − ν(x0,4r)

∣∣. (2.449)

By combining (2.448) with (2.449) we arrive at the conclusion that

|ν − �nx0,r | ≤ 2|ν − ν(x0,4r)| at σ -a.e. point on ∂�. (2.450)

Recall that ν̃ denotes the unit normal vector to the Lipschitz graph G, pointing
toward the upper-graph of the function h. This is well-defined at Hn−1-a.e. point
on G, and we claim that

|̃ν − �nx0,r | ≤ C0φ(δ) at Hn−1-a.e. point on G. (2.451)

To justify this, after performing a rotation, there is no loss of generality in assuming
that

�nx0,r = en = (0, . . . , 0, 1) ∈ Rn. (2.452)

Then the hyperplane

H(x0, r) = 〈�nx0,r 〉⊥ = 〈en〉⊥ = Rn−1 × {0} (2.453)

may be canonically identified with Rn−1, a scenario in which

ν̃
(
x′, h(x′)

) =
(− (∇′h)(x′), 1

)

√
1 + |(∇′h)(x′)|2 for Ln−1-a.e. x′ ∈ Rn−1, (2.454)

where ∇′ denotes the gradient operator in Rn−1. From (2.452) and (2.454) we then
see that at Hn−1-a.e. point x ∈ G, say x = (

x′, h(x′)
)

with x′ ∈ Rn−1, we have

∣∣̃ν(x)− �nx0,r

∣∣2 = 2 − 2〈̃ν(x), �nx0,r 〉 = 2

(
1 − 1

√
1 + |(∇′h)(x′)|2

)

= 2|(∇′h)(x′)|2
1 + |(∇′h)(x′)|2 +√

1 + |(∇′h)(x′)|2

≤ |(∇′h)(x′)|2 ≤ (
C0φ(δ)

)2
, (2.455)
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where the last inequality comes from (2.363). Ultimately, this establishes (2.451).
Collectively, (2.450) and (2.451) prove that

|ν − ν̃| ≤ 2|ν − ν(x0,4r)| + C0φ(δ) at σ -a.e. point on G ∩ ∂�. (2.456)

From (2.391) and (2.397) we also see that

|ν(x)− ν(x0,4r)| ≤ ν∗x0,2r (x) ≤ φ(δ) for σ -a.e. x ∈ G(x0, r). (2.457)

Combining (2.456) with (2.457) and keeping in mind that G(x0, r) ⊆ G∩ ∂� leads
to the conclusion that

|ν − ν̃| ≤ (2 + C0)φ(δ) at σ -a.e. point on G(x0, r). (2.458)

If δ∗ > 0 is taken small enough so that φ(t) < 2(2 + C0)
−1 for all t ∈ (0, δ∗)

(something that may always be arranged, thanks to (2.361)), we conclude from
(2.458) and (2.376) (again, mindful of the fact that G(x0, r) ⊆ G ∩ ∂�) that

ν(x) = ν̃(x) at σ -a.e. point x ∈ G(x0, r). (2.459)

This proves (2.377).
Let us now deal with (2.378). Together, (2.376), (2.456), (2.447), and the first

inequality in (2.388) yield

σ
({
x ∈ G ∩(x0, 4r) : ν(x) = −ν̃(x)}

)
= 1

2

ˆ
G∩(x0,4r)

|ν − ν̃| dσ

≤ (
δ + 2−1C0 · φ(δ)

) · σ ((x0, 4r)
)

≤ C4 · φ(δ)rn−1 (2.460)

provided C4 := 4n−1(1 + 2−1C0)CA, where CA is the Ahlfors regularity constant
of �. Hence, (2.378) is established.

There remains to prove (2.379). To this end, combine (2.450) and (2.451) to
obtain

supy∈G |ν(x)− ν̃(y)| ≤ 2|ν(x)− ν(x0,4r)| + C0φ(δ)

at σ -a.e. point x ∈ ∂�.
(2.461)

Based on (2.461), (2.447), and (2.388) we then conclude that

 
(x0,4r)

(
sup
y∈G

|ν(x)− ν̃(y)|
)

dσ(x) ≤ 2δ + C0φ(δ) ≤ C4 · φ(δ), (2.462)
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since our earlier choice of C4 ensures that C4 ≥ 2 + C0. This justifies (2.379), so
the proof of Theorem 2.6 is now complete. � 

2.6 Chord-Arc Domains in the Plane

In the two-dimensional setting, an important category of sets is the class of chord-
arc domains, discussed next.

Definition 2.16 Given a nonempty, proper, open subset � of R2 and � ∈ [0,∞),
one calls � a �-CAD (or simply chord-arc domain, if the value of � is not
important) provided ∂� is a locally rectifiable simple curve, which is either a closed
curve or a Jordan curve passing through infinity in C ≡ R2, with the property that

�(z1, z2) ≤ (1 + �)|z1 − z2| for all z1, z2 ∈ ∂�, (2.463)

where �(z1, z2) denotes the length of the shortest arc of ∂� joining z1 and z2.

For example, a planar sector �θ of full aperture θ ∈ (0, 2π) (cf. (2.289)) is a
�-CAD with constant � := [sin(θ/2)]−1 − 1. While Proposition 2.13 shows that
the upper-graph of any real-valued BMO1 function defined on the real line is a
chord-arc domain (hence, in particular, any Lipschitz domain in the plane is a chord-
arc domain), from our earlier discussion (see, e.g., Example 2.7) we know that the
boundaries of chord-arc domains may actually contain spiral points. As such, chord-
arc domains may fail to be of “upper-graph type.” There are also subtle connections
between the quality of being a chord-arc domain and the behavior of the conformal
mapping (see, e.g., [26] and the references therein).

Our next major goal is to establish, in the two-dimensional setting, the coinci-
dence of the class of �-CAD domains with � ≥ 0 small constant with that of δ-AR
domains with δ > 0 small. This is accomplished in Theorem 2.7. For now recall the
concept of UR domain from Definition 2.6.

Proposition 2.16 Assume � ⊆ R
2 ≡ C is a chord-arc domain. Then � is

a connected UR domain, satisfying a two-sided local John condition. Moreover,
∂� = ∂(� ) and if either ∂� is unbounded or � is bounded, then � is also simply
connected.

Proof If ∂� is a Jordan curve passing through infinity in C then the desired
conclusions follow from item (vi) of Proposition 2.10 and (2.194). If ∂� is bounded,
then there exists a bi-Lipschitz homeomorphism F of the complex plane onto itself
such that F

(
∂B(0, 1)

) = ∂� (cf. [119, Theorem 7.9, p. 165]). This implies that each
of the connected sets F

(
B(0, 1)

)
, F

(
C \ B(0, 1)

)
is contained in the disjoint union

of � with C \�. Since F is surjective, this forces that either

F
(
B(0, 1)

) = � and F
(
C \ B(0, 1)

) = C \� (2.464)
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or

F
(
B(0, 1)

) = C \� and F
(
C \ B(0, 1)

) = �. (2.465)

All desired conclusions readily follow from this and the transformational properties
under bi-Lipschitz maps established in [59]. � 

A chord-arc domain with a sufficiently small constant is necessarily unbounded
(and, in fact, has an unbounded boundary).

Proposition 2.17 If � ⊆ R
2 is a �-CAD with � ∈ [

0,
√

2 − 1
)
then ∂� is

unbounded.

Proof Seeking a contradiction, assume � ⊆ R2 is a �-CAD with � ∈ [
0,
√

2 − 1
)

and such that ∂� is a bounded set. In particular, ∂� is a rectifiable closed curve.
Abbreviate L := H1(∂�) ∈ (0,∞) and let [0, L] � s �→ z(s) ∈ ∂� be the arc-
length parametrization of ∂�. Define z0 := z(0), z1/4 := z(L/4), z1/2 := z(L/2),
z3/4 := z(3L/4). Since

|z0 − z1/4| ≤ �(z0, z1/4) = L/4, |z3/4 − z0| ≤ �(z3/4, z0) = L/4,

|z1/2 − z3/4| ≤ �(z1/2, z3/4) = L/4, |z1/4 − z1/2| ≤ �(z1/4, z1/2) = L/4,
(2.466)

it follows that

z1/4, z3/4 ∈ D := B(z0, L/4) ∩ B(z1/2, L/4), (2.467)

hence

|z1/4 − z3/4| ≤ diam(D). (2.468)

On the one hand, with R := |z0 − z1/2|, elementary geometry gives that

diam(D) = 2
√
(L/4)2 − (R/2)2 =

√
L2/4 − R2. (2.469)

On the other hand, L/2 = �(z0, z1/2) ≤ (1 + �)|z0 − z1/2| = (1 + �)R so

diam(D) ≤
√
L2/4 − (L/(2 + 2�))2 = L

2

√

1 −
( 1

1 + �

)2
. (2.470)

Based on the chord-arc property, (2.468), and (2.470) we then conclude that

L

2
= �(z1/4, z3/4) ≤ (1 + �)|z1/4 − z3/4|

≤ (1 + �)diam(D) ≤ L

2

√
(1 + �)2 − 1, (2.471)
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which further implies that � ≥ √
2 − 1, a contradiction. � 

By design, the boundary of any chord-arc domain is a simple curve, and this
brings into focus the question: when is the boundary of an open, connected, simply
connected planar set a Jordan curve? According to the classical Carathéodory
theorem, this is the case if and only if some (or any) conformal mapping ϕ : D→ �

(where D is the unit disk in C) extends to a homeomorphism ϕ : D → � (see,
e.g., [53, Theorem 3.1, p. 13]). A characterization of bounded planar Jordan regions
in terms of properties having no reference to their boundaries has been given by
R.L. Moore in 1918. According to [116],

given an open, bounded, connected, simply connected subset �
of R2, in order for ∂� to be a simple closed curve it is necessary
and sufficient that � is uniformly connected im kleinen (i.e., if
for every εo > 0 there exists δo > 0 such that any two points
P, P̃ ∈ � with |P − P̃ | < δo lie in a connected subset � of �
satisfying |P −Q| < εo for each point Q ∈ �).

(2.472)

A moment’s reflection shows that the uniform connectivity condition (im kleinen)
formulated above is equivalent to the demand that for every εo > 0 there exists
δo > 0 such that any two points P, P̃ ∈ � with |P − P̃ | < δo lie in a connected
subset � of � with diam(�) < εo. This condition is meant to prevent the boundary
of � to “branch out” (like in the case of a partially slit disk).

We are now in a position to establish the coincidence of the class of �-CAD
domains with � ≥ 0 small constant with that of δ-AR domains with δ > 0 small, in
the two-dimensional Euclidean setting.

Theorem 2.7 If � ⊆ R2 is a �-CAD with � ∈ [
0,
√

2 − 1
)
then � satisfies a

two-sided local John condition and is a δ-AR domain for any δ > 2
√
�(2 + �).

In particular, � is a δ-AR domain for, say, δ := 2
√√

2 + 1
√
�, a choice which

satisfies δ = O(
√
� ) as � → 0+.

Conversely, given any M ∈ (0,∞) there exists δ∗ ∈ (0, 1) with the property
that whenever δ ∈ (0, δ∗) it follows that any δ-AR domain � ⊆ R2 with Ahlfors
regularity constant ≤ M is a �-CAD with � = O

(
δ ln(1/δ)

)
as δ → 0+.

Proof Suppose � ⊆ R2 is a �-CAD with � ∈ [
0,
√

2 − 1
)
. Proposition 2.17 then

ensures that ∂� is an unbounded set. Keeping this in mind, from Definition 2.16 we
then conclude that ∂� is a Jordan curve passing through infinity in C ≡ R2. Granted
(2.463), it follows that ∂� is a �-CAC. From Proposition 2.10 and (2.199) we then
see that � satisfies a two-sided local John condition and has an Ahlfors regular
boundary. Moreover, if σ := H1�∂� and ν is the geometric measure theoretic
outward unit normal to �, from (2.228) we deduce that

‖ν‖[BMO(∂�,σ)]2 ≤ 2
√
�(2 + �). (2.473)



2.6 Chord-Arc Domains in the Plane 123

It follows from Definition 2.15 and (2.473) that � is a δ-AR domain whenever
δ > 2

√
�(2 + �). This completes the proof of the claim made in the first part of the

statement of the theorem.
In the converse direction, let � ⊆ R2 be a δ-AR domain with δ ∈ (0, 1) suffi-

ciently small relative to the Ahlfors regularity constant of ∂�. Then Theorem 2.3
implies that � is an (∞, N)-two-sided nontangentially accessible domain (in the
sense of Definition 2.9), for some N ∈ N. From Corollary 2.2 we also know that �
is an unbounded connected set which is simply connected, and whose topological
boundary is an unbounded connected set.

The first order of business is to show that actually ∂� is a simple curve. To
establish this, we intend to make use of Moore’s criterion recalled in (2.472). Since
this pertains to bounded sets, as a preliminary step we fix a point z0 ∈ C \ � and
consider

�̃ := �(�) ⊆ C, (2.474)

where

� : C \ {z0} −→ C \ {0}
�(z) := (z− z0)

−1 for each z ∈ C \ {z0}.
(2.475)

Note that, when restricted to �, the function � satisfies a Lipschitz condition.
Specifically, if r0 := dist(z0, ∂�) then r0 ∈ (0,∞) and we may estimate

∣∣�(z1)−�(z2)
∣∣ = |z1 − z2|

|z1 − z0||z2 − z0| ≤ r−2
0 |z1 − z2| for all z1, z2 ∈ �.

(2.476)
Also, since � is a homeomorphism and � ⊆ C\{z0} it follows that �̃ = �(�) is an
open, connected, simply connected subset of C \ {0}. Moreover, � ⊆ C \ B(z0, r0)

and since � maps C \ B(z0, r0) into B(0, 1/r0) it follows that �̃ ⊆ B(0, 1/r0),
hence �̃ is also bounded. The idea is then to check Moore’s criterion (cf. (2.472))
for �̃, conclude that ∂�̃ is a simple curve, then use�−1 to reach a similar conclusion
for ∂�. Since �−1 is singular at 0 ∈ ∂�̃, special care is required when checking
the uniform connectivity condition (im kleinen) near the origin. This requires some
preparations.

To proceed, fix some large number R ∈ (0,∞), to be specified later in the
proof. Pick two points P, P̃ ∈ �̃ ∩ B(0, 1/R) then define x := �−1(P ) and
x̃ := �−1(P̃ ). It follows that x, x̃ ∈ � \ B(z0, R). Bring in the polygonal arc
� joining x with x̃ in � as in Lemma 2.5. As noted in Lemma 2.6, there exists
ε = ε(N) ∈ (0, 1) with the property that this curve is disjoint from B(z0, εR).
Next, abbreviate L := length(�) ∈ (0,∞) and let [0, L] � s �→ �(s) ∈ � be the
arc-length parametrization of �. In particular,

∣∣�′(s)
∣∣ = 1 for L1-a.e. s ∈ (0, L). If

we define
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�̃(s) := �(�(s)) = 1

�(s)− z0
for each s ∈ [0, L], (2.477)

then the image of �̃ is a rectifiable curve joining P with P̃ in �̃. In particular, this
curve is a connected subset of �̃ containing P, P̃ and, with (2.472) in mind, the
immediate goal is to estimate the length of this curve. Retaining the symbol �̃ for
said curve, we have

length(�̃) =
ˆ L

0

∣∣�̃′(s)
∣∣ ds =

ˆ L

0

∣∣�′(�(s))
∣∣ · ∣∣�′(s)∣∣ ds

=
ˆ L

0

ds

|�(s)− z0|2 . (2.478)

For each s ∈ [0, L] we have �(s) ∈ �. Given that z0 /∈ �, the line segment joining
�(s) with z0 intersects ∂�, hence |�(s)− z0| ≥ δ∂�(�(s)). On the other hand, for
each s ∈ [0, L] the last line in (2.74) implies that CN · δ∂�(�(s)) ≥ min{s, L− s}.
Altogether, CN · |�(s) − z0| ≥ min{s, L − s} for each s ∈ [0, L]. Upon recalling
that the polygonal arc � is disjoint from B(z0, εR), we also have |�(s)− z0| ≥ εR

for each s ∈ [0, L]. Ultimately, this proves that there exists some cN ∈ (0,∞) with
the property that

|�(s)− z0| ≥ cN · (R + min{s, L− s}) for each s ∈ [0, L]. (2.479)

Combining (2.478) with (2.479) then gives

length(�̃) =
ˆ L

0

ds

|�(s)− z0|2 ≤ CN

ˆ L

0

ds
(
R + min{s, L− s})2

= CN

ˆ L/2

0

ds
(
R + min{s, L− s})2 + CN

ˆ L

L/2

ds
(
R + min{s, L− s})2

= 2CN

ˆ L/2

0

ds

(R + s)2
≤ 2CN

ˆ ∞

0

ds

(R + s)2
= 2CN

R
. (2.480)

Armed with (2.480), we now proceed to check that the set �̃ is uniformly
connected im kleinen (in the sense made precise in (2.472)). To get started, suppose
some threshold εo > 0 has been given. Make the assumption that

R > max
{
r0,

2CN
εo

}
and pick δo ∈

(
0, 1/(2R)

)
, (2.481)
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reserving the right to make further specifications regarding the size of δo. Consider
two points P, P̃ ∈ �̃ with |P − P̃ | < δo. The goal is to find a connected subset of
�̃ whose every point is at distance ≤ εo from P . To this end, we distinguish two
cases.

Case I: Assume P, P̃ ∈ �̃ ∩ B(0, 1/R). Then �̃, the curve introduced in
(2.477), is a connected subset of �̃ containing P, P̃ , and (2.480) implies (in
view of (2.481)) that length(�̃) < εo. In particular, for any point Q ∈ �̃ we have
|P −Q| ≤ length(�̃) < εo, as wanted.

Case II: Assume either P /∈ �̃ ∩ B(0, 1/R) or P̃ /∈ �̃ ∩ B(0, 1/R). Since
|P − P̃ | < δo < 1/(2R) to begin with, this forces P, P̃ ∈ �̃ \ B(0, 1/(2R)). To
proceed, observe that the restriction of � : � → �̃ to � ∩ B(z0, 2R), i.e., the
function

�̃ : � ∩ B(z0, 2R) −→ �̃ \ B(0, 1/(2R)),

�̃(z) := (z− z0)
−1 for each z ∈ � ∩ B(z0, 2R),

(2.482)

is a bijection, whose inverse

�̃−1 : �̃ \ B(0, 1/(2R)) −→ � ∩ B(z0, 2R),

�̃−1(ζ ) := ζ−1 + z0 for each ζ ∈ �̃ \ B(0, 1/(2R)),
(2.483)

is Lipschitz since for each ζ1, ζ2 ∈ �̃ \ B(0, 1/(2R)) we may estimate

∣∣�̃−1(ζ1)− �̃−1(ζ2)
∣∣ = |ζ1 − ζ2|

|ζ1||ζ2| ≤ (2R)2|ζ1 − ζ2|. (2.484)

In particular, if we set x := �̃−1(P ) ∈ � and x̃ := �̃−1(P̃ ) ∈ �, it follows that

|x − x̃| = ∣∣�̃−1(P )− �̃−1(P̃ )
∣∣ ≤ (2R)2|P − P̃ | ≤ (2R)2δo. (2.485)

Let � be the polygonal arc joining x with x̃ in � as in Lemma 2.5 with the scale
r := |x − x̃|. The first inequality in (2.74) tells us that length(�) ≤ CN · |x − x̃|,
so L := length(�) ≤ CN · (2R)2δo by (2.485). Let [a, b] � t �→ γ (t) ∈ � be a
parametrization of the curve � and define �̃ := � ◦ γ . Then the image of �̃ is a
rectifiable curve joining P with P̃ in �̃. Indeed, �(�) ⊆ �(�) = �̃ and

�(γ (a)) = �(x) = �
(
�̃−1(P )

) = �̃
(
�̃−1(P )

) = P,

�(γ (b)) = �(̃x) = �
(
�̃−1(P̃ )

) = �̃
(
�̃−1(P̃ )

) = P̃ ,
(2.486)

given that �̃−1(P ), �̃−1(P̃ ) belong to � ∩ B(z0, 2R) where � agrees with �̃.
Retaining the symbol �̃ for said curve, we may estimate
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length(�̃) ≤ r−2
0 · length(�) = L/r2

0 ≤ CN · (2R)2δo/r2
0 , (2.487)

where the first inequality follows from (2.209) and the fact that � : � → �̃

is a Lipschitz function with constant ≤ r−2
0 (cf. (2.476)). Choosing δo > 0

sufficiently small, to begin with, so that CN · (2R)2δo/r2
0 < εo, we ultimately

conclude that length(�̃) < εo. Hence, once again, �̃ is a connected subset of �̃
containing P, P̃ , and with the property that |P −Q| ≤ length(�̃) < εo for each
point Q ∈ �̃.
Let us summarize our progress. In view of (2.472), the proof so far gives that

∂�̃ a simple closed curve in the plane. (2.488)

Moreover, since �(∂�) ⊆ ∂�̃, the origin 0 ∈ C is an accumulation point for
�(∂�) (as is visible from (2.475), keeping in mind that ∂� is unbounded), and
∂�̃ is a closed set, we conclude that 0 ∈ ∂�̃. In turn, this implies that ∂�̃ \ {0} is
a simple curve, and that the function given in (2.475) induces a homeomorphism
� : ∂�→ ∂�̃ \ {0}. As a consequence, ∂� = �−1(∂�̃ \ {0}) is a simple curve
in the plane. In addition, the (upper) Ahlfors regularity property of ∂� ensures
that the curve ∂� is locally rectifiable, hence

∂� = �−1(∂�̃ \ {0}) is a locally rectifiable simple curve in the plane.
(2.489)

Next, if γ̃ : [ − π
2 ,

π
2

] → ∂�̃ is a parametrization of ∂�̃ with γ̃ (±π/2) = 0,
then

γ : R→ ∂�, γ (t) := �−1(γ̃ (arctan t)
)

for each t ∈ R, (2.490)

becomes a parametrization of the curve ∂�. Given that lim
t→±∞ |γ (t)| = 0, we

ultimately conclude that

∂� is a Jordan curve passing through infinity in the plane. (2.491)

At this stage, there remains to prove that ∂� satisfies the chord-arc condition
(2.463) with a constant � = O

(
δ ln(1/δ)

)
as δ → 0+. In this regard, we note that

(2.381) with n = 2 gives that there exists a finite geometrical constant Co > 1,
independent of δ, with the property that

∣∣
∣∣∣
H1(B(z, r) ∩ ∂�)

2r
− 1

∣∣
∣∣∣
≤ Co δ ln(1/δ), ∀z ∈ ∂�, ∀r ∈ (0,∞).

(2.492)
Without loss of generality, for the remainder of the proof assume δ ∈ (0, 1)
is small enough so that 0 < δ ln(1/δ) < 1/(4Co). Consider now two points
z1, z2 ∈ ∂�. Abbreviate r := �(z1, z2) and denote by z3 the first exit point of
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the curve ∂� out of B(z1, r). Hence, |z1 − z3| = r and the ordering z1, z2, z3
conforms with the positive orientation of ∂�. Moreover,

the portion of ∂� between z1 and z3 is contained inside B(z1, r). (2.493)

To proceed, introduce  := B(z1, r) ∩ ∂� and decompose  = + ∪ −
(disjoint union), where ± denote the sets of points in  lying, respectively, to
the left and to the right of z1. Also, denote by �(±) the arc-lengths of ±. Then

H1(B(z1, r) ∩ ∂�
) = �(−)+ �(+) and �(±) ≥ r. (2.494)

Making use of (2.492) and (2.494) we may therefore estimate

Co δ ln(1/δ) ≥
∣∣∣∣
∣
H1(B(z, r) ∩ ∂�)

2r
− 1

∣∣∣∣
∣
=

∣∣∣∣
�(−)− r

2r
+ �(+)− r

2r

∣∣∣∣

= �(−)− r

2r
+ �(+)− r

2r
≥ �(+)− r

2r
. (2.495)

Hence, by (2.493) and (2.495),

|z2 − z3| ≤ �(+)− r ≤ 2rCo δ ln(1/δ) (2.496)

which further implies

|z1 − z2| ≥ |z1 − z3| − |z2 − z3| ≥ r − 2rCo δ ln(1/δ)

= (
1 − 2Co δ ln(1/δ)

)
�(z1, z2). (2.497)

This proves that

�(z1, z2) ≤ (1 + �)|z1 − z2| with � := 2Co δ ln(1/δ)

1 − 2Co δ ln(1/δ)
, (2.498)

which goes to show that ∂� is a chord-arc curve. Moreover, the fact that we
have assumed 0 < δ ln(1/δ) < 1/(4Co) implies 0 < � < 4Coδ ln(1/δ). In
particular, we have � = O

(
δ ln(1/δ)

)
as δ → 0+. Hence, � is a �-CAD with

� = O
(
δ ln(1/δ)

)
as δ → 0+, finishing the proof of Theorem 2.7.

� 
In closing, we briefly elaborate on a distinguished sub-class of the category of

planar chord-arc domains, described in the next definition.

Definition 2.17 Say that � ⊆ R2 is a chord-arc domain with vanishing
constant (CAD with vanishing constant, for short) provided � is a chord-arc
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domain in the sense of Definition 2.16 and

lim
R→0+

{
sup

z1,z2∈∂�|z1−z2|<R

( �(z1, z2)

|z1 − z2| − 1
)}

= 0, (2.499)

where �(·, ·) denotes the shortest arc-length between points on ∂�.

The proposition below shows that, in the two-dimensional setting, VMO1
domains (of upper-graph type) are chord-arc domains with vanishing constant.
Before stating it, the reader is reminded that the Sarason space of functions of
vanishing mean oscillations has been introduced in (2.111).

Proposition 2.18 Let ϕ ∈ W
1,1
loc (R) be such that ϕ′ ∈ VMO (R,L1) and consider

its upper-graph � := {(
x, y

) : x ∈ R, y > ϕ(x)
} ⊆ R2. Then � is a chord-arc

domain with vanishing constant.

Proof That � is a chord-arc domain follows from Definition 2.16 and Proposi-
tion 2.13. Finally, the vanishing property (2.499) is seen from Definition 2.17 and
an inspection of the proof of Proposition 2.13, bearing in mind (2.112). � 

2.7 Dyadic Grids and Muckenhoupt Weights on Ahlfors
Regular Sets

The following result, pertaining to the existence of a dyadic grid structure on a
given Ahlfors regular set, is essentially due to M. Christ [27] (cf. also [40], [41]),
with some refinements worked out in [63, Proposition 2.11, pp. 19-20].

Proposition 2.19 Let � ⊆ Rn be a closed, unbounded, Ahlfors regular set, and
abbreviate σ := Hn−1��. Then there are finite constants a1 ≥ a0 > 0 such that for
each m ∈ Z there exists a collection

Dm(�) := {Qm
α }α∈Im (2.500)

of subsets of � indexed by a nonempty, at most countable set of indices Im, as well
as a family {xmα }α∈Im of points in �, for which the collection of all dyadic cubes in
�, i.e.,

D(�) :=
⋃

m∈Z
Dm(�), (2.501)

has the following properties:

(1) [All dyadic cubes are open] For each m ∈ Z and each α ∈ Im the set Qm
α is

relatively open in �.
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(2) [Dyadic cubes are mutually disjoint within the same generation] For each
integer m ∈ Z and each α, β ∈ Im with α �= β there holdsQm

α ∩Qm
β = ∅.

(3) [No partial overlap across generations] For each m, � ∈ Z with � > m and each
α ∈ Im, β ∈ I�, eitherQ�

β ⊆ Qm
α orQm

α ∩Q�
β = ∅.

(4) [Any dyadic cube has a unique ancestor in any earlier generation] For each
integers m, � ∈ Z with m > � and each α ∈ Im there is a unique β ∈ I� such
that Qm

α ⊆ Q�
β . In particular, for each m ∈ Z and each α ∈ Im there exists a

unique β ∈ Im−1 such thatQm
α ⊆ Qm−1

β (a scenario in whichQm−1
β is referred

to as the parent ofQm
α ).

(5) [The size is dyadically related to the generation] For each m ∈ Z and each
α ∈ Im one has

(xmα , a02−m) ⊆ Qm
α ⊆ Qm

α
:= (xmα , a12−m). (2.502)

(6) [Control of the number of children] There exists an integer M ∈ N with the
property that for each m ∈ Z and each α ∈ Im one has

#
{
β ∈ Im+1 : Qm+1

β ⊆ Qm
α

} ≤ M. (2.503)

Also, this integer may be chosen such that for each m ∈ Z, each x ∈ �, and
each r ∈ (0, 2−m) the number ofQ’s in Dm(�) that intersect(x, r) is at most
M .

(7) [Each generation covers the space σ -a.e.] For each m ∈ Z one has

σ
(
� \

⋃

α∈Im
Qm
α

)
= 0. (2.504)

In particular,

N :=
⋃

m∈Z

(
� \

⋃

α∈Im
Qm
α

)
�⇒ σ(N) = 0, (2.505)

and for each m ∈ Z and each α ∈ Im one has

σ
(
Qm
α \

⋃

β∈Im+1,Q
m+1
β ⊆Qm

α

Qm+1
β

)
= 0. (2.506)

(8) [Dyadic cubes have thin boundaries] There exist some small ϑ ∈ (0, 1) along
with some large C ∈ (0,∞), such that for each m ∈ Z, each α ∈ Im, and each
t > 0 one has

σ
({
x ∈ Qm

α : dist(x,� \Qm
α ) ≤ t · 2−m

}) ≤ Ctϑ · σ(Qm
α ). (2.507)
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Moving on, assume � ⊆ Rn is a closed set and abbreviate σ := Hn−1��. It has
been noted in [111, §3.6] that

if Hn−1(K∩�) < +∞ for each compact subset K of Rn then σ
is a complete, locally finite (hence also sigma-finite), separable,
Borel-regular measure on�, where the latter set is endowed with
the topology canonically inherited from the ambient space.

(2.508)

Let w be a weight on �, i.e., a σ -measurable function satisfying 0 < w(x) <∞
for σ -a.e. point x ∈ �. We agree to also use the symbol w for the weighted measure
w σ , i.e., define

w(E) :=
ˆ
E

w dσ for each σ -measurable set E ⊆ �. (2.509)

Then the measuresw and σ have the same sigma-algebra of measurable sets, and are
mutually absolutely continuous with each other. Recall that, for a generic measure
space (X,μ), the measure μ is said to be semi-finite if for each μ-measurable
set E ⊆ X with μ(E) = ∞ there exists some μ-measurable set F ⊆ E such that
0 < μ(F) <∞ (cf., e.g., [51, p. 25]).

Lemma 2.11 Suppose � ⊆ Rn is a closed set and abbreviate σ := Hn−1��. Let
w be an arbitrary weight on � and pick an arbitrary σ -measurable set ⊆ � with
σ() <∞. Then the measure w� is semi-finite and, whenever p, p′ ∈ (1,∞) are
such that 1/p + 1/p′ = 1, it follows that

‖w−1‖
Lp

′
(,w)

= sup
f∈Lp(,w)
‖f ‖Lp(,w)=1

ˆ


|f | dσ. (2.510)

Proof Consider a w-measurable set E ⊆  with w(E) = ∞. In particular, the set
E is σ -measurable. If for each N ∈ N we define EN := {x ∈ E : w(x) < N} then
EN is a σ -measurable subset of  and the inclusion EN ⊆ EN+1 holds. In addition,⋃

N∈N EN = {x ∈ E : w(x) <∞} hence σ
(
E \⋃N∈N EN

) = 0. Consequently,

lim
N→∞w(EN) = lim

N→∞

ˆ
EN

w dσ =
ˆ
E

w dσ = w(E) = ∞, (2.511)

by Lebesgue’s Monotone Convergence Theorem. In turn, (2.511) implies that there
exists No ∈ N such that w(ENo) > 0. Since we also have

w(ENo) =
ˆ
ENo

w dσ ≤ No · σ(ENo) ≤ No · σ() <∞, (2.512)

we conclude that ENo is a w-measurable subset of E with 0 < w(ENo) <∞. This
implies that w� is indeed a semi-finite measure.
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With an eye on the claim made in (2.510), define Sfin(,w) to be the vector
space of all complex-valued functions defined on  which may be expressed in the
form f = ∑N

j=1 λj1Ej where N ∈ N, each λj is a complex number, the family of
sets {Ej }1≤j≤N consists of w-measurable mutually disjoint subsets of  which also
satisfies w

(⋃N
j=1 Ej

)
< +∞. Note that each such function f happens to be σ -

measurable and, for each q ∈ (0,∞), satisfies
´

|f |q ≤ ∑N

j=1 |λj |q · σ() <∞.
Hence,

Sfin(,w) ⊆
⋂

0<q<∞
Lq(, σ) (2.513)

and, in particular,

fw−1 ∈ L1(,w) for each f ∈ Sfin(,w). (2.514)

Having picked p, p′ ∈ (1,∞) with 1/p + 1/p′ = 1, we may then write

‖w−1‖
Lp

′
(,w)

= sup
f∈Sfin(,w)‖f ‖Lp(,w)=1

∣∣
∣
ˆ


fw−1 dw
∣∣
∣ = sup

f∈Sfin(,w)‖f ‖Lp(,w)=1

∣∣
∣
ˆ


f dσ
∣∣
∣

≤ sup
f∈Lp(,w)
‖f ‖Lp(,w)=1

ˆ


|f | dσ. (2.515)

The first equality above is a consequence of [51, Theorem 6.14, p. 189], whose
applicability in the present setting is ensured by (2.514) and the fact that the measure
w� is semi-finite. The second equality in (2.515) is justified upon recalling that
dw = wdσ , and the inequality in (2.515) is trivial. There remains to observe that
for each f ∈ Lp(,w) with ‖f ‖Lp(,w) = 1 Hölder’s inequality gives

ˆ


|f | dσ =
ˆ


|f |w−1 dw ≤ ‖w−1‖
Lp

′
(,w)

. (2.516)

At this stage, (2.510) becomes a consequence of (2.515) and (2.516). � 
Next, assume that � ⊆ Rn, where n ∈ N with n ≥ 2, is a closed set which is

Ahlfors regular, and abbreviate σ := Hn−1��. Given p ∈ (1,∞), we say that a
weight w on � belongs to the Muckenhoupt class Ap(�, σ) if

[w]Ap := sup
⊆�

( 


w(x) dσ(x)

)( 


w(x)1−p′ dσ(x)

)p−1

<∞, (2.517)

where p′ is the conjugate exponent of p (i.e., p′ ∈ (1,∞) satisfies 1/p+1/p′ = 1)
and the supremum runs over all surface balls  in �. The expression in (2.517)
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arises naturally since for each weight function and each surface ball ⊆ � Hölder’s
inequality gives

1 =
 


1 dσ =
 


w1/pw−1/p dσ

≤
( 



w dσ

)1/p ( 


w1−p′ dσ

)1/p′

, (2.518)

hence

1 ≤ inf
⊆�

( 


w dσ

)( 


w1−p′ dσ

)p−1

≤ [w]Ap ≤ ∞. (2.519)

For further use it is useful to note that (2.517) entails that, given any w ∈ Ap(�, σ)

with p ∈ (1,∞), for each surface ball  ⊆ � we have

(ˆ


w−p′/p dσ

)1/p′

≤ [w]1/pAp

σ ()

w()1/p
. (2.520)

Corresponding to p = 1, we say that w ∈ A1(�, σ ) if

[w]A1 := sup
⊆�

(
ess inf
x∈ w(x)

)−1 ( 


w dσ

)
<∞. (2.521)

It is clear from the above definition that [w]A1 ≥ 1 for each weight w on �. Recall
that the (non-centered) Hardy–Littlewood maximal operator M on � acts on each
given σ -measurable function f on � according to

Mf (x) := sup
�x

 


|f | dσ, ∀ x ∈ �, (2.522)

where the supremum is taken over all surface balls  in � which contain the point
x. In particular,

a weight w on � belongs to A1(�, σ ) if and only if there exists
a constant C ∈ (0,∞) with the property that Mw(x) ≤ Cw(x)

at σ -a.e. point x ∈ �, and the best constant is actually [w]A1 .
(2.523)

Corresponding to the end-point p = ∞,

the class A∞(�, σ ) is defined as the union
of all Ap(�, σ) with p ∈ [1,∞). (2.524)
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Lemma 2.12 Suppose � ⊆ R
n is a closed set which is Ahlfors regular, and

abbreviate σ := Hn−1��. Then for each p ∈ (1,∞), each Muckenhoupt weight
w ∈ Ap(�, σ), and each σ -measurable function f on � one has

 


|f | dσ ≤ [w]1/pAp

(  


|f |p dw
)1/p

,

for each surface ball  ⊆ �.

(2.525)

Conversely, if p ∈ (1,∞) and w is a weight on � with the property that there
exists a constant C ∈ (0,∞) such that

 


|f | dσ ≤ C
(  



|f |p dw
)1/p

for each

function f ∈ L
p
loc(�,w) and surface ball  ⊆ �,

(2.526)

then actually w ∈ Ap(�, σ) and [w]Ap ≤ Cp.

Proof Let p′ ∈ (1,∞) denote the Hölder conjugate exponent of p and fix an
arbitrary σ -measurable function f on �. Then for each surface ball  ⊆ � we
may estimate

 


|f | dσ = 1

σ()

ˆ


|f |w1/pw−1/p dσ

≤ 1

σ()

( ˆ


|f |p w dσ
)1/p( ˆ



w−p′/p dσ
)1/p′

=
(  



w1−p′ dσ

)1/p′(  


w dσ

)1/p( 


|f |p dw
)1/p

≤ [w]1/pAp

(  


|f |p dw
)1/p

, (2.527)

by Hölder’s inequality and (2.517). This proves (2.525).
As for the converse, fix p ∈ (1,∞) and suppose w is a generic weight function

on � for which there exists a constant C ∈ (0,∞) such that (2.526) holds. Once
again, denote p′ ∈ (1,∞) the Hölder conjugate exponent of p and fix an arbitrary
surface ball  ⊆ �. Then, with tilde denoting the extension by zero of a function
originally defined on  to the entire set �, we may write

‖w−1‖
Lp

′
(,w)

= sup
f∈Lp(,w)
‖f ‖Lp(,w)=1

ˆ


|f | dσ = σ() · sup
f∈Lp(,w)
‖f ‖Lp(,w)=1

 


|f̃ | dσ
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≤ Cσ() · sup
f∈Lp(,w)
‖f ‖Lp(,w)=1

(  


|f̃ |p dw
)1/p

≤ C
σ()

w()1/p
, (2.528)

where the first equality comes from Lemma 2.11, and the first inequality is implied
by (2.526). This proves that ‖w−1‖

Lp
′
(,w)

≤ C · σ()/w()1/p which, after
unraveling notation, yields

( 


w dσ

)( 


w1−p′ dσ

)p−1

≤ Cp. (2.529)

Ultimately, in view of the arbitrariness of the surface ball  ⊆ �, this implies that
w ∈ Ap(�, σ) and [w]Ap ≤ Cp. � 

In this work we are particularly interested in the scale of weighted Lebesgue
space Lp(�,w) := Lp(�, wσ) with p ∈ (1,∞) and w ∈ Ap(�, σ). As in the
Euclidean setting,

given a weightw on� and an integrability exponent p ∈ (1,∞),
the Hardy–Littlewood maximal operator M is bounded on the
space Lp(�,w) if and only if w ∈ Ap(�, σ),

(2.530)

in which case there exists some constant C = C(�, n, p) ∈ (0,∞) (which depends
on � only through its Ahlfors regularity constant) with the property that

‖Mf ‖Lp(�,w) ≤ C[w]1/(p−1)
Ap

‖f ‖Lp(�,w) for all f ∈ Lp(�,w) (2.531)

(see, e.g., [64, Proposition 7.13]). Also, corresponding to p = 1, the operator M
satisfies the weak-(1, 1) inequality

sup0<λ<∞ λ · w({x ∈ � : Mf (x) > λ}) ≤ C‖f ‖L1(�,w)

for all f ∈ L1(�,w), with C ∈ (0,∞) independent of f,
(2.532)

if and only if w ∈ A1(�, σ ). For the reader’s convenience, other useful properties
of Muckenhoupt weights are summarized in the proposition below (for a more
extensive discussion pertaining to the theory of weights in the general context of
spaces of homogeneous type the reader is referred to [6, 54, 65, 76, 135]).

Proposition 2.20 Suppose � ⊆ Rn is a closed Ahlfors regular set and abbreviate
σ := Hn−1��. Then the following properties hold.

(1) [Openness/Self-Improving] If w ∈ Ap(�, σ) with p ∈ (1,∞) then there exist
some τ ∈ (1,∞) and some ε ∈ (0, p − 1) (both of which depend only on p,
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[w]Ap , n, and the Ahlfors regularity constant of �) such that

wτ ∈ Ap(�, σ) and w ∈ Ap−ε(�, σ ). (2.533)

In addition, both
[
wτ

]
Ap

and [w]Ap−ε are controlled in terms of p, [w]Ap , n,

and the Ahlfors regularity constant of �. In fact, matters may be arranged so
that, in a quantitative fashion,

wθ ∈ Aq(�, σ) for each θ ∈ (τ−1, τ ) and q ∈ (p − ε,∞). (2.534)

(2) [Monotonicity] If 1 ≤ p ≤ q ≤ ∞ then Ap(�, σ) ⊆ Aq(�, σ) and if q < ∞
then [w]Aq ≤ [w]Ap for each w ∈ Ap(�, σ).

(3) [Dual Weights] Given any w ∈ Ap(�, σ) with p ∈ (1,∞), it follows that

w1−p′ belongs to Ap′(�, σ ) and [w1−p′ ]Ap′ = [w]1/(p−1)
Ap

, where p′ ∈ (1,∞)

is the Hölder conjugate exponent of p.
(4) [Products/Factorization] If w1, w2 ∈ A1(�, σ ) then for every p ∈ (1,∞) one

has w1 ·w1−p
2 ∈ Ap(�, σ) and [w1 ·w1−p

2 ]Ap ≤ [w1]A1 · [w2]p−1
A1

. Also, given
w1, w2 ∈ Ap(�, σ) with p ∈ (1,∞) along with some α ∈ [0, 1], it follows that
wα

1 · w1−α
2 ∈ Ap(�, σ) and [wα

1 · w1−α
2 ]Ap ≤ [w1]αAp

· [w2]1−αAp
.

(5) [Doubling] If w ∈ Ap(�, σ) with p ∈ (1,∞) then for every surface ball  in
� and every σ -measurable set E ⊆  one has

(
σ(E)

σ()

)p

≤ [w]Ap ·
w(E)

w()
. (2.535)

In particular, the measure w is doubling, that is, there exists some C ∈ (0,∞)

which depends only on p, n, and the Ahlfors regularity constant of �, such that
w(2) ≤ C[w]Ap · w() for every surface ball  ⊆ �. More generally, with
the constant C ∈ (0,∞) of the same nature as above, one has the inequality
w(λ) ≤ C[w]Ap · λp(n−1) · w() for each λ ∈ (1,∞) and each surface ball
 ⊆ � (where λ denotes the concentric dilate of  by a factor of λ).

(6) [Reverse Hölder Inequalities] For every w ∈ A∞(�, σ ) there exist q ∈ (1,∞)

and some C ∈ (0,∞) (which both depend only on p, [w]Ap , n, and the Ahlfors
regularity constant of �, for some p ∈ (1,∞) for which w ∈ Ap(�, σ)) such
that

( 


wq dσ

)1/q

≤ C

 


w dσ, (2.536)

for every surface ball ⊆ �. This has several remarkable consequences. First,
there exist some power τ > 0 and some constant C ∈ (0,∞) (in fact, C is
the same as in (2.536) and τ = 1/q ′ where q ′ is the Hölder conjugate of the
exponent q from (2.536)) such that
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w(E)

w()
≤ C

(
σ(E)

σ()

)τ

(2.537)

for every surface ball  ⊆ � and every σ -measurable set E ⊆ . Another
useful consequence of the inequality in (2.536) and Hölder’s inequality is that
for each σ -measurable function f on � and each surface ball  ⊆ � one has

 


|f | dw ≤ C

( 


|f |q ′ dσ
)1/q ′

, (2.538)

where q ′ ∈ (1,∞) is the Hölder conjugate exponent of q from (2.536), and the
constant C ∈ (0,∞) is as in (2.536). Finally, in the case when� is unbounded,
(2.537) (used with = (x, r) andE = (x, 1)) proves that there exists some
c ∈ (0,∞) such that

w
(
(x, r)

) ≥ c r(n−1)τ · w(
(x, 1)

)

for each x ∈ � and r ∈ (1,∞).
(2.539)

In particular,

w(�) = +∞ if � is unbounded. (2.540)

(7) [BuildingA1 Weights] There exists C ∈ (0,∞) which depends only on n and�,
with the property that if f ∈ L1

loc(�, σ ) is not identically zero and Mf < ∞
at σ -a.e. point on � then for each θ ∈ (0, 1) one has (Mf )θ ∈ A1(�, σ )

and
[
(Mf )θ

]
A1

≤ C(1 − θ)−1. In addition, for each power θ ∈ (0, 1) the

weight w := (Mf )θ satisfies a reverse Hölder inequality (as in (2.536)) for
each exponent q ∈ (1, θ−1).

(8) [BMO and Weights] For each p ∈ (1,∞) and w ∈ Ap(�, σ) there exist some
small ε = ε(�, p, [w]Ap) > 0 and some large C = C(�, p, [w]Ap) ∈ (0,∞)

such that for each function b ∈ BMO(�, σ ) with ‖b‖BMO(�,σ) < ε one has
w ·eb ∈ Ap(�, σ) and

[
w ·eb]

Ap
≤ C. In particular, for each fixed integrability

exponent p ∈ (1,∞) the set Up := {
b ∈ BMO(�, σ ) : eb ∈ Ap(�, σ)

}
is

open in BMO(�, σ ). Also, for each weight w ∈ A1(�, σ ), the function logw
belongs to BMO(�, σ ) and ‖ logw‖BMO(�,σ) ≤ C(�, n, [w]A1). Finally, for
each function b ∈ BMO(�, σ ) and each exponent p ∈ (1,∞), the function
max{1, |b|} belongs to Ap(�, σ) and there exists C�,p ∈ (0,∞), independent
of b, such that [max{1, |b|}]Ap ≤ C�,p(1 + ‖b‖BMO(�,σ)).

(9) [Dyadic Cubes] If� is unbounded, then properties (2.535), (2.536), and (2.537)
also hold if surface balls  are replaced by dyadic “cubes,” as described in
Proposition 2.19.

Proof For the memberships in (2.533), (2.534) (including their quantitative aspects)
see [65, Theorems 1.1-1.2], [21, Theorem 2.31, p. 58].
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To deal with item (2), suppose 1 ≤ p ≤ q < ∞ and denote by p′, q ′ the
Hölder conjugate exponents of p and q, respectively. Also, fix an arbitrary weight
w ∈ Ap(�, σ). Then r := (1− p′)/(1− q ′) belongs to [1,∞), so for each surface
ball  in � we may employ Hölder’s inequality to write

( 


w dσ

)( 


w1−q ′ dσ

)q−1

≤
( 



w dσ

)( 


wr(1−q ′) dσ

)(q−1)/r

=
( 



w dσ

)( 


w1−p′ dσ

)p−1

≤ [w]Ap < +∞, (2.541)

since (q − 1)/r = p − 1. In view of (2.517), this shows that w ∈ Aq(�, σ) and
we have [w]Aq ≤ [w]Ap . Finally, the fact that the inclusion Ap(�, σ) ⊆ Aq(�, σ)

also holds if q = ∞ is clear from (2.524).
Going further, to justify the claim made in item (3), fix some w ∈ Ap(�, σ) with

p ∈ (1,∞), and denote by p′ ∈ (1,∞) the Hölder conjugate exponent of p. Then
for each surface ball  in � we may write

( 


w1−p′ dσ

)( 


(w1−p′)1−p dσ

)p′−1

=
( 



w1−p′ dσ

)( 


w dσ

)p′−1

≤ [w]p′−1
Ap

= [w]1/(p−1)
Ap

< +∞, (2.542)

thanks to (2.517). This implies that w1−p′ belongs to Ap′(�, σ ) and that we have

[w1−p′ ]Ap′ ≤ [w]1/(p−1)
Ap

. Writing this last inequality with p replaced by p′ and with

w replaced by w1−p′ yields [(w1−p′)1−p]Ap ≤ [w1−p′ ]1/(p′−1)
Ap′ . Hence, we have

[w]1/(p−1)
Ap

≤ [w1−p′ ]Ap′ which ultimately proves that [w1−p′ ]Ap′ = [w]1/(p−1)
Ap

.
To deal with the first claim made in item (4), recall from (2.521) that, since

w2 ∈ A1(�, σ ), for each surface ball  in � we have

 


w2 dσ ≤ [w2]A1 · w2 at σ -a.e. point in . (2.543)

Given that 1 − p < 0, this entails
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w
1−p
2 ≤ [w2]p−1

A1
·
(  



w2 dσ
)1−p

at σ -a.e. point in , (2.544)

which further implies

 


w1 · w1−p
2 dσ ≤ [w2]p−1

A1
·
(  



w1 dσ
)(  



w2 dσ
)1−p

. (2.545)

In a similar manner, the fact that w1 ∈ A1(�, σ ) implies

w
−1/(p−1)
1 ≤ [w1]1/(p−1)

A1
·
( 



w1 dσ
)−1/(p−1)

at σ -a.e. point in , (2.546)

hence

(  


(w1 · w1−p
2 )−1/(p−1) dσ

)p−1 =
(  



w
−1/(p−1)
1 · w2 dσ

)p−1
(2.547)

≤ [w1]A1 ·
(  



w1 dσ
)−1(  



w2 dσ
)p−1

.

By combining (2.545) with (2.547) we therefore arrive at the conclusion that, with
p′ denoting the Hölder conjugate exponent of p,

( 


w1 · w1−p
2 dσ

)( 


(w1 · w1−p
2 )1−p′ dσ

)p−1

=
( 



w1 · w1−p
2 dσ

)( 


(w1 · w1−p
2 )−1/(p−1) dσ

)p−1

≤ [w2]p−1
A1

·
(  



w1 dσ
)(  



w2 dσ
)1−p×

× [w1]A1 ·
(  



w1 dσ
)−1( 



w2 dσ
)p−1

= [w1]A1 · [w2]p−1
A1

. (2.548)

Thus, with the supremum running over all surface balls in�, we have (cf. (2.517))

[w1 · w1−p
2 ]Ap = sup

⊆�

( 


w1 · w1−p
2 dσ

)( 


(w1 · w1−p
2 )1−p′ dσ

)p−1
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= [w1]A1 · [w2]p−1
A1

< +∞, (2.549)

proving that the weight w1 ·w1−p
2 belongs to the Muckenhoupt class Ap(�, σ) and

that we have [w1 · w1−p
2 ]Ap ≤ [w1]A1 · [w2]p−1

A1
.

As regards the second claim in item (4), pick two weights w1, w2 ∈ Ap(�, σ)

with p ∈ (1,∞) fix some α ∈ [0, 1]. If α = 0 or α = 1 there is nothing to prove, so
assume α ∈ (0, 1). With “prime” indicating a conjugate exponent, for each surface
ball  in � Hölder’s inequality gives

 


wα
1 · w1−α

2 dσ ≤
( 



(wα
1 )

1/α dσ
)α(  



(w1−α
2 )(1/α)

′
dσ

)1/(1/α)′

=
(  



w1 dσ
)α( 



w2 dσ
)1−α

, (2.550)

since (1/α)′ = (1 − α)−1. Similarly,

( 


(wα
1 · w1−α

2 )1−p′ dσ
)p−1

≤
(  



w
1−p′
1 dσ

)α(p−1)(  


w
1−p′
2 dσ

)(1−α)(p−1)
. (2.551)

Together, (2.550) and (2.551) show that

( 


wα
1 · w1−α

2 dσ
)(  



(wα
1 · w1−α

2 )1−p′ dσ
)p−1

≤
[(  



w1 dσ
)( 



w
1−p′
1 dσ

)p−1
]α[(  



w2 dσ
)( 



w
1−p′
2 dσ

)p−1
]1−α

≤ [w1]αAp
· [w2]1−αAp

< +∞. (2.552)

After taking the supremum over all surface balls  ⊆ �, we then conclude from
(2.552) that wα

1 · w1−α
2 ∈ Ap(�, σ) and [wα

1 · w1−α
2 ]Ap ≤ [w1]αAp

· [w2]1−αAp
.

Moving on, the estimate in (2.535) may be seen from Lemma 2.12, used here with
f := 1E . In concert with the Ahlfors regularity of �, this implies all subsequent
claims in item (5).

The reverse Hölder inequality claimed in (2.536) is contained in [65, Theo-
rem 2.3], [135, Theorem 15, p. 9]. Moreover, if q ′ is the Hölder conjugate of the
exponent q from (2.536) then for every surface ball  ⊆ � and every σ -measurable
set E ⊆  we may estimate
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w(E)

w()
=
 


1E dw = σ()

w()

 


1E w dσ

≤ σ()

w()

(  


1E dσ
)1/q ′(  



wq dσ
)1/q

≤ C
σ()

w()

(  


1E dσ
)1/q ′( 



w dσ
)
= C

(
σ(E)

σ()

)1/q ′

, (2.553)

thanks to Hölder’s inequality and (2.536). This proves (2.537) with τ := 1/q ′ > 0
and C ∈ (0,∞) the same constant as in (2.536).

Consider next the first claim made in item (7). Suppose f ∈ L1
loc(�, σ ) is not

identically zero and has the property that Mf < ∞ at σ -a.e. point on �. Fix an
arbitrary surface ball  ⊆ � and decompose f = f1 + f2 with f1 := f 12 and
f2 := f 1�\2. Having Mf <∞ at σ -a.e. point on � entails f1 ∈ L1(�, σ ). Since
0 < θ < 1 and 0 ≤Mf ≤Mf1 +Mf2, we conclude that

(Mf )θ ≤ (Mf1)
θ + (Mf2)

θ on �. (2.554)

Based on Kolmogorov’s inequality, the fact that M satisfies the weak-(1, 1)
inequality, the membership of f1 to L1(�, σ ), and the fact that the measure σ is
doubling we may estimate

(  


|Mf1|θ dσ
)1/θ ≤

( 1

1 − θ

) 1
θ
σ ()−1‖Mf1‖L1,∞(�,σ)

≤ C
( 1

1 − θ

) 1
θ
σ ()−1‖f1‖L1(�,σ)

≤ C
( 1

1 − θ

) 1
θ

 
2
|f | dσ

≤ C
( 1

1 − θ

) 1
θ

inf
x∈2

(Mf )(x). (2.555)

Hence, on the one hand,

 


|Mf1|θ dσ ≤ C

1 − θ

(
inf
x∈2

(Mf )(x)
)θ
. (2.556)

On the other hand, the fact that

for each surface ball ′ ⊆ � so that ′ ∩ �= ∅
and ′ ∩ (� \ 2) �= ∅ it follows that  ⊆ 6′ (2.557)
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readily implies that there exists a geometric constant C ∈ (0,∞) with the property
that

(Mf2)(y) ≤ C(Mf2)(x) for each x, y ∈ . (2.558)

In turn, this forces

 


|Mf2|θ dσ ≤ C
(

inf
x∈(Mf2)(x)

)θ ≤ C
(

inf
x∈(Mf )(x)

)θ
(2.559)

which, in concert with (2.556) and (2.554) proves that

 


|Mf |θ dσ ≤ C

1 − θ
· inf
x∈[(Mf )(x)]θ . (2.560)

Since 0 < [(Mf )(x)]θ <∞ for σ -a.e. point x ∈ �, ultimately (2.560) implies that
(Mf )θ ∈ A1(�, σ ) and

[
(Mf )θ

]
A1
≤ C(1 − θ)−1.

To show that for each θ ∈ (0, 1) and q ∈ (1, θ−1) the weight w := (Mf )θ

satisfies (2.536), observe that θ̃ := θq ∈ (0, 1) so we may invoke (2.560) (for θ̃ ) to
write, for every surface ball  ⊆ �,

( 


wq dσ

)1/q

=
( 



|Mf |θ̃ dσ

)1/q

≤
(

C

1 − θ̃

)1/q

·
(

inf

(Mf )θ̃

)1/q

=
(

C

1 − θq

)1/q

·
(

inf

(Mf )θ

)

≤
(

C

1 − θq

)1/q  


|Mf |θ =
(

C

1 − θq

)1/q  


w dσ, (2.561)

as wanted. This completes the treatment of item (7).
For the first two claims in item (8) see [69, p. 33 and p. 60] for a proof in the

Euclidean ambient which readily adapts to the present setting, given the availability
of a John-Nirenberg inequality for doubling measures (see the discussion pertaining
to (2.92)–(2.94)) and the results in the current items (1)-(6). For the third claim in
item (8) see [52, Theorem 3.3, p. 157] for a proof in the Euclidean space which goes
through in the present setting as well. We may justify the very last claim in item (8)
by arguing along the lines of the proof of [58, Lemma 1.12, p. 471]. Specifically,
given b ∈ BMO(�, σ ) set w := max{1, |b|} and fix some p ∈ (1,∞). Then for an
arbitrary surface ball  in � we may write

( 


w dσ

)( 


w
− 1

p−1 dσ

)p−1



142 2 Geometric Measure Theory

≤
( 



[
1 + |b − b|

]
dσ

)( 


( 1

max{1, |b|}
) 1
p−1

dσ

)p−1

+ |b|
( 



( 1

max{1, |b|}
) 1
p−1

dσ

)p−1

≤ 1 + ‖b‖BMO(�,σ) +
( 



( |b|
max{1, |b|}

) 1
p−1

dσ

)p−1

. (2.562)

Also, if E0 := {x ∈  : |b(x)| > |b|/2} and E1 := {x ∈  : |b(x)| ≤ |b|/2},
then for each point x ∈ E0 we have |b|/|b(x)| ≤ 2 while for each point x ∈ E1
we have |b| ≤ 2|b(x)− b|. Consequently,

( 


( |b|
max{1, |b|}

) 1
p−1

dσ

)p−1

≤ max
{
1, 2p−2} ·

(
1

σ()

ˆ
E0

( |b|
|b|

) 1
p−1

dσ

)p−1

+ max
{
1, 2p−2} ·

(
1

σ()

ˆ
E1

|b|
1

p−1 dσ

)p−1

≤ max
{
2, 2p−1} ·

(σ(E0)

σ ()

)p−1

+ max
{
2, 2p−1} ·

( 


|b − b|
1

p−1 dσ

)p−1

≤ C�,p
(
1 + ‖b‖BMO(�,σ)

)
, (2.563)

where the last step above uses the John-Nirenberg inequality. In view of the
arbitrariness of the surface ball , from the estimates in (2.562)–(2.563) we may
conclude that w ∈ Ap(�, σ) and [w]Ap ≤ C�,p(1 + ‖b‖BMO(�,σ)) for some
constant C�,p ∈ (0,∞) which is independent of b. This takes care of the very
last claim in item (8). Finally, the claim in item (9) is a consequence of (2.502) and
the doubling properties of σ and w (for the latter see item (5) above). � 

Given that the class of Muckenhoupt weights is going to play a prominent role in
this work, it is appropriate to include some relevant concrete examples of interest.

Example 2.12 Suppose � ⊆ Rn (where n ≥ 2) is a closed set which is Ahlfors
regular, and abbreviate σ := Hn−1��. Also, fix some p ∈ (1,∞) along with an
arbitrary point x0 ∈ � and a power a ∈ R. Then the function

w : � → [0,∞], w(x) := |x − x0|a for each x ∈ � (2.564)
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is a Muckenhoupt weight in Ap(�, σ) if and only if a ∈ (
1 − n, (p − 1)(n − 1)

)
.

Furthermore, whenever this happens, [w]Ap depends only on the Ahlfors regularity
constant of �, p, and a.

See, for example, [54, Proposition 1.5.9, p. 42]. In a more general geometric
setting, we have the following result, implied by work in [45].

Proposition 2.21 Assume � ⊆ Rn is a closed set which is Ahlfors regular, and
abbreviate σ := Hn−1��. Fix d ∈ [0, n − 1) and consider a d-set E ⊆ �, i.e., a
closed subset E of � with the property that there exists some Borel outer-measure
μ on E satisfying

μ
(
B(x, r) ∩ E) ≈ rd, uniformly for x ∈ E and r ∈ (

0, 2 diam(E)
)
. (2.565)

Then for each p ∈ (1,∞) and each a ∈ (
d+1−n, (p−1)(n−1−d)) the function

w := [
dist(·, E)]a is a Muckenhoupt weight in the classAp(�, σ). Moreover, [w]Ap

depends only on the Ahlfors regularity constant of �, the proportionality constants
in (2.565), d, p, and a.

We continue to explore properties of Muckenhoupt weights in the context of
Ahlfors regular sets which are relevant for this work.

Lemma 2.13 Let� ⊆ Rn be a closed Ahlfors regular set and define σ := Hn−1��.
Then for each w ∈ A∞(�, σ ) one has

BMO(�, σ ) ⊆ L1
loc(�,w). (2.566)

Proof This is a direct consequence of (2.524), item (2) in Proposition 2.20, (2.538),
and (2.96). � 

If � ⊆ Rn is a closed Ahlfors regular set and σ := Hn−1��, then for each
weight function w on � we have L∞(�, σ ) = L∞(�,w), i.e., these vector spaces
coincide and they have identical norms. Remarkably, whenever w ∈ A∞(�, σ ) it
follows that the BMO spaces on � with respect to σ and w are once again identical.
Here is a formal statement of this fact (compare with [117, Theorem 5, p. 236]).

Lemma 2.14 Suppose � ⊆ R
n is a closed set which is Ahlfors regular, and

abbreviate σ := Hn−1��. Also, fix some weight w ∈ A∞(�, σ ) (hence, there
exists some p ∈ (1,∞) for which w ∈ Ap(�, σ)). Then there exists a constant
C ∈ [1,∞) which depends only on p, [w]Ap , n, and the Ahlfors regularity constant
of � such that

C−1 ‖f ‖BMO(�,σ) ≤ ‖f ‖BMO(�,w) ≤ C ‖f ‖BMO(�,σ) (2.567)

for each function f ∈ L1
loc(�, σ ) ∩ L1

loc(�,w).
Moreover, for each σ -measurable function f on � one has the equivalence
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f ∈ BMO(�, σ )⇐⇒ f ∈ BMO(�,w) (2.568)

and if either of these memberships materializes then ‖f ‖BMO(�,σ) ≈ ‖f ‖BMO(�,w)
where the implicit proportionality constants depend only on p, [w]Ap , n, and the
Ahlfors regularity constant of �. Succinctly put,

the spaces BMO(�, σ ) and BMO(�,w) coincide as sets

and have equivalent semi-norms.
(2.569)

Proof Pick a function f ∈ L1
loc(�, σ )∩L1

loc(�,w). To prove the first inequality in
(2.567), start by writing (2.525) with f replaced by f − ffl


f dw for some arbitrary

surface ball  ⊆ �, then invoke (2.102) to obtain

‖f ‖BMO(�,σ) ≤ 2 sup
⊆�

inf
c∈R

( 


∣∣f − c
∣∣ dσ

)
≤ 2 sup

⊆�

 


∣∣
∣f −

 


f dw
∣∣
∣ dσ

≤ 2[w]1/pAp
· sup
⊆�

(  


∣
∣∣f −

 


f dw
∣
∣∣
p

dw
)1/p

≤ C ‖f ‖BMO(�,w) , (2.570)

for some constant C ∈ (0,∞) as in the statement. To prove the second inequality in
(2.567), observe first that w belongs to some Reverse Hölder class, say w satisfies
(2.536) for some q ∈ (1,∞). If q ′ ∈ (1,∞) denotes the Hölder conjugate exponent
of q, then (2.538) allows to estimate

inf
c∈R

( 


∣
∣f − c

∣
∣ dw

)
≤
 


∣
∣∣f −

 


f dσ
∣
∣∣ dw

≤ C

( 


∣∣
∣f −

 


f dσ
∣∣
∣
q ′

dσ

)1/q ′

, (2.571)

for some constant C ∈ (0,∞) of the same nature as before. Taking the supremum
over all surface balls  ⊆ � and then using John-Nirenberg’s inequality, we
ultimately obtain ‖f ‖BMO(�,w) ≤ C ‖f ‖BMO(�,σ), as desired.

As regards the equivalence in (2.568), assume first that f ∈ BMO(�, σ ). Then
(2.566) implies that f ∈ L1

loc(�, σ ) ∩ L1
loc(�,w), so (2.567) holds. Conversely,

assume the function f belongs to BMO(�,w). In particular, f ∈ L1
loc(�,w) and

the John-Nirenberg inequality (for the doubling measure w) guarantees that we also
have f ∈ L

p

loc(�,w). In concert with (2.525) the latter membership implies that
f ∈ L1

loc(�, σ ), hence once again (2.567) applies. � 
The doubling and self-improving properties of Muckenhoupt weights yield the

following result (see [111, §7.7] for a proof).
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Lemma 2.15 Suppose � ⊆ Rn, where n ∈ N with n ≥ 2, is a closed set which is
Ahlfors regular, and abbreviate σ := Hn−1��. In this setting, fix some p ∈ (1,∞)

along with a Muckenhoupt weight w ∈ Ap(�, σ). Then

ˆ
�

w(x)

(1 + |x|n−1)p
dσ(x) < +∞. (2.572)

Also,

there exists ε ∈ (0, 1) such that

Lp(�,w) ↪→ L1
(
�,

σ(x)

1 + |x|n−1−ε
)
,

(2.573)

and there exists an exponent po ∈ (1, p] with the property that

Lp(�,w) ↪→ Lq
(
�,

σ(x)

1 + |x|n−1

)

continuously, for each fixed q ∈ (0, po).
(2.574)

As a consequence,

Lp(�,w) ↪→ L1
(
�,

σ(x)

1 + |x|n−1

)
continuously, (2.575)

and

Lp(�,w) ⊆ L
p
loc(�,w) ⊆

⋃

1<q<p

L
q
loc(�, σ ) ⊆ L1

loc(�, σ ). (2.576)

2.8 Sobolev Spaces on Ahlfors Regular Sets

Consider an Ahlfors regular domain � ⊆ Rn. Denote by ν = (ν1, . . . , νn) the
geometric measure theoretic outward unit normal to �, and set σ := Hn−1�∂�. In
particular, (2.508) implies that

σ is a complete, locally finite (hence also sigma-finite), sep-
arable, Borel-regular measure on ∂�, where the latter set is
endowed with the topology canonically inherited from Rn.

(2.577)

Among other things, this implies (cf. [111, §3.7]) that for every f ∈ L1
loc(∂�, σ)

we have
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f = 0 at σ -a.e. point on ∂� ⇐⇒
ˆ
∂�

f φ dσ = 0 for every φ ∈ C∞
0 (Rn).

(2.578)
In this context, define the family of first-order tangential derivative operators, ∂τjk
with j, k ∈ {1, . . . , n}, acting on functions ϕ ∈ C∞

0 (Rn) according to

∂τjkϕ := νj (∂kϕ)
∣∣
∂�

− νk(∂jϕ)
∣∣
∂�

for all j, k ∈ {1, . . . , n}. (2.579)

The starting point in the development of a brand of first-order Sobolev spaces on
∂� is the observation that for any two functions ϕ,ψ ∈ C∞

0 (Rn) and every pair of
indices j, k ∈ {1, . . . , n} one has the boundary integration by parts formula

ˆ
∂�

(∂τjkϕ)ψ dσ = −
ˆ
∂�

ϕ(∂τjkψ) dσ. (2.580)

Indeed, identity (2.580) is a consequence of the Divergence Formula (2.20) applied
to a suitable vector field, namely �F := ∂k(ϕψ)ej − ∂j (ϕψ)ek (where {ei}1≤i≤n
is the standard orthonormal basis in Rn), which is smooth, compactly supported,
divergence-free, and satisfies ν · �F = (∂τjkϕ)ψ + ϕ(∂τjkψ) at σ -a.e. point on ∂�.

Next, given a function f ∈ L1
loc(∂�, σ) along with two indices j, k ∈ {1, . . . , n},

we shall say that ∂τjkf exists in (or, belongs to) the space L1
loc(∂�, σ) if there exists

a function fjk ∈ L1
loc(∂�, σ) such that

ˆ
∂�

(∂τjkϕ)f dσ = −
ˆ
∂�

ϕfjk dσ for all ϕ ∈ C∞
0 (Rn). (2.581)

In view of (2.578), we conclude that the function fjk is unambiguously defined
(σ -a.e.) by the demand in (2.581). Henceforth we shall favor the notation

∂τjkf := fjk (2.582)

which, in particular, allows us to recast (2.581) more in line with (2.580), namely as
ˆ
∂�

f (∂τjkϕ) dσ = −
ˆ
∂�

(∂τjkf )ϕ dσ for all ϕ ∈ C∞
0 (Rn). (2.583)

In analogy with the classical flat, Euclidean case, it is natural to regard ∂τjkf as a
weak (tangential) derivative of the function f . The developments so far allow us
to define a convenient functional analytic environment within which is possible to
consider such weak (tangential) derivatives of functions in L1

loc(∂�, σ). Specifi-
cally, for each p ∈ [1,∞] we introduce the local Sobolev space Lp1,loc(∂�, σ) as

L
p

1,loc(∂�, σ) :=
{
f ∈ L

p

loc(∂�, σ) : ∂τjkf ∈ L
p

loc(∂�, σ), 1 ≤ j, k ≤ n
}
.

(2.584)
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In such a context, we define the tangential gradient operator as (with the summation
convention over repeated indices in effect)

L
p

1,loc(∂�, σ) � f �→ ∇tanf := (
νk∂τkj f

)
1≤j≤n . (2.585)

If � is actually a UR domain, we may recover the weak tangential derivatives
from the components of the tangential gradient operator via (cf. [112, §11.4], [61,
Lemma 3.40])

∂τjkf = νj (∇tanf )k − νk(∇tanf )j , 1 ≤ j, k ≤ n,

for every f ∈ L
p

1,loc(∂�, σ) with p ∈ (1,∞).
(2.586)

Going further, having fixed an integrability exponent p ∈ (1,∞) along with
a Muckenhoupt weight w ∈ Ap(∂�, σ), define the (boundary) weighted Sobolev
space

L
p

1 (∂�,w) :=
{
f ∈ Lp(∂�,w) : ∂τjkf ∈ Lp(∂�,w), 1 ≤ j, k ≤ n

}

(2.587)
which is a Banach space when equipped with the norm

L
p

1 (∂�,w) � f �→ ‖f ‖Lp1 (∂�,w) := ‖f ‖Lp(∂�,w) +
n∑

j,k=1

∥∥∂τjkf
∥∥
Lp(∂�,w)

.

(2.588)
Since there exists q ∈ (1,∞) such that Lp(∂�,w) ↪→ L

q

loc(∂�, σ) (cf.
Lemma 2.15), we see that Lp1 (∂�,w) ↪→ L

q

1,loc(∂�, σ) for such an exponent q. In

particular, the equality in (2.586) holds for every function f ∈ L
p

1 (∂�,w)whenever
� is actually a UR domain.

In the same geometric setting, recall that Lp,q(∂�, σ) with p, q ∈ (0,∞]
stands for the scale of Lorentz spaces on ∂�, with respect to the measure σ .
These are quasi-Banach spaces which arise naturally as intermediate spaces for the
real interpolation method used within the scale of ordinary Lebesgue spaces. In
particular, this implies that

Lp,q(∂�, σ) ↪→ L1
(
∂�,

σ(x)

1+|x|n−1

) ∩
(⋂

1<s<p L
s
loc(∂�, σ)

)

whenever p ∈ (1,∞) and q ∈ (0,∞].
(2.589)

In relation to this scale of spaces, it is also of interest to consider (boundary)
Lorentz-based Sobolev spaces. Specifically, following work in [112, §11.1], for each
p ∈ (1,∞) and q ∈ (0,∞] we set

L
p,q

1 (∂�, σ) := {
f ∈ Lp,q(∂�, σ) : ∂τjkf ∈ Lp,q(∂�, σ), 1 ≤ j, k ≤ n

}

(2.590)
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which is a quasi-Banach space when equipped with the quasi-norm

L
p,q

1 (∂�, σ) � f �→ ‖f ‖Lp,q1 (∂�,σ) := ‖f ‖Lp,q (∂�,σ) +
n∑

j,k=1

∥∥∂τjkf
∥∥
Lp,q (∂�,σ)

.

(2.591)
In the proposition below, which refines [61, Lemma 3.36, p. 2678], we study the

manner in which weak tangential derivatives interact with pointwise nontangential
traces. See [112, §11.3] for a proof.

Proposition 2.22 Let � ⊆ Rn be an Ahlfors regular domain. Set σ := Hn−1�∂�
and denote by ν = (ν1, . . . , νn) the geometric measure theoretic outward unit
normal to �. Also, fix an integrability exponent p ∈ [1,∞], an aperture parameter
κ ∈ (0,∞), and a truncation parameter ε > 0. In this context, assume the function
u ∈ W

1,1
loc (�) satisfies

Nε
κu ∈ L

p
loc(∂�, σ), Nε

κ (∇u) ∈ L
p
loc(∂�, σ), (2.592)

and the nontangential traces

u
∣∣κ−n.t.
∂�

and (∂ju)
∣∣κ−n.t.
∂�

for j ∈ {1, . . . , n}
exist at σ -a.e. point on ∂�.

(2.593)

Then u
∣
∣κ−n.t.
∂�

belongs to Lp1,loc(∂�, σ), the functions (∂1u)
∣
∣κ−n.t.
∂�

, . . . , (∂nu)
∣
∣κ−n.t.
∂�

belong to Lploc(∂�, σ) and, for each j, k ∈ {1, . . . , n} and for σ -a.e. point on ∂�,
one has

∂τjk

(
u
∣∣κ−n.t.
∂�

)
= νj

(
(∂ku)

∣∣κ−n.t.
∂�

)
− νk

(
(∂ju)

∣∣κ−n.t.
∂�

)
. (2.594)

In particular, for each j, k ∈ {1, . . . , n} one has
∣∣∣∂τjk

(
u
∣∣κ−n.t.
∂�

)∣∣∣ ≤ 2Nε
κ (∇u) at σ -a.e. point on ∂�. (2.595)

The following result from [112, §11.3] may be regarded as a weighted counter-
part of Proposition 2.22, in which no assumptions are made regarding the existence
of the nontangential boundary traces of the derivatives of the function involved. The
reader is reminded that the truncated nontangential maximal operator Nε

κ has been
defined in (2.9).

Proposition 2.23 Given an Ahlfors regular domain � ⊆ Rn, set σ := Hn−1�∂�.
Fix an aperture parameter κ ∈ (0,∞) and an integrability exponent p ∈ (1,∞).
Assume w : ∂� → [0,+∞] is a σ -measurable function with 0 < w(x) < ∞ for

σ -a.e. x ∈ ∂� and w−1/p ∈ L
p′
loc(∂�, σ), where p

′ ∈ (1,∞) denotes the Hölder
conjugate exponent of p; in particular, Lp(∂�,wσ) ↪→ L1

loc(∂�, σ). Finally, fix
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a truncation parameter ε > 0. In this setting, suppose that some complex-valued
function u ∈ W

1,1
loc (�) has been given which satisfies the following conditions:

u
∣∣κ−n.t.
∂�

exists at σ -a.e. point on ∂� and

Nε
κu ∈ L1

loc(∂�, σ), Nε
κ (∇u) ∈ Lp(∂�,wσ).

(2.596)

Then the nontangential trace u
∣
∣κ−n.t.
∂�

belongs to L1
1,loc(∂�, σ) and satisfies

∂τjk

(
u
∣∣κ−n.t.
∂�

)
∈ Lp(∂�,wσ) for each j, k ∈ {1, . . . , n}

and
n∑

j,k=1

∥∥∥∂τjk
(
u
∣∣κ−n.t.
∂�

)∥∥∥
Lp(∂�,wσ)

≤ C
∥∥Nε

κ (∇u)
∥∥
Lp(∂�,wσ)

(2.597)

for some constant C ∈ (0,∞) independent of u.

For further use, let us also consider homogeneous Muckenhoupt
weighted boundary Sobolev spaces. Specifically, we make the following
definition.

Definition 2.18 Let � ⊆ Rn be an Ahlfors regular domain and set σ := Hn−1�∂�.
Given some integrability exponent p ∈ (1,∞) along with a Muckenhoupt weight
w ∈ Ap(∂�, σ), define

.
L
p

1 (∂�,w) :=
{
f ∈ L1(∂�, σ(x)

1+|x|n
) ∩ Lploc(∂�,w) : (2.598)

∂τjkf ∈ Lp(∂�,w) for each j, k ∈ {1, . . . , n}
}
,

and equip this space with the semi-norm

.
L
p

1 (∂�,w) � f �−→ ‖f ‖ .
L
p
1 (∂�,w)

:=
n∑

j,k=1

∥∥∂τjkf
∥∥
Lp(∂�,w)

. (2.599)

It is clear from definitions and (2.575) that we have a continuous embedding

L
p

1 (∂�,w) ↪→
.
L
p

1 (∂�,w). (2.600)

Also, all constant functions on ∂� belong to
.
L
p

1 (∂�,w) and their semi-norm

vanishes. As such, we will occasionally find it useful to work with
.
L
p

1 (∂�,w)
/ ∼,

the quotient space of classes [ · ] of equivalence modulo constants of functions in.
L
p

1 (∂�,w), which we equip with the semi-norm
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.
L
p

1 (∂�,w)
/ ∼� [f ] �→ ‖[f ]‖ .

L
p
1 (∂�,w)/∼

:=
n∑

j,k=1

∥
∥∂τjkf

∥
∥
Lp(∂�,w)

. (2.601)

We shall next prove a membership criterion to a global weighted Lebesgue space,
formulated in the lemma below.

Lemma 2.16 Let � ⊆ Rn be a closed, unbounded set, which is Ahlfors regular,
and abbreviate σ := Hn−1�∂�. Pick p ∈ (1,∞) along with w ∈ Ap(�, σ), and
fix a reference point x0 ∈ �. Suppose f ∈ L1

loc(�,w) is such that

C∗ := sup
r>0

1

r

( ˆ
r

|f − fr,w|p dw
)1/p

< +∞, (2.602)

where, for each r ∈ (0,∞),

r := B(x0, r) ∩� and fr,w :=
 
r

f dw. (2.603)

Then there exists some constant C = C
(
�, n, p, [w]Ap

) ∈ (0,∞) with the
property that for each r ∈ (0,∞) one has

ˆ

�

|f (x)− fr,w|
(r + |x − x0|)n dσ(x) ≤ C · C∗

w(r)1/p
. (2.604)

In particular, f belongs to the space L1
(
�,

σ(x)
1+|x|n

)
.

Proof For starters, observe that for each r > 0 we have

|f2r,w − fr,w| ≤
 
r

|f − f2r,w| dw ≤ C

 
2r

|f − f2r,w| dw

≤ C
(  

2r

|f − f2r,w|p dw
)1/p ≤ C · C∗ · r

w(2r )1/p
, (2.605)

thanks to the fact that w is doubling, Hölder’s inequality, and (2.602). With this in
hand (and keeping in mind that both σ and w are doubling), for each given r > 0
we may then estimate

ˆ

�\r

|f (x)− fr,w|
|x − x0|n dσ(x) ≤ C

∞∑

j=0

1

(2j r)n

ˆ
2j+1r\2j r

|f − fr,w|w1/pw−1/p dσ
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≤ C

∞∑

j=0

1

(2j r)n

( ˆ
2j+1r

|f − fr,w|p dw
)1/p( ˆ

2j+1r

w−p′/p dσ
)1/p′

≤ C

∞∑

j=0

1

(2j r)n
∥∥f − fr,w

∥∥
Lp(2j+1r ,w)

· σ
(
2j+1r

)

w
(
2j+1r

)1/p

≤ C

∞∑

j=0

1

2j r · w(
2j r

)1/p

{ ∥∥f − f2j+1r,w

∥∥
Lp(2j+1r ,w)

+
j∑

k=0

∥∥f2k+1r,w − f2kr,w

∥∥
Lp(2j+1r ,w)

}

≤ C

∞∑

j=0

1

2j r · w(
2j r

)1/p

{
C∗ · 2j+1r

+
j∑

k=0

|f2k+1r,w − f2kr,w| · w
(
2j+1r

)1/p
}

≤ C

∞∑

j=0

1

2j r · w(
2j r

)1/p

{
C∗ · 2j+1r

+
j∑

k=0

C · C∗ · 2kr

w(2k+1r )
1/p · w

(
2j+1r

)1/p
}

≤ C

∞∑

j=0

1

2j r · w(
2j r

)1/p

{ j∑

k=0

C∗ · 2kr

w(2k+1r )
1/p · w

(
2j+1r

)1/p
}

≤ C · C∗
∞∑

j=0

1

2j

{ j∑

k=0

2k

w(2k+1r )
1/p

}

≤ C · C∗
∞∑

k=0

{ ∞∑

j=k

1

2j

} 2k

w(2k+1r )
1/p

≤ C · C∗
∞∑

k=0

1

w(2k+1r )
1/p
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= C · C∗ 1

w(r)1/p

∞∑

k=0

( w(r)

w(2k+1r )

)1/p

≤ C · C∗ 1

w(r)1/p

∞∑

k=0

( σ(r)

σ (2k+1r )

)τ/p

≤ C · C∗ 1

w(r)1/p

∞∑

k=0

( 1

2k

)(n−1)τ/p = C · C∗
w(r)1/p

, (2.606)

where τ > 0 is as in (2.537). Above, the second inequality is a consequence of
Hölder’s inequality, the third inequality uses (2.520), the fifth and sixth inequalities
are based on (2.602) and (2.605), while the penultimate inequality is implied by
(2.537).

In addition, as a consequence of (2.602), (2.520), and Hölder’s inequality we
have
ˆ
r

|f (x)− fr,w|
rn

dσ(x) = r−n
ˆ
r

|f − fr,w|w1/pw−1/p dσ

= r−n
( ˆ

r

|f − fr,w|p dw
)1/p( ˆ

r

w−p′/p dσ
)1/p′

≤ C∗ · r1−n[w]1/pAp

σ (r)

w(r)1/p

≤ C · C∗
w(r)1/p

. (2.607)

Together, (2.606) and (2.607) prove (2.604). � 
In the proposition below we explore consequences of the integrability of the

nontangential maximal operator of the gradient of a given function.

Proposition 2.24 Make the assumption that � ⊆ Rn is an NTA domain with the
property that σ := H n−1�∂� is a doubling measure on ∂�. Pick an arbitrary
aperture parameter κ > 0 and fix a reference point xo ∈ ∂�. Finally, select a
function u ∈ C 1(�).

Then there exist κ̃ > 0 large enough along with some threshold R ∈ (0,+∞]
(which may be taken +∞ if ∂� is unbounded) and some constant C ∈ (1,∞), all
independent of the given function u, such that for each δ ∈ (0, R) one may find a
compact subset Kδ of �, of diameter ≈ δ and distance to the boundary ≈ δ, with
the property that
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(
Nδ
κu

)
(x) ≤ Cδ ·NCδ

κ̃ (∇u)(x)+ sup
Kδ

|u|, ∀ x ∈ B(xo, δ) ∩ ∂�. (2.608)

Moreover, there exists some sufficiently large C > 1 such that

if Nε
κ (∇u) belongs to L

p
loc(∂�, σ) for some p ∈ (0,∞] and

some ε > 0 then Nε/C
κ u ∈ L

p
loc(∂�, σ), the nontangential trace(

u
∣∣κ−n.t.
∂�

)
(x) exists at σ -a.e. x ∈ ∂�, and the function u

∣∣κ−n.t.
∂�

is
σ -measurable on ∂�.

(2.609)

In addition, if ∂� is unbounded then there exists C = C(�) ∈ (0,∞) such that

∣
∣∣
(
u
∣
∣κ−n.t.
∂�

)
(x)− (

u
∣
∣κ−n.t.
∂�

)
(y)

∣
∣∣ ≤ C|x − y| · [Nκ(∇u)(x)+Nκ(∇u)(y)

]

for σ -a.e. points x, y ∈ ∂�.

(2.610)
Finally, if the original hypotheses are strengthened by now assuming that ∂� is

an unbounded Ahlfors regular set and that the nontangential maximal function of
the Jacobian of u satisfies Nκ(∇u) ∈ Lp(∂�,w) for some integrability exponent
p ∈ (1,∞) and some weight w ∈ Ap(∂�, σ) then

the nontangential trace u
∣∣κ−n.t.
∂�

belongs to the Muckenhoupt

weighted homogeneous boundary Sobolev space
.
L
p

1 (∂�,w)

and one has
∥∥∥u

∣∣κ−n.t.
∂�

∥∥∥ .
L
p
1 (∂�,w)

≤ C ‖Nκ(∇u)‖Lp(∂�,w) for a

constant C ∈ (0,∞) independent of the function u.

(2.611)

Proof The claims in (2.608)–(2.610) have been established in [111, §8.4]. To
justify (2.611), work under the additional assumptions that ∂� is an unbounded
Ahlfors regular set and that Nκ(∇u) ∈ Lp(∂�,w) for some w ∈ Ap(∂�, σ)

with p ∈ (1,∞). Observe that the latter condition implies, in light of (2.576), that
Nκ(∇u) ∈ L1

loc(∂�, σ), so the current assumptions are indeed stronger. To lighten
the exposition, abbreviate

f := u
∣
∣κ−n.t.

∂�
and g := Nκ(∇u). (2.612)

From (2.609), (2.13), (2.608), (2.11) (used with σ := w), and Proposition 2.23
(whose applicability is ensured by (2.576)) it follows that

f ∈ L
p

loc(∂�,w), ∂τjkf ∈ Lp(∂�,w) for all j, k ∈ {1, . . . , n},

and
n∑

j,k=1

∥∥∂τjkf
∥∥
Lp(∂�,w)

≤ C ‖Nκ(∇u)‖Lp(∂�,w) ,
(2.613)
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for some constant C ∈ (0,∞) independent of u. Also, we may recast (2.610) as

|f (x)− f (y)| ≤ C|x − y| · [g(x)+ g(y)
]

for σ -a.e. x, y ∈ ∂�. (2.614)

To proceed, fix a reference point x0 ∈ ∂� and for each given scale r ∈ (0,∞)

define r := B(x0, r)∩∂� and fr,w := ffl
r
f dw. Then using (2.614) and Hölder’s

inequality for each r ∈ (0,∞) we may estimate

( ˆ
r

|f (x)− fr,w|p dw(x)
)1/p

=
( ˆ

r

∣∣∣f (x)−
 
r

f (y) dw(y)
∣∣∣
p

dw(x)
)1/p

≤
( ˆ

r

 
r

|f (x)− f (y)|p dw(x) dw(y)
)1/p

≤ C
( ˆ

r

 
r

|x − y|p(g(x)+ g(y)
)p dw(x) dw(y)

)1/p

≤ Cr
(ˆ

r

gp dw
)1/p ≤ Cr

(ˆ
∂�

gp dw
)1/p

= Cr ‖Nκ(∇u)‖Lp(∂�,w) , (2.615)

since x, y ∈ r forces |x − y| < 2r . As a consequence,

sup
r>0

1

r

( ˆ
r

|f − fr,w|p dw
)1/p ≤ C ‖Nκ(∇u)‖Lp(∂�,w) < +∞. (2.616)

Having established estimate (2.616), from Lemma 2.16 we conclude that the
function f ∈ L1

(
∂�,

σ(x)
1+|x|n

)
. In view of this, (2.598)–(2.599), and (2.613) we then

deduce that all claims in (2.611) are true. � 
We next discuss the equivalence between membership to a global weighted

Lebesgue space and certain Poincaré-type inequalities.

Proposition 2.25 Suppose � ⊆ Rn is a two-sided NTA domain such that ∂� is an
unbounded Ahlfors regular set, and abbreviate σ := H n−1�∂�. Fix some reference
point x0 ∈ ∂�, along with some integrability exponent p ∈ (1,∞) and some
Muckenhoupt weight w ∈ Ap(∂�, σ). Finally, assume that

f is a function belonging to L1
loc(∂�, σ) with the property that

∂τjkf ∈ Lp(∂�,w) for all j, k ∈ {1, . . . , n}. (2.617)
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Then the following statements are equivalent:

(i) The function f belongs to the space L1
(
∂�,

σ(x)
1+|x|n

)
.

(ii) There exists a constant C = C(�,p, [w]Ap , x0) ∈ (0,∞) which stays
bounded when [w]Ap stays bounded and which is independent of the function
f , with the property that if for each scale r ∈ (0,∞) one defines the surface
ball r := B(x0, r) ∩ ∂� and fr,σ :=

ffl
r
f dσ then

sup
r>0

1

r

(ˆ
r

|f − fr,σ |p dw
)1/p

≤ C

n∑

j,k=1

∥∥∂τjkf
∥∥
Lp(∂�,w)

. (2.618)

(ii)’ The function f belongs to the space L1
loc(∂�,w) and there exists some

constant C = C(�,p, [w]Ap , x0) ∈ (0,∞) which stays bounded when
[w]Ap stays bounded and which is independent of the function f , with the
property that if for each r ∈ (0,∞) one defines r := B(x0, r) ∩ ∂� and
fr,w := ffl

r
f dw then

sup
r>0

1

r

(ˆ
r

|f − fr,w|p dw
)1/p

≤ C

n∑

j,k=1

∥∥∂τjkf
∥∥
Lp(∂�,w)

. (2.619)

(iii) For each r ∈ (0,∞) there exists a constant Cr ∈ (0,∞) which depends only
on �, p, [w]Ap , x0, and r such that, with fr,σ as before, one has

ˆ
∂�

|f (x)− fr,σ |
1 + |x|n dσ(x) ≤ Cr

w(r)1/p

n∑

j,k=1

∥
∥∂τjkf

∥
∥
Lp(∂�,w)

. (2.620)

(iii)’ The function f belongs to L1
loc(∂�,w) and for each r ∈ (0,∞) there exists

a constant Cr ∈ (0,∞) which depends only on �, p, [w]Ap , x0, and r such
that, with fr,w as before,

ˆ
∂�

|f (x)− fr,w|
1 + |x|n dσ(x) ≤ Cr

w(r)1/p

n∑

j,k=1

∥∥∂τjkf
∥∥
Lp(∂�,w)

. (2.621)

(iv) There exists a constant C = C(�,p,w, x0) ∈ (0,∞) independent of f , and
some constant cf ∈ C which is allowed to depend on f , such that

‖f − cf ‖
L1
(
∂�,

σ(x)
1+|x|n

) ≤ C

n∑

j,k=1

∥∥∂τjkf
∥∥
Lp(∂�,w)

. (2.622)

(v) The function f belongs to the space
.
L
p

1 (∂�,w).
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Proof We start by proving the implication (i)⇒ (ii). To this end, assume that in
addition to (2.617) we have f ∈ L1

(
∂�,

σ(x)
1+|x|n

)
. Denote by ν the geometric

measure theoretic outward unit normal to � and set

�+ := �, �− := Rn \�. (2.623)

With ωn−1 denoting the surface area of the unit sphere in Rn, at each point x ∈ �±
define

u±(x) := 1

ωn−1

ˆ

∂�

{ 〈ν(y), y − x〉
|x − y|n − 〈ν(y), y〉

|y|n · 1Rn\B(0,1)(y)
}
f (y) dσ(y).

(2.624)
Then work in [114, §1.5] ensures that for an arbitrary, fixed, aperture parameter
κ > 0 there exists a constantC ∈ (0,∞) independent of f and which stays bounded
when [w]Ap stays bounded, such that

u± ∈ C∞(�±), Nκ(∇u±) ∈ Lp(∂�,w),

‖Nκ(∇u±)‖Lp(∂�,w) ≤ C

n∑

j,k=1

∥
∥∂τjkf

∥
∥
Lp(∂�,w)

,

f = u+
∣∣κ−n.t.

∂�
− u−

∣∣κ−n.t.

∂�
at σ -a.e. point on ∂�.

(2.625)

Hence,

g := Nκ(∇u+)+Nκ(∇u−) ∈ Lp(∂�,w)

has ‖g‖Lp(∂�,w) ≤ C

n∑

j,k=1

∥∥∂τjkf
∥∥
Lp(∂�,w)

,
(2.626)

for some constant C ∈ (0,∞) independent of f and which stays bounded when
[w]Ap stays bounded. In addition, thanks to (2.610), the function g satisfies

|f (x)− f (y)| ≤ C|x − y| · [g(x)+ g(y)
]

for σ -a.e. x, y ∈ ∂�. (2.627)

Granted these properties, we may proceed as in (2.615) to conclude that

(ˆ
r

|f (x)− fr,σ |p dw(x)
)1/p

=
(ˆ

r

∣∣∣f (x)−
 
r

f (y) dσ(y)
∣∣∣
p

dw(x)
)1/p

≤
( ˆ

r

( 
r

|f (x)− f (y)| dσ(y)
)p

dw(x)
)1/p
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≤ C
( ˆ

r

(  
r

|x − y|(g(x)+ g(y)
)

dσ(y)
)p

dw(x)
)1/p

≤ Cr
(ˆ

r

gp dw
)1/p + w(r)

1
p

 
r

g dσ(y)

≤ Cr
(ˆ

∂�

gp dw
)1/p

, (2.628)

since x, y ∈ r forces |x − y| < 2r and we have used (2.525). Eventually we
conclude that, for some constant C ∈ (0,∞) independent of f and which stays
bounded when [w]Ap stays bounded, we have

sup
r>0

1

r

( ˆ
r

|f − fr,σ |p dw
)1/p ≤ C‖g‖Lp(∂�,w) ≤ C

n∑

j,k=1

∥∥∂τjkf
∥∥
Lp(∂�,w)

.

(2.629)
This completes the proof of the implication (i)⇒ (ii).

To see that (ii)⇒ (ii)’ we first note that (2.617) and (2.618) imply that for each
r > 0 we have

( ˆ
r

|f |p dw
)1/p ≤

( ˆ
r

|f − fr,σ |p dw
)1/p + w(r)

1/p|fr,σ |

≤ C r

n∑

j,k=1

∥∥∂τjkf
∥∥
Lp(∂�,w)

+ w(r)
1/p

 
r

|f | dσ <∞.

(2.630)

This goes to show that f ∈ L
p

loc(∂�,w) ⊆ L1
loc(∂�,w). Granted this, for each

r > 0 we may estimate

( ˆ
r

|f − fr,w|p dw
)1/p ≤

(ˆ
r

|f − fr,σ |p dw
)1/p + w(r)

1/p |fr,σ − fr,w|

≤ 2
( ˆ

r

|f − fr,σ |p dw
)1/p

. (2.631)

With (2.631) in hand, (2.618) readily gives (2.619).
We next note that the implication (ii)’⇒ (iii)’ is seen from Lemma 2.16, the

implication (iii)’⇒ (iv) (respectively, (iii)⇒ (iv)) follows by taking r := 1 and
cf := f1,w (respectively, cf := f1,σ ), while the implication (iv)⇒ (i) is a direct
consequence that any constant belongs to the space L1

(
∂�,

σ(x)
1+|x|n

)
. The fact that

(iii)’⇒ (iii) may be justified writing (using the Ahlfors regularity of ∂�; cf. (2.32))
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ˆ
∂�

|f (x)− fr,σ |
1 + |x|n dσ(x) ≤

ˆ
∂�

|f (x)− fr,w|
1 + |x|n dσ(x)+ C |fr,σ − fr,w|

≤
ˆ
∂�

|f (x)− fr,w|
1 + |x|n dσ(x)+ C

 
r

|f − fr,w| dσ

≤ C

ˆ
∂�

|f (x)− fr,w|
1 + |x|n dσ(x), (2.632)

where the constant C ∈ (0,∞) depends only on �, x0, and r .
Hence, the claims in items (i), (ii), (ii)’, (iii), (iii)’, and (iv) are all equivalent.

In view of (2.598) it follows that the implication (v)⇒ (i) also holds. To finish the
proof of the proposition it suffices to check that, collectively, (2.617) and items (i)-
(ii)’ imply the claim in item (v). This, however, is apparent from (2.598) and the fact
that (2.619) guarantees that f ∈ L

p

loc(∂�,w). � 

Remark 2.4 Consider a two-sided NTA domain � ⊆ R
n such that ∂� is an

unbounded Ahlfors regular set and abbreviate σ := Hn−1�∂�. Also, fix an
integrability exponent p ∈ (1,∞) and a Muckenhoupt weight w ∈ Ap(∂�, σ).
Then Proposition 2.25 implies that the localLp integrability property with respect to
the measure w for functions in the homogeneous Muckenhoupt weighted boundary
Sobolev space

.
L
p

1 (∂�,w) may be replaced by a (seemingly weaker) local absolute
integrability property with respect to the measure w, or may be even suppressed
altogether. Specifically, in such a setting we have (compare with (2.598))

.
L
p

1 (∂�,w) =
{
f ∈ L1(∂�, σ(x)

1+|x|n
) ∩ L1

loc(∂�,w) : (2.633)

∂τjkf ∈ Lp(∂�,w) for each j, k ∈ {1, . . . , n}
}

=
{
f ∈ L1(∂�, σ(x)

1+|x|n
) : ∂τjkf ∈ Lp(∂�,w) (2.634)

for each j, k ∈ {1, . . . , n}
}
.

When considered on the boundaries of two-sided NTA domains, the quotient
space

.
L
p

1 (∂�,w)
/ ∼ turns out to be Banach. Here is a formal statement:

Proposition 2.26 Suppose � ⊆ Rn is a two-sided NTA domain such that ∂� is
an unbounded Ahlfors regular set, and abbreviate σ := H n−1�∂�. Pick some
integrability exponent p ∈ (1,∞) and some Muckenhoupt weight w ∈ Ap(∂�, σ).

Recall that
.
L
p

1 (∂�,w)
/ ∼ denotes the quotient space of classes [ · ] of equivalence

modulo constants of functions in
.
L
p

1 (∂�,w), equipped with the semi-norm (2.601).
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Then (2.601) is a genuine norm on
.
L
p

1 (∂�,w)
/ ∼, and .

L
p

1 (∂�,w)
/ ∼ is a

Banach space when equipped with the norm (2.601).

Proof The fact that the semi-norm (2.601) is actually a norm on the space.
L
p

1 (∂�,w)
/ ∼ follows from (2.621).

To prove that
.
L
p

1 (∂�,w)
/ ∼ is complete when equipped with the norm (2.601),

let {fα}α∈N ⊆ .
L
p

1 (∂�,w) be such that
{[fα]

}
α∈N is a Cauchy sequence in the

quotient space
.
L
p

1 (∂�,w)
/ ∼. Then for each fixed j, k ∈ {1, . . . , n} it follows that{

∂τjkfα
}
α∈N is a Cauchy sequence in Lp(∂�,w). Since the latter is complete, it

follows that there exists gjk ∈ Lp(∂�,w) such that

∂τjkfα → gjk in Lp(∂�,w) as α →∞. (2.635)

Fix a reference point x0 ∈ ∂� and, for each r ∈ (0,∞), definer := B(x0, r)∩∂�.
Also, set fα,r,w := ffl

r
fα dw for each r ∈ (0,∞) and each α ∈ N. From (2.621)

(written for f := fα−fβ ) it follows that for each r ∈ (0,∞) there exists a constant
Cr ∈ (0,∞) which depends on �, p, [w]Ap , and r such that for each α, β ∈ N we
have

∥∥(fα − fα,r,w
)− (

fβ −fβ,r,w
)∥∥

L1
(
∂�,

σ(x)
1+|x|n

)

≤ Cr

w(r)1/p

n∑

j,k=1

∥∥∂τjkfα − ∂τjkfβ
∥∥
Lp(∂�,w)

. (2.636)

In view of (2.635), this estimate implies that for each fixed r ∈ (0,∞) the sequence{
fα − fα,r,w

}
α∈N is Cauchy in the Banach space L1

(
∂�,

σ(x)
1+|x|n

)
. Hence, for each

fixed r ∈ (0,∞) there exists hr ∈ L1
(
∂�,

σ(x)
1+|x|n

)
such that

fα − fα,r,w → hr in L1(∂�, σ(x)
1+|x|n

)
as α →∞. (2.637)

Next, the estimate recorded in (2.619) (written for f := fα − fβ ) implies that there
exists some constant C = C(�,p, [w]Ap , x0) ∈ (0,∞) with the property that for
each fixed r ∈ (0,∞) we have

( ˆ
r

∣∣(fα − fα,r,w
)− (

fβ − fβ,r,w
)∣∣p dw

)1/p

≤ C · r
n∑

j,k=1

∥∥∂τjkfα − ∂τjkfβ
∥∥
Lp(∂�,w)

. (2.638)

By once again relying on (2.635), we conclude that for each fixed r ∈ (0,∞) the
sequence

{
fα

∣∣
r
− fα,r,w

}
α∈N is Cauchy in the Banach space Lp(r,w). As such,
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for each r ∈ (0,∞) there exists some kr ∈ Lp(r,w)

such that fα
∣
∣
r
− fα,r,w → kr in Lp(r,w) as α →∞.

(2.639)

Since convergence in Lebesgue spaces implies, after eventually passing to a sub-
sequence, pointwise a.e. convergence, from (2.637) and (2.639) we see that, in fact,

hr
∣
∣
r

= kr ∈ Lp(r,w) for each r ∈ (0,∞). (2.640)

From (2.637) we also see that for each fixed r1, r2 ∈ (0,∞) we have

fα,r2,w − fα,r1,w → hr1 − hr2 in L1(∂�, σ(x)
1+|x|n

)
as α →∞. (2.641)

This forces hr1 − hr2 to be a constant which, in concert with (2.640), ultimately
shows that actually

hr ∈ L1(∂�, σ(x)
1+|x|n

) ∩ Lploc(∂�,w) for each r ∈ (0,∞). (2.642)

Henceforth, we agree to simply write h for hr with r = 1, and cα for fα,r,w with
r = 1. Then (2.642), (2.637) tell us that the function

h belongs to L1(∂�, σ(x)
1+|x|n

) ∩ Lploc(∂�,w), (2.643)

and the sequence {cα}α∈N ⊆ C is such that

fα − cα → h in L1(∂�, σ(x)
1+|x|n

)
as α →∞. (2.644)

For each j, k ∈ {1, . . . , n} and each test function ϕ ∈ C∞
0 (Rn) we may then write

ˆ
∂�

h(∂τjkϕ) dσ = lim
α→∞

ˆ
∂�

(fα − cα)(∂τjkϕ) dσ

= − lim
α→∞

ˆ
∂�

∂τjk (fα − cα)ϕ dσ = − lim
α→∞

ˆ
∂�

(∂τjkfα)ϕ dσ

= −
ˆ
∂�

gjkϕ dσ, (2.645)

thanks to (2.644), (2.583), and (2.635). From this and (2.581)–(2.582) we then
conclude that

∂τjkh = gjk ∈ Lp(∂�,w) for each j, k ∈ {1, . . . , n}. (2.646)
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Collectively, (2.643) and (2.646) prove that h ∈ .
L
p

1 (∂�,w). Finally, from (2.635),
(2.646), and (2.601) we conclude that the sequence

{[fα]
}
α∈N converges to [h], the

class of h, in the quotient space
.
L
p

1 (∂�,w)
/ ∼. � 



Chapter 3
Calderón–Zygmund Theory for
Boundary Layers in UR Domains

In [25], A.P. Calderón has initiated a breakthrough by proving the Lp-boundedness
of the principal-value Cauchy integral operator on Lipschitz curves with small
Lipschitz constant. Subsequently, R. Coifman, A. McIntosh, and Y. Meyer have
successfully extended Calderón’s estimate on Cauchy integrals to general Lipschitz
curves in [32] and used this to establish the boundedness of higher-dimensional
singular integral operators (such as the harmonic double layer K) on Lebesgue
spaces Lp(�,Hn−1) with p ∈ (1,∞), whenever � is a strongly Lipschitz surface
in Rn. This gave the impetus for studying such singular integral operators on
surfaces more general than the boundaries of Lipschitz domains. Works of G. David
[37, 38], G. David and D. Jerison [39], G. David and S. Semmes [40, 41], and
S. Semmes [122] yield such boundedness when the � ⊆ Rn is a UR set, i.e., �
is a closed Ahlfors regular set which contains “big pieces” of Lipschitz images in a
quantitative, uniform, scale-invariant fashion (cf. Definition 2.5).

This body of results, which interfaced tightly with geometric measure theory, has
been applied to problems in PDEs for the first time by S. Hofmann, M. Mitrea, and
M. Taylor in [61] (see also [109] for PDEs in the setting of Riemannian manifolds).
Here we continue this line of work with two specific goals in mind. First, we
consider singular integral operators (SIOs) acting on a larger variety of function
spaces and, second, we seek finer bounds on the operator norm of the singular
integrals of double layer type. We begin by discussing the general setup.

3.1 Boundary Layer Potentials: The Setup

Fix n ∈ N with n ≥ 2 along with some M ∈ N, and denote by L the collection of all
homogeneous constant complex coefficient second-order M ×M systems L in Rn.
Hence, any element L in L may be written as a matrix of differential operators of the
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form L =
(
a
αβ
jk ∂j ∂k

)

1≤α,β≤M for some complex numbers aαβjk (here and elsewhere,

we shall use the usual convention of summation over repeated indices). In particular,
the action of L on any given vector-valued distribution u = (uβ)1≤β≤M may be
described as

Lu =
(
a
αβ
jk ∂j ∂kuβ

)

1≤α≤M , (3.1)

and we denote by L� :=
(
a
βα
kj ∂j ∂k

)

1≤α,β≤M the (real) transpose of L. We also

define the characteristic matrix of L as

L(ξ) :=
[(− a

αβ
jk ξj ξk

)
1≤α,β≤M

]
for each ξ = (ξi)1≤i≤n ∈ Rn (3.2)

and introduce

L∗ :=
{
L ∈ L : det[L(ξ)] �= 0 for each ξ ∈ Rn \ {0}}. (3.3)

We shall refer to a system L ∈ L as being weakly elliptic if actually
L ∈ L∗. This should be contrasted with the more stringent Legendre-Hadamard
(strong) ellipticity condition which asks for the existence of some c > 0
such that

Re
〈− L(ξ)ζ , ζ

〉 ≥ c |ξ |2 |ζ |2 for all ξ ∈ Rn and ζ ∈ CM. (3.4)

Next, let us consider

A :=
{
A = (

a
αβ
jk

)
1≤α,β≤M
1≤j,k≤n

: each aαβjk belongs to C
}
, (3.5)

the collection of coefficient tensors with constant complex entries. Adopting
natural operations (i.e., componentwise addition and multiplication by scalars), this
becomes a finite dimensional vector space (over C), which we endow with the norm

‖A‖ :=
∑

1≤α,β≤M
1≤j,k≤n

∣
∣aαβjk

∣
∣ for each A = (

a
αβ
jk

)
1≤α,β≤M
1≤j,k≤n

∈ A. (3.6)

Hence, if the transpose of each given A = (
a
αβ
jk

)
1≤α,β≤M
1≤j,k≤n

∈ A is the coefficient

tensor A� := (
a
βα
kj

)
1≤α,β≤M
1≤j,k≤n

, then A � A �→ A� ∈ A is an isometry. With each

coefficient tensor A = (
a
αβ
jk

)
1≤α,β≤M
1≤j,k≤n

∈ A associate the system LA ∈ L according

to
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LA :=
(
a
αβ
jk ∂j ∂k

)

1≤α,β≤M . (3.7)

Then the map

A � A �−→ LA ∈ L (3.8)

is linear and surjective, though it fails to be injective. Specifically, if we introduce

Aant :=
{
B = (

b
αβ
jk

)
1≤α,β≤M
1≤j,k≤n

∈ A : bαβjk = −bαβkj whenever

1 ≤ j, k ≤ n and 1 ≤ α, β ≤ M
}
, (3.9)

the collection of all coefficient tensors that are antisymmetric in the lower indices,
then Aant is a closed linear subspace of A, and for each A, Ã ∈ A, we have

LA = LÃ ⇐⇒ A− Ã ∈ Aant. (3.10)

If we now define

AL :=
{
A ∈ A : L = LA

}
for each L ∈ L, (3.11)

and for each L ∈ L, we set (with the distance considered in the normed vector space
A)

‖L‖ := dist
(
A,Aant) for each/some A ∈ AL, (3.12)

then L � L �→ ‖L‖ is an unambiguously defined norm on the vector space L. In the
topology induced by this norm, L∗ from (3.3) is an open subset of L, the mapping
(3.8) is continuous, and L � L �→ L� ∈ L is an isometry.

Finally, we denote by AWE the collection of all coefficient tensors A with the
property that the M ×M homogeneous second-order system LA associated with A
in Rn as in (3.7) is weakly elliptic, i.e.,

AWE :=
{
A ∈ A : LA ∈ L∗

}
. (3.13)

Then AWE is an open subset of A.
The following theorem, itself a special case of [102, Theorem 11.1, p. 393],

summarizes some of the main properties of a certain type of fundamental solution
canonically associated with any given homogeneous, constant complex coefficient,
weakly elliptic second-order system in Rn.

Theorem 3.1 Let L be a homogeneous, second-order, constant complex coefficient,
M×M system in Rn, which is weakly elliptic (cf. (1.2)). Then there exists anM×M
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matrix-valued function E = (
Eαβ

)
1≤α,β≤M , canonically associated with the given

system L, such that the following properties are true:

1. For any two indices α, β ∈ {1, . . . ,M}, one has Eαβ ∈ C∞(
R
n \ {0}) as well as

Eαβ(x) = Eαβ(−x) for every x ∈ Rn \ {0}.
2. For each fixed point y ∈ Rn, one has L

[
E(· − y)

] = δyIM×M in the sense of
distributions in Rn, where IM×M is theM×M identity matrix and δy denotes the
Dirac distribution with mass at y in Rn. That is, using the standard Kronecker
delta notation,

a
αβ
jk ∂xj ∂xk

[
Eβγ (x − y)

] = δαγ δy(x), x ∈ Rn, (3.14)

in the sense of distributions, for every α, γ ∈ {1, . . . ,M}.
3. The transpose of E, i.e., E� = (Eβα)1≤α,β≤M , is a fundamental solution for

the transpose system L�. In other words, for each fixed point y ∈ Rn, one has
L�

[
E�(· − y)

] = δyIM×M in the sense of distributions in Rn, i.e.,

a
βα
kj ∂xj ∂xk

[
Eγβ(x − y)

] = δαγ δy(x), x ∈ Rn, (3.15)

in the sense of distributions, for every α, γ ∈ {1, . . . ,M}.
4. For every multi-index α ∈ Nn0 with n + |α| > 2, the function ∂αE is positive

homogeneous of degree 2−n−|α| and there exists a constant Cα ∈ (0,∞) with
the property that

∣∣(∂αE)(x)
∣∣ ≤ Cα|x|2−n−|α| for all x ∈ Rn \ {0}. (3.16)

Finally, corresponding to n = 2 and α = (0, . . . , 0), there exists C ∈ (0,∞)

such that |E(x)| ≤ C
(
1 + ∣∣ ln |x|∣∣) for every x ∈ R2 \ {0}.

5. Let ‘hat’ denote the Fourier transform in Rn (originally defined on Schwartz
functions and then extended to tempered distributions via duality). Then Ê is
a tempered distribution in Rn (which is positive homogeneous of degree −2 if
n ≥ 3), whose restriction to Rn \ {0} is a (matrix-valued) function of class C∞.
In fact,

Ê(ξ) = [
L(ξ)

]−1
for every ξ ∈ Rn \ {0}. (3.17)

More generally, given any γ ∈ Nn0 , it follows that the tempered distribution ∂̂γ E
is a function of class C∞ when restricted to Rn \ {0}, which, regarded as such,
satisfies

∂̂γ E(ξ) = i|γ | ξγ
[
L(ξ)

]−1
for every ξ ∈ Rn \ {0}, (3.18)

and
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if γ ∈ Nn0 , then ∂̂γ E = i|γ | ξγ
[
L(ξ)

]−1
as tempered distributions

in Rn when either |γ | > 0 or n ≥ 3.
(3.19)

6. Writing EL in place of E to emphasize the dependence on L, matters may be
arranged so that

(
EL

)� = EL� ,
(
EL

) = EL,
(
EL

)∗ = EL∗ ,

as well as EλL = λ−1EL for each λ ∈ C \ {0},
(3.20)

where �, ·, and ∗ denote, respectively, transposition, complex conjugation, and
complex (or Hermitian) adjunction.

Moving on, assume � ⊆ Rn is a given UR domain. Abbreviate σ := Hn−1�∂�
and denote by ν = (ν1, . . . , νn) the geometric measure theoretic outward unit
normal to �. In addition, consider a homogeneous, second-order, constant complex
coefficient, weakly elliptic M ×M system L in Rn, and consider the matrix-valued
fundamental solution E = (Eαβ)1≤α,β≤M associated with L as in Theorem 3.1.

Finally, fix a coefficient tensor A = (
a
αβ
jk

)
1≤α,β≤M
1≤j,k≤n

∈ AL, and pick an arbitrary

function

f = (fα)1≤α≤M ∈
[
L1(∂�, σ(x)

1+|x|n−1

)]M
. (3.21)

In this setting, define the action of the boundary-to-domain double layer potential
operator DA on f as

DAf (x) :=
(
−
ˆ
∂�

νk(y)a
βα
jk

(
∂jEγβ

)
(x − y)fα(y) dσ(y)

)

1≤γ≤M
, (3.22)

at each point x ∈ �. From (3.16), we see that (3.21) is the most general functional
analytic setting in which the integral in (3.22) is absolutely convergent. The double
layer operator D may be regarded as a mechanism for generating lots of null-
solutions for the given system L in � since, as is apparent from (3.22) and
Theorem 3.1,

for each function f as in (3.21), we have

DAf ∈ [
C∞(�)

]M and L(DAf ) = 0 in �.
(3.23)

Going further, let us define the action of the boundary-to-boundary double layer
potential operator KA on f as in (3.21) by setting
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KAf (x) :=
(
− lim

ε→0+

ˆ

y∈∂�
|x−y|>ε

νk(y)a
βα
jk

(
∂jEγβ

)
(x − y)fα(y) dσ(y)

)

1≤γ≤M
,

(3.24)

at σ -a.e. point x ∈ ∂�. Another singular integral operator that is closely related to
(3.24) is the so-called transpose double layer operator K#

A defined by setting

K#
Af (x) :=

(
lim
ε→0+

ˆ

y∈∂�
|x−y|>ε

νk(x)a
βα
jk (∂jEγβ)(x − y)fγ (y) dσ(y)

)

1≤α≤M

(3.25)

at σ -a.e. x ∈ ∂�, for each function f as in (3.21). Since we are presently assuming
that � is a UR domain, work in [114, Chapter 1] guarantees that the above singular
integral operators are well defined in a σ -a.e. pointwise fashion for each function as
in (3.21). Also, it is clear from definitions and the last line in (3.20) that

DλA = DA, KλA = KA, K#
λA = K#

A

for each λ ∈ C with λ �= 0.
(3.26)

Example 3.1 The standard fundamental solution for the Laplacian in Rn is defined
for x ∈ Rn \ {0} by

E(x) :=

⎧
⎪⎪⎨

⎪⎪⎩

1

ωn−1(2 − n)

1

|x|n−2 , if n ≥ 3,

1

2π
ln |x|, if n = 2,

(3.27)

where, as usual, ωn−1 denotes the surface area of the unit sphere in Rn (cf. [102,
Section 7.1]). Given an Ahlfors regular domain � ⊆ Rn, abbreviate σ := Hn−1�∂�
and denote by ν the geometric measure theoretic outward unit normal to �. Set
a
αβ
jk := ajk := δjk in (3.1) so that L = , and refer to D, K (constructed

as in (3.22) and (3.24)) for this choice of coefficient tensor, i.e., for A := In×n,
the identity matrix) as being the (classical) harmonic double layer potentials.
Concretely, for each function f ∈ L1

(
∂�,

σ(x)

1+|x|n−1

)
, we have (writing, in this case,

D,K,K
#
 in place of DIn×n ,KIn×n ,K

#
In×n )

Df (x) = 1

ωn−1

ˆ
∂�

〈ν(y), y − x〉
|x − y|n f (y) dσ(y), ∀ x ∈ �, (3.28)

and, at σ -a.e. point x ∈ ∂�,
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Kf (x) = lim
ε→0+

1

ωn−1

ˆ

y∈∂�
|x−y|>ε

〈ν(y), y − x〉
|x − y|n f (y) dσ(y), (3.29)

K#
f (x) = lim

ε→0+
1

ωn−1

ˆ

y∈∂�
|x−y|>ε

〈ν(x), x − y〉
|x − y|n f (y) dσ(y). (3.30)

Returning to the mainstream discussion, continue to assume that � ⊆ Rn is a
UR domain and set σ := Hn−1�∂�. Also, as before, continue to assume that L is
a homogeneous constant complex coefficient weakly elliptic second-order M ×M

system in Rn. Then, for each coefficient tensor A ∈ AL, a basic identity relating
the boundary-to-domain double layer potential operator DA to the boundary-to-
boundary double layer potential operator KA is the jump-formula (proved in [114,
§1.5]), to the effect that if I denotes the identity operator and κ > 0 is an arbitrary
aperture parameter, then

DAf
∣∣κ−n.t.

∂�
= ( 1

2I +KA

)
f at σ -a.e. point on ∂�,

for each given function f ∈
[
L1

(
∂�,

σ(x)

1+|x|n−1

)]M
.

(3.31)

Another fundamental property of the boundary-to-domain double layer potential
operator is the ability of absorbing an arbitrary spacial derivative and eventually
relocating it, via integration by parts on the boundary, all the way to the function on
which this was applied to begin with. This is made precise in the following basic
proposition, proved in [114, §1.3].

Proposition 3.1 Let � ⊆ Rn be an Ahlfors regular domain. Set σ := Hn−1�∂�,
and denote by ν = (ν1, . . . , νn) the geometric measure theoretic outward unit
normal to �. Also, for some M ∈ N, consider a weakly elliptic, homogeneous,
constant (complex) coefficient, second-order,M ×M system L in Rn, written as in
(3.1) for some choice of a coefficient tensor A = (

a
αβ
rs

)
1≤r,s≤n

1≤α,β≤M
. Finally, associate

with A and � the double layer potential operator DA as in (3.22), and consider a
function

f = (fα)1≤α≤M ∈
[
L1

(
∂�,

σ(x)

1 + |x|n−1

)]M
with the property that

∂τjkfα ∈ L1
(
∂�,

σ(x)

1 + |x|n−1

)
for 1 ≤ j, k ≤ n and 1 ≤ α ≤ M.

(3.32)

Then, for each index � ∈ {1, . . . , n} and each point x ∈ �, one has
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∂�
(
DAf

)
(x) =

( ˆ
∂�

aβαrs (∂rEγβ)(x − y)(∂τ�s fα)(y) dσ(y)

)

1≤γ≤M
. (3.33)

As a consequence, if Ω is actually a UR domain then for each aperture parameter
κ > 0, the nontangential boundary trace

(∇DAf
)∣∣κ−n.t.

∂�
exists (in Cn·M ) at σ -a.e. point on ∂�. (3.34)

We next recall the following result from [114, §1.5], which identifies the
commutator between the double layer potential operator KA from (3.24) and the
first-order tangential derivative operators ∂τjk from (2.582) as being yet another
commutator, of the sort considered in detail later, in Theorem 4.3 (with the function
b a scalar component of the outward unit normal ν).

Proposition 3.2 Suppose � ⊆ Rn is a UR domain. Abbreviate σ := Hn−1�∂�
and denote by ν = (ν1, . . . , νn) the geometric measure theoretic outward unit
normal to �. Let L be a homogeneous, second-order, constant complex coefficient,
weakly elliptic M ×M system in Rn and consider the matrix-valued fundamental
solution E = (Eαβ)1≤α,β≤M associated with L as in Theorem 3.1. Also, pick a

coefficient tensor A = (
a
αβ
jk

)
1≤α,β≤M
1≤j,k≤n

∈ AL and bring in KA the boundary-to-

boundary double layer potential operator associated with � and A as in (3.24).
In addition, for each j, k ∈ {1, . . . , n}, define the singular integral operator
Ujk acting on each given matrix-valued function F = (Fαs)1≤α≤M

1≤s≤n
with entries

belonging to L1
(
∂�,

σ(x)

1+|x|n−1

)
as UjkF = (

(UjkF )γ
)

1≤γ≤M where, for each index
γ ∈ {1, . . . ,M},

(UjkF )γ (x)

:= − lim
ε→0+

ˆ

y∈∂�
|x−y|>ε

[νk(x)− νk(y)]νj (y)aβαrs (∂rEγβ)(x − y)Fαs(y) dσ(y)

+ lim
ε→0+

ˆ

y∈∂�
|x−y|>ε

[νj (x)− νj (y)]νk(y)aβαrs (∂rEγβ)(x − y)Fαs(y) dσ(y)

+ lim
ε→0+

ˆ

y∈∂�
|x−y|>ε

[νk(y)− νk(x)]νs(y)aβαrs (∂rEγβ)(x − y)Fαj (y) dσ(y)
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− lim
ε→0+

ˆ

y∈∂�
|x−y|>ε

[νj (y)− νj (x)]νs(y)aβαrs (∂rEγβ)(x − y)Fαk(y) dσ(y)

(3.35)

at σ -a.e. point x ∈ ∂�. Finally, fix some integrability exponents p, q ∈ (1,∞] and
consider a function

f ∈
[
L1

(
∂�,

σ(x)

1+|x|n−1

) ∩ Lploc(∂�, σ)
]M

with the property that

∂τjkf ∈
[
L1

(
∂�,

σ(x)

1+|x|n−1

) ∩ Lqloc(∂�, σ)
]M

for all j, k ∈ {1, . . . , n}.
(3.36)

Then, for each j, k ∈ {1, . . . , n}, one has

∂τjk (KAf ) = KA(∂τjkf )+ Ujk(∇tanf ) at σ -a.e. point on ∂�, (3.37)

where ∇tanf is regarded as the M × n matrix-valued function F = (Fαs)1≤α≤M
1≤s≤n

whose entry Fαs is the s-th component of ∇tanfα .

Once again, assume � ⊆ Rn is a UR domain and set σ := Hn−1�∂�. Also, as
before, continue to assume that L is a homogeneous constant complex coefficient
weakly elliptic second-order M × M system in Rn. In general, different choices
of the coefficient tensor A ∈ AL yield different double layer potential operators,
so it makes sense to use the subscript A to highlight the dependence on the choice
of the coefficient tensor A. One integral operator of layer potential variety which is
intrinsically associated with the given systemL is the so-called single layer potential
operator S , whose integral kernel is the matrix-valued function E(x − y), for all
points x, y ∈ ∂�. In order to make sense of the action of such an operator on any
function as in (3.21), it is necessary to alter said integral kernel and consider the
following modified single layer potential operator

Smodf (x) :=
ˆ
∂�

{
E(x − y)− E∗(−y)

}
f (y) dσ(y) for each x ∈ �,

for each f ∈ [
L1

(
∂�,

σ(x)

1+|x|n−1

)]M
, where E∗ := E · 1Rn\B(0,1).

(3.38)

In this regard, it is worth noting that for each f ∈
[
L1

(
∂�,

σ(x)

1+|x|n−1

)]M
the function

Smodf is well defined, belongs to the space
[
C∞(�)

]M , and for each multi-index
α ∈ Nn0 with |α| ≥ 1, one has

∂α(Smodf )(x) =
ˆ
∂�

(∂αE)(x − y)f (y) dσ(y) for each x ∈ �. (3.39)
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In particular,

L
(
Smodf

) = 0 in � for each f ∈
[
L1(∂�, σ(x)

1+|x|n−1

)]M
. (3.40)

As noted in [114, §1.5], if n ≥ 3 then for each aperture parameter κ > 0 and each
truncation parameter ε > 0 we have

Nε
κ (Smodf ) ∈

⋂

0<p<n−1
n−2

L
p

loc(∂�, σ) for each f ∈
[
L1(∂�, σ(x)

1+|x|n−1

)]M
.

(3.41)

Analogously to (3.38), let us now define the following modified version of the
boundary-to-boundary single layer operator

Smodf (x) :=
ˆ
∂�

{
E(x − y)− E∗(−y)

}
f (y) dσ(y) at σ -a.e. x ∈ ∂�,

for each f ∈ [
L1

(
∂�,

σ(x)

1+|x|n−1

)]M
, where E∗ := E · 1Rn\B(0,1).

(3.42)

Then this operator is meaningfully defined, via an absolutely convergent integral,
at σ -a.e. point in ∂�, and it has been shown in [114, §1.5] that for each ε > 0 the
operator

Smod :
[
L1(∂�, σ(x)

1+|x|n−1−ε
)]M −→

[
L1(∂�, σ(x)

1+|x|n
)]M

(3.43)

is well defined, linear, and bounded. In particular, from (3.43) and the embedding in
(2.573) we see that for each weight w ∈ Ap(∂�, σ) with p ∈ (1,∞) the following
mapping is well defined, linear, and bounded:

Smod :
[
Lp(∂�,w)

]M −→
[
L1

(
∂�,

σ(x)

1 + |x|n
)]M

. (3.44)

In addition, it has been shown in [114, §1.5] that

Smod :
[
L1

(
∂�,

σ(x)

1+|x|n−1

) ∩ Lploc(∂�,w)
]M −→ [

L
p

loc(∂�,w)
]M

is a well-defined, linear, and continuous mapping

for each weight w ∈ Ap(∂�, σ) with p ∈ (1,∞),

(3.45)

and (with Lip(∂�) denoting the space of scalar-valued Lipschitz functions on ∂�)
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given an arbitrary Muckenhoupt weight w ∈ Ap(∂�, σ) with
p ∈ (1,∞), it follows that for each sequence of functions
{fj }j∈N ⊆ [

Lp(∂�,w)
]M which is weak-∗ convergent to

some function f ∈ [
Lp(∂�,w)

]M , one has that the limit
lim
j→∞

´
∂�

〈
Smodfj , φ

〉
dσ = ´

∂�

〈
Smodf, φ

〉
dσ holds for each test

function φ ∈ [
Lip(∂�)

]M with compact support.

(3.46)

Also, with the modified boundary-to-domain single layer operator Smod as in (3.38),

for each aperture parameter κ > 0 and each f ∈ [
L1

(
∂�,

σ(x)

1+|x|n−1

)]M , one has

((
Smodf

)∣∣
∣
κ−n.t.

∂�

)
(x) = (Smodf )(x) at σ -a.e. point x ∈ ∂�. (3.47)

See [114, §1.5] for proofs of all these claims, and for a more in-depth discussion on
this topic.

Theorem 3.2 Let � ⊆ Rn (where n ∈ N, n ≥ 2) be a UR domain. Denote
by ν = (ν1, . . . , νn) the geometric measure theoretic outward unit normal to
� and abbreviate σ := H n−1�∂�. Also, let L = (

a
αβ
rs ∂r∂s

)
1≤α,β≤M be a

homogeneous, weakly elliptic, constant (complex) coefficient, second-orderM ×M

system in Rn (for some M ∈ N). Recall the matrix-valued fundamental solution
E = (Eαβ)1≤α,β≤M associated with L as in Theorem 3.1 and define

k
(rγβ)
ε := (∂rEγβ) · 1

R
n\B(0,ε) for each ε > 0,

each γ, β ∈ {1, . . . ,M} and r ∈ {1, . . . , n}.
(3.48)

In this setting, consider the following modified version of the double layer
operator (3.22)

(
D

A,modf
)
(x)

:=
(
−
ˆ

∂�

νs(y)a
β α
rs

{
(∂rEγβ)(x − y)− k

(rγβ)

1 (−y)}fα(y) dσ(y)

)

1≤γ ≤M

for each f = (fα)1≤α≤M ∈
[
L1(∂�, σ(x)

1+|x|n
)]M

and x ∈ �, (3.49)

and consider the following modified boundary-to-boundary double layer potential
operator (3.24)
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K
A,modf (x)

:=
(
− lim

ε→0+

ˆ

∂�

νs(y)a
β α
rs

{
k(rγβ)ε (x − y)− k

(rγβ)

1 (−y)}fα(y) dσ(y)

)

1≤γ ≤M

for each f = (fα)1≤α≤M ∈
[
L1(∂�, σ(x)

1+|x|n
)]M

and σ -a.e. x ∈ ∂�, (3.50)

Then the following properties hold.

(1) The operator D
A,mod is meaningfully defined, and satisfies

D
A,modf ∈ [

C∞(�)
]M

and L(D
A,modf ) = 0 in �,

for each f ∈
[
L1

(
∂�,

σ(x)
1+|x|n

)]M
.

(3.51)

In addition, the operator D
A,mod is compatible with DA from (3.22), in the sense

that for each function f belonging to the smaller space
[
L1

(
∂�,

σ(x)

1+|x|n−1

)]M
the

difference

Cf := D
A,modf −Df is a constant (belonging to CM ) in �. (3.52)

As a consequence,

∇D
A,modf = ∇Df in � for each f ∈

[
L1(∂�, σ(x)

1+|x|n−1

)]M
. (3.53)

Moreover,

D
A,mod maps constant (CM -valued) functions on ∂� into con-

stant (CM -valued) functions in �.
(3.54)

In addition, at each point x ∈ � one may express

∂j
(
D

A,modf
)
(x) =

(
−
ˆ
∂∗�

νs(y)a
β α
rs (∂j ∂rEγβ)(x − y)fα(y) dσ(y)

)

1≤γ ≤M

for each j ∈ {1, . . . , n} and f = (fα)1≤α≤M ∈ [
L1(∂�, σ(x)

1+|x|n
)]M

.

(3.55)
Finally, given any function
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f = (fα)1≤α≤M ∈
[
L1(∂�, σ(x)

1+|x|n
)]M

with the property that

∂τjkfα ∈ L1(∂�, σ(x)

1+|x|n−1

)
for all j, k ∈ {1, . . . , n} and α ∈ {1, . . . ,M},

(3.56)

it follows that for each index � ∈ {1, . . . , n} and each point x ∈ �, one has

∂�
(
D

A,modf
)
(x) =

( ˆ
∂�

aβ αrs (∂rEγβ)(x − y)(∂τ�s fα)(y) dσ(y)

)

1≤γ ≤M
.

(3.57)

(2) Fix an aperture parameter κ ∈ (0,∞), a truncation parameter ε > 0, and an
integrability exponent p ∈ (1,∞). Then the nontangential boundary trace

(
∂�DA,modf

)∣∣κ−n.t.

∂�
exists (in CM ) at σ -a.e. point on ∂�,

for each function f as in (3.56) and each index � ∈ {1, . . . , n}.
(3.58)

Also, one has

Nε
κ

(∇(D
A,modf )

) ∈ L
p

loc(∂�, σ) for each function

f = (fα)1≤α≤M ∈
[
L1(∂�, σ(x)

1+|x|n
)]M

such that

∂τjkfα ∈ L1(∂�, σ(x)

1+|x|n−1

) ∩ Lploc(∂�, σ)

for all j, k ∈ {1, . . . , n} and all α ∈ {1, . . . ,M}.

(3.59)

In addition,

Nε
κ (DA,modf ) ∈ L

p

loc(∂�, σ) for each function

f ∈
[
L1

(
∂�,

σ(x)
1+|x|n

) ∩ Lploc(∂�, σ)
]M

.
(3.60)

Furthermore, the following jump-formula holds:

(
D

A,modf
)∣∣∣

κ−n.t.

∂�
= ( 1

2I +K
A,mod

)
f at σ -a.e. point on ∂�,

for each given function f ∈
[
L1(∂�, σ(x)

1+|x|n
)]M

,

(3.61)

where, as usual, I is the identity operator. As a consequence of (3.61) and (3.54),
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the operator K
A,mod maps constant (CM -valued) functions on ∂� into

constant (CM -valued) functions on ∂�.
(3.62)

Finally, the operator K
A,mod (from (3.50)) is compatible with K (acting on

functions from
[
L1

(
∂�,

σ(x)

1+|x|n−1

)]M
as in (3.24)) in the sense that

for each function f ∈ [
L1

(
∂�,

σ(x)

1+|x|n−1

)]M
the difference

cf := Kmodf −Kf is a constant (belonging to CM ) on ∂�.
(3.63)

Moving on, in view of (3.63) and the fact that tangential derivatives annihilate
locally constant functions, the following result from [114, §1.8] may be regarded as
a generalization of Proposition 3.2.

Proposition 3.3 Assume � ⊆ Rn is a UR domain and abbreviate σ := H n−1�∂�.
Consider an M × M homogeneous, second-order, constant complex coefficient,

weakly elliptic system L in Rn, and pick some coefficient tensorA =
(
a
αβ
rs

)
1≤α,β≤M
1≤r,s≤n

for which LA = L. Let KA be the boundary-to-boundary double layer potential
operator associated with � and A as in (3.24), and bring in its modified version
K

A,mod from (3.50). Finally, recall the family of singular integral operators Ujk with
j, k ∈ {1, . . . , n} defined in (3.35) and fix some integrability exponent p ∈ (1,∞).
Then for each function

f = (fα)1≤α≤M ∈
[
L1

(
∂�,

σ(x)
1+|x|n

) ∩ Lploc(∂�, σ)
]M

such that

∂τjkfα belongs to L1
(
∂�,

σ(x)

1+|x|n−1

) ∩ Lploc(∂�, σ)

for all j, k ∈ {1, . . . , n} and α ∈ {1, . . . ,M},
(3.64)

and each pair of indices j, k,∈ {1, . . . , n}, one has

∂τjk
(
K

A,modf
) = KA(∂τjkf )+ Ujk(∇tanf ) (3.65)

where, as in the case of (3.37), ∇tanf is regarded as the M × n matrix-valued
function whose (α, s) entry is the s-th component of the tangential gradient ∇tanfα .

We next introduce (and briefly elaborate on) the notion of conormal derivative
operator associated with a given domain and a given coefficient tensor. Specifically,
suppose � ⊆ Rn is an Ahlfors regular domain and abbreviate σ := Hn−1�∂�. In
particular, � is a set of locally finite perimeter, and its geometric measure theoretic
outward unit normal ν = (ν1, . . . , νn) is defined σ -a.e. on ∂�. Also, fix a coefficient
tensor A = (

a
αβ
rs

)
1≤r,s≤n

1≤α,β≤M
along with some aperture parameter κ > 0. In such a

setting, for any function u = (uβ)1≤β≤M ∈ [
W

1,1
loc (�)

]M with the property that
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the nontangential boundary trace (∇u)∣∣κ−n.t.

∂�
exists (in CM×n) at σ -a.e. point on ∂�

define the conormal derivative ∂Aν u as the CM -valued function

∂Aν u :=
(
νra

αβ
rs

(
∂suβ

)∣∣κ−n.t.

∂�

)

1≤α≤M at σ -a.e. point on ∂�. (3.66)

In relation to this, it has been proved in [114, §1.5] that if � ⊆ Rn is a UR domain

and σ := Hn−1�∂� then for each function f ∈
[
L1

(
∂�,

σ(x)

1+|x|n−1

)]M
the conormal

derivative ∂Aν Smodf may be meaningfully considered in the sense of (3.66), and

∂Aν Smodf = (− 1
2I +K#

A�
)
f at σ -a.e. point in ∂�, (3.67)

where I is the identity, and K#
A� is the operator associated as in (3.25) with the UR

domain � and the transpose coefficient tensor A�.
We shall also need the following basic integral representation formula, estab-

lished in [114, §1.8], for null-solutions of weakly elliptic systems in Ahlfors regular
domains, in terms of modified boundary-to-domain layer potential operators.

Theorem 3.3 Let � ⊆ Rn (where n ∈ N, n ≥ 2) be an Ahlfors regular domain
which is either bounded, or has an unbounded boundary. Denote by ν the geometric
measure theoretic outward unit normal to � and abbreviate σ := H n−1�∂�. Also,
for some M ∈ N, consider A = (

a
αβ
rs

)
1≤r,s≤n

1≤α,β≤M
a complex coefficient tensor with

the property that L := LA is a weakly ellipticM ×M system in Rn. In this setting,
recall the modified version of the double layer operator D

A,mod from (3.49), and
the modified version of the single layer operator Smod from (3.38). Finally, fix an
aperture parameter κ ∈ (0,∞), a truncation parameter ε ∈ (0,∞), and consider
a function u : �→ CM satisfying

u ∈ [
C∞(�)

]M
, Lu = 0 in �, Nε

κu ∈ L1
loc(∂�, σ),

u
∣
∣κ−n.t.

∂�
exists σ -a.e. on ∂� and u

∣
∣κ−n.t.

∂�
∈ [

L1(∂�, σ(x)
1+|x|n

)]M
,

(∇u)∣∣κ−n.t.

∂�
exists σ -a.e. on ∂� and Nκ(∇u) ∈ L1(∂�, σ(x)

1+|x|n−1

)
.

(3.68)

Then there exists some CM -valued locally constant function cu in � with the
property that

u = D
A,mod

(
u
∣∣κ−n.t.

∂�

)−Smod

(
∂Aν u

)+ cu in �. (3.69)

We proceed by recalling the following Fatou-type theorem established in [113,
§3.3].
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Theorem 3.4 Suppose � ⊆ Rn, where n ∈ N with n ≥ 2, is an arbitrary UR
domain and abbreviate σ := H n−1�∂�. Also, consider a homogeneous constant
(complex) coefficient second-orderM×M system L in Rn (for someM ∈ N) which
is weakly elliptic, and assume u ∈ [

C∞(�)
]M

is a vector-valued function which,
for some aperture parameter κ > 0, satisfies

Nκ(∇u) ∈ L
p

loc(∂�, σ) for some p ∈ (1,∞]
and Lu = 0 in �.

(3.70)

Then the nontangential boundary trace
(
(∇u)∣∣κ−n.t.

∂�

)
(x) exists (in CM×n) at σ -

a.e. point x ∈ ∂�,

the function (∇u)∣∣κ−n.t.

∂�
belongs to the space

[
L
p

loc(∂�, σ)
]M×n

, (3.71)

and
∣∣∣(∇u)∣∣κ−n.t.

∂�

∣∣∣ ≤ Nκ(∇u) at σ -a.e. point on ∂�. (3.72)

A combination of Theorems 3.3 and 3.4 gives the following basic result.

Corollary 3.1 Let � ⊆ Rn (where n ∈ N, n ≥ 2) be an NTA domain with an
unbounded Ahlfors regular boundary. Abbreviate σ := H n−1�∂� and denote by ν
the geometric measure theoretic outward unit normal to �. For M ∈ N, consider
A = (

a
αβ
rs

)
1≤r,s≤n

1≤α,β≤M
a complex coefficient tensor with the property that L := LA is

a weakly ellipticM ×M system in Rn.
Once again, recall the modified version of the double layer operator D

A,mod

from (3.49), and the modified version of the single layer operator Smod from (3.38).
Finally, fix an aperture parameter κ ∈ (0,∞) along with an integrability exponent
p ∈ (1,∞) and some Muckenhoupt weight w ∈ Ap(∂�, σ). In this setting,
consider a function u : �→ CM satisfying

u ∈ [
C∞(�)

]M
, Lu = 0 in �, Nκ(∇u) ∈ Lp(∂�,w). (3.73)

Then

u
∣∣κ−n.t.

∂�
exists σ -a.e. on ∂� and belongs to

[ •
L
p

1 (∂�,w)
]M

,

(∇u)∣∣κ−n.t.

∂�
exists σ -a.e. on ∂�, and ∂Aν u belongs to

[
Lp(∂�,w)

]M
,

(3.74)
and there exists some cu ∈ CM with the property that

u = D
A,mod

(
u
∣∣κ−n.t.

∂�

)−Smod

(
∂Aν u

)+ cu in �. (3.75)
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Proof From Proposition 2.24, we see that u
∣∣κ−n.t.

∂�
exists at σ -a.e. point on ∂� and

belongs to
[ •
L
p

1 (∂�,w)
]M . In concert, the membership in (3.73), (2.608), (2.11)

(used with σ := w), and (2.576) also implies that Nε
κu ∈ L1

loc(∂�, σ) for each
ε > 0. Next, the present hypotheses on � ensure (cf. (2.48)) that � is a UR domain.
Keeping this in mind, the Fatou-type result from Theorem 3.4 guarantees that the

nontangential boundary trace (∇u)∣∣κ−n.t.

∂�
exists (in CM·n) at σ -a.e. point on ∂�. In

particular, ∂Aν u is well defined and belongs to the space
[
Lp(∂�,w)

]M (cf. (3.66),
(3.71)–(3.72)). Hence, all conditions in (3.68) are satisfied, and this permits us to
invoke Theorem 3.3 to conclude that (3.75) holds (for some constant cu ∈ CM ,
given that the hypotheses on � ensure that this set is connected). � 

3.2 SIOs on Muckenhoupt Weighted Lebesgue and Sobolev
Spaces

We begin by considering garden variety Calderón–Zygmund singular integral oper-
ators (SIOs), i.e., operators of convolution-type with odd, homogeneous, sufficiently
smooth kernels, which otherwise lack any particular algebraic characteristics. The
goal is to obtain estimates in Muckenhoupt weighted Lebesgue spaces on UR sets
in Rn.

Proposition 3.4 Let � ⊆ Rn be a closed UR set and abbreviate σ := Hn−1��.
AssumeN = N(n) ∈ N is a sufficiently large integer and consider a complex-valued
function k ∈ CN

(
R
n \ {0}) which is odd and positive homogeneous of degree 1− n.

Also, fix an integrability exponent p ∈ (1,∞), along with a Muckenhoupt weight
w ∈ Ap(�, σ). In this setting, for each f ∈ L1

(
�,

σ(x)

1+|x|n−1

)
, define

Tεf (x) :=
ˆ

y∈�
|x−y|>ε

k(x − y)f (y) dσ(y) for all x ∈ � and ε > 0, (3.76)

T∗f (x) := sup
ε>0

|Tεf (x)| for each x ∈ �, (3.77)

Tf (x) := lim
ε→0+

Tεf (x) for σ -a.e. x ∈ �. (3.78)

Then there exists a constant C ∈ (0,∞) which depends exclusively on n,
p, [w]Ap , and the UR constants of � (and which stays bounded as [w]Ap stays
bounded) with the property that for each f ∈ Lp(�,w), one has
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‖T∗f ‖Lp(�,w) ≤ C
( ∑

|α|≤N
sup
Sn−1

|∂αk|
)
‖f ‖Lp(�,w) . (3.79)

In particular,

the truncated integral operators Tε : Lp(�,w) → Lp(�,w) are well
defined, linear, and bounded in a uniform fashion with respect to the
truncation parameter ε > 0.

(3.80)

Moreover, for each function f ∈ L1
(
�,

σ(x)

1+|x|n−1

)
, the limit defining Tf (x) in (3.78)

exists at σ -a.e. x ∈ � and the operator

T : Lp(�,w) −→ Lp(�,w) (3.81)

is well defined, linear, and bounded. Let p′ ∈ (1,∞) denote the Hölder conjugate
exponent of p, and, with w′ := w1−p′ ∈ Ap′(�, σ ), consider the natural
identification

(
Lp(�,w)

)∗ = Lp
′
(�,w′). (3.82)

Then, under the canonical integral pairing (f, g) �→ ´
�
fg dσ , it follows that

the (real) transpose of the operator (3.81) is
the operator −T : Lp′(�,w′)→ Lp

′
(�,w′). (3.83)

Finally, assume � ⊆ R
n is an open set such that ∂� is a UR set and

abbreviate σ := Hn−1�∂�. Fix an integrability exponent p ∈ (1,∞) along with a
Muckenhoupt weight w ∈ Ap(∂�, σ), and pick an aperture parameter κ > 0. With
the integral kernel k as before, for each f ∈ Lp(∂�,w), define

Tf (x) :=
ˆ
∂�

k(x − y)f (y) dσ(y) for each x ∈ �. (3.84)

Then there exists a constant C ∈ (0,∞) which depends exclusively on n, p, [w]Ap ,
and the UR constants of ∂� with the property that for each f ∈ Lp(∂�,w), one
has

‖Nκ(Tf )‖Lp(∂�,w) ≤ C
( ∑

|α|≤N
sup
Sn−1

|∂αk|
)
‖f ‖Lp(∂�,w) . (3.85)

Also, for each function f ∈ L1
(
∂�,

σ(x)

1+|x|n−1

)
, one has the jump-formula

(
Tf

∣∣κ−n.t.

