q

Check for
updates

Re-CorC-ing KeY:
Correct-by-Construction Software
Development Based on KeY

Tabea Bordis!?(®) | Loek Cleophas®*, Alexander Kittelmann®2,
Tobias Runge!'?, Ina Schaefer’?, and Bruce W. Watson®°

! Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
{tabea .bordis,alexander.kittelmann,tobias.runge,ina.schaef er}@kit .edu
2 TU Braunschweig, Braunschweig, Germany
3 TU Eindhoven, Eindhoven, The Netherlands
l.g.w.a.cleophas@tue.nl
4 Stellenbosch University, Stellenbosch, South Africa
bwwatson@sun.ac.za
5 School for Data-Science and Computational Thinking, Stellenbosch University,
Stellenbosch, South Africa

Abstract. Deductive program verification is a post-hoc quality assur-
ance technique following the design-by-contract paradigm where cor-
rectness of the program is proven only after it was written. Contrary,
correctness-by-construction (CbC) is an incremental program construc-
tion technique. Starting with the functional specification, the program’s
correctness is guaranteed by application of a small set of refinement rules.
Even though CbC is supposed to lead to code with a low defect rate
and improve the traceability of errors, it is not widespread. One of the
main reasons is insufficient tool support which we addressed with our
tool COrRC. CORC provides support for CbC-based program construc-
tion with the KEY program verifier as backend prover for checking cor-
rectness of refinement rule applications. However, CORC was limited to
constructing single method bodies restricting its applicability. In this
work, we introduce and discuss CORC 2.0, which extends CORC’s pro-
gramming model with objects as used in object-oriented programming.
We integrate CORC into a development process that allows to use post-
hoc verification and CbC interchangeably to construct correct programs,
and scale the applicability of CbC on the architectural level in our tool
extension ARCHICORC. We developed three object-oriented case stud-
ies and evaluated the verification effort and the usability of CORC in
comparison to post-hoc verification.

1 Introduction

The amount of software in safety-critical systems increases, and, therefore, func-
tional correctness of programs is an important concern. While most verification
approaches rely on post-hoc verification [13,23,50,51], where a program is only
© Springer Nature Switzerland AG 2022

W. Ahrendt et al. (Eds.): The Logic of Software. A Tasting Menu of Formal Methods,

LNCS 13360, pp. 80-104, 2022.
https://doi.org/10.1007/978-3-031-08166-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08166-8_5&domain=pdf
https://doi.org/10.1007/978-3-031-08166-8_5

Re-CorC-ing KeY: Correct-by-Construction Software 81

verified after it is implemented, the stepwise correctness-by-construction devel-
opment approach (CbC) as proposed by Dijkstra [20], Gries [21], or Kourie and
Watson [29] offers an alternative approach. A behavioral specification in form
of a pre- and postcondition pair is refined into code using a set of tractable
refinement rules. To guarantee the correctness of the refinement steps, each rule
defines specific side conditions for its applicability. As a result, when applying
CbC compared to classical post-hoc verification, errors are more likely to be
detected earlier in the design process [35].

Our long-term vision is to make CbC accessible for large-scale software devel-
opment. CORC [43] is a tool based on the deductive program verifier KEY [3]
that supports the development of single methods following the CbC paradigm
as imagined by Dijkstra [20]. The program and its specification are separated
into several Hoare triples, each triple consisting of a pre- and postcondition
pair and a statement written in Java. These triples can typically be proven
automatically [43] with KEY. Thus, COrRC adds tool support for CbC-based
development to the KEY ecosystem. So far CORC could only be used to develop
single algorithms as methods, independent of classes or larger software systems.
One major stepping stone towards our vision to extend the applicability of CbC-
based development is a development process that uses post-hoc verification and
CbC in concert to take advantage of both approaches. In this paper, we focus
on integrating object-orientation and a roundtrip engineering approach into the
new version of CORC, called CORC 2.0. CORC 2.0 covers the same object-
orientation language concepts that KEY covers for post-hoc verification and
enables the combination of classic post-hoc verification using KEY and CbC-
based development to improve the development of correct Java programs.

We extend CORC by four features such that object-oriented Java programs
can be created using CbC and integrated into existing Java projects.

Graphical View. We provide a graphical view to create classes with fields, class
invariants, and methods.

Inheritance and Interfaces. We support constructive development with interfaces
and inheritance using the Liskov principle.

Roundtrip Engineering. We implement a roundtrip engineering approach such
that existing Java classes can easily be imported into CORC to show their
correctness and afterwards exported back to the original project as verified
Java code. Thereby, the developer can freely decide which parts of the software
shall be constructed using CbC in CORC and which parts shall be verified
with post-hoc verification (or even stay unverified if it is not a safety-critical
part).

Change Tracking. We use a change tracking mechanism that simplifies ongoing
development by marking the refinement steps that have to be re-verified due
to changing contracts and implementations of methods or classes (e.g. method
calls, inherited method contracts, changed interface specifications).

To evaluate our concept, we recreate three case studies containing multiple
classes and methods and compare the verification effort in terms of needed proof

82 T. Bordis et al.

steps and verification time to deductive verification with KEY. By doing so, we
found that with CORC 2.0 we were able to prove a larger number of methods
compared to post-hoc verification with KEY, and that CORC 2.0 also sometimes
outperforms post-hoc verification with respect to verification effort. To further
extend CbC-based development, we give an outlook on CbC-based development
of component-based systems on the architectural level in our tool ARCHICORC
and on CbC-based development of feature-oriented software product lines in our
tool VARCORC.

2 Related Work

Besides of the CbC-based program construction approach proposed by Dijk-
stra [20] and Kourie and Watson [29], which we pursue in this work, there are
other refinement-based approaches that guarantee the correctness of the pro-
gram under development. In the Event-B framework [1], automata-based system
descriptions are refined to concrete implementations. This approach is imple-
mented in the Rodin platform [2]. In comparison to the CbC approach used
here, the abstraction level is different. CORC uses specified source code instead
of automata as main artifact. Morgan [36] and Back [8] also proposed related
CbC approaches. Morgan’s refinement calculus, which comprises a very large
number of different refinement rules in comparison to the minimal set of refine-
ment rules in CORC, is implemented in the tool ArcAngel [37]. Back et al. [6,7]
developed the tool SOCOS. In comparison to CbC in CORC, SOCOS works with
invariants in contrast to pre-/postcondition specifications as used in CORC.

Another field that emerged from the ideas of Gries [21] and Dijkstra [20] is
program synthesis. Program synthesis is the task to automatically find a program
that satisfies a formal specification provided by a developer. Foundational work
has been proposed by Manna and Waldinger [33] and has been continued by
many others. For example, Stickel et al. [48] propose a deductive approach that
extracts a Fortran program from a user-given graphical specification by com-
posing entries of subroutine libraries. Gulwani et al. [22] propose a component-
based synthesis that generates and resolves so called synthesis constraints and
apply their approach to bitvector programs. Heisel [25] uses a proof system that
builds up a proof during program development. Polikarpova et al. [41] propose
an approach to synthesize recursive programs from a specification in the form
of a polymorphic refinement type. In contrast to program synthesis, CbC as we
apply it does not automatically synthesize code from a specification. CbC is
rather a development approach that is guided by a specification and guarantees
correctness by proving that the side conditions that are introduced by the set
of refinement rules are fulfilled. The developer therefore still has control over
the program resulting from the approach while with program synthesis one of
possibly many implementations that fulfill the specification is generated. Fur-
thermore, program synthesis has limitations regarding scalability, as for example
recursive programs including loops are hard to synthesize.

