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Abstract. Symbolic Execution (SE) enables a precise, deep program
exploration by executing programs with symbolic inputs. Traditionally,
the SE community is divided into the rarely interacting sub-communities
of bug finders and program provers. This has led to independent develop-
ments of related techniques, and biased surveys and foundational papers.
As both communities focused on their specific problems, the founda-
tions of SE as a whole were not sufficiently studied. We attempt an
unbiased account on the foundations, central techniques, current appli-
cations, and future perspectives of SE. We first describe essential design
elements of symbolic executors, supported by implementations in a digi-
tal companion volume. We recap a semantic framework, and derive from
it a—yet unpublished—automatic testing approach for SE engines. Sec-
ond, we introduce SE techniques ranging from concolic execution over
compositional SE to state merging. Third, we discuss applications of
SE, including test generation, program verification, and symbolic debug-
ging. Finally, we address the future. Google’s OSS-Fuzz project routinely
detects thousands of bugs in hundreds of major open source projects.
What can symbolic execution contribute to future software verification
in the presence of such competition?

This chapter comes with a digital companion vol-
ume [84] in form of a Jupyter notebook including
additional examples, visualizations, and the com-
plete code of all presented implementations. The
companion volume will be updated also after this
chapter has been published.

1 Introduction

It is no secret that every non-trivial software product contains bugs, and not just
a few: A data analytics company reported in 2015 [7] that on average, a developer
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creates 70 bugs per 100 lines of code, of which 15 survive until the software is
shipped to customers. In a recent, global survey among 950 developers [74],
88% of the participants stated that bugs and errors are frequently detected and
reported by the actual users of the product, rather than being detected by tests
or monitoring tools. In the same survey, more than a third of developers (37%)
declared that they spend more than quarter of their time fixing bugs instead of
“doing their job.”

These numbers indicate that testing with manually written test cases alone
is insufficient for effective and sustainable software verification: First, it is noto-
riously hard to come up with the right inputs to ensure well-enough coverage of
all semantic features implemented in code. The fact that a test suite achieves a
high syntactic code coverage, which is hard enough to accomplish, does unfor-
tunately not imply that all bugs are found. Second, developers already spend
much of their time testing and fixing bugs. In the above survey, 43% of the
developers complained that testing is one of the major “pain points” in software
development.

Clearly, there is a need for automated bug finding strategies. A simple, yet
surprisingly effective, idea is to run programs with random inputs. When fol-
lowing this idea on the system level, it is called (blackbox) fuzz testing (or
fuzzing) [65], while on the unit level, the label Property-Based Testing (PBT) [24]
is customary.

Random approaches, however, struggle with covering parts of programs that
are only reachable by few inputs only. For example, it is hard to randomly
produce a structured input (such as an XML file or a C program), a magic value,
or a value for a given checksum. Furthermore, even if code is covered, we might
miss a bug: The expression a // (b + c) only raises a ZeroDivisionError if
both b and c are 0. Generally, it can be difficult to choose “suitable” failure-
inducing values, even when massively generating random inputs.

Symbolic Execution (SE) [2,8,19,58] provides a solution by executing pro-
grams with symbolic inputs. Since a (potentially constrained) symbolic value
represents many values from the concrete domain, this allows to explore the pro-
gram for any possible input. Whenever the execution depends on the concrete
value of a symbolic input (e.g., when executing an if statement), SE follows all
or only a subset of possible paths, each of which is identified by a unique path
condition.

The integration of SE into fuzzing techniques yields so-called white-box, or
constraint-based, fuzzers [20,38–40,69,87,93]. Especially at the unit level, SE
can even exhaustively explore all possible paths (which usually requires auxiliary
specifications), and prove that a property holds for all possible inputs [2,52].

Since its formation, the SE community has been split into two distinct sub
communities dedicating their work either to test generation or program proving.
The term “Symbolic Execution” has been coined by King [58] in 1976, who
applied it to program testing. Independently, Burstall [19] proposed a program
proving technique in 1974, which is based on “hand simulation” of programs—
essentially, nothing different than SE. This community separation still persists
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today. In this chapter, we attempt a holistic approach to Symbolic Execution,
explaining foundations, technical aspects, applications, and the future of SE from
both perspectives.

This chapter combines aspects of a survey paper with a guide to implementing
a symbolic interpreter. Moreover, especially Sect. 6 on the future of SE is based
on personal opinions and judgments, which is more characteristic of an essay
than of a research paper. We hope to provide useful theoretical and practical
insights into the nature of SE, and to inspire impactful discussions.

We begin in Sect. 3 by addressing central design choices in symbolic execu-
tors. Especially for this chapter, we implemented a symbolic interpreter for
minipy, a Python subset. Section 2 introduces the minipy language itself. When
suitable, we enrich our explanations with implementation details. We continue
with a frequently neglected aspect: The semantic foundations of SE. Special
attention is paid to the properties an SE engine has to satisfy to be useful for its
intended application (testing vs. proving). We introduce all four existing works
on the topic, one of which we discuss in-depth. In the course of this, we derive
a novel technique for automated testing of SE engines which has not been pub-
lished before.

We discuss selected SE techniques in Sect. 4. For example, we derive a concolic
interpreter from the baseline symbolic interpreter in just eight lines of code. We
implemented most techniques as extensions of our symbolic interpreter.

In Sect. 5, we describe current trends in four application scenarios. Apart
from the most popular ones, namely test generation and program proving, we
also cover symbolic debugging and model checking of abstract programs.

Finally, we take a look at the future of SE. The probabilistic analysis in [13]
indicates that systematic testing approaches like SE need to become significantly
faster to compete with randomized approaches such as coverage-guided fuzzers.
Otherwise, we can expect to reach the same level of confidence about a program’s
correctness more quickly when using random test generators instead of symbolic
executors. What does this imply for the role of SE in future software verification?

2 Minipy

All our examples and implementations target the programming language minipy,
a statically typed, imperative, proper subset of the Python language. It sup-
ports Booleans, integers, and integer tuples, first-order functions, assignments,
and pass, if, while, return, assert, try-except, break, and continue state-
ments. Excluded are, e.g., classes and objects, strings, floats, nested function
definitions and lambdas, comprehensions and generators, for loops, and the
raise statement. Expressions are pure in minipy (without side effects other than
raised exceptions), since we have no heap and omitted Python’s global keyword.

An example minipy program is the linear search routine in Listing 1. The
values of x and y after execution are 2 and -1, respectively. The implementation
uses an else block after the while loop, which is executed whenever the loop
completes normally—i.e., not due to the break statement in Line 5, executed if
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Listing (minipy) 1 Linear search program.

1 def find(needle: int, haystack: tuple) -> int:
2 i = 0

3 while i < len(haystack):
4 if haystack[i] == needle:

5 break
6

7 i = i + 1

8 else:
9 return -1

10

11 return i

12

13 t = (1, 2, 3, 4, )

14 x = find(3, t)

15 y = find(5, t)

needle has been found. The type annotations in Line 1 are mandatory in minipy;
thus, the type of a variable can always be determined either from the type of
the right-hand side of an initial assignment, or from the annotations in function
signatures.

We constructed a concrete interpreter for minipy. It consists of functions
of the shape evaluate_exprType(expr, environment) for evaluating expres-
sions, and execute_stmtType(stmt, environment) for executing statements.
The environment consists of a store mapping variables to values and a reposi-
tory of function implementations (e.g., len). The evaluation functions return a
value and leave the environment unchanged; the execution functions only have
side effects: They may change the environment, and complete abruptly. Abrupt
completion due to returns, breaks, and continues is signaled by special excep-
tion types.

3 Foundations

We can focus on two aspects when studying the principles of SE. First, we con-
sider how SE engines are implemented. We distinguish static symbolic inter-
preters, e.g., angr [80], KeY [2], KLEE [20], and S2E [23], and approaches
dynamically executing the program.1 The PEF tool [10], e.g., extracts symbolic
constraints using proxy objects; QSYM [93] by a runtime instrumentation, and

1 This distinction is a simplification, as many dynamic SE tools belong two both cat-
egories. KLEE, for instance, statically interprets LLVM instructions and maintains
multiple branches in memory; yet, it also integrates elements of dynamic execution,
e.g., when interacting with external code such as the Linux kernel. We discuss this
style of selective SE in Sect. 4.
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SYMCC [69] by compiling directives maintaining path constraints directly into
the target program.

The second aspect addresses the semantics of SE, i.e., what does and should
SE compute? Test generators compute an underapproximation of all possible
final program states. In case one of these is an error state, e.g., crashes or does
not satisfy an assertion, there is always a corresponding concrete, fault-inducing
input (a test case). Program proving tools, on the other hand, overapproximate
the state space. Thus, the absence of any erroneous state in the analysis result
implies the absence of such states in the reachable state space, which results in
a program proof.