∂�

)
(x) = 1

2i
k̂
(
ν(x)

)
f (x)+ (Tf )(x) at σ -a.e. x ∈ ∂∗�, (3.86)
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where k̂ denotes the Fourier transform of k. In particular, the jump-formula (3.86)
is valid for each function f ∈ Lp(∂�,w).

The above proposition points to uniform rectifiability as being intimately con-
nected with the boundedness of a large class of Calderón–Zygmund like operators
on Muckenhoupt weighted Lebesgue spaces. From the work of G. David and
S. Semmes (cf. [40, 41]) and F. Nazarov, X. Tolsa, and A. Volberg in [118] (see
also [96] for similar results proved earlier in the plane), we know that UR sets make
up the most general context in which convolution-like singular integral operators are
bounded on ordinary Lebesgue spaces. Moreover, under the background assumption
of Ahlfors regularity, uniform rectifiability is implied1 by the simultaneous L2

boundedness of all truncated integral convolution type operators Tε on� (cf. (3.76))
uniformly with respect to the truncation ε > 0, whose kernels are smooth, odd, and
positive homogeneous of degree 1 − n in Rn \ {0}. In light of (3.80), the above
discussion highlights the optimality of demanding that � is a UR set in the context
of Proposition 3.4. One of the early works on the higher-dimensional theory of
singular integral operators in rough geometric settings is [23]; see also the survey
paper [97] for an informative account of the development of this topic.

Results like Proposition 3.4 have been recently established in [113, §2.3-§2.5].
Here we present an alternative approach that makes essential use of the Fefferman–
Stein sharp maximal function, considered in the setting of spaces of homogeneous
type (for the Euclidean context, see [69, p. 52], [52, Theorem 3.6, p. 161]).

Proof of Proposition 3.4 To set the stage, recall the Fefferman–Stein sharp maxi-
mal operator M# on �, acting on each function f ∈ L1

loc(�, σ ) according to

M#f (x) := sup
�x

 


∣∣∣∣f −
 


f dσ

∣∣∣∣ dσ, ∀ x ∈ �, (3.87)

where the supremum is taken over all surface balls  ⊆ � containing the point
x ∈ �. Clearly, for each f ∈ L1

loc(�, σ ) and each x ∈ �, we have

sup
�x

inf
a∈C

 


|f − a| dσ ≤ M#f (x) ≤ 2 sup
�x

inf
a∈C

 


|f − a| dσ. (3.88)

Also, given α ∈ (0, 1), for each f ∈ L1
loc(�, σ ), set

M#
αf (x) := M#(|f |α)(x)1/α for all x ∈ �. (3.89)

1 In [40], the authors have dealt with the class of truncated singular integral operators associated

with kernels in Rn \ {0} which are smooth, odd, and satisfy supx∈Rn\{0}
[
|x|(n−1)+|α|∣∣(∂αk)(x)

∣
∣
]
<

+∞ for all α ∈ Nn0. In [118], it was shown that the truncated Riesz transforms on � alone will do.
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Since having 0 < α < 1 ensures that |Xα − Yα| ≤ |X− Y |α for all X, Y ∈ [0,∞),
from (3.89) and the last inequality in (3.88), one may readily check that

M#
αf (x) ≤ 21/α sup

�x
inf
a∈C

( 


|f − a|α dσ

)1/α

(3.90)

for each f ∈ L1
loc(�, σ ) and each x ∈ �. Finally, recall from (2.522) the (non-

centered) Hardy–Littlewood maximal operator M on �.
From (3.76)–(3.78), it is clear that the maximal operator T∗ and the principal-

value singular integral operator T depend in a homogeneous fashion on the kernel
function k. In view of this observation, by working with k/K (in the case when
k is not identically zero) where K := ∑

|α|≤N supSn−1 |∂αk|, there is no loss of
generality in assuming that

∑

|α|≤N
sup
Sn−1

|∂αk| = 1. (3.91)

The fact that for each function f ∈ L1
(
�,

σ(x)

1+|x|n−1

)
, the limit defining Tf (x)

in (3.78) exists at σ -a.e. x ∈ � has been proved in [113, §2.3]. To proceed, denote
by L∞comp(�, σ ) the subspace of L∞(�, σ ) consisting of functions with compact
support. Also, fix a power α ∈ (0, 1). We will first show that there exists a constant
C = C(�, n, α) ∈ (0,∞) such that

M#
α(Tf )(x) ≤ C ·Mf (x)

for all f ∈ L∞comp(�, σ ) and x ∈ �.
(3.92)

To this end, fix a function f ∈ L∞comp(�, σ ) along with a point x ∈ �, and consider
a surface ball  = (x0, r0), with center at x0 ∈ � and radius r0 > 0, containing
the point x. Decompose f = f1 + f2, where f1 := f 12 and f2 := f 1�\2. Then∣∣Tf2(x0)

∣∣ < +∞ and we abbreviate a := Tf2(x0) ∈ C. Note that

 


|Tf − a|α dσ ≤
 


|Tf1|α dσ +
 


|Tf2 − a|α dσ. (3.93)

For the first term in the right-hand side of (3.93), using Kolmogorov’s inequality,
the fact that T is bounded from L1(�, σ ) to L1,∞(�, σ ) (cf. [113, §2.3], [61,
Proposition 3.19]), and the fact that � is an Ahlfors regular set to write

 


|Tf1|α dσ ≤ Cα

σ()α
‖Tf1‖αL1,∞(�,σ)

≤ Cα

σ()α
‖f1‖αL1(�,σ)

≤ Cα

( 
2
|f | dσ

)α

≤ Cα ·Mf (x)α. (3.94)



3.2 SIOs on Muckenhoupt Weighted Lebesgue and Sobolev Spaces 183

For the second term in the right-hand side of (3.93), note that the properties of k and
(3.91) entail

|(∇k)(z)| =
∣∣∣(∇k)

( z

|z| |z|
)∣∣∣ ≤ |z|−n sup

|ω|=1
|(∇k)(ω)| = Cn|z|−n, (3.95)

for each z ∈ Rn \ {0}, where Cn ∈ (0,∞) is a purely dimensional constant.
On account of (3.95) and the Mean Value Theorem, we see that there exists a
dimensional constant Cn ∈ (0,∞) with the property that for each y ∈  and
z ∈ � \ 2 we have

|k(y − z)− k(x0 − z)| ≤ Cn
|y − x0|
|x0 − z|n ≤

Cnr0

|x0 − z|n . (3.96)

Using this, for every y ∈ , we may write

|Tf2(y)− a| = |Tf2(y)− Tf2(x0)|

≤
ˆ
�\2

|k(y − z)− k(x0 − z)||f (z)| dσ(z)

≤ Cr0

∞∑

j=1

ˆ
2j r0≤|x0−z|<2j+1r0

|f (z)|
|x0 − z|n dσ(z)

≤ C

∞∑

j=1

2−j
 

2j+1

|f (z)| dσ(z)

≤ C ·Mf (x), (3.97)

where C ∈ (0,∞) depends only on dimension and the Ahlfors regularity constant
of �. At this stage, the claim in (3.92) follows by combining (3.90), (3.93), (3.94),
and (3.97).

We shall now analyze two cases, depending on whether � is bounded or not.
Consider first the case when � is unbounded. In such a setting, the A∞-weighted
version of the Fefferman–Stein inequality for spaces of homogeneous type (cf.,
e.g., [8, Sections 3.2 and 5]) gives that for every q ∈ (0,∞) there exists some
constant Cw ∈ (0,∞), which depends on the weight w ∈ Ap(�, σ) ⊆ A∞(�, σ )
only through its characteristic [w]Ap (indeed, it can be expressed as an increasing
function of [w]Ap ), such that

‖Mg‖Lq(�,w) ≤ Cw
∥∥M#g

∥∥
Lq(�,w)

for each

g ∈ L1
loc(�, σ ) such that Mg ∈ Lq(�,w).

(3.98)
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To proceed, fix α ∈ (0, 1) and f ∈ L∞comp(�, σ ). Let us momentarily work under
the additional assumption that the weight w belongs to L∞(�, σ ). This permits us
to estimate

∥∥M(|Tf |α)∥∥
Lp/α(�,w)

≤ ‖w‖α/pL∞(�,σ)

∥∥M(|Tf |α)∥∥
Lp/α(�,σ)

≤ C ‖w‖α/pL∞(�,σ)
‖Tf ‖αLp(�,σ)

≤ C ‖w‖α/pL∞(�,σ)
‖f ‖αLp(�,σ) < +∞, (3.99)

where we have used the boundedness of M on Lp/α(�, σ) and the boundedness
of T on Lp(�, σ) (cf. [61, Proposition 3.18]). This allows us to use (3.98) (with
g := |Tf |α and q := p/α) to obtain, for some constant Cw ∈ (0,∞) (again,
depending in an increasing fashion on [w]Ap ),

‖Tf ‖Lp(�,w) ≤
∥∥∥M(|Tf |α)1/α

∥∥∥
Lp(�,w)

= ∥∥M(|Tf |α)∥∥1/α
Lp/α(�,w)

≤ Cw

∥∥∥M#(|Tf |α)
∥∥∥

1/α

Lp/α(�,w)
= Cw

∥∥∥M#
α(Tf )

∥∥∥
Lp(�,w)

≤ Cw ‖Mf ‖Lp(�,w) ≤ Cw ‖f ‖Lp(�,w) , (3.100)

where the first inequality follows from Lebesgue’s Differentiation Theorem (cf.
[7]), the last equality is a consequence of (3.89), the penultimate inequality comes
from (3.92), and the last inequality is implied by the boundedness of the Hardy–
Littlewood operator M on Lp(�,w).

To remove the restriction w ∈ L∞(�, σ ), we proceed as follows. For each
integer j ∈ N, let wj := min{w, j} ∈ L∞(�, σ ). Moreover, as in [57, Ex. 9.1.9],
we have

[wj ]Ap ≤ Cp(1 + [w]Ap) (3.101)

for some Cp ∈ (0,∞) independent of j ∈ N. As such, we may invoke (3.100)
written for each wj (which now involves a constant whose dependence of wj may
be expressed in terms of a non-decreasing function acting on [wj ]Ap ) to conclude
that

‖Tf ‖Lp(�,wj )
≤ C ‖f ‖Lp(�,wj )

≤ C ‖f ‖Lp(�,w) , (3.102)

for some constant C ∈ (0,∞) independent of j ∈ N. Upon letting j → ∞
and relying on Lebesgue’s Monotone Convergence Theorem, we arrive at the
conclusion that ‖Tf ‖Lp(�,w) ≤ C ‖f ‖Lp(�,w) for every f ∈ L∞comp(�, σ ). Given
that L∞comp(�, σ ) is dense in Lp(�,w), this ultimately establishes the boundedness
of the operator T in the context of (3.81) when � is unbounded.
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Let us now consider the case when� is bounded. In this case, compared to (3.98),
the A∞-weighted version of the Fefferman–Stein inequality includes an extra term;
namely, it now reads (cf. [8, Sections 3.2 and 5])

‖Mg‖Lq(�,w) ≤ Cw

∥∥∥M#g

∥∥∥
Lq(�,w)

+ Cσ(�)−1
( ˆ

�

w dσ
)1/q‖g‖L1(�,σ) (3.103)

for all g ∈ L1(�, σ ) with Mg ∈ Lq(�,w),

where Cw ∈ (0,∞) is as before and C ∈ (0,∞) is a purely geometric constant. Fix
α ∈ (0, 1) and f ∈ L∞comp(�, σ ). Assume first that w ∈ L∞(�, σ ) and note that
(3.99) holds in the same way. This permits us to invoke (3.103) (with g := |Tf |α
and q := p/α), so in place of (3.100), we now get

‖Tf ‖Lp(�,w) ≤
∥
∥M(|Tf |α)∥∥1/α

Lp/α(�,w)

≤ Cw
∥∥M#(|Tf |α)∥∥1/α

Lp/α(�,w)
+ Cσ(�)−1/α

(ˆ
�

w dσ
)1/p∥∥|Tf |α∥∥1/α

L1(�,σ)

≤ Cw ‖f ‖Lp(�,w) + Cσ(�)−1/α
( ˆ

�

w dσ
)1/p ‖Tf ‖Lα(�,σ) , (3.104)

where the first and last estimates follow as before. Here, the constant Cw ∈ (0,∞)

depends on w only through its characteristic [w]Ap (again, this may be expressed as
an increasing function of [w]Ap ), while C ∈ (0,∞) depends just on p, α, n, and the
Ahlfors regularity constant of �.

It remains to estimate ‖Tf ‖Lα(�,σ) in a satisfactory manner. Using
Kolmogorov’s inequality and the fact that T is bounded from L1(�, σ ) into
L1,∞(�, σ ) (cf. [113, §2.3], [61, Proposition 3.19]) and Hölder’s inequality, we
obtain

‖Tf ‖Lα(�,σ) ≤ (1 − α)−1/ασ (�)(1−α)/α ‖Tf ‖L1,∞(�,σ)

≤ Cσ(�)(1−α)/α ‖f ‖L1(�,σ)

≤ Cσ(�)(1−α)/α
( ˆ

�

w1−p′ dσ
)1/p′ ‖f ‖Lp(�,w) . (3.105)

Let us record our progress. The argument so far proves that, if � is bounded, then
for each f ∈ L∞comp(�, σ ) we have
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‖Tf ‖Lp(�,w) ≤
(
Cw + C σ(�)−1

( ˆ
�

w dσ
)1/p( ˆ

�

w1−p′ dσ
)1/p′) ‖f ‖Lp(�,w)

≤ (
Cw + C [w]1/pAp

) ‖f ‖Lp(�,w) , (3.106)

whereCw ∈ (0,∞) is as above. As before, to remove the restrictionw ∈ L∞(�, σ ),
we work with wj := min{w, j} for j ∈ N. Thanks to (3.101) the constant in the
right-hand side of (3.106) may be controlled uniformly in j . After passing to limit
j → ∞ and once again relying on the density L∞comp(�, σ ) into Lp(�,w), we
eventually conclude that the operator T is bounded in the context of (3.81) in this
case as well. Moreover,

‖T ‖Lp(�,w)→Lp(�,w) ≤ C, (3.107)

where C ∈ (0,∞) depends only on n, p, [w]Ap , and the UR constants of �. This
finishes the proof of (3.81).

Next, recall Cotlar’s inequality, to the effect that there exists some C ∈ (0,∞)

which depends only on n, and the Ahlfors regularity constant of�, with the property
that for every function f ∈ L∞comp(�, σ ), we have

(T∗f )(x) ≤ C ·M(Tf )(x)+ C ·Mf (x) for each x ∈ �. (3.108)

Then (3.79) follows from (3.81), (3.108), the boundedness of the Hardy–Littlewood
operator M on Lp(�,w), and a density argument. Going further, (3.83) may be
justified by first establishing a similar claim for the truncated operators (3.76) using
Fubini’s theorem and then invoking Lebesgue’s Dominated Convergence Theorem
(whose applicability is guaranteed by (3.79)) to pass to limit as ε → 0+.

Consider next the claims made in the last part of the statement. It is apparent
from (3.84) that the boundary-to-domain operator T depends in a homogeneous
fashion on the kernel function k. Much as before, this permits us to work under the
additional assumption that (3.91) holds. Granted this, the estimate claimed in (3.85)
is a direct consequence of inequality (3.79) and the formula (cf. [61, eq. (3.2.22)])

Nκ

(
Tf )(x) ≤ C · T∗f (x)+ C ·Mf (x) for each x ∈ �, (3.109)

where C ∈ (0,∞) depends only on n and the Ahlfors regularity constant of � and
where the maximal operator T∗ and the Hardy–Littlewood maximal function M are
now associated with the UR set � := ∂�.

That the jump-formula (3.86) holds for each f ∈ L1
(
∂�,

σ(x)

1+|x|n−1

)
has been

established in [113, §2.5]. With this in hand, the very last claim in the statement of
Proposition 3.4 is implied by (2.575). � 

The stage has been set for considering the action of the boundary layer potentials
associated with a given weakly elliptic system L and a given UR domain � in Rn

as in (3.22)–(3.25) and (3.38) on Muckenhoupt weighted Lebesgue and Sobolev
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spaces on ∂�. To state our main result in this regard, given any two Banach spaces
(X, ‖ · ‖X), (Y, ‖ · ‖Y ), denote

Bd
(
X → Y

) := {
T : X → Y : T linear and bounded

}
, (3.110)

and equip it with the standard operator norm Bd
(
X → Y

) � T �→ ‖T ‖X→Y (cf.
(4.1)). Finally, corresponding to the case when Y = X, we agree to abbreviate

Bd(X) := Bd
(
X → X

)
. (3.111)

Proposition 3.5 Suppose � ⊆ Rn (where n ∈ N, n ≥ 2) is a UR domain and
abbreviate σ := Hn−1�∂�. Also, let L be a homogeneous, second-order, constant
complex coefficient, weakly ellipticM×M system in Rn. Pick A ∈ AL and consider
the boundary layer potential operators DA,KA,K

#
A associated with � and the

coefficient tensor A as in (3.22), (3.24), and (3.25). Also, recall the modified single
layer potential operator Smod associated with � and L as in (3.38). Finally, fix an
integrability exponent p ∈ (1,∞), a Muckenhoupt weight w ∈ Ap(∂�, σ), and an
aperture parameter κ > 0.

1. The following operators are well defined, sub-linear, and bounded:

[
Lp(∂�,w)

]M � f �−→ Nκ

(
DAf

) ∈ Lp(∂�,w), (3.112)

[
L
p

1 (∂�,w)
]M � f �−→ Nκ (∇DAf ) ∈ Lp(∂�,w). (3.113)

Also,

for each f ∈ [
L
p

1 (∂�,w)
]M

the nontangential trace
(∇DAf

)∣∣κ−n.t.

∂�
exists (in Cn·M ) at σ -a.e. point on ∂�.

(3.114)

As a consequence of (3.114), (3.33), (3.66), (2.586), and Proposition 3.4,

the map
[
L
p

1 (∂�,w)
]M � f �−→ ∂Aν

(
DAf

) ∈ [
Lp(∂�,w)

]M
is

well defined, linear, and bounded, and there exists C ∈ (0,∞) so
that

∥∥∂Aν
(
DAf

)∥∥[Lp(∂�,w)]M ≤ C‖∇tanf ‖[Lp(∂�,w)]n·M for each

f in the Muckenhoupt weighted Sobolev space
[
L
p

1 (∂�,w)
]M

.

(3.115)

2. For every f ∈ [
Lp(∂�,w)

]M
, the limits in (3.24) and (3.25) exist at σ -a.e.

point on ∂�. Moreover, the operators KA and K#
A are well defined, linear, and

bounded in the following contexts:

KA :
[
Lp(∂�,w)

]M −→ [
Lp(∂�,w)

]M
, (3.116)
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KA :
[
L
p

1 (∂�,w)
]M −→ [

L
p

1 (∂�,w)
]M

, (3.117)

K#
A :

[
Lp(∂�,w)

]M −→ [
Lp(∂�,w)

]M
. (3.118)

Moreover, under the canonical integral pairing (f, g) �→ ´
∂�
〈f, g〉 dσ , it follows

that

the (real) transpose of the operator KA acting on the
space

[
Lp(∂�,w)

]M
is the operator K#

A acting on the

space
[
Lp

′
(∂�,w′)

]M
where p′ ∈ (1,∞) is the Hölder

conjugate exponent of p and w′ := w1−p′ ∈ Ap′(�, σ ).

(3.119)

Additionally, the operators KA,K
#
A in (3.116)–(3.118) depend continuously

on the underlying coefficient tensor A. More specifically, with the piece of
notation introduced in (3.13), the following operator-valued assignments are
continuous:

AWE � A �−→ KA ∈ Bd
([
Lp(∂�,w)

]M)
, (3.120)

AWE � A �−→ KA ∈ Bd
([
L
p

1 (∂�,w)
]M)

, (3.121)

AWE � A �−→ K#
A ∈ Bd

([
Lp(∂�,w)

]M)
. (3.122)

Furthermore, the nontangential boundary trace of the boundary-to-domain
double layer is related to the boundary-to-boundary double layer via a jump-
formula, to the effect that for every f ∈ [

Lp(∂�,w)
]M

and σ -a.e. in ∂�, one
has

DAf
∣
∣κ−n.t.

∂�
= ( 1

2I +KA

)
f, (3.123)

where I is the identity operator.

3. For each f ∈ [
Lp(∂�,w)

]M
, one has

Smodf ∈ [
C∞(�)

]M
, L

(
Smodf

) = 0 in �. (3.124)

In addition, the trace

(∇Smodf
)∣∣κ−n.t.

∂�
exists (in CM·n) at σ -a.e. point on ∂�, (3.125)

and the conormal derivative of the modified boundary-to-domain single layer
satisfies the following jump-formula:
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∂Aν Smodf = (− 1
2I +K#

A�
)
f at σ -a.e. point in ∂�, (3.126)

where I is the identity, and K#
A� is the operator associated as in (3.25) with the

UR domain � and the transpose coefficient tensor A�. Also, there exists some
constant C = C(�,p,w,L, κ) ∈ (0,∞) independent of f such that

∥∥Nκ(∇Smodf )
∥∥
Lp(∂�,w)

≤ C‖f ‖[Lp(∂�,w)]M . (3.127)

4. For each function f ∈ [
Lp(∂�,w)

]M
and σ -a.e. point x ∈ ∂�, one has

∂τjk
(
Smodf

)
(x) = lim

ε→0+

ˆ

y∈∂�
|x−y|>ε

{
νj (x)(∂kE)(x − y) (3.128)

− νk(x)(∂jE)(x − y)
}
f (y) dσ(y)

for each j, k ∈ {1, . . . , n}, and
( 1

2I +K#
A�

)((− 1
2I +K#

A�
)
f
)
(x) (3.129)

=
(

lim
ε→0+

ˆ

y∈∂�
|x−y|>ε

νi(x)a
μγ

ij aβαrs (∂rEγβ)(x − y)∂τjs
(
Smodf

)
α
(y) dσ(y)

)

1≤μ≤M
.

5. For each f ∈ [
L
p

1 (∂�,w)
]M

, there exists cf , which is the nontangential trace
on ∂� of some CM -valued locally constant function in �, with the property that
at σ -a.e. point on ∂�, one has

( 1
2I +KA

)((− 1
2I +KA

)
f
)
= Smod

(
∂Aν

(
DAf

))+ cf . (3.130)

6. The operator

Smod :
[
Lp(∂�,w)

]M −→ [ •
L
p

1 (∂�,w)
]M (3.131)

is well defined, linear, and bounded, when the target space is endowed with the
semi-norm introduced in (2.599). As a consequence, if

[ •
L
p

1 (∂�,w)
/ ∼ ]M

denotes the M-th power of the quotient space of classes [ · ] of equivalence
modulo constants of functions in

•
L
p

1 (∂�,w), equipped with the semi-norm
(2.601), then the operator

[
Smod

] : [Lp(∂�,w)]M −→ [ •
L
p

1 (∂�,w)
/ ∼ ]M

defined as
[
Smod

]
f := [

Smodf
] ∈ [ •

L
p

1 (∂�,w)
/ ∼ ]M

, ∀ f ∈ [
Lp(∂�,w)

]M

(3.132)
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is well defined, linear, and bounded.

Proof With the exception of (3.120)–(3.122) and (3.128)–(3.131), all claims may
be justified based on (3.22)–(3.40), Lemma 2.15, Proposition 3.1, Proposition 2.22,
Proposition 3.4, and Theorem 3.1. The continuity properties of the operator-valued
maps in (3.120)–(3.122), as well as formulas (3.128), (3.129), (3.130) have been
proved in [114, §1.5]. Finally, (3.131) is a consequence of (2.598)–(2.599), (3.44)–
(3.45), (3.128), and (3.81) in Proposition 3.4. � 

Our next theorem contains fundamental properties of modified double layer
potential operators acting on homogeneous Muckenhoupt weighted Sobolev spaces,
considered on boundaries of uniformly rectifiable domains.

Theorem 3.5 Assume � ⊆ Rn (where n ∈ N, n ≥ 2) is a UR domain. Denote
by ν = (ν1, . . . , νn) the geometric measure theoretic outward unit normal to � and
abbreviate σ := H n−1�∂�. In addition, for someM ∈ N, letA = (

a
αβ
rs

)
1≤r,s≤n

1≤α,β≤M
be

a complex coefficient tensor with the property that L := LA as in (3.7) is a weakly
elliptic M × M system in Rn. Also, let E = (Eγβ)1≤γ,β≤M be the matrix-valued
fundamental solution associated with L as in Theorem 3.1. In this setting, recall
the modified version of the double layer operator D

A,mod acting on functions from
[
L1

(
∂�,

σ(x)
1+|x|n

)]M
as in (3.49). Finally, fix some aperture parameter κ ∈ (0,∞)

along with an integrability exponent p ∈ (1,∞) and some Muckenhoupt weight
w ∈ Ap(∂�, σ).

Then there exists some constant C = C(�, n, p, κ) ∈ (0,∞) with the property
that for each function f ∈ [ •

L
p

1 (∂�,w)
]M

it follows that

D
A,modf ∈ [

C∞(�)
]M

, L
(
D

A,modf
) = 0 in �,

(
D

A,modf
)∣∣κ−n.t.

∂�
,
(∇D

A,modf
)∣∣κ−n.t.

∂�
exist σ -a.e. on ∂�,

Nκ

(∇D
A,modf

)
belongs to Lp(∂�,w) and

∥∥Nκ

(∇D
A,modf

)∥∥
Lp(∂�,w)

≤ C‖f ‖[ •Lp1 (∂�,w)]M .

(3.133)

In fact, for each function f ∈ [ •
L
p

1 (∂�,w)
]M

, one has

(D
A,modf )

∣∣κ−n.t.

∂�
= ( 1

2I +K
A,mod

)
f at σ -a.e. point on ∂�, (3.134)

where I is the identity operator on
[ •
L
p

1 (∂�,w)
]M

, and K
A,mod is the modified

boundary-to-boundary double layer potential operator from (3.50).
Moreover, given any function f = (fα)1≤α≤M belonging to the homogeneous

boundary Sobolev space
[ •
L
p

1 (∂�,w)
]M

, at σ -a.e. point x ∈ ∂�, one has
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(
∂Aν (DA,modf )

)
(x) (3.135)

=
(

lim
ε→0+

ˆ

y∈∂�
|x−y|>ε

νi(x)a
μγ

ij aβαrs (∂rEγβ)(x − y)
(
∂τjs fα

)
(y) dσ(y)

)

1≤μ≤M
,

where the conormal derivative is considered as in (3.66).
Furthermore, the operator

∂Aν DA,mod :
[ •
L
p

1 (∂�,w)
]M −→ [

Lp(∂�,w)
]M

defined as
(
∂Aν DA,mod)f := ∂Aν (DA,modf ) for each f ∈ [ •

L
p

1 (∂�,w)
]M (3.136)

is well defined, linear, bounded (when the domain space is equipped with the semi-
norm (2.599)), and

∂Aν DA,mod annihilates constant

(CM -valued) functions on ∂�.
(3.137)

As a consequence of (3.136) and (3.137), the following operator is well defined and
linear:

[
∂Aν DA,mod

] : [ •
L
p

1 (∂�,w)
/ ∼ ]M −→ [

Lp(∂�,w)
]M

defined as
[
∂Aν DA,mod

][f ] := ∂Aν (DA,modf ) for each f ∈ [ •
L
p

1 (∂�,w)
]M

.
(3.138)

Finally, if � ⊆ Rn is an open set satisfying a two-sided local John condition and
whose boundary is an unbounded Ahlfors regular set, then the operator (3.138)
is also bounded, when the quotient space is equipped with the norm (2.601).
Moreover, in this setting the operator

[
∂Aν DA,mod

]
in (3.138) depends continuously

on the underlying coefficient tensor A, in the sense that (with the piece of notation
introduced in (3.13)) the following operator-valued assignment is continuous:

AWE � A �−→ [
∂Aν DA,mod

] ∈ Bd
([ •
L
p

1 (∂�,w)
/ ∼ ]M → [

Lp(∂�,w)
]M)

.

(3.139)

Proof For each function f ∈ [ •
L
p

1 (∂�,w)
]M , the jump-formula (3.134) is seen

from (3.61) (keeping in mind (2.598)). The claims in (3.133) are consequences of
(2.598), (3.51), (3.61), (3.58), (3.57), (3.85), and Theorem 3.1. In particular, given
an arbitrary function f = (fα)1≤α≤M ∈ [ •

L
p

1 (∂�,w)
]M , the conormal derivative

∂Aν (DA,modf ) may be meaningfully defined, as in (3.66). Specifically, at σ -a.e. point
x ∈ ∂�, we have
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(
∂Aν (DA,modf )

)
(x) =

(
νi(x)

(
a
μγ

ij ∂j (DA,modf )γ
)∣∣κ−n.t.

∂�
(x)

)

1≤μ≤M (3.140)

=
(

lim
ε→0+

ˆ

y∈∂�
|x−y|>ε

νi(x)a
μγ

ij aβαrs (∂rEγβ)(x − y)
(
∂τjs fα

)
(y) dσ(y)

)

1≤μ≤M
,

where the first equality comes from (3.66) and the second equality is a consequence
of (3.57) and the jump-formula (3.86). Having established (3.135), the claims made
in relation to (3.136) follow with the help of Proposition 3.4 and Theorem 3.1. Note
that (3.137) is also a consequence of (3.135). Next, the claims pertaining to (3.138)
are consequences of what we have proved so far and (3.137). Finally, the continuity
of the operator-valued assignment (3.139) follows from (3.135), Theorem 3.1, and
work in [114, §1.8]. � 

The modified boundary-to-boundary double layer potential operator on homoge-
neous Muckenhoupt weighted Sobolev spaces is studied next.

Theorem 3.6 Let � ⊆ Rn (where n ∈ N, n ≥ 2) be an NTA domain such that ∂�
is an Ahlfors regular set, and abbreviate σ := H n−1�∂�. Also, with M ∈ N, let
A = (

a
αβ
rs

)
1≤r,s≤n

1≤α,β≤M
be a complex coefficient tensor with the property that L := LA

as in (3.7) is a weakly elliptic M × M system in Rn. In this context, consider the
modified boundary-to-boundary double layer potential operatorK

A,mod from (3.50).
Finally, select an integrability exponent p ∈ (1,∞) along with some Muckenhoupt
weight w ∈ Ap(∂�, σ).

Then the operator

K
A,mod :

[ •
L
p

1 (∂�,w)
]M −→ [ •

L
p

1 (∂�,w)
]M (3.141)

is well defined, linear, and bounded, when the spaces involved are endowed with the
semi-norm (2.599).

As a consequence of (3.141) and (3.62), the following is a well-defined and linear
operator:

[
K

A,mod

] : [ •
L
p

1 (∂�,w)
/ ∼ ]M −→ [ •

L
p

1 (∂�,w)
/ ∼ ]M

defined as
[
K

A,mod

][f ] := [
K

A,modf
] ∈ [ •

L
p

1 (∂�,w)
/ ∼ ]M

, ∀ f ∈ [ •
L
p

1 (∂�,w)
]M

(3.142)
Finally, if � ⊆ Rn is actually a two-sided NTA domain whose boundary is an
unbounded Ahlfors regular set, then the operator (3.142) is also bounded when
all quotient spaces are endowed with the norm introduced in (2.601). Moreover, in
this setting, the operator

[
K

A,mod

]
in (3.142) depends continuously on the underlying

coefficient tensorA, in the sense that (with the piece of notation introduced in (3.13))
the following operator-valued assignment is continuous:

AWE � A �−→ [
K

A,mod

] ∈ Bd
([ •
L
p

1 (∂�,w)
/ ∼ ]M)

. (3.143)
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Proof The present hypotheses guarantee (cf. (2.48)) that � is a UR domain. Pick an
integrability exponent p ∈ (1,∞) and fix an aperture parameter κ ∈ (0,∞). Next,
consider a function f = (fα)1≤α≤M ∈ [ •

L
p

1 (∂�,w)
]M and define u := D

A,modf in

�. Then u ∈ [
C∞(�)

]M (cf. (3.51)), and the jump-formula (3.134) gives

u
∣∣κ−n.t.

∂�
= ( 1

2I +K
A,mod

)
f at σ -a.e. point on ∂�. (3.144)

From (3.133), we also know that

Nκ(∇u) ∈ Lp(∂�,w) and
∥∥Nκ(∇u)

∥∥
Lp(∂�,w)

≤ C‖f ‖[ •Lp1 (∂�,w)]M (3.145)

for some constant C ∈ (0,∞) independent of f . Granted these properties, we may
invoke Proposition 2.24 to conclude that

u
∣∣κ−n.t.

∂�
belongs to the space

[ •
L
p

1 (∂�,w)
]M

and
∥∥u

∣∣κ−n.t.

∂�

∥∥
[ •Lp1 (∂�,w)]M

≤ C‖f ‖[ •Lp1 (∂�,w)]M .
(3.146)

Collectively, (3.144) and (3.146) then prove that

K
A,modf belongs to the space

[ •
L
p

1 (∂�,w)
]M

and
∥∥K

A,modf
∥∥
[ •Lp1 (∂�,w)]M

≤ C‖f ‖[ •Lp1 (∂�,w)]M ,
(3.147)

from which the claims pertaining to (3.141) follow. Next, the claims regarding the
operator (3.142) are readily seen from what we have just proved and definitions.
Finally, the fact that the operator-valued assignment (3.143) is continuous is seen
from (2.598), (2.601), (3.65), (2.576), (3.35), (3.120), Theorem 3.1, and work in
[114, §1.8]. � 

We shall now use Corollary 3.1 to derive some useful operator identities,
involving boundary layer potentials, of the sort described below.

Theorem 3.7 Suppose � ⊆ Rn (where n ∈ N, n ≥ 2) is an NTA domain whose
boundary is an unbounded Ahlfors regular set. Denote by ν the geometric measure
theoretic outward unit normal to � and abbreviate σ := H n−1�∂�. Next, for some
M ∈ N, let A = (

a
αβ
rs

)
1≤r,s≤n

1≤α,β≤M
be a complex coefficient tensor with the property

that L := LA as in (3.7) is a weakly elliptic M × M system in Rn. Having fixed
some integrability exponent p ∈ (1,∞) along with some Muckenhoupt weight
w ∈ Ap(∂�, σ), recall the operators Smod from (3.131), ∂Aν DA,mod from (3.136), and
K

A,mod from (3.141). Finally, let K#
A� be the operator associated with the coefficient

tensor A� and the set � as in (3.25). Then the following statements are true.
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(1) For each f ∈ [ •
L
p

1 (∂�,w)
]M

, there exists some cf ∈ CM with the property
that at σ -a.e. point on ∂�, one has

( 1
2I +K

A,mod

)((− 1
2I +K

A,mod

)
f
)
= Smod

((
∂Aν DA,mod

)
f
)
+ cf . (3.148)

In particular,

( 1
2I +

[
K

A,mod

])(− 1
2I +

[
K

A,mod

]) = [
Smod ]

[
∂Aν DA,mod

]

as operators acting from
[ •
L
p

1 (∂�,w)/ ∼
]M

.
(3.149)

(2) For each function f ∈ [ •
L
p

1 (∂�,w)
]M

, one has

(
∂Aν DA,mod

)(
K

A,modf
) = K#

A�
(
∂Aν DA,mod

)
f at σ -a.e. point on ∂�.

(3.150)

(3) For each f ∈ [
Lp(∂�,w)

]M
, there exists some cf ∈ CM with the property

that

Smod

(
K#
A�f

) = K
A,mod

(
Smodf

)+ cf at σ -a.e. point on ∂�. (3.151)

In particular,

[
Smod

]
K#
A� =

[
K

A,mod

][
Smod

]

as operators acting from
[
Lp(∂�,w)

]M
.

(3.152)

(4) For each f ∈ [
Lp(∂�,w)

]M
, at σ -a.e. point on ∂�, one has

( 1
2I +K#

A�
)((− 1

2I +K#
A�

)
f
)
= (

∂Aν DA,mod

)(
Smodf

)
. (3.153)

Proof The present hypotheses imply that � is a connected UR domain (see (2.48)).
Select an aperture parameter κ ∈ (0,∞). To justify the claims made in items (1)–
(2), pick an arbitrary function f ∈ [ •

L
p

1 (∂�,w)
]M and define u := D

A,modf in �.
Then, from (3.133) and (3.134), we know that

u ∈ [
C∞(�)

]M
, Lu = 0 in �, Nκ(∇u) ∈ Lp(∂�,w),

the boundary traces u
∣∣κ−n.t.

∂�
, (∇u)∣∣κ−n.t.

∂�
exist σ -a.e. on ∂�,

u
∣∣κ−n.t.

∂�
= ( 1

2I +K
A,mod

)
f and ∂Aν u =

(
∂Aν DA,mod

)
f.

(3.154)



3.2 SIOs on Muckenhoupt Weighted Lebesgue and Sobolev Spaces 195

Then Corollary 3.1 applies and gives that ∂Aν u belongs to
[
Lp(∂�,w)

]M , the trace

u
∣∣κ−n.t.

∂�
belongs to

[ •
L
p

1 (∂�,w)
]M , and there exists some cf ∈ CM with the property

that

u = D
A,mod

(
u
∣∣κ−n.t.

∂�

)−Smod

(
∂Aν u

)+ cu

= D
A,mod

(( 1
2I +Kmod

)
f
)
−Smod

((
∂Aν DA,mod

)
f
)
+ cf in �. (3.155)

Going nontangentially to the boundary in (3.155) then yields, on account of (3.154),
(3.134), (3.47), (3.141), and (3.136),

( 1
2I +K

A,mod

)
f = ( 1

2I +K
A,mod

)(( 1
2I +K

A,mod

)
f
)

− Smod

((
∂Aν DA,mod

)
f
)
+ cf (3.156)

at σ -a.e. point on ∂�. From this, (3.148) readily follows. This takes care of the claim
in item (1).

To deal with the claim in item (2), take the conormal derivative ∂Aν of the most
extreme sides of (3.155) and use (3.67), (3.136), and the fact that ∂Aν cu = 0 (cf.
(3.66)) to arrive at the conclusion that

(
∂Aν DA,mod

)
f = (

∂Aν DA,mod

)(( 1
2I +K

A,mod

)
f
)

− (− 1
2I +K#

A�
)((

∂Aν DA,mod

)
f
)

(3.157)

at σ -a.e. point on ∂�, from which (3.150) readily follows.
Let us now turn our attention to the claims made in items (3)-(4). Start with an

arbitrary function f ∈ [
Lp(∂�,w)

]M , and then consider u := Smodf in �. From
(2.575), item (c) of Proposition 3.5, and (3.47), we see that

u ∈ [
C∞(�)

]M
, Lu = 0 in �, Nκ(∇u) ∈ Lp(∂�,w),

the traces u
∣
∣κ−n.t.

∂�
, (∇u)∣∣κ−n.t.

∂�
exist σ -a.e. on ∂�,

u
∣∣κ−n.t.

∂�
= Smodf and ∂Aν u =

(− 1
2I +K#

A�
)
f.

(3.158)

Again, Corollary 3.1 applies and gives that ∂Aν u belongs to
[
Lp(∂�,w)

]M , the trace

u
∣
∣κ−n.t.

∂�
belongs to

[ •
L
p

1 (∂�,w)
]M , and there exists some cf ∈ CM such that

u = D
A,mod

(
u
∣
∣κ−n.t.

∂�

)−Smod

(
∂Aν u

)+ cu
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= D
A,mod

(
Smodf

)−Smod

((− 1
2I +K#

A�
)
f
)
+ cf in �. (3.159)

Taking nontangential boundary traces in (3.159) then gives, thanks to (3.158),
(3.47), (3.134), (3.131), and (3.118),

Smodf = ( 1
2I +K

A,mod

)(
Smodf

)− Smod

((− 1
2I +K#

A�
)
f
)
+ cf (3.160)

at σ -a.e. point on ∂�. With this in hand, (3.151) follows after simple algebra. This
justifies the claim made in item (3).

As regards item (4), take the conormal derivative ∂Aν of the most extreme sides
of (3.159) and rely on (3.158), (3.136), (3.126), (3.131), (3.118), and the fact that
∂Aν cu = 0 (cf. (3.66)) to conclude that

(− 1
2I +K#

A�
)
f = (

∂Aν DA,mod

)(
Smodf

)

− (− 1
2I +K#

A�
)((− 1

2I +K#
A�

)
f
)

(3.161)

at σ -a.e. point on ∂�, from which (3.153) readily follows. � 
There are direct links between the layer potential operators discussed so far in this

section and boundary value problems. To elaborate on this, we introduce a piece of
notation. Given two vector spaces X, Y , for linear operator T : X → Y denote by

Im
(
T : X → Y

) := {
T x : x ∈ X

}
(3.162)

the image of T . Moreover, corresponding to the special case when X = Y , we agree
to abbreviate Im

(
T ;X) := Im

(
T : X → X

)
.

Proposition 3.6 Let � ⊆ Rn be an NTA domain with the property that ∂� is an
unbounded Ahlfors regular set. Abbreviate σ := Hn−1�∂� and fix an aperture
parameter κ > 0. Also, pick some integrability exponent p ∈ (1,∞) and some
Muckenhoupt weight w ∈ Ap(∂�, σ). Finally, consider a homogeneous, second-
order, constant complex coefficient, weakly ellipticM ×M system L in Rn, and fix
a coefficient tensor A ∈ AL.

Then for each given function f belonging to
[ •
L
p

1 (∂�,w)
]M

, the homogeneous
Muckenhoupt weighted boundary Sobolev space defined in (2.598), the following
statements are equivalent:

(a) The boundary value problem
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u ∈ [
C∞(�)

]M
,

Lu = 0 in �,

Nκ(∇u) ∈ Lp(∂�,w),

u
∣
∣κ−n.t.

∂�
= f at σ -a.e. point on ∂�

(3.163)

has a solution.
(b) The equivalence class of the function f modulo constants, denoted by [f ],

belongs to the space

Im
(

1
2I +

[
K

A,mod

]; [ •
L
p

1 (∂�,w)
/ ∼ ]M)

+ Im
([
Smod

] : [Lp(∂�,w)]M −→ [ •
L
p

1 (∂�,w)
/ ∼ ]M)

.

(3.164)

(c) Again, with [f ] denoting the equivalence class of the function f modulo
constants,

(
− 1

2I +
[
K

A,mod

])[f ] belongs to the space

Im
([
Smod

] : [Lp(∂�,w)]M −→ [ •
L
p

1 (∂�,w)
/ ∼ ]M)

.
(3.165)

Proof Assume u solves (3.163). Then Corollary 3.1 guarantees that ∂Aν u belongs

to
[
Lp(∂�,w)

]M and that there exists some cu ∈ CM such that (3.75) holds.
Going nontangentially to the boundary then yields, on account of (3.134), (3.47),
and (2.575),

f = ( 1
2I +K

A,mod

)
f − Smod

(
∂Aν u

)+ cu on ∂�. (3.166)

Taking equivalence classes modulo constants and keeping in mind (3.142), (3.132),
we may recast (3.166) as

(− 1
2I +

[
K

A,mod

])[f ] = [
Smod

](
∂Aν u

)
. (3.167)

From this, we conclude that (3.165) holds, hence (a)⇒ (c).
Next, assume (3.165) holds. Since

[f ] =
(

1
2I +

[
K

A,mod

])[f ] −
(
− 1

2I +
[
K

A,mod

])[f ], (3.168)

this implies that [f ] belongs to the space in (3.164). Thus, (c)⇒ (b).
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Finally, if [f ] belongs to the space in (3.164), it follows from (3.142) and (3.132)
that

f = ( 1
2I +K

A,mod

)
g + Smodh+ c (3.169)

for some

g ∈ [ •
L
p

1 (∂�,w)
]M

, h ∈ [
Lp(∂�,w)

]M
, c ∈ CM. (3.170)

In view of this, (3.133), (3.134), (3.124), (3.127), (3.47), and (2.575), we then see
that the function

u := D
A,modg +Smodh+ c in � (3.171)

solves the boundary value problem (3.163). Hence, (b)⇒ (a), finishing the proof of
the proposition. � 

Here is a companion result to Proposition 3.6 for a Neumann type boundary value
problem.

Proposition 3.7 Let� ⊆ Rn be an NTA domain such that its topological boundary,
∂�, is an unbounded Ahlfors regular set. Set σ := Hn−1�∂� and denote by ν
the geometric measure theoretic outward unit normal to �. Also, fix an aperture
parameter κ ∈ (0,∞), pick some integrability exponent p ∈ (1,∞), and consider
some Muckenhoupt weight w ∈ Ap(∂�, σ). Finally, let L be a homogeneous,
second-order, constant complex coefficient, weakly elliptic M × M system in Rn,
and fix a coefficient tensor A ∈ AL.

Then, for each function f ∈ [
Lp(∂�,w)

]M
, the following statements are

equivalent:

(a) The boundary value problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u ∈ [
C∞(�)

]M
,

Lu = 0 in �,

Nκ(∇u) ∈ Lp(∂�,w),

∂Aν u = f at σ -a.e. point on ∂�

(3.172)

has a solution.
(b) The function f belongs to the space

Im
([
∂Aν DA,mod

] : [ •
L
p

1 (∂�,w)
/ ∼ ]M −→ [

Lp(∂�,w)
]M)

+ Im
(
− 1

2I +K#
A�;

[
Lp(∂�,w)

]M)
. (3.173)
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(c) One has

( 1
2I +K#

A�
)
f belongs to the space

Im
([
∂Aν DA,mod

] : [ •
L
p

1 (∂�,w)
/ ∼ ]M −→ [

Lp(∂�,w)
]M)

.
(3.174)

Proof Suppose u solves (3.172). Then Corollary 3.1 gives that the nontangential

boundary trace u
∣∣κ−n.t.

∂�
exists σ -a.e. on ∂� and belongs to

[ •
L
p

1 (∂�,w)
]M and that

the integral representation formula in (3.75) holds for some cu ∈ CM . Taking the
conormal derivative of both sides then yields, in view of (3.126),

f = ∂Aν

(
D

A,mod

(
u
∣∣κ−n.t.

∂�

))− (− 1
2I +K#

A�
)
f on ∂�. (3.175)

From this and (3.138), we then conclude that

( 1
2I +K#

A�
)
f = ∂Aν

(
D

A,mod

(
u
∣∣κ−n.t.

∂�

))
belongs to the space

Im
([
∂Aν DA,mod

] : [ •
L
p

1 (∂�,w)
/ ∼ ]M −→ [

Lp(∂�,w)
]M)

,
(3.176)

hence (a)⇒ (c). Going further, assume (3.174) holds. Since

f = ( 1
2I +K#

A�
)
f − (− 1

2I +K#
A�

)
f, (3.177)

this implies that f belongs to the space in (3.173). As such, (c)⇒ (b).
Finally, suppose the function f belongs to the space in (3.173), say

f = [
∂Aν DA,mod

][g] + (− 1
2I +K#

A�
)
h (3.178)

for some

g ∈ [ •
L
p

1 (∂�,w)
]M and h ∈ [

Lp(∂�,w)
]M

. (3.179)

Then (3.178), (3.179), (3.138), (3.133), (3.124), (3.126), and (3.127) collectively
imply that the function

u := D
A,modg +Smodh in � (3.180)

solves the boundary value problem (3.172). Thus, (b)⇒ (a), and the proof of the
proposition is complete. � 
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3.3 Distinguished Coefficient Tensors

To each weakly elliptic system L, we may canonically associate a fundamental
solution E as in Theorem 3.1. Having fixed a UR domain, this is then used
to create a variety of double layer potential operators KA, in relation to each
choice of a coefficient tensor A ∈ AL. While any such double layer KA has a
rich Calderón–Zygmund theory (as discussed in Proposition 3.5), seeking more
specialized properties requires placing additional demands on the coefficient tensor
A. We begin by recording a result proved in [115, §1.2] describing said demands
phrased in several equivalent forms.

Proposition 3.8 Let L be a homogeneous, second-order, constant complex coeffi-
cient, weakly ellipticM ×M system in Rn, and consider the matrix-valued function
defined for each ξ ∈ Rn \ {0} as

(
Eγβ(ξ)

)
1≤γ,β≤M := [

L(ξ)
]−1 ∈ CM×M (3.181)

(recall that the characteristic matrix L(ξ) of L has been defined in (3.2)). Also, let
E = (

Eαβ)1≤α,β≤M be the fundamental solution associated with the given system
L as in Theorem 3.1.

Then, for each coefficient tensor A = (
a
αβ
jk

)
1≤α,β≤M
1≤j,k≤n

∈ AL (cf. (3.11)), the

following conditions are equivalent:

(a) For each k, k′ ∈ {1, . . . , n} and each α, γ ∈ {1, . . . ,M}, there holds
(
xk′a

βα
jk − xka

βα

jk′
)
(∂jEγβ)(x) = 0 for all x = (xi)1≤i≤n ∈ Rn \ {0}.

(3.182)
(b) For each s, s′ ∈ {1, . . . , n} and each α, γ ∈ {1, . . . ,M}, in the sense of

tempered distributions in Rn, one has

[
aβαrs ∂ξs′ − a

βα

rs′ ∂ξs
][
ξrEγβ(ξ)

] = 0. (3.183)

(c) For each k, k′ ∈ {1, . . . , n} and each α, γ ∈ {1, . . . ,M}, one has
(
a
βα

k′k−aβαkk′ +ξj aβαjk ∂ξk′ −ξj aβαjk′∂ξk
)
Eγβ(ξ) = 0 for all ξ ∈ Rn\{0} (3.184)

and also
ˆ
S1

(
a
βα
jk ξk′ − a

βα

jk′ξk
)
ξj Eγβ(ξ) dH1(ξ) = 0 if n = 2. (3.185)

(d) One has
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ξrξj

[
a
βα

rs′
(
a
λμ
sj + a

λμ
js

)− a
βα
rs

(
a
λμ

s′j + a
λμ

js′
)]
Eμβ(ξ)+ aλα

ss′ − aλα
s′s = 0

for all ξ ∈ Sn−1, all s, s′ ∈ {1, . . . , n}, and all α, λ ∈ {1, . . . ,M},
(3.186)

with the cancellation condition
ˆ
S1

(
aβαrs ξs′ − a

βα

rs′ ξs
)
ξrEλβ(ξ) dH1(ξ) = 0

for all s, s′ ∈ {1, . . . , n} and α, λ ∈ {1, . . . ,M},
(3.187)

additionally imposed in the case when n = 2.
(e) For each ξ ∈ Sn−1 and each α, λ ∈ {1, . . . ,M},

the expression
(
a
λμ
sj + a

λμ
js

)
Eμβ(ξ)ξj ξraβαrs′ − aλα

s′s
is symmetric in the indices s, s′ ∈ {1, . . . , n},

(3.188)

with the condition that for each α, λ ∈ {1, . . . ,M}

the expression
ˆ
S1
aβαrs ξs′ξrEλβ(ξ) dH1(ξ)

is symmetric in the indices s, s′ ∈ {1, 2},
(3.189)

also imposed in the case when n = 2.
(f) There exists a matrix-valued function

k = {
kγα

}
1≤γ,α≤M : Rn \ {0} −→ CM×M (3.190)

with the property that for each γ, α ∈ {1, . . . ,M} and s ∈ {1, . . . , n}, one has

aβαrs (∂rEγβ)(x) = xskγα(x) for all x ∈ Rn \ {0}. (3.191)

It is worth noting that the conditions in items (a)–(f) above are intrinsically
formulated in terms of the given weakly elliptic system L. Observe that for each
x∗ ∈ Rn \ {0}, we may find an open neighborhood O of the point x∗ and an index
s ∈ {1, . . . , n} with the property that xs �= 0 for each x ∈ O. From this observation,
(3.191), and Theorem 3.1, it follows that

all entries of the matrix-valued function k from (3.190) belong
to C∞(Rn \ {0}), are even, as well as positive homogeneous of
degree −n.

(3.192)



202 3 Calderón–Zygmund Theory for Boundary Layers in UR Domains

Definition 3.1 Given a second-order, weakly elliptic, homogeneous,M×M system
L in Rn, with constant complex coefficients, call

A = (
aαβrs

)
1≤r,s≤n

1≤α,β≤M
∈ AL (3.193)

a distinguished coefficient tensor for the system L provided any of
the conditions (a)-(f) in Proposition 3.8 holds. Also, denote by Adis

L the family of
such distinguished coefficient tensors for L, say,

Adis
L :=

{
A =(

aαβrs
)

1≤r,s≤n
1≤α,β≤M

∈ AL : conditions (3.184)–(3.185) (3.194)

hold for each k, k′ ∈ {1, . . . , n} and α, γ ∈ {1, . . . ,M}
}
.

Finally, introduce the class of weakly elliptic systems which posses a distin-
guished coefficient tensor, by setting

Ldis := {
L ∈ L∗ : Adis

L �= ∅
}
. (3.195)

For example, from Proposition 3.8 and the second line in (3.20), we see that

for any weakly elliptic, homogeneous, second-order, constant
complex coefficient, M × M system L in Rn, any coefficient
tensor A ∈ AL, and any complex number λ ∈ C \ {0}, it follows
that A ∈ Adis

L if and only if λA ∈ Adis
λL.

(3.196)

The relevance of the distinguished coefficient tensors is most apparent from the
following result proved in [115, §1.3].

Proposition 3.9 Let L be a homogeneous, second-order, constant complex coeffi-
cient, weakly ellipticM×M system in Rn, and suppose A ∈ AL. Then the following
statements are equivalent:

(i) The coefficient tensor A belongs to Adis
L .

(ii) Whenever � is a half-space in Rn, the boundary-to-boundary double layer
potential KA associated with A and � as in (3.24) is the zero operator.

(iii) Whenever � is a half-space in Rn with the property that 0 ∈ ∂�, the modified
boundary-to-boundary double layer operator K

A,mod associated as in (3.50)
with the set � and the given coefficient tensor A is actually the zero operator.

(iii’) Whenever� is a half-space in Rn, the modified boundary-to-boundary double
layer operator K

A,mod associated as in (3.50) with the set � and the given

coefficient tensor A maps each function from
[
C∞
c (∂�)

]M
into a constant in

C
M .

(iv) There exists a matrix-valued function k ∈ [
C∞(Rn \ {0})]M×M

which is
even, positive homogeneous of degree −n, and with the property that for each



3.3 Distinguished Coefficient Tensors 203

UR domain � ⊆ Rn, the (matrix-valued) integral kernel of the double layer
potential operator KA associated with A and � as in (3.24) has the form

〈ν(y), x − y〉k(x − y)

for each x ∈ ∂� and Hn−1-a.e. y ∈ ∂�,
(3.197)

where ν is the geometric measure theoretic outward unit normal to �.
(v) Whenever� is a half-space in Rn, the “transpose” double layer potentialK#

A

associated with A and � as in (3.25) is the zero operator.
(vi) There exists a matrix-valued function k# ∈ [

C∞(Rn \ {0})]M×M
which is

even, positive homogeneous of degree −n, and with the property that for each
UR domain � ⊆ Rn, the (matrix-valued) integral kernel of the “transpose”
double layer potential operator K#

A associated with A and � as in (3.25) has
the form

〈ν(x), y − x〉k#(x − y)

for Hn−1-a.e. x ∈ ∂� and each y ∈ ∂�,
(3.198)

where ν is the geometric measure theoretic outward unit normal to �.

Moreover, whenever either (hence all) of the above conditions materializes, the
matrices k, k# in items (iv), (vi) above are related to each other via k# = k�, where
the superscript � indicates transposition.

In light of Proposition 3.9 and (1.50), we are particularly interested in the class
of weakly elliptic homogeneous constant complex coefficient second-order systems
L with Adis

L �= ∅. The following example shows that the latter condition is always
satisfied by strongly elliptic scalar operators.

Example 3.2 Assume L is a second-order, homogeneous, constant complex coef-
ficient, scalar differential operator in Rn (i.e., as in (3.1) with M = 1), which is
strongly elliptic. Specifically, suppose L = ajk∂j ∂k with ajk ∈ C for
j, k ∈ {1, . . . , n} having the property that there exists a constant c ∈ (0,∞) such
that

Re
[ n∑

j,k=1

ajkξj ξk

]
≥ c|ξ |2, ∀ ξ = (ξ1, . . . , ξn) ∈ Rn. (3.199)

Introduce A := (ajk)1≤j,k≤n ∈ Cn×n and then define

(̃ajk)1≤j,k≤n := symA := A+ A�

2
, (bjk)1≤j,k≤n := (symA)−1. (3.200)
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In particular, L = LsymA := ãjk∂j ∂k , i.e., the coefficient matrix symA may
be used to represent the given differential operator L. In this case, it turns out
that the fundamental solution E canonically associated with the operator L as in
Theorem 3.1 may be explicitly identified (cf. [102, Theorem 7.68, pp. 314-315]) as
the function E ∈ L1

loc(R
n,Ln) given at each point x ∈ Rn \ {0} by

E(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− 1

(n− 2) ωn−1
√

det(symA)
〈(symA)−1x, x〉− n−2

2 if n ≥ 3,

1

4π
√

det(symA)
log(〈(symA)−1x, x〉)+ cA if n = 2,

(3.201)
where log denotes the principal branch of the complex logarithm (defined for
complex numbers z ∈ C \ (−∞, 0] so that za = ea log z for each a ∈ R),
and cA is a complex constant which depends solely on A. As both symA and
(symA)−1 are symmetric matrices, for each index j ∈ {1, . . . , n} and each point
x = (xi)1≤i≤n ∈ Rn \ {0}, we therefore have (in all dimensions n ≥ 2)

(∂jE)(x) = 〈(symA)−1x, x〉− n
2 (δrj brsxs + δsj brsxr )

2ωn−1
√

det(symA)

= 〈(symA)−1x, x〉− n
2 brj xr

ωn−1
√

det(symA)
. (3.202)

Thus, with CA,n abbreviating
(
ωn−1

√
det(symA)

)−1 ∈ C, for each pair of integers
k, k′ ∈ {1, . . . , n}, we may compute

(
xk′ ãjk − xkãjk′

)
(∂jE)(x) = CA,n〈(symA)−1x, x〉− n

2
(
xk′ ãkj − xkãk′j

)(
bjrxr

)

= CA,n〈(symA)−1x, x〉− n
2
(
xk′δkr − xkδk′r

)
xr

= CA,n〈(symA)−1x, x〉− n
2
(
xk′xk − xkxk′

) = 0. (3.203)

This shows that condition (3.182) is presently verified for the choice of coefficient
tensor symA in the representation of the given differential operator L. Hence,
symA ∈ Adis

L , which proves that, in the case when M = 1, we have

Adis
L �= ∅ for every scalar, strongly elliptic, homogeneous,

second-order, constant complex coefficient operator L in Rn.
(3.204)

Consequently, Proposition 3.9 guarantees that for each UR domain � ⊆ Rn the
integral kernel of the double layer potential operator KsymA associated with symA

and � as in (3.24) has the form (3.197). This being said, it is actually of interest to
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identify said integral kernel explicitly. Based on (3.200)–(3.202) and (3.24), we see
that the kernel of if ν = (ν1, . . . , νn) is the geometric measure theoretic outward
unit normal to �, then the integral kernel of the double layer potential operator
KsymA is

−νk(y)̃ajk
(
∂jE

)
(x − y) = −〈(symA)−1(x − y), x − y〉− n

2 νk(y)brj ãjk(x − y)r

ωn−1
√

det(symA)

= −〈(symA)−1(x − y), x − y〉− n
2 〈ν(y), x − y〉

ωn−1
√

det(symA)
(3.205)

for each x ∈ ∂� and Hn−1-a.e. y ∈ ∂�,

which, as already anticipated, is of the form (3.197) with

k(z) := −〈(symA)−1z, z〉− n
2

ωn−1
√

det(symA)
, ∀ z ∈ Rn \ {0}. (3.206)

In the same scenario as above, we also wish to elaborate on the nature of Adis
L

(see the conclusion reached in (3.218) below). To set the stage, recall that any
given matrix A = (ajk)1≤j,k≤n ∈ Cn×n may be decompose into its symmetric
and antisymmetric parts, i.e.,

A = symA+ asymA where asymA := A− symA = A− A�

2
. (3.207)

Consequently, for each UR domain � ⊆ Rn with geometric measure theoretic
outward unit normal ν = (ν1, . . . , νn), the integral kernel of the double layer
potential operator KA is given by

− νk(y)̃ajk
(
∂jE

)
(x − y)− νk(y)̂ajk

(
∂jE

)
(x − y), (3.208)

where E is as in (3.201), the entries (̃ajk)1≤j,k≤n are as in (3.200), and

(̂ajk)1≤j,k≤n := asymA. (3.209)

If � is a half-space, then, as seen from (3.205) and (3.208), the integral kernel of
the double layer potential operator KA reduces to

− νk(y)̂ajk
(
∂jE

)
(x − y). (3.210)

From this and Proposition 3.9, we then conclude that A ∈ Adis
L if and only if
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−νk(y)̂ajk
(
∂jE

)
(x − y) = 0 for Hn−1-a.e. x, y ∈ ∂�

whenever � is a half-space in Rn.
(3.211)

The same type of argument which, starting with (1.44), has produced (1.47) now
shows that (3.211) implies the existence of a function k ∈ C∞(Rn \ {0}) which is
even, positive homogeneous of degree −n, and such that

ârs (∂rE) (x) = xsk(x) for each x ∈ Rn \ {0} and each s ∈ {1, . . . , n}.
(3.212)

Multiply this equality by (∂sE)(x), and summing up in s ∈ {1, . . . , n} yields, on
account of the antisymmetry of (̂ars)1≤r,s≤n = asymA,

xs(∂sE)(x)k(x) = 0 for each x ∈ Rn \ {0}. (3.213)

On the other hand, if n ≥ 3, it follows that E ∈ C∞(Rn \ {0}) is positive
homogeneous of degree 2 − n (cf. (3.201)), so Euler’s formula gives in this case

xs(∂sE)(x) = (2 − n)E(x) for each x ∈ Rn \ {0}. (3.214)

By combining (3.213)–(3.214), we therefore arrive at the conclusion that

if n ≥ 3 then E(x)k(x) = 0 for each x ∈ Rn \ {0}. (3.215)

Since as is apparent from (3.201), at each point x ∈ Rn \ {0}, we have E(x) �= 0,
this ultimately forces k(x) = 0 for each x ∈ Rn \ {0}. When used back in (3.212),
this permits us to conclude (assuming n ≥ 3) that

ârs (∂rE) (x) = 0 for each x ∈ Rn \ {0} and each s ∈ {1, . . . , n}. (3.216)

Together, (3.216) and (3.202) prove (again, assuming n ≥ 3) that for each index
s ∈ {1, . . . , n}, we have

〈(symA)−1x, x〉− n
2 ârsbkrxk

ωn−1
√

det(symA)
= 0 for all x = (xk)1≤k≤n ∈ Rn \ {0}, (3.217)

where (bjk)1≤j,k≤n := (symA)−1 (cf. (3.200)). Thus, assuming n ≥ 3, we deduce
from (3.217) that in fact (asymA)(symA)−1 = 0. This is equivalent to having
asymA = 0, i.e., the matrix A ∈ Adis

L is necessarily symmetric. In concert with
(3.204) and its proof, the above argument shows that

assuming n ≥ 3, it follows that for each given strongly elliptic,
scalar, homogeneous, second-order operator L = divA∇ in
R
n with constant complex coefficients, the class Adis

L consists
precisely of one matrix, namely symA := (A+ A�)/2.

(3.218)
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Our next example shows that, for scalar operators in dimensions n ≥ 3, weak
ellipticity itself guarantees the existence of a unique distinguished coefficient tensor.

Example 3.3 Suppose n ≥ 3, and consider an arbitrary second-order, homoge-
neous, constant complex coefficient, scalar differential operator L in Rn (i.e., as
in (3.1) with M = 1), which is merely weakly elliptic. Recall (cf. (1.2)) that this
means that we may express L = ajk∂j ∂k with ajk ∈ C for j, k ∈ {1, . . . , n} having
the property that

n∑

j,k=1

ajkξj ξk �= 0, ∀ ξ = (ξ1, . . . , ξn) ∈ Rn \ {0}. (3.219)

Introduce A := (ajk)1≤j,k≤n ∈ Cn×n. It has been shown in [113, §1.4] that (here is
where n ≥ 3 is used)

there exists an angle θ ∈ [0, 2π) such that if we set Aθ := eiθA

then the matrix symAθ := (Aθ + A�θ )/2 ∈ Cn×n is strongly
elliptic, in the sense that there exists some c ∈ (0,∞) such that
Re 〈(symAθ)ξ, ξ 〉 ≥ c|ξ |2 for each ξ ∈ Rn (cf. (3.199)).

(3.220)

From this and (3.201), we conclude that the fundamental solution E ∈ L1
loc(R

n,Ln)

canonically associated as in Theorem 3.1 with the operator

L := e−iθLAθ = e−iθLsymAθ (3.221)

presently may be expressed at each point x ∈ Rn \ {0} as

E(x) = − eiθ

(n− 2)ωn−1
√

det (symAθ)

〈
(symAθ)

−1x, x
〉 2−n

2 . (3.222)

In view of this formula and the fact that symA := (A+A�)/2 is related to symAθ

via symAθ = eiθ symA, we conclude from (3.201)–(3.203) that condition (3.182)
currently holds for the choice of coefficient matrix symA in the representation of
the given differential operator L. Thus, symA ∈ Adis

L . In concert with (3.196) and
(3.218), this goes to show that the following sharper version of (3.218) holds:

if n ≥ 3 then for each weakly elliptic, scalar, homogeneous,
second-order operator L = divA∇ in Rn with constant
complex coefficients, the class Adis

L consists precisely of one
matrix, namely symA := (A+ A�)/2.

(3.223)

Turning our attention to genuine systems, below we pay special attention to the
Lamé system of elasticity.
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Example 3.4 Consider the following complexified version of the Lamé system
(originally arising in the study of linear elasticity), defined for any two parameters
μ, λ ∈ C (referred to as Lamé moduli) as

L := Lμ,λ := μ+ (μ+ λ)∇div, (3.224)

acting on vector fields u = (uβ)1≤β≤n defined in (open subsets of) Rn, with the
Laplacian applied componentwise. Hence, L = L�, and one may check (cf. [102,
Proposition 10.14, p. 366]) that

the complex Lamé system (3.224) is weakly elliptic
if and only if one has μ �= 0 as well as 2μ+ λ �= 0.

(3.225)

We may express the complex Lamé system L as in (3.1) (with M := n) using a
variety of coefficient tensors, such as those belonging to the one-parameter family

A(ζ ) = (
a
αβ
jk (ζ )

)
1≤j,k≤n
1≤α,β≤n

defined for each ζ ∈ C according to

a
αβ
jk (ζ ) := μδjkδαβ + (μ+ λ− ζ )δjαδkβ + ζ δjβδkα, 1 ≤ j, k, α, β ≤ n.

(3.226)
In other words, for each vector field u = (uβ)1≤β≤n ∈ [

D′(Rn)
]n and each

parameter ζ ∈ C, the Lamé system (3.224) satisfies

Lu =
(
a
αβ
jk (ζ )∂j ∂kuβ

)

1≤α≤n in
[
D′(Rn)

]n
. (3.227)

In relation to the coefficient tensor (3.226), it turns out that, for any μ, λ, ζ ∈ C
with μ �= 0 and 2μ+ λ �= 0, if L is as in (3.224), then we have (cf. [61] for specific
details)

A(ζ ) ∈ Adis
L ⇐⇒ 3μ+ λ �= 0 and ζ = μ(μ+ λ)

3μ+ λ
. (3.228)

This ultimately shows that

whenever the Lamé moduli μ, λ ∈ C satisfy μ �= 0, 2μ+ λ �= 0,
and 3μ + λ �= 0, the Lamé operator L defined as in (3.227) has
the property that Adis

L = Adis
L� �= ∅.

(3.229)

It is of interest to concretely identify the format of the double layer potential
operators associated with the complex Lamé system Lμ,λ = μ+ (λ+ μ)∇div in
R
n, associated as in (1.52) with the Lamé moduli μ, λ ∈ C satisfying

μ �= 0 and 2μ+ λ �= 0 (3.230)
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(thus ensuring the weak ellipticity of Lμ,λ; cf. (3.225)). For this system, the
fundamental solution E of Lμ,λ from Theorem 3.1 has the explicit form
E = (Ejk)1≤j,k≤n, a matrix whose (j, k) entry is defined at each point
x = (x1, . . . , xn) ∈ Rn \ {0} according to

Ejk(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−1

2μ(2μ+ λ)ωn−1

[
δjk(3μ+ λ)

(n− 2)|x|n−2
+ (μ+ λ)xjxk

|x|n
]

if n ≥ 3,

1

4πμ(2μ+ λ)

[
δjk(3μ+ λ)ln |x| − (μ+ λ)xjxk

|x|2
]
+ cμ,λδjk if n = 2,

(3.231)
for every j, k ∈ {1, . . . , n}, where cμ,λ ∈ C is the constant given by

cμ,λ := (1 + ln 4)(λ+ μ)

8πμ(λ+ 2μ)
− ln 2

2πμ
. (3.232)

Let us now fix an arbitrary UR domain � ⊆ Rn, abbreviate σ := Hn−1�∂�, and
denote by ν = (ν1, . . . , νn) the geometric measure theoretic outward unit normal to
�. In such a setting, with each choice of ζ ∈ C, associate a double layer potential
operator KA(ζ) as in (3.24). A direct computation based on (3.231), (3.226), and
(3.24) then shows that the integral kernel �ζ (x, y) of the principal-value double
layer potential operator KA(ζ) is an n × n matrix whose (j, k) entry, 1 ≤ j, k ≤ n,
is explicitly given by

�
ζ
jk(x, y) = −C1(ζ )

δjk

ωn−1

〈x − y, ν(y)〉
|x − y|n

− (1 − C1(ζ ))
n

ωn−1

〈x − y, ν(y)〉(xj − yj )(xk − yk)

|x − y|n+2

− C2(ζ )
1

ωn−1

(xj − yj )νk(y)− (xk − yk)νj (y)

|x − y|n , (3.233)

for σ -a.e. x, y ∈ ∂�, where the constants C1(ζ ), C2(ζ ) ∈ C are defined as

C1(ζ ) := μ(3μ+ λ)− ζ(μ+ λ)

2μ(2μ+ λ)
, C2(ζ ) := μ(μ+ λ)− ζ(3μ+ λ)

2μ(2μ+ λ)
.

(3.234)
Thus, with notation introduced in (2.3), for each ζ ∈ C, the integral kernel �ζ (x, y)

of KA(ζ) may be recast as

�ζ (x, y) = −C1(ζ )
1

ωn−1

〈x − y, ν(y)〉
|x − y|n In×n
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− (1 − C1(ζ ))
n

ωn−1

〈x − y, ν(y)〉(x − y)⊗ (x − y)

|x − y|n+2

− C2(ζ )
1

ωn−1

(x − y)⊗ ν(y)− ν(y)⊗ (x − y)

|x − y|n , (3.235)

for σ -a.e. x, y ∈ ∂�, where In×n is the n× n identity matrix. The penultimate term
above suggests that for each function f ∈ [

L1
(
∂�,

σ(x)

1+|x|n−1

)]n, we define

Qf (x) := lim
ε→0+

n

ωn−1

ˆ

y∈∂�
|x−y|>ε

〈x − y, ν(y)〉(x − y)⊗ (x − y)

|x − y|n+2 f (y) dσ(y)

= lim
ε→0+

n

ωn−1

ˆ

y∈∂�
|x−y|>ε

〈x − y, ν(y)〉〈x − y, f (y)〉
|x − y|n+2 (x − y) dσ(y),

(3.236)

at σ -a.e. point x ∈ ∂�. Then, if

3μ+ λ �= 0 and ζ∗ := μ(μ+ λ)

3μ+ λ
, (3.237)

from (3.234), we see that C2(ζ∗) = 0, so the last term in (3.235) drops out and the
principal-value double layer potential operator KA(ζ∗) becomes

KA(ζ∗) = C1(ζ∗)KIn×n − (1 − C1(ζ∗))Q

= 2μ

3μ+ λ
KIn×n − μ+ λ

3μ+ λ
Q, (3.238)

where K is the harmonic double layer potential operator (cf. (3.29)). In view of
(3.29) and (3.236), this is in agreement with the prediction made in item (iv) of
Proposition 3.9.

Traditionally, the singular integral operator KA(ζ∗) from (3.238) has been called
the (boundary-to-boundary) pseudo-stress double layer potential operator for
the Lamé system, and the alternative notation K# has been occasionally employed.

We conclude this series of examples by discussing a case of a second-order,
homogeneous, real constant coefficient, and weakly elliptic system which does not
possess a distinguished coefficient tensor.

Example 3.5 Work in the plane R2 ≡ C, and consider the second-order, homoge-
neous, real constant coefficient, 2 × 2 system
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L = 1

4

(
∂2
x − ∂2

y −2∂x∂y

2∂x∂y ∂2
x − ∂2

y

)

. (3.239)

An example of a coefficient tensor in AL is given by A = (
a
αβ
jk

)
1≤j,k≤2
1≤α,β≤2

with

a11
11 = a22

11 = 1
4 , a11

22 = a22
22 = − 1

4 , a11
12 = a11

21 = a22
12 = a22

21 = 0,

a12
12 = a12

21 = − 1
4 , a21

12 = a21
21 = 1

4 , a21
11 = a21

22 = a12
22 = a12

11 = 0.
(3.240)

The characteristic matrix of the system L is given by (cf. (3.2))

L(ξ) = −1

4

(
ξ2

1 − ξ2
2 −2ξ1ξ2

2ξ1ξ2 ξ2
1 − ξ2

2

)

at each ξ = (ξ1, ξ2) ∈ R2. (3.241)

Hence, at each ξ = (ξ1, ξ2) ∈ R2 \ {0}, we have

det [L(ξ)] = 1
16

[
(ξ2

1 − ξ2
2 )

2+ (2ξ1ξ2)
2] = 1

16 (ξ
2
1 + ξ2

2 )
2 = 1

16 |ξ |4 �= 0, (3.242)

which goes to show that

the system L from (3.239) is weakly elliptic. (3.243)

In particular, L has a fundamental solution as in Theorem 3.1, which, once a UR
domain in the plane has been fixed, may then be used to associate double layer
potential operators KA with any coefficient tensor A ∈ AL as in (3.24), and all these
singular integral operators enjoy the properties discussed in Proposition 3.5.

This being said, since with η := (1, 0) ∈ C2, we have

〈−L(ξ)η, η〉 = 1
4 (ξ

2
1 − ξ2

2 ) for each ξ = (ξ1, ξ2) ∈ R2, (3.244)

and since the last expression above vanishes identically on the diagonal of R2, it
follows that the system L from (3.239) fails to satisfy the Legendre–Hadamard
strong ellipticity condition (cf. (3.4)).

To better understand this system, observe that its transpose is

L� = 1

4

(
∂2
x − ∂2

y 2∂x∂y

−2∂x∂y ∂2
x − ∂2

y

)

, (3.245)

and, if π1, π2 : C2 → C are the canonical coordinate projections, defined as

π1(z1, z2) := z1 and π2(z1, z2) = z2 for each (z1, z2) ∈ C2, (3.246)
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then

L(u1, u2) =
(
π1L

�(u1,−u2),−π2L
�(u1,−u2)

)

for any open set � ⊆ R2 ≡ C and any two

complex-valued functions u1, u2 ∈ C 2(�).

(3.247)

As a consequence,

L(u1, u2) = 0 ⇐⇒ L�(u1,−u2) = 0

for any open set � ⊆ R2 ≡ C and any

complex-valued functions u1, u2 ∈ C 2(�).

(3.248)

Pressing on, recall the Cauchy–Riemann operator and its conjugate

∂z̄ := 1
2

(
∂x + i∂y

)
, ∂z := 1

2

(
∂x − i∂y

)
, where z = x + iy, (3.249)

then bring in Bitsadze’s operator (cf. [16, 17]), which is simply the square of ∂z̄, i.e.,

L := ∂2
z̄ = 1

4∂
2
x + i

2∂x∂y − 1
4∂

2
y , z = x + iy. (3.250)

To place things into a broader perspective, recall that there are three basic prototypes
of scalar, constant coefficient, second-order, elliptic operators in the plane: the
Laplacian 4∂z∂z̄, plus Bitsadze’s operator ∂2

z̄ and its complex conjugate ∂2
z . With

π1, π2 : C2 → C the canonical coordinate projections from (3.246), the system L

introduced in (3.239) is related to Bitsadze’s operator L = ∂2
z̄ via

L(u1 + iu2) = π1L(u1, u2)+ iπ2L(u1, u2)

for any open set � ⊆ R2 ≡ C and any two

complex-valued functions u1, u2 ∈ C 2(�).

(3.251)

In particular,

L
(
ReU, ImU

) = (
Re(LU), Im(LU)

)

for any open set � ⊆ R2 ≡ C and any

complex-valued function U ∈ C 2(�).

(3.252)

On the other hand, given any open set � ⊆ R2 ≡ C along with any complex-
valued function U ∈ C 2(�), we have ∂2

z̄ U = 0 if and only if f := −∂z̄U is
holomorphic in �, and the latter condition is further equivalent to the demand that
g(z) := U(z)+ z̄f (z) for each z ∈ � is a holomorphic function in �. As such, the
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general format of null-solution of ∂2
z̄ in an open set � ⊆ R2 ≡ C is

U(z) = g(z)− z̄f (z) for all z ∈ �, where

f and g are holomorphic functions in �.
(3.253)

This is akin to the description of affine functions on the real line as null-solutions
of the one-dimensional Laplacian d2/dx2, with the role of d/dx now played by the
Cauchy–Riemann operator ∂z̄, with z̄ now playing the role of the variable x, and
with holomorphic functions playing the role of constants.

Specializing the expression of U in (3.253) to the case when g(z) := zf (z)

for each z ∈ �, we obtain the following particular family of null-solutions for
Bitsadze’s operator L in any given open set � ⊆ R2 ≡ C:

U(z) = (z− z̄)f (z), where f

is any holomorphic function in �.
(3.254)

From this and (3.252), we then conclude that

given any holomorphic function f in an open set � ⊆ C, the
vector-valued function u = (u1, u2) with components given by
u1(z) := Re

[
(z − z̄)f (z)

]
and u2(z) := Im

[
(z − z̄)f (z)

]
for

each z ∈ � is a null-solution of the system L from (3.239).

(3.255)

In particular, by further specializing this property to the case when � := R2+ ≡ C+
and the holomorphic function f (z) := (z + i)−m for z ∈ C+, where the integer
m ∈ N is arbitrary, shows that the vector-valued function u(m) = (

u
(m)
1 , u

(m)
2

)
with

components defined at each z ∈ C+ as

u
(m)
1 (z) := Re

[
(z− z̄)(z+i)−m

]
and u

(m)
2 (z) := Im

[
(z− z̄)(z+i)−m

]
(3.256)

is a null-solution of the system L from (3.239). Note that each function u(m) belongs

to
[
C∞(R2+ )

]2 and vanishes identically on ∂R2+ ≡ R (since z − z̄ = 0 for each
z ∈ R), and for each multi-index α ∈ N2

0, there exists some Cα ∈ (0,∞) with the
property that

∣∣∂αu(m)(z)
∣∣ ≤ Cα(1 + |z|)1−m−|α| for all z ∈ R2+. (3.257)

The estimate above implies that, having fixed an aperture parameter κ > 0, for each
multi-index α ∈ N2

0 there exists some Cα ∈ (0,∞) such that

Nκ

(
∂αu(m)

)
(x) ≤ Cα(1 + |x|)1−m−|α| for all x ∈ R ≡ ∂R2+. (3.258)
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As such, for any given p ∈ (1,∞), any Muckenhoupt weight w ∈ Ap(R,L1), and
any multi-index α ∈ N2

0, we have Nκ

(
∂αu(m)

) ∈ Lp(R, w) as long as m+ |α| ≥ 2
(cf. (2.572)). Let us also observe that for each m ∈ N, we have

u
(2m)
2 (iy) = 2(−1)my(y + 1)−2m for each y ∈ (0,∞) (3.259)

and that the functions

{
y(y + 1)−2m}

m∈N, for 0 < y <∞, are linearly independent. (3.260)

Indeed, suppose that for some family of positive integers m1 < m2 < · · · < mN

and nonzero constants c1, . . . , cN , we have
∑N

j=1 cj y(y + 1)−2mj = 0 for each

y > 0. Divide by y(y + 1)−2m1 to obtain c1 +∑N
j=2 cj (y + 1)−2(mj−m1) = 0 for

each y ∈ (0,∞). Sending y → ∞ yields c1 = 0, a contradiction that establishes
(3.260). Ultimately, this proves that the linear space of all vector-valued functions u
satisfying

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u ∈ [
C∞(R2+)

]2
, Lu = 0 in R2+,

Nκ

(
∂αu

) ∈ Lp(R, w) for all α ∈ N2
0,

u
∣∣κ−n.t.

∂R2+
= 0 at L1-a.e. point on R

(3.261)

is infinite dimensional, i.e.,

the null-space of the Infinite-Order Regularity Problem for
the system L (from (3.239)) in R2+ is infinite dimensional. (3.262)

In particular,

the space of null-solutions of the corresponding Dirichlet Prob-
lem for the system L in R2+ (formulated as in (1.76) with n = 2,
M = 2, L as in (3.239), and � := R2+) is infinite dimensional.

(3.263)

Since in item (d) of Theorem 6.2 we shall learn that this cannot happen if Adis
L� �= ∅,

we then conclude that we necessarily have Adis
L� = ∅ in this case. In other words,

L� from (3.245) is a weakly elliptic, second-order, homogeneous, real constant
coefficient, 2× 2 system in R2 which does not possess any distinguished coefficient
tensor.

We may also run a variant of this argument, in which we now start with L�
instead of L. If

L = ∂2
z = 1

4∂
2
x − i

2∂x∂y − 1
4∂

2
y (3.264)
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is the complex conjugate of Bitsadze’s operator L from (3.250), then in place of
(3.251)–(3.252) we now have

L(u1 + iu2) = π1L
�(u1, u2)+ iπ2L

�(u1, u2)

for any open set � ⊆ R2 ≡ C and any two

complex-valued functions u1, u2 ∈ C 2(�),

(3.265)

and, respectively,

L�
(
ReU, ImU

) = (
Re(LU), Im (LU)

)

for any open set � ⊆ R2 ≡ C and any

complex-valued function U ∈ C 2(�).

(3.266)

Keeping in mind that U is a null-solution of L if and only if U is a null-solution
of L and reasoning as before, we conclude that, for each m ∈ N, the vector-valued
function v(m) = (

v
(m)
1 , v

(m)
2

)
with components defined at each z ∈ C+ as

v
(m)
1 (z) := Re

[
(z̄−z)(z̄− i)−m

]
and v

(m)
2 (z) := Im

[
(z̄−z)(z̄− i)−m

]
(3.267)

is a null-solution of the system L� from (3.245). In turn, this goes to show that
the null-space of the Infinite-Order Regularity Problem for the system L� in R2+
(formulated as in (3.261) with L� now replacing L) is infinite dimensional. Once
this has been established, from item (c) in Theorem 6.2 we conclude that Adis

L = ∅.
The bottom line is that

L in (3.239) is an example of a weakly elliptic, second-order,
homogeneous, real constant coefficient, 2×2 system in R2, with
the property that Adis

L = ∅ and Adis
L� = ∅.

(3.268)

In particular, this goes to show that not every weakly elliptic, second-order,
homogeneous, real constant coefficient, system has a distinguished coefficient
tensor.

Remark 3.1 There is yet another proof of (3.268) which is not based on well-
posedness results, but instead uses directly the algebraic characterization of dis-
tinguished coefficient tensors in Proposition 3.8. Specifically, to conclude that
Adis
L = ∅, from (3.185), it suffices to show that for every coefficient tensor

B = (
b
αβ
jk

)
1≤α,β≤M
1≤j,k≤n

such that L = LB there exist indices k, k′ ∈ {1, . . . , n} as

well as α, γ ∈ {1, . . . ,M} such that

ˆ
S1

(
b
βα
jk ξk′ − b

βα

jk′ξk
)
ξj Eγβ(ξ) dH1(ξ) �= 0. (3.269)
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To this end, we first note that, using (3.181), (3.241), and (3.242), we have

(
Eγβ(ξ)

)
1≤γ,β≤M = [

L(ξ)
]−1 =

[−1

4

(
ξ2

1 − ξ2
2 −2ξ1ξ2

2ξ1ξ2 ξ2
1 − ξ2

2

)]−1

= −4

|ξ |4
(
ξ2

1 − ξ2
2 2ξ1ξ2

−2ξ1ξ2 ξ2
1 − ξ2

2

)

. (3.270)

In particular, if ξ ∈ S1, then ξ = (cos θ, sin θ) for some θ ∈ [0, 2π) and hence

(
Eγβ(ξ)

)
1≤γ,β≤M = −4

(
cos2(θ)− sin2(θ) 2 cos(θ) sin(θ)

−2 cos(θ) sin(θ) cos2(θ)− sin2(θ)

)

= −4

(
cos(2θ) sin(2θ)

− sin(2θ) cos(2θ)

)

. (3.271)

In order to facilitate the presentation, for each j, k, γ, β ∈ {1, 2} introduce

Iγβjk :=
ˆ
S1
ξj ξk Eγβ dH1(ξ). (3.272)

Then using elementary trigonometric formulas, we obtain

I11
11 = −4

ˆ 2π

0
cos2(θ) cos(2θ) dθ = −

ˆ 2π

0

(
2 cos(2θ)+ cos(4θ)+ 1

)
dθ = −2π,

(3.273)

I11
12 = −4

ˆ 2π

0
sin(θ) cos(θ) cos(2θ) dθ = −

ˆ 2π

0
sin(4θ) dθ = 0, (3.274)

I11
22 = −4

ˆ 2π

0
sin2(θ) cos(2θ) dθ = −4

ˆ 2π

0
cos(2θ) dθ + I11

11 = 2π, (3.275)

I12
22 = −8

ˆ 2π

0
sin3(θ) cos(θ) dθ = −2(sin4(2π)− sin4(0)) = 0, (3.276)

I12
12 = −8

ˆ 2π

0
sin2(θ) cos2(θ) dθ = −

ˆ 2π

0

(
1 − cos(4θ)

)
dθ = −2π, (3.277)

I12
11 = −8

ˆ 2π

0
sin(θ) cos3(θ) dθ = 2(cos4(2π)− cos4(0)) = 0. (3.278)
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Finally, from (3.271)–(3.272), it follows that

I22
11 = I11

11 = −2π, I22
12 = I11

12 = 0, I22
22 = I11

22 = 2π,

I21
11 = −I12

11 = 0, I21
12 = −I12

12 = 2π, I21
22 = −I12

22 = 0.
(3.279)

We are now ready to compute the integral in (3.269) with k = α = 1 and k′ =
γ = 2:

ˆ
S1

(
b
β1
j1 ξ2 − b

β1
j2 ξ1

)
ξj E2β(ξ) dH1(ξ) = b11

11 · I21
12 + b11

21 · I21
22 + b21

11 · I22
12

+ b21
21 · I22

22 − b11
12 · I21

11 − b11
22 · I21

12 − b21
12 · I22

11 − b21
22 · I22

12

= 2π(b11
11 + b21

21 − b11
22 + b21

12). (3.280)

Next, we use the fact that B may be expressed as B = A + C, where A is
a fixed coefficient tensor such that L = LA and C is a coefficient tensor which is
antisymmetric in the lower indices. In particular, takingA as in (3.240), we conclude
from (3.280) that

ˆ
S1

(
b
β1
j1 ξ2 − b

β1
j2 ξ1

)
ξj E2β(ξ) dH1(ξ)

= 2π(a11
11 + a21

21 − a11
22 + a21

12 + c11
11 + c21

21 − c11
22 + c21

12)

= 2π
(1

4
+ 1

4
+ 1

4
+ 1

4
+ 0 + c21

21 − 0 + c21
12

)

= 2π �= 0. (3.281)

This justifies (3.269) and ultimately proves that Adis
L = ∅. The same argument as

above works for L�, so we also conclude that Adis
L� = ∅.

In relation to the system L from (3.239), it is of interest to identify the space
of boundary traces of its null-solutions in the upper half-plane whose nontangential
maximal function belongs to a Muckenhoupt weighted Lebesgue space.

Proposition 3.10 Fix an integrability index p ∈ (1,∞) along with a Muckenhoupt
weight w ∈ Ap(R,L1), and choose an aperture parameter κ > 0. Also, recall the
2 × 2 system L defined in the plane as in (3.239).

Then if u ∈ [
C∞(R2+)

]2
is a vector-valued function satisfying

Lu = 0 in R2+, Nκu ∈ Lp(R, w), (3.282)

and such that the nontangential boundary trace
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f := u
∣∣κ−n.t.

∂R2+
exists (in C2) at L1-a.e. point on R, (3.283)

it follows that the function f belongs to
[
Lp(R, w)

]2
and, if f1, f2 ∈ Lp(R, w) are

the scalar components of f (i.e., f = (f1, f2)), then with H denoting the Hilbert
transform on the real line (cf. (1.24)) one has

Hf1 = f2 at L1-a.e. point on R. (3.284)

In the converse direction, for any given f ∈ Lp(R, w), there exists a vector-
valued function u ∈ [

C∞(R2+)
]2

satisfying

Lu = 0 in R2+, Nκu ∈ Lp(R, w), and

u
∣∣κ−n.t.

∂R2+
= (f,Hf ) at L1-a.e. point on R.

(3.285)

Altogether, the space of admissible boundary data for the Dirichlet Problem
formulated in terms of Muckenhoupt weighted Lebesgue spaces for the system L

in the upper half-plane, i.e.,

{
u
∣∣κ−n.t.

∂R2+
: u ∈ [

C∞(R2+)
]2
, Lu = 0 in R2+, Nκu ∈ Lp(R, w), (3.286)

and u
∣∣κ−n.t.

∂R2+
exists at L1-a.e. point on R

}
,

is precisely

{
(f,Hf ) : f ∈ Lp(R, w)

}
. (3.287)

As a consequence of this and (3.248), one also has

{
u
∣∣κ−n.t.

∂R2+
: u ∈ [

C∞(R2+)
]2
, L�u = 0 in R2+, Nκu ∈ Lp(R, w),

and u
∣∣κ−n.t.

∂R2+
exists at L1-a.e. point on R

}

= {
(f,−Hf ) : f ∈ Lp(R, w)

}
. (3.288)

Proof That the function f belongs to
[
Lp(R, w)

]2 is clear from
∣
∣u
∣
∣κ−n.t.

∂R2+

∣
∣ ≤ Nκu,

the fact that u
∣∣κ−n.t.

∂R2+
is L1-measurable (cf. [111, §8.9]), and the last property in

(3.282).
To proceed, fix a function u ∈ [

C∞(R2+)
]2 satisfying (3.282)–(3.283) and denote

by u1, u2 ∈ C∞(R2+) its scalar components. Hence, u = (u1, u2) in R2+. Also, pick
an arbitrary ε > 0 and define
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Uε(z) := u1(z+ εi)+ iu2(z+ εi) for each z ∈ (
R

2+ − εi
)
. (3.289)

Then Uε ∈ C∞(R2+ − εi) and, as seen from (3.251), the fact that Lu = 0 in R2+
translates into ∂2

z̄ Uε = 0 in R2+ − εi. Granted this, (3.253) then guarantees the
existence of two holomorphic functions fε, gε in R2+ − εi with the property that

Uε(z) = gε(z)− z̄fε(z) for each z ∈ (
R

2+ − εi
)
. (3.290)

More specifically, the unique holomorphic functions fε, gε which do the job in
(3.290) are

fε(z) := −∂z̄Uε(z) and gε(z) := Uε(z)+ z̄fε(z) for each z ∈ (
R

2+ − εi
)
.

(3.291)
Henceforth, we agree to restrict Uε, fε, gε to R2+. With this interpretation, introduce

Wε(z) := gε(z)− zfε(z) for each z ∈ R2+. (3.292)

Hence, Wε is holomorphic in R2+ and extends continuously to R2+, and

Uε(z)−Wε(z) = 2iyfε(z) = −2iy
(
∂z̄Uε

)
(z)

for each z = x + iy ∈ R2+.
(3.293)

From the fact that ∂2
z̄ Uε = 0 in R2+, we also conclude that 0 = ∂2

z ∂
2
z̄ Uε = 1

16
2Uε,

i.e., the function Uε is bi-harmonic in R2+. Select θ ∈ (0, 1) and κ̃ ∈ (0, κ) both
small so that

1 + θ + κ̃

1 − θ
< 1 + κ. (3.294)

Fix an arbitrary point x ∈ R ≡ ∂R2+ and pick some zo = xo + iyo ∈ �κ̃(x). The
inequality demanded in (3.294) ensures that

B(zo, θyo) ⊆ �κ(x). (3.295)

Based on interior estimates for bi-harmonic functions (cf. [102, Theorem 11.12,
p. 415]), (3.293), and (3.295), we may then write

∣∣Uε(zo)−Wε(zo)
∣∣ = 2yo

∣∣(∂z̄Uε

)
(zo)

∣∣ ≤ √
2yo|(∇Uε)(zo)|

≤ C

 
B(zo,θyo)

|Uε| dL2 ≤ C
(
NκUε

)
(x), (3.296)
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for some constant C = C(θ) ∈ (0,∞). Taking the supremum over all zo ∈ �κ̃(x)

this ultimately yields

(
Nκ̃ (Uε −Wε)

)
(x) ≤ C

(
NκUε

)
(x) for each x ∈ R ≡ ∂R2+. (3.297)

In turn, (3.297) implies

Nκ̃Wε ≤ Nκ̃Uε +Nκ̃ (Uε −Wε) ≤ NκUε + CNκUε

= (1 + C)NκUε ≤ (1 + C)Nκu on R ≡ ∂R2+. (3.298)

Upon recalling that the nontangential maximal function Nκ̃Wε is non-negative and
lower-semicontinuous, we then conclude from (3.298), the last property in (3.282),
and (2.575) that

Nκ̃Wε ∈ L1
(
R,

L1(x)
1+|x|

)
. (3.299)

Let us record our progress. The argument so far shows that the function Wε is

holomorphic in R2+ and extends continuously to R2+, and there exists some aperture

parameter κ̃ > 0 such that Nκ̃Wε belongs to L1
(
R,

L1(x)
1+|x|

)
. These properties allow

us to invoke the Cauchy reproducing formula (proved in [113, §1.1] in much more
general geometric settings) which asserts that

Wε(z) = 1

2π i

ˆ
R

(
Wε

∣∣
R

)
(y)

y − z
dy, for each z ∈ R2+. (3.300)

Since fε, gε extend continuously to R2+, from (3.290), (3.292), and the fact that
z = z̄ on R ≡ ∂R2+, we conclude that

Wε

∣∣
R
= Uε

∣∣
R

on R ≡ ∂R2+. (3.301)

As such, if we abbreviate

hε := Uε

∣∣
R

on R ≡ ∂R2+, (3.302)

after taking the nontangential boundary traces of both sides in (3.300) and using the
Plemelj jump-formula for the Cauchy operator (which continues to be valid in this
setting; see [114, §1.6]), we arrive at

hε =
( 1

2I + i
2H

)
hε at L1-a.e. point on R, (3.303)

where I is the identity and H is the Hilbert transform on R. Hence, on the one hand,
we may rewrite (3.303) simply as
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Hhε = −ihε at L1-a.e. point on R. (3.304)

On the other hand, from (3.302) and (3.289), we see that

hε(x) = u1(x + εi)+ iu2(x + εi) for L1-a.e. x ∈ R. (3.305)

In turn, this implies

|hε(x)| ≤
√

2
(
Nκu

)
(x) for L1-a.e. x ∈ R (3.306)

and, when used in concert with (3.283), that

lim
ε→0+

hε(x) =
(
u1

∣∣κ−n.t.

∂R2+

)
(x)+ i

(
u2

∣∣κ−n.t.

∂R2+

)
(x)

= f1(x)+ if2(x) for L1-a.e. x ∈ R. (3.307)

Thanks to (3.306)–(3.307) and the last property in (3.282), we may invoke
Lebesgue’s Dominated Convergence Theorem to conclude that

lim
ε→0+

hε = f1 + if2 in Lp(R, w). (3.308)

Having established this, on account of (3.304) and the continuity of the Hilbert
transform H on the Muckenhoupt weighted Lebesgue space Lp(R, w), we obtain

H(f1 + if2) = −i(f1 + if2) at L1-a.e. point on R. (3.309)

The idea is now write u = Re u + iIm u and observe that, since the coefficients
of the system L are real, Re u ∈ [

C∞(R2+)
]2 and Im u ∈ [

C∞(R2+)
]2 enjoy the

same properties as the function u in (3.282)–(3.283). Granted what we have proved

already, it follows that if φ1, φ2 are the scalar components of (Re u)
∣∣κ−n.t.

∂R2+
and if

ψ1, ψ2 are the scalar components of (Im u)
∣∣κ−n.t.

∂R2+
then φ1, φ2, ψ1, ψ2 are real-valued

functions belonging to Lp(R, w), and the conclusion in (3.309) written separately
for Re u and Imu gives

H(φ1 + iφ2) = −i(φ1 + iφ2) at L1-a.e. point on R, (3.310)

and, respectively,

H(ψ1 + iψ2) = −i(ψ1 + iψ2) at L1-a.e. point on R. (3.311)

In particular, taking the real parts in (3.310)–(3.311) (keeping in mind that H maps
real-valued functions into real-valued functions) leads to the conclusion that
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Hφ1 = φ2 and Hψ1 = ψ2. (3.312)

Upon observing that u
∣∣κ−n.t.

∂R2+
= (Re u)

∣∣κ−n.t.

∂R2+
+ i(Im u)

∣∣κ−n.t.

∂R2+
implies f1 = φ1 + iψ1

and f2 = φ2 + iψ2, from (3.312), we readily obtain the formula claimed in (3.284).
In the converse direction, suppose first that the function f ∈ Lp(R, w) is real-

valued. Then Hf ∈ Lp(R, w) and work in [114, §1.5-§1.6] ensures that

U(z) := 1

2π i

ˆ
R

(f + iHf )(y)

y − z
dy, for each z ∈ R2+, (3.313)

is a holomorphic function in R2+ satisfying NκU ∈ Lp(R, w) and

U
∣∣κ−n.t.

∂R2+
= ( 1

2I + i
2H

)
(f + iHf ) = f + iHf at L1-a.e. point on R, (3.314)

since the Hilbert transform satisfies H 2 = −I on Lp(R, w). If we now introduce
u1 := ReU and u2 := ImU , then u := (u1, u2) ∈

[
C∞(R2+)

]2 is a vector-valued
function with real-valued scalar components. Thanks to (3.252), we have

Lu = L
(
ReU, ImU

) = (
Re(∂2

z̄ U), Im (∂2
z̄ U)

) = 0 ∈ C2 in R2+, (3.315)

since ∂z̄U = 0 in R2+ by the Cauchy–Riemann equations. In addition, we observe
that Nκu = NκU ∈ Lp(R, w) given that, by design, |u| = |U |. Finally, at L1-a.e.
point on R we have

u
∣∣κ−n.t.

∂R2+
=

(
ReU

∣∣κ−n.t.

∂R2+
, ImU

∣∣κ−n.t.

∂R2+

)
= (f,Hf ), (3.316)

by virtue of (3.314) and the fact that f is real-valued. Thus, u satisfies all
requirements in (3.285).

To deal with an arbitrary function f ∈ Lp(R, w), which is not necessarily real-
valued, denote by φ and ψ its real and imaginary parts so that f = φ + iψ . From
what we have proved so far, there exist v, ω ∈ [

C∞(R2+)
]2 as in (3.285) such

that v
∣∣κ−n.t.

∂R2+
= (φ,Hφ) and ω

∣∣κ−n.t.

∂R2+
= (ψ,Hψ). Then it follows that the function

u := v + iω ∈ [
C∞(R2+)

]2 is as in (3.285) and satisfies u
∣∣κ−n.t.

∂R2+
= (f,Hf ), as

wanted. � 
We continue by making four remarks in relation to Proposition 3.10 and its proof.

Remark 3.2 Suppose w ∈ Ap(R,L1) for some exponent p ∈ (1,∞) and choose
an aperture parameter κ > 0. Also, let L be the 2 × 2 system from (3.239), and
assume u : R2+ → C2 is a function satisfying
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u ∈ [
C∞(R2+)

]2
, Lu = 0 in R2+, Nκu ∈ Lp(R, w),

and u
∣∣κ−n.t.

∂R2+
= 0 at L1-a.e. point on R.

(3.317)

In particular, u satisfies (3.282)–(3.283) with f = (f1, f2) = (0, 0). Retaining
notation introduced during the proof of Proposition 3.10, from (3.300), (3.301), and
(3.302), we see that

Wε(z) = 1

2π i

ˆ
R

hε(y)

y − z
dy, for each z ∈ R2+. (3.318)

Let U := u1+ iu2, where u1 and u2 are the two scalar components of the C2-valued
function u. On the one hand, from (3.289)–(3.292), it is clear that

lim
ε→0+

Wε(z) = U(z)+ (z− z̄)
(
∂z̄U

)
(z) for fixed each z ∈ R2+. (3.319)

On the other hand, for each fixed z ∈ R2+, on account of (3.308) and the fact that we
currently have f1 + if2 = 0, we conclude that the limit as ε → 0+ of the integral
in (3.318) is zero. Based on these observations and (3.318), we ultimately conclude
that

if u is as in (3.317) then the C-valued function U := u1 + iu2
(where u1, u2 are the two scalar components of the C2-valued
function u) satisfies U(z) = (z̄− z)

(
∂z̄U

)
(z) for each z ∈ R2+.

(3.320)

The same type of argument also shows that

U ∈ C∞(R2+)
∂2
z̄ U = 0 in R2+

NκU ∈ Lp(R, w)

U
∣∣κ−n.t.

∂R2+
= 0 on R

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

�⇒
{
U(z) = (z̄− z)

(
∂z̄U

)
(z)

for all z ∈ R2+.
(3.321)

Bearing in mind that for any U as in the left side of (3.321) the function f := −∂z̄U
is holomorphic in R2+, we may recast the conclusion in (3.321) as saying that there
exists some holomorphic function f in R2+ such that U(z) = (z − z̄)f (z) for each
z ∈ R2+. In particular, this shows that the choice g(z) := zf (z) which has led
to the conclusion in (3.254) is actually canonical in the case when � = R2+, the
nontangential trace of U vanishes, and the nontangential maximal function of U
belongs to a Muckenhoupt weighted Lebesgue space.

Remark 3.3 A version of (3.321) which involves the nontangential maximal opera-
tor of the gradient of the function U goes as follows:
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given any function U ∈ C∞(R2+) with ∂2
z̄ U = 0 in R2+ and

Nκ(∇U) ∈ Lp(R, w) for some p ∈ (1,∞), w ∈ Ap(R,L1),

and κ ∈ (0,∞) then U
∣∣κ−n.t.

∂R2+
= 0 at L1-a.e. point on R if and

only if U(z) = (z̄− z)
(
∂z̄U

)
(z) for all z ∈ R2+.

(3.322)

Indeed, the left-pointing implication is a consequence of the fact that (see the Fatou-
type result recalled in Theorem 3.4) the nontangential boundary trace

(∂z̄U)
∣∣κ−n.t.

∂R2+
exists at L1-a.e. point on R. (3.323)

To justify the right-pointing implication in (3.322), define

W(z) := U(z)− (z̄− z)
(
∂z̄U

)
(z) for all z ∈ R2+, (3.324)

and note that, from assumptions and (3.323), we have

W ∈ C∞(R2+), ∂z̄W = 0 in R2+, and

W
∣∣κ−n.t.

∂R2+
= 0 at L1-a.e. point on R.

(3.325)

In addition, based on assumptions and interior estimates, we conclude (by reasoning
much as in (3.293)–(3.297)) that

Nκ(∇W) ∈ Lp(R, w). (3.326)

To proceed, we find it useful to bring in a modified boundary-to-domain Cauchy
integral operator for the upper half-plane acting on each f ∈ •

L
p

1 (R, w) according
to

Cmodf (z) :=
1

2π i

ˆ

R

{
1

y − z
− 1R\[−1,1](y)

y

}
f (y) dy for all z ∈ R2+. (3.327)

Work in [114, §1.8] then shows that W may be recovered, up to an additive constant,
from the action of this modified Cauchy operator on the boundary trace of W . In the
present case, this guarantees the existence of some c ∈ C such that

W = Cmod

(
W

∣∣κ−n.t.

∂R2+

)
+ c in R2+, (3.328)

hence W ≡ c in R2+, thanks to the last property recorded in (3.325). In turn, this

forces c = W
∣∣κ−n.t.

∂R2+
= 0 hence, ultimately, W = 0 in R2+. In view of the definition

of W , this finishes the proof of the right-pointing implication in (3.322). In closing,
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we wish to note that, having fixed p ∈ (1,∞), w ∈ Ap(R,L1), and κ ∈ (0,∞),
from (3.322) and the fact that

for each holomorphic function h in R2+ with Nκh ∈ Lp(R, w),

the nontangential boundary trace h
∣∣κ−n.t.

∂R2+
exists L1-a.e. on R

(3.329)

(e.g., this is implied by the Fatou results proved in [113, §3.1]), we conclude that

{
U ∈ C∞(R2+) : ∂2

z̄ U = 0 in R2+, Nκ(∇U) ∈ Lp(R, w), and (3.330)

U
∣∣κ−n.t.

∂R2+
= 0 at L1-a.e. point on R

}

=
{
(z̄− z)h(z) : h holomorphic in R2+ with Nκh ∈ Lp(R, w)

}
.

This provides an explicit description of the space of null-solutions of the Homoge-
neous Regularity Problem for the operator ∂2

z̄ in the upper half-plane. In turn, this
readily implies that the space of null-solutions of the Inhomogeneous Regularity
Problem for the operator ∂2

z̄ in the upper half-plane may be described as

{
U ∈ C∞(R2+) : ∂2

z̄ U = 0 in R2+, NκU, Nκ(∇U) ∈ Lp(R, w), and

(3.331)

U
∣∣κ−n.t.

∂R2+
= 0 at L1-a.e. point on R

}

=
{
(z̄− z)h(z) : h holomorphic in R2+ with Nκh ∈ Lp(R, w)

and Nκ

(
R

2+ � z �→ (z̄− z)h(z)
) ∈ Lp(R, w)

}
.

Finally, we wish to mention that it is also possible to describe the space of null-
solutions of the Dirichlet Problem for the operator ∂2

z̄ in the upper half-plane,
namely

{
U ∈ C∞(R2+) : ∂2

z̄ U = 0 in R2+, NκU ∈ Lp(R, w), and U
∣∣κ−n.t.

∂R2+
= 0

}

=
{
(z̄− z)h(z) : h holomorphic in R2+ with (3.332)

[
R

2+ � z �→ (z̄− z)h(z)
]∣∣κ−n.t.

∂R2+
= 0

and Nκ

(
R

2+ � z �→ (z̄− z)h(z)
) ∈ Lp(R, w)

}
.
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See [115, Chapter 2] for this and other similar results in the higher-dimensional
setting (some of which we will review a little further).

Remark 3.4 Bring in the complexified Cauchy–Riemann equations in the upper
half-plane, i.e., consider

A,B : R2+ → C of class C∞, satisfying

∂xA = ∂yB and ∂yA = −∂xB in R2+.
(3.333)

Write (A,B) ∈ CR(R2+) whenever A,B are as in (3.333). Hence, CR(R2+) is a
complex vector space with the property that for each (A,B) ∈ CR(R2+) we have

(
ReA,ReB

) ∈ CR(R2+),
(
ImA, ImB

) ∈ CR(R2+),

and A+ iB is a holomorphic function in R2+.
(3.334)

Also,

(
ReU, ImU

) ∈ CR(R2+) for each

holomorphic function U in R2+.
(3.335)

Having fixed some p ∈ (1,∞) along with a Muckenhoupt weight w ∈ Ap(R,L1)

and an aperture parameter κ > 0, we claim that

{
(f,Hf ) : f ∈ Lp(R, w)

}
(3.336)

=
{(
A
∣∣κ−n.t.

∂R2+
, B

∣∣κ−n.t.

∂R2+

) : (A,B) ∈ CR(R2+), NκA, NκB ∈ Lp(R, w)
}
.

Formula (3.336) carries special significance in the present context. Indeed, in
view of Proposition 3.10, we conclude that

the space (described in (3.286)) of admissible boundary data
for the Dirichlet Problem in the upper half-plane formulated in
terms of Muckenhoupt weighted Lebesgue spaces for the system
L defined in (3.239) coincides with the space of nontangential
boundary traces of pairs of functions satisfying the complexified
Cauchy–Riemann equations (3.333) whose nontangential maxi-
mal functions belong to said Muckenhoupt weighted Lebesgue
spaces.

(3.337)

Hence, in the big picture, the space of admissible boundary data for the Dirichlet
Problem for the second-order system L from (3.239) coincides with the space of
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boundary traces of null-solutions of a first-order system, namely the complexified
Cauchy–Riemann equations (3.333).

To justify (3.336), observe that since both sets involved are actually vector spaces
over the field of complex numbers and since (3.334)–(3.335) hold, it suffices to show
that

{
(f,Hf ) : f ∈ Lp(R, w) real-valued

}
(3.338)

=
{(

ReU
∣∣κ−n.t.

∂R2+
, ImU

∣∣κ−n.t.

∂R2+

) : U holomorphic in R2+, NκU ∈ Lp(R, w)
}
.

As far as the equality in (3.338) is concerned, work in [113, §3.1] implies that for any
holomorphic function U in R2+ with NκU ∈ Lp(R, w) the nontangential boundary

trace u
∣∣κ−n.t.

∂R2+
exists at L1-a.e. point on R. Also, this trace belongs to Lp(R, w) and

the following Cauchy reproducing formula holds:

U(z) = 1

2π i

ˆ
R

(
U
∣∣κ−n.t.

∂R2+

)
(y)

y − z
dy, for each z ∈ R2+. (3.339)

Going nontangentially to the boundary then yields

U
∣∣κ−n.t.

∂R2+
= ( 1

2I + i
2H

)(
U
∣∣κ−n.t.

∂R2+

)
. (3.340)

Hence U
∣∣κ−n.t.

∂R2+
= iH

(
U
∣∣κ−n.t.

∂R2+

)
, from which we deduce that

ImU
∣∣κ−n.t.

∂R2+
= H

(
ReU

∣∣κ−n.t.

∂R2+

)
. (3.341)

This proves the right-to-left inclusion in (3.338). As regards the left-to-right
inclusion in (3.338), given any real-valued function f ∈ Lp(R, w), it follows that

U(z) := 1

π i

ˆ
R

f (y)

y − z
dy, for each z ∈ R2+, (3.342)

is holomorphic in R2+, has NκU ∈ Lp(R, w), and satisfies U
∣∣κ−n.t.

∂R2+
= (I + iH)f . In

particular,
(
ReU

∣∣κ−n.t.

∂R2+
, ImU

∣∣κ−n.t.

∂R2+

) = (f,Hf ), finishing the proof of (3.338).

Remark 3.5 The space
{
(f,Hf ) : f ∈ Lp(R, w)

}
appearing in (3.287) is the

complexification of the space appearing in the first line of (3.338). In turn, via the
identification R2 � (a, b) ≡ a + ib ∈ C, the latter space may be viewed as

{
f + iHf : f ∈ Lp(R, w) real-valued

}
, (3.343)
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which, by virtue of (3.338), is further equal to the Muckenhoupt weighted Hardy
space

{
U
∣∣κ−n.t.

∂R2+
: U holomorphic in R2+, NκU ∈ Lp(R, w)

}
. (3.344)

From Proposition 3.10, we then conclude that the space of admissible boundary data
for the Dirichlet Problem formulated in terms of Muckenhoupt weighted Lebesgue
spaces for the system L in the upper half-plane (cf. (3.286)) is ultimately linked to
the Muckenhoupt weighted Hardy space (3.344) in the manner detailed in the above
discussion.

By further building on Proposition 3.10, below we identify the space of admissi-
ble boundary data for the Muckenhoupt weighted version of the Regularity Problem
for the system L from (3.239) in the upper half-plane.

Proposition 3.11 Fix an integrability index p ∈ (1,∞) along with a Muckenhoupt
weight w ∈ Ap(R,L1), and choose an aperture parameter κ > 0. Also, recall the
2 × 2 system L defined in the plane as in (3.239). Then the space of admissible
boundary data for the Muckenhoupt weighted version of the Regularity Problem for
the system L in the upper half-plane, i.e.,

{
u
∣∣κ−n.t.

∂R2+
: u ∈ [

C∞(R2+)
]2
, Lu = 0 in R2+, Nκu,Nκ(∇u) ∈ Lp(R, w)

}
,

(3.345)

coincides with

{
(f,Hf ) : f ∈ L

p

1 (R, w)
}
. (3.346)

As a consequence of this and (3.248), one also has

{
u
∣∣κ−n.t.

∂R2+
: u ∈ [

C∞(R2+)
]2
, L�u = 0 in R2+, Nκu,Nκ(∇u) ∈ Lp(R, w)

}

= {
(f,−Hf ) : f ∈ L

p

1 (R, w)
}
. (3.347)

That the nontangential boundary traces exist in the context of (3.345), (3.347) is
a consequence of Proposition 2.24.

Proof of Proposition 3.11 Consider some function u = (u1, u2) ∈
[
C∞(R2+)

]2

satisfying Lu = 0 in R2+, with Nκu,Nκ(∇u) ∈ Lp(R, w), and such that u
∣∣κ−n.t.

∂R2+
exists at L1-a.e. point on R. Proposition 3.10 guarantees that u

∣∣κ−n.t.

∂R2+
= (f,Hf )

for some f ∈ Lp(R, w). Then actually f = u1
∣
∣κ−n.t.

∂R2+
∈ L

p

1 (R, w), thanks to

Proposition 2.22 whose applicability with u1 in place of u and with � := R2+ is
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ensured by Theorem 3.4. This proves that the nontangential boundary trace u
∣∣κ−n.t.

∂R2+
belongs to the space in (3.346).

Conversely, start with a function f ∈ L
p

1 (R, w), which is first assumed to be real-
valued. Work in [114, §1.6] (in more general settings) ensures that Hf ∈ L

p

1 (R, w)

and

U(z) := 1

2π i

ˆ
R

(f + iHf )(y)

y − z
dy, for each z ∈ R2+, (3.348)

is a holomorphic function in R2+ satisfying NκU, Nκ(∇U) ∈ Lp(R, w) and, much

as in (3.314), U
∣∣κ−n.t.

∂R2+
= f + iHf . Then u := (

ReU, ImU) ∈ [
C∞(R2+)

]2 is a

vector-valued function with real-valued scalar components, with the property that
Nκu, Nκ(∇u) ∈ Lp(R, w) and

u
∣∣κ−n.t.

∂R2+
=

(
ReU

∣∣κ−n.t.

∂R2+
, ImU

∣∣κ−n.t.

∂R2+

)
= (f,Hf ), (3.349)

since f is real-valued. Given that, much as for (3.315), we also have Lu = 0 in
R

2+, it follows that (f,Hf ) belongs to the space in (3.345). Finally, the general case
when f ∈ L

p

1 (R, w) is not necessarily real-valued is dealt with based on what we
have just proved, decomposing f into its real and imaginary parts. This eventually
shows that the space from (3.346) is contained in the space from (3.345). By double
inclusion, we may therefore conclude that these spaces are in fact equal. � 

There is also a version of Proposition 3.11 for the Homogeneous Regularity
Problem, involving homogeneous Muckenhoupt weighted Sobolev spaces. To state
this result, we shall need the homogeneous Muckenhoupt weighted Sobolev space
•
L
p

1 (R, w) defined for each integrability exponent p ∈ (1,∞) and for each weight
w ∈ Ap(R,L1) as (compare with (2.598))

•
L
p

1 (R, w) :=
{
f ∈ L1(

R, dx
1+|x|2

) ∩ Lploc(R, w) : f ′ ∈ Lp(R, w)
}
, (3.350)

where the derivative is taken in the sense of distributions. We shall also need the
operator Hmod , the modified version of the classical Hilbert transform H on the real

line from (3.351), whose action on functions f ∈ •
L
p

1 (R, w) is given by

Hmodf (x) := lim
ε→0+

1

π

ˆ

R

{
1R\[x−ε,x+ε](y)

x − y
− 1R\[−1,1](y)

−y
}
f (y) dy (3.351)

at L1-a.e. point x ∈ R.

Proposition 3.12 Pick an integrability index p ∈ (1,∞), fix a Muckenhoupt
weight w ∈ Ap(R,L1), and choose an aperture parameter κ > 0. Then the
space of admissible boundary data for the Muckenhoupt weighted version of the
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Homogeneous Regularity Problem in the upper half-plane for the 2 × 2 system L

from (3.239), i.e.,

{
u
∣
∣κ−n.t.

∂R2+
: u ∈ [

C∞(R2+)
]2
, Lu = 0 in R2+, Nκ(∇u) ∈ Lp(R, w)

}
(3.352)

is equal to

{
f = (f1, f2) ∈

[ •
L
p

1 (R, w)
]2 : H(f ′1) = f ′2 at L1-a.e. point on R

}
(3.353)

=
{
(f,Hmodf + c) ∈ [ •

L
p

1 (R, w)
]2 : f ∈ •

L
p

1 (R, w) and c ∈ C
}
.

The fact that the nontangential boundary traces exist in the context of (3.352) is
a consequence of Proposition 2.24.

Proof of Proposition 3.12 Consider a vector-valued function

u ∈ [
C∞(R2+)

]2 satisfying

Lu = 0 in R2+, Nκ(∇u) ∈ Lp(R, w).
(3.354)

From Theorem 3.4, Proposition 2.24, and (2.576), we know that

u
∣
∣κ−n.t.

∂R2+
exists and belongs to

[ •
L
p

1 (R, w)
]2, the nontangential

boundary trace (∇u)∣∣κ−n.t.

∂R2+
exists at L1-a.e. point on R, and

Nκu, Nκ(∇u) belong to the space L1
loc(R,L

1).

(3.355)

In particular, if we set ũ := ∂xu ∈
[
C∞(R2+)

]2, then

Lũ = 0 in R2+, Nκ ũ ∈ Lp(R, w), and

ũ
∣∣κ−n.t.

∂R2+
exists at L1-a.e. point on R.

(3.356)

In addition, if at L1-a.e. point x ∈ R we set

f (x) = (
f1(x), f2(x)) :=

(
u
∣∣κ−n.t.

∂R2+

)
(x) ∈ C2, (3.357)

then (3.355) gives f ∈ [ •
L
p

1 (R, w)
]2, and Proposition 2.22 tells us that

f ′ = ∂x

(
u
∣
∣κ−n.t.

∂R2+

)
=

(
(∂xu)

∣
∣κ−n.t.

∂R2+

)
= ũ

∣
∣κ−n.t.

∂R2+
at L1-a.e. point on x ∈ R.

(3.358)
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Granted these properties, Proposition 3.10 applies to ũ and, with H denoting the
Hilbert transform on the real line (cf. (1.24)), implies that we necessarily have

H(f ′1) = f ′2 at L1-a.e. point on R. (3.359)

This proves that the set from (3.352) is included in the set described in the first line
of (3.353).

To proceed, we need to recall some results from [114, Chapter 1]. First, Hmod

maps
•
L
p

1 (R, w) boundedly into itself, and for each f ∈ •
L
p

1 (R, w) we have

d

dx

[
Hmodf

] = H(f ′) at L1-a.e. point in R. (3.360)

In particular,

Hmod maps constants into constants. (3.361)

In addition, for each f ∈ •
L
p

1 (R, w), there exists some constant cf ∈ C with the
property that

Hmod

(
Hmodf ) = −f + cf . (3.362)

Finally, recall the modified boundary-to-domain Cauchy integral operator for the
upper half-plane from (3.327). Then, for each given function f ∈ •

L
p

1 (R, w), we
have

Cmodf is holomorphic in R2+, Nκ

(∇Cmodf
) ∈ Lp(R, w), and

at L1-a.e. point on R we have (Cmodf )
∣∣κ−n.t.

∂R2+
= ( 1

2I + i
2Hmod

)
f .

(3.363)

Next, note that for each f1, f2 ∈
•
L
p

1 (R, w) having H(f ′1) = f ′2 at L1-a.e. point
on R amounts (cf. (3.360)) to having d

dx

(
Hmodf1 − f2

) = 0 at L1-a.e. point on R.
Hence, in this case we have f2 = Hmodf1 + c for some constant c ∈ C, proving that
the set in the first line of (3.353) is contained in the set in the second line of (3.353).

At this stage, there remains to show that the set from the second line of (3.353) is
contained in (3.352). To deal with this inclusion, observe that both sets are actually
vector spaces over the field of complex numbers. Moreover, the vector space in the
second line of (3.353) is the linear span of pairs of the form (f,Hmodf + c) with

f ∈ •
L
p

1 (R, w) real-valued function and c ∈ R. As such, it suffices to prove that for

any real-valued function f ∈ •
L
p

1 (R, w) and any number c ∈ R, there exists some
vector-valued function u as in (3.354) such that

u
∣∣κ−n.t.

∂R2+
= (f,Hmodf + c). (3.364)
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To this end, define

U(z) := 2Cmodf (z)+ ic for each z ∈ R2+. (3.365)

Then (3.363) guarantees that U is a holomorphic function in R2+, with the property
that Nκ(∇U) ∈ Lp(R, w) and that at L1-a.e. point on R we have

U
∣
∣κ−n.t.

∂R2+
= (

I + iHmod

)
f + ic. (3.366)

If we now set u1 := ReU and u2 := ImU , then u := (u1, u2) ∈
[
C∞(R2+)

]2 is a
vector-valued function, with real-valued scalar components, satisfying

Lu = L
(
ReU, ImU

) = (
Re(∂2

z̄ U), Im (∂2
z̄ U)

) = 0 ∈ C2 in R2+, (3.367)

thanks to (3.252) and the fact that ∂z̄U = 0 in R2+, by the Cauchy–Riemann
equations. Also, Nκ(∇u) ∈ Lp(R, w) given that Nκ(∇U) ∈ Lp(R, w). Finally,
bearing in mind that f,Hmodf are real-valued and that c ∈ R, at L1-a.e. point on R
we may use (3.366) to compute

u
∣∣κ−n.t.

∂R2+
=

(
ReU

∣∣κ−n.t.

∂R2+
, ImU

∣∣κ−n.t.

∂R2+

)
= (

f,Hmodf + c
)
, (3.368)

proving (3.364). � 
A higher-dimensional version of the theory presented in connection with the

planar 2 × 2 system L from (3.239) has been worked out in [115, Chapter 2],
where analogous results to Proposition 3.10 have been established. In order to
describe them, we need some notation in the n-dimensional Euclidean space, where
n ∈ N with n ≥ 2. First, recall the family of Riesz transforms (Rj )1≤j≤n−1 in
the hyperplane Rn−1 × {0} ≡ Rn−1. Specifically, the j -th Riesz transform Rj on
R
n−1, with j ∈ {1, . . . , n− 1}, is the singular integral operator acting on any given

function f ∈ L1
(
R
n−1,

Ln−1(x′)
1+|x′|n−1

)
at Ln−1-a.e. point x′ ∈ Rn−1 according to

Rjf (x
′) := lim

ε→0+
2

ωn−1

ˆ

y′∈Rn−1

|x′−y′|>ε

xj − yj

|x′ − y′|n f (y
′) dLn−1(y′). (3.369)

We shall also need the j -th modified Riesz transform R
mod

j , acting on each function

f ∈ L1
(
R
n−1,

Ln−1(x′)
1+|x′|n

)
at Ln−1-a.e. point x′ ∈ Rn−1 according to

R
mod

j f (x′) := lim
ε→0+

2

ωn−1

ˆ

R
n−1

{
xj − yj

|x′ − y′|n 1
R
n−1\B((x′,0),ε)(y

′) (3.370)
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− −yj
| − y′|n 1

R
n−1\B(0,1)(y

′)
}
f (y′) dLn−1(y′).

Finally, following [115, Chapter 2], we shall consider a special system, namely
the homogeneous, constant real coefficient, symmetric, n × n second-order system
acting on each vector-valued distribution �u = (u1, . . . , un) (defined in an open
subset of Rn) according to

LD �u := �u− 2∇div �u. (3.371)

That is,

LD = (
a
αβ
jk ∂j ∂k

)
1≤α,β≤n with

a
αβ
jk = δjkδαβ − 2δjαδkβ for all α, β, j, k ∈ {1, . . . , n}.

(3.372)

Here is the result which amounts to a higher-dimensional version of Proposi-
tions 3.10, 3.11, and 3.12.

Proposition 3.13 Fix n ∈ N, with n ≥ 2. Pick an integrability index p ∈ (1,∞)

along with a Muckenhoupt weight w ∈ Ap(R
n−1,Ln−1), and choose some aperture

parameter κ > 0. Also, recall the second-order, weakly elliptic, constant (real)
coefficient, symmetric, n× n system LD defined in (3.371).

Then if �u ∈ [
C∞(Rn+)

]n
is a vector-valued function satisfying

LD �u = 0 in Rn+, Nκ �u ∈ Lp(Rn−1, w), (3.373)

and such that the nontangential boundary trace

�f = (f1, . . . , fn) := �u∣∣κ−n.t.

∂Rn+
exists (in Cn) at Ln−1-a.e. point on Rn−1,

(3.374)
it follows that the vector-valued function �f belongs to

[
Lp(Rn−1, w)

]n
and

fn = −
n−1∑

j=1

Rjfj at Ln−1-a.e. point on Rn−1. (3.375)

In the converse direction, for any given �f = (f1, . . . , fn) ∈
[
Lp(Rn−1, w)

]n

satisfying (3.375), there exists a vector-valued function �u ∈ [
C∞(Rn+)

]n
satisfying

LD �u = 0 in Rn+, Nκ �u ∈ Lp(Rn−1, w), and

�u∣∣κ−n.t.

∂Rn+
= �f at Ln−1-a.e. point on Rn−1.

(3.376)
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Altogether, the space of admissible boundary data for the Dirichlet Problem
formulated in terms of Muckenhoupt weighted Lebesgue spaces for the system LD
in the upper half-space may be described as follows:

{
�u∣∣κ−n.t.

∂Rn+
: �u ∈ [

C∞(Rn+)
]n
, LD �u = 0 in Rn+, Nκ �u ∈ Lp(Rn−1, w),

and u
∣∣κ−n.t.

∂Rn+
exists at Ln−1-a.e. point on Rn−1

}

=
{
(f1, . . . , fn) ∈

[
Lp(Rn−1, w)

]n : fn = −
n−1∑

j=1

Rjfj

}
. (3.377)

Furthermore, the space of admissible boundary data for the Inhomogeneous
Regularity Dirichlet Problem with boundary data in Muckenhoupt weighted Sobolev
spaces for the system LD in the upper half-space is given by2

{
�u∣∣κ−n.t.

∂Rn+
: �u ∈ [

C∞(Rn+)
]n
, LD �u = 0 in Rn+, Nκ �u, Nκ(∇�u) ∈ Lp(Rn−1, w)

}

=
{
(f1, . . . , fn) ∈

[
L
p

1 (R
n−1, w)

]n : fn = −
n−1∑

j=1

Rjfj

}
. (3.378)

Also, the space of admissible boundary data for the Homogeneous Regularity
Dirichlet Problem with boundary data in homogeneous Muckenhoupt weighted
Sobolev spaces for the system LD in the upper half-space may be characterized
as follows:3

{
�u∣∣κ−n.t.

∂Rn+
: �u ∈ [

C∞(Rn+)
]n
, LD �u = 0 in Rn+, Nκ(∇�u) ∈ Lp(Rn−1, w)

}

=
{
(f1, . . . , fn) ∈

[ •
L
p

1 (R
n−1, w)

]n : fn +
n−1∑

j=1

R
mod

j fj is constant
}
.

(3.379)

Finally, similar results are valid on the scales of Morrey spaces and block spaces
(cf. Sect. 7.1).

In particular, it is apparent from (3.377) that no nonzero vector-valued function
from the space

2 With the existence of the nontangential boundary traces guaranteed by Proposition 2.24.
3 The existence of the nontangential boundary traces here being guaranteed by Proposition 2.24.
Also, the homogeneous Muckenhoupt weighted Sobolev space

•
L
p

1 (R
n−1, w) is defined as in

(2.598) with � := Rn+.
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{
(0, . . . , 0, f ) : f ∈ Lp(Rn−1, w)

}
(3.380)

can possibly be an admissible boundary datum for the Dirichlet Problem for system
LD in the upper half-space. As such,

the codimension of the admissible boundary data for the Dirich-
let Problem for system LD in the upper half-space (i.e., the
space in the first line of (3.377)) into the full data space[
Lp(Rn−1, w)

]n is +∞.

(3.381)

Likewise, since no nonzero vector-valued function from the space

{
(0, . . . , 0, f ) : f ∈ L

p

1 (R
n−1, w)

}
(3.382)

can possibly be an admissible boundary datum for the Inhomogeneous Regularity
Problem for system LD in the upper half-space, it follows that

the codimension of the admissible boundary data for the Inho-
mogeneous Regularity Problem for system LD in the upper
half-space (i.e., the space in the first line of (3.378)) into the
full data space

[
L
p

1 (R
n−1, w)

]n is +∞.

(3.383)

Finally, given that no nonzero vector-valued function from the space

{
(0, . . . , 0, f ) : f ∈ •

L
p

1 (R
n−1, w)

}
(3.384)

can possibly be an admissible boundary datum for the Homogeneous Regularity
Problem for system LD in the upper half-space, we see that

the codimension of the admissible boundary data for the Homo-
geneous Regularity Problem for system LD in the upper half-
space (i.e., the space in the first line of (3.379)) into the full data
space

[ •
L
p

1 (R
n−1, w)

]n is +∞.

(3.385)

It has also been noted in [115, §2.6] that for each scalar function

ω ∈ C∞(Rn+) with ω = 0 in Rn+ and Nκ(∇ω) ∈ Lp(Rn−1, w), (3.386)

the vector-valued function

�u : Rn+ −→ Cn given by

�u(x) := xn(∇ω)(x) for each x = (x1, . . . , xn) ∈ Rn+
(3.387)

satisfies
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�u ∈ [
C∞(Rn+)

]n
, LD �u = 0 in Rn+, Nκ(∇�u) ∈ Lp(Rn−1, w),

and �u∣∣κ−n.t.

∂Rn+
= 0 at Ln−1-a.e. point on Rn−1.

(3.388)

In the converse direction, each vector-valued function �u as in (3.388) has the format
described in the second line of (3.387) for some scalar function ω as in (3.386).
Finally, it has been noted in [115, §2.6] that if in place of (3.386), one now assumes

ω ∈ C∞(Rn+) with ω = 0 in Rn+ and

Nκω ∈ Lp(Rn−1, w), Nκ(∇ω) ∈ Lp(Rn−1, w),
(3.389)

then the vector-valued function �u defined as in (3.387) for this choice of ω has the
additional property that Nκ �u ∈ Lp(Rn−1, w), i.e., satisfies

�u ∈ [
C∞(Rn+)

]n
, LD �u = 0 in Rn+, Nκ �u, Nκ(∇�u) ∈ Lp(Rn−1, w),

and �u∣∣κ−n.t.

∂Rn+
= 0 at Ln−1-a.e. point on Rn−1.

(3.390)
In particular, these considerations readily imply that

the space of null-solutions for the Homogeneous Regularity
Problem for the system LD in the upper half-space (i.e., the
space of functions as in (3.388)) is infinite dimensional

(3.391)

and that

the space of null-solutions for the Inhomogeneous Regularity
Problem for the system LD in the upper half-space (i.e., the
space of functions as in (3.390)) is infinite dimensional.

(3.392)

As a corollary of (3.392), we also see that

the space of null-solutions for the Dirichlet Problem for the
system LD in the upper half-space is infinite dimensional.

(3.393)

We next turn our attention to the issue of existence and uniqueness of distin-
guished coefficient tensors for a given weakly elliptic system and its transposed.
The starting point is the following result, proved in [115, §1.5], for strongly elliptic
systems.

Theorem 3.8 Fix M,n ∈ N with n ≥ 2. Let L be a homogeneous, second-
order, constant complex coefficient,M ×M system in Rn which satisfies the strong
Legendre–Hadamard ellipticity condition (3.4). Then either

Adis
L = ∅ and Adis

L� = ∅, (3.394)
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or

Adis
L = {A} and Adis

L� = {A�} for some A ∈ AL. (3.395)

As a corollary, if M,n ∈ N with n ≥ 2 and L is a homogeneous, second-order,
constant complex coefficient, M × M system in Rn satisfying the Legendre–
Hadamard (strong) ellipticity condition, then

Adis
L is either empty or a singleton. (3.396)

We next state a result, augmenting Theorem 3.8, pertaining to weakly elliptic
systems, also established in [115, §1.5].

Theorem 3.9 Let M,n ∈ N with n ≥ 2 and consider a weakly elliptic,
homogeneous, second-order, constant complex coefficient, M × M system L in
R
n with the property that Adis

L �= ∅ and Adis
L� �= ∅. Then both Adis

L and Adis
L� are

singletons. In fact, Adis
L = {A} and Adis

L� = {A�} for some A ∈ AL.
In particular, if M,n ∈ N with n ≥ 2 and L is a symmetric, weakly elliptic,

homogeneous, second-order, constant complex coefficient, M × M system in Rn,
then Adis

L is either empty or a singleton, and, in the latter case, one has Adis
L = {A}

for some A ∈ AL satisfying A� = A.

For example, from (3.223), we know that

Adis
 = {In×n} where  is the Laplacian in Rn with n ≥ 2, (3.397)

Adis
divA∇ = {(A+ A�)/2} if n ≥ 3 and A ∈ Cn×n is invertible, (3.398)

while Theorem 3.9 and (3.228) imply that, for the complex Lamé system Lμ,λ
defined in (3.224), we have

Adis
Lμ,λ

=
{(
a
αβ
jk

)
1≤j,k≤n
1≤α,β≤n

}
if μ �= 0, 2μ+ λ �= 0, and 3μ+ λ �= 0, where

a
αβ
jk := μδjkδαβ + (μ+λ)(2μ+λ)

3μ+λ δjαδkβ + μ(μ+λ)
3μ+λ δjβδkα,

for 1 ≤ j, k, α, β ≤ n.

(3.399)
Here is an equivalent characterization of the existence of a distinguished

coefficient tensor proved in [115, §1.6].

Theorem 3.10 Fix M,n ∈ N with n ≥ 2. Let L be an M × M second-order,
homogeneous, constant complex coefficient, weakly elliptic system in Rn. Then the
following statements are equivalent:

(i) The system L possesses a distinguished coefficient tensor, i.e., Adis
L �= ∅.
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(ii) There exists a matrix-valued function k ∈ [
C∞(Rn \ {0})]M×M

which is positive
homogeneous of degree −n and satisfies

ˆ
Sn−1

k dHn−1 = IM×M (3.400)

(where IM×M is theM ×M identity matrix), as well as

L
(
xsk(x)

) = 0 · IM×M in Rn \ {0} for each s ∈ {1, . . . , n}. (3.401)

Moreover, if L has a unique distinguished coefficient tensor (i.e., if #Adis
L = 1),

then there is only one function k as in item (ii).

It has been noted in [115, §1.6] that Theorem 3.10 has the following noteworthy
consequence:

Corollary 3.2 Fix M,n ∈ N with n ≥ 2. Let L be an M × M second-order,
homogeneous, constant complex coefficient, weakly elliptic system in Rn. Assume
that there exists a matrix-valued function k∗ ∈ [

C∞(Rn \ {0})]M×M
which is

positive homogeneous of degree −n, is not identically zero, and satisfies

ˆ
Sn−1

k∗ dHn−1 = 0 · IM×M (3.402)

(where IM×M is theM ×M identity matrix), as well as

L
(
xsk∗(x)

) = 0 · IM×M in Rn \ {0} for each s ∈ {1, . . . , n}. (3.403)

Then either Adis
L = ∅, or Adis

L� = ∅.

To proceed, we revisit the special system LD from (3.371) which turns out not to
have any distinguished coefficient tensors. Indeed, it has been noted in [115, §1.6]
that if E is the standard fundamental solution for the Laplacian in Rn, defined at
each point x ∈ Rn \ {0} according to

E(x) :=

⎧
⎪⎪⎨

⎪⎪⎩

1

(2 − n)ωn−1

1

|x|n−2
if n ≥ 3,

1

2π
ln |x| if n = 2,

(3.404)

and if k∗ is the Hessian matrix of E, defined at each point x ∈ Rn \ {0} by
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k∗(x) :=
(
(∂i∂jE)(x)

)
1≤i,j≤n =

( δij

ωn−1

1

|x|n −
n

ωn−1

xixj

|x|n+2

)

1≤i,j≤n,
(3.405)

then (3.403)–(3.402) hold for L = LD , the special system LD from (3.371). In view
of the fact that LD is symmetric, Corollary 3.2 then gives

for each n ∈ N with n ≥ 2, the n × n system LD in Rn from
(3.371) is weakly elliptic, second-order, homogeneous, constant
real coefficient, symmetric, and Adis

LD
= Adis

L�D
= ∅.

(3.406)

Remark 3.6 Consider the complex Lamé system Lμ,λ, defined earlier in (3.224), in
the regime μ, λ ∈ C with μ �= 0 and 2μ+ λ �= 0. From (3.225), we know that this
is equivalent with the weak ellipticity of Lμ,λ. Hence, this is the range in which we
may consider the issue of whether Lμ,λ possesses distinguished coefficient tensors.
In this regard, we wish to note that from (3.229) and Theorem 3.9, it follows that
Adis
Lμ,λ

is a singleton when 3μ+λ �= 0. In addition, from (3.406) and (3.371), we see

that Adis
Lμ,λ

is empty when 3μ+ λ = 0. Collectively, these observations prove that

given any μ, λ ∈ C with μ �= 0 and 2μ + λ �= 0, then
Adis
Lμ,λ

�= ∅ if and only if 3μ + λ �= 0 if and only if Adis
Lμ,λ

is a singleton (namely the coefficient tensor A(ζ ) described in
(3.226), corresponding to the choice ζ = μ(μ+λ)

3μ+λ ).

(3.407)

One final remark is as follows. Consider an arbitrary second-order, weakly
elliptic, homogeneous, constant complex coefficient, M ×M system L in Rn, and
pick a coefficient tensor A = (

a
αβ
jk

)
1≤α,β≤M
1≤j,k≤n

∈ AL. For each invertible matrix

C = (cjk)1≤j,k≤n ∈ CM×M , define

AC := (
a
αβ
j� c�k

)
1≤α,β≤M
1≤j,k≤n

∈ ALC (3.408)

and

CA := (
cj�a

αβ
�k

)
1≤α,β≤M
1≤j,k≤n

∈ ACL, (3.409)

with the systems LC and CL naturally interpreted in the sense of multiplication of
M ×M matrices. With this notation, it has been noted in [115, §1.2] that for each
invertible matrix C ∈ CM×M we have

A ∈ Adis
L ⇐⇒ AC ∈ Adis

LC, (3.410)

and
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A ∈ Adis
L ⇐⇒ CA ∈ Adis

CL. (3.411)

A useful consequence of (3.410)–(3.411) and Corollary 3.2 is as follows. Bring
back the second-order, homogeneous, real constant coefficient, 2 × 2 system in the
plane

LB = 1

4

(
∂2
x − ∂2

y −2∂x∂y

2∂x∂y ∂2
x − ∂2

y

)

, (3.412)

which is matrix representation of Bitsadze’s operator L from (3.250). Also, recall
the two-dimensional version of the special system LD from (3.371), i.e.,

LD =
(
∂2
y − ∂2

x −2∂x∂y

−2∂x∂y ∂2
x − ∂2

y

)

. (3.413)

Hence, if we let

V :=
(−1 0

0 1

)

, (3.414)

then V � = V = V −1 and

LB = 1
4LDV and L�B = 1

4VLD. (3.415)

These together with (3.410) and (3.411) imply

A ∈ Adis
LD

⇐⇒ AV ∈ Adis
LB

(3.416)

and

A ∈ Adis
LD

⇐⇒ VA ∈ Adis
L�B
. (3.417)

Since we have proved that Adis
LD

= ∅ (cf. (3.406)), the equivalences in (3.416)–
(3.417) imply that

Adis
LB

= ∅ and Adis
L�B

= ∅. (3.418)



Chapter 4
Boundedness and Invertibility of Layer
Potential Operators

The key result in this work is Theorem 4.2 which elaborates on the nature of the
operator norm of a singular integral operator T defined on the boundary of a UR
domain�whose integral kernel has a special algebraic format, through the presence
of the inner product between the outward unit normal ν to � and the chord, as a
factor. Proving this theorem requires extensive preparations and takes quite a bit of
effort, but the redeeming feature of Theorem 4.2 is that said operator norm estimate
involves the BMO semi-norm of ν as a factor. This hallmark attribute (which is
shared by the double layer operator KA associated with a distinguished coefficient
tensor A) entails that the flatter ∂� is, the smaller ‖T ‖ is. In particular, having ∂�
sufficiently flat ultimately allows us to invert 1

2I + KA on Muckenhoupt weighted
Lebesgue spaces via a Neumann series, and this is of paramount importance later
on, when dealing with boundary value problems via the method of boundary
layer potentials. Subsequently, via operator identities relating the single and double
layers, we also succeed in inverting the single layer potential operator in a similar
geometric and algebraic setting.

4.1 Estimates for Euclidean Singular Integral Operators

We begin with a few generalities of functional analytic nature. Given two normed
vector spaces

(
X, ‖·‖X

)
and

(
Y, ‖·‖Y

)
, consider a positively homogeneous mapping

T : X → Y , i.e., a function T sending X into Y and satisfying T (λu) = λT (u) for
each u ∈ X and each λ ∈ (0,∞) (note that taking u := 0 ∈ X and λ := 2 implies
T (0) = 0 ∈ Y ). We shall denote by

‖T ‖X→Y := sup
{‖T u‖Y : u ∈ X, ‖u‖X = 1

} ∈ [0,∞] (4.1)

the operator norm of such a mapping T ; in particular,
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‖T u‖Y ≤ ‖T ‖X→Y ‖u‖X for each u ∈ X. (4.2)

It is then straightforward to see that a positively homogeneous mapping T : X → Y

is continuous at 0 ∈ X if and only if T is bounded (i.e., it maps bounded subsets of
X into bounded subsets of Y ) if and only if ‖T ‖X→Y < +∞.

Consider now the special case when X, Y are Lebesgue spaces (associated with a
generic measure space) and T is a sub-linear mapping of X into Y (i.e., T : X → Y

satisfies the property T (λu) = |λ|T (u) for each scalar λ and each function u ∈ X,
as well as T (u + w) ≤ T u + Tw at a.e. point, for each u,w ∈ X). Then, for each
u,w ∈ X we have |T u−Tw| ≤ |T (u−w)| at a.e. point, which further implies that
‖T u− Tw‖Y ≤ ‖T (u− w)‖Y ≤ ‖T ‖X→Y ‖u− w‖X. Consequently,

a sub-linear map T : X → Y is continuous

if and only if ‖T ‖X→Y < +∞.
(4.3)

Let us now start in earnest. To facilitate dealing with Theorem 4.1 a little later,
we first isolate a useful estimate in the lemma below.

