
Wolfgang Ahrendt
Bernhard Beckert
Richard Bubel
Einar Broch Johnsen (Eds.)

The Logic of Software
A Tasting Menu of Formal Methods

Fe
st

sc
hr

ift
LN

CS
 1

33
60

Essays Dedicated to Reiner Hähnle
on the Occasion of His 60th Birthday

Lecture Notes in Computer Science 13360

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Wolfgang Ahrendt • Bernhard Beckert •

Richard Bubel • Einar Broch Johnsen (Eds.)

The Logic of Software
A Tasting Menu of Formal Methods

Essays Dedicated to Reiner Hähnle
on the Occasion of His 60th Birthday

123

Editors
Wolfgang Ahrendt
Chalmers University of Technology
Gothenburg, Sweden

Bernhard Beckert
Karlsruhe Institute of Technology
Karlsruhe, Germany

Richard Bubel
TU Darmstadt
Darmstadt, Germany

Einar Broch Johnsen
University of Oslo
Oslo, Norway

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-08165-1 ISBN 978-3-031-08166-8 (eBook)
https://doi.org/10.1007/978-3-031-08166-8

© Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-5671-2555
https://orcid.org/0000-0002-9672-3291
https://orcid.org/0000-0001-5382-3949
https://doi.org/10.1007/978-3-031-08166-8

Quo Vadis Formal Methods? I can see clearly now . . .

Preface

Distinguished, multi-valued reader, welcome to this festschrift to celebrate the 60th
anniversary of our dear colleague Reiner Hähnle. As your hosts, it is our pleasure to
introduce the menu. With a focus on certified modularity and variability, we present
you with a history-based and resource-aware, carefully curated experience. The con-
tributions mostly draw on seasonal, local products with the occasional exotic contri-
bution in a cooperative and hopefully bug-free manner. With this festschrift, we can
accommodate most allergies with fair constraint merging, except for the abstraction
allergy.

For the aperitif, we propose the liberalised adventures of Alice and a dash of
dynamic and unbounded clairvoyance, bridging the gap between formal and informal
knowledge. For starters, we recommend a transparent treatment of loops to incre-
mentally validate the boundary between the verified and the unverified. This is fol-
lowed by the orderly resolution of contracts, both their design and their programming.
We then consider the symbolic execution of locally abstract, globally concrete
semantics of eternal, adaptable and evolving railway operations with anti-links and
commodious axiomatization.

The trou normand of this festschrift will be saturated by information flow and
soundness leaks, inferring secrets by guided experiments in Re-CorC-ing with a focus
on naturalness. After that, we present a many-valued symphony of partiality and
abstraction, spanning from the Karlsruhe Java Verification Suite, via JML, COSTA,
KeY, KIV, Stipula, Łukasiewicz logic, AF-algebras, MaxSAT and MinSAT, to Snap!
As for abstraction refinement and incremental validation to enable reuse and trans-
formation, we are afraid that selection is no longer available at this point, without
explicit dependency information.

To facilitate symbolic digestion, the grand finale offers a dash of automatic com-
plexity analysis, an injection of sound and complete reasoning about actors and a note
on their idleness. By suggesting normal forms for knowledge compilation, the menu is
curated to facilitate lifelong learning and to better understand research quality.

We are proud to offer to you a menu with a wide variety of ingredients and
preparation styles, reflecting the great repertoire of the master chef Reiner Hähnle, a
repertoire of formal methods that he developed during his long journey as a scientist,
which brought him from being a young PhD student working on many-valued logics to
his long tenure as an eminent researcher in formal methods. Reiner’s mastery inspired
and influenced many chefs in their cooking, and their commitment to the best end-user
gourmet experience.

We hope you will enjoy this tasting menu!

April 2022 Wolfgang Ahrendt
Bernhard Beckert

Richard Bubel
Einar Broch Johnsen

Organization

Editors

Wolfgang Ahrendt Chalmers University of Technology, Sweden
Bernhard Beckert Karlsruhe Institute of Technology (KIT), Germany
Richard Bubel Technische Universität Darmstadt, Germany
Einar Broch Johnsen University of Oslo, Norway

Reviewers

Ole Jørgen Abusdal Western Norway University of Applied Sciences,
Norway

Elvira Albert Universidad Complutense de Madrid, Spain
Mads Dam KTH Royal Institute of Technology, Sweden
Ferruccio Damiani Università di Torino, Italy
Frank De Boer Centrum Wiskunde and Informatica, The Netherlands
Crystal Chang Din University of Bergen, Norway
Samir Genaim Universidad Complutense de Madrid, Spain
Jürgen Giesl RWTH Aachen University, Germany
Dilian Gurov KTH Royal Institute of Technology, Sweden
Marieke Huisman University of Twente, The Netherlands
Eduard Kamburjan University of Oslo, Norway
Alexander Knüppel Technische Universität Braunschweig, Germany
Cosimo Laneve University of Bologna, Italy
Gary T. Leavens University of Central Florida, USA
Rustan Leino Amazon Web Services, USA
Michael Lienhardt ONERA, France
Felip Manyà AI Research Institute (IIIA, CSIC), Spain
Wojciech Mostowski Halmstad University, Sweden
Daniele Mundici University of Florence, Italy
André Platzer Carnegie Mellon University, USA
Violet Ka I Pun Western Norway University of Applied Sciences,

Norway
Aarne Ranta Chalmers University of Technology, Sweden
Wolfgang Reif University of Augsburg, Germany
Philipp Ruemmer Uppsala University, Sweden
Ina Schaefer Karlsruhe Institute of Technology (KIT), Germany
Rudolf Schlatte University of Oslo, Norway
Bernhard Steffen University of Dortmund, Germany
Dominic Steinhöfel CISPA Helmholtz Center for Information Security,

Germany

Volker Stolz Western Norway University of Applied Sciences,
Norway

Silvia Lizeth Tapia Tarifa University of Oslo, Norway
Mattias Ulbrich Karlsruhe Institute of Technology (KIT), Germany
Adele Veschetti University of Bologna, Italy

x Organization

Contents

I Can See Clearly Now: Clairvoyant Assertions for Deadlock Checking. 1
Ole Jørgen Abusdal, Crystal Chang Din, Violet Ka I Pun,
and Volker Stolz

When COSTA Met KeY: Verified Cost Bounds . 19
Elvira Albert, Samir Genaim, Alicia Merayo,
and Guillermo Román-Díez

Lifelong Learning of Reactive Systems in Practice 38
Alexander Bainczyk, Bernhard Steffen, and Falk Howar

A Case Study in Information Flow Refinement for Low Level Systems 54
Roberto Guanciale, Christoph Baumann, Pablo Buiras, Mads Dam,
and Hamed Nemati

Re-CorC-ing KeY: Correct-by-Construction Software Development Based
on KeY . 80

Tabea Bordis, Loek Cleophas, Alexander Kittelmann, Tobias Runge,
Ina Schaefer, and Bruce W. Watson

Specifying the Boundary Between Unverified and Verified Code 105
David R. Cok and K. Rustan M. Leino

Programming Legal Contracts: – A Beginners Guide to Stipula – 129
Silvia Crafa and Cosimo Laneve

Towards a Modular and Variability-Aware Aerodynamic Simulator 147
Ferruccio Damiani, Michael Lienhardt, Bruno Maugars,
and Bertrand Michel

Reasoning About Active Objects: A Sound and Complete Assertional
Proof Method . 173

Frank de Boer and Stijn de Gouw

Improving Automatic Complexity Analysis of Integer Programs 193
Jürgen Giesl, Nils Lommen, Marcel Hark, and Fabian Meyer

Alice in Wineland: A Fairy Tale with Contracts . 229
Dilian Gurov, Christian Lidström, and Philipp Rümmer

Teaching Design by Contract Using Snap! . 243
Marieke Huisman and Raúl E. Monti

On the Notion of Naturalness in Formal Modeling 264
Eduard Kamburjan and Sandro Rama Fiorini

The Karlsruhe Java Verification Suite . 290
Jonas Klamroth, Florian Lanzinger, Wolfram Pfeifer,
and Mattias Ulbrich

Further Lessons from the JML Project . 313
Gary T. Leavens, David R. Cok, and Amirfarhad Nilizadeh

Inference in MaxSAT and MinSAT. 350
Chu Min Li and Felip Manyà

Implications of Deductive Verification on Research Quality: Field Study 370
Wojciech Mostowski

Computing in Łukasiewicz Logic and AF-Algebras 382
Daniele Mundici

Speaking About Wine: Another Case Study in Bridging the Gap Between
Formal and Informal Knowledge. 397

Aarne Ranta

Software & System Verification with KIV . 408
Gerhard Schellhorn, Stefan Bodenmüller, Martin Bitterlich,
and Wolfgang Reif

A Note on Idleness Detection of Actor Systems . 437
Rudolf Schlatte

Symbolic Execution: Foundations, Techniques, Applications,
and Future Perspectives . 446

Dominic Steinhöfel

Locally Abstract Globally Concrete Semantics of Time and Resource
Aware Active Objects . 481

Silvia Lizeth Tapia Tarifa

Transparent Treatment of for-Loops in Proofs. 500
Nathan Wasser

Author Index . 521

xii Contents

I Can See Clearly Now: Clairvoyant
Assertions for Deadlock Checking

Ole Jørgen Abusdal1, Crystal Chang Din2, Violet Ka I Pun1,
and Volker Stolz1(B)

1 Western Norway University of Applied Sciences, Bergen, Norway
{ojab,vpu,vsto}@hvl.no

2 University of Bergen, Bergen, Norway
Crystal.Din@uib.no

Abstract. Static analysers are traditionally used to check various cor-
rectness properties of software. In the face of refactorings that can have
adverse effects on correctness, developers need to analyse the code after
refactoring and possibly revert their changes. Here, we take a different
approach: we capture the effect of the Hide Delegate refactoring on pro-
grams in the ABS modelling language in terms of the base program,
which allows us to predict the correctness of the refactored program. In
particular, we focus on deadlock-detection. The actual check is encoded
with the help of an additional data structure and assertions. Developers
can then attempt to discharge assertions as vacuous with the help of a
theorem prover such as KeY. On the one hand, this means that we do not
require a specific static analyser nor theorem prover, but rather profit
from the strength and advances of modern tool support. On the other
hand, developers can choose to rely on existing tests to confirm that no
assertion is triggered before executing the actual refactoring. Finally, we
argue the correctness of our over-approximation.

Keywords: Refactoring · Deadlock detection · Active object languages

1 Introduction

Refactoring is an important software engineering activity. Current tool support
in IDEs provides a broad selection of well-known refactorings. These refactorings
give no guarantees as to the expected behaviour and have been known to err
in this regard in the past, see [21], beyond hopefully still producing compilable
code afterwards. We follow Fowler’s stipulation that refactorings should preserve
behaviour. This is already difficult to check before executing a refactoring at the
best of times, and complete support for proving needs sophisticated frameworks
such as KeY [1,2,22].

In earlier work, we have introduced assertions during refactoring [9]. These
assertions capture the correctness conditions for a refactoring, and place a lighter
burden on the developers, in that they do not have to provide proofs in unfa-
miliar, advanced, incomplete or even non-existing frameworks, but can use their

Partially supported by DIKU/CAPES project “Modern Refactoring”.

c© Springer Nature Switzerland AG 2022
W. Ahrendt et al. (Eds.): The Logic of Software. A Tasting Menu of Formal Methods,
LNCS 13360, pp. 1–18, 2022.
https://doi.org/10.1007/978-3-031-08166-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08166-8_1&domain=pdf
https://doi.org/10.1007/978-3-031-08166-8_1

2 O. J. Abusdal et al.

tools of the trade such as tests and coverage analysis to judge whether the refac-
tored system has been sufficiently exercised to confirm expected behaviour.

These assertions could of course in principle be discharged with program
provers. In this paper, we make two contributions: first, we focus on a novel
domain of refactoring for active object programs; specifically ABS [14,16]1 pro-
grams, where a direct application of well-known object-oriented refactorings
potentially leads to surprising results such as deadlocks [23], and second, we
present an approach where we insert assertions encoding the correctness condi-
tions in the code before refactoring, such that applicability of a refactoring can
be checked either dynamically (through testing) or statically (through proving).

Although, in general, proofs for these conditions can be quite involved in
non-trivial settings, such as in programs with unbounded concurrency, it is our
standpoint that for easy scenarios, e.g., for a statically known number of objects
with a fixed communication topology, the proof-support should be sufficient.

As a proof of concept, we show how to derive the required assertions for the
Hide Delegate refactoring. We are motivated by a belief that for the above class
of programs we can make use of automated discharging of the assertions (or
counter example derivation). For more involved programs, this should at least
narrow down the scope for further investigation and guide developers to cases
they have to consider before concluding that the refactoring will be correct.

A refactoring is correct and can then safely be applied if all assertions can be
discharged. This approach also has the advantage that any remaining assertions
will be refactored together with the program, should the developers choose to
proceed with applying the refactoring. The assertions then, in the spirit of our
earlier results, still serve as runtime checks: a passing assertion indicates that
the subsequent synchronisation will not deadlock.

The KeY system [1] has been developed for over two decades. It started in
1998 by Hähnle et al. at Karlsruhe Institute of Technology. The original KeY
system supports verification of sequential Java programs. A new version of the
KeY system, i.e., KeY-ABS [7], was introduced in 2015. KeY-ABS supports
symbolic execution, assertion checking and verification of history-based class
invariants for concurrent ABS programs. In this paper, we present a deadlock
detection framework for ABS and discuss why KeY-ABS is a suitable tool to
implement this analysis approach. We also provide directions on where further
effort might be a good investment in the KeY-ABS system.

The remainder of the paper is structured as follows: Sect. 2 briefly intro-
duces the ABS language and how deadlocks can occur. Section 3 describes an
assertion transformation to detect deadlocks, and Sect. 4 presents the approach
to deadlock detection for to-be-refactored programs before refactoring. Section 5
discusses how we can use KeY-ABS to reason about the transformed program.
Finally, we explore the related work in Sect. 6, and conclude the paper with a dis-
cussion on some limitations and future work in Sect. 7. The example presented in
this paper is available as a git repository at https://github.com/selabhvl/stolz-
srh60-artefact.

1 https://abs-models.org/.

https://github.com/selabhvl/stolz-srh60-artefact
https://github.com/selabhvl/stolz-srh60-artefact
https://abs-models.org/

I Can See Clearly Now: Clairvoyant Assertions for Deadlock Checking 3

cn ::= ε | fut | object | invoc | cog | cn cn
fut ::= fut(f , val)

object ::= ob(o, a, p, q)
q ::= ε | p | q q

invoc ::= invoc(o, f ,m, v)
s ::= s; s | x = rhs | suspend | await g | skip

| if b {s} [else {s}] | while b {s} | return e | cont(f)
rhs ::= e | new [local] C [(e)] | e!m(e) | e.m(e) | x .get

cog ::= cog(c, act)
val ::= v | ⊥
a ::= T x v | a, a
p ::= {l | s} | idle
v ::= o | f | b | t

act ::= o | ε

Fig. 1. Runtime syntax of ABS, o, f, c are identifiers of object, future, and cog

2 The ABS Language and Deadlocks

In this section, we briefly introduce the ABS language [16], the active object
language that the work is based on. We will first present the runtime syntax
and then we show how deadlocks can be introduced by code refactoring in the
language.

2.1 The ABS Language

ABS is a modeling language for designing, verifying, and executing concurrent
software. It has a Java-like syntax and actor-based concurrency model [15], which
uses cooperative scheduling of method activations to explicitly control the inter-
nal interleaving of activities inside a concurrent object group (cog). A cog can
be conceptually seen as a processor containing a set of objects. An object may
have a set of processes, triggered by method invocations, to be executed. Inside
a cog, at most one process is active while the others are suspended in the process
pool of the corresponding objects.

Process scheduling is non-deterministic, but is explicitly controlled by the
processor release points in the language. Such a cooperative scheduling ensures
data-race freedom inside a cog. In addition, objects are hidden behind interfaces
and all fields are private to an object. Any non-local read or write to fields
must be performed explicitly through method invocations. Different cogs can
only communicate through asynchronous method calls. Note that a synchronous
method call to objects on a different cog will be translated to an asynchronous
one that is immediately followed by a blocking get operation. Thus, the cog in
which the caller resides will be blocked until the method returns. In contrast,
synchronous calls within the same cog will only lead to transferring the control
of the cog from the caller to the callee, i.e., no cog will be blocked.

The runtime syntax of ABS is presented in Fig. 12, where overlined terms rep-
resent a (possibly empty) lists over the corresponding terms, and square brack-
ets [] denote optional elements. A configuration cn either is empty or consists

2 We have adopted the new version of the syntax for object creation instead of the
one presented in [16].

4 O. J. Abusdal et al.

class Client { ...
...{ ...

d = p.getDept();
m = d.getManager();
...

} ...

(a) Before

class Client { ...
...{ ...

m = p.getManager();
...

} ...

class Person implements PersonI {
PersonI getManager() {

PersonI d=this.getDept();
PersonI tmp=d.getManager();
return tmp;

} ...

(b) After

Fig. 2. Before/after Hide Delegate

of futures, objects, invocation messages and cogs. A future fut(f , v) has an iden-
tifier f and a value v (⊥ if the associated method call has not returned). An
object is a term ob(o, a, p, q) consisting the object’s identifier o, a substitution a
representing the object’s fields, an active process p and a pool of suspended pro-
cesses q, where a substitution is a mapping from variable names to values. A
process p is idle or consists of a substitution of local variables l and a sequence
of statements s, denoted as {l | s}. Most of the statements are standard. The
statement suspend unconditionally suspends the active process and releases the
processor, while the statement await g suspends the active process depending
on the guard g, which is either Boolean conditions b or return tests x? that
evaluate to true if the value of the future variable x can be retrieved; otherwise
false. The statement cont(f) controls scheduling when local synchronous calls
complete their execution, returning control to the caller.

Right-hand side expressions rhs for assignments include object creation
within the current cog, denoted as new local C(e), and in a new cog, denoted as
new cog C(e), asynchronous and synchronous method calls, and (pure) expres-
sions e. An invocation message invoc(o, f ,m, v) consists of the callee o, the
future f to which the call returns its result, the method name m, and the actual
parameter values v of the call. Values are object and future identifiers, Boolean
values, and ground terms from the functional subset of the language. For sim-
plicity, classes are not represented explicitly in the semantics, as they may be
seen as static tables.

We do not further detail the syntax and semantics of ABS in this paper, but
refer the readers to [16] for the complete details.

2.2 Deadlocks Introduced by Refactoring

Figure 2 presents snippets of ABS code before and after a Hide Delegate refactor-
ing that may introduce deadlocks in an actor setting, which is described in [23].

The effect of introducing deadlocks by this refactoring can be summarised by
inspecting the difference between the two sequence diagrams in Fig. 3 showing
how synchronous calls change, and by considering the possible assignment of
objects to cogs shown in Fig. 4.

Figure 3a shows that a Client is first communicating with Person, then with
Dept, while Fig. 3b shows that the Client in the refactored program delegates
invoking getManager() to Person. Assume that we have a set of at least three

I Can See Clearly Now: Clairvoyant Assertions for Deadlock Checking 5

c:Client p:Person d:Dept.

getDept()

getManager()

(a) Before

c:Client p:Person d:Dept.

getManager()

getManager()

(b) After

Fig. 3. Effect of Hide Delegate refactoring

objects {c, d, p, . . .} all placed in some cogs. We represent this information by
a mapping of object identifiers to cog identifiers. A placement that is without
deadlocks before, but with a deadlock after refactoring is {c �→ 1, d �→ 1, p �→
2, . . .}, i.e., objects c and d reside in a cog with identifier 1, while object p is
located in a cog with identifier 2.

cog1 cog2

c

active

d

p

active

getManager()

getManager()

...

...

...

Fig. 4. A deadlock

Figure 4 depicts this placement, under
which these three objects can be dead-
locked. We observe that object c is
blocking cog1 while it is waiting for
object p in cog2 to complete process-
ing getManager(), where object p in turn
invokes getManager() on object d in cog1.
Since cog1 is blocked by object c, object d
will not be able to execute the method.
Consequently, object p will never finish executing getManager().

2.3 A Wait-For Relation Between Cogs

Fig. 5. A deadlocking call chain

Consider the arbitrary call chain shown
in Fig. 5 and imagine traversing through
the execution path resulting in this chain.
Although we cannot yet determine if there
exists a deadlock after the first call in the
chain, we know that a synchronous call to an
object on another cog will block the cog of
the caller, i.e., no other object residing in the
same cog can proceed. The cog of the caller
will remain blocked until the called method
returns. After the first call in the chain, we say that the caller cog and the callee
cog are in a wait-for relation, i.e., the caller cog is waiting for the callee cog.
We generalize the wait-for relation to also any blocking operation including the
waiting for futures to be resolved. Thus, if an object requests the value of a future
using the blocking get operation, we say its cog and the cog in which the future

6 O. J. Abusdal et al.

will be resolved are in a wait-for relation. This may be an over-approximation
in the case where an await statement precedes the get operation.

Wait-for Relation and Deadlocks. For each configuration of a given ABS
program, we can derive the current wait-for relation indicating if a cog is waiting
for another one. A cycle in this relation indicates that there exists a deadlock
involving the cogs that form the cycle. Any detection of a cycle can be done prior
to any program points that contain a blocking or possibly blocking operation,
which are:

– Blocking: Synchronous method calls x = o.f(e) where the caller this and the
callee o reside in different cogs.

– Possibly blocking: At any statement x = f.get irrespective of whether the
caller this and the future f are in different cogs.

Note that although synchronous calls within the same cog in ABS do not lead
to deadlocks, an asynchronous call to an object o residing in the same cog as the
caller may lead to a deadlock, e.g., Fut<Unit> f = o!m(); x = f.get. Our analysis
will correctly detect this deadlock prior to the get operation. However, in the case
where an await statement precedes the get operation, e.g., Fut<Unit> f = o!m();
await f; x = f.get, our analysis will give rise to a false positive (see the next
section for the details).

3 Program Transformation for Deadlock Checking

In this section, we introduce a general transformation mechanism to inject asser-
tions into the program to detect deadlocks at runtime based on the wait-for
relation.

3.1 Assertion Transformation

To perform deadlock checking on a program based on the wait-for relation in the
form of runtime assertions, the relation needs to be updated along any possible
call chain. Such an update requires information about the cog placement of each
object, which is not explicitly available in an ABS program, but can be inferred
by slightly transforming the program. Figure 6 captures such a transformation,
which enables the construction of the wait-for relation in the form of a data
structure (w4) and subsequently the detection of deadlocks. In the figure, we
have taken some liberties for a denser presentation. We use a pseudo-syntax,
e.g., class C(T e) { { } } refers to a pattern matching any class where C
corresponds to a class name. We explain in the following how the transformation
is performed.

Any object creation performed through new will place the object in a new
cog, whereas new local will place the object in the same cog as the one execut-
ing the constructor call. Thus, to associate every object with a cog, we modify
every constructor declaration, class C(T e) , such that it is parametrised with

I Can See Clearly Now: Clairvoyant Assertions for Deadlock Checking 7

class C(T e) { { } } class C (CogId id, CogMap cogs, T e} {
{ cogs.add(this,id); } }

(a) Class declaration

module M;
{ }

module M;
{ CogMap cogs = new CogMap();
Rel w4 = set[];
CogId id = cogs.fresh(); }

(b) The init block

T f(p) T f(Rel w4, p)

(c) Method signatures/declarations

x = new C(e); CogId fresh = cogs.fresh();
x = new C (fresh, cogs, e);

(d) Object creation in a new cog

x = new local C(e); x = new local C(id, cogs, e);

(e) Object creation in the cog local to the creator object

x = o.g(e); w4 = add(w4,Cog(this),Cog(o));
assert cyclefree(w4);
x = o.g (w4, e);
w4 = remove(w4,Cog(this),Cog(o));

(f) Synchronous calls

Fut<T> f = o!g(e); w4 = add(w4,Cog(this),Cog(o));
Fut<T> f = o!g(w4, e);
cogs.add(f,Cog(o));

(g) Asynchronous calls

x = f.get; w4 = addGet(w4,Cog(this),Cog(f));
assert cyclefree(w4);
x = f.get;
w4 = remove(w4,Cog(this),Cog(f));

(h) Get

Fig. 6. The assertion transformation, the notation is a wildcard match for the
expected syntactic entity at its position.

8 O. J. Abusdal et al.

a cog identifier and a map that links object references to cog identifiers i.e.,
class C(CogId id, CogMap cogs, T e) , as shown in Fig. 6a. Additionally, in the
init block of each class, we inject code to update the cog map to link any class
instance to the cog identifier it receives as constructor parameter, as shown in
Fig. 6b, where cogs.fresh() is a function returning a fresh cog identity. Note that
the cog map is one single object in the program that all other objects, or scopes
in the case of the program main block, has a reference to. As such it can dispense
of the freshness requirement through also being able to emit fresh identifiers. An
empty wait-for relation is also created in the init block of the program, where
w4 a functional data structure capturing the wait-for relation on cog identifiers,
which can be a set containing pairs of cog identifiers.

Naturally, we must modify every constructor invocation to reflect our change
to constructors (see Figs. 6d and 6e). We either record a fresh cog identifier for
the case of a constructor invocation starting with new, or the identifier of the
cog where the object invokes new local. With our change to the constructor
parameters of all classes, we ensure that there is a reference to the cog map in
every scope for any updates to the wait-for relation (w4).

The signature of all method definitions is transformed to receive w4 as one of
the parameter (see Fig. 6c). Correspondingly, all method invocations are trans-
formed to receive the current value of w4 as the first parameter, as shown
in Figs. 6f and 6g Statements are also added to update the wait-for relation.
Figure 6f presents the transformation for synchronous calls. We first add the call
chain information, represented as a pair of cog identifier 〈Cog(this),Cog(o)〉,
to w4 before the synchronous call to object o is invoked, where the function
Cog(o) returns the identifier of the cog in which the object o is residing. This
pair is removed after the call is made and returns. The update mechanism main-
tains an irreflexive invariant for the wait-for relation for synchronous calls by
never adding a pair where Cog(o1) = Cog(o2). The wait-for relation is han-
dled similarly for asynchronous calls, as shown in Fig. 6g. For each statement
Fut<T> f = o!g(e), we register the future variable f in the cog map with the
function cogs.add(f,Cog(o)), such that the get rule (see Fig. 6h) can later retrieve
this information. Note that although the call chain information is added to w4
prior to the method invocation, this information is not removed because it is
unclear when the call returns.

On any retrieval of values in futures, i.e., f.get, in Fig. 6h, we first update w4
with addGet to indicate that the current cog is waiting for the cog in which the
object that will resolve the future f resides. As opposed to add, addGet does not
maintain any irreflexive invariant. Once the value of the future is retrieved, the
corresponding chain information is removed from w4 to indicate that the wait
is over. We do not have to change the wait-for relation we are carrying forward
if we encounter an await statement; any of our callers are still blocked and we
would have a deadlock if we call back to them.

Finally, we insert the assertion assert cyclefree(w4) prior to every syn-
chronous call or blocking get expression. This assertion checks whether or not
a directed graph (a possible representation of w4) is a directed acyclic graph

I Can See Clearly Now: Clairvoyant Assertions for Deadlock Checking 9

1 w4 = add(w4,Cog(this),Cog(p));
2 assert cyclefree(w4);
3 m = p.getManager(w4);
4 w4 = remove(w4,Cog(this),Cog(p));

(a) Assertion at call site

1 class Person(CogId id, CogMap cogs, ...)
2 implements PersonI {
3 ...
4 PersonI getManager(Rel w4) {
5 PersonI d = this.getDept(w4);
6 w4 = add(w4,Cog(this),Cog(d));
7 assert cyclefree(w4);
8 PersonI tmp = d.getManager(w4);
9 w4 = remove(w4,Cog(this),Cog(d));

10 return tmp;
11 }

(b) Assertion in added method

Fig. 7. After applying the assertion transformation to Fig. 3b

(DAG); if not, the assertion will be triggered. We remark that the statement
assert e in ABS is equivalent to skip when e evaluates to true; otherwise they
are equivalent to throwing an exception. This is a pitfall for us as exceptions
may be caught by already present exception handling and thus interfering with
deadlock detection. Our intended semantics on an assert statement that fails is
to indicate that a deadlock will occur on further execution of the program. A
complete transformation of a program by the rules shown in Fig. 6 is performed
by repetition of any rule that matches on the original program.

Note that our treatment of asynchronous calls gives rise to false positives:
we propagate the current call chain into an asynchronous call, although the
previously recorded chain may no longer be current by the time the callee calls
back into the chain (if at all). The objects in the call chain that led up to this
asynchronous call may long since have become fully available again through
termination of the current computation, or partially available due to an await
statement.

3.2 Example

In this section, we are going to show the assertion transformation applied to a
program resulting from a Hide Delegate refactoring and make some observations
about when the assertions would detect deadlocks.

Applying the assertion transformation described in Fig. 6 to a refactored
program as shown in Fig. 3b results in the code shown in Figs. 7a and 7b. Next,
we are going to observe the wait-for relation in the additional method in Fig. 7b
invoked through the call site seen in Fig. 7a. Let us first assume the call site is
contained in an object c. Consider the sequence of calls c

getManager−−−−−−−−→ p
getDept−−−−−→ d

where if we are at line 7 in Fig. 7b, the first call has occurred and the last call is
about to occur on execution of line 8. We can see that the w4 relation at line 7 in
Fig. 7b may contain the two pairs 〈Cog(c),Cog(p)〉 and 〈Cog(p),Cog(d)〉. The
case where w4 is a singleton set or an empty set refers to the circumstances in
which an object calls either itself or another object residing in the same cog
because a cog never waits for itself. If we observe the w4 relation we see that

10 O. J. Abusdal et al.

1 ...
2 d = p.getDept();
3 m = d.getManager();
4 ...

Match

1 ...
2 m = p.getManager();
3 ...

1 PersonI getManager() {
2 PersonI d = this.getDept();
3 PersonI tmp = d.getManager();
4 return tmp;
5 }

1 PersonI getManager(Rel w4) {
2 PersonI d = this.getDept(w4);
3 w4 = add(w4,Cog(this),Cog(d));
4 assert cyclefree(w4);
5 PersonI tmp = d.getManager(w4);
6 w4 = remove(w4,Cog(this),Cog(d));
7 return tmp;
8 }

1 ...
2 w4 = add(w4,Cog(this),Cog(p));
3 assert cyclefree(w4);
4 m = p.getManager(w4);
5 w4 = remove(w4,Cog(this),Cog(p));
6 ...

1 ...
2 w4 = add(w4,Cog(this),Cog(p));
3 assert cyclefree(w4);
4 PersonI d = p.getDept(w4);
5 w4 = add(w4,Cog(p),Cog(d));
6 assert cyclefree(w4);
7 m = d.getManager(w4);
8 w4 = remove(w4,Cog(p),Cog(d));
9 w4 = remove(w4,Cog(this),Cog(p));

10 ...

Replacement

refactor match

assertion transform

inline method

extract method

assertion transform

Fig. 8. Clairvoyant assertion construction

Cog(c) �= Cog(d) must be satisfied; otherwise we have a deadlock. This will also
ensure that the assertion in line 7 will not be triggered. An important take-away
from this example is not so much the former equation, but that we can record the
sequence of updates to the w4 relation. For a detailed discussion of all possible
object-to-cog allocations for this example see [23].

I Can See Clearly Now: Clairvoyant Assertions for Deadlock Checking 11

P PA PHD PA◦HD PCA

C.m(...) {

.

.

.
x = y.f();
z = x.g();

.

.

.
}

C.m(...) {

.

.

.
w4=add(w4,this,y);
assert cf(w4);
x=y.f(w4);
w4=rem(w4,this,y);
w4=add(w4,this,x);
assert cf(w4);
z=x.g(w4);
w4=rem(w4,this,x);

.

.

.
}

C.m(...) {

.

.

.
z=y.g();

.

.

.
}

C’.g() {
x=this.f();
t=x.g();
return t;

}

C.m(...)

.

.

.
w4=add(w4,this,y);
assert cf(w4)
z=y.g(w4);
w4=rem(w4,this,y);

.

.

.
}

C’.g() {
x = this.f(w4);
w4=add(w4,this,x);
assert cf(w4);
t = x.g(w4);
w4=rem(w4,this,x);
return t;

}

C.m(...) {

.

.

.
w4=add(w4,this,y);
assert cf(w4);
x = y.f(w4)
w4=add(w4,y,x);
assert cf(w4);
z = x.g(w4);
w4=rem(w4,y,x);

w4=rem(w4,this,y);

.

.

.
}

Fig. 9. Effects of the different transformations on P

4 Clairvoyant Assertions

Instead of checking if a program may deadlock using the assertion transforma-
tion after applying a Hide Delegate refactoring, we can produce a clairvoyant
assertion transformation for Hide Delegate. It constructs assertions and a mod-
ification of the wait-for relation such that it predicts occurrences of deadlocks
in a refactored program. We define a clairvoyant assertion transformation that
is almost identical to the assertion transformation from Fig. 6 with one excep-
tion: Instead of applying Hide Delegate refactoring, the method calls in Fig. 8
are handled differently. Normally, the call would be transformed into the code
shown in Fig. 7a by rule Fig. 6f, but it is instead transformed into the replace-
ment code shown at the end of the derivation shown in Fig. 8. This clairvoyant
assertion transformation will introduce an assertion that predicts whether the
Hide Delegate refactoring when applied to the program will introduce a deadlock.

Figure 9 shows the effect of the different transformations, where P refers to
a program admissible for the Hide Delegate refactoring, PA the program after
the assertion transformation is applied to P , PHD the refactored version of P ,
PA◦HD the program after the assertion transformation is applied to PHD , and
PCA the program after the clairvoyant assertion transformation is applied to P .
Names have been shortened, e.g., cf is the cyclefree function.

Equivalence Between PA◦HD and PCA. In the following, we informally argue
that the effects in PA◦HD and in PCA wrt the injected assertions are the same,
by showing that the wait-for relation is the same at the end of the execution in
both programs. Different allocations of objects to cogs will give rise to different
executions in a program. In the particular execution shown in Fig. 10, the syn-
chronous calls in PCA (and hence P) are always remote (every synchronous call

12 O. J. Abusdal et al.

PA◦HD : cn0

cnafter−f

cnx

cnt

cnz

w4+ 〈Cog(this : oc),Cog(y : oy)〉

z = y.g()

futz = y!g() [oc → oy]

x = y.f()

. . .

return [oy ← oy]

w4+ 〈Cog(y : oy),Cog(x : ox)〉

t = x.g()

fut t = x!g() [oy → ox]

. . .

return [oy ← ox]

t = get fut t

w4 − 〈Cog(this : oy),Cog(x : ox)〉

return [oc ← oy]

z = get futz

w4 − 〈Cog(this : oc),Cog(y : oy)〉

oy

ox

PCA : cn0

cnafter-f

cnx

cnt

w4+ 〈Cog(this : oc),Cog(y : oy)〉

x = y.f()

futx = y!f() [oc → oy]

. . .

return [oc ← oy]

x = futx

w4+ 〈Cog(y : oy),Cog(x : ox)〉

z = x.g()

futz = x!g() [oc → ox]

. . .

return [oc ← ox]

z = get futz

w4 − 〈Cog(y : oy),Cog(x : ox)〉

w4 − 〈Cog(this : oc),Cog(y : oy)〉

oy

ox

Fig. 10. Equivalence between PA◦HD and PCA (one execution).

will be translated into an asynchronous call followed by a blocking get opera-
tion [16]), i.e., the caller and the callee are always residing in different cogs. This
implies that we are in one of two possible scenarios: all three objects are in their
own cogs, or ox and oy are in the same cog. As the execution in PCA uses a
remote call from oy to ox, it becomes clear that they must be in different cogs,
and we find ourselves in the first of the above two possibilities.

We show on the left an execution from the program PA◦HD and on the
right a corresponding execution of the PCA, where the executions start from
some state cn0. Note that for simplicity, the transitions with respect to method
binding and object scheduling are not shown in the figure. Due to the strong
concurrent semantics of ABS, we also do not have to consider any interleavings.
In the figure, we use the operators + and − to manipulate the wait-for relation

I Can See Clearly Now: Clairvoyant Assertions for Deadlock Checking 13

(w4), where + denotes the addition of a pair of cog identifiers to w4, while −
denotes the removal. We also use var : o to indicate in the manipulations the
object identity o to which a variable var refers. For method calls, we annotate
the caller and callee objects using [ocaller → ocallee]; whereas for returns, we
use [ocaller ← ocallee] to represent that the method call on the called object
terminates and returns back to the caller. Additionally, we indicate the object
context the former implies graphically.

This diagram allows us to give the proof idea outlining why the assertions in
PCA will always coincide with those in PA◦HD . If we can show that the actual
parameters of all w4-manipulations are identical, and that the states of our con-
figurations are equivalent at the end of the refactored code, since the expressions
for each pair of assertions are identical, we know that they will give identical
results. Although the execution of the refactored program can be different, in a
very restricted manner, from that of the original one, they behave equivalently
wrt to the w4-relation, which will allow us to draw the necessary conclusions.

As an induction hypothesis, we assume that we have equivalent initial states;
and we will see that the same holds for the final states in the end. We note
that this is essentially part of the proof that establishes that the equivalence
relation ≡R between configurations [23] holds between the original program and
the refactored program after applying Hide Delegate.

Assuming this, it is obvious that the first assertion checking after the w4-
manipulation (or w4-test) uses identical arguments in the respective cn0-configu-
rations. When both executions reach their respective cnafter-f, it is obvious that
either has only exactly executed the method f() in object oy. Hence, when they
reach cnx, the variables x in object oy and the one in object oc have the same
value. From this, we conclude that the next (light gray) w4-test again receives
identical objects. Next, either program executes method g() on object ox. Cor-
respondingly, in configurations cnt, local variables z and t refer to the same
value. As x and y remain unchanged, identical information is removed from w4
in either case (light gray). When control returns in PA◦HD to oc, z has the same
value as t before, and hence as z in PCA. That means the object states have
evolved identically in either execution. The final manipulation of w4 (dark gray)
is therefor also identical.

5 KeY-ABS

KeY-ABS [7] is a deductive verification system for the concurrent modelling lan-
guage ABS [14,16]. It is based on the KeY theorem prover [1,2]. KeY-ABS pro-
vides an interactive theorem proving environment and allows one to prove prop-
erties of object-oriented and concurrent ABS models. The concurrency model
of ABS has been carefully engineered to admit a proof system that is modular
and permits to reduce correctness of concurrent programs to reasoning about
sequential ones [4,8]. The deductive component of KeY-ABS is an axiomati-
sation of the operational semantics of ABS in the form of a sequent calculus
for first-order dynamic logic for ABS (ABSDL). The rules of the calculus that
axiomatise program formulae define a symbolic execution engine for ABS.

14 O. J. Abusdal et al.

Specification and verification of ABS models is done in KeY-ABS dynamic
logic (ABSDL). ABSDL is a typed first-order logic plus a box modality: For a
sequence of executable ABS statements s and ABSDL formulae P and Q, the
formula P → [s]Q expresses: If the execution of s starts in a state where the
assertion P holds and the program terminates normally, the assertion Q holds in
the final state. Verification of an ABSDL formula proceeds by symbolic execution
of s, where state modifications are handled by the update mechanism [2]. An
expression of the form {u} is called an update application, in which u can be an
elementary update of the form a := t which assigns the value of the term t to
the program variable a, it can also be a parallel update u1 ‖ u2 that executes the
subupdates u1 and u2 in parallel. The semantics of {u}x is that an expression x
is to be evaluated in the state produced by the update u (the expression x can
be a term, a formula, or another update). Given an ABS method m with body
mb and a class invariant I, the ABSDL formula I → [mb]I expresses that the
method m preserves the class invariant. Note that the method body mb may
contain assert statements. KeY-ABS is able to discharge assertions as vacuous
(never fire) or show the open proof at such assertion statements. In ABS, the
later one is equivalent to throwing an exception. If the proof can be closed at all
assert statements, it shows that none of the assertions can be violated.

In this work, we focus on deadlock detection. assert statements are added
before each of the synchronous calls and are used to predict if the refactored ver-
sion may cause deadlock while the corresponding synchronous calls are invoked.
Since each synchronous call has its own call cycle, it is more suitable to express
deadlock cycle in assertion conditions than in class invariants. Consequently, we
do not consider the use of class invariants in this setting but assertions. Since
the assertion depends on the concrete value of the additional w4 parameter to
each method, the required reasoning propagates backwards to call-sites. Even-
tually this propagation or a proof attempt can result in a contradiction, which
indicates a concrete deadlock, although this may be on an infeasible program
path. It is then the task of the user to prove this infeasibility, or accept the risk
and, for example, resort to testing.

Below is the proof rule for assert statement in KeY-ABS.

Γ =⇒ {u}e = true Γ, {u}e = true =⇒ {u}[s]φ,Δ

Γ =⇒ {u}[assert e; s]φ,Δ

where Γ and Δ stand for (possibly empty) sets of side formulae. The expression e
in the assert statement is evaluated according to the update u. The remaining
program s can only be verified when the assertion is evaluated to true, i.e., the
assertion is not fired. The predicate φ is the postcondition of the method and
should be proven upon method termination.

6 Related Work

Using theorem provers to discharge assertions is not new. We rely on this existing
feature of KeY-ABS, and other comparable tools such as ESC/Java [5,10] deal

I Can See Clearly Now: Clairvoyant Assertions for Deadlock Checking 15

with them similarly with varying degrees of automation. An alternative to KeY
is Crowbar [18]. Also here we would have to rely on being able to evaluate
circularity-queries in the functional fragment of ABS as part of the proof as just
like JML the Behavioral Program Logic is not expressive enough to treat them
on the level of specifications.

Our encoding in additional data that is only relevant on the specification
level is an instance of model variables [6] that model data that goes beyond
abstracting the current state. Here, we have introduced data into the program
that is intended to be primarily used for reasoning purposes, although they
double as concrete program variables for the purpose of runtime checking (a
failing assertion indicates an upcoming potential deadlock).

Encoding a static analysis within a theorem proving framework has, to the
best of our knowledge, only been done as a proof of concept by Gedell [11]. While
his approach also targets the KeY system, the encoding is not in the form of
additional data (and properties) thereof in the original program, but as a data
structure within the KeY system and an extension of the proof rules for the
various syntactic constructs of Java supported by KeY. This has the advantage
that no modification of the code is necessary, but requires deeper understanding
of the prover framework for the development of the corresponding tactlets. An
advantage of our approach is that we are independent from the prover as we
embed ourselves within the target language.

That static analysis can in general benefit from relying on theorem provers
has already been observed by Manolios and Vroon in [19]. They invoke the
ACL2 theorem prover in a controlled manner such that it can be used as a
black box when analysing termination. A timeout from the prover gives rise to
over-approximation in the static analysis.

The work by Giachino et al. [12] uses an inference algorithm to extract
abstract descriptions of methods to detect deadlocks in Core ABS programs,
whereas our work captures the potential circular dependencies between cogs
by means of a wait-for relation, indicating which method invocations may con-
tribute to deadlock behaviour. Similar to our work, Giachino’s approach also
over-approximates the occurrence of deadlocks. Albert et al. [3] have developed
a comprehensive static analysis based on a may-happen-in-parallel analysis for
a very similar language that does not support object groups but treats each
object as a singleton member in its own group. They later combined this with a
dynamic testing technique that reduces false positives [13].

The work of Kamburjan [17] presents a notion of deadlock for synchroni-
sation on arbitrary boolean conditions in ABS. It supports deadlock detection
on condition synchronisation and synchronisation on futures, but it does not
consider the cases caused by synchronous method calls as targeted in our work.

Quan et al. formalize refactorings by encoding them as refinement laws in
the calculus of refinement of component and object-oriented systems (rCOS) and
prove these correct [20], however they do not use a theorem prover and they do
not consider concurrent programs.

16 O. J. Abusdal et al.

7 Conclusion

In this paper, we introduce a dynamic deadlock detection mechanism through a
program transformation that uses a dependency relation such that assertions can
discern deadlocks through inspection of the relation. From the aforementioned
transformation we derive a new transformation that manipulates the dependency
relation to introduce clairvoyant assertions; they predict whether a Hide Delegate
refactoring will introduce deadlocks. We argue that in principle our dynamic
deadlock detection could be statically discharged by a deductive verification
system through resolving the proof goals generated by showing that no assertions
trigger.

Discussion and Future Work

While the encoding is certainly useful for runtime checks, using the proof strate-
gies of KeY-ABS to discharge the assertion can be more effective as the proofs
cover all the possible execution paths at once.

As a language with interface-based inheritance, it should be clear from the
fragments of the transformed ABS programs in Fig. 9 that for every method call
there is uncertainty as to which class we are calling into, if the declared type
of the callee has more than one implementation. If the classes implementing the
same interface have incompatible behaviour, and e.g., only one of the classes will
be used at run time, it is again up to the user to provide evidence to the theorem
prover that this is the case (and hence eliminate the other classes at this call
site). This is however not a particular issue of our approach, but a recurring
theme in use of the KeY system, both for ABS and for Java.

We also note that the current version of KeY-ABS does not support
new local, which is not a problem for the proof, since we explicitly encode the
mapping from objects to cogs in the program.

The ABS language does not support object mobility. Integrating this poses
a major challenge, since this operation is essentially a side-effect which would
mean we would have to give up our model of the deadlock-relation as a purely
functional structure. The same will be true for correctly accounting for await
calls that allow other objects in the same group to make progress concurrently.

To address the shortcoming of false positives (we cannot complete a proof,
yet all counterexamples are spurious) in the case where we would need a static
analysis to propagate information about the subsequent code backwards into
asynchronous calls, we plan to investigate an encoding that uses an oracle in
the target language, which ressembles the equivalent encoding of a more pre-
cise static analysis in the domain of the prover. It is our goal to remain firmly
independent from any particular prover to do our part on encouraging a lively
competition between provers.

Clearly working with the code augmented by our assertions has disadvan-
tages for developer in terms of readability. Ideally, such manipulation should be
done behind the scenes, preferably in a different view of the model. A natural
combination would be to use existing static and dynamic techniques in a first

I Can See Clearly Now: Clairvoyant Assertions for Deadlock Checking 17

phase, and discharge any assertions that e.g. are not part of a deadlock-cycle
reported by this tools.

The clairvoyant assertions introduced here are specific to the Hide Delegate
refactoring. Variations will be necessary to predict negative effects of other refac-
torings, such as other constellations of deadlocks [23]. We have as yet to imple-
ment an automated assertion generation to try out our idea and gauge the cur-
rently feasible amount of automation.