We begin this section by providing a scheme to characterize SE engines.
At the same time, we describe how to implement a relatively simple symbolic
interpreter for minipy (Sect. 3.1). We decided on implementing a static executor
since this allows investigating both over- and underapproximating SE variants
(e.g., in Sect. 4 we integrate (overapproximating) loop invariants, and turn the
interpreter into an underapproximating concolic interpreter with only a few lines
of code). In Sect. 3.2, we then introduce a semantic framework for Symbolic
Execution. Finally, in Sect. 3.3, we derive an automatic testing technique for SE
engines from this formal framework. To the best of our knowledge, this is only
the second approach addressing the verification of SE engines using automated
testing, and the first which can address multi-path and overapproximating SE
in a meaningful way.

3.1 Designing a Symbolic Interpreter

To describe implementation aspects of an SE engine in a structured way, we
extracted characteristics for distinguishing them (displayed in Table 1) by com-
paring different kinds of engines from the literature. This catalog is definitely
incomplete. Yet, we think that it is sufficiently precise to contextualize most
engines; and we did not find any satisfying alternative in the literature.

In the following, we step through the catalog and briefly explain the individ-
ual characteristics. We describe how our implemented baseline symbolic inter-
preter fits into this scheme, and provide chosen implementation details.

Implementation Type. We distinguish SE engines that statically interpret
programs from those that dynamically execute them. Among the interpretation-
based approaches, we distinguish those that retain multiple paths in memory
and those that only keep a single path. An example for the latter would be an
interpretation-based concolic executor.

As a baseline for further studies, we implemented a multi-path symbolic
minipy interpreter, with the concrete interpreter serving as a reference. The inter-
preter keeps all execution tree leaves discovered so far in memory (which is not
necessarily required from a multi-path engine). What is more, it also retains all
intermediate execution states, such that the output is a full Symbolic Execution
Tree (SET). An example SET for the linear search program in Listing 1, auto-
matically produced by our implemented framework, is shown in Fig. 1. The nodes
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Table 1. Characteristics of SE engines.

Implementation Type

(1) Interpretation-Based

(1.1) / (1.2) Multi / Single-Path

(2) Execution-Based

(2.1) Compilation-Based

(2.2) Runtime Instr.-Based

(2.3) Using Proxy Objects

Constraint & Value Representation

(1) External Theories

(1.1) / (1.2) Shallow / Deep Embedding

(2) Internal Theories

Constraint Solving

(1) Off-the-shelf Solver

(1.1) With Reduction / Reuse

(1.2) Non-exhaustive Techniques

(2) Special Solver

Loop / Recursion Treatment

(1) Bounded Unrolling

(2) Invariants

(3) Concolic

Call Treatment

(1) Inlining

(2) Summaries / Contracts

(3) On-Demand Concretization

Path Explosion Countermeasures

(1) Summaries / Contracts

(2) Subsumption

(3) State Merging

of the tree are Symbolic Execution States (SESs) consisting of (1) a path condi-
tion, which is a set of closed formulas (path constraints) over program variables,
(2) a symbolic store, a mapping of program variables to symbolic expressions over
program variables, and (3) a program counter pointing to the next statement to
execute. Assignments update the store, while case distinctions (such as while
and if statements) update path constraints. Together, path condition, store,
and program counter determine the concrete states represented by an SES. We
formalize this semantics in Sect. 3.2.

The following definition assumes sets PVars of program variables, Expr of
(arithmetic, boolean, or sequence) expressions, and Fml of formulas over pro-
gram variables. We formalize symbolic stores as partial mappings PVars ↪→ Expr
and use the shorthand SymStores for the set of all these mappings.

Definition 1 (Symbolic Execution State). A Symbolic Execution State
(SES) is a triple (Constr, Store,PC ) of (1) a set of path constraints Constr ⊆

Fml, the path condition, (2) a mapping Store ∈ SymStores of program vari-
ables to symbolic expressions, the symbolic store, and (3) a program counter
PC pointing to the next statement to execute. We omit PC if it is empty. SESs
is the set of all SEStates.

The structure of our symbolic interpreter aligns with the concrete minipy
interpreter. Environments are now symbolic environments, consisting of a set
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Fig. 1. SET of the linear search program in Listing 1 with one loop unrolling.

of path constraints in addition to the (symbolic) store and built-in function
repository. Execution functions are side-effect free and produce SETs instead of
manipulating environments. Expressions evaluate to conditioned symbolic val-
ues, since the evaluation of the same expression, e.g., x // y, may result in a
value (e.g., 4 for x = 4 and y = 2) or in an exception (e.g., for y = 0). In Sect. 3.1,
we explain how we concretely represent symbolic expressions and constraints.

As an example, we discuss the symbolic execution of if statements. As usual,
the concrete code is available at [84]. First, we evaluate the guard expression.
Since this can result in multiple conditioned values, we loop over all values and
attached constraints. If an evaluation result is unsatisfiable with the current path
condition, it is not considered; if the evaluation resulted in an exceptional result,
we set the “abrupt completion” flag of the symbolic environment to the returned
exception.

If evaluating the guard resulted in a value, we compute the symbolic environ-
ments for the then and else branch. We only add the subtrees for these branches
if they are satisfiable to avoid the execution of infeasible paths. Finally, the then
and else blocks are executed and added to the result SET; if there is no else
branch, we add the corresponding environment without program counter.

An alternative to implementing symbolic transitions in code, as we did in our
symbolic interpreter, is encoding them as a set of small-step rules in a domain-
specific language. This is the approach followed by the KeY SE engine [2].

In Sect. 3.1, we discuss satisfiability checking for symbolic environments.
Next, we focus on the representation of constraints and symbolic values.

Representation of Constraints and Values. The choice of how to express
symbolic values and constraints in an SE engine usually goes hand in hand with
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the choice of the used constraint solver (which we discuss in the next section).
When using an off-the-shelf solver, one is ultimately bound to its available the-
ories. However, there are two styles of embedding the language of symbolic val-
ues and constraints, namely a deep and a shallow approach [35,88]. In a deep
embedding, one defines dedicated Abstract Syntax Trees (ASTs) for values and
constraints, and formalizes specialized operations on those in terms of the solver
theories. Shallow embeddings directly encode the embedded language in terms
of already available data structures. Both approaches have advantages and dis-
advantages: Deep embeddings offer more flexibility, but require the definition of
new theories, which can be non-trivial and give rise to inconsistencies. Shallow
embeddings, on the other hand, are simpler and allow re-using pre-defined theo-
ries, but can come at the cost of a reduced expressiveness. A different approach
followed, e.g., by the KeY [2] engine, is the development of a specialized solver
with home-grown theories. This approach offers most flexibility, but is costly to
implement and decouples the engine from advances of general-purpose solvers.

Our symbolic interpreter is based on a shallow embedding into the Z3 SMT
solver [66]. Integer types are mapped to z3.ArithRef expressions, constraints
and Booleans to z3.BoolRef, and tuples to sequences of sort z3.SeqRef. This—
easy to implement—approach restricts us to non-nested tuples, since nested
sequences are not supported in Z3. For a complete support of minipy’s language
features, we would have to resort to a deeper embedding into Z3.

Constraint Solving. Constraint solving plays a crucial role in SE engines [8]:
Constraints are checked when evaluating path feasibility, simplifying symbolic
stores, or verifying assertions. Usually, path constraints are eagerly checked to
rule out the exploration of infeasible paths. However, this can be expensive in
the presence of many complex constraints (e.g., nonlinear arithmetics). Engler
and Dunbar [30] propose a lazier approach to constraint solving. If a constraint
cannot be quickly solved, they defer its evaluation to a later point (e.g., when
an error has been found). Only then, feasibility is checked with higher timeout
thresholds.

Few systems (e.g., KeY) implement own solvers. Most symbolic executors,
however, use off-the-shelf solvers like Z3. To alleviate the overhead imposed
by constraint solving, some systems preprocess constraints before querying the
solver. KLEE [20], e.g., reduces expressions with rewriting optimizations, and
re-uses previous solutions by caching counterexamples. Systems like QSYM [93]
resort to “optimistic” solving, which is an unsound technique only considering
partial path conditions. Since QSYM is a hybrid fuzzer combining a random
generator and a symbolic executor, generating “unsound” inputs (which do not
conform to the path they are generated for) is not a big problem, since the
fuzzing component will quickly detect whether the input is worthwhile or not
by concrete execution (and, e.g., collecting coverage data). The Fuzzy-Sat sys-
tem [15] analyzes constraints collected during SE and, based on that, performs
smart mutations (a concept known from the fuzzing domain) of known solutions
for partial constraints to create satisfying inputs faster.
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Frequently, SMT solvers time out, and fail to provide a definitive answer
at all. We use Z3 as a default solver, and discovered that its behavior can be
highly non-deterministic: For a given unsatisfiable formula, we either received a
timeout or a quick, correct answer, depending on the order of the constraints in
a formula, or the value of an initial seed value, or whether Z3 is run in parallel
mode.2

We follow a pragmatic approach to deal with Z3’s incompleteness: Whenever
a Z3 call returns “timeout,” we query another solver, in this case KeY, which
is run inside a small service to reduce bootstrapping costs. KeY is significantly
slower than Z3 in the average case (fractions of seconds vs. multiple seconds),
but is stable (behaves deterministically), and it features a powerful theory of
sequences, which behaves well together with arithmetic constraints.