Lemma 4.1 Fix an integrability exponent p ∈ (1,∞) along with a Muckenhoupt
weight w ∈ Ap(R

n,Ln). Then there exists a constant C ∈ (0,∞) which only
depends on n, p, and [w]Ap , with the property that for each point x ∈ Rn, each
radius r ∈ (0,∞), and real-valued function A ∈ W

1,1
loc (R

n) with

∇A ∈ [
BMO(Rn,Ln)

]n (4.4)

one has

ˆ

y∈Rn
|x−y|>r

∣
∣A(x)− A(y)− 〈∇A(y), x − y〉∣∣p

|x − y|(n+1)p
dw(y)

≤ Crp w
(
B(x, r)

)∥∥∇A∥∥p[BMO(Rn,Ln)]n . (4.5)

Proof Fix a function A as in the statement of the lemma. From Lemma 2.13 and
(4.4) we see that

∇A ∈ [
L1

loc(R
n,w)

]n
. (4.6)

Next, recall from (2.533) that there exists ε ∈ (0, p − 1) which depends only on p,
n, and [w]Ap , such that

w ∈ Ap−ε(Rn,Ln). (4.7)

Fix x ∈ Rn and r ∈ (0,∞). By breaking up the integral dyadically, estimating the
denominator, and using the doubling property of w ∈ Ap−ε(Rn,Ln) (cf. item (5) of
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Proposition 2.20) we may dominate

ˆ

y∈Rn
|x−y|>r

∣∣A(x)− A(y)− 〈∇A(y), x − y〉∣∣p
|x − y|(n+1)p

dw(y)

≤ Cn,p

∞∑

j=1

w(B(x, 2j r))

2j (n+1)p
· Ij ≤ Cn,p,w

∞∑

j=1

2jn(p−ε)w(B(x, r))
2j (n+1)p

· Ij , (4.8)

where, for each j ∈ N,

Ij := 1

w(B(x, 2j r))

ˆ

2j−1r<|x−y|≤2j r

∣∣A(x)− A(y)− 〈∇A(y), x − y〉∣∣p dw(y).

(4.9)

To proceed, for each j ∈ N introduce

Aj(z) := A(z)−
( 

B(x,2j r)
∇A dw

)
· z for each z ∈ Rn (4.10)

(making use of (4.6) to ensure that this is meaningful), and observe that Ij , originally
defined in (4.9), does not change if the function A is replaced by Aj . Consequently,
for each j ∈ N we have

Ij ≤ Cp · IIj + Cp · IIIj , (4.11)

where

IIj := 1

w(B(x, 2j r))

ˆ

2j−1r<|x−y|≤2j r

∣∣Aj(x)− Aj(y)|p dw(y), (4.12)

and

IIIj := 2jprp

w(B(x, 2j r))

ˆ

2j−1r<|x−y|≤2j r

∣∣∇Aj(y)
∣∣p dw(y). (4.13)

Fix an integrability exponent q ∈ (n,∞) and pick j ∈ N arbitrary. Then for each
y ∈ Rn such that 2j−1r < |x − y| ≤ 2j r we may estimate

|Aj(x)− Aj(y)| ≤ Cq,n|x − y|
(  

|x−z|≤2|x−y|
|∇Aj(z)|q dz

)1/q



244 4 Boundedness and Invertibility of Layer Potential Operators

≤ Cq,n,w · 2j r
( 

B(x,2|x−y|)
|∇Aj |pq dw

)1/(pq)

≤ Cq,n,w · 2j r
( 

B(x,2|x−y|)

∣∣∣∇A−
 
B(x,2|x−y|)

∇A dw
∣∣∣
pq

dw
)1/(pq)

+ Cq,n,w · 2j r
∣
∣∣
 
B(x,2j r)

∇A dw −
 
B(x,2|x−y|)

∇A dw
∣
∣∣

≤ Cq,n,w · 2j r‖∇A‖[BMO(Rn,w)]n

≤ Cq,n,w · 2j r‖∇A‖[BMO(Rn,Ln)]n . (4.14)

Above, the first estimate is provided by Mary Weiss’ Lemma (cf. [24, Lemma 1.4,
p. 144], or [58, Lemma 2.10, p. 477]), the second estimate uses the fact that we have
|x − y| ≤ 2j r and Lemma 2.12, the third estimate is implied by (4.10) which gives
∇Aj = ∇A − ffl

B(x,2j r) ∇A dw, the penultimate estimate is a consequence of the
John-Nirenberg inequality, (2.103) (written with w in place of σ ), and the doubling
property of w, while the final estimate in (4.14) comes from Lemma 2.14. In turn,
(4.12) and (4.14) yield

IIj ≤ C · 2jprp‖∇A‖p[BMO(Rn,Ln)]n . (4.15)

By combining (4.13) and (4.10) we also see that

IIIj ≤ 2jprp
 
B(x,2j r)

∣∣∣∇A−
 
B(x,2j r)

∇A dw
∣∣∣
p

dw

≤ C · 2jprp‖∇A‖[BMO(Rn,w)]n ≤ C · 2jprp‖∇A‖p[BMO(Rn,Ln)]n , (4.16)

where the last inequality is once again provided by Lemma 2.14. From (4.15)–(4.16)
and (4.11) we then conclude that

Ij ≤ C · 2jprp‖∇A‖p[BMO(Rn,Ln)]n for each j ∈ N. (4.17)

Using this back in (4.8) now readily yields (4.5), since
∑∞

j=1 2−jnε <∞. � 
The next result, dealing with boundedness for certain type of singular integral

operators in the Euclidean context, refines work in [61, Theorem 4.34, p. 2725].

Theorem 4.1 Pick an integrability exponent p ∈ (1,∞) along with a Muckenhoupt
weight w ∈ Ap(R

n−1,Ln−1). Denote by p′ ∈ (1,∞) the Hölder conjugate
exponent of p and by w′ the dual weight w′ := w1−p′ ∈ Ap′(Rn−1,Ln−1) of
w. Next, fix three numbers n,m, d ∈ N with n ≥ 2, and let N = N(n,m) ∈ N be
a sufficiently large integer. Let A ∈ W

1,1
loc (R

n−1) be a complex-valued function with
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the property that

∇A ∈ [
BMO(Rn−1,Ln−1)

]n−1
. (4.18)

Also, for each j ∈ {1, . . . , m} consider a real-valued function Bj ∈ W
1,1
loc (R

n−1)

with the property that

∇Bj ∈
[
BMO(Rn−1,Ln−1)

]n−1
, (4.19)

and set B := (B1, . . . , Bm). In addition, consider a function � : Rn−1 → R
d for

which there exists c ∈ (0, 1] such that

c|x′ − y′| ≤ |�(x′)−�(y′)| ≤ c−1|x′ − y′| for all x′, y′ ∈ Rn−1; (4.20)

hence, � is bi-Lipschitz. Going further, suppose F ∈ CN+2(Rm) is a complex-
valued function which is even, has the property that ∂αF belongs to L1(Rm,Lm)

for every multi-index α ∈ Nn0 with |α| ≤ N + 2, and

sup
X∈Rm

[
(1 + |X|)|F(X)|] < +∞. (4.21)

Finally, for each function g ∈ Lp(Rn−1, wLn−1) and each point x′ ∈ Rn−1 define

T
A,B
�,∗ g(x

′) := sup
ε>0

∣
∣∣∣

ˆ

y′∈Rn−1

|�(x′)−�(y′)|>ε

A(x′)− A(y′)− 〈∇A(y′), x′ − y′〉
|x′ − y′|n ×

× F
(B(x′)− B(y′)

|x′ − y′|
)
g(y′) dy′

∣∣∣∣. (4.22)

Then T A,B
�,∗ is a well-defined, continuous, sub-linear mapping of the Muckenhoupt

weighted Lebesgue space Lp(Rn−1, wLn−1) into itself, and there exists some
constant C(n, p,w) ∈ (0,∞) which depends only on n, p, and [w]Ap with the
property that

∥
∥∥T A,B

�,∗
∥
∥∥
Lp(Rn−1,wLn−1)→Lp(Rn−1,wLn−1)

(4.23)

≤ C(n, p,w) · c−3n
( ∑

|α|≤N+2

∥∥∂αF
∥∥
L1(Rm,Lm)

+ sup
X∈Rm

(1 + |X|)|F(X)|
)

× ‖∇A‖[BMO(Rn−1,Ln−1)]n−1

(
1 +

m∑

j=1

∥∥∇Bj
∥∥[BMO(Rn−1,Ln−1)]n−1

)N
.
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Theorem 4.1 is an intricate piece of machinery allowing us to estimate, in a rather
detailed and specific manner, the maximal operator associated with integral kernels
that exhibit a certain type of algebraic structure. We shall put this to good use in
Lemma 4.2 which, in turn, is a basic ingredient in the proof of Theorem 4.2 (the
main result in this section). This being said, Theorem 4.1 is useful for a variety of
other purposes.

To give a significant example in this regard, work in the one-dimensional setting
and recall the Hilbert transform H on the real line from (1.24). Consider a complex-
valued function A ∈ W

1,1
loc (R) with the property that A′ ∈ BMO(R,L1). Let

MA stand for the operator of pointwise multiplication by A, and denote by D the
one-dimensional derivative operator f �→ df/dx on the real line. Also, fix an inte-
grability exponent p ∈ (1,∞) and a Muckenhoupt weight w ∈ Ap(R,L1). Then
the commutator [H,MAD], originally defined on functions from C∞

0 (R), extends
to a bounded linear mapping on Lp(R, w) with operator norm ≤ C

∥
∥A′

∥
∥

BMO(R,L1)

where C ∈ (0,∞) is an absolute constant. Indeed, given any function f ∈ C∞
0 (R),

at L1-a.e. differentiability point x ∈ R for A (hence, at L1-a.e. x ∈ R) we may write
(keeping in mind that, since the Hilbert transform is a multiplier, H commutes with
differentiation):

[H,MAD]f (x) = H(Af ′)(x)− A(x)
d

dx
(Hf (x)) = H(Af ′)(x)− A(x)(Hf ′)(x)

= lim
ε→0+

1

π

ˆ

y∈R
|x−y|>ε

A(y)− A(x)

x − y
f ′(y) dy

= − lim
ε→0+

(A(y)− A(x)

x − y
f (y)

∣∣∣
y=x+ε
y=x−ε

)

− lim
ε→0+

1

π

ˆ

y∈R
|x−y|>ε

d

dy

(A(y)− A(x)

x − y

)
f (y) dy

= lim
ε→0+

1

π

ˆ

y∈R
|x−y|>ε

A(x)− A(y)− A′(y)(x − y)

(x − y)2
f (y) dy.

(4.24)

(The fact that the limit in the third line of (4.24) vanishes is ensured by the
differentiability of A at x, and the continuity of f at x.) Granted this formula,
Theorem 4.1 applies with n = 2, m = 1, � the identity, B ≡ 0, and taking
F ∈ C∞

0 (R) to be an even function with F(0) = 1. The desired conclusion then
follows from (4.23).
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To offer another example where Theorem 4.1 plays a decisive role, fix some
� ∈ (0,∞) and suppose � is a �-CAC passing through infinity in C. Recall the

Cauchy integral operator on the chord-arc curve � acts on f ∈ L1
(
�,

dH1(ζ )
1+|ζ |

)

according to

(C�f )(z) := lim
ε→0+

1

2π i

ˆ

ζ∈�
|z−ζ |>ε

f (ζ )

ζ − z
dζ for H1-a.e. z ∈ �. (4.25)

Since from Proposition 2.10 we know that � is the topological boundary of a UR
domain, Proposition 3.4 guarantees that C� is a well-defined, linear, and bounded
operator on the space Lp(�,w) whenever p ∈ (1,∞) and w ∈ Ap(�, σ), where
σ := H1��. Let us indicate how Theorem 4.1 may be used to show that

the flatter the chord-arc curve � becomes, the closer the corre-
sponding Cauchy operator becomes (with proximity measured in
the operator norm on Muckenhoupt weighted Lebesgue spaces)
to the (suitably normalized) Hilbert transform on the real line.

(4.26)

A brief discussion on this topic may be found in [33, pp. 138-139]. In order to
facilitate a direct comparison between the two singular integral operators mentioned
in (4.26), it is natural to consider the pull-back of C� to R under the arc-length
parametrization R � s �→ z(s) ∈ C of �. After natural adjustments in notation, this
corresponds to the mapping sending each f ∈ Lp(R, w) into

(C
R
f )(t) := lim

ε→0+
i

2π

ˆ

s∈R|z(t)−z(s)|>ε

z′(s)
z(t)− z(s)

f (s) ds for L1-a.e. t ∈ R,

(4.27)
where p ∈ (1,∞) and w ∈ Ap(R,L1). Recall from (2.219) that the function z(·) is
bi-Lipschitz, specifically,

(1 + �)−1|t − s| ≤ |z(t)− z(s)| ≤ |t − s| for all t, s ∈ R. (4.28)

Keeping this in mind, a suitable application1 of [62, Proposition B.2] allows to
change the truncation in (4.27) to

(C
R
f )(t) = lim

ε→0+
i

2π

ˆ

s∈R|t−s|>ε

z′(s)
z(t)− z(s)

f (s) ds for L1-a.e. t ∈ R, (4.29)

1 While [62, Proposition B.2] is stated for ordinary Lebesgue spaces, the same type of result holds
in the class of Muckenhoupt weighted Lebesgue spaces (thanks to the fact that the phenomenon in
question is local in nature, and (2.576)).
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for each f ∈ Lp(R, w) with p ∈ (1,∞) and w ∈ Ap(R,L1). We wish to compare
the operator written in this form with the (suitably normalized) Hilbert transform on
the real line, acting on arbitrary functions f ∈ Lp(R, w), where p ∈ (1,∞) and
w ∈ Ap(R,L1), according to

(Hf )(t) := lim
ε→0+

1

π

ˆ

s∈R|t−s|>ε

f (s)

t − s
ds for L1-a.e. t ∈ R. (4.30)

Fix p ∈ (1,∞), w ∈ Ap(R,L1), and f ∈ Lp(R, w). Then at L1-a.e. t ∈ R we may
express

(
C
R
− (i/2)H

)
f (t) = lim

ε→0+
i

2π

ˆ

s∈R|t−s|>ε

( z′(s)
z(t)− z(s)

− 1

t − s

)
f (s) ds

= lim
ε→0+

1

2π i

ˆ

s∈R|t−s|>ε

z(t)− z(s)− z′(s)(t − s)

(z(t)− z(s))(t − s)
f (s) ds.

(4.31)

Pick an even function φ ∈ C∞
0 (C) satisfying (with � as in (4.28))

0 ≤ φ ≤ 1 and suppφ ⊆ B(0, 2),

φ ≡ 1 on B(0, 1) \ B(
0, (1 + �)−1

)
,

φ ≡ 0 on B
(
0, (2 + 2�)−1

)
,

(4.32)

along with a function ψ ∈ C∞
0 (R) which is even and satisfies

0 ≤ ψ ≤ 1, suppψ ⊆ [−4, 4], and ψ ≡ 1 on [−2, 2] \ [− 1
2 ,

1
2

]
. (4.33)

We may then invoke Theorem 4.1 with n := 2, m := 3, and

�(t) := t, A(t) := z(t), B(t) := (
Re z(t), Im z(t), t

)
for all t ∈ R,

F (a, b, c) := c

a + ib
φ(a + ib)ψ(c) for all (a, b, c) ∈ R3,

(4.34)

and conclude from (4.23) and (2.228) that there exist some integer Ñ ∈ N and some
constant Cp,w ∈ (0,∞) such that, with � as in (4.28), we have

∥∥C
R
− (i/2)H

∥∥
Lp(R,w)→Lp(R,w)

≤ Cp,w(1 + �)Ñ
√
�. (4.35)
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This lends credence to (4.26) since it implies

∥∥C
R
− (i/2)H

∥∥
Lp(R,w)→Lp(R,w)

= O(
√
� ) as � → 0+. (4.36)

After this preamble, we are ready to present the proof of Theorem 4.1.

Proof of Theorem 4.1 Throughout, let us abbreviate

K(x′, y′) := A(x′)− A(y′)− 〈∇A(y′), x′ − y′〉
|x′ − y′|n F

(B(x′)− B(y′)
|x′ − y′|

)
, (4.37)

for each x′ ∈ Rn−1 and Ln−1-a.e. y′ ∈ Rn−1. Having T
A,B∗ g(x′) in (4.56) well

defined for each g ∈ Lp(Rn−1, wLn−1) and each x′ ∈ Rn−1 is ensured by observing
that

K(·, ·) is an Ln−1 ⊗Ln−1-measurable function on Rn−1 × Rn−1, (4.38)

which is clear from (4.37), and

for each g ∈ Lp(Rn−1, wLn−1), ε > 0, x′ ∈ Rn−1,

one has
ˆ

y′∈Rn−1

|x′−y′|>ε

|K(x′, y′)||g(y′)| dy′ < +∞. (4.39)

The finiteness property in (4.39) is a consequence of Hölder’s inequality, (4.37),
the fact that F is bounded, and Lemma 4.1 (used with n replaced by n − 1, p′ in
place of p, and with w′ in place of w). In concert, these give that for each function
g ∈ Lp(Rn−1, wLn−1), each ε > 0, and each x′ ∈ Rn−1 we have

ˆ

y′∈Rn−1

|x′−y′|>ε

|K(x′, y′)||g(y′)| dy′ ≤ Cε
[
w′(B(x′, ε)

)]1/p′( sup
X∈Rm

|F(X)|
)
× (4.40)

× ‖g‖Lp(Rn−1,wLn−1)

∥∥∇A∥∥[BMO(Rn−1,Ln−1)]n−1 <∞.

To proceed, for each function g ∈ Lp(Rn−1, wLn−1), each truncation parameter
ε > 0, and each point x′ ∈ Rn−1 define

T
A,B
�,ε g(x

′) :=
ˆ

y′∈Rn−1

|�(x′)−�(y′)|>ε

K(x′, y′)g(y′) dy′. (4.41)

Thanks to (4.20) and (4.38)–(4.39), the above integral is absolutely convergent,
which means that T A,B

�,ε g(x
′) is a well-defined number. If Q+ denotes the collection
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of all positive rational numbers, we next make the claim that for each arbitrary
function g ∈ Lp(Rn−1, wLn−1) we have

(
T
A,B
�,∗ g

)
(x′) = sup

ε∈Q+

∣
∣(T A,B

�,ε g
)
(x′)

∣
∣ for every x′ ∈ Rn−1. (4.42)

To justify this, pick some g ∈ Lp(Rn−1, wLn−1). The idea is to show that if
the point x′ ∈ Rn−1 is arbitrary and fixed then for every ε ∈ (0,∞) and for every
sequence {εj }j∈N ⊆ (0,∞) such that εj ↘ ε as j →∞ we have

lim
j→∞

(
T
A,B
�,εj

g
)
(x′) = (

T
A,B
�,ε g

)
(x′). (4.43)

To justify (4.43) note that

{y′ ∈ Rn−1 : |�(x′)−�(y′)| > εj } ↗ {y′ ∈ Rn−1 : |�(x′)−�(y′)| > ε}
(4.44)

as j →∞, in the sense that

{y′ ∈ Rn−1 : |�(x′)−�(y′)| > ε}

=
⋃

j∈N
{y′ ∈ Rn−1 : |�(x′)−�(y′)| > εj } (4.45)

and

{y′ ∈ Rn−1 : |�(x′)−�(y′)| > εj }

⊆{y′ ∈ Rn−1 : |�(x′)−�(y′)| > εj+1} (4.46)

for every j ∈ N. Then (4.43) follows from (4.44) and Lebesgue’s Dominated
Convergence Theorem (whose applicability is ensured by (4.38)–(4.39)). Having
established this, (4.42) readily follows on account of the density of Q+ in (0,∞).

Moving on, we claim that

for each fixed threshold ε > 0, the function

R
n−1 × Rn−1 � (x′, y′) �−→ (

1{y′∈Rn−1, |�(x′)−�(y′)|>ε}
)
(y′) ∈ R

is lower-semicontinuous, hence Ln−1 ⊗Ln−1-measurable.

(4.47)

To justify this claim, observe that for every number λ ∈ R the set of points in
R
n−1 × Rn−1 where the given function is > λ may be described as
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⎧
⎪⎪⎨

⎪⎪⎩

∅ if λ ≥ 1,
{
(x′, y′) ∈ Rn−1 × Rn−1 : |�(x′)−�(y′)| > ε

}
if λ ∈ [0, 1),

R
n−1 × Rn−1 if λ < 0.

(4.48)

Thanks to the fact that � is a continuous function, all sets appearing in (4.48)
are open in Rn−1 × Rn−1. This proves that the function (4.47) is indeed lower-
semicontinuous.

We next claim that

given any g ∈ Lp(Rn−1, wLn−1), the function T A,B
�,∗ g is

Ln−1-measurable.
(4.49)

To see that this is the case, granted (4.42) and since the supremum of some countable
family of Ln−1-measurable functions is itself a Ln−1-measurable function, it
suffices to show that

T
A,B
�,ε g is a Ln−1-measurable function, for each fixed

ε ∈ (0,∞) and each fixed g ∈ Lp(Rn−1, wLn−1).
(4.50)

With this goal in mind, fix ε ∈ (0,∞) along with g ∈ Lp(Rn−1, wLn−1), and for
each j ∈ N define

Gj : Rn−1 × Rn−1 −→ R given at every (x′, y′) ∈ Rn−1 × Rn−1 by

Gj(x
′, y′) := (

1B(0′,j)
)
(x′)K(x′, y′)g(y′)

(
1{y′∈Rn−1, |�(x′)−�(y′)|>ε}

)
(y′).

(4.51)
Then, thanks to (4.38) and (4.47), it follows that Gj is an Ln−1 ⊗Ln−1-measurable
function for each j ∈ N. In addition, from (4.51), (4.39), and since balls have finite
measure, we see that

ˆ
R
n−1×Rn−1

|Gj(x
′, y′)| dx′dy′ < +∞. (4.52)

Granted these properties, Fubini’s Theorem (whose applicability is ensured by the
fact that

(
R
n−1,Ln−1) is a sigma-finite measure space) then guarantees that

gj : Rn−1 → R, gj (x
′) :=

ˆ
R
n−1

Gj(x
′, y′) dy′, ∀ x′ ∈ Rn−1,

is an Ln−1-measurable function, for each integer j ∈ N.
(4.53)

On the other hand, from (4.51), (4.53), and (4.41) it is apparent that for each j ∈ N
we have
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gj = 1B(0′,j) T
A,B
�,ε g everywhere in Rn−1. (4.54)

In particular, this implies

lim
j→∞ gj = T

A,B
�,ε g pointwise everywhere in Rn−1. (4.55)

At this stage, the fact that T A,B
�,ε g is an Ln−1-measurable function follows from

(4.55) and (4.53). The claim in (4.49) is therefore established.
We next turn our attention to the main claim made in (4.23). The special case

when d := n − 1 and �(x′) := x′ for each x′ ∈ Rn−1 has been treated in [61],
following basic work in [58]. Specifically, from [61, Theorem 4.34, p. 2725] we
know that if for each g ∈ Lp(Rn−1, wLn−1) we define

T A,B∗ g(x′) := sup
ε>0

∣∣∣∣

ˆ

y′∈Rn−1

|x′−y′|>ε

K(x′, y′)g(y′) dy′
∣∣∣∣ at each x′ ∈ Rn−1, (4.56)

then

T
A,B∗ is a well-defined sub-linear operator

from the space Lp(Rn−1, wLn−1) into itself
(4.57)

and there exists a constant C(n, p,w) ∈ (0,∞) with the property that

∥∥
∥T A,B∗

∥∥
∥
Lp(Rn−1,wLn−1)→Lp(Rn−1,wLn−1)

(4.58)

≤ C(n, p,w)
( ∑

|α|≤N+2

∥∥∂αF
∥∥
L1(Rm,Lm)

+ sup
X∈Rm

(1 + |X|)|F(X)|
)

× ‖∇A‖[BMO(Rn−1,Ln−1)]n−1

(
1 +

m∑

j=1

∥∥∇Bj
∥∥[BMO(Rn−1,Ln−1)]n−1

)N
.

To deal with the present case, in which the truncation is performed in the more
general fashion described in (4.22), for each ε > 0 and each x′ ∈ Rn−1 abbreviate

Dε(x
′) :={

y′ ∈ Rn−1 : |�(x′)−�(y′)| > ε and |x′ − y′| ≤ ε
}

⋃{
y′ ∈ Rn−1 : |�(x′)−�(y′)| ≤ ε and |x′ − y′| > ε

}
. (4.59)

Fix an arbitrary g ∈ Lp(Rn−1, wLn−1) and define
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Rg(x′) := sup
ε>0

ˆ
Dε(x′)

∣
∣∣∣
A(x′)− A(y′)− 〈∇A(y′), x′ − y′〉

|x′ − y′|n × (4.60)

× F
(B(x′)− B(y′)

|x′ − y′|
)
g(y′)

∣∣
∣∣ dy′

at each point x′ ∈ Rn−1. The above definitions now imply that for each given
function g ∈ Lp(Rn−1, wLn−1) we have

T
A,B
�,∗ g(x

′) ≤ T A,B∗ g(x′)+ Rg(x′) for every x′ ∈ Rn−1. (4.61)

To estimate the last term appearing in the right-hand side of (4.61), pick some

γ ∈ (0, p − 1) such that w ∈ Ap/(1+γ )(Rn−1,Ln−1), (4.62)

fix an arbitrary point x′ ∈ Rn−1, consider an arbitrary threshold ε > 0, and select a
function g ∈ Lp(Rn−1, wLn−1). Also, abbreviate

Q := Qx′,ε :=
{
y′ ∈ Rn−1 : |x′ − y′| < ε

}
(4.63)

and introduce

AQ(z
′) := A(z′)−

(  
Q

∇A dLn−1
)
· z′ for each z′ ∈ Rn−1. (4.64)

Observe that the number Rg(x′), originally defined in (4.60), does not change if the
function A is replaced by AQ. Consequently,

Rg(x′) ≤ R1g(x
′)+ R2g(x

′), (4.65)

where

R1g(x
′) := sup

ε>0

ˆ
Dε(x′)

∣∣∣
∣
AQ(x

′)− AQ(y
′)

|x′ − y′|n F
(B(x′)− B(y′)

|x′ − y′|
)
g(y′)

∣∣∣
∣ dy′

(4.66)

and

R2g(x
′) := sup

ε>0

ˆ
Dε(x′)

∣∣∣
∣
〈∇AQ(y

′), x′ − y′〉
|x′ − y′|n F

(B(x′)− B(y′)
|x′ − y′|

)
g(y′)

∣∣∣
∣ dy′.

(4.67)

Note that, thanks to (4.20) and (4.59), we have
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c ε ≤ |x′ − y′| ≤ c−1ε for each y′ ∈ Dε(x
′). (4.68)

Having fixed an integrability exponent q ∈ (n−1,∞), for each y′ ∈ Dε(x
′)we may

rely on Mary Weiss’ Lemma (cf. [24, Lemma 1.4, p. 144]) in concert with (2.102),
(2.103), (4.63), and (4.68) to estimate

|AQ(x
′)− AQ(y

′)|
|x′ − y′| ≤ Cq,n

(  
|x′−z′|≤2|x′−y′|

|∇AQ(z
′)|q dz′

)1/q

≤ Cq,n

(  
|x′−z′|≤2|x′−y′|

∣∣
∣∇A(z′)−

 
|x′−ζ ′|≤2|x′−y′|

∇A(ζ ′) dζ ′
∣∣
∣
q

dz′
)1/q

+ Cq,n

∣∣∣
 
Q

∇A dLn−1 −
 
|x′−ζ ′|≤2|x′−y′|

∇A(ζ ′) dζ ′
∣∣∣

≤ Cq,n · c−2(n−1)/q‖∇A‖[BMO(Rn−1,Ln−1)]n−1 . (4.69)

Choosing q := 2(n − 1) it follows that there exists a constant Cn ∈ (0,∞), which
depends only on n, such that

|AQ(x
′)− AQ(y

′)| ≤ (Cn/c)|x′ − y′|‖∇A‖[BMO(Rn−1,Ln−1)]n−1

for each point y′ ∈ Dε(x
′).

(4.70)

In concert, (4.66), (4.68), and (4.70) allow us to conclude that

R1g(x
′) ≤ Cn · c1−2n( sup

X∈Rm
|F(X)|)‖∇A‖[BMO(Rn−1,Ln−1)]n−1×

× sup
ε>0

( 
|x′−y′|<c−1ε

|g(y′)| dy′
)
. (4.71)

To estimate R2g(x
′), bring in a brand of the Hardy–Littlewood maximal operator

which associates to each Ln−1-measurable function f on Rn−1 the function Mγ f

defined as

Mγ f (x
′) := sup

r>0

(  
|x′−y′|<r

|f (y′)|1+γ dy′
)1/(1+γ )

for each x′ ∈ Rn−1.

(4.72)
Then, using (4.67), (4.64), Hölder’s inequality, and (2.103) we may write

R2g(x
′) ≤ Cn · c2−2n( sup

X∈Rm
|F(X)|)×

× sup
ε>0

( 
|x′−y′|<c−1ε

∣∣∣∇A(y′)−
 
Q

∇A dLn−1
∣∣∣|g(y′)| dy′

)
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≤ Cn · c2−2n( sup
X∈Rm

|F(X)|)Mγ g(x
′)×

× sup
ε>0

( 
|x′−y′|<c−1ε

∣∣∣∇A(y′)−
 
Q

∇A dLn−1
∣∣∣
(1+γ )/γ

dy′
)γ /(1+γ )

≤ Cn,γ · c3−3n( sup
X∈Rm

|F(X)|)‖∇A‖[BMO(Rn−1,Ln−1)]n−1Mγ g(x
′). (4.73)

Collectively, (4.65), (4.71), and (4.73), and Hölder’s inequality imply

Rg(x′) ≤ Cn,γ · c−3n( sup
X∈Rm

|F(X)|)‖∇A‖[BMO(Rn−1,Ln−1)]n−1Mγ g(x
′).

(4.74)

In turn, from (4.74) and (4.61) we conclude that for every x′ ∈ Rn−1 we have

0 ≤T A,B
�,∗ g(x

′) (4.75)

≤ T A,B∗ g(x′)+ Cn,γ · c−3n( sup
X∈Rm

|F(X)|)‖∇A‖[BMO(Rn−1,Ln−1)]n−1Mγ g(x
′).

Granted (4.62), the maximal operator Mγ is a well-defined sub-linear bounded
mapping from Lp(Rn−1, wLn−1) into itself. Bearing this in mind, from (4.75),
(4.57), (4.58), and (2.575), and the fact that the space Lp(Rn−1, wLn−1) is a lattice,
the estimate claimed in (4.23) now follows. As a consequence, T A,B

�,∗ is a sub-linear

mapping of finite operator norm on Lp(Rn−1, wLn−1). Hence, as remarked in (4.3),
the operator T A,B

�,∗ is continuous from Lp(Rn−1, wLn−1) into itself. � 
The next step is to transfer the Euclidean result from Theorem 4.1 to singular

integral operators on Lipschitz graphs, a task accomplished in the following lemma.

Lemma 4.2 Having fixed an arbitrary unit vector �n ∈ Sn−1, consider the
hyperplane H := 〈�n〉⊥ ⊆ Rn−1 and suppose h : H → R is a function satisfying

M := sup
x,y∈H
x �=y

|h(x)− h(y)|
|x − y| < +∞. (4.76)

Fix an arbitrary point x0 ∈ Rn and let

G := {
x0 + x + h(x)�n : x ∈ H

} ⊆ Rn (4.77)

denote the graph of h in the coordinate systemX = (x, t)⇔ X = x0+x+ t �n, with
x ∈ H and t ∈ R. Abbreviate σ := Hn−1�G and denote by ν the unique unit normal
to G satisfying ν · �n < 0 at σ -a.e. point on G. Also, fix some integrability exponent
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p ∈ (1,∞). Given a complex-valued function k ∈ CN+2
(
R
n \ {0}), for some

sufficiently large integer N = N(n) ∈ N, which is even and positive homogeneous
of degree −n, consider the maximal singular integral operator T acting on each
f ∈ Lp(G, σ ) as

T∗f (x) := sup
ε>0

∣∣∣
∣

ˆ

y∈G
|x−y|>ε

〈x − y, ν(y)〉k(x − y)f (y) dσ(y)

∣∣∣
∣, ∀ x ∈ G. (4.78)

Then T∗ is a well-defined continuous sub-linear mapping from the space
Lp(G, σ ) into itself and there exists a constant C(n, p) ∈ (0,∞), which depends
only on n, p, with the property that

‖T∗‖Lp(G,σ )→Lp(G,σ ) ≤ C(n, p)M(1 +M)4n+N
( ∑

|α|≤N+2

sup
Sn−1

∣∣∂αk
∣∣
)
. (4.79)

Moreover, corresponding to the end-point case p = 1, the operator T∗ induces a
well-defined continuous sub-linear mapping from the space L1(G, σ ) into the space
L1,∞(G, σ ) and there exists a constantCn ∈ (0,∞) along with some large exponent
Nn ∈ N, which depend only on n, with the property that

‖T∗‖L1(G,σ )→L1,∞(G,σ ) ≤ Cn(1 +M)Nn

( ∑

|α|≤Nn

sup
Sn−1

∣∣∂αk
∣∣
)
. (4.80)

Proof Recall that {ej }1≤j≤n stands for the standard orthonormal basis in Rn. Let us
first treat the case when x0 = 0 ∈ Rn and �n := en, a scenario in which H = 〈en〉⊥
may be canonically identified with Rn−1. Assume this is the case, and consider an
even function ψ ∈ C∞(Rn) with the property that

0 ≤ ψ ≤ 1, ψ vanishes identically in Rn \ B(
0, 2

√
1 +M2

)
,

ψ ≡ 1 on B(0,
√

1 +M2) \ B(0, 1), ψ ≡ 0 on B(0, 1/2),

and for each α ∈ Nn0 there exists Cα ∈ (0,∞), depending only

on the given multi-index α, so that supx∈Rn |(∂αψ)(x)| ≤ Cα.

(4.81)

Then F := ψk is an even function belonging to CN+2(Rn), and satisfying

∑

|α|≤N+2

∥∥∂αF
∥∥
L1(Rn,Ln)

+ sup
x∈Rn

(1 + |x|)|F(x)|

≤ Cn(1 +M)n
( ∑

|α|≤N+2

sup
Sn−1

∣∣∂αk
∣∣
)
, (4.82)
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for some purely dimensional constant Cn ∈ (0,∞). Moreover, if for each point
x′ ∈ Rn−1 we set �(x′) := (x′, h(x′)) then � : Rn−1 → R

n is a bi-Lipschitz
function and (4.81) implies that

k

(
�(x′)−�(y′)

|x′ − y′|
)
= F

(
�(x′)−�(y′)

|x′ − y′|
)

for each x′, y′ ∈ Rn−1 with x′ �= y′.
(4.83)

To proceed, note that for each σ -measurable set E ⊆ G and each g ∈ L1(E, σ )

we have
ˆ
E

g dσ =
ˆ
{y′∈Rn−1: (y′,h(y′))∈E}

g(y′, h(y′))
√

1 + |(∇h)(y′)|2 dy′, (4.84)

(cf., e.g., [136, Proposition 12.9, p. 164]) and

ν(y′, h(y′)) = ((∇h)(y′),−1)
√

1 + |(∇h)(y′)|2 for Ln−1-a.e. y′ ∈ Rn−1. (4.85)

Also, fix f ∈ Lp(G, σ ) and define f̃ (x′) := f (x′, h(x′)) for each x′ ∈ Rn−1. In
particular, from (4.84) we conclude that

f̃ ∈ Lp(Rn−1,Ln−1) and
∥∥f̃

∥∥
Lp(Rn−1,Ln−1)

≤ ‖f ‖Lp(G,σ ). (4.86)

Then based on (4.78), (4.84), (4.85), the homogeneity of k, and (4.83) we may write

(T∗f )(x′, h(x′))

= sup
ε>0

∣∣∣∣

ˆ

y′∈Rn−1 with√
|x′−y′|2+(h(x′)−h(y′))2>ε

(〈∇h(y′), x′ − y′〉 + h(y′)− h(x′)
)×

× k
(
x′ − y′, h(x′)− h(y′)

)
f̃ (y′) dy′

∣∣∣∣

= sup
ε>0

∣∣∣
∣

ˆ

y′∈Rn−1

|�(x′)−�(y′)|>ε

h(x′)− h(y′)− 〈∇h(y′), x′ − y′〉
|x′ − y′|n ×
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× F
(�(x′)−�(y′)

|x′ − y′|
)
f̃ (y′) dy′

∣∣∣∣.

(4.87)

From (4.87), Theorem 4.1 (used withm := n, d := n,A := h, B := �, and w ≡ 1),
(4.82), and (4.84) we then conclude that (4.79) holds in this case.

To treat the case when x0 = 0 but �n ∈ Sn−1 is arbitrary, pick an orthonormal
basis {vj }1≤j≤n−1 in H and consider the unitary transformation in Rn uniquely
defined by the demand that Uvj = ej for j ∈ {1, . . . , n − 1} and U �n = en. Then
G̃ := UG becomes the graph of h̃ := h ◦ U−1 : Rn−1 → R, which is a Lipschitz
function with the same Lipschitz constant M as the original function h. Since the
Hausdorff measure is rotation invariant, for each g ∈ L1(G, σ ) we have

ˆ
y∈G

g(y) dσ(y) =
ˆ
ỹ∈G̃

(g ◦ U−1)(ỹ) dσ̃ (ỹ), (4.88)

where σ̃ := Hn−1�G̃. Moreover, the unique unit normal ν̃ to G̃ satisfying ν̃ · en < 0
at Hn−1-a.e. point on G̃ is ν̃ = U(ν ◦ U−1). Consider k̃ := k ◦ U−1 and note
that this is a complex-valued function of class CN+2

(
R
n \ {0}), which is even and

positive homogeneous of degree −n. Finally, fix some function f ∈ Lp(G, σ ) and
abbreviate f̃ := f ◦ U−1. Bearing in mind the fact that U is a linear isometry
satisfying U−1 = U�, from (4.78) and (4.88) we see that if x ∈ G and x̃ := Ux

then

T∗f (x) = sup
ε>0

∣∣∣
∣

ˆ

ỹ∈G̃
|̃x−ỹ|>ε

〈̃x − ỹ, ν̃(ỹ)〉̃k(̃x − ỹ)f̃ (ỹ) dσ̃ (ỹ)

∣∣∣
∣. (4.89)

Hence,

T∗f (x) = T̃∗f̃ (̃x) whenever x ∈ G and x̃ = Ux, (4.90)

where T̃∗ is the maximal operator associated as in (4.78) with the Lipschitz graph G̃
and the kernel k̃. In particular, given that (4.90) and (4.88) imply

ˆ
G
(T∗f )(x)p dσ(x) =

ˆ
G̃
(T̃∗f̃ )(̃x)p dσ̃ (̃x), (4.91)

the estimate claimed in (4.79) becomes a consequence of the corresponding estimate
for the maximal operator T̃∗ established in the first part of the current proof.

The case when both x0 ∈ Rn and �n ∈ Sn−1 are arbitrary follows from what we
have proved so far using the natural invariance of the maximal operator (4.78) to
translations.
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Finally, the estimate claimed in (4.80) becomes a consequence of (4.79) (with,
say, the choice p = 2), and standard Calderón–Zygmund theory (based on the
classical Calderón–Zygmund Lemma, and Cotlar’s inequality). See, for example,
[56, Theorem 8.2.1, p. 584] for more details in the standard Euclidean setting. � 

4.2 Estimates for Certain Classes of Singular Integrals on
UR Sets

Theorem 4.2, which is central for the present work, is the main result regarding
the size of the operator norm of certain maximal integral operators acting on
Muckenhoupt weighted Lebesgue spaces on the boundary of UR domains. In turn,
this is going to be the key ingredient in obtaining invertibility results for the brand
of boundary double layer potential operators considered in this work.

To facilitate stating Theorem 4.2 we first introduce some notation and make
some remarks. Specifically, with e denoting the base of natural logarithms, for each
number m ∈ N0 and t ∈ [0,∞) let us define

t 〈0〉 := 1 (4.92)

and, if m ≥ 1,

t 〈m〉 :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if t = 0,

t · ln
(
· · · ln (

ln(
︸ ︷︷ ︸
m natural logarithms

1/t)
) · · ·

)
if 0 < t ≤ (me)−1,

(me)−1 if t > (me)−1,

(4.93)

where me is the m-th tetration of e (involving m copies of e, combined by
exponentiation), i.e.,

me := ee.
. .

e

︸︷︷︸
m copies of e

, the m-th fold exponentiation of e. (4.94)

We also agree to set 0e := 1. Hence, inductively, for each integer m ∈ N0 and each
t ∈ [0,∞) we have
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t 〈m+1〉 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if t = 0,

t · ln
(
t 〈m〉/t

)
if 0 < t ≤ (m+1e)−1,

(m+1e)−1 if t > (m+1e)−1.

(4.95)

For further reference, it is useful to note that elementary calculus gives that this
function enjoys the following properties:

[0,∞) � t �−→ t 〈m〉 ∈ [0,∞) is continuous, non-decreasing, (4.96)

t 〈m〉 ≤ t 〈m−1〉 ≤ · · · ≤ t 〈1〉 ≤ (
eε−1/ε

) · t1−ε
for each t ∈ [0,∞), m ∈ N, ε ∈ (0, 1),

(4.97)

t ≤ max{1, (me)t} · t 〈m〉 for all t ∈ [0,∞) and m ∈ N0, (4.98)

(λt)〈m〉 ≤ λt 〈m〉 for all t ∈ [0,∞), m ∈ N0, and λ ∈ [1,∞), (4.99)

(tα)〈m〉 ≤ tα · ln
(
· · · ln (

ln(
︸ ︷︷ ︸
m natural logarithms

1/min{t, (me)−1})) · · ·
)

for all t ∈ [0,∞), m ∈ N, and α ∈ (0, 1]
(4.100)

(with the convention that the value at t = 0 for the function in the right-hand side
of the inequality in (4.100) is its limit as t → 0+). In particular,

t 〈m〉 ≤ t · ln
(
· · · ln (

ln(
︸ ︷︷ ︸
m natural logarithms

me/t)
) · · ·

)
for all t ∈ [0, 1], m ∈ N. (4.101)

In fact, up to a multiplicative constant, the opposite inequality in (4.101) is true as
well. Specifically,

(me)−1 · t · ln
(
· · · ln (

ln(
︸ ︷︷ ︸
m natural logarithms

me/t)
) · · ·

)
≤ t 〈m〉 for all t ∈ [0, 1], m ∈ N,

(4.102)
hence for each fixed m ∈ N we have

t 〈m〉 ≈ t · ln
(
· · · ln (

ln(
︸ ︷︷ ︸
m natural logarithms

me/t)
) · · ·

)
, uniformly for t ∈ [0, 1]. (4.103)
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Here is the basic result mentioned earlier. Its proof is inspired by that of [61,
Theorem 4.36, pp. 2728-2729].

Theorem 4.2 Let� ⊆ Rn be a UR domain. Abbreviate σ := Hn−1�∂� and denote
by ν the geometric measure theoretic outward unit normal to�. Fix an integrability
exponent p ∈ (1,∞) along with a Muckenhoupt weight w ∈ Ap(∂�, σ), and recall
the earlier convention of using the same symbol w for the measure associated with
the given weight w as in (2.509).

Next, consider a complex-valued function k ∈ CN(Rn \ {0}) which is even and
positive homogeneous of degree −n, where N = N(n) ∈ N is a sufficiently large
integer. Associate with this function and the set � the maximal operator T∗ whose
action on each given function f ∈ Lp(∂�,w) is defined as

T∗f (x) := sup
ε>0

∣∣Tεf (x)
∣∣ for each x ∈ ∂�, (4.104)

where, for each ε > 0,

Tεf (x) :=
ˆ

y∈∂�
|x−y|>ε

〈x − y, ν(y)〉k(x − y)f (y) dσ(y) for all x ∈ ∂�. (4.105)

Then for each m ∈ N there exists some Cm ∈ (0,∞), which depends only on
m, n, p, [w]Ap , and the UR constants of ∂� such that, with the piece of notation
introduced in (4.93), one has

‖T∗‖Lp(∂�,w)→Lp(∂�,w) ≤ Cm

( ∑

|α|≤N
sup
Sn−1

|∂αk|
)
‖ν‖〈m〉[BMO(∂�,σ)]n . (4.106)

Moreover, when ‖ν‖[BMO(∂�,σ)]n is sufficiently small relative to n, p, [w]Ap , and
the Ahlfors regularity constant of ∂� one may take Cm ∈ (0,∞) appearing in
(4.106) to depend itself only on said entities (i.e., n, p, [w]Ap , the Ahlfors regularity
constant of ∂�) and m.

Before presenting the proof of this theorem, several comments are in order.

Remark 4.1 It is of interest to compare the estimate in the above theorem with the
corresponding estimate from Proposition 3.4. Specifically, estimate (3.79) applied
with � := ∂� gives that for T∗ as in (4.104) we have

‖T∗‖Lp(∂�,w)→Lp(∂�,w) ≤ C(∂�, p, [w]Ap)
∥
∥k

∣
∣
S n−1

∥
∥
C N(Sn−1)

, (4.107)

where C(∂�, p, [w]Ap) ∈ (0,∞) depends on ∂� solely through its UR constants.
We observe that, in sharp contrast to this estimate, (4.106) features in the right-hand
side ‖ν‖〈m〉[BMO(∂�,σ)]n as a multiplicative factor, something which the UR constants
of ∂� cannot control.
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Indeed, for (3.79) no provisions are in place to take advantage of the specific alge-
braic format of the present integral kernel 〈x−y, ν(y)〉k(x−y). For Proposition 3.4
to apply, this integral kernel needs to be dismantled into its most primordial building
blocks, i.e., as

∑n
j=1 kj (x−y)νj (y)with kj (z) := zj k(z) for each point z ∈ Rn\{0}

and j ∈ {1, . . . , n}. Since multiplication by νj may be absorbed with the function
f (without changing its membership, or increasing its size, in the Muckenhoupt
weighted Lebesgue space Lp(∂�,w)), Proposition 3.4 may then finally be invoked
in relation to each maximal operator associated with the kernel kj . Estimate (3.79),
the end-product of such an approach, is then rendered insensitive to the flatness of
∂�.

As an example, consider the scenario in which � is a half-space in Rn. While
is apparent from (4.104)–(4.105) that in this case ‖T∗‖Lp(∂�,w)→Lp(∂�,w) = 0,
estimate (3.79) only gives ‖T∗‖Lp(∂�,w)→Lp(∂�,w) < +∞. By way of contrast,
since in this case ‖ν‖[BMO(∂�,σ)]n = 0 given that ν is a constant vector, (4.106)
accurately predicts ‖T∗‖Lp(∂�,w)→Lp(∂�,w) = 0.

Remark 4.2 In view of (2.118) and (4.103), in the estimate recorded in (4.106) we
could use

‖ν‖[BMO(∂�,σ)]n · ln
(
· · · ln (

ln(
︸ ︷︷ ︸
m natural logarithms

me/‖ν‖[BMO(∂�,σ)]n)
) · · ·

)
(4.108)

in place of ‖ν‖〈m〉[BMO(∂�,σ)]n . In particular, if we abbreviate

‖ν‖∗ := ‖ν‖[BMO(∂�,σ)]n , (4.109)

then corresponding to m = 1 we thus obtain

‖T∗‖Lp(∂�,w)→Lp(∂�,w) ≤ C�

( ∑

|α|≤N
sup
Sn−1

|∂αk|
)
‖ν‖∗ ln

(
e/‖ν‖∗

)
, (4.110)

corresponding to m = 2 we have

‖T∗‖Lp(∂�,w)→Lp(∂�,w) ≤ C�

( ∑

|α|≤N
sup
Sn−1

|∂αk|
)
‖ν‖∗ ln

(
ln

(
ee/‖ν‖∗

))
,

(4.111)

etc., where in each case C� ∈ (0,∞) depends only on n, p, [w]Ap , and the UR
constants of ∂�. In particular, all the aforementioned operator norms have at most
linear growth in ‖ν‖∗, up to arbitrarily many iterated logarithms.

In the same vein, we may rely on the property recorded in (4.97) and we deduce
from (4.106) that for each ε ∈ (0, 1) we have
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‖T∗‖Lp(∂�,w)→Lp(∂�,w) ≤
(
eε−1/ε

) · C�
( ∑

|α|≤N
sup
Sn−1

|∂αk|
)
‖ν‖1−ε

[BMO(∂�,σ)]n ,

(4.112)

where C� ∈ (0,∞) depends only on n, p, [w]Ap , and the UR constants of ∂�.

Remark 4.3 In the context of Theorem 4.2, estimate (4.106) continues to hold with
a fixed constant Cm ∈ (0,∞) when the integrability exponent and the Muckenhoupt
weight are allowed to vary with control. Specifically, an inspection of the proof of
Theorem 4.2 given below shows that for each compact interval I ⊂ (0,∞) and each
number W ∈ (0,∞) there exists a constant Cm ∈ (0,∞), which depends only on
m, n, I , W , and the UR constants of ∂�, with the property that (4.106) holds for
each p ∈ I and each w ∈ Ap(∂�, σ) with [w]Ap ≤ W .

Remark 4.4 From Proposition 3.4 we already know that T∗ is bounded on
Lp(∂�,w), with norm controlled in terms of n, k, p, [w]Ap , and the UR constants
of ∂�. The crux of the matter here is the more refined version of the estimate of the
operator norm of T∗ given in (4.106).

Remark 4.5 We focus on establishing the estimate claimed in (4.106) in the class of
operators whose integral kernel factors as the product of 〈x−y, ν(y)〉, i.e., the inner
product between the unit normal ν(y) and the “chord” x − y, with some matrix-
valued function k ∈ CN(Rn \ {0}) which is even and positive homogeneous of
degree −n, since it has been noted in (1.50) that this is the only type of kernel (in
the class of double layer-like integral operators) for which said estimate has a chance
of materializing.

Remark 4.6 The class of domains to which Theorem 4.2 applies includes all NTA
domains with an Ahlfors regular boundary.

Remark 4.7 In the unweighted case, i.e., for w ≡ 1 (or, equivalently, when the
measure w coincides with σ ), estimate (4.106) simply reads

‖T∗‖Lp(∂�,σ)→Lp(∂�,σ) ≤ Cm

( ∑

|α|≤N
sup
Sn−1

|∂αk|
)
‖ν‖〈m〉[BMO(∂�,σ)]n . (4.113)

It turns out that whenever (4.113) is available one may produce a weighted version
of such an estimate via interpolation. Specifically, recall the interpolation theorem
of Stein-Weiss (cf. [14, Theorem 5.4.1, p. 115]) according to which for any two
σ -measurable functions w0, w1 : ∂�→ [0,∞] and any θ ∈ (0, 1) we have

(
Lp(∂�,w0σ) , L

p(∂�,w1σ)
)
θ,p

= Lp(∂�, w̃σ ) where w̃ := w1−θ
0 · wθ

1 .

(4.114)
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Now, given a Muckenhoupt weight w ∈ Ap(∂�, σ), from (2.533) we know that
there exists some τ ∈ (1,∞) (which depends only on n, p, [w]Ap , and the Ahlfors
regularity constant of ∂�) such that wτ ∈ Ap(∂�, σ). Upon specializing (4.114) to
the case when θ := 1 − τ−1 ∈ (0, 1), w0 := wτ , and w1 := 1 we therefore obtain

(
Lp(∂�,wτσ) , Lp(∂�, σ)

)
θ,p

= Lp(∂�,w). (4.115)

As a result, since T∗ is a sub-linear operator which is bounded both onLp(∂�,wτσ)

(given that wτ ∈ Ap(∂�, σ)), and on Lp(∂�, σ) we may write

‖T∗‖Lp(∂�,w)→Lp(∂�,w)

≤ ‖T∗‖1−θ
Lp(∂�,wτ σ)→Lp(∂�,wτ σ)

‖T∗‖θLp(∂�,σ)→Lp(∂�,σ)

≤ C�,m,n,p,k,[w]Ap
(‖ν‖〈m〉[BMO(∂�,σ)]n

)θ
, (4.116)

with the last inequality provided by (4.113).
While the weighted norm inequality established in (4.116) is in the spirit of

(4.106), the manner in which the BMO semi-norm of the outward unit normal
vector ν is involved is less optimal, as the small exponent θ tempers the rate at
which the right-hand side of (4.116) vanishes as ‖ν‖[BMO(∂�,σ)]n → 0+ (indeed,
we have lim

t→0+
(t 〈m〉)θ /t 〈m〉 = +∞ for each fixed θ ∈ (0, 1)). Hence, a two-step

approach consisting first of proving the plain estimate (4.113) and, second, deriving
a weighted version based on the procedure based on interpolation described above,
only yields a weaker result than the one advertised in (4.106). Given this, in the proof
of (4.106) presented below we shall devise an alternative approach, which deals
with the weighted case directly, incorporating the weight in all relevant intermediary
steps.

We are ready to proceed to the task of providing the proof of Theorem 4.2.

Proof of Theorem 4.2 We shall write the proof of Theorem 4.2 using an approach
designed to shed light on the specific manner in which the right-hand side of (4.106)
depends on the BMO semi-norm of the geometric measure theoretic outward unit
normal vector ν to the set �.

The bulk of the proof is occupied by the justification of the following result
(strongly reminiscent of an induction step, that allows us to boot-strap a weaker
bound on ‖T∗‖Lp(∂�,w)→Lp(∂�,w) to a stronger one): knowing that there exists a
function

ψ : [0,∞) −→ [0,∞) (4.117)

which is quasi-increasing near the origin, i.e.,
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there exist t∗ > 0 and C ∈ [1,∞) such that

ψ(t0) ≤ Cψ(t1) whenever 0 ≤ t0 < t1 < t∗,
(4.118)

such that for each exponent p ∈ (1,∞) and each weight w ∈ Ap(∂�, σ) there
exists a constant C ∈ (0,∞), depending only on n, p, [w]Ap , the UR constants of
∂�, and ψ , with the property that

‖T∗‖Lp(∂�,w)→Lp(∂�,w) ≤ C
( ∑

|α|≤N
sup
Sn−1

|∂αk|
)
ψ
(‖ν‖[BMO(∂�,σ)]n

)
, (4.119)

implies that for each given integrability exponent p ∈ (1,∞), each Muckenhoupt
weight w ∈ Ap(∂�, σ), and each function

φ : [0,∞) −→ [0,∞) (4.120)

satisfying

inf{φ(t) : t ≥ t̃ } > 0 for each t̃ > 0,

φ(̃t) ≥ lim inf
t↘t̃

φ(t) for each t̃ > 0,

φ(0) = lim
t→0+

φ(t) = 0, φ′(0) := lim
t→0+

φ(t)/t = ∞,

and ψ(t) · φ(t)−1 · e−φ(t)/t = O(1) as t → 0+,

(4.121)

there exists a constant C ∈ (0,∞) depending only on n, p, [w]Ap , the UR constants
of ∂�, ψ , and φ, such that we also have

‖T∗‖Lp(∂�,w)→Lp(∂�,w) ≤ C
( ∑

|α|≤N
sup
Sn−1

|∂αk|
)
φ
(‖ν‖[BMO(∂�,σ)]n

)
. (4.122)

Henceforth we shall summarize the above claim by simply saying that “(4.119)
implies (4.122).”

In connection with (4.121) we wish to make two remarks. Our first remark
pertains to the case when we assume

lim
t→0+

ψ(t)/t = ∞. (4.123)

In particular,

te := sup
{
to ∈ (0,∞) : ψ(t)/t > e for all t ∈ (0, to)

} ∈ (0,∞] (4.124)

is well defined and
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ψ(t)/t > e for all t ∈ (0, te). (4.125)

Then among all functions φ : [0,∞) → [0,∞) satisfying the last property in
(4.121) the smallest (up to multiplicative constants) in terms of behavior near the
origin is actually the function

ψ̂ : [0,∞) −→ [0,∞) given for each t ≥ 0 by

ψ̂(0) := 0, ψ̂(t) := t ln(ψ(t)/t) if t ∈ (0, te),

and ψ̂(t) := te ln(ψ(te)/te) for all t ∈ [te,∞).

(4.126)

To justify the minimality of (4.126), observe that the property in the last line of
(4.121) implies that there exist tb,M ∈ (0,∞) such that

ψ(t) ≤ Mφ(t) · eφ(t)/t for each t ∈ (0, tb). (4.127)

Elementary calculus gives

xex ≤ e2x−1 for each x ∈ [0,∞). (4.128)

From this used with x := φ(t)/t and (4.127) we then obtain

ψ(t)/t ≤ Me2φ(t)/t−1 for each t ∈ (0, tb). (4.129)

In turn, this forces

1
2 t ln

(
eψ(t)/Mt

) ≤ φ(t) for each t ∈ (0, tb), (4.130)

and since thanks to (4.123) we have

lim
t→0+

1
2 t ln

(
eψ(t)/Mt

)

t ln(ψ(t)/t)
= lim

t→0+

1
2 ln(e/M)+ 1

2 ln(ψ(t)/t)

ln(ψ(t)/t)

= 1

2
+ 1

2
ln(e/M) lim

t→0+
1

ln(ψ(t)/t)
= 1

2
, (4.131)

we ultimately conclude that

given any φ : [0,∞) → [0,∞) satisfying the last property
in (4.121) it follows that φ(t) dominates, up to a multiplicative
constant, ψ̂(t) for all t ≥ 0 sufficiently close to 0.

(4.132)

This justifies the claim about the minimality of ψ̂ made in the previous paragraph.
The second remark we wish to make in connection with (4.121) is that if in

addition to (4.118) and (4.123) we also assume that
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ψ is continuous and lim
t→0+

t ln(ψ(t)/t) = 0, (4.133)

then

the function ψ̂ defined in (4.126) is continuous, quasi-increasing
near the origin (in the sense of (4.118)), lim

t→0+
t ln(ψ̂(t)/t) = 0,

and the function φ := ψ̂ satisfies all properties listed in (4.121).

(4.134)

That ψ̂ is continuous is clear from (4.126) and (4.133). In particular, φ := ψ̂

satisfies the second property listed in (4.121). To check the second claim made in
(4.134), observe that

(0,∞) � y �−→ x ln(y/x) is a strictly increasing function for
each fixed x ∈ (0,∞), and each fixed y ∈ (0,∞) the function
(0, y/e) � x �−→ x ln(y/x) is also strictly increasing.

(4.135)

If t∗ > 0 and C ∈ (0,∞) are as in (4.118), if te ∈ (0,∞) is as in (4.125), and if
t∗ > 0 is small enough such that

max{C, e/C} ≤ ψ(t)/t for each t ∈ (0, t∗), (4.136)

(something we may always arrange, thanks to the property assumed in (4.123)) then
whenever 0 ≤ t0 < t1 < min{t∗, t∗, te} we may write (using (4.126), (4.118),
(4.125), (4.135), and (4.136))

ψ̂(t0) = t0 ln(ψ(t0)/t0) ≤ t0 ln(Cψ(t1)/t0) ≤ t1 ln(Cψ(t1)/t1)

= t1 ln(C)+ t1 ln(ψ(t1)/t1) ≤ 2t1 ln(ψ(t1)/t1) = 2ψ̂(t1), (4.137)

ultimately proving that ψ̂ is, as claimed, quasi-increasing near the origin. In fact,
the same type of argument as in (4.137) (with C := 1) shows that

if the original function ψ is genuinely non-decreasing, then the
function ψ̂ associated with ψ as in (4.126) is strictly increasing
on (0, te) and constant thereafter.

(4.138)

Next, (4.125) and (4.126) readily imply (bearing in mind that the function ψ is
continuous) that inf{ψ̂(t) : t ≥ t̃ } > 0 for each t̃ > 0. The fact that ψ̂ is continuous
at the origin is seen from (4.126) and (4.133). Furthermore, (4.123) implies

lim
t→0+

ψ̂(t)/t = lim
t→0+

ln(ψ(t)/t) = ∞. (4.139)

Let us also note here that (4.139), (4.126), the fact that ln(ln x) ≤ ln x for each
x > 1, and (4.133) allow us to write
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0 ≤ lim inf
t→0+

t ln(ψ̂(t)/t) ≤ lim sup
t→0+

t ln(ψ̂(t)/t) = lim sup
t→0+

t ln
(

ln(ψ(t)/t)
)

≤ lim sup
t→0+

t ln(ψ(t)/t) = 0, (4.140)

ultimately proving that, as claimed, lim
t→0+

t ln(ψ̂(t)/t) = 0. Finally, (4.126) and

(4.123) give

ψ(t) · ψ̂(t)−1 · e−ψ̂(t)/t = ψ(t) · 1

t ln(ψ(t)/t)
· e− ln(ψ(t)/t)

= 1

ln(ψ(t)/t)
= o(1) as t → 0+. (4.141)

This completes the proof of (4.134).
Assuming for the time being that (4.119) implies (4.122), let us explain how

this inductive step may be used to establish (4.106). From Proposition 3.4 (which
guarantees that the maximal operator T∗ is bounded inLp(∂�,w) for each exponent
p ∈ (1,∞) and each weight w ∈ Ap(∂�, σ) with norm controlled solely in terms
of n, p, [w]Ap , and the UR constants of ∂�) we conclude that (4.119) holds for the
constant function

ψ0(t) := 1 for each t ∈ [0,∞). (4.142)

Incidentally, we may recast this as ψ0(t) = t 〈0〉 for each t ∈ [0,∞) (cf. (4.92)).
This choice of function satisfies (4.118) (in fact, ψ0 is non-decreasing), as well as
(4.123) and (4.133). Granted these, we may then conclude from (4.134) and the
working hypothesis, according to which (4.119) implies (4.122), that (4.122) holds
with

ψ1 := ψ̂0 (4.143)

playing the role of the function φ. This selection of the function φ is actually
optimal, since ψ̂0 enjoys the minimality property described in (4.132). Specifically,
given any φ : [0,∞) → [0,∞) satisfying the last property in (4.121) with
ψ := ψ0 it follows that φ(t) dominates, up to a multiplicative constant, the quantity
ψ1(t) = ψ̂0(t) for all t ≥ 0 sufficiently close to 0.

In addition, from (4.134) and (4.138) we see that

the function ψ1 is continuous, strictly increasing near the origin,
globally nondecreasing, and satisfies lim

t→0+
ψ1(t)/t = ∞ as well

as lim
t→0+

t ln(ψ1(t)/t) = 0.
(4.144)
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In fact, according to (4.124)–(4.126), we have

ψ1 : [0,∞) −→ [0,∞) is given for each t ≥ 0 by

ψ1(0) := 0, ψ1(t) := t ln(1/t) if t ∈ (0, 1/e),

and ψ1(t) := 1/e for all t ∈ [1/e,∞),

(4.145)

hence (cf. (4.93))

ψ1(t) = t 〈1〉 for each t ∈ [0,∞). (4.146)

In view of the aforementioned properties of ψ1 and the fact that (4.122) holds with
ψ1 playing the role of the function φ, the present working hypothesis (according to
which (4.119) implies (4.122)) shows that (4.122) also holds with ψ2 := ψ̂1 playing
the role of the function φ, and that ψ2 satisfies similar properties to those listed in
(4.144). Actually, (4.145) and (4.124)–(4.126) yield a concrete description of ψ2,
namely:

ψ2 : [0,∞) −→ [0,∞) is given for each t ≥ 0 by

ψ2(0) := 0, ψ2(t) := t ln
(

ln(1/t)) if t ∈ (0, 1/ee),

and ψ2(t) := 1/ee for all t ∈ [1/ee,∞).

(4.147)

Equivalently (cf. (4.93)),

ψ2(t) = t 〈2〉 for each t ∈ [0,∞). (4.148)

Iterating this scheme m times then proves (see (4.95)) that (4.122) holds with φ

replaced by the function described (using notation introduced in (4.93)–(4.94)) as

ψm : [0,∞) −→ [0,∞) given by

ψm(t) = t 〈m〉 for each t ∈ [0,∞).
(4.149)

This induction establishes (4.106), modulo the proof of the fact that (4.119)
implies (4.122) (which we shall deal with momentarily). The above line of reasoning
explains the format of the conclusion in (4.106), while it also makes it clear that
(4.106) is the best outcome one can produce working under the assumption that
(4.119) implies (4.122).

On to the proof of the fact that (4.119) implies (4.122). Our working hypothesis
is that there exists some function ψ : [0,∞) → [0,∞) which is quasi-increasing
near the origin (in the sense of (4.118)) such that for each exponent p ∈ (1,∞)

and each weight w ∈ Ap(∂�, σ) the estimate recorded in (4.119) holds for some
constant C ∈ (0,∞) depending only on n, p, [w]Ap , the UR constants of ∂�, and
ψ . Having fixed a function φ as in (4.120)–(4.121), the goal is to prove (4.122).
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To get started, it is visible from (4.104)–(4.105) that the maximal operator
T∗ depends in a homogeneous fashion on the kernel function k. As such, by
working with k/K (in the case when k is not identically zero) for the choice
K := ∑

|α|≤N supSn−1 |∂αk|, matters are reduced to proving that whenever (4.118)
holds for any p ∈ (1,∞) and, in addition, we have

∑

|α|≤N
sup
Sn−1

|∂αk| ≤ 1 (4.150)

then for each integrability exponent p ∈ (1,∞) and each Muckenhoupt weight w
in Ap(∂�, σ) it is possible to find a constant C ∈ (0,∞) which depends only on n,
p, [w]Ap , ψ , φ, and the UR constants of ∂� such that

‖T∗‖Lp(∂�,w)→Lp(∂�,w) ≤ Cφ
(‖ν‖[BMO(∂�,σ)]n

)
. (4.151)

Henceforth, assume (4.150).
To proceed, fix an integrability exponent p ∈ (1,∞) and a Muckenhoupt weight

w ∈ Ap(∂�, σ). Pick a parameter δ∗ ∈ (0, 1). Along the way, we will impose
further restrictions on the size of δ∗, depending only on n, p, [w]Ap , the UR
constants of ∂�, and the functions ψ , φ. In the case when ‖ν‖[BMO(∂�,σ)]n ≥ δ∗,
the estimate claimed in (4.151) follows directly (simply by adjusting constants) from
the first line in (4.121) and Proposition 3.4, which ensures that the maximal operator
T∗ is bounded in Lp(∂�,w). Therefore, there remains to consider the case when
‖ν‖[BMO(∂�,σ)]n < δ∗. Assume this is the case and pick some δ such that

‖ν‖[BMO(∂�,σ)]n < δ < δ∗. (4.152)

Recall that our long-term goal is to prove (4.151) for some constant C ∈ (0,∞)

which depends only on n, p, [w]Ap , ψ , φ, and the UR constants of ∂�. Since we
may assume that δ∗ is sufficiently small relative to the Ahlfors regularity constant
of ∂� and the dimension n, we may invoke Theorem 2.3 which guarantees that

the set ∂� is unbounded and � satisfies a two-sided local John
condition with constants which depend only on the Ahlfors
regularity constant of ∂� and the dimension n; in particular, the
UR constants of ∂� are also controlled solely in terms of the
dimension n and the Ahlfors regularity constant of ∂�.

(4.153)

In addition, Proposition 2.15 ensures that there exists some constant C� ∈ (0,∞),
which depends only on n and the Ahlfors regularity constant of ∂�, such that for
each dilation factor μ ∈ [1,∞) we have

sup
z∈∂�

sup
R>0

sup
x,y∈(x,μR)

R−1
∣∣〈x − y, ν(z,R)

〉∣∣ ≤ C� · μ(1 + log2 μ)δ. (4.154)
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For reasons which are going to be clear momentarily, in addition to the truncated
operators Tε from (4.105) we shall need a version in which the truncation is
performed using a smooth cutoff function (rather than a characteristic function).
Specifically, fix a function ζ ∈ C∞(R) satisfying 0 ≤ ζ ≤ 1 on R and with the
property that ζ ≡ 0 in (−∞, 1] and ζ ≡ 1 in [2,∞). For each ε > 0 then define the
action of the smoothly truncated operator T(ε) on each f ∈ Lp(∂�,w) by setting

T(ε)f (x) :=
ˆ
∂�

ζ
( |x − y|

ε

)
〈x − y, ν(y)〉 k(x − y)f (y) dσ(y) (4.155)

for each x ∈ ∂�. Let us also define a smoothly truncated version of the maximal
operator (4.104) by setting, for each f ∈ Lp(∂�,w),

T(∗)f (x) := sup
ε>0

∣
∣T(ε)f (x)

∣
∣ at every point x ∈ ∂�. (4.156)

For the time being, the goal is to compare roughly truncated singular integral
operators with their smoothly truncated counterparts. To accomplish this task, for
each fixed γ ≥ 0 bring in a brand of Hardy–Littlewood maximal operator which
associates to each σ -measurable function f on ∂� the function Mγ f defined as

Mγ f (x) := sup
�x

( 


|f |1+γ dσ
)1/(1+γ )

for each x ∈ ∂�, (4.157)

where the supremum is taken over all surface balls  ⊆ ∂� containing the point x.
On to the task at hand, having fixed some ε > 0, for each f ∈ Lp(∂�,w) and each
x ∈ ∂� we may estimate

∣∣(Tεf − T(ε)f )(x)
∣∣ ≤

ˆ
(x,2ε)\(x,ε)

∣∣〈x − y, ν(y)〉∣∣ |k(x − y)||f (y)| dσ(y)

≤ Cε−1
 
(x,2ε)

∣∣〈x − y, ν(y)〉∣∣ |f (y)| dσ(y)

≤ Cε−1
 
(x,2ε)

∣∣〈x − y, ν(y)− ν(x,2ε)
〉∣∣|f (y)| dσ(y)

+ Cε−1
 
(x,2ε)

∣∣〈x − y, ν(x,2ε)
〉∣∣|f (y)| dσ(y)

≤ C

( 
(x,2ε)

∣∣ν(y)− ν(x,2ε)
∣∣
γ+1
γ dσ(y)

) γ
1+γ ( 

(x,2ε)
|f (y)|1+γ dσ(y)

) 1
1+γ
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+ C
(

sup
y∈(x,2ε)

ε−1
∣∣〈x − y, ν(x,2ε)

〉∣∣
) ( 

(x,2ε)
|f (y)|1+γ dσ(y)

) 1
1+γ

≤ Cδ · inf
(x,2ε)

Mγ f, (4.158)

using Hölder’s inequality, (2.102), (4.152), (4.154), and (4.157). Ultimately, the
estimate recorded in (4.158) implies that there exists some C ∈ (0,∞), which
depends only on γ , n, and the Ahlfors regularity constant of ∂�, with the property
that for each function f ∈ Lp(∂�,w) we have

∣∣T∗f (x)− T(∗)f (x)
∣∣ ≤ Cδ ·Mγ f (x) for each x ∈ ∂�. (4.159)

Henceforth we agree to fix γ ∈ (0, p − 1), which depends only on n, p, [w]Ap ,
and the Ahlfors regularity constant of ∂�, such that w ∈ Ap/(1+γ )(∂�, σ), with
[w]Ap/(1+γ ) controlled in terms of n, p, [w]Ap , and the Ahlfors regularity constant
of ∂�. From (2.533) we know that such a choice is possible.

To proceed, consider a dyadic grid D(∂�) on the Ahlfors regular set ∂� (as
in Proposition 2.19, presently used with � := ∂�). Also, choose a compactly
supported function f ∈ Lp(∂�,w). Note that for each ε > 0 the function T(ε)f

is continuous on ∂�, by Lebesgue’s Dominated Convergence Theorem (whose
applicability in the present setting is ensured by Lemma 2.15). Since the pointwise
supremum of any collection of continuous functions is lower-semicontinuous, we
conclude that for each λ > 0 the set

{
x ∈ ∂� : T(∗)f (x) > λ

}
is relatively open in ∂�. (4.160)

Next, fix a reference point x0 ∈ ∂� and abbreviate 0 := (x0, 2−m) for some
m ∈ Z chosen so that

supp f ⊆ 20. (4.161)

We emphasize that all subsequent constants are going to be independent of the
function f , the point x0, and the integer m. Upon recalling (2.500), define

Q0 :=
{
Q ∈ Dm(∂�) : Q ∩ 20 �= ∅

}
(4.162)

then introduce

I0 :=
⋃

Q∈Q0

Q. (4.163)

By design, I0 is a relatively open subset of ∂�. Recall the parameter a1 > 0
appearing in (2.502) of Proposition 2.19. We claim that
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I0 ⊆ a0 where a := 2(1 + a1) > 2. (4.164)

Indeed, if x ∈ I0 then x ∈ Q for some Q ∈ Q0. In particular, Q ∩ 20 �= ∅ so we
may pick some y ∈ Q∩20. Then x, y ∈ Q ⊆ (xQ, a12−m) by (2.502), where xQ
denotes the “center” of the dyadic cube Q. Consequently, |x−y| < a12−m+1 which
permits us to estimate |x−x0| ≤ |x−y|+ |y−x0| < a12−m+1+2−m+1 = a ·2−m.
Thus x ∈ B(x0, a · 2−m) ∩ ∂� = a0, proving the inclusion in (4.164).

We also claim that

there exists a σ -measurable set N ⊆ ∂� with the property that
σ(N) = 0 and 20 \N ⊆ I0.

(4.165)

To justify this, recall from (2.504) that

N := ∂� \ (⋃
Q∈Dm(∂�) Q

)
is a σ -measurable set satisfying

σ(N) = 0 and ∂� \N = ⋃
Q∈Dm(∂�) Q.

(4.166)

Intersecting both sides of the last equality in (4.166) with 20 while bearing in mind
(4.162)–(4.163) then yields

20 \N =
⋃

Q∈Dm(∂�)

(
Q ∩ 20

) =
⋃

Q∈Q0

(
Q ∩ 20

) ⊆
⋃

Q∈Q0

Q = I0, (4.167)

ultimately proving (4.165).
Let us now define

A := θ · φ(δ)−1 ∈ (0,∞) for some fixed small θ ∈ (0, 1). (4.168)

At various stages in the proof we shall make specific demands on the size of θ ,
though always in relation to the background geometric parameters, the weight, and
the function φ, namely n, p, [w]Ap , φ, and the Ahlfors regularity constant of ∂�
(the final demand of this nature is made in connection with (4.240)). We find it
convenient to abbreviate

η(θ, δ) (4.169)

:= C

{
θ1+γ + θ1+γ /2

(ψ(δ)
φ(δ)

· e−φ(δ)/δ
)1+γ /2 + e−(3+γ+2/γ )φ(δ)/δ

}
,

where C ∈ (0,∞) is a constant which depends only on n, p, [w]Ap , ψ , φ, and
the Ahlfors regularity constant of ∂�. We agree to retain the notation η(θ, δ) even
when C ∈ (0,∞) may occasionally change in size (while retaining the same nature,
however).

Since w ∈ Ap(∂�, σ) ⊆ A∞(∂�, σ), there exists some small number τ > 0
such that (2.537) holds. Our long-term goal is to obtain the following type of good-
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λ inequality: there exists C ∈ (0,∞) as above (entering the makeup of the entity
η(θ, δ) defined in (4.169)) such that for each λ > 0 we have

w
({
x ∈ I0 : T∗f (x) > 4λ and Mγ f (x) ≤ Aλ

})

≤ η(θ, δ)τ · w
({
x ∈ I0 : T(∗)f (x) > λ

})
.

(4.170)

Here and elsewhere, we employ our earlier convention of using the same symbol
w for the measure associated with the given weight w as in (2.509). The reader is
also alerted to the fact that the maximal operator appearing in the right-hand side of
(4.170) employs smooth truncations (as in (4.156)).

To prove (4.170), fix an arbitrary λ > 0 and abbreviate

Fλ :=
{
x ∈ I0 : T∗f (x) > 4λ and Mγ f (x) ≤ Aλ

}
. (4.171)

Proposition 3.4 implies that T∗f is a σ -measurable function. Since so is Mγ f (cf.
[7] or [111, §7.6] for a proof), it follows that Fλ is necessarily a σ -measurable
set. From (4.160) and the fact that I0 is a relatively open subset of ∂� we also
conclude that

{
x ∈ I0 : T(∗)f (x) > λ

}
is a relatively open subset of ∂� (hence, σ -

measurable). As such, the good-λ inequality is meaningfully formulated in (4.170).
Clearly, it is enough to consider the case Fλ �= ∅ since otherwise (4.170) is

trivially satisfied by any choice of C ∈ (0,∞). For the remainder of the proof,
assume this is the case. Since Fλ ⊆ I0 and I0 ⊆ a0, we conclude that

Fλ ⊆ I0 ⊆ a0 and sup
Fλ

Mγ f ≤ Aλ. (4.172)

To proceed, decompose I0 = Pλ ∪ Sλ (disjoint union) where, with the smoothly
truncated maximal operator T(∗) as in (4.156),

Pλ :=
{
x ∈ I0 : T(∗)f (x) ≤ λ

}
and Sλ :=

{
x ∈ I0 : T(∗)f (x) > λ

}
. (4.173)

As a consequence of (4.160) and the fact that I0 is a relatively open subset of ∂�, the
set Sλ is itself a relatively open subset of ∂�. Moreover, using (4.159) and (4.172),
for each point x ∈ Fλ we may estimate

4λ < T∗f (x) ≤ T(∗)f (x)+ Cδ ·Mγ f (x) ≤ T(∗)f (x)+ CδAλ

= T(∗)f (x)+ Cθ
( δ

φ(δ)

)
λ < T(∗)f (x)+ 3λ, (4.174)

by our choice of A in (4.168), the fact that θ ∈ (0, 1), and taking δ∗ small enough
to begin with (while keeping in mind that limt→0+ t/φ(t) = 0; cf. (4.121)). From
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(4.174) we see that T(∗)f (x) > λ, hence x ∈ Sλ which ultimately goes to show that
Fλ ⊆ Sλ. Thus,

Sλ is a nonempty relatively open subset of
∂�, with the property that Fλ ⊆ Sλ ⊆ I0.

(4.175)

We first treat the case in which there exists Q0 ∈ Q0 such that Pλ ∩Q0 = ∅ or,
equivalently,

Q0 ⊆ Sλ. (4.176)

Apply Theorem 2.6 to the (center and radius of the) surface ball a0. This
guarantees the existence of three constants C0, C1, C2 ∈ (0,∞) of a purely
geometric nature (i.e., depending only on n and the Ahlfors regularity constant of
∂�) with the following significance. Take

φ̃ := (1 + γ )(1 + γ /2)

C2(γ /2)
φ = 3 + γ + 2/γ

C2
φ (4.177)

to play the role of the function in (2.360)–(2.361)). Assuming δ∗ ∈ (0, 1) to be
sufficiently small to begin with, we then have the decomposition

a0 ⊆ G ∪ E, (4.178)

where G and E are disjoint σ -measurable subsets of ∂� satisfying properties
implied by (2.363)–(2.368) (relative to x0 and the scale r := a2−m) in the present
setting. Also, G is contained in the graph G = {

x0 + x + h(x)�n : x ∈ H
}

of a
Lipschitz function h : H → R (where �n ∈ Sn−1 is a unit vector and H = 〈�n〉⊥ is
the hyperplane in Rn orthogonal to �n) such that

sup
x,y∈H
x �=y

|h(x)− h(y)|
|x − y| ≤ C0φ̃(δ), (4.179)

whereas E satisfies

σ(E) ≤ C1e−C2φ̃(δ)/δσ (a0). (4.180)

Since supp f ⊆ 20 and a > 2 it follows that f = f 1a0 . Based on this
observation and the fact that I0 ⊆ a0 (cf. (4.172)), we may then estimate

σ(Fλ) ≤ σ
({
x ∈ a0 : T∗

(
f 1a0

)
(x) > 4λ

})
. (4.181)

By further decomposing f 1a0 = f 1G+f 1E (cf. (4.178) and the fact that we have
f = f 1a0 ), then using the sub-linearity of T∗, as well as (4.178), (4.180), and
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(4.177) we obtain

σ
({
x ∈ a0 : T∗

(
f 1a0

)
(x) > 4λ

})

≤ σ
({
x ∈ G : T∗

(
f 1G

)
(x) > 2λ

})

+ σ
({
x ∈ G : T∗

(
f 1E

)
(x) > 2λ

})

+ C1e−(3+γ+2/γ )φ(δ)/δσ (a0). (4.182)

To bound the first term in the right-hand side of (4.182), the idea is to use the fact
that G is contained in the graph G of the function h, then employ Lemma 4.2 while
taking advantage of (4.179). Turning to specifics, denote by σ̃ the surface measure
on G, and by T̃∗ the maximal operator associated with G as in (4.78) (much as T∗ in
(4.104)–(4.105) is associated with ∂�). That is, for each f̃ ∈ Lp(G, σ̃ ) set

T̃∗f̃ (x) := sup
ε>0

∣∣T̃εf̃ (x)
∣∣, ∀ x ∈ G, (4.183)

where for each ε > 0 we have set

T̃εf̃ (x) :=
ˆ

y∈G
|x−y|>ε

〈x − y, ν̃(y)〉k(x − y)f̃ (y) dσ̃ (y), ∀ x ∈ G, (4.184)

with ν̃ denoting the unit normal vector to the Lipschitz graph G, pointing toward the
upper-graph of the function h. From (2.377) we know that

ν(x) = ν̃(x) at σ -a.e. point x ∈ G. (4.185)

We continue by fixing a point x̃ ∈ Fλ (which, according to (4.172), also places
x̃ into a0). As regards the first term in the right-hand side of (4.182), we may rely
on (4.185), the fact that the measures σ and σ̃ agree on ∂� ∩ G (as they are both
manifestations of Hn−1), (4.183)–(4.184), (4.104)–(4.105), Chebyshev’s inequality,
Lemma 4.2, (4.177), (4.161) (and the fact that a > 2), (4.178), (4.157), (4.172), and
(4.168) to estimate

σ
({
x ∈ G : T∗

(
f 1G

)
(x) > 2λ

}) = σ̃
({
x ∈ G : T̃∗

(
f 1G

)
(x) > 2λ

})

≤ σ̃
({
x ∈ G : T̃∗

(
f 1G

)
(x) > 2λ

})

≤ 1

(2λ)1+γ

ˆ
G
|T̃∗(f 1G)|1+γ dσ̃ ≤ C

φ̃(δ)1+γ

λ1+γ

ˆ
G
|f 1G|1+γ dσ̃
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= C
φ(δ)1+γ

λ1+γ

ˆ
G

|f |1+γ dσ ≤ Cφ(δ)1+γ σ (a0)

λ1+γ

 
a0

|f |1+γ dσ

≤ Cφ(δ)1+γ σ (a0)

λ1+γ
[
Mγ f (̃x)

]1+γ ≤ C (Aφ(δ))1+γ σ (a0)

= C θ1+γ σ (a0), (4.186)

for some constant C ∈ (0,∞) which depends only on n, p, [w]Ap , ψ , φ, and the
Ahlfors regularity constant of ∂�.

As regards the second term in the right-hand side of (4.182), once again fix a
point x̃ ∈ Fλ (which then also belongs to a0). Also, assume that δ∗ ∈ (0, t∗). We
may then use Chebyshev’s inequality, the hypothesis made in (4.119) (used with
p := 1 + γ /2 and w := 1), the assumption (4.150), (4.118), (4.152), the fact that
0 < δ∗ < t∗, Hölder’s inequality, (4.180), (4.157), (4.177), (4.172), and (4.168) to
obtain2

σ
({
x ∈ G : T∗

(
f 1E

)
(x) > 2λ

})

≤ σ
({
x ∈ ∂� : T∗

(
f 1E

)
(x) > 2λ

})

≤ 1

(2λ)1+γ /2

ˆ
∂�

(
T∗

(
f 1E

))1+γ /2 dσ

≤
( ‖T∗‖L1+γ /2(∂�,σ)→L1+γ /2(∂�,σ)

)1+γ /2

(2λ)1+γ /2

ˆ
∂�

(|f | 1E
)1+γ /2 dσ

≤ (Cψ(δ))1+γ /2

λ1+γ /2

ˆ
a0

|f |1+γ /2 1E dσ

≤ (Cψ(δ))1+γ /2

λ1+γ /2
σ(E)

γ/2
1+γ

(ˆ
a0

|f |1+γ dσ

) 1+γ /2
1+γ

= (Cψ(δ))1+γ /2

λ1+γ /2

( σ(E)

σ(a0)

) γ /2
1+γ

( 
a0

|f |1+γ dσ

) 1+γ /2
1+γ

σ (a0)

2 It is from the format of (4.187) that the value of having the last property in (4.121) is most
apparent. Indeed, since the left-most side of (4.187) is obviously dominated by σ(G) ≤ σ(a0)

(cf. (4.178)), the estimate derived in (4.187) is only useful if ψ(δ)φ(δ)−1 · exp
{
− φ(δ)

δ

}
stays

bounded for δ close to 0.
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≤ C
ψ(δ)1+γ /2

λ1+γ /2
exp

{
− C2(γ /2)φ̃(δ)

(1 + γ )δ

} [
Mγ f (̃x)

]1+γ /2
σ(a0)

≤ C
(
Aψ(δ)

)1+γ /2 · exp
{
− (1 + γ /2)φ(δ)

δ

}
σ(a0)

= Cθ1+γ /2
[
ψ(δ)φ(δ)−1 · exp

{
− φ(δ)

δ

}]1+γ /2

σ(a0), (4.187)

where C ∈ (0,∞) depends only on n, p, [w]Ap , ψ , φ, and the Ahlfors regularity
constant of ∂�. Gathering (4.182), (4.186), and (4.187) then yields

σ
({
x ∈ a0 : T∗

(
f 1a0

)
(x) > 4λ

})

≤ C

{
θ1+γ + θ1+γ /2

(ψ(δ)
φ(δ)

· e−φ(δ)/δ
)1+γ /2 + e−(3+γ+2/γ )φ(δ)/δ

}
σ(a0)

= η(θ, δ)σ (a0), (4.188)

where η(θ, δ) ∈ (0,∞) is as in (4.169). Finally, from (4.188) and (4.181) we see
that

σ(Fλ) ≤ η(θ, δ)σ (a0), (4.189)

where η(θ, δ) ∈ (0,∞) is as in (4.169).
Moving on, observe that (2.502) implies that there exists a point xQ0 ∈ ∂� with

the property that

(xQ0 , a02−m) ⊆ Q0 ⊆ (xQ0 , a12−m). (4.190)

From this inclusion and (4.162) we then conclude that there exists some c ∈ (0,∞),
which only depends on the Ahlfors regularity constant of ∂�, with the property that
a0 ⊆ c(xQ0 , a12−m). As a consequence of this inclusion we may write (for
some C ∈ (0,∞) which depends only on n, p, [w]Ap , and the Ahlfors regularity
constant of ∂�)

w(a0) ≤ w
(
c(xQ0 , a12−m)

) ≤ C w
(
(xQ0 , a02−m)

) ≤ Cw(Q0), (4.191)

where we have also used the fact that w is a doubling measure (cf. (2.535)) and
(4.190). With this in hand, we may now estimate

w(Fλ) ≤ η(θ, δ)τ · w(a0) ≤ η(θ, δ)τ · w(Q0)

≤ η(θ, δ)τ · w(Sλ), (4.192)
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where the first inequality uses (2.537), the fact that Fλ ⊆ a0 (cf. (4.172)), and
(4.189), the second inequality is based on (4.191), while the last inequality is a
consequence of (4.176). Therefore (4.170) holds whenever there exists Q0 ∈ Q0
such that Pλ ∩Q0 = ∅.

To complete the proof of (4.170), it remains to consider the case Pλ ∩ Q �= ∅

for each Q ∈ Q0. In this scenario, consider an arbitrary dyadic cube Q ∈ Q0. From
(4.163) we know that Q ⊆ I0. Subdivide Q dyadically and stop when Pλ∩Q′ = ∅.
This process produces a family of pairwise disjoint (stopping time) dyadic cubes
{Qj }j∈JQ ⊂ D(∂�) such that Qj ∩ Pλ = ∅, Qj ⊆ Q but Qj �= Q (since we have
Qj ∩ Pλ = ∅ but Q ∩ Pλ �= ∅), and Q′ ∩ Pλ �= ∅ for all Q′ ∈ D(∂�) such that
Qj � Q′ ⊆ Q. In particular Qj � Q for every j ∈ JQ and Q̃j , the dyadic parent
of Qj , satisfies Q̃j ⊆ Q. With the σ -nullset N as in (2.505), we now claim that

⋃

j∈JQ
Qj ⊆ Sλ ∩Q ⊆

( ⋃

j∈JQ
Qj

)
∪N. (4.193)

To justify the first inclusion above, observe that if j ∈ JQ then Qj ⊆ Sλ ∩ Q,
since Qj ⊆ Q ⊆ I0 and Qj ∩ Pλ = ∅ imply that Qj ⊆ Q \ Pλ = Q ∩ Sλ. This
establishes the first inclusion in (4.193). As regards the second inclusion claimed in
(4.193), consider an arbitrary point x ∈ (

Sλ ∩Q
) \ N . Then T(∗)f (x) > λ which,

in view of (4.160), ensures that we may find a surface ball x := (x, rx) such that
T(∗)f (y) > λ for every y ∈ x . Thanks to (2.502) and (2.504) we may then choose
a dyadic cube Qx ∈ D(∂�) such that x ∈ Qx and Qx ⊆ x ∩Q ⊆ I0. This forces
Qx ⊆ Sλ∩Q, hence Qx ∩Pλ = ∅. By the maximality of the family chosen above,
Qx ⊆ Qj for some j ∈ JQ which goes to show that x ∈ Qj . Ultimately, this proves
the second inclusion in (4.193).

Going further, the idea is to carry out the stopping time argument just described
for each dyadic cubeQ ∈ Q0. For ease of reference, organize the resulting collection
of dyadic cubes

{
Qj : Q ∈ Q0 and j ∈ JQ

}
(which is an at most countable set) as

a single-index family
{
Q�

}
�∈I of mutually disjoint dyadic cubes; in particular,

⋃

Q∈Q0

⋃

j∈JQ
Qj =

⋃

�∈I
Q�, (4.194)

with the latter union comprised of pairwise disjoint dyadic cubes in ∂�. Note that
Sλ ∩Q might be empty for some Q ∈ Q0 and in this case JQ = ∅ (i.e., the family
of cubes {Qj }j∈JQ is empty, since there are no stopping time dyadic cubes produced
in this case). However, (4.163) and (4.175) imply that Sλ ∩Q cannot be empty for
every Q ∈ Q0 and, as a consequence, I �= ∅. Going further, using (4.163) and the
fact that Sλ ⊆ I0 (cf. (4.173)) we may write

⋃

Q∈Q0

(Sλ ∩Q) = Sλ (4.195)
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which further entails, on account of (4.194) and (4.193), that

⋃

�∈I
Q� ⊆ Sλ ⊆

(⋃

�∈I
Q�

)
∪N. (4.196)

By construction, for each index � ∈ I there exists a point x∗� such that

x∗� ∈ Q̃� ∩ Pλ = Q̃� ∩
(
I0 \ Sλ

)
, (4.197)

where Q̃� denotes the dyadic parent of Q� (cf. item (4) in Proposition 2.19). For
each � ∈ I we let � := Q�

and ̃� := Q̃�
be as in (2.502). Pressing on, split

the collection {�}�∈I into two sub-classes. Specifically, bring in

I1 :=
{
� ∈ I : there exists x∗∗� ∈ � such that Mγ f (x

∗∗
� ) ≤ Aλ

}

and I2 := I \ I1.
(4.198)

Hence, by design, Fλ ∩ � = ∅ for each � ∈ I2. Recall now from (4.175) that
Fλ ⊆ Sλ. From this, (4.196), and (2.502) we then obtain (bearing in mind that
σ(N) = 0; cf. (2.505))

w(Fλ) =
∑

�∈I
w(Fλ ∩Q�) ≤

∑

�∈I1

w(Fλ ∩�). (4.199)

Let us also consider

F� :=
{
x ∈ � : T∗f (x) > 4λ

}
for each � ∈ I1, (4.200)

and observe that this entails

Fλ ∩� ⊆ F� for each � ∈ I1. (4.201)

Our next goal is to prove that

σ(F�) ≤ η(θ, δ) · σ(�) for each � ∈ I1. (4.202)

Granted this, using (2.537) it would follow that

w(F�) ≤ η(θ, δ)τ · w(�) for each � ∈ I1 (4.203)

which, in concert with (4.199), (4.201), (2.502) plus the fact that w is a doubling
measure, and (4.196), would then imply

w(Fλ) ≤
∑

�∈I1

w(Fλ ∩�) ≤
∑

�∈I1

w(F�) ≤ η(θ, δ)τ ·
∑

�∈I1

w(�)
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≤ η(θ, δ)τ ·
∑

�∈I1

w(Q�) ≤ η(θ, δ)τ ·
∑

�∈I
w(Q�)

= η(θ, δ)τ · w(Sλ), (4.204)

finishing the justification of (4.170).
We now turn to the proof of (4.202). Fix � ∈ I1 and, in order to lighten notation,

in the sequel we agree to suppress the dependence of �, ̃�, F�, x∗� , and x∗∗� on the
index �, and simply write , ̃, F , x∗, and x∗∗, respectively. With this convention
in mind, observe first that

 ⊆ 2̃. (4.205)

To justify this inclusion, recall from (2.502) that we may write = B(xQ, rQ)∩∂�
and ̃ = B(xQ̃, rQ̃)∩∂�; moreover, since Q̃ is the parent of Q, we have rQ̃ = 2rQ.
Then for each x ∈  we have

|x − xQ̃| ≤ |x − xQ| + |xQ − xQ̃| < rQ + rQ̃ = (3/2)rQ̃ < 2rQ̃ (4.206)

which ultimately proves (4.205). Going forward, let us also denote by∗ the surface
ball of center x∗ and radius R := %·rQ, for a sufficiently large constant % ∈ (2,∞)

(depending only on the implicit constants in the dyadic grid construction, which in
turn depend only on the Ahlfors regularity constant of ∂�) chosen so that

2̃ ⊆ ∗. (4.207)

We then decompose

f = f1 + f2 where f1 := f 12∗ and f2 := f 1∂�\2∗ . (4.208)

By virtue of the sub-linearity of T∗ and the fact that  ⊆ ∗ ⊆ 4∗ (cf. (4.205)–
(4.207)) this implies

σ(F ) ≤ σ
({
x ∈  : T∗f1(x) > 2λ

})+ σ
({
x ∈  : T∗f2(x) > 2λ

})

≤ σ
({
x ∈ 4∗ : T∗f1(x) > 2λ

})+ σ
({
x ∈  : T∗f2(x) > 2λ

})
.

(4.209)

The contribution from f1 in the last line above is handled as in (4.178)–(4.180),
(4.182)–(4.188) by performing a decomposition of 4∗ as in Theorem 2.6. Indeed,
a0, x̃, f , and λ are replaced by 4∗, x∗∗, f1, and 1

2λ, respectively, and we use the
fact that Mγ f (x

∗∗) ≤ Aλ (cf. (4.198)), supp f1 ⊆ 2∗ ⊆ 4∗ (cf. (4.208)), and
σ(4∗) ≤ c · σ() for some c ∈ (0,∞) depending only on the Ahlfors regularity
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constant of ∂� (since ∂� is Ahlfors regular and the surface balls 4∗,  have
comparable radii) to run the same proof as before. The conclusion is that

σ
({
x ∈ 4∗ : T∗f1(x) > 2λ

}) ≤ η(θ, δ) · σ(). (4.210)

In view of the conclusion we seek (cf. (4.202)), this suits our purposes.
As for f2, recall that R is the radius of the surface ball ∗, and for each ε > 0 set

ε′ := max{ε, 2R}. Based on this choice of ε′, the definition of the truncated singular
integral operators in (4.105), the truncation in the definition of the function f2, the
estimate in (4.158) (presently used with x∗ in place of x and ε′ in place of ε), the
fact that x∗∗ ∈  ⊆ ∗ ⊆ (x∗, 2ε′) (cf. (4.198) and (4.205)–(4.207)), the fact
that Mγ f (x

∗∗) ≤ Aλ (cf. (4.198)), the definition of T(∗)f (x∗) (cf. (4.156)), the
membership of x∗ to Pλ (cf. (4.197)), and the first formula in (4.173), we may write

∣
∣Tεf2(x

∗)
∣
∣ = ∣

∣Tε′f (x∗)
∣
∣ ≤ |Tε′f (x∗)− T(ε′)f (x

∗)
∣
∣+ ∣

∣T(ε′)f (x∗)
∣
∣

≤ Cδ ·Mγ f (x
∗∗)+ T(∗)f (x∗) ≤ CδAλ+ λ

= Cθ
( δ

φ(δ)

)
λ+ λ ≤ 3

2λ, (4.211)

with the last line a consequence of our choice ofA in (4.168), the fact that θ ∈ (0, 1),
and the ability of taking δ∗ ∈ (0, 1) small enough to begin with (while bearing in
mind that limt→0+ t/φ(t) = 0; cf. (4.121)). With ε > 0 momentarily fixed, consider
now an arbitrary point x ∈  and bound

∣∣Tεf2(x)− Tεf2(x
∗)
∣∣ ≤ I + II + III, (4.212)

where

I :=
ˆ

y∈∂�\2∗
|x−y|>ε, |x∗−y|>ε

∣∣∣〈x − y, ν(y)〉k(x − y)

− 〈x∗ − y, ν(y)〉k(x∗ − y)

∣∣∣|f (y)| dσ(y),

II :=
ˆ

y∈∂�\2∗
|x−y|>ε, |x∗−y|≤ε

|〈x − y, ν(y)〉||k(x − y)||f (y)| dσ(y),
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III :=
ˆ

y∈∂�\2∗
|x∗−y|>ε, |x−y|≤ε

|〈x∗ − y, ν(y)〉||k(x∗ − y)||f (y)| dσ(y). (4.213)

In preparation for estimating the term I, we will first analyze the difference
between I and a similar expression in which ν(y) has been replaced by the integral
average ν∗ := ffl

∗ ν dσ . To set the stage, for each fixed y ∈ ∂�\2∗ consider the
function

Fy(z) := 〈z− y, ν(y)− ν∗〉k(z− y) for each z ∈ B(x∗, R). (4.214)

Then

|(∇Fy)(z)| ≤
( ∑

|α|≤1

sup
Sn−1

|∂αk|
)∣∣ν(y)− ν∗

∣∣

|z− y|n for each z ∈ B(x∗, R). (4.215)

Keeping in mind that x ∈  ⊆ ∗ = B(x∗, R)∩ ∂� (cf. (4.205)–(4.207)), we have

|x − x∗| < R. (4.216)

Also, (recall that [x, x∗] denotes the line segment with endpoints x, x∗),

|x∗ − y| ≤ 2|ξ − y| for each y ∈ ∂� \ 2∗ and each ξ ∈ [x, x∗]. (4.217)

Hence, by (4.214)–(4.215), the Mean Value Theorem (bearing in mind (4.150)),
(4.216)–(4.217), and Hölder’s inequality it follows that

ˆ
∂�\2∗

∣∣∣〈x − y, ν(y)− ν∗〉k(x − y)− 〈x∗ − y, ν(y)− ν∗〉k(x∗ − y)

∣∣∣|f (y)| dσ(y)

=
ˆ
∂�\2∗

∣∣Fy(x)− Fy(x
∗)
∣∣|f (y)| dσ(y)

≤
ˆ
∂�\2∗

|x − x∗| · sup
ξ∈[x,x∗]

∣∣(∇Fy)(ξ)
∣∣|f (y)| dσ(y)

≤ C

ˆ
∂�\2∗

R

|x∗ − y|n
∣
∣ν(y)− ν∗

∣
∣|f (y)| dσ(y)

≤ C

∞∑

j=1

2−j
 

2j+1∗\2j∗

∣∣ν(y)− ν∗
∣∣|f (y)| dσ(y)
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≤ C

∞∑

j=1

2−j
( 

2j+1∗

(∣∣ν(y)− ν2j+1∗
∣
∣+ ∣

∣ν2j+1∗ − ν∗
∣
∣)

1+γ
γ dσ(y)

) γ
1+γ ×

×
( 

2j+1∗
|f (y)|1+γ dσ(y)

) 1
1+γ

≤ C
( ∞∑

j=1

(j + 2) 2−j
)
‖ν‖[BMO(∂�,σ)]n Mγ f (x

∗∗)

≤ CAδλ, (4.218)

for some C ∈ (0,∞) which depends only on n, p, [w]Ap , and the Ahlfors regularity
constant of ∂�. Above, the fifth inequality relies on (2.102) and the fact that

∣∣ν2j+1∗ − ν∗
∣∣ ≤ C (j + 1) ‖ν‖[BMO(∂�,σ)]n for each j ∈ N (4.219)

for some C ∈ (0,∞) depending only on n and the Ahlfors regular constant of ∂�,
which is a direct consequence of (2.105). The fifth inequality in (4.218) also uses
the fact that x∗∗ ∈  ⊆ ∗ ⊆ 2j+1∗ for each integer j ∈ N. The last inequality
in (4.218) is a consequence of the fact that Mγ f (x

∗∗) ≤ Aλ (cf. (4.198)).
On the other hand, from the properties of the kernel k and the Mean Value

Theorem we obtain
ˆ
∂�\2∗

∣
∣∣〈x − y, ν∗ 〉k(x − y)− 〈x∗ − y, ν∗ 〉k(x∗ − y)

∣
∣∣|f (y)| dσ(y)

=
ˆ
∂�\2∗

∣∣∣
(〈x − y, ν∗ 〉 − 〈x∗ − y, ν∗ 〉) k(x∗ − y)

+ 〈x − y, ν∗ 〉 (k(x − y)− k(x∗ − y)
) ∣∣∣|f (y)| dσ(y)

≤ Cn

∞∑

j=1

ˆ
2j+1∗\2j∗

( |〈x − x∗, ν∗ 〉|
|x∗ − y|n + R

|〈x − y, ν∗ 〉|
|x∗ − y|n+1

)
|f (y)| dσ(y)

≤ Cn

∞∑

j=1

ˆ
2j+1∗\2j∗

|〈x − x∗, ν∗ 〉|
|x∗ − y|n |f (y)| dσ(y)

+ CnR

∞∑

j=1

ˆ
2j+1∗\2j∗

|〈x − y, ν∗ − ν2j+1∗〉|
|x∗ − y|n+1

|f (y)| dσ(y)
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+ CnR

∞∑

j=1

ˆ
2j+1∗\2j∗

|〈x − y, ν2j+1∗〉|
|x∗ − y|n+1

|f (y)| dσ(y)

=: I1 + I2 + I3. (4.220)

To estimate I1, write

I1 ≤ CnR
−1|〈x − x∗, ν∗〉|

∞∑

j=1

2−j
 

2j+1∗
|f (y)| dσ(y)

≤ Cδ

∞∑

j=1

2−jMγ f (x
∗∗) ≤ CδMγ f (x

∗∗)

≤ CAδλ, (4.221)

where C ∈ (0,∞) depends only on n, and the Ahlfors regularity constant of ∂�.
The second inequality above is a consequence of (4.154) used here with z := x∗,
y := x∗, μ := 2 (a valid choice given that x ∈ (x∗, 2R) since, as seen from
(4.205)–(4.207), we have x ∈  ⊆ ∗ = (x∗, R)) and x∗∗ ∈  ⊆ ∗ ⊆ 2j+1∗
for each j ∈ N. The last inequality (4.221) uses Mγ f (x

∗∗) ≤ Aλ (cf. (4.198)).
To treat I2, we write (for some C ∈ (0,∞) which depends only on n, and the

Ahlfors regularity constant of ∂�),

I2 ≤ CR

∞∑

j=1

ˆ
2j+1∗\2j∗

|ν∗ − ν2j+1∗ |
|x∗ − y|n |f (y)| dσ(y)

≤ C

∞∑

j=1

(j + 1) ‖ν‖[BMO(∂�,σ)]n 2−j
 

2j+1∗
|f (y)| dσ(y)

≤ CδMγ f (x
∗∗) ≤ CAδλ, (4.222)

where the first inequality uses the definition of I2 (given in (4.220)) as well as the
estimate |x−y| ≤ (3/2)|x∗−y| valid for each y ∈ ∂�\2∗, the second inequality
takes into account (4.219) and the Ahlfors regularity of ∂�, while the remaining
inequalities are justified as in (4.221).

As regards I3, write (again, with C ∈ (0,∞) depending only on n, and the
Ahlfors regularity constant of ∂�)

I3 ≤ C

∞∑

j=1

2−j
 

2j+1∗
|〈x − y, ν2j+1∗〉|

2j+1R
|f (y)| dσ(y)
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≤ Cδ

∞∑

j=1

2−j
 

2j+1∗
|f (y)| dσ(y) ≤ CδMγ f (x

∗∗)

≤ CAδλ. (4.223)

The second inequality in (4.223) is based on (4.154) used with z := x∗ and R

replaced by 2j+1R. The remaining inequalities in (4.223) are then justified much as
in (4.221).

At this stage, by combining (4.218) and (4.220)–(4.223) we conclude that there
exists some C ∈ (0,∞) which depends only on n, and the Ahlfors regularity
constant of ∂�, such that

I ≤ CAδλ. (4.224)

To bound II in (4.213), recall that x, x∗∗ ∈  and assume y ∈ ∂� \ 2∗ is such
that |x∗ − y| ≤ ε and |x − y| > ε. Then, 2R < |x∗ − y| ≤ ε and since x, x∗∗ ∈
 ⊆ B(xQ, rQ) (where xQ and rQ are, respectively, the center and radius of the
surface ball ) and R = % · rQ with % > 2, we have |x − x∗∗| < 2rQ < R < ε/2.
Hence, the point x∗∗ belongs to the surface ball (x, ε/2). Moreover, on account
of (4.216) we may write |x − y| ≤ |x − x∗| + |x∗ − y| < R + ε < (3/2)ε which,
in particular, guarantees that y ∈ (x, 2ε). Consequently, ε < |x − y| < 2ε hence
|k(x − y)| ≤ ε−n and (for some C ∈ (0,∞) which depends only on depends only
on n and the Ahlfors regularity constant of ∂�),

II ≤ Cε−1
 
(x,2ε)

|〈x − y, ν(y)〉| |f (y)| dσ(y)

≤ Cε−1
 
(x,2ε)

|〈x − y, ν(y)− ν(x,2ε)〉| |f (y)| dσ(y)

+ Cε−1
 
(x,2ε)

|〈x − y, ν(x,2ε)〉| |f (y)| dσ(y)

=: II1 + II2. (4.225)

Using Hölder’s inequality, (2.102), (4.198), and (4.152) we obtain that there exists
some C ∈ (0,∞) which depends only on n, p, [w]Ap , and the Ahlfors regularity
constant of ∂�, such that

II1 ≤ C

( 
(x,2ε)

|ν(y)− ν(x,2ε)|
1+γ
γ dσ(y)

) γ
1+γ ( 

(x,2ε)
|f (y)|1+γ dσ(y)

) 1
1+γ

≤ C ‖ν‖[BMO(∂�,σ)]n Mγ f (x
∗∗) ≤ CAδλ, (4.226)
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since x∗∗ is contained in (x, ε/2) ⊆ (x, 2ε) and Mγ f (x
∗∗) ≤ CAλ, as

already noted earlier. As for II2, invoking (4.154), Hölder’s inequality, and (4.198),
it follows that (with C ∈ (0,∞) as above)

II2 ≤ C
(

sup
y∈(x,2ε)

ε−1|〈x − y, ν(x,2ε)〉|
)  

(x,2ε)
|f (y)| dσ(y)

≤ Cδ
(  

(x,2ε)
|f (y)|1+γ dσ(y)

) 1
1+γ

≤ Cδ ·Mγ f (x
∗∗) ≤ CAδλ. (4.227)

From (4.225)–(4.227) we see that there exists C ∈ (0,∞) which depends only on
n, p, [w]Ap , and the Ahlfors regularity constant of ∂�, such that

II ≤ CAδλ. (4.228)

Turning our attention to III, recall that x, x∗∗ ∈  and suppose y ∈ ∂� \ 2∗ is
such that |x∗ − y| > ε and |x − y| ≤ ε. Then |x∗ − y| > 2R > R + |x − x∗| by
(4.216) which further entails ε ≥ |x − y| ≥ |x∗ − y| − |x − x∗| > R. In particular,
R < ε. If we now abbreviate R̃ := R + ε then, on the one hand, we may write the
estimate |x∗ − y| ≤ |x∗ − x| + |x − y| < R + ε = R̃, while on the other hand
having |x∗ − y| > ε and |x∗ − y| > 2R implies |x∗ − y| > R + (ε/2) > 1

2 R̃. As
such, |k(x∗ − y)| ≤ R̃−n and

III ≤ CnR̃
−1

 
(x∗,R̃)

|〈x∗ − y, ν(y)〉| |f (y)| dσ(y). (4.229)

Granted this, the same type of argument which, starting with the first line in (4.225)
has produced (4.228) (reasoning with R̃/2 replacing ε and with x∗ replacing x)
will now yield (for some C ∈ (0,∞) which depends only on n, p, [w]Ap , and the
Ahlfors regularity constant of ∂�)

III ≤ CAδλ, (4.230)

as soon as we show that x∗∗ ∈ (x∗, R̃). To justify this membership, start by
recalling that |x − x∗∗| < 2rQ < R and then use (4.216), the triangle inequality,
and the fact that R < ε to estimate |x∗ − x∗∗| ≤ |x − x∗| + |x − x∗∗| < 2R < R̃.
The proof of (4.230) is therefore complete.

Let us summarize our progress. From (4.212), (4.224), (4.228), (4.230), and our
choice of A in (4.168) we conclude that there exists some C ∈ (0,∞), which
depends only on n, p, [w]Ap , and the Ahlfors regularity constant of ∂�, such that
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∣∣∣Tεf2(x)− Tεf2(x
∗)
∣∣∣ ≤ C Aδλ = Cθ

( δ

φ(δ)

)
λ, ∀ x ∈ , ∀ ε > 0.

(4.231)
In view of the fact that θ ∈ (0, 1), and taking δ∗ ∈ (0, 1) small enough to begin
with (again, keeping in mind that limt→0+ t/φ(t) = 0; cf. (4.121)), from (4.231) we
conclude that

∣∣∣Tεf2(x)− Tεf2(x
∗)
∣∣∣ ≤ 1

2λ, ∀ x ∈ , ∀ ε > 0. (4.232)

By combining (4.211), (4.232), and (4.104) we thus obtain

T∗f2(x) ≤ 2λ for all x ∈ , (4.233)

whenever δ∗ ∈ (0, 1) is small enough. Therefore, for this choice of δ∗, we conclude
that

σ
({
x ∈  : T∗f2(x) > 2λ

}) = 0 (4.234)

which, in concert with (4.209) and (4.210), establishes (4.202). This finishes the
proof of the good-λ inequality (4.170).

Once (4.170) has been established, we proceed to prove (4.151). First, using
(4.159), by our definition of A, and by possibly choosing a smaller δ∗ ∈ (0, 1)
(again, bearing in mind that limt→0+ t/φ(t) = 0; cf. (4.121)), for each point x ∈ I0
with T(∗)f (x) > λ and Mγ f (x) ≤ Aλ we may write

λ < T(∗)f (x) ≤ T∗f (x)+ Cδ ·Mγ f (x)

≤ T∗f (x)+ CδAλ = T∗f (x)+ Cθ
( δ

φ(δ)

)
λ

< T∗f (x)+ 1
2λ. (4.235)

Hence, for such a choice of δ∗ ∈ (0, 1) we have

1
2λ < T∗f (x) whenever the point x ∈ I0 is
such that T(∗)f (x) > λ and Mγ f (x) ≤ Aλ.

(4.236)

Consequently,

{
x ∈ I0 : T(∗)f (x) > λ and Mγ f (x) ≤ Aλ

}

⊆ {
x ∈ I0 : T∗f (x) > λ

2

}
(4.237)

which, in turn, permits us to estimate
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w
({
x ∈ I0 : T(∗)f (x) > λ

}) ≤ w
({
x ∈ I0 : T(∗)f (x) > λ and Mγ f (x) ≤ Aλ

})

+ w
({
x ∈ I0 : Mγ f (x) > Aλ

})

≤ w
({
x ∈ I0 : T∗f (x) > λ

2

})

+ w
({
x ∈ I0 : Mγ f (x) > Aλ

})
. (4.238)

From (4.169) and (4.121) it is clear that for each fixed θ we have

η(θ, δ) = C
(
θ1+γ + θ1+γ /2 ·O(1)+ o(1)

)
as δ → 0+. (4.239)

This makes it is possible to first choose the threshold δ∗ ∈ (0, 1), then pick the
coefficient θ ∈ (0, 1) small enough depending only on n, p, [w]Ap , φ, and the
Ahlfors regularity constant of ∂�, so that

η(θ, δ)τ < (2 · 8p)−1. (4.240)

This is the last demand imposed on δ∗, θ , and the totality of all these size
specifications imply that the final choice of these parameters ultimately depends
only on n, p, [w]Ap , φ, and the Ahlfors regularity constant of ∂�. Combining
(4.238) with (4.170) and keeping (4.240) in mind we then get

w
({
x ∈ I0 : T∗f (x) > 4λ

})

≤ w
({
x ∈ I0 : T∗f (x) > 4λ and Mγ f (x) ≤ Aλ

})

+ w
({
x ∈ I0 : Mγ f (x) > Aλ

})

≤ η(θ, δ)τ · w
({
x ∈ I0 : T(∗)f (x) > λ

})

+ w
({
x ∈ I0 : Mγ f (x) > Aλ

})

< (2 · 8p)−1 w
({
x ∈ I0 : T∗f (x) > λ

2

})

+ (
1 + (2 · 8p)−1)w

({
x ∈ I0 : Mγ f (x) > Aλ

})
. (4.241)

Recall that γ ∈ (0, p−1) has been chosen so thatw ∈ Ap/(1+γ )(∂�, σ), hence Mγ

is bounded onLp(∂�,w). Multiply the most extreme sides of (4.241) by pλp−1 and
integrate over λ ∈ (0,∞). Bearing in mind that A = θ · φ(δ)−1, after three natural
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changes of variables (namely, λ̃ := 4λ in the first integral, λ̃ := 1
2λ in the second

integral, and λ̃ := θφ(δ)−1λ in the third integral) we therefore obtain

ˆ
I0

|T∗f |p dw ≤ 1

2

ˆ
I0

|T∗f |p dw + φ(δ)pθ−p
(
22p + 2−p−1)

ˆ
I0

(Mγ f )
p dw

≤ 1

2

ˆ
I0

|T∗f |p dw + C φ(δ)p
ˆ
∂�

|f |p dw, (4.242)

for some constant C ∈ (0,∞) which depends only on n, p, [w]Ap , φ, and the
Ahlfors regularity constant of ∂� (hence, in particular, independent of the function
f , the quantity δ, as well as the parameters x0,m defining the set I0). Since
f ∈ Lp(∂�,w) and the operator T∗ maps the space Lp(∂�,w) into itself (cf.
Proposition 3.4), it follows that

´
I0
|T∗f |p dw ≤ ‖T∗f ‖pLp(∂�,w) < ∞. Hence, the

first integral in the right-most side of (4.242) may be absorbed in the left-most side.
By also taking into account (4.165), we therefore obtain

ˆ
20

|T∗f |p dw ≤
ˆ
I0

|T∗f |p dw ≤ Cφ(δ)p
ˆ
∂�

|f |p dw. (4.243)

Recall that 20 = (x0, 2−m+1) and the only constraint on the integer m ∈ Z
has been that supp f ⊆ 20. Upon letting m → −∞ and invoking Lebesgue’s
Monotone Convergence Theorem we arrive at the conclusion that, for some constant
C ∈ (0,∞) which depends only on n, p, [w]Ap , ψ , φ, and the Ahlfors regularity
constant of ∂�, we have the estimate

ˆ
∂�

|T∗f |p dw ≤ Cφ(δ)p
ˆ
∂�

|f |p dw,

for every f ∈ Lp(∂�,w) with compact support.
(4.244)

To treat the case when the function f ∈ Lp(∂�,w) is now arbitrary, for each
j ∈ N define fj := 1(x0,j)f . Then Lebesgue’s Dominated Convergence Theorem
implies that fj → f in Lp(∂�,w) as j → ∞, and since T∗ is continuous on
Lp(∂�,w) we also have T∗fj → T∗f in Lp(∂�,w) as j → ∞. Writing the
estimate in (4.244) for fj in place of f and passing to limit j →∞ then yields

ˆ
∂�

|T∗f |p dw ≤ Cφ(δ)p
ˆ
∂�

|f |p dw for each f ∈ Lp(∂�,w), (4.245)

where C ∈ (0,∞) depends only on n, p, [w]Ap , ψ , φ, and the Ahlfors regularity
constant of ∂�. Sending δ ↘ ‖ν‖[BMO(∂�,σ)]n (cf. (4.152) and the second line in
(4.121)), then finishes the proof of (4.151).

Finally, the very last claim in the statement of Theorem 4.2 follows from (4.153).
The proof of Theorem 4.2 is therefore complete. � 
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Recall the notion of chord-arc domain introduced, in the two-dimensional setting,
in Definition 2.16.

Corollary 4.1 Fix �∗ ∈ (0,∞) and let � ⊆ R2 be a �-CAD for some � ∈ [0, �∗).
Abbreviate σ := H1�∂� and denote by ν the geometric measure theoretic outward
unit normal to �. In addition, select some integrability exponent p ∈ (1,∞) along
with a Muckenhoupt weight w ∈ Ap(∂�, σ). Consider next a complex-valued
function k ∈ CN(R2 \ {0}), for a sufficiently large integer N ∈ N, which is even and
positive homogeneous of degree −2, and define the maximal operator T∗ acting on
each function f ∈ Lp(∂�,w) according to

T∗f (x) := sup
ε>0

∣∣Tεf (x)
∣∣ for each x ∈ ∂�, (4.246)

where, for each ε > 0,

Tεf (x) :=
ˆ

y∈∂�
|x−y|>ε

〈x − y, ν(y)〉k(x − y)f (y) dσ(y) for all x ∈ ∂�. (4.247)

Then for each m ∈ N there exists some Cm ∈ (0,∞), which depends only on m,
�∗, p, and [w]Ap such that

‖T∗‖Lp(∂�,w)→Lp(∂�,w) ≤ Cm

( ∑

|α|≤N
sup
S1

|∂αk|
)
× (4.248)

×√
� · ln

(
· · · ln (

ln(
︸ ︷︷ ︸
m natural logarithms

1/min{�, (me)−1})) · · ·
)
.

Of course, the crux of the matter is the presence of
√
� as a multiplicative

factor in the right-hand side of (4.248). As a consequence, ‖T∗‖Lp(∂�,w)→Lp(∂�,w)

is as small as we please if � ⊆ R2 is a �-CAD whose constant � ∈ (0, 1) is
sufficiently small (relative to the integral exponent p, the characteristic [w]Ap of the
Muckenhoupt weight, and the integral kernel k).

Proof of Corollary 4.1 From (2.229) and (2.118) we deduce that

‖ν‖[BMO(∂�,σ)]2 ≤ min
{
1, 2

√
�(2 + �)

} ≤
√

4 +√
20 · √�. (4.249)

Also, Proposition 2.10 implies that � is a UR domain, with the UR constants of ∂�
controlled in terms of �∗. Granted these properties, Theorem 4.2 applies and (4.106)
together with (4.100) give (4.248). � 

Theorem 4.2 readily implies similar operator norm estimates for principal-value
singular integral operators whose integral kernel has a special algebraic format, in
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that it involves the inner product between the outward unit normal and the chord, as
a factor. This is made precise later on (see Theorem 4.7). Specifically, for a given
second-order, homogeneous, constant complex coefficient system L with Adis

L �= ∅,
and a given UR domain � ⊆ Rn, we shall employ Corollary 4.2 below with T

either the boundary-to-boundary double layer potential operator KA associated with
a coefficient tensor A ∈ Adis

L or its “transpose” version K#
A, acting on Muckenhoupt

weighted Lebesgue spaces on ∂�.

Corollary 4.2 Let � ⊆ Rn be a UR domain. Abbreviate σ := Hn−1�∂� and
denote by ν the geometric measure theoretic outward unit normal to �. Fix
an integrability exponent p ∈ (1,∞) along with a Muckenhoupt weight w in
Ap(∂�, σ), and recall the earlier convention of using the same symbol w for
the measure associated with the given weight w as in (2.509). Also, consider a
sufficiently large integer N = N(n) ∈ N and suppose k ∈ CN(Rn \ {0}) is a
complex-valued function which is even and positive homogeneous of degree −n. In
this setting consider the principal-value singular integral operators T , T # acting on
each function f ∈ Lp(∂�,w) according to

Tf (x) := lim
ε→0+

ˆ

y∈∂�
|x−y|>ε

〈x − y, ν(y)〉k(x − y)f (y) dσ(y), (4.250)

and

T #f (x) := lim
ε→0+

ˆ

y∈∂�
|x−y|>ε

〈y − x, ν(x)〉k(x − y)f (y) dσ(y), (4.251)

at σ -a.e. point x ∈ ∂�. Then for each m ∈ N there exists a constant Cm ∈ (0,∞),
which depends only on m, n, p, [w]Ap , and the UR constants of ∂� such that, with
the piece of notation introduced in (4.93), one has

‖T ‖Lp(∂�,w)→Lp(∂�,w) ≤ Cm

( ∑

|α|≤N
sup
Sn−1

|∂αk|
)
‖ν‖〈m〉[BMO(∂�,σ)]n (4.252)

and
∥
∥∥T #

∥
∥∥
Lp(∂�,w)→Lp(∂�,w)

≤ Cm

( ∑

|α|≤N
sup
Sn−1

|∂αk|
)
‖ν‖〈m〉[BMO(∂�,σ)]n . (4.253)

Also, if ‖ν‖[BMO(∂�,σ)]n is sufficiently small relative to n, p, [w]Ap , and the Ahlfors
regularity constant of ∂� one may take Cm ∈ (0,∞) appearing in (4.252)–(4.253)
to depend only on said entities (i.e., n, p, [w]Ap , the Ahlfors regularity constant of
∂�) and m.
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In addition, with p′ ∈ (1,∞) denoting the Hölder conjugate exponent of p and
with w′ := w1−p′ ∈ Ap′(∂�, σ), it follows that

the (real) transpose of T : Lp(∂�,w) → Lp(∂�,w)

is the operator T # : Lp′(∂�,w′)→ Lp
′
(∂�,w′). (4.254)

Proof Fix m ∈ N. In view of the fact that

‖T ‖Lp(∂�,w)→Lp(∂�,w) ≤ ‖T∗‖Lp(∂�,w)→Lp(∂�,w) , (4.255)

the estimate claimed in (4.252) follows directly from (4.106). The claim in the
subsequent paragraph in the statement follows from Theorem 2.3. Next, observe
that (4.254) is implied by (4.250)–(4.251) and (3.83). To justify the claim made in
(4.253), we write

∥∥∥T #
∥∥∥
Lp(∂�,w)→Lp(∂�,w)

= ‖T ‖
Lp

′
(∂�,w′)→Lp

′
(∂�,w′)

≤ Cm

( ∑

|α|≤N
sup
Sn−1

|∂αk|
)
‖ν‖〈m〉[BMO(∂�,σ)]n , (4.256)

thanks to (4.252) used with p′, w′ in place of p,w. � 

Remark 4.8 Of course, in the special case when w ≡ 1, Theorem 4.2 and Corol-
lary 4.2 yield estimates on ordinary Lebesgue spaces, Lp(∂�, σ) with p ∈ (1,∞).
Via real interpolation, these further imply similar estimates on the scale of Lorentz
spaces on ∂�. Specifically, from (4.106), (4.252)–(4.253), and real interpolation (for
sub-linear operators) we conclude that for each m ∈ N, p ∈ (1,∞), and q ∈ (0,∞]
there exists a constant Cm ∈ (0,∞), which depends only on m, n, p, q, and the UR
constants of ∂�, with the property that

‖T∗‖Lp,q (∂�,σ)→Lp,q (∂�,σ) ≤ Cm

( ∑

|α|≤N
sup
Sn−1

|∂αk|
)
‖ν‖〈m〉[BMO(∂�,σ)]n , (4.257)

‖T ‖Lp,q (∂�,σ)→Lp,q (∂�,σ) ≤ Cm

( ∑

|α|≤N
sup
Sn−1

|∂αk|
)
‖ν‖〈m〉[BMO(∂�,σ)]n , (4.258)

and
∥∥∥T #

∥∥∥
Lp,q (∂�,σ)→Lp,q (∂�,σ)

≤ Cm

( ∑

|α|≤N
sup
Sn−1

|∂αk|
)
‖ν‖〈m〉[BMO(∂�,σ)]n . (4.259)

More general results of this type are discussed later, in Theorem 8.8 (cf. also
Examples 8.2 and 8.6).
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Remark 4.9 In the context of Corollary 4.2, estimates (4.252)–(4.253) remain valid
with a fixed constant Cm ∈ (0,∞) when the integrability exponent and the
corresponding Muckenhoupt weight are allowed to vary while retaining control.
Concretely, Remark 4.3 implies that for each compact interval I ⊂ (0,∞) and each
number W ∈ (0,∞) there exists a constant Cm ∈ (0,∞), which depends only on
m, n, I , W , and the UR constants of ∂�, with the property that (4.252)–(4.253) hold
for each p ∈ I and each w ∈ Ap(∂�, σ) with [w]Ap ≤ W .

Similar considerations apply to the estimates in (4.257)–(4.259).

4.3 Norm Estimates and Invertibility Results for Double
Layers

We first recall a result (cf. [61, Theorem 2.16, p. 2603]) which is a combination
of the extrapolation theorem of Rubio de Francia and the commutator theorem of
Coifman et al., [31], suitably adapted to the setting of spaces of homogeneous type.

Theorem 4.3 Make the assumption that � ⊆ Rn is a closed Ahlfors regular set,
and abbreviate σ := Hn−1��. Fix p0 ∈ (1,∞) along with some non-decreasing
function � : (0,∞)→ (0,∞) and let T be a linear operator which is bounded on
Lp0(�,w) for every w ∈ Ap0(�, σ ), with operator norm ≤ �

([w]Ap0

)
.

Then for each integrability exponent p ∈ (1,∞) there exist C1, C2 ∈ (0,∞)

which depend exclusively on the dimension n, the exponents p0, p, and the Ahlfors
regularity constant of �, such that for any Muckenhoupt weight w ∈ Ap(�, σ) the
operator

T : Lp(�,w) −→ Lp(�,w) (4.260)

is well defined, linear, and bounded, with operator norm

‖T ‖Lp(�,w)→Lp(�,w) ≤ C1 ·�
(
C2 · [w]1+(p0−1)/(p−1)

Ap

)
. (4.261)

In addition, given any p ∈ (1,∞) along with some w ∈ Ap(�, σ), there exists
a constant C = C(�, n, p0, p, [w]Ap) ∈ (0,∞) with the property that for every
complex-valued function b ∈ L∞(�, σ ) one has (with C1 as before)

‖[Mb, T ]‖Lp(�,w)→Lp(�,w) ≤ C1 ·�(C) ‖b‖BMO(�,σ) , (4.262)

where [Mb, T ] is the commutator of T considered as in (4.260) and the operator
Mb of pointwise multiplication on Lp(�,w) by the function b, i.e.,

[Mb, T ]f := b(Tf )− T (bf ) for each f ∈ Lp(�,w). (4.263)
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In particular, from (4.262) with w ≡ 1 and real interpolation it follows that, for
any p ∈ (1,∞) and q ∈ (0,∞], there exists some C = C(�, n, p, q) ∈ (0,∞)

with the property that for every complex-valued function b ∈ L∞(�, σ ) one has

‖[Mb, T ]‖Lp,q (�,σ)→Lp,q (�,σ) ≤ C1 ·�(C) ‖b‖BMO(�,σ) . (4.264)

Theorem 4.3 is a particular case of a more general result proved in Theorem 4.4,
stated just after the following remark.

Remark 4.10 Even though Theorem 4.3 suffices for the purposes we have in mind,
it is worth noting that there is a version of (4.262) in which the pointwise multiplier
b is allowed to belong to the larger space BMO(�, σ ). The price to pay is that we
now no longer may regard [Mb, T ] as in (4.263) and, instead, have to interpret this
as an abstract extension (by density) of a genuine commutator. Specifically, given a
real-valued function b ∈ BMO(�, σ ), for each N ∈ N define

bN := min
{

max{b,−N}, N
}
= max

{
min{b,N},−N

}
, (4.265)

and note that there exists C ∈ (0,∞) such that

bN ∈ L∞(�, σ ), thus bN ∈ BMO(�, σ ), and

‖bN‖BMO(�,σ) ≤ 2‖b‖BMO(�,σ) for all N ∈ N,
|bN(x)| ≤ |b(x)| for all x ∈ � and N ∈ N,
lim

N→∞ bN(x) = b(x) for each x belonging to �.

(4.266)

Fix an exponent p ∈ (1,∞) along with a Muckenhoupt weight w ∈ Ap(�, σ)

and pick a function f ∈ Lp(�,w) with the property that bf ∈ Lp(�,w). Then
Lebesgue’s Dominated Convergence Theorem implies bNf → bf in Lp(�,w) as
N →∞, hence also T (bNf )→ T (bf ) in Lp(�,w) as N →∞ by (4.260). Since
we also have bNT (f ) → bT (f ) at each point in � as N → ∞, we ultimately
conclude that

for each function f ∈ Lp(�,w) such that bf ∈ Lp(�,w) there
exists a strictly increasing sequence {Nj }j∈N ⊆ N for which[
MbNj

, T
]
f → [

Mb, T
]
f at σ -a.e. point in � as j →∞.

(4.267)

For example, the fact that we have BMO(�, σ ) ⊆ L
p

loc(�,w) (cf. Lemma 2.13)
means that the pointwise convergence result in (4.267) is valid for each function
f belonging to L∞comp(�,w) = L∞comp(�, σ ), the space of essentially bounded
functions with compact support in �.

Granted (4.267), for each such function f ∈ Lp(�,w) such that bf ∈ Lp(�,w)

we may now write (bearing in mind that w and σ have the same nullsets)
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ˆ
�

∣∣[Mb, T ]f
∣∣p dw =

ˆ
�

lim inf
j→∞

∣∣
∣
[
MbNj

, T
]
f

∣∣
∣
p

dw

≤ lim inf
j→∞

ˆ
�

∣
∣∣
[
MbNj

, T
]
f

∣
∣∣
p

dw

≤ lim inf
j→∞

(
C1 ·�(C)

∥∥bNj

∥∥
BMO(�,σ)

)p‖f ‖pLp(�,w)

≤
(

2C1 ·�(C) ‖b‖BMO(�,σ)

)p‖f ‖pLp(�,w), (4.268)

where the equality comes from (4.267), the first inequality is implied by Fatou’s
Lemma, the second inequality is a consequence of (4.262) (bearing in mind the first
property in (4.266)), and the last inequality follows from the second line of (4.266).

In turn, (4.268) proves that

the operator [Mb, T ] := b(T ·) − T (b ·) maps the linear space{
f ∈ Lp(�,w) : bf ∈ Lp(�,w)

}
boundedly into Lp(�,w). (4.269)

Given that
{
f ∈ Lp(�,w) : bf ∈ Lp(�,w)

}
is dense in Lp(�,w) (since, as

already noted, this contains L∞comp(�,w) which is itself dense in Lp(�,w)), we
finally conclude that [Mb, T ], originally acting as a commutator in the manner
described in (4.269), extends by density to a linear and bounded mapping from
Lp(�,w) into itself.

Here is a generalization of Theorem 4.3, involving the “maximal commutator”
associated with a given family of linear and bounded operators.

Theorem 4.4 Suppose � ⊆ Rn is a closed Ahlfors regular set, and abbreviate
σ := Hn−1��. Fix p0 ∈ (1,∞) and let {Tj }j∈N be a family of linear operators
which are bounded on Lp0(�,w) for every w ∈ Ap0(�, σ ). Define the action of
the maximal operator associated with this family on each function f ∈ Lp0(�,w)

with w ∈ Ap0(�, σ ) as

Tmaxf (x) := sup
j∈N

|Tjf (x)| for each x ∈ �. (4.270)

Assume that for eachw ∈ Ap0(�, σ ) the sub-linear operator Tmax maps Lp0(�,w)

into itself, and that there exists some non-decreasing function� : (0,∞)→ (0,∞)

with the property that

‖Tmax‖Lp0 (�,w)→Lp0 (�,w) ≤ �
([w]Ap0

)
for each w ∈ Ap0(�, σ ). (4.271)

Then the following statements are true.
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(i) For each integrability exponent p ∈ (1,∞) there exist C1, C2 ∈ (0,∞) which
depend exclusively on the dimension n, the exponents p0, p, and the Ahlfors
regularity constant of �, with the property that for any Muckenhoupt weight
w ∈ Ap(�, σ) the operator

Tmax : Lp(�,w) −→ Lp(�,w) (4.272)

is well defined, sub-linear, and bounded, with operator norm

‖Tmax‖Lp(�,w)→Lp(�,w) ≤ C1 ·�
(
C2 · [w]1+(p0−1)/(p−1)

Ap

)
. (4.273)

In particular, for each j ∈ N the operator Tj is a well-defined, linear, and
bounded mapping on Lp(�,w) with operator norm satisfying a similar estimate
to (4.273).

(ii) Pick an arbitrary p ∈ (1,∞) along with some w ∈ Ap(�, σ), and fix an
arbitrary complex-valued function b ∈ L∞(�, σ ). Define the action of the
“maximal commutator” (associated with the given function b and the family
{Tj }j∈N) on each function f ∈ Lp(�,w) as

Cmaxf (x) := sup
j∈N

∣∣[Mb, Tj ]f (x)
∣∣ for each x ∈ �, (4.274)

where Mb denotes the operator of pointwise multiplication by the function b.
Then there exist two constantsCi = Ci(�, n, p0, p, [w]Ap) ∈ (0,∞), i ∈ {1, 2},
independent of the function b and the family {Tj }j∈N, with the property that

‖Cmax‖Lp(�,w)→Lp(�,w) ≤ C1 ·�(C2) ‖b‖BMO(�,σ) . (4.275)

The particular case when all operators in the family {Tj }j∈N are identical to one
another corresponds to Theorem 4.3.

Proof of Theorem 4.4 The fact that for each p ∈ (1,∞) and w ∈ Ap(�, σ) the
sub-linear operator Tmax induces a bounded mapping on Lp(�,w) whose operator
norm may be estimated as in (4.273) follows from Rubio de Francia’s extrapolation
theorem, in the format presented in [111, §7.7] (this is responsible for the specific
format of the constant in (4.273); see also [34, Theorem 3.22, p.40] and [42,
Theorem 3.2] for the Euclidean setting). This takes care of item (i).

To deal with item (ii), we shall adapt the argument in [31], [69], [61], [13].
First, from simple linearity and homogeneity considerations, there is no loss of
generality in assuming that b ∈ L∞(�, σ ) is actually real-valued and satisfies
‖b‖BMO (�,σ) = 1 (the case when b is constant is trivial). Fix now p ∈ (1,∞) and
w ∈ Ap(�, σ). From item (8) of Proposition 2.20 we know that there exists some
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small ε = ε(�, p, [w]Ap) > 0 with the property that for each complex number z
with |z| ≤ ε we have

w · e(Re z)b ∈ Ap(�, σ) with
[
w · e(Re z)b]

Ap
≤ C, (4.276)

where the constant C = C(�, p, [w]Ap) ∈ (0,∞) is independent of z.
To proceed, denote by L (L

p
w) the space of all linear and bounded operators from

Lp(�,w) into itself, equipped with the operator norm ‖ · ‖Lp(�,w)→Lp(�,w). The
idea is now to observe that, for each j ∈ N,

�j :
{
z ∈ C : |z| < ε/2

} −→ L (L
p
w) defined as

�j(z) := MezbTjMe−zb for each z ∈ C with |z| < ε/2
(4.277)

is an analytic map which, for each z ∈ C with |z| < ε/2 and each f ∈ Lp(�,w),
satisfies

ˆ

�

sup
j∈N

∣∣�j(z)f (x)
∣∣p w(x) dσ(x)

=
ˆ

�

sup
j∈N

∣∣Tj (e−zbf )(x)
∣∣p w(x) · e(Re z)b(x) dσ(x)

=
ˆ

�

∣∣Tmax(e
−zbf )(x)

∣∣p w(x) · e(Re z)b(x) dσ(x)

≤ ‖Tmax‖pLp(�,w·e(Re z)b)→Lp(�,w·e(Re z)b)
×

×
ˆ

�

∣∣e−zb(x)f (x)
∣∣p w(x) · e(Re z)b(x) dσ(x)

≤ C
p

1 ·�
(
C2 · C1+(p0−1)/(p−1)

)p‖f ‖pLp(�,w), (4.278)

thanks to (4.277), (4.270), (4.276), and (4.273). In addition, from (4.277) and
Cauchy’s reproducing formula for analytic functions we see that for each j ∈ N
we have

[Mb, Tj ] = �′
j (0) =

1

2π i

ˆ
|z|=ε/4

�j(z)

z2 dz. (4.279)

Consequently, for each f ∈ Lp(�,w) and x ∈ �, we have
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Cmaxf (x) = sup
j∈N

∣∣[Mb, Tj ]f (x)
∣∣ ≤ 8

πε2

ˆ
|z|=ε/4

sup
j∈N

∣∣�j(z)f (x)
∣∣ dH1(z),

(4.280)
hence

∣∣Cmaxf (x)
∣∣p ≤

( 8

πε2

)p ˆ
|z|=ε/4

sup
j∈N

∣∣�j(z)f (x)
∣∣p dH1(z). (4.281)

From the last property in item (i) and (4.274) we see that for each f ∈ Lp(�,w) the
function Cmaxf is σ -measurable. In concert with (4.281) and (4.278), this permits
us to estimate

ˆ

�

∣∣Cmaxf (x)
∣∣p dw(x)

≤
( 8

πε2

)p ˆ

�

( ˆ

|z|=ε/4

sup
j∈N

∣∣�j(z)f (x)
∣∣p dH1(z)

)
dw(x)

=
( 8

πε2

)p ˆ

|z|=ε/4

(ˆ

�

sup
j∈N

∣∣�j(z)f (x)
∣∣p dw(x)

)
dH1(z)

≤
( 23p−1

πp−1ε2p−1

)
C
p

1 ·�
(
C2 · C1+(p0−1)/(p−1)

)p‖f ‖pLp(�,w),
(4.282)

and (4.275) readily follows from this. � 
We next discuss a companion result to Theorem 4.2, the novelty being the

consideration of a maximal “transpose” operator as defined below in (4.283).

Theorem 4.5 Let� ⊆ Rn be a UR domain. Abbreviate σ := Hn−1�∂� and denote
by ν the geometric measure theoretic outward unit normal to�. Fix an integrability
exponent p ∈ (1,∞) along with a Muckenhoupt weight w ∈ Ap(∂�, σ), and
recall the earlier convention of using the same symbol w for the measure associated
with the given weight w as in (2.509). Also, consider a sufficiently large integer
N = N(n) ∈ N. Given a complex-valued function k ∈ CN(Rn \ {0}) which is even
and positive homogeneous of degree −n, consider the maximal operator T #∗ whose
action on each given function f ∈ Lp(∂�,w) is defined as

T #∗ f (x) := sup
ε>0

∣∣T #
ε f (x)

∣∣ for σ -a.e. x ∈ ∂�, (4.283)

where, for each ε > 0,
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T #
ε f (x) :=

ˆ

y∈∂�
|x−y|>ε

〈y − x, ν(x)〉k(x − y)f (y) dσ(y) for σ -a.e. x ∈ ∂�.

(4.284)
Then for each m ∈ N there exists some Cm ∈ (0,∞), which depends only on

m, n, p, [w]Ap , and the UR constants of ∂� such that, with the piece of notation
introduced in (4.93), one has

∥∥∥T #∗
∥∥∥
Lp(∂�,w)→Lp(∂�,w)

≤ Cm

( ∑

|α|≤N
sup
Sn−1

|∂αk|
)
‖ν‖〈m〉[BMO(∂�,σ)]n . (4.285)

Furthermore, when ‖ν‖[BMO(∂�,σ)]n is sufficiently small relative to n, p, [w]Ap ,
and the Ahlfors regularity constant of ∂� one may take Cm ∈ (0,∞) appearing
in (4.285) to depend itself only on said entities (i.e., n, p, [w]Ap , and the Ahlfors
regularity constant of ∂�) and m.

In particular, Theorem 4.5 may be used to give a direct proof of (4.253), without
having to rely on duality.

Proof of Theorem 4.5 To get started, we observe that if Q+ denotes the collection
of all positive rational numbers, then for each f ∈ L1

(
∂�,

σ(x)

1+|x|n−1

)
we have

(T #∗ f )(x) = sup
ε∈Q+

∣∣(T #
ε f )(x)

∣∣ for every x ∈ ∂∗�. (4.286)

To justify this, pick some f ∈ L1
(
∂�,

σ(x)

1+|x|n−1

)
. We claim that if x ∈ ∂∗� is

arbitrary and fixed then for each ε ∈ (0,∞) and each sequence {εj }j∈N ⊆ (0,∞)

such that εj ↘ ε as j →∞ we have

lim
j→∞

ˆ

y∈∂�
|x−y|>εj

〈y − x, ν(x)〉k(x − y)f (y) dσ(y)

=
ˆ

y∈∂�
|x−y|>ε

〈y − x, ν(x)〉k(x − y)f (y) dσ(y). (4.287)

To justify (4.287) note that

{y ∈ ∂� : |x − y| > εj } ↗ {y ∈ ∂� : |x − y| > ε} as j →∞, (4.288)

in the sense that
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{y ∈ ∂� : |x − y| > ε} =
⋃

j∈N
{y ∈ ∂� : |x − y| > εj } and

{y ∈ ∂� : |x − y| > εj } ⊆ {y ∈ ∂� : |x − y| > εj+1} for every j ∈ N.
(4.289)

Then (4.287) follows from (4.288), the properties of k, and Lebesgue’s Dominated
Convergence Theorem. What we have just proved amounts to saying that for every
function f ∈ L1

(
∂�,

σ(x)

1+|x|n−1

)
we have

lim
j→∞(T

#
εj
f )(x) = (T #

ε f )(x) for every x ∈ ∂∗�, (4.290)

whenever ε ∈ (0,∞) and {εj }j∈N ⊆ (0,∞) are such that εj ↘ ε as j → ∞.
Having established this, (4.286) readily follows on account of the density of Q+ in
(0,∞).

To proceed, let {εj }j∈N be an enumeration of Q+. Also, bring back the operators
(4.105) and observe that for each j ∈ N, each f ∈ Lp(∂�,w), and each x ∈ ∂∗�
we have

T #
εj
f (x)+Tεj f (x) =

ˆ

y∈∂�
|x−y|>εj

〈y−x, ν(x)−ν(y)〉k(x−y)f (y) dσ(y). (4.291)

Write (νi)1≤i≤n for the scalar components of the geometric measure theoretic
outward unit normal ν to � and, for every i ∈ {1, . . . , n}, every j ∈ N, and every
f ∈ Lp(∂�,w) set

T
(i)
j f (x) :=

ˆ

y∈∂�
|x−y|>εj

(yi − xi)k(x − y)f (y) dσ(y) for each x ∈ ∂�. (4.292)

Then, for each j ∈ N and each f ∈ Lp(∂�,w) we may recast (4.291) as

T #
εj
f (x)+ Tεj f (x) =

n∑

i=1

[
Mνi ,T

(i)
j

]
f (x) for each x ∈ ∂∗�. (4.293)

If for each i ∈ {1, . . . , n} and each f ∈ Lp(∂�,w) we now define

C(i)
maxf (x) := sup

j∈N

∣∣
∣
[
Mνi ,T

(i)
j

]
f (x)

∣∣
∣ for each x ∈ ∂∗�, (4.294)

then, thanks to Proposition 3.4, for each i ∈ {1, . . . , n} we may invoke Theorem 4.4
for the family

{
T
(i)
j

}
j∈N to conclude that
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∥∥∥C(i)
max

∥∥∥
Lp(∂�,w)→Lp(∂�,w)

≤ C
( ∑

|α|≤N
sup
Sn−1

|∂αk|
)
‖ν‖[BMO(∂�,σ)]n , (4.295)

where C ∈ (0,∞) depends only on n, p, [w]Ap , and the UR constants of ∂�. Also,
from (4.293), (4.294), (4.286), and (4.104) we deduce that for each f ∈ Lp(∂�,w)

we have

T #∗ f (x) ≤ T∗f (x)+
n∑

i=1

C(i)
maxf (x) for each x ∈ ∂∗�. (4.296)

At this stage, the estimate in (4.285) becomes a consequence of (4.296), (4.106),
(4.295), (4.98), and (2.118), keeping in mind that, as is apparent from (4.286), the
function T #∗ f is σ -measurable, and that we currently have σ

(
∂� \ ∂∗�) = 0 (cf.

