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Preface

The first International Conference on Engineering Applications of Neural Networks
(EANN) was held in Otaniemi, Finland, in August 1995. Since then, it has been contin-
uously held with great success, as an annual event from 1995–2001, as a biannual event
from 2001–2012, and finally as an annual event from 2013 till today. So far, EANN has
been organized in 10 different European countries, namely, Finland, the UK, Greece,
Bulgaria, Sweden, Gibraltar, Italy, France, Poland, and Spain.

After 27 years, it is time for change. EANN is adapting to the demands of the
times and expanding its horizons by changing its name to Engineering Applications
and Advances of Artificial Intelligence (EAAAI). The conference topics are opening to
a broader spectrum of algorithmic approaches, applications, and advances of artificial
intelligence (AI).

The event will continue to be technically supported by the International Neural
Networks Society (INNS) and more specifically by the EANN Special Interest Group.
In addition, the name EANN will continue to accompany the conference for historical
reasons but also for substantive ones. More specifically, EANNwill be a parallel satellite
event of EAAAI, for the members of our scientific family, who would like to continue
submitting to EANN.

Since the first conference in 1995, EANN has provided a great discussion forum on
engineering applications of all artificial intelligence technologies, focusing on artificial
neural networks. It has managed to promote the use of modeling techniques from all
subdomains of AI in diverse application areas, where significant benefits can be derived.
The conference also covers advances in theoretical AI aspects. Thus, both innovative
applications and methods are particularly appreciated.

The 23rd International Conference on Engineering Applications of Neural Networks
(EAAAI/EANN 2022) was collocated with the 18th International Conference on Arti-
ficial Intelligence Applications and Innovations (AIAI 2022) and held at the Aldemar
Knossos Royal in Chersonisos, Crete, Greece. EAAAI/EANN 2022 brought together
scientists from all AI domains and offered them the chance to exchange ideas and to
announce their achievements.

This proceedings volume in the INNS (International Neural Networks) series pub-
lished by Springer contains the papers that were accepted to be presented orally at
EAAAI/EANN 2022. The diverse nature of papers presented demonstrates the vitality
of artificial intelligence algorithms and approaches. The conference not only covered
neural networks but also provided a forum for a diverse range ofAI applications reflecting
the scope of EAAAI.

The eventwas held in a hybridmode from June 17 to June 20, 2022. The vastmajority
of the authors attended the conference on site. Moreover, it was also broadcast live over
the internet to offer all conference delegates who could not travel the chance to present
and attend in real time.

The response of the international scientific community to the EAAAI/EANN 2022
call for papers was more than satisfactory, with 83 papers initially submitted by authors
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from 11 different countries worldwide: Brazil, Bulgaria, the Czech Republic, Germany,
Greece, Italy, Japan, Norway, Romania, Spain, and the UK. All papers were peer
reviewed by at least two independent academic referees. Where needed a third referee
was consulted to resolve any potential conflicts.

A total of 49% of the submitted manuscripts (41 papers) were accepted to be pub-
lished as full papers (12 pages long) in the proceedings. Due to the high quality of the
submissions, the Program Committee also decided to accept one short paper (10 pages
long) for publication. The accepted papers are related to the following thematic topics:

• Classification in Machine Learning
• Machine Learning for Medical Images
• Genome Classification
• Robotics
• Autonomous Vehicles
• Photonic Neural Networks
• Bio inspired Modeling
• Novel Neural Architectures
• Data Mining
• Autoencoders
• Convolutional Neural Networks
• Deep Learning
• Reinforcement Learning
• Generative Adversarial Neural Networks
• Echo State Neural Networks
• Classification
• Clustering
• Machine Learning
• Blockchain
• Text Classification
• Natural Language
• Knowledge Graphs
• Evolutionary Computing
• Ensemble Learning
• Security Modeling
• Spiking Neural Networks

In addition to the paper presentations, five invited speakers gave keynotes on timely
aspects or state-of-the-art applications of artificial intelligence. Hojjat Adeli from Ohio
State University, USA, gave a speech on “Machine Learning: A Key Ubiquitous Tech-
nology in the 21st Century”. Riitta Salmelin from Aalto University, Finland, addressed
“What neuroimaging can tell about human brain function”. Elisabeth André from the
University ofAugsburg,Germany, discussed “Socially InteractiveArtificial Intelligence:
Perception, Synthesis and Learning of Human-like Behaviors”. Verena Rieser from
Heriot-WattUniversity,UK, gave a speech on the subject of “ResponsibleConversational
AI: Trusted, Safe and Bias-free” and JohnMacintyre from the University of Sunderland,
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UK, addressed the wider AI and ethics area in his talk “Is Big Tech Becoming the Big
Tobacco of AI?”.

On behalf of the organizers, we would like to thank everyone involved in
EAAAI/EANN 2022, and we hope that you find the proceedings interesting and
insightful.

June 2022 Lazaros Iliadis
Chrisina Jayne

Anastasios Tefas
Elias Pimenidis
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Machine Learning: A Key Ubiquitous Technology
in the 21st Century

Hojjat Adeli

Ohio State University, Columbus, USA, Fellow of the Institute of Electrical and
Electronics Engineers (IEEE) (IEEE), Honorary Professor, Southeast University,
Nanjing, China, Member, Polish and Lithuanian Academy of Sciences, Elected

corresponding member of the Spanish Royal Academy of Engineering
adeli.1@osu.edu

Abstract. Machine learning (ML) is a key and increasingly pervasive
technology in the 21st century. It is going to impact the way people live
and work in a significant way. In general, machine learning algorithms
simulate the way brain learns and solves an estimation/recognition prob-
lem. They usually require a learning phase to discover the patterns among
the available data, similar to the humans. An expanded definition ofML is
advanced as algorithms that can learn from examples and data and solve
seemingly interactable learning and unteachable problems, referred to as
ingenious artificial intelligence (AI). Recent and innovative applications
of ML in various fields and projects currently being pursued by leading
high-tech and industrial companies such as Boeing, Google, IBM, Uber,
Baidu, Facebook, and Tesla are reviewed. Then, machine learning algo-
rithms developed by the author and his associates are briefly described.
Finally, examples are presented in different areas from health monitoring
of smart highrise building structures to automated EEG-based diagnosis
of various neurological and psychiatric disorders such as epilepsy, the
Alzheimer’s disease, Parkinson’s disease, and autism spectrum disorder.



What Neuroimaging Can Tell About Human Brain
Function

Riitta Salmelin

Department of Neuroscience and Biomedical Engineering Aalto University, Finland
riitta.salmelin@aalto.fi

Abstract.Over the past fewdecades, real-time tracking of cortical current
flow (magneto/electroencephalography, MEG/EEG) and accurate local-
ization of blood oxygenation changes (functional magnetic resonance
imaging, fMRI) have offered windows to the functional architecture of
the human brain. The neuroimaging domain has reached its first level
of maturity: we now know how to measure and quantify different types
of signals and, phenomenologically, we know what type of group-level
functional effects to expect in a large variety of experimental conditions.
Specific brain areas, networks and electrophysiological dynamics have
been proposed to be linked with various perceptual, motor and cognitive
functions and their disorders. To reach the next phase in human neuro-
science, we need to advance from group-level descriptions to quantita-
tive model-based individual-level predictions. These developments will
be illustrated with focus on language function for which descriptive mod-
els, largely based on observations of patients with language disorders, are
being supplemented by computationally explicit models of mechanisms
and representations. Machine learning approaches are essential tools in
this endeavor.



Socially Interactive Artificial Intelligence: Perception,
Synthesis and Learning of Human-Like Behaviors

Elisabeth Andre

Human-Centered Artificial Intelligence, Institute for Informatics, University of
Augsburg, Germany

andre@informatik.uni-augsburg.de

Abstract. The automatic analysis and synthesis of social signals con-
veyed by voice, gestures, mimics, etc., will play a vital role for next-
generation interfaces as it paves the way towards a more intuitive and
natural human-computer interaction with robots and virtual agents. Inmy
talk, I will present computational methods to implement socially interac-
tive behaviors in artificial agents, focusing on three essential properties of
socially interactive interfaces: Social Perception, Socially Aware Behav-
ior Synthesis, and Learning Socially Aware Behaviors. I will highlight
opportunities and challenges that arise from deep learning approaches
that promise to achieve the next level of human-likeness in virtual agents
and social robots. I will illustrate my talk with examples from various
applications with socially interactive characters or robots, including art
and entertainment, cultural training and social coaching, and personal
well-being and health.



Responsible Conversational AI: Trusted, Safe
and Bias-free

Verena Rieser

School of Mathematical and Computer Sciences (MACS) at Heriot Watt University,
Edinburgh

V.T.Rieser@hw.ac.uk

Abstract. With recent progress in deep learning, there has been an
increased interest in learning dialogue systems from data, also known
as “Conversational AI”. In this talk, I will focus on the task of response
generation, for which I will highlight lessons learnt and ongoing chal-
lenges, such as reducing ‘hallucinations for task-based systems, safety
critical issues for open-domain chatbots, and the often-overlooked prob-
lem of ‘good’ persona design. I will argue that we will need to solve
these challenges to create trusted, safe and bias-free systems for end-user
applications.



Is Big Tech Becoming the Big Tobacco of AI?

John Macintyre

Dean of the Faculty of Applied Sciences and Pro Vice Chancellor at University of
Sunderland

John.Macintyre@sunderland.ac.uk

Abstract.The future of AI is being shaped bymany forces – politics, eco-
nomics, and technology all play their part. Whilst science and academia
continue to push forward the boundaries of knowledge, private sector
investment in AI is growing exponentially, with commercial revenues
from AI expected to exceed $500 billion in the near future. At the fore-
front of this commercial boom in AI is so-called “Big Tech” – the biggest
technology companies driving the commercialization of AI products and
systems for profit. These companies have vast R&D budgets, and employ
an increasingly large fraction of the AI R&D workforce globally. The
question is: are they living up to their responsibilities to develop AI for
the good of society, or are they just pursuing profit? Will Big Tech follow
the very negative pattern of huge companies prepared to inflict harms on
society to boost their profits and shareholder dividends? Professor John
MacIntyre’s talk will look at the emerging issues in AI and examine what
impact the behaviour of Big Tech is having on the whole field of AI.
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Abstract. The increase in the available data and computational power
has led to the rapid evolution of the field of deep learning over the last
few years. However, the success of deep learning methods relies on mak-
ing appropriate neural architecture choices, which is not a straightfor-
ward task and usually requires a time-consuming trial-and-error proce-
dure. Neural architecture search is the process of automating the design
of neural network architectures capable of performing well on specific
tasks. It is a field that has emerged in order to address the problem of
designing efficient neural architectures and is gaining popularity due to
the rapid evolution of deep learning, which has led to an increasing need
for the discovery of high-performing neural architectures. This paper
focuses on evolutionary neural architecture search, which is an efficient
but also time-consuming and computationally expensive neural architec-
ture search approach, and aims to pave the way for speeding up such
algorithms by assessing the effect of acceleration methods on the overall
performance of the neural architecture search procedure as well as on
the produced architectures.

Keywords: Neural architecture search · Evolutionary algorithms ·
Candidate evaluation · NAS-Bench-101

1 Introduction

Deep learning is a subfield of machine learning inspired by the function of the
human brain that uses multi-layer artificial neural networks to understand the
world as a hierarchy of concepts and learn complicated concepts by using simpler
ones as a basis, thus succeeding in automating feature engineering [3]. The use
of deep learning techniques has led to significant advancements in various fields,
such as information retrieval, computer vision and natural language processing.
The successful application of deep learning techniques largely relies on selecting
an appropriate neural network architecture for the task at hand, which is a
time-consuming process that requires prior knowledge of the field and is also
likely to lead to errors if performed manually by a human. The field of neural
architecture search, which has emerged in recent years as part of the shift towards
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automated machine learning, allows for the automatic design of optimal neural
network architectures by using optimisation algorithms.

Neural architecture search is a subfield of automated machine learning that
emerged in recent years due to the desire for automating the neural architecture
design process and has succeeded in producing state-of-the-art neural network
architectures that outperform manually designed ones without exhausting the
available resources [7,10,11,14]. A neural architecture search procedure can be
divided into the following components: search space, optimisation method and
candidate evaluation method [5]. The search space defines which neural network
architectures are eligible to be selected by the neural architecture search algo-
rithm and may be influenced by prior experience in solving problems similar to
the one the produced neural network architecture is intended to tackle. However,
this may introduce bias, meaning that it may exclude architectures that have
not previously been used for similar problems but would have been capable of
achieving high performance [2]. The exploration of the search space is performed
by using various optimisation methods, such as evolutionary algorithms, rein-
forcement learning and Bayesian optimisation [12]. Finally, candidate evaluation
methods are used to assess the quality of candidate neural network architectures
and thus guide the optimisation methods towards selecting the best candidates.
The most straightforward approach for candidate evaluation is to perform a
standard training and validation procedure of each neural architecture on a spe-
cific dataset. However, this approach is computationally expensive, which is why
alternative approaches have been proposed, such as the reduction of the number
of training epochs, the reduction of the number of cells or filters used and the
use of predictive models to guide the search.

This paper focuses on the assessment of the quality of candidate evaluation
acceleration techniques in evolutionary neural architecture search algorithms.
The options that are explored for speeding up the process of evaluating candidate
architectures are the use of fitness approximation and the use of a method for the
partial prediction of the candidates’ trained accuracy from their initial state. The
rest of the paper is organised as follows: first, we briefly present the considered
methods, as well as the NAS-Bench-101 dataset, which is the dataset that has
been used to perform our experiments. We then describe the experiments that
were conducted to determine the effect of the acceleration techniques on the
overall performance of the search procedure. Finally, we present and interpret
the results of our experiments and draw our final conclusions.

2 Related Work

As mentioned above, this paper examines the effect of techniques for accel-
erating the process of evaluating neural architectures on the performance of
evolutionary neural architecture search algorithms. This section introduces the
acceleration methods that are considered and also presents the NAS-Bench-101
dataset, which has been used to perform experiments for the comparison of the
aforementioned techniques.
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2.1 Evolutionary Neural Architecture Search with Fitness
Approximation

Evolutionary algorithms are population-based metaheuristics inspired by Dar-
win’s theory of evolution. They use mechanisms such as mutation, crossover,
selection and reproduction to find acceptable solutions to optimisation prob-
lems. These algorithms treat candidate solutions to an optimisation problem as
individuals in a population and use a fitness function to assess the quality of
each candidate solution. An approximate solution is typically reached through
an iterative procedure that simulates the natural selection process. Evolutionary
algorithms are commonly used as an optimisation method in neural architecture
search algorithms, as they succeed in producing high-performing neural archi-
tectures. However, they usually require immense computational resources due
to the fact that they evaluate candidate architectures by performing a stan-
dard training and validation procedure. In order to overcome this difficulty and
improve the time efficiency of such algorithms, the use of fitness approximation
has been proposed.

NAS-EA-FA V2 [9] is an evolutionary algorithm that uses an XGBoost [1]
model to estimate the fitness of candidate architectures, thus reducing the algo-
rithm running time. The algorithm uses an iterative procedure, where only a
small number of architectures are trained and evaluated in each iteration in
order to provide training data for the XGBoost model. The XGBoost model is
then trained and used to estimate the fitness of the remaining architectures. The
K architectures with the highest fitness and the H architectures with the largest
distance from the previously evaluated architectures are selected for training in
each iteration, thus increasing the diversity of the trained architectures and
improving the stability of the algorithm. Furthermore, the algorithm uses data
augmentation, as it identifies the isomorphisms of each of the trained architec-
tures and includes them in the training set, thus attempting to improve the per-
formance of the predictive model by providing it with a larger training dataset.

2.2 Neural Architecture Search Without Training

An alternative solution that has been proposed for the acceleration of the neural
architecture search process is to evaluate architectures based solely on their
initial state. For this purpose, Mellor et al. introduced the NAS without training
score [8], henceforth called NASWT score, which is able to perform a partial
prediction of a neural network’s accuracy without requiring any training. This
score can be calculated for neural networks with rectified linear unit (ReLU)
activations, as it evaluates untrained networks by looking at the overlap of these
activations between data points. There seems to be a positive correlation between
the aforementioned score and the accuracy of a network after training, meaning
that this score can quickly give a rough estimate of a network’s performance
and serve as a means of guiding neural architecture search algorithms towards
discovering efficient neural architectures. The calculation of this score requires
minimal computational power as it can be performed within a few seconds on
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a single GPU, thus offering promising prospects in the sense that it has the
potential of enabling a considerable reduction of the running time of neural
architecture search algorithms.

2.3 NAS-Bench-101

As mentioned above, neural architecture search algorithms require immense com-
putational power, as they typically evaluate candidate neural network architec-
tures by performing a standard training and validation procedure for each archi-
tecture. This leads to difficulties regarding the reproducibility of experiments
and excludes researchers without access to adequate computational resources
from developing and testing novel ideas in the field. In order to overcome this
issue, various benchmark datasets have been introduced. Each of these datasets
contains a large number of trained and evaluated architectures, allowing for
the assessment of neural architecture search techniques in minimal time. NAS-
Bench-101 [13] is the first neural architecture dataset that was publicly released.
It contains a search space of 423,624 unique convolutional architectures that are
suitable for the task of image classification. These architectures have been trained
and evaluated multiple times with three different initialisations on CIFAR-10 for
four different numbers of epochs, thus resulting in a dataset of over 5 million
trained architectures. The NAS-Bench-101 search space consists of neural archi-
tectures that are constructed as follows: the neural architecture search algorithm
defines the architecture of a specific cell, which is represented in the form of a
directed acyclic graph and has a maximum of 7 nodes, which represent layers,
and a maximum of 9 edges, which represent connections between layers. Each
generated cell has an input layer, an output layer and a maximum of 5 inter-
mediate layers that are chosen from the following available operations: 3 × 3
convolution, 1×1 convolution and 3×3 max pool. An example of a NAS-Bench-
101 cell is displayed in Fig. 1a. The overall architecture is then constructed with
the use of a pre-defined skeleton (Fig. 1b) that is based on stacking multiple
cells. The best architecture in NAS-Bench-101 achieves a mean test accuracy of
94.32% on the CIFAR-10 dataset.

3 Experiments

We conduct four experiments to determine the effect of acceleration techniques
on the performance of evolutionary neural architecture search. In the first two
experiments, we use a simple genetic algorithm. Two options are examined
regarding candidate evaluation; in the first experiment, the validation accuracy is
used to determine the fitness of individuals, whereas in the second experiment the
NASWT score is used as a measure of individuals’ fitness. The remaining experi-
ments concern NAS-EA-FA V2, the aforementioned evolutionary algorithm that
uses fitness approximation to speed up the search procedure. In the third exper-
iment, the validation accuracy is used as the fitness score, whereas in the fourth
experiment the fitness of individuals is determined by using the NASWT score.
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Fig. 1. NAS-Bench-101 cell and skeleton

3.1 Genetic Algorithm

Genetic algorithms are evolutionary algorithms that are based on the biological
process of natural selection and are used as a means of discovering high-quality
solutions to optimisation problems by performing a natural selection process on
an initial population. In our case, the genetic algorithm is used for the discovery
of high-performing neural architectures, thus each individual in the population
is a neural network architecture. The genetic algorithm that is used for our
experiments works as follows: First, the initial population is randomly sampled
and assigned an initial fitness equal to zero, as there is no available information
regarding the behaviour of the produced architectures yet. We then perform
an iterative procedure for a fixed number of iterations, where in each iteration
the parents are defined by using tournament selection and the offsprings are
generated from the parents by using bitwise mutation. The initial population of
each iteration is the population derived by mutation from the previous iteration’s
population.



8 F. Dervisi et al.

Evaluating Candidates Based on the Validation Accuracy. In evolution-
ary neural architecture search algorithms, the fitness of individuals is usually
determined by using the validation accuracy. In this case, a standard training
and validation procedure on a specific dataset is required for each individual.
This is a time-consuming and computationally intensive process, as all architec-
tures included in each iteration’s population need to be trained and evaluated
in order for their fitness to be determined.

Evaluating Candidates Based on the NASWT Score. In order to reduce
the algorithm running time, we also conduct an experiment where the NASWT
score is used as the fitness score of individuals, thus eliminating the need for
performing a training and validation procedure for each of the architectures
included in each generation. The NASWT score can be computed within a few
seconds for each individual. Thus, in the case where this score is used to evaluate
candidates, the algorithm running time is considerably reduced.

3.2 NAS-EA-FA V2

NAS-EA-FA V2 is examined as an alternative for the acceleration of the search
procedure, as it uses a fitness approximation model to instantly infer the fitness
of individuals and avoid performing a full training and validation procedure for
all individuals in each generation. The algorithm that is used for the remain-
ing two experiments works as follows: First, the initial population is randomly
sampled and assigned a fitness score equal to zero. Then, an iterative procedure
is performed for a fixed number of iterations (T ), where in each iteration the
first step is to sort the current population in descending order based on the fit-
ness of its individuals. The K architectures with the highest fitness and the H
architectures with the largest distance from the previously evaluated architec-
tures are then selected to be trained and evaluated in order to provide training
data for the fitness approximation model. The training set is enhanced by using
data augmentation, as the isomorphisms of the K + H evaluated architectures
are also appended to the training set. An XGBoost model is then trained based
on the provided training data (which consist of all the architectures that have
been trained and evaluated in all iterations up until that point) in order to be
able to estimate the fitness of the remaining architectures. Once the XGBoost
model training has been performed, a genetic algorithm with a fixed number of
generations (G) is used to evolve the population and generate architectures with
higher performance. The algorithm chooses the parents by using tournament
selection and produces the offsprings by performing bitwise mutation. The main
difference between this approach and the simple genetic algorithm used in the
first two experiments is the fact that the fitness of offsprings is now instantly
estimated by using the trained XGBoost model.
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Evaluating Candidates Based on the Validation Accuracy. In the third
experiment, we use the validation accuracy as the fitness score, meaning that
a training and validation process is still required for K + H architectures in
each iteration. However, a considerable amount of time is saved compared to the
simple genetic algorithm, where all individuals need to be trained and evaluated.

Evaluating Candidates Based on the NASWT Score. In the last experi-
ment, we use the NASWT score as the fitness score, thus completely eliminating
the need for training and evaluating networks. In this case, only the NASWT
score is calculated for each architecture, a calculation that can be performed
relatively quickly and requires minimal computational resources. The algorithm
running time is therefore drastically reduced. However, some extra noise is intro-
duced, as the NASWT score is not a definitive measure of the architectures’
performance after training. This may lead to a considerable reduction of the
performance of the algorithm, as the use of fitness approximation to infer the
fitness of offsprings already induces some noise in the process. Based on the
results, the validity of this method will be assessed and conclusions as to whether
the reduction in the algorithm running time can compensate for the algorithm’s
performance drop will be reached.

3.3 Experimental Setup

The NORD Framework. Neural Operations Research and Development [6]
(NORD) is a Python framework that simplifies the design of neural architecture
search procedures by decoupling the design and implementation of networks and
enables the fair comparison of neural architecture search approaches by facili-
tating their application on benchmarks and custom datasets. The NORD frame-
work contains a neural descriptor class, which enables building neural networks
simply by describing their topology, i.e. its layers and the connections between
them. It also contains a neural evaluator class, which automates the process of
either training and evaluating networks on real datasets or using benchmarks
to retrieve the pre-computed performance statistics of candidate architectures.
The NORD framework is used in all the experiments presented in this paper to
perform the calculations required for the performance evaluation of individuals.

Handling Nodes Without Input or Output Connections. The initial
population of the examined evolutionary algorithms is created by building ran-
dom cells whose layer types and connections are randomly decided by taking
into account the NAS-Bench-101 requirements. However, this means that some
invalid cells are created along the way, as it is possible to generate cells that
contain layers without any input or output connections. In order to overcome
this issue, the layers without input or output connections are removed from each
randomly generated cell before the start of the iterative procedure.
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Experimental Parameter Settings. Table 1 displays the values of the param-
eters that are used in our experiments, which have been selected in accordance
with [9].

Table 1. Parameter values

Algorithm Parameter Value

Genetic algorithm Population size 100

Tournament size 20%

Layer mutation rate 1/5

Connection mutation rate 1/21

Number of generations 100

NAS-EA-FA V2 Population size 100

Tournament size 20%

Layer mutation rate 1/5

Connection mutation rate 1/21

Number of iterations (T ) 10

Number of generations (G) in each iteration 10

K 30

H 20

XGBoost learning rate 0.1

NASWT score Batch size 32

4 Results

In order to produce representative results and draw accurate conclusions regard-
ing the efficiency of the considered evolutionary neural architecture search accel-
eration techniques, each experiment was repeated ten times, resulting in ten
independent sets of results. The results were then post-processed and analysed
in order to draw conclusions regarding the effect of the examined acceleration
techniques on the efficiency of the neural architecture search process.

The conclusion that can be drawn from Figs. 2a and 2b is that NAS-EA-FA
introduces some noise to the process due to the use of a predictive model to esti-
mate the individuals’ fitness. It is apparent that the simple genetic algorithm
that performs a direct calculation of each individual’s fitness succeeds in produc-
ing better architectures than NAS-EA-FA, thus leading to the conclusion that
NAS-EA-FA somehow narrows down the search space, as the best architectures
it produces perform slightly worse than the best architecture in NAS-Bench-101
, which is more frequently found by the simple genetic algorithm. This may be
caused due to the introduction of bias by the process that is used for the selec-
tion of the training data for the fitness approximation model and the fact that
this bias is then reflected in the fitness approximation model’s predictions.
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Figures 2c and 2d show the best accuracies as selected based on the algo-
rithm’s fitness measure, i.e. the validation accuracy or the NASWT score. The
results show that although NAS-EA-FA introduces some limitations, the ver-
sion of NAS-EA-FA that evaluates individuals based on the validation accuracy
is the best choice for the acceleration of the neural architecture search proce-
dure. This conclusion is based on the fact that the NASWT score seems to
be unable to recognise better-performing architectures, probably due to the fact
that its correlation with the validation accuracy is not strong enough to enable it
to accurately distinguish the best-performing architectures. Therefore, although
the search procedures that are guided by the NASWT score succeed in producing
high-performing architectures in just a few epochs, it is unfortunately impossible
for them to identify the best-performing architectures, as the fitness score that
they use is not an accurate enough measure of an architecture’s performance.

Fig. 2. Best accuracy of 10 runs on NAS-Bench-101 (mean and 95% confidence interval
displayed)

Figure 3 displays the distributions of the validation accuracies of the architec-
tures produced by all the considered algorithms. In all experiments, the majority
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of the generated architectures have a validation accuracy ranging between 90%
and 95%, whereas there are also a few architectures with a validation accuracy of
around 85%, which are probably generated at the start of the search procedure.
The main conclusion that can be drawn is that the simple genetic algorithm
and NAS-EA-FA produce different architectures regardless of the chosen fit-
ness score. This has also been confirmed by a two-sample Kolmogorov-Smirnov
test [4], which has been used to compare the distributions of the validation accu-
racies of the produced architectures. We conducted two tests, one for the case
where we use the validation accuracy to determine the fitness of individuals and
one for the case where the fitness is determined by the NASWT score. The tests
resulted in p-values of 1.84 ·10−121 and 1.89 ·10−160 respectively, thus leading to
the conclusion that the validation accuracies of the architectures generated by
the simple genetic algorithm belong to a different distribution than the validation
accuracies of the architectures generated by NAS-EA-FA.

Fig. 3. Distributions of the validation accuracies of the produced architectures
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5 Conclusions and Future Work

Due to the increasing popularity of deep learning techniques, there is also an
increasing need for automating the design of neural network architectures that
are capable of performing well and solving specific problems. Neural architec-
ture search, a subfield of automated machine learning that uses optimisation
algorithms in order to automatically design optimal neural architectures, has
succeeded in producing state-of-the-art architectures for various problems.

This paper examines the use of techniques for accelerating evolutionary neu-
ral architecture search and their effect on the search procedure and its ability
to identify high-performing neural architectures. We considered the use of a
fitness approximation model to estimate the individuals’ fitness instead of eval-
uating them based on their accuracy, which would require a time-consuming
training and validation procedure, as well as guiding the search with the use
of the NASWT score, which estimates a network’s performance based on its
initial state. A thorough computational study was conducted to determine the
effect of the aforementioned techniques on the search procedure and the qual-
ity of the produced architectures. The results lead to the conclusion that the
fitness approximation model for the estimation of the individuals’ fitness intro-
duces some noise to the process and also restricts the produced architectures to
a subset of the search space, thus failing to discover the optimal architectures.
However, it is apparent that the use of a fitness approximation model to estimate
the validation accuracy is preferred over the use of the NASWT score as a fit-
ness measure, as although the NASWT score does not impose any restrictions on
the search space, it is not capable of accurately identifying the best-performing
architectures even though it succeeds in guiding the algorithm to discover some
of them.

Future work in this direction includes experimenting with the NASWT score
by using different batch sizes in order to determine whether the batch size influ-
ences the score’s correlation with the networks’ performance. Another possible
task is to examine the behaviour of other fitness approximation models, such as
graph convolutional networks, as well as the use of other metaheuristic optimisa-
tion methods, such as particle swarm optimisation and ant colony optimisation.
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Abstract. Neural networks are extensively developed for the deep learning and
intelligent processing. To improve the performance of neural networks, the bio-
logical inspired neural networks are often studied for artificial neural networks.
Models for motion processing in the biological systems have been used, which
consist of the symmetric networks with quadrature functions of Gabor filters. This
paper proposes a model of the bio-inspired asymmetric neural networks with non-
linear characteristics, which are the squaring and rectification functions. These
functions are observed in the retinal and visual cortex networks. In this paper,
the proposed asymmetric network with Gabor filters and the conventional energy
model are compared from the orthogonality characteristics. To show the role of
the orthogonality in the feature space, tracking characteristics to input stimulus
are experimented. Then, the orthogonality basis functions create better tracking
results. Thus, asymmetric structure of the network and its nonlinear characteristics
are shown to be effective factors for generating orthogonality.

Keywords: Asymmetric neural network · Gabor filter · Correlation and
orthogonality analysis · Energy model · Nonlinear characteristics

1 Introduction

Neural networks currently play an important role in the processing complex tasks for
the visual perception and the deep learning. To estimate the visual motion, sensory
biological information models have been studied [1]. For the deep learning efficiently,
an independent projection [2] from the inputs are studied in the convolutional neural
networks. Further, in the deep learning, the orthogonalization in the weight matrix of
neural networks are studied using optimization methods [3]. In the network learning,
the feature vectors from different classes are expected to be as orthogonal as possible
[4]. It is important to make clear the network structures and functions how to generate
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orthogonality relations, which will make it possible to respond correctly and effectively
in the feature spaces. By using Gabor filters, a symmetric network model was developed
for the motion detection, which is called energy model [1]. The energy model is applied
to maximizing independence for neural networks [5, 6]. Further, in the sparse coding,
the non-orthogonal basis functions cause deviation of input-output linearity [7]. This
paper develops asymmetrical networks, which are based on the catfish retina. This is
an extended version of an earlier article [12] developed for feature spaces. Then, the
orthogonality characteristics between the asymmetric networks and the conventional
energy model are compared. In the biological visual systems, the nonlinear characteris-
tics are observed as the squaring function and rectification function [10]. It is shown that
asymmetric structure networks and nonlinear functions generate orthogonal characteris-
tics. To verify the orthogonal properties in the feature spaces, the tracking problems are
experimented. It is shown that the asymmetric networks with nonlinear function work
effectively for tracking characteristics in the feature spaces, in which the orthogonal
wavelet basis functions play an effective role for following to the input stimulus.

2 Bio-inspired Neural Networks

2.1 Background of Bio-inspired Neural Networks

In the biological neural networks, the structure of the network, is closely related to the
functions of the network. Naka et al. [10] presented a simplified, but essential networks
of catfish inner retina as shown in Fig. 1. Visual perception is carried out firstly in the
retinal neural network as the special processing between neurons.

Fig. 1. Asymmetric network with linear and squaring nonlinear pathways

Visual perception is carried out firstly in the retinal neural network as the special
processing between neurons. The following asymmetric neural network is extracted
from the catfish retinal network [10]. The asymmetric structure network with a quadratic
nonlinearity is shown in Fig. 1, which composes of the pathway from the bipolar cell B
to the amacrine cell N and that from the bipolar cell B, via the amacrine cell C to the
N [9, 10]. Figure 1 shows a network which plays an important role in the movement
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perception as the fundamental network. It is shown that N cell response is realized by a
linear filter, which is composed of a differentiation filter followed by a low-pass filter.
Thus, the asymmetric network in Fig. 1 is composed of a linear pathway and a nonlinear
pathway with the cell C, which works as a squaring function.

3 Orthogonal Characteristics of Asymmetric Networks

3.1 Orthogonality of Asymmetric Network Under the Stimulus Condition

The inner orthogonality under the moving stimulus conditions is computed in the asym-
metric networks as shown in Fig. 2, which are derived from the systematic functions in
Fig. 1. The impuse functions of the cells are shown in h1(t) and h′

1(t).

Fig. 2. Asymmetric network unit with Gabor filters

In the biological visual systems, Gabor filters are often used as the impulse functions.
The vatiable t in the Gabor filters is changed to t′, where by setting ξ � 2πω in

the Eq. (1), t′ = 2πωt = ξ t and dt = dt/ξ hold. Then, Gabor filters become to the
following equation.

Gs(t
′) = 1√

2πσ
e
− t′2

2σ2ξ2 sin(t′) and Gc(t
′) = 1√

2πσ
e
− t′2

2σ2ξ2 cos(t′) (1)

The impulse response functions h1(t) and h′
1(t) are often replaced by Gs(t′) and

Gc(t′) or vice versa. The outputs of these linear filters are given as follows,

y11(t) =
∫ ∞

0
h1(t

′)x(t − t′)dt′ (2)

y21(t) =
∫ ∞

0
h′
1(t

′)x(t − t′)dt′ (3)
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3.2 Orthogonality Between the Asymmetric Networks Units

We compute orthogonality properties between the asymmetric networks units in Fig. 3.
Orthogonal or non-orthogonal properties of the networks depend on the input stimulus
to the networks.

Fig. 3. Orthogonality computations between asymmetric networks units

To check the orthogonality properties between the asymmetric networks units, the
white noise moving stimuli are schematically shown in Fig. 4. In the first row in Fig. 4,
one white noise is a low pass filtered one with zero mean and its power p, which is shown
in the circles only under the input variables x(t), x′(t), v(t) and v′(t′). Similarly, in the
second row in Fig. 4, the other white noise is a high pass filtered one with zero mean
and its power p′, which is shown in the grayed circles under input variable v′(t′). The
impulse response functions h1(t) and h′

1(t) are replaced by the Gabor filters, Gs(t′) and
Gc(t′) as shown in the Eq. (1). The stimulus with the high pass filtered noise is moved
from the right to the left according to (a), (b), (c), (d) and (e) in front of the visual
space.

Under the stimulus condition (a) in Fig. 4, the correlation between outputs y(t) and
z(t) between the asymmetrical networks with Gabor filters in Fig. 3, is computed as
follows,

∫ ∞

−∞
y(t)z(t)dt =

∫ ∞

−∞
dt{

∫ ∞

0
h1(τ )x(t − τ)dτ

+
∫ ∞

0

∫ ∞

0
h′
1(τ1)h

′
1(τ2)x

′(t − τ1)x
′(t − τ2)dτ1dτ2}

{
∫ ∞

0
h′
1(σ )v(t − σ)dσ +

∫ ∞

0

∫ ∞

0
h1(σ1)h1(σ2)v

′(t − σ1)v
′(t − σ2)dσ1dσ2}

=
∫ ∞

0

∫ ∞

0
h1(τ )h′

1(σ )dτdσE[x(t − τ)v(t − σ)]

+
∫ ∞

0

∫ ∞

0

∫ ∞

0
h1(τ )h1(σ1)h1(σ2)E[x(t − τ)v′(t − σ1)v

′(t − σ2)]dτdσ1dσ2

(4)
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+
∫ ∞

0

∫ ∞

0

∫ ∞

0
h′
1(σ )h′

1(τ1)h
′
1(τ2)E[v(t − σ)x′(t − τ1)x

′(t − τ2)]dσdτ1dτ2

+
∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0
h′
1(τ1)h

′
1(τ2)h1(σ1)h1(σ2)

E[x′(t − τ1)x
′(t − τ2)v

′(t − σ1)v
′(t − σ2)]dτ1dτ2dσ1dσ2

(5)

where the first term of Eq. (5) shows a path way of ➀and ➂ and the second and third
terms are to be 0 in ➀➃ and ➁ ➂, respectively. The fourth term is in ➁➃.

The terms ➀➂ and ➁➃ are not zero, because the following equations hold,

∫ ∞

0
h1(τ )dτ = 1√

2πσ

∫ ∞

0
e
− τ2

2σ2ξ2 sin(τ )dτ = ξ√
π
e− 1

2 σ 2ξ2
∫ 1√

2
σξ

0
eτ 2dτ > 0

(6)

and
∫ ∞

0
h′
1(τ )dτ = 1√

2πσ

∫ ∞

0
e
− τ2

2σ2ξ2 cos(τ )dτ = ξ

2
e− 1

2 σ 2ξ2 > 0 (7)

where ξ is the center frequency of the Gabor filter. Thus, since two pathways are zero in
the correlation, while other two pathways (25%and 25%) are non-zero, the orthogonality
becomes 50% for the stimuli (a) in Fig. 4. Similarly, under the stimulus conditions,
(b), (c), (d)and (e) in Fig. 4, the correlations are computed [16].

Fig. 4. White noise stimuli for checking orthogonality and non-orthogonality

4 Orthogonal Properties of Conventional Energy Model

A symmetric network with Gabor filter were proposed by Adelson and Bergen [1] as
the energy model of the perception of the visual motion.
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4.1 Orthogonality Under the Stimulus Condition

Symmetric network is shown in Fig. 5, which is derived from the systematic functions.

Fig. 5. Symmetric network unit, which is called energy model

4.2 Comparison Between the Asymmetric Network and the Energy Model

In Fig. 6, the filled bar shows the orthogonality ratio value in the asymmetric neural
networks under the moving stimulus conditions, while the dotted bar shows by two units
of the symmetric network in Fig. 5. Figure 6 shows that the asymmetric network shows
higher orthogonality ratio, compared with the symmetric network.

Fig. 6. Comparison of orthogonality ratio under moving stimulus conditions
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5 Generation of Orthogonality in the 1st Layer Network

The two types of the units are shown inFig. 7,which are constructedwith two asymmetric
networks in Fig. 1. Two amacrine cells Na and Nb are experimentally clarified [9] and
the outputs of them are inputted to the Ganglion cell, G

Fig. 7. First layer for the generation of orthogonality components

We assume here the impulse response functions of the bipolar cells B1 are different,
which are described in hsin and hcos, respectively. Output responses of the Na cell and
Nb cell are shown in Na

∧

and Nb
∧

. Their responses are given in the Eq. (8),

Na
∧

=
∫ T

0
(

∫ T

0
e
− τ2

2σ2ξ2 sin(τ )x(t − τ)dτ)dt +
∫ T

0
(

∫ T

0
e
− τ2

2σ2ξ2 cos(τ )x(t − τ)dτ)2dt

Nb
∧

=
∫ T

0
(

∫ T

0
e
− τ2

2σ2ξ2 cos(τ )x(t − τ)dτ)dt +
∫ T

0
(

∫ T

0
e
− τ2

2σ2ξ2 sin(τ )x(t − τ)dτ)2dt

(8)

We assume here the static feature is represented in the linear equation y = x(t).
Then, the least square optimization Ña of theNa is realized by setting coefficients {a, b}
for respective pathways as follows,

Ña = a
∫ T

0
(

∫ T

0
e
− τ2

2σ2ξ2 sin(τ )x(t − τ)dτ )dt + b
∫ T

0
(

∫ T

0
e
− τ2

2σ2ξ2 cos(τ )x(t − τ)dτ )2dt (9)

Then, the optimization is realized by the equation

Minimize
∫ T

0
(x(t)−Na

∧

)2dt (10)

The minimization of Eq. (10) is solved by the differentiations (dÑa/da) and
(dÑa/db). Thus, the optimized coefficients {a, b} are obtained.

By setting T = π , we can obtain the optimized coefficients, a = 0.489, b =
0.0215. Using these values, the comparison between the feature y = x and the optimized
value Ña in theEq. (9) is shown indashed line inFig. 8. Similarly, the optimized responses
Ñb is computed in dotted line in Fig. 8.
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Fig. 8. Optimized responses of Na and Nb in Fig. 7 to the input y = x( in the blue solid line)
(Color figure online)

5.1 Orthogonality in the 1st Layer in the Model

The orthogonality between Ae
− t

′2
2σ2ξ2 sin(t

′
) and Ae

− t
′2

2σ2ξ2 cos(t
′
) is shown in the

following procedure. The orthogonality is computed in the correlation
∫ π

−π

e
− τ2

2σ2ξ2 sin(t)· e− τ2

2σ2ξ2 cos(t)dt =
∫ π

−π

e
− τ2

σ2ξ2 sin(t)· cos(t)dt (11)

In Fig. 9, the Gaussian function is included between the approximated by triangle
functions (a) and (b) in Fig. 9, which are shown in Eq. (12) with a > 0 and b > 0.

at + b , t < 0 and − at + b, t ≥ 0 (12)

Similarly, the triangle function (b) in Fig. 9 is represented using the coefficients a
′

and b
′
in Eq. (12).

Fig. 9. Gaussian function is included between two triangle functions (a) and (b)

Since the cross product of the trigonometric functions, sint and cos t of the Gabor
filters in Eq. (1) on the [−π,+π ], becomes an odd function shown in f (−t) = −f (t)
using function f(t), the following equations are derived.
∫ π

−π

|a′t + b′| · f (t)dt ≤ 1√
2πσ

∫ π

−π

(e
− τ2

2σ2ξ2 )2sin(t)· cos(t)dt ≤
∫ π

−π

|at + b| · f (t)dt = 0

(13)
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These orthogonal relations are generated in the cell G, which are based on the two
asymmetric networks Na and Nb. The optimized responses of the G is shown in dotted
line in Fig. 10, which we call the optimized responses in the asymmetric 1-st layer of
the model.

0

0.5

1

1.5

2

2.5

3

Y=X Asym. 1st lay.

Fig. 10. Optimized responses of the asymmetric 1-st layer of the model to the input y = x

6 Extension of Asymmetric Networks Based on Bio-inspired
Neural Networks

Here, we present an example of layered neural network in Fig. 11, which is developed
from the neural networks in the brain cortex model V1 followed by MT [8].

6.1 Extension of the Asymmetric Networks to the 2-nd and 3-rd Layers

An extended asymmetric network is developed by the approximated network with Tailor
expansion in Fig. 11, in which the basic asymmetric networks in Fig. 2 are included.
The half-wave rectification is approximated in the following equation.

f (x) = 1

1 + e−η(x−θ)

By Taylor expansion of Eq. (14) at x = θ , the Eq. (15) is derived as follows,

f (x)x=θ = f (θ) + f
′
(θ)(x − θ) + 1

2! f
′′
(θ)(x − θ)2 + . . .

= 1

2
+ η

4
(x − θ) + 1

2! (−
η2

4
+ η2e−ηθ

2
)(x − θ)2 + . . . (15)

In Fig. 11, the nonlinear terms, x2, x3, x4, .... are generated in Eq. (15). Thus, the
combination of Gabor function pairs are generated in Fig. 11, in which the transformed
network consists of two layers of the extended asymmetrical network in Fig. 2.
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Fig. 11. A transformed network model for the layered network for one pathway

6.2 Generation of Orthogonality in the 2nd and 3rd Layers

The inputs in the2nd layer are from responses of the 1st layer in Fig. 11, which are
wavelets of the product of Gaussian and trigonometric functions in the following.

Ae
− t2

2σ2ξ2 sin(t), A2(e
− t2

2σ2ξ2 )2sin2(t),A3(e
− t2

2σ2ξ2 )3sin3(t)... (16)

Ae
− t2

2σ2ξ2 cos(t),A2(e
− t2

2σ2ξ2 )2cos2(t),A3(e
− t2

2σ2ξ2 )3cos3(t)... (17)

By applying the power reducing formula in the trigonometric functions, the following
functions hold for the integer n to be odd,

sinnt = C1n

(n−1)/2∑
k=0

(
n

k

)
cos((n − 2k)t), cosnt = C1n

(n−1)/2∑
k=0

(−1)(
n−1
2 −k)

(
n

k

)
sin((n − 2k)t) (18)

The correlation of the right term in Eq. (18) becomes
∫ π

−π

sin((n − 2k)t) · cos((m − 2k ′)t)dt

= 1

2

∫ π

−π

{sin((n − m) − 2(k − k ′))t+ sin((n − m) + 2(k − k ′))t}dt = 0 (19)

Thus, the pair {(sinnt),(cosmt)} becomes to be orthogonal. Similarly, the pair
{(sinnt), (cosmt)}becomes orthogonal in case of n to be odd and m to be even, and
in case of n to be even and m to be odd. Only the pair {(sinnt), (cosmt)}is not orthogonal
in case of n to be even and m to be even. The tracking results in the 2nd layer are shown
in Fig. 12.
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Fig.12. Optimized tracking results in the 2nd layer network

6.3 Tracking Characteristics in the Conventional Symmetric Network

Tracking characteristics in the conventional symmetric network are shown in Fig. 13.
The 1st layer consists of the network in Fig. 5, while the 2nd layer has squaring terms of
the 1st layer. In Fig. 13, the difference between y = x and the tracking results in the 1st
and 2nd layers shows insufficient tracking ability in the symmetric networks.
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Fig.13. Tracking characteristics in the 1st and 2nd layers of the symmetric networks

7 Conclusion

It is important to make clear the structures functions how to generate the orthogonality
relations in the neural networks,whichwill create exact features in the spaces, effectively.
In this paper, the bio-inspired neural networks are proposed to generate the orthogonal
functions in their networks. It is shown that the asymmetric networkwithGabor filters has
orthogonal properties strongly under stimulus conditions, while the conventional energy
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symmetric network has weakly. Nonlinear characteristics are observed as the squaring
function and rectification function in the biological networks. Then, it is shown that the
asymmetric networks with nonlinear characteristics are useful to generate orthogonal
basis functions in the feature spaces. This is verified in the tracking experiments under
the input stimulus.
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Abstract. This paper presents the development of a hybrid approach as
a solution to the multiple Traveling Salesman Problem (mTSP) applied
to the route scheduling for self-drive cars. First, we use k-means to gen-
erate routes that equality distribute delivery locations among the cars.
Then, these routes are set as the initial population for bio-inspired algo-
rithms, such as Genetic Algorithm (GA) and Ant Colony System (ACS),
that perform an evolutionary process in order to find a route which min-
imizes the overall distance while keeping the balance of individual tours
of each car. The experiments were conducted with our route schedul-
ing system in real and virtual environments. We compared our hybrid
approaches using k-means in conjunction with GA and ACS against GA,
ACS and Particle Swarm Optimization (PSO) initialized with random
population. The results showed that, as the number of cars and target
locations increase, the hybrid approaches outperform GA, ACS and PSO
without any pre-processing.

Keywords: multiple Traveling Salesman Problem (mTSP) · Route
scheduling system · Bio-inspired algorithms

1 Introduction

Self-driving vehicles is an essential issue for the field of Intelligent Transportation
Systems (ITS) and its application on Smart Cities such as the improvement of
traffic flow, automated intersection management, finding parking spots, reduc-
tion of accidents.

Although the purpose of self-driving cars is to transport people, other tasks
can be automated like delivering goods. For instance, companies can provide
their products autonomously to customers at several locations 24/7. To optimize
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the efficiency of the deliveries, car routing strategies can be applied to schedule
delivery locations.

The scheduling for a single vehicle can be seen as an instance of the TSP,
which is a combinatorial optimization problem. Combinatorial optimization
problems are problems that attempt to find an optimal solution from a finite set
of solutions. In TSP, given a set of n cities and the cost of traveling (or distance)
between each possible pair, the goal is to find the best possible way of visiting
all cities that minimizes the final traveling cost [5].

While the TSP is restricted to a single salesman, the multiple Traveling
Salesman Problem (mTSP) generalizes the problem for multiple salesmen, which
is more common in real-world applications, such as school bus routing [2,11] and
management of pickup and delivery [3,14]. Thus, the mTSP consists of finding
routes for m salesmen, who start and finish their routes at a single spot, known
as a depot. Also, each city must be visited exactly once by any salesman, and
the total distance of visiting all cities should be minimized.

However, when applying mTSP in the multiple self-driving car scenario the
balance of distance traveled by each car must be taken into account in addition to
the total distance minimization [1,15]. Depending on the distribution of delivery
locations along the map, some cars may travel more than others to keep the
lowest total distance, but eventually they may run out of fuel and not complete
the entire route.

Our work aims at describing the development of a centralized system to
schedule routes for a fleet of the cars using mTSP model. In this case, cities
are delivery locations to be visited, and salesmen are cars. The system uses
bio-inspired algorithms to generate solutions that minimize the total distance
traveled by the fleet and also balance the routes of the vehicles. In addition,
we use k-means as a pre-processing for generating the initial population with
good individuals for bio-inspired algorithms. Experiments were carried out using
3D models of our self-driving cars in a virtual city and a real experiment at
university campus with two cars, being one autonomous and another driven
manually. The main contributions of this work are as follows: K-means as a
population generator; Comparison between well-known algorithms - GA, ACS,
and PSO - and our hybrid approaches k-means-GA and k-means-ACS; Proposing
a centralized system to schedule routes for delivery; Conduct a study using
virtual and real self-driving cars.

The remainder of the paper is organized as follows. Section 2 presents related
work. The methodology describing strategies and algorithms are shown in Sect. 3.
Finally, the results and conclusion are discussed in Sects. 4 and 5 respectively.

2 Related Work

Many studies have been conducted with the application of evolutionary algo-
rithms to mTSP, and with that the use of this modeling has also been applied
to the vehicle routing problem (VRP). Below are some works that aim to solve
the mTSP and works that apply evolutionary algorithms to the VRP.
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In [13], the development of a GA and ACO applied to the Shortest Path
(SP) problem is presented. The problem was modeled as mTSP, and the authors
use Two Phase Hybrid AI-heuristics as method. In the first, k-means is used to
group cities according to their adjacency. In the second, the clustered cities are
presented as inputs for GA and ACO to optimize the routes for each cluster.
Another similar work is presented in [15], the work introduces k-means for clus-
tering cities. The authors propose a workload balance method, which minimizes
and balances the distances of salesmen.

With the idea of division to conquer, [16] considered mTSP as a multi-agent
system. The authors separate cities into N groups using k-means. Thus mTSP is
decomposed into a set of N TSP, with each group having the maximum number
of cities based on the constraint, which is the division of the number of cities by
the number of salesmen. For each group, a GA is performed with the 2-opt local
search operator to search for an optimal route.

With the emergence of the Covid-19 pandemic, mTSP approaches can also be
used to support the distribution of medical supplies, such as respirators and test
kits. In [10] a GA combined with the 2-Opt algorithm was implemented to solve
the problem of distribution of pharmaceutical products. The mTSP approach
was used to optimize the distribution points of pharmaceutical products for
each vehicle.

Another work that approaches the optimization of routes is presented in
[12], where the problem of optimization of school bus routes is treated with the
application of a genetic algorithm. In this problem, it was necessary to optimize
the path of multiple buses by modeling a genetic algorithm to choose the shortest
path. The experimental results showed that the genetic algorithm can generate
good solutions for school bus routing problems.

The proposed approaches addressed in this papers aim at applying k-means
as a pre-processing for generating the initial population for bio-inspired algo-
rithms, such as GA and ACS. These algorithms optimize solutions considering
the trade-off between reducing the total distance and balancing individual tours.
Our approach differs from the related works, as they apply a clustering method
and run for each cluster a bio-inspired algorithm, decomposing mTSP into k
TSP. Unlike our work that applies the clustering technique for generating initial
solutions and combines the fitness function to ensure the balance of routes to
mTSP.

3 Methodology

The route optimization task for vehicles can be seen as an instance of the mTSP,
where each car is a salesman and delivery locations are cities. Our approach uses
bio-inspired algorithms to o obtain approximation solutions in a reasonable time
and minimize the total distance of the fleet and balancing the distances traveled
by each car.
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3.1 Bio-inspired Algorithms

Bio-inspired algorithms have a generic architecture. To solve a problem using
this architecture, some of its components must be designed considering the con-
straints of the problem. As components of the architecture, we have the structure
of the individual and evaluation function in algorithms like GA, PSO and ACS.
Other components are more specific, such: crossover and mutation for GA, trans-
position and particle velocity for PSO, and state transition rules for ACS. This
section describes how these components were designed for the algorithms and
how k-means was applied to develop hybrid approaches with GA and ACS.

Individual Structure. mTSP is a TSP extension for a multi-agent model,
where multiple salesmen can be used to visit n cities on a map. Thus each city
should be visited only once by one of the salesmen. Each city on the map has its
coordinates. The coordinates are used to estimate the distance between a pair
of cities. In this way, an individual can be modeled as depicted by Fig 1.

Fig. 1. Example of the individual. The individual is a solution to the problem. This
scenario shows an instance in which two salesmen must visit twelve cities and return
to the depot.

The length of the individual is equal to the number of cities, as all of them
must be visited only once. Each column assigns a salesman to a city. The sort
of the cities is also essential as it shows the sequence in which the salesmen will
perform their visits, i.e., their routes.

Road Map and Complete Graph. Different from the example of Fig. 1,
where paths between locations are represented by straight lines on a plan, route
scheduling for cars on road maps requires the computation of feasible paths.
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Therefore, before scheduling the routes, our approach creates a path matrix P
using A* algorithm for all pairs of locations, including the depot location, as
illustrated by Fig. 2.

Thus, the dimension of P is |L|+1X|L|+1 where L is the list of locations to be
visited. To optimize the computation, elements of the main diagonal in P are set
as being empty, which correspond to paths where the source and destination are
the same locations. Also, when the element Pij is computed, which corresponds
to the path from i to j, the inverse path is automatically stored at Pji. This
matrix represents a complete graph connecting all desired locations with real
paths, which are used later by the scheduling process.

Fig. 2. Path Matrix stores paths computed by A* based on road maps. Paths are
calculated for all pairs of locations to be visited, including the depot.

Objectives. The goal of mTSP is to minimize the total distance traveled by
all salesmen. However, it may cause an imbalance in the distance traveled by
them. This may occur when a salesman travels far away to visit a city. Since
mTSP aims to reduce the total distance, this salesman tends to cover all the
cities around, as sending another salesman there, for visiting just a few cities,
can increase the total distance. As a result, some salesmen might travel much
more than others.

For some real domains, this behavior is not suitable. For example, in a deliv-
ery company, there might be some overloaded vehicles making many deliveries
and driving long distances, while others remain nearby the company. Therefore,
some customers have to wait more time than others to receive their deliveries,
which is a problem for some services like food delivery. Hence, we proposed the
use of two objectives. The first is responsible for minimizing total distance trav-
eled by the set of salesmen, while the second aims to reduce the difference of
distance traveled individually.
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Given the path matrix P , the route distance traveled by a salesman i is
calculated by the sum of path lengths within its route Ri:

Ri =
n∑

j=1

|Pj,j+1| ,∀j ∈ Citiesi (1)

The total distance traveled by all salesmen in a given solution is:

Δ =
m∑

i=1

Ri (2)

The balance of the routes is measured by the standard deviation of route lengths,
where R̄ is the average route length.

σ =

√∑m
i=1(Ri − R̄)2

m − 1
(3)

GA - Crossover and Mutation. mTSP is a permutation problem as the cities
should not be repeated within the chromosome. Thus, methods for crossover
and mutation must consider this constraint. The methods Partially Matched
Crossover (PMX) and Cycle Crossover (CX) are used in such cases.

While CX keeps exactly the genetic structure of the parents, PMX makes
some changes to avoid repetition, which can generate different genetic structures.

Regarding the mutation, a permutation is made between two random genes.
Each city will appear only once in the chromosome.

The our implementation of GA algorithm was inspired by the traditional
GA [8]. A population is randomly generated with Tp individuals and subjected
to the evaluation process. Each individual represents a route scheduling for m
salesmen traveling through n cities without repetition.

The fitness function F used in this GA combines both objectives by summing
the total distance Δ and the standard deviation σ, as shown in the following
formula:

F = Δ + σ (4)

For the next step, Prec individuals must be selected from the current popula-
tion. For this work, PMX was used for crossover and Stochastic Tournament for
selection. Other crossover methods such as CX and other selection methods such
as Roulette Wheel and Tournament were analyzed but preliminary experiments
showed that PMX with Stochastic Tournament yield better results as they are
more random and escape easily from local optima.

PSO - Velocity and Position. In discrete PSO velocity is a list of swaps. For
mTSP swaps should be made for the routes and the salesmen, and the routes
should not be repeated. The list of swaps is obtained by the subtraction of
the positions, and the movement is performed with addition. Assuming P as a
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position, and V as the velocity, then P ′ is a new position where P ′ = P + V ,
where all swaps belonging to V must be applied. In Fig. 3 the velocity V is
obtained subtracting one position from the other, V = A − B. Through this
difference, the list of swaps is result of the equation A = B + V .

Fig. 3. Example of swaps in the position of an individual used in PSO. The blocks in
green represent the routes for salesman 1 and blocks in are routes of salesman 2. End
of process V = [(1, 3), (2, 3), (4, 5)].

The our implementation of PSO algorithm was inspired by the Discrete Par-
ticle Swarm Optimization [4]. First, a population with a number of particles
(individuals) is generated with random positions. The position of each particle
is represented by the structure of an individual shown in Fig. 1 and the velocity is
initially an empty list of swaps. The evaluation is performed by the fitness func-
tion presented in Eq. 4. After the evaluation, an update is done on the best local
particle pBest and the best global particle gBest. The particles pBest and gBest

influence the calculation of the velocity of each particle, being updated directly.
The update for particle velocity is calculated by w (inertia weight), c1 and c2
(accelerator constants), and r1 and r2 (matrices of random variables between
0 and 1). Equations 5 and 6 present the calculation to update the velocity and
position of the particles.

vi(t + 1) = vi(t) · w + c1 · r1 · (pBest − xi(t)) + c2 · r2 · (gBest − xi(t)) (5)

xi(t + 1) = xi(t) + vi(t + 1) (6)

ACS - Solution Building. In the phase of constructing routes, the ACS algo-
rithm uses a deterministic State Transition Rule (STR) while the AS (Ant Sys-
tem) uses an stochastic STR. STR is a rule that determines the probability that
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a vertex will be chosen by an ant, i represents the vertex in which the ant k is
found and j one of the possible vertices to which it can move. The ant k should
only visit the vertices not yet visited in the current phase of the construction.
Each ant has in memory the vertices already visited. The ACS STR is presented
in Eq. 7.

j =

{
arg maxι∈Sk

i
{τiι[ηiι]β}, if q ≤ q0

J, otherwise
(7)

In Eq. 7 j represents the city chosen by an ant k, which lies on the vertex i as
it moves. This equation is called the pseudo-random proportional rule, since the
parameter q0 defines the percentage of choices that will be made deterministi-
cally by the ants, where 0 <= q0 <= 1. If q, is a random variable uniformly
distributed in [0, 1] and updated with each movement, if q0 = 1, the choices of
the ants will be determined deterministically by the highest value of τiι[ηiι]β ,
where ι ∈ Sk

i corresponds to the set of cities that can be visited by ant k in the
movement. If q0 = 0, the choices of the ants will be stochastic, with J being a
city chosen through the probabilities calculated by Eq. 8.

pk
ij =

{
[τij(t)]

α[ηij ]
β

∑
[τij(t)]α[ηij ]β

if j is an allowed edge k

0 otherwise
(8)

In Eq. 8 i represents the vertex in which the ant k is found, j one of the possible
vertices for displacement ηij corresponds to the visibility of the edge, α and β
are parameters that define the weight of the pheromone trail and the visibility,
respectively.

The our algorithm was inspired by the Ant Colony System [6]. Initially, a
population with Tp ants (individuals) is generated, and the pheromone trail table
is initialized. The Eq. 7 is applied to each ant k. In each vertex visited by the
ant, the evaporation is carried out for the trail of pheromone in the edge of that
vertex. After the construction of the ant route k, the salesmen are randomly
added to the route forming the structure shown in Fig 1. The fitness function
presented in Eq. 4 performs the evaluation of the route of the ant k. After the
construction of the routes for all the ants, the algorithm performs a global update
for pheromone trails.

3.2 Hybrid Algorithms k-means-GA and k-means-ACS

In addition to GA, PSO and ACS algorithms, hybrid approaches using k-means
with GA and ACS were implemented. The k-means is one of the most popular
clustering algorithms, [9]. The algorithm has the task of partitioning a dataset
into k clusters according to the similarity of the data. In this work, k-means
generates the initial population for a GA and the neighbor list in the construction
of the ACS solution. Thus, two algorithms were developed, k-means-GA and k-
means-ACS.

For generating the initial population, k-means is executed based on the map
coordinates. First, k-means is executed once, where the number of clusters k is
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equal to the number of salesmen. After that, the construction of the individuals
in the k clusters begins. For a population with Tp individuals, in each genera-
tion, the sequence of the coordinates are shuffled in the clusters. Thus, it is not
necessary to run k-means Tp times for each generated individual. Shuffling the
coordinate sequence within each cluster allows the population diversity while
maintaining the quality obtained by k-means.

For k-means-GA, the first step is the generation of a population with Tp indi-
viduals based in the result of the k-means, and subjected to step of evaluation of
GA algorithm. Likewise, in k-means-ACS, for each ant k is constructed a route
based on the k-means result, which builds the list of neighbors that are passed
to the calculation of the STR, presented in Eq. 7. The ACS is a constructive
algorithm, where for each individual of the population, a stepwise route is con-
structed according to the neighbors list and STR (Eq. 7). Thus, the combination
of k-means with ACS is done in the construction process of individuals and not
only for the initial population as it is done in GA.

In previous experiments it was proved that GA and ACS surpass discrete
PSO, as a way to validate pre-processing with k-means we chose GA and ACS
for a meaningful comparison with their versions without pre-processing.

3.3 Route Scheduling System

The route scheduling system was developed in Java, along with the algorithms
presented. The process of route scheduling works as follows (Fig. 4).

Fig. 4. Route Scheduling. This process shows the flow of our route scheduling system:
1) Select a road map; 2) Set depot and desired locations on the map; 3) Build complete
graph and path matrix; 4) Schedule routes for each vehicle using a system algorithm;
5) Send routes to cars.

To schedule the routes using our k-means-GA and k-means-ACS, or other
algorithms such as GA, PSO, and ACS, the user must select one of them on the
combobox, fill the number of salesmen (cars) to be used, and click on run. The
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user can follow the progress from the execution panel as the system plots the
best solution found after each iteration. Different colors are used to represent the
route of each salesman. A message appears to the user when the route scheduling
is done.

4 Experimental Results

The experiments were conducted in the route scheduling system with a vir-
tual city and a real road on university campus using two cars, one completely
autonomous and another manually driven. The autonomous car used in the
experiment was CaRINA-2 [7].

For the experiments in simulation, 13 scenarios were defined with different
amounts of cars and delivery locations. Each scenario was generated by select-
ing visit locations in a virtual map of the route scheduling system, where each
instance is computed through the path matrix. As real experiments are more
difficult to deploy, we set only one scenario with 2 cars and 9 locations.

Several parameter combinations were tested, but the algorithms performed
better with the following configurations: iteration and population size were
defined equally for the five algorithms, with population size = 160 and itera-
tions = 200. For k-means-GA and GA, crossover rate = 60%, mutation rate
= 30% and tour = 3. Both k-means-GA and GA were developed using PMX
and Stochastic Tournaments. For the PSO, inertia weight = 0.5, cognitive and
social parameters = 2.0. In k-means-ACS the parameters also follow the same
parameters defined in ACS, influence of pheromone = 1, heuristic information =
2, pheromone evaporation rate = 0.1, STR choice parameter = 0.9, pheromone
initiation rate = 10−4 and amount of pheromone excreted by an ant = 1. In
order to validate the improvement of the algorithms with pre-processing, the
parameters adopted for hybrid approaches are the same as those adopted in
their versions without pre-processing. We run 50 trials for each algorithm on the
maps of both scenarios. Results for simulation are presented in Table 1.

The results presented in the Table 1 show that with the increase of cars
and locations, the application of k-means as pre-processing for the creation of
individuals obtained a better minimization of the fitness function 4. It is also
possible to observe that the standard deviation of the 50 executions had a smaller
variation comparing GA and k-means-GA. Thus, when applied to several cars
and locations, k-means-GA outperformed GA in minimizing fitness and stability.
Another important factor is the reduction of the average execution time, where
k-means-GA had a faster execution time for all scenarios and k-means-ACS was
dominated only in the first scenario. The traditional ACS algorithm also presents
competitive results with hybrid approaches.

To validate and demonstrate an application of the route scheduling system,
we conducted an experiment on a real road.

The video for this experiment is available online at: https://youtu.be/
mmuW17mbJXQ.

https://youtu.be/mmuW17mbJXQ
https://youtu.be/mmuW17mbJXQ
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Table 1. Comparison between algorithms in 50 runs.

Scenario Algorithm Best Worst Mean Deviation Time (s)

2 cars 10
locations

GA 2925,83 3111,59 2929,55 26,27 20,37

PSO 2925,83 3592,61 3192,66 162,16 20,63

ACS 2925,83 2925,83 2925,83 0,00 21,35

k-means-GA 2925,83 3111,59 3044,72 90,07 20,32

k-means-ACS 2925,83 3111,59 3041,00 91,08 21,47

3 cars 15
locations

GA 3953,32 4196,01 3963,95 36,64 20,49

PSO 3988,48 5707,88 4785,62 304,20 21,11

ACS 3953,32 4009,45 3961,76 9,96 22,24

k-means-GA 3973,14 4698,04 4275,84 235,61 20,44

k-means-ACS 3973,14 4617,12 4316,25 204,85 22,43

4 cars 20
locations

GA 6026,60 6688,24 6229,37 175,77 20,69

PSO 7294,01 8883,62 8355,64 374,71 21,26

ACS 6060,96 6416,10 6279,99 69,51 24,02

k-means-GA 6173,94 7553,31 6716,81 423,21 20,58

k-means-ACS 6183,23 7966,73 6657,75 441,65 23,77

5 cars 25
locations

GA 7429,69 9169,72 8202,52 369,86 20,83

PSO 11015,94 12972,52 11930,34 458,84 22,02

ACS 7686,07 8329,09 8080,90 150,62 25,76

k-means-GA 8080,11 10075,86 8904,84 432,27 20,74

k-means-ACS 7868,69 10100,67 8996,26 468,98 25,85

6 cars 30
locations

GA 9240,22 11996,49 10331,17 698,06 21,00

PSO 13405,41 16910,23 15892,88 608,51 22,67

ACS 9429,44 10478,92 9998,96 197,50 27,60

k-means-GA 999,74 12075,83 10785,83 477,90 20,83

k-means-ACS 9781,14 12165,11 10897,04 574,64 27,29

7 cars 35
locations

GA 11055,28 14809,37 12495,03 786,49 21,17

PSO 17796,26 21131,67 19514,50 744,73 23,28

ACS 10963,57 11894,61 11517,36 206,97 28,88

k-means-GA 11192,60 13451,09 12141,79 564,55 21,00

k-means-ACS 11230,23 13840,17 12166,42 595,73 28,72

8 cars 40
locations

GA 12785,44 18154,30 15367,24 1072,89 21,26

PSO 21570,04 25383,06 23807,85 896,76 23,87

ACS 13306,51 14443,05 13875,16 224,71 30,19

k-means-GA 12986,58 15600,32 14352,58 579,36 21,17

k-means-ACS 12947,84 16273,53 14511,97 732,04 29,96

9 cars 45
locations

GA 15813,65 20286,78 17448,53 1049,42 21,57

PSO 25262,51 29072,77 27936,12 767,99 24,55

ACS 14889,47 16087,27 15637,93 287,32 31,84

k-means-GA 14988,96 17603,22 16187,69 562,10 21,23

k-means-ACS 14254,77 17894,15 16065,20 738,21 31,67

10 cars 50
locations

GA 17936,78 25424,75 20742,51 1503,45 21,73

PSO 29927,16 33807,63 32231,72 857,00 25,23

ACS 16604,97 17720,00 17253,56 275,44 33,21

k-means-GA 16152,93 20685,47 18624,81 1121,24 21,48

k-means-ACS 16452,19 21524,24 19126,22 1226,43 32,09

11 cars 55
locations

GA 20290,11 28252,24 23203,83 1474,05 21,81

PSO 34233,02 38070,09 36503,01 894,03 23,88

ACS 18873,22 20466,42 20006,13 302,22 35,39

k-means-GA 18276,86 21534,84 19756,62 769,92 21,43

k-means-ACS 17933,28 21927,44 19793,24 862,78 34,31

12 cars 60
locations

GA 22838,16 31307,42 26986,15 2019,37 21,98

PSO 39593,40 43236,54 41626,36 900,06 25,16

ACS 21583,88 22998,77 22220,57 285,68 37,90

k-means-GA 20472,43 24199,00 21945,19 811,96 21,57

k-means-ACS 20917,43 24134,55 22333,77 837,99 36,54

13 cars 80
locations

GA 31761,18 42083,95 36765,01 2181,92 22,57

PSO 54283,33 59134,66 56922,85 1050,89 26,88

ACS 24937,75 27115,26 26391,50 408,79 51,84

k-means-GA 23877,73 27618,35 25829,58 879,96 22,10

k-means-ACS 23576,45 28803,86 25827,42 1087,65 50,54

14 cars 100
locations

GA 41294,79 54287,20 45962,00 2869,84 23,09

PSO 65912,16 73511,49 69968,29 1672,09 27,01

ACS 27879,07 30011,62 29459,72 428,44 80,21

k-means-GA 26805,59 30409,54 28484,69 871,44 22,50

k-means-ACS 26962,16 30272,42 28403,41 838,27 73,43
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5 Conclusions

This work presents the problem of scheduling routes for multiples cars and loca-
tions. This problem can be seen as an instance of the mTSP, in which cars are
salesmen and cities are locations to be visited. As mTSP is considered NP-hard,
approximation and heuristic methods are more suitable to be used. This paper
discusses the use of the k-means as pre-processing for the generation good indi-
viduals for the initial population assign to bio-inspired algorithms, in this case
GA and ACS.

Experiments were performed in our centralized route scheduling system for
self-driving cars. We compared our approaches to traditional implementations
of GA, PSO, and ACS. We noticed that for many vehicles and locations, the
application of the k-means as pre-processing can provide better results, leading
to a faster minimization of the proposed fitness function for GA and ACS.

For future work, we are interested in developing a centralized system for
online route rescheduling, focusing on autonomous vehicles.
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Abstract. Spiking Neural Networks (SNNs) reduce the computational
complexity compared to traditional artificial neural networks (ANN) by
introducing the spike coding method and the nonlinear activated neuron
model and transmitting only the binary spike events. However, these com-
plex model simulations and behavioral analysis are a standard approach
of parametric values verification prior to their physical implementation on
the hardware. Recently some popular tools have been presented, but we
believe that none of the tools allow users to interact with the model sim-
ulation in run-time. The run-time interaction with the simulation creates
a full understanding of these complex SNNs model mechanisms which is
a quite challenging process, especially for early-stage researchers and stu-
dents. In this paper, we present the first version of our novel spiking neural
network user-friendly software tool named RAVSim (Real-time Analysis
and Visualization Simulator), which provides a runtime environment to
analyze and simulate the SNNs model. It is an interactive and intuitive
tool designed to help in knowing considerable parameters involved in the
working of the neurons, their dependency on each other, determining the
essential parametric values, and the communication between the neurons
for replicating the way the human brain works. Moreover, the proposed
SNNs model analysis and simulation algorithm used in RAVSim takes sig-
nificantly less time in order to estimate and visualize the behavior of the
parametric values during a runtime environment.

Keywords: Spiking Neural Network · WTA networks · Neural
model · Runtime simulator · Machine learning

1 Introduction

The human brain is a fascinating mystery. It controls our body which is a
very complicated non-linear dynamic system and the brain can control it at
an extremely fast speed. Neuromorphic intelligence is showing promising results
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for achieving this brain-like functionality and efficiency by building artificial
neural systems that implement “neurons” and “synapses” to transfer electrical
signals using analog circuitry. This enables them to modulate the amount of
electricity flowing between those nodes to mimic the varying degrees of strength
that naturally occurring brain signals have. The growth of the experimental
findings and evidence that spike timing is essential to explain neural compu-
tations has motivated the use of Spiking Neural Networks (SNNs). SNNs can
efficiently process data in the form of spikes [1–3]. Numerous SNN-based sys-
tems have demonstrated superior energy efficiency [4–7]. However, a significant
amount of dedicated simulators have been developed to analyze and visualize
the SNNs behavior. Such simulators are providing the users to acquire precise
simulations in a relatively short period of time. Nevertheless, there are many
challenges and computational issues related to SNN. In some cases, it requires
the use of accurate biological representations of the neurons. Although some of
the existing state-of-the-art SNN simulators Brian2 [8] and NEST [9] have been
primarily built for exploring brain functionalities and neuronal dynamics, they
are not user-friendly. Adding new functionalities to some simulators requires
specifying them in a low-level programming language for example C++ and
integrating them with the simulator code [9]. Also, some of the simulators need
domain-specific languages, for instance, NESTML for NEST simulator, NMODL
for NEURON [10]. With all these constraints, for early-stage researchers and stu-
dents, a lot of time is consumed for understanding the behavior of SNNs and
exploiting the significant features of SNNs for adapting them for run-time sce-
narios. There is a requirement of an interactive simulator with low or no-code as
the existing simulators require a lot of time and huge lines of code for designing
the neural network architectures, analyzing, and visualizing their behavior. On
the other hand, the run-time environment-based simulator also helps to decrease
the learning period of the early-stage researchers, students, and those who don’t
have or limited programming backgrounds for understanding the mechanism of
the SNN models.

To perform analysis, in order to gain accurate parametric values and observe
the complete behavior of an SNN model, a different set of input conditions, i.e.,
what values are required, which component values are dependent on each other,
must be defined in each event. Even the group of neurons is moderate-sized,
the combinations of these component inputs into the model may require very
precious values to be defined and simulated. Alternately, a run-time capability
provides a more appropriate way to understand the model and allows users to
make direct changes at any instant of time into a simulation to observe the model
behavior. This kind of simulator not only helps the SNN community to analyze
and visualize the model easily by increasing or decreasing the input at any level
and any instant of time but also gives the user to fully understand the complex
structural model. Additionally, a fast, run-time visualization and user-friendly
simulator not only speeds up existing simulations. It accelerates the process of
designing, prototyping, parameter tuning, and so on. Also, research into other
algorithms, including training, advancing the field as a whole. To this effect and
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with this motivation behind and the existing challenges in understanding and
leveraging the promising features of SNNs, we are proposing a novel run-time
simulator “RAVSim”, a state of the art SNN simulator, implemented using Lab-
VIEW (Laboratory Virtual Instrument Engineering Workbench) [11] and also,
RAVSim v1.0 was successfully accepted and published on LabVIEW’s official
website [12] after being reviewed by their developer team. It is an interactive
simulation environment tool that allows the user to interact with the model,
observe its behavior, and make direct changes in the parameters of input models
at run-time. This is the first version of our simulator and it is mainly designed for
early-stage researchers and students who are interested in this area of research.
RAVSim provides a substitute for the time-consuming code-based experiments
for analyzing and designing models with correct values and helps users to fully
understand the SNN mechanism. It is capable of spike detection by using the
continuous noisy input, spike detection by using input current, and generating
a winner takes all network (WTA), which establishes communication between
the neurons. Our proposed approach allows the SNN architecture to be defined
completely in software, which negates the need to re-synthesize the hardware
implementation when any parameter in the SNN architecture is changed. Also,
our design is user-friendly and provides a run-time user interaction, which makes
it is suitable for visualizing and analyzing the model in a more precious way
where users can understand the complex model in a short period of time.

2 Related Work

A significant amount of effort has been devoted to developing simulators of SNNs.
Some of the popular software including, the Brian simulator [8] and the NEST
simulator [9] among others [13–17]. Brian simulator is an open-source python
library that enables the users to simply and efficiently simulate SNN models.
These SNN models can characterize novel dynamical equations, their experi-
mental protocols, and their interactions with the environment. NEST simulator
is ideal for SNNs of any size, for example, models of information processing,
network activity dynamics, learning, and plasticity. Some recent approaches like
SPIKE [18], Brian2GeNN [19], CARLsim [20], GeNN [21], Kasap et al. [22],
Fujita et al. [23] are designed and accelerated using GPUs. In comparison to
all these simulators, SPIKE and GeNN are acknowledged to be the fastest with
comparative pros and cons. SPIKE simulator is mainly designed for boosting up
the simulation speed because of which it loses some generality and compromises
on the efficiency of the memory. heavily optimized for simulation speed, and
in doing so, sacrifices some generality and memory efficiency. On the contrary,
GeNN exhibits a flexible programming interface to the users enabling them to
design custom models, at the expense of some speed. Some of the simulators like
SpykeTorch [24] and BindsNet [25] are leveraging the popularity of Deep Learn-
ing frameworks like PyTorch in simulating SNNs. But practically these kinds of
approaches are not completely supporting the general SNN simulation, which is
restricting their applicability.
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Fig. 1. Analyses and Simulation flow of RAVSim VI. [Left Plot]: Spikes Generated
by using continuous Noisy Input, [Right Plot]: Neurons Communication Plot and Plot
which shows the detection of spikes using the Input Current, [Bottom left]: External
Neural Model Parameters, and [Bottom Right]: Selection of the External Plots and the
Simulation Speed control option.

3 RAVSim Tool

Real-time Analyzing and Visualization Simulator or RAVSim is an interactive
virtual experiment environment for the simulation and analysis of spike neural
network models. RAVSim tool used Leaky Integration and Fire model by using
the continuous noisy input [26], Spike detection by using input current [27],
and generating a winner takes all network (WTA) [28], which establishes com-
munication between the neurons. It is solely designed with the aim of helping
early-stage researchers and students to fully understand the mechanism of SNNs
where users can interact with the simulator in run-time by providing the essen-
tial parameters. There are a lot of parameters involved in the designing of SNNs
and it is extremely important to understand the significance of these parameters
for designing optimal neural networks. The run-time simulation environment is
important in that the input-output value is critical for extracting the correct
logic behavior of an SNN model. Thus, it is necessary to visualize the value
of this parameter before applying it directly to the hardware. One should be
aware of which parameters are essential, how the parameters interact and are
dependent on each other, the optimal values of these parameters for achieving
accurate and efficient SNNs to be as realistic as biological neurons.

The run-time environment is also very important in the following sense: Let
us assume that a user has concluded an analysis with some random parametric
value settings (such as threshold value, reset potential, membrane capacitance,
and so on). If the user conducts another analysis with different parametric value
settings and the computation time in the current analysis exceeds abnormally
compared to the previous analysis, the user can deduce that he/she might have
selected some invalid parametric value settings for the current analysis. Below
we provide some results to support the above thesis. But, we must first recall the
definition of the LIF model: In order to perform correct analysis, it is therefore
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Fig. 2. RAVSim External Plots: (A) Mixed-Signal Plot and (B) WTA Network (list of
condition: i != j) Plot.

required to initialize all of the model parameters to a stable value. If the values
are not initialized or entered wrong, the run-time simulator visualization feature
helps the user, and that is the reason we set some default parametric values at
the start of the simulation and also using menu bad user can see the default
values at any time during the simulation. The default parameter VI helps the
user to specify a correct value during which the SNN model output is expected
to become stable.

RAVSim is fastest simulator (in terms of execution time, parametric values
setup time) and easy to use. As shown in Fig. 1, the basic flow of the RAVSim
run-time virtual simulation environment, our design is also user-friendly and a
run-time user interaction environment, which makes it is suitable for visualiz-
ing and analyzing the model in a more precious way where users are able to
understand the complex model in a short period of time and also able to esti-
mate a stable parametric value faster as compared to other simulators (witness
our evolution and implementations all the way to outperform the state of art
is discussed in section Discussion and Results). The left plot(shown in Fig. 1),
shows the spikes generated with the values which the user has inserted. And
they can change the values of the parameters like the threshold, reset potential,
etc. during the run-time. In the right plot, the users can see how the neurons
are communicating with each other and how many times one neuron is inter-
acting with the other, and also visualize the plot that shows the detection of
spikes using the input current. In the bottom right, we have provided the selec-
tion of the external plots, mixed-signal plots, and WTA network for the ease
of the user and unlike any biologically computational experiment [29,30], users
can increase or decrease the speed of the simulation with the help of the speed
control function displayed on the right-bottom side in Fig. 1. With the mixed-
signal plot, one can visualize the spike detection using input currents and the
spike detection using continuous signals values which are depicted in Fig. 2(A).
And for navigating to the WTA mechanism the user can visualize the neuron
communication which is shown in Fig. 2(B). The overall RAVSim demonstration
using default parametric values are shown in [31] (section User Manual).
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Fig. 3. RAVSim: data flow chart.

4 Discussion and Results

RAVSim allows the users to observe the SNN parameter reactions graphically
and interact with the model in run-time. This process is analogous to setting up
parameters for experimentation and testing of a model in any other program-
ming language like Python. But, for doing so we require huge lines of code to
wholly understand these parameters and the model needs to be fine-tuned with
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various values of the parameter just to observe their behavior and for acquiring
the appropriate values. The data flow of the proposed simulator environment
is shown in Fig. 3. The simulator run-time virtual instrument is initialized by
user-defined parametric values as indicated in [31] (section User Manual). For
a runtime simulation, if every external input of an SNN model is not initial-
ized to a stable parametric value, then the simulation outputs are unstable and
exhibit unexpected behavior. The simulator further analyzes the Sample Values
of External Parameters and attractively visualize the simulation on the continu-
ous simulation plot and based on the user-triggered threshold value, the number
of excitation between two neurons can visualize on the neurons’ communication
plot. Especially to be focused on early-stage researchers’ and student’s learning
perspectives and for their better understanding that how neural models mech-
anism works, the current RAVSim v1.0 runtime virtual instrument only based
on the number of excitation between two neurons, however, the external WTA
plot allows the user to create a bigger network manually. The neuronal model
and the learning mechanism are described in detail below.

4.1 NLIF Neuronal Model

In the proposed neural simulator, the simplified NLIF neuron model is utilized.
NLIF is one of the popular models in computational neuroscience. The model is
represented by an ordinary differential equation. It describes the sub-threshold
dynamics of membrane and reset potential of a single neuron. A spike is gener-
ated when the membrane potential crosses the threshold VT , the neuron emits
a spike at the current time step and its membrane potential is reset. The NLIF
is represented with the following equation:

CmdV (t)/dt = −gL(V (t) − Vreset) + η(t)

Where:

Vt = Membrane Potential
Cm = Membrane Capacitance
gL = Cm/taum = Leak Conductance
taum = Membrane Time Constant
Vreset = Reset Potential
η(t) = Gaussian White Noise

4.2 Learning Mechanism Using WTA Network

The winner takes it all network or WTA network [28] generally serves as a fun-
damental building block for many tasks involving neural networks, for example,
learning, clustering, pattern recognition, etc. We have two important parameters
for WTA networks:

– Weight between noisy input and neurons (weight)
– Weight for self-excitation (weightexc)



SNNs Model Analyzing and Visualizing Experimentation Using RAVSim 47

Fig. 4. RAVSim (A) and Brian2 (B) simulator output by using the same input of
parametric values

The logic for tuning this kind of network can be summarized as follows.

– Initializing the two weights parameters mentioned above to 0, then start
increasing the (input) ‘weight‘ until neurons start spiking randomly.

– Increase ‘weightexc‘ for self excitation until the neurons fire continuously.

We have implemented this in our interactive simulator RAVSim v1.0 in three
types:

– WTA with i = j where ‘i′ is the source neuron index, and ‘j′ is the target
neuron index.

– WTA with fully connected network
– WTA with i != j

4.3 Simulator Comparison

The current simulators to designing SNNs model is time-consuming in both
prospectives studying and understanding, as many of times model may need to
run with different parametric values, out of which only a few would function for
the following reasons:

– The SNNs model requires a precise balancing of parametric values.
– Different components are combined to build a model and their function can

vary depending on a threshold value, membrane capacitance, and membrane
time constant.

– These models are defined by more than one state (their output to different
inputs or how they change with different input).

We have mentioned some of the key design features that make RAVSim a
standalone simulator and to the best of our knowledge, there is no tool that exists
that allows the user to interact with the model during runtime. These features
represent that RAVSim simulator is a particular balance between the conflicting
demands of flexibility, friendly user interface, and faster performance and com-
pare the results of these available simulators. The RAVSim is also very helpful
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Fig. 5. Average time taken in WTA analysis using LIF model by the Brain2 and
proposed RAVSim simulator for six test cases using different number of neurons, along
with standard deviation error bars. (A) Average time taken in fully connected network
analysis, (B) Average time taken in ′i != j′ analysis, and (C) Average time taken in ′i
== j′ analysis,

in the following sense: let’s assume that a user has implemented 10,000 neurons
based network with some random parametric value settings on the hardware and
results of accuracy or whatever users are looking for output, comes after several
hours of analysis and in case the user didn’t satisfy the output then run analysis
again after changing the values of the parameters and so on. Additionally, this
is also a time-consuming and costly procedure, and most important to perform
a correct experiment user needs to verify each parametric value with different
combinations every time, which is also a very lengthy and complex procedure.
However, RAVSim run-time environment offers the user to visualize the exper-
iment before starting a practical implementation to verify the stability of each
parameter.

As you can see in Fig. 4, the output of our RAVSim (Fig. 4[A]) and Brian2
(Fig. 4[B]) simulator by using the same input of parametric values (shown in
[31]). The simulated plot results on both simulators are almost similar. As shown
in Fig. 4, neuron spike detection simulation for Brain2 used 100 msec time period
and RAVSim simulation stopped after approximate 55 msec due to run-time
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environment, users are able to stop the simulation at any time, however, the
output simulation of RAVSim based on the default parametric values never falls
below the triggered threshold value at any point of time during the overall sim-
ulation time unit. In Fig. 5, the Average time taken in WTA analysis using LIF
model by the Brain2 and proposed RAVSim simulator for six test cases using a
different number of neurons (minimum 100 and maximum 1000 neurons), along
with standard deviation error bars. (A) The average time taken in fully con-
nected network analysis, (B) Average time taken in ′i != j′ analysis, and (C)
Average time taken in ′i == j′ analysis, the experimental results clearly showed
that the Brian2 simulator uses quite a long time for execution as it needs to
execute a couple of libraries before the simulation, on the other hand, RAVSim
was fully developed in the LabVIEW platform and no external library required
for model simulation. We have tested RAVSim v1.0 using up to 1000 neurons, as
you can be seen in Fig. 5, in the most complex model’i != j’s case the maximum
amount of time consumed by the simulator is an average of approximately 12 s
to analyzed and visualize the WTA network, however, brain2 simulator in the
same case consumed approximate 328 s. The details of each experimental result
are presented in [31] (section Experimental Results).

5 Conclusion

To summarize, a simple yet effective run-time simulator, “RAVSim” has been
developed, which is very interactive, faster, and easy to use for understanding the
mechanism of SNNs. This tool is ideal for early-stage researchers and students.
Which helps them to interact with the simulator in run-time and understand the
working of SNNs for designing optimal neural networks. It saves a lot of time for
the users as it is an interactive tool. It does not require any programming skills
and helps them learn things quickly. For future work, we are continuously work-
ing on improving RAVSim and will implement other SNN neuron and synapse
models, and various learning techniques which avoid huge lines of code for sim-
ulating the models. On the other hand, deploying the computer-vision-based
application directly into the hardware and visualizing, analyzing, and exploring
with the different parametric values and allowing direct change at any time dur-
ing designing a neural network with a run-time simulator based environment is
also under consideration. We believe that this work (RAVSim Simulator), run-
time analysis, and visualization of the SNNs model will be an interesting area
for further research.

Availability. All of the experiments have been performed using run-time sim-
ulations on RAVSim v1.0. The RAVSim (v1.0) is an open-source simulator and
it is published on LabVIEW official website and available publicly at [12]. The
user manual [32] and video demonstration of RAVSim can be accessed at,

– https://www.youtube.com/watch?v=Ozv0MXXj89Y

https://www.youtube.com/watch?v=Ozv0MXXj89Y


50 Sanaullah et al.

Supporting Information. The Supporting Information including the detailed
result of each test is available at [31]. The data for each test results is enclosed
in its respective “Experimental Results” section.
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ulation scheme for spiking neural networks using lookup tables to characterize
neuronal dynamics. Neural computation 18(12), 2959–2993 (2006)

17. Ahmad, N., Isbister, J.B., Smithe, T.S.C., Stringer, S.M.: Spike: A gpu optimised
spiking neural network simulator. bioRxiv p. 461160 (2018)

18. Rudolph, M., Destexhe, A.: Analytical integrate-and-fire neuron models with
conductance-based dynamics for event-driven simulation strategies. Neural com-
putation 18(9), 2146–2210 (2006)

19. Stimberg, M., Goodman, D.F., Nowotny, T.: Brian2genn: a system for accelerat-
ing a large variety of spiking neural networks with graphics hardware. bioRxiv p.
448050 (2018)

20. Chou, T.S., et al.: Carlsim 4: an open source library for large scale, biologically
detailed spiking neural network simulation using heterogeneous clusters. In: 2018
International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2018)

21. Yavuz, E., Turner, J., Nowotny, T.: Genn: a code generation framework for accel-
erated brain simulations. Scientific reports 6(1), 1–14 (2016)

22. Kasap, B., van Opstal, A.J.: Dynamic parallelism for synaptic updating in GPU-
accelerated spiking neural network simulations. Neurocomputing 302, 55–65 (2018)

23. Fujita, K., Okuno, S., Kashimori, Y.: Evaluation of the computational efficacy
in GPU-accelerated simulations of spiking neurons. Computing 100(9), 907–926
(2018)

24. Mozafari, M., Ganjtabesh, M., Nowzari-Dalini, A., Masquelier, T.: Spyketorch:
efficient simulation of convolutional spiking neural networks with at most one spike
per neuron. Front. Neurosci. 13, 625 (2019)

25. Hazan, H., et al.: Bindsnet: a machine learning-oriented spiking neural networks
library in python. Front. Neuroinform. 12, 89 (2018)

26. Dumont, G., Henry, J., Tarniceriu, C.O.: Noisy threshold in neuronal models: con-
nections with the noisy leaky integrate-and-fire model. J. Math. Biol. 73(6), 1413–
1436 (2016)
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Abstract. DARTS is a popular gradient-based method for Neural
Architecture Search (NAS). Many extensions have been introduced in the
literature, resulting in various state-of-the-art models for many datasets.
As such, DARTS can now be regarded as a family of methods. Most pro-
posed extensions focus on improving DARTS’ computational and mem-
ory demands and its effectiveness in generating competent architectures.
Nonetheless, as with most NAS methods, DARTS is quite computation-
ally expensive. Furthermore, despite the method’s popularity, there is
little research concerning its parallelization feasibility and the behav-
ior of parallel DARTS methods. This paper studies the speedup, effi-
ciency, and quality of a synchronous data-parallel DARTS scheme on the
Fashion-MNIST dataset. We argue that although data-parallel methods
can introduce noise to the search phase, this should not significantly
affect the final results due to the pruning before extracting the final net-
work. As a result, we achieve a speedup of 1.82 for two GPU workers and
a 3.18 speedup for four GPU workers while retaining the same qualitative
results as serially executing DARTS.

Keywords: Neural architecture search · DARTS · Synchronous
data-parallel

1 Introduction

In recent years, neural architecture search (NAS) has enabled the automatic
design of state-of-the-art neural architectures for various problems [11,15,16,18].
NAS emerged from the need to systematically design neural architectures, as a
network’s topology and layer design greatly affect its data-modeling efficiency.
NAS capabilities greatly complement deep learning by allowing the problem
of learning from data to be solved from a higher level. Reinforcement learning
[25], metaheuristics [11], and differentiable methods [8] have been utilized in
NAS, with the aim to find competent architectures for various tasks. A problem
that arises with traditional reinforcement learning and metaheuristic approaches
is re-training from scratch each candidate architecture. To solve this problem,
weight-sharing through a supernet has been proposed [20]. As such, differentiable
c© Springer Nature Switzerland AG 2022
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methods can be seen as the most natural approach to supernets due to the
simultaneous utilization of the whole supernet.

One of the most popular and successful differentiable NAS methodologies
is DARTS [8], which enables the employment of back-propagation in order to
find optimal network architectures. An extension of the method has led to the
discovery of the current state-of-the-art architecture for the Fashion-MNIST
data set [19]. Due to its popularity, there have been many improvements since its
initial inception [21–23]. However, when compared to reinforcement learning and
metaheuristics, one of the main disadvantages is that differentiable methods have
a larger memory footprint, as the whole supernet must constantly be in GPU
memory. This requirement also indirectly limits the maximum batch size utilized
during the search due to memory limitations. Furthermore, the parallelization
of such methods is usually not straightforward.

There are many asynchronous approaches to parallelizing mini-batch gradient
descent (SGD) [4,9,14], but most of them require special handling of the opti-
mization process while introducing noise. The most straightforward synchronous
method is to average the weights of all parallel copies of the network after each
epoch [2]. Although it is possible to converge to local optima for non-convex
models, neural networks show an increasingly convex loss surface landscape as
they increase in size [3].

In this paper, we explore the behavior of first-order DARTS under syn-
chronous data-parallel SGD, for one, two, and four parallel workers, by generat-
ing architectures for the Fashion-MNIST dataset [19]. Although parallel training
is expected to introduce noise to the model, it will only affect the search phase.
As such, we aim to study the behavior of the method and the quality of the
generated models under a data-parallel scheme. To the best of our knowledge,
this is the first paper studying the behavior of data-parallel DARTS. We aim to
compare the serial and parallelized methods’ ability to generate competent archi-
tectures, as well as the potential speedup. We first briefly present the DARTS
algorithm, as well as the dataset. Following, we explain our methodology and
our experimental results. Finally, we present the limitations and findings of our
research.

2 Background

In this section, we provide a brief overview of DARTS and the Fashion-MNIST
dataset.

2.1 DARTS

Differentiable architecture search(DARTS) is a NAS method that relaxes the
discrete problem of selecting layers and connections between layers into a con-
tinuous one. The search space of DARTS is a cell search space. It generates
architectures for two types of small, repeating cells (reduction and normal cells).
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These cells are repeated in a pre-determined pattern to generate the actual net-
work. Each cell has four aggregation nodes, and each node is connected to all
following nodes through a neural layer (such as pooling or convolutional layers).

In order to treat the problem as continuous, all possible layer types exist
simultaneously in the supernet, and a weight is assigned to each layer output,
referred to as architecture weight a. Cells of the same type share architecture
weights. Normal cells have a stride of 1 for their layers, while reduction cells have
a stride of 2. To simplify the notion of having all possible layers and connec-
tions, the authors define a mixed operation layer type (MixOp), which contains
all available layer types and their respective connection weights (see Fig. 1). As
such, each cell has 6 MixOp layers. By including the “zeroize” layer type, which
always outputs zero, the cell has the option to deactivate a connection between
two nodes, while “identity” layers enable the implementation of skip-connects.
As the optimizer has to train two sets of weights, the traditional layer weights
and the architecture weights, the optimization becomes bi-level. At each training
step, the weights of each individual layer are first optimized utilizing the training
set (Ltrain), while the architecture weights are then optimized utilizing the vali-
dation set (Lval). Thus, the optimization problem is to minimize the loss on the
validation set w.r.t. a (1a), given the layer weights w*, as they were optimized
on the training set (1b).

min
a

Lval(w∗(a), a) (1a)

s.t. w∗(a) = arg min
w

Ltrain(w, a) (1b)

Fig. 1. Example cell architecture.
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2.2 Fashion-MNIST in NAS

Fashion-MNIST [19] is a 28× 28 grayscale image classification dataset with
60,000 training and 10,000 testing examples. It is intended as a direct replace-
ment for the traditional hand-written digits MNIST dataset, although it is con-
siderably harder to model. It contains ten different classes, which refer to distinct
clothing items. There are several NAS papers concerned with generating archi-
tectures for this dataset. Employing the experts’ advice framework, XNAS [12]
was able to achieve a 96.36% accuracy, while a modified version of DARTS with
attention modules in the macro architecture and an extended input head block
was able to achieve the current state-of-the-art, 96.91%. Other cell-search meth-
ods are presented in Asap [13], which can also produce competent architectures.

3 Methodology and Experimental Setup

This study employs the original DARTS framework with a synchronous data-
parallel optimization approach. Aiming to study its behavior under data-parallel
training, we employ a synchronous approach, as we hope to curtail the impact
on solving the bi-level optimization problem. In order to minimize the communi-
cation between nodes, we perform a single collective communications operation
at the end of each epoch, a reduction (averaging) of all network parameters
(Algorithm 1). Compared to a more common synchronous approach, such as
gradient aggregation (Algorithm2), where the gradients for each parameter are
aggregated after each mini-batch step, we considerably reduce the communica-
tion instances. The reduction factor is N/B, where N is the number of training
examples and B is the batch size. For Fashion-MNIST with a batch size of 64,
the reduction factor is 937.5, as all 60,000 training samples are utilized for the
update of the layer and architecture weights. Furthermore, we reduce the possi-
ble occurrences of stragglers [2], where many processes are waiting for another
to finish by the same factor.

Our experiments are implemented in the Neural Architecture Search frame-
work “NORD” [7], which relies on PyTorch. NVIDIA’s NCCL was utilized as
the communications back-end, allowing fast collective communication operations
between GPU nodes. For the search phase, we utilize 16 initial channels and 8
cells. The layers’ weights are trained with mini-batch SGD with an annealing
learning rate schedule (starting at 0.025 and gradually reducing to 0.001), while
the architecture weights are optimized with Adam [5]. There are 8 different layer
types for each MixOp layer: zeroize, identity, max and average pooling with ker-
nels of size 3 × 3, separable convolutions with kernel sizes 3 × 3 and 5 × 5,
and dilated convolutions with kernel sizes 3 × 3 and 5x. Random horizontal flips
and random erasing are utilized as data augmentation. Half of the training set
is utilized as a validation set. The architecture parameters are also optimized
on the validation set. Experiments are conducted on 1, 2, and 4 NVIDIA Tesla
A100 GPUs. We run the experiment 4 times with a different initial seed for each
setup to mitigate the fact that initial architecture and layer weights can both
favor and disfavor a particular run.
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Algorithm 1: Weight-based data-parallel DARTS, worker k
Data: Ltrain, Lvalid, nbatches, nepochs

Result: a
w ← broadcast(w) from worker 0;
a ← broadcast(a) from worker 0;
for e = 0, 1, ..., nepochs do

for i = 0, 1, ..., nbatches do
train ← Ltrain[i]; valid ← Lvalid[i];

Gw ← ∂Error(train;w,a)
∂w

;
w ← w − lr ∗ (Gw);

Ga ← ∂Error(valid;w,a)
∂a

;
a ← a − lr ∗ (Ga);

end
w ← allreduce(w);
a ← allreduce(a);
/* Wait for allreduce to complete */

end

Following the search phase, we select the best architecture of each GPU
setup. Then, using the architecture weights, we generate the final networks. For
these models, only the operation with the strongest a is retained for each MixOp
layer. As such, each node is connected to the next through a single layer. These
networks are the final result of the search phase. The resulting architectures
are fully trained for 100 epochs to compare their performances. In this fine-
tuning phase, we utilize 36 channels and 20 cells in order to increase the final
network’s number of parameters, as in [8]. During fine-tuning, the validation
set is only 10% of the training set, while the optimizer is Stochastic Gradient
Descent with momentum. The parameters for both the search as well as the
fine-tuning training phase are depicted in Table 1.

4 Results

In this section, we present the results of the two approaches. First, we analyze
their behavior during the search phase and the resulting networks. Following, we
construct extended networks from the best architectures found for each group.
Finally, by fully training these architectures, we extract information regarding
the equivalence of the data-parallel and serial approaches.

4.1 Search Phase

During the search phase, single GPU runs seem to out-perform multi-GPU runs.
In both training and validation accuracy, single-GPU runs achieve higher scores
early in the training phase while also having higher final train and validation
accuracy. Nonetheless, the discrepancy is more profound in the training accuracy



The Effectiveness of Synchronous Data-Parallel DARTS 57

Algorithm 2: Gradient-based data-parallel DARTS, worker k
Data: Ltrain, Lvalid, nbatches, nepochs

Result: a
w ← broadcast(w) from worker 0;
a ← broadcast(a) from worker 0;
for e = 0, 1, ..., nepochs do

for i = 0, 1, ..., nbatches do
train ← Ltrain[i]; valid ← Lvalid[i];

Gw ← ∂Error(train;w,a)
∂w

;
w ← w − lr∗allreduce(Gw);
/* Wait for allreduce to complete */

Ga ← ∂Error(valid;w∗,a)
∂a

;
a ← a − lr∗allreduce(Ga);
/* Wait for allreduce to complete */

end

end

Table 1. Search and training parameters

Search phase Training phase

Layer optimizer SGD Layer optimizer SGD

Learning rate 0.025–0.001 Learning rate 0.025

Momentum 0.9 Momentum 0.9

Architecture optimizer Adam –

Channels 16 Channels 36

Cells 8 Cells 20

Layer types 8 –

Batch size 64 Batch size 96

Validation percentage 50% Validation percentage 10%

Epochs 50 Epochs 100

than validation accuracy (Figs. 2 and 3, respectively). In terms of validation
accuracy, all experiments could produce results within a 1% validation accuracy
in the range of [92.2%, 93.2%]. Nonetheless, these results concern only the search
phase. Although indicative of the final network’s fully trained performance, they
serve more as a guide to the search rather than an absolute measure that can
be directly compared.

The method seems to speed up almost linearly, with speedup values of 1.82 for
the two-GPU setup and 3.2 for the four-GPU setup (Table 2. As such, efficiency
is at 90% for the two-GPU setup and 80% for the four-GPU setup. This reduction
in efficiency is probably due to stragglers, as there is minimal communication
overhead. Adding a backup worker [2], and assuming that a speedup of 4 is
achieved with 4+1 workers, the efficiency would remain at 80%. Backup workers
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would be a viable option for any number of GPUs greater than 4, as a 10%
efficiency loss is observed for each doubling of the GPU workers, implying that
at 8 nodes, the efficiency would drop at least to 70%. With 8 + 1 workers and a
speedup of 8, the efficiency would be at 88%.

Fig. 2. Training accuracy curves for
the search phase.

Fig. 3. Validation accuracy curves for
the search phase.

Table 2. Key performance metrics

GPUs Best test accuracy Best validation accuracy Average time (secs) Speedup

1 99.06% 93.19% 26708 –

2 98.52% 92.99% 14659 1.82

4 96.92% 92.63% 8393 3.18

To study the discrepancy between the generated architectures, we calculate
the graph edit distance (GED) for intra-group and inter-group results for both
normal and reduction cells (Figs. 4 and 5). Graph edit distance is calculated
based on topology and layer operations. The same topology with a single dif-
ferent layer operation would give a GED of 2. This value results from the two
operations required to edit one of the graphs to match the other; first, delete the
existing operation and add the missing one. Intra-group GED values (1, 2, and
4 GPUs) have a smaller deviation than inter-group GED values (1 vs. 4, 1 vs.
2, and 2 vs. 4 GPUs). Nonetheless, applying a Kruskal-Wallis H test [6] on the
normal cell GED values yields a p-value of 0.4, while the same test on the reduc-
tion cell GED values yields a p-value of 0.29. As such, we cannot confidently
say that any group significantly differs from the rest for a specific cell type. We
can see that the differences between cell architectures gave a mean GED value
of 8. As each node has exactly one connection with all previous nodes, it implies
that, on average, the layer selections differ in four connections, while the cells
are computationally similar, as seen in Fig. 3. The data-parallel approach seems
to produce, on average, the same deviation within its final generated architec-
tures as the deviation produced between the final architectures of all approaches.
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Looking at Fig. 5 we even see a tendency for the serial approach to producing
slightly higher intra-group GED, compared to the data-parallel approaches.

Fig. 4. Graph edit distance values for
the normal cells.

Fig. 5. Graph edit distance values for
the reduction cells.

4.2 Best Model Analysis

The best architecture of each setup (1, 2, and 4 GPU runs) was selected and
trained for 100 epochs with an increased number of layers and channels to com-
pare each approach’s results. The cell architectures of each model are depicted
in Fig. 6. We can see that for all normal cells, the inputs are followed mainly
by dilated and separable convolutions, with a minimal amount of pooling oper-
ations. It is interesting to note that although all groups produced final cells
with predominately pooling operations in their reduction cells, they were not
the best-performing ones on our specific dataset.

Although the single-GPU setup had the best performance in the search phase,
the generated architecture under-performed in training set accuracy, while the
other two networks followed a similar trajectory (Fig. 7). More importantly,
all three networks seemed to have comparable performance on the validation
set. Nonetheless, we would like to examine more systematically their similarity.
Assuming that the first 10 training epochs are greatly dependent on weight ini-
tialization, we apply a Kolmogorov-Smirnov test [10] for equality of distributions
between the validation accuracies of the three networks for epochs 10 to 100.
Following, we correct for false discovery rate, utilizing the Benjamini/Hochberg
correction [1]. The results are depicted in Table 3, prohibiting us from rejecting
the null hypothesis that the distributions of the accuracies are the same. This
further validates the visual information in Fig. 8, which shows a remarkably sim-
ilar trend with noise for all networks.
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Fig. 6. Best models cell architectures.

Table 3. Kolmogorov-Smirnov and Benjamini/Hochberg-corrected p-values

Model Kolmogorov-Smirnov Benjamini/Hochberg-corrected

1 vs 2-GPUs 0.51 0.71

1 vs 4-GPUs 0.08 0.15

2 vs 4-GPUs 0.87 0.88

5 Limitations

Although this study tries to analyze the behavior of a data-parallel DARTS as
thoroughly as possible, its main limitation is the small number of executions for
each setup (number of parallel GPUs). The results seem consistent, although a
more significant number of executions for each setup would provide more insights
into the properties of a data-parallel DARTS approach. Furthermore, a more
significant number of GPU nodes would allow for a comprehensive assessment
of the speedup and efficiency of this approach.
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Fig. 7. Best model training fine-tune
accuracy.

Fig. 8. Best model validation fine-tune
accuracy.

6 Discussion and Future Work

In this paper, we study the behavior of Differentiable Architecture Search [8]
under a data-parallel synchronous training approach, utilizing groups of 1, 2,
and 4 GPU workers. We observe an almost linear speedup, with a 10% drop in
efficiency for each doubling of GPU workers. As such, we argue that a backup-
worker approach [2] would benefit the method for more than four GPU setups.
Furthermore, the generated architectures’ quality seems to be stable, and also
their diversity does not change between the serial and data-parallel approaches.
This consistency is confirmed by analyzing the graph edit distance values for
cells of the same group and cells between different groups.

We observe similar behavior for all three groups by generating enlarged net-
works from the best architecture cells for each group and training them for an
extended number of epochs. Moreover, their validation accuracy performance
follows the same trajectory, while their distributions do not differ at the 0.05
and 0.1 significance levels. This observation indicates that the generated archi-
tectures are computationally equivalent. In contrast, their difference in perfor-
mance and architecture can be attributed to different initial conditions, states
of random number generators (although having the same initial seed at each run
for all groups, different number of workers translates to different number of steps
performed, and as such different internal states for the generators at each step),
and inherent stochasticity in the execution of some GPU operations.