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification - The KeY Book - From Theory to Practice. LNCS,
vol. 10001. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49812-6

2. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Ulbrich, M. (eds.): Deductive Soft-
ware Verification: Future Perspectives. LNCS, vol. 12345. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64354-6

3. Albert, E., Flores-Montoya, A., Genaim, S., Martin-Martin, E.: May-happen-in-
parallel analysis for actor-based concurrency. ACM Trans. Comput. Log. 17(2),
11:1–11:39 (2016). https://doi.org/10.1145/2824255

4. Bubel, R., Montoya, A.F., Hähnle, R.: Analysis of executable software models. In:
Bernardo, M., Damiani, F., Hähnle, R., Johnsen, E.B., Schaefer, I. (eds.) SFM
2014. LNCS, vol. 8483, pp. 1–25. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-07317-0 1

5. Chalin, P., Kiniry, J.R., Leavens, G.T., Poll, E.: Beyond assertions: advanced spec-
ification and verification with JML and ESC/Java2. In: de Boer, F.S., Bonsangue,
M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 342–363.
Springer, Heidelberg (2006). https://doi.org/10.1007/11804192 16

6. Cheon, Y., Leavens, G.T., Sitaraman, M., Edwards, S.H.: Model variables: cleanly
supporting abstraction in design by contract. Softw. Pract. Exp. 35(6), 583–599
(2005). https://doi.org/10.1002/spe.649

7. Din, C.C., Bubel, R., Hähnle, R.: KeY-ABS: a deductive verification tool for the
concurrent modelling language ABS. In: Felty, A.P., Middeldorp, A. (eds.) CADE
2015. LNCS (LNAI), vol. 9195, pp. 517–526. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21401-6 35

8. Din, C.C., Owe, O.: Compositional reasoning about active objects with shared
futures. Formal Aspects Comput. 27(3), 551–572 (2014). https://doi.org/10.1007/
s00165-014-0322-y

9. Eilertsen, A.M., Bagge, A.H., Stolz, V.: Safer refactorings. In: Margaria, T., Stef-
fen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 517–531. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-47166-2 36

10. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended static checking for Java. In: Knoop, J., Hendren, L.J. (eds.) Proceed-
ings of the 2002 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), pp. 234–245. ACM (2002). https://doi.org/10.1145/
512529.512558

11. Gedell, T.: Embedding static analysis into tableaux and sequent based frameworks.
In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 108–122.
Springer, Heidelberg (2005). https://doi.org/10.1007/11554554 10

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-030-64354-6
https://doi.org/10.1145/2824255
https://doi.org/10.1007/978-3-319-07317-0_1
https://doi.org/10.1007/978-3-319-07317-0_1
https://doi.org/10.1007/11804192_16
https://doi.org/10.1002/spe.649
https://doi.org/10.1007/978-3-319-21401-6_35
https://doi.org/10.1007/978-3-319-21401-6_35
https://doi.org/10.1007/s00165-014-0322-y
https://doi.org/10.1007/s00165-014-0322-y
https://doi.org/10.1007/978-3-319-47166-2_36
https://doi.org/10.1145/512529.512558
https://doi.org/10.1145/512529.512558
https://doi.org/10.1007/11554554_10

18 O. J. Abusdal et al.

12. Giachino, E., Laneve, C., Lienhardt, M.: A framework for deadlock detection in
core ABS. Softw. Syst. Model. 15(4), 1013–1048 (2016). https://doi.org/10.1007/
s10270-014-0444-y

13. Gómez-Zamalloa, M., Isabel, M.: Deadlock-guided testing. IEEE Access 9, 46033–
46048 (2021). https://doi.org/10.1109/ACCESS.2021.3065421

14. Hähnle, R.: The abstract behavioral specification language: a tutorial introduction.
In: Giachino, E., Hähnle, R., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2012.
LNCS, vol. 7866, pp. 1–37. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40615-7 1

15. Hewitt, C., Bishop, P., Steiger, R.: A universal modular ACTOR formalism for
artificial intelligence. In: Proceedings of the International Joint Conference on Arti-
ficial Intelligence, pp. 235–245. Morgan Kaufmann Publishers Inc. (1973). http://
dl.acm.org/citation.cfm?id=1624775.1624804

16. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6 8

17. Kamburjan, E.: Detecting deadlocks in formal system models with condition syn-
chronization. Electron. Commun. Eur. Assoc. Softw. Sci. Technol. 76 (2018).
https://doi.org/10.14279/tuj.eceasst.76.1070

18. Kamburjan, E., Scaletta, M., Rollshausen, N.: Crowbar: behavioral symbolic exe-
cution for deductive verification of active objects. CoRR abs/2102.10127 (2021).
https://arxiv.org/abs/2102.10127

19. Manolios, P., Vroon, D.: Integrating static analysis and general-purpose theorem
proving for termination analysis. In: Osterweil, L.J., Rombach, H.D., Soffa, M.L.
(eds.) 28th International Conference on Software Engineering (ICSE 2006), pp.
873–876. ACM (2006). https://doi.org/10.1145/1134285.1134438

20. Quan, L., Zongyan, Q., Liu, Z.: Formal use of design patterns and refactoring. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2008. CCIS, vol. 17, pp. 323–338. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-88479-8 23

21. Soares, G., Gheyi, R., Massoni, T.: Automated behavioral testing of refactoring
engines. IEEE Trans. Softw. Eng. 39(2), 147–162 (2013). https://doi.org/10.1109/
TSE.2012.19

22. Steinhöfel, D., Hähnle, R.: Abstract execution. In: ter Beek, M.H., McIver, A.,
Oliveira, J.N. (eds.) FM 2019. LNCS, vol. 11800, pp. 319–336. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-30942-8 20

23. Stolz, V., Pun, V.K.I., Gheyi, R.: Refactoring and active object languages. In: Mar-
garia, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12477, pp. 138–158. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-61470-6 9

https://doi.org/10.1007/s10270-014-0444-y
https://doi.org/10.1007/s10270-014-0444-y
https://doi.org/10.1109/ACCESS.2021.3065421
https://doi.org/10.1007/978-3-642-40615-7_1
https://doi.org/10.1007/978-3-642-40615-7_1
http://dl.acm.org/citation.cfm?id=1624775.1624804
http://dl.acm.org/citation.cfm?id=1624775.1624804
https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.14279/tuj.eceasst.76.1070
https://arxiv.org/abs/2102.10127
https://doi.org/10.1145/1134285.1134438
https://doi.org/10.1007/978-3-540-88479-8_23
https://doi.org/10.1109/TSE.2012.19
https://doi.org/10.1109/TSE.2012.19
https://doi.org/10.1007/978-3-030-30942-8_20
https://doi.org/10.1007/978-3-030-61470-6_9

When COSTA Met KeY: Verified Cost
Bounds

Elvira Albert1,2, Samir Genaim1,2(B), Alicia Merayo1,
and Guillermo Román-Dı́ez3

1 Complutense University of Madrid, Madrid, Spain
sgenaim@ucm.es

2 Instituto de Tecnoloǵıa del Conocimiento, Madrid, Spain
3 Universidad Politécnica de Madrid, Madrid, Spain

Abstract. COSTA is an automatic resource analysis tool that given an
input Java bytecode program, and a selection of a cost measure, returns
an upper bound on the execution cost of the program as a parametric
function on the program’s input data. KeY is a deductive verification
system for Java programs that accepts specifications written in the Java
Modeling Language that are transformed into theorems of dynamic logic
and then compared against program semantics. COSTA and KeY met
10 years ago during the curse of the EU HATS project. This encounter
started up a fruitful collaboration between the two teams on the ver-
ification of upper bounds. The initial work within HATS focused on
the verification in KeY of cost bounds obtained by the COSTA tool for
sequential Java programs using only Integer data. A notable result of the
COSTA+KeY cooperation has been that KeY spotted a bug in COSTA,
as it failed to prove correct one invariant which was incorrect and pro-
vided a concrete counterexample that helped understand, locate and fix
the bug. The work was extended later to handle also sequential Java pro-
grams working on heap-allocated data. The latest work after HATS has
brought these ideas further to the general context of abstract programs
which contain placeholder symbols to represent instantiations into con-
crete programs. This invited paper gives an overview of the four papers
jointly written with Reiner and his team on the subject and discusses
related work on the matter.

1 Introduction and Overview

One of the most important aspects of a program is its efficiency, i.e., its resource
consumption (e.g., amount of execution time, memory allocated, number of
instructions executed). The inference of bounds on the resource consumption
of programs is a very active field of research since its inception in the semi-
nal work of Wegbreit [33]. Bounding the resource consumption allows ensur-
ing that the amount of resources required to execute the program will never

This work was funded partially by the Spanish MCIU, AEI and FEDER (EU) project
RTI2018-094403-B-C31 and by the CM projects S2018/TCS-4314 co-funded by EIE
Funds of the European Union.

c© Springer Nature Switzerland AG 2022
W. Ahrendt et al. (Eds.): The Logic of Software. A Tasting Menu of Formal Methods,
LNCS 13360, pp. 19–37, 2022.
https://doi.org/10.1007/978-3-031-08166-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08166-8_2&domain=pdf
https://doi.org/10.1007/978-3-031-08166-8_2

20 E. Albert et al.

exceed the inferred upper bound. Depending on the considered resource, this
means that the execution of the program will not exceed the upper bound time,
or will not use more than the inferred upper bound memory, etc. There are
resource analysis tools that are able to infer automatically such upper bounds
for today’s programming languages (see, e.g., for Integer programs [14,20,29],
for Java-like languages [3,21], for concurrent and distributed languages [23], for
functional programs [22], for probabilistic programs [26,27]). COSTA [4] is one
such resource analyzer that initially was developed for Java bytecode programs.
In its input, COSTA takes a compiled Java bytecode, a selection of a cost model
among number of executed instructions, amount of memory allocated, or calls
to functions, and it returns in the output an upper bound of the resource con-
sumption of the program for the selected cost model.

At the start of the HATS project1, the COSTA team had manually writ-
ten soundness proofs for the techniques used in the analysis [2,5]. Basically, the
proofs guarantee that (theoretically) the results are correct, i.e., no execution
of the program will ever exceed the inferred upper bound. However, the imple-
mentation undertaken when implementing the COSTA tool could be buggy, and
hence using the inferred bounds for safety critical purposes could be risky. When
COSTA [4] met KeY [12] in the context of the HATS project, we had a unique
opportunity to combine the strengths of both systems and use KeY to formally
verify the soundness of the inferred bounds. The cooperation of COSTA and
KeY allowed us to mitigate the aforementioned risks, and have formal guaran-
tees that the results inferred by the tool are correct. For the first time, we could
generate verified upper bounds.

Our first joint work with Reiner and Richard, published in the Proceedings
of PEPM’11 [6], established the basis for the combination of both systems on the
simpler setting of sequential Java programs using only Integer data, i.e., we left
out concurrency and also heap-allocated data structures. We proposed to for-
mally verify in KeY the information inferred by each of the subcomponents used
to produce upper bounds, as their composition in a final step is straightforward.
Section 2.2 describes in detail the verification of such three main subcomponents:

1. The ranking functions [2] that provide upper bounds on the number of iter-
ations that loops perform. COSTA infers linear ranking functions that are
translated into decreasing annotations that KeY can automatically prove
correct.

2. The size relations [5] which capture the effect of executing code fragments (of
different forms) on program variables and are in the form of linear constraints
among the values of variables at different program points. They lead to assert
annotations to be proven by KeY.

3. The loop invariants that COSTA infers [2] that relate the loop’s variables and
their initial values, which are transformed into loop-invariant annotations
whose soundness needs to be formally verified by KeY.

The next natural step was to extend the work to handle heap-allocated data
and this way have verified cost bounds for most real sequential Java programs.
1 https://hats.se.informatik.tu-darmstadt.de/.

https://hats.se.informatik.tu-darmstadt.de/

When COSTA Met KeY: Verified Cost Bounds 21

This extension was published in a next paper that appeared in the proceedings
of FASE’12 [8] in which we presented the new components needed for the verifi-
cation of bounds for heap-allocated programs. Section 2.3 will give an overview
on such extension which essentially needs to:

1. Use a size analysis for heap-allocated data structures that allows us to reason
on how their sizes are modified along the execution of the program. We use
the path-length analysis [30] for this purpose.

2. Soundness of the path-length analysis requires proving new annotations over
the heap-allocated structures, namely, we need to prove complex properties
such as acyclicity, reachability and disjointness of heap regions. Annotations
for such properties are generated by COSTA and formally verified by KeY.

Together with Reiner and Richard, we also published a journal paper in the
Journal of Software and Systems Modeling [7] that unifies the two conference
papers and extends the experimental evaluation undertaken to assess the effec-
tiveness and efficiency of the implementation. This successfully completed the
work of verified upper bounds in the HATS project.

It was only two years ago that COSTA and KeY met again at the Formal
Methods conference in Porto. The KeY team was presenting their new work on
Abstract Execution [31], a technique which allows verifying properties of abstract
programs. Abstract programs contain placeholders for specifying parts of the
program that have been extracted away so that one considers a more general
context. The placeholders can be instantiated with concrete statements and the
verification proofs should be valid for the concrete instantiations as well. The
original work [31] was applied to prove functional properties of abstract programs
and in particular to prove functional equivalence of program transformation
techniques. We started to discuss in Porto if it would be possible to leverage
the technique to prove quantitative properties of programs as well. A new joint
work published in the Proceedings of FASE’21 [10], this time written with Reiner
and Dominic, proposes such an extension under the name: Quantitative Abstract
Execution.

Section 3 will describe the main ideas of Quantitative Abstract Execution,
which have brought in two important extensions:

1. Leveraging the cost analysis of COSTA to work with abstract Java programs.
We have redefined the basic notions of a cost analysis for this abstract setting.
In particular, the notion of recurrence equations used in cost analysis needs
to be adapted, and the upper bounds generated from them will be abstract
as well.

2. The verification in KeY has been enabled by means of the notion of cost
invariant, which is an inductive expression that defines the cost of loops at
each of their iterations. This inductive notion of cost perfectly fits with the
abstract execution framework, since it permits compositional proofs about
the cost.

We wish that COSTA and KeY will meet many more times and that our
fruitful collaboration with Reiner will continue in the coming years!

22 E. Albert et al.

2 Key+COSTA for Concrete Programs

This section describes how KeY can be used to verify the resource analysis
bounds obtained by COSTA for concrete Java programs. This section is orga-
nized as follows: Sect. 2.1 describes the different information used by COSTA to
compute upper bounds; Sect. 2.2 describes how a Java program, whose resource
consumption only depends on local integer data, can be annotated with this
information using the Java Modeling Language (JML); and Sect. 2.3 describes
new annotations required to model the heap properties needed for handling pro-
grams whose cost depends on information stored in the heap memory.

2.1 Resource Analysis: Upper Bounds

We start by describing the information computed by COSTA in the process
of inferring an upper bound on the resource consumption of a given program.
W.l.o.g. we focus on polynomial upper bounds, but the same information is used
to infer logarithmic and exponential upper bounds as well. The computation of
the upper bound is performed by considering the scopes found in the program,
i.e., a code fragment that either corresponds to a loop or to a code fragment
before or after a loop. The computation of the upper bound for the whole pro-
gram is performed by analyzing each scope separately, and then composing the
results into a closed-form function expressed in terms of the input parameters
of the program. COSTA computes the following information for each scope:

(1) To guarantee termination of each loop COSTA infers a corresponding rank-
ing function of the form nat(f(x)), where nat(v) = max(0, v), such that
it is decreasing by 1 at each iteration and is non-negative by definition.
Thus, assuming that x̄0 are the initial values of the variables involved in
the ranking function, nat(f(x0)) bound the number of iterations. Note that
COSTA only supports linear ranking functions, i.e., f(x̄) is of the form
a0 + a1x1 + · · · + anxn where each ai is rational number.

(2) For each scope, COSTA computes size relations, denoted by ϕ, that capture
the effect of executing some code fragments on program variables. COSTA
models such relations using linear constraints among the (values of) variables
at different program points. Concretely, our size relations relate the values
of the variables at a certain program point of interest within a scope to their
initial values when entering the scope. In addition, COSTA computes input-
output size relations for the methods, which relate the values of a method
parameters to its return value, this is useful to model the effect of a method
call. Similarly, this is done also for loops where in this case size relations
play the role of loop summaries.

(3) For each loop, using the size relations, COSTA infers a loop invariant that
relates the values of the loop’s variables at each iteration to their initial
values (just before entering the loop). The loop invariant is a disjunction
between two conjunctions of linear constraints ψ ≡ ψo ∨ ψn where ψo cor-
responds to the first visit to the loop, and ψn corresponds to visiting the

When COSTA Met KeY: Verified Cost Bounds 23

loop after executing the loop body at least once (this separation is needed
for precision issues). These loop invariants, together with the size relations,
are needed to compute the worst-case cost of executing one loop iteration.

Given a Java program and the corresponding information (as described
above) that is used to compute the upper bound, COSTA annotates the Java
source code with corresponding JML annotations, and then passes it to KeY in
order to verify the correctness of all these annotations, and thus the correctness
of the corresponding information inferred by COSTA.

Example 1. Consider the Java method depicted in Fig. 1, which corresponds to
an implementation of the Bubble Sort algorithm. We will use it to show how
COSTA annotates the Java code with JML annotations to express the different
information used to compute an upper bound for method bubbleSort. Note
that the call to method increment at Line 24 (L24 for short) simply increments
the value of variable i by 1, and we do it in a separate method to explain why
input-output size relations are needed. The upper bound of method bubbleSort
is computed as follows:

1. For the inner loop, COSTA computes size relations, a loop invariant, and the
ranking function nat(n − j − i). Assuming that the cost of executing the loop
body once is c4 + cinc, where cinc is the cost of method increment and c4 is
the cost of the rest of the instructions, and that the cost of the evaluation of
the loop condition is c3, the upper bound corresponding to the inner loop is
UBin = c3 + (c4 + cinc) ∗ nat(n − j − i).

2. For the outer loop, COSTA computes size relations, a loop invariant, and the
ranking function nat(n − j). Assuming that the cost of executing the outer
loop body once is c5 + cin , where cin represents the worst-case cost of the
inner loop and c5 the cost of the rest of the instructions, and that the cost of
the evaluation of the loop condition is c2, the upper bound corresponding to
the outer loop is UBout = c2 + (cin + c5) ∗ nat(n − j).

3. The next step replaces cin in UBout by an expression in terms of the program
variables, which is done by maximizing the cost expression UBin in the context
of the outer loop. Note that the maximum value of n−j−i in this context (in
terms of the initial values of the variables) is n, which happens when i = 0
and j = 0, and thus cin is replaced by c3 + (c4 + cinc) ∗ nat(n) resulting in
UBout = c2 + (c3 + (c4 + cinc) ∗ nat(n) + c5) ∗ nat(n − j).

Finally, we rewrite UBout in terms of the method parameters. This is done by
using the size relations of the first block of the method to maximizes UBout in
terms of the input parameters, resulting in the following upper bound for the
method: UBbs = c1 + c2 + nat(n) ∗ (c3 + (c4 + cinc) ∗ nat(n)) + c5 ∗ nat(n). Note
that c1 corresponds to the cost of the code fragment before the outer loop.

24 E. Albert et al.

Fig. 1. A Java implementation of the Bubble Sort algorithm.

2.2 Integer Java Programs

Recall that the ranking functions computed by COSTA are of the form nat(exp)
where nat(v) = max(0, v). To verify the correctness of a ranking function, it is
sufficient to ensure, by using the loop invariant and the size relations, that it is
decreasing in each iteration. We use the following JML annotation to output the
ranking function found by COSTA which instructs to check that exp decrease
at least on 1 when it is positive:

//@ decreases exp > 0 ? exp : 0.

Note that the if-then-else structure encodes the maximum between exp and 0.

Example 2. Method bubbleSort of Fig. 1 has two loops, at L11 and L18. The
ranking function for the loop at L11 is nat(n−j) and its corresponding annotation
is at L9. Similarly, the annotation at L16 corresponds to the ranking function
nat(n − j − i) of the inner loop at L18.

When COSTA Met KeY: Verified Cost Bounds 25

One of the uses of size relations is to relate the variables at some program
point of interest (within a given scope) to their values at the beginning of the
same scope. The annotation of such size relations requires two different JML
annotations: one at the beginning of the scope to store the initial values into
auxiliary variables, and another annotation at the program point of interest to
state the actual relation. To do so, we first produce new ghost variables by means
of an annotation of the form

//@ ghost int w1 = v1 ; . . . ; int wn = vn

to store the values of variables v1,...,vn at the beginning of the scope into the
auxiliary variables w1,...,wn, and then use

//@ assert ϕ

to state the corresponding size relations ϕ at the program point of interest (we
assume that ϕ is given in terms of these variables).

These annotations suffice for non-iterative scopes, however, iterative scopes
require a slightly different treatment to update the ghost variables to their new
values at the end of the corresponding scope (the initial values in the next
iteration). This is done by using the annotation

//@ set w1 = v1 ; . . . ; wn = vn

at the end of the corresponding scope.

Example 3. The only non-iterative scope in the example of Fig. 1 is trivial, and
corresponds to the code before the outer loop. This scope is annotated by means
of the ghost variables declaration at L3 and its corresponding assert at L6. For
the iterative scope that corresponds to the body of the inner loop, at L13 the
ghost variables are declared, at L25 the size relations are stated, and at L26 the
ghost variables are updated to their new values. For the scope that corresponds
to the body of the outer loop, the definition and the update of the ghost variables
are at L7 and L30 respectively. However, as this scope is split by the inner loop,
we have two lines where the size relations are stated: one before the inner loop
at L14 and another one at the end of the scope at L29.

As we have explained before, in some cases COSTA relies on input-output size
relations to model the effect of method calls. In order to verify these relations
we make use of the JML method contract to annotate each method with its
corresponding input-output size relations.

Example 4. The following is the code of method increment (called at L24) and
its corresponding JML contract that expresses the fact that the returned value
equals the value of the input x plus 1.

/∗@ public behavior
@ requires true ;
@ ensures \result = x + 1;
@ signals (Exception) true ;
@ signals only Exception;

26 E. Albert et al.

@∗/
int increment(int x) {
return x + 1;

}
This contract is used by KeY to verify the size relation i = i3 + 1 at L25.

Recall that our loop invariants are slightly different from the standard notion
since, in addition, they relate the values of the program variables at each iteration
to the initial values (just before entering the loop). However, we can handle them
using the invariant annotation of JML in a similar way to the size relations: we
first capture the initial values of the variables by means of ghost variables, and
then, given a loop invariant Ψ inferred by COSTA, we add the annotation

//@loop invariant Ψ

above the loop, which will be verified by KeY. Note that Ψ already refers to the
current and initial values of the variables.

Example 5. The annotation for the invariant of the inner loop defines the ghost
variables at L15 and states the invariant at L17. Similarly, for the outer loop it
defines the ghost variables at L8 and states the invariant at L10.

Now that the program is fully annotated, we pass it to KeY which succeeds
to prove the correctness of all the information used by COSTA to generate the
upper bound.

2.3 Extension to Handle the Heap

In the previous section we have shown how COSTA annotates a Java program
whose cost depends only on integer data, so we can use KeY to verify the cor-
rectness of the corresponding information. However, the resource consumption
of programs often depends on heap-allocated data structures as well, and thus, to
handle such programs COSTA relies on inferring related structural heap prop-
erties. In this section we describe an extension for verifying the correctness of
these heap properties. Note that programs whose cost depends on the size of
arrays can be handled using the techniques discussed above, this is simply done
by using x.length when COSTA refers to the length of an array x.

When a program works with variables of reference type, its resource con-
sumption often depends on a size measure related to the corresponding data
structure rather than the concrete values that are stored in the data structure,
e.g., on the length of a list rather than the values stored in the list. Inference
of upper bounds for such programs requires information on how the size mea-
sures of the different data structures change along the execution of the program.
COSTA relies on a size measure called path-length [30] that measures the longest
path (i.e., depth) of a data-structure (length of a list, depth of a tree, etc.).

When COSTA Met KeY: Verified Cost Bounds 27

Fig. 2. A Java implementation of reversing a list.

Technically, COSTA first abstracts reference variables to their corresponding
path-length and then infers corresponding size relations between the different
reference variables (they might include also relations to integer variables). For
example, a linear constraint x < y, where x and y are reference variables, means
that the depth of the data structure to which x points to is strictly smaller than
the depth of the data structure pointed to by y. To annotate the program with
information that refers to the path-length of data structures, we extended JML
with the new keyword \depth and use it whenever COSTA refers to the path-
length of a reference variable, e.g., in ranking functions, in invariants and in size
relations. This also required extending KeY to support the \depth annotation.
Supposing additional size-measures for data-structures can be done, however,
apart from supporting it at the level of COSTA, it would require corresponding
modifications to as we have done for the case of path-length.

Example 6. The method depicted in Fig. 2 is a Java implementation of reversing
a list, i.e., it returns a new list with the elements reversed with respect to the
input list x. The number of iterations of the loop depends on the path-length
of the list, and indeed COSTA infers that nat(x) is a bound on the number of
iterations where x is the path-length of the list pointed to by variable x. The
annotation of this ranking function is at L11, where we use \depth(x) to refer
to the path-length of variable x.

28 E. Albert et al.

The computation of the upper bound in the presence of heap-allocated data
structures relies on some additional structural heap properties: Acyclicity, reach-
ability and disjointness are essential properties both for path-length analysis
and for the verification of the path-length assertions. COSTA infers informa-
tion related to these properties and uses it when inferring corresponding upper
bounds.

To model these structural heap properties, we have extended JML with the
following new keywords: (1) \acyclic(x), which states that x points to an acyclic
data structure; (2) \reach(x, y), which states that y must be reachable from x in
zero or more steps; (3) \reachPlus(x, y), which states that y must be reachable
from x by at least one step; and (4) \disjoint(x, y), which states that x and
y do not share any common region in the heap. We use all these new keywords
in the JML annotations added by COSTA to produce the resource guarantees
for programs whose resource consumption depends on heap allocated data. Note
that KeY was also extended with new rules to prove annotations that involve
these new keywords.

Example 7. The example of Fig. 2 shows the JML extensions created to feed
KeY with structural information about the heap memory of the program. At L2
it can be seen that reverseList has one precondition: the list must be acyclic,
otherwise COSTA cannot guarantee the termination of the method. Additionally,
the loop invariant annotation at L14 states that not only the input list, but also
the new list is always acyclic. Another relevant information introduced in the
loop invariant at L15 is that the variables x and l do not alias, and at L16 we
can see that l is not reachable from x and vice versa. All this information is
used and verified by KeY so as to guarantee the correctness of information used
by COSTA to infer the corresponding upper bound.

3 Verified Cost Bounds for Abstract Programs

This section gives an overview on the verification of cost bounds for abstract
programs using the COSTA and KeY systems. Abstract programs are programs
containing an abstract context represented by placeholder symbols. As men-
tioned in Sect. 1, they are required whenever one aims to rigorously analyze
program transformation techniques, as in compiler optimization. In a sense,
our joint work with Reiner and Dominic on the verification of abstract cost
bounds [10] generalizes the results of Sect. 2 in the same way that an abstract
program generalizes a concrete one. We have called the framework Quantitative
Abstract Execution (QAE) and it unifies an automatic abstract cost analysis
using COSTA with an automated verifier for the correctness of the inferred
abstract bounds using KeY.

When COSTA Met KeY: Verified Cost Bounds 29

Fig. 3. QAE annotations

3.1 QAE Annotations

In order to define QAE, an important technical innovation has been defining an
abstract cost analysis. The main technical novelty has been the notion of cost
invariant which expresses a sound abstract cost bound at the beginning of each
loop iteration.

We describe this concept and the annotations used in QAE informally by
means of the example in Fig. 3, in which we have a loop with an abstract
statement P in its body. This abstract statement with identifier P , declared
as \abstract statement P, abstracts an arbitrary concrete statement. The
abstract statement incorporates a specification of its behaviour by means
of annotations (those that appear immediately before the abstract state-
ment). These annotations are of three kinds: (1) “assignable” variables,
the memory variables that may be written by an abstract statement; (2)
“accessible” variables, the variables that the abstract statement can read; and
(3) “cost footprint” variables, a subset of the accessible variables on which
the cost of the abstract statement might depend. Note that in our example, the
annotations are declaring that the variables involved in the loop guard cannot
be accessed (neither in read/write mode) by the abstract statement. Moreover,
loops are required to be neutral with respect to the cost, i.e., they cannot change
the value of any variable that affects the cost, either because it is involved in the
guard or it appears in any cost footprint annotation inside the loop. instruc-
tions together with these specifications of the permitted behaviour. In the next
step QAE produces the other annotations by means of automatic abstract cost
analysis. The whole program, including the inferred annotations, constitutes the
input to the second phase: the certifier that proves that the cost annotations are
correct.

The loop invariant, keyword loop invariant, has the standard meaning.
In our example, it infers the relation between final values of n, of variable i,
and that i is non-negative. To prove the abstract cost of the loop, QAE also

30 E. Albert et al.

needs to infer the annotation decreases that, as for concrete programs, pro-
vides (an upper bound on) the number of iterations that the loop executes
(automatically inferred from the ranking function of the loop). So far, these
two annotations are well known in standard automated cost analysis, as seen
in Sect. 2. Besides, abstract cost analysis automatically infers the two remain-
ing annotations: cost invariant and assert. Note that unlike what we have
done in Sect. 2, the non-negativity of the ranking function is not encoded in
the decreases annotation, but rather in the loop invariant (and corresponding
precondition).

Each abstract statement has an associated abstract cost, which is paramet-
ric in the variables defined in its cost footprint. In the case of P , with a cost
footprint only composed of variable y, the abstract cost is denoted by acP(y),
being possible to instantiate this function with any function parametric in y. For
example, if we have the following instance for P :

j =0;
while (j<y) j++;

and assuming a cost model that counts the number of instructions, the precise
exact instance of the cost is acP(y) = 2+2 · y (two instructions when declaring j
and evaluating the guard for the first time, and two instructions when increasing
j and re-evaluating the guard in each iteration). The keyword cost invariant
specifies the cost invariant of the loop, i.e., a loop invariant expressing a valid
abstract cost bound on the cost of all the iterations of the loop up to the begin-
ning of the next iteration. To get this cost invariant, it is necessary to infer the
number of iterations executed so far, that we refer to as the growth of the loop
(the difference between applying the ranking function to the current and the
initial values of the corresponding variables). The cost invariant is computed by
multiplying this growth by the cost of the body of the loop.

Finally, the keyword assert expresses the total accumulated cost of the pro-
gram, which is known as cost postcondition. This cost postcondition is obtained
similarly to the cost invariant: instead of multiplying the cost of the body of the
loop by the number of performed iterations, we multiply the cost of the body of
the loop by the upper bound on the number of iterations, and we add the cost
of the statements outside the loop. This corresponds to the standard notion of
upper bound as used in Sect. 2. To ensure the soundness of this bound, a cost
precondition of n ≥ 0 is also inferred by the analysis.

3.2 Cost Postconditions

Cost postconditions are computed for two purposes: to handle programs with
nested loops and to prove relational properties.

Nested Loops. In nested loops, to compute the cost invariant of the outer loop,
we need first to compute the abstract cost of the inner loop after its complete
execution. Then, this cost of the inner loop is used to generate the cost invariant
of the outer loop, and the approach is fully compositional.

When COSTA Met KeY: Verified Cost Bounds 31

Fig. 4. Nested loops

In Fig. 4, we have an abstract program with a nested loop. Both loops in
this example have their corresponding inferred annotations, including the cost
postconditions. In the case of the inner loop, this translates to having the cost
of the piece of code that, inside the outer loop, goes until the end of the inner
loop. Assuming a cost model that counts the number of instructions, for the
inner loop we have a cost postcondition of 2 + m · (acP(y) + 2), where the first 2
corresponds to the declaration of variable j and the first evaluation of the guard,
and the second 2 corresponds to increasing variable j and the new evaluation
of the guard in each iteration of the inner loop. This cost, together with the
increase of variable i in the body of the outer loop, gives a cost for the body of
the outer loop of 3+m · (2+acP(y)), that multiplied by the growth of the outer
loop leads to the cost invariant of the outer loop. The KeY system successfully
verifies all annotations inferred for the abstract program.

Relational Properties. QAE has been the first method to analyze the cost
impact of program transformations. For the purpose of comparison of trans-
formed programs, quantitative relational properties are supported. An impor-
tant remark is that, to compare these cost postconditions, it is needed to have
exact ones, as in case for having an over-approximation the comparison would
not be conclusive, as the over-approximations could be of different magnitude in
the compared expressions.

In Fig. 5, we have an example of a comparison of a program transformation.
We note that, for conciseness of the presentation, we only write the cost post-
condition at the end of the whole program in “Program Before”, even if the first
loop also has its cost postcondition computed during the analysis.

32 E. Albert et al.

Fig. 5. Cost postconditions

In this program transformation, two independent loops with a similar body
are put together into a single loop that performs as many iterations as the sum of
iterations of the two initial loops. Even if the transformation could seem to be an
optimization, when computing the abstract cost analysis, we see that counting
the number of instructions leads to a larger cost in the transformed program.
This is due to the fact that the operation n+m is computed in each evaluation of
the guard. Disregarding constants, the cost of “Program After” is greater than
the cost of “Program Before” by n+m instructions. This can be proven in QAE
by means of the relational property \cost after ≥ \cost before.

3.3 Other Cost Models

Even if this section has been developed using as cost measure the number of
instructions of the program, other cost models are allowed in the analysis. This
is the case of the program in Fig. 6 for which we aim at inferring its memory
consumption. In this program that allocates an array inside the loop, we perform
the analysis using the cost measure of allocated memory. In this case, COSTA

When COSTA Met KeY: Verified Cost Bounds 33

Fig. 6. Cost model of memory allocated

assumes the worst-case memory consumption for each iteration, i.e., creating
an array of n elements, and thus the cost postcondition is an upper bound
rather than an exact result. More precise results could be obtained by a tighter
approximation as in [9].

4 Related Work

In order to increase the trust of end-users in static analysis tools, we typically
deliver guarantees to ensure that the inferred results are actually correct. These
guarantees are supposed to be (easily) verifiable by a minimal set of correspond-
ing trusted tools. Work in this area can be (roughly) divided into two categories:

1. develop the whole static analysis tool using the programming language of a
proof assistant – such as Coq [18] or Isabelle/HOL [28] – together with a cor-
rectness proof that can be verified by the proof assistant, and then automat-
ically generate a corresponding verified tool in a more efficient programming
language such as OCAML or Haskell. This means that the implementation
has been formally proven correct, and thus all the results that it produces are
correct.

2. the static analysis tool outputs, for each run, a certificate that certifies the
correctness of the results of that run. This certificate can be then verified by
a trusted tool (a theorem prover, a proof assistant, or by a dedicated checker
that has been proven correct by itself).

In the context of resource analysis, apart from our work [6–8,10] that we have
discussed in Sects. 2 and 3, which belongs to the second category, there are few
other works that also fall into these categories.

Blazy et al. [13] develop a tool for inferring loop-bound estimations for WCET
analysis that is implemented and formally verified in Coq, and integrated in the

34 E. Albert et al.

CompCert verified C compiler [25] to provide bounds for the generated assem-
bly programs. The corresponding automatically generated tool is shown to be
competitive with other loop-bound inference tools that are based on the same
underlying theory.

Carbonneaux et al. [17] present a framework for amortized-based resource
usage analysis with emphasis on easing the process of certification. The frame-
work is instantiated in a resource usage analysis tool for integer programs that
generates Coq objects as certificates, i.e., for each run it produces a correspond-
ing Coq file (with theorems and code stating the correctness of the results) that
can be verified by checking its validity using Coq.

Carbonneaux et al. [16] use Coq and the verified CompCert C compiler [25]
to derive stack bounds for assembly code that are verified by Coq. The analysis
itself is developed for C programs, but the overall framework also verifies that
the results are valid for the generated assembly program.

There has been also interest in verified tools in the context of termination
analysis, which is very related to resource usage analysis. Probably the most
well-known is the CeTA checker [32], which is automatically generated using
Isabelle/HOL, and can be used to check the correctness of termination proofs
for term rewrite systems. Nowadays, several termination analysis tools for term
rewrite systems generate certificates that can be checked by CeTA. It has also
been used by Brockschmidt et al. [15] for certifying termination proofs of inte-
ger transition systems. Later, CeTA was extended to support certification of
complexity proofs for term rewrite systems [11] as well.

5 Conclusions

The use of static analysis tools in the software development process helps pro-
grammers to spot runtime errors and unexpected behaviours that are difficult to
find manually, and thus to deliver error-free software. However, while these tools
are typically based on solid and correct mathematical principles, the implemen-
tations can be buggy. Therefore, we need to verify the correctness of the imple-
mentations to increase the trust of end-users in these tools. This is particularly
important in contexts where erroneous results might have drastic consequences,
e.g., in safety critical systems. In this invited paper, we have described our col-
laboration with Reiner and his team along this research line, that spans over
4 different joint papers since 2011 and concentrated on verifying the resource
usage bounds inferred by COSTA using KeY.

Our collaboration started by handling sequential Java programs [5–7], how-
ever, instead of verifying the upper bounds directly, we actually verify all inter-
mediate information inferred by COSTA to compute the corresponding upper
bounds: ranking functions, invariants, size relations, and structural heap prop-
erties such as acyclicity and disjointness. The workflow is as follows: COSTA
annotates the Java programs that it analyses by corresponding JML annota-
tions that include the intermediate information, and then KeY verifies their
correctness. Apart from modifying COSTA to output these annotations, KeY

When COSTA Met KeY: Verified Cost Bounds 35

was also modified to support some new annotations that refer to structural heap
properties that were not supported before.

In a recent collaboration [10], these ideas were generalized for verifying
resource usage bounds of abstract programs. These are programs containing
an abstract context represented by placeholder symbols, and they are used, for
example, to analyze program transformation techniques, e.g., the effect of a
transformation on the resource usage. In this case COSTA was extended to han-
dle such abstract programs, and to output annotations similar to the ones used
for Java programs, but, in addition, they include a cost invariant that helps KeY
to actually verify the bounds directly. KeY was also modified to support these
cost invariants annotations.

For future work, we would like to extend our work to support more complex
programs such as recursive methods and non-integer numerical data, as well
as to consider other programming paradigms such as concurrent programs. We
note that we already have a resource usage analyser [1], with a workflow that is
very similar to that of COSTA, for the actor-based concurrent modeling language
ABS [24], and that KeY has also been generalized to support ABS programs [19].

References

1. Albert, E., et al.: SACO: static analyzer for concurrent objects. In: Ábrahám,
E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 562–567. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8 46

2. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Closed-form upper bounds in static
cost analysis. J. Autom. Reason. 46(2), 161–203 (2011)

3. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost analysis of
Java bytecode. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 157–172.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71316-6 12

4. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: COSTA: design and
implementation of a cost and termination analyzer for Java bytecode. In: de Boer,
F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007. LNCS,
vol. 5382, pp. 113–132. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-92188-2 5

5. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost analysis of
object-oriented bytecode programs. Theor. Comput. Sci. 413(1), 142–159 (2012)

6. Albert, E., Bubel, R., Genaim, S., Hähnle, R., Puebla, G., Román-Dı́ez, G.: Veri-
fied resource guarantees using COSTA and key. In: Proceedings of the 2011 ACM
SIGPLAN Workshop on Partial Evaluation and Program Manipulation, PEPM
2011, pp. 73–76. ACM (2011)

7. Albert, E., Bubel, R., Genaim, S., Hähnle, R., Puebla, G., Román-Dı́ez, G.: A
formal verification framework for static analysis - as well as its instantiation to
the resource analyzer COSTA and formal verification tool key. Softw. Syst. Model.
15(4), 987–1012 (2016)

8. Albert, E., Bubel, R., Genaim, S., Hähnle, R., Román-Dı́ez, G.: Verified resource
guarantees for heap manipulating programs. In: de Lara, J., Zisman, A. (eds.)
FASE 2012. LNCS, vol. 7212, pp. 130–145. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28872-2 10

https://doi.org/10.1007/978-3-642-54862-8_46
https://doi.org/10.1007/978-3-540-71316-6_12
https://doi.org/10.1007/978-3-540-92188-2_5
https://doi.org/10.1007/978-3-540-92188-2_5
https://doi.org/10.1007/978-3-642-28872-2_10
https://doi.org/10.1007/978-3-642-28872-2_10

36 E. Albert et al.

9. Albert, E., Genaim, S., Masud, A.N.: On the inference of resource usage upper and
lower bounds. ACM Trans. Comput. Log. 14(3), 22:1–22:35 (2013)

10. Albert, E., Hähnle, R., Merayo, A., Steinhöfel, D.: Certified abstract cost analysis.
In: FASE 2021. LNCS, vol. 12649, pp. 24–45. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-71500-7 2

11. Avanzini, M., Sternagel, C., Thiemann, R.: Certification of complexity proofs using
CeTA. In: 26th International Conference on Rewriting Techniques and Applica-
tions, RTA 2015. LIPIcs, vol. 36, pp. 23–39. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2015)

12. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware. The KeY Approach. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-69061-0

13. Blazy, S., Maroneze, A., Pichardie, D.: Formal verification of loop bound estimation
for WCET analysis. In: Cohen, E., Rybalchenko, A. (eds.) VSTTE 2013. LNCS,
vol. 8164, pp. 281–303. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-54108-7 15

14. Brockschmidt, M., Emmes, F., Falke, S., Fuhs, C., Giesl, J.: Analyzing runtime and
size complexity of integer programs. ACM Trans. Program. Lang. Syst. 38(4):13:1–
13:50 (2016)

15. Brockschmidt, M., Joosten, S.J.C., Thiemann, R., Yamada, A.: Certifying safety
and termination proofs for integer transition systems. In: de Moura, L. (ed.) CADE
2017. LNCS (LNAI), vol. 10395, pp. 454–471. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-63046-5 28

16. Carbonneaux, Q., Hoffmann, J., Ramananandro, T., Shao, Z.: End-to-end veri-
fication of stack-space bounds for C programs. In: ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2014, pp. 270–281.
ACM (2014)

17. Carbonneaux, Q., Hoffmann, J., Reps, T., Shao, Z.: Automated resource analysis
with coq proof objects. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS,
vol. 10427, pp. 64–85. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63390-9 4

18. Coq Development Team: The Coq Proof Assistant Reference Manual - Version 8.7
(2018)

19. Din, C.C., Bubel, R., Hähnle, R.: KeY-ABS: a deductive verification tool for the
concurrent modelling language ABS. In: Felty, A.P., Middeldorp, A. (eds.) CADE
2015. LNCS (LNAI), vol. 9195, pp. 517–526. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21401-6 35

20. Flores-Montoya, A.: Upper and lower amortized cost bounds of programs expressed
as cost relations. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.)
FM 2016. LNCS, vol. 9995, pp. 254–273. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-48989-6 16

21. Frohn, F., Giesl, J.: Complexity analysis for Java with AProVE. In: Polikarpova,
N., Schneider, S. (eds.) IFM 2017. LNCS, vol. 10510, pp. 85–101. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66845-1 6

22. Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate amortized resource analysis.
ACM Trans. Program. Lang. Syst. 34(3), 14:1–14:62 (2012)

23. Hoffmann, J., Shao, Z.: Automatic static cost analysis for parallel programs. In:
Vitek, J. (ed.) ESOP 2015. LNCS, vol. 9032, pp. 132–157. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46669-8 6

https://doi.org/10.1007/978-3-030-71500-7_2
https://doi.org/10.1007/978-3-030-71500-7_2
https://doi.org/10.1007/978-3-540-69061-0
https://doi.org/10.1007/978-3-642-54108-7_15
https://doi.org/10.1007/978-3-642-54108-7_15
https://doi.org/10.1007/978-3-319-63046-5_28
https://doi.org/10.1007/978-3-319-63046-5_28
https://doi.org/10.1007/978-3-319-63390-9_4
https://doi.org/10.1007/978-3-319-63390-9_4
https://doi.org/10.1007/978-3-319-21401-6_35
https://doi.org/10.1007/978-3-319-21401-6_35
https://doi.org/10.1007/978-3-319-48989-6_16
https://doi.org/10.1007/978-3-319-48989-6_16
https://doi.org/10.1007/978-3-319-66845-1_6
https://doi.org/10.1007/978-3-662-46669-8_6

When COSTA Met KeY: Verified Cost Bounds 37

24. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6 8

25. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009)

26. Meyer, F., Hark, M., Giesl, J.: Inferring expected runtimes of probabilistic integer
programs using expected sizes. In: TACAS 2021. LNCS, vol. 12651, pp. 250–269.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72016-2 14

27. Ngo, V.C., Carbonneaux, Q., Hoffmann, J.: Bounded expectations: resource anal-
ysis for probabilistic programs. In: Proceedings of the 39th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI 2018, pp.
496–512. ACM (2018)

28. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL - A Proof Assistant
for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45949-9

29. Sinn, M., Zuleger, F., Veith, H.: Complexity and resource bound analysis of imper-
ative programs using difference constraints. J. Autom. Reason. 59(1), 3–45 (2017)

30. Spoto, F., Mesnard, F., Payet, É.: A termination analyzer for java bytecode based
on path-length. ACM Trans. Program. Lang. Syst. 32(3), 8:1–8:70 (2010)

31. Steinhöfel, D., Hähnle, R.: Abstract execution. In: ter Beek, M.H., McIver, A.,
Oliveira, J.N. (eds.) FM 2019. LNCS, vol. 11800, pp. 319–336. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-30942-8 20

32. Thiemann, R., Sternagel, C.: Certification of termination proofs using CeTA. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 452–468. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-03359-9 31

33. Wegbreit, B.: Mechanical program analysis. Commun. ACM 18(9), 528–539 (1975)

https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.1007/978-3-030-72016-2_14
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-030-30942-8_20
https://doi.org/10.1007/978-3-642-03359-9_31
https://doi.org/10.1007/978-3-642-03359-9_31

Lifelong Learning of Reactive Systems
in Practice

Alexander Bainczyk(B), Bernhard Steffen(B), and Falk Howar(B)

TU Dortmund University, 44227 Dortmund, Germany
{alexander.bainczyk,bernhard.steffen,falk.howar}@tu-dortmund.de

http://ls5-www.cs.tu-dortmund.de

Abstract. This paper presents our lifelong learning framework for con-
tinuous quality control. The framework integrates automata learning,
model checking, and monitoring into a six-phase continuous improvement
cycle which is designed to capture entire system life-cycles. The technical
backbone of our framework is ALEX, an open source, web-based learning
tool for defining adequate test blocks, as well as for serving as test execu-
tion environment and as platform for learning Mealy machines. Keys to
the industrial success of our framework are a) the guarantee that the level
of quality can only increase when using our framework, b) the continu-
ous improvement of originally customer-provided (regression) test suites,
c) the maintenance of achieved quality levels even across system changes,
and d) the visualization of system changes using automatically generated
difference trees and difference automata. All this is illustrated using an
adaptive cruise control system (ACC) that has been implemented in a
one year students project.

Keywords: Automata Learning · Learning-Based Testing · Black-Box
Testing · Adaptive Cruise Control

1 Introduction

After decades of research and practice, quality assurance is still a bottleneck of
software and system development: to this day, e.g., formal methods for system
design are not used consistently, formal verification techniques are mostly used
in a few safety-critical domains, and even light-weight techniques as integration
testing and system-level testing are not done in a principled and automated way
in many industrial contexts. The problem is inherently so hard that, despite
substantial improvements, we still lack techniques and tools (e.g., for defining
test oracles) and automated support (e.g., for test case generation) in order to
control the exploding costs of quality assurance. Reiner Hähnle has dedicated his
academic work to mitigating this situation through the development of formal
methods and the implementation of these methods in robust tools that can be
used by software engineers to design, verify, test, and analyze software systems:
His group e.g. is one of the groups developing and maintaining the famous KeY
tool for the deductive verification for Java programs, based on dynamic logic [5].

c© Springer Nature Switzerland AG 2022
W. Ahrendt et al. (Eds.): The Logic of Software. A Tasting Menu of Formal Methods,
LNCS 13360, pp. 38–53, 2022.
https://doi.org/10.1007/978-3-031-08166-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08166-8_3&domain=pdf
https://doi.org/10.1007/978-3-031-08166-8_3

Lifelong Learning of Reactive Systems in Practice 39

Two particularly practical applications of KeY are the Symbolic Execution De-
bugger (SED) and the application of KeY for the automated generation of unit
tests from proofs [11]. The EU FP7 project HATS [13], short for Highly Adapt-
able and Trustworthy Software using Formal Models, which Reiner coordinated,
aimed at developing a formal underpinning for the design and development of
software product families [27]. The key technical result of the project was the
Abstract Behavioral Specification language [20] for the precise description of
features and components in software product families. Reiner has facilitated
the exchange between the software verification and machine learning communi-
ties through projects and workshops, aiming at the development of innovative
combinations of knowledge inference and formal verification, providing contexts
for the work of the authors of this paper: He served as the coordinator of task
forces in the Eternals (Trustworthy Eternal Systems via Evolving Software, Data
and Knowledge) EU FP7 coordinating action [14], organized an ESF Workshop
on Combining Learning and Symbolic Analysis for Software Documentation and
Mastering Change, and was co-organizer of the workshops SARS 2011 and MLSC
2011, held under the auspices of ISoLA 2011 in Vienna [15], as well as a Dagstuhl
seminar on Machine Learning for Dynamic Software Analysis: Potentials and
Limits [6].