Definition 2.4 and (2.24)). Finally, the very last claim in the statement is seen from
Theorem 2.3. � 

To discuss a significant application of Theorem 4.3 let us first formally introduce
the family of Riesz transforms {Rj }1≤j≤n on the boundary a UR domain � ⊆ Rn.
Specifically, with σ := Hn−1�∂�, for each j ∈ {1, . . . , n} the j -th Riesz transform
Rj acts on any given function f ∈ L1

(
∂�,

σ(x)

1+|x|n−1

)
according to

Rjf (x) := lim
ε→0+

2

ωn−1

ˆ

y∈∂�
|x−y|>ε

xj − yj

|x − y|n f (y) dσ(y) (4.297)

at σ -a.e. point x ∈ ∂�.

Theorem 4.6 Let � ⊆ Rn be a UR domain. Abbreviate σ := Hn−1�∂� and
denote by ν = (νk)1≤k≤n the geometric measure theoretic outward unit normal
to �. Also, fix an integrability exponent p ∈ (1,∞) and a Muckenhoupt weight
w ∈ Ap(∂�, σ). Finally, recall the boundary-to-boundary harmonic double layer
potential operator K from (3.29), the Riesz transforms {Rj }1≤j≤n from (4.297),
and for each index k ∈ {1, . . . , n} denote by Mνk the operator of pointwise
multiplication by νk , the k-th scalar component of the vector ν.

Then there exists some C ∈ (0,∞) which depends only on n, p, [w]Ap , and the
UR constants of ∂� and, for each m ∈ N, there exists some Cm ∈ (0,∞) which
depends only on m, n, p, [w]Ap , and the UR constants of ∂� with the property that,
with the piece of notation introduced in (4.93), one has

‖K‖Lp(∂�,w)→Lp(∂�,w) ≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n and

max
1≤j,k≤n

∥
∥[Mνk , Rj ]

∥
∥
Lp(∂�,w)→Lp(∂�,w)

≤ C‖ν‖[BMO(∂�,σ)]n .
(4.298)
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Also, when ‖ν‖[BMO(∂�,σ)]n is sufficiently small relative to n, p, [w]Ap , and the
Ahlfors regularity constant of ∂� one may take the constants C,Cm ∈ (0,∞)

appearing in (4.298) to depend only on said entities (i.e., n, p, [w]Ap , and the
Ahlfors regularity constant of ∂�) and, in the case of Cm, also on m.

Proof The estimate claimed in (4.298) is implied by (3.29), Corollary 4.2, (4.297),
Proposition 3.4, and Theorem 4.3. The very last claim in the statement is implied by
Theorem 2.3. � 

We shall, once again, see Theorem 4.3 in action shortly, in the proof of Theo-
rem 4.7. In the latter result the focus is obtaining operator norm estimates for double
layer potentials associated with distinguished coefficient tensors on Muckenhoupt
weighted Lebesgue and Sobolev spaces, exhibiting explicit dependence on the
BMO semi-norm of the geometric measure theoretic outward unit normal to the
underlying domain.

Theorem 4.7 Let � ⊆ Rn be a UR domain. Set σ := Hn−1�∂� and denote
by ν the geometric measure theoretic outward unit normal to �. Also, let L be a
homogeneous, second-order, constant complex coefficient, weakly elliptic M × M

system in Rn for which Adis
L �= ∅. Pick A ∈ Adis

L and consider the boundary-
to-boundary double layer potential operators KA,K

#
A associated with � and the

coefficient tensor A as in (3.24) and (3.25), respectively. Finally, fix an integrability
exponent p ∈ (1,∞) and a Muckenhoupt weight w ∈ Ap(∂�, σ).

Then for each m ∈ N there exists some Cm ∈ (0,∞) which depends only on m,
n, A, p, [w]Ap , and the UR constants of ∂� such that, with the piece of notation
introduced in (4.93), one has

‖KA‖[Lp(∂�,w)]M→[Lp(∂�,w)]M ≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n , (4.299)

‖KA‖[Lp1 (∂�,w)]M→[Lp1 (∂�,w)]M ≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n , (4.300)

and

∥∥K#
A

∥∥[Lp(∂�,w)]M→[Lp(∂�,w)]M ≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n . (4.301)

In addition, when ‖ν‖[BMO(∂�,σ)]n is sufficiently small relative to n, p, [w]Ap ,
and the Ahlfors regularity constant of ∂� one may take Cm ∈ (0,∞) appearing in
(4.299)–(4.301) to depend itself only on said entities (i.e., n, p, [w]Ap , the Ahlfors
regularity constant of ∂�) and m.

Note that the estimate in (4.299) implies that the operatorKA becomes identically
zero whenever � is a half-space in Rn. From (i)⇔ (ii) in Proposition 3.9 we know
that this may only occur if A ∈ Adis

L . Hence, the assumption Adis
L �= ∅ is actually

necessary in light of the conclusion in Theorem 4.7.
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Proof of Theorem 4.7 The estimates claimed in (4.299) and (4.301) are direct
consequences of Corollary 4.2 and Proposition 3.9, bearing in mind (3.24) and
(3.25).

Turning to the task of proving (4.300), it is apparent from (3.35) that each Ujk

is a sum of operators of commutator type. Then, given any integer m ∈ N along
with any function f ∈ [

L
p

1 (∂�,w)
]M , based on (3.37), (4.299), Theorem 4.3, and

(4.98) we may write

‖KAf ‖[Lp1 (∂�,w)]M = ‖KAf ‖[Lp(∂�,w)]M +
n∑

j,k=1

∥∥∂τjk (KAf )
∥∥[Lp(∂�,w)]M

= ‖KAf ‖[Lp(∂�,w)]M

+
n∑

j,k=1

(∥∥KA(∂τjkf )
∥∥[Lp(∂�,w)]M + ∥∥Ujk(∇tanf )

∥∥[Lp(∂�,w)]M
)

≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n ‖f ‖[Lp(∂�,w)]M

+ Cm‖ν‖〈m〉[BMO(∂�,σ)]n
n∑

j,k=1

∥∥∂τjkf
∥∥[Lp(∂�,w)]M

+ C ‖ν‖[BMO(∂�,σ)]n ‖∇tanf ‖[Lp(∂�,w)]M

≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n ‖f ‖[Lp1 (∂�,w)]M , (4.302)

which establishes (4.300). The very last claim in the statement is a consequence of
Theorem 2.3. � 

Remark 4.11 The unweighted case (i.e., the scenario in which w ≡ 1) of Theo-
rem 4.7 gives norm estimates for the double layer operator and its formal transpose
on ordinary Lebesgue and Sobolev spaces. By relying on (4.258)–(4.259), Propo-
sition 3.2, (4.264), and (2.589) we may also obtain similar estimates on Lorentz
spaces and Lorentz-based Sobolev spaces (cf. (2.590)–(2.591)). Specifically, in the
same setting as Theorem 4.7, the aforementioned results imply that for each m ∈ N,
p ∈ (1,∞) and q ∈ (0,∞] there exists some Cm ∈ (0,∞) which depends only on
m, n, A, p, q, and UR constants of ∂�, such that

‖KA‖[Lp,q (∂�,σ)]M→[Lp,q (∂�,σ)]M ≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n , (4.303)

‖KA‖[Lp,q1 (∂�,σ)]M→[Lp,q1 (∂�,σ)]M ≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n , (4.304)
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and

∥∥K#
A

∥∥[Lp,q (∂�,σ)]M→[Lp,q (∂�,σ)]M ≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n . (4.305)

More general results of this type are discussed later, in Theorem 8.9 (see also
Examples 8.2 and 8.6).

Remark 4.12 By reasoning much as in the proof of Theorem 4.7, we may also
obtain operator norm estimates for the double layer KA with A ∈ Adis

L on off -
diagonal weighted Sobolev spaces, i.e., when the integrability exponents and the
weights for the Lebesgue spaces to which the actual function and its tangential
derivatives belong to are allowed to be different. Specifically, given two integrability
exponents p1, p2 ∈ (1,∞) along with two Muckenhoupt weightsw1 ∈ Ap1(∂�, σ)

and w2 ∈ Ap2(∂�, σ), define the off-diagonal weighted Sobolev space

L
p1;p2
1 (∂�,w1;w2) :=

{
f ∈Lp1(∂�,w1) : (4.306)

∂τjkf ∈ Lp2(∂�,w2), 1 ≤ j, k ≤ n
}
,

equipped with the natural norm defined for each f ∈ L
p1;p2
1 (∂�,w1;w2) as

‖f ‖
L
p1;p2
1 (∂�,w1;w2)

:= ‖f ‖Lp1 (∂�,w1)
+

n∑

j,k=1

∥∥∂τjkf
∥∥
Lp2 (∂�,w2)

. (4.307)

Then much as in (4.302), for each m ∈ N we now obtain

‖KA‖[Lp1;p2
1 (∂�,w1;w2)]M→[Lp1;p2

1 (∂�,w1;w2)]M ≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n , (4.308)

for some Cm ∈ (0,∞) which depends only on m, n, A, p1, p2, [w1]Ap1
, [w2]Ap2

,
and the UR constants of ∂�.

Remark 4.13 In the setting of Theorem 4.7, estimates (4.299)–(4.301) continue to
hold with a fixed constant Cm ∈ (0,∞) when the integrability exponent and the
corresponding Muckenhoupt weight are permitted to vary with control. Specifically,
from Remark 4.9 and the proof of Theorem 4.7 we see that for each m ∈ N, each
compact interval I ⊂ (0,∞), and each number W ∈ (0,∞) there exists a constant
Cm ∈ (0,∞), which depends only on n, I , W , and the UR constants of ∂�, with the
property that (4.299)–(4.301) hold for each p ∈ I and each w ∈ Ap(∂�, σ) with
[w]Ap ≤ W .

Having proved Theorem 4.7, we may now establish invertibility results for
boundary double layer potentials associated with distinguished coefficient tensors,
assuming � is a δ-flat Ahlfors regular domain with δ suitably small relative to n

and the Ahlfors regularity constant of ∂�. By means of counterexamples we show
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that assuming that the double layer potentials are associated with distinguished
coefficient tensors is a hypothesis one cannot simply omit. Also, as explained a
little later, in Remark 4.19, the flatness condition imposed on the domain is actually
in the nature of best possible as far as the invertibility results from Theorem 4.8 are
concerned.

Theorem 4.8 Let � ⊆ Rn be an Ahlfors regular domain. Set σ := Hn−1�∂�
and denote by ν the geometric measure theoretic outward unit normal to �. Also,
let L be a homogeneous, second-order, constant complex coefficient, weakly elliptic
M×M system in Rn for which Adis

L �= ∅. Pick A ∈ Adis
L and consider the boundary-

to-boundary double layer potential operators KA,K
#
A associated with � and the

coefficient tensor A as in (3.24) and (3.25), respectively. Finally, fix an integrability
exponent p ∈ (1,∞), a Muckenhoupt weight w ∈ Ap(∂�, σ), and some number
ε ∈ (0,∞).

Then there exists some small threshold δ ∈ (0, 1) which depends only on n, p,
[w]Ap , A, ε, and the Ahlfors regularity constant of ∂�, with the property that if
‖ν‖[BMO(∂�,σ)]n < δ it follows that for each spectral parameter z ∈ C with |z| ≥ ε

the following operators are linear, bounded, and invertible:

zI +KA :
[
Lp(∂�,w)

]M −→ [
Lp(∂�,w)

]M
, (4.309)

zI +KA :
[
L
p

1 (∂�,w)
]M −→ [

L
p

1 (∂�,w)
]M

, (4.310)

zI +K#
A :

[
Lp(∂�,w)

]M −→ [
Lp(∂�,w)

]M
. (4.311)

Furthermore, the above result is optimal in the sense that if A /∈ Adis
L then either

of the operators (4.309)–(4.311) may fail to be invertible even when z = 1/2 and
� = Rn+.
Proof Let C denote the constant appearing in estimates (4.299)–(4.301), for the
choice m := 1, and choose tε ∈ (0, 1/e) small enough so that tε · ln(1/tε) < ε/C.
To get going, pick δ ∈ (0, tε). By decreasing δ if necessary, we may insure that
� is a UR domain, with the UR constants of ∂� controlled solely in terms of the
dimension n and the Ahlfors regularity constant of ∂� (cf. Theorem 2.3). Granted
this, Theorem 4.7 applies and gives that

‖KA‖[Lp(∂�,w)]M→[Lp(∂�,w)]M ≤ Cδ〈1〉 ≤ C(tε)
〈1〉 < ε. (4.312)

Analogously,

‖KA‖[Lp1 (∂�,w)]M→[Lp1 (∂�,w)]M < ε, (4.313)

∥
∥K#

A

∥
∥[Lp(∂�,w)]M→[Lp(∂�,w)]M < ε. (4.314)
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In particular, the operators in (4.309)–(4.311) are invertible for each given z ∈ C
with |z| ≥ ε using a Neumann series, i.e.,

(
zI +KA

)−1 = z−1
∞∑

m=0

(− z−1KA

)m (4.315)

with convergence in the space of linear and bounded operators on
[
Lp(∂�,w)

]M

as well as on
[
L
p

1 (∂�,w)
]M , and

(
zI +K#

A

)−1 = z−1
∞∑

m=0

(− z−1K#
A

)m (4.316)

with convergence in the space of linear and bounded operators on
[
Lp(∂�,w)

]M .
There remains to address the optimality claim in the last part of the statement.

To this end, recall the second-order, weakly elliptic, constant (real) coefficient,
symmetric, n × n system LD defined in (3.371). From (3.23), (3.31), (2.575),
(3.112), and (3.377) we see that ifKA,K

#
A are the boundary layer potential operators

associated as in (3.24), (3.25) with � := Rn+ and any coefficient tensor A ∈ ALD
then

{( 1
2I +KA

)
f : f ∈ [

Lp(Rn−1, w)
]n}

⊆
{
(f1, . . . , fn) ∈

[
Lp(Rn−1, w)

]n : fn =
n−1∑

j=1

Rjfj

}
.

(4.317)

Thus,
{
(0, . . . , 0, f ) : f ∈ Lp(Rn−1, w)

}
is an infinite dimensional subspace of

[
Lp(Rn−1, w)

]n whose intersection with
{( 1

2I +KA

)
f : f ∈ [

Lp(Rn−1, w)
]n} is

{0}. Consequently, 1
2I +KA acting on

[
Lp(Rn−1, w)

]n has an infinite dimensional
cokernel for each p ∈ (1,∞) and each w ∈ Ap(R

n−1,Ln−1). By duality
(cf. (3.119)), it follows that 1

2I + K#
A acting on

[
Lp(Rn−1, w)

]n has an infinite
dimensional kernel for each p ∈ (1,∞) and each w ∈ Ap(R

n−1,Ln−1). In
particular, the operators in (4.309), (4.311) corresponding to z = 1/2 and � = Rn+
fail to be invertible in this case.

Likewise, from (3.23), (3.31), (2.575), (3.112), (3.113), and (3.378) it follows
that ifKA is the double layer potential operator associated as in (3.24) with� := Rn+
and any coefficient tensor A ∈ ALD then

{( 1
2I +KA

)
f : f ∈ [

L
p

1 (R
n−1, w)

]n}
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⊆
{
(f1, . . . , fn) ∈

[
L
p

1 (R
n−1, w)

]n : fn =
n−1∑

j=1

Rjfj

}
.

(4.318)

Much as before, this shows that 1
2I +KA acting on

[
L
p

1 (R
n−1, w)

]n has an infinite
dimensional cokernel for each p ∈ (1,∞) and each w ∈ Ap(R

n−1,Ln−1). In
particular, the operator in (4.310) corresponding to z = 1/2 and � = Rn+ also fails
to be invertible in this case.

In all cases, the source of the failure for invertibility is the fact that any coefficient
tensor A ∈ ALD fails to be distinguished (cf. (3.406)). � 

In Remarks 4.14–4.15 we continue to elaborate on the nature of the optimality
claim in the last portion of the statement of Theorem 4.8.

Remark 4.14 Work with a scalar operator in the two-dimensional setting (i.e., when
n = 2 and M = 1). Specifically, take L := , the Laplacian in the plane, written as
 = ajk∂j ∂k for the matrix A = (ajk)1≤j,k≤2 given by

A :=
(

1 i
−i 1

)
∈ C2×2. (4.319)

Then, as noted in (1.23)–(1.24), the boundary-to-boundary double layer potential
operator KA associated as in (3.24) with this coefficient tensor and the domain
� := R2+ is KA = (i/2)H where H is the Hilbert transform on the real line.
Fix an integrability exponent p ∈ (1,∞) along with a Muckenhoupt weight
w ∈ Ap(R,L1). Since −H 2 = I , the identity operator on Lp(R, w), it follows

that we currently have
(
KA

)2 = 4−1I on Lp(R, w). This further entails

( 1
2I +KA

)(− 1
2I +KA

) = 0 on Lp(R, w) (4.320)

which, in view of the fact that KA �= ± 1
2I , ultimately proves that the operator

1
2I+KA is not invertible3 on any Muckenhoupt weighted Lebesgue spaceLp(R, w).

From what we have just proved and duality (cf. (3.119)) we then see that the
operator 1

2I + K#
A fails to be invertible on any Muckenhoupt weighted Lebesgue

space Lp(Rn−1, w) as well. Finally, given that (4.320) implies

( 1
2I +KA

)(− 1
2I +KA

) = 0 on L
p

1 (R, w), (4.321)

we also infer that the operator 1
2I + KA fails to be invertible when acting on any

Muckenhoupt weighted Sobolev space Lp1 (R, w).

3 In fact, 1
2 I + KA acting on Lp(R, w) has an infinite dimensional kernel and an infinite

dimensional cokernel.



4.3 Norm Estimates and Invertibility Results for Double Layers 309

Since A �= I2×2 and Adis
 = {

I2×2
}
, the above analysis shows that for coefficient

tensors A ∈ A \ Adis
 it may actually happen that the conclusions in Theorem 4.8

corresponding to z := 1/2 and � := R2+ fail.

The following is a higher-dimensional version of Remark 4.14.

Remark 4.15 Fix n ∈ N with n ≥ 2 and define M := 2n. Bring back the M ×M

second-order system L :=  · IM×M in Rn (cf. (1.31)). In particular, from (3.396)
and Proposition 3.9 we see that Adis

L = {IM×M}. Consequently, the coefficient tensor

A := (
a
αβ
jk

)
1≤α,β≤M
1≤j,k≤n

with entries as in (1.33) satisfies

A ∈ AL \ Adis
L . (4.322)

To proceed, let KA be the boundary-to-boundary double layer potential operator
associated as in (3.24) with the coefficient tensor (4.322) and the domain � := Rn+.
Given some arbitrary integrability exponent p ∈ (1,∞) along with some arbitrary
Muckenhoupt weight w ∈ Ap(R

n−1,Ln−1), the same type of argument as in (1.39)
gives

(
KA

)2 = 1
4I on

[
Lp(Rn−1, w)

]M
, (4.323)

where I is the identity operator on
[
Lp(Rn−1, w)

]M . Thus,

( 1
2I +KA

)(− 1
2I +KA

) = 0 on
[
Lp(Rn−1, w)

]M
. (4.324)

In view of the fact that4 KA �= ± 1
2I , the above identity ultimately proves that the

operator 1
2I +KA is not invertible5 on

[
Lp(Rn−1, w)

]M .
Ultimately, this discussion shows that for coefficient tensors as in (4.322) it

may well happen that the operator 1
2I + KA is not invertible on any Muckenhoupt

weighted Lebesgue space
[
Lp(Rn−1, w)

]M . Via duality (cf. (3.119)) we conclude
that the operator 1

2I + K#
A fails to be invertible on any Muckenhoupt weighted

Lebesgue space
[
Lp(Rn−1, w)

]M as well. Finally, since (4.324) implies

( 1
2I +KA

)(− 1
2I +KA

) = 0 on
[
L
p

1 (R
n−1, w)

]M
, (4.325)

4 Since KA is a Fourier multiplier operator with symbol m(ξ ′) := ξj
2|ξ ′ |EnEj for ξ ′ ∈ Rn−1 \ {0}.

5 In fact, 1
2 I + KA acting on

[
Lp(Rn−1, w)

]M has both an infinite dimensional kernel and an
infinite dimensional cokernel.
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we also conclude that the operator 1
2I + KA is not invertible when acting on any

Muckenhoupt weighted Sobolev space
[
L
p

1 (R
n−1, w)

]M . Hence, all conclusions in
Theorem 4.8 corresponding to z := 1/2 and � := R2+ fail.

Remark 4.16 In view of (4.303)–(4.305), and (4.308), invertibility results which are
similar to those proved in Theorem 4.8 may be established on Lorentz spaces and
Lorentz-based Sobolev spaces, as well as on the brand of off-diagonal Muckenhoupt
weighted Sobolev spaces defined as in (4.306)–(4.307).

Remark 4.17 It is of interest to contrast Theorem 4.8 with the precise invertibility
results known in the particular case when � is an infinite sector in the plane, with
opening angle θ ∈ (0, 2π) and when L =  (the two-dimensional Laplacian). In
such a setting, it is known (cf. [48], [115, §4.2], [126, Theorem 5, p. 192]) that

given p ∈ (1,∞), the operators ± 1
2I + K are invertible on

Lp(∂�, σ) if and only if p �= 1+ |π − θ |/π (which amounts to
saying that necessarily p �= 2π−θ

π
for θ ∈ (0, π) and p �= θ

π
for

θ ∈ (π, 2π)).

(4.326)

When θ = π (i.e., when � is a half-plane) then, of course, any p ∈ (1,∞) will
do. In this vein, see also [105, Lemma 4.5, p. 2042]. Consider next the case of the
two-dimensional Lamé system in an infinite sector of aperture θ ∈ (0, 2π), and
recall from the discussion at the end of Example 3.4 that the pseudo-stress double
layer potential operator for the Lamé system is denoted by K# . Then there are two
critical values of the integrability exponent p ∈ (1,∞), which depend on θ and a
specific combination of the Lamé moduli, for which the invertibility of the operators
± 1

2I +K# on
[
Lp(∂�, σ)

]2 fails. See [110, Theorem 1.1(A.2) on pp. 153-154, and
Theorem 1.3 on pp. 157-158] for more precise information in this regard (including
the location of these critical values, which are no longer as explicit as in the case of
the Laplacian, and certain monotonicity properties with respect to the angle θ and
the Lamé moduli). We shall revisit the case of the two-dimensional Lamé system in
Sect. 4.5.

Remark 4.18 In the context of Theorem 4.8, the operators in (4.309)–(4.311)
continue to be invertible when the integrability exponent and the corresponding
Muckenhoupt weight are permitted to vary while retaining control. More specif-
ically, from Remark 4.13 and the proof of Theorem 4.8 it follows that for each
compact interval I ⊂ (0,∞) and each number W ∈ (0,∞) there exists a threshold
δ ∈ (0, 1), which depends only on n, I , W , and the Ahlfors regularity constant of
∂�, with the property that if

‖ν‖[BMO(∂�,σ)]n < δ (4.327)
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then the operators (4.309)–(4.311) are linear, bounded, and invertible for each p ∈ I

and each w ∈ Ap(∂�, σ) with [w]Ap ≤ W .

Remark 4.19 The more general version of Theorem 4.8 from Remark 4.18 is in
the nature of best possible, in the sense that the simultaneous invertibility result
described in Remark 4.18 forces ‖ν‖[BMO(∂�,σ)]n to be small (relative to the other
geometric characteristics of �). To illustrate this, consider the case when � = �θ ,
an infinite sector in the plane with opening angle θ ∈ (0, 2π) (cf. (2.289)), and
when L = , the two-dimensional Laplacian. We are interested in the geometric
implications of having the operators ± 1

2I + K invertible on Lp(∂�θ , σθ ) (where

σθ := H1�∂�θ ) for all p’s belonging to a compact sub-interval of (1,∞).
Specifically, suppose said operators are invertible whenever p ∈ Iη := [1+ η, 2]

for some fixed η ∈ (0, 1). From (4.326) we see that this forces θ �= π(2 − p) if
θ ∈ (0, π) and θ �= πp if θ ∈ (π, 2π). As p swipes the interval [1+η, 2], the set of
prohibited values for the aperture θ becomes

(
0, (1−η)π

]∪[
(1+η)π, 2π

)
. Hence,

we necessarily have θ ∈ (
(1 − η)π, (1 + η)π

)
which further entails

−sin
(
ηπ2

) = cos
(
(1+η)π2

)
< cos(θ/2) < cos

(
(1−η)π2

) = sin
(
ηπ2

)
. (4.328)

If ν denotes the outward unit normal vector to �θ , then from (4.328) and (2.290)
we conclude that

‖ν‖[BMO(∂�θ ,σθ )]2 = | cos(θ/2)| < sin
(
ηπ2

) −→ 0+ as η→ 0+. (4.329)

This goes to show that, in general, the smallness of the BMO semi-norm of the
geometric measure theoretic outward unit normal stipulated in (4.327) cannot be
dispensed with, as far as the invertibility of the operator in (4.309) (in this case,
with z ∈ {± 1

2 }, L = , A the identity matrix, M = 1, and w ≡ 1) for each p ∈ Iη
is concerned.

The invertibility results from Theorem 4.8 may be further enhanced by allowing
the coefficient tensor to be a small perturbation of any distinguished coefficient
tensor of the given system. Concretely, by combining Theorem 4.7 with the
continuity of the operator-valued assignments in (3.120)–(3.122), we obtain the
following result.

Theorem 4.9 Retain the original background assumptions on the set � from The-
orem 4.8 and, as before, fix an integrability exponent p ∈ (1,∞), a Muckenhoupt
weight w ∈ Ap(∂�, σ), and some number ε ∈ (0, 1). Consider L ∈ Ldis (cf.
(3.195)) and pick an arbitrary Ao ∈ Adis

L . Then there exist some small threshold
δ ∈ (0, 1) along with some open neighborhood O of Ao in AWE , both of which
depend only on n, p, [w]Ap , Ao, ε, and the Ahlfors regularity constant of ∂�, with
the property that if ‖ν‖[BMO(∂�,σ)]n < δ then for each A ∈ O and each spectral
parameter z ∈ C with |z| ≥ ε, the operators (4.309)–(4.311) are linear, bounded,
and invertible.
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In the last portion of this section we discuss the issue of the compatibility
of the inverses of the integral operators from Theorem 4.8 when simultaneously
considered on different spaces. This requires that we briefly digress for the purpose
of bringing in useful language and basic results of general functional analytic
nature. Specifically, call two linear normed spaces, X0 = (

X0, ‖ · ‖X0

)
and

X1 = (
X1, ‖ · ‖X1

)
, compatible if there exists a Hausdorff topological vector

space X such that

Xi ↪→ X continuously, i ∈ {0, 1}. (4.330)

Note that, in this scenario, we can talk about the algebraic sum X0+X1(⊆ X). This
becomes a linear normed space when equipped with

‖x‖X0+X1 := inf
x=x0+x1

x0∈X0, x1∈X1

(‖x0‖X0 + ‖x1‖X1

)
, ∀ x ∈ X0 +X1, (4.331)

and X0 + X1 ↪→ X continuously. Furthermore, Xi ↪→ X0 + X1 continuously, for
i ∈ {0, 1}. One may check that if X0, X1 are complete then so is X0 +X1 equipped
with ‖·‖X0+X1 . Hence,X0+X1 turns out to be a Banach space ifX0,X1 are Banach
spaces to begin with.

We continue by recording two useful basic results of functional analytic nature.
To state the first such result, suppose X0 =

(
X0, ‖ · ‖X0

)
and X1 =

(
X1, ‖ · ‖X1

)
on

the one hand, and Y0 =
(
Y0, ‖ · ‖Y0

)
and Y1 =

(
Y1, ‖ · ‖Y1

)
on the other hand, are

two pairs of compatible linear normed spaces. Then

having a linear mapping T : X0+X1 → Y0+Y1 which satisfies
TXi ⊆ Yi for i ∈ {0, 1} is equivalent to having two linear maps
Ti : Xi → Yi for i ∈ {0, 1} that are compatible with one another,
in the sense that T0

∣∣
X0∩X1

= T1
∣∣
X0∩X1

; in this case one has

‖T ‖X0+X1→Y0+Y1 ≤ max
{‖T0‖X0→Y0, ‖T1‖X1→Y1

}
.

(4.332)

To state our second result alluded to above, assume now that X, Y are two Banach
spaces with the property that Y ⊆ X. One may check without difficulty that

if T : X → X is a linear isomorphism with the property that
T (Y ) ⊆ Y and T

∣∣
Y
: Y → Y is also an isomorphism, then

T −1(Y ) ⊆ Y and
(
T
∣∣
Y

)−1 = T −1
∣∣
Y

as operators on Y .
(4.333)

We are now ready to establish norm estimates for double layer operators acting
on sums of Muckenhoupt weighted Lebesgue and Sobolev spaces.

Proposition 4.1 Let � ⊆ Rn be a UR domain. Abbreviate σ := Hn−1�∂� and
denote by ν the geometric measure theoretic outward unit normal to �. Also, let
L be a homogeneous, second-order, constant complex coefficient, weakly elliptic
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M × M system in Rn for which Adis
L �= ∅. Pick a coefficient tensor A ∈ Adis

L

and consider the boundary-to-boundary double layer potential operators KA,K
#
A

associated with � and the coefficient tensor A as in (3.24) and (3.25), respectively.
Finally, fix some pair of integrability exponents p0, p1 ∈ (1,∞) along with some
pair of Muckenhoupt weights w0 ∈ Ap0(∂�, σ) and w1 ∈ Ap1(∂�, σ).

Then for each m ∈ N there exists some constant C ∈ (0,∞) which depends only
on m, n, A, p0, p1, [w0]Ap0

, [w1]Ap1
, and the UR constants of ∂� such that, with

the piece of notation introduced in (4.93), one has

‖KA‖[Lp0 (∂�,w0)+Lp1 (∂�,w1)]M→[Lp0 (∂�,w0)+Lp1 (∂�,w1)]M

≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n , (4.334)

‖KA‖[Lp0
1 (∂�,w0)+Lp1

1 (∂�,w1)]M→[Lp0
1 (∂�,w0)+Lp1

1 (∂�,w1)]M

≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n , (4.335)

∥∥K#
A

∥∥[Lp0 (∂�,w0)+Lp1 (∂�,w1)]M→[Lp0 (∂�,w0)+Lp1 (∂�,w1)]M

≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n . (4.336)

Also, if ‖ν‖[BMO(∂�,σ)]n is sufficiently small relative to n, p, [w]Ap , and the
Ahlfors regularity constant of ∂� one may take Cm ∈ (0,∞) appearing in (4.334)–
(4.336) to depend only on said entities (i.e., n, p, [w]Ap , the Ahlfors regularity
constant of ∂�) and m.

Proof This is a consequence of Theorems 4.7, (4.332), and 2.3. In the case of
(4.334) and (4.336) take Xi := Yi :=

[
Lpi (∂�,wi)

]M for i ∈ {0, 1}, in which case

(4.330) is satisfied if we choose X :=
[
L1

(
∂�,

σ(x)

1+|x|n−1

)]M
(cf. (2.575)). Finally,

for the estimate claimed in (4.335), take Xi := Yi :=
[
L
pi
1 (∂�,wi)

]M for each

i ∈ {0, 1}, so now the inclusion in (4.330) holds if X :=
[
L1

1

(
∂�,

σ(x)

1+|x|n−1

)]M

where

L1
1

(
∂�,

σ(x)

1+|x|n−1

) :=
{
f ∈ L1(∂�, σ(x)

1+|x|n−1

) : (4.337)

∂τjkf ∈ L1(∂�, σ(x)

1+|x|n−1

)
for each j, k ∈ {1, . . . , n}

}
,

equipped with the norm
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‖f ‖
L1

1

(
∂�,

σ(x)

1+|x|n−1

) := ‖f ‖
L1
(
∂�,

σ(x)

1+|x|n−1

) +
n∑

j,k=1

∥
∥∂τjkf

∥
∥
L1
(
∂�,

σ(x)

1+|x|n−1

)

(4.338)
for each f ∈ L1

1

(
∂�,

σ(x)

1+|x|n−1

)
. � 

Here are the compatibility results for the inverses of integral operators from
Theorem 4.8 when simultaneously considered on different Muckenhoupt weighted
Lebesgue and Sobolev spaces.

Proposition 4.2 Let � ⊆ Rn be an Ahlfors regular domain. Denote by ν the geo-
metric measure theoretic outward unit normal to� and abbreviate σ := Hn−1�∂�.
Also, let L be a homogeneous, second-order, constant complex coefficient, weakly
elliptic M ×M system in Rn for which Adis

L �= ∅. Pick A ∈ Adis
L and consider the

boundary-to-boundary double layer potential operators KA,K
#
A associated with

� and the coefficient tensor A as in (3.24) and (3.25), respectively. Finally, fix
some pair of integrability exponents p0, p1 ∈ (1,∞) along with some pair of
Muckenhoupt weights w0 ∈ Ap0(∂�, σ) and w1 ∈ Ap1(∂�, σ), and some number
ε ∈ (0, 1).

Then there exists some small threshold δ ∈ (0, 1) which depends only on n,
p0, p1, [w0]Ap0

, [w1]Ap1
, A, ε, and the Ahlfors regularity constant of ∂�, with the

property that if ‖ν‖[BMO(∂�,σ)]n < δ it follows that for each spectral parameter
z ∈ C with |z| ≥ ε the following properties hold:

the operator zI+KA is invertible both as a mapping from the
space

[
Lp0(∂�,w0) + Lp1(∂�,w1)

]M
onto itself and also

from the space
[
L
p0
1 (∂�,w0)+ L

p1
1 (∂�,w1)

]M
onto itself;

(4.339)

the operator zI + KA is invertible both as a mapping from[
Lp0(∂�,w0)

]M
onto itself and also as a mapping from

[
Lp1(∂�,w1)

]M
onto itself, and the two inverses are in fact

compatible with one another on the intersection;

(4.340)

the operator zI + KA is invertible both as a mapping from[
L
p0
1 (∂�,w0)

]M
onto itself and also as a mapping from

[
L
p1
1 (∂�,w1)

]M
onto itself, and the two inverses are in fact

compatible with one another on the intersection;

(4.341)

the operator zI + K#
A is invertible both as a mapping from

[
Lp0(∂�,w0)

]M
onto itself and also as a mapping from

[
Lp1(∂�,w1)

]M
onto itself, and the two inverses are in fact

compatible with one another on the intersection.

(4.342)
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Proof Bring in the constant C appearing in estimates (4.334)–(4.336) (correspond-
ing to m := 1), and denote by tε ∈ (0, 1) the unique solution of the equation
t · ln(e/t) = ε/max{C, 1}. Pick δ ∈ (0, tε) and, if necessary, further decrease δ as to
insure that� is a UR domain, with the UR constants of ∂� controlled solely in terms
of the dimension n and the Ahlfors regularity constant of ∂� (cf. Theorem 2.3).

Then, via a Neumann series argument (much as in the proof of Theorem 4.8)
it follows that zI + KA is invertible when considered from

[
Lp0(∂�,w0)

]M onto

itself, from
[
Lp1(∂�,w1)

]M onto itself, from
[
Lp0(∂�,w0)+Lp1(∂�,w1)

]M onto

itself, and also from
[
L
p0
1 (∂�,w0)+ L

p1
1 (∂�,w1)

]M onto itself. Invoking (4.333)

with X := [
Lp0(∂�,w0)+Lp1(∂�,w1)

]M and with Y either
[
Lp0(∂�,w0)

]M or
[
Lp1(∂�,w1)

]M , then proves that both the inverse of zI +KA on
[
Lp0(∂�,w0)

]M

and the inverse of zI + KA on
[
Lp1(∂�,w1)

]M arise as restrictions to these
respective spaces of a common operator, namely the inverse of the operator zI+KA

on the bigger space
[
Lp0(∂�,w0) + Lp1(∂�,w1)

]M . As such, they agree with
one another so the conclusion in (4.340) follows. The claims in (4.341)–(4.342) are
proved in a similar fashion. � 

Remark 4.20 Compatibility results similar in spirit to the ones proved in Propo-
sition 4.2 are also valid for other spaces of interest. For example, in the context
of Proposition 4.2, taking the threshold δ ∈ (0, 1) sufficiently small ensures that
the operator zI +KA is invertible on the hybrid space

[
L
p1;p2
1 (∂�,w1;w2)

]M (cf.
Remark 4.12) and its inverse continues to be compatible with the inverse of zI+KA

on any other (a priori) given Muckenhoupt weighted Lebesgue space or Sobolev
space on ∂�. In this vein, we also claim that there exists some constant C ∈ (0,∞)

with the property that

whenever f ∈ [
L
p1;p2
1 (∂�,w1;w2)

]M

and g := (zI +KA)
−1 f ∈ [

L
p1;p2
1 (∂�,w1;w2)

]M

then ‖∇tang‖[Lp2 (∂�,w2)]n·M ≤ C ‖∇tanf ‖[Lp2 (∂�,w2)]n·M .

(4.343)

To justify this, use (3.37) to write, for each j, k ∈ {1, . . . , n},

∂τjkf = ∂τjk
[(
zI +KA

)
g
] = (

zI +KA

)
(∂τjk g)+ Ujk(∇tang)

= (
zI +KA

)
(∂τjk g)+ Ujk

((
νr∂τrs gα

)
1≤α≤M
1≤s≤n

)
(4.344)

at σ -a.e. point on ∂�, where ν = (νr )1≤r≤n is the geometric measure theoretic
outward unit normal to �. Using the abbreviations

∇τ f := (
∂τjkf

)
1≤j,k≤n, ∇τ g :=

(
∂τjk g

)
1≤j,k≤n, (4.345)
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we find it convenient to recast the collection of all formulas as in (4.344),
corresponding to all indices j, k ∈ {1, . . . , n}, simply as

∇τ f = (
zI + R

)
(∇τ g), (4.346)

where I is the identity and R is the operator acting from
[
Lp2(∂�,w2)

]M·n2
into

itself according to

R := KA +
(
Ujk ◦

(
Mνr ◦ παrs

)
1≤α≤M
1≤s≤n

)

1≤j,k≤n. (4.347)

Above, we let KA act on each F = (
Fα
rs

)
1≤α≤M
1≤r,s≤n

∈ [
Lp2(∂�,w2)

]M·n2
by setting

KAF :=
(
KA

(
Fα
rs

)
1≤α≤M

)

1≤r,s≤n. (4.348)

Also recall that, much as in the past, each Mνr denotes the operator of pointwise
multiplication by νr , the r-th scalar component of ν. Finally, in (4.347) we let each
παrs be the “coordinate-projection” operator which acts as παrs(X) := Xα

rs for every

X = (
Xα
rs

)
1≤α≤M
1≤r,s≤n

∈ CM·n2
. From (4.347), (4.299), (3.35), Theorem 4.3, and (3.81),

we then conclude that

‖R‖[Lp2 (∂�,w2)]M·n2→[Lp2 (∂�,w2)]M·n2 ≤ C‖ν‖〈1〉[BMO(∂�,σ)]n (4.349)

for some C ∈ (0,∞) which depends only on n, A, p2, [w2]Ap2
, and the Ahlfors

regularity constant of ∂�. As a consequence of this, if we assume δ > 0 to be
sufficiently small to begin with, a Neumann series argument gives that

zI + R is invertible on
[
Lp2(∂�,w2)

]M·n2
(4.350)

and provides an estimate for the norm of the inverse. At this stage, the estimate
claimed in (4.343) follows from (4.346), (4.350), (4.345), and (2.585)–(2.586).

We conclude this section by proving estimates for the operator norm of the
modified boundary-to-boundary double layer operator acting on homogeneous
Muckenhoupt weighted Sobolev spaces in terms of the BMO semi-norm of
the geometric measure theoretic outward unit normal to the underlying domain,
complementing results in Theorem 4.7.

Theorem 4.10 Let � ⊆ R
n be a two-sided NTA domain whose boundary is

an unbounded Ahlfors regular set. Abbreviate σ := Hn−1�∂� and denote by
ν the geometric measure theoretic outward unit normal to �. Also, let L be a
homogeneous, second-order, constant complex coefficient, weakly elliptic M × M

system in Rn for which Adis
L �= ∅. Pick A ∈ Adis

L and consider the modified
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boundary-to-boundary double layer potential operator
[
K

A,mod

]
associated with �

and the coefficient tensor A as in (3.142). Finally, fix an integrability exponent
p ∈ (1,∞) and a Muckenhoupt weight w ∈ Ap(∂�, σ).

Then for each m ∈ N there exists some Cm ∈ (0,∞) which depends only on m,
n, A, p, [w]Ap , and the Ahlfors regularity constant of ∂�, such that

∥∥[K
A,mod

]∥∥[ .Lp1 (∂�,w)/∼]M→[ .Lp1 (∂�,w)/∼]M
≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n . (4.351)

Furthermore, the above result is optimal in the sense that, given any A ∈ AL,
having (4.351) valid for every half-space in Rn implies that actually A ∈ Adis

L .

Proof From (2.88) we know that � satisfies a two-sided local John condition. Pick
an arbitrary function f ∈ [ .

L
p

1 (∂�,w)
]M . In particular, from (2.598) and (2.576)

we see that

f ∈ [
L
q

loc(∂�, σ)
]M for some q ∈ (1,∞). (4.352)

Keeping this in mind, we may rely on (3.142), Propositions 2.26, 3.3, (4.299),
Theorem 4.3, and (4.98) to write, for each given m ∈ N,

∥∥[K
A,mod

][f ]∥∥[ .Lp1 (∂�,w)/∼]M = ∥∥[K
A,modf

]∥∥
[ .Lp1 (∂�,w)/∼]M

=
n∑

j,k=1

∥
∥∂τjk (KA,modf )

∥
∥[Lp(∂�,w)]M

≤
n∑

j,k=1

(∥∥KA(∂τjkf )
∥∥[Lp(∂�,w)]M + ∥∥Ujk(∇tanf )

∥∥[Lp(∂�,w)]M
)

≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n
n∑

j,k=1

∥∥∂τjkf
∥∥[Lp(∂�,w)]M

+ C‖ν‖[BMO(∂�,σ)]n‖∇tanf ‖[Lp(∂�,w)]nṀ

≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n ‖[f ]‖[ .Lp1 (∂�,w)/∼]M , (4.353)

bearing in mind that each Ujk is a sum of operators of commutator type (cf. (3.35)).
There remain to address the optimality claim made in the last portion of the

statement of the theorem. To this end, suppose A ∈ AL is such that (4.351) is valid
in every half-space � in Rn. In view of the fact that the BMO semi-norm of the
normal vanishes in such cases, this amounts to having the modified boundary-to-
boundary double layer operator K

A,mod map each function from
[
C∞
c (∂�)

]M into
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a constant in CM . Granted this, the implication (iii’)⇒ (i) in Proposition 3.9 gives
that actually A ∈ Adis

L . � 

4.4 Invertibility on Muckenhoupt Weighted Homogeneous
Sobolev Spaces

Earlier in (3.132), we have considered the boundary-to-boundary single layer
operator

[
Smod

] : [
Lp(∂�,w)

]M → [ .
L
p

1 (∂�,w)
/ ∼ ]M . Its invertibility

properties are going to be of basic importance in the context of boundary value
problems for the system L in �. For example, under suitable geometric assumptions
on the set �, if

[
Smod

]
is injective then the Homogeneous Regularity Problem for L

in � has at most one solution, and if
[
Smod

]
is surjective then the Homogeneous

Regularity Problem for L in � is solvable. In particular, having
[
Smod

]
bijective

guarantees the well-posedness of the Homogeneous Regularity Problem for L in �.
Lemma 4.3 and Proposition 4.3 elaborate on this topic.

Lemma 4.3 Let � ⊆ Rn be a UR domain and abbreviate σ := Hn−1�∂�. Fix
an aperture parameter κ > 0, an integrability exponent p ∈ (1,∞), and a
Muckenhoupt weight w ∈ Ap(∂�, σ). Also, suppose L is a homogeneous, second-
order, constant complex coefficient, weakly ellipticM ×M system in Rn. Consider
the Homogeneous Regularity Problem for L in�, with boundary data prescribed in
homogeneous Muckenhoupt weighted Sobolev spaces, i.e.,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u ∈ [
C∞(�)

]M
,

Lu = 0 in �,

Nκ(∇u) ∈ Lp(∂�,w),

u
∣∣κ−n.t.

∂�
= f ∈ [ .

L
p

1 (∂�,w)
]M

,

(4.354)

where
.
L
p

1 (∂�,w) is the homogeneous Muckenhoupt weighted boundary Sobolev
space defined in (2.598). Also, consider the operator (cf. (3.132))

[
Smod

] : [Lp(∂�,w)]M −→ [ .
L
p

1 (∂�,w)
/ ∼ ]M

. (4.355)

Then the following statements are true:

(a) If
[
Smod

]
as in (4.355) is surjective then the Homogeneous Regularity Problem

(4.354) has a solution.
(b) If � is actually an NTA domain with an unbounded Ahlfors regular boundary

and if
[
Smod

]
as in (4.355) is injective then the Homogeneous Regularity Problem

(4.354) has at most one solution modulo constants.
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Proof Suppose the operator in (4.355) is surjective and let f ∈ [ .
L
p

1 (∂�,w)
]M be

arbitrary. Then there exists g ∈ [
Lp(∂�,w)

]M such that Smodg = f + c for some
c ∈ CM . If we now define u := Smodg − c then item (c) in Proposition 3.5, (3.47),
and (2.575) imply that this is a solution of (4.354) for the boundary datum f .

To deal with the claim in item (b), strengthen the original hypotheses on � by
assuming now that � is actually an NTA domain with an unbounded Ahlfors regular
boundary (in particular, � is connected; see (2.65)). Also, suppose

[
Smod

]
defined

as in (4.355) is an injective operator. To proceed, denote by ν = (ν1, . . . , νn)

the geometric measure theoretic outward unit normal to � and pick an arbitrary
coefficient tensor A = (

a
αβ
rs

)
1≤r,s≤n

1≤α,β≤M
∈ AL. Let u be a solution of (4.354)

corresponding to f := c ∈ CM . From the current assumptions and the Fatou-type
result recalled in Theorem 3.4 (whose present applicability is ensured by (2.576))
we conclude that

the trace (∇u)∣∣κ−n.t.

∂�
exists and belongs to

[
Lp(∂�,w)

]M×n
. (4.356)

In view of this and (3.66), the conormal derivative

∂Aν u :=
(
νra

αβ
rs

(
∂suβ

)∣∣κ−n.t.

∂�

)

1≤α≤M exists σ -a.e. on ∂�

and belongs to
[
Lp(∂�,w)

]M
.

(4.357)

Based on (4.354), (2.575), (3.54), Proposition 2.24, the fact that u
∣∣κ−n.t.

∂�
= c, the

integral representation formula (3.69), and the fact that we are presently assuming
that � is connected, we may write

u = −Smod

(
∂Aν u

)+ cu in �, (4.358)

for some constant cu ∈ CM (depending on u). By taking the nontangential trace to
the boundary (recall (3.47)) the latter implies c = −Smod

(
∂Aν u

)+ cu, hence

[
Smod

](
∂Aν u

) = 0. (4.359)

Since ∂Aν u ∈
[
Lp(∂�,w)

]M and since we are assuming that the operator
[
Smod

]
is

injective in the context of (4.355), this forces ∂Aν u = 0. When used back in (4.358),
this proves that u is constant in �. The claim in (b) is therefore established. � 

Our next result builds on Lemma 4.3 by establishing a two-way street between
invertibility of the single layer potential operator and the well-posedness of the
Homogeneous Regularity Problem.

Proposition 4.3 Let � ⊆ Rn be a two-sided NTA domain with an unbounded
Ahlfors regular boundary, and abbreviate σ := Hn−1�∂�. Fix an aperture
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parameter κ > 0, an integrability exponent p ∈ (1,∞), and a Muckenhoupt weight
w ∈ Ap(∂�, σ). Next, assumeL is a homogeneous, second-order, constant complex
coefficient, weakly ellipticM×M system in Rn and denote by (HRP+) and (HRP−)
the Homogeneous Regularity Problems formulated as in (4.354) corresponding to
�+ := � and to �− := Rn \ �, respectively. Finally, recall the operator

[
Smod

]

from (4.355). Then the following statements are true:

(a) The operator
[
Smod

]
is injective in the context of (4.355) if and only if (HRP+)

and (HRP−) have at most one solution modulo constants.
(b) The operator

[
Smod

]
is surjective in the context of (4.355) if and only if (HRP+)

and (HRP−) have a solution.
(c) The operator

[
Smod

]
is an isomorphism in the context of (4.355) if and only if

(HRP+) and (HRP−) are well-posed.

Proof Suppose (HRP+) and (HRP−) have at most one solution modulo constants
and let f ∈ [

Lp(∂�,w)
]M be such that Smodf = c ∈ CM . Then u+ := Smodf

in �+ and u− := Smodf in �− solve (HRP+) and (HRP−), respectively, for the
boundary datum c (see item (c) in Proposition 3.5, (3.47), and (2.575)). In view
of the current working hypothesis, this forces u± to be constant functions in �±.
Picking A ∈ AL and invoking (3.126) as well as (6.191)–(6.192), we obtain that
f = ∂Aν u

− − ∂Aν u
+ = 0, where the last equality is implied by the fact that the

functions u± are constant in �± and (3.66). Hence,
[
Smod

]
is injective in the context

of (4.355). The converse implication stated in (a) is a consequence of item (b) in
Lemma 4.3 (used both for �+ and �−).

Moving on to the claim made in item (b), suppose (HRP+) and (HRP−) are
solvable and pick f ∈ [ .

L
p

1 (∂�,w)
]M arbitrary. Denote by u+ and u− a solution

of (HRP+) and of (HRP−), respectively, for the boundary datum f . Also, fix a
coefficient tensor A ∈ AL. Collectively, the current assumptions, the Fatou-type
result recalled in Theorem 3.4 (whose present applicability is ensured by (2.576)),
(2.575), and Proposition 2.24 guarantee that the integral representation formula
(3.69) holds both for u+ in �+ and for u− in �−. Specifically,

u+ = D
A,mod

(
u+

∣∣κ−n.t.

∂�

)−Smod

(
∂Aν u

+)+ c+ in �+,

u− = −D
A,mod

(
u−

∣
∣κ−n.t.

∂�

)+Smod

(
∂Aν u

−)+ c− in �−,
(4.360)

for some constants c± ∈ CM (keep in mind that both �+ and �− are connected; cf.
(2.65)). Taking nontangential boundary traces in (4.360) yields

f = ( 1
2I +K

A,mod

)
f − Smod

(
∂Aν u

+)+ c+ on ∂�,

f = −(− 1
2I +K

A,mod

)
f + Smod

(
∂Aν u

−)+ c− on ∂�,
(4.361)

on account of (3.61) and (3.47). After adding the two equalities in (4.361) we arrive
at
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f = Smod

(− ∂Aν u
+ + ∂Aν u

−)+ c+ + c− on ∂�, (4.362)

hence [f ] = [
Smod

]( − ∂Aν u
+ + ∂Aν u

−). The latter proves that the operator Smod is

surjective in the context of (4.355), since −∂Aν u+ + ∂Aν u
− ∈ [

Lp(∂�,w)
]M . The

converse implication stated in (b) is a consequence of Lemma 4.3 (used both for
�+ and �−). Finally, the claim in item (c) follows from (a)-(b), so the proof of the
proposition is complete. � 

We next turn our attention to the issue of invertibility (or lack thereof) for the
operator

[
Smod

]
in the context of (4.355). We begin with the following proposition,

which offers an example of the failure of the operator (4.355) to be Fredholm (in
every single respect:

[
Smod

]
has an infinite dimensional kernel, as well as an infinite

dimensional cokernel) even when the underlying domain is a half-space and when
the system involved is symmetric. As we shall see a little later, in Theorem 4.11, the
source of this failure is the lack of a distinguished coefficient tensor for said system.

Proposition 4.4 Consider the second-order n× n system LD := − 2∇div in Rn

with n ≥ 2. Fix an integrability exponent p ∈ (1,∞) along with a Muckenhoupt
weight w ∈ Ap(R

n−1,Ln−1). Then the single layer potential operator
[
Smod

]
,

associated as in (3.42) with the system LD and the domain � := Rn+, acting in
the context

[
Smod

] : [Lp(Rn−1, w)
]n −→ [ .

L
p

1 (R
n−1, w)

/ ∼ ]n (4.363)

has an infinite dimensional kernel and an infinite dimensional cokernel.

Proof Denote by Ker
(
HRPLD

)
the space of null-solutions of the Homogeneous

Regularity Problem for the system LD in the upper half-space, i.e., the space of
functions u satisfying

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u ∈ [
C∞(Rn+)

]n
,

LDu = 0 in Rn+,
Nκ(∇u) ∈ Lp(Rn−1, w),

u
∣∣κ−n.t.

R
n−1 = 0.

(4.364)

Also, denote by Ker[Smod

]
the kernel of the operator (4.363) and fix a coefficient

tensor A ∈ ALD . Then, as seen from the proof of part (b) in Lemma 4.3 (see the
reasoning leading up to (4.359)), the mapping

Ker
(
HRPLD

) � u �−→ ∂Aν u ∈ Ker[Smod

]
(4.365)

is well defined and injective. Being also linear, this entails

dim
(
Ker[Smod

]) ≥ dim
(
Ker

(
HRPLD

))
. (4.366)
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The later when combined with (3.391) shows that dim
(
Ker[Smod

]) = +∞.
Also, much as in the proof of item (a) in Lemma 4.3, from item (c) in

Proposition 3.5, (3.47), and (2.575) we see that Im[Smod

]
, the image of the operator

(4.363), is a subspace of

{
u
∣∣κ−n.t.

∂Rn+
: u ∈ [

C∞(Rn+)
]n
, LDu = 0 in Rn+, Nκ(∇u) ∈ Lp(Rn−1, w)

}
.

(4.367)

Recalling (3.385), this proves that dim
(
CoKer[Smod

]) = +∞, where CoKer[Smod

]

denotes the cokernel of the operator (4.363). � 
We now turn our attention to the issue of identifying concrete algebraic and

geometric conditions guaranteeing the injectivity, surjectivity, and the eventual
invertibility of the modified single layer potential operator in the context of (3.132).

Theorem 4.11 Let � ⊆ Rn (where n ∈ N satisfies n ≥ 2) be a UR domain.
Abbreviate σ := Hn−1�∂� and denote by ν the geometric measure theoretic
outward unit normal to �. Also, let L be a homogeneous, second-order, constant
complex coefficient, weakly elliptic M × M system in Rn. Consider the modified
boundary-to-boundary single layer potential operator Smod associated with � and
the system L as in (3.42). Fix some exponent p ∈ (1,∞) along with some
Muckenhoupt weight w ∈ Ap(∂�, σ).

Finally, recall that
[ .
L
p

1 (∂�,w)
/ ∼ ]M

denotes the M-th power of the quotient

space of classes [ · ] of equivalence modulo constants of functions in
.
L
p

1 (∂�,w),
equipped with the semi-norm defined in (2.601) and, additionally, recall the
operator

[
Smod

] : [
Lp(∂�,w)

]M → [ .
L
p

1 (∂�,w)
/ ∼ ]M

defined as in (3.132).
In relation to this, the following statements are valid.

(1) [Surjectivity] Whenever Adis
L �= ∅, there exists some small threshold δ ∈ (0, 1)

which depends only on n, p, [w]Ap , L, and the Ahlfors regularity constant of ∂�,
with the property that if ‖ν‖[BMO(∂�,σ)]n < δ it follows that (2.601) is a genuine
norm and the operator (3.132) is surjective.

(2) [Injectivity] Whenever Adis
L� �= ∅, there exists some small threshold δ ∈ (0, 1)

which depends only on n, p, [w]Ap , L, and the Ahlfors regularity constant of ∂�,
with the property that if ‖ν‖[BMO(∂�,σ)]n < δ it follows that the operator (3.132)
is injective.

(3) [Isomorphism] Whenever both Adis
L �= ∅ and Adis

L� �= ∅, there exists some small
threshold δ ∈ (0, 1) which depends only on n, p, [w]Ap , L, and the Ahlfors
regularity constant of ∂�, with the property that if ‖ν‖[BMO(∂�,σ)]n < δ it follows

that
[ .
L
p

1 (∂�,w)
/ ∼ ]M

is a Banach space when equipped with the norm (2.601)
and the operator (3.132) is an isomorphism.

(4) [Optimality] If Adis
L = ∅ then the operator (3.132) may fail to be surjective (in

fact, may have an infinite dimensional cokernel) even in the case when � is a
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half-space, and if Adis
L� = ∅ then the operator (3.132) may fail to be injective

(in fact, may have an infinite dimensional kernel) even in the case when � is a
half-space.

We wish to note that, corresponding to the case when � is the upper-graph of a
real-valued Lipschitz function defined in Rn−1, the operator L is the Laplacian 

in Rn (hence, M = 1), and for the integrability exponent p = 2, the invertibility of
the harmonic single layer has been treated in [35, Lemma 3.1, p. 451] using Rellich
estimates.

Proof of Theorem 4.11 To deal with item (1), assume Adis
L �= ∅. Pick a coefficient

tensor A ∈ Adis
L then select some threshold δ ∈ (0, 1) small enough so that if

‖ν‖[BMO(∂�,σ)]n < δ (a condition which we shall henceforth assume) then

� is a two-sided NTA domain with an unbounded boundary, (4.368)

and

the operators ± 1
2I +KA are invertible on

[
L
p

1 (∂�,w)
]M

. (4.369)

Theorem 2.3 together with Theorems 2.4 and 4.8 ensure that this is indeed possible.
To proceed, choose a scalar-valued function φ ∈ C∞

0 (Rn) with φ ≡ 1 on B(0, 1)
and suppφ ⊆ B(0, 2). Having fixed a reference point x0 ∈ ∂�, for each scale
r ∈ (0,∞) define

φr(x) := φ
(x − x0

r

)
for each x ∈ Rn, (4.370)

and use the same notation to denote the restriction of φr to ∂�. Suppose now some
arbitrary function g ∈ [ .

L
p

1 (∂�,w)
]M has been given. Hence, from (2.598) we have

g ∈ [
L
p

loc(∂�,w) ∩ L1
(
∂�,

σ(x)
1+|x|n

)]M and

∂τjk g ∈
[
Lp(∂�,w)

]M for 1 ≤ j, k ≤ n.
(4.371)

For each r ∈ (0,∞) set r := ∂� ∩ B(x0, r) and define gr :=
ffl
r
g dσ ∈ CM

then set

gr := φr ·
(
g − g2r

)
on ∂�. (4.372)

From Proposition 2.25 (whose applicability in the current setting is ensured by
(4.368) and (4.371)) we know that there exists C = C(�,p,w, x0) ∈ (0,∞),
independent of the function g, with the property that

sup
r>0

1

r

( ˆ
r

∣∣g − gr

∣∣p dw
)1/p ≤ C

n∑

j,k=1

∥∥∂τjk g
∥∥[Lp(∂�,w)]M . (4.373)
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Also, from (4.371)–(4.372) we see that for each radius r ∈ (0,∞) and all indices
j, k ∈ {1, . . . , n} we have

gr ∈
[
L
p

1 (∂�,w)
]M and ∂τjk gr =

(
∂τjkφr

) · (g − g2r

)+ φr · ∂τjk g. (4.374)

Since there exists a constant C ∈ (0,∞) such that for each j, k ∈ {1, . . . , n} and
each r ∈ (0,∞) we have

supp
(
∂τjkφr

) ⊆ 2r and
∣∣∂τjkφr

∣∣ ≤ C/r at σ -a.e. point on ∂�, (4.375)

it follows that for each j, k ∈ {1, . . . , n} and each r ∈ (0,∞) we may estimate,
making use of the version of the Poincaré inequality recorded in (4.373),

∥∥∥
(
∂τjkφr

) · (g − g2r

)∥∥∥[Lp(∂�,w)]M ≤ Cr−1
( ˆ

2r

∣∣g − g2r

∣∣p dw
)1/p

≤ C

n∑

j,k=1

∥∥∂τjk g
∥∥[Lp(∂�,w)]M , (4.376)

for some constantC ∈ (0,∞) independent of g and r . In turn, from (4.374), (4.376),
(2.585)–(2.586), and (2.576) we conclude that

∥∥∇tan gr
∥∥[Lp(∂�,w)]n·M ≤ C

∥∥∇tan g
∥∥[Lp(∂�,w)]n·M (4.377)

for some C ∈ (0,∞) independent of g and r . If for each r ∈ (0,∞) we now define

hr :=
( 1

2I +KA

)−1(− 1
2I +KA

)−1
gr (4.378)

then from the membership in (4.374) and the invertibility results in (4.369) it follows
that hr is a meaningfully defined function which belongs to

[
L
p

1 (∂�,w)
]M . In

addition, from (4.378), (4.343), and (4.377) we conclude that there exists a constant
C ∈ (0,∞), independent of g, such that

‖∇tanhr‖[Lp(∂�,w)]n·M ≤ C ‖∇tang‖[Lp(∂�,w)]n·M for each r ∈ (0,∞).

(4.379)
Going further, for each r ∈ (0,∞) define

fr := ∂Aν
(
DAhr

)
at σ -a.e. point on ∂�. (4.380)

Since hr ∈ [
L
p

1 (∂�,w)
]M , the boundedness result recorded in (3.115) together

with (4.379) imply that fr ∈
[
Lp(∂�,w)

]M and for each r ∈ (0,∞) we have
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‖fr‖[Lp(∂�,w)]M ≤ C‖∇tanhr‖[Lp(∂�,w)]n·M ≤ C ‖∇tang‖[Lp(∂�,w)]n·M ,

(4.381)

where C ∈ (0,∞) is independent of g and r . Collectively, (3.130), (4.378), (4.380),
and Theorem 2.4 also ensure that for each r ∈ (0,∞) there exists some constant
cr ∈ CM such that

Smodfr = gr + cr on ∂�. (4.382)

Select now a sequence {rj }j∈N ⊆ (0,∞) which converges to infinity. Since from

(4.381) we know that {frj }j∈N is a bounded sequence in
[
Lp(∂�,w)

]M , we may
rely on the Banach–Alaoglu Theorem to assume, without loss of generality, that
{frj }j∈N is actually weak-∗ convergent to some f ∈ [

Lp(∂�,w)
]M . On account of

(3.46), (4.382), and (4.372), for each test function ψ ∈ [
Lip(∂�)

]M with compact
support we may write

ˆ
∂�

〈
Smodf,ψ

〉
dσ = lim

j→∞

ˆ
∂�

〈
Smodfrj , ψ

〉
dσ = lim

j→∞

ˆ
∂�

〈
grj + crj , ψ

〉
dσ

= lim
j→∞

ˆ
∂�

〈
φrj ·

(
g − g2rj

)+ crj , ψ
〉
dσ

= lim
j→∞

ˆ
∂�

〈
g − g2rj

+ crj , ψ
〉
dσ

=
ˆ
∂�

〈g,ψ〉 dσ + lim
j→∞

〈
crj − g2rj

,

ˆ
∂�

ψ dσ
〉
. (4.383)

In view of the arbitrariness ofψ , this forces the sequence
{
crj−g2rj

}
j∈N ⊆ CM

to converge to some constant c ∈ CM . Bearing this in mind, we may then conclude
from (4.383) that

ˆ
∂�

〈
Smodf,ψ

〉
dσ =

ˆ
∂�

〈g + c, ψ〉 dσ (4.384)

for each function ψ ∈ [
Lip(∂�)

]M with compact support. Ultimately, from (4.384)
and (2.578) we obtain

Smodf = g + c at σ -a.e. point on ∂�. (4.385)

Hence,
[
Smod

]
f = [

Smodf
] = [g] and since [g] ∈ [ .

Lp(∂�,w)
/ ∼ ]M is arbitrary,

it follows that the operator (3.132) is surjective. Moreover, from (4.381) we see that
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‖f ‖[Lp(∂�,w)]M ≤ lim sup
j→∞

‖frj ‖[Lp(∂�,w)]M ≤ C ‖∇tang‖[Lp(∂�,w)]n·M

≤ C ‖[g]‖[ .Lp1 (∂�,w)/∼]M , (4.386)

for some constant C ∈ (0,∞) independent of g, so the surjectivity of (3.132) comes
with quantitative control.

Let us also observe that the fact that (2.601) is, as claimed, a genuine norm is
clear from (4.368) and Proposition 2.26.

Moving on, we treat item (2), now working under the assumption that Adis
L� �= ∅.

Select a coefficient tensor Ã ∈ AL such that Ã� ∈ Adis
L� , then choose δ ∈ (0, 1) small

enough so that if ‖ν‖[BMO(∂�,σ)]n < δ (something we shall henceforth assume)
then

the operators ± 1
2I +K#

Ã� are invertible on
[
Lp(∂�,w)

]M .
(4.387)

That this is indeed possible is guaranteed by Theorem 4.8. The goal is to show that
the operator (3.132) is injective. To this end, suppose f ∈ [

Lp(∂�,w)
]M is such

that
[
Smod

]
f = [0]. Hence,

[
Smodf

] = [0] which implies that there exists some
constant c ∈ CM for which

Smodf = c at σ -a.e. point on ∂�. (4.388)

In concert with (3.129), this further implies

( 1
2I +K#

Ã�
)((− 1

2I +K#
Ã�

)
f
)
= 0 at σ -a.e. point on ∂� (4.389)

which, in view of (4.387), forces f = 0. Since the operator (3.132) is linear, it
follows that this is indeed injective.

As far as the claims in item (3) are concerned, assume that Adis
L �= ∅ and

Adis
L� �= ∅. Results established earlier then guarantee that the operator (3.132)

is a continuous bijection. Since
[ .
L
p

1 (∂�,w)
/ ∼ ]M is a Banach space (cf.

Proposition 2.26 and (4.368)) it follows that the operator (3.132) is a linear
isomorphism.

Finally, the claims in item (4) are clear from Proposition 4.4 and (3.406). The
proof of Theorem 4.11 is therefore complete. � 

Here is a useful variant of Theorem 4.11:

Remark 4.21 Let �, L, be as in Theorem 4.11 and assume Adis
L �= ∅. Fix some pair

of integrability exponents p0, p1 ∈ (1,∞) along with some pair of Muckenhoupt
weights w0 ∈ Ap0(∂�, σ) and w1 ∈ Ap1(∂�, σ). From (4.341) and the proof
of Theorem 4.11 (cf. (4.378)) it follows that there exists some small threshold
δ ∈ (0, 1) which depends only on n, p0, p1, [w0]Ap0

, [w1]Ap1
, L, and the Ahlfors
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regularity constant of ∂�, with the property that if ‖ν‖[BMO(∂�,σ)]n < δ then

for every given function g in
[ .
L
p0
1 (∂�,w0) ∩

.
L
p1
1 (∂�,w1)

]M there exist some

function f ∈ [
Lp0(∂�,w0) ∩ Lp1(∂�,w1)

]M and a constant c ∈ CM such that
Smodf = g + c.

As a consequence of Theorem 4.10 we shall prove the invertibility result
contained in the next theorem, for modified boundary-to-boundary double layer
operators associated with weakly elliptic systems possessing a distinguished coeffi-
cient tensor acting on homogeneous Muckenhoupt weighted Sobolev spaces on the
boundary of sufficiently flat Ahlfors regular domains. Moreover, we show that this
is optimal in the sense that in the absence of a distinguished coefficient tensor the
modified boundary-to-boundary double layer operator may actually have an infinite
dimensional cokernel, even when the underlying domain is a half-space.

Theorem 4.12 Assume� ⊆ Rn is an Ahlfors regular domain. Denote by ν the geo-
metric measure theoretic outward unit normal to� and abbreviate σ := Hn−1�∂�.
Also, let L be a homogeneous, second-order, constant complex coefficient, weakly
elliptic M ×M system in Rn for which Adis

L �= ∅. Pick A ∈ Adis
L and consider the

modified boundary-to-boundary double layer potential operator
[
K

A,mod

]
associated

with � and the coefficient tensor A as in (3.142). Finally, fix an integrability
exponent p ∈ (1,∞), a Muckenhoupt weight w ∈ Ap(∂�, σ), and some number
ε ∈ (0,∞).

Then there exists some small threshold δ ∈ (0, 1) which depends only on n, p,
[w]Ap , A, ε, and the Ahlfors regularity constant of ∂�, with the property that if
‖ν‖[BMO(∂�,σ)]n < δ it follows that for each spectral parameter z ∈ C with |z| ≥ ε

the operator

zI + [
K

A,mod

] : [ .
L
p

1 (∂�,w)/ ∼
]M −→ [ .

L
p

1 (∂�,w)/ ∼
]M (4.390)

is invertible. Moreover, this conclusion may fail when Adis
L = ∅ even when � is

a half-space (in fact, in such a scenario it may happen that 1
2I +

[
K

A,mod

]
has an

infinite dimensional cokernel when acting on the space
[ .
L
p

1 (∂�,w)/ ∼
]M

).

Proof Theorems 2.3 and 2.4 imply that there exists some threshold δ ∈ (0, 1) small
enough so that if ‖ν‖[BMO(∂�,σ)]n < δ then � is a two-sided NTA domain with an
unbounded boundary. Granted this, the desired invertibility result pertaining to the
operator (4.390) follows from Theorem 4.10, via a Neumann series argument.

In addition, from (3.133)–(3.134), (3.385), and (3.406) we conclude that the
operator 1

2I +
[
K

A,mod

]
associated with the n × n system LD defined in (3.371)

and the set � := Rn+ has an infinite dimensional cokernel when acting on the space
[ .
L
p

1 (∂�,w)/ ∼
]n. � 

Here is another useful version of Theorem 4.12:

Remark 4.22 Let �, L, be as in Theorem 4.12 and assume Adis
L �= ∅. Fix some pair

of integrability exponents p0, p1 ∈ (1,∞) along with some pair of Muckenhoupt



328 4 Boundedness and Invertibility of Layer Potential Operators

weights w0 ∈ Ap0(∂�, σ) and w1 ∈ Ap1(∂�, σ), and some number ε ∈ (0, 1).
From the proof of Theorem 4.12 (which produces a Neumann series representation
for the inverse) we see that there exists some small threshold δ ∈ (0, 1) which
depends only on n, p0, p1, [w0]Ap0

, [w1]Ap1
, L, ε, and the Ahlfors regularity

constant of ∂�, with the property that if ‖ν‖[BMO(∂�,σ)]n < δ then for each spectral
parameter z ∈ C with |z| ≥ ε it follows that

the operator zI + [
K

A,mod

]
is invertible both as a mapping

from
[ .
L
p0
1 (∂�,w0)/ ∼

]M onto itself and also as a mapping

from
[ .
L
p1
1 (∂�,w1)/ ∼

]M onto itself, and the two inverses
are in fact compatible with one another on the intersection.

(4.391)

See the proof of Proposition 4.2 for details in similar circumstances.

We next discuss invertibility results for the conormal of the double layer operator
acting from homogeneous Muckenhoupt weighted Sobolev spaces.

Theorem 4.13 Let � ⊆ Rn be a UR domain. Abbreviate σ := Hn−1�∂� and
denote by ν the geometric measure theoretic outward unit normal to �. Also, let
L be a homogeneous, second-order, constant complex coefficient, weakly elliptic
M×M system in Rn. Fix some exponent p ∈ (1,∞) along with some Muckenhoupt
weight w ∈ Ap(∂�, σ). Pick some coefficient tensor A ∈ AL and consider the
modified conormal derivative of the modified double layer operator in the context
of (3.138), i.e.,

[
∂Aν DA,mod

] : [ .
L
p

1 (∂�,w)
/ ∼ ]M −→ [

Lp(∂�,w)
]M

defined as
[
∂Aν DA,mod

][f ] := ∂Aν (DA,modf ) for each f ∈ [ .
L
p

1 (∂�,w)/ ∼
]M

.
(4.392)

From Theorem 3.5 this is known to be a well-defined, linear, and bounded operator
when the quotient space is equipped with the norm (2.601). In relation to this, the
following statements are valid.

(1) [Injectivity] Whenever Adis
L �= ∅ and actuallyA ∈ Adis

L it follows that there exists
some small threshold δ ∈ (0, 1) which depends only on n, p, [w]Ap , L, and the
Ahlfors regularity constant of ∂�, with the property that if ‖ν‖[BMO(∂�,σ)]n < δ

then the operator (4.392) is injective.

(2) [Surjectivity] Whenever Adis
L� �= ∅ and actually A� ∈ Adis

L� it follows that there
exists a small threshold δ ∈ (0, 1) which depends only on n, p, [w]Ap , L, and the
Ahlfors regularity constant of ∂�, with the property that if ‖ν‖[BMO(∂�,σ)]n < δ

then the operator (4.392) is surjective.

(3) [Isomorphism] If Adis
L �= ∅, Adis

L� �= ∅, and A ∈ Adis
L , it follows that there exists

some small threshold δ ∈ (0, 1) which depends only on n, p, [w]Ap , L, and the
Ahlfors regularity constant of ∂�, with the property that if ‖ν‖[BMO(∂�,σ)]n < δ

then the operator (4.392) is an isomorphism.
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Proof To deal with the claim made in item (1), assume A ∈ Adis
L . From Theo-

rems 2.3, 2.4, and 4.12 we know that it is possible to pick some threshold δ ∈ (0, 1)
small enough so that if ‖ν‖[BMO(∂�,σ)]n < δ then

� is a two-sided NTA domain with an unbounded connected
boundary,

(4.393)

and

± 1
2I +

[
K

A,mod

]
are invertible operators

on the Banach space
[ .
L
p

1 (∂�,w)/ ∼
]M

.
(4.394)

Granted these, (3.149) then implies that the operator (4.392) is injective.
To justify the claim made in item (2), suppose next that A� ∈ Adis

L� . By relying
on Theorems 2.3 and 4.8 we may choose δ ∈ (0, 1) small enough such that if
‖ν‖[BMO(∂�,σ)]n < δ then � is a two-sided NTA domain with an unbounded
boundary and

± 1
2I +K#

A� are invertible operators on
[
Lp(∂�,w)

]M
. (4.395)

Once these properties are satisfied, we may invoke (3.153) to conclude that the
operator (4.392) is surjective. Finally, the claim made in item (3) is a direct
consequence of the current items (1)-(2) and Theorem 3.9. � 

Remark 4.23 Let �, L, be as in Theorem 4.13. Also, assume A ∈ Adis
L is such that

A� ∈ Adis
L� . Finally, fix some pair of exponents p0, p1 ∈ (1,∞) along with some

pair of Muckenhoupt weights w0 ∈ Ap0(∂�, σ) and w1 ∈ Ap1(∂�, σ). From the
proof of Theorem 4.13 (cf. (4.394), (4.395), Remark 4.22, and Proposition 4.2) it
follows that there exists some small threshold δ ∈ (0, 1) which depends only on
n, p0, p1, [w0]Ap0

, [w1]Ap1
, L, and the Ahlfors regularity constant of ∂�, with the

property that if ‖ν‖[BMO(∂�,σ)]n < δ then

the operator
[
∂Aν DA,mod

]
is invertible both as a mapping from

[ .
L
p0
1 (∂�,w0)/ ∼

]M onto
[
L
p0
1 (∂�,w0)

]M and as a mapping

from
[ .
L
p1
1 (∂�,w1)/ ∼ ]M onto

[
Lp1(∂�,w1)

]M , and these
two inverses are compatible with one another on the intersec-
tion.

(4.396)

Remark 4.24 An alternative proof of Theorem 4.11 can be obtained by taking
collectively, (3.149), Theorem 4.12 (with z = ± 1

2 ), (3.153), Theorem 4.8 (with
z = ± 1

2 ), (3.138), Theorems 2.3, and 2.4.
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4.5 Another Look at Double Layers for the Two-Dimensional
Lamé System

Throughout this section, we shall work in the two-dimensional case, i.e., in the case
n = 2. As a preamble, we introduce a singular integral operator which is going to
be relevant shortly. To set the stage, suppose � ⊆ R2 is a UR domain, abbreviate
σ := H1�∂�, and denote by ν = (ν1, ν2) the geometric measure theoretic outward
unit normal to �. Then for each function f ∈ L1

(
∂�,

σ(x)
1+|x|

)
define

Rf (x) := lim
ε→0+

1

2π

ˆ

y∈∂�
|x−y|>ε

ν1(y)(y2 − x2)− ν2(y)(y1 − x1)

|x − y|2 f (y) dσ(y),

(4.397)

at σ -a.e. point x ∈ ∂�. Let us fix an integrability exponent p ∈ (1,∞) along with
a Muckenhoupt weight w ∈ Ap(∂�, σ). It has been proved in [113, §2.5] that the
singular integral operator R introduced in (4.397) is bounded on Lp(∂�,w) and
satisfies

(R)
2 = ( 1

2I +K

)(− 1
2I +K

)
on Lp(∂�,w), (4.398)

KR + RK = 0 on Lp(∂�,w), (4.399)

where K is the harmonic double layer potential operator in this setting (i.e., K is
as in (3.29) with n := 2).

Our main result in this section is Theorem 4.14 below, which elaborates on the
spectra of double layer potential operators, associated with the two-dimensional
complex Lamé system, when acting on Muckenhoupt weighted Lebesgue and
Sobolev spaces on the boundary of a δ-AR unbounded domain in the plane.

Theorem 4.14 Let� ⊆ R2 be an Ahlfors regular domain. Abbreviate σ := H1�∂�
and denote by ν the geometric measure theoretic outward unit normal to �. Fix two
Lamé moduli μ, λ ∈ C satisfying

μ �= 0, 2μ+ λ �= 0, (4.400)

and bring back the one-parameter family coefficient tensors from (3.226) (corre-
sponding to n = 2), i.e.,
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A(ζ ) = (
a
αβ
jk (ζ )

)
1≤j,k≤2
1≤α,β≤2

defined for each ζ ∈ C according to

a
αβ
jk (ζ ) := μδjkδαβ + (μ+ λ− ζ )δjαδkβ + ζ δjβδkα,

for 1 ≤ j, k, α, β ≤ 2,

(4.401)

which allows to represent the 2× 2 Lamé system Lμ,λ = μ+ (λ+ μ)∇div in R2

as

Lμ,λ =
(
a
αβ
jk (ζ )∂j ∂k

)

1≤α,β≤2
for each ζ ∈ C. (4.402)

Fix some integrability exponent p ∈ (1,∞) along with some Muckenhoupt weight
w ∈ Ap(∂�, σ). Finally, suppose z, ζ ∈ C are such that

z �= ±μ(μ+ λ)− ζ(3μ+ λ)

4μ(2μ+ λ)
, (4.403)

and associate the double layer potential operator KA(ζ) with the coefficient tensor
A(ζ ) and the domain � as in (3.24).

Then there exists some small threshold δ ∈ (0, 1) which depends only on μ, λ,
p, [w]Ap , z, ζ , and the Ahlfors regular constant of ∂�, with the property that if
‖ν‖[BMO(∂�,σ)]2 < δ it follows that

the operator zI2×2 +KA(ζ) is invertible

both on
[
Lp(∂�,w)

]2
and on

[
L
p

1 (∂�,w)
]2
.

(4.404)

Before presenting the proof of this theorem, a few clarifications are in order.
From (4.309)–(4.310) in Theorem 4.8 and (3.228)–(3.229) we already know that,
under suitable geometric assumptions, the conclusion in (4.404) holds (and this is
true in all dimensions n ≥ 2) when

3μ+ λ �= 0 and ζ = μ(μ+ λ)

3μ+ λ
. (4.405)

The point of Theorem 4.14 is that, for the two-dimensional Lamé system, the
invertibility results from (4.309)–(4.310) holds with A = A(ζ ) as in (3.226) for a
much larger range of ζ ’s than the singleton in (4.405). (Parenthetically we wish
to note that what is special about the scenario described in (4.405) is that this
makes ±μ(μ+λ)−ζ(3μ+λ)

4μ(2μ+λ) zero, so (4.403) simply reads z ∈ C \ {0} in this case,
as was assumed in Theorem 4.8.) It should be also remarked that, in the setting
on Theorem 4.14, the double layer KA(ζ) does not necessarily have small operator
norm, and this is in stark contrast with the case of the double layer operators
considered in Theorem 4.8. References to other related results may be found in
[82, Chapter 7]; in this vein, see also [99].
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We are now ready to present the proof of Theorem 4.14.

Proof of Theorem 4.14 From Theorem 2.3 we know that it is possible to pick some
threshold δ ∈ (0, 1) small enough so that if ‖ν‖[BMO(∂�,σ)]2 < δ then � is a UR
domain, with the UR constants of ∂� controlled solely in terms of the Ahlfors
regularity constant of ∂�. Henceforth, assume this is the case.

Recall the numbers C1(ζ ), C2(ζ ) ∈ C associated with ζ, μ, λ as in (3.234). From
(3.29), (3.235), (3.236), and (4.397) we see that for each ζ ∈ C we have

KA(ζ) = C1(ζ )KI2×2 − (1 − C1(ζ ))Q+ C2(ζ )

(
0 R

−R 0

)

(4.406)

as operators on
[
Lp(∂�,w)

]2. Note that (4.398) implies

(
0 R

−R 0

)2

= ( 1
4I − (K)

2)I2×2 on
[
Lp(∂�,w)

]2
. (4.407)

Staring with (4.406) and then using (4.407), (4.399) we may write, with all operators
acting on the space

[
Lp(∂�,w)

]2,

(
zI2×2 +KA(ζ)

)(− zI2×2 +KA(ζ)

) = (KA(ζ))
2 − z2I2×2

= [ 1
4C2(ζ )

2 − z2]I2×2 + Tζ , (4.408)

for all z, ζ ∈ C, where Tζ is the operator

Tζ =
(
C1(ζ )

2 − C2(ζ )
2)K2

I2×2 + (1 − C1(ζ ))
2Q2 (4.409)

− C1(ζ )(1 − C1(ζ ))(KI2×2)Q− C1(ζ )(1 − C1(ζ ))Q(KI2×2)

− C2(ζ )(1 − C1(ζ ))Q

(
0 R

−R 0

)

− C2(ζ )(1 − C1(ζ ))

(
0 R

−R 0

)

Q.

Fix now ζ ∈ C along with ε > 0 arbitrary. Note that Tζ in (4.409) is a finite linear
combination of compositions of pairs of singular integral operators such that, in each
case, at least one of them falls under the scope of Corollary 4.2. As a consequence of
this and Proposition 3.4, it follows that there exists δ ∈ (0, 1) small enough (relative
to μ, λ, ζ , ε, p, [w]Ap , and the Ahlfors regularity constant of ∂�), matters may be
arranged so that, under the additional assumption that

‖ν‖[BMO(∂�,σ)]2 < δ, (4.410)

we have
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‖Tζ‖[Lp(∂�,w)]2→[Lp(∂�,w)]2 ≤ ε2/2. (4.411)

Consider now

z ∈ C \
{
B
( 1

2C2(ζ ), ε
) ∪ B(− 1

2C2(ζ ), ε
)}
, (4.412)

which entails

∣
∣ 1

4C2(ζ )
2 − z2

∣
∣ = ∣

∣ 1
2C2(ζ )− z

∣
∣
∣
∣ 1

2C2(ζ )+ z
∣
∣ ≥ ε2. (4.413)

Then from (4.413), (4.411) it follows that

[ 1
4C2(ζ )

2 − z2
]
I2×2 + Tζ is invertible on

[
Lp(∂�,w)

]2

for each z as in (4.412),
(4.414)

and
∥∥∥
([ 1

4C2(ζ )
2 − z2

]
I2×2 + Tζ

)−1
∥∥∥[Lp(∂�,w)]2→[Lp(∂�,w)]2 ≤ (ε2/2)−1

for each z as in (4.412).

(4.415)

Since the operators zI2×2 +KA(ζ) and −zI2×2 +KA(ζ) commute with one another,
from (4.408) and (4.414) we ultimately conclude that

zI2×2 +KA(ζ) is invertible on
[
Lp(∂�,w)

]2 for each z as in (4.412).
(4.416)

In relation to (4.416) we also claim that there exists some small number

c := c
(
�, ε, ζ, p, [w]Ap

) ∈ (0, 1], (4.417)

where the dependence of c on � manifests itself only through the Ahlfors regularity
constant of ∂�, with the property that

c‖f ‖[Lp(∂�,w)]2 ≤
∥∥(zI2×2 +KA(ζ)

)
f
∥∥[Lp(∂�,w)]2

for each z as in (4.412) and each f ∈ [
Lp(∂�,w)

]2
.

(4.418)

To prove this, first observe that
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whenever |z| > 1 + ∥∥KA(ζ)

∥∥[Lp(∂�,w)]2→[Lp(∂�,w)]2 then

zI2×2 +KA(ζ) is invertible on
[
Lp(∂�,w)

]2 and
∥∥∥
(
zI2×2 +KA(ζ)

)−1
∥∥∥[Lp(∂�,w)]2→[Lp(∂�,w)]2 < 1.

(4.419)

Hence, as long as |z| > 1+∥∥KA(ζ)

∥∥[Lp(∂�,w)]2→[Lp(∂�,w)]2 , the estimate in (4.418)
is true for any choice of c ∈ (0, 1]. As such, there remains to study the case in which

z is as in (4.412) and also satisfies

|z| ≤ 1 + ∥∥KA(ζ)

∥∥[Lp(∂�,w)]2→[Lp(∂�,w)]2 .
(4.420)

Henceforth assume z is as in (4.420). From (4.408) and (4.415) we know that

∥∥∥
(
zI2×2 +KA(ζ)

)−1(− zI2×2 +KA(ζ)

)−1
∥∥∥[Lp(∂�,w)]2→[Lp(∂�,w)]2

≤ (ε2/2)−1. (4.421)

Write
(
zI2×2 +KA(ζ)

)−1 as

[(
zI2×2 +KA(ζ)

)−1(− zI2×2 +KA(ζ)

)−1
](− zI2×2 +KA(ζ)

)
, (4.422)

then use this formula and (4.421) to estimate

∥
∥∥
(
zI2×2 +KA(ζ)

)−1
∥
∥∥[Lp(∂�,w)]2→[Lp(∂�,w)]2

≤ (ε2/2)−1
∥∥− zI2×2 +KA(ζ)

∥∥[Lp(∂�,w)]2→[Lp(∂�,w)]2

≤ (ε2/2)−1
(
|z| + ∥∥KA(ζ)

∥∥[Lp(∂�,w)]2→[Lp(∂�,w)]2
)

≤ C
(
�, ε, ζ, p, [w]Ap

)
, (4.423)

where the last inequality comes from (4.420), and

C
(
�, ε, ζ, p, [w]Ap

) := 2ε−2 + 4ε−2
∥
∥KA(ζ)

∥
∥[Lp(∂�,w)]2→[Lp(∂�,w)]2 .

(4.424)

Hence, if we define
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c := c
(
�, ε, ζ, p, [w]Ap

) := min
{

1,
[
C(�, ε, ζ, p, [w]Ap)

]−1
}
∈ (0, 1],

(4.425)

we may rely on (4.423) to write

c‖f ‖[Lp(∂�,w)]2 ≤
∥∥(zI2×2 +KA(ζ)

)
f
∥∥[Lp(∂�,w)]2 ,

for all f ∈ [
Lp(∂�,w)

]2
, (4.426)

finishing the proof of (4.418).
We next claim that, if the threshold δ ∈ (0, 1) appearing in (4.410) is taken

sufficiently small to begin with, we also have

zI2×2 +KA(ζ) invertible on
[
L
p

1 (∂�,w)
]2

for each z as in (4.412).
(4.427)

For starters, observe that for each point z ∈ C, and each f ∈ [
L
p

1 (∂�,w)
]2,

Proposition 3.2 gives

∂τ12

[(
zI2×2 +KA(ζ)

)
f
] = (

zI2×2 +KA(ζ)

)
(∂τ12f )+ U

ζ
12(∇tanf ), (4.428)

where the commutator Uζ
12 is defined as in (3.35) with n = 2, j = 1, k = 2, and

the coefficient tensor A(ζ ) as in (4.401). If z is as in (4.412) then, on account of
(4.428), (4.418), and Theorem 4.3 (also keeping in mind Proposition 3.4) for each
f ∈ [

L
p

1 (∂�,w)
]2 we may estimate

c‖∂τ12f ‖[Lp(∂�,w)]2 ≤
∥∥(zI2×2 +KA(ζ)

)
(∂τ12f )

∥∥[Lp(∂�,w)]2

≤ ∥
∥∂τ12

[(
zI2×2 +KA(ζ)

)
f
]∥∥[Lp(∂�,w)]2 +

∥
∥Uζ

12(∇tanf )
∥
∥[Lp(∂�,w)]2

≤ ∥
∥(zI2×2 +KA(ζ)

)
f
∥
∥[Lp1 (∂�,w)]2 + Cδ‖∂τ12f ‖[Lp(∂�,w)]2 , (4.429)

(since we presently have ∂τ11 = ∂τ22 = 0 and ∂τ12 = −∂τ21 ), where C ∈ (0,∞)

depends only on μ, λ, ζ , p, [w]Ap , and the Ahlfors regularity constant of ∂�.
Assuming δ < c/(2C) to begin with, the very last term above may be absorbed
in the left-most side of (4.429). By combining the resulting inequality with (4.418)
we therefore arrive at the conclusion that if δ in (4.410) is small enough then we
may find some small η > 0 with the property that
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η‖f ‖[Lp1 (∂�,w)]2 ≤
∥∥(zI2×2 +KA(ζ)

)
f
∥∥[Lp1 (∂�,w)]2

for each z as in (4.412) and each f ∈ [
L
p

1 (∂�,w)
]2
.

(4.430)

In such a scenario, (4.430) implies that the operator zI2×2 + KA(ζ) acting on
[
L
p

1 (∂�,w)
]2 is injective and has closed range for each z as in (4.412). Conse-

quently, the operator zI2×2 + KA(ζ) acting on
[
L
p

1 (∂�,w)
]2 is semi-Fredholm for

each z as in (4.412). Since this depends continuously on z, the homotopic invariance
of the index on connected sets then ensures that the index of zI2×2 + KA(ζ) on
[
L
p

1 (∂�,w)
]2 is independent of z in said range. Given that, via a Neumann series

argument,

zI2×2 +KA(ζ) is invertible on
[
L
p

1 (∂�,w)
]2

if |z| > ∥∥KA(ζ)

∥∥[Lp1 (∂�,w)]2→[Lp1 (∂�,w)]2 ,
(4.431)

we may therefore conclude that the index of zI2×2+KA(ζ) on
[
L
p

1 (∂�,w)
]2 is zero

for each z as in (4.412). In view of the fact that, as already noted from (4.430), the
operator zI2×2 + KA(ζ) is injective on

[
L
p

1 (∂�,w)
]2 for each z as in (4.412), this

ultimately proves that zI2×2 +KA(ζ) is invertible on
[
L
p

1 (∂�,w)
]2 for each z as in

(4.412). Hence, the claim made in (4.427) is true. At this stage, the claim made in
(4.404) readily follows from (4.416) and (4.427). � 

It is of interest to single out the case z = ± 1
2 in (4.404), and in Corollary 4.3

stated next we do just that.

Corollary 4.3 Let� ⊆ R2 be an Ahlfors regular domain. Abbreviate σ := H1�∂�
and denote by ν the geometric measure theoretic outward unit normal to �. Fix two
Lamé moduli μ, λ ∈ C satisfying

μ �= 0, 2μ+ λ �= 0, 3μ+ λ �= 0, (4.432)

and recall the one-parameter family coefficient tensors A(ζ ) defined for each ζ ∈ C
as in (4.401). Fix an integrability exponent p ∈ (1,∞) along with a Muckenhoupt
weight w ∈ Ap(∂�, σ). Finally, pick some

ζ ∈ C \
{
− μ,

μ(5μ+3λ)
3μ+λ

}
(4.433)

and associate double layer potential operatorKA(ζ) with the coefficient tensorA(ζ )
and the domain � as in (3.24).

Then there exists some small threshold δ ∈ (0, 1) which depends only on μ, λ,
p, [w]Ap , ζ , and the Ahlfors regularity constant of ∂�, with the property that if
‖ν‖[BMO(∂�,σ)]2 < δ it follows that
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the operators ± 1
2I2×2 +KA(ζ) are invertible

both on
[
Lp(∂�,w)

]2
and on

[
L
p

1 (∂�,w)
]2
,

(4.434)

and

the operators ± 1
2I2×2 +K#

A(ζ ) are invertible on
[
Lp(∂�,w)

]2
. (4.435)

As seen from (4.433) (also keeping in mind (4.432)), under the additional
assumption that μ+ λ �= 0 the value ζ := μ becomes acceptable in the formulation
of the conclusions in (4.434)–(4.435). This special choice leads to the conclusion
that, if � is sufficiently flat (relative to μ, λ, p, [w]Ap , and the Ahlfors regularity
constant of ∂�) then the operators

± 1
2I2×2 +KA(μ) :

[
Lp(∂�,w)

]2 −→ [
Lp(∂�,w)

]2
, (4.436)

± 1
2I2×2 +KA(μ) :

[
L
p

1 (∂�,w)
]2 −→ [

L
p

1 (∂�,w)
]2
, (4.437)

± 1
2I2×2 +K#

A(μ) :
[
Lp(∂�,w)

]2 −→ [
Lp(∂�,w)

]2
, (4.438)

are all invertible whenever

μ �= 0, μ+ λ �= 0, 2μ+ λ �= 0, 3μ+ λ �= 0. (4.439)

This is relevant in the context of Remark 6.10.

Proof of Corollary 4.3 The claim in (4.434) is a direct consequence of Theo-
rem 4.14, upon observing that when z = ±1/2 the demand in (4.403) becomes
equivalent to the condition stipulated in (4.433). The claim in (4.435) then follows
from (4.434) and duality. � 



Chapter 5
Controlling the BMO Semi-Norm of the
Unit Normal

In the previous chapter we have succeeded in estimating the size of a certain brand
of singular integrals operators (which includes the harmonic double layer operator;
cf. Theorem 4.7) in terms of the geometry of the underlying “surface.” A key
characteristic of these estimates (originating with Theorem 4.2) is the presence
of the BMO semi-norm of the unit normal to the surface as a factor in the right
side. In particular, the flatter said surface, the smaller the norm of the singular
integral operators in question. Similar results are also valid for a specific type of
commutators, of the sort described in Theorem 4.3.

By way of contrast, the principal goal in this chapter is to proceed in the opposite
direction, and control geometry in terms of analysis. More specifically, we seek
to quantify flatness of a given “surface” (by estimating the BMO semi-norm of its
unit normal) in terms of analytic entities, such as the operator norms of the harmonic
double layer and the commutators of Riesz transforms with the operator of pointwise
multiplication by the (scalar components of the) unit normals, or various natural
algebraic combinations of Riesz transforms (where all singular integral operators
just mentioned are intrinsically defined on the given “surface”).

In this endeavor, the catalyst is the language of Clifford algebras which allows us
to glue together singular integral operators of the sort described above into a single,
Cauchy-like, singular integral which exhibits excellent non-degeneracy properties
(i.e., up to normalization, such a Cauchy-Clifford operator is its own inverse; cf.
(5.20)). We therefore begin with a brief tutorial about Clifford algebras, which
are a highly non-commutative higher-dimensional version of the field of complex
numbers, where some of the magic cancellations and algebraic miracles typically
associated with the complex plane still occur. This chapter ends with Sect. 5.4 which
contains results characterizing Muckenhoupt weights in terms of the boundedness
Riesz transforms. The Clifford algebra formalism turns out to be useful in this
regard, both as tool and as a mean to bring into play other types of operators, like
the Cauchy–Clifford singular integral operator alluded to above.
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5.1 Clifford Algebras and Cauchy–Clifford Operators

The Clifford algebra with n imaginary units is the minimal enlargement of Rn to a
unitary real algebra (C�n,+,*), which is not generated as an algebra by any proper
subspace of Rn and such that

x * x = −|x|2 for every x ∈ Rn ↪→ C�n. (5.1)

In particular, with {ej }1≤j≤n denoting the standard orthonormal basis in Rn, we
have

ej * ej = −1 for all j ∈ {1, . . . , n} and

ej * ek = −ek * ej for each distinct j, k ∈ {1, . . . , n}.
(5.2)

This allows us to define an embedding Rn ↪→ C�n by identifying

R
n � x = (x1, . . . , xn) ≡

n∑

j=1

xj ej ∈ C�n. (5.3)

In particular, {ej }1≤j≤n become n imaginary units in C�n, and (5.2) implies

a * b + b * a = −2〈a, b〉 for all a, b ∈ Rn ↪→ C�n. (5.4)

Moving on, any element u ∈ C�n has a unique representation of the form

u =
n∑

�=0

∑′

|I |=�
uI eI , uI ∈ R, (5.5)

where
∑′ indicates that the sum is performed only over strictly increasing multi-

indices I , i.e., I = (i1, i2, . . . , i�) with 1 ≤ i1 < i2 < · · · < i� ≤ n, and eI denotes
the Clifford algebra product eI := ei1 * ei2 * · · · * ei� . Write e0 := e∅ := 1 for
the multiplicative unit in C�n. For each u ∈ C�n represented as in (5.5) define the
vector part of u as

uvect :=
n∑

j=1

uj ej ∈ Rn, (5.6)

and denote by

uscal := u∅e∅ = u∅ ∈ R, the scalar part of u. (5.7)

We endow C�n with the natural Euclidean metric, hence
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|u| :=
⎛

⎝
n∑

�=0

∑′

|I |=�
|uI |2

⎞

⎠

1/2

for each u =
n∑

�=0

∑′

|I |=�
uI eI ∈ C�n. (5.8)

Next, define the conjugate of each eI as the unique element eI ∈ C�n such that
eI * eI = eI * eI = 1. Thus, if I = (i1, . . . , i�) with 1 ≤ i1 < i2 < · · · < i� ≤ n,
then the conjugate of eI is given by eI = (−1)�ei� * · · · * e2 * e1. More generally,
for an arbitrary element u ∈ C�n represented as in (5.5) we define

u :=
n∑

�=0

∑′

|I |=�
uI eI . (5.9)

Note that x = −x for every x ∈ Rn ↪→ C�n, and |u| = |u| for every u ∈ C�n. One
may also check that for any u, v ∈ C�n we have

|u* v| ≤ 2n/2|u||v|, u* v = v * u, (5.10)

and, in fact,

|u* v| = |u||v| if either

u ∈ Rn ↪→ C�n or v ∈ Rn ↪→ C�n.
(5.11)

For further details on Clifford algebras, the reader is referred to [101].
Consider an arbitrary UR domain � ⊆ Rn. Abbreviate σ := Hn−1�∂� and

denote by ν = (ν1, . . . , νn) its geometric measure theoretic outward unit normal.
For the goals we have in mind, it is natural to identify ν with the Clifford algebra-
valued function ν = ν1e1 + · · · + νnen. Bearing this identification in mind, we then
proceed to define the action of the boundary-to-boundary Cauchy–Clifford operator
of any given C�n-valued function f ∈ L1

(
∂�,

σ(x)

1+|x|n−1

)⊗ C�n as

Cf (x) := lim
ε→0+

1

ωn−1

ˆ

y∈∂�
|x−y|>ε

x − y

|x − y|n * ν(y)* f (y) dσ(y), (5.12)

for σ -a.e. point x ∈ ∂�. In particular, with Riesz transforms {Rj }1≤j≤n on ∂�

defined as in (4.297), for each function f ∈ L1
(
∂�,

σ(x)

1+|x|n−1

)⊗ C�n we have

Cf = 1

2

∑

1≤j,k≤n
ej * ek * Rj(νkf ) at σ -a.e. point on ∂�. (5.13)

Another closely related integral operator which is of interest to us acts on each given
function f ∈ L1

(
∂�,

σ(x)

1+|x|n−1

)⊗ C�n according to
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C#f (x) := − lim
ε→0+

1

ωn−1

ˆ

y∈∂�
|x−y|>ε

ν(x)* x − y

|x − y|n * f (y) dσ(y) (5.14)

for σ -a.e. x ∈ ∂�. Analogously to (5.13), for each f ∈ L1
(
∂�,

σ(x)

1+|x|n−1

)⊗C�n we
have

C#f = −1

2

∑

1≤j,k≤n
ek * ej * νkRjf at σ -a.e. point on ∂�. (5.15)

As is apparent from (5.13), (5.15), both C and C# are amenable to Proposition 3.4.
Hence, whenever p ∈ (1,∞) and w ∈ Ap(∂�, σ),

C : Lp(∂�,w)⊗ C�n −→ Lp(∂�,w)⊗ C�n (5.16)

and

C# : Lp(∂�,w)⊗ C�n −→ Lp(∂�,w)⊗ C�n (5.17)

are well-defined, linear, and bounded operators, with

‖C‖Lp(∂�,w)⊗C�n→Lp(∂�,w)⊗C�n, ‖C#‖Lp(∂�,w)⊗C�n→Lp(∂�,w)⊗C�n

controlled in terms of n, p, [w]Ap , and the UR constants of ∂∂�.
(5.18)

In fact (see [61, Sections 4.6-4.7] and [114, §1.6]),

the transpose of C from (5.16) is the operator C# acting in the
context of (5.17) with the exponent p replaced by its Hölder
conjugate p′ ∈ (1,∞) and with the given weight w replaced
by w1−p′ ∈ Ap′(∂�, σ).

(5.19)

For this reason, it is natural to refer to C# as the “transpose” Cauchy–Clifford
operator. Moreover, with I denoting the identity operator, we have

C2 = 1
4I and

(
C#)2 = 1

4I, (5.20)

on Lp(∂�, σ)⊗C�n with p ∈ (1,∞) (cf. [61, Sections 4.6-4.7]). In view of (5.16)–
(5.18), a standard density argument then shows that these formulas remain valid on
Lp(∂�,w)⊗ C�n whenever p ∈ (1,∞) and w ∈ Ap(∂�, σ).

Here we are interested in the difference C − C# which, up to multiplication by
2−1, may be thought of as the antisymmetric part of the Cauchy–Clifford operator C.
The following lemma elaborates on the relationship between the antisymmetric part
of the Cauchy–Clifford operator, i.e., C − C#, and the harmonic boundary double
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layer potential (cf. (3.29)) together with commutators between Riesz transforms (cf.
(4.297)) and operators of pointwise multiplication by scalar components of the unit
vector. For a proof see [61, Lemma 4.45].

Lemma 5.1 Let � ⊆ R
n be a UR domain. Abbreviate σ := Hn−1�∂� and

denote by ν = (ν1, . . . , νn) the geometric measure theoretic outward unit normal
to �. For each index j ∈ {1, . . . , n}, denote by Mνj the operator of pointwise
multiplication by νj . Also, recall the boundary-to-boundary harmonic double layer
potential operator K from (3.29) and the family of Riesz transforms {Rj }1≤j≤n
from (4.297). Then

(C − C#)f = 2
n∑

�=0

∑′

|I |=�
(KfI )eI

+
n∑

�=0

∑′

|I |=�

n∑

j,k=1

([Mνj , Rk]fI
)

ej * ek * eI (5.21)

for each C�n-valued function f = ∑n
�=0

∑′
|I |=� fI * eI belonging to the weighted

Lebesgue space L1
(
∂�,

σ(x)

1+|x|n−1

)⊗ C�n.

In turn, the structural result from Lemma 5.1 is a basic ingredient in the proof of
the following corollary.

Corollary 5.1 Let � ⊆ Rn be a UR domain. Abbreviate σ := Hn−1�∂� and
denote by ν the geometric measure theoretic outward unit normal to �. Also, fix
an integrability exponent p ∈ (1,∞) and a Muckenhoupt weight w ∈ Ap(∂�, σ).
Then for each m ∈ N there exists some constant Cm ∈ (0,∞) which depends only
on m, n, p, [w]Ap , and the UR constants of ∂� such that, with the piece of notation
introduced in (4.93), one has

∥∥∥C − C#
∥∥∥
Lp(∂�,w)⊗C�n→Lp(∂�,w)⊗C�n

≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n . (5.22)

Moreover, if ‖ν‖[BMO(∂�,σ)]n is sufficiently small relative to n, p, [w]Ap , and the
Ahlfors regularity constant of ∂� one may take Cm ∈ (0,∞) appearing in (5.22)
to depend only on said entities (i.e., n, p, [w]Ap , the Ahlfors regularity constant of
∂�), and m.

Proof This is a consequence of Lemmas 5.1, 2.15, (3.29), Corollary 4.2, (4.297),
Proposition 3.4, Theorems 4.3, and 2.3. � 
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5.2 Estimating the BMO Semi-Norm of the Unit Normal

The next goal is to establish a bound from below for the operator norm of C−C# on
Muckenhoupt weighted Lebesgue spaces on the boundary of a UR domain in terms
of the BMO semi-norm of the geometric measure theoretic outward unit normal
vector to said domain.

Theorem 5.1 Let � ⊆ Rn be a UR domain such that ∂� is unbounded. Abbreviate
σ := Hn−1�∂� and denote by ν the geometric measure theoretic outward
unit normal to �. Also, fix an integrability exponent p ∈ (1,∞) along with a
Muckenhoupt weight w ∈ Ap(∂�, σ). Then there exists some C ∈ (0,∞) which
depends only on n, p, [w]Ap , and the Ahlfors regularity constant of ∂� with the
property that

‖ν‖[BMO(∂�,σ)]n ≤ C

∥∥
∥C − C#

∥∥
∥
Lp(∂�,w)⊗C�n→Lp(∂�,w)⊗C�n

. (5.23)

A couple of comments are in order. First, as a consequence of (5.23), definitions,
and a result from [111, §5.10] (based on work in [59]) to the effect that an Ahlfors
regular domain is a half-space if and only if its geometric measure theoretic outward
unit normal is a constant vector, we see that

given a UR domain � ⊆ Rn such that ∂� is unbounded, and given p ∈ (1,∞)

together with w ∈ Ap(∂�, σ), we have C = C# as operators on Lp(∂�,w)⊗
C�n if and only if � is a half-space.

(5.24)
Second, estimate (5.23) may fail without the assumption that ∂� is unbounded.
Indeed, from (5.12)–(5.14) one may easily check that C = C# if � is an open ball,
or the complement of a closed ball, in Rn and yet ‖ν‖[BMO(∂�,σ)]n > 0 in either
case. In fact, open balls, complements of closed balls, and half-spaces in Rn are the
only UR domains for which C = C# (see [60] for more on this).

We now turn to the task of presenting the proof of Theorem 5.1.

Proof of Theorem 5.1 Fix a location x0 ∈ ∂� along with a scale R > 0. Also,
pick a sufficiently large number % ∈ (10,∞), which ultimately will depend only
on n and the Ahlfors regularity constant of ∂�, in a manner to be specified later. Let
C ∈ [1,∞) be the Ahlfors regularity constant of ∂� (cf. (2.32)) and choose

λ := (2C)2/(n−1). (5.25)

We may then write (making use of the fact that no smallness condition on the scale
is necessary since ∂� is unbounded)

σ
(
(x0, λ(%R)) \(x0,%R)

) = σ
(
(x0, λ(%R))

)− σ
(
(x0,%R)

)

≥
( 1

C
λn−1 − C

)
(%R)n−1 > 0. (5.26)
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In turn, this guarantees that (x0, λ(%R))\(x0,%R) �= ∅, hence we may choose
some point

y0 ∈ (x0, λ(%R)) \(x0,%R). (5.27)

As a consequence,

%R ≤ |x0 − y0| < λ(%R). (5.28)

Next, fix a point x ∈ (x0, R) and note that this entails |x0−y| ≥ (%−1)R > 0
for all y ∈ (y0, R). As such, we may write

ˆ
(y0,R)

{
x0 − y

|x0 − y|n * ν(y)+ ν(x)* x0 − y

|x0 − y|n
}

dσ(y)

=
ˆ
(y0,R)

{
x0 − y

|x0 − y|n * ν(y)− x − y

|x − y|n * ν(y)

}
dσ(y)

+
ˆ
(y0,R)

{
x − y

|x − y|n * ν(y)+ ν(x)* x − y

|x − y|n
}

dσ(y)

+
ˆ
(y0,R)

{
ν(x)* x0 − y

|x0 − y|n − ν(x)* x − y

|x − y|n
}

dσ(y)

=: I + II + III. (5.29)

Note that for each y ∈ (y0, R) we have

%R ≤ |x0 − y0| ≤ |x0 − x| + |x − y| + |y − y0| < |x − y| + 2R. (5.30)

Based on definitions (cf. (5.12) and (5.14)), and the fact that, as seen from (5.30),
we have |x − y| > (% − 2)R for each y ∈ (y0, R), the second term in (5.29) is
identified as

II = ωn−1 (C − C#)1(y0,R)(x). (5.31)

If for each u,w, z ∈ Rn with z �∈ {u,w} we now abbreviate

E(u,w; z) := u− z

|u− z|n −
w − z

|w − z|n , (5.32)

and if we set

ν(z,r) :=
 
∂�∩B(z,r)

ν dσ for each z ∈ ∂� and r > 0, (5.33)
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then, on account of (5.4),

I + III =
ˆ
(y0,R)

{
E(x0, x; y)* ν(y)+ ν(x)* E(x0, x; y)

}
dσ(y)

= −2
ˆ
(y0,R)

〈
E(x0, x; y), ν(x0,R)

〉
dσ(y)

+
ˆ
(y0,R)

E(x0, x; y)*
(
ν(y)− ν(x0,R)

)
dσ(y)

+
ˆ
(y0,R)

(
ν(x)− ν(x0,R)

)* E(x0, x; y) dσ(y)

=: IV + V + VI. (5.34)

Since

E(x0, x; y) = x0 − y

|x0 − y|n −
(x − x0)− (y − x0)

|x − y|n

= − x − x0

|x − y|n + (x0 − y)
( 1

|x0 − y|n −
1

|x − y|n
)

(5.35)

for each y ∈ (y0, R), it follows that

IV = 2
ˆ
(y0,R)

〈
x − x0, ν(x0,R)

〉

|x − y|n dσ(y)

+ 2
ˆ
(y0,R)

〈
y − x0, ν(x0,R)

〉( 1

|x0 − y|n −
1

|x − y|n
)

dσ(y)

=: IVa + IVb. (5.36)

In view of (5.30) for each y ∈ (y0, R) we have (%/2)R < (% − 2)R < |x − y|
which, together with Proposition 2.15, permits us to estimate

|IVa| = 2
∣∣〈x − x0, ν(x0,R)

〉∣∣
ˆ
(y0,R)

1

|x − y|n dσ(y)

≤ C%−n‖ν‖[BMO(∂�,σ)]n , (5.37)

where C ∈ (0,∞) depends only on n and the Ahlfors regularity constant of ∂�.
Also, since the Mean Value Theorem gives that for each point y ∈ (y0, R) we
have, for some purely dimensional constant C ∈ (0,∞),
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∣∣∣
1

|x0 − y|n −
1

|x − y|n
∣∣∣ ≤ CR

(%R)n+1 = C%−n−1R−n, (5.38)

we may use Proposition 2.15 and the fact that y ∈ (y0, R) ⊆ 
(
x0, (1 + λ%)R

)

to conclude that

∣∣IVb

∣∣ ≤ C(%R ln%)‖ν‖[BMO(∂�,σ)]n%−n−1R−nσ
(
(x0, R)

)

≤ C(%−n ln%)‖ν‖[BMO(∂�,σ)]n , (5.39)

where C ∈ (0,∞) depends only on n and the Ahlfors regularity constant of ∂�.
Next, the Mean Value Theorem shows that for each y ∈ (y0, R) we have

|E(x0, x; y)| =
∣
∣∣
x0 − y

|x0 − y|n −
x − y

|x − y|n
∣
∣∣ ≤ CR

(%R)n
= C%−nR1−n, (5.40)

for some purely dimensional constant C ∈ (0,∞). In addition, (2.104), (2.105), and
(2.106) permit us to write

∣∣ν(x0,R) − ν(y0,R)

∣∣ ≤ ∣∣ν(x0,R) − ν(x0,λ%R)

∣∣+ ∣∣ν(x0,λ%R) − ν(y0,λ%R)

∣∣

+ ∣∣ν(y0,λ%R) − ν(y0,R)

∣∣

≤ C(ln%)‖ν‖[BMO(∂�,σ)]n (5.41)

for some C ∈ (0,∞) which depends only on n and the Ahlfors regularity constant
of ∂�. Based on (5.40) and (5.41) we may then estimate

∣∣V
∣∣ ≤

ˆ
(y0,R)

|E(x0, x; y)|
∣∣ν(y)− ν(x0,R)

∣∣ dσ(y)

≤ C%−n
 
(y0,R)

∣∣ν(y)− ν(x0,R)

∣∣ dσ(y)

≤ C%−n
 
(y0,R)

∣∣ν(y)− ν(y0,R)

∣∣ dσ(y)+ C%−n∣∣ν(x0,R) − ν(y0,R)

∣∣

≤ C(%−n ln%)‖ν‖[BMO(∂�,σ)]n , (5.42)

where C ∈ (0,∞) depends only on n and the Ahlfors regularity constant of ∂�.
Finally, (5.40) implies that for some purely dimensional constant C ∈ (0,∞) we
have

∣
∣VI

∣
∣ ≤

ˆ
(y0,R)

|E(x0, x; y)|
∣
∣ν(x)− ν(x0,R)

∣
∣ dσ(y)
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≤ C%−n∣∣ν(x)− ν(x0,R)

∣
∣. (5.43)

For further use, let us note here that (2.538) plus the John-Nirenberg inequality
(cf. (2.102)) allow to estimate (for some exponent q ′ ∈ (1,∞) which depends only
on p, [w]Ap , n, and the Ahlfors regularity constant of ∂�)

 
(x0,R)

∣∣ν(x)−ν(x0,R)

∣∣p dw(x) =
 
(x0,R)

∣∣∣ν −
 
(x0,R)

ν dσ
∣∣∣
p

dw

≤ C

( 
(x0,R)

∣∣∣ν −
 
(x0,R)

ν dσ
∣∣∣
pq ′

dσ

)1/q ′

≤ C‖ν‖p[BMO(∂�,σ)]n (5.44)

for some constant C ∈ (0,∞) of the same nature as before. It is also useful to note
that we may use (2.535) to estimate

 
(x0,R)

|(C − C#)1(y0,R)(x)|p dw(x)

≤
∥
∥1(y0,R)

∥
∥p
Lp(∂�,w)⊗C�n

w((x0, R)
)

∥∥C − C#
∥∥p
Lp(∂�,w)⊗C�n→Lp(∂�,w)⊗C�n

= w((y0, R)
)

w((x0, R)
)
∥
∥C − C#

∥
∥p
Lp(∂�,w)⊗C�n→Lp(∂�,w)⊗C�n

≤ w((x0, 2λ%R)
)

w((x0, R)
)

∥∥C − C#
∥∥p
Lp(∂�,w)⊗C�n→Lp(∂�,w)⊗C�n

≤ [w]Ap

(σ((x0, 2λ%R)
)

σ((x0, R)
)

)p∥∥C − C#
∥∥p
Lp(∂�,w)⊗C�n→Lp(∂�,w)⊗C�n

≤ C%(n−1)p
∥∥C − C#

∥∥p
Lp(∂�,w)⊗C�n→Lp(∂�,w)⊗C�n, (5.45)

where C ∈ (0,∞) depends only on n, p, [w]Ap , and the Ahlfors regularity constant
of ∂�.

Altogether, from (5.29), (5.31), (5.34), (5.36), (5.37), (5.39), (5.42), (5.43),
(5.44), and (5.45) we conclude that

 
(x0,R)

∣
∣∣∣

ˆ
(y0,R)

{
x0 − y

|x0 − y|n * ν(y)+ ν(x)* x0 − y

|x0 − y|n
}

dσ(y)

∣
∣∣∣

p

dw(x)
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≤ C(%−n ln%)p‖ν‖p[BMO(∂�,σ)]n + Cn,p

 
(x0,R)

|(C − C#)1(y0,R)(x)|p dw(x)

+ C%−np
 
(x0,R)

∣∣ν(x)− ν(x0,R)

∣∣p dw(x)

≤ C(%−n ln%)p‖ν‖p[BMO(∂�,σ)]n

+ C%(n−1)p
∥
∥C − C#

∥
∥p
Lp(∂�,w)⊗C�n→Lp(∂�,w)⊗C�n (5.46)

where C ∈ (0,∞) depends only on n, p, [w]Ap , and the Ahlfors regularity constant
of ∂�.

Going further, define

a :=
 
(y0,R)

x0 − y

|x0 − y|n dσ(y) ∈ Rn ↪→ C�n (5.47)

and

b :=
 
(y0,R)

x0 − y

|x0 − y|n * ν(y) dσ(y) ∈ C�n. (5.48)

Note that

a = x0 − y0

|x0 − y0|n +
 
(y0,R)

( x0 − y

|x0 − y|n −
x0 − y0

|x0 − y0|n
)

dσ(y) (5.49)

and observe that the Mean Value Theorem gives, for some purely dimensional
constant C ∈ (0,∞),

∣
∣∣
x0 − y

|x0 − y|n −
x0 − y0

|x0 − y0|n
∣
∣∣ ≤ CR

(%R)n
= C%−nR1−n, (5.50)

for each y ∈ (y0, R). As a consequence of this and (5.28),

|a| ≥
∣∣∣
x0 − y0

|x0 − y0|n
∣∣∣−

 
(y0,R)

∣∣∣
x0 − y

|x0 − y|n −
x0 − y0

|x0 − y0|n
∣∣∣ dσ(y)

≥ 1

|x0 − y0|n−1
− C%−nR1−n ≥ (%R)1−n − C%−nR1−n

≥ 2−1(%R)1−n, (5.51)

if % > 2C. Hence, if we also introduce
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A := b *
( a

|a|2
)
∈ C�n, (5.52)

we may now estimate, using (5.6), (5.52), (5.51), (5.11), (5.1), (5.47), (5.48), and
(5.46),

 
(x0,R)

|ν(x)− Avect|p dw(x) ≤
 
(x0,R)

|ν(x)− A|p dw(x)

=
 
(x0,R)

∣∣
∣ν(x)− b * (a/|a|2)

∣∣
∣
p

dw(x)

≤ C(%R)(n−1)p
 
(x0,R)

∣∣
∣ν(x)− b * (a/|a|2)

∣∣
∣
p |a|p dw(x)

= C(%R)(n−1)p
 
(x0,R)

∣∣
∣(ν(x)− b * (a/|a|2))* a

∣∣
∣
p

dw(x)

= C(%R)(n−1)p
 
(x0,R)

|ν(x)* a + b|p dw(x)

= C(%R)(n−1)p
 
(x0,R)

∣∣∣
∣ν(x)*

(  
(y0,R)

x0 − y

|x0 − y|n dσ(y)
)

+
( 

(y0,R)

x0 − y

|x0 − y|n * ν(y) dσ(y)
)∣∣∣∣

p

dw(x)

= C(%R)(n−1)p
 
(x0,R)

∣∣
∣∣

 
(y0,R)

{
ν(x)* x0 − y

|x0 − y|n

+ x0 − y

|x0 − y|n * ν(y)
}

dσ(y)

∣∣∣∣

p

dw(x)

≤ C%(n−1)p
 
(x0,R)

∣∣∣∣

ˆ
(y0,R)

{
ν(x)* x0 − y

|x0 − y|n

+ x0 − y

|x0 − y|n * ν(y)
}

dσ(y)

∣∣∣
∣

p

dw(x)

≤ C(%−1 ln%)p‖ν‖p[BMO(∂�,σ)]n

+ C%2(n−1)p
∥
∥C − C#

∥
∥p
Lp(∂�,w)⊗C�n→Lp(∂�,w)⊗C�n, (5.53)

for some C ∈ (0,∞) which depends only on n, p, [w]Ap , and the Ahlfors regularity
constant of ∂�. From this, (2.109), and Lemma 2.14 we then deduce that
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‖ν‖[BMO(∂�,σ)]n ≤ C(%−1 ln%)‖ν‖[BMO(∂�,σ)]n

+ C%2(n−1)
∥
∥C − C#

∥
∥
Lp(∂�,w)⊗C�n→Lp(∂�,w)⊗C�n, (5.54)

where C ∈ (0,∞) depends only on n, p, [w]Ap , and the Ahlfors regularity constant
of ∂�. By eventually further increasing the value of % as to ensure that we also have
%−1 ln% < 1/(2C), we finally conclude from (5.54) that

‖ν‖[BMO(∂�,σ)]n ≤ C
∥∥C − C#

∥∥
Lp(∂�,w)⊗C�n→Lp(∂�,w)⊗C�n, (5.55)

where C ∈ (0,∞) depends only on n, p, [w]Ap , and the Ahlfors regularity constant
of ∂�. � 

Our next result contains estimates in the opposite direction to those given in
Theorem 4.6.

Theorem 5.2 Let� ⊆ Rn be a UR domain. Abbreviate σ := Hn−1�∂� and denote
by ν = (νk)1≤k≤n the geometric measure theoretic outward unit normal to �.
Also, fix an integrability exponent p ∈ (1,∞) along with a Muckenhoupt weight
w ∈ Ap(∂�, σ). Finally, recall the boundary-to-boundary harmonic double layer
potential operator K from (3.29), the Riesz transforms {Rj }1≤j≤n on ∂� from
(4.297), and for each index k ∈ {1, . . . , n} denote byMνk the operator of pointwise
multiplication by the k-th scalar component of ν.

Then there exists some C ∈ (0,∞) which depends only on n, p, [w]Ap , and the
Ahlfors regularity constant of ∂� with the property that

‖ν‖[BMO(∂�,σ)]n ≤ C
{
‖K‖Lp(∂�,w)→Lp(∂�,w) (5.56)

+ max
1≤j,k≤n

∥∥[Mνk , Rj ]
∥∥
Lp(∂�,w)→Lp(∂�,w)

}
.

Proof If ∂� is unbounded, then the estimate claimed in (5.56) is a direct con-
sequence of Theorem 5.1 and Lemma 5.1 (also bearing in mind Lemma 2.15).
In the case when ∂� is bounded, we have K1 = ± 1

2 (cf. [114, §1.5]) with
the sign plus if � is bounded, and the sign minus if � is unbounded, hence
‖K‖Lp(∂�,w)→Lp(∂�,w) ≥ 1

2 in such a scenario. Since from (2.118) we know that
we always have ‖ν‖[BMO(∂�,σ)]n ≤ 1, the estimate claimed in (5.56) holds in this
case if we take C ≥ 2. � 

We conclude this section by presenting a characterization of δ-flat Ahlfors regular
domains in terms of the size of the operator norms of the classical harmonic double
layer and commutators of Riesz transforms with pointwise multiplication by the
scalar components of the unit normal.

Corollary 5.2 Let � ⊆ Rn be a UR domain. Abbreviate σ := Hn−1�∂� and
denote by ν = (νk)1≤k≤n the geometric measure theoretic outward unit normal to
�. Also, fix an integrability exponent p ∈ (1,∞) along with a Muckenhoupt weight
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w ∈ Ap(∂�, σ). Finally, recall the boundary-to-boundary harmonic double layer
potential operator K on ∂� from (3.29), the Riesz transforms {Rj }1≤j≤n on ∂�
from (4.297), and for each k ∈ {1, . . . , n} denote by Mνk the operator of pointwise
multiplication by the k-th scalar component of ν.

Then there exists some C ∈ (0,∞) which depends only on n, p, [w]Ap , and the
Ahlfors regularity constant of ∂� with the property that if

‖K‖Lp(∂�,w)→Lp(∂�,w) + max
1≤j,k≤n

∥∥[Mνk , Rj ]
∥∥
Lp(∂�,w)→Lp(∂�,w)

< δ

(5.57)

then � is a (Cδ)–flat Ahlfors regular domain.

Proof All desired conclusions follow from Theorem 5.2 and Definition 2.15. � 

5.3 Using Riesz Transforms to Quantify Flatness

Recall from (1.16) that for each j ∈ {1, . . . , n} the j -th Riesz transform Rj
associated with a UR domain � ⊆ Rn is the formal convolution operator on ∂�

with the kernel kj (x) := 2
ωn−1

xj
|x|n for x ∈ Rn \ {0}. From Proposition 3.4 we

know that these are bounded operators on Lp(∂�,w) for each p ∈ (1,∞) and
w ∈ Ap(∂�, σ). The most familiar setting is when � = Rn+, in which case it is
well known that

n∑

j=1

R2
j = −I and RjRk = RkRj for all j, k ∈ {1, . . . , n}, (5.58)

when all operators are considered on Muckenhoupt weighted Lebesgue spaces.
Indeed, in such a setting, for the integrability exponent p = 2 and the weight
w = 1 these are immediate consequences of the fact that each Rj is a Fourier
multiplier in ∂� ≡ Rn−1 corresponding to the symbol iξj /|ξ |, then said identities
extend to Lp(∂�,w) via a density argument. For ease of reference, we shall refer
to the formulas in (5.58) as being URTI, i.e., the usual Riesz transform
identities.

Remarkably, Theorem 5.3 below provides a stability result to the effect that if
� ⊆ Rn is a UR domain with an unbounded boundary for which the URTI are
“almost” true in the context of a Muckenhoupt weighted Lebesgue space, then ∂�
is “almost” flat, in that the BMO semi-norm of the outward unit normal to � is
small.

Theorem 5.3 Let � ⊆ R
n be a UR domain with an unbounded boundary.

Abbreviate σ := Hn−1�∂� and denote by ν the geometric measure theoretic
outward unit normal to�. Also, fix an integrability exponent p ∈ (1,∞) along with
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a Muckenhoupt weight w ∈ Ap(∂�, σ), and recall the Riesz transforms {Rj }1≤j≤n
on ∂� from (4.297). Then there exists some C ∈ (0,∞) which depends only on n,
p, [w]Ap , and the UR constants of ∂� with the property that

‖ν‖[BMO(∂�,σ)]n ≤ C
{∥∥
∥I +

n∑

j=1

R2
j

∥∥
∥
Lp(∂�,w)→Lp(∂�,w)

(5.59)

+ max
1≤j,k≤n

∥∥[Rj ,Rk]
∥∥
Lp(∂�,w)→Lp(∂�,w)

}
.

It is perhaps surprising (but nonetheless true; cf. [60]) that URTI are also valid
in the context of Muckenhoupt weighted Lebesgue spaces when � is an open
ball, or the complement of a closed ball in Rn. This shows that, in the context of
Theorem 5.3, our assumption that ∂� is unbounded is warranted, since otherwise
(5.59) may fail.

Proof of Theorem 5.3 Formula [61, (4.6.46), p. 2752] (which is valid in any UR
domain, irrespective of whether its boundary is compact or not) tells us that for each
f ∈ Lp(∂�, σ)⊗ C�n we have

(C − C#)f = C
(
I +

n∑

j=1

R2
j

)
f +

∑

1≤j<k≤n
C
([Rj ,Rk](ej * ek * f )

)
. (5.60)

Since
(
Lp(∂�, σ) ∩ Lp(∂�,w)

)⊗ C�n is a dense subspace of Lp(∂�,w)⊗ C�n
and since all operators involved are continuous on Lp(∂�,w)⊗ C�n, we conclude
that formula (5.60) continues to hold for each f ∈ Lp(∂�,w) ⊗ C�n. From this
version of (5.60) we then see that

(C − C#)f = C
(
I +

n∑

j=1

R2
j

)
f +

∑

1≤j<k≤n
C
([Rj ,Rk](ej * ek * f )

)
(5.61)

for each f ∈ Lp(∂�,w)⊗ C�n. In concert with (5.18), this implies

‖C − C#‖Lp(∂�,w)⊗C�n→Lp(∂�,w)⊗C�n

≤ C

∥∥∥I +
n∑

j=1

R2
j

∥∥∥
Lp(∂�,w)→Lp(∂�,w)

+ C
∑

1≤j<k≤n

∥∥[Rj ,Rk]
∥∥
Lp(∂�,w)→Lp(∂�,w)

(5.62)

Then (5.59) becomes a consequence of (5.62) and Theorem 5.1. � 
Our next result contains estimates in the opposite direction to those from

Theorem 5.3. Collectively, Theorems 5.4 and 5.3 amount to saying that, under
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natural background geometric assumptions on the set �, the URTI are “almost”
true in the context of a Muckenhoupt weighted Lebesgue space if and only if ∂� is
“almost” flat (in that the BMO semi-norm of the outward unit normal to � is small).

Theorem 5.4 Let � ⊆ Rn be a UR domain. Abbreviate σ := Hn−1�∂� and
denote by ν the geometric measure theoretic outward unit normal to �. Also, fix
an exponent p ∈ (1,∞) along with a Muckenhoupt weight w ∈ Ap(∂�, σ), and
recall the Riesz transforms {Rj }1≤j≤n on ∂� from (4.297).

Then for each m ∈ N there exists some constant Cm ∈ (0,∞) which depends
only on m, n, p, [w]Ap , and the Ahlfors regularity constant of ∂� such that, with
the piece of notation introduced in (4.93), one has

∥∥∥I +
n∑

j=1

R2
j

∥∥∥
Lp(∂�,w)→Lp(∂�,w)

≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n , (5.63)

and

max
1≤j<k≤n

∥∥[Rj ,Rk]
∥∥
Lp(∂�,w)→Lp(∂�,w)

≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n . (5.64)

Furthermore, if ‖ν‖[BMO(∂�,σ)]n is sufficiently small relative to n, p, [w]Ap , and
the Ahlfors regularity constant of ∂� one may take Cm ∈ (0,∞) appearing in
(5.63)–(5.64) to depend only on said entities (i.e., n, p, [w]Ap , the Ahlfors regularity
constant of ∂�) and m.

Proof From the Muckenhoupt version of (5.20) and (5.61) we see that for each
function f ∈ Lp(∂�, σ)⊗ C�n we have

C(C# − C)f = − 1
4

(
I +

n∑

j=1

R2
j

)
f − 1

4

∑

1≤j<k≤n
[Rj ,Rk](ej * ek * f ).

(5.65)

Fix a scalar function f ∈ Lp(∂�,w) normalized so that ‖f ‖Lp(∂�,w) = 1. In
particular, this shows that the function f belongs to the space Lp(∂�,w) ⊗ C�n
and ‖f ‖Lp(∂�,w)⊗C�n = 1. Bearing this in mind, for each m ∈ N we may then write

max

{∥∥∥ 1
4

(
I +

n∑

j=1

R2
j

)
f

∥∥∥
Lp(∂�,w)

, max
1≤j<k≤n

∥∥∥ 1
4 [Rj ,Rk]f

∥∥∥
Lp(∂�,w)

}

≤
∥∥∥
∥

⎧
⎨

⎩

∣∣
∣ 1

4

(
I +

n∑

j=1

R2
j

)
f

∣∣
∣
2 +

∑

1≤j<k≤n

∣∣
∣ 1

4 [Rj ,Rk]f
∣∣
∣
2

⎫
⎬

⎭

1/2 ∥∥∥
∥
Lp(∂�,w)
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=
∥∥
∥ 1

4

(
I +

n∑

j=1

R2
j

)
f + 1

4

∑

1≤j<k≤n
([Rj ,Rk]f )ej * ek

∥∥
∥
Lp(∂�,w)⊗C�n

= ‖C(C# − C)f ‖Lp(∂�,w)⊗C�n

≤ ‖C‖Lp(∂�,w)⊗C�n→Lp(∂�,w)⊗C�n

∥∥∥C − C#
∥∥∥
Lp(∂�,w)⊗C�n→Lp(∂�,w)⊗C�n

≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n , (5.66)

where the first inequality is trivial, the subsequent equality is implied by (5.8),
the second equality is seen from formula (5.65) (since f is scalar-valued), the
penultimate estimate uses the normalization of f , while the last inequality is
provided by (5.18) and (5.22). With estimate (5.66) in hand, the claims in (5.63)–
(5.64) readily follow (in view of the arbitrariness of the scalar-valued function
f ∈ Lp(∂�,w) with ‖f ‖Lp(∂�,w) = 1). The final claim in the statement is a
direct consequence of Theorem 2.3. � 

5.4 Using Riesz Transforms to Characterize Muckenhoupt
Weights

Assume � ⊆ Rn, where n ∈ N with n ≥ 2, is a closed UR set and abbreviate
σ := Hn−1��. For j ∈ {1, . . . , n}, the j -th Riesz transform Rj on � is defined as
the operator acting on each f ∈ L1

(
�,

σ(x)

1+|x|n−1

)
according to

Rjf (x) := lim
ε→0+

2

ωn−1

ˆ

y∈�
|x−y|>ε

xj − yj

|x − y|n f (y) dσ(y) for σ -a.e. x ∈ �. (5.67)

From Proposition 3.4 we know that these Riesz transforms are well defined in this
context, and that for each integrability exponent p ∈ (1,∞) and Muckenhoupt
weight w ∈ Ap(�, σ) they induce linear and bounded mappings on Lp(�,w). The
goal in this section is to show that the class of Muckenhoupt weights is the largest
class of weights for which the latter boundedness properties hold.

As a preamble, we note that for a variety of purposes it is convenient to glue
together all Riesz transforms {Rj }1≤j≤n from (5.67) into a unique operator now
acting on Clifford algebra-valued functions f ∈ L1

(
�,

σ(x)

1+|x|n−1

) ⊗ C�n according
to
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Rf (x) := lim
ε→0+

2

ωn−1

ˆ

y∈�
|x−y|>ε

x − y

|x − y|n * f (y) dσ(y)

= e1 * R1f (x)+ · · · + en * Rnf (x) for σ -a.e. x ∈ �. (5.68)

Theorem 5.5 Suppose � ⊆ Rn is a closed UR set and abbreviate σ := Hn−1��.
Fix p ∈ (1,∞) and consider a weight w on � which belongs to L1

loc(�, σ ) and
has the property that, for each j ∈ {1, . . . , n}, the j -th Riesz transform Rj on
� originally defined as in (5.67) extends to a linear and bounded operator on
Lp(�,w). Then necessarily w ∈ Ap(�, σ) and there exists C ∈ (0,∞) which
depends only on the Ahlfors regularity constant of �, n, and p with the property
that

[w]Ap ≤ C

⎧
⎨

⎩

max1≤j≤n ‖Rj‖2p
Lp(�,w)→Lp(�,w) if � unbounded,

max1≤j≤n ‖Rj‖5p
Lp(�,w)→Lp(�,w) if � bounded.

(5.69)

From assumptions and (2.508) we know that σ is a complete, locally finite
(hence also sigma-finite), separable, Borel-regular measure on �. Since the weight
w belongs to L1

loc(�, σ ), it follows that

the measure dw := w dσ is complete, locally finite (hence also
sigma-finite), separable, and Borel-regular on �.

(5.70)

Granted this, results in [7], [111, §3.7] then guarantee that the natural inclusion

X := {
φ
∣
∣
�
: φ ∈ C∞

0 (Rn)
}
↪→ Lp(�,w) has dense range. (5.71)

From the preamble to Theorem 5.5 we know that the Riesz transforms (5.67) act in
a meaningful fashion on X , and this is the manner in which the Rj ’s are originally
considered in the context of Theorem 5.5. The point of the latter theorem is that
if the Rj ’s originally defined on X extend via density (cf. (5.71)) to linear and
bounded operators on Lp(�,w) then necessarily w ∈ Ap(�, σ).

Let us now present the proof of Theorem 5.5.

Proof of Theorem 5.5 The fact that all Riesz transforms on � originally defined as
in (5.67) on functions f ∈ X := {

φ
∣∣
�
: φ ∈ C∞

0 (Rn)
}

induce (via density; cf.
(5.71)) linear and bounded mappings on Lp(�,w), implies that the operator R from
(5.68), originally defined on functions f ∈ X ⊗ C�n induces (via density) a linear
and bounded mapping on Lp(�,w)⊗ C�n. Henceforth abbreviate

C0 := ‖R‖Lp(�,w)⊗C�n→Lp(�,w)⊗C�n (5.72)
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and note that there exists a dimensional constant Cn ∈ (0,∞) with the property that

C0 ≤ Cn · max
1≤j≤n ‖Rj‖Lp(�,w)→Lp(�,w). (5.73)

To proceed in earnest, denote by CAR ∈ [1,∞) the Ahlfors regularity constant
of � and fix a number λ ∈ (1,∞) which is sufficiently large relative to the Ahlfors
regularity constant of � as to ensure that

(x, λρ) \(x, ρ) �= ∅ for each x ∈ � and ρ ∈ (
0, diam(�)

/
λ
)
. (5.74)

For example, any λ > C2/(n−1)
AR

will do. Fix r ∈ (
0, diam(�)

/
(10λ)

)
and suppose

x1, x2 ∈ � are such that

10 r ≤ |x1 − x2| ≤ 200λr. (5.75)

Abbreviate

1 := (x1, r) and 2 := (x2, r). (5.76)

Next, select a real-valued function f ∈ X and set f± := max{±f, 0}. We then
have 0 ≤ f± ≤ |f | = f+ + f− on �, and f± ∈ Lp(�,w) since X ⊆ Lp(�,w).
For each y ∈ � define

g±(y) :=
⎧
⎨

⎩

− x2 − y

|x2 − y|f±(y) if y ∈ 1,

0 if y ∈ � \1,

(5.77)

so g± belong to Lp(�,w)⊗ C�n and are supported in 1. Consequently,

Rg±(x) = 2

ωn−1

ˆ
1

x − y

|x − y|n *
−(x2 − y)

|x2 − y| f±(y) dσ(y) for each x ∈ 2.

(5.78)
Recall that the scalar component uscal of a Clifford algebra element u ∈ C�n is
defined as in (5.7). For each x ∈ 2 and y ∈ 1 we may use (5.1), (5.8), (5.11), as
well as (5.75) to compute

( x − y

|x − y|n *
−(x2 − y)

|x2 − y|
)

scal
=

( x − y

|x − y|n *
−(x − y)

|x2 − y|
)

scal

+
( x − y

|x − y|n *
x − x2

|x2 − y|
)

scal

= 1

|x − y|n−2 · |x2 − y| +
( x − y

|x − y|n *
x − x2

|x2 − y|
)

scal
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≥ 1

|x − y|n−2 · |x2 − y| −
|x − x2|

|x − y|n−1 · |x2 − y|

= |x − y| − |x − x2|
|x − y|n−1 · |x2 − y|

≥ 7r

(200λr + 2r)n−1(200λr + r)
= cn,λ · r1−n,

(5.79)

where the last equality defines cn,λ. Based on (5.78) and (5.79) we then conclude
that we have the pointwise lower bound

∣∣Rg±
∣∣ ≥ (

Rg±
)

scal ≥ cn,λ · C−1
AR

 
1

f± dσ on 2. (5.80)

In concert with the boundedness of R on Lp(�,w) ⊗ C�n (mentioned in the first
part of the proof) and the piece of notation introduced in (5.72), this permits us to
estimate

c
p
n,λ · C−p

AR

( 
1

f± dσ
)p ≤ 1

w(2)

ˆ
2

∣∣Rg±
∣∣p dw ≤ 1

w(2)

ˆ
�

∣∣Rg±
∣∣p dw

≤ C
p

0

w(2)

ˆ
�

∣∣g±
∣∣p dw ≤ C

p

0

w(2)

ˆ
1

|f |p dw.

(5.81)

Combining the two versions of (5.81), corresponding to f+ and f−, yields

c
p
n,λ · C−p

AR

( 
1

|f | dσ
)p ≤ 2p−1 · Cp

0

w(2)

ˆ
1

|f |p dw. (5.82)

Specializing (5.82) to the case when the real-valued function f ∈X is chosen such
that f ≡ 1 on 1 then yields

c
p
n,λ · C−p

AR
≤ 2p−1 · Cp

0
w(1)

w(2)
. (5.83)

Running the same type of argument as above but with the roles of x1 and x2 (which
are interchangeable) reversed then produces, in place of (5.83),

c
p
n,λ · C−p

AR
≤ 2p−1 · Cp

0
w(2)

w(1)
. (5.84)
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From (5.84) and (5.82) we then conclude that for each real-valued function f ∈X
we have

 
1

|f | dσ ≤ C1

( 
1

|f |p dw
)1/p

, (5.85)

with

C1 :=
(
21−1/p · C0 · c−1

n,λ · CAR

)2
. (5.86)

Consider now an arbitrary function h ∈ L
p

loc(�,w). In particular, the extension
of h

∣
∣
1

by zero to the rest of� belongs toLp(�,w). Granted this, (5.71) guarantees
the existence of a sequence of functions {fj }j∈N ⊆X such that

fj
∣∣
1

→ h
∣∣
1

in Lp(1, w) as j →∞. (5.87)

By eventually passing to sub-sequences there is no loss of generality in also
assuming that lim

j→∞ fj (x) = h(x) for σ -a.e. x ∈ 1. Based on this, Fatou’s lemma,

and (5.85) we may then write

 
1

|h| dσ ≤ lim inf
j→∞

 
1

|fj | dσ ≤ C1 · lim inf
j→∞

( 
1

|fj |p dw
)1/p

≤ C1

( 
1

|h|p dw
)1/p

. (5.88)

Ultimately, this goes to show that for each h ∈ L
p

loc(�,w) we have

 
1

|h| dσ ≤ C1

(  
1

|h|p dw
)1/p

, (5.89)

with C1 ∈ (0,∞) as in (5.86) (hence, in particular, independent of h, x1, and r).
Start now with an arbitrary point x ∈ �, and continue to assume that the scale

r belongs to
(
0, diam(�)

/
(10λ)

)
. We may then employ (5.74) with ρ := 10 r to

conclude that there exists some x̃ ∈ (x, 10λr) \(x, 10 r). For such a choice we
then have 10 r ≤ |x − x̃| < 10λr which, in light of (5.75), shows that we may run
the argument so far with x1 := x and x2 := x̃. In place of (5.89) we then arrive at
the conclusion that, with C1 ∈ (0,∞) as in (5.86),

 
(x,r)

|h| dσ ≤ C1

( 
(x,r)

|h|p dw
)1/p

for each

h ∈ L
p

loc(�,w), x ∈ �, r ∈ (
0, diam(�)

/
(10λ)

)
.

(5.90)
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In the case when � is unbounded, from (5.90) (which now holds with no
restriction on the size of the scale r since diam(�) = ∞) and the second part
of Lemma 2.12 we conclude that

w ∈ Ap(�, σ) and [w]Ap ≤ C
p

1 . (5.91)

There remains to treat the scenario in which � is bounded. When this is the case,
starting with (5.90), the argument in the proof of Lemma 2.12 that has led to (2.529)
presently gives (with p′ denoting the Hölder conjugate exponent of p)

( 
(x,r)

w dσ

)( 
(x,r)

w1−p′ dσ

)p−1

≤ C
p

1

for each x ∈ � and r ∈ (
0, diam(�)

/
(10λ)

)
.

(5.92)

To obtain a similar inequality in the regime

diam(�)
/
(10λ) ≤ r ≤ diam(�), (5.93)

observe that for each x ∈ � we may estimate, using the Ahlfors regularity of � and
the fact that r is comparable with diam(�),

( 
(x,r)

w dσ

)( 
(x,r)

w1−p′ dσ

)p−1

(5.94)

≤ C2p
AR
· (10λ)(n−1)p

( 
�

w dσ

)( 
�

w1−p′ dσ

)p−1

.

At this stage, there remains to bound the right-hand side of (5.94) by a suitable
finite constant which is independent of w. To this end, introduce the following
threshold r0 := diam(�)

/
(20λ). We claim that there exist an integer

N ∈ N with N ≤ C2
AR
· (40λ)n−1 (5.95)

along with a family of points {xj }Nj=1 ⊆ � satisfying

|xj − xk| ≥ r0 for every j, k ∈ {1, . . . , N} with j �= k

and � ⊆
N⋃

j=1

(xj , r0).
(5.96)

To justify this claim, observe that
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A :=
{
A ⊆ � : |x − x′| ≥ r0 for all x, x′ ∈ A with x �= x′

}
(5.97)

is a partially ordered set with respect to the canonical inclusion of sets. It is also clear
that any totally ordered subset B of A has an upper bound in A, namely

⋃
B∈B B.