Concluding, in this paper, we show that synchronous data-parallel optimiza-
tion is viable for DARTS, resulting in similarly performing architectures to the
serial approach. As our future work, we aim to study larger and more diverse
datasets, investigate asynchronous approaches [17,24] to evaluate their feasibil-
ity, as well as extensions of DARTS [22], in order to assess the merit of paral-
lelizing such methods.
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Abstract. With the ubiquity of voice assistants across the UK and the
world, speech recognition of the regional accents across the British Isles
has proven challenging due to varying pronunciations. This paper pro-
poses an automated recognition of the geographical origin and gender of
a voice sample based on the six regional dialects of the United Kingdom.
Twenty six features are extracted from 17,877 voice samples and then
used to design, implement and evaluate machine learning classifiers based
on Artificial Neural Networks (ANNs), Support Vector Machine (SVM),
Random Forest (RF) and k-nearest neighbors (k-NN) algorithms. The
results suggest that the proposed approach could be applicable for areas
such as e-commerce and the service industry, and it provides a contribu-
tion to NLP audio research.

Keywords: Deep learning · Artificial neural networks · Speech
recognition · Accent classification

1 Introduction

Across the United Kingdom, approximately 20% of homes are estimated to be
using a voice assistant according to a report by [7]. These voice-based artificial
intelligence systems respond to vocal commands from their users with a synthe-
sized voice. According to a report by [31], 74% of consumers prefer to use voice
assistants in the comfort of their homes, rather than out in public while doing
domestic tasks. While voice assistants are used for daily tasks such as home
automation, controlling other devices and purchasing, commercial interests are
pushing the limits of their capabilities. Through voice assistant, customers are
able to communicate with customer service more directly and efficiently, espe-
cially in some complicated transaction processes. 61% of consumers surveyed
in the report by [31] expected, as a bare minimum, that their voice assistants
understand their accent/diction every time they speak. For a vast majority of
UK residents, this is far from their reality. In a survey done by Newcastle Life Sci-
ences Centre through their ’Robots - then and now’ exhibit, 79% of respondents
c© Springer Nature Switzerland AG 2022
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who identified as speaking with a regional accent or dialect stated that they had
to alter the way they spoke to voice assistants at least “a little bit”, [29]. It was of
such concern for 48% of respondents, who were of the opinion that increased use
of voice recognition systems could lead to an “eradication” of regional accents
[29]. According to a Spike Digital survey in 2018, [33], 67.3% of UK residents
“feel that voice recognition devices should be adapted to recognize, or distinguish
between, regional accents”. Oral communications between members of different
cultures have increasingly become important in various fields, including organi-
zations with multinational employers, education (teacher-student interaction),
health (better providing consulting services), as well as personal relationships
[30]. In the e-commerce sector, the dialect effect also plays a role in the pre-sale
and post-sale stages. For example, the initial contacts with the company’s service
representatives portray the first impressions, which may result in whether buyers
view the company as a potential supplier. At the after-sale stage, a local dialect
can also affect the relationship between buyers and sellers: the same dialects can
raise the seller’s credibility in the service restoration, which can help influence
the purchaser’s evaluation of how the seller deals with the complaints [26]. The
quality of communication in the e-commerce sector has direct correlations to
customer satisfaction as well as purchase decisions and customer retention. At a
time when the general population demographic is constantly changing, decreas-
ing communication quality (related to accents and dialect) is a growing issue in
customer service delivery.

This paper investigates machine learning models capable of classifying
regional accents of the United Kingdom for use in speech recognition systems
applicable to the e-commerce and service industry. In an era where online shop-
ping is becoming more and more popular, most voice assistants and customer
service staff are familiar with Standard English and Received Pronunciation but
not with regional dialects. Persons who live remotely from metropolitan areas are
less likely to speak Standard English and can be at a disadvantage. Using audio-
based tools that cater to regional accents can improve the quality of customer
services. A high-quality dataset from Google Research is utilized, with 17,877
transcribed audio recordings of persons, male and female, speaking/reading sen-
tences from various regions in the United Kingdom [11] available at [15]. Several
models are designed, implemented and evaluated for detecting regional accents.
The main contributions are:

– Experiments with different classification models to recognize multiple accents
and gender of the speaker

– Novel approach to speech recognition for accents rather than standard lan-
guage

– Evaluation of the proposed classification models for English-based accents

The rest of this paper is organized as follows: Sect. 2 presents related work on
the accent classification methodologies and their significance for e-commerce and
society. Section 3 introduces the dataset and methodology used in this research.
Models based on Artificial Neural Networks (ANNs), Random Forest, Support
Vector Machine (SVM) and k-nearest neighbors (kNN) algorithms are employed
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to perform accent classification. Section 4 compares and discusses the results of
the models in terms of accuracy, precision, recall, and F1-score. Section 5 gives
the conclusions and future work direction.

2 Related Work

2.1 Importance of Accent/Dialect Classification

With the rapid development of the Internet, in the current e-commerce field,
communication between customers and customer service personnel can be car-
ried out in various forms, which are no longer limited to text messages, but also
include voice messages and voice calls. At present, more and more customers
tend to use voice messages or voice calls because, in some complicated transac-
tion processes, text messages cannot effectively express the content they want
to ask. Compared with text messages, communicating with customer service
through voice is more direct and efficient. Languages that are similar (such as
dialects based on English) are often maintained in such societal groups, but this
comes with some extent of miscommunication and misunderstanding in com-
munal interactions. Therefore, while accents or dialects are natural entities of
human speech, they can present a barrier to effective communication in the e-
commerce or service sectors [1]. These challenges have the potential of negatively
affecting the industries that require more effective communication and develop-
ing intelligent customer service [28,36]. In the e-commerce sector and service
industry, the recognition of different accents or dialects is beneficial in matching
voice recordings to the customer’s place of origin or assigning a customer to a
customer service representative who may speak in similar ways. This can help
companies to understand customers’ behavior, deal with their requests better,
and improve customer satisfaction.

It is well known that customer satisfaction is a key element in service market-
ing since it can foster purchase intention and re-intention, loyalty, public praise,
profitability and market share. Satisfaction is mainly an emotional state and
response to service, not limited to quality. Therefore, satisfaction tends to be
the relevant outcome variable of regional dialect affecting service experience.
The customer service personnel are the key to influence the customer’s evalua-
tion of the company. Compatibility between customer service staff and buyers’
accents or dialects can increase their satisfaction with the company and their
intention to buy because regional dialects and accents may promote the fluidity
of social interaction [26,35].

Different accents may indicate cultural differences. Research work in [4] sug-
gests that based on service provider verbal interaction, customers with diverse
cultures perceive they may receive inequitable service and consequently experi-
ence low levels of satisfaction. Therefore, accent recognition may enable assigning
relevant customer service staff to improve services. With the rapid development
of communications, such as the recent emergence of 5G, more applications rely
on automatic voice recognition, e.g., voice assistants [32], education [22], and
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customer service [36]. However most of the research focuses on identifying cus-
tomer emotions [6,24,30], and only rarely considers the issue of accent or dialect
[12]. This paper addresses the problem of automatic recognition of the geograph-
ical origin and gender of a voice sample based on the six regional dialects of the
United Kingdom, which can be utilized in practical applications of e-commerce
or the service industry.

2.2 Automatic Methods for Accent/Dialect Classification

Typically, conversational Artificial Intelligence (AI) technology refers to arti-
ficial intelligence, which detects, processes, and responds using natural human
language, whether spoken or written. This would include Natural Language Pro-
cessing (NLP) and Natural Language Generation (NLG), as well as Automatic
Dialect Classification (ADC). NLP tries to interpret the meaning of the language
inputs it receives, including vocabulary, context and intent. ADC tends to be
part of this NLP process. It is a technique that can automatically recognize a
regional dialect of a particular language from voice samples, which is difficult as
dialects often have smaller discernible variations than languages [12]. Inclusive
AI systems that combat cultural biases are built from the ground up. Numer-
ous datasets currently used to train AI systems are rife with biases (Google
Translate commonly assigns gender stereotypes to occupations when a phrase is
being translated from a language with gender-neutral pronouns). Machine learn-
ing algorithms thrive on data patterns, but this means they can form inaccurate
conclusions from biased data. We also see these biases in commercial facial recog-
nition applications when dealing with minorities. Daugherty et al. [10] suggest
that this can be corrected by curating new datasets with a’better representation
of minorities’ or adjusting the weights in classification algorithms.

A dialect is a variation of a standard language, like English, specific to geo-
graphical regions or cultural and social groups [23]. They can be influenced or
stem from a single language or a mixture of multiple. Some dialects only exist
in their spoken form, but for many, it is the only language they know or are
familiar with, and it is important that technology is accessible in a way that
allows such people to communicate in their familiar language. Yoo et al. [34]
propose that a direct way to build a single acoustic model (AM) for multiple
dialects is to train the AM on assorted samples from multiple dialects. This
is similar to what Li et al. [23] propose, that is, to explore the possibility of
training a single model serving multiple dialects, thereby simplifying the process
of training multi-dialect models without the need for multiple Acoustic Models
(AM), Pronunciation Models (PM) and Language Models (LM) for each dialect.
Yoo et al.’s [34] approach to the problem was to dynamically adapt an acoustic
model based on dialect information with a single AM. Their approach results
in a highly adaptive AM for handling multiple dialects simultaneously. Ali’s [2]
propose generative and discriminative classifiers, in addition to deep learning
approaches for Arabic dialects recognition.
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3 Methodology

3.1 Data and Features Extraction

We utilize the UK dialect dataset, which can be found at Google Research [15].
It consists of 17,877 transcribed high-quality audio recordings (approximately
31 h) collected from native English speakers from a few areas in the UK and Ire-
land, including native speakers of Southern England, Midlands, Northern Eng-
land, Welsh, Scottish and Irish variants of English. Recordings were performed
by volunteers who self-reported their dialect. There are 2,400 unique speech
specimens (quotes) of varying lengths. The audio is high quality (48 kHz, 16-
bit, mono, Wave audio), recorded in a quiet environment [11]. The corpus was
created with the intent of linguistic analysis as well as for use in speech tech-
nologies. Special characteristics of this dataset that make it a valuable choice
for analysis over audio datasets like LibriSpeech Corpus and the Speech Accent
Archive include high sampling rate for intelligibility, high phoneme coverage,
and the curation of scripts that enhanced accent and idiolect elicitation [11].
Another important feature is the inclusion of words and names (for example,
Gaelic names) that were specific to the region of the speaker (native pronunci-
ations). The average length of recordings is 6.3 s, with the longest being 20.1 s
long and the shortest being 1.62 s long. Table 1 shows the numbers of samples
per regional dialect recorded and transcribed.

Table 1. Number of samples per regional dialect recorded and transcribed

Region Male Female

Irish English 450 0

Midland English 450 246

Northern English 2097 750

Scotish English 1649 894

Southern English 4331 4161

Welsh English 1650 1199

Audio features that capture the speech-relevant information need to be
extracted from the audio wave files. For feature extraction of the audio file, we
used the Python ’librosa’ package1. Table 2 shows the various spectral features
that were utilized.

The features in Table 2 are described as follows:

– Chroma stft Chroma Feature analysis [13] and synthesis is a representation
of music audio, in which the entire spectrum is divided into 12 bins which
represent12 distinct chromas (semitones) of the musical octave. We use the

1 https://librosa.org/doc/latest/index.html.

https://librosa.org/doc/latest/index.html
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Table 2. Features extracted

No. Feature

1 Chroma stft

2 MFCC (Mel-frequency cepstral coefficients)

3 RMS (Root Mean Square)

4 Zero-crossing rate

5 Spectral roll-off

6 Spectral centroid

7 Spectral bandwidth

librosa.sftf function to create a spectrogram. This is a Short-time Fourier
transform (STFT) representing a signal in the time-frequency domain by
computing discrete Fourier transforms (DFT) over short overlapping win-
dows. The DFT can be efficiently computed using the fast Fourier transform
(FFT). The FFT window size n fft parameter is set to 2048 samples, which
corresponds to a physical duration of 93 ms at a sample rate 22050 Hz (the
default sample rate in librosa). The number of audio samples between adja-
cent STFT columns hop length parameter is set to 512. Figure 1 is a visualiza-
tion of the spectrogram for the phrase “When the sunlight strikes raindrops
in the air they act as a prism and form a rainbow”, as spoken by a female
from the North of England.

Fig. 1. Spectrogram of a Northern English female saying:“When the sunlight strikes
raindrops in the air they act as a prism and form a rainbow”

– MFCC (Mel-frequency cepstral coefficients). Mel-frequency cepstral
coefficients (MFCCs) [25] of a signal are a set of features used to estimate
the important features that the human auditory system detects in audio sig-
nals. They are obtained by taking the Fourier transform of the audio signal,
mapping the spectrum powers to the mel scale, and then taking the discrete
cosine transform of the logarithms of the powers. For use in audio classifica-
tion problems, between 12 to 20 coefficients are typically used. In this work, 20
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coefficients are utilized in the lower order (at the bottom of the graph Fig. 2),
which provides information about the overall extent of the audio spectrum.
The mel-frequency cepstral coefficients indicate various rates of change in the
cepstral domain. They also contain information about the shape of the vocal
cords.

Fig. 2. MFCCs of a Northern English female saying: “When the sunlight strikes rain-
drops in the air they act as a prism and form a rainbow”

– RMS (Root Mean Square). The Root Mean Square (RMS) [8] is used
to compute the root mean-square (RMS) energy for each frame, either from
the audio samples or from a spectrogram. A Short-time Fourier Transform
window of continuous ones with no frame centering is used to get consistent
results from the RMS that would be computed from audio samples.

– Zero-crossing rate. The zero-crossing rate (ZCR) [16] is a fundamental
spectral measurement technique that is used to estimate central frequency,
also known as the lowest possible frequency of an intermittent waveform. It
measures the number of times in each time interval/frame that the amplitude
of the speech signals passes through the zero mark. As a pertinent feature
used to categorize percussive sounds, the ZCR is widely used in other audio
application domains, such as musical genre classification, speech analysis, and
singing voice detection in music. It is the simplest method to perceive voice,
unvoiced, or silent speech frames. Unvoiced segments of audio are anticipated
to produce higher ZCRs than for voice segments.

– Spectral roll-off. The spectral roll-off frequency is defined for each frame
as the center frequency for a spectrogram bin such that at least roll percent
(0.85 by default) of the energy of the spectrum in this frame is contained in
this bin and the bins below [17].

– Spectral centroid. The spectral centroid [27] indicates the weighted average
of the frequencies present in a given signal with the magnitudes of frequency
as the weights. It characterizes the “center of mass” of a given spectrum. If
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the frequencies in a specific sample are the same throughout, then spectral
centroid would be clustered and if there are high frequencies at the end of
the sample, then the centroid would be towards the end. Perceptually, it has
a strong relationship with the perception of sound “brightness”, which has
been formalized to indicate the amount of high-frequency content in a sound.

– Spectral bandwidth. The spectral bandwidth [27] draws on the centroid
and the spectrogram bins to be calculated. It determines the quality of sound
and indicates the extent of the spectrum of sound within a frame. It is the
interval along the wavelength axis whereby a radiated spectral measure is not
less than half its maximum value.

3.2 Machine Learning Classification Models

We design, train and evaluate machine learning models based on Artificial Neu-
ral Networks (ANN), Support Vector Machines (SVMs), Random Forest (RF)
and k-Nearest Neighbor (k-NN). The inputs for the models are the 26 features,
namely: 20 Mel-frequency cepstral coefficients (MFCCs) and 6 spectral features:
RMS (Root Mean Square Error), Zero-crossing rate, Spectral roll-off, Spectral
centroid, Spectral bandwidth and Chroma stft. The individual frame features
have been averaged to obtain these 26 features.

ANN models resemble the concept of the human brain’s neural network and
its neurons. ANN model typically consists of artificial neurons organized in layers
known as the input, hidden and output layers. The model essentially processes
data through a series of functions to optimize an error function and determine
the parameters (weights associated with the neurons) within the network to
solve a classification/prediction problem. Figure 3 illustrates the architecture
of the ANN model utilized in this paper with an input layer of 26 inputs, 2
hidden layers with 100 and 50 neurons, respectively and an output layer with
11 neurons corresponding to the 11 classes. The number of neurons and hidden
layers have been selected by experimentation. We utilize for the experiments the
Keras2 framework, which is the most used deep learning framework among top-
5 winning teams on Kaggle3. The activation function utilised in in the hidden
layers is the ReLU (rectified linear unit) activation function f(x) = max(0, x).
SoftMax activation function is applied to the output layer σ(z) = expzi

∑11
j=1 ezj

. We

utilize Dropout and Batch Normalisation to reduce overfitting [14]. The Adam
optimiser proposed in [21] is used as optimization algorithm.

SVMs [9] are supervised machine learning models that provide robust classi-
fication accuracy by projecting the data points to a higher dimensional feature
space aiming at finding an optimal hyperplane that separates positive and neg-
ative classes. The mapping into high-dimensional feature spaces is achieved by
the so-called kernel trick. In this work we use scikit-learn4 library to implement
SVM and a Radial Basis Function (RBF) kernel.
2 https://keras.io/.
3 https://www.kaggle.com/.
4 https://scikit-learn.org/stable/.

https://keras.io/
https://www.kaggle.com/
https://scikit-learn.org/stable/
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Fig. 3. ANN model architecture illustration

RF is an ensemble classification and regression technique [5,18,19] that has
proved to be highly accurate. The ensemble is designed to train more than one
classifier and then aggregate the predictions of all models and perform pre-
dictions by majority voting, i.e., the class selected by most trees. RF reduces
the overfitting of the individual trees and outperforms decision trees. A good
ensemble needs models to be diverse enough and independent from each other
to ensure good performance. RF generates a diversified ensemble using Boot-
strap aggregating (Bagging). Bagging is a sampling method that samples data
from the training set with replacement. With such an approach, an instance in
the dataset can be sampled more than once for the same model. At the same
time, other instances may not appear at all during the training process. We use
scikit-learn5 library for the implementation of RF and set the maximum depth
of the tree to 20.

K-nearest neighbors algorithm (k-NN) [3] is a non-parametric classification
method where the input consists of the k closest training examples in a data set
and the output in the case of classification is a class membership. A sample is
assigned to the class most common among its k nearest neighbors. The number
k is typically chosen by heuristics. After experimentation we selected k = 3 and
used scikit-learn (see Footnote 5) library for the implementation.

4 Results and Discussion

We split the data into training and testing subsets at ratios 0.7 and 0.3 accord-
ingly. 10% from the training data is used as a validation dataset, which reduces
the training data to 63%. The ANNs model was trained for 150 epochs, while
for the SVM model, the maximum iterations parameter was set to 500. The
performance of the models is evaluated in terms of accuracy, precision, recall

5 https://scikit-learn.org/stable/.

https://scikit-learn.org/stable/
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and F1-score. Since we have a multi-class problem, precision is calculated as the
sum of true positives across all classes divided by the sum of true positives and
false positives across all classes. The recall is calculated as the sum of true pos-
itives across all classes divided by the sum of true positives and false negatives
across all classes. F1-score combines precision and recall into a single measure
that captures both properties. Good F1-score will be close to 1. To visualize the
performance of the models, we also include the confusion matrices, which display
in a row the instances in an actual class while in each column the instances in a
predicted class. Tables 3 and 4, represent the weighted average results on the test
set of the models created with ANN, SVM, Random Forest and k-NN algorithms
respectively in terms of precision, recall and F1-score. It is observed that ANN,
SVM and k-NN provide better performance in terms of accuracy and weighted
average precision, recall and F1-score than the RF. Comparing the results in 3
and 4 with respect ti the weighted average precision, recall and F1-score for the
four methods we find that the best result is achieved with k-NN accuracy 0.988.
This accuracy is slightly better than previously reported accuracy Hossain et al.
[20] but it should be noted that in the paper [20] the gender classification was
not considered and the results are not directly comparable. Figure 4 presents the
confusion matrix for test results obtained with the k-NN. It can be noted that
Scottish male can be confused with Northern male or Southern male, Southern
male with Northern male, Scottish female with Southern female in a small num-
ber of cases. However, confusing the gender seems very rare. Confusing Scottish
speakers with Northern speakers may be due to some extent to the proximity
of the geographical regions. The results suggest that utilizing machine learning
methods is feasible for detecting dialects as well as the gender of a speaker based
on features extracted from the voice sample.

Table 3. ANN(left) and SVM(right) results

Precision Recall F1-score

irm 0.993 1.000 0.996

mif 0.974 1.00 0.987

mim 0.985 0.970 0.978

nof 0.969 0.982 0.976

nom 0.970 0.983 0.976

scf 0.981 0.963 0.972

scm 0.986 0.974 0.980

sof 0.991 0.993 0.992

som 0.978 0.980 0.979

wef 0.994 0.989 0.992

wem 0.990 0.982 0.986

accuracy 0.983 0.983 0.983

macro avg 0.983 0.983 0.983

weight. avg 0.983 0.983 0.983

Precision Recall F1-score

1.00 0.985 0.993

1.00 1.00 1.00

1.00 0.926 0.962

0.996 0.996 0.996

0.952 0.979 0.966

0.989 0.963 0.975

0.989 0.939 0.964

0.992 0.995 0.994

0.967 0.988 0.978

0.989 0.994 0.992

1.000 0.982 0.991

0.982 0.982 0.982

0.988 0.977 0.983

0.982 0.982 0.982

Support

135

74

135

225

629

268

495

1248

1300

360

495

5364

5364
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Table 4. RF(left) and KNN(right) results

Precision Recall F1-score

irm 0.985 0.970 0.978

mif 1.00 0.932 0.965

mim 1.00 0.807 0.893

nof 0.990 0.907 0.947

nom 0.930 0.946 0.938

scf 0.987 0.877 0.929

scm 0.991 0.867 0.925

sof 0.950 0.997 0.973

som 0.913 0.985 0.947

wef 0.989 0.967 0.978

wem 0.979 0.933 0.956

accuracy 0.952 0.952 0.952

macro avg 0.974 0.926 0.948

weight. avg 0.954 0.952 0.952

Precision Recall F1-score

1.00 0.993 0.996

0.974 1.000 0.987

0.963 0.963 0.963

0.978 0.991 0.985

0.965 0.994 0.979

0.974 0.970 0.972

0.994 0.974 0.984

0.997 0.995 0.996

0.991 0.991 0.991

0.989 0.992 0.990

0.998 0.976 0.987

0.988 0.988 0.988

0.984 0.985 0.984

0.988 0.988 0.988

Support

135

74

135

225

629

268

495

1248

1300

360

495

5364

5364

Fig. 4. k-NN confusion matrix
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5 Conclusions

In this paper, we have reviewed the importance of recognition of dialects and
gender in relation to automated customer services, e-commerce, or the service
industry. We have addressed the problem of automatic recognition of the geo-
graphical origin and gender based on six regional dialects of the United Kingdom.
We presented several classification algorithms for recognizing dialects and gen-
der of an English speaker. We have used 26 features, namely: 20 Mel-frequency
cepstral coefficients (MFCCs) and 6 spectral features to train models based on
ANN, SVMs, RF and k-NN and subsequently evaluated the performance of
models. The ANN, SVM and k-NN performed better than the RF, but it was
observed that all models provide reasonable performance. The results show the
potential of the proposed approach for speech recognition of dialects and the
gender of the speaker.

While the quality of recorded speech datasets is continuously improving, there
are still numerous gaps in terms of human mistakes and natural-sounding record-
ings. Furthermore, while machine learning is growing in its capacity to handle
low-resource categories of speech, such as indigenous languages and informal
dialects, there is a need to collect data and more intensive studies into these
language subsets. Potentially future work may involve collecting hybrid accents,
non-native English accents, dialects such as the Glaswegian dialect, and other
English-based dialects imported into the United Kingdom.

Other future directions can also explore generating speech that exhibits a
specific accent in automated customer service scenarios depending on the cus-
tomers’ gender and dialect.
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Abstract. Data sets consisting of a relatively small number of high-dimensional
feature vectors often appear, e.g. in bioinformatics preoblems. This data structure
complicates the design of classification or regression models.

Complex layers of formal neurons (linear classifiers) can be designed on the
basis of data sets composed of high-dimensional feature vectors. Linear classifiers
of a given complex layer are designed on disjoint subsets of features obtained as a
result of well-conditioned clustering. This feature clustering technique is related
to matrix regularization.

Keywords: Formal neurons · Data mining · Complex layers of linear
classifiers · Feature clustering

1 Introduction

Data sets consisting of a small number of high-dimensional feature vectors appear
frequently in practice [1]. For example, genetic data sets have this structure. High-
dimensional feature vectors representing the measurement results of a large number of
different types of features can create difficulties in developing appropriate classification
or regression models [2]. A large number of features results in many parameters in the
model [3]. Overfiiting models can result from a large number of parameters [4]. Numer-
ical difficulties appear in high-dimensional parameter spaces when inverting matrices or
solving large scale eigenvalue problems [5]. Formal neuron netprks can also be designed
(learned) from large data sets [6].

A dataset consisting of a small number of multivariate feature vectors enables the
design of complex layers of formal neurons [7]. In this approach, a number of low-
dimensional feature subspaces related to particular neurons in the layer are extracted
from themultidimensional feature space [8]. The extracted feature subspaces are disjoint
and have a dimension no greater than the number of feature vetors (objects) in a given
dataset [9]. The presented work broadens the theoretical basis for designing complex
layers of formal neurons. In particular, the problem of extracting linearly dependent
feature vectors from a given data set is considered.
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2 Linear Separability With Margin

Consider the data set C consisting m feature vectors xj = [
xj,1, ..., xj,n

]T from the
n-dimensional feature space F[n] (xj ∈ F[n]):

C = {
xj

}
, where j = 1, ...,m (1)

The feature vectors xj in data setC (1) represent individual patients (objects)Pj. The
components xj,i(xj,i ∈ R1or xj,i ∈ {0, 1}) of the feature vector xj are numerical values
of ndividual features (genes, measurements) Xi(i = 1, ...., n) of the j-th patient Pj. We
consider a situation in which the number m of feature vectors xj in the data set C (1) is
much smaller than the dimension n of these vectors (m << n).

The selected feature vectors xj from the data set C (1) form the positive learning set
Gk

+ and the negative learning set G−
k (k = 1, . . . ,K):

G+
k = {xj : j ∈ J+

k }, and G−
k = {xj : j ∈ J−

k } (2)

where J+
k and J−

k are non-empty and disjoint sets (J+
k ∩J−

k = ∅) of indices j of selected
feature vectors xj from the data set C (1).

The positive learning set G+
k consists of m+

k feature vectors xj (j ∈ J+
k ) representing

the category (class) ω+
k . Similarly, the negative learning set G−

k consists of m−
k feature

vectors xj(j ∈ J−
k ) representing the category ω−

k , where m
+
k +m−

k ≤ m. The possibility
of separating the learning sets G+

k and G−
k (2) by a certain hyperplane H(wk, θk) is

investigated in neural networks or pattern recognition methods [10]. The hyperplane
H(wk, θk) in the feature space F[n] is defined as follows:

H(wk, θk) = {x : wT
kx = θk} (3)

where wk = [
wk,1, ..., wk,n

]T ∈ Rn is the weight vector, θk ∈ R1 is the threshold, and
wT
kx = �iwk,ixi is the inner product.

Definition 1: The learning sets G+
k and G−

k (2) are linearly separable with margin in
the feature space F[n], if and only if there exists such a weight vectorwk(wk ∈ Rn), and
a threshold θk(θk ∈ R1) that the hyperplane H(wk, θk) (3) separates these sets:

(∃wk, θk)(∀xj ∈ G+
k ) wT

k xj ≥ θk + 1 and

(∀xj ∈ G−
k ) wT

kxj ≤ θk − 1
(4)

According to the above inequalities, all feature vectors xj from the learning set G+
k

(2) lie on the positive side of the hyperplane H(wk, θk) (3), and all vectors xj from the
set G−

k are on the negative side of this hyperplane. The linear inequalities (4) can be
represented as follows:

(∀xj ∈ G+
k ) (wk/||wk||)Txj ≥ θk/||wk||+1/||wk||, and

(∀xj ∈ G−
k ) (wk/||wk||)Txj ≤ θk/||wk‖− 1/‖wk||

(5)

where ||wk|| is the length of the vector wk = [
wk,1, ...,wk,n

]T.
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Inequalities (5) describe the linear separation of the learning sets G+
k and G−

k (2)
with the margin δ(wk) determined as follows in the case of the Euclidean (L2) norm
[10]:

δ(wk)L2 = 2/
(
wT
kwk

)1/2 = 2/(�iw
2
k,i)

1/2 (6)

The margin δ(wk)L1 based on the L1 norm is determined below [9]:

δ(wk)L1 = 2/(�i
∣
∣wk,i

∣
∣) (7)

Parameters wk = [
wk,1, ...,wk,n

]T and θk which allow the separation (5) of the
learning sets G+

k and G−
k (2) can be used in the below classification rule in the feature

space F[n] (x ∈ F[n]):

(∀xj ∈ F[n])

if wT
kxj > θk, then xj ∈ ω+

k , and if wT
kx < θk, then xj ∈ ω−

k

(8)

whereω+
k is the positive category represented by m+

k feature vectors xj(j ∈ J+
k ) creating

the learning set G+
k (1) and ω−

k is the negative category represented by m−
k vectors xj

forming the set G−
k .

It can be seen that the rule (8) correctly classifies all feature vectors xj from the
linearly separable learning sets G+

k and G−
k (2). Such feature vectors xj ′ which are not

included in the learning sets may, however, be incorrectly identified. The generalization
power of the classification rule (8) is characterized by the frequency of misclassified
feature vectors xj′ not belonging to the learning sets G

+
k or G−

k (2). The power of gener-
alization is high when a large number of new vectors xj ′ (xj′ /∈ G+

k ∪ G−
k ) are correctly

classified. Increasing the margins δ(wk)L2 (6) or δ(wk)L1 (7) is aimed at increase the
generalization power of the classification rule (8).

3 Complex Layers of Formal Neurons

The formal neuron is a simplified mathematical model of neuronal activity in the brain.
The formal neuron was used in the Perceptron, one of the first model of neural networks
plasticity proposed by F. Rosenblatt around 1950 [6]. Formal neurons can work as linear
classifiers in pattern recognition tasks [2].

Formal neurons are usually defined on the feature vectors xj = [
xj,1, ..., xj,n

]T

belonging to the n-dimensional feature space F[n] (xj ∈ F[n]). The feature space F[n]
is represented by the set F(n) of n features Xi(i = 1, ...., n):

F(n) = {X1, . . . ,Xn}. (9)

The i-th component xj,i of the vector xj is a numerical result of the feature X i
measurement.

The vertexial feature subspace Rk[nk] of the dimension nk is represented by the
subset Rk(nk)(Rk(nk) ⊂ F(n)) of nk selected features Xi(l) [8]:

Rk(nk) = {Xi(1), . . . ,Xi(nk)} = {Xi : i ∈ Ik}. (10)
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where Ik is a subset of the indices of nk selected features Xi(Xi ∈ Rk(nk)).
The decision rule r(wk[nk], θk; x[nk]) of the k-th formal neuron FN (wk[nk], θk)

operating in the vertexial feature subspace Rk[nk] (x[nk] ∈ Rk[nk]) is defined as [9]:

(∀x[nk] ∈ Rk[nk])
1 if wk[nk]Tx[nk ] ≥ θk

rk = r(wk[nk], θk; x) =
0 if wk[nk]Tx[nk] < θk

(11)

where wk[nk] = [w1, . . . , wnk]T is a weight vector of dimenstion nk(wk[nk] ∈ Rnk)

and θk is the threshold (θk ∈ R1).
In accordance with the decision rule (11), the formal neuron FN (wk[nk], θk) is

activated (rk = 1) by the input vector x[nk] (x[nk] ∈ Fk[nk]) of the dimension nk if
the weighted sum of the input signals (features) Xi(i ∈ Ik (10)) is greater or equal to the
threshold θk.

Let us assume that the complex layer consists of L formal neurons
FN (wk(l)[nk(l)], θk(l)) (11), where l= 1,…, L. Each of the neuronsFN (wk(l)[nk(l)], θk(l))
(11) of the complex layer works in its own feature subspace Rk(l)[nk(l)] of the dimension
nk(l). This means that the neuron FN (wk(l)[nk(l)], θk(l)) (11) receives only input vectors
x[nk(l)] belonging to the vertexial feature subspace Rk(l)[nk(l)] (x[nk(l)] ∈ Rk[nk(l)]).

An additional assumption is made when designing complex layer of formal neurons
FN (wk(l)

[
nk(l)

]
, θk(l)) (11). Namely, it is assumed that the subsequent feature subsets

Rk(l)
(
nk(l)

)
(10) are disjoint:

(∀l ∈ {1, . . . ,L − 1}) Rk(l)
(
nk(l)

) ∩ Rk(l+1)
(
nk(l+1)

) = ∅ (12)

4 Perceptron Penalty Functions with Zero Threshold

Consider the linear separability inequalities (4) in the following form:

(∃wk) (∀xj ∈ G+
k ) wT

k xj ≥ 1 and

(∀xj ∈ G−
k ) wT

k xj ≤ −1
(13)

The above inequalities result from (4) by setting the threshold θk equal zero (θk = 0).
Iinequalities (13) can be represented in a simplified form:

(∀wk) (∀x′
j) w

T
kxj ≥ 1 (14)

where xj′ is the veature vector xj (2) signed with “ + ” or “–”:

(∀xj ∈ G+
k ) x′

j = xj and (∀xj ∈ G−
k ) x′

j = −xj (15)

Lemma 1: The learning sets G+
k and G−

k (2) composed of linearly independent feature
vectors xj(xj ∈ F[n]) are linearly separable with zero threshold (14) [8].
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Perceptron penalty functions ϕj(w) related to inequalities (14) are defined for each
element xj of the learning sets G+

k and G−
k (2) as:

1 − (x′
j)
Tw if (x′

j)
Tw < 1

(∀xj ∈ G+
k ∪ G−

k ) ϕj(w) =
0 if (x′

j)
Tw ≥ 1

(16)

Theperceptron criterion function�k(w) is defined as the sumof the penalty functions
ϕj(w) (16) [10]:

�k(w) = �jϕj(w) (17)

where the summation (17) follows the indices j from the subset Jk:

Jk = {j : xj ∈ G+
k ∪ G−

k (2)} (18)

The criterion function �k(w) (17) is related to the error correction algorithm, the
basic algorithm in the Perceptron model [6].

The perceptron criterion function �k(w) (17) is convex and piecewise-linear (CPL)
with the global minimum in the optimal vertex w∗

k:

(∃w∗
k) (∀w ∈ Rn) �k(w) ≥ �k

(
w∗
k

) = �∗
k ≥ 0 (19)

The below theorem can be proved [10]:

Theorem 1: Theminimum value�∗
k = �k(w∗

k) (19) of the perceptron criterion function
�k(w) (17) is equal to zero (�∗

k = 0) if and only if the learning sets G+
k and G−

k (2) are
linearly separable (14) with the threshold θk equal zero (θk = 0).

The proof of Lemma 1 and Theorem 1 can be based on the vertexical linear equation
defined in the work [9], and also described later in this text. In this approach, the optimal
vertex w∗

k(l) is calculated as a solution of a well-defined system of m linear equations,

where m is the number of feature vectors xj with dimension n in the learning sets G+
k

and G−
k (2) (m << n).

The regularized criterion function �k,λ(w) is defined as the weighted sum of the
perceptron criterion function �k(w) (17) and the absolute values |wi| of weighs wi [9]:

�k,λ(w) = �k(w) + λ�|wi|
i∈{1,...,n}

(20)

where w = [w1, ..., wn]T and λ ≥ 0 is the cost level.
The optimal vector w∗

k,λ constitutes the global minimum �k,λ(w∗
k,λ) of the CPL

criterion function �k,λ(w) (20) defined on elements xj of the learning sets G+
k and G−

k
(2):

(∃w∗
k,λ) (∀w ∈ Rn) �k,λ(w) ≥ �k(w∗

k,λ) = �∗
k,λ > 0 (21)

The minimum value �∗
k,λ of the criterion function �k(v) (20) is used, among others,

in the relaxed linear separability (RLS)methodof selectingoptimal subsets of genes [11].
It has been shown that the minimization of the regularized criterion function �k,λ(w)

(20) allows for the maximization of the margin δ(wk)L1 (7) in the decision rule (8) [9].
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5 Dual Hyperplanes and Vertices in the Parameter Space

The dual hyperplanes h1j are defined in the parameter space Rn by signed feature vectors
xj′ (15):

(∀xj ∈ G+
k ∪ G−

k (2)) h1j = {w ∈ Rn : (xj′)Tw = 1} (22)

The dual hyperplanes h0j are defined by unit vectors ei [10]:
(
∀i ∈ (1, . . . , n)h0i =

{
w ∈ Rn : eTi w = 0

}
= {

w ∈ Rn : wi = 0
}

(23)

Definition 2: The vertex wk of the rank r in the parameter space Rn (r≤ n) is located at
the intersection of r hyperplanes hj1 (22) and n - r hyperplanes hi0 (23), where i ∈ Ik(r).

The vertex wk of the rank r = mk
+ + mk

− (2) is defined by the below system of n
linear equations:

(∀xj ∈ G+
k ∪ G−

k (2)
) (

x′
j

)T
wk = 1

(∀i(l) ∈ Ik(r)) eTi(l)wk = 0
(24)

where Ik(r) = {i(1), . . . , i(n − r)} is the k-th subset of indices i(l) defining n – r unit
vectors ei with the hyperplanes hi0 (23) passing through the vertex wk.

The linear Eqs. (24) can be given in the matrix form [8]:

Bk(r)wk(r) = 1k(r) (25)

where 1k(r) = [1, . . . , 1, 0, . . . , 0]T is a vector in which the first r components are equal
to one and the remaining n − r components are zero.

The square matrix Bk(r) in Eq. (25) contains r signed vectors x′
j (15) (j = 1,…, r)

and has the following structure [8]:

Bk(r) = [
x′
1, . . . , x

′
r, ei(r+1), . . . , ei(n)

]T (26)

where the symbol ei(l) denotes such unit vector, which forms the l-th row (l = r +
1, . . . , n) of the matrix Bk(r).

The non-singular matrixBk(r) (26) formed by r linearly independent feature vectors
x′
j (17) (j ∈ Jk) from the learning sets (2) and n − r unit vectors ei(i ∈ Ik(r) (24)) is the
basis of the feature space F[n] related to the vertex wk(r) [8]:

wk(r) = Bk(r)
−11k(r) = r1 + . . . + rr (27)

where Bk(r)−1 = [
r1(r), . . . , rr(r), rr+1(r), . . . , rn(r)

]
is the inverse matrix.

Lemma 2: The last n - r components wk,i of the parameter vector (vertex) wk(r) =
[
Wk,1, . . . ,wk,n

]T (27) are equal to zero

(∀l ∈ {r + 1, . . . , n}) wk,l = 0 (29)

The thesis of this lemma results directly from the equations wk(r)Tei = 0 (24).
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6 Minimization of the Perceptron Criterion Function

The global minimum value �∗
k = �k

(
w∗
k

)
(19) of the perceptron criterion function

�k(w) (17) can be found in one of vertices using the basis exchange algorithm [10]. In
this approach, the optimal vertex wk

*, which is the minimum �k
(
W∗

k

)
(19), is reached

after a finite number L of steps l between vertices wk(l) (27) [9]:

wk(0) → wk(1) → . . . . → wk(L) = w∗
k (30)

The sequence of vertices wk(l) (30) is related by the Eq. (27) to the following
sequence of the inverse matrices Bk(l)−1:

Bk(0)
−1 → Bk(1)

−1 → . . . . → Bk(L)−1 (31)

The sequence of verticeswk(l) (30) usually starts with the vertex wk(0)= [0,…, 0]T

related to the identity matrix Bk(0) = In = [e1, . . . , en]T of the dimension n x n [10].
The final vertex wk(l) (30) provides the minimal value �k

(
w∗
k

)
(19) of the perceptron

criterion function �k(w) (17).
During the l-th step one of the unit vectors ei contained in the matrix (basis) Bk(l −

1) = [
x′
1, . . . , x

′
l−1, ei(l), . . . , ei(n)

]T (26) is replaced by the signed vector x′
l (17) and the

matrix Bk(l) = [
x′
1, . . . , x

′
l, ei(l+1), . . . , ei(n)

]T related to the vertex wk(l) (30) appears:

(∀l ∈ {1, . . . ,L}) Bk(l − 1) → Bk(l) (32)

According to the vector Gauss-Jordan transformation, replacing the unit vector
ei(l) with the feature vector x′

l (15) during the l - th step results in the follow-
ing modifications of the columns ri(l − 1) of the inverse matrix Bk(l − 1)−1 =[
r1(l − 1), . . . , rl(l − 1), rl+1(l − 1), . . . , rn(l − 1)

]
[10]:

ri(l)(l) =
(
1/ri(l)(l − 1)Tx′

l

)
ri(l)(l − 1)

and (∀i �= i(l)) ri(l) = ri(l − 1) −
(
ri(l − 1)Tx′

l

)
ri(l)(l)

= ri(l − 1) −
(
ri(l − 1)Tx′

l/ri(l)(l − 1)Tx′
l

)
ri(l)(l − 1)

(33)

where i(l) is the index of the unit vector ei(l) leaving the basis Bk(l − 1) (26) during the
l-th step.

The design procedure can ensure that the perceptron criterion function �k(W) (17)
decreases in successive vertices wk(l) (30) [10]:

�k(wk(0)) > �k(wk(1)) > . . . > �k(wk(L)) (34)

The exit criterion allows to choose such a unit vector ei(l) leaving the basis Bk(l)
(28), that the condition (34) is satisfied at the vertex wk(l).
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7 Selected Properties of Optimal Vertices

The optimal vertexw∗
k constituting theminimum�k

(
w∗
k

)
(19) of the perceptron criterion

function �k(w) (17) can be obtained as end vertex wk(L) in the sequence (30) associ-
ated with the sequence (31) of the inverse matrices Bk(l)−1. The vector Gauss-Jordan
transformation (33) allows to compute efficiently the colums ri(l) of the inverse matrix
Bk(l)−1 on the basis of the colums ri(l − 1) of the inverse matrix Bk(l − 1)−1.

During the l-th step (33) the i(l)-th unit vector ei(l) is removed from the basis Bk(l−
1) = [

x′
1, . . . , x

′
l−1, ei(l),....ei(n)

]T and the signed feature vector x′
l (15) is introduced into

this basis. The transformation (33) related to the introduction of the vector x′
l (15) to the

basis Bk(l − 1) cannot be realized due to division by zero if the following condition of
collinearity is met [10]:

ri(l)(l − 1)Tx′
l = 0 (35)

The new feature vector x′
l (15) is a linear combination of vectors xj′ already contained

in the basis Bk(l − 1) = [
x′
1, . . . , x

′
l−1, ei(l), . . . , ei(n)

]T (28) if the following equation
holds:

x′
l = α1x′

1 + . . . + αl−1x′
l−1 (36)

where (∀i ∈ {1, . . . , l − 1})αi ∈ R1.

Lemma 3: Such a feature vector x′
l (15) which satisfies the condition of collinearity (35),

is a linear combination (36) of the vectors x′
j already contained in the basis Bk(l − 1) =

[
x′
1, . . . , x

′
l−1, ei(l),....,, ei(n)

]T.

The proof of this lemma can be based on the inversion equation Bk(l − 1) Bk(l −
1)−1 = In of the matrix Bk(l − 1). The Eq. (35) holds because:

(∀i ∈ {1, . . . , l − 1}) ri(l − 1)Tx′
l = 0 (37)

It can also be shown that the condition of collinearity (35)means a linear dependendce
(36) of the feature vector x′

l (15) on the vectors xj′ contained in the basis Bk(l − 1) =
[
x′
1, . . . , x

′
l−1, ei(l), . . . , ei(n)

]T (28).

Lemma 4: The vector rl(l − 1) forming the l-th column of the inverse matrix Bk(l −
1)−1 = [

r1(l − 1), . . . , rl−1(l − 1), rl(l − 1), . . . , rn(l − 1)
]
during the (l - 1) - th step

has the following structure:

rl(l − 1) = [
rl,1(l − 1), . . . , rl,l−1(l − 1), 0, . . . , 0, 1, 0, . . . , 0

]T (38)

The last n − 1 + 1 components rl,i(l − 1) of the vector rl,i(l − 1) (38) are equal to
zero or one. The l-th component rl,l(l) is equal to one

(
rl,l(l) = 1

)
.

The proof of this lemma can also be based on the inversion equation.
The condition of collinearity (35) can be relaxed on the basis of the vector rl(l − 1)

(38) omitting components rl,i(l − 1) equal to zero [11]. The related components xl,i′ of
the vector x′

l (15) are also omitted.
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8 Concluding Remarks

The relaxed collinearity condition (35) can be used to design complex layers of formal
neurons FN(wk[nk], θk) (11), for example to find and exclude such features X i which
are linearly dependent [10].

Complex layers can be designed on the basis of the data set C (1) consisting of a
small number m of high-dimensional (m << n) feature vectors xj (1) by minimizing
the perceptron criterion function �k(w) (17) or the criterion function �k,λ(w) (20) with
regularization [10].

An important property of complex layers is that each neuron FN (wk[nk], θk) (11)
in the layer receives input vectors xj[nk] from its own channel. In other words, each
neuron operates in a separate feature subspace Rk[nk] (10).

The described methodology of designing complex layers enables the exploration
of large, multi-dimensional data sets with a heterogeneous structure (big data). Such
a property is based on the decomposition of feature space F[n] into separate feature
subspaces Rk[nk] (signal channels) (11) linked to individual neurons of the layer. The
described method of decomposition and reduction of high-dimensional feature spaces
F[n] may also be useful in developing new, more effective deep learning procedures.

Acknowledgments. The presented study was supported by the grant WZ/WI-IIT/3/2020 from
the Bialystok University of Technology and funded from the resources for research by the Polish
Ministry of Science and Higher Education.
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Abstract. Decision Forests have attracted the academic community’s
interest mainly due to their simplicity and transparency. This paper pro-
poses two novel decision forest building techniques, called Maximal Infor-
mation Coefficient Forest (MICF) and Pearson’s Correlation Coefficient
Forest (PCCF). The proposed new algorithms use Pearson’s Correlation
Coefficient (PCC) and Maximal Information Coefficient (MIC) as extra
measures of the classification capacity score of each feature. Using those
approaches, we improve the picking of the most convenient feature at
each splitting node, the feature with the greatest Gain Ratio. We conduct
experiments on 12 datasets that are available in the publicly accessible
UCI machine learning repository. Our experimental results indicate that
the proposed methods have the best average ensemble accuracy rank of
1.3 (for MICF) and 3.0 (for PCCF), compared to their closest competitor,
Random Forest (RF), which has an average rank of 4.3. Additionally, the
results from Friedman and Bonferroni-Dunn tests indicate statistically
significant improvement.

Keywords: Decision forests · Tree-based learning · Ensemble
learning · Classification · Machine learning

1 Introduction

Technological development has altered our approach to data management
throughout the years. Data mining is currently being used for diverse datasets,
aiming to discover hidden patterns and generate suitable predictions and/or
descriptions. Data mining is set of techniques that extract hidden information
such as patterns, correlations, or rules from massive data. Classification is highly
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essential in the field of data mining for both predicting the ‘class’ of an unknown
instance and identifying trends in data. Furthermore, machines are increasingly
being held accountable for societal decisions and various domains such as injus-
tice [24], medicine [20], policing [19], and education [8,9], while the algorithmic
transparency is an undeniable characteristic, they must have. Algorithms func-
tioning as black boxes produce results and decisions that humans are eager to
follow since they are proven to be helpful. Errors do exist and will continue to
occur regardless of how much the underlying systems grow as more data becomes
accessible to them, and more sophisticated algorithms learn from it. This aware-
ness has given rise to either focusing more on more transparent algorithms such
as decision trees and decision forests or trying to transparentise classical black-
box algorithms such as Neural Networks.

Decision forests are a popular classification method, as they can learn the pat-
terns in a dataset in an easy way that closely matches human thinking. Impor-
tantly, unlike other classifiers (e.g., neural networks, k-nearest neighbours, and
support vector machines), decision forests can train on both categorical and
numerical data [18], and generate human-interpretable knowledge [22], which
enable them to increase their application domains further. Decision forests are con-
sidered among the fastestmachine learning algorithms in terms of training, testing,
and predicting. It comes as no surprise that improving classification accuracy on
unknown data within the restrictions given by the training data is a desirable goal.

In this paper, we propose two novel decision forest building methods, i.e., the
Maximal Information Coefficient Forest (MICF) and the Pearson’s Correlation
Coefficient Forest (PCCF). We aim to achieve a higher classification accuracy,
than other famous variants of the decision forest algorithms, including Bagging,
Random Subspace, Random Forest and Random Features Weights.

The rest of the present paper is organised as follows: Sect. 2 describes the
related work. Our novel approach and the new algorithm are denoted in Sect. 3.
Experimental results are drawn in Sect. 4 with a conclusion in Sect. 5.

2 Related Work

Many forest building methods have been proposed to produce more accurate
and diversified trees by distinguishing the training dataset in various ways. As
follows, we will examine several well-known algorithms.

Bagging: In Bagging [3], the dataset is randomly divided into a test set T and
a learning set L. A new learning set L′ is created randomly from the original
learning set L, containing the same number of samples. Consequently, some sam-
ples in L may be selected several times and others may not be selected at all.
This method of generating a new learning set is called bootstrap sampling. In
bagging, bootstrap sampling is used to generate number (|T |) of bootstrap sam-
ples L1, L2, L3, ...., Lr. Afterwards, a decision tree algorithm uses each bootstrap
sample Li(i = 1, 2, 3..., |T |) to build (|T |) number of trees for the forest.
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Random Subspace: The Random Subspace method [14] is also called attribute
bagging and feature bagging. It attempts to reduce the correlation between indi-
vidual weak learners in an ensemble by training them on random selection of a
subset D′ of features from the entire attribute space D. Features in D′ can be
drawn at both node level and tree level. When drawn at the tree level, features
in D′ continue to be the same for the tree, whereas when drawn at the node
level, features D′ vary from one node to another in a tree. Through any known
decision tree algorithms such as CART [5], the best attribute in D′ is calculated
and determined to be the best splitting feature for the corresponding node.

Random Feature Weights: Random Feature Weights [17] is a tree ensemble con-
struction method, where diversity is introduced into each individual tree using
a random weight from a uniform distribution associated with each attribute.
A weight stays the same for every node of a tree, while each tree acquires a
different weight. In order to determine the best splitting feature at each node,
merit values are calculated for each feature by multiplying their classification
capacities such as Gini Index [5] by their respective random weights. Finally, the
attribute with the highest excellence value is chosen as the splitting feature.

Random Forest [4] (RF): RF is considered to be among the state-of-the-art deci-
sion forest building algorithms, as it simply combines Random Subspace and Bag-
ging algorithms where, in its simplest form, features D′ are randomly selected at
the node level. Despite all the variants of decision forests algorithms,RF is themost
popular among the research community mainly because of its publicly availability
through the sci-kit learn Python library1. Moreover, [6] compared 179 classifica-
tion algorithms emerging from 17 learning families over 121 datasets where it con-
cluded that forests, and specifically random forests, tend to outperform the rest of
the classification algorithms. Those results indicate that any enhancement beyond
Random Forest will have a substantial impact on its broad application scope.

Parallel Random Forest (PRF): PRF [16] is a modification of RF to be more suit-
able for ‘big data’. A PRF algorithm is optimised using the MIC optimisation tech-
nique as a single splitting criterion. Firstly, each feature correlation capacity score
is calculated through MIC, and then, according to the level of score, the features
are divided into three groups: ‘low’, ‘medium’, and ‘high’. Features fell in the ‘low’
group are discarded, and thus a new feature subset (D′) with all the features from
the ‘medium’ and ‘high’ groups is created. For each node, the splitting feature is
chosen randomly from D′. A similar approach but for regression problems utilises
MIC with information gain [13] as well, and it discards the low correlation features
similarly to the PRF algorithm. Interestingly, they employ the roulette method so
as to keep only the features with a high correlation capacity score.

Therefore, intending to provide an enhanced generic decision forest building
technique, this study considers satisfying two splitting criteria (MIC and Gain
Ratio, PCC and Gain Ratio) focusing on classification tasks as well as taking

1 https://scikit-learn.org.

https://scikit-learn.org


Forest MICF and PCCF 93

into consideration low correlation features as hidden patterns that may still exist.
Moreover, in contrast to the latest trend of improving decision forest algorithms
in a problem specific manner, we present two generic methods, which improves
the overall predictive accuracy.

In general, our experimental result shows that MICF and PCCF are more
balanced and accurate decision forest algorithms. In brief, we itemise the novel
contributions of both algorithms as follows:

– Proposing a weight assignment strategy that works in favour of the features
with the highest classification capacity, but it does not discard features with
lower classification capacity.

– Proposing a double metric strategy (Gain Ratio and MIC, Gain Ratio and
PCC), which determines the best feature and threshold on each node on
classification problems.

– Proposing a weight assignment strategy that helps maintain the diversity
among the individual decision trees.

3 Proposed Methods

We propose two methods that create subsets from the feature space of the whole
original dataset using correlation capacity scores(MIC and PCC), resulting in a
higher predictive accuracy. In this paper, to the best of our knowledge, it is the
first time the MIC and Gain Ratio (for MICF) and the PCC and Gain Ratio
(for PCCF) are combined as splitting criteria (impurity measure) to improve
the overall accuracy of a decision forest classifier algorithm. Next, we present
the splitting criteria and learning algorithms, including the two main functions
for MICF and PCCF methods. The other steps of the algorithms are identical
to existing decision tree building algorithms such as CART.

3.1 Splitting Criteria

Gain Ratio. The normalisation of the Information gain of an attribute against
how much entropy that attribute has. Entropy (see Eq. 1, pi is the probability
of a data point in the subset of Di of a dataset D) can be described as the
degree of uncertainty or a measure of purity, and it is bounded between 0 and 1.
The higher entropy the higher diversion in data, while our aim is to determine a
split to create a purer distribution (close to 0) of class values in the succeeding
partitions than the original dataset D.

Entropy plays an important role in estimating the Information Gain, which is
used in ID3(the preliminary Decision Tree algorithm) [21] to determine the best
features that provide as much information about a class as possible. The aim is
to decrease the level of entropy, as it begins with the root node and progresses
to the leaf nodes by computing the difference in entropy before and after the
split (see Eq. 2, where Entropyt−1 is the entropy before splitting and Entropyt
is the entropy after splitting).
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Gain Ratio normalises Information Gain of a feature based on the amount
of entropy it has (see Eq. 3). As shown in Eq. 3, when entropy is low, the Gain
Ratio will be high, and vice versa.

Entropy(P ) = −
n∑

i=1

pi log2(pi) (1)

InformationGain = Entropyt−1 − Entropyt (2)

GainRatio = Information Gain /Entropy (3)

Pearson’s Correlation Coefficient. In statistics, Pearson’s correlation coef-
ficient is used to measure the statistical relationship or correlation among vari-
ables. It is based on the covariance matrix of the data to determine the strength
of the connection between two vectors. Pearson’s correlation coefficient between
two vectors ai and aj is:

P (ai, aj) =
cov(ai, aj)√

var(ai) × var(aj)
(4)

where cov(ai,aj) is the covariance, var(ai) is the variance of ai and var(aj) is the
variance of aj .

Maximal Information Coefficient. Maximal Information Coefficient (MIC)
is a powerful approach to measuring the correlation between two features. MIC
can deal with the correlation analysis of linear, nonlinear, and potential non-
functional relationships in large datasets. The fundamental idea of MIC is that
if a specific relationship exists between two features, a grid can be drawn on the
scatter-plot to partition them. Then, it will be able to encapsulate the mutual
information of the two features according to the approximate probability den-
sity distribution in the grid. MIC is calculated based on mutual information
and the grid partition method. Given two independent features with n sam-
ples, x = {xi|i = 1..., n} and the target variable y = {yi|1, .., n}, a finite set
D = (xi, yi|i = 1, .., n) of ordered pairs can be obtained. Given a grid G, we can
partition the xi values of D into x bins and the yi values of D into y bins. MIC
is obtained according to the following equations:

MI(D,x, y) = max MI(D|G) (5)

where MI(D,x, y) denotes the maximum mutual information of D over grids G.
D|G represents the distribution induced by the data points in D on the cells of
grid G. The characteristic matrix of D is defined by the following equation:

M(D)xy =
MI(D,x, y)
log min{x, y} (6)
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The MIC of D with grid size less than B(n) is defined as:

MIC(D)xy = max
xy<B(n)

{M(D)xy} (7)

where B(n) is the upper limit of the mesh division xy. In general, B(n) = n0.6.
MIC is normalised into a range [0, 1]. A higher MIC value indicates a stronger
correlation between the variables/features.

First, we use the training dataset to calculate the MIC (in the case of MICF)
and PCC (in the case of PCCF) (see Table 1) between x and y. We then normalise
those values between 0 and 1, to create an interval for the features space [0, 1].
Features with stronger correlation (Linear correlation for PCCF; both linear
and nonlinear for MICF) given the target variable having more possibilities to
be selected uniformly.

When the tree grows, at each split node, we draw random uniform num-
bers between [0, 1] equivalent to the number of features. Then, we remove the
duplicated values, and we end up with a sub-sample of the training dataset.
Thereafter, we calculate the Gain Ratio of the new feature space to determine
the best split for the current node. In this step, we apply any existing decision
tree algorithm such as CART. In our study, we examine the effectiveness of this
particular method, specifically on classification problems. To better explain the
algorithms and the functions, we explain the key functions below.

3.2 Function FeaturesImportance

Let D be the training dataset with d original features. Thus, the original feature
space Ao = A1, A2, ..Ad. In this function, we use the training dataset D to
calculate whether a feature d has a positive, neutral, or negative correlation,
given the target feature either with PCC or MIC depending on the algorithm we
test (see Table 4). At this point, in the case of PCC, we also calculate its absolute
values, which range in [−1, 1]. Then, we normalise them (see Eq. 5) to be 0 to
1, so as to create an interval for the features space in the range of [0, 1] (see
Table 1). Features d with stronger correlation (linear correlation for the PCC;
linear and nonlinear for MIC) given the target variable have more possibilities
to be selected uniformly. Features Importance function returns an array with
the features intervals (see Table 1).

3.3 Function growTree

The following steps happen every time we grow the tree until the stopping cri-
teria are met. Providing the algorithm with the stopping criteria is crucial on
individual decision trees and consequently on decision forests. On the one hand,
the data are generally over-fitted if we continue to expand the tree until each
leaf node equates to the highest Gain Ratio; and on the other hand, if split-
ting is halted too soon, the error on the training data is insufficiently large, and
thus the performance suffers as a result of bias. As such, avoiding over-fitting
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and under-fitting is crucial. In our case, we deployed the maximum depth stop-
ping criterion and the numbers of labels criterion, where we check if the current
node is homogeneous. We draw random uniform numbers equal to the number
of features between 0 and 1, and we store the indexes of the d′ features intervals
they fall within (see Table 4), so we end up with an array containing less of the
original feature space with D′ ⊆ D. It is noteworthy that, at this point, we do
not allow duplicate feature indexes as it does not make any difference in the
final result. Then, we calculate the Gain Ratio of the new dataset feature space
D′ to determine the best split for the current node. This step, may apply any
existing decision tree algorithm such as CART on the reduced space dataset D′.
This particular decision tree can be used for classification based on the training
dataset and prediction based on the testing dataset, which contains unlabelled
samples. Using two splitting criteria (PCC and Gain Ratio or MIC and Gain
Ratio), we promote the features with the best predictive ability without heavily
biasing the algorithm (see Algorithm 1).

Table 1. Pearson’s correlation coefficient example

Feature ID Scores Absolute values Normalised scores Thresholds

0 –0.255 0.255 0.322 0.322

1 0.075 0.075 0.094 0.417

2 0.143 0.143 0.180 0.597

3 –0.282 0.282 0.356 0.954

4 –0.035 0.035 0.045 1.000

4 Experimental Setup and Results

This section presents the proposed methods’ experimental results in predictive
accuracy and running time. The following results were obtained on an Intel(R)
Core(TM) i7-10875H CPU @ 2.30 GHz (16 CPUs) processor, with 64 GB RAM
and 16 MB CACHE memory.

In order to demonstrate the accuracy improvement of MICF and PCCF, we
experiment on 12 widely known datasets that are publicly available through UCI
Machine Learning Repository listed in Table 2. In particular, the median average
number of records used is 354, with the lowest having 27 records and the largest
4,177. The median average number of features used is 9, with the lowest having
4 features and the largest 279.

For testing purposes, we generate 100 trees for each contending decision forest
algorithm since the number is considered to be large enough to ensure conver-
gence of the ensemble effect [2]. We apply majority voting to aggregate results for
the forests. Moreover, we test the model with 10-Fold Cross-Validation to ensure
that every observation from the original dataset has the possibility of appear-
ing in the training and test sets. We perform hyperparameter optimization for
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each dataset using Grid Search and Random Search techniques to ensure the
best possible accuracies for each case. All the prediction accuracies reported in
this paper are in percentage, and the best results are presented in bold-face. As
MICF and PCCF are designed for parallel forest algorithms, for a fair evaluation,
we compare them with other parallel forest algorithms, including Bagging (BG),
Random Subspace (RS), Random Forest (RF), and two variants of Random Fea-
tures Weights (RFW) with p = 1 and p = 2. Moreover, for consistency with RF,
CART is utilised as the tree induction algorithm, and Gini Index is employed
as the measure of classification capacity for every forest algorithm mentioned
above. Finally, both versions of RFW (P = 2 and p = 1) are applied on boot-
strap samples, as a better performance can be observed using this particular
technique [17].

Generally, an essential aim for forest algorithms is to improve the Ensemble
Accuracy (EA) [1]. As such, every single contending forest algorithm described
in this paper aims to increase EA as their principal performance metric. Metrics
such as Precision and Recall [23] are mainly and primarily used on imbalanced
datasets, therefore evaluating PCCF and MICF as general purpose forest algo-
rithms, we have not involved any imbalance dataset in our experimental evalua-
tion. Table 3 presents the results on EA for all the contending algorithms while
all datasets are taken into consideration. Results are presented in the shape of
EA Rank, where EA is the Ensemble Accuracy in percentage for the algorithm in

Algorithm 1: Features Importance and Grow tree functions in algorithmic
notation
Input: Training Dataset D with original attribute space Ao = {A1,A2,...,Ad},

number of features of the new Dataset D’ where D’features < D
features(NumFeat)

Output: A Decision Tree(T)
Function Features Importance(D):

FeaturesImportance = Calculate the features importance(MIC or

PCC) of Training Dataset D

FeaturesImportanceInterval = Create a features importance

interval from 0 to 1 such as

(F1 = 0.1, F2 = 0.3, F3 = 0.55, ..., Fn = 1)
return FeaturesImportanceInterval

Function Grow Tree(FeaturesImportanceInterval,NumFeat):
for i until stopping criteria met do

UniformDraw = draw uniform numbers between 0 and 1

FeaturesIndex = get the features index using the uniform numbers

using UniformDraw

D’ = generate the dataset using the column index using

FeaturesIndex

T = growTree using the D’

End for
return T
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comparison, and EA Rank is the Ensemble Accuracy Rank for the corresponding
algorithm to other contending algorithms according to the rank-ordering used
in Friedman Test [12]. Amongst the 7 contending algorithms, the one with the
highest EA is assigned an EA Rank of 1, the second highest as EA Rank of 2,
and so on. Hence, the lower the EA Rank, the better the EA. In the case of a
tie, we average the two or three or the number of algorithms having equal EA.
Thus, for example, if two algorithms become the worst in EA, their EA Rank is
calculated by 6+7

2 = 6.5. The last row of Table 3 shows the average EA and the
average EA Rank in parentheses.

In Table 3, we present the EA percentage of the contenting algorithms for all
12 datasets considered. From Table 3 we observe that PCCF provides the best
EA on 1 dataset with an EA Rank of 3.0, and MICF obtains the best EA on
11 datasets out of 12 with an EA Rank of 1.3. BG does not get any first place
in an EA, resulting in an EA Rank of 5.4. RS obtains the best EA on 1 dataset
with an EA Rank of 4.2. RF does not manage to get any first place in an EA
resulting in an EA Rank of 4.3. RFWp = 1 obtains higher EA on 1 dataset
with EA Rank of 4.3. Finally, RFWp = 2 does not manage to get any first place
in an EA, resulting in an EA Rank of 5.5. The last row of Table 3 shows that
MICF achieves the best overall average performance based in an EA and EA
Rank compared to all other contending algorithms.

Table 2. Datasets specifications

Dataset name Number of records Number of features

Abalone (AB) 4177 8

Arrythma (AR) 452 279

Balance scale (BS) 625 4

Dermatology (DER) 358 34

Glass identification (GI) 214 9

Ionosphere (ION) 351 34

Liver disorders (LD) 345 6

Lung cancer (LC) 27 56

Pima indians diabetes (PID) 768 8

SCADI (SCD) 206 70

Teaching assistant evaluation (TAE) 1515 5

Yeast (YST) 1484 9
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Table 3. Ensemble Accuracy (EA) in percentage with Ensemble Accuracy Rank (EA
Rank).

Dataset PCCF MICF BG RS RF RFW p=1 RFW p=2

AB 21.3 (7.0) 27.5 (1.0) 25.1 (2.5) 25.0 (4.5) 25.0 (4.5) 25.1 (2.5) 23.7 (6.0)

AR 81.2 (7.0) 82.8 (4.0) 81.6 (6.0) 83.7 (1.0) 83.0 (2.5) 82.6 (5.0) 83.0 (2.5)

BS 84.2 (1.5) 84.2 (1.5) 77.5 (6.0) 72.2 (7.0) 80.5 (5.0) 81.1 (4.0) 82.5 (3.0)

DER 96.0 (2.0) 96.7 (1.0) 88.5 (4.0) 89.0 (3.0) 87.0 (7.0) 87.5 (5.0) 87.3 (6.0)

GI 76.7 (2.0) 77.2 (1.0) 74.1 (3.5) 73.2 (5.5) 74.1(3.5) 73.2 (5.5) 72.2 (7.0)

ION 93.7 (3.0) 94.5 (1.0) 92.6 (7.0) 93.4 (5.0) 93.7 (3.0) 93.7 (3.0) 92.9 (6.0)

LD 72.1 (2.0) 73.6 (1.0) 68.7 (6.0) 69.8 (5.0) 71.5 (3.0) 71.0 (4.0) 67.3 (7.0)

LC 76.6 (2.0) 84.4 (1.0) 63.9 (7.0) 68.9 (4.5) 68.9 (4.5) 68.9 (4.5) 68.9 (4.5)

PID 76.2 (2.5) 77.9 (1.0) 75.6 (6.0) 76.2 (2.5) 75.9 (4.0) 75.6 (6.0) 75.6 (6.0)

SCD 83.7 (3.0) 84.3 (1.5) 80.0 (6.5) 82.9 (4.5) 80.0 (6.5) 84.3 (1.5) 82.9 (4.5)

TAE 60.6 (2.0) 62.4 (1.0) 53.6 (7.0) 59.5 (3.0) 56.3 (4.0) 54.3 (5.0) 54.2 (6.0)

YST 60.3 (2.0) 60.9 (1.0) 60.5 (3.0) 58.6 (5.0) 59.5 (4.0) 57.9 (6.0) 48.9 (7.0)

Average 73.9 (3.0) 75.7 (1.3) 70.1 (5.4) 71.0 (4.2) 71.4 (4.3) 71.3 (4.3) 69.9 (5.5)

In the following, we further examine the enhancement we achieved by per-
forming statistical significance tests as recommended in [7]. First, we perform
the Friedman test [11], which is a popular non-parametric test for examining var-
ious classifiers on multiple datasets. Friedman statistic is distributed according
to Eq. 8, where k is the number of algorithms, and N is the number of datasets.
As a generic rule, k > 5 and N > 10 must be hold. In Eq. 9, let rji be the rank
of the jth of k algorithms on the ith of N datasets. [15] suggests that Eq. 8 is
undesirably conservative, and it derives a better statistical measure, as shown
in Eq. 10:

x2
F =

N

nk(k + 1)

k∑

j=1

R2
j − 3n(k + 1) (8)

Rj =
1
N

∑

i

rji (9)

Ff =
(N − 1)x2

F

N(k − 1) − x2
F

(10)

With 7 algorithms and 14 datasets, Ff is distributed according to the F
distribution with 66 degrees of freedom, which is calculated using Eq. 11. The
critical value of F (6, 66) for α = 0.05 is 2.24 and our value of Ff is calculated
to be 8.7. As the critical value is lower than our Ff value, the null hypothesis is
rejected, and so we can proceed with a post-hoc test, i.e., the Bonferroni-Dunn
test [10] for detecting pairwise differences of EA Ranks between the controlled
classifiers (MICF and PCCF) and the rest of the contending classifiers.



100 E. Drousiotis et al.

FD = (k − 1)(N − 1) (11)

For the Bonferonni-Dunn test, we calculate the critical difference using Eq. 12
to compare our first novel algorithm (MICF) with the rest of the contending algo-
rithms. In Eq. 12, qa represents the bold number in the last row of Table 3 in
brackets (EA Rank). The Critical Difference(CD) is calculated to be 1.14. At this
point we observe that CD remains lower than the pairwise difference of EA Ranks
between the classifier MICF and the other contending classifiers ( MICF vs BG :
4.1, MICF vs RS : 2.9, MICF vs RF : 3.0, MICF vs RFWp = 1 :
3.0, MICF vs RFWp = 3 : 4.2). This indicates that MICF outperforms the rest
classifiers in terms or EA, in a statistically significant manner.

Now, we repeat the same test for our second novel algorithm (PCCF) with the
rest of the contending classifiers. The critical difference is calculated to be 1 and as
before we observe that CD remains lower than the pairwise difference of EA Ranks
between classifier PCCF and the other contending algorithms ( PCCF vs BG :
2.4, PCCF vs RS : 1.2, PCCF vs RF : 1.3, PCCF vs RFWp = 1 :
1.3, PCCF vs RFWp = 3 : 2.5). This indicates that the performance improve-
ment in PCCF in terms of EA is statistically significant.

CD = qa

√
k(k + 1)

6N
(12)

Table 4 contains correlation scores, which indicate the main differences
between our two novel algorithms - MICF and PCCF. The results suggest that
MIC can identify more accurately the correlation between the features and the
target, as well as take into consideration the uncertainty, which results in a more
accurate algorithm. Both MICF and PCCF algorithms outperform their com-
petitors by achieving 4.4 and 2.6% more accurate results, respectively, compared
with the third highest accurate algorithm, RF.

Table 4. Comparison between MIC and PCC scores.(left-PCC, right-MIC)

Feature space AB TAE YST GI LD BS

1 0.009 0.071 0.323 0.079 0.071 0.208 0.056 0.132 0.166 0.081 0.242 0.242

2 0.155 0.204 0.417 0.275 0.191 0.389 0.227 0.252 0.344 0.330 0.485 0.485

3 0.306 0.341 0.598 0.559 0.221 0.515 0.481 0.428 0.408 0.505 0.742 0.742

4 0.452 0.471 0.955 0.647 0.357 0.764 0.685 0.552 0.694 0.642 1.000 1.000

5 0.593 0.604 1.000 1.000 0.499 0.857 0.736 0.626 0.960 0.887

6 0.704 0.723 0.570 0.871 0.740 0.741 1.000 1.000

7 0.836 0.855 0.174 0.903 0.740 0.825

8 1.000 1.000 0.724 0.928 0.936 0.961

9 1.000 1.000 1.000 1.000
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5 Conclusion

In this paper, we have proposed two novel decision forest building algorithms
- Maximal Information Coefficient Forest (MICF ) and Pearson’s Correlation
Coefficient Forest (PCCF ). They combine Gain Ratio with PCC and MIC,
which are used to determine the best feature on each splitting node. The larger
the correlation score (either MIC or PCC), the greater the possibility of ending
up on the newly created dataset D′ at each splitting node. To the best of our
knowledge, our work of combining Gain Ratio with MIC or PCC in classification
problems is the first of its kind and can help improve the accuracy in classifi-
cation problems significantly. The experimental results have shown that MICF
performs significantly better in Ensemble Accuracy than some highly esteemed
existing algorithms, including Bagging, Random Subspace, Random Forest, Ran-
dom Feature Weight, and the newly proposed PCCF algorithm. Moreover, the
generation of individual decision trees in both MICF and PCCF is in no way
dependent on any previous tree(s) and, therefore, can be generated in parallel.
Moreover, considering the consistent performance of both MICF and PCCF ,
makes them a great fit within the big data context and thus enabling it to be
used by non-technical individuals.

For future work, we aim to test our algorithms against imbalanced datasets
and compare them with probabilistic trees, which are known to capture the
uncertainty in the data effectively.
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Abstract. Accurately forecasting project end dates is an incredibly
valuable and equally challenging task. In recent years it has gained added
attention from the machine learning community. However, state of the art
methods both in academia and in industry still rely on expert opinions
and Monte-Carlo simulations. In this paper, we formulate the problem
of activity duration forecasting as a classification task using a domain
specific binning strategy. Our experiments on a data set of real construc-
tion projects suggest that our proposed method offers several orders of
magnitude improvement over more traditional approaches where activity
duration forecasting is treated as a regression task. Our results suggest
that posing the forecasting problem as a classification task with carefully
designed classes is crucial for high quality forecasts both at an activity
and a project levels.

Keywords: Forecasting · Project management · Neural network
applications

1 Introduction

Many economic endeavours require undertaking complex projects which can only
be completed over long time spans [10]. In the planning phase, projects are allo-
cated budgets which rely on the completion of the project in a similar manner
to which it was planned. If a project’s completion is delayed, this can lead to
ballooning costs, which can have a major negative impact on the project stake-
holders including failure to complete the project [9]. To mitigate the risk of delay,
stakeholders of the project require an accurate time estimate of project duration.
With this knowledge, stakeholders can assess the risk of delay and even execute
mitigation actions to reduce this risk.

While it is impossible to estimate the duration of a complex project exactly
[6], it is possible to determine which durations are more likely than others, i.e.
in almost all cases a project will not take one hundred times longer to complete
than planned. Consequently, it is more useful to stakeholders to forecast the
duration of a project rather than to predict it.
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Each complex project is unique, but can share many similarities with past
projects. Using a data-driven modelling approach and details from past projects,
it is possible to accurately forecast a project’s duration providing stakeholders
with useful information for mitigating the risk of delay.

Complex projects involve the completion of numerous tasks. Each task in
the project has a state with respect to the current time which could be not
started, in progress or completed. In a project, the state of a task can depend
not only on the current time, but also on the state of many other tasks within
the project i.e. the facade structure must be completed before facade window
installation can begin. It is possible to model these state dependencies using
a directed acyclic graph (DAG) [5], where nodes represent activities and links
represent dependency constraints.

If provided with a duration forecast for each task in the project and an
estimated start date for the project, it is possible to estimate the end date, and
thus duration, of the entire project using an uncertainty propagation method
such as Monte Carlo sampling [32]. This simplifies the problem of forecasting a
project’s duration to forecasting the durations of tasks in the project. In addition,
past projects are more likely to contain similar tasks to a future project than
they are to mimic the future project exactly. Consequently, past project data
can provide more useful information for forecasting at a task level than a project
level.

Taking the approach described above to project duration forecasting, the
quality of the forecasts at a task-level will determine the quality of the forecast
of project duration. Neural networks have achieved state-of-the-art performance
in a number of forecasting tasks (also known as uncertainty estimation) both by
combining results from ensembles of models [11,23,28] and applying post-hoc
calibration [15].

In this paper we perform experiments to determine which training objectives
and inductive biases applied to neural networks yield the most accurate task-
level forecasts on project data. We perform experiments using a data set of
construction projects. Our results suggest that a neural network that outputs a
histogram distribution over task duration trained with a classification objective
and using a domain specific binning strategy to define the classes leads to the
most accurate forecasts.

The contributions of our work are threefold;

– To the best of our knowledge this is the first machine learning model used to
forecast project activity durations.

– A novel problem formulation which poses task duration forecasting as a clas-
sification problem.

– A novel binning strategy incorporating domain knowledge about how humans
complete tasks which leads to higher quality forecasts when used as an induc-
tive bias to train models on project data.

Notation. We follow standard notation practices using bold lower case letters
for vectors and bold upper case letters for matrices. For scalars we use both
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lower and upper case non-bold letters. Subscripts on vectors and matrices refer
to its elements. We use superscripts to indicate indices for vectors and matrices.

2 Related Work

Forecasting is an age old problem. Early on, humans used empirical observa-
tions to forecast the weather, but now we apply complex mathematical models
to forecast whether multi-billion dollar mega projects will finish on time and on
budget [33]. Currently, forecasting is a very broad field of research with applica-
tions in environment sciences [21], economics, supply chain management, project
controls and many other industries [13,31]. For a comprehensive review of fore-
casting theory and practice we refer the reader to [29]. In this paper our focus
is on forecasting time durations of activities in project schedules.

While there has been some recent work on using machine learning algorithms
to forecast project durations using handcrafted features [7,24,25] (also see refer-
ence therein), traditionally task duration forecasting has been implemented using
a blanket distribution for all tasks [8] or with added expert opinion [16,26,27]
for individual activities. The latter, more specialised solution is, of course, more
accurate, however, it is based on human inputs and inherently suffers from var-
ious biases [2].

In a recent work [17] proposes a machine learning algorithm to learn activity
types in construction projects using a manually labelled database of activities.
This work is closest to ours in the literature, however, it does not address the
much more challenging problem of forecasting activity durations.

Our proposed method is based on the observation that task duration forecasts
are inherently heavy-tailed [16] and that Gaussian distributions are not suitable
to represent such distributions [35]. Hence, we pose task duration forecasting as a
multi-class classification problem to train neural networks to output a histogram
distribution describing the uncertainty in tasks’ durations [3].

Since the majority of all activities in a project complete on time, even if
the project suffers from large delays1, splitting the activity duration range into
uniform intervals for a histogram distribution creates a large class imbalance.
We mitigate this well-known problem [15,19] by proposing equibins - a novel
binning strategy which calculates a more balanced class distribution than using
uniform intervals. We also use domain knowledge about how humans accomplish
tasks to further improve our models.

3 Problem Formulation

Each task in a project has an associated feature vector x and duration label
y. We address the problem of learning the parameters θ of a neural network

1 2.977 million of 5.693 million (or 52.3%) activities in our database have completed
exactly on time.
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fθ : x → P (Y) that maps a task’s feature vector to a probability distribution
over its duration with the objective;

θ∗ = arg max
θ

fθ (x)
∣
∣
∣
∣
Y=y

(1)

The objective is to maximise the likelihood of the neural network’s output
distribution evaluated at y. We assume that each task also has a planned duration
yplan and define a new quantity, completion ratio as:

c =
y

yplan
(2)

When actualised, each task will have a completion ratio whose magnitude will
indicate the accuracy of the planner in estimating the duration of a task. We
assume that all tasks will be completed within some completion ratio range c ∈
[cmin, cmax), cmin > 0, cmax > cmin and separate the interval [cmin, cmax) into
n intervals of ([cmin, c1), [c1, c2), ..., [cn−2, cn−1), [cn−1, cmax), i > j → ci > cj).

We assume the associated distribution of the random variable Y is a his-
togram distribution composed of the following intervals:

yplan × {[cmin, c1), [c1, c2), ..., [cn−2, cn−1), [cn−1, cmax)} (3)

We assume that within each bin the distribution’s probability density is uniform.
Hence, each task’s duration y will fall within one of the histogram’s bins scaled
by yplan:

y ∈ [cn−1yplan, cmaxyplan) (4)

Using this formulation, it is possible to generate a one-hot vector y of size n
with zeros in all dimensions except the dimension corresponding to the index
of the interval the duration falls in, where the vector has value 1. With these
assumptions we can optimise our original objective by reposing forecasting task
duration as a classification problem where fθ maps to a multinomial distribution
(a vector of non-negative numbers which sum to one with n dimensions) over
completion ratio (fθ : x → P (C)) and we optimise the equivalent objective;

θ∗ = arg max
θ

fθ (x)Ty (5)

4 Method

We assume access to a data set of related tasks from past projects which is
split into a training set and a validation set. Each split contains two matrices; a
feature matrix X ∈ R

k×m and a label matrix Y ∈ R
m×n, where k is the number

of data points, m is the number of features and n is the number of classes.
We assume the mapping from task features to the task’s distribution over

completion ratio can be expressed by a multi-layer perceptron [30] with a softmax



On Forecasting Project Activity Durations with Neural Networks 107

operation as its final layer. For completeness, we define the softmax operation
below:

σ(z)i =
ezi

∑m
l=1 ezl

, (6)

where z is a vector of size n. We train our model using a variant of stochastic
gradient descent [22] to minimise the negative loglikelihood (also known as cross-
entropy loss) of the true class of each task in our training set i.e. if Xbatch is
a batch of feature vectors of k′ tasks from our training set and Ybatch are the
tasks’ corresponding label vectors. Then we minimise the loss:

Loss =
k′

∑

i=1

−log(fθ (xi)Tyi) (7)

The majority of all tasks in a project complete on time, even if the project
suffers from large delays. In addition, there are certain values of completion ratio
that are very common i.e. 1.0, 1.5, 2.0 in our data set (see Fig. 1 for the data
distribution). This indicates that when stakeholders work on a project, if a task
cannot be finished on time, then they set a new deadline which is some multiple
of original task’s planned duration. Consequently, tasks tend to be delivered late
and early in a predictable manner. This means, splitting a task’s completion ratio
support [cmin, cmax) into uniform intervals can create a large class imbalance in
the data set. If intervals are all of uniform size, then an interval can contain many
commonly appearing completion ratio values in the data set and consequently
contain a much larger proportion of the data set than other intervals.

Fig. 1. Completion ratios (training labels) of all construction schedule activities in our
database: over half of them have completion ratio 1, aka completed on time. There are
also noticeable spikes at 0.5, 2, 3, etc. points.

To mitigate this issue, we propose binning strategy called equibins, which
helps create a more balanced class distribution. equibins is an iterative algo-
rithm. Before starting, the algorithm stores a count of all completion ratio values
in the training and validation set which occur more than once. A hyperparameter
of the algorithm is how many bins nbins the algorithm should split the support
into. The algorithm starts out with all labels in training and validation sets
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union c ∈ Ctrain+val. At each iteration the algorithm calculates how many data
points would be within intervals of uniform size i.e. nuniform = � |Ctrain+val|

n �.
If it finds a completion ratio value c which occurs more than nuniform times,
then the algorithm creates a bin centred at c with bounds [c − ε, c + ε) where ε
is another hyperparameter of this binning strategy. Then the algorithm removes
the points within the defined interval from the set of completion values con-
sidered, sets nbin = nbin − 1 and repeats the steps described above until there
are no completion ratio values which occur more than nuniform times. Then the
algorithm splits the remaining intervals in the support into bins by finding the
boundaries which separate the remaining data into nbin equally sized quantiles.
Note that nbin could be less than the originally specified value depending on the
number of iterations of the algorithm required to remove common completion
ratio values from the set of considered values.

5 Experiments

Our experiments are designed to answer two questions:

1. Does posing task duration forecasting as a classification problem yield higher
quality forecasts?

2. Does our proposed binning strategy equibins improve the quality of forecasts
outputted by a task duration model trained as a classifier in comparison to a
naive binning strategy?

We perform our experiments on real world project data from our proprietary
database of over 400, 000 construction schedules from a wide range of sectors.
The labels for each task correspond to the one-hot vector encodings described in
Sect. 3. We filter out any tasks from our data set which have a completion ratio
less than 0.1 or greater than 10, viewing them as noisy or mislabelled. After data
cleaning and preprocessing we get a data set of over 70, 000, 000 activities to train
and test our models. We split our data set into a training, validation and test set
using split ratio 16 : 4 : 5. Each task’s feature vector is a combination of a 128
dimensional embedding vector of a textual description of the task from a pre-
trained tiny-BERT [20] language model and a set of numerical features including
the tasks planned duration yplan and numerical features which describe the date
at which the task is planned to start.

For our proposed model, we used a 5-layer fully-connected network. Each
layer, except the last layer is composed of a linear layer, a batch normalisation
layer [18], a Relu layer [1] and a dropout layer [34]. Figure 2 presents the model
architecture. The last layer uses a softmax operation as its activation function
and is not followed by a drop-out layer. For our experiments we used a dropout
rate of 0.3 and the internal layers of the model had 3968 hidden units. The model
was trained using ADAM [22] with a learning rate of 2.0e–4. The hyperparam-
eters of the model architecture and training were determined using a Bayesian
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hyperparameter search2. We trained our model for 64 epochs with an early stop-
ping condition: model training terminated if the model’s performance on the
validation set did not improve for five consecutive epochs. For evaluation, we
used the parameters for each model which resulted in the lowest validation loss.
For our equibins binning strategy, we separated the support of the histogram
into 53 bins and used an ε value of 1e–3.
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Fig. 2. Representative multi-layer perceptron used in our experiments.

We compare our proposed model to three baselines. All baselines share the
same model architecture up to their last layer and were trained using the training
procedure described above. The first baseline poses task duration forecasting as
a regression task where the model outputs a Gaussian distribution. The model
output is two parameters; a mean and log standard deviation. We further process
the log standard deviation by performing a softplus operation on it [37] to ensure
stability during training. This baseline outputs a uni-modal distribution.

If our data is inherently multi-modal, the baseline could perform poorly due
to its inability to describe a multi-modal distribution. Consequently, our sec-
ond baseline also poses task duration forecasting as a regression task where the
model outputs a Gaussian mixture model with 3 modes. The model also out-
puts a log standard deviation for each mode (as opposed to standard deviation)
which is processed by applying softplus operation to it. The model outputs 3
terms for the weighting terms of the Gaussian mixture model which are pro-
cessed by performing a softmax operation on them to ensure they sum to one.
Both regression baselines are trained by minimising the negative log-likelihood
of each task’s actualised completion ratio with respect to the distribution they
output. The third baseline poses task duration forecasting as a classification
task, but uses uniformly sized bin intervals as opposed to the equibins strategy
we propose.

2 https://cloud.google.com/blog/products/ai-machine-learning/hyperparameter-
tuning-cloud-machine-learning-engine-using-bayesian-optimization.

https://cloud.google.com/blog/products/ai-machine-learning/hyperparameter-tuning-cloud-machine-learning-engine-using-bayesian-optimization
https://cloud.google.com/blog/products/ai-machine-learning/hyperparameter-tuning-cloud-machine-learning-engine-using-bayesian-optimization
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For our purposes, classification metrics such as F1-score are not very infor-
mative, since we do not intend to use the predicted class in any downstream task.
Instead, the entire distribution outputted by the classifier is used as a forecast
for the duration of a task. Consequently, we report metrics commonly used to
measure forecast quality.

The first metric is the probability mass within 1e–2 of a task’s actualised
completion ratio averaged over the entire test set. This metric measures local
distribution quality and approximates the likelihood of sampling the correct com-
pletion ratio for a task. The second metric is the continuous ranked probability
score (CRPS) [12] of the distribution outputted by our model averaged over the
entire test set. This metric assesses the quality of the output distribution over its
entire support, which roughly measures the overall quality of the learned fore-
cast. The third metric we report is the expected calibration error (ECE) [4,14],
which is another rough measure of the quality of the distributions outputted by
our model.

6 Results

Table 1 records the performance of our proposed model and the three baselines
described above. The results show clearly that in terms of likelihood there is an
order of magnitude increase in performance (∼0.001→∼0.01) when using models
trained using a classification objective versus a model trained using a regression
objective to forecast task duration.

A possible reason for the improved performance of models trained using clas-
sification objectives as opposed to regression objectives is that continuous dis-
tributions like Gaussian and Gaussian mixture models use distance metrics to
calculate likelihood. These density functions contain an implicit locality assump-
tion where points close to each other have similar likelihoods. In addition, Gaus-
sian likelihoods decay exponentially as they move away from the mean of the
distribution. If the underlying distribution a model is trying to learn does not
meet this locality assumption or exponential decay assumption, then a Gaussian
density functions will struggle to approximate it. Using a classification objec-
tive, the model learns a histogram distribution which makes fewer assumptions
about the underlying distribution. Specifically, it makes a strong locality assump-
tion within bins, but no locality assumption across bins. In our experiments,
histogram distributions trained using a classification objective (which makes
no locality assumption across bins) yield better uncertainty estimates from the
trained model.

In addition, there is another order of magnitude increase (∼0.01→∼0.1) in
performance in terms of likelihood when using the equibins binning strategy as
an inductive bias in the model as opposed to uniformly sized bins. As explained
in Sect. 4, equibins leads to a more balanced class distribution. A more balanced
class distribution encourages sensitivity in our models as they see more variation
in their targets during training and consequently are more likely to identify
statistical relationships in their training set than models trained on a highly
unbalanced class distribution.
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In terms of CPRS on the test set, the combination of training the model
using a classification objective and using an equibins strategy yielded the same
improvement in CRPS over the three baselines (∼0.060→∼0.044). Finally in
terms of ECE, there was not much of a difference between the models trained
using classification objectives (∼1.7 versus ∼1.9), but there was a large jump
in performance when comparing models trained using regression objectives as
opposed to classification objectives (∼7.0 versus ∼1.8). To calculate the ECE
for the two regression baselines, we first approximated them as histogram dis-
tributions within the completion ratio support [0.1, 10).

In our experiments, the performance of the models in terms of likelihood
and CRPS suggest that training models using a classification objective and
incorporating an equibins binning strategy improves the performance of neural
networks on task duration forecasting. On the other hand, the performance of
models in terms of ECE suggest that only training models using a classification
objective is important.

Table 1. Performance metrics on the test set of models trained to perform task dura-
tion forecasting. Higher likelihood and higher CRPS mean better forecasting power;
lower ECE means better forecasting power.

Model Likelihood CRPS ECE

Unimodal Gaussian regressor 0.0058 0.0600 7.1043

Gaussian mixture model with 3 modes regressor 0.0062 0.0582 7.0310

Uniform bin size classifier 0.0368 0.0602 1.7416

Equibins classifier 0.3680 0.0443 1.8973

Better activity level forecasts should result in better project end date fore-
casts. To demonstrate this, we ran Monte-Carlo simulations on various projects
for which we have both initially planned and fully actualised schedules. We
report the difference in performance between the two best performing models:
our proposed equibins classifier and the uniform bin size classifier baseline on
the project end-date forecasting task. We report the probability density func-
tion calculated by performing a Monte Carlo simulation on a project using the
distributions outputted by these models.

We found a very consistent behaviour across all tested project, and we report
visual representative results of project end date forecasting in Fig. 3. Visually the
results suggest that using the equibins classifier results in probability density
functions for project end-date forecasts which place a much higher likelihood on
the project’s actual end-date with more mass around this date than when using
a uniform bin size classifier.
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Fig. 3. Comparison of project level forecasts after running Monte-Carlo simulations
using samples from a classification model with equibin classes (above) versus a regres-
sion Gaussian mixture model (below). The same true end date for the project is marked
on each graph.

7 Discussion and Conclusions

Accurately forecasting project end dates is a valuable, yet challenging task, tra-
ditionally solved by relying on heuristics provided by experts to forecast activity
durations and Monte-Carlo simulations. In recent years, the problem of forecast-
ing task durations has gained a growing amount of attention from the machine
learning community. However, there is still no consensus on what is best practice
when it comes to forecasting activity durations using neural networks. In this
paper, we experiment with different problem formulations and inductive biases
to determine which are important when training neural networks to forecast
activity durations.

Experiments on our data set of real world construction projects suggest the
performance benefits of our proposed method for forecasting activity duration,
as well as forecasting project end dates. We show that posing the forecasting
problem as a classification task with carefully designed classes is crucial for high
quality results.

The next natural step in our research is to replace the simple feed forward
neural networks used here with ones that can take advantage of the underly-
ing graph structure in project schedules. In recent years graph neural networks
have been deployed in a wide range of applications from molecular biology to
social sciences [36], however graph neural networks have not yet been effectively
applied to project duration forecasting problems. Another interesting direction
is searching for methods to train models end-to-end, meaning directly to forecast
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project end dates, possibly removing the need to perform Monte-Carlo sampling
as part of the model when forecasting project end dates.
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Abstract. With the aim of obtaining time/space improvements in clas-
sic Data Structures, an emerging trend is to combine Machine Learning
techniques with the ones proper of Data Structures. This new area goes
under the name of Learned Data Structures. The motivation for its study
is a perceived change of paradigm in Computer Architectures that would
favour the use of Graphics Processing Units and Tensor Processing Units
over conventional Central Processing Units. In turn, that would favour
the use of Neural Networks as building blocks of Classic Data Struc-
tures. Indeed, Learned Bloom Filters, which are one of the main pillars
of Learned Data Structures, make extensive use of Neural Networks to
improve the performance of classic Filters. However, no use of Neural
Networks is reported in the realm of Learned Indexes, which is another
main pillar of that new area. In this contribution, we provide the first,
and much needed, comparative experimental analysis regarding the use
of Neural Networks as building blocks of Learned Indexes. The results
reported here highlight the need for the design of very specialized Neu-
ral Networks tailored to Learned Indexes and it establishes solid ground
for those developments. Our findings, methodologically important, are
of interest to both Scientists and Engineers working in Neural Networks
Design and Implementation, in view also of the importance of the appli-
cation areas involved, e.g., Computer Networks and Databases.

1 Introduction

Learned Data Structures is a new research area based on the combination of
Machine Learning (ML) techniques with the ones proper of Data Structures,
with the aim of obtaining time/space improvements in classic Data Structures.
It was initiated by [18], it has grown very rapidly [11] and now it has been
extended to include also Learned Algorithms [22].

This research is funded in part by MIUR Project of National Relevance 2017WR7SHH
“Multicriteria Data Structures and Algorithms: from compressed to learned indexes,
and beyond”. We also acknowledge an NVIDIA Higher Education and Research Grant
(donation of a Titan V GPU).

c© Springer Nature Switzerland AG 2022
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1.1 Computer Architectures as a Motivation for Learned Data
Structures

The ML models with the most potential in this area are undoubtedly Neural
Networks (NNs), because of their learning power, e.g., [24]. Unfortunately, they
require prohibitive computational power. In recent years, the introduction of
Graphics Processing Unit (GPU) and Tensor Processing Unit (TPU) architec-
tures in commercial computers [25,27], and the deployment of highly engineered
development platforms such as Tensorflow [2], has de facto removed the com-
putational bottleneck referred to earlier. In fact, ML Models, and in particular
NNs, have been increasingly used in many application domains [19].

The major strength of these new architectures is that they can parallelise
math operations made by NNs very well, compared to a general-purpose set of
instructions. In particular, recent studies even argue that the power of the GPU
can be improved by 1000x in terms of time in the next few years, while, due to
Moore’s Law constraints [23], those improvements are not seen for classic CPUs.
Furthermore, a programming paradigm based on branches of the if-then-else type
seems to have been overcome in favour of a paradigm that promotes straight-
line mathematical operations, which can be pipelined efficiently on those modern
architectures. For these reasons, using ML models such as NNs, on such advanced
architectures instead of the classic Data Structures, which make extensive use of
branch instructions in their code, may lead to the deployment of substantially
better Data Structures, with benefits in many areas such as Computer Networks
and Data Bases.

Unfortunately, although the above motivation for the design of Learned Data
Structures based on NNs is indeed a strong one, the potential gain that can be
achieved is either at an initial stage of assessment or it has not been assessed at
all, as we outline next.

1.2 From Motivation to Design and Implementation of Learned
Data Structures: The Role of NNs

– Learned Bloom Filters. NNs have been extensively used within the design
and implementation of Learned Bloom Filters, since the very start of the
area of Learned Data Structure [18]. We recall that, given a universe U of
elements, a Bloom Filter [6] is a Data Structure to solve the Approximate
Membership Problem for a given set A ⊂ U . That is, given a query element
x ∈ U , establish whether x ∈ A, with a specific False Positive Rate (FPR)
ε and zero False Negatives. Essential parameters for the evaluation of the
performance of Bloom Filters are FPR, Query Time and Space Occupancy.
Those parameters are very intimately connected, as well explained in [8].
The current versions of Learned Bloom Filters that have been proposed in
the literature [9,18,21,26] use convolutional and recurrent neural networks.
The interested reader can find details in [14], together with an experimental
comparative performance analysis.
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– Learned Indexes. Learned Indexes [18] have been introduced to solve the
so-called Predecessor Search Problem. Given a sorted table A of n keys taken
from a universe U , and a query element x in A, the Predecessor Search Prob-
lem consists in finding the A[j] such that A[j] ≤ x < A[j + 1]. A synopsis
of the Learned Indexes Methodology is presented in Sect. 2. Although sev-
eral versions of Learned Indexes have been proposed, e.g., [3,4,11,12,18,20],
surprisingly, none of them use NNs. Even more surprisingly, no comparative
performance analysis regarding the use of NNs in Learned Indexing has been
carried out.

– Additional Learned Data Structures. Learned Hash Functions [18] as
well as Learned Rank and Select Data Structures [7] do not use NNs. Again,
no performance analysis regarding those models has been carried out.

1.3 Our Results: The Role of Neural Networks in the Design
of Learned Indexes - The Atomic Case

In view of the State of the Art reported in Sect. 1.2, our novel contribution to the
advancement of the area of Learned Data Structures is the first assessment of
the suitability of NNs as building blocks of Learned Indexes. Indeed, in order to
provide a clear comparative assessment of the potential usefulness of NNs in the
mentioned domain, we consider Atomic Models for Learned Indexes, defined in
Sect. 3. Intuitively, they are the simplest models one can think of. The rationale
for their choice is that, if NNs do not provide any significant advance with respect
to very simple Learned Indexes, in view of the results in [3,4], they have very
little to offer to Learned Indexing in their current generic, if not “textbook”, form
even with the advantage of GPU processing. Technically, we offer the following
contributions:

– The first design of a Learned Index based on NNs Models only. We choose Feed
Forward NNs because they offer a good compromise between time efficiency,
space occupancy and ability to learn [5]. Since this Learned Index has no
other ML subcomponent, we refer to it as an Atomic Learned Index.

– An extensive experimental study about the effectiveness of this Atomic
Learned Index, both in the case of CPU and GPU processing.

– An extensive comparison of this Atomic Learned Index with respect to analo-
gous Atomic Indexes that use only Linear Regression [13] as the learned part.
Those models have been formalized and studied in [3,4] and they are valid
building blocks of more complex models used for Learned Indexes, e.g., the
RMI family [20].

As opposed to Learned Bloom Filters, our results clearly indicate the need to
design NNs specifically focused on their use in the Learned Indexing paradigm. A
study analogous to ours, that paves the way to development of NNs more specific
for Learned Indexing, is not available in the Literature and it is of methodological
importance.

The software we have used for our experiments is available at [1].



118 D. Amato et al.

Query Element

{
1

5
11
14
58

59
60
97
100

101

Model

Fig. 1. A general paradigm of Learned Searching in a Sorted Set [20]. The
model is trained on the data in the table. Then, given a query element, it is used to
predict the interval in the table where to search (included in brackets in the figure).

1.4 Organization of the Paper

This paper is organized as follows. Section 2 provides a synoptic description on
Learned Indexing. Section 3 presents the Atomic Models that we consider for
this research. In Sect. 4, we illustrate the adopted experimental methodology.
Section 5 reports experiments and findings. Finally, in Sect. 6, we provide con-
clusions and future direction of research.

2 Learned Indexes: A Synopsis

Consider a sorted table A of n keys, taken from a universe U . It is well known
that Sorted Table Search can be phrased as the Predecessor Search Problem:
for a given query element x, return the A[j] such that A[j] ≤ x < A[j + 1].
Kraska et al. [18] have proposed an approach that transforms such a problem
into a learning-prediction one. With reference to Fig. 1, the model learned from
the data is used as a predictor of where a query element may be in the table. To
fix ideas, Binary Search is then performed only on the interval returned by the
model.

We now outline the basic technique that one can use to build a model for A.
It relies on Linear Regression [13]. With reference to the example in Fig. 2 and
assuming that one wants a linear model, i.e., F (x) = ax + b, Kraska et al. note
that one can fit a straight line to the CDF and then use it to predict where a
point x may fall in terms of rank and accounting also for approximation errors.
In terms of regression, the function F is a Model for the CDF function.

More in general, in order to perform a query, the model is consulted and
an interval in which to search for is returned. Then, to fix ideas, Binary Search
on that interval is performed. Different models may use different schemes to
determine the required range, as outlined in Sect. 3. The reader interested in a
rigorous presentation of those ideas can consult Markus et al. [20].
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Fig. 2. The Process of Learning a Simple Model via Linear Regression. Let
A be [47, 105, 140, 289, 316, 358, 386, 398, 819, 939]. (a) The CDF of A. In the diagram,
the x coordinate indicates the value of an element in the table, while the y is its rank.
(b) Values a and b of the straight line F (x) = ax + b are obtained solving Linear
Regression. (c) The maximum error ε one can incur in using F is ε = 3, i.e., accounting
for rounding, it is the maximum distance between the rank of a point in the table and
its rank as predicted by F . In this case, the interval to search into, for a given query
element x, is given by I = [F (x) − ε, F (x) + ε].

3 Atomic Models for Learned Indexes

As outlined in Sect. 2, a simple linear function that provides a model for the CDF
of the data is a model for Learned Indexes. With reference to Fig. 1, when the
model consists of either a closed-form formula or a simple program that provides
an estimation of the CDF on a given point, we refer to it as Atomic. That is,
it has no sub-component that has been learned from the data. As stated in the
Introduction, more complex models exist. However, as already outlined, for the
aim of this research, it is best to consider Atomic Models only. In particular, we
consider models that come from an analytical solution to regression problems
(see Sect. 3.1), and models that use NNs (see Sect. 3.2).

3.1 CDF Function Models Based on Analytic Solutions
to Regression Problems

Regression is a methodology for estimating a given function G : Rm → R via
a specific function model G̃. The independent variables in x ∈ R

m and the
dependent variable y ∈ R are usually referred to as predictors and outcomes,
respectively. The parameters of G̃ are estimated by minimizing an error function,
computed using a sample set of predictors-outcome measurements. The most
commonly used Regression Loss Function is the Mean Square Error. Such a
task can be accomplished in several ways. Here we follow the method outlined in
[15]. In particular, we present linear (as a matter of fact, polynomial) closed-form
formulae solving the posed minimization problem.

Linear regression (LR for short) is the case when a geometric linear form is
assumed as a model. In the case, when m = 1, it is referred to as Simple Linear
Regression (SLR for short) and as Multiple Linear Regression (MLR for short),
otherwise.

For the general case of LR, given a training set of n predictor-outcome cou-
ples (xi, yi), where xi ∈ R

m and yi ∈ R, the goal is to characterize the linear
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function model G̃(x) = ŵxT + b̂ by estimating the parameters ŵ ∈ R
m and

b̂ ∈ R, using the sample set. We can define a matrix Z of size n × (m + 1) (usu-
ally referred to as the design matrix), where Zi is the i-th row of Z such that
Zi = [xi, 1]. Moreover, y indicates the vector of size n such that the outcome yj
is its j-th component. The Mean Square Error minimization on the basis of the
estimation is:

MSE(w, b) =
1
n

∥
∥[w, b]ZT − y

∥
∥

2

2
(1)

MSE is a convex quadratic function on [w, b], so that the unique values that
minimize it can be obtained by setting its gradient ∇w,b equal to zero. The
closed form solution for the parameters w, b is

[ŵ, b̂] = yZ(ZTZ)−1 (2)

It is to be noted that the SLR case is characterized by the choice of a
polynomial of degree g = 1. The general case of Polynomial Regression (PR for
short), using polynomials with degree g > 1, are special cases of MLR. Indeed,
we can consider the model:

G̃(z) = wzT + b

where w is of size g, z = [x, .., xg−1, xg] ∈ R
g is the predictor vector for MLR.

In this paper, we use linear, quadratic and cubic regression models to approx-
imate the function F given by the CDF of the data. In particular, the corre-
sponding models are prefixed by L, Q, or C.

3.2 CDF Function Models Based on Neural Networks

Another method to learn a function G : Rm → R is to use NNs. In particular, we
focus on Feed-Forward NNs, where the general strategy consists of an iterative
training phase during which an improvement of the G̃ approximation is made.
Starting from an initial approximation G̃0, at each step i, an attempt is made
to minimize an error function E so that E(G̃i−1) ≥ E(G̃i). The minimization is
carried out on a training set T of examples. The process can stop after a fixed
number of steps or when, given a tolerance δ, | E(G̃i−1) − E(G̃i) |≤ δ. In the
following, we report the basic elements that characterize the type of NN we use.

1. ARCHITECTURE TOPOLOGY.
(a) As atomic element of our NN, we use a standard Perceptron [5] with relu

activation function.
(b) The number of Hidden Layers H.
(c) For each hidden layer hi, its number of Perceptrons nhi

.
(d) The connection between each layer. In our case, a Fully Connected NN is

used, i.e. each Perceptron of layer hi is connected with each Perceptron
of the next layer hi+1.

2. THE LEARNING ALGORITHM.
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(a) The error function E, that is used to measure how close is G̃ to G.
(b) The gradient descent iterative process that starts from a G̃0 and, at each

step, better approximates G reducing E, changing layer by layer, by a
backward and forward pass, the parameters of each layer. It can be char-
acterized by a learning rate, i.e. the multiplicative constant of the gradient
error.

3. THE TRAINING SCHEME.
(a) The size of a batch B, i.e., the number of elements to extract from

the training set T . At each extraction of the batch, the parameters are
updated.

(b) The number of epochs ne that corresponds to the number of times the
training set T is presented to the NN for the minimization of E.

The learning algorithm of a NN uses a proper training set to perform the
gradient descent iterative process. For the purpose of indexing, which is our goal,
the training data are in the form of scalar integers. To perform a Regression using
a NN, it is mandatory to represent the scalar integer x with a vector representa-
tion −→x . In this work, −→x is a string containing the 64-bit binary representation
of x, as suggested also by Kraska et al. [18].

3.3 Prediction Accuracy of an Atomic Model

As well illustrated in Fig. 2, the approximation error is very important in reduc-
ing the size of the interval to be searched into. Smaller the error, the smaller
the portion of the table in which the final search must be performed. In this
paper, we characterize the accuracy in prediction of a model via the reduction
factor (RF): the percentage of the table that is no longer considered for search-
ing after a prediction. Because of the diversity across models to determine the
search interval, and in order to place all models on a par, we estimate empiri-
cally the RF of a model. That is, with the use of the model and over a batch
of queries, we determine the length of the interval to search into for each query
(the interval I in Fig. 2). Based on it, it is immediate to compute the reduction
factor for that query. Then, we take the average of those reduction factors over
the entire set of queries as the reduction factor of the model for the given table.

4 Experimental Methodology

4.1 Hardware and Datasets

Experiments have been performed using a workstation equipped with an Intel
Core i7-8700 3.2 GHz CPU and an Nvidia Titan V GPU. The total amount of
system memory is 32 Gbyte of DDR4. The GPU is also supplied with its own 12
Gbyte of DDR5 memory and adopts a CUDA parallel computing platform. CPU
and GPU are connected with a PCIe 3 bus with a bandwidth of 32Gbyte/s. The
operating system is Ubuntu LTS 20.04.



122 D. Amato et al.

We have used both synthetic and real datasets, taken from previous studies on
Learned Indexes [12,18]. The synthetic ones have been generated using random
sampling in [1, 2r−1−1], with r = 64. Datasets are sorted and without duplicates.
We anticipate that, as evident from the analysis in Sect. 5, the use of GPU
training for the NNs severely limits the size of the datasets that we can use.

1. Uni that contains data sample from a Uniform distribution defined as

U(x, a, b) =

{
1

b−a if x ∈ [a, b]
0 otherwise

(3)

where a = 1 e b = 2r−1 − 1. Its size is 1.10e+04 Kb and it contains 1.05e+06
integers.

2. Logn that contains data sample from a Log-normal distribution defined as

L(x, μ, σ) =
e− (lnx−μ)2

2σ2

x
√

2πσ
(4)

where μ = 0 e σ = 1 are respectively mean and variance of the distribution.
Its size is 1.05e+04 Kb and it contains 1.05e+06 integers.

1. Real-wl that contains timestamps of about 715M requests performed by a
web server during 2016. Its size is 3.48e+05 Kb and it contains 3.16e+07
integers.