Some of the authors’ recent work on trait-based CbC [44] proposes to replace
meta-refinement rules of CbC that are outside of the programming language

Re-CorC-ing KeY: Correct-by-Construction Software 83

with trait-based program development and trait-based composition. Refinement
in TraitCbC amounts to implementing an abstract method in a trait by a con-
crete method in another trait and composing those two traits to realize the
abstract method by the concrete implementation. TraitCbC per se is paramet-
ric in the specification language, meaning that any trait-based language with
a corresponding specification language and verification framework can be used
to instantiate TraitCbC. In some of the authors’ implementation [44], we use
KEY [3] to establish the correctness of traits and trait composition. Abstract
execution [47] in KEY allows verifying the correctness of methods with abstract
program parts, which are specific by contracts. Abstract execution can also be
used for refinement-based CbC where abstract program parts are incrementally
refined to more concrete program parts. This allows for a fine-grained adaption of
the granularity of refinement that ranges between single program statements (as
in CorC) and whole methods (as in TraitCbC). The main difference in abstract
execution is however that it extends the programming language with abstract
program parts and, thus, allows to better reason about irregular termination
(e.g., break/continue) of methods.

KEY [3] is a deductive program verifier for Java programs specified with
the Java modeling language. KEY is the verification backend of CORC. Besides
KEY, there are a number of tools for program specification and verification,
such as: the language Eiffel [34] with the verifier AutoProof [53], the languages
SPARK [9], Dafny [31], and Whiley [38], and the tools OpenJML [15], Frama-
C [17], VCC [14], VeriFast [26], and VerCors [4]. All those are candidates for
post-hoc verification tools to be compared with the CbC methodology, or they
can serve as backends for guaranteeing the correctness of rule applications in
refinement-based CbC, similar to the usage of KEY in CORC. In CoORC, we
decided to use KEY as backend because of previous familiarity and support
from the KEY developer and user community.

3 Correctness-by-Construction in CorC

In this section, we introduce correct-by-construction software development in the
previous version of CORC. In Sect. 3.1, correctness-by-construction in CORC is
introduced by an example. In Sect. 3.2, we present the basic functionality of
CoRC with the graphical and textual editor.

3.1 Correctness-by-Construction

The correctness-by-construction program development approach starts with a
Hoare triple {P} S {Q}. An abstract program S is refined stepwise into a cor-
rect implementation by applying refinement rules. A refinement rule concretizes
the Hoare triple {P} S {Q} to {P'} §’ {Q’}. For example, a loop, a conditional
statement, or a sequence of statements could be introduced as S’. CbC by Kourie
and Watson [29] offers a set of refinement rules that guarantee the correctness
of the refined program if specific side conditions hold.

84 T. Bordis et al.

In Fig. 1, we show an example of a linear search algorithm that is created
with the graphical CORC tool. Each node with a green border represents a
Hoare triple and corresponds to the application of one refinement rule. We start
with the program {P}statement{Q} at the top, where statement is an abstract
statement. The starting precondition P := appears(a, x, 0, a.length) states that
the element x appears in the array a inside the boundaries of the array. Here,
appears is a predicate to shorten the specification. The postcondition Q :=
modifiable(i); a[i] = x states that the element x is in the array at position
i. We specify with the predicate modifiable that only i can be altered in the
program. In CORC, the accessible variables are defined in a variables box, which
is shown on the right side. The function has two parameters a and x and a local
variable i. The global conditions box specifies conditions which are valid in every
step of the program (i.e. invariants), and hence added implicitly to every Hoare
triple.

The first refinement is the application of the composition rule [29], which
splits the starting Hoare triple by triples {P}statement1{M} and {M}state—
ment2{Q} with an intermediate condition M. The idea of the algorithm is that
we traverse the array from back to front and stop, when the element x is found.
The invariant of the program is lappears(a,x,i + 1,a.length). If we have not
yet stopped, we know that the element x does not appear in the end of the array
that is already examined. We also use this invariant as intermediate condition M
to establish this condition at the start of our loop. The first abstract statement
statementl is now refined with a refinement rule for assignments. We refine
statementl to i = a.length — 1; to start at the end of the array, and we ver-
ify that the Hoare triple {P}i = a.length — 1;{M} is fulfilled with the concrete
instances for P and M. In the example, the green border indicates a successful
proof. The second abstract statement statement? is refined to a repetition state-
ment using the invariant as discussed above. The loop guard is a[i] # x. As long
as the element x is not found, the loop is repeated. Here, we have to prove four
conditions. First, the invariant must be established before the first loop iteration.
Second, the postcondition P must follow after the last loop iteration. Third, the
preservation of the invariant is shown in the last refinement, where we introduce
the loop body i =i — 1; to iterate through the array. Fourth, the loop must
terminate. For termination, a variant is used which decreases monotonically and
is bounded from below.

3.2 CorC

CoRrC [43] is a hybrid textual and graphical IDE to develop correct software
using the CbC process. CORC supports programmers to refine programs and to
check the correct application of the refinements. A check is for example on the
correctness of a Hoare triple, the initial validity of a loop invariant, or the termi-
nation of a loop. For each check, CORC prepares a proof goal which is verified
by the program verifier KEY [3] integrated in its backend. To be compatible
with KEY, CORC prepares proof goals where the code is written in Java syntax
with specifications in Java Dynamic Logic (JDL) [3]. The extent of language

Re-CorC-ing KeY: Correct-by-Construction Software

85

pr

{appears(a,x,0,a.len

gth)}

i=alength-1;

{modifiable();
1

appears(axi+1,a.l
ength)}

RepetitionStatement DO...OD

Formula v Variables
= — PARAM int[] a
pr d 1 postcondition i
PARAM int x
- - LOCAL int i
{appears(ax,0,a.length)} statement (modnf\able(l),
alil=x}
L) Global Conditions
a!=null
alength > 0
- 7) i>=0&i <alength
Composition
appears(a,x,0,a.length)
precondition postcondition
{modifiable(i);
{appears(a,x,0,a.length)} alil=x}
statement 1 intermediate condition statement 2
{modifiable();
!
statement1 pCars(a e T aIenoth) statement2
}
\ /
-

invariant

guard

variant

lappears(a,x,i+1,a.length)

alil !=x

precondition

loop statement

postcondition

{modifiable();
(100 {modifiable(i);
appears(axi+1,a.length)) P lappears(a,x,i+1,a.length)}]
& (a[i] '= x)}
\L B
precondition statement postcondition

{modifiable();

(
appears(axi+1,a.length))
& (a[i] I= x)}

{modifiable(i);
lappears(a,x,i+1,a.length)}]

J

Fig. 1. Linear Search Algorithm Constructed in CorC

constructs covered in CORC is similar to the guarded command language [19]
with statements for skip, assignment, function call, composition, selection, and
repetition. The COrRC IDE also offers a textual editor. The syntax of the tex-
tual editor is based on Java that is enriched with keywords for the application
of refinements and additional specifications for loop invariants and intermediate
assertions. Programs created in the textual editor can be transformed to the
graphical editor and vice versa.

In comparison to the verification of complete Java programs in KEY, CorC
splits the verification effort of a complete method into the verification of several
refinement steps (e.g., checking the refinement of introducing: skip, assignment,

86 T. Bordis et al.

function call, composition, selection, repetition, weakening precondition, and
strengthening postcondition). In each step, a side condition, such as the estab-
lishment of a loop invariant before the first loop iteration, or the correctness
of a Hoare triple, is verified. All proofs combined guarantee the correctness of
the whole program. This split into several proofs can reduce the proof complex-
ity and proof effort [54]. Thus, CORC can be used as a frontend for KEY that
enables a correct-by-construction development process for the construction of
individual algorithms.