By Zorn’s lemma, there exists a maximal element Amax in A. By maximality we
necessarily have

� ⊆
⋃

x∈Amax

(x, r0). (5.98)

Since � ⊆ Rn is currently assumed to be compact, there exist {xj }Nj=1 ⊆ Amax such

that � ⊆
N⋃

j=1
(xj , r0). This takes care of (5.96). To estimate N as in (5.95), start

by observing that the balls
{
B(xj , r0/2)

}N
j=1 are, thanks to the first line in (5.96),

mutually disjoint. Bearing this in mind, we may use the Ahlfors regularity of � to
write

CAR · (diam(�)
)n−1 ≥ σ(�) ≥

N∑

j=1

σ
(
B(xj , r0/2) ∩�)

(5.99)

≥ N · C−1
AR

· (r0/2)n−1 = N · C−1
AR

· (diam(�)
/
(40λ)

)n−1

from which (5.95) readily follows.
Moving on, note that for every j, k ∈ {1, . . . , N} with j �= k one has

r0 ≤ |xj − xk| ≤ diam(�) = 20λr0. (5.100)

Thus, (5.75) holds with r := r0/10 = diam(�)/(200λ), and xj , xk playing the role
of x1 and x2. As such, (5.76) and (5.83) yield

w
(
(xk, r0/10)

)

w
(
(xj , r0/10)

) ≤ 2p−1 · Cp

0 · c−pn,λ · Cp
AR
. (5.101)

On the other hand, Ahlfors regularity and (5.90) applied to (xk, r0) and the
function h = 1(xk,r0/10) readily gives

C−2p
AR

· 10−(n−1)p ≤
(
σ
(
(xk, r0/10)

)

σ
(
(xk, r0)

)

)p

≤ C
p

1 · w
(
(xk, r0/10)

)

w
(
(xk, r0)

) . (5.102)

Collecting then (5.101) and (5.102) we conclude that



362 5 Controlling the BMO Semi-Norm of the Unit Normal

w
(
(xk, r0)

)

w
(
(xj , r0)

) ≤ C2p
AR
· 10(n−1)p · Cp

1 · w
(
(xk, r0/10)

)

w
(
(xj , r0/10)

) ≤ C2, (5.103)

with

C2 := 23p−3 · 10(n−1)p · C5p
AR
· C3p

0 · c−3p
n,λ . (5.104)

Since the latter estimate holds for every j, k ∈ {1, . . . , N} with j �= k we obtain
that for every j ∈ {1, . . . , N}

w(�) ≤
N∑

j=1

w
(
(xk, r0)

) ≤ N · C2 · w
(
(xj , r0)

) ≤ C3 · w
(
(xj , r0)

)
,

(5.105)
where

C3 := 23p−3 · 10(n−1)p · (40λ)n−1 · C5p+2
AR

· C3p
0 · c−3p

n,λ . (5.106)

From (5.105) and (5.90) used with r := r0 ∈
(
0, diam(�)

/
(10λ)

)
we then obtain

that for each h ∈ Lp(�,w) we have

ˆ
(xj ,r0)

|h| dσ ≤ σ(�) · C1 · C1/p
3

(  
�

|h|p dw
)1/p

for j ∈ {1, . . . , N}.
(5.107)

Summing up in j further yields

 
�

|h| dσ ≤ N · C1 · C1/p
3

(  
�

|h|p dw
)1/p

for each h ∈ Lp(�,w). (5.108)

Having established (5.108), the argument in the proof of Lemma 2.12 that has
produced (2.529) (used with  := �) then currently gives

( 
�

w dσ

)( 
�

w1−p′ dσ

)p−1

≤ (N · C1 · C1/p
3 )p = Np · Cp

1 · C3

≤ 25p−5 · 10(n−1)p · (40λ)(n−1)(p+1) · C9p+2
AR

· C5p
0 · c−5p

n,λ . (5.109)

Together with (5.94) this finally proves that w ∈ Ap(�, σ) and that

[w]Ap ≤ C‖R‖5p
Lp(�,w)⊗C�n→Lp(�,w)⊗C�n (5.110)

for C ∈ (0,∞) depending only on the Ahlfors regularity constant of �, n, and p.
Finally, from (5.91), (5.86), (5.110), and (5.73) we conclude that (5.69) holds.

� 
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In concert with earlier results, Theorem 5.5 yields the following remarkable
characterization of Muckenhoupt weights.

Theorem 5.6 Let � ⊆ Rn be a UR domain and abbreviate σ := Hn−1�∂�. Fix
a function w ∈ L1

loc(∂�, σ) which is strictly positive σ -a.e. on ∂�, along with an
integrability exponent p ∈ (1,∞). Then the following statements are equivalent.

(1) The weight w belongs to the Muckenhoupt class Ap(∂�, σ).
(2) For each j ∈ {1, . . . , n}, the j -th Riesz transform Rj on ∂� (cf. (4.297))

induces a linear and bounded operator on Lp(∂�,w).
(3) The Cauchy–Clifford operator C from (5.12) induces a linear and bounded

mapping on Lp(∂�,w)⊗ C�n.
(4) The “transpose” Cauchy–Clifford operator C# from (5.14) induces a linear and

bounded mapping on Lp(∂�,w)⊗ C�n.
(5) For each complex-valued function k ∈ C∞(

R
n \ {0}) which is odd and positive

homogeneous of degree 1− n, the integral operator originally defined for each
function f ∈ L1

(
∂�,

σ(x)

1+|x|n−1

)
as

Tf (x) := lim
ε→0+

ˆ

y∈∂�
|x−y|>ε

k(x − y)f (y) dσ(y) for σ -a.e. x ∈ ∂� (5.111)

induces a linear and bounded mapping on Lp(∂�,w).

Proof The implications (1)⇒ (2) and (1)⇒ (5) are direct consequences of Propo-
sition 3.4 and (4.297). From (4.297) it is also clear that (5)⇒ (2). To proceed, let
ν = (ν1, . . . , νn) denote the geometric measure theoretic outward unit normal to
�. Then (5.13) and (5.15) imply that the Cauchy–Clifford operator C from (5.12)
as well as the “transpose” Cauchy–Clifford operator C# from (5.14) induce linear
and bounded mappings on Lp(∂�,w)⊗C�n whenever all Riesz transforms on ∂�,
i.e., Rj as in (4.297) with 1 ≤ j ≤ n, induce linear and bounded operators on
Lp(∂�,w). This takes care of the implications (2)⇒ (3) and (2)⇒ (4).

Going further, bring in the integral operator R defined as in (5.68) for � := ∂�,
i.e., Rf = e1 * R1f + · · · + en * Rnf for each f ∈ L1

(
∂�,

σ(x)

1+|x|n−1

) ⊗ C�n,
where {Rj }1≤j≤n are Riesz transforms on ∂� defined in (4.297). From definitions
and the fact that ν * ν = −1 at σ -a.e. point of ∂� (cf. (5.1)) we then see that for
each f ∈ L1

(
∂�,

σ(x)

1+|x|n−1

)⊗ C�n we have

ν * C#f = 1
2Rf, −C(ν * f ) = 1

2Rf, Cf = ν * C#(ν * f ),

C#f = − 1
2ν * Rf, Cf = 1

2R(ν * f ), C#f = ν * C(ν * f ).
(5.112)
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It is also clear that the statement in item (2) is equivalent to the demand that R
induces a linear and bounded operator on Lp(∂�,w)⊗C�n. On account of this and
(5.112) we then conclude that the implications (3)⇒ (2) and (4)⇒ (2) are valid.
Finally, Theorem 5.5 gives the implication (2)⇒ (1). The proof of Theorem 5.6 is
therefore complete. � 



Chapter 6
Boundary Value Problems in
Muckenhoupt Weighted Spaces

This chapter is devoted to studying the Dirichlet, Regularity, Neumann, and
Transmission boundary value problems in δ-AR domains with boundary data in
Muckenhoupt weighted Lebesgue and Sobolev spaces. The technology that we
bring to bear on such problems also allows us to deal with similar boundary
value problems formulated in terms of ordinary Lorentz spaces and Lorentz-based
Sobolev spaces.

As a preamble, in Theorem 6.1 below we recall from [113, §4.4] a Poisson
integral representation formula for solutions of the Dirichlet Problem for a given
weakly elliptic second-order system L, in domains of a very general geometric
nature, which involves the conormal derivative of the Green function for the
transpose system L� as integral kernel. Stating this requires that we review a
definition and a couple of related results. Specifically, following [111, §8.9] we shall
say that a set � is globally pathwise nontangentially accessible
provided � is an open nonempty proper subset of Rn such that:

given any κ > 0 there exist κ̃ ≥ κ along with c ∈ [1,∞)

such that σ -a.e. point x ∈ ∂� has the property that any
y ∈ �κ(x) may be joined by a rectifiable curve γx,y such that
γx,y \ {x} ⊂ �κ̃(x) and whose length is ≤ c|x − y|.

(6.1)

It has been noted in [111, §8.9] that

any one-sided NTA domain with unbounded boundary
is a globally pathwise nontangentially accessible set,

(6.2)

and that

any semi-uniform set (in the sense of Aikawa-Hirata; cf.
[4]) is a globally pathwise nontangentially accessible set.

(6.3)
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We are now ready to state the Poisson integral representation formula advertised
earlier (for a proof see [113, §4.4]).

Theorem 6.1 Let � be an open nonempty proper subset of Rn (where n ∈ N with
n ≥ 2) which is globally pathwise nontangentially accessible (in the sense of (6.1)),
and such that ∂� is unbounded and Ahlfors regular. Abbreviate σ := Hn−1�∂�
and denote by ν = (ν1, . . . , νn) the geometric measure theoretic outward unit
normal to�. Next, suppose L is a weakly elliptic, homogeneous, constant (complex)
coefficient, second-order,M ×M system in Rn. Fix a parameter κ ∈ (0,∞), along
with an arbitrary point x0 ∈ �, and suppose 0 < ρ < 1

4 dist(x0, ∂�). Finally,
define K := B(x0, ρ).

Then there exists some κ̃ > 0, which depends only on� and κ , with the following
significance. Assume G is a matrix-valued function satisfying

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G = (
Gαβ

)
1≤α,β≤M ∈ [

L1
loc(�,L

n)
]M×M

,

(
L�G.β

)
α
= −δx0δαβ in

[
D′(�)

]M
for all α, β ∈ {1, . . . ,M},

(∇G)∣∣κ̃−n.t.

∂�
exists (in C n·M2

) at σ -a.e. point on ∂�,

G
∣∣κ̃−n.t.

∂�
= 0 ∈ CM×M at σ − a.e. point on ∂�,

N�\K
κ̃ (∇G) < +∞ at σ − a.e. point on ∂�,

(6.4)

and assume u = (uβ)1≤β≤M is a CM -valued function in � satisfying

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u ∈ [
C∞(�)

]M
, Lu = 0 in �,

u
∣∣κ−n.t.

∂�
exists at σ -a.e. point on ∂�,

Nκu < +∞ at σ − a.e. point on ∂�,

ˆ
∂�

Nκu ·N�\K
κ̃ (∇G) dσ < +∞.

(6.5)

Then for any choice of a coefficient tensor A = (
a
αβ
rs

)
1≤r,s≤n

1≤α,β≤M
∈ AL one has the

Poisson integral representation formula

uβ(x0) = −
ˆ
∂∗�

〈
u
∣∣κ−n.t.

∂�
, ∂A

�
ν G.β

〉
dσ, ∀β ∈ {1, . . . ,M}, (6.6)

where ∂A
�

ν stands for the conormal derivative associated with A�, acting on the
columns of the matrix-valued function G according to (compare with (3.66))

∂A
�

ν G.β :=
(
νra

γα
sr

(
∂sGγβ

)∣∣κ̃−n.t.

∂�

)

1≤α≤M at σ -a.e. point on ∂∗�, (6.7)

for each β ∈ {1, . . . ,M}.
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One remarkable feature of this result is that the only quantitative aspect of the
hypotheses made in its statement is the finiteness condition in the fourth line of (6.5).
Not only is this most natural (in view of the conclusion in (6.6)), but avoiding to
specify separate memberships of Nκu and N�\K

κ̃ (∇G) to concrete dual function
spaces on ∂� gives Theorem 6.1 a wide range of applicability. In particular, the
various Poisson integral representation formulas this provides in a multitude of
contexts permit us to derive, rather painlessly, uniqueness results for the Dirichlet
Problem.

6.1 The Dirichlet Problem in Weighted Lebesgue Spaces

Theorem 6.2 below describes solvability, regularity, and well-posedness results for
the Dirichlet Problem in δ-AR domains � ⊆ Rn with boundary data in Mucken-
houpt weighted Lebesgue spaces for weakly elliptic second-order homogeneous
constant coefficient systems L in Rn with the property that Adis

L �= ∅ and/or
Adis
L� �= ∅. Examples of such systems include the Laplacian, all scalar weakly

elliptic operators when n ≥ 3, as well as the complex Lamé system given by
Lμ,λ := μ + (λ + μ)∇div with μ ∈ C \ {0} and λ ∈ C \ {−2μ,−3μ}. In
particular, the well-posedness result described in item (e) of Theorem 6.2 holds in
all these cases. Furthermore, we provide counterexamples showing that our results
are optimal, in the sense that the aforementioned assumptions on the existence of
distinguished coefficient tensors cannot be dispensed with.

Theorem 6.2 Let � ⊆ Rn be an Ahlfors regular domain. Set σ := Hn−1�∂�,
denote by ν the geometric measure theoretic outward unit normal to �, and fix an
aperture parameter κ > 0. Also, pick an exponent p ∈ (1,∞) and a Muckenhoupt
weight w ∈ Ap(∂�, σ). Given a homogeneous, second-order, constant complex
coefficient, weakly ellipticM ×M system L in Rn, consider the Dirichlet Problem

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u ∈ [
C∞(�)

]M
,

Lu = 0 in �,

Nκu ∈ Lp(∂�,w),

u
∣∣κ−n.t.

∂�
= f ∈ [

Lp(∂�,w)
]M

.

(6.8)

The following claims are true:

(a) [Existence, Estimates, and Integral Representation] If Adis
L �= ∅ and A ∈ Adis

L ,
then there exists δ ∈ (0, 1) depending only on n, p, [w]Ap , A, and the Ahlfors
regularity constant of ∂� with the property that if ‖ν‖[BMO(∂�,σ)]n < δ (a
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scenario which ensures that � is a δ-AR domain; cf. Definition 2.15) then the
operator 1

2I +KA is invertible on the weighted Lebesgue space
[
Lp(∂�,w)

]M

and the function u : �→ CM defined as

u(x) :=
(
DA

(
1
2I +KA

)−1
f
)
(x) for all x ∈ �, (6.9)

is a solution of the Dirichlet Problem (6.8). Moreover, there exists some constant
C ∈ (0,∞) independent of f with the property that

‖f ‖[Lp(∂�,w)]M ≤ ‖Nκu‖Lp(∂�,w) ≤ C‖f ‖[Lp(∂�,w)]M . (6.10)

(b) [Additional Integrability] Under the background assumptions made in item (a),
for the solution u of the Dirichlet Problem (6.8) defined in (6.9), one has the
following integrability result: For any given q ∈ (1,∞) and ω ∈ Aq(∂�, σ),
after eventually further decreasing δ ∈ (0, 1) (relative to q and [ω]Aq ), one has

Nκu ∈ Lq(∂�,ω)⇐⇒ f ∈ [
Lq(∂�,ω)

]M (6.11)

and if either of these conditions holds then

‖Nκu‖Lq(∂�,ω) ≈ ‖f ‖[Lq(∂�,ω)]M . (6.12)

(c) [Regularity] Under the background assumptions made in item (a), for the
solution u of the Dirichlet Problem (6.8) defined in (6.9), one has the following
regularity result: For any given q ∈ (1,∞) and ω ∈ Aq(∂�, σ), after eventually
further decreasing δ ∈ (0, 1) (relative to q and [ω]Aq ), one has

Nκ(∇u) ∈ Lq(∂�,ω)⇐⇒ ∂τjkf ∈ [
Lq(∂�,ω)

]M
, 1 ≤ j, k ≤ n, (6.13)

and if either of these conditions holds then

(∇u)∣∣κ−n.t.

∂�
exists (in Cn·M ) at σ -a.e. point on ∂�,

and ‖Nκ(∇u)‖Lq(∂�,ω) ≈ ‖∇tanf ‖[Lq(∂�,ω)]n·M .
(6.14)

In particular, corresponding to q := p and ω := w, if δ ∈ (0, 1) is sufficiently
small to begin with then

Nκ(∇u) belongs to Lp(∂�,w) if and only if f belongs to[
L
p

1 (∂�,w)]M , and if either of these conditions holds then
‖Nκu‖Lp(∂�,w) + ‖Nκ(∇u)‖Lp(∂�,w) ≈ ‖f ‖[Lp1 (∂�,w)]M .

(6.15)
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(d) [Uniqueness] Whenever Adis
L� �= ∅, there exists δ ∈ (0, 1) which depends only on

n, p, [w]Ap , L, and the Ahlfors regularity constant of ∂� with the property that
if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) then the Dirichlet Problem
(6.8) has at most one solution.

(e) [Well-Posedness] If Adis
L �= ∅ and Adis

L� �= ∅ then there exists δ ∈ (0, 1) which
depends only on n, p, [w]Ap , L, and the Ahlfors regularity constant of ∂� such
that if ‖ν‖[BMO(∂�,σ)]n < δ (in other words, if � is a δ-AR domain) then the
Dirichlet Problem (6.8) is well posed (i.e., it is uniquely solvable and the solution
satisfies the naturally accompanying estimate formulated in (6.10)).

(f) [Sharpness] If Adis
L = ∅ then the Dirichlet Problem (6.8) may not be solvable.

Also, if Adis
L� = ∅ then the Dirichlet Problem (6.8) may have more than

one solution. In fact, there exists a homogeneous, second-order, constant real
coefficient, weakly elliptic n × n system L in Rn with Adis

L = Adis
L� = ∅ and

which satisfies the following two properties: (i) the Dirichlet Problem formulated
for this system as in (6.8) with � := Rn+ fails to have a solution for each
non-zero boundary datum belonging to an infinite dimensional linear subspace
of

[
Lp(∂�,w)

]n
, and (ii) the linear space of null-solutions for the Dirichlet

Problem formulated for the system L as in (6.8) with� := Rn+ is actually infinite
dimensional.

From Example 2.12 we know that, once a point x0 ∈ ∂� has been fixed, then for
each power a ∈ (

1 − n, (p − 1)(n− 1)
)

the function

w : ∂�→ [0,∞], w(x) := |x − x0|a for x ∈ ∂�, (6.16)

is a Muckenhoupt weight in the class Ap(∂�, σ). Boundary value problems for
a real constant coefficient system L satisfying the Legendre–Hadamard strong
ellipticity condition in a bounded Lipschitz domain � ⊆ Rn with boundary data
in weighted (Lebesgue and Sobolev) spaces on ∂� for a weight of the form (6.16)
have been considered in [128].

More generally, Proposition 2.21 tells us that, for each d-set E ⊆ ∂� with d ∈
[0, n − 1) and each power a ∈ (

d + 1 − n, (p − 1)(n − 1 − d)
)
, the function

w := [
dist(·, E)]a is a Muckenhoupt weight in the class Ap(∂�, σ). Theorem 6.2

may therefore be specialized to this type of weights. A natural choice corresponds to
the case when E is a subset of the set of singularities of the “surface” ∂�. Weighted
boundary value problems in which the weight is a power of the distance to the
singular set (of the boundary) have been studied extensively in the setting of conical
and polyhedral domains, for which there is a vast amount of literature (see, e.g.,
[80, 81], and the references therein).

Finally, we wish to mention that, in the class of systems considered in Theo-
rem 6.2, the ensuing solvability, regularity, uniqueness, and well-posedness results
are new even in the standard case when � = Rn+.

Here is the proof of Theorem 6.2.

Proof of Theorem 6.2 To deal with the claims made in item (a) assume Adis
L �= ∅

and pick some A ∈ Adis
L . Then Theorems 2.3 and 4.8 guarantee the existence of
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some threshold δ ∈ (0, 1), whose nature is as specified in the statement of the
theorem, such that if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) then the
set ∂� is unbounded, � satisfies a two-sided local John condition with constants
which depend only on the Ahlfors regularity constant of ∂� and the dimension n

(in particular, the UR constants of ∂� are also controlled solely in terms of the
dimension n and the Ahlfors regularity constant of ∂�), and the operator 1

2I +KA

is invertible on
[
Lp(∂�,w)

]M . Granted this, from (3.23) and Proposition 3.5 (also
keeping in mind (2.575)) we conclude that the function u defined as in (6.9) solves
the Dirichlet Problem (6.8) and satisfies (6.10).

Consider next the claim made in item (b), regarding additional integrability prop-
erties for the solution constructed in (6.9). The right-pointing implication in (6.11)
together with the right-pointing inequality in (6.12) are simple consequences of the

fact that we have |f | = ∣∣u
∣∣κ−n.t.

∂�

∣∣ ≤ Nκu at σ -a.e. point on ∂�. The left-pointing
implication in (6.11) along with the left-pointing inequality in (6.12) are seen from
(6.9), (4.340), and Proposition 3.5.

Let us now prove the claims made in item (c) pertaining to the regularity of the
solution u just constructed. Retain the background assumptions made in item (a)
and fix some exponent q ∈ (1,∞) along with some weight ω ∈ Aq(∂�, σ). As

regards the equivalence claimed in (6.13), assume first that f ∈ [
Lp(∂�,w)

]M is

such that ∂τjkf ∈ [
Lq(∂�,ω)

]M for each j, k ∈ {1, . . . , n}. To proceed, define

g :=
(

1
2I +KA

)−1
f ∈ [

Lp(∂�,w)
]M where the inverse is considered in the

space
[
Lp(∂�,w)

]M . As noted in Remark 4.16 (assuming δ > 0 is sufficiently
small), the operator 1

2I + KA is also invertible on the off-diagonal Muckenhoupt

weighted Sobolev space
[
L
p;q
1 (∂�,w;ω)]M (cf. (4.306)–(4.307)). Moreover, since

the latter is a subspace of
[
Lp(∂�,w)

]M , it follows that the inverse of 1
2I +KA on

[
L
p;q
1 (∂�,w;ω)]M is compatible with the inverse of 1

2I +KA on
[
Lp(∂�,w)

]M .

In particular, since we are currently assuming that f ∈ [
L
p;q
1 (∂�,w;ω)]M , we

conclude that g ∈ [
L
p;q
1 (∂�,w;ω)]M . As a consequence of this membership

and (2.575), we have

g = (gα)1≤α≤M ∈
[
L1

(
∂�,

σ(x)

1 + |x|n−1

)]M
and

∂τjk g ∈
[
L1

(
∂�,

σ(x)

1 + |x|n−1

)]M
for all j, k ∈ {1, . . . , n}.

(6.17)

Granted these, we may invoke Proposition 3.1 and from (3.34) we conclude that the

nontangential boundary trace (∇u)∣∣κ−n.t.

∂�
= (∇DAg

)∣∣κ−n.t.

∂�
exists (in Cn·M ) at σ -a.e.

point on ∂� (hence, the first property listed in (6.14) holds). Also, formula (3.33)
gives that for each index � ∈ {1, . . . , n} and each point x ∈ � we have



6.1 The Dirichlet Problem in Weighted Lebesgue Spaces 371

(∂�u)(x) = ∂�
(
DAg

)
(x)

=
( ˆ

∂�

aβαrs (∂rEγβ)(x − y)(∂τ�s gα)(y) dσ(y)

)

1≤γ≤M
(6.18)

if the coefficient tensor A is expressed as
(
a
αβ
rs

)
1≤r,s≤n

1≤α,β≤M
, and if the fundamental

solution E = (Eαβ)1≤α,β≤M is as in Theorem 3.1. In concert with (3.85)
and (2.586), this proves that

‖Nκ(∇u)‖Lq(∂�,ω) ≤ C‖∇tang‖[Lq(∂�,ω)]n·M
for some constant C ∈ (0,∞) independent of g.

(6.19)

In particular, Nκ(∇u) belongs to the space Lq(∂�,ω), which finishes the justifica-
tion of the right-to-left implication in (6.13). Also, from (4.343) we know that, for
some constant C ∈ (0,∞) independent of f ,

‖∇tang‖[Lq(∂�,ω)]n·M ≤ C‖∇tanf ‖[Lq(∂�,ω)]n·M . (6.20)

In light of (6.19), this justifies the left-pointing inequality in the equivalence claimed
in (6.14). To complete the treatment of item (b), there remains to observe that the
right-pointing implication in (6.13) together with the right-pointing inequality in
the equivalence claimed in (6.14) are consequences of Proposition 2.23 (bearing in
mind (2.585)).

Consider next the uniqueness result claimed in item (d). Suppose Adis
L� �= ∅ and

pick some A ∈ AL such that A� ∈ Adis
L� . Also, denote by p′ ∈ (1,∞) the Hölder

conjugate exponent of p, and set w′ := w1−p′ ∈ Ap′(∂�, σ). From Theorem 4.8,
presently used with L replaced by L�, p′ in place of p, and w′ in place of w, we
know that there exists δ ∈ (0, 1), which depends only on n, p, [w]Ap , A, and the
Ahlfors regularity constant of ∂�, such that if � is a δ-AR domain then

1
2I +KA� :

[
L
p′
1 (∂�,w

′)
]M −→ [

L
p′
1 (∂�,w

′)
]M (6.21)

is an invertible operator.
By eventually decreasing the value of δ ∈ (0, 1) if necessary, we may ensure

that � is an NTA domain with unbounded boundary (cf. Theorem 2.3). In such a
case, (6.2) guarantees that � is globally pathwise nontangentially accessible.

To proceed, let E = (
Eαβ

)
1≤α,β≤M be the fundamental solution associated with

the system L as in Theorem 3.1. Fix x& ∈ Rn \� along with x0 ∈ �, arbitrary. Also,
pick ρ ∈ (

0, 1
4 dist(x0, ∂�)

)
and define K := B(x0, ρ). Finally, recall the aperture

parameter κ̃ > 0 associated with � and κ as in Theorem 6.1. Next, for each fixed
β ∈ {1, . . . ,M}, consider the CM -valued function
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f (β)(x) := (
Eβα(x − x0)− Eβα(x − x&)

)
1≤α≤M, ∀ x ∈ ∂�. (6.22)

From (6.22), (2.587), (2.579), (2.572), (3.16), and the Mean Value Theorem we then
conclude that

f (β) ∈ [
L
p′
1 (∂�,w

′)
]M

. (6.23)

As a consequence, with
(

1
2I +KA�

)−1
denoting the inverse of the operator

in (6.21),

vβ :=
(
vβα

)
1≤α≤M := DA�

( (
1
2I +KA�

)−1
f (β)

)
(6.24)

is a well-defined CM -valued function in�which, thanks to Proposition 3.5, satisfies

vβ ∈
[
C∞(�)

]M
, L�vβ = 0 in �,

Nκ̃ vβ ∈ Lp
′
(∂�,w′), Nκ̃ (∇vβ) ∈ Lp

′
(∂�,w′),

and vβ
∣∣κ̃−n.t.

∂�
= f (β) at σ -a.e. point on ∂�.

(6.25)

Moreover, from (6.23)–(6.24) and (3.114) we see that

(∇vβ
)∣∣κ̃−n.t.

∂�
exists (inCn·M) at σ -a.e. point on ∂�. (6.26)

Subsequently, for each pair of indices α, β ∈ {1, . . . ,M} define

Gαβ(x) := vβα(x)−
(
Eβα(x−x0)−Eβα(x−x&)

)
, ∀ x ∈ �\ {x0}. (6.27)

If we now consider G := (
Gαβ

)
1≤α,β≤M regarded as a CM×M -valued function

defined Ln-a.e. in �, then from (6.27) and Theorem 3.1 we see that G belongs to
the space

[
L1

loc(�,L
n)
]M×M . Also, by design,

L�G = −δx0IM×M in
[
D′(�)

]M×M and

G
∣∣κ̃−n.t.

∂�
= 0 at σ -a.e. point on ∂�,

(∇G)∣∣κ̃−n.t.

∂�
exists at σ -a.e. point on ∂�,

(6.28)

while if v := (
vβα

)
1≤α,β≤M then from (2.8), (3.16), and the Mean Value Theorem

it follows that at each point x ∈ ∂� we have



6.1 The Dirichlet Problem in Weighted Lebesgue Spaces 373

(
N�\K
κ̃ G

)
(x) ≤ (

Nκ̃ v
)
(x)+ Cx0,ρ(1 + |x|)1−n and

(
N�\K
κ̃ (∇G))(x) ≤ (

Nκ̃ (∇v)
)
(x)+ Cx0,ρ(1 + |x|)−n,

(6.29)

where Cx0,ρ ∈ (0,∞) is independent of x. In view of (6.25), (6.29), and (2.572) we
see that the conditions listed in (6.4) are presently satisfied and, in fact,

N�\K
κ̃ (∇G) ∈ Lp

′
(∂�,w′) = (

Lp(∂�,w)
)∗
. (6.30)

Suppose now that u = (uβ)1≤β≤M is a CM -valued function in � satisfying

u ∈ [
C∞(�)

]M
, Lu = 0 in �,

u
∣∣κ−n.t.

∂�
exists at σ -a.e. point on ∂�,

and Nκu belongs to the space Lp(∂�,w).

(6.31)

Since (6.30) implies

ˆ
∂�

Nκu ·N�\K
κ̃ (∇G) dσ < +∞, (6.32)

we may then invoke Theorem 6.1 to conclude that the Poisson integral represen-

tation formula (6.6) holds. In particular, this proves that whenever u
∣
∣κ−n.t.

∂�
= 0 at

σ -a.e. point on ∂�we necessarily have u(x0) = 0. Given that x0 has been arbitrarily
chosen in �, this ultimately shows such a function u is actually identically zero in
�. This finishes the proof of the claim made in item (d).

Next, the well-posedness claim in item (e) is a consequence of what we have
proved in items (a) and (d). Finally, the two optimality results formulated in
item (f) are seen from (3.381), (3.393), and (3.406) (cf. also Proposition 3.10 and
Example 3.5 in the two-dimensional setting). � 

Remark 6.1 The approach used to prove Theorem 6.2 relies on mapping properties
and invertibility results for boundary layer potentials on Muckenhoupt weighted
Lebesgue and Sobolev spaces. Given that analogous of these results are also valid on
Lorentz spaces and Lorentz-based Sobolev spaces (cf. Remark 4.16, and the Lorentz
space version of (3.85) obtained via real interpolation), the type of argument used to
establish Theorem 6.2 produces similar results for the Dirichlet Problem with data
in Lorentz spaces, i.e., for
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u ∈ [
C∞(�)

]M
,

Lu = 0 in �,

Nκu ∈ Lp,q(∂�, σ),

u
∣
∣κ−n.t.

∂�
= f ∈ [

Lp,q(∂�, σ)
]M

.

(6.33)

More specifically, for this boundary problem existence holds in the setting of item
(a) of Theorem 6.2 whenever p ∈ (1,∞) and q ∈ (0,∞], whereas uniqueness
holds in the setting of item (d) of Theorem 6.2 provided p ∈ (1,∞) and q ∈ (0,∞]
(see [55, Theorem 1.4.17, p. 52] for duality results for Lorentz spaces).

In particular, corresponding to q = ∞, whenever Adis
L �= ∅ and Adis

L� �= ∅ it
follows that for each p ∈ (1,∞) the weak-Lp Dirichlet Problem

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u ∈ [
C∞(�)

]M
,

Lu = 0 in �,

Nκu ∈ Lp,∞(∂�, σ),

u
∣∣κ−n.t.

∂�
= f ∈ [

Lp,∞(∂�, σ)
]M

(6.34)

is well posed assuming � is a δ-AR domain for a sufficiently small δ ∈ (0, 1),
relative to n, p, L, and the Ahlfors regularity constant of ∂�. As in the proof of
Theorem 6.2, uniqueness is obtained relying on the Poisson integral representation
formula from Theorem 6.1. This requires checking that the Green function with
components as in (6.27) is well defined and satisfies N�\K

κ̃ (∇G) ∈ Lp
′,1(∂�, σ),

where p′ is the Hölder conjugate exponents of p. Once this task is accomplished,
the fact that we presently have Nκu ∈ Lp,∞(∂�, σ) = (

Lp
′,1(∂�, σ)

)∗ (cf. [55,
Theorem 1.4.17(v), p. 52]) guarantees that the finiteness condition (6.32) presently
holds, and the desired conclusion follows. In turn, the membership of N�\K

κ̃ (∇G)
to Lp

′,1(∂�, σ) is seen from (6.29) and (6.24), keeping in mind that the operator
1
2I + KA� (where A ∈ AL is such that A� ∈ Adis

L� ) is invertible on the Lorentz-

based Sobolev space
[
L
p′,1
1 (∂�, σ)

]M and, as seen from standard real interpolation
inclusions, (1 + |x|)−N ∈ Lp,q(∂�, σ) whenever N ≥ n − 1, p ∈ (1,∞), and
q ∈ (0,∞].

See Theorem 8.18 (and also Examples 8.2, 8.6) for a more general perspective
on this topic.

To offer an example, let � ⊆ Rn be a δ-AR domain and fix an arbitrary aperture
parameter κ > 0 along with a power a ∈ (0, n− 1). Set p := (n− 1)/a ∈ (1,∞).
Then, if δ ∈ (0, 1) is sufficiently small (relative to n, a, and the Ahlfors regularity
constant of ∂�, it follows that for each point xo ∈ ∂� the Dirichlet Problem
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⎧
⎨

⎩

u ∈ C∞(�), u = 0 in �, Nκu ∈ Lp,∞(∂�, σ),
(
u
∣∣κ−n.t.

∂�

)
(x) = |x − xo|−a at σ -a.e. point x ∈ ∂�,

(6.35)

is uniquely solvable. In addition, there exists a constant C(�, n, κ, a) ∈ (0,∞)

with the property that if uxo denotes the unique solution of (6.35) then we have the
estimate ‖Nκuxo‖Lp,∞(∂�,σ) ≤ C(�, n, κ, a) for each xo ∈ ∂�. Indeed, since the
function fxo(x) := |x − xo|−a for σ -a.e. point x ∈ ∂� belongs to the Lorentz
space Lp,∞(∂�, σ) and supxo∈∂� ‖fxo‖Lp,∞(∂�,σ) < ∞, the solvability result in
Remark 6.1 applies. This example is particularly relevant in view of the fact that the
boundary datum | · −xo|−a does not belong to any ordinary Lebesgue space on ∂�
with respect to the “surface measure” σ . In addition, since for each j, k ∈ {1, . . . , n}
the boundary datum fxo satisfies

∂τjkfxo ∈ Lq,∞(∂�, σ) and supxo∈∂�
∥∥∂τjkfxo

∥∥
Lq,∞(∂�,σ)

<∞,

where q := (n− 1)/(a + 1) ∈ (1,∞),
(6.36)

given that, if (νi)1≤i≤n are the components of the geometric outward unit normal
vector to �,

(
∂τjkfxo

)
(x) = a

(x − xo)j νk(x)− (x − xo)kνj (x)

|x − xo|a+2 for σ -a.e. x ∈ ∂�,

(6.37)
then the analogues of (6.13)–(6.14) in the current setting imply that the unique solu-
tion uxo of the Dirichlet Problem (6.35) enjoys additional regularity. Specifically, if
δ ∈ (0, 1) is sufficiently small to begin with, then

for each xo ∈ ∂�, the nontangential boundary trace

(∇uxo
)∣∣κ−n.t.

∂�
exists (in Rn) at σ -a.e. point on ∂�,

and sup
xo∈∂�

∥∥Nκ(∇uxo)
∥∥
Lq,∞(∂�,σ)

< +∞ if q := n−1
a+1 .

(6.38)

In relation to the Dirichlet Problem with data in weak-Lebesgue spaces formu-
lated in (6.34), we also wish to note that, in contrast to the well-posedness result in
the range p ∈ (1,∞), uniqueness no longer holds in the limiting case when p = 1.
Indeed, if we take � := Rn+ and u(x) := xn/|x|n for each x = (x1, . . . , xn) ∈ �

then, since under the identification ∂� ≡ Rn−1 we have
(
Nκu

)
(x′) ≈ |x′|1−n

uniformly for x′ ∈ Rn−1 \ {0}, we see that
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u ∈ C∞(�),
u = 0 in �,

Nκu ∈ L1,∞(∂�, σ),

u
∣∣κ−n.t.

∂�
= 0 at σ -a.e. point x ∈ ∂�,

(6.39)

and yet, obviously, u �≡ 0 in �.
We may also establish solvability results for the Dirichlet Problem formulated

for boundary data belonging to sums of Muckenhoupt weighted Lebesgue spaces,
of the sort described below.

Theorem 6.3 Let � ⊆ Rn be an Ahlfors regular domain. Set σ := Hn−1�∂� and
fix an aperture parameter κ > 0. Also, pick p0, p1 ∈ (1,∞) along with a pair of
Muckenhoupt weights w0 ∈ Ap0(∂�, σ) and w1 ∈ Ap1(∂�, σ). Finally, consider
a homogeneous, second-order, constant complex coefficient,M ×M weakly elliptic
system L in Rn.

Then similar results, concerning existence, integral representation formulas, esti-
mates, additional integrability properties, regularity, uniqueness, well-posedness,
and sharpness, as in Theorem 6.2, are valid for the Dirichlet Problem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u ∈ [
C∞(�)

]M
,

Lu = 0 in �,

Nκu ∈ Lp0(∂�,w0)+ Lp1(∂�,w1),

u
∣
∣κ−n.t.

∂�
= f ∈ [

Lp0(∂�,w0)+ Lp1(∂�,w1)
]M

.

(6.40)

Proof Assume Adis
L �= ∅ and A ∈ Adis

L . Then, as noted in the proof of
Proposition 4.2, if � is a δ-AR domain with δ ∈ (0, 1) small enough matters
may be arranged so that � satisfies a two-sided local John condition with constants
which depend only on the Ahlfors regularity constant of ∂� and the dimension n

(in particular, the UR constants of ∂� are also controlled solely in terms of the
dimension n and the Ahlfors regularity constant of ∂�), and the operator 1

2I +KA

is invertible when acting on the space
[
Lp0(∂�,w0) + Lp1(∂�,w1)

]M . Granted
this, we claim that the function u : � → C

M defined as in (6.9) (with this
interpretation of the inverse and for the current boundary datum f ) solves (6.40).
Thanks to (3.23), (3.31), (2.575), this function u satisfies the conditions in the first,
second, and last line of (6.40). To verify the condition stipulated in the penultimate
line of (6.40), decompose

( 1
2I +KA

)−1
f ∈ [

Lp0(∂�,w0)+ Lp1(∂�,w1)
]M (6.41)

as

( 1
2I +KA

)−1
f = g0 + g1 with gi ∈

[
Lpi (∂�,wi)

]M for i ∈ {0, 1}. (6.42)
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Then u = DAg0+DAg1 so Nκu ≤ Nκ(DAg0)+Nκ(DAg1) on ∂�. Consequently,

U0 :=
(
Nκu

) · 1{Nκ (DAg0)≥Nκ (DAg1)} ∈ Lp0(∂�,w0), (6.43)

U1 :=
(
Nκu

) · 1{Nκ (DAg0)<Nκ (DAg1)} ∈ Lp1(∂�,w1), (6.44)

and

Nκu = U0 + U1 ∈ Lp0(∂�,w0)+ Lp1(∂�,w1). (6.45)

This establishes the membership in the third line of (6.40). Incidentally, the
argument above also yields a naturally accompanying estimate, namely

‖Nκu‖Lp0 (∂�,w0)+Lp1 (∂�,w1) ≤ C‖f ‖Lp0 (∂�,w0)+Lp1 (∂�,w1) (6.46)

for some C ∈ (0,∞) independent of f .
To prove uniqueness for the boundary problem (6.40) under the assumption that

Adis
L� �= ∅ and � is a δ-AR domain with δ ∈ (0, 1) sufficiently small, we reason as

in the proof of item (d) of Theorem 6.2. The chief novel aspect is that since for f (β)

as in (6.22) we have

f (β) ∈ [
L
p′0
1 (∂�,w′

0) ∩ Lp
′
1

1 (∂�,w′
1)
]M (6.47)

(where p′0, p′1 are the Hölder conjugate exponents of p0, p1, and w′
0, w

′
1 are the

dual weights for w0, w1), from the compatibility property recorded in (4.341)
we conclude that the function vβ defined as in (6.24) enjoys additional regular-
ity/integrability properties compared to (6.25), namely:

vβ ∈
[
C∞(�)

]M
, L�vβ = 0 in �,

Nκ̃ vβ ∈ Lp
′
0(∂�,w′

0) ∩ Lp
′
1(∂�,w′

1),

Nκ̃ (∇vβ) ∈ Lp
′
0(∂�,w′

0) ∩ Lp
′
1(∂�,w′

1),

and vβ
∣∣κ̃−n.t.

∂�
= f (β) at σ -a.e. point on ∂�.

(6.48)

In turn, this permits us to improve (6.30) to

N�\K
κ̃ (∇G) ∈ Lp

′
0(∂�,w′

0)∩Lp
′
1(∂�,w′

1)

↪→ (
Lp0(∂�,w0)+ Lp1(∂�,w1)

)∗ (6.49)
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which ultimately goes to show that the finiteness condition from (6.32) continues to
hold in the present setting. As such, we may once again rely on the Poisson integral
representation formula from Theorem 6.1 to conclude that the solution u of (6.40)
vanishes in � whenever f = 0.

All other claims in the statement of the present theorem have proofs very similar
to their counterparts in Theorem 6.2. � 

Moving on, it is remarkable that the solvability results described in Theorem 6.2
turn out to be stable under small perturbations. This is made precise in the next
theorem.

Theorem 6.4 Retain the original background assumptions on the set � from
Theorem 6.2 and, as before, fix an integrability exponent p ∈ (1,∞) along with
a Muckenhoupt weight w ∈ Ap(∂�, σ). Then the following statements are true.

(a) [Existence] For each given system Lo ∈ Ldis (cf. (3.195)) there exist some small
threshold δ ∈ (0, 1) and some open neighborhood U of Lo in L, both of which
depend only on n, p, [w]Ap , Lo, and the Ahlfors regularity constant of ∂�, with
the property that if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) then for
each system L ∈ U the Dirichlet Problem (6.8) formulated for L is solvable.

(b) [Uniqueness] For each given system Lo ∈ L with L�o ∈ Ldis there exist some
small threshold δ ∈ (0, 1) and some open neighborhood U of Lo in L, both of
which depend only on n, p, [w]Ap , Lo, and the Ahlfors regularity constant of ∂�,
with the property that if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) then
for each system L ∈ U the Dirichlet Problem (6.8) formulated for L has at most
one solution.

(c) [Well-Posedness] For each given system Lo ∈ Ldis with L�o ∈ Ldis there exist
some small threshold δ ∈ (0, 1) and some open neighborhoodU of Lo in L, both
of which depend only on n, p, [w]Ap , Lo, and the Ahlfors regularity constant of
∂�, with the property that if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain)
then for each system L ∈ U the Dirichlet Problem (6.8) formulated for L is well
posed.

Proof To deal with the claim made in item (a), start by observing that the
assumption Lo ∈ Ldis guarantees the existence of some Ao ∈ Adis

Lo
. Theorem 4.9

(used with, say, ε := 1/4) ensures the existence of some small threshold δ ∈ (0, 1)
along with some open neighborhood O of Ao in AWE , both of which depend only on
n, p, [w]Ap , Ao, and the Ahlfors regularity constant of ∂�, with the property that

if ‖ν‖[BMO(∂�,σ)]n < δ then for each Ã ∈ O the operator 1
2I + KÃ is invertible on

[
Lp(∂�,w)

]M . Pick ε > 0 such that {A ∈ A : ‖A − Ao‖ < ε} ⊆ O, and define
U := {L ∈ L : ‖L − Lo‖ < ε}. Choose now an arbitrary system L ∈ U. By
design, there exist A ∈ AL and B ∈ Aant such that ‖A−Ao−B‖ < ε. Hence, if we
now introduce Ã := A − B, then Ã ∈ AL and the fact that ‖Ã − Ao‖ < ε implies
that Ã ∈ O. In particular, the latter property permits us to conclude (in light of our
earlier discussion) that the operator 1

2I +KÃ is invertible on
[
Lp(∂�,w)

]M . Given
that we also have Ã ∈ AL, it follows (much as in the proof of Theorem 6.2) that the
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function u : �→ CM defined as

u(x) :=
(
DÃ

(
1
2I +KÃ

)−1
f
)
(x) for all x ∈ � (6.50)

is a solution of the Dirichlet Problem (6.8) formulated for the current system L. This
finishes the proof of the claim made in item (a).

On to the claim in item (b), pick some Ao ∈ ALo with A�o ∈ Adis
L�o

. Running

the same argument as above (with L�o playing the role of Lo, A�o playing the role
of Ao, and keeping in mind that transposition is an isometry) yields some small
threshold δ ∈ (0, 1) along with some open neighborhood U of Lo in L, both of
which depend only on n, p, [w]Ap , Ao, and the Ahlfors regularity constant of ∂�,
with the property that if ‖ν‖[BMO(∂�,σ)]n < δ then for each system L ∈ U we may
find a coefficient tensor Ã ∈ AL with the property that the operator 1

2I + K(Ã)� is

invertible on the Muckenhoupt weighted Sobolev space
[
L
p′
1 (∂�,w

′)
]M . This is a

perturbation of the invertibility result in (6.21) and, once this has been established,
the same argument as in the proof of item (c) of Theorem 6.2 applies and gives the
conclusion we presently seek. Finally, the claim in item (c) is a direct consequence
of what we have proved in items (a)–(b). � 

6.2 The Regularity Problem in Weighted Sobolev Spaces

Traditionally, the label “Regularity Problem” is intended for a version of the
Dirichlet Problem in which both the boundary datum and the solution sought are
more “regular” than in the standard formulation of the Dirichlet Problem. For
us here, this means that we shall now select boundary data from Muckenhoupt
weighted Sobolev spaces and also demand control of the nontangential maximal
operator of the gradient of the solution. Given that this involves an inhomogeneous
Sobolev space, we shall label it the Inhomogeneous Regularity Problem.

The specific manner in which we have formulated the solvability result for
the Dirichlet Problem in Theorem 6.2, in particular, having already elaborated on
how extra regularity of the boundary datum affects the regularity of the solution
(cf. (6.13)), renders the Inhomogeneous Regularity Problem a “sub-problem” of
the Dirichlet Problem. As seen below, this makes light work of the treatment
of the Inhomogeneous Regularity Problem. Later on, in Theorem 6.8, we shall
consider what we call the Homogeneous Regularity Problem which is related to,
yet fundamentally distinct, from the Inhomogeneous Regularity Problem dealt with
in the following theorem:

Theorem 6.5 Let � ⊆ Rn be an Ahlfors regular domain. Set σ := Hn−1�∂�,
denote by ν the geometric measure theoretic outward unit normal to �, and fix an
aperture parameter κ > 0. Also, pick an exponent p ∈ (1,∞) and a Muckenhoupt
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weight w ∈ Ap(∂�, σ). Given a homogeneous, second-order, constant complex
coefficient, weakly elliptic M × M system L in Rn, consider the Inhomogeneous
Regularity Problem

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u ∈ [
C∞(�)

]M
,

Lu = 0 in �,

Nκu, Nκ(∇u) ∈ Lp(∂�,w),

u
∣
∣κ−n.t.

∂�
= f ∈ [

L
p

1 (∂�,w)
]M

.

(6.51)

The following statements are true:

(a) [Existence, Estimates, and Integral Representation] If Adis
L �= ∅ and A ∈ Adis

L ,
then there exists δ ∈ (0, 1) which depends only on n, p, [w]Ap , A, and the
Ahlfors regularity constant of ∂� with the property that if ‖ν‖[BMO(∂�,σ)]n < δ

(a scenario which ensures that � is a δ-AR domain; cf. Definition 2.15) then
1
2I +KA is an invertible operator on the Muckenhoupt weighted Sobolev space
[
L
p

1 (∂�,w)
]M

and the function

u(x) :=
(
DA

(
1
2I +KA

)−1
f
)
(x), ∀ x ∈ �, (6.52)

is a solution of the Inhomogeneous Regularity Problem (6.51). In addition,

‖Nκu‖Lp(∂�,w) ≈ ‖f ‖[Lp(∂�,w)]M , (6.53)

and

‖Nκ(∇u)‖Lp(∂�,w) ≈ ‖∇tanf ‖[Lp(∂�,w)]n·M . (6.54)

In particular,

‖Nκu‖Lp(∂�,w) + ‖Nκ(∇u)‖Lp(∂�,w) ≈ ‖f ‖[Lp1 (∂�,w)]M . (6.55)

(b) [Uniqueness] Whenever Adis
L� �= ∅, there exists δ ∈ (0, 1) which depends only on

n, p, [w]Ap , A, and the Ahlfors regularity constant of ∂� with the property that
if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., � is a δ-AR domain; cf. Definition 2.15) then the
Inhomogeneous Regularity Problem (6.51) has at most one solution.

(c) [Well-Posedness] If Adis
L �= ∅ and Adis

L� �= ∅ then there exists δ ∈ (0, 1)
which depends only on n, p, [w]Ap , A, and the Ahlfors regularity constant of
∂� with the property that if ‖ν‖[BMO(∂�,σ)]n < δ (hence� is a δ-AR domain; cf.
Definition 2.15) then the Inhomogeneous Regularity Problem (6.51) is uniquely
solvable and the solution satisfies (6.53)–(6.55).
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(d) [Sharpness] If Adis
L = ∅ the Inhomogeneous Regularity Problem (6.51) may fail

to be solvable (actually for boundary data belonging to an infinite dimensional
subspace of the corresponding weighted Sobolev space) even when � is a half-
space, and if Adis

L� = ∅ the Inhomogeneous Regularity Problem (6.51) may
possess more than one solution (in fact, the linear space of null-solutions may
actually be infinite dimensional) even when � is a half-space. In particular, if
eitherAdis

L = ∅ orAdis
L� = ∅, then the Inhomogeneous Regularity Problem (6.51)

may fail to be well posed even when � is a half-space.

Under the assumption that � is a δ-AR domain for some sufficiently small δ ∈
(0, 1) (which is in effect for items (a)–(c) of the theorem), it follows from Proposi-
tion 2.24, Theorem 2.3, Proposition 2.23, and (2.576) that the first three assumptions

in (6.51) always imply that u
∣∣κ−n.t.

∂�
exists and belongs to

[
L
p

1 (∂�,w)
]M . It is there-

fore natural that the boundary datum f is currently taken from this Muckenhoupt
weighted boundary Sobolev space.

Proof of Theorem 6.5 All claims made in items (a)–(c) are direct consequences
of Theorem 4.8 and Theorem 6.2. As regards the sharpness results formulated in
item (d), the fact that the Inhomogeneous Regularity Problem (6.51) may fail to be
solvable when Adis

L = ∅ is seen from Proposition 3.11 and (3.268). Finally, that the
Inhomogeneous Regularity Problem (6.51) for L may have more than one solution
if Adis

L� = ∅ is seen from (3.383), (3.392), and (3.406) (cf. also Example 3.5 and
Proposition 3.10 in the two-dimensional setting). � 

Remark 6.2 From Remark 6.1 we see that the Inhomogeneous Regularity Problem
with data in Lorentz-based Sobolev spaces, i.e.,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u ∈ [
C∞(�)

]M
,

Lu = 0 in �,

Nκu, Nκ(∇u) ∈ Lp,q(∂�, σ),

u
∣
∣κ−n.t.

∂�
= f ∈ [

L
p,q

1 (∂�, σ)
]M

,

(6.56)

enjoys similar solvability and well-posedness results to those described in Theo-
rem 6.5. Concretely, for this boundary problem we have existence in the setting
of item (a) of Theorem 6.5 whenever p ∈ (1,∞) and q ∈ (0,∞], and we have
uniqueness in the setting of item (b) of Theorem 6.5 whenever p, q ∈ (1,∞).

See Theorem 8.19 (as well as Examples 8.2 and 8.6) for more general results of
this nature.

Remark 6.3 An inspection of the proof of Theorem 6.5 reveals that similar solvabil-
ity and well-posedness results are valid in the case when the boundary data belong
to the off-diagonal Muckenhoupt weighted Sobolev spaces discussed in (4.306)–
(4.307). More specifically, given two integrability exponents p1, p2 ∈ (1,∞) along
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with two Muckenhoupt weights w1 ∈ Ap1(∂�, σ) and w2 ∈ Ap2(∂�, σ), the off-
diagonal Inhomogeneous Regularity Problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u ∈ [
C∞(�)

]M
,

Lu = 0 in �,

Nκu ∈ Lp1(∂�,w1),

Nκ(∇u) ∈ Lp2(∂�,w2),

u
∣∣κ−n.t.

∂�
= f ∈ [

L
p1;p2
1 (∂�,w1;w2)

]M
,

(6.57)

continues to enjoy similar solvability and well-posedness results to those described
in Theorem 6.5. Of course, this time, the a priori estimates (6.53)–(6.54) read

‖Nκu‖Lp1 (∂�,w1)
≈ ‖f ‖[Lp1 (∂�,w1)]M , (6.58)

and

‖Nκ(∇u)‖Lp2 (∂�,w2)
≈ ‖∇tanf ‖[Lp2 (∂�,w2)]n·M . (6.59)

Remark 6.4 Once again, in the class of systems considered in Theorem 6.5,
the solvability, uniqueness, and well-posedness results for the Inhomogeneous
Regularity Problem (6.51) are new even in the standard case when � = Rn+.

As in the case of the Dirichlet Problem, it turns out that the solvability results
presented in Theorem 6.5 are stable under small perturbations, of the sort described
below.

Theorem 6.6 Retain the original background assumptions on the set � from
Theorem 6.5 and, as before, fix an integrability exponent p ∈ (1,∞) along with
a Muckenhoupt weight w ∈ Ap(∂�, σ). Then the following statements are true.

(a) [Existence] Given any system Lo ∈ Ldis (cf. (3.195)), there exist a threshold
δ ∈ (0, 1) and an open neighborhoodU of Lo in L, both of which depend only on
n, p, [w]Ap , Lo, and the Ahlfors regularity constant of ∂�, with the property that
if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) then for each system L ∈ U
the Inhomogeneous Regularity Problem (6.51) formulated for L is solvable.

(b) [Uniqueness] Given any system Lo ∈ L with L�o ∈ Ldis there exist a threshold
δ ∈ (0, 1) and an open neighborhood U of Lo in L, both of which depend only
on n, p, [w]Ap , Lo, and the Ahlfors regularity constant of ∂�, with the property
that if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) then for each system
L ∈ U the Inhomogeneous Regularity Problem (6.51) formulated for L has at
most one solution.
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(c) [Well-Posedness] Given any system Lo ∈ Ldis with L�o ∈ Ldis there exist a
threshold δ ∈ (0, 1) and an open neighborhood U of Lo in L, both of which
depend only on n, p, [w]Ap , Lo, and the Ahlfors regularity constant of ∂�, with
the property that if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) then for
each system L ∈ U the Inhomogeneous Regularity Problem (6.51) formulated
for L is well posed.

Proof The same type of argument used in the proof of Theorem 6.4 continues to
work in this setting. � 

The integral representation contained in the theorem below, itself proved in [113,
§1.5], is going to be of great relevance in dealing with the issue of uniqueness in
boundary value problems where only assumptions on the nontangential maximal
operator of the gradient of the solution are made.

Theorem 6.7 Let � ⊆ Rn, where n ≥ 2, be an Ahlfors regular domain with
∂� unbounded. Abbreviate σ := Hn−1�∂� and denote by ν = (ν1, . . . , νn)

the geometric measure theoretic outward unit normal to �. With the summation
convention over repeated indices understood throughout, let

L = (
aαβrs ∂r∂s

)
1≤α,β≤M (6.60)

be a homogeneous, weakly elliptic, second-order M × M system in Rn, with
complex constant coefficients, and denote by E = (Eγβ)1≤γ,β≤M the matrix-valued
fundamental solution associated with L as in Theorem 3.1.

In this setting, assume u = (uβ)1≤β≤M ∈ [
C∞(�)

]M
is a vector-valued function

which, for some κ > 0, satisfies

Lu = 0 in �, (∇u)∣∣κ−n.t.

∂�
exists at σ -a.e. point on ∂�,

and Nκ(∇u) ∈ L1(∂�, σ(x)

1+|x|n−1

)
.

(6.61)

Then for each � ∈ {1, . . . , n} and each γ ∈ {1, . . . ,M} one has

(∂�uγ )(x) =
ˆ
∂�

aβαrs (∂rEγβ)(x − y)
{
ν�(y)

(
(∂suα)

∣∣κ−n.t.

∂�

)
(y) (6.62)

− νs(y)
(
(∂�uα)

∣∣κ−n.t.

∂�

)
(y)

}
dσ(y)

−
ˆ
∂�

(∂�Eγα)(x − y)νr(y)a
αβ
rs

(
(∂suβ)

∣∣κ−n.t.

∂�

)
(y) dσ(y)

at every point x ∈ �, and

0 =
ˆ
∂�

aβαrs (∂rEγβ)(x − y)
{
ν�(y)

(
(∂suα)

∣∣κ−n.t.

∂�

)
(y) (6.63)
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− νs(y)
(
(∂�uα)

∣∣κ−n.t.

∂�

)
(y)

}
dσ(y)

−
ˆ
∂�

(∂�Eγα)(x − y)νr(y)a
αβ
rs

(
(∂suβ)

∣∣κ−n.t.

∂�

)
(y) dσ(y)

at every point x ∈ Rn \�.

We are now ready to formulate and solve the Homogeneous Regularity
Problem. Compared to its inhomogeneous counterpart, considered in (6.51), this
boundary value problem involves boundary data from homogeneous Muckenhoupt
weighted Sobolev spaces and only requires control of the nontangential maximal
operator of the gradient of the solution. This being said, it turns out that the Homoge-
neous Regularity Problem “contains” the Inhomogeneous Regularity Problem in the
sense that the latter becomes equivalent to the former whenever the boundary data
are prescribed from the (smaller) inhomogeneous Muckenhoupt weighted Sobolev
space. Here is a formal statement of our result, which sheds light on the issue singled
out as Question 2.5 in [137]:

Theorem 6.8 Let � ⊆ Rn be an Ahlfors regular domain. Set σ := Hn−1�∂�,
denote by ν the geometric measure theoretic outward unit normal to �, and fix an
aperture parameter κ > 0. Also, pick an exponent p ∈ (1,∞) and a Muckenhoupt
weight w ∈ Ap(∂�, σ). Given a homogeneous, second-order, constant complex
coefficient, weakly elliptic M × M system L in Rn, consider the Homogeneous
Regularity Problem

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u ∈ [
C∞(�)

]M
,

Lu = 0 in �,

Nκ(∇u) ∈ Lp(∂�,w),

u
∣
∣κ−n.t.

∂�
= f ∈ [ .

L
p

1 (∂�,w)
]M

,

(6.64)

where
.
L
p

1 (∂�,w) is the homogeneous Muckenhoupt weighted boundary Sobolev
space defined in (2.598). The following statements are true:

(a) [Existence, Estimates, and Integral Representations] If Adis
L �= ∅ then there exists

δ ∈ (0, 1) which depends only on n, p, [w]Ap , L, and the Ahlfors regularity
constant of ∂� with the property that if ‖ν‖[BMO(∂�,σ)]n < δ (a scenario
which ensures that � is a δ-AR domain; cf. Definition 2.15) then the following
properties are true. First, the operator

[
Smod

] : [Lp(∂�,w)]M −→ [ .
L
p

1 (∂�,w)
/ ∼ ]M (6.65)

is surjective and the Homogeneous Regularity Problem (6.64) is solvable. More
specifically, with [f ] ∈ [ .

L
p

1 (∂�,w)
/ ∼ ]M

denoting the equivalence class
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(modulo constants) of the boundary datum f , and with

g ∈ [
Lp(∂�,w)

]M
chosen so that

[
Smod

]
g = [f ], (6.66)

there exists a constant c ∈ CM such that the function

u := Smodg + c in � (6.67)

is a solution of the Homogeneous Regularity Problem (6.64). In addition, this
solution satisfies (with implicit constants independent of f )

‖Nκ(∇u)‖Lp(∂�,w) ≈ ‖∇tanf ‖[Lp(∂�,w)]n·M . (6.68)

Second, for each coefficient tensor A ∈ Adis
L the operator

1
2I +

[
K

A,mod

] : [ .
L
p

1 (∂�,w)/ ∼
]M −→ [ .

L
p

1 (∂�,w)/ ∼
]M (6.69)

is an isomorphism, and the Homogeneous Regularity Problem (6.64) may be
solved as

u := D
A,modh+ c in �, (6.70)

for a suitable constant c ∈ CM and with

h ∈ [ .
L
p

1 (∂�,w)
]M

such that [h] =
(

1
2I +

[
K

A,mod

])−1[f ]. (6.71)

Moreover, this solution continues to satisfy (6.68).
(b) [Uniqueness] Whenever Adis

L� �= ∅, there exists δ ∈ (0, 1) which depends only
on n, p, [w]Ap , L, and the Ahlfors regularity constant of ∂� with the property
that if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) then the Homogeneous
Regularity Problem (6.64) has at most one solution.

(c) [Well-Posedness and Additional Integrability/Regularity] Whenever Adis
L �= ∅

and Adis
L� �= ∅ it follows that there exists δ ∈ (0, 1) which depends only on n,

p, [w]Ap , L, and the Ahlfors regularity constant of ∂� with the property that
if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) then the Homogeneous
Regularity Problem (6.64) is uniquely solvable. Moreover, for each q ∈ (1,∞)

and ω ∈ Aq(∂�, σ), the unique solution u of (6.64) satisfies (in a quantitative
fashion)

Nκu ∈ Lq(∂�,ω)⇐⇒ f ∈ [
L
q;p
1 (∂�,ω;w)]M (6.72)

with the off-diagonal weighted Sobolev space L
q;p
1 (∂�,ω;w) defined as

in (4.306), as well as
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Nκ(∇u) ∈ Lq(∂�,ω)⇐⇒ f ∈ [ .
L
q

1(∂�,ω)
]M

, (6.73)

provided δ ∈ (0, 1) is sufficiently small to begin with, relative to q and [ω]Aq .
In particular, corresponding to q := p, the equivalence in (6.72) proves

that the unique solution of the Homogeneous Regularity Problem (6.64) for
a boundary datum f belonging to

[
L
p

1 (∂�,w)
]M (which is a subspace of

[ .
L
p

1 (∂�,w)
]M

; cf. (2.600)) is actually the unique solution of the Inhomogeneous
Regularity Problem (6.51) for the boundary datum f .

(d) [Sharpness] If Adis
L = ∅ the Homogeneous Regularity Problem (6.64) may fail

to be solvable (actually for boundary data belonging to an infinite dimensional
subspace of the corresponding weighted homogeneous Sobolev space), and if
Adis
L� = ∅ the Homogeneous Regularity Problem (6.64) may possess more than

one solution (in fact, the linear space of null-solutions may actually be infinite
dimensional), even in the case when� = Rn+. In particular, if either Adis

L = ∅ or
Adis
L� = ∅, then the Homogeneous Regularity Problem (6.64) may fail to be well

posed, again, even in the case when � = Rn+.
In the context of the Homogeneous Regularity Problem (6.64) it is natural that the

boundary datum is selected from a homogeneous Muckenhoupt weighted boundary
Sobolev space. More concretely, from Proposition 2.24 we see that if � ⊆ Rn is
an NTA domain with an unbounded Ahlfors regular boundary then for any weight
w ∈ Ap(∂�, σ), with p ∈ (1,∞) and σ := Hn−1�∂�, any aperture κ ∈ (0,∞),
and any truncation parameter ε ∈ (0,∞) we have:

u ∈ C 1(�)

Nκ(∇u) ∈ Lp(∂�,w)

}

�⇒

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

u
∣∣κ−n.t.

∂�
exists σ -a.e. on ∂�,

u
∣∣κ−n.t.

∂�
belongs to

.
L
p

1 (∂�,w),

Nε
κu belongs to L

p

loc(∂�,w),

∥
∥u

∣
∣κ−n.t.

∂�

∥
∥ .
L
p
1 (∂�,w)

≤ C
∥
∥Nκ(∇u)

∥
∥
Lp(∂�,w)

,

(6.74)
for some dimensional constant C ∈ (0,∞). In particular, Theorem 2.3 gives that
(6.74) holds whenever � ⊆ Rn is a δ-AR domain with δ ∈ (0, 1) sufficiently small
(relative to the dimension n and the Ahlfors regularity constant of ∂�).

We now present the proof of Theorem 6.8.

Proof of Theorem 6.8 To deal with the claims in item (a), work under the assump-
tion that Adis

L �= ∅. Theorem 4.11 then implies that there exists δ ∈ (0, 1) (whose
nature is as in the statement of the theorem) such that if ‖ν‖[BMO(∂�,σ)]n < δ (which
we shall henceforth assume) then the operator (6.65) is onto. In particular, there
exists a function g ∈ [

Lp(∂�,w)
]M as in (6.66). In fact (cf. (4.386)), matters may

be arranged so that this function satisfies

‖g‖[Lp(∂�,w)]M ≤ C‖∇tanf ‖[Lp(∂�,w)]n·M , (6.75)
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for some C ∈ (0,∞) independent of f . Also, since
[
Smodg

] = [
Smod

]
g = [f ], it

follows that c := f − Smodg is a constant in CM (since ∂� is a connected set; cf.
Theorem 2.4). If we then define u as in (6.67) for this choice of c, from (3.124),
(3.127), (3.47), and (2.575) we see that all conditions in (6.64) are satisfied.
Collectively, (6.67), (3.127), (6.74), and (6.75) also guarantee that (6.68) holds.

If A ∈ Adis
L , then taking δ ∈ (0, 1) sufficiently small also allows us to invoke

Theorem 4.12 which guarantees that the operator (6.69) is an isomorphism. In turn,
this implies that there exists a unique function h as in (6.71). In particular, we have

[f ] =
(

1
2I +

[
K

A,mod

])[h] =
[( 1

2I +K
A,mod

)
h
]

(6.76)

so

c := f − ( 1
2I +K

A,mod

)
h is a constant in CM. (6.77)

If we now define the function u as in (6.70), we conclude from Theorem 3.5 that
u solves the Homogeneous Regularity Problem (6.64) and satisfies (6.68). This
completes the treatment of item (a).

To deal with the uniqueness issue claimed in item (b), assume Adis
L� �= ∅. Let

u = (uγ )1≤γ≤M solve the version of the Homogeneous Regularity Problem (6.64)
corresponding to f = 0. From Theorem 3.4, (2.48), and (2.576) we see that

(∇u)∣∣κ−n.t.

∂�
exists at σ -a.e. point on ∂�, and

is a σ -measurable function on ∂�.
(6.78)

Granted this, if ν = (ν1, . . . , νn) denotes the geometric measure theoretic outward
unit normal to �, we may then invoke Proposition 2.22 (whose applicability in the
present setting is ensured by Proposition 2.24) to write

νj

(
(∂ku)

∣∣κ−n.t.

∂�

)
− νk

(
(∂ju)

∣∣κ−n.t.

∂�

)
= ∂τjk

(
u
∣∣κ−n.t.

∂�

)
= 0, (6.79)

for each j, k ∈ {1, . . . , n}.
To proceed, pick a coefficient tensor A = (

a
αβ
rs

)
1≤α,β≤M
1≤r,s≤n

∈ AL such that

A� ∈ Adis
L� . (6.80)

Theorem 4.8 then ensures (cf. (4.311) with z := 1/2 and with A replaced by A�)
that, if δ is sufficiently small to begin with, it follows that

1
2I +K#

A� :
[
Lp(∂�,w)

]M −→ [
Lp(∂�,w)

]M

is an invertible operator.
(6.81)
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From (6.78), (2.13), and (3.66) we also see that

∂Aν u ∈
[
Lp(∂�,w)

]M
. (6.82)

Next, let E = EL be the fundamental solution associated with the system L as
in Theorem 3.1. Keeping in mind (6.79) and (3.66), formula (6.62) implies that for
each pair of indices, say � ∈ {1, . . . , n} and γ ∈ {1, . . . ,M}, we have

(∂�uγ )(x) = −
ˆ
∂�

(∂�Eγα)(x − y)
(
∂Aν u

)
α
(y) dσ(y) (6.83)

at every point x ∈ �. Going nontangentially to the boundary in (6.83) then yields
(on account of (3.86)) that at σ -a.e. x ∈ ∂� we have

(
(∂�uγ )

∣∣κ−n.t.

∂�

)
(x) = − 1

2i
∂̂�Eγα

(
ν(x)

)(
∂Aν u

)
α
(x)

− lim
ε→0+

ˆ

y∈∂�
|x−y|>ε

(∂�Eγα)(x − y)
(
∂Aν u

)
α
(y) dσ(y) (6.84)

for each � ∈ {1, . . . , n} and γ ∈ {1, . . . ,M}. Based on this and (3.66), at σ -a.e.
point x ∈ ∂� we may then write

(
∂Aν u

)
μ
(x) = νr(x)a

μβ
rs

((
∂suβ

)∣∣κ−n.t.

∂�

)
(x)

= − 1

2i
∂̂sEβα

(
ν(x)

)(
∂Aν u

)
α
(x)νr (x)a

μβ
rs

− lim
ε→0+

ˆ

y∈∂�
|x−y|>ε

νr(x)a
μβ
rs (∂sEβα)(x − y)

(
∂Aν u

)
α
(y) dσ(y)

(6.85)

for each μ ∈ {1, . . . ,M}. Note that, thanks to (3.17),

− 1

2i
∂̂sEβα

(
ν(x)

)(
∂Aν u

)
α
(x)νr (x)a

μβ
rs

= −1

2

(
aμβrs νr (x)νs(x)

)
Êβα

(
ν(x)

)(
∂Aν u

)
α
(x)

= 1

2

[
L
(
ν(x)

)]
μβ

[
L
(
ν(x)

)]−1
βα

(
∂Aν u

)
α
(x)

= 1

2
δμα

(
∂Aν u

)
α
(x) = 1

2

(
∂Aν u

)
μ
(x), (6.86)
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at σ -a.e. point x ∈ ∂�, for each μ ∈ {1, . . . ,M}. Also, from (3.25) and the first
equality in (3.20) we see that

lim
ε→0+

ˆ

y∈∂�
|x−y|>ε

νr(x)a
μβ
rs (∂sEβα)(x − y)

(
∂Aν u

)
α
(y) dσ(y)

=
(
K#
A�

(
∂Aν u

))

μ
(x) (6.87)

at σ -a.e. point x ∈ ∂�, for each μ ∈ {1, . . . ,M}. Altogether, from (6.85), (6.86),
and (6.87) we conclude that

∂Aν u =
1

2
∂Aν u−K#

A�
(
∂Aν u

)
at σ -a.e. point on ∂�. (6.88)

Hence,

( 1
2I +K#

A�
)(
∂Aν u

) = 0 (6.89)

which, in view of (6.81) and (6.82), forces ∂Aν u = 0. In concert with (6.83), this
ultimately implies that

∇u = 0 in �. (6.90)

Hence, u is a constant in � (since the latter is a connected set if δ ∈ (0, 1) is small

enough; cf. Theorem 2.4). The fact that we are currently assuming u
∣
∣κ−n.t.

∂�
= 0 at

σ -a.e. point on ∂� then allows us to conclude that u ≡ 0 in �. This proves the claim
in item (b).

Another proof of the claim made in item (b) is as follows. Pick a coefficient
tensor A ∈ AL such that A� ∈ Adis

L� . Choosing δ ∈ (0, 1) small guarantees
(cf. Theorem 2.3) that � is an NTA domain with an unbounded connected
boundary. As such, Corollary 3.1 applies. In particular, for any null-solution u of
the Homogeneous Regularity Problem (6.64) the conormal derivative ∂Aν u belongs

to
[
Lp(∂�,w)

]M and the integral representation formula (3.75) presently becomes

u = −Smod

(
∂Aν u

)+ c in �, (6.91)

for some constant c ∈ CM . Taking the conormal derivative ∂Aν of both sides of (6.91)
yields (in light of the jump-formula (3.126))

∂Aν u = −(− 1
2I +K#

A�
)(
∂Aν u

)
(6.92)
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or, equivalently,

( 1
2I +K#

A�
)(
∂Aν u

) = 0. (6.93)

Since 1
2I+K#

A� is an invertible operator on
[
Lp(∂�,w)

]M (cf. (6.81)), we conclude

that ∂Aν u. When used back in (6.91) this ultimately proves that u = c in �, as
wanted.

Next we turn attention to item (c). Thus, we work under the assumption Adis
L �= ∅

and Adis
L� �= ∅. Choose δ ∈ (0, 1) small enough so that all the conclusions so

far hold. Then from item (a)–(b) we conclude that the Homogeneous Regularity
Problem (6.64) is uniquely solvable. Next, the right-pointing implication in (6.72)
is a direct consequence of the last property in (6.64) and (2.13). As for the converse
implication, start by assuming that f ∈ [

L
q;p
1 (∂�,ω;w)]M . Choose A ∈ Adis

L and
observe that if δ ∈ (0, 1) is small enough to begin with, then (see Remark 4.16)

1
2I +KA :

[
L
q;p
1 (∂�,ω;w)]M −→ [

L
q;p
1 (∂�,ω;w)]M

is an invertible operator.
(6.94)

In particular, it is meaningful to consider

g := ( 1
2I +KA

)−1 ∈ [
L
q;p
1 (∂�,ω;w)]M. (6.95)

Then (3.23), (2.575), (3.112), Propositions 3.1, 3.4, and (3.123) guarantee that the
function ũ := DAg in � satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ũ ∈ [
C∞(�)

]M
,

Lũ = 0 in �,

Nκ ũ ∈ Lq(∂�,ω),

Nκ(∇ũ ) ∈ Lp(∂�,w),

ũ
∣∣κ−n.t.

∂�
= f at σ -a.e. point on ∂�.

(6.96)

The uniqueness in the Homogeneous Regularity Problem established in item (b)
then allows us to conclude that u = ũ. Hence, Nκu = Nκ ũ ∈ Lq(∂�,ω), finishing
the proof of (6.72). Finally, the right-pointing implication in (6.73) is a consequence
of (6.74), while the left-pointing implication in (6.73) follows from Remark 4.21.

Lastly, the claims in item (d) are seen from (3.391), (3.385), and (3.406) (cf.
also Proposition 3.12 and Example 3.5 in the two-dimensional setting). The proof
of Theorem 6.8 is therefore complete. � 
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We next discuss a variant of the Homogeneous Regularity Problem (6.64),
dubbed the Tangential Derivative Problem, which involves as boundary data tan-
gential derivatives of functions from homogeneous Muckenhoupt weighted Sobolev
spaces.

Theorem 6.9 Let � ⊆ Rn be an Ahlfors regular domain. Set σ := Hn−1�∂� and
denote by ν = (ν1, . . . , νn) the geometric measure theoretic outward unit normal to
�. Also, for someM ∈ N, consider a homogeneous, second-order, constant complex
coefficient, weakly ellipticM×M system L in Rn, fix an aperture parameter κ > 0,
pick an integrability exponent p ∈ (1,∞), and select a Muckenhoupt weight w ∈
Ap(∂�, σ). In this setting, consider the Tangential Derivative Problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u ∈ [
C∞(�)

]M
,

Lu = 0 in �,

Nκ(∇u) ∈ Lp(∂�,w),

νj

(
(∂ku)

∣∣κ−n.t.

∂�

)
− νk

(
(∂ju)

∣∣κ−n.t.

∂�

)
= ∂τjkf

σ -a.e. on ∂�, for each j, k ∈ {1, . . . , n},

(6.97)

where f belongs to
[ .
L
p

1 (∂�,w)
]M

, the homogeneous Muckenhoupt weighted
boundary Sobolev space defined in (2.598). The following statements are then valid:

(a) [Existence, Estimates, and Integral Representations] If Adis
L �= ∅ then there exists

δ ∈ (0, 1) which depends only on n, p, [w]Ap , L, and the Ahlfors regularity
constant of ∂� with the property that if ‖ν‖[BMO(∂�,σ)]n < δ (a scenario
which ensures that � is a δ-AR domain; cf. Definition 2.15) then the Tangential
Derivative Problem (6.97) is solvable for each given f ∈ [ .

L
p

1 (∂�,w)
]M

.
Moreover, a solution u may be found so that

‖Nκ(∇u)‖Lp(∂�,w) ≈ ‖∇tanf ‖[Lp(∂�,w)]n·M , (6.98)

where the implicit constants are independent of f . Specifically, one may take u
as in (6.66)–(6.67), or as in (6.70)–(6.71).

(b) [Uniqueness (modulo constants)] Whenever Adis
L� �= ∅, there exists δ ∈ (0, 1)

which depends only on n, p, [w]Ap , L, and the Ahlfors regularity constant of
∂� with the property that if ‖ν‖[BMO(∂�,σ)]n < δ (hence � is a δ-AR domain;
cf. Definition 2.15) then any two solutions of the Tangential Derivative Problem
(6.97) differ by a constant (from CM ).

(c) [Well-Posedness and Additional Integrability/Regularity] Whenever Adis
L �= ∅

and Adis
L� �= ∅ it follows that there exists δ ∈ (0, 1) which depends only on n,

p, [w]Ap , L, and the Ahlfors regularity constant of ∂� with the property that
if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., � is a δ-AR domain; cf. Definition 2.15) then
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the Homogeneous Regularity Problem (6.64) is always solvable and any two
solutions differ by a constant from CM . In addition, for each q ∈ (1,∞) and
ω ∈ Aq(∂�, σ), if δ ∈ (0, 1) is sufficiently small relative to q and [ω]Aq then
any solution u of (6.97) satisfies (in a quantitative fashion)

Nκ(∇u) ∈ Lq(∂�,ω)⇐⇒ f ∈ [ .
L
q

1(∂�,ω)
]M

, (6.99)

as well as

there exists c ∈ CM such that Nκ(u− c) ∈ Lq(∂�,ω) if and only
if there exists c ∈ CM such that f − c belongs to the off-diagonal

weighted Sobolev space
[
L
q;p
1 (∂�,ω;w)]M.

(6.100)

(d) [Sharpness] If Adis
L = ∅ the Tangential Derivative Problem (6.97) may fail to

be solvable, whereas if Adis
L� = ∅ the Tangential Derivative Problem (6.97) may

possess infinitely many solutions, even when � = Rn+.
Thanks to Theorem 3.4, (2.576), and Theorem 2.3 we see that whenever � is

a δ-AR domain with δ ∈ (0, 1) sufficiently small (as assumed in items (a)–(c) in
the statement of the theorem) then the first three assumptions in (6.97) guarantee

that the nontangential boundary trace (∇u)∣∣κ−n.t.

∂�
exists at σ -a.e. point on ∂�. This

ensures that in all these cases the boundary conditions in (6.97) are meaningfully
formulated, without having to a priori demand that the first-order partial derivatives
of u have nontangential traces at σ -a.e. point on ∂�.

Proof of Theorem 6.9 To deal with the claims in item (a), work under the assump-
tion that Adis

L �= ∅, and suppose ‖ν‖[BMO(∂�,σ)]n < δ where δ ∈ (0, 1) is sufficiently
small relative to n, p, [w]Ap , L, and the Ahlfors regularity constant of ∂�. Given

f ∈ [ .
L
p

1 (∂�,w)
]M let u solve the Homogeneous Regularity Problem (6.64)

constructed in (6.67). From (6.74) we see that Nε
κu ∈ L

p

loc(∂�,w) for each

truncation parameter ε > 0, the nontangential trace u
∣∣κ−n.t.

∂�
exists at σ -a.e. point

on ∂� and, in fact, u
∣∣κ−n.t.

∂�
∈ [ .

L
p

1 (∂�,w)
]M . We may then rely on Proposition 2.22

(bearing (2.576) in mind) and the last condition in (6.64) to write

νj

(
(∂ku)

∣∣κ−n.t.

∂�

)
− νk

(
(∂ju)

∣∣κ−n.t.

∂�

)
= ∂τjk

(
u
∣∣κ−n.t.

∂�

)
= ∂τjkf,

at σ -a.e. point on ∂�, for each j, k ∈ {1, . . . , n}.
(6.101)

Hence, the boundary conditions in (6.97) are satisfied, which goes to show that
u is a solution of the Tangential Derivative Problem (6.97). That this solution
satisfies (6.98) is then clear from (6.68).
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Assume next that Adis
L� �= ∅. Let u1, u2 be two solutions of the Tangential

Derivative Problem (6.97) and set u := u1−u2. Then the same proof which, starting
with (6.79) has let to (6.90), shows that if δ ∈ (0, 1) is small enough then u is a
constant in �. The claim in item (b) then follows from this. Finally, the claims in
the current items (c)–(d) are consequences of items (c)–(d) in Theorem 6.8. � 

Remark 6.5 Retain the background assumptions made in Theorem 6.9 and recall
that the tangential gradient operator has been defined in (2.585). In light of (2.585)–
(2.586) we may then equivalently reformulate the Tangential Derivative Prob-
lem (6.97) as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u ∈ [
C∞(�)

]M
,

Lu = 0 in �,

Nκ(∇u) ∈ Lp(∂�,w),

(∂ju)
∣∣κ−n.t.

∂�
− νj νk

(
(∂ku)

∣∣κ−n.t.

∂�

)
= (∇tanf )j

σ -a.e. on ∂�, for each j ∈ {1, . . . , n},

(6.102)

where, as before, f belongs to
[ .
L
p

1 (∂�,w)
]M . Then, for this boundary value

problem, the same results as in Theorem 6.9 are valid.

We continue by discussing the following notable consequence of Theorem 6.8:

Corollary 6.1 Let � ⊆ Rn be an Ahlfors regular domain. Denote by ν the geomet-
ric measure theoretic outward unit normal to � and abbreviate σ := Hn−1�∂�.
Also, fix an aperture parameter κ > 0. Next, suppose L is a homogeneous, second-
order, constant complex coefficient, weakly elliptic M ×M system in Rn, with the
property that Adis

L �= ∅ and Adis
L� �= ∅. Finally, pick an integrability exponent

p ∈ (1,∞) and a Muckenhoupt weight w ∈ Ap(∂�, σ).
Then there exists δ ∈ (0, 1) which depends only on n, p, [w]Ap , L, and the

Ahlfors regularity constant of ∂� with the property that if ‖ν‖[BMO(∂�,σ)]n < δ

(hence � is a δ-AR domain; cf. Definition 2.15) it follows that each function u

satisfying

⎧
⎪⎪⎨

⎪⎪⎩

u ∈ [
C∞(�)

]M
,

Lu = 0 in �,

Nκ(∇u) ∈ Lp(∂�,w)

(6.103)

may be represented as

u = Smodf + c in � (6.104)
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for some function f ∈ [
Lp(∂�,w)

]M
and some constant c ∈ CM . Moreover, both

f and c are uniquely determined by u, and there exists C ∈ (0,∞) independent of
u such that

‖f ‖[Lp(∂�,w)]M ≤ C‖Nκ(∇u)‖Lp(∂�,w). (6.105)

Additionally, for any given coefficient tensor A ∈ Adis
L there exists some function

h ∈ [ .
Lp(∂�,w)

]M
and some constant c ∈ CM with the property that

u = D
A,modh+ c in �. (6.106)

Once again, both h and c are uniquely determined by the function u, and there exists
a constant C ∈ (0,∞) independent of u such that

‖h‖[ .Lp(∂�,w)]M ≤ C‖Nκ(∇u)‖Lp(∂�,w). (6.107)

Proof Assume ‖ν‖[BMO(∂�,σ)]n < δ, for some threshold δ ∈ (0, 1) sufficiently
small so that the conclusions in Theorem 4.11 and Theorem 6.8 hold in the
current setting. From (6.74) we know that g := u

∣∣κ−n.t.

∂�
exists σ -a.e. on ∂�

and belongs to
[ .
L
p

1 (∂�,w)
]M . Since, tautologically, u solves the Homogeneous

Dirichlet Problem (6.64) with the boundary datum g, Theorem 6.8 implies that there
exists a function f ∈ [

Lp(∂�,w)
]M along with a constant c ∈ CM such that u may

be represented as in (6.104). Note that (6.105) holds by virtue of (6.65)–(6.68). To
show that f and c are uniquely determined by u, assume f1, f2 ∈

[
Lp(∂�,w)

]M

and c1, c2 ∈ CM are such that

Smodf1 + c1 = Smodf2 + c2 in �. (6.108)

Then, with f := f1 − f2 ∈
[
Lp(∂�,w)

]M and c := c2 − c1 ∈ CM , we have

Smodf = c in �. (6.109)

From (6.109), (2.575), and (3.47) we next conclude that

Smodf = c at σ -a.e. point on ∂�, (6.110)

hence
[
Smod

]
f = [

Smodf
] = [c] = [0] ∈ [ .

L
p

1 (∂�,w)
/ ∼ ]M . Since Adis

L� �= ∅,
by virtue of item (2) in Theorem 4.11 this implies that f = 0. Once this has been
established then (6.110) gives that c = 0. Thus,

f = 0 and c = 0, (6.111)

from which we conclude that f1 = f2 and c1 = c2.
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Finally, the fact that u solves the Homogeneous Dirichlet Problem (6.64) formu-
lated for the boundary datum g implies, in light of (6.70)–(6.71) and Theorem 4.12
(with z = 1

2 ), that u may be uniquely represented as in (6.106) for some constant

c ∈ CM and some function h ∈ [ .
Lp(∂�,w)

]M satisfying (6.107). � 
As with the Dirichlet Problem and the Inhomogeneous Regularity Problem (cf.

Theorem 6.4 and Theorem 6.6), the solvability results derived in Theorem 6.8 are
stable under small perturbations. We leave the formulation of such a result to the
interested reader and, instead, prove the following brand of stability result, which
does not require flatness for the underlying domain, nor does it explicitly ask for the
existence of a distinguished coefficient tensor.

Theorem 6.10 Let � ⊆ Rn be an NTA domain with an unbounded Ahlfors regular
boundary. Abbreviate σ := Hn−1�∂� and fix an aperture parameter κ > 0.
Also, pick some integrability exponent p ∈ (1,∞) and some Muckenhoupt weight
w ∈ Ap(∂�, σ). Finally, consider a homogeneous, second-order, constant complex
coefficient, weakly elliptic M × M system Lo in Rn with the property that the
Homogeneous Regularity Problem formulated for Lo in � as in (6.64) is solvable.

Then there exists an open neighborhood U of Lo in L which depends only on n,
p, [w]Ap , Lo, and the Ahlfors regularity constant of ∂�, with the property that for
each system L ∈ U the Homogeneous Regularity Problem formulated for L in� as
in (6.64) continues to be solvable.

Proof For each coefficient tensor A ∈ AWE define the operator

TA :
[ .
L
p

1 (∂�,w)
/ ∼ ]M ⊕ [

Lp(∂�,w)
]M −→ [ .

L
p

1 (∂�,w)
/ ∼ ]M (6.112)

given by

TA([g], h) :=
(

1
2I +

[
K

A,mod

])[g] + [
Smod

]
h

for all [g] ∈ [ .
L
p

1 (∂�,w)
/ ∼ ]M and h ∈ [

Lp(∂�,w)
]M

.

(6.113)

With the piece of notation introduced in (3.13), from (6.113) and (3.143) we see that

the operator-valued assignment mapping each A ∈ AWE into

TA ∈ Bd
([ .
L
p

1 (∂�,w)
/ ∼ ]M ⊕ [

Lp(∂�,w)
]M −→ [ .

L
p

1 (∂�,w)
/ ∼ ]M)

(6.114)

is continuous. To proceed, pick an arbitrary Ao ∈ ALo . From Proposition 3.6 we see
that the solvability of the Homogeneous Regularity Problem formulated for Lo in
� as in (6.64) is equivalent to having TAo surjective. Since the set of linear bounded
surjective operators between two Banach spaces is open (cf. [70, Lemma 2.4]), we
conclude from (6.114) that there exists some small ε > 0 such that TA in (6.112) is
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surjective whenever A ∈ A satisfies ‖A−Ao‖ < ε. Having established this, another
appeal to Proposition 3.6 then proves that there exists an open neighborhood U of
Lo in L, which depends only on n, p, [w]Ap , Lo, and the Ahlfors regularity constant
of ∂�, with the property that for each system L ∈ U the Homogeneous Regularity
Problem formulated for L in � as in (6.64) continues to be solvable. � 

6.3 The Neumann Problem in Weighted Lebesgue Spaces

To set the stage, recall the definition of the conormal derivative operator from (3.66).

Theorem 6.11 Let � ⊆ Rn be a UR domain. Denote by ν the geometric measure
theoretic outward unit normal to �, abbreviate σ := Hn−1�∂�, and fix an
aperture parameter κ > 0. Also, pick an integrability exponent p ∈ (1,∞) and
a Muckenhoupt weight w ∈ Ap(∂�, σ).

Suppose L is a homogeneous, second-order, constant complex coefficient, weakly
ellipticM ×M system in Rn. Select A ∈ AL and consider the Neumann Problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u ∈ [
C∞(�)

]M
,

Lu = 0 in �,

Nκ(∇u) ∈ Lp(∂�,w),

∂Aν u = f ∈ [
Lp(∂�,w)

]M
.

(6.115)

Then the following statements are valid:

(a) [Existence, Estimates, and Integral Representations] Whenever A� ∈ Adis
L� there

exists some threshold δ ∈ (0, 1) which depends only on n, p, [w]Ap , A, and
the Ahlfors regularity constant of ∂� such that if ‖ν‖[BMO(∂�,σ)]n < δ (a
scenario which ensures that � is a δ-AR domain; cf. Definition 2.15) then
− 1

2I + K#
A� is an invertible operator on the Muckenhoupt weighted Lebesgue

space
[
Lp(∂�,w)

]M
and the function u : �→ CM defined as

u(x) :=
(
Smod

(
− 1

2I +K#
A�

)−1
f
)
(x) for all x ∈ � (6.116)

is a solution of the Neumann Problem (6.115) which satisfies

‖Nκ(∇u)‖Lp(∂�,w) ≈ ‖f ‖[Lp(∂�,w)]M , (6.117)

where the implicit proportionality constants are independent of f . Also, the
operator ∂Aν DA,mod in (4.392) is surjective which implies that, for some constant
C ∈ (0,∞),
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there exists g ∈ [ .
L
p

1 (∂�,w)
]M

with ∂Aν (DA,modg) = f

and such that ‖g‖[ .Lp1 (∂�,w)]M ≤ C‖f ‖[Lp(∂�,w)]M . (6.118)

Consequently, the function

u := D
A,modg in � (6.119)

is a solution of the Neumann Problem (6.115) which continues to satisfy (6.117).
(b) [Additional Integrability] Under the background assumptions made in item (a),

for the solution u of the Neumann Problem (6.115) defined in (6.116), one has
the following integrability result: For any given q ∈ (1,∞) and ω ∈ Aq(∂�, σ),
further decreasing δ ∈ (0, 1) (relative to q and [ω]Aq ) one has

Nκ(∇u) ∈ Lq(∂�,ω)⇐⇒ f ∈ [
Lq(∂�,ω)

]M (6.120)

and if either of these conditions holds then

‖Nκ(∇u)‖Lq(∂�,ω) ≈ ‖f ‖[Lq(∂�,ω)]M . (6.121)

(c) [Uniqueness (modulo constants)] Assume A ∈ Adis
L . Then there exists δ ∈ (0, 1)

which depends only on n, p, [w]Ap , A, and the Ahlfors regularity constant of
∂� such that whenever ‖ν‖[BMO(∂�,σ)]n < δ (hence, whenever � is a δ-AR
domain; cf. Definition 2.15) it follows that any two solutions of the Neumann
Problem (6.115) differ by a constant from CM .

(d) [Well-Posedness] Whenever A ∈ Adis
L and A� ∈ Adis

L� there exists δ ∈ (0, 1)
which depends only on n, p, [w]Ap , A, and the Ahlfors regularity constant of ∂�
such that if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if� is a δ-AR domain; cf. Definition 2.15)
then the Neumann Problem (6.115) is solvable, the solution is unique modulo
constants from CM , and each solution satisfies (6.117).

(e) [Sharpness] If A� /∈ Adis
L� then the Neumann Problem (6.115) may not be

solvable. In addition, if A /∈ Adis
L then the Neumann Problem (6.115) may

have more than one solution. In fact, even the two-dimensional Laplacian may
be written as  = divA∇ for some matrix A ∈ C2×2 (not belonging to
Adis
 = {I2×2}) such that the Neumann Problem formulated for this as in (6.115)

for this choice of A and with � := R2+ fails to have a solution for each non-
zero boundary datum belonging to an infinite dimensional linear subspace of
Lp(∂�,w), and the linear space of null-solutions for the Neumann Problem
formulated as in (6.115) for this choice of A and with � := R2+ is actually
infinite dimensional.

Remark 6.6 In view of (2.576), (3.66), and the Fatou-type result described in
Theorem 3.4 it follows that the conormal derivative ∂Aν u is well defined in the
context of (6.115).
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Remark 6.7 In special circumstances, the statement of Theorem 6.11 may be further
streamlined. For example, Theorem 3.8 gives that if the system L actually satisfies
the strong Legendre–Hadamard ellipticity condition then for the well-posedness
formulated in item (d) it suffices to assume that A ∈ Adis

L , and if n ≥ 3, M = 1, it
suffices to assume that the matrix A ∈ AL is symmetric.

Remark 6.8 The solvability result presented in Theorem 6.11 is relevant in relation
to the issue singled out as Question 2.5 in [137].

We now turn to the task of presenting the proof of Theorem 6.11.

Proof of Theorem 6.11 Assume first that the coefficient tensor A ∈ AL is such that
A� ∈ Adis

L� . From the current assumptions and Theorem 4.8 we know that there
exists some threshold δ ∈ (0, 1), whose nature is as specified in the statement of the
theorem, such that if ‖ν‖[BMO(∂�,σ)]n < δ then the operator− 1

2I+K#
A� is invertible

on
[
Lp(∂�,w)

]M . Granted this, item (c) in Proposition 3.5 then guarantees that the
function (6.116) solves the Neumann Problem (6.115) and satisfies (6.117).

Next, the claims in (6.118) are consequences of the surjectivity of the operator
(4.392) (itself implied by item (2) of Theorem 4.13), and the Open Mapping
Theorem. In turn, (6.118) and Theorem 3.5 guarantee that the function u in (6.119)
solves the Neumann Problem (6.115) and satisfies (6.117). This takes care of the
claims in item (a).

Let us now turn our attention to the claim made in item (b), concerning additional
integrability properties for the solution constructed in (6.116). The right-pointing
implication in (6.120) together with the right-pointing inequality in (6.121) are
simple consequences of the fact that we have |f | = ∣∣∂Aν u

∣∣ ≤ CNκ(∇u) at σ -a.e.
point on ∂�. The left-pointing implication in (6.120) along with the left-pointing
inequality in (6.121) are seen from (6.116), (4.342), and Proposition 3.5.

To prove uniqueness modulo constants in the case when A ∈ Adis
L , suppose u

solves the homogeneous version of the Neumann Problem (6.115) (corresponding
to f = 0). Also, fix two arbitrary indices � ∈ {1, . . . , n} and γ ∈ {1, . . . ,M}. Since

by (3.66) the second integral in (6.62) involves νra
αβ
rs (∂suβ)

∣∣κ−n.t.

∂�
= (

∂Aν u
)
α
= 0

for each α ∈ {1, . . . ,M}, we conclude that we presently have

(∂�uγ )(x) =
ˆ
∂�

aβαrs (∂rEγβ)(x − y)
{
ν�(y)

(
(∂suα)

∣∣κ−n.t.

∂�

)
(y) (6.122)

− νs(y)
(
(∂�uα)

∣∣κ−n.t.

∂�

)
(y)

}
dσ(y)

at every point x ∈ �. On account of (3.86), going nontangentially to the boundary
in (6.122) then yields

(
(∂�uγ )

∣∣κ−n.t.

∂�

)
(x) = 1

2i
aβαrs ∂̂rEγβ

(
ν(x)

){
ν�(x)

(
(∂suα)

∣∣κ−n.t.

∂�

)
(x) (6.123)
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− νs(x)
(
(∂�uα)

∣∣κ−n.t.

∂�

)
(x)

}

+ lim
ε→0+

ˆ

y∈∂�
|x−y|>ε

aβαrs (∂rEγβ)(x − y)
{
ν�(y)

(
(∂suα)

∣∣κ−n.t.

∂�

)
(y)

− νs(y)
(
(∂�uα)

∣∣κ−n.t.

∂�

)
(y)

}
dσ(y)

at σ -a.e. x ∈ ∂�. For each r ∈ {1, . . . , n} and β ∈ {1, . . . ,M} we may rely
on (3.17) to write

∂̂rEγβ

(
ν(x)

) = iνr(x)Êγβ

(
ν(x)

) = iνr(x)
[
L
(
ν(x)

)]−1
γβ

(6.124)

at σ -a.e. x ∈ ∂�. For ease of notation, henceforth we agree to abbreviate

(
∂Tjkuα

)
(x) := νj (x)

(
(∂kuα)

∣∣κ−n.t.

∂�

)
(x)− νk(x)

(
(∂juα)

∣∣κ−n.t.

∂�

)
(x)

for each j, k ∈ {1, . . . , n}, α ∈ {1, . . . ,M}, and σ -a.e. x ∈ ∂�.

(6.125)

Bring in an additional index t ∈ {1, . . . , n}. If we now multiply (6.123) by νt (x)

then subtract from the resulting formula its version with � and t interchanged we
then arrive, bearing in mind (6.124), (6.125), (3.2), at the identity

(
∂Tt�uγ

)
(x) = 1

2

[
L
(
ν(x)

)]
βα

[
L
(
ν(x)

)]−1
γβ

(
∂Tt�uα

)
(x) (6.126)

− lim
ε→0+

ˆ

y∈∂�
|x−y|>ε

νs(y)a
βα
rs (∂rEγβ)(x − y)

(
∂Tt�uα

)
(y) dσ(y)

+ lim
ε→0+

ˆ

y∈∂�
|x−y|>ε

(
νt (x)− νt (y)

)
aβαrs (∂rEγβ)(x − y)

(
∂T�s uα

)
(y) dσ(y)

+ lim
ε→0+

ˆ

y∈∂�
|x−y|>ε

(
ν�(x)− ν�(y)

)
aβαrs (∂rEγβ)(x − y)

(
∂Tst uα

)
(y) dσ(y),

valid for each t, � ∈ {1, . . . , n}, each γ ∈ {1, . . . ,M}, and σ -a.e. x ∈ ∂�. In relation
to (6.126), we make several observations. For starters, the first line in the right-hand
side of (6.126) is
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1

2

[
L
(
ν(x)

)]
βα

[
L
(
ν(x)

)]−1
γβ

(
∂Tt�uα

)
(x)

= 1

2
δγα

(
∂Tt�uα

)
(x) = 1

2

(
∂Tt�uγ

)
(x). (6.127)

This may be absorbed in the left-hand side of (6.126), which subsequently becomes
1
2

(
∂Tt�uγ

)
(x). The second observation is that, as is visible from (3.24), the second

line in the right-hand side of (6.126) is precisely

(
KA

(
∂Tt�u

))

γ
(x), where ∂Tt�u :=

(
∂Tt�uα

)
1≤α≤M. (6.128)

The final observation we wish to make with regard to (6.126) is that the third and
fourth lines in the right-hand side of (6.126) are commutators of the form

([
Mν, T

](
∂T u

))
(x). (6.129)

Above, Mν denotes the operator of pointwise multiplication by generic scalar
components of ν. Also, T stands for the principal-value singular integral operator
of formal convolution type with a suitable matrix-valued kernel whose entries are
linear combinations with coefficients which are entries from A of generic first-order
partial derivatives of generic entries of the matrix E. Finally, ∂T u stands for generic
functions of the form ∂Tt�uα with 1 ≤ �, t ≤ n and 1 ≤ α ≤ M .

In view of these observations, we may recast (6.126) as

1
2∂Tt�u = KA

(
∂Tt�u

)+ [
Mν, T

](
∂T u

)

at σ -a.e. point on ∂�, for each t, � ∈ {1, . . . , n}.
(6.130)

Since we are currently assuming that A ∈ Adis
L , from (6.130), (4.299), and

Theorem 4.3 (whose applicability in the present context takes into account the
format of T specified above as well as Proposition 3.4) we then conclude that for
each t, � ∈ {1, . . . , n} we have

1

2

∥∥∂Tt�u
∥∥[Lp(∂�,w)]M ≤ Cδ

∥∥∂Tt�u
∥∥[Lp(∂�,w)]M + Cδ

n∑

j,k=1

∥∥∂Tjku
∥∥[Lp(∂�,w)]M

where Cδ = o(1) as δ → 0+. (6.131)

After summing up in all t, � ∈ {1, . . . , n} we conclude from (6.131) that

1

2

n∑

t,�=1

∥∥∂Tt�u
∥∥[Lp(∂�,w)]M ≤ Cδ

n∑

t,�=1

∥∥∂Tt�u
∥∥[Lp(∂�,w)]M
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with Cδ = o(1) as δ → 0+. (6.132)

Assuming δ ∈ (0, 1) is sufficiently small to begin with, it follows from (6.132) that

n∑

t,�=1

∥∥∂Tt�u
∥∥[Lp(∂�,w)]M ≤ 0 (6.133)

hence, necessarily,

∂Tt�uα = 0 for each t, � ∈ {1, . . . , n} and α ∈ {1, . . . ,M}. (6.134)

In concert with (6.125) and (6.122) this ultimately shows that

∂�uγ = 0 in � for each � ∈ {1, . . . , n} and γ ∈ {1, . . . ,M}. (6.135)

Thus, the function u is locally constant in �. Since the latter is a connected set (cf.
Theorem 2.4), we conclude that there exists a constant c ∈ CM such that u ≡ c in
�.

An alternative proof of uniqueness modulo constants in the case when A ∈ Adis
L

goes as follows. Suppose u ∈ [
C∞(�)

]M is a function satisfying Lu = 0 in �,
as well as Nκ(∇u) ∈ Lp(∂�,w), and ∂Aν u = 0. Then Corollary 3.1 implies that

g := u
∣∣κ−n.t.

∂�
exists σ -a.e. on ∂�, belongs to

[ .
L
p

1 (∂�,w)
]M , and

u = D
A,modg + c in �, (6.136)

for some constant c ∈ CM (recall that the present assumptions ensure that � is
a connected set; cf. Theorem 2.4). In light of the jump-formula (3.134), going
nontangentially to the boundary in (6.136) then yields

( − 1
2I + K

A,mod

)
g = −c,

hence

[g] ∈ [ .
L
p

1 (∂�,w)
]M

/ ∼ satisfies
(− 1

2I +
[
K

A,mod

])[g] = 0. (6.137)

Since we are currently assuming that A ∈ Adis
L , from this and Theorem 4.12 (with

z = − 1
2 ) we conclude that [g] = 0 ∈ [ .

L
p

1 (∂�,w)
]M

/ ∼, i.e., g is a constant on
∂�. Having established this, from (6.136) and (3.54) we then conclude that u is a
constant in �, as wanted.

Next, the claims in (d) are direct consequences of results established in items (a)
and (c). As regards the claims made in item (e), consider the Laplacian in R2 ≡ C,
written as  = ajk∂j ∂k , where the coefficient tensor A = (

ajk
)

1≤j,k≤2 is the 2 × 2
complex matrix
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A :=
(

1 −i
i 1

)
. (6.138)

Fix an aperture parameter κ ∈ (0,∞), an integrability exponent p ∈ (1,∞), and
a Muckenhoupt weight w ∈ Ap(R,L1). We claim that the space of admissible
boundary data for the Lp-Neumann boundary value problem for the Laplacian in
the upper-half plane where the prescribed conormal derivative is the one associated
with the matrix A may be described as

{
∂Aν u : u ∈ C∞(R2+), u = 0 in R2+, Nκ(∇u) ∈ Lp(R, w)

}

=
{
f ∈ Lp(R, w) : Hf = −if

}
, (6.139)

where H is the Hilbert transform on the real line (cf. (1.24)). Given that the latter
space has infinite codimension in Lp(R, w) (since H 2 = −I on this space), the
identification in (6.139) suits our present purposes.

To prove the left-to-right inclusion in (6.139), pick a complex-valued function u
satisfying

u ∈ C∞(R2+), u = 0 in R2+, Nκ(∇u) ∈ Lp(R, w). (6.140)

On account of the Fatou-type result recalled in Theorem 3.4, these properties

guarantee that (∇u)∣∣κ−n.t.

∂R2+
exists at L1-a.e. point on ∂R2+. In particular, f := ∂Aν u

is a well-defined function in Lp(R, w). More specifically, bearing in mind that the
outward unit normal for the upper-half plane is ν = (ν1, ν2) = (0,−1) ≡ −i,
from (3.66) we see that

f = ∂Aν u = νrars
(
∂su

)∣∣κ−n.t.

∂R2+

= ν1
(
∂1u

)∣∣κ−n.t.

∂R2+
− iν1

(
∂2u

)∣∣κ−n.t.

∂R2+
+ iν2

(
∂1u

)∣∣κ−n.t.

∂R2+
+ ν2

(
∂2u

)∣∣κ−n.t.

∂R2+

= (ν1 + iν2)
(
(∂1u)

∣∣κ−n.t.

∂R2+
− i(∂2u)

∣∣κ−n.t.

∂R2+

)
= 2ν(∂zu)

∣∣κ−n.t.

∂R2+

= −2i(∂zu)
∣∣κ−n.t.

∂R2+
at L1-a.e. point on ∂R2+ ≡ R, (6.141)

where ∂z := 1
2 (∂x − i∂y) is the complex conjugate of the Cauchy–Riemann operator

∂z̄ := 1
2 (∂x + i∂y). Hence, if we define

U := 2∂zu in R2+, (6.142)
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upon recalling that  = 4∂z̄∂z, the properties in (6.140) imply

U ∈ C∞(R2+), ∂z̄w = 0 in R2+, Nκw ∈ Lp(R, w). (6.143)

These simply amount to stating that U is a holomorphic function belonging to
the Muckenhoupt weighted Hardy space Hp(R2+, w) associated with the Cauchy–
Riemann operator in the upper-half plane. In addition, (6.141) tells us that

U
∣∣κ−n.t.

∂R2+
= if at L1-a.e. point on ∂R2+ ≡ R. (6.144)

Together with Cauchy’s reproducing formula for holomorphic functions in the
aforementioned Hardy space, this gives

U(z) = 1

2π

ˆ
R

f (t)

t − z
dt for each z ∈ C+. (6.145)

After taking the nontangential trace to the boundary in (6.145) we arrive at the
conclusion that if = i

( 1
2I +− 1

2iH
)
f at L1-a.e. point in R. This ultimately proves

that f must satisfy the compatibility condition

Hf = −if at L1-a.e. point in R. (6.146)

The left-to-right inclusion in (6.139) is therefore established.
To justify the converse inclusion, consider f ∈ Lp(R, w) satisfying Hf = −if

at L1-a.e. point in R. Bring Smod , the modified boundary-to-domain harmonic
single layer potential operator associated with the Laplacian in the upper-half plane
(cf. (3.38)), and note that

2i∂z(Smodf )(z) =
1

2π i

ˆ
R

f (t)

t − z
dt for each z ∈ C+. (6.147)

If we define u := Smodf in R2+, then this function belongs to C∞(R2+), satisfies
u = 0 in R2+, has Nκ(∇u) ∈ Lp(R, w), and (6.147) permits us to compute

∂Aν u = 2i
(
∂zu

)∣∣κ−n.t.

∂R2+
= 2i(∂zSmodf )

∣∣κ−n.t.

∂R2+

= 1
2f − 1

2iHf = 1
2f + 1

2f = f, (6.148)

as wanted.
As regards the space of null-solutions for the Lp-Neumann Problem (6.115) in

the case when n = 2, M = 1, L =  (the two-dimensional Laplacian), � = R2+,
and A as in (6.138), we claim that
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{
u ∈ C∞(R2+) : u = 0 in R2+, Nκ(∇u) ∈ Lp(R, w), ∂Aν u = 0

}
(6.149)

=
{
U : U holomorphic in R2+, with Nκ(∇U) ∈ Lp(R, w)

}
.

To justify this identification, pick an arbitrary function belonging to the space
in the left side of (6.149). Then ∂zu is holomorphic in R2+ (since ∂z̄∂z = 1

4),
and satisfies Nκ(∂zu) ∈ Lp(R, w). As such, ∂zu belongs to Hp(R2+, w), the
Muckenhoupt weighted Hardy space in the upper-half plane for the Cauchy–
Riemann operator. Since from (6.141) we have

(∂zu)
∣∣κ−n.t.

∂R2+
= 0 at L1-a.e. point on ∂R2+ ≡ R, (6.150)

we may rely on Cauchy’s reproducing formula to conclude that ∂zu vanishes
identically in R2+. Hence, U := u is a holomorphic function in R2+. This places U
(and, ultimately, u) in the space in the right side of (6.149). In the opposite direction,
given any holomorphic function U in R2+ satisfying Nκ(∇U) ∈ Lp(R, w), the
function u := U is harmonic in R2+, has Nκ(∇u) ∈ Lp(R, w) and, much as
in (6.141), we see that

∂Aν u = −2i(∂zu)
∣∣κ−n.t.

∂R2+
= −2i(∂z̄u)

∣∣κ−n.t.

∂R2+

= −2i(∂z̄U)
∣∣κ−n.t.

∂R2+
= 0 at L1-a.e. point on ∂R2+ ≡ R, (6.151)

given that U is holomorphic in R2+ ≡ C+. This completes the proof of (6.149). The
space in the right side of (6.149) is infinite dimensional since, for example, for each
m ∈ N the function C+ � z �→ (z̄ − i)−m ∈ C belongs to this space. We therefore
conclude that the space of null-solutions for the Lp-Neumann Problem (6.115) is,
as claimed, infinite dimensional. � 

Remark 6.9 For similar reasons as in past situations, a solvability result which
is analogous to the one described in Theorem 6.11 also holds for the Neumann
Problem with data in Lorentz spaces, i.e., for

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u ∈ [
C∞(�)

]M
,

Lu = 0 in �,

Nκ(∇u) ∈ Lp,q(∂�, σ),

∂Aν u = f ∈ [
Lp,q(∂�, σ)

]M
,

(6.152)

with p ∈ (1,∞) and q ∈ (0,∞].
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See Theorem 8.21 (and also Examples 8.2, 8.6) for more general results of this
flavor.

Remark 6.10 In light of the remarks made in (3.228)–(3.229), Theorem 6.11 applies
in the case of the Lamé system Lμ,λ = μ + (λ + μ)∇div in Rn with n ≥ 2,
assuming μ �= 0, 2μ + λ �= 0, and 3μ + λ �= 0. Specifically, if � ⊆ Rn is a δ-AR
domain, and w ∈ Ap(∂�, σ) with p ∈ (1,∞), then if δ ∈ (0, 1) sufficiently small
(relative to μ, λ, p, [w]Ap , and the Ahlfors regularity constant of ∂�) the Neumann
Problem (6.115), which in this case reads

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u ∈ [
C∞(�)

]n
,

μu+ (λ+ μ)∇divu = 0 in �,

Nκ(∇u) ∈ Lp(∂�,w),

∂
A(ζ )
ν u =

[
μ(∇u)� + ζ(∇u)

]∣∣∣
κ−n.t.

∂�
ν + (μ+ λ− ζ )(divu)

∣∣κ−n.t.

∂�
ν = f

(6.153)
is solvable (in the explicit manner described in (6.116)) for each given function
f ∈ [

Lp(∂�,w)
]n, provided the coefficient tensor A(ζ ) is as in (3.226) with

ζ := μ(μ+ λ)

3μ+ λ
. (6.154)

Moreover, the solution is unique modulo constants from Cn and each solution
satisfies (6.117) (with M := n).

By way of contrast, in the two-dimensional case, Corollary 4.3 ensures that the
Neumann Problem (6.153) is actually solvable (again, in the manner described in
(6.116), the solution being unique modulo constants from C2 and each solution
satisfying a naturally accompanying estimate) for each given function f in the space[
Lp(∂�,w)

]2, in the larger range

ζ ∈ C \
{
− μ,

μ(5μ+3λ)
3μ+λ

}
. (6.155)

In particular, if we also demand that μ+ λ �= 0 then ζ := μ becomes an admissible
value, as far as (6.155) is concerned, and from (4.438), (6.116) we see that the
Neumann Problem (6.153) with ζ := μ is solvable uniquely (modulo constants)
for each given function f ∈ [

Lp(∂�,w)
]2. This is of interest since said problem

involves the so-called traction conormal derivative, i.e.,

∂A(μ)ν u = μ
[
(∇u)� + (∇u)

]∣∣∣
κ−n.t.

∂�
ν + λ(divu)

∣∣κ−n.t.

∂�
ν, (6.156)

which is particularly relevant in physics and engineering.
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It is also of interest to note that the solvability result from Theorem 6.11 is
stable under small perturbations. Specifically, by reasoning similarly as in the proof
of Theorem 6.4 (while also bearing in mind Theorem 3.9) yields the following
theorem.

Theorem 6.12 Retain the original background assumptions on the set � from
Theorem 6.11 and, as before, fix an integrability exponent p ∈ (1,∞) along with a
Muckenhoupt weight w ∈ Ap(∂�, σ). Then the following statements are true.

(a) [Existence] Given any system Lo ∈ L with L�o ∈ Ldis (cf. (3.195)), it follows
that for each Ao ∈ ALo with A�o ∈ Adis

L�o
there exist a threshold δ ∈ (0, 1)

and an open neighborhood U of Ao in A, both of which depend only on n, p,
[w]Ap , Ao, and the Ahlfors regularity constant of ∂�, with the property that if
‖ν‖[BMO(∂�,σ)]n < δ (i.e., if� is a δ-AR domain) then for each coefficient tensor
A ∈ U the Neumann Problem (6.115) formulated for the system LA (cf. (3.7))
and the conormal derivative associated with A (cf. (3.66)) is actually solvable.

(b) [Uniqueness] Assume Lo ∈ Ldis and fix some Ao ∈ Adis
Lo
. Then there exist a

threshold δ ∈ (0, 1) and an open neighborhood U of Ao in A, both of which
depend only on n, p, [w]Ap , Lo, and the Ahlfors regularity constant of ∂�, with
the following significance: Whenever ‖ν‖[BMO(∂�,σ)]n < δ (i.e., � is a δ-AR
domain) then for each coefficient tensor A ∈ U it follows that any two solutions
of the Neumann Problem (6.115) formulated for the system LA (cf. (3.7)) and the
conormal derivative associated with A (cf. (3.66)) differ by a constant in CM .

(c) [Well-Posedness] Assuming Lo ∈ Ldis and L�o ∈ Ldis, fix some Ao ∈ Adis
Lo
. Then

there exist a threshold δ ∈ (0, 1) and an open neighborhood U of Ao in A, both
of which depend only on n, p, [w]Ap , Lo, and the Ahlfors regularity constant
of ∂�, with the following significance: Whenever ‖ν‖[BMO(∂�,σ)]n < δ (i.e., �
is a δ-AR domain) then for each coefficient tensor A ∈ U it follows that any
two solutions of the Neumann Problem (6.115) formulated for the system LA
(cf. (3.7)) and the conormal derivative associated with A (cf. (3.66)) is solvable,
and any two solutions differ by a constant from CM .

In addition to Theorem 6.12, there is yet another type of stability result for the
Neumann problem which does not require flatness for the underlying domain, nor
does it explicitly ask for the existence of a distinguished coefficient tensor (compare
with Theorem 6.10).

Theorem 6.13 Let � ⊆ Rn be an NTA domain with an unbounded Ahlfors regular
boundary. Abbreviate σ := Hn−1�∂� and denote by ν the geometric measure
theoretic outward unit normal to �. Also, fix an aperture parameter κ > 0, pick
an integrability exponent p ∈ (1,∞), and choose some arbitrary Muckenhoupt
weight w ∈ Ap(∂�, σ). Finally, consider a coefficient tensor Ao ∈ AWE with the
property that the Neumann Problem formulated for the system L := LAo (cf. (3.7))
and the conormal derivative associated withAo (cf. (3.66)) as in (6.115) is solvable.

Then there exists an open neighborhood U of Ao in A which depends only on
n, p, [w]Ap , Ao, and the Ahlfors regularity constant of ∂�, with the property that
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for each coefficient tensor A ∈ U the Neumann Problem formulated for the system
L := LA (cf. (3.7)) and the conormal derivative associated with A (cf. (3.66)) as
in (6.115) continues to be solvable.

Proof For each coefficient tensor A ∈ AWE define the operator

QA :
[ .
L
p

1 (∂�,w)
/ ∼ ]M ⊕ [

Lp(∂�,w)
]M −→ [

Lp(∂�,w)
]M (6.157)

given by

QA([g], h) :=
[
∂Aν DA,mod

][g] + (− 1
2I +K#

A�
)
h

for all [g] ∈ [ .
L
p

1 (∂�,w)
/ ∼ ]M and h ∈ [

Lp(∂�,w)
]M

.
(6.158)

Recall the piece of notation introduced in (3.13). From (6.158), (3.139), and (3.122)
we see that

the operator-valued assignment mapping each A ∈ AWE into

QA ∈ Bd
([ .
L
p

1 (∂�,w)
/ ∼ ]M ⊕ [

Lp(∂�,w)
]M → [

Lp(∂�,w)
]M)

(6.159)

is continuous. To proceed, fix Ao ∈ AWE as in the statement. From Proposition 3.7
it follows that QAo is surjective. Since the set of linear bounded surjective
operators between two Banach spaces is open (cf. [70, Lemma 2.4]), we conclude
from (6.159) that there exists an open neighborhood U of Ao in A (whose nature
is as in the statement of the theorem) with the property that QA continues to be
surjective in the context of (6.157) for eachA ∈ U. We may then once again employ
Proposition 3.7 to conclude that the Neumann Problem formulated for the system
L := LA and the conormal derivative associated with A as in (6.115) is solvable.

� 
Solvability results for the Neumann Problem formulated for boundary data

belonging to sums of Muckenhoupt weighted Lebesgue spaces are described in the
theorem below.

Theorem 6.14 Let � ⊆ Rn be a UR domain. Abbreviate σ := Hn−1�∂� and fix
an aperture parameter κ > 0. Also, pick p0, p1 ∈ (1,∞) along with a pair of
Muckenhoupt weights w0 ∈ Ap0(∂�, σ) and w1 ∈ Ap1(∂�, σ). Finally, consider
a homogeneous, second-order, constant complex coefficient,M ×M weakly elliptic
system L in Rn, and select some coefficient tensor A ∈ AL

Then similar results, concerning existence, integral representation formulas, esti-
mates, additional integrability properties, and well-posedness, as in Theorem 6.11,
are valid for the Neumann Problem
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u ∈ [
C∞(�)

]M
,

Lu = 0 in �,

Nκ(∇u) ∈ Lp0(∂�,w0)+ Lp1(∂�,w1),

∂Aν u = f ∈ [
Lp0(∂�,w0)+ Lp1(∂�,w1)

]M
.

(6.160)

Proof This is seen by reasoning as in the proof of Theorem 6.11, now making use
of (4.336) and bearing in mind that the commutator estimates from Theorem 4.3
also extend to sums of Muckenhoupt weighted Lebesgue spaces (cf. (4.332)). � 

We conclude with a result to the effect that solvability of the Neumann problem
for a system L implies uniqueness (modulo locally constant functions) for the
Neumann problem formulated for the transpose system L�.

Proposition 6.1 Let � ⊆ Rn, with n ≥ 3, be an NTA domain with an unbounded
Ahlfors regular boundary. Denote by ν the geometric measure theoretic outward unit
normal to�, abbreviate σ := Hn−1�∂�. Also, fix an aperture parameter κ > 0 and
consider two integrability exponents

p, q ∈ (1, n− 1) satisfying 1
p
+ 1

q
= 1 + 1

n−1 . (6.161)

Finally, pick a coefficient tensor A ∈ AWE with the property that the Neumann
Problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u ∈ [
C∞(�)

]M
,

LAu = 0 in �,

Nκ(∇u) ∈ Lp(∂�, σ),

∂Aν u = f at σ -a.e. point on ∂�

(6.162)

is solvable for each f ∈ [
Lp(∂�, σ)

]M
. Then having

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

w ∈ [
C∞(�)

]M
,

LA�w = 0 in �,

Nκ(∇w) ∈ Lq(∂�, σ),

∂A
�

ν w = 0 at σ -a.e. point on ∂�

(6.163)

forces w to be a locally constant function in �.

Proof Fix an arbitrary f ∈ [
Lp(∂�, σ)

]M and assume that u solves (6.162) for
this choice of boundary datum. Also, let w be as in (6.163). Granted the present
assumptions, Proposition 2.24 implies that the nontangential boundary traces
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u
∣∣κ−n.t.

∂�
, w

∣∣κ−n.t.

∂�
exist σ -a.e. on ∂�. (6.164)

Also, work in [114, §2.2] guarantees that there exist two constants c, c̃ ∈ CM such
that

u
∣∣κ−n.t.

∂�
− c ∈ [

Lp
∗
(∂�, σ)

]M and Nκ(u− c) ∈ Lp
∗
(∂�, σ)

where p∗ := ( 1
p
− 1

n−1

)−1 ∈ (1,∞),

(6.165)

as well as

w
∣∣κ−n.t.

∂�
− c̃ ∈ [

Lq
∗
(∂�, σ)

]M and Nκ(w − c̃ ) ∈ Lq
∗
(∂�, σ)

where q∗ := ( 1
q
− 1

n−1

)−1 ∈ (1,∞).

(6.166)

Let
(
a
αβ
jk

)
1≤j,k≤n

1≤α,β≤M
be the entries of the given coefficient tensor A ∈ AWE. Also,

denote by (uα)1≤α≤M and (wβ)1≤β≤M , respectively, the scalar components of the
vector-valued functions u,w. Define the vector field

�F :=
(
a
αβ
jk (∂kuβ)(w − c̃ )α − a

αβ
kj (u− c)β(∂kwα)

)

1≤j≤n, (6.167)

where the summation convention over repeated indices is in effect. Then

�F ∈ [
C∞(�)

]n (6.168)

and

div �F = a
αβ
jk (∂j ∂kuβ)(w − c̃ )α + a

αβ
jk (∂kuβ)(∂jwα)

− a
αβ
kj (∂juβ)(∂kwα)− a

αβ
kj (u− c)β(∂j ∂kwα)

= (LAu)α(w − c̃ )α − (u− c)β(LA�w)β

= 0 − 0 = 0 in �, (6.169)

thanks to (6.162) and (6.163). Also, from (6.167), (6.165), (6.166), and the fact that,
as seen from (6.161), we have

1
p∗ + 1

q
= 1 and 1

p
+ 1

q∗ = 1, (6.170)

we conclude that
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Nκ
�F ∈ L1(∂�, σ). (6.171)

Finally, from (6.167) and (6.164) we see that the nontangential boundary trace
�F ∣∣κ−n.t.

∂�
exists at σ -a.e. point on ∂� and, in fact,

�F ∣∣κ−n.t.

∂�
=

(
a
αβ
jk (∂kuβ)

∣∣κ−n.t.

∂�

(
w
∣∣κ−n.t.

∂�
− c̃

)

α

− a
αβ
kj

(
u
∣∣κ−n.t.

∂�
− c

)

β
(∂kwα)

∣∣κ−n.t.

∂�

)

1≤j≤n
. (6.172)

In particular, (6.172) and (3.66) imply that at σ -a.e. point on ∂� we have

ν ·
( �F ∣∣κ−n.t.

∂�

)
= νja

αβ
jk (∂kuβ)

∣∣κ−n.t.

∂�

(
w
∣∣κ−n.t.

∂�
− c̃

)

α

− νja
αβ
kj

(
u
∣∣κ−n.t.

∂�
− c

)

β
(∂kwα)

∣∣κ−n.t.

∂�

=
〈
∂Aν u,w

∣∣κ−n.t.

∂�
− c̃

〉
−

〈
u
∣∣κ−n.t.

∂�
− c, ∂A

�
ν w

〉

=
〈
f,w

∣∣κ−n.t.

∂�
− c̃

〉
, (6.173)

where the last equality takes into account the boundary conditions in (6.162)
and (6.163). Granted (6.168), (6.169), (6.170), (6.172), and the current assumptions
on �, a version of the Divergence Theorem proved in [111, §1.2] applies and gives

ˆ
∂�

ν ·
( �F ∣∣κ−n.t.

∂�

)
dσ = 0. (6.174)

In concert with (6.173) this further implies

ˆ
∂�

〈
f,w

∣∣κ−n.t.

∂�
− c̃

〉
dσ = 0 (6.175)

which, in view of the arbitrariness of f ∈ [
Lp(∂�, σ)

]M forces w
∣∣κ−n.t.

∂�
= c̃ at σ -

a.e. point on ∂�. With this in hand, the integral representation formula from (3.75)
gives that, for some CM -valued locally constant function cw in �, we have

w = D
A�,mod

(
w
∣∣κ−n.t.

∂�

)−Smod

(
∂A

�
ν w

)+ cw

= D
A�,mod

(
c̃
)+ cw in �. (6.176)
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Thanks to (3.54) we then conclude that w is indeed a locally constant function in
the set �. � 

6.4 The Transmission Problem in Weighted Lebesgue Spaces

The trademark characteristic of a Transmission Problem is the fact that one now
seeks two functions, defined on either side of an interface, whose traces and
conormal derivatives couple in a specific fashion along the common interface.

Theorem 6.15 Let � ⊆ Rn be a UR domain. Denote by ν the geometric measure
theoretic outward unit normal to �, abbreviate σ := Hn−1�∂�, and set

�+ := �, �− := Rn \�. (6.177)

In addition, pick an integrability exponent p ∈ (1,∞), some Muckenhoupt weight
w ∈ Ap(∂�, σ), an aperture parameter κ ∈ (0,∞), and a transmission (or
coupling) parameter η ∈ C.

Next, assume L is a homogeneous, second-order, constant complex coefficient,
weakly ellipticM ×M system in Rn. Finally, select some coefficient tensor A ∈ AL
and consider the Transmission Problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u± ∈ [
C∞(�±)

]M
,

Lu± = 0 in �±,
Nκ(∇u±) ∈ Lp(∂�,w),

u+
∣∣κ−n.t.

∂�
− u−

∣∣κ−n.t.

∂�
= g ∈ [ .

L
p

1 (∂�,w)
]M

,

∂Aν u
+ − η · ∂Aν u− = f ∈ [

Lp(∂�,w)
]M

.

(6.178)

Then, in relation to this, the following statements are valid:

(a) [Uniqueness (modulo constants)] Assume that either

A� ∈ Adis
L� and η ∈ C \ {−1} (6.179)

or

A ∈ Adis
L and η ∈ C \ {0,−1}. (6.180)

Then there exists δ ∈ (0, 1) which depends only on n, p, [w]Ap , A, η, and
the Ahlfors regularity constant of ∂� so that whenever ‖ν‖[BMO(∂�,σ)]n < δ (a
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scenario which renders � a δ-AR domain; cf. Definition 2.15) it follows any two
solutions of the Transmission Problem (6.178) differ by a constant (from CM ).

(b) [Well-Posedness, Integral Representations, and Additional Regularity] Assume 1

A ∈ Adis
L ,A� ∈ Adis

L� , and η ∈ C \ {−1}. (6.181)

Then there exists some δ ∈ (0, 1) which depends only on n, p, [w]Ap , A, η,
and the Ahlfors regularity constant of ∂� such that if ‖ν‖[BMO(∂�,σ)]n < δ (a
scenario which ensures that � is a δ-AR domain; cf. Definition 2.15) it follows
that the Transmission Problem (6.178) is solvable. Specifically, in the scenario
described in (6.181), the operator − η+1

2 I + (1 − η)K#
A� is invertible on the

Muckenhoupt weighted Lebesgue space
[
Lp(∂�,w)

]M
, the operator

[
Smod

]
is

invertible from
[
Lp(∂�,w)

]M
onto the space

[ .
L
p

1 (∂�,w)
/ ∼ ]M

, and the
functions u± : �± → CM defined as

u+ := S +
mod
h0 +S +

mod
h1 − c in �+,

u− := S −
mod
h0 in �−,

(6.182)

where the superscripts ± indicate that the modified single layer potentials are
associated with the sets �± and

h1 :=
[
Smod

]−1[g] ∈ [
Lp(∂�,w)

]M
, c := Smodh1 − g ∈ CM,

h0 :=
(
− η+1

2 I + (1 − η)K#
A�

)−1 (
f − (− 1

2I +K#
A�

)
h1

)
,

(6.183)

solve the Transmission Problem (6.178) and satisfy, for a finite constant C > 0
independent of f and g,

∥
∥Nκ(∇u±)

∥
∥
Lp(∂�,w)

≤ C
(
‖f ‖[Lp(∂�,w)]M + ‖g‖[ .Lp1 (∂�,w)]M

)
. (6.184)

Moreover, any two solutions of the Transmission Problem (6.178) differ by a con-
stant (from CM ). In particular, any solution of the Transmission Problem (6.178)
satisfies (6.184).

Alternatively, under the conditions imposed in (6.181) and, again, assuming�
is a δ-AR domain with δ ∈ (0, 1) sufficiently small, a solution of the Transmission
Problem (6.178) may also be found in the form

1 According to Theorem 3.9, the set of demands made in (6.181) is further equivalent to Adis
L �= ∅,

A� ∈ Adis
L� , and η ∈ C \ {−1}, and also equivalent to A ∈ Adis

L , Adis
L� �= ∅, and η ∈ C \ {−1}.
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u+ := D+
A,mod

ψ0 + c in �+,

u− := D−
A,mod

ψ1 in �−,
(6.185)

where the superscripts ± indicate that the modified double layer potentials are
associated with the sets �±, where c ∈ CM is a suitable constant, and where

ψ0, ψ1 ∈
[ .
L
p

1 (∂�,w)
]M

are two suitable functions satisfying

‖ψ0‖[ .Lp1 (∂�,w)]M + ‖ψ1‖[ .Lp1 (∂�,w)]M

≤ C
(
‖f ‖[Lp(∂�,w)]M + ‖g‖[ .Lp1 (∂�,w)]M

)
, (6.186)

for some constant C ∈ (0,∞) independent of f and g. In particular, u±
in (6.185) also satisfy (6.184).

Finally, for any given q ∈ (1,∞) and ω ∈ Aq(∂�, σ) (after possibly further
decreasing δ ∈ (0, 1) relative to q and [ω]Aq ) one has

Nκ(∇u+),Nκ(∇u−) ∈ Lq(∂�,ω)

⇐⇒ f ∈ [
Lq(∂�,ω)

]M
and g ∈ [ .

L
q

1(∂�,ω)
]M

, (6.187)

and if either of these conditions holds then

∥∥Nκ(∇u+)
∥∥
Lq(∂�,ω)

+ ∥∥Nκ(∇u−)
∥∥
Lq(∂�,ω)

≈ ‖f ‖[Lq(∂�,ω)]M + ‖g‖[ .Lq1 (∂�,ω)]M . (6.188)

(c) [Sharpness] Fix some transmission parameter η ∈ C\{−1}. Then even forL = 

and � = Rn+, if A /∈ Adis
L it may happen that the Transmission Problem (6.178)

fails to be solvable when p = 2 and w ≡ 1.
(d) [Well-Posedness for η = 1] In the case when

η = 1 and � is a two-sided NTA domain with an unbounded
Ahlfors regular boundary

(6.189)

the Transmission Problem (6.178) is solvable, and any two solutions of the
Transmission Problem (6.178) differ by a constant. Any solution is given by

u+ := D+
A,mod

g −S +
mod
f + c in �+,

u− := −D−
A,mod

g −S −
mod
f + c in �−,

(6.190)
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for some c ∈ CM , where the superscripts ± indicate that the modified layer
potentials are associated with the sets�± introduced in (6.177). In addition, any
solution satisfies (6.184).

A few clarifications pertaining to the nature of the above theorem are in order
here. First, Lemma 2.3 and definitions imply that

�− is a UR domain whose topological boundary actually coin-
cides with ∂�, and whose geometric measure theoretic boundary
agrees with that of � (hence, ∂(�−) = ∂� and ∂∗(�−) = ∂∗�);
also, the geometric measure theoretic outward unit normal to�−
is −ν at σ -a.e. point on ∂�.

(6.191)

In particular, this makes it meaningful to talk about the nontangential boundary

trace u−
∣∣κ−n.t.

∂�
, here understood as u−

∣∣κ−n.t.

∂(�−). Second, the existence of u±
∣∣κ−n.t.

∂�
at

σ -a.e. point on ∂� is an implicit demand in the formulation of the Transmission
Problem (6.178). Third, the conormal derivative ∂Aν u

+ is defined as in (3.66), while
in light of the last property in (6.191) we take ∂Aν u

− to be the opposite of (i.e.,−1
times) the conormal derivative operator from (3.66) for the domain �− acting on
the function u−, i.e.,

∂Aν u
− := −∂A(−ν)u−. (6.192)

Collectively, (2.576), (2.48), (3.66), and the Fatou-type result from Theorem 3.4
imply that the conormal derivatives ∂Aν u

± are well defined in the context of (6.178).
We now turn to the task of proving Theorem 6.15.

Proof of Theorem 6.15 As regards item (a), we need to address the issue of
uniqueness (modulo constants) in either of the scenarios specified in (6.179)–
(6.180), assuming that � is a δ-AR domain for some sufficiently small δ ∈ (0, 1).
In all cases, the goal is to show that

if u± solve the homogeneous version of the Transmission Prob-
lem (6.178) (corresponding to having f = 0 and g = 0) then
there exists a constant c ∈ CM with the property that u± = c in
�±.

(6.193)

Let us first justify (6.193) in the case when (6.179) holds. Suppose u± solve the
homogeneous version of the Transmission Problem (6.178). Assuming that � is a
δ-AR domain with δ ∈ (0, 1) sufficiently small, Theorem 2.3, Propositions 2.24,
2.22 (keeping in mind (2.576)), and the homogeneous version of the first boundary
condition in (6.178), to the effect that

u+
∣∣κ−n.t.

∂�
= u−

∣∣κ−n.t.

∂�
at σ -a.e. point on ∂�, (6.194)
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for each j, k ∈ {1, . . . , n}, allow us to write

νj

(
(∂ku

+)
∣∣κ−n.t.

∂�

)
− νk

(
(∂ju

+)
∣∣κ−n.t.

∂�

)
= ∂τjk

(
u+

∣∣κ−n.t.

∂�

)
(6.195)

= ∂τjk

(
u−

∣∣κ−n.t.

∂�

)
= νj

(
(∂ku

−)
∣∣κ−n.t.

∂�

)
− νk

(
(∂ju

−)
∣∣κ−n.t.

∂�

)

at σ -a.e. point on ∂�. In terms of the abbreviation introduced in (6.125) we agree
to recast this as

∂Tjku
+
α = ∂Tjku

−
α at σ -a.e. point on ∂�,

for each j, k ∈ {1, . . . , n} and α ∈ {1, . . . ,M}.
(6.196)

Also, from (6.62) (written for u+ and �+), (6.196), the fact that we are presently
assuming

∂Aν u
+ = η · ∂Aν u−, (6.197)

and (6.63) (written for u− and �−) we see that for each integer � ∈ {1, . . . , n} and
each γ ∈ {1, . . . ,M}, and each point x ∈ � we have

(∂�u
+
γ )(x) =

ˆ
∂�

aβαrs (∂rEγβ)(x − y)
(
∂T�s u

+
α

)
(y) dσ(y)

−
ˆ
∂�

(∂�Eγα)(x − y)
(
∂Aν u

+)
α
(y) dσ(y)

=
ˆ
∂�

aβαrs (∂rEγβ)(x − y)
(
∂T�s u

−
α

)
(y) dσ(y)

− η

ˆ
∂�

(∂�Eγα)(x − y)
(
∂Aν u

−)
α
(y) dσ(y)

= (1 − η)

ˆ
∂�

(∂�Eγα)(x − y)
(
∂Aν u

−)
α
(y) dσ(y). (6.198)

Granted this, the same type of argument which, starting with (6.83), has pro-
duced (6.88) presently yields

∂Aν u
+ = (1 − η)

(− 1
2I +K#

A�
)(
∂Aν u

−) (6.199)

which, given that we are currently assuming ∂Aν u
+ = η · ∂Aν u− (cf. (6.197)), further

implies
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(
− η+1

2 I + (1 − η)K#
A�

) (
∂Aν u

−) = 0. (6.200)

Since we are presently assuming A� ∈ Adis
L� and η ∈ C\{−1}, Theorem 4.8 ensures

(taking δ ∈ (0, 1) sufficiently small, to begin with) that − η+1
2 I + (1− η)K#

A� is an

invertible operator on
[
Lp(∂�,w)

]M . Together with (6.200) this forces

∂Aν u
− = 0. (6.201)

Going back with this in (6.198) then yields ∇u+ = 0 in �+. In concert with
Theorem 2.4 this goes to show that u+ is a constant in �+, say u+ ≡ c ∈ CM
in �+. Based on this and (6.194) we then conclude that

u−
∣∣κ−n.t.

∂�
= u+

∣∣κ−n.t.

∂�
= c at σ -a.e. point on ∂�, (6.202)

hence also

νj

(
(∂ku

−)
∣∣κ−n.t.

∂�

)
− νk

(
(∂ju

−)
∣∣κ−n.t.

∂�

)
= ∂τjk

(
u−

∣∣κ−n.t.

∂�

)
= 0 (6.203)

for each j, k ∈ {1, . . . , n} (cf. (6.195)). Keeping (6.201) and (6.203) in mind and
writing (6.62) for u− and �−, we then see that ∇u− = 0 in �−. By once again
relying on Theorem 2.4, we infer that u− is a constant in�−. In concert with (6.202)
this shows that u− ≡ c in �−, finishing the proof of (6.193) under the assumptions
made in (6.179).

Going further, the goal is to prove (6.193) when � is a δ-AR domain for
some sufficiently small δ ∈ (0, 1), under the assumptions made in (6.180). As
before, (6.194)–(6.196) and (6.197) are presently true. Also, from (6.62) (written
for u+ and �+), (6.196), (6.197), and (6.63) (written for u− and �−) we see that
for each pair of indices, � ∈ {1, . . . , n} and γ ∈ {1, . . . ,M}, and each point x ∈ �

we have

(∂�u
+
γ )(x) =

ˆ
∂�

aβαrs (∂rEγβ)(x − y)
(
∂T�s u

+
α

)
(y) dσ(y)

−
ˆ
∂�

(∂�Eγα)(x − y)
(
∂Aν u

+)
α
(y) dσ(y)

=
ˆ
∂�

aβαrs (∂rEγβ)(x − y)
(
∂T�s u

−
α

)
(y) dσ(y)

− η

ˆ
∂�

(∂�Eγα)(x − y)
(
∂Aν u

−)
α
(y) dσ(y)
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= (1 − η)

ˆ
∂�

aβαrs (∂rEγβ)(x − y)
(
∂T�s u

−
α

)
(y) dσ(y)

= (1 − η)

ˆ
∂�

aβαrs (∂rEγβ)(x − y)
(
∂T�s u

+
α

)
(y) dσ(y). (6.204)

Having established this, the same type of argument which, starting with (6.122), has
produced (6.130) currently gives (with the factor 1 − η absorbed in T )

∂Tt�u
+ = (1 − η)

( 1
2I +KA

)(
∂Tt�u

+)+ [
Mν, T

](
∂T u

+)

at σ -a.e. point on ∂�, for each t, � ∈ {1, . . . , n}.
(6.205)

Hence, for each t, � ∈ {1, . . . , n} we have

(
1+η

2

)
∂Tt�u

+ = (1 − η)KA

(
∂Tt�u

+)+ [
Mν, T

](
∂T u

+) on ∂�. (6.206)

Since η �= −1 and A ∈ Adis
L , much as in (6.131)–(6.134) this forces

∂Tt�u
+
α = 0 for each t, � ∈ {1, . . . , n} and α ∈ {1, . . . ,M} (6.207)

if δ ∈ (0, 1) is sufficiently small to begin with. Feeding this back into (6.204) then
proves that ∇u+ = 0 in �+, hence (cf. Theorem 2.4), u+ is a constant in �+, say

u+ ≡ c+ ∈ CM in �+. (6.208)

Based on this, (6.197), (6.195), and keeping in mind that η �= 0, we then obtain

∂Aν u
− = η−1 · ∂Aν u+ = 0 at σ -a.e. point on ∂�,

and ∂Tjku
−
α = 0 at σ -a.e. point on ∂�,

for each j, k ∈ {1, . . . , n} and α ∈ {1, . . . ,M}.
(6.209)

With this in hand, the integral representation formula (6.62) written for u− in �−,
then shows that ∇u− = 0 in �− thus, as before, the function u− is a constant in
�−, say u− = c− ∈ CM in �−. The final step is to invoke equality (6.194) to write

c+ = u+
∣∣κ−n.t.

∂�
= u−

∣∣κ−n.t.

∂�
= c−, which completes the proof of (6.193) under the

assumptions made in (6.180). This completes the treatment of item (a).
To deal with the claims in item (b), work under the assumptions made in (6.181),

i.e., A ∈ Adis
L , A� ∈ Adis

L� , and η ∈ C\{−1}. Then Theorems 4.8 and 4.11 ensure the
existence of some threshold δ ∈ (0, 1), whose nature is as specified in the statement
of the present theorem, such that if ‖ν‖[BMO(∂�,σ)]n < δ it follows that the operators
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− η+1
2 I + (η − 1)K#

A� :
[
Lp(∂�,w)

]M −→ [
Lp(∂�,w)

]M
, (6.210)

and

[
Smod

] : [Lp(∂�,w)]M −→ [ .
L
p

1 (∂�,w)/ ∼
]M

, (6.211)

are invertible. Assuming this is the case, it is meaningful to define u± as in (6.182)–
(6.183). In view of (6.191) and item (c) in Proposition 3.5 (used both for �+
and �−), these functions satisfy the first three conditions in (6.178), the estimates
claimed in (6.184), and we have (keeping (6.192) and (6.191) in mind)

∂Aν u
+ − η · ∂Aν u− = (− 1

2I +K#
A�

)
h0 +

(− 1
2I +K#

A�
)
h1

− η(−1)
(− 1

2I −K#
A�

)
h0

=
(
− η+1

2 I + (1 − η)K#
A�

)
h0 +

(− 1
2I +K#

A�
)
h1

= f − (− 1
2I +K#

A�
)
h1 +

(− 1
2I +K#

A�
)
h1

= f at σ -a.e. point on ∂�. (6.212)

Finally, thanks to (3.42)–(3.47), (2.575), and (6.191), we see that

u+
∣∣κ−n.t.

∂�
− u−

∣∣κ−n.t.

∂�
= Smodh0 + Smodh1 + c − Smodh0

= Smodh1 + c = g at σ -a.e. point on ∂�. (6.213)

Hence, the functions u± defined as in (6.182)–(6.183) solve the Transmission
Problem (6.178) and satisfy the estimates demanded in (6.184).

An alternative proof of the solvability of the Transmission Problem (6.178) in
the case when A ∈ Adis

L , A� ∈ Adis
L� , and η ∈ C \ {−1}, which now employs double

layers in the integral representation of the solution, goes as follows. First, item (2)
in Theorem 4.13 guarantees that the operator (4.392) is surjective. Together with the
Open Mapping Theorem this implies that, for some constant C ∈ (0,∞),

there exists k ∈ [ .
L
p

1 (∂�,w)
]M with ∂Aν (DA,modk) = f and such

that ‖k‖[ .Lp1 (∂�,w)]M ≤ C‖f ‖[Lp(∂�,w)]M . (6.214)

Also, since A ∈ Adis
L and η ∈ C \ {−1}, from Theorem 4.12 we see that

− η+1
2 I + (1 − η)

[
K

A,mod

] : [ .
L
p

1 (∂�,w)/ ∼
]M −→ [ .