Treatment of Loops and Recursion. Loops and recursion require special
attention in SE. Consider, e.g., the execution of the body of the find function
in Listing 1. If haystack is a symbolic value such that we do not know its length,
the number of times an engine should execute the body of the while loop until
the loop guard becomes unsatisfiable is unknown. There are three main ways
to address this issue (which also apply to recursive functions). First, we can
impose a fixed bound on the number of loop executions and unroll the loop
that many times. This is the procedure implemented in our baseline symbolic
interpreter. For example, in Fig. 1, we only unrolled the loop one time. If we
increase the threshold by one, we obtain two additional leaves in the SET, one
for the case where needle has been found, and one for the case where it has
not. Second, one can use loop invariants [49]. A loop invariant is a summary of
the loop’s behavior that holds independently from the number of loop iterations.
For example, an invariant for Listing 1 is that i does not grow beyond the size
of haystack. Instead of executing the actual loop body, one can then step over
a loop and add its invariant to the path condition. Although much research has
been conducted in the area of automatic loop invariant inference [17,31,33,60,
81], those specifications are mostly manually annotated, turning specification
into a main bottleneck of invariant-based approaches [2]. In Sect. 3.1, we show
how to integrate invariants into the baseline symbolic interpreter, turning it
into a tool that can be used for program proving. Finally, loops are naturally
addressed by concolic SE engines, where the execution is guided by concrete
inputs. Then, the loop is executed as many times as it would have been under
concrete execution. In Sect. 4.1, we derive a concolic tester from the baseline
interpreter with minimal effort.

Treatment of Calls. Analogously to loops, there are two ways of executing
calls in SE: Either, one can inline and symbolically execute the function body,
2 See https://github.com/Z3Prover/z3/issues/5559 for an issue we reported to the Z3

team. According to the answer of Z3’s main developer Nikolaj Bjørner, the “sequence
solver is rather unstable, especially when you mix integer constraints and sequence
constraints”.

https://github.com/Z3Prover/z3/issues/5559
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or take a summary (depending on the context also called contract) of the func-
tion’s behavior and add this abstraction to the path condition. If their code is
unavailable, we cannot inline function bodies (e.g., for a system call). Usually,
specifying a contract is one option. Yet, this is problematic when analyzing of
systems with many calls to unspecified libraries. Furthermore, it might not even
be possible. Godefroid [36] names as a simple example an if statement with
guard x == hash(y) containing an error location in its then branch. To reach
that location, we have to find two symbolic values x and y such that x is the hash
value of y. If hash is a cryptographic hash function, it has been designed exactly
to prevent such reasoning, and we cannot expect to come up with a contract for
hash (and even less to obtain a usable path constraint from SE without con-
tracts). Concolic execution does not provide a direct solution this time, either:
While we can concretely execute any function call, we will not obtain a constraint
from it.

A pragmatic approach in dynamic (i.e., integrating elements from concrete
execution) SE is to switch between concrete and symbolic execution whenever
adequate (see, e.g., [23,38]). When reaching the if statement of the program
above, for example, it is easy to decide whether the equation holds by choos-
ing random concrete values for x and y satisfying the above precondition, and
continue symbolically executing and collecting constraints from then on. What
is more, we can fix the value of y only, compute its hash, and choose the value
of x such that it does (not) satisfy the comparison. We discuss this approach in
Sect. 4.2.

The baseline symbolic interpreter inlines function calls. It does so in a “non-
transparent” way (inspired by the concrete minipy interpreter): Whenever we
reach a function definition, we add a continuation to the functions repository.
When evaluating a call, the continuation is retrieved and passed the current
symbolic environment and symbolic arguments, and returns an EvalExprResult.
In the computed SET, the execution steps inside the function body are thus not
communicated. In the digital companion volume [84], we extend the baseline
interpreter with a technique for transparent inlining ; in Sect. 3.1, we show how
to integrate function summaries.

Path Explosion Countermeasures. Path explosion is a major, if not the
most serious, obstacle for SE [8,22,91]. It is caused by an exponential growth
of feasible paths in particular in the presence of loops, but also of more innocu-
ous constructs like if statements (e.g., if they occur right at the beginning of
a substantially sized routine). Auxiliary specifications, i.e., loop invariants and
function summaries which we already mentioned before, effectively reduce the
state space. While loop invariants and full functional contracts generally have to
be annotated manually, there do exist approaches inferring function summaries
from cached previous executions in the context of dynamic SE (e.g., [5]).

Subsumption techniques drop paths that are similar (possibly after an
abstraction step) to previously visited paths. Anand et al. [6], e.g., summarize
heap objects (e.g., linked lists and arrays) with techniques known from shape
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analysis to decide whether two states are to be considered equal. Another line
of work (see, e.g., [63]) distinguishes a subset of possible program locations con-
sidered “interesting,” e.g., because of the annotation with an assert statement.
When an execution does not reach an interesting location, intermediate locations
are tagged with path constraints. Whenever such a label is visited another time,
there are two options: Either, the current path condition is implied by the label.
In that case, this execution path is dropped, since we can be sure that it will not
reach an interesting location. In the other case, either an interesting location
is eventually reached, or the label is refined using an interpolation technique
summarizing previous unsuccessful paths at a position.

State merging [46,61,76,78,82] is a flexible and powerful technique for miti-
gating path explosion. The idea is to bring together SESs with the same program
counter (e.g., after the execution of an if statement) by computing a summary
of the path constraints and stores of the input states. This summary can be fully
precise, e.g., using If-Then-Else terms, underapproximating (omitting one input
state in the most extreme case), or overapproximating (e.g., using an abstract
domain).

Our baseline symbolic interpreter does not implement any countermeasure
to path explosion. However, we extend it with contracts and state merging in
Sect. 4.

3.2 Semantic Foundations of Symbolic Execution

Despite the popularity of SE as a program analysis technique, there are only few
works dedicated to the semantics and correctness of SE. This could be because
most SE approaches focus on test generation, and deep formal definitions and
proofs are less prevalent in that area than in formal verification. Furthermore,
every experienced user of SE has a solid intuition about the intended working of
the symbolic analysis, and thus might not have felt the need to make it formal.

We know of four works on the semantic foundations of SE: One from the
90s [59] and three relatively recent ones [12,62,82], published between 2017 to
2020.

Kneuper [59] distinguishes fully precise SE, which exactly captures the set
of all execution paths, and weak SE, which overapproximates it. Intuitively,
the weak variant can be used in program proving, and the fully precise one in
testing. Yet, fully precise SE is generally out of reach; Kneuper does not con-
sider underapproximation. The frameworks by Lucanu et al. [62] and de Boer
and Bonsangue [12] relate symbolic and concrete execution via simulation rela-
tions; they do not consider the semantics of individual SESs. Lucanu et al. [62]
define two properties of SE. Coverage is the property that for every concrete
execution, there is a corresponding feasible symbolic one. Precision means that
for every feasible symbolic execution, there is a corresponding concrete one. De
Boer and Bonsangue argue from a program proving point of view. Their prop-
erty corresponding to “coverage” of [62] is named completeness, and soundness
for “precision.”
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In [82], we provided a framework based on the semantics of individual SESs,
which represent many concrete states. A transition is precise if the output SESs
represent at most the concrete states represented by the input SESs, and exhaus-
tive if the outputs represent at least the states represented by the inputs. Other
than [12,62], this is a big-step system not considering paths and intermediate
states. We think that coverage/completeness from [12,62] imply exhaustiveness,
and precision/soundness “our” precision. Kneuper’s weak SE is exhaustive/com-
plete/has full coverage, while fully precise SE is additionally precise/sound.