4 Object-Oriented Development in CorC 2.0

Object-oriented programming is state-of-the-art in software engineering and sup-
ported by most modern programming languages. In the previous section, we
described how single algorithms can be created using CORC. However, these
algorithms are independent of any class structure which means that these single
algorithms cannot access the same set of global fields like methods in a class
in object-oriented programming can. Additionally, objects containing methods
that have been created by CORC can only be created using laborious copy-and-
paste workarounds. In other words, the current implementation of CORC can
hardly be integrated into a software engineering process as it lacks a concept for
modularization and ownership, as well as processes that enable the integration of
CbC into a software development workflow. Therefore, in this section we present
our concept for CbC-based object-oriented software development and the corre-
sponding extension of CORC in the tool CORC 2.0. CORC 2.0 implements a
roundtrip engineering from existing Java projects to CbC-based program devel-
opment, which allows for a combination of post-hoc and CbC-based program
development and verification.

4.1 Object-Oriented Concepts in CorC 2.0

Object-oriented programming is a common programming paradigm based
around objects containing data fields and methods. In class-based languages,
like Java, C++, C#, PHP, or Smalltalk, objects are instances of classes that
have to be defined in advance. Classes are extensible templates for creating
objects and provide initial values for fields and implementations of methods.
Other paradigms that most object-oriented languages share are encapsulation,
inheritance, polymorphism, and dynamic dispatch. As CORC already uses Java
syntax in the refinement steps and KEY as deductive verification tool to verify
the single refinement steps, we focus on object-orientation as realized in Java
and how to combine this with CbC.

Classes. To support object-orientation in CORC 2.0, we introduce the construc-
tion of classes that hold methods implemented with CORC and fields that
can be accessed by the methods contained in the respective class. The vis-
ibility of fields can be modified using the Java visibility modifiers public,

Re-CorC-ing KeY: Correct-by-Construction Software 87

private, package, and protected. Fields can also be defined as static or
final. Besides fields that have been defined in the class, methods of that class
can define a set of local variables including parameters and a return variable.
Additionally, we add class invariants as a new specification type to our class
definitions. Class invariants specify conditions that are fulfilled by the class,
i.e. that are preserved by all methods of that class or re-established at the
end of method execution. To guarantee that a method created with CorC
fulfills the class invariants, they are automatically added to the pre- and
postcondition of the starting Hoare triple when that method is constructed.

Method Calls. Methods can either be called inside of the same class, by an object
instantiating the class, or directly by the class if the method is static. The
implementation of that method can either be in CORC or in Java. For the
verification of a method call, CORC supports inlining and contracting [28]
(i.e., inserting its implementation or using its contract as defined in the CbC
method call refinement rule). When contracting is used, it is assumed that
the contract holds for that method, however, this is not specifically verified
in this step.

Framing. Besides a pre- and a postcondition, a frame that contains all variables
whose data can be modified is defined for each method. This information
helps callers of the method to determine which parts of the state are not
changed due to the call [12]. For formal verification of object-oriented pro-
grams, framing is important, because the caller implicitly knows which fields
remain unchanged during the execution of a method [3,55]. Furthermore,
framing is important for information hiding [30] and to avoid unwanted side
effects [32]. In CORC, the frame of a method is automatically determined by
traversing its refinement steps and collecting the variables that are on the
left of an assignment. However, the frame can also be defined manually by
the user. For the verification of a method with frame, it is checked whether
all variables that are not included in the frame still have the same value as
before the execution of that method.

Inheritance and Interfaces. Inheritance and interfaces are two important features
in Java. While interfaces can be used as a layer of abstraction, inheritance
can be used to create classes built upon existing classes to, for example,
enable code reuse. For both, inheritance and interfaces, we check that the
Liskov principle is fulfilled by the child class or the class that implements
the interface. This means that class invariants that are defined in the parent
class or the interface also have to be fulfilled by the class that extends or
implements it. Furthermore, if a method is overridden in the child class or
implemented from an interface it also has to fulfill the contract that has been
defined for that method in the parent class or interface. We do not require
an interface for every class.

Limitations. Besides methods, classes also contain constructors that are used
to instantiate an object from a class. Even though constructors are very impor-
tant in object-oriented programming, we do not support their creation and verifi-
cation in CORC. However, an initialization method which creates a new instance

88 T. Bordis et al.

3. COrC to correct

Java
{P} s {Q}

[methnd call (a.update())] [composition]

BankAccount - Project

2 Transaction.java <
[FY Account. java 1" Java to CORC
(o) - \

2. Verify Refinement
Steps with KEY

[~ Transaction ——-F
i ! assignment assignment
Transaction.cbcclass | [] []

Transfer.cbcmethod ¢
Lock.cbcmethod

[~ Account L
Account.cbcclass ¢) ;
Post: T iti
Update.cbcmethod - Class Invariants MZZ: h;;’:ic:"“ ition>

balance >= OVERDRAFT_LIMIT

UndoUpdate.cbcmethod I

Account

}
Ficlds Update

public boolean
update(int x)
final int OVERDRAFT_LIMIT Pre: <precondition>

public int balance .

UndoUpdate

} public boolean
Legend X undoUpdate (int x)
e lmplememanon Borders Pre: <precondition>
———~ Roundtrip verified Post: <postconditio>

. Mod: balance
-+ Data Flow —— not verified

Fig. 2. Development Process in CORC 2.0

by calling a default constructor can be created and verified with CORC. The con-
tracts of methods are limited to a pre- and postcondition pair including a frame.
Exceptional behavior such as expecting a specific exception to be thrown cannot
be expressed in the contracts, and hence we cannot reason about exceptional
behavior.

4.2 Development Process in CorC 2.0

In Fig.2, we give an overview of the project structure and the development
process in CORC 2.0. We do this using an example of a Bank Account soft-
ware system that consists of two classes. The class Account has two methods
update and undoUpdate to manipulate the balance of the account. The class
Transaction provides the method transfer which allows to transfer money
from a source account to a destination account and the method lock which
locks an account such that the balance cannot be changed anymore.

On the left side of Fig.2, we show the project structure of the Bank
Account system. There are two folders named by the two classes Account and
Transaction that hold all files that have been created with CORC for each
class. The cbcclass and cbemethod files are representations of the Java classes
and methods in CbC format which can be displayed, edited, and verified by
CorC. Each folder contains a cbceclass file which is also named after the class
and contains all information related to this class (i.e., class and method informa-
tion). The implementation of Account.cbcclass is shown in the bottom center
of Fig. 2 similar to a UML class diagram. There is one bigger box with the title
Account that defines the field balance and the constant OVERDRAFT_LIMIT and

Re-CorC-ing KeY: Correct-by-Construction Software 89

a class invariant. If this class inherits from another class or implements an inter-
face this would be defined using the Java keywords extends and implements.
The methods update and undoUpdate are shown in two separate boxes that are
connected to the Account class. They show the method signature and the con-
tract consisting of precondition, postcondition, and framing. Furthermore, their
border is either green or red to display their verification status.

Besides the cbceclass files, there is also a cbcmethod file per method in the
class folders. The development of methods generally stays the same as before in
CorC without object-orientation. The content of Transfer.cbcmethod is shown
in the top center of Fig. 2. It shows the refinement steps that are used in COrRC
to construct method transfer starting from the starting Hoare triple {P} S {Q}.
Precondition P and postcondition Q are the same as the pre- and postcondition
that are contained in Transaction.cbcclass for method transfer. The single
refinement steps are created in CORC and verified with KEY as described in
Sect. 3.

In the following, we describe some of the new core features of COrRC 2.0,
which are important for the integration of CbC into the software engineering
development process.