In this paper, on the occasion of Reiner Hähnle’s 60th birthday, we present
the results obtained in a common DFG project “Constraint-Based Operational
Consistency of Evolving Software Systems (COCoS)” whose initial results were
reported in [16] and are now extended to our lifelong learning framework for
continuous quality control that combines automata learning, model checking,
and monitoring in an integrated fashion. Characteristic for this framework is its
six-phase continuous improvement cycle displayed in Fig. 1 and discussed in
Sect. 4 and Sect. 5. The technical backbone of our framework is ALEX, an
open source, web-based learning tool for defining adequate test blocks, as well
as for serving as test execution environment and as platform for learning Mealy
machines. Our industrial partners particularly value the following four aspects
of our approach:

a) We can guarantee that the level of quality can only increase, a property
required for systems that need certification. This is achieved by using cus-
tomer’s entire test suite as a seed for our learning process.

b) We continuously improve the originally customer-provided (regression) test
suite. Not only is the test suite refined (redundant tests are eliminated and
essential new ones are added), but it is also automatically updated in re-
sponse to system changes.

c) We continuously maintain the achieved quality level even across system
changes by using the newest (regression) test suite as a seed for re-learning.

d) We monitor the impact of system changes using automatically generated
difference trees and difference automata (cf. Sect. 5). This does not only
allow one to check whether the intended fix really works, but it also reveals
unintended side effects of a fix.

40 A. Bainczyk et al.

We illustrate the approach using an adaptive cruise control system (ACC) that
has been implemented in a one year student project.

Outline. We start by giving an overview of related work in Sect. 2 and con-
tinue with background information on learning-based testing in Sect. 3. After
that, the lifelong learning cycle is presented on a conceptual basis in Sect. 4
and in Sect. 5, in which we demonstrate its facets on an simulator for an
adaptive cruise control system. Finally, in Sect. 6, the presented approaches
are evaluated and an outlook on future work is provided.

2 Related Work

Automata learning [2] is a technique that deals with inferring automaton models
from formal languages that has been applied to a lot of real world applications
by now, for example in the domain of reactive systems such as web applica-
tions [4,26]. A widely adapted application of learned automaton models is the
generation of test suites for regression testing [9] and conformance testing [8].

Learning reactive black-box systems is a task in which we continuously search
for counterexamples to refine the model representing the system. A feasible ap-
proach for this is given by run-time monitoring [7] where the system under learn-
ing is observed and observations are traced back to states of the inferred model.
In case of a mismatch between observed and learned behavior, the trace is trans-
formed into a counterexample which triggers the refinement of the model. Other
approaches deal with automata learning during system evolution to continuously
ensure the quality of the system. Active continuous quality control [29] aims to
learn the system in each iteration and to verify that it changed in a desired
way. Therefore, a stable alphabet abstraction is required and intended changes
are formulated using temporal logic and verified by model checkers whenever
applicable.

In this paper, we describe a continuous cycle that takes up the idea of the
never-stop learning approach and tools such as LBTest [23] and extends it in a
way that also takes a changing system into account. Further, we eliminate the
need to learn the evolved system for verification purposes of desired changes
by learning the difference via automata learning directly. Lastly, we introduce a
stable alphabet abstraction and use it for generating regression test suites from
inferred models that enables us to find mismatches faster in proceeding learning
iterations. Closest to our work is a study by Karl Meinke [24] in which learning-
based testing and model checking are used for testing the safety of a platoon of
vehicles in a simulation environment.

3 Preliminaries

Learning-based testing is a technique that combines active automata learning,
model-based testing and model checking. Given an unknown formal language L
over some alphabet Σ, active automata learning aims to inferring an automaton

Lifelong Learning of Reactive Systems in Practice 41

model of L [2]. This practice has been adapted for inferring models of reactive
systems [28] which can be represented as Mealy machines with an input alphabet
Σ and an output alphabet Ω.

Active automata learning follows the minimally adequate teacher (MAT)
model and is a continuous cycle of model inference and model refinement by
counterexamples. This cycle, which typically terminates if no mismatches be-
tween the underlying system and its conjured model can be found, contains two
types of queries:

Membership Query. A learner poses membership queries, i.e. words σ ∈ Σ∗,
to the system under learning, and records its outputs ω ∈ Ω∗ until enough
information is gathered to build a model Mhyp, also called hypothesis, of the
system.

Equivalence Query. Given a reactive black-box system SUL and a learned
model Mhyp, an equivalence oracle is asked if SUL ≡ Mhyp, i.e. if the output
behavior is the same for all words σ ∈ Σ∗. In the ideal case, the oracle
would simple answer with ‘yes’ or ‘no’ and in the latter case, provide a
counterexample which triggers the model refinement. Because of the nature
of black-box systems, these type of queries can only be approximated, e.g.
by random testing.

When dealing with real systems, we require tools such as LearnLib [19,25] or
Tomte [1] that allow us to build a bridge between the formal level of automata
learning and the practical level of real world systems. LearnLib, for example,
implements a mapper concept that maps abstract inputs ∈ Σ to concrete sys-
tem actions as well as it interprets system outputs and maps them to symbols
∈ Ω. Not only that, but the framework also offers various automata learning
algorithms and strategies for approximating equivalence queries.

4 Lifelong Learning in Practice

Lifelong learning constitutes a continuous improvement cycle Fig. 1 which
consists of the following six mutually supportive phases whose impact will be il-
lustrated in Sect. 5 along the evolution of the ACC system, which is symbolized
in Fig. 1 by the car in the center.

4.1 Phase 1

Phase 1 is the initialization phase where a first model is learned from scratch,
or, as often in established settings where lifelong learning is later introduced,
using a set of given test cases as an initial seed for learning. In later stages of the
lifelong learning cycle, after a system repair, this phase exploits the regression
suite generated from the model which has been learned before the system was
repaired.

The quality of the learned model depends on the employed equivalence oracle
(cf. Sect. 3). In Sect. 5, we use simple random testing for this purpose. Other
methods, like the W-Method [9] can also be used but are often very expensive.

42 A. Bainczyk et al.

Hypothesis

Mismatch

Model-
Checker

Process
and Refine

Repair/
Evolve

Analyze

System
Error

Regression
Test Suite

Generate

Re-learning

Monitor
Observe

Generate

Proper es
Hold

Property
Violated

1
2

3

4

5

6

6

Fig. 1. Lifelong Learning Cycle

4.2 Phase 2

Phase 2 model checks the learned model for essential behavior properties that
have been specified in a temporal logic. Found property violations give immediate
rise to either a counterexample for improving the hypothesis model, or they
reveal a true system error. This interplay between model checking and learning
is known as black-box checking [10].

4.3 Phase 3

Phase 3 generates a regression suite from the learned model, or more precisely
from the decision tree that serves as the central data structure of the used learn-
ing algorithms, that guarantees state coverage and is sufficient to reconstruct
the learned model just by analyzing the successors for the states.

Already improving and later maintaining the regression suite during the sys-
tem evolution this way was considered very valuable by our industrial partners.
In Sect. 5, we use the size of the generated test suites as an indication for the
impact of the individual steps of the lifelong learning cycle: The more tests we
generate from learned models, the more accurate the initial models of subsequent
system iterations will get (c.f. Table 1).

4.4 Phase 4

Phase 4 uses a monitor generated from the learned model to check for each indi-
vidual step of the running system whether it conforms to the learned model, and

Lifelong Learning of Reactive Systems in Practice 43

STANDBY

CCDC

Fig. 2. Simplified state machine of an ACC system

thereby, due to the previous model checking, to all essential system properties.
Thus, it serves as a run-time verification process, which, at the same time can
be seen as a lifelong equivalence query: found behavioral discrepancies between
the system and the hypothesis model provide, like properties violation that are
detected in phase 2, either a counterexample for improving the hypothesis model
or they reveal a real system error.

4.5 Phase 5

Phase 5 deals with the case that the found discrepancy was identified as a coun-
terexample. It uses the TTT algorithm to refine the hypothesis accordingly, thus
closing the continuous improvement cycle.

4.6 Phase 6

Phase 6 can be regarded as a ‘successful’ case: a true bug has been found. The
bug has to be repaired before the lifelong learning cycle can be started again. As
mentioned above, in contrast to the initial learning phase, restarting the learning
process after repair strongly benefits from the regression suite generated from
the original system.

The following section illustrates our lifelong learning approach using an adap-
tive cruise control system as an example.

5 Learning an Adaptive Cruise Control System

Adaptive Cruise Control (ACC) systems control the velocity of a vehicle while
automatically maintaining a safe distance to vehicles in front. The basic behavior
of an ACC is sketched in Fig. 2. In STANDBY mode, the system is disabled
and the driver has full control over the velocity vego [m/s]1 of the ego vehicle
Vego and thus has responsibility for the head distance h [m] to a vehicle Vobs

driving with velocity vobs [m/s] in front of the ego vehicle and in the same lane.

1 [m/s] refers to the unit of meters per second.

44 A. Bainczyk et al.

Fig. 3. GUI of the ACC simulator (Color figure online)

Once the driver enables the system at a velocity vdes [m/s], it switches to the
cruise control (CC) mode where the velocity of Vego is maintained automatically
until the distance to Vobs becomes relevant, in which case the system switches
to the distance control (DC) mode which is designed to avoid crashes by auto-
matically reducing vego to maintain a safe distance. In case Vobs switches lanes
or increases its velocity again, Vego speeds up until vdes is reached and switches
back to the CC mode. In both modes, CC and DC, the ACC system is disabled
whenever the driver uses the break pedal. We refer the reader to ISO norm 15622
for detailed technical definitions and requirements on the behavior of an ACC.2

We illustrate our lifelong learning approach using an ACC system that has
been developed by students during a one year project in which the students de-
veloped multiple domain-specific languages for modeling control systems, formal
requirements, and test scenarios. Beside the system itself, which comes with a
Java API, the students also developed a simulator with a graphical user inter-
face which is displayed in Fig. 3. The simulator can be fed with scenarios that
define the initial distance of Vego to Vobs as well as their velocities and at which
point the ACC system is being enabled. By offering slide controls for the gas
and break pedal of Vego the user of the simulator can manipulate the behavior
of the car and thereby observe how the ACC system acts in different situations.
In addition, the simulator constantly monitors the current situation by check-
ing the system state against nine constraint rules, whose respective status is
displayed in nine colored tiles. For example, the monitor “R6” observes if the
ACC system will be disabled once the driver hits the break pedal. Initially, all
tiles are colored yellow, but as soon as the monitored situation occurs and the

2 c.f. https://www.iso.org/standard/71515.html.

https://www.iso.org/standard/71515.html

Lifelong Learning of Reactive Systems in Practice 45

constraint is met, the corresponding tile turns green, otherwise it turns red. We
use the Java API of the ACC system to learn its behavior in terms of reactions
to API-based stimulation.

5.1 The Learning Setup

For learning the ACC system, we use the tool ALEX3 [3]. ALEX is an extension
of LearnLib4 [19] that allows users to model and execute learning experiments
for web applications via a web interface. The result of a learning experiment
with ALEX is a Mealy machine which, in our example, models the behavior of
the ACC system.

ALEX is designed to access the system under learning via an HTTP-based
interface that makes the ACC API available over the web. The corresponding
interface for the ACC system also implements the functionality of a mapper [21]
that maps abstract membership queries produced by active learning algorithms
to concrete system inputs and maps the output to such a query accordingly. For
example, the input symbol Enable ∈ Σ is mapped to an HTTP POST request
to the address

http://localhost:8080/acc/enable

which in turn calls the method ACC::enable of the Java API, which enables
the ACC system. Additionally, it returns the current state of the system given a
specific input as a string representation. The input alphabet Σ that we use for
the learning experiments consists of the following eleven symbols:

Enable, Disable
Enable or disable the ACC system.

Break, Release Break
Hit or release the break pedal, respectively. Since we discretize the system
and are only interested in its internal states, finer granular division of the
breaking process is omitted. With these symbols, the transitions from CC
and DC to STANDBY are triggered.

Drive {60, 80, 120, 150}
Setting the velocity vego to a concrete value ∈ {60, 80, 120, 150} kmph allows
us to distinguish the essential internal state transitions of the ACC simulator.

Add Vehicle {Slow, Fast}
Simulate the event that another vehicle Vobs is in front of Vego. Since the
system lets us set the velocity of Vobs only relatively to Vego, it is enough for
us to cover the situations that Vobs is slower than or as fast as Vego. The case
that Vobs drives faster than Vego is captured by the final alphabet symbol
below.

Remove Vehicle
Simulate the event that Vobs switches lanes or accelerates to a velocity greater
than vdes.

3 https://learnlib.github.io/alex/.
4 https://github.com/Learnlib/learnlib.

https://learnlib.github.io/alex/
https://github.com/Learnlib/learnlib

46 A. Bainczyk et al.

Table 1. Actions of the lifelong learning cycle performed on the ACC system

Step Model states Test cases Action

First cycle (Broken ACC)

0 - 5 Learn

1 15 5 Generate test suite

2 15 29 Equivalence test (random)

3 86 29 Generate test suite

4 86 322 Model checking

Second cycle (Fixed ACC)

5 - 322 Learn

6 81 322 Generate test suite

7 81 292 Equivalence test (random)

8 88 292 Generate test suite

9 88 335 Model checking

10 88 335 Monitoring

The output alphabet consists of the states the ACC system can assume together
with a boolean flag warn that is true if and only if the distance between Vobs

and Vego is insufficient for the current speed, i.e.,

Ω = {STANDBY, STANDBY:warn, CC, CC:warn, DC, DC:warn}.

As it can be seen in Fig. 4, ALEX presents outputs of the transition of the
Mealy machine as “Ok (ω ∈ Ω)” in order to explicitly indicate that the transition
has been successful.

This learning alphabet setup is sufficient for our illustration. Please note,
however, that ALEX allows one to easily increase the learning alphabet even
during a running learning experiment.

5.2 The Iterative Learning Process

For our industrial partners it was important that our lifelong learning cycle
can start with a given set of existing test cases, in order to make sure that a
certain testing level is guaranteed. For our ACC study we therefore start with
five initially given test cases modeled as sequences of pairs of (σ ∈ Σ,ω ∈ Ω)
where σ is the input to the system and ω the corresponding expected output.

Intuitively, the list of inputs of a test form a membership query and we define
a test as passed if the system produces the expected outputs for each symbol of
the test. Please note that it is important for our lifelong learning approach that
the modeling of system tests and the learning process use the same underlying
alphabet.

Table 1 summarizes our overall lifelong learning experiment. The numbers
in each row concern the input setting for the actions mentioned in the fourth

Lifelong Learning of Reactive Systems in Practice 47

Fig. 4. Mealy machine of the ACC system in step 1 (cf. Table 1)

column. Applying these actions leads to setups with the numbers listed in the
next row.

Our initial setting simply consists of the five customer-provided test cases.
In the first step, using TTT [18], the current state-of-the-art learning algorithm,
these five test cases are automatically complemented with additional test cases
generated from the algorithm itself during the learning process. These test cases
are required to obtain a consistent and deterministic Mealy machine which, in
this case, lead to an initial model with 15 states (cf. Fig. 4).

In a second step one can generate a regression suite from this 15 state Mealy
machine which is sufficient to guarantee state coverage for the Mealy machine
and to regain the learned Mealy machine from scratch again. This is achieved
using the discrimination tree data structure [22] that is used by the TTT algo-
rithm internally to store observations in a redundancy-free fashion. Industrial
partners value these regression suites as they allow them to perform their usual
regression testing without requiring any learning technology. Still, they benefit
from our technology because the generated regression suite of, in this concrete
case 29 test cases, guarantees a much better quality.

In the third step, we employed an equivalence oracle based on random testing
to refine the learned hypothesis model. This resulted in the detection of 71 more
states.

The corresponding regression suite generated during the fourth step already
results in 322 test cases, and therefore is in a much better basis for regression
testing.

Model checking the 86 state Mealy machine reveals that an essential property
of an ACC, which has been specified in temporal logic once and for all, is violated:
Whenever Vego is in DC mode and Vobs disappears, Vego should switch back to
CC mode, meaning that it should stop accelerating as soon as the set velocity
is reached.

48 A. Bainczyk et al.

In order to verify that this property violation of the model is indeed an error
of the ACC system, we have to test the corresponding error trace on the ACC
system. If the ACC system behaves correctly, the error trace can be used as
a counterexample to refine the hypothesis model. Otherwise, the ACC system
needs to be corrected.

In our case, the latter has been true and the ACC has to be corrected. After
the correction, the lifelong learning process has to be restarted, as the learned
model can no longer be used without potentially violating a central invariant
of automata learning: the number of state of the hypothesis model is not larger
than the number of states of the system under learning. This underlines the
importance of the regression suite which can nicely be used as initial test suite
for re-learning. Typically, the resulting updated models are of a similar quality
as the models for the ACC before their repair.

In this case this means that we first have to learn a hypothesis model of
the corrected ACC on the basis of the 322 test cases. In our case this results in
a Mealy machine with 81 states. Generating the corresponding regression suite
shows that the test suite shrinks. 30 test cases became irrelevant through the
correction. The subsequent steps sketched in Table 1 are as before. Only the
final model checking in step 9 is this time successful. This indicates that the
ACC meets its essential requirements and may be put to ‘production’ mode, of
course, according to our philosophy of lifelong learning, under the control of an
accordingly generated monitor.

In the tenth and final step we use a monitor which can be automatically
generated form the learned model for run-time verification. In our experiment,
this leads to the detection of a discrepancy between the ACC and the learned
hypothesis: If the vehicle in fronts reduces its velocity after disabling and re-
enabling the ACC, the system switches directly to the DC mode although the
model reads that it stays in CC mode. As the observed behavior is desired, we
have found a counterexample that allows us to refine the hypothesis model. The
corresponding TTT application delivers a 88 state Mealy machine with which a
new cycle could continue, although we end the demonstration at this point.

5.3 Controlling the Evolution

Bug fixing often results in new problems. Thus, it is desirable to control the
effect of a change at the behavioral level, i.e., at the abstract level given by the
input output alphabets. Our lifelong learning approach supports the comparison
of a system and its update in two ways (cf. Fig. 5):

First, in terms of a difference tree displaying all the test sequences of the
two corresponding regression suites that produce a different output for the other
system. Figure 6 shows such a difference tree where the suffixes after the first
discrepancy are pruned. As we use the entire regression suite of the original
Mealy as a ‘seed’ for the initial learning step, we can collect the test cases of
that regression suite where two Mealy machines differ during this very learning
step. In contrast, the test cases that are newly entered during the learning of
the corrected systems have to be checked for the original system.

Lifelong Learning of Reactive Systems in Practice 49

Repair/
evolve

Generate Generate

Learning Re-Learning

Difference Tree

Difference
Automaton

Learn

Calculate

Fig. 5. Views on the difference between iterations

Fig. 6. Difference tree with pruned suffixes

Second, in terms of a difference automaton that consists of all sequences
that lead to a behavioral difference in the two Mealy machines. Figure 7 shows
the difference automaton for the 86-state Mealy machine before the repair and
the 88-state Mealy machine after the repair. To indicate the additional power
of difference automata we colored the transitions that are not covered by the
difference tree in red. In fact, there are 206 unvisited transition in this case.

Difference automata can be constructed in two ways:

– By means of a ‘product-like’ automata construction in case that both Mealy
machines are available, or

– by means of automata learning, where the corresponding mapper feeds both
systems with the same sequences, records the outputs of these sequences as
long as the outputs coincide, and interrupts the test case execution with
success (it found a discrepancy!) as soon as the outputs differ.

The advantage of the learning-based variant is that it can be applied be-
fore the corrected system has been learned. Combined with a guided learning
approach, where the system exploration prioritizes test cases according to their

50 A. Bainczyk et al.

Fig. 7. Superposition of the difference tree on the difference automaton (Color figure
online)

probability of touching affected system parts this allows one to obtain fast feed-
back about the impact of the implemented changes. This works the better the
smaller the system changes are. We therefore employ this strategy in our daily
system builds.

6 Conclusions and Future Work

We have presented our lifelong learning framework for continuous quality control
showing how it integrates automata learning, model checking, and monitoring
into a six-phase continuous improvement cycle that is designed to capture en-
tire system life-cycles. The individual phases are all fully automated, except for
the repairing process which requires manual work. In particular, phases 1, 2, 3
and 5 can be triggered by simply pushing a button in ALEX, our open source,
web-based learning tool. Based on this tool which allows us to define adequate
test blocks and which serves as test execution environment and as a platform for
learning Mealy machines, our framework guarantees that a) the level of quality
can only increase when using our framework, b) the originally customer-provided
(regression) test suite is continuously improved, c) the achieved quality levels are
maintained even across system changes, and that d) system changes can be vi-
sualized using automatically generated difference trees and difference automata.
All these features have been illustrated using an adaptive cruise control system
(ACC) that has been implemented in a one year student‘s project.

Currently, we are working on fully integrating our lifelong learning approach
into our DevOps-environment for daily system builds, in order to avoid the cur-
rently still quite high manual effort for resetting stages in case of errors etc.,
as well as for starting the tailored re-learning and rebuilding of the system. Be-
sides this mainly managerial automation, we also work on supporting semantic
aspects, like semi-automatically adapting the learning alphabets in the course
of evolution following the ideas of automated alphabet abstraction refinement
[17]. Finally, we are aiming at further optimizing the treatment of extremely

Lifelong Learning of Reactive Systems in Practice 51

long counterexamples as they arise when using monitoring as a means for coun-
terexample detection. The TTT algorithm used by ALEX is the best algorithm
when dealing with ‘classical’ Mealy machines. It can well deal with counterex-
amples whose lengths are in the thousands. For systems like the one for ACC
discussed in this paper, this carries quite far. Our most recent development indi-
cates that using procedural automata, this boundary of counterexample length
can be pushed forward by four to five orders of magnitude [12]. We are currently
investigating for which application domains the required procedural modeling
style is adequate.

Further, we proposed two approaches for the visualization of the difference
between the input-output behavior of two reactive systems. While the difference
tree that is described in Subsect. 5.3 requires that a formal model of both
systems exists, the difference automaton from Subsect. 5.3 can be inferred
without learning them in the first place. The advantage of learning the differ-
ence automaton becomes clear in Fig. 7. Here, we highlighted all transitions
of the difference automaton that have not been covered by the difference tree in
red, which amounts to a total of 206 unvisited transitions. Furthermore, the au-
tomaton can now again be used for model checking purposes to verify properties
of the delta and ensure that the system changed in the desired way.

References

1. Aarts, F., Heidarian, F., Kuppens, H., Olsen, P., Vaandrager, F.: Automata learn-
ing through counterexample guided abstraction refinement. In: Giannakopoulou,
D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 10–27. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32759-9 4

2. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987). https://doi.org/10.1016/0890-5401(87)90052-6

3. Bainczyk, A., Schieweck, A., Isberner, M., Margaria, T., Neubauer, J., Steffen,
B.: ALEX: mixed-mode learning of web applications at ease. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp. 655–671. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-47169-3 51

4. Bainczyk, A., Schieweck, A., Steffen, B., Howar, F.: Model-based testing without
models: the TodoMVC case study. In: Katoen, J.-P., Langerak, R., Rensink, A.
(eds.) ModelEd, TestEd, TrustEd. LNCS, vol. 10500, pp. 125–144. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-68270-9 7

5. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware. The KeY Approach - Foreword by K. Rustan M. Leino. LNCS (LNAI), vol.
4334. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-69061-0

6. Bennaceur, A., Giannakopoulou, D., Hähnle, R., Meinke, K.: Machine learning
for dynamic software analysis: potentials and limits (Dagstuhl seminar 16172).
Dagstuhl Rep. 6(4), 161–173 (2016). https://doi.org/10.4230/DagRep.6.4.161

7. Bertolino, A., Calabrò, A., Merten, M., Steffen, B.: Never-stop learning: continuous
validation of learned models for evolving systems through monitoring. ERCIM
News 2012 (2012)

https://doi.org/10.1007/978-3-642-32759-9_4
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1007/978-3-319-47169-3_51
https://doi.org/10.1007/978-3-319-68270-9_7
https://doi.org/10.1007/978-3-540-69061-0
https://doi.org/10.4230/DagRep.6.4.161

52 A. Bainczyk et al.

8. Chen, Y., Probert, R.L., Ural, H.: Model-based regression test suite genera-
tion using dependence analysis. In: Proceedings of the 3rd International Work-
shop on Advances in Model-Based Testing, A-MOST 2007, pp. 54–62. ACM,
New York (2007). https://doi.org/10.1145/1291535.1291541. http://doi.acm.org/
10.1145/1291535.1291541

9. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans.
Softw. Eng. SE-4(3), 178–187 (1978). https://doi.org/10.1109/TSE.1978.231496

10. Clarke, E.M., Jr., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cam-
bridge (1999)

11. Engel, C., Hähnle, R.: Generating unit tests from formal proofs. In: Gurevich, Y.,
Meyer, B. (eds.) TAP 2007. LNCS, vol. 4454, pp. 169–188. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73770-4 10

12. Frohme, M., Steffen, B.: Efficient never-stop context-free runtime verification
(2020, under submission)

13. Hähnle, R.: HATS: highly adaptable and trustworthy software using formal meth-
ods. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part II. LNCS, vol. 6416, pp.
3–8. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16561-0 2

14. Hähnle, R.: Task forces in the EternalS coordination action. In: Margaria, T., Stef-
fen, B. (eds.) ISoLA 2010, Part II. LNCS, vol. 6416, pp. 20–22. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-16561-0 6

15. Hähnle, R., Knoop, J., Margaria, T., Schreiner, D., Steffen, B. (eds.): ISoLA 2011.
CCIS, vol. 336. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
34781-8

16. Hähnle, R., Steffen, B.: Constraint-based behavioral consistency of evolving soft-
ware systems. In: Bennaceur, A., Hähnle, R., Meinke, K. (eds.) Machine Learning
for Dynamic Software Analysis: Potentials and Limits. LNCS, vol. 11026, pp. 205–
218. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96562-8 8

17. Howar, F., Steffen, B., Merten, M.: Automata learning with automated alphabet
abstraction refinement. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS,
vol. 6538, pp. 263–277. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-18275-4 19

18. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a redundancy-free app-
roach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV
2014. LNCS, vol. 8734, pp. 307–322. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11164-3 26

19. Isberner, M., Howar, F., Steffen, B.: The open-source LearnLib. In: Kroening, D.,
Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 487–495. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21690-4 32

20. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6 8

21. Jonsson, B.: Learning of automata models extended with data. In: Bernardo, M.,
Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 327–349. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-21455-4 10

22. Kearns, M.J., Vazirani, U.V.: An Introduction to Computational Learning Theory.
MIT Press, Cambridge (1994)

23. Meinke, K., Sindhu, M.A.: LBTest: a learning-based testing tool for reactive sys-
tems. In: 2013 IEEE Sixth International Conference on Software Testing, Verifi-
cation and Validation, pp. 447–454, March 2013. https://doi.org/10.1109/ICST.
2013.62

https://doi.org/10.1145/1291535.1291541
http://doi.acm.org/10.1145/1291535.1291541
http://doi.acm.org/10.1145/1291535.1291541
https://doi.org/10.1109/TSE.1978.231496
https://doi.org/10.1007/978-3-540-73770-4_10
https://doi.org/10.1007/978-3-642-16561-0_2
https://doi.org/10.1007/978-3-642-16561-0_6
https://doi.org/10.1007/978-3-642-34781-8
https://doi.org/10.1007/978-3-642-34781-8
https://doi.org/10.1007/978-3-319-96562-8_8
https://doi.org/10.1007/978-3-642-18275-4_19
https://doi.org/10.1007/978-3-642-18275-4_19
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.1007/978-3-642-21455-4_10
https://doi.org/10.1109/ICST.2013.62
https://doi.org/10.1109/ICST.2013.62

Lifelong Learning of Reactive Systems in Practice 53

24. Meinke, K.: Learning-based testing of cyber-physical systems-of-systems: a pla-
tooning study. In: Reinecke, P., Di Marco, A. (eds.) EPEW 2017. LNCS, vol.
10497, pp. 135–151. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66583-2 9

25. Merten, M., Steffen, B., Howar, F., Margaria, T.: Next generation LearnLib. In:
Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 220–223.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19835-9 18

26. Raffelt, H., Steffen, B., Margaria, T.: Dynamic testing via automata learning. In:
Yorav, K. (ed.) HVC 2007. LNCS, vol. 4899, pp. 136–152. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-77966-7 13

27. Schaefer, I., Hähnle, R.: Formal methods in software product line engineering.
Computer 44(2), 82–85 (2011). https://doi.org/10.1109/MC.2011.47

28. Steffen, B., Howar, F., Merten, M.: Introduction to active automata learning from
a practical perspective. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS,
vol. 6659, pp. 256–296. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-21455-4 8

29. Windmüller, S., Neubauer, J., Steffen, B., Howar, F., Bauer, O.: Active continuous
quality control. In: Proceedings of the 16th International ACM Sigsoft Symposium
on Component-based Software Engineering, CBSE 2013, pp. 111–120. ACM, New
York (2013). https://doi.org/10.1145/2465449.2465469

https://doi.org/10.1007/978-3-319-66583-2_9
https://doi.org/10.1007/978-3-319-66583-2_9
https://doi.org/10.1007/978-3-642-19835-9_18
https://doi.org/10.1007/978-3-540-77966-7_13
https://doi.org/10.1109/MC.2011.47
https://doi.org/10.1007/978-3-642-21455-4_8
https://doi.org/10.1007/978-3-642-21455-4_8
https://doi.org/10.1145/2465449.2465469

A Case Study in Information Flow
Refinement for Low Level Systems

Roberto Guanciale1, Christoph Baumann2, Pablo Buiras1(B), Mads Dam1,
and Hamed Nemati3,4

1 KTH Royal Institute of Technology, Stockholm, Sweden
{robertog,pablo,mfd}@kth.se

2 Ericsson Research Security, Kista, Sweden
christoph.baumann@ericsson.com

3 Stanford University, Stanford, USA
hnnemati@stanford.edu

4 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Abstract. In this work we employ information-flow-aware refinement to
study security properties of a separation kernel. We focus on refinements
that support changes in data representation and semantics, including the
addition of state variables that may induce new observational power or
side channels. We leverage an epistemic approach to ignorance-preserving
refinement where an abstract model is used as a specification of a sys-
tem’s permitted information flows that may include the declassification
of secret information. The core idea is to require that refinement steps
must not induce observer knowledge that is not already available in the
abstract model. In particular, we show that a simple key manager may
cause information leakage via a refinement that includes cache and timing
information. Finally, we show that deploying standard countermeasures
against cache-based timing channels regains ignorance preservation.

1 Introduction

The last decade has seen a number of formally verified separation kernels [1,18,
25], which can provide strong isolation among software components. Neverthe-
less, their resilience against sophisticated attacks that use low level microarchi-
tectural features [3,24,27,32–34,40] is not proven. For realistic microarchitec-
tures a monolithic analysis of kernel’s confidentiality properties is not feasible,
since this would require to take into account caches, multiple cores, pipelines,
buses, GPUs, devices, and so on. To cope with this complexity, a modular app-
roach based on some form of refinement [2] is essential, since it would allow to
handle different security threats at different abstraction levels. The main problem
is that standard refinements (e.g., trace inclusion) do not support confidentiality
properties [36]: the refined model may provide an observer with information of
the execution environment such as execution time or power consumption that
may introduce side channels.

c© Springer Nature Switzerland AG 2022
W. Ahrendt et al. (Eds.): The Logic of Software. A Tasting Menu of Formal Methods,
LNCS 13360, pp. 54–79, 2022.
https://doi.org/10.1007/978-3-031-08166-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08166-8_4&domain=pdf
https://doi.org/10.1007/978-3-031-08166-8_4

A Case Study in Information Flow Refinement for Low Level Systems 55

We have recently developed [11] a theory for secure refinement that supports
data refinement, i.e., changes in data representation, reducing nondeterminism
and underspecification, and adding state variables that may introduce discrimi-
nating power. The key idea is to use the abstract model as a specification of the
permitted information flow, and then to ensure that this flow is an upper bound
of the corresponding flow in the refined model. We achieve this using knowl-
edge in the sense of [20]. If the progression of observer knowledge on all refined
computations is the same or weaker than the one on corresponding abstract
computations then the refined model does not leak more information than the
abstract model, hence we say it is a Ignorance-Preserving Refinement, IPR.

Here we demonstrate our theory by analysing a provably secure low-level
system. The system consists of a kernel and processes that use different types of
communication, provide services to each other, and operate concurrently. Attack-
ers are compromised processes with unknown behaviour that attempt to acquire
secret information from the trusted victims.

For our case study, we formalize a machine with a flat memory. Since veri-
fying functional correctness of the kernel is out of our scope, we axiomatize the
expected kernel properties on the abstract model. In order to demonstrate the
notion of knowledge, we introduce a simple key manager, which is a process that
owns a secret key and allows a potentially malicious client (i.e., another process)
to obtain the key-dependent Message Authentication Code of input data.

The goal of IPR is to only protect secrets that are already represented at
abstract level, hence IPR does not imply noninterference preservation “out of the
box”: a concrete model may introduce new types of unrelated implementation
information that can be freely leaked. We illustrate the usage of IPR via a refined
model, where we add caches and timing information. The question we then need to
answer is if this refinement step can cause information to be leaked that would not
be possible in the abstract model. Unsurprisingly, given the many results on this
topic in the literature [21,40,44], we show that for the key manager the answer is
affirmative, due to timing differentials when caches are involved. We then demon-
strate that IPR is regained when a simple countermeasure is deployed.

In general, IPR is not sequentially composable, therefore some procedures are
secure only if they are executed once. In this paper we also show how sequential
compositionality for IPR can be achieved via a kind of relational Hoare logic [12]
lifted to refinements. We further apply our proposed solution to verify that IPR
is guaranteed when cache colouring [30] or constant time programming, both
standard countermeasures against cache-based timing channels, are deployed.

To make presentation easier to follow, we structure the paper by interleaving
the theoretical definitions and results of [11] with their application to the case
study. In particular, in Sect. 2 we introduce an abstract modeling framework
and the epistemic notions of knowledge and ignorance, which allow to formalize
the abstract information flows. Section 3 presents instantiation of the abstract
framework to our case study. In Sects. 4, 5 and 6 we present our account of
refinement and IPR and show the usage of IPR via a refined model. Sections 7
and 8 discuss our solution to make IPR sequentially composable and apply it to
some examples countermeasures against cache-based timing attacks. Finally, in
Sects. 9 and 10 we discuss related work and give our concluding remarks.

56 R. Guanciale et al.

2 Models, Knowledge, and Ignorance

The models we consider in this work are extended transition systems equipped
with a store and an observation function. A model M = (S0, S,→,
L,PId ,O,Obs) is a labeled transition system with a set of states S = Var → Val
that map variables from Var to values in Val ; S0 ⊆ S the set of initial states;
→ ⊆ S ×L×S the transition relation; O a set of observations, PId a set of pro-
cess, or observer id’s, and for each p ∈ PId an observation function Obsp : S → O
that returns the observations in O an observer can make in a given state.

We let s, s′ range over states, α, β range over observations and write s→αp→s′,
if Obsp(s′) = α and s → s′. A final state is any state s in which no transition
starts, i.e., for which no s′ exists such that s → s′. Observation functions Obsp
allow to encode both statically determined sets of variables observed by process
p and dynamically varying notions of observability.

In the context of a given transition system, a run ρ ∈ R(M) is a finite
sequence s0 · · · sn such that s0 ∈ S0 and si−1 → si for all i > 0 for which si
is defined. The i’th state of ρ, ρ(i), is si, the first (last) element of ρ is fst(ρ)
(lst(ρ)), |ρ| ∈ N is the length of ρ (i.e. number of states in the run), and ρ(: i) is
the prefix of ρ having length i. A complete run is one that cannot be extended,
i.e. there is no s such that ρ(|ρ| − 1) → s. In that case lst(ρ) = ρ(|ρ| − 1) is final.

The notions of observation trace, observation equivalence, and the epistemic
notions of knowledge and its dual, ignorance, are standard. First, two states s1,
s2 are observationally equivalent as seen by process p, s1 ∼p s2, if p has the
same observations in the two states, Obsp(s1) = Obsp(s2). We write 〈s〉p for
the equivalence class that contains s. An observation trace for p is the sequence
of observation of some run ρ, i.e. Obsp(ρ) = Obsp(ρ(0)) · · ·Obsp(ρ(|ρ| − 1)).
A complete trace is a trace of a complete run, and the runs ρ1 and ρ2 are p-
observation equivalent ρ1 ∼p ρ2, if p’s observations in ρ1 are the same as p’s
observations in ρ2, i.e. Obsp(ρ1) = Obsp(ρ2). To avoid clutter, we often omit the
“p”-subscript when understood from the context.

In the context of a given model M we view a property as a set φ ⊆ R(M),
namely the set of runs for which the property holds. This allows to define the
standard epistemic modality Kpφ of perfect recall knowledge and its De Morgan
dual Ipφ of “ignorance” on properties φ in the following way:

– ρ ∈ Kpφ, if for all ρ′ ∈ R(M), if ρ′ ∼p ρ then ρ′ ∈ φ.
– ρ ∈ Ipφ, if there is ρ′ ∈ φ such that ρ′ ∼p ρ.

In this paper we focus on confidentiality properties, i.e. observer ignorance
rather than knowledge.

The set Ipφ is the set of runs ρ that are “compatible” with some ρ′ in φ in
the sense that p cannot tell ρ′ from ρ. Thus, if φ holds for ρ′, for all p can tell
φ may hold for ρ as well. Accordingly, we call a set φ a p-ignorance set if φ is
closed under ∼p. The initial ignorance of a property φ is the set of initial states
of runs in Ipφ, i.e. I initp φ = {ρ′(0) | ρ′ ∈ Ipφ}.

If the transition relation is deterministic, for each initial state there is a
unique maximal run. We use the notation R(s) to identify the maximal run

A Case Study in Information Flow Refinement for Low Level Systems 57

starting from state s, and R(s, n) to identify the run starting from s and taking
exactly n steps. These definitions are extended pointwise to sets of states, so if S
is a set of states, then R(S) is the set of maximal runs starting from states in S,
and R(S, n) is the set of runs of length n starting from states in S. Notice that
for a deterministic system the standard notion of non-interference can directly
expressed in terms of initial ignorance:

Proposition 1. A system is non-interfering from m to n if for every pair
of runs ρ ∼p ρ′ ∈ R(S0,m) it holds that R(ρ′(0), n) ⊆ Ip(R(ρ(0), n)). A
deterministic system is non-interfering from m to n iff for all Ip(R(S0, n)) =
R(I initp (R(S0,m)), n).

That is, after m transitions from the initial state, a system does not leak infor-
mation for n − m transitions if the ignorance after n transitions is equal to the
runs obtained by staring from a state that was in the initial ignorance after m
transitions.

3 Case Study: Processor Model and Separation Kernel

We introduce the abstract processor model used in the paper, ignoring things like
caches and time related to the refined model introduced in Sect. 6. The example
is based on an operating system that allows processes {0, . . . , N} to execute on
a sequential processor, where process number 0 represents the kernel and others
are unprivileged processes.

A state of the abstract model is a total function s : Var → Val , where
Var = regs ∪mem, regs is the set of registers (including special purpose registers
that control memory protection, program counter, etc.), and mem is the set of
memory addresses.

The transition relation s
l−→ s′ is deterministic and represents the execution

of a single machine instruction. We annotate the transition system with label l
to capture the list of memory operations performed by the instruction. This list
includes all addresses that are involved in the elaboration of instructions such
as page tables and instruction memory. Operations (rd, a) and (wt, a) model the
reading and writing of address a respectively. We use R(l) and W (l) to extract
the set of read/written addresses.

The following notation allows us to abstract from the kernel, exposing com-
mon abstractions that depend on special purpose registers and the internal ker-
nel data structures. We use P (s) ∈ PId to identify the active process in s. The
kernel control’s memory resources allocation and configures the Memory Man-
agement Unit (MMU) accordingly. The sets W (s, p) ⊆ R(s, p) represent the sets
of addresses that process p is allowed to write/read. Figure 1 shows an example
with three user processes.

58 R. Guanciale et al.

Fig. 1. Access permissions of eight memory pages for three processes. Gray boxes
represent addresses that are in W and white boxes represent addresses that are only
in R. Processes p1 and p2 can directly communicate using addresses in page 4, which
can be written by both processes. Page 3 provides a unidirectional channel, since it
cannot be modified by p2. Page 2 is readable by both processes and can be used to store
shared libraries. Page tables affect the process behaviour and should not be modifiable
by unprivileged processes, therefore they cannot be in {3, 4, 5, 8}. Process p3 is isolated
and its communication with p2 must be mediated by the kernel, which may decide to
copy data from/to {7, 8} or change access permissions.

We make some general assumptions that reflect the above intuition. First,
processes cannot violate MMU settings, and they are unable to escalate their
access privileges without mediation of the kernel:

Kernel Assumption KA 1. If s
l−→ s′ and P (s) = p 	= 0 then

1. R(l) ⊆ R(s, p) and W (l) ⊆ W (s, p)
2. ∀p′. R(s, p′) = R(s′, p′) and W (s, p′) = W (s′, p′)
3. ∀a ∈ mem \ W (l) . s(a) = s′(a)

In other words: An unprivileged process p can read and write only addresses
for which it has the necessary permissions (1.1). It cannot affect the read/write
permissions of any process (1.2), and if p does not write to a given address, then
the content of that address remains unchanged (1.3).

Secondly, the behaviour of the active process depends on the registers, the
region of memory that can be accessed, and the content of the memory that is
read:

Kernel Assumption KA 2. If P (s1) = P (s2) = p, R(s1, p) = R(s2, p),
W (s1, p) = W (s2, p), s1

l−→ s′
1, and for all a ∈ regs∪R(l) then s1(a) = s2(a), then

there is some s′
2 such that s2

l−→ s′
2 and for all a ∈ regs ∪ W (l) . s′

1(a) = s′
2(a).

These properties are enforced by all secure kernels, cf. [1,18,25], and they do not
restrict the kernel design. The kernel is free to change memory grants (i.e. to
allocate, free, and change ownership of memory regions) and to copy data among
processes. Processes can communicate via shared memory if the kernel allows it.
Moreover, these properties do not constrain the presence of microarchitectural
communication channels, e.g., due to the insecure usage of caches. Finally, these

A Case Study in Information Flow Refinement for Low Level Systems 59

rules accommodate collaborative as well as preemptive multi-tasking and do not
constrain information flows made available by the kernel scheduler.

To apply the epistemic framework introduced in Sect. 2 we need to also pro-
vide an observation model. Processes are able to observe the CPU registers
when they are active. Moreover, in this example we use a so-called trace driven
model [41]. An adversarial process is able to capture the state of its accessible
memory (and cache if available) while another process is running. This model
allows us to take into account scenarios where memory operations have effects
on some other components, like caches or memory mapped devices, that could
be controlled by an attacker. In these cases, the intermediary states of the mem-
ory that is accessible by the attacker provide a sound overapproximation of the
information available to the attacker. Accordingly, the observations of process p
in state s, obsp(s), contain:

1. The identity of the active process, P (s).
2. p’s memory rights, R(s, p) and W (s, p).
3. The content of the accessible memory,

{(a, s(a)) | a ∈ R(s, p)} .

4. The CPU register contents when p is active,

if (P (s) = p) then {s(r) | r ∈ regs} else ∅ .

Notice that a process is able to observe resources that can affect its behaviour
only indirectly. For example in Fig. 1, process p2 can observe that the first mem-
ory page is not in W (s, p2), since writing in this memory page raises a page fault
and activates the kernel.

3.1 A Simple Key Manager

To demonstrate the model of knowledge and prepare the ground for later refine-
ments we introduce an abstract model/specification of a simple key manager.
The system executes the assumed kernel and two processes: p1 is the key man-
ager and p2 is a potentially malicious client. Memory is statically partitioned
like in Fig. 1.

The key manager owns a secret key and provides a service that allows other
processes to obtain the Message Authentication Code (MAC) of a piece of input
data using the secret key. This MAC can be used, for instance, by a client
to remotely authenticate the device. Process p2 cannot directly access the key,
which is stored in page 1, and input data and results are communicated via
the shared page 4. This system has an intended information leakage: the MAC
of the input data with the secret key. In terms of language-based security, the
key-manager declassifies the result of this computation, and the goal of the later
refinement step is to show that it adds no more information channels than what
is already allowed by the abstract model.

60 R. Guanciale et al.

Fig. 2. Three phases and context switches of the example. Dashed arrows represent
multiple transitions.

For the purpose of demonstrating our framework it is not important that
the key manager uses cryptographically secure primitives. Therefore, a MAC
algorithm based on m rounds of a naive Feistel cipher is used: data d = d0d1
consists of two bytes, key k = k1 . . . km consists of m round keys, and the i-th
round is computed as follows:

MAC−1(d, k) = d0
MAC0(d, k) = d1
MACi(d, k) = MACi−2(d, k) ⊕ Ti[ki + MACi−1(d, k)]

where + is addition modulo 256, and ⊕ is bit-wise xor. The MAC is computed
using m tables Ti of 256 entries, which implements publicly known byte permu-
tations.

We assume that process p2 is active in the initial state s0, and that the system
progresses in three phases of Fig. 2:

1. p2 writes d in page 4, and requests a new service,
2. p1 computes locally MACm(d, k) and writes the result in page 4,
3. p2 uses the received MAC.

In between the three phases, the kernel simply context switches between the two
processes, without affecting any resource that is observable by the two processes
(i.e. it does not change memory permissions and does not modify pages 1 . . . 6).
For simplicity, we also assume that the context switch requires a constant amount
of instructions. Phase i is started after start(i) transitions and completed after
end(i) transitions. Let s0 be the initial state:

– start(1) = 0, since we regard the system as starting only when boot is com-
plete and the kernel hands over control to the client, p2.

– R(s0, end(1)) is the run ending once p2 has prepared the request and control
has been passed to the kernel.

– R(s0, start(2)) is the run ending when the kernel has completed the context
switch and passed control to p1.

Our analysis focuses on the ignorance of the client p2.