In the following, we present a simplified account of the framework from [82].
Apart from personal taste, the focus on the input-output behavior of symbolic
transitions allows us to derive a novel technique for automatically testing SE
engines in Sect. 3.3. The only other work we know of on testing symbolic execu-
tors [56] only tests precision, and struggles (resorts to comparatively weak ora-
cles) with testing multi-path engines. We think that the focus on paths, and not
the semantics of states, binds such approaches to precision and single-path sce-
narios; the state-based big step semantics allows addressing these shortcomings.
The framework from [82] is based on the concept of concretizations of symbolic
stores and SESs. Intuitively, a symbolic store represents up to infinitely many
concrete states. For example, the store Store mapping the variable x to 2 · y

represents all concrete states where x is even. Given any concrete input, we can
concretize Store to a concrete state by interpreting variables in the range of
Store within the concrete state. If σ(y) = −3, e.g., the concretization of Store
w.r.t. σ maps x to −6.

Definition 2 (Concretization of Symbolic Stores). Let ConcrStates
denote all concrete execution states (sets of pairs of variables and concrete
values). The symbolic store concretization function concr store : SymStores ×

ConcrStates → ConcrStates maps a symbolic store Store and a concrete state
σ to a concrete state σ′

∈ ConcrStates such that (1) for all x ∈ PVars in the
domain of Store, σ′

(x) equals the right-hand side of x in Store when evaluating
all occurring program variables in σ, and (2) σ(y) = σ′

(y) for all other program
variables y not in the domain of Store.

The concretization of symbolic stores is extended to SESs by first checking
whether the given concrete store satisfies the path condition; if this is not the
case, the concretization is empty. Otherwise, it equals the concretization of the
store. Consider the constraint y > 0. Then, the concretization of ({y > 0}, Store)
w.r.t. σ (where Store and σ are as before) is ∅. For σ′

(y) = 3, on the other hand,
we obtain a singleton set with a concrete state mapping x to 6. Additionally,
we can take into account program counters by executing the program at the
indicated location starting in the concretization of the store. The execution result
is then the concretization.

Definition 3 (Concretization of SESs). Let, for every minipy program p,
ρ(p) be a (concrete) transition relation relating all pairs σ, σ′ such that executing
p in the state σ ∈ ConcrStates results in the state σ′

∈ ConcrStates. Then, the
concretization function concr : SEStates × ConcrStates → 2ConcrStates maps
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an SES (Constr, Store,PC ) and a concrete state σ ∈ ConcrStates (1) to the
empty set ∅ if either Constr does not hold in σ, or there is no σ′ such that
(concr store (Store, σ), σ′

) ∈ ρ(PC ), or otherwise (2) the singleton set {σ′
} such

that (concr store (Store, σ), σ′
) ∈ ρ(PC ).

Consider the SES s = ({1 ∈ t}, (n �→ 1), r = find(n, t)), where n and t are
variables of integer and tuple type, (n �→ 1) a symbolic store which maps n to
1 and is undefined on all other variables, and find the linear search function
from Listing 1. We write 1 ∈ t to express that the value 1 is contained in t. For
any σ where 1 is not contained in σ(t), we have concr (s, σ) = ∅. For all other
states σ′, concr store ((n �→ 1), σ′

) = σ′
[n �→ 1] (i.e., σ′, but with n mapped to 1).

The concretization concr (s, σ′
) is then a state resulting from running find with

arguments 1 and σ′
(t) (i.e., the values of n and t in concr store ((n �→ 1), σ′

)) and
assigning the result to r: concr (s, σ′

)(r) is the index of the first 1 in σ′
(t).

By considering all possible concrete states as initial states for concretization,
we obtain the semantics, i.e., the set of all represented states, of an SES.

Definition 4 (Semantics of SESs). The semantics �s� of an SES
s ∈ SEStates is defined as the union of its concretizations: �s� �
⋃

σ∈ConcrStates concr (s, σ).

Usually, SE systems take one input SES to at least one output. Systems with
state merging, however, also transition from several inputs states (the merged
states) to one output state. The notion of SE transition relation defined in [82]
goes one step further and permits m-to-n transition relations for arbitrary m
and n. In principle, this allows for merging techniques producing more than one
output state.

Definition 5 (SE Configuration and Transition Relation). An SE Con-
figuration is a set Cnf ⊆ SEStates. An SE Transition Relation is a relation
δ ⊆ 2SEStates

× (2SEStates
× 2SEStates

) associating to a configuration Cnf transi-
tions t = (I,O) of input states I ⊆ Cnf and output states O ⊆ 2SEStates . We call
Cnf \ I ∪O the successor configuration of the transition t for Cnf . The relation
δ is called SE Transition Relation with (without) State Merging if there is a
(there is no) transition with more than one input state, i.e., |I | > 1. We write
Cnf

t
−→δ Cnf ′ if (Cnf , t) ∈ δ and Cnf ′ is the successor configuration of t in Cnf .

The major contribution of the SE framework from [82] are the notions of
exhaustiveness and precision defined subsequently.

Definition 6 (Exhaustive SE Transition Relations). An SE transition
relation δ ⊆ 2SEStates

× (2SEStates
× 2SEStates

) is called exhaustive iff for each
transition (I,O) in the range of δ, i ∈ I and concrete states σ, σ′

∈ ConcrStates,
it holds that σ′

∈ concr (i, σ) implies that there is an SES o ∈ O s.t. σ′
∈

concr (o, σ).
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Definition 7 (Precise SE Transition Relations). An SE transition relation
δ ⊆ 2SEStates

×(2SEStates
×2SEStates

) is called precise iff for each transition (I,O)

in the range of δ, o ∈ O and concrete states σ, σ′
∈ ConcrStates, it holds that

σ′
∈ concr (o, σ) implies that there is an SES i ∈ I s.t. σ′

∈ concr (i, σ).

The following lemmas (proved in [82]) connect exhaustiveness and precision
with practice. Test generation requires precise SE to make sure that discovered
failure states can be lifted to concrete, fault-inducing test inputs. Conversely,
program proving requires exhaustive SE, s.t. a proof of the absence of assertion
violations in the output SESs corresponds to a proof of the absence of errors in
the inputs.

Lemma 1 (Bug Feasibility in Precise SE). Let δ be a precise SE transition

relation and Cnf
(I,O)

−−−−→δ Cnf ′. If an assertion ϕ ∈ Fml does not hold in some
state o ∈ Cnf ′, it follows that there is an i ∈ Cnf s.t. ϕ does not hold in i.

Lemma 2 (Validity of Assertions Proved in Exhaustive SE). Let δ be an

exhaustive SE transition relation and Cnf
(I,O)

−−−−→δ Cnf ′. If an assertion ϕ ∈ Fml
holds in all states o ∈ Cnf ′, it follows that ϕ holds in all i ∈ Cnf .

The nice feature of these definitions is that they can be turned into a powerful
automatic testing procedure for SE engines, as demonstrated subsequently.

3.3 An Oracle for Automatic Testing of SE Engines

From Definitions 6 and 7, we can derive an automated testing procedure for
precision and exhaustiveness. Listing 2 shows the code of our testing routine
for exhaustiveness; the version for precision works analogously. The algorithm
specializes Definition 6: It only considers a finite number of initial states for
concretization, does not account for state merging (i.e., only considers 1-to-
n transitions), and is not robust against diverging programs (which could be
mitigated by setting a timeout). We consider the most general input SES i (Line
5) for a given program counter test program, i.e., one with an empty path
condition and simple assignments x �→ x for each variable in the set variables,
which typically are the “free” program variables in test program. Then, we
take num runs concrete states σ (Lines 12 to 16), compute {concr (i, σ)} (Lines
22 and 23) and {concr (o, σ)|o ∈ O} (Lines 18 to 20), where O are all output
states produced by the symbolic interpreter (computed in Lines 7 to 10). We
verify that there is an output state o satisfying the condition in Definition 6
by asserting that the former set is a subset of the latter one (Line 25). If this
is not the case, we return the concrete input state used for concretization as
a counterexample (Line 26). If no counterexample was found, we return None
(Line 28).

Using the counterexample, we can examine the bug by comparing the outputs
of the concrete and the symbolic interpreter (the symbolic interpreter produces
only a single path since we start in a concrete state). Consider a simple while
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Listing 2 Automatic search for counterexamples to exhaustiveness.

1 def find_exhaustiveness_counterexample(

2 symbolic_interpreter,

3 variables, test_program, num_runs=100):

4 input_state = SymbolicEnvironment(SymbolicStore(

5 {variable: variable.to_z3() for variable in variables}))

6

7 output_states = [

8 leaf.environment

9 for leaf, _ in get_leaves(symbolic_interpreter.execute(

10 test_program, input_state))]

11

12 for _ in range(num_runs):
13 sigma = Store({

14 variable: random_val(variable.type)
15 for variable in variables

16 })

17

18 concr_outputs = ConcrResultSet([

19 concr(output_state, None, sigma)

20 for output_state in output_states])

21

22 concr_input = ConcrResultSet([

23 concr(symbolic_input_state, test_program, sigma)])

24

25 if not concr_input.subset_of(concr_outputs)

26 return sigma # Counterexample found

27

28 return None # No counterexample found

loop decrementing a variable idx by one as long as idx >= x. The exhaustiveness
testing routine, for the baseline interpreter with a loop unrolling threshold of
2, produces an output like {x: -36, idx: 93}. Running the program in the
concrete interpreter yields a final value of −37 � 93 for idx: They are indeed
different! This is because the symbolic interpreter unrolled the loop only two
times, and not the necessary idx − x = 130 times. Note that loop unrolling
is precise, since there are always input states for which two times unrolling is
sufficient. If the lack of exhaustiveness in the baseline interpreter was unexpected,
a technique like [56] which only can detect precision problems would never have
been able to find the problem.