2. Real-iot that consists of timestamps of about 26M events recorded during
2017 by IoT sensors deployed in academic buildings. Its size is 1.67e+05 Kb
and it contains 1.52e+07 integers.

As for the query dataset, for each of the above tables, it has a size equal to 50%
of the reference table and contains, in equal parts, both elements present and not
present in the table. For all the experiments, the query datasets are not sorted.

4.2 Binary Search and the Corresponding Atomic Learned Indexes

For the final search stage, in addition to a standard Binary Search method, we
use also Uniform Binary Search [17] (see also [16]). Indeed, based on work by
Khuong and Morin [16], it can be streamlined to avoid “branchy” instructions
in its implementation. Such a streamlining results in a speed-up in regard to
the standard procedure. The interested reader can find details in [16]. We refer
to the standard procedure as Branchy Binary Search (BBS) and to the other
version as a Branch-Free (BFS).

As for Atomic Models, we use L, Q, and C. Additional Atomic Models are
obtained via NNs. Indeed, we consider three types of NNs with different hidden
layers, as specified next. NN0 for zero hidden layers, NN1 for one hidden layer,
NN2 for two hidden layers, each layer consisting in 256 units.

Each of the above models provides two Atomic Learned Indexes, one for each
Binary Search routine used for the final search stage.
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5 Experiments and Findings

We use the datasets described in Sect. 4.1. Both training and query datasets are
transformed, as outlined in Sect. 3.2, to use them as input of the NNs. For NN
training, we use the highly-engineered Tensorflow platform, with GPU support.
The results are reported in Sect. 5.1.

As for queries, we perform the following experiments.

– TensorFlow. We have carried out query experiments by uploading the plat-
form to GPU, in order to perform query searches with the Learned Indexes
based on NNs. Because of the overhead to upload Tensorflow in the GPU,
results are very disappointing and therefore not reported. This is in agreement
with considerations in [18].

– NVIDIA CUDA Implementation. We use our own implementation of
the Learned Index corresponding to NN0 and with BBS for the final search
stage. The results are reported in Sect. 5.2. As discussed in that Section, this
experiment indicates that the use of the GPU is not advantageous, even with
respect to the baseline BBS, implemented in a parallel version. Therefore,
no further experiment on the GPU has been performed.

– CPU. In this case, we have performed the entire set of experiments. For
conciseness, we report the results only with the use of BFS, since the ones
involving BBS would add very little to the discussion. They are reported and
discussed in Sect. 5.3.

5.1 Training: GPU vs CPU

In Table 1, we report the training times per element for each method described
in the preceding Section, and we also indicate the respective RF, computed as
indicated in Sect. 3.3. For what concerns Atomic Models L, Q and C, the training
time is the time needed to solve Eq. 2. Regarding the NN models, the used
learning algorithm is stochastic gradient descent with momentum parameter
equal to 0.9 and a learning rate equal to 0.1. The Batch size is 64, and the
number of epochs is 2000.

As is evident from the results reported in Table 1, even with GPU support and
the use of the highly-engineered Tensorflow platform, NNs are not competitive
with respect to the L, Q and C Atomic Models, both in training time and
RF. Indeed, for each dataset, the NNs training time per item is four orders of
magnitude higher than the one obtained with the non-NN Atomic Models, with
comparable RF.

5.2 Query: GPU only for NNs

We perform an experiment, only on NN0 and uni, to see if there could be a
real advantage from using the GPU for queries. In Table 2, we report the query
time per element resulting from this experiment. As evident from that Table,
on GPUs, the copy operations from CPU to GPU, and vice versa, cancel the
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Table 1. Atomic Indexes Training Time and Reduction Factor. For each
datasets and each model, it is shown: the training time per element expressed in seconds
(column TT (s)) and the percentage of the table reduction (column RF (%)), as
described in Sect. 3.3.

uni logn real-wl real-iot

TT (s) RF (%) TT (s) RF (%) TT (s) RF (%) TT (s) RF (%)

NN0 2.55e−04 94.08% 1.39e−04 54.40% 2.50e−04 99.99% 1.28e−04 89.90%

NN1 4.18e−04 99.89% 3.79e−04 94.21% 2.31e−04 99.88% 4.20e−04 98.54%

NN2 4.49e−04 99.87% 8.60e−04 97.14% 2.33e−04 99.8% 3.57e−04 97.31%

L 8.20e−08 99.94% 5.61e−08 77.10% 5.82e−08 99.99% 7.70e−08 96.48%

Q 1.27e−07 99.98% 1.02e−07 90.69% 1.14e−07 99.99% 1.25e−07 99.1%

C 1.84e−07 99.97% 1.74e−07 95.76% 1.24e−07 99.45% 1.63e−07 98.87%

Table 2. Query Time on GPUs. NN0-BBS refers to Binary Search with NN0 as
the prediction step, while BBS is the parallel Binary Search executed on GPU without
a previous prediction. For each of these methods executed on GPU, we report: the time
for CPU-GPU, and vice versa, copy operations (column Copy (s)), the time for math
operations (column Op. (s)), the time to search into the interval (column Search (s))
and the total time to complete the query process (column Query (s)). Every time in
the Table is per element and is expressed in seconds.

Methods Copy (s) Op. (s) Search (s) Query (s)

NN0-BBS 3.27e−08 4.20e−09 1.84e−09 3.27e−08

BBS 2.55e−09 – 1.89e−09 4.44e−09

one order of magnitude speed-up of the math operations. In addition, a classic
parallel Binary Search BBS on the GPU is by itself faster than its Learned
counterparts, making the use of NNs on this architecture unnecessary.

5.3 Query: CPU only for All Atomic Models

The query experiments results are summarized in Tables 3 and 4. As we can see,
NNs are also not competitive for the query phase.

The query time on NN1 and NN2 is even two orders of magnitude greater
than the one obtained with the simple L Model. In addition, in some cases,
the transformed dataset is too large to be stored entirely in the CPU memory,
causing a space allocation error.
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Table 3. CPU Prediction Effectiveness-NN Atomic Models. NN0-BFS refers
to Binary Search with NN0 as the prediction step, while the other two columns refer
to the time taken by NN1 and NN2 to predict the search interval only. The time is
reported as time per query in second. When the model and the queries are too big to
fit in the main memory, a space error is reported.

Dataset BFS NN0-BFS NN1 NN2

uni 2.81e−07 1.31e−07 1.56e−06 5.16e−06

logn 2.08e−07 1.92e−07 1.69e−06 5.24e−06

real-wl 3.38e−07 4.59e−07 Space error Space error

real-iot 3.07e−07 4.76e−07 1.90e−06 1.94e−05

Table 4. CPU Prediction Effectiveness-Non NN Atomic Models. The Table
reports results with Linear, Quadratic and Cubic models. The Legend is as in Table 3.

Dataset BFS L-BFS Q-BFS C-BFS

uni 2.81e−07 9.42e−08 8.11e−08 9.39e−08

logn 2.08e−07 1.60e−07 1.59e−07 1.54e−07

real-wl 3.38e−07 5e05e−08 2.12e−7 1.80e−7

real-iot 3.07e−07 8.32e−08 1.99e−7 2.57e−7

6 Conclusions

A perceived paradigm shift is one of the motivations for the introduction of the
Learned Indexes. Despite that, the use of a GPU architecture for Learned Indexes
based on NNs seems not to be appropriate when we use generic NNs as we have
done here. It is to be pointed out that certainly, the use of a GPU accelerates the
performance of math operations, but the data transfer between CPU and GPU
is a bottleneck in the case of NNs: not only data but also the size of the model
matters. When we consider CPU only, NN models are not competitive with
very simple models based on Linear Regression. This research clearly points
to the need to design NN architectures specialized for Learned Indexing, as
opposed to what happens for Bloom Filters where generic NN models guarantee
good performance to their Learned versions. In particular, those new NN models
must be competitive with the Atomic Models based on Linear Regression, which
are widely used as building blocks of more complex models [3,4,20]. It is to
be remarked that we have considered the static case only, i.e., no insertions or
deletions are allowed in the table. The dynamic case has also been considered in
the literature, i.e., [10,12]. However, for that setting, no NN solution is available.
In conclusion, this study provides solid grounds and valuable indications for the
future development of Learned Data Structures, which would include a pervasive
presence of NNs.
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Abstract. Critical Care Unit (CCU) patients often benefit from being referred
to dietitians for various reasons. This can help improve recovery time, result-
ing in more effective utilisation of valuable resources within the NHS (National
Health Service) in the United Kingdom. However, said resources are often in high
demand with scarce availability. Therefore, in this paper we propose an AI-based
dashboard that can help clinicians automatically identify such patients, thereby
reducing workload as well as cognitive load on clinical staff. We have trained var-
ious machine learning classifiers using various physiological measures of CCU
patients and have identified a Support Vector Machine (SVC) classifier as the best
performing model (AUC: 0.78). Our investigation shows promise results that sig-
nificantly improve quality of patient care within the NHS. In future we intend to
undertake more extensive evaluation of the dashboard developed as well as extend
this work to paediatric patients.

Keywords: Critical care units · Patient referrals · Clinical decision support ·
Supervised classification · KNN

1 Introduction

Critical Care Units (CCUs) are the sections of hospitals where severely ill patients
are treated. Their importance has been widely appreciated during the current Covid-19
pandemic where millions of ill people were treated in such units across the globe [1].
The condition of each patient at admission to the unit and their potential recovery route
will dictate requirements for appropriate nutrition. This will require relevant assessment
by a qualified dietitian. An early referral to such a healthcare professional can have a
positive impact on the patient’s outlook, rate and quality of recovery [2].

There are differences in the dietary/nutritional requirements of patients depending
on their health condition at admission to the unit. There are also considerable differences
between the nutritional needs of adult and children patients. Critical Care Units employ
smart beds that collect a lot of data about a patient. The significance of a lot of these
data is lost either due to the way it recorded and stored, or due to the inability of being
able to interrelate it with other data relating to a patient’s health and using it to support
effective decision making.
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This work attempts to improve the situation by employing machine learning in
analysing patient data and enhancing the speed and accuracy of prioritization of refer-
ring patients to dietitians in a Critical Care Unit, focusing on adult patients only. The
authors present an early attempt in automating the referral process alleviating the burden
on nursing staff who could be overwhelmed by the demand in patient care.

A number of supervised classification models were chosen for processing the patient
data that was collected from different databases within the hospital and the NHS records
systems and a comparative evaluation was performed. The challenge in collecting, col-
lating and filtering the data is a major problem in the case of NHS (National Health
System) in the United Kingdom as different hospitals may use different systems and
the formatting of data storage is not always compatible across these [3]. Thus a lot of
preparation work is required and this may raise challenges to the use of data supporting
automated decision support for staff at the CCUs.

At the time of writing the Dashboard application presented here is being upgraded
with further evaluation pending. The work is ongoing and further results are expected
to be available over the next few months.

2 Problem Definition

Dietitians, as well as many other healthcare professionals, are in high demand among
various other organizations and publicly funded hospitals often struggle to find such
resources to staff their critical care units. At the same time they are important resources
and their effective utilisation can support not just the quality of care of patients at hand,
but the effective management of CCU beds which are at a premium [4].

With the advent of smart beds, a large number of physiological measurements are
automatically collected for all patients under critical care in the CCU. This data is
currently available to CCU staff, but due to cognitive overload, they often miss patients
that require attention and there are no automated mechanisms in place to help them
identify such patients.

Many patients are also sedated and need regular monitoring and external feeding.
Furthermore, the data collected from patients is stored in many different places in the
information system, and is often distributed across various information systems.An auto-
mated system that can automatically monitor and analyse patient data and flag patients
that need referral and immediate attention by a dietitian, can significantly improve qual-
ity of patient care. Proper use of the data that is collected but not utilized to its full
potential could prove a real catalyst in changing the quality of care that patients receive.
Determining how routine clinical data collected in critical care units can be used to opti-
mise patient outcomes, can lead to augmenting clinician decision-making and altering
clinician behaviour to optimise patient clinical outcomes. Developing a system that can
automatically screen CCU patients and prioritize the need to referral to a dietitian. Hav-
ing alleviated the pressure of routine work on clinicians and dietitians could allow for
further analysis of the collected data. With the aid of Machine Learning develop further
interrelationships between health conditions, nutrition and its impact on health care and
recovery.
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3 Related Work

Critical Care Units (CCUs) are specific hospital wards where the sickest patients are
admitted and where large amounts of detailed clinical data are collected (usually every
hour) for the duration of the patient’s stay.ManyCCUs havemoved frompaper to clinical
information systems to capture all this data from the patients’ monitor, ventilator and
other equipment such as drug infusions into a very extensive database. The data is
captured using the facilities of smart beds that are utilized in CCUs gathering up to
200 different patient measurements. Gholami et al. [5] though, have established that
CCUs are not using such systems and this data to their advantage, with much of the data
being captured not being analysed or used for maximal benefit. In an era of limited NHS
resources, these digital resources have the potential to both optimise patient outcomes
and make systems more efficient and effective.

Data analysis and machine learning have been explored on several research cases
and have been utilised widely in health care and Critical Care Units. They are usually
used to automate processes where problems are well known and fully defined and there
the deliverables to efficiency and accuracy achieved are well within the expected levels
[6, 7].

The goal for CCUs is to optimise the patients’ survival, clinical outcomes and to
reduce harm caused by therapies (iatrogenic harm). All critical care units have a number
of recognised targets to improve outcomes such as maintaining an optimal level of
sedation (not too high or low), maintain lung volumes delivered by the ventilator within
a specific range to minimise lung injury and trying to deliver a minimum amount of
nutrition to patients whilst they are critically ill. Yet these seemingly simple targets,
are often not achieved. Nutritional practices have been long proven to have a direct
relationship to clinical outcomes in patients in CCUs and particularly so in patients in
the paediatric sections of CCUs [8].

Accessing data in effective and efficient way can contribute towards better utilization
and leading to reaping the benefits of exploring it with machine learning algorithms.
Although this has been identified as a priority and the United Kingdom has over the
past few years made considerable plans and advances towards such a target, the status of
patient and hospital records is such that still pauses a challenge for intelligent solutions
[9].

4 An Automation Prototype

A prototype data dashboard was developed to demonstrate how an automated system
could assist staff in screening patients, shown in Fig. 1. The dashboard provides a quick
overview to clinical staff about all patients in the CCU and at any time highlights those
who need to see a dietitian. The dashboard shows the patient ID, and any relevant treat-
ments that each patient is receiving, along with specialist feeding guidelines. Dietitian
users of the system can filter patients accordingly, to prioritise seeing only those that are
recommended for referral.

Patient prioritisation is based on an automated rule of thumb algorithm that staff
nurseswill have to applymanually and slowly over a range of data that could be confusing
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or could be interpreted inconsistentlywith fatigue building in during long shifts at intense
working conditions. The data on the dashboard can be refreshed frequently during the
day as new data can be captured from smart beds.

Fig. 1. Automated patient screening dashboard.

5 Applying Machine Learning

For Machine Learning purposes, the target variable was defined as a categorical vari-
able indicating whether a patient should or should not be referred to a dietitian, thus
formulating this as a classification problem.

5.1 Feature Extraction

The data in the hospital database is stored in a meta-model that is described elsewhere
[2]. Treatments that patients receive as well as any interventions by clinical staff are
recorded as interventions. Interventions in turn have attributes.

For example, when a patient receives parenteral feeding, a new intervention is created
with attributes such as the volume of the feed, mix of solution being fed, time of feed
etc. Interventions are linked to instances of patients being treated in the CCU by an
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encounterID. Every time a patient is admitted in the CCU, a new encounterID is assigned
to the visit, which is linked to a unique patientID. Furthermore, each encounterID has an
assessment form associated with it that contains free text data about the patient recorded
by clinical staff. These forms include patient medical history at the time of admission.
The first step in the ML process involved extracting features from this meta-model for
further processing. To this end the data was first anonymised by removing the unique
patient ID and replacing it with a pseudonymous number. The timestamps for the various
interventions were also replaced by pseudo-dates to further anonymise the data. Relevant
attributes for various interventions were extracted as separate features. For example, for
parenteral feeding, the feed volumewas extracted as a feature. All featureswere averaged
by day. Table 1 shows all the features extracted.

Table 1. Features extracted from the hospital database.

Feature Description

end tidal co2 CO2 emitted at the end of an exhalation

feed vol Volume of solution administered

feed vol adm Volume of feed administered

fio2 The fraction of oxygen administered to patients on
ventilators

fio2_ratio PaO2/FiO2

Insp_time The time taken to inhale air into the lungs

Oxygen_flow_rate The rate at which oxygen is administered

Peep Pressure in the lungs above atmospheric
Pressure

Pip Peak Inspiratory Pressure

resp rate Spontaneous respiratory rate

Sip Set Inspiratory Pressure

tidal vol Tidal Volume Tidal Volume

tidal vol actual Actual Tidal Volume Actual Tidal Volume

tidal vol kg Tidal Volume/KG Tidal Volume/KG

tidal vol spon Spontaneous Tidal Volume

Bmi Body-Mass Index

5.2 Feature Engineering

The BMI of the patients was calculated from their height and weight and outliers as
well as missing values were filtered as part of the cleaning process. Furthermore, if a
patient’s record contained a note from a dietitian, indicating that the patient had been
referred to a dietitian, the corresponding target variable was set to 1, otherwise it was set
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to 0. This allowed the problem to be formulated as supervised classification problem.
Missing values for included features were replaced with 0.

5.3 Model Training

Various supervised classification models were chosen for this step. Since the target
classes were unbalanced in this case (80% non-referrals vs 20% referrals), the AUC
rather than the overall accuracy was chosen as the performance metric. Based on hyper-
parameter tuning coupled with 10-fold cross validation, the best performing models for
each algorithm were compared using the AUC. Training vs test sets were also compared
(70/30 split) in order to check whether overfitting had occurred.

5.4 Evaluation

The models were evaluated using the Area Under the Curve (AUC). The performance of
the models was evaluated using the test dataset and validated against the training dataset.
Furthermore, sensitivity analysis was performed by imputing the missing values using
a KNN Imputer and the results compared against the non-imputed datasets.

5.5 Results

Figure 2 shows the feature importance as determined by a Random Forest Classifier.
Based on these results, four features were shortlisted; feed_vol, oxygen_flow_rate,

Fig. 2. Feature importance as returned by a Random Forest Classifier.
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resp_rate and bmi. Figure 3 shows the AUCs of the models when applied to the four
short listed features, while Fig. 4 shows the AUCs of the models when validated against
the training data. The best performing model is a Random Forest Classifier with an AUC
of 0.83. However, the results of the validation data show that it is likely overfit (AUC
0.87). Therefore, for practical purposes we consider the SVC to be the best performing
model (AUCs 0.78).

6 Sensitivity Analysis

A sensitivity analysis was also performed by filling in the missing values using a K-
Nearest Neighbor algorithm to impute the missing values. The results of the training and
validation sets are shown in Figs. 3 and 4. The results clearly demonstrate the missing
values do not demonstrably affect the resultant models, indicating that our models are
robust. Table 2 shows the hyperparameters for the best performing classifiers.

Fig. 3. AUCs of the various models at training

Fig. 4. AUCs of the various models at validation
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Table 2. Parameters giving the best results for the various models.

Classifier Best parameters

Random forest Max depth: 7

svc Kernel: rbf

Linear discriminant Solver: svd

sgd Alpha: 0.01, loss: modified_huber, penalty: l2

7 Discussion and Conclusions

Often patients admitted in CCUs would benefit from being attended by a dietitian. This
can help improve recovery time as well as patient outcomes, resulting in more effective
management of CCU beds which are often at a premium. Smart beds that monitor
various patient physiological measurements allow automatic monitoring of patients,
thus introducing the possibility of using AI-based solutions to automatically identify
patients that would benefit from being referred to dietitians. This would also help reduce
cognitive load on clinical staff as the various patient physiological measurements are
often quite numerous and scattered across different elements of the system, making it
difficult for the clinical staff to manually monitor the measurements.

To this end, we have developed a dashboard that allows clinicians to identify at a
glance what patients should be referred to a dietitian. The dashboard uses an AI-based
approach to identify the patients. We formulate the problem of referring patients to
dietitians as a classification problemwith the various patient physiologicalmeasurements
as inputs to the classifiers. Our investigation shows that four measurements in particular;
feed_vol, oxygen_flow_rate, resp_rate and bmi; are high predictors of the target variable.
This finding is at odds with the established clinical guidelines issued by the NHS Trust
and constitutes new information for clinicians. We also found that after experimenting
with various classification algorithms, an SVC classifier performs the best (AUC: 0.78).

Future directions include transferring the learning from this project to paediatric
patients as well as enhancing the dashboard and undertaking further evaluation of the
models developed during this project.
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Abstract. Fish is one of the most important food sources worldwide and for
people in Nordic countries. For this reason, fish has been widely cultivated, but
aquacultural fish are severely affected by lice, maturity, wounds, and other harmful
factors typically part of agricultural fish, resulting inmillions of fish deaths. Unfor-
tunately, diagnosing injuries and wounds in live salmon fish is difficult. However,
this study uses image-based machine learning approaches to present a wound
detection technique for live farmed salmon fish. As part of this study, we present a
new dataset of 3571 photos of injured and non-wounded fish from the Institute of
MarineResearch’s genuine fish tank.We also propose aConvolutionalNeuralNet-
work tailored for such wound detection with 20 convolutional and five subsequent
dense layers. The model incorporates methods such as dropout, early halting, and
Gaussian noise to avoid overfitting. Compared to the established VGG-16 and
VGG-19 models, the proposed approaches have a validation accuracy of 96.22%.
The model has low 0.0199 and 0.941 false positive and true positive rates, making
it a good candidate for accurate live production.

Keywords: Fish wound detection · Convolutional neural network ·Machine
learning · Salmon fish

1 Introduction

Due to harsh environmental conditions, Nordic Country such as Norway has only 3% of
agricultural lands [1]. Thus, they rely very much on Salmon fish to supply food for every
citizen. Fishing agriculture remains oneof the essential lifelines for the economic survival
of its citizen.As a result, according to reports from theFood andAgricultureOrganization
of United Nations, Norway exports 7% of total world fish export making it second in
the world after Chile [2]. It has annual fish consumption rate per person of 59 kg [3].
The Aquacultural fish effects by diseases such as bacterial infection causing wounds, the
presence ofwater lice, and fishmaturity causing fishwounds [4]. Fish containingwounds
gives a signal about irregularities rising inside the aquaculture. These irregularities can
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lead to fish mortality. In 2019, Norway had a mortality of 52.8 million captive salmon
[5]. Automatic detection of fish containing wounds in a real scenario can help in saving
the ecosystem. The underwater scenario contains oxygen bubbles contamination of dust
particles that can bemisclassified as small wounds, low illumination, etc., makingwound
classification difficult in a live scenario. Also, sometimes wounds are very small, which
can be misclassified as non-wound. The presence of dust particles captured in an image
can be detected as wounds [6].

Machine learning techniques using underwater images have made underwater fish
monitoring easier by analyzing fish behavior, identifying fish species, fish counting, etc.
Some of the recent useful contributions are enlisted by Li, Daoliang [7] and Goodwin
et al. [18]. The presence of labeled datasets has been concluded as one of the major
reasons for this rapid development. Ahmed M. S. et al. [8] has recently proposed an
image-based fish disease detection by performing wound detection utilizing K-Means
clustering and Support Vector Machine (SVM). K-Means clustering is used for image
segmentation and feature extraction. Based upon extracted features SVM classifiers are
trained to detect fish diseases. The system gives an accuracy of 94% with a dataset of
210 fish images. A similar study was performed on fish images to identify Epizootic
Ulcerative Syndrome (EUS) diseases in fish by identifying the wounds in fish [9]. The
study performs edge detection and segmentation technique using canny edge detector and
K-means cluster by segmenting wounds. After segmentation, a histogram of Gradient
(HOG) is used for feature extraction and Nearest Neighbor (K-NN) technique is utilized
for disease classification. The algorithm is applied on dead fish and achieved an accuracy
of 86%.

Carrión uses image-based wound tracking, and assessment techniques on a mouse
with the aim is to replace the laborious manual process of wound measurement. Wound
images are captured at regular intervals. The wound is detected using the YOLO-3
technique, after wound detection its size is analyzed to track the healing process. YOLO-
3 has been demonstrated to be an accurate model for fish detection [19] and fish species
identification [19] but is still not established for wound detection. Earlier techniques
also utilize chemical analysis tests for finding out the diseases in Fish. Sture et al. [10]
utilize 3-D imaging for quality grading of salmon fish. Irregularities in fish such as
deformation and wounds are detected by performing shape analysis and color analysis
utilizing the red channel only. 45 dead fish are utilized for this, among which 16 have
wounds. The proposed study has an accuracy of 90%. Balaban et al. [11] has utilized
2-D imaging in order to identify blood spots in fish. Adaptive thresholding techniques
are utilized in order to find out the threshold value to identify the blood spots in fish. The
study is successfully performed on 10 fish. Pate [12] uses AccuProbe Mycobacterium
gordonae assay and Restriction enzyme analysis of PCR products (PCRRFLP) test in
the identification of fish diseases. The study is performed on 35 fish.

1.1 Drawbacks

In past literature, researchers have used dead fish for wound or disease detection that
too on a smaller dataset sometimes even less than 50 fish. Some of them use complex
3-D cameras on the dead fish. Some of the techniques are also focused on chemical
analysis which is not possible to perform on each fish, especially in a live environment.
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To make things simple and cost-effective 2-D techniques need to be utilized to make
it practically implementable. Earlier techniques utilizing 2-D images have used small
datasets. These techniques are applied on dead fish only, hence such techniques cannot
be utilized for practical implementation. Not much of the work is done in the wound
detection of Salmon fish. There are no dedicated datasets for salmon fish containing
wounds. Hence there is a need to fill this space by creating the datasets which can be
used by other researchers also later.

The objective of this study is to:

1) Prepare a robust dataset of images of live Salmon fish consisting of different kinds
of wounds in an underwater scenario under various lighting conditions.

2) To develop 2-D image-based fish wound detection techniques.
3) The Convolutional Neural Network (CNN) should be strong enough to counter

underwater scenarios and detect fish as a wound or absence of a wound (non-
wounded).

4) Compare the developed CNN model with existing CNN models.

The arrangement of the paper is as follows: Sects. 2 and 3 give a detailed description
of the prepared dataset and the methodology. The outcomes of the proposed models
are discussed in Sect. 4 i.e., results and discussions. Based upon the results the conclu-
sions are drawn in Sect. 5. The simulations are performed using Python 3 utilizing the
TensorFlow library. The proposed model is trained on Tesla v100 GPU.

2 Dataset

The goal of this dataset generation is to include the salmon fish having a different kind of
wounds. The images have been captured from the welfare 2-D camera from aNorwegian
industry known as CreateView1. The cameras are installed in the Live fish tanks of the
Norwegian Institute of Marine Research (IMR), Bergen, Norway as shown in Fig. 1.
As cameras are installed in different fish tanks therefore it has a very limited number of
wounded fish. The images are captured in day and night mode to get the images with
illumination. A total of 125 non-wounded fish images have been captured compared
to 101 wounded fish images. Non-wounded fish images are abundant but to avoid data
imbalance only a limited number of non-wounded fish images are captured.

2.1 Datasets Creation

The datasets contain a total of total 3571 images among which wounded and non-
wounded fish are in a ratio of 45:55. The data are split into 80:20 ratio for training and
validation. A total of 2830 and 741 fish images are used for training and testing respec-
tively. The images are captured in a fish tank under different illumination conditions day
and night to match them up with the practical scenario. The images are captured in a live
fish tank hence acquired images contains dust particles, water bubble, different kind of
wounds from small to large as shown in Fig. 1.

1 http://CreateView.ai.

http://CreateView.ai
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(Fish Tank)
Original Image Cropped Image

Fig. 1. Tank images, captured and cropped fish image from the fishtank

It is visible from the figure that a single image contains a lot of fish containing
wounded and non-wounded fish. In order to train a model wounded fish are cropped
from the images. The figure also shows the variation in image capturing under different
light conditions. The figure shows different kinds of wounds in the image. It can be
observed that some of the fish have very small wounds whereas are the other fish has
a bigger wound. Various light illumination condition makes it harder to identify these
smaller wounds.

Applying the CNNmodel on such a small dataset can’t cook a good result. Thus, the
data generator model has been utilized to generate larger datasets. For data generation
strategies such as Zooming, Vertical and Horizontal flipping, rotation, image cropping,
contrast variation, etc. are utilized. Thus, from one image a total of 15 images are
generated. An example of data generation can be seen in Fig. 2.
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Fig. 2. Example of the data generation

Thegoal of the study is to cover different kinds ofwounds such aswoundsdue to small
skin rupture (Fig. 3 (b)), wounds due to lice attack (Fig. 3 (d)), regular wounds (Fig. 3
(a)) due to fights among themselves. Figure 3 shows some of the wounds undertaken in
the dataset. Whereas Fig. 3(e) shows different lighting conditions.

Fig. 3. (a–d) Shows dataset images of fish with different kinds of wounds
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3 Methodology

After generating and splitting the datasets in test and train images. The model is trained
using a convolutional neural network (CNN). The flow chart of the proposed algorithm
can be seen in Fig. 4. Each block is further explained individually in subsections.

Fig. 4. Flowchart of the proposed model

3.1 Preprocessing

Images are captured underwater day and night under different lighting conditions due to
this the dataset has variations in terms of lightning. It is equally important to eliminate
this contrast variation to make classification more efficient. Histogram equalization is
one such promising technique for contrast stretching. To eliminate the effect of different
illumination, the Contrast limited adaptive histogram equalization (CLAHE) technique
is applied. CLAHE prevents over-amplification of noise unlike traditional histogram
equalization [13]. Previous literature shows that applying CLAHE on underwater RGB
images corrupts the color sense. A better way to perform it is by using the Hue plane
of HSV color space [14]. The RGB image is transformed to HSV color space using
CV2 library. In this study, the Hue plane is taken and CLAHE is applied over it. After
performing histogram equalization the image is again converted to RGB form.

3.2 Convolutional Neural Network Model

The developed CNN model is inspired by the well-known VGG model but specifically
tailored to wound detection in fish. The proposed CNN model consists of 20 convolu-
tional layers followed by one flattening layer and five dense layers unlike VGG 16 and
VGG 19 [15] which contains 16 and 19 layers. The block diagram of the CNNmodel can
be understood from Fig. 5. 20 convolutional layers are divided into five convolutional
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blocks. Each block contains four convolutional layers connected back-to-back followed
by the Max-Polling layer of size 2 × 2. Convolutional block 1,2,3,4 and 5 contains
64,128,256, 512 and 512 number of filters. Each filter is of size 3 × 3. (Refer Fig. 5)
‘Leaky-Relu’ is used here as an activation function. ‘Relu’ function is also used here
but Leaky-Relu performs better and differences in the results are compared later in the
section. ‘Softmax’ function is utilized as an activation function in the last dense layer
i.e., dense layer 5.

Fig. 5. Block diagram of convolutional neural network (CNN) model

To reduce the overfitting dropout of 20% is introduced in every dense layer.A dropout
of 10% is also introduced between the second and third convolutional blocks. Adding a
dense layer in convolutional blocks will have a negative effect on results hence dropout
layer is avoided in a convolutional layer. Training CNN model with Gaussian noise also
reduces overfitting and creates a regularizing effect [16]. For this study Gaussian noise
with a mean of 0.0 and a standard deviation of 0.01 and 0.02 is utilized (refer to Fig. 5).
L1 regularization is also added in the dense layer of CNN to avoid overfitting.

4 Result

The proposed CNN model is applied to the created dataset containing 3571 images of
wounded and non-wounded salmon fish from a live fish tank. The dataset is splitted in a
ratio of 80:20 for training and testing purposes. Fish are cropped from captured images
for dataset creation. As a result, all images are of different sizes. In preprocessing every
input image is resized to 200 × 70 × 3 (width × height × no. of channels). RGB color
space is converted into HSV color space. CLAHE is applied on the Hue plane and again
the image is transformed to RGB color space. It can be observed from Fig. 6 that after
performing CLARE the wounds are distinguishable.

After performing preprocessing, the model is trained in the CNN model explained
earlier. During training model checkpoint is used which continuously monitors the val-
idation accuracy results every iteration. In the case of validation, accuracy is improved
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Fig. 6. Comparative result after applying CLARE on image

compared to the previous accuracy the model is saved and in the next iteration, the vali-
dation accuracy is compared with this save a model. Utilizing this procedure will make
sure that the best model will be stored and can be utilized later to produce the best result.
The CNN model is trained for 125 epochs. Early stopping for 30 epochs is used here so
that the systemwill stop automatically if CNNmodel is unable to improve the validation
accuracy. Adam optimizer [20] is used here with a learning rate of 1e-4 or 0.0001. The
total number of params is 27,366,018 among which 3,712 are non-trainable parameters.
The system takes 15 min to train on Tesla V100 GPU as compared to 10 h. on the laptop
with an intel i5 processor with 8 GB RAM. The graphs for accuracy and loss are plotted
for training and validation datasets which can be seen in Fig. 7.

Fig. 7. Shows the accuracy and loss invalidation and training dataset against 125 epochs

The system has a training accuracy of 99.32 in the training dataset containing 2830
images. There are a total of 328 and 413 wounded and non-wounded images in the
validation dataset. The proposed model has a validation accuracy of 96.22%Based upon
the obtained results the confusion matrix is plotted which can be seen in Fig. 8. It can
be observed that only 8 wounded fish are misclassified as non-wounded fish whereas
20 non-wounded fish are classified as wounded fish. False-positive rate (FPR) and true
positive rate (TPR) is determined by using Eq. (1) and (2), respectively [17].

FPR = FP

FP + TN
(1)

TPR = TP

FN + TP
(2)
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where FP and TN are false positives and true negatives, respectively, TP and FN are
True positives and false negatives. The result shows that model has a False positive of
8 images and a true negative of 393 images. Similarly, the model has the true positive
and false negative of 320 and 20 respectively. The False-positive and true positive rate
comes out to be 0.0199 and 0.058 respectively.

Fig. 8. Shows the confusion metrics of the result

Table 1. Comparison of proposed model with other models

Model utilized Validation accuracy FPR TPR

Proposed CNN model
(with Leaky-Relu)

96.22% 0.0199 0.941

Proposed CNN model
(with Relu)

93.69% 0.073 0.926

VGG-16 91.2% 0.090 0.908

VGG-19 92.81% 0.078 0.917

Table 1 shows the comparison of the proposed model with different models. The
proposed CNNmodel (With Leaky-Relu) gives the validation accuracy of 96.22% com-
pared to 91.2% and 92.81% for VGG-16 and VGG-19 models, respectively. The CNN
model also gives better FPR and TPR of 0.019 and 0.941 when compared with the VGG-
16 and VGG-19 models. The CNN model with ‘relu’ functions also gives an accuracy
of 93.69%. Although accuracy is increased when ‘Leaky-Relu’ is used.

It is important to analyze the misclassification results also. It can be seen from
Fig. 9(a) which is misclassified as non-wounded fish that the wound is almost healed
and looks like skin deformation. Fig. 9 (b) and (c) are misclassified as wounded fish,



148 A. Gupta et al.

affected by high illumination in small parts which can be misunderstood as wounds by
the CNN model.

Fig. 9. (a–c) Misclassified images of fish

5 Conclusion

The Aquacultural fish are affected by wounds often due to lice, maturity, fighting with
other fish, causing fish mortality and significant economic losses in millions. Identi-
fying such injured fish is challenging but could act as a monitoring parameter for the
aquaculture ecosystem.

This study proposes a salmon fish wound detection technique using image-based
machine learning techniques. The datasets required formakingwounds detectionmodels
for salmon fish have previously not been present but is published as part of this study.
The new dataset contains 3571 images of wounded and nonwounded fish in a ratio of
45:55, captured from a real fish tank from the Institute of Marine Research.

We present a CNNmodel, layers to detect the fishwithwoundswith 20 convolutional
and five dense layers, leaky-relu activation, and dropout and gaussian noise layer in the
CNN model to avoid overfitting. The model is trained on Tesla V100 GPU.

The proposed CNN model gives the validation accuracy of 96.22%, which is sig-
nificantly higher than the to 91.2% and 92.81% for VGG-16 and VGG-19 models,
respectively. The false-positive and true positive rates are 0.0199 and 0.941. The current
model can only detect the wounded fish but cannot localize the wound in fish, but it is
part of our future work.

Currently the proposed methodology can only classify the wound and non-wounded
fish, but the system cannot locate the wound in fish. Hence locating wounds in fish using
object detection techniques can be seen as future work.
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Abstract. Infrastructures are often subjected to harsh loading scenarios and
severe environmental conditions, not anticipated during design, which result in
their long-term structural deterioration. Thus, monitoring and maintaining the
urban infrastructure is critical for the resilience. In this research, the authors present
a modeling approach, for the prediction of future strain values in aDutch Highway
Bridge, based on eleven Deep Learning (DL) algorithms. Previous strain measure-
ments were used as input. The performance of the developed Machine Learning
model was evaluated using the Root Mean Square Error (RMSE), Mean Absolute
Error (MAE) and R square (R2) indices. The Fast Fourier Transform (FFT) was
employed for the pre-processing of the involved time series. The obtained results
are extremely promising for predicting the performance under design loads. All
algorithms have proven their capacity to successfully predict the fluctuations of
strain values. The authorities responsible for the function and management of the
bridge, can feel confident to rely on these models in order to schedule in time
proper maintenance works.

Keywords: Deep learning · Univariate · Autoregression · Strain · Prediction ·
Bridge · Infrastructure

1 Introduction

Urban Infrastructures (UIN) such as public buildings (e.g. hospitals, schools), transport
hubs, pipelines, transport assets (e.g. highways, bridges), are built to withstand not only
extreme weather and environmental conditions but also human induced stressors [19,
47]. In fact, their lifetime is limited yet desired to expand. In the long run, catastrophic
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events or cumulative phenomena aggravate and wear down the infrastructures over time,
and often the safety or functionality level is decreased, therefor repair or strengthening
is decided. Especially transport assets, such as bridges, need to be frequently monitored
for the undisrupted traffic flow and for assessment of the risk level [18, 48, 49]. In cases
that retrofitting measures are applied, the assets can be shut down during works, with
great impact in the economic activities [9].

It is crucial to model the structural integrity of such infrastructure assets, over time.
The recent development in Structural Health Monitoring (SHM) techniques, the rapidly
decreasing cost for sensors anddata collection-storagedevices, haveofferedmore sophis-
ticated hardware, software, and data storage (local or cloud) solutions. [16, 50], SHM
systems are employed to continuously monitor the actual operation status of critical
infrastructure, in various domains, (e.g. in civil engineering and aviation). More and
more, sensor networks, consisting of multiple sensor types are being employed, and
large quantities of data are gathered [7, 51]. Most of the SHM tools, detect damages and
the degradation of physical properties, such as geometry changes, stiffness or natural
period [1, 52]. These fundamental changes can have serious effect on important attributes
(e.g. response frequencies, mode shapes, and modal damping) [2]. However, in real-life,
the transportation related features are also subject to a variety of stressors natural and
human induced hazards and events, such as traffic level and temperature [3, 4]. In most
studies, the laboratory tests are considering systems with simple structure, rather than
cases similar to the actual operating environment [10]. In the vast majority of works,
the environmental conditions are considered unchanged whereas natural hazards, such
as catastrophic events e.g. earthquakes, floods, wildfire, or human induced hazards, e.g.
terror, fire, collision, are studied independently or in sequence, whereas a study with the
combination of such is missing.

In this research effort, the authors are using a public dataset, derived from a large
Dutch monitoring project, known as the InfraWatch [9, 53]. The data was obtained from
a sensor network installed on a highway bridge in August 2008, during its maintenance,
after 40 years of service. The network is comprised of 145 sensors that measure different
features, related to the condition of the bridge. These sensors include strain gauges
(measuring horizontal strain on various locations) vibration sensors, and thermometers
(to measure both the air and structure temperature) [5]. Moreover, it is equipped with
a weather station and a video-camera [13]. The objective of this paper is the reliable
prediction of future strain values under expected design traffic and operational loads.
For this purpose, the deployment of autoregressive models using Deep Learning (DL)
techniques was employed. The dataset consists of a timeseries acquired from the strain
sensor. For the first time in the literature, the development of autoregressive models
employing DL algorithms is attempted on this dataset.

The paper is organized in the following five Sections. Section 2 describes the area
of research and pinpoints some notable research efforts. Section 3 describes the dataset,
its features and the pre-processing of the input. Section 4 provides the architecture of
the proposed models and the evaluation method. Section 5 presents the SHM results and
the evaluation of the model. Finally, Sect. 6 summarizes the main conclusions.
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2 Area of Research – Literature Review

This study uses the available public data from the InfraWatch project [53]. The
InfraWatch project investigates a highway bridge in the Netherlands named Hollandse
Brug [9, 11, 15]. The bridge is the oldest bridge to the Flevopolder, is located on A6
motorway and connects the east side of Gooimeer with the west side of IJmeer as Fig. 1
captures [9, 11, 15].

Fig. 1. The Hollandse Brug bridge [11]

The Hollandse Brug Bridge is in function since June of 1969 [9, 11, 15]. In 1993 and
1999 the bridge was widened to the south and north as the traffic increased and it was
considered overloaded back in 1980 [11]. In April of 2007 the bridge’s safety level was
considered low and therefore bridge shutdown (27 April 2007) [9, 15]. Immediately the
rehabilitation of the bridge began in August of 2007 and was completed in 2009 [9, 11,
15]. During this period a SHM system was installed [9, 11, 15].

The SHM system consists of 145 different sensors that are located in different parts
of the bridge [9, 15, 53]. Specifically, there are a) 34 vibration sensors that measure the
vertical movement of the bottom of the road-deck as well as the supporting columns
(geo-phones), b) 16 strain-gauges embedded in the concrete that measure the horizontal
longitudinal stress, and an additional 34 gauges attached to the outside, c) 28 strain-
gauges embedded in the concrete that measure horizontal stress perpendicular to the
first 16 strain-gauges, and an additional 13 gauges attached to the outside and d) 10
thermometers embedded in the concrete, and 10 attached on the outside [9, 15, 53]. Also,
there is a weather station that gathers respective data and a video camera that provides
a continuous video stream of the actual traffic. Additionally, there were also plans to
monitor the adjacent railway bridge. The data that are collected from the SHM system
at a frequency of 100 Hz, are related to traffic loads and the environmental conditions
of the bridge. [9, 15]. Overall, it was estimated that 56 kB of data/sec were stored. This
amounts to about 5 GB per day, and over 1.7 TB on a yearly basis. The video camera
produced a data stream in a similar range, with 46 kB/s of compressed video, for a typical
daytime situation. The data available for analysis, consisted of short snapshots of strain



Autoregressive Deep Learning Models for Bridge Strain Prediction 153

and videos, which were manually transported from the site to the monitoring location
(typically an office environment in Leiden University) [15].

There are several publications in the literature that exploited data from this mainte-
nance project. In 2014, Miao et al. [5], present a baseline correction method to deal with
the baseline of the strain signals, collected from a sensor network installed on Hollandse
Brug. In 2012, Vespier et al. [8], proposed a combination of the Minimum Description
Length (MDL) feature selection strategy, with Convolutional techniques, for the decom-
position of a time series on artificial data related to the aforementioned Bridge. In 2010,
Koopman et al. [17], introduced a pattern selection method, considering collections of
patterns discovered in timeseries obtained from the Hollandse Brug. This is an optimiza-
tion approach, which captures the dependencies between the different time-series, while
minimizing potential redundancies. Important attempts to further analyze the Hollandse
Brug time series, were published by Vespier et al. (2012), Miao et al. (2013), Miao et al.
(2014) and Vespier et al. (2011) [6, 7, 13, 14].

3 Dataset

As it was already mentioned, the dataset used in this research effort, is related to mea-
surements obtained by a strain sensor, attached on theHollandse Brug, a Dutch Highway
Bridge. This specific sensor collects data at a frequency of 10 Hz. The dataset deals with
finite sequences of numerical measurements (samples), collected by observing some
properties of the system and stored as timeseries [6]. A timeseries of length n is an
ordered sequence of values x = x[1],…, x[n] of finite precision. A subsequence x[a: b]
of x is defined as follows:

x[a : b] = (x[a], x[a + 1], . . . , x[b]), 1 ≤ a < b ≤ n (1)

More specifically, the dataset comprises of 10,280,939 strain measurements over a
period of 12 days, from Saturday 2008/11/15 to Wednesday 2008/11/26. The timeseries
is presented in the following Fig. 2.
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Fig. 2. The 10,280,939 strain values from 2008/11/15 to 2008/11/26

The dataset is publicly available and it can be found at the following website: https://
infrawatch.liacs.nl/.

3.1 Dataset Preprocessing

As it has already been mentioned, the sensor collects data at frequency of 10 Hz. This
means that there 10 values are obtained for every second. The measurements are very
dense. In the cases of Infrastructures’ modeling, it does not makemuch sense to predict a
feature’s value for every next second. The forecast, should be usually related to specific
most interesting daily temporal moments, under the worst (most critical) conditions,
such as traffic jams, or very high and very low temperature conditions. The variable data
segmentation was performed by using Fast Fourier Transformation (FFT).

Fourier analysis converts a signal from its original domain (often time or space) to
a representation in the frequency domain and vice versa. FFT is a specific implemen-
tation that computes the Discrete Fourier Transformation (DFT) of a sequence. It is an
extremely powerful mathematical tool that allows to observe the obtained signals in a
different domain, inside which several difficult problems become very simple to analyse
[18].

The DFT is obtained by decomposing a sequence of values into components of
different frequencies. Any periodic function g(x) integrable in the domain D = [−π, π]
can be written as an infinite sum of sine and cosine as follows:

g(x) =
∑∞

k=−∞τkejkx (1)

τk = 1

2π

∫

D
g(x)e−jkxdx (2)

https://infrawatch.liacs.nl/
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where eιθ = cos(θ) + jsin(θ). The idea that a function can be broken down into
its constituent frequencies is a powerful one and forms the backbone of the Fourier
transformation [19].

An FFT rapidly computes such transformations by factorizing the DFTmatrix into a
product of sparse (mostly zero) factors. As a result, it manages to reduce the complexity
of computing the DFT from O (N2), which arises if one simply applies the definition of
DFT, to O(N.logN), where N is the size of data [20]. FFT was performed on the dataset
as it is presented in Fig. 3 and the FFT timeseries is presented in Fig. 4.

Fig. 3. Applying FFT for window length of 3,600 s (36,000 Hz)

Fig. 4. Strain values after FFT is applied

As it can be seen from Fig. 4, the processed dataset still captures the flow of strain
values, without much deviation. Usually in such time series there is almost always
seasonality or trending, that makes the timeseries non-stationary [21]. In such cases one
can use stationarity tests such as the Augmented Dickey–Fuller (ADF) Test [22] or the
Kwiatkowski-Phillips-Schmidt-Shin (KPSS) Test [23]. If the timeseries proves to be non-
stationary, then some stepsmust be taken tomake it stationary, such as theFirstDifference
method [24]. However, the biggest advantage of theDeep Learning algorithms versus the
Shallow Machine Learning (SML) ones, or versus classicalmethodologies for timeseries
such as the Autoregressive Integrated Moving Average (ARIMA) [25] is that DL can
recognize the patterns and the seasonality of the timeseries without doing any additional
processing in the data [26]. The preprocessing of the dataset was performed in Matlab
with code written from scratch.
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4 Algorithmic Approaches

After completion of the data processing, the obtained dataset consisted of a timeseries
of 285 strain values. The goal of this research effort was to predict the future values
of the strain, based on previous values. It is of major importance to predict the high
strain values’ trend, when the bridge has accepted high levels of stress and it has to
be maintained, or the bridge responders have to schedule any other action to ensure its
resilience overtime.

Thus, for the purpose of this research, the dataset was fed in 11 different Machine
Learning algorithms, namely: Multi-Layer Perceptron (MLP), Simple Recurrent Neural
Network (RNN), Vanilla Long-Short Term Memory (LSTM), Stacked LSTM, Bidirectional
LSTM (Bi-LSTM), Stacked Bi-LSTM, Gated Recurrent Unit, (GRU), Convolution Neural
Network (CNN)-LSTM, Dilated Casual CNN (DC-CNN), SeriesNet [27] and WaveNet
[28]. Due to the limited extent of the manuscript, a brief description of the algorithms
will be provided. The detailed description and the mathematical foundations of the
algorithms, can be studied by a more detailed search in the literature.

4.1 Machine Learning - Deep Learning Algorithms

MLP is a class of feedforward Artificial Neural Network (ANN). A MLP consists of
at least three layers of nodes: An input layer, one or at most two hidden layers and
an output layer. Except for the input nodes, each node is a neuron that uses a nonlinear
activation function.MLPutilizes a supervised learning technique called backpropagation
for training [29].

Simple RNN is also a class of ANN, where connections between nodes form a
directed or undirected graph, along a temporal sequence. This allows temporal dynamic
behavior. Derived from feedforward neural networks, RNNs can use their internal state
(memory) to process variable length sequences of inputs. Their output in each phase,
depends on the output computed in the previous state. The same task is recurrently
performed for every element of the sequence [30].

LSTM is a class of RNN. They deal with the backpropagated gradients’ problem that
Simple RNNs suffer. A typical LSTM unit is composed of three gates, an input gate, an
output gate, and a forget gate, which regulate information into and out of the memory
cell. The cell remembers values over arbitrary time intervals, and the three gates regulate
the flow of information in and out of the cell. [31]. Vanilla LSTM is an LSTM model
that has a single hidden layer of LSTM units, apart from the input and output layers [32].
Stacked LSTM comprises of multiple hidden layers stacked one on top of another [34].
Bi-LSTM is and LSTM that learns the input sequence both forward and backwards and
concatenate both interpretations [33]. Stack Bi-LSTM Comprises of multiple hidden
Bi-LSTM layers stacked one on top of another [35].

GRU is a Gating mechanism in RNN. GRU also deals with the vanishing gradient
problem, just like the LSTM do. GRU has fewer parameters than LSTM and it has a
simpler architecture. There are primarily two gates in a GRU as opposed to three gates
in an LSTM cell. The first gate is the Reset gate and the other one is the update gate
[36].
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A CNN is defined as a neural network that extracts features at a higher resolution,
and then converts them into more complex features at a coarser resolution. Therefore,
CNN is based on three types of layers, namely: The Convolutional, the Pooling and
the Fully-Connected ones. When these layers are stacked, a CNN architecture has been
formed [37]. A CNN model can be used in a hybrid model with an LSTM backend
where the CNN is used to interpret subsequences of input that together are provided as a
sequence to an LSTMmodel to interpret (CNN-LSTM) [38]. Causal CNN (C-CNN) are
a type of CNN used for temporal data. [39]. A DC-CNN is a C-CNN where the filter is
applied over an area larger than its length, by skipping input values with a certain step.
A DC-CNN effectively allows the network to have very large receptive fields with just
a few layers [40].

SeriesNet was developed by Shen et al. in 2018 and it consists of two networks. The
LSTM network aims to learn holistic features and to reduce dimensionality of multi-
conditional data, and the dilated causal convolution network aims to learn different time
intervals. This model can learn multi-range and multi-level features from time series
data. It adopts residual learning and batch normalization to improve generalization [27].

WaveNet was developed by Oord et al. in 2016 and it is a deep generative model. It is
autoregressive and combines causal filters with DC-CNN (without Maxpooling Layers)
to allow their receptive fields to grow exponentially with depth, which is important to
model the long-range temporal dependencies in audio signals [28].

4.2 Evaluation of Deep Learning Algorithms

The three typical evaluation indices presented in Table 1, were used for the evaluation
of the aforementioned DL algorithms.

Table 1. Calculated indices for the evaluation of the binary classification approach

Index Abbreviation Calculation

Root mean square error RMSE

√∑N
i=1 (yi−ŷi)2

N

Mean absolute error MAE 1
N

∑N
i=1

∣∣yi − ŷi
∣∣

R square R2 1 −
∑

i(yi−ŷi)
2

∑
i(yi−y)2

It should be clarified that yi is the actual value, ŷi is the predicted value, y is the
mean value, and N is the total number of the instances. The Coefficient of determination
R2 is a statistical measure that represents the proportion of the variance for a dependent
variable that is explained by an independent variable or variables, in a regression model.
It takes values in the closed interval [0, 1] and a higher value indicates a better fit [41].
Root-mean-square error (RMSE) is a measure of the differences between the values of
the sample or population that were predicted by a model and the actual observed ones.
It is an absolute measure of the goodness for the fit. It offers a real number to compare
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against other model results [42]. The Mean Average Error (MAE) measures the average
magnitude of the errors in a set of forecasts, without considering their direction. The
RMSE gives larger penalization to higher prediction errors by square it whileMAE treats
all errors the same [42].

5 Evaluation and Experimental Results

An original, case specific Program, was developed in Python Language, in order to
perform the training-testing processes of the employed algorithms and their respective
evaluation. The Keras [43] and Tensorflow [44] libraries were employed to build the
models’ architectures. The dataset was split in Training Data (65%), Validation Data
(15%) and Testing Data (20%). Training of all models was performed for 200 epochs.
Based on the literature, the RMSE was used as the Loss Function, the Adam Optimizer
was used to Optimize the models and the Rectified Linear Unit (ReLU) was employed
as the Activation Function. The learning rate was set at a = 0.001. The algorithms were
trained for 10 lags. The 10 previous measurements, were always considered for the
prediction of the next measurement. Thus, the dimensions of the vectors were 1 × 10 (1
instance, 10 previous values). The values of all hyperparameters were chosen through
a trial and error process. Table 2 describes the architecture of each model. Figure 5,
presents a comparison between the true values vs the predicted ones for all algorithms.

Table 2. Architectures of the proposed algorithms

Model Layers

Vanilla LSTM lstm (500 nodes)

Bi-LSTM bidirectional lstm (200 nodes)

Stacked LSTM lstm (500 nodes), lstm (250 nodes)

Stacked Bi-LSTM bidirectional lstm (50 nodes), bidirectional lstm (50 nodes)

RNN simple_rnn (400 nodes)

GRU gru (400 nodes)

MLP dense (500 nodes), dense (250 nodes), dense (50 nodes)

CNN-LSTM
Convolution 1 − D (filters, kernel, stride = 32, 2, 1)

Maxpooling(Maxpool = 2)

}
x3

Flatten, lstm (50 nodes)

DC-CNN Convolution 1-D (filters, kernel, stride = 32,2,1) x6, dense (64 nodes),
dense (32 nodes)

SeriesNet [27]

WaveNet [28]

*The dimensions of the input Vectors for all algorithms is 1 × 10
*The last layer (output) of each algorithm is a Dense Layer with one node.
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Table 3 presents the performance indices RMSE, MAE and R2 for each algorithm in the
Testing phase.

The deviations of the predicted values from the actual ones, are presented in Fig. 5
below. They can be due to many things.

Table 3. Evaluation indices for HEDL-IDS and the machine learning algorithms

Model RMSE MAE R2

Vanilla LSTM 1.369 0.917 0.880

Bi-LSTM 1.413 0.864 0.871

Stacked LSTM 4.350 3.770 0.549

Stacked Bi-LSTM 3.380 2.701 0.570

RNN 2.611 1.874 0.373

GRU 1.835 1.101 0.774

MLP 1.807 1.304 0.805

CNN-LSTM 1568 1.003 0.842

DC-CNN 1.496 0.983 0.856

SeriesNet 1.769 1.098 0.793

WaveNet 3.138 2.441 0.093

As Fig. 5 indicates, although no preprocessing has been done for the trend or sea-
sonality of the time series, all models can successfully predict the fluctuations of the
strain, which was the main objective of this research. The diagrams clearly reveal the
temporal points corresponding to high or low strain, regardless the model employed by
the maintenance responders. Table 3 proves that the models employing Long-Short Term
Memory (LSTM) Layers, respond better to the nature of the problem, as it was expected
from the literature [45, 46]. More specifically, the models comprising of a single LSTM
layer (Vanilla and Bi-LSTM) can predict the values with greater accuracy. The more
complex approaches have been proved to be less efficient (e.g. Stacked and WaveNet
models). On the other hand, RNN have completely failed to adapt to the time series.
SeriesNet, GRU and MLP struggle, but their prediction is decent enough. Last but not
least, the hybrid models with CNN show promising results. The poor performance of
Wavenet and Stacked LSTM is surprising. And so is the good performance of the MLP
that does not include explicitly any memory/recurrent layer. Perhaps the most complex
models would benefit from more data.

Overall, the models predict the trend of future strain values, with high accuracy.
Especially, as it can be seen in Table 3, the values of the performance indices related to
the cases of Vanilla LSTM and Bi-LSTM, are very high (R2 = 0.880 and R2 = 0.871
respectively).
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Fig. 5. True (black) Strain vs Predicted (blue for test and red for train) strain values for vanilla
LSTM (5a), Bi-LSTM (5b), stacked LSTM (5c), stacked Bi-LSTM (5d), RNN (5e), GRU (5f),
MLP (5g), CNN-LSTM (5h), DC-CNN (5i), SeriesNet (5j), WaveNet (5k). (Color figure online)
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6 Conclusions and Future Work

This paper deals with a univariate autoregression problem. It aims to predict the future
strain values of the Hollandse Brug, a Dutch Highway Bridge by considering the 10
previous strain measurements. Fast Fourier Transformation was used for the case of
signal processing. Eleven Machine Learning and Deep Learning algorithms have been
employed to cope with the autoregression problem. The results are promising, as all
algorithms seem to be able to predict the fluctuation of strain values (to a different
extend). RMSE, MAE and R2 were used as the evaluation indices. The values of the
aforementioned indices were high and adequate for the majority of the models. The
Vanilla LSTMand theBi-LSTMhave proved to respond better for the specific dataset and
problem. The predicted values of all models have a reasonable, small level of deviation
from the actual ones, as it would be expected in all similar time series research efforts.
This is due to the fact that according to the literature, strain values at any temporal
moment, not only depend on previous values, but on other factors such as traffic loads,
structural integrity of the asset and climatic conditions.

Despite the excellent agreement of a SHM data and predictions, a future extension
of this research is orientated to find a better number of time lags that increases the
performance of the model. Additionally, a more comprehensive study can be done on
the window length of the FFT, followed by a better fine tuning of the hyperparame-
ters’ values. A significant improvement of the developed models would be enhanced
by accounting for more extensive datasets or diverse input data, e.g. temperature, traffic
loads, in order to make the model a practical and useful prediction tool for designers and
operators and for the management of the asset.
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Abstract. Nowadays, drawing up plans to control and manage infras-
tructural assets has become one of the most important challenges in
most developed countries. The latter must cope with issues relating to
the aging of their infrastructures, which are getting towards the end of
their useful life. This study proposes an automatic approach for tun-
nel defects classification. Starting from non-destructive investigations
using Ground Penetrating Radar (GPR), the deep convolutional neu-
ral networks (CNNs), with and without the application of bidimensional
Fourier Transform (2D FT), have allowed the classification of several
structural defects (e.g., crack, voids, anomaly, etc.) with high accuracy.
The proposed methodology eliminates the need for human interpreta-
tion of Ground Penetrating Radar profiles and the use of integrative
investigations (e.g., video-endoscopy, core drilling, jacking, and pull-out
testing) for defects classification. As a result, it has significant speed and
reliability that make it both time and cost-efficient.

Keywords: Road tunnels · Fourier transform · Convolutional neural
network · Structural health monitoring · Ground penetrating radar

1 Introduction

The development of automated systems for current structural state of the infras-
tructural heritage is critical for the implementation of cost-effective maintenance
plans that ensure a high level of safety [1–7]. In developed countries, the extent
of the infrastructure asset in developed countries that need to be controlled
is significant. As a result, developing robust, reliable, and timely structural
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health monitoring (SHM) programs are especially important for high-impact
structures, like bridges [8] and underground structures [9–11]. Focusing on tun-
nels, the number of them in the proximity of their design life end, and so at
high risk, is extremely high. Thus, degradation phenomena and structural dam-
ages may have irreversibly changed the original structural characteristics and
severe consequences may occur [12]. Consequently, systems that rely exclusively
on traditional routine inspections are not sufficient and effective [13]. Since they
are based on human judgment and require specialist personnel, who is frequently
exposed to dangerous environments, they are time-consuming and expensive [14].
Therefore, image recognition-based structural health monitoring (SHM) algo-
rithms are frequently leveraged to detect the presence and nature of potential
infrastructural deterioration [15]. The use of deep convolutional neural networks
(CNNs) that exploit transfer learning processes has been proven effective in
many applications [16]. It’s really interesting how much support they can provide
in identifying and classifying defects that can be extracted from the results of
non-destructive structural testing (NDT) techniques. Among the most relevant
non-destructive methods, for the quantity and quality of information that can
be obtained, emerges the Ground Penetrating Radar (GPR). It overcomes the
limitations of visual inspection techniques that are only adapted to detect sur-
face defects [10]. Nevertheless, since GPR data is typically scaled and manually
interpreted or stored and subsequently processed off-line, its analysis is generally
computationally costly [17]. This paper presents the results of a proposed multi-
level methodology for defect classification starting from GPR profiles, with and
without the use of the 2D Fourier Transform as a pre-processing operation. The
obtained outcomes are promising and encourage further developments.

2 Monitoring Road Tunnels with GPR

Among the several non-destructive testing (NDT) methods [18] for defect char-
acterization in engineering materials, the Ground Penetrating Radar has been
chosen [19]. Due to the ease of use and transportation [20] and to its penetra-
tion capacity, such an instrument turned out to be a valuable tool for damage
detection, localization, and classification. GPR is a geophysical technique [21]
that involves transmitting high-frequency electromagnetic wave impulses into
the investigated material using an antenna with a frequency of 10 to 2600 MHz
MHz. The propagation of such an impulse is influenced by the dielectric char-
acteristics of the material. The GPR campaign has focalized on Italian tunnels
most dated between 1960s s and 1980s.s. Two types of GPR have been used in
such campaigns. The first uses a dual-frequency antenna, the second involves
a high-frequency one. The technical characteristics are shown in the following
Table 1 and 2. GPR profiles have a vertical axis that shows the depth of the
examined thickness and a horizontal axis that indicates the progressive distance
from the structure’s beginning. In the investigation campaign, each GPR pro-
file was interpreted by specialized personnel. An example of a GPR profile with
defect interpretation is shown in the Fig. 1.
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Table 1. Technical characteristics of GPR with dual frequency antenna.

GPR with dual frequency antenna features Value

Minimum number of channels 4

Pulse repetition frequency (kHz) 400

Range (ns) 0–9999

Min. number of scans (1/s) 400

Voltage (V) 12

Primary dual-frequency antenna (MHz) 400–900

Secondary dual-frequency antenna (MHz) 200–600

Table 2. Technical characteristics of GPR with high-frequency antenna.

GPR high-frequency antenna features Value

Minimum number of channels 4

Pulse repetition frequency (kHz) 400

Range (ns) 0–9999

Min. number of scans (1/s) 400

Voltage (V) 12

High-frequency antenna (GHz) ≥2

Fig. 1. Two examples of a GPR profile with defect patterns interpretation by human
experts.

3 Two Dimensional Fourier Transform for Image
Processing

The Fourier Transform (FT) is one of the most powerful tools for signal process-
ing which provides a decomposition of a signal into its fundamental components.
Moreover, it performs a domain mapping by changing the representation of the
problem by passing from the input (spatial or time) domain to output (Fourier
or frequency) domain. For continuous phenomena, the FT expresses a signal as
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an infinite sum of harmonics characterized by different frequencies and denoting
the frequency content of each one. In real-world, even with the most sophisti-
cated instrumentation, data are collected discretely through a sampling process.
The sampling or Nyquist-Shannon theorem states that any continuous signal
can be uniquely reconstructed in a reliable way starting from its samples when
the sampling frequency is two times the Nyquist frequency, which represents
the highest signal representable frequency [22]. Thus, for discrete signals, the
Discrete version of the FT (DFT) has been developed to deal with real-world
sampled signals.

In general, a digital image is represented by a matrix/tensor of pixels, where
each pixel contains certain values. An 8-bit precision gray-scale images is a matrix
in which each pixel can assume an integer value between 0 and 255. On the other
hand, with a red-green-blue (RGB) image, the data are expressed by a tensor
with a depth-size of three, in which each pixel is represented by three bytes since
each color channel can assume integer values between 0 to 255 [23]. Without loss
of generality, an image can be interpreted as two-dimensional signals of pixel
values by looking to vertical and horizontal directions [24]. Therefore, the FT
can be adopted to decompose a 2D discrete-space signal (digital image) into
its main sinusoidal components. Due to the sampling frequency, only a certain
number of harmonics is obtained. However, it must be sufficient to fully describe
the information contained in the image [25]. Considering a digital image in the
spatial domain A of size n × m with components ars, with 0 ≤ r ≤ n − 1,
0 ≤ s ≤ m − 1, the discrete 2D-FT (2D-DFT) is a matrix F in the Fourier
domain of size n × m with components [23]:

f(k, l) =
n−1∑

r=0

m−1∑

s=0

a(r, s)e−2πi( kr
m + ls

n ) (1)

where: 0 ≤ k ≤ n − 1, 0 ≤ l ≤ m − 1. The 2D-FT, in practice, performs a sum
of the products of the spatial image input with the sinusoidal basis functions,
expressed in complex exponential form. The term f(0, 0) denotes the direct cur-
rent (DC) component which is the average brightness of the input image, whereas
the last realization f(n− 1,m− 1) corresponds to the highest frequency compo-
nent [25]. The inverse 2D-FT (2D-IDFT) is defined as:

a(r, s) =
1

n · m
n−1∑

k=0

m−1∑

l=0

f(k, l)e2πi( kr
m + ls

n ) (2)

To lower the computational effort, it is possible to demonstrate that the 2D-
DFT can be computed as a series of 2n one-dimensional FT [25], which leads to
a computational complexity of O(n2). Fast Fourier formulations (2D-FFT) have
been developed in order to further reduce the complexity to O(n log2(n)) [25].
The FT operation delivers a complex matrix which can be displayed in terms of
real and imaginary parts, or, usually, in terms of magnitude and phase. Since
most of the information are contained into the magnitude, the phase is not con-
sidered in many applications. However, if it were necessary to reconstruct again
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the original image with the 2D-IDFT, the phase information would be strictly
required in order to avoid corrupted image reconstruction [25]. Since the mag-
nitude may present very scattered values comparing the largest DC component
with respect to the other frequencies, a logarithmic transformation is usually
applied to enhance the information contained in low-frequency components:

f̃(k, l) = c log(1 + |Mk,l|) (3)

where c is a scaling factor set to unity in the present study, and

Mk,l =
√

Re(f(k, l))2 + Im(f(k, l))2 (4)

is the magnitude for each pixel in the frequency domain. Among the many useful
properties of the FT, the most important in the present case is related to the
convolution property: the convolution operation in the input domain becomes a
simple multiplication in the Fourier domain. In image processing, digital filters
can be used to smooth the image, by suppressing high frequencies in the image,
or to detect edges by removing the low frequencies [25]. These operations are
accomplished by a filter kernel function h(r, s) which slides on the image and
computes a correlation between the kernel receptive field and the input image:
g(r, s) = h(r, s) ∗ a(r, s). Specifically, the convolution is a correlation operation
acting with a flipped kernel h(−r,−s). Throughout the convolution property,
the above-mentioned computation, which is the core of the convolutional neural
networks (CNN), can be performed more efficiently in the frequency domain.

In the present work, the 2D-FFT has been adopted to perform a pre-
processing of the road tunnel GPR linings profiles. This may help to compress
data, maintaining the geometric structure of the starting digital image. The 2D-
FFT identifies the vertical and horizontal patterns in the input image, preserving
information of such alignments in the most dominant frequency components in
the Fourier domain. Furthermore, as evidenced in Fig. 2, the 2D-FFT allows
removing horizontal periodic components, typical of the GPR profiles in the
depth direction. In Fig. 2, two illustrative examples have been depicted to high-
light the effects of the 2D-FFT pre-processing on the road tunnels GPR profiles.

4 Methodology

The dataset considered in the current study comes from tunnel lining defects
classification concerned structures dating from most 1960s s to 1980s.s. Specifi-
cally, after the human defect recognition, the entire GPR profiles were cut with a
constant step of 5.00 m long along the horizontal axis. In this way, sample images
were obtained for classification task. These samples have been labeled according
to the human experts defect-recognition phase. To avoid that some defects were
placed across two different images, the cutting step was occasionally manually
altered to provide samples which allowed for a more clear classification.
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Fig. 2. Two examples of 2D-FFT pre-processing of road tunnels GPR profiles. (a) and
(c): samples extracted from the entire GPR profile; (b) and (d): 2D-FFT magnitude
pre-processed images.

4.1 Multi-level Defect Classification

The classification has been performed in a hierarchical multi-level procedure.
As depicted in Fig. 3, this procedure allowed to perform a more detailed clas-
sification of the defect. Based on the structure of the hierarchical classification
tree, 7 models were trained. Each of them performs a binary classification task.
Following in depth the tree depicted in Fig. 3, the total number of available sam-
ples for each level gradually decreases. Moreover, since each class presents an
unbalanced number of images, in order to train a good classification model, a
balanced approach was forced by the class with the minimum number of samples.
To accomplish the classification tasks, a deep learning model has been trained
based on convolutional neural networks, discussed in the following section.

4.2 Convolutional Neural Network: ResNet50

Convolutional neural networks (CNN) algorithms are one of the most used deep
learning techniques capable of solving categorization problems based on image
recognition. To solve this kind of task, ResNet-50 was trained to detect structural
states of tunnels lining through the transfer learning approach. Indeed, such net-
works are pre-trained on the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) dataset based on 1,281,167 training, 50,000 validation, and 100,000
test images [26,27]. The chosen CNN was used within the MATLAB2021a pro-
gramming environment [28]. Its architecture is composed of 177 layers of which
49 are convolutional and 1 is fully connected and it is designed in 2015 by He
et al. [29]. It is defined as a “feed-forward” neural network with “residual/skip
connections” that leverages Rectified Linear Units (ReLu) and softmax as acti-
vation functions exploiting 25 million parameters. Among the different layers of
the network, it is possible to acknowledge the four types of layers that distin-
guish the neural networks as the activation and the pooling layer in addition
to convolutional and fully connected ones, previously cited [30]. The convolu-
tional layer contains neurons that interact with the other one in the next layer
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Fig. 3. Hierarchical tree multi-level classification representation.

through convolutional kernels while the nonlinear features are extracted using
the activation layer. The pooling one improve the performance of the algorithm
and reduces the cost by compressing the convolutional features. The last one is
the layer that interprets the extracted features and creates a vector containing
the probability of the analysed image to belong to each class [31]. In the lit-
erature, deeper neural networks are expected to perform better than shallower
ones especially in the training phase, as shown in several studies [32,33]. How-
ever, it is recognized that the improvement in accuracy is not always related
to an increase in network depth, which could generate degradation problems.
The innovative element that makes ResNet superior compared to other CNNs
is the presence of skip connections (residual units). This particular unit allows
the learning of the differences between the input and output layers, mitigating,
in this way, the problems deriving from excessive depth. The choice of network
architecture has fallen on ResNet for the depth of the network and for the rel-
atively reduced computational level. In particular, ResNet-50 has been adopted
as a pre-trained network to perform a binary classification of GPR profile image
and their FFT transform, previously described, using these hyperparameters:
learning rate equal to 0.001, mini-batch size equal to 32, and maximum number
of epochs equal to 12.

5 Results and Discussion

The classification of tunnel lining defects concerned structures dating from most
1960s s to 1980s s following the procedure described in the previous sections. The
results obtained by training the network with the GPR profiles, extracted during
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the different investigation campaigns, were compared with the ones achieved
by training the same network with the FTs of the same profiles. Whereas the
accuracy obtained following the first approach showed values greater than 90%
and with an average of 94.5% [31], the ones obtained with the trained ResNet-50
on FTs show values greater than 80%, unless level 2b, and with an average of
86.8%. Table 3 reports the confusion matrices for each level obtained with the
FT.

5.1 Confusion Matrix for Each Level

Out of several useful methods for defining the performance of a classifier algo-
rithm, the most well-known is the confusion matrix. For each level of detail,
the confusion matrix is reported followed by the accuracy value. The mentioned
matrices are composed of rows showing the actual classes and columns represent-
ing the predicted labels. The accuracy value is determined by the ratio between
the matrix trace and the total sum of its terms. The value of accuracy and
the confusion matrix are relative to an arithmetic mean of the results obtained
through the application of the K-fold validation technique. Besides, for each test
fold, an error estimation through the RMSE (Root Mean Square Error) index
was performed and then their average was calculated and used as a final indica-
tor. The data for each classification were casually divided into k groups (folds)
in which a “fold” is used for testing, one for validation, and (k–2) for network
training [34,35]. The used value of k is equal to 10. Such choice is based on
empirical demonstrations that highlight the ability of it to produce test error
rate estimates that have neither excessive bias nor much variance [36].

5.2 Comparison with the Authors’ Previous Work

The authors in [31] have already performed a study on the multilevel tunnel
linings defects classification working with raw GPR data profiles. On the other
hand, the strategy proposed in this work is related to the possibility of using
as input data of a CNN, not only GPR profile images, but also the FTs of
the same ones. The outcomes obtained with this last one showed a decrease in
accuracy for all levels with respect to the results obtained by training ResNet-
50 with GPR profiles, keeping an accuracy higher than 90% for the levels 3,5,
and 6. [31]. Comparing the results of the two different training and test val-
uation of the ResNet-50 proposed, level 1 (healthy and reinforced/damaged)
shows an accuracy of 88% compared to 92.6% previously obtained, level 2a
(healthy/reinforced) shows an accuracy of 83.1% compared to 97.3%. The accu-
racy for level 2b (warning mix/warning) shows a value of 76.3% compared to
the respective value of 90.4%. Regarding the accuracy in level 3 (crack/C8) the
value obtained by training on the FTs of the GPR profiles equal to 94.4% is
very similar to the previous one equal to 95.9%. Level 4 (Anomaly/mix void)
shows an accuracy of 85.1%compared to 91.8%. In the last two levels, the CNN
with FTs showed the highest accuracy values of 90% and 91% for levels 5 and
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Table 3. Confusion Matrix for Levels 1, 2a, 2b, 3, 4, 5 and 6.

Confusion Matrix - Level 1

Real Class C1: predicted C2: predicted Performance Metrics

C1 87.9% 12.1% Accuracy: 88%

C2 11.4% 88.6% RMSE: 31.5%

Confusion Matrix - Level 2a

Real Class C3: predicted C4: predicted Performance Metrics

C3 79.3% 20.7% Accuracy: 83.1%

C4 13.0% 87.0% RMSE: 37.2%

Confusion Matrix - Level 2b

Real Class C5: predicted C6: predicted Performance Metrics

C5 73.5% 26.5% Accuracy: 76.3%

C6 20.9% 79.1% RMSE: 44.3%

Confusion Matrix - Level 3

Real Class C7: predicted C8: predicted Performance Metrics

C7 97.8% 0.22% Accuracy: 94.4%

C8 9.0% 91.0% RMSE: 20.6%

Confusion Matrix - Level 4

Real Class C9: predicted C10: predicted Performance Metrics

C9 83.9% 16.1% Accuracy: 85.1%

C10 13.6% 86.4% RMSE: 38.3%

Confusion Matrix - Level 5

Real Class C11: predicted C12: predicted Performance Metrics

C11 85.7% 14.3% Accuracy: 90%

C12 5.9% 94.1% RMSE: 28.6%

Confusion Matrix - Level 6

Real Class C13: predicted C14: predicted Performance Metrics

C13 92.4% 7.6% Accuracy: 91%

C14 11.3% 88.7% RMSE: 25.8%

6 respectively, compared to the values of 98.2% and 95.3% of the same CNN
trained with simple GPR profiles.

6 Conclusions

In the present work, a hierarchical multi-level classification approach is dis-
cussed related to road tunnels linings GPR assessment for automated defects
classification. The GPR profiles are sampled and pre-processed with 2D-FFT
technique performing data compression and making convolution more efficient.
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Seven different CNN models have been trained with the transfer learning app-
roach starting from pre-trained ResNet-50 model. A final comparison with
respect to the model trained without image pre-processing pointed out the relia-
bility of the proposed approach for automated road tunnel defects classification.
However, the pre-processing phase probably produces an excessive compression
of the data, providing lower accuracy levels with respect to the model trained on
raw GPR images samples. Future developments of the present work may virtu-
ally involve some further comparisons not only from the pre-processing side, but
even on the neural architecture which could lead to further improvements and a
more reliable system for automated road tunnels linings defect classification.

Acknowledgments. This research was supported by project MSCA-RISE-2020
Marie Sk�lodowska-Curie Research and Innovation Staff Exchange (RISE) -
ADDOPTML (ntua.gr) The authors would like to thank G.C. Marano and the project
ADDOPTML for funding supporting this research.

References

1. Chiaia, B., Marasco, G., Ventura, G., Zannini Quirini, C.: Customised active
monitoring system for structural control and maintenance optimisation. J. Civil
Struct. Health Monit. 10(2), 267–282 (2020). https://doi.org/10.1007/s13349-020-
00382-8

2. Aloisio, A., et al.: Indirect assessment of concrete resistance from FE model updat-
ing and young’s modulus estimation of a multi-span PSC viaduct: experimental
tests and validation. Elsevier Struct. 37, 686–697 (2022)

3. Rosso, M.M., Cucuzza, R., Aloisio, A., Marano, G.C.: Enhanced multi-strategy
particle swarm optimization for constrained problems with an evolutionary-
strategies-based unfeasible local search operator. Appl. Sci. 12(5), 2285 (2022)

4. Asso, R., Cucuzza, R., Rosso, M.M., Masera, D., Marano, G.C.: Bridges monitor-
ing: an application of AI with gaussian processes. In: 14th International Conference
on Evolutionary and Deterministic Methods for Design, Optimization and Control.
Institute of Structural Analysis and Antiseismic Research National Technical Uni-
versity of Athens (2021)

5. Rosso, M.M., Cucuzza, R., Di Trapani, F., Marano, G.C.: Nonpenalty machine
learning constraint handling using PSO-svm for structural optimization. Adv. Civil
Eng. 2021 (2021)

6. Cucuzza, R., Costi, C., Rosso, M.M., Domaneschi, M., Marano, G., Masera, D.:
Optimal strengthening by steel truss arches in prestressed girder bridges. In: Pro-
ceedings of the Institution of Civil Engineers - Bridge Engineering, pp. 1–51 (2022)

7. Marasco, G., Chiaia, B., Ventura, G.: AI based bridge health assessment. In: 9th
International Workshop on Reliable Engineering Computing (REC 2021) is “Risk
and Uncertainty in Engineering Computations” (2021)

8. Chiaia, B., Ventura, G., Quirini, C.Z., Marasco, G.: Bridge active monitoring for
maintenance and structural safety. In: Arêde, A., Costa, C. (eds.) ARCH 2019. SI,
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Abstract. Due to its features, permanent magnet synchronous motor
(PMSM) has gained popularity and is used in various industrial applica-
tions, including those with high downtime costs like offshore equipment.
Inter-turn short-circuit (ITSC) fault is one of the most typical PMSM
faults and therefore is its early diagnostics in real-time highly valuable.
Solving the problem using conventional signal, model-based, or data-
driven approaches faces challenges such as computational complexity,
time demand, or need for detailed domain expertise. This paper presents
a computationally simple, robust, and accurate method based on the 2D
convolutional neural network (CNN). The proposed data-driven model
has first been validated with the help of experimental data obtained from
an inverter fed PMSM subject to ITSC faults in different time intervals,
and secondly its performances have been compared to a model-based
structural analysis approach using Dulmage-Mendelsohn decomposition
tool. The comparison is based on the same data. Results show that the
accuracy of the CNN model for diagnosing early faults is more than
98% without doing additional comprehensive fine-tuning. In addition,
the paper presents a robust method that can be successfully used as a
metric for fast fault detection benchmark.

Keywords: Fault diagnosis · Permanent magnet synchronous motor ·
Intern-turn short-circuit fault · Convolutional neural network

1 Introduction

Permanent magnet synchronous motors (PMSMs) are deployed in various indus-
trial systems, such as offshore equipment, wind generators, robotics or electric
vehicles. While having conventional three phase windings in the stator, PMSMs
produce their rotor magnetic flux by the mean of permanent magnets, either
embedded tangentially around the rim of the rotor as seen in Fig. 1, or buried
radially for higher performances. Their efficiency (92%–97%) is significantly
higher compared to traditional asynchronous motors (75%–92%) [3], while low
c© Springer Nature Switzerland AG 2022
L. Iliadis et al. (Eds.): EANN 2022, CCIS 1600, pp. 177–189, 2022.
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Fig. 1. Basic structure of a PMSM

reactive power consumption, improved dynamic performance, light weight, and
small dimensions are further reasons for their increased popularity. More than
40% of all faults in synchronous motors start as stator related [16]. Among those,
the inter-turn short-circuit (ITSC) faults are the most common, however diffi-
cult to detect automatically [15], which is partially caused by ITSC faults having
little effect to the motor performance in early stages. However, if not discovered
and mended in time, the ITSC fault can quickly grow into severe motor dam-
age and consequently lead to total failure of the system [1]. The drive to cut
operating and maintenance costs and increase operational safety is pushing the
agenda in the industry towards the adoption of predictive maintenance strate-
gies. In this process, fault diagnosis, i.e. fault detection and isolation, represents
an important part. A proven method for diagnosis of ITSC faults in their early
phase, that is easy to implement in practice, is therefore in great demand.

This paper focuses on a simple detection and diagnosis method for ITSC
faults. While deep CNNs have several layers, often of various types, shallow
CNNs have only one besides the input and the output layer. One objective of
this study is to explore whether the simplest CNNs can be successfully used as
ITSC fault classifiers, i.e. with high enough accuracy, as they do not overfit on
small datasets and require less computational time and energy consumption than
deep CNNs. Indeed, awareness about CO2 emission in machine learning research
started to arise lately [5]. According to the EU Annual Report on SMEs (2019),
in the EU just 6% of the SMEs use AI, although they represent 99.8% of all
enterprises in the EU-27, with lack of skill to be one of the main obstacles.
Therefore, any model that is easy to use, does not require high computational
power and shows robustness is of huge demand by the industry.

Following a short literature overview in Sect. 2, the proposed method is
described in Sect. 3 while Sect. 4 details the results and compares the perfor-
mances with a model-based method using the same experimental setup and
dataset. Finally, conclusions are drawn in Sect. 5.
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2 Literature Review

Fault diagnosis can be divided from data processing into model-based, signal-
based and data-driven methods. The literature on PMSMs show that faults,
as for example inter-turn short circuit or demagnetisation faults, can be early
detected using either of the methods. Comprehensive reviews of methods for
detection and diagnosis of ITSC faults in PMSMs are presented in [15] and [2].

The model-based methods establish a mathematical model based on prin-
ciples of physics that describes the actual machine. The most accurate results
have been achieved with finite element analysis (FEA) models which compared
to other models also have the highest computational cost as well [2]. Other types
of models, such as equivalent circuit, field reconstruction and linear PMSM mod-
els, are beneficial in understanding how the fault behaves assuming that they are
detailed enough [15]. The signal-based and data driven methods use statistical
tools and mathematical transformations to identify and extract fault patterns
from signals such as current, voltage, vibrations and so on. Motor current signal
analysis (MCSA) is the most common model and is extensively studied [2].

Artificial intelligence (AI) and machine learning (ML)-based approaches show
increased performance compared to conventional signal-based models providing
a solution for the complexity introduced by increased data quantity. However,
it is often not easy to apply traditional ML techniques in practice, due to lack
of efficient methods to obtain training data, and specific knowledge needed to
train the models [8,14]. The traditional ML with tailor made and handcrafted
features—typically used by applying feature extraction and learning algorithms
such as support vector machine (SVM), random forest (RF), principal compo-
nent analysis (PCA) or linear decrement analysis (LDA) [19]—has been used for
many years while deep learning (DL) methods emerged in 2006.

DL represents a breakthrough in the field of AI and shows state-of-the-art
performance when compared to traditional machine learning in many fields. Con-
structing a ML system needs careful engineering and high domain expertise to
design a feature extractor that transforms the raw data into a suitable represen-
tation from which the learning model can detect or classify patterns [11].

In contrast, when it comes to DL, the features are learned automatically
from raw data. DL models used in motor fault detection and diagnosis include
for instance deep belief networks [20], generative adversarial networks (GAN)
[12,17], long short-term memory models (LSTM) [6]. Among DL methods for
fault diagnosis, extensively used are CNNs [9]. 1D CNNs are, among others,
used with direct input of time-domain signals collected in motors [7,10], while
2D CNNs are, among others, used by converting the time-domain raw signals
into 2D grey images without further feature extraction [18].

3 The Proposed Method

This section presents the proposed data-driven method based on a shallow 2D
CNN. The input to the model is obtained from an experimental setup where
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a PMSM is run through a healthy and three faulty sequences. Switching the
faults on and off is done by controllable relays placed between the winding taps.
The three faulty sequences represent the three ITSC faults. Each fault is applied
on a designated phase by short-circuiting different numbers of turns, resulting
in different fault percentage, enabling establishing a fault of less than 1% in
terms of number of short-circuited turns per total number of turns in one phase.
Altogether, ten different features (four voltages, four currents, position of the
rotor and speed) in their raw form, without any prepossessing, have been used
as input to the model.

CNNs, primarily used for pattern recognition tasks, especially within images,
usually consist of three types of layers: convolutional, pooling, and fully-
connected layers. As the name indicates, the convolutional layers play the most
important role, where the learnable parameters origin from kernels. The struc-
ture of the proposed classification model is outlined in Fig. 2. It has only one
convolutional layer. The output of the model is one of the 4 classes: no-fault and
ITSC faults at phases A, B and C.

Fig. 2. The proposed shallow 2D CNN architecture

We use SHAP (Shapley Additive exPlanations), a method introduced in 2017
[13] to explain individual predictions of models on global and local level. On the
global level it can show which features contribute to the model output and how
significant their contribution is. On the local level it can examine each data point
and investigate why the model made a certain decision.

4 Experiment and Results

The proposed method has been validated on the experimental setup used in [4],
i.e. with a 4-pole PMSM whose parameters are given in Table 1. Each of the
motor phase windings consists in two coils of 51 turns in series, with hence 102
turns per phase. As shown in Fig. 3, ITSC faults have been applied on each
phase by short-circuiting different number of turns resulting in a different fault
percentage at each phase as shown in Table 2.
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Fig. 3. Applied ITSC faults [4]

Table 1. Motor parameters

Parameter Value

Rated DC bus voltage 280 V

Rated rms phase current 5 A

Rated output torque 7 Nm

Rated speed 1500 rpm

Stator resistance 0.8 Ω

Stator inductance 8.5 mH

Rotor inertia 0.0026 kgm2

Pole pairs 2

Table 2. Applied ITSC faults per phase

Fault type Phase Nr. of short-circuited turns Applied ITSC fault in % Nr. of records

ITSCa A 1 0.98 55300

ITSCb B 3 2.94 62800

ITSCc C 5 4.90 56000

No-fault — 0 0.00 185600

The experiment lasted for 20 s with sampling time for data acquisition of
50µs. ITSC faults in phase A, B and, C were applied in the time intervals
t = 4.471 − 7.238 s, t = 9.613 − 12.760 s and, t = 15.600 − 18.410 s respectively,
see Fig. 4.

Fig. 4. Timeline of applied ITSC faults

The 10 inputs of the model are shown in Fig. 5 around the transition between
the no fault region (green) and the ITSC fault in phase A (red) at t = 4.471 s.
Samples of different lengths have been stacked one under the other making a 2D
input of size 10 times sample length. The proposed method is evaluated using
two approaches:
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– Approach 1 - input data as separate non-overlapping samples.
– Approach 2 - input data as overlapping samples using sliding windows.

Fig. 5. 10 features - input to 2D CNN (Color figure online)

Sample sizes range over 10, 20, 50 and 100 time-steps corresponding to 0.5, 1,
2.5 and 5 ms. Each model is trained on 500 epochs using kernel sizes from 3× 3
to 10× 10 in order to achieve optimal results in terms of accuracy, simplicity,
computational and energy efficiency. The number of filters has been set to 64.
Adam optimizer with learning rate of 0.001 is used for all model configurations.
Data has been divided into train and validation/test set in 70:30 ratio after ran-
dom shuffling, resulting in train and validation/test sets being different for each
training session. The final accuracies for the different model configurations have
been determined as the average value of accuracies obtained after 30 trainings.
Trainings are performed on 4 NVIDIA Tesla V100 GPUs using Uber’s horovod
framework for distributed learning on TensorFlow. All available data has been
used for training and testing, which results in slightly imbalanced classification
due to data size in ratios of 52% (no fault), 15% (ITSCa), 17% (ITSCb), 16%
(ITSCc).

4.1 Approach 1 - Non-overlapping Samples

This subsection investigates what is the optimal length of the input samples. We
start with the simplest approach, slicing the sequences into non-overlapping seg-
ments of 10, 20, 50 and 100 time-steps. By using 2D inputs into the convolutional
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network we expect from the model to find pattern between the different features
sampled at the same time. In case of clear patterns, we expect that shorter
lengths can deliver as good results as longer ones, potentially even better. The
attributes of the model variations, together with the average time needed for
training are given in Table 3 while Table 4 shows the corresponding validation
accuracies. The max accuracies achieved for the best performing models are
given in Fig. 6 and Fig. 7.

Table 3. Model attributes - approach 1

Sample length [time-steps] No. of training samples Batch size Learning rate Average training

time [min]

10 25 177 32 0.001 6.14

20 12 588 32 0.001 3.48

50 5 035 32 0.001 2.08

100 2 517 32 0.001 1.37

Discussion. The proposed method results in high accuracies. The accuracy of
the models shows general increase with the length of timesteps for all kernels,
except for kernels 9× 9 and 10× 10 that show slight deviation. The best perform-
ing model is the one based on 100 time-steps and kernel size 4× 4. It achieves
an average accuracy of 98.42%. Figure 8 shows SHAP values corresponding to
four different outcomes: no-fault, and three ITSC faults. As seen, the voltages in
phases A, B and C play an important role together with the currents. However,
the last two features (rotor position and speed) have a minimum or no impact
on the results. Figure 8 shows the best performing model for time-steps length
of 10, however the conclusions are valid for all models.

4.2 Approach 2 - Sliding Windows

In this subsection we investigate whether we can get better results by using
overlapping segments of 10, 20, 50 and 100 time-steps. We approximately dou-
ble the number of train input samples and test whether introducing additional
sequences of data gives more information. The model attributes and the valida-
tion accuracies are given in Table 5 and Table 6. The max accuracies achieved
for the best performing models (kernel size 4× 4) are given in Fig. 9 and Fig. 10.
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Table 4. Validation acc. [%] - approach 1

Kernel size Sample length [time-steps]

10 20 50 100

μ σ μ σ μ σ μ σ

3× 3 91.00 1.81 94.92 1.76 94.95 2.46 97.91 0.90

4× 4 92.46 1.23 96.33 0.95 96.74 0.61 98.42 0.72

5× 5 88.16 2.68 94.49 2.53 93.73 4.64 97.32 1.54

6× 6 88.26 2.45 94.18 2.82 94.49 2.45 97.04 1.85

7× 7 87.81 2.27 94.25 3.74 95.41 0.93 96.36 3.57

8× 8 88.00 1.56 94.60 1.12 94.82 2.57 96.60 2.80

9× 9 86.68 1.44 92.79 2.15 93.84 2.23 86.11 11.59

10× 10 67.20 12.42 61.13 14.73 66.29 15.11 58.96 10.41

Fig. 6. Best performing models - max accuracies - appr. 1

Discussion. This approach shows similar results as approach 1, however it gen-
erally achieves slightly lower accuracies for the same number of epochs (97.47%
compared to 98.42%). The best performing model is again the one based on 100
time-steps and kernel size 4× 4. Figure 11 shows SHAP values for four differ-
ent outcomes with the same conclusions as earlier. The voltages and currents in
phases A, B and C play an important role while the last two features contribute
less.
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Fig. 7. Best performing models - confusion matrices - appr. 1

Fig. 8. SHAP values: kernel = 4× 4, time-steps = 10, appr.1

Table 5. Model attributes - approach 2

Sample length [time-steps] No. of training samples Batch size Learning rate Average training

time [min]

10 50350 32 0.001 12.93

20 25171 32 0.001 7.03

50 10065 32 0.001 3.45

100 5028 32 0.001 2.31

4.3 Comparison with Model-based Approach

The main difference between data-driven (NNs) approach and signal- or model-
based approach is the need of a priori understanding of the system. While both
signal- and model-based approaches require a deep domain knowledge of the
underlying system, data-driven approach discovers dependencies automatically.
However, large amount of historical data for training the models, both healthy
and faulty, is needed which is usually not available in such scale. Moreover,
producing such data comes with high cost.
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A model-based approach developed on the same underlying data [4] is used
in this section to allow for direct comparison. This method relies on structural
analysis, where a dynamic mathematical model of the system is presented in
matrix form, and where Dulmage-Mendelsohn decomposition tool has been used
to extract small redundant parts and to design the error residuals further used
for detection of the three ITSC faults through a statistical test based on the
generalized likelihood ratio test (GLRT). This approach has achieved detection
rates (PD) of 60.93% for ITSCa, 98.13% for ITSCb and 100% for ITSCc fault,
given that the probability of false alarm (PFA) has been set to 2%. It should
be noted that this approach only detects the presence of the fault but does not
distinguish among types of faults.

The achieved overall detection rate of the 2D CNN model presented in this
paper is 98.83% when calculating on the best performing model. The overall

Table 6. Validation acc. [%] - approach 2

Kernel size Sample length [time-steps]

10 20 50 100

μ σ μ σ μ σ μ σ

3× 3 89.89 1.42 92.43 1.02 89.52 2.12 95.75 0.89

4× 4 90.92 0.90 93.80 0.86 93.83 1.54 97.47 0.51

5× 5 86.78 1.72 88.93 2.77 86.96 2.48 92.64 5.87

6× 6 87.40 1.67 88.67 2.68 87.76 2.23 95.07 1.74

7× 7 87.52 2.13 90.42 0.87 89.64 1.65 94.44 3.10

8× 8 87.34 1.79 90.20 1.67 90.32 1.58 95.28 1.24

9× 9 87.17 1.74 87.98 1.06 87.77 2.63 88.99 7.20

10× 10 67.15 12.33 56.60 10.14 51.61 0.00 58.90 11.16

Fig. 9. Best performing models - max accuracies - appr. 2



ITSC Fault Diagnosis in PMSM Drives Using Shallow CNNs 187

and the detection rates for ITSCa, ITSCb and ITSCc faults, together with other
performance metrics are shown in Table 7. The main limitation of the model is
the need for sufficient amount of training data, especially faulty data that can
be challenging to obtain outside of experimental setup.

Fig. 10. Best performing models - confusion matrices - appr. 2

Fig. 11. SHAP values: kernel = 4× 4, time-steps = 10, appr.2



188 V. Szabo et al.

Table 7. Best performing model - appr. 1 - performance metrics

Metrics Binary classification Multiclass classification

No-fault/fault ITSCa ITCSb ITSCc W. average

Precision 0.9843 0.9722 0.9759 0.9900 0.9793

Sensitivity 0.9883 0.9960 0.9713 0.9839 0.9832

Specificity 0.9852 0.9948 0.9949 0.9982 0.9959

F1 score 0.9863 0.9839 0.9736 0.9870 0.9812

PD 0.9883 0.9960 0.9713 0.9839 0.9832

PFA 0.0148 0.0052 0.0051 0.0018 0.0041

Support 557/523 166 189 168 –

5 Conclusions

This paper presented a straightforward method for detection and diagnosis of
ITSC faults in PMSMs based on shallow 2D CNNs that compared to a model-
based method showed a few advantages. The main advantage shown is the ability
to deliver high accuracies without high calculation cost and without need for any
feature pre-processing. In the future work, we intend to implement this type of
approach to real-time monitoring of the motors located on an offshore rig. The
input data is available, however not used and offered to customers as a service,
mainly due to lack of a robust and easy to implement modeling. In addition,
companies face a challenge during the official accreditation of the service due
to the inability to explain the results of the model used. This challenge can be
successfully faced with methods such as SHAP briefly outlined in this paper.
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Abstract. The following paper examines the development of a framework that
allows the generation of video synopsis. That is a video file obtained by overlaying
themainmoving objects in a single scene. This allows for file length reduction thus
optimization of the analysis and storage of video surveillance footage. The pro-
posed framework is based on modern methods in the field of machine learning for
the automatic recognition and localization of objects in the video frames, their seg-
mentation, tracking, and merging on the extracted background. Machine learning
models based on convolutional neural networks were used for this purpose.

Keywords: Video synopsis · Convolutional neural networks · Machine
learning · Object localization · Multiple object tracking · Feature extraction ·
Background segmentation · Person re-identification

1 Introduction

1.1 Current Challenges and Opportunities

Over the last few decades, video surveillance systems have grown steadily in popularity
and accessibility. The need for constant video monitoring is strongly felt world-wide by
governments and privately owned companieswith the aim of increasing public safety and
service efficiency. While round-the-clock video surveillance allows for the permanent
and complete recording of all possible events, the challenges related to the efficient
storage and analysis of these videos are becoming increasingly prevalent.

In the present work, an end-to-end framework is proposed, that can generate a synop-
sis of CCTV videomaterials. A “synopsis” of a video file refers to an output file obtained
by extracting the main moving objects from the input video file and placing them on
the same output scene. The output file generated during the process is both smaller in
terms of file size than the input file, making it more cost-effective to store, and shorter in
duration due to the removal of unnecessary static scenes, which eases the manual video
analysis.

1.2 Proposed Work

The widespread methodology for creating a video synopsis consists of two processes.
Analysis process where the static background is extracted, the objects are localized and
segmented, and the individual sequences for each object – created. These sequences
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are also called tubes. The second process is the generation process, where each tube is
shifted along temporally and placed together on the extracted background for their joint
visualisation.

The proposed video synopsis framework can be divided into several main compo-
nents that implement different synopsis tasks - extracting the main background from
the video, localizing the main moving objects in a scene, extracting their discriminatory
visual features, tracking them, and creating the tubes, and generating the synopsis file.
Figure 1 graphically presents the framework and its components.

Input
Object Localization Features Extraction

Object Tracking Background Extract

Analysis

Synopsis
Synopsis

Place the tubes on 
the extracted 
background.

Generation

Fig. 1. The main components of the system and their connections.

The analysis step is applied on each frame of the input video file. During the analysis,
each object detected on the scene is presented in a structure with additional data such
as the order and time in which it appeared in the input video, as well as a mathematical
vector corresponding to the visual features generated using convolutional neural network
(CNN). Using this metadata, objects are registered linearly over time and during the
generation step are placed in the extracted from the original video background. The
whole process of the framework provides the ability to automatically create a synopsis
of video files, which in turn greatly optimizes and upgrades the traditional methods
of manually analysing video footage from security cameras. The current research is
focused primarily on the synopsis of CCTV footage with pedestrians, but the proposed
methodology can be applied for other types of objects. For simplicity in the following
pages, a tube or sequence of occurrences of the same person will be called an identity.

The rest of the paper is organized as follows. Section 2 discusses some previous work
related to generating synopsis of video files. Sections 3 and 4 present the theoretical
fundamentals, the methodologies used in the framework, as well as its implementation
details. In Sect. 5, metrics for evaluating the synopsis efficiency, as well as results
achieved by the proposed framework and compared with state-of-the-art, are presented.
Finally, in Sect. 6, the conclusion is drawn, and future work is presented.

2 Related Work

Numerous methods have been proposed related to video condensation and summariza-
tion. Most of them are based on the principle of deleting duplicate frames from the video
and extracting the key ones, without making any additional analysis via the objects in the
frames [1]. Other works use geometric primitives and minimize a cost function within
each frame [2]. State-of-the-art methods use higher level approaches by extracting tubes
of objects, which are temporarily shifted and placed together on the extracted back-
ground. For example, both [3] and [4] are using estimation algorithms where object’s
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positions are chronologically rearranged without the need of knowing their trajectories.
Whereas [5] is based on clustering of trajectories via event-based trajectory kinematics
descriptors of the objects.

The contributions of this paper are two-folds. First, a novel framework for video
synopsis for CCTV footage of pedestrians has been presented coupling machine learn-
ing methodologies for localizing and tracking people. For this, a popular online tracking
method is implemented and combined with a state-of-the-art object detection methodol-
ogy and state-of-the-art person re-identification convolutional neural network. Second,
metrics for determining the efficiency of the video synopsis are defined and results are
generated achieving higher frame reduction rates compared to state-of-the-art.

3 Technical Background

3.1 Mixture of Gaussian Models for Background Subtraction

The aim of the background subtraction task is to obtain the static background of the video
scene, on which the extracted video objects will be placed to create the synopsis video.
The algorithm used as part of the proposed framework is based on the adaptive Gaussian
mixturemodels, presented by Stauffer andGrimson [6]. It is representative of an adaptive
method that uses a mixture of normal distributions to model a multimodal background
image sequence. For each pixel, its history is modelled by a mixture of Gaussian models
consisting of K normal distributions. In each consecutive video frame, each pixel is
compared with the mixture model corresponding to that pixel. If the new pixel value
is within 2.5 standard deviation of any of the K normal distributions, it is considered
a background candidate. The algorithm relies on assumptions that the background is
visible more often than any foreground and that there are modes with relatively small
variance.

Each background candidate is then checked if it belongs to a background distribution.
The mixture of Gaussian models for each pixel is updated for each frame. This online
adaptation allows the algorithm to adaptively deal with noise and illumination changes
that may occur in video surveillance footage.

The framework uses mixture of Gaussian pixel models to iteratively accumulate
background surfaces during the span of the input video. The output of the method is the
static background of the video which is used as the base for overlaying the extracted
identities and generating the synopsis file.

3.2 Convolutional Neural Network for Visual Feature Extraction

Artificial neural networks (ANN) are weighted graphs that consist of an ordered set of
layers, where each layer is a set of nodes called neurons or perceptrons. The first layer
of the neural network is called the input layer, and the last is called the output layer.
The connections between the layers are weighted edges and are referred to as weights.
At a given input data, each neural network node has numeric outputs. By sequentially
calculating the outputs of the layers,we also calculate that of thefinal layer. Therefore, the
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structure of the neural network is determined by the number of layers and the functions
that determine the outputs of those layers.

o(k) =
{

ψ(k)
(
o(k−1)

)
, if k ≥ 1

xn, if k = 0
(1)

where o(k) is the output of layer k, and ψ(k) is a function inferring o(k) with an input
o(k−1).

One such function ψ(k) represents the fully connected layers in an ANN. As the
name suggests, in order for two consecutive layers to be fully connected, all nodes in
the previous layer must be connected to all the nodes in the next layer. The output of a
fully connected layer is calculated using the function ψ(FC):

ψ
(FC)
(k)

(
o(k−1)

)
= φ

((
o(k−1)

)T
w(k) + b(k)

)
(2)

where, ifm(k) is the number of nodes in layer k, w(k) ∈ R
m(k−1)×m

(k)
is the weight matrix

connecting both layers, b(k) ∈ R
m(k)

is the bias which controls the constants in the neural
network, and φ is the activation function.

By arranging fully connected layers one after the other, the depth of the neural
network can be increased, and by applying an activation function φ non-linearity is
achieved, which increases the approximation accuracy of a neural network. There are
many different types of activation functions (such as hyperbolic tangent or sigmoid),
but the Rectified Linear Unit (ReLU) [7] is the most common nowadays. ReLU leads to
reduced nodes, which in turn leads to a much faster training process.

For a neural network to be used with images or video frames as input data, convo-
lutional layers can be defined using convolutional operations. Artificial neural networks
with convolutional layers are called convolutional neural networks (CNN). CNNs are
named after the linear mathematical operation called convolution. In image processing,
convolution is a two-matrix operation that also results in a matrix o(k) ∈ R

Hk×Wk×m(k)
,

whereHk is the height, andWk is the width of the given level k. For each pair of indices
(I , J ), where 0 < I ≤ Wk and 0 < J ≤ Hk , there is a sliding window p(k−1)

(I ,J ) centred in
(I , J ), defined by the outputs of the previous layers. It is then multiplied by the weight
matrix. The bias values of layer k are also added and the result is used as an input of the
activation function φ, to obtain the output of ψ

(Conv)
(k) :

ψ
(Conv)
(k)

(
o(k−1)

)
=

{
o(k)
(I ,J )|∀(I , J )

(
∃p(k−1)

(I ,J )

)[
o(k)
(I ,J ) = φ

(
p(k−1)
(I ,J ) w

(k) + b(k)
)]}

(3)

The feature matrices representing the outputs of a given convolutional or fully con-
nected layer can be then used as inputs to a variety of other algorithms. Moreover, the
feature matrices extracted from images can be used in conjunction with a similarity or
distance metrics for calculating the visual similarity of two images. In the proposed
framework, a specifically designed CNN for person re-identification called Omni-Scale
Feature Learning for Person Re-Identification (OSNet) [8] is used.

The structure of the OSNet model is visualized on Fig. 2 and is based on residual
blocks composed of multiple convolutional streams that detect features from different
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Fig. 2. Architecture of OSNet [8]. The model produces a 512-D feature vector.

spatial dimensions. Features corresponding to small, local regions (shoes, glasses) and
global regions of the whole body (size and age of the person, rough combinations of
clothes such as a white T-shirt and gray shorts) are extracted. Moreover, it uses a novel
unified aggregation gate [8] that dynamically fuses these multi-scale features with the
input-dependent weights to efficiently learn spatial-channel correlations. The output of
the model is a fully connected layer that generates 512-D feature vector with features
from different-sized convolutional streams. By using these visual features, the iden-
tity problem where the tracking algorithm could confuse one person with another is
mitigated.

3.3 You Only Look Once v3 for Object Localization

Object localization is a process that involves both classification of objects and the extrac-
tion of their position. The spatial orientation of the detected object is marked by a rect-
angular box, which determines its width and height. The proposed framework uses the
localization algorithm You Only Look Once v3 (YOLOv3) [9]. YOLOv3 is a one-stage
object detection method that considers object detection as a regression problem. It uses
the feature matrices from the last convolutional levels of a single feed-forward 53-layer
convolutional neural network Darknet-53 [9] to make predictions for both the locations
of potential objects and their class affiliation at the same time. Its architecture detail is
visualized on Fig. 3.

YOLOv3divides the input image into three grids of featuremapswith dimensionsS×
S, S ∈ {13, 26, 52} and each cell of each grid is responsible for giving an approximation
of what object is in its center. The feature maps scales correspond to different object
sizes and are fused together to make spatial correlations. Each grid cell makes a total
of B = 3 proposals for regions, composed of 5 different components - (x, y,w, h, o),
where x ∈ [0..1] and y ∈ [0..1] indicate the coordinates of the centre of the region, and
w ∈ [0..1] and h ∈ [0..1] - the width and height dimensions of the object. The fifth
component o ∈ [0..1] is the probability corresponding to how much a given proposal is
related to an object. These probabilities are formally represented as P(Object)IOUtruth

pred ,
which simultaneously infer the probability of having an object in the region (P(Object) ≥
0) and the correctness of the detected object (IOUtruth

pred ). At the same time, regardless

of the number of regions, approximations are given for C ∈ Z
+ class probabilities

P(Classc|Object), ∀c ∈ [1, . . . ,C] determining the probability that an object belongs
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to class c. In the proposed framework, the YOLOv3 model is trained on only one class
and C = 1. Therefore, the size of each feature map scale is S × S × [B ∗ (5 + C)] =
S × S × 18, S ∈ {13, 26, 52}.

Fig. 3. Architecture of YOLOv3 [9] with Darknet-53 as the backbone CNN.

Finally, as seen in Fig. 3, the three scaled feature maps are fused together and
using a confidence threshold to filter out low scoring predictions, and a Non-maximum
Suppression [10] algorithm for post-processing, the final bounding boxes output is
created.

TheYOLOv3model can process images at nearly 300 frames per second. Thismakes
it an extremely good choice for real-time video processing applications.