Roundtrip Engineering. To sim-
plify the integration of CORC 2.0
into existing Java software sys-
tem development, we introduce
a roundtrip engineering function-
ality. This roundtrip engineering
process can be used for example
for (1) implementing new meth-
ods using CbC, (2) guarantee-
ing the correctness of an already
implemented method, or (3) to be
able to better track the source of Java

error when the developer fails to

prove a 'certa.ln method with post- S Construction
hoc verification. Either way, the Java code to new o .

correct and changed implemen- in original class in CorC
tation and specification can be

integrated back into the original 3
project. The roundtrip engineer-

ing is performed in three steps as Fig. 3. Roundtrip Engineering Workflow
displayed in Fig.3. These three

steps can be iteratively repeated

to create an incremental development process.

Step 1: If there are already Java classes that contain methods that need to
be verified, the classes and methods can be converted into the cbcclasses and
cbemethods in a first step. During this step, the user can select the methods
that shall be converted. The user can then complete missing specifications and

CorC to

90 T. Bordis et al.

annotations (e.g. intermediate conditions, loop invariants, variants, ...) in the
cbecmethods. The cbeclasses and cbemethods can also be created from scratch
in COorC, which makes this first step optional. In that case, the user has to
manually apply the refinement rules to construct the methods in Step 2.

Step 2: The refinement steps in the cbcmethods are verified. Method calls can
either be verified by inlining or contracting (i.e. using either implementation or
contract of the called method). If a method call is verified using its contract, the
method can either be implemented in CORC or provided in Java specified with
a JML contract. This allows the user to freely combine CORC with existing Java
methods and post-hoc verification. However, in that step it is not verified whether
a called method actually fulfills its contract. Consequently, not all methods need
to be specified (when inlining is used) and methods that are specified do not
necessarily have to be verified to be called and can be assumed to be correct.

Step 3: CORC can generate correct Java code from the verified cbecmethods,
either to a new Java class or back into the original Java class it has been imported
from where it replaces the original implementation and contract.

Change Tracking. To further improve the usability of COrRC, we introduce a
notification system that keeps track of changes by setting already verified refine-
ments to not verified. This is especially critical for methods using method calls,
inheritance, or interfaces. In Fig.2, the implementation of method transfer
calls method update on Account a. Now, if there is a change in method update
in class Account, the method call refinement in method transfer needs to be
re-verified, as the old proof relies on a possibly outdated contract. The change
tracking system prevents the developer from overlooking these changes. Addi-
tionally, it enables the direct navigation to the affected method (in our example
to method transfer) for re-verification. In the background, the affected refine-
ment rules are automatically set to not verified so that these refinement steps
cannot mistakenly be assumed to be correct. Since CbC has a fine-grained struc-
ture with single refinement steps, not all refinement steps of a method have to
be re-verified, but only those that are affected by the change. CORC 2.0 can
better maintain the correctness of evolving software than its predecessor, since
it is no longer possible to have refinements falsely marked as verified.

4.3 Implementation

CORrC 2.0' is an open-source Eclipse plug-in supporting the development of
object-oriented programs using CbC as described in this work. CORC captures
the structure of a CbC program including the refinement rules through two
meta-models, one for the class files and one for the methods, modeled using
the Eclipse Modeling Framework?. The graphical editing framework Graphiti® is
used to visualize the underlying meta-models. For the methods, we use a tree-like

! https://github.com/TUBS-ISF/CorC.
2 https://eclipse.org/emf/.
3 https://eclipse.org/graphiti/.

https://github.com/TUBS-ISF/CorC
https://eclipse.org/emf/
https://eclipse.org/graphiti/

Re-CorC-ing KeY: Correct-by-Construction Software 91

5 Project Explorer 57 B 2: bankAccountUndoUpdate 52 | 3] Accountjava
v {34 > BankAccountCorC [CorC Cor A
B JRE System Library () Formula ¥ Variables
iy~ recondition statement ostcondition
v 8 > (default package) S = PUBLIC int OVERDRAFT_LIMIT
[Accountjava
>) Applicston;ava PUBLIC static int INTEREST_RATE
v 2 (9/14] > Account {modifisble(balance result);
) Account.cbeclass - y (wresult = FAl .
2= Accountdiagram ey siatement old(balance)) & (wresult = TRUE -> PUBLIC static int DAILY_LIMIT
-3 - balance = \ol
) bankAccountUndoUpdate.cocmodel e
=5 IVERIFIED] > bankAccountUndoUpda RLELEmE
bankAccountUpdate.cbcmodel

FIED] bankAccountUpdate.diagr PUBLIC int withdraw
creditAccountCredit.cbcmodel
ERIFIED] creditAccountCredit.diagr:
dailyAccountUpdate.cbemodel
VERIFIED]

PUBLIC int interest

PUBLIC boolean lock

interestCalculate.cbcmodel v
FIED] interestCalculate diagram Composition

4} interestEstimated.chcmodel
&= (PENDING] interestEstimated.diagra precondition ‘postcondition

@) isLocked.cbcmodel RETURN boolean resuit

£ [VERIFED] isLocked diagram {modifiable(balance result); -

& lockcbemodel {true) (\resuit = FALSE -> balance = \old(balance)) &} LOCAL int newBalance
&= [PENDING] lock diagram . (\result = TRUE -> balance = \old(balance) -

4} transactionAccountlock.cbcmodel) o —

23 [VERIFIED] kd)
B b statement 1 intermediate condition statement 2

25 [VERIFIED] transactionAccountTransfe —_—
3 transfer.chcmodel Global Conditions
& [PENDING] transfer.diagram statement1 {newBalance = balance - x} statement2

4} undoUpdate.cocmodel
&= [PENDING] undoUpdate diagram OVERDRAFT_LIMIT= 0

) unlock.cbcmodel L),

5 [VERIFIED] unLock.diagram
) update.cbcmodel
&= [PENDING] update.diagram
v B3 provebankAccountUndoUpdate a

@ provedikey precondition | _statement | postcondition
£ provebankAccountUpdate
£ provecreditccountCredit | — newBalance = | {newBalance = | precondition postcondition |
3 provedailyAccountUpdate <
£ proveinterestCalculate [Properties 53 H T

3 proveinterestéstimated

3 proveisLocked Basics

3 provetrznsactionAccountLock s
5 provetransactionAccountTransfer? public boolean)
& proveunLock

{2 [5/6] Application balance >= OVERDRAFT_LIMIT

3 proveinterestpplicationCalculate

3 proveinterestApplicationEstimated Invariants:
3 proveinterestApplicationNextDay

3 proveinterestApplicationNextVear

£ provenextDay

3 provenextyear v Save

Class: Account

Fig. 4. Screenshot of CORC 2.0 with Method update

structure. The beginning of a method in CbC always consists of a Hoare triple,
which can be refined until there are no more abstract statements. Thereby, the
pre- and postconditions and other annotations are automatically passed on in
each refinement step. Furthermore, the deductive verification tool KEY [3] is
used to prove the correct usage of each refinement rule.

In Fig. 4, we show a screenshot of the graphical view to develop methods in
CoORC 2.0. On the left side, there is the project structure of the Bank Account
case study which has been used as an example in the previous subsection. The
Java-classes are in the default package. Then, there are folders named after the
classes holding the information about the class and all methods in form of dia-
gram and model files named after the distinct classes and methods. The diagram
files (<methodName/ className>.diagram) contain the graphical representation
and the model files (<methodName>.cbemodel /< className>.cbeclass) store
the information about the methods and classes in the corresponding meta-model.
The prove<methodName> folder stores generated proof files, which contain the
side conditions for a refinement step which need to be verified. Each proof file
is verified (semi-)automatically by KEY. For a better overview, in front of the
folder name the proportion of verified methods is given and in front of the

92 T. Bordis et al.

< methodName > .diagram files the verification state is given. In this context,
verified means that all refinement steps of a method could be proven and pending
means that at least one refinement step is still unverified.