Using the precision check, we discovered two real bugs in the interpreter.
First, we did not consider negative array indices. In Python, t[-i] is equivalent
to t[len(t)-i]. The second bug was more subtle. Integer division in Python is
implemented as a “floor division,” such that 1 // -2 evaluates to -1, because
results are always floored. In Z3 and languages like Java, the result of the division
is 0. We thus had to encode floor division in our mapping to Z3 expressions.
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This approach has certain advantages over the technique proposed by Kapus
& Cadar [56], apart from also supporting exhaustiveness checking. They distin-
guish runs of the SE engine in single-path and multi-path modes. For single-path,
they uniquely constrain symbolic inputs to chosen concrete inputs (such that
only a single program path is followed). However, they obfuscate these bindings
by encoding them in sufficiently complicated ways to prevent the solver from
inferring those concrete values. This is to prevent the executor from falling back
to concrete execution, such that the actual SE engine would not be tested. For
the multi-path mode, they cannot use the test oracle comparing outputs, and
resort to the crash and “function call chain” oracles only. Our approach does
not require outwitting the solver, and naturally handles the multi-path mode.
Kapus & Cadar automatically generate test programs (program counters) using
the CSmith tool [92]. This should be integrated into our approach; otherwise,
test quality still depends on human judgment.

To the best of our knowledge, the technique we presented is only the second
approach to automatic testing of SE engines, and the first to test exhaustiveness
and apply an output-based oracle to multi-path executions.

4 Techniques

Previously, we described the characteristics of a baseline symbolic interpreter
without much fuzz, and introduced the central notions of exhaustiveness and
precision by which one can judge whether an SE engine is suitable for test gen-
eration or program proving. Now, we shed some light on different design alter-
natives and advanced techniques listed in Table 1. We consider both exhaustive
(loop invariants) and precise techniques (concolic and selective SE) as well as
orthogonal techniques (compositional SE, state merging). More technical details
are discussed in the SE surveys [8,91] (which almost exclusively focus on such
details). In particular, we omit areas such as the symbolic execution of concur-
rent programs and memory models for heap-manipulating programs. Concur-
rency adds to the path explosion problem, since different interleaving executions
have to be considered [67]. The challenge is therefore to reduce the search space.
This can be done, for instance, by restricting the class of checked properties
(e.g., specifically to concurrency bugs [32,89] or regressions [43]), or by excluding
irrelevant interleavings in the absence of potential data races [54,55]. Interesting
topics related to symbolic memory modeling include the integration of Separa-
tion Logic [52,73], and Dynamic Frames [57] and the Theory of Arrays [2,34]
into SE.

However, we think that the mentioned techniques are important design ele-
ments one should know and consider when analyzing and designing a symbolic
executor.

In some cases, we extend the minipy language with new statement types to
support a technique. Then, we also extend the concrete minipy interpreter to
allow for an automatic cross-validation using the method described in Sect. 3.3.
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4.1 Advanced Loop Treatment

Any symbolic executor has to ensure termination for programs with loops (and
recursion). Our baseline interpreter implements bounded unrolling. This simple
measure is precise, but not exhaustive; even when using SE for test generation
and not program proving, that can be problematic if a bug hides beyond the
set threshold.

Concolic Execution. Concolic execution (short for “concrete and symbolic
execution,” coined in [77]) gracefully ensures termination. The idea is to let
a concrete input steer the symbolic execution, collecting constraints along the
way. Thus, the symbolic analysis terminates if, and only if, the concrete execution
terminates for the given inputs. This can be implemented in an interpretation-
based or execution-based way; for efficiency, most concolic engines are execution-
based. To extract constraints from the program under test, those engines usually
use runtime [93] or static instrumentation [21,69,77]. Another alternative is to
run the tested program with proxy objects [10].

The baseline symbolic interpreter can be turned into an interpretation-based
concolic executor in only eight lines of code (cf. [84]). We inherit from the base-
line interpreter, and override the method constraint unsatisfiable which is
called, e.g., by the functions executing if statements and, in particular, loops, to
check whether a path is feasible. Instead of directly calling Z3, we first instantiate
the passed constraint to a variable-free formula, using a concrete state passed to
the interpreter’s constructor. Consequently, the choice of which execution branch
to follow is uniquely determined. It is also much faster to check concrete than
symbolic constraints. This can be further optimized: The authors of [15], e.g.,
created an optimized Z3 fork for concrete constraints.

For the find function from Listing 1 and the concrete state setting needle to
2 and haystack to the tuple (1,), the concolic interpreter outputs an SET with a
single, linear path. The constraints in the leaf node are (1) 0 < len(haystack),
(2) haystack[0] � needle, and (3) 1 ≥ len(haystack). Concolic execution,
e.g., as implemented in SAGE [39], negates these constraints one by one, keeping
the constraints occurring before the negated one as they are; the constraints
occurring afterward are not considered. Negating the first constraint yields an
empty haystack; negating the second one, and keeping the first, some tuple
containing needle in its first element. If we negate the third constraint, we
obtain a haystack with more than one element, the first of which is needle.
With the initial input and the second new one, we already obtain full branch
coverage in find.
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Listing (minipy) 3 Incomplete loop invari-
ant encoding of find (from Listing 1).

1 i = 0

2 assert Inv(needle, haystack, i)

3

4 havoc i

5 assume Inv(needle, haystack, i)

6

7

8 if i < len(haystack):

9 if haystack[i] == needle:

10 break # ???

11

12 i = i + 1

13 assert Inv

14 assume False

15 else:

16 return -1

17

18

19 return i

Listing (minipy) 4 find method
with loop scope.

1i = 0

2assert Inv(i, needle, haystack)

3

4havoc i

5assume Inv(i, needle, haystack)

6

7loop-scope(inv=Inv(i, needle, haystack)):

8if (i < len(haystack)):

9if (haystack[i] == needle):

10break # OK now!

11

12i = i + 1

13continue # Signal next iteration

14

15else:

16return -1

17break # Signal loop left

18

19return i

Loop Invariants. A loop invariant [49] is a summary of a loop’s behavior
that holds at the beginning of any loop iteration. Thus, we can replace a loop
with its invariant, even if we do not know how many times a loop will be exe-
cuted (for recursion, recursive contracts take a similar role). In principle, loop
invariants can be fully precise, overapproximating, or underapproximating [82,
Sect. 5.4.2]. In practice, however, the underapproximating variant is rarely used.
Test case generation, which would be the use case for such a scenario, typically
uses specification-free approaches (e.g., concolic testing) to deal with loops. Fully
precise invariants are ideal, but frequently hard to come up with. Thus, loop
invariants, as used in program proving, are usually sufficiently strong (w.r.t. the
proof goal), but not necessarily precise, abstractions.

Loop invariants can be encoded using assertions, assumptions, and “havoc”
statements. This approach is followed, e.g., by the Boogie verifier [9]. We imple-
mented this by adding two new statement types to minipy: assume expr adds an
assumption expr to the path condition, and havoc x assigns a fresh, symbolic
value to variable x, effectively erasing all knowledge its previous value. Loop
invariants are based on an inductive argument: If a loop invariant holds initially
and is preserved by any loop iteration, is can be used to abstract the loop (use
case).

We apply this idea to the find function (Listing 1). An invariant for the loop
is that i stays positive and does never grow beyond len(haystack), and that
at all previously visited positions, needle was not found (otherwise, we would
have breaked from the loop). We extend the symbolic interpreter to take a list
of predicate definitions that can be used similarly to Boolean-valued functions in
minipy code. A predicate maps its arguments to a formula of type z3.BoolRef.
The definition of Inv(n, h, i) is 0 ≤ i ≤ len(h) ∧ (∀0 ≤ k ≤ i : h[i] � n).
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We adapt the body of find to invariant-based SE in Boogie style. Listing 3
shows the result. In Line 2, we assert that the loop invariant Inv holds initially.
Then, to enable reasoning about an arbitrary loop iteration, we havoc all vari-
ables (here only i) that are assigned in the loop body (Line 4). We assume the
validity of the loop invariant (the induction hypothesis) in Line 5. The original
while statement is transformed to an if (Line 8). In Line 13, we show that
the loop invariant is preserved and still holds in the next iteration. If this check
was successful, we assume falsity (Line 14), which renders the path condition
unsatisfiable and causes SE to stop here.