3.4 Deep Simple Online and Realtime Tracking for Object Tracking

To retrieve all moving objects from a scene in a video data stream, the localization tech-
nologies are not sufficient. Since the object localizationworks on each frame individually,
when there are sudden changes in brightness or in the environment, the algorithm may
not fully recognize all objects on the scene. To fill these gaps, additional video context-
aware information about the direction and trajectory of each object must be considered.
This class of algorithms is called real-time object tracking algorithms. They store the
history of the positions of the objects over time so that based on the past state of an
object from previous frames its future state can be approximated in subsequent frames.
The state data include both the position of the object and its size.

The algorithm used to track multiple objects and create the final identities in the
proposed framework is Deep Simple Online and Realtime Tracking (DeepSORT) [11].
DeepSORT is a tracking-by-detection algorithm that considers both the positions of the
detected objects and their visual appearance, to compare them with the positions and the
appearance of the tracked objects from previous frames in order to associate them in the
new frame. It is based on Simple Online and Realtime Tracking (SORT) [12], which is
a pragmatic method using simple but effective algorithms such as the Kalman filter and
the Hungarian method for object association. The main problem of SORT comes from
the fact that in order to preserve the identity of a tracked object, a metric is used, which
only evaluates the overlap of the region of the object with that from the previous scene –
i.e., it does not consider any visual characteristics of the objects. DeepSORT improves
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SORT by employing a convolutional neural network for more accurate estimation by
comparing the visual features of the objects.

The tracking algorithm used in the DeepSORT system is the Kalman filter. Kalman
filtering is a recursive estimation method in which the value of each estimated region
of the localization algorithm from a given moment k − 1 is used as a prediction of its
value at the next moment k (current state) through calculated information about how
it has changed (state of dynamics). The Kalman filter works in two steps - prediction,
where approximations for the current state are given, and update, where the state at the
current moment k is compared with the approximations based on the previous state at
moment k − 1 (error calculation step). After tracking the regions from the localization
algorithm, an associative matrix is built, the elements of which determine the score
whether an object from the localization algorithmcorrelates to an object from the tracking
algorithm. Several constraints are applied to the associative matrix, which are solved by
the Hungarian method.

In the proposed framework the associative matrix of the DeepSORT algorithm is
composed of the linear combination of two distance metrics - (1) the Mahalanobis dis-
tance between the states of the Kalman filter on two objects of the localization algorithm
and (2) the minimum Euclidean distance between the OSNet-generated visual features
of a given localized object and the those of the last 100 tracked identities.

4 Implementation of the Synopsis Framework

4.1 Datasets and Training Details

Two convolutional neural networks were trained - (1) YOLOv3 for localizing the pedes-
trians on a given video scene and (2) OSNet for retrieving their visual features and
creating the identities when tracking via DeepSORT.

Two datasets were selected for training the YOLOv3 model: Common Objects in
Context (COCO) [13] and Pascal Visual Objects Classes (VOC) [14]. Since the focus
of the paper is videos with pedestrians, the categories related to the object person were
extracted from both datasets. The final dataset for pedestrian localization consisted of
66,109 images for training and 4,786 images for validation. The SGD algorithm was
chosen for the training process with 15,000 total iterations and a learning step of 0.001.
The accuracy achieved on the dataset for validation during training was 93%.

The following training datasets were used for training theOSNetmodel:Market1501
[15],DukeMTMC [16] andCUHK03 [17]. The final dataset obtained after merging them
consisted of 36,823 training images and 6,996 validation images, structured in 2,152
categories corresponding to different pedestrian identities. The SGD algorithm with
150,000 iterations and a training step of 0.065 was used to train the model.

4.2 Video Synopsis Algorithm

Two things are needed in order to create the video synopsis: the extracted background,
and the list of the identities (tubes). Before the algorithm starts, the identities are pre-
processed by sorting them by the number of frames in which each identity is found in
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the original video, as well as removing those whose occurrence count is less than 10.
This way all insignificant identities are removed and those that are more frequent in the
original video are shown first.

It is also possible to set a small delay (k frames) before adding a new identity to the
scene to avoid overlapping in the opening frames. The number of simultaneous identities
can also be controlled so that the scene is not overloaded using an additional parameter
m. Thus, when this constraint is reached, the algorithm waits for an identity from the
scene to disappear before adding a new one. Finally, when the last identity is added to
the scene, the synopsis is considered complete and saved as an output file. The video
synopsis algorithm is presented as Algorithm 1 below.

Algorithm 1. The video synopsis algorithm.
Data: The extracted background, list of identities, k for 
the number of frames to wait before adding a new identity
to the rendering queue, m for the number of identities to 
render simultaneously.
Result: A list of frames for the generated synopsis.
begin
while there are identities in the identities list do
while the number of identities to process is < m and 

the frames counter >= k do
pop the next identity from the identities list
add the identity to the processing list
reset the frames counter

end while
for each identity from the processing list do
get the identity video occurrences
pop the first identity occurrence
add it to the rendering queue
if there are no more occurrences then
delete the identity from the processing list

end if
end for
create a new synopsis frame
while there are items in the rendering queue do
pop and overlay each item on the new synopsis frame

end while
add the new frame to the output and increase the 

frames counter
end while
return the output synopsis frames

end
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The output file generated by Algorithm 1 has the following characteristics:

• Compressed file size – the size of the output file is smaller than the input file, making
its storage more cost-effective.

• Shorter duration – the output file consists of only the main person identities from the
input file, eliminating any unnecessary static scenes that can last for hours.

• Quality – the use of the machine learning models makes for a smooth overlay on the
extracted background, thus preventing any visual interruptions and loss of frames,
which increases the realistic look of the synopsis.

5 Experimental Results and Discussions

5.1 Control Datasets

To generate experimental results for the proposed framework the Oxford Town Centre
[18] dataset has been selected. It represents a video from a video surveillance camera
shot in the centre of Oxford and consists of 4,500 frames with a duration of 3 min as
well as annotations of a total of 230 different pedestrians (identities), or an average of
16 pedestrians per frame. Figure 4 visualizes sample frames from the dataset.

Fig. 4. Samples from the dataset Oxford Town Centre [18] with rectangular annotations.

Additionally, comparison results with prior works are presented. Due to lack of
standardized datasets, however, evaluation of such is a challenging task. Fortunately, the
authors of [4] have published their synopsis dataset that consists of four videos, shot in
different locations. Three of the videos are shot outdoors and capture different situations
involving both pedestrians and vehicles, whereas one of them with a length of one hour
is shot indoors and captures a hall scene with pedestrians coming from several entrances.
As the proposed synopsis framework is primarily focused on pedestrian CCTV footage,
the hall video has been chosen as the primary comparison set. Original frames from this
video are presented on Fig. 5.

Fig. 5. Example frames from the synopsis dataset video hall [4], consisting of 66,771 frames.
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5.2 Metrics

As part of the framework for video synopsis, the following metrics for generating
quantitative results of the quality of the synopsis process are proposed:

• SynopsisO: Optimization or the frame reduction that the synopsis algorithm does to
the input file. Equals to the ratio between the length of the output and input files:

SynopsisO = 1 − FO/FI (4)

where FI ∈ N
0 and FO ∈ N

0 are the number of frames of the input and output files.

• ObjAVG: Average identities (pedestrians) per frame in the output file:

ObjAVG =
∑FO

t=0Objt
FO

(5)

where Objt ∈ N
0 is the number of identities in synopsis frame t ∈ {0, . . . ,FO}.

• SynopsisT: The total time to generate the output video file (in seconds):

SynopsisT = Tfinal − TO (6)

where TO and Tfinal are the start and end timestamp of the synopsis generation
process.

5.3 Results

To evaluate and analyze the performance of the proposed synopsis framework multiple
results were generated for the Oxford Town Centre [18] dataset and presented in Table 1.
Several values of the control parameters of the algorithm were used: the maximum
number of objects m ∈ {100, 50, 30} to be displayed in one scene and the number of
frames k ∈ {10, 3} to wait before adding a new object to the scene.

The results reveal that high values of SynopsisO and ObjAVG are achieved at lower
values of k and higher values of m. Moreover, both parameters affect the duration FO

of the output file. On the other hand, the generation speed SynopsisT directly depends
on the number of output frames, therefore it also implicitly depends on the values of the
algorithm parameters k and m. Figure 6 visualizes the highest achieved SynopsisO for
m = 100 and k = 3.

Furthermore, to compare the proposed framework with state-of-the-art the Synop-
sisOmetric has been calculated on the hall video [4] (Fig. 5) and the results are presented
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Table 1. Results of the video synopsis framework on theOxford TownCentre [18] dataset. Arrows
are an indicator of low or high optimal values.

m k FO ↓ SynopsisO ↑ ObjAVG ↑ SynopsisT ↓
100 10 2767 0.385 21.123 9.166

100 3 925 0.794 63.187 7.970

50 10 1451 0.678 40.281 7.965

50 3 1266 0.719 46.167 7.855

30 10 2122 0.528 27.544 8.043

30 3 2020 0.551 28.935 7.972

Fig. 6. Visualization of the Oxford Town Centre [18] synopsis for m = 100 and k = 3.

Table 2. Comparison with prior art on the hall video dataset [4].

Metric Huang et al. [3] Huang et al. [4] Wang et al. [5] Proposed

FO 14379 11271 8814 1566

SynopsisO 0.785 0.831 0.868 0.977

in Table 2. The synopsis parameters used in this evaluation are the best performing on
the Oxford Town Centre [18] dataset, that is, m = 100 and k = 3.

The resulting synopsis file for the hall dataset has a length FO of 1566 frames, five of
which takenwith 10s difference are visualized on Fig. 7. The achieved frame reduction is
97.7% which is 10.9% improvement over prior methodologies. Further tests with other
synopsis parameter values used in Table 1 achieved the same frame reduction. This is
due to two pedestrians being in the scene for a minute in the original video (ten times
longer than the average) that can be also seen in the last frame on Fig. 7.

Fig. 7. Visualization of the hall dataset [4] synopsis for m = 100 and k = 3.
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6 Conclusions

This paper presents a framework for creating a synopsis of a CCTV footage. This allows
for cutting long security camera videos into significantly shorter files while giving much
more viable information on each frame. The amount of information to be displayed in
each framecanbe controlledvia parameters usedduring the synopsis process.Combining
the latest developments inmulti-object tracking aswell as convolutional neural networks,
the proposed framework achieves state-of-the-art frame reduction rate. In the future, a
quantitative analysis of the quality of each framework component will be introduced to
understand the impact that each algorithm has on the final synopsis result. Furthermore,
creating a systematic approach to evaluating each component will allow them to be
improved individually.
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Abstract. Android platforms are widely used nowadays in different forms such
as mobile phones and tablets, and this has made the Android platform an attractive
target for hackers. While there are many solutions available for detecting malware
on Android devices there aren’t that many that are concentrated on specific mal-
ware types. To this extent, this paper delivers a new dataset for Trojan detection
for Android apps based on the permissions of the apps, while the second contri-
bution is a neural network architecture that can classify with very high accuracy
if an Android app is a genuine app or a Trojan pretending to be a normal app. We
have run extensive evaluation tests to validate the performance of the proposed
method andwe have compared it to other well-known classifiers usingwell-known
evaluation metrics to show its effectiveness.

Keywords: Android · Malware detection · Trojan · Convolutional Neural
Networks

1 Introduction

Nowadays, in theworld people canget all types ofAndroid devices such asmobile phones
and tablets and numerous applications (apps) can be easily downloaded from available
websites in cyberspace. However, many apps are being produced daily, with some of
which being infected and beingmalware instead of a genuine app.Many exploiters infect
applications using malicious approaches for their profit to steal information frommobile
devices. Malware can come in various forms, such as viruses, trojans, worms, botnets,
and many others and among that malware, trojans are a type of malware that is often
disguised as legitimate software; however, they will perform malicious activities on the
operating system that most of the users will not even notice or understand [1, 6, 18].

Therefore, in this article, we study how to detect Android Trojans using the permis-
sions of the applications. To do this we have collected and processed data and created
a new dataset that is described in detail in Sect. 3. The Trojan dataset is a classification
dataset that contains only Trojan and genuine Android applications and to this extent,
we have developed a Convolutional Neural Network (CNN) architecture that detects
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Trojans with very high accuracy. To achieve this, we first had a theory that a Trojan can
be identified based on the requested permissions during app installations.

The contributions of the paper are as follows:

• We introduce a novel dataset for Android Trojan detection based on the permissions
of the applications.

• We deliver a CNN neural network architecture for Trojan detection.

The rest of the paper is organized as follows: Sect. 2 is the related work, Sect. 3
describes the dataset, Sect. 4 explains the proposed method, Sect. 5 delivers the
experimental evaluation and Sect. 6 contains the conclusions.

2 Related Work

In the Android platform, there are several works available in the literature due to its
popularity and numerous malware, that exist. We have identified recent relevant works
and discussed them here but the related works that are about Trojan detection are non-
existent in the literature. To the best of our knowledge, there is only one related work
about Trojan detection that is based on dynamic analysis and not on permissions which
are discussed later in [2].

We start with MCDMwhich is ‘a multi-criteria decision-making based’ mobile mal-
ware detection system that uses a risk-based fuzzy analytical hierarchy process (AHP)
approach to evaluate the Android mobile applications. This research concentrated on
static analysis by using permission-based features to assess the Android mobile mal-
ware detection system approach [1]. In another research dynamic analysis was used to
detect their features. Therefore, a parameter such as a system call was investigated in this
study. The purpose of this research is to detect android Trojan based on dynamic anal-
ysis [2]. Another research paper proposes a novel detection technique called PermPair
that builds and compares the graphs for malware and normal samples by extracting the
permission pairs from the manifest file inside the application [3]. Yet another research
presents a platform named DroidCat which is a novel dynamic application classifica-
tion model to complement those methods that are existing. DroidCat uses various sets
of dynamic features based on method calls and inter-component communication (ICC)
Intents without involving any permission, application resources, or system calls [4]. One
other study proposes an innovative Android malware detection framework based on fea-
ture weighting with the joint optimization of weight-mapping and the parameters of the
classifier named JOWMDroid [5].

In [6] the study introduces a new scheme for Android malware detection and familial
classification based on the Graph Convolutional Network (GCN). The general idea is to
map Android applications and APIs into a large heterogeneous graph and convert the
original problems into a node classification task. The study in [7] was a novel hybrid-
featured Android dataset that provides timestamps for each data sample which covers
all years of Android history from the years 2008 to 2020 and considers the distinct
dynamic data sources. Researchers presented a new malware detection framework for
Android applications that are evolutionary’HAWK’. Their model can pinpoint rapidly
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the proximity between a new application and existing applications and assemble their
numerical embeddings under different semantics as described in [8]. MAPAS is a mal-
ware detection platform that achieved high accuracy and adaptable usage of computing
resources. Moreover, MAPAS analyzed malicious apps behaviors based on API call
graphs of them by using convolution neural networks (CNN) [9]. NSDroid is ‘a time-
efficient malware multi-classification approach based on neighborhood signatures in
local function call graphs (FCGs). This method uses a scheme based on neighborhood
signature to calculate the similarity of the different applications which is significantly
faster than traditional approaches according to subgraph isomorphism [10]. A work that
presents a web-based framework that helped to detect malware from Android devices is
named ‘MLDroid’. The proposed framework detects Android malware applications by
performing its dynamic analysis measures can be found in [11].

In their work ‘NATICUSdroid’ a new Android malware detection system that inves-
tigates and classifies benign and malware using statistically selected native and custom
Android application permissions as features for various machine learning classifiers
[12]. One more work is an innovative android malware detection framework that uses
a deep CNN neural network. In this system, Malware classification is performed based
on static analysis of the raw opcode sequence from a disassembled program [13]. A
machine learning-based malware detection platform is proposed to distinguish Android
malware from benign applications. It is aimed to remove unnecessary features by using
a linear regression-based feature selection approach at the feature selection stage of the
proposed malware detection framework. [14]. Another research proposes a novel app-
roach based on behavior for Android malware classification. In the proposed method,
the Android malware dataset is decompiled to identify the suspicious API classes and
generate an encoded list. In addition, this framework classifies unknown applications
as benign or malicious applications based on the log-likelihood score generated [15].
In their paper researchers have delivered a completely novel and innovative dataset of
malicious or benign Android anti-malware detection, including, and a customized mul-
tilayer perceptron neural network (MLP) that is being used to detect fake anti-malware
that pretend to be genuine ones based on the permissions of the applications [16].

In their article researchers introduced a novel TAN (Tree Augmented naive Bayes)-
based—a hybrid Android malware detection mechanism that involves the conditional
dependencies which are required for the functionality of an application among relevant
static and dynamic features [17]. The next work is a survey aimed to provide an overview
of thewaymachine learning (ML) has been employed in the context ofmalware analyses.
They also conducted survey papers based on their objectives, what kind of information
about malware they used specifically, and what type of machine learning techniques
they employed [18]. DAE is a hybrid model based on a deep autoencoder and a CNN.
This mechanism is proposed to improve the Android malware detection accuracy. To
achieve this, they reconstructed the high-dimensional features of Android applications
and employedmultiple CNN to detect Androidmalware [19]. In the next research article,
a new detection approach is introduced based on deep learning techniques to detect
Android malware from trusted applications. To achieve that, they treat one system call
sequence as a sentence in the language and build a classifier according to the Long
Short-Term Memory (LSTM) language model [20].



206 S. Seraj et al.

An EfficientNet-B4 CNN-based model is presented for Android malware detec-
tion by employing image-based malware representations of the Android DEX file. This
model extracts relevant features from the Android malware images [21]. In the following
paper, a new classifier fusion scheme based on a multilevel architecture is introduced
that enables an effective combination ofmachine learning algorithms for improved accu-
racy which is called DroidFusion. The induced multilevel model can be utilized as an
improved accuracy predictor for Android malware detection [22]. AMachine Learning-
based method that utilizes more than 200 features extracted from both static analysis
and dynamic analysis of Android applications for malware detection was proposed in
[23]. A platform that is capable to detect android malware applications is introduced to
support the organized Android Market. The proposed framework intended to develop
a machine learning-based malware detection framework on Android to detect malware
applications and to increase the security and privacy of smartphone users [24]. CoDroid
is a hybrid Android malware detection approach based on the sequence which utilizes
the sequences of static opcode and dynamic system call [25]. Finally, researchers have
combined the high accuracy of the traditional graph-based method with the high scal-
ability of the social network analysis-based approach for Android malware detection
[26].

Although all these works are interesting there is only one work that is about Trojan
detection that is based on dynamic analysis. Therefore, in this work, we developed a new
dataset about Trojan detection using permissions to fill this gap and we have developed
a CNN architecture to detect trojans with high accuracy.

3 Dataset

With regards to trojan detection in Android platforms, we introduce a new dataset based
on Android app permissions. To this extent, we developed an Android Trojan dataset
that contains 2593 entries. To do this we downloaded 1058 Android Trojan malware and
1535 general benign apps from various categories from Google Play. We analyzed all
apk files using VirusTotal.com to extract all their features including internet access and
other required app permissions. Moreover, we have used over 70 reputed anti-malware
detection engines to classify the apk files. The android Trojan dataset consists of the
following families: BankBot, Binv, Citmo, FakeBank, LegitimateBankApps, Sandroid,
SmsSpy, Spitmo, Wroba, ZertSecurity and Zitmo. For the dataset to be in a usable form,
we added all the information in a file.csv file format which can be easily opened and
processed. There is a total number of 450 columns in the dataset that includes 449
specific permissions plus the label which is the last column. The first row in the dataset
describes column titles, and the rest are features from 2593 android Trojans and benign
applications apk files. All values are in binary format i.e., 0 or 1. When an app requires
permission, then the value in the respective entry of the dataset is 1, and unnecessary
permissions of an app are set to zero. An Android app that is recognized as malware by
most antivirus companies based on VirusTotal report, is considered risky and the value
in the label column is set as 1, being Trojan. However, the other Android genuine apps
have zero value. The complete dataset is accessible at: https://www.kaggle.com/saeeds
eraj/trojandroidpermissionbased-android-trojan-dataset/.

https://www.kaggle.com/saeedseraj/trojandroidpermissionbased-android-trojan-dataset/


TrojanDroid: Android Malware Detection for Trojan Discovery Using CNN 207

Fig. 1. An illustration of a small part of the proposed dataset

4 Proposed Method

A 1-dimensional CNN sequential architecture has been developed to classify trojans
using the above dataset and the Python programming language with the Keras library.
The architecture includes one 1D-CNN layer, followed by a 1D MaxPooling layer,
followed by a Flatten layer, followed by 2 dense layers. The architecture is presented in
detail in Fig. 2. The Specific settings are as follows:

• A learning rate of 0.01 has been used and the optimizer is Adam
• The number of epochs is 6
• The batch size is 16
• The activation functions used are the Relu for the 1D CNN layer and the first dense
layer and the Sigmoid for the final dense layer

• Bias has been set to true in the 1D CNN layer

Fig. 2. Proposed method architecture
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5 Experimental Evaluation

For the experimental evaluation, we have proposed the CNN architecture described in
Sect. 4 developed using the Python programming language and the Keras library. For
all experiments, 5-fold cross-validation has been used.

5.1 Evaluation Metrics

For the experimental evaluation, we have used the Python programming language and
the Keras machine learning library. With regards to evaluation metrics, we have used
the Accuracy, Precision, Recall, and F1 which are described in Eqs. 1, 2, 3, and 4
respectively. TP stands for true positive, TN for true negative, FP for false positive,
and FN for false negative. Accuracy, which is Eq. 1, shows the overall performance.
Another significant metric is Precision which describes the portion of predicted Trojans
and is calculated by Eq. 2. Equation 3 explains the Recall metric which is the portion
of Trojan that is correctly classified. The F1-score is a number between 0 and 1 and
is the harmonic mean of precision and recall which is computed according to Eq. 4.
These are well-known metrics that have been used in recent studies for similar problems
in Android malware detection [5, 6, 21]. Overall, our proposed method outperforms
alternative classifiers in all metrics.

Accuracy = TP + TN

TP + TN + FP + FN
(1)

Precision = TP

TP + FP
(2)

Recall = TP

TP + FN
(3)

F1 = 2 ∗ Precision ∗ Recall

Precision + Recall
(4)

5.2 Results

This section delivers the results of the experimental evaluation. Figure 3 presents the
results of the proposed method architecture for both the train and test accuracy over 6
epochs. Figure 4 presents the loss results over 6 epochs.
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Fig. 3. Accuracy for each of the 5 folds

5.3 Comparisons with Other Classifiers

The algorithms used in the comparisons are the following with the default settings used
from the sci-kit learn library: Decision Tree, Random Forest, Multi-Layer Perceptron.
The results are presented in Table 1 which provides a comparison between the proposed
method and the other well-known classifiers using accuracy, precision, recall, and F1.
5-fold cross-validation has been used throughout.
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Fig. 4. Loss for each of the 5 folds

Table 1. Comparison results

Algorithm Accuracy Precision Recall F1

Decision Tree 96.1% 95.8% 95.7% 95.9%

Random Forest 97.9% 97.7% 97.3% 97.5%

Multi-Layer Perceptron 97.8% 97.8% 96.7% 97.7%

TrojanDroid 98.06% 99% 97.71% 98%
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6 Conclusions

In this paper, we have concentrated on Trojan detection on android platforms. We have
collected a new dataset which we have made available, and we delivered a novel neural
network architecture that can detect trojans with very high accuracy. The results indicate
that by using the permissions of Trojan and genuineAndroid apps, trojans can be detected
in a straightforward way which can be useful to the research community and beyond.

In the future, we plan to extend our proposed method to include the specific trojan
family that a trojan belongs to and adjust it accordingly to detect the family with high
accuracy as well. Moreover, we plan to investigate how to use permissions to detect
other types of malware such as botnets.
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Abstract. Data has become fundamental to every business process and
research area like never before. To date, one of the main open points of
research activities is to manage the data acquired in the field by sensors,
logs etc. by modeling the data structures according to the analyzes that
will be carried out. In fact, with the advent of Big Data, the need to
have a single reference data structure has been reduced, but with modern
architectures there is a tendency to generate specific and optimized data
structures for the analyzes that will be carried out. In this work we
propose an agile data modeling methodology guided by analytics focused
on the management of structured and semi-structured data sources.

Keywords: Events graphs · Graph rewriting · Data management

1 Introduction

We consider the problem of merging data coming from heterogeneous source in
the best suited way to perform analyses in a specific domain and describe in
depth each step of a method aiming to automate the whole procedure as much
as possible. We deal with a rather particular set of cases, namely structured and
semi-structured data like e.g. tagged unstructured data. We also suppose that
data has both a graph structure and a measurable content, e.g. times, positions,
physical quantities, amounts of money and so on.

We are looking for merging methods that: are well suited for graph databases;
enhance the understandability of the data (as these databases are often manually
queried using visual tools); improve the performance of analysis programs; can
easily accommodate semi-structured data with variable information contents.

Inspired by [7], we model both the source and the target data as graphs and
define graph rewriting rules to map the first model to the latter.

It is the type of the analyses, or the type of knowledge one wants to extract
from the data, that should guide the data transformation. For this reason, we
c© Springer Nature Switzerland AG 2022
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Fig. 1. A Source and a SKOG devoted to localization of people.

call the transformed graph a Specific Knowledge Oriented Graph (SKOG). We
will define an automated procedure to find the transformations mapping the
source graph to a SKOG.

2 Related Work

The data fusion task identifies the values of data records among multiple
observed values acquired from different sources of varying reliability. Data fusion
has been thoroughly studied in [10] and [14] considering deep learning methods;
[13] compares the performances of early and late fusion, [17] proposes knowledge
base representations, [9] surveys data driven methods; a taxonomy of methods
intended for machine learning can be found in [1] and surveys in [16] and [8].

The basic principle of graph rewriting is the step-wise replacement of sub-
graphs inside a host graph [12] or the rule-based modification of graphs [5]. Two
classical approaches have been proposed: the Double Pushout (DPO) and the
Single Pushout (SPO). When a subgraph is replaced, its links with the rest of
the graph that remain dangling must be addressed. The DPO approach for-
bids replacements leading to any dangling edges, while in SPO replacements are
always allowed and dangling edges are simply removed. More general approaches,
as the Sesqui-pushout rewriting and others have been recently proposed [2] and
[6]. For our purposes, we need three basic operations on graphs: deleting, merging
and splitting nodes.

3 Method

The method consists of several steps, described in the following paragraphs.
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Fig. 2. A tree to describe the environment for the Source and SKOG of the example.

The definition of the Source model, that should be prepared by the
user, is as follows: data sets are nodes; data sets attributes are nodes, linked
to the data set nodes by edges with label contained ; attributes categories are
nodes, linked to data set attributes by edges with label category ; external keys
are edges, linking corresponding data set attributes. With data sets we mean
individual data sets that hold the data.

Categories are used to recognise attributes holding the same type of informa-
tion, for instance timestamps and amounts. An example can be found in Fig. 1,
on the left. For the sake of simplicity, only data set nodes and external key edges
have been drawn.

The Environment Tree describes the environment of the application and
is prepared by the user to specify which source data must be included. The
tree considers generic entities, specifying the minimum set of attributes that
is required at each level (basic information pieces, like timestamps, codes etc.
or pointers to other entities). The tree is built so that it is possible to replace
iteratively the pointers to obtain attribute sets containing only basic information
types.

An example is shown in Fig. 2. Circles represent entities and squares required
attributes. Entities in the bottom dotted square represent source data sets; the
rewriting is based on the presence of the required attributes in each source.

The same Environment Tree can be used to manage several instances of
Source data and SKOG, automatically checking if a source data set can fit a
node of the tree, that is if it has all the fields with required categories. We say
that the Source model is mapped to the tree.

The Choice of the Levels to Include. The Environment Tree is traversed
from top left to bottom right and the user is asked if he wants to keep each node.
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At the first level, if the answer is no, the node and all its children are marked
to discard. As a consequence, all data sets fitting the tree nodes will be deleted
from the model. If the answer is yes, the user will go down one level and choose
which of the node’s children must be kept. From level two onward, if the user
discards all the children of a node, they are merged together; if he accepts one
or more children they are kept and the other children are deleted.

Computing the Transformations. The first transformation set managed con-
sists of deletions: a rewrite rule is computed, where the left hand part consists
of the pattern to match, including data sets and attributes to delete and their
links to other nodes, if any. The preserved and right hand parts consist of the
nodes that were linked to the deleted ones. A split is performed for the data sets
chosen by the user. The left hand of the rule consists of the nodes for the data
sets and their attributes. The preserved and right hand parts of the rule consist
of the new entities to be created, each with the source attributes used; moreover
edges are created to link the source attributes to the entity attributes. A merge
is performed whenever the user chooses to stop at a level L higher than the leaf
one: all the data sets in leaves under the L level must be merged. The resulting
entity keeps all the attributes common to the merged data sets. The category of
the attributes is used to identify attributes with the same meaning in different
data sets.

The SKOG Model. The structure of the SKOG model is as follows: entities
in the SKOG database are nodes; entity attributes in the SKOG database are
nodes, linked to the entity nodes by edges with label property ; a special attribute
for each entity records the type of the source data used for import; source data
sets to be actually imported are nodes; source data attributes are nodes, linked
to the data set nodes by edges with label contained ; entity attributes are linked
to source data set attributes by edges with label source; relations of type external
key between source data set attributes are kept and result in relations between
entity attributes.

A SKOG model is obtained applying the transformations computed in Sect. 3
to a source model. See Fig. 1 for an example.

Loading the Data. The data is loaded using Algorithm 31. Lists Li of entities
with external keys must be such that entities in Lk contain external keys to
entities in Li only if i < k.

Algorithm 31. [Data import] To load source data to the SKOG database:

1: read the SKOG model, prepare
list L1 of entities without exter-
nal keys, L2 ... Ln of entities with
external keys

2: i = 1
3: while i ≤ n do
4: while Entity E in Li do

5: while Source data set S for E
do

6: create a node of type E
for each record in S using
SKOG model edges between
entity attributes and source
attributes
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(a) A small source graph. (b) The moneyflow SKOG derived from the
graph in fig. 3a

Fig. 3. Graph models snapshots

7: keep track of data needed
for external keys for entities
in other Lk

8: add external key edges
to already created nodes

as specified in the SKOG
model

9: end while
10: end while
11: end while

4 Experiments

We applied the method to synthetic data sets including ATMs, Bank Accounts,
Cell Towers, Debit Cards, Email Addresses, Persons, Public IPs, Phones, Phone
Calls, Withdrawals of debit cards, Bank Account Moves, Wi-Fi connections,
Email Logs, Person State Changes.

Person state changes is a fictitious data set, that was generated to mimic any
changes in a person state or behaviour, that may be spontaneous or induced by
the encounter with another person; it might be for instance buying a product
after word of mouth advice or being infected with some diseases. All the tables
contain some descriptive information too.

We used three SKOG models: the “Localizer”, with entities Location, Event,
Object and Person; the “MoneyFlow”, with entities Financial Operation, Com-
munication, Financial Object, Communication Object and Person; “Wordof-
mouth”, with entities Location, Event, State Change and Person. Models and
rewriting rules were obtained and the data was loaded.

The goals of our experiments were: 1. show that we can obtain several differ-
ent graphs from the same source data sets, 2. highlight the optimal expressiveness
of visual queries in each graph 3. show examples of analytic results both gen-
eral and specific for each graph 4. show that new data set types can be easily
accommodated in the graphs in a meaningful way

Visual Queries. Figures 3a and 3b compare a small source graph, created from
data sets described above, and the corresponding Moneyflow SKOG. The source
contains 4115 nodes e 5278 edges, the Moneyflow 2731 nodes and 2261 edges. It
is obvious that the latter is much more readable than the first.

Analytics. We used the Wordofmouth SKOG to cluster locations where per-
sons’ states most likely spread. Data was generated assigning an “active” state
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Fig. 4. Comparison of accuracy of analysis using the SKOG (red crosses), the source
(blue circles) graph and source after LDA (green triangles). (Color figure online)

to a subset of the persons and a “type” (0, 1 or 2) to each location (ATMs, cell
towers and IPs). As each event (withdrawal, phone call and email log) demon-
strates presence of somebody in a location at a time, we considered a potential
meeting of two persons when they were present at the same location within a
time window. Then, depending on the location type, a person active state could
activate the other person. The goal of the analysis was to cluster the locations
according to their ability to favor the spreading of active states, and it was
expected that the clusters correspond to the assigned location types. Several use
cases might fit this scenario: for instance the active status might be interpreted
as having bought a specific book, the interactions as talking of the book with
people met at a location so that they become interested in the book and buy it in
turn. Another interpretation of the status might be having got some disease and
infect people met at locations. Some amount of spontaneous changes of state,
that is not induced by encounters, are expected.

According to their nature and the type of encounters that happen therein,
locations can favor the spreading, discovering the most conductive ones is the
goal of the clustering.

Some simplifications were done: locations correspond one to one to an ATM,
a cell tower or an IP; we did not try to find the optimal number of clusters from
the data; we supposed that the active status of the “infecting” agent has always
been detected before he gets in touch with the “infected” one.

As in a real application one would not know the location types in advance, we
used an unsupervised algorithm, namely a K means clustering and a posteriori
compared the results with the types. We transformed both the source and the
SKOG graphs in event graphs in the sense of [11] and [15], see also [4]. In event
graphs, nodes are events and edges link nodes sharing an entity and happening
at other moments in some time windows.

Figure 4 compares results of clustering using the SKOG graph (red crosses)
and the source graph (blue circles). Several runs have been done for each value
of the “confusion” induced by spontaneous changes of state (the abscissa of
the graph is the percentage of spontaneous cases with respect to number of
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encounters found in the patterns). To compare results to a classical method to
reduce dimensions, we computed a 1-dimensional versions of the source data of
emails and phone calls using Linear Discriminant Analysis (green triangles in
the plot). Note that this would not be possible in a real case, as the method is
supervised. Using the SKOG, greater accuracy can be achieved until confusion
is less than ≈75%, then results are comparable to the expectation for random
data, given the construction of the Source and SKOG graphs. The main reason
for the good accuracy of the SKOG is that some collateral phenomena can be at
work and create noise when clustering the source data; for instance there may be
locations where some types of links are found more often (e.g. between caller and
called). These may be due to fluctuations, so that they will disappear continuing
the observations for a longer time, or to some specific cause that, however, is not
important for the purpose of the analysis. Linear Discriminant Analysis enhances
the accuracy, but is not able to completely filter out the collateral phenomena
found in the data.

Adding New Sources. When a new source data set must be taken into consid-
eration, the whole process can be repeated, starting from the source model defi-
nition. The case of semi structured data, however, must be managed in a slightly
different way as each record may contain more or less fields to be matched to the
environment tree. For the sake of clarity, we will discuss an example, general-
ization is straightforward. Consider as source a set of photographs, tagged with
timestamp, IDs of persons that have been recognized and location. The source
data set is e.g. a json file with an entry for each picture. Suppose that we want
to add this info to the Localizer, generating events when a photograph contains
a person at some locations. The environment tree in Fig. 2 is modified adding a
second type of Visit events with a person instead of an object; each input record
is mapped to a small source graph with nodes for attributes; then the tree is
matched to the environment tree. If no locations or no persons are found in the
source graph, the record is discarded, otherwise it is split into a Visit event for
each person it contains.

5 Conclusion

As described in the initial sections, data modeling for generating data structures
in analytics platforms is a crucial and critical step. In this work, an analytics-
driven methodology for managing source data has been proposed. It was also
applied and validated with different analytics to synthetic data derived from
real cases.
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Abstract. Online learning is a well-established problem in machine
learning. But while online learning is commonly concerned with learn-
ing on a stream of samples, this article is concerned with learning on a
stream on features. A modified quadratic discriminant analysis (QDA) is
proposed because it is fast, capable of modeling feature interactions, and
it can still return an exact solution. When a new feature is inserted into
a training set, the proposed implementation of QDA showed a 1000-fold
speed up to scikit-learn QDA. Fast learning on a stream of features pro-
vides a data scientist with timely feedback about the importance of new
features during the feature engineering phase. In the production phase,
it reduces the cost of updating a model when a new source of potentially
useful features appears.

Keywords: Incremental learning · Online learning · Sequential
learning · Stream learning

1 Introduction

A common issue in machine learning is the need to update machine learning
models based on changing data. This issue can be simplified by assuming that

Fig. 1. Difference between learning from a stream of samples (left) and a stream of
features (right). In both cases, we have n samples and d features at time t. However,
at time t + 1, we either have one more sample (left) or one more feature (right).
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new samples will be available over time. However, this article is concerned with
the orthogonal problem—the fast updating of models with the arrival of new
features (see Fig. 1).

Interestingly, the authors of this article did not find any publicly available
implementation of a classifier, which would satisfy following requirements:

1. it is faster to update the model with a new feature than to train the model
from scratch,

2. is more accurate than naive Bayes, which can be straightforwardly updated
to learning on a stream of features,

3. and is faster to train than logistic regression, random forest, and gradient
boosted trees.

The proposed update of the quadratic discriminant analysis (QDA) to learning
on a stream of features satisfies all these requirements.

1.1 Quadratic Discriminant Analysis

The authors extend QDA because it is a simple (but nontrivial) model that can
be solved analytically. Furthermore, QDA is capable of modeling interactions
between features without explicitly defining them in the data preprocessing step.
This property differentiates QDA from linear discriminant analysis (LDA). Nev-
ertheless, it is easy to reduce QDA into LDA by using the same covariance matrix
estimate for each class. LDA is known to have a good tradeoff between accuracy
and runtime [19], is more efficient than logistic regression [6], and can be used
for semi-supervised learning (e.g., by shrinking the class conditional covariance
matrix estimates toward the shared covariance matrix).

The paper is structured as follows. First, the related literature is discussed
in Sect. 2. Then online QDA is proposed in Sect. 3. Empirical comparisons of the
obtained accuracy and speed up are in Sect. 4. The paper closes with a discussion
of the applications of the online QDA in Sect. 5 and the conclusion in Sect. 6.

2 Related Work

Feature stream processing was introduced by [24], where it was used for feature
selection. The current state-of-the-art algorithm in this field is online streaming
feature selection (OSFS) [20]. OSFS works as a feature-selection filter, which
evaluates incoming features. Only when a new feature is evaluated by OSFS to
be relevant and non-redundant, the feature is passed to a conventional down-
stream model, which is retrained from scratch. However, the time to retrain the
downstream model remains an unsolved bottleneck [22].
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Examples of other feature selection methods that work on a stream of features
are a scalable and accurate online approach for feature selection (SAOLA) [23],
online stream feature selection method based on mutual information (OSFSMI)
[16], online stream feature selection method with self-adaptive sliding window
(OSFSASW) [21], geometric online adaption (GOA) [18], and streaming feature
selection considering feature interaction (SFS-FI) [25].

Our approach is a departure from the feature selection mindset; it focuses on
updating an offline classifier into an online classifier.

This update approach was already successfully applied on least squares sup-
port vector machine by [15], on a one-layer artificial neural network by [2], and
on Bayes classifier by [13].

2.1 Unrelated Work

The proposed implementation of QDA can be described as an incremental algo-
rithm. However, this term can have several meanings, and we feel the need to
explicitly state what our implementation is not, to avoid confusion.

A considerable amount of literature is associated with updating LDA when
new samples arrive (see references in [5, Table 1]). However, this article deals
with an orthogonal problem when new features arrive. In addition, the proposed
QDA does not return an approximate solution (e.g., by iteratively approximating
the first few eigenvectors [3]) but returns an exact solution.

3 QDA Algorithm

In the following text, matrices are denoted by capital letters, e.g., Z ∈ R
n×d,

vectors by boldface characters, e.g., z ∈ R
d, and scalars by lowercase characters,

e.g., z ∈ R. n denotes the count of rows and d denotes the count of columns.
Unless stated otherwise, vectors are column-vectors, i.e., zᵀz is a scalar. Vectors
and matrices are indexed with square brackets, e.g., Z[i, j] for ith row and jth

column, to unite the notion in mathematical equations and pseudocode. For
brevity, broadcasting along the vertical is permitted, e.g., Z − z = Z − 1nzᵀ,
where 1n is a vector of ones.

A single data instance s can be scored with QDA using the following equation:

Zk(s) = −1
2
(s − μk)ᵀΣ−1

k (s − μk) − 1
2

ln |Σk| + ln pk. (1)

where μk is the estimated mean value of instances in class k, Σ−1
k is the inverse of

the covariance matrix for the class k, |Σk| is the determinant of the covariance
matrix Σk, and pk is the prior probability of the class k. Instance s is then
classified into the class with the highest Z value.
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3.1 Covariance

The class-conditional sample covariance matrix Σt,k at time t is estimated from
the class-conditional data matrix Xt,k with

Σt,k =
1

nk − 1
(Xt,k − μt,k)(Xt,k − μt,k)ᵀ, (2)

where μt,k is a class-conditional vector of the feature means, and nk is the class-
conditional sample count. When a new feature xt+1 is appended into the data
matrix, Xt becomes Xt+1. The readily available Σt,k is then updated to Σt+1,k

with:
x∗
t+1,k = xt+1,k − x̄t+1,k,

X∗
t+1,k = [X∗

t,k,x
∗
k],

Σt+1,k =
[
Σt,k,

1
nk−1 (X∗

t+1,k · x∗
t+1,k)

]
,

(3)

where the covariance matrices is stored in a packed (triangular) format because
covariance matrices are always symmetric. For convenience, the ∗ superscript
marks the centered matrices through the text. x̄t+1,k is the estimated mean
value (a scalar) of vector xt+1,k.

3.2 Inverse

Inverse of a matrix, as given in Eq. (1), should generally never be explicitly cal-
culated because faster and more numerically stable methods exist [4]. Suppose
that we want to solve x = A−1y, where x is the unknown vector. Whenever
matrix A is symmetric and positive definite, x can be efficiently obtained via
the Cholesky decomposition chol [8, Section 4.2.3] followed by backward substi-
tution backward [8, Section 3.1.6]:

R = chol(A),
x = backward(R,y).

(4)

The Cholesky factorization decomposes matrix A into an upper triangular
matrix R such that the product of R and its transpose Rᵀ yields A:

A = RRᵀ. (5)

Backward substitution then solves the problem from bottom to top (hence,
the name):

x[d] = y[d]/R[d, d],

x[i] =

⎛

⎝y[i] −
d∑

j=i+1

R[i, j]x[j]

⎞

⎠ /R[i, i], i ∈ [1, d − 1].
(6)

Herein, an important factor is that both the Cholesky decomposition and
backward substitution can be efficiently updated when a new column is added
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to matrix A. The Cholesky decomposition can be updated with cholinsert,
which is a built-in function in Octave or Julia. Rank-one update of backward
substitution is visually represented in Fig. 2. Since the sample covariance matri-
ces are always symmetric and positive definite when the features are linearly
independent, we can use the Cholesky decomposition in QDA. Further discus-
sions regarding the steps to be taken if this assumption is violated are detailed
in Sect. 3.6.

3.3 Determinant

The determinant of matrix A can be obtained as the product of the squared
diagonal elements of chol(A):

|A| =
d∏

i=1

R[i, i]2, (7)

where d is the size of R.

Fig. 2. Updating the system of equations by appending a single column into triangular
matrix R

Whenever the logarithm of the determinant is needed, as in Eq. (1), it is pos-
sible to avoid unnecessary overflows by summing the logarithms of the diagonal
elements of chol(A):

ln |A| = ln
d∏

i=1

R[i, i]2 = 2 ·
d∑

i=1

ln(R[i, i]). (8)

Because cholinsert does not change the values of the old Cholesky decom-
position Rt (it simply appends a new column), it is possible to update the
logarithm of the determinant in real time:

ln |At+1| = ln |At| + 2 · ln(Rt+1[t + 1, t + 1]), (9)

where Rt+1[t + 1, t + 1] is the bottom right number in triangular matrix Rt+1.
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3.4 Vectorization

Equation (1) is given only for a single sample. To score all new samples at once,
first note that:

bᵀA−1b = bᵀ(RRᵀ)−1b (10)

= bᵀ(R−1)ᵀR−1b (11)

= (R−1b)ᵀ(R−1b), (12)

where b is a vector, R is the Cholesky decomposition of A. From this, we obtain
a scoring function for matrix X:

Zk(x) = −1
2

∑

d

(R−1
k (X − μk)) ◦ (R−1

k (X − μk)) − 1
2

ln |Σk| + ln pk. (13)

where ◦ is element-wise multiplication, μk is the class-conditional mean of the
training data, Rk is the Cholesky decomposition of the Σk covariance matrix,
and R−1

k X is solved with backward substitution.

3.5 Online Version

The QDA update process is described in Algorithm 1, where cholinsert is a
built-in function as implemented in Octave or Julia. In addition, solveinsert
updates the solution of the triangular system of equations with multiple right-
hand sides using the algorithm described in Algorithm 2 (backward substitution,
but scaled to work with a matrix X instead of vector x).

Algorithm 1: Updating QDA when a new feature is inserted.
Input: new feature, xt+1; label conditional sample count, m; label conditional

logarithm of prior probability, lp; label conditional feature means, µt;
label conditional centered features, X∗

t ; label conditional Cholesky
decomposition, Rt; and label conditional logarithm of determinant, ldt;
t is the count of features, k is the class

Output: µt+1, X
∗
t+1, Rt+1, ldt+1, Zt+1

1 foreach k ∈ K do
2 µt+1,k = [µt+1,k, x̄t+1,k] /* Mean vector */

3 X∗
t+1,k = [X∗

t,k,x
∗
t+1,k − x̄t+1] /* Centered matrix */

4 σk = 1
mk−1

· x∗
t+1,k · X∗

t+1,k /* Covariance vector */

5 Rt+1,k = cholinsert(Rt,k,σk) /* Cholesky decomposition */

6 ldt+1,k = ldt,k + 2 · ln(Rt+1,k[t + 1, t + 1]) /* Log determinant */

7 At+1,k = solveinsert(At,k, Rt+1,k, X
∗
t+1) /* Solve equations */

8 Zt+1,k = lpk − 1
2

∑
(At+1,k ◦At+1,k)+ ldt+1,k /* Discrimination score */

9 end
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Algorithm 2: Function solveinsert updates the solution of a triangular
system of equations with multiple right-hand side for A · R = X.
Input: At, Rt+1, Xt+1, where t is the count of features
Output: At+1

1 At+1 = [At, (Xt+1[:, t + 1] − At[:, 1 : t] · Rt+1[1 : t, t + 1])/Rt+1[t + 1, t + 1]]

3.6 Regularization

One of the key problems of QDA is how to reliably estimate the covariance
matrices. Equation (2) presents an empirical estimate of the sample covariance
matrices. However, these sample covariance matrices suffer from a high variance
of the parameter estimates as the count of the parameters to estimate grows
quadratically with the number of features d and linearly with the number of the
classes k.

When the count of the samples is small relative to d and k, it is frequently
beneficial to assume that the covariance matrices are identical and use a single
shared covariance matrix Σt in place of Σt,k:

Σt =
(n1 − 1)Σt,1 + (n2 − 1)Σt,2 + . . . + (nk − 1)Σt,k

(n1 − 1) + (n2 − 1) + . . . + (nk − 1)
, (14)

where n with the index is the number of samples in the class. This variant of
QDA is known as linear discriminant analysis (LDA).

Another common issue with QDA is the invertibility of the sample covariance
matrices [11]. This can be remedied with shrinking toward the identity matrix
[12]:

Σt,k = (1 − λ)Σt,k + λI, (15)

where I is the identity matrix and λ is a shrinkage coefficient, λ ∈ (0, 1).
For an improved predictive accuracy, regularized discriminant analysis

(RDA) [7] can be used, where the covariance matrix is a linear combination
of the shared covariance matrix, the class conditional covariance matrix, and
the identity matrix:

Σt,k = (1 − α − λ)Σt + αΣt,k + λI, (16)

where α is a tunable weight, α ∈ (0, 1 − λ).
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4 Experiments

4.1 Speed

The proposed implementation of QDA is evaluated on the OpenML-CC18 bench-
marking suite [1]. This suite includes 72 datasets, from which datasets that
include nominal features or missing values were excluded, as the implementa-
tion does not directly support them.

Two algorithms were compared: QDA learning from scratch with scikit-learn
0.24.0 QDA as the reference versus the proposed QDA update by feature insert.
For each of these two scenarios, the training and scoring times were recorded on
each of the datasets. Brier scores (a calibration measure for classification) were
also measured to validate that the quality of the predictions is equivalent. Since
the Brier scores were indeed identical between the implementations, we do not
report them.

Because some datasets have collinear features, as indicated by the high corre-
lation coefficients in the last column in Table 1, regularized covariance matrices:
(1 − λ)

∑
k +λI were used, where λ = 0.02. A constant regularization was used,

as the aim of the experiment was not to find the best possible regularization
coefficients but to compare runtimes.

Median runtimes from 15 iterations are provided in Table 1. The proposed
updatable QDA was always faster than scikit-learn QDA. Notably, there was
a 1000-fold increase in speed in five cases. Based on the code profiling, SVD
decomposition is the bottleneck in scikit-learn implementation. For the descrip-
tion of how to use SVD for discriminant analysis, see for example [11]. The code
for the result replication is available at github.com/janmotl/qda.

4.2 Accuracy

Since we are generally interested not only in runtime but also accuracy of the
classifiers, QDA was compared to naive Bayes, k-nearest neighbours, logistic
regression, random forest, and gradient boosted trees. Because of the page
limit, the design of the experiment and the obtained results are available at
github.com/janmotl/qda.

https://github.com/janmotl/qda
https://github.com/janmotl/qda
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Table 1. Training and scoring times in seconds for scikit-learn QDA and the proposed
updatable QDA, when the last feature is inserted. Dataset metadata: count of samples,
features, classes, and the maximal absolute Person’s correlation coefficient between two
different features in the dataset. Predictions from scikit-learn and the proposed QDA
are identical. The datasets are ordered by the obtained speed up.

Dataset scikit-learn Proposed Speed up Samples Features Classes Corr

mfeat-morphological 0.015 0.014 1.10 2000 6 10 0.97

balance-scale 0.004 0.004 1.15 625 4 3 0.00

wilt 0.006 0.004 1.38 4839 5 2 0.96

diabetes 0.004 0.003 1.71 768 8 2 0.54

vehicle 0.010 0.005 1.77 846 18 4 1.00

blood-transfusion 0.005 0.003 1.79 748 4 2 1.00

segment 0.022 0.010 2.21 2310 19 7 1.00

banknote-authentication 0.007 0.003 2.44 1372 4 2 0.79

climate-model 0.006 0.003 2.45 540 20 2 0.11

phoneme 0.010 0.004 2.45 5404 5 2 0.32

kc2 0.008 0.003 2.94 522 21 2 1.00

wdbc 0.009 0.003 3.50 569 30 2 1.00

steel-plates-fault 0.042 0.012 3.61 1941 27 7 1.00

letter 0.334 0.090 3.71 20000 16 26 0.85

jungle chess 2pcs 0.081 0.021 3.92 44819 6 3 0.02

pendigits 0.097 0.023 4.18 10992 16 10 0.86

pc1 0.013 0.003 5.00 1109 21 2 1.00

kc1 0.019 0.003 6.30 2109 21 2 1.00

qsar-biodeg 0.019 0.003 7.06 1055 41 2 0.92

mfeat-zernike 0.090 0.013 7.08 2000 47 10 1.00

wall-robot-navigation 0.049 0.007 7.31 5456 24 4 0.63

pc3 0.025 0.003 8.02 1563 37 2 1.00

texture 0.153 0.019 8.07 5500 40 11 1.00

satimage 0.105 0.011 9.40 6430 36 6 0.96

pc4 0.026 0.003 9.64 1458 37 2 1.00

mfeat-karhunen 0.127 0.013 9.82 2000 64 10 0.57

analcatdata authorship 0.052 0.005 10.38 841 70 4 0.71

GesturePhaseSegmentation 0.136 0.012 11.17 9873 32 5 0.94

mfeat-fourier 0.172 0.013 13.17 2000 76 10 0.68

optdigits 0.243 0.017 14.42 5620 64 10 0.93

first-order-theorem-proving 0.184 0.011 17.11 6118 51 6 1.00

numerai28.6 0.765 0.033 23.32 96320 21 2 0.86

spambase 0.091 0.004 23.62 4601 57 2 1.00

ozone-level-8hr 0.085 0.003 29.33 2534 72 2 1.00

semeion 0.624 0.012 50.07 1593 256 10 0.81

mfeat-factors 0.686 0.014 50.67 2000 216 10 1.00

mfeat-pixel 0.796 0.010 83.44 2000 240 10 0.94

cnae-9 0.986 0.011 88.31 1080 856 9 1.00

(continued)
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Table 2. (continued)

Dataset scikit-learn Proposed Speed up Samples Features Classes Corr

isolet 11.465 0.051 224.41 7797 617 26 1.00

madelon 1.893 0.004 515.26 2600 500 2 0.99

har 9.689 0.014 670.19 10299 561 6 1.00

Fashion-MNIST 101.438 0.086 1177.68 70000 784 10 0.96

Devnagari-Script 731.853 0.484 1511.97 92000 1024 46 0.97

mnist 784 145.914 0.091 1600.96 70000 784 10 1.00

Bioresponse 40.582 0.004 9068.45 3751 1776 2 0.98

CIFAR 10 2130.479 0.084 25385.96 60000 3072 10 0.98

5 Discussion

5.1 Feature Selection

The ability to quickly insert new features can be used, for example, to speed up
forward variable selection with LDA, as implemented in greedy.wilks() [17].

5.2 Limitations

The online version of QDA inherits all the disadvantages of offline QDA, namely
high sensitivity to outliers and difficulties with the accurate estimation of the
covariance matrices, which can be addressed with robust statistical estimates
[10] and covariance shrinking [12], respectively. Missing values in the estimate
of the covariance matrix can be handled as described by [14]. And a mixture
of numerical and nominal features can be handled with one of the methods
described by [9].

6 Conclusion

The key to learning on a stream of features with QDA is to use the Cholesky
decomposition and cholinsert function in place of the matrix inverse. This
method, together with an efficient update of the covariance matrices, reduced
the computational complexity of the QDA update when a new feature was added,
from O(nd2+d3) to O(nd+d2). This is equivalent to the reduction by d (the num-
ber of features). The proposed QDA returns identical predictions to scikit-learn
QDA while being 1000 times faster. In the accuracy comparison, the need to
regularize the estimated covariance matrices was identified. The proposed regu-
larized discriminant analysis on a stream of features is statistically significantly
more accurate than naive Bayes (at p = 0.01) and comparable to regularized
logistic regression, k-nearest neighbors, and gradient boosted trees while in run-
time it is much closer to naive Bayes.
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Abstract. Image captioning is a task typically approached by deep
encoder-decoder architectures, where the encoder component works on
a flat representation of the image while the decoder considers a sequen-
tial representation of natural language sentences. As such, these encoder-
decoder architectures implement a simple and very specific form of struc-
tured transduction, that is a generalization of a predictive problem where
the input data and output predictions might have substantially differ-
ent structures and topologies. In this paper, we explore a generalization
of such an approach by addressing the problem as a general structured
transduction problem. In particular, we provide a framework that allows
considering input and output information with a tree-structured repre-
sentation. This allows taking into account the hierarchical nature under-
lying both images and sentences. To this end, we introduce an approach
to generate tree-structured representations from images along with an
autoencoder working with this kind of data. We empirically assess our
approach on both synthetic and realistic tasks.

Keywords: Structured transductions · Image captioning · Learning
for structured data

1 Introduction

Image captioning is a long-standing problem for the machine vision community
with clear practical implications for automating a widespread and time-intensive
task usually performed by humans. From a computational perspective, this is
a significantly hard task involving both computer vision and natural language
processing (NLP) challenges. The former is necessary to capture image content
while the latter one is necessary to generate a syntactically and semantically
well-formed natural language sentence.

The performance of image captioning systems have been far from allowing
practical applications for years, until the community has started exploring deep
learning architectures mixing different neural models for visual and language
components. Such heterogeneous neural models are integrated together follow-
ing an encoder-decoder architecture, popularized by the sequence-to-sequence
models for machine translation [4,8]. The typical scheme is to have as encoder
c© Springer Nature Switzerland AG 2022
L. Iliadis et al. (Eds.): EANN 2022, CCIS 1600, pp. 235–246, 2022.
https://doi.org/10.1007/978-3-031-08223-8_20
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a convolutional neural network (CNN) which encode the image in the latent
representation, and as recurrent or transformer-based decoder transforming this
representation in a sentence. The pioneering model, introducing this kind of
architecture is the Neural Image Caption Generator [17], often shortened as
NIC. This model employed as encoder the state-of-the-art CNN at the time [9],
which is a modified version of Inception network [14], while the decoder was
made up of an Embedding Layer and a standard LSTM. Several works have
been developed starting from this initial intuition, such as [19], where the NIC
model has been enriched with an attention mechanism.

The perspective that we would like to bring with this work is that the learning
task solved by popular image captioning approaches in literature is a simple and
restricted form of structured transduction.

In this paper, we specifically explore a novel tree-structured representation for
both images and sentences within an image captioning application. In literature
works, in fact, both input images and target captions are processed from the
encoder and decoder without taking into account the dependencies they have:
CNN process fixed image sub-windows while the decoder generates the words
not considering the sentence structure.

We put forward the following contributions: (i) we introduce an algorithm to
label a tree describing the hierarchy in the image components, with convolutional
information; (ii) we introduce a deep encoder-decoder model for learning tree
structured transduction between images and sentences; (iii) we develop code to
build a synthetic image captioning dataset composed of images of nested geomet-
ric shapes. Finally we perform a comparison among our structured data/model
and a standard one taking as baseline our implementation of the NIC model
both on synthetic and realistic datasets.

2 Background on Learning for Structured Data

Learning approaches dealing with tree-structured data typically follow a recur-
sive approach [6] which operate through a straight generalization of the RNN
concept of state update. In a RNN we compute a vectorial encoding ht = f(ht−1)
for the t-th element of the sequence by considering the state of its predecessor
ht−1. In a recursive model, we compute the vectorial encoding of the n− th node
by considering information from some of its neighboring nodes: which are these
considered neighbors usually depends by the parsing direction.

The most popular choice, especially in classification tasks, is bottom-up,
where the tree is visited from leaves to root. This defines a straightforward node
neighborhood, which is the set of node children, leading to the general recursive
state update hn = f(xn, hCH(n)), where hCH(n) denotes the concatenation of the
states for all children CH(n) of node n and f can be interpreted as a generic
non-linear transformation implemented by a neural layer.

The actual instantiation of the recursive state encoding depends on the nature
of the learning model and its stationarity assumptions. In [2,3], this is modelled
as a state transition distribution whose computation is made feasible through a
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mixture-based factorization. Recursive bottom-up neural approaches have been
proposed since [6], while [16] more recently introduced an LSTM-based recursive
network with two alternative children aggregation approaches. The Child-Sum
Tree-LSTM encodes trees without considering the position of nodes (ordering)
with respect to their siblings, combining the children states before multiplying
them to a single parameter matrix W r. The N-ary Tree-LSTMs discriminates
children by their position with respect to the siblings, each with a position-
specialized weight W r

l .
The top-down approach visits the tree from root to leaves, while the neigh-

borhood of a node for state update purposes simply becomes its parent. This
defines models that do not depart much from a standard recurrent model for
sequences (given that there is in both cases a single predecessor). Top-down
tree models have found wider application in tree generation [5], rather than tree
encoding.

3 Image Captioning as Structured Transduction

The problem of learning tree transductions is to infer a transformation of an
input structure x into an output y which can have (and in our application
certainly have) radically different topologies. This transduction is learnt from
pairs of input-output trees (x,y) just like in any standard supervised learning
task. The problem of learning general tree transductions is still an open one: see
[1] for a survey.

Before delving into the proposed model, we introduce the notation used in
the paper. We consider labeled rooted trees where ni ∈ U denotes the i-th tree
node whose direct ancestor, called parent, is referred to as pa(ni). A node n can
have a variable number of direct descendants called children, such that the l-th
child of node n is denoted as chl(n), while CH(n) = n1, . . . , nc denotes the set
of c node children, where c is the node degree/arity. The pair (n,m) ∈ E is used
to denote an edge between the node n and its children m; two nodes j and m
having the same parent n are called siblings. Finally we use Ev to refer to the
embedding of a node/set of node v (e,g. ECH(n) is the embedding of node n
children).

3.1 Generating Tree-Structured Image Representations

In this work, we use two different representations of images as tree data: one
that is general and that we used with realistic datasets; the second specific to the
synthetic dataset. In both cases, the tree represents a hierarchy among the image
regions, where nodes are labeled with region appearance information extracted
by a CNN. We release the code for image to tree transformations here1.

1 https://github.com/davide-serramazza/image captionig tree2tree input-
target processing.

https://github.com/davide-serramazza/image_captionig_tree2tree_input-target_processing
https://github.com/davide-serramazza/image_captionig_tree2tree_input-target_processing
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The first approach builds the tree leveraging a hierarchical segmentation. Tree
topology is obtained by processing the structure returned by the GLIA segmen-
tation algorithm [13]. This creates a Merge tree in which each node represents
an image region. The tree is built starting from the leaves, which are regions
found by an over-segmentation of the images. At each iteration two neighbor-
hood regions are connected together following a saliency function, which decides
the merge priority of nodes until a full tree is built. After this step, an optimal
segmentation is found by identifying an optimal subset of Merge tree nodes. A
factor graph is built in which the node set is the same as in the merge tree.
Each merge of a node and its children in the Merge tree, is considered as a clique
pi in the factor graph. Each node of the graph is assigned to a {+1,−1} label,
indicating whether its children merge or not, solving a constrained optimization
problem based on the merging probabilities computed from a boundary classi-
fier. The final tree describing the segmentation is made up of all the nodes whose
labels are +1 and the parent label is −1.

The result of this first step is a tree representing the hierarchical segmentation
of an image but this does not convey information about the content of regions
represented in tree nodes. To achieve this, we label each node by leveraging
information from a CNN. In this first tree representation, the information comes
from an Inception-V3 [15] pre-trained network to be as close as possible to the
NIC baseline.

We use different labelling strategies for the different node types there are in
the tree: leaves, which are the only nodes representing single images segments,
are labelled using the activation of the last layer before the inception module
which results in a tensor of shape W × H × 192 with W and H varying with
the sizes of the original images. From the segmentation map, we can then tell
which of these vectors are influenced by the pixels belonging to the image region
associated to the leaf and compute their average: this vector (of size 192) is the
final leaf label.

The internal nodes are labeled with the max-pooling of their children labels
and the root is labeled with the activation of the dense layer before the logits in
the CNN, that is a 2048 dimensional vector.

The image trees for the specific synthetic dataset can be straightforwardly
built from the generative grammar used to create the images. This involves a
hierarchy of possibly nested geometric forms, and the tree encodes this nesting
relationship in its layers. For node labelling, we rely again on a pretrained CNN
(a resNet152 [7] in this case). The same labelling strategy is used for both
internal nodes and leaves since in this case they both represent single image
segments: we gather local information from the second to last residual module of
the network resulting in a W ×H × 1024 tensor, while for the root we again use
the activation of the neurons before the logits (a 2048 dimensional vector). The
resulting trees mix global information in the root with local information about
the different shapes in all the other nodes.
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Fig. 1. Tree encoder-decoder architecture for structured captioning. In (a) is shown the
encoder architecture of the child embedder with cutarity set to 5: the first 4 children
embeddings are processed independently by the network, while the other ones are
aggregated into a single embedding using an attention network and fed as 5-th input.
In (b) the Node Inflater decoder architecture with cutarity set to 4: for the first 3
children, distribution types and embedding are computed by dedicated copies of the
same networks, while all the remaining children, differentiated using their number, are
handled by two other networks.

3.2 Deep Model for Tree-Structured Captioning

Our deep model for tree transduction can handle different tree topologies and
different node types. We use the term node type to refer to the kind of labels
a node can have (e.g. dense/categorical/mixture) and its dimension. The key
idea in processing trees nodes is to have a common embedding space E in which
each node type ti of the input tree, coming from the space Vini

, is projected to.
Symmetrically each node type tj of the output tree (lying in the space Voutj )
are generated from E. This can be achieved by combining different feed-forward
sub-networks with tanh activation.

Figure 1 provides a view of the encoder-decoder structure of our model. The
encoder processes the input tree in a bottom-up fashion, using two kinds of sub-
networks: for each node type of input tree, the encoder instantiates a Leaves
embedder and a Children embedder.

The first one projects each leaf in the embedding space E. Each node type ti
has its own network implementing a function Vini

→ E. The actual network is a
single dense layer with the suitable shape, namely the input shape is the same
as Vini

and the output one is the same of the embedding space E.
The Children embedder sub-network, instead, is used for internal nodes: its

task is to embed the current node label along with its children embedding to
get a new one describing all subtrees rooted in the current node. For an internal
nodes of type ti, having c children, it implements a function Ec × Vini

→ E. Its
concrete application is a feed-forward network computing a function

en = f(xn, ECH(n))

The actual value of ECH(n) is decided by its arity: if the current node has a
fixed arity then:

ECH(n) = [Ech1(n), . . . , Echc(n)]
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where we consider the children chi as ordered from left to right. Otherwise, in
case of variable arity, we define an hyper-parameter called cut-arity : when its
value is set to k, ECH(n) is the concatenation of at most k embedding vectors.
This means that if c < k, ECH(n) is computed with the formula above, otherwise
it becomes:

ECH(n) = [Ech1(n), . . . , Echk−1(n), ch
(a)]

where the new component ch(a) is lossy summarization of the c− k last children

ch(a) =
i=c∑

i=k

Echi
∗ ai.

The architecture of this last component is shown in Fig. 1a. By iterating this
process on tree nodes, we eventually obtain a root embedding which is also the
latent representation of the whole input tree.

The decoder is almost symmetric to the encoder with the additional task
to generate the tree structures which are unknown at generation time. These
tasks are realized by two components: The Value Inflater generates a label for
a specific node starting from its embedding. It is a single-layer feed-forward
network which, for each node type j, implements a function E → Voutj .

The other component, Node Inflater is the most complex module in the
whole autoencoder. It aims to expand the tree frontier by generating children
for a node: two kinds of different sub-networks are involved in a sequential flow.
The first one generates a distribution over types for each child of a node. This
is done by a feed-forward network, implementing the function

D = [d1, . . . , dc] = f(en, er, xn) (1)

where D is the probability distribution among all the possible children types,
en and er are the current node n and root embedding, respectively. Moreover, a
special nochild type is used to stop children generation.

The second sub-network generates an embedding for each child: it is a feed-
forward network implementing a function

E = [e1, . . . , ec] = f(en, er, xn,D) (2)

which has the same arguments of the function 1 with the addition to the previ-
ously computed distribution D, so that its embeddings are generated conditioned
on the previously chosen node types.

In case of variable arity, we rely another time to the cutarity hyper-parameter,
as shown in Fig. 1b. If its value is set to k, the first k − 1 children are generated
in parallel using 2(k−1) copies of the two networks described above. Please note
that these k − 1 children can also be assigned to the nochild value.

The remaining children (from the k-th onwards) are generated sequentially
using two other networks (referred as extra node distrib and extra inflater in
Fig. 1b), until a child with nochild type is generated. For the i-th children the
Eq. 1, computed from the first sub-network becomes

D = f(en, er, xn, one-hot(i))
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Fig. 2. Sample image and its tree (for which the three levels are highlighted) generated
by our code. The only associated caption is “A green square and a yellow square: the
first one containing a silver circle in turn containing 1 other shape; the second one
containing a navy Blue circle” (Color figure online)

and the function 2 computed from the second sub-network turns into

E = f(en, er, xn,D, one-hot(i)).

Using the sub-networks described above the decoder is able, starting from the
root, to generate children, their embedding and associated labels, for each node
being processed. For further details on the model, the reader is referred to the
code available here2.

4 Empirical Analysis

4.1 Dataset Preparation and Experimental Setup

Our experimental analysis is based on two realistic benchmark datasets for image
captioning, Flickr30K [20], msCoco [12], and a novel synthetic dataset used to
assess the capabilities of learning structured transductions in a controlled set-
ting. Flickr30K contains a total of 31.783 images split in 29.783 for training,
1.000 for validation and 1.000 for testing. msCoco has a bigger average image
size, compared to Flickr30k: the 2014 version used in this paper contains 82.783
training images and 40.504 validation images, each labelled with at least 5 cap-
tions. Roughly other 41.000 images have been released as blind test set for the
different competitions based on this dataset. In order to cover the lack of a
labelled test set, many early works, as for instance NIC and Treetalk [11], have
extracted 4.000 random images from the validation set and used them as test
set. We also follow this split for comparison purposes.

The images of our synthetic dataset represent nested geometric shapes
(squares and circles) of 15 different colours, arranged in at most 3 nesting levels.
Each shape can contain a variable number n ∈ [1, 4] of other shapes and the size
2 https://github.com/davide-serramazza/image captionig tree2tree.

https://github.com/davide-serramazza/image_captionig_tree2tree
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of the images is comparable with that of the benchmark datasets. Each image
has only one caption: figures in the first and second level of the tree are com-
pletely described using their colours and shapes, while for the ones in the third
level are just listed their number.

We generated images for a varying number of total shapes in the figure,
ranging in [2, 11]. For each of such range values, we generated 5.000 images, split
into 4.500 for training and 250 for both validation and test set, each. Overall
our dataset contains 45.000 training images, 2.500 validation images and 2.500
test images. Figure 2 provides an example of an input-output pair (image with
the associated caption and tree). More information can be found in the dataset
generation code publicly realised here3.

The experimental analysis compares the NIC baseline with structured mod-
els. For fairness of comparison, the baseline with the benchmark datasets uses
an Inception v3 CNN, while a resNet is employed in the synthetic one. In our
implementation of NIC, images have been pre-processed according to what is
required from the used CNN, while in target sentences we assign a token to
each word having a sufficient number of occurrences. Lastly, we add after the
beginning and before the ending of each sentence, respectively, the special tokens
< start > and < end >.

Regarding data for our model, input trees are generated as described in
Sect. 3.1 while target ones are obtained by running the Stanford parser [10] on
the related captions. This kind of tree has two different node types, internal POS
tag nodes and word leaves: for both of them we assign a class for each different
possible value we find in the dataset. Finally we assess also the performances of
a third model (only with the two benchmark datasets) that is a hybrid one: it
has a standard flat encoder and the structured decoder of our model.

We also extended our decoder in Sect. 3.2 to first generate tree topology,
POS tag locations and labels along with word node locations. After that, the
word nodes are decoded from the corresponding vocabulary word labels using a
sequential decoder, similar to NIC, but with known decoded sequence topology
(i.e. the generated tree leaves), therefore not needing < start > and < end >
tokens.

For our experiments, we follow the setup of the original NIC paper, differing
only on 3 points: we do not use ensemble models, we assign a < unk > tokens
to words having less than 10 occurrences rather than 5 (since we found slightly
better results) and we do not make fine-tuning of the CNN weights for the NIC
baseline. Finally for the beam size, in the experiments with the realistic datasets
we use the size reported in [17] that is 20, while for the synthetic one we use the
value reported in the updated version [18], namely 3.

We conclude this section by describing the model selection setup. For each
experiment, we use hold out search to select the best model and then train
the selected configuration on the union of training and validation samples. The
metrics used in evaluating the obtained captions are Bleu-1 up to 4, Rouge
and CIDEr and Meteor. In evaluating captioning performances of our model,

3 https://github.com/davide-serramazza/Geometry-dataset.

https://github.com/davide-serramazza/Geometry-dataset
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Table 1. Different captioning performance scores for models trained using Flickr 30k
and MSCOCO 2014

Model Dataset used Bleu-1 Bleu-2 Bleu-3 Bleu-4 Rouge CIDEr Meteor

NIC baseline Flickr 0.638 0.417 0.273 0.175 0.401 0.415 0.189

seq2tree Flickr 0.604 0.403 0.267 0.148 0.338 0.358 0.184

tree2tree Flickr 0.585 0.387 0.256 0.169 0.33.8 0.361 0.181

NIC baseline mscoco 0.634 0.453 0.321 0.231 0.408 0.654 0.241

seq2tree mscoco 0.622 0.445 0.316 0.228 0.398 0.612 0.231

tree2tree mscoco 0.618 0.435 0.299 0.215 0.389 0.567 0.220

NIC baseline synthetic 0.851 0.792 0.723 0.647 0.743 4.566 0.450

tree2tree synthetic 0.979 0.933 0.918 0.903 0.949 7.064 0.723

Table 2. Precision and recall for both baseline and our model using the synthetic
dataset

First level Second level Third level

Model Precision Recall Precision Recall Precision Recall

NIC baseline 0.587 0.639 0.121 0.102 0.235 0.294

Our model 0.986 0.985 0.437 0.432 0.638 0.634

the words are extracted from tree leaves left to right composing the predicted
sentence.

4.2 Results

Captions Evaluation. Table 1 reports the test caption scores for the three
datasets.

We first analyze the synthetic dataset, for which in Table 2 it is possible to
analyse also precision and recall of geometric shapes. We consider a positive
match only if in the generated caption both colour and shape are correctly
identified. With this dataset, our autoencoder (tree2tree) is the best in each
score with a large margin over the baseline. With a so high value of all scores,
we can state that our model have learnt images and parse trees structures.
Moreover in the major part of the case also the shapes are descripted correctly.
It is important to notice that the worst scores are for the second level rather
than the third since as shown in Fig. 2, shapes in the last layer are not fully
described.

Using the realistic dataset we have another scenario: with Flickr 30k, the
NIC baseline is the best model with a neat margin over the other two. The first
of our models is the flat encoder/structured decoder (seq2tree). It is close to
the baseline for some metrics such as Bleu-2, Bleu-3 and Meteor, for which the
average difference was 2.89%, while it is really far in other metrics as CIDEr,
Rouge and Bleu-4 for which the average difference is 14.83%. The other model,
is slightly worse in Bleu-1, Bleu-2 and Bleu-3 score but consistent in all the other
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Table 3. Comparison of statistics of the 6 more frequent nodes in the generated trees
and related nodes in the ground truth (test set). The term gts stands for ground truth
trees, which are the trees obtained from Stanford parser. To be notice that the 11 top
frequent pos tags are the same for both trees set

POS node type Average height Occurrences % Average children

gts Our model gts Our model gts Our model

NP 3.742 3.732 26.21 26.29 2.948 2.953

NN 4.981 4.952 17.20 17.11 1.0 1.0005

DT 4.864 4.854 15.24 15.27 1.0 1.0002

JJ 5.054 5.030 14.80 15.3 1.0 1.0002

CC 4.115 4.131 6.83 6.864 1.0 1.0004

VBG 4.508 4.435 4.29 4.248 1.0 1.0

metrics if compared to our other model. Indeed from tree2tree, we got a slightly
better performance using CIDEr score and moreover in the Bleu-4 score it have
an advantage of more than 2 points over seq2tree, being close to the baseline.

The results achieved on msCoco show a thinner margin for the baseline. The
average score difference with seq2tree shrinks from 8.32%, to 2.83%. The only
metric that has a really relevant difference is CIDEr having a gap of 6.92%.

Finally, even though using msCoco as dataset, the gap from tree2tree and
the baseline model is reduced as well, it is not as competitive as the mixed one:
even in some metrics the gap is reduced, some others still show a consistent gap.

Trees Evaluation. Along with the caption, we want also to assess the quality
of the generated parse trees. Since directly comparing trees can be cumbersome,
we focused our evaluation on verifying if some relevant proprieties of parse trees
are preserved in the generated ones. We report statistics just for the synthetic
dataset since they are very close to the ones.

In a parse tree, each POS node either has other POS children or a single
word child. We empirically verify that only 0.014% of generated POS tag nodes
have two children of different kinds and no POS tag nodes have more than
one-word children. These values suggest that the structure of the parse trees is
well-understood and well-replicated by our model.

We also report some statistics from generated and ground truth trees to verify
how close they are. In the ground truth ones, the average POS nodes number
per tree is 46.80 while the average word nodes are 30.14, In the generated trees
we have respective values of 46.60 and 30.02. Moreover, also the proportion
|POS nodes|
|word nodes| is almost the same, having a value of 1.552 for both trees.

Finally, we collect the 6 top frequent types of POS nodes and we compute
their average height, average children number and percentage of their occur-
rences over the total number of nodes. From Table 3, in which these values are
reported along with the related ground truth ones we can notice that they are
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very close. Among the others, we want to stress the values for the average chil-
dren number. Each of them, except NP, describe just a single word indeed in
the ground truth trees they have an average children number of exactly 1.0. In
the generated trees they either have an exact value of 1.0 or a value a little bit
higher suggesting that they have more than one child just in a few cases.

5 Conclusions

We have presented a novel perspective over image captioning, leveraging an
encoder-decoder architecture but with a data representation that explicitly mod-
els the hierarchy in the data for both images and sentences. To this end, we
introduced a novel model to learn non-isomorphic tree transductions, capable of
learning a mapping between input and target trees, enriched with the addition
of a linguistic module in the decoder: the original parts are used to generate
tree topology, POS tag and word nodes location and POS tag node values. Only
word nodes values are in charge of the linguistic module.

Thanks to the encoder-decoder architecture it is also possible to have a mixed
model using structured (hierarchical) representation for the input and the other
opposite for the output.

We compared the captioning performances against the NIC baseline both on
realistic benchmark datasets and on a synthetic one: in the first case our models,
especially seq2tree have reached interesting results while in the second one our
tree2tree model is the best by a large margin.

We also verified the quality of the generated trees, comparing them with the
target ones produced from the Stanford parser. From this comparison, we can
conclude that generated tree structures and POS tag nodes are closely matching
the ground truth ones.

As a future work, we plan to explore the effect of introducing higher quality
semantic labelling in the image tree and consider larger scale tasks, to determine
if the subobptimal performance of the tree-based captioning models is due to
quality and size of the data sample.

Acknowledgments. This work has been supported by the Italian Ministry of Edu-
cation, University, and Research (MIUR) under project SIR 2014 LIST-IT (grant n.
RBSI14STDE).
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Abstract. Data are key for providing added value in the Industry 4.0
paradigm, benefiting differentiation and innovation. However, high qual-
ity data, i.e., reliable and accurate data from sensors, are required. Nowa-
days, energy meters are being installed in many industries to achieve
holistic submetering systems. In these systems, data can be lost due
to meter faults, maintenance, power failure or communication drops,
affecting negatively the data quality crucial for monitoring and decision
making. Therefore, missing data should be filled. In this paper, we pro-
pose a method (GRU-AE) based on a denoising autoencoder (AE) with
gated recurrent unit (GRU) layers in order to reconstruct electricity pro-
files that contain missing samples in submetering systems. GRU-AE is
able to capture temporal and meter relations, filling gaps in the elec-
tricity profiles. Two implementations are presented: multi-head GRU-
AE and multi-feature GRU-AE. The proposed method has proved to be
more effective reconstructing electricity profiles in submetering systems
than a similar approach that models each meter independently. GRU-AE
could be useful even when more than one meter provide incomplete or no
data at the same time. Both GRU-AE implementations provide similar
reconstruction errors. However, a multi-feature GRU-AE could be more
efficient in large submetering systems.

Keywords: Signal reconstruction · Electricity profiles · Submetering
systems · GRU neural networks · Autoencoders

1 Introduction

Data play an important role in the Industry 4.0 era. Nowadays, industrial sys-
tems generate large volumes of data, at a high rate and from heterogeneous

Grant PID2020-117890RB-I00 funded by MCIN/AEI/10.13039/501100011033.

c© Springer Nature Switzerland AG 2022
L. Iliadis et al. (Eds.): EANN 2022, CCIS 1600, pp. 247–259, 2022.
https://doi.org/10.1007/978-3-031-08223-8_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08223-8_21&domain=pdf
http://orcid.org/0000-0003-3467-4938
http://orcid.org/0000-0002-2762-6949
http://orcid.org/0000-0002-2173-3364
http://orcid.org/0000-0002-1563-1556
http://orcid.org/0000-0001-9023-0341
http://orcid.org/0000-0002-3921-1599
https://doi.org/10.1007/978-3-031-08223-8_21


248 S. Alonso et al.

sources, due to the increasing number of sensors in the industry [23]. Data stor-
age, processing and monitoring are main topics in the Industry 4.0 framework,
since data contain intrinsic information of the industrial systems operation that
can be exploited. Therefore, data are key for providing added value in the indus-
try, benefiting differentiation and innovation [15]. Furthermore, the increasing
cost of energy is nowadays a great challenge for all sectors, but specially for
industry. With the aim of optimizing energy consumption, smart energy meters
are being installed in many industries, achieving holistic submetering systems
[11].

Handling data in industry requires high quality data, i.e., reliable and accu-
rate data from sensors. However, there are possible sources of errors in the mea-
surement process such as their installation method, principle of measurement,
sensor precision, ambient conditions or electrostatic and electromagnetic inter-
ferences, which lead to unreliable data. Errors are not only introduced by the
sensor, but also by control and acquisition (SCADA) systems or communica-
tion networks due to power failures, communication drops or maintenance. As
a result, different types of errors are found in sensor data, including outliers,
missing data, bias, drift, noise, constant value, uncertainties and stuck-at-zero
[20]. Missing data or gaps are one of the most common problems in industrial
applications, leading to a smaller size of trusted data that degrades their qual-
ity and biases the results and conclusions [20]. Therefore, a preprocessing step is
required to handle missing values or gaps (and other potential errors) before fur-
ther processing. The treatment of missing data from sensors aims to reconstruct
data by filling existing gaps, i.e. empty observations from sensors (see Fig. 1).

Fig. 1. Reconstructing electricity profile with gaps.

Energy meters are able to measure, storage and communicate data [19] and
are located in the energy supply and distribution systems, covering upstream
as well as downstream strategic points. Thus, there are relations among meters
since, for instance, the sum of energy measured by downstream meters should be
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the energy measured by an upstream meter. In this paper, we propose an autoen-
coder with recurrent layers in order to reconstruct electricity profiles contain-
ing missing samples in submetering systems. The proposed method considers all
meters within a submetering system jointly, instead of contemplating each meter
independently, in order to capture relations and interactions among meters. This
method also extracts temporal patterns, with the final aim of filling potential
gaps in the electricity profiles.

The structure of this paper is as follows: the state of the art is reviewed
in Sect. 2. The proposed method is presented in Sect. 3. Section 4 describes the
experiments, presents the results and discusses them. Finally, in Sect. 5, conclu-
sions are exposed.

2 Related Work

Current smart meters enable the massive collection of consumption data whose
analysis provides useful information about industrial systems or customers’
habits. Several methods have been investigated, obtaining insights to improve
services, management and profits related to energy management [4,22]. Exam-
ples of these methods are clustering approaches that have been studied for electri-
cal load pattern grouping [6] and load classification in smart grids environments
[24]. Similar techniques based on the k-means algorithm were implemented to
load and state estimation of domestic [3] and medium voltage smart meters
[2] with missing data. Moreover, techniques for analyzing and preventing non-
technical losses in power distribution systems were reviewed in detail in [1].

In addition, the progression of smart meters has brought complex scenar-
ios related to diverse technology, data analysis algorithms and frameworks that
still have open challenges [4]. The creation of submetering networks makes it
possible measuring data not only from the main supply but also from intermedi-
ate points in the energy distribution network [18]. A method based on support
vector machines was deployed to predict the hourly electricity load of buildings
with submetering devices [9]. Electricity submetering data were also used for
developing an hourly cooling load prediction model, “RC-S” method, improving
the accuracy of previous ones [13].

A common approach is the use of energy disaggregation techniques such as
non-intrusive load monitoring (NILM) [12,26] which provide estimations of indi-
vidual consumption in relation to the total energy measurement. These algo-
rithms include methods ranging from hidden Markov models to deep neural
networks [14,27]. A function is computed for obtaining that relation so that
corresponding individual estimations can be used for filling the gaps of failed
measurements [10]. The main problem occurs when there are gaps affecting the
total consumption, which hampers the correct computation of individual esti-
mations.

On the other hand, machine learning methods have been developed for energy
consumption forecasting, also combining them in hybrid models [7]. In this sense,
deep recurrent neural networks have been evaluated for short-term building
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energy predictions [8] and multi-step ahead time series prediction [5] showing an
enhancement with respect to previously proposed methods. To address the prob-
lem of missing data, three different architectures of autoencoders –convolutional,
long short-term memory (LSTM) and feed-forward– have been developed for
short-term time series reconstruction, which could also be used for predicting
indoor environment [16]. Then, these architectures have been also applied to the
signal reconstruction of room temperature measurements with applicability in
different domains [17].

This work aims to advance the study of recurrent autoencoders in order to
explore its performance in reconstructing time series data. This addresses the
problem of missing values in submetering systems. The proposed method is able
to model temporal information accurately including long-term dependencies and,
at the same time, to acquire the information about the submetering system. As
main drawback, this method requires a vast amount of data from multiple meters
and so, long time for training. The proposed method could be applied not only
to reconstruct electricity profiles previously to detect anomalies or characterize
consumers but also in other engineering areas, for instance, in structural and
mechanical processes, as well as, in environment and climate and medical fields.

3 The Proposed Method

The proposed method should be able to learn to reconstruct each meter data
in a submetering system, i.e. the output data (reconstructed) should match the
input data. However, potential missing samples should be considered in the input
data. Moreover, the proposed method should consider temporal information,
since electricity profiles from meters possess certain periodicity (daily, weekly,
monthly, etc.). Finally, the proposed method should learn the relations among
meters within a submetering system, since it could useful to estimate missing
samples in data from one of the meters based on trusted data from other meters.

For that purpose, the proposed method is based on a denoising autoencoder
with recurrent layers. The autoencoder (AE) architecture is in charge of recre-
ating input data whereas the recurrent network is used for capturing tempo-
ral patterns in electricity profiles. If input data only contain trusted data, it
must be corrupted by randomly turning some of the input values in the train-
ing data set to zero in order to generate missing values [21]. Gated Recurrent
Units (GRU) are chosen instead of other recurrent neural networks, such as
Long Short-Term Memory (LSTM) since they are simpler, train faster and per-
form better with fewer training data [25]. The proposed method (GRU-AE) can
be implemented following two different deep structures: a multi-head structure
(Multi-head GRU-AE), in which an independent GRU is used to process each
meter data, and a multi-feature structure (Multi-feature GRU-AE), in which
only one GRU with several features (as many features as meters) is used to pro-
cess together each meter data. Figure 2 shows the two implementations of the
proposed method: A multi-head GRU-AE implementation is depicted in Fig. 2a
and a multi-feature GRU-AE is shown in Fig. 2b.
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Fig. 2. The proposed method (GRU-AE).

Let us define a submetering system containing one global meter together
with N downstream submeters. These meters provide data and the profiles are
generated by windowing meter data with size T . For example, if daily electricity
profiles are used (very common), the window size T will be one day. Therefore,
the input to the proposed method is the electricity profiles with missing samples
(corrupted values) and the output of the method is the complete electricity
profiles.
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In a multi-head GRU-AE structure (see Fig. 2a), each different profile
refers to a “head” of the input. The encoder part comprises N + 1 GRU net-
works (single feature), i.e., an individual GRU network with G neurons is applied
to each meter data. Then, extracted temporal patterns from each profile are con-
catenated, resulting in a encoded vector whose dimension is G·(N+1). Therefore,
the encoder maps temporal and meter relations. The encoded vector is repeated
T times in order to feed the decoder. The decoder part consists of N+1 GRU net-
works with G neurons (an individual GRU network per each meter data). Each
GRU network outputs the reconstructed profiles. A time distributed layer is used
to apply the same dense layer to every time step during GRUs cell unrolling.

In a multi-feature GRU-AE structure (see Fig. 2b), each different profile
refers to a “feature” of the input, being the number of features N + 1. The
encoder part comprises a GRU network with G neurons that is applied to the
whole features. The encoded vector, whose dimension is G, comprises temporal
patterns and meter relations. Next, the encoded vector is repeated T times in
order to feed the decoder. The decoder part consists of a GRU network with
G neurons, which outputs jointly the reconstructed profiles. A time distributed
layer is used to apply the same dense layer to every time step during GRU cell
unrolling.

4 Experiments and Results

4.1 Submetering System and Dataset

The proposed approach is assessed using real data from a submetering system
deployed in the Hospital of León. This structure comprises one electrical meter
connected at the main supply point (MTC), 3 m installed in the transformation
centers TC1, TC2 and TC3 and their output modules (cells) and, finally, 33
submeters located downstream in the distribution panels of the electricity supply
system. These electrical meters (by Schneider Electric and Circutor) measure and
store more than 30 variables (voltages, currents, powers, energies, harmonics,
etc.) for each of the three phases and neutral of the electricity supply. Among
those 33 submeters, 7 of them corresponding to Module 10 have been isolated
to carry out the experiments. This module provides electricity to one of the two
main buildings at the Hospital of León, located in the north zone. Figure 3 depicts
the single-line diagram and the submetering system corresponding to Module 10.
Electricity is supplied to Module 10 from TC1. For that purpose, downstream,
a transformer 13.2 KV/400 V is used to reduce the voltage. A meter installed in
the output cell measures overall electricity supply to the north building. In turn,
module 10 supplies electricity to 6 zones in the north building. An individual
meter is connected to each zone. Table 1 lists the mentioned meters corresponding
to Module 10.

Data were collected from this submetering system using a sampling period of
1 min, but then data were resampled each 1 h in order to build daily electricity
profiles. Only trusted data were selected, so that electricity profiles for 504 days



Reconstructing Electricity Profiles in Submetering Systems 253

Fig. 3. Electrical submetering scheme of the module 10 at the Hospital of León.

Table 1. Electrical meters located in the north building at the Hospital of León (Mod-
ule 10).

Meter no. Zone

#0 Module 10

#1 North Zone Floor -1

#2 North Zone Floor 0

#3 North Zone Floor 1

#4 North Zone Floor 2

#5 North Zone Elevators

#6 North Zone Building

with no errors were used. As a result, the dataset comprises 504 daily electricity
profiles with 24 samples for 7 m (a global meter and 6 submeters).

4.2 Experiments

Before proceeding with the experiments, the dataset described above was stan-
dardized between [−1, 1] and split into training and validation dataset (70% of
data) and test dataset (30%). Since the original dataset only contains trusted
data, gaps were generated for each meter. Random gaps with different positions
and lengths were introduced in all meters, being the percentage of missing sam-
ples over 27% of total samples. All potential combinations were considered, i.e.,
faults could appear in one meter, two meters or even in all meters at the same
time. The dataset was augmented to include trusted and vacant data, so the
overall size was 64512 (504 × 128) electricity profiles. Note that input data has
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trusted and unfilled data whereas the output data only possesses the correspond-
ing trusted data.

A 10-fold cross-validation was performed to tune the hyperparameters of
the proposed method. A range of hyperparameters was established after several
preliminary runs and, then, a grid search was performed. The main parameter to
tune was the number of neurons of GRU layers, which were chosen between 24 h
(1 day) and 168 h (7 days). In the multi-head GRU-AE, the number of neurons of
GRU layers was established to 96 h (4 days), whereas in the multi-feature GRU-
AE, it was set to 144 (6 days). According to the learning curves, training epochs
were set to 10 in the multi-head implementation and 8 in the multi-feature one. A
high number of epochs yielded overtrained models, so this choice was dismissed.
An individual GRU-AE per meter was also trained. Using the same procedure,
the number of neurons of GRU layers was set to 120 (5 days) for each meter and
training epochs were set to 10.

4.3 Results and Discussion

Reconstruction errors are computed only with respect the missing samples.
MAPE (Mean Absolute Percentage Error) and RMSE (Root Mean Square Error)
have been chosen as evaluation metrics.

Table 2 presents reconstruction errors using validation dataset. This table
contains mean and standard deviation values of MAPE and RMSE errors, which
were computed for each fold and each meter (global meter #0 and submeters
#1, #2, ... ,#6). Moreover, average (Avg.) errors were computed as global errors
for overall submetering system. Multi-head GRU-AE yields average errors (both
MAPE and RMSE) slightly lower than 5, while multi-feature GRU-AE provides
average errors slightly higher than 5, so both implementations of the proposed
method give similar results. On the contrary, average errors provided by an indi-
vidual GRU-AE per meter are considerably higher (MAPE is over 8 and RMSE
is over 9). The errors are analogous for all methods with regard to the num-
ber of GRU neurons. It can be pointed out that multi-head GRU-AE with 96
neurons (4 days), multi-feature GRU-AE with 144 neurons (6 days), and indi-
vidual GRU-AE per meter with 120 neurons (5 days) provide the lowest average
errors. Multi-feature GRU-AE and individual GRU-AE per meter are able to
capture the periodicity (5–7 days) of the electricity profiles better since working
days have a high consumption while weekends possess a moderate consumption.
There are clear differences in both errors among meters. For example, meters
with a high range (#0, #1 and #6 with, respectively, 600, 90 and 145 kW)
possess low MAPE errors but high RMSE errors. On the contrary, MAPE and
RMSE errors for the remaining meters with lower ranges (#2, #3, #4 and #5)
are homogeneous. Meter #1 requires special attention since it has errors above
the average values. It could be due to the nature of the consumption in this
building zone where several loads are turned on-off and therefore, the electricity
profiles in this zone are very shifting. In general, all standard deviations are very
low, indicating minimal variability of the results with each fold.
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Table 2. Reconstruction errors using validation dataset.

Method Neur.

(GRU)

Meters

#0 #1 #2 #3 #4 #5 #6 Avg.

MAPE (mean± std)

GRU-AE (Multi-head) 24 2.92± 0.14 9.82± 0.32 3.72± 0.19 6.38± 0.52 5.37± 0.29 3.44± 0.09 3.75± 0.21 5.06± 0.25

48 2.75± 0.13 9.42± 0.30 3.63± 0.14 6.02± 0.41 5.12± 0.27 3.32± 0.11 3.48± 0.20 4.82± 0.22

72 2.67± 0.19 9.07± 0.25 3.67± 0.15 6.00± 0.34 5.08± 0.22 3.37± 0.15 3.45± 0.15 4.76± 0.21

96 2.66± 0.16 9.06± 0.22 3.66± 0.12 5.88± 0.39 5.09± 0.28 3.31± 0.15 3.38± 0.25 4.72 ± 0.22

120 2.72± 0.18 8.98± 0.41 3.69± 0.15 5.93± 0.33 5.06± 0.29 3.28± 0.11 3.48± 0.17 4.73± 0.23

144 2.77± 0.20 9.06± 0.28 3.72± 0.15 6.03± 0.46 5.17± 0.31 3.26± 0.06 3.46± 0.24 4.78± 0.24

168 2.67± 0.19 9.10± 0.34 3.70± 0.18 5.96± 0.38 5.03± 0.30 3.35± 0.14 3.48± 0.24 4.75± 0.25

GRU-AE (Multi-feature) 24 3.30± 0.16 10.20± 0.42 3.85± 0.17 6.70± 0.37 5.84± 0.31 3.69± 0.17 4.16± 0.21 5.39± 0.26

48 3.26± 0.18 10.02± 0.30 3.79± 0.17 6.67± 0.37 5.88± 0.36 3.60± 0.18 4.08± 0.20 5.33± 0.25

72 3.04± 0.15 9.75± 0.36 3.77± 0.20 6.52± 0.33 5.75± 0.29 3.58± 0.18 4.10± 0.20 5.22± 0.24

96 3.04± 0.15 9.61± 0.33 3.78± 0.19 6.53± 0.31 5.69± 0.30 3.62± 0.21 4.10± 0.18 5.20± 0.24

120 3.00± 0.13 9.56± 0.30 3.82± 0.21 6.49± 0.41 5.68± 0.36 3.65± 0.18 4.10± 0.23 5.19± 0.26

144 2.97± 0.14 9.60± 0.39 3.78± 0.19 6.50± 0.36 5.66± 0.35 3.63± 0.15 4.08± 0.20 5.17 ± 0.25

168 3.03± 0.17 9.54± 0.44 3.74± 0.17 6.53± 0.41 5.71± 0.33 3.62± 0.15 4.08± 0.22 5.18± 0.27

GRU-AE (Per meter) 24 5.77± 0.34 12.04± 0.49 4.54± 0.14 13.47± 0.96 8.89± 0.39 6.22± 0.21 6.97± 0.46 8.27± 0.43

48 5.75± 0.38 11.99± 0.49 4.54± 0.12 13.17± 0.85 8.94± 0.52 6.30± 0.48 7.03± 0.52 8.24± 0.48

72 5.73± 0.25 11.90± 0.47 4.54± 0.12 13.50± 1.04 8.90± 0.51 6.17± 0.29 7.02± 0.54 8.25± 0.46

96 5.80± 0.35 11.97± 0.48 4.52± 0.13 13.55± 1.09 8.96± 0.45 6.24± 0.25 6.91± 0.43 8.28± 0.45

120 5.81± 0.34 11.88± 0.41 4.55± 0.09 13.14± 1.06 8.90± 0.43 6.23± 0.33 6.93± 0.56 8.20 ± 0.46

144 5.80± 0.34 11.87± 0.50 4.54± 0.10 13.54± 0.92 8.91± 0.38 6.31± 0.48 6.84± 0.52 8.26± 0.46

168 5.85± 0.36 12.02± 0.50 4.53± 0.13 13.35± 0.98 8.82± 0.53 6.18± 0.37 6.75± 0.46 8.21± 0.48

RMSE (mean± std)

GRU-AE (Multi-head) 24 14.47± 0.96 6.85± 0.14 1.63± 0.09 1.97± 0.21 3.06± 0.14 1.59± 0.06 4.41± 0.21 4.85± 0.26

48 13.82± 0.98 6.67± 0.22 1.61± 0.07 1.90± 0.22 2.94± 0.13 1.55± 0.06 4.12± 0.22 4.66± 0.27

72 13.40± 1.28 6.58± 0.22 1.62± 0.06 1.93± 0.17 2.95± 0.17 1.57± 0.09 4.10± 0.22 4.59± 0.32

96 13.38± 1.38 6.63± 0.22 1.63± 0.06 1.85± 0.19 2.94± 0.18 1.55± 0.11 4.07± 0.33 4.58 ± 0.35

120 13.83± 1.23 6.65± 0.20 1.64± 0.06 1.90± 0.21 2.95± 0.18 1.53± 0.07 4.23± 0.31 4.68± 0.32

144 14.12± 1.67 6.77± 0.14 1.65± 0.06 1.95± 0.28 3.02± 0.16 1.54± 0.08 4.34± 0.48 4.77± 0.41

168 13.45± 1.41 6.81± 0.19 1.65± 0.07 1.90± 0.20 2.91± 0.18 1.57± 0.10 4.19± 0.28 4.64± 0.35

GRU-AE (Multi-feature) 24 16.57± 0.82 6.93± 0.19 1.68± 0.07 2.14± 0.14 3.32± 0.15 1.73± 0.05 4.77± 0.21 5.31± 0.23

48 16.22± 1.08 6.84± 0.19 1.67± 0.08 2.13± 0.17 3.33± 0.16 1.68± 0.06 4.65± 0.24 5.22± 0.28

72 15.35± 1.11 6.75± 0.20 1.66± 0.08 2.09± 0.16 3.27± 0.12 1.67± 0.06 4.66± 0.16 5.06± 0.27

96 15.23± 0.92 6.66± 0.16 1.66± 0.08 2.05± 0.14 3.21± 0.12 1.67± 0.07 4.67± 0.21 5.02± 0.24

120 14.94± 0.90 6.60± 0.23 1.67± 0.08 2.01± 0.13 3.20± 0.14 1.67± 0.04 4.61± 0.22 4.96± 0.25

144 14.87± 0.83 6.60± 0.23 1.66± 0.08 2.01± 0.16 3.18± 0.15 1.66± 0.04 4.61± 0.22 4.94 ± 0.24

168 15.19± 1.15 6.62± 0.28 1.65± 0.08 2.05± 0.15 3.22± 0.15 1.66± 0.04 4.62± 0.24 5.00± 0.30

GRU-AE (Per meter) 24 33.83± 1.65 8.51± 0.26 2.02± 0.06 5.20± 0.28 5.73± 0.20 3.63± 0.13 9.89± 0.59 9.83± 0.45

48 33.83± 1.98 8.46± 0.23 2.02± 0.06 5.14± 0.31 5.76± 0.25 3.68± 0.23 9.97± 0.67 9.84± 0.53

72 33.51± 1.25 8.41± 0.25 2.02± 0.05 5.23± 0.23 5.77± 0.26 3.61± 0.18 10.05± 0.73 9.80± 0.42

96 33.77± 1.69 8.43± 0.27 2.02± 0.06 5.15± 0.33 5.78± 0.20 3.68± 0.12 9.92± 0.52 9.82± 0.46

120 33.74± 1.49 8.36± 0.24 2.03± 0.05 5.15± 0.32 5.76± 0.27 3.66± 0.17 9.83± 0.71 9.79 ± 0.46

144 33.88± 1.57 8.38± 0.21 2.02± 0.05 5.22± 0.23 5.77± 0.15 3.67± 0.23 9.74± 0.72 9.81± 0.45

168 34.34± 1.79 8.40± 0.25 2.02± 0.06 5.21± 0.26 5.71± 0.28 3.63± 0.16 9.67± 0.68 9.85± 0.50

Table 3 presents reconstruction errors using test dataset for each meter
(global meter #0 and submeters #1, #2, ... ,#6). Moreover, average (Avg.)
errors were computed as global errors for overall submetering system. Test exper-
iments were performed using the hyperparameters that gave the best results in
the validation step, i.e., a multi-head GRU-AE with 96 neurons, a multi-head
GRU-AE with 144 neurons and an individual GRU-AE per meter with 120
neurons. As expected, test errors (MAPE and RMSE) are slightly higher than
validation errors. Both implementations (multi-head and mul-feature GRU-AE)
yield similar errors (around 5), whereas an individual GRU-AE per meter pro-
vides errors which are almost double (MAPE is over 9 and RMSE over 11).
Global meter (#0) has the highest RMSE errors, but the lowest MAPE errors.
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It presents smooth profiles with maximum power values. Again, electricity pro-
files from meter #1 are more difficult to reconstruct due to their irregular nature.

Table 3. Reconstruction errors using test dataset.

Method Neur. Meters

(GRU) #0 #1 #2 #3 #4 #5 #6 Avg.

MAPE

GRU-AE (Multi-head) 96 3.28 8.50 4.31 6.15 6.91 3.96 4.25 5.34

GRU-AE (Multi-feature) 144 3.58 8.24 4.26 5.81 6.50 4.41 4.32 5.30

GRU-AE (Per meter) 120 6.31 11.35 4.98 12.12 10.50 7.27 11.95 9.21

RMSE

GRU-AE (Multi-head) 96 17.05 6.56 1.88 2.03 3.60 1.77 5.05 5.42

GRU-AE (Multi-feature) 144 18.08 6.36 1.85 1.94 3.36 1.91 5.08 5.51

GRU-AE (Per meter) 120 37.34 9.16 2.18 4.99 6.80 4.32 18.64 11.92

Summarizing the results, the proposed method based on a denoising autoen-
coder with GRU layers (GRU-AE) is promising for reconstructing electricity
profiles in the industry, although it could also be applied to reconstruct signals
in other domains. GRU-AE method is able to take advantage of the tempo-
ral information, as well as of the relations among meters (or other sensors) in
submetering systems. Therefore, GRU-AE method is more efficient filling gaps
when the whole submetering system is considered, instead of reconstructing each
meter data independently. Using the proposed method, electricity profiles with
over 27% of missing samples can be reconstructed with an error around 5% if the
whole submetering system is addressed. Furthermore, this method would be use-
ful even when more than one meter provide incomplete or no data at the same
time. Regarding to which implementation (multi-head or multi-feature GRU-
AE) should be selected, it can be stated that both implementations yield com-
parable results, but multi-feature GRU-AE would be preferred in large subme-
tering systems with many meters. In this case, both training and inference times
required by a multi-head GRU-AE could be much longer due to the high num-
ber of patterns resulting in the concatenation layer. In contrast, multi-feature
GRU-AE would have more bounded times.
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5 Conclusions

In this paper, we propose a method (GRU-AE) based on a denoising autoen-
coder (AE) with GRU recurrent layers in order to reconstruct electricity profiles
containing missing samples in submetering systems. GRU-AE is able to capture
temporal and meter relations, filling potential gaps in the electricity profiles.
Two GRU-AE implementations are presented: a multi-head GRU-AE in which
an independent GRU (one feature) is used to process each meter data and a
multi-feature GRU-AE in which only one GRU with several features (as many
features as meters) is used.

The proposed method has proved to be more effective reconstructing elec-
tricity profiles in submetering systems than using a similar approach for each
meter independently. The reconstruction errors are considerably lower. GRU-AE
is able to fill gaps even when more than one meter provide incomplete or no data
at the same time. Both GRU-AE implementations provide similar reconstruction
errors. However, a multi-feature GRU-AE could be more efficient with a high
number of meters in the submetering system.

As future work, other recurrent networks such as LSTM and BiLSTM could
be assessed, despite of the fact that the training would be more costly and dif-
ficult. Furthermore, 1-dimensional CNNs could bring significant improvements,
especially separable CNNs that fit the structure of submetering data. Further-
more, additional stacked layers and nonlinear activation functions could help to
capture more relations among meters and an attention layer based on meters
could also improve the results. Additionally, results and discussion could be
extended by considering longer gaps or even by predicting non-existent profiles
due to persistent faults in the time. Reconstruction errors should be assessed in
several scenarios.
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Domı́nguez-González, M., Cuadrado Vega, A.A.: Fully-convolutional denoising
auto-encoders for NILM in large non-residential buildings. IEEE Trans. Smart
Grid 12(3), 2722–2731 (2021). https://doi.org/10.1109/TSG.2020.3047712

11. Halstenberg, F.A., Lindow, K., Stark, R.: Implementation of an energy metering
system for smart production. In: Hu, A.H., Matsumoto, M., Kuo, T.C., Smith,
S. (eds.) Technologies and Eco-innovation towards Sustainability II, pp. 127–137.
Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-1196-3 11

12. Hart, G.W.: Nonintrusive appliance load monitoring. Proc. IEEE 80(12), 1870–
1891 (1992)

13. Ji, Y., Xu, P., Duan, P., Lu, X.: Estimating hourly cooling load in commercial
buildings using a thermal network model and electricity submetering data. Appl.
Energy 169, 309–323 (2016). https://doi.org/10.1016/j.apenergy.2016.02.036

14. Kelly, J., Knottenbelt, W.: Neural NILM: deep neural networks applied to energy
disaggregation. In: Proceedings of the 2nd ACM International Conference on
Embedded Systems for Energy-Efficient Built Environments, pp. 55–64 (2015)

15. Klingenberg, C.O., Borges, M.A.V., Antunes Jr, J.A.V.: Industry 4.0 as a data-
driven paradigm: a systematic literature review on technologies. J. Manuf. Technol.
Manag. 32(3), 570–592 (2021). https://doi.org/10.1108/JMTM-09-2018-0325

16. Liguori, A., Markovic, R., Dam, T.T.H., Frisch, J., van Treeck, C., Causone, F.:
Indoor environment data time-series reconstruction using autoencoder neural net-
works. Build. Environ. 191, 107623 (2021). https://doi.org/10.1016/j.buildenv.
2021.107623

17. Liguori, A., Markovic, R., Frisch, J., Wagner, A., Causone, F., Treeck, C.: A gap-
filling method for room temperature data based on autoencoder neural networks.
In: Proceedings of IBPSA Building Simulation Conference, September 2021
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Abstract. Detrending and deseasoning is a common preprocessing step
in time-series analysis. We argue that the same preprocessing step
should be considered on relational data whenever the observations are
time-dependent. We applied Hierarchical Generalized Additive Mod-
els (HGAMs) to detrend and deseason (D&D) 18 real-world relational
datasets. The observed positive effect of D&D on the predictive accu-
racy is statistically significant. The proposed method of D&D might be
used to improve the predictive accuracy of churn, default, or propensity
models, among others.