A Case Study in Information Flow Refinement for Low Level Systems 61

Initial Ignorance. Ip2(R(s0, 0)) = I initp2
(R(s0, 0)) = 〈s0〉p2 , which is set of initial

states where p2 is active and pages {2 . . . 6} have the same memory content
as s0, independently of the content of pages {1, 7, 8}. Thus, initially p2 has no
information about k.

Phase 1 and 3. During the first n ≤ end(1) transitions, due to KA 1 and
KA 2, for every s1 ∈ 〈s0〉p2 let ρ1 = R(s1), it is the case that ρ0(n) ∼p2 ρ1(n),
therefore R(s0, n) ∼p2 R(s1, n) and Ip2(R(s0, end(1))) = R(I initp2

(R(s0, 0)), n).
Moreover, I initp2

(R(s0, end(1)) = I initp2
(R(s0, 0)): as expected, the operating sys-

tem prevents the client from gaining information without an explicit commu-
nication performed by p1 or by the kernel itself. For the same reason, dur-
ing the third phase, i.e., for n ≥ start(3), it is the case that Ip2(R(s0, n)) =
R(I initp2

(R(s0, start(3))), n).

Context Switches. Since we assume that the kernel does not affect any resource
that is observable by the process and that the context switch is done in “constant
time”, then Ip2(R(s0, start(i + 1))) = R(I initp2

(R(s0, end(i))), start(i + 1)) for
i ∈ {1, 2}.

Phase 2. The client p2’s ignorance now decreases, since process p2 learns the
MAC. In fact, a run ρ1 is in Ip2(R(s0, end(2))), if its initial state s1 is in I initp2

(ρ0)
(i.e. s1 ∼p2 s0) and

MACm(d, k) = MACm(d, k′)

where k′ is the key in s1. In terms of information-theoretic security, by learning
the MAC, p2 also learns a correlation between k and k′ that reduces the entropy
of k by 8 bits.

In the trace based model, the attacker controlling p2 can observe its memory
while process p1 is executing. Therefore, if p1 uses the shared page 4 to temporary
store the value of T1[k1 + d1], instead of computing locally the first round, then
the ignorance of p2 is further reduced and the attacker directly learns the first
byte of the key.

4 Refinement and Ignorance Preservation

We now compare two models, an abstract model Ma with states s ∈ S, runs
Ra, and transition relation →a, typically used to predict the desired behavior,
and a concrete, or implementation model Mc, with states t ∈ T , runs Rc, and
relation →c, that is used to describe how the abstract behavior is realized. We
write ρ, φ for (sets of) abstract runs and σ, ψ for concrete ones. The two models
are connected by a refinement relation s ⇓ t, or function �t� = s, which for each
concrete state t produces one or more abstract states s, which t is intended to
refine. We refer to refinement relations of the latter form as functional. In this
section we set out the basic properties we assume of refinements before we turn
in Sect. 4.1 to information flow preservation.

62 R. Guanciale et al.

A large section of work in the refinement domain is based on the notion of
(forward) simulation, cf. [17,23,45], which in the present synchronous setting
can be cast as follows.

Definition 1 (Simulation, Observation Preservation)

1. The refinement relation ⇓ is a simulation of →c by →a, if s ⇓ t and t →c t′

implies s →a s′ ⇓ t′ for some s′. Moreover, if s ⇓ t, then s is initial or final
if and only if t is.

2. The relation ⇓ preserves p-observations, if whenever s ⇓ t it holds that
Obsp(t) = Obsp(s).

In the functional case the equivalent condition to 1.1 is that t → t′ implies �t� →
�t′�. The simulation property 1.1 allows abstractions to be point-wise extended
to runs by ρ = s0 · · · sn ⇓ t0 · · · tn = σ if si ⇓ ti for all i : 0 ≤ i ≤ |ρ| = |σ| = n+1
and for sets φ, ψ, φ ⇓ ψ, if for all ρ ∈ φ there is σ ∈ ψ such that ρ ⇓ σ, and
vice versa, for all σ ∈ ψ there is ρ ∈ φ such that ρ ⇓ σ. In the functional case
Moreover, we denote by ⇑ the direct image of ⇓−1, i.e., ψ⇑ = {ρ | ∃σ ∈ ψ. ρ ⇓ σ}
and obtain:

Corollary 1. If ⇓ is a simulation of the concrete model, then 1. φ ⇓ ψ ⇒ φ ⊆
ψ⇑ and 2. (ψ⇑) ⇓ ψ. ��

For functional correctness, refinement usually requires both simulation and
observation preservation. In this work we rely on the simulation condition as
the crucial hook needed to relate computations at abstract and concrete level.
Preservation of observations in the sense of 1.2 is used, e.g., in [4] but its neces-
sity appears less clear. For ignorance preservation the key issue is preserva-
tion of observable distinctions and not necessarily the observations themselves.
Indeed, as we show in this paper it is perfectly possible to conceive of meaning-
ful refinement-like relations that preserve observation distinctions but not the
observations themselves.

The key is to shift attention from preservation of observations to preservation
of distinctions. In particular we distinguish observational equivalence relation ∼p

on the abstract model from its counterpart (written ≈p) on the concrete model.
This motivates the following well-formedness condition:

Definition 2 (Well-formedness). The refinement relation ⇓ is well-formed,
if s1 ⇓ t1 and t1 ≈p t2 and s2 ⇓ t2 implies s1 ∼p s2.

For functional refinement relations this becomes the condition that t1 ≈p t2
implies �t1� ∼p �t2�.

Well-formedness reflects the expectation that information content of mod-
els should generally increase under refinement. Then, if two abstract states are
observationally distinct, we should expect this discriminating power to be pre-
served to concrete level. We obtain:

A Case Study in Information Flow Refinement for Low Level Systems 63

Proposition 2. Suppose that the simulation ⇓ is well-formed. Then:

1. If ρ1 ⇓ σ1 and σ1 ≈p σ2 and ρ2 ⇓ σ2 then ρ1 ∼p ρ2.
2. Suppose φ ⇓ ψ, then Ipφ ⊇ (Ipψ)⇑.

Proof. 1. Follows immediately from Definition 2. 2. If ρ ∈ (Ipψ)⇑ then we find
σ ∈ Ipψ such that ρ ⇓ σ and a σ′ ∈ ψ such that σ ≈p σ′. By φ ⇓ ψ there is
ρ′ ∈ φ with ρ′ ⇓ σ′ and by well-formedness ρ ∼p ρ′. But then ρ ∈ Ipφ.

In other words it follows directly from well-formedness and the simulation
property that ignorance is preserved from concrete to abstract level. We define:

Definition 3 (Refinement). The refinement relation ⇓ is a refinement, if ⇓
is well-formed and a simulation.

4.1 Ignorance Preservation

One key idea for confidentiality preservation, proposed originally by Morgan
[38], is to compare ignorance at abstract level with ignorance at concrete level:
If the ignorance at concrete level is “at least as high as” (in [38]: a superset of)
the ignorance at abstract level, no more information is learned by executing the
protocol at concrete level than what is learned by executing the ideal function-
ality. While Proposition 2.2 is useful, our interest, however, is in preservation of
ignorance in the opposite direction.

However, ignorance at abstract and concrete levels is not readily compa-
rable, as in our setting (as opposed to [38]) the state spaces related by the
refinement are different. In general, refinement will reduce nondeterminism and
add observational power by implementation choices, e.g., for data representa-
tion. Nevertheless, reflecting our view of the abstract model as specifying the
desired information flow properties, all information relevant for the analysis of
information flow preservation is available already at abstract level. Thus we can
use the refinement relation to push epistemic properties between the abstract
and concrete levels, as follows:

Definition 4 (Ignorance-Preserving Refinement, IPR). The refinement
⇓ is p-ignorance-preserving, if ⇓ is a well-formed simulation such that φ ⇓ ψ
implies Ipφ ⇓ Ipψ.

We relativize ignorance preservation to the processes p since this allows to
use different abstraction functions for each p, reflecting the potentially different
views each process may have of the refinement. It becomes clear that Definition 4
is the desired property if we consider an equivalent formulation:

Proposition 3. The refinement ⇓ is p-ignorance-preserving, iff φ ⇓ ψ implies
Ipφ = (Ipψ)⇑.

Proof. By Corollary 1.1, Ipφ ⇓ Ipψ implies Ipφ ⊆ (Ipψ)⇑ and by well-
formedness (Proposition 2.2) Ipφ = (Ipψ)⇑. The other direction follows directly
via ((Ipψ)⇑) ⇓ Ipψ by Corollary 1.2.

64 R. Guanciale et al.

Thus, IPR means that we have the same ignorance for observer p on both
levels, when viewed in terms of the abstract model. In particular, a concrete
model observer p cannot distinguish more behaviors than possible on the abstract
model, when “re-abstracting” the set of indistinguishable concrete runs. The
following is a useful sufficient and necessary condition for ignorance-preserving
refinement:

Definition 5 (Paired Refinement). The refinement ⇓ is paired, if for all ρ,
ρ′, σ′:

If ρ ∼p ρ′ ⇓ σ′ then there exists σ s.t. ρ ⇓ σ ≈p σ′. (∗)

Proposition 4. The paired refinement condition (∗) holds for refinement ⇓ if,
and only if, ⇓ is p-ignorance-preserving.

Proof. The implication IPR ⇒ (∗) follows directly from Ipφ ⇓ Ipψ for φ = {ρ′}
and ψ = {σ′}. For direction (∗) ⇒ IPR, assume that φ ⇓ ψ for the refinement ⇓.
For any ρ ∈ Ipφ we find ρ′ ∈ φ such that ρ ∼p ρ′ and a σ′ ∈ ψ such that ρ′ ⇓ σ′.
By (∗) we find σ s.t. ρ ⇓ σ and σ ≈p σ′, i.e. σ ∈ Ipψ. Conversely, if σ ∈ Ipψ
then we find σ′ ∈ ψ such that σ ≈p σ′ and then a ρ′ ∈ φ such that ρ′ ⇓ σ′. By
the simulation property we find ρ such that ρ ⇓ σ and then by well-formedness,
ρ ∼p ρ′, i.e. ρ ∈ Ipφ, as desired.

Intuitively, (∗) requires that for each pair of indistinguishable abstract runs, if
one of them is implemented, so is the other one and the corresponding concrete
runs are indistinguishable as well.

Assume models Mi, 0 ≤ i ≤ 2, and assume we have ignorance-preserving
refinements ⇓i, i ∈ {1, 2} from Mi−1 to Mi. Then the relational composition
⇓1 ◦ ⇓2 from M0 to M2 should be ignorance-preserving, too. The simulation
property and well-formedness properties are easily checked, it remains to show
that a vertically composed refinement is an IPR if its component refinements
are:

Proposition 5. If the refinements ⇓1 and ⇓2 are ignorance-preserving then so
is ⇓ = ⇓1 ◦ ⇓2.

Proof. Let φ ⇓1 ψ ⇓2 ξ. Using (∗), assume ρ0 ∼ ρ1 ⇓ τ1. We find σ1 such that
ρ1 ⇓1 σ1 ⇓2 τ1. By (∗) there is σ0 with ρ0 ⇓1 σ0 ≈ σ1. Applying (∗) again for
σ0 ∼ σ1 ⇓2 τ1, we obtain τ0 with ρ0 ⇓ τ0 ≈ τ1 and conclude via Proposition 4.

Vertical composability enables a common verification strategy to deal with
perfect recall attackers in epistemic settings: extend the abstract state with an
observable history variable that can be computed from existing observations;
prove that the abstraction that disregards the history variable is a CPR, and
finally analyse a refined model w.r.t. the extended model.

A Case Study in Information Flow Refinement for Low Level Systems 65

5 Case Study: Adding a History Variable

In the model processes can observe the active process P (s). Therefore we can
add an observable variable H that keeps track of the number of transitions
performed by each process (this variable simplifies the formalisation of constant
time execution in Sect. 8). Let s

l−→ s′, then u = (s,H) l−→ (s′,H ′) = u′ and

H ′(p) = H(p) +

{
1 if P (s) = p

0 otherwise

For this extended model, the simulation simply disregards the history variable.

Lemma 1. For every process p, s ⇓ (s,H) is a IPR for the model of Sect. 4.1.

Proof: The extended model is simulated by the abstract model by construction,
similarly well-formedness trivially holds. Therefore it suffices to demonstrate
Eq. ∗. Let t = (s,H), σ ∈ R(t), ρ ∈ R(s) such that for every σ(n) = (ρ(n),Hn)
for some n, ρ′ ∈ R(s′), ρ′ ∼p ρ, and t′ = (s′,H). By construction exist σ′ ∈ R(t′)
such that for every n exists H ′

n such that σ(n) = (ρ(n),Hn). Since ρ(n) ∼p ρ′(n),
and since P () is observable we can conclude that H ′

n = Hn. Therefore σ′ ≈p σ.
�

6 Case Study: Cache Aware Model

To demonstrate IPR we first introduce a refined version of Sect. 3’s processor
model. In this model the processes are executed on data-cache enabled hardware
and are allowed to measure the time needed to execute their own instructions.
The refined state has the form t = (s,H, c, τ0, . . . , τn) where H is the history
variable introduced in above, c is a shared cache and τi is the clock for the
process pi. In this model, the processes do not have a shared clock, which is
reasonable for systems that offer only virtualized time to processes.

To be general we use an abstract model for caches. The cache has S entries
(sets), and c is a total function from {0, . . . ,S − 1} to cache entries. A cache
entry e = (h, d) is a pair, where h contains metadata (e.g. validity, tag, state of
replacing policy, dirtiness flags, etc.) and d contains the data of the entry. In case
of a direct mapped cache this is the complete data stored in the cache line, in
multi-way caches the data stored across all the ways. We use the following nota-
tion: idx(a) identifies the cache entry corresponding to the address a, hit(h, a)
holds if the address a is stored in the entry e, and get(e, a) extracts the content
of the address from the entry.

To simplify the notation we introduce the following operators to filter lists
of operations accessing the same cache entry i:

ε|i = ε and ((op, a) ◦ l)|i = (op, a) ◦ l|i if idx(a) = i else l|i ,

66 R. Guanciale et al.

where ◦ is the list constructor. To extract metadata of cache entries that collide
for a given set of addresses A, we have:

c|A = {(idx(a), c(idx(a)).h) | a ∈ A}

�(s,H, c, τ0, . . . , τn)� = (s′,H) defines the abstraction map for the cache-
enabled model, where

s′(a) =
{

get(c(idx(a)), a), if hit(c(idx(a)).h, a)
s(a), otherwise

The behaviour of the cache is governed by four model assumptions, similar
in spirit to those of Sect. 3.

First, we assume that the kernel abstractions P , R, and W are overloaded
for the refined model and invariant w.r.t. the abstraction function:

Kernel Assumption KA 3. P (t) = P (�t�) and for every process p, R(t, p) =
R(�t�, p) and W (t, p) = W (�t�, p).

Secondly, the cache is transparent:

Cache Assumption CA 1. If t
l−→ t′ then �t� l−→ �t′�

In other words: A transition enabled at refined level remains enabled at abstract
level once any state information added in the refinement is abstracted away.
Note, that this implies that the simulation condition (Definition 1) holds in our
model. System software must use special precautions to ensure CA 1 and KA 3,
for example by flushing caches and Translation Lookaside Buffer (TLB) when
page tables are updated.

Moreover, the metadata of a cache entry does not depend on cache data or
accesses to addresses belonging to other entries:

Cache Assumption CA 2. Let t1
l1−→ t′1 and t2

l2−→ t′2. For every entry index
i < S such that t1.c(i).h = t2.c(i).h, if l1|i = l2|i then t′1.c(i).h = t′2.c(i).h.

CA 2 expresses that for any two transitions in the cache-aware model, if:

– the metadata associated with a cache entry i is the same in the two prestates,
and

– the two transitions read and write the same addresses,

then the cache metadata associated with entry i is the same in the two poststates.
Assumptions CA 1 and CA 2 are general enough to grant a wide scope to our

analysis. They accommodate write-through as well as write-back caches, both
direct and multi-way associative caches, several types of replacement policies,
and do not require inertia (i.e. they allow the eviction of lines even in absence
of cache misses for the corresponding entry).

Finally, for the processes’ virtualized clocks we make the following assump-
tions:

A Case Study in Information Flow Refinement for Low Level Systems 67

Time Assumption TA 1. If t1
l−→ t′1 and p = P (t1) then

1. For all p′ 	= p, t1.τp′ = t′1.τp′ .

2. If P (t2) = p, t2
l−→ t′2, t1.τp = t2.τp, then for all a ∈ regs ∪ R(l). �t1�(a) =

�t2�(a), and t1.c|R(l)∪W (l) = t2.c|R(l)∪W (l), then t′1.τp = t′2.τp.

The upshot of TA 1 is that: Only the clock of the active process is incremented
(TA 1.1); The execution time of an instruction depends only on the register state,
the accessed memory contents, and cache metadata of accessed cache entries
(TA 1.2).

For guaranteeing CA 2 and TA 1.2 the cache must provide some sort of
isolation among cache entries. This is usually the case when the replacement
policy does not have state information that is shared among cache entries. An
example that violates the requirements is prefetching of adjacent entries in case
of cache misses. In this case, the metadata of a cache entry is dependent on the
accesses performed in the adjacent entries. Also, for the same type of cache, the
prefetching of adjacent cache entries can slow down the execution of a memory
access.

In the refined model, a process p can further observe the corresponding pri-
vate clock and the resources that can indirectly affect it, namely the metadata
of the cache elements that can be accessed using the readable memory. Formally,
obsp(t) now contains:

1. The identity of the active process, P (t),
2. p’s memory rights, R(t, p),W (t, p)
3. The content of accessible memory: (a, �t�(a)) | a ∈ R(t, p)}
4. The CPU registers when p is active: if (P (s) = p) ∧a ∈ regs then s(a) else ⊥ .
5. p’s local clock, t.τp
6. The cache state as seen by p, t.c|R(t,p)

Lemma 2. For the models of Sects. 3 and 6, the function �·� is a well-formed
refinement.

Proof: The first part of Definition 1 is obvious because cache and time are
transparent on the abstract model and other observations are identity-mapped.
For Definition 2, for every s ∼p �t0� let t be a state with the same registers and
memory of s, the same timers as t0, t.c(i).h = t0.c(i).h for all i, and t.c(i).d such
that get(c(idx(a)), a) = s(a) if hit(t0.c(idx(a)), a). Then t satisfies s = �t� and
t ∼p t0. �

From KA 3 it follows directly that two states are observation-equivalent if
their corresponding abstractions are observation-equivalent, the process clocks
are the same, and the metadata of the accessible cache entries are equivalent:

Lemma 3. If �t1� ∼p �t2� , t1.τp = t2.τp, and also t1.c|R(t1,p)
= t2.c|R(t2,p)

,
then t1 ≈p t2 holds.

68 R. Guanciale et al.

6.1 Timing Channels in the Refined Model

Caches and timing information pose threats to the key manager. For simplicity,
we assume that variables of p1 and every entry of tables Ti are allocated on
different cache entries. Moreover, we assume that in the initial state �t0� = s0,
clocks are zero, the cache is initially empty, and that process p2 knows the
memory layout of the key manager.

CA 1 guarantees that in the abstract and refined models process p2 prepares
the same inputs and process p1 provides the same replies. Therefore p2’s knowl-
edge obtained by observing registers, memory, and active process is the same in
the two models. However, in the refined model cache and timing effects must be
taken into account, as these are not reflected at the abstract level. We assume
that p2 “primes” the cache every time it is executed, filling all entries with data
belonging to page 6. For simplicity, we assume that victim p1 accesses only the
addresses needed to implement the key manager, and that the kernel always
accesses the same sequence of addresses during context switches.

It is easy to show that IPR holds for the first start(2) transitions. Let ρn
and σn be the runs R(s0, n) and R(t0, n) respectively.

Initial Knowledge. For every run (consisting only of the initial state) ρ′ ∈ Ip2(ρ0)
there is exactly one corresponding run σ′ ∈ Ip2(σ0) where the initial state
has empty cache, zero clocks, and such that �σ′� = ρ′. Therefore, �Ip2(σ0)� =
Ip2(�σ0�), as desired.

Phase 1. For the first n ≤ end(1) transitions, the attacker clock and the cache
metadata depend on the initial cache state, which is empty in the initial state of
every σ′

0 ∈ Ip2(σ0). Therefore for every σ′
0 ∈ Ip2(σ0) there is σ′

n ∈ Ip2(σn)
such that σ′

n(0) = σ′
0(0). This means that Ip2(σn) = R(I initp2

(σ0), n), hence
�Ip2(σn)� = Ip2(�σn�).

Context Switches. For end(i) < n ≤ start(i + 1) after phases i ∈ {1, 2}, the
kernel accesses the same sequence of addresses and it cannot modify the process
clock. Therefore Ip2(t0, start(i + 1)) = R(I initp2

(R(s0, end(i))), start(i + 1)) and
�Ip2(σstart(i+1))� = Ip2(�σstart(i+1)�) if �Ip2(σend(i))� = Ip2(�σend(i)�).

However, Phase 2 is more challenging. Starting from the last state of σstart(2)

the key manager accesses the input data, the key, and Ti[ki + MACi−1(d, k)] for
i ∈ {1 . . . m}. Therefore, after end(2) transitions, the cache entries that are
evicted are idx(Ti + ki + MACi−1(d, k)), where Ti + ki + j is the address of the
(ki + j)’th element of Ti. On the other hand, if the system had started from the
initial state t′0 ∈ I initp2

(t0, start(2)) with key k′, then it would have evicted the
entries idx(Ti + k′

i + MACi−1(d, k′)).
In other words, for the last state of σend(2) a dependency of the cache meta-

data c(j).h on indices j = idx(Ti + ki + MACi−1(d, k)) is being introduced,
causing �Ip2(σend(2))� to become (in general) a strict subset of Ip2(ρend(2)), i.e.,
p2 in the refined model learns more than in the abstract model.

In practice, this side-channel enables p2 to discover the key. In fact, for the
first round, we cannot guarantee that the cache metadata is the same when

A Case Study in Information Flow Refinement for Low Level Systems 69

Fig. 3. Ignorance-Preserving Refinement for p2, which can distinguish by design the
key in s2 = �t2�. Refined states t0, t1 have different key and random seeds. Still,
�I initp2 (R(t0, end(2)))� = I initp2 (R(s0, end(2))) = I initp2 (R(�t0�, end(2))).

starting from an initial state where idx(T1+k′
1+d1) differs from idx(T1+k1+d1).

This can result in different clocks for p2 after the next context switch (i.e. n >
start(3)). The same reasoning can be done for the other rounds.

6.2 A Naive Countermeasure for the Key Manager

In this section we show the IPR condition in action by verifying a naive coun-
termeasure, which relies on randomization and the fact that the key manager
performs only a single access to each permutation box. We assume that p2 knows
the memory layout of p1 with the exception of the entries of the tables. Each
table Ti has been permuted using a random byte ri by moving the j’th entry to
position j ⊕ri. We assume that p2 does not know ri. For this refinement we have
the same abstraction map, with exception of the entries of Ti which are mapped
as follows: �t�(Ti+j) = t(Ti+(j⊕ri)). Therefore, in the refined model the MAC
is computed as MACi(d, k) = MACi−2(d, k) ⊕ Ti[(ki + MACi−1(d, k)) ⊕ ri].

We use Fig. 3 to illustrate the scenario. Each state of the refined model is
mapped to a unique abstract state via the abstraction �·�. The vice-versa is not
true: there are at least 256m refined states (for different values of r1 . . . rm) that
are mapped to the same abstract state. This arises from the fact that refined
states have more information than abstract ones.

The function �·� induces an equivalence relation: Two refined states are
abstraction-equivalent if their abstraction is the same. In our example, states
that are abstraction-equivalent must have the same key, but they can have dif-
ferent randomization of the permutation boxes. The equivalence class 〈t0〉p2 can
be partitioned into abstraction-equivalent classes (shown as dashed ellipses in
the figure), each corresponding to an abstract state of 〈s0〉p2 .

To demonstrate IPR for process p2 we focus on Phase 2, which is the one
that violates IPR due to the cache side channel. Let t0 be a given state with
a fixed key k and σn a run of n transitions starting from t0. The argument is

70 R. Guanciale et al.

essentially relational. Assume a run ρ′
n ∼ �σn�. By (5) we have to find a refined

state t′ such that �t′� = ρ′
n(0) and σ′

n ∼p2 σn for σ′
n ∈ R(t′, n), i.e. such that

σn(n′) ∼p2 σ′
n(n′) for all n′ ≤ n. By the argument of Sect. 6 we must show that

we can find t′ such that

R(t′, end(2)) ∼p2 R(t0, end(2)) . (1)

Once this is established, agreement on the local clocks and cache states allows
(1) to extend to arbitrary n > end(2).

Assuming that, except for the table lookup, the MAC is computed using
registers only, finding t′ is tantamount to identifying a state that satisfies, for
every round i,

r′
i ⊕ (k′

i + MACi−1(d, k′)) = ri ⊕ (ki + MACi−1(d, k))

where ri and r′
i are the random seeds of t0 and t′, respectively, d is the data in

both states, and k′ is the key in t′.
In fact, starting from any such t0 and t′ the key manager accesses exactly

the same memory locations (even if they have different keys) and therefore the
same cache lines have been evicted in R(t0, end(2)) and R(t′, end(2)). This, and
the fact that t0 and t1 produce the same MAC due to ρ′

n ≈p2 �σn�, guarantees
that R(t0, end(2)) and R(t′, end(2)) are indistinguishable by p2. This completes
the argument that the naive countermeasure is sufficient for the key manager to
satisfy IPR.

States that are abstraction-equivalent to t0 or t′ are dropped from the initial
ignorance set Ip2(σ0) during the computation, if they have a different random
seed than t0 or t′, i.e., even though they agree on the resulting MAC they are not
in I initp2

(σend(2)) because the refined model reveals the different seed. However,
this does not violate IPR.

Unfortunately, the above countermeasure is not compositional: i.e., cannot
guarantee IPR if the key manager is invoked multiple times. Let the attacker
provide the data d in the first step, and in the third step request a second MAC
for data d′. Each step of the key manager satisfies IPR when executed in isolation.
However, their composition fails to satisfy IPR if the permutation boxes are not
re-randomized. In fact, in the abstract model the attacker learns the value of
MACm(k, d) and MACm(k, d′). However, in the refined model, the attacker can
learn more information regarding the key used for the first round. The first
execution of the key manager allows p2 to additionally learn r1 ⊕ (k1 + d1),
while the second execution allows the same process to learn r1 ⊕ (k1 + d′

1).
Therefore, the combination of the two executions enables p2 to discover the
value of (k1 + d1) ⊕ (k1 + d′

1) which leaks additional bits of k1 depending on the
values of d1 and d′

1.

7 Relational Verification

In order to handle an example of the size and complexity of our key manager a
way to sequentially compose refinements is very useful. Let M1 and M2 differ

A Case Study in Information Flow Refinement for Low Level Systems 71

only in that the initial states can be different in the two models, and that final
states of M1 are initial states in M2. That is:

1. The state spaces of M1 and M2 are identical.
2. If s1 → s2 in M1 (i.e., s1 →1 s2) then s1 →2 s2.
3. If s1 →2 s2 and s1 →1 s′

2 (i.e. s1 is not final in M1) then s1 →1 s2.
4. Final states in M1 are initial states in M2.
5. The observations in M1 and M2 agree, i.e., Obs1(s) = Obs2(s) for all state

s in M1 and M2.

These properties allow to compose the two models sequentially while preserv-
ing observability properties. Note in particular that we allow states, not only
initial/final ones, to be present in both M1 and M2, which is meaningful for
unstructured programs. Also, the definition allows models to be sequentially split
and recomposed in a very flexible fashion, by simply stopping execution of M1

at whichever state is convenient for the analysis. In particular we can define the
sequential composition of M1 and M2 as the model M1;M2 with the initial
states of M1, states and observations of M1 (or M2), and transitions of M2.
We obtain:

Proposition 6

R(M1;M2) = R(M1);R(M2)
= {ρ1; ρ2 | ρ1 ∈ R(M1), ρ2 ∈ R(M2), lst(ρ1) = fst(ρ2)}

where (ρ1s); (sρ2) = ρ1sρ2 is the sequential composition of runs.

Under information flow constraints the sequential composition of refinements is
generally highly delicate as shown in [43]. Here, we follow the approach of [11]
based on ideas from relational Hoare logic [12].

Definition 6 (Relational Refinement). Let symmetric relations Rpre , Rpost
⊆ T ×T be given such that Rpre ⊆ ≈p. The triple {Rpre} ⇓ {Rpost} is a relational
refinement, if ⇓ is a well-formed refinement from Ma to Mc such that:

1. If s1 ⇓ t1 are initial states, then given any s1 ∼p s2, we can find a t2 such
that s2 ⇓ t2 and t1 Rpre t2.

2. If fst(σ1) Rpre t2, ρ1 ⇓ σ1, ρ1 ∼p ρ2, fst(ρ2) ⇓ t2, then a run σ2 exists
with fst(σ2) = t2, ρ2 ⇓ σ2, σ1 ≈p σ2, and if σ1 is complete, so is σ2 and
lst(σ1) Rpost lst(σ2).

The triple {Rpre} ⇓ {Rpost} expresses that whenever there is a complete run from
a concrete state t1, which is a refinement of an abstract state indistinguishable
from s2, then it is possible to find a complete run from some other concrete state
t2, which is a refinement of s2, and such that the two runs are indistinguishable,
Rpre holds on the initial states of the runs, and Rpost on the final states of the
two runs.

By conditioning Rpost on whether σ1 and σ2 are complete, the definition
covers both terminating and diverging programs. Clearly, the definition ensures
that the IPR condition holds.

72 R. Guanciale et al.

Corollary 2. Any relational refinement is an IPR. ��
Also, we can show that relational refinements provide sequential compositional-
ity. To this end let ⇓ be a relational refinements from both Ma,1 to Mc,1 and
Ma,2 to Mc,2 (even if ⇓1 and ⇓2 are identical as relations they may not both
be relational refinements). For clarity we use ⇓i when we want to refer to ⇓ as a
relational refinement from Ma,i to Mc,i, and ⇓1;⇓2 when we want to refer to ⇓
as a relational refinement on M1;M2. Sequential compositionality now follows
from the definitions in a straightforward fashion.

Theorem 1 (Sequential Compositionality [11]). Suppose {Rpre} ⇓1 {R}
and {R} ⇓2 {Rpost} are relational refinements. Then {Rpre} ⇓1;⇓2 {Rpost} is a
relational refinement. �

It follows by Corollary 2 that if {Rpre} ⇓1 {R} and {R} ⇓2 {Rpost} are
relational refinements then the refinement ⇓1;⇓2 is ignorance preserving.

8 Case Study: Verification of Constant Time Execution
and Cache Coloring

In this section we verify security of two widely adopted countermeasures against
trace driven cache-based side channels: Constant time execution and cache col-
oring.

Hereafter we only consider models that have been extended with the history
variable H. The following definitions provide a formalization of cache coloring
and constant time execution. For each process p we use Ep to identify the indexes
of cache entries that process p is allowed to access. The kernel must restrict the
process-accessible memory to ensure this property:

Countermeasure C 1. If s
l−→ s′ and P (s) = 0 then for all p:

idx(R(s, p)) = idx(R(s′, p)) = Ep .

Since processes cannot directly change their access permissions (KA 1), C 1
allows the set of cache indices from the point of view of p to be partitioned into
two sets: private entries (EP

p = Ep \ ∪p′ �=pEp′) and shared entries (ES
p = Ep ∩

∪p′ �=pEp′). A trusted process p′ can perform unrestricted accesses to EP
p′ while

accesses to ES
p′ must satisfy constant time execution. The latter is formalized

by the following property, which requires that memory accesses that involve a
cache entry accessible by process p depend only on information that is available
to p:

Countermeasure C 2. A system is constant time w.r.t. process p if for every
s1 ∼p s2, if s1

l1−→ s′
1, and s2

l2−→ s′
2, then l1|Ep

= l2|Ep
.

A Case Study in Information Flow Refinement for Low Level Systems 73

Both C 1 and C 2 can be verified using the abstract model, since they only
constrain the list of accessed addresses and addressable indices, and they do
not require to explicitly analyse the cache state. C 1 is a kernel invariant to be
verified by standard techniques of program analysis. A number of tools exist to
check C 2, including relational analysis [7] for binary programs, and abstract
interpretation [13] for source code in conjunction with secure compilation [9].

Finally, we can demonstrate that constant time execution and cache coloring
(or a mix of the two) prevent side-channels:

Theorem 2. For a process p, C 1 and C 2 guarantee IPR.

Proof: In order to prove IPR we show that the two properties ensure a rela-
tional refinement for each transition. This allows us to analyze each transition
independently and compose the refinements to obtain properties of complete
executions. In other words, we look at transition systems that have traces of
only one transition per trace and we compose horizontally to obtain the entire
transition system. Here the refinement pre- and post-relations are the same: ≈p.
Therefore condition (1) holds by definition and (2) holds by well-formedness of
� �.

By simulation (CA 1), if t1 ≈p t2, σ1 = t1
l1−→ t′1 then ρ1 = �t1� l1−→ �t′1�.

Since transition systems here are left-total, then exists σ2 = t2
l2−→ t′2. Let ρ1 ∼p

ρ2 = �t2� l2−→ s′
2, by simulation (CA 1) and determinism of the transition system

we have that s′
2 = �t′2�.

Therefore we must prove that t′1 ≈p t′2. Hypothesis t1 ∼p t2 ensures that
P (t1) = P (t2) = p′. Lemma 3 guarantees that ≈p is established if t′1.τp = t′2.τp,
and t′1.c|R(t′

1,p)
= t′2.c|R(t′

2,p)
. These equalities are demonstrated for two cases:

when p is the active process (p = p′) and when it is suspended (p 	= p′).

Case p = p′. As access permissions are not affected by the cache (KA 3) and
cannot be directly changed by the process (KA 1.2) we get for i ∈ {1, 2}:

R(t′i, p) = R(�t′i�, p) = R(�ti�, p) = R(ti, p) (2)

Since the process can only access its own memory (KA 1.1), which is observable,
and the same observable access permissions are in place, it performs the same
instruction with the same effects on the abstract level (KA 2.1), hence:

R(l1) ∪ W (l1) ⊆ R(�t1�, p) = R(t1, p) and l2 = l1 (3)

Therefore, for cache metadata we have

t1 ∼p t2

t1.c|R(t1,p)
= t2.c|R(t2,p)

Def. ∼p

t′1.c|R(t1,p)
= t′2.c|R(t2,p)

by (3) and CA 2

t′1.c|R(t′
1,p)

= t′2.c|R(t′
2,p)

by (2)

74 R. Guanciale et al.

Similarly, for the process clock we have:

t1 ∼p t2

∀a ∈ R(l1).�t1�(a) = �t2�(a) Def. ∼p

and t1.c|R(l1)∪W (l1)
= t2.c|R(l1)∪W (l1)

and (3)

t′1.τp = t′2.τp by TA 1.2

Case p 	= p′. For the non-active process, the equality of τp follows directly from
TA 1.1. By t1 ∼p t2 we get:

R(t1, p) = R(t2, p) (4)

Since standard processes (p′ 	= 0) cannot change access permissions (KA 1.2)
and kernel (p′ = 0) constraints the observable cache entries of p to Ep (C 1),
then

idx(R(t′1, p)) = idx(R(t1, p)) = idx(R(t2, p))
= idx(R(t′2, p)) = Ep

Therefore t′1.c|R(t′
1,p)

= t′2.c|R(t′
2,p)

is equivalent to showing that t′1.c(i).h =
t′2.c(i).h for every i ∈ Ep:

t1 ∼p t2

t1.c(i).h = t2.c(i).h Def. ∼p and (4)
t′1.c(i).h = t′2.c(i).h by C 2 and CA 2

�

9 Related Work

Information flow security policies that require a complete absence of leakage
are usually specified using different variations of noninterference following the
approach pioneered by Goguen and Meseguer [22]. Various verification methods
for noninterference have been developed including the self-composition method
pioneered by Hähnle and others [19].

For realistic systems we need to support communication beyond the multi-
level security model. IPR allows to transfer arbitrary information flow properties
from specification (the abstract model) to implementation (the refined model)
without the need of a specific mechanism for declassification, like the ones pro-
posed in [5,6,8,15,37,37,42]. This allows to verify countermeasures against side-
channels without the need of taking into account the mechanism used to analyze
declassification in the abstract model.

The intuition behind IPR has been used to analyze information flow secu-
rity in presence of speculative processors. Both conditional noninterference [26]

A Case Study in Information Flow Refinement for Low Level Systems 75

and speculative noninterference [28] are restricted forms of IPR that formal-
ize absence of speculative side channels by requiring that states non-interfering
under non-speculative semantics are non-interfering under speculative semantics.

A precursor to IPR is the work of Cohen et al. [16] on abstraction in multi-
agent systems. They introduce an epistemic simulation relation that is essentially
a state-based version of IPR, and use this to show preservation of formulas in
the epistemic temporal logic ACTLK.

Morgan and McIver [35,38] propose an instrumented shadow semantics for
ignorance-preserving program refinement, constructing the ignorance set explic-
itly for the final values of hidden variables. Moreover, their refinement requires
equality for all global variables, allowing the introduction of new observations
only as local variables within the scope of the refined program. These local vari-
ables cease to exist after the scope of the program has ended, hence the approach
does not allow for persistent implementation variables (e.g. state of caches) that
can carry data between invocations of different program segments.

One of the features that differentiate IPR from other works is that IPR sup-
ports introducing secret dependent observations together with sequential compo-
sitionality. Similarly to Sect. 6.2, a compiler may shuffle an array using a random
key r and introduce a memory look-up dependent on s⊕r without compromising
the secrecy of s. This type of refinement is not considered in [9,17,23] because
it violates the assumption requiring that all refined runs of the same abstract
state have the same leakage. Similarly, this is not allowed in [39], since modified
variables must either be private, which is not the case for τp2 , or have their
classification decreased, which would prevent the indirect flow of s ⊕ r to τp2 .
This makes IPR a more permissive condition justifying information-theoretically
secure refinement. Therefore it allows us to raise the question when it is possi-
ble to infer that an entire implementation is information flow secure in terms
of the information flow security of the specification and the information flow
preservation of each step.

Heifer et all [29] have investigate how to formally verify prevention of timing
channels in seL4. Similarly to Sect. 8, they provide an abstracted representation
of the hardware resources and postulated how they cause timing channels. Their
work is specific for seL4 and depends on specific kernel designs. In contract,
this work provides a blueprint for this type of analyses by using the general
framework of IPR.

Security of constant time programming has been investigated in [10], where
Barthe et al. show that this policy protects against cache based side channels in
virtualized environments. In [9] the authors show that several compiler optimiza-
tions do not affect the constant time policy, by demonstrating that observational
noninterference w.r.t. a source state relation results in observational noninter-
ference w.r.t. a target state relation after compilation.

10 Concluding Remarks

We have analyzed a provably secure separation kernel using a compositional
approach to information flow preserving refinement that is based on observer

76 R. Guanciale et al.

ignorance. In our abstract model, we have formalized a flat memory machine and
axiomatized kernel properties that entail functional correctness. Once we refined
the model to include caches and timing effects, we have shown information leak-
age for a simple key manager, i.e. observer ignorance is not preserved. Deploying
two widely-adopted countermeasures such as cache coloring or a constant-time
programming policy recovers ignorance preservation.

A possible extension of this work is to consider different attacker models.
If extended to multiple attackers, constant time execution does not guarantee
ignorance preservation individually for each attacker due to the presence of covert
channels. However, it may be possible to reduce this case to a single, distributed
attacker. In addition, one can handle access-driven attackers, i.e., attackers that
cannot perform observations while suspended, by introducing a weak transition
system that hides attacker-inactive steps.

It would also be interesting to extend the framework to handle other types of
system features. For example, to handle cache flushes we would require constant
time execution only for addresses that collide with cache entries that have not
been previously cleaned. This approach can work if one can demonstrate that
cache metadata is correctly reset after a flush, though unfortunately hardware
vendors do not usually provide enough details about implementations to con-
clude this. To handle dynamic cache partitions at the kernel level, we should
ensure the abstract model reflects any side channels that arise from the parti-
tioning mechanism.

A final and more difficult problem concerns attackers potentially abusing low
level “features” such as Rowhammer [31], mismatched cache attributes [27], spec-
ulative execution, or self-modifying code to induce changes in program behavior
that are not visible at the abstract level where the effect of these features may
not be reflected. We call such attacks behavior morphing. In such cases the
machinery in this paper no longer works fully as intended. On the other hand,
countermeasures against vulnerabilities like Rowhammer do exist [14] that suit-
ably confine the effects of any behavior morphing and should be verifiable using
techniques akin to the ones we present in this paper. We leave a proper treat-
ment of ignorance-preserving refinement in the presence of behavior morphing
for future work.

Acknowledgment. This work partially was supported by grants from the Swedish
Foundation for Strategic Research and the Swedish Civil Contingencies Agency, and
the German Federal Ministry of Education and Research (BMBF) through funding for
the CISPA-Stanford Center for Cybersecurity (FKZ: 13N1S0762).

References

1. seL4 Project. http://sel4.systems/. Accessed 21 Apr 2017
2. Abadi, M., Lamport, L.: The existence of refinement mappings. Theor. Comput.