In the center of Fig. 4, we can see the CorC-diagram of method undoUpdate.
At the top of the diagram, we can see a formula component for our starting Hoare
triple. Underneath, we see a refinement step using the composition refinement
rule. That refinement rule splits the abstract statement into two abstract state-
ments. Afterwards, these are further refined. We can right-click on these com-
ponents to trigger a verification process. In the verification process, we translate
the Hoare triple of the selected component into a proof file for the correspond-
ing refinement rule in the format required by KEY. All components in the CbC
construction tree are marked green in our example so that we can conclude that
all refinement steps have been verified. If a refinement step could not be verified,
the corresponding component is marked red which enhances the traceability of
incorrectly defined refinement rules or inconsistencies in relation to the specifi-
cations. At the top right, we can see two boxes which hold the defined variables
and global conditions.

At the bottom of Fig.4, we can see the properties view with the currently
active Basics tab. It shows further information about the method undoUpdate,
such as the class it belongs to, its signature, and the class invariants it has to
fulfill. The signature of the method can also be edited. To change any other
information, the class file has to be opened. The other tab in the properties view
is called Code Reader and displays the selected Java statements or specifications
in the diagram in a bigger window with syntax highlighting. It enables better
readability of especially long specifications and helps to modify them more easily
without introducing syntax errors.

In Fig.5, we show a screenshot of the class view in CORC 2.0. It displays
the content of file Account.diagram. In the top center, we see a component for
the class definition that looks similar to a UML class diagram. At the top, it
displays the name of the class, and below that, it lists the class invariants and
fields with their visibility, type, and name. Around the class component, there
are several other components which are the methods that are implemented in this
class. They show the signature and the contract of each method. Additionally,
their verification status is displayed by the red and green borders. In this view,
new methods, fields, and class invariants can be added and existing ones can be
edited. Changed information, for example a changed precondition of a method
or a changed type of a field, is directly available in all method diagrams since
they directly reference this file. In the case of a changed precondition, the user
is notified by the change tracking mechanism and the verification status is set
to not verified as described in the previous subsection. For an easy navigation
to the method diagrams, the user can double-click on a method component.

Re-CorC-ing KeY: Correct-by-Construction Software 93

signature

Account
~

thislock = f invariants
balance >= OVERDRAFT_LIMIT —' signature

Tields public boolean
) fitAd

precondition signature

f s

| signature &z ‘ precondition signature postcondition

x
precondition signature postcondition N\

result -> balance =

precondition | _signature | postcondition

publi
sLocked

Fig. 5. Screenshot of Class Account in CORC 2.0

5 Evaluation

In this section, we evaluate CORC 2.0 by comparing it with post-hoc verification.
We use KEY for post-hoc verification, since KEY is also the integrated verifier
in CorC, but KEY can be understood as synonym for post-hoc verification.
To evaluate whether it is feasible to construct correct programs with COrRC, we
want to answer the following two research questions:

RQ1: How does the verification effort (w.r.t. execution time and proof steps) of
verifying algorithms in CORC compare to post-hoc verification in KEY?
RQ2: How does the CORC development process assist in creating correct pro-
grams in comparison to the assistance of KEY for post-hoc verification?

The first research question is answered by creating three case studies with
both CORC and KEY, and measuring the verification time and the number
of verification steps. Each case study consists of several Java classes contain-
ing specified methods. Each method is created and verified with COrRC. For the
post-hoc verification approach, we verified the methods written in Java and spec-
ified with JML (precondition, postcondition, and loop invariants, but no further
intermediate specification was given). For method calls, we used contracting to
prove correctness, but inlining can be used as an alternative. We always used
KEY as automatic verification tool. We measured the verification steps by the
number of rule applications of KEY. The verification time was measured five
times and the average was calculated. We do not consider the manual effort of

94 T. Bordis et al.

Table 1. Metrics of the case studies

Case Study #Classes #Methods #Verified #Verified
with CorC with KeY

Bank Account [52] 2 10 10 9

Email [24] 2 12 12 8

ot

Elevator [39] 18 18 17

writing additional specification for CORC. For the second research question, we
qualitatively discuss the CORC tool by referring to two user studies conducted
at TU Braunschweig. We also discuss the new features of COrRC 2.0.

Case Studies. We have three cases studies that are implemented and verified
with CORC and KEY. We decide to use the case studies Bank Account [52],
Email [24], and Elevator [39] because they are implemented in an object-oriented
fashion, such that we can evaluate the new feature of CORC 2.0. In Table 1, we
show some metrics for the case studies. We have two to fives classes and 10 to
18 methods per case study. The size of the methods ranges from 1 to 20 lines of
code.

5.1 RQ1 - Verification Time and Verification Steps

To answer the first research question, we verified all 40 methods in CorC. For
post-hoc verification, we used the same pre-/postcondition specifications as in
CoRrC. However, six algorithms could not be verified (cf. Table 2). The verifica-
tion of methods with KEY failed, for example, in the steps where the loop invari-
ant must be proven. In CORC, the verification of loops is split into several smaller
proofs reducing the proof complexity. Another reason for a reduced proof com-
plexity in CORC is that we introduce intermediate specifications, which guide
the verifier. In contrast, applying post-hoc verification is more coarse-grained, as
only precondition, postcondition, and loop invariants are specified. We observed
that debugging verification problems that could not be verified automatically
in post-hoc fashion, is more challenging than debugging the same problem con-
structed with CbC in COrC.

In Fig. 6, we show the average verification time measured in milliseconds, and
in Fig. 7, we show the average verification steps for each case study, but only for
the 34 methods which could be verified with CORC and KEY. The verification
time ranges from 0.1s for some methods to 16 s for the most complex methods.
For 22 methods, the verification time with CORC is faster, for 12 methods the
verification with KEY is faster. The largest differences are: enterElevator is
268% faster with CORC, addWaitingPerson is 271% faster with KEY. The
average verification time for the Email case study shows that the verification is
23% faster with CorRC, but on average the Flevator case study is 24% faster
with KEY. For the number of proof steps, we got similar results. In 26 cases,

Re-CorC-ing KeY: Correct-by-Construction Software 95

Average Verification Time Average Verification Steps
3000 800
2500
w 2000
£
£ 1500
= 1000 E
500)
. I I mE : I m il
Bank Account Email Elevator Bank Account Email Elevator
mCbC mPhV mChC mPhV
Fig. 6. Average Verification Time of Fig. 7. Average Verification Steps of
the Case Studies with CbC and PhV the Case Studies with CbC and PhV

CORC has fewer steps, and in 8 cases, KEY has fewer steps. The case studies
Bank Account and Email are on average 32% and 31% smaller with CorC, and
Elevator is 29% smaller with KEY. Overall, the results are of the same order of
magnitude. The exact verification time and steps for each method are shown in
Appendix A.

Discussion. Regarding the verification effort, no trend can be identified. There-
fore, we cannot answer the research question positively that the verification with
CbC is faster than with PhV in terms of verification time or verification steps.
The verification time and the verification steps are similar for both approaches.
However, we could verify more methods in total with CORC. The additional
specifications in the form of intermediate annotations and the splitting into
several smaller proofs facilitates the completion of proofs, but it does not sig-
nificantly affect the verification effort. As we are promoting to use CbC and
PhV in concert, a similar verification effort is beneficial. There is no discernible
disadvantage in terms of effort in using one of the two approaches.

5.2 RQ2 - Usability of CorC

For the second research question, we conducted two user studies [42,45] with
a total of 23 students from the TU Braunschweig. In both studies, a group of
students was divided into half. One group created and verified a method with
CorC and a second method with KEY. The second group created the same
methods, but used the tools in reverse order. We measured the defects in the
developed and verified methods and performed a questionnaire on the usability
of COrRC and KEY at the end of the user study. The first user study took place
in person in 2019 [45], the second user study was online in 2021 [42]. In both user
studies and with both tools, we had several correct implementations but which
were not verified in the given time frame. A common problem was a too weak
loop invariant. In the usability questionnaire, most participants preferred CORC
over KEY due to the better and more fine-grained feedback when errors occurred
during the verification. It was easier to detect and solve errors with CORC. A
minority of participants preferred KEY because they were more familiar with

96 T. Bordis et al.

the syntax of Java and JML. As we are now supporting roundtrip development
with CORC 2.0, we believe that this statement is weakened. Users can now freely
develop and verify programs with CORC or KEY and generate the program for
the other approach automatically. Thus, the preferred tool can be used without
restrictions.