Abrupt completion, such as the break statement in Line 10, complicates
applying this method. Since we eliminated the loop, the break is syntactically
illegal now. Addressing this requires a potentially non-trivial transformation of
the loop body.

A solution to this problem is provided by Steinhöfel and Wasser in [86]. They
propose so-called loop scope statements for invariant-based SE; in Listing 4 you
find the loop scope version of find. One replaces the while loop with an if state-
ment similarly to Listing 3. The if is put this inside a new loop-scope state-
ment, which is passed the loop invariant Inv. Note that the original continue
and break statements are preserved as is; indeed, the original loop body is not
touched at all. Instead, a new continue statement is added as a last statement
of the loop body, and a break statement is added as a last statement of the loop
scope. The additional continue and break statements ensure that the body of
the loop scope always completes abruptly. If it does so because of a continue,
Inv is asserted; if it completes because of a break, the loop scope completes
normally and execution is resumed. If the body completes for any other reason,
the loop scope completes for the same reason.

Our symbolic interpreter does not transform the executed program into loop
scope form on-the-fly as in [86] (which does not conform to our “interpreter
style”). Instead, we implemented a program transformer which automatically
turns loops into loop scope statements before they are symbolically interpreted.
The complete implementation of the transformer spans only 18 lines of code.

4.2 Advanced Call Treatment

Function calls can cause two different kinds of problems in SE: First, there are too
many feasible program paths in large, realistic programs. This leads to immense
SETs in the case of interpretation-based SE, and many long, complicated path
conditions to be processed in the case of concolic testing, both instances of path
explosion. Second, the code of called functions might be unavailable, as in the
case of library functions or system calls. There are two ways to address these
problems. One is to use summaries of function behavior. Those can be manu-
ally specified, but also, in particular for test generation, automatically inferred.
The other one is a non-exhaustive solution which, however, also works in the
rare cases where summarization is not possible (e.g., for cryptographic hash
functions): One concretizes function arguments to concrete values and simply
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executes the function non-symbolically. Existing constraints on variables not
affected by the execution are retained, and SE can resume.

Compositional SE. Compositional SE works by analyzing functions individ-
ually, as opposed to complete systems. This is accomplished by annotating
functions with summaries, which conjoin “constraints on the function inputs
observed during the exploration of a path (. . . ) with constraints observed on
the outputs” [8]. Instead of symbolically executing a called function, we use its
summary to obtain the resulting symbolic state, which can drastically reduce
the overall search space.

Function summaries seem to have arisen independently in the areas of SE-
based test generation and program verification. In the former area, Godefroid [36]
introduces the idea, building on existing similar principles form interprocedural
static analysis (e.g., [72]). As is common in automated test case generation, sum-
maries are expected to be computed automatically; they are means for re-using
previously discovered analysis results. Anand et al. [5] extend the original idea
of function summaries to a demand-driven approach allowing lazy expansion of
incomplete summaries, which further improves the performance of the analysis.

We did not find an explicit reference to the first original work using function
summaries for modular, symbolic execution in the context of program verifica-
tion. However, function summaries are already mentioned as a means for mod-
ularization in the first paper reporting on the KeY project [1], which appeared
in 2000. Usually, function summaries are called “contract” in the verification
context, inspired by the “design-by-contract” methodology [64]. Contracts are
not only used for scalability, but additionally define the expected behavior of
functions.

We integrated the latter variant of compositional SE, based on manually
specified contracts, into our system by implementing a code transformer. The
transformer replaces function calls by assertions of preconditions, havoc state-
ments for assignment targets of function calls, and assumptions of postcondi-
tions. This resembles the “Boogie-style” loop invariant transformation described
in Sect. 4.1, only that we do not verify that a function respects its contract
when calling it. The verification can be done separately, for instance by assert
statements in function bodies. Recall that since we support calls to externally
specified predicates in assert statements, we can also assert properties that are
outside the minipy language.

On-Demand Concretization. Selective SE interleaves concrete and symbolic
execution on-demand. The authors of the S2E tool [23] motivate this with the
observation that there might be critical parts in a system one wants to analyze
symbolically, while not caring so much about other parts. Two directions of
context switches are supported: One can switch from concrete to symbolic (and
back) by making function arguments symbolic and, after returning from the call,
again concrete; and analogously switch from symbolic to concrete (and back).
In our interpreter, one can switch from concrete to symbolic by adding a havoc
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statement, which makes a concrete assignment to a variable symbolic again. For
the other direction, we add a concretize statement assigning to a variable a
concrete value satisfying the current path condition by querying Z3.

To mitigate negative effects of concretization on exhaustiveness, S2E marks
concrete execution results as soft. Whenever a subsequent SE branch is made
inactive due to a soft constraint, the system backtracks and chooses a differ-
ent concretization. To increase the effect, constraints are also collected during
concrete execution (as in concolic testing), allowing S2E to infer concretizations
triggering different paths. Note that these optimizations are not possible if the
code of invoked functions is not available, or they cannot be symbolically exe-
cuted for other reasons.

4.3 State Merging to Mitigate Path Explosion

Loop invariants, function summaries, and on-demand concretization are all
instruments for mitigating the path explosion problem of SE. State merging
is another instrument for that purpose. It can be used together with the afore-
mentioned ones, and there are both exhaustive and precise variants. Further-
more, there are (even fully precise) state merging techniques that do not require
additional specification and work fully automatically. The idea is to take mul-
tiple SESs arising from an SE step that caused a case distinction (e.g., guard
evaluation, statements throwing exceptions, polymorphic method calls) to one
summary state. Different merge techniques have been proposed in literature
(e.g., [17,46,61,78]); a framework for (exhaustive) state merging techniques is
presented in [76] and subsumed by the more general SE theory proposed in [82]
and discussed in Sect. 3.2.

A popular state merging technique uses If-Then-Else terms to summarize
symbolic stores (e.g., [46,61,76]). Consider a simple program inverting a number
i if it is negative. It consists of an if statement with guard i < 0 and body
i = i * -1. Two SESs arise from the execution of this statement: ({i < 0}, (i �→

−i)) and ({i ≥ 0}, (i �→ i)). Merging those two states with the If-Then-Else
technique results in (∅, (i �→ ITE (i < 0,−i, i))). The right-hand side in the
symbolic store evaluates to −i if i was initially negative, and to the (nonnegative)
initial value otherwise. Path constraints are merged by forming the disjunction
of the inputs’ constraints, which in this case results in the empty (true) path
condition.

To support state merging with the If-Then-Else technique in our symbolic
interpreter, we add a merge statement to minipy. It is used like a try statement:
One writes “merge:” and puts the statements after which to merge inside the
scope of that statement. Conveniently, Z3 offers If-Then-Else terms, reducing
implementation effort. Otherwise, we could introduce a fresh constant for merged
values instead and define its value(s) in the path condition.

A fact not usually discussed in literature is that If-Then-Else-based state
merging can be imprecise if the path constraints in merged states are not mutu-
ally exclusive [83]. This can happen, e.g., if one tries to merge different states
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arising from unrolling a loop. An alternative are guarded value summaries as pro-
posed by [78]. If we allow overlapping guards, fully precise loop state merging is
possible.

Finally, one should consider that state merging generally increases the com-
plexity of SESs and thus the solver load, which has to be weighed up against the
benefits from saved symbolic branches. In our experience, state merging pays off
if one merges locally (i.e., the programs inside the merge statements should be
small) and early in SE. Kuznetsov et al. [61] systematically discuss this problem
and devise a metric by which one can automatically decide whether or not to
merge.

5 Applications

The strength of SE lies in its ability to deterministically explore many program
paths with high precision. This is in contrast to fuzzing [65], including language-
based [50,51] and coverage-based fuzzing [14], where it always depends on chance
and time whether a program path is reached. Only the integration of SE into
whitebox fuzzing approaches [38,39] enables fuzzers to enforce coverage of specific
paths. On the other side of the spectrum are static analysis techniques such as
Abstract Interpretation (AI) [25]. AI is fully automatic, but designed to operate
on an abstract domain, which is why full precision is generally out of reach.

While one could, in principle, regard SE as a specialization of AI, there are
striking differences. Amadini et al. [4] argue that SE is essentially a dynamic
technique, as it executes programs in a forward manner and generally under-
approximates the set of reachable states (unless supported by additional, costly
specifications). Intrinsically static techniques, on the other hand, produce (pos-
sibly false) alarms and generally focus on smaller code regions. In their work, the
authors provide a detailed discussion on the relation between the two techniques.