Sci. 82(2), 253–284 (1991). https://doi.org/10.1016/0304-3975(91)90224-P
3. Acıiçmez, O., Koç, Ç.K., Seifert, J.-P.: Predicting secret keys via branch predic-

tion. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 225–242. Springer,
Heidelberg (2006). https://doi.org/10.1007/11967668 15

http://sel4.systems/
https://doi.org/10.1016/0304-3975(91)90224-P
https://doi.org/10.1007/11967668_15

A Case Study in Information Flow Refinement for Low Level Systems 77

4. Alur, R., Černý, P., Zdancewic, S.: Preserving secrecy under refinement. In:
Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS,
vol. 4052, pp. 107–118. Springer, Heidelberg (2006). https://doi.org/10.1007/
11787006 10

5. Askarov, A., Chong, S.: Learning is change in knowledge: knowledge-based security
for dynamic policies. In: Computer Security Foundations Symposium (CSF), pp.
308–322. IEEE (2012). https://doi.org/10.1109/CSF.2012.31

6. Askarov, A., Sabelfeld, A.: Gradual release: unifying declassification, encryption
and key release policies. In: Symposium on Security and Privacy, pp. 207–221.
IEEE (2007). https://doi.org/10.1109/SP.2007.22

7. Balliu, M., Dam, M., Guanciale, R.: Automating information flow analysis of
low level code. In: Proceedings of the Conference on Computer and Communi-
cations Security, CCS 2014, pp. 1080–1091. ACM (2014). https://doi.org/10.1145/
2660267.2660322

8. Balliu, M., Dam, M., Le Guernic, G.: Epistemic temporal logic for information flow
security. In: Workshop on Programming Languages and Analysis for Security, pp.
6:1–6:12. ACM (2011). https://doi.org/10.1145/2166956.2166962

9. Barthe, G., Grégoire, B., Laporte, V.: Secure compilation of side-channel coun-
termeasures: the case of cryptographic “constant-time”. In: IEEE 31st Computer
Security Foundations Symposium (CSF), pp. 328–343, July 2018. https://doi.org/
10.1109/CSF.2018.00031

10. Barthe, G., Betarte, G., Campo, J., Luna, C., Pichardie, D.: System-level non-
interference for constant-time cryptography. In: Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, pp. 1267–1279.
ACM (2014)

11. Baumann, C., Dam, M., Guanciale, R., Nemati, H.: On compositional information
flow aware refinement. In: 34th IEEE Computer Security Foundations Symposium,
CSF 2021, Dubrovnik, Croatia, 21–25 June 2021, pp. 1–16. IEEE (2021). https://
doi.org/10.1109/CSF51468.2021.00010

12. Benton, N.: Simple relational correctness proofs for static analyses and program
transformations. SIGPLAN Not. 39(1), 14–25 (2004). https://doi.org/10.1145/
982962.964003

13. Blazy, S., Pichardie, D., Trieu, A.: Verifying constant-time implementations
by abstract interpretation. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.)
ESORICS 2017. LNCS, vol. 10492, pp. 260–277. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-66402-6 16

14. Brasser, F., Davi, L., Gens, D., Liebchen, C., Sadeghi, A.R.: Can’t touch this:
software-only mitigation against Rowhammer attacks targeting kernel memory. In:
26th USENIX Security Symposium (USENIX Security 2017), pp. 117–130 (2017)

15. Chong, S., Myers, A.C.: Security policies for downgrading. In: Conference on Com-
puter and Communications Security, pp. 198–209. ACM (2004). https://doi.org/
10.1145/1030083.1030110

16. Cohen, M., Dam, M., Lomuscio, A., Russo, F.: Abstraction in model check-
ing multi-agent systems. In: Proceedings of the 8th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), vol. 2, pp. 945–952 (2009)

17. Costanzo, D., Shao, Z., Gu, R.: End-to-end verification of information-flow secu-
rity for C and assembly programs. In: Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), pp.
648–664 (2016). https://doi.org/10.1145/2908080.2908100

https://doi.org/10.1007/11787006_10
https://doi.org/10.1007/11787006_10
https://doi.org/10.1109/CSF.2012.31
https://doi.org/10.1109/SP.2007.22
https://doi.org/10.1145/2660267.2660322
https://doi.org/10.1145/2660267.2660322
https://doi.org/10.1145/2166956.2166962
https://doi.org/10.1109/CSF.2018.00031
https://doi.org/10.1109/CSF.2018.00031
https://doi.org/10.1109/CSF51468.2021.00010
https://doi.org/10.1109/CSF51468.2021.00010
https://doi.org/10.1145/982962.964003
https://doi.org/10.1145/982962.964003
https://doi.org/10.1007/978-3-319-66402-6_16
https://doi.org/10.1007/978-3-319-66402-6_16
https://doi.org/10.1145/1030083.1030110
https://doi.org/10.1145/1030083.1030110
https://doi.org/10.1145/2908080.2908100

78 R. Guanciale et al.

18. Dam, M., Guanciale, R., Khakpour, N., Nemati, H., Schwarz, O.: Formal verifi-
cation of information flow security for a simple ARM-based separation kernel. In:
Proceedings of the Conference on Computer and Communications Security, CCS
2013, pp. 223–234. ACM (2013)

19. Darvas, Á., Hähnle, R., Sands, D.: A theorem proving approach to analysis of
secure information flow. In: Hutter, D., Ullmann, M. (eds.) SPC 2005. LNCS,
vol. 3450, pp. 193–209. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-32004-3 20

20. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
MIT Press, Cambridge (1995)

21. Ge, Q., Yarom, Y., Cock, D., Heiser, G.: A survey of microarchitectural timing
attacks and countermeasures on contemporary hardware. J. Cryptogr. Eng. 8(1),
1–27 (2018)

22. Goguen, J.A., Meseguer, J.: Security policies and security models. In: Symposium
on Security and Privacy, pp. 11–20. IEEE (1982). https://doi.org/10.1109/SP.1982.
10014

23. Graham-Cumming, J., Sanders, J.W.: On the refinement of non-interference. In:
Proceedings Computer Security Foundations Workshop IV (CSFW), pp. 35–42
(1991). https://doi.org/10.1109/CSFW.1991.151567

24. Gruss, D., Maurice, C., Mangard, S.: Rowhammer.js: a remote software-induced
fault attack in JavaScript. In: Caballero, J., Zurutuza, U., Rodŕıguez, R.J. (eds.)
DIMVA 2016. LNCS, vol. 9721, pp. 300–321. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-40667-1 15

25. Gu, R., et al.: CertikOS: an extensible architecture for building certified concur-
rent OS kernels. In: Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation, OSDI 2016, pp. 653–669. USENIX Associa-
tion, Berkeley (2016)

26. Guanciale, R., Balliu, M., Dam, M.: Inspectre: breaking and fixing microarchi-
tectural vulnerabilities by formal analysis. In: 2020 ACM SIGSAC Conference on
Computer and Communications Security, Virtual Event, CCS 2020, USA, 9–13
November 2020, pp. 1853–1869 (2020). https://doi.org/10.1145/3372297.3417246

27. Guanciale, R., Nemati, H., Baumann, C., Dam, M.: Cache storage channels: alias-
driven attacks and verified countermeasures. In: Symposium on Security and Pri-
vacy, pp. 38–55. IEEE (2016). https://doi.org/10.1109/SP.2016.11

28. Guarnieri, M., Köpf, B., Morales, J.F., Reineke, J., Sánchez, A.: Spectector: prin-
cipled detection of speculative information flows. In: 2020 IEEE Symposium on
Security and Privacy, SP 2020, San Francisco, CA, USA, 18–21 May 2020, pp.
1–19 (2020). https://doi.org/10.1109/SP40000.2020.00011

29. Heiser, G., Klein, G., Murray, T.: Can we prove time protection? In: Proceedings
of the Workshop on Hot Topics in Operating Systems, pp. 23–29 (2019)

30. Kessler, R.E., Hill, M.D.: Page placement algorithms for large real-indexed caches.
Trans. Comput. Syst. 10(4), 338–359 (1992). https://doi.org/10.1145/138873.
138876

31. Kim, Y., et al.: Flipping bits in memory without accessing them: an experimental
study of dram disturbance errors. In: Proceeding of the 41st Annual International
Symposium on Computer Architecture, ISCA 2014, Piscataway, NJ, USA, pp. 361–
372. IEEE Press (2014)

32. Kocher, P., et al.: Spectre attacks: exploiting speculative execution. arXiv e-prints,
January 2018

https://doi.org/10.1007/978-3-540-32004-3_20
https://doi.org/10.1007/978-3-540-32004-3_20
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/CSFW.1991.151567
https://doi.org/10.1007/978-3-319-40667-1_15
https://doi.org/10.1007/978-3-319-40667-1_15
https://doi.org/10.1145/3372297.3417246
https://doi.org/10.1109/SP.2016.11
https://doi.org/10.1109/SP40000.2020.00011
https://doi.org/10.1145/138873.138876
https://doi.org/10.1145/138873.138876

A Case Study in Information Flow Refinement for Low Level Systems 79

33. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

34. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

35. McIver, A.K., Morgan, C.C.: Sums and Lovers: case studies in security, composi-
tionality and refinement. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS,
vol. 5850, pp. 289–304. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-05089-3 19

36. McLean, J.: The specification and modeling of computer security. Computer 23(1),
9–16 (1990). https://doi.org/10.1109/2.48795

37. Meyden, R.: What, indeed, is intransitive noninterference? In: Biskup, J., López, J.
(eds.) ESORICS 2007. LNCS, vol. 4734, pp. 235–250. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-74835-9 16

38. Morgan, C.: The shadow knows: refinement and security in sequential programs.
Sci. Comput. Program. 74(8), 629–653 (2009). https://doi.org/10.1016/j.scico.
2007.09.003

39. Murray, T.C., Sison, R., Pierzchalski, E., Rizkallah, C.: Compositional verifica-
tion and refinement of concurrent value-dependent noninterference. In: IEEE 29th
Computer Security Foundations Symposium, (CSF), pp. 417–431 (2016). https://
doi.org/10.1109/CSF.2016.36

40. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006). https://doi.org/10.1007/11605805 1

41. Page, D.: Theoretical use of cache memory as a cryptanalytic side-channel. IACR
Cryptology ePrint Archive 2002, 169 (2002)

42. Rushby, J.: Noninterference, transitivity and channel-control security policies.
Technical report, SRI International (1992)

43. Santen, T., Heisel, M., Pfitzmann, A.: Confidentiality-preserving refinement is
compositional—sometimes. In: Gollmann, D., Karjoth, G., Waidner, M. (eds.)
ESORICS 2002. LNCS, vol. 2502, pp. 194–211. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45853-0 12

44. Stefan, D., et al.: Eliminating cache-based timing attacks with instruction-based
scheduling. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS,
vol. 8134, pp. 718–735. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40203-6 40

45. Van der Meyden, R., Zhang, C.: Information flow in systems with schedulers, Part
II: Refinement. Theor. Comput. Sci. 484, 70–92 (2013). https://doi.org/10.1016/
j.tcs.2013.01.002

https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-642-05089-3_19
https://doi.org/10.1007/978-3-642-05089-3_19
https://doi.org/10.1109/2.48795
https://doi.org/10.1007/978-3-540-74835-9_16
https://doi.org/10.1016/j.scico.2007.09.003
https://doi.org/10.1016/j.scico.2007.09.003
https://doi.org/10.1109/CSF.2016.36
https://doi.org/10.1109/CSF.2016.36
https://doi.org/10.1007/11605805_1
https://doi.org/10.1007/3-540-45853-0_12
https://doi.org/10.1007/978-3-642-40203-6_40
https://doi.org/10.1007/978-3-642-40203-6_40
https://doi.org/10.1016/j.tcs.2013.01.002
https://doi.org/10.1016/j.tcs.2013.01.002

Re-CorC-ing KeY:
Correct-by-Construction Software

Development Based on KeY

Tabea Bordis1,2(B), Loek Cleophas3,4, Alexander Kittelmann1,2,
Tobias Runge1,2, Ina Schaefer1,2, and Bruce W. Watson4,5

1 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
{tabea.bordis,alexander.kittelmann,tobias.runge,ina.schaefer}@kit.edu

2 TU Braunschweig, Braunschweig, Germany
3 TU Eindhoven, Eindhoven, The Netherlands

l.g.w.a.cleophas@tue.nl
4 Stellenbosch University, Stellenbosch, South Africa

bwwatson@sun.ac.za
5 School for Data-Science and Computational Thinking, Stellenbosch University,

Stellenbosch, South Africa

Abstract. Deductive program verification is a post-hoc quality assur-
ance technique following the design-by-contract paradigm where cor-
rectness of the program is proven only after it was written. Contrary,
correctness-by-construction (CbC) is an incremental program construc-
tion technique. Starting with the functional specification, the program’s
correctness is guaranteed by application of a small set of refinement rules.
Even though CbC is supposed to lead to code with a low defect rate
and improve the traceability of errors, it is not widespread. One of the
main reasons is insufficient tool support which we addressed with our
tool CorC. CorC provides support for CbC-based program construc-
tion with the KeY program verifier as backend prover for checking cor-
rectness of refinement rule applications. However, CorC was limited to
constructing single method bodies restricting its applicability. In this
work, we introduce and discuss CorC 2.0, which extends CorC’s pro-
gramming model with objects as used in object-oriented programming.
We integrate CorC into a development process that allows to use post-
hoc verification and CbC interchangeably to construct correct programs,
and scale the applicability of CbC on the architectural level in our tool
extension ArchiCorC. We developed three object-oriented case stud-
ies and evaluated the verification effort and the usability of CorC in
comparison to post-hoc verification.

1 Introduction

The amount of software in safety-critical systems increases, and, therefore, func-
tional correctness of programs is an important concern. While most verification
approaches rely on post-hoc verification [13,23,50,51], where a program is only
c© Springer Nature Switzerland AG 2022
W. Ahrendt et al. (Eds.): The Logic of Software. A Tasting Menu of Formal Methods,
LNCS 13360, pp. 80–104, 2022.
https://doi.org/10.1007/978-3-031-08166-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08166-8_5&domain=pdf
https://doi.org/10.1007/978-3-031-08166-8_5

Re-CorC-ing KeY: Correct-by-Construction Software 81

verified after it is implemented, the stepwise correctness-by-construction devel-
opment approach (CbC) as proposed by Dijkstra [20], Gries [21], or Kourie and
Watson [29] offers an alternative approach. A behavioral specification in form
of a pre- and postcondition pair is refined into code using a set of tractable
refinement rules. To guarantee the correctness of the refinement steps, each rule
defines specific side conditions for its applicability. As a result, when applying
CbC compared to classical post-hoc verification, errors are more likely to be
detected earlier in the design process [35].

Our long-term vision is to make CbC accessible for large-scale software devel-
opment. CorC [43] is a tool based on the deductive program verifier KeY [3]
that supports the development of single methods following the CbC paradigm
as imagined by Dijkstra [20]. The program and its specification are separated
into several Hoare triples, each triple consisting of a pre- and postcondition
pair and a statement written in Java. These triples can typically be proven
automatically [43] with KeY. Thus, CorC adds tool support for CbC-based
development to the KeY ecosystem. So far CorC could only be used to develop
single algorithms as methods, independent of classes or larger software systems.
One major stepping stone towards our vision to extend the applicability of CbC-
based development is a development process that uses post-hoc verification and
CbC in concert to take advantage of both approaches. In this paper, we focus
on integrating object-orientation and a roundtrip engineering approach into the
new version of CorC, called CorC 2.0. CorC 2.0 covers the same object-
orientation language concepts that KeY covers for post-hoc verification and
enables the combination of classic post-hoc verification using KeY and CbC-
based development to improve the development of correct Java programs.

We extend CorC by four features such that object-oriented Java programs
can be created using CbC and integrated into existing Java projects.

Graphical View. We provide a graphical view to create classes with fields, class
invariants, and methods.

Inheritance and Interfaces. We support constructive development with interfaces
and inheritance using the Liskov principle.

Roundtrip Engineering. We implement a roundtrip engineering approach such
that existing Java classes can easily be imported into CorC to show their
correctness and afterwards exported back to the original project as verified
Java code. Thereby, the developer can freely decide which parts of the software
shall be constructed using CbC in CorC and which parts shall be verified
with post-hoc verification (or even stay unverified if it is not a safety-critical
part).

Change Tracking. We use a change tracking mechanism that simplifies ongoing
development by marking the refinement steps that have to be re-verified due
to changing contracts and implementations of methods or classes (e.g. method
calls, inherited method contracts, changed interface specifications).

To evaluate our concept, we recreate three case studies containing multiple
classes and methods and compare the verification effort in terms of needed proof

82 T. Bordis et al.

steps and verification time to deductive verification with KeY. By doing so, we
found that with CorC 2.0 we were able to prove a larger number of methods
compared to post-hoc verification with KeY, and that CorC 2.0 also sometimes
outperforms post-hoc verification with respect to verification effort. To further
extend CbC-based development, we give an outlook on CbC-based development
of component-based systems on the architectural level in our tool ArchiCorC
and on CbC-based development of feature-oriented software product lines in our
tool VarCorC.

2 Related Work

Besides of the CbC-based program construction approach proposed by Dijk-
stra [20] and Kourie and Watson [29], which we pursue in this work, there are
other refinement-based approaches that guarantee the correctness of the pro-
gram under development. In the Event-B framework [1], automata-based system
descriptions are refined to concrete implementations. This approach is imple-
mented in the Rodin platform [2]. In comparison to the CbC approach used
here, the abstraction level is different. CorC uses specified source code instead
of automata as main artifact. Morgan [36] and Back [8] also proposed related
CbC approaches. Morgan’s refinement calculus, which comprises a very large
number of different refinement rules in comparison to the minimal set of refine-
ment rules in CorC, is implemented in the tool ArcAngel [37]. Back et al. [6,7]
developed the tool SOCOS. In comparison to CbC in CorC, SOCOS works with
invariants in contrast to pre-/postcondition specifications as used in CorC.

Another field that emerged from the ideas of Gries [21] and Dijkstra [20] is
program synthesis. Program synthesis is the task to automatically find a program
that satisfies a formal specification provided by a developer. Foundational work
has been proposed by Manna and Waldinger [33] and has been continued by
many others. For example, Stickel et al. [48] propose a deductive approach that
extracts a Fortran program from a user-given graphical specification by com-
posing entries of subroutine libraries. Gulwani et al. [22] propose a component-
based synthesis that generates and resolves so called synthesis constraints and
apply their approach to bitvector programs. Heisel [25] uses a proof system that
builds up a proof during program development. Polikarpova et al. [41] propose
an approach to synthesize recursive programs from a specification in the form
of a polymorphic refinement type. In contrast to program synthesis, CbC as we
apply it does not automatically synthesize code from a specification. CbC is
rather a development approach that is guided by a specification and guarantees
correctness by proving that the side conditions that are introduced by the set
of refinement rules are fulfilled. The developer therefore still has control over
the program resulting from the approach while with program synthesis one of
possibly many implementations that fulfill the specification is generated. Fur-
thermore, program synthesis has limitations regarding scalability, as for example
recursive programs including loops are hard to synthesize.

Some of the authors’ recent work on trait-based CbC [44] proposes to replace
meta-refinement rules of CbC that are outside of the programming language

Re-CorC-ing KeY: Correct-by-Construction Software 83

with trait-based program development and trait-based composition. Refinement
in TraitCbC amounts to implementing an abstract method in a trait by a con-
crete method in another trait and composing those two traits to realize the
abstract method by the concrete implementation. TraitCbC per se is paramet-
ric in the specification language, meaning that any trait-based language with
a corresponding specification language and verification framework can be used
to instantiate TraitCbC. In some of the authors’ implementation [44], we use
KeY [3] to establish the correctness of traits and trait composition. Abstract
execution [47] in KeY allows verifying the correctness of methods with abstract
program parts, which are specific by contracts. Abstract execution can also be
used for refinement-based CbC where abstract program parts are incrementally
refined to more concrete program parts. This allows for a fine-grained adaption of
the granularity of refinement that ranges between single program statements (as
in CorC) and whole methods (as in TraitCbC). The main difference in abstract
execution is however that it extends the programming language with abstract
program parts and, thus, allows to better reason about irregular termination
(e.g., break/continue) of methods.

KeY [3] is a deductive program verifier for Java programs specified with
the Java modeling language. KeY is the verification backend of CorC. Besides
KeY, there are a number of tools for program specification and verification,
such as: the language Eiffel [34] with the verifier AutoProof [53], the languages
SPARK [9], Dafny [31], and Whiley [38], and the tools OpenJML [15], Frama-
C [17], VCC [14], VeriFast [26], and VerCors [4]. All those are candidates for
post-hoc verification tools to be compared with the CbC methodology, or they
can serve as backends for guaranteeing the correctness of rule applications in
refinement-based CbC, similar to the usage of KeY in CorC. In CorC, we
decided to use KeY as backend because of previous familiarity and support
from the KeY developer and user community.

3 Correctness-by-Construction in CorC

In this section, we introduce correct-by-construction software development in the
previous version of CorC. In Sect. 3.1, correctness-by-construction in CorC is
introduced by an example. In Sect. 3.2, we present the basic functionality of
CorC with the graphical and textual editor.

3.1 Correctness-by-Construction

The correctness-by-construction program development approach starts with a
Hoare triple {P} S {Q}. An abstract program S is refined stepwise into a cor-
rect implementation by applying refinement rules. A refinement rule concretizes
the Hoare triple {P} S {Q} to {P′} S′ {Q′}. For example, a loop, a conditional
statement, or a sequence of statements could be introduced as S′. CbC by Kourie
and Watson [29] offers a set of refinement rules that guarantee the correctness
of the refined program if specific side conditions hold.

84 T. Bordis et al.

In Fig. 1, we show an example of a linear search algorithm that is created
with the graphical CorC tool. Each node with a green border represents a
Hoare triple and corresponds to the application of one refinement rule. We start
with the program {P}statement{Q} at the top, where statement is an abstract
statement. The starting precondition P := appears(a, x, 0, a.length) states that
the element x appears in the array a inside the boundaries of the array. Here,
appears is a predicate to shorten the specification. The postcondition Q :=
modifiable(i); a[i] = x states that the element x is in the array at position
i. We specify with the predicate modifiable that only i can be altered in the
program. In CorC, the accessible variables are defined in a variables box, which
is shown on the right side. The function has two parameters a and x and a local
variable i. The global conditions box specifies conditions which are valid in every
step of the program (i.e. invariants), and hence added implicitly to every Hoare
triple.

The first refinement is the application of the composition rule [29], which
splits the starting Hoare triple by triples {P}statement1{M} and {M}state−
ment2{Q} with an intermediate condition M. The idea of the algorithm is that
we traverse the array from back to front and stop, when the element x is found.
The invariant of the program is !appears(a, x, i + 1, a.length). If we have not
yet stopped, we know that the element x does not appear in the end of the array
that is already examined. We also use this invariant as intermediate condition M
to establish this condition at the start of our loop. The first abstract statement
statement1 is now refined with a refinement rule for assignments. We refine
statement1 to i = a.length − 1; to start at the end of the array, and we ver-
ify that the Hoare triple {P}i = a.length − 1;{M} is fulfilled with the concrete
instances for P and M. In the example, the green border indicates a successful
proof. The second abstract statement statement2 is refined to a repetition state-
ment using the invariant as discussed above. The loop guard is a[i] �= x. As long
as the element x is not found, the loop is repeated. Here, we have to prove four
conditions. First, the invariant must be established before the first loop iteration.
Second, the postcondition P must follow after the last loop iteration. Third, the
preservation of the invariant is shown in the last refinement, where we introduce
the loop body i = i − 1; to iterate through the array. Fourth, the loop must
terminate. For termination, a variant is used which decreases monotonically and
is bounded from below.

3.2 CorC

CorC [43] is a hybrid textual and graphical IDE to develop correct software
using the CbC process. CorC supports programmers to refine programs and to
check the correct application of the refinements. A check is for example on the
correctness of a Hoare triple, the initial validity of a loop invariant, or the termi-
nation of a loop. For each check, CorC prepares a proof goal which is verified
by the program verifier KeY [3] integrated in its backend. To be compatible
with KeY, CorC prepares proof goals where the code is written in Java syntax
with specifications in Java Dynamic Logic (JDL) [3]. The extent of language

Re-CorC-ing KeY: Correct-by-Construction Software 85

Fig. 1. Linear Search Algorithm Constructed in CorC

constructs covered in CorC is similar to the guarded command language [19]
with statements for skip, assignment, function call, composition, selection, and
repetition. The CorC IDE also offers a textual editor. The syntax of the tex-
tual editor is based on Java that is enriched with keywords for the application
of refinements and additional specifications for loop invariants and intermediate
assertions. Programs created in the textual editor can be transformed to the
graphical editor and vice versa.

In comparison to the verification of complete Java programs in KeY, CorC
splits the verification effort of a complete method into the verification of several
refinement steps (e.g., checking the refinement of introducing: skip, assignment,

86 T. Bordis et al.

function call, composition, selection, repetition, weakening precondition, and
strengthening postcondition). In each step, a side condition, such as the estab-
lishment of a loop invariant before the first loop iteration, or the correctness
of a Hoare triple, is verified. All proofs combined guarantee the correctness of
the whole program. This split into several proofs can reduce the proof complex-
ity and proof effort [54]. Thus, CorC can be used as a frontend for KeY that
enables a correct-by-construction development process for the construction of
individual algorithms.

4 Object-Oriented Development in CorC 2.0

Object-oriented programming is state-of-the-art in software engineering and sup-
ported by most modern programming languages. In the previous section, we
described how single algorithms can be created using CorC. However, these
algorithms are independent of any class structure which means that these single
algorithms cannot access the same set of global fields like methods in a class
in object-oriented programming can. Additionally, objects containing methods
that have been created by CorC can only be created using laborious copy-and-
paste workarounds. In other words, the current implementation of CorC can
hardly be integrated into a software engineering process as it lacks a concept for
modularization and ownership, as well as processes that enable the integration of
CbC into a software development workflow. Therefore, in this section we present
our concept for CbC-based object-oriented software development and the corre-
sponding extension of CorC in the tool CorC 2.0. CorC 2.0 implements a
roundtrip engineering from existing Java projects to CbC-based program devel-
opment, which allows for a combination of post-hoc and CbC-based program
development and verification.

4.1 Object-Oriented Concepts in CorC 2.0

Object-oriented programming is a common programming paradigm based
around objects containing data fields and methods. In class-based languages,
like Java, C++, C#, PHP, or Smalltalk, objects are instances of classes that
have to be defined in advance. Classes are extensible templates for creating
objects and provide initial values for fields and implementations of methods.
Other paradigms that most object-oriented languages share are encapsulation,
inheritance, polymorphism, and dynamic dispatch. As CorC already uses Java
syntax in the refinement steps and KeY as deductive verification tool to verify
the single refinement steps, we focus on object-orientation as realized in Java
and how to combine this with CbC.

Classes. To support object-orientation in CorC 2.0, we introduce the construc-
tion of classes that hold methods implemented with CorC and fields that
can be accessed by the methods contained in the respective class. The vis-
ibility of fields can be modified using the Java visibility modifiers public,

Re-CorC-ing KeY: Correct-by-Construction Software 87

private, package, and protected. Fields can also be defined as static or
final. Besides fields that have been defined in the class, methods of that class
can define a set of local variables including parameters and a return variable.
Additionally, we add class invariants as a new specification type to our class
definitions. Class invariants specify conditions that are fulfilled by the class,
i.e. that are preserved by all methods of that class or re-established at the
end of method execution. To guarantee that a method created with CorC
fulfills the class invariants, they are automatically added to the pre- and
postcondition of the starting Hoare triple when that method is constructed.

Method Calls. Methods can either be called inside of the same class, by an object
instantiating the class, or directly by the class if the method is static. The
implementation of that method can either be in CorC or in Java. For the
verification of a method call, CorC supports inlining and contracting [28]
(i.e., inserting its implementation or using its contract as defined in the CbC
method call refinement rule). When contracting is used, it is assumed that
the contract holds for that method, however, this is not specifically verified
in this step.

Framing. Besides a pre- and a postcondition, a frame that contains all variables
whose data can be modified is defined for each method. This information
helps callers of the method to determine which parts of the state are not
changed due to the call [12]. For formal verification of object-oriented pro-
grams, framing is important, because the caller implicitly knows which fields
remain unchanged during the execution of a method [3,55]. Furthermore,
framing is important for information hiding [30] and to avoid unwanted side
effects [32]. In CorC, the frame of a method is automatically determined by
traversing its refinement steps and collecting the variables that are on the
left of an assignment. However, the frame can also be defined manually by
the user. For the verification of a method with frame, it is checked whether
all variables that are not included in the frame still have the same value as
before the execution of that method.

Inheritance and Interfaces. Inheritance and interfaces are two important features
in Java. While interfaces can be used as a layer of abstraction, inheritance
can be used to create classes built upon existing classes to, for example,
enable code reuse. For both, inheritance and interfaces, we check that the
Liskov principle is fulfilled by the child class or the class that implements
the interface. This means that class invariants that are defined in the parent
class or the interface also have to be fulfilled by the class that extends or
implements it. Furthermore, if a method is overridden in the child class or
implemented from an interface it also has to fulfill the contract that has been
defined for that method in the parent class or interface. We do not require
an interface for every class.

Limitations. Besides methods, classes also contain constructors that are used
to instantiate an object from a class. Even though constructors are very impor-
tant in object-oriented programming, we do not support their creation and verifi-
cation in CorC. However, an initialization method which creates a new instance

88 T. Bordis et al.

Transaction.java
Account.java

Account.cbcclass
Update.cbcmethod
UndoUpdate.cbcmethod

Transaction.cbcclass
Transfer.cbcmethod
Lock.cbcmethod

Account

Transaction

Account
Fields

Class Invariants

public int balance
final int OVERDRAFT_LIMIT

balance >= OVERDRAFT_LIMIT

Update
public boolean
update(int x)
Pre: <precondition>
Post: <postcondition>
Mod: balance

UndoUpdate
public boolean
undoUpdate(int x)
Pre: <precondition>
Post: <postconditio>
Mod: balance

Account
Fields

Class Invariants

public int balance
final int OVERDRAFT_LIMIT

balance >= OVERDRAFT_LIMIT

Update
public boolean
update(int x)
Pre: <precondition>
Post: <postcondition>
Mod: balance

UndoUpdate
public boolean
undoUpdate(int x)
Pre: <precondition>
Post: <postconditio>
Mod: balance

{P} S {Q}

selection

method call (a.update()) composition

assignment

{P} S {Q}

selection

method call (a.update()) composition

assignment

1. Java to CORC
2. Verify Refinement

Steps with KEY

3. CORC to correct
Java

Legend
BordersImplementation

Roundtrip
Data Flow

verified
not verified

assignment

Fig. 2. Development Process in CorC 2.0

by calling a default constructor can be created and verified with CorC. The con-
tracts of methods are limited to a pre- and postcondition pair including a frame.
Exceptional behavior such as expecting a specific exception to be thrown cannot
be expressed in the contracts, and hence we cannot reason about exceptional
behavior.

4.2 Development Process in CorC 2.0

In Fig. 2, we give an overview of the project structure and the development
process in CorC 2.0. We do this using an example of a Bank Account soft-
ware system that consists of two classes. The class Account has two methods
update and undoUpdate to manipulate the balance of the account. The class
Transaction provides the method transfer which allows to transfer money
from a source account to a destination account and the method lock which
locks an account such that the balance cannot be changed anymore.

On the left side of Fig. 2, we show the project structure of the Bank
Account system. There are two folders named by the two classes Account and
Transaction that hold all files that have been created with CorC for each
class. The cbcclass and cbcmethod files are representations of the Java classes
and methods in CbC format which can be displayed, edited, and verified by
CorC. Each folder contains a cbcclass file which is also named after the class
and contains all information related to this class (i.e., class and method informa-
tion). The implementation of Account.cbcclass is shown in the bottom center
of Fig. 2 similar to a UML class diagram. There is one bigger box with the title
Account that defines the field balance and the constant OVERDRAFT LIMIT and

Re-CorC-ing KeY: Correct-by-Construction Software 89

a class invariant. If this class inherits from another class or implements an inter-
face this would be defined using the Java keywords extends and implements.
The methods update and undoUpdate are shown in two separate boxes that are
connected to the Account class. They show the method signature and the con-
tract consisting of precondition, postcondition, and framing. Furthermore, their
border is either green or red to display their verification status.

Besides the cbcclass files, there is also a cbcmethod file per method in the
class folders. The development of methods generally stays the same as before in
CorC without object-orientation. The content of Transfer.cbcmethod is shown
in the top center of Fig. 2. It shows the refinement steps that are used in CorC
to construct method transfer starting from the starting Hoare triple {P} S {Q}.
Precondition P and postcondition Q are the same as the pre- and postcondition
that are contained in Transaction.cbcclass for method transfer. The single
refinement steps are created in CorC and verified with KeY as described in
Sect. 3.

In the following, we describe some of the new core features of CorC 2.0,
which are important for the integration of CbC into the software engineering
development process.

Fig. 3. Roundtrip Engineering Workflow

Roundtrip Engineering. To sim-
plify the integration of CorC 2.0
into existing Java software sys-
tem development, we introduce
a roundtrip engineering function-
ality. This roundtrip engineering
process can be used for example
for (1) implementing new meth-
ods using CbC, (2) guarantee-
ing the correctness of an already
implemented method, or (3) to be
able to better track the source of
error when the developer fails to
prove a certain method with post-
hoc verification. Either way, the
correct and changed implemen-
tation and specification can be
integrated back into the original
project. The roundtrip engineer-
ing is performed in three steps as
displayed in Fig. 3. These three
steps can be iteratively repeated
to create an incremental development process.

Step 1: If there are already Java classes that contain methods that need to
be verified, the classes and methods can be converted into the cbcclasses and
cbcmethods in a first step. During this step, the user can select the methods
that shall be converted. The user can then complete missing specifications and

90 T. Bordis et al.

annotations (e.g. intermediate conditions, loop invariants, variants, ...) in the
cbcmethods. The cbcclasses and cbcmethods can also be created from scratch
in CorC, which makes this first step optional. In that case, the user has to
manually apply the refinement rules to construct the methods in Step 2.

Step 2: The refinement steps in the cbcmethods are verified. Method calls can
either be verified by inlining or contracting (i.e. using either implementation or
contract of the called method). If a method call is verified using its contract, the
method can either be implemented in CorC or provided in Java specified with
a JML contract. This allows the user to freely combine CorC with existing Java
methods and post-hoc verification. However, in that step it is not verified whether
a called method actually fulfills its contract. Consequently, not all methods need
to be specified (when inlining is used) and methods that are specified do not
necessarily have to be verified to be called and can be assumed to be correct.

Step 3: CorC can generate correct Java code from the verified cbcmethods,
either to a new Java class or back into the original Java class it has been imported
from where it replaces the original implementation and contract.

Change Tracking. To further improve the usability of CorC, we introduce a
notification system that keeps track of changes by setting already verified refine-
ments to not verified. This is especially critical for methods using method calls,
inheritance, or interfaces. In Fig. 2, the implementation of method transfer
calls method update on Account a. Now, if there is a change in method update
in class Account, the method call refinement in method transfer needs to be
re-verified, as the old proof relies on a possibly outdated contract. The change
tracking system prevents the developer from overlooking these changes. Addi-
tionally, it enables the direct navigation to the affected method (in our example
to method transfer) for re-verification. In the background, the affected refine-
ment rules are automatically set to not verified so that these refinement steps
cannot mistakenly be assumed to be correct. Since CbC has a fine-grained struc-
ture with single refinement steps, not all refinement steps of a method have to
be re-verified, but only those that are affected by the change. CorC 2.0 can
better maintain the correctness of evolving software than its predecessor, since
it is no longer possible to have refinements falsely marked as verified.

4.3 Implementation

CorC 2.01 is an open-source Eclipse plug-in supporting the development of
object-oriented programs using CbC as described in this work. CorC captures
the structure of a CbC program including the refinement rules through two
meta-models, one for the class files and one for the methods, modeled using
the Eclipse Modeling Framework2. The graphical editing framework Graphiti3 is
used to visualize the underlying meta-models. For the methods, we use a tree-like

1 https://github.com/TUBS-ISF/CorC.
2 https://eclipse.org/emf/.
3 https://eclipse.org/graphiti/.

https://github.com/TUBS-ISF/CorC
https://eclipse.org/emf/
https://eclipse.org/graphiti/

Re-CorC-ing KeY: Correct-by-Construction Software 91

Fig. 4. Screenshot of CorC 2.0 with Method update

structure. The beginning of a method in CbC always consists of a Hoare triple,
which can be refined until there are no more abstract statements. Thereby, the
pre- and postconditions and other annotations are automatically passed on in
each refinement step. Furthermore, the deductive verification tool KeY [3] is
used to prove the correct usage of each refinement rule.

In Fig. 4, we show a screenshot of the graphical view to develop methods in
CorC 2.0. On the left side, there is the project structure of the Bank Account
case study which has been used as an example in the previous subsection. The
Java-classes are in the default package. Then, there are folders named after the
classes holding the information about the class and all methods in form of dia-
gram and model files named after the distinct classes and methods. The diagram
files (<methodName/className>.diagram) contain the graphical representation
and the model files (<methodName>.cbcmodel/<className>.cbcclass) store
the information about the methods and classes in the corresponding meta-model.
The prove<methodName> folder stores generated proof files, which contain the
side conditions for a refinement step which need to be verified. Each proof file
is verified (semi-)automatically by KeY. For a better overview, in front of the
folder name the proportion of verified methods is given and in front of the

92 T. Bordis et al.

< methodName > .diagram files the verification state is given. In this context,
verified means that all refinement steps of a method could be proven and pending
means that at least one refinement step is still unverified.

In the center of Fig. 4, we can see the CorC-diagram of method undoUpdate.
At the top of the diagram, we can see a formula component for our starting Hoare
triple. Underneath, we see a refinement step using the composition refinement
rule. That refinement rule splits the abstract statement into two abstract state-
ments. Afterwards, these are further refined. We can right-click on these com-
ponents to trigger a verification process. In the verification process, we translate
the Hoare triple of the selected component into a proof file for the correspond-
ing refinement rule in the format required by KeY. All components in the CbC
construction tree are marked green in our example so that we can conclude that
all refinement steps have been verified. If a refinement step could not be verified,
the corresponding component is marked red which enhances the traceability of
incorrectly defined refinement rules or inconsistencies in relation to the specifi-
cations. At the top right, we can see two boxes which hold the defined variables
and global conditions.

At the bottom of Fig. 4, we can see the properties view with the currently
active Basics tab. It shows further information about the method undoUpdate,
such as the class it belongs to, its signature, and the class invariants it has to
fulfill. The signature of the method can also be edited. To change any other
information, the class file has to be opened. The other tab in the properties view
is called Code Reader and displays the selected Java statements or specifications
in the diagram in a bigger window with syntax highlighting. It enables better
readability of especially long specifications and helps to modify them more easily
without introducing syntax errors.

In Fig. 5, we show a screenshot of the class view in CorC 2.0. It displays
the content of file Account.diagram. In the top center, we see a component for
the class definition that looks similar to a UML class diagram. At the top, it
displays the name of the class, and below that, it lists the class invariants and
fields with their visibility, type, and name. Around the class component, there
are several other components which are the methods that are implemented in this
class. They show the signature and the contract of each method. Additionally,
their verification status is displayed by the red and green borders. In this view,
new methods, fields, and class invariants can be added and existing ones can be
edited. Changed information, for example a changed precondition of a method
or a changed type of a field, is directly available in all method diagrams since
they directly reference this file. In the case of a changed precondition, the user
is notified by the change tracking mechanism and the verification status is set
to not verified as described in the previous subsection. For an easy navigation
to the method diagrams, the user can double-click on a method component.

Re-CorC-ing KeY: Correct-by-Construction Software 93

Fig. 5. Screenshot of Class Account in CorC 2.0

5 Evaluation

In this section, we evaluate CorC 2.0 by comparing it with post-hoc verification.
We use KeY for post-hoc verification, since KeY is also the integrated verifier
in CorC, but KeY can be understood as synonym for post-hoc verification.
To evaluate whether it is feasible to construct correct programs with CorC, we
want to answer the following two research questions:

RQ1: How does the verification effort (w.r.t. execution time and proof steps) of
verifying algorithms in CorC compare to post-hoc verification in KeY?

RQ2: How does the CorC development process assist in creating correct pro-
grams in comparison to the assistance of KeY for post-hoc verification?

The first research question is answered by creating three case studies with
both CorC and KeY, and measuring the verification time and the number
of verification steps. Each case study consists of several Java classes contain-
ing specified methods. Each method is created and verified with CorC. For the
post-hoc verification approach, we verified the methods written in Java and spec-
ified with JML (precondition, postcondition, and loop invariants, but no further
intermediate specification was given). For method calls, we used contracting to
prove correctness, but inlining can be used as an alternative. We always used
KeY as automatic verification tool. We measured the verification steps by the
number of rule applications of KeY. The verification time was measured five
times and the average was calculated. We do not consider the manual effort of

94 T. Bordis et al.

Table 1. Metrics of the case studies

Case Study #Classes #Methods #Verified #Verified
with CorC with KeY

Bank Account [52] 2 10 10 9
Email [24] 2 12 12 8
Elevator [39] 5 18 18 17

writing additional specification for CorC. For the second research question, we
qualitatively discuss the CorC tool by referring to two user studies conducted
at TU Braunschweig. We also discuss the new features of CorC 2.0.

Case Studies. We have three cases studies that are implemented and verified
with CorC and KeY. We decide to use the case studies Bank Account [52],
Email [24], and Elevator [39] because they are implemented in an object-oriented
fashion, such that we can evaluate the new feature of CorC 2.0. In Table 1, we
show some metrics for the case studies. We have two to fives classes and 10 to
18 methods per case study. The size of the methods ranges from 1 to 20 lines of
code.

5.1 RQ1 - Verification Time and Verification Steps

To answer the first research question, we verified all 40 methods in CorC. For
post-hoc verification, we used the same pre-/postcondition specifications as in
CorC. However, six algorithms could not be verified (cf. Table 2). The verifica-
tion of methods with KeY failed, for example, in the steps where the loop invari-
ant must be proven. In CorC, the verification of loops is split into several smaller
proofs reducing the proof complexity. Another reason for a reduced proof com-
plexity in CorC is that we introduce intermediate specifications, which guide
the verifier. In contrast, applying post-hoc verification is more coarse-grained, as
only precondition, postcondition, and loop invariants are specified. We observed
that debugging verification problems that could not be verified automatically
in post-hoc fashion, is more challenging than debugging the same problem con-
structed with CbC in CorC.

In Fig. 6, we show the average verification time measured in milliseconds, and
in Fig. 7, we show the average verification steps for each case study, but only for
the 34 methods which could be verified with CorC and KeY. The verification
time ranges from 0.1 s for some methods to 16 s for the most complex methods.
For 22 methods, the verification time with CorC is faster, for 12 methods the
verification with KeY is faster. The largest differences are: enterElevator is
268% faster with CorC, addWaitingPerson is 271% faster with KeY. The
average verification time for the Email case study shows that the verification is
23% faster with CorC, but on average the Elevator case study is 24% faster
with KeY. For the number of proof steps, we got similar results. In 26 cases,

Re-CorC-ing KeY: Correct-by-Construction Software 95

0

500

1000

1500

2000

2500

3000

Bank Account Email Elevator

Ti
m

e
in

 m
s

Average Verifica on Time

CbC PhV

Fig. 6. Average Verification Time of
the Case Studies with CbC and PhV

0

100

200

300

400

500

600

700

800

Bank Account Email Elevator

N
um

be
r o

f s
te

ps

Average Verifica on Steps

CbC PhV

Fig. 7. Average Verification Steps of
the Case Studies with CbC and PhV

CorC has fewer steps, and in 8 cases, KeY has fewer steps. The case studies
Bank Account and Email are on average 32% and 31% smaller with CorC, and
Elevator is 29% smaller with KeY. Overall, the results are of the same order of
magnitude. The exact verification time and steps for each method are shown in
Appendix A.

Discussion. Regarding the verification effort, no trend can be identified. There-
fore, we cannot answer the research question positively that the verification with
CbC is faster than with PhV in terms of verification time or verification steps.
The verification time and the verification steps are similar for both approaches.
However, we could verify more methods in total with CorC. The additional
specifications in the form of intermediate annotations and the splitting into
several smaller proofs facilitates the completion of proofs, but it does not sig-
nificantly affect the verification effort. As we are promoting to use CbC and
PhV in concert, a similar verification effort is beneficial. There is no discernible
disadvantage in terms of effort in using one of the two approaches.

5.2 RQ2 - Usability of CorC

For the second research question, we conducted two user studies [42,45] with
a total of 23 students from the TU Braunschweig. In both studies, a group of
students was divided into half. One group created and verified a method with
CorC and a second method with KeY. The second group created the same
methods, but used the tools in reverse order. We measured the defects in the
developed and verified methods and performed a questionnaire on the usability
of CorC and KeY at the end of the user study. The first user study took place
in person in 2019 [45], the second user study was online in 2021 [42]. In both user
studies and with both tools, we had several correct implementations but which
were not verified in the given time frame. A common problem was a too weak
loop invariant. In the usability questionnaire, most participants preferred CorC
over KeY due to the better and more fine-grained feedback when errors occurred
during the verification. It was easier to detect and solve errors with CorC. A
minority of participants preferred KeY because they were more familiar with

96 T. Bordis et al.

the syntax of Java and JML. As we are now supporting roundtrip development
with CorC 2.0, we believe that this statement is weakened. Users can now freely
develop and verify programs with CorC or KeY and generate the program for
the other approach automatically. Thus, the preferred tool can be used without
restrictions.

During the construction of the three case studies (cf. RQ1), CorC’s change
tracking feature was valuable. When we verified a refinement step that called
another method, it occurred that we had to change the contract of this called
method. The change tracking feature then set the affected method calls in all
CorC programs to not be verified. With this feature, we did not miss any
open verification obligations. In summary, we can confirm that CorC assists in
developing correct software. Additionally, with the new features of CorC 2.0,
the implementation of object-oriented code is supported.

5.3 Threats to Validity

External Validity. The methods implemented in the three case studies have a size
of 1 to 30 lines of code. These small methods reduce the generalizability for larger
algorithmic problems. While CorC 2.0 extends the application field to object-
orientation, we still consider CorC to be a tool for smaller, but challenging
algorithmic problems. The generalizability of the user studies are limited as only
23 students participated, but due to the small number of participants, we were
able to interview them in more detail. Nevertheless, the participants were no
experts in verification. We classify the participants as junior developers.

Internal Validity. We wrote most of the specifications of the three case studies
ourselves. Thus, there could still be defects in the specifications or implementa-
tions. However, we were able to verify all methods with CorC and most meth-
ods with KeY, which is a strong indication of correctness of the case studies.
In particular, we checked the equality of the specifications for the two different
approaches. The time frame of the user study was limited: the participants had
only 30 min for each method implementation. With more time, we expect that
more participants verify the assigned methods.

6 Beyond Monolithic Program Construction with CorC

The previous sections emphasize our ongoing vision to integrate the correctness-
by-construction methodology into the realm of mainstream software develop-
ment through sophisticated tool support. Besides extending CorC’s program-
ming model with advanced paradigms, such as object orientation (cf. Sect. 4), a
natural follow-up is to develop concepts and tool support that make the correct-
by-construction approach available at scale. Currently, we aim to address this by
two further directions. First, VarCorC is a framework for CbC-based develop-
ment of variational software. That is, instead of developing monolithic programs,

Re-CorC-ing KeY: Correct-by-Construction Software 97

the goal is to systematically construct a family of similar software programs fol-
lowing the CbC paradigm. Second, we study the role of correct-by-construction
implementations in software architectures with ArchiCorC, where the main
goal is to bundle CorC programs into reusable software components. We briefly
present our vision for both lines of research in the following.

VarCorC: Correct Variational Software Construction

Software product lines [40] are increasingly used to lower the costs in producing
custom-tailored software products, also including the domain of safety-critical
software systems. VarCorC is an extension of CorC to create feature-oriented
software product lines [11]. Software product lines are families of related pro-
grams sharing a common code base [18]. The common and varying parts of a
product line are defined by features. In feature-oriented programming [5,10],
features are implemented by feature modules. Similar to inheritance in object-
oriented languages, in a feature module, methods can be added or overridden
in a specific order defined by the product line. Overridden methods can use the
original keyword to call the previous implementation of that method. The feature
configuration then defines the explicit relationship between feature modules. For
VarCorC, we extended CbC by two new variability-aware refinement rules, one
for original calls and one for variational method calls. Since implementation of
a method depends on the different features, method calls encompass variability
in software product lines. Additionally, we integrated the concept of contract
composition [51] to allow for a varying method contract per feature that can be
composed along a feature configuration to form the contract of a method in a
product of the product line.

ArchiCorC: Correct Software Architectures

The benefits of combining correctness-by-construction with component-based
software engineering [16,46,49] are manifold. For instance, component-based
architectures allow to establish a repository of correct-by-construction compo-
nents. This is not only interesting for standard libraries, where implementations
are accessed through explicit interfaces, but also for third-party developments
that are easier to integrate into personal projects. Most importantly, modular-
ization of correct implementations into components allows developers to think
about how to compose software systems instead of how to program a monolithic
software system from scratch. We argue that this is the foundation for building
large and complicated systems that are based on the correctness-by-construction
approach.

As an extension to CorC, we propose a framework and an open-source imple-
mentation named ArchiCorC [27] that connects UML-style component mod-
eling, specification, and code generation. In more detail, ArchiCorC comprises
four key ingredients. First, a component and interface description language is
used to describe interconnections between provided and required interfaces of
components, where interfaces comprise method signatures that are specified with

98 T. Bordis et al.

Correct-by-Construc on
Code

ARCHICORC

Component Model CORC programs

Analyses Composi on Modularity/Reuse

Modeling and Analyzing Code Genera on

Specifica ons

mapping

Fig. 8. Envisioned Workflow of the ArchiCorC Development Process

Hoare triples. Second, a construction technique aids developers with either refin-
ing method signatures of provided interfaces to correct implementations using
CorC itself, or with mapping signatures to already existing CorC programs.
Third, ArchiCorC integrates analyses and algorithms to check compatibil-
ity between components and to build composites to form larger components.
Finally, ArchiCorC allows to generate code in a general-purpose programming
language (e.g., Java).

In Fig. 8, we illustrate an envisioned development process using ArchiCorC.
A developer starts by designing a high-level component model including required
and provided interfaces and connections between them. Hierarchical composition
allows to build larger components from a set of smaller ones. Method signa-
tures of provided interfaces of atomic components (i.e., components that are
not decomposed any further) must be mapped to CorC programs, which are
assumed to be correct-by-construction. The component model can then be trans-
lated to a general-purpose programming language (e.g., Java or C++) and can
be imported into other projects. This development process embodies the next
milestone of our ongoing vision of correct-by-construction software development.

7 Conclusion

Our long-term vision is to make the correctness-by-construction (CbC) approach
accessible for large-scale software development. The formal framework of CbC
enables developers to start with a specification for safety-critical parts and algo-
rithms. Then, the framework guides developers in deriving a provably correct
implementation. A major stepping stone towards this vision is the development
of tool support that allows to apply traditional software development and CbC
in concert. In this work, we presented state-of-the-art tool support for this mis-
sion, namely the CorC 2.0 tool family, including a comprehensive overview of
its current status and prospective directions.

In particular, we introduce CorC 2.0 (the successor of CorC), which com-
bines CbC with object-oriented software development in Java. In CorC, single
algorithms are developed completely independently of other programs, making

Re-CorC-ing KeY: Correct-by-Construction Software 99

the integration into software engineering processes impractical. As a new key
feature, CorC 2.0 adds a class concept for structuring programs (i.e., meth-
ods) inspired by Java’s object-oriented programming model. CorC 2.0 now
supports a roundtrip engineering process that is important for applying CbC
to existing software projects; existing Java classes comprising specified methods
can be converted into CorC 2.0 projects and, after verified construction, they
can be converted back to verified Java implementations. This strong improve-
ment in tool support directly targets scalability concerns of the CbC approach,
as it allows developers now to decide whether parts are (1) verified using post-
hoc verification techniques, (2) implemented following the CbC approach, or (3)
remain unverified.

In alignment with our vision, we believe that CorC 2.0 allows developers to
address program verification of general-purpose programming languages in a new
way. One outcome of our evaluation illustrates that CorC 2.0 can sometimes
outperform post-hoc verification with respect to verification effort and success
rate. Although specification effort can be higher, the benefits of additional spec-
ification together with the fine-grained refinement rules are easier debugging
and better feedback in general. Our future direction with the CorC ecosystem
is therefore a seamless integration into mainstream software development. One
focal point is to identify and study possible synergies when applying post-hoc
verification and CbC in concert. Another focal point is to conduct larger user
studies, which provide important insights on how CbC is applied in practice and,
consequently, influence the development of the CorC ecosystem in general. Only
the recent advancements made in CorC 2.0 enable us to develop more complex
case studies necessary to address these future directions.

Acknowledgement. We thank Maximilian Kodetzki from TU Braunschweig for
implementing large parts of the new features for CorC 2.0.