During the construction of the three case studies (cf. RQ1), COrRC’s change
tracking feature was valuable. When we verified a refinement step that called
another method, it occurred that we had to change the contract of this called
method. The change tracking feature then set the affected method calls in all
CoRC programs to not be verified. With this feature, we did not miss any
open verification obligations. In summary, we can confirm that CORC assists in
developing correct software. Additionally, with the new features of COrRC 2.0,
the implementation of object-oriented code is supported.

5.3 Threats to Validity

Ezxternal Validity. The methods implemented in the three case studies have a size
of 1 to 30 lines of code. These small methods reduce the generalizability for larger
algorithmic problems. While CORC 2.0 extends the application field to object-
orientation, we still consider CORC to be a tool for smaller, but challenging
algorithmic problems. The generalizability of the user studies are limited as only
23 students participated, but due to the small number of participants, we were
able to interview them in more detail. Nevertheless, the participants were no
experts in verification. We classify the participants as junior developers.

Internal Validity. We wrote most of the specifications of the three case studies
ourselves. Thus, there could still be defects in the specifications or implementa-
tions. However, we were able to verify all methods with CORC and most meth-
ods with KEY, which is a strong indication of correctness of the case studies.
In particular, we checked the equality of the specifications for the two different
approaches. The time frame of the user study was limited: the participants had
only 30 min for each method implementation. With more time, we expect that
more participants verify the assigned methods.

6 Beyond Monolithic Program Construction with CorC

The previous sections emphasize our ongoing vision to integrate the correctness-
by-construction methodology into the realm of mainstream software develop-
ment through sophisticated tool support. Besides extending CORC’s program-
ming model with advanced paradigms, such as object orientation (cf. Sect. 4), a
natural follow-up is to develop concepts and tool support that make the correct-
by-construction approach available at scale. Currently, we aim to address this by
two further directions. First, VARCORC is a framework for CbC-based develop-
ment of variational software. That is, instead of developing monolithic programs,

Re-CorC-ing KeY: Correct-by-Construction Software 97

the goal is to systematically construct a family of similar software programs fol-
lowing the CbC paradigm. Second, we study the role of correct-by-construction
implementations in software architectures with ARCHICORC, where the main
goal is to bundle CORC programs into reusable software components. We briefly
present our vision for both lines of research in the following.

VarCorC: Correct Variational Software Construction

Software product lines [40] are increasingly used to lower the costs in producing
custom-tailored software products, also including the domain of safety-critical
software systems. VARCORC is an extension of CORC to create feature-oriented
software product lines [11]. Software product lines are families of related pro-
grams sharing a common code base [18]. The common and varying parts of a
product line are defined by features. In feature-oriented programming [5,10],
features are implemented by feature modules. Similar to inheritance in object-
oriented languages, in a feature module, methods can be added or overridden
in a specific order defined by the product line. Overridden methods can use the
original keyword to call the previous implementation of that method. The feature
configuration then defines the explicit relationship between feature modules. For
VARCORC, we extended CbC by two new variability-aware refinement rules, one
for original calls and one for variational method calls. Since implementation of
a method depends on the different features, method calls encompass variability
in software product lines. Additionally, we integrated the concept of contract
composition [51] to allow for a varying method contract per feature that can be
composed along a feature configuration to form the contract of a method in a
product of the product line.

ArchiCorC: Correct Software Architectures

The benefits of combining correctness-by-construction with component-based
software engineering [16,46,49] are manifold. For instance, component-based
architectures allow to establish a repository of correct-by-construction compo-
nents. This is not only interesting for standard libraries, where implementations
are accessed through explicit interfaces, but also for third-party developments
that are easier to integrate into personal projects. Most importantly, modular-
ization of correct implementations into components allows developers to think
about how to compose software systems instead of how to program a monolithic
software system from scratch. We argue that this is the foundation for building
large and complicated systems that are based on the correctness-by-construction
approach.

As an extension to CORC, we propose a framework and an open-source imple-
mentation named ARCHICORC [27] that connects UML-style component mod-
eling, specification, and code generation. In more detail, ARCHICORC comprises
four key ingredients. First, a component and interface description language is
used to describe interconnections between provided and required interfaces of
components, where interfaces comprise method signatures that are specified with

98 T. Bordis et al.

([Analyses] [composition | [Modularity/Reuse |
t

,,,,,,,,,,,,,,,,,,, ARCHICORC

(e DT T
;\ Spemﬁcanons E -

Correct-by-Construction
Code

md

4 ..vl N {n} s21 (M2} A 2
) ST et for 522
mapping : Tt el /
=
16} topll L~ canali) 1 + (1 Correct-by-Construction v/ —
Component Model CorC programs ‘
Modeling and Analyzing Code Generation

Fig. 8. Envisioned Workflow of the ARCHICORC Development Process

Hoare triples. Second, a construction technique aids developers with either refin-
ing method signatures of provided interfaces to correct implementations using
CoRC itself, or with mapping signatures to already existing CORC programs.
Third, ARCHICORC integrates analyses and algorithms to check compatibil-
ity between components and to build composites to form larger components.
Finally, ARCHICORC allows to generate code in a general-purpose programming
language (e.g., Java).

In Fig. 8, we illustrate an envisioned development process using ARCHICORC.
A developer starts by designing a high-level component model including required
and provided interfaces and connections between them. Hierarchical composition
allows to build larger components from a set of smaller ones. Method signa-
tures of provided interfaces of atomic components (i.e., components that are
not decomposed any further) must be mapped to CORC programs, which are
assumed to be correct-by-construction. The component model can then be trans-
lated to a general-purpose programming language (e.g., Java or C++) and can
be imported into other projects. This development process embodies the next
milestone of our ongoing vision of correct-by-construction software development.

7 Conclusion

Our long-term vision is to make the correctness-by-construction (CbC) approach
accessible for large-scale software development. The formal framework of CbC
enables developers to start with a specification for safety-critical parts and algo-
rithms. Then, the framework guides developers in deriving a provably correct
implementation. A major stepping stone towards this vision is the development
of tool support that allows to apply traditional software development and CbC
in concert. In this work, we presented state-of-the-art tool support for this mis-
sion, namely the CORC 2.0 tool family, including a comprehensive overview of
its current status and prospective directions.

In particular, we introduce CORC 2.0 (the successor of CORC), which com-
bines CbC with object-oriented software development in Java. In CORC, single
algorithms are developed completely independently of other programs, making

Re-CorC-ing KeY: Correct-by-Construction Software 99

the integration into software engineering processes impractical. As a new key
feature, CORC 2.0 adds a class concept for structuring programs (i.e., meth-
ods) inspired by Java’s object-oriented programming model. CORC 2.0 now
supports a roundtrip engineering process that is important for applying CbC
to existing software projects; existing Java classes comprising specified methods
can be converted into CORC 2.0 projects and, after verified construction, they
can be converted back to verified Java implementations. This strong improve-
ment in tool support directly targets scalability concerns of the CbC approach,
as it allows developers now to decide whether parts are (1) verified using post-
hoc verification techniques, (2) implemented following the CbC approach, or (3)
remain unverified.