Keywords: Time series · Relational learning · Propositionalization

1 Introduction

This article is concerned with feature extraction from relational data for super-
vised learning, like classification or regression. The studied problem is not new
and is called propositionalization [14]. But one aspect of propositionalization
was frequently ignored in the early propositionalization literature: the data are
frequently not just relational, but also temporal. The ignorance of the temporal
parts in relational data is quite understandable—neither processing of relational
or temporal data is trivial when we want to do it right. This article attempts to
narrow the gap between these two worlds by introducing one basic concept from
time-series modeling to the realm of propositionalization: the trend and season
removal from relational data. A simple example of relational data is in Fig. 1.

Fig. 1. Example relational data: We wish to predict target based on timestamped
numerical attribute.
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To illustrate the importance of detrending, consider a predictive model built
on financial data. If the model was built on raw data, the accuracy of the model
would likely degrade faster than if we build the model on inflation-adjusted
(“deflated”) data.

To illustrate the importance of deseasoning, consider observing a person for
a month. If the person went swimming in a river once during that month, we
might want to make different conclusions about the person when that month is
June than if the month was January.

To describe the proposed temporal normalization, we have to introduce the
basics of propositionalization in Sect. 2 and the relevant parts from time-series
analysis in Sect. 3. We then follow with the description of the proposed tempo-
ral decomposition on relational data in Sect. 4, performed empirical evaluation
in Sect. 5, and the results in Sect. 6. The results are discussed in Sect. 7 and
concluded in Sect. 8.

2 Propositionalization

Propositionalization is a process of conversion of relational data into the
attribute-value format, which conventional machine-learning algorithms can
understand (see [14]).

There are many propositionalization methods. In this article we use Predic-
torFactory1. But there are many others, which differ in the direction of data
propagation (in [15], the target, which we wish to predict, is propagated to the
data, while in [14] the data are propagated toward the target) or the count of
the used models (in [15] and [14], only one model is used, while Guo [8] uses as
many models, as there are tables in the database).

In this article, when we are talking about propositionalization, we assume
that the target, which we wish to predict, resides in target table (observe
Fig. 1). The moment when we wish to make the prediction is defined by target
timestamp. And the entity for which we wish to make the prediction is defined
by target id.

To predict the target from other tables than the target table, we have
to link the tables together. This is done with joins over foreign key constraints
[15]. The end state of this target propagation is that each table in the database
contains the target column, timestamp, and id from the target table.

The relationship between the target table and other tables does not always
have to be 1:1. When the relationship is 1:n, the content of the tables is aggregated
to the level of the data in the target table. Examples of common aggregate
functions for numerical attributes include min, max, avg, count, and stddev.

The final step of propositionalization then consists of joining all the features
from the propagated and potentially aggregated tables into a single table in
attribute-value format.

1 www.predictorfactory.com.

www.predictorfactory.com
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3 Detrending and Deseasoning

The trend and seasonality can be removed with classical methods from time-
series analysis like Seasonal and Trend decomposition using Loess (STL) [5],
Holt-Winter’s seasonal method [10] or Seasonal Autoregressive Integrated Mov-
ing Average (SARIMA) [2].

However, these methods are not directly applicable to our data because com-
mon implementations of these methods cannot directly deal with:

1. non-uniformly spaced samples [6] (e.g., non-target table in Fig. 1 is not
sampled at periodic intervals),

2. multiple values per sample period [11,21] (e.g., the 4nth and the 5nth records
in the non-target table have the same timestamp),

3. hierarchical dependencies between the data [12,13,16] (e.g., target id 1 in
the non-target table has, on average, higher numerical attribute than
target id 2).

The listed deficiencies can be handled by Hierarchical Generalized Addi-
tive Models (HGAMs) [19]. HGAMs are a combination of Generalized Additive
Models (GAMs) [9] and Hierarchical Generalized Linear Models (HGLMs) [4].
GAM part takes care of modeling seasonality with cyclic cubic regression splines,
while HGLM part takes care of modeling trends and non-independence in the
data that arises from hierarchical structures. Note that HGAMs, just like GAMs
or HGLMs, can handle non-uniformly spaced samples and multiple values per
sample period.

4 Method

Assuming additive decomposition, a time-series y at time t can be written as
yt = St+Tt+Rt, where St is the seasonal component, Tt is the trend component,
and Rt is the remainder component.

However, in this article, we assume that the data have a two-level hierarchical
structure. The first level of data clustering is defined by target id. The second
level is the whole population. This hierarchical structure is used because it allows
us to model both 1:1 and 1:n relationships between target id and data in a
relational dataset.

A two-level hierarchical time-series can be written as yt,i = St+Tt+Tt,i+Bi+
Rt,i, where i is a specific target id, St is the population seasonal component,
Tt is the population trend component, Tt,i is the trend of i (random slope in
HGLM literature), Bi is the bias of i (random intercept in HGLM literature),
and Rt,i is the remainder component.

Furthermore, we want to support exogenous variables in the decomposition
because the data in the tables do not have to be always commensurable. For
example, transaction table in Financial dataset [1] contains all possible types of
transactions, differentiated by columns type and operation (the used datasets
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are discussed in Sect. 5). To block the effect of the exogenous variables, we write
the decomposition as:

yt,i = βXt,i + St + Tt + Tt,i + Bi + Rt,i, (1)

where Xt,i is a vector of exogenous variables (fixed effects in HGLM literature)
and β is a vector of regression coefficients. An example decomposition is in Fig. 2.

Fig. 2. Example decomposition of transaction.value from Financial dataset [1] for
incoming transactions.

5 Experiments

In the introduction, we argued that the trend and seasonality of data are impor-
tant. However, does it really impact the quality of the prediction? And if yes,
how much?

To answer these questions, we empirically compare accuracies of models build
on raw data vs. temporarily normalized data on 18 real (non-artificial) temporal
datasets from relational repository [17] (see the list in Table 1). These datasets
were selected, because they follow the data structure depicted in Fig. 1.
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Table 1. List of the used relational datasets from relational repository [17]. Regression
and polynomial classification problems were converted to binary problems with the logic
described in Classes column. Threshold column defines the split to training and testing
set.

Dataset Target table Target column Target id Target timestamp Classes Threshold

Accidents nesreca klas nesreca id nesreca cas nesreca B, not B 2001-06-30

Airline On Time ArrDel15 rownum FlightDate 0, 1 2016-01-16

BasketballMen teams rank tmID, year year ≤ 4, >4 1974

BasketballWomen teams playoff tmID, year year N, Y 2003

CCS transactions 1k Price TransactionID Date ≤ 500, >500 2012-08-24

Financial loan status account id date A, B 1997-02-05

FNHK pripady Delka hospitalizace Identifikace pripadu Datum prijeti ≤ 7, >7 2014-06-16

Geneea hl hlasovani vysledek id hlasovani datum A, R 2014-12-02

Lahman salaries salary teamID, playerID, lgID yearID ≤ 500000, >500000 1998

LegalActs legalacts ActKind id update Solution, not Solution 2012-07-24

NBA Game ResultOfTeam1 GameId Date -1, 1 2014-04-02

NCAA target team id1 wins id season 0, 1 2012

PremierLeague Matches ResultOfTeamHome MatchID MatchDate -1, 1 2014-01-01

Seznam probehnuto kc proklikano client id, sluzba month year datum transakce ≤ 1000, >1000 2014-08-01

Stats users Reputation Id LastAccessDate ≤ 10, >10 2014-03-29

VOC voyages arrival harbour number, number sup arrival date Batavia, not Batavia 1723-07-20

Walmart train units store nbr, item nbr date ≤ 10, >10 2013-04-15

Yelp Reviews stars review id review date ≤ 3, >3 2011-04-25

Each of the datasets was processed independently from the other datasets
with the following data flow:

1. Split the dataset to training and testing set with the median of target
timestamp (e.g.: median(loan.date) in Financial dataset. The used thresh-
olds are in Table 1. The older set is the training set, while the newer set is
the testing set. This schema allows us to model a common scenario, where a
model is trained on all historical data and then used for an extended period
of time without any retraining.

2. Perform target propagation, as described in Sect. 2.
3. Fork the flow into the challenger and the baseline group. In the challenger

group, we perform temporal normalization. In the baseline group, we keep
data as they are. Temporal normalization consists of:
(a) HGAM training on the training data (we use mgcv package in R as illus-

trated in Listing 1).

library(mgcv,lubridate)

fit = gamm(numerical_attribute ~ 1 + exogeneous_attribute + timestamp +

s(wday(timestamp), bs="cp", k=7), data=df, method="REML",

random=list(timestamp_as_num=~target_id, target_id=~1))

↪→

↪→

Listing 1. Example R code for trend and seasonality fitting. The input data frame df

is a join of the 2 tables from Fig. 1.

(b) Global trend Tt and global seasonality St removal from both training and
testing data.
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To see whether it is actually beneficial to perform both detrending and desea-
soning, we also evaluate flows, where we only perform detrending, respectively
deseasoning.

4. Aggregate numerical attributes with the following aggregate functions: min,
max, avg, count, sum, and stddev as described in Sect. 2. We also test adding
of local trend Tt,i from Equation (1) to the set of aggregates in separate
flows.

5. Join the aggregated attributes into a single table.
6. Train Random Forest [3] on the propositionalized training data. We could

have chosen any other classifier, but we chose Random Forest, because it
can handle dirty data (missing values, outliers, mixture of categorical and
numerical attributes, collinearity, etc.) and delivers good results even without
meta-parameter tuning [7].

7. Evaluate area under receiver operating characteristics curve (AUC-ROC)
on the testing set. We could have chosen any other measure. However, we
chose AUC-ROC because ranking measures are generally more sensitive to
changes in the prediction than thresholding measures, like classification accu-
racy (ranking measures detect changes at all possible thresholds while thresh-
olding measures detect changes only at one threshold).

6 Results

Empirical results in Table 2 suggest that detrending, deseasoning, and inclusion
of trend among the set of the utilized aggregates is better than the baseline,
which works on raw data and does not use trend aggregate.

A one-tailed Wilcoxon signed-rank test indicated that AUC-ROC of propo-
sitionalization on detrended and deseasoned data with trend as an additional
feature generative function was statistically significantly higher than AUC-ROC
of baseline propositionalization with p < 0.00048.

7 Discussion

The empirical results suggest that all the tested enhancements: detrending,
deseasoning, and trend feature generative function are overall improving the
accuracy of the classification models. This improvement is statistically signifi-
cant, although when averaged over all the tested datasets, the improvement is
modest (1 percent point). In the following paragraphs, we explain the observation
and list the limitations of the performed study and the implemented method.
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Table 2. The effect of global temporal normalization and inclusion of local trend as
a feature on testing AUC-ROC. D&D stands for detrended and deseasoned. Bold font
indicates the best result for a dataset.

Dataset Baseline Detrended Deseasoned D&D D&D with trend

Accidents 0.73 0.73 0.74 0.74 0.74

Airline 0.80 0.81 0.85 0.85 0.85

BasketballMen 0.65 0.64 0.65 0.65 0.66

BasketballWomen 0.63 0.63 0.63 0.63 0.64

CCS 0.69 0.70 0.70 0.70 0.70

Financial 0.87 0.89 0.89 0.90 0.90

FNHK 0.70 0.72 0.74 0.73 0.73

Geneea 0.77 0.77 0.78 0.78 0.78

Lahman 0.58 0.58 0.58 0.58 0.58

LegalActs 0.93 0.93 0.94 0.93 0.93

NBA 0.60 0.62 0.60 0.62 0.62

NCAA 0.70 0.70 0.69 0.70 0.70

PremierLeague 0.67 0.67 0.67 0.67 0.67

Seznam 0.85 0.87 0.87 0.87 0.87

Stats 0.75 0.75 0.75 0.75 0.76

VOC 0.93 0.93 0.93 0.93 0.94

Walmart 0.56 0.59 0.57 0.59 0.59

Yelp 0.84 0.85 0.84 0.85 0.85

Average ↑ 0.74 0.74 0.75 0.75 0.75

Wins and ties ↑ 3 8 9 12 16

7.1 When the Method Works

A good candidate dataset for temporal normalization has the following proper-
ties:

1. The dataset is affected by a linear trend and the dataset contains data for
long enough to observe the effect of the trend.

2. Each target id contains at least 10 observations, from which the trend
could be estimated.

3. The training set captures at least 2 full seasonal cycles, from which the sea-
sonal pattern could be estimated.

7.2 When the Method Fails

While sport is affected by the seasons (e.g., Winter sports are generally more pop-
ular during the cold seasons than during the hot seasons), the tasks associated
with the sports datasets in the relational repository (BasketballMen, Basketball-
Women, Lahman, NBA, NCAA, PremierLeague) is the prediction of which of
the teams wins the match. And we did not observe strong seasonality associated
with this task.
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7.3 Limitations of the Study

We have only evaluated the impact of detrending and deseasoning on numerical
attributes while ignoring categorical attributes. But in principle, a categorical
attribute can always be converted to a set of numerical attributes with the
existential quantifier or count aggregates [20].

When multiple seasonal effects with different periods are present, we can
incorporate multiple seasonal effects as described in [18, Equation 8]. Similarly,
interactions between the seasonal effects can be modeled as in [18, Equation 9].
However, the effect of these “complications” was not evaluated.

Another limitation is that we do not model a mixture of seasonal patterns.
E.g., in Financial dataset, we can identify two groups of clients based on their
income: clients that are getting the 13. and the 14. paycheck (they have almost
twice as high incomes in June and December than in any other month) and clients
that are not getting the 13. and the 14. paycheck (they have the same paycheck
each month). The model in Eq. (1) treats these two groups as a single group
because the information about the number of paychecks is not explicitly present
among the exogenous variables X but is a latent information. Hence, when we
deseason the data, the transactions of clients with the 13. and the 14. paycheck
get currently undercorrected, while the transactions in the second group of the
clients get overcorrected. In principle, the two groups can be identified with
clustering based on dynamic time warping distance. And each cluster can then
have its seasonal pattern. But fixing these deficiencies is future work.

8 Conclusion

We proposed a method for trend and seasonality from relational data, which
works on non-uniformly spaced samples, multiple values recorded at the same
time, and which respects dependencies in hierarchical data. The method is based
on Hierarchical Generalized Additive Models and it improves the testing ROC-
AUC of the downstream classifier on average by 1 percent point.
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https://doi.org/10.1007/3-540-44794-6_23
https://doi.org/10.1007/3-540-44797-0_12
https://doi.org/10.1007/3-540-44797-0_12


Deep Learning/Blockchain



A Blockchained Secure and Integrity-Preserved
Architecture for Military Logistics Operations

Konstantinos Demertzis1,2(B), Panagiotis Kikiras3, and Lazaros Iliadis4

1 Department of Forestry and Management of the Environment and Natural Resources,
Democritus University of Thrace, Orestiada, Greece

kdemertz@fmenr.duth.gr
2 School of Science and Technology, Informatics Studies, Hellenic Open University,

Patras, Greece
3 Department of Computer Science, University of Thessaly, 35100 Lamia, PC, Greece

kikirasp@uth.gr
4 School of Civil Engineering, Democritus University of Thrace, Kimmeria, Xanthi, Greece

liliadis@civil.duth.gr

Abstract. The employment of 5G Internet of Things (5G-IoT), smart automation,
and AI analytics can provide improved military logistics, by enhancing inventory
control, reordering, accuracy, flexibility mobility, and real-time monitoring, from
the factory and warehouses to the battlefield. On the other hand, there are inherent
risks that include cybersecurity issues, such as authentication, integrity, privacy,
and confidentiality of the communicated data. Moreover, there are concerns rele-
vant to prioritization, scalability, resilience, and continuous availability of the mil-
itary supply chain operations. This paper introduces the development of a holistic
blockchain integrity-focused scalable architecture, based on two main principles:
the data is not stored in a central point and therefore make it vulnerable to attack
and sensitive data is not transmitted through open communication channels. Fully
homomorphic encryption is used to perform calculations and analysis. Remote
independent observers who are eligible to have information access or to search for
specific contentwith visual output, cannot determine the source of the information.
The proposed architecture is based on the Hyperledger Fabric Project which pro-
vides the foundation for developing modular applications or solutions, allowing
plug-and-play components, such as consensus and membership services. Its mod-
ular and versatile design satisfies a broad range of military operations. Besides,
it offers a unique consensus approach that enables scalable performance, while
preserving integrity and security. The significance of the proposed architecture
is highlighted, by demonstrating its employment in the ammunition supply chain
(fromproduction to remotemobile ammunition consumers). Finally, the paper dis-
cusses the utilization of the architecture to other domains of military operations,
beyond logistics such as C2 systems.
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1 Introduction

The introduction of 5G, IoT and Industrial Internet of Things (IIoT) technologies,
smart automation, Artificial Intelligence (AI), and Big Data analytics, has simplified
and enhanced the communication between humans and machines [1–3]. Furthermore,
these technologies have improved the extraction, processing, and analyzing logistics’
and supply chainmanagement information [4, 5]. In particular, military logistics, include
a much wider range of functions than commercial ones [6, 7]. Thus, expandability of
timely Information Technology innovations, can enhance security, trust, transparency,
and efficiency, at operational, strategic, and tactical levels of military operations [8].
In essence, military logistics are not limited to supply chain management, but they are
also extended to the provision of all those operations required by a modern army [9,
10]. From a strategic point of view, they can be expanded even further to the Production
Industry (industrial logistics) and to the Defense Industry (defense logistics). It is a fact
that during military operations, logistics and their respective supportive processes, can
play a crucial role in the successful outcome of a military operation. The inability to
properly or timely supply or support a military unit is maybe, the most important factor
that can lead to failure in the battlefield.

Attempting a detailed mapping of the military logistics, we could say that it is the
science of planning and conducting the mobility and maintenance of the armed forces.
More specifically, the respective responsibilities include the following: design, develop-
ment, acquisition, storage, movement, distribution, maintenance, disposal or evacuation
army material, transports, acquisition, construction, maintenance and disposal of facil-
ities, providing medical support and military health services. Military logistics include
both the development of stocks-warehouses and the maintenance of weapons and forces
[7, 9]. Thus, they can be ranked in three different levels, as follows:

1. Production Logistics or Acquisition Logistics. This level of military logistics is
related to the research procedures, design, development, manufacture and accep-
tance of material. They comprise of the following: standardization and interoper-
ability, contracts, quality assurance, spare parts supply, defense reliability and anal-
ysis, safety standards for equipment, production specifications and processes, test-
ing and inspections (including providing necessary installations) coding, equipment
documentation, configuration control, and modifications.

2. Consumer Logistics orOperational Logistics. This level is related to the receipt of the
raw product, to the storage and transportation, including repairing and maintaining
or disposing, and the provision of necessary services. The most important processes
are the following: inventory control, supply or construction of facilities (excluding
any hardware and facilities required to support production logistics) motion con-
trol, reliability and fault reporting, safety standards for storage, transportation, and
handling, as well as related training.

3. In-Service Logistics. It is the part that bridges production with consumer logistics.
It includes functions related to the supply, receipt, storage, distribution, and disposal
of material, at the military internal level operations. This internal support is related
to activities required to ensure that army systems/equipment/services are available
on a 24/7 readiness.
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In conclusion, the effective organization and management of all levels of military
logistics are directly related to high operational readiness, at a tactical, operational,
and strategic level. Respectively, their real-time management helps to improve situation
awareness, risk analysis, optimal decision support making for peacekeeping or war
operations [11–13].

In recent years, blockchain technology has attracted everyone’s attention, as it has
managed to redefine the financial industry, offering advanced services and applications
that until recently were unthinkable to implement. But the real revolution is related to
supply chain management and logistics [14–16]. A blockchain is essentially a series
of data entries, where each new group of entries - a block - is uniquely linked via an
algorithmic relation. This creates a unique digital signature. Every change in a block,
affects the whole chain and therefore it is extremely difficult to impossible to alter the
data, without being finally traced [17].

In this context, blockchain can revolutionize the supply chain as it can eliminate the
need for physical data managers, while rationalizing the associated costs and enhancing
the security and efficiency of military logistics’ operations. In addition, it is possible
throughout the information life cycle, to enter new data and correct potential errors.
However, each action remains visible forever to all participants, without the possibility of
deletion. This approach facilitates the secure and transparent exchange of data, providing
consent and traceability [16, 18, 19].

2 Proposed Architecture

It is necessary to overcome the problems identified in the ways of handling military
logistics’ facilities. It is also necessary to safely provide general data related to military
supply [1–3]. This paper proposes the development of a holistic blockchain, secure
and integrity-preserved scalable architecture for military logistics operations [4]. The
proposed architecture has two main characteristics: No sensitive data is transmitted
through communication channels, even if these channels can provide encryption and
they are characterized by a high level of physical and logical security, and there is no
single universal data storage point. This means that there is no central point of attack
from which data leaks can occur. In this way, the proposed architecture ensures data
integrity in military logistics’, while providing consent in the ways of their use and
inherent traceability potentials.

The features of the proposed system’s architecture, allow the optimal management
of complex situations related to data management, in military logistics operations. Thus,
it implements an optimal hybrid system with the most technologically advanced meth-
ods. The design of the system is based on a multi-layered, modular architecture. Its
distributed design allows its potential interconnection with existing systems. The sepa-
rate architectural levels incorporated by the proposed architecture are presented in detail
below.

2.1 The Blockchain Architecture

The blockchain architecture works as a distributed database or global registry, which
maintains logs of all network’s transactions. A transaction is a time-stamped record
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that specifies each operation, its identity its type and the participants. Transactions are
combined into blocks, which are sorted based on a cryptographic hash [5, 6].

An open public-private key pair is formed for each user, which is linked to the
corresponding account. It is used to sign a transaction and to clearly identify ownership
of a function. A hash function with all transaction information is computed, to form a
block in the blockchain. The hash value is used to calculate the hash of the block. Thus,
the transaction information becomes unchanged and ensures the security, authenticity,
and durability of the data storage in the blockchain. If there are conflicting transactions
in the network, only one of them is selected to be part of the block [7].

The blocks are added to the blockchain at regular intervals, in order to form a linear
sequence where each block states the hash of the previous block, thus forming a chain of
blocks. This chain ismaintained by the network’s nodes. Each node is able to execute and
record all the running transactions. This means that each blockchain user has access to
the entire transaction log and can check the hash of each new block, in order to determine
the correctness of the transaction. Thus, it is possible to reach a common consensus when
performing the functions [8, 9].

The proposed architecture is based onHyperledger Fabric [10], which is a foundation
for developing applications or solutionswith amodular architecture. It allows the creation
of separate security levels and licenses, only for certified users [11]. The architecture of

Fig. 1. Architecture of the Hyperledger Fabric
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the Hyperledger Fabric and the general services it integrates are shown in the following
diagram [15].

It is ideal for managing military assets’ interests as it achieves transaction confiden-
tiality and selective access between authorized participants. Also, an important feature
that enhances Hyperledger Fabric-based implementation, is that the framework is based
on the Byzantine Fault Tolerant (BFT) consent algorithm (a mechanism that enables a
decentralized, trustless network to function even in the presence of malfunctioning or
malicious nodes). Thus, the Hyperledger order service is jointly controlled by network’s
members, a process which guarantees coverage or the ability to reach consensus, even
if there are rival nodes (malicious) or if the nodes are offline [12].

According to the Hyperledger Fabric, each component/actor has an identity and poli-
cieswhich constitute themechanism for infrastructuremanagement, as they define access
control and governance. There are several types of Policies, namely: Channel, Channel
Modification, Access Control Lists, Chain Code Lifecycle, and Chain Code Endorse-
ment. Peers are a fundamental element of the network, because they host ledgers and
smart contracts. Moreover, peers have an identity of their own and they are managed by
the administrator of an organization. Hyperledger Fabric, supports secure communica-
tion between nodes, using Transport Layer Security (TLS). They apply both one-way
(server only) and two-way (server and client) authentication. In addition, the crypto-
graphic operations performed by nodes, can be delegated to a Hardware Security Mod-
ule (HSM) that protects the private keys and handles cryptographic operations. Thus,
it allows the peers to endorse transactions and ordered nodes, in order to sign blocks
without exposing their private keys [10, 13, 14]. The proposed blockchain secure and
integrity-preserved scalable architecture depicted in the following Fig. 2.

Fig. 2. The proposed blockchain secure and integrity-preserved scalable architecture
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The architecture of the proposed framework has the capacity to employ different
types of Blockchain, which can be characterized by various ways of using and providing
the military logistics’ data. Specifically [11, 12, 15]:

1. Private Blockchains: They are under the control of an entity, which exclusively
ensures the control of the participation-validation of the data-interfaces that it holds.
The entity has the right to override, edit or delete the necessary blockchain entries.
Entities are organizations with their own equipment, laboratories, collection or
distribution centers, collaborating bodies, and units.

2. Permissioned Blockchains: They have rules that define who can participate in the
validationprocess orwhocanmake transactions. Theymayhave full or limited access
(depending on the case). They can also provide special rights to each participant,
with the ability to perform specific functions such as reading, accessing, and writing
information.

Practically, in the proposed modular scheme, Private and Permissioned Blockchains
coexist. Thus, they are making different license levels for different categories of par-
ticipants, absolutely necessary [16]. Each involved entity may require partial access to
the available information. A graph of the proposed scalable architecture is shown in the
following Fig. 1, where any node can be expanded in a new blockchain network.

The development of the new blockchains is related to the ways of using and dispos-
ing the data – applications of the military logistics operations. They are applying the
necessary distinct license levels, for the different categories of participants and for the
different types of information access [17].

The following components are used to implement each blockchain [15]:

1. Ledger. The world state comprises of two separate though related parts, the
blockchain, and the state database, which contains the current value of the set of
key-value pairs that have been added, modified, or deleted from all validated and
blocked transactions in the blockchain.

2. Peer nodes. A network entity that maintains a ledger and can potentially perform
read/write functions.

3. Ordering service. It serves (based on priority) any group of nodes, that requests
transactions in one block, for all network channels. Also, it distributes the blocks to
connected peers for validation and commitment.

4. Channel. The channel is a private communication, overlapping a blockchain. It allows
the isolation of data and the maintenance of confidentiality between specific peers.
Each peer in a channel, maintains its own copy of the ledger, which is kept consistent
to the copy of any other peer, through the consent process.

5. Certificate Authority. It is the authority to issue authorization certificates for the legal
use of the blockchain.

6. Smart Contracts. Smart Contracts are code programs that are automatically activated
and executedwhen certain conditions aremet. These contracts activate awhole range
of blockchain functions, such as: transactions, queries and logs.
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Respectively, and based on the above components, the proposed architecture consists of
specific layers. A general description of these layers is presented below:

1. Consensus Layer. It is responsible for establishing an agreement on the order and on
the confirmation of the correctness of all transactions on blockchain.

2. Communication Layer. It is responsible for the transfer of messages between the
peer nodes.

3. Authentication Layer. It is responsible for the authentication of users’, for the control
of their rights, and for the consolidation of trust in the blockchain.

4. API Layer. It is the application programming interface [18] that allows external
applications or users to interact with the blockchain.

5. Smart Contracts Layer. It enables the provision of controlled access to the directory,
and it is responsible for supporting the consistent information update.

6. Overlay layer. This is an additional level, used to map the communication network
between the participating devices – nodes. It is responsible for providing the available
services and applications, to the network. This level forms an overlapping network
over the existing physical one. Its nodes can be considered as connected by virtual
or logical links, each of which corresponds to a path in the underlying network.

The specific levels ensure the uninterrupted operation of the system and the fully
interoperable reliability of the participating infrastructures in a simple and safe mode.

2.2 Encryption Architecture

The transition to distributed architectures is imperative, due to the necessity for strong
encryption mechanisms, capable to ensure that calculations are performed on encrypted
data [19]. Based on this principle, the data can remain confidential during processing,
while allowing the performance of useful calculations, even if they are stored in unre-
liable distributed resources or heterogeneous networking environments. This process is
achieved using fully homomorphic encryption [20, 21], which is an advanced technique
allowing calculations on encrypted data. The idea behind homomorphic encryption is
based on the use of an algebraic system that allows authorized third parties to perform
a variety of calculations on encrypted data [22, 23]. Flow encryption is performed in
order to create an advanced control mechanism, capable to control potential leakage of
confidential data. It is based on the use of polynomial rings. The cryptographies of the
polynomials are calculated by applying noisy linear transformations that include the pub-
lic key to each polynomial. Numerical operations are then performed on the encrypted
flow data. As long as the accumulated noise in the calculations does not exceed a cer-
tain limit, the computational output can be decrypted with a linear transformation that
includes the private key [24–26].

A fully homomorphic cryptosystem is typically a set of four efficient algorithms
(KeyGen; Encrypt; Decrypt; Eval). The first three are used for Key Generation, Encryp-
tion and Decryption. The Eval algorithm is associated with a family of functions F .
Each function f ∈ F accepts a cipher {ci}ni=1 as input and calculates the cipher c that is
decrypted according to the input f (m1, · · · ,mn) [20, 23, 24].

Eval
(
f , Encrypt K (m1), · · · , Encrypt K (mn)

) = EncryptK (f (m1, · · · ,mn)) (1)
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In general, the encryption process involves adding noise to the original message.
This noise is controllable and can be corrected by a decryption (by the corresponding
key holder), in a manner analogous to an error correction code. If the noise grows, then
no one can proceed with the decryption.

Implementation includes the original CS cryptosystem which has a security
parameter λ and consists of the following algorithms [20, 21, 25]:

1. KeyGen
(
1λ

) = p, a random integer λ2 bit.

2. Encrypt (p,m) = m
′ + pq, where m

′
a random integer λ bit with m

′ = m
mod 2 and q a random integer λ5bit.

3. Decrypt(p, c) = (cmod p)mod 2 or equal.
4. Decrypt(p, c) = (cmod 2) ⊕ (c ÷ pmod 2)

In addition to the basic encryption, the proposed architecture includes methods pro-
viding optimal parameters used for the initial encryption setting and for the calculations
that reflect the occurring noise. Thus, the architecture fully ensures security between the
trading parties.

3 Secure and Private Transaction to Transfer Ammunition

The capabilities of the Hyperledger Fabric can be combined to enable powerful chain-
code based applications. For example, an ammunition transfer scenario, could be
implemented using secure and private military data information, as follows [15]:

1. A specific batch of ammunition may be tracked by a Unique Identifier (UUID) that
is a key label comprising of 128-bits. In the public chaincode state of the blockchain,
only the ammunition UUID is recorded.

2. The chaincode requires that any transfer request must originate from the owning
military unit, and the key is bound by a military regulator who must endorse any
transfer requests.

3. The private data of the military unit that contains the details about the batch of
ammunition are locked by a hash of the UUID. Other organizations in the blockchain
service, can only see the hash of the ammunition.

4. The military regulator is a member of each collection and therefore it has access to
the private data of each transaction request.

Based on the above assumptions, a blockchain transaction to transfer ammunition
would unfold as follows [15]:

1. The logistic department of amilitary unit, has struck a deal after successful bidding,
a transport service office to transfer ammunition for a certain price.

2. Themilitary office passes themilitary secrecy details about the ammunition transfer
on their private blockchain node.

3. The secret data are encrypted by using homomorphic encryption and the hash is
published to the open blockchain channel.
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4. The transport service office verifies the hash of the private details matches the
on-chain public hash.

5. The transport service office invokes chaincode to record their transport deal details
in their own private data collection. The chaincode is invoked on the military unit
office peer, and on the military’s regulator peer that is required by the security
transaction policy.

6. The military unit invokes chaincode to transfer ammunition, passing in the hash of
the private details and transport deal details information. This is performed, in order
to meet the endorsement security policy of the public key, as well as the policies
and private data regulations from the military regulators.

7. The chaincode is used by themilitary regulator in order to verify that the submitting
military unit is the owner, the private details on the hash in the blockchain collec-
tion, and the transport deal details information of the transport service office. The
chaincode thenwrites the proposed updates for the public key and the private details
to the transport service office. Prior to final endorsement, the endorsing military
regulator ensures that the data is secure and private, and it is not disseminated to
any other unauthorized or authorized peers.

8. The transport service office submits the block transaction with the public deal data
and private data hashes for transaction ordering, and it is distributed to all channel
peers in the blockchain.

9. Each peer’s block validation logic will consistently verify the endorsement security
and privacy policy was met. Moreover, it verifies that the public and private state
that was read in the chaincode has not been modified by any other transaction since
chaincode execution.

10. All peers commit the transaction as valid, since it passed validation checks.
11. With the transaction completed, other channel members interested in the asset may

query the history of the public key to understand its provenance. However, they will
not have access to any private details unless a military regulator shares it encrypted
in the private blockchain channel.

The following Fig. 3 presents the secure and private transactions, related to the
ammunition transfer as imposed by the proposed blockchain architecture.
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Fig. 3. Secure and private proposed architecture

The basic ammunition transfer scenario could be extended for other considerations.
For example, the transfer chaincode could verify that a payment record is available to
satisfy payment delivery requirements, or to verify that a bank has submitted a letter of
credit, prior to the execution of the transfer chaincode. Instead of transactors directly
hosting peers, they could transact through custodian organizations who are running peers
[13, 27, 28].

4 Conclusion

The paper at hand has introduced the idea of prototyping the proposed architecture, as a
universal method capable to meet all requirements of military logistics. This approach
combines the most up-to-date methods, and it is running under an adaptable, flexible,
and easy-to-use operating environment, aiming to complete specialized processes for
the military logistics applications of the modern armed forces.

The features of the proposed architecture, allow the monitoring, analysis, and man-
agement of complex situations related to military logistics. It optimally combines and
implements a hybrid system with the most technologically advanced IT methods that
enhance the security and privacy of military operations.

It should be emphasized that the proposed architecture can be applied to a number of
C2 applications. The following Fig. 4, presents an extensive architectural standardization
of the introducedmodel, which clearly demonstrates that it is possible to extend the scope
of the system to a number of novel C2 applications.

Specifically, an extension of this architecture can integrate the edge network. Any
edge device (sensors, readers, gateways) can transfer local data to cloud systems, by using
any available communication system for real-time analysis. For example, Unmanned
Aerial Vehicles (Drones, UAVs) are one of the most important information gathering
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Fig. 4. An extension of the proposed blockchained scalable architecture

systems. However, if they are not incorporating smart applications, their use can be
considered as rather passive, as these are unable to utilize the data in real-time [10, 29,
30].

To the above issue, the proposed architecture can enrich unmanned flying vehicles
with real-time machine vision and machine hearing techniques. These services can be
provided by using Cloud Robotics’ applications, which allow machines with sensors to
use cloud resources in real-time. In this way any video data stream, can pass through
real-time identification of target objects (e.g., small boats). This process will enable
real time perception of a situation (e.g., identifying shooting sounds). Moreover, it can
offer marking of specific spatial locations (e.g., coordinates of target). Overall, this
approach can successfully perform decision-making in order to impose proper actions
(e.g., activation of rapid reaction units).

Based on this architecture, the data can be converted to decision-support information,
which can be available whenever required, without the need for physical access. Similar
applications are also directly related to high operational readiness on a tactical, opera-
tional, and strategic level. They can help to improve situational awareness, risk analysis,
optimal decision making, timely response to a given event, and planning support for
conducting control operations related to it.
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Abstract. Internet of Things (IoT) enables increased connectivity between
devices. However, this benefit also intrinsically increases cybersecurity risks as
cyber attackers are provided with expanded network access and additional digital
targets. To address this issue, this paper presents a holistic digital and physi-
cal cybersecurity user authentication framework, based on Blockchain and Deep
Learning (BLDE) algorithms. The introduced user authentication framework, pro-
vides an additional layer of resilience against Cybersecurity attacks that may arise
through the IoT. Moreover, it controls digital access through the seven OSI layers
and via the physical user’s identity, such as finger prints or self-images, before
the user is accepted in the IoT network. Finally, it offers many layers of security
through its decentralized and distributed nature, in order to reduce the system’s
vulnerability from cyber threats.

Keywords: IoT · CNN · MLP · Blockchain · Cybersecurity · Deep Learning ·
Distributed · Decentralized

1 Introduction

The evolution of technology continues its rapid course. The vast number of applications
used by individuals or groups, for either personal or commercial use, keeps increasing.
The acceptance of Internet-of-Thing (IoT) was determinant for the growth of these
applications in the daily life [1].

The term IoTwas introduced in the literature byKevin Ashton in 1999 [2] to describe
a system in which its objects could connect to the Internet via sensors using RFID (Radio
Frequency Identification) technologies. Nowadays, IoT is defined as a network of phys-
ical objects, (e.g., appliances, vehicles, buildings) which contain embedded electronic
systems, software, sensors, which allow real time monitoring and control of devices
through web connectivity. It allows these objects to be controlled remotely, through a
network’s infrastructure, creating interaction opportunities among the physical world
and the computer systems [3]. Furthermore, IoT relies on technology that includes sen-
sors and actuators which are part of everyday smart systems, like smart homes and smart
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vehicles. Each object is identified separately from a built-in computer system and it can
operate both autonomously, as well as in collaboration with the rest of the internet infras-
tructure [4]. However, the increasing use of computer networks, interconnected systems
and IoT devices, paved the way for the exploitation of new cyber threats and risks. Cyber
attackers are provided with expanded network access and additional digital targets [5].
Despite the tremendous development in network security, the existing solutions are not
able to completely defend network and IoT systems, against potential malicious threats
[6]. Thus, the deployment of new approaches and methodologies is imperative.

The traditional security techniques such as hardware and software firewalls, user
authentication and data encryption, is one way to defend IoT [7]. Intrusion Detection
Systems (IDS), a rapidly growing field of study, were also suggested in order to facili-
tate system’s security. Using patterns of benign traffic and normal behavior or specific
rules that describe a specific attack, IDSs can distinguish between normal and malicious
actions [8]. Thus, severalMachine Learning (ML) and Deep Learning (DL) techniques
tried to integrate for Cyber Intrusion Detection (CID) [9]. However, in 2008, Nakamoto,
presented the Blockchain into a peer-to-peer (P2P) electronic cash system. Transactions
were verified and linked each other in an open distributed ledge, making almost impos-
sible for someone to tamper the information of any block [10]. This approach, offered
the IoT and computer system defenders, an additional asset towards the enhancement of
cybersecurity.

Blockchain architecture, enables the digitalization of contracts as it provides both
authentication between parties and information encryption, that gradually increments
while it is processed in a decentralized network such as the IoT [11]. Due to these fea-
tures, Blockchain (BLCH) has been already applied in Cryptocurrency, Smart Contracts,
Intelligent Transport Systems and Smart Cities [12].

To address the increased cybersecurity risk and threats of the IoT, this paper intro-
duces the Urban Infrastructure Security framework (UINSE). UINSE is a hybrid holis-
tic digital and physical authentication framework, based on BLCH technology and DL
techniques.

The rest of the paper is organized as follows. Section 2 performs a literature review
of IoT Cyber Security and the contribution of Blockchain Technology on it. Section 3
describes Blockchain, the DL Techniques and provides the architecture of the proposed
model and its description. Section 4, pinpoints the most significant issues of the model
and proposes solutions. Section 5 concludes the manuscript.

2 Literature Review

Yu et al. [13], have developed a Support Vector Machine model (SVM) to detect traffic
flooding attacks. In the attack experiment, the system gathered Simple Network Man-
agement Protocol (SNMP) information from the victim using SNMP query messages,
achieving an attack detection rate over 99.40%, whereas the classification accuracy was
99.53%. Kulkarmi and Venayagamoorthy (2009) [14], proposed a MLP to estimate the
suspicion factor that indicates whether an IoT device is the victim of a Denial of Service
(DoS) attack. If the output of the MLP exceeds a threshold, the IoT device under test,
shuts down both the Media Access Control (MAC) and the Physical (PHY) layer func-
tions to save energy and to extend the network’s life. Branch et al. (2013) [15], applied
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the k-Nearest Neighbor (K-NN) algorithm to address the problem of unsupervised out-
lier detection in aWireless Sensor Network (WSN). This is a flexible approach, capable
to define outliers with reduced energy consumption. In 2017, Shi et al. [16], developed a
Deep Learning approach to perform user authentication. The Channel State Information
(CSI) features of theWi-Fi signals were initially extracted and the DNN algorithms were
applied to detect spoofing attackers. In the testing phase, they achieved high spoofing
detection rates and successful user identification. Bostani & Sheikhan [17], introduced a
real-time hybrid intrusion detection framework, using theOptimum-Path Forest Cluster-
ing algorithm, achieving high performance indices’ values for the cases of the sinkhole
and selective-forwarding attacks in a real-world application.

Pointcheval [18] presented a linear scheme based on an N-P Perceptron problem
suited for smart cards applications. Kinzel et al. [19], trained two multilayer neural
networks (NNs) on their mutual output bits with discrete weights, in order to achieve a
synchronization that can be applied to secret key exchange over a public channel. Klimov
et al. [20] applied the above NN on three Cryptanalytic attacks (Genetic, Geometric and
Probabilistic). Volna et al. [21] employed feed forward NNs to perform encryption
and decryption with a continuously changing key. Yayık et al. [22] presented a two-
stage cryptography NN. The first stage generates neural network-based pseudo random
numbers. In the second phase, a NN encrypts information based on the non-linearity of
the model.

After Nakamoto’s revolutionary application of Blockchain (BCH) Technology on
Bitcoin transactions [10], BCH has attracted the interest of many researchers as it is
almost impossible for a third party to tamper it, due to the vast processing power required.
In 2017, Xu et al. [23] proposed a punishment scheme, based on the action record of
the blockchain, to suppress the attack motivation of edge servers and mobile devices
in the edge network. Cha et al. [24] utilized a blockchain network as the underlying
communication architecture to construct an ISO/IEC 15408-2 compliant security audit-
ing system. Gai et al. [25] developed a conceptual model for fusing blockchain and
cloud computing technologies over three deployment modes: Cloud over Blockchain,
BCH over Cloud and a mixed case. In 2018, Gupta et al. [26] announced a Blockchain
consensus model for implementing IoT security. Agrawal et al. [27] used Blockchain
to continuously evaluate legitimate presence of a user in a valid IoT-Zone, without any
kind of user’s intervention. In 2019, Serrano, proposed a BCH Random Neural Network
model (BRNN), which was applied on an IoT AAA server, covering both the digital 7
layers of the OSI Model and the physical user’s credentials (e.g. passport or biomet-
rics). BRNN had 1 hidden layer using as many neurons as the input. The signal of a
mobile device was used as input and the output was the credentials, i.e., the private key
and the biometric characteristics. The weights are stored (without specifying the actual
location). After each iteration, the previous Hidden Layer was added to the input layer
and the number of hidden layer neurons increased to equal the number of input neurons.
Then the previous weights are recalled, the neurons are re-trained and the new weights
are re-stored elsewhere [28]. Moreover, Giannoutakis et al., introduced a BCH app-
roach to support the cybersecurity mechanisms of smart homes installations, focusing
on the immutability of users and devices that constitute such environments [29]. Finally,
Demertzis et al. [30], suggested a Blockchain Security architecture, that aims to ensure
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network communication between traded Industrial IoT devices, following the Industry
4.0 standard, based on Deep Learning Smart Contracts.

3 Architecture of the Urban Infrastructure Security Framework
(UINSE)

The introduced UINSE framework employs a Deep Learning scheme following a Con-
volutional architecture. Its security is ensured by employing aBlockchain network.More
specifically, UINSE employs a Convolutional Neural Network (CNN) for self-image or
fingerprint recognition, a Multi-Layer Perceptron (MLP) to control the digital access
through the seven Open System Interconnection (OSI) layers, and a Blockchain archi-
tecture for the storage and validation of all “transactions” between the user and the IoT
devices.

Apart from the innovative combination of the aforementioned subsystems, another
contribution of this research is that the weights used by the CNN and theMLP, are stored
distributed in a computer network outside the IoT system and they are gathered only
to be used in the authentication process. Last but not least, the whole BLCH process
is applied, using a decentralized network of nodes (miners) that perform storage and
validation of the Blockchain.

3.1 The Blockchain and Deep Learning Subsystems

Blockchain is an append-only decentralized digital ledger that is supported by cryptogra-
phy [31]. It provides a platform to process trusted transactions (TXs) without third-party
involvement. Each request has a record in the form of a chain of blocks with a digital
signature for verification. Since the ledger is generated and maintained by all partici-
pants equally within the system [32] and there is no central server to manage the activity,
blockchain holds tamper-proof and immutable information in a secure and encrypted
manner. BCH uses a Peer-to-Peer (P2P) network, in which every node corresponds to
an existing network-user or to a new user who is allowed to join in a secure manner.

Whenever a new node joins the network, it gets the full copy of the blockchain.When
a new request is generated, a block is created and it is sent to every other node in the
network. Once verified by all nodes tomake sure it is not tampered with, it is added to the
chain. All nodes follow a consensus to verify the validity of the block. Each time a node
gets a blockchain for verification, all othersmatch it with its BCHwhereas the blocks that
are tamperedwith, are rejected. The developedConsensus is calledProof-of-Work (PoW)
[31]. It is an algorithm, used to confirm TXs and to produce new blocks to the chain. The
PoW uses random calculations to solve the complex cryptographic puzzle (sufficient
number of leading zeros in hash combinations) which requires adequate computing
power [33].

A MLP is a feed forward NN, which comprises of n layers [34, 35]. It should be
clarified that WM a matrix comprising of the weights located between the M-1st and
the Mth layer. The vector bM is the bias vector of the Mth layer [36]. A CNN is defined
as a Deep NN that extracts features at a higher resolution, and converts them into more
complex features at a coarser resolution, as presented in Fig. 1. CNN comprises of
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Convolutional, Pooling and Fully-Connected layers [37]. The feature value at location
(x, y) in the kth feature map of the M th layer, is calculated as follows:

featureMx,y,k = WMT

k XM
x,y + bMk (1)

where XM
x,y is the input patch centered at location (x, y),W

M
k is the weight vector of the

kth filter, and bMk is bias term of the M th layer. The activation value activateMx,y,k and

the pooling value poolMx,y,k of the Convolution feature featureMx,y,k can be calculated as
follows:

activateMx,y,k = activation(featureMx,y,k) (2)

poolMx,y,k = pooling(featureMa,c,k), ∀ (a, c) ∈ Nx,y (3)

where Nx,y is a local neighborhood around location (x, y). The nonlinear activation
functions are theReLU, the Sigmoid, and theTangentHyperbolic (TanH). EitherAverage
or MaxPooling operators can be applied.

Fig. 1. Architecture of the digit recognition CNN which comprises of two Convolution, two
Maxpooling, and two Fully Connected Layers.

The following Fig. 2, presents the architecture of the Authentication subsystem.
The offline part of the scheme, comprises of a computer where the following are

stored:

– Database: The database contains the credentials of each user who is credible and
authorized to access the Home’s IoT system. More specifically, the image(s)/ fin-
gerprint(s) of each credible user is stored in the database as well as the following
authentication credentials that cover the 7 layers of the OSI model (Fig. 3) namely:
the MAC address of the user’s device, the IP (if it is static) the protocol used in the
Port layer (UDP, TCP) and the ID of the device to which each credible user can have
access.
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Fig. 2. Architecture of the authentication subsystem of the UINSE

– MLP:The architecture of theMLP can be tailored during the installation of the system
by experienced stuff who will be allowed to choose the number of the hidden layers
(not more than three). However, an MLP with two hidden layers will be used as the
default one. The Input Layer vectors comprise of the users’ credentials related to the
7 layer of OSI Model (Fig. 3), as well as the IDs of the devices for which access
is permitted. The output is either 1 or 0 corresponding to permit or decline access
authorization (Binary Classification). The model will be trained during installation
by the experienced stuff. Its final architecture, without the values of node weights,
will be stored in the super node. The nodes’ weights will be stored on different secure
servers, either inside the house or elsewhere. In Fig. 2, the external weights’ servers
are denoted as WMLP,1, WMLP,2, …, WMLP,n where WMLP,1 contains the weights of
the first hidden layer of the MLP, WMLP,2 contains the weights of the second hidden
layer and so on.

– CNN: The CNN will have a default architecture, however the user will be able to
choose any of certain specific proposed architectures that are well-known in the lit-
erature like AlexNet [40], BGG-16 [41] and ReseNet-50 [42]. The CNN will accept
user’s image (s)/fingerprint (s). The output will be authorization acceptance or rejec-
tion (Binary Classification). The CNN model will be trained and its architecture will
be stored in the super node, while the weights for the layers will be stored on different
secure servers, either inside the house or elsewhere. In Fig. 2, the external weights
servers are denoted by WCNN,1, WCNN,2, …, WCNN,n where WCNN,1 contains the
weights of the first Convolution Layer of the CNN, WCNN,2 contains the weights of
the second Convolution layer and so on.

The computer that will be trained and will contain the database with the credentials
of the users, will be permanently offline, except when it will send the networks’ details
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Fig. 3. 7 Layers of the OSI Model.

to the super node and the weights to the internal or external servers. Each time a new
user is added to the database, the models will be retrained on the offline computer, and
the weights will be redistributed to the servers.

The IoT devices will be connected to the Super Node, whichwill be either a computer
with features related to the house appliances, or to a supercomputer in a different space,
maybe rented from a company. The user can access the IoT devices only after the whole
validation process will be successfully performed by the super-node and the miners.
The authorization process will consist of two basic stages, the validation of the users’
credentials and the creation and integration of the blocks in the blockchain.

Starting from the process of validating the user’s credentials, when a user wants to
connect or wants to give a command to a device connected to the IoT of the house,
he/she will send the respective biometrics, the credentials related to the seven layers of
the OSI model and the device to be connected. This will be done through the Internet in
the Super Node. Super Node does the following:

1. Calls the weights of the MLP and the CNN from external Servers.
2. Places the user’s credentials on the appropriate network. The images and fingerprints

on the CNN and everything else on the MLP and finally it applies the algorithms.
3. Checks if the NNs’ results authorize the user to use the corresponding device.
4. At the same time it checks if there is a block of the blockchain in which the specific

credentials of the user on the specific device have been rejected.
5. Deletes the weights of the NNs
6. Creates a new block transaction.
7. Broadcasts the new transaction to the Miners
8. After the verification or the rejection of the new block by the miners the Super Node

forwards the user’s action on the appropriate device or completely prevents the user
from authorizing the device.

The architecture of the proposed Blockchain model, related to steps 4, 6, 7 are described
in the following Fig. 4.
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Fig. 4. The architecture of the proposed blockchain subsystem

Apart from the Hash of the block, the attributes that have been incorporated in block
header for the designed system are as follows:

– Hash of the previous block: The block always keeps the hash of the previous block
to make the blockchain tamper-proof.

– Timestamp: A timestamp has been added in the block to record the event start and
finish time in the device/computer and is stored as a log or metadata as temporal
information.

– Nonce: A nonce is a randomly generated number that is required for the miners as a
target value of mathematical calculation to perform Proof of Work (PoW).

– UserID: This attribute keeps the credentials of source device fromwhere the command
is coming (including and the features that are not used in NN).

– DeviceID: This attribute keeps the address of the destination device to which the
command has been targeted.

The attributes that have been incorporated in the block body for the designed system are
as follows:

– Command: The command of the user (UserID) to the corresponding device
(DeviceID)

– CommandResponse: Verified or Reject, depending onwhether the user is authorized
to perform the specific command in the specific device.

After the description of the Blockchain subsystem’s architecture (Fig. 4), step 4 of the
Super Node has been clarified. Super Node checks if the combination of the following
properties User ID, Device ID, Command has been rejected before. If this is the case,
it is rejected again. Thus, in step 5, the super node checks the results of the NNs and the
existing Blockchain and creates a transaction of the aforementioned features, with the
Hash of the previous block, the timestamp of the requested Command the UserID
the DeviceID, and the Command Response. This transaction can be either verified or
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rejected by the hybrid system. If accepted, step 7 is responsible to broadcast the new
transaction to the miners.

Miners could be a computer or a group of computers, inside or outside the urban
infrastructure, with adequate computational power to solve complex blockchain mathe-
matical problems quickly. The miners of the network, select the broadcasted transaction
and they transform it to a ‘block’. The block of transactions should wait for a PoW to be
verified by the other miner nodes, before its addition to the blockchain. It is a fact that
PoW is a mechanism that slows down the development of the blocks. This makes it very
hard to tamper with the blocks. More specifically, if a block is tampered, the offensor
needs to calculate the PoW for all the following blocks, which is almost impossible.

The PoW is established by resolving a complexmathematical problem that is specific
for each block of transactions.As each block is related to a uniquemathematical problem,
every miner has to strive on a distinct unique case, which is a tedious task requiring
adequate computational power [38].

PoW is a powerful method that has proved to achieve the highest level of security
in blockchain systems. When the Super Node (SN) receives the command from the
authorized user to perform an activity, it finds the blockchain ledger in its database. If the
previous ledger is found, the SN generates a block transaction and updates the previous
ledger; otherwise, it generates a new blockchain ledger and creates a block transaction.
Then, it broadcasts a new block to all miners through a P2P server. The SN automatically
detects the miners based on which miner has strong connectivity and availability. The
miners validate the new block against the blockchain, or against the last n blocks in the
blockchain. After this process of validation, the miners performmining by finding a hash
output for the data in its block for verification. The fulfilment of the block verification
process, leads all miners to check the target referenced device in the incoming request.
The targeted miner accepts the activity and waits for the acknowledgment of the other
miners to perform the requested action.

After Miners validate the new block, and decide to reject it or to append it to the
blockchain, they make the blockchain public to the Super Node who already has acces
to the previous block. Thus, if the new blockchain broadcasted by the miners, has the
new block, the SN offers access to the user of the IoT device, else authorization is denied
(step 8).

4 Discussion

The introduced framework follows a complex process, which combines state-of-the art
technologies, such as Blockchain andMachine Learning algorithms. It shows high levels
of tolerance against cyber threats, as it contains many levels of security. The combination
of Blockchain, MLP and CNN makes the process tamper proof. Both the credentials of
the user and the process itself are validated.

However, due to the complexity of the security process, some issues may arise.
The proposed framework ensures that only authorized users can have access to the IoT
network and its corresponding devices. If a potential user wants to turn on a device
(e.g., the air condition, or the water heater) he/she does not consider the response time
important (wether it is 1 min or half a minute). Nevertheless, there are some other actions
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that may require faster response, depending on the type of the infrastructure. This type
of potential problem, can be resolved to negligible levels with a plethora of actions.
First of all, the keeper of the infrastructure, could choose a small number of hidden,
Convolutional or Maxpooling layers in order to simplify the used networks. Second, the
PoW could be applied only on a part of the blockchain (e.g., on the last 10 blocks). This
could significantly reduce complexity and running time. Furthermore, fast access (if not
default) can be offered for some commands of low risk (e.g. turn on and off the lights)
which will required only the credentials of the users (or only Biometrics, for even less
complexity). This strategy could skip the mining process in order for these actions to be
performed instantly.

The complexity of the proposed framework is an issue that requires further attention
in a future research effort. To achieve the aforementioned architecture, it is understood
that the Super Node must be a computer or a network of computers with high standard
features. Furthermore, there is a need for internal or external storing space (servers or
other computers) in which the weights of the NNs will be stored. Last but not least,
the miners’ infrastructure that requires significant processing power, is quite expen-
sive. Expensive Graphic Processing Units are required for the implementation of this
framework [39].

However, there couldbe twopotential solutions to address this issue,which could lead
to a lighter version of such a system. The first is to limit the architecture of the proposed
approach, to an offline computer (not necessarily of a high standard). This solution can
have one computer with high computational power to be used for the SN, and one to
be used as external or internal server (for the storage of all the weights). Moreover, it
will comprise of two miners, one to solve the complex mathematical problem for the
case of the new block, and one to be used for the validation of the blockchain after the
new block is added. Although this architectural reduction reduces security levels, it still
offers a high level of protection, as the basic idea behind the methodology still exists.

The second solution presupposes the establishment of a company that will offer the
above services. The basic concept behind the company’s establishment will be to serve
not one homeowner, but many at the same time, using the same resources. The company
will supply all miners, all servers needed for the weights, and all super nodes required
to control the security process.

Thus, a user will give a monthly subscription to rent a company’s super node. The
super node of the company will be established inside the infrastructure, or it will be
used remotely from the physical space of the company. The total number of miners
will be used for the validity of the blockchain of several distinct infrastructures. Finally,
the storing servers are easy to implement for all of the weights of all costumers. The
company’s costs related to energy consumption or maintenance of existing buildings, or
the purchase of new super nodes for the users, will be covered by the fund created by
the monthly subscriptions.

To make the scenario realistic, a large number of subscribers are needed, as for each
new subscriber, there are already storing servers and miners, and only the super node
will be needed. That is, as the number of users increases linearly, the company’s revenue
will increase linearly. Sticking to the second solution, a different approach for theMiners
could be applied. Instead of purchasing equipment from the company, existing miners
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on the market could be used. For example, a miner mining bitcoin could apply validation
for a company subscriber and could be paid with the companies’ token. This token can
then be used by the miner to be paid for the received services from the company. This
way the company will only need to purchase the storing servers and the super nodes.

5 Conclusion and Future Work

In this manuscript, the authors introduce a holistic theoretical approach, for the autho-
rization of a user to access a device via the IoT of a civil infrastructure. The architecture of
this approach comprises of the state-of-the art technologies, like Blockchain Technology
and DL techniques (MLP, CNN). The methodology offers many layers of security, mak-
ing thewhole process tamper proof. It uses Biometrics and other credentials derived from
the 7 layers of OSI model, in order to validate the user identity, as well as, Blockchain
Technology for storing and validating the whole process. A significant part of the pro-
cess is decentralized and distributed, making the whole process even less prone to cyber
threats. As all approaches to cyber security have weaknesses, this one also addresses
some important issues which were discussed in detail in Sect. 5. In the same section,
solutions were proposed to address the problems and difficulties that arise, mainly due
to the complexity of methodology.

This specific holistic approach is not case depended and it can be properly tailored
for any type of urban-civil infrastrucrue. For example, it could be used on a rising bridge,
so that it can be opened to allow ships to pass safely, without the risk of someone not
being authorized to affect the state of the bridge. However, this paper describes only
the foundations of such a framework. Future research will focus in the application of a
respective framework in a real residence after receiving funding from a research project.
This could serve as a pilot for further introduction of these technologies in real life.
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Abstract. One of the major challenges in Human Activity Recognition
(HAR) using cameras, is occlusion of one or more body parts. However,
this problem is often underestimated in contemporary research works,
wherein training and evaluation is based on datasets shot under labora-
tory conditions, i.e., without some kind of occlusion. In this work we pro-
pose an approach for HAR in the presence of partial occlusion, i.e., in case
of up to two occluded body parts. We solve this problem using regres-
sion, performed by a deep neural network. That is, given an occluded
sample, we attempt to reconstruct the missing information regarding
the motion of the occluded part(s). We evaluate our approach using a
publicly available human motion dataset. Our experimental results indi-
cate a significant increase of performance, when compared to a baseline
approach, wherein a network that has been trained using non-occluded
samples is evaluated using occluded samples. To the best of our knowl-
edge, this is the first research work that tackles the problem of HAR
under occlusion as a regression problem.

Keywords: Human activity recognition · Deep learning · Regression

1 Introduction

Human activity recognition (HAR) still remains one of the most challenging
computer vision-related problems. It may be defined as the recognition of some
human behaviour within an image or a video sequence. An activity (or “action”)
may be defined as a type of motion performed by a single human, taking place
within a relatively short time period (however, not instant) and involving mul-
tiple body parts [23]. This informal definition differentiates activities from ges-
tures; the latter are typically instant and involve at most a couple of body parts.
Similarly, interactions may involve either a human and an object or two humans
and group activities involve more than one humans. Typical HAR applications
c© Springer Nature Switzerland AG 2022
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include, yet are not limited to video surveillance, human-computer/robot interac-
tion, augmented reality (AR), ambient assisted environments, health monitoring,
intelligent driving, gaming and immersion, animation, etc. [3,20,23].

There exist several HAR approaches that are based on either wearable sen-
sors or sensors installed within the subject’s environment. In the former case,
the most popular ones include smartwatches, hand/body worn sensors, smart-
phones, etc. Moreover, in the latter case, typical sensors include video/thermal
cameras microphones, infrared, pressure, magnetic, RFID sensors [5] etc. How-
ever, it has been shown that wearable sensors are not preferred by the users,
while their usability is below average [12,18]. Moreover, overloading the users’
environment with a plethora of sensors may be an expensive task, requiring in
some cases many interventions in home furniture and/or appliances, e.g., in case
of a home environment. Therefore, several low-cost solutions tend to be based
solely on cameras, detecting activities using the subjects’ motion. Although such
approaches are low-cost and demonstrate more than satisfactory performance in
laboratory conditions, in real-life situations they suffer from viewpoint and illu-
mination changes and occlusion.

In previous work [19] we dealt with the problem of viewpoint invariance and
demonstrated that the decrease of accuracy due to viewpoint changes may be
limited when using more than one cameras. Also, recent advances in technology
have allowed for camera sensors that also capture depth information and perform
significantly better in low-light conditions. Therefore, from the three aforemen-
tioned problems, occlusion is the one that introduces most limitations. Also in
previous work [7] we assessed how partial occlusion of the subject affects the
accuracy of recognition. We simulated occlusion by removing parts of captured
visual data and showed that partial occlusion of the subject, in certain cases sig-
nificantly affected the accuracy of recognition. To tackle this limitation, in this
work we aim to reconstruct occluded data, upon formulating this problem as a
regression task. We use a deep neural network approach, whose input is a human
skeleton, with one or more body parts removed, so as to simulate occlusion. The
network is trained to output the skeleton upon estimating the missing parts. We
demonstrate that this approach is able to significantly increase accuracy.

The rest of this paper is organized as follows: In Sect. 2 we present research
works that aim to assess or even tackle the effect of occlusion in HAR-related sce-
narios. Then, in Sect. 3 we present the proposed regression methodology. Exper-
imental results of are presented in Sect. 4. Finally, conclusions are drawn in
Sect. 5, wherein plans for future work are also presented.

2 Related Work

During the last few years, a plethora of research works focusing on HAR, based
on 2D representations of skeletal data have been presented [6,9,11,14,15,21,
22]. Moreover, a may be found in [23]. However, although it is widely accepted
that occlusion consists one of the most important factors that compromise the
performance of HAR approaches [10], resulting to poor or even unusable results,
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few are those works that focus either on studied its effects on the performance
of recognition or even attempt to overcome them.

To begin with, in the work of Iosifidis et al. [10], a multi-camera setup, sur-
rounding the subject was used for HAR. In order to simulate occlusion, they first
trained their algorithm using data from all available cameras and then evaluate
using a randomly chosen subset. More specifically, they made the assumption
that due to occlusion, not all cameras were simultaneously able to capture the
subject’s motion. However, we should note that in all cases more than one cam-
eras were able to capture the whole body of the subjects. Also, recognition of
a given activity took place upon combining results only from those cameras
that are not affected at any means by occlusion. In the work of Gu et al. [8],
randomly generated occlusion masks were used in both training and evalua-
tion. Note that each mask caused the occlusion of more than one 2D skeletal
joints. Then, and in order to reconstruct the skeleton, they used a regression
network. Liu et al. [17] studied two augmentation strategies for modelling the
effect of occlusion. The first discarded independent keypoints, while the second
discarded structured sets of keypoints, i.e., those composing main body parts.
Note that in this work occluded samples were included in the training process.
Moreover, the authors herein made the assumption that the torso and the hips
were always visible. Their recognition approach was based on learning view-
invariant, occlusion-robust probabilistic embeddings. Similarly, Angelini et al.
[2] also included artificially occluded samples within the training process. In
that case, samples were created by randomly removing body landmarks accord-
ing to a binary Bernoulli distribution. Their recognition approach was based on
pose libraries which included several pose prototypes. When dealing with miss-
ing body parts, they exploited the aforementioned libraries either by matching
occluded sequences to pre-defined prototypes, based on high-level features, or
by filling missing parts upon searching through the pose libraries. In case of
short-time occlusions, they used an interpolation approach.

Finally, in previous work [7] we performed a study, wherein our main goal was
to assess the effect of occlusion of body parts, within a HAR approach. We cre-
ated artificial occluded activity samples, by manually removing one or two body
parts (i.e., upon removing subsets of skeleton joints). We made the following
assumption: occlusion was continuous during the whole duration of activity and
concerned the same part(s). For HAR, we used a deep neural network, that had
been trained using only non-occluded samples, i.e., contrary to [2,8,17]. Also, in
our study the whole skeleton was never “visible” as it was in the work presented
in [10]. Finally, Gu et al. [8] proposed a regression-based approach which was
limited to pose estimation.

3 Methodology

3.1 Occlusion of Skeletal Data

As in previous work [7,19], the proposed approach uses as input 3D trajectories
of human skeletons. In 3D HAR problems, subjects perform actions in space
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and over time. We consider skeleton representations as sets of 3D joints. We use
skeleton data that have been captured using the Microsoft Kinect v2 RGB/depth
camera.1 A human skeleton comprises of 25 joints, organized as a graph; each
node corresponds to a body part such as arms, legs, head, neck etc., while edges
follow the body structure, appropriately connecting pairs of joints. In Fig. 1 we
illustrate a skeleton extracted using Kinect. Note that joints are shown as being
grouped; each group corresponds to a body part, i.e., an arm, a leg or the torso.
In the context of this work, an activity is considered to be a temporal sequence
of 3D skeleton representations. For the sake of explanation, a visual example of
an activity is illustrated in Fig. 2.

Fig. 1. The 25 skeletal joints extracted by Microsoft Kinect, divided into five main
body parts – blue: torso, red: left hand, green: right hand, magenta: left leg, orange:
right leg. (Color figure online)

As it has already been mentioned in Sect. 1, occlusion may compromise the
performance of HAR, in real-life scenarios. Within the context of several appli-
cations such as ambient assisted environments, AR environments etc., occlusion
typically occurs due to e.g., activities taking place behind furniture, or e.g., due
to the presence of more than one people in the same room. Of course, it should
be obvious that occlusion of e.g., the legs when the subject performs the action
“kicking” results to a significant loss of visual information, which in turn may
result to failure of recognition. Although the aforementioned example is quite
extreme, it is common sense that partial occlusion may hinder the effectiveness
of HAR approaches. We should herein note that most large-scale public motion-
based datasets such as the PKU-MMD dataset [16] have been created under ideal
laboratory conditions, thus occlusion is prevented. Thus, since the creation of a
large scale dataset is a time consuming task, we decided to follow an approach
such as the one of Gu et al. [8]. More specifically, we manually discard subsets
of joints that correspond to body parts, assuming that the these parts remain
occluded during the whole action. For the sake of explanation, a visual example
of an activity upon occlusion is illustrated in Fig. 2.
1 https://developer.microsoft.com/en-us/windows/kinect.

https://developer.microsoft.com/en-us/windows/kinect
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Fig. 2. Example skeleton sequences of the activity handshaking. First row: skeletons
include all 25 joints; Second row: joints corresponding to left arm have been discarded;
Third row: joints corresponding left arm have been reconstructed.

3.2 Regression of Skeletal Data

The input of our approach consists of temporal sequences of 3D skeleton data,
i.e., as described in Subsect. 3.1. Upon imposing a linear interpolation step
between consecutive timeframes so as to address temporal variability of activi-
ties, we set the length of all activity examples equal to Tm, i.e., to the size of the
longest one in duration. Note that if the desired length is not reached upon one
interpolation step, the process is repeated until the desired length is reached.
As we will mention in Sect. 4, we use a dataset that has been captured using 3
cameras. Therefore, as we wish to exploit all possible information, we use the
corresponding 3 skeleton sequences as input. We also assume that in every case
of occlusion, the same missing body part(s) is (are) occluded in all 3 sequences.

The core philosophy of our approach is that since occlusion practically causes
missing values (i.e., in our case some of joints of the skeleton are removed), we
may formulate the problem of “reconstructing” those missing values as a regres-
sion task. More specifically, let X denote the original skeleton sequence and Xo

the sequence resulting upon occlusion. The goal of regression is ideally to esti-
mate a function f , so that Xr = f(Xo)+ ε, where Xr denotes the reconstructed
skeleton sequence and ε is some error value, to be minimized.

To this goal, we use a Convolutional Recurrent Neural Network (CRNN)
model, whose aim is to estimate the missing (occluded) data (joints). Its archi-
tecture is illustrated in Fig. 3a and is described in short as follows: The input of
the network constitutes of sequential data from 3 cameras. Each camera provides
a skeletal sequence under a different viewpoint. Given that in every sequence up
to 2 skeletons are included (i.e., in case of interactions between 2 subjects), and
each skeleton comprises 25 3-D joints, and the duration of the sequence is Tm,
input layer size is Tm × 150. Those three input branches are each filtered by a
stack of 2 2-D convolutional layer, followed by a max-pooling layer that performs
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Fig. 3. (a) The CRNN that has been used for regression of skeletal joint sequences; (b)
The RNN that has been used for classification. Layers have been colored as follows:
Gray: input/output, concatenated, Light Orange: 2D convolutional, orange: max pool-
ing, Light Blue: (input layer of) LSTM, Purple: fully connected (dense). Figure best
viewed in color. (Color figure online)

1 × 2 sub-sampling. This process repeats after the three branches are concate-
nated into a single tensor. This single tensor is again filtered by a stack of 2
2-D convolutional layer, followed by a max-pooling layer that performs 1 × 2
sub-sampling. The output of this layer constitutes the input to an LSTM layer,
whose goal is to harness temporal information of skeletal data. Then, 3 paral-
lel dense layers of size Tm × 150 follow. They are ultimately reshaped to three
Tm × 150 output layers. For loss computation, the Mean Square Error (MSE)
has been used.
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At this point we would like to note that the reason for the use of an asymmet-
rical kernel (i.e., 1× 2) is that while being sub-sampled this way, information is
compressed only along the spatial coordinates’ axes, leaving temporal informa-
tion intact. We experimentally verified that this kernel choice led to a significant
improvement of the performance of the network.

The occluded data Xo are given as input in both training and testing phases
of the network. Also, the targets of the network are the non-occluded data X;
these data are to be estimated by the network, i.e., its output are reconstructed
data Xr. Thus, the network is train to learn f , while minimizing ε. As we men-
tioned in Subsect. 3.1, each skeleton joint has its own id. Therefore, in a real-life
application, we could easily identify missing (occluded) joints. Bearing this in
mind, we opted to train one network per occlusion case, ending up with 8 dif-
ferent networks. Therefore, given an input skeletal sequence, it is fed to the
appropriate network, upon identifying missing joints.

At this point, the trained network serves as a mean to reconstruct missing
skeletal data of a given skeletal sequence. For the sake of explanation, a visual
example of an activity upon reconstruction is illustrated in Fig. 2. Thus, we are
able to proceed with its classification into one of the pre-defined classes. This
is performed using a second network, whose architecture is based on an LSTM
layer and is illustrated in Fig. 3b. As expected, data collected from three cameras
constitute again the input of this network. The three branches are concatenated
into a single tensor, serving as input to the LSTM layer. The latter is followed by
another dense layer of size 11, i.e., equal to the number of classes and constitutes
the output layer of the network. During training, the non-occluded data X serve
as input data to the network, thus no occlusion information is used. During
testing, its input is a reconstructed skeletal sequence Xr.

4 Experiments and Results

4.1 Dataset

Since to the best of our knowledge such a large scale dataset consisting of 3D
skeletal data does not exist, we used part of the PKU-MMD dataset [16]. Note
that this dataset consists of activities that have been recorded using Microsoft
Kinect v2 sensor. In order to produce results comparable to the ones of our
previous work [7], we have selected the same 11 classes, i.e.: eat meal snack (10),
falling (11), handshaking (14), hugging other person (16), make a phone call
answer phone (20), playing with phone tablet (23), reading (30), sitting down
(33), standing up (34), typing on a keyboard (46) and wearing a jacket (48).
Numbers in parentheses denote the corresponding class ids and will be used at
the remaining of this paper. A total number of 1000 samples has been used for
training, 100 for validation, while 400 samples have been used for testing.
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4.2 Experimental Setup and Network Training

Experiments were performed on a personal workstation with an IntelTMi7 4770
4-core processor on 3.40GHz and 16GB RAM, using NVIDIATMGeforce GTX
1050Ti GPU with 4 GB VRAM and Ubuntu 20.04 (64 bit). The deep architecture
has been implemented in Python, using Keras 2.4.3 [4] with the Tensorflow 2.5 [1]
backend. All data pre-processing and processing steps have been implemented
in Python 3.9 using NumPy and SciPy. For the training of the estimator, we
used the LeakyReLU activation function, except from the LSTM layer wherein
the tanh function was used, and the last dense layer wherein linear activation
function was used. For the training of the classifier, the LeakyReLU and tanh
activation functions were used respectively, except from the last layer, wherein
the softmax activation function was used. Furthermore, we set the batch size to 5
and 10 for the training of the classifier and the estimator respectively. The final
values of the aforementioned parameters were decided upon a trial and error
process. The Adam optimizer was utilized in both cases, the dropout was set to
0.3, set the learning rate to 0.001 and trained for 50 epochs, using the loss of the
validation set calculated via MSE as an early stopping method, in order to avert
overfitting. Moreover, since the duration of each activity was set to 150 frames,
upon interpolation, the size of the input data was 3 × 150 × 150. Finally, the
kernel size of the Conv2D layers was set to 3 × 3 and the stride was set to 1,
due to the layers’ filter dimensions that left no margin for further tuning.

4.3 Results

For the experimental evaluation of the proposed methodology, we considered
eight cases of body part removal, so as to simulate occlusion. More specifically,
we removed one arm/leg, both arms/legs, one arm and one leg from the same
side. For comparison, we also performed experiments without any body part
removal. In every case we evaluated classification upon removal and upon recon-
struction. Experimental results are depicted in Table 1, wherein as “baseline,” we
denote the methodology of [7], while using the herein presented network archi-
tecture. The weighted accuracy (WA) was 0.92 without any body part removal.
Moreover, it ranged between 0.21–0.90 in case of some body part removal, while
it ranged between 0.70–0.91 upon reconstruction. In 7 out of 8 cases, significant
improvement was observed, in terms of WA, while performance was almost equal
in case of removal of Left Leg. Intuitively, one should observe that the majority
of the activities we used to evaluate our approach mainly consists of upper body
motion (i.e., left and/or right arm). Upon careful observation of the samples
of the datasets, this assumption has been verified. This is also reflected to the
results of Table 1, wherein it may observed that in cases of occluded arms the
improvement is significantly large, with most notable example the case of both
arms, wherein WA improves from 0.21 to 0.70.

Upon careful observation of the confusion matrices depicted in Fig. 4, for
each occlusion case we should notice the following, when comparing with the
case where all joints had been used: a) in case of any occluded arm, class make
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a phone call/answer phone is often confused with playing with phone/tablet and
class eat meal/snack is often confused with reading ; b) in case of occluded left
leg, class wear jacket is often confused with reading or standing up; and c) finally,
in case of both arms occluded, 7 classes show adequate performance.

Fig. 4. Normalized confusion matrices using min-max normalization, for classification
(a) without removing any body part, (b)–(i) upon removing the body part(s) denoted
in the caption of the corresponding subfigure.
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Table 1. Experimental results of the proposed approach. “Rec.” and “Ref.” denote
reconstructed and reference case (see Sect. 3). Acc, P, R, F1, WA denote Accuracy,
Precision, Recall, F1 score and Weighted Accuracy, respectively. By “None” we denote
the case wherein all body parts are included. LA, RA, LL, RL denote the occlusion of
left arm, right arm, left leg, right leg, respectively. Numbers in bold indicate cases where
the performance of the reconstructed data is improved over the one of the reference
case.

None LA RA LA&RA LL RL LL&RL LA&LL RA&RL

Class Metric Baseline Rec. Ref. Rec. Ref. Rec. Ref. Rec. Ref. Rec. Ref. Rec. Ref. Rec. Ref. Rec. Ref.
10 Acc 0.90 0.84 0.11 0.45 0.03 0.58 0.00 0.79 0.92 0.79 0.66 0.87 0.74 0.68 0.21 0.66 0.24

P 0.83 0.68 0.29 0.77 0.17 0.52 0.00 0.94 0.78 0.83 0.81 0.79 0.82 0.72 0.31 0.74 0.75
R 0.89 0.84 0.11 0.45 0.03 0.58 0.00 0.79 0.92 0.79 0.66 0.87 0.74 0.68 0.21 0.66 0.24
F1 0.86 0.75 0.15 0.57 0.05 0.55 0.00 0.86 0.84 0.81 0.72 0.82 0.78 0.70 0.25 0.69 0.36

11 Acc 0.97 0.97 0.97 0.97 0.97 0.97 0.00 0.97 0.97 0.95 0.97 0.97 0.97 0.97 1.00 0.97 0.97
P 1.00 1.00 0.84 0.97 1.00 0.92 0.00 0.86 1.00 1.00 1.00 1.00 1.00 0.97 0.54 1.00 0.88
R 0.97 0.97 0.97 0.97 0.97 0.97 0.00 0.97 0.97 0.95 0.97 0.97 0.97 0.97 1.00 0.97 0.97
F1 0.99 0.99 0.90 0.97 0.99 0.95 0.00 0.91 0.99 0.97 0.99 0.99 0.99 0.97 0.70 0.99 0.92

14 Acc 1.00 0.88 1.00 1.00 1.00 1.00 0.81 1.00 0.94 1.00 1.00 1.00 1.00 1.00 0.94 1.00 1.00
P 1.00 1.00 0.94 1.00 1.00 0.94 1.00 0.94 0.94 1.00 0.84 1.00 0.84 1.00 0.88 0.94 0.76
R 1.00 0.88 1.00 1.00 1.00 1.00 0.81 1.00 0.94 1.00 1.00 1.00 1.00 1.00 0.94 1.00 1.00
F1 1.00 0.93 0.97 1.00 1.00 0.97 0.90 0.97 0.94 1.00 0.91 1.00 0.91 1.00 0.91 0.97 0.86

16 Acc 0.88 0.94 0.88 0.94 0.88 0.88 0.69 1.00 0.88 1.00 0.88 0.94 0.88 0.94 0.81 1.00 0.88
P 1.00 0.88 0.93 0.94 1.00 0.93 0.85 0.94 1.00 0.94 0.93 1.00 0.93 1.00 0.76 1.00 0.82
R 0.88 0.94 0.88 0.94 0.88 0.88 0.69 1.00 0.88 1.00 0.88 0.94 0.88 0.94 0.81 1.00 0.88
F1 0.93 0.91 0.90 0.94 0.93 0.90 0.76 0.97 0.93 0.97 0.90 0.97 0.90 0.97 0.79 1.00 0.85

20 Acc 0.82 0.18 0.03 0.61 0.39 0.00 0.00 0.85 0.79 0.82 0.88 0.79 0.88 0.30 0.00 0.39 0.97
P 0.96 1.00 1.00 0.87 0.13 0.00 0.00 0.97 0.96 0.90 0.48 0.96 0.47 0.91 0.00 1.00 0.16
R 0.82 0.18 0.03 0.61 0.39 0.00 0.00 0.85 0.79 0.82 0.88 0.79 0.88 0.30 0.00 0.39 0.97
F1 0.89 0.31 0.06 0.71 0.19 0.00 0.00 0.90 0.87 0.86 0.62 0.87 0.90 0.45 0.00 0.57 0.27

23 Acc 0.95 0.93 0.98 0.95 0.83 0.98 0.05 0.95 0.93 0.95 0.02 0.93 0.05 0.91 1.00 0.98 0.05
P 0.85 0.61 0.55 0.74 0.27 0.39 0.06 0.89 0.93 0.87 1.00 0.89 1.00 0.64 0.45 0.67 0.17
R 0.95 0.93 0.98 0.95 0.83 0.98 0.05 0.95 0.93 0.95 0.02 0.93 0.05 0.90 1.00 0.98 0.05
F1 0.90 0.74 0.70 0.83 0.40 0.56 0.05 0.92 0.93 0.91 0.05 0.91 0.09 0.75 0.62 0.80 0.07

30 Acc 0.84 0.60 0.70 0.87 0.24 0.16 0.00 0.97 0.76 0.87 0.89 0.89 0.84 0.81 0.30 0.76 0.70
P 0.84 0.79 0.36 0.54 0.69 0.33 0.00 0.64 0.80 0.71 0.65 0.87 0.67 0.67 0.24 0.62 0.65
R 0.84 0.59 0.70 0.86 0.24 0.16 0.00 0.97 0.76 0.86 0.89 0.89 0.84 0.81 0.30 0.76 0.70
F1 0.84 0.68 0.48 0.67 0.36 0.22 0.00 0.77 0.78 0.78 0.75 0.88 0.75 0.73 0.27 0.68 0.68

33 Acc 0.98 0.96 0.74 0.94 0.06 0.91 0.00 0.85 0.98 0.94 0.98 0.98 0.98 0.94 0.11 0.96 0.00
P 0.98 0.96 0.97 0.98 0.75 0.98 0.00 0.98 0.98 0.96 0.98 0.98 0.98 0.98 1.00 0.98 0.00
R 0.98 0.96 0.74 0.94 0.06 0.91 0.00 0.85 0.98 0.94 0.98 0.98 0.98 0.94 0.11 0.96 0.00
F1 0.98 0.96 0.84 0.96 0.11 0.94 0.00 0.91 0.98 0.95 0.98 0.98 0.98 0.96 0.20 0.97 0.00

34 Acc 0.96 0.89 0.96 0.96 0.19 0.46 0.00 1.00 0.94 0.94 0.90 0.89 0.85 0.98 0.54 0.96 0.00
P 0.96 0.94 0.96 0.93 0.10 0.94 0.00 0.87 0.96 0.94 0.96 0.96 0.98 0.94 1.00 0.94 0.00
R 0.96 0.88 0.96 0.96 0.19 0.85 0.00 1.00 0.94 0.94 0.90 0.88 0.85 0.98 0.54 0.96 0.00
F1 0.96 0.91 0.96 0.94 0.32 0.89 0.00 0.93 0.95 0.94 0.93 0.92 0.91 0.96 0.70 0.95 0.00

46 Acc 0.87 0.84 0.89 0.87 0.49 0.84 0.65 0.87 0.84 0.87 0.87 0.87 0.87 0.84 0.87 0.87 0.65
P 0.97 0.94 0.56 0.89 0.31 0.97 0.08 0.97 0.97 0.94 1.00 0.97 0.97 0.91 0.33 0.91 0.49
R 0.86 0.84 0.89 0.86 0.49 0.84 0.65 0.86 0.84 0.86 0.86 0.86 0.86 0.84 0.86 0.86 0.65
F1 0.91 0.89 0.69 0.88 0.38 0.90 0.14 0.91 0.90 0.90 0.93 0.91 0.91 0.87 0.48 0.89 0.56

48 Acc 0.92 0.92 0.28 0.69 0.13 0.56 0.00 0.59 0.85 0.85 0.85 0.90 0.90 0.90 0.05 0.87 0.13
P 0.84 0.68 0.82 0.84 0.71 0.59 0.00 1.00 0.89 0.89 0.62 0.73 0.64 0.83 0.67 0.89 1.00
R 0.92 0.92 0.28 0.69 0.13 0.56 0.00 0.59 0.85 0.85 0.85 0.90 0.90 0.90 0.05 0.87 0.13
F1 0.88 0.78 0.43 0.76 0.22 0.58 0.00 0.74 0.87 0.87 0.72 0.80 0.74 0.86 0.10 0.88 0.23

all WA 0.92 0.82 0.68 0.84 0.40 0.70 0.21 0.89 0.90 0.90 0.80 0.91 0.80 0.84 0.48 0.86 0.41
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5 Conclusions and Future Work

In this paper we presented an approach for human activity recognition under
occlusion, which was based on a convolutional recurrent neural network model
and used as input 3D skeleton joint sequences. We simulated occlusion by remov-
ing one or two body parts (i.e., sets of joints corresponding to arms and/or legs).
By using the aforementioned model, we managed to reconstruct missing joints
using regression. We showed that this way, we could achieve a significant boost of
performance in a classification task of 11 activities. This could be of great utiliza-
tion e.g., in AR environments and applications, where such performance plays a
significant and important role for the overall user experience and also may act as
a means of assessing user engagement, e.g., when a visitor of a museum makes a
phone call while interacting with an AR application, this should be an indicator
of low engagement, while when she/he is reading in front of an AR screen, this
should be an indicator of high engagement. Moreover, another important field
of application would be an ambient assisted environment, where the goal is to
detect activities of daily living (ADLs) [13].

Future research work may focus on several aspects of the problem of occlu-
sion. Firstly, we would like to investigate cases such as temporally partial occlu-
sion. Then we would like to investigate the use of other deep neural network
architectures, such as generative adversarial networks (GANs). Moreover, we
would like to perform experiments using full PKU-MMD and possibly other
datasets. We would like to perform comparisons of the given approach to one
that uses occluded samples for training the neural network that we have herein
used for classification, without a regression step. Finally, we plan to perform
real-life experiments within the AR environment of the Mon Repo project2.
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Abstract. The proportional hazard Cox model is traditionally used in
survival analysis to estimate the effect of several variables on the hazard
rate of an event. Recently, neural networks were proposed to improve the
flexibility of the Cox model. In this work, we focus on an extension of
the Cox model, namely on a non-proportional relative risk model, where
the neural network approximates a non-linear time-dependent risk func-
tion. We address the issue of the lack of time-varying variables in this
model, and to this end, we design a deep neural network model capable
of time-varying regression.

The target application of our model is the waning of post-vaccination
and post-infection immunity in COVID-19. This task setting is challeng-
ing due to the presence of multiple time-varying variables and different
epidemic intensities at infection times. The advantage of our model is
that it enables a fine-grained analysis of risks depending on the time
since vaccination and/or infection, all approximated using a single non-
linear function. A case study on a data set containing all COVID-19
cases in the Czech Republic until the end of 2021 has been performed.
The vaccine effectiveness for different age groups, vaccine types, and the
number of doses received was estimated using our model as a function of
time. The results are in accordance with previous findings while allowing
greater flexibility in the analysis due to a continuous representation of
the waning function.

Keywords: Deep learning · Risk model · Immunity waning

1 Introduction

Survival analysis models have been extensively studied as a statistical and com-
putational tool to tackle the time-to-event estimation. Applications of time-
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to-event predictions are important in various fields from medicine (patient sur-
vival prediction) to finances (credit scoring) or engineering (failure of machines).
Recently, these tools have been applied in the epidemiological context to study
the effect of vaccination or post-infection immunity to the risk of contracting the
disease. Several studies make use of collected COVID-19 infection data to build
survival models for specific geographical regions and events, such as infection,
hospitalization or death [1,14,16].

Cox proportional hazards model [3] represents a classical statistical tool to
assess the relation between baseline characteristics (covariates) of item studied
(e.g. a person in a population) and the risk of its event (e.g. the COVID-19
infection). This approach often yields to reliable and robust models under rather
strong constrains – linearity of the model, proportionality of the hazards, and
a lack of time-dependent covariates. Several neural network extensions of Cox
model have been proposed to alleviate those limitations, such as [8], which we
use as a foundation of this work, and extend it further.

The main contributions of this paper are the following. We present a deep
network model for relative risk prediction which is non-linear, non-proportional
and can deal with time-varying covariates. This model can be seen as an exten-
sion of the pycox library capable of handling time dependencies of data. The
model is then used in a case study of waning of post-vaccination or post-infection
immunity in COVID-19 in the Czech Republic.

2 Related Work

Early works on application of neural networks for survival analysis were con-
sidering relatively simple feedforward networks used as estimators of propor-
tional hazards. Liestøl and Anderson [10] implemented a neural network classifier
(either linear or with one hidden layer) which estimated conditional probabilities
of event in discrete time intervals corresponding to network outputs based on
input covariates.

The direct risk predicting models were proposed by Faraggi and Simon [4].
They replaced the Cox linear predictor by a neural network, which was a one hid-
den layer perceptron in their case. Biganzoli [2] proposed the first time-encoded
model by adding the time interval as an input variable along covariates to a
feed-forward network with entropy error function. Practical results of these early
attempts demonstrated modest results with none or moderate improvements over
simpler linear model.

Besides neural networks, other machine learning techniques have been used
to estimate non-proportional hazards. Namely, the random survival forest [6]
model has been used as a benchmark baseline in many studies. The model is an
ensemble of decision trees using the log-rank test for splitting criterion, comput-
ing the cumulative hazards of the leaves, and averaging them within the ensem-
ble. Authors of [5] use a semi-parametric Bayesian models based on Gaussian
processes to estimate the risk based on individual patient’s covariates.
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In recent years, the application of neural networks have been revisited by
making use of learning techniques with encouraging results. Authors of the Deep-
Surv model [7] improved the performance of risk predicting models by utilizing
state-of-the-art deep networks for estimating non-linear relation of Cox propor-
tional hazards on covariates. Yousefi and colleagues [20] developed a similar
framework for neural regressor fitting proportional Cox model with Bayesian
hyperparameter search. Changhee and colleagues, in their DeepHit model [9],
relax the original Cox constrains by proposing a model that uses a deep neural
network to learn the distribution of survival times directly from covariates.

Zhu and colleagues [22] extended the DeepSurv model to use medical images
as covariates. They replaced the multi-layer perceptron network by a convo-
lutional network realizing the regression. A recent work [15] describes another
convolutional network for survival prediction using images. Their architecture is
also able to utilize transfer learning to accommodate for different data.

Several works, such as [11,12,17], revisited and extended the idea of discrete
time intervals, and presented various models to compute discrete outputs for
survival predictions for several discretized durations. The area of risk predictions
in organ transplantation is a common application niche for this approach, with
recent paper [13] comparing several machine learning methods, including deep
networks, on kidney graft survival prediction.

Finally, authors of [8] extended the approach of risk predicting by deep neural
models to more general, non-proportional Cox models, and they also developed
a seminal software library pycox1.

3 Preliminaries

Let us consider a non-negative random variable T representing the time-to-event
of an item (such as time to death of an individual, or time to failure of a machine).
The goal is to model the event distribution as a function of time. We denote
f(t) and F (t) the probability density function, and the cumulative distribution
function of event time T, respectively, and consider the probability:

P (T ≤ t) = F (t) =
∫ t

0

f(s)ds.

A survival function S(t) is defined in terms of probability of a complement event
as: S(t) = P (T > t) = 1 − F (t).

The hazard rate h(t) is defined as a ratio of density and survival functions in
a given time: h(t) = f(t)

S(t) . The cumulative hazard H(t) is naturally defined as:

H(t) =
∫ t

0

h(s)ds,

and it can be used to define values of the survival function:

S(t) = e−H(t)

1 https://github.com/havakv/pycox.

https://github.com/havakv/pycox
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For the survival data, sometimes the true event time T is not observed
because of pre-specified study time limit, or because of an occurrence of a com-
peting event (such as death by other cause). This is called right censoring of
data.

Cox proportional hazards model [3] considers a semi-parametric hazard rate
form based on covariate variables:

h(t|x) = h0(t)eg(x); g(x) = βTx,

where x is a covariate vector, β is a parameter vector, h0(t) is a (non-parametric)
baseline hazard, and the term eg(x) represents a relative risk function, called par-
tial hazard. The predictor g(x) = βTx is a linear function of covariate variables.
The proportionality assumption states that the hazard functions for any two
subjects stay proportional at any point in time, thus the hazard ratio does not
vary with time.

The neural extensions to Cox model consider the predictor as a non-linear
function g(x) realized by a feedforward neural network. Moreover, the propor-
tionality constraint is often relaxed by defining both the relative risk function,
and g as parameterized by time:

h(t|x) = h0(t)eg(t,x).

Such a model is called relative risk model [8].

4 Deep Network Model for Vaccination Waning

Our extensions of the above described model were motivated by the infection
protection application described below. The general setup of the model is the
same as described above, we consider a relative risk model where the function
g(t, x) is realized by deep neural network. Moreover, we consider the covariates
x to be time-dependent, and we make a distinction between calendar time T for
the environment, and relative time t for covariates. Thus, the desired function
has a form of g(T, x(t)). We now elaborate on these extensions in a more detail.

We consider a vaccination treatment as one of the important subject covari-
ates. For vaccinated subjects, the time since vaccination represents a highly
time-dependent variable that changes every day. The same applies for post-
infection immunity and time since previous infection. This was the motivation
to extend the model for true time-dependent covariates. On the other hand, the
non-vaccinated subjects without previous infection have a constant partial haz-
ard (i.e., independent of time). These subjects have to be considered differently
from vaccinated ones in the implementation of the model, which is our second
extension of the previous work. The third extension addresses the dependence
of the overall hazard function on the actual conditions of pandemics, includ-
ing non-pharmaceutical interventions or virus variants. Thus, a real (calendar)
time is necessary to compute the hazard ratios, while the time-varying covariates
depend on relative time. As a consequence, at one real-time point (measuring
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the objective conditions and influencing the hazard ratios), the subjects can
have different time since event (measuring their individual covariates, such as
relative time from previous vaccination). In the rest of this section, these three
extensions will be described in more detail.

Covariates have remained the one important component of the model that
is considered constant in time. There are approaches that deal with changes of
covariates in time, such as the partly conditional modeling [21], which for every
change in covariate censors the item and create a new one with new covariate
value. This approach is not practical for large amount of data with frequent
covariate changes.

The deep neural network can naturally handle covariate values changing in
time, but it is necessary to extend the computation of the loss function of the
model. The loss, called the negative log-likelihood loss, is defined as:

Loss =
1
n

∑
i:Ci=1

log

⎛
⎝ ∑

j∈Ri

e[g(Ti,xj)−g(Ti,xi)]

⎞
⎠ ,

where for individual i we denote the Ti the event time, and Ri the set of all
individuals at risk at time Ti. The occurrence of the event is formally expressed
as Ci = 1. In practice, the set Ri is sub-sampled, and only a subset R′

i of Ri is
considered to decrease the computation time. The sub-sampling is done by stan-
dard random sampling without replacement choosing only a certain percentage
of the data.

Now, we consider that some (or all) covariates are time dependent, i.e. xi =
xi(t), i.e., the new loss is:

Loss =
1
n

∑
i:Ci=1

log

⎛
⎝ ∑

j∈Ri(T )

e[g(Ti,xj(t))−g(Ti,xi(t))]

⎞
⎠ .

The introduction of relative time t into the previous equation has to be
addressed by relating the t to calendar, or real time T , which is done in the
following way.

For each covariate x(t) we need to compute t by means of the calendar time
T and the event related to the covariate. (E.g., time from vaccination relates
to the vaccination event in the past calendar time TEV ENT . Thus, the value in
calendar time TR is x(TR) = TR − x(TEV ENT ).

In order to compute the even time Ti in the formula above, we again need
to consider the most recent event time with respect to calendar time TR: thus
Ti = TR−T 0

i , where the T 0
i is the most recent time of the event (i.e., vaccination

or infection).
The value of g(Ti,x(t)) is then either expressed via the calendar time T as

g(T,x(t)), for vaccinated, or as g(0,x(t)) for non-vaccinated individuals.
Finally, the real calendar time TR is used to determine the set Ri(TR), which

is necessary to take into account the individuals to be at risk at given changing
conditions in the real time.
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Note, that we still use the partly conditional modeling for covariates that do
not change much in time, e.g. whether the subject received the second dose of
vaccine (not to be confused with the covariate “time since the last dose”).

5 Experiments

5.1 Data and Model

The data set used for this experimental study includes all reported cases of
infections, vaccinations, and Covid-related hospital admissions and deaths in
the Czech Republic for the period between December 26, 2020 (one day before
the vaccination started) and November 30, 2021 (roughly before the Omicron
outbreak). Out of these data we have used the period of December 26, 2020 –
November 15, 2021 for training, and the last two weeks for validation. The train
set was used both for training and the demonstration of results. The split for
training and validation was used only to determine the quality of the fit and
prevent the overfitting by the choice of stopping criterion. This is a standard
policy in risk estimation where we are not primarily concerned with predictions
but the focus is on the soundness of the model, expressing the dependence of
risk on particular covariates.

The data were preprocessed to form events for our model, which resulted
in three data sets containing 27.5 million training patterns with 1.26 million
event cases for infection data, 22.4 million with 78.19 thousands event cases for
hospitalizations, and 24.1 million with 19.25 thousands event cases for deaths.

The input features to our model include age and sex information of the
subject together with information about vaccination status for Pfizer vaccine
(non-vaccinated, one or two doses) and times of vaccinations, as well as previous
infection flag and time, respectively. We have trained three separate models
for infection, hospitalization and death events with the same neural network
architecture. We have used a fully connected network with 32–32–64 neurons
in hidden layers, trained with Adam optimizer with weight decay, learning rate
of 0.001 and batch size 2048. The size of sub-sampling sets for risk evaluation
was 100. The number of epochs was determined by decrease in training and
validation losses, according to the elbow rule-of-thumb, and the final values are
60 for infections, 600 for deaths and 1500 for hospitalizations. The results we
report are mean and 95% confidence intervals of 10 runs with different random
seeds.

5.2 Results

The results of the three models are presented by means of standard metrics
describing the fit of the model in Table 1 and Fig. 1. We report the values of the
Brier score, which represents a mean square error of predicted probabilities from
real events. The values of Brier score are also plotted with respect to time. The
concordance represents covariance-based similarity measure of the predictions



316 G. Suchopárová et al.

with real events. Finally, the negative binary log-likelihood (NBLL) corresponds
to a loss used to train the models.

All three standard measures indicate that the models were able to train
very well, the hospitalization and death models in particular perform a great
fit. More details about the performance of the models can be seen on graphical
representation of the waning curves presented on Figs. 2, 3, 4 and 5. The results
of all three models correspond to general findings about the vaccine efficiency.
The protection against death is the highest (in the order of 90%) and does not
wane much in the period of 6 months. The protection against hospitalizations is
also strong, starting around 85–90% and decreases to 75–80% within 6 months.
The infection protection is lower, starting at the same levels but waning to 50–
60% in 6 months. Figure 3 demonstrates that the infection protection is sensitive
to age groups as a result of testing and vaccination policies in the course of
the pandemics. The decrease of protection against hospitalizations and deaths
in young age groups seen on Figs. 5 and 4 is caused by lack of data for these
covariates.

Fig. 1. Brier score for hospitalization (left), death (middle), and infection (right) pro-
tection with respect to time.

Table 1. Evaluation of our models performance with respect to traditional metrics
– concordance, Brier score and negative binary log-likelihood (NBLL). The values in
table represent mean and standard deviation for 10 runs.

Concordance Brier score NBLL

Mean Std Mean Std Mean Std

Infections 0.6750 0.0216 0.0426 0.0003 0.1581 0.0021

Hospital 0.7255 0.0019 6.354 × 10−3 5.930 × 10−6 3.3854 × 10−2 3.1325 × 10−4

Deaths 0.7776 0.0111 1.231 × 10−3 1.213 × 10−6 8.4879 × 10−3 3.3529 × 10−4
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Fig. 2. Top left: Waning curves for protection against infection, hospitalization, and
death risk for age group 60–69. Top right: Waning curves for infection protection for
10 year interval age groups. Bottom left: Waning curves for hospitalization protection
for 10 year interval age groups. Bottom right: Waning curves for death protection for
10 year interval age groups. Dark line represents mean from 10 runs, the shaded area
is a 95% confidence interval.

Fig. 3. Left: Number of infection events with respect to time and age. Right: Waning
curves from the model for infection protection with respect to time and age.
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Fig. 4. Left: Number of death events with respect to time and age. Right: Waning
curves from the model for death protection with respect to time and age.

Fig. 5. Left: Number of hospitalization events with respect to time and age. Right:
Waning curves from the model for hospitalization protection with respect to time and
age.

6 Conclusion

We have presented our extension of the relative risk model with deep neural
regression that addresses the issue of highly time-dependent covariates. The
resulting model treats relative and absolute times in a consistent manner and
allows to describe covariates as function of (relative) time. The use of non-linear
deep network regressor and the relative risk model alleviates two main drawbacks
of the traditional Cox model – linearity and proportional hazard constraint.
Namely the latter constraint is very limiting considering the application area of
immunity waning, since the hazard is dependent on factors changing in time,
such as the pandemics level or vaccination policies.

The experimental results from our study show that our model gives results
comparable to existing works [1,16,19]. Majority of previous research considers
either short time interval of the study (1–2 months), or divides the popula-
tion into very coarse compartments (both with respect to age or vaccination
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intervals), and then creates separate models for these. Our approach naturally
represents the covariates as continuous, thus we are able to obtain finer results.
This can actually bring some drawbacks that we have also demonstrated. Clearly,
some data categories are underrepresented, such as young people in hospital and
death data sets, which results in poor estimation of their risk values. Also, the
data are very unbalanced due to vaccination and testing policies, so the num-
bers of both infected and vaccinated people vary in time and between age groups
substantially.

In the future work we plan to address the problem of unbalanced data in
order to achieve smoother estimates of relative risks. Also, from the application
point of view, we plan to focus on recent data to estimate the waning curves
for the case of omicron virus mutation. Other interesting questions are relative
comparisons of vaccine types, or the dependence of combinations or order of
vaccination and previous infection events to the waning curve.
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Abstract. Recent advances in single-cell RNA-sequencing in order to
study cells in biology, and the increasing amount of data available, led to
the development of algorithms for analyzing single cells from gene expres-
sion data. In this work, we propose an artificial intelligence architecture
that classifies cell types of human tissue. This architecture combines a
deep learning model based on the convolutional neural network (CNN)
with a wide model. The classification model integrates the concept of
functional genes neighbourhood, based on Gene Ontology, in the CNN
model (deep part) and the information on biologically relevant marker
genes for each cell type in the underlying human tissue (wide part).
This approach leads to a gene ontology-driven wide and deep learning
model. We tested the proposed architecture with seven human tissue
datasets and compared achieved results against three reference litera-
ture algorithms. Although the cell-type classification problem is heavily
data-dependent, our model performed equal or better than the other
models within each tissue.

Keywords: Single-cell RNA-sequencing · Cell-type classification ·
Wide and deep learning · Gene ontology

1 Introduction

Single-cell RNA sequencing (scRNA-seq) technology refers to sequencing a
single-cell genome or transcriptome. It gives information on the quantity and
type-composition of the RNA population in a single cell of a specific tissue [9].
The main advantage of this technique is the characterization of highly specific
cell types of different cells populations within different tissues and in different
biological conditions. The strength of scRNA-seq methods lies in their ability in
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individually cells separation, allowing the extraction of cell-by-cell gene expres-
sion values from a tissue. Thus, cell-type classification can be applied at different
depths, also discriminating between cell subtypes belonging to the same main
cell type, based on the level of detail required by research target. Moreover, it
avoids data noise caused by the influence of other cells and it allows more accu-
rate measurement of gene expression for each cell within a tissue. In biology,
“cell typing” means classifying different cells that share similar morphological
or phenotypic features. Cells can have the same genotype, but they can belong,
morphologically, to different cell classes due to their differential gene expression.
avoiding data noise caused by the influence of other cells and allowing more
accurate measurement of gene expression for each cell within a tissue, In this
context, automatic classification task through artificial intelligence and machine
learning techniques [23,24] has proven a valid instrument [1]. Correct cell types
identification is necessary to study tissue and organs development, especially for
functional cells production for cell therapies and disease modelling. A fundamen-
tal contribution of cell-type classification also lies in oncology. Indeed, single-cell
typing in cancer research has contributed to give information related to the
landscape of tumour cells and immune cells surrounding them, the behaviour
of tumour microenvironment and cell heterogeneity. Moreover, cell type classifi-
cation would contribute to understanding the tumour biology better and assist
in the identification of novel markers, rare subgroups of patients and evolution
patterns of cancer phenotypes [13].

This work proposes a computational architecture that exploits two main
concepts: the functional relationships among genes and the use of biologically
relevant marker genes. Specifically, for the classification task, we first try to
integrate the concept of genes neighbourhood within a cell into a deep learning
algorithm, giving relevance to the closest genes within a cell from a semantic and
functional point of view. Secondly, we combine this information with biologically
relevant marker genes extraction for each cell type.

2 Related Works

There are several methods to analyse cell types based on scRNA-seq data, like
clustering, classification and lineage tracing. In particular, exponential growth in
cells and samples number led to the adaptation and development of supervised
classification methods for automatic cell identification or classification [1,31].
Cell-type classification can be performed by mapping differentially expressed
genes with prior knowledge of cell markers like SCSA [7] and scCATCH [19]
algorithms. These methods require updated, relevant genes databases since this
information is fundamental to recognise each cell type. To support this, the
amount of scRNA-seq data is increasing, thus expanding database marker genes,
which will become increasingly populated and available in research. Another
cell-type classification strategy compares similarities between a single cell and a
bulk or single-cell RNA-seq profile reference database to find potential cellular
identities. Several methods including SingleR [4], CHETAH [15], scmap [16],
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scID [5], scPred [3], ACTINN [18], singleCellNet [22], SciBet [17], CellAs-
sign [28], SCINA [29] belong to this category. These approaches based on ref-
erence databases have the advantage to automatically and rapidly classify cell
types on a large variety of test sets. Still, they also severely limit cell types
extraction dependent on the reference database. Fortunately, recent advances in
deep learning have enabled significant progress in the ability of artificial intelli-
gence techniques to integrate big data, including existing knowledge, and learn
arbitrarily complex relationships. For this reason, recently, there are also deep
learning architectures in literature; one of them is scDeepSort [20], a method that
exploits genes relationships in a graph neural network (GNN), or sigGCN [25],
based on two parallel networks, a convolutional graph network (GCN) and a
neural network (NN).

Two models inspired the architecture proposed in this work: 1) an ontology-
driven convolutional neural network (ODCNN) for cancer detection [6] and 2) a
“wide and deep learning” model for automatic single-cell typing (scWDL) [26].
The former exploits the concept of functionally and semantically close genes in
a convolutional neural network through a 1D convolution operation for cancer
detection in human tissue. The latter extends the “wide and deep learning”
architecture (WDL) proposed by Google for recommendation systems [10] to
the cell-type identification in scRNA-seq data and integrates biologically rele-
vant genes provided by literature into the wide part of a WDL architecture.
Our approach combines those two methods by integrating the ontology-based
ODCNN model on the deep part of the scWDL approach to exploit the contri-
bution of both functional genes relationships and biologically relevant marker
genes.

3 Materials and Methods

In this section we introduce the datasets and the proposed architecture for cell-
type classification. First of all we describe main features of human tissues scRNA-
seq data; then we focus on data pre-processing; finally we present our gene
ontology-driven WDL (GOWDL) architecture for cell-type classification from
single-cell RNA-seq data. All the phases we discuss below were performed in
Python programming language (except for dataset normalization, performed in
R programming language).

3.1 Datasets

We selected datasets containing scRNA-seq data from different human tissues.
All chosen datasets are already normalized (log2) or have been normalized if con-
taining raw counts. Normalization was performed with Seurat package [12] of R
programming language, a tool designed for quality control, analysis and explo-
ration of scRNA-seq data, with the normalization.method = “LogNormalize”
method. Table 1 summarizes information about all the datasets considered in our
study. We chose different tissue datasets, to show proposed architecture’s ability
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to identify cell types in different conditions and with different classes. Further-
more, datasets have a fairly high number of samples per cell type. Datasets
include blood, breast, kidney, lung, pancreas and melanoma tissues. Bio-marker
genes, that is signature genes that characterize specific cell types, were obtained
from CellMatch [19].

Table 1. Overview of chosen single-cell RNA-sequencing human tissue dataset.

Dataset Tissue
type

Source Starting
dimensions
(cells × genes)

Normalization Cell-type
number
after
filtering

Mean
number of
marker
genes per
cell-type

Blood Normal [14] from Immune Cell
Atlas

(13 316×21 814) No 7 5

Breast Normal [27] from Stromal cell
diversity in negative
breast cancer

(24 271×28 118) No 16 13

Kidney Normal [21] from Kidney Cell
Atlas (“mature human
kidneys” dataset)

(7 803 × 33 694) No 7 129

Lung Normal [20] from Human Cell
Landscape

(24 051×20 021) No 11 14

Pancreas Normal [11] from GEO:
GSE81547

(2 544 × 19 644) Yes 6 10

Melanoma 1 Tumor [26] from GEO:
GSE123813

(53 030×22 961) Yes 4 61

Melanoma 2 Tumor [26] from GEO:
GSE72056

(4 645 × 23 686) No 6 55

3.2 Data Pre-processing

As mentioned before, raw counts dataset were normalized. After normalization
(if necessary), we performed a data pre-processing pipeline composed of different
phases.