Consequently, SE is popular in the area of test generation, where high preci-
sion is vital. Yet, it has been successfully applied in program proving. Here, its
precise, dynamic nature is a problem: When one needs abstraction, especially
in the case of loops or recursive methods with symbolic guards or arguments,
manual specifications are required. As pointed out in [2], specifications are the
“new” bottleneck of SE-based program proving. On the other hand, SE-based
proofs can address strong functional properties, while abstract interpreters like
ASTRÉE [26] address coarser, general properties (e.g., division by zero or data
races).

5.1 Test Generation

Precise SE is a strong tool for automatically generating high-coverage test cases.
Frequently, the SE variant used to that end is referred to as Dynamic Symbolic
Execution (DSE). Baldoni et al. [8] define this term as an interleaving of concrete
and symbolic execution. Thus, DSE subsumes concolic and selective SE, which
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we discussed in Sects. 4.1 and 4.2. Although each concrete input used for con-
colic execution corresponds to exactly one symbolic path, concolic SE still suffers
from path explosion. A symbolic path is associated to a set of atomic path con-
straints; one has to pick and negate one constraint, which may in turn result in a
new path explored and new constraints to be negated. DART [38], e.g., chooses
a depth-first strategy; SAGE [40], a tool which “has saved Microsoft millions of
dollars” [40], uses coverage information to rank new inputs generated from con-
straint negation. As in the case of mutation-based graybox fuzzers like AFL3, the
quality of the generated tests depends on the chosen initial input (which explains
why concolic test generators are frequently referred to as whitebox fuzzers [8]). If
this input, for example, is rejected as invalid by the program (e.g., by an input
parser), it may take many rounds of negation and re-exploration before the actual
program logic is reached. One way to address the problem of complex, structured
input strings is to integrate language specifications with whitebox fuzzing [37].

SAGE’s use of coverage information to rank candidate inputs can already be
seen as an integration of classic graybox fuzzing à la AFL. Driller [87] is a hybrid
fuzzer using selective SE to identify different program compartments, while inex-
pensive mutation-based fuzzing explores paths within those compartments. In
the QSYM [93] and FUZZOLIC [15] systems, the concolic component runs in
parallel with a coverage-guided fuzzer. Both systems loosen the usual sound-
ness requirements of SE: QSYM by “optimistic” solving (ignoring some path
constraints), and FUZZOLIC by approximate solving using input mutations.
For their benchmarks, the respective authors showed that QSYM outperforms
Driller in terms of generated test cases per time and achieved code coverage, and
FUZZOLIC outperforms QSYM (but less clearly). Both QSYM and FUZZOLIC
scale to real-world programs, such as libpng and ffmpeg, and QSYM found 13
new bugs in programs that have been heavily fuzzed by Google’s OSS-Fuzz4.

Interpretation-based SE engines can also be used for (unit) test generation.
The KeYTestGen [2,29] tool, for example, executes programs with bounded loop
unrolling, and obtains inputs satisfying the path conditions of the leaves in the
resulting SET. With the right settings, the tool can achieve full MC/DC cov-
erage [47] of the program under test [2]. As can be expected, however, this can
lead to an explosion of the analysis costs and numbers of generated test cases.

5.2 Program Proving

The goal of program proving is not to demonstrate the presence, but the absence
of bugs, for any possible input. In our impression, SE is less popular in program
proving than in test generation. One possible reason might be that exhaustive
SE, as required for program proofs (cf. Sect. 3.2), generally needs auxiliary speci-
fications. Yet, program provers based on Weakest Precondition (WP) [28] reason-
ing, such as Boogie [9] and Frama-C [27], are closely related. A WP is a formula

3 https://github.com/google/AFL.
4 https://github.com/google/oss-fuzz.

https://github.com/google/AFL
https://github.com/google/oss-fuzz
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implied by any precondition strong enough to demonstrate that a program sat-
isfies a given postcondition. Traditionally, WP-based systems compute WPs by
executing a program starting from the leaves of its Control Flow Graph (CFG),
specializing the postcondition in each step. SE, in turn, computes WPs by for-
ward execution. Both approaches require specifications of loops and recursive
functions.

To our knowledge, there are two actively maintained SE-based program
provers. VeriFast [52] is a verifier for single- and multithreaded C and Java
programs specified with separation logic assertions. The tool has been used in
four industrial case studies [68] to verify the absence of general errors such as
memory leaks. The authors discovered bugs in each case study. KeY [2] is a pro-
gram prover for single-threaded Java programs specified in the Java Modeling
Language. Several sorting algorithms have been verified using KeY: Counting
sort and Radix sort [42], the TimSort hybrid sorting algorithm [41], and Dual
Pivot QuickSort [11]. For TimSort and Dual Pivot QuickSort, the actual imple-
mentations in the OpenJDK have been verified; TimSort (which is also used in
Android and Python) is OpenJDK’s default sorting algorithm, and Dual Pivot
QuickSort the default for primitive arrays.

The TimSort case study gained particular attention. During the verification,
the authors of [41] discovered a bug present in the TimSort implementations from
Android’s and Sun’s, and the OpenJDK, as well as in the original Python version.
When one asks the (unfixed) algorithm to sort an array with sufficiently many
segments of consecutive elements, it raises an ArrayOutOfBoundsException.

Dual Pivot QuickSort was successfully proven correct; however, a loop invari-
ant specified in natural language was shown to be wrong.

Testing tools like QSYM and FUZZOLIC use “unsound” techniques to find
more bugs faster. SE-based program proving can go the other way and integrate
abstraction techniques inspired by Abstract Interpretation to increase automa-
tion. In [2, Chapter 6], several abstract domains for SE of Java programs, espe-
cially for heaps and arrays, are introduced. This approach retains full precision
in the absence of loops or recursion. Should it be necessary, abstraction is applied
automatically to find, e.g., the fixed point of a loop. However, only the changed
portion of the state inside the loop is abstracted. Integrating SE with reasoning
in abstract domains thus yields a program proving approach with the potential
of full automation and increased precision compared to Abstract Interpretation.
Unfortunately, to our knowledge, there exists no mature implementation of this
approach.

5.3 Symbolic Debugging

Several works independently introducing SE [16,19,58] were motivated by debug-
ging. Indeed, symbolic debugging has several advantages: (1) Dynamic debugging
requires setting up a failure-inducing state, which can be nontrivial especially if
one aims to debug individual functions deeply nested in the program. Using SE,
one can take an over-approximating symbolic state. (2) The SE variant we call



470 D. Steinhöfel

transparent, which maintains full SETs at the granularity of individual state-
ments, has the potential to implement an omniscient debugger, which is hard
to implement efficiently for dynamic debugging [71]. This enables programmers
to arbitrarily step back and forth during debugging as needed.

To implement a symbolic debugger, one does not necessarily need an exhaus-
tive SE engine. However, concolic approaches are unsuitable, since they do not
construct SETs and might not have a notion of symbolic stores. Thus, in our
opinion, an interpretation-based approach is required to implement symbolic
debugging.

The first implementations of symbolic debuggers were independently devel-
oped in 2010, in the context of the VeriFast and KeY program verifiers [44,53].
In [48], an improved implementation of KeY’s Symbolic Execution Debugger
(SED) was presented. Both tools allow forward and backward steps in execution
paths and inspection of path constraints and symbolic memory. The VeriFast
debugger supports the analysis of a single error path in the SET, while the SED
shows full SETs. This is also motivated by different application scenarios: Veri-
Fast offers debugging facilities for failed proof attempts, while the SED inventors
explicitly address the scenario of debugging in absence of a proof attempt. The
SED supports some extended features like visualization of different heap con-
figurations or highlighting of subformulas in postconditions whose verification
failed. In VeriFast, heaps are represented with separation logic assertions and
not visualized.

Our minipy symbolic interpreter supports a limited degree of symbolic debug-
ging. It visualizes SETs and explicitly represents path constraints and symbolic
stores in nodes. Leaves are highlighted using the following color scheme: Red
leaves represent raised exceptions (including failed assertions), green leaves rep-
resent nodes with unsatisfiable path conditions, and blue leaves all other cases.