100 T. Bordis et al.

A Appendix

Table 2. Verification Time and Verification Steps of All Methods

Method #Steps CbC #Steps PhV Time in ms Time in ms

CbC PhV

undoUpdate 205 183 730,75 747,3

update 181 188 626,75 627,67

creditAccount 25 45 104,5 132,67

dailyUpdate 467 636 1990,5 2261

interestCalculate 422 Unclosed 1164 Unclosed

transactionLock 432 663 2253 1995,67

transactionTransfer 799 989 3556,75 3323,3

unLock 21 41 104,5 175,67

interestNextDay 233 381 1066,25 1154,67

interestNextYear 191 239 836,75 786,3

constructClient 50 68 207,75 292,3

createClient 1391 Unclosed 7108,5 Unclosed

getClientByAdress 1420 Unclosed 4509,75 Unclosed

getClientById 67 Unclosed 210,75 Unclosed

outgoing 67 61 212,75 200

resetClients 673 Unclosed 2450,75 Unclosed

constructEmail 36 42 111,25 156,33

createEmail 558 772 2591 2996,67

setEmailBody 38 47 110,25 185

setEmailFrom 40 51 104,5 192,33

setEmailSubject 38 47 113,25 170,67

setEmailTo 38 47 111,5 173,67

areDoorsOpen 64 41 229,25 141,67

buttonIsPressed 70 69 206 144

enterElevatorBase 805 1092 4829,5 4577

enterElevator 457 2315 2370 8710

pressButtonBase 87 94 317,25 529

pressButton 97 109 444,25 503,33

resetFloorButton 79 84 336,25 287

reverse 192 108 985,25 338,33

stopRequestedBase 878 1150 3179 4367,67

createEnvironment 1367 Unclosed 4375,5 Unclosed

isTopFloor 86 97 255,5 345,33

addWaitingPerson 4768 1041 16012,25 4320,33

callElevator 28 42 105,5 174,67

createFloor 346 1066 1641,75 4027

reset 29 42 106,25 173,67

createPerson 3835 1764 12323 6171,67

PersonenterElevator 163 134 432 393,67

PersonleaveElevator 30 44 105,25 174,67

Re-CorC-ing KeY: Correct-by-Construction Software 101

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. 1st edn.
(2010)

2. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in event-B. Int. J. Softw. Tools Technol.
Transf. 12(6), 447–466 (2010)

3. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M.:
Deductive Software Verification - The KeY Book (2016)

4. Amighi, A., Blom, S., Darabi, S., Huisman, M., Mostowski, W., Zaharieva-
Stojanovski, M.: Verification of concurrent systems with VerCors. In: Bernardo,
M., Damiani, F., Hähnle, R., Johnsen, E.B., Schaefer, I. (eds.) SFM 2014. LNCS,
vol. 8483, pp. 172–216. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
07317-0 5

5. Apel, S., Batory, D., Kästner, C., Saake, G.: Feature-Oriented Software Product
Lines (2013)

6. Back, R.J.: Invariant based programming: basic approach and teaching experiences.
Formal Aspects Comput. 21(3), 227–244 (2009). https://doi.org/10.1007/s00165-
008-0070-y

7. Back, R.-J., Eriksson, J., Myreen, M.: Testing and verifying invariant based pro-
grams in the SOCOS environment. In: Gurevich, Y., Meyer, B. (eds.) TAP 2007.
LNCS, vol. 4454, pp. 61–78. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-73770-4 4

8. Back, R.J., Wright, J.: Refinement Calculus: A Systematic Introduction. Springer
Science & Business Media (2012). https://doi.org/10.1007/978-1-4612-1674-2

9. Barnes, J.G.P.: High Integrity Software: The Spark Approach to Safety and Secu-
rity. Pearson Education (2003)

10. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling step-wise refinement. IEEE
Trans. Softw. Eng. 30(6), 355–371 (2004)

11. Bordis, T., Runge, T., Schaefer, I.: Correctness-by-construction for feature-oriented
software product lines. In: Proceedings of the 19th ACM SIGPLAN International
Conference on Generative Programming: Concepts and Experiences, pp. 22–34
(2020)

12. Borgida, A., Mylopoulos, J., Reiter, R.: On the frame problem in procedure spec-
ifications. IEEE Trans. Softw. Eng. 21(10), 785–798 (1995)

13. Bruns, D., Klebanov, V., Schaefer, I.: Verification of software product lines with
delta-oriented slicing. In: Beckert, B., Marché, C. (eds.) FoVeOOS 2010. LNCS,
vol. 6528, pp. 61–75. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-18070-5 5

14. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: a practical system for verifying concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 23–42. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-03359-9 2

15. Cok, D.R.: OpenJML: JML for Java 7 by extending OpenJDK. In: Bobaru, M.,
Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp.
472–479. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5 35

https://doi.org/10.1007/978-3-319-07317-0_5
https://doi.org/10.1007/978-3-319-07317-0_5
https://doi.org/10.1007/s00165-008-0070-y
https://doi.org/10.1007/s00165-008-0070-y
https://doi.org/10.1007/978-3-540-73770-4_4
https://doi.org/10.1007/978-3-540-73770-4_4
https://doi.org/10.1007/978-1-4612-1674-2
https://doi.org/10.1007/978-3-642-18070-5_5
https://doi.org/10.1007/978-3-642-18070-5_5
https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/978-3-642-20398-5_35
https://doi.org/10.1007/978-3-642-20398-5_35

102 T. Bordis et al.

16. Crnkovic, I., Sentilles, S., Vulgarakis, A., Chaudron, M.R.: A classification frame-
work for software component models. IEEE Trans. Softw. Eng. 37(5), 593–615
(2010)

17. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-C. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012.
LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33826-7 16

18. Czarnecki, K., Østerbye, K., Völter, M.: Generative programming. In: Hernández,
J., Moreira, A. (eds.) ECOOP 2002. LNCS, vol. 2548, pp. 15–29. Springer, Heidel-
berg (2002). https://doi.org/10.1007/3-540-36208-8 2

19. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Commun. ACM 18(8), 453–457 (1975)

20. Dijkstra, E.W.: A Discipline of Programming. 1st edn. Prentice Hall PTR (1976)
21. Gries, D.: The Science of Programming. 1st edn. (1981)
22. Gulwani, S., Jha, S., Tiwari, A., Venkatesan, R.: Component-based Synthesis

Applied to Bitvector Programs
23. Hähnle, R., Schaefer, I.: A Liskov principle for delta-oriented programming. In:

Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS, vol. 7609, pp. 32–46. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34026-0 4

24. Hall, R.J.: Fundamental nonmodularity in electronic mail. Autom. Softw. Eng.
12(1), 41–79 (2005)

25. Heisel, M.: Formalizing and implementing Gries’ program development method in
dynamic logic. Sci. Comput. Program. 18(1), 107–137 (1992)

26. Jacobs, B., Smans, J., Piessens, F.: A quick tour of the VeriFast program verifier.
In: Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 304–311. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17164-2 21

27. Knüppel, A., Runge, T., Schaefer, I.: Scaling correctness-by-construction. In: Mar-
garia, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12476, pp. 187–207. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-61362-4 10

28. Knüppel, A., Thüm, T., Padylla, C., Schaefer, I.: Scalability of deductive verifica-
tion depends on method call treatment. In: Margaria, T., Steffen, B. (eds.) ISoLA
2018. LNCS, vol. 11247, pp. 159–175. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-03427-6 15

29. Kourie, D.G., Watson, B.W.: The Correctness-by-Construction Approach to Pro-
gramming (2012)

30. Leavens, G.T., Müller, P.: Information Hiding and Visibility in Interface Specifi-
cations, pp. 385–395 (2007)

31. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4 20

32. Leino, K.R.M., Nelson, G.: Data abstraction and information hiding. ACM Trans.
Program. Lang. Syst. 24(5), 491–553 (2002)

33. Manna, Z., Waldinger, R.: A deductive approach to program synthesis. ACM Trans.
Program. Lang. Syst. 2(1), 90–121 (1980)

34. Meyer, B.: Eiffel: a language and environment for software engineering. J. Syst.
Softw. 8(3), 199–246 (1988)

35. Meyer, B.: Applying ‘design by contract’. Computer 25(10), 40–51 (1992)
36. Morgan, C.: Programming from Specifications. Prentice Hall (1998)
37. Oliveira, M., Cavalcanti, A., Woodcock, J.: ArcAngel: a tactic language for refine-

ment. Form. Asp. Comput. 15(1), 28–47 (2003)

https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/3-540-36208-8_2
https://doi.org/10.1007/978-3-642-34026-0_4
https://doi.org/10.1007/978-3-642-17164-2_21
https://doi.org/10.1007/978-3-030-61362-4_10
https://doi.org/10.1007/978-3-030-03427-6_15
https://doi.org/10.1007/978-3-030-03427-6_15
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20

Re-CorC-ing KeY: Correct-by-Construction Software 103

38. Pearce, D.J., Groves, L.: Whiley: a platform for research in software verification.
In: Erwig, M., Paige, R.F., Van Wyk, E. (eds.) SLE 2013. LNCS, vol. 8225, pp.
238–248. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02654-1 13

39. Plath, M., Ryan, M.: Feature integration using a feature construct. Sci. Comput.
Program. 41(1), 53–84 (2001)

40. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques (2005)

41. Polikarpova, N., Kuraj, I., Solar-Lezama, A.: Program synthesis from polymorphic
refinement types. ACM SIGPLAN Not. 51(6), 522–538 (2016)

42. Runge, T., Bordis, T., Thüm, T., Schaefer, I.: Teaching correctness-by-construction
and post-hoc verification – the online experience. In: Ferreira, J.F., Mendes, A.,
Menghi, C. (eds.) FMTea 2021. LNCS, vol. 13122, pp. 101–116. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-91550-6 8

43. Runge, T., Schaefer, I., Cleophas, L., Thüm, T., Kourie, D., Watson, B.W.: Tool
support for correctness-by-construction. In: Hähnle, R., van der Aalst, W. (eds.)
FASE 2019. LNCS, vol. 11424, pp. 25–42. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-16722-6 2

44. Runge, T., Servetto, M., Potanin, A., Schaefer, I.: Traits for Correct-by-
Construction Programming. To be published (2021)

45. Runge, T., Thüm, T., Cleophas, L., Schaefer, I., Watson, B.W.: Comparing
correctness-by-construction with post-hoc verification—a qualitative user study.
In: Sekerinski, E., Moreira, N., Oliveira, J.N., Ratiu, D., Guidotti, R., Farrell,
M., Luckcuck, M., Marmsoler, D., Campos, J., Astarte, T., Gonnord, L., Cerone,
A., Couto, L., Dongol, B., Kutrib, M., Monteiro, P., Delmas, D. (eds.) FM 2019.
LNCS, vol. 12233, pp. 388–405. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-54997-8 25

46. Sametinger, J.: Software Engineering with Reusable Components. Springer Science
& Business Media (1997)

47. Steinhöfel, D., Hähnle, R.: Abstract execution. In: ter Beek, M.H., McIver, A.,
Oliveira, J.N. (eds.) FM 2019. LNCS, vol. 11800, pp. 319–336. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-30942-8 20

48. Stickel, M., Waldinger, R., Lowry, M., Pressburger, T., Underwood, I.: Deductive
composition of astronomical software from subroutine libraries. In: Bundy, A. (ed.)
CADE 1994. LNCS, vol. 814, pp. 341–355. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-58156-1 24

49. Szyperski, C., Gruntz, D., Murer, S.: Component Software: Beyond Object-
Oriented Programming. Pearson Education (2002)

50. Thüm, T., Apel, S., Kästner, C., Schaefer, I., Saake, G.: A classification and survey
of analysis strategies for software product lines. ACM Comput. Surv. 47(1), 1–45
(2014)

51. Thüm, T., Knüppel, A., Krüger, S., Bolle, S., Schaefer, I.: Feature-oriented contract
composition. J. Syst. Softw. 152, 83–107 (2019)

52. Thüm, T., Schaefer, I., Apel, S., Hentschel, M.: Family-based deductive verification
of software product lines. In: Proceedings of the 11th International Conference
on Generative Programming and Component Engineering, p. 11–20. GPCE 2012,
Association for Computing Machinery, NY (2012)

53. Tschannen, J., Furia, C.A., Nordio, M., Polikarpova, N.: AutoProof: auto-active
functional verification of object-oriented programs. In: Baier, C., Tinelli, C. (eds.)
TACAS 2015. LNCS, vol. 9035, pp. 566–580. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46681-0 53

https://doi.org/10.1007/978-3-319-02654-1_13
https://doi.org/10.1007/978-3-030-91550-6_8
https://doi.org/10.1007/978-3-030-16722-6_2
https://doi.org/10.1007/978-3-030-16722-6_2
https://doi.org/10.1007/978-3-030-54997-8_25
https://doi.org/10.1007/978-3-030-54997-8_25
https://doi.org/10.1007/978-3-030-30942-8_20
https://doi.org/10.1007/3-540-58156-1_24
https://doi.org/10.1007/3-540-58156-1_24
https://doi.org/10.1007/978-3-662-46681-0_53
https://doi.org/10.1007/978-3-662-46681-0_53

104 T. Bordis et al.

54. Watson, B.W., Kourie, D.G., Schaefer, I., Cleophas, L.: Correctness-by-
construction and post-hoc verification: a marriage of convenience? In: Margaria,
T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 730–748. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-47166-2 52

55. Weiß, B.: Deductive verification of object-oriented software: dynamic frames,
dynamic logic, and predicate abstraction. Ph.D. thesis, Karlsruhe Institute of Tech-
nology (2011)

https://doi.org/10.1007/978-3-319-47166-2_52

Specifying the Boundary Between Unverified
and Verified Code

David R. Cok1(B) and K. Rustan M. Leino2

1 Safer Software, LLC, Rochester, NY, USA
david.r.cok@gmail.com

2 Amazon Web Services, Seattle, WA, USA
leino@amazon.com

Abstract. This paper introduces a specification construct that is fitting when
combining verified code with unverified code. The specification is a form of pre-
condition that imposes proof obligations for both callers and callees. This precon-
dition, recommends, blends in well with the parameter-validation conventions in
Java and with the syntax and semantics of specification languages such as JML,
ACSL, and Dafny.

1 Introduction

In a Utopian world, every line of software we run would be formally verified. That’s not
the world we live in. Even with the increasing industrial demand for and use of verified
software, there will always be components of our software systems that are not verified.
This may be an intentional business decision, just like a manufacturing company today
makes a decision about the strength of plastic to use in a product, or it may reflect a
transient situation where unverified software components are gradually being replaced
by verified components.

Whatever the situation, there are issues to consider on the boundary between unver-
ified and verified software. Indeed, by hardening this boundary, we may also be able to
ease the transition to software with more verified components.

In this paper, we focus on the interface to a verified component. In particular, we
want to address the question of how to allow calls into a verified component.

As usual in specification and verification, a method has a precondition that must
hold at the time of a call. For example (the code examples are written in a blend of
Dafny [12,13], Java [9], and the Java Modeling Language (JML) [6], but are intended
to be language-agnostic), the method

method Example(x: int)

requires 0 <= x < 10

declares as a precondition that parameter xmust be in the range 0 to 10. It is the caller’s
responsibility to establish the precondition (see e.g., [16,1,10]). In the situation we’re
focusing on in this paper, the code of the caller may not be verified, which means that
the callee really has no guarantee that the precondition will hold on entry. Instead, we
propose an alternative precondition, which we write as

c© Springer Nature Switzerland AG 2022
W. Ahrendt et al. (Eds.): The Logic of Software. A Tasting Menu of Formal Methods,
LNCS 13360, pp. 105–128, 2022.
https://doi.org/10.1007/978-3-031-08166-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08166-8_6&domain=pdf
http://orcid.org/0000-0003-1864-4974
http://orcid.org/0000-0003-2872-8039
https://doi.org/10.1007/978-3-031-08166-8_6

106 D. R. Cok and K. R. M. Leino

method Example(x: int)

recommends 0 <= x < 10

This form of precondition still documents the intention that the given condition hold
on entry to the method. The difference from the standard requires precondition is that
recommends shifts some responsibility from the caller to the callee. It is important to
allow the callee to meet this responsibility using the natural patterns of programming
that are used today, for example in Java. It is also important to let the construct pave the
way to more verified code. Our proposal addresses both of these points.

In the next three sections, we review some points about parameter validation,
method specifications, and the strictness of a static verifier. In Sect. 5, we give the
precise details of the basic recommends construct, and in the subsequent three sections
we extend the basic construct to some variations. In Sect. 9, we report on a prototype
of recommends implemented in OpenJML for Java/JML and on possible extensions that
incorporate recommends into Dafny.

2 Parameter Validation

Embracing the fail-fast philosophy, a common programming pattern in Java and other
languages is for a method to validate its parameters on entry. This validation typically
consists of checking some simple property that is expected to hold of a parameter and
throwing an exception if the property does not hold.

For example, a method that expects a non-null reference to a Cell and an integer
in the range 0 to 10 is written

method FailFastExample(c: Cell, x: int) {

if c == null {

throw ArgumentNullException();

}

if ¬(0 <= x < 10) {

throw BadParameterException();

}

// . . .
}

On entry, this method immediately rejects unsupported parameter values.
Any exception thrown by a parameter-validation check indicates a program error, a

failure on behalf of the caller to use the method correctly. They are what Goodenough
calls client failures [8]. Even in languages that allow such exceptions to be caught,
there’s usually not much of a recourse, other than letting a backstop clean up the pro-
gram state before exiting the program gracefully, or in some cases obtaining new input
to the method and trying again.

The common documentation style in Java and .NET is to be obsessively specific
about which exception is thrown in response to which unsupported parameter values.
While looking at the information associated with such an exception is useful when
debugging a program crash, we maintain that the particular exception thrown is not
so important to the program itself. Indeed, it is not a good idea for a program to read

Specifying the Boundary Between Unverified and Verified Code 107

too much into the parameter-validation exceptions. For example, consider a caller that
tries to use the callee’s parameter validation to check the value of the parameters being
passed in:

try {

FailFastExample(c, 0);

} catch ArgumentNullException {

// silly me, I must have called FailFastExample with c == null

// . . .
}

If c is null in this call to FailFastExample, then the exception handler will be invoked.
But it’s a mistaken view to think that this is the only situation under which the exception
handler is invoked. It may be that the implementation of FailFastExample is buggy and
passes in null to another method it calls, which would also result in the exception han-
dler above being invoked. So, it is safer to consider all parameter-validation exceptions
as catastrophic errors rather than trying to handle them in overly specific ways.

The explicit if statements in the implementation of FailFastExample above are
not the only way to perform parameter validation. Let us describe two alternatives that
are common in practice.

One alternative is for the code to perform an operation that is sure to result in an
exception when a parameter has an unsupported value. For example, in a language like
Java, which throws a NullPointerException if a null pointer is dereferenced at run
time, the example method above can be written

method FailFastExample(c: Cell, x: int) {

var y := c.data; // this throws a NullPointerException if c is null

if ¬(0 <= x < 10) {

throw BadParameterException();

}

// . . .
}

By writing the code in this way, one saves the explicit check. But since the new check
is implicit in the language semantics, it is easier to forget to include it at the right time
in the method. Without a code comment like the one above, it may also be difficult for a
human to determine which pointer dereferences are in effect parameter validations and
which ones are expected to work. Finally, the exception thrown by the language seman-
tics may be slightly different from one chosen in an explicit check (as the examples
above show), but, as we argued, the particular exception thrown is not so important.

The second alternative to an explicit parameter-validation check is to delegate the
check to another method. For example, if the FailFastExamplemethod calls a compan-
ion method that is going to validate the parameters, then FailFastExample can leave
the check for the companion method.

method FailFastExample(c: Cell, x: int) {

// the following method starts by validating the parameters

// c and x, so we delegate the checking to it

108 D. R. Cok and K. R. M. Leino

ASimilarFailFastExample(c, x, 100, true);

// . . .
}

To stick with the fail-fast philosophy, these alternatives are advisable only if they
can be placed near the entry to the method, in order to avoid any state changes before
the parameters have been validated. For example, if the first dereference of c does not
happen until later in the method when the method has already started its intended job or
if the call to the companion method doesn’t always take place, then parameter validation
must be done explicitly.

3 Method Specifications

In this paper, we write method specifications following the method signature. We have
already seen a glimpse of the two kinds of preconditions we’ll consider, requires and
recommends. These say what is expected to hold on entry to the method. In addition,
a method specification can relate the method’s post-state to its pre-state, which is done
using a combination of three post-specification clauses. These have the form

modifies Frame

ensures Post

throws Exc ensures EPost

A modifies clause describes which parts of the program state are allowed to be
changed by the method. The details of how Frame is specified are not important to this
paper. The only thing we need to know is that the absence of a modifies clause means
the method is not allowed any visible change to the program state.1

An ensures clause describes what is expected to hold on normal exit from the
method. In other words, if the method terminates normally (that is, terminates with-
out throwing an exception), then Post relates the method’s pre- and post-states. Since
Post is a two-state predicate, we use the expression old(E) to denote the expression E

evaluated in the method’s pre-state.
A throws Exc ensures clause describes what is expected to hold on exit from the

method, in the event that the method exits by throwing an Exc exception. The specifica-
tion can include several throws ensures clauses, each possibly mentioning a different
exception. For the purposes of this paper, we ignore Java’s throws clauses. That is,
we allow methods to throw any exception, as long as all throws ensures clauses are
satisfied.

We also allow a clause

throws * ensures EPost

which describes what is expected to hold on exit in the event that the method exits by
throwing an exception not covered by any other throws ensures clause in the method
post-specifications.

1 This coincides with the interpretation of modifies clauses in Dafny. In JML, frames are
defined using assignable clauses, and an absent assignable clause means assignable

\everything. For our discussion here, assignable \nothing is more convenient as a default.
.

Specifying the Boundary Between Unverified and Verified Code 109

For example,

method PostSpecifications(c: Cell, x: int)

modifies c

ensures c.data == old(c.data) + 1

throws ArithmeticException ensures x == 0 && c.data == old(c.data)

declares that method PostSpecifications does not have an effect on any object except
possibly c and that upon normal termination, c.data is 1 more than it had been in the
method’s pre-state. The specification also says that if the method happens to terminate
with an ArithmeticException, then the parameter xwas 0 (in other words, this specifi-
cation clause says that x == 0 is the only circumstance in which the method is allowed
to throw an ArithmeticException) and the value of c.data is unchanged.

In this paper, it will be convenient to group post-specification clauses according to
what holds in the pre-state. For a pre-state condition Guard and a list of post-specifica-
tion clauses PS, we will write

when Guard

PS

to express that post-specifications PS apply only if the condition Guard holds in the
pre-state. If Guard does not hold in the pre-state, then PS is ignored.2 The * in any
throws * ensures clause in PS denotes those exceptions not covered by other throws
ensures clauses in PS.

4 Language Discipline Versus Verifier Discipline

When designing a static verifier for an existing programming language, it is common
(and desirable) to enforce a stricter discipline than the language requires. As an exam-
ple, the C and Java languages implement modulo semantics for operations on fixed-bit-
width integers; for instance, addition of 32-bit ints silently overflows to negative val-
ues. However, as overflows frequently are unintended and mask bugs, the verification
discipline might be stricter, at least by default, warning the implementer by reporting
potential over- and underflows in fixed-bit-width operations as errors.

In a language like Java, a choice about what discipline to enforce also arises in those
places where the Java language definition prescribes run-time exceptions to be thrown.
For example, the effect of an assignment y := c.data; at run time is really

if c == null {

throw NullPointerException();

}

y := c.data;

2 JML uses an operator called also to combine specifications. It gives a nice way to express
what we write with when in this paper. Nevertheless, we chose not to use the also operator in
this paper, because also in essence uses requires clauses for the guards. By using the when

notation in this paper, we avoid any confusion regarding requires and recommends in this
context.

110 D. R. Cok and K. R. M. Leino

A static verifier that uses this loose language discipline of pointer dereference would
have to deal with all of the control paths that the throw operation gives rise to. A
respectable alternative is to instead enforce the stricter discipline of banning null from
ever being dereferenced. So, if a program possibly dereferences null, then the verifier
reports an error rather than analyzing any exceptional control paths. (You may think of
this stricter discipline as the verifier’s fail-fast alternative to the loose language disci-
pline.)

For flexibility, a static verifier can let the user choose between the language disci-
pline and the stricter discipline. For this purpose, the KeY tool [1] supports both a ban

mode and an allowmode. In this paper, we will use the stricter discipline unless explic-
itly directed by the user to use the language discipline. The directive we propose is to
write //@ allow at the end of a line, which will cause the verifier to use the language
discipline for any construct on that source line that has a choice between the two.

For example, consider the following program snippet in a context where z may be
0 and c may be null:

try {

x := 100 / z;

} catch ArithmeticException {

y := c.data;

}

Under the stricter discipline, the verifier will detect and report the potential division by
zero. No ArithmeticException is thrown, so the catch block and its dereference of c
are not reachable. In contrast, by including //@ allow, the program snippet

try {

x := 100 / z; //@ allow

} catch ArithmeticException {

y := c.data;

}

directs the verifier to use the language discipline for the statement that assigns to x.
Under this discipline, the attempt to evaluate 100 / z when z is zero turns into a jump
to the exception handler. No error is reported for the attempt to divide by zero, but the
verifier detects and reports the potential null-dereference error in the catch block.

In its form above, allow uses the language discipline for all constructs where a
choice exists on the given line. We also permit allow to take a list of exception names,
with the effect of using the language discipline on that line only for the indicated excep-
tions.

We’ll come back to allow directives in Sect. 6, where we show how the new
recommends clauses benefit from the directives.

5 Recommends Clauses

With those introductory sections out of the way, we now define recommends clauses.
Just like the standard precondition declaration requires P, the declaration recom-

mends P says that P is a precondition for the method. That is, the intention is that P hold

Specifying the Boundary Between Unverified and Verified Code 111

on entry to the method. For this reason, the recommends condition is checked by the
verifier at call sites. Of course, this only refers to the call sites that the verifier is aware
of, so in the presence of unverified code, it can still happen that the method is called
from a state where the precondition does not hold. But whenever the verifier encounters
a call to a method with a recommends clause, it will check that the given condition holds
at the call site.

For method implementations, there is a big difference between requires and
recommends. To guard a method implementation from breaches of the precondition at
call sites where the verifier has not been applied, one could imagine automatically com-
piling the recommends clause into a run-time check. For example, a method declaration

method M(u: U)

recommends P(u)

{

Body

}

could be compiled in the same way as

method M(u: U) {

if ¬P(u) {

throw PreconditionFailure();

}

Body

}

Although simple, this strawman solution falls short in at least a couple of ways.
One shortcoming is that this strawman can give rise to unnecessarily repeated run-

time checks. For example, if (like we saw in Sect. 2) Body calls another method that
also performs parameter validation, then some parameter-validation checks would be
performed once in M and once in the other method.

A second shortcoming of this strawman is that the condition P(u) may not be com-
pilable. Specifications (like those in JML and in Dafny) can contain specification-only
features or ghost variables that are not available at run time. In these cases, it would be
nice to allow the more abstract condition P(u) in the recommends clause as part of the
method’s specification, and to allow the implementation of the method to prescribe an
alternate way to check P(u) in terms of compilable constructs.

For these reasons, we abandon the idea of automatically compiling recommends

clauses. Instead, we let the programmer write the code for testing the recommends

conditions manually, throwing parameter-validation exceptions if the conditions do not
hold, and generate verification conditions that check the correctness of that manually
authored code. That is, suppose method M is declared by

method M(u: U)

recommends Pre

modifies Frame

ensures Post

throws Exc ensures EPost

112 D. R. Cok and K. R. M. Leino

From the point of view of verifying the body of M, it is as if its specification had been
written

method M(u: U)

when Pre

modifies Frame

ensures Post

throws Exc ensures EPost

when ¬Pre

ensures false

throws PreconditionFailure ensures true

throws * ensures false

This specification says that, if Pre holds on entry to the method, then the method is
bound by the given post-specification. If Pre does not hold on entry to the method, then
the method body must arrange to throw a PreconditionFailure exception—it is not
allowed to terminate any other way. Furthermore, if Pre does not hold on entry, then
(since the second post-specification group does not have a modifies clause) the method
is not allowed to modify anything.

Note that in this rewritten specification—which, remember, is from the point of view
of the method implementation—there is no precondition. In particular, the method body
is not allowed to assume the condition Pre on entry.

Here is an example with a method body:

method Increment(c: Cell, x: int)

recommends c != null

recommends 0 <= x < 10

modifies c

ensures c.data == old(c.data) + x

{

if c == null || x < 0 || 10 <= x {

throw PreconditionFailure();

}

c.data := c.data + x;

}

This method implementation meets its specification. The method body itself checks that
the conditions stated in the recommends clauses hold. If they do not hold, the method
modifies nothing and throws a PreconditionFailure exception. If the conditions
do hold, the method body increments c.data as described by the post-specification
clauses.

Two more points are worthy of attention in this example.
One point is to remember that the recommends conditions are not assumed on entry

to the method body. If they were assumed, the “then” branch of the if statement would
be unreachable code, and then the verifier would not detect if the method failed to
throw the desired exception or if the “then” branch contained any other errors. That
would be most regrettable, because the control flow through such a “then” branch is
less likely to be thoroughly exercised by testing, so it is especially important that the
verifier scrutinize such code.

Specifying the Boundary Between Unverified and Verified Code 113

The other point has to do with the well-definedness of conditions. To be meaning-
ful, the conditions mentioned in specifications must themselves be free of errors. For
example, what would a specification c.data == 100 / x mean if x could be 0 or c null?
Although recommends clauses are not assumed on entry to the method’s body, they can
be assumed when checking the well-definedness of post-specifications. This is achieved
by our transformation of recommends clauses into post-specifications grouped by when

guards. For the Increment method above, this means that c != null can be assumed
when checking the well-definedness of the postcondition c.data == old(c.data) + x,
which avoids any null-dereference errors in this postcondition.

6 Using Recommends Clauses with Standard Patterns

Let us now explain how to use allow directives to achieve the programming patterns
mentioned in Sect. 2. As we saw in that section, fail-fast parameter validation can be
achieved by performing an operation that the language defines as triggering a run-time
exception. For example, instead of testing the condition c == null, a program can
attempt to read a field of c. In Java, that causes a NullPointerException to be thrown
if c == null holds. As we discussed in Sect. 5, the verifier ordinarily reports an error if
the program attempts to dereference a pointer that may be null. But by using an allow

directive on a source line that performs such a dereference, the verifier will instead treat
that operation as possibly throwing an exception. This is just what we need to encode
this fail-fast pattern.

For example, the Increment method from the previous section can be written

method Increment(c: Cell, x: int)

recommends c != null

recommends 0 <= x < 10

modifies c

ensures c.data == old(c.data) + x

{

var y := c.data; //@ allow

if x < 0 || 10 <= x {

throw PreconditionFailure();

}

c.data := y + x;

}

By including the allow directive, the verifier is satisfied that the first recommends clause
is tested and properly handled. Actually, there is a difference between this Increment

method and the one in the previous section, namely that if c is null, this one will at run
time throw a NullPointerException, whereas, the way we wrote it, Increment in the
previous section throws a PreconditionFailure exception. As we mentioned in Sect.
2, the particular exception thrown as part of parameter validation is not so important.
But if you’re worried about this, just think of PreconditionFailure as a supertype of
all parameter-validation exceptions for now; we’ll return to this issue in the next section.

In the other fail-fast pattern from Sect. 2, parameter validation is delegated to
another method. To illustrate, suppose there is another method

114 D. R. Cok and K. R. M. Leino

method IncrementAndDecrement(c: Cell, x: int, z: int)

recommends c != null

recommends 0 <= x < 10 && 0 <= z < 10

modifies c

ensures c.data == old(c.data) + x - z

Since Increment is a special case of this more general method, it can be implemented
by a call to IncrementAndDecrement. As we glean from its recommends clauses, In-
crementAndDecrement has to do (a superset of) the parameter-validation checks that
Increment has to do, so it seems everything Increment has to do can be done by a
single call to IncrementAndDecrement.

If we implement Increment as we just discussed, then the verifier would complain.
It would complain that the call to IncrementAndDecrement does not live up to the
precondition of the callee—remember that recommends clauses are enforced as precon-
ditions at call sites. It would also complain that Increment is not doing the parameter
validation that its recommends clauses demand. We solve both of these problems by
marking the call with the allow directive:

method Increment(c: Cell, x: int)

recommends c != null

recommends 0 <= x < 10

modifies c

ensures c.data == old(c.data) + x

{

IncrementAndDecrement(c, x, 0); //@ allow

}

In our design of the recommends specifications, placing an allow directive on a call
causes the verifier to consider the callee’s recommends clauses as control flow that may
throw exceptions. That is, the call above with the allow directive is treated as

if ¬(c != null && 0 <= x < 10 && 0 <= z < 10) {

throw PreconditionFailure();

}

IncrementAndDecrement(c, x, 0);

This will satisfy the verifier as a correct implementation of Increment.
A detail remains. As for the first pattern above, we need to be careful with any

code that pays specific attention to which parameter-validation exception is thrown. In
the allow-rewrite of the call above, we wrote throw PreconditionFailure(), but at
run time, IncrementAndDecrement may actually throw some other exception. To make
this more exact, our semantics is not exactly the throw PreconditionFailure() we
showed above; rather, it is to throw some parameter-validation exception. If you think
of PreconditionFailure as the supertype of all parameter-validation exceptions, then
it would be accurate to replace the throw above with a call

_ThrowPreconditionFailure();

where

Specifying the Boundary Between Unverified and Verified Code 115

method _ThrowPreconditionFailure()

ensures false

throws PreconditionFailure ensures true

throws * ensures false

is a method invented by the verifier. Appropriately, this method is not too specific about
which PreconditionFailure subtype the thrown exception has or how that exception
is created.

7 Recommends Else

As we have defined the basic recommends clause, a method implementation is obligated
to throw a PreconditionFailure if a recommended condition does not hold on entry.
This is the specification, but an implementation is, as usual, allowed to take a more
specific action. In particular, the exception thrown by the implementation may be an
exception of any subtype of PreconditionFailure. This can be useful when debugging
the stack trace from a parameter-validation crash.

Though our contention is that one should not put too much emphasis on the actual
exception thrown, we are sympathetic to the practice that the documentation style in
Java and .NET prescribes particular exceptions to be thrown in response to invalid
parameters. To let a verifier check that method implementations follow the documented
behavior, we extend the basic recommends clause with the ability to specify the use of
more specific exceptions.

7.1 Exception Designations

To specify that violations of a recommends clause are to be countered by a designated
exception, we allow an optional else suffix. For a condition Pre on the method’s pre-
state and an exception type Exc, the precondition

recommends Pre else Exc

expresses the intention that Pre hold on entry to the method, and obliges the imple-
mentation to throw an Exc exception if Pre does not hold. A basic recommends clause
defaults to having the suffix else PreconditionFailure.

For example, the Increment method can be specified and implemented as follows:

method Increment(c: Cell, x: int)

recommends c != null else NullPointerException

recommends 0 <= x < 10 else IllegalArgumentException

modifies c

ensures c.data == old(c.data) + x

{

var y := c.data; //@ allow

if x < 0 || 10 <= x {

throw IllegalArgumentException();

}

116 D. R. Cok and K. R. M. Leino

c.data := y + x;

}

7.2 Multiple Recommends Clauses

The recommends else constructs bring up a question: What do these specifications
mean if multiple recommended conditions do not hold? For example, what does the
specification above say for a call Increment(null, 12)? One could adopt the design
that recommends clauses are ordered and that the first condition to fail is the one whose
else exception must be thrown. However, this would force specifications to be overly
specific, because they would not give implementations a choice about the order. Indeed,
insisting on such an order would even be stricter than the natural-language descriptions
of methods in the Java and .NET standard libraries, which often do not state an order.3

So, we instead adopt the design that recommends clauses are unordered. If any rec-
ommended condition does not hold, then the implementation is obligated to throw some
exception and must throw an exception that corresponds to one of the failing conditions.

For example, consider a specification

recommends A else X

recommends B else Y

ensures Post

where X and Y denote disjoint exception types. Its meaning for a caller is, as before, that
both A and B are required to hold. For an implementation, the meaning of the specifica-
tion is4

when A && B

ensures Post

when ¬A || ¬B

ensures false

throws X ensures ¬old(A)

throws Y ensures ¬old(B)

throws * ensures false

This says that if A and B are both true, then the implementation must live up to the
given post-specification. If A and B are both false, then one of the exceptions X and Y

must be thrown, but the choice between these two is up to the implementation. If only
one of A and B is false, then the exception for that one must be thrown. (Recall that
the throws ensures clause is read as “if the given exception is thrown, then the given
condition holds”).

3 Some methods in Java 11, like java.lang.System.arraycopy (https://docs.oracle.com/
javase/7/docs/api/java/lang/System.html), spell out the order, whereas many others,
like javax.crypto.Cipher.getInstance (https://docs.oracle.com/javase/7/docs/api/javax/
crypto/Cipher.html), do not.

4 Since the second when group has an empty modifies clause, old(A) is the same as A. Never-
theless, we will continue to write old(A) to emphasize that we’re referring to the value of A on
entry to the method.

https://docs.oracle.com/javase/7/docs/api/java/lang/System.html
https://docs.oracle.com/javase/7/docs/api/java/lang/System.html
https://docs.oracle.com/javase/7/docs/api/javax/crypto/Cipher.html
https://docs.oracle.com/javase/7/docs/api/javax/crypto/Cipher.html

Specifying the Boundary Between Unverified and Verified Code 117

Note that it is possible to write a specification that says recommended conditions
must be checked in some particular order. For example, we can modify the previous
example to specify that X should be thrown if A doesn’t hold, regardless of whether or
not B holds:

recommends A else X

recommends ¬A || B else Y

ensures Post

(With an implication operator, the second recommended condition can be equivalently
written as A ==> B.) To see that this says what is intended, it is perhaps easiest to write
out the implementation-side view of this specification, which is

when A && (¬A || B)

ensures Post

when ¬A || ¬(¬A || B)

ensures false

throws X ensures ¬old(A)

throws Y ensures ¬old(¬A || B)

throws * ensures false

After some logical simplifications and distributing old over connectives, this is equiva-
lent to

when A && B

ensures Post

when ¬A || ¬B

ensures false

throws X ensures ¬old(A)

throws Y ensures old(A) && ¬old(B)

throws * ensures false

Here, we see that, in the event that either A or B is false, only X and Y are allowable
outcomes of the implementation. And in that situation, exception Y is allowed to be
thrown only if the recommended condition A did in fact hold and B did not.

In general, different recommends else clauses may mention the same exception.
And if, like in Java, exception types form a subtyping hierarchy, then the exceptions
in different recommends else clauses may overlap. To illustrate the interpretation of
these, suppose X and Y are disjoint exception types and that X0 is a proper subtype of X.
Then, the implementation-side view of

recommends A else X

recommends A0 else X0

recommends B0 else Y

recommends B1 else Y

requires C

modifies Frame

ensures Post

is

118 D. R. Cok and K. R. M. Leino

when A && A0 && B0 && B1

requires C

modifies Frame

ensures Post

when ¬A || ¬A0 || ¬B0 || ¬B1

ensures false

throws X � X0 ensures ¬old(A)

throws X0 ensures ¬old(A) || ¬old(A0)

throws Y ensures ¬old(B0) || ¬old(B1)

throws * ensures false

where we have used the notation X � X0 to denote any exception type that is a subtype
of X but not a subtype of X0. Formulaically, for every exception Z mentioned in some
recommends else clause, the interpretation has a clause

throws Z � Z0 � Z1 � . . . ensures ¬old(P) || ¬old(Q) || ¬old(R) || . . .

where Z0, Z1, . . . are proper subtypes of Z mentioned in else designations and P, Q, R,
. . . are the conditions in recommends clauses whose else designation is a subtype of Z
but not a subtype of any of Z0, Z1,

7.3 Well-definedness

As we touched on in Sect. 5, specifications have to be well-defined. Since we consider
recommends clauses to be unordered, our design is also to check their well-definedness
independently. In particular, this means that each recommends condition must be well-
defined whether or not the other recommends conditions hold.

To illustrate, suppose we want to create an array containing the first n elements of a
given array a. We would then write the specification

method CopyN(a: array<int>, n: int) returns (r: array<int>)

recommends a != null else NullPointerException

recommends 0 <= n else NegativeArraySize

recommends a != null ==> n <= a.length else ArrayIndexOutOfBounds

// . . .

Note that the last recommends clause must include the “a != null ==>”, as it may
not presume the first recommends to hold. Also, an easy mistake to make is to instead
write “a != null &&”, but that would allow ArrayIndexOutOfBounds to be thrown in
response to a being passed in as null.

8 Combining Recommends and Requires

We have motivated our work by the need to write specifications at the boundary between
unverified and verified code. Our general guideline is to use recommends preconditions
for methods that may be called by unverified code and to use standard requires pre-
conditions for methods that are called only from call sites where those conditions are

Specifying the Boundary Between Unverified and Verified Code 119

enforced statically by a verifier. But there are also some situations where a method may
be specified by a combination of recommends and requires.

One example of such a situation is an auxiliary method, perhaps like
ASimilarFailFastExample in Sect. 2, that is not callable from outside the veri-
fied module. In addition to the conditions for which this method promises to throw
parameter-validation exceptions, there may be additional conditions that the auxiliary
method wants to assume that callers establish. Since the auxiliary method is private
to the verified module, all of its callers are verified, so these additional conditions can
indeed be enforced at all call sites.

Another example of such a situation is when a precondition is complicated, which
means the condition wouldn’t be checked at run time anyway. In such a case, the caller
is expected to establish the condition and there is no telling what might happen if the
caller doesn’t live up to this obligation. For example, a method that searches an array for
a given element may expect the array to be sorted and may expect a given comparison
operator to be transitive. Here, it makes sense to document the transitivity precondi-
tion and to let the method implementation be verified under the assumption that the
precondition does hold.

To support combinations of recommends and requires, we need to be precise about
the semantics. As before, for callers, there’s no difference between the two kinds of pre-
conditions, except that any allow directives on a call apply only to recommends clauses,
never to requires clauses. For implementations, we consider requires conditions to
be contingent on the recommends conditions being true. That is, an implementation is
not allowed to assume requires conditions until after the recommends conditions have
been checked.

To illustrate, for disjoint exception types X and Y, consider the following specifica-
tion:

recommends A else X

recommends B else Y

requires C

requires D

ensures Post

For the method implementation, the expanded view of this specification is

when A && B

requires C

requires D

ensures Post

when ¬A || ¬B

ensures false

throws X ensures ¬old(A)

throws Y ensures ¬old(B)

throws * ensures false

That is, the requires conditions C and D apply only if A and B hold on entry. So, effec-
tively, the condition that an implementation may assume on entry is

120 D. R. Cok and K. R. M. Leino

A && B ==> C && D

where ==> denotes implication.
As follows from the expansion above, the well-definedness checks of the requires

conditions are allowed to assume both A and B. For example, the array dereferences in
the following specification are well-defined because of the recommends clauses:

method Search(a: array<int>, lo: int, hi: int, key: int)

returns (r: Option<int>)

recommends a != null

recommends a != null ==> 0 <= lo <= hi <= a.Length

requires forall i, j :: lo <= i < j < hi ==> a[i] <= a[j]

// . . .

9 Prototype Implementations

In this section, we discuss a prototype of recommends that we have built in the OpenJML
tool for Java annotated with JML specifications. We also discuss possibilities of adding
recommends specifications to the verification-aware language Dafny.

9.1 JML and OpenJML

Recommends Clauses. The Java Modeling Language (JML) [6] and its supporting
tool OpenJML [4,5] implement a prototype version of the recommends else clause
described in this paper. Here is an example5

//@ recommends v != null else NullPointerException;

//@ ensures \result == v.value;

//@ pure

public int get(/*@ nullable */Value v) {

return v.value; // implicit allow because of the recommends

}

We discuss defaults for allow behavior below.
JML already has the capability to specify the behavior of exceptional control paths.

The following code is the equivalent of the above example, but in the older style:

//@ public normal_behavior

//@ requires v != null;

//@ ensures \result == v.value;

//@ also public exceptional_behavior

//@ requires v == null;

//@ signals_only NullPointerException;

//@ pure

5 The nullable keyword avoids the default situation in JML in which Value is implicitly a non-
null type. We use it in this section, since the focus of our discussion is on using specifications
for parameter validation.

Specifying the Boundary Between Unverified and Verified Code 121

public int get(/*@ nullable */Value v) {

return v.value; // implicit allow because of

// the exceptional_behavior

}

Compared to using recommends else, this specification is verbose and repetitive; it
is worse when there are many exception conditions to consider. Furthermore, it is
easy during code maintenance to have the two preconditions become out of sync. The
recommends else syntax is a more readable and understandable equivalent. Though
the normal-termination effect of this program is simple, the exceptional-behavior spec-
ification is typical even of much more complex methods.

The method in the example above is without side-effects (is pure) in both the normal
and exceptional behaviors. That is not always the case; when it is not, then separate
frame conditions (notated in JML by assignable clauses) must be written:

//@ public normal_behavior

//@ requires v != null;

//@ assignable v.value;

//@ ensures v.value == i;

//@ also public exceptional_behavior

//@ requires v == null;

//@ assignable \nothing;

//@ signals_only NullPointerException;

public void set(/*@ nullable */Value v , int i) {

v.value = i; // implicit allow

}

and correspondingly

//@ recommends v != null else NullPointerException;

//@ modifies v.value; // does not apply to the else case

//@ ensures v.value == i;

public void set(/*@ nullable */Value v, int i) {

return v.value; // implicit allow

}

Our design of recommends clauses does not let an implementation have any side-effects
until after the recommends conditions have been tested. In our experience in specifying
Java programs, exceptional control flow almost never has any side-effects. Therefore,
we expect that many current specifications of exceptional behavior can be simplified
using recommends else clauses. Even in the simple examples in this section, we see
that recommends clauses add readability and save several lines of specification. If the
method being specified does allow side-effects in exceptional behavior, then the more
lengthy normal_behavior/exceptional_behavior form must be used.

Allow Designations. OpenJML also implements the allow designation as described
above, with a bit of enhancement. If a language construct might throw a particular
subtype of RuntimeException then:

122 D. R. Cok and K. R. M. Leino

– if there is no allow designation that includes a supertype of that exception type
and the verifier cannot establish that the offending condition never happens, then a
verification warning is issued for that language construct on that line;

– otherwise, the verifier treats the language construct as if the exceptional control flow
might happen, and continues on to verify any internal exception catches within the
method or the method’s throws clauses.

But OpenJML has these enhancements:

– If the language construct in question is nested inside a try-catch block for the
relevant exception or if the method specification itself declares (in an explicit JML
signals_only clause) that it might throw that exception, then that construct has an
implicit allow.

– In order to turn off the implicit allow where needed, OpenJML has a corresponding
forbid designation, which will cause the verifier to check that no exception can be
thrown from that construct.

– The default exception if an allow or forbid has no exception stated is RuntimeEx-

ception; a comma-separated list of exception names is also permitted.

This language feature solves a usability problem with JML that confused users. A
user trying out JML might write this simple method and specification:

//@ ensures \result == c[i];

public int value(int[] c, int i) {

return c[i];

}

Without a precondition on the value of i, OpenJML will issue a verification error that
i might not be in the range of allowed indices for the array c. No problem for the user
there. But then the user would go on to try some exception handling:

//@ ensures \result == c[i];

public int value(int[] c, int i) {

try {

return c[i];

} catch (ArrayIndexOutOfBoundsException e) {

// . . .
}

}

Now the user does not expect to see verification errors on c[i], but originally OpenJML
would. With these proposed features, OpenJML takes the presence of the catch clause
in this example as evidence of the user’s intent that an exception should be allowed
at c[i]. If that is not the desired behavior, an explicit forbid can be written. Even
without the catch clause, the user can use an explicit allow to clearly document that
an exception is allowed.