L
p

1 (∂�,w)/ ∼
]M

(6.215)
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is an invertible operator. Consequently, there exists ψ1 ∈
[ .
L
p

1 (∂�,w)
]M such that

(− η+1
2 I + (1 − η)K

A,mod

)
ψ1 = g − ( 1

2I +K
A,mod

)
k − c (6.216)

for some constant c ∈ CM , and

‖ψ1‖[ .Lp1 (∂�,w)]M ≤ C

∥∥
∥g − ( 1

2I +K
A,mod

)
k

∥∥
∥[ .Lp1 (∂�,w)]M

(6.217)

for some constant C ∈ (0,∞) independent of f, g. To proceed, introduce

ψ0 := k − η · ψ1 ∈
[ .
L
p

1 (∂�,w)
]M (6.218)

and, finally, define the functions u± as in (6.185) for these choices of ψ0, ψ1, and
c. Then Theorem 3.5 gives that u± ∈ [

C∞(�±)
]M satisfy Lu± = 0 in �± and

Nκ(∇u±) ∈ Lp(∂�,w). Moreover,

u+
∣∣κ−n.t.

∂�
− u−

∣∣κ−n.t.

∂�
= ( 1

2I +K
A,mod

)
ψ0 + c − ( 1

2I −K
A,mod

)
ψ1

= ( 1
2I +K

A,mod

)
(k − η · ψ1)+ c − ( 1

2I −K
A,mod

)
ψ1

= ( 1
2I +K

A,mod

)
k + (− η+1

2 I + (1 − η)K
A,mod

)
ψ1 + c

= (g − c)+ c = g, (6.219)

by (6.185), (3.134), and (6.216) (keeping in mind (6.191)). In addition,

∂Aν u
+ − η · ∂Aν u− = (

∂Aν DA,mod

)
ψ0 + η

(
∂Aν DA,mod

)
ψ1

= (
∂Aν DA,mod

)
(ψ0 + η · ψ1) =

(
∂Aν DA,mod

)
k = f, (6.220)

thanks to (6.192), (3.135), and (6.214). This goes to show that (u+, u−) is, as
claimed, a solution of the Transmission Problem (6.178). Furthermore, the estimate
recorded in (6.186) is a consequence of (6.214), (6.217), (6.218), and Theorem 3.6.

At this stage, all claims pertaining to existence and estimates in item (b)
have been established. The fact that, in the current setting, any two solutions of
the Transmission Problem (6.178) differ by a constant is a consequence of the
assumptions in (6.181) and item (a). As regards additional integrability properties
for the solution of the Transmission Problem (6.178), the right-pointing implication
in (6.187) together with the right-pointing inequality in (6.188) are consequences
of (6.74) and the fact that we have
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|f | = ∣∣∂Aν u
+ − η · ∂Aν u−

∣∣ ≤ C
(
Nκ(∇u+)+Nκ(∇u−)

)

at σ − a.e. point on ∂�.
(6.221)

The left-pointing implication in (6.187) along with the left-pointing inequality in
(6.188) are seen from (7.290), (6.182), (4.342), Remarks 4.21, 4.22, Theorem 3.5,
and Proposition 3.5.

Let us now justify the claim made in item (c). Fix some arbitrary transmission
parameter η ∈ C \ {−1}. Also, pick a coefficient matrix A = (ajk)1≤j,k≤n ∈ Cn×n
whose entries satisfy

ajk + akj = 2δjk for each j, k ∈ {1, . . . , n}. (6.222)

This condition simply ensures that

 = ajk∂j ∂k. (6.223)

The goal is to show that we may choose a coefficient matrixA as above together with
some boundary datum f ∈ L2(Rn−1,Ln−1) such that the Transmission Problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u± ∈ C∞(Rn±),
u± = 0 in Rn±,
Nκ(∇u±) ∈ L2(Rn−1,Ln−1),

u+
∣
∣κ−n.t.

∂Rn+
− u−

∣
∣κ−n.t.

∂Rn−
= 0 at Ln−1-a.e. point on Rn−1,

∂Aν u
+ − η · ∂Aν u− = f at Ln−1-a.e. point on Rn−1

(6.224)

does not have a solution. To this end, observe that the first three conditions above
guarantee that there exists a function h ∈ L2(Rn−1,Ln−1) such that

u± = Smodh in Rn±. (6.225)

Indeed, if Ao := In×n, then the function fo := ∂
Ao
ν u+ − η · ∂Ao

ν u− belongs to
L2(Rn−1,Ln−1) and u± solve the Transmission problem (6.178) in the case when
L = , � = Rn+, p = 2, w ≡ 1, and corresponding to the boundary data
g := 0 and f := fo. Then what we have proved in item (b) (cf. (6.182)–(6.183))
implies (6.225). Granted (6.225), using the last boundary condition in (6.224) and
reasoning as in (6.212) shows that we have

f = ∂Aν u
+ − η · ∂Aν u− = (− 1

2I +K#
A�

)
h− η(−1)

(− 1
2I −K#

A�
)
h

=
(
− η+1

2 I + (1 − η)K#
A�

)
h at Ln−1-a.e. point on Rn−1. (6.226)
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Thus, in order for the Transmission Problem (6.224) to be solvable, f must
necessarily be in the range of the operator η+1

2(η−1) I+K#
A� acting onL2(Rn−1,Ln−1).

As such, in order to find an example for which the Transmission Problem (6.224)
may not be solvable for arbitrary boundary data f in L2(Rn−1,Ln−1), it suffices
to produce an example of a coefficient matrix A = (ajk)1≤j,k≤n ∈ Cn×n whose
entries satisfy (6.222) for which the operator η+1

2(η−1) I + K#
A� fails to be surjective

on L2(Rn−1,Ln−1). In this regard, first note that, straight from definitions, for any
function φ ∈ L2(Rn−1,Ln−1) we have

(
K#
A�φ

)
(x′) = lim

ε→0+

ˆ

y′∈Rn−1

|x′−y′|>ε

ajn(∂jE)(x
′ − y′, 0)φ(y′) dy′

= 1

2

n−1∑

j=1

ajn(Rjφ)(x
′) at Ln−1-a.e. x′ ∈ Rn−1, (6.227)

where E is the standard fundamental solution for the Laplacian (cf. (3.404)), and
where Rj is the j -th Riesz transform in Rn−1. In view of this, we may reformulate
our goal as the task of finding a coefficient matrix A = (ajk)1≤j,k≤n ∈ Cn×n whose
entries satisfy (6.222) for which the operator

T := η + 1

η − 1
I +

n−1∑

j=1

ajnRj (6.228)

fails to be surjective on L2(Rn−1,Ln−1). Bring in the Fourier transform F′ in Rn−1.
Since, as is well known (see, e.g., [102, (4.9.15), p. 183]), for each given function
φ ∈ L2(Rn−1,Ln−1) and each j ∈ {1, . . . , n− 1} we have

F′
(
Rjφ

)
(ξ ′) = (−i)

ξj

|ξ ′|
(
F′φ

)
(ξ ′), ξ ′ ∈ Rn−1 \ {0}, (6.229)

it follows that

F′
(
T φ

) = mF′φ for each φ ∈ L2(Rn−1,Ln−1), (6.230)

where, for each xi′ = (ξ1, . . . , ξn−1) ∈ Rn−1 \ {0}, we have set

m(ξ ′) := η + 1

η − 1
+ (−i)

n−1∑

j=1

ajnξj

|ξ ′| . (6.231)
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Thanks to (6.230) and Plancherel’s theorem, the operator T is surjective if and only
if m only vanishes of a set of Lebesgue measure zero in Rn−1 and 1/m is essentially
bounded in Rn−1. To prevent T from being surjective, it therefore suffices to choose
A so thatm vanishes somewhere inRn−1\{0}. For example, this is the case whenever

A = In×n + C with C = (cjk)1≤j,k≤n ∈ Cn×n
satisfying C� = −C as well as (cjn)1≤j≤n−1 ∈ i Sn−2.

(6.232)

In particular, this precludes A from being the identity, hence from being a
distinguished coefficient tensor for the Laplacian. Ultimately, the conclusion is that,
even for L =  and � = Rn+, if A /∈ Adis

L then the Transmission Problem (6.178)
may fail to be solvable when p = 2 and w ≡ 1. This concludes the treatment of
item (c).

To deal with the claims in item (d), suppose for the remainder of the proof that
η = 1 and that � is a two-sided NTA domain with an unbounded Ahlfors regular
boundary. Consider u± defined as in (6.190). Since we are presently assuming that
� is a UR domain, from Theorem 3.5 and item (c) in Proposition 3.5 we see that
u± ∈ [

C∞(�±)
]M satisfy Lu± = 0 in �± as well as Nκ(∇u±) ∈ Lp(∂�,w). In

addition,

u+
∣∣κ−n.t.

∂�
− u−

∣∣κ−n.t.

∂�
= ( 1

2I +K
A,mod

)
g − S

A,modf

− (− 1
2I +K

A,mod

)
g + S

A,modf = g, (6.233)

by (3.134) and (3.47) (also keeping in mind (2.575)). Also,

∂Aν u
+ − ∂Aν u

− = (
∂Aν DA,mod

)
g − (− 1

2I +K#
A�

)
f

− (
∂Aν DA,mod

)
g + ( 1

2I +K#
A�

)
f = f, (6.234)

thanks to (6.192), (3.126), and (3.135). The conclusion is that (u+, u−) is indeed a
solution of the Transmission Problem (6.178).

Let us next justify (6.193) in the case when (6.189) holds (hence η = 1 and� is a
two-sided NTA domain with an unbounded Ahlfors regular boundary). To this end,
assume u± solve the homogeneous version of the Transmission Problem (6.178)
formulated with η = 1. The off-diagonal Carleson measure estimate of reverse
Hölder type from Proposition 2.5 ensures the existence of a constant C ∈ (0,∞)

with the property that for every point x ∈ ∂� and every radius r ∈ (0,∞) we have

(  
�±∩B(x,r)

|∇u±| np
n−1 dLn

) n−1
np ≤ C

(  
∂�∩B(x,Cr)

(
Nκ(∇u±)

)p dσ
) 1
p
.

(6.235)



6.4 The Transmission Problem in Weighted Lebesgue Spaces 423

In concert with (2.525), this permits us to estimate

( 
�±∩B(x,r)

|∇u±| np
n−1 dLn

) n−1
np ≤ C[w]1/pAp

(  
∂�∩B(x,Cr)

(
Nκ(∇u±)

)p dw
) 1
p

≤
C[w]1/pAp

w
(
∂� ∩ B(x,Cr)) 1

p

· ∥∥Nκ(∇u±)
∥∥
Lp(∂�,w)

(6.236)

for every x ∈ ∂� and every r ∈ (0,∞); in particular,

∇u± ∈ [
Lnp/(n−1)(�± ∩ B(x, r),Ln)

]M·n

for each x ∈ ∂� and r ∈ (0,∞).
(6.237)

Likewise, from Proposition 2.5 and (2.525) we see that there exists some constant
C ∈ (0,∞) such that for every point x ∈ ∂� and every radius r ∈ (0,∞) we have

(  
�±∩B(x,r)

|u±| np
n−1 dLn

) n−1
np

≤ C[w]1/pAp

(  
∂�∩B(x,Cr)

(
NCr
κ u±

)p dw
) 1
p
< +∞, (6.238)

since (cf. (6.178) and (6.74))

NCr
κ u ∈ L

p

loc(∂�,w). (6.239)

In particular,

u± ∈ [
Lnp/(n−1)(�± ∩ B(x, r),Ln)

]M

for each x ∈ ∂� and r ∈ (0,∞).
(6.240)

Also, if we consider the function defined Ln-a.e. in Rn as

u :=
{
u+ in �+,

u− in �−,
(6.241)

then u is Ln-measurable and (6.238) implies that

u ∈ [
L
np/(n−1)
loc (Rn,Ln)

]M
↪→ [

L1
loc(R

n,Ln)
]M

. (6.242)
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Let (ν1, . . . , νn) denote the scalar components of the geometric measure theoretic
outward unit normal ν to �. Then for each index j ∈ {1, . . . , n} and each vector-
valued test function ϕ ∈ [

C∞
0 (Rn)

]M , we may compute (with the first two pairings
considered in the sense of distributions in Rn)

〈∂ju, ϕ〉 = −〈u, ∂jϕ〉 = −
ˆ
R
n
〈u, ∂jϕ〉 dLn

= −
ˆ
�+
〈u+, ∂jϕ〉 dLn −

ˆ
�−
〈u−, ∂jϕ〉 dLn

=
ˆ
�+
〈∂ju+, ϕ〉 dLn −

ˆ
∂�

νj
〈(
u+

∣∣κ−n.t.

∂�

)
, ϕ

〉
dσ

+
ˆ
�−
〈∂ju−, ϕ〉 dLn +

ˆ
∂�

νj
〈(
u−

∣∣κ−n.t.

∂�

)
, ϕ

〉
dσ

=
ˆ
�+
〈∂ju+, ϕ〉 dLn +

ˆ
�−
〈∂ju−, ϕ〉 dLn. (6.243)

Above, the fourth equality is provided by the integration by parts formula proved
in [111, §1.7], whose present applicability is ensured by (6.178), (6.74), (6.237),
(6.240), and the fact that (6.239) together with (2.576) imply

NCr
κ u ∈ L1

loc(∂�, σ) for each r ∈ (0,∞). (6.244)

Also, the last equality in (6.243) uses (6.191) and the fact that we are currently

assuming u+
∣∣κ−n.t.

∂�
= u−

∣∣κ−n.t.

∂�
. In turn, from (6.243) and (6.237) we conclude that,

with the derivatives computed in the sense of distributions, for each j ∈ {1, . . . , n}
we have

∂ju ∈
[
L
np/(n−1)
loc (Rn,Ln)

]M (6.245)

and, in fact,

∂ju =
{
∂ju

+ in �+,

∂ju
− in �−.

(6.246)

Moreover, combining (6.246) with (6.236) shows that there exists some constant
C ∈ (0,∞) with the property that for every x ∈ ∂� and every r ∈ (0,∞) we have
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(  
B(x,r)

|∇u| np
n−1 dLn

) n−1
np

≤ C
(  

�+∩B(x,r)
|∇u+| np

n−1 dLn
) n−1

np

+ C
(  

�−∩B(x,r)
|∇u−| np

n−1 dLn
) n−1

np
(6.247)

≤
C[w]1/pAp

w
(
∂� ∩ B(x,Cr)) 1

p

(∥
∥Nκ(∇u+)

∥
∥
Lp(∂�,w)

+ ∥
∥Nκ(∇u−)

∥
∥
Lp(∂�,w)

)
.

To proceed, consider now an arbitrary point x ∈ Rn and pick some x∗ ∈ ∂� such
that dist(x, ∂�) = |x − x∗|. Since B(x, r) ⊆ B(x∗, 2r) for each r > dist(x, ∂�),
we conclude from (6.247) that there exists C ∈ (0,∞) such that

( 
B(x,r)

|∇u| np
n−1 dLn

) n−1
np

≤ C
(  

B(x∗,2r)
|∇u| np

n−1 dLn
) n−1

np
(6.248)

≤
C[w]1/pAp

w
(
∂� ∩ B(x∗, Cr)

) 1
p

(∥∥Nκ(∇u+)
∥∥
Lp(∂�,w)

+ ∥∥Nκ(∇u−)
∥∥
Lp(∂�,w)

)

for every point x ∈ Rn and every radius r > dist(x, ∂�), where x∗ ∈ ∂� is such
that dist(x, ∂�) = |x − x∗|.

We next claim that

Lu = 0 in the sense of distributions in Rn. (6.249)

To justify this, pick an arbitrary vector-valued test function ϕ ∈ [
C∞

0 (Rn)
]M and

write (with the first two pairings considered in the sense of distributions in Rn)

〈Lu, ϕ〉 = 〈u,L�ϕ〉 =
ˆ
R
n
〈u,L�ϕ〉 dLn

=
ˆ
�+
〈u+, L�ϕ〉 dLn +

ˆ
�−
〈u−, L�ϕ〉 dLn
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=
ˆ
�+
〈Lu+, ϕ〉 dLn +

ˆ
∂�

〈
u+

∣∣κ−n.t.

∂�
, ∂A

�
ν ϕ

〉
dσ −

ˆ
∂�

〈
∂Aν u

+, ϕ
〉
dσ

+
ˆ
�−
〈Lu−, ϕ〉 dLn −

ˆ
∂�

〈
u−

∣∣κ−n.t.

∂�
, ∂A

�
ν ϕ

〉
dσ +

ˆ
∂�

〈
∂Aν u

−, ϕ
〉
dσ

= 0. (6.250)

The fourth equality in (6.250) is a consequence of the Green type formula for
second-order systems established in [113, §1.7], whose present applicability is guar-
anteed by (6.178), (6.74), Theorem 3.4, (6.237), (6.240), and the fact that (6.239)
together with (2.576) entail

Nκ(∇u) ∈ L1
loc(∂�, σ) and NCr

κ u ∈ L1
loc(∂�, σ) for all r ∈ (0,∞).

(6.251)
In addition, the last equality in (6.250) uses (6.178), (6.191), plus the fact that we

are now assuming u+
∣∣κ−n.t.

∂�
= u−

∣∣κ−n.t.

∂�
and ∂Aν u

+ = ∂Aν u
−. This establishes (6.250)

which, in turn, proves (6.249).
As a consequence of (6.249) and elliptic regularity, u ∈ [

C∞(Rn)
]M . In

particular, for each index j ∈ {1, . . . , n} we have ∂ju ∈ [
C∞(Rn)

]M as well as
L(∂ju) = ∂j (Lu) = 0, since L has constant coefficients. Bearing this in mind,
interior estimates for weakly elliptic systems proved in [102, Theorem 11.12, p. 415]
give

|(∇u)(x)| ≤ C
(  

B(x,r)

|∇u| np
n−1 dLn

) n−1
np

(6.252)

for every point x ∈ Rn and every radius r ∈ (0,∞). Together with (6.248) this
implies

|(∇u)(x)| (6.253)

≤
C[w]1/pAp

w
(
∂� ∩ B(x∗, Cr)

) 1
p

(∥∥Nκ(∇u+)
∥∥
Lp(∂�,w)

+ ∥∥Nκ(∇u−)
∥∥
Lp(∂�,w)

)

for every point x ∈ Rn and every radius r > dist(x, ∂�), where x∗ ∈ ∂� is such
that dist(x, ∂�) = |x − x∗|. At this stage, upon recalling (2.540) and the fact that
Nκ(∇u±) ∈ Lp(∂�,w) (cf. (6.178)), after passing to limit r → ∞ in (6.253) we
arrive at the conclusion that

(∇u)(x) = 0 for each point x ∈ Rn. (6.254)
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Hence, u is constant in Rn, from which (6.193) readily follows on account
of (6.241). This finishes the proof of (6.193) under the assumption made in (6.189).

The proof of Theorem 6.15 is therefore complete. � 
We continue by making a series of remarks aimed at further exploring the nature

of Theorem 6.15.

Remark 6.11 In various special circumstances, the statement of Theorem 6.15 may
be further streamlined. For example, Theorem 3.8 gives that if the system L actually
satisfies the strong Legendre–Hadamard ellipticity condition then in place of either
set of conditions specified in (6.179), (6.180), (6.181) we may simply assume

A ∈ Adis
L and η ∈ C \ {−1}. (6.255)

Also, if n ≥ 3, M = 1, and the matrix A ∈ AL is symmetric then, thanks to (3.223),
either set of conditions specified in (6.179), (6.180), (6.255) may simply be replaced
by just the demand that η ∈ C \ {−1}.

Remark 6.12 There is another boundary value problem, closely related to the
Transmission Problem (6.178), in which the transmission parameter shows up in
the formulation of the Dirichlet boundary condition (as opposed to the Neumann
boundary condition, as was the case in (6.178)). Specifically, retaining the back-
ground assumptions made in Theorem 6.15 now consider

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u± ∈ [
C∞(�±)

]M
,

Lu± = 0 in �±,
Nκ(∇u±) ∈ Lp(∂�,w),

u+
∣∣κ−n.t.

∂�
− η · u−∣∣κ−n.t.

∂�
= g ∈ [ .

L
p

1 (∂�,w)
]M

,

∂Aν u
+ − ∂Aν u

− = f ∈ [
Lp(∂�,w)

]M
.

(6.256)

When η �= 0, working with the functions v+ := u+ in �+ and v− := η · u− in
�−, matters are readily reduced to the “standard” Transmission Problem (6.178)
written with η−1 in place of η. When η = 0 it follows that (6.256) decouples into
a Homogeneous Regularity Problem for the function u+ in �+, and a Neumann
Problem for the function u− in �− with boundary datum ∂Aν u

+ − f . In particular,
we have solvability results for (6.256) which are similar to those in Theorem 6.15.

Remark 6.13 Much as in the case of the Tangential Derivative Problem (6.97), we
may re-fashion the Transmission Problem (6.178) as
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u± ∈ [
C∞(�±)

]M
,

Lu± = 0 in �±,
Nκ(∇u±) ∈ Lp(∂�,w),
{
νj

(
(∂ku

+)
∣
∣κ−n.t.

∂�

)
− νk

(
(∂ju

+)
∣
∣κ−n.t.

∂�

)}

−
{
νj

(
(∂ku

−)
∣∣κ−n.t.

∂�

)
− νk

(
(∂ju

−)
∣∣κ−n.t.

∂�

)}
= ∂τjk g,

at σ − a.e. point on ∂�, for each j, k ∈ {1, . . . , n},
∂Aν u

+ − η · ∂Aν u− = f ∈ [
Lp(∂�,w)

]M
,

(6.257)

where the function g is arbitrarily specified in
[ .
L
p

1 (∂�,w)
]M , the homogeneous

Muckenhoupt weighted boundary Sobolev space defined in (2.598). For this
boundary value problem, similar results as in Theorem 6.15 continue to be valid.

Remark 6.14 Under the same background assumptions made in Theorem 6.15
(and with the same conventions adopted there), it is of interest to single out the
special case corresponding to having g = 0 in (6.178), i.e., consider the following
Reduced Transmission Problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u± ∈ [
C∞(�±)

]M
,

Lu± = 0 in �±,
Nκ(∇u±) ∈ Lp(∂�,w),

u+
∣∣κ−n.t.

∂�
= u−

∣∣κ−n.t.

∂�
at σ -a.e. point on ∂�,

∂Aν u
+ − η · ∂Aν u− = f ∈ [

Lp(∂�,w)
]M

.

(6.258)

Running the same argument as in the proof of Theorem 6.15, this time we no
longer need to assume that the operator in (6.211) is an isomorphism, ultimately
allows us to impose lighter demands on the nature of the systemL and the coefficient
tensor A. Specifically, now working under the sole assumption that A� ∈ Adis

L� and
η ∈ C \ {−1}, the same proof as before shows that there exists δ ∈ (0, 1) which
depends only on n, p, [w]Ap , A, η, and the Ahlfors regularity constant of ∂� such
that if ‖ν‖[BMO(∂�,σ)]n < δ (hence the set � is a δ-AR domain) then the operator

− η+1
2 I + (1 − η)K#

A� is invertible on the Muckenhoupt weighted Lebesgue space
[
Lp(∂�,w)

]M and the functions u± : �± → CM defined as

u±(x) :=
(
Smod

(
− η+1

2 I + (1 − η)K#
A�

)−1
f
)
(x) for x ∈ �± (6.259)
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solve the Reduced Transmission Problem formulated in (6.258) and satisfy, for some
constant C ∈ (0,∞) independent of f ,

∥
∥Nκ(∇u±)

∥
∥
Lp(∂�,w)

≤ C‖f ‖[Lp(∂�,w)]M . (6.260)

Moreover, the result established in item (a) of Theorem 6.15 working under
the hypotheses in (6.179) gives uniqueness (modulo constants) for the Reduced
Transmission Problem (6.258). Hence, well posedness follows by simply assuming
that A� ∈ Adis

L� .

Remark 6.15 Once again, for familiar reasons, a similar solvability result to the one
established in Theorem 6.15 turns out to be true for the Transmission Problem with
data in Lorentz spaces, i.e., for

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u± ∈ [
C∞(�±)

]M
,

Lu± = 0 in �±,
Nκ(∇u±) ∈ Lp,q(∂�, σ),

u+
∣∣κ−n.t.

∂�
− u−

∣∣κ−n.t.

∂�
= g ∈ [ .

L
p,q

1 (∂�, σ)
]M

,

∂Aν u
+ − η · ∂Aν u− = f ∈ [

Lp,q(∂�, σ)
]M

,

(6.261)

with p ∈ (1,∞) and q ∈ (0,∞], where
.
L
p,q

1 (∂�, σ) is the Lorentz-based
homogeneous Sobolev space defined in an analogous fashion to (2.598). The reader
is referred to Theorem 7.23 (and also Examples 8.2, 8.6) for more general results of
this type.

Remark 6.16 Thanks to (3.228)–(3.229), Theorem 6.15 is applicable to the Lamé
system Lμ,λ = μ+ (λ+μ)∇div in Rn with n ≥ 2, assuming μ �= 0, 2μ+λ �= 0,
3μ+λ �= 0, provided we work with the coefficient tensor A(ζ ) defined as in (3.226)
for the choice ζ = μ(μ+λ)

3μ+λ . In addition, when n = 2, we may rely on the invertibility
result from Theorem 4.14 (and duality) to conclude that the transmission boundary
problem for the two-dimensional Lamé system in sufficiently flat Ahlfors regular
domains in the plane is solvable when formulated in a similar fashion to (6.178)
with A := A(ζ ) and η ∈ C \ {±1}, for a larger range of ζ ’s, namely

ζ ∈ C \
{
± η + 1

η − 1

[2μ(2μ+ λ)

3μ+ λ

]
+ μ(μ+ λ)

3μ+ λ

}
. (6.262)

Remark 6.17 The case of the Transmission Problem for the Laplacian in upper-
graph Lipschitz domains in Rn, with n ≥ 2 arbitrary, has been treated in [46]. In the
two-dimensional setting, for L =  the Laplacian and � an infinite sector in the
plane, counterexamples to the well-posedness of the Transmission Problem (6.178)
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for certain values of p (related to the aperture of � and the transmission parameter
appearing in the formulation of the problem) have been given in [105].

Remark 6.18 It is of interest to observe that

lack of uniqueness (modulo constants) for the Homogeneous
Regularity Problem for the system L in �− (cf. (6.64)) implies
lack of uniqueness (modulo constants) for the Transmission
Problem (6.178) in the case when η = 0.

(6.263)

Indeed, if u− is such that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u− ∈ [
C∞(�−)

]M
,

Lu− = 0 in �−,
Nκ(∇u−) ∈ Lp(∂�,w),

u−
∣∣κ−n.t.

∂�
= c at σ -a.e. point on ∂�,

(6.264)

for some constant c ∈ CM , then setting u+ := c in �+ yields a pair (u+, u−) which
is a null-solution of the Transmission Problem (6.178) formulated for η = 0.

There are two scenarios under which uniqueness (modulo constants) for the
Transmission Problem (6.178) has been established in item (a) of Theorem 6.15.
First, it was assumed that (6.179) holds and, in this case, condition Adis

L� �= ∅ alone
ensures uniqueness (modulo constants) for the Homogeneous Regularity Problem
for the system L in �−, as noted in item (b) of Theorem 6.8. Second, when (6.180)
is assumed, in principle it may happen that the Homogeneous Regularity Problem
for the system L in �− lacks uniqueness (modulo constants). However, this time (as
opposed to (6.179)), we are asking that η �= 0, so the issue singled out in (6.263)
becomes a moot point. This is a heuristic explanation of the perceived asymmetry
in the manner in which the sets of hypotheses (6.179) and (6.180) have been
formulated.

It is possible to enhance the solvability result from Theorem 6.15 via perturba-
tions, and our next theorem elaborates on this aspect.

Theorem 6.16 Retain the original background assumptions on the set � from
Theorem 6.15 and, as before, fix an integrability exponent p ∈ (1,∞) along with a
Muckenhoupt weight w ∈ Ap(∂�, σ) and a transmission parameter η ∈ C \ {−1}.
Consider a system Lo ∈ Ldis with L�o ∈ Ldis (cf. (3.195)), and fix some Ao ∈ Adis

Lo
.

Then there exist a threshold δ ∈ (0, 1) and an open neighborhood U of Ao in
A, both of which depend only on n, η, p, [w]Ap , Ao, and the Ahlfors regularity
constant of ∂�, with the property that if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR
domain) then for each coefficient tensor A ∈ U the Transmission Problem (6.178)
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formulated for the system LA (cf. (3.7)) and the conormal derivative associated
with A (cf. (3.66)) is actually solvable, and any two solutions differ by a constant
from CM .

Proof This is seen by reasoning as in the proofs of Theorems 6.4 and 6.15, keeping
in mind Theorem 3.9. � 

We may also establish solvability results for the version of the Reduced
Transmission Problem (6.258) now formulated for boundary data belonging to sums
of Muckenhoupt weighted Lebesgue spaces.

Theorem 6.17 Let � ⊆ Rn be a UR domain. Abbreviate σ := Hn−1�∂� and
fix an aperture parameter κ > 0. Also, pick a pair of integrability exponents
p0, p1 ∈ (1,∞) along with a pair of Muckenhoupt weights w0 ∈ Ap0(∂�, σ)

and w1 ∈ Ap1(∂�, σ). Finally, consider a homogeneous, second-order, constant
complex coefficient, M × M weakly elliptic system L in Rn, and select some
coefficient tensor A ∈ AL.

Then similar results, concerning existence, integral representation formulas, esti-
mates, additional integrability properties, and well-posedness, as in Theorem 6.15,
are valid for the Reduced Transmission Problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u± ∈ [
C∞(�±)

]M
,

Lu± = 0 in �±,
Nκ(∇u±) ∈ Lp0(∂�,w0)+ Lp1(∂�,w1),

u+
∣∣κ−n.t.

∂�
= u−

∣∣κ−n.t.

∂�
at σ -a.e. point on ∂�,

∂Aν u
+ − η · ∂Aν u− = f ∈ [

Lp0(∂�,w0)+ Lp1(∂�,w1)
]M

.

(6.265)

Proof Existence, estimates, and an integral representation formula are all estab-
lished reasoning as in the proof of Theorem 6.15, using the fact that the operator
− η+1

2 I + (1 − η)K#
A� is invertible on the space

[
Lp0(∂�,w0) + Lp1(∂�,w1)

]M

under the assumption made in item (b) of Theorem 6.15 (see Proposition 4.2). For
uniqueness (modulo constants), we reason much as in the treatment of item (a)
in Theorem 6.15, working under the hypotheses in (6.179). Specifically, (6.194)–
(6.200) goes through since Lp0(∂�,w0) + Lp1(∂�,w1) embeds into the space
L1

(
∂�,

σ(x)

1+|x|n−1

)
(cf. (2.575)), and then (4.336) used in concert with (6.200) gives

(6.201). The rest is as before, and the conclusion is that any null-solution of (6.265)
is a pair of identical constants. � 



Chapter 7
Singular Integrals and Boundary
Problems in Morrey and Block Spaces

The spaces which bear the name of Morrey have been introduced by C. Morrey in
1930s in relation to regularity problems for solutions to partial differential equations
in the Euclidean setting. Membership of a function to a Morrey space amounts to
a bound on the size of the Lp-integral average of said function over an arbitrary
ball in terms of a fixed power of its radius. Since these are all measure-metric
considerations, this brand of space naturally adapts to the more general setting
of spaces of homogeneous type. Here we are concerned with the scale of Morrey
spaces when the ambient is the boundary of a uniformly rectifiable domain � ⊆ Rn.
We make use of the Calderón–Zygmund theory for singular integral operators acting
on Morrey spaces in such a setting as a platform that allows us to build in the
direction of solving boundary value problems for weakly elliptic systems in δ-AR
domains with boundary data in Morrey spaces (and their pre-duals).

7.1 Boundary Layer Potentials on Morrey and Block Spaces

The material in this section closely follows [113, §2.6]. We begin by discussing the
scale of Morrey spaces on Ahlfors regular sets. To set the stage, assume � ⊆ Rn
(where, as in the past, n ∈ N with n ≥ 2) is a closed Ahlfors regular set, and
abbreviate σ := Hn−1��. Given p ∈ (0,∞) and λ ∈ (0, n− 1), we then define the
Morrey spaceMp,λ(�, σ) as

Mp,λ(�, σ) :=
{
f : � → C : f is σ -measurable and ‖f ‖Mp,λ(�,σ) < +∞

}
,

(7.1)

where, for each σ -measurable function f on �, we have set
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‖f ‖Mp,λ(�,σ) := sup
x∈� and

0<R<2 diam(�)

{
R
n−1−λ

p
(  

�∩B(x,R)
|f |p dσ

) 1
p

}
. (7.2)

The space Mp,λ(�, σ) is complete, hence Banach (though not separable) when
equipped with the norm (7.2), and (cf. [112, §6.2] for a proof)

Mp,λ(�, σ) ↪→ L
p

loc(�, σ ) ∩ L1
(
�,

σ(x)

1 + |x|n−1−ε
)

if p ∈ [1,∞), λ ∈ (0, n− 1), and 0 ≤ ε < n−1−λ
p

.

(7.3)

As may be seen from (7.1)–(7.2) and Hölder’s inequality, we also have

Ls(�, σ) ↪→ Mp,λ(�, σ) continuously, with s := p(n−1)
n−1−λ ∈ (p,∞). (7.4)

In particular, there exists some C ∈ (0,∞) which depends only on n, p, λ, and the
Ahlfors regularity constant of �, with the property that for each σ -measurable set
E ⊆ � we have

∥∥1E
∥∥
Mp,λ(�,σ)

≤ C
∥∥1E

∥∥
Ls(�,σ)

= C · σ(E)(n−1−λ)/[p(n−1)]. (7.5)

As a consequence, 1E belongs to Mp,λ(�, σ) whenever E ⊆ � is a σ -measurable
set with σ(E) < +∞. Other examples of functions belonging to Morrey spaces are
presented below (see [112, §6.2]).

Example 7.1 Let �, σ be as above, and for each fixed point xo ∈ � consider the
function fxo : � → R defined for each x ∈ �\{xo} as fxo(x) := |x−xo|−(n−1−λ)/p.
Then each fxo belongs to the Morrey space Mp,λ(�, σ) and, in fact,

sup
xo∈�

‖fxo‖Mp,λ(�,σ) < +∞. (7.6)

This being said, each fxo fails to be in Ls(�, σ) with s := p(n−1)
n−1−λ , so the inclusion

in (7.4) is strict.

In view of (7.4) it is of interest to define the space

M̊p,λ(�, σ ) := the closure of Ls(�, σ) with s := p(n−1)
n−1−λ in Mp,λ(�, σ).

(7.7)

Hence, by design,

M̊p,λ(�, σ ) is a closed linear subspace of Mp,λ(�, σ)

such that Ls(�, σ) ↪→ M̊p,λ(�, σ ) continuously and
densely.

(7.8)
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Thus, when equipped with the norm inherited from the larger ambient Mp,λ(�, σ),
the space M̊p,λ(�, σ ) is complete (hence Banach). As a consequence of (7.8)
and (2.508) we also see that

the space M̊p,λ(�, σ ) is separable. (7.9)

As noted in [112, §6.2],

the operator of pointwise multiplication by any given func-
tion b ∈ L∞(�, σ ) is a bounded mapping from the space
M̊p,λ(�, σ ) into itself, with operator norm ≤ ‖b‖L∞(�,σ),

(7.10)

and

if f, g : � → C are two σ -measurable functions with the prop-

erty that |g| ≤ |f | at σ -a.e. point on � and f ∈ M̊
p,λ

(�, σ ),

then g also belongs to the space M̊
p,λ

(�, σ ).

(7.11)

In relation to the space introduced in (7.7), we also wish to remark that since
Lipcomp(�) (the space of Lipschitz functions with compact support on �) is dense
in Ls(�, σ) and since, according to (7.4), the latter space embeds continuously into
Mp,λ(�, σ), we have

M̊p,λ(�, σ ) = the closure of Lipcomp(�) in Mp,λ(�, σ). (7.12)

An immediate corollary of the latter description of the space M̊p,λ(�, σ ) worth
mentioning is that functions f belonging to M̊p,λ(�, σ ) enjoy the “vanishing”
property

lim
ρ→0+

sup
x∈� and
R∈(0,ρ)

{
R
n−1−λ

p
(  

�∩B(x,R)
|f |p dσ

) 1
p

}
= 0. (7.13)

As such, it is natural to refer to M̊p,λ(�, σ ) as being a vanishing Morrey
space.

The topic addressed next pertains to the pre-duals of Morrey spaces, and the
duals of vanishing Morrey spaces. Continue to assume that � ⊆ Rn is a closed
Ahlfors regular set and define σ := Hn−1��. To set the stage, given an integrability
exponent q ∈ (1,∞) and a parameter λ ∈ (0, n − 1), a function b ∈ Lq(�, σ) is
said to be a Bq,λ-block on � (or, simply, a block) provided there exist some point
xo ∈ � and some radius R ∈ (

0, 2 diam(�)
)

such that

supp b ⊆ B(xo, R) ∩� and ‖b‖Lq(�,σ) ≤ R
λ
( 1
q
−1

)
. (7.14)
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With r := q(n−1)
n−1+λ(q−1) ∈ (1, q) we then define the block space

Bq,λ(�, σ ) :=
{
f ∈ Lr(�, σ) : there exist a numerical sequence (7.15)

{λj }j∈N ∈ �1(N) and a family {bj }j∈N

of Bq,λ-blocks on � with f =
∞∑

j=1

λjbj in Lr(�, σ)
}
,

and for each f ∈ Bq,λ(�, σ ) define

‖f ‖Bq,λ(�,σ) := inf
{ ∞∑

j=1

|λj | : f =
∞∑

j=1

λjbj in Lr(�, σ) with (7.16)

{λj }j∈N ∈ �1(N) and each bj a Bq,λ-block on �
}
.

Work in [112, §6.2] gives that

(
Bq,λ(�, σ ) , ‖ · ‖Bq,λ(�,σ)

)
is a separable Banach space,

and Bq,λ(�, σ ) ↪→ Lr(�, σ) with r := q(n−1)
n−1+λ(q−1) ∈ (1, q)

(7.17)

and

the operator of pointwise multiplication by any given function
b ∈ L∞(�, σ ) is a linear and bounded mapping from the space
Bq,λ(�, σ ) into itself, with operator norm ≤ ‖b‖L∞(�,σ).

(7.18)

Note that the latter property further implies that

if f, g : � −→ C are two σ -measurable functions such that
|g| ≤ |f | at σ -a.e. point on � and f ∈ Bq,λ(�, σ ), then we
have g ∈ Bq,λ(�, σ ) as well as ‖g‖Bq,λ(�,σ) ≤ ‖f ‖Bq,λ(�,σ).

(7.19)

Examples of functions in the block space (7.15) may be produced using the
following result from [112, §6.2].

Proposition 7.1 Assume � ⊆ Rn is a closed Ahlfors regular set and abbreviate
σ := Hn−1��. Also, fix an exponent q ∈ (1,∞) along with λ ∈ (0, n − 1). Then
for each a > λ one has the continuous and dense embedding

Lq
(
�, (1 + |x|)a(q−1)σ (x)

)
↪→ Bq,λ(�, σ ). (7.20)
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In particular,

ifN >
λ(q−1)+n−1

q
and fN(x) := (1+|x|)−N for x ∈ �,

then the function fN belongs to the space Bq,λ(�, σ ).
(7.21)

Our primary interest in the space (7.15) stems from the fact that this turns out to
be the pre-dual of a Morrey space. In turn, vanishing Morrey spaces are pre-duals
of block spaces. Specifically, we have the following result proved in [112, §6.2].

Proposition 7.2 Assume � ⊆ Rn is a closed Ahlfors regular set and abbreviate
σ := Hn−1��. Fix two exponents p, q ∈ (1,∞) satisfying 1/p + 1/q = 1, along
with a parameter λ ∈ (0, n− 1). Then there exists C ∈ (0,∞) which depends only
on the Ahlfors regularity constant of �, n, p, and λ, with the property that

ˆ
�

|f ||g| dσ ≤ C‖f ‖Mp,λ(�,σ)‖g‖Bq,λ(�,σ)

for all f ∈ Mp,λ(�, σ) and g ∈ Bq,λ(�, σ ).

(7.22)

In addition, the mapping

Mp,λ(�, σ) � f �−→ %f ∈
(
Bq,λ(�, σ )

)∗
given by

%f (g) :=
ˆ
�

fg dσ for each g ∈ Bq,λ(�, σ )
(7.23)

is a well-defined, linear, bounded isomorphism, with bounded inverse. Simply put,
the integral pairing yields the quantitative identification

(
Bq,λ(�, σ )

)∗ = Mp,λ(�, σ). (7.24)

Furthermore, regarding M̊p,λ(�, σ ) as a Banach space equipped with the norm
inherited fromMp,λ(�, σ), the mapping

Bq,λ(�, σ ) � g �−→ %g ∈
(
M̊p,λ(�, σ )

)∗
given by

%g(f ) :=
ˆ
�

fg dσ for each f ∈ M̊p,λ(�, σ )
(7.25)

is a well-defined, linear, bounded isomorphism, with bounded inverse. As such, the
integral pairing yields the identification

(
M̊p,λ(�, σ )

)∗ = Bq,λ(�, σ ). (7.26)

In the setting of Proposition 7.2, from (7.24), (7.17), and the Sequential Banach–
Alaoglu Theorem we conclude that
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any bounded sequence in Mp,λ(�, σ) has a sub-sequence which
is weak-∗ convergent.

(7.27)

A result in this spirit in which a stronger conclusion is reached, provided one
assumes more than mere boundedness for said sequence, has been proved in [112,
§6.2].

Proposition 7.3 Assume � ⊆ Rn is a closed Ahlfors regular set and abbreviate
σ := H n−1��. Fix two exponents p, q ∈ (1,∞) satisfying 1/p + 1/q = 1, along
with a parameter λ ∈ (0, n − 1). Suppose {fj }j∈N ⊆ Mp,λ(�, σ) is a sequence of
functions with the property that

f (x) := lim
j→∞ fj (x) exists for σ -a.e. x ∈ �, and

there exists some g ∈ Mp,λ(�, σ) such that for each

j ∈ N one has |fj (x)| ≤ |g(x)| for σ -a.e. x ∈ �.

(7.28)

Then f ∈ Mp,λ(�, σ) and fj → f as j →∞ weak-∗ inMp,λ(�, σ), i.e.,

lim
j→∞

ˆ
�

fjh dσ =
ˆ
�

f h dσ for each h ∈ Bq,λ(�, σ ). (7.29)

Remarkably, certain types of estimates on Muckenhoupt weighted Lebesgue
space imply estimates on Morrey spaces. Here is a basic result of this flavor from
[112, §6.2] (cf. also [43] for related results in the Euclidean setting).

Proposition 7.4 Let� ⊆ Rn (where n ∈ N with n ≥ 2) be a closed Ahlfors regular
set, and abbreviate σ := H n−1��. Also, fix an integrability exponent p ∈ (1,∞)

along with a parameter λ ∈ (0, n − 1). Finally, let F be a family of pairs (f, g) of
σ -measurable functions defined on � such that

for each Muckenhoupt weight w ∈ A1(�, σ ) there exists some
constant Cw = C([w]A1) ∈ (0,∞), which stays bounded as
[w]A1 stays bounded, and with the property that for each pair
(f, g) ∈ F one has ‖f ‖Lp(�,w) ≤ Cw‖g‖Lp(�,w).

(7.30)

Then there exist two constants C�,p ∈ (0,∞) (depending only on p and the
Ahlfors regularity constant of �) and Qn,λ ∈ (0,∞) (depending only on n and λ)
such that, with

C := C�,p · sup
w∈A1(�,σ)[w]A1≤Qn,λ

Cw, (7.31)

one has

‖f ‖Mp,λ(�,σ) ≤ C‖g‖Mp,λ(�,σ) for each pair (f, g) ∈ F. (7.32)
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Based on Propositions 7.4, 3.4, 7.2 (as well as Coltar’s inequality and bound-
edness results for the Hardy–Littlewood maximal operator on Morrey and block
spaces), the following result has been established in [113, §2.6].

Proposition 7.5 Let� ⊆ Rn be an open set such that ∂� is a UR set and abbreviate
σ := Hn−1�∂�. Assume N = N(n) ∈ N is a sufficiently large integer and
consider a complex-valued function k ∈ CN

(
R
n \ {0}) which is odd and positive

homogeneous of degree 1 − n. Also, fix two integrability exponents p, q ∈ (1,∞)

with 1/p + 1/q = 1, along with a parameter λ ∈ (0, n − 1), and pick an aperture
parameter κ > 0. In this setting, for each f belonging to either Mp,λ(∂�, σ),
M̊p,λ(∂�, σ), Bq,λ(∂�, σ) define

Tεf (x) :=
ˆ

y∈∂�
|x−y|>ε

k(x − y)f (y) dσ(y) for each x ∈ ∂�, (7.33)

T∗f (x) := sup
ε>0

|Tεf (x)| for each x ∈ ∂�, (7.34)

Tf (x) := lim
ε→0+

Tεf (x) for σ -a.e. x ∈ ∂�, (7.35)

Tf (x) :=
ˆ
∂�

k(x − y)f (y) dσ(y) for each x ∈ �. (7.36)

Then there exists a constant C ∈ (0,∞) which depends exclusively on n, p, λ,
and the UR constants of ∂� with the property that for each f ∈ Mp,λ(∂�, σ) one
has

‖T∗f ‖Mp,λ(∂�,σ) ≤ C
( ∑

|α|≤N
sup
Sn−1

|∂αk|
)
‖f ‖Mp,λ(∂�,σ) , (7.37)

‖Nκ(Tf )‖Mp,λ(∂�,σ) ≤ C
( ∑

|α|≤N
sup
Sn−1

|∂αk|
)
‖f ‖Mp,λ(∂�,σ) , (7.38)

for each f ∈ M̊p,λ(∂�, σ) one has

‖T∗f ‖M̊p,λ(∂�,σ)
≤ C

( ∑

|α|≤N
sup
Sn−1

|∂αk|
)
‖f ‖

M̊p,λ(∂�,σ)
, (7.39)

‖Nκ(Tf )‖M̊p,λ(∂�,σ)
≤ C

( ∑

|α|≤N
sup
Sn−1

|∂αk|
)
‖f ‖

M̊p,λ(∂�,σ)
, (7.40)
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and for each f ∈ Bq,λ(∂�, σ) one has

‖T∗f ‖Bq,λ(∂�,σ) ≤ C
( ∑

|α|≤N
sup
Sn−1

|∂αk|
)
‖f ‖Bq,λ(∂�,σ) , (7.41)

‖Nκ(Tf )‖Bq,λ(∂�,σ) ≤ C
( ∑

|α|≤N
sup
Sn−1

|∂αk|
)
‖f ‖Bq,λ(∂�,σ) . (7.42)

Also, for each function f belonging to either Mp,λ(∂�, σ), M̊p,λ(∂�, σ), or
Bq,λ(∂Ω, σ) the limit defining Tf (x) in (7.35) exists at σ -a.e. x ∈ ∂� and the
operators

T : Mp,λ(∂�, σ) −→ Mp,λ(∂�, σ), (7.43)

T : M̊p,λ(∂�, σ) −→ M̊p,λ(∂�, σ), (7.44)

T : Bq,λ(∂�, σ) −→ Bq,λ(∂�, σ), (7.45)

are well defined, linear, and bounded. In addition,

the (real) transpose of the operator (7.44) is the operator −T
with T as in (7.45), and the (real) transpose of the opera-
tor (7.45) is the operator −T with T as in (7.43).

(7.46)

Thus, the results from Proposition 7.5 are applicable to the Riesz transforms
{Rj }1≤j≤n defined as in (4.297) on the boundary of a UR domain � ⊆ Rn. This
proves that, in such a setting, for each p, q ∈ (1,∞) and λ ∈ (0, n− 1)

the operators {Rj }1≤j≤n are well defined, linear, and bounded
on the spaces Mp,λ(∂�, σ), M̊p,λ(∂�, σ), and Bq,λ(∂�, σ).

(7.47)

In concert with Theorem 4.3, (7.7), and duality (cf. Proposition 7.2), Proposi-
tion 7.4 also yields the following version of the commutator theorem from [31], in
Morrey and block spaces.

Theorem 7.1 Make the assumption that � ⊆ Rn be a closed Ahlfors regular set,
and abbreviate σ := Hn−1��. Fix p0 ∈ (1,∞) along with some non-decreasing
function � : (0,∞)→ (0,∞) and let T be a linear operator which is bounded on
Lp0(�,w) for every w ∈ Ap0(�, σ ), with operator norm ≤ �

([w]Ap0

)
.

Then for each exponent p ∈ (1,∞) and each parameter λ ∈ (0, n − 1) the
operator T induces well-defined, linear, and bounded mappings in the contexts

T : Mp,λ(�, σ) −→ Mp,λ(�, σ), (7.48)
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T : M̊p,λ(�, σ ) −→ M̊p,λ(�, σ ). (7.49)

In addition, given any integrability exponent p ∈ (1,∞) along with some parameter
λ ∈ (0, n − 1), there exist two constants, C1 = C1(�, n, p0, p, λ) ∈ (0,∞) and
C2 = C2(�, n, p0, p, λ) ∈ (0,∞), with the property that for every complex-valued
function b ∈ L∞(�, σ ) one has

‖[Mb, T ]‖M̊p,λ(�,σ)→M̊p,λ(�,σ)
≤ ‖[Mb, T ]‖Mp,λ(�,σ)→Mp,λ(�,σ)

≤ C1�(C2) ‖b‖BMO(�,σ) , (7.50)

where [Mb, T ] := bT (·) − T (b ·) is the commutator of T (considered either as
in (7.48) or as in (7.49)) and the operatorMb of pointwise multiplication (either on
Mp,λ(�, σ) or on M̊p,λ(�, σ )) by the function b.

Moreover, if T � denotes the (real) transpose of the original operator T , then for
each q ∈ (1,∞) and λ ∈ (0, n− 1) the operator T � induces a well-defined, linear,
and bounded mapping

T � : Bq,λ(�, σ ) −→ Bq,λ(�, σ ). (7.51)

Finally, for each q ∈ (1,∞) and λ ∈ (0, n − 1) there exist two positive finite
constants, C1 = C1(�, n, p0, q, λ) and C2 = C2(�, n, p0, q, λ), with the property
that for every complex-valued function b ∈ L∞(�, σ ) one has

∥∥
∥[Mb, T

�]
∥∥
∥
Bq,λ(�,σ)→Bq,λ(�,σ)

≤ C1�(C2) ‖b‖BMO(�,σ) . (7.52)

For example, if � ⊆ Rn is a UR domain then, for each complex-valued function
k ∈ CN

(
R
n \ {0}) (where N = N(n) ∈ N is sufficiently large) which is odd

and positive homogeneous of degree 1 − n, Theorem 7.1 applies with � := ∂�

and T as in (7.35). In such a scenario, from (7.52) and (7.46) we see that for each
b ∈ L∞(∂�, σ), q ∈ (1,∞), and λ ∈ (0, n−1), the following commutator estimate
holds:

‖[Mb, T ]‖Bq,λ(∂�,σ)→Bq,λ(∂�,σ) ≤ C
( ∑

|α|≤N
sup
Sn−1

|∂αk|
)
‖b‖BMO(∂�,σ) , (7.53)

where C ∈ (0,∞) depends exclusively on n, q, λ, and the UR constants of ∂�.
Following [112, §11.7], we may also consider Morrey-based Sobolev

spaces on the boundaries of Ahlfors regular domains. Specifically, if � ⊆ Rn
is an Ahlfors regular domain and σ := Hn−1�∂�, then for each p ∈ (1,∞) and
λ ∈ (0, n− 1) we define
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M
p,λ

1 (∂�, σ) :=
{
f ∈ Mp,λ(∂�, σ) ∩ L1

1,loc(∂�, σ) : (7.54)

∂τjkf ∈ Mp,λ(∂�, σ) for each j, k ∈ {1, . . . , n}
}
,

equipped with the natural norm

M
p,λ

1 (∂�, σ) � f �−→ ‖f ‖Mp,λ(∂�,σ) +
n∑

j,k=1

∥∥∂τjkf
∥∥
Mp,λ(∂�,σ)

. (7.55)

A significant closed subspace of M
p,λ

1 (∂�, σ) is the vanishing Morrey-
based Sobolev space

M̊
p,λ

1 (∂�, σ) :=
{
f ∈ M̊p,λ(∂�, σ) : for each j, k ∈ {1, . . . , n} (7.56)

one has ∂τjkf ∈ M̊p,λ(∂�, σ)
}
.

In the same vein, for each q ∈ (1,∞) let us also define the block-based
Sobolev space

Bq,λ

1 (∂�, σ) :=
{
f ∈ Bq,λ(∂�, σ) : for each j, k ∈ {1, . . . , n} (7.57)

one has ∂τjkf ∈ Bq,λ(∂�, σ)
}
,

and endowed with the norm

Bq,λ

1 (∂�, σ) � f �−→ ‖f ‖Bq,λ(∂�,σ) +
n∑

j,k=1

∥
∥∂τjkf

∥
∥
Bq,λ(∂�,σ)

. (7.58)

It has been noted in [114, §3.3] that by combining the extrapolation result
from Proposition 7.4 with Proposition 3.5 (while also keeping in mind Proposi-
tion 3.2, (7.3), (7.8), (7.17), Proposition 7.5, and (7.18)) one obtains the following
result pertaining to the action of boundary layer potentials associated with weakly
elliptic second-order systems in UR domains, on the scales of spaces discussed
earlier.

Theorem 7.2 Suppose � ⊆ Rn is a UR domain and abbreviate σ := Hn−1�∂�.
Let L be a homogeneous, weakly elliptic, constant complex coefficient, second-
order M ×M system in Rn (for some M ∈ N). Pick a coefficient tensor A ∈ AL
and consider the double layer potential operators DA, KA, K#

A associated with
the coefficient tensor A and the set � as in (3.22), (3.24), and (3.25), respectively.
Finally, select p ∈ (1,∞) along with λ ∈ (0, n − 1) and some aperture parameter
κ > 0.
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Then the operators

KA,K
#
A :

[
Mp,λ(∂�, σ)

]M −→ [
Mp,λ(∂�, σ)

]M (7.59)

are well defined, linear, and bounded. Additionally, the operators KA,K
#
A in the

context of (7.59) depend continuously on the underlying coefficient tensor A.
Specifically, with the piece of notation introduced in (3.13), the following operator-
valued assignments are continuous:

AWE � A �−→ KA ∈ Bd
([
Mp,λ(∂�, σ)

]M)
, (7.60)

AWE � A �−→ K#
A ∈ Bd

([
Mp,λ(∂�, σ)

]M)
. (7.61)

Furthermore, there exists a constant C ∈ (0,∞), depending only on the UR
constants of ∂�, L, n, κ , p, and λ, with the property that

∥∥Nκ

(
DAf

)∥∥
Mp,λ(∂�,σ)

≤ C‖f ‖[Mp,λ(∂�,σ)]M

for each function f ∈ [
Mp,λ(∂�, σ)

]M
.

(7.62)

Moreover, for each given function f in the Morrey space
[
Mp,λ(∂�, σ)

]M
the

following nontangential boundary trace formula holds (with I denoting the identity
operator)

DAf

∣
∣∣
κ−n.t.

∂�
= ( 1

2I +KA

)
f at σ -a.e. point on ∂�. (7.63)

In addition, for each function f belonging to the Morrey-based Sobolev space[
M

p,λ

1 (∂�, σ)
]M

it follows that

the nontangential boundary trace
(
∂�DAf

)∣∣κ−n.t.

∂�
exists (in CM )

at σ -a.e. point on ∂�, for each � ∈ {1, . . . , n}, (7.64)

and there exits some finite constant C > 0, depending only on ∂�, L, n, κ , p, λ,
such that

∥∥Nκ(DAf )
∥∥
Mp,λ(∂�,σ)

+ ∥∥Nκ(∇DAf )
∥∥
Mp,λ(∂�,σ)

≤ C‖f ‖[Mp,λ
1 (∂�,σ)]M . (7.65)

In fact, similar results are valid with the Morrey space Mp,λ(∂�, σ) replaced
throughout by the vanishing Morrey space M̊p,λ(∂�, σ) (defined as in (7.7) with
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� := ∂�), or by the block spaceBq,λ(∂�, σ)with q ∈ (1,∞) (defined as in (7.15)–
(7.16) with � := ∂�).

Next, the operators

KA :
[
M

p,λ

1 (∂�, σ)
]M −→ [

M
p,λ

1 (∂�, σ)
]M

, (7.66)

KA :
[
M̊

p,λ

1 (∂�, σ)
]M −→ [

M̊
p,λ

1 (∂�, σ)
]M

, (7.67)

are well defined, linear, bounded and, for each q ∈ (1,∞), so is

KA :
[
Bq,λ

1 (∂�, σ)
]M −→ [

Bq,λ

1 (∂�, σ)
]M

. (7.68)

Also, much as in (7.60)–(7.61), the operator KA in the context of (7.66)–(7.68)
depends in a continuous fashion on the underlying coefficient tensor A.

Next we introduce the homogeneous Morrey-based Sobolev spaces.
Consider an Ahlfors regular domain � ⊆ Rn and abbreviate σ := Hn−1�∂�. Given
an integrability exponent p ∈ (1,∞) and λ ∈ (0, n− 1) let us define the space

.
M

p,λ

1 (∂�, σ) :=
{
f ∈ L1(∂� ,

σ(x)
1+|x|n

) ∩ Lp1,loc(∂�, σ) : (7.69)

∂τjkf ∈ Mp,λ(∂�, σ) for each j, k ∈ {1, . . . , n}
}

and equip it with the semi-norm

.
M

p,λ

1 (∂�, σ) � f �−→ ‖f ‖ .
M

p,λ
1 (∂�,σ)

:=
n∑

j,k=1

∥∥∂τjkf
∥∥
Mp,λ(∂�,σ)

. (7.70)

Then (7.3) ensures that we have the following continuous embedding

M
p,λ

1 (∂�, σ) ↪→ .
M

p,λ

1 (∂�, σ). (7.71)

It is also clear that constant functions on ∂� belong to
.
M

p,λ

1 (∂�, σ) and have

vanishing semi-norm. We shall occasionally work with
.
M

p,λ

1 (∂�, σ)
/ ∼, the

quotient space of classes [ · ] of equivalence modulo constants of functions in
.
M

p,λ

1 (∂�, σ), equipped with the semi-norm

.
M

p,λ

1 (∂�, σ)
/ ∼� [f ] �→ ∥∥[f ]∥∥ .

M
p,λ
1 (∂�,σ)/∼ :=

n∑

j,k=1

∥∥∂τjkf
∥∥
Mp,λ(∂�,σ)

.

(7.72)
To proceed, choose a scalar-valued function φ ∈ C∞

0 (Rn) with φ ≡ 1 in B(0, 1)
and suppφ ⊆ B(0, 2). Having fixed a reference point x0 ∈ ∂�, for each scale
r ∈ (0,∞) define
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φr(x) := φ
(x − x0

r

)
for each x ∈ Rn, (7.73)

and use the same notation to denote the restriction of φr to ∂�. For each r ∈ (0,∞)

set r := ∂� ∩ B(x0, r). Given any f ∈ L1
loc(∂�, σ), define

fr := φr ·
(
f − f2r

)
on ∂�, where f2r :=

 
2r

f dσ. (7.74)

Lemma 7.1 Suppose � ⊆ Rn is a two-sided NTA domain with the property that
∂� is an unbounded Ahlfors regular set, and abbreviate σ := H n−1�∂�. Fix some
reference point x0 ∈ ∂�, along with some integrability exponent p ∈ (1,∞) and
a parameter λ ∈ (0, n − 1). Finally, pick a function f which belongs to the space
L1

(
∂�,

σ(x)
1+|x|n

)∩L1
1,loc(∂�, σ) and, for each radius r ∈ (0,∞), define the surface

ball r := B(x0, r) ∩ ∂� and fr :=
ffl
r
f dσ . Then the following statements are

true.

(i) There exists a constant C = C(�,p, λ, x0) ∈ (0,∞), independent of the
function f , such that

sup
r>0

1

r

∥∥|f − fr | · 1r‖Mp,λ(∂�,σ) ≤ C

n∑

j,k=1

∥∥∂τjkf
∥∥
Mp,λ(∂�,σ)

. (7.75)

(ii) For each r ∈ (0,∞) there exists a constant Cr ∈ (0,∞) which depends on �,
p, λ, x0, and r , but is independent of f , such that

ˆ
∂�

|f (x)− fr |
1 + |x|n dσ(x) ≤ Cr

‖1r ‖Mp,λ(∂�,σ)

n∑

j,k=1

∥∥∂τjkf
∥∥
Mp,λ(∂�,σ)

.

(7.76)
(iii) There exists a constant C = C(�,p, λ, x0) ∈ (0,∞), independent of the

function f , such that with the notation introduced in (7.74) one has

sup
r>0

∥∥∇tan fr
∥∥[Mp,λ(∂�,σ)]n ≤ C

∥∥∇tan f
∥∥[Mp,λ(∂�,σ)]n . (7.77)

Proof We shall prove all claims using extrapolation (cf. Proposition 7.4). Consider
first the task of establishing (i). Recall (2.585) and define

F1 :=
{( |f−fr |

r
1r ,|∇tan f |

) : (7.78)

f ∈ L1(∂�, σ(x)
1+|x|n

) ∩ L1
1,loc(∂�, σ), r > 0

}
.
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We claim that for the given integrability exponent p ∈ (1,∞) and for every weight
w ∈ Ap(∂�, σ) there exists a constant C = C(�,p, [w]Ap , x0) ∈ (0,∞) such that

‖F1‖Lp(∂�,w) ≤ C‖F2‖Lp(∂�,w) (7.79)

for all (F1, F2) ∈ F1. Indeed, this inequality is trivial if ‖F2‖Lp(∂�,w) = ∞,
whereas if ‖F2‖Lp(∂�,w) < ∞ we may rely on (7.78) and (2.586) to invoke
Proposition 2.25 to obtain (2.618). This, in turn, gives (7.79) on account of (2.586).
Moreover, the intervening constant C stays bounded if [w]Ap stays bounded. In
particular, in view of item (2) from Proposition 2.20, the argument so far shows
that (7.79) holds for every w ∈ A1(∂�, σ) and that the intervening constant stays
bounded if [w]A1 stays bounded. We may then invoke Theorem 7.4 to conclude that
for each given number λ ∈ (0, n− 1) we have ‖F1‖Mp,λ(∂�,σ) ≤ C‖F2‖Mp,λ(∂�,σ)

for each (F1, F2) ∈ F1. This and (2.585) then imply (7.75), finishing the proof of
(i).

Let us now address the claim made in item (ii). Fix r ∈ (0,∞) and define

F2 :=
{(‖f − fr‖

L1
(
∂�,

σ(x)
1+|x|n

) 1r , |∇tan f |
) : (7.80)

f ∈ L1(∂�, σ(x)
1+|x|n

) ∩ L1
1,loc(∂�, σ)

}
.

As before, the goal is to check that (7.79) holds for all weights w ∈ Ap(∂�, σ)

and all pairs (F1, F2) ∈ F2 (where now the constant C is allowed to depend on the
scale r , which has been fixed). This may be seen reasoning much as before, applying
Proposition 2.25, but this time the relevant estimate is (2.620). Granted (7.79), we
may then apply Theorem 7.4 to the family F2 and, as desired, conclude that (7.76)
holds.

To justify the claim made in item (iii), we introduce

F3 :=
{(|∇tan fr |, |∇tan f |

) : f ∈ L1(∂�, σ(x)
1+|x|n

) ∩ L1
1,loc(∂�, σ), r > 0

}
.

(7.81)

In line with what we have done in the previous cases, we now wish to show
that (7.79) holds for all weights w ∈ Ap(∂�, σ) and all pairs (F1, F2) ∈ F3. Again,
it suffices to consider the case when ‖F2‖Lp(∂�,w) < ∞. By definition, we have
(F1, F2) =

(|∇tan gr |, |∇tan g|
)

for some g ∈ L1
(
∂�,

σ(x)
1+|x|n

) ∩ L1
1,loc(∂�, σ) and

some r > 0. This, the assumption ‖F2‖Lp(∂�,w) <∞, (2.586), and Proposition 2.25
then guarantee that g ∈ .

L
p

1 (∂�,w). We may therefore proceed as in (4.370)–
(4.377) in the proof of Theorem 4.11 to conclude that (4.377) holds. Equivalently,
this proves (7.79) for the given choice of (F1, F2). Moreover, a careful examination
of the proof shows that the intervening constant C ∈ (0,∞) stays bounded if [w]Ap
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stays bounded. We have therefore shown that (7.79) holds for each (F1, F2) ∈ F3
and each w ∈ Ap(∂�, σ). In particular (cf. item (2) in Proposition 2.20), this is
the case for every w ∈ A1(∂�, σ) and the intervening constant C ∈ (0,∞) stays
bounded if [w]A1 stays bounded. As such, we may avail ourselves of Theorem 7.4 to
conclude that, given any λ ∈ (0, n−1), one has ‖F1‖Mp,λ

1 (∂�,σ)
≤ C‖F2‖Mp,λ

1 (∂�,σ)

for every (F1, F2) ∈ F3. Hence, there existsC = C(�,p, λ, x0) ∈ (0,∞) such that

∥∥|∇tan fr |
∥∥
Mp,λ(∂�,σ)

≤ C
∥∥|∇tan f |

∥∥
Mp,λ(∂�,σ)

(7.82)

for every f ∈ L1
(
∂�,

σ(x)
1+|x|n

)∩L1
1,loc(∂�, σ) and every r > 0. This completes the

proof of (7.77). � 
It turns out that, when considered on the boundaries of two-sided NTA domains,

the quotient space
.
M

p,λ

1 (∂�, σ)
/ ∼ is actually a Banach space.

Proposition 7.6 Suppose � ⊆ Rn is a two-sided NTA domain with an unbounded
Ahlfors regular boundary and abbreviate σ := H n−1�∂�. Pick some integrability
exponent p ∈ (1,∞) along with a parameter λ ∈ (0, n − 1). Finally, recall that.
M

p,λ

1 (∂�, σ)
/ ∼ denotes the quotient space of classes [ · ] of equivalence modulo

constants of functions in
.
M

p,λ

1 (∂�, σ), equipped with the semi-norm (7.72).

Then (7.72) is a genuine norm on
.
M

p,λ

1 (∂�, σ)
/ ∼, and .

M
p,λ

1 (∂�, σ)
/ ∼ is a

Banach space when equipped with the norm (7.72).

Proof Let us first observe from (7.76) that the semi-norm (7.72) is indeed a
norm on the space

.
M

p,λ

1 (∂�, σ)
/ ∼. We shall next show that

.
M

p,λ

1 (∂�, σ)
/ ∼

is complete when equipped with the norm (7.72). With this goal in mind, let
{fα}α∈N ⊆ .

M
p,λ

1 (∂�, σ) be such that
{[fα]

}
α∈N is a Cauchy sequence in the

quotient space
.
M

p,λ

1 (∂�, σ)
/ ∼ . This means that

{
∂τjkfα

}
α∈N is a Cauchy

sequence in Mp,λ(∂�, σ), for any two fixed indices j, k ∈ {1, . . . , n}. Using
the fact that Mp,λ(∂�, σ) is a Banach space, we then conclude that for each
j, k ∈ {1, . . . , n} there exists gjk ∈ Mp,λ(∂�, σ) such that

∂τjkfα → gjk in Mp,λ(∂�, σ) as α →∞. (7.83)

Fix a reference point x0 ∈ ∂� and, for each r ∈ (0,∞), set r := B(x0, r) ∩ ∂�.
Also, set fα,r :=

ffl
r
fα dσ for each r ∈ (0,∞) and each α ∈ N. Applying (7.76)

to f := fα−fβ we obtain that for any radius r ∈ (0,∞) there exists some constant
Cr ∈ (0,∞) which depends only on �, p, λ, r , and x0, such that that for all indices
α, β ∈ N we have

∥
∥(fα − fα,r

)− (
fβ − fβ,r

)∥∥
L1
(
∂�,

σ(x)
1+|x|n

)
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≤ Cr

‖1r‖Mp,λ(∂�,σ)

n∑

j,k=1

∥
∥∂τjkfα − ∂τjkfβ

∥
∥
Mp,λ(∂�,σ)

.

(7.84)

Since
{
∂τjkfα

}
α∈N is a Cauchy sequence in Mp,λ(∂�, σ), it then follows that for

each fixed r ∈ (0,∞) the sequence
{
fα−fα,r

}
α∈N is Cauchy in the Banach space

L1
(
∂�,

σ(x)
1+|x|n

)
. Hence, for each fixed r ∈ (0,∞) there exists hr ∈ L1

(
∂�,

σ(x)
1+|x|n

)

such that

fα − fα,r → hr in L1(∂�, σ(x)
1+|x|n

)
as α →∞. (7.85)

On the other hand, by (7.75) (applied to the difference f := fα − fβ ), there exists
some constant C = C(�,p, λ, x0) ∈ (0,∞) such that for each fixed r ∈ (0,∞)

we have

∥∥|(fα − fα,r )− (fβ − fβ,r )| · 1r‖Mp,λ(∂�,σ)

≤ C r

n∑

j,k=1

∥∥∂τjkfα − ∂τjkfα
∥∥
Mp,λ(∂�,σ)

. (7.86)

Hence, the sequence
{(
fα − fα,r

)
1r

}
α∈N is Cauchy in the Banach space

Mp,λ(∂�, σ) for each fixed r ∈ (0,∞). As a result, for each fixed r ∈ (0,∞)

it follows that

there exists a function kr ∈ Mp,λ(∂�, σ) such that
(
fα − fα,r

)
1r → kr in Mp,λ(∂�, σ) as α →∞.

(7.87)

Note that convergence in M
p,λ

1 (∂�, σ) implies convergence in Lp(r, σ ) and,
after eventually passing to a sub-sequence, pointwise a.e. convergence. Thus (7.85)
and (7.87) immediately give

hr
∣∣
r

= kr ∈ Mp,λ(∂�, σ) for each r ∈ (0,∞). (7.88)

Additionally, for each fixed r1, r2 ∈ (0,∞) the convergence recorded in (7.85) also
yields

fα,r2
− fα,r1 ,w

→ hr1 − hr2 in L1(∂�, σ(x)
1+|x|n

)
as α →∞. (7.89)

Thus hr1 − hr2 must be constant. This, (7.85), (7.88), and (7.3) eventually lead to

hr ∈ L1(∂�, σ(x)
1+|x|n

) ∩ Lploc(∂�, σ) for each r ∈ (0,∞). (7.90)
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To continue we simply write h for hr with r = 1, and cα for fα,r with r = 1.
Then, as seen from (7.90),

h belongs to L1(∂�, σ(x)
1+|x|n

) ∩ Lploc(∂�, σ), (7.91)

and the sequence {cα}α∈N ⊆ C is such that

fα − cα → h in L1(∂�, σ(x)
1+|x|n

)
as α →∞. (7.92)

For each j, k ∈ {1, . . . , n} and each test function ϕ ∈ C∞
0 (Rn) we may then write

ˆ
∂�

h(∂τjkϕ) dσ = lim
α→∞

ˆ
∂�

(fα − cα)(∂τjkϕ) dσ

= − lim
α→∞

ˆ
∂�

∂τjk (fα − cα)ϕ dσ = − lim
α→∞

ˆ
∂�

(∂τjkfα)ϕ dσ

=
ˆ
∂�

gjkϕ dσ, (7.93)

thanks to (7.92), (2.583), (7.83), and (7.3). From this and (2.581)–(2.582) we then
conclude that

∂τjkh = gjk ∈ Mp,λ(∂�, σ) for each j, k ∈ {1, . . . , n}. (7.94)

Collectively, (7.91) and (7.94) prove that h ∈ .
M

p,λ

1 (∂�, σ). Finally,
from (7.83), (7.94), and (7.72) we conclude that the sequence

{[fα]
}
α∈N converges

to [h], the class of h, in the quotient space
.
M

p,λ

1 (∂�, σ)
/ ∼. � 

We continue by making the following definition, which should be compared
with (7.69).

Definition 7.1 Assume � ⊆ Rn is an Ahlfors regular domain. Set σ := H n−1�∂�
and pick an exponent p ∈ (1,∞) along with a parameter λ ∈ (0, n − 1). In
this context, define the vanishing Morrey-based homogeneous Sobolev
space of order one on ∂� as

.
M
p,λ

1 (∂�, σ) :=
{
f ∈ L1

(
∂�,

σ(x)

1 + |x|n
)
∩ Lploc(∂�, σ) : (7.95)

∂τjkf ∈ M̊p,λ(∂�, σ) for each j, k ∈ {1, . . . , n}
}

and equip this space with the semi-norm
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.
M
p,λ

1 (∂�, σ) � f �→ ‖f ‖ .
M
p,λ
1 (∂�,σ)

:=
n∑

j,k=1

‖∂τjkf ‖Mp,λ(∂�,σ). (7.96)

As seen from of Definition 7.1, all constant functions on ∂� belong
to

.
M
p,λ

1 (∂�, σ) and their respective semi-norms vanish. It is also apparent
from (7.95)–(7.96) and (7.69)–(7.70) that

.
M
p,λ

1 (∂�, σ) =
{
f ∈ .

M
p,λ

1 (∂�, σ) : ∂τjkf ∈ M̊p,λ(∂�, σ) (7.97)

for all j, k ∈ {1, . . . , n}
}

and

.
M
p,λ

1 (∂�, σ) is a closed subspace of
.
M

p,λ

1 (∂�, σ). (7.98)

Moreover, we have the continuous embedding

M̊
p,λ

1 (∂�, σ) ↪→ .
M
p,λ

1 (∂�, σ) ∩ L1
(
∂�,

σ(x)

1 + |x|n−1

)
. (7.99)

Much as in Proposition 7.6, if � ⊆ Rn is a two-sided NTA domain such that ∂� is
an unbounded Ahlfors regular set, then

.
M
p,λ

1 (∂�, σ)
/ ∼ � [f ] �−→ ∥∥[f ]∥∥ .

M
p,λ
1 (∂�,σ)/∼ :=

n∑

j,k=1

∥∥∂τjkf
∥∥
Mp,λ(∂�,σ)

(7.100)
is a genuine norm on

.
M
p,λ

1 (∂�, σ)
/ ∼, and

.
M
p,λ

1 (∂�, σ)
/ ∼ is a Banach space

when equipped with the norm (7.100).
In a similar fashion, we introduce the following brand of block-based homoge-

neous Sobolev spaces:

Definition 7.2 Suppose that � ⊆ Rn is an Ahlfors regular domain. Abbreviate
σ := H n−1�∂� and fix an integrability exponent q ∈ (1,∞) along with a
parameter λ ∈ (0, n− 1). Also, introduce

qλ := q(n− 1)

n− 1 + λ(q − 1)
∈ (1, q). (7.101)

In this context, define the block-based homogeneous Sobolev space of
order one on ∂� as

.
Bq,λ

1 (∂�, σ) :=
{
f ∈ L1

(
∂�,

σ(x)

1 + |x|n
)
∩ Lqλloc(∂�, σ) : (7.102)
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∂τjkf ∈ B q,λ(∂�, σ) for each j, k ∈ {1, . . . , n}
}

and equip this space with the semi-norm

.
Bq,λ

1 (∂�, σ) � f �→ ‖f ‖ .B q,λ
1 (∂�,σ)

:=
n∑

j,k=1

‖∂τjkf ‖Bq,λ(∂�,σ). (7.103)

It turns out that we have the continuous embeddings

Bq,λ

1 (∂�, σ) ↪→ .
Bq,λ

1 (∂�, σ) ∩ L1
(
∂�,

σ(x)

1 + |x|n−1

)
, (7.104)

and

.
Bq,λ

1 (∂�, σ) ↪→ .
L
qλ
1 (∂�, σ). (7.105)

In the context of Definition 7.2 it follows that all constant functions on ∂� belong
to
.
Bq,λ

1 (∂�, σ) and their respective semi-norms vanish. We shall occasionally work

with the space
.
Bq,λ

1 (∂�, σ)
/ ∼, the quotient space of classes [ · ] of equivalence

modulo constants of functions in
.
Bq,λ

1 (∂�, σ), which we equip with the semi-norm

.
Bq,λ

1 (∂�, σ)
/ ∼ � [f ] �→ ∥

∥[f ]∥∥ .Bq,λ
1 (∂�,σ)/∼ :=

n∑

j,k=1

∥
∥∂τjkf

∥
∥
Bq,λ(∂�,σ)

.

(7.106)
Analogously to Proposition 7.6, we have the following completeness result (see

[112, §11.13] for a proof).

Proposition 7.7 Let � ⊆ Rn be a two-sided NTA domain such that ∂� is an
unbounded Ahlfors regular set. Abbreviate σ := H n−1�∂� and pick an integrability
exponent q ∈ (1,∞) along with a parameter λ ∈ (0, n − 1). Then (7.106) is a
genuine norm on

.
Bq,λ

1 (∂�, σ)
/ ∼, and .Bq,λ

1 (∂�, σ)
/ ∼ is a Banach space when

equipped with the norm (7.106).

We continue by recording the following remarkable trace result proved in [112,
§11.13].

Proposition 7.8 Let� ⊆ Rn be an NTA domain such that ∂� is an Ahlfors regular
set. Abbreviate σ := H n−1�∂�, and fix an aperture parameter κ ∈ (0,∞) along
with some integrability exponents p, q ∈ (1,∞) and a parameter λ ∈ (0, n− 1). In
this setting, the following statements are true.

(1) For each function u : �→ C satisfying

u ∈ C 1(�) and Nκ(∇u) ∈ Mp,λ(∂�, σ), (7.107)
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the nontangential trace

u
∣∣κ−n.t.

∂�
exists σ -a.e. on ∂�, belongs to

.
M

p,λ

1 (∂�, σ),

and
∥∥u

∣∣κ−n.t.

∂�

∥∥ .
M

p,λ
1 (∂�,σ)

≤ C
∥∥Nκ(∇u)

∥∥
Mp,λ(∂�,σ)

(7.108)

for some constant C ∈ (0,∞) independent of u.
(2) For each function u : �→ C satisfying

u ∈ C 1(�) and Nκ(∇u) ∈ Bq,λ(∂�, σ), (7.109)

the nontangential trace

u
∣∣κ−n.t.

∂�
exists σ -a.e. on ∂�, belongs to

.
Bq,λ

1 (∂�, σ),

and
∥∥u

∣∣κ−n.t.

∂�

∥∥ .
Bq,λ

1 (∂�,σ)
≤ C

∥∥Nκ(∇u)
∥∥
Bq,λ(∂�,σ)

(7.110)

for some constant C ∈ (0,∞) independent of u.
(3) For each function u ∈ C 1(�) satisfying

Nκ(∇u) ∈ M̊p,λ(∂�, σ) and (∇u)∣∣κ−n.t.

∂�
exists σ -a.e. on ∂�, (7.111)

the nontangential trace

u
∣∣κ−n.t.

∂�
exists σ -a.e. on ∂�, belongs to

.
M
p,λ

1 (∂�, σ),

and
∥∥u

∣∣κ−n.t.

∂�

∥∥ .
M
p,λ
1 (∂�,σ)

≤ C
∥∥Nκ(∇u)

∥∥
Mp,λ(∂�,σ)

(7.112)

for some constant C ∈ (0,∞) independent of u.

It has also been noted in [114, §3.3] that Theorems 3.3, 3.4, and Proposition 7.8
imply the following Fatou-type results and integral representation formulas.

Theorem 7.3 Let � ⊆ Rn be an NTA domain such that ∂� is an unbounded
Ahlfors regular set. Abbreviate σ := H n−1�∂� and denote by ν the geometric
measure theoretic outward unit normal to �. Let A = (

a
αβ
rs

)
1≤r,s≤n

1≤α,β≤M
(where

M ∈ N) be a complex coefficient tensor with the property that L := LA is a weakly
elliptic M × M system in Rn. In this setting, recall the modified version of the
double layer operator D

A,mod from (3.49), and the modified version of the single
layer operator Smod from (3.38). Fix an aperture parameter κ ∈ (0,∞) along with
some integrability exponents p, q ∈ (1,∞) and a number λ ∈ (0, n − 1). Finally,
consider a function u : �→ CM satisfying
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u ∈ [
C∞(�)

]M
and Lu = 0 in �. (7.113)

(1) If Nκ(∇u) ∈ Mp,λ(∂�, σ) then

u
∣∣κ−n.t.

∂�
exists σ -a.e. on ∂� and belongs to

[ .
M

p,λ

1 (∂�, σ)
]M

,

(∇u)∣∣κ−n.t.

∂�
exists σ -a.e. on ∂� and ∂Aν u ∈

[
Mp,λ(∂�, σ)

]M
,

(7.114)

and there exists some CM -valued locally constant function cu in � with the
property that

u = D
A,mod

(
u
∣∣κ−n.t.

∂�

)−Smod

(
∂Aν u

)+ cu in �. (7.115)

(2) If Nκ(∇u) ∈ Bq,λ(∂�, σ) then

u
∣∣κ−n.t.

∂�
exists σ -a.e. on ∂� and belongs to

[ .
Bq,λ

1 (∂�, σ)
]M

,

(∇u)∣∣κ−n.t.

∂�
exists σ -a.e. on ∂� and ∂Aν u ∈

[
Bq,λ(∂�, σ)

]M
,

(7.116)

and (7.115) continues to hold.
(3) If Nκ(∇u) ∈ M̊p,λ(∂�, σ) then

u
∣∣κ−n.t.

∂�
exists σ -a.e. on ∂� and belongs to

[ .
M
p,λ

1 (∂�, σ)
]M

,

(∇u)∣∣κ−n.t.

∂�
exists σ -a.e. on ∂� and ∂Aν u ∈

[
M̊p,λ(∂�, σ)

]M
,

(7.117)

and (7.115) once again continues to hold.

We wish to augment Theorem 7.2 with a series of results dealing with modified
boundary layer potentials.

Theorem 7.4 Let � ⊆ Rn be a UR domain. Denote by ν = (ν1, . . . , νn) the
geometric measure theoretic outward unit normal to � and set σ := H n−1�∂�.
Also, for someM ∈ N, let A = (

a
αβ
rs

)
1≤r,s≤n

1≤α,β≤M
be a complex coefficient tensor with

the property that L := LA is a weakly elliptic M × M system in Rn. Recall the
modified boundary-to-boundary single layer operator Smod associated with L and
� as in (3.42). Finally, fix two exponents p, q ∈ (1,∞) along with a parameter
λ ∈ (0, n− 1). Then the following properties are true.

(1) The modified boundary-to-boundary single layer operator induces a mapping

Smod :
[
Mp,λ(∂�, σ)

]M −→ [ .
M

p,λ

1 (∂�, σ)
]M (7.118)
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which is well defined, linear, and bounded, when the target space is endowed
with the semi-norm (7.70). In particular,

for each function f ∈ [
Mp,λ(∂�, σ)

]M
and pair of indices

j, k ∈ {1, . . . , n} one has ∂τjk
(
Smodf

) ∈ [
Mp,λ(∂�, σ)

]M
.

(7.119)

Also, for each function f ∈ [
Mp,λ(∂�, σ)

]M
, at σ -a.e. point x ∈ ∂� one has

( 1
2I +K#

A�
)((− 1

2I +K#
A�

)
f
)
(x) (7.120)

=
(

lim
ε→0+

ˆ

y∈∂�
|x−y|>ε

νi(x)a
μγ

ij aβαrs (∂rEγβ)(x − y)∂τjs
(
Smodf

)
α
(y) dσ(y)

)

1≤μ≤M
,

where K#
A� is the singular integral operator associated as in (3.25) with the set

� and the transpose coefficient tensor A�. Finally,

for each sequence of functions {fj }j∈N ⊆ [
Mp,λ(∂�, σ)

]M

which is weak-∗ convergent to some f ∈ [
Mp,λ(∂�, σ)

]M
and

for each test function φ ∈ [
Lip(∂�)

]M
with compact support

one has lim
j→∞

´
∂�

〈
Smodfj , φ

〉
dσ = ´

∂�

〈
Smodf, φ

〉
dσ .

(7.121)

(2) As a consequence of (7.118), the following is a well-defined linear operator:

[
Smod

] : [Mp,λ(∂�, σ)
]M −→ [ .

M
p,λ

1 (∂�, σ)
/ ∼ ]M

defined as
[
Smod

]
f := [

Smodf
] ∈ [ .

M
p,λ

1 (∂�, σ)
/ ∼ ]M

,

for all f ∈ [
Mp,λ(∂�, σ)

]M
.

(7.122)

Moreover, if actually � ⊆ Rn is an open set satisfying a two-sided local John
condition and whose boundary is an unbounded Ahlfors regular set, then the
operator (7.122) is also bounded when the quotient space is endowed with the
norm introduced in (7.72).

(3) With Smod denoting the modified version of the single layer operator acting

on functions from
[
L1

(
∂�,

σ(x)

1+|x|n−1

)]M
as in (3.38), for each given aperture

parameter κ > 0 there exists some constant C = C(�,L, n, p, λ, κ) ∈ (0,∞)

with the property that for each given function f ∈ [
Mp,λ(∂�, σ)

]M
one has
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Smodf ∈ [
C∞(�)

]M
, L

(
Smodf

) = 0 in �,

Nκ

(∇Smodf
)
belongs to Mp,λ(∂�, σ) and

∥∥Nκ

(∇Smodf
)∥∥

Mp,λ(∂�,σ)
≤ C‖f ‖[Mp,λ(∂�,σ)]M ,

((
Smodf

)∣∣∣
κ−n.t.

∂�

)
(x) = (Smodf )(x) at σ -a.e. point x ∈ ∂�.

(7.123)

Moreover, for each given function f in the Morrey space
[
Mp,λ(∂�, σ)

]M
the

following jump formula holds (with I denoting the identity operator)

∂Aν Smodf = (− 1
2I +K#

A�
)
f at σ -a.e. point in ∂�, (7.124)

where K#
A� is the singular integral operator associated as in (3.25) with the set

� and the transpose coefficient tensor A�.
(4) Similar properties to those described in items (1)–(3) are valid for block spaces

(and block-based homogeneous Sobolev spaces) in place of Morrey spaces (and
homogeneous Morrey-based Sobolev spaces). More specifically, the operator

Smod :
[
B q,λ(∂�, σ)

]M −→ [ .
B q,λ

1 (∂�, σ)
]M (7.125)

is well defined, linear, and bounded, when the target space is endowed with the
semi-norm (7.103). Also,

[
Smod

] : [B q,λ(∂�, σ)
]M −→ [ .

B q,λ

1 (∂�, σ)
/ ∼ ]M

defined as
[
Smod

]
f := [

Smodf
] ∈ [ .

B q,λ

1 (∂�, σ)
/ ∼ ]M

,

for all f ∈ [
B q,λ(∂�, σ)

]M

(7.126)

is a well-defined linear operator, which is also bounded in the case when
� ⊆ Rn is an open set satisfying a two-sided local John condition and whose
boundary is an unbounded Ahlfors regular set (assuming the quotient space
is endowed with the norm introduced in (7.106)). Finally, for each aperture
parameter κ > 0 there exists C = C(�,L, n, q, λ, κ) ∈ (0,∞) with the
property that for each function f ∈ [

B q,λ(∂�, σ)
]M

one has
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Smodf ∈ [
C∞(�)

]M
, L

(
Smodf

) = 0 in �,

Nκ

(∇Smodf
)
belongs to B q,λ(∂�, σ),

∥∥Nκ

(∇Smodf
)∥∥

B q, λ(∂�,σ)
≤ C‖f ‖[B q, λ(∂�,σ)]M ,

((
Smodf

)∣∣∣
κ−n.t.

∂�

)
(x) = (Smodf )(x) at σ -a.e. point x ∈ ∂�,

and ∂Aν Smodf = (− 1
2I +K#

A�
)
f at σ -a.e. point in ∂�.

(7.127)

(5) Analogous properties to those presented in items (1)–(3) above are also valid
for vanishing Morrey spaces M̊p,λ(∂�, σ) (cf. (7.7)) and homogeneous vanish-
ing Morrey-based Sobolev spaces

.
M
p,λ

1 (∂�, σ) (cf. Definition 7.1) in place of
Morrey spaces and homogeneous Morrey-based Sobolev spaces, respectively.

This theorem has been established in [114, §3.3, §1.5]. Here we wish to note
that an alternative argument may be given along the lines of the proof of item (2) in
Theorem 8.5 (where a more general result of this flavor is obtained).

Some of the main properties of the modified boundary-to-domain double layer
potential operators and their conormal derivatives acting on homogeneous Morrey-
based and block-based Sobolev spaces on boundaries of UR domains are collected
in the next theorem from [114, §3.3].

Theorem 7.5 Let � ⊆ Rn be a UR domain. Denote by ν = (ν1, . . . , νn) the
geometric measure theoretic outward unit normal to � and set σ := H n−1�∂�. In
addition, for some M ∈ N, let A = (

a
αβ
rs

)
1≤r,s≤n

1≤α,β≤M
be a complex coefficient tensor

with the property that L := LA is a weakly elliptic M ×M system in Rn. Also, let
E = (Eγβ)1≤γ ,β≤M be the matrix-valued fundamental solution associated with L
as in Theorem 3.1. In this setting, recall the modified version of the double layer
operator D

A,mod acting on functions from
[
L1

(
∂�,

σ(x)
1+|x|n

)]M
as in (3.49). Finally,

fix some integrability exponents p, q ∈ (1,∞) along with a number λ ∈ (0, n− 1),
and an aperture parameter κ ∈ (0,∞). Then the following statements are true.

(1) There exists some constantC = C(�,A, n, p, λ, κ) ∈ (0,∞)with the property
that for each function f ∈ [ .

M
p,λ

1 (∂�, σ)
]M

it follows that

D
A,modf ∈ [

C∞(�)
]M

, L
(
D

A,modf
) = 0 in �,

(
D

A,modf
)∣∣κ−n.t.

∂�
,
(∇D

A,modf
)∣∣κ−n.t.

∂�
exist σ -a.e. on ∂�,

Nκ

(∇D
A,modf

)
belongs to Mp,λ(∂�, σ) and

∥∥Nκ

(∇D
A,modf

)∥∥
Mp,λ(∂�,σ)

≤ C‖f ‖[ .Mp,λ
1 (∂�,σ)]M .

(7.128)

In fact, for each function f ∈ [ .
M

p,λ

1 (∂�, σ)
]M

one has
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(D
A,modf )

∣∣κ−n.t.

∂�
= ( 1

2I +K
A,mod

)
f at σ -a.e. point on ∂�, (7.129)

where I is the identity operator on
[ .
M

p,λ

1 (∂�, σ)
]M

, andK
A,mod is the modified

boundary-to-boundary double layer potential operator from (3.50) and (3.48).
(2) Given any function f = (fα)1≤α≤M belonging to the homogeneous Morrey-

based Sobolev space
[ .
M

p,λ

1 (∂�, σ)
]M

, at σ -a.e. point x ∈ ∂� one has

(
∂Aν (DA,modf )

)
(x) =

(
lim
ε→0+

ˆ

y∈∂�
|x−y|>ε

νi(x)a
μγ

ij aβαrs (∂rEγ β)(x − y)×

(7.130)

× (
∂τjs fα

)
(y) dσ(y)

)

1≤μ≤M
,

where the conormal derivative is considered as in (3.66).
(3) The operator

∂Aν DA,mod :
[ .
M

p,λ

1 (∂�, σ)
]M −→ [

Mp,λ(∂�, σ)
]M

defined as
(
∂Aν DA,mod)f := ∂Aν (DA,modf ) for each f ∈ [ .

M
p,λ

1 (∂�, σ)
]M (7.131)

is well defined, linear, and bounded, when the domain space is equipped with the
semi-norm (7.70). As a consequence of (7.131), the following is a well-defined
linear operator:

[
∂Aν DA,mod

] : [ .Mp,λ

1 (∂�, σ)
/ ∼ ]M −→ [

Mp,λ(∂�, σ)
]M

given by
[
∂Aν DA,mod

][f ] := ∂Aν (DA,modf )

for each function f ∈ [ .
M

p,λ

1 (∂�, σ)
]M

.

(7.132)

If, in fact,� ⊆ Rn is an open set satisfying a two-sided local John condition and
whose boundary is an unbounded Ahlfors regular set, then the operator (7.132)
is also bounded when the quotient space is equipped with the norm (7.72).

(4) With K#
A� denoting the singular integral operator associated as in (3.25) with

the set � and the transpose coefficient tensor A�, one has
( 1

2I +K#
A�

)(− 1
2I +K#

A�
) = [

∂Aν DA,mod

][
Smod

]

as mappings acting from
[
Mp,λ(∂�, σ)

]M
,

(7.133)

and
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[
∂Aν DA,mod

][
K

A,mod

] = K#
A�

[
∂Aν DA,mod

]

as mappings acting from
[ .
M

p,λ

1 (∂�, σ)/ ∼ ]M
.

(7.134)

Moreover, if ∂� is connected then also

( 1
2I +

[
K

A,mod

])(− 1
2I +

[
K

A,mod

]) = [
Smod

][
∂Aν DA,mod

]

as mappings acting from
[ .
M

p,λ

1 (∂�, σ)/ ∼ ]M
,

(7.135)

and

[
Smod

]
K#
A� =

[
K

A,mod

][
Smod

]

as mappings acting from
[
Mp,λ(∂�, σ)

]M
.

(7.136)

(5) Similar properties to those described in items (1)–(4) above are also valid
for block spaces (and block-based homogeneous Sobolev spaces) in place of
Morrey spaces (and homogeneous Morrey-based Sobolev spaces). Concretely,
there exists a constant C = C(�,A, n, q, λ, κ) ∈ (0,∞) with the property that
for each function f ∈ [ .

Bq,λ

1 (∂�, σ)
]M

one has

D
A,modf ∈ [

C∞(�)
]M

, L
(
D

A,modf
) = 0 in �,

(
D

A,modf
)∣∣κ−n.t.

∂�
= ( 1

2I +K
A,mod

)
f at σ -a.e. point on ∂�,

(∇D
A,modf

)∣∣κ−n.t.

∂�
exist at σ -a.e. point on ∂�,

Nκ

(∇D
A,modf

)
belongs to Bq,λ(∂�, σ) and

∥∥Nκ

(∇D
A,modf

)∥∥
Bq,λ(∂�,σ)

≤ C‖f ‖[ .Bq,λ
1 (∂�,σ)]M .

(7.137)

Also, formula (7.130) remains true for each function f = (fα)1≤α≤M belonging

to the space
[ .
Bq,λ

1 (∂�, σ)
]M

, and the operator

∂Aν DA,mod :
[ .
Bq,λ

1 (∂�, σ)
]M −→ [

Bq,λ(∂�, σ)
]M

defined as
(
∂Aν DA,mod)f := ∂Aν (DA,modf ) for each f ∈ [ .

Bq,λ

1 (∂�, σ)
]M (7.138)

is well defined, linear, and bounded, when the domain space is equipped with
the semi-norm (7.103). Furthermore,

[
∂Aν DA,mod

] : [ .Bq,λ

1 (∂�, σ)
/ ∼ ]M −→ [

B q,λ(∂�, σ)
]M

defined as
[
∂Aν DA,mod

][f ] := ∂Aν (DA,modf )

for each f ∈ [ .
Bq,λ

1 (∂�, σ)
]M

(7.139)
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is a well-defined linear operator, which is also bounded when the quotient space
is equipped with the norm (7.106) if, in fact, � ⊆ Rn is an open set satisfying
a two-sided local John condition and whose boundary is an unbounded Ahlfors
regular set. Finally, the operator identities in (7.133)–(7.135) are valid for
functions in

[ .
Bq,λ

1 (∂�, σ)/ ∼ ]M
.

(6) Analogous properties to those presented in items (1)–(4) above are also valid
for homogeneous vanishing Morrey-based Sobolev spaces

.
M
p,λ

1 (∂�, σ) (cf.
Definition 7.1) in place of homogeneous Morrey-based Sobolev spaces.

We next study mapping properties for modified boundary-to-boundary double
layer potential operators acting on homogeneous Morrey-based and block-based
Sobolev spaces on boundaries of UR domains.

Theorem 7.6 Let � ⊆ Rn (where n ∈ N satisfies n ≥ 2) be an NTA domain
such that ∂� is an Ahlfors regular set, and abbreviate σ := H n−1�∂�. Also, let
L = (

a
αβ
rs ∂r∂s

)
1≤α,β≤M be a homogeneous, weakly elliptic, constant (complex)

coefficient, second-order M × M system in Rn (for some integer M ∈ N). In
this context, consider the modified boundary-to-boundary double layer potential
operator K

A,mod from (3.50). Finally, select some exponents p, q ∈ (1,∞) along
with a parameter λ ∈ (0, n− 1). Then the following statements are valid.

(1) The modified boundary-to-boundary double layer potential operator induces a
mapping

K
A,mod :

[ .
M

p,λ

1 (∂�, σ)
]M −→ [ .

M
p,λ

1 (∂�, σ)
]M (7.140)

which is well defined, linear, and bounded, when the spaces involved are
endowed with the semi-norm (7.70). As a corollary of (7.140), the following
operator is well defined and linear:

[
K

A,mod

] : [ .Mp,λ

1 (∂�, σ)
/ ∼ ]M −→ [ .

M
p,λ

1 (∂�, σ)
/ ∼ ]M

given by
[
K

A,mod

][f ] := [
K

A,modf
] ∈ [ .

M
p,λ

1 (∂�, σ)
/ ∼ ]M

,

for each function f ∈ [ .
M

p,λ

1 (∂�, σ)
]M

.

(7.141)

Moreover, if actually� ⊆ Rn is a two-sided NTA domain whose boundary is an
unbounded Ahlfors regular set then the operator (7.141) is also bounded when
all quotient spaces are endowed with the norm introduced in (7.72).

(2) If Ujk with j, k ∈ {1, . . . , n} is the family of singular integral operators defined
in (3.35), then
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∂τjk
(
K

A,modf
) = KA(∂τj kf )+ Ujk(∇tanf ) at σ -a.e. point on ∂�

for each f ∈ [ .
M

p,λ

1 (∂�, σ)
]M

and each j, k ∈ {1, . . . , n}.
(7.142)

(3) Similar properties to those described in items (1)–(2) are valid for block-based
homogeneous Sobolev spaces in place of homogeneous Morrey-based Sobolev
spaces. Specifically,

K
A,mod :

[ .
B q,λ

1 (∂�, σ)
]M −→ [ .

Bq,λ

1 (∂�, σ)
]M (7.143)

is a well-defined, linear, and bounded operator when the spaces involved are
endowed with the semi-norm (7.103). Also,

[
K

A,mod

] : [ .B q,λ

1 (∂�, σ)
/ ∼ ]M −→ [ .

B q,λ

1 (∂�, σ)
/ ∼ ]M

given by
[
K

A,mod

][f ] := [
Kmodf

] ∈ [ .
Bq,λ

1 (∂�, σ)
/ ∼ ]M

for each function f ∈ [ .
Bq,λ

1 (∂�, σ)
]M

(7.144)

is a well-defined linear mapping, which is also bounded when all quotient
spaces are endowed with the norm introduced in (7.106) if in fact � ⊆ Rn
is a two-sided NTA domain whose boundary is an unbounded Ahlfors regular
set. Finally,

∂τjk
(
K

A,modf
) = KA(∂τjkf )+ Ujk(∇tanf ) at σ -a.e. point on ∂�

for each f ∈ [ .
Bq,λ

1 (∂�, σ)
]M

and each j, k ∈ {1, . . . , n}.
(7.145)

(4) Analogous properties to those presented in items (1)–(2) above are also valid
for homogeneous vanishing Morrey-based Sobolev spaces

.
M
p,λ

1 (∂�, σ) (cf.
Definition 7.1) in place of homogeneous Morrey-based Sobolev spaces.

7.2 Inverting Double Layer Operators on Morrey and Block
Spaces

The starting point is deriving estimates for the operator norms of singular integral
operators whose integral kernels contain, as a factor, the crucial inner product
between the unit normal and the “chord” (cf. (7.146), (7.147)), of the sort obtained
earlier in Theorem 4.2 and Corollary 4.2 in the context of Muckenhoupt weighted
Lebesgue spaces, but now working in the framework of Morrey spaces, vanishing
Morrey spaces, and block spaces. We carry out this task in Theorem 7.7 below.
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Theorem 7.7 Let� ⊆ Rn be a UR domain. Abbreviate σ := Hn−1�∂� and denote
by ν the geometric measure theoretic outward unit normal to �. Fix an arbitrary
integrability exponent p ∈ (1,∞) along with some parameter λ ∈ (0, n− 1). Also,
consider a complex-valued function k ∈ CN(Rn \ {0}) (for some sufficiently large
integer N = N(n) ∈ N) which is even and positive homogeneous of degree −n. In
this setting consider the principal-value singular integral operators T , T # acting on
each given function f ∈ Mp,λ(∂�, σ) according to

Tf (x) := lim
ε→0+

ˆ

y∈∂�
|x−y|>ε

〈x − y, ν(y)〉k(x − y)f (y) dσ(y), (7.146)

and

T #f (x) := lim
ε→0+

ˆ

y∈∂�
|x−y|>ε

〈y − x, ν(x)〉k(x − y)f (y) dσ(y), (7.147)

at σ -a.e. point x ∈ ∂�. Also, define the action of the maximal operator T∗ on each
given function f ∈ Mp,λ(∂�, σ) as

T∗f (x) := sup
ε>0

∣∣∣∣

ˆ

y∈∂�
|x−y|>ε

〈x − y, ν(y)〉k(x − y)f (y) dσ(y)

∣∣∣∣ for each x ∈ ∂�,

(7.148)
and its companion

T #∗ f (x) := sup
ε>0

∣
∣∣∣

ˆ

y∈∂�
|x−y|>ε

〈x − y, ν(x)〉k(x − y)f (y) dσ(y)

∣
∣∣∣ for each x ∈ ∂�.

(7.149)
Then the following are well-defined, bounded operators

T∗, T #∗ , T , T # : Mp,λ(∂�, σ) −→ Mp,λ(∂�, σ), (7.150)

T∗, T #∗ , T , T # : M̊p,λ(∂�, σ) −→ M̊p,λ(∂�, σ), (7.151)

and for each m ∈ N there exists some Cm ∈ (0,∞), which depends only on m, n,
p, λ, and the UR constants of ∂� such that, with the piece of notation introduced
in (4.93), one has

‖T∗‖M̊p,λ(∂�,σ)→M̊p,λ(∂�,σ)
≤ ‖T∗‖Mp,λ(∂�,σ)→Mp,λ(∂�,σ)



462 7 Singular Integrals and Boundary Problems in Morrey and Block Spaces

≤ Cm

( ∑

|α|≤N
sup
Sn−1

|∂αk|
)
‖ν‖〈m〉[BMO(∂�,σ)]n , (7.152)

∥
∥∥T #∗

∥
∥∥
M̊p,λ(∂�,σ)→M̊p,λ(∂�,σ)

≤
∥
∥∥T #∗

∥
∥∥
Mp,λ(∂�,σ)→Mp,λ(∂�,σ)

≤ Cm

( ∑

|α|≤N
sup
Sn−1

|∂αk|
)
‖ν‖〈m〉[BMO(∂�,σ)]n , (7.153)

‖T ‖
M̊p,λ(∂�,σ)→M̊p,λ(∂�,σ)

≤ ‖T ‖Mp,λ(∂�,σ)→Mp,λ(∂�,σ)

≤ Cm

( ∑

|α|≤N
sup
Sn−1

|∂αk|
)
‖ν‖〈m〉[BMO(∂�,σ)]n , (7.154)

∥∥∥T #
∥∥∥
M̊p,λ(∂�,σ)→M̊p,λ(∂�,σ)

≤
∥∥∥T #

∥∥∥
Mp,λ(∂�,σ)→Mp,λ(∂�,σ)

≤ Cm

( ∑

|α|≤N
sup
Sn−1

|∂αk|
)
‖ν‖〈m〉[BMO(∂�,σ)]n . (7.155)

Furthermore, for each q ∈ (1,∞) the operators

T , T # : Bq,λ(∂�, σ) −→ Bq,λ(∂�, σ) (7.156)

are well defined, linear, bounded, and for each m ∈ N there exists some constant
Cm ∈ (0,∞), which depends only on m, n, q, λ, and the UR constants of ∂� such
that, with the piece of notation introduced in (4.93), one has

max
{
‖T ‖Bq,λ(∂�,σ)→Bq,λ(∂�,σ) ,

∥∥∥T #
∥∥∥
Bq,λ(∂�,σ)→Bq,λ(∂�,σ)

}

≤ Cm

( ∑

|α|≤N
sup
Sn−1

|∂αk|
)
‖ν‖〈m〉[BMO(∂�,σ)]n . (7.157)

Proof The claims made in (7.150)–(7.155) follow from Theorem 4.2, Corollary 4.2,
and Proposition 7.4 (also keeping in mind (7.3) and (7.7)). Then the claims
in (7.156)–(7.157) become consequences of what we have just proved and duality
(cf. Proposition 7.2 and (7.46)). � 
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In concert with the commutator estimates discussed earlier (cf. Theorem 7.1),
Theorem 7.7 implies the following result, which is the Morrey space (respectively,
vanishing Morrey space, and block space) counterpart of Theorem 4.6.

Corollary 7.1 Let � ⊆ Rn be a UR domain. Abbreviate σ := Hn−1�∂� and
denote by ν = (νk)1≤k≤n the geometric measure theoretic outward unit normal to�.
Also, fix two arbitrary integrability exponents p, q ∈ (1,∞) and a parameter λ ∈
(0, n−1). Finally, recall the boundary-to-boundary harmonic double layer potential
operatorK from (3.29), the Riesz transforms {Rj }1≤j≤n from (4.297), and for each
index k ∈ {1, . . . , n} denote byMνk the operator of pointwise multiplication by the
k-th scalar component of ν.

Then for each m ∈ N there exists some Cm ∈ (0,∞) which depends only on
m, n, p, q, λ, and the UR constants of ∂� such that, with the piece of notation
introduced in (4.93), one has

‖K‖Mp,λ(∂�,σ)→Mp,λ(∂�,σ) + max
1≤j,k≤n

∥∥[Mνk , Rj ]
∥∥
Mp,λ(∂�,σ)→Mp,λ(∂�,σ)

≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n , (7.158)

‖K‖M̊p,λ(∂�,σ)→M̊p,λ(∂�,σ)
+ max

1≤j,k≤n
∥∥[Mνk , Rj ]

∥∥
M̊p,λ(∂�,σ)→M̊p,λ(∂�,σ)

≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n , (7.159)

and

‖K‖Bq,λ(∂�,σ)→Bq,λ(∂�,σ) + max
1≤j,k≤n

∥∥[Mνk , Rj ]
∥∥
Bq,λ(∂�,σ)→Bq,λ(∂�,σ)

≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n . (7.160)

Proof The estimates claimed in (7.158)–(7.160) are implied by (3.29), Theo-
rem 7.7, (4.297), Proposition 3.4, and Theorem 7.1. � 

We shall revisit Corollary 7.1 later, in Theorem 7.15, which contains estimates in
the opposite direction to those obtained in (7.158)–(7.160).

For the time being, we take up the task of establishing estimates akin to those
obtained in Theorem 4.7 for Muckenhoupt weighted Lebesgue and Sobolev spaces,
now working in the setting of Morrey spaces, vanishing Morrey spaces, block
spaces, as well as the brands of Sobolev spaces naturally associated with these
scales.

Theorem 7.8 Let � ⊆ Rn be a UR domain. Set σ := Hn−1�∂� and denote
by ν the geometric measure theoretic outward unit normal to �. Also, let L be a
homogeneous, second-order, constant complex coefficient, weakly elliptic M × M
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system in Rn for which Adis
L �= ∅. Pick A ∈ Adis

L and consider the boundary-
to-boundary double layer potential operators KA,K

#
A associated with � and the

coefficient tensorA as in (3.24) and (3.25), respectively. Finally, fix two integrability
exponents p, q ∈ (1,∞) and a parameter λ ∈ (0, n− 1).

Then for each m ∈ N there exists some constant Cm ∈ (0,∞) which depends
only on m, n, A, p, q, λ, and the UR constants of ∂� such that, with the piece of
notation introduced in (4.93), one has

‖KA‖[Mp,λ(∂�,σ)]M→[Mp,λ(∂�,σ)]M ≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n , (7.161)

‖KA‖[M̊p,λ(∂�,σ)]M→[M̊p,λ(∂�,σ)]M ≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n , (7.162)

‖KA‖[Bq,λ(∂�,σ)]M→[Bq,λ(∂�,σ)]M ≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n , (7.163)

‖KA‖[Mp,λ
1 (∂�,σ)]M→[Mp,λ

1 (∂�,σ)]M ≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n , (7.164)

‖KA‖[M̊p,λ
1 (∂�,σ)]M→[M̊p,λ

1 (∂�,σ)]M ≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n , (7.165)

‖KA‖[Bq,λ
1 (∂�,σ)]M→[Bq,λ

1 (∂�,σ)]M ≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n , (7.166)

as well as

∥∥K#
A

∥∥[Mp,λ(∂�,σ)]M→[Mp,λ(∂�,σ)]M ≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n , (7.167)

∥∥K#
A

∥∥[M̊p,λ(∂�,σ)]M→[M̊p,λ(∂�,σ)]M ≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n , (7.168)

∥∥K#
A

∥∥[Bq,λ(∂�,σ)]M→[Bq,λ(∂�,σ)]M ≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n . (7.169)

Proof All claims are justified as in the proof of Theorem 4.7, now making
use of Theorem 7.7, Proposition 3.2, Theorem 7.1, (7.54)–(7.58), as well
as (7.3), (7.8), (7.10), (7.17), (7.18). � 

Remark 7.1 Similar estimates to those established in Theorem 7.8 are valid for the
double layer operators acting on sums of Morrey spaces, vanishing Morrey spaces,
and block spaces (cf. (4.332)).

The stage is now set for obtaining invertibility results for certain types of double
layer potential operators acting on Morrey spaces, vanishing Morrey spaces, block
spaces, as well as on the brands of Sobolev spaces naturally associated with these
scales.
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Theorem 7.9 Let � ⊆ Rn be an Ahlfors regular domain. Set σ := Hn−1�∂�
and denote by ν the geometric measure theoretic outward unit normal to �. Also,
let L be a homogeneous, second-order, constant complex coefficient, weakly elliptic
M×M system in Rn for which Adis

L �= ∅. Pick A ∈ Adis
L and consider the boundary-

to-boundary double layer potential operators KA,K
#
A associated with � and the

coefficient tensorA as in (3.24) and (3.25), respectively. Finally, fix two integrability
exponents p, q ∈ (1,∞) along with a parameter λ ∈ (0, n− 1), and some number
ε ∈ (0,∞).

Then there exists some small threshold δ ∈ (0, 1) which depends only on n, p, q,
λ, A, ε, and the Ahlfors regularity constant of ∂� such that if ‖ν‖[BMO(∂�,σ)]n < δ

(i.e., if � is a δ-AR domain; cf. Definition 2.15) it follows that for each spectral
parameter z ∈ C with |z| ≥ ε the following operators are invertible:

zI +KA :
[
Mp,λ(∂�, σ)

]M −→ [
Mp,λ(∂�, σ)

]M
, (7.170)

zI +KA :
[
M̊p,λ(∂�, σ)

]M −→ [
M̊p,λ(∂�, σ)

]M
, (7.171)

zI +KA :
[
Bq,λ(∂�, σ)

]M −→ [
Bq,λ(∂�, σ)

]M
, (7.172)

zI +KA :
[
M

p,λ

1 (∂�, σ)
]M −→ [

M
p,λ

1 (∂�, σ)
]M

, (7.173)

zI +KA :
[
M̊

p,λ

1 (∂�, σ)
]M −→ [

M̊
p,λ

1 (∂�, σ)
]M

, (7.174)

zI +KA :
[
Bq,λ

1 (∂�, σ)
]M −→ [

Bq,λ

1 (∂�, σ)
]M

, (7.175)

zI +K#
A :

[
Mp,λ(∂�, σ)

]M −→ [
Mp,λ(∂�, σ)

]M
, (7.176)

zI +K#
A :

[
M̊p,λ(∂�, σ)

]M −→ [
M̊p,λ(∂�, σ)

]M
, (7.177)

zI +K#
A :

[
Bq,λ(∂�, σ)

]M −→ [
Bq,λ(∂�, σ)

]M
. (7.178)

In addition, the inverses in (7.170)–(7.175) are compatible with one another and
also with the inverses of (4.309)–(4.310). Also, the inverses in (7.176)–(7.178) are
compatible with one another and also with the inverse of (4.311).

Proof All claims are consequence of Theorem 7.8, reasoning as in the proof of
Theorem 4.8 and Proposition 4.2. � 

Remark 7.2 The conclusions in Theorem 7.9 may fail when A /∈ Adis
L even when �

is a half-space. For example, from Proposition 3.13 and Theorem 7.2 we see that in
such a scenario it may happen that 1

2I + KA has an infinite dimensional cokernel
when acting on Morrey and block spaces.
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The operators in Remarks 4.14-4.15 (now considered on Morrey and block
spaces) also offer counter-examples for the conclusions in Theorem 7.9 in the case
when A /∈ Adis

L even when � is a half-space.

Remark 7.3 In the context of Theorem 7.9, if the threshold δ ∈ (0, 1) is taken
sufficiently small in such a way that the operator zI +KA is invertible on the space[
M

p,λ

1 (∂�, σ)
]M we also claim that there exists some constant C ∈ (0,∞) with

the property that

whenever f ∈ [
M

p,λ

1 (∂�, σ)
]M

and g := (zI +KA)
−1 f ∈ [

M
p,λ

1 (∂�, σ)
]M

then ‖∇tang‖[Mp,λ(∂�,σ)]n·M ≤ C ‖∇tanf ‖[Mp,λ
1 (∂�,σ)]n·M .

(7.179)

To justify this, use (3.37) to write, for each j, k ∈ {1, . . . , n},

∂τjkf = ∂τjk
[(
zI +KA

)
g
] = (

zI +KA

)
(∂τjk g)+ Ujk(∇tang)

= (
zI +KA

)
(∂τjk g)+ Ujk

((
νr∂τrs gα

)
1≤α≤M
1≤s≤n

)
(7.180)

at σ -a.e. point on ∂�, where ν = (νr )1≤r≤n is the geometric measure theoretic
outward unit normal to �. Using the abbreviations introduced in (4.345), the
formulas in (7.180), corresponding to all indices j, k ∈ {1, . . . , n}, may be
collectively re-fashioned as

∇τ f = (
zI + R

)
(∇τ g), (7.181)

where I is the identity and R is the operator acting from
[
Mp,λ(∂�, σ)

]M·n2

into itself much as in (4.347)–(4.348). From these, (7.161), (3.35), Theorem 7.1,
and (3.81), we then conclude that for each m ∈ N we have

‖R‖[Mp,λ(∂�,σ)]M·n2→[Mp,λ(∂�,σ)]M·n2 ≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n (7.182)

for some Cm ∈ (0,∞) which depends only on m, n, A, p, λ, and the UR constants
of ∂�. As a consequence of this, if we assume δ > 0 to be sufficiently small to
begin with, a Neumann series argument gives that

zI + R is invertible on
[
Mp,λ(∂�, σ)]M·n2

(7.183)

and provides an estimate for the norm of the inverse. At this stage, the estimate
claimed in (7.179) follows from (7.181), (7.183), (4.345), and (2.585)–(2.586).
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We may be further enhance the invertibility results from Theorem 7.9 by allowing
the coefficient tensor to be a small perturbation of any distinguished coefficient
tensor of the given system. Specifically, Theorem 7.8 in concert with the continuity
of the operator-valued assignments AWE � A �→ KA and AWE � A �→ K#

A,
considered in all contexts discussed in Theorem 7.2, yield the following result.

Theorem 7.10 Retain the original background assumptions on the set � from
Theorem 7.9 and, as before, fix some integrability exponents p, q ∈ (1,∞), a
parameter λ ∈ (0, n − 1), and some number ε ∈ (0,∞). Consider L ∈ Ldis

(cf. (3.195)) and pick an arbitrary Ao ∈ Adis
L . Then there exist some small threshold

δ ∈ (0, 1) along with some open neighborhood O of Ao in AWE , both of which
depend only on n, p, q, λ, Ao, ε, and the Ahlfors regularity constant of ∂�,
with the property that if ‖ν‖[BMO(∂�,σ)]n < δ (hence, � is a δ-AR domain; cf.
Definition 2.15) then for each A ∈ O and each spectral parameter z ∈ C with
|z| ≥ ε, the operators (7.170)–(7.178) are invertible.

We close this section with the following remark.

Remark 7.4 In the two-dimensional setting, more can be said about the Lamé
system. Specifically, the versions of Theorem 4.14 and Corollary 4.3 naturally
formulated in terms of Morrey spaces, vanishing Morrey spaces, block spaces, as
well as their associated Sobolev spaces, continue to hold, virtually with the same
proofs (now making use of Proposition 7.5, Theorems 7.1, 7.2, and 7.7).

7.3 Invertibility on Morrey/Block-Based Homogeneous
Sobolev Spaces

The starting point in this section is the following counterpart of Theorem 4.10
containing operator norm estimates for double layer potentials associated with
distinguished coefficient tensors on Morrey-based and block-based Sobolev spaces.
As in the past, the key feature of said estimates is the explicit dependence on the
BMO semi-norm of the geometric measure theoretic outward unit normal to the
underlying domain.

Theorem 7.11 Let � ⊆ Rn be a two-sided NTA domain whose boundary is an
unbounded Ahlfors regular set. Abbreviate σ := Hn−1�∂� and denote by ν the
geometric measure theoretic outward unit normal to �. Also, fix some integrability
exponents p, q ∈ (1,∞) and a parameter λ ∈ (0, n − 1). Next, let L be a
homogeneous, second-order, constant complex coefficient, weakly elliptic M × M

system in Rn for which Adis
L �= ∅. Finally, pick A ∈ Adis

L and consider the modified
boundary-to-boundary double layer potential operator

[
K

A,mod

]
associated with �

and the coefficient tensor A as in Theorem 7.6.
Then for each m ∈ N there exists some Cm ∈ (0,∞) which depends only on m,

n, A, p, q, λ, the two-sided NTA constants of�, and the Ahlfors regularity constant
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of ∂�, such that, with the piece of notation introduced in (4.93), one has

∥∥[K
A,mod

]∥∥[ .Mp,λ
1 (∂�,σ)/∼]M→[ .Mp,λ

1 (∂�,σ)/∼]M ≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n , (7.184)

∥∥[K
A,mod

]∥∥[ .Bq,λ
1 (∂�,σ)/∼]M→[ .Bq,λ

1 (∂�,σ)/∼]M ≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n , (7.185)

∥∥[K
A,mod

]∥∥[ .Mp,λ
1 (∂�,σ)/∼]M→[ .Mp,λ

1 (∂�,σ)/∼]M ≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n . (7.186)

Proof The estimate claimed in (7.184) is justified much as in the proof of
Theorem 4.10, making use of (7.141), (7.142), Theorem 7.7, and Theorem 7.1. For
the estimate in (7.185), use (7.144), (7.145), Theorem 7.7, and Theorem 7.1. Finally,
the estimate in (7.186) is dealt with similarly, relying on item (4) in Theorem 7.6.

� 
Having established Theorem 7.11, we now arrive at the first main result in this

section concerning invertibility properties of boundary-to-boundary double layer
potential operators associated with distinguished coefficient tensors on Morrey-
based and block-based Sobolev spaces.

Theorem 7.12 Let� ⊆ Rn be an Ahlfors regular domain. Denote by ν the geomet-
ric measure theoretic outward unit normal to � and set σ := Hn−1�∂�. Assume
L is a homogeneous, second-order, constant complex coefficient, weakly elliptic
M ×M system in Rn for which Adis

L �= ∅. Pick A ∈ Adis
L and consider the modified

boundary-to-boundary double layer potential operator
[
K

A,mod

]
associated with

� and the coefficient tensor A as in Theorem 7.6. Finally, fix some integrability
exponents p, q ∈ (1,∞), a parameter λ ∈ (0, n−1), and some number ε ∈ (0,∞).

Then there exists some small threshold δ ∈ (0, 1) which depends only on n,
p, q λ, A, ε, and the Ahlfors regularity constant of ∂�, with the property that if
‖ν‖[BMO(∂�,σ)]n < δ (hence� is a δ-AR domain; cf. Definition 2.15) it follows that
for each spectral parameter z ∈ C with |z| ≥ ε the operators

zI + [
K

A,mod

] : [ .Mp,λ

1 (∂�, σ)/ ∼ ]M −→ [ .
M

p,λ

1 (∂�, σ)/ ∼ ]M
, (7.187)

zI + [
K

A,mod

] : [ .Bq,λ

1 (∂�, σ)/ ∼ ]M −→ [ .
Bq,λ

1 (∂�, σ)/ ∼ ]M
, (7.188)

zI + [
K

A,mod

] : [ .Mp,λ

1 (∂�, σ)/ ∼ ]M −→ [ .
M
p,λ

1 (∂�, σ)/ ∼ ]M (7.189)

are all invertible.

Proof Pick δ ∈ (0, 1) small enough so that if ‖ν‖[BMO(∂�,σ)]n < δ then � is a two-
sided NTA domain with an unbounded boundary. That this is possible is guaranteed
by Theorem 2.3. Then all desired invertibility result follow (via a Neumann series
argument) from Theorem 7.11. � 



7.3 Invertibility on Morrey/Block-Based HomogeneousSobolev Spaces 469

Remark 7.5 The conclusions in Theorem 7.12 may fail when A /∈ Adis
L even when

� is a half-space. For example, Proposition 3.13 and Theorem 7.5 imply that in such
a case it may happen that 1

2I +
[
K

A,mod

]
has an infinite dimensional cokernel when

acting on homogeneous Morrey-based and block-based Sobolev spaces.

Our next main result in this section, concerning the invertibility of Smod in
quotient Morrey/block spaces, reads as follows:

Theorem 7.13 Let � ⊆ Rn be an Ahlfors regular domain. Set σ := Hn−1�∂�
and denote by ν the geometric measure theoretic outward unit normal to �. Also,
let L be a homogeneous, second-order, constant complex coefficient, weakly elliptic
M × M system in Rn. Consider the modified boundary-to-boundary single layer
potential operator Smod associated with � and the system L as in (3.42). Fix some

exponent p ∈ (1,∞) and λ ∈ (0, n − 1). Finally, use
[ .
M

p,λ

1 (∂�, σ)
/ ∼ ]M

to
denote the M-th power of the quotient space of classes [ · ] of equivalence modulo
constants of functions in

.
M

p,λ

1 (∂�, σ), equipped with the semi-norm (7.72).
Then the following statements are valid.

(1) [Boundedness] If � satisfying a two-sided local John condition then the
operator

[
Smod

] : [Mp,λ(∂�, σ)
]M −→ [ .

M
p,λ

1 (∂�, σ)
/ ∼ ]M

defined as
[
Smod

]
f := [

Smodf
] ∈ [ .

M
p,λ

1 (∂�, σ)
/ ∼ ]M

,

for all f ∈ [
Mp,λ(∂�, σ)

]M

(7.190)

is well defined, linear, and bounded.
(2) [Surjectivity] Whenever Adis

L �= ∅, there exists some small threshold δ ∈ (0, 1)
which depends only on n, p, λ, L, and the Ahlfors regularity constant of ∂�,
with the property that if ‖ν‖[BMO(∂�,σ)]n < δ (hence � is a δ-AR domain; cf.
Definition 2.15) it follows that (7.72) is a genuine norm and the operator (7.190)
is surjective.

(3) [Injectivity] Whenever Adis
L� �= ∅, there exists some small threshold δ ∈ (0, 1)

which depends only on n, p, λ, L, and the Ahlfors regularity constant of ∂�,
with the property that if ‖ν‖[BMO(∂�,σ)]n < δ (hence � is a δ-AR domain) it
follows that the operator (7.190) is injective.

(4) [Isomorphism] Whenever both Adis
L �= ∅ and Adis

L� �= ∅, there exists some
small threshold δ ∈ (0, 1) which depends only on n, p, λ, L, and the Ahlfors
regularity constant of ∂�, with the property that if ‖ν‖[BMO(∂�,σ)]n < δ (hence

the domain � is a δ-AR domain) it follows that
[ .
M

p,λ

1 (∂�, σ)
/ ∼ ]M

is a
Banach space when equipped with the norm (7.72) and the operator (7.190) is
an isomorphism.

(5) [Other spaces] For each given q ∈ (1,∞), similar results to those described in
items (1)–(4) are valid for the operator
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[
Smod

] : [Bq,λ(∂�, σ)
]M −→ [ .

Bq,λ

1 (∂�, σ)
/ ∼ ]M

defined as
[
Smod

]
f := [

Smodf
] ∈ [ .

Bq,λ

1 (∂�, σ)
/ ∼ ]M

,

for all f ∈ [
Bq,λ(∂�, σ)

]M
,

(7.191)

as well as the operator

[
Smod

] : [M̊p,λ(∂�, σ)
]M −→ [ .

M
p,λ

1 (∂�, σ)
/ ∼ ]M

defined as
[
Smod

]
f := [

Smodf
] ∈ [ .
M
p,λ

1 (∂�, σ)
/ ∼ ]M

,

for all f ∈ [
M̊p,λ(∂�, σ)

]M
.

(7.192)

(6) [Optimality] If Adis
L = ∅ then the operator

[
Smod

]
may fail to be surjective (in

fact, may have an infinite dimensional cokernel) in all settings considered above
even in the case when � is a half-space, and if Adis

L� = ∅ then the operator[
Smod

]
may fail to be injective (in fact, may have an infinite dimensional kernel)

in all settings considered above even in the case when � is a half-space.

Proof That the operator (7.190) is well defined, linear, and bounded follows from
item (2) in Theorem 7.4, bearing in mind (2.87) and (2.48). This takes care of item
(1).

To deal with the claims in item (2), pick a coefficient tensor A ∈ Adis
L . Together,

Theorems 2.3, 7.9, and 4.8 guarantee that we may choose a threshold δ ∈ (0, 1)
small enough so that if ‖ν‖[BMO(∂�,σ)]n < δ (a condition which we shall henceforth
assume) then

� is a two-sided NTA domain with an unbounded boundary, (7.193)

and

the operators ± 1
2I +KA are invertible on

[
M

p,λ

1 (∂�, σ)
]M and on

[
L
p

1 (∂�, σ)
]M

.
(7.194)

To proceed, choose a scalar-valued function φ ∈ C∞
0 (Rn) with φ ≡ 1 on B(0, 1)

and suppφ ⊆ B(0, 2). Having fixed a reference point x0 ∈ ∂�, for each scale
r ∈ (0,∞) define φr as in (7.73) and use the same notation to denote the restriction
of φr to ∂�. Suppose now some arbitrary function g ∈ [ .

M
p,λ

1 (∂�, σ)
]M has been

given, and for each r ∈ (0,∞) define gr as in (7.74). Thanks to (7.69) we may
invoke item (iii) in Lemma 7.1 which gives

∥
∥∇tan gr

∥
∥[Mp,λ(∂�,σ)]n·M ≤ C

∥
∥∇tan g

∥
∥[Mp,λ(∂�,σ)]n·M (7.195)
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for some C ∈ (0,∞) independent of g and r . For each r ∈ (0,∞) let us now
define hr as in (4.378) (here it helps to note that ± 1

2I + KA are invertible both

on
[
M

p,λ

1 (∂�, σ)
]M and on

[
L
p

1 (∂�, σ)
]M , and the two inverses are compatible).

Using the formula ∂τjk gr = (
∂τjkφr

) · (g − g2r

) + φr · ∂τjk g, the fact that the

function g belongs to the space
[ .
M

p,λ

1 (∂�, σ)
]M , and (7.69) it is straightforward

to show that gr ∈ [
M

p,λ

1 (∂�, σ) ∩ L
p

1 (∂�, σ)
]M . Hence, hr is a meaningfully

defined function which belongs to
[
M

p,λ

1 (∂�, σ) ∩Lp1 (∂�, σ)
]M . Moreover, from

the definition of hr (cf. (4.378)), (7.179), and (7.195) we conclude that there exists
a constant C ∈ (0,∞), independent of g and r , such that

‖∇tanhr‖[Mp,λ(∂�,σ)]n·M ≤ C ‖∇tangr‖[Mp,λ(∂�,σ)]n·M

for each r ∈ (0,∞).
(7.196)

Going further, for each r ∈ (0,∞) abbreviate

fr := ∂Aν
(
DAhr

)
at σ -a.e. point on ∂�. (7.197)

Since hr ∈ [
M

p,λ

1 (∂�, σ) ∩ L
p

1 (∂�, σ)
]M , the boundedness result recorded

in (3.115) implies that fr ∈ [
Lp(∂�,w)

]M and for each r ∈ (0,∞) we have

‖fr‖[Lp(∂�,w)]M ≤ C‖∇tanhr‖[Lp(∂�,w)]n·M , (7.198)

whereC ∈ (0,∞) is independent of g and r . Moreover, (7.64), (3.33), (3.66), (2.586),
Proposition 7.5, and (7.196) permit us to write

‖fr‖[Mp,λ(∂�,σ)]M ≤ C‖∇tanhr‖[Mp,λ(∂�,σ)]n·M

≤ C‖∇tang‖[Mp,λ(∂�,σ)]n·M . (7.199)

We use next that hr ∈
[
L
p

1 (∂�, σ)
]M , (3.130), (4.378), (7.197), and Theorem 2.4

to ensure that for each r ∈ (0,∞) there exists some constant cr ∈ CM such that

Smodfr = gr + cr on ∂�. (7.200)

Select now a sequence {rj }j∈N ⊆ (0,∞) which converges to infinity. Since

from (7.199) we know that {frj }j∈N is a bounded sequence in
[
Mp,λ(∂�, σ)

]M , we
can rely on the Banach–Alaoglu Theorem (cf. (7.27)) and (7.24) to assume, without
loss of generality, that {frj }j∈N is actually weak-∗ convergent to some function

f ∈ [
Mp,λ(∂�, σ)

]M . On account of (7.121), (7.200), and the definition of gr
given in (7.74), for each test function ψ ∈ [

Lip(∂�)
]M with compact support we
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may write

ˆ
∂�

〈
Smodf,ψ

〉
dσ = lim

j→∞

ˆ
∂�

〈
Smodfrj , ψ

〉
dσ = lim

j→∞

ˆ
∂�

〈
grj + crj , ψ

〉
dσ

= lim
j→∞

ˆ
∂�

〈
φrj ·

(
g − g2rj

)+ crj , ψ
〉
dσ

= lim
j→∞

ˆ
∂�

〈
g − g2rj

+ crj , ψ
〉
dσ

=
ˆ
∂�

〈g,ψ〉 dσ + lim
j→∞

〈
crj − g2rj

,

ˆ
∂�

ψ dσ
〉
. (7.201)

Since ψ is arbitrary, we conclude that the sequence
{
crj − g2rj

}
j∈N ⊆ C

M

converges to some constant c ∈ CM . Hence, we may then conclude from (7.201)
that

ˆ
∂�

〈
Smodf,ψ

〉
dσ =

ˆ
∂�

〈g + c, ψ〉 dσ (7.202)

for each function ψ ∈ [
Lip(∂�)

]M with compact support. Eventually, from (7.202)
we obtain (see [111, §3.7] for a general measure theoretic result of this nature)

Smodf = g + c at σ -a.e. point on ∂�. (7.203)

Hence,
[
Smod

]
f = [

Smodf
] = [g] and since [g] ∈ [ .

L
p

1 (∂�,w)
/ ∼ ]M is arbitrary,

it follows that the operator (7.190) is surjective. Moreover, from (7.199) we see that

‖f ‖[Mp,λ(∂�,σ)]M ≤ lim sup
j→∞

‖frj ‖[Mp,λ(∂�,σ)]M ≤ C ‖∇tang‖Mp,λ(∂�,σ)]n·M

≤ C ‖[g]‖[ .Mp,λ(∂�,σ)/∼]M , (7.204)

for some constant C ∈ (0,∞) independent of g, so the surjectivity of the operator
in (7.190) comes with quantitative control.

Let us also observe that the fact that (7.72) is, as claimed, a genuine norm is clear
from (7.193) and Proposition 7.6.

Moving on, let us now deal with item (3). Pick a coefficient tensor Ã ∈ AL such
that Ã� ∈ Adis

L� . By Theorem 7.9 we may then choose δ ∈ (0, 1) small enough so
that if ‖ν‖[BMO(∂�,σ)]n < δ (something we shall henceforth assume) then

the operators ± 1
2I +K#

Ã�are invertible on
[
Mp,λ(∂�, σ)

]M
. (7.205)
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The goal is to show that the operator (7.190) is injective. To this end, suppose the
function f ∈ [

Mp,λ(∂�, σ)
]M is such that

[
Smod

]
f = [0]. Hence,

[
Smodf

] = [0]
which implies that there exists some constant c ∈ CM for which

Smodf = c at σ -a.e. point on ∂�. (7.206)

This, together with (7.120), allows us to obtain

( 1
2I +K#

Ã�
)((− 1

2I +K#
Ã�

)
f
)
= 0 at σ -a.e. point on ∂� (7.207)

which, by (7.205), leads to f = 0. Since the operator (7.190) is linear, it follows
that this is indeed injective.

Next, to treat the claims in item (4), assume that Adis
L �= ∅ and Adis

L� �= ∅.
Then, by the previous items the operator (7.190) is a continuous bijection. Moreover,
Proposition 7.6 and (7.193) imply that

[ .
M

p,λ

1 (∂�, σ)
/ ∼ ]M is a Banach space,

hence the operator (7.190) is a linear isomorphism.
Considered now the claims made in item (5). First, the fact that the opera-

tor (7.191) is well defined, linear, and bounded is seen from item (4) in Theorem 7.4,
keeping in mind (2.87) and (2.48). Second, that the operator (7.191) satisfies the
properties described in items (2)–(3) of Theorem 7.13 is a consequence of the
operator identities

( 1
2I +K#

A�
)(− 1

2I +K#
A�

) = [
∂Aν DA,mod

][
Smod

]

as mappings acting from
[
Bq,λ(∂�, σ)

]M
,

(7.208)

and

( 1
2I +

[
K

A,mod

])(− 1
2I +

[
K

A,mod

]) = [
Smod

][
∂Aν DA,mod

]

as mappings acting from
[ .
Bq,λ

1 (∂�, σ)/ ∼ ]M
,

(7.209)

both of which are contained in Theorem 7.5, (7.178) in Theorem 7.9 (specialized
to z = ± 1

2 ), (7.188) in Theorem 7.12 (again with z = ± 1
2 ), as well as (7.139),

Theorem 2.3, and Theorem 2.4. The case of the operator
[
Smod

]
in (7.192) is handled

analogously.
Finally, the optimality results in item (6) are seen from (3.406) and the natural

version of Proposition 4.4 for Morrey and block spaces. � 

Remark 7.6 Together, (7.133), Theorem 7.9 (with z = ± 1
2 ), (7.135), Theorem 7.12

(with z = ± 1
2 ), (7.132), Theorems 2.3, and 2.4 provide an alternative proof of items

(2)–(3) in Theorem 7.13.
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We conclude this section with the following theorem addressing the issue of
invertibility for the conormal of the double layer operator acting from homogeneous
Morrey-based and block-spaces Sobolev spaces.

Theorem 7.14 Let � ⊆ Rn be a UR domain. Abbreviate σ := Hn−1�∂� and
denote by ν the geometric measure theoretic outward unit normal to �. Also, let
L be a homogeneous, second-order, constant complex coefficient, weakly elliptic
M ×M system in Rn. Fix some exponent p ∈ (1,∞) along with some parameter
λ ∈ (0, n − 1). Pick some coefficient tensor A ∈ AL and consider the modified
conormal derivative of the modified double layer operator in the context of (7.132),
i.e.,

∂Aν DA,mod :
[ .
M

p,λ

1 (∂�, σ)
/ ∼ ]M −→ [

Mp,λ(∂�, σ)
]M

defined as
(
∂Aν DA,mod)[f ] := ∂Aν (DA,modf ) for each f ∈ [ .

M
p,λ

1 (∂�, σ)
]M

.
(7.210)

From Theorem 7.5 this is known to be a well-defined, linear, and bounded operator
when the quotient space is equipped with the norm (7.72). In relation to this, the
following statements are valid.

(1) [Injectivity] Whenever Adis
L �= ∅ and actually A ∈ Adis

L it follows that there exists
some small threshold δ ∈ (0, 1)which depends only on n, p, λ,A, and the Ahlfors
regularity constant of ∂�, with the property that if ‖ν‖[BMO(∂�,σ)]n < δ (hence
� is a δ-AR domain; cf. Definition 2.15) then the operator (7.210) is injective.

(2) [[Surjectivity] Whenever Adis
L� �= ∅ and actually A� ∈ Adis

L� it follows that there
exists some small threshold δ ∈ (0, 1) which depends only on n, p, λ, A, and the
Ahlfors regularity constant of ∂�, with the property that if ‖ν‖[BMO(∂�,σ)]n < δ

(hence � is a δ-AR domain) then the operator (7.210) is surjective.
(3) [Isomorphism] If Adis

L �= ∅, Adis
L� �= ∅, and A ∈ Adis

L is such that A� ∈ Adis
L� it

follows that there exists some small threshold δ ∈ (0, 1) which depends only on
n, p, λ, A, and the Ahlfors regularity constant of ∂�, with the property that if
‖ν‖[BMO(∂�,σ)]n < δ (hence � is a δ-AR domain) then the operator (7.210) is
an isomorphism.

(4) [Other spaces] For each q ∈ (1,∞), similar results to those described in items
(1)–(3) above are valid for the modified conormal derivative of the modified
double layer operator in the context of block and vanishing Morrey spaces, i.e.,

[
∂Aν DA,mod

] : [ .Bq,λ

1 (∂�, σ)
/ ∼ ]M −→ [

B q,λ(∂�, σ)
]M

given by
[
∂Aν DA,mod

][f ] := ∂Aν (DA,modf ) for each f ∈ [ .
Bq,λ

1 (∂�, σ)
]M

,

(7.211)
and

∂Aν DA,mod :
[ .
M
p,λ

1 (∂�, σ)
/ ∼ ]M −→ [

M̊p,λ(∂�, σ)
]M

given by
(
∂Aν DA,mod)[f ] := ∂Aν (DA,modf ) for each f ∈ [ .

M
p,λ

1 (∂�, σ)
]M

.
(7.212)
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Proof All claims may be established by arguing as in the proof of Theorem 4.13,
now making use of Theorems 7.5, 7.9, and 7.12. � 

7.4 Characterizing Flatness in Terms of Morrey and Block
Spaces

How do the quantitative aspects of the analysis of a certain geometric environment
affect the very geometric features of said environment? Here we address a specific
aspect of this general question by characterizing the flatness of a “surface” in terms
of the size of the norms of certain singular integral operators acting on Morrey and
block spaces considered on this surface.

In order be able to elaborate on this topic, we need some notation. Given a UR
domain � ⊆ Rn, denote by ν its geometric measure theoretic outward unit normal
and abbreviate σ := Hn−1�∂�. From Proposition 7.4 and (5.16)–(5.18) we then
conclude that whenever p ∈ (1,∞) and λ ∈ (0, n− 1), the operators

C : Mp,λ(∂�, σ)⊗ C�n −→ Mp,λ(∂�, σ)⊗ C�n, (7.213)

C : M̊p,λ(∂�, σ)⊗ C�n −→ M̊p,λ(∂�, σ)⊗ C�n, (7.214)

and

C# : Mp,λ(∂�, σ)⊗ C�n −→ Mp,λ(∂�, σ)⊗ C�n, (7.215)

C# : M̊p,λ(∂�, σ)⊗ C�n −→ M̊p,λ(∂�, σ)⊗ C�n (7.216)

are all well defined, linear, and continuous, with

‖C‖Mp,λ(∂�,σ)⊗C�n→Mp,λ(∂�,σ)⊗C�n,

‖C#‖Mp,λ(∂�,σ)⊗C�n→Mp,λ(∂�,σ)⊗C�n,

‖C‖
M̊p,λ(∂�,σ)⊗C�n→M̊p,λ(∂�,σ)⊗C�n,

‖C#‖
M̊p,λ(∂�,σ)⊗C�n→M̊p,λ(∂�,σ)⊗C�n,

bounded exclusively in terms of n, p, λ, and the UR constants of ∂�.

(7.217)

Granted these, via duality (cf. (5.19) and Proposition 7.2) we also obtain that for
each q ∈ (1,∞) and λ ∈ (0, n− 1) the operators

C : Bq,λ(∂�, σ)⊗ C�n −→ Bq,λ(∂�, σ)⊗ C�n, (7.218)
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C# : Bq,λ(∂�, σ)⊗ C�n −→ Bp,λ(∂�, σ)⊗ C�n (7.219)

are all well defined, linear, and bounded, with

‖C‖Bq,λ(∂�,σ)⊗C�n→Bp,λ(∂�,σ)⊗C�n,

‖C#‖Bq,λ(∂�,σ)⊗C�n→Bq,λ(∂�,σ)⊗C�n

controlled only in terms of n, q, λ, and the UR constants of ∂�.

(7.220)

In addition, from (5.20) and duality (cf. (5.19) and Proposition 7.2) we conclude
that, for each p, q ∈ (1,∞) and λ ∈ (0, n− 1),

the operator identities C2 = 1
4I and

(
C#

)2 = 1
4I are valid on

either of the spaces Mp,λ(∂�, σ) ⊗ C�n, M̊p,λ(∂�, σ) ⊗ C�n,
and Bq,λ(∂�, σ)⊗ C�n.

(7.221)

More delicate estimates than (7.217), (7.220) turn out to hold for the antisym-
metric part of the Cauchy–Clifford operator, i.e., for the difference C − C#, of the
sort described in the proposition below.

Proposition 7.9 Let � ⊆ Rn be a UR domain. Abbreviate σ := Hn−1�∂� and
denote by ν the geometric measure theoretic outward unit normal to�. Also, fix two
integrability exponents p, q ∈ (1,∞) and a parameter λ ∈ (0, n − 1). Then for
each m ∈ N there exists some constant Cm ∈ (0,∞) which depends only on m, n,
p, q, λ, and the UR constants of ∂� such that, with the piece of notation introduced
in (4.93), one has

∥∥∥C − C#
∥∥∥
Mp,λ(∂�,σ)⊗C�n→Mp,λ(∂�,σ)⊗C�n

≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n , (7.222)

∥∥∥C − C#
∥∥∥
M̊p,λ(∂�,σ)⊗C�n→M̊p,λ(∂�,σ)⊗C�n

≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n , (7.223)

∥∥∥C − C#
∥∥∥
Bq,λ(∂�,σ)⊗C�n→Bq,λ(∂�,σ)⊗C�n

≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n . (7.224)

Proof This is implied by the structural result from Lemma 5.1 (bearing in
mind (7.3), (7.8), (7.17)), together with Theorems 7.1, 7.7, and (3.29). � 

Remarkably, it is also possible to establish bounds from below for the operator
norm of C − C# on Morrey spaces and their pre-duals, considered on the boundary
of a UR domain, in terms of the BMO semi-norm of the geometric measure theoretic
outward unit normal vector to the said domain.

Proposition 7.10 Let � ⊆ R
n be a UR domain such that ∂� is unbounded.