Cells Filtering. In this step, because CellMatch database does not contain gene
markers of each cell type, we removed cells without relevant genes. In addition,
we replaced cell sub-types with their main cell types using the data provided
in [19] (e.g. we considered a basal epithelial cell as an epithelial cell). The last
part of this step is the removal of the poorly represented classes: we maintained
only the cells belonging to classes with at least 0.05% of total samples, as done
in [20].

Genes Filtering. Next step of pre-processing is gene filtering, consisting into
the following two sub-phases.

– Filtering based on GO terms. Because our computational model is based
on Gene Ontology [8] (see next Section), we discarded all genes that do not
appear as GO nodes (GO terms) in the Gene Ontology graph.

– Biologically relevant genes extraction. For each cell, we extracted and
removed from the original datasets the gene expression values of the genes
representing bio-markers of any cell types, according to CellMatch. Those
genes were assembled into a novel dataset of so called biologically relevant
genes.
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Fig. 1. Cell-type classification pipeline: green color represents the main line, while grey
color describes a sub-phase. Kernel dataset creation processes input data to generate
a kernel-organized dataset depending on the genes distance matrix (obtained from
GOGO algorithm). Gene ontology-driven wide and deep learning model (GOWDL)
is trained to predict cell types from the kernel dataset and gives an output with the
classification results. (Color figure online)

3.3 Proposed Architecture

Our computational architecture is shown in Fig. 1. It is composed of two main
processing steps. The former, namely Kernel dataset creation, organizes input
datasets in a way they can be analysed in the latter, called Gene ontology-driven
wide and deep learning model. That phase involves the training of a model that
takes into account functional similarity among genes and a supervised learning
procedure based on a customized deep learning architecture.

Kernel Dataset Creation. Our goal in this phase is to compute a functional
distance among genes and then organize input dataset for learning the model in
the next processing step. For this reason, we referred to Gene Ontology (GO) [8].
GO is, in fact, the world’s largest knowledge base of information about genes
functionality. It represents a direct acyclic graph (DAG), where each node is
called GO term and each edge is a relationship between them. A GO term is a
textual description of some gene function. We relied on GOGO algorithm [30] to
compute genes distance, based on the number of GO terms associated with each
gene. GOGO algorithm defines a measure of similarity between GO terms, based
on their information content and on the number of children that each GO term
has within the Gene Ontology. GO uses three DAGs to define the functions of
a gene product: molecular function ontology (MFO), biological process ontology
(BPO), and cellular component ontology (CCO). In particular, GOGO computes
a matrix of genes similarity values for each of those ontologies, where each entry
is a similarity value from a gene to another one, based on chosen ontology.

We have processed similarity matrices obtained as output of GOGO algo-
rithm and transformed them into distance matrices. Given a similarity value
Sg1g2 corresponding to the similarity between gene g1 and gene g2, correspond-
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Fig. 2. Schematic representation of the kernel dataset organization process. The hue
of green color within the cells of the matrix indicates the level of gene expression in a
given cell (a darker green means that the gene has a high expression value within that
cell, while a green more clear indicates a lower expression value). (Color figure online)

ing distance value Dg1g2 between the two genes is given by:

Dg1g2 = 1 − Sg1g2 (1)

We performed this computation for each of the BPO, CCO and MFO ontolo-
gies, with a total of three output distance matrices. From these three distance
matrices we computed a further matrix, where each element is the average
between the elements in the corresponding position of the three matrices. Given
the GOGO distance matrix, we designed an algorithm that generates a so-called
kernel dataset, starting from the dataset filtered by genes and by cells. Assuming
to choose n as kernel size, the kernel dataset is computed by taking the n − 1
genes closest to each of the genes in the dataset. For each cell, C, every gene, g,
in the dataset is replaced by a mask (kernel) of n elements, , where the expres-
sion value of g is in the center of the mask, and the remaining n−1 surrounding
elements of the mask are the expression values of the n − 1 genes closest to g,
in descending order (Fig. 2). Therefore the kernel dataset is a dataset with the
same row number as the input dataset, but with a number of columns given by:

NColumnsKernelDataset = NColumnsInputDataset · SizeKernel (2)

A dataset with a similar structure will be the input for the convolutional neural
network (CNN) part of the proposed deep learning architecture.

Gene Ontology-Driven Wide and Deep Learning Model. Final step of
the architecture is cell-type classification performed by the Gene ontology-driven
wide and deep learning (GOWDL) model, as shown in Fig. 1 (b). As previously
explained, the model is inspired by the wide and deep learning model (WDL) [10,
26] and by an ontology-driven convolutional neural network [6] based on gene
functional distance. GOWDL is composed of two main components, as depicted
in Fig. 3:
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Fig. 3. Schematic representation of GOWDL network layers.

– Deep part. Deep component of a network generalizes data patterns, that in a
classification task allows the network to recognize, starting from a limited set
of labelled input samples, new examples never seen before and assign them
to a membership class. In the model proposed in this work, the deep part
consists of a CNN with a 1D convolution layer which strides along the kernel
dataset rows (Fig. 1). Kernel stride is equal to size of the kernel chosen in the
kernel dataset creation step, so that all and only the closest genes to the gene
in the center of the mask are considered for convolution operation, and then
the convolutional kernel strides to next genes set. The deep part has also a
max pooling layer, three dropout layers, to avoid overfitting, a flatten layer
and, at the end, a fully connected layer with ReLU activation.

– Wide part. The wide component of the network is a generalized linear model
based on a small set of raw input features. The characteristic of a wide net-
work is the memorization of data patterns starting from a reduced set of
features, giving relevance to them, so that they can be considered relevant by
the architecture. The wide part works better when dealing with very sparse
input data, since in these cases only the deep part suffers from generalization
difficulties [10]. In our model the wide part emphasizes the relevant features,
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i.e. the biologically relevant genes extracted from the original dataset in the
filtering phase.

The wide part concatenates the last hidden layer of the deep part of the model,
composing this way the wide and deep architecture. The output layer of the
network is a fully connected layer with a number of units equal to the number
of cell types to classify (see Table 1) and softmax activation.

Fig. 4. Bar chart shows the comparison between GOWDL and ODCNN accuracy at
varying kernel sizes. For each tissue, the best performance of the ODCNN is always
lower than the worst performance of the GOWDL. The missing values of the Melanoma
1 dataset are due to hardware limitations during tests.

4 Results

In this section we present the design phase of the classifier, focusing on the
parameters fine-tuning, the training and test procedure, and the results compar-
isons of our classification model with other cell-type classification models.

4.1 Classifier Design

To design the GOWDL model and find optimal parameters for the classification,
we ran, using a ten-fold cross validation procedure, a comprehensive series of
experiments leading to the final parameters of the architecture shown in Fig. 3.
A large part of experiments involves kernel size (and stride) for the CNN 1D
convolution step (stride is always equal to the kernel size). The graph in Fig. 4
shows the comparison between accuracy values versus kernel size of the GOWDL
model and the ODCNN model. For a fair comparison, the input of ODCNN is
the same as the deep part of the GOWDL but also includes the set of relevant
genes (representing the input of the wide part of the GOWDL model). Results
show that the GOWDL model always performs better than ODCNN, except
in Melanoma 1 dataset, where we could not complete the experiment due to
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Table 2. GOWDL model performance.

Dataset Precision Recall F1-score Accuracy

Blood 95.72% 95.57% 95.60% 95.57%

Breast 91.67% 91.50% 91.49% 91.50%

Kidney 92.77% 92.53% 92.55% 92.53%

Pancreas 98.00% 97.94% 97.91% 97.94%

Lung 94.89% 95.10% 94.80% 95.10%

Melanoma 1 99.60% 99.58% 99.58% 99.58%

Melanoma 2 99.58% 99.58% 99.55% 99.58%

hardware limits. There is no correct and stable value for kernel size in all datasets,
the results vary according to the dataset and the marker gene set. Typically,
increasing kernel size, a maximum accuracy value is reached, after which the
performance of the model decreases.

Another set of experiments involved the value of the dropout layers, which,
according to [2], can imply a considerable variation in performances. We choose
to tune the parameters of the four dropout layers of the model (see Fig. 3) with
the smallest dataset, i.e. the Pancreas dataset, and then we applied the obtained
results to all the other datasets. The tested dropout values were in the [0, 0.75]
range. We also perform different 10-fold validation runs, varying the initial ran-
dom seed. The model shows robustness to random seed applied in splitting input
data: at varying seed, model performance is more or less constant. The variance
is quite low (about 10−3) depending on seed variation, demonstrating that the
model is not influenced by data initialization.

Also, we performed further experiments leading to a good parameters config-
uration for all the selected datasets. The model parameters are as follows: four
dropout layer values are respectively, 0.5, 0.75, 0.25 and 0.25. The convolutional
layer has 64 filters, with the stride equal to kernel size and a ReLU activation
function. The fully-connected layer has 128 units. We used the categorical cross-
entropy loss function and the accuracy metric during the training. Finally, we
ran 100 epochs and adopted a batch size of 128.

4.2 Training and Testing Procedure

To train and evaluate the proposed model, we chose a k-fold cross validation,
with k = 10. Specifically, we applied a stratified k-fold cross validation, a variant
of k-fold cross validation that splits data into k fold, where each fold contains
approximately the same percentage of samples of each target class of the entire
dataset, preserving original data distribution in splitting operation. In this way
the model is trained and tested on folds, where data are distributed as in the
original data, without differences due to the splitting step, which could lead to
missing classes (with a few examples in the complete dataset) in some folds.
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Fig. 5. Bar chart shows the comparison between GOWDL, ODCNN, Wide component,
scWDL, SciBet and SingleR. For some tissues, the bad performances (or the missing
values) of SciBet and SingleR are due to their training set, which does not contain the
specific human tissue dataset.

Stratified 10-fold cross validation is a valid technique with scRNA-seq datasets,
since they are very sparse and have highly unbalanced classes (cell-types).

To evaluate goodness of our model classification, we computed precision,
recall, F1-score and accuracy for each tissue datasets. Table 2 shows the perfor-
mance of the model for each dataset.

We compared our model to its two components: ODCNN (deep part only) and
the wide part only (a model with a single input layer and an output layer with
only relevant features in input). We also compared GOWDL to scWDL model to
which it is inspired, SciBet and SingleR (two architecture in the literature), these
comparisons are showed in Fig. 5. The figure clearly shows how GOWDL out-
performs two pre-trained reference cell-type classification models, i.e. SciBet and
SingleR. The proposed method provides higher accuracy (except for the “Blood”
dataset) with respect to the scWDL model. Furthermore, it performs better than
the ODCNN component (except for the “Melanoma 1” dataset), which includes
no information about functional distances between genes. In the same way, the
“Wide” component, which uses only biologically relevant genes, cannot reach
the same accuracy as GOWDL. This result demonstrates how combining the
two components overcame single ones.

5 Conclusions and Future Works

The proposed gene-ontology driven wide and deep learning model for scRNA-
seq cell-type classification was applied to different tissue types, both normal and
tumour. Results show it performs well (reaching equal or better results) con-
cerning the other literature classification models. Even though this classification
problem is highly data-dependent (e.g., according to NGS sequencing technol-
ogy, data sparsity, availability of known marker genes and tissue type), the pro-
posed algorithm shows overall good performances for all the tested datasets.
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This model can provide a valuable contribution in precision medicine, where
the proper identification of the cell-type composition in the tumour tissue of a
patient could provide critical information for diagnosis and personalized treat-
ment. As future work, we plan to use an adaptive kernel size that can provide
better results for each tissue, according to a threshold value on the GO dictio-
nary that can suggest how many neighbours genes should be considered. Also,
we want to push our architecture to a deeper level of classification: we believe
that the proposed hybrid learning approach could classify well at cell sub-types
level. In the near future, in fact, the availability of scRNA-seq data and marker
genes will increase over time so that it will be possible to classify even more cell
sub-types belonging to a cell-type family.
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Abstract. Brain tumour segmentation on 3D MRI imaging is one of the
most critical deep learning applications. In this paper, for the segmenta-
tion of tumour sub-regions in brain MRI images, we study some popular
architecture for medical imaging segmentation. We further, inspired by
them, proposed an architecture that is an end-to-end trainable, fully con-
volutional neural network that uses attention block to learn localization
of different features of the multiple sub-regions of a tumour. We also
experiment with a combination of the weighted cross-entropy loss func-
tion and dice loss function on the model’s performance and the quality of
the output segmented labels. The results of the evaluation of our model
are received through BraTS’19 dataset challenge. The model can achieve
a dice score of 0.80 for the whole tumour segmentation and dice scores
of 0.639 and 0.536 for the other two sub-regions within the tumour on
the validation dataset.

Keywords: Brain tumour segmentation · MRI · 3D segmentation ·
Medical imaging · Deep learning · Attention · V-Net

1 Introduction

A brain tumour is an abnormal growth of a mass of cells in parts of brain.
A tumour can be benign or cancerous. Among various kinds of brain tumours
gliomas are the most common one. In the segmentation part, the focus is on
gliomas. Common symptoms of gliomas include headaches, memory loss, confu-
sion and decline in brain functioning. The task of brain tumour segmentation
is to separate healthy tissues from tumour regions such as advancing tumour,
necrotic core and surrounding edema.

The utilization of imaging technology has increased drastically with all the
improvement in the science and technology in the last couple of decades, as
a result of which today a number of different imaging modalities are available
suiting the need of the diagnostic measure, example Alzheimer’s detection [5].
Various types of imaging techniques used in medical radiation are MRI (Magnetic
Resonance Imaging), PET (positron emission tomography) Scan, Ultrasounds,
CT (Computer Tomography) Scans, X-Rays etc. All these imaging techniques
work slightly differently from each other.
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In this study we have used MRI images for the segmentation task as the
data was readily available in this format. To create MRI image, strong and
uniform magnetic fields are required. The strength is measured in Tesla(T). A
MRI sequence is a particular set of setting of pulse sequences and pulsed field
gradients to create MRI images with specific properties. Gliomas are the most
common type of brain tumours and can be further divided into High Grade
Gliomas (HGG) and Low Grade Gliomas (LGG) based on the growth rate.

As pointed out precisely by [8] that manual segmentation of tumours could
be bias based on the relevant experience of the person and their subjective
decision making since there are yet no standard protocols to be followed. This
gives the rise to the need of having automatic segmentation systems. This task
becomes even more complex for medical image segmentation as it consists of
3D images and highly unbalanced class distribution. The irregular shapes, size,
location, heterogeneous appearance of the tumours adds up the challenges to the
task. Brain tumour segmentation models are computationally and architecturally
complex, but obtain high performance. We aim to further boost performance of
a state-of-the-art 3D segmentation model called V-net. To do this, we propose a
novel additive attention module with a modified V-net architecture. This module
encourages the model to focus on relevant sub-regions of the 3D brain scans.

The rest of the paper is divided into the following sections: Sect. 2 briefly
describes some of the relevant research work conducted on medical image seg-
mentation, Sect. 3 proposes our attention 3D V-Net model, Dataset and training
details are given in Sect. 4, while the experiments and results are shown in Sect. 5
and finally, Sect. 6 concludes the paper with future research direction.

2 Related Work

The need of automation of biomedical imaging analysis has been there for long.
In early times low-level pixel processing and mathematical model based sys-
tems were used to solve a set tasks. Gradually the focus shifted to more modern
approaches which includes utilizing the potential of rapid-growing filed of Artifi-
cial Intelligence. The related work revolves around medical image segmentation
for brain tumours. In this section we will study some of the work that has been
done for the segmentation of medical imaging using deep learning for Brain
tumour.

[14] proposed an Enhanced Convolutional Neural Networks where they
divided the segmentation task into two parts, first preprocessing with image
enhancement and second is to calculate the segmented mask using Hybrid Con-
volutional Neural Networks. They also introduced a novel loss optimization func-
tion called Novel BAT optimization algorithm (NOBA) which uses the concept
of echolocation mechanism to calculate the difference between an optimal and
non-optimal error.

[13] proposed a 2D architecture called U-Net. It is a key architecture in
medical image segmentation. The model has great ability to localize the features
and inspired a lot more models. For example [4] proposed a memory efficient
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version of U-Net regularized using auto-encoders to segment brain tumours. A
combination of mean-squared error and Kullback-Leibler loss was used to as a
loss function for the encoder, while SoftDice loss was used to train the U-Net
inspired network.

While most of the studies focused on medical image segmentation using
patches or 2D slices, authors in [9] proposed an architecture capable of per-
forming volumetric segmentation of medical imaging called V-Net. The applied
their model to the segmentation task on the Promise 2012 dataset. The intro-
duction of residual blocks in their network ensured the convergence of the model
much faster compared to other studies. [1] in their work made use of two cas-
caded CNNs inspired from V-Net architecture and modified residual connec-
tions for brain tumour segmentation problem. Their first network segments the
overall tumour and the second network then delineation of the different tumour
regions using the output of first network as input. Their study contributed toward
BraTS’17 challenge. Inspired from U-Net, [2] propose a 3D version of it, called
3D U-Net, which became another one of the key architectures for biomedical
imaging segmentation. [17] also heavily used U-Net architecture in their study
for segmentation of brain tumours in BraTS’18 challenge. They exploit a 3D
U-Net based model to first locate the tumours in the brain and an another but
more complex and smaller 3D U-Net to further segment the localized tumour
into its sub-regions. [15] also create a 2 staged 3D U-Net framework, where they
utilized the potential of image super-resolution CNN (SRCNN) to process the
MRI images at full resolution. They first detected the ROI from the full volumes
and predicted the segmented masks from these ROIs.

Since 3D CNNs have large memory consumption, and 2D CNNs while having
low memory requirement ignore the 3D context in the data, [16] proposed a novel
framework to use 2.5D CNN, that is a trade-off between memory consumption,
model complexity and receptive field. They evaluated their model on BraTS’17
data and ranked second in the challenge. They propose a test-time augmentation
technique claiming to improve segmentation accuracy.

DeepMedic [7] is a multi-scale deep 3D CNN for lesion segmentation. The
architecture consists of two parallel convolutional pathways. The pathways pro-
cess images at different resolutions giving it a better receptive field for the
final classification. Inspired from DeepMedic, [7] proposed their architecture as
extended DeepMedic with residual connections. They tested their results on
BraTS’15. The residual connections gave a modest but consistent improvement.

Many researches revolved around the idea of using encoder-decoders to seg-
ment lesions in brain. [10] proposed encoder-decoder based architecture to seg-
ment tumours in 3D MRI images. They also used a variational-autoencoder
joined to the main architecture, to reconstruct the input image and regular-
ize the shared decoder. The architecture ranked 1st place in the BraTS 2018
challenge.

In this paper, we augment the 3D V-Net architecture with an attention mod-
ule. This results in an improvement in performance for brain tumour segmenta-
tion on 3D MRI images.
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3 Proposed Architecture: Attention V-Net

In this section we propose the attention V-Net architecture for brain tumour
segmentation. V-Net [9] was first proposed in 2016. It gained popularity because
of it’s efficiency and accuracy in “PROMISE 2012” [3] dataset challenge for volu-
metric binary segmentation of prostate gland. V-Net also uses volumetric convo-
lutions as opposed to 2D slices or patches used by other deep learning models for
medical imaging. Our model is very much inspired from the V-Net architecture,
leveraging the potential of end-to-end trained fully convolutional neural net-
works to process MRI images. All the models explained above focused on binary
segmentation but in this study our focus is on segmenting multiple classes of
tumour sub-regions. We take the full advantage of skip connections, residual
connections and have added novel attention blocks in our model to tackle the
complexity of this task. The proposed model uses volumetric convolutions to
process MRI images.

The model comprises of an analysis path (contraction) and a synthesis path
(expansion). In the analysis path there are 4 down-transition stages (including
one input transition stage) where at each stage downsampling and convolutions
happen on the input. In the synthesis path there are 5 up-transition stages.

At each stage in the analysis path, there are 3D convolutional layers sequen-
tially increasing from one to four. The input is passed to these convolution layers,
followed by ReLU6 non-linearity and then a batch normalization layer. Each con-
volution layer uses 3D kernels with size 3×3×3. A residual function is learnt by
adding the input of each stage with output of the last convolution layer of that
stage. At the end of each analysis stage a downsampling operation is performed
by convolution with 2× 2× 2 voxels wide kernels applied with stride 2 to reduce
the resolution of the feature maps. Downsampling helps to increase the receptive
field. Each stage outputs double the number of feature maps with half of the
input resolution. For downsampling use of convolution layers with strides, over
pooling layers is inspired from [9]. As suggested in [9] switching pooling layers
to convolution layers also results in a smaller memory footprint.

The right part of the model called synthesis path decompresses the signal
until the original size is reached. At each stage in the synthesis path, the number
of 3D convolution layers decrease from five to one sequentially, making it a
mirror image of the analysis path. At each stage the input is upsampled using
de-convolution layers to increase the size of the feature maps. Inspired from
[13] and [2] we have implemented horizontal skip connections in our model as
well. The output of the respective skip connection and the output of the last
stage are used to create an attention block which is explained in more details
below. The output of this attention block is then concatenated with the output
of the last stage again. This is treated as the input for the current stage in the
synthesis path. This input is then processed by the convolution layers present in
the block followed by ReLU6 layer again. The convolution layers use 3D kernels
of size 3 × 3 × 3. The number of kernels in each convolution layer at a stage is
half the number of kernels in the convolution layers present in the last stage.
The learnt residual is added to this output similar to the analysis block. This



340 C. Giri et al.

process is repeated at each stage. In the final output stage, the last convolution
layer computes the four feature maps, one for the background and the rest three
for the sub-regions of the tumour. In this way the synthesis path gathers the
necessary information and assembles it produce the final output of four channel
volumetric segmentation of the tumours. Figure 1 presents our proposed model.

Fig. 1. Proposed attention VNet

1. Horizontal Skip Connections and Residual Connections: Skip connec-
tions as the name suggests skip some part of the network and feeds or adds
the output of one layer to the output of another layer beyond the next layer.
In our model, we have used two kinds of skip connection, a) a horizontal skip
connection and b) a short residual connection.
In our model the horizontal skip connection helps in the forwarding the
extracted features from the analysis path to the synthesis path as shown
in Fig. 2. The output from each stage to analysis goes to the next stage,
but along with that it also goes to the attention block in the corresponding
synthesis stage. In this way it helps our attention block to focus on the local-
ization of the features. In each stage of both analysis and synthesis path, a
residual connection [6] is also present. A residual connection is a kind of skip
connection which allows smooth information flow from one layer to another
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Fig. 2. Horizontal skip connection

by bypassing some layers in deep neural networks. A tradition deep learning
model learns a mapping M, from an input x to output y.

M(x) = y (1)

A residual connection tries to learn the difference between a mapping applied
to x and the original input x, given by

R(x) = M(x) − x (2)

Transforming Eq. 2, we get the mapping from a residual connection as

M(x) = R(x) + x (3)

Since our model is a deep 3D CNN, it is prone to suffer from vanishing gradient
problem during backpropagation. Residual connections helps in avoiding this
problem because of skipping trait as mentioned earlier.

2. Attention Blocks: The attention block in our model is used to highlight
the salient features transferred through the horizontal skip connection and
remove the irrelevant and noisy responses. Figure 5 gives an outline of the
attention blocks we have used in our model.
The attention block in our model takes two inputs: 1) from the horizontal skip
connection coming from the corresponding analysis block of the contraction
path as mentioned above and 2) from the upsampled output of the previous
synthesis block in the expansive path. In the attention block, individual con-
volutions of 1 × 1 × 1 are applied on both the inputs. We have then applied
addition operation on these two vectors following the norm of additive atten-
tion, and then passed it through ReLU6 layer to add non-linearity. Then one
more 1 × 1 × 1 convolution operation is performed on the resultant with sig-
moid activation applied, creating a voxel-wise mask. We then multiply this
result with the 2nd input of this attention block. This is the final output of
this attention block which is then concatenated with the output of the current
stage in the synthesis block, and is passed to the next stage as input and as
well as a residual connection. This motivation of this attention block is taken
from [11] with some minor changes. Mathematically the attention block is
given as:

Aatt = ψT (σ1(WT
x xi + WT

g gi + bx)) + bψ (4)
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Fig. 3. Attention block

αi = σ2(Aatt(xi, gi; θatt)), (5)

where σ1 is the ReLU6 non-linearity in our block, gi and xi are the two inputs
to the attention blocks, and Wg and Wx are the corresponding convolution
layers as explained above. ψ is the last 1 × 1 × 1 convolution transformation
followed by the sigmoid activation function (σ2). αi is called the activation
coefficient. θatt is the set of parameters containing, Wx, Wg, ψ and bias terms
bx, bψ.

4 Dataset and Training

Dataset. The Brain tumour Segmentation (BraTS) challenge focuses on the
evaluation of the methods for brain tumour segmentation in multi-parametric
magnetic resonance imaging (mpMRI) scans. In this study we have used the
latest dataset available at the time from BraTS called BraTS’19. The dataset
consists of mpMRI scans of 335 subjects in training set and 125 subjects in
validation set.

The standard preprocessing done by BraTS on the MRI images in the dataset
includes co-registering the MRI images to a common anatomical template from
[12], skull stripping and resampling to a uniform isotropic resolution of 1 mm3.
The further preprocessing done on the dataset is the intensity normalization, N4
bias correction and downsampling of the MRI images.

Training. The model was trained with 335 MRI images collected from
BraTS’19, resized to 96×112×96 and spatial resolution of 1×1×1 mm3 in axial
view. The input to the model consists of the four MRIs stacked upon each other
(T1, T1Gd, T2 and T2-FLAIR), resulting in a input of shape 4× 96× 112× 96.
The model takes a batch size of 12. Like most of the medical segmentation
task, we also faced the problem of highly unbalanced classification of the labels
in our dataset. To get around this problem we experimented with weighted
cross-entropy and dice loss functions. In the final experiments we have used
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the compound loss which a combination of weighted cross-entropy and dice loss.
Cross-entropy is a distribution-based loss and dice loss is a region based loss, so
combining these two losses we can improve both classification and localization
of the labels in our dataset. Weighted cross-entropy is defined as

WCE loss(x, class) = w[class]

⎛
⎝−x[class] + log

⎛
⎝∑

j

exp(x[j])

⎞
⎠

⎞
⎠ (6)

and Dice loss tries to optimize dice coefficient is given as:

D = 1 − 2
∑N

i pigi∑N
i p2i +

∑N
i g2i

(7)

So, the resultant loss we are trying to optimize is an addition of the two losses.
We have initialized our segmentation model with He initialization too. We have
trained our model for 10,000 epochs with an initial learning rate of 0.01 with a
scheduled drop of factor 0.1 after every 2000 epochs. To optimize the loss we have
used Adam optimizer. A dropout of factor 0.2 is used with all the convolution
layers. Nearest interpolation is used to resample the segmented labels to the
original size. We compare the difference in using the CE loss alone versus the
combination of CE and Dice loss as shown in Fig. 4.

Along with experimenting with our model, we also performed some experi-
ments with 3D U-Net and V-Net to compare our model performance. We trained
all three model with the same parameter settings. We limited the number the
training epochs to 1000 only. This was done due to time and memory constraints.
We calculated the dice score for each of the label. The comparison results are
presented in the next section.
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Fig. 4. Performance of CE vs CE+Dice

5 Experiments and Results

To evaluate the performance of our segmentation model, we have used the vali-
dation set of 125 MRIs from BraTS. The ground truths of the validation set are
not made available by BraTS. The segmented labels have to uploaded on the
challenge website to get the segmented results.

5.1 The Evaluation Criteria

As stated earlier the dataset contains three sub-regions of tumours: NCR (Label
1), ED (Label 2) and AT (Label 4). To evaluate the results BraTS has distribute
the segmented labels in three classes as follows:

1. WT: Whole tumour Extent. WT class represents the whole tumour and
is given by the union of all labels.

2. TC: tumour Core. TC class represents the segmentation of the tumour
core outline. It is the union of label 1 and 4

3. ET: Active/enhancing and the non-enhancing/necrotic tumour
regions. This class is represented by label 4.

The evaluation matrix used by BraTS’19 is class wise DICE score, Sensitivity,
Specificity and Hausdorff distance (95%) for the classes mentioned above. Dice
score measures the area of overlap between the ground truth and the predicted
label. It is similar to F1 score and using the definition of true positive (TP),
false positive (FP), and false negative (FN), it can be written as:

DSC =
2TP

2TP + FP + FN
(8)

Hausdorff distance is a surface distance measure. It measure the distance between
two boundaries, in our case boundary of prediction and ground truth segment.
A bidirectional Hausdorff distance between two sets X and Y is given as:

HD(X,Y ) = max(hd(X,Y ), hd(Y,X)) (9)

where,
hd(X,Y ) = max

x∈X
min
y∈Y

‖x − y‖2 (10)
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5.2 Evaluation

We have presented some examples to visualize the performance of our model in
Figs. 5 and 6. In Fig. 5 some examples from training dataset are given showing
a raw fMRI image, the corresponding ground truth provided by BraTS and the
labels segmented by our model. The official results of the evaluation matrix for
our segmented labels received from BraTS are mentioned in Table ??

Fig. 5. Examples from training dataset segmented by our model

Figure 6 presents some samples of the segmented labels from validation
dataset segmented by our model. As can be seen from both training and valida-
tion sample segmented results, the model is able to detect the tumour sub-regions
very well especially the whole tumour area. The model pays deep attention on
both the shape and location of the tumour regions. We did a thorough analysis
of the segmented labels for the localization of the whole tumour from the train-
ing dataset (since ground truths aren’t available for validation data) and found
that the model can effectively localize the tumour. In the Fig. 7 below, we have
compared our model with V-Net and 3D U-Net when run with the same setting
for 1000 epochs. We had to limit this comparison experiment to 1000 epochs
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Fig. 6. Examples from validation dataset segmented by our model

because of memory and time constrains. When run under same environment we
can see clearly that our model converges to a much better accuracy compared
to the other two models.

Fig. 7. Performance comparison on training data for different labels when trained for
1000 epochs

Since the ground truth were not available, segmented labels for the validation
set were uploaded on the BraTS website, and were evaluated on their server using
the matrices defined above. The official results of our segmented labels received
from BraTS are mention in Table 1. From these two tables we observed that the
model obtains good performance for the segmentation of the whole tumour area
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but is overfitting for the other two classes, especially ET. This is because of the
highly unbalanced number of the classes.

Table 1. Evaluation Metrices for validation data

WT TC ET

Dice 0.800 0.639 0.536
Hausdorff95 15.04 20.06 16.23
Sensitivity 0.854 0.621 0.586
Specificity 0.985 0.996 0.996

6 Conclusion and Future Work

In this paper, we proposed a novel 3D CNN architecture for the segmentation
of brain tumours. We modify the V-Net by introducing an attention module
and skip connections. The model can predict the segmentation mask with good
accuracy for the whole tumour. But we saw it overfitting for the other two sub-
regions of a tumour, named enhancing tumour (ET) and tumour core (CT). This
is because of highly unbalanced label classes as these classes contain only 22%
and 18% of the whole, tumour. The model segmented labels for these classes
with high accuracy in the training dataset show the models’ ability to learn
these small patterns but lacks generalization. The future work involves improv-
ing the model’s generalization ability with better data augmentation techniques
to increase the size of the training data, hence increasing the times an under-
represented class label appears during training.

References

1. Casamitjana, A., Catà, M., Sánchez, I., Combalia, M., Vilaplana, V.: Cascaded
V-Net using ROI masks for brain tumor segmentation. In: Crimi, A., Bakas, S.,
Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 381–
391. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_33

2. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net:
learning dense volumetric segmentation from sparse annotation. In: Ourselin, S.,
Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS,
vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46723-8_49

3. Litjens, G., et al.: Evaluation of prostate segmentation algorithms for MRI: the
PROMISE12 challenge. Med. Image Anal. 18(2), 359–373 (2014)

4. Frey, M., Nau, M.: Memory efficient brain tumor segmentation using an
autoencoder-regularized U-Net. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019.
LNCS, vol. 11992, pp. 388–396. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-46640-4_37

https://doi.org/10.1007/978-3-319-75238-9_33
https://doi.org/10.1007/978-3-319-46723-8_49
https://doi.org/10.1007/978-3-319-46723-8_49
https://doi.org/10.1007/978-3-030-46640-4_37
https://doi.org/10.1007/978-3-030-46640-4_37


348 C. Giri et al.

5. Giri, C., Goodwin, M., Oppedal, K.: Deep 3D convolution neural network for
Alzheimer’s detection. In: Nicosia, G., et al. (eds.) LOD 2020. LNCS, vol. 12565, pp.
347–358. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64583-0_32

6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition
(2015)

7. Kamnitsas, K., et al.: DeepMedic for brain tumor segmentation. In: Crimi, A.,
Menze, B., Maier, O., Reyes, M., Winzeck, S., Handels, H. (eds.) Brainlesion:
Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2016.
LNCS, vol. 10154, pp. 138–149. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-55524-9_14

8. Malathi, M., Sinthia, P.: Brain tumour segmentation using convolutional neural
network with tensor flow. Asian Pac. J. Cancer Prev. 20(7), 2095–2101 (2019)

9. Milletari, F., Navab, N., Ahmadi, S.-A.: V-Net: fully convolutional neural networks
for volumetric medical image segmentation (2016)

10. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regular-
ization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum,
T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-11726-9_28

11. Oktay, O., et al.: Attention U-Net: Learning where to look for the pancreas (2018)
12. Rohlfing, T., Zahr, N., Sullivan, E., Pfefferbaum, A.: The SRI24 multichannel atlas

of normal adult human brain structure. Hum. Brain Map. 31, 798–819 (2009)
13. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-

ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4_28

14. Thaha, M., Pradeep Kumar, K., Murugan, B., Dhanasekeran, S., Vijayakarthick,
P., Selvi, A.: Brain tumor segmentation using convolutional neural networks in
MRI images. J. Med. Syst. 43, 294 (2019). https://doi.org/10.1007/s10916-019-
1416-0

15. Wang, C., MacGillivray, T., Macnaught, G., Yang, G., Newby, D.E.: A two-stage
3D Unet framework for multi-class segmentation on full resolution image. arXiv
abs/1804.04341 (2018)

16. Wang, G., Li, W., Ourselin, S., Vercauteren, T.: Automatic brain tumor segmenta-
tion based on cascaded convolutional neural networks with uncertainty estimation.
Front. Comput. Neurosci. 13, 08 (2019)

17. Weninger, L., Rippel, O., Koppers, S., Merhof, D.: Segmentation of brain tumors
and patient survival prediction: methods for the BraTS 2018 challenge. In: Crimi,
A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes
2018. LNCS, vol. 11384, pp. 3–12. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-11726-9_1

https://doi.org/10.1007/978-3-030-64583-0_32
https://doi.org/10.1007/978-3-319-55524-9_14
https://doi.org/10.1007/978-3-319-55524-9_14
https://doi.org/10.1007/978-3-030-11726-9_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/s10916-019-1416-0
https://doi.org/10.1007/s10916-019-1416-0
https://doi.org/10.1007/978-3-030-11726-9_1
https://doi.org/10.1007/978-3-030-11726-9_1


Development of an Algorithmic Model to Reduce
Memory and Learning Deficits on Trisomic Mice

Eleni Gerasimidi(B) and Lazaros Iliadis

Department of Civil Engineering, Democritus University of Thrace, 67100 Xanthi, Greece
elgerasimidi@gmail.com, liliadis@civil.duth.gr

Abstract. For many decades, scientists have been interested in finding cures for
diseases due to the human genome. Down Syndrome is the most common genetic
disorder and one of the most common causes of learning and memory deficits. It
is a condition that has long preoccupied the scientific community, with the finding
of treatments being limited to the individual conditions caused by the Syndrome.
It is easy to see that finding a cure for Down Syndrome requires systematic and
long-term research. Scientists will need to use whatever means at their disposal,
with technological aids being the ones of most interest. Artificial Intelligence has
managed to offer much to humanity, despite the short time that has elapsed since
its appearance on the scientific firmament. Its discoveries in every scientific field
have paved the way for the solution of problems that have occupied scientists for
years, while her entry into our daily lives has managed to facilitate her to a great
extent. This research aims to introduceMachine Learning (ML)models capable to
improve the memory and to reduce the learning deficits of mice with Down Syn-
drome, that were used as experimental animals. The experimental datasets were
developed by Higuera et al., 2015 and Ahmed et al., 2015, and they are related
to the levels of proteins present in the brainstem of mice. They are publicly avail-
able, by the UCI (University of California Irvine) Open Database. The emerged
ML models are very promising and they deserve further attention by the scientific
community.

Keywords: Reducing memory and learning deficits ·Machine learning ·
Trisomic mice ·Memantine · k-Fold cross validation · SMOTE · Random
Forest · J48 · Naïve Bayes ·Multilayer perceptron

1 Introduction

DownSyndrome or Trisomy21 or TrisomyG is a genetic disorder caused by the presence
of an extra copy (or part of an extra copy) of chromosome 21[11]. That condition results
on having three instead of the normal two chromosomes 21 in the human’s genome. This
anomaly is reproduced in every cell of the human body as the fetus develops. Most do
not consider it a disease, as people with Down Syndrome do not suffer from it [16]. It
is estimated that internationally the incidence in infants is about 1: 800 births per year,
while in Greece research indicates that the birth rate of children with Down Syndrome
is 1 in 770 births per year [9]. A key factor influencing this ratio is the age of the mother
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[10]. It has been estimated that the incidence of Down Syndrome births in a 20-year-old
mother is 1:2000, while in a 40-year-old mother, the incidence is 1:100 or less [10].

Regarding the types of Down Syndrome, three categories seem to have been dis-
tinguished depending on the characteristics of the individuals in each of them. These
categories are Typical Trisomy 21, Mosaic Type, and Displacement [16]. Typical Tri-
somy 21 is the most common form of Down Syndrome. It occurs in about 90–95% of
cases [13]. This form is due to the appearance of an extra chromosome in the 21st pair
of human chromosomes. The Mosaic Type is a rarer form of Down Syndrome. This
type occurs in about 2–5% of the population with the reported Syndrome [16]. In the
Mosaic, the initial fertilization is normal, with the zygote (first cell) having a normal
number of chromosomes. Incomplete division appears to occur at some point, early in
the course of cell division. Thus, people with Mosaic have two types of cells, those with
a normal number of chromosomes and those with the above chromosome 21 [17]. The
ratio of normal and trisomic cells determines the percentage of Mosaic. Displacement is
an even rarer form of Down Syndrome that occurs in only 2% of people with Down Syn-
drome [16]. This form is hereditary. During the Displacement, a portion of chromosome
21 breaks down and attaches to another chromosome. Due to that, we have a normal
number of copies of chromosome 21, but we also have extra material on it, which is
on another chromosome. The detached portion of chromosome 21 is usually found on
chromosome 14, and less frequently on chromosome 22 or another chromosome [2].

The fact that Down Syndrome is due to a genetic defect, whichmeans that the genetic
material is affected, creates complications inmany systems of the human body. This does
not mean that the symptoms will be the same in every appearance of the Syndrome [4].
In terms of brain function, the mental retardation of people with Down Syndrome ranges
from varying levels, from severe to mild [5]. Usually, we still see influences on short-
term memory and the ability to think and hear. These, it is possible to distinguish them
from an early age. No cure has been found yet for Down Syndrome. There are only
treatments for some of the individual problems that occur due to the Syndrome.

Studies have shown that human chromosome 21 bears a striking resemblance to the
corresponding chromosome 16 present in mice [12]. Thus, a trisomy on chromosome
16 (Ts16) of mice could be an ideal organism model for the study of Down Syndrome
[11]. Nevertheless, mice with trisomy 16, on chromosome 16, rarely survive after birth,
deeming them unsuitable for the study of behavior and their postnatal development [14].
This is attributed to the presence ofmore genes on chromosome16ofmice than on human
chromosome 21, thus making it necessary to find one more specialized model mouse
with trisomy. The Ts65Dn trisomic mouse model first appeared in 1993 [3]. It is a model
more similar to human trisomy 21 than the Ts16 trisomic mouse. Ts65Dn cells have an
additional copy of a gene fragment of chromosome 16 as well as an additional copy of a
gene fragment of chromosome 17 [14]. On this model there are great similarities in terms
of behavioral abnormalities and cognitive skills [14]. In this research, the experimental
data to be used are derived exclusively from Ts65Dn trisomic mice.

This is an innovative research effort. To the best of our knowledge, it is the first time
that such a comprehensive in-depth research has been conducted on this specific subject,
using Artificial Intelligence algorithms and Data Pre-Processing Methods. So far, it has
been adopted Deep Neural Networks using multiple Hidden Layers for proper feature
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selection [1]. However, this is the first time that an in-depth AI trisomic mice behavior
modeling research effort using a wide spectrum of Machine Learning algorithms is
published in the literature.

2 Experiments Description

Human chromosome 21 has been shown to encode more than 500 genes but the number
of those associatedwith learning disabilities is unknown [6].Due to the increased number
of genes being encoded, their overexpression disrupts many biological processes, such
as those related to its normal development and the function of the brain. Thus, for the
development of a drug, we ought to first look for disorders in paths critical to learning and
memory and then attempt to correct the discovered disorders. To investigate the normal
responses to learning, the scientists measured the levels of approximately 80 proteins in
subcellular fractions in areas of the wild type mice’s brain exposed to an environment of
fear. In them, about half of the proteins responded to learning in at least one area of the
brain. Moreover, they studied the effect of memantine on protein expression, whether
we are in a fear environment or not. Similarly, we analyzed protein expressions in a
trisomic mouse model, Ts65Dn. These mice fail to learn in a fear environment, but only
if they were first exposed memantine was their learning “rescued”. Comparing protein
expressions in trisomic mice that fail to learn in a fear environment, in trisomic mice
whose learning has been rescued and in normal mice exposed to the same environment
can draw a lot of data on protein levels expressed in successful, failed and rescued
learning, differences in protein levels during memantine therapy but also differences in
protein expression levels between a normal mouse and a trisomic.

The use of Machine Learning methods is important for the processing of such data.
Both supervised and unsupervised learning are particularly useful for the analysis of bio-
logical data. In the reported study Higuera et al., 2015 [6] was deemed more appropriate
to use the unsupervised learning algorithm SOM (Self Organizing Maps), which has
proven in the past to be a popular and useful bioinformatics tool. In said research, SOM
was applied to expression data 77 proteins obtained from the nuclear-enriched fraction
of normal and trisomic mice. While using SOM, they have managed to separate the mice
that differ in genotype, treatment and learning success, thanks to the differences in the
produced proteins’ levels.

2.1 Experimental Data and Methodology

All protein data in the experiment, came from male mice’s brains, up to 3 months old,
both Ts65Dn trisomic mice and normal control/wild-type control mice [6]. In order
to transfer the mice to a fear environment, we used the method of CFC (Context Fear
Conditioning) [6].According to thismethodology themicewere divided into two groups,
that of Context-Shock (CS) and that of Shock-Context (SC). The mice of the first group
were initially transferred to a cage. There, after they were released to explore for a few
minutes, they received a brief electric shock. Normal mice, after this process seem to
learn and consequently freeze (immobilize) when exposed to the same cage again. On the
contrary, the mice of the second group are left to explore inside the cage after they have
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initially received an electric shock. Thus, normal mice do not freeze (do not immobilize)
when are placed back in the cage, which proves to us that they do not learn to relate
the cage with the electric shock. Unlike normal mice, Ts65Dn do not appear to learn
in a CS environment. This lack of learning is observed to be corrected by a memantine
injection before the procedure. In order to check the results of the injection, a saline
mixture was injected, without the introduction of any drug, for both groups. From the
above methodology it appears that we had to create four groups of mice for Ts65Dn: CS-
memantine, CS-saline, SC-memantine and SC-saline. Respectively, the same categories
were also created for control mice, finally offering us eight categories of mice [6]. The
following observations emerged from the eight classes of mice:

• In control mice in CS environment with memantine injection (c-CS-m) normal
learning was observed (10 mice).

• In control mice in CS environment with saline injection (c-CS-s) normal learning was
observed (9 mice).

• In control mice in SC environment with memantine injection (c-SC-m) failed learning
was observed (10 mice).

• In control mice in SC environment with saline injection (c-SC-s) failed learning was
observed (9 mice).

• In Ts65Dn mice (trisomic mice) in CS environment with memantine injection (t-CS-
m) rescued learning was observed (9 mice).

• In Ts65Dn mice (trisomic mice) in CS environment with saline injection (t-CS-s)
failed learning was observed (7 mice).

• In Ts65Dn mice (trisomic mice) in SC environment with memantine injection (t-SC-
m) failed learning was observed (9 mice).

• In Ts65Dn mice (trisomic mice) in SC environment with saline injection (t-SC-s)
failed learning was observed (9 mice) [6] (Fig. 1).

Fig. 1. The eight classes of mice

The data used are the expression levels of 77 proteins or modifications of protein that
produced detectable signals in the nuclear cortex of the mice’s brains. 38 control and
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34 trisomic mice were used, therefore a total of 72 mice. 7–10 mice were distributed in
each of the 8 groups/classes. For the experiment, 15 measurements of each protein were
taken per mouse. So, in total there were 38 × 15 or 570 measurements per protein for
control mice and 34 × 15 or 510 measurements per protein for trisomic mice [6]. Each
of the above measurements can be calculated as a separate sample/mouse. Because
measurement mechanisms are very sensitive, they can create technical problems that
require the deletion of data from individual points. Therefore, in the final data set there
were missing values, so for some proteins we had less than 15 measurements.

3 Data Preprocessing

To create the ML model, data from the UCI Machine Learning Repository [15] have
been used. Typically, the first step was data pre-processing (DAP) in order to determine
the existence of extreme values, as well as gaps, or symbols that will not allow the model
to convergence. The DAP was done in Microsoft Excel, considering the proteins, the
genotypes, the treatments and the behaviors as independent features and the class of the
mice as the target one.Moreover, twofileswere developed as follows: The first comprises
of the proteins and the respective classes and the second comprises of the proteins, the
genotypes and the classes. In the second file, the control mice were assigned the value
1 and the Ts65Dn trisomic mice the value 0 (Fig. 2).

Fig. 2. A partial view of the available data attributes

The open-sourceWEKA software was employed to develop theMLmodels. WEKA
(Waikato Environment for Knowledge Analysis) is a software environment for Machine
Learning and Data Mining [18]. It not only provides a huge variety of classification,
regression, clustering andcorrelation algorithms, but it also provides theuser the ability to
pre-process data and to visualize the results [7]. Using theWEKAsoftware, asmentioned
above, the following software algorithms were employed to extract the most robust
classifier namely: The Random Forest, J48, Naive Bayes and Multilayer Perceptron.
The Random Forest and J48 algorithms belong to the category of Tree Classifiers, the
NaiveBayes algorithmbelongs to the family ofBayesianClassifiers,while theMultilayer
Perceptron algorithm is a typical Neural Network approach.

3.1 k-Folds Cross Validation

According to the method of Cross-validation, the dataset is randomly divided into k
subsets (folds), with a specific number of vectors (According to the existing literature,
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the most used are the 3-fold, 5-fold and 10-fold). Then the training process is repeated k
times (k-cycles). Each time, the k-1 folds are used for training the algorithm, whereas the
remaining fold is used for testing. This process is repeated k times with the subset that
is singled out for testing, changing each time. As performance indicators are taken, the
average of the corresponding errors is used to determine the level ofmodel’s convergence.
The choice of the number of folds depends on the size of the available dataset. Thus, a
large number of foldsmight offer higher accuracy, higher error range, and high execution
time while a smaller the number of folds might result in smaller accuracy and smaller
execution time [8]. In the upcoming research, the 10-fold approach has been employed.

4 Development of Machine Learning Models

4.1 Models Using Proteins as Independent Variables

The firstMLmodel was developed inWEKA, by considering all proteins as independent
parameters and the classes of mice as depended. Overall, 78 attributes were used, from
which 77 were the input ones, related to various types of proteins.

During pretreatment, we detected and subtracted an extreme value, which was found
in one of the mouse measurements with ID 365_14, in the RRP1_N protein and in the
c-SC-m class, with a negative value, which is not consistent with all other positives.
It also needed to be done delete the measurements in mice that showed gaps, result-
ing in working with the remaining 552 cases-measurements (instances) of the 1080
measurements.

After determining the final datasets, the multi-class classification effort was initiated
by employing the four algorithms mentioned in the previous section. Several algorithms
were used, among the plethora of algorithms and approaches contained in the Classify
tab of Weka. The purpose of this process is the classification of mice, given only the
values of their proteins.

4.1.1 ML Model Specifically Based on Proteins

The dataset can be considered as “imbalanced”. It is a fact, that most machine learning
techniques will have low performance indices for the minority class which is usually the
most important. To address this problem the SMOTE (Synthetic Minority Oversampling
Technique) method was applied. This method composes new examples (data records)
from the minority class [8]. This is an effective way of data enhancement and it can be
very effective. Specifically, a random record A from the minority class is selected and
also k records from its nearest neighbors (usually k = 5). A neighbor B is selected at
random and a synthetic example is created at a randomly selected point between the
two selected attributes A and B [8]. As the target is the highest possible accuracy, the
SMOTE Oversampling technique was applied on the data records of the minority class
(c-CS-m) via the WEKA platform. The classes records for each class were: 45 records
for the c-CS-m class (minority class), 75 records for the c-CS-s class, 60 records for
the c-SC-m class, 75 records for the c-SC-s class, 90 records for the t-CS-m class, 75
records for the t-CS-s class, 60 records for the t-SC-m class and 72 records for the t-SC-s
class. It has been shown that the imaging of proteins shows infinitesimal differences.
After this process, the developed model has been significantly improved.
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4.1.2 ML Model Based on Proteins and Genotypes

At this point, in addition to proteins, the genotype (whether a mouse is trisomic or not)
was also considered as independent variable, in an effort to achieve higher classification
accuracy. As a result, both the number of attributes and the input data vectors have
increased. Overall, we have 79 input attributes (78 proteins and 1 genotype) plus 1
output. Moreover, 552 data records emerged comprising of experimental measurements
from the instances. The target was the development of themost suitablemodel, that could
bring the scientists closer to the cure of memory loss and learning deficits in mice. Thus,
in this effort the proteins and the genotype were the independent variables, whereas
the 8 classes of mice were the depended. The developed model successfully classifies
the mice in the proper class, based on their proteins and on their status (trisomic or
control). Several experiments were performed by employing several Machine Learning
algorithms following a k-fold cross validation (k-fCV) approach. The SyntheticMinority
Oversampling Technique was also employed on the (c-CS-m) minority class.

5 Attributes Selection

In order to develop the most suitable model, we worked by reducing the parameters and
by using only those that could give us a more powerful model. For this purpose, the
WEKA’s tab, Select Attributes was chosen and the attribute evaluator, CfsSubsetEval
(Correlation-based Feature Selection) that uses the GreedyStepwise search method, was
employed.

TheCfsSubsetEval is a simplefilter algorithm that sorts features’ subsets according to
a searching, correlation-based, evaluation function. According to it, irrelevant attributes
should be ignored, because they will have a low correlation with the class. In addition,
the unnecessary functions should be deleted, as they will be highly correlated with one
or more of the other features. The acceptance of a possibility will de-pend on the extent
to which it provides classes in areas of the presence space that they have not already
been provided by other functions.

Using the CfsSubsetEval on the file with only the proteins as independent variables,
we get a subset of only 24 of the 77 proteins. These proteins emerged as a subset of
proteins that are highly correlated with the classes. The subset we chose to consider,
contains proteins that are more than 50% correlated to each other. This means that
there are other subsets with less correlation between them. We chose this specific subset
because it offered (when applied) the best accuracy results compared to the rest. After
this procedure, we run the same four algorithms, this time using only the subset of
proteins as inputs (Table 1).
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Table 1. Attributes subset of 24 proteins

DYRKIA_N SOD1_N AcetylH3K9_N SNCA_N

pCAMKII_N P38_N RRP1_N Ubiquitin_N

pERK_N DSCR1_N ARC_N pGSK38_Tyr216_N

pPKCAB_N pP70S6_N Tau_N pCFOS_N

AKT_N pPKCG_N GluR3_N H3MeK4_N

BRAF_N S6_N pCASP9_N CaNA_N

In the second case, where we have as independent variables the proteins and the
genotype, the use of the CfsSubsetEval offers a subset of 20 attributes, 19 of the 77
proteins and the genotype. As mentioned above, this subset emerged as a subset of
attributes that are highly correlated with classification according to the filter. Likewise,
the subset we chose to take contains proteins that are more than 50% correlated with
each other. As before, we run again the same four algorithms and compare the results
(Table 2).

Table 2. Subset of the attributes of 20 proteins

pCAMKII_N DSCR1_N ADARB1_N GluR3_N pCFOS_N

BRAF_N pNUMB_N AcetylH3K9_N pCASP9_N H3MeK4_N

SOD1_N pPKCG_N RRP1_N SNCA_N CaNA_N

P38_N S6_N ARC_N pGSK38_Tyr216_N Genotype

6 Comparative Analysis

The developed ML models were compared in terms of their precision and speed. The
necessary accuracy information can be obtained from the respective confusion matrices
and the precision tables, produced by Weka. The confusion matrix clearly presents
exactly howmany mice-instances should be in each specific class and they were actually
correctly classified. Moreover, it shows how many of them were missclassified. On
the other hand, the Weka precision table clearly presents the values of the accuracy
indices. More specifically, in the accuracy table we can see the TP Rate (True Positive
Rate – Sensitivity), the FP Rate (False Positive Rate), the Precision, the Recall, the F1-
Score, theMCC (Matthews Correlation Coefficient), the ROCArea (Receiver Operating
Characteristics) and the PRC Area (Precision-Recall Curves) accuracy indices. Last but
not least, we can find the time taken for this model to build. Below there are presented the
accuracy table and the confusion matrix of the two best algorithms of all combinations,
either with SMOTE or without (Fig. 3, Tables 3, 4 and 5).
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Fig. 3. Accuracy table for each class using Random Forest without SMOTE

Table 3. Confusion matrix of the multilayer perceptron with SMOTE

a b c d e f g h <-- classified as
90 0 0 0 0 0 0 0 a=c-CS-m
0 75 0 0 0 0 0 0 b=c-CS-s
0 0 60 0 0 0 0 0 c=c-SC-m
0 0 0 75 0 0 0 0 d=c-SC-s
0 0 0 0 90 0 0 0 e=t-CS-m
0 0 0 0 0 75 0 0 f=t-CS-s
0 0 0 0 0 0 60 0 g=t-SC-m
0 0 0 0 0 0 0 72 h=t-SC-s

Confusion Matrix

Table 4. Performance of Proteins’ model in testing without using SMOTE

Table 5. Performance of Proteins’ model with SMOTE
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It should be clarified that all indices refer to the testing process. Concerning the
file, where the only independent variables were the proteins, it is clearly shown that the
Multilayer Perceptron algorithm seems to have the best fit. Its precision is as high as 1.
Moreover, Random Forest is second with precision up to 0.99. The precision of J48 and
Naïve Bayes reach the value 0.89. Moreover, the above performance indices improve
when the SMOTE oversampling is employed for the above aforementioned algorithms,
though the differences are not very significant. It should bementioned that the differences
of the performance indices between the Random Forest and the Multilayer Perceptron
are minor. However, the SMOTE technique, seems to increase the accuracy of the J48
and the Naïve Bayes algorithms. The only difference between the two best algorithms
is in the construction time of the models. We have 1.2 s for the Random Forest (RF) and
23.07 s for the MLP (without SMOTE). On the other hand, the RF needs 0.56 s and the
MLP 24.64 s when SMOTE is applied. From these results we consider that the RF is the
most successful, with the use of SMOTE (Tables 6 and 7).

Table 6. Performance of proteins and genotypes model without SMOTE

Table 7. Performance of proteins and genotypes model with SMOTE

Regarding the case, where the proteins and the genotype were the independent vari-
ables, we notice a slight improvement for all of the algorithms, with the precision of the
Random Forest and the Multilayer Perceptron being up to 1, while the precision of the
J48 is equal to 0.94 and the Naïve Bayes 0.92. By using the SMOTE method, the two
most precise algorithms show no difference, while the precision of J48 improves to 0.97
and the one of Naïve Bayes’ remains stable to the value 0.92. The only thing we could
consider as a difference of the two best models, is again the construction time. We have
1.2 s for the RF and 23.07 s for the MLP (without SMOTE). Also, we need 0.56 s for
the RF and 24.64 s for the MLP (with SMOTE). From these results we consider that the
RF model to be the most robust, with the use of SMOTE (Tables 8 and 9).
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Table 8. Results with Cfs with proteins as independent variables

Table 9. Results with Cfs with proteins and genotype as independent variables

7 Conclusion and Discussion

The experiment, on which we relied for our research, focuses on the efficiency of a drug,
memantine, in solving learning and memory problems on trisomic mice. The mice we
used belonged to two categories, that of control and that of trisomic (Ts65Dn) mice.
Specific conditions were selected under which the data received. Based on these data we
implemented our own approach, with the use of Machine Learning, in linking numerical
data with its reliability drug in each condition.

In the creation of our model four algorithms were selected, Random Forrest, J48,
Naïve Bayes, Multilayer Perceptron, the results of which were analyzed and compared
extensively. At the same time, we separated our data into two categories, one with only
the proteins as independent variables and one with the proteins and the genotype as
independent variables. J48 and NB gave us good results but not good enough to make
them themost accurate. In contrast, RF andMLP seemed to dominate with their accuracy
reaching 100%. Using the SMOTE method, in order to improve any imperfection in the
set of all four algorithms was not achieved some notable change. Nevertheless, for the
set of data we considered the RF model with SMOTE to be the most complete, due to
its accuracy and speed.

The first results concern an algorithmicmodel that processes thewhole set of proteins
for the purpose of classifyingmice into classes, so if we knowwhere they belong, we can
choose which procedure will have an effect on their treatment in learning and memory
deficits. In addition, we tried to design a model using only a subset of proteins. We used
the Cfs technique for each one of the two categories, mentioned above, testing various
subsets, which correlated with each other and we came up with equally good results for
a specific set of proteins. In this case, we chose as the most complete model, between
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RF and MLP, this of MLP, which, although at a slightly slower speed, reaches 100%
accuracy.

Summarizing our work, we conclude that our goal has been achieved, the devel-
opment of a model that will design the experiment and categorize the data helping to
diagnose the effectiveness of a treatment for learning and memory deficits, based on the
category to which the mice belong, simply from the data.

In conclusion, we hope our study will be the trigger for utilizing the model for
treatmentwithminimizing, or even eliminating, experiments on animalmodel organisms
and possibly future expansion of the application directly to human data, in a bigger
number of treatments.
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Abstract. There are several novel applications of Deep Learning in Med-
ical Imaging and especially in Ophthalmology in order to provide solu-
tions to unmet clinical needs. The research presented in this paper con-
cerns semantic segmentation of lesions regarding Diabetic Retinopathy.
Most of the state-of-the-art papers nowadays use Convolutional Neural
Networks, Fully Convolutional Networks, and UNETs, a modified version
of Convolutional Neural Networks for segmentation tasks. The robustness
of UNETs, in conjunction with transfer learning, has been the main strat-
egy to tackle the limitations of the available public datasets. In this paper,
the encoder of a UNET has been substituted by MobileNetV2, which con-
stitutes a novel approach for segmenting Diabetic Retinopathy lesions.
Results show that the proposed model, in hemorrhages and soft exudates
lesions surpasses other similar attempts. In the proposed model, sensitiv-
ity reached 0.89 in hemorrhages and 0.97 in soft exudates. Another novelty
of the paper is that the results are further analyzed at the lesion level, in
contrast to the common pixel-level analysis met in the literature, some-
thing that favors a more intuitive evaluation of the model.

Keywords: Diabetic retinopathy · Deep learning · Transfer learning ·
UNET

1 Introduction

Diabetic retinopathy (DR) is the most common eye disease related to diabetes
mellitus and it’s the leading cause of blindness among working age adults [20].
Early detection and treatment are crucial factors in preventing extensive retina
damage and even vision loss. In today’s practice, DR is diagnosed based on
the examination of retina’s fundus images by experienced medical practitioners
based on the presence of three lesion types (i.e. Exudates, Hemorrhages and
Microaneurysms) [21]. However, this is a difficult and time-consuming task which
suffers from intra- and inter-observer variability. In addition, the lack of expert
c© Springer Nature Switzerland AG 2022
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ophthalmologists in many hospitals especially in underdeveloped countries and
remote areas is a limiting factor for early detection and staging. In this study,
we propose a model based on the UNet architecture with a pretrained encoder
to segment each lesion of DR on fundus images.

The advancement of AI technology has enabled the development of deep
learning models for fundus analysis in the context of DR. Eftekhari et al. [4] cre-
ated patches and trained a CNN to extract probability maps. Furtado [6] tested
three state-of-the-art models to segment all lesions. He experimented with the
famous DeepLabV3 model [2], with FCNs [12], and with a UNET [17]. Kho-
jasteh et al. [11] executed an experiment with 3 cohorts to segment exudates:
they trained a CNN, Discriminative Restricted Boltzmann Machines (DRBM)
and used a pre-trained residual network and used 3 different classifiers.

Towards more precise segmentation, novel designs are continuously pro-
posed such as dilated convolutions [23] and attention mechanisms [23]. The
state-of-art DeeplabV3+ [5,6] uses both dilated convolutions and spatial pyra-
mid pooling in its contracting path and is one of the most promising models in
semantic segmentation nowadays.

In this paper, a model for semantic segmentation of DR lesions based on
Deep Learning (DL) is proposed. We propose a substitution of the encoding
part of UNET, by taking advantage of the robustness of transfer learning. The
rationale for this choice is to allow better performance on small and unbalanced
datasets. In parallel, the proposed methodology performs the performance anal-
ysis based on metrics at lesion level extending pixel-level reporting facilitating a
more intuitive evaluation of the model.

This paper is organized as follows: After the introduction, in Sect. 2 the DR
and its lesions from the medical perspective are examined. Section 3 presented
the modelling approach and architectures used, specifically UNETs and Mobi-
NetV2. Sections 4 and 5 present the experimental results and Sect. 6 a discussion
about final results.

2 Diabetic Retinopathy Lesions

Diabetic Retinopathy (DR) is a retinal vascular disease that affects the central
vision and its main cause is Diabetes Mellitus [1]. DR patients are expected to
reach 191 million by 2030 [10]. If the disease evolves without treatment, patients
are in danger of becoming blind. Unfortunately, people with DR in the early
stages have no warning signs concerning their vision. Only when the disease
worsens do patients become aware of the problem. However, fundus images can
provide with early signs concerning the onset of the disease that can save many
patients from blindness. Fundus images carry important diagnostic information
about the eye and enable experts to detect lesions. By examining evolving lesions
experts can determine the disease’s grade. Consequently, it is important to iden-
tify not only the type of the lesions but also their magnitude. There are 3 main
types of lesions: Microaneurysms (MAs), hemorrhages (HMs), and Exudates
(EXs) [21].
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Generally, MAs are the first signs that can be detected from fundus images,
indicating DR evolution. MAs are dilation of microvasculature, as a result of
disruption of the internal elastic lamina. Their size is normally less than 125µm
and they look like red spots with distinguishable borders, as shown in Fig. 1.
When the capillaries collapse, leaking blood forms HMs. They look like MAs
but they are bigger in size and have random shapes, as shown in Fig. 1. Splinter
hemorrhage occurs in the superficial surface layer and causes more superficial
bleeding-shaped flames. EXs are formed when capillaries collapse and leak much
more blood. In contrast with former lesions, they are yellowish and have random
shapes, as shown in Fig. 1. EXs comprise two types: Hard Exudates (HEs) and
Soft Exudates (SEs).

Fig. 1. An image exhibiting DR lesions

3 DL Architecture Strategy for Semantic Segmentation

Semantic segmentation refers to classifying and subsequently grouping similar
structures within the image on the pixel level. Each individual class contains
pixels with the same characteristics such as color, intensity, or texture.

Binary segmentation is the simplest category of semantic segmentations. In
this case, the pixels may belong either to a positive class (lesion) or to a negative
class (healthy). The algorithm presented in this paper creates binary segmenta-
tion and is executed as many times as the number of lesions.

After reviewing the available literature, we decided to develop our model
based on the UNET architecture. UNETs [17] are a modification of CNNs which
were initially targeted at image segmentation of biomedical images. The archi-
tecture of a typical UNET, as illustrated in Fig. 2, consists of two paths: the first
path is the encoder and is responsible for the feature extraction and compres-
sion. The encoder of a UNET is the same as a common CNN, without the fully
connected layers. The other path is the decoder and is responsible for synthesis.
It consists of upsampling convolutional layers, in addition to residual concate-
nation connections from the encoder layers. The decoder allows the network to
access the spatial information lost at the encoding stage. The resulting output is
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passed to a convolution layer to construct the segmented image. The architecture
of the network is practically symmetric, resembling the “U” letter.
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Fig. 2. UNET architecture

MobileNetV2 is a modified CNN and its architecture is based upon a series
of depthwise and pointwise convolution layers as illustrated in Fig. 3. In the last
part, there is a global average pooling layer and a fully connected layer. Due to
the structure that requires less computing, it has higher precision and makes it
suitable for mobile phones.

Fig. 3. MobileNetV2 architecture [22]
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MobileNetV2 uses two global hyperparameters based on depthwise separa-
ble convolutions to maintain a balance between efficiency and accuracy. The
fundamental principle in MobileNetV2 is the separation of convolution kernels.

By applying depthwise separable convolution, the standard convolution can
be divided into a depthwise convolution and a pointwise convolution with a
convo- lution kernel.

Our proposed model includes a substitution of the encoder of a UNET with
MobilnetV2. The fully connected layer of MobileNetV2, seen in Fig. 3, is excluded
and the output of the remaining part is connected with the decoder of the UNET.
Additionally, MobileNetV2 is pre-trained on ImageNet [8].

The architecture of the proposed model is shown in Fig. 4. The concatenations
begin from 4 inner layers of MobileNetV2 and meet the upsampling layers of
the decoder. Each upsampling layer is followed by 2 blocks of convolutional
layers, activated with RELU function, and batch normalization layers. A 1 × 1
convolutional layer, activated with the sigmoid, function is necessary to restore
the dimensions of the output to the dimensions of the input image.

m
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Fig. 4. Proposed model’s architecture

4 Experiments

In order to evaluate the proposed model, various experiments were conducted
using as inputs the IDRiD dataset [7]. This specific dataset was chosen among
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others to train the proposed model because it contains high quality fundus images
and precise annotations of DR lesions.

The strategy for the experiments is illustrated in Fig. 5. The process be-
gins with data preprocessing. This is an important and time consuming phase
resulting in the data generation of 66,664 patches. Next, the training phase takes
place. After the training of the proposed model, the learned model performs the
predictions regarding new data, as shown in Fig. 5. The evaluation of the model
is discussed in Sect. 5.

Fig. 5. The strategy of the experiment

IDRID images have a resolution of 4288×2848 pixels, very high compared to
other available public datasets. The pixel-level annotated data comprise 81 color
fundus images which include 81 binary masks of MA, 40 binary masks of SE, 81
binary masks of hard EX, and 80 binary masks of HE. The total number of masks
was 282. It should be mentioned that nowhere in the literature review, concerning
DR lesion’s segmentation, was reported such a limited number of images used
for training. It is widely known that DL networks are “data-hungry” and their
performance increases once fed with high-quality, big data. The available number
of images was very restrictive and not appropriate to prevent overfitting. Thus,
the number of images was increased synthetically, by creating patches, taking
as base the 282 images. Moreover, patches were created from sliding windows so
that the final number of images increased significantly. The size of each patch
was set to 512 × 512 . The sliding step was 64 pixels in all images except for SE
which was reduced to 32 to have an equal number of final patches in each lesion.

The synthetic genesis ended up with 140,000 patches of EX, 140,000 patches
of HM, 140,000 patches of MA, and 142,000 patches of SE. A threshold was set
for each lesion to keep the most informative patches and discard the redundant
ones. Concerning the EXs patches, the threshold was set to 5% meaning that
we keep the patches that contain lesions that occupy at least 5% of the patch.
The final number of informative EX patches was dropped to 17,016. Similarly,
for HMs the threshold was set to 5% and the final number of informative HM
patches was reduced to 19,536. Concerning MAs, the threshold was set to 1% and
the final number of informative MA patches was decreased to 17,168. Finally,
for SEs the threshold was set to 1%, and the final number of informative SE
patches was dropped to 12,944. The total number of patches reached 66,664.
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Moreover, to prevent overfitting, the size of the dataset was further increased
with the augmentation technique, which was applied via ImageDataGenera-
tor [18]. No special image processing technique was applied except for data
scaling, reducing the dynamic range of pixel values from 0–1. The absence of
special image processing techniques was due to the fact that IDRiD is a qualita-
tive dataset compared to the other publicly available datasets both at the image
as well as the annotation level.

In order to train the deep learning network the IDRID dataset was used and
it was split into 80% training and 20% testing patches. The training patches were
53,331 and the testing patches 13,333. The learning rate was set to 0.0001 for all
the experiments. For the optimization of the loss function, Adam optimizer [9]
was implemented with the default settings: β1 = 0.9 and β2 = 0.999. The batch
size was set to 8 for all experiments. The epochs for training differed for each
experiment. Specifically, in EX the epochs were 70, in HM 50, in MA 100, and
in SE 50 after experimental observations. “Binary cross-entropy” was used as
loss function.

The model was trained on a server with an AMD EPYC 7251 8-core 2.9 GHz
CPU, RTX 2080Ti 11 GB GPU, and 64 GB RAM, and it was implemented on
Tensorflow 2.1.

5 Results

One of the novelties introduced in the proposed methodology is that it analyses
the results both at pixel and lesion level. The pixel-level analysis takes into
account each individual pixel and classifies it into a class, lesion or not. In lesion
analysis, a threshold of 50% was set, under which a lesion is not being counted.
This analysis is more holistic, leading to a better intuition about the performance
of the model.

Table 1 shows the metric’s results at pixel-level analysis. Dice coefficient [19]
was chosen as a metric of similarity and SEs had the best performance. Specificity
is a metric indicating how well the model predicted the negative class, which in
our case is the healthy tissue. It is expected to have such a big accuracy because
of the high imbalance of the dataset. Most of the pixels in fundus images belong
to non-lesion pixels. Sensitivity, on the other hand, is a metric showing how
many of the true lesions were correctly predicted. As seen from the results, SEs
were predicted with sensitivity 0.97 followed by HMs, EXs, MAs with 0.89, 0.86,
and 0.84 sensitivity respectively.

In lesions level analysis Mean IoU [19] was chosen as a metric and SEs had the
best performance as indicated in Table 2. Another interesting observation arising
from the Sensitivity results is that the area of the lesion seems to be correlated
to sensitivity. Generally, it seems that lesions of smaller areas (MAs, EXs) are
predicted with higher accuracy compared to lesions of larger areas (HMs, SEs).
Specifically, sensitivity in MAS, EXs was 0.97 and 0.93 respectively. In contrast
in HMs, SEs sensitivity was 0.60 and 0.84 respectively.
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Table 1. The metric’s results at pixel level for each experiment

Metric Exudates Emorrhages Microaneurysms Soft exudates

Dice coefficient 0.83 0.85 0.85 0.95

Recall 0.85 0.89 0.84 0.97

Precision 0.90 0.91 0.95 0.96

Sensitivity 0.86 0.89 0.84 0.97

Specificity 0.99 0.99 1.00 0.99

Table 2. The metric’s results at lesion level for each experiment.

Metrics Exudates Hemorrhages Microaneurysms Soft exudates

Sensitivity 0.93 0.60 0.97 0.84

Precision 0.73 0.72 0.95 0.96

Mean IoU 0.75 0.78 0.75 0.93

Figure 6 shows an example of how the algorithm predicts whole images of the
IDRiD testing dataset as well as the unknown DIARETDB1. The left column
displays the original fundus images, the middle column the predictions and the
right column the ground truth. Comparing the ground truth of DIARETDB1
with the ground truth of IDRiD dataset, it can be observed that in DIARETDB1
there are no exact borders of the lesion but instead, approximate areas that
surround the lesions.

Fig. 6. Predictions of the proposed model

Finally, Table 3 summarizes the results of the proposed methodology com-
pared to other techniques. The red color indicates the highest sensitivity in each
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lesion. The comparison is at pixel level since analysis at lesion level is introduced
only in the proposed methodology. Table 3 shows that the Sensitivities of HMs
and SEs of the proposed model surpass the existing state of art techniques. More
specifically, Sensitivity in HMs reached 0.89 while SEs reached 0.97. In contrast,
Sensitivity in EXs 0.86 could not reach 0.99 of [13] and Sensitivity in MAs 0.84
could not surpass 0.87 of [14].

Table 3. Metrics in the state-of-art techniques.

Author Year Exudates
sensitivity

Hemorrhages
sensitivity

Microaneyrisms
sensitivity

Soft exudates
sensitivity

Architecture

OURS 2021 0.86 0.89 0.844 0.97 UNET WITH
PRETRAINED
ENCODER

[6] 2021 0.94 0.87 0.48 0.87 DEEPLABV3, FCN,

UNET

[24] 2018 0.94 – – – UNET + cGAN

[15] 2018 0.92 – – – UNETs

[13] 2017 0.99 – – – CNN(Le-Net)

[10] 2018 0.96 0.84 0.85 – CNN

[3] 2018 0.84 – – – UNET

[16] 2019 0.89 – – – FCN

[14] 2018 0.88 0.72 0.87 0.77 UNET

6 Conclusions

The objective of this paper was to exploit state of art techniques in order to
provide a robust DR lesions segmentation method. The presented method, can
also be implemented as a mobile phone application which can be the basis of a
remote screening diagnostic aid tool for people living in remote areas.

The major problem in many DL tasks is the lack of large and properly curated
available datasets. IDRiD dataset was the basis of our training, which is a pub-
lic dataset. This dataset has qualitative images and annotations but it is highly
imbalanced. The preprocessing of IDRiD dataset was based on the most infor-
mative patches and an augmentation technique was used to ensure plethora
of images to prevent overfitting. Transfer learning was utilized along with the
MobileNetV2 architecture, which was pre-trained on ImageNet and constituted
the encoder of the proposed UNET. This substitution of the encoder in DR
segmentation task was a novel effort and provided encouraging results.

The results of the experiment were very promising and there was no over-
fitting. This was achieved due to proper preprocessing. The dice coefficient was
over 0.83 in all lesions and in soft exudates was 0.95. As far as sensitivity is
concerned, all lesions were over 0.84 and the best score was achieved in soft
exudates (0.97). Compared to the other state of art techniques, segmentation
performance regarding two lesions (SE, HM) surpassed the state of the art.
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Abstract. Data marketplaces are the digital platform for data buyers and data
sellers to trade information as valuable products or items. The expectation taken
for granted from the users of a data marketplace is the truth of the exchanged
information. However, the trade of factual data also means the marketable product
is no longer unique but a series of replicas. If every userwithin the datamarketplace
owns the same information, this data eventually becomes valueless. There are
specific instances where the traded products are sought to be always unique, such
as predictions or digital art. This paper presents Echo State Networks (ESNs)
in data marketplaces that map tradeable data into higher dimensional spaces via
the dynamics of a fixed and non-linear reservoir. The reservoir generates unique
tradeable data products that can not be replicated, therefore ensuring its exclusivity
and commercial value. The validation results show that ESNs can also be applied to
generate random tradeable products on different dimensional spaces. Specifically,
the reservoir with its associated neural perturbation emulates a digital artist that
generates unique and exclusive content based on 2D functions and 3D images.

Keywords: Data marketplace · Echo state networks · Reservoir computing ·
Digital artist · Digital content creation

1 Introduction

Reservoir Computing (RC) applies recurrent neural networks to map input data into
higher, equal, or lower dimensional computational spaces through the dynamics of a
fixed, non-linear system called a reservoir [1]. Echo State Networks (ESNs) are part of
reservoir computing composed of a Recurrent Neural Network (RNN) with a sparsely
connected hidden layer that generates a complex recursive dynamic system [2]. The
key property of ESNs is that although their behaviour is non-linear, the network can
create or reproduce specific temporal patterns [3]. This property is due to the only
weights modified during the training stage are the neural synapses that connect the
hidden neurons to output neurons. Thus, the connectivity andweights of the input hidden
neurons are fixed and randomly assigned. The primary process of ESNs is firstly the
operation of a random, extensive, fixed, recurring neural network with an input signal
to induce a non-linear perturbation signal in each neuron within the reservoir network.
Secondly, the desired output signal is connected by a trainable linear combination of
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these response signals [4]. Finally, the spatio-temporal patterns of the reservoir after
excitation by known inputs are calculated by utilising a training method such as linear or
Ridge regression. Therefore, the non-linear dynamical systems serve as a reservoir that
enables the computational power of naturally available systems: classical and quantum
mechanical [5].

Information is stored in the reservoirs by connecting neurons in recurrent loopswhere
the previous data input affects the following reservoir response recursively. These non-
linear dynamics are applied to generate random and unique data transformations that
also include alterations within the dimensional space. These properties make ESNs and
reservoir computing ideal to create unique data tradeable products in a marketplace as
they merge the factual information with random properties by applying the non-linearity
properties of the reservoir.

Data marketplaces exchange information between data providers and data con-
sumers. The traditional key roles of the data marketplace are: 1) the collection of a
fee from the data buyer via a licensing model, 2) the incentivisation of the data provider
via rewards, and 3) the data governance based on structure, security and quality. The
additional and innovative task presented by this paper is the generation of unique trade-
able content as a value-added service. Data sellers offer atomic data, and data buyers are
given a distictinve and random item created from these data atoms by the data market-
place. This exclusive tradeable data content can take the form of images, video or even
digital files that create physical items such as drawings or renders.

1.1 Research Proposal

This paper presents Echo StateNetworks (ESNs) in datamarketplaces thatmap tradeable
data into higher dimensional spaces via the dynamics of a fixed and non-linear reservoir
as a value-added service. The reservoir generates unique tradeable data products that
can not be replicated therefore ensuring its exclusivity, uniqueness while guaranteeing
its commercial value as a content generation method.

1.2 Research Structure

The proposed ESNs model of data marketplaces has been applied to an actual applica-
tion where tradeable data is based on functions and images. Section 2 provides relevant
research background of the Echo Estate Networks, whereasSect. 3 confirms the math-
ematical model of the ESNs and their application to the data marketplace. Following
Sect. 4 presents the experimental and validation results. Finally, conclusions are shared
in Sect. 5.

2 Research Background

There is extensive research literature within the Echo State Networks (ESNs). The aim
of this paper is a practical application of their functionality based on their properties;
therefore, only selected research background is described. The external approximation
is the development of a Reservoir Computing (RC) that approximates any given filter
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by finding reservoir and readout maps close to those of the given one. ESNs are uni-
versal uniform approximants in the context of discrete-time fading memory filters with
uniformly bounded inputs defined on negative infinite times [6]. This approximation is
valid for infinite time intervals and guarantees that any fading memory input/output sys-
tem in discrete time can be realised as a simple finite-dimensional neural network-type
state-space model with a static linear readout map. A universal family of ESNs can be
generated from elements generated from the echo state and the fadingmemory properties
[7]. Standard ESNs can reach high accuracy when modelling Multiple Superimposed
Oscillators (MSOs) with the correct choice of the network parameters. A dual effect
within the output feedback strength drives the dynamic reservoir, although this interac-
tion can also block suitable reservoir dynamics on the multiple superimposed oscillators
benchmark [8].

Plasticity modifies the strength of the synapses within the reservoir from perturbing
activities stimulated by the input based on two rules. The Oja rule alters the strength of
the neuron connection or learns over time following the Hebbian rule. If two connected
neurons are activated synchronously, the strength of the synaptic weight will increase;
however, if they are activated at different times, the synaptic weight will decrease. The
Bienenstock-Copper-Munro (BCN) rule also follows the Hebbian rule with a sliding
threshold as a stabiliser function. The influence of neural plasticity applied to the ran-
domly assigned weights inside the reservoir on the learning performance of the ESN is
analysed based on the prediction and classification performance when offline or online
supervised learning algorithms [9]. Local plasticity rules allow different neurons to use
different types of plasticity rules (Hebbian and anti-Hebbian) and different parameters.
Evolving neural plasticity results in synergistic learning of different neural strength
rules, which is essential in improving learning performance [10]. Local plasticity rules
can effectively alleviate synaptic interferences within the reservoir structure.

MemoryCapacity (MC) in a reservoir measures its ability to store and recall previous
in and out signals fed into the network and retrieve past information using the linear
combinations of reservoir unit activations. There are optimal spectral radius and norm
values forwhich thememory capacity ismaximal. In addition, the reservoir size increases
sublinearly the MC [11]. Very sparse reservoirs preserve the maximum MC, whereas
the orthogonalisation of properly initialised reservoirs increases the MC significantly.
Finally, the MC increases with a decreasing input matrix parameter.

Sparsity, the input and reservoir connections, has a significant role in developing
internal temporal representations that possess a more extended short-term memory of
previous inputs and a higher dimension. The number of non-zero connections impacts
the determination of the richness of the developed representations [12]. While a modest
number of recurrent connections is already sufficient for a good performance, maximally
sparse input to reservoir connections lead to the best results both in terms of short-term
memory and the effective dimension of the state manifold. The concept of consistency
as an extension to generalised synchronisation quantifies the degree of functional depen-
dency of a non-linear driven system to its input. Complete consistency is always desirable
for reservoir design. The consistency levels based on the principal-component analysis
of the high-dimensional response to a memory task is measured to analyse the echo-state
property [13]. Inconsistency is not as destructive to fading memory where inconsistent
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reservoirs perform comparably, and even outperform consistent reservoirs, due to the
distribution of signal and noise.

ESNs have a superior capability in modelling non-linear dynamic systems. The
relationship between the spectral radius of the internal weights and the capability and
performance can be resolved using complex network theory [14]. These models have
better prediction capabilities and a wider spectral radius; however, they retain almost
the same short-term memory capacity as compared to the conventional ESN model. The
smaller the ratio of the scale-free topology over the small-world topology, the better
the memory capacity. A graph ESN model is an efficient approach to Recursive Neural
Networks modelling extended to deal with cyclic and acyclic, directed and undirected,
labelled graphs [15]. The model exploits the fixed contractive state dynamics typical
of ESN models where the convergence of the encoding is ensured for a large class of
structured data.

Evolutionary computation provides a possible solution for unsupervised learning
tasks where no input-output example is available. The concept of evolutionary learning
for ESNs is the replacement of the gradient descent used to optimise the outgoing
weights by an evolutionary algorithm [16]. The flexibility of evolutionary optimisation
enables the optimisation of the outgoing weights and other ESN parameters. Critical
phenomena refer to the many interactions that appear in second-order phase transitions
and percolation processes. These interactions may occur in the transition region that
separates stages such as symmetry properties, macroscopic parameters or structure.
Critical ESNs apply the criticality of this phase transition due to their sharp phase
transition that depends on the connectivity properties within the reservoir. The recurrent
connection structure of ESNs strongly influences the critical phenomenon. A particular
small subset of ESNs is much better than ordinary ESNs provided that the topology of
the recurrent feedback connections satisfies certain conditions [17]. These conditions
are based on the permutation and orthogonal matrices of the network reservoir.

3 Echo State Networks in Data Marketplaces

This section presents the mathematical model of Echo State Networks (ESNs) in data
marketplaces that map tradeable data into higher dimensional spaces via the dynamics of
a fixed and non-linear reservoir. The reservoir generates unique tradeable data products
that can not be replicated, ensuring its exclusivity and commercial value. For the ESNs
to operate, the reservoir must have the echo state property based on the asymptotic
properties of the excited reservoir dynamics to the input signal. The echo state property
is guaranteed for any normalised input if the spectral radius is smaller than unity [1].

3.1 System Equations

ESNs are composed of an input layer, x(n), of K dimensions that excites the reservoir’s
neurons that represent the original tradeable data. A recurrent neural network, r(n), is
formed of N reservoir units that create the non-linear response signal; r(n) represents the
unique tradeable data products generated from the reservoir dynamics. A readout layer,
y(n) of L neurons, combines the internal state of the reservoir or the unique tradeable
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data products into the desired output signal. For this specific Datamarket application, the
desired output signal is the same as the original tradeable data. This approach provides the
same boundaries to the reservoir that enhances its non-linear properties. In addition, the
reservoir is affected by a random noise signal, v(n). This noise enhances the exclusivity
and commercial value of the generated data products (Fig. 1).

Fig. 1. Echo state networks

The equations of ESNs are defined as:

r(n + 1) = α · r(n) + (1 − α) · f
(
Wresr(n) + Winx(n + 1) + Wechoy(n)

)
+ v(n)

(1)

where Win is the N x K data input weight matrix, Wres is the N x N reservoir weight
matrix of the data marketplace, and Wecho is the N × L output feedback or echo matrix;
f is a sigmoid function (logistic sigmoid or tanh function) and α is the reservoir leakage
rate. The output of the reservoir includes the extended system state, z(n) = [r(n); x(n)]
and is defined as:

y(n) = g
(
Woutz(n)

)
(2)

whereWout is the L x K+N output weight matrix, and g is the output activation function
(identity or sigmoid).

3.2 System Learning

ESNs and learning only focus on the output weight matrix, Wout, as the other ESN
weights: W, Win and Wfb are fixed. Wout is calculated as the linear regression of the
training signal y(n) on the extended system state z(n). Two main methods provide this
calculation. The first method is the Pseudoinverse denoted as †:

(3)
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where Z corresponds to the extended system state matrix z(n) and Y is the desired output
vector y(n). The second method is the Ridge regression:

Wout = 1(
R + β2I

)P (4)

where β is a smoothing factor, I is the identity matrix, R is the correlation matrix of the
extended reservoir states and P is the cross-correlation matrix of the states against the
desired outputs:

R = 1

nmax
Z

′
Z (5)

P = 1

nmax
Z

′
Y (6)

3.3 System Parameters

The sparsity S of the reservoir weight matrix represents the connectivity of the response
signals in the reservoir produces linear scaling of computational complexity:

S = Non zero connections

Reservoir size
(7)

Memory capacity MC represents the dynamical short-term memory from the RNNs
in feedforward configuration where the reservoir states r(n) reflect traces of the past
input signals. This short-term memory’s capacity MC is defined as:

MC =
imax∑
i=1

MCk =
imax∑
i=1

cov2(u(t − k), yk(t))

var(u(t)) · var(yk(t)) (8)

The spectral radius ρ of the reservoir weight matrix W determines the effective time
constant of the echo state network with respect to the decay of impulse response and the
range of non-linear interaction of input components through time. ρ(W) < 1 guarantees
echo state property in most situations:

ρ(W ) = max eigenvalue(W ) (9)

The Input Scaling (IS) defines the level of non-linearity of the reservoir dynam-
ics between a linear medium, to the saturation of the sigmoid and a binary switching
dynamics results:

IS = range[−IS; IS] of Win (10)

The Output Feedback Scaling (OFS) describes the autonomous pattern generation
component from purely input driven to an oscillatory frequency generator:

OFS = range[−OFS;OFS] of Wout (11)
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4 Experimental Results

This section presents the experimental results for the proposed echo state networks
in data marketplaces. Precisely, a reservoir based on non-linear dynamics and neural
perturbations emulates a digital artist to create unique and exclusive content that can not
be replicated. This digital artist generates digital content based on 2D functions and 3D
images with different dimensional spaces. The application is based on JAVA-Eclipse.
The error between the original data product in the input layer and its replica in the output
layer is calculated for both algorithms: Pseudoinverse and Ridge regression. The error
metric is the current value is calculated following the Root Mean Square Error (RMSE):

RMSE =
√∑N

i=1 (xi − yi)2

N
(12)

where xi corresponds to the neurons of the input layer that codify the original tradable
data product, yi represents the desired output with the same as the input for this data
marketplace and N the total number of neurons in the output layer.

4.1 2D Function Validation

The neurons of the reservor are excitedwith three different independent signals: sinusoid,
sigmoid and exponential, where each signal dimension of the time series is decoded with
its respective input neuron of the ESN. The input layer of the ESN, the reservoir and the
output layer are composed of 100 neurons each. Table 1 shows the number of neurons of
the reservoir, the algorithm time and the RMSE errors between the input, x(n), and output
signals, y(n) and the reservoir, r(n) against the input neural, x(n) layer respectively.

Table 1. Data market place – function validation

Function Variable Pseudoinverse Ridge regression

Reservoir Neurons 100 100

Sinusoid Time (s) 0.126 0.125

r(n) RMSE Error 3.93E−02 2.04E−02

y(n) RMSE Error 6.08E−16 6.50E−08

Sigmoid Time (s) 0.128 0.138

r(n) RMSE Error 2.90E−02 3.84E−02

y(n) RMSE Error 6.24E−16 8.16E−08

Exponential Time (s) 0.118 0.128

r(n) RMSE Error 1.57E−02 1.84E−02

y(n) RMSE Error 4.24E−16 3.83E−08
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Fig. 2. Data market place – function validation
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Both algorithms require approximately the same time to calculate the echo state
output network weights, Wout; however, the Pseudoinverse algorithm presents a much
lower RSME figure than the Ridge regression. The dynamics of the reservoir, r(n) have
a similar representation based on their RSME against the perturbation from the input
layer (Table 1). Although the Pseudoinverse algorithm performs better than the Ridge
regression when codifying the output data replica, y(n) from the input genuine data
product, x(n), the visual representation makes them appear the same. The non-linear
dynamics and neural perturbations of the reservoir, r(n) create unique 2D content where
the differences can be easily perceived (Fig. 2).

4.2 3D Image Validation

The neurons of the reservor are excited with three different independent 25 × 40 pixel
images: Christmas tree, Rainbow flag and random values where each signal dimension
of the time series is decoded with its respective input neuron of the ESn. Each pixel is
codified into four neurons that represent the transparency, red, green and blue, respec-
tively. The input layer of the ESN, the reservoir and the output layer are composed of
4,000 neurons each. Table 2 shows the number of neurons of the reservoir, the algorithm
time and the RMSE errors between the input, x(n), and output signals, y(n) and the
reservoir, r(n) against the input neural, x(n) layer respectively.

Table 2. Data market place – image validation

Function Variable Pseudoinverse Ridge regression

Reservoir Neurons 4000 4000

Christmas tree Time (s) 0.591 92.471

r(n) RMSE Error 5.63E−01 5.21E−01

y(n) RMSE Error 4.27E−15 1.45E−05

Rainbow flag Time (s) 0.607 117.49

r(n) RMSE Error 1.40E+00 1.45E+00

y(n) RMSE Error 2.65E−14 1.97E−04

Random values Time (s) 0.603 138.05

r(n) RMSE Error 2.02E+00 2.10E+00

y(n) RMSE Error 1.83E−14 7.01E−04

The Pseudoinverse algorithm performs better than the Ridge regression in the 3D
Image validation in terms of computational time and RMSE error when the number
of neurons increases. This difference of error is not visually perceived in the output
signal y(n). Similar to the previous validation, the dynamics of the reservoir, r(n), have a
similar representation based on their RSME against the perturbation from the input layer
(Table 2). The visual representation of the reservoir, r(n), generates random replicas and
support echo state networks as a digital artist for content generation (Fig. 3).
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Fig. 3. Data market place – image validation

5 Conclusions

This paper has presented Echo State Networks (ESNs) in data marketplaces that map
tradeable data into higher dimensional spaces via the dynamics of a fixed and non-
linear reservoir as a value-added service. The reservoir generates unique tradeable data
products that can not be replicated therefore ensuring its exclusivity, uniqueness while
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guaranteeing its commercial value as a content generation method. The Pesoudoinverse
algorithm performs better than the Ridge regression in terms of computational time and
RMSE codification error. Future work will analyse the effects of the different reservoir
parameters such as sparsity S, Memory capacity MC and spectral radius ρ.
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Abstract. In the present and future, data is the most valuable thing in
the world. Therefore, it is now a challenge for everyone in every sector
to work with data. Collecting data to predict or collecting data to ana-
lyze is a very valuable task. Moreover every new research, new machine
learning method, and algorithms testing depends on a massive amount of
different data. Furthermore, it is also a security issue for many fields to
share actual data. It is always hard to find the perfect data set. It is not
just about figuring out huge amounts of data. Many other data analysis
processes need to be performed on that dataset to make it worthwhile.
To overcome this problem, data augmentation is one of the suitable solu-
tions. The idea behind data augmentation is to create a new dataset that
depends on some existing dataset features. Generative Adversarial Net-
works (GANs) are a class of machine learning frameworks introduced by
Ian Goodfellow in 2014. They are a game-like way to learn and generate
new datasets. GANs have two parts, one is the generator, and the second
is the discriminator. They play against each other to win the game. We
will use our data set on the GAN model using some specific hyperparam-
eter value and optimizer, which we will find out through our experiment.
Finally, we will produce a CSV file with model-generated synthesis data
and visualize the performance statistic of our model in the graph. This
article will explain the different facts related to Data Augmentation, and
GANs.

Keywords: Data augmentation · Generative Adversarial Networks ·
Tabular data

1 Introduction

In the world of data aggregate, a large number of different fields of data are
required for implementing and testing applications. To evaluate the application
and perform in specific scenarios using accurate input is essential for applica-
tions. In every area of data sciences, it is tough to collect a significant amount of
pertinent information. Gathering valuable facts will be highly cost-consuming in
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terms of money, time, staffing, and applications [1]. Feather more, many other
related methodologies are connected for data analysis, data cleaning, and so on.
It is essential to arrange proper study, guidelines, and training to fulfill all these
above factors. To overcome all this complexity and cost, an artificial set of new
facts that will contain all the features and properties like actual is the best solu-
tion [1]. The data science research literature frequently assumes that the input
features for various data analytics procedures is already clean and accurate for
consumption [15]. However, cleaning issues in its values or structure consumes
a significant portion of professionals time and effort. According to recent polls,
data cleansing takes up to 60% of data scientists work [15].

Naturally, most of the information in the business is private and secret. While
some databases are freely accessible, new datasets are difficult to come by. Even
if owners are ready to provide anonymized datasets, the time and effort required
to compile the data and through bureaucracy may deter them [1]. If owners can
quickly generate “fake” or synthesized features comparable to actual, friction in
data disclosure will be reduced.

Other papers on the scientific approach of Big data development and deploy-
ment employ three key levels from a scientific standpoint [11]. Almost every
article regarding Big data implementation focuses on Storage, Process, and Anal-
ysis in some way. It is a fact that the corporate sector now has a greater need to
store and handle data than in the past due to the significant rise in structured
and unstructured data (Chen, Mao, and Liu, 2014). Furthermore, large storage
systems require adequate and trustworthy interfaces to provide real-time facts
for real-time applications (Kambatla, Kollias, Kumar, and Grama, 2014). After
information is gathered and stored from numerous sources that create diverse
the types (Bolón-Canedo et al., 2015), it is categorized, integrated, and noise and
redundancy are removed to reduce redundant storage space and accommodate
important information (Chen et al., 2014). We need business software and infor-
mation systems to analyze (Wang and Hajli, 2017). After, they should explore to
make the best use of the information [11]. The input then should be interpreted
to make the best use of it. Data analysts and scientists who possess the abilities
of a database designer, software programmer, and statistician should be pre-
pared for this purpose by information technology instructors [11]. By Introduce
an automated synthesized data generation can resolve all this manual process of
research.

In machine learning, a generative model is a subset of unsupervised learning
methods. Machine learning is to create models and algorithms that evaluate and
comprehend real-world data [19]. In contrast to conventional classification prob-
lems, generative models are one of the most promising methods to accomplish
this objective [19]. GAN, a novel framework for estimating generative models
through an adversarial process, has shown tremendous promise in producing
actual data. This article explains GAN and the varients of GAN. The variants
of GAN are more relevant to this study.
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Some basic problems we faced are summarised as follow:

1. Generate synthesized tabular form given Dataset. The selection of a suitable
GAN model is one of the biggest challenges in the thesis.

2. Train a GAN model with generator and discriminator neuron. Find out
suitable hyper-parameter values for the GAN model.

3. Select a more appreciated optimizer for the GAN model.
4. Visualized and analyzed the performance of the model.

2 Data Augmentation

The term “Data Augmentation” (DA) refers to techniques for expanding the
variety of training data without gathering any extra data in the traditional
sense. When training ML models, most approaches either add slightly changed
copies of existing data or produce synthetic data to have the augmented data
work as a regularizer and prevent overfitting [4]. Many computer vision methods,
including cropping, flipping, and color jittering, involve DA as an essential part
of the training process. A less obvious way to construct augmented instances that
capture desirable invariances when the input space is discrete is in natural lan-
guage processing (NLP) [4]. Supervised, semi-supervised, and unsupervised data
augmentation are all types of data augmentation methods [8]. Figure 1 shows the
data augmentation categorization. There are two types of Supervised data aug-
mentation: single sample and multi-sample [8]. Supervised data enhancement is
based on current data, and it uses pre-set data transformation algorithms to
make the changes. It is possible to enrich unsupervised data in two different
ways. Data distribution may be learned by models that randomly generate pic-
tures that are consistent with the distribution of the training data set [8]. This
approach is known as GAN [6]. Another option is to use the model to learn a
data improvement strategy appropriate for the present job. AutoAugment is an
example of a symbolic approach.

Fig. 1. The classification of data augmentation
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2.1 Existing Methods of Data Generation

It is also feasible to create synthetic tabular data using comparable high-quality
models: the implicit joint distribution of columns may be learned from actual
data, and synthetic rows can be sampled from that distribution. A few models
(MedGAN [2], TableGAN [10], PATE-GAN [7]) have been presented that work
by applying fully connected networks or convolutional neural networks directly
to tabular data without taking into account the unique situation of modeling
tabular data. Although these models perform well on datasets, they have not
been thoroughly compared against other statistical models [18].

Image Data Augmentation: Computer vision tasks, including picture classi-
fication, object recognition, and segmentation, have been particularly influential
among popular deep learning applications [13]. In these situations, data augmen-
tation may be a valuable tool for training DL models. Geometric transformations
such as Flipping, Rotation, Translation, Cropping, and Scaling, as well as color
space transformations such as Color Casting, Varying Brightness, and Noise
Injection, may all be applied to a picture with ease [13].

Speech Data Augmentation: SpecAugment was developed by Park et al.
to improve speech recognition by augmenting input data [9]. Time warping, fre-
quency masking, and time masking are the three most used methods of enhancing
data. LibriSpeech basic (LB), LibriSpeech double (LD), Switchboard moderate
(SM), and Switchboard strong are the four possible combinations that they intro-
duce in their experiment (SS) [9].

Text Data Augmentation: Due to the significant level of linguistic complex-
ity, enhancing text in the NLP discipline is difficult [12]. Not every word can be
replaced with a, an, or the like. There aren’t synonyms for every term, either.
Context is everything and altering a single word changes everything. However,
creating an enhanced picture in the computer vision field is much simpler [12].
Even if someone adds noise to the picture or clip off a piece of it, the model will
still identify what it is. Symbolic augmentation, Rule based augmentation, Graph
structured augmentation, MixUp augmentation, Generative data augmentation,
and so on are very popular Text Data Augmentation techniques.

Tabular Data Augmentation: Tabular Data Augmentation (TDA) is a new
moniker for a technique of modular feature engineering and observation engi-
neering for tabular data that emphasizes the sequence of augmentation to get
the best-projected result for a given information set [14]. It solves the issue of
how to best represent data to a learning model for the highest prediction accu-
racy. An augmentation method is any process that alters the underlying data
and results in an increase in the amount or quality of the data [14]. Some usable
techniques are like Transformation, Mapping, Extraction, Statistical model, and
GANs.
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3 Methodology

An adversarial game is set up using the GAN framework, with a generator
and a discriminator as the two participants. The discriminator’s job is to tell
apart samples from the model from samples from the training data, whereas the
generator’s job is to confuse the discriminator as much as possible [5]. Using a
minimax value function, we may express the goal.

min

G
max

D fv(G,D) = E [logD(data)] + E [log(1 − D(G(k))] (1)

It won’t be long until the random variables and distributions needed to under-
stand Eq. 1 are defined. The following is a simple explanation of the two terms
in the equation in prose for the time being:

– Train the discriminator to maximize the training data’s probability.
– Train the discriminator to reduce the likelihood of the generator’s data being

sampled. The generator should also focus on an opposing goal: to maximize
the discriminator’s probability to its samples [5].

Fig. 2. The Architecture of GANs

SGD may be used to train the two players in alternation when they are
represented as MLPs by a mathematical model [5].

This paper’s contribution is to provide the framework of a conditioning capa-
bility. As long as the generator’s output and the discriminator’s anticipated input
are both constrained, we can set up any arbitrary condition y on generation [5]
as shown in Fig. 2. In other words, we might say that this condition y engages
both the generator and the discriminator in a process of generation or prediction.
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3.1 Generator

There are many deconvolutional layers in the generator G, which makes it a
neural network as well. The discriminator’s procedure is reversed when G is
involved, as illustrated in Fig. 3 [10]. It takes as input a uniformly sampled latent
vector k from the unit hypercube space [10]. The input k is transformed into
a 2-dimensional matrix, corresponding to a synthetic table row, using several
de-convolutional layers.

Fig. 3. Architecture of the generator and discriminator with 5 layers

The generation of numerical data takes place in two stages. We begin by
creating the value scalar si, and then the cluster vector ci follows suit. We pro-
duce a probability distribution over all potential labels to represent a category
characteristic in a single step [17].

We create an attention weight vector wt ∈ R
t and use it to calculate

context as
wt =

∑

i=1

t expwt, i∑
j expwt, j

Li (2)

Set w0 to be equal to 0. Its output is Lt, which we project to a hidden vector
ft = tanh(lPLLt), where lPL is an input parameter that the network has learned
over time. ft has a radius of nf . The concealed vector is then turned into an
output variable.

– bi = tanh(lPtft) is the formula for calculating the value portion of a contin-
uous variable. ft is the value of the hidden vector at time t + 1.

– The result is computed as ai = softmax(lPtft) if a continuous variable cluster
component. ft is the feature vector for t+1.

– The output is a discrete variable if it is di = softmax(lPtft). f
′
t =

Ei [argi max di ] represents the discrete variable Di as an embedding matrix
E ∈ R

|Di|∗nf for time step t+ 1.
– f0 is a particular vector that we learn throughout training.

The discriminator’s prediction results may be used to train the generator. That’s
the idea behind it: the several options for training the generator in our table-GAN
[10]. It is possible to use back-propagation to execute this training procedure
efficiently.
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3.2 Discriminator

Using Discriminator, it will be possible to tell if data is legitimate or malicious.
More hostile instances will be generated by G based on the detection result, just
as it would with regular data [19].

The network that can distinguish one thing from another, D is a neural net-
work taught to differentiate between synthetic records and genuine ones in a
table [10]. D is a convolutional neural network (CNN) with many layers. In each
layer, the whole input matrix is subjected to a set of trainable filters. Remember
that in our approach, the records are transformed into square matrices [10]. As
a result, the output layer size is inversely proportional to the number of filters
included inside it.

According to Fig. 3, a layer’s output is its following layer’s input. After the
final sigmoid activation layer, the depth of intermediate tensors decreases, and
the likelihood of being genuine or synthetic increases [10]. In addition to batch
normalization and LeakyReLU , additional intermediary layers impact the net-
work’s functioning [10].

One actual or synthetic record is sent into the first layer, which creates a
x ∗ x matrices input. By training it on real data, the Discriminator can predict
1 for actual data while predicting 0 for fake data [10].

4 Training GANs

First, to train GANs, identify the discriminator parameters that optimize clas-
sification accuracy and then identify the generator parameters that confuse the
discriminator the most. Figure 5 depicts the training procedure.
f(G,D) is used to assess the training costs since it is dependent on both the
generator and the discriminator to work. It is necessary to solve

max

D
min

G f(G,D),

where

f(G,D) = Epdata(data)logD(data) + Epg(data)log(1 − D(data)).

One model’s parameters are updated while the second model’s parameters
remain constant throughout training. A static generator is shown to have unique
D∗(data) = pdata(data)/(pdata(data) + pg(data)). For pg(data) = pdata(data),G
is equal to the optimum discriminator predicating 0.5 for all samples taken from
data, as shown by the researchers. The generator is at its best when the dis-
criminator D is completely confused and unable to distinguish between actual
samples and false ones.

To get the best results, train the discriminator until it is as good as possible
with the current source, and then update the original again [3]. When training
the discriminator for a limited number of trials, the discriminator may only be
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taught for a few iterations before being used with a newer generation. For the
generator, this means that instead of using minGlog(1 − D(G(k))), an alterna-
tive nonsaturating training criteria is employed, such as maxGlogD(G(z)).
No matter how many unique solutions exist in theory, GAN training is difficult
and unstable for various reasons [3]. Assessing empirical “symptoms” that may
be encountered during training may help improve GAN training. Among the
signs are:

– problems with model convergence
– As various inputs are used, the generative model “collapses” to produce

extremely similar examples
– The discriminator loss rapidly reduces to zero, leaving no route for the gen-

erator’s gradient to be updated reliably.

As a result, several writers proposed heuristic methods to deal with the problems
[3].

To begin, researchers Goodfellow and Salimans et al. hypothesized that GAN
training is unstable since the answer to the optimization issue it poses is a saddle
point, which is why gradient descent techniques are usually employed to update
both the generator’s and discriminator’s parameters. The example is given by
Salimans et al. demonstrates this [3]. However, stochastic gradient descent is
often used to update neural networks, and well-developed machine-learning pro-
gramming environments make it simple to build and update networks using
stochastic gradient descent.

Despite an early theoretical approach showing that the generator is optimum
when pg(data) are equal to pdata(data), a very tidy conclusion with a strong intu-
ition behind it, actual data samples are found on a manifold in high-dimensional
space representations [3]. Consider a data table sample with the values range [0,
R+] of size N ∗ N , which has a dimensionality of N2. Each dimension accepts
values between zero and the highest detectable intensity of the cell value. This
is referred to as the X space. When using pdata, the data samples provide assis-
tance for a specific issue. Still, they usually only take up the tiniest fraction of
the total available space, X. Likewise, the generator’s samples should only take
up a tiny part of X.

In addition, Goodfellow et al. demonstrated that training G to minimize the
Jensen- Shannon (JS) divergence between pg(data) and pdata(data) is equal to
reducing D, when D is optimum. The update may be less accurate or less sig-
nificant if D is not optimum [3]. This theoretical discovery has sparked research
into alternative distance-based cost functions.

5 Dataset

Finding a good dataset for the experiment is a difficult task. For category and
numerical data, we are implementing our model. We begin by using a dataset
about the European automobile industry which has 9 features including 46405
sets of data. A sample of the dataset is shown below in Table 1.
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Table 1. A dataset about the European automobile industry

Mileage Make Model Fuel Gear OfferType Price hp Year

0 23500 BMW 316 Diesel Manual Used 6800 116.0 2011

1 92800 Volkswagen Golf Gasoline Manual Used 6877 122.0 2011

2 149300 SEAT Exeo Gasoline Manual Used 6900 160.0 2011

3 96200 Renault Megane Gasoline Manual Used 6950 110.0 2011

4 156000 Peugeot 308 Gasoline Manual Used 6950 156.0 2011

Another collection of data that we utilize in the experiment is made up of
student test scores contain 8 features and 1000 set of data. A sample of the
dataset is shown in the following Table 2.

Table 2. A dataset of student test scores

Gender Race/ethnicity Parental level of education Lunch Test preparation course Math score Reading score Writing score

0 Female Group B Bachelor’s degree Standard None 72 72 74

1 Female Group C Some college Standard completed 69 90 88

2 Female Group B Master’s degree Standard None 90 95 93

3 Male Group A Associate’s degree Free/reduced None 47 57 44

4 Male Group C Some college Standard none 76 78 75

6 Experiment and Result Evaluation

The goal of the implementation is to produce a bunch of new data with the help
of the Generative Adversarial Networks. Our motive is to use the same algorithm
for numerical and categorical tabular data to data augmentation. Preparing the
dataset is one of the essential parts of any implementation.