Specifying the Boundary Between Unverified and Verified Code 123

9.2 Dafny

Dafny is a programming language designed for verification [12,13]. Failures in Dafny
are different in two major ways fromwhat we have discussed for Java. Still, the situation
of calling verified Dafny methods from unverified code in other languages can benefit
from recommends specifications.

One major difference is that what in a language like Java or C# would be a run-time
exception is typically a verification failure in Dafny. For example, writing c.v or a[j]
in Dafny gives rise to proof obligations that c is not null and j is in range. The pro-
gram is not valid—and no compiled code is emitted—unless such proof obligations can
be validated by the static verifier. In other words, Dafny’s language semantics already
follows a strict discipline.

Another major difference is that Dafny does not have exceptions. In languages like
Java and C#, exceptions are used for both recoverable and unrecoverable errors, whereas
in Dafny, there is a different mechanism for each of these. In the rest of this section, we
show how our recommends declarations could be added to Dafny.

Recommendation Failures as Unrecoverable Errors. The most natural way to guard
verified Dafny code from unverified callers is to test preconditions and use an unrecov-
erable error in response to any detected violation. Unrecoverable errors are produced
using Dafny’s expect statement, which performs a run-time check of its given condition
and halts program execution if the condition evaluates to false.6

For example, here is a method with the envisioned recommends clauses for Dafny:

method Double(a: array?<int>, i: int)

recommends a != null

recommends a != null ==> 0 <= i < a.Length

modifies a

ensures a[i] == 2 * old(a[i])

{

expect a != null;

expect 0 <= i < a.Length;

var x := a[i];

a[i] := x + x;

}

There are several things to note in this simple example.
The first is a reminder that callers written in Dafny are verified, so such callers

would be verified to satisfy the recommends preconditions.
The second is that a method like this is more commonly written with Dafny’s non-

null type array<int>. However, if this method is at the boundary from unverified code
written in a different language that does not support non-null reference types, then it’s

6 In other words, the expect statement trades a verification assumption for a run-time check. The
run-time behavior of an expect statement is similar to an always-enabled assert statement
in Java, but from the verification perspective, the assert condition is checked by the verifier
whereas the expect condition is assumed by the verifier.

124 D. R. Cok and K. R. M. Leino

safer to declare the parameter to be of the nullable type array?<int> and to list the
non-nullness as a precondition.

The third thing to note is that, without else suffixes, the recommends clauses may as
well be ordered, in which case the a != null antecedent can be dropped in the second
recommends clause.

The fourth is that the expect statements for this simple example are, except for the
ordering, identical to the recommended conditions, which makes it tempting to design
the recommends clauses to compile into expect statements automatically. However,
the condition in an expect statement must be compilable, whereas preconditions in
Dafny often use specification-only (“ghost”) features. Therefore, imposing on method
implementations to add tests for recommended conditions (as we have done everywhere
else in this paper) gives more flexibility.

The fifth is that it’s not possible in Dafny to replace the body of Double with

{

var x := a[i]; //@ allow

a[i] := x + x;

}

where the allow directive is intended to rely on the language’s run-time checks to test
and handle a != null and 0 <= i < a.Length. This is because there are no run-time
checks for these operations in Dafny, so turning off verification for the indicated source
line would not properly implement the fail-fast parameter validation we’re after.

The sixth and final thing to note is that allow directives still make sense on calls to
methods with recommends clauses. This would allow delegating recommends checking
to another method, as we have discussed earlier in the paper.

In the method implementation’s view, a specification

recommends A

requires C

modifies Frame

ensures Post

expands to

when A

requires C

modifies Frame

ensures Post

when ¬A

ensures false

where, as earlier in the paper, we have used when groups as a way of explaining when
various specification clauses apply. In the case where A does not hold on entry, the
expanded specification shows that the method implementation is obliged to establish
false upon normal termination, and the only way to do this is via the expect statement,
which avoids normal termination by generating an unrecoverable error.

Specifying the Boundary Between Unverified and Verified Code 125

Recommendation Failures as Recoverable Errors. Another possible way of adding
recommends clauses to the Dafny language is to tie them to the standard mechanism for
reporting recoverable errors. For this, Dafny uses a return value of a failure-compatible
type. For illustration, we will use the typical type

datatype Result<T> = Success(value: T) | Failure(error: string)

{

function method IsFailure(): bool // . . .
function method PropagateFailure(): Result<T> // . . .
function method Extract(): T // . . .

}

whose three shown members make it a failure-compatible type [14].
For a method that returns a failure-compatible type, we can oblige the implemen-

tation to return a failure if a recommended condition does not hold. For example, the
specification of

method GetAny<T>(a: array?<T>) returns (r: Result<T>)

recommends a != null && a.Length != 0

ensures r.Success? ==>

exists i :: 0 <= i < a.Length && r.value == a[i]

{

if a == null {

return Failure("array is null");

}

if a.Length == 0 {

return Failure("array has no elements");

}

return Success(a[a.Length / 2]);

}

promises, in the event of success, to return an element of the array a. The recommends

clause says that the implementation must return a failure if the recommended condition
does not hold on entry. As written, the specification allows the method to return a failure
in other situations, too.

In the method implementation’s view, the specification

recommends A

requires C

modifies Frame

ensures Post

expands to

when A

requires C

modifies Frame

ensures Post

when ¬A

ensures r.IsFailure()

126 D. R. Cok and K. R. M. Leino

Dafny has special syntax that makes it easy to propagate failures and easy to use
successful values. For a method M that returns a failure-compatible type, the statement

x :- M();

(note the operator :- instead of the usual assignment operator :=) immediately propa-
gates any failure that M returns. If M returns success, then the successful value is extracted
into x. The context using the :- statement must itself allow a failure-compatible type
to be returned. (Dafny’s :- operator and failure-compatible types are closely related to
the ? operator and built-in Result type in the Rust language [11].)

The use of the allow directive to delegate parameter validation is conveniently com-
bined with the :- operator. For example, consider a method

method GetElement<T>(a: array<T>, i: nat) returns (r: Result<T>)

recommends i < a.Length

ensures r.Success? ==> r.value == a[i]

{

if i < a.Length {

return Success(a[i]);

} else {

return Failure("index out of bounds");

}

}

We’re supposing this method is called only fromwithin Dafny code, since it takes a non-
null array and a non-negative integer as parameters (and these types may not be avail-
able in the foreign language that otherwise may call the method). Even for this Dafny-
only method, the recommends clause usefully allows the implementation of GetAny to
delegate its responsibility to check the emptiness of the array:

method GetAny<T>(a: array?<T>) returns (r: Result<T>)

recommends a != null && a.Length != 0

ensures r.Success? ==>

exists i :: 0 <= i < a.Length && r.value == a[i]

{

if a == null {

return Failure("array is null");

}

r :- GetElement(a, a.Length / 2); //@ allow

}

10 Related Work

There are several contract languages that provide run-time checking of preconditions.
Among these are the programming languages Eiffel [16,7] and Spec# [2] and the mod-
eling languages JML for Java [6,1,5] and ACSL for C [3]. The compiled preconditions
provide fail-fast checking at run time, while still allowing the static verifiers for these
languages to check the preconditions at call sites. The requires otherwise clauses in

Specifying the Boundary Between Unverified and Verified Code 127

Spec#, which inspired our else suffixes, also allow customization of which run-time
exception is thrown in response to violated preconditions [15].

In these languages, the condition that is compiled into a run-time check is the con-
dition given in the requires clause. This forgoes the flexibility of having ghost expres-
sions in specifications and compilable counterparts in method implementations. It also
misses the opportunity to save on some explicit checks using the common patterns we
showed in Sect. 2.

These contract languages generally allow the expanded implementation-side view
of our recommends clauses to be specified explicitly. This supports programmer-defined
testing of the preconditions. Unfortunately, this long form of specifications is error-
prone to write and hard to read. Moreover, with just the implementation-side view of
the specification, there is nothing that enforces the intended preconditions at call sites.

The only way we see to reap the benefits of the two kinds of specifications is
to provide different precondition interpretations for callers and callees. Our proposed
recommends clauses achieve that. Used in conjunction with allow directives, it is also
possible to choose between the interpretations at call sites.

The recommends capability helps address the case of unverified callers calling ver-
ified callees. A related problem, which we have not considered in this paper, is that of
verified callers calling unverified methods (e.g., unverified libraries). We consider this
to be a significantly different problem worth separate attention. Even with a mechanism
for writing out-of-band specifications for unverified library methods, it’s not easy to
use run-time monitoring to detect whether or not callees follow the specifications. For
example, if the precondition in such a specification is too weak, then the callee may
cause irreparable damage before a run-time monitor has a chance to react. As another
example, it is at best expensive to detect whether or not the callee modifies only what
the specification says.

11 Concluding Remarks

We have proposed a new specification-language feature, recommends, that (like com-
mon requires preconditions) states what conditions are intended to hold on method
entry, but (unlike requires preconditions) does not trust that these conditions actually
hold. Not only is a method implementation not allowed to assume these preconditions
on entry, but the recommends feature forces the method implementation to test them on
entry. This makes recommends suitable in situations where the method may be called
from unverified code. The additional allow directive equips the software developer with
flexibility and precision to say which locations in a program allow exceptional behavior
and which locations outright forbid it.

We illustrated the naturalness of our new notation by example, and our prototype in
JML and OpenJML illustrates its feasibility. Supporting the claim that our proposal is
language agnostic, we described two ways in which recommends clauses could fit into
Dafny, a verification-aware language that treats failures in a significantly different way
from Java.

We hope that the clarity of recommends declarations will help move the unverified-
verified boundary in the direction of more verified software.

128 D. R. Cok and K. R. M. Leino

Acknowledgments. We thank Serdar Tasiran for suggesting the keyword recommends as a good
description of the alternative precondition. We are grateful to the reviewers and Mattias Ulbrich
for useful comments on a draft of this paper. Happy birthday, Reiner Hähnle, and thank you for
your groundbreaking contributions to verifying software and the tooling that is taking us there.

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.): Deduc-
tive Software Verification—The KeY Book—From Theory to Practice. LNCS, vol. 10001.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-49812-6

2. Barnett, M., Fähndrich, M., Leino, K.R.M., Müller, P., Schulte, W., Venter, H.: Specification
and verification: the Spec# experience. Comm. ACM 54(6), 81–91 (2011). https://doi.org/
10.1145/1953122.1953145

3. Baudin, P., et al.: The dogged pursuit of bug-free C programs: the Frama-C software analysis
platform. Comm. ACM 64(8), 56–68 (2021). https://doi.org/10.1145/3470569

4. Cok, D.R.: OpenJML: JML for Java 7 by extending OpenJDK. In: Bobaru, M., Havelund,
K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 472–479. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-5_35

5. Cok, D.R.: JML and OpenJML for Java 16. In: Proceedings of the 23rd ACM International
Workshop on Formal Techniques for Java-Like Programs, FTfJP 2021, pp. 65–67. ACM
(2021). https://doi.org/10.1145/3464971.3468417

6. Cok, D.R., Leavens, G.T., Ulbrich, M.: JML Reference Manual, 2nd edn. (2021). https://
www.openjml.org/documentation/JML_Reference_Manual.pdf

7. ECMA International: Eiffel: Analysis, Design and Programming Language, 2nd edn., June
2006. Standard ECMA-367

8. Goodenough, J.B.: Structured exception handling. In: Graham, R.M., Harrison, M.A.,
Reynolds, J.C. (eds.) Conference Record of the Second ACM Symposium on Principles
of Programming Languages, pp. 204–224. ACM, January 1975. https://doi.org/10.1145/
512976.512997

9. Gosling, J., Joy, B., Steele, G.: The Java Language Specification. Addison-Wesley, Boston
(1996)

10. Hatcliff, J., Leavens, G.T., Leino, K.R.M., Müller, P., Parkinson, M.: Behavioral interface
specification languages. ACM Comput. Surv. 44(3), 16:1–16:58 (2012). https://doi.org/10.
1145/2187671.2187678. Article 16

11. Klabnik, S., Nichols, C.: The Rust Programming Language (2018). https://doc.rust-lang.org/
book/

12. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness. In: Clarke,
E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp. 348–370. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-4_20

13. Leino, K.R.M.: Accessible software verification with Dafny. IEEE Softw. 34(6), 94–97
(2017). https://doi.org/10.1109/MS.2017.4121212

14. Leino, K.R.M., Ford, R.L., Cok, D.R.: Dafny reference manual (2021). https://dafny-lang.
github.io/dafny/DafnyRef/DafnyRef

15. Leino, K.R.M., Schulte, W.: Exception safety for C#. In: Cuellar, J.R., Liu, Z. (eds.) SEFM
2004–Second International Conference on Software Engineering and Formal Methods, pp.
218–227. IEEE, September 2004. https://doi.org/10.1109/SEFM.2004.14

16. Meyer, B.: Object-oriented Software Construction. Series in Computer Science, Prentice-
Hall International, Hoboken (1988)

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1145/1953122.1953145
https://doi.org/10.1145/1953122.1953145
https://doi.org/10.1145/3470569
https://doi.org/10.1007/978-3-642-20398-5_35
https://doi.org/10.1145/3464971.3468417
https://www.openjml.org/documentation/JML_Reference_Manual.pdf
https://www.openjml.org/documentation/JML_Reference_Manual.pdf
https://doi.org/10.1145/512976.512997
https://doi.org/10.1145/512976.512997
https://doi.org/10.1145/2187671.2187678
https://doi.org/10.1145/2187671.2187678
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1109/MS.2017.4121212
https://dafny-lang.github.io/dafny/DafnyRef/DafnyRef
https://dafny-lang.github.io/dafny/DafnyRef/DafnyRef
https://doi.org/10.1109/SEFM.2004.14

Programming Legal Contracts

– A Beginners Guide to Stipula –

Silvia Crafa1 and Cosimo Laneve2(B)

1 University of Padova, Padua, Italy
silvia.crafa@unipd.it

2 University of Bologna, Bologna, Italy

cosimo.laneve@unibo.it

Abstract. We discuss the design principles of Stipula, a domain spe-
cific language that can assists lawyers in programming legal contracts
through specific software patterns. The language is based on a small set
of primitives, that precisely correspond to the distinctive elements of
legal contracts, and that are amenable to be prototyped on both cen-
tralized or distributed systems. We also outline two formal techniques
to reason about Stipula contracts: a type inference system that allows to
derive types for fields, assets and contract’s functions, and an analyzer
of liquidity that pinpoints those contracts that do not freeze any asset
forever.

1 Introduction

The legal field is one of the domains that are currently most influenced by the
so-called digital revolution. A large number of legal texts, ranging from laws,
regulations, administrative procedures, to contractual agreements, court judge-
ments and jurisprudence, might considerably benefit from a sensible digitali-
sation. The advantages are not only in terms of efficiency, like speed-up and
automatic execution of fully defined procedures, but also in terms of data organ-
isation and transparency of processes. As a cons, computationally dealing with
laws is difficult because of the complexity of the legal texts: human judgement
is often required to interpret the natural language since it is, at the same time,
very expressive and quite ambiguous.

In this article we focus on legal contracts, a specific subset of the legal field
that define “those agreements which are intended to give rise to a binding legal
relationship or to have some other legal effect” [12]. These agreements are basi-
cally protocols that regulate the relationships between parties in terms of permis-
sions, obligations, prohibitions, escrows and securities. In turn, according to the
principle of freedom of form, which is shared by the contractual law of modern
legal systems, the agreements can be expressed by the parties using the language
and medium they prefer, including a programming language. When a program-
ming language is chosen, it is mandatory that the language be high level enough
so that writing and inspecting a software contract do not require proficiency in
computer science. In fact, only if the parties (which, in this domain, are usually
c© Springer Nature Switzerland AG 2022
W. Ahrendt et al. (Eds.): The Logic of Software. A Tasting Menu of Formal Methods,
LNCS 13360, pp. 129–146, 2022.
https://doi.org/10.1007/978-3-031-08166-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08166-8_7&domain=pdf
https://doi.org/10.1007/978-3-031-08166-8_7

130 S. Crafa and C. Laneve

lawyers, notaries, ordinary citizens, etc.) are fully aware of the computational
effects of their code there may be a genuine agreement over the content of the
contract, thus reducing or possibly eliminating applications to courts for either
misinterpretations or misunderstandings.

Therefore we decided to work in close connection with lawyers to select few
concise and intelligible primitives that have a precise correspondence with the
distinctive elements of legal contracts. The resulting language, called Stipula, is
a new domain-specific language with a formal operational semantics, so that the
behaviour is fully specified and amenable to automatic verification. Its actual
adoption by legal practitioners still requires a human-readable interface, such as
an IDE support or a visual language interface, but we think that the design and
the theory of this legal calculus [3] provide interesting insights on the application
of programming languages to the legal field.

The complete definition of Stipula can be found in [7]; in this paper we give a
gentle introduction to Stipula, by motivating its distinctive features with contrac-
tual elements taken from two paradigmatic legal contracts: a rental contract and
a bet contract. We also discuss two analysis techniques that have been defined
for Stipula and that can bee seen as useful tools that support a safe programming
of legal contracts. First, since Stipula is untyped, we illustrate a type inference
system that allows to automatically derive types for fields, assets and contracts’
functions. This system is useful to type check the correctness of operations, thus
preventing basic errors with contract’s data and assets. Then we overview an
analyzer that statically checks the presence of executions of the legal contract
leaving assets frozen into the contract without being redeemable by any party
(liquidity). We conclude the paper with a number of final remarks about the
implementation of Stipula and a discussion of related work.

2 Legal Contracts’ Elements as Stipula Building Blocks

Contractual agreements are generally written as combinations of distinctive ele-
ments, such as permissions, prohibitions, obligations, fungible and non fungi-
ble assets exchanges, and aleatory or real-world data retrieval. These elements
are combined into common legal patterns that either establish new obligations,
rights, powers and liabilities between the parties, or transfer rights (such as rights
to property) from one party to another, often subject to specific conditions and
by taking advantage of escrows and securities.

A first distinctive feature of a legal contract is the “meeting of the minds”,
i.e. the moment when, after the possible negotiation of the contractual content,
the parties express consent on the terms of the agreement and the contract
produces its legal effects. Stipula provides an ad-hoc primitive, called agreement,
which marks that contracts’ parties have reached a consensus on the contractual
arrangement they want to create. As an example, consider a contract regulating
a bike rental service: the following Stipula code

agreement (Lender , Borrower){

Lender , Borrower: rentingTime , cost

} ñ @Inactive

Programming Legal Contracts 131

is meeting a Lender and a Borrower to agree on both the rentingTime and on its
cost. After the agreement the contract starts and it goes into a state @Inactive
that expresses that no rent will occur until the payment (some money has been
transferred from Borrower to Lender). A variant of the contract might also
including an Authority that is charged to monitor contextual constraints, such
as obligations of diligent storage and care, or the obligations of using goods only
as intended, taking care of litigations and dispute resolution. In this case, the
agreement would be

agreement (Lender , Borrower , Authority){

Lender , Borrower: rentingTime , cost

} ñ @Inactive

expressing the fact that only the Lender and the Borrower agree on both
rentingTime and cost, while the Authority, which also engage in the meeting
of minds, is the pointer to a third party that will supervise Lender and Borrower
behaviours.

A second distinctive feature of legal contracts is that the set of normative ele-
ments, namely permissions, prohibitions and obligations, usually changes over
time according to the actions that have been done (or not). To model these
changes, Stipula commits to a state-machine programming style, inspired by the
state machine pattern that is supported by almost every programming language
(with ad-hoc libraries and/or modules). For instance, in a bike rental, once the
lender and the borrower have agreed on the rental period and cost, the lender is
prohibited from preventing the borrower from paying for the service and (after-
wards) using the bike. Stipula expresses this feature by letting the contract play
a proactive role: assuming that the bike can be used if the borrower has a tem-
porary access code, the contract stores the temporary code in a field, thus dis-
allowing the lender to withdraw from the rental. The following code defines the
function offer that can be invoked by Lender when the contract is in state
@Inactive to send an access code to be used by the Borrower.

@Inactive Lender : offer(x) {

x Ñ code

} ñ @Payment

Of course, the value of “code” is not disclosed to the Borrower before the
payment for the service. In other terms, the above fragment is giving permission
to the Lender to invoke offer in the state @Inactive and, if no further function
is defined in @Inactive, the contract is prohibiting other parties to do any
action at this stage. Once code has been received, the contract moves to a state
@Payment where presumably the Borrower will pay (actually, he is allowed to
pay) for the rental.

It is worth to notice that the foregoing code also highligths that Lender is
trusting the contract to act as intermediary that can store relevant informations
(such as, as we will see below, assets). In fact, x Ñ code stores the value sent by

132 S. Crafa and C. Laneve

the Lender into a contract’s field called code that cannot be accessed outside
the contract.

A further distinctive feature of legal contracts is the management of assets:
currency is required for payments and escrows, tokens, both fungible and non-
fungible, are useful to model securities and to provide a digital handle on a
physical good. For instance, in the case of the bike rental, instead of a simple
numeric code, a more innovatory IoT technique would be to rely on a unique
token that grants access to the bike’s smart lock. Moreover, in the traditional
setting, the Borrower pays the Lender with a credit card before he can use the
bike and the money transaction is only specified by the contract through a nor-
mative clause. Its occurrence is not guaranteed (in case of dispute, one party has
to appeal to a court). On the other hand, Stipula admits digital legal contracts
that automatically deal with assets transfers, so to remove intermediation even
from the payments. In Stipula assets can be also temporarily retained by legal
contracts, which may decide to redistribute them when particular conditions
occur. To this aim, the language promotes an explicit management of assets by
regarding them as first-class values with ad-hoc operations. For example, the
function

@Payment Borrower : pay[h]

(h == cost) {

h � wallet

code Ñ Borrower

} ñ @Using

is defining the payment of the rental by Borrower, which sends an asset h –
the argument is in square brackets – to the contract. The function call has a
precondition – operation h == cost – that checks whether the borrower pays
the correct fee or not. The semantics of the operation h � wallet, which is an
abbreviation for h � h, wallet, is that, after the execution, h is not owned by
Borrower anymore and is taken by the contract that stores it in the asset field
wallet. The design choice of explicitly marking asset movements with the ad
hoc operator “�” (thus separating it from “Ñ”) promotes a safer, asset-aware,
programming discipline that reduces the risk of the so-called double spending,
the accidental loss or the locked-in assets. Notice that the contract does not
immediately forward the payment to the Lender, rather it is retained for some
time until the rental period is terminated (in this way, in case of disputes, neither
the Borrower nor the Lender can access/use the asset while the dispute is in
progress). Once the fee has been payed, the Borrower gets the access code to
the bike and the contract transits into a @Using state.

There is a fourth distinctive feature of legal contracts: the obligations, namely
operations that must be done, typically within a deadline, by some party. In
Stipula, obligations are recast into commitments that are checked at a specific
time limit and the corresponding programming abstraction is the event primitive.
For example, the foregoing pay function may be refined by issuing an event that
terminates the renting service when the time limit is reached. The code becomes

Programming Legal Contracts 133

@Payment Borrower : pay[v]

(v == cost) {

v � wallet

code Ñ Borrower

now + rentingTime " //end -of -time usage

@Using {

"End_Reached" Ñ Borrower

wallet � Lender

} ñ @End

} ñ @Using

asserting that the bike can be used until the renting period terminates. The time
limit is expressed by now + rentingTime and, at that moment, if the bike has
not been already returned (the state of the contract is still @Using), a message
of returning the bike is sent to the Borrower ("End Reached" Ñ Borrower) and
the fee that was stored in wallet is delivered to the Lender (wallet � Lender).
We remark that events are not triggered by any party: they are automatically
executed when the time condition is met. Since the statements in the body of
events will be executed in the future, we assume for simplicity that the event’s
body is outside of the scope of functions’s parameters, both assets and non assets.
A more complex alternative would be to save for future execution the closure of
the event statements, that captures the local values of functions’ parameters.

The foregoing codes do not address disputes, e.g. contentions because the bike
is returned, or initially was, broken or damaged. These are common elements of
legal contracts, that are usually assessed by means of third party enforcements,
typically by a court. Disputes have a simple modelling in Stipula that does not
require any new ad-hoc feature, and somehow mimic the behaviour of a court. In
fact, when contract’s violations cannot be fully checked by the software, such as
the damage or misuse of the bike, or the renting of a broken bike, then a trusted
third party, the Authority, is necessary to supervise the dispute and to provide
a resolution mechanism. The code below illustrates the encoding of the off-chain
monitoring and enforcement mechanism by means of an Authority (which must
have been included in the agreement) in Stipula.

@Using Lender ,Borrower : dispute(x) {

x Ñ _

} ñ @Dispute

@Dispute Authority : verdict(x,y)

(y >= 0 �� y <= 1) {

x Ñ Lender , Borrower

y*wallet � wallet , Lender

wallet � Borrower

} ñ @End

The function dispute may be invoked either by the Lender or by the Borrower
and carries the reasons for kicking the dispute off (x is intended to be a string).
Once the reasons are communicated to every party (we use the abbreviation “--”
instead of writing three times the sending operation) the contract transits into a
state @Dispute where the Authority will analyze the issue and emit a verdict.

134 S. Crafa and C. Laneve

legal contracts Stipula contracts

meeting of the minds agreement primitive

permissions, prohibitions state-aware programming

currency and tokens asset-aware (linear) programming

obligations event primitive

judicial enforcement explicit Authority and ad-hoc pattern

exceptional behaviors explicit Authority and ad-hoc pattern

Fig. 1. Correspondence between legal elements and Stipula features

This is performed by permitting in the state @Dispute only the invocation of
the verdict function, that has two arguments: a string of motivations x, and a
coefficient y that denotes the part of the wallet that will be delivered to Lender as
reimbursement; the Borrower will get the remaining part. It is worth to spot this
point: the statement y*wallet � wallet, Lender takes the y part of wallet
(y is in [0..1]) and sends it to Lender; at the same time the wallet is reduced
correspondingly. The remaining part is sent to Borrower with the statement
wallet � Borrower (which is actually a shortening for 1*wallet � wallet,
Borrower) and the wallet is emptied.

There is a last distinctive element in legal contracts that deserves a comment:
the management of exceptional behaviours, i.e. all those behaviours that cannot
be anticipated due to the occurrence of unforeseeable and extraordinary events.
As in the above case, Stipula does not use any new ad-hoc feature, rather a
simple pattern is provided that defines a template:

~@End _ : block(x) {

x Ñ _

} ñ @Exception

@Exception Authority : handle(x,y) // similar to verdict(x,y)

According to the above pattern, the function block may be invoked by any
party (notation “--”) provided the lifetime of the contract is not terminated (the
contract is not in the state End). The management of the exception is similar to
that of disputes and therefore omitted.

Figure 1 recaps the normative elements of a legal contract and the corre-
sponding modellings in Stipula. Figure 2 uses coconnected boxes to highlight the
correspondence between the normative elements of a standard bike rental con-
tract and the corresponding editing in Stipula. In this case the Stipula code is
a bit more complex than the one discussed above: Borrower pays the double of
the fee in order to safeguard Lender from damages, late returns, etc. Accord-
ingly, the termination of the rental requires the Borrower to call the function
end, after which the Lender has to confirm the absence of damages by invoking

Programming Legal Contracts 135

rentalOK. Only this sequence of actions, which is enforced by the additional
state @Return, allows the lender to be payed and the borrower to get back the
money deposited as security.

It is worth to notice that a Stipula contract begins with the keyword stipula
and define assets and fields that are used therein. We also observe that Stipula is
untyped, to keep a simple syntax; however, a type inference system that allows
one to derive types is discussed in Sect. 4. Finally, we notice that the code of
Fig. 2 is also liquid : at the end of any contract execution, in the final state @End,
the asset wallet is empty, i.e. Bike Rental has no locked-in value (see the
discussion in Sect. 5).

3 Example: The Bet Contract

An example for testing the expressivity of Stipula is a contract ruling a bet. This
is a legal contract that contains an element of randomness (alea, such as a future,
aleatory event, such as the winner of a football match, the delay of a flight, the
future value of a company’s stock) that is entirely independent of the will of the
parties.

A digital encoding of a bet contract requires that the parties explicitly agree
on the source of data that will determine the final value of the aleatory event
– the DataProvider –, which is usually a specific online service, an accredited
institution, or any trusted third party. It is also important that the digital con-
tract defines precise time limits for accepting payments and for providing the
actual value of the aleatory event. Indeed there can be a number of issues: the
aleatory event does not happen, e.g. the football match has been cancelled, or
the data provider fails to deliver the required value, e.g. the online service is
down.

The Stipula code in Listing 1.1 corresponds to the case where Better1 and
Better2 respectively place in val1 and val2 their bets, while the agreed amount
of currency is stored in the contract’s assets wallet1 and wallet21. Observe that
both bets must be placed within an (agreed) time limit t before (line 15), to
ensure that the legal bond is established before the occurrence of the aleatory
event. The second timeout, scheduled in line 22, is used to ensure the contract
termination even if the DataProvider fails to provide the expected data, through
the call of the function data. When the function data is called and the first
argument x is the alea of the bet, the betters are rewarded according to the
result y. For simplicity we assume that the data-provider service gets the two
bets when they lose.

1 For simplicity, this code requires Better1 to place its bet before Better2. It is easy
to extend the code to let the two bets be placed in any order.

136 S. Crafa and C. Laneve

Fig. 2. A standard Bike Rental contract and its modelling in Stipula

1 stipula Bet {
2 assets wallet1 , wallet2
3 fields val1 , val2 , source , alea , amount , t_before , t_after
4

5 agreement (Better1 , Better2 , DataProvider){
6 DataProvider , Better1 , Better2 : source , alea , t_after
7 Better1 , Better2 : amount , t_before
8 } ñ @Init
9

10 @Init Better1 : place_bet(x)[h]

Programming Legal Contracts 137

11 (h == amount){
12 h � wallet1
13 x Ñ val1
14 t_before " @First { wallet1 � Better1 } ñ @Fail
15 } ñ @First
16

17 @First Better2: place_bet(x)[h]
18 (h == amount){
19 h � wallet2
20 x Ñ val2
21 t_after " @Run {
22 wallet1 � Better1
23 wallet2 � Better2 } ñ @Fail
24 } ñ @Run
25

26 @Run DataProvider : data(x,y)[]
27 (x==alea){
28 if (y==val1 && y==val2){ // Better1 and Better2 win
29 wallet1 � Better1
30 wallet2 � Better2
31 } else if (y==val1 && y!=val2){ // The winner is Better1
32 wallet2 � Better1
33 wallet1 � Better1
34 } else if (y!=val1 && y==val2){ // The winner is Better2
35 wallet1 � Better2
36 wallet2 � Better2
37 } else { // No winner
38 wallet1 � DataProvider
39 wallet2 � DataProvider
40 }
41 } ñ @End
42 }

Listing 1.1. The contract for a bet

Compared to the Bike Rental in Sect. 2, the role of the DataProvider here
is less pivotal than that of the Authority. While it is expected that Authority
will play its part, DataProvider is much less than a peer of the contract. It is
sufficient that it is an independent party that is entitled to call the contract’s
function to supply the expected external data that will extract from source.
In case DataProvider behaves incorrectly, e.g. it supplies an incorrect value
through the function data, the betters can appeal against the data provider
since they agreed upon the data emitted by the source. As usual, any dispute
that might render the contract voidable or invalid, e.g. one better knew the result
of the match in advance, can be handled by including an Authority, according
to the pattern illustrated in the Bike Rental example.

4 Type Inference in Stipula

Stipula is type-free: types have been dropped because there is no type anno-
tation in standard legal contracts and therefore they may be initially obscure
to unskilled users, such as lawyers. On the other hand, a lightweight and well
designed typed syntax is acknowledged as an effective support to produce qual-
ity software and to enhance code comprehension. Therefore, we postpone the
choice of a suitable typed syntax to the study of an appropriate programming
interface that help legal practitioners to program in Stipula. Nevertheless the
language comes with a type inference system that allows one to derive types of

138 S. Crafa and C. Laneve

assets, fields and functions’ arguments, so to statically prevent basic program-
ming errors. In this section we discuss the main design principles of the system.

Stipula has the following primitive types

T :: = real | bool | string | time | asset

that mirror the set of values of the language: real numbers, booleans, strings, time
values, and assets. What is exactly a time value will be specified by the concrete
implementation (either over a centralized system or a distributed platform such
a s a blockchain), but in general Stipula admits both absolute time values (as the
date "2022/1/1:00:15"T) and relative time expressions, like now + 3, standing
for 3 days from now or after that at least 3 blocks have been appended to
the underlying blockchain. Values of type asset can be divisible resources (e.g.
(crypto)currencies) or indivisible assets (e.g. smart keys, or NFT tokens). In
particular, divisible assets correspond to positive real numbers (therefore we
admit a subsumption rule from assets to real numbers), while indivisible ones
must be considered as a whole and can be either empty asset (0) or a full asset
(e.g. the constants key1234 and nft123).

The inference system of Stipula is almost standard: it associates pairwise
different type variables to the names of a program and parses the code by col-
lecting constraints. At the end of the parsing process, the constraints are solved
by means of a unification technique and the type variables are replaced by the
resulting values (see [10] for details of the technique). Here we just discuss the
most relevant rules, that are based on the following notation

– type terms α, α′, · · · , which are either type variables X, Y , Z, · · · , or primitive
types;

– environments Γ that maps fields and non-asset functions’ arguments to type
variables, and Δ maps assets and assets functions’ arguments to type vari-
ables. The notation Γ [x �Ñ X], resp. Δ[h �Ñ V], stands for either the update
or the extension of the environment, depending on whether x, resp. h, belongs
to the domain of the environment.

– constraints Υ , Υ ′, · · · , which are conjunctions of equations α = α′;
– judgments Γ,Δ $ E : α, Υ for expressions E and Γ,Δ $ S : Υ for statements

S.

The simplest rule of the inference system is the typing of a value κ:

κ ∈ T

Γ,Δ $ κ : T, true

That is, assuming that the constant κ belongs to T we derive that κ has type
T without any constraint (the term true) in every environments Γ and Δ. A
simple rule that generates constraints is the assignment of a value to a field:

Γ,Δ $ E : α, Υ Υ ′ = (Γ (x) = α) ∧ Υ

Γ,Δ $ E Ñ x : Υ ′

Programming Legal Contracts 139

As usual, statements E Ñ x have no type: the typing system returns a constraint
imposing that the typing of E is equal to the type of x, i.e., Γ (x) = α. For
example, the typing of the assignment "hello" Ñ x in the environments Γ,Δ
returns the constraint Γ (x) = string.

The following rule is the typing of the asset transfer:

Γ,Δ $ E : α, Υ Υ ′ = (α = real) ∧ (Δ(h),Δ(h′) = asset) ∧ Υ

Γ,Δ $ E � h, h′ : Υ ′

The rule defines the type of the withdraw of the value of E from the asset h
and the corresponding addition to h′. Therefore, the expression E must have
type real, since it corresponds to a quantity to be withdrawn form the asset
h and added to the asset h′. An additional Subsumption rule is introduced to
promote assets to be real, so that assets, when used within expressions (e.g.
h � h, wallet), are considered as reals. We also remark that the type system
does not check the amount of assets that are withdrawn, but the operational
semantics of Stipula prevents the (unsafe) execution of the transfer operation
whenever h does not own enough assets, e.g. 2 ˚ h � h, wallet.

Given a contract’s function Fi, the judgment Γ,Δ $ Fi : Γi,Δi, Υi collects
the constraints Υi generated from the typing of the function body, and the type
environments Γi,Δi that associate fresh type variables to the parameters names:

Y , V fresh Γ ′ = Γ [y �Ñ Y] Δ′ = Δ[k �Ñ V]
Γ ′,Δ′ $ E : α, Υ Γ ′,Δ′ $ S : Υ ′ Γ,Δ $ W : Υ ′′

Υ ′′′ = (α = bool) ∧ Υ ∧ Υ ′ ∧ Υ ′′

Γ,Δ $ @Q A : f(y)[k](E) { S W } ñ @Q′ : [y �Ñ Y], [k �Ñ V], Υ ′′′

Finally, the typing of a Stipula contract is given in the following rule, where
$ G stands for the syntactic check that the agreement G is well formed, and
Υ � σ means that the type variable substitution σ satisfies the constraints Υ :

X, Z fresh $ G Γ = [x �Ñ X] Δ = [h �Ñ Z](
Γ, Δ $ Fi : Γi, Δi, Υi

)i∈1..n ∧
i∈1..n Υi � σ

$ stipula C { assets h fields x G F1 · · · Fn } : [σ(Γ, Γ1 · · · Γn), σ(ΔΔ1 · · · Δn)]

In the rule fresh type variables are associated to contract’s fields and functions’
parameters, both assets and non assets. These associations are recorded in the
type environments Γ, Γ1 · · · Γn and ΔΔ1 · · · Δn (all contract’s names are assumed
to be different). Then the type of the contract is obtained by applying the
substitution σ to these environments. Whenever the inference system is not able
to derive a ground type for a contract name, that is σ(X) is a type variable, it

140 S. Crafa and C. Laneve

Fig. 3. The finite-state automata of the Bet contract

means that there are no type constraints for that name. In particular, as regards
assets, the type system only collects assets type identities and the type variable
can be safely instantiated to the ground type asset.

5 An Analyzer of Liquidity

Liquidity is a major security property of every program managing assets because
it guarantees that assets are never frozen forever inside contracts [2]. In partic-
ular,

liquidity: a Stipula contract is liquid if, whenever an asset becomes not-0, then
there is a continuation that has a state where every asset is 0.

According to the definition, liquidity reduces to the analysis that a state is
reachable, which is not trivial in Solidity because functions have guards that may
disable invocations and events that may prevent invocations. What we discuss
in this paper is a technique for pruning the space of analysis of reachability:
our technique returns witnesses to be checked by an off-the-shelf reachability
tool. For simplicity sake, in this section, we consider the sublanguage where
statements E � h, A and E � h, h′ have the shape c˚h � h, A and c˚h �
h, h′, respectively (every example in this paper matches this constraint). We also
restrict our analysis to contracts such that computations do not pass through
the same state twice. That is, consider the underlying finite state automaton
of the contract where states are those specified by the contract and transitions
are either functions or events – Fig. 3 reports the finite state automaton of the
Bet contract in Sect. 3. We are restricting to contracts where the underlying
finite state automata have no cycle (the technique where this limitation is drop
requires technicalities that are out of the scope of this paper).

The liquidity analyzer of a Stipula contract has three phases:

1. the liquidity effects of each transition of the automaton is statically computed
by calculating (an over-approximation of) the assets and the asset parameters

Programming Legal Contracts 141

of every function and event. More precisely, using a type system, we define the
liquidity label of every function Q A.f Q′ : Ξ → Ξ ′ and every event Q ev i Q′ :
Ξ → Ξ ′, where the initial environment Ξ associates contract’s assets with
symbolic names, while the final environments Ξ ′ records the effect of the
execution of the corresponding bodies;

2. then we compute the liquidity effects of computations (i.e. sequences of tran-
sitions) of the automaton, by suitably merging the final environment of a
transition with the initial environment of the next transition;

3. finally, we consider all the functions and events that either updates the assets
or carry asset parameters and check whether (i) all asset parameters are
emptied by functions’ executions, and (ii) for every function/event modifying
an asset, there is a continuation that empties all the assets of the contract. We
remark the role of asset parameters: if a contract function is called by passing
an asset parameter, like an amount of currency (as in the function pay of the
Bike Rental contract), that amount is no more available to the caller because
of the linear semantics of assets. Therefore it is essential that the parameter
is drained by the function and the currency is moved into a contract asset
(cif. the instruction h � wallet in line 12 of the Bike Rental contract in
Fig. 2) or sent to a party, otherwise that currency is frozen and the program
is not liquid. The condition (ii) above requires to trace the asset movements
performed by computations and to verify that contract assets (cif. wallet)
have been emptied.

Below we detail few critical aspects of the analysis. The liquidity type system
returns, for every transition of the automaton, an over-approximation of the
balances of the assets that expresses whether an asset is empty – notation 0 –
or not empty – notation ∞. The values 0 and ∞ are called liquidity values. We
use the following notation:

– liquidity expressions e, are defined as follows, where ξ, ξ′, · · · range over
(symbolic) liquidity names:

e :: = 0 | ∞ | ξ | e \ e | e [e.

They are ordered as 0 ă ∞ and 0 � ξ and ξ � ∞; the operations \ and [
respectively return the maximum and the minimum value of the two argu-
ments.

– environments Ξ, which map contract’s assets and asset parameters to liquid-
ity expressions.

– liquidity labels t : Ξ → Ξ ′ where t is either Q A.f Q′ (a function) or Q ev i
Q′ (an event) and Ξ → Ξ ′ records the liquidity effects of fully executing the
body of the transition t.

– judgments Ξ $ E : e for expressions, Ξ $ S : Ξ ′ for statements and Ξ $
@Q A:f(x)[h′] (E){ S W } ñ @Q′ : L for function definitions, where L is a
set of liquidity labels.

142 S. Crafa and C. Laneve

As regards expressions, we consider only constants (because of the restriction
on the shape of asset expressions). In particular, the two rules

Ξ $ 0 : 0
κ �= 0

Ξ $ κ : ∞
assert that every constant has liquidity value ∞ but for the constant 0.

As regard statements, we have two rules for asset movements:

e = Ξ(h) \ Ξ(h′)

Ξ $ h � h′ : Ξ[h �Ñ 0, h′ �Ñ e]

c �= 1 Ξ $ c : e
e′ = (e [Ξ(h)) \ Ξ(h′)

Ξ $ c ˚ h � h, h′ : Ξ[h′ �Ñ e′]

According to the rule on the left, the final asset environment of h � h′ (which
is an abbreviation for h � h, h′) has h that is emptied and h′ that gathers the
value of h, henceforth the liquidity expression Ξ(h) \ Ξ(h′). Notice that, when
both h and h′ are 0, the overall result is 0. In the rule on the right, the asset h is
decreased by an amount that is moved to h′. Since c is not 1, the static analysis
can only safely assume that the asset h is not emptied by this operation (if it
was not empty before). Therefore, after the withdraw, the liquidity value of h
has not changed. On the other hand, the asset h′ is increased of some amount if
h has a non zero liquidity value, henceforth the expression (e [Ξ(h)) \ Ξ(h′).
In particular, when both Ξ(h) and Ξ(h′) are 0, the overall result is 0.

The rule for conditionals is

Ξ $ S : Ξ ′ Ξ $ S′ : Ξ ′′

Ξ $ if (E) { S } else { S′ } : Ξ ′ \ Ξ ′′

where the operation \ on environments is defined pointwise: (Ξ ′ \ Ξ ′′)(h) =
Ξ ′(h) \ Ξ ′′(h). That is, the liquidity analyzer over-approximates the final envi-
ronments of if (E) { S } else { S′ } by taking the maximum values between
the results of parsing S (that corresponds to a true value of E) and those of S′

(that corresponds to a false value of E). The expression E is overlooked by the
analyzer.

The rule for Stipula contracts collects the liquidity labels that describe the
liquidity effects of each contract’s function; each function assumes injective envi-
ronments that just associate contracts’ assets with symbolic names:

χ, ξ fresh
(
[h �Ñ ξ] $ Fi : Li

)i∈1..n

$ stipula C { assets h fields x G F1 · · · Fn } :
⋃

i∈1..n Li

In turn, the rule for function definitions is:

W =
(
Ei " @Qi{ Si } ñ @Q′

i

)i∈I

Ξ[h′ �Ñ ∞] $ S : Ξ ′ (
Ξ $ Si : Ξ ′

i

)i∈I

Ξ $ @Q A : f(x′)[h′](E){ S W} ñ @Q′ :
Q A.f Q′ : Ξ[h′ �Ñ ∞] Ñ Ξ ′
(
Qi ev i Q′

i : Ξ Ñ Ξ ′
i

)i∈I

Programming Legal Contracts 143

This rule produces a set L of liquidity labels associated to transitions of the
finite state automaton. The main label is that of the function, saying that the
transition named Q A.f Q′ has liquidity effects Ξ[h′ �Ñ ∞] Ñ Ξ ′. As explained
above, Ξ just associates contract’s assets, with symbolic names. The analysis
of the function’s body S additionally assumes that the function parameters h′
are bound to ∞, because they may be any value. The liquidity effects of S
are recorded by the environment Ξ ′. In particular, if Ξ ′(h′) = ∞, where h′ is
an asset parameter, i.e. h′ /∈ dom(Ξ), then the asset h′ has not been emptied
by S. Therefore the asset is frozen into the parameter and the contract is not
liquid. The premises also verifies the liquidity effects of events’ bodies Si, but
in this case the initial environments are not extended with function parameters
because the syntax of Stipula imposes that events are out of their scope. The set
I in the rule is intended to be the set of (the initial) code lines of the events
scheduled by the function. For example, the liquidity types of the Bet contract
are (Ξ = [wallet1 �Ñ ξ1, wallet2 �Ñ ξ2]):

Init Better1.place bet First : Ξ[h �Ñ ∞] Ñ Ξ[wallet1 �Ñ ξ1 \ ∞, h �Ñ 0]
First Better2.place bet Run : Ξ[h �Ñ ∞] Ñ Ξ[wallet2 �Ñ ξ2 \ ∞, h �Ñ 0]
Run DataProvider.data End : Ξ Ñ Ξ[wallet1 �Ñ 0, wallet2 �Ñ 0]
First ev 14 Fail : Ξ Ñ Ξ[wallet1 �Ñ 0]
Run ev 21 Fail : Ξ Ñ Ξ[wallet1 �Ñ 0, wallet2 �Ñ 0]

To calculate the effects that a computation has on the assets’ balances we use
abstract computations. An abstract computation is a finite sequences of labelled
transitions ϕ = {ti : Ξi Ñ Ξ ′

i}i∈1..n. We define the liquidity type of an abstract
computation ϕ, noted Lϕ, by merging the final environments of a transition with
the initial environments of the next one. In particular, let h be the assets of the
contract and Ξ|h be the environment Ξ restricted to the domain h. Then

Lϕ = Ξ
(b)
1 |h Ñ Ξ(e)

n |h

where Ξ
(b)
1 and Ξ

(e)
n (“b” stays for begin, “e” stays for end) are defined as follows

Ξ
(b)
1 = Ξ1 Ξ

(b)
i`1 = Ξi`1{Ξ

(e)
i (h)/ξ} Ξ

(e)
i = Ξ ′

i{Ξ
(b)
i (h)/ξ} .

For example, consider the Bet contract computation

ϕ = Init Better1.place bet First ; First Better2.place bet Run ;
Run DataProvider.data End

144 S. Crafa and C. Laneve

Then Lϕ = Ξ
(b)
1 |{wallet1,wallet2} → Ξ

(e)
3 |{wallet1,wallet2} where

Ξ
(b)
1 = Ξ[h �Ñ ∞]

Ξ
(e)
1 = Ξ[wallet1 �Ñ ξ1 \ ∞, h �Ñ 0]

Ξ
(b)
2 = Ξ[wallet1 �Ñ ξ1 \ ∞, h �Ñ 0]

Ξ
(e)
2 = Ξ[wallet1 �Ñ ξ1 \ ∞, wallet2 �Ñ ξ2 \ ∞, h �Ñ 0]

Ξ
(b)
3 = Ξ[wallet1 �Ñ ξ1 \ ∞, wallet2 �Ñ ξ2 \ ∞, h �Ñ 0]

Ξ
(e)
3 = Ξ[wallet1 �Ñ 0, wallet2 �Ñ 0, h �Ñ 0]

The last phase of the liquidity analysis amounts to checking that (i) the
execution of every function empties every asset parameter, and (ii) for every
function or event modifying an asset field, there is a continuation (which is a
computation) that empties all the assets. We notice that, as regards (ii), we can-
not restrict to a local analysis (as in (i)) but we have to consider computations
because assets may become 0 in several steps. For example, for the Bet contract,
there are two problematic functions: Init Better1.place bet First (that
updates wallet1) and First Better2.place bet Run (that updates wallet2).
Our technique, by using liquidity types of computations, returns all the computa-
tions that start at First and at Run that empty the assets wallet1 and wallet2.
In particular, for First, it returns

First Better2.place bet Run ; Run DataProvider.data End
First ev 14 Fail
First Better2.place bet Run ; Run Ev 21 Fail

(the reader is invited to verify that, in the final environments are [wallet1 �Ñ
0, wallet2 �Ñ 0]). For Run we have

Run DataProvider.data End
Run ev 21 Fail .