Abbreviate σ := Hn−1�∂� and denote by ν the geometric measure theoretic
outward unit normal to �. Also, fix an integrability exponent p ∈ (1,∞) along
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with a parameter λ ∈ (0, n− 1). Then there exists some C ∈ (0,∞) which depends
only on n, p, λ, and the Ahlfors regularity constant of ∂� with the property that

‖ν‖[BMO(∂�,σ)]n ≤ C

∥∥∥C − C#
∥∥∥
M̊p,λ(∂�,σ)⊗C�n→M̊p,λ(∂�,σ)⊗C�n

≤ C

∥∥
∥C − C#

∥∥
∥
Mp,λ(∂�,σ)⊗C�n→Mp,λ(∂�,σ)⊗C�n

. (7.225)

Furthermore, for each q ∈ (1,∞) and λ ∈ (0, n− 1) there exists some constant
C ∈ (0,∞) which depends only on n, q, λ, and the Ahlfors regularity constant of
∂� with the property that

‖ν‖[BMO(∂�,σ)]n ≤ C

∥∥∥C − C#
∥∥∥
Bq,λ(∂�,σ)⊗C�n→Bq,λ(∂�,σ)⊗C�n

. (7.226)

Proof The argument largely follows the proof of the unweighted version of Theo-
rem 5.1 (i.e., whenw ≡ 1), so we will only indicate the main changes. First, in place
of (5.45) we now write (making use of (7.2), the fact that 1(y0,R) ∈ M̊p,λ(∂�, σ),
and (7.5))

 
(x0,R)

|(C − C#)1(y0,R)(x)|p dσ(x)

≤ R−(n−1−λ)∥∥(C − C#)1(y0,R)

∥∥p
Mp,λ(∂�,σ)

≤ R−(n−1−λ) ∥∥1(y0,R)

∥∥p
Mp,λ(∂�,σ)

‖C − C#‖p
M̊p,λ(∂�,σ)⊗C�n→M̊p,λ(∂�,σ)⊗C�n

≤ CR−(n−1−λ)σ
(
(y0, R)

)(n−1−λ)/(n−1)×

× ‖C − C#‖p
M̊p,λ(∂�,σ)⊗C�n→M̊p,λ(∂�,σ)⊗C�n

≤ C‖C − C#‖p
M̊p,λ(∂�,σ)⊗C�n→M̊p,λ(∂�,σ)⊗C�n

, (7.227)

where C ∈ (0,∞) depends only on n, p, λ, and the Ahlfors regularity constant of
∂�.

Second, thanks to (7.227), in place of (5.46) we have

 
(x0,R)

∣
∣∣∣

ˆ
(y0,R)

{
x0 − y

|x0 − y|n * ν(y)+ ν(x)* x0 − y

|x0 − y|n
}

dσ(y)

∣
∣∣∣

p

dσ(x)

≤ C(%−n ln%)p‖ν‖p[BMO(∂�,σ)]n + Cn,p

 
(x0,R)

|(C − C#)1(y0,R)(x)|p dσ(x)
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+ C%−np
 
(x0,R)

∣∣ν(x)− ν(x0,R)

∣∣p dσ(x)

≤ C(%−n ln%)p‖ν‖p[BMO(∂�,σ)]n

+ C‖C − C#‖p
M̊p,λ(∂�,σ)⊗C�n→M̊p,λ(∂�,σ)⊗C�n

, (7.228)

where C ∈ (0,∞) depends only on n, p, λ, and the Ahlfors regularity constant of
∂�.

Third, with (7.228) in hand, the same type of argument as in the end-game of the
proof of Theorem 5.1 (cf. (5.47)–(5.54)) presently gives

‖ν‖[BMO(∂�,σ)]n ≤ C(%−1 ln%)‖ν‖[BMO(∂�,σ)]n

+ C%n−1‖C − C#‖
M̊p,λ(∂�,σ)⊗C�n→M̊p,λ(∂�,σ)⊗C�n,

(7.229)

where C ∈ (0,∞) depends only on n, p, λ, and the Ahlfors regularity constant of
∂�. By eventually further increasing % as to ensure that %−1 ln% < 1/(2C), we
finally conclude from (7.229) that

‖ν‖[BMO(∂�,σ)]n ≤ C
∥∥C − C#‖

M̊p,λ(∂�,σ)⊗C�n→M̊p,λ(∂�,σ)⊗C�n, (7.230)

where C ∈ (0,∞) depends only on n, p, λ, and the Ahlfors regularity constant
of ∂�. This establishes the first estimate claimed in (7.225). The second estimate
in (7.225) is a direct consequence of (7.8).

Finally, the estimate claimed in (7.226) follows from the first inequality
in (7.225), plus the fact that whenever p, q ∈ (1,∞) are such that 1/p + 1/q = 1
then the (real) transpose of

C − C# : M̊p,λ(∂�, σ)⊗ C�n −→ M̊p,λ(∂�, σ)⊗ C�n (7.231)

is the operator

C# − C : Bq,λ(∂�, σ)⊗ C�n −→ Bq,λ(∂�, σ)⊗ C�n. (7.232)

See (5.19) and Proposition 7.2 in this regard. � 
Our next result contains estimates in the opposite direction to those presented in

Corollary 7.1.

Theorem 7.15 Let � ⊆ Rn be a UR domain. Abbreviate σ := Hn−1�∂� and
denote by ν = (νk)1≤k≤n the geometric measure theoretic outward unit normal
to �. Also, fix two arbitrary integrability exponents p, q ∈ (1,∞) along with some
parameter λ ∈ (0, n−1). Finally, recall the boundary-to-boundary harmonic double
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layer potential operator K from (3.29), the Riesz transforms {Rj }1≤j≤n on ∂�
from (4.297), and for each index k ∈ {1, . . . , n} denote by Mνk the operator of
pointwise multiplication by the k-th scalar component of ν. Then there exists some
C ∈ (0,∞) which depends only on n, p, q, λ, and the Ahlfors regularity constant
of ∂� with the property that

‖ν‖[BMO(∂�,σ)]n ≤ C
{
‖K‖Mp,λ(∂�,σ)→Mp,λ(∂�,σ) (7.233)

+ max
1≤j,k≤n

∥∥[Mνk , Rj ]
∥∥
Mp,λ(∂�,σ)→Mp,λ(∂�,σ)

}
,

‖ν‖[BMO(∂�,σ)]n ≤ C
{
‖K‖M̊p,λ(∂�,σ)→M̊p,λ(∂�,σ)

(7.234)

+ max
1≤j,k≤n

∥
∥[Mνk , Rj ]

∥
∥
M̊p,λ(∂�,σ)→M̊p,λ(∂�,σ)

}
,

and

‖ν‖[BMO(∂�,σ)]n ≤ C
{
‖K‖Bq,λ(∂�,σ)→Bq,λ(∂�,σ) (7.235)

+ max
1≤j,k≤n

∥∥[Mνk , Rj ]
∥∥
Bq,λ(∂�,σ)→Bq,λ(∂�,σ)

}
.

Proof If ∂� is unbounded then all estimates are implied by Proposition 7.10 and
the structural result from Lemma 5.1 (keeping in mind (7.3), (7.8), (7.17)). When
∂� is bounded, we have K1 = ± 1

2 (cf. [114, §1.5]) with the sign plus if � is
bounded, and the sign minus if � is unbounded, hence the norm of K on either
Mp,λ(∂�, σ), M̊p,λ(∂�, σ) or Bq,λ(∂�, σ) is ≥ 1

2 in such a case. Given that
‖ν‖[BMO(∂�,σ)]n ≤ 1 (cf. (2.118)), the estimates claimed in (7.233)–(7.235) are
valid in this case if we take C ≥ 2. � 

In turn, the results established in Theorem 7.15 may be used to characterize the
class of δ-AR domains in Rn, in the spirit of Corollary 5.2, using Morrey spaces and
their pre-duals.

By way of contrast, Theorem 7.16 discussed next is a stability result stating that
if � ⊆ Rn is a UR domain with an unbounded boundary for which the URTI
(cf. (5.58)) are “almost” true in the context of either Morrey or block spaces, then
∂� is “almost” flat, in that the BMO semi-norm of the outward unit normal to � is
small.

Theorem 7.16 Let � ⊆ R
n be a UR domain with an unbounded boundary.

Abbreviate σ := Hn−1�∂� and denote by ν the geometric measure theoretic
outward unit normal to �. Also, fix p, q ∈ (1,∞) along with λ ∈ (0, n − 1),
and recall the Riesz transforms {Rj }1≤j≤n on ∂� from (4.297). Then there exists
some C ∈ (0,∞) which depends only on n, p, q, λ, and the UR constants of ∂�
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with the property that

‖ν‖[BMO(∂�,σ)]n ≤ C
{∥∥∥I +

n∑

j=1

R2
j

∥∥∥
Mp,λ(∂�,σ)→Mp,λ(∂�,σ)

(7.236)

+ max
1≤j,k≤n

∥∥[Rj ,Rk]
∥∥
Mp,λ(∂�,σ)→Mp,λ(∂�,σ)

}
,

plus similar estimates with the Morrey spaceMp,λ(∂�, σ) replaced by the vanish-
ing Morrey space M̊p,λ(∂�, σ), or the block space Bq,λ(∂�, σ).

Proof A key ingredient is the fact that we have the operator identities

C − C# = C
(
I +

n∑

j=1

R2
j

)
+

∑

1≤j<k≤n
C[Rj ,Rk]ej * ek

on Mp,λ(∂�, σ)⊗ C�n, M̊p,λ(∂�, σ)⊗ C�n,Bq,λ(∂�, σ)⊗ C�n.
(7.237)

These are proved much like formula [61, (4.6.46), p. 2752], now making use
of (7.221). Once (7.237) has been established, Proposition 7.10 and (7.213)–(7.220)
to conclude (much as in the proof of Theorem 5.3) that the estimate claimed
in (7.236) as well as its related versions on vanishing Morrey spaces and block
spaces are all true. � 

The last result in this section contains estimates in the opposite direction to those
from Theorem 7.16. Together, Theorems 7.17 and 7.16 amount to saying that, under
natural background geometric assumptions on the set �, the URTI are “almost” true
on Morrey spaces or block spaces if and only if ∂� is “almost” flat (in that the BMO
semi-norm of the outward unit normal to � is small).

Theorem 7.17 Let � ⊆ Rn be a UR domain. Abbreviate σ := Hn−1�∂� and
denote by ν the geometric measure theoretic outward unit normal to �. Also, fix
p, q ∈ (1,∞) along with λ ∈ (0, n−1), and recall the Riesz transforms {Rj }1≤j≤n
on ∂� from (4.297).

Then for each m ∈ N there exists some constant Cm ∈ (0,∞) which depends
only on m, n, p, q, λ, and the UR constants of ∂� such that, with the piece of
notation introduced in (4.93), one has

∥∥
∥I +

n∑

j=1

R2
j

∥∥
∥
Mp,λ(∂�,σ)→Mp,λ(∂�,σ)

≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n , (7.238)

max
1≤j<k≤n

∥∥[Rj ,Rk]
∥∥
Mp,λ(∂�,σ)→Mp,λ(∂�,σ)

≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n , (7.239)

plus similar estimates with the Morrey spaceMp,λ(∂�, σ) replaced by the vanish-
ing Morrey space M̊p,λ(∂�, σ), or the block space Bq,λ(∂�, σ).
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Proof The starting point is to observe that we have the operator identities

C(C# − C) = − 1
4

(
I +

n∑

j=1

R2
j

)
− 1

4

∑

1≤j<k≤n
[Rj ,Rk]ej * ek,

on Mp,λ(∂�, σ)⊗ C�n, M̊p,λ(∂�, σ)⊗ C�n, Bq,λ(∂�, σ)⊗ C�n,
(7.240)

which are themselves consequences of (7.237) and (7.221). With (7.240) in hand,
the estimates claimed in the statement of the theorem may then be justified via
an estimate similar in spirit to (5.66), and also invoking Proposition 7.9 (as well
as (7.217), (7.220)) in the process. � 

7.5 Boundary Value Problems in Morrey and Block Spaces

We begin by discussing the Dirichlet Problem for weakly elliptic systems in δ-AR
domains with boundary data in ordinary Morrey spaces, vanishing Morrey spaces,
and block spaces.

Theorem 7.18 Let � ⊆ Rn be an Ahlfors regular domain. Set σ := Hn−1�∂�,
denote by ν the geometric measure theoretic outward unit normal to �, and fix an
aperture parameter κ > 0. Also, pick an exponent p ∈ (1,∞) and a parameter
λ ∈ (0, n − 1). Given a homogeneous, second-order, constant complex coefficient,
weakly ellipticM ×M system L in Rn, consider the Dirichlet Problem

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u ∈ [
C∞(�)

]M
,

Lu = 0 in �,

Nκu ∈ Mp,λ(∂�, σ),

u
∣
∣κ−n.t.

∂�
= f ∈ [

Mp,λ(∂�, σ)
]M

.

(7.241)

The following claims are true:

(a) [Existence, Regularity, and Estimates] If Adis
L �= ∅ and A ∈ Adis

L , then there
exists δ ∈ (0, 1) which depends only on n, p, λ, A, and the Ahlfors regularity
constant of ∂� such that if ‖ν‖[BMO(∂�,σ)]n < δ (hence � is a δ-AR domain;
cf. Definition 2.15) then 1

2I +KA is an invertible operator on the Morrey space
[
Mp,λ(∂�, σ)

]M
and the function u : �→ CM defined as

u(x) :=
(
DA

(
1
2I +KA

)−1
f
)
(x) for all x ∈ �, (7.242)

is a solution of the Dirichlet Problem (7.241). Moreover,
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‖Nκu‖Mp,λ(∂�,σ) ≈ ‖f ‖[Mp,λ(∂�,σ)]M . (7.243)

Furthermore, the function u defined in (7.242) satisfies the following regularity
result

Nκ(∇u) ∈ Mp,λ(∂�, σ)⇐⇒ f ∈ [
M

p,λ

1 (∂�, σ)
]M

, (7.244)

and if either of these conditions holds then

(∇u)∣∣κ−n.t.

∂�
exists (in Cn·M ) at σ -a.e. point on ∂� and

‖Nκu‖Mp,λ(∂�,σ) + ‖Nκ(∇u)‖Mp,λ(∂�,σ) ≈ ‖f ‖[Mp,λ
1 (∂�,σ)]M .

(7.245)

(b) [Uniqueness] Whenever Adis
L� �= ∅, there exists some δ ∈ (0, 1) which depends

only on n, p, [w]Ap , L, η, and the Ahlfors regularity constant of ∂� such that if
‖ν‖[BMO(∂�,σ)]n < δ (hence � is a δ-AR domain; cf. Definition 2.15) then the
Dirichlet Problem (7.241) has at most one solution.

(c) [Well-Posedness] If Adis
L �= ∅ and Adis

L� �= ∅ then there exists some δ ∈ (0, 1)
which depends only on n, p, [w]Ap , A, η, and the Ahlfors regularity constant of
∂� such that whenever ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain; cf.
Definition 2.15) then the Dirichlet Problem (7.241) is uniquely solvable and the
solution satisfies (7.243).

(d) [Sharpness] If Adis
L = ∅ then the Dirichlet Problem (7.241) may fail to

be solvable (actually for boundary data belonging to an infinite dimensional
subspace of the corresponding Morrey space). Also, if Adis

L� = ∅ then the
Dirichlet Problem (7.241) may have more than one solution (in fact, the linear
space of null-solutions may actually be infinite dimensional).

(e) [Other Spaces of Boundary Data] Similar results to those described in items (a)–
(d) above hold with the Morrey space Mp,λ(∂�, σ) replaced by the vanishing
Morrey space M̊p,λ(∂�, σ), or the block space Bq,λ(∂�, σ) with q ∈ (1,∞).

In addition, given any pair of integrability exponents p0, p1 ∈ (1,∞) along
with any pair of parameters λ0, λ1 ∈ (0, n− 1), similar results are valid for the
Dirichlet Problem

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u ∈ [
C∞(�)

]M
,

Lu = 0 in �,

Nκu ∈ Mp0,λ0(∂�, σ)+Mp1,λ1(∂�, σ),

u
∣∣κ−n.t.

∂�
= f ∈ [

Mp0,λ0(∂�, σ)+Mp1,λ1(∂�, σ)
]M

,

(7.246)

as well as for its versions with the Morrey spaces replaced by vanishing Morrey
space or block spaces.
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To give an example, suppose � ⊆ Rn is a δ-AR domain and fix an arbitrary
aperture parameter κ > 0 along with some power a ∈ (0, n − 1). In addition,
choose a number λ ∈ (0, n− 1− a) and define p := (n− 1−λ)/a ∈ (1,∞). Then,
if δ > 0 is sufficiently small (relative to n, a, λ, and the Ahlfors regularity constant
of ∂�), it follows that for each point xo ∈ ∂� the Dirichlet Problem

⎧
⎨

⎩

u ∈ C∞(�), u = 0 in �, Nκu ∈ Mp,λ(∂�, σ),
(
u
∣
∣κ−n.t.

∂�

)
(x) = |x − xo|−a at σ -a.e. point x ∈ ∂�

(7.247)

has a unique solution. Moreover, there exists a constant C(�, n, κ, a, λ) ∈ (0,∞)

with the property that said solution satisfies ‖Nκu‖Mp,λ(∂�,σ) ≤ C(�, n, κ, a, λ).
The reason is that, as seen from Example 7.1, the function fxo(x) := |x − xo|−a
for σ -a.e. point x ∈ ∂� belongs to the Morrey space Mp,λ(∂�, σ) and we have
supxo∈∂� ‖fxo‖Mp,λ(∂�,σ) < ∞. As such, the result in item (c) of Theorem 7.18
applies and yields the desired conclusion.

In addition, there is a naturally accompanying regularity result. To formulate it,
assume q ∈ (1,∞) and μ ∈ (0, n − 1) are such that a + 1 = (n − 1 − μ)/q.
Starting from the realization that the boundary datum fxo actually belongs to a
suitably defined off-diagonal Morrey-based Sobolev space on ∂�, from (6.37) and
Example 7.1 we see that there exists C(�, n, κ, a, q, μ) ∈ (0,∞) independent of
xo ∈ ∂� such that, if δ > 0 is sufficiently small to begin with, then the unique
solution of the Dirichlet Problem (7.247) satisfies the following additional regularity
properties

(∇u)∣∣κ−n.t.

∂�
exists (in Rn) at σ -a.e. point on ∂�,

and ‖Nκ(∇u)‖Mq,μ(∂�,σ) ≤ C(�, n, κ, a, q, μ).
(7.248)

To wrap up the discussion about (7.247) we wish to note that since the inverse
of 1

2I + K on Mp,λ(∂�, σ) is compatible with the inverse of 1
2I + K on

Lp,∞(∂�, σ) (as alluded to in Remark 4.20), we conclude (from the manner
in which the solution is constructed; cf. (7.242)) that the solution u of the
Dirichlet Problem (7.247) actually coincides with the solution u of the Dirichlet
Problem (6.35).

In closing, let us also mention that boundary value problems in a bounded
Lipschitz domain � ⊆ Rn with boundary data with components in the Morrey
spaces M2,λ(∂�, σ) (with λ belonging to a certain sub-interval of (0, n − 1))
for symmetric, homogeneous, second-order, systems with constant real coefficients
satisfying the Legendre–Hadamard strong ellipticity condition have been considered
in [127].

After this digression we turn to the task of giving the proof of Theorem 7.18.

Proof of Theorem 7.18 The argument parallels the proof of Theorem 6.2. First,
Theorem 7.9 shows that there exists some number δ ∈ (0, 1), whose nature
is as specified in the statement of the theorem, with the property that if � is
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a δ-AR domain then the operator 1
2I + KA is invertible on the Morrey space

[
Mp,λ(∂�, σ)

]M . Hence, the function u in (7.242) is meaningfully defined, and

according to (3.23), (7.3), and Theorem 7.2, we have u ∈ [
C∞(�)

]M , Lu = 0 in
�, Nκu ∈ Mp,λ(∂�, σ), and (7.243) holds. Concerning the equivalence claimed
in (7.244), if f ∈ [

M
p,λ

1 (∂�, σ)
]M then Theorem 7.9 gives (assuming δ > 0 is

sufficiently small) that
(

1
2I +KA

)−1
f belongs to

[
M

p,λ

1 (∂�, σ)
]M . With this in

hand, (7.64)–(7.65) then imply that the function u defined as in (7.242) satisfies

Nκ(∇u) ∈ Mp,λ(∂�, σ), the nontangential boundary trace (∇u)∣∣κ−n.t.

∂�
exists σ -a.e.

on ∂�, and the left-pointing inequality in the equivalence claimed in (7.245) holds.
In particular, this justifies the left-pointing implication in (7.244). The right-pointing
implication in (7.244) together with the right-pointing inequality in the equivalence
claimed in (7.245) are consequences of (7.3) and Proposition 2.22.

Turning our attention to the uniqueness result claimed in item (b), make the
assumption that Adis

L� �= ∅ and pick some A ∈ AL such that A� ∈ Adis
L� . Also,

denote by q ∈ (1,∞) the Hölder conjugate exponent of p. From Theorem 7.9,
presently used with L replaced by L�, we know that there exists δ ∈ (0, 1), which
depends only on n, p, λ, A, and the Ahlfors regularity constant of ∂�, such that if
� is a δ-AR domain then the following operator is invertible:

1
2I +KA� :

[
Bq,λ

1 (∂�, σ)
]M −→ [

Bq,λ

1 (∂�, σ)
]M

. (7.249)

Also, decreasing the value of δ ∈ (0, 1) if necessary guarantees that � is an NTA
domain with unbounded boundary (cf. Theorem 2.3). In such a case, (6.2) ensures
that � is globally pathwise nontangentially accessible.

Moving on, recall the fundamental solution E = (
Eαβ

)
1≤α,β≤M associated with

the systemL as in Theorem 3.1. Pick x& ∈ Rn\� along with x0 ∈ �, arbitrary. Also,
fix ρ ∈ (

0, 1
4 dist(x0, ∂�)

)
and define K := B(x0, ρ). Finally, recall the aperture

parameter κ̃ > 0 associated with � and κ as in Theorem 6.1. To proceed, for each
fixed index β ∈ {1, . . . ,M}, consider the CM -valued function

f (β)(x) := (
Eβα(x − x0)− Eβα(x − x&)

)
1≤α≤M, ∀ x ∈ ∂�. (7.250)

Based on (7.19), (7.250), (7.57), (2.579), (7.21), (3.16), and the Mean Value
Theorem we then conclude that

f (β) ∈ [
Bq,λ

1 (∂�, σ)
]M

. (7.251)

Consequently, with
(

1
2I +KA�

)−1
denoting the inverse of the operator in (7.249),

vβ :=
(
vβα

)
1≤α≤M := DA�

( (
1
2I +KA�

)−1
f (β)

)
(7.252)
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is a well-defined CM -valued function in�which, by virtue of Theorem 7.2, satisfies

vβ ∈
[
C∞(�)

]M
, L�vβ = 0 in �,

Nκ̃ vβ ∈ Bq,λ(∂�, σ), Nκ̃ (∇vβ) ∈ Bq,λ(∂�, σ),

and vβ
∣∣κ̃−n.t.

∂�
= f (β) at σ -a.e. point on ∂�.

(7.253)

In addition, from (7.251)–(7.252) and (7.64) we see that

(∇vβ
)∣∣κ̃−n.t.

∂�
exists (in Cn·M ) at σ -a.e. point on ∂�. (7.254)

For each pair of indices α, β ∈ {1, . . . ,M} let us now define

Gαβ(x) := vβα(x)−
(
Eβα(x−x0)−Eβα(x−x&)

)
, ∀ x ∈ �\{x0}. (7.255)

Regarding G := (
Gαβ

)
1≤α,β≤M as a CM×M -valued function defined Ln-a.e. in

�, from (7.255) and Theorem 3.1 we then see that G ∈ [
L1

loc(�,L
n)
]M×M .

Furthermore, by design,

L�G = −δx0IM×M in
[
D′(�)

]M×M and

G
∣∣κ̃−n.t.

∂�
= 0 at σ -a.e. point on ∂�,

(∇G)∣∣κ̃−n.t.

∂�
exists at σ -a.e. point on ∂�,

(7.256)

while if v := (
vβα

)
1≤α,β≤M then from (2.8), (3.16), and the Mean Value Theorem

it follows that at each point x ∈ ∂� we have

(
N�\K
κ̃ G

)
(x) ≤ (

Nκ̃ v
)
(x)+ Cx0,ρ(1 + |x|)1−n and

(
N�\K
κ̃ (∇G))(x) ≤ (

Nκ̃ (∇v)
)
(x)+ Cx0,ρ(1 + |x|)−n,

(7.257)

where Cx0,ρ ∈ (0,∞) is independent of x. From (7.253), (7.257), (7.21), and (7.19)
we see that the conditions listed in (6.4) are presently satisfied and, in fact,

N�\K
κ̃ (∇G) ∈ Bq,λ(∂�, σ). (7.258)

Assume now that u = (uβ)1≤β≤M is a CM -valued function in � satisfying

u ∈ [
C∞(�)

]M
, Lu = 0 in �,

u
∣∣κ−n.t.

∂�
exists at σ -a.e. point on ∂�,

and Nκu belongs to the space Mp,λ(∂�, σ).

(7.259)
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Since (7.258) and (7.22) imply

ˆ
∂�

Nκu·N�\K
κ̃ (∇G) dσ

≤ C
∥∥Nκu

∥∥
Mp,λ(∂�,σ)

∥∥N�\K
κ̃ (∇G)∥∥Bq,λ(∂�,σ)

<∞, (7.260)

we may rely on Theorem 6.1 to conclude that the Poisson integral representation

formula (6.6) holds. In particular, said formula proves that whenever u
∣
∣κ−n.t.

∂�
= 0 at

σ -a.e. point on ∂�we necessarily have u(x0) = 0. Given that x0 has been arbitrarily
chosen in�, this ultimately shows such a function u is actually identically zero in�.
This finishes the proof of the uniqueness claim made in item (b). The well-posedness
claim in item (c) is a consequence of what we have already proved in items (a)–(b).

Going further, the first claim in item (d), regarding the potential failure of
solvability of the Dirichlet Problem (7.241), is a consequence of Proposition 3.10
formulated for Morrey spaces. Its proof goes through virtually unchanged, with one
caveat. Specifically, to justify (3.308), instead of Lebesgue’s Dominated Conver-
gence Theorem on Muckenhoupt weighted Lebesgue spaces we now use the weak-∗
convergence on Morrey spaces from Proposition 7.3 (bearing in mind the continuity
and skew-symmetry of the Hilbert transform on Morrey and block spaces on the real
line). For higher dimensions, see Proposition 3.13. Also, the second claim in item
(d), regarding the potential failure of uniqueness for the Dirichlet Problem (7.241),
is a consequence of Example 3.5 (keeping in mind (3.258) and (7.4)). Again, for
higher dimensions see Proposition 3.13.

Consider next the claim made in item (e). When the Morrey space Mp,λ(∂�, σ)

is replaced by the vanishing Morrey space M̊p,λ(∂�, σ) in the formulation
of (7.241), virtually the same proof goes through, given that matters may be
arranged (by taking δ > 0 sufficiently small) so that the operator 1

2I + KA is

invertible on
[
M̊p,λ(∂�, σ)

]M and
[
M̊

p,λ

1 (∂�, σ)
]M (cf. Theorem 7.9). In the

scenario in which the Morrey space Mp,λ(∂�, σ) is replaced by the block space
Bq,λ(∂�, σ) for some given q ∈ (1,∞) in the formulation of (7.241), the same line
of reasoning applies, with a few notable changes. First, if p is the Hölder conjugate
exponent of q, then taking δ sufficiently small we may ensure that the operator
1
2I +KA is invertible on

[
Bq,λ(∂�, σ)

]M ,
[
Bq,λ

1 (∂�, σ)
]M , and

[
M

p,λ

1 (∂�, σ)
]M

(cf. Theorem 7.9). Second, with f (β) as in (7.250), thanks to (7.4) in place of (7.251)
we now have

f (β) ∈ [
M

p,λ

1 (∂�, σ)
]M

. (7.261)

In place of (7.258), this eventually implies

N�\K
κ̃ (∇G) ∈ Mp,λ(∂�, σ), (7.262)

so in place of (7.260) we now have (again, thanks to (7.22))
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ˆ
∂�

Nκu·N�\K
κ̃ (∇G) dσ

≤ C
∥∥Nκu

∥∥
Bq,λ(∂�,σ)

∥∥N�\K
κ̃ (∇G)∥∥

Mp,λ(∂�,σ)
<∞. (7.263)

As before, this allows us to invoke Theorem 6.1 to conclude that the Poisson integral
representation formula (6.6) holds. Ultimately, this readily implies the uniqueness
result we presently seek. The versions of the claims in item (d) for vanishing
Morrey spaces and block spaces are dealt with much as before (for the former
scale, use (7.8); in the case of block spaces, it is useful to observe that (7.17)
and Lebesgue’s Dominated Convergence Theorem yield, in place of (3.308), that
lim
ε→0+

hε = f1 + if2 in Lr(R,L1) where r is as in (7.17), and this suffices to

conclude that (3.309) holds in this case). Once more, for higher dimensions see
Proposition 3.13. Finally, one deals with (7.246) and its related versions along the
lines of the proof of Theorem 6.3. The proof of Theorem 7.18 is therefore complete.

� 
It turns out that the solvability results established in Theorem 7.18 may be further

enhanced, via perturbation arguments, as described in our next theorem.

Theorem 7.19 Retain the original background assumptions on the set � from
Theorem 7.18 and, as before, fix two integrability exponents p, q ∈ (1,∞) along
with a parameter λ ∈ (0, n− 1). Then the following statements are true.

(a) [Existence] For each given system Lo ∈ Ldis (cf. (3.195) ) there exist some small
threshold δ ∈ (0, 1) and some open neighborhood U of Lo in L, both of which
depend only on n, p, q, λ, Lo, and the Ahlfors regularity constant of ∂�, with
the property that if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) then for
each system L ∈ U the Dirichlet Problem (7.241), along with its versions in
which the Morrey spaceMp,λ(∂�, σ) is replaced by the vanishing Morrey space
M̊p,λ(∂�, σ) or the block space Bq,λ(∂�, σ), are all solvable.

(b) [Uniqueness] For each given system Lo ∈ L with L�o ∈ Ldis there exist some
small threshold δ ∈ (0, 1) and some open neighborhood U of Lo in L, both of
which depend only on n, p, q, λ, Lo, and the Ahlfors regularity constant of ∂�,
with the property that if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) then
for each system L ∈ U the Dirichlet Problem (7.241) along with its versions in
which the Morrey spaceMp,λ(∂�, σ) is replaced by the vanishing Morrey space
M̊p,λ(∂�, σ) or the block space Bq,λ(∂�, σ), have at most one solution.

(c) [Well-Posedness] For each given system Lo ∈ Ldis with L�o ∈ Ldis there exist
some small threshold δ ∈ (0, 1) and some open neighborhoodU of Lo in L, both
of which depend only on n, p, q, λ, Lo, and the Ahlfors regularity constant of ∂�,
with the property that if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) then
for each system L ∈ U the Dirichlet Problem (7.241) along with its versions in
which the Morrey spaceMp,λ(∂�, σ) is replaced by the vanishing Morrey space
M̊p,λ(∂�, σ) or the block space Bq,λ(∂�, σ), are all well posed.
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Proof This may be justified by reasoning as in the proof of Theorem 6.4, now
making use of the invertibility results from Theorem 7.10. � 

We continue by discussing the Inhomogeneous Regularity Problem for weakly
elliptic systems in δ-AR domains with boundary data in Morrey-based Sobolev
spaces, vanishing Morrey-based Sobolev spaces, as well as block-based Sobolev
spaces.

Theorem 7.20 Let � ⊆ Rn be an Ahlfors regular domain. Set σ := Hn−1�∂�,
denote by ν the geometric measure theoretic outward unit normal to �, and fix an
aperture parameter κ > 0. Also, pick an exponent p ∈ (1,∞) and a parameter
λ ∈ (0, n − 1). Given a homogeneous, second-order, constant complex coefficient,
weakly elliptic M × M system L in Rn, consider the Inhomogeneous Regularity
Problem

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u ∈ [
C∞(�)

]M
,

Lu = 0 in �,

Nκu, Nκ(∇u) ∈ Mp,λ(∂�, σ),

u
∣∣κ−n.t.

∂�
= f ∈ [

M
p,λ

1 (∂�, σ)
]M

.

(7.264)

The following statements are true:

(a) [Existence and Estimates] If Adis
L �= ∅ and A ∈ Adis

L , then there exists δ ∈ (0, 1)
which depends only on n, p, λ, A, and the Ahlfors regularity constant of ∂�
such that if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) then 1

2I + KA

is an invertible operator on the Morrey-based Sobolev space
[
M

p,λ

1 (∂�, σ)
]M

and the function

u(x) :=
(
DA

(
1
2I +KA

)−1
f
)
(x), ∀ x ∈ � (7.265)

is a solution of the Inhomogeneous Regularity Problem (7.264). In addition,

‖Nκu‖Mp,λ(∂�,σ) ≈ ‖f ‖[Mp,λ(∂�,σ)]M and

‖Nκu‖Mp,λ(∂�,σ) + ‖Nκ(∇u)‖Mp,λ(∂�,σ) ≈ ‖f ‖[Mp,λ
1 (∂�,σ)]M .

(7.266)

(b) [Uniqueness] Whenever Adis
L� �= ∅, there exists δ ∈ (0, 1) which depends

only on n, p, λ, L, and the Ahlfors regularity constant of ∂� such that if
‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) then the Inhomogeneous
Regularity Problem (7.264) has at most one solution.

(c) [Well-Posedness] If Adis
L �= ∅ and Adis

L� �= ∅ then there exists δ ∈ (0, 1)
which depends only on n, p, λ, L, and the Ahlfors regularity constant of
∂� such that if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) then
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the Inhomogeneous Regularity Problem (7.264) is uniquely solvable and the
solution satisfies (7.266).

(d) [Other Spaces of Boundary Data] Analogous results to those described in
items (a)–(c) above are also valid for the Inhomogeneous Regularity Problem
formulated with boundary data in the vanishing Morrey-based Sobolev space[
M̊

p,λ

1 (∂�, σ)
]M

, or the block-based Sobolev space
[
Bq,λ

1 (∂�, σ)
]M

with
q ∈ (1,∞).

(e) [Perturbation Results] In each of the cases considered in items (a)–(d), there
are naturally accompanying perturbation results of the sort described in Theo-
rem 7.19.

(f) [Sharpness] If Adis
L = ∅ the Regularity Problem (7.264) (and its variants

involving vanishing Morrey-based Sobolev spaces, or block-based Sobolev
spaces) may fail to be solvable, and if Adis

L� = ∅ the Inhomogeneous Regularity
Problem (7.264) (along with its aforementioned variants) may possess more
than one solution.

Proof The claims in items (a)–(d) are implied by Theorems 7.9 and 7.18, while
the claim in item (e) may be justified by reasoning as in the proof of Theorem 6.4,
now making use of the invertibility results from Theorem 7.10. Finally, the claims
in item (f) are consequences of the versions of Example 3.5 and Proposition 3.11
formulated for Morrey spaces, as well as vanishing Morrey spaces and block spaces
(whose proofs naturally adapt to these spaces; see the discussion in the proof of item
(d) in Theorem 7.18). For higher dimensions see Proposition 3.13. � 

Remark 7.7 Much as indicated in Remark 6.3, similar solvability and well-
posedness results as in Theorem 7.20 hold for the versions of the Regularity
Problem (7.264) formulated with boundary data belonging to suitably defined
off-diagonal Morrey-based Sobolev spaces (as well as off-diagonal vanishing
Morrey-based Sobolev spaces, and off-diagonal block-based Sobolev spaces).

The next goal is to formulate and solve the Homogeneous Regularity Problem
with boundary data from homogeneous Morrey-based Sobolev spaces. This aug-
ments solvability results established earlier in Theorems 7.18 and 7.20.

Theorem 7.21 Assume � ⊆ Rn is an Ahlfors regular domain. Denote by ν the
geometric measure theoretic outward unit normal to � and set σ := Hn−1�∂�.
Also, fix an aperture parameter κ > 0 and pick some exponent p ∈ (1,∞)

along with a number λ ∈ (0, n − 1). For a given homogeneous, second-order,
constant complex coefficient, weakly elliptic M ×M system L in Rn, consider the
Homogeneous Regularity Problem
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u ∈ [
C∞(�)

]M
,

Lu = 0 in �,

Nκ(∇u) ∈ Mp,λ(∂�, σ),

u
∣
∣κ−n.t.

∂�
= f ∈ [ .

M
p,λ

1 (∂�, σ)
]M

,

(7.267)

where
.
M

p,λ

1 (∂�, σ) is the homogeneous Morrey-based boundary Sobolev space
defined in (7.69). In relation to this, the following statements are valid:

(a) [Existence, Estimates, and Integral Representations] If Adis
L �= ∅ then there

exists δ ∈ (0, 1) which depends only on n, p, λ, L, and the Ahlfors regularity
constant of ∂� with the property that if ‖ν‖[BMO(∂�,σ)]n < δ (a scenario
which ensures that � is a δ-AR domain; cf. Definition 2.15) then the following
properties are true. First, the operator

[
Smod

] : [Mp,λ(∂�, σ)
]M −→ [ .

M
p,λ

1 (∂�, σ)
/ ∼ ]M (7.268)

is surjective and the Homogeneous Regularity Problem (7.267) is solvable.
More specifically, with [f ] ∈ [ .

M
p,λ

1 (∂�, σ)
/ ∼ ]M

denoting the equivalence
class (modulo constants) of the boundary datum f , and with

g ∈ [
Mp,λ(∂�, σ)

]M
selected so that

[
Smod

]
g = [f ], (7.269)

there exists a constant c ∈ CM such that the function

u := Smodg + c in � (7.270)

is a solution of the Homogeneous Regularity Problem (7.267). In addition, this
solution satisfies (with implicit constants independent of f )

‖Nκ(∇u)‖Mp,λ(∂�,σ) ≈ ‖∇tanf ‖[Mp,λ(∂�,σ)]n·M . (7.271)

Second, for each coefficient tensor A ∈ Adis
L the operator

1
2I +

[
K

A,mod

] : [ .Mp,λ

1 (∂�, σ)/ ∼ ]M −→ [ .
M

p,λ

1 (∂�, σ)/ ∼ ]M (7.272)

is an isomorphism, and the Homogeneous Regularity Problem (7.267) may be
solved as

u := D
A,modh+ c in �, (7.273)

for a suitable constant c ∈ CM and with
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h ∈ [ .
M

p,λ

1 (∂�, σ)
]M

such that [h] =
(

1
2I +

[
K

A,mod

])−1[f ]. (7.274)

Moreover, this solution continues to satisfy (7.271).
(b) [Uniqueness] Whenever Adis

L� �= ∅, there exists δ ∈ (0, 1) which depends only
on n, p, λ, L, and the Ahlfors regularity constant of ∂� with the property that
if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain ) then the Homogeneous
Regularity Problem (7.267) has at most one solution.

(c) [Well-Posedness and Additional Integrability/Regularity] Whenever Adis
L �= ∅

and Adis
L� �= ∅ it follows that there exists δ ∈ (0, 1) which depends only on

n, p, λ, L, and the Ahlfors regularity constant of ∂� with the property that
if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) then the Homogeneous
Regularity Problem (7.267) is uniquely solvable. Moreover, the unique solution
u of (7.267) satisfies (in a quantitative fashion)

Nκu ∈ Mp,λ(∂�, σ)⇐⇒ f ∈ [
M

p,λ

1 (∂�, σ)
]M

. (7.275)

In particular, the equivalence in (7.275) proves that the unique solution of the
Homogeneous Regularity Problem (7.267) for a boundary datum f belonging
to

[
M

p,λ

1 (∂�, σ)
]M (which is a subspace of

[ .
M

p,λ

1 (∂�, σ)
]M

; cf. (7.71)) is
actually the unique solution of the Inhomogeneous Regularity Problem (7.264)
for the boundary datum f .

(d) [Other Spaces of Boundary Data] Analogous results to those described in items
(a)–(c) above are also valid for the Homogeneous Regularity Problem formu-
lated with boundary data in homogeneous vanishing Morrey-based Sobolev
spaces, or homogeneous block-based Sobolev spaces.

(e) [Perturbation Results] In each of the scenarios considered in items (a)–(d),
there are naturally accompanying perturbation results of the sort described in
Theorem 7.19.

(f) [Sharpness] If Adis
L = ∅ the Homogeneous Regularity Problem (7.267) may fail

to be solvable (actually for boundary data belonging to an infinite dimensional
subspace of the corresponding weighted homogeneous Sobolev space), and if
Adis
L� = ∅ the Homogeneous Regularity Problem (7.267) may possess more

than one solution (in fact, the linear space of null-solutions may actually be
infinite dimensional), even in the case when � = Rn+. In particular, if either
Adis
L = ∅ or Adis

L� = ∅, then the Homogeneous Regularity Problem (7.267) may
fail to be well posed, again, even in the case when � = Rn+.

Proof All claims are established by reasoning along the lines of the proof of
Theorem 6.8, now making use of Proposition 7.8, Theorems 7.4, 7.5, 7.9, 7.12,
7.13, and 7.3. � 

We next treat the Neumann Problem for weakly elliptic systems in δ-AR domains
with boundary data in Morrey spaces, vanishing Morrey spaces, and block spaces.
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Theorem 7.22 Let � ⊆ Rn be a UR domain. Denote by ν the geometric measure
theoretic outward unit normal to�, abbreviate σ := Hn−1�∂�, and fix an aperture
parameter κ > 0. Also, pick an integrability exponent p ∈ (1,∞) and a parameter
λ ∈ (0, n− 1). Next, suppose L is a homogeneous, second-order, constant complex
coefficient, weakly elliptic M × M system in Rn. Finally, select some coefficient
tensor A ∈ AL and consider the Neumann Problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u ∈ [
C∞(�)

]M
,

Lu = 0 in �,

Nκ(∇u) ∈ Mp,λ(∂�, σ),

∂Aν u = f ∈ [
Mp,λ(∂�, σ)

]M
.

(7.276)

Then the following statements are valid:

(a) [Existence, Estimates, and Integral Representation] IfA� ∈ Adis
L� then there exists

δ ∈ (0, 1), depending only on n, p, λ, A, and the Ahlfors regularity constant of
∂�, such that if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) then the

operator − 1
2I + K#

A� is invertible on the Morrey space
[
Mp,λ(∂�, σ)

]M
and

the function u : �→ CM defined as

u(x) :=
(
Smod

(
− 1

2I +K#
A�

)−1
f
)
(x) for all x ∈ �, (7.277)

is a solution of the Neumann Problem (7.276) which satisfies

‖Nκ(∇u)‖Mp,λ(∂�,σ) ≤ C ‖f ‖[Mp,λ(∂�,σ)]M (7.278)

for some constant C ∈ (0,∞) independent of f . Also, the operator (7.210) is
surjective which implies that, for some constant C ∈ (0,∞),

there exists g ∈ [ .
M

p,λ

1 (∂�,w)
]M

with ∂Aν (DA,modg) = f

and such that ‖g‖[ .Mp,λ
1 (∂�,w)]M ≤ C ‖f ‖[Mp,λ(∂�,w)]M .

(7.279)

Consequently, the function

u := D
A,modg in � (7.280)

is a solution of the Neumann Problem (7.276) which continues to satisfy (7.278).
(b) [Uniqueness (modulo constants)] Whenever A ∈ Adis

L there exists δ ∈ (0, 1)
which depends only on n, p, λ, A, and the Ahlfors regularity constant of ∂� such
that if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) then any two solutions
of the Neumann Problem (7.276) differ by a constant from CM .
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(c) [Well-Posedness] Whenever A ∈ Adis
L and A� ∈ Adis

L� then there exists δ ∈ (0, 1)
which depends only on n, p, λ, A, and the Ahlfors regularity constant of ∂�
such that if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) then the Neumann
Problem (7.276) is solvable, the solution is unique modulo constants from CM ,
and each solution satisfies (7.278).

(d) [Other Spaces of Boundary Data and Perturbation Results] Similar results as
in items (a)–(c) are valid with the Morrey space Mp,λ(∂�, σ) replaced by
the vanishing Morrey space M̊p,λ(∂�, σ), or the block space Bq,λ(∂�, σ)

with q ∈ (1,∞). In each of these cases there are naturally accompanying
perturbation results of the sort described in Theorem 7.19. Finally, given any pair
of integrability exponents p0, p1 ∈ (1,∞) along with any pair of parameters
λ0, λ1 ∈ (0, n− 1), similar results are valid for the Neumann Problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u ∈ [
C∞(�)

]M
,

Lu = 0 in �,

Nκ(∇u) ∈ Mp0,λ0(∂�, σ)+Mp1,λ1(∂�, σ),

∂Aν u = f ∈ [
Mp0,λ0(∂�, σ)+Mp1,λ1(∂�, σ)

]M
,

(7.281)

as well as for its versions with the Morrey spaces replaced by vanishing Morrey
space or block spaces.

(e) [Sharpness] If A� /∈ Adis
L� then the Neumann Problem (7.276) may not be

solvable. In addition, if A /∈ Adis
L then the Neumann Problem (7.276) may

have more than one solution. In fact, even the two-dimensional Laplacian may
be written as  = divA∇ for some matrix A ∈ C2×2 (not belonging to
Adis
 = {I2×2}) such that the Neumann Problem formulated for this as in (7.276)

for this choice of A and with � := R2+ fails to have a solution for each non-zero
boundary datum belonging to an infinite-dimensional linear subspace of the full
space of boundary data, and the linear space of null-solutions for the Neumann
Problem formulated as in (7.276) for this choice of A and with � := R2+ is
actually infinite dimensional. The aforementioned lack of Fredholm solvability is
also present for the Neumann Problem formulated in other function spaces, like
those considered in item (d).

Proof Theorem 7.9 guarantees the existence of some threshold δ ∈ (0, 1), whose
nature is as specified in the statement of the theorem, with the property that if �
is a δ-AR domain then the operator − 1

2I +K#
A� is invertible on

[
Mp,λ(∂�, σ)

]M ,
[
M̊p,λ(∂�, σ)

]M , and
[
Bq,λ(∂�, σ)

]M (assuming q ∈ (1,∞) has been fixed to
begin with). Granted this, all conclusions, save for the very last claim in item (d),
follow from Theorems 7.4, 7.9, 7.10, and 7.14 by reasoning as in the proof of
Theorem 6.11. The claims pertaining to the Neumann Problem (7.281) are dealt
with much as in the proof of Theorem 6.14. Finally, the sharpness aspect highlighted
in item (e) may be justified by reasoning much as in the proof of Theorem 6.11. � 
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In relation to Theorem 7.22, we wish to note that in the formulation of the
Neumann Problem (7.276) for the two-dimensional Lamé system we may allow
conormal derivatives associated with coefficient tensors of the form A = A(ζ ) as
in (4.401) for any ζ as in (6.155) (see Remark 7.4 and Remark 6.10 in this regard).

Finally, we formulate and solve the Transmission Problem for weakly elliptic
systems in δ-AR domains with boundary data in Morrey spaces, vanishing Morrey
spaces, and block spaces. In the formulation on this problem, the clarifications made
right after the statement of Theorem 6.15 continue to remain relevant.

Theorem 7.23 Let � ⊆ Rn be a UR domain. Denote by ν the geometric measure
theoretic outward unit normal to �, abbreviate σ := Hn−1�∂�, and set

�+ := �, �− := Rn \�. (7.282)

Also, pick an exponent p ∈ (1,∞) along with a parameter λ ∈ (0, n − 1), an
aperture parameter κ > 0, and a transmission (or coupling) parameter η ∈ C. Next,
assume L is a homogeneous, second-order, constant complex coefficient, weakly
elliptic M × M system in Rn. Finally, select some A ∈ AL and consider the
Transmission Problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u± ∈ [
C∞(�±)

]M
,

Lu± = 0 in �±,
Nκ(∇u±) ∈ Mp,λ(∂�, σ),

u+
∣∣κ−n.t.

∂�
− u−

∣∣κ−n.t.

∂�
= g ∈ [ .

M
p,λ

1 (∂�,w)
]M

,

∂Aν u
+ − η · ∂Aν u− = f ∈ [

Mp,λ(∂�, σ)
]M

.

(7.283)

In relation to this, the following statements are valid:

(a) [Uniqueness (modulo constants)] Suppose either

A� ∈ Adis
L� and η ∈ C \ {−1}, (7.284)

or

A ∈ Adis
L and η ∈ C \ {0,−1}. (7.285)

Then there exists δ ∈ (0, 1) which depends only on n, η, p, λ, A, and the Ahlfors
regularity constant of ∂� such that whenever ‖ν‖[BMO(∂�,σ)]n < δ (a scenario
which renders� a δ-AR domain; cf. Definition 2.15) it follows any two solutions
of the Transmission Problem (7.283) differ by a constant (from CM ).

(b) [Well-Posedness, Integral Representations, and Additional Regularity] Assume

A ∈ Adis
L , A� ∈ Adis

L� , and η ∈ C \ {−1}. (7.286)
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Then there exists some small δ ∈ (0, 1) which depends only on n, p, λ, A, η,
and the Ahlfors regularity constant of ∂� such that if ‖ν‖[BMO(∂�,σ)]n < δ

(a scenario which ensures that � is a δ-AR domain; cf. Definition 2.15) it
follows that the Transmission Problem (7.283) is solvable. Specifically, in the
scenario described in (7.286), the operator − η+1

2 I + (1 − η)K#
A� is invertible

on the Morrey space
[
Mp,λ(∂�, σ)

]M
, the operator

[
Smod

]
is invertible from

[
Mp,λ(∂�, σ)

]M
onto the space

[ .
M

p,λ

1 (∂�, σ)
/ ∼ ]M

, and the functions
u± : �± → CM defined as

u+ := S +
mod
h0 +S +

mod
h1 − c in �+,

u− := S −
mod
h0 in �−,

(7.287)

where the superscripts ± indicate that the modified single layer potentials are
associated with the sets �± and

h1 :=
[
Smod

]−1[g] ∈ [
Mp,λ(∂�, σ)

]M
, c := Smodh1 − g ∈ CM,

h0 :=
(
− η+1

2 I + (1 − η)K#
A�

)−1 (
f − (− 1

2I +K#
A�

)
h1

)
,

(7.288)

solve the Transmission Problem (7.283) and satisfy, for a finite constant C > 0
independent of f and g,

∥
∥Nκ(∇u±)

∥
∥
Mp,λ(∂�,σ)

≤ C
(
‖f ‖[Mp,λ(∂�,σ)]M + ‖g‖[ .Mp,λ

1 (∂�,σ)]M
)
.

(7.289)
Moreover, any two solutions of the Transmission Problem (7.283) differ by a con-
stant (from CM ). In particular, any solution of the Transmission Problem (7.283)
satisfies (7.289).

Alternatively, under the conditions imposed in (7.286) and, again, assuming�
is a δ-AR domain with δ ∈ (0, 1) sufficiently small, a solution of the Transmission
Problem (7.283) may also be found in the form

u+ := D+
A,mod

ψ0 + c in �+,

u− := D−
A,mod

ψ1 in �−,
(7.290)

where the superscripts ± indicate that the modified double layer potentials are
associated with the sets �±, where c ∈ CM is a suitable constant, and where

ψ0, ψ1 ∈
[ .
M

p,λ

1 (∂�, σ)
]M

are two suitable functions satisfying

‖ψ0‖[ .Mp,λ
1 (∂�,σ)]M + ‖ψ1‖[ .Mp,λ

1 (∂�,σ)]M

≤ C
(
‖f ‖[Mp,λ(∂�,σ)]M + ‖g‖[ .Mp,λ

1 (∂�,σ)]M
)
, (7.291)
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for some constant C ∈ (0,∞) independent of f and g. In particular, u±
in (7.290) also satisfy (7.289).

(c) [Well-Posedness for η = 1] In the case when

η = 1 and � is a two-sided NTA domain with
an unbounded Ahlfors regular boundary

(7.292)

the Transmission Problem (7.283) is solvable, and any two solutions of the
Transmission Problem (7.283) differ by a constant. Any solution is given by

u+ := D+
A,mod

g −S +
mod
f + c in �+,

u− := −D−
A,mod

g −S −
mod
f + c in �−,

(7.293)

for some c ∈ CM , where the superscripts ± indicate that the modified layer
potentials are associated with the sets�± introduced in (7.282). In addition, any
solution satisfies (7.289).

(d) [Other Spaces of Boundary Data and Perturbation Results] Analogous results
hold with the Morrey space Mp,λ(∂�, σ) replaced by the vanishing Morrey
space M̊p,λ(∂�, σ), the block spaceBq,λ(∂�, σ)with q ∈ (1,∞), or by sums of
such spaces. In addition, in each of these cases there are naturally accompanying
perturbation results of the sort described in Theorem 7.19.

Proof For each fixed η ∈ C\ {−1}, p, q ∈ (1,∞), and λ ∈ (0, n−1), Theorem 7.9
guarantees that there exists some threshold δ ∈ (0, 1), whose nature is as specified in
the statement of the theorem, with the property that if � is a δ-AR domain then the
operator − η+1

2 I+(1−η)K#
A� is invertible on

[
Mp,λ(∂�, σ)

]M ,
[
M̊p,λ(∂�, σ)

]M ,

and
[
Bq,λ(∂�, σ)

]M . With this in hand, the same type of argument as in the proof
of Theorem 6.15 (which now relies on Theorems 7.2, 7.4, 7.5, 7.9, 7.12, 7.13) and
the proof of Theorem 6.4 (which now makes use of Theorem 7.10) yields all desired
conclusions. � 

We close by noting that, in the formulation of the Transmission Problem (7.283)
for the two-dimensional Lamé system, we may allow conormal derivatives asso-
ciated with coefficient tensors of the form A = A(ζ ) as in (4.401) for any ζ as
in (6.262) (see Remarks 7.4 and 6.16 in this regard).



Chapter 8
Singular Integrals and Boundary
Problems in Weighted Banach Function
Spaces

In this chapter we shall show that singular integral operators remain effective
tools in proving well-posedness results for boundary problems for second-order
systems formulated in sufficiently flat Ahlfors regular domains and with boundary
data in weighted Banach function spaces (aka, Köthe function spaces). In the
first part we develop the theory of boundary layer potentials and boundary value
problems in such a general functional analytic setting then, in the last part of this
chapter, we shall specialize this discussion to the case of rearrangement invariant
Banach function spaces (RIBFS for short), including Orlicz spaces, Zygmund space,
Lorentz spaces, and their weighted versions.

8.1 Basic Properties and Extrapolation in Banach Function
Spaces

In this section we consider abstract Banach function spaces on Ahlfors regular sets.
To get started, we shall assume that1

(�,M) is a measurable space, and μ is a positive, non-atomic,
sigma-finite measure on the sigma-algebra M, with μ(�) > 0. (8.1)

For example, if � ⊆ Rn (where n ∈ N, n ≥ 2) is a nonempty closed Ahlfors
regular set and σ := Hn−1�� then we may take μ := σ , or μ := wσ with the
weight w ∈ A∞(�, σ ). More generally,

1 Recall that a measure μ is said to be non-atomic provided for any μ-measurable set A with
μ(A) > 0 there exists a μ-measurable subset B of A such that μ(A) > μ(B) > 0.
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if � ⊆ Rn is a nonempty closed Ahlfors regular set and we
abbreviate σ := Hn−1��, for each function v ∈ L1

loc(�, σ ) with
v > 0 at σ -a.e. point on � it follows that μ := vσ is a positive,
non-atomic, sigma-finite measure on � with μ(�) > 0.

(8.2)

The fact that μ is non-atomic in this scenario follows from Lebesgue’s Differentia-
tion Theorem (cf. [7], [111, §7.4]). Specifically, ifA ⊆ � is a σ -measurable set with
μ(A) > 0 then σ(A) > 0 so there exists a point x∗ ∈ A such that 0 < v(x∗) < ∞
and

lim
r→0+

μ
(
A ∩(x∗, r)

)

σ
(
(x∗, r)

) = lim
r→0+

 
(x∗,r)

1A · v dσ = v(x∗) ∈ (0,∞). (8.3)

As a consequence, μ
(
A ∩(x∗, r)

)
> 0 whenever r > 0 is sufficiently small, and

lim
r→0+

μ
(
A ∩ (x∗, r)

) = 0. This proves that 0 < μ
(
A ∩ (x∗, r)

)
< μ(A) if

r > 0 is small enough, so the measure μ is, as claimed, non-atomic. In the scenario
described in (8.2) we agree to identify the weight function v with the weighted
measure

dv := v dσ (8.4)

so (8.2) implies that, as a measure, v is non-atomic.

Definition 8.1 LetMμ be the set of all complex-valued μ-measurable functions on
�. A mapping ‖·‖ : Mμ → [0,∞] is called a function norm provided the
following properties are satisfied for all f, g ∈ Mμ:

1. ‖f ‖ = ‖|f |‖ and ‖f ‖ = 0 if and only if f = 0 at μ-a.e. point on �;
2. ‖f + g‖ ≤ ‖f ‖ + ‖g‖;
3. ‖λf ‖ = |λ|‖f ‖ for all λ ∈ C;
4. if |f | ≤ |g| at μ-a.e. point on �, then ‖f ‖ ≤ ‖g‖;
5. if {fi}i∈N ⊆ Mμ is a sequence such that |fi | increases to |f | as i →∞ at μ-a.e.

point on �, then ‖fi‖ increases to ‖f ‖ as i →∞;
6. if E ⊆ � is a μ-measurable set such that μ(E) <∞, then ‖1E‖ <∞;
7. for each μ-measurable set E ⊆ � with μ(E) < ∞ there exists some constant

CE ∈ (0,∞) (independent of f ) such that
´
E
|f | dμ ≤ CE‖f ‖.

The space associated with a function norm ‖·‖, i.e.,

X := {f ∈ Mμ : ‖f ‖ < +∞}, (8.5)

is called a Banach function space over (�,μ) (referred to as a Köthe
function space). In such a scenario, it is agreed to write ‖ · ‖X in place of
‖ · ‖ in order to emphasize the connection between the function norm ‖ · ‖ and its
associated Köthe function space X.
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The latter piece of terminology is justified since, as is well known,
(
X, ‖ · ‖X

)
is a

complete normed vector subspace ofMμ, hence a Banach space.
Starting with a Banach function space X over (�,μ), we can define its Köthe

dual (also known as its associated space in the terminology of [15]) according
to

X
′ := {

f ∈ Mμ : ‖f ‖X′ <∞}
where, for each f ∈ Mμ,

‖f ‖X′ := sup

{ˆ
�

|f (x) g(x)| dμ(x) : g ∈ X, ‖g‖X ≤ 1

}
.

(8.6)

One can check that ‖ · ‖X′ is indeed a function norm, hence X′ is itself a Banach
function space over (�,μ). In addition, ‖ · ‖X′ satisfies the generalized Hölder
inequality

ˆ
�

|f (x)g(x)| dμ(x) ≤ ‖f ‖X‖g‖X′ , (8.7)

for every f, g ∈ Mμ. Every Banach function space X over (�,μ) coincides with
the associated space of X′, that is (cf. [15, Theorem 2.7, p. 10]),

X = X′′. (8.8)

Hence, for every f ∈ Mμ we have

‖f ‖X = sup

{ˆ
�

|f (x)g(x)| dμ(x) : g ∈ X′, ‖g‖X′ ≤ 1

}
. (8.9)

For future reference, let us also observe here that property (g) in Definition 8.1
implies

if f ∈ X then |f | <∞ at μ-a.e. point in �. (8.10)

The following theorem does not appear explicitly in [34, Section 4.2] but its proof
follows the lines of [34, Theorem 4.10, pp. 75–76] without the assumption that the
Banach function space is rearrangement invariant (see Definition 8.2 below). The
statement is quite general so it can accommodate a multitude of relevant particular
cases. We shall work in the context of weighted Banach function spaces. To be
more specific, assume � ⊆ Rn is a closed Ahlfors regular set and abbreviate
σ := Hn−1��. Having fixed some v ∈ L1

loc(�, σ ) with v > 0 at σ -a.e. point
on �, we shall let Xv be a Banach function space over (�, vσ). The first main
example pertains to the case when v ≡ 1 and X is a generic Banach function
space, a scenario in which condition (8.11) below reduces to having the Hardy–
Littlewood maximal operator M on � bounded both on X and on X′. In the second
main example, we demand that v = w ∈ A∞(�, σ ) and further assume that X is a
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rearrangement invariant Banach function space (see Definition 8.2 below). Thus,
Xv = X(w) (see (8.392)), and Corollary 8.2 shows that (8.11) holds provided
1 < pX ≤ qX <∞ and w ∈ ApX(�, σ ), where pX, qX are, respectively, the lower
and upper Boyd indices (see Definition 8.3). For the moment we would like to keep
the discussion general, and later on we will specialize matters to the aforementioned
examples (see Sect. 8.7).

Theorem 8.1 Assume � ⊆ R
n is an arbitrary closed Ahlfors regular set and

abbreviate σ := Hn−1��. Suppose F is a family of pairs of σ -measurable functions
on �. Pick an exponent p0 ∈ [1,∞), denote by p′0 its Hölder conjugate exponent,
and consider a non-decreasing function � : (0,∞) → (0,∞). Also, fix a function
v ∈ L1

loc(�, σ ) with v > 0 at σ -a.e. point on �. Let Xv be a Banach function
space over (�, vσ) and let X′v be its Köthe dual. Finally, with M denoting the
Hardy–Littlewood maximal operator on (�, σ ) and with M′f := M(f v)/v for
each σ -measurable function f on �, assume that

M is bounded on Xv and M′ is bounded on X′v. (8.11)

If for each w ∈ Ap0(�, σ ) with [w]Ap0
≤ 2p0‖M‖p0−1

Xv→Xv
∥∥M′∥∥

X
′
v→X′v one has

‖f ‖Lp0 (�,w) ≤ �([w]Ap0
)‖g‖Lp0 (�,w) for every (f, g) ∈ F, (8.12)

then one may conclude that

‖f ‖Xv ≤ 22+1/p′0 �
(
2p0‖M‖p0−1

Xv→Xv
∥∥M′∥∥

X
′
v→X′v

)‖g‖Xv
for every (f, g) ∈ F.

(8.13)

The main ingredient in the proof of this result is contained in the following
proposition.

Proposition 8.1 Suppose � ⊆ Rn is a closed Ahlfors regular set and abbreviate
σ := Hn−1��. Fix a function v ∈ L1

loc(�, σ ) with v > 0 at σ -a.e. point on �.
Let Xv be a Banach function space over (�, vσ) and let X′v be its Köthe dual.
With M denoting the standard Hardy–Littlewood maximal operator on (�, σ ) and
M′f :=M(f v)/v for each σ -measurable function f on �, assume that

M is bounded on Xv and M′ is bounded on X′v. (8.14)

Then for every f, g ∈ Xv and every p0 ∈ [1,∞) there exists a Muckenhoupt
weight w = w(f, g) ∈ Ap0(�, σ ) satisfying [w]Ap0

≤ 2p0‖M‖p0−1
Xv→Xv

∥∥M′∥∥
X
′
v→X′v

and such that

‖f ‖Xv ≤ 21+2/p′0‖f ‖Lp0 (�,w) and ‖g‖Lp0 (�,w) ≤ 21/p0‖g‖Xv , (8.15)

where p′0 is the Hölder conjugate exponent of p0.
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In particular, for every f ∈ Xv and every p0 ∈ [1,∞) there exists a
Muckenhoupt weight

w = w(f ) ∈ Ap0(�, σ ) with

[w]Ap0
≤ Wp0,Xv := 2p0‖M‖p0−1

Xv→Xv
∥∥M′∥∥

X
′
v→X′v

(8.16)

such that the function f belongs to Lp0(�,w) and

2−1−2/p′0‖f ‖Xv ≤ ‖f ‖Lp0 (�,w) ≤ 21/p0‖f ‖Xv . (8.17)

As a corollary of these considerations, for every p0 ∈ [1,∞) one has

Xv ⊆
⋃

w∈Ap0 (�,σ)[w]Ap0
≤Wp0,Xv

Lp0(�,w). (8.18)

Assuming this result for the time being, we can painlessly deal with Theorem 8.1.

Proof of Theorem 8.1 Given (f, g) ∈ F, we may assume without loss of generality
that ‖g‖Xv <∞, otherwise there is nothing to prove. Note that this entails |f | <∞
at σ -a.e. point on �, since otherwise (8.12) and the fact that Muckenhoupt weights
are strictly positive σ -a.e. on � would force ‖g‖Lp0 (�,w) = ∞ for every weight
w ∈ Ap0(�, σ ). This, however, contradicts (8.17) in Proposition 8.1 applied to
g ∈ Xv .

For every N ≥ 1, let EN := {
x ∈ � ∩ B(0, N) : |f (x)| ≤ N

}
and define

fN := f 1EN . Properties (d) and (f) in Definition 8.1, the notation introduced in (8.4)
and the fact that v ∈ L1

loc(�, σ ) imply ‖fN‖Xv ≤ N‖1�∩B(0,N)‖Xv < ∞. We
therefore have fN ∈ Xv . Apply now Proposition 8.1 to find a Muckenhoupt weight
wN := w(fN, g) in Ap0(�, σ ) such that [wN ]Ap0

≤ 2p0‖M‖p0−1
Xv→Xv

∥∥M′∥∥
X
′
v→X′v

and so that (8.15) holds for this weight and the functions fN , g. We may then invoke
(8.12) to write

‖fN‖Xv ≤ 21+2/p′0‖fN‖Lp0 (�,w) ≤ 21+2/p′0‖f ‖Lp0 (�,w)

≤ 21+2/p′0�([wN ]Ap0
)‖g‖Lp0 (�,w)

≤ 22+1/p′0�
(
2p0‖M‖p0−1

Xv→Xv
∥∥M′∥∥

X
′
v→X′v

)‖g‖Xv . (8.19)

To conclude, observe that |fN | increases to |f | as N → ∞ at σ -a.e. point on �,
since |f | <∞ at σ -a.e. point on �. As such, property (e) in Definition 8.1 implies
that ‖fN‖Xv increases to ‖f ‖Xv , and we readily obtain (8.13) from (8.19). � 

We now turn to the proof of Proposition 8.1.

Proof of Proposition 8.1 We use some ideas from [34, Theorem 4.10, pp. 75–76]
but keeping in mind that X is not necessarily rearrangement invariant. For any two
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non-negative, non-trivial, functions h1 ∈ Xv and h2 ∈ X′v bring in the Rubio de
Francia iteration algorithms:

Rh1 :=
∞∑

k=0

Mkh1

2k‖M‖k
Xv→Xv

, R′h2 :=
∞∑

k=0

(M′)kh2

2k
∥∥M′∥∥k

X
′
v→X′v

, (8.20)

where M0 and (M′)0 stand for the identity operator, while Mk := M ◦ · · · ◦M
(respectively, (M′)k :=M′ ◦ · · · ◦M′) is the k-th iteration of M (respectively, M′)
for each pair of integer k ≥ 1. Based on (8.20), (8.14), and (2.523) we see that

h1 ≤ Rh1 on �, h2 ≤ R′h2 on �, (8.21)

‖Rh1‖Xv ≤ 2‖h1‖Xv ,
∥
∥R′h2

∥
∥
X
′
v
≤ 2‖h2‖X′v , (8.22)

[Rh1]A1 ≤ 2‖M‖Xv→Xv , [(R′h2) v]A1 ≤ 2
∥∥M′∥∥

X
′
v→X′v . (8.23)

Fix next f, g ∈ Xv . We make the claim that it suffices to consider the case when
both ‖f ‖Xv �= 0 and ‖g‖Xv �= 0. Indeed, when either ‖f ‖Xv = 0, or ‖g‖Xv = 0,
we just use the claim with f , or g, replaced by 1B(x0,r0)∩� , for some fixed x0 ∈ �

and 0 < r0 < diam(�). Note that by property property (g) in Definition 8.1 with
dμ = dv = v dσ and the fact that v > 0 at σ -a.e. point on �, one obtains that
‖1B(x0,r0)∩�‖Xv �= 0.

To proceed, assume that ‖f ‖Xv �= 0 and ‖g‖Xv �= 0. By (8.9) there exists some
non-negative function h ∈ X′v with ‖h‖X′v ≤ 1 such that

2−1‖f ‖Xv ≤
ˆ
�

|f |h v dσ. (8.24)

Note that since ‖f ‖Xv �= 0 then the above estimate implies that σ
({h > 0}) > 0,

hence h is not zero σ -a.e. on �.
Consider first the case when p0 > 1. Let R and R′ be as in (8.20) so that (8.21)–

(8.23) hold. Define

g̃(x) := |g(x)|
‖g‖Xv

for each x ∈ �, (8.25)

and set

w := (Rg̃)1−p0(R′h) v. (8.26)

From (8.23) and the factorization of weights (described in item (4) of Proposi-
tion 2.20) we have w ∈ Ap0(�, σ ) and
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[w]Ap0
≤ [Rg̃]p0−1

A1
[(R′h)v]A1 ≤ 2p0‖M‖p0−1

Xv→Xv
∥∥M′∥∥

X
′
v→X′v . (8.27)

Also, (8.7) (with dμ = dv = vdσ ) and (8.22) yield

ˆ
�

Rg̃ R′h dv ≤ ‖Rg̃‖Xv
∥∥R′h

∥∥
X
′
v
≤ 4 ‖g̃‖Xv ‖h‖X′v ≤ 4. (8.28)

All these, the notation introduced in (8.4), (8.24), and (8.21) allow us to estimate

2−1‖f ‖Xv ≤
ˆ
�

|f |h v dσ ≤
ˆ
�

|f |(R′h) v dσ

=
ˆ
�

|f | (Rg̃)−1/p′0 (Rh̃)1/p
′
0 (R′h) v dσ

≤
(ˆ

�

|f |p0 (Rg̃)1−p0 R′h dv

)1/p0
(ˆ

�

Rg̃ R′h dv

)1/p′0

≤ 41/p′0‖f ‖Lp0 (�,w). (8.29)

This argument gives the first estimate claimed in (8.15). On the other hand,
since (8.21) implies |g|/‖g‖Xv = g̃ ≤ Rg̃, and since 1 − p0 < 0, we may

estimate
(
Rg̃

)1−p0 ≤ ‖g‖p0−1
Xv

|g|1−p0 . From this, the definition of the weight
w, the generalized Hölder inequality recorded from (8.7) (presently used with
dμ = dv = v dσ ), and (8.22) we therefore obtain

‖g‖Lp0 (�,w) =
(ˆ

�

|g|p0 (Rg̃)1−p0 (R′h) v dσ

)1/p0

≤ ‖g‖
p0−1
p0
Xv

(ˆ
�

|g| (R′h) v dσ

)1/p0

≤ ‖g‖Xv
∥∥R′h

∥∥1/p0
X
′
v

≤ 21/p0‖g‖Xv . (8.30)

This gives the second estimate claimed in (8.15).
Consider next the case when p0 = 1. In this scenario, define w := (R′h) v.

From (8.23) we have w ∈ A1(�, σ ) with [w]A1 ≤ 2
∥∥M′∥∥

X
′
v→X′v . This, (8.24),

and (8.21) give

2−1‖f ‖Xv ≤
ˆ
�

|f |h v dσ ≤
ˆ
�

|f |(R′h) v dσ = ‖f ‖L1(�,w). (8.31)

On the other hand, (8.7) (with dμ = dv = v dσ ) and (8.22) yield
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‖g‖L1(�,w) =
ˆ
�

|g| (R′h) v dσ ≤ ‖g‖Xv‖R′h‖X′v ≤ 2‖g‖Xv . (8.32)

This finishes the justification of (8.15).
To complete the proof of Proposition 8.1 we just need to observe that (8.17)

follows at once from (8.15) by simply taking g := f . � 
We next discuss the following version of the commutator theorem from [31] in

the setting of Banach function spaces.

Theorem 8.2 Make the assumption that � ⊆ Rn is a closed Ahlfors regular set,
and abbreviate σ := Hn−1��. Fix p0 ∈ (1,∞) along with some non-decreasing
function � : (0,∞) → (0,∞), and let T be a linear operator which is bounded
on Lp0(�,w) for every w ∈ Ap0(�,w), with operator norm ≤ �

([w]Ap0

)
. Fix

a function v ∈ L1
loc(�, σ ) with v > 0 at σ -a.e. point on �. Let Xv be a Banach

function space over (�, vσ) and let X′v be its Köthe dual. With M denoting the
standard Hardy–Littlewood maximal operator on (�, σ ) and M′f := M(f v)/v

for any σ -measurable function f on �, assume that

M is bounded on Xv and M′ is bounded on X′v (8.33)

and pick some ' ≥ 4‖M‖Xv→Xv
∥∥M′∥∥

X
′
v→X′v .

Then T maps the space Xv boundedly into itself and one may find two constants
C,C1 ∈ (0,∞) depending only on �, n, p0, and ', with the property that for every
complex-valued function b ∈ L∞(�, σ ) one has

‖[Mb, T ]‖Xv→Xv ≤ C ·�(C1)‖b‖BMO(�,σ), (8.34)

where [Mb, T ] is the commutator of T : Xv → Xv and the operatorMb of pointwise
multiplication on X by the function b, i.e.,

[Mb, T ]f := bT (f )− T (bf ) for each f ∈ X. (8.35)

Proof All claims are direct consequences of Theorem 4.3 and Theorem 8.1,
presently used with F := {

(Tf, f ) : f ∈ ⋃
w∈Ap0 (�,w)

Lp0(�,w)
}
, bearing in

mind (8.18). � 

Remark 8.1 The reader may well wonder why in the previous result we have not
simply taken ' = 4‖M‖Xv→Xv

∥∥M′∥∥
X
′
v→X′v . The reason for this will become clear

later but for the moment recall that one of our goals is to considerXv = X(w)withX
being a RIBFS, and v = w ∈ ApX(�, σ ). In such a scenario, it is desirable to obtain
estimates which are uniform with respect to [w]ApX

. That is, given any threshold
λ ∈ [1,∞), we wish to show that the previous estimates hold for all Muckenhoupt
weights w with [w]ApX

≤ λ, and with all constants involved controlled in terms of
λ. Working with the choice ' ≥ 4‖M‖Xv→Xv

∥
∥M′∥∥

X
′
v→X′v will enable us to pick
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' = '(λ,X) which ultimately will allow us to obtain the aforementioned uniform
bounds.

The following result establishes a basic inclusion of abstract Banach function
spaces on a closed Ahlfors regular set into weighted Lebesgue spaces on said set.
This will then permit us to employ results from previous chapters in the current
analysis.

Proposition 8.2 Work under the assumption that � ⊆ Rn is a closed Ahlfors
regular set, and define σ := Hn−1��. Having fixed a function v ∈ L1

loc(�, σ ) with
v > 0 at σ -a.e. point on�, let Xv be a Banach function space over (�, vσ), and let
X
′
v be its Köthe dual. With M denoting the Hardy–Littlewood maximal operator on

(�, σ ) and withM′f :=M(f v)/v for any σ -measurable function f on�, assume
that

M is bounded on Xv and M′ is bounded on X′v. (8.36)

Then one has the continuous inclusion

Xv ↪→ L1
(
�,

σ(x)

1 + |x|n−1

)
. (8.37)

In addition, given any ' ≥ 4‖M‖Xv→Xv
∥∥M′∥∥

X
′
v→X′v there exists some number

r = r(�,') ∈ (1, 2) such that one has a continuous inclusion

Xv ↪→ Lq
(
�,

σ(x)

1 + |x|(n−1) θ

)
whenever 1 ≤ q ≤ r and θ > r−1. (8.38)

Remark 8.2 We wish to note that (8.42), (8.44), (8.45) below, and item (7) in
Proposition 2.20 imply that if 0 < θ < 1 then there exists Cθ ∈ (0,∞) such
that

(
1 + |x|(n−1) θ )−1 ∈ A1(�, σ ) with

[(
1 + |x|(n−1) θ )−1]

A1
≤ Cθ . (8.39)

Hence, (8.38) implies

Xv ↪→ Lq(�,w) for some w ∈ A1(�, σ ) and any q ∈ [1, r]. (8.40)

In particular, from (8.40) and item (2) in Proposition 2.20 we see that for any
integrability exponent q ∈ [1, r] there exists a weight w ∈ Aq(�, σ) such that
Xv ↪→ Lq(�,w). Compared to the result in Proposition 8.1, here we have been
able to contain the entire space Xv into a unique Muckenhoupt weighted Lebesgue
space (albeit with a small integrability exponent).

Here is the proof of Proposition 8.2.
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Proof of Proposition 8.2 Although (8.38) contains (8.37), it is worth presenting a
direct, simple proof of the latter. Specifically, having fixed a reference point z0 ∈ �,
for every location x ∈ � we may estimate

1 + |x − z0| ≤ 1 + |x| + |z0| ≤ (1 + |z0|)(1 + |x|). (8.41)

Hence, on the one hand,

1 + |x − z0|n−1 ≤ (1 + |x − z0|)n−1 ≤ (1 + |z0|)n−1(1 + |x|)n−1

≤ 2n−2(1 + |z0|)n−1(1 + |x|n−1). (8.42)

On the other hand,

1 + |x| ≤ 1 + |x − z0| + |z0| ≤ (1 + |z0|)(1 + |x − z0|), (8.43)

therefore

1 + |x|n−1 ≤ (1 + |x|)n−1 ≤ (1 + |z0|)n−1(1 + |x − z0|)n−1

≤ 2n−2(1 + |z0|)n−1(1 + |x − z0|n−1). (8.44)

We next claim that

M
(
1(z0,1)

)
(x) ≈ 1

1 + |x − z0|n−1
, uniformly in x ∈ �, (8.45)

with implicit constants that depend only on n and the Ahlfors regularity constant of
�. To see this, fix an arbitrary point x ∈ �. Note that x ∈ 

(
z0, 1 + |x − z0|

)
and

(z0, 1) ⊂ 
(
z0, 1 + |x − z0|

)
, hence

M
(
1(z0,1)

)
(x) ≥

 
(z0,1+|x−z0|)

1(z0,1) dσ = σ
(
(z0, 1)

)

σ
(
(z0, 1 + |x − z0|)

)

≥ C

1 + |x − z0|n−1 , (8.46)

by (2.522) and the Ahlfors regularity of �. Since we also always have

M
(
1(z0,1)

)
(x) ≤ ∥∥1(z0,1)

∥∥
L∞(�,σ)

= 1, (8.47)

it follows that M
(
1(z0,1)

)
(x) ≈ 1

1+|x−z0|n−1 uniformly in x ∈ (z0, 2). There
remains to prove the right-pointing inequality in (8.45) when x ∈ � \ (z0, 2).
Assume this is the case and pick an arbitrary location y ∈ � along with some scale
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r ∈ (
0, 2 diam(�)

)
such that x ∈ (y, r) (recall from (2.522) that we are dealing

with the non-centered Hardy–Littlewood maximal operator). Note that, on the one
hand,

 
(y,r)

1(z0,1) dσ = 0 whenever (y, r) ∩(z0, 1) = ∅. (8.48)

On the other hand, if (y, r) ∩(z0, 1) �= ∅ then

2 ≤ |x − z0| ≤ |x − y| + |y − z0| < r + (r + 1) = 2r + 1, (8.49)

hence r ≥ 1/2. When used back in (8.49), this further implies |x − z0| ≤ 4r . Based
on this and the Ahlfors regularity of � we may then estimate

 
(y,r)

1(z0,1) dσ ≤ σ
(
(z0, 1)

)

σ
(
(y, r)

) ≤ C

rn−1
≤ C

|x − z0|n−1

≤ C

1 + |x − z0|n−1 . (8.50)

Collectively, (8.48) and (8.50) prove that in the regime x ∈ � \(z0, 2) we have

M
(
1(z0,1)

)
(x) = sup

�x

 


1(z0,1) dσ = sup
0<r<2diam(�)
y∈�,(y,r)�x

 
(y,r)

1(z0,1) dσ

≤ C

1 + |x − z0|n−1 , (8.51)

where the first supremum is taken over all surface balls  ⊆ � containing x.
This finishes the proof of (8.45). On account of (8.41), (8.43), (8.45), and (2.531),
for every σ -measurable function f on � and every weight w ∈ Ap(�, σ) with
exponent p ∈ (1,∞) we may estimate

ˆ
�

|f (x)|
1 + |x|n−1 dσ(x) ≈

ˆ
�

|f (x)|
1 + |x − z0|n−1 dσ(x)

≈
ˆ
�

|f (x)|M(
1(z0,1)

)
(x) dσ(x)

≤ C‖f ‖Lp(�,w)
∥∥M(1(z0,1))

∥∥
Lp

′
(�,w1−p′ )

≤ C[w]Ap
‖f ‖Lp(�,w)

(  
(z0,1)

w1−p′ dσ
)1/p′

σ
(
(z0, 1)

)1/p′
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≤ C [w]1+1/p
Ap

‖f ‖Lp(�,w)w
(
(z0, 1)

)−1/p
, (8.52)

whereC ∈ (0,∞) depends only on n, p, z0, and�. For each σ -measurable function
f on � we next introduce

F :=
( ˆ

�

|f (x)|
1 + |x|n−1 dσ(x)

)
1(z0,1) and G := |f |. (8.53)

Then (8.52) implies that for every σ -measurable function f on � and every weight
w ∈ Ap(�, σ) with p ∈ (1,∞) we have

‖F‖Lp(�,w) =
( ˆ

�

|f (x)|
1 + |x|n−1 dσ(x)

)
w
(
(z0, 1)

)1/p

≤ C [w]1+1/p
Ap

‖G‖Lp(�,w). (8.54)

Fix now p ∈ (1,∞). Using Theorem 8.1 (with F := {(F,G)}, �(t) := Ct1+1/p

for each t > 0, and p0 := p), we conclude that

‖F‖Xv ≤ C2p+4‖M‖(p−1)(1+1/p)
Xv→Xv

∥∥M′∥∥(1+1/p)
X
′
v→X′v ‖G‖Xv (8.55)

for some constant C ∈ (0,∞) independent of f . In turn, this translates into saying
that

( ˆ
�

|f (x)|
1 + |x|n−1 dσ(x)

) ∥∥1(z0,1)
∥∥
Xv

≤ C2p+4‖M‖(p−1)(1+1/p)
Xv→Xv

∥∥M′∥∥(1+1/p)
X
′
v→X′v ‖f ‖Xv .

(8.56)

We finally observe that

0 <
∥∥1(z0,1)

∥∥
Xv

<∞. (8.57)

Indeed, the lower bound follows from property (g) in Definition 8.1 and the fact that
v > 0 at σ -a.e. point on �, while the upper bound is a consequence of property (f)
in Definition 8.1 along with the assumption that v ∈ L1

loc(�, σ ). This proves (8.37).
Let us next consider the embedding claimed in (8.38). With this goal in mind,

pick some ' ≥ 4‖M‖Xv→Xv
∥∥M′∥∥

X
′
v→X′v and let w ∈ A2(�, σ ) be an arbitrary

weight such that [w]A2 ≤ '. By items (3) and (5) in Proposition 2.20 and [65,
Theorem 1.1] one can find τ = τ(�,') ∈ (1,∞) such that for every surface ball
 ⊆ � we have
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(  


wτ dσ
)1/τ ≤ C[w]A2

 


w dσ, (8.58)

(  


w−τ dσ
)1/τ ≤ C[w]A2

 


w−1 dσ, (8.59)

where C ∈ (0,∞) depends just on � and n. Note that for every integer k ≥ 0 such
that k ≤ max{1 + log2

(
diam(�)

)
, 0} we may use Hölder’s inequality, (8.58), and

the lower Ahlfors regularity of � to estimate

w
(
(z0, 1)

)

σ
(
(z0, 2k)

) =
 
(z0,2k)

1(z0,1) w dσ ≤
(
σ
(
(z0, 1)

)

σ
(
(z0, 2k)

)

) 1
τ ′ (  

(z0,2k)
wτ dσ

) 1
τ

≤ C [w]A2 2−
k (n−1)
τ ′

w
(
(z0, 2k)

)

σ
(
(z0, 2k)

) , (8.60)

where τ ′ := (
1− 1

τ

)−1. In turn, (8.60) and the upper Ahlfors regularity of � imply

σ
(
(z0, 2k)

)

w
(
(z0, 2k)

) ≤ C [w]A2 2−
k (n−1)
τ ′

σ
(
(z0, 2k)

)

w
(
(z0, 1)

) .

≤ C [w]A22
k (n−1)

τ w
(
(z0, 1)

)−1
. (8.61)

Introduce r := 2τ/(τ + 1) ∈ (1, 2), assume that 1 ≤ q ≤ r , and fix some θ > r−1.
With “prime” indicating Hölder conjugation (of exponents), these choices ensure
that we have

( 2

q

)′ − 1 ≤
(2

r

)′ − 1 = τ, (8.62)

and

θ
( 2

q

)′ − 1

τ

(( 2

q

)′ − 1
)
− 1 =

( 2

q

)′(
θ − 1

τ

q

2
− 1 + q

2

)
=

( 2

q

)′(
θ − 1 + 1

τ ′
q

2

)

>
( 2

q

)′(1

r
− 1 + 1

τ ′
1

2

)
= 0. (8.63)

Then Jensen’s inequality (which uses (8.62)), (8.59), (2.517) (applied with the
exponent p := 2), and (8.61) imply that for every integer k ≥ 0 with the property
that k ≤ max{1 + log2

(
diam(�)

)
, 0} we have
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( 
(z0,2k)

w
1−( 2

q
)′ dσ

) 1
( 2
q )
′−1 ≤

(  
(z0,2k)

w−τ dσ
) 1
τ

≤ C [w]A2

 
(z0,2k)

w−1 dσ

≤ C [w]2A2

( 
(z0,2k)

w dσ
)−1

= C [w]2A2

σ
(
(z0, 2k)

)

w
(
(z0, 2k)

)

≤ C [w]3A2
2
k (n−1)

τ w
(
(z0, 1)

)−1
. (8.64)

This, (8.61), and (8.63) then permit us to estimate

ˆ
�

w(x)
1−( 2

q
)′

(1 + |x − z0|(n−1) θ )
( 2
q
)′

dσ(x)

≤ C

ˆ
(z0,1)

w
1−( 2

q
)′ dσ

+
∑

0≤k≤log2(diam(�))

2−k (n−1) θ ( 2
q
)′
ˆ
(z0,2k+1)\(z0,2k)

w
1−( 2

q
)′ dσ

≤ C [w]3((
2
q
)′−1))

A2
w
(
(z0, 1)

)1−( 2
q
)′

∞∑

k=0

2−k (n−1) (θ ( 2
q
)′− 1

τ
(( 2
q
)′−1)−1)

≤ C [w]3((
2
q
)′−1))

A2
w
(
(z0, 1)

)1−( 2
q
)′
, (8.65)

with the understanding that if diam(�) < 1 the first sum above is void. Next, given
any σ -measurable function f on �, Hölder’s inequality yields

(ˆ
�

|f (x)|q
1 + |x − z0|(n−1) θ

dσ(x)

) 1
q

≤ ‖f ‖L2(�,w)

⎛

⎝
ˆ
�

w(x)
1−( 2

q
)′

(1 + |x − z0|(n−1) θ )
( 2
q
)′

dσ(x)

⎞

⎠

1
q ( 2

q )
′

.

≤ C [w]
3
2
A2
‖f ‖L2(�,w)w

(
(z0, 1)

)− 1
2 , (8.66)
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where C ∈ (0,∞) depends only on n, q, θ , ', and �. For every σ -measurable
function f on � define

F :=
(ˆ

�

|f (x)|q
1 + |x − z0|(n−1) θ

dσ(x)
) 1
q

1(z0,1) and G := |f |. (8.67)

Then (8.66) implies that for every σ -measurable function f on � and for every
weight w ∈ A2(�, σ ) such that [w]A2 ≤ ' we have

‖F‖L2(�,w) =
( ˆ

�

|f (x)|q
1 + |x|(n−1)q

dσ(x)
) 1
q
w
(
(z0, 1)

) 1
2

≤ C [w]
3
2
A2
‖G‖Lp(�,w). (8.68)

Recalling that ' ≥ 4‖M‖Xv→Xv
∥∥M′∥∥

X
′
v→X′v , the above estimate holds, in

particular, for every w ∈ A2(�, σ ) such that [w]A2 ≤ 4‖M‖Xv→Xv
∥∥M′∥∥

X
′
v→X′v .

Using Theorem 8.1 (presently with F := {(F,G)}, �(t) := Ct3/2 for each t > 0,
and p0 := 2), we conclude that

‖F‖Xv ≤ C‖M‖
3
2
Xv→Xv

∥
∥M′∥∥ 3

2
X
′
v→X′v‖G‖Xv ≤ C'

3
2 ‖G‖Xv (8.69)

for some constant C ∈ (0,∞) independent of f . In turn, this translates into saying
that

( ˆ
�

|f (x)|q
1 + |x − z0|(n−1) θ

dσ(x)
) 1
q ∥∥1(z0,1)

∥∥
Xv

≤ C'
3
2 ‖f ‖Xv . (8.70)

The proof of (8.38) is then completed by invoking (8.57) and (8.42). � 

8.2 Boundary Layer Potentials on Weighted Banach
Function Spaces

We begin the study of boundary layer potentials on weighted Banach function
spaces with the following basic result.

Proposition 8.3 Let� ⊆ Rn be an open set such that ∂� is a UR set and abbreviate
σ := Hn−1�∂�. Assume N = N(n) ∈ N is a sufficiently large integer and
consider a complex-valued function k ∈ CN

(
R
n \ {0}) which is odd and positive

homogeneous of degree 1 − n. Also, having fixed a function v ∈ L1
loc(∂�, σ) with

v > 0 at σ -a.e. point on ∂�, let Xv be a Banach function space over (∂�, vσ),
and let X′v be its Köthe dual. With M denoting the Hardy–Littlewood maximal
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operator on (∂�, σ) and M′f := M(f v)/v for any σ -measurable function f

on ∂�, assume that

M is bounded on Xv and M′ is bounded on X′v. (8.71)

Pick some ' ≥ 4‖M‖Xv→Xv
∥∥M′∥∥

X
′
v→X′v and fix an aperture parameter κ > 0. In

this setting, for each f ∈ X, define

Tεf (x) :=
ˆ

y∈∂�
|x−y|>ε

k(x − y)f (y) dσ(y) for each x ∈ ∂�, (8.72)

T∗f (x) := sup
ε>0

|Tεf (x)| for each x ∈ ∂�, (8.73)

Tf (x) := lim
ε→0+

Tεf (x) for σ -a.e. x ∈ ∂�, (8.74)

Tf (x) :=
ˆ
∂�

k(x − y)f (y) dσ(y) for each x ∈ �. (8.75)

Then there exists a constant C ∈ (0,∞) which depends exclusively on n, ', and
the UR constants of ∂� with the property that for each f ∈ Xv one has

‖T∗f ‖Xv ≤ C
( ∑

|α|≤N
sup
Sn−1

|∂αk|
)
‖f ‖Xv , (8.76)

‖Nκ(Tf )‖Xv ≤ C
( ∑

|α|≤N
sup
Sn−1

|∂αk|
)
‖f ‖Xv . (8.77)

Also, for each f ∈ Xv , the limit defining Tf (x) in (8.74) exists at σ -a.e. x ∈ ∂�

and the operator

T : Xv −→ Xv (8.78)

is well defined, linear, and bounded.

Proof This follows by combining Proposition 3.4, Theorem 8.1 (used for the fami-
lies of pairs (|T∗f |, |f |), (Nκ(Tf ), |f |), or (|Tf |, |f |), with f ∈ L1

(
�,

σ(x)

1+|x|n−1

)

and p0 = 2), and Proposition 8.2. � 
We also consider weighted Banach function-based Sobolev

spaces on the boundaries of Ahlfors regular domains. Specifically, let � ⊆ Rn
be an Ahlfors regular domain and abbreviate σ := Hn−1�∂�. Pick some
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v ∈ L1
loc(∂�, σ) with v > 0 at σ -a.e. point on ∂�, and let Xv be a Banach

function space over (∂�, vσ). In this setting, define

(Xv)1 :=
{
f ∈ Xv : ∂τjkf ∈ Xv, 1 ≤ j, k ≤ n

}
, (8.79)

equipped with the natural norm

(Xv)1 � f �→ ‖f ‖(Xv)1 := ‖f ‖Xv +
n∑

j,k=1

∥∥∂τjkf
∥∥
Xv
. (8.80)

In the following theorem we study boundedness properties of layer potential
operators on Banach function spaces.

Theorem 8.3 Suppose � ⊆ Rn is a UR domain. Define σ := Hn−1�∂� and
denote by ν the geometric measure theoretic outward unit normal to �. Let L be
a homogeneous, weakly elliptic, constant complex coefficient, second-orderM×M

system in Rn (for someM ∈ N). Also, pick a coefficient tensorA ∈ AL and consider
the double layer potential operators DA, KA, K#

A associated with the coefficient
tensor A and the set � as in (3.22), (3.24), and (3.25), respectively. Next, having
fixed v ∈ L1

loc(∂�, σ) with v > 0 at σ -a.e. point on ∂�, let Xv be a Banach
function space over (∂�, vσ), and let X′v be its Köthe dual. With M denoting the
Hardy–Littlewood maximal operator on (∂�, σ) and M′f := M(f v)/v for any
σ -measurable function f on ∂�, assume that

M is bounded on Xv and M’ is bounded on X′v. (8.81)

Pick some ' ≥ 4‖M‖Xv→Xv
∥∥M′∥∥

X
′
v→X′v and fix some aperture parameter κ > 0.

Then the operators

KA,K
#
A :

[
Xv

]M −→ [
Xv

]M (8.82)

are well defined, linear, and bounded.
Furthermore, there exists a constant C ∈ (0,∞), depending only on the UR

constants of ∂�, L, n, κ , and ', with the property that

∥∥Nκ

(
DAf

)∥∥
Xv

≤ C‖f ‖[Xv]M
for each function f ∈ [

Xv

]M
.

(8.83)

Moreover, for each given function f ∈ [
Xv

]M
the following nontangential boundary

trace formulas hold (with I denoting the identity operator)

DAf

∣
∣∣
κ−n.t.

∂�
= ( 1

2I +KA

)
f at σ -a.e. point on ∂�. (8.84)
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In addition, for each function f in the weighted Banach functions-based Sobolev
space

[
(Xv)1

]M
it follows that

the nontangential boundary trace
(
∂�DAf

)∣∣κ−n.t.
∂�

exists (in CM) at σ -
a.e. point on ∂�, for each � ∈ {1, . . . , n}, (8.85)

and there exits some finite constant C > 0, depending only on ∂�, L, n, κ , and ',
such that

∥∥Nκ(DAf )
∥∥
Xv
+ ∥∥Nκ(∇DAf )

∥∥
Xv

≤ C‖f ‖[(Xv)1]M . (8.86)

Finally, the operator

KA :
[
(Xv)1

]M −→ [
(Xv)1

]M (8.87)

is well defined, linear, and bounded.

Proof All claims follow from (3.31), Propositions 3.1, 8.2, 3.5, and Theorem 8.1.
� 

We introduce the homogeneous weighted Banach function-based
Sobolev spaces on the boundaries of Ahlfors regular domains. Specifically, let
� ⊆ Rn be an Ahlfors regular domain and abbreviate σ := Hn−1�∂�. Also, having
fixed v ∈ L1

loc(∂�, σ)with v > 0 at σ -a.e. point on ∂�, letXv be a Banach function
space over (∂�, vσ) and define (see also Remark 8.3 in this regard)

(
.
Xv)1 :=

{
f ∈ L1(∂�, σ(x)

1+|x|n
) ∩ (Xv)loc : ∂τjkf ∈ Xv (8.88)

for each j, k ∈ {1, . . . , n}
}
,

where the membership f ∈ (Xv)loc means that f 1K ∈ Xv for every compact set
K ⊆ ∂�. Equipped this space with the semi-norm

(
.
Xv)1 � f �−→ ‖f ‖

(
.
Xv)1

:=
n∑

j,k=1

∥∥∂τjkf
∥∥
Xv
. (8.89)

Proposition 8.2 implies that if (8.36) holds, we have the following continuous
embedding

(Xv)1 ↪→ (
.
Xv)1. (8.90)

Note also that constant functions on ∂� belong to (
.
Xv)1 and have vanishing semi-

norm. We shall occasionally work with the quotient space (
.
Xv)1

/ ∼ of classes [ · ]
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of equivalence modulo constants of functions in (
.
Xv)1, equipped with the semi-

norm

(
.
Xv)1

/ ∼� [f ] �→ ∥∥[f ]∥∥
(
.
Xv)1/∼ :=

n∑

j,k=1

∥∥∂τjkf
∥∥
(
.
Xv)1

. (8.91)

Choose next a scalar-valued function φ ∈ C∞
0 (Rn) satisfying φ ≡ 1 in B(0, 1)

and such that suppφ ⊆ B(0, 2). Having fixed a reference point x0 ∈ ∂�, for each
scale r ∈ (0,∞) define

φr(x) := φ
(x − x0

r

)
for each x ∈ Rn, (8.92)

and use the same notation to denote the restriction of φr to ∂�. For each r ∈ (0,∞)

set r := ∂� ∩ B(x0, r) and, given any f ∈ L1
loc(∂�, σ), define

fr := φr ·
(
f − f2r

)
on ∂�, where f2r :=

 
2r

f dσ. (8.93)

Lemma 8.1 Suppose � ⊆ Rn is a two-sided NTA domain such that ∂� is an
unbounded Ahlfors regular set, and abbreviate σ := H n−1�∂�. Having picked
some function v ∈ L1

loc(∂�, σ) with v > 0 at σ -a.e. point on ∂�, let Xv be a
Banach function space over (∂�, vσ), and let X′v be its Köthe dual. If M denotes
the Hardy–Littlewood maximal operator on (∂�, σ) and M′f := M(f v)/v for
any σ -measurable function f on ∂�, assume that

M is bounded on Xv and M′ is bounded on X′v. (8.94)

Pick some ' ≥ 4‖M‖Xv→Xv
∥
∥M′∥∥

X
′
v→X′v and fix some reference point x0 ∈ ∂�.

Finally, pick a function f which belongs to L1
(
∂�,

σ(x)
1+|x|n

) ∩ L1
1,loc(∂�, σ) and,

for each r ∈ (0,∞), define r := B(x0, r) ∩ ∂� and fr :=
ffl
r
f dσ . Then the

following statements are true.

(i) There exists a constant C = C(�,', x0) ∈ (0,∞), independent of the function
f , such that

sup
r>0

1

r

∥∥|f − fr | · 1r‖Xv ≤ C

n∑

j,k=1

∥∥∂τjkf
∥∥
Xv
. (8.95)

(ii) For each r ∈ (0,∞) there exists a constant Cr ∈ (0,∞) which depends on �,
', x0, and r , but is independent of f , such that

ˆ
∂�

|f (x)− fr |
1 + |x|n dσ(x) ≤ Cr

‖1r‖Xv
n∑

j,k=1

∥∥∂τjkf
∥∥
Xv
. (8.96)
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(iii) There exists a constant C = C(�,', x0) ∈ (0,∞), independent of the function
f , such that with the notation introduced in (8.93) one has

sup
r>0

∥
∥∇tan fr

∥
∥[Xv]n ≤ C

∥
∥∇tan f

∥
∥[Xv]n . (8.97)

Proof We shall prove all claims using extrapolation (cf. Theorem 8.1). Let us first
establish (i). Recall (2.585) and define

F1 :=
{( |f−fr |

r
1r ,|∇tan f |

) : (8.98)

f ∈ L1(∂�, σ(x)
1+|x|n

) ∩ L1
1,loc(∂�, σ), r > 0

}
.

Keeping this mind, we claim that for every weight w ∈ A2(∂�, σ) there exists a
constant C = C(�, [w]A2 , x0) ∈ (0,∞) such that

‖F1‖L2(∂�,w) ≤ C‖F2‖L2(∂�,w) (8.99)

for all pairs (F1, F2) ∈ F1. Indeed, this inequality is trivial if ‖F2‖L2(∂�,w) = ∞,
whereas if ‖F2‖L2(∂�,w) <∞ we may rely on (2.576), (8.98) and (2.586) to invoke
Proposition 2.25 to obtain (2.618). This, in turn, gives (8.99) on account of (2.586).
Moreover, the intervening constant C stays bounded if [w]A2 stays bounded. We
may then apply Theorem 8.1 to conclude that ‖F1‖Xv ≤ C‖F2‖Xv for every
(F1, F2) ∈ F1. This and (2.585) then imply (8.95), completing the proof of (i).

Let us now justify (ii). Fix r ∈ (0,∞) and define

F2 :=
{(
‖f − fr‖

L1
(
∂�,

σ(x)
1+|x|n

) 1r ,|∇tan f |
)
: (8.100)

f ∈ L1(∂�, σ(x)
1+|x|n

) ∩ L1
1,loc(∂�, σ)

}
.

As before, the goal is to check that (8.99) holds for all weights w ∈ A2(∂�, σ)

and all pairs (F1, F2) ∈ F2 (where now the constant C is allowed to depend on the
scale r , which has been fixed). This may be seen reasoning much as before, applying
Proposition 2.25, but this time the relevant estimate is (2.620). Granted (8.99), we
may then apply Theorem 8.1 to the family F2 and, as desired, conclude that (8.96)
holds.

We finally address (iii). Introduce

F3 :=
{(|∇tan fr |,|∇tan f |

) : (8.101)

f ∈ L1(∂�, σ(x)
1+|x|n

) ∩ L1
1,loc(∂�, σ), r > 0

}
.
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In line with what we have done in the previous cases, we now wish to show
that (8.99) holds for all weights w ∈ A2(∂�, σ) and all pairs (F1, F2) ∈ F3. Again,
it suffices to consider the case when ‖F2‖L2(∂�,w) < ∞. By definition, we have

(F1, F2) =
(|∇tan gr |, |∇tan g|

)
for some g ∈ L1

(
∂�,

σ(x)
1+|x|n

) ∩ L1
1,loc(∂�, σ) and

some r > 0. This, the assumption ‖F2‖L2(∂�,w) <∞, (2.586), and Proposition 2.25

then guarantee that g ∈ .
L2

1(∂�,w). We may therefore proceed as in (4.370)–
(4.377) in the proof of Theorem 4.11 to conclude that (4.377) holds. This amounts
to having (8.99) for the current choice of (F1, F2). Moreover, a careful examination
of the proof shows that the intervening constant C ∈ (0,∞) stays bounded if [w]A2

stays bounded. Thus, we have shown that (8.99) holds for each (F1, F2) ∈ F3
and each w ∈ A2(∂�, σ). As such, we may invoke Theorem 8.1 to conclude that
‖F1‖Xv ≤ C‖F2‖Xv for every (F1, F2) ∈ F3. In other words, there exists a constant
C = C(�,', x0) ∈ (0,∞) such that

∥∥|∇tan fr |
∥∥
Xv

≤ C
∥∥|∇tan f |

∥∥
Xv
, (8.102)

for every f ∈ L1
(
∂�,

σ(x)
1+|x|n

)∩L1
1,loc(∂�, σ) and every r > 0. This completes the

proof of (8.97). � 

Remark 8.3 In the same setting of Lemma 8.1, it possible to provide a more
convenient description of the space (

.
Xv)1. More precisely, one has

(
.
Xv)1 =

{
f ∈ L1(∂�, σ(x)

1+|x|n
) : ∂τjkf ∈ Xv for each j, k ∈ {1, . . . , n}

}
.

(8.103)

As is apparent from definitions, this comes down to showing that any f belonging
to the right-hand side satisfies f ∈ (Xv)loc. To see this, note that Proposition 8.2 and
the assumption ∂τjkf ∈ Xv yield f ∈ L1

1,loc(∂�, σ). Consequently, (8.95) holds,
and for each fixed z0 ∈ ∂� and every r > 0 one has

‖f 1r‖Xv ≤
∥∥|f − fr | · 1r‖Xv + |fr | ‖1r

∥∥
Xv

≤ C

n∑

j,k=1

∥∥∂τjkf
∥∥
Xv
+ |fr | ‖1r ‖Xv <∞, (8.104)

where r = (z0, r) and we have used Definition 8.1 with dμ = dv = v dσ , and
the fact that v ∈ L1

loc(∂�, σ). This eventually shows that f ∈ (Xv)loc, as desired.

It turns out that, when considered on the boundaries of two-sided NTA domains,
the quotient space (

.
Xv)1

/ ∼ is actually a Banach space.

Proposition 8.4 Suppose � ⊆ Rn is a two-sided NTA domain with an unbounded
Ahlfors regular boundary and abbreviate σ := H n−1�∂�. Fix v ∈ L1

loc(∂�, σ)

with v > 0 at σ -a.e. point on ∂�. Let Xv be a Banach function space over (∂�, vσ)
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and let X′v be its Köthe dual. IfM denotes the Hardy–Littlewood maximal operator
on (∂�, σ) and M′f := M(f v)/v for any σ -measurable function f on ∂�,
suppose that

M is bounded on Xv and M′ is bounded on X′v. (8.105)

Finally, recall that (
.
Xv)1

/ ∼ denotes the quotient space of classes [ · ] of equiva-
lence modulo constants of functions in (

.
Xv)1, equipped with the semi-norm (8.91).

Then (8.91) is a genuine norm on (
.
Xv)1

/ ∼, and ( .Xv)1
/ ∼ is a Banach space

when equipped with the norm (8.91).

Proof Let us first observe from (8.96) that the semi-norm (8.91) is indeed a norm on
the space (

.
Xv)1

/ ∼. We shall next show that (
.
Xv)1

/ ∼ is complete when equipped
with the norm (8.91). With this goal in mind, let {fα}α∈N ⊆ (

.
Xv)1 be such that{[fα]

}
α∈N is a Cauchy sequence in the quotient space (

.
Xv)1

/ ∼. This means that{
∂τjkfα

}
α∈N is a Cauchy sequence inXv , for any two fixed indices j, k ∈ {1, . . . , n}.

Using the fact that Xv is a Banach space, we then conclude that for each pair of
indices j, k ∈ {1, . . . , n} there exists gjk ∈ Xv such that

∂τjkfα → gjk in Xv as α →∞. (8.106)

Fix a reference point x0 ∈ ∂� and, for each r ∈ (0,∞), set r := B(x0, r) ∩ ∂�.
Also, define fα,r := ffl

r
fα dσ for each r ∈ (0,∞) and each α ∈ N.

Applying (8.96) to f := fα − fβ we obtain that for any r ∈ (0,∞) there exists
some constant Cr ∈ (0,∞), which depends on �, ‖M‖Xv→Xv

∥
∥M′∥∥

X
′
v→X′v , r , and

x0, such that for each α, β ∈ N we have

∥∥(fα − fα,r

)− (
fβ − fβ,r

)∥∥
L1
(
∂�,

σ(x)
1+|x|n

)

≤ Cr

‖1r‖Xv
n∑

j,k=1

∥∥∂τjkfα − ∂τjkfβ
∥∥
Xv
. (8.107)

Since
{
∂τjkfα

}
α∈N is a Cauchy sequence in the space Xv , it follows that for each

fixed radius r ∈ (0,∞) the sequence
{
fα − fα,r

}
α∈N happens to be Cauchy in

the Banach space L1
(
∂�,

σ(x)
1+|x|n

)
. Hence, for each fixed r ∈ (0,∞) there exists

hr ∈ L1
(
∂�,

σ(x)
1+|x|n

)
such that

fα − fα,r → hr in L1(∂�, σ(x)
1+|x|n

)
as α →∞. (8.108)

On the other hand, by (8.95) (applied to the difference f := fα − fβ ), there exists
some constant C = C

(
�, ‖M‖Xv→Xv

∥∥M′∥∥
X
′
v→X′v , x0

) ∈ (0,∞) such that for each
fixed r ∈ (0,∞) we have
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∥
∥|(fα − fα,r )− (fβ − fβ,r )| · 1r

∥
∥
Xv

≤ C r

n∑

j,k=1

∥
∥∂τjkfα − ∂τjkfα

∥
∥
Xv
.

(8.109)

Hence, the sequence
{(
fα − fα,r

)
1r

}
α∈N is Cauchy in the Banach space Xv for

each fixed r ∈ (0,∞). As a result, for each fixed r ∈ (0,∞) it follows that

there exists a function kr ∈ Xv such that
(
fα − fα,r

)
1r → kr in Xv as α →∞.

(8.110)

Note that convergence in Xv implies, after eventually passing to a sub-sequence,
pointwise v-a.e. convergence (see [15, Theorem 1.4, p. 3]). Thus (8.108) and (8.110)
immediately give

hr
∣∣
r

= kr ∈ Xv for each r ∈ (0,∞). (8.111)

Additionally, for each fixed r1, r2 ∈ (0,∞) the convergence recorded in (8.108)
also yields

fα,r2
− fα,r1 ,w

→ hr1 − hr2 in L1(∂�, σ(x)
1+|x|n

)
as α →∞. (8.112)

Thus hr1 − hr2 must be constant. This, (8.108), and (8.111) eventually lead to

hr ∈ L1(∂�, σ(x)
1+|x|n

) ∩ (Xv)loc for each r ∈ (0,∞). (8.113)

To continue, we simply write h for hr with r = 1, and cα for fα,r with r = 1.
Then, as seen from (8.113) and (8.108),

h belongs to L1(∂�, σ(x)
1+|x|n

) ∩ (Xv)loc, (8.114)

and the sequence {cα}α∈N ⊆ C is such that

fα − cα → h in L1(∂�, σ(x)
1+|x|n

)
as α →∞. (8.115)

For each j, k ∈ {1, . . . , n} and each test function ϕ ∈ C∞
0 (Rn) we may then write

ˆ
∂�

h(∂τjkϕ) dσ = lim
α→∞

ˆ
∂�

(fα − cα)(∂τjkϕ) dσ

= − lim
α→∞

ˆ
∂�

∂τjk (fα − cα)ϕ dσ = − lim
α→∞

ˆ
∂�

(∂τjkfα)ϕ dσ

=
ˆ
∂�

gjkϕ dσ, (8.116)
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thanks to (8.115), (2.583), (8.106), and Proposition 8.2. From this and (2.581)–
(2.582) we then conclude that

∂τjkh = gjk ∈ Xv for each j, k ∈ {1, . . . , n}. (8.117)

Collectively, (8.114) and (8.117) prove that h ∈ (
.
Xv)1. Finally, from (8.106), (8.117),

and (8.91) we conclude that the sequence
{[fα]

}
α∈N converges to [h], the class of

h, in the quotient space (
.
Xv)1

/ ∼. � 
We next state a trace result in the setting of weighted Banach functions spaces:

Proposition 8.5 Let � ⊆ Rn be an NTA domain with the property that ∂� is an
unbounded Ahlfors regular set. Abbreviate σ := H n−1�∂�, and fix an aperture
parameter κ > 0. Select v ∈ L1

loc(∂�, σ) with v > 0 at σ -a.e. point on ∂�.
Also, let Xv be a Banach function space over (∂�, vσ) and let X′v be its Köthe
dual. With M denoting the Hardy–Littlewood maximal operator on (∂�, σ) and
M′f := M(f v)/v for any σ -measurable function f on ∂�, make the assumption
that

M is bounded on Xv and M′ is bounded on X′v, (8.118)

and pick some ' ≥ 4‖M‖Xv→Xv
∥∥M′∥∥

X
′
v→X′v . Finally, pick a function u : � → C

satisfying u ∈ C 1(�) and Nκ(∇u) ∈ Xv .
Then the nontangential trace u

∣
∣κ−n.t.

∂�
exists σ -a.e. on ∂�, belongs to the space

(
.
Xv)1, and

∥
∥∥u

∣∣κ−n.t.

∂�

∥
∥∥
(
.
Xv)1

≤ C
∥∥Nκ(∇u)

∥∥
(Xv)1

(8.119)

for some constant C = C(�,') ∈ (0,∞) independent of the function u.

Proof For an arbitrary u as in the statement, apply the second part of Proposition 8.1
with p0 = 2 to the function Nκ(∇u) ∈ Xv to obtain a weight wu ∈ A2(∂�, σ),
which is allowed to depend on u, with the property that Nκ(∇u) ∈ L2(∂�,wu).
Granted this, we are in a position to apply Proposition 2.24 to obtain that the

nontangential trace u
∣∣κ−n.t.

∂�
exists σ -a.e. and belongs to

.
L2

1(∂�,wu). In particular,
by (2.576) there exists an integrability exponent q ∈ (1, 2) (once again, dependent
on u) such that

u
∣∣κ−n.t.

∂�
∈ L1

(
∂�,

σ(x)
1+|x|n

)
and

∂τjk
(
u
∣∣κ−n.t.

∂�

) ∈ L
q

loc(∂�, σ) for each j, k ∈ {1, . . . n}.
(8.120)

We claim that for every weight w ∈ A2(∂�, σ) we actually have

∥∥∇tan
(
u
∣∣κ−n.t.

∂�

)∥∥[L2(∂�,w)]n ≤ C‖Nκ(∇u)‖L2(∂�,w). (8.121)
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Indeed, such an estimate is trivial if Nκ(∇u) does not belong to L2(∂�,w).
In the case when Nκ(∇u) ∈ L2(∂�,w), simply use (2.585) and (2.611) in
Proposition 2.24, where the constantC depends on [w]A2 via an increasing function.
Having established this, we may apply Theorem 8.1 with p0 = 2 to the family of
pairs of functions

F :=
{(∣

∣∇tan
(
u
∣
∣κ−n.t.

∂�

)∣∣,Nκ(∇u)
)
: u ∈ C 1(�), Nκ(∇u) ∈ Xv

}
(8.122)

and obtain that ‖F‖Xv ≤ C‖G‖Xv for every (F,G) ∈ F. That is, for every function
u ∈ C 1(�) with Nκ(∇u) ∈ Xv there holds

∥∥∇tan
(
u
∣∣κ−n.t.

∂�

)∥∥[Xv]n ≤ C‖Nκ(∇u)‖Xv . (8.123)

This, (8.120), (2.586), and Remark 8.3 eventually yield that u
∣∣κ−n.t.

∂�
∈ (

.
Xv)1 and

satisfies (8.119). � 
We next present a basic Fatou-type result and integral representation formula of

the following sort:

Theorem 8.4 Let � ⊆ Rn (where n ∈ N, n ≥ 2) be an NTA domain such that ∂�
is an unbounded Ahlfors regular set. Abbreviate σ := H n−1�∂� and denote by ν
the geometric measure theoretic outward unit normal to �. Let A = (

a
αβ
rs

)
1≤r,s≤n

1≤α,β≤M
(whereM ∈ N) be a complex coefficient tensor with the property that L := LA is a
weakly elliptic M ×M system in Rn. In this setting, recall the modified version of
the double layer operatorD

A,mod from (3.49), and the modified version of the single
layer operatorSmod from (3.38). Choose v ∈ L1

loc(∂�, σ) with v > 0 at σ -a.e. point
on ∂�, let Xv be a Banach function space over (∂�, vσ), and let X′v be its Köthe
dual. Also, with M denoting the Hardy–Littlewood maximal operator on (∂�, σ)
and withM′f :=M(f v)/v for any σ -measurable function f on ∂�, suppose that

M is bounded on Xv and M′ is bounded on X′v. (8.124)

Finally, fix an aperture parameter κ ∈ (0,∞) and consider a function u : �→ CM
satisfying

u ∈ [
C∞(�)

]M
, Lu = 0 in �, Nκ(∇u) ∈ Xv. (8.125)

Then

u
∣∣κ−n.t.

∂�
exists σ -a.e. on ∂� and belongs to

[
(
.
Xv)1

]M
,

(∇u)∣∣κ−n.t.

∂�
exists σ -a.e. on ∂� and ∂Aν u ∈

[
Xv

]M
,

(8.126)
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and there exists some CM -valued locally constant function cu in� with the property
that

u = D
A,mod

(
u
∣∣κ−n.t.

∂�

)−Smod

(
∂Aν u

)+ cu in �. (8.127)

Proof From Proposition 8.5 we know that u
∣∣κ−n.t.

∂�
exists at σ -a.e. point on ∂�

and belongs to
[
(
.
Xv)1

]M . In addition, the second part of Proposition 8.1 applied
with p0 = 2 to the function Nκ(∇u) ∈ Xv yields a weight wu ∈ A2(∂�, σ),
depending on u, with the property that Nκ(∇u) ∈ L2(∂�,wu). We may then

invoke Corollary 3.1 to obtain that the nontangential boundary trace (∇u)∣∣κ−n.t.

∂�

exists (in CM·n) at σ -a.e. point on ∂�, the conormal derivative ∂Aν u belongs to[
L2(∂�,wu)]M , and (8.127) holds.

We are left with showing that ∂Aν u ∈
[
Xv

]M . Observe that the present hypotheses
on � ensure (cf. (2.48)) that � is a UR domain. Also, recall from (8.38) that
there exists q ∈ (1, 2) (depending on u) such that Nκ(∇u) ∈ L

q

loc(∂�, σ). These
properties allow us to invoke Theorem 3.4 to conclude that (3.72) holds, which
by (3.66), readily gives ∂Aν u ∈

[
Xv

]M . � 
Our next goal is to extend Theorem 8.3 to modified boundary layer potentials.

Theorem 8.5 Assume � ⊆ Rn (where n ∈ N, n ≥ 2) is a UR domain. Denote by
ν = (ν1, . . . , νn) the geometric measure theoretic outward unit normal to � and
abbreviate σ := H n−1�∂�. Also, for some M ∈ N, let A = (

a
αβ
rs

)
1≤r,s≤n

1≤α,β≤M
be a

complex coefficient tensor with the property thatL := LA is a weakly ellipticM×M
system in Rn. Recall the modified boundary-to-boundary single layer operator Smod

associated with L and � as in (3.42). Having fixed v ∈ L1
loc(∂�, σ) with v > 0

at σ -a.e. point on ∂�, let Xv be a Banach function space over (∂�, vσ), and let
X
′
v be its Köthe dual. If M denotes the Hardy–Littlewood maximal operator on

(∂�, σ) andM′f :=M(f v)/v for any σ -measurable function f on ∂�, make the
assumption that

M is bounded on Xv and M′ is bounded on X′v, (8.128)

and pick some ' ≥ 4‖M‖Xv→Xv
∥∥M′∥∥

X
′
v→X′v . Then the following properties are

true.

(1) The modified boundary-to-boundary single layer operator induces a mapping

Smod :
[
Xv

]M −→ [
(
.
Xv)1

]M (8.129)

which is well defined, linear, and bounded, when the target space is endowed
with the semi-norm (8.89). In particular,
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for each given function f ∈ [
Xv

]M
and each pair of indices

j, k ∈ {1, . . . , n} one has ∂τjk
(
Smodf

) ∈ [
Xv

]M
.

(8.130)

Also, for each function f ∈ [
Xv

]M
, at σ -a.e. point x ∈ ∂� one has

( 1
2I +K#

A�
)((− 1

2I +K#
A�

)
f
)
(x) (8.131)

=
(

lim
ε→0+

ˆ

y∈∂�
|x−y|>ε

νi(x)a
μγ

ij aβαrs (∂rEγβ)(x − y)∂τjs
(
Smodf

)
α
(y) dσ(y)

)

1≤μ≤M
,

where K#
A� is the singular integral operator associated as in (3.25) with the set

� and the transpose coefficient tensor A�.
(2) As a consequence of (8.129), the following is a well-defined linear operator:

[
Smod

] : [Xv
]M −→ [

(
.
Xv)1

/ ∼ ]M
defined as

[
Smod

]
f := [

Smodf
] ∈ [

(
.
Xv)1

/ ∼ ]M
, ∀ f ∈ [

Xv

]M
.

(8.132)

Moreover, if actually � ⊆ Rn is an open set satisfying a two-sided local John
condition and whose boundary is an unbounded Ahlfors regular set, then the
operator (8.132) is also bounded when the quotient space is endowed with the
norm introduced in (8.91).

(3) With Smod denoting the modified version of the single layer operator acting

on functions from
[
L1

(
∂�,

σ(x)

1+|x|n−1

)]M
as in (3.38), for each given aperture

parameter κ > 0 there exists some constant C = C(�,L, n,', κ) ∈ (0,∞)

with the property that for each given function f ∈ [
Xv

]M
one has

Smodf ∈ [
C∞(�)

]M
, L

(
Smodf

) = 0 in �,

Nκ

(∇Smodf
)
belongs to Xv and

∥∥Nκ

(∇Smodf
)∥∥
Xv

≤ C‖f ‖[Xv]M ,
((
Smodf

)∣∣∣
κ−n.t.

∂�

)
(x) = (Smodf )(x) at σ -a.e. point x ∈ ∂�.

(8.133)

Moreover, for each given function f in the weighted Banach functions space[
Xv]M the following jump formula holds (with I denoting the identity operator)

∂Aν Smodf = (− 1
2I +K#

A�
)
f at σ -a.e. point in ∂�, (8.134)
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where K#
A� is the singular integral operator associated as in (3.25) with the set

� and the transpose coefficient tensor A�.

Before proving this result we would like to call attention to the fact that, as
opposed to Theorem 7.4, the current statement does not contain a version of (7.121)
(see also (3.46)) since it is not clear whether Xv is the dual of some other Banach
function space. This will affect the proof of the surjectivity of

[
Smod

]
as we will not

be able to invoke the Banach–Alaoglu Theorem (see the proof of Theorems 4.11
and 7.13 for the case of weighted Lebesgue and Morrey spaces).

Proof We start with item (1). Recalling the definition of Smod in (3.42), from (3.43)
and Proposition 8.2 we see that

Smod :
[
Xv]M −→

[
L1

(
∂�,

σ(x)

1 + |x|n
)]M

(8.135)

is well defined and linear. By Proposition 8.1, for every f ∈ [
Xv]M it is possible

to find a Muckenhoupt weight wf ∈ A2(∂�, σ) such that f ∈ [
L2(∂�,wf )

]M .
Granted this, items (d) and (f) in Proposition 3.5, respectively, yield (8.131) and
Smodf ∈ [ .

L2
1(∂�,wf )

]M . Thus, whenever 1 ≤ j, k ≤ n, it follows that ∂τjkSmodf

belongs to
[
L2(∂�,wf )

]M ⊆ [
L1

loc(∂�, σ)
]M , by Lemma 2.15. In view of this

and (2.585), we then proceed to consider

F1 :=
{(|∇tanSmodf |, |f |

) : f ∈ [
Xv

]M}
, (8.136)

which is a well-defined set. We claim that ‖F1‖L2(∂�,w) ≤ C‖F2‖L2(∂�,w) for
every pair (F1, F2) ∈ F1 and every weight w ∈ A2(∂�, σ). Indeed, we may
assume without loss of generality that the right-hand side is finite, in which case
the desired estimates follow from item (f) in Proposition 3.5 and (2.585). Invoking
next Theorem 8.1 shows that ‖F1‖Xv ≤ C‖F2‖Xv for every pair (F1, F2) ∈ F1.
This, Proposition 8.2, and (2.586), then readily give (8.130) and (8.129).

Item (2) follows at once from item (1). As regards the properties listed in (3), we
first observe that, thanks to Proposition 8.1, for every f ∈ [

Xv]M it is possible

to find some wf ∈ A2(∂�, σ) such that f ∈ [
L2(∂�,wf )

]M . We may then

invoke part (c) in Proposition 3.5 to immediately obtain that Smodf ∈ [
C∞(�)

]M ,
that L

(
Smodf

) = 0 in �, and also that (8.134) holds. Note that the last property
in (8.133) follows from (3.47) and Proposition 8.2. To proceed, introduce

F2 :=
{(
Nκ

(∇Smodf
)
, |f |) : f ∈ [

Xv

]M}
. (8.137)

We claim that ‖F1‖L2(∂�,w) ≤ C‖F2‖L2(∂�,w) for every pair (F1, F2) ∈ F2 and
every weightw ∈ A2(∂�, σ). Without loss of generality, assume the right-hand side
is finite, in which case the desired estimates follow from item (c) in Proposition 3.5
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(cf. (3.127)). Another use of Theorem 8.1 gives the estimate ‖F1‖Xv ≤ C‖F2‖Xv
for every pair (F1, F2) belonging to F. This corresponds to the last two properties
in (8.133), finishing the proof of Theorem 8.5. � 

We next present some fundamental properties of the modified boundary-to-
domain double layer potential operators and their conormal derivatives acting on
homogeneous weighted Banach function-based Sobolev spaces.

Theorem 8.6 Assume � ⊆ Rn (where n ∈ N, n ≥ 2) is a UR domain. Denote by
ν = (ν1, . . . , νn) the geometric measure theoretic outward unit normal to � and
abbreviate σ := H n−1�∂�. In addition, for some M ∈ N, let A = (

a
αβ
rs

)
1≤r,s≤n

1≤α,β≤M
be a complex coefficient tensor with the property that L := LA is a weakly
elliptic M ×M system in Rn. Also, let E = (Eγβ)1≤γ ,β≤M be the matrix-valued
fundamental solution associated with L as in Theorem 3.1. In this setting, recall
the modified version of the double layer operator D

A,mod acting on functions from
[
L1

(
∂�,

σ(x)
1+|x|n

)]M
as in (3.49). Also, having fixed v ∈ L1

loc(∂�, σ) with v > 0
at σ -a.e. point on ∂�, let Xv be a Banach function space over (∂�, vσ), and let
X
′
v be its Köthe dual. With M denoting the Hardy–Littlewood maximal operator on

(∂�, σ) and M′f := M(f v)/v for any σ -measurable function f on ∂�, assume
that

M is bounded on Xv and M′ is bounded on X′v, (8.138)

pick some number' ≥ 4‖M‖Xv→Xv
∥∥M′∥∥

X
′
v→X′v , and fix some aperture parameter

κ ∈ (0,∞).
Then the following statements are true.

(1) There exists some constant C = C(�,A, n,', κ) ∈ (0,∞) with the property
that for each function f ∈ [

(
.
Xv)1

]M
one has

D
A,modf ∈ [

C∞(�)
]M

, L
(
D

A,modf
) = 0 in �,

(
D

A,modf
)∣∣κ−n.t.

∂�
,
(∇D

A,modf
)∣∣κ−n.t.

∂�
exist σ -a.e. on ∂�,

Nκ

(∇D
A,modf

)
belongs to Xv and

∥∥Nκ

(∇D
A,modf

)∥∥
Xv

≤ C‖f ‖[( .Xv)1]M .

(8.139)

In fact, for each function f ∈ [
(
.
Xv)1

]M
one has

(D
A,modf )

∣∣κ−n.t.

∂�
= ( 1

2I +K
A,mod

)
f at σ -a.e. point on ∂�, (8.140)

where I is the identity operator on
[
(
.
Xv)1

]M
, and K

A,mod is the modified
boundary-to-boundary double layer potential operator from (3.50) and (3.48).
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(2) Given an arbitrary function f = (fα)1≤α≤M belonging to the homogeneous

weighted Banach function-based boundary Sobolev space
[
(
.
Xv)1

]M
, it follows

that at σ -a.e. point x ∈ ∂� one has

(
∂Aν (DA,modf )

)
(x) =

(
lim
ε→0+

ˆ

y∈∂�
|x−y|>ε

νi(x)a
μγ

ij aβαrs (∂rEγ β)(x − y)×

(8.141)

× (
∂τjs fα

)
(y) dσ(y)

)

1≤μ≤M
,

where the conormal derivative is considered as in (3.66).
(3) The operator

∂Aν DA,mod :
[
(
.
Xv)1

]M −→ [
Xv

]M
defined as

(
∂Aν DA,mod)f := ∂Aν (DA,modf ) for each f ∈ [

(
.
Xv)1

]M (8.142)

is well defined, linear, and bounded, when the domain space is equipped with the
semi-norm (8.89). As a consequence of (8.142), the following is a well-defined
linear operator:

[
∂Aν DA,mod

] : [( .Xv)1
/ ∼ ]M −→ [

Xv

]M

given by
[
∂Aν DA,mod

][f ] := ∂Aν (DA,modf )

for each function f ∈ [
(
.
Xv)1

]M
.

(8.143)

If, in fact, � ⊆ Rn is an open set satisfying a two-sided local John condition and
whose boundary is an unbounded Ahlfors regular set, then the operator (8.143)
is also bounded when the quotient space is equipped with the norm (8.91).

(4) With K#
A� denoting the singular integral operator associated as in (3.25) with

the set � and the transpose coefficient tensor A�, one has
( 1

2I +K#
A�

)(− 1
2I +K#

A�
) = [

∂Aν DA,mod

][
Smod

]

as mappings acting from
[
Xv

]M
,

(8.144)

and

[
∂Aν DA,mod

][
K

A,mod

] = K#
A�

[
∂Aν DA,mod

]

as mappings acting from
[
(
.
Xv)1/ ∼

]M
.

(8.145)

Moreover, if ∂� is connected then also
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( 1
2I +

[
K

A,mod

])(− 1
2I +

[
K

A,mod

]) = [
Smod

][
∂Aν DA,mod

]

as mappings acting from
[
(
.
Xv)1/ ∼

]M
,

(8.146)

and

[
Smod

]
K#
A� =

[
K

A,mod

][
Smod

]

as mappings acting from
[
Xv

]M
.

(8.147)

Proof We begin by observing that for any given function f ∈ [
(
.
Xv)1

]M we may
apply Proposition 8.1 to the function

∑n
j,k=1 |∂τjkf | ∈ Xv to obtain a Muckenhoupt

weight wf ∈ A2(∂�, σ) such that
∑n

j,k=1 |∂τjkf | ∈ L2(∂�,wf ). In concert

with Remark 2.4, this implies that f ∈ [ .
L2

1(∂�,wf )
]M . The membership just

established, Theorems 3.5, 3.6, and 3.7 then immediately imply the properties stated
in the first and second lines of (8.139), (8.140), (8.141), and all the equalities in item
(4). Also, this allows us to introduce the following families which are well defined:

F1 : =
{(

Nκ

(∇D
A,modf

)
,

n∑

j,k=1

|∂τjkf |
)
: f ∈ [

(
.
Xv)1

]M}
,

F2 : =
{(∣

∣(∂Aν DA,mod)f
∣
∣,

n∑

j,k=1

|∂τjkf |
)
: f ∈ [

(
.
Xv)1

]M}
. (8.148)

In relation to these, we claim that ‖F1‖L2(∂�,w) ≤ C‖F2‖L2(∂�,w) for every
(F1, F2) ∈ Fj and every w ∈ A2(∂�, σ), with j = 1, 2. To justify this claim,
there is no loss of generality in assuming that the right-hand side is finite, in
which case we have f ∈ [ .

L2
1(∂�,w)

]M by Remark 2.4. As such, we may use
(3.133) (respectively, (3.136)) in Theorem 3.5 for F1 (respectively, F2). We can
then invoke Theorem 8.1 to conclude that ‖F1‖Xv ≤ C‖F2‖Xv for every pair
(F1, F2) ∈ Fj , with j = 1, 2. These estimates correspond precisely to the third
and fourth lines in (8.139) when j = 1, and to (8.142) when j = 2. Note that
the latter implies (8.143) on account of (3.137), and the corresponding boundedness
claim follows from Proposition 8.4. This completes the proof. � 

We next study mapping properties for modified boundary-to-boundary double
layer potential operators acting on homogeneous weighted Banach function-based
Sobolev spaces.

Theorem 8.7 Let � ⊆ R
n (where n ∈ N, n ≥ 2) be an NTA domain such

that ∂� is an Ahlfors regular set, and abbreviate σ := H n−1�∂�. Also, let
L = (

a
αβ
rs ∂r∂s

)
1≤α,β≤M be a homogeneous, weakly elliptic, constant (complex)

coefficient, second-order M × M system in Rn (for some integer M ∈ N). In
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this context, consider the modified boundary-to-boundary double layer potential
operator K

A,mod from (3.50). Having fixed some function v ∈ L1
loc(∂�, σ) with

v > 0 at σ -a.e. point on ∂�, let Xv be a Banach function space over (∂�, vσ), and
let X′v be its Köthe dual. With M denoting the Hardy–Littlewood maximal operator
on (∂�, σ) and with M′f := M(f v)/v for any σ -measurable function f on ∂�,
assume that

M is bounded on Xv and M′ is bounded on X′v. (8.149)

Then the following statements are valid.

(1) The modified boundary-to-boundary double layer potential operator induces a
mapping

K
A,mod :

[
(
.
Xv)1

]M −→ [
(
.
Xv)1

]M (8.150)

which is well defined, linear, and bounded, when the spaces involved are endowed
with the semi-norm (8.89). As a corollary of (8.150), the following operator is
well defined and linear:

[
K

A,mod

] : [( .Xv)1
/ ∼ ]M −→ [

(
.
Xv)1

/ ∼ ]M

given by
[
K

A,mod

][f ] := [
K

A,modf
] ∈ [

(
.
Xv)1

/ ∼ ]M
,

for each function f ∈ [
(
.
Xv)1

]M
.

(8.151)

Moreover, if actually � ⊆ Rn is a two-sided NTA domain whose boundary is an
unbounded Ahlfors regular set then the operator (8.151) is also bounded when
all quotient spaces are endowed with the norm introduced in (8.91).

(2) If Ujk with j, k ∈ {1, . . . , n} is the family of singular integral operators defined
in (3.35), then

∂τjk
(
K

A,modf
) = KA(∂τj kf )+ Ujk(∇tanf ) at σ -a.e. point on ∂�

for each f ∈ [
(
.
Xv)1

]M
and each j, k ∈ {1, . . . , n}.

(8.152)

Proof To get started, given any f ∈ [
(
.
Xv)1

]M , we may apply Proposition 8.1
to the function

∑n
j,k=1 |∂τjkf | ∈ Xv to obtain a weight wf ∈ A2(∂�, σ) with

the property that
∑n

j,k=1 |∂τjkf | ∈ L2(∂�,wf ). Together with Remark 2.4, this

guarantees that f ∈ [ .
L2

1(∂�,wf )
]M . Granted the latter membership, Theorem 3.6

implies that K
A,modf ∈ [ .

L2
1(∂�,wf )

]M . This observation allows us to introduce
the well-defined family
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F :=
{( n∑

j,k=1

|∂τjkKA,modf |,
n∑

j,k=1

|∂τjkf |
)
: f ∈ [

(
.
Xv)1

]M}
. (8.153)

We claim that ‖F1‖L2(∂�,w) ≤ C‖F2‖L2(∂�,w) for every pair (F1, F2) ∈ F and
every weight w ∈ A2(∂�, σ). As in the past, we may assume without loss of
generality that the right-hand side is finite, in which case we have that the function
f ∈ [ .

L2
1(∂�,w)

]M by Remark 2.4. Granted this, we may invoke Theorem 3.6 and
the desired estimate follows. Also, by virtue of Theorem 8.1 we can conclude that
‖F1‖Xv ≤ C‖F2‖Xv for every pair (F1, F2) ∈ F. That is, the operator in (8.150) is
well defined, linear, and bounded, when the spaces involved are endowed with the
semi-norm (8.89). This easily implies (8.151). Finally, (8.152) follows at once from
Proposition 3.3, (8.88), and Proposition 8.2. � 

8.3 Inverting Double Layer Operators on Weighted Banach
Function Spaces

The following result is the counterpart of Theorem 4.2 in the more general setting
of Banach function spaces.

Theorem 8.8 Let� ⊆ Rn be a UR domain. Abbreviate σ := Hn−1�∂� and denote
by ν the geometric measure theoretic outward unit normal to �. Having picked
some v ∈ L1

loc(∂�, σ) with v > 0 at σ -a.e. point on ∂�, let Xv be a Banach
function space over (∂�, vσ), and let X′v be its Köthe dual. With M denoting the
Hardy–Littlewood maximal operator on (∂�, σ) and M′f := M(f v)/v for any
σ -measurable function f on ∂�, assume that

M is bounded on Xv and M′ is bounded on X′v, (8.154)

and pick some number ' ≥ 4‖M‖Xv→Xv
∥
∥M′∥∥

X
′
v→X′v . Also, consider a sufficiently

large integer N = N(n) ∈ N. Given a complex-valued function k ∈ CN(Rn \ {0})
which is even and positive homogeneous of degree−n, consider the principal-value
singular integral operators T , T # acting on each function f ∈ Xv according to

Tf (x) := lim
ε→0+

ˆ

y∈∂�
|x−y|>ε

〈x − y, ν(y)〉k(x − y)f (y) dσ(y), (8.155)

and
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T #f (x) := lim
ε→0+

ˆ

y∈∂�
|x−y|>ε

〈y − x, ν(x)〉k(x − y)f (y) dσ(y), (8.156)

at σ -a.e. point x ∈ ∂�. In addition, define the action of the maximal operator T∗ on
each given function f ∈ X(w) as

T∗f (x) := sup
ε>0

∣∣∣∣

ˆ

y∈∂�
|x−y|>ε

〈x − y, ν(y)〉k(x − y)f (y) dσ(y)

∣∣∣∣ for each x ∈ ∂�.

(8.157)
Then the following are well-defined, bounded operators

T∗, T , T # : Xv −→ Xv, (8.158)

and for each m ∈ N there exists some Cm ∈ (0,∞), which depends only on m,
n, ', and the UR constants of ∂� such that, with the piece of notation introduced
in (4.93), one has

‖T∗‖Xv→Xv ≤ Cm

( ∑

|α|≤N
sup
Sn−1

|∂αk|
)
‖ν‖〈m〉[BMO(∂�,σ)]n , (8.159)

‖T ‖Xv→Xv ≤ Cm

( ∑

|α|≤N
sup
Sn−1

|∂αk|
)
‖ν‖〈m〉[BMO(∂�,σ)]n , (8.160)

∥∥∥T #
∥∥∥
Xv→Xv

≤ Cm

( ∑

|α|≤N
sup
Sn−1

|∂αk|
)
‖ν‖〈m〉[BMO(∂�,σ)]n . (8.161)

Proof All claims are consequences of Theorem 4.2, Corollary 4.2, and Theorem 8.1
with p0 := 2. � 

In concert with the commutator estimates discussed earlier (cf. Theorem 8.2),
Theorem 8.8 implies the following result, which is the weighted Banach function
space counterpart of Theorem 4.6.

Corollary 8.1 Let � ⊆ Rn be a UR domain. Abbreviate σ := Hn−1�∂� and
denote by ν = (νk)1≤k≤n the geometric measure theoretic outward unit normal to
�. Also, having fixed v ∈ L1

loc(∂�, σ) with v > 0 at σ -a.e. point on ∂�, let Xv be
a Banach function space over (∂�, vσ), and let X′v be its Köthe dual. If M stands
for the Hardy–Littlewood maximal operator on (∂�, σ) andM′f :=M(f v)/v for
any σ -measurable function f on ∂�, assume that

M is bounded on Xv and M′ is bounded on X′v, (8.162)



8.3 Inverting Double Layer Operators on Weighted Banach Function Spaces 531

and pick some ' ≥ 4‖M‖Xv→Xv
∥∥M′∥∥

X
′
v→X′v . Finally, recall the boundary-to-

boundary harmonic double layer potential operator K from (3.29), the Riesz
transforms {Rj }1≤j≤n from (4.297), and for each k ∈ {1, . . . , n} denote by Mνk

the operator of pointwise multiplication by the k-th scalar component of ν.
Then for each m ∈ N there exists some Cm ∈ (0,∞) which depends only on n,

m, ', and the UR constants of ∂� such that, with the piece of notation introduced
in (4.93), one has

‖K‖Xv→Xv + max
1≤j,k≤n

∥∥[Mνk , Rj ]
∥∥
Xv→Xv ≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n . (8.163)

Proof We simply apply Theorem 8.8, (3.29), (4.297), Proposition 3.4, and Theo-
rem 8.2. � 

We shall revisit Corollary 8.1 later, in Theorem 8.15, which contains an estimate
in the opposite direction to that obtained in (8.163).

In the next theorem we obtain operator norm estimates for double layer poten-
tials associated with distinguished coefficient tensors on Banach function spaces,
involving the BMO semi-norm of the unit normal to the boundary of the underlying
domain as a factor.

Theorem 8.9 Let� ⊆ Rn be a UR domain. Abbreviate σ := Hn−1�∂� and denote
by ν the geometric measure theoretic outward unit normal to �. Also, let L be a
homogeneous, second-order, constant complex coefficient, weakly elliptic M × M

system in Rn for which Adis
L �= ∅. Pick A ∈ Adis

L and consider the boundary-
to-boundary double layer potential operators KA,K

#
A associated with � and the

coefficient tensor A as in (3.24) and (3.25), respectively. Also, having selected
some v ∈ L1

loc(∂�, σ) with v > 0 at σ -a.e. point on ∂�, let Xv be a Banach
function space over (∂�, vσ), and let X′v be its Köthe dual. With M denoting the
Hardy–Littlewood maximal operator on (∂�, σ) and M′f := M(f v)/v for any
σ -measurable function f on ∂�, assume that

M is bounded on Xv and M′ is bounded on X′v, (8.164)

and pick some ' ≥ 4‖M‖Xv→Xv
∥∥M′∥∥

X
′
v→X′v .

Then for each m ∈ N there exists some Cm ∈ (0,∞) which depends only on m,
n,A,', and the UR constants of ∂� such that, with the piece of notation introduced
in (4.93), one has

‖KA‖[Xv]M→[Xv]M ≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n , (8.165)

‖KA‖[(Xv)1]M→[(Xv)1]M ≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n , (8.166)

and
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∥∥K#
A

∥∥[Xv]M→[Xv]M ≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n . (8.167)

Proof All claims are justified as in the proof of Theorem 4.7, now making use
of Theorem 8.8, Proposition 3.2, Theorem 8.2, (8.79)–(8.80), and Proposition 8.2.
Another approach consists of extrapolating from Theorem 4.7 by means of Theo-
rem 8.1 with p0 := 2. � 

We finish this section with a result that establishes invertibility for boundary-to-
boundary double layer potential operators in Banach function spaces.

Theorem 8.10 Let � ⊆ Rn be an Ahlfors regular domain. Define σ := Hn−1�∂�
and denote by ν the geometric measure theoretic outward unit normal to �. Also,
let L be a homogeneous, second-order, constant complex coefficient, weakly elliptic
M × M system in Rn for which Adis

L �= ∅. Pick A ∈ Adis
L and consider the

boundary-to-boundary double layer potential operators KA,K
#
A associated with �

and the coefficient tensor A as in (3.24) and (3.25), respectively. Next, having fixed
some v ∈ L1

loc(∂�, σ) with v > 0 at σ -a.e. point on ∂�, let Xv be a Banach
function space over (∂�, vσ), and let X′v be its Köthe dual. If M denotes the
Hardy–Littlewood maximal operator on (∂�, σ) and M′f := M(f v)/v for any
σ -measurable function f on ∂�, suppose that

M is bounded on Xv and M′ is bounded on X′v. (8.168)

Finally, pick some' ≥ 4‖M‖Xv→Xv
∥
∥M′∥∥

X
′
v→X′v , and fix some number ε ∈ (0,∞).

Then there exists a threshold δ ∈ (0, 1) which depends only on n, ', A, ε, and
the Ahlfors regularity constant of ∂�, with the property that if ‖ν‖[BMO(∂�,σ)]n < δ

(i.e., if � is a δ-AR domain) it follows that for each spectral parameter z ∈ C with
|z| ≥ ε the following operators are invertible:

zI +KA :
[
Xv

]M −→ [
Xv

]M
, (8.169)

zI +KA :
[
(Xv)1

]M −→ [
(Xv)1

]M
, (8.170)

zI +K#
A :

[
Xv

]M −→ [
Xv

]M
. (8.171)

Proof This is a direct consequence of Theorem 8.9, reasoning as in the proof of
Theorem 4.8. � 

Remark 8.4 In the context of Theorem 8.10, if the threshold δ ∈ (0, 1) is taken
sufficiently small so that the operator zI + KA is invertible on the space

[
(Xv)1

]M

we also claim that there exists some constant C ∈ (0,∞) with the property that



8.4 Invertibility on Homogeneous Weighted Banach Function-Based Sobolev. . . 533

whenever f ∈ [
(Xv)1

]M

and g := (zI +KA)
−1 f ∈ [

(Xv)1
]M

then ‖∇tang‖[Xv]n·M ≤ C‖∇tanf ‖[Xv]n·M .
(8.172)

To justify this, we introduce the family

F :=
{(|∇tang|, |∇tanf |

) : f ∈ [
(Xv)1

]M}
, (8.173)

and then invoke Theorem 8.1 with p0 := 2 along with (4.333) and (4.343) with
p1 = p2 = 2 and w = w1 = w2 ∈ A2(∂�, σ) (see also the proof of Theorem 4.2).
There is, however, a subtle point here. Specifically, it is implicit in (4.343) that
the choice of δ depends, among other thing, on [w]A2 . Hence, without further
provisions, asking for (4.343) to be valid for all weights in A2(∂�, σ) may result
in the degenerate case δ = 0. To avoid this undesirable outcome, let us recall
that the hypothesis formulated in (8.12) as part of Theorem 8.1 needs, in fact,
to hold only for those weights w ∈ A2(∂�, σ) with the property that [w]A2 ≤
4‖M‖Xv→Xv

∥∥M′∥∥
X
′
v→X′v . In light of our choice ' ≥ 4‖M‖Xv→Xv

∥∥M′∥∥
X
′
v→X′v ,

this means that it suffices to know that (4.343) is valid with p1 = p2 = 2 and
w = w1 = w2 ∈ A2(∂�, σ) with [w]A2 ≤ '. In turn, Proposition 4.2 (or
Theorem 4.8 for this matter) allows us to choose δ depending on ' (and the other
various parameters) so that (4.343) holds in the context just described.