5.4 Model Checking of Abstract Programs

Model checking usually abstracts the program under test into a graph-like struc-
ture and exhaustively searches this model to show the absence of (mostly generic)
errors. Although the areas of model checking and formal software verification
(including SE-based program proving) are slowly converging [79], one would usu-
ally not directly relate SE and model checking. Recently, however, a SE-based
technique named Abstract Execution (AE) was proposed [82,85], which allows
for a rigorous analysis of abstract program models. An abstract program model is
a program containing placeholder statements or expressions. These placeholders
represent arbitrary statements or expressions conforming to the placeholder’s
specifications. For example, one can restrict which locations a placeholder can
read from or write to, define under which conditions instantiations complete
abruptly, and impose postconditions for different (abrupt or normal comple-
tion) cases. AE is not intended to scale to big programs. Rather, it is used to
model program verification problems that universally quantify over statements
or expressions.
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An example are program transformations, represented by pairs of abstract
programs. In [82], we modeled nine Java refactoring techniques, and extracted
preconditions for semantics-preserving transformations. Usually, the require-
ments for a behavior-preserving refactoring application are incompletely
described in literature. A manual extraction of test cases from the models
unveiled several bugs in the Extract Method refactoring implementations in
IntelliJ IDEA and Eclipse. Our reports have been assigned “major” or “nor-
mal” priority and lead to bug fixes.5 Other applications of AE include cost
analysis of program transformations [3], parallelization of sequential code [45],
the delta-based verification of software product families [75], and “correct-by-
construction” program development [90].

We implemented AE within the KeY system. One noteworthy feature of KeY
is that it syntactically represents state changes within its program logic. This
made it easy to add abstract updates representing the abstract state changes
caused by placeholder statements or expressions. Indeed, we discovered that
it is not so straightforward to implement AE, especially when using dynamic
frames to represent underspecified memory regions, on top of our minipy symbolic
interpreter.

AE is a noteworthy showcase of interpretation-based, exhaustive SE: It does
not need to scale to large programs, since the goal is not program verification but,
e.g., the verification of transformations. Thus, it covers a niche that cannot be
adequately addressed by concolic testing or fuzzing, which can only ever consider
pairs of concrete programs resulting from the application of a transformation.

6 Future Perspectives

The success of modern automated testing techniques (most prominently
coverage-guided mutation-based fuzzers) cannot be denied. When writing this
sentence, Google’s oss-fuzz had discovered 34,313 bugs in 500 open source
projects. The 30 bugs in JavaScript engines discovered by the LangFuzz tool [51]
translate to about 50,000 US$ in bug bounties. There are two key advantages
of blackbox or graybox techniques over systematic testing approaches like SE:
(1) They require no or only little code instrumentation and are applicable to
any program for which a compiler or interpreter exists. (2) They are fast, with
the only threshold being the execution time of the program under test. Consid-
ering Item (1), SE either crashes or outputs useless results if a program uses
an unsupported statement or expression type. For that reason, many engines
operate on Intermediate Languages (ILs) like LLVM, which commonly comprise
a few dozen different instructions, while CPU instruction sets can easily reach
hundreds to thousands [69]. For this paper, we substantially restricted the fea-
tures of the minipy language to reduce the implementation effort. Not to mention
that implementing a symbolic executor on source level for a language like Python

5 For example, IDEA-271736: “‘Extract Method’ of ‘if-else if’ fragment with multi-
ple returns yields uncompilable code,” https://youtrack.jetbrains.com/issue/IDEA-
271736.

https://youtrack.jetbrains.com/issue/IDEA-271736
https://youtrack.jetbrains.com/issue/IDEA-271736
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with many high-level (e.g., functional and object-oriented) abstractions is highly
nontrivial.

Let us assume that Item (1) has been adequately addressed (e.g., using a
stable IL, or, as in the case of the SymQEMU system [70], a CPU emulation
framework). Addressing the question of speed (Item (2)), it is tempting to say—if
you are a supporter of SE—that analysis speed does not matter so much, since SE
covers program paths systematically, while fuzzers rely mostly on chance. Instead
of the effectiveness of a verification strategy, i.e., its ability to inspire a maxi-
mum degree of confidence in the correctness of a program, Böhme and Paul [13]
suggest to put efficiency into the focus. In their words, an efficient verification
technique (1) generates a sufficiently effective test suite in minimal time or (2)
generates the most effective test suite in the given time budget. They address the
efficient verification problem with a probabilistic analysis. Assume that the cost
associated to the generation of one input by a random input generator R is 1. We
compare R to a systematic input generator S (e.g., a concolic tester) sampling
an input with cost c. Böhme and Paul prove that, for a desired confidence x, the
time taken by S to sample an input must not exceed (ex − ex2)−1 times the time
taken by R to sample an input. Otherwise, R is expected to achieve confidence x
earlier. If R, e.g., needs 10 ms to generate one test input, and we aim to establish
that a program works correctly for 90% of its inputs, then S must take less than
41 ms to come up with an input [13]. In the face of this observation, we must
ask ourselves the question: Is it worth investing in SE techniques, or should we
simply concentrate on improving randomized automated testing approaches?

Subsequently, we discuss scenarios where SE can assist or outperform ran-
domized approaches, demonstrating that it has a place in future software verifi-
cation.

Fast Sampling. As pointed out by Böhme and Paul, efficiency is key for a veri-
fication approach to be practically adopted. Recent work on compilation-based
SE [69,70] and “fuzzy” constraint solving [15,93] address the execution and
constraint solving components, which are the main bottlenecks of SE. Compro-
mising soundness is justified if the analysis discovers bugs fast, and stays within
the critical bound from [13].

Hybrid Fuzzing Tools like DRILLER [87], SAGE [40] and QSYM [93] combining
SE with coverage-guided fuzzing showed promising results. In their paper [13],
Böhme and Paul propose a hybrid approach switching from a random to a sys-
tematic tester when the expected time estimate of the random tester to detect
the next partition exceeds a threshold. They proved, and demonstrated in sim-
ulations, that the hybrid tester is at least as efficient as the most efficient com-
bination of the elementary testers. Finally, Bundt et al. [18] showed in a recent
measurement study that “Hybrid fuzzers such as QSYM that integrate concolic
execution to solve path constraints clearly outperform approaches that adopt a
brute-force strategy.”
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Verification of Critical Routines. Coverage alone would not have sufficed to
unveil the TimSort bug [41]: How should a concolic (not to mention a random)
tester come up with an array of 67,108,864 elements with sufficiently many short
consecutive sections to trigger the “out of bounds” exception in a method that
has been extensively used in practice for years? Interpretation-based, exhaustive
SE is still one of the best techniques to ensure that there is really no algorithmic
bug left even after heavy testing. Yet, we think that this will always require
much person-power: Abstraction techniques can help exhaustive SE to get more
automatic. This, however, comes at the cost of precision, such that ground is lost
to competing, (more) automatic static analysis techniques. The golden bullet of
fully precise (loop) summarization will probably be forever out of reach for realis-
tic programs. Thus, we think that the program proving community should invest
into better tooling for writing and fixing specifications, as well as into communi-
cating idioms and best practices for verification-friendly program development,
than to develop the next incomplete loop invariant inference approach.

SE for Model Checking. One way to remove the scalability issues of, in partic-
ular, interpretation-based SE, is to focus on small, yet meaningful, problems.
The work on Abstract Execution is such an example. AE builds a modeling lan-
guage on top of Java to express, e.g., program transformations. Using strong
contracts with a variable degree of abstraction, practically relevant correctness
properties of transformations are derived and proven correct. There are two ways
of applying these results. One is to prove that the derived properties hold for
actual transformations. This means that one has to show that an input to, e.g.,
a refactoring technique, satisfies a set of non-trivial preconditions, which can
require coming up with strong loop invariants. Instead, we suggest to automati-
cally derive test cases or assertions from the abstract model that are tailored to
the transformed, concrete program. This brings together strong “once-and-for-
all” results obtained from a heavyweight technique requiring annotations with
targeted automatic testing of realistic programs: The best of two worlds.

7 Conclusion

Symbolic Execution is a popular, precise program exploration technique that
can be lifted to an exhaustive approach to program proving. The SE community
is split into two rarely interacting sub-communities: One dedicated to finding
bugs, and one aiming to prove their absence. In this paper, we attempted an
application-agnostic analysis of the foundations of SE. We provided a framework
for classifying symbolic engines, and showed how to design and extend a symbolic
interpreter. For illustrative purposes and to foster a deeper understanding, we
implemented most aspects inside a new SE framework for a Python subset. We
recapitulated a semantics for SE applying to both test generation and program
proving, and derived from it a novel automated testing approach for SE engines.
Finally, we elaborated on chosen applications of SE, ranging from test generation
over symbolic debugging to model checking of abstract programs, and discussed
the role of SE in future software verification.
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The digital companion volume including our implementations is available at

https://rindphi.github.io/se-book-festschrift-rh

References

1. Ahrendt, W., et al.: The approach: integrating object oriented design and formal
verification. In: Ojeda-Aciego, M., de Guzmán, I.P., Brewka, G., Moniz Pereira,
L. (eds.) JELIA 2000. LNCS (LNAI), vol. 1919, pp. 21–36. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-40006-0 3
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84. Steinhöfel, D.: Symbolic Execution: Foundations, Techniques, Applications and
Future Perspective, Digital Companion Volume (2021). https://rindphi.github.io/
se-book-festschrift-rh. Accessed 10 May 2022
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