6.1 Data Analysis

Preparing data for using them in the proper algorithm, many processes are
needed to fulfill the dataset. Developing the dataset with accurate data and
rearranging them in the data frame is part of data analysis. Data cleaning,
inspection, transformation, and modeling are the main factors considered in this
section. We also integrated all the required processes of data analysis for my
proposed algorithm.

6.2 TGAN Model Setup

We use the processed data set to test our TGAN model. Furthermore, since
we employed both category and numerical data, we tested the performance in
three distinct methods. One is for numerical data, another is for categorical data,
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and the third is for a mixture of categorical and numerical data. In addition,
we run the model on two distinct datasets to see how they vary. The initial
step in the model setup is to choose specific hyperparameters for the model. We
fixed the hyperparameter as follows: latent dim= 100, n epochs = 5000, n batch
= 8000, and n eval = 100. We also experiment with other hyper-parameter
values. However, with that parameter value, we eventually receive a satisfactory
outcome.

For various sorts of data sets, we utilize the same flow. As shown in the
diagram Fig. 2, the initial step in this GAN model is to construct the generator.
As we can see from the theoretical discussion, the generator plays a vital role
in the generation of new data. The discriminator, which is used to examine and
determine the correctness of created data. This discriminator is responsible for
the whole performance. The final model, which we designate as GAN, combines
the generator and discriminator models. We’ll train our model with our supplied
data set when we finish building this final model. As we explained in the data
analysis section, we prepared our data via a series of steps.

6.3 Performance Analysis

We encountered several differences in experience when we incorporated numeri-
cal and categorical data for various datasets. It is highly typical for all computa-
tions to be performed mathematically, making it simple to use numerical data.
Beside that, there’s a chance to receive a more accurate result in the output. As
a consequence, it seems that GAN model is learning to provide more accurate
results. If we take a look on the data that are generated from TGAN in the
table, then we understand the values of Table 2 are symmetrical as input data
(Table 3).

Table 3. GAN generated synthesized numerical data

Mileage Price hp Year

0 5.714193e+10 1.990812e+10 84972.0 22164.0

1 3.290286e+09 5.752948e+10 183475.0 22220.0

2 1.680598e+11 2.000913e+09 108931.0 22121.0

3 1.796668e+11 7.170141e+09 136219.0 22162.0

4 5.176544e+10 3.075806e+09 79564.0 22169.0



396 P. K. Saha and D. Logofatu

On the other hand, if we observe for a student’s performance dataset, we
obtain the Table 4 below as a result the left side is the input data and the right
is the synthesized data.

Table 4. Actual data and GAN generated synthesized numerical data

Math score Reading score Writing score Math score Reading score Writing score

0 72 72 74 79.0 74.0 76.0

1 69 90 88 78.0 78.0 85.0

2 90 95 93 64.0 75.0 73.0

3 47 57 44 86.0 87.0 88.0

4 76 78 75 51.0 60.0 57.0

The same scenario of both categorical and numerical features are used
together for student test score data we get the result in the Fig. 4, which is
more suitable then the car information result.

Fig. 4. Graphical representation of GAN Model training for student test scores Dataset

So, based on the conversation and the accompanying graph, we can conclude
that if the data table has more unique values in categorical features, the GAN
model’s performance suffers and produce a very distorted result at the end.’
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Fig. 5. GAN generated synthesized including categorical and numeric data

In the Fig. 5 is represented the final output of the GAN generated synthesized
data, containing the categorical and numerical features. As we can see that the
categorical features are shown in dummy data format. And we need to apply the
process of work to retrieve the actual data from the dummy value. On the other
hand, if we look at the numerical value, it seems pretty perfect and similar to
the input data.

7 Conclusion and Future Work

Transforming data from original records into GAN-recognized input impacts
overall performance, demonstrating the importance of representing relational
data. A hybrid optimization methodology that co-trains GAN and record repre-
sentation might lead to some intriguing future work.

We find that GANs are better suited to massive datasets because they can
successfully capture correlations between features. That is, we demonstrate that
using our approach, we can produce useful synthetic data. The usage of relational
databases is widespread, yet modeling them is very challenging. Our architecture
is capable of supporting a single table with both numerical and categorical data
elements. Eventually, we’ll look at utilizing GAN to model sequential data and
many tables. Some approaches have difficulty combining tabular data with noise
or anomaly. Such instances are inaccessible to the TGAN.

For instance, the model picks up on the basics of data produced from a clean
and analyzed data collection. Our method’s capabilities may be summed up as
follows:

1. Production of high-quality tabular data in real-time, based on specified char-
acteristics.

2. Collection and analysis of any size dataset.
3. The processing time required increases linearly with the quantity of output

data.
4. Numeric and categorical data may be processed successfully.
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Future Work. Machine learning hyper-parameters are parameters that influ-
ence how well a system learns. Choosing the proper collection of values while
developing a machine learning model, in our instance, the machine learn-
ing model is GAN, may be termed Hyperparameter Optimization or Hyper-
parameter Tuning. Introduce a new Table-GAN which can handle multiple table
data input at a time including numerical and categorical value.
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Abstract. In this paper, we apply reinforcement learning to the power manage-
ment control of building multi-type air-conditioners. In general, reinforcement
learning requires several tens of thousands of training episodes before the con-
trol performance reaches a practical level. Therefore, applying it directly to air-
conditioning control in 10-min intervals would require unrealistic training days as
several years. We attempted to shorten the learning period by learning in advance
on a virtual building that emulates the dynamic characteristics of an actual build-
ing. Since it is difficult to create exactly the same air-conditioning environment
of the actual building, we propose a method to select the closest one from several
virtual buildings based on the differences of immediate reward.

Keywords: Reinforcement learning · Transfer learning · Building multi-type
air-conditioner

1 Introduction

In office buildings, the power consumption of air-conditioning accounts for about 40%
of the total power consumption [1], and its proper management and control is impor-
tant from both economic and environmental aspects. In the power management of
office buildings, automatic control of building air-conditioning power to achieve energy
conservation while minimizing the impact on occupants is essential.

In recent years, there have been many studies on adapting machine learning algo-
rithms to building air conditioning management [2]. However, most of the studies have
been conducted on centralized heat source type air-conditioners, and few have been
conducted on building multi-type air-conditioners [3].

Wehave studied a control scheme to adjust the power reduction and room temperature
comfort according to the priority for building multi-type air-conditioners [4]. In this
previous study, we created a Neural Network: NN which predicts the future power
consumption and room temperature and used it to search for the optimal power limitation
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command pattern. However, it was necessary to conduct a special operation in the target
building for at least one year to collect training data for the NN. This has been a practical
problem of the method.

Therefore, in this study, we attempt to use reinforcement learning [5] as a power
management control algorithm for building air conditioners to automatically adapt to
various air conditioning environments in office buildings. In general, reinforcement
learning requires thousands to tens of thousands of trials before the control performance
reaches the practical range, and an unrealistically long learning period is required if the
learning is performed directly on the actual building.

In order to shorten the learning period in the actual building, we attempted transfer
learning approach [6] in which the model is trained using a virtual control target on a
computer and then transferred the knowledge to the actual environment.

In this study, a virtual building is developed using an emulator which simulates the
dynamic characteristics of the power and room temperature of a building multi-type air-
conditioner, and pre-learning is performed on the virtual building to shorten the learning
period after the transfer to the actual building. Since there is a difference in the air-
conditioning environment (heat load, heat capacity, etc.) between the virtual building and
the actual building, we propose a method in which pre-training is performed on multiple
virtual buildings in parallel, and the closest virtual building is selected from among them
using the difference in immediate reward when training on the actual building.

Experiments on actual buildings are not reproducible and it is difficult to compare
with normal operation under the same conditions. Therefore, we confirmed the effec-
tiveness of the proposed method in shortening the learning period by using a virtual
building.

2 Power Consumption Management System for Building
Multi-type Air-Conditioners

Building multi-type air-conditioners, also called VRFs [7], are distributed type air-
conditioning system which is widely used in Japan and Asia, especially in small and
medium-sized office buildings. In this air-conditioning system, one outdoor unit supplies
refrigerant to multiple indoor units, and there are usually several to several dozen out-
door units and several dozen to several hundred indoor units in one office building. Each
indoor unit independently controls the refrigerant flow rate, and the refrigerant piping
length reaches tens to hundreds of meters, so the pressure and temperature in the refrig-
erant piping changes in an extremely complicated manner. The refrigerant compressor
in outdoor unit accounts for about 90% of the power consumption of the air-conditioning
system.

In the power management and control system for building multi-type air-
conditioners, it is necessary to manage the power of dozens of outdoor units and room
temperature of hundreds of indoor units, which vary in a complicated manner.

In this paper, we assume that the Building Energy Management System (BEMS)
determines the hourly power target at the beginning of each day, which is determined
by the annual power rate target set by the building manager or the contracted power
amount with the power company. Based on this target power amount, the BEMS sends
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Fig. 1. Power consumption management of building multi-type air-conditioners.

power limitation commands Pb
L to each outdoor unit b of the building multi-type air-

conditioning system in 10-min intervals to manage and control the power consumption
of each outdoor unit, as shown in Fig. 1. At this time, even when there is room for
a one-hour target, depending on the location within the building, there may be cases
where it is desirable to reduce power consumption even at the slightest sacrifice of room
temperature comfort, for example, in entrances and warehouses, and cases where it is
desirable to maintain room temperature, for example in server rooms. In other words,
the BEMS needs to manage three things: electricity rates in 10-min intervals, room
temperature comfort, and the target amount of electricity per hour.

In this research, reinforcement learning algorithm is applied to the power manage-
ment control for every 10 min and controls the above according to the room temperature
priority. However, as we mentioned, reinforcement learning requires several thousand
to several tens of thousands of trials and training before the control reaches a practical
level, and the training period for the control of every 10 min reaches several years.

Therefore, we created a virtual building that simulates an actual building on a com-
puter in advance to conduct preliminary learning, and then transfer the model to the
actual building. In this study, we aim to complete the transfer learning in about 20 days
of one summer season.

3 Reinforcement Learning for Building Multi-type
Air-Conditioners

3.1 Q-Learning Control

In this study, Q-learning [8], which is one of the reinforcement learning algorithms, is
used for the power management control of building multi-type air-conditioners. We call
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this control Q-Learning Control (QLC). The state-action value function of QLC is as
follows.

Q[s(m), a(m)] ← (1 − α)Q[s(m), a(m)]

+ α
{
r(m) + γ min

a
Q[s(m + 1), a(m + 1)]

}
(1)

Here, Q[s(m), a(m)] is the action value function, which represents the value of taking
action a(m) in state s(m). ← denotes the update of the value. The update cycle is
τm = 10 min, where m is the control frame number which increments every τm. α is
the learning rate and γ is the discount rate. r(m) is the reward and calculated using the
evaluation function described in the next section.

In this paper, the state vector s(m) and action value a(m) are as follows.

s(m) =
[
TO(m),Tb

SA(m), Ŵ b
WCAP(m + 1)

]T
(2)

a(m) = Pb
L(m + 1) (3)

Here, TO(m) is the outdoor temperature [°C], Tb
SA(m) is the average room temperature

deviation [°C], and Ŵ b
WCAP(m + 1) is the current residual power [kWh] of one hour.

TO is discretized into three steps, and Tb
SA and Ŵ b

WCAP are discretized into six steps.
Pb
L(m + 1) represents the power limit command value [kW] for the next control frame,

discretized into six steps from 0 to 100% in 20% increments. The Tb
SA(m) represent the

difference between the set room temperature and the measured room temperature, and
it is calculated by the following equation.

Tb
SA(m) =

∑NIU
i=1 C

b
Pi

[
Tb
Ai(m) − Tb

Si(m)
]

∑NIU
i=1 C

b
Pi

(4)

Here, NIU is the number of indoor units, Cb
Pi is the rated cooling capacity [kW], Tb

Ai is
the room temperature [°C], and Tb

Si is the set temperature [°C] of indoor unit i connected
to outdoor unit b.

3.2 Definition of Evaluation Function

In this chapter, an evaluation function J bQLC is defined to calculate the reward ofQLC.The
evaluation function has three indexes, the electricity price, room temperature comfort,
and the excess of the one-hour target power consumption amount.

J bQLC = αbY b(m) +
(
1 − αb

)
Zb(m) + βbX b(m) (5)

where αb is the balance coefficient between economy and comfort, βb is the excess
penalty coefficient for the target electricity quantity,Y b(m) is the electricity price penalty,
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Zb(m) is the room temperature penalty andX b(m) is the excess electricity penalty.Y b(m),
Zb(m) and X b(m) are calculated by the following euations.

Y b
QLC(m) = 1

RmaxWb
10max

R(m)Wb
10(m) (6)

Zb
QLC(m) =

[
Tb
SA(m)

]2
(7)

X a
QLC(m) = Wb

EX (m)2 (8)

Here, R(m) is the unit price of electricity [JPY],Wb
10(m) is 10-min power consumption

[kWh]. Rmax and Wb
10max are constants for normalization. Wb

EX denotes the normalized
power excess and is defined by the following equation.

if Wb
10(m) > Wb

WCAP(m) then Wb
EX = Wb

10(m) − Wb
WCAP(m)

Wb
10max

otherwise Wb
EX = 0 (9)

Wb
WCAP is the amount of residual power [kWh].
Since J bQLC is a penalty function (low value means good control), the immediate

reward rb of QLC is calculated by subtracting J bQLC from the offset value Joffset .

rb(m) = JoffsetQLC − J bQLC(m) (10)

We also define the control score SQLC to evaluate learning progress.

SQLC = rD − rDN
rDEND − rDN

× 10 + 80 (11)

where rD is the total daily reward of rbQLC(m), rDN is the total daily reward of normal
operation, and rDEND is the total daily reward when learning saturated, respectively.
80 points of SQLC means that the control performance of the QLC is equivalent to
normal operation, and 90 points means that the control performance reaches equivalent
to completion of learning.

4 Virtual Building

4.1 Dynamic Model of Building Multi-type Air-Conditioner

In this chapter, we define a mathematical model which simulates the power consumption
and the room temperature of building multi-type air-conditioner. The power change of
outdoor unit is simulated by the following equation.

P(t + �t) = P(t) + D(t)�t (12)
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D(t) = SPLOVDDWN +
(
1 − SPLOV

){
SP

∗
OVDDWN +

(
1 − SP

∗
OV

)
SPLFRS

P∗
FRDUP

}
(13)

Here, t is a discrete time [s] and �t is the simulation time step [s], where �t = 10
[s] in this study. P(t) is an electric power [kW], D(t) is a power change rate [kW/s],
SPLOV and SPLFR are the state (0 or 1) of the electric power relative to the power limitation
command value PL [kW], and SP

∗
OV and SP

∗
FR are the status (0 or 1) for the power required

for temperature control P∗(t) [kW].
P∗(t) is calculated by a multiple regression equation created by extracting the vari-

ables that contribute to the determination of the electric power required for temperature
control [9].

The room temperature TAi [°C] of each indoor unit i is calculated by the following
equations.

TAi(t + �t) = TAi(t) + �TAi(t)�t (14)

�TAi(t) = 1

CHi
(QLi(t) − QACi(t)) (15)

where �TAi(t) is the room temperature change rate [°C/s], CHi is the heat capacity
[kW/°C],QLi(t) is the heat load [kW], andQACi(t) is the cooling power of the indoor unit
[kW]. The air-conditioning power of the indoor unit,QACi(t), is obtained by distributing
the air conditioning capacity of the outdoor unit,QAC(t) [kW], according to the following
equations.

QACi(t) = STHiCPi∑NIU
i=1 STHiCPi

QAC(t) (16)

QAC(t) = kCOPηCOPP(t) (17)

Here, ηCOP is the COP (Coefficient Of Performance) of the outdoor unit, kCOP is the
COP correction factor based on the outdoor temperature, the total capacity of running
indoor unit, and the refrigerant piping length. The STHi is the refrigerant supply state
(0 or 1). When the room temperature of the indoor unit reaches the set temperature TSi
– 0.5 °C, the electronic expansion valve (EEV) of the relevant indoor unit closes, and
the refrigerant supply is stopped (STHi = 0). When the room temperature raised up and
reached TSi + 0.5 °C, the EEV opens (STHi = 1).

The heat load QLi(t) is composed by the following equation.

QLi(t) = QOi(t) + QRi(t) + QIi(t) + QVi(t) + QCi(t) + U3 (18)

Here, QOi(t) is the heat transfer from exterior walls [kW], QRi(t) is the solar radiation
load throughwindows [kW],QIi(t) is the internal heat load [kW],QVi(t) is the ventilation
load [kW], QCi(t) is the mutual heat load (cross-effect) with the adjacent indoor unit
air-conditioning area, and U3 is the term to simulate the minute-by-minute heat load
fluctuation.
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Fig. 2. Configuration of the virtual building.

Table 1. Specifications of air-conditioners installed in the virtual building.

Air-con. type PRat QACRat CPi × NIU

Type1 13.3 kW 45 kW 8.0 kW × 6

Type2 15.0 kW 45 kW 8.0 kW × 5
7.1 kW × 1

Type3 20.8 kW 68 kW 11.2 kW × 6

Type4 25.4 kW 73 kW 14.0 kW × 5
5.6 kW × 1

4.2 Development of Virtual Building

Byusing the abovemathmaticalmodel, we have created a “virtual building” that assumes
a typical office building. The configuration of the virtual building is shown in Fig. 2. The
building is a two-story office building with four different types of air-conditioners of
Type 1 to Type 4. The specifiacitons of each air-conditioner are shown in Table 1. In the
Table 1, QACRat is the rated cooling capacity [kW], PRat is the rated power consumption
[kW].

The floors of the virtual building are divided into two by a central partition, and two
systems of building multi-type air-conditioners are installed on each floor.

5 Multi-track Method

In general, it is difficult to accurately grasp the air-conditioning environment such as heat
load or heat capacity of the actual building in advance, and there are some differences
between the virtual building and the actual buildings. If these differences are large, the
effect of shortening learningperiodbypre-learning in thevirtual buildingwill deteriorate,
and it will be difficult to complete the transfer learning in 20 days of summer.
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Therefore, as shown in Fig. 3, we prepare multiple derived virtual buildings that
assumedifferent air-conditioning environments in advance and complete the pre-learning
in each derived virtual building. The learning process in each virtual building is called
a “Track”. When learning in the actual building, the nearest Track will be selected by
comparing difference of immediate rewards of Q-learning, and its state action value will
be used for transfer learning. For this selection, we used the reward distance LRx, as the
following equation.

LRx =
√√√√

∑Na
a=1

∑Ns
s=1 VACT (s, a)VTRx(s, a){(rACT (s, a) − rTRx(s, a))}2∑Na

a
∑Ns

s VACT (s, a)VTRx(s, a)
(19)

Here, Na is the number of discretization steps of state s and Na is the number of dis-
cretization steps of action a. VTRx(s, a) is the visit experience of the state action pair
(s, a) on the pre-training Track x (with visit: 1, without visit: 0), and VACT (s, a) is the
visit experience of the state action pair in the actual building (with visit: 1, without visit:
0). rACT (s, a) is the average reward in the actual building, rTRx(s, a) is the average reward
of the state action pair (s, a) of the Track x. We call rACT (s, a) and rTRx(s, a) “r-Table”
and their state action values QACT (s, a) and QTRx(s, a) the “Q-Table”.

The reasonwhy r-Table is used for comparison instead of the Q-Table is as follows. If
the future state action value is not estimated correctly, the current state action value will
also not be estimated correctly, and it will take long time to obtain the correct shape of Q-
Table.When the correct state action value is obtained in the actual building, it means that
learning has already been completed. The immediate reward can be compared regardless
of the learning state of the state action value.

Each day, after the end of the day’s control, theTrackwith the smallestLRx is selected.
Then, the next day, QTRx(s, a) of the nearest Track is taken over for control.

Fig. 3. Conceptual diagram of the multi-track method.

As shown in the Fig. 4, immediately after the start of transfer learning on the actual
building, rACT (s, a) has many parts that have not yet been updated, and because the
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Fig. 4. An example of selection of the nearest track.

values are stored differently from the average reward due to the uncertainty of the air-
conditioner, but as the rACT (s, a) takes shape, a trackwith heat load characteristics closer
to those of the actual building is gradually selected.

6 Simulation

6.1 Simulation Settings

Since the actual machine test is not reproducible, we conducted a simulation using a
virtual building to evaluate the learning progress of the QLC. The evaluation function αb

is set to 0.8 (emphasis on reducing electricity costs) for the first floor and 0.2 (emphasis
on maintaining room temperature) for the second floor, and the penalty factor β for
exceeding electricity costs was set to 4.0. The pre-study period was 200 days, and the
actual summer weather conditions (outdoor temperature and solar radiation) were used
for the study. For the multi-track method, the internal heat generation QIi(t) is changed
by the factor kQI and the heat capacity CHi is changed by the factor kCH . kQI and kCH
were set to three levels each, and a total of nine tracks were prepared for the pre-training.

We set the internal heating factor kQI = 1.5 and the heat capacity factor kCH = 0.5
uniformly throughout the entire building. This condition setting resulted in a steeper
temperature gradient.

6.2 Simulation Result

Figure 5 shows the QLC control time series for the standard virtual building (kQI = 1.0,
kCH = 1.0) after 200 days of pre-training. Figure 6 shows the transition of QLC score for
the case in which only the standard virtual building was used for pre-training (without
the multitrack method). Figure 7 shows the simulation results for the case in which the
multi-track method is used.

As shown in the QLC time series in the Fig. 5, the first floor allowed the room
temperature to rise and reduced the power consumption, while the second floor kept the
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Fig. 5. Time series of power and room temperature controlled by the QLC.

average room temperature deviation Tb
SA within +1 °C, which was the intended control

of the evaluation function.
In the case of using only the standard virtual building (without themultitrackmethod)

shown in the Fig. 6, the score does not improve 20 days after the start of transfer learning
and remains around 80 points, which is equivalent to normal operation. After that, the
score slowly recovers, and it takes almost 8 years (3600 times) to reach the 90-point level.
In contrast, with the multi-track method shown in the Fig. 7, the mean score reached the
90-point level within 20 days, and the variance ±1σ was within 80 points.

7 Discussion

As shown in the Fig. 6, when there is a large difference between the air-conditioning
characteristics of the virtual building and those of the actual building, pre-learning in
the virtual building shows little effect in reducing the number of learning days. This is
because it takes time to change the shape of the behavioral value function QACT (s, a)
surface, since the simple Q-learning used in this study updates only one state-action pair
per one step of learning.
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In the Fig. 7, the reason for the drop in the score after the transition is thought to
be that the immediate reward table is not yet complete at the beginning of the transition
and the appropriate track close to the actual building cannot be selected. Later, as the
immediate reward table rACT (s, a) was filled in, they were able to select an appropriate
track, and the score rapidly recovered.

Fig. 6. Transition of QLC score without multi-track method.

Fig. 7. Transition of QLC score with multi-track method.
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In this study, we created tracks with only heat capacity and internal heat generation
load, but it is also possible to create trackswith other parameters such as ventilation. Since
the number of tracks increases exponentially with the number of parameters, it should
be noted that the computation time for pre-learning will also increase accordingly. It is
necessary to decidewhich parameters should be selected as tracks by carefully observing
how much the parameters affect the control performance.

Even if the number of tracks is increased, the impact on the computation time in
the actual building control is expected to be negligible because the multi-track method
simply compares r-Tables, rACT (s, a) with rTRx(s, a).

8 Conclusion

In this paper, power management control of building multi-type air-conditioners based
on Q-learning algorithm is described.We define a virtual building consisting of dynamic
models of electric power and room temperature. In addition to using virtual buildings
for pre-training, we proposed the multi-track method of which multiple pre-training
sessions are conducted using virtual buildings with different heat load and heat capacity,
and verified the effectiveness of the method by simulation.

From the result,we confirmed themulti-trackmethod enabled thepowermanagement
control to reach the practical level within 20 days.

In the future, we will study more about the parameter combination of the tracks and
the algorithm to determine the hourly target power consumption.
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Abstract. The paper introduces a new dataset to assess the perfor-
mance of machine learning algorithms in the prediction of the seriousness
of injury in a traffic accident. The dataset is created by aggregating pub-
licly available datasets from the UK Department for Transport, which
are drastically imbalanced with missing attributes sometimes approach-
ing 50% of the overall data dimensionality. The paper presents the data
analysis pipeline starting from the publicly available data of road traffic
accidents and ending with predictors of possible injuries and their degree
of severity. It addresses the huge incompleteness of public data with a
MissForest model. The paper also introduces two baseline approaches
to create injury predictors: a supervised artificial neural network and
a reinforcement learning model. The dataset can potentially stimulate
diverse aspects of machine learning research on imbalanced datasets and
the two approaches can be used as baseline references when researchers
test more advanced learning algorithms in this area.

Keywords: Class imbalance · Data imputation · Feature engineering ·
Neural networks · Reinforcement learning · Q–learning · Traffic
accidents

1 Introduction

Nowadays detailed information about traffic accidents is becoming available for
independent analysis. Authorities that collect such data may release, along with
traditional statistical aggregations, actual data points that are a rich source of
information. Apart from time, location, number of vehicles involved and similar
factual information, the data record often concerns subjective measures such as
the severity of the accident, which is annotated by trained traffic police officers.

In the UK, the Department for Transport (DfT) aggregates and releases a
dataset of reference with many details about each accident recorded. While data
are available, there is a huge imbalance in the information provided between
many minor events, e.g., collisions in parking lots, and the– fortunately less
frequent– major events that involve hospitalisation or worse.
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Several researchers have examined parts of the UK’s DfT traffic accident
data in order to answer a variety of research questions. Among them, when it
comes to predicting accident severity, [1,2,5] and [6], a central research question
is: “in the scenario of a traffic accident with injuries, how severe is the injury
going to be, based on available data on accident conditions, vehicle information
etc.?” Studies, like the ones cited above, have focused on analysing a specific year
or period of traffic data and although they have considered accident severity in
general, they did not focus on predicting the seriousness of injuries. This problem
comes across as being very challenging because the DfT considers that severity
of injury is a triage, namely slight, serious, or fatal1, which leads to a highly-
imbalanced distribution of data that impacts the prediction accuracy, especially
over minority classes (e.g. fatal accidents), of the methods tested.

Thus the paper considers the prediction of the seriousness of injury as an
imbalanced multi–class classification problem. It extends previous work, [1,2,
5] and [6], by applying a systematic data analysis and processing pipeline to
combine data from disparate sources of the UK’s DfT from years 2005–2018
in order to create a new larger dataset. The pipeline incorporates components
for data imputation, based on domain knowledge and the predictive power of
variants of Random Forests, and feature importance analysis components, which
use categorical feature correlation, mutual feature information and χ2–tests, with
more detailed description of each pipeline component to be presented in a later
section.

Lastly, the paper proposes two evaluation approaches to create machine learn-
ing predictors using the new dataset. These could be used as baseline references
when designing machine learning methods to predict the seriousness of injuries
in the scenario of a traffic accident given certain accident conditions, such as
involved vehicle information and some personals details (anonymised) of the
potentially-injured person and so on.

The rest of the paper is organised as follows. Section 2 presents relevant work,
while Sect. 3 describes the data sources that were used. Section 4 describes the
components of the pipeline that were used to create the new dataset. The baseline
models are presented in Sect. 5, and their evaluation is presented in Sect. 6. The
paper ends with conclusions in Sect. 7.

2 Relevant Work

UK traffic accident datasets are imbalanced with several missing attributes. Pre-
vious studies, [1,2,5,6], attempted to deal with the challenges in these data by
limiting the dimensionality of the problem, focusing for example on data from
a specific year or period, exploring the potential of specific subsets of attributes
that were available across all data points considered, or by transforming the
multi–class problem into a binary one. Although overall satisfactory accuracy
was produced, all models experienced very low accuracy over minority classes.

1 “Instruction for the completion of accident reports”, Dept. for Transport (2005).
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More relevant to this paper is the recent effort in [5], where the authors used
a variety of tools, such as different statistical methods and Machine Learning
(ML) algorithms, in the search for the right “mix” of feature selection and ML
algorithm that would provide good predictors for accident severity. The best
results were achieved by Random Forests (RFs) running over an input of 14
different features, from, e.g., the age of the driver to the weather conditions. A
RF achieved an overall accuracy of 85.08% with 15.12%, 22.03% and 96.58%
correct prediction for the fatal, serious and slight class of injuries, respectively.
However, the experiments used only c. 136k records from accidents reported in
2016, which is rather limited given the availability of data reported by the DfT2.

In comparison to that approach, and others cited above, this paper describes
a pipeline that includes acquiring, data-cleaning, and inputing long-term acci-
dent data (2005–2018) to create a new large dataset for multi–class classification.
This can potentially enable ML methods to pick up small fluctuations or rela-
tively rare events (e.g. did not appear in 2015 or 2016), but can determine a
non-trivial amount of accident cases, such as ice on the road that does appear
only sporadically in the UK but certainly determines a spike in the number
and gravity of accidents. Furthermore, the dataset is expanded horizontally by
including many new features, in search for non-standard influences.

3 Data Sources

The UK’s Department for Transport publishes three datasets per year, uploaded
in the Road Safety Data webpage of the data.gov.uk website:

– Accidents, with variables related to accident conditions. Each accident is
identified by a unique accident ID, called “Accident Index”.

– Vehicles, with variables related to vehicle characteristics, driver informa-
tion and driver action before the accident. Each vehicle is identified with a
unique vehicle reference number, “Vehicle Reference”, and linked with acci-
dents dataset through an “Accident Index”.

– Casualties: information about injured individuals, linking an injury with
accidents and vehicles through “Accident Index” and “Vehicle Reference”.

The paper exploits DfT data from 2005 to 2018, with data from 2019 used
for testing. Table 1 shows data distribution in the new aggregated dataset, high-
lighting the drastic imbalance among the target classes data.

Table 1. Distribution of casualty severity in the new aggregated DfT data.

Slight 2,539,715 87.10%

Serious 345,997 11.87%

Fatal 30,171 1.03%

2 https://data.gov.uk/dataset/cb7ae6f0-4be6-4935-9277-47e5ce24a11f/road-safety-
data.

https://data.gov.uk/dataset/cb7ae6f0-4be6-4935-9277-47e5ce24a11f/road-safety-data
https://data.gov.uk/dataset/cb7ae6f0-4be6-4935-9277-47e5ce24a11f/road-safety-data
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4 Creating the Dataset

The first phase in creating the new dataset involved accessing and merging data
from disparate sources into a single dataset. Next, the work dealt with missing
values, running missing value imputation, whenever possible, and assessing the
potential importance of each feature for the classification phase.

Imputation was based on domain knowledge and the predictive power of
Random Forests. With regards to assessing the potential importance of each
feature, which is relevant for machine learning classifiers, various techniques
were used. Since most of the variables are nominal, χ2–tests, Cramer’s mutual
information, and Theil’s U coefficients were used [9]. For correlation of numerical
features with nominal ones, the ANOVA test and correlation ratios [9] were
computed. Once feature importance analysis and imputation are completed, data
can be transformed to an input suitable for classification methods. The details
of the data analysis pipeline are presented below.

4.1 Dataset Merging

A fragment of the variables for the three datasets (Accidents, Vehicles, Casual-
ties), starting from 2005 and up to 2018, is shown in Table 2, where the target
variable, “Casualty Severity”, is shown in italics. The datasets were merged by
using Accident Index and Vehicle Reference as “foreign keys”: using Vehicle
Reference, each casualty was matched with a vehicle; pedestrians were matched
with vehicles that caused their injury. Next, the output records of the above join
were matched with accidents using Accident Index. The final output consists of
2,915,883 data points and 66 variables/features in total (cf. with Table 1).

Table 2. Dataset variables

Accidents Vehicles Casualties

Accident index Accident index Accident index

Location easting OSGR Vehicle reference Vehicle reference

Location northing OSGR Vehicle type Casualty reference

Longitude Towing and articulation Casualty class

Latitude Vehicle manoeuvre Sex of casualty

Police force Vehicle location-restricted lane Age of casualty

Accident severity Junction location Age band of casualty

Number of vehicles Skidding and overturning Casualty severity

. . . . . . . . .
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4.2 Dealing with Missing Values

Once merged, the DfT data turned out to be of rather poor quality with only
411,158 data points containing all necessary information, i.e., 86% of the avail-
able data points had at least one missing variable value.

Most of the variables in the dataset are categorical with integer encoding,
and missing values are represented with −1. In addition, some variables include
encoding for “unknown” as a separate category, e.g. like the feature Weather
Conditions. Initially, the following features were dropped:

– Accident Index, Vehicle Ref. and Casualty Ref.: administrative refer-
ences that are not useful for classification.

– Age Band of Driver and Age Band of Casualty: data already include
ages for casualties and drivers.

– Latitude, Longitude and LSOA of Accident Location: data already
include Eastings and Northings.

– Did Police attend the Scene of the Accident, Accident Severity and
Number of Casualties: post-accident information is not included in the
research.

– Road Maintenance Worker, Journey Purpose of Driver and Engine
Capacity: these variables have an excessive number of either missing,
“unknown” or “not applicable” values. Regarding Engine Capacity, many
of the available values were found to be inconsistent with the Vehicle Types.

Lastly, for Urban or Rural Area, Sex of Casualty, Sex of Driver, Pedestrian
Location, Pedestrian Movement and Light Conditions, all values for “unknown”
were re-encoded as missing values with −1.

4.3 Missing-value Imputations Based on Domain Knowledge

Domain knowledge was derived from available DfT documentation about acci-
dent data gathering and relevant guidelines. That was further informed by criti-
cal analysis and reasonable assumptions based on the known variables, and used
for manual imputation of the missing values as follows:

– Missing values for Car Passenger, which were related to Casualty Type of
buses and vans, were replaced with “Not car passenger” value.

– It was assumed that bicycles, motorcycles and mobility scooters have no Tow-
ing or Articulation.

– Bicycles, horses, motorcycles and trams cannot be classified as left or right
hand drive vehicles. A new category was created for “unknown”.

– Many missing values for Junction Location, Junction Detail, Junction Control
and 2nd Road Class were corrected, as they referred to accidents that did not
occurred near a junction.

– Some missing values for Age of Driver, Age of Casualty, Casualty Home Area
Type and Driver Home Area Type were corrected by checking samples where
the casualty was the driver.
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– All missing values for light conditions were set to “Daylight” after checking
Time value of the accident.

Lastly, data points where Eastings, Northings or Time values were missing
were dropped from the data. The result of this phase was a record with 53
features and 2,915,387 data points; still 1,471,895 data points, or 50.49% of the
total, had one or more missing values.

4.4 Time Processing, Feature Correlation and Feature Importance

The next step in the pipeline was to inspect the numerical variables of the
produced dataset, assess the importance of features and measure possible corre-
lations and collinearities among variables.

Variables Date and Time were discarded after they were converted into new
variables Hour, Month and Year. Next, the following features were treated as
numerical: Number of Vehicles, Speed Limit, Age of Casualty, Age of Vehicle, Age
of Driver, Location Easting OSGR and Location Northing OSGR. All remaining
variables were treated as nominal and represented by discrete values without any
form of intrinsic ranking. Casualty Severity, the target variable, is also nominal.

Due to the mixture of nominal and numerical variables in the data, various
feature selection and correlation metrics were used (the threshold for considering
two features as highly correlated was set to 0.7), depending on the combination
of examined features:

– Pearson’s correlation was calculated for all pairs of numerical variables.
– A χ2–squared statistic and mutual information between each categorical vari-

able and Casualty Severity were used to assess the importance of each cate-
gorical variables wrt. the target variable.

– the ANOVA F–statistic was calculated to assess the importance of each
numerical variable with respect to Casualty Severity.

– Correlation Ratio coefficient for each pair of categorical–numerical variables
was employed to check possible correlation in input variables, and confirm
the importance of numerical variables wrt. Casualty Severity.

– Cramer’s V and Theil’s U correlation were calculated for each pair of cate-
gorical variables to detect any correlation among input variables. Unlike the
rest of correlation coefficients, Theil’s U is anti-symmetrical and is based on
mutual information (entropy) between two variables.

After assessing features importance, Casualty Type, Vehicle Type and Vehi-
cle Manoeuvre were found to be the most important categorical variables, while
Number of Vehicles and Speed Limit were the most important numerical ones.
On the opposite end, Carriageway Hazards, Was Vehicle Left Hand Drive and
Pedestrian Crossing-Human Control were the least important categorical vari-
ables; Eastings and Northings were the least important numerical ones.

Lastly, analysis of feature importance and computation of correlation
revealed that:
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– Variables Police Force, Local Authority (District), Local Authority (High-
way), Eastings and Northings are highly correlated. Only Local Authority
(District) was kept as it was found important wrt. Casualty Severity.

– Casualty Type is highly correlated with Casualty Class and Vehicle Type,
and it was dropped.

– Variables Casualty Home Area Type and Driver Home Area Type are highly
correlated with each other, so the former was dropped.

– Variables 1st Road Number and 2nd Road Number were dropped due to their
high cardinality.

4.5 Imputation with MissForest

The MissForest algorithm [8] was used to obtain missing–value imputation.
MissForest is a type of Random Forest algorithm suitable for handling high–
dimensional datasets with mixed data types (categorical and numerical), which
is exactly our case. Given the size of the dataset and taking into consideration
memory requirements, the procedure was applied iteratively:

1. Speed Limit and Weather Conditions were initially imputed, based on non-
missing variables, to increase the number of complete rows.

2. The remaining variables were divided in groups based on topic: Junctions
and road classes, Pedestrians, Vehicle–site interaction, Drivers–vehicles, Age
of Vehicle and Driver IMD Decile.

3. For each imputed variable, 100 trees were grown.

MissForest imputation produces a new dataset with 2,915,387 data points
and 49 features. Note that Casualty Type, Casualty Home Area Type, Police
Force and Local Authority (Highway) were excluded from the imputation pro-
cess. After missing–value imputation was completed, the remaining “unimpor-
tant” and highly–correlated features listed in Sect. 4.4 were removed.

5 Baseline Models

In this section two approaches are described to create predictors of the serious-
ness of injury. Creating optimal, or fine–tuned models, is out–of–scope for this
article. Instead the aim is to provide a point of reference for researchers to further
explore this dataset using machine learning methods. First, supervised learning
using a neural network classifier is considered, and then a non–traditional form
of learning by reinforcement using Deep–Q Network is explored.

5.1 A Supervised Learning Model

A small number of preliminary experiments were conducted to identify an
architecture that performs reasonably well, given the imbalanced nature of the
dataset, but no serious attempt was made to optimise model or training algo-
rithm hyperparameters. The outcome was a densely–connected artificial neural
network (ANN) implemented in Keras with TensorFlow backend:
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– Hidden layers and neurons: two or three hidden layers were used, with
some of the best results presented in the next section.

– Output layer: three nodes representing the three classes used by the DfT.
– Activation functions: ReLU activations for hidden–layer nodes and Soft-

max activations for output nones.
– Optimiser: the Adam optimiser was used in all experiments.
– Batch size: 512 showed better behaviour than 128 or 256.
– Early stopping: experimented with 5 and 20 epochs of early stopping.
– Weight initialisation: both Glorot and He uniform were tested.
– Loss function: the sparse categorical cross entropy was adopted.
– Class weights: since the distribution of Casualty Severity is heavily imbal-

anced, different class weights were tried. The vector of class weights was
initially computed as |samples|

|classes|∗|frequencies| .

5.2 A Reinforcement Learning Model

Reinforcement Learning (RL) is not traditionally applied to classification prob-
lems, but recent work has shown that it is possible to formulate a classification
task as a sequential decision-making problem and solve it with a deep Q–learning
network [7]. Moreover, empirical studies demonstrated that this approach can
reach strong performance, outperforming other imbalance classification meth-
ods, especially when there is high class imbalance [7]. Our RL model followed
this approach and was implemented in OpenAI Gym:

1. Environment: This was defined as the dataset itself, including the following
attributes:

– Observation space: the size of a data sample.
– Action space: taking an action as equivalent of a class prediction, there

are three possible actions, one per prediction: slight, serious or fatal.
– Step counter: an integer to track the number of steps the agent has

taken in the environment within the same episode.
– Weighted action rewards: a different reward can be earned for correct

classification of each class data sample.
– Reset function: it resets the environment at the end of the episode–

shuffling data; resetting step counter; retrieving the first training sample.
– Step: a function that makes a Casualty Severity prediction, collects

reward and checks if the episode is done. If so, it moves to the next
training sample; otherwise, the environment is reset.

2. Episode: it starts when the first training sample is read, and it ends when
all training samples are classified, or a minority class sample is misclassified.

3. Reward function: the recommendations of [7] were followed:

reward =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 if label = fatal and prediction = fatal
−1 if label = fatal and prediction �= fatal
r1 if label = serious and prediction = serious

−r1 if label = serious and prediction �= serious
r2 if label = slight and prediction = slight

−r2 if label = slight and prediction �= serious,

(1)
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where r1 is the ratio of Serious injury samples to Slight injury samples, and
r2 is the ratio of Fatal injury samples to Slight injury samples.

4. Memory: a facility to save transitions in the environment and sample batches
of saved transitions for Q–Network training.

5. Transition: it includes the following information:
– Current state: the current training sample.
– New state: the next training sample.
– Action taken: predicted severity.
– Reward: value earned/lost based on prediction and sample actual label.
– Episode done flag: a boolean that indicates episode’s completion.

6. Agent: an agent has memory, as described above, and holds the following
functionality and attributes:

– Evaluation and target networks: it uses one network for training
and a second target network, which is updated periodically after a fixed
number of steps. This avoids overestimation of Q values and enhances
training stability [4].

– Action space: the set of available actions (class predictions).
– Hyperparameters: they relate to training and reward collection, e.g.

ε for ε–greedy policy, γ for reward discount, batch size to sample from
Agent’s memory, N number of episodes before updating target network
and Q–Network optimiser with learning rate.

– Save: a facility to save a transition in Memory and training/target net-
work weights, and the entire memory space.

– Load: a facility to load saved network weights and Memory.
– Training: it updates the training/target network weights.
– Action selection: predicting Casualty Severity for a training sample.

The steps of a full episode within the environment of traffic accidents are:

1. The environment is reset.
2. The agent checks the first training sample and predicts Casualty Severity

using the ε–greedy policy.
3. A reward, a new training sample and an episode done flag are returned.
4. Agent prediction is compared against actual label and the training network

weights are updated by back-propagation with Stochastic Gradient Descent.
5. If a minority sample (serious, fatal) is classified incorrectly, the episode ends

and the environment is reset. Otherwise, the agent takes a new step.

Training and target neural networks use the architecture described in
Sect. 5.1. However, no Softmax activation is needed, since the RL approach is
based on collecting maximum reward from Q values.
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6 Evaluation

The following experiments could be used as a baseline when optimising similar
models or designing more sophisticated approaches. Data and models are avail-
able at: https://ale66.github.io/traffic-accident-gravity-predictor/. In this con-
text, different models were trained and tested (cf. with Sect. 5) without hyper-
parameter optimisation or fine–tuning. In training and validation, 2005–2018
accident data (cf. with Table 1) were used with a 75%–25% split. Different test
sets were used, as described below, and the following metrics:

– Overall classification accuracy: correctly classified test samples over total
number of test samples

– Class accuracy: performance in testing on each single class.

6.1 Supervised ANN Experiments

Experiments with ANNs were run using different versions of the dataset.

Experiment 1: Only full records, c. 411k data points, were used for training
and validation in this experiment, i.e. there was no imputation or resampling to
treat imbalance. Testing used 2019 data (c. 153k data points). Highest accuracy
for fatal injury in testing, 53%, was achieved with an ANN of three hidden
layers with 1000 neurons each and class weights 17.5, 2.44 and 0.69 for the fatal,
serious and slight classes, respectively. The highest accuracy for the serious–
injury class, 66%, was achieved with an ANN of two hidden layers with 2000
and 500 neurons respectively, and class weights of 31.83, 3.04 and 0.38, for the
fatal, serious and slight classes, respectively. The highest overall classification
accuracy, 77%, and best accuracy per class on average, 56% (44% fatal; 43%
serious; 82% slight), were achieved with an ANN of three hidden layers with
1200 neurons each and class weights of 19.5, 3.44 and 0.69 for the fatal, serious
and slight classes, respectively.

Experiment 2: As above, the full records (c. 411k data points) were used but this
time Synthetic Minority Over–sampling Technique (SMOTE), [3], was applied
to treat class imbalance. The default value of three neighbours was used for
generation of synthetic samples and the output was a new dataset with an equal
amount of observations per class. The best test results were achieved with an
ANN of three hidden layers with 1200 neurons each: 24% for fatal, 63% for
serious, 67% for slight. One of these models also exhibited the best available
accuracy for the fatal–injury class (about 25%) with class weights 1.23, 1.07
and 0.89 for the three classes respectively. For the serious–injury class, the best
available model achieved an accuracy of 63% with class weights 1, 0.85 and 0.5,
for the three classes respectively. Although tests failed to show clear advantage
when SMOTE training data are used, fine–tuning deserves some consideration.

https://ale66.github.io/traffic-accident-gravity-predictor/
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Experiment 3: This experiment focused on the larger dataset (cf. with Table 1)
with imputation, and testing was based on c. 153k data points from 2019. Again,
the best results were achieved with an ANN of three hidden layers with 1200
neurons each: 45% for fatal, 57% for serious, and 66% for slight. Best available
accuracy for the fatal–injury class was 48% with weights 19.5, 3.44 and 0.69 for
the three injury classes respectively. For the serious–injury class, best available
accuracy was 64%, with class weights 32.1, 2.81 and 0.38, for the three classes
respectively. In comparison, best available results for logistic regression (the
stochastic incremental gradient method SAGA and an L2 penalty was used)
reached 67% for fatal, 43% for serious, and 63% for slight, indicating that further
tuning of the ANN model is needed. Simulations were also run using SMOTE
generated data but, as in Experiment 2, test results did not show clear benefits
for the minority classes.

6.2 Reinforcement Learning Experiments

Q–learning proved to be demanding computationally, although saving and load-
ing memory and network weights may ease some of the burden of training the
evaluation and the target networks for thousands of episodes. Different variants
of the reward function, Eq. (1), were tried, e.g. different reward ratios, slightly
increasing the reward for successful fatal class predictions, reducing even more
the reward for predicting correctly light injuries, with no clear benefit. Memory
size was set to 1,000,000, γ was 0.1, initial ε was 1.0 and final ε was 0.01 after
all decrements.

To alleviate computational demands, only the full records, c. 411k data
points, were used, keeping 75% for training and 25% for testing, without impu-
tation or resampling. In testing, a Softmax activation was added to the output
layer of the target network to generate an injury–class prediction.

As per Sect. 5.2, ANNs with three hidden layers of 1200 neurons each were
used. Best available accuracy per class in testing was 29% for fatal, 49% for
serious, and 58% for slight, which was achieved after 5800 training episodes. Best
available accuracy in testing for the fatal–injury class was 37% after training for
3400 episodes. For the serious–injury class, best available accuracy in testing
was 69% by a model trained across 4700 episodes. Increasing the number of
training episodes to several thousands has led to overestimation. Clearly that
is an issue that deserves further investigation as it has been encountered in
RL applications before and various strategies have been proposed, e.g. tuning
the rewards, maximising representation diversity or some form of regularisation,
which may improve the RL model.

7 Conclusions

While several studies have sought to deploy ML to process public traffic accident
data, to the best of our knowledge this is the first attempt to create a clean
2005–2018 dataset for predicting the seriousness of personal injuries. There are
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of course several alternatives that one can explore with respect to improving the
data quality and the predictive ability of ML methods. Experiments with the two
base models demonstrated that obtaining good accuracy on the minority classes
without compromising performance on the majority class is very challenging,
and perhaps requires applying more sophisticated approaches.

Although systematic comparison and fine–tuning were out–of–scope for this
paper, experiments highlighted the potential of supervised learning. Avenues
for further investigation naturally include hyperparameter tuning and model
optimisation.
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Abstract. The computationally demanding nature of Deep Learning
(DL) has fueled the research on neuromorphics due to their potential
to provide high-speed and low energy hardware accelerators. To this
end, neuromorphic photonics are increasingly gain attention since they
can operate in very high frequencies with very low energy consumption.
However, they also introduce new challenges in DL training and deploy-
ment. In this paper, we propose a novel training method that is able to
compensate for quantization noise, which profoundly exists in photonic
hardware due to analog-to-digital (ADC) and digital-to-analog (DAC)
conversions, targeting photonic neural networks (PNNs) which employ
easily saturated activation functions. The proposed method takes into
account quantization during training, leading to significant performance
improvements during the inference phase. We conduct evaluation experi-
ments on both image classification and time-series analysis tasks, employ-
ing a wide range of existing photonic neuromorphic architectures. The
evaluation experiments demonstrate the effectiveness of the proposed
method when low-bit resolution photonic architectures are used, as well
as its generalization ability.

Keywords: Photonic neural networks · Neuromorphic computing ·
Neural network quantization

1 Introduction

Over the recent years, the applications that are using Deep Learning (DL) are
constantly expanding both in industrial and academic communities since they
are achieving state-of-the-art performance in complex tasks, such as image clas-
sification and time-series forecasting [17]. Despite the fact that DL can effectively
tackle such demanding tasks, its application is often restricted because of its high
computational cost. High-end hardware accelerators are required to achieve fast
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computational operations, such as matrix multiplication that occupies a signifi-
cant fraction of operations in DL. This demanding nature of DL has fueled the
research on low energy and ultra-fast hardware accelerators. Initially, Graphics
Processing Units (GPUs) have been used to serve the high computational cost of
the training and inference. Nowadays, energy consumption is an increasingly rel-
evant issue [41] and more advanced technologies, such as Tensor Processing Units
(TPUs) [13] and novel neuromorphic hardware architectures [11], are applied,
achieving even higher frequency rates with lower power consumption.

Neuromorpic photonics is an upcoming and promising technology that has
been increasingly gaining more attention in the academic communities since
it is able to propagate optical signals in very high frequencies with extremely
lower power consumption, employing them to provide the neuron’s function-
ality [1,3,36]. To achieve this, there is a great variety of proposed hardware
architectures that use only optical [8,40] and/or conjunctions of electro-optical
hardware devices [19]. However, there are limitations that restrict the applica-
tion of neuromorphic photonics in DL due to their unique nature. Although
photonic hardware has great advantages in the development of materials and
waveguide technologies [6], managing very fast analog processing and vector-
matrix operations with ultra low energy and power consumption [40] in reference
to its electronic counterparts, such implementations include analog-to-digital and
digital-to-analog conversions significantly degrade bit-resolution [28,39]. Fur-
thermore, most of the photonic architectures currently available face difficul-
ties in deploying traditional activation functions that are typically used in DL,
such as ReLU [9]. Instead, PNNs are usually implied on sinusoidal [33] and/or
sigmoidal activations [23]. Therefore, training ANNs that are oriented to neuro-
morphic photonics should consider both the photonic activation function [1,25],
and take into account the corruptions that exist due to the use of DACs and
ADCs.

Typically, ADCs can be simulated through a quantization process that con-
verts a continuous signal to a discrete one by mapping its continuous set to a
finite set of discrete values [34]. This can be achieved by rounding and trun-
cating the values of the input signal. Despite the fact that quantization tech-
niques are widely studied by the DL community [12,16,18], they typically target
large convolutional neural networks (CNNs) containing a great amount of sur-
plus parameters with a minor contribution to the overall performance of the
model [5,43]. These large architectures are easily compressed, in contrast to
smaller networks, such those currently developed for neuromorphic photonics,
in which every single parameter has a great contribution on the final output of
the model [12]. Furthermore, existing works mainly target dynamic quantization
methods, which require extra parameters during inference, or focus on partially
quantized models that ignore input and bias [10,12]. These limitations, which
are further exaggerated when high-slope photonic activations are used, dictate
employing different training paradigms that take into account the actual physical
implementation [22].
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Indeed, neuromorphic photonics impose new challenges on DL models quan-
tization, requiring the appropriately adaption of the existing methodologies to
the unique limitations of photonic substrates, e.g., using smaller models. Further-
more, the quantization scheme applied in neuromorphics is a very simple uniform
quantization because it depends on the DAC/ADC modules that quantize the
signals equally and symmetrically [28,39]. This differs from the approaches tra-
ditionally used in trainable quantization schemes for DL models [31]. Finally,
being able to operate on low-precision networks during the deployment can fur-
ther improve the potential use of analog computing by lowering even more the
energy consumption of the developed accelerators [27,38].

This work focuses on training PNNs while taking into account the quantiza-
tion that occurs during the deployment, employing photonic activation functions.
As has been shown, considering actual hardware limitations and corruptions dur-
ing training can significantly improve the performance of the model during the
deployment phase [25,26,32]. To this end, we propose an activation-agnostic,
quantization-aware training method oriented for PNNs that enables us to effec-
tively train models in lower precision without significant performance degrada-
tion. The proposed quantization-aware training method considers the input and
model parameter variances during training and quantizes them accordingly. We
evaluate the proposed method on two different photonic architectures used on
two traditional image classification tasks applying multi layer perceptron (MLP)
and CNNs, respectively, as well as on a challenging time-series forecasting task
that involves high frequency financial time series using a state-of-the-art recur-
rent photonic architecture.

The rest of this paper is structured as follows. Section 2 provides the neces-
sary background on photonic DL, while the proposed method is introduced and
described in Sect. 3. Finally, the experimental evaluation is provided in Sect. 4,
while the conclusion is drawn in Sect. 5

2 Background

Similarly to the software implemented ANNs, photonic ones are based on per-
ceptron with the ultimate goal of approximating a function f∗. More precisely,
the input signal of the photonic ANN is denoted as x ∈ R

M , where M repre-
sents the number of features. Each sample in the train data set is labeled with
a vector t = 1n ∈ R

N where the n-th element equals to 1 and the other ele-
ments are 0 if it is a classification task (N denotes the number of classes) or a
continuous vector t ∈ R

N if it is a regression task (N denotes the number of
regression targets). MLPs approximate f∗ by using more than one layer, i.e.,
fn(...(f2(f1(x;θ1)θ2; )θn) = zn and learn the parameters θi where 0 ≤ i ≤ n
with θi consisting of the weights wi ∈ R

Ni×Mi and biases bi ∈ R
Ni . Subse-

quently, each layer’s output is denoted as zi = fi(yi−1) = wiyi−1 + bi. The
output of the linear part of a neuron is fed to a non-linear function g(·), named
activation function, to form the final output of the layer, yi = g(zi)

The training of an ANN is achieved by updating its parameters, using the
backpropagation algorithm [14], aiming to minimize a loss function J(y, t), where
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t represents the training labels and y the output of the network. Cross-entropy
loss is often used in multi-class classification cases J(y, t) = −∑N

c=1 tc log yc.
Except for the feed-forward ANNs, in this paper we also employ a simple-

to-apply recurrent neuromorphic photonic architecture. The applied recurrent
architecture is benefited from the existing photonic feed-forward implementa-
tions [24,37] while using a feedback loop. Following the above notation and the
fact that the recurrent architectures accept sequential data as input, let x be
a multidimensional time series, while let xt ∈ R

M denote M observations fed
to the input at the t-th time-step. Then, the input signal is weighted by the
i-th neuron using the input weights w(in)

i ∈ R
M . Furthermore, the recurrent

feedback signal, denoted by y(r)
t−1 ∈ R

Nr , which corresponds to the output of the
Nr recurrent neurons at the previous time-step, is also weighted by the recur-
rent weights w(r)

i ∈ R
Nr . The final weighted output of the i-th recurrent neuron

is calculated as u
(r)
ti = w(in)

i

T
xt + w(r)

i

T
y(r)

t−1. Note that we omitted the bias
term to simplify the employed notation. Then, this weighted output is fed to
the employed photonic non-linearity f(·) to acquire the final activation of the
neuron as y

(r)
ti = f(u(r)

ti ).
In this case of study two photonic activation functions are used. First, the

photonic sigmoid activation function is defined as [24]:

g(z) = A2 +
A1 − A2

1 + e(z−z0)/d
(1)

in which the parameters A1 = 0.060, A2 = 1.005, z0 = 0.154 and d = 0.033
are tuned to fit the experimental observations as implemented on real hardware
devices [24].

Also, a photonic sinusoiudal activation function is applied on the experi-
mental evaluations. The photonic layout corresponds to the employing a Mach-
Zender Modulator device (MZM) [35] that converts the data into an optical
signal along with a photodiode [2]. The formula of this photonic activation func-
tion is the following:

g(z) =

⎧
⎨

⎩

0, if z < 0.

sin π2

2 z, if 0 < z < 1.
1, if z > 1.

(2)

It is worth noting that because of the narrow range of the input domain these
photonic activations have, training is even more difficult, since the networks tend
to be easily saturated, leading to slower convergence or even halting the training.

3 Proposed Method

In this work, we propose a quantization-aware training framework that takes into
account the quantization error arisen from DACs and ADCs modules in PNNs.
In this way, we exploit the intrinsic ability of ANNs to resist to known noise
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sources when they are first trained to withstand them [25,32]. In this way, the
training procedure is adjusted on lower-precision signals, and consequently the
quantization error is considered at the loss function and minimized through the
optimization process. As a result, the networks trained in a quantization-aware
fashion can significantly improve the accuracy during the inference process.

Under the proposed quantization-aware training framework, which is inspired
and extends the quantization scheme in [12], every signal that is involved in
the response of the i-th layer is first quantized in a specific floating range
[p(i)min, . . . , p

(i)
max]. More specifically, it simulates the quantization process during

the forward pass, which means that the input, model’s parameters and activation
values are stored as floating point numbers enabling us to perform backpropaga-
tion as usual. However, during the forward-pass quantization error ε is injected
by deploying the rounding of quantization arithmetically in floating point. More
precisely, the inputs and the model’s parameters are quantized before forward-
pass is applied to the layer. In turn, the linear output of the layer is quantized
before it is fed to the photonic activation function. As a result, quantization
divides the signal by the number of quantization levels in a range depending on
the specific bit resolution.

First, every signal involved p(i) is converted to a bit representation by apply-
ing the function Q : R → N formulated as following:

p(i)q = Q(p(i), s(i)p , ζ(i)p ) = clip

{⌊
p(i)

s
(i)
p

+ ζ(i)p

⌉

, qmin, qmax

}

∈ N

where p(i) ∈ R, p
(i)
q ∈ [0 . . . , 2B − 1] and B denotes the bit resolution of the

signal. Variables s
(i)
p ∈ R

+ and ζ
(i)
p ∈ N define the quantization parameters of

the quantization function Q named scale and zero-point respectively. The scale
value is typically represented in the software as a floating-point number and is
calculated as follows:

s(i)p =
p
(i)
max − p

(i)
min

qmax − qmin
∈ R

+ (3)

where qmin ∈ N
+ and qmax ∈ N

+ denote the range of an B-bit resolution (0 and
2B −1 respectively) while p

(i)
max ∈ R and p

(i)
min ∈ R represents the working range,

i.e., maximum and minimum, of a signal. In turn, the zero point is calculated:

ζ(i)p = clip

{⌊

qmin − p
(i)
min

s
(i)
p

⌉

, qmin, qmax

}

∈ N (4)

In contrast to [12], we convert p
(i)
q ∈ [0 . . . , 2B − 1] to discrete floating arith-

metics p
(i)
q ∈ [p(i)min, . . . , p

(i)
min] using a dequantization function D : N → R for-

mulated as following:

p
(i)
f = D(p(i)q , s(i)p , ζ(i)p ) = s(i)p (p(i)q − ζ(i)p ) ∈ R (5)
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Following the above notation the linear response of i-th layer is given by:

z
(i)
f = Quant(w(i)

f · y
(i−1)
f + b

(i)
f ) ∈ R

Ni (6)

where Quant(x) denotes process of quantization followed by dequantization of
a vector or matrix x ∈ R

Mi , while w
(i)
f ∈ [w(i)

min, . . . , w
(i)
max]Ni×Mi and b

(i)
f ∈

[b(i)min, . . . , b
(i)
max]Ni denote the quantized weights and biases of i-th layer. Note

that the Quant(x) function is applied in an element-wise fashion.
Finally, the output z

(i)
f passes through the photonic activation function, g(·)

of the neuron y
(i)
f = Quant(g(z(i)

f )). In this way, all signals involved in the layer’s

output are distributed in a uniform floating range between p
(i)
min and p

(i)
max and

they can be represented using B bits. Thus, the quantization error is propa-
gated through the network as a noise signal that is taken into account during
the training, and the network learns to be aware of it during the deployment.
The proposed method is presented for feedforward networks, but without loss of
generality it can be applied to RNN architectures as well. Consequently, we can
represent the forward pass as a procedure that involves a quantization error that
is introduced in the inputs, weights, and activations. We should note that dur-
ing the training, the quantization effect is simulated while the backpropagation
happens as usual, meaning that the original parameters are updated according
to the propagated loss.

What significantly affects the amount of quantization error, both in training
and inference, is the selected working range, i.e., minimum (pmin) and maximum
(pmax) values, of a signal on which the scale of uniform buckets depends. To this
end, we propose computing the exponential moving average (EMA) for pmin and
pmax. We use EMA to eliminate outliers in vectors and matrices and smoothen
the process of quantization during the training. In this way, the model becomes
more robust to outlier values, especially at the beginning of the training process.

Since the distribution of every signal is transformed during the training, the
preferable boundaries of a signal are calculated incrementally at every timestep
t as following:

p̃
(i)
max,t = (β/t)p(i)max,t + (1 − (β/t))p̃(i)max,t−1 (7)

p̃
(i)
min,t = (β/t)p(i)min,t + (1 − (β/t))p̃(i)min,t−1+ (8)

where t denotes the training iteration, β is the weighting parameter of the EMA
and the update is applied for t > �b�. Note that we calculate the min and max
values per vector and/or matrix. Therefore, we use the same min and max for
the activations of the same layer, but different ones for different layers.

4 Experimental Evaluation

We evaluate the proposed method on two traditional image classification tasks,
more specifically on MNIST [4] and CIFAR10 [15], using MLPs and CNNs respec-
tively. Additionally, we employed RNN, to sufficiently cover all possible sce-
narios, on a challenging forecasting task using high frequency time series limit
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order book data (FI-2020) [30]. Photonic sigmoid and sinusoidal activation func-
tions are employed in the aforementioned architectures, as given by Eqs. 1 and 2
respectively. We evaluate the performance of the proposed method on different
bit resolutions. Also, we compared the proposed method with a post training
quantization approach in which the quantization is ignored during the training
procedure and is applied during the inference. On the baseline approach, the
pmin and pmax values for each parameter are calculated using the minimum and
maximum values of each parameter vector or matrix. This corresponds to the
case where the models are deployed directly in photonic hardware, as is cur-
rently done in most photonic DL approaches [7,8,21]. In the proposed method,
the parameter β is set to 2.

4.1 Image Classification

We report the average accuracy and the corresponding variance of the evaluation
accuracy over 10 training runs in Table 1 and 2 for MNIST and CIFAR10 datasets
respectively. More precisely, MNIST [4] dataset consists of handwritten digits,
including 60,000 train samples and 10,000 test samples. The digits have been
size-normalized, centered in a fixed size, and flattened to one dimension, leading
to 784 features per sample. The input flattened images are fed to the first fully
connected layer which consists of 10 neurons, then to the second fully connected
layer which consists of 20 neurons, and finally to the output layer which consists
of 10 neurons. The models are optimized for 100 epochs using the RMSProp
optimizer [42] with a learning rate equal to 0.0001. The cross-entropy loss was
used as the objective function, while mini-batches of 256 samples were used.

Table 1. Evaluating the proposed method on MNIST. Classification accuracy (%) is
reported.

Bits Photonic Sinusoidal Photonic Sigmoid

Post training Proposed Post training Proposed

8 90.12 ± 1.52 91.21± 0.49 91.02 ± 0.81 91.17± 0.33

6 86.93 ± 1.47 91.04± 0.51 87.01 ± 0.12 91.02± 0.29

4 09.95 ± 0.00 90.26± 0.77 09.34 ± 0.00 90.20± 0.39

2 09.97 ± 0.00 67.63± 2.28 09.98 ± 0.00 61.00± 1.95

As demonstrated in Table 1, the performance of the post training quantiza-
tion method (columns 2 and 4) is collapsed when the bit resolution is lowered,
especially in 2 and 4 bits. The proposed method, which takes into account the
quantization during the training phase, can significantly improve the perfor-
mance in low bit resolutions and resist the corruption occurring in post training
quantization. This can be also attributed to the fact that the proposed method
is taking into account the bounds of each signal incrementally, since it computes
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the EMA of the minimum and maximum value of each involved parameter. In
this way, it can eliminate outliers that can lead to a wide range of buckets with
barely any values. The proposed method (column 3 and 5) exceeds in terms of
performance the post training method in all cases irrespective of the model’s
resolution and/or the applied photonic activation function.

The CIFAR10 dataset includes 50,000 images in the training set and 10,000
in the evaluation set with 32 × 32 color image samples containing one of the 10
object classes. The applied CNN consists of four convolutional layers followed
by two linear layers. In more detail, the first two convolutional layers consist of
3× 3 kernel size with 32 and 64 filters, followed by a 2× 2 average pooling layer.
Then, the other 2 convolutional layers are applied with 128 and 256 filters of size
3×3 followed by an 2×2 average pooling. Finally, the features that are extracted
are flattened and fed to a linear layer that consists of 512 neurons followed by
the final classification layer. The networks are optimized for 250 epochs using
RMSProp optimizer [42] using mini-batches of 256 samples with a learning rate
equal to 0.0001.

Table 2. Evaluating the proposed method on CIFAR10. Classification accuracy (%)
is reported.

Photonic Sinusoidal Photonic Sigmoid

Bits Post training Proposed Post training Proposed

8 15.22 ± 1.15 67.64± 1.24 16.39 ± 1.15 66.23± 1.23

6 15.10 ± 1.81 66.56± 1.38 15.76 ± 0.73 66.50± 1.61

4 16.62 ± 2.44 29.48± 10.43 16.38 ± 0.25 65.25± 1.96

In contrast to the MNIST case, in this experimental evaluation the perfor-
mance of the baseline approach (columns 2 and 4) collapses even when 8-bit
resolution is used. On the other hand, the proposed method (columns 3 and
6), similar to the fully connected case, can significantly resist to such collapse,
since it outperforms the baseline approach in all cases. At 4-bit resolution the
proposed method cannot fully recover the loss in the accuracy (for the photonic
sinusoidal case), yet it can still lead to improvements. Therefore, we can safely
draw the conclusion that the proposed can be generalized to CNNs, since it
improves the performance of models during the inference for all the experiments
conducted.

4.2 Forecasting Financial Time Series Analysis

Finally, the dataset that is used to evaluate the photonic recurrent architecture
is a high frequency financial time series limit order book dataset (FI-2020) [30]
that consists of more than 4,000,000 limit orders which come from 5 Finnish
companies. The data processing scheme and evaluation procedure are described
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extensively in [29]. For the following experiments, splits 1 to 5 were used. The
task of the forecast is to predict the movement of the future mid-price after the
next 10 time steps which can go down, up or remain stationary.

The DL network that is used for the experiment consists of a recurrent pho-
tonic layer with 32 neurons, as described in Sect. 2. The output of the recurrent
layer is fed to two fully-connected layers with the first fully connected layer con-
sisting of 512 neurons and the second of 3 neurons. The length of the time series
that is fed to the model is 10, which is the current and the past 9 timesteps. The
model is optimized for 20 epochs with the RMSprop optimizer, and the learning
rate is set to 10−4.

Table 3. Evaluating the proposed method on FI2020. Cohen’s κ metric is reported.

Photonic Sinusoidal Photonic Sigmoid

Bits Post training Proposed Post training Proposed

8 0.0502 ± 0.0218 0.1189± 0.0105 0.0653 ± 0.0081 0.1262± 0.0072

6 0.0647 ± 0.0015 0.1170± 0.0115 0.0656 ± 0.0061 0.1242± 0.0132

4 0.0645 ± 0.0057 0.1091± 0.0210 0.0648 ± 0.0062 0.1232± 0.0517

2 0.0370 ± 0.0069 0.0601± 0.0031 0.0377 ± 0.0126 0.0918± 0.0033

The evaluation results are reported in Table 3. More precisely, we report the
mean value of 5 splits using Cohen’s κ metric [20] to evaluate the performance
of the models since the dataset is extremely imbalanced. We observe that the
benefits of the proposed method (columns 3 and 6) are crucial for the perfor-
mance of the models during the inference phase since the post quantization train-
ing method (columns 2 and 4) is unable to sustain a reasonable performance.
Indeed, the proposed method can significantly improve the inference accuracy
irrespective of the photonic activation that is employed, highlighting once again
its activation agnostic scope.

5 Conclusion

Neuromorphic photonics are an upcoming technology promising to overcome
limitations that have become relevant over the recent years providing ultra-high
speed and low energy consumption accelerators. At the same time, their appli-
cation is hindered since it introduces new challenges on the training and deploy-
ment of DL, such as easily saturated activation functions and susceptible to
different noise source ANNs, e.g., due to quantization. In this paper, we propose
a novel activation-agnostic quantization-aware training method that is capable
of compensating for quantization noise that arises from ADCs/DACs. As exper-
imentally evaluated, the proposed method is capable of significantly improving
the performance of low-bit resolution PNNs by considering quantization during
the training. The proposed method builds a robust representation enabling us



436 A. Oikonomou et al.

to decrease memory requirements and computational cost by lowering the bit
resolution without significant performance degradation. The proposed method is
evaluated on both image classification and time-series analysis tasks, employing
a wide range of photonic architectures, outperforming the evaluated baselines.

Acknowledgements. The research work was supported by the Hellenic Foundation
for Research and Innovation (H.F.R.I.), Greece under the “First Call for H.F.R.I.
Research Projects to support Faculty members and Researchers and the procurement
of high-cost research equipment grant” (Project Number: 4233)

References

1. Dabos, G., et al.: End-to-end deep learning with neuromorphic photonics. In: Inte-
grated Optics: Devices, Materials, and Technologies XXV, vol. 11689, p. 116890I.
International Society for Optics and Photonics (2021)

2. Danial, L., Wainstein, N., Kraus, S., Kvatinsky, S.: Breaking through the speed-
power-accuracy tradeoff in ADCs using a memristive neuromorphic architecture.
IEEE Trans. Emerg. Top. Comput. Intell. 2(5), 396–409 (2018)

3. De Marinis, L., Cococcioni, M., Castoldi, P., Andriolli, N.: Photonic neural net-
works: a survey. IEEE Access 7, 175827–175841 (2019)

4. Deng, L.: The MNIST database of handwritten digit images for machine learning
research. IEEE Sign. Process. Mag. 29(6), 141–142 (2012)

5. Esser, S.K., McKinstry, J.L., Bablani, D., Appuswamy, R., Modha, D.S.: Learned
step size quantization (2020)

6. Feldmann, J., Youngblood, N., Wright, C., Bhaskaran, H., Pernice, W.: All-optical
spiking neurosynaptic networks with self-learning capabilities. Nature 569(7755),
208–214 (2019)

7. Feldmann, J., et al.: Parallel convolutional processing using an integrated photonic
tensor core. Nature 589(7840), 52–58 (2021)

8. Giamougiannis, G., et al.: Silicon-integrated coherent neurons with
32GMAC/sec/axon compute line-rates using EAM-based input and weight-
ing cells. In: Proceedings of the European Conference on Optical Communication
(ECOC), pp. 1–4 (2021)

9. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-
level performance on ImageNet classification. In: Proceedings of the International
Conference on Computer Vision, pp. 1026–1034 (2015)

10. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Quantized neu-
ral networks: training neural networks with low precision weights and activations.
J. Mach. Learn. Res. 18(1), 6869–6898 (2017)

11. Indiveri, G., et al.: Neuromorphic silicon neuron circuits. Front. Neurosci. 5, 73
(2011)

12. Jacob, B., et al.: Quantization and training of neural networks for efficient integer-
arithmetic-only inference. In: Proceedings of the IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition, pp. 2704–2713 (2018)

13. Jouppi, N.P., et al.: In-datacenter performance analysis of a tensor processing unit.
In: Proceedings of the Annual International Symposium on Computer Architecture,
pp. 1–12 (2017)

14. Kelley, H.J.: Gradient theory of optimal flight paths. ARS J. 30(10), 947–954
(1960)



A Robust, Quantization-Aware Training Method 437

15. Krizhevsky, A., Nair, V., Hinton, G.: CIFAR-10 (Canadian institute for advanced
research). http://www.cs.toronto.edu/∼kriz/cifar.html

16. Kulkarni, U., Meena, S., Gurlahosur, S.V., Bhogar, G.: Quantization friendly
MobileNet (QF-MobileNet) architecture for vision based applications on embedded
platforms. Neural Netw. 136, 28–39 (2021)

17. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

18. Lee, D., Wang, D., Yang, Y., Deng, L., Zhao, G., Li, G.: QTTNet: quantized
tensor train neural networks for 3D object and video recognition. Neural Netw.
141, 420–432 (2021)

19. Lin, X., et al.: All-optical machine learning using diffractive deep neural networks.
Science 361(6406), 1004–1008 (2018)

20. McHugh, M.L.: Interrater reliability: the kappa statistic. Biochemia Medica 22(3),
276–282 (2012)

21. Miscuglio, M., Sorger, V.J.: Photonic tensor cores for machine learning. Appl. Phys.
Rev. 7(3), 31404 (2020)

22. Mourgias-Alexandris, G., et al.: Channel response-aware photonic neural net-
work accelerators for high-speed inference through bandwidth-limited optics. Opt.
Express 30(7), 10664–10671 (2022)

23. Mourgias-Alexandris, G., Tsakyridis, A., Passalis, N., Tefas, A., Vyrsokinos, K.,
Pleros, N.: An all-optical neuron with sigmoid activation function. Opt. Express
27(7), 9620–9630 (2019)

24. Mourgias-Alexandris, G., Tsakyridis, A., Passalis, N., Tefas, A., Vyrsokinos, K.,
Pleros, N.: An all-optical neuron with sigmoid activation function. Opt. Express
27(7), 9620–9630 (2019)

25. Mourgias-Alexandris, G., et al.: A silicon photonic coherent neuron with
10GMAC/sec processing line-rate. In: Proceedings of the Optical Fiber Commu-
nications Conference and Exhibition (OFC), pp. 1–3 (2021)

26. Mourgias-Alexandris, G., et al.: 25GMAC/sec/axon photonic neural networks with
7GHZ bandwidth optics through channel response-aware training. In: Proceedings
of the European Conference on Optical Communication (ECOC), pp. 1–4 (2021)

27. Murmann, B.: Mixed-signal computing for deep neural network inference. IEEE
Trans. Very Large Scale Integr. (VLSI) Syst. 29(1), 3–13 (2021)

28. Nahmias, M.A., de Lima, T.F., Tait, A.N., Peng, H.T., Shastri, B.J., Prucnal, P.R.:
Photonic multiply-accumulate operations for neural networks. IEEE J. Sel. Top.
Quant. Electron. 26(1), 1–18 (2020)

29. Nousi, P., et al.: Machine learning for forecasting mid-price movements using limit
order book data. IEEE Access 7, 64722–64736 (2019)

30. Ntakaris, A., Magris, M., Kanniainen, J., Gabbouj, M., Iosifidis, A.: Benchmark
dataset for mid-price forecasting of limit order book data with machine learning
methods. J. Forecast. 37(8), 852–866 (2018)

31. Park, E., Ahn, J., Yoo, S.: Weighted-entropy-based quantization for deep neural
networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 7197–7205 (2017)

32. Passalis, N., Kirtas, M., Mourgias-Alexandris, G., Dabos, G., Pleros, N., Tefas,
A.: Training noise-resilient recurrent photonic networks for financial time series
analysis. In: Proceedings of the 28th European Signal Processing Conference, pp.
1556–1560 (2021)

33. Passalis, N., Mourgias-Alexandris, G., Tsakyridis, A., Pleros, N., Tefas, A.: Train-
ing deep photonic convolutional neural networks with sinusoidal activations. IEEE
Trans. Emerg. Top. Comput. Intell. 5, 384–393 (2019)

http://www.cs.toronto.edu/~kriz/cifar.html


438 A. Oikonomou et al.

34. Pearson, C.: High-speed, analog-to-digital converter basics. Texas Instruments
Application Report, SLAA510 (2011)

35. Pitris, S., et al.: O-band energy-efficient broadcast-friendly interconnection scheme
with SiPho Mach-Zehnder Modulator (MZM) & Arrayed Waveguide Grating
Router (AWGR). In: Proceedings of the Optical Fiber Communication Confer-
ence on Optical Society of America (2018)

36. Pleros, N., et al.: Compute with light: architectures, technologies and training mod-
els for neuromorphic photonic circuits. In: Proceedings of the European Conference
on Optical Communication (ECOC), pp. 1–4 (2021)

37. Rosenbluth, D., Kravtsov, K., Fok, M.P., Prucnal, P.R.: A high performance pho-
tonic pulse processing device. Opt. Express 17(25), 22767–22772 (2009)

38. Sarpeshkar, R.: Analog versus digital: extrapolating from electronics to neurobiol-
ogy. Neural Comput. 10(7), 1601–1638 (1998)

39. Shastri, B.J., et al.: Photonics for artificial intelligence and neuromorphic comput-
ing. Nat. Photon. 15(2), 102–114 (2021)

40. Shen, Y., et al.: Deep learning with coherent nanophotonic circuits. Nat. Photon.
11(7), 441 (2017)

41. Strubell, E., Ganesh, A., McCallum, A.: Energy and policy considerations for deep
learning in NLP. arXiv preprint arXiv:1906.02243 (2019)

42. Tieleman, T., Hinton, G.: Lecture 6.5-rmsprop: divide the gradient by a running
average of its recent magnitude. COURSERA: Neural Netw. Mach. Learn. 4(2),
26–31 (2012)

43. Wu, J., Leng, C., Wang, Y., Hu, Q., Cheng, J.: Quantized convolutional neural
networks for mobile devices. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 4820–4828 (2016)

http://arxiv.org/abs/1906.02243


Improving Binary Semantic Scene
Segmentation for Robotics Applications

Maria Tzelepi(B), Nikolaos Tragkas, and Anastasios Tefas

Aristotle University of Thessaloniki, Thessaloniki, Greece
{mtzelepi,nktragkas,tefas}@csd.auth.gr

Abstract. Robotics applications are accompanied by particular com-
putational restrictions, i.e., operation at sufficient speed, on embed-
ded low power GPUs, and also for high-resolution input. Semantic
scene segmentation performs an important role in a broad spectrum
of robotics applications, e.g., autonomous driving. In this paper, we
focus on binary segmentation problems, considering the specific require-
ments of the robotics applications. To this aim, we utilize the BiseNet
model, which achieves significant performance considering the speed-
segmentation accuracy trade-off. The target of this work is two-fold.
Firstly, we propose a lightweight version of BiseNet model, providing
significant speed improvements. Secondly, we explore different losses for
enhancing the segmentation accuracy of the proposed lightweight version
of BiseNet on binary segmentation problems. The experiments conducted
on various high and low power GPUs, utilizing two binary segmentation
datasets validated the effectiveness of the proposed method.

Keywords: Semantic segmentation · Binary · Bisenet · Robotics ·
Low power GPUs

1 Introduction

Semantic scene segmentation refers to the task of assigning a class label to
each pixel of an image, and hence it is also known as pixel-level classification.
Semantic scene segmentation is a challenging task involved in numerous robotics
applications, such as autonomous driving [1,11,20]. Robotics applications are
accompanied by particular computational requirements. That is, the utilized
models should be able to effectively operate at sufficient speed, on embedded
low power GPUs, while also considering high-resolution input.

Recent advances in Deep Learning (DL), besides other problems [14–16], have
provided effective models for addressing the general problem of semantic scene
segmentation [7]. The seminal approach introduced fully convolutional neural
networks [10]. Subsequently, considerable research has been conducted, focusing
on improving the segmentation accuracy [2,9], however, without considering the
issue of deployment (inference) speed. That is, most of the existing state-of-the-
art DL segmentation models are computationally heavy, and hence ill-suited for
robotics applications.
c© Springer Nature Switzerland AG 2022
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Thus, in the recent literature there have been works that also focus on the
deployment speed, providing real-time segmentation models, considering mainly
high power GPUs [3,4,6,12,18,19]. A comparative study of current semantic
segmentation models considering the inherent computational restrictions in the
context of robotics applications is provided in [17]. More specifically, extensive
experiments have been conducted on different embedded platforms (e.g., AGX
Xavier, NVIDIA TX-2), and also for various input resolutions, ranging from
lower to higher ones. From the conducted experiments, it is evident that the
Bilateral Segmentation Network (BiseNet) [19] model achieves considerable per-
formance considering the segmentation accuracy-speed trade-off. Towards this
end, in this work we employ BiseNet model and we address the problem of binary
semantic segmentation considering robotics applications.

The target of this work is to explore ways of improving the performance
of BiseNet model both in terms of deployment speed and segmentation accu-
racy, considering binary segmentation problems. To this aim, we first propose
a lightweight version of the model. That is, we propose a lightweight network
instead of ResNet-18 [8] that is used in the so-called context path. Subsequently,
we exploit the available losses. Specifically, apart from the widely used cross
entropy (softmax) loss, which is also used in the initial version of BiseNet, we
apply hinge loss, since as it is shown in the recent literature, it provides improved
accuracy considering binary classification problems [15].

The remainder of the manuscript is structured as follows. Section 2 provides
the description of the proposed ways of improving binary segmentation, that is
the proposed lightweight version of BiseNet and the investigation on loss func-
tions. Next, Sect. 3 provides the experimental evaluation, and finally conclusions
are drawn in Sect. 4.

2 Proposed Method

The BiseNet model consists of two paths, that is Spatial Path and Context
Path. The spatial path is used in order to preserve the spatial information and
generate high resolution features, and the context path with a fast downsampling
strategy is used in order to obtain sufficient receptive field. Furthermore, the
model includes two modules, that is a Feature Fusion Module and an Attention
Refinement Module, in order to further improve the accuracy with acceptable
cost. Finally, apart from the principal cross entropy loss which supervises the
output of the BiseNet model, two auxiliary losses are utilized to supervise the
output of the context path.

In this work, we propose to replace the ResNet-18 model used in the context
path, with a more lightweight model. The proposed model, which is based on the
VGG model [13], consists of five pairs of convolutional layers followed by batch
normalization and Rectified Linear Unit (ReLU) activation. A max-pooling layer
follows each convolutional block. The proposed model architecture is illustrated
in Fig. 1. Furthermore, we provide Table 1 which summarizes the design of the
proposed model. As it will be presented the modified BiseNet model utilizing
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the proposed lightweight model in the context path achieves considerable speed
improvements.

Fig. 1. Proposed lightweight model in the context-path: Red boxes represent the max-
pooling layers, while the black boxes represent the convolutional layers, followed by
batch normalization ReLU activation. The numbers of output channels of each convo-
lutional layer are also depicted. (Color figure online)

Table 1. Layers of the proposed fully-convolutional lightweight context-path. conv3-
x abbreviates a convolutional layer with kernel 3 × 3 and x output channels. Batch
normalization is applied to each convolutional layer, while ReLU is used as activation
function. The maxpool layers downsample by a factor of 2 feature maps.

Layer Conv3-8 Maxpool Conv3-16 Maxpool Conv3-64 Maxpool Conv3-128 Maxpool Conv3-256 Maxpool

Conv3-16 Conv3-32 Conv3-64 Conv3-128 Conv3-256

Subsequently, since lightweight models usually have inferior performance as
compared to their heavyweight counterparts, we explore ways to improve their
performance. To achieve this goal, we focus on the loss functions for training
the segmentation model. More specifically, even though cross entropy loss is a
widely used loss function in DL, in a recent work [15] it has been demonstrated
that, considering binary classification problems, hinge loss can achieve improved
classification performance. Motivated by the aforementioned observation, in this
work, we extend this investigation on binary segmentation problems. Thus, we
utilize hinge loss so as to supervise the output of the whole model. Hinge loss
per pixel is defined as:

�h =
Nc∑

j=1

max(0, 1 − ζ{c = j}ylast
j ) (1)

where c ∈ [1, · · · , Nc] indicates the correct class among the Nc classes, ylast
j

indicates the score with respect to the j-th class, and

ζ{condition} =
{

1 , if condition
−1 , otherwise
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In our case, Nc = 2, since we deal with binary segmentation problems.

3 Experiments

In this work, we first evaluate the deployment speed of the proposed modified
BiseNet model, since a principal target of this work is to provide a faster model
for binary semantic segmentation. We evaluate the deployment speed in term
of Frames Per Second (FPS), on various high power and low power GPUs, as
well as for various input sizes. Subsequently, we evaluate the performance of
the modified model utilizing hinge loss against cross entropy loss as principal
supervised loss, utilizing mean Intersection Over Union (mIOU) as evaluation
metric.

3.1 Datasets

In this work, we utilize the CityScapes [5] dataset, exploiting only the Human
and Vehicle classes, in order to build the two binary segmentation datasets,
i.e., Human Vs Non-Human and Vehicle Vs Non-Vehicle, respectively. The first
one consists of 11,900 train images and 2,000 test images, while the second one
consists of 2,975 train images and 500 test images.

3.2 Implementation Details

All the experiments conducted using the Pytorch framework. Mini-batch gradi-
ent descent is used for the networks training, where an update is performed for
every mini-batch of 8 samples. Momentum is set to 0.9, while the learning rate
policy of the initial work was followed. All the models are trained on an NVIDIA
2080 Ti, and the deployment speed was tested on various low power GPUs.

3.3 Experimental Results

In the first set of experiments we evaluate the deployment speed of the proposed
modified lightweight BiseNet model against the initial version which uses the
ResNet-18 model. We have conducted experiments on a high power NVIDIA
2080 Ti, a high power NVIDIA 2070, a low power NVIDIA Jetson TX-2, and a
low power NVIDIA AGX Xavier. Furthermore, we use various input dimensions
ranging from 400 × 400 to 1024 × 1024. The experimental results are illustrated
in Tables 2, 3, 4 and 5. Best results are printed in bold. As it is shown, the
proposed model runs significantly faster as compared to the initial model, in any
considered case. It can also be observed increased discrepancy for lower input
sizes.



Improving Binary Semantic Scene Segmentation for Robotics Applications 443

Moreover, it should be emphasized that the proposed lightweight version of
BiseNet accomplishes faster inference speed compared to the original BiseNet
model (using ResNet-18), without considerably sacrificing the segmentation
accuracy. For example, on the Vehicle dataset, where the proposed lightweight
version of BiseNet achieves mIOU 94.82% using the cross entropy loss, the origi-
nal BiseNet achieves mIOU 95.86%. That is, we sacrifice the segmentation accu-
racy by roughly 1%, gaining significant speed ups (e.g., on NVIDIA AGX Xavier
for input 600 × 600, BiseNet runs at 26.78 FPS, while the modified lightweight
BiseNet runs at 40.12 FPS).

Table 2. Evaluation of speed in terms of FPS utilizing the proposed lightweight model
in the context path, against the ResNet-18 on an NVIDIA 2080 Ti.

Input size BiseNet–ResNet18 BiseNet–Proposed

1024 × 1024 66.51 75.23

1280 × 720 70.69 84.06

800 × 800 98 119.76

600 × 600 163.91 215.61

640 × 360 216.37 305.89

400 × 400 269.58 353.59

Table 3. Evaluation of speed in terms of FPS utilizing the proposed lightweight model
in the context path, against the ResNet-18 on an NVIDIA 2070.

Input size BiseNet–ResNet18 BiseNet–Proposed

1024 × 1024 50.40 59.15

1280 × 720 56.17 66.31

800 × 800 77.46 93.85

600 × 600 125.04 166.26

640 × 360 184.59 251.26

400 × 400 237.61 315.24

Subsequently, the experimental results for evaluating the hinge loss against
cross entropy loss, utilizing the proposed lightweight BiseNet model, on the two
binary segmentation datasets are presented in Table 6. Best results are printed
in bold. As it is demonstrated, hinge loss accomplishes superior performance as
compared to the cross entropy loss, considering binary segmentation problems.
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Table 4. Evaluation of speed in terms of FPS utilizing the proposed lightweight model
in the context path, against the ResNet-18 on an NVIDIA Jetson TX2.

Input size BiseNet–ResNet18 BiseNet–Proposed

1024 × 1024 3.98 5.02

1280 × 720 4.32 5.58

800 × 800 5.71 7.69

600 × 600 9.7 13.36

640 × 360 14.71 21.05

400 × 400 18.82 26.42

Table 5. Evaluation of speed in terms of FPS utilizing the proposed lightweight model
in the context path, against the ResNet-18 on an NVIDIA AGX Xavier.

Input size BiseNet–ResNet18 BiseNet–Proposed

1024 × 1024 11.58 15.32

1280 × 720 12.23 16.96

800 × 800 16.38 23.40

600 × 600 26.78 40.12

640 × 360 40.13 60.66

400 × 400 52.42 77.83

Table 6. Evaluation on segmentation performance in terms of mIOU (%) utilizing
the modified lightweight BiseNet model, for evaluating hinge loss against cross entropy
loss.

Dataset Cross entropy loss Hinge loss

Human Vs Non-Human 87.82 89.23

Vehicle Vs Non-Vehicle 94.82 95.03

Furthermore, we note that better segmentation performance is achieved using
hinge loss on the original BiseNet model (using ResNet-18), too. For example,
on the Vehicle dataset the original BiseNet achieves mIOU 95.86% with cross
entropy loss, while hinge loss achieves mIOU 96.40%.

Finally, some qualitative results are presented utilizing the proposed modified
model trained for human segmentation and vehicle segmentation in Fig. 2.
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Fig. 2. Predictions of the modified lightweight BiSeNet model trained on Human Vs
Non-Human and Vehicle Vs Non-Vehicle datasets.

4 Conclusions

In this paper, we dealt with binary segmentation problems, utilizing the
BiseNet model, which achieves significant performance considering the speed-
segmentation accuracy trade-off. First, we proposed a lightweight version of
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BiseNet model, in order to improve the deployment speed. Subsequently, we
explored different losses in order to enhance the segmentation accuracy of the
proposed lightweight version of BiseNet on binary segmentation problems. The
experiments conducted on various high and low power GPUs, utilizing two binary
segmentation datasets, validated the effectiveness of proposed lightweight ver-
sion of BiseNet in terms of deployments speed, as well as that hinge loss provides
improved performance considering binary segmentation problems.
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Abstract. Service robots aim at helping humans in their tasks at home
or office. Some tasks can be performed by a team of robots that need to
visit target locations in the environment. This problem can be modeled
as an instance of the multiple Traveling Salesman Problem (mTSP). The
goal of mTSP is to minimize the total distance traveled. However, when
the total distance is minimized, some salesmen tend to travel more than
others depending on the distribution of the cities. Therefore, balanc-
ing individual routes is important to ensure equal battery consumption
for the team to complete the task. We proposed a centralized system
supported by Multi Objective Evolutionary Algorithms (MOEAs) that
generate routes by minimizing the sum of travel distance and standard
deviation simultaneously. Experiments were carried out to find MOEAs
capable of generation high quality routes in a reasonable amount of time.
Moreover, we introduce a novel robot-server architecture that connects
robots with our system by means of threads, ROS nodes, and Websocket.

Keywords: MOEA · mTSP · Service robots · Online Route
Scheduling

1 Introduction

Several lines of research into Robotics currently aim at the development of robots
for assisting humans in their everyday lives. These robots, also called Service
Robots, should perform tasks that are dirty, dull, distant, dangerous, or repeti-
tive to humans.

This paper addresses a problem in which a team of Service Robots has to
visit some target locations within an indoor environment to perform any kind of
task, such as delivering mail, picking up trash, finding objects, patrolling, etc.
In order to perform any of these tasks efficiently, the robots must be able to
coordinate their visits.

In this problem, the robots can be anywhere in the environment. Eventually,
when they receive a list of target locations, the robots must visit each of them
without repetition, and then return to a common spot, such as a charging station.
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Thus, to coordinate the visits, a scheduling has to be made to find routes for the
robots that cover all locations.

The problem of scheduling visits for a single robot can be seen as an instance
of the Traveling Salesman Problem (TSP), which is a combinatorial optimiza-
tion problem. Combinatorial optimization problems attempt to find an optimal
solution from a finite set of solutions. In the TSP, given a set of n cities and the
cost of traveling (or distance) between each possible pair, the goal is to find the
best possible way of visiting all cities that minimizes the final traveling cost.

While the TSP is restricted to a single salesman, the multiple Traveling
Salesman Problem (mTSP) generalizes the problem for multiple salesmen, which
is more common in real world applications. Also, each city must be visited exactly
once by any salesman, and the total distance of visiting all cities should be
minimized.

However, taking into account only the total distance, the distances traveled
individually by the salesmen can become imbalanced. For example, when a sales-
man travels a long distance, the cost of using this salesman to visit all cities in
that region is less than the cost of sending another salesman to visit some of
them. As a result, some salesmen might travel for long distances, while others
stay around the depot. Therefore, for some problems, it is also desired to balance
the routes.

This work aims at describing the development of a centralized system to
schedule routes for a team of robots using the mTSP model. In this case, cities
are target locations to be visited in the environment and salesmen are the robots.
The system uses Multi Objective Evolutionary Algorithms (MOEAs) to generate
solutions that minimize the total distance traveled by the team and also balance
the routes of the robots. In addition, a novel robot-server architecture is proposed
to handle the connection between robots and the system using a fast peer-to-peer
protocol, called Websocket.

Experiments were carried out on virtual and real environments. For simula-
tion, we ran Robot Operating system (ROS) Gazebo on multiple computers to
evaluate time and quality of routes generated by different MOEAs. Moreover,
we tested the connectivity of our system to a real robot. Preliminary results
show that our system is able to manage the robots visiting in real-time using
the proposed algorithms and architecture.

The remainder of the paper is organized as follows. In Sect. 2 lists some
related works. The proposed system for solving online multi-robot coordination
problem using mTSP model and MOEAS is presented in Sect. 3. Section 4 shows
the experiments and their results. Finally, the conclusion and future work are
shown in Sect. 5.

2 Related Work

Recently, many researches have introduced the concept of mTSP to real multi-
robot applications, which we review here.

To understand how to model multi-robot complete coverage path planning
problem with mTSP and to solve the task allocation problem, in [10] is proposed



450 R. Alves et al.

a method that use a Genetic Algorithm (GA), which allocates the sub-regions
to each robot and gives the robots their visiting orders to the sub-regions.

In order to collaborate with the recent advances in task allocation and plan-
ning to service robots, [8] developed a new mTSP methodology to optimize
the task-allocation and route-planning for multiple indoor robots with multiple
depots.

A GA for solving mTSP while constraining distance between robots is pre-
sented in [9]. The algorithm NSGA-II were used as a primary GA, with a sec-
ondary GA periodically adding waypoints for greater connectivity.

The problem of assigning a team of autonomous robots to target locations in
the context of a disaster management scenario while optimizing several objectives
was addressed by [12]. This problem can be cast as a mTSP, where several
robots must visit designated locations. Three objectives were considered to be
optimized: the total traveled distance, the maximum tour, and the deviation
rate.

A bi-objective Ant Colony Optimization was proposed by [1] to solve a multi-
robot patrolling problem. It was formulated as a mTSP with single and multiple
depot in order to optimize the maximum traveled distance and the total traveled
distance simultaneously. Another work with a bio-inspired approach is presented
in [13] to resolve cooperative multi-robot task allocation problem. In this case
the robots have to minimize the total team cost and, additionally, balance their
workloads.

The paper [11], presents an optimization approach that minimizes production
time and also the total duration of robot movements in a vehicle production
line. The problem was modeled as a generalized mTSP, where was proposed fast
algorithm that generates a sequenced near-optimal solution for multi-robotic
task sequencing Problem. This algorithm operates on a set of solutions and uses
GA mechanisms to converge towards near-optimal solutions.

3 Multi-robot Coordination

We proposed a centralized system to generate routes with MOEAs for a team
of robots that must visit a set of target locations within an indoor environment.
The Figs. 3 and 4 present pictures of the system.

The system’s flow is illustrated by Fig. 1. First, the user sets target locations
and the return spot on a map of the environment. The robots are displayed in dif-
ferent colors, given their current positions. This hypothetical scenario illustrates
the process of Route Scheduling, which works in four steps: set up locations on
the map, creation of a complete graph using pre-built paths, tour generation
with MOEA.

Then, a complete graph is created with feasible paths, linking target loca-
tions, return spot, and all robots. After that, the route scheduling begins by
running a MOEA.
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Fig. 1. Route scheduling flow. (Color figure online)

Several MOEAs are available on the system, such as: Non-dominated Sort-
ing Genetic Algorithm (NSGA-II) [4], εNSGA-II [6], Reference Vector Guided
Evolutionary Algorithm (RVEA) [2], and εMOEA [3].

Fig. 2. This image depicts the hypothetical route scheduling of Fig. 1.

In order to use the concept of MOEA, some components must be designed
regarding the constraints of the problem. For mTSP, we modeled the individual
with a single chromosome structured in a 2D-array, as illustrated by Fig. 2. The
length of the chromosome is equal to n, which is the number of target locations,
as they must be visited only once by one of the m robots. Each gene of the
chromosome relates a robot to a target location. The sort of the target locations
in the chromosome is also important as it shows the sequence in which the robots
will perform theirs routes.

The main objective of mTSP is to minimize the total distance traveled by
all salesmen. However, it may cause an imbalance in the distance traveled by
them. This may occur when a salesman travels far away to visit a city. Since
mTSP aims to reduce the total distance, this salesman tends to cover all the
cities around, as sending another salesman there, for visiting just a few cities,
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can increase the total distance. As a result, some salesmen might travel much
more than others.

Therefore, we proposed the use of two objectives simultaneously. The first
one,

∑
, is responsible for minimizing the total distance traveled by the robots

(Eq. 2), while the second, σ, aims to reduce the difference of the distance traveled
individually (Eq. 3).

The distance Di of route Ri traveled by robot ri is calculated by the sum
of all path lengths, starting from the robot’s position to its first target location,
then the paths linking the sequence of target locations in the chromosome, and
finally the path from the last target location to the return spot (Eq. 1).

Di = |P(ri,l1)| +
|Ri|∑

j=1

|P(j,j+1)| + |P(l|Ri|,d)
| (1)

The total distance traveled by the team is given by summing the distance of
all routes (Eq. 2)

∑
=

m∑

i=1

Di (2)

To measure how balanced the routes are, the standard deviation is calculated
over the distance traveled by each robot (Eq. 3). A value of standard deviation
means that the routes are balanced.

σ =

√
∑m

i=1(Di − D)2

m − 1
(3)

The mTSP is a permutation problem as the cities should not be repeated
within the chromosome. Therefore, we used a crossover method, called Partially
Matched Crossover (PMX) [5], that prevents the generation of invalid individuals
as it performs safe permutations between the chromosomes. The PMX makes
some changes to avoid repetition, which can generate different genetic structures
when compared to the parents.

Once the route scheduling is done, the routes are sent to the robots and the
system tracks the execution.

The system, implemented in Java, runs on the server-side. It has a Graph-
ical User Interface (GUI) that enables the interaction to the user. This GUI
is composed by two panels, one for configuration and another to monitor the
execution.

When the user launches the system, the Control Panel appears on the screen.
First, the user selects a map file of the desired environment, which is shown on
the Execution Panel. At the same time, the system loads a file with several pre-
built paths computed off-line with A* that links strategic areas of the map, like
rooms and hallways. This paths are used latter to speedup the creation of the
complete graph of the map.
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Once the system is ready, the robots are able to establish a peer-to-peer
connection to the server. To do that, each robot runs a ROS node, built on
Python, that starts a Websocket connection.

The WebSocket protocol permits a full-duplex communication channels over
a single TCP connection with lower overheads, facilitating real-time data transfer
from and to the server. This is made possible by providing a standardized way
for the server to send content to the client without being first requested by the
client, and allowing messages to be passed back and forth while keeping the
connection open. In this way, a two-way ongoing conversation can take place
between the client and the server.

This is important to our application as the server sends target locations
to robots, and the robots send their current positions frequently to the server,
without being requested. Websocket also allows to exchange information from
heterogeneous technologies, such as Java and Python.

After the handshaking required by the protocol, the system creates a Thread
for every robot to hold its connection. One of its functions is to update the robot’s
position. The ROS node of the robot transforms its pose to map coordinate and
sends this information to the Thread. Then, the Thread updates the robot’s
position on the map of the Execution Panel.

When the robots are properly connected to the system, they appear on the
map with different colors along with their IP addresses. After that, the user can
easily set the target locations and the return spot by clicking on the map.

Then, the route scheduling can be performed by selecting any MOEA avail-
able on the system. Before that, the system computes the complete graph by
adapting pre-built static paths with straight lines to link the locations. Thus, the
system can estimate the path length from one location to another and calculate
the route distance.

At the end, the routes are sent to the Threads. Given the sorted list of target
locations to be visited, a Thread sends the first one to the ROS node which starts
the navigation towards it. As the Thread tracks the robot’s position, when the
target location is reached, it is marked as visited and the next one is sent to the
robot. When the list becomes empty, the robot navigates to the return spot.

In case a Thread loses its connection to the ROS node, due to some failure, it
warns the Control Panel that initiates a re-scheduling immediately considering
only the remaining target locations and the available robots.

4 Experiments and Results

Experiments were carried out to evaluate our Online Route Scheduling System
in terms of processing time, quality of routes, and connectivity to robots.

A turtlebot-2 robot [7] was used for these experiments. This robot consists
of an Yujin Kobuki base, wheel encoders, wheel drop sensors, an integrated
gyroscope, bump sensors, cliff sensors, a 2200 mAh battery pack, a Microsoft
Kinect sensor, an Intel NUC i7, a fast charger, a WiFi dongle, and a hardware
mounting kit attaching everything together.
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The system was tested in two environments. The first one is a simulation
environment, called WillowGarage, which is a large area composed by a lot of
rooms and hallways. This environment allows us to easily try different scenar-
ios and control several virtual turtlebot-2, running on ROS Gazebo simulator
in individual computers. In (Fig. 3), on the right, 3 virtual turtlebot-2 are per-
forming their routes on ROS Gazebo. The image at the bottom shows all 4
computers.

Fig. 3. Simulation environment. The system is shown on the left with a map of
WillowGarage.

The Fig. 4 shows our second environment, a real house with some rooms and
hallways. Its map was acquired by running GMapping algorithm on turtlebot-
2. Although we have only one robot for this environment, the system works
normally. The main purpose was to test the connectivity of our system to a real
robot.

Fig. 4. Real environment. The system is shown on top, with a map of the house,
during the execution of a route.
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For the WillowGarage environment, we set four scenarios with: 1) 2 robots
and 10 target locations, 2) 3 robots and 15 target locations, 3) 4 robots and 20
target locations, and 4) 5 robots and 25 target locations.

We ran 10 trials of each MOEA for all scenarios with a maximum Number
objective Function Evaluations (NFE) equal to 10,000.

MOEAs return as outputs an approximation of the Pareto Optimal, called
Approximation Set, which can be used to measure and compare their quality.
They are composed by objective values of non-dominated solutions.

Generational Distance (GD) is the average distance from every solution in
the Approximation Set to the nearest solution in a given Reference Set.

The Inverted Generational Distance (IGD) is the inverse of Generational
Distance (GD) - it is the average distance from every solution in the Reference
Set to the nearest solution in the Approximation Set.

The additive ε-indicator, or simply ε+, measures the smallest distance ε that
the Approximation Set must be translated by in order to completely dominate
the Reference Set. Good proximity and good diversity both result in low values,
as the distance that the approximation needs to be translated is reduced. How-
ever, if there is a region of the Reference Set that is poorly approximated by the
solutions in the Approximation Set, a large is required. Therefore, ε+ indicator
can be used to measure the consistency of an Approximation Set.

Spacing indicator measures the uniformity of the spacing between solutions
in an Approximation Set. An Approximation Set that is well-spaced will not
contain dense clusters of solutions separated by large empty expanses.

The R2-indicator compares the quality of two Approximation Sets based on a
set of utility functions. The indicator is weakly monotonic and performs a lower
computational overhead than the traditional hypervolume indicator.

The other indicators are presented in Table 1. Considering each indicator, the
best values were given by SMS-EMOE, εNSGA-II, NSGA-II, IBEA, and RVEA.

Table 1. Quality metrics. 2 robots and 10 target locations.

Algorithm GD IGD ε+ Spacing R2

RSO 360.85 645.27 613.55 461.50 5435.55

eNSGAII 242.21 549.52 539.25 542.26 4473.77

NSGAII 245.31 549.52 548.83 521.50 4473.89

SMS-EMOA 199.39 572.37 532.44 316.08 4794.13

NSGAIII 223.32 554.34 547.44 519.62 4478.78

SPEA2 212.52 571.60 547.44 480.61 4479.48

DBEA 242.92 554.34 546.33 594.67 4858.34

RVEA 282.61 563.36 539.25 577.35 4473.70

PAES 243.36 726.77 667.72 200.38 5877.45

PESA2 228.15 589.50 571.19 461.40 5092.89

eMOEA 203.68 603.86 580.77 259.00 4879.73

IBEA 323.61 571.60 547.72 184.46 4825.32

Random 307.11 639.71 616.05 675.77 5532.57

VEGA 370.70 668.72 651.88 251.83 5879.97
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This shows that the MOEAs found more non-dominated solutions in their
Approximation Sets for this instance. Although the solutions in each Approxi-
mation Sets are non-dominate, they didn’t present distant values for σ and

∑

either, which improved the Spacing indicator for most of the MOEAs.
Random and PAES couldn’t find very good solutions in terms of total travel

distance and balancing, as their Approximation Sets present.
Therefore, solutions found by them are easily dominated by the other

MOEAs, which impacts on indicators such as R2.
Table 2 highlights that εNSGA-II and RVEA are still having the best IGD

and R2, respectively. Moreover, εNSGA-II also reached the lowest value for ε+
indicator.

Table 2. Quality metrics. 3 robots and 15 target locations.

Algorithm GD IGD ε+ Spacing R2

RSO 533.51 1086.73 993.13 907.61 8826.84

eNSGAII 269.04 763.08 738.00 183.99 6655.05

NSGAII 207.96 852.89 747.72 113.28 6743.25

SMS-EMOA 244.22 886.00 817.02 199.73 7368.30

NSGAIII 223.04 798.54 783.83 250.61 6958.68

SPEA2 174.07 876.00 828.55 201.94 7470.43

DBEA 345.58 928.17 878.13 526.10 7897.74

RVEA 198.15 808.62 743.27 107.65 6622.55

PAES 407.09 1285.49 1054.25 61.86 9087.91

PESA2 178.31 953.45 904.80 60.83 8156.49

eMOEA 129.10 941.73 847.44 54.56 7508.85

IBEA 255.31 834.74 801.33 74.29 7225.25

Random 475.86 1087.86 1025.08 717.74 9095.36

VEGA 465.25 1008.40 983.27 370.25 8863.13

It was noticed that εMOEA also outperformed other MOEAs in two indica-
tors, GD and Spacing.

Solutions yielded by RSO, PAES, and Random are visibly dominated by the
others. On the hand, SPEA-II, NSGA-II, NSGA-III, RVEA are closely to where
should be the Pareto Optimal, reflecting on indicators such as GD, IGD, and
R2 (Table 3).
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Table 3. Quality metrics. 4 robots and 20 target locations.

Algorithm GD IGD ε+ Spacing R2

RSO 743.89 1503.71 1384.80 1248.24 12231.19

eNSGAII 222.63 1054.42 993.27 103.29 8952.57

NSGAII 141.54 1088.37 1007.58 67.30 9082.32

SMS-EMOA 193.52 1142.27 1062.16 183.42 9573.69

NSGAIII 206.64 1000.47 930.63 193.48 8382.58

SPEA2 148.72 1088.43 1000.22 74.73 9016.85

DBEA 491.18 1229.05 1154.66 912.56 10406.31

RVEA 204.99 1028.99 929.52 89.64 8380.38

PAES 279.67 1494.64 1366.05 85.83 12308.68

PESA2 194.31 1262.75 1202.86 73.51 10840.39

eMOEA 185.18 1180.23 1109.52 46.00 9999.19

IBEA 244.75 1039.94 1000.63 136.04 9019.57

Random 551.20 1512.47 1366.05 573.99 12129.32

VEGA 719.80 1330.83 1315.77 284.79 11855.27

Table 4 presents the results for our last scenario, with 5 robots and 25 target
locations. εNASA-II had the lowest value for 3 of the 5 indicators. εMOEA was
the best in GD and PESA-II in Spacing.