We conclude this section with the following observation.

Remark 8.5 In the two-dimensional setting, more can be said about the Lamé
system. Specifically, the versions of Theorem 4.14 and Corollary 4.3 naturally
formulated in terms of weighted Banach function spaces, as well as their associated
Sobolev spaces, continue to hold, virtually with the same proofs (now making use
of Theorem 8.2, Propositions 8.2, 8.3, Theorems 8.3, and 8.8).

8.4 Invertibility on Homogeneous Weighted Banach
Function-Based Sobolev Spaces

Our next goal is to present a version of Theorem 4.10 valid in the context of
homogeneous weighted Banach function-based Sobolev spaces, where again the key
feature is the explicit dependence on the BMO semi-norm of the geometric measure
theoretic outward unit normal to the underlying domain.

Theorem 8.11 Let � ⊆ R
n be a two-sided NTA domain whose boundary is

an unbounded Ahlfors regular set. Set σ := Hn−1�∂� and denote by ν the
geometric measure theoretic outward unit normal to �. Also, having chosen some
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v ∈ L1
loc(∂�, σ) with v > 0 at σ -a.e. point on ∂�, consider a Banach function

space Xv over (∂�, vσ) and let X′v be its Köthe dual. With M denoting the
Hardy–Littlewood maximal operator on (∂�, σ) and M′f := M(f v)/v for any
σ -measurable function f on ∂�, assume that

M is bounded on Xv and M′ is bounded on X′v, (8.174)

and pick some ' ≥ 4‖M‖Xv→Xv
∥∥M′∥∥

X
′
v→X′v . Next, let L be a homogeneous,

second-order, constant complex coefficient, weakly elliptic M × M system in Rn

for which Adis
L �= ∅. Finally, pick A ∈ Adis

L and consider the modified boundary-
to-boundary double layer potential operator

[
K

A,mod

]
associated with � and the

coefficient tensor A as in Theorem 8.7.
Then for each m ∈ N there exists some Cm ∈ (0,∞) which depends only on m,

n, ', A, the two-sided NTA constants of �, and the Ahlfors regularity constant of
∂� such that, with the piece of notation introduced in (4.93), one has

∥∥[K
A,mod

]∥∥[( .Xv)1/∼]M→[( .Xv)1/∼]M ≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n . (8.175)

Proof We proceed much as in the proof of Theorem 4.10, making use of
(8.151), (8.152), Theorems 8.8 and 8.2. We can also use another approach, using
Theorem 8.1 with p0 := 2, the family F consisting of the pairs

( n∑

j,k=1

|∂τjkKA,modf |,
n∑

j,k=1

|∂τjkf |
)
, with f ∈ [

(
.
Xv)1

]M
, (8.176)

and where (8.12) now comes from Theorem 4.10. � 
At this stage, we are ready to state our main result concerning the invertibility

properties of boundary-to-boundary double layer potential operators associated with
distinguished coefficient tensors on homogeneous weighted Banach function-based
Sobolev spaces.

Theorem 8.12 Let � ⊆ Rn be an Ahlfors regular domain. Set σ := Hn−1�∂�
and denote by ν the geometric measure theoretic outward unit normal to �. Also,
let L be a homogeneous, second-order, constant complex coefficient, weakly elliptic
M ×M system in Rn for which Adis

L �= ∅. Pick A ∈ Adis
L and consider the modified

boundary-to-boundary double layer potential operator
[
K

A,mod

]
associated with �

and the coefficient tensor A as in Theorem 7.6. Also, having fixed v ∈ L1
loc(∂�, σ)

with v > 0 at σ -a.e. point on ∂�, let Xv be a Banach function space over (∂�, vσ),
and let X′v be its Köthe dual. IfM denotes the Hardy–Littlewood maximal operator
on (∂�, σ) and M′f := M(f v)/v for any σ -measurable function f on ∂�, make
the assumption that

M is bounded on Xv and M′ is bounded on X′v. (8.177)
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Finally, pick some' ≥ 4‖M‖Xv→Xv
∥∥M′∥∥

X
′
v→X′v , and fix some number ε ∈ (0,∞).

Then there exists some small threshold δ ∈ (0, 1) which depends only on
n, ', A, ε, and the Ahlfors regularity constant of ∂�, with the property that if
‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) it follows that for each spectral
parameter z ∈ C with |z| ≥ ε the operator

zI + [
K

A,mod

] : [[( .Xv)1/ ∼
]M −→ [

(
.
Xv)1/ ∼

]M (8.178)

is invertible.

Proof By Theorem 2.3 we can pick δ ∈ (0, 1) small enough so that if one
assumes that ‖ν‖[BMO(∂�,σ)]n < δ then � is a two-sided NTA domain with an
unbounded boundary. Then the desired invertibility result follows (via a Neumann
series argument) from Theorem 8.11. � 

Remark 8.6 The conclusions in Theorem 8.12 may fail when A /∈ Adis
L even when

� is a half-space. For example, Proposition 3.13, Theorem 8.6, and Proposition 8.2
imply that in such a case it may happen that 1

2I+
[
K

A,mod

]
has an infinite dimensional

cokernel when acting on homogeneous weighted Banach function-based Sobolev
spaces.

To continue our discussion we next consider the invertibility of the modified
boundary-to-boundary single layer potential operator in quotient homogeneous
weighted Banach function-based Sobolev spaces.

Theorem 8.13 Let � ⊆ Rn be an Ahlfors regular domain. Set σ := Hn−1�∂�
and denote by ν the geometric measure theoretic outward unit normal to �. Also,
let L be a homogeneous, second-order, constant complex coefficient, weakly elliptic
M × M system in Rn. Consider the modified boundary-to-boundary single layer
potential operator Smod associated with � and the system L as in (3.42). Choose
v ∈ L1

loc(∂�, σ) with v > 0 at σ -a.e. point on ∂�. Let Xv be a Banach
function space over (∂�, vσ) and let X′v be its Köthe dual. With M denoting the
Hardy–Littlewood maximal operator on (∂�, σ) and M′f := M(f v)/v for any
σ -measurable function f on ∂�, assume that

mathcalM is bounded on Xv and M′ is bounded on X′v, (8.179)

and pick some ' ≥ 4‖M‖Xv→Xv
∥∥M′∥∥

X
′
v→X′v . Finally, let

[
(
.
Xv)1

/ ∼ ]M
denote

theM-th power of the quotient space of classes [ · ] of equivalence modulo constants
of functions in (

.
Xv)1, equipped with the semi-norm (8.91).

Then the following statements are valid.

(1) [Boundedness] If � satisfies a two-sided local John condition then the operator



536 8 Singular Integrals and Boundary Problems in Weighted Banach Function Spaces

[
Smod

] : [Xv
]M −→ [

(
.
Xv)1

/ ∼ ]M
defined as

[
Smod

]
f := [

Smodf
] ∈ [

(
.
Xv)1

/ ∼ ]M
, ∀ f ∈ [

Xv

]M (8.180)

is well defined, linear, and bounded.
(2) [Surjectivity] Whenever Adis

L �= ∅, there exists some small threshold δ ∈ (0, 1)
which depends only on n, ', L, and the Ahlfors regularity constant of ∂�, with
the property that if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) it follows
that (8.91) is a genuine norm and the operator (8.180) is surjective.

(3) [Injectivity] Whenever Adis
L� �= ∅, there exists some small threshold δ ∈ (0, 1)

which depends only on n, ', L, and the Ahlfors regularity constant of ∂�, with
the property that if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) it follows
that the operator (8.180) is injective.

(4) [Isomorphism] Whenever both Adis
L �= ∅ and Adis

L� �= ∅, there exists some small
threshold δ ∈ (0, 1) which depends only on n, ', L, and the Ahlfors regularity
constant of ∂�, with the property that if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if� is a δ-AR

domain) it follows that
[
(
.
Xv)1

/ ∼ ]M
is a Banach space when equipped with the

norm (8.91) and the operator (8.180) is an isomorphism.
(5) [Optimality] If Adis

L = ∅ then the operator
[
Smod

]
may fail to be surjective (in

fact, may have an infinite dimensional cokernel) in all settings considered above
even in the case when� is a half-space, and if Adis

L� = ∅ then the operator
[
Smod

]

may fail to be injective (in fact, may have an infinite dimensional kernel) in all
settings considered above even in the case when � is a half-space.

Proof We first note that the operator (8.180) is well defined, linear, and bounded by
item (2) in Theorem 8.5, bearing in mind (2.87) and (2.48). This takes care of item
(1).

To deal with the claims in item (2), pick a coefficient tensor A ∈ Adis
L . Having

fixed some ' ≥ 4‖M‖Xv→Xv
∥
∥M′∥∥

X
′
v→X′v , Theorems 2.3, 4.8, and 8.10 guarantee

that we may choose δ ∈ (0, 1) small enough so that if ‖ν‖[BMO(∂�,σ)]n < δ (a
condition which we shall henceforth assume) then

� is a two-sided NTA domain with an unbounded boundary (8.181)

(hence, in particular, � satisfies a two-sided local John condition), and

the operators ± 1
2I +KA are invertible on

[
(Xv)1

]M and on
[
L2

1(∂�,w)
]M for all w ∈ A2(∂�, σ) with [w]A2 ≤ '.

(8.182)

This choice of δ allows us to run the argument in the proof of Theorem 4.11 for any
g ∈ [ .

L2
1(∂�,w)

]M and any w ∈ A2(∂�, σ) with [w]A2 ≤ '. We also wish to note
that (8.91) is a genuine norm, thanks to (8.181) and Proposition 8.4.

To proceed, choose a scalar-valued function φ ∈ C∞
0 (Rn) with φ ≡ 1 on B(0, 1)

and suppφ ⊆ B(0, 2). Having fixed a reference point x0 ∈ ∂�, for each scale
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r ∈ (0,∞) define φr as in (8.92) and use the same notation to denote the restriction
of φr to ∂�. Assume next that some arbitrary function g ∈ [

(
.
Xv)1

]M has been
given, and for each r ∈ (0,∞) define gr as in (8.93).

On the other hand, we apply Proposition 8.1 to the function
∑n

j,k=1 |∂τjk g| ∈ Xv
to obtain wg ∈ A2(∂�, σ) with [w]A2 ≤ ' so that

∑n
j,k=1 |∂τjk g| ∈ L2(∂�,wg).

This and Remark 2.4 imply that g ∈ [ .
L2

1(∂�,wg)
]M . As alluded to above, we

proceed as in the proof of Theorem 4.11 and define

f
g
r := ∂Aν

(
DA

( 1
2I +KA

)−1(− 1
2I +KA

)−1
gr

)
∈ [

L2(∂�,wg)
]M

. (8.183)

One can then find a sequence {rj }j∈N ⊂ (0,∞) with rj → ∞ as j → ∞ along

with some f g ∈ [
L2(∂�,wg)

]M having the following properties. First, {f grj }j∈N is

weak-∗ convergent to f g . Second, there exists a constant cg ∈ CM such that

Smodf
g = gr + cg at σ -a.e. point on ∂�. (8.184)

Third,

‖f g‖[L2(∂�,wg)]M ≤ C‖∇tang‖[L2(∂�,wg)]n·M (8.185)

for some constant C ∈ (0,∞) independent of g. We next claim that

‖f g‖[L2(∂�,w)]M ≤ C‖∇tang‖[L2(∂�,w)]n·M , for every g ∈ [
(
.
Xv)1

]M

and for every w ∈ A2(∂�, σ) with [w]A2 ≤ '.
(8.186)

In this vein, observe that (8.185) guarantees that the estimate in the first line
of (8.186) holds with w = wg . Our goal here is to extend that estimate to a bigger
family of weights. To this end, fix w ∈ A2(∂�, σ) with [w]A2 ≤ '. We may
assume that ‖∇tang‖[L2(∂�,w)]n·M <∞, otherwise there is nothing to prove. In such

a case (8.88) and Remark 2.4 imply that g ∈ [ .
L2

1(∂�,w)
]M . Since [w]A2 ≤ ',

we may repeat the argument in the proof of Theorem 4.11. Specifically, we start by
defining

f̃
g
r := ∂Aν

(
DA

( 1
2I +KA

)−1(− 1
2I +KA

)−1
gr

)
∈ [

L2(∂�,w)
]M

. (8.187)

Next, we extract a sub-sequence of {rj }j∈N ⊂ (0,∞) (for which we retain the
same notation) which converges to ∞ and has the property that {f̃ grj }j∈N is weak-∗
convergent to some f̃ g ∈ [

L2(∂�,w)
]M satisfying

‖f̃ g‖[L2(∂�,w)]M ≤ C‖∇tang‖[L2(∂�,w)]n·M (8.188)
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for some constant C ∈ (0,∞) independent of g. Proposition 4.2 then allows us
to conclude that f gr = f̃

g
r . Recall also that {f grj }j∈N is weak-∗ convergent to

some f g in
[
L2(∂�,wg)

]M and that {f̃ grj }j∈N is weak-∗ convergent to some f̃ g

in
[
L2(∂�,w)

]M . Collectively, these properties permit us to write, for each test

function ψ ∈ [
Lip(∂�)

]M with compact support,

ˆ
∂�

〈
f g, ψ

〉
dσ = lim

j→∞

ˆ
∂�

〈
frj , ψ

〉
dσ = lim

j→∞

ˆ
∂�

〈
f̃rj , ψ

〉
dσ

=
ˆ
∂�

〈
f̃ g, ψ

〉
dσ. (8.189)

This readily yields f g = f̃ g at σ -a.e. point on ∂�. In concert with (8.188), this
gives the desired estimate in (8.186).

Once this has been established, we are in a position to invoke Theorem 8.1 to
obtain

‖f g‖[Xv]M ≤ C‖∇tang‖[Xv]n·M . (8.190)

In particular, f g belongs to [Xv]M which, in light of (8.184), goes to show that the
operator (8.180) is indeed surjective.

Consider next the claim in item (3). Pick a coefficient tensor Ã ∈ AL such that
Ã� ∈ Adis

L� . By Theorem 8.10 we may then choose δ ∈ (0, 1) small enough so that
if ‖ν‖[BMO(∂�,σ)]n < δ (something we shall henceforth assume) then

the operators ± 1
2I +K#

Ã� are invertible on
[
Xv

]M
. (8.191)

To show that the operator (8.180) is injective, let f ∈ [
Xv

]M be a function with the
property that

[
Smod

]
f = [0]. Hence,

[
Smodf

] = [0] which implies that there exists
some constant c ∈ CM for which

Smodf = c at σ -a.e. point on ∂�. (8.192)

This, together with (8.131), allows us to obtain

( 1
2I +K#

Ã�
)((− 1

2I +K#
Ã�

)
f
)
= 0 at σ -a.e. point on ∂� (8.193)

which, by (8.191), leads to f = 0. Since the operator (8.180) is linear, it follows
that this is indeed injective.

For item (4), we just observe that if Adis
L �= ∅ and Adis

L� �= ∅, the previous items
show that the operator (8.180) is a continuous bijection. Moreover, Proposition 8.4
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and (8.181) imply that
[
(
.
Xv)1

/ ∼ ]M is a Banach space, hence the operator (8.180)
is a linear isomorphism.

Finally, the optimality results in item (5) are seen from (3.406) and the natural
version of Proposition 4.4 for weighted Banach function spaces. � 

We conclude this section with the following theorem addressing the issue of
invertibility for the conormal of the double layer operator acting from homogeneous
weighted Banach function-based Sobolev spaces.

Theorem 8.14 Let � ⊆ Rn be a UR domain. Abbreviate σ := Hn−1�∂� and
denote by ν the geometric measure theoretic outward unit normal to�. Also, letL be
a homogeneous, second-order, constant complex coefficient, weakly ellipticM ×M

system in Rn. Select v ∈ L1
loc(∂�, σ) with v > 0 at σ -a.e. point on ∂�. Let Xv be a

Banach function space over (∂�, vσ) and letX′v be its Köthe dual. WithM denoting
the Hardy–Littlewood maximal operator on (∂�, σ) andM′f :=M(f v)/v for any
σ -measurable function f on ∂�, assume that

M is bounded on Xv and M′ is bounded on X′v, (8.194)

and pick some' ≥ 4‖M‖Xv→Xv
∥
∥M′∥∥

X
′
v→X′v . Pick some coefficient tensor A ∈ AL

and consider the modified conormal derivative of the modified double layer operator
in the context of (8.143), i.e.,

∂Aν DA,mod :
[
(
.
Xv)1

/ ∼ ]M −→ [
Xv

]M
defined as

(
∂Aν DA,mod)[f ] := ∂Aν (DA,modf ) for each f ∈ [

(
.
Xv)1

]M
.

(8.195)

From Theorem 8.6 this is known to be a well-defined, linear, and bounded operator
when the quotient space is equipped with the norm (8.91). In relation to this, the
following statements are valid.

(1) [Injectivity] Whenever Adis
L �= ∅ and actuallyA ∈ Adis

L it follows that there exists
some small threshold δ ∈ (0, 1) which depends only on n, ', A, and the Ahlfors
regularity constant of ∂�, with the property that if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if
� is a δ-AR domain) then the operator (8.195) is injective.

(2) [Surjectivity] Whenever Adis
L� �= ∅ and actually A� ∈ Adis

L� it follows that there
exists some small threshold δ ∈ (0, 1) which depends only on n, ', A, and the
Ahlfors regularity constant of ∂�, with the property that if ‖ν‖[BMO(∂�,σ)]n < δ

(i.e., if � is a δ-AR domain) then the operator (8.195) is surjective.
(3) [Isomorphism] If Adis

L �= ∅, Adis
L� �= ∅, and A ∈ Adis

L is such that A� ∈ Adis
L�

it follows that there exists some small threshold δ ∈ (0, 1) which depends only
on n, ', A, and the Ahlfors regularity constant of ∂�, with the property that if
‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) then the operator (8.195) is an
isomorphism.
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Proof All claims may be established by arguing as in the proof of Theorem 4.13,
now making use of Theorems 8.6, 8.10, and 8.12. � 

8.5 Characterizing Flatness in Terms of Weighted Banach
Functions Spaces

In this section we characterize the flatness of a “surface” in terms of the size of the
norms of certain singular integral operators acting on weighted Banach functions
spaces on this surface.

In order to be able to elaborate on this topic, we need some notation. Given a UR
domain � ⊆ Rn, denote by ν its geometric measure theoretic outward unit normal
and abbreviate σ := Hn−1�∂�. Also, having fixed v ∈ L1

loc(∂�, σ) with v > 0
at σ -a.e. point on ∂�, let Xv be a Banach function space over (∂�, vσ), and let
X
′
v be its Köthe dual. With M denoting the Hardy–Littlewood maximal operator on

(∂�, σ) and M′f := M(f v)/v for any σ -measurable function f on ∂�, assume
that

M is bounded on Xv and M′ is bounded on X′v, (8.196)

and pick some ' ≥ 4‖M‖Xv→Xv
∥∥M′∥∥

X
′
v→X′v . From Theorem 8.1 with p0 := 2

and (5.16)–(5.18) we then conclude that

C : Xv ⊗ C�n −→ Xv ⊗ C�n, (8.197)

C# : Xv ⊗ C�n −→ Xv ⊗ C�n, (8.198)

are all well defined, linear, and continuous, with

‖C‖Xv⊗C�n→Xv⊗C�n, ‖C#‖Xv⊗C�n→Xv⊗C�n bounded

exclusively in terms of n,', and the UR constants of ∂�.
(8.199)

In addition, from (5.20), the explanation right after it, and Proposition 8.2 we
conclude that

the operator identities C2 = 1
4I and

(
C#)2 = 1

4I are valid on Xv ⊗ C�n.
(8.200)

Our next goal is to establish an estimate of the antisymmetric part of the Cauchy–
Clifford operator, i.e., for the difference C − C#, in terms of the oscillation of the
outer unit normal.

Proposition 8.6 Let � ⊆ Rn be a UR domain. Abbreviate σ := Hn−1�∂� and
denote by ν the geometric measure theoretic outward unit normal to�. Next, having
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picked some v ∈ L1
loc(∂�, σ) with v > 0 at σ -a.e. point on ∂�, let Xv be a Banach

function space over (∂�, vσ), and let X′v be its Köthe dual. If M stands for the
Hardy–Littlewood maximal operator on (∂�, σ) and M′f := M(f v)/v for any
σ -measurable function f on ∂�, assume that

M is bounded on Xv and M′ is bounded on X′v, (8.201)

and pick some ' ≥ 4‖M‖Xv→Xv
∥∥M′∥∥

X
′
v→X′v . Then for each m ∈ N there exists

some constant Cm ∈ (0,∞) which depends only on m, n, ', and the UR constants
of ∂� such that, with the piece of notation introduced in (4.93), one has

∥∥∥C − C#
∥∥∥
Xv⊗C�n→Xv⊗C�n

≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n . (8.202)

Proof The desired estimate follows from Lemma 5.1 (bearing in mind Proposi-
tion 8.2), together with Corollary 8.1. � 

We can also establish bounds from below for the operator norm of C − C# on
weighted Banach function spaces, considered on the boundary of a UR domain,
in terms of the BMO semi-norm of the geometric measure theoretic outward unit
normal vector to the said domain.

Proposition 8.7 Let � ⊆ R
n be a UR domain such that ∂� is unbounded.

Abbreviate σ := Hn−1�∂� and denote by ν the geometric measure theoretic
outward unit normal to �. Choose v ∈ L1

loc(∂�, σ) with v > 0 at σ -a.e. point
on ∂�. Let Xv be a Banach function space over (∂�, vσ) and let X′v be its Köthe
dual. With M denoting the Hardy–Littlewood maximal operator on (∂�, σ) and
withM′f :=M(f v)/v for any σ -measurable function f on ∂�, assume that

M is bounded on Xv and M′ is bounded on X′v, (8.203)

and pick some ' ≥ 4‖M‖Xv→Xv
∥∥M′∥∥

X
′
v→X′v . Then there exists some C ∈ (0,∞)

which depends only on n, ', and the Ahlfors regularity constant of ∂� with the
property that

‖ν‖[BMO(∂�,σ)]n ≤ C

∥
∥∥C − C#

∥
∥∥
Xv⊗C�n→Xv⊗C�n

. (8.204)

Proof The argument largely follows the proof Theorem 5.1 but some changes are
required. To proceed, we begin by observing that, for every σ -measurable function
h on ∂�, Lemma 2.12 implies that for every surface ball  ⊂ ∂� and every weight
w ∈ A2(∂�, σ) we have

∥∥∥
(  



|h| dσ
)

1
∥∥∥
L2(∂�,w)

≤ [w]1/2
A2
‖h 1‖L2(∂�,w). (8.205)
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Invoking Theorem 8.1, we therefore obtain

(  


|h| dσ
)
‖1‖Xv ≤ 8'1/2‖h 1‖Xv . (8.206)

Thus, by (8.7) and (8.6) (with dμ = dv = v dσ ) we may write

σ() =
ˆ
∂�

1 v−1 v dσ ≤ ‖1‖Xv‖v−11‖X′v

= ‖1‖Xv sup
h

( ˆ
∂�

v−1 1 |h| v dσ
)

≤ 8'1/2σ() sup
h

‖h 1‖Xv ≤ 8'1/2σ(), (8.207)

where the suprema are taken over all function h ∈ Xv with ‖h‖Xv ≤ 1.
Bearing in mind (5.25)–(5.28), we may reason as in (5.29)–(5.43) and, for every

point x ∈ (x0, R), write

∣∣∣
ˆ
(y0,R)

{
x0 − y

|x0 − y|n * ν(y)+ ν(x)* x0 − y

|x0 − y|n
}

dσ(y)
∣∣∣

≤ C%−n ln% ‖ν‖[BMO(∂�,σ)]n + ωn−1 |(C − C#)1(y0,R)(x)|
+ C%−n∣∣ν(x)− ν(x0,R)

∣∣.
(8.208)

Consequently,

 
(x0,R)

∣
∣∣∣

ˆ
(y0,R)

{
x0 − y

|x0 − y|n * ν(y)+ ν(x)* x0 − y

|x0 − y|n
}

dσ(y)

∣
∣∣∣ dσ(x)

≤ C(%−n ln%)‖ν‖[BMO(∂�,σ)]n + C

 
(x0,R)

|(C − C#)1(y0,R)(x)| dσ(x)

+ C%−n
 
(x0,R)

∣∣ν(x)− ν(x0,R)

∣∣ dσ(x)

≤ C(%−n ln%)‖ν‖[BMO(∂�,σ)]n

+ C

 
(x0,R)

|(C − C#)1(y0,R)(x)| dσ(x), (8.209)
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where C ∈ (0,∞) depends only on n and the Ahlfors regularity constant of ∂�.
Based on (8.206) and (8.207) we may estimate the last term in the right-hand side
as follows:

ˆ
(x0,R)

|(C − C#)1(y0,R)(x)| dσ(x)

≤ 8'1/2
∥∥(C − C#)1(y0,R)

∥∥
Xv

σ
(
(x0, R)

)

‖1(x0,R)‖Xv
≤ 64'

∥∥C − C#
∥∥
Xv⊗C�n→Xv⊗C�n ‖1(y0,R)‖Xv ‖v−1 1(x0,R)‖X′v

≤ 64'
∥∥C − C#

∥∥
Xv⊗C�n→Xv⊗C�n ‖1(x0,2λ%R)‖Xv ‖v−1 1(x0,2λ%R)‖X′v

≤ 512'3/2
∥∥C − C#

∥∥
Xv⊗C�n→Xv⊗C�n σ

(
(x0, 2λ%R)

)

≤ C '3/2 %n−1
∥∥C − C#

∥∥
Xv⊗C�n→Xv⊗C�n σ

(
(x0, R)

)
, (8.210)

where C ∈ (0,∞) depends only on n and the Ahlfors regularity constant of ∂�.
Collecting (8.209) and (8.210) we arrive at

 
(x0,R)

∣∣
∣∣

ˆ
(y0,R)

{
x0 − y

|x0 − y|n * ν(y)+ ν(x)* x0 − y

|x0 − y|n
}

dσ(y)

∣∣
∣∣ dσ(x)

≤ C(%−n ln%)‖ν‖[BMO(∂�,σ)]n

+ C '3/2 %n−1
∥∥C − C#

∥∥
Xv⊗C�n→Xv⊗C�n, (8.211)

where C ∈ (0,∞) depends only on n and the Ahlfors regularity constant of ∂�.
With (8.211) in hand, the same type of argument as in the end-game of the proof of
Theorem 5.1 (cf. (5.47)–(5.54)) with p = 1 gives

‖ν‖[BMO(∂�,σ)]n ≤ C(%−1 ln%)‖ν‖[BMO(∂�,σ)]n

+ C '3/2%2(n−1)‖C − C#‖Xv⊗C�n→Xv⊗C�n, (8.212)

where C ∈ (0,∞) depends only on n and the Ahlfors regularity constant of ∂�. By
eventually further increasing the value of % as to ensure that %−1 ln% < 1/(2C),
we finally conclude from (8.212) that

‖ν‖[BMO(∂�,σ)]n ≤ C
∥∥C − C#‖Xv⊗C�n→Xv⊗C�n, (8.213)

where C ∈ (0,∞) depends only on n, ', and the Ahlfors regularity constant of ∂�.
� 
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The next result contains estimates in the opposite direction to those presented in
Corollary 8.1.

Theorem 8.15 Let � ⊆ Rn be a UR domain. Abbreviate σ := Hn−1�∂� and
denote by ν = (νk)1≤k≤n the geometric measure theoretic outward unit normal to
�. Also, having fixed v ∈ L1

loc(∂�, σ) with v > 0 at σ -a.e. point on ∂�, let Xv
be a Banach function space over (∂�, vσ), and let X′v be its Köthe dual. With M
denoting the standard Hardy–Littlewood maximal operator on (∂�, σ) and with
M′f :=M(f v)/v for any σ -measurable function f on ∂�, assume that

M is bounded on Xv and M′ is bounded on X′v, (8.214)

and pick some ' ≥ 4‖M‖Xv→Xv
∥
∥M′∥∥

X
′
v→X′v . Finally, recall the boundary-to-

boundary harmonic double layer potential operator K from (3.29), the Riesz
transforms {Rj }1≤j≤n on ∂� from (4.297), and for each index k ∈ {1, . . . , n} denote
byMνk the operator of pointwise multiplication by the k-th scalar component of ν.
Then there exists some C ∈ (0,∞) which depends only on n, ', and the Ahlfors
regularity constant of ∂� with the property that

‖ν‖[BMO(∂�,σ)]n ≤ C
{
‖K‖Xv→Xv + max

1≤j,k≤n
∥∥[Mνk , Rj ]

∥∥
Xv→Xv

}
. (8.215)

Proof If ∂� is unbounded then all estimates are implied by Proposition 8.7 and the
structural result from Lemma 5.1 (keeping in mind Proposition 8.2). When the set
∂� is bounded, we have K1 = ± 1

2 (cf. [114, §1.5]) with the sign plus if � is
bounded, and the sign minus if � is unbounded, hence ‖K‖Xv→Xv ≥ 1

2 in such a
case. Given that ‖ν‖[BMO(∂�,σ)]n ≤ 1 (cf. (2.118)), the desired estimate is valid in
this case if we take C ≥ 2. � 

In turn, the results established in Theorem 8.15 may be used to characterize the
class of δ-AR domains in Rn, in the spirit of Corollary 5.2, now using weighted
Banach function spaces.

Theorem 8.16 discussed next may be regarded as a stability result stating that
if � ⊆ Rn is a UR domain with an unbounded boundary for which the URTI
(cf. (5.58)) are “almost” true in the context of weighted Banach function spaces,
then ∂� is “almost” flat, in the sense that the BMO semi-norm of the outward unit
normal to � is small.

Theorem 8.16 Let � ⊆ R
n be a UR domain with an unbounded boundary.

Abbreviate σ := Hn−1�∂� and denote by ν the geometric measure theoretic
outward unit normal to �. Having chosen some v ∈ L1

loc(∂�, σ) with v > 0 at
σ -a.e. point on ∂�, let Xv be a Banach function space over (∂�, vσ), and let X′v be
its Köthe dual. If M denotes the Hardy–Littlewood maximal operator on (∂�, σ)
and M′f :=M(f v)/v for any σ -measurable function f on ∂�, assume that

M is bounded on Xv and M′ is bounded on X′v, (8.216)
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pick some ' ≥ 4‖M‖Xv→Xv
∥∥M′∥∥

X
′
v→X′v , and recall from (4.297) the Riesz

transforms {Rj }1≤j≤n on ∂�. Then there exists some C ∈ (0,∞) which depends
only on n, ', and the UR constants of ∂� with the property that

‖ν‖[BMO(∂�,σ)]n ≤ C
{∥∥∥I +

n∑

j=1

R2
j

∥∥∥
Xv→Xv

+ max
1≤j,k≤n

∥∥[Rj ,Rk]
∥∥
Xv→Xv

}
.

(8.217)

Proof A key ingredient is the operator identity

C − C# = C
(
I +

n∑

j=1

R2
j

)
+

∑

1≤j<k≤n
C[Rj ,Rk]ej * ek (8.218)

on the space Xv ⊗C�n. This has been obtained in the proof of Theorem 5.3 for each
function f ∈ Lp(∂�,w) ⊗ C�n with 1 < p < ∞ and w ∈ Ap(∂�, σ). In turn
Proposition 8.2 readily imply the desired equality in Xv ⊗ C�n. Once (8.218) has
been established, we may rely on Proposition 8.7 and (8.197) to conclude (much as
in the proof of Theorem 5.3) that the estimate claimed in (8.217) is true. � 

The last result in this section contains estimates in the opposite direction to those
from Theorem 8.16. Together, Theorem 8.17 and Theorem 8.16 amount to saying
that, under natural background geometric assumptions on the set �, the URTI are
“almost” true on weighted Banach function spaces if and only if ∂� is “almost” flat
(in that the BMO semi-norm of the outward unit normal to � is small).

Theorem 8.17 Let � ⊆ Rn be a UR domain. Abbreviate σ := Hn−1�∂� and
denote by ν the geometric measure theoretic outward unit normal to �. Fix a
function v ∈ L1

loc(∂�, σ) with v > 0 at σ -a.e. point on ∂�. Let Xv be a Banach
function space over (∂�, vσ) and let X′v be its Köthe dual. With M denoting the
Hardy–Littlewood maximal operator on (∂�, σ) and M′f := M(f v)/v for any
σ -measurable function f on ∂�, assume that

M is bounded on Xv and M′ is bounded on X′v, (8.219)

pick some ' ≥ 4‖M‖Xv→Xv
∥∥M′∥∥

X
′
v→X′v , and recall from (4.297) the Riesz

transforms {Rj }1≤j≤n on ∂�.
Then for each m ∈ N there exists some constant Cm ∈ (0,∞) which depends

only on m, n, ', and the UR constants of ∂� such that, with the piece of notation
introduced in (4.93), one has

∥∥∥I +
n∑

j=1

R2
j

∥∥∥
Xv→Xv

≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n , (8.220)
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and

max
1≤j<k≤n

∥∥[Rj ,Rk]
∥∥
Xv→Xv ≤ Cm‖ν‖〈m〉[BMO(∂�,σ)]n . (8.221)

Proof The starting point is to observe that we have the operator identity

C(C# − C) = − 1
4

(
I +

n∑

j=1

R2
j

)
− 1

4

∑

1≤j<k≤n
[Rj ,Rk]ej * ek, (8.222)

on Xv which is itself a consequence of (8.218) and (8.200). With (8.222) in hand,
the estimates claimed in the statement of the theorem may then be justified via
an estimate similar in spirit to (5.66), and also invoking Proposition 8.6 as well
as (8.199). � 

8.6 Boundary Value Problems in Weighted Banach Function
Spaces

This section is devoted to studying boundary value problems for weakly elliptic
systems in δ-AR domains with boundary data in weighted Banach function spaces.
We start by discussing the Dirichlet Problem.

Theorem 8.18 Let � ⊆ Rn be an Ahlfors regular domain. Set σ := Hn−1�∂�,
denote by ν the geometric measure theoretic outward unit normal to �, and fix an
aperture parameter κ > 0. Having selected some v ∈ L1

loc(∂�, σ) with v > 0
at σ -a.e. point on ∂�, let Xv be a Banach function space over (∂�, vσ), and let
X
′
v be its Köthe dual. With M denoting the Hardy–Littlewood maximal operator on

(∂�, σ) and M′f := M(f v)/v for any σ -measurable function f on ∂�, assume
that

M is bounded on Xv and M′ is bounded on X′v, (8.223)

and fix some ' ≥ 4‖M‖Xv→Mv

∥∥M′∥∥
X
′
v→X′v . Given a homogeneous, second-order,

constant complex coefficient, weakly elliptic M ×M system L in Rn, consider the
Dirichlet Problem

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u ∈ [
C∞(�)

]M
,

Lu = 0 in �,

Nκu ∈ Xv,
u
∣∣κ−n.t.

∂�
= f ∈ [

Xv

]M
.

(8.224)
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Then the following claims are true:

(a) [Existence, Regularity, and Estimates] If Adis
L �= ∅ and A ∈ Adis

L , then there
exists δ ∈ (0, 1) depending only on n, ', A, and the Ahlfors regularity constant
of ∂� such that if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if� is a δ-AR domain) then 1

2I+KA

is an invertible operator on
[
Xv

]M
and the function u : �→ CM defined as

u(x) :=
(
DA

(
1
2I +KA

)−1
f
)
(x) for all x ∈ � (8.225)

is a solution of the Dirichlet Problem (8.224). Moreover,

‖Nκu‖Xv ≈ ‖f ‖[Xv]M . (8.226)

Furthermore, the function u defined in (8.225) satisfies the following regularity
result

Nκ(∇u) ∈ Xv ⇐⇒ f ∈ [
(Xv)1

]M
, (8.227)

and if either of these conditions holds then

(∇u)∣∣κ−n.t.

∂�
exists (in Cn·M ) at σ -a.e. point on ∂� and

‖Nκu‖Xv + ‖Nκ(∇u)‖Xv ≈ ‖f ‖[(Xv)1]M .
(8.228)

(b) [Uniqueness] Whenever Adis
L� �= ∅, there exists δ ∈ (0, 1) depending only on n,

', L, and the Ahlfors regularity constant of ∂� such that if ‖ν‖[BMO(∂�,σ)]n < δ

(i.e., if � is a δ-AR domain) then the Dirichlet Problem (8.224) has at most one
solution.

(c) [Well-Posedness] If Adis
L �= ∅ and Adis

L� �= ∅ then there exists δ ∈ (0, 1)
which depends only on n, ', L, and the Ahlfors regularity constant of ∂� such
that if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) then the Dirichlet
Problem (8.224) is uniquely solvable and the solution satisfies (8.226).

(d) [Sharpness] If Adis
L = ∅ then the Dirichlet Problem (8.224) may fail to

be solvable (actually for boundary data belonging to an infinite dimensional
subspace of the corresponding weighted Banach function space). Also, if there
holds Adis

L� = ∅ then the Dirichlet Problem (8.224) may have more than one
solution (in fact, the linear space of null-solutions may actually be infinite
dimensional).

Proof In broad outline, we follow the same steps as in the proof of Theorem 6.2.
For the existence of solutions, note that Theorem 8.10 guarantees the existence of
some δ ∈ (0, 1), whose nature is as specified in the statement of the theorem, with
the property that whenever � is a δ-AR domain the operator 1

2I +KA is invertible

on
[
Xv

]M . Hence, the function u in (8.225) is meaningfully defined and, according
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to (3.23), Proposition 8.2, and Theorem 8.3, we have u ∈ [
C∞(�)

]M , Lu = 0 in
�, Nκu ∈ Xv , and (8.226) holds. Concerning the equivalence claimed in (8.227), if
f ∈ [

(Xv)1
]M then Theorem 8.10 gives (assuming δ > 0 is sufficiently small)

that
(

1
2I +KA

)−1
f ∈ [

(Xv)1
]M . With this in hand, (8.85)–(8.86) then imply

that the function u defined as in (8.225) satisfies Nκ(∇u) ∈ Xv , the nontangential

boundary trace (∇u)∣∣κ−n.t.

∂�
exists σ -a.e. on ∂�, and the left-pointing inequality in

the equivalence claimed in (8.228) holds. In particular, this justifies the left-pointing
implication in (8.227). The right-pointing implication in (8.227) together with the
right-pointing inequality in the equivalence claimed in (8.228) are consequences of
Propositions 8.2 and 2.22.

Consider next the uniqueness result claimed in item (b). We have two different
and independent arguments, each of them interesting in its own right. To describe
the first approach, suppose Adis

L� �= ∅ and pick some A ∈ AL such that A� ∈ Adis
L� .

Also, consider ' ≥ 4‖M‖Xv→Xv
∥∥M′∥∥

X
′
v→X′v . Let w̃ ∈ A2(∂�, σ) be a weight

with the property that [w̃]A2 ≤ ' and note that this entails [w̃−1]A2 ≤ '. From
Theorem 4.8, presently used with L replaced by L�, p = 2, and w̃−1 in place of
w, we know that there exists δ ∈ (0, 1), which depends only on n, p, ', A, and the
Ahlfors regularity constant of ∂�, such that if ‖ν‖[BMO(∂�,σ)]n < δ then

1
2I +KA� :

[
L2

1(∂�, w̃
−1)

]M −→ [
L2

1(∂�, w̃
−1)

]M (8.229)

is an invertible operator. By eventually decreasing the value of δ ∈ (0, 1) if
necessary, we may ensure that � is an NTA domain with unbounded boundary
(cf. Theorem 2.3). In such a case, (6.2) guarantees that � is globally pathwise
nontangentially accessible.

To proceed, let E = (
Eαβ

)
1≤α,β≤M be the fundamental solution associated with

the system L as in Theorem 3.1. Fix x& ∈ Rn \� along with x0 ∈ �, arbitrary. Also,
pick ρ ∈ (

0, 1
4 dist(x0, ∂�)

)
and define K := B(x0, ρ). Finally, recall the aperture

parameter κ̃ > 0 associated with � and κ as in Theorem 6.1. Next, for each fixed
β ∈ {1, . . . ,M}, consider the CM -valued function

f (β)(x) := (
Eβα(x − x0)− Eβα(x − x&)

)
1≤α≤M, ∀ x ∈ ∂�. (8.230)

From (8.230), (3.16), and the Mean Value Theorem we then conclude that

|f (β)(x)| ≤ C

1 + |x|n−1
, |∇f (β)(x)| ≤ C

1 + |x|n . (8.231)

Hence, by (2.587), (2.579), and (2.572),

f (β) ∈ [
L2

1(∂�, w̃
−1)

]M
. (8.232)
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It is useful to quantify this membership. Specifically, having fixed a point z0 ∈ ∂�

and arguing as in (8.41)–(8.52), we may write

∥
∥∥f (β)

∥
∥∥[L2

1(∂�,w̃
−1)]M ≤ C

∥
∥∥∥

1

1 + | · |n−1

∥
∥∥∥
L2(∂�,w̃−1)

≤ C
∥∥M(1(z0,1))

∥∥
L2(∂�,w̃−1)

≤ C [w̃−1]A2

( ˆ
(z0,1)

w̃−1 dσ
)1/2

≤ C [w̃]3/2
A2

σ
(
(z0, 1)

)

w̃
(
(z0, 1)

)1/2 <∞, (8.233)

for some geometric constant C ∈ (0,∞). As a consequence, with
(

1
2I +KA�

)−1

denoting the inverse of the operator in (8.229),

vβ :=
(
vβα

)
1≤α≤M := DA�

( (
1
2I +KA�

)−1
f (β)

)
(8.234)

is a well-defined CM -valued function in�which, thanks to Proposition 3.5, satisfies

vβ ∈
[
C∞(�)

]M
, L�vβ = 0 in �,

Nκ̃ vβ ∈ L2(∂�, w̃−1), Nκ̃ (∇vβ) ∈ L2(∂�, w̃−1),

and vβ
∣∣κ̃−n.t.

∂�
= f (β) at σ -a.e. point on ∂�.

(8.235)

Moreover, from (8.232)–(8.234) and (3.114) we see that

(∇vβ
)∣∣κ̃−n.t.

∂�
exists (in Cn·M ) at σ -a.e. point on ∂�. (8.236)

Subsequently, for each pair of indices α, β ∈ {1, . . . ,M} define

Gαβ(x) := vβα(x)−
(
Eβα(x−x0)−Eβα(x−x&)

)
, ∀ x ∈ �\{x0}. (8.237)

If we now consider G := (
Gαβ

)
1≤α,β≤M regarded as a CM×M -valued function

defined Ln-a.e. in �, then from (8.237) and Theorem 3.1 we see that G belongs to
the space

[
L1

loc(�,L
n)
]M×M . Also, by design,

L�G = −δx0IM×M in
[
D′(�)

]M×M and

G
∣∣κ̃−n.t.

∂�
= 0 at σ -a.e. point on ∂�,

(∇G)∣∣κ̃−n.t.

∂�
exists at σ -a.e. point on ∂�,

(8.238)
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while if v := (
vβα

)
1≤α,β≤M then from (2.8), (3.16), and the Mean Value Theorem

it follows that at each point x ∈ ∂� we have

(
N�\K
κ̃ G

)
(x) ≤ (

Nκ̃ v
)
(x)+ Cx0,ρ(1 + |x|)1−n and

(
N�\K
κ̃ (∇G))(x) ≤ (

Nκ̃ (∇v)
)
(x)+ Cx0,ρ(1 + |x|)−n,

(8.239)

where the constant Cx0,ρ ∈ (0,∞) is independent of x.
To proceed, suppose now that u = (uβ)1≤β≤M is some CM -valued function in �

satisfying

u ∈ [
C∞(�)

]M
, Lu = 0 in �,

u
∣∣κ−n.t.

∂�
exists at σ -a.e. point on ∂�,

and Nκu belongs to the space X(w).

(8.240)

In view of (8.234)–(8.235), (3.113), and (8.233) we see that

‖Nκ̃ (∇v)‖L2(∂�,w̃−1) ≤ C

∥
∥∥f (β)

∥
∥∥[L2

1(∂�,w̃
−1)]M

≤ C [w̃ ]3/2
A2

σ
(
(z0, 1)

)

w̃
(
(z0, 1)

)1/2 (8.241)

for some constant C ∈ (0,∞), hence

ˆ
∂�

Nκu ·Nκ̃ (∇v) dσ ≤ C [w̃ ]3/2
A2

σ
(
(z0, 1)

)

w̃
(
(z0, 1)

)1/2
‖Nκu‖L2(∂�,w̃). (8.242)

If we now define

F :=
ˆ
∂�

Nκu ·Nκ̃ (∇v) dσ
1(z0,1)

σ
(
(z0, 1)

) and H := Nκu, (8.243)

then we may recast (8.242) as ‖F‖L2(∂�,w̃) ≤ C [w̃ ]3/2
A2
‖H‖L2(∂�,w̃). Remember

that this is valid for every w̃ ∈ A2(∂�, σ) such that [w̃ ]A2 ≤ ', and the choice of
' allows us to invoke Theorem 8.1 and obtain that ‖F‖Xv ≤ 23 C '3/2‖H‖Xv . This
further yields

ˆ
∂�

Nκu ·Nκ̃ (∇v) dσ ≤ 23 C '3/2 σ((z0, 1))1/2
∥∥1(z0,1)

∥∥
Xv

‖Nκu‖Xv , (8.244)
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where, as observed in the proof of Proposition 8.2, our current assumptions
guarantee that 0 <

∥∥1(z0,1)
∥∥
Xv

< ∞. From (8.239), (8.244), and Proposition 8.2
we then conclude that
ˆ
∂�

Nκu ·N�\K
κ̃ (∇G) dσ (8.245)

≤
ˆ
∂�

Nκu ·Nκ̃ (∇v) dσ + Cx0,ρ

ˆ
∂�

Nκu(x)

(1 + |x|)n dσ(x) ≤ C‖Nκu‖Xv <∞.

To summarize, the argument so far shows that there exists δ ∈ (0, 1) depending
only on n, p,',A, and the Ahlfors regularity constant of ∂�, such that if one
assumes ‖ν‖[BMO(∂�,σ)]n < δ (hence, if� is a δ-AR domain) then (8.245) holds. We
may then invoke Theorem 6.1 to conclude that the Poisson integral representation

formula (6.6) holds. In particular, this proves that whenever u
∣
∣κ−n.t.

∂�
= 0 at σ -a.e.

point on ∂� we necessarily have u(x0) = 0. Given that x0 has been arbitrarily
chosen in �, this ultimately shows such a function u is actually identically zero in
�. This finishes our first proof of the uniqueness result claimed in item (b).

Our second argument for the uniqueness result claimed in item (b) is as follows.
Suppose that Adis

L� �= ∅ and, with ' as in the statement, invoke Theorem 6.2 with
p := 2 to conclude that there exists δ ∈ (0, 1) which depends only on n, ', L, and
the Ahlfors regularity constant of ∂� with the property that if ‖ν‖[BMO(∂�,σ)]n < δ

(i.e., if � is a δ-AR domain) then for every w ∈ A2(∂�, σ) such that [w]A2 ≤ '

and for every function f ∈ [
L2(∂�,w)

]M the Dirichlet Problem (6.8) with p := 2
has at most one solution. Assume next that (8.224) has two solutions u1, u2

associated with the same boundary datum f0 ∈ [
Xv

]M . This readily gives that
u := u1 − u2 solves (8.224) with boundary datum f = f0 − f0 = 0 at σ -
a.e. point on ∂�. Using that Nκu ∈ Xv and Proposition 8.1 we conclude that
there exists some Muckenhoupt weight wu ∈ A2(∂�, σ), with the property that
[wu]A2 ≤ 4‖M‖Xv→Xv

∥∥M′∥∥
X
′
v→X′v and Nκu ∈ L2(∂�,wu). All these imply that u

solves the Dirichlet Problem (6.8) with p = 2, w = wu, f = 0 ∈ [
L2(∂�,wu)

]M .
As a consequence of the fact that [wu]A2 ≤ ' and the choice of δ we can then
conclude that, by uniqueness in Theorem 6.2, u is necessarily zero. Hence, u1 ≡ u2,
as desired.

Moving on, the claim in item (c) is a direct consequence of what we have already
proved in items (a)–(b). At this stage, we are left with justifying the claims in item
(d). Recall the second-order, weakly elliptic, constant (real) coefficient, symmetric,
n×n systemLD defined in (3.371). As noted in (3.406), this system has the property
that Adis

LD
= Adis

L�D
= ∅. Henceforth, assume � := Rn+ and canonically identify

∂� = Rn−1, and σ = Ln−1. Pick an arbitrary g ∈ Xv , with g �≡ 0 at Ln−1-a.e. point
on Rn−1, and define f := (0, . . . , 0, g) ∈ [Xv]n. Suppose there exists a solution
u of the Dirichlet Problem formulated as in (8.224) with � := Rn+ and for the
boundary datum f . Proposition 8.1 applied to Nκu ∈ Xv guarantees the existence
of a weight wu ∈ A2(R

n−1,Ln−1), with [wu]A2 ≤ 4‖M‖Xv→Xv
∥∥M′∥∥

X
′
v→X′v and
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such that Nκu ∈ L2(Rn−1, wu). Thus, (3.373) and (3.374) in Proposition 3.13 hold
with p := 2 and w := wu. As such, (3.375) yields

g = fn =
n−1∑

j=1

Rjfj = 0 at Ln−1-a.e. point on Rn−1, (8.246)

which contradicts our assumption that g �≡ 0 at Ln−1-a.e. point on Rn−1. This
proves that the boundary datum f = (0, . . . , 0, g) ∈ [Xv]n with g ∈ Xv satisfying
g �≡ 0 at Ln−1-a.e. point on Rn−1 yields a Dirichlet Problem formulated as
in (8.224) for � := Rn+ which does not have a solution.

To deal with the lack of uniqueness for the same system LD in the upper half-
space, we are going to prove that for any scalar function

ω ∈ C∞(Rn+) with ω = 0 in Rn+ and Nκω,Nκ(∇ω) ∈ Xv, (8.247)

the vector-valued function

�u : Rn+ −→ Cn given by

�u(x) := xn(∇ω)(x) for each x = (x1, . . . , xn) ∈ Rn+
(8.248)

satisfies

�u ∈ [
C∞(Rn+)

]n
, LD �u = 0 in Rn+, Nκ �u, Nκ(∇�u) ∈ Xv,

and �u∣∣κ−n.t.

∂Rn+
= 0 at Ln−1-a.e. point on Rn−1.

(8.249)

Assuming this momentarily, let us show that the space of solutions for the Dirichlet
Problem formulated as in (8.224) with � := Rn+ and zero boundary data is infinite
dimensional. To this end, for each k ∈ Z pick a non-trivial function φk ∈ C∞

0 (Rn)

with suppφk ⊂ B
(
(k, 0, . . . , 0), 1/4

)
. Then φk

∣∣
∂Rn+

∈ (Xv)1 for every k ∈ Z,

by properties (d) and (g) in Definition 8.1, the fact that v ∈ L1
loc(R

n−1,Ln−1),
and (2.579). We may then rely on part (c) in Theorem 8.19 (formulated a little
later below) with L being the Laplacian in Rn (a choice ensuring that Adis

L �= ∅

and Adis
L� �= ∅) and � := Rn+ (so that ‖ν‖[BMO(∂�,σ)]n = 0) to see that the

problem (8.256) with boundary datum f := φk
∣∣
∂Rn+

has a unique solution ωk (given

by (8.257)) for every k ∈ Z. Associated with each ωk define �uk as in (8.248). In
particular, (8.249) holds for each �uk . To proceed, given N ∈ N and {αk}Nj=−N ⊂ C
assume that

∑N
k=−N αk �uk ≡ 0 in Rn+. In turn, this implies

∑N
k=−N αk∇ωk ≡ 0 in

R
n+, hence

∑N
k=−N αkωk ≡ c in Rn+ for some c ∈ C. Taking nontangential traces

then leads to
∑N

k=−N αkωk = c at Ln−1-a.e. point in Rn−1. In view of the fact
that the supports of φk’s are pairwise disjoint, each φk is non-trivial, and φk ≡ 0
in B

(
(0, 1, 0, . . . , 0), 1/4

)
, we may then conclude that c = 0 and αk = 0 for
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−N ≤ k ≤ N . Thus, �u−N, . . . , �uN are linearly independent for every N ∈ N.
Ultimately, the above argument shows that the space of solutions of the Dirichlet
Problem formulated as in (8.224) with � := Rn+ and zero boundary data is infinite
dimensional.

There remains to justify (8.249). In this regard, observe that the first two
properties and the last property listed there follow from (8.247)–(8.248) and
Proposition 8.4 applied to the Laplacian. Thus, we are left with showing that

‖Nκ �u‖Xv + ‖Nκ(∇�u)‖Xv ≤ ‖Nκω‖Xv + ‖Nκ(∇ω)‖Xv . (8.250)

With this goal in mind, set

F :=
{(
Nκ �u+Nκ(∇�u),Nκω +Nκ(∇ω)

) : ω ∈ C∞(Rn+)

with ω = 0 in Rn+ and Nκω, Nκ(∇ω) ∈ Xv
}
.

(8.251)

Let us fix some (F,G) ∈ F, say F = Nκ �u +Nκ(∇�u) and G = Nκω +Nκ(∇ω),
with ω as in (8.247) and �u as in (8.249). Let us also pick an arbitrary Muckenhoupt
weight w ∈ A2(R

n−1,Ln−1) and introduce the aperture κ ′ := 3 + 2κ . Then
B(y, yn/2) ⊂ �κ ′(x′, 0) for every y = (y′, yn) ∈ �κ(x

′, 0) and every x′ ∈ Rn−1.
This, the fact that ω is harmonic, and interior estimates for harmonic functions, then
yield

Nκ(�u)(x′, 0) ≤ CnNκ ′(ω)(x
′, 0) and Nκ(∇�u)(x′, 0) ≤ CnNκ ′(∇ω)(x′, 0)

(8.252)
for each x′ ∈ Rn−1, where Cn ∈ (0,∞) depends only on the dimension n.
Combining (8.252) with [92, Proposition A.6] (the reader is advised that the
dependence of the constant in terms of [w]A2 is not explicitly stated in [92], but
a cursory inspection shows that [w]2A2

makes the argument work) gives

‖F‖L2(Rn−1,w) ≤ ‖Nκ �u‖L2(Rn−1,w) + ‖Nκ(∇�u)‖L2(Rn−1,w)

≤ Cn‖Nκ ′ω‖L2(Rn−1,w) + Cn‖Nκ ′(∇ω)‖L2(Rn−1,w)

≤ Cn,κ [w]2A2
‖Nκω‖L2(Rn−1,w) + Cn,κ [w]2A2

‖Nκ(∇ω)‖L2(Rn−1,w)

≤ Cn,κ [w]2A2
‖G‖L2(Rn−1,w), (8.253)

where Cn,κ depends only on n and κ . We then invoke Theorem 8.1 with p0 = 2 to
obtain

‖Nκ �u‖Xv + ‖Nκ(∇�u)‖Xv ≤ 2‖F‖Xv ≤ Cn,κ'
2‖G‖Xv
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≤ Cn,κ'
2‖Nκω‖Xv + Cn,κ'

2‖Nκ(∇ω)‖Xv .
(8.254)

This gives (8.250) which, in turn, finishes the proof of (8.249). The proof of
Theorem 8.18 is therefore complete. � 

We continue with the Inhomogeneous Regularity Problem for weakly elliptic
systems in δ-AR domains with boundary data in weighted Banach function spaces.

Theorem 8.19 Let � ⊆ Rn be an Ahlfors regular domain. Set σ := Hn−1�∂�,
denote by ν the geometric measure theoretic outward unit normal to�, and fix some
aperture parameter κ ∈ (0,∞). Also, pick v ∈ L1

loc(∂�, σ) with v > 0 at σ -a.e.
point on ∂�. Let Xv be a Banach function space over (∂�, vσ) and denote by X′v
its Köthe dual. If M denotes the Hardy–Littlewood maximal operator on (∂�, σ)
and M′f :=M(f v)/v for any σ -measurable function f on ∂�, assume that

M is bounded on Xv and M′ is bounded on X′v, (8.255)

and fix some ' ≥ 4‖M‖Xv→Xv
∥∥M′∥∥

X
′
v→X′v . Given a homogeneous, second-order,

constant complex coefficient, weakly elliptic M ×M system L in Rn, consider the
Inhomogeneous Regularity Problem

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u ∈ [
C∞(�)

]M
,

Lu = 0 in �,

Nκu, Nκ(∇u) ∈ Xv,
u
∣∣κ−n.t.

∂�
= f ∈ [

(Xv)1
]M

.

(8.256)

In relation to this, the following statements are true:

(a) [Existence and Estimates] If Adis
L �= ∅ and A ∈ Adis

L , then there exists some
δ ∈ (0, 1) which depends only on n, ', A, and the Ahlfors regularity constant
of ∂� such that if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) then the
operator 1

2I +KA is invertible on the weighted Banach function-based Sobolev

space
[
(Xv)1

]M
and the function

u(x) :=
(
DA

(
1
2I +KA

)−1
f
)
(x), ∀ x ∈ � (8.257)

is a solution of the Inhomogeneous Regularity Problem (8.256). In addition,

‖Nκu‖Xv ≈ ‖f ‖[Xv]M and

‖Nκu‖Xv + ‖Nκ(∇u)‖Xv ≈ ‖f ‖[(Xv)1]M .
(8.258)
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(b) [Uniqueness] Whenever Adis
L� �= ∅, there exists δ ∈ (0, 1) which depends

only on n, ', L, and the Ahlfors regularity constant of ∂� such that if
‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) then the Inhomogeneous
Regularity Problem (8.256) has at most one solution.

(c) [Well-Posedness] If Adis
L �= ∅ and Adis

L� �= ∅ then there exists δ ∈ (0, 1)
which depends only on n, ', L, and the Ahlfors regularity constant of ∂�
such that if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) then the
Inhomogeneous Regularity Problem (8.256) is uniquely solvable and the solution
satisfies (8.258).

(d) [Sharpness] If Adis
L = ∅ the Inhomogeneous Regularity Problem (8.256) may fail

to be solvable (actually for boundary data belonging to an infinite dimensional
subspace of the corresponding weighted Banach function-based Sobolev space)
even when � is a half-space, and if Adis

L� = ∅ the Inhomogeneous Regularity
Problem (8.256) may possess more than one solution (in fact, the linear space of
null-solutions may actually be infinite dimensional) even when� is a half-space.
In particular, if either Adis

L = ∅ or Adis
L� = ∅, then the Inhomogeneous Regularity

Problem (8.256) may fail to be well posed even when � is a half-space.

Proof All desired conclusions follow from Theorems 8.10, 8.18, and 6.5. Item (d)
follow easily from the proof of (d) of Theorem 8.18. Specifically, we have shown
that the Dirichlet Problem formulated as in (8.224) with � := Rn+, the n×n system
L := LD , and any boundary datum of the form f := (0, . . . , 0, g) ∈ [(Xv)1]n with
g ∈ (Xv)1 satisfying g �≡ 0 at Ln−1-a.e. point on Rn−1 is not solvable. As such,
the Inhomogeneous Regularity Problem does not have a solution in this context
either. Concerning the lack of uniqueness, the proof of (d) of Theorem 8.18 actually
gives that there exist infinitely many linear independent �uk’s as in (8.247)–(8.248)
so that (8.249) holds for each of them. The latter implies that each �uk is actually a
solution of the Inhomogeneous Regularity Problem with zero boundary trace. � 

The next goal is to formulate and solve the Homogeneous Regularity Problem
with boundary data from homogeneous weighted Banach function-based Sobolev
spaces. This augments solvability results established earlier in Theorem 8.18 and
Theorem 8.19.

Theorem 8.20 Let � ⊆ Rn be an Ahlfors regular domain. Define σ := Hn−1�∂�,
denote by ν the geometric measure theoretic outward unit normal to �, and fix an
aperture parameter κ > 0. In addition, pick v ∈ L1

loc(∂�, σ) with v > 0 at σ -a.e.
point on ∂�. Let Xv be a Banach function space over (∂�, vσ) and let X′v be its
Köthe dual. With M denoting the Hardy–Littlewood maximal operator on (∂�, σ)
and M′f :=M(f v)/v for any σ -measurable function f on ∂�, assume that

M is bounded on Xv and M′ is bounded on X′v, (8.259)

and fix some ' ≥ 4‖M‖Xv→Xv
∥∥M′∥∥

X
′
v→X′v . For a given homogeneous, second-

order, constant complex coefficient, weakly ellipticM×M system L in Rn, consider
the Homogeneous Regularity Problem
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u ∈ [
C∞(�)

]M
,

Lu = 0 in �,

Nκ(∇u) ∈ Xv,
u
∣
∣κ−n.t.

∂�
= f ∈ [

(
.
Xv)1

]M
,

(8.260)

where (
.
Xv)1 is the homogeneous weighted Banach function-based Sobolev space

defined in (8.88). In relation to this, the following statements are valid:

(a) [Existence, Estimates, and Integral Representations] If Adis
L �= ∅ then there

exists δ ∈ (0, 1) which depends only on n, ', L, and the Ahlfors regularity
constant of ∂� with the property that if ‖ν‖[BMO(∂�,σ)]n < δ (a scenario
which ensures that � is a δ-AR domain; cf. Definition 2.15) then the following
properties are true. First, the operator

[
Smod

] : [Xv
]M −→ [

(
.
Xv)1

/ ∼ ]M (8.261)

is surjective and the Homogeneous Regularity Problem (8.260) is solvable. More
specifically, with [f ] ∈ [

(
.
Xv)1

/ ∼ ]M
denoting the equivalence class (modulo

constants) of the boundary datum f , and with

g ∈ [
Xv

]M
selected so that

[
Smod

]
g = [f ], (8.262)

there exists a constant c ∈ CM such that the function

u := Smodg + c in � (8.263)

is a solution of the Homogeneous Regularity Problem (8.260). In addition, this
solution satisfies (with implicit constants independent of f )

‖Nκ(∇u)‖Xv ≈ ‖∇tanf ‖[Xv]n·M . (8.264)

Second, for each coefficient tensor A ∈ Adis
L the operator

1
2I +

[
K

A,mod

] : [( .Xv)1/ ∼
]M −→ [

(
.
Xv)1/ ∼

]M (8.265)

is an isomorphism, and the Homogeneous Regularity Problem (8.260) may be
solved as

u := D
A,modh+ c in �, (8.266)

for a suitable constant c ∈ CM and with
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h ∈ [
(
.
Xv)1

]M
such that [h] =

(
1
2I +

[
K

A,mod

])−1[f ]. (8.267)

Moreover, this solution continues to satisfy (8.264).
(b) [Uniqueness] Whenever Adis

L� �= ∅, there exists δ ∈ (0, 1) which depends only
on n, ', L, and the Ahlfors regularity constant of ∂� with the property that
if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) then the Homogeneous
Regularity Problem (8.260) has at most one solution.

(c) [Well-Posedness and Additional Integrability/Regularity] Whenever Adis
L �= ∅

and Adis
L� �= ∅ it follows that there exists δ ∈ (0, 1) which depends only on n, ',

L, and the Ahlfors regularity constant of ∂� such that if ‖ν‖[BMO(∂�,σ)]n < δ

(i.e., if � is a δ-AR domain) then the Homogeneous Regularity Problem (8.260)
is uniquely solvable. Moreover, the unique solution u of (8.260) satisfies (in a
quantitative fashion)

Nκu ∈ Xv ⇐⇒ f ∈ [
(Xv)1

]M
. (8.268)

In particular, the equivalence in (8.268) proves that the unique solution of the
Homogeneous Regularity Problem (8.260) for a boundary datum f belonging to[
(Xv)1

]M
(which is a subspace of

[
(
.
Xv)1

]M
; cf. (8.90)) is actually the unique

solution of the Inhomogeneous Regularity Problem (8.256) for the boundary
datum f .

(d) [Sharpness] If Adis
L = ∅ the Homogeneous Regularity Problem (8.260) may fail

to be solvable (actually for boundary data belonging to an infinite dimensional
subspace of the corresponding homogeneous weighted Banach function-based
Sobolev space), and if Adis

L� = ∅ the Homogeneous Regularity Problem (8.260)
may possess more than one solution (in fact, the linear space of null-solutions
may actually be infinite dimensional), even in the case when � = R

n+. In
particular, if either Adis

L = ∅ or Adis
L� = ∅, then the Homogeneous Regularity

Problem (8.260) may fail to be well posed, again, even in the case when� = Rn+.

Proof All claims are established by reasoning along the lines of the proof of
Theorem 6.8, now making use of Propositions 8.2, 8.5, Theorems 8.4, 8.5, 8.6, 8.10,
8.12, and 8.13.

One can alternatively prove all the claims in items (a)–(c) via extrapolation.
For example, to justify the claims in item (a), for every f ∈ [

(
.
Xv)1

]M we may
apply Proposition 8.1 to the function

∑n
j,k=1 |∂τjkf | ∈ Xv to produce a weight

wf ∈ A2(∂�, σ) with the property that
∑n

j,k=1 |∂τjkf | ∈ L2(∂�,wf ). This and

Remark 2.4 imply that f ∈ [ .
L2

1(∂�,wf )
]M . We may then rely on part (a) in

Theorem 6.8 to solve (6.64) with p := 2 and w := wf . As we can do this with

any f ∈ [
(
.
Xv)1

]M , we can then extrapolate the estimates in (6.68) by means of
Theorem 8.1 to show that (8.264) holds.
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Uniqueness can be established much as in the second argument used in the
proof of item (b) of Theorem 8.18. More specifically, assume the function u solves
the boundary problem (8.260) with datum f = 0, and apply Proposition 8.1 to
Nκ(∇u) ∈ Xv to find wu ∈ A2(∂�, σ) so that Nκ(∇u) ∈ L2(∂�,wu). Then part
(b) in Theorem 6.8 shows that umust be zero. While carrying out this argument, one
needs to use that [wu]A2 ≤ ', and also that Theorem 6.8 part (b) holds for some δ
(depending on ') and for all w ∈ A2(∂�, σ) with [w]A2 ≤ '.

To justify (d) recall the second-order, weakly elliptic, constant (real) coefficient,
symmetric, n × n system LD defined in (3.371), for which Adis

LD
= Adis

L�D
= ∅

(cf. (3.406)). Pick an arbitrary non-constant function g ∈ (
.
Xv)1 and use it to

define f := (0, . . . , 0, g) ∈ [( .Xv)1]n. Suppose there exists a solution u of the
Homogeneous Regularity Problem (8.260) formulated in� := Rn+ forL := LD and
the boundary datum f . We agree to identify ∂Rn+ with Rn−1 and σ with Ln−1. By
Proposition 8.1 applied to Nκ(∇u) ∈ Xv , there exists some Muckenhoupt weight
wu ∈ A2(R

n−1,Ln−1), with [wu]A2 ≤ 4‖M‖Xv→Xv
∥∥M′∥∥

X
′
v→X′v and such that

Nκ(∇u) ∈ L2(Rn−1, wu). Thus, (3.379) with p := 2 gives that

g = fn −
n−1∑

j=1

R
mod

j fj is constant in Rn−1, (8.269)

which contradicts our assumption that g is non-constant. This argument shows that
the boundary datum of the form f = (0, . . . , 0, g) ∈ [( .Xv)1]n with g ∈ (

.
Xv)1

non-constant cannot have a solution. On the other hand, as in the proof of item (d)

of Theorem 8.18, any �u as in (8.248) satisfies (8.249), hence �u is a null-solution of
the Homogeneous Regularity Problem (8.260) formulated in the domain � := Rn+
and for the operator L := LD . Finally, the argument there already gives that one can
find a family {�uk}k∈Z of such solutions which are linearly independent. � 

We next formulate and solve the Neumann Problem for weakly elliptic systems
in δ-AR domains with boundary data in weighted Banach function spaces.

Theorem 8.21 Let � ⊆ Rn be a UR domain. Denote by ν the geometric measure
theoretic outward unit normal to�, abbreviate σ := Hn−1�∂�, and fix an aperture
parameter κ > 0. Choose v ∈ L1

loc(∂�, σ) with v > 0 at σ -a.e. point on ∂�.
Let Xv be a Banach function space over (∂�, vσ) and let X′v be its Köthe dual.
With M denoting the Hardy–Littlewood maximal operator on (∂�, σ) and with
M′f :=M(f v)/v for any σ -measurable function f on ∂�, assume that

M is bounded on Xv and M′ is bounded on X′v, (8.270)

and fix some ' ≥ 4‖M‖Xv→Xv
∥∥M′∥∥

X
′
v→X′v . Next, suppose L is a homogeneous,

second-order, constant complex coefficient, weakly elliptic M × M system in Rn.
Finally, select some coefficient tensor A ∈ AL and consider the Neumann Problem
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u ∈ [
C∞(�)

]M
,

Lu = 0 in �,

Nκ(∇u) ∈ Xv,
∂Aν u = f ∈ [

Xv

]M
.

(8.271)

Then the following statements are valid:

(a) [Existence, Estimates, and Integral Representation] If A� ∈ Adis
L� then there

exists δ ∈ (0, 1) which depends only on n, ', A, and the Ahlfors regularity
constant of ∂� such that if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if� is a δ-AR domain) then

− 1
2I + K#

A� is an invertible operator on
[
Xv

]M
and the function u : � → C

M

defined as

u(x) :=
(
Smod

(
− 1

2I +K#
A�

)−1
f
)
(x) for all x ∈ �, (8.272)

is a solution of the Neumann Problem (8.271) which satisfies

‖Nκ(∇u)‖Xv ≤ C‖f ‖[Xv]M (8.273)

for some constant C ∈ (0,∞) independent of f . Also, the operator (8.195) is
surjective which implies that, for some constant C ∈ (0,∞),

there exists g ∈ [( .Xv)1]M with ∂Aν (DA,modg) = f and such that
‖g‖[( .Xv)1]M ≤ C‖f ‖[Xv]M . (8.274)

Consequently, the function

u := D
A,modg in � (8.275)

is a solution of the Neumann Problem (8.271) which continues to satisfy (8.273).
(b) [Uniqueness (modulo constants)] Whenever A ∈ Adis

L there exists δ ∈ (0, 1)
which depends only on n, ', A, and the Ahlfors regularity constant of ∂� such
that if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) then any two solutions
of the Neumann Problem (8.271) differ by a constant from CM .

(c) [Well-Posedness] Whenever A ∈ Adis
L and A� ∈ Adis

L� there exists δ ∈ (0, 1)
which depends only on n, ', A, and the Ahlfors regularity constant of ∂� such
that if ‖ν‖[BMO(∂�,σ)]n < δ (i.e., if � is a δ-AR domain) then the Neumann
Problem (8.271) is solvable, the solution is unique modulo constants from CM ,
and each solution satisfies (8.273).

Proof If A� ∈ Adis
L� then Theorem 8.10 guarantees the existence of some threshold

δ ∈ (0, 1), whose nature is as specified in the statement of the theorem, with the
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property that if � is a δ-AR domain then the operator − 1
2I + K#

A� is invertible on
[
Xv

]M . With this in hand, all claims in (a) up to, and including, (8.273) follow from
Proposition 8.2 and Theorem 8.5.

Next, the claims in (8.274) are consequences of the surjectivity of the operator
(8.195) (itself implied by item (2) of Theorem 8.14), and the Open Mapping
Theorem. In turn, (8.274) and Theorem 8.6 guarantee that the function u in (8.275)
solves the Neumann Problem (8.271) and satisfies (8.273). This takes care of the
claims in item (a).

The uniqueness result in (b) is proved as in Theorem 6.11, now relying on
Proposition 8.2 and Theorems 8.9, 8.2, 8.4, 8.6, 8.12. We additionally note that
there is an alternative argument to obtain the uniqueness based on Proposition 8.2,
Remark 8.2, and the uniqueness modulo constants of the Neumann problem in
weighted Lebesgue spaces (cf. part (c) in Theorem 6.11, plus the observation that
the dependence of the parameter δ on the weight is via the quantity '). � 

As in the case of the Neumann problem for weighted Lebesgue spaces we
observe that the Neumann Problem (8.271) for the two-dimensional Lamé system
allows for conormal derivatives associated with coefficient tensors of the form
A = A(ζ ) as in (4.401) for any ζ as in (6.155) (see Remarks 8.5 and 6.10 in this
regard).

Finally, we formulate and solve the Transmission Problem for weakly elliptic
systems in δ-AR domains with boundary data in weighted Banach function spaces.
In the formulation on this problem, the clarifications made right after the statement
of Theorem 6.15 continue to remain relevant.

Theorem 8.22 Let � ⊆ Rn be a UR domain. Denote by ν the geometric measure
theoretic outward unit normal to �, abbreviate σ := Hn−1�∂�, and set

�+ := �, �− := Rn \�. (8.276)

Also, having fixed some function v ∈ L1
loc(∂�, σ) with v > 0 at σ -a.e. point on

∂�, let Xv be a Banach function space over (∂�, vσ), and let X′v be its Köthe
dual. With M denoting the Hardy–Littlewood maximal operator on (∂�, σ) and
withM′f :=M(f v)/v for any σ -measurable function f on ∂�, assume that

M is bounded on Xv and M′ is bounded on X′v, (8.277)

and pick some ' ≥ 4‖M‖Xv→Xv
∥
∥M′∥∥

X
′
v→X′v . Also, fix an aperture parameter

κ > 0, and a transmission (or coupling) parameter η ∈ C. Next, assume L is a
homogeneous, second-order, constant complex coefficient, weakly elliptic M × M

system in Rn. Finally, select some A ∈ AL and consider the Transmission Problem
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u± ∈ [
C∞(�±)

]M
,

Lu± = 0 in �±,
Nκ(∇u±) ∈ Xv,
u+

∣∣κ−n.t.

∂�
− u−

∣∣κ−n.t.

∂�
= g ∈ [

(
.
Xv)1

]M
,

∂Aν u
+ − η · ∂Aν u− = f ∈ [

Xv

]M
.

(8.278)

In relation to this, the following statements are valid:

(a) [Uniqueness (modulo constants)] Suppose either

A� ∈ Adis
L� and η ∈ C \ {−1} (8.279)

or

A ∈ Adis
L and η ∈ C \ {0,−1}. (8.280)

Then there exists δ ∈ (0, 1) which depends only on n, η, ', A, and the Ahlfors
regularity constant of ∂� such that whenever ‖ν‖[BMO(∂�,σ)]n < δ (a scenario
which renders � a δ-AR domain; cf. Definition 2.15) it follows any two solutions
of the Transmission Problem (8.278) differ by a constant (from CM ).

(b) [Well-Posedness, Integral Representations, and Additional Regularity] Assume

A ∈ Adis
L ,A� ∈ Adis

L� , and η ∈ C \ {−1}. (8.281)

Then there exists some small δ ∈ (0, 1) which depends only on n,',A, η, and the
Ahlfors regularity constant of ∂� such that if ‖ν‖[BMO(∂�,σ)]n < δ (a scenario
which ensures that � is a δ-AR domain; cf. Definition 2.15) it follows that the
Transmission Problem (8.278) is solvable. Specifically, in the scenario described
in (8.281), the operator− η+1

2 I+(1−η)K#
A� is invertible on the weighted Banach

function space
[
Xv

]M
, the operator

[
Smod

]
is invertible from

[
Xv

]M
onto the

space
[
(
.
Xv)1/ ∼

]M
, and the functions u± : �± → CM defined as

u+ := S +
mod
h0 +S +

mod
h1 − c in �+,

u− := S −
mod
h0 in �−,

(8.282)

where the superscripts ± indicate that the modified single layer potentials are
associated with the sets �± and
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h1 :=
[
Smod

]−1[g] ∈ [
Xv

]M
, c := Smodh1 − g ∈ CM,

h0 :=
(
− η+1

2 I + (1 − η)K#
A�

)−1 (
f − (− 1

2I +K#
A�

)
h1

)
,

(8.283)

solve the Transmission Problem (8.278) and satisfy, for some finite constant C >

0 independent of f and g,

∥
∥Nκ(∇u±)

∥
∥
Xv

≤ C
(
‖f ‖[Xv]M + ‖g‖[( .Xv)1]M

)
. (8.284)

Moreover, any two solutions of the Transmission Problem (8.278) differ by a con-
stant (from CM ). In particular, any solution of the Transmission Problem (8.278)
satisfies (8.284).

Alternatively, under the conditions imposed in (8.281) and, again, assuming�
is a δ-AR domain with δ ∈ (0, 1) sufficiently small, a solution of the Transmission
Problem (8.278) may also be found in the form

u+ := D+
A,mod

ψ0 + c in �+,

u− := D−
A,mod

ψ1 in �−,
(8.285)

where the superscripts ± indicate that the modified double layer potentials are
associated with the sets �±, where c ∈ CM is a suitable constant, and where

ψ0, ψ1 ∈
[
(
.
Xv)1

]M
are two suitable functions satisfying

‖ψ0‖[( .Xv)1]M + ‖ψ1‖[( .Xv)1]M ≤ C
(
‖f ‖[Xv]M + ‖g‖[( .Xv)1]M

)
, (8.286)

for some constant C ∈ (0,∞) independent of f and g. In particular, u±
in (8.285) also satisfy (8.284).

(c) [Well-Posedness for η = 1] In the case when

η = 1 and � is a two-sided NTA domain with
an unbounded Ahlfors regular boundary

(8.287)

the Transmission Problem (8.278) is solvable, and any two solutions of the
Transmission Problem (8.278) differ by a constant. Any solution is given by

u+ := D+
A,mod

g −S +
mod
f + c in �+,

u− := −D−
A,mod

g −S −
mod
f + c in �−,

(8.288)

for some c ∈ CM , where the superscripts ± indicate that the modified layer
potentials are associated with the sets�± introduced in (8.276). In addition, any
solution satisfies (8.284).
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Proof The proofs of (a), (b), and the solvability stated in (c) follow much as in the
corresponding items in Theorem 6.15 upon invoking Proposition 8.2, Theorems 8.5,
8.6, 8.7, 8.10, 8.12, 8.13, and 8.14.

Regarding the uniqueness stated in (c) we just need to justify that, under the
assumption 8.287, the following property holds:

if u± solve the homogeneous version of the Transmission Problem
(8.278) (corresponding to having f = 0 and g = 0) then there
exists some c ∈ CM with the property that u± = c in �±.

(8.289)

To justify this, we note that (8.40) in Remark 8.2 (see also Proposition 8.2) implies
that Nκ(∇u±) ∈ Xv ↪→ Lr(∂�,w) for some integrability exponent r ∈ (1,∞)

and some weight w ∈ A1(∂�, σ) ⊆ Ar(∂�, σ), both depending only on n, ', and
the Ahlfors regularity constant of ∂�, with [w]A1 ≤ C'. In particular, u± solve
the homogeneous version of the Transmission Problem (6.178) with f = 0 and
g = 0, and with Lr(∂�,w) in place of Lp(∂�,w). We can then invoke part (c)
in Theorem 6.15 plus the fact that we are currently assuming 8.287 and conclude
from (6.190) that u± = c for some c ∈ CM in �±. This completes the proof. � 

We would like to observe that much as in Remark 6.12 one can also consider
a weighted Banach function space version of (6.256) where the transmission
parameter shows up in the formulation of the Dirichlet boundary condition (as
opposed to the Neumann boundary condition, as was the case in (8.278)). Also,
as in Remark 6.14 one can consider the Reduced Transmission Problem which
corresponds to having g = 0 in (8.278) (cf. (6.258)). For example, under the
assumption A� ∈ Adis

L� and η ∈ C\ {−1}, it follows that there exists some δ ∈ (0, 1)

which depends on the same parameters as before such that − η+1
2 I + (1 − η)K#

A�
is an invertible operator on

[
Xv

]M and the functions u± : �± → C
M defined as

in (6.259) solve the associated Reduced Transmission Problem formulated (8.278)
with g = 0 (cf. (6.258)) and satisfy, for some constant C ∈ (0,∞) independent of
f ,

∥∥Nκ(∇u±)
∥∥
Xv

≤ C‖f ‖[Xv]M . (8.290)

Moreover, the result established in item (a) of Theorem 8.22 working under the
hypotheses in (8.279) gives uniqueness (modulo constants) for the associated
Reduced Transmission Problem (8.278) with g = 0 (cf. (6.258)).

We close by making two remarks. First, in the formulation of the Transmission
Problem (8.278) for the two-dimensional Lamé system, we may allow conormal
derivatives associated with coefficient tensors of the form A = A(ζ ) as in (4.401)
for any ζ as in (6.262) (see Remark 8.5 and Remark 6.16 in this regard). Second,
much as in §6, all solvability results established in this section turn out to be stable
under small perturbations of the coefficient tensors involved.
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8.7 Examples of Weighted Banach Function Spaces

The goal in this section is to provide relevant, concrete examples, of weighted (and
unweighted) Banach function spaces for which our previous results pertaining to the
solvability of boundary value problems in such functional analytic settings apply.
We shall start by considering the case of general (unweighted) Banach function
spaces. Next, we will restrict ourselves to the smaller collection of rearrangement
invariant Banach function spaces, in which case we will be able to work with
weighted spaces where the weights belong to some appropriate Muckenhoupt class.

8.7.1 Unweighted Banach Function Spaces

Let � ⊆ Rn be a closed Ahlfors regular set and abbreviate σ := Hn−1��. As in
the past, we denote by M the Hardy–Littlewood maximal operator on (�, σ ) and
set M′f := M(f v)/v for each σ -measurable function f on �. In this section we
take X to be a Banach function space over (�, σ ) with the property that

M is bounded both on X and X�, (8.291)

where X′ is the Köthe dual of X. To frame this example into the template used in
previous sections, take v ≡ 1, so Xv = X and M′ = M. As such, Theorem 8.1
and Proposition 8.1 stated in the current context simply involve Xv = X. The same
applies to Theorem 8.2, Proposition 8.2, and Remark 8.2 with the natural choice
' := 4‖M‖X→X‖M‖X′→X′ .

Suppose � ⊆ Rn is an open set such that ∂� is a UR set and set σ := Hn−1�∂�.
Specialize the earlier discussion to the case when we have � := ∂�. Specifically,
assume X is a Banach function space over (∂�, σ) so that (8.291) holds. If we pick
' := 4‖M‖X→X‖M‖X′→X′ we have versions of Propositions 8.3, 8.4, 8.5, 8.6, 8.7,
Theorems 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 8.10, 8.11, 8.12, 8.13, 8.14, 8.15, 8.16,
and 8.17, Lemma 8.1, and Corollary 8.1. All of them are valid for X and the
implicit constants will depend on X via the quantity ' := 4‖M‖X→X‖M‖X′→X′ .
Concerning the topic of boundary value problems, we have versions of Theo-
rems 8.18, 8.19, 8.20, 8.21, and 8.22, which give existence, estimates uniqueness,
integral representation, uniqueness, and ultimately well-posedness for the Dirichlet
Problem, the Inhomogeneous Regularity Problem, the Homogeneous Regularity
Problem, Neumann Problem, and the Transmission Problem for the Banach function
space X, where the implicit constants and δ depend on X only via the quantity
' := 4‖M‖X→X‖M‖X′→X′ (more specifically, they depend on the operator norms
of M on X and X′).

We close by mentioning some relevant examples of spaces to which the results
in this chapter apply (later on we will consider weighted versions).
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Example 8.1 If X := Lp(∂�, σ) is a Lebesgue space with p ∈ (1,∞) then M is
bounded on X and X′ = Lp

′
(∂�, σ) where p′ is the Hölder conjugate exponent of

p. Hence, we recover the results from previous chapters dealing with unweighted
Lebesgue spaces.

Example 8.2 If X := Lp,q(∂�, σ) with p ∈ (1,∞) and q ∈ [1,∞] is a Lorentz
space, then by real interpolation the operator M is bounded both on the space X and
on X′ = Lp

′,q ′(∂�, σ), where p′, q ′ are the Hölder conjugate exponents of p, q. In
this case, we recover the results in Remarks 4.8, 4.11, 4.16, 6.1, 6.2, 6.9, and 6.15
in the regime q ∈ [1,∞].

Example 8.3 Given a measurable function p(·) : ∂� → (1,∞), the variable
Lebesgue spaceLp(·)(∂�, σ) is defined as the collection of all measurable functions
f such that, for some λ > 0,

ˆ
∂�

( |f (x)|
λ

)p(x)

dσ(x) <∞. (8.292)

Here and elsewhere, we follow the custom of writing p(·) instead of p in order to
emphasize that the exponent is a function and not necessarily a constant. The set
Lp(·)(∂�, σ) becomes a Banach function space when equipped with the function
norm

‖f ‖Lp(·)(∂�,σ) := inf

{
λ > 0 :

ˆ
∂�

( |f (x)|
λ

)p(x)

dσ(x) ≤ 1

}
. (8.293)

This family of spaces generalizes the scale of ordinary Lebesgue spaces. Indeed,
if p(x) ≡ p0, then Lp(·)(∂�, σ) equals Lp0(∂�, σ). The Köthe dual space of
Lp(·)(∂�, σ) is Lp

′(·)(∂�, σ), where the conjugate exponent function p′(·) is
uniquely defined by the demand that

1

p(x)
+ 1

p′(x)
= 1, ∀ x ∈ ∂�. (8.294)

In this setting, we shall consider boundary value problems in variable Lebesgue
spaces Lp(·)(∂�, σ) working under the assumption that

M is bounded on both Lp(·)(∂�, σ) and Lp
′(·)(∂�, σ). (8.295)

As such, it is of interest to find exponent functions for which our working
assumptions are satisfied. In this regard, it is shown in [1, Corollary 1.8] that (8.295)
holds provided that

1 < ess inf
∂�

p(·) ≤ ess sup
∂�

p(·) <∞ (8.296)
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and there exist constants C ∈ (0,∞) and p∞ ∈ (0,∞), along with some point
x0 ∈ ∂�, such that

|p(x)− p(y)| ≤ C

log(e + |x − y|−1)
, |p(x)− p∞| ≤ C

log(e + |x0 − y|) ,
(8.297)

for every x, y ∈ ∂�.

8.7.2 Rearrangement Invariant Banach Function Spaces

In this section we consider the subclass of Banach function spaces which are
rearrangement invariant. To set the stage, assume that

(�,M) is a measurable space, and μ is a positive, non-atomic,
sigma-finite measure on the sigma-algebra M, with μ(�) > 0.

(8.298)

Let Mμ be the set of all complex-valued μ-measurable functions on � and let μf
denote the distribution function of f ∈ Mμ, that is,

μf (λ) = μ({x ∈ � : |f (x)| > λ}), λ ∈ [0,∞). (8.299)

Definition 8.2 Assume X is a Banach function space over (�,μ). One says that X
is rearrangement invariant (or RIBFS) if ‖f ‖X = ‖g‖X for every pair of
functions f, g ∈ X satisfying μf = μg .

Lebesgue spaces, Lorentz spaces, and Orlicz spaces are examples of
rearrangement invariant function spaces. Given f ∈ Mμ, the decreasing
rearrangement of f with respect to μ is the function f ∗μ (or simply f ∗)
defined as2

f ∗μ(t) := inf{λ ≥ 0 : μf (λ) ≤ t} for each t ∈ [0, μ(�)). (8.300)

Note that f and f ∗μ have the same distribution function. As a consequence we
have the Luxemburg Representation Theorem (cf. [15, Theorem 4.10, p. 62], [15,
Theorem 2.7, p. 51], as well as the comment on [15, p. 64] and [15, Exercise 15,
p. 90], bearing in mind (8.298)) stating that:

2 One may define f ∗μ(t) as in (8.300) for each t ≥ 0, though now f ∗μ(t) = 0 whenever t > μ(�).
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If X is a RIBFS over the measure space (�,μ) then there exists a

unique RIBFSX over
(
[0, μ(�)),L1

)
such that for each function

f ∈ Mμ one has f ∈ X if and only if f ∗μ ∈ X, as well as∥∥f ∗μ
∥∥
X
= ‖f ‖X. Also, the associated space X′ of X is itself a

RIBFS over (�,μ) and one has X′ = X′ := (X)′.

(8.301)

For the goals we have in mind we shall need to define Boyd indices, which
contain information about how to interpolate operators in this context.

Definition 8.3 Let X be a RIBFS over (�,μ). The lower and upper Boyd indices
are defined by

pX := lim
t→∞

ln t

ln ‖Dt‖X→X
, qX := lim

t→0+
ln t

ln ‖Dt‖X→X
, (8.302)

where Dt : X → X is the dilation operator defined for each t > 0, f ∈ X, and
s ∈ [0, μ(�)) by

(Dtf )(s) :=
{
f (s/t) if s ∈ [

0, μ(�) · min{1, t}),
0 if s ∈ [

μ(�) · min{1, t}, μ(�)). (8.303)

It is well known that

if X is a RIBFS over (�,μ) then 1 ≤ pX ≤ qX ≤ ∞. (8.304)

Furthermore, for each f ∈ X, g ∈ X′, and t > 0,

ˆ μ(�)

0

∣∣(Dtf )(s)g(s)
∣∣ ds =

ˆ μ(�)·min{1,t}

0
|f (s/t)g(s)| ds

= t

ˆ μ(�)·min{1/t,1}

0
|f (s)g(st)| ds

= t

ˆ μ(�)

0

∣∣f (s)(D1/tg)(s)
∣∣ ds. (8.305)

As a consequence of this, (8.9), and (8.7) we then obtain

‖Dt‖X→X ≤ t
∥∥D1/t

∥∥
X
′→X′ for each t > 0. (8.306)

Writing the version of (8.306) with t replaced by 1/t and with X replaced by X′
then yields (bearing in mind (8.301) and (8.8)) the reverse inequality. We therefore
arrive at the conclusion that
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‖Dt‖X→X = t
∥∥D1/t

∥∥
X
′→X′ for each t > 0. (8.307)

As a consequence of (8.307), for each t > 0 we have

ln ‖Dt‖X→X
ln t

= 1 − ln
∥∥D1/t

∥∥
X
′→X′

ln(1/t)
, (8.308)

which ultimately implies

pX′ = (qX)
′ and qX′ = (pX)

′. (8.309)

We next prove an interpolation result along the lines of the classical Boyd’s
interpolation theorem (cf., e.g., [15, Theorem 5.16, p. 153]), allowing one to pass
from Lorentz spaces on the measure space (�,μ) to estimates on X, a RIBFS
over (�,μ), with control over the norm of the interpolated operator. The reader
is reminded that the scale of Lorentz spaces is monotonic in the second index and
reduces to ordinary Lebesgue spaces on the diagonal, i.e.,

Lp,r (�,μ) ↪→ Lp,q(�,μ) if p ∈ (0,∞] and 0 < q < r ≤ ∞,

and Lp,p(�,μ) = Lp(�,μ) for each p ∈ (0,∞]. (8.310)

Cf., e.g., [56, Proposition 1.4.10, p. 49], [15, Proposition 1.8, p. 43].

Theorem 8.23 Assume (�,M) is a measurable space, and μ is a positive, non-
atomic, sigma-finite measure on the sigma-algebra M, with μ(�) > 0. Let X be a
RIBFS over (�,μ). Denote by pX, qX its lower and upper Boyd indices and pick
two integrability exponents p, q ∈ (0,∞]. Make the assumption that

either 0 < p < pX ≤ qX < q <∞ or

0 < p < pX and q = ∞.
(8.311)

Suppose

T : Lp,1(�,μ)+ Lq,1(�,μ) −→ Mμ (8.312)

is a quasi-subadditive operator3 such that

‖Tf ‖Lp,∞(�,μ) ≤ Mp‖f ‖Lp,1(�,μ) for every f ∈ Lp,1(�,μ), (8.313)

3 I.e., there exists a constant C ∈ (0,∞) with the property that for any two functions f, g in the
domain of T one has |T (f + g)| ≤ C(|Tf | + |T g|) at μ-a.e. point.
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and4

‖Tf ‖Lq,∞(�,μ) ≤ Mq‖f ‖Lq,1(�,μ) for every f ∈ Lq,1(�,μ), (8.314)

for someMp,Mq ∈ (0,∞). Then

X ⊆ Lp,1(�,μ)+ Lq,1(�,μ) (8.315)

and there exists some C ∈ (0,∞), which depends only on the exponents p, q, and
the quasi-triangle inequality constant for T , such that

‖Tf ‖X ≤ C (Mp +Mq)‖f ‖X for every f ∈ X. (8.316)

As a corollary, if in place of (8.311) one now assumes

either 0 < p < pX ≤ qX < q <∞ or

0 < p < pX and q = ∞
(8.317)

and if in place of (8.312)–(8.314) one now assumes

T : Lp(�,μ)+ Lq(�,μ) −→ Mμ (8.318)

is a quasi-subadditive operator such that

‖Tf ‖Lp,∞(�,μ) ≤ Mp‖f ‖Lp(�,μ) for every f ∈ Lp(�,μ), (8.319)

‖Tf ‖Lq,∞(�,μ) ≤ Mq‖f ‖Lq(�,μ) for every f ∈ Lq(�,μ), (8.320)

then X ⊆ Lp(�,μ) + Lq(�,μ) and (8.316) continues to hold. Indeed, this is an
immediate consequence of Theorem 8.23 and (8.310).

We now turn to the proof of Theorem 8.23.

Proof of Theorem 8.23 To get started, for every a ∈ (0,∞) define Calderón’s (sub-
linear) operators Pa , Qa acting on each real-valued L1-measurable function h on
(0, μ(�)) at every point t ∈ (0, μ(�)) according to

(Pah)(t) := t−a
ˆ t

0
sa|h(s)|ds

s
∈ [0,+∞], (8.321)

4 With the convention that L∞,1(�,μ) := L∞(�,μ) and L∞,∞(�,μ) := L∞(�,μ).
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(Qah)(t) := t−a
ˆ μ(�)

t

sa|h(s)|ds
s
∈ [0,+∞]. (8.322)

In relation to these, we make five claims. First, we claim that for each a ∈ (0,∞)

and each L1-measurable function h on (0, μ(�)) it follows that

Pah is the product of two monotonic functions, hence is an
L1-measurable function on (0, μ(�)), while the function Qah

is non-increasing, hence also an L1-measurable function on the
interval (0, μ(�)).

(8.323)

In addition, for each a ∈ (0,∞) and each L1-measurable function h on (0, μ(�)),

if (Pah)(t0) = ∞ for some t0 ∈ (0, μ(�)) then

(Pah)(t) = ∞ for every t ∈ (t0, μ(�)),
(8.324)

and

if (Qah)(t0) = ∞ for some t0 ∈ (0, μ(�)) then

then (Qah)(t) = ∞ for every t ∈ (0, t0).
(8.325)

Indeed, properties (8.323)–(8.325) are immediate from definitions. Second, we
claim that

if 1/pX < a <∞ then Pa is bounded on X. (8.326)

To prove this, fix a > 1/pX along with two functions, h ∈ X and g ∈ X′, such that
‖h‖

X
≤ 1 and ‖g‖

X
′ ≤ 1. Using (8.321), a natural change of variables, (8.303),

and (8.7) (for X in place of X) we may write

ˆ μ(�)

0

∣∣(Pah)(t)g(t)
∣∣ dt =

ˆ μ(�)

0

( ˆ 1

0
|h(st)| sa ds

s

)
|g(t)| dt

=
ˆ 1

0

( ˆ μ(�)

0
|h(st)| |g(t)| dt

)
sa

ds

s

=
ˆ 1

0

( ˆ μ(�)

0

∣∣(D1/s |h|)(t) g(t)
∣∣ dt

)
sa

ds

s

≤
ˆ 1

0

∥∥D1/s
∥∥
X→X s

a ds

s



8.7 Examples of Weighted Banach Function Spaces 571

=
ˆ ∞

1
‖Ds‖X→X s−a

ds

s
. (8.327)

Take ε ∈ (
0, a − 1/pX

)
. From the definition of the Boyd index pX (cf. (8.302)) it

follows that there exists s0 ∈ (1,∞) such that

ln ‖Ds‖X→X
ln s

< a − ε for every s ∈ [s0,∞), (8.328)

that is, ‖Ds‖X→X < sa−ε for each s ∈ [s0,∞). Based on this, (8.9), (8.327), and
the fact that ‖Ds‖X→X ≤ ∥∥Ds0

∥∥
X→X if s ≤ s0 (see [15, Proposition 5.11 and

(5.24)–(5.25), p. 148]) we then conclude that

‖Pa‖X→X ≤
∥∥Ds0

∥∥
X→X

ˆ s0

1
s−a ds

s
+
ˆ ∞

s0

s−ε ds

s
<∞, (8.329)

establishing the claim made in (8.326). The third claim we make in relation to
Calderón’s operators is that

for each a ∈ (0, 1) the operator Qa is bounded on X

if and only if P1−a is bounded on X
′
.

(8.330)

To justify this, fix a ∈ (0, 1) and observe that for each h ∈ X and g ∈ X′ we have

ˆ μ(�)

0
(Qah)(t) |g(t)| dt =

ˆ μ(�)

0

(
t−a

ˆ μ(�)

t

sa|h(s)| ds

s

)
|g(t)| dt

=
ˆ μ(�)

0

(
sa−1

ˆ s

0
t1−a|g(t)| dt

t

)
|h(s)| ds

=
ˆ μ(�)

0
|h(s)| (P1−ag)(s) ds, (8.331)

thanks to (8.321)–(8.322) and Tonelli’s Theorem. Together with (8.9) and (8.7), this
readily shows that (8.330) holds. Our fourth claim is that

the operator Qa is bounded on X if 0 < a < 1/qX. (8.332)

This is seen from (8.330), (8.326), (8.309), and the fact that X
′ = (X′). The fifth

(and final) claim in relation to Calderón’s operators is that

for any h ∈ X one has (Pah)(t) <∞
for each t ∈ (0, μ(�)) if 1/pX < a <∞,

(8.333)



572 8 Singular Integrals and Boundary Problems in Weighted Banach Function Spaces

and

for any h ∈ X one has (Qah)(t) <∞
for each t ∈ (0, μ(�)) if 0 < a < 1/qX.

(8.334)

To prove (8.333), recall from (8.326) that if h ∈ X and 1/pX < a < ∞ then
Pah ∈ X. Then (8.10) (written for X in place of X) implies that (Pah)(t) < ∞ at
L1-a.e. point t ∈ (

0, μ(�)
)
. Granted this, (8.324) ensures that (Pah)(t) < ∞ for

each t ∈ (0, μ(�)). The proof of (8.334) is similar, now making use of (8.332).
Moving on, given f ∈ Mμ, for each t ∈ (0, μ(�)) define

ft (x) :=
{
f (x) if |f (x)| ≤ f ∗μ(t),
0 if |f (x)| > f ∗μ(t),

(8.335)

and

f t (x) :=
{

0 if |f (x)| ≤ f ∗μ(t),
f (x) if |f (x)| > f ∗μ(t),

(8.336)

at each x ∈ �. In particular,

f = ft + f t for each t ∈ (
0, μ(�)

)
. (8.337)

We also claim that for each t, s ∈ (0, μ(�)) we have

0 ≤ (ft )
∗
μ (s) ≤

{
f ∗μ(t) if s ∈ (0, t),

f ∗μ(s) if s ∈ [t, μ(�)), (8.338)

0 ≤ (
f t

)∗
μ
(s) ≤

{
f ∗μ(s) if s ∈ (0, t),

0 if s ∈ [t, μ(�)). (8.339)

To verify (8.338)–(8.339), fix an arbitrary t ∈ (
0, μ(�)

)
. Since |ft (x)| ≤ f ∗μ(t)

for each point x ∈ �, it follows that
{
x ∈ � : |ft (x)| > f ∗μ(t)

} = ∅

which in view of (8.300) forces (ft )∗μ (s) ≤ f ∗μ(t) for each s ∈ (
0, μ(�)

)
. Also,

the fact that |ft | ≤ |f | everywhere on � implies (ft )
∗
μ (s) ≤ f ∗μ(s) for each

s ∈ (
0, μ(�)

)
. Thus, ultimately, for any two numbers t, s ∈ (

0, μ(�)
)

we have
(ft )

∗
μ (s) ≤ min

{
f ∗μ(t), f ∗μ(s)

}
, so (8.338) becomes a consequence of this and the

fact that f ∗μ is decreasing. The claim in (8.339) is clear from (8.336) if f ∗μ(t) = ∞
(since this forces f t ≡ 0 on �), while if f ∗μ(t) < ∞ then for each λ ≥ 0 we may
estimate
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μ
({
x ∈ � : |f t (x)| >λ}) ≤ μ

({
x ∈ � : |f t (x)| > 0

})

≤ μ
({
x ∈ � : |f (x)| > f ∗μ(t)

}) = μf
(
f ∗μ(t)

) ≤ t,

(8.340)

with the last inequality coming from [15, (1.18), p. 41]. In turn, from (8.340)
and (8.300) we see that

(
f t

)∗
μ
(s) = 0 whenever s ∈ [t, μ(�)), which suits

our purposes. Finally, the fact that |f t | ≤ |f | everywhere on � guarantees that(
f t

)∗
μ
(s) ≤ f ∗μ(s) for each s ∈ (

0, μ(�)
)
, finishing the proof of (8.339).

The stage has been set to consider the first case in (8.311); in particular, q <∞.
Given any function f ∈ Mμ, for each number t ∈ (0, μ(�)) we may write

t−1/q‖ft‖Lq,1(�,μ) = t−1/q
ˆ μ(�)

0
s1/q(ft )

∗
μ(s)

ds

s

≤ q · f ∗μ(t)+ t−1/q
ˆ μ(�)

t

s1/qf ∗μ(s)
ds

s

= q · f ∗μ(t)+Q1/q(f
∗
μ)(t), (8.341)

where the first equality is simply the definition of the quasi-norm ‖ · ‖Lq,1(�,μ), the
subsequent inequality is based on (8.338), and the final equality comes from (8.322).
Also, for each t ∈ (

0, μ(�)
)

we have

t−1/p
∥∥f t

∥∥
Lp,1(�,μ)

= t−1/p
ˆ μ(�)

0
s1/p(f t )∗μ(s)

ds

s

≤ t−1/p
ˆ t

0
s1/pf ∗μ(s)

ds

s
= P1/p(f

∗
μ)(t), (8.342)

by the definition of the Lorentz quasi-norm ‖ · ‖Lp,1(�,μ), (8.339), and (8.321).
We next fix a function f ∈ X. Then (8.301) guarantees that f ∗μ ∈ X. Since

0 < p < pX and qX < q <∞, from (8.333)–(8.334) we know that

max
{
P1/p(f

∗
μ)(t),Q1/q(f

∗
μ)(t)

}
<∞ for each t ∈ (

0, μ(�)
)
. (8.343)

In addition, the fact that f ∗μ is a monotonic function belonging to X plus (8.10)

(written for X in place of X) imply that

f ∗μ(t) <∞ for each t ∈ (
0, μ(�)

)
. (8.344)

From (8.337), (8.341), (8.342), and (8.343)–(8.344) it follows that for each number
t ∈ (

0, μ(�)
)

we may estimate
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‖f ‖Lp,1(�,μ)+Lq,1(�,μ) ≤
∥∥f t

∥∥
Lp,1(�,μ)

+ ‖ft‖Lq,1(�,μ) (8.345)

≤ q · t1/qf ∗μ(t)+ t1/p P1/p(f
∗
μ)(t)+ t1/q Q1/q(f

∗
μ)(t) <∞.

In view of the arbitrariness of the function f ∈ X, we therefore have the
inclusion X ⊆ Lp,1(�,μ) + Lq,1(�,μ), proving (8.315) in the current case. As
a consequence, it makes sense to consider the action of the operator T on the space
X.

From (8.345) we also see that for each t ∈ (
0, μ(�)

)
we have f t ∈ Lp,1(�,μ)

and ft ∈ Lq,1(�,μ). Using this, the fact that T is a quasi-subadditive mapping,
the properties of decreasing rearrangements (cf. [55, Proposition 1.4.5, p. 47], [15,
Proposition 1.7, p. 41]), (8.313)–(8.314), and (8.341)–(8.342), for t ∈ (0, μ(�)) we
may now estimate

(Tf )∗μ(t) ≤ C(|Tft | + |Tf t |)∗μ(t) ≤ C(Tft )
∗
μ(t/2)+ C(Tf t )∗μ(t/2)

≤ C

(
2

t

)1/q

sup
t/2≤s<μ(�)

s1/q(Tft )
∗
μ(s)+ C

(
2

t

)1/p

sup
t/2≤s<μ(�)

s1/p(Tf t )∗μ(s)

≤ C

(
2

t

)1/q

‖Tft‖Lq,∞(�,μ) + C

(
2

t

)1/p ∥∥Tf t
∥∥
Lp,∞(�,μ)

≤ C

(
2

t

)1/q

Mq‖ft‖Lq,1(�,μ) + C

(
2

t

)1/p

Mp

∥∥f t
∥∥
Lp,1(�,μ)

≤ CMqf
∗
μ(t)+ CMq Q1/q(f

∗
μ)(t)+ CMp P1/p(f

∗
μ)(t). (8.346)

In concert, (8.346), the monotonicity, homogeneity, and triangle inequality satisfied
by the function norm ‖ · ‖

X
(cf. Definition 8.1), as well as the boundedness results

for P1/p and Q1/q on X (since we presently assume 0 < p < pX ≤ qX < q <∞;
cf. (8.326) and (8.332)) imply

∥∥(Tf )∗μ
∥∥
X
≤ C(Mp +Mq)

∥∥f ∗μ
∥∥
X

(8.347)

for some C ∈ (0,∞) which depends only on p, q, and the quasi-triangle inequality
constant for T . At this stage, we may rely on (8.301) and (8.347) to write, for each
f ∈ X,

‖Tf ‖X =
∥∥(Tf )∗μ

∥∥
X
≤ C(Mp +Mq)

∥∥f ∗μ
∥∥
X
= C(Mp +Mq)‖f ‖X (8.348)

which finishes the proof of (8.316) corresponding to the first case in (8.311).
There remains to deal with the situation described in the second line in (8.311)

(when q = ∞). Fix an arbitrary function f ∈ X. We first observe that
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‖ft‖L∞(�,μ) ≤ f ∗μ(t) <∞ for every t ∈ (
0, μ(�)

)
, (8.349)

by (8.335) and (8.344). Recalling from (8.343) that P1/p(f
∗
μ)(t) < ∞ for every

t ∈ (
0, μ(�)

)
, we next invoke (8.337) and (8.342) to obtain (with t ∈ (

0, μ(�)
)

arbitrary)

‖f ‖Lp,1(�,μ)+L∞(�,μ) ≤
∥∥f t

∥∥
Lp,1(�,μ)

+ ‖ft‖L∞(�,μ) ≤
∥∥f t

∥∥
Lp,1(�,μ)

+ f ∗μ(t)

≤ t1/p P1/p(f
∗
μ)(t)+ f ∗μ(t) <∞. (8.350)

Bearing in mind the arbitrariness of the function f ∈ X, we see that the embedding
X ⊆ Lp,1(�,μ) + L∞(�,μ) holds, so (8.315) continues to hold in the present
case. In particular, T is well defined on the space X. Based on the properties of
decreasing rearrangements (cf. [55, Proposition 1.4.5, p. 47], [15, Proposition 1.7,
p. 41]), (8.349), (8.313), (8.314) (with q := ∞), and (8.342), we may now estimate,
bearing in mind that T is a quasi-subadditive mapping, for every t ∈ (

0, μ(�)
)

(Tf )∗μ(t) ≤ C(|Tft | + |Tf t |)∗μ(t) ≤ C(Tft )
∗
μ(t/2)+ C(Tf t )∗μ(t/2)

≤ C(Tft )
∗
μ(t/2)+ C

(
2

t

)1/p

sup
t/2≤s<μ(�)

s1/p(Tf t )∗μ(s)

≤ C‖Tft‖L∞(�,μ) + C

(
2

t

)1/p ∥∥Tf t
∥∥
Lp,∞(�,μ)

≤ CM∞‖ft‖L∞(�,μ) + C

(
2

t

)1/p

Mp

∥∥f t
∥∥
Lp,1(�,μ)

≤ CM∞ f ∗μ(t)+ CMp P1/p(f
∗
μ)(t). (8.351)

From (8.351), the monotonicity, homogeneity, and triangle inequality satisfied by
the function norm ‖ · ‖

X
(cf. Definition 8.1), as well as the boundedness of P1/p on

X (since 0 < p < pX; cf. (8.326)) we conclude that

∥∥(Tf )∗μ
∥∥
X
≤ C(Mp +M∞)

∥∥f ∗μ
∥∥
X

(8.352)

for some C ∈ (0,∞) which depends only on p and the quasi-triangle inequality
constant for T . Granted this, we may appeal to (8.301) to write

‖Tf ‖X =
∥∥(Tf )∗μ

∥∥
X
≤ C(Mp +M∞)

∥∥f ∗μ
∥∥
X
= C(Mp +M∞)‖f ‖X (8.353)

for each f ∈ X. This gives the estimate claimed in (8.316), in the case described in
the second line in (8.311). The proof of Theorem 8.23 is therefore complete. � 
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While Theorem 8.23 is already a useful, versatile tool, there is a more general
phenomenon at play here, involving two measures, of the sort brought forth in our
next result.

Theorem 8.24 Suppose (�,M) is a measurable space, and denote by MM the
space ofM-measurable functions5 on�. Assumeμ is a positive, non-atomic, sigma-
finite measure on the sigma-algebra M, with μ(�) > 0. Let X be a RIBFS over
(�,μ). Denote by pX, qX its lower and upper Boyd indices and pick two additional
integrability exponents p, q ∈ (0,∞]. Make the assumption that

either 0 < p < pX ≤ qX < q <∞ or

0 < p < pX and q = ∞.
(8.354)

Consider next another measure μ̃ : M → [0,∞] such that μ̃(�) = μ(�) and
define

‖f ‖
X̃
:= ‖f ∗̃μ‖X ∈ [0,∞] for each f ∈ MM,

and X̃ := {
f ∈ MM : ‖f ‖

X̃
<∞}

,
(8.355)

where X is constructed in relation to X as in (8.301).
Suppose

T : Lp,1(�, μ̃)+ Lq,1(�, μ̃) −→ Mμ̃ = MM (8.356)

is a quasi-subadditive operator6 such that

‖Tf ‖Lp,∞(�,μ̃) ≤ Mp‖f ‖Lp,1(�,μ̃) for every f ∈ Lp,1(�, μ̃), (8.357)

and7

‖Tf ‖Lq,∞(�,μ̃) ≤ Mq‖f ‖Lq,1(�,μ̃) for every f ∈ Lq,1(�, μ̃), (8.358)

for someMp,Mq ∈ (0,∞). Then

X̃ ⊆ Lp,1(�, μ̃)+ Lq,1(�, μ̃) (8.359)

and there exists some C ∈ (0,∞), which depends only on p, q, and the quasi-
triangle inequality constant for T , such that

5 I.e., the collection of functions f : � → R such that f−1(O) ∈ M for each O ⊆ R open set.
6 I.e., there exists a constant C ∈ (0,∞) with the property that for any two functions f, g in the
domain of T one has |T (f + g)| ≤ C(|Tf | + |T g|) at μ-a.e. point.
7 With the convention that L∞,1(�, μ̃) := L∞(�, μ̃) and L∞,∞(�, μ̃) := L∞(�, μ̃).
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‖Tf ‖
X̃
≤ C (Mp +Mq)‖f ‖X̃ for every f ∈ X̃. (8.360)

In view of (8.355) and the result recalled in (8.301), it follows that X̃ = X
whenever μ̃ = μ, hence Theorem 8.24 is indeed a generalization of Theorem 8.23.

Proof of Theorem 8.24 Throughout, we agree to abbreviate

τ := μ̃(�) = μ(�) ∈ (0,∞]. (8.361)

The argument below largely parallels the proof of Theorem 8.23, with some natural
alterations. To indicate these, for every a ∈ (0,∞) define the Calderón’s (sub-
linear) operators Pa , Qa acting on each real-valued L1-measurable function h on
(0, τ ) at every point t ∈ (0, τ ) according to

(Pah)(t) := t−a
ˆ t

0
sa|h(s)|ds

s
∈ [0,+∞], (8.362)

(Qah)(t) := t−a
ˆ τ

t

sa|h(s)|ds
s
∈ [0,+∞]. (8.363)

As in the proof of Theorem 8.24, these operators enjoy a number of useful
properties. First, for each a ∈ (0,∞) and each L1-measurable function h on (0, τ )
it follows that Pah and Qah are L1-measurable functions on (0, τ ) satisfying the
following properties (see (8.323)–(8.325)):

if (Pah)(t0) = ∞ for some t0 ∈ (0, τ ) then

(Pah)(t) = ∞ for every t ∈ (t0, τ ),
(8.364)

and

if (Qah)(t0) = ∞ for some t0 ∈ (0, τ ) then

then (Qah)(t) = ∞ for every t ∈ (0, t0).
(8.365)

Second, much as in (8.326), we have that

if 1/pX < a <∞ then Pa is bounded on X. (8.366)

The third useful property we wish to single out in relation to Calderón’s operators
is that (see (8.330))

for each a ∈ (0, 1) the operator Qa is bounded on X

if and only if P1−a is bounded on X
′
.

(8.367)
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Our fourth observation is that (see (8.332))

the operator Qa is bounded on X if 0 < a < 1/qX. (8.368)

The fifth (and final) property in relation to Calderón’s operators is that (see (8.333)–
(8.334))

for any h ∈ X one has (Pah)(t) <∞
for each t ∈ (0, τ ) if 1/pX < a <∞,

(8.369)

and

for any h ∈ X one has (Qah)(t) <∞
for each t ∈ (0, τ ) if 0 < a < 1/qX.

(8.370)

Going further, given f ∈ MM = Mμ̃, for each t ∈ (0, τ ) define

f̃t (x) :=
{
f (x) if |f (x)| ≤ f ∗̃μ(t),
0 if |f (x)| > f ∗̃μ(t),

(8.371)

and

f̃ t (x) :=
{

0 if |f (x)| ≤ f ∗̃μ(t),
f (x) if |f (x)| > f ∗̃μ(t),

(8.372)

at every x ∈ �. It is then apparent from definitions that

f = f̃t + f̃ t for each t ∈ (0, τ ). (8.373)

Moreover, (8.338)–(8.339) written for μ̃ in place of μ imply that for t, s ∈ (0, τ )
we have

0 ≤ (
f̃t
)∗
μ̃
(s) ≤

{
f ∗̃μ(t) if s ∈ (0, t),

f ∗̃μ(s) if s ∈ [t, τ ), (8.374)

0 ≤ (
f̃ t

)∗
μ̃
(s) ≤

{
f ∗̃μ(s) if s ∈ (0, t),

0 if s ∈ [t, τ ). (8.375)

We are now prepared to consider the first case in (8.354); in particular, q < ∞.
Having fixed an arbitrary function function f ∈ MM = Mμ̃, for each t ∈ (0, τ ) we
may write
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t−1/q
∥∥f̃t

∥∥
Lq,1(�,μ̃)

= t−1/q
ˆ μ̃(�)

0
s1/q(f̃t

)∗
μ̃
(s)

ds

s
= t−1/q

ˆ τ

0
s1/q(f̃t

)∗
μ̃
(s)

ds

s

≤ q · f ∗̃μ(t)+ t−1/q
ˆ τ

t

s1/qf ∗̃μ(s)
ds

s

= q · f ∗̃μ(t)+Q1/q
(
f ∗̃μ

)
(t), (8.376)

where the first equality is simply the definition of the quasi-norm ‖ · ‖Lq,1(�,μ̃), the
second equality uses (8.361), the subsequent inequality follows by breaking up the
integral and appealing to (8.374), while the final equality comes from (8.363). In a
similar fashion, for each t ∈ (0, τ ) we have

t−1/p
∥∥f̃ t

∥∥
Lp,1(�,μ̃)

= t−1/p
ˆ μ̃(�)

0
s1/p(f̃ t

)∗
μ̃
(s)

ds

s

= t−1/p
ˆ τ

0
s1/p(f̃ t

)∗
μ̃
(s)

ds

s

≤ t−1/p
ˆ t

0
s1/pf ∗̃μ(s)

ds

s

= P1/p
(
f ∗̃μ

)
(t), (8.377)

by the definition of the Lorentz quasi-norm ‖ · ‖Lp,1(�,μ̃), (8.361), (8.375),
and (8.362).

Let us now fix a function f ∈ X̃. Then (8.355) ensures that f ∗̃μ ∈ X. In view of
the fact that 0 < p < pX and qX < q <∞, from (8.369)–(8.370) we conclude that

max
{
P1/p

(
f ∗̃μ

)
(t),Q1/q

(
f ∗̃μ

)
(t)

}
<∞ for each t ∈ (0, τ ). (8.378)

Also, the fact that f ∗̃μ is a non-decreasing function belonging to X together

with (8.10) (written for X in place of X) ensure that

f ∗̃μ(t) <∞ for each t ∈ (0, τ ). (8.379)

From (8.373), (8.376), (8.377), and (8.378)–(8.379) it follows that for each number
t ∈ (0, τ ) we may estimate

‖f ‖Lp,1(�,μ̃)+Lq,1(�,μ̃) ≤
∥∥f̃ t

∥∥
Lp,1(�,μ̃)

+ ∥∥f̃t
∥∥
Lq,1(�,μ̃)

(8.380)

≤ q · t1/qf ∗̃μ(t)+ t1/p P1/p
(
f ∗̃μ

)
(t)+ t1/q Q1/q

(
f ∗̃μ)

(
t) <∞.
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Given that f ∈ X̃ is arbitrary, we conclude that X̃ ⊆ Lp,1(�, μ̃) + Lq,1(�, μ̃),
which establishes (8.359) in the current case. In particular, it is meaningful to
consider the action of the operator T on the space X̃.

It is also implicit in (8.380) that f̃ t ∈ Lp,1(�, μ̃) and f̃t ∈ Lq,1(�, μ̃) for each
number t ∈ (0, τ ). Based on this, the fact that T is a quasi-subadditive mapping,
the properties of decreasing rearrangements (cf. [55, Proposition 1.4.5, p. 47], [15,
Proposition 1.7, p. 41]), (8.357)–(8.358), and (8.376)–(8.377), for every t ∈ (0, τ )
we may now estimate

(
Tf

)∗
μ̃
(t) ≤ C

(|T f̃t | + |T f̃ t |)∗
μ̃
(t) ≤ C

(
T f̃t

)∗
μ̃
(t/2)+ C

(
T f̃ t

)∗
μ̃
(t/2)

≤ C

(
2

t

)1/q

sup
t/2≤s<τ

s1/q(T f̃t
)∗
μ̃
(s)+ C

(
2

t

)1/p

sup
t/2≤s<τ

s1/p(T f̃ t
)∗
μ̃
(s)

≤ C

(
2

t

)1/q ∥∥T f̃t
∥∥
Lq,∞(�,μ̃)

+ C

(
2

t

)1/p ∥∥T f̃ t
∥∥
Lp,∞(�,μ̃)

≤ C

(
2

t

)1/q

Mq

∥∥f̃t
∥∥
Lq,1(�,μ̃)

+ C

(
2

t

)1/p

Mp

∥∥f̃ t
∥∥
Lp,1(�,μ̃)

≤ CMqf
∗̃
μ(t)+ CMq Q1/q

(
f ∗̃μ

)
(t)+ CMp P1/p

(
f ∗̃μ

)
(t). (8.381)

Collectively, (8.381), the monotonicity, homogeneity, and triangle inequality satis-
fied by the function norm ‖ · ‖

X
(cf. in Definition 8.1), as well as the boundedness

results for the operators P1/p and Q1/q on X (given that we are presently assuming
0 < p < pX ≤ qX < q <∞; cf. (8.366) and (8.368)) imply

∥∥∥
(
Tf

)∗
μ̃

∥∥∥
X

≤ C(Mp +Mq)

∥∥∥f ∗̃μ
∥∥∥
X

(8.382)

for some C ∈ (0,∞) which depends only on p, q, and the quasi-triangle inequality
constant for T . We may now invoke (8.355) and (8.382) to write

‖Tf ‖
X̃
=

∥∥
∥(Tf )∗̃μ

∥∥
∥
X

≤ C(Mp +Mq)

∥∥
∥f ∗̃μ

∥∥
∥
X

= C(Mp +Mq)‖f ‖X̃ (8.383)

for each function f ∈ X̃. This finishes the proof of (8.360) corresponding to the first
case in (8.354).

We are left with treating the case recorded in the second line in (8.354) (when
q = ∞). To this end, fix an arbitrary function f ∈ X̃ and first note that

∥∥f̃t
∥∥
L∞(�,μ̃)

≤ f ∗̃μ(t) <∞ for every t ∈ (0, τ ), (8.384)

by (8.371) and (8.379). Upon recalling from (8.378) that P1/p
(
f ∗̃μ

)
(t) < ∞ for

every t ∈ (0, τ ), we next rely on (8.373) and (8.377) to write



8.7 Examples of Weighted Banach Function Spaces 581

‖f ‖Lp,1(�,μ̃)+L∞(�,μ̃) ≤
∥
∥f̃ t

∥
∥
Lp,1(�,μ̃)

+ ∥
∥f̃t

∥
∥
L∞(�,μ̃)

≤ ∥
∥f̃ t

∥
∥
Lp,1(�,μ̃)

+ f ∗̃μ(t)

≤ t1/p P1/p
(
f ∗̃μ

)
(t)+ f ∗̃μ(t) <∞ (8.385)

for each number t ∈ (0, τ ). Keeping in mind the arbitrariness of the function
f ∈ X̃, we deduce that X̃ ⊆ Lp,1(�, μ̃) + L∞(�, μ̃), so (8.359) continues to
hold in the present case. As such, the operator T is well defined on the space
X̃. Thanks to the fact that T is a quasi-subadditive mapping, the properties of
decreasing rearrangements (cf. [55, Proposition 1.4.5, p. 47], [15, Proposition 1.7,
p. 41]), (8.384), (8.357), (8.358) (with q := ∞), and (8.377), we may now estimate

(
Tf

)∗
μ̃
(t) ≤ C

(|T f̃t | + |T f̃ t |)∗
μ̃
(t) ≤ C

(
T f̃t

)∗
μ̃
(t/2)+ C

(
T f̃ t

)∗
μ̃
(t/2)

≤ C
(
T f̃t

)∗
μ̃
(t/2)+ C

(
2

t

)1/p

sup
t/2≤s<τ

s1/p(T f̃ t
)∗
μ̃
(s)

≤ C
∥∥T f̃t

∥∥
L∞(�,μ̃)

+ C

(
2

t

)1/p ∥∥T f̃ t
∥∥
Lp,∞(�,μ̃)

≤ CM∞
∥∥f̃t

∥∥
L∞(�,μ̃)

+ C

(
2

t

)1/p

Mp

∥∥f̃ t
∥∥
Lp,1(�,μ̃)

≤ CM∞ f ∗̃μ(t)+ CMp P1/p
(
f ∗̃μ

)
(t), (8.386)

for every t ∈ (0, τ ). Collectively, (8.386), the monotonicity, homogeneity, and
triangle inequality satisfied by the function norm ‖ · ‖

X
(cf. Definition 8.1), as well

as the boundedness of P1/p on X (since 0 < p < pX; cf. (8.366)) allow us to we
conclude that

∥∥∥
(
Tf

)∗
μ̃

∥∥∥
X

≤ C(Mp +M∞)
∥∥∥f ∗̃μ

∥∥∥
X

, (8.387)

for someC ∈ (0,∞) depending only on p and the quasi-triangle inequality constant
for T . With this in hand, we now make use of (8.355) to write

‖Tf ‖
X̃
=

∥∥∥
(
Tf

)∗
μ̃

∥∥∥
X

≤ C(Mp +M∞)
∥∥∥f ∗̃μ

∥∥∥
X

= C(Mp +M∞)‖f ‖X̃ (8.388)

for each f ∈ X̃. Hence, the estimate claimed in (8.360) holds in the case described
in the second line in (8.354). This completes the proof of Theorem 8.24. � 

Moving on, assume that � ⊆ Rn is a closed Ahlfors regular set, and abbreviate
σ := Hn−1��. Let w ∈ L1

loc(�, σ ) be function satisfying w > 0 at σ -a.e. point in
�; in particular, w is a weight function on (�, σ ). As usual, w is identified with the
weighted measure
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dw := w dσ. (8.389)

As such, w and σ have the same sigma-algebra of measurable sets, and the same
null-sets; in particular, Mw = Mσ . Also, (�,w) is a sigma-finite measure space
since the function w is locally integrable and the set � is sigma-compact. In
addition, from (8.2) we know that, as a measure, w is non-atomic. Henceforth, make
the assumption that w normalized, i.e.,

ˆ
�

w dσ = σ(�). (8.390)

To proceed, let X be a RIBFS over (�, σ ) and define

‖f ‖X(w) :=
∥
∥f ∗w

∥
∥
X
∈ [0,+∞] for each f ∈ Mw = Mσ . (8.391)

Since ‖ · ‖
X

is the norm in the rearrangement invariant Banach function space over(
[0, σ (�)),L1

)
(cf. the statement in (8.301)) it follows from [15, Theorem 4.9,

pp. 61–62] that ‖ · ‖X(w) is a function norm over (�,w) (in the sense of Defini-
tion 8.1) which gives rise to the rearrangement invariant Banach function space

X(w) := {f ∈ Mw : ∥∥f ∗w
∥∥
X
<∞}. (8.392)

Consider next the weighted space X′(w) constructed in relation toX′, the associated
space of X (which is itself a RIBFS over (�, σ ); cf. (8.301)). Since (�, σ ) and
(�,w) are resonant (thanks to the current assumptions and [15, Theorem 2.7, p. 51])
it follows from the last part in [15, Theorem 4.10, p. 62] that

X
′(w) = (X(w))′, (8.393)

where the latter space is the associated space of X(w), itself a RIBFS over (�,w)
(cf. (8.301)). From [15, Corollary 4.3, p. 69], (8.7) written for X, and (8.392) we
also obtain the following weighted version of (8.7):

ˆ
�

|f (x)g(x)| dw(x) ≤ ‖f ‖X(w)‖g‖X′(w) (8.394)

for all f, g ∈ Mw = Mσ . Finally, from [15, Corollary 4.4, p. 69], [15, Definition 2.3,
p. 45], and current assumptions we see that the following weighted version of (8.9)
holds:

‖f ‖X(w) = sup

{ˆ
�

|f (x)g(x)| dw(x) : g ∈ X′(w), ‖g‖X′(w) ≤ 1

}
(8.395)

for each f ∈ Mw = Mσ . The reader is referred to [15, Chapter 2] for more details.
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Corollary 8.2 Assume that � ⊆ Rn is a closed Ahlfors regular set, and abbreviate
σ := Hn−1��. Let X be a RIBFS over (�, σ ) and denote by pX, qX its lower and
upper Boyd indices. Also, pick a weight w ∈ ApX(�, σ ), which in the case when �
is compact is normalized, i.e., satisfies8

 
�

w dσ = 1. (8.396)

Then

1. the Hardy–Littlewood maximal operatorM on (�, σ ) is bounded from the space
X(w) into itself provided 1 < pX <∞;

2. the operator f �→M′f :=M(fw)/w is sub-linear and bounded from the space
(X(w))′ = X′(w) into itself whenever 1 < pX ≤ qX <∞.

Moreover, in the above scenarios, ‖M‖X(w)→X(w) and
∥
∥M′∥∥

X
′(w)→X′(w) are con-

trolled by a constant which depends only on X, [w]ApX
, n and the Ahlfors regularity

constant of � (and which, in fact, stays bounded as [w]ApX
stays bounded).

Proof To get started we note (8.2) guarantees that the measure w is non-atomic.
In addition, (8.390) presently holds, thanks to (2.540) and the assumption made
in (8.396). Bearing these observations in mind, it follows that

X̃, constructed as in (8.355) for the measures μ := σ and μ̃ := w,

coincide with the space X(w) introduced in (8.391)–(8.392).
(8.397)

To deal with the claim made in item (1) of the statement, make the assumption
that < pX < ∞. From item (1) in Proposition 2.20 we know that there exists
some ε ∈ (0, pX − 1) such that w ∈ ApX−ε(�, σ ). Then Theorem 8.24 applied
to the measures μ := σ and μ̃ := w on �, and the sub-linear operator T := M,
is applicable with p := pX − ε ∈ (1,∞) and q := ∞ since (8.357)–(8.358)
hold for these choices, thanks to (2.530) and the fact that w ∈ Ap(�, σ). In view
of (8.397), from (8.360) we then conclude that M is bounded from X(w) into itself.
The estimate in (8.360) together with (2.531) and the quantitative aspect of item (1)
in Proposition 2.20 also show that ‖M‖X(w)→X(w) is controlled solely in terms of
X, [w]ApX

, n and the Ahlfors regularity constant of � (and stays bounded if [w]ApX

stays bounded).
To treat the claim made in item (2) of the statement, assume 1 < pX ≤ qX <∞.

Once again, consider ε ∈ (0, pX−1) such that w ∈ ApX−ε(�, σ ). If we now define
p := pX− ε and q := qX+ ε, then 1 < p < pX ≤ qX < q <∞, and we also have
w ∈ Ap(�, σ) ⊆ Aq(�, σ) (cf. item (2) in Proposition 2.20).

Given a weight w on � along with two integrability exponents r, r ′ ∈ (1,∞)

satisfying 1/r + 1/r ′ = 1, from the definition of operator M′ it is immediate that

8 This may always be achieved by multiplying w by a suitable constant, without affecting [w]ApX
.
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M′ is bounded on Lr
′
(�,w) if and only if the standard Hardy–Littlewood maximal

operator M is bounded on Lr
′
(�,w1−r ′). In view of (2.530), the latter is equivalent

to w1−r ′ ∈ Ar ′(�, σ ), which is further equivalent to w ∈ Ar(�, σ) by item (3) in
Proposition 2.20. This analysis shows that the operator T := M′ is bounded both
on Lp

′
(�,w) and on Lq

′
(�,w). Also, (8.309) shows that

1 < q ′ = (qX + ε)′ < (qX)
′ = pX′ ≤ qX′ = (pX)

′ < (pX − ε)′ = p′ <∞.

(8.398)
Granted this, the desired conclusion follows by once again invoking Theorem 8.24,
much as above. � 

We may now prove a version of Theorem 8.1 for Muckenhoupt weighted RIBFS
of the sort introduced in (8.392) as follows:

Theorem 8.25 Assume that � ⊆ Rn is a closed Ahlfors regular set and abbreviate
σ := Hn−1��. Suppose X is a RIBFS over (�, σ ) with Boyd indices satisfying
1 < pX ≤ qX < ∞. Fix some weight w ∈ ApX(�, σ ) which, in the case when
� is compact, is normalized so that

ffl
�
w dσ = 1. Recall from Corollary 8.2 that

the Hardy–Littlewood maximal operator M on (�, σ ) is bounded from the space
X(w) into itself, and the operator M′ acting on each σ -measurable function f on
� according to M′f := M(fw)/w is bounded from the space (X(w))′ = X′(w)
into itself. Pick an integrability exponent p0 ∈ [1,∞), denote by p′0 its Hölder
conjugate exponent, and consider a non-decreasing function� : (0,∞)→ (0,∞).
Finally, assume F is a family of pairs of σ -measurable functions on �.

If for each ω ∈ Ap0(�, σ ) with [ω]Ap0
≤ 2p0‖M‖p0−1

X(w)→X(w)
∥∥M′∥∥

X
′(w)→X′(w)

one has

‖f ‖Lp0 (�,ω) ≤ �([ω]Ap0
)‖g‖Lp0 (�,ω) for every (f, g) ∈ F, (8.399)

then one may conclude that for every pair (f, g) ∈ F one has

‖f ‖X(w) ≤ 22+1/p′0 �
(
2p0‖M‖p0−1

X(w)→X(w)
∥
∥M′∥∥

X
′(w)→�X(w)

)‖g‖X(w). (8.400)

Proof To place ourselves in the framework considered in previous sections, take
v := w and Xv := X(w), which is a RIBFS over (�, vσ). Corollary 8.2 then
ensures that M is bounded on Xv = X(w) while M′ is bounded on X′v = X′(w),
with operator norms controlled in terms of X, [w]ApX

, n, and the Ahlfors regularity
constant of �. Granted this, Theorem 8.1 applies and yields the desired conclusion.

� 
Significantly, Theorem 8.2, Proposition 8.2, and Remark 8.2 hold in the setting

considered in Theorem 8.25 for ' (large enough) depending only on X, [w]ApX
, n

and the Ahlfors regularity constant of �.
Going further, we now take � ⊆ Rn to be an open set such that ∂� is a UR set

and define σ := Hn−1�∂�. Much as before, assume X is a RIBFS over (∂�, σ)
with 1 < pX ≤ qX < ∞ and fix some weight w ∈ ApX(∂�, σ) which, in
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the case when � is compact, is normalized so that
ffl
�
w dσ = 1. We can pick

then ' (large enough) depending only on X, [w]ApX
, n and the Ahlfors regularity

constant of ∂� so that the versions of Propositions 8.3, 8.4, 8.5, 8.6, and 8.7,
Theorems 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 8.10, 8.11, 8.12, 8.13, 8.14, 8.15, 8.16,
and 8.17, Lemma 8.1, and Corollary 8.1 are all valid for the weighted Banach
function space X(w) and with constants now also depending on X and [w]ApX

.
Concerning the topic of boundary value problems, the versions of Theo-

rems 8.18, 8.19, 8.20, 8.21, 8.22 in the aforementioned setting yield existence,
estimates uniqueness, integral representation, uniqueness, and ultimately well-
posedness for the Dirichlet problem, the Inhomogeneous Regularity Problem,
the Homogeneous Regularity Problem, Neumann Problem, and the Transmission
Problem for the weighted Banach function spaceX(w), where the implicit constants
as well as the threshold δ ∈ (0, 1) now also depend on X and [w]ApX

.
We mention some relevant examples of spaces to which the results in this chapter

apply. Some of them have already been considered in the previous section, without
using that X is rearrangement invariant. Having this extra feature allows us to
consider the associated weighted spaces. Note, however, that variable Lebesgue
spaces are not rearrangement invariant and, hence, the results in this section do not
apply to this scale.

Example 8.4 In the case of the Lebesgue space X := Lp(∂�, σ) with p ∈ (1,∞)

we have pX = qX = p, so we recover the results from previous chapters pertaining
to the scale of (unweighted) Lebesgue spaces.

Example 8.5 If we take X := Lp(∂�, σ) + Lq(∂�, σ) with p, q ∈ (1,∞), then
pX = min{p, q} and qX = max{p, q}. In this case, we recover the results contained
in Theorems 6.3, 6.14, and 6.17 for w0 = w1.

Example 8.6 If X := Lp,q(∂�, σ) with exponents p ∈ (1,∞) and q ∈ [1,∞]
is a Lorentz space, then pX = qX = p. In this case, we recover the results in
Remarks 4.8, 4.11, 4.16, 6.1, 6.2, 6.9, and 6.15. Moreover, the results in this chapter
constitute an upgrade of the remarks just mentioned by allowing weighted Lorentz
spaces.

Example 8.7 Given a Young function � and a closed Ahlfors regular set � ⊆ Rn,
the Orlicz space L�(�, σ) is given by the function norm

‖f ‖L�(�,σ) := inf

{
λ > 0 :

ˆ
�

�
( |f (x)|

λ

)
dσ(x) ≤ 1

}
. (8.401)

Then X := L�(�, σ) is a RIBFS, and the associated weighted space X(w) is
called a weighted Orlicz space. Clearly, Lebesgue spaces are Orlicz spaces
corresponding to the family of functions �(t) := tp indexed by p ∈ (1,∞). The
spaces Lp(�, σ) + Lq(�, σ) and Lp(�, σ) ∩ Lq(�, σ) may also be regarded as
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Orlicz spaces with �(t) ≈ min{tp, tq} and �(t) ≈ max{tp, tq}, respectively (see,
e.g., [112, §5.3] for details). In both cases pX = min{p, q} and qX = max{p, q}.

Other examples which have not been considered explicitly up to this point in this
monograph include the Zygmund space Lp(logL)α(�, σ) with p ∈ (1,∞) and
α ∈ R, obtained by taking �(t) ≈ tp[log(e + t)]α , in which case pX = qX = p

(once more see, e.g., [112, §5.3] for details). In practice, Boyd indices for Orlicz
spaces may be computed from � using the dilation indices (cf. [15, Theorem 8.18,
p. 277], [34, Remark 4.5 on p. 71, and Examples on p. 72]).
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U
Uniformly rectifiable (UR)

constants, 37
domain, 37
set, 37

V
Vanishing mean oscillations, 50

W
Weight, 130

Muckenhoupt, 131, 355
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Symbols
Ap(�, σ) Muckenhoupt class, 131
A� transpose of A, 164
A collection of coefficient tensors, 164
Aant antisymmetric coefficient tensors, 165
AL coefficient tensors associated with L, 165
Adis
L distinguished coefficient tensors of L, 202

AWE weakly elliptic coefficient tensors, 165
A (C,R), 56
a ⊗ b tensor product of vectors a, b, 28
Bd(X) linear and bounded operators on X, 187
Bd

(
X → Y

)
linear and bounded operators

from X to Y , 187
BMO(�,μ) space of functions of bounded

mean oscillations, 49
BMOp(�,μ), 50
BMO1, 89
B(x, r) open ball with center x and radius r ,

27
Bq,λ(�, σ) block space, 436
Bq,λ

1 (∂�, σ) block-based Sobolev space, 442.
Bq,λ

1 (∂�, σ) block-based homogeneous
Sobolev space, 450

CMO(Rn,Ln), 53
CR(R2+), 226
C Cauchy-Clifford operator, 341
C# transpose Cauchy-Clifford operator, 341
C�n Clifford algebra generated by n imaginary

units, 340
Cmod modified boundary-to-domain Cauchy

integral operator, 224
C(x0, r, ω) cylinder, 57
C 0(�) space of continuous functions, 27

C k(�) space of functions with continuous
partial derivatives of order ≤ k, 27

C∞(�) space of functions with continuous
partial derivatives of all orders, 27

C∞
0 (�) space of compactly supported

functions from C∞(�), 27
Dist[A,B] Hausdorff distance, 54
D(�) dyadic grid, 128
Dm(�), 128
DA boundary-to-domain double layer

potential, 167
D

A,mod boundary-to-domain modified double
layer potential, 173

D harmonic boundary-to-domain double
layer potential, 168

D′(�) space of distributions in �, 27
dist(x, E) distance from a point x to a set E,

28
E = (

Eαβ

)
1≤α,β≤M fundamental solution for

the system L, 166
E fundamental solution for the Laplacian,

168
me the m-th tetration of e, 259
{ej }1≤j≤n standard orthonormal basis in Rn,

27
e(�, x0, r, ω) cylindrical excess, 57
f integral average of f in , 46
H Hilbert transform, 7
Hmod modified Hilbert transform, 229
Hn−1 (n− 1)-dimensional Hausdorff measure

in Rn, 27
Im

(
T ;X)

image of T : X → X, 196
Im

(
T : X → Y

)
image of T : X → Y , 196
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KA boundary-to-boundary double layer
potential, 167

K
A,mod boundary-to-boundary modified double

layer potential, 173
K#
A transpose boundary-to-boundary double

layer potential, 168
K harmonic boundary-to-boundary double

layer potential, 168
K#
 harmonic transpose boundary-to-boundary

double layer potential, 169
L system of differential operators, 164
LA system associated to a coefficient tensor A,

164
LD , 233
L� (real) transpose of L, 164
L(ξ) characteristic matrix of L, 164
Lp(X,μ) space of p-th power integrable

functions on X with respect to the
measure μ, 28

L
p

1 (∂�,w) Muckenhoupt weighted Sobolev
space, 147

L
p

1,loc(∂�, σ) local Sobolev space, 146.
L
p

1 (∂�,w) Muckenhoupt weighted
homogeneous Sobolev space, 149

Lp,q(X,μ) Lorentz space on X with respect to
the measure μ, 28

L
p,q

1 (∂�, σ) Lorentz-based Sobolev space,
147

L
p1;p2
1 (∂�,w1;w2) off-diagonal

Muckenhoupt weighted Sobolev
space, 305

L∞comp(�, σ) essentially bounded functions
with compact support, 182

Ln n-dimensional Lebesgue measure in Rn, 27
L second-order systems, 163
L∗ weakly elliptic second-order systems, 164
Ldis weakly elliptic systems with distinguished

coefficient tensors, 202
Mb pointwise multiplication by b, 28
Mp,λ(�, σ) Morrey space, 433
M̊p,λ(�, σ) vanishing Morrey space, 434
M

p,λ

1 (∂�, σ) Morrey-based Sobolev space,
441.

M
p,λ

1 (∂�, σ) homogeneous Morrey-based
Sobolev space, 444

M̊
p,λ

1 (∂�, σ) vanishing Morrey-based Sobolev
space, 442.

M
p,λ

1 (∂�, σ) homogeneous vanishing
Morrey-based Sobolev space, 449

M Hardy–Littlewood maximal operator, 132
N0 = N ∪ {0}, 27
Nκ nontangential maximal operator, 28

NE
κ the nontangential maximal function

restricted to E, 29
Nδ
κ the nontangential maximal function

truncated at height δ, 29
Rj Riesz transform, 232, 302
R, 330
Sn−1 unit sphere in Rn, 28
Smod boundary-to-boundary modified single

layer potential, 172
Smod boundary-to-domain modified single

layer potential, 171
t 〈m〉, 259
u|κ−n.t.

∂� nontangential trace of u on ∂�, 30
uvect the vector part of u, 340
uscal the scalar part of u, 340
u · v = 〈u, v〉 dot product of two vectors

u, v ∈ Rn, 27
VMO(�, σ) space of functions of vanishing

mean oscillations, 50
�κ(x) nontangential approach region, 28
δ∂�(x) distance to the boundary, 39
 = (x, r) surface ball, 46
δjk Kronecker symbol, 27
ν geometric measure theoretic outward unit

normal, 31
υn−1 volume of the unit ball in Rn−1, 28
�+ inner domain, 67
�− outer domain, 67
�θ sector of aperture θ , 86
ωn−1 surface area of Sn−1, 28
∂z the conjugate of the Cauchy–Riemann

operator, 212
∂z̄ the Cauchy–Riemann operator, 212
∂Aν conormal derivative operator with respect

to the coefficient tensor A, 177
∂τjk tangential derivative operator, 146
∂∗� measure theoretic boundary, 30
∂∗� reduced boundary, 31
1E characteristic function of E, 27ffl
E
f dμ integral average, 28

∇tan tangential gradient operator, 147
* Clifford algebra multiplication, 340
‖A‖ norm of a coefficient tensor, 164
‖L‖ norm on L, 165
‖T ‖X→Y operator norm, 241
‖∂�‖, 32
[T , S] commutator of T and S, 28
[x, y] line segment with endpoints x and y, 28
∂,Tjk , 399
Dt dilation operator, 567
f ∗μ decreasing rearrangement of f ∈ Mμ, 566
Mμ the set of complex-valued μ-measurable

functions, 498
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pX lower Boyd index, 567
qX upper Boyd index, 567
X
′ associated space of X, 499
X
′(w) the weighted space constructed in

relation to X′, 582
X(w) weighted RIBFS, 582
(
.
Xv)1 weighted Banach function-based

homogeneous Sobolev space, 514
(Xv)1 weighted Banach function-based

Sobolev space, 513

Xv Banach function space over (�, vσ), 499
X Banach function space, 498
R
n+ upper half-space in Rn, 27
R
n− lower half-space in Rn, 27

W
k,p

loc (�) local Lp-based Sobolev space of
order k in �, 27

[w]Ap characteristic of the Muckenhoupt
weight w, 131

R
mod

j modified Riesz transform, 232
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