In alignment with our vision, we believe that CORC 2.0 allows developers to
address program verification of general-purpose programming languages in a new
way. One outcome of our evaluation illustrates that CORC 2.0 can sometimes
outperform post-hoc verification with respect to verification effort and success
rate. Although specification effort can be higher, the benefits of additional spec-
ification together with the fine-grained refinement rules are easier debugging
and better feedback in general. Our future direction with the CORC ecosystem
is therefore a seamless integration into mainstream software development. One
focal point is to identify and study possible synergies when applying post-hoc
verification and CbC in concert. Another focal point is to conduct larger user
studies, which provide important insights on how CbC is applied in practice and,
consequently, influence the development of the CORC ecosystem in general. Only
the recent advancements made in CORC 2.0 enable us to develop more complex
case studies necessary to address these future directions.

Acknowledgement. We thank Maximilian Kodetzki from TU Braunschweig for
implementing large parts of the new features for COrRC 2.0.

100 T. Bordis et al.

A Appendix

Table 2. Verification Time and Verification Steps of All Methods

Method #Steps CbC #Steps PhV Time in ms Time in ms
CbC PhV
undoUpdate 205 183 730,75 747,3
update 181 188 626,75 627,67
creditAccount 25 45 104,5 132,67
dailyUpdate 467 636 1990,5 2261
interestCalculate 422 Unclosed 1164 Unclosed
transactionLock 432 663 2253 1995,67
transactionTransfer 799 989 3556,75 3323,3
unLock 21 41 104,5 175,67
interestNextDay 233 381 1066,25 1154,67
interestNext Year 191 239 836,75 786,3
constructClient 50 68 207,75 292,3
createClient 1391 Unclosed 7108,5 Unclosed
getClientByAdress 1420 Unclosed 4509,75 Unclosed
getClientByld 67 Unclosed 210,75 Unclosed
outgoing 67 61 212,75 200
resetClients 673 Unclosed 2450,75 Unclosed
constructEmail 36 42 111,25 156,33
createEmail 558 772 2591 2996,67
setEmailBody 38 47 110,25 185
setEmailFrom 40 51 104,5 192,33
setEmailSubject 38 47 113,25 170,67
setEmailTo 38 47 111,5 173,67
areDoorsOpen 64 41 229,25 141,67
buttonIsPressed 70 69 206 144
enterElevatorBase 805 1092 48295 4577
enterElevator 457 2315 2370 8710
pressButtonBase 87 94 317,25 529
pressButton 97 109 444 .25 503,33
resetFloorButton 79 84 336,25 287
reverse 192 108 985,25 338,33
stopRequestedBase 878 1150 3179 4367,67
createEnvironment 1367 Unclosed 4375,5 Unclosed
isTopFloor 86 97 255,5 345,33
addWaitingPerson 4768 1041 16012,25 4320,33
callElevator 28 42 105,5 174,67
createFloor 346 1066 1641,75 4027
reset 29 42 106,25 173,67
createPerson 3835 1764 12323 6171,67
PersonenterElevator 163 134 432 393,67

PersonleaveElevator 30 44 105,25 174,67

Re-CorC-ing KeY: Correct-by-Construction Software 101

References

10.

11.

12.

13.

14.

15.

Abrial, J.R.: Modeling in Event-B: System and Software Engineering. 1st edn.
(2010)

Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in event-B. Int. J. Softw. Tools Technol.
Transf. 12(6), 447-466 (2010)

Ahrendt, W., Beckert, B., Bubel, R., Hihnle, R., Schmitt, P.H., Ulbrich, M.:
Deductive Software Verification - The KeY Book (2016)

Amighi, A., Blom, S., Darabi, S., Huisman, M., Mostowski, W., Zaharieva-
Stojanovski, M.: Verification of concurrent systems with VerCors. In: Bernardo,
M., Damiani, F., Héhnle, R., Johnsen, E.B., Schaefer, I. (eds.) SFM 2014. LNCS,
vol. 8483, pp. 172-216. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
07317-0-5

Apel, S., Batory, D., Késtner, C., Saake, G.: Feature-Oriented Software Product
Lines (2013)

Back, R.J.: Invariant based programming: basic approach and teaching experiences.
Formal Aspects Comput. 21(3), 227-244 (2009). https://doi.org/10.1007/s00165-
008-0070-y

Back, R.-J., Eriksson, J., Myreen, M.: Testing and verifying invariant based pro-
grams in the SOCOS environment. In: Gurevich, Y., Meyer, B. (eds.) TAP 2007.
LNCS, vol. 4454, pp. 61-78. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-73770-4_4

Back, R.J., Wright, J.: Refinement Calculus: A Systematic Introduction. Springer
Science & Business Media (2012). https://doi.org/10.1007/978-1-4612-1674-2
Barnes, J.G.P.: High Integrity Software: The Spark Approach to Safety and Secu-
rity. Pearson Education (2003)

Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling step-wise refinement. IEEE
Trans. Softw. Eng. 30(6), 355-371 (2004)

Bordis, T., Runge, T., Schaefer, I.: Correctness-by-construction for feature-oriented
software product lines. In: Proceedings of the 19th ACM SIGPLAN International
Conference on Generative Programming: Concepts and Experiences, pp. 22-34
(2020)

Borgida, A., Mylopoulos, J., Reiter, R.: On the frame problem in procedure spec-
ifications. IEEE Trans. Softw. Eng. 21(10), 785-798 (1995)

Bruns, D., Klebanov, V., Schaefer, I.: Verification of software product lines with
delta-oriented slicing. In: Beckert, B., Marché, C. (eds.) FoVeOOS 2010. LNCS,
vol. 6528, pp. 61-75. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-18070-5_5

Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: a practical system for verifying concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 23-42. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-03359-9_2

Cok, D.R.: OpenJML: JML for Java 7 by extending OpenJDK. In: Bobaru, M.,
Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp.
472-479. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5-35

https://doi.org/10.1007/978-3-319-07317-0_5
https://doi.org/10.1007/978-3-319-07317-0_5
https://doi.org/10.1007/s00165-008-0070-y
https://doi.org/10.1007/s00165-008-0070-y
https://doi.org/10.1007/978-3-540-73770-4_4
https://doi.org/10.1007/978-3-540-73770-4_4
https://doi.org/10.1007/978-1-4612-1674-2
https://doi.org/10.1007/978-3-642-18070-5_5
https://doi.org/10.1007/978-3-642-18070-5_5
https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/978-3-642-20398-5_35
https://doi.org/10.1007/978-3-642-20398-5_35

102

16.

17.

18.

19.
20.
21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.
33.
34.
35.

36.
37.

T. Bordis et al.

Crnkovic, 1., Sentilles, S., Vulgarakis, A., Chaudron, M.R.: A classification frame-
work for software component models. IEEE Trans. Softw. Eng. 37(5), 593-615
2010

éuoq,) P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-C. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012.
LNCS, vol. 7504, pp. 233-247. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33826-7_16

Czarnecki, K., Osterbye, K., Volter, M.: Generative programming. In: Herndndez,
J., Moreira, A. (eds.) ECOOP 2002. LNCS, vol. 2548, pp. 15-29. Springer, Heidel-
berg (2002). https://doi.org/10.1007/3-540-36208-8_2

Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Commun. ACM 18(8), 453-457 (1975)

Dijkstra, E.W.: A Discipline of Programming. 1st edn. Prentice Hall PTR (1976)
Gries, D.: The Science of Programming. 1st edn. (1981)

Gulwani, S., Jha, S., Tiwari, A., Venkatesan, R.: Component-based Synthesis
Applied to Bitvector Programs

Héhnle, R., Schaefer, I.: A Liskov principle for delta-oriented programming. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS, vol. 7609, pp. 32—46. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34026-0_4

Hall, R.J.: Fundamental nonmodularity in electronic mail. Autom. Softw. Eng.
12(1), 41-79 (2005)