Table 4. Quality metrics. 5 robots and 25 target locations.

Algorithm GD IGD ε+ Spacing R2

RSO 864.68 1961.06 1789.38 667.30 16108.48

eNSGAII 207.31 1299.50 1220.63 76.35 10999.71

NSGAII 220.30 1386.81 1311.05 100.40 11812.91

SMS-EMOA 287.47 1433.22 1388.00 187.87 12071.38

NSGAIII 217.69 1309.24 1229.63 180.94 11070.28

SPEA2 211.20 1421.90 1360.50 155.11 12258.46

DBEA 529.72 1627.41 1556.88 385.71 14025.94

RVEA 208.78 1312.61 1236.88 82.52 11146.00

PAES 256.37 1920.22 1777.86 85.18 16025.38

PESA2 214.23 1536.57 1478.60 56.57 13248.54

eMOEA 202.12 1473.49 1393.69 80.52 12557.17

IBEA 290.28 1341.38 1306.61 82.96 11772.88

Random 783.97 1942.69 1761.47 1056.42 15870.78

VEGA 761.35 1598.91 1565.77 562.95 14105.86
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MOEAs from NSGA family have been outperforming their counterparts for
a long. In general, regarding the scenarios and indicators used during this exper-
iment, εNSGA-II was the best choice for solving mTSP as it reached the lowest
values, or was at least closed to them, in most of the cases.

We compared the elapsed time of εNSGA-II with εMOEA and RVEA, which
also provided good results. The Fig. 5 depicts the average time for 10 trials with
NFE equal to 10,000. The x-axis of the charts shows the NFE and the values of
y-axis are the cumulative time in seconds.

Although εNSGA-II wasn’t the fasted MOEA, it can generate high quality
solutions in a reasonable time for an online application. For instance, the average
time for scheduling routes with 5 robots and 25 target locations was less than
0,2 s.

Our last experiment is regarding the connectivity and response time between
the system and robots, which is also important for real-time applications. The
results shows that the system can track the robot’s position almost instantly.

Fig. 5. Elapsed time. Average time of εNSGA-II, εMOEA, and RVEA in each sce-
nario.



Route Scheduling for Service Robots 459

When the ROS node loses the connection and stops sending the localization, due
to some robot failure, the system is warned at the same time.

In a multi-robot scenario, when this happens, the system automatically starts
a re-scheduling considering the available robots and remaining target locations,
and sends new routes to the robots as soon as they are computed.

5 Conclusion

This work introduces the problem of scheduling routes for a team of robots in
indoor environments. This problem can be seen as an instance of the multiple
Traveling Salesmen Problem (mTSP) in which robots are salesmen and cities
are target locations to be visited. Since mTSP is classified as NP-hard, approx-
imation and heuristic methods like Evolutionary Algorithms are widely applied
as they can find good solutions very quickly.

Although its main objective is to minimize the total route distance traveled
by all salesmen, an imbalance in the distance traveled by each of them might
occur depending on the distribution of the cities. Therefore, a second objective
was taking into account, the minimization of the standard deviation for the route
distance.

Given these two objectives, we developed a system to generate routes and
track robots positions in real-time using several Multi Objective Evolutionary
Algorithms (MOEAs).

Such a system was deployed on a novel Robot-Server Architecture based
on ROS and Websocket, which handles the communication between the system
and robots. Thanks to this architecture, the system can detects failures on the
connection and automatically starts a re-scheduling when some robot goes down.

Experiments were carried out to compare 14 state-of-the-art MOEAs with
different performance indicators on real and virtual robot environments.

For future work, we are intended to run experiments with more real robots
and compared Websocket to other protocols.
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Abstract. Providing full autonomy to Unmanned Surface Vehicles
(USV) is a challenging goal to achieve. Autonomous docking is a sub-
task that is particularly difficult. The vessel has to distinguish between
obstacles and the dock, and the obstacles can be either static or moving.
This paper developed a simulator using Reinforcement Learning (RL) to
approach the problem.

We studied several scenarios for the task of docking a USV in a sim-
ulator environment. The scenarios were defined with different sensor
inputs and start-stop procedures but a simple shared reward function.
The results show that the system solved the task when the IMU (Inertial
Measurement Unit) and GNSS (Global Navigation Satellite System) sen-
sors were used to estimate the state, despite the simplicity of the reward
function.

Keywords: Simulation · USV · Reinforcement Learning

1 Introduction

Autonomous vehicles have attracted significant interest in recent years, in diverse
areas such as drones, self-driving cars, and sea transport [3,21,26,32]. This paper
deals with Unmanned Surface Vessels (USVs), an area that has displayed remark-
able progress in the past few years. There are a few benefits of making the surface
vehicles unmanned, such as removing the cost of the crew, and for shipping, the
possibility of removing crew areas such as cabins and bathrooms [15]; human
factors are also removed [16], such as getting tired, and the ability to see in 360◦

around the vessel, continuously.
One of the challenges associated with the development of USVs is that of

docking, as the USV has to navigate through narrow spaces, avoid obstacles,
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localize itself and map the environment. Therefore, avoiding collisions while mov-
ing in and out of the dock autonomously is a difficult task. It is also important
not to crash into other boats, the docks, or other obstacles. Approaching the
docks at high speed could damage both the USV and the docks.

In order to solve the task of docking, we applied Reinforcement Learning
(RL) which is commonly used in video games and for controlling vehicles and
more [7,8,12,17,19,34]. When performing RL, the state is given as the input to
the RL algorithm. The output of the RL algorithm is called actions, which are
used with the state, the next state, and the reward for improving the reward
it receives from the environment. State of the art RL algorithms include Deep-
Q Networks (DQN) [19], Deep Deterministic Policy Gradient (DDPG) [17] and
Proximal Policy Optimization (PPO) [25]. DQN has shown significant progress
for video games [19], though it does not allow for continuous actions. Instead,
these algorithms use discretized actions, meaning that the algorithm predicts
the action from a finite set of actions, such as keyboard controls for a driving
game. Continuous actions allow for a greater degree of control, examples of
implementations can be found in [20,28,31,33]. DDPG and PPO can be applied
to problems with continuous action spaces [17,25], allowing for more gradual
control.

PPO is an algorithm with the benefits of trust region policy optimizations
where surrogate objectives do the estimations. The surrogate objectives con-
sist of two components, and it chooses the pessimistic loss, as shown in Eq. 2,
which makes sure the policy updates are not too excessive [25]. When using an
actor-critic architecture, the overall loss function would consist of the policy loss
corresponding to the surrogate objective and the value function loss. This leads
to Eq. 3, where the policy loss LCLIP refers to Eq. 2, and value function loss LV F

refers to Eq. 1 where the value function loss is the squared error between the pre-
dicted value Vθ(st) and the target value V target

t . The target value is assumed to
be the total reward returned by the environment.

In addition to the policy and value function losses, we use an extra loss Sπ(...)
representing the entropy of the policy as shown in 3.

LV F (θ) = (Vθ(st) − V targ
t )2 (1)

LCLIP (θ) =Êt[min(rt(θ)Ât

+ clip(rt(θ), 1 − ε, 1 + ε)Ât)]
(2)

LCLIP+V F+S
t (θ) =Êt[LCLIP

t (θ) − c1L
V F
t (θ)

+ c2S[πθ](st)]
(3)

There has been significant research on the use of RL for autonomous vehicles,
for purposes such as reducing noisy rudder behavior [18], autonomous parking
[34] as well as using Deep RL for controlling an Autonomous Underwater Vehicle
while being affected by outside disturbances [7]. There is also some work explor-
ing the use of RL algorithms instead of traditional control algorithms [12,27],
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where it was observed that RL algorithms could predict actions similar to the
optimal control algorithms. In addition, they are also able to deal with distur-
bances observed.

Based on the literature review conducted, there are only a few studies that
employ RL for docking of USVs [4,8], though there simulators are to our knowl-
edge, not open-source or freely available. This opens up the need to develop an
RL-based simulator that can be used to study an autonomous docking system.
The main contribution of our work is the development of a new simulator for
docking of USVs. This simulator provides a “standardized” way of creating and
testing RL algorithms for docking. It was developed in Unity with the socketio
module,1 to control the USV with a programming language such as Python, C#
or C++. We have provided the simulator as open-source software.2

Our work also demonstrates that it is possible to train an RL algorithm
for the task of autonomous docking of USVs using our simulator. The paper
proposes a reward function, which is a significant challenge in applying RL for
industrial purposes. The solution is developed and validated with the simulator.

This paper is organized as follows: Sect. 2 presents our methods for imple-
menting the simulator and the agents for the environment. Then, the results of
our experiments are presented and discussed in Sect. 3, followed by conclusions
in Sect. 4.

2 Methods

This section will discuss the environment, the agent, and the reward function
created for our simulator. First, the environment gives the state to the agent.
Then, simultaneously, the agent generates the actions to perform in the environ-
ment. Finally, the reward function updates the agent, giving it feedback about
its performance.

2.1 Environment

The agent’s environment is simple, containing land, water, and docks. With the
water being the area the USV moves across, the land is the obstacle to avoid,
and the docks are the goals. For the agent to learn how to control the USV, it
gets a reward from the reward functions. The higher the reward, the more the
USV got to or moved towards the docks.

2.2 Agent

The agent is the entity that interacts with the environment.3 It gets information
about the environment through the given sensors and generates actions to change

1 https://github.com/udacity/self-driving-car-sim.
2 https://anonymous.4open.science/r/boatSimulator-3605/.
3 https://anonymous.4open.science/r/SteeringDockingPaper-98BC/README.md.

https://github.com/udacity/self-driving-car-sim
https://anonymous.4open.science/r/boatSimulator-3605/
https://anonymous.4open.science/r/SteeringDockingPaper-98BC/README.md
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the state of the environment. To train this agent, we use the PPO algorithm on
a simple Neural Network (NN) [25]. The reason for choosing PPO is that it is
among the best algorithms for training in a continuous action space.

Neural Network. The Neural Network (NN) used in the study was a simple
neural network with three layers, similar to that from ALVINN [23]. It has
an input layer, a hidden layer, and an output layer, and all these layers are
implemented as fully connected layers. For Scenarios 1,2, and 3, the input layer
has 256*256*3 units, the hidden layer has 64 units, and the output layer has
three units. The three outputs represent different actions, the first being the
force the USV is pushed forward or backwards with, the second being the force
to either sides of the USV; lastly a boolean which when it reaches a threshold
changes between forward and reverse. Scenario 4 has an input layer with six
units, while the hidden layer and output layer have the same number of units
as in previous scenarios. The first three scenarios have 12 583 104 weights, while
scenario 4 has 576 weights to update. Between each layer, there was a tanh
activation, suggested by [2]. They are trained until they converge or for 1000
updates of the neural network parameters. Convergence implies that the reward
was unchanged for 100 episodes.

2.3 Reward Function

One of the challenges with using RL for non-trivial applications is to define an
appropriate reward function [4] for the model. It is imperative for the reward
function to capture the realistic behavior of the vehicle. The reward function
defined in this study is such that it has three main components. Firstly, if the
USV completes the episode by going to a dock, the agent receives a reward of
+1000. Secondly, the previous distance to the current dock and the new distance
are used to calculate how far it traveled, as shown in Eq. 4

rewardi = distancei−1 − distancei (4)

Thirdly, a reward of –0.01 is given for each action performed, and this is meant
to decrease the amount of stalling done by the vehicle, i.e., sitting in the same
location. Using this reward function, we can pick and choose to attempt to find
the best fit for each scenario.

3 Simulator

We have developed a simulator to study the Reinforcement learning-based app-
roach for docking of USVs. There are several commercially available and open-
source software for simulating physics-based environments, like OpenAI Gym [5],
Gazebo [14], Unity [13] and Unreal engine [10]. Our simulator was built using
the Unity game engine [13] for physics and visualization, SocketIO [24] was used
for communication between the environment and the agent, the flow of which



Towards Using Reinforcement Learning 465

can be seen in Fig. 1b. Based on the simulator, a set of scenarios was created
where an increasing complexity from one approach to the next.

The USV is controlled by applying forces at the rear of the USV, simulating a
physical vehicle. The following sections describe the sensors and control in more
detail.

3.1 Sensors

For an RL algorithm to understand its environment, it needs sensors, including
a camera, an inertial measurement unit (IMU), and a global navigation satellite
system (GNSS) sensor. The camera is a built-in sensor in the Unity GameEngine.
It captures an RGB image and is an idealized sensor, meaning that it will provide
a noise-free picture of the scene. The camera is rotated about the Z-axis, showing
a top-down overview of the USV, dock, ocean, and the land, which lies on the
x-y plane, simulating a local map made using Lidar/RADAR or a detailed prior
map.

Next, we have an IMU sensor, a built-in Unity sensor implemented as a
GameObject. A GameObject is an object in the Unity environment that can
hold other GameObjects, scripts, and other entities. A given GameObject is
associated with a transformation, which includes its position, rotation, and scale
[30]. The IMU sensor includes the velocity and angular velocity components
along the x, y, and z axes. The GNSS, also a built-in GameObject, is an idealized
sensor that gives the exact position in (x, y, z) coordinates and rotation of the
USV, the notation of which can be found in Table 1.

Table 1. DOF = Degree of freedom, Mot = motion in *axis, Rot = Rotation around
the *-axis, FM = Forces and Moments, LAV = Linear and Angular velocities, PEA =
Positions and Euler angles

DOF FM LAV PEA

1 Mot xb axis (surge) X u xn

2 Mot yb axis (sway) Y v yn

3 Mot zb axis (heave) Z w zn

4 Rot xb-axis (roll) K p φ

5 Rot yb-axis (pitch) N q θ

6 Rot zb-axis (yaw) Z r ψ
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Fig. 1. Shows the environment, as well as a flow chart of how it functions (Color figure
online)
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3.2 Control

Actions from the agent (see Eq. 5) are applied to the USV as shown in Fig. 2. For
the actions (X, Y , r) to be applied, they first have to be translated to forces. X
is the propulsive force in the body’s X direction, Y is the propulsive force in the
body’s Y direction and r is either –1 or 1 used to change between reverse and
moving forwards. As Unity does not consider the bearing of the object, meaning
that as the USV turns, the agent will have to take the angle into account when
making its prediction. We use the rotation along the z axis of the USV (ψ) to
calculate which direction to send the forces. This means that the forces would be
added from the rear to the front of the boat when its rotation is 0, but when its
rotation is 90, the same force will go from the left (port) to the right (starboard).

The forces to the body are calculated from the three actions (see Eq. 5) to the
F body (see Eq. 6). We then use the rotation of USV to calculate the rotational
matrix (see Eq. 7) for the Unity coordinate system. F body and Rψ are then used
to calculate the forces (FENU ) which are directly applied to the USV (see Eq. 8).
The notation of the control equations can be found in Table 1.

actions = [X Y r]T (5)

F body = [rX Y ]T (6)

Rψ =
[
cos(ψ) −sin(ψ)
sin(ψ) cos(ψ)

]
(7)

FENU = RT
ψF body (8)

Fig. 2. Forces (X, Y) applied on the USV, given the predicted force (Xenv, Yenv)
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4 Experiments and Results

This section focuses on the results of each of the four scenarios outlined below. In
each scenario, we trained the agent until they converged or for 1000 parameter
updates (backpropagations). The number of backpropagations was chosen due
to the time constraint.

In order to test our algorithm in the environment, a few different scenarios
were defined, each with a differing degree of complexity. We have considered four
scenarios, one of which does not include islands (which might hinder the move-
ment of the boat), and the rest include islands. For the latter three scenarios,
we use a top-down idealized camera sensor hanging in the air while following the
vessel.

These four scenarios differ quite a bit, each with its reward functions and
reset system, an overview of which can be found in Table 2. In addition, the last
scenario has a different environment setting. In the following, we describe each
scenario in more detail.

Table 2. Shows the different scenarios implemented. In the table the following X, O
actions indicate, X - Yes, O - No. ResetDocked means that the USV is Reset when it
is close enough to the dock. ResetOffMap, Resets the USV when it goes off the map.
Reset25m means that the USV is Reset when it drives away from its Reset position of
10 m–15m

Scenario Image Islands State ResetDocked ResetOffMap Reset25 m

Scenario 1 X X O O X O

Scenario 2 X X O O X O

Scenario 3 X X O X X X

Scenario 4 O O X X X X

Scenario 1 is a simple scenario in which the USV is reset to its spawning
location if it moves off the map. The reward in this scenario is based on the
generic reward function described in Sect. 2.3. If it reaches the goal, it is given
a new dock as its current goal, towards which it has to navigate again. For its
state, it uses a top-down idealized camera, with an arrow pointing towards the
current goal as shown in Fig. 1a.

Scenario 2 is also a simple one with a similar reset policy as in Scenario 1. Its
reward function has a similar rule as in Scenario 1, where a reward is awarded
based on the traveled distance towards the dock. In addition, when attempting
to apply an action, this scenario penalizes any actions which are not directing
the USV towards the current goal. When an action is bearing towards the goal,
with a maximum deviation of 45◦, or the predicted force X is lower than 0.5,
the forces are applied to the vessel; otherwise, the action is not applied, and
the agent receives a penalty. If it reaches the goal, it is given a new dock as
its current goal, towards which it has to navigate again. For its state, it uses a



Towards Using Reinforcement Learning 469

top-down idealized camera, with an arrow pointing towards the current goal as
shown in Fig. 1a.

Scenario 3 resets the USV for moving off the map, moving further than 25 m
away from the goal or reaching its goal. If the USV is reset or is spawning, it is
placed within 45◦ of the current goal and at a distance of 10–15 m. This means
that the USV is reset close to the opening of the docks. If it reaches the goal,
it is given a new dock as its current goal, which it has to navigate towards it
again. The reward function of this scenario is identical to that of Scenario 1. For
its state, it uses a top-down idealized camera, with an arrow pointing towards
the current goal as shown in Fig. 1a.

Scenario 4 is somewhat more simplistic than the other scenarios as it does
not include any islands which might act as obstacles. However, its reset strategy
and reward function are identical to Scenario 3. For its state, it uses the IMU
and GNSS data, precisely the distance in the x and y-axis, z rotation, z angular
velocity, surge, and sway as shown in Fig. 3.

An overview of the scenarios can be found in Table 2.

Fig. 3. The linear and rotational motion of the boat with respect to the coordinate
system of the model, adopted from Fossen [11,29]

Any reward greater than 700 achieved by the system implies that the USV
reached the goal at least once. When the system has reached the goal and has
performed more than 2000 actions, the NN parameters are updated; otherwise,
the system continues to the next goal. With fewer experiences than the hyper-
parameter batch size, the NN cannot sample the memory when updating.

Figure 4d shows that Scenario 4 converged after 100 backpropagations, while
Fig. 4c shows that the algorithm did not learn much during this training, but
it kept trying new things. Figure 4a and 4b represent scenario 1 and scenario
2, respectively. It is observed that they did not learn much, staying around a
reward of –2.9 and deviating only three times around this score.

Table 3 shows the performance between backpropagation 100–200, where sce-
nario 4 had the highest maximum, minimum, and average reward. Table 4 shows
that there was little to no performance increase among scenarios 1,2, and 3,
though scenario 2 seemed to be most negatively affected.
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Fig. 4. The results of the different scenarios

The Scenarios show that there is a difference in the reward awarded in dif-
ferent scenarios. Scenarios 1 and 2 did very poorly, with essentially no improve-
ment or learning. For Scenario 4, we see a rapid improvement, while Scenario 3
attempted to update the NN but did not converge over the 1000 episodes.

In the different scenarios, the agent has got different types of rewards. In
Scenarios 3 and 4, the agents were given positive rewards more often. In Scenarios
1 and 2, the agents have got rewards only occasionally. The results are consistent
with these patterns of reward functions showing that Scenario 4 learned more,
which can be attributed to the feedback and simplicity of the environment.

Scenario 4 achieved the highest reward consistently after only about 100
backpropagations, with some exploration at the end.
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Table 3. The nMax is the maximum number of times it reached dock, min is the
lowest reward, and AVG is the average reward. These are done for episode 100–200,
when scenario 4 converged.

Scenario nMax Min. AVG.

Scenario 1 0.0 –3.1177 –2.144

Scenario 2 0.0 –3.0 –2.4031

Scenario 3 15.0 –5000 –525.2318

Scenario 4 15.0 15000 15000

Table 4. The nMax is the maximum number of times it reached dock, min is the
lowest reward, and avg is the average reward. These are done for the last 100 episodes
of each scenario.

Scenario nMax Min. AVG.

Scenario 1 0.0 –2.9913 –2.7341

Scenario 2 1.0522 –1686.1361 –93.3627

Scenario 3 11.74 –5000 –525.2318

Scenario 4 15.0 –5000 14800

Scenario 3 was observed to be varying quite a lot, implying that it was still
training, with some substantial variations giving the USV between the maxi-
mum and the minimum reward. However, the average reward did not seem to
improve much. Given more training time, we assume we could have increased the
performance in this scenario. This behavior can be attributed to its higher com-
plexity than that of Scenario 4 due to the camera being its sensor versus IMU
and GNSS. Moving from one part of the map to the next is a more complex
scenario, so Scenario 1 and Scenario 2 will take significantly longer to train.

Suppose we intend to improve Scenario 1 and 2. In that case, we may perform
something similar to the approach in [9], where transfer learning is applied to
start from the most straightforward scenario to the most difficult one, i.e., from
Scenario 4 through Scenarios 3 and 2 to Scenario 1. Scenario 4 has an important
advantage over the other scenarios due to the nature of its state-space where the
agent has direct access to distance in x and y along with the angle of rotation
to the goal, compared to having to learn this just from the bearings of an arrow
pointing towards the goal in other scenarios. In Scenarios 1 and 2, the USV has
to move from one dock to the next after it has reached a dock, and they are
not spawned in the vicinity of the docks, making them more complex scenarios.
However, if given enough time, Scenario 2 should get better feedback than Sce-
nario 1, as Scenario 1 allows for actions that move it away from the next dock,
unlike Scenario 2, which penalizes such actions while not performing them.
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5 Conclusion and Further Work

In this work, we developed a simulator that could be used for RL. The contri-
bution of this work is three-fold. Firstly we present an open-source Unity-based
boat simulator for the development of USVs. Secondly, the application of RL
to the docking problem was demonstrated in several scenarios; thirdly, a reward
function to give feedback to the agents has been defined and studied. Finally, the
performance of this simulator was tested in 4 different training scenarios, using
IMU and GNSS or a top-down camera as the sensors. Each of these scenarios
had a different variant of the reward function and the reset systems.

Our results showed that Scenario 4 converged very quickly while Scenario
1, 2, and 3 took quite long to train. We conclude that Scenario 4 achieved its
goal of docking after updating the agent’s parameters through only about 100
backpropagations. It was also concluded that scenarios 1 and 2 struggled due to
their complexity and may require more feedback or a longer training time.

To improve the training of Scenario 1,2,3, we could use the state data sim-
ilar to Scenario 4 in addition to the camera. For Scenarios 1 and 2, we could,
for example, make checkpoints to provide additional feedback when the USV
gets closer to them. It would also be interesting to train these algorithms for a
more extended period and observe the changes. Another approach is to transfer
the knowledge gathered in a more straightforward scenario to a more complex
scenario through transfer learning. As well as developing the simulator further,
implementing different propulsion methods, sensors, and developing the reward
function. Moreover, lastly, it would be possible to move the simulation to a Gym
environment [5] using Gym-unity [1] to train with the standard algorithms from
baselines [22] or dopamine [6].
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Abstract. Good performance in supervised text classification is usually
obtained with the use of large amounts of labeled training data. How-
ever, obtaining labeled data is often expensive and time-consuming. To
overcome these limitations, researchers have developed Semi-Supervised
learning (SSL) algorithms exploiting the use of unlabeled data, which are
generally easy and free to access. With SSL, unlabeled and labeled data
are combined to outperform Supervised-Learning algorithms. However,
setting up SSL neural networks for text classification is cumbersome and
frequently based on a trial and error process.

We show that the hyperparameter configuration significantly impacts
SSL performance, and the learning rate is the most influential parame-
ter. Additionally, increasing model size also improves SSL performance,
particularly when less pre-processing data are available. Interestingly, as
opposed to feed-forward models, recurrent models generally reach a per-
formance threshold as pre-processing data size increases.

This article expands the knowledge on hyperparameters and model
size in relation to SSL application in text classification. This work
supports the use of SSL work in future NLP projects by optimizing
model design and potentially lowering training time, particularly if time-
restricted.

Keywords: Machine learning · Text classification · Semi-supervised
learning

1 Introduction

Text classification has many useful application areas, for example, classifying
emails, medical texts, or even sentiments. Manual text classification is unfeasi-
ble due to significant time and economic costs. Artificial Intelligence (AI) tech-
niques automate text classification tasks, making text classification cheaper and
practical. Within AI, neural networks using traditional supervised learning often
require a substantial amount of labeled data to achieve good text classification
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performance. Unfortunately, obtaining labeled data frequently requires domain-
specific expertise. In contrast, getting an extensive volume of unlabeled data
is often free and simple. There is a significant amount of research within the
exciting area of semi-supervised learning (SSL) for text classification. The SSL
technique exploits both unlabeled and labeled data to achieve improved classifi-
cation performance.

Semi-supervised Learning
The field of machine learning frequently draws a line between supervised learning
and unsupervised learning [4]. Supervised learning uses a dataset containing data
(x-samples) and respective labels/targets (y-samples). In contrast, unsupervised
learning uses a dataset containing data (x-samples) but not labels (y-samples).
SSL uses both supervised and unsupervised learning [6,22]. SSL aims to increase
the performance of either the supervised or unsupervised approach. It exploits
knowledge from both approaches. In particular, if labeled data is challenging to
obtain, using unlabeled data can be significantly useful. For successful use of
SSL, three assumptions need to be satisfied: the smoothness assumption, the
cluster assumption, and the manifold assumption [6, p. 6].

Pre-training
Unsupervised pre-training utilizes labeled and unlabeled data within two phases.
Parameters for unsupervised pre-training are static within feature extraction
techniques. They can, however, be modified during the supervised fine-tuning
within pre-training techniques. Before supervised learning, unlabeled data moves
the decision border towards potentially more relevant areas with pre-training
methods. Unsupervised pre-training of a model commonly lowers the required
volume of labeled data necessary to achieve good performance. Downstream
NLP tasks then became simpler and cheaper to implement. Unsupervised pre-
training also makes it possible to fine-tune a model to multiple downstream
tasks, reducing training time and regularly improving downstream performance.
Pre-training research is therefore valuable within NLP.

Impact of Parameters on SSL Performance
It is challenging to define precise circumstances where an SSL technique is
effective. It is important to highlight that unlabeled data does not always
improve results [19]. Previous literature has shown decreased performance as
a result of SSL, a phenomenon probably under-reported because of publication
bias [22]. Several articles have investigated the use and implementation of SSL
[6,13,16,18,22], but it is still unclear how to maximise its performance. This
is especially true when good results are reached using purely supervised clas-
sifiers, and deploying SSL are more likely to degrade performance. There are
multiple parameters that can significantly impact SSL performance within text
classification. These include:

Pre-training Data Size
Raffel [17] et al. and Baevski et al. [2] show that reducing the volume of pre-
training data can result in performance degradation since a large network could
overfit on a small quantity of pre-training data. Raffel et al. [17] recommend
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utilizing a significant amount of pre-training data. Importantly, obtaining addi-
tional unlabeled data is inexpensive and straightforward.

Model Size
Enlarging network size and/or training time generally improve results [17].
According to a recent paper by Bender et al. [3], the expanding scale of lan-
guage models, estimated by volume of training data and parameters, has been
a significant trend within NLP.

Hyperparameters
There is much literature showing that hyperparameters are very relevant for
achieving good performance with SSL. Devlin et al. [8] observe that using a sig-
nificant amount of data and increasing the number of hyperparameters, improves
results particularly for GLUE [20]. In the RoBERTa paper [15], Liu et al. show
that hyperparameters have a significant impact on SSL performance. You et al.
[21] show that with 32k as batch size, BERT training time can be shortened
significantly without affecting performance. Dai and Le [7] show that LSTM
models can be trained and reach good performance on multiple text classifica-
tion tasks, with fine adjustment of hyperparameters. It is important to highlight
that some hyperparameters have bigger impact on the model performance than
others. According to Goodfellow et al. [9], “The learning rate is perhaps the
most important hyperparameter”. However, there is not a significant volume
of research exploring the impact of parameters on SSL performance for text
classification.

This article explores the impact of hyperparameters, including pre-training
data size and model size, on an SSL algorithm employed in a text classification
task. A limited number of epochs and smaller models are used, due to hardware
limitations. A program for running experiments is written based on code from
an earlier project [14].

2 Methods

Structure of Experiments
Two experiment types are run for each model: Supervised learning (SL) experi-
ments and Semi Supervised Learning (SSL) experiments. SL experiments train
the models with labeled data only, without pre-training. SSL experiments pre-
train the models using unlabeled data first. Then, the model is fine-tuned with
labeled data.

– Feed-Forward Model
It contains an embedding layer, a dropout layer, two hidden layers, and one or
multiple output layers. It uses a single output layer for the text classification
task because this requires only a single output. For the pre-training task with
predicting two or three masked tokens, it uses two or three output layers.
These output layers are sharing hidden layers. Therefore, this model does
multi-task pre-training with hard parameter sharing.
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– GRU Model
This model contains an embedding layer, a dropout layer, a GRU layer, a
dense hidden layer followed by a ReLU activation function, and a single or
two/three output layers. The output layers are similar to the output layers
in the feed-forward model.

– Sequence to Sequence (Seq2seq), Classifier
It contains an encoder and a decoder. The decoder implements an attention
mechanism. The encoder contains an embedding layer, a dropout layer, a bidi-
rectional GRU layer, and the hidden layer. The decoder contains an embedding
layer, a dropout layer, a GRU layer, an energy layer, and an output layer. The
implemented Seq2seq model with attention mechanism is based on code from
GitHub by aladdinpersson [1]. This model does single-task learning during pre-
text task training. Pretext task training uses the Seq2seq model, while super-
vised text classification training uses the Classifier model. Both these models
contain an encoder. In contrast to the Seq2seq model, the Classifier model does
not have a decoder. The Classifier achieved similar performance as the Seq2seq
model during testing in a previous project [14]. Therefore, to improve training
time, the Classifier model was used when possible. Additionally, in this work,
we reference both the Seq2seq and Classifier model as Seq2seq model.

Data Handling
For pre-training, training, validation, and testing datasets are created from the
original 20newsgroups [11] dataset. This data contains no headers, footers, or
quotes. Unwanted characters are removed from this data. Data is split into sen-
tences containing at the minimum 11 words. For each sentence, a sliding 10-word
window iterates over the words. For each 10-word sequence, the words “sos”
and “[MASK]” are inserted before the 10 words themselves. This includes the
“sos” and “[MASK]” tokens in the resulting tokenizer. The eleventh word is
also used, mainly because of using the codebase from the previous project [14].
Both supervised and downstream text classification training use data from the
original Banking77 dataset [5]. A testing dataset is also obtained from [5] and
used in experiments as validation data.

Experimental Procedure
After creating the 11-word datasets from the 20newsgroups and Banking77
datasets, both supervised learning and SSL experiments are run for each model.
The vocabulary used by the tokenizer is limited to words that appear at least
twice in the data. A downstream task experiment initializes model weights with
the best model weights obtained during pretext task training. Best model weights
achieve the lowest validation loss. If not pre-trained, model weights are randomly
initialized. A model trains and validates for a particular number of epochs. The
pre-training uses a masking pretext task. The “[mask]” token replaces two or
three random tokens in the sequence and the objective is to predict the masked
tokens. During pre-training or validation, each batch uses dynamic masking. By
randomly masking sequences in each batch, the pre-training dataset is enlarged
artificially. Sequences in pre-training batches randomly mask during both train-
ing and validation. For training, the cross entropy loss is calculated and model
parameters are updated using the Adam optimizer.
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Hyperparameters
This article uses two baseline hyperparameter configurations for experimenta-
tion. The Vanilla configuration, is meant to represent a typical configuration of
hyperparameters used in machine learning. The SOTA configuration, is partly
based on hyperparameters in two GitHub projects [10,12], based on a paper [7]
by Dai and Le. The SOTA configuration masks three tokens in each ten-word
sequence. This results in a masking of 30% for each 10-word sequence. Addi-
tionally, supervised, pre-training, and downstream training use 200 epochs each
during experimentation.

Table 1 summarizes the hyperparameters used in this study. Additional con-
trolled parameters are:

– Dataset size. The number of 10-word sequences created from the 20news-
groups dataset, to generate training, validation, and testing datasets. Used
sizes range from 25k to 500k.

– Training, validation and test ratio. Ratios of 80%/10%/10% are used.
– 15 Newsgroups from the 20newsgroups dataset are used.
– Length of word sequences. 10-word sequences are generated from the 20news-

groups dataset.

Model evaluation
We evaluate the performance of the models not by an absolute measure but with
a relative measure called SSL performance. The lowest achieved text classifica-
tion validation loss using supervised learning, minus the lowest achieved text
classification validation loss using SSL. This measure allows us to easily see if a
model benefits from using a SSL scheme or not.

SSL performance = LS − LSSL (1)

In Eq. 1, LS is the text classification loss using purely supervised learning,
and LSSL is the text classification loss using SSL.

3 Results

Impact of Hyperparameters Configuration and Model Size on the SSL
Performance
Figure 1 shows the impact of hyperparameter configuration and model size on
the SSL performance for each model, represented as the mean and variance of
10 simulations each. For all models with SOTA configuration, SSL performance
improves compared to the Vanilla configuration. This improvement supports the
hypothesis that the hyperparameters configuration significantly impacts SSL
performance. Ten simulations are not a substantial number of simulations for
each model, so this figure should not be observed as significantly conclusive. As
expected, more extensive models improve SSL performance compared to smaller
models.
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Fig. 1. Vanilla configuration ver-
sus SOTA configuration, using 25k
pre-training data, 200 epochs for
each training phase, and ten simu-
lations for each configuration.

Table 1. Baseline vanilla configuration
and SOTA configuration hyperparame-
ters for experimentation

Hyperparameter Vanilla SOTA

Embedding size 512 256

Batch size 512 1024

Hidden size 1024 512

Dropout rate 0.0 0.2

Learning rate 0.0001 0.001

Number of masked tokens 2 3

Impact of Increasing Pre-training Dataset Size on the SSL Perfor-
mance
To test the impact of the pre-processing data size on the SSL performance
we run each model configurations, both Vanilla and SOTA, with different pre-
training data size. We expect that increasing the size of pre-training data leads
to improved performance across all models. Additionally, based on the results
observed in Fig. 1 we expect bigger models to outperform smaller ones. The
results of SOTA simulations are shown in Fig. 2. For the feed-forward model,
increasing the pre-training data amount leads to an increase in SSL performance.
However, for both GRU and Seq2seq models, the SSL performance reaches a

Fig. 2. Comparing pre-training data amounts, using SOTA and Vanilla configuration
and 200 epochs for each training phase.
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plateau when more than 100k sequences are used for pre-training. This experi-
ment shows that a feed-forward model improves SSL performance as long as pre-
training data volume increases. Importantly, with a recurrent model, increasing
pre-training data size beyond 100k does not improve the SSL performance sig-
nificantly. This result is unexpected. Next, we investigate the SSL performance
across epochs by calculating the loss function for a fix 25K sequences pre-training
dataset. This analysis clearly shows that for larger models, the loss graph con-
verges faster (data not shown in this manuscript) and reaches lower values. Both
these observations support the idea that more comprehensive models learn more
useful features from pre-training data per epoch. These results, taken together
with Fig. 2 also show that the more the loss graph converges, the less addi-
tional pre-training data improves SSL performance. Increasing pre-training data
volume with SOTA configuration results in improved SSL performance for all
models with different dynamics, as described in this paragraph. However, when
the Vanilla configuration is tested in a similar framework, we observe a small
or no impact of pre-training data size on SSL performance. This result is unex-
pected, particularly for the feed-forward model when compared to the SOTA
configuration.

Impact of Changing Single Hyperparameter on the SSL Performance
To test the impact of each parameter on the SSL performance of the model and
investigate whether the impact depends on other hyperparameters, we modify
one parameter at a time while keeping the others constant. Simulations are per-
formed with two different pre-training dataset sizes of 25K and 100K sequences.
Only the 100K simulation is presented in Fig. 3. In Fig. 3 the impact of SSL per-
formance is quantified across all models with the SOTA configuration as a start-
ing point. As expected, the learning rate has a crucial impact on the results of
the simulation: changing it from 0.001 to 0.0001 significantly lowers the SSL per-
formance across all models. It is of particular interest to investigate the impact
of different learning rates on the loss function of the model. In essence, when
tested in a Seq2seq model, a higher learning rate (0.001) results in loss graphs
converging significantly faster. Thus, indicating that the model has learned more
useful knowledge during pre-training leading to improved downstream task per-
formance. Another observation is that changing the dropout rate from 0.2 to 0.0
slightly increases the SSL performance for all models when using 100k dataset
size. However, when the 25k dataset size is used (data not presented), changing
the dropout rate to 0.0 significantly lowers the SSL performance for all models.
This might be due to overfitting during pre-training when using only 25k data
samples. This shows that the pre-training dataset size has an impact on the
significance of single hyperparameters.

We last simulate the impact of changing single hyperparameters across mod-
els using the Vanilla configuration, Fig. 4. Again, the learning rate shows to be
an important hyperparameter also for the Vanilla configuration. However, the
way the learning rate influences SSL performance in the two configurations is
not the same. In the SOTA configuration, decreasing the learning rate leads
to lower SSL performance, Fig. 3. Therefore, it might be reasonable to expect
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Fig. 3. Changing one parameter at a time from SOTA configuration, using 100k pre-
training data and 200 epochs for each training phase

Fig. 4. Changing one parameter at a time from Vanilla configuration, using 25k pre-
training data and 200 epochs for each training phase

the SSL performance to increase when increasing the learning rate. However,
this is not the case. A similar decrease in SSL performance can be seen in the
Vanilla configuration when increasing the learning rate from 0.0001 to 0.001,
see Fig. 4. This performance indicates that individual hyperparameters can not
be tuned independently, and some interplay between hyperparameters exists.
Another unexpected result in the Vanilla configuration is that changing the
dropout to 0.2 does not change SSL performance as significantly as it did for the
SOTA configuration. This result is unexpected.

Impact of Changing two Hyperparameters on the SSL Performance
To further understand the relationships between hyperparameters, we con-
tinue to modify two hyperparameters at a time, from SOTA configuration, and
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quantify the SSL performance. This tests if patterns emerge showing which com-
bination of hyperparameters generally have the strongest impact on SSL perfor-
mance. Figure 5 shows that both the feed-forward and the Seq2seq model obtain
the highest SSL performance when modifying batch size from 256 to 512 and
hidden size from 512 to 1024. The GRU model obtains the highest SSL perfor-
mance when embedding size changes from 256 to 512 and hidden size changes
from 512 to 1024. The common factor here is that increasing hidden size from
512 to 1024 makes SSL performance the best for all three models. The differences
in SSL performance might not exceed the performance variance. Therefore, if the
same experiments are rerun, the results can change. Figure 5 also solidifies that
the learning rate is a vital hyperparameter to consider for SSL. When the learn-
ing rate changes from 0.001 to 0.0001, performance decreases. Similarly, when
dropout is modified from 0.2 to 0.0, SSL performance decrease.

Fig. 5. Changing two parameters at a time from SOTA configuration, using 25k pre-
training data and 200 epochs for each training phase while keeping everything else
fixed.

3.1 Discussion

The Hyperparameters Configuration Has a Significant Impact on the
SSL Performance. Based on the results presented, the hyperparameter con-
figuration significantly impacts SSL performance at least within a fixed number
of epochs. The smaller and less sophisticated feed-forward models are frequently
more sensitive to hyperparameter modifications. One possible explanation is that
less sophisticated models are more dependent on hyperparameters for learning
effectively. Potentially, more epochs could allow smaller models to converge more
during pre-training and learn more useful knowledge for the downstream classifi-
cation task. Some hyperparameters have a stronger impact on SSL performance
compared to others. Particularly:
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– The learning rate has a significant impact.
Increasing the learning rate can lead to a faster model adjustment to the
pre-training task. Because the number of epochs is fixed at 200, increasing
the learning rate results in more substantial weight modifications per update.
This results in faster convergence of the model. A higher learning rate can
allow the model to learn more useful features in fewer epochs, resulting in
better downstream performance. However, when tested in the Vanilla config-
uration, a higher learning rate results in a lower SSL performance. A possible
explanation can be that the combination of larger embedding size, hidden
size, and no dropout may lead to overfitting on pre-training data.

– The dropout impact on SSL depends on the model.
Dropout is known for lowering overfitting and improving generalization in
deep neural networks. Adding dropout results in models learning more gen-
eral knowledge during pre-training, which improves downstream classification
performance on validation data. Surprisingly, with 100k pre-training data,
changing the dropout to 0.0 has a minor impact for the GRU and Seq2seq
models, while for the feed-forward model, it has a small positive impact.
Larger models with recurrent layers have more use of dropout, compared to
the feed-forward model, because of a higher tendency to overfit. While for
simpler models, dropout results in ignoring useful information. Additionally,
if only 25K data are used, changing dropout to 0.0 results in the feed-forward
model overfitting and lower performance. Using 100k pre-training data will
then prevent overfitting. However, the dropout is less relevant when it comes
to the Vanilla configuration. The Vanilla configuration has a lower learning
rate, leading to slower learning dynamics. Increasing dropout to 0.2 addition-
ally slows down the learning resulting in lower SSL performance within 200
epochs. The feed-forward model is the exception here, which can be a random
incident. It is possible that if more epochs are used, then using a dropout of
0.2 would improve SSL performance for both Vanilla configuration and SOTA
configuration.

The Amount of Pre-training Data Improves the SSL Performance
For hyperparameter configurations tuned for SSL, SSL performance improves for
smaller models as pre-training data quantity increases, while larger models reach
a performance threshold, at least with a fixed amount of epochs. Therefore, one
should experiment with different data volumes and use as little data as possible.
This can significantly save training time. One possible explanation for this is
that with recurrent layers a model learns faster, and learns a larger number of
useful features from pre-training data. This is because of using more parame-
ters. Therefore, more expansive models containing more parameters require less
pre-training data to learn the most useful features during pre-training. This is
only speculation. It is possible that Fig. 2 looks different with other hyperparam-
eters. Experiments with additional pre-training data are considered future work.
For other configurations less suited for SSL, the effect of increasing data quan-
tity is not as significant, particularly for smaller models. This also means that
the hyperparameter configuration can be more important than the amount of
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pre-training data itself. Using the “wrong” configuration can severely hinder SSL
performance even with large amounts of data.

Larger Models Improve the SSL Performance
Based on the discussion above, larger models generally show higher SSL per-
formance than smaller models. Our experiments show exceptions to this, but
these might occur due to parameter choices. Using additional pre-training data,
smaller models can catch up with more extensive models regarding SSL per-
formance. However, throughout this entire study, we do not look at absolute
text classification performance. Instead, relative text classification performance
is considered. In summary, extensive models show higher SSL performance com-
pared to smaller models - particularly with a smaller volume of pre-training
data.

3.2 Conclusion

There is a growing interest in SSL research caused by limited labeled data in
many domains. However, the setup of SSL neural networks for text classification
is cumbersome, frequently based on trial and error, with little knowledge on
which setup is beneficial for SSL. Research has shown that SSL does not always
improve performance compared to supervised learning. We found that the hyper-
parameter configuration significantly impacts SSL performance, and the learning
rate has the most impact. Hence, experimenting with different hyperparameter
configurations can dramatically improve SSL performance. More extensive mod-
els often improve SSL performance than smaller models, particularly with a
smaller pre-training data quantity. However, as pre-training data size increases,
recurrent models generally reach a performance threshold. On the other hand,
smaller models can benefit from more pre-training data, especially when hyper-
parameter configurations are tuned for SSL. Therefore, one should generally
experiment using different data volumes for all models. If aiming to achieve the
best possible absolute downstream performance, larger and more sophisticated
models should be used.

This article explored the impact of hyperparameters, including pre-training
data size and model size, on an SSL technique for a text classification task.
This exploration improves understanding of which parameters have the most
impact on SSL for text classification, making it more manageable to perform SSL
work for future NLP projects, particularly if time-restricted. This research also
advances the understanding of model size impact on SSL for text classification,
enabling a better experience of model selection for SSL designs. With this, we
enhance the knowledge of parameter relations, potentially lowering the training
time for SSL-based machine learning.
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Abstract. Text classification is the task of assigning a class to a doc-
ument. Machine Learning enables the automation of Text Classification
Tasks, amongst others. Recent advances in the Machine Learning field,
such as the introduction of Recurrent Neural Networks, Long Short Term
Memory and Gated Recurrent Units, have greatly improved classifica-
tion results. These type of networks include internal memory states that
demonstrate dynamic temporal behaviour. In the LSTM cell, this tem-
poral behaviour is supported by two distinct states: current and hidden.
We introduce a modification layer within the LSTM cell, where we are
able to perform extra state alterations for one or both states. We exper-
iment with 17 single state alterations, 12 for the current state and 5
for the hidden state. We evaluate these alterations in seven datasets that
deal with hate speech detection, document classification, human to robot
interaction and sentiment analysis. Our results demonstrate an average
F1 improvement of 0.5% for the top performing current state alteration
and 0.3% for the top performing hidden state alteration.

1 Introduction

Machine Learning (ML) enables the automation of a wide range of computer
tasks in: Video, Image and Text analysis, Speech recognition and autonomous
systems in general. This automation is based in utilising data and training predic-
tive algorithms, such as Support Vector Machines, Decision Trees, Multi-Layer
Perceptrons and Neural Networks.

Predictive algorithms have greatly improved in the last decade. Mainly due to
the advent of Gated Recurrent Units (GRU), Long Short Term Memory (LSTM)
and Deep Learning (DL) networks. These are building upon Neural Network
(NN) philosophy, which imitates how a human brain functions, by creating an
interconnected network of neurons.

Natural Language Tasks in particular have greatly benefited from the latest
NN advancements. In these type of tasks, text is initially analysed and pro-
cessed through Natural Language Processing (NLP) methods, then, it functions
as an input to a NN which provides a prediction to a range of classes. Common
c© Springer Nature Switzerland AG 2022
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Natural Language Classification tasks are Sentiment analysis [8,19,48], Text
Classification [10], Hate speech detection [2] and Spam filter development [1,30].
Recurrent Neural Network (RNN) and its evolutions have played a key role in
the performance improvement of these predictive systems.

A RNN is a type of NN that factors in temporal relations. Each RRN neu-
ron has an internal memory state that provides the network with a dynamic
temporal behaviour. RNNs were introduced in 1984 by John Hopfield [20] and
have since been developed into more complex networks such as LSTMs (1999)
[11] and GRUs (2014) [4]. LSTMs are able to access a wider range of contextual
information and prevent network decay or exponential growth, when compared
to RNNs [14]. LSTMs and GRUs share many similarities, but GRUs lacks one
output per cell.

Both networks demonstrate state of the art performance in multiclass and
multilabel text classification tasks [17,18]. Multiclass refers to tasks where an
item can be classified to more than two classes, while multilabel refers to tasks
where each item can be classified to more than one classes at the same time.
LSTMs have proved efficient in multiclass and multilabel text classification tasks
[17,18]. LSTM network have also been widely used in a variety of NLP tasks.
Namely word prediction [43], sentence selection[23], sentence topic prediction
[12] and text classification [6,27,28].

Can we improve the performance of an LSTM cell by introducing extra cal-
culations? To answer that, we introduce a modification layer in the LSTM cell
architecture. Our goal is to further influence the state outputs, i.e. performing
extra state alterations, in each LSTM cell to improve classification performance.
We test our approach with 17 different state alterations for the LSTM cell. We
evaluate each modification in a state-of-the-art network with two bi-directional
LSTM layers in seven diverse text datasets. The evaluation is based in accuracy
and three F1 score metrics. Accuracy is important since it’s the metric the net-
work is trained upon, while F1 better outlines the classification robustness of
our model.

2 Related Work

Automated task performance have been greatly improved with the introduction
of RNNs and LSTMs in various fields. From the early 2000s s LSTMs have been
successfully used in music composition [9], phenom classification [15], speech
recognition [13] and face recognition [26]. These are only some of the most prolific
applications in the diverse range of fields, where LSTMs have produced improved
results upon traditional NNs.

In NLP, LSTMs have been widely used in information retrieval [29], named
entity recognition [51], topic modelling [24], machine translation [40], text gen-
eration [36], text similarity [49], text summarization [42], sentiment analysis [46]
and fake news or hate speech detection [5]. Most of these tasks usually involve
a type of classification that predicts the appropriate class for the document at
hand. For example, in polarity sentiment analysis these classes are positive and
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negative sentiment [39], while in emotion sentiment analysis the classes are emo-
tions such as joy, sad etc. [22]. Similarly, for fake news detection a single class
is adequate [44], whereas for hate speech detection the classes represent the
severity or type of hate observed. The quest for performance in the LSTM cell
architecture has been going on for a while, with multiple proposed modifications
in diverse fields of applications. Wand et al. [45] integrated batch normalisation
in the update function of the LSTM cell. The proposed batch normalisation is
applied to all state transitions. The BN-LSTM achieved faster convergence and
improved performance upon LSTM. Similarly, Hu et al. [21] introduced an LSTM
cell with the capability of trend following of time series data by combining Par-
ticle Swarm Optimisation and Gradient Descent selection. The enhanced LSTM
cell improved training and testing in three environmental forecasting tasks.

Kalchbrenner, Danihelka and Graves[25] proposed a grid based LSTM net-
work. Although the LSTM cell is untouched in its core, the network layout
forces each LSTM cell to interact within a three dimensional structure. Their
results suggest that this type of grid improves in parity, addition and memo-
risation. Chen et al. [3] employed a Tree-LSTM where the input of each cell
is based in the input vector and two hidden vectors. They further evaluate a
model that uses this enhanced LSTM cells in language inference and conclude
that there exists untapped potential in sequential inference. Niu et al. [34] intro-
duced a Hierarchical Multimodal LSTM, which is essentially an extension of the
Tree-LSTM with syntax awareness. They evaluate their model in dense visual-
semantic embedding and the results suggest that their proposed network can
produce well versed phrases. Ye, Li and Chen [50] proposed the M-LSTM where
an additional input signal is fed into the LSTM cell. The proposed M-LSTM
utilises historical information in the iterative update function. Their network is
evaluated in brain dMRI scans with state of the art performance. Qiu et al. [38]
altered the LSTM cell by altering the gate mechanisms of the cell. They eval-
uate their Bidirectional-LTM model in a bearing fault simulation task, where
the results suggest a major improvement over Bi-LSTMs. Dai, Li and Li [7]
proposed the use of shortcut connections that can bypass the LSTM cell and a
spatio-temporal LSTM cell. They test and evaluate their model in dense traffic
prediction, where it outperform both M-LSTMs and LSTMs.

Ha, Dai and Le propose a trainable hypernetwork that generated weights for
the LSTM network that performs very well in image recognition, language mod-
elling and handwriting generation [16]. Kamil Rocki [41] presented a feedback
LSTM that takes into account the difference between prediction and observa-
tion. It calculates a prediction error which is used when making new predictions.
The performance of feedback LSTMs, in a character prediction task, suggests
that their generalisation capability is improved, compared to traditional LSTMs.
Wu et al. [47] introduced a Multiplicative Integration LSTM that changes how
information flows in the LSTM cell by calculating a Hadamard product. The
authors test and evaluate their model in four tasks: Character Level Modelling,
Speech Recognition, Skip-through models, Reading and Comprehending. Pulver
and Lyu [37] presented the LSTWM with a non-saturating activation function
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and a combination of multiple inputs. They evaluate their proposed cell and its
network in three tasks: text recognition, digit combination and digit recognition.
The LSTWM outperforms LSTM, furthermore it achieves that while using fewer
parameters in certain occasions. Mittal et al. [32] suggested the use of a reset
mechanism within the LSTM cell to reset the internal memory of the cell. Their
modified LSTM performed better than LSTM in sign language recognition with
a small (¡1000 examples) training dataset.

3 Methodology

In this chapter we will present the original LSTM cell structure and our proposed
modifications.

3.1 The LSTM Cell

The most commonly implemented LSTM cell includes an input gate, an output
gate and a forget gate, as illustrated in Fig 1. The cell receives as inputs: an
input vector, the hidden state of the previous time step and the cell state of
the previous time step. These are then processed through a set of gates and
operators to produce the cell state and the hidden state of the current time step,
that will be fed to the cell of the next time step.
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Fig. 1. The LSTM Cell

Let us formulate and describe the internal structure in detail. Five different
variables interact within the LSTM cell. Initially we have the input vector xt,
used alongside the previous hidden state ht−1 and biases bf to produce the forget
gate’s activation vector, Eq. 1. Where W are the weights of the input and U are
the recurrent connections.

ft = σg(Wfxt + Ufht−1 + bf ) (1)

Similarly, the activation vector of the input or update gate is calculated based
on the input vector xt, the previous hidden state ht−1 and biases bi. However,
it has its own weights and connections, Eq. 2.

it = σg(Wixt + Uiht−1 + bi) (2)
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The activation vector of the output gate, Eq. 3, and that of the cell input,
Eq. 4, are similarly calculated.

ot = σg(Woxt + Uoht−1 + bo) (3)

c̃t = σc(Wcxt + Ucht−1 + bc) (4)

The calculation of the current cell state is based in all four previous activation
vectors, Eq. 5, where ◦ symbolises the Hadamard product.

ct = ft ◦ ct−1 + it ◦ c̃t (5)

The final step is the calculation of the hidden state vector, that factors the
latest cell state and the activation vector of the output gate, Eq. 6.

ht = ot ◦ σh(ct) (6)

where σg denotes the sigmoid function and σc/t denote the hyperbolic tangent
function.

3.2 Our Modified LSTM Cell
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Fig. 2. Our modified LSTM Cell

Fig. 3. Our stacked LSTM model
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Table 1. State alterations

Number Current Hidden

1 ct = ct ◦ ot ht = c ◦ ht

2 ct = ct ◦ ht ht = ht ◦ σg(c)

3 ct = ct ◦ ot ◦ ht ht = c ◦ σg(ht)

4 ct = ct + ct ◦ ht ht = ht ◦ σc(c)

5 ct = ct ◦ σg(ot) ht = c ◦ σc(ht)

6 ct = ct ◦ σg(ct)

7 ct = ct ◦ σg(ht)

8 ct = ht ◦ σg(ct)

9 ct = ct ◦ σc(ot)

10 ct = ct ◦ σc(ct)

11 ct = ct ◦ σc(ht)

12 ct = ht ◦ σc(ct)

We introduce a layer before the final current and hidden states are fed to
the next LSTM cells. Within this layer we are able to perform any type of
modification to the current cell state and/or the hidden state. For our experiment
we choose to only alter the current cell state or the hidden state. Although we
are able to alter both, we experiment with a single state alteration that will
allows for an accurate assessment of the per state alteration and its performance.
Furthermore, by only performing a single alteration we minimise the training
time increasement, which is bound to happen due to the high dimension of the
mathematical objects (Figs. 2 and 3).

Our goal is to improve performance per LSTM cell. Our modified LSTM per-
forms a single extra state process within the current cell that aims to improve cell
training and prediction capabilities with no further architectural modifications.
We experiment with twelve different current state alterations and five hidden
state alterations, Table 1. We mainly focus in a product of the final cell state ct
with the hidden state ht or vice versa, while in three alterations we experiment
with the output gate vector. Each alteration functions as the seventh equation,
Table 1, within each LSTM cell.

3.3 Model

We evaluate the proposed alterations in a top performing [17,18] Stacked LSTM
model. The model utilises a Bag-of-Words embedding layer that replaces each
term with a numerical value. A spatial dropout is then applied, before the data is
fed into a BI-LSTM. The output of the first BI-LSTM is used as an input of the
second BI-LSTM. We then create two information flows, one based on maximum
pooling and one on average pooling, which are concatenated before the final fully
connected dense layer. This model could be further improved with the addition
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of other processes, such as pre-trained embeddings or trainable ensembles. The
focus, however, is on the LSTM cell performance and further architectural model
improvements are out of scope.

3.4 Datasets

We evaluate our modification layer in seven diverse text classification datasets.

Table 2. Dataset properties

Dataset Documents Classes MaxLen. Tokens

MLMA 5647 71 35 14969

SEMEVAL 6838 11 33 24449

HASOC 5852 4 93 32168

AG 120000 4 122 123762

ROBO 525 5 29 466

CROWD 40000 11 34 83297

HATE 1011 3 611 6356

The MLMA dataset [35] includes, amongst others, a sentiment label where
a tweet is classified as belonging to one or multiple hate-speech categories. The
HASOC [31] dataset, which is comprised of social media text instances labelled
as: hate-speech, offensive, profane or none. The SEMEVAL dataset [17,33], a
collection of Tweets with emotional annotation. A class-balanced hate-speech
dataset (HATE) with documents classified in three hate-speech classes: none,
hate-speech and severe hate-speech,1. A small size multi class dataset of human
to robot interaction with specific scenario classes (ROBO) and a crowdsourced
emotion dataset, based on annotation received from Crowdflower, (CROWD).
The AG News Topic Classification Dataset with topic categories (AG) [52].

The dataset properties prior to pre-processing are displayed in Table 2.
Where, ‘Items’ refers to the numbers of sentences in the dataset, ‘Classes’ is
the number of available classes for any item, ‘MaxLen’ is the maximum sentence
length that directly affects the dimensionality of data in training and ‘Tokens’
is the number of unique terms in each dataset.

These datasets are pre-processed and cleaned via the exact same process. This
process includes a stop word removal, the replacement of contractions based
on GloVe, the removal of non alphanumeric characters, lowercase conversion,
lemmatisation and infrequent term removal. AGNEWS and TOXIC datasets
had to be further reduced via a Term Frequency - Inverse Document Frequency
process to improve training time [18].

The pre-processed dataset properties can be seen in Table 3. Our meticulous
pre-processing has greatly reduced the number of unique terms in each dataset
1 TEST.
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and the maximum sentence length. It marginally reduced the number of available
documents per dataset, with the exception of CROWD were more than two
thirds of the data are removed, due to the short and informal nature of its text
items.

Table 3. Dataset properties, post pre-processing

Dataset Documents Classes MaxLen Tokens

MLMA 4138 48 23 12018

SEMEVAL 6495 11 22 14110

HASOC 1120 4 42 6078

AG 88431 4 22 4730

ROBO 254 5 10 149

CROWD 11377 11 11 1458

HATE 869 3 342 3235

4 Evaluation

For each dataset and each state alteration we perform 10 different experimen-
tal sessions. Each session has a different random seed and the data is split as
train-validation-test split of 80-10-10 and a 10-fold cross validation. The hyper-
parameters are exactly the same for each dataset so that we do not introduce
variability in the experiment.

We will present the average percent improvement over these 10 sessions for
each dataset. Due to lack of space we will only present the top-3 performing
current and hidden state alterations on the metrics of: Accuracy, Macro-F1,
Micro-F1 and Weighted F1. Current state alterations are denoted by C-Number,
while hidden state alteration are denoted by H-Number.

4.1 Results

Our modified LSTM cell provides accuracy and F1 performance improvement in
six out of seven datasets. HASOC, Table 4, and ROBO, Table 5, results are of
particular interest, since state alterations on HASOC fail to improve micro-F1
score and accuracy, while the same alterations on ROBO greatly improve all
metrics.



A Custom State LSTM Cell for Text Classification Tasks 497

Table 4. Improvement (%) for HASOC

Metrics Accuracy Macro Micro Weighted

Baseline 83.984 35.546 65.811 64.799

C-1 −0.064 1.192 −0.347 −0.305

C-4 −0.101 0.202 −0.460 −0.527

C-7 −0.284 0.814 −0.496 0.057

H-2 −0.167 −0.152 −0.266 −0.086

H-3 −0.128 −0.316 −0.394 −0.367

H-5 -0.255 −0.792 −0.812 −0.701

Table 5. Improvement (%) for ROBO

Metrics Accuracy Macro Micro Weighted

Baseline 80.198 1.562 2.476 1.965

C-2 −0.022 42.834 22.174 21.570

C-5 0.087 48.085 24.028 16.320

C-9 0.127 86.825 72.293 61.932

H-1 0.156 96.034 68.244 57.003

H-2 −0.003 36.926 19.060 11.098

H-5 0.047 71.101 57.587 40.362

Regarding HASOC, it is a dataset with small number of documents, small
number of classes, high maximum sentence length, relatively high number of
tokens and no class balance (74.3% of document belong to a single class). In
short, HASOC dataset is a single-class heavy dataset with very few documents
and high dimensionality. Our proposed alterations fail to improve training results
in HASOC dataset, with the exception of Macro-F1. Unbalanced and small
datasets demonstrate an improved classification performance with text augmen-
tation [18].

4.2 Results

Table 6. Improvement (%) for MLMA

Metrics Accuracy Macro Micro Weighted

Baseline 96.642 2.123 42.642 34.077

C-1 0.021 1.396 1.595 1.367

C-4 0.021 1.497 1.744 1.507

C-6 0.018 1.595 1.891 1.585

H-1 0.017 1.162 1.333 1.126

H-3 0.014 1.461 1.802 1.466

H-4 0.018 1.084 1.235 1.058

Table 7. Improvement (%) for AGNEWS

Metrics Accuracy Macro Micro Weighted

Baseline 90.853 80.695 80.862 80.665

C-1 0.293 1.006 0.832 1.008

C-3 0.241 0.869 0.700 0.870

C-10 0.325 1.020 0.860 1.020

H-1 0.189 0.736 0.553 0.731

H-3 0.262 0.908 0.731 0.900

H-4 0.180 0.721 0.546 0.716

The most improved classification results are in MLMA and AGNEWS
datasets. Current State alterations for MLMA provide up to 1.9% F1 improve-
ment and up to 1% F1 improvement for AGNEWS, Table 6 and 7. With regards
to accuracy metrics, it remains relatively unchanged throughout MLMA alter-
ations, while it is improved by up to 0.3% in AGNEWS. Hidden State alterations
improve the classification results as well, but perform slightly worse than Current
State alterations.

Alterations in CROWD, Table 8, dataset demonstrate a similar performance.
Current State alterations improve F1 score, up to 0.65%, while two out of five
Hidden State alterations provide some metric-consistent classification improve-
ment. Accuracy metric on Current State alterations is marginally decreased in
all 3 top performing Current State alterations, despite the improvements across
all F1 metrics.
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Table 8. Improvement (%) for CROWD

Metrics Accuracy Macro Micro Weighted

Baseline 89.237 13.577 26.840 24.625

C-5 −0.045 0.770 0.249 0.398

C-7 −0.033 0.535 0.537 0.646

C-11 −0.041 0.668 0.608 0.591

H-2 −0.062 −0.123 0.341 0.376

H-3 −0.053 0.126 −0.109 −0.038

H-5 −0.034 0.414 0.217 0.354

Table 9. Improvement (%) for HATE

Metrics Accuracy Macro Micro Weighted

Baseline 77.397 65.710 66.101 66.714

C-2 0.470 0.871 0.825 0.858

C-6 0.233 0.580 0.517 0.557

C-8 0.193 0.585 0.487 0.506

H-1 −0.056 −0.099 −0.138 −0.149

H-4 0.029 0.166 0.131 0.195

H-5 0.248 0.641 0.544 0.589

Table 10. Improvement (%) for SEMEVAL

Metrics Accuracy Macro Micro Weighted

Baseline 83.833 44.106 57.981 56.083

C-3 0.003 0.128 0.444 0.230

C-6 0.099 0.199 0.448 0.246

C-7 0.012 0.248 0.321 0.146

H-2 −0.042 0.259 0.218 0.189

H-3 0.026 0.167 0.277 0.098

H-4 −0.016 0.395 0.138 0.077

Hidden state alterations for HATE, Table 9, perform similarly to those
of CROWD, where only two out of five provide classification improvements.
Improvements from Current State alterations are up to 0.87% with consistent
Accuracy improvements as well. SEMEVAL classification demonstrates a slight
improvement in both Current and Hidden state alterations, Table 10. The best
performing alterations provide 0.45% and 0.28% classification improvement, for
current and hidden states respectively.

Table 11. Average improvement (%) for current state alterations (excluding ROBO
dataset)

Accuracy Macro Micro Weighted

1 0.018 0.643 0.436 0.41

2 −0.012 0.659 0.145 0.326

3 −0.047 0.112 0.143 0.199

4 −0.009 0.599 0.346 0.376

5 −0.021 0.3 0.184 0.227

6 −0.015 0.381 0.319 0.391

7 −0.123 0.356 0.135 0.23

8 0.037 0.182 0.369 0.34

9 −0.109 0.176 0.003 0.099

10 0.028 0.249 0.23 0.233

11 −0.054 0.068 0.206 0.176

12 −0.024 0.455 0.229 0.282
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Table 12. Average improvement (%) for hidden state alterations (excluding ROBO
dataset)

Accuracy Macro Micro Weighted

1 −0.05 −0.301 −0.027 −0.055

2 −0.047 0.24 0.305 0.317

3 −0.065 0.312 0.276 0.242

4 −0.13 −0.038 −0.145 0.026

5 0.008 0.2 0.085 0.165

Overall, most Current and Hidden alterations provide meaningful classifica-
tion improvements. The average alteration improvements presented in Tables 11
and 12 do not include ROBO dataset. Not only ROBO is unique in document and
token size, but we also consider the classification improvements in this dataset
as outliers.

The best performing Current state alteration (ct = ct ◦ ot) improves F1
metrics by an average of 0.5%. Even the worst performing ninth Current State
alteration (ct = ct ◦ σc(ot)) improves F1 metrics by 0.1% on average, Table 11.

Hidden State alterations demonstrated a mixed performance. Three of our
proposed alteration improved across all F1 metrics and only one improved across
all metrics. The top performing alteration (h = h◦σg(c)) improved F1 scores by
an average of 0.29%, Table 12. However, the worst performing alteration (h =
c ◦ h) not only fails to improve the classification results but reduces them across
all metrics.

5 Limitations

The modification layer we introduced provides the ability to alter the current and
hidden states. Although it is possible to alter both states, in whichever manner,
we limit our study in one state alteration per time. Even that single alteration
is based on the pre-existing interactions within the LSTM cell. By doing so, we
outline the effectiveness of extra single state interactions with minimal resource
usage. That doesn’t mean that within the modification layer, only pre-existing
function can be applied. Not only we are able to include new functions, such as
Relu or Softmax, but we can also interact with both Current and Hidden states.

Table 13. Epoch training time increase (%) per alteration, MLMA

Baseline Alteration 1 2 3 4 5 6 7 8 9 10 11 12

40.6 s Current 4.4 2.9 5.6 11.0 6.6 6.6 15.6 16.7 5.3 6.9 14.8 15.4

Hidden 4.5 11.8 12.0 8.8 12.6
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Furthermore, the modification layer calculates the output of an extra single
equation. However, this equation performs a range of calculations amongst ten-
sors, which are mathematical objects of high dimensionality. For example, the
number of parameters that is fed to the second LSTM is 1222560 for HATE
dataset. On a practical side, any type of extra calculations with similar sized
objects will result in increased training time.

As an example, we include the training time increase per state alteration for
MLMA dataset, Table 13, to demonstrate the increased resource utilisation on
the experiments setup. One initial observation is that the training time increase
doesn’t necessarily translates to improve classification results. The top perform-
ing alterations for MLMA were C-1, C-4 and C-6 for Current State, and H-1,
H-3 and H-4 for Hidden. Both states had alterations that required more training
time but did not produce better results. We refrain from including a cumulative
metric for all datasets, since the increased training time doesn’t scale linearly
with the dataset size.

Table 14. Percentage improvement over baseline for best performing state alterations

Alteration Accuracy Macro Micro Weighted

ct = ct ◦ ot 0.018 0.643 0.436 0.41

h = h ◦ σg(c) −0.047 0.24 0.305 0.317

6 Conclusion

We presented an LSTM modification layer that allows for Current and Hidden
state alterations. We experiment with altering one or the other, but the layer
provides the ability to alter both at the same time. Our experiments focus on
simple product or/and sum equations that aim to perform an extra training step
within each LSTM cell. We test 17 different state alterations, 12 for Current state
and 5 for Hidden state.

We evaluate the performance of this modified LSTM, and each of the 17
different state alterations, in 7 diverse datasets. These datasets range in docu-
ment and term size and task. Our datasets are used for Hate-Speech detection,
Emotion prediction, News classification and Human to Robot interactions. Our
results suggest that both state alterations provide a meaningful classification
improvement.

The best performing alterations for each state are presented in Table 14.
ROBO dataset exhibits a greater improvement which we consider to be dataset-
restricted, thus its improvements are not co-calcualted with the rest of the
datasets. Current state alterations provide up to 0.643% Macro-F1 improvement
with state alteration number 1: ct = ct◦ot, while Hidden state alterations provide
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up to 0.317% Weighted-F1 improvement with alteration number 2: h = h◦σg(c).
Overall, the role of the modification layer is to perform an extra training step
within the LSTM cell to improve classification results.

However, these training improvements increase training time. Although the
required training time is increased by less than 10%, it can be detrimental to the
scalability of similar approaches. Ultimately, if the classification task deals with
sensitive data, such as health issues or law enforcement, then the increased time
requirements can be justified, even when improving classification by 0.5%. We
only experimented with a single state alteration to better assess the improvement
potential of each state. Our results suggest that Current state alterations not
only offer better performance but also require, on average, less training time.

We presented an improvement potential inside the LSTM cell. Moving for-
ward, we aim to not only identify the most effective alteration, by collaborating
with colleagues from Statistics and Mathematics to optimise our proposed sin-
gle state alteration, but to experiment with co-occurring alterations for both
the Current and the Hidden states or even applying modifications into gated
outputs. We believe that the obtained results will spark the interest of fellow
scientists to further explore the potential of modifying the LSTM gate or state
outputs.
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Abstract. Abstract Meaning Representation (AMR) parsing attempts
to extract a structured representation of a sentence’s meaning. This
paper enhances an existing processing pipeline for AMR parsing, inspired
by state-of-the-art solutions in dependency parsing. It enhances the exist-
ing Concept Identification module by using Pointer-Generator Networks.
A further considerable improvement of this module is brought by the
use of embeddings. An alternative approach is provided through Trans-
formers, an architecture which needs large data-sets to accurately pre-
dict concepts. For predicting the relations between concepts, the pro-
posed pipeline combines the two Heads Selection and now trainable
Arcs Labelling tasks into a joint Relation Identification module, which
enhances the overall performance of edge prediction. The improvements
made to this AMR parser have resulted in a completely trainable model
that can be improved further with end-to-end training.

Keywords: Natural Language Processing · Abstract meaning
representation · Concept Identification · LSTM · Pointer-Generator ·
Transformers · Relation Identification

1 Introduction

Abstract Meaning Representation (AMR) has been introduced in [2], aiming
to provide a semantically uniform representation for English natural language
sentences. The AMR representation of a sentence is achieved by converting it into
a Directed Acyclic Graph. The AMR graphs of two different sentences having the
same meaning are identical. AMR parsing is the task of generating the AMR
graph of a sentence. While there are several recent end-to-end approaches to
solving this problem, we address it in a pipelined manner.

The proposed solution is building upon the graph-based parsing pipeline
presented in [13]. It splits the task into three steps: Concept Identification (the
concepts, representing the labelled nodes in the graph, are extracted from the
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sentence, in order), Heads Selection (the arcs of the graph are identified) and
Arcs Labelling (the arcs of the graph are labelled). In this paper, we explore two
different solutions for Concept Identification: a solution based on LSTMs (Long
Short-Term Memories, which are a type of artificial neural networks, based on
the RNN architecture and used in the field of deep learning), improving the
architecture proposed in [3], and an alternative Transformer-based solution. For
the Relation Identification module we propose a solution in which we enhance
the previously existent Heads Selection and Arcs Labelling modules. We modeled
them to encode concepts, calculate scores based on the DeNSe model, using a
single-layer MLP, then treating the two tasks as different types of classification.

The objective of the paper is to present and analyze the enhancements
brought to the existing parsing approach by obtaining three configurable, inde-
pendent, trainable modules that can be further linked in order to perform end-
to-end training. The two Concept Identification modules are designed to be
interchangeable and the Relation Identification module is configurable so that
relation identification and labelling can be performed jointly.

2 Related Work

AMR parsing solutions can be categorized into: graph-based, transition-based
and sequence-to-sequence. Graph-based models solve this task by predicting the
nodes and the arcs present the graph (which is done either together or indepen-
dently of arc label prediction). Transition-based solutions, introduced in [18],
are inspired from dependency parsing, and have been heavily explored in pre-
vious years. Sequence-to-sequence models [8] linearize the AMR graph (usually
through a DFS traversal) and learn a sequence-to-sequence model to transform
the input sentence into the linearized graph.

Graph-based parsing solutions have recently replaced transition-based
approaches in the NLP literature for structured learning tasks, as presented
by Dozat and Manning in [5]. Consequently, the approach proposed in [13] in
the context of AMR relies heavily on them. We build upon that initial pipeline,
by tackling individual steps in the pipeline with adaptations of State-of-the-Art
solutions, which we review in the following paragraphs.

Pointer-Generator Networks. First introduced in [17] for solving the problem
of convex hull, Delaunay triangulation, and traveling salesman, the Pointer-
Generator Network has been since then used for a variety of Natural Language
Processing tasks.

Miao and Blunsom [10] applied the Pointer-Generator on a sentence com-
pression problem, and obtained state-of-the-art results. See proposed in [15] a
Pointer-Generator Network that focuses on the abstract summarization problem.
The network was designed to reduce repetitiveness and handle out-of-vocabulary
words.

Transformers. Introduced by Vaswani et al. in [16] for Neural Machine Trans-
lation, Transformers provide an alternative to Recurrent Neural Networks. They
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avoid the use of recurrence (present in the sequence-to-sequence models) by
using a Self-attention mechanism, drawing global dependencies between inputs
and outputs. To exploit the sequence order, Positional Encodings are added.
Transformers introduce the possibility of parallelized training.

The original Transformer architecture [16] consists of a stack of Encoder
layers and a stack of Decoder layers. Each stack has a corresponding Embedding,
as well as a Positional Encoding layer, which accounts for the word’s position in
the source sentence. The Decoder output is passed through a final linear layer
that generates the output as a word.

As mentioned by Liu in [9], Transformers are effective, yet non-trivial to
train. The authors of [4] propose model pre-training for Transformers, by means
of transfer learning. Pre-trained models can be used as a starting point, allowing
rapid progress when modeling the second task.

Dependency Parsing Solutions. In generating the AMR graph, the initial
solution [13] is based on the Dependency Neural Selection (DeNSe) model pre-
sented by Zhang et al. in [19], which aims to find the head of each word in
a sentence. Parsing a sentence and converting it into a graph is discussed by
Kolomiyets in [7], while also capturing temporal dependencies between words.
For the proposed model, this task has been fully reserved for the Heads Selec-
tion module. As inspired from the state-of-the-art solution for capturing relations
in NLP proposed by Dozat and Manning in [6], the enhanced Heads Selection
module receives a sequence of ordered concepts and uses BiRNNs for learning
feature representation of words and also seeks to capture long-term dependencies
between them. Using the same approach, the Arcs Labelling module was also
constructed on top of Head Selection, transforming them into complimentary
modules.

3 Approach

The proposed approach consists of two configurable modules: Concept Iden-
tification and Relation Identification. The Concept Identification module can
be LSTM-based, consisting of an Encoder-Decoder with Attention architecture,
or Transformer-based, using Vanilla Transformers. The Relation Identification
module combines the previously existent Heads Selection and Arcs Labelling
modules and is configurable to predict either solely the edges, or together with
their labels.

3.1 Concept Identification - LSTM Based

The module is composed of an encoder-decoder LSTM-based architecture, with
Bahdanau Attention [1] - to provide contextual information for each word. The
model considers additionally three types of specific embeddings (besides the
word learned embedding already present in the base model): GloVe embeddings,
Character-Level embeddings and Lemma embeddings.
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Fig. 1. LSTM-based con-
cept identification archi-
tecture with pointer gen-
erator

Fig. 2. Encoder-Decoder transformer input and out-
put example

Pointer-Generator. The Pointer-Generator mechanism adds the ability of the
model to copy the words from the original sentence, while maintaining the capac-
ity to generate new words from the vocabulary. In order to switch between
functionalities, a generation probability is computed as in (1), similar to the
probability presented in [15].

pgen = σ(wT
h · h∗

t + wT
s · st + wT

x · xt + bptr) (1)

where the learned parameters are vectors wT
h ,wT

s ,wT
x and scalar bptr and σ is

the sigmoid function.
After computing the generation probability, the final distribution probability

is calculated for the extended vocabulary as in (2). The extended vocabulary is
composed of the concepts together with the tokens from the initial sentence.

P (w) = pgen ∗ Pvocab(w) + (1 − pgen)
∑

i:wi=w

ati (2)

The loss is further computed with the new extended vocabulary, rather than
the concept vocabulary. The main advantage of the pointer generator approach
is that if a word is out-of-vocabulary, then the model handles it correctly, due
to the P (w). The architecture with the pointer generator added can be seen in
Fig. 1.
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Embedding. The proposed model mainly uses word embeddings, which can
be further concatenated with either GloVe, Character-level embeddings and/or
Lemma embeddings.

GloVe embeddings are pre-trained, introduced by Pennington et al. in [12].
The model employs the set containing 400.000 words, each having embeddings
of 300 dimensions. GloVe embeddings are applied on the input data, in Encoder
and then are either fed to the model alone, or concatenated with the word
embeddings trained with the model. Similar to [11], Character-level embeddings
represent a sub-module that embeds single characters, that are further passed
through a Gated Recurrent Unit (GRU). Moreover, Lemma embeddings have the
advantage of simplifying the terms and increasing the number of appearances in
the input set of specific tokens.

All embedding types are configurable, therefore, they can be concatenated
with one another, in order to obtain a better performance.

3.2 Concept Identification - Transformer Based

Using Transformers in an AMR context refers to an English-concept translation.
Since Neural Machine Translation tasks keep account of the word order in the
source and target sentences, the generation of ordered concepts from an English
sentence is possible.

The model architecture can be seen in Fig. 2. The input sequence is con-
verted into embeddings, positional encoding is applied and the result is fed to
the Encoder stack, producing an encoded representation of the sequence. The
target sequence is prepended with a beginning-of-sequence token, converted into
embeddings and positionally encoded. The model is auto-regressive, consuming
the previously-generated tokens [16].

The Transformer uses different flows during training and inference. On the
training flow, teacher forcing is used. The Decoder stack processes the output of
the Encoder along with the embedded target sequence to produce an encoded
representation of the output. The linear layer converts the Decoder output into
word probabilities. The transformer output is compared to the target sequence,
back-propagating the loss.

On the inference flow, the target sequence is hidden to the Decoder. The goal
of the model is to sequentially produce the output from the input sentence alone,
word-by-word, by repeating the decoding process for multiple steps, adding to
the output sequence the highest probable token. At each step, the model is fed
with the output sequence generated up to the previous time-step.

The Transformer-Based Concept Identification module employs pre-training,
by means of transfer learning, a technique that stores knowledge resulted from
solving one problem and reuses it to tackle a different problem. The model learns
a simple’copy-input’ task. The model weights obtained from this task are used
to initialize the Encoder weights for the AMR-specific problem.
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3.3 Relation Identification

The task of relation identification is conceptually separated in two distinct parts.
The relations between concepts are established by initially identifying a head for
each concept, then assigning a label to that relation (describing its type). In
practice, the proposed model jointly predicts the heads and the relations, using
the same data structure, but treating the two problems as distinct classifications.

Heads Selection. The Heads Selection module aims to find the relations
between concepts, more specifically to find a “head” for each concept. The pro-
posed model uses a similar approach to the one introduced in [19], which com-
putes associative scores between concepts in (3) and selects the highest score
concept as its head by using the formula in (4).

s(ai,aj) = vᵀ
a · tanh(Ua · aj + Wa · ai) (3)

where ai and aj are vector-based representations of concepts between which the
score is computed, s(ai,aj) is a neural network with a single hidden layer, which
computes the associative score between ai and aj ; va ∈ R

2d, Ua ∈ R
2d×2d and

Wa ∈ R
2d×2d are matrices of s.

Phead(cj |ci, S) =
exp(s(cj , ci))∑N
k=0 exp(s(ck, ci))

(4)

The current model reuses the same MLP as in [13], but treats it as a binary
classification problem instead of multi-class, using a different activation function
(sigmoid) and training objective (binary cross entropy). An adjacency matrix is
used to store the computed scores between all concepts.

The outcome of the process is a binary adjacency matrix, having entries
of value 1, representing the status of EDGE, whereas entries of value 0 are
seen as NON-EDGES. For differentiating between EDGES and NON-EDGES,
a configurable threshold was established and set by default to 0.5.

Table 1. Edge/Non-edge ratio

Positive edges Negative edges Total entries Ratio

Train 557.824 46.342.133 46.899.957 1.2%/98.9%

Dev 27.388 3.062.236 3.089.624 0.8%/99.2%

The classes EDGE/NON-EDGE are extremely unbalanced, as it can been
seen from Table 1, and nonetheless the preliminary results presented numerous
false-positives during prediction, therefore the binary classification suffered some
adjustments:
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– Creating a mask for sampling negative edges, proportional to the positive
edges (sampling ratio), representing how many negative edges should be sam-
pled for a positive edge, so a ratio of 1:3 P:N was used.

– Weighting the positive and negative classes differently, so that during score
computation the classes would have a specific weight.

– Changing the configurable edge prediction threshold as 0.6, increased from
0.5, in order to predict only edges with higher probability.

Arcs Labelling. The Arcs Labelling module was not trainable in [13], so the
current approach proposes a model where this is also possible. Arcs Labelling is
an addition to Heads Selection, resulting in the Relation Identification module.

Given that in the relation vocabulary there are 158 relation labels, the chosen
approach was to treat the task as a multi-class classification. The task is treated
similarly to Heads Selection, using the same adjacency matrix. However, for each
pair of concepts, a vector of scores of size equal to the number of relation labels in
the vocabulary is computed(in our case 158). The result is then passed through
a softmax function in order to find the most probable relation label.

The structure of Relation Identification can be seen in Fig. 3, the module
being configurable so that it can train solely the Heads Selection module or
together with Arcs Labelling.

Fig. 3. Relation identification architecture

4 Experiments and Results

All experiments have been performed on Nvidia DGX, on a single GPU.

4.1 Data Analysis

AMR. We used the LDC2016E25-DEFT-Phase-2-AMR-Annotation-R2 dataset
to evaluate our approaches. It consists of 39260 English natural language sentences
from different domains such as: conversations, web blogs and forums. The exam-
ples are split in 3 categories, training examples (36521–93%), validation examples
(1368–3.5%), dev examples (1371 - 3.5%).
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Upon analysing the examples in the dataset, a series of vocabularies were
created, a notable one being the concept vocabulary which consists of 24726 ele-
ments, further used for concept identification. A relation vocabulary was estab-
lished as well, containing a number of 158 different labels which is used in relation
identification.

Synthetic. Since training Transformer models is a time and memory costly
task, a Synthetic dataset has been created for local development. It follows the
principle that a sequence-to-sequence model should be able to easily revert any
sequence. Therefore, the input is a randomly generated word of fixed length of
value 6; the output is the inverted input word.

The vocabulary consists of only 26 tokens (the English alphabet letters), a
BOS (Beginning Of Sequence) token and an EOS (End Of Sequence) token. A
source-target pair example can be found below:

source: akfgle
target: elgfka

The data split was dataset sizes, splitting the training examples around 85%
and the test ones around 15%, as in Table 2.

Table 2. Synthetic data-set results

Train examples Dev examples Train F-score Dev F-score

1 20000 ( 86%) 4000 (14%) 99% 59%

2 30000 ( 88%) 5000 (12%) 99% 99%

3 40000 ( 87%) 6000 (13 %) 99% 99%

WikiText. The WikiText Corpus has been used for the task of pre-training
the Transformer. The corpus consists of an arrangement of Good and Featured
Wikipedia Articles. Wikitext-2, a subset of the corpus, provides 36,718 examples,
and is used by the pre-training task for copying the input as output of the model.

4.2 Metrics

F-score. The Concept Identification module uses F-score to check that the
right concepts are predicted, determining the quantitative performance of the
module. In the context of Relation Identification, F-Score is also used as a metric
on the adjacency matrices. As Heads Selection is treated as a binary classification
problem, computing F-Score, Precision and Recall is helpful in order to identity
possible problems and improvements, such as over-fitting or predicting numerous
false positives.



Enhancements on a Pipeline Approach for AMR Parsing 513

Smatch. The Smatch score is an evaluation metric specifically created to com-
pute the similarity score between two AMRs. It is based on computing the triples
present in an AMR graph: relation(variable, value). It computes the maximum
match number of triples among all possible variable mappings. In the context of
this paper, unlabelled Smatch is used for evaluating the Heads Selection module,
and labelled Smatch for the entire Relation Identification module.

4.3 Evaluation of Concept Identification - LSTM Model

The LSTM-based Concept Identification module is based on sequence-to-
sequence parser with attention mechanism. All the experiments that were per-
formed, with the enhancements mentioned, started from the base-model. The
evaluation was made in order to conclude if the added features indeed bring an
improvement to the model. The following hyper-parameter tuning has been used
for all experiments: word embedding size of 512, hidden size of 1024, character
embedding size of 10 and character hidden size of 512.

The best results were obtain for the trained word embeddings concatenated
with Character-Level embeddings and GloVe concatenated with Character-Level
embeddings. Table 3 presents a comparison of the results obtained from the base
model with and without pointer-generator, combined with embeddings.

Table 3. Model Results with and without pointer generator

Approach Train F-score Dev F-score

Base-model without pointer-generator 86.3% 57.8%

Base-model with pointer-generator 81% 60%

Trained word embeddings with character-level embeddings 92% 63.2%

GloVe with character-level embeddings 88.5% 63.3%

4.4 Evaluation of Concept Identification - Transformer Model

The Transformer-based Module has been trained on a Synthetic Dataset on
a simple task: reverting an input sequence, as well as on the AMR sequence
generation problem. The hyper-parameter tuning was made using Popel’s sug-
gestions in [14]: 2048 hidden size, 512 embedding dimension, 8 attention heads,
6 encoder/decoder layers, 0.1 dropout and 3e-5 learning rate. Training was per-
formed for 80 epochs.

The purpose of the synthetic task training is to check the correctness of the
model, along identifying the needed quantity of data for a proper learning, by
looking at the model loss and F-score. Table 2 shows that the results obtained on
this task are as expected. As an outcome of these experiments, it was observed
that for the largest number of train examples, the model has the least over-fitting.

Data Sparsity. A frequent issue in AMR Parsing is that of Data Sparsity:
the data-sets consisting of AMR sentence-concept pairs contain thousands of
examples compared to NMT data-sets, which have millions. As the number of
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internal parameters for the Transformer model is enormous, the lack of appro-
priate examples affects the results of the Transformer in the context of AMR
parsing.

A significant effect can be seen on the discrepancy between train and test
results. Although the model performs well during training, it has difficulties
generalizing to new data.

As Table 4 shows, the test results are influenced by the lack of data. The
model has been trained for 200 epochs. For variating teacher forcing, until epoch
80, the F-score increased both on the train and evaluation flow. After that point,
only the train F-score increased up to 55%. For fixed teacher forcing, the model
reaches 99% F-score after 200 epochs, but learns very little.

Table 4. AMR data-set transformer results

Approach Train F-score Dev F-score

Variate teacher forcing 16% 14 %

Fixed teacher forcing 52% 0.005 %

4.5 Evaluation of Relation Identification

The Relation Identification module is now seen as a conjuncture of Heads Selec-
tion and Arcs labelling, but the evaluation was done on the performance of Heads
Selection first, and then by adding Arcs Labelling.

A drop-out rate was added to the encoder of the Relation Identification
module for obtaining better results. For a better performance, the base model
was enhanced with hyper-parameter tuning and usage of embeddings (GloVe
and character-level). The results for these experiments can be seen in Table 5.

Heads Selection. The experiments were performed using the following hyper-
parameter values: embedding size - 150, GloVe embedding size - 50, hidden size
- 512, number of layers - 3, DeNSe MLP hidden size - 512, edge threshold - 0.6,
sampling ratio - 3, positive class weight - 0.7, negative class weight - 1.0, dropout
rate - 0.2. The results were obtained after 40 epochs of training.

Heads Selection and Arcs Labelling. When it comes to the Arcs Labelling
module, this has been implemented but not yet optimized. However, for the
entire module, the official metric of Smatch was used.

Table 5. Performance of relation identification

Flow F-Score Precision Recall Accuracy Unlabelled smatch Smatch

Train 81.04% 75.92% 88.89% 96.96% 86.97% 61.07%

Dev 53.12% 43.54% 70.95% 93.31% 71.66% 36.89%
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5 Conclusions

This paper proposes various enhancements to an existing AMR parsing pipeline,
adopting state-of-the-art, graph-based solutions from dependency parsing.

For the Concept Identification module, we explored with both a Transformer-
based and an LSTM-based approach, for which Pointer-Generator Networks and
various embeddings were newly introduced. Pointer-Generator Networks helped
the LSTM-based architecture with the over-fitting problem, however the increase
in performance was not directly proportional with the complexity of the network.
A significant improvement was given by the use of GloVe and Character-level
embeddings, which prove to be well-suited for the concept identification problem.

Adapting Transformers led to the discovery that the architecture is sensitive
to the quantity of input data with respect to the vocabulary size. The AMR
sentence-concept pair data-sets contain a small number of examples compared
to machine translation ones, which contain millions of sentences. This issue can
be further addressed by augmenting data-sets.

A novel feature for this pipeline is the joint module for Heads Selection and
Arcs Labelling, tasks which are based on the same idea taken from NLP depen-
dency parsing approaches for Relation Identification and integrated accordingly.
The conjuncture of the two modules resulted in enhancing the accuracy of pre-
dicting relations between concepts and offers a more uniform overview of the
module, but also makes the final module of the AMR parser to be easier inte-
grable for end-to-end training.

The enhancements brought to this AMR parser result in a fully trainable
model which can further be improved by end-to-end training in order to establish
how the entire parser performs, on which additional progress can be made.
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Abstract. During the COVID-19 pandemic many countries were forced
to implement lockdowns to prevent further spread of the SARS-CoV-2,
prohibiting people from face-to-face social interactions. This unprece-
dented circumstance led to an increase in traffic on social media plat-
forms, one of the most popular of which is Twitter, with a diverse spec-
trum of users from around the world. This quality, along with the ability
to use its API for research purposes, makes it a valuable resource for
data collection and analysis. In this paper we aim to present the senti-
ments towards the COVID-19 pandemic and vaccines as it was imprinted
through the users’ tweets when the events were actually still in motion.
For our research, we gathered the related data from Twitter and charac-
terized the gathered tweets in two classes, positive and negative; using
the BERT model, with an accuracy of 99%. Finally, we performed var-
ious time series analyses based on people’s sentiment with reference to
the pandemic period of 2021, the four major vaccine’s companies as well
as on the vaccine’s technology.

Keywords: Text classification · COVID-19 · Vaccines · BERT ·
Sentiment analysis · Twitter

1 Introduction

A major pivot in recent human history, specifically in 2020, was boldly high-
lighted by the COVID-19 global pandemic. Shortly thereafter the year of 2021
is unquestionably marked by the pharmaceutical attempt to shield the masses
against the virus and its variants. The medical scientists seeking out the preven-
tion of the disease were not the only researchers working to prevent a societal
fall. The precariousness of the pandemic set in motion a big part of the research
community to search for patterns of certainty within the data in order to level
the global playing field [22]. Twitter attracted them, as it is a major source for
tagged and specified data aggregation.

At the beginning of the vaccination period citizens were more agreeable to
it, mainly for the purpose of achieving herd immunity against the highly infec-
tious virus as soon as possible, and the realisation of the returning-to-normality
c© Springer Nature Switzerland AG 2022
L. Iliadis et al. (Eds.): EANN 2022, CCIS 1600, pp. 517–528, 2022.
https://doi.org/10.1007/978-3-031-08223-8_42
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http://orcid.org/0000-0002-8607-5518
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promise [8,15]. However, a significant minority of citizens in many countries
expressed a general refusal to vaccination either due to mistrust to the local
and global authorities or distrust to the effectiveness, safety and necessity of the
COVID-19 vaccines [2].

1.1 COVID-19 Vaccines

Leading companies in the pharmaceutical industry attempted to administrate
the plans of reconciliation with the help of financial and advertising support of
the governments [22]. In some countries, mandates were actually applied with
the result of further polarizing the relationships between the governments and
the people [6,16]. A geopolitical division based on major vaccine companies
also took place, as more vaccines were produced. However, not all of them were
globally authorised or approved for emergency administration [3]. The four major
vaccine companies that managed to obtain a standing public image, at least in
the English speaking world, in the entire Europe and in some African, Oceanian
and Asian countries are AstraZeneca, Johnson & Johnson, Moderna and Pfizer.
Milken Institute’s website about COVID-19 Vaccine Tracker showed on the 18th
of December 2020 that 236 vaccines were in development, 38 were then in clinical
testing and 7 had reached a regulatory decision [4]. In just a year of clinical trials
and regulatory authorization protocols, the four leading vaccines have today
managed to get global emergency authorization, with the exception of Cuba,
Venezuela and some parts of Africa and Asia. We observe that Twitter and
the four leading vaccines share a common factor; the countries that mostly use
Twitter are also the ones that have either emergency use or full authorization
of these vaccines [3].

1.2 Twitter

The Twitter website started as a patchwork infrastructure and organically pro-
gressed into an integrating one [14]. Twitter relies on open source tools and a
simplistic design to maintain the micro-blogging of its users [14]. The company
brought up the innovation of hashtags, when no other social media could fil-
ter its content so profoundly. Of course, this asset is its monetization tool for
stakeholders and advertisers. In the “Global Impact Report” posted on their
website on 2021 Twitter mentions that during the pandemic governments and
vaccine companies were amongst various stakeholders contributing to decision-
making and the advertising of vaccine campaigns1. Among actions taken from
2020 until March 2022 concerning the platform’s and its stakeholders’ initia-
tive fighting misinformation during the pandemic, Twitter reported about 6,7
thousand account suspensions and 78 thousand content removals2

1 https://about.twitter.com/content/dam/about-twitter/en/company/global-impact-
2020.pdf.

2 Twitter COVID-19 Misinformation Report.

https://about.twitter.com/content/dam/about-twitter/en/company/global-impact-2020.pdf
https://about.twitter.com/content/dam/about-twitter/en/company/global-impact-2020.pdf
https://transparency.twitter.com/en/reports/covid19.html#2021-jan-jun
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1.3 Sentiment Analysis

The application of sentiment analysis on data collected from Twitter is con-
sidered to be the most commonly applied method among information retrieval
work. Sentiment analysis is categorized into mainly two approaches: Machine
Learning and Deep Learning. Probabilistic models and simple or complex classi-
fication methods based on learning are parts of the first approach, while Neural
Networks and transformers constitute the second [23]. Examples of Machine
Learning algorithms for stance detection and sentiment analysis are the Sup-
port Vector Machine (SVM) and the Näıve Bayes classifier [4]. The most used
Deep Learning approaches are the Convolutional Neural Networks and Recurrent
Neural Networks with its variant Long short-term memory (LSTM) and trans-
formers such as Open-AI GPT with a unidirectional left-to-right architecture
and Bidirectional Encoder Representations from Transformers (BERT) with a
bidirectional approach [4].

1.4 Paper Outline

The rest of the study has been conducted in five sections. Section 2 represents
state of the art related studies. Section 3 states some considerations regarding the
Twitter API. Section 4 represents the used data set and describes the proposed
methodology. In Sect. 5, the model evaluation and the experimented results have
been presented. Finally, Sect. 6 includes the conclusion of the study and future
directions.

2 Related Work

One of the first published papers regarding vaccine-related tweets applied a com-
prehensive Latent Dirichlet Allocation (LDA) topic modeling and dynamic sen-
timent representation. The research examines the subjectivity of the tweets and
war-related vocabulary that creates figurative framing [22]. Also [19] calculate
sentiment and subjectivity of vaccine tweets, specifically AstraZeneca, Moderna
and Pfizer using TextBlob with k-nearest neighbors (k-NN) classification. Sattar
et al. used a simplified text processing, TextBlob in combination with VADER to
forecast the future vaccine uptake by the end of 2021, leading to mainly neutral
and positive sentiments in vaccine related tweets. [18].

Mostly negative sentiments concerning vaccine tweets was the conclusion of
this study [17]. In [4] four different methods were presented, namely the Bag of
Words (BoW) representation, the Word embedding with machine learning, the
Word embedding with Deep Learning and the BERT. By investigating the news
against the results, the authors concluded that the occurrence of the tweets
follows the trend of the actual events [4]. Again by using BERT model, with
the different aim of vaccine misinformation detection in Twitter, this research
evaluated it to be the best model of 0.98 precision test in comparison to LSTM
and XGBoost [10]
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A research approach that probably widens the gap between those who are
skeptical against vaccine mandates and those in favor was [11] and it concludes
that the anti-vaccine alert-communication aspects on Twitter should be imitated
by the pro-vaccine community, by stepping into tactics of opinion manipulation.
In the same journal, another interesting paper was published. They applied geo-
graphical LDA and word analysis about the US states on COVID-19 vaccines
providing with analytical wordclouds and timelines of specific vocabulary used
by certain groups [9]. In [12,13], the author identified twelve different commu-
nities to related topics from Twitter with uni- and bi-grams by applying graph
network analysis. The dataset created from this research was published on the
IEEE web portal, which is used in our paper [12,13]. In the [20] study, the authors
applied the BERT model to classify the polarity and test the subjectivity of the
COVID-19 tweets, with an accuracy of 93.89%.

3 Methodology

In this section we present a complete description of the proposed methodology.
In particular, for the evaluation of the model, we used a pre-trained model in
combination with a labeled dataset. COVID-19 related tweets were gathered
via the Twitter API and categorized by a classifier. The classification of the
collected data resulted in further analysis through time series. Figure 1 illustrates
the overview of the proposed methodology.

Fig. 1. Overview of the proposed methodology
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3.1 Tweets Hydration

Twitter renewed its privacy policies in March 2020 in relation to the developer’s
platform and changed the whole tweet parsing procedure. The user profiles were
not allowed to be publicly visible, shared or exposing any other sensitive infor-
mation about the users. However the existence of public databases continued to
be available, hence the form of IDs. These IDs can be parsed now through a pro-
cedure called hydration, which returns all the embedded information needed [13].
Of course, if the tweet is deleted by the user or filtered out by Twitter it is not
hydratable.

3.2 Dataset

The first dataset used for this study was a publicly available dataset from a Kag-
gle competition. Kaggle is a platform for predictive machine learning and ana-
lytics competitions [7]. In this work, we used the Sentiment Analysis of Tweets
related to the COVID-19 pandemic dataset [1] in order to validate the pre-trained
model described in Sect. 3.3. The data from the source was mainly pre-processed
and cleaned, but an additional data cleaning procedure has been conducted
by removing duplicate entries, stopwords, digits along with hyperlinks, emojis,
usernames and punctuation.

Fig. 2. Pre-processing procedure

The second dataset for this study contains tweets related to COVID-19, written
in English, during the time period between January 01 2021 and December 31,
2021. Our search was based on a publicly accessible, large-scale COVID-19 tweets
dataset [12], at a ratio approximately of 7500 tweets per day. Taking advantage
of Twitter’s API for hydrating, a process of retrieving a tweet’s complete infor-
mation using its ID. The created dataset attributes are [tweet id],[tweet creation
date],[tweet text],[country],[city] and [number of retweets]. Data pre-processing
is used for cleaning the collected raw data by extracting duplicate entries, stop-
words, digits, as well as hyperlinks, emojis, usernames and punctuation. The
pre-processing steps are shown in Fig. 2. After pre-processing, the final number
of tweets was 2.157.747. Using a sample of the tweets, we mapped their location
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and presented it in Fig. 3, which can be distinctive for the entire dataset. From
the collected tweets, only a significantly small percentage contains location data,
due to Twitter’s new policy to disable the tweets’ location by default. Lastly,
the gathered unlabeled tweets were passed on the classifier for polarity labeling.

Fig. 3. Global tweet heat map

3.3 Model

To classify a tweet’s polarity into the positive or the negative class, we used
the BERT model [5]. The BERT model elevates standard transformers [21] by
removing the unidirectionality constraint. Specifically, BERT uses a Masked Lan-
guage Model (MLM) pre-training objective, which randomly masks a part of a
token from the input with the main purpose to predict the original vocabulary
id only by its context. The MLM objective can combine the left and the right
context, providing us with the ability to pre-train a deep bi-directional trans-
former dissimilar to a left-to-right model. Additionally, BERT uses the next
sentence prediction task which gives the ability to pre-train text pairs together.
The model has been pre-trained on a plain unlabeled text corpus of the entire
English Wikipedia and the BookCorpus. For this study, we train the whole archi-
tecture using the train set of tweets from Kaggle. Utilizing the transfer learning
technique we start the training from a well known pre-trained model, instead
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a random weight initialization, updating the weights of the model during the
training process. On the pre-trained model we appended a dense and a soft-
max layer. We used the base model of BERT (Hugging Face) which uses 12
transformer encoders, 12 attention heads and 110 million parameters, instead of
the large model that uses 24 transformer encoders, 16 attention heads and 340
million parameters.

4 Experimental Results

To investigate the model’s performance, we performed 100 independent itera-
tions. In every iteration, the Kaggle’s dataset has been shuffled and split into
train and test sets, with 70–30 analogy. To prevent overfitting, we performed an
early trigger in our model by monitoring the train and validation loss. Once the
validation loss reaches its minimum score and starts increasing, we stopped the
training and saved the current model. The model showed an average accuracy
of 99%, with 0.003 standard deviation, 1.510−5 variance and an average running
time of 42.5 s, running on CUDA. As described, the gathered tweets have been
polarized by the classifier, leading to a time series tweet average polarity per day
within the year 2021.

Fig. 4. Tweets’ polarity over the months

4.1 Results and Discussion

After the text classification, we measured the polarity of the average tweet per
day. The polarity towards 0 presents negativity and towards 1 presents positiv-
ity. The tweets’ polarity over time has been visually represented in Fig. 4. In
the beginning of 2021, we observe a general neutrality lasting until the middle
of March. The period between the middle of March and the end of April is
characterized by a large-scale spike of positive tweets. We cross-referenced the
media reports from this timespan and found that it coincided with the period
with the lowest death rate the UK had seen in six months. Furthermore, at the
same time most countries announced the expansion of their vaccination drive to
include additional age and professional groups. The polarity decreases rapidly
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in the first days of May, when, in retrospect, officials from the US authorize the
vaccination of children as young as 12 years old. For a long period thereafter the
tweets retain a neutral polarity, until November 2021, when a significant flow
towards negativity is noticed. This can be explained by the worldwide outbreak
of the Omicron variant, in November, and the subsequent take-off in the number
of COVID-19 new cases.

Fig. 5. Comparison of the COVID-19 vaccines’ polarity

In addition, we isolated tweets containing the name of the four major COVID-
19 vaccine companies; Pfizer/Biontech, Astrazeneca/Oxford or Vaxzevria, Mod-
erna and Johnson & Johnson’s Janssen. A visual representation of their polarity
through the course of time is given in Fig. 5, where each vaccine’s time series is
represented in distinct colors. The results revealed that in the considered time-
line, every vaccine brand has mostly positive tweets. As we can see in Table 1,
the Astrazeneca/Oxford or Vaxzevria vaccine appears to be in the lead, with a
score of positive tweets that reaches 82,4% of the relevant dataset.

Table 1. Vaccines’ positive rate

Vaccine brand Total number of tweets Positive tweets

Pfizer/Biontech 25.447 81,8%

Astrazeneca/Oxford (Vaxzevria) 9.474 82,4%

Moderna 9.223 74,5%

Johnson & Johnson’s Janssen 7.297 61,2%

Taking a closer look in Fig. 5, we can see that during the summer and especially
within the middle of July and until the middle of August a course towards
negativity has been observed. The following events took place over the summer
and have been connected with the tweets’ polarity concerning the vaccines:
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• Israel had already offered a booster shot to its citizens.
• The FDA on July 8th stated that a booster shot was under consideration
• White House announced on August 18, the beginning of booster shots for

every adult 8 months after the second dose.

The Moderna vaccine had an immediate course towards the negativity axis, in
early November. Around that time the company’s CEO made declarations in
regard to their product’s effectiveness against COVID-19.

Afterwards, we distinguished the vaccines based on their type of technology.
The Pfizer/Biontech and Moderna vaccines are classified as mRNA vaccines
and the Astrazeneca/Oxford and J&J vaccines as non-mRNA vaccines. Figure 6
shows the overall polarity of each vaccine type. The mRNA vaccines had overall a
positive polarity over the non-mRNA vaccines. The non-mRNA vaccines show a
negative peak around October 2021, which can be corresponded to the European
Medicines Agency (EMA) announcement for a possible new, life-threatening
side effect of J&J’s vaccine, known as venous thromboembolism (VTE). Both
Astrazeneca and J&J vaccines (non-mRNA) have been previously linked with a
very rare thrombosis with thrombocytopenia syndrome (TTS).

Fig. 6. Comparison of the mRNA and Non mRNA vaccines

We concluded our study, focusing on the polarity of tweets located in the US.
Figure 7 shows the average polarity of each state over the year. The states
of North Dakota and Alaska have overall more positive tweets. On the other
hand, the state of Oregon had tweets with the most negative polarity related to
COVID-19.
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Fig. 7. Tweet polarity per US state

5 Conclusion

The primary goal of this study is to perform a sentiment analysis with refer-
ence of COVID-19 tweets within the year 2021. Taking advantage of an open
labeled dataset from a Kaggle competition and a Deep Learning model, BERT,
we achieved a validation accuracy as 99%. Then using the unlabeled and pre-
processed tweets, we created a sentiment score for each tweet, i.e. 0 for negative
and 1 for positive, which lead to an average day polarity time series. The polar-
ity of the tweets reflects exactly the events regarding COVID-19 through the
proposed period. Apart from the COVID-19 tweets, we also analyzed the polar-
ity of the COVID-19 vaccines. In general, regardless of the vaccine’s technology,
the means put into effect in the fight against COVID-19 were well received from
Twitter users. The effectiveness of the model brings forth new possibilities for
future studies in which we can further develop and improve the performance of
other text classification techniques.

Acknowledgements. This project has received funding from the Hellenic Foundation
for Research and Innovation (HFRI) and the General Secretariat for Research and
Technology (GSRT) under grant agreement No. 1901. Also, we gratefully acknowledge
the support of NVIDIA Corporation with the donation of the Titan X Pascal GPU
used for this research.



Text Analysis of COVID-19 Tweets 527

References

1. Sentiment analysis of covid-19 related tweets (2021). https://www.kaggle.com/c/
sentiment-analysis-of-covid-19-related-tweets/data

2. Bullock, J., Lane, J.E., Shults, F.L.: What causes covid-19 vaccine hesitancy? igno-
rance and the lack of bliss in the united kingdom. Humanit. Soc. Sci. Commun.
9(1), 1–7 (2022)

3. contributors, W.: List of covid-19 vaccine authorizations - Wikipedia, the free ency-
clopedia. https://en.wikipedia.org/w/index.php?title=List of COVID-19 vaccine
authorizations&oldid=1081403177 (2022), [Online; accessed 11-April-2022]

4. Cotfas, L.A., Delcea, C., Roxin, I., Ioanăş, C., Gherai, D.S., Tajariol, F.: The
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