Heisel, M.: Formalizing and implementing Gries’ program development method in
dynamic logic. Sci. Comput. Program. 18(1), 107-137 (1992)

Jacobs, B., Smans, J., Piessens, F.: A quick tour of the VeriFast program verifier.
In: Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 304-311. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17164-2_21

Kniippel, A., Runge, T., Schaefer, I.: Scaling correctness-by-construction. In: Mar-
garia, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12476, pp. 187-207. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-61362-4_10

Kniippel, A., Thiim, T., Padylla, C., Schaefer, I.: Scalability of deductive verifica-
tion depends on method call treatment. In: Margaria, T., Steffen, B. (eds.) ISoLA
2018. LNCS, vol. 11247, pp. 159-175. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-03427-6_15

Kourie, D.G., Watson, B.W.: The Correctness-by-Construction Approach to Pro-
gramming (2012)

Leavens, G.T., Miiller, P.: Information Hiding and Visibility in Interface Specifi-
cations, pp. 385-395 (2007)

Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348-370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
420

Leino, K.R.M., Nelson, G.: Data abstraction and information hiding. ACM Trans.
Program. Lang. Syst. 24(5), 491-553 (2002)

Manna, Z., Waldinger, R.: A deductive approach to program synthesis. ACM Trans.
Program. Lang. Syst. 2(1), 90-121 (1980)

Meyer, B.: Eiffel: a language and environment for software engineering. J. Syst.
Softw. 8(3), 199-246 (1988)

Meyer, B.: Applying ‘design by contract’. Computer 25(10), 40-51 (1992)
Morgan, C.: Programming from Specifications. Prentice Hall (1998)

Oliveira, M., Cavalcanti, A., Woodcock, J.: ArcAngel: a tactic language for refine-
ment. Form. Asp. Comput. 15(1), 28-47 (2003)

https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/3-540-36208-8_2
https://doi.org/10.1007/978-3-642-34026-0_4
https://doi.org/10.1007/978-3-642-17164-2_21
https://doi.org/10.1007/978-3-030-61362-4_10
https://doi.org/10.1007/978-3-030-03427-6_15
https://doi.org/10.1007/978-3-030-03427-6_15
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

Re-CorC-ing KeY: Correct-by-Construction Software 103

Pearce, D.J., Groves, L.: Whiley: a platform for research in software verification.
In: Erwig, M., Paige, R.F., Van Wyk, E. (eds.) SLE 2013. LNCS, vol. 8225, pp.
238-248. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02654-1_13
Plath, M., Ryan, M.: Feature integration using a feature construct. Sci. Comput.
Program. 41(1), 53-84 (2001)

Pohl, K., Bockle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques (2005)

Polikarpova, N., Kuraj, I., Solar-Lezama, A.: Program synthesis from polymorphic
refinement types. ACM SIGPLAN Not. 51(6), 522-538 (2016)

Runge, T., Bordis, T., Thiim, T., Schaefer, I.: Teaching correctness-by-construction
and post-hoc verification — the online experience. In: Ferreira, J.F., Mendes, A.,
Menghi, C. (eds.) FMTea 2021. LNCS, vol. 13122, pp. 101-116. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-91550-6_8

Runge, T., Schaefer, 1., Cleophas, L., Thiim, T., Kourie, D., Watson, B.W.: Tool
support for correctness-by-construction. In: Héhnle, R., van der Aalst, W. (eds.)
FASE 2019. LNCS, vol. 11424, pp. 25-42. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-16722-6_2

Runge, T., Servetto, M., Potanin, A., Schaefer, I.: Traits for Correct-by-
Construction Programming. To be published (2021)

Runge, T., Thiim, T., Cleophas, L., Schaefer, I., Watson, B.W.: Comparing
correctness-by-construction with post-hoc verification—a qualitative user study.
In: Sekerinski, E., Moreira, N., Oliveira, J.N., Ratiu, D., Guidotti, R., Farrell,
M., Luckcuck, M., Marmsoler, D., Campos, J., Astarte, T., Gonnord, L., Cerone,
A., Couto, L., Dongol, B., Kutrib, M., Monteiro, P., Delmas, D. (eds.) FM 2019.
LNCS, vol. 12233, pp. 388-405. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-54997-8_25

Sametinger, J.: Software Engineering with Reusable Components. Springer Science
& Business Media (1997)

Steinhéfel, D., Hahnle, R.: Abstract execution. In: ter Beek, M.H., Mclver, A.,
Oliveira, J.N. (eds.) FM 2019. LNCS, vol. 11800, pp. 319-336. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-30942-8_20

Stickel, M., Waldinger, R., Lowry, M., Pressburger, T., Underwood, I.: Deductive
composition of astronomical software from subroutine libraries. In: Bundy, A. (ed.)
CADE 1994. LNCS, vol. 814, pp. 341-355. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-58156-1_24

Szyperski, C., Gruntz, D., Murer, S.: Component Software: Beyond Object-
Oriented Programming. Pearson Education (2002)

Thiim, T., Apel, S., Kastner, C., Schaefer, 1., Saake, G.: A classification and survey
of analysis strategies for software product lines. ACM Comput. Surv. 47(1), 1-45
(2014)

Thiim, T., Kniippel, A., Kriiger, S., Bolle, S., Schaefer, I.: Feature-oriented contract
composition. J. Syst. Softw. 152, 83-107 (2019)

Thiim, T., Schaefer, I., Apel, S., Hentschel, M.: Family-based deductive verification
of software product lines. In: Proceedings of the 11th International Conference
on Generative Programming and Component Engineering, p. 11-20. GPCE 2012,
Association for Computing Machinery, NY (2012)

Tschannen, J., Furia, C.A., Nordio, M., Polikarpova, N.: AutoProof: auto-active
functional verification of object-oriented programs. In: Baier, C., Tinelli, C. (eds.)
TACAS 2015. LNCS, vol. 9035, pp. 566-580. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46681-0_53

https://doi.org/10.1007/978-3-319-02654-1_13
https://doi.org/10.1007/978-3-030-91550-6_8
https://doi.org/10.1007/978-3-030-16722-6_2
https://doi.org/10.1007/978-3-030-16722-6_2
https://doi.org/10.1007/978-3-030-54997-8_25
https://doi.org/10.1007/978-3-030-54997-8_25
https://doi.org/10.1007/978-3-030-30942-8_20
https://doi.org/10.1007/3-540-58156-1_24
https://doi.org/10.1007/3-540-58156-1_24
https://doi.org/10.1007/978-3-662-46681-0_53
https://doi.org/10.1007/978-3-662-46681-0_53

104

54.

55.

T. Bordis et al.

Watson, B.W., Kourie, D.G., Schaefer, 1., Cleophas, L.: Correctness-by-
construction and post-hoc verification: a marriage of convenience? In: Margaria,
T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 730-748. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-47166-2_52

Weifl, B.: Deductive verification of object-oriented software: dynamic frames,
dynamic logic, and predicate abstraction. Ph.D. thesis, Karlsruhe Institute of Tech-
nology (2011)

https://doi.org/10.1007/978-3-319-47166-2_52

	Re-CorC-ing KeY: Correct-by-Construction Software Development Based on KeY
	1 Introduction
	2 Related Work
	3 Correctness-by-Construction in CorC
	3.1 Correctness-by-Construction
	3.2 CorC

	4 Object-Oriented Development in CorC 2.0
	4.1 Object-Oriented Concepts in CorC 2.0
	4.2 Development Process in CorC 2.0
	4.3 Implementation

	5 Evaluation
	5.1 RQ1 - Verification Time and Verification Steps
	5.2 RQ2 - Usability of CorC
	5.3 Threats to Validity

	6 Beyond Monolithic Program Construction with CorC
	7 Conclusion
	A Appendix
	References