Provided that, at least one of the computations starting at First and of
those starting at Run can be actually executed (as we anticipated, our analysis
needs to be complemented by a reachability analysis), the Bet contract is liquid.
Actually, it turns out that this is the case because every foregoing computation
can be performed.

6 Conclusions

We have presented Stipula, a simple domain-specific language featuring a distilled
number of operations that enable the formalisation of the main elements of
juridical acts, such as permissions, prohibitions, and obligations. A number of
related projects [8,11,13] have put forward legal markup languages, to wrap logic
and other contextual information around traditional legal prose, and providing
templates for common contracts that can be customized by setting template’s

Programming Legal Contracts 145

parameters with appropriate values. In Stipula, rather than software templates,
it is possible to define specific programming patterns that can be used to encode
the building blocks that can be used to describe, analyse and execute (thus
enforce) legal agreements (see the Fig. 1).

This is similar to what has been done in [9] where the authors have defined
a set of combinators expressing financial and insurance contracts, together with
a denotational semantics and algebraic properties that says what such contracts
are worth. These ideas have been implemented by the Marlowe and Findel lan-
guages [1,4], which are (small) domain specific languages featuring constructs
like participants, tokens, currency and timeouts to wait until a certain condition
becomes true (similarly to Stipula).

We remark that legal contracts are more general and expressive than finan-
cial contracts. Accordingly, languages like Marlowe and Findel are built around a
fixed set of contract’s combinators, and they can be implemented using an inter-
preter, that is a single program that handles any financial contract by evaluating
its (most external) combinator. The case of Stipula is more complex: agreement,
assets, events, named states and named functions are programming primitives
rather than combinators. Therefore each Stipula contract must be implemented,
actually compiled, into a suitable running software, and the parties must collab-
orate by invoking the contract’s functions to make the contract progress.

Being a principled high-level language, Stipula is implementation-agnostic,
and does not commit to any architecture. In [7] we provided a detailed discus-
sion about the implementation of the main elements of Stipula on top of either
a centralized Java application or a distributed system such as a blockchain. In
particular, Stipula might actually be implemented in terms of smart contracts
written in Solidity or Obsidian [5,6], which is based on state-oriented program-
ming and explicit management of typed linear assets. This would bring in the
advantages of a public and decentralized blockchain platform. However, we think
that Stipula’s software/digital contracts are more general and encompass smart
contracts: they provide benefits in terms of automatic execution and enforcement
of contractual conditions, traceability, and outcome certainty even without using
a blockchain. Their implementation might be more flexible, allowing a suitable
level of privacy, reversibility and intermediation. Additionally, the intrinsic open
nature of legal contracts is another challenge for blockchain-based smart con-
tracts, that can hardly deal with the off-chain world: external data can enter
the blockchain only through oracles, which are problematic in many senses, and
the dynamic change of behaviour conflicts with the rigidity of smart contracts
definition. On the other hand, we have shown that Stipula contracts may take
advantage of an explicit Authority party and suitable programming patterns to
flexibly deal with the exceptional behaviors occurring in the external context.

Overall, we think that Stipula provides a programming model that is simple
and rigorous, which are, in our opinion, fundamental criteria for reasoning about
legal contracts and for understanding their basic principles. In our mind Stipula,
and its toolset of formal methods, is the backbone of a framework where address-
ing and studying other, more complex features that are drawn from juridical
acts.

146 S. Crafa and C. Laneve

References

1. Cardano Documentation (2020). https://docs.cardano.org/
2. Bartoletti, M., Zunino, R.: Verifying liquidity of bitcoin contracts. In: Nielson,

F., Sands, D. (eds.) POST 2019. LNCS, vol. 11426, pp. 222–247. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17138-4 10

3. Basu, S., Mohan, A., Grimmelmann, J., Foster, N.: Legal calculi. Technical report,
ProLaLa 2022 ProLaLa Programming Languages and the Law (2022). https://
popl22.sigplan.org/details/prolala-2022-papers/6/Legal-Calculi

4. Biryukov, A., Khovratovich, D., Tikhomirov, S.: Findel: secure derivative contracts
for ethereum. In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 453–467.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70278-0 28

5. Coblenz, M.J., Aldrich, J., Myers, B.A., Sunshine, J.: Can advanced type systems
be usable? an empirical study of ownership, assets, and typestate in obsidian. In:
Proceedings of ACM Programming Language, vol. 4, no. OOPSLA, pp. 132:1–
132:28 (2020)

6. Coblenz, M.J., et al.: Obsidian: typestate and assets for safer blockchain program-
ming. ACM Trans. Program. Lang. Syst. 42(3), 14:1–14:82 (2020)

7. Crafa, S., Laneve, C., Sartor, G.: Pacta sunt servanda: legal contracts in Stipula.
Technical report, arXiv:2110.11069, October 2021

8. Lexon Foundation. Lexon Home Page (2019). http://www.lexon.tech
9. Peyton Jones, S.L., Eber, J.-M., Seward, J.: Composing contracts: an adventure

in financial engineering, functional pearl. In: Proceedings of the Fifth ACM SIG-
PLAN International Conference on Functional Programming (ICFP 2000), Mon-
treal, Canada, 18–21 September 2000, pp. 280–292. ACM (2000)

10. Pierce, B.C.: Types and Programming Languages. The MIT Press, Cambridge
(2002)

11. Open Source Contributors. The Accord Project (2018). https://accordproject.org
12. Research Group on EC Private Law (Acquis Group) Study Group on a European

Civil Code. Principles, Definitions and Model Rules of European Private Law:
Draft Common Frame of Reference (DCFR), Outline Edition. Sellier (2009)

13. Wright, A., Roon, D., ConsenSys, A.G.: OpenLaw web site (2019). https://www.
openlaw.io

https://docs.cardano.org/
https://doi.org/10.1007/978-3-030-17138-4_10
https://popl22.sigplan.org/details/prolala-2022-papers/6/Legal-Calculi
https://popl22.sigplan.org/details/prolala-2022-papers/6/Legal-Calculi
https://doi.org/10.1007/978-3-319-70278-0_28
http://arxiv.org/abs/2110.11069
http://www.lexon.tech
https://accordproject.org
https://www.openlaw.io
https://www.openlaw.io

Towards a Modular and Variability-Aware
Aerodynamic Simulator

Ferruccio Damiani1, Michael Lienhardt2(B), Bruno Maugars2,
and Bertrand Michel2

1 University of Turin, Turin, Italy
ferruccio.damiani@unito.it
2 ONERA, Palaiseau, France

{michael.lienhardt,bruno.maugars,bertrand.michel}@onera.fr

Abstract. Computational Fluid Dynamics (CFD) consists of numeri-
cally solving the fluid dynamics equations and has become a major tool
in designing and evaluating any physical structures, like airplane, rotors,
or even nuclear plants, where the flow of a fluid can be a critical effi-
ciency or security aspect of these structures. Our first contribution is a
brief review of the core characteristics a CFD solver should have (based
on two common functionalities they usually provide) and the state of
the art of CFD tools. Indeed, research on this field principally focuses
on specific numerical or computation methods, software architecture is
rarely discussed. Moreover, to the best of our knowledge, all CFD tools
have major structural flaws that limit their capacities to integrate new
methods and take advantage of new hardware. Our second contribution
is a new approach that aims to solve these flaws. We exploit formal meth-
ods (namely, order-sorted algebra and Delta-Oriented Programming) to
build a flexible CFD framework in which new methods can be added
as modules. By exploiting dataflow automatic generation, our approach
adds no runtime overhead. We implemented our approach and tested it
on a simple example.

1 Introduction

Over the past 30 years, aerodynamic numerical simulation tools (also called CFD
tools) [8,28,41,48] has been largely used and become essential for the develop-
ment, sizing and maintenance of products manufactured in the aeronautics sec-
tor, like airplanes, turbines, etc. These tools calculate the flow properties and
the mechanical stress (like a wind shock, a drag or a lift) applied on the manu-
factured products, and this information is used by the designers of the different
products to guide them in their tasks (e.g., development, sizing or maintenance).
Aerodynamics is described by the Navier-Stokes (NS) equations [12] which have

The authors of this paper are listed in alphabetical order. This work was partially
supported by the SONICE project, granted by the French Directorate General for
Civil Aviation (DGAC).

c© Springer Nature Switzerland AG 2022
W. Ahrendt et al. (Eds.): The Logic of Software. A Tasting Menu of Formal Methods,
LNCS 13360, pp. 147–172, 2022.
https://doi.org/10.1007/978-3-031-08166-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08166-8_8&domain=pdf
https://doi.org/10.1007/978-3-031-08166-8_8

148 F. Damiani et al.

no known analytic solution [38], and so, CFD tools are structured around two
approximations: first, they use equations that approximate NS; second, they use
physical configurations that approximate the volume in which the fluid flows.
Many equations and many meshes have been designed over the years, each of
them having a specific usage: some are more suited to some specific physical con-
ditions (e.g., supersonic speed), some trade-off precision for efficiency. But even
for very efficient equations and meshes, on realistic usecases these computations
are very memory and computation intensive and require massive and efficient
hardware.

Consequently, CFD tools face two design challenges that seem in opposition.
On one hand, they must be flexible enough to support a large catalogue of NS
approximations and meshes, so they can be used to analyse different manufac-
tured products. Moreover, since the research on NS approximation and on meshes
is very active, the CFD tools must regularly be updated to integrate these new
results, which also requires flexibility. On the other hand, these tools must be
very specific and close to the hardware in order to be as efficient as possible:
a simple cache-miss in a loop could have desastrous effect on the computation
time and make the tool useless in practice. Moreover, heterogeneous computa-
tions (i.e., distributing the computation on different kind of computation units,
like CPU and GPU) must also be fine-tuned, to avoid costly transfert of control
and data between the different computation units. Finally, even though CFD
tools must be fine-tuned to take as much advantage of the hardware as possi-
ble, the workstations on which these tools run are all different and in constant
evolution, with the rise of new hardware technologies (GPU, TPU, VE [19], etc.).

In this paper, on the occasion of Reiner Hähnle’s 60th birthday, we present
our ongoing research on an approach for solving the apparent incompatibility
between the requirements of flexibility and fine-tuning of a CFD tool. This app-
roach is based on Delta-oriented Programming [14,15,26,53] and on an ad-hoc
code generation to enable flexibility and fine-tuning, respectively. Reiner Hähnle,
as part his academic work, provided outstanding contributions in the develop-
ment of formal methods and tools for supporting rigorous software engineering
approaches – see, e.g., the KeY tool [2] and the ABS modelling language [24].
Notably, his research has always looked at practical applications – see, e.g.,
the EU FP7 project HATS (Highly Adaptable and Trustworthy Software using
Formal Models) [22], the EU FP7 coordinating action Eternals (Trustworthy
Eternal Systems via Evolving Software, Data and Knowledge) [23], the EU FP7
project Envisage (Engineering Virtualized Services) [25], and the DB Netz AG
project FormbaR (Formal modelling and analysis of Railroad operations) [33].
We therefore believe that the research activity reported in this work fully falls
in Reiner Hahnle’s research interests.

Outline. Section 2 briefly outlines Computational Fluid Dynamics (CFD) and
its challenges. Section 3 describes the characteristics of the current approaches,
focusing in particular on the elsA tool [8]. Section 4 introduces our approach,
and Sects. 5 and 6 focus on the data model and the variable operators aspects of
the approach, respectively. Section 7 present our initial results. Finally, Sect. 8
concludes the paper and provides and outlook on future work.

Towards a Modular and Variability-Aware Aerodynamic Simulator 149

2 Computational Fluid Dynamics Challenges

This Section presents the different characteristics required of a CFD tool, and
the challenges in implementing them. We structure this Section in two parts:
first, we discuss the functional characteristics of such a tool, i.e., what are the
functionalities expected by the user; second, we discuss its computational char-
acteristics, i.e., how to perform the actual computation on a given hardware.

2.1 Functional Characteristics

Equilibrium State Computation. The main functionality of a CFD tool consists of
computing an equilibrium state [50] of a given physical configuration [51,52]. This
state usually consists of the temperature, the velocity and the pressure of the
fluid, at every point of the volume considered in the given physical configuration.

 zone 3 zone 1 zone 2

Legend

: wall

: zone

: input flow

: output flow

: connexion

Fig. 1. CFD Physical Configuration Example

Consider for instance the configuration depicted in Fig. 1. This configuration
corresponds to a simple 2D tube: the space where the fluid can flow is modelled
by the three connected zones zone 1, zone 2 and zone 3 bounded by walls on
the top and on the bottom, with an input gas flow on the left and a possible exit
flow on the right. Depending on the fluid property, the input and output flow
conditions, the friction on the walls, the computation could return an equilibrium
state that can greatly vary.

The principle of the equilibrium computation is quite simple: the different
zones in the configuration are implemented with meshes storing default values
(2D meshes in our example in Fig. 1), and the constraints given by the differ-
ent boundary conditions (BC) in the configuration (the input flows, the output
flows and the wall in our example) are iteratively propagated in the meshes,
thus changing the stored values until the value modifications derived from these
constraints are negligible.

Numerical Optimization. Another essential functionality integrated in most CFD
tool is called Numerical Optimization. Any realistic simulation depends on many
parameters, e.g., the shape of a plane wing, that can have a great influence on
some objective functions that should be minimized, e.g., the plane drag. A first
approach to minimize these objective functions is to perform a large number of
simulations, each of them with a different parameter configuration. This app-
roach is not very practical however, due to size of the configuration space to
explore.

150 F. Damiani et al.

An interesting alternative approach is to compute the derivative of the objec-
tive functions: since the zeros of these derivatives correspond to local minima
and maxima of the objective functions, it is enough to perform the computation
on these configurations, thus greatly reducing the search space. There exist two
main approaches to compute these derivatives. The first one introduces a pertur-
bation to the problem inputs and computes theirs influences on the result of the
objective functions (this approach is called forward or linearised mode). It is also
possible to introduce a perturbation to the result of the objective functions and
study their influences on the inputs (this approach is called backard or adjoint
mode). The two modes of computing this derivate have different properties: the
forward/linearized mode is more efficient when number of objective functions
is greater than the number of parameters, while the backward/adjoint mode
is more efficient in the opposite case. In practice, the number of parameters is
several order of magnitude bigger that the number of objective functions, and
so the backward/adjoint mode is the most efficient. However, the backward/ad-
joint mode add huge constraints in term of software architecture because all the
derivatives must be propagated and computed backwards [34].

Kenway et al. in [34] give an in-depth discussion on the different methods to
compute the derivatives necessary to solve the numerical optimization problem,
and give clear motivations why discrete adjoint approaches must in general be
preferred over continuous direct approaches. Additionally, they compare different
implementations for computing such a discrete adjoint, and a code generation
technique called Automatic differentiation (AD) gives the best result, in term of
memory usage, speed and accuracy.

AD thus is a very powerful technique, but it has one important limitation. It
is a source to source transformation techniques that generates from the imple-
mentation of a function a code computing the derivative of that implementation.
And in order to produce correct code, AD expects that the input implementation
follows a simple workflow pattern.

Hence it is important to structure a CFD tool in a way so that the com-
putation it performed is expressed as a simple workflow that matches the AD
restrictions.

Functional Variability. While the computation of a physical configuration’s equi-
librium state is always a fixpoint loop, one of the main difficulty in designing a
CFD solver is to manage the fact that the content of that loop has a very large
number of variants, and that this number is always increasing. This very large
variability has three causes, two of which we already introduced:
1. The approximation method. As previously discussed, many approxima-

tion methods for NS have been and are still being designed [4,29,32,36], each
of them having their own advantages and disadvantages, e.g., are more suited
to specific physical configurations, to specific data computation, etc.
Additionally, many of these methods use constants (modelling some physical
properties) that must be set by the user. Finally, some of these methods are
designed in a way so they are incompatible with other variable elements, e.g.,
some physical configurations.

Towards a Modular and Variability-Aware Aerodynamic Simulator 151

2. The physical configuration. Each configuration is unique and requires
a tailored computation. First as previously discussed, the BCs describe the
constraints on the flow of the fluid going through the space modelled by the
zones, and each of them has a specific implementation. Then, the flow follows
the links between the zone, and so the topology of the physical configuration
has a direct impact on the computation.
Of course it is possible to design (as it has already been done in the past) a
unique spaghetti code that can manage all possible physical configurations.
However such a code would be unmaintainable and highly inefficient. Indeed,
such a centralized code needs to have direct access to all the arrays and
matrices during the physical simulation, which causes important latency in
accessing the memory for physical configuration of regular size. This issue is
discussed in more detail in Sect. 2.2.

3. The user requested data. The user can request the computation of some
specific data (e.g., an objective function), which must be included in the
fixpoint loop. The computation of this data may require internally the com-
putation of some other temporary information on the flow of the fluid, which
adds a layer of complexity in the construction of the fixpoint loop. Moreover,
in some case the precision of the requested data can be configured, which in
turns may require to change how the temporary information are computed.

Runtime Checkup. Finally, it could be very useful to be able to insert monitoring
and controlling capabilities at key points in a CFD computation. Indeed, such
computations can take a very long time. So, it could first be very useful to
be able to regularly store a snapshot of the current computation so in case of
hardware failure we might not lose hours or even days of computation. Moreover,
convergence of the fixpoint loop is not guaranteed in many cases: monitoring and
controlling capabilities could be very useful to detect when the computation is
not converging and to update some of the solver’s options in order to solve the
problem, or stop the computation if no solution can be found.

2.2 Computational Challenges

Like many other HPC applications, CFD is in general very memory and compu-
tation intensive, and so it is very important to use as efficiently as possible the
available hardware.

Distribution. The first difficulty in using efficiently the hardware is data local-
ity [35,46,58]. Indeed, in many cases the meshes of a physical configuration count
several millions or even billions of points, and standard SMP memories (that
can be accessed uniformly by all the CPU in a workstation) cannot scale to such
sizes: the latency in accessing the memory becomes too big. The NUMA memory
design (which stands for Non Uniform Memory Access) solves this scaling issue
by structuring the memory in nodes, each one having a guaranteed good latency
with one CPU. Consequently, it is important to partition the meshes in chunks

152 F. Damiani et al.

that can be stored in one node of memory, and to partition the computation so
that each part of the computation is performed on the CPU close to the data it
manipulates.

Communication. Some functions, called stencil functions [9,30], compute a value
on a node of a mesh by looking at the neighbours of that node (similarly to
the convolution operation in Artificial Intelligence). However, since the mesh
is distributed, some neighbours are not locally available on a CPU: it can be
necessary before running a stencil function to fetch the value of these neighbours
from the NUMA node that hosts them.

Computation Reordering. A well known method to optimize catch access is to
reorder some computation, so that those that use the same data are executed
together. This optimization is implemented in most compilers, but can only be
applied on a fine-tuned program: any CFD tool with some flexibility will not be
optimized by the compiler. Hence it is important to find a way for a CFD tool
to perform this optimization itself.

Heterogeneous Hardware. Now-a-days, workstations have several kind of process-
ing units (PU), e.g., CPU and GPU. Moreover, several means of communication
(with different properties) exist between these PUs, e.g., PCIe and NVLink.
Since some computation are more efficient on some hardware (e.g., a GPU han-
dles well repetitive computation over large sets of data), and some cannot be
performed on them (e.g., GPUs do not have function pointers), it is important
to design a distribution plan that put the computation on suited PUs, while
taking in account the latency of data transfer.

Variable Hardware. The final difficulty is to be able to manage the fact that a
CFD tool will be executed on several workstation, each of them with its own
hardware. Hence, the hardware itself becomes variable in this context, and the
distribution plan discussed in the previous paragraph must be generated and
tailored for workstation running the tool.

Figure 2 illustrates the shape of the a possible distribution plan of the physi-
cal configuration of Fig. 1. In this example, we consider an hardware architecture
with two NUMA nodes, the first one hosting zone 1 and zone 2 and the second
one hosting zone 3 of our physical configuration example of Fig. 1. The first
NUMA node is linked to a dual core, the first core having two threads while the
second having only one. The second NUMA node is linked to a highly parallel
architecture, like a GPU. The arrows between NUMA nodes and caches repre-
sent the different communications that are necessary for the computation of the
equilibrium states.

Communication between a NUMA node and the local caches is quick and all
the data stored in the node must at one point of the computation be sent in the
cache. But it is still better to avoid useless transfer between the NUMA node
and the cache. Communication between NUMA nodes is slower, and should be

Towards a Modular and Variability-Aware Aerodynamic Simulator 153

NUMA Node 1 NUMA Node 2

 zone 3zone 2

Legend

: wall

: zone

: input flow

: output flow

: connexion

 zone 1

cache 1 cache 2 cache 3

: fast communication (often)

: slow communication (rare)

: core thread

Fig. 2. CFD intended Running Architecture

perform only when necessary. In opposite to the communication between NUMA
nodes and caches however, the data exchanged between NUMA nodes is far less
than the whole content of the nodes.

3 State of the Art

In this Section, we give a brief presentation of the main CFD tools, and then
focus on elsA [8] which has been developed at ONERA for the last 20 years.
Many mature tools (like elsA) have been developed in research centre but in close
relation to industry. Consequently, while documentations on how to use these
tools are freely available, in-depth description of their internals and how they
deal with the challenges presented in Sect. 2 are (to the best of our knowledge)
not published. This is the case of FUN3D [5] (developed at NASA), TRACE [48]
and Flucs [39] (developed at DLR), and elsA [8] (developed at ONERA).

On the other hand, less mature but more documented open source CFD tools
are now available. SU2 [49] and OpenFOAM [31] are developed in pure C++,
and largely advertise the use of classes and inheritance to: i) structure their code
in modules; ii) reuse the code in different part of their toolchain; and iii) use
uniform APIs to have more generic code. However, having modular and generic
code is not enough to capture all the flexibility expected from a CFD tool, and all
the management of the user requested data, of the input physical configuration
and of the hardware must be implemented directly by the user. Moreover, these
tools do not implement numerical optimization and can only run on CPUs (due
to the language limitation).

pyFR [57] is a tool implemented in python and uses the many libraries avail-
able in this language to perform quite well. While the sympy library is used to
provide an abstract DSL in which the user can write his mathematical formula,
the orchestration of these formula (how and when they are executed) must be
written in python by the user. Then, at runtime, when a mathematical formula
must be executed, pyFR translates it into C or CUDA code (for an execution
on CPU or on GPU), and compiles and runs the code. This tool does not imple-
ment numerical optimization. Devito [40] is similar to pyFR. It also uses the
sympy library to express mathematical formula in python, but uses its own DSL
to orchestrate them. That way, the whole computation (the formula and the

154 F. Damiani et al.

orchestration) can be translated into C code and run in parallel. However, since
GPUs cannot perform orchestration, Devito does not run on GPU for now. While
pyFR and Devito have very interesting approaches, these tools suffer from the
same main issues as SU2 and OpenFOAM: the orchestration of the mathemati-
cal formula (which includes the management of the user requested data, of the
input physical configuration and of the hardware) must be implemented directly
by the user.

3.1 elsA’s Approach

elsA is a mature CFD tool and solves, at least partially, the gap between flex-
ibility and fine-tuning. Its solution relies on its 3 parts structure which, for
historical and performance reasons, are all implemented in a different language.
First, similarly to pyFR and Devito, elsA distinguishes between mathematical
functions and orchestration: mathematical functions are called operators in elsA
and are implemented in Fortran 90 [45]1 which is a very efficient language for
physic simulation and that is simple enough to support automatic differentia-
tion; orchestration is implemented in python, but in the opposite of pyFR and
Devito, it is handled by elsA directly and requires almost no setup by the user.
The third part of elsA, called HPC layer, handles the hardware, in particular
the management of the distribution of the computation, and is implemented in
C++17 [55].

The transition between flexibility and fine-tuning is handled by an initial
analysis of all the inputs by the orchestrator, which produces a plan of which
function to execute, in what order and on which hardware. This initial analysis
is structured in 3 steps, and once it completes, the actual computation, i.e., the
execution of the generated plan, starts.

Step 1: Loading the Inputs. First, elsA loads the different inputs:

– It queries the available MPI [47] library for the NUMA and CPU structure
(GPU are not supported by elsA). elsA at this stage assumes for simplicity
that the only kind of computational units in the hardware architecture are
identical CPUs. This hypothesis ensures that the cache sizes of all CPUs are
the same.

– The physical configuration is loaded from a CGNS file [51,52], which is a
standard format for CFD physical configuration. This file format stores among
other data the topological structure of the physical configuration with all the
BC setups, which makes it de facto one of the main standards to store this
part of the configuration space.

– The user requested data is also loaded from the CGNS file. They are specified
in special entries, distinct from the ones describing the topology of the phys-
ical configuration. These entries inform elsA about which data to compute

1 Mathematical DSLs like sympy that could be translated in efficient code did not yet
exist when elsA was already mature.

Towards a Modular and Variability-Aware Aerodynamic Simulator 155

and on which zone to compute it. Currently, the set of data the user can
request is fixed (this set is specified by an enum in the elsA API).

– The approximation method options are loaded from a elsA-specific python
file. There is no well structured and clear management of the options in elsA.
In order to manage the very large number of option, an initial dependency
mechanism has been implemented, based on an ad-hoc usage of python dic-
tionaries. But this system is difficult to maintain and cannot express all the
dependencies and conflicts the options actually have, and currently, it only
performs basic checks while many configuration errors are detected during
computation.

Step 2: Managing Hardware Flexibility. Once the setup has been loaded, elsA
uses its homogeneous hardware hypothesis to uniformly distribute the physical
configuration over the CPUs. This is done by splitting the zones into subzones
and distributing them over the NUMA nodes, so that every subzones are hosted
on one unique NUMA node, and that all this data is equally distributed between
the available CPUs. Additionally, elsA reorders the information within each sub-
zone so that all data that should be access together are contiguous in memory,
thus avoiding useless cache misses.

Note that information about the structure of the data distribution is kept
by elsA’s HPC layer which is responsible of managing the distribution of the
computation. That way, it is able to give in parameter to each executing operator
the data hosted in the local NUMA node.

Step 3: Managing Functional Flexibility. In order to manage the approximation
method options and the user requested data, elsA uses an ad-hoc and powerful
architecture that generates the list of all the operator to execute for each CPU
on the workstation. This architecture, called Factory, is illustrated in Fig. 3.

The factory is structured in two parts. The first part is a hard-coded reg-
istration of all the operators available in elsA with: i) their dependencies (i.e.,
when some input data is computed by another operator); and ii) how they
are triggered or disabled by the different inputs. The dependencies and triggers
are mainly implemented with simple if conditions and result in a rather large
spaghetti code. This part takes in input the approximation method options and
the user requested data, and produces an initial, non optimized list of operators
to execute. The second part of the factory cleans and restructure the list of oper-
ator to make it more efficient by applying standard optimization techniques, like
operator reordering. Moreover, this part also insert communication operators in
the list to ensure that the local data is consistent with the data on other CPUs.

The result of the Factory’s computation (on the right of Fig. 3) is a list of
operators and communications to be executed for a given subzone: the factory
is executed on every CPU hosting data, to compute what this CPU needs to
do. Moreover, this list has an essential property for the numerical optimization
capabilities of elsA: it can be efficiently differentiated. Indeed, since all the opera-
tors (implemented in Fortran) can be automatically differentiated, so is a simple
sequence of these operators.

156 F. Damiani et al.

Fig. 3. elsA Factory

3.2 elsA’s Approach Limitations

While elsA and its workflow is used in production to solve complex industrial
usecases, it should be clear now that it has strong limitations both in its man-
agement of the hardware and functional flexibility.

Hardware Flexibility. The first limitation of elsA is its uniform CPU architec-
ture hypothesis. Heterogeneous architectures involving different kind of compu-
tational units are getting ubiquitous [1,18], and this hypothesis is simply no
longer realistic.

Functional Flexibility. In this context, elsA suffers from 4 main issues. The first
one concerns the approximation method options. elsA currently contains more
that 2000 of these interdependent options, without any validation tool: when
the user is lucky, an erroneous configuration makes the factory fail and gets an
error message almost instantaneously; however for many erroneous configura-
tions, the factory can generate a plan, and the user needs to wait the result of
the computation to see that something went wrong, without knowing where.

The second one is the difficulty to maintain the specification of the depen-
dencies between operators and their activation conditions. Simple conditionals
do not scale to manage hundreds of operators and thousands of options.

Towards a Modular and Variability-Aware Aerodynamic Simulator 157

The third one concerns numerical optimization. While the operator list gen-
erated by the factory can be differentiated, many operators and communications
in that list are not relevant for the derivation of many objective functions, and so
the automatic differentiation implemented in elsA performs many useless com-
putation and should be optimized.

Finally, elsA is too restrictive in its specification of user requested data.
Indeed, as previously stated, elsA only provides a fixed list of possible data to
compute to the user. This limitation make it so that every time a user wants to
analyse some new data, or some new interesting objective functions is designed,
the user needs to ask the elsA team to implement the computation of that specific
data, even if all the operators necessary to compute it are already implemented.
This could cost a lot time and effort to the user and the elsA team, and having
a more generic approach to user request could significantly reduce this cost.

4 Our Approach

As stated in the introduction, the goal of our approach is to bridge the gap
between the requirements of flexibility and fine-tuning in a CFD tool. This step
is necessary to answer the different challenges described in Sect. 2. To achieve
this, our approach follows the 3 parts structure of elsA, with a complete redesign
of the factory. Indeed, structuring the computation in elementary operators is
necessary to manage flexible hardware without cluttering the computation code
with concurrency concerns; the factory’s automatic generation of a plan is nec-
essary to be able to seamlessly use the tool with different configurations; and
the HPC layer is necessary for the management of the actual computation.

Hence, the main novelty of our approach is a new factory, whose architecture
is presented in Fig. 4. This architecture is structured in 4 parts: one for the graph
generator and one for each of the factory’s input.

The Graph Generator. The core idea of our approach is to replace the spaghetti
code in the factory with a clear notion of dependencies between operators. That
way, the generation of the plan simply corresponds to a dependency resolution,
which results in a Directed Acyclic Graph of operators instead of a list. Inciden-
tally, this graph is actually exactly what is needed to avoid the problem elsA
has with numerical optimization: since the dependencies between operators are
explicit, we can identify the operators that are necessary for the computation of
a specific objective function, and only derivate them.

We implement the notion of dependency by requiring the developer to specify
the semantics of the inputs and outputs of each operators. Indeed, while the
actual inputs and outputs of the operators are usually arrays of double, the
semantics of the contained values, e.g., the fluid density or the gradient of the
temperature, is specific to each operator. This specification is similar to type
annotations, except that an operator can have several outputs. Moreover, some
operators require special care, like the gradient operator because it can compute
the gradient of any value. its specification corresponds to a type of the form α →

158 F. Damiani et al.

Fig. 4. New Variability Management

grad(α). For simplicity and genericity, we thus use terms for our specifications,
and will give more details on our usage of terms and our implementation in
Sect. 5.

Managing the Options and the Operators. Selecting or not options changes the
implementation of related operators. Moreover, depending on which implemen-
tation is used, the inputs and outputs of the operator may vary.

To deal with this variability, we use Software Product Lines (SPLs) [3,13,53,
56], and more precisely Delta-Oriented Programming (DOP) [14,15,53] to make
the specification of the operators variable w.r.t. the options selected by the user.
We will detail this part in Sect. 6, but for now it is enough to know that applying
a specific set P of selected options on a variable operator specification returns
the specification of this operator’s implementation for P .

Managing the User Requested Data. Our approach uses the same terms for
the User Requested Data and for the operator specifications. That way, such
a request can be considered like any other dependency by our graph generator.

Managing the Physical Configuration. The physical configuration is used by
our graph generator to identify the communications that need to be inserted
in the graph, and where. Indeed, during computation, stencil operators require
fetching specific values from the neighbours of the zone on which the stencil is
being executed. To illustrate how this requirement is managed in our approach,
let first state that similarly to elsA, we have one graph generator per PU, that
generates the graph to execute on that PU. Let now consider a specific PU, and
note G the graph generator for that PU, and if Z is a zone, then neigh(Z) is the
set of all neighbours of Z. Upon inserting a stencil operator working on a zone
Z in the graph, G also adds the corresponding receive operators with all the
zones in neigh(Z) and sends a communication request to the graph generators

Towards a Modular and Variability-Aware Aerodynamic Simulator 159

managing the zones in neigh(Z). Upon the reception of a communication request,
G adds a corresponding send operator in the graph: that operator depends on
the requested data, and so the dependency analysis will ensure that this data is
computed before being sent.

The two following Sections will go more in-depth into two aspects of this
new variability management: Sect. 5 discusses the usage and implementation of
terms in our approach; and Sect. 6 details the notions of SPLs and DOP, and
discusses the implementation of the variable operators.

5 Data Model

As described in Sect. 4, we use terms to specify the inputs and outputs of our
operators. Additionally, we use order-sorted Algebra [16,44] to specify which
terms are valid inputs and outputs. This combination is particularly suited to our
needs: terms offer a very flexible structure to specify the data exchanged between
operators, and such flexibility is necessary when considering the maintainability
and future evolutions of the tool; on the other hand, order-sorted Algebra is used
to ensure that the user gives at least a sensible specification to his operators2.

Finally, terms support efficient pattern matching (a subcase of term unifica-
tion [17] where one term is ground), which is a functionality required by the
graph generator: solving a dependency corresponds to finding an operators that
has one output matching that dependency.

5.1 Implementation

While order-sorted algebra has been implemented in various formal specification
tools [11,21], to the best of our knowledge no existing implementation can be
used in our approach. Indeed, our approach requires the order-sorted algebra
implementation to provide the following three elements:

– a simple syntax to specify the inputs and outputs of an operator;
– a pattern matching API that can be used by an external graph generator;
– a mean to integrate the syntax in external transformation function used to

generate operator specifications.

Consequently, we implemented our own library, and choose python for the
implementation language. Python is a popular language in which to embed
Domain Specific Languages (DSLs) due to its very flexible syntax and its readi-
ness to support C and C++ libraries [6,27,59]. Moreover, embedding a DSL in
an existing language allows for its seamless integration with other functionalities
available in the language. That way, all three requirements we listed are satis-
fied: we have a DSL for the syntax requirement; and its integration in python

2 The flexibility of terms and ease to specify algebra was also a key element in the
development of our approach: many trials and errors went into the design of a term
structure that captures the necessary features of a CFD data.

160 F. Damiani et al.

answers to last two requirements. In particular, it allows for the integration of
this library with our other library implementing Delta-Oriented Programming
and presented in Sect. 6.

First we designed the following DSL to specify a signature:

sig ::= declare_sig(srt , order = (od)) Signature Declaration
srt ::= id = (ct) Sort Declaration
ct ::= (id , id) Constructor Declaration
od ::= (id , id) Order Declaration

As usual, X denotes a possibly empty finite sequence of elements X and [X]
denotes that the element X is optional. This DSL does not follow standard
signature declaration like in Maude [11] because of the limitation of Python
syntax. A signature is declared using the declare_sig function, and is composed
by the declaration of a list of sort, plus some partial ordering between sorts.
A sort declaration srt first gives a name id to the sort, and introduces the set
of constructors of this sort. A constructor declaration ct is a tuple of names id
where the first one is the name of the constructor, and the others are the sorts
of the different parameters of the constructor. Finally, an order declaration od
simply gives a order relation between two sorts.

Example 1. A simple signature for natural numbers can be described as follow:

1 sig_nat = declare_sig(

2 nat = (

3 ("zero" ,),

4 ("succ", "nat")

5))

Here, the signature sig_nat contains one sort called nat and two constructors:
zero of sort nat, with no parameter; and succ of sort nat, with one parameter
of sort nat.

Once a signature has been defined, it is first possible to extend it by calling:
the method add_sort(id) which adds a new sort named id to the signature; or
the method add_constructor(id,id,id) where the first parameter is the name of
the constructor’s sort, the second parameter is the name of the constructor, and
the other parameters are the names of the sort of the constructor’s parameters.

It is also possible to create terms. The method fresh_variable(id) returns a
fresh variable of sort id . Structured term construction uses the Python lookup
API to make term constructors directly available as fields or methods of a sig-
nature. For instance in the context of Example 1, the expression sig_nat.succ(

sig_nat.zero) corresponds to 1.
Finally, pattern matching is available with the method match. This method

returns None if the pattern matching fails, or a substitution that can be applied
on a term.

Towards a Modular and Variability-Aware Aerodynamic Simulator 161

Example 2. To illustrate the term construction and pattern matching of our
library, let consider the following python code:

1 plus_one = sig_nat.succ(sig_nat.fresh_variable("nat"))

2 two = sig_nat.succ(sig_nat.succ(sig_nat.zero))

3 subst = sig_nat.match(plus_one , two)

4 if(subst is not None):

5 assert(subst(plus_one) == two)

Line 1 creates a nat term called plus_one containing a fresh variable. Line 2
creates a term called two corresponding to the number 2. Line 3 matches plus_one
against two and stores the result in subst. By construction, the pattern matching
succeeds, and the result is the substitution mapping the variable to sig_nat.succ

(sig_nat.zero) (which corresponds to the number 1). In line 5 we check that
the computed substitution is correct, by ensuring that applying it on plus_one

does return the term two.

5.2 Application to CFD

In a simple setting, CFD data can be specified with a triplet. The first component
corresponds to the a value stored in the data, like Density or grad(Momentum).
The second is a location, i.e., on which element of a mesh that value is placed;
possible locations on a 3D mesh are vertex, edge, face or cell. The third
component is the id of the zone (i.e., the mesh) where the data lives.

The following code excerpt presents a part of the signature we designed:

1 cfd_sig = declare_sig(

2 data = (("data", "value", "location", "zone_id"),),

3 value = (

4 ("Density" ,), ("Energy" ,), ("Momentum" ,),

5 ("grad", "value"),

6),

7 location = (("cell" ,), ("face" ,), ("edge" ,), ("vertex" ,)

),

8 zone_id = (("zero" ,), ("succ", "zone_id")),

9)

We model an data with the data constructor (of sort data), declared in Line 2.
This data takes three parameters, respectively of sort value, location and
zone_id. A value can either be base values like Density Energy or Momentum, or
structured ones like the grad of another value. As previously discussed, we have
four constructors for locations, and zone_id are modelled like natural numbers.

The following code excerpt illustrates our signature by specifying the input
and output data of the gradient operator.

1 vzone = cfd_sig.fresh_variable("zone_id")

2 vvalue = cfd_sig.fresh_variable("value")

3

4 gradient_input = cfd_sig.data(vvalue , cfd_sig.cell , vzone)

5 gradient_output = cfd_sig.data(

6 cfd_sig.grad(vvalue), cfd_sig.cell , vzone)

162 F. Damiani et al.

We first declare two variables, one for the zone of the input data of the operator,
and one for its input value. Then line 4 states that any data whose location is
cell is a valid input to the gradient operator. Line 6 on the other hand states
that the output data of the gradient operator is also on cell, on the same zone
as the input data, and its value is the grad of the input value.

6 Variable Operators

As described in Sect. 4, we use SPL [3,13,53,56] and DOP [14,15,53] to manage
both: the relationship between the approximation method options; and how the
operators’ implementation and specification are affected by the selection of these
options.

SPL corresponds to the concept of managing a collection of similar software
artefacts that are characterized by the set of features they implements. The
selection of a set of feature is called a product, and the artefact corresponding
to that product is called the product’s variant. One key aspect of an SPL is
the explicit specifications of its features’ dependencies and incompatibilities.
For instance, firefox can be compiled with the gtk or aqua graphics library,
but not both at the same time: these two features are incompatible. Feature
Models [13,56] are a standard way to declare the relationship between features.

DOP is a transformative approach to implement SPLs, i.e., a product’s vari-
ant can be obtained by applying the set of transformations (called delta) corre-
sponding to the product on a initial artefact. DOP structures an SPL in 4 parts:
a feature model gives the features of the SPL and their relationship; an initial
artefact gives the starting point for the generation of all variants of the SPL;
a global set of deltas lists all the transformations that can be applied during
the computation of a product’s variant; and configuration knowledge maps every
delta to the set of products that activate its execution, and also states in which
order delta must be applied. The activation set of a delta is usually specified
with a Boolean formula over the features of the SPL.

In our approach, we wrap every operator specification in a DOP product
line, where deltas can: add new inputs and outputs to the initial specification;
and change the link to the actual implementation of the operator. Moreover, all
these SPL share a common Feature Model that lists all the available options of
the CFD tool and their relationship. That way, we have a clear way to ensure
that the options selected by the user are correct or issue a message stating which
relationship is being broken before any computation happens.

While DOP has been implemented for several types of artefacts [10,37,54],
to the best of our knowledge, no existing implementation can be used in our
approach. Indeed, while the framework presented in [54] is generic enough to
express DOP product lines over operator specifications, it has two major draw-
backs: i) the amount of implementation to use this framework is disproportionate
compared to the simple structure of an operator specification; and ii) it only con-
siders product lines in isolation and thus cannot share a common feature model
between different SPLs.

Towards a Modular and Variability-Aware Aerodynamic Simulator 163

6.1 Implementation

Our implementation of DOP follows the same principles of our implementation
of terms and is structured in two DSLs: one for the Feature Model and one for
the definition of DOP product lines.

First, we designed the following Feature Model DSL, based on existing rep-
resentation [13,56]:

fd ::= FD(id , fatt , fg , [ctc]) Feature Diagram
fg ::= fop(fd) Feature Group
fop ::= FDAnd | FDAny | FDOr | FDXor | . . . Feature Group Operations
fatt ::= Att(id ,domain) Feature Attribute
ctc ::= id | Pred(id) | And(ctc) | . . . Cross Tree Constraint

As usual, X denotes a possibly empty finite sequence of elements X and
[X] denotes that the element X is optional. This DSL fits Python syntax and
describes a feature diagram with attributes and cross-tree constraints. A Feature
diagram fd declares a feature id with possible associated attributes fatt , can have
sub-trees identified by a set of feature diagram groups fg and may have a cross-
tree constraint ctc linking features and attributes declared in its sub-trees. A
Feature diagram group fg gives a constraints fop on a set of feature diagrams fd :
FDAnd means that all diagrams must be selected; FDAny means that all diagrams
are optional; FDOr means that at least one diagram must be selected; and FDXor
means that exactly one diagram must be selected. Attributes fatt have a name id
and a domain, which is left unspecified in this grammar (in elsA, it is expected
that most of these attributes would be floats or arrays of floats). Finally, cross-
tree constraints ctc are generic SAT constraints over feature names id , extended
with domain specific predicates (e.g., float comparison).

Second, we implemented a very simple API to declare product lines and add
deltas to it. The following line declares a new product line named spl, with
configuration space fm (e.g., a feature diagram as discussed previously) and core
product core:

1 spl = SPL(fm, core)

Declaring a delta to the product line spl is done as follows:

1 @spl.delta(ac)

2 def delta(variant , product):

3 code

The annotation @spl.delta(ac) registers the following function as a delta of spl,
with the activation condition ac that follows the cross-tree constraint syntax.
The function itself can have any name, but must have two parameters: the first
one variant is the variant that is transformed by the delta; and the second one
product is the product that may contain information necessary for the application
of the deltas (e.g., the value of specific attributes). The transformation code

performed by the delta is arbitrary python code. In particular, like in [54]
transformation functions or methods must be provided to be able to construct
a variant.

164 F. Damiani et al.

6.2 Application to CFD

Using the expressiveness available in feature models and in our python imple-
mentation in particular, we designed an initial feature model corresponding to
a small part of the expected variability of a CFD tool. An except of that part
is given in Fig. 5. In particular, the physical model option which represent one
aspect of the approximation method’s variability is already quite large, and we
didn’t develop the eos subtree which too has many variation on the model of
gas will be used in the fixpoint computation.

Fig. 5. Excerpt of our Feature Model

We illustrate our implementation of this feature model in Fig. 6, with the
implementation of the feature turbulence closure. Note that like in Fig. 5, the
three dots corresponds to a set of large subtrees.

Fig. 6. Implementation of the Feature turbulence closure

Concerning the implementation of our variable operator specifications
(VOSs), we implemented three core transformations on such specifications: the
add_input method adds an input to the specification; the add_output method
adds an output to it; and the set_implementation method states which imple-
mentation (given by the name of the implementing file) of the operator must be
used.

We illustrate these methods in Fig. 7, which presents the VOS of the
FxcUpwindMeanFlow operator. Line 1 declares the VO. Lines 3–7 states that
the corresponding operator has two inputs and one outputs when the option

Towards a Modular and Variability-Aware Aerodynamic Simulator 165

1 FxcUpwindMeanFlow = spl(fm, Operator)

2

3 @FxcUpwindMeanFlow.delta("upwind")

4 def fxc_upwind_construct_op(op, product):

5 op.add_input(cfd_sig.conservatives(subsystem_term), cfd_sig.

cell , vzone)

6 op.add_input(cfd_sig.primitives(subsystem_term), cfd_sig.

cell , vzone)

7 op.add_output(cfd_sig.FxcUpwindMeanFlow , cfd_sig.cell , vzone

)

8

9

10 @FxcUpwindMeanFlow.delta(And("perfect_gas", "roe"))

11 def fxc_upwind_mean_flow_perfect_gas_roe_op(op, product):

12 op.implementation = "fxc/upwind/mean_flow/perfect_gas/roe"

13

14 @FxcUpwindMeanFlow.delta(And("perfect_gas", "hllc"))

15 def fxc_upwind_mean_flow_perfect_gas_hllc_op(op, product):

16 op.implementation = "fxc/upwind/mean_flow/perfect_gas/hllc"

17

18 @FxcUpwindMeanFlow.delta(And("perfect_gas", "ausm"))

19 def fxc_upwind_mean_flow_perfect_gas_ausm_op(op, product):

20 op.implementation = "fxc/upwind/mean_flow/perfect_gas/ausm"

Fig. 7. Implementation of the FxcUpwindMeanFlow variable operator

"upwind" is selected. The fact that the operator has no input or outputs when
"upwind" is not selected encodes the fact that this operator is no used in these
cases. The actual implementation of the operator to use is state in the other
deltas of the FxcUpwindMeanFlow product line. For simplicity, we only give the
deltas related to the "perfect_gas" option, which all depend on which subfeature
of "upwind" is selected.

7 Initial Results

To test our approach, we integrated it into a core running prototype that could
run code on a single processing unit, either CPU, GPU or VE. We applied this
prototype to a simple common usecase: the 2D NACA 0012 [42,43]. This usecase
is a simple 2D physical configuration modelling an airplane wing in a flow of air.
The physical configuration is given in Fig. 8: on the left, we have a input air
flow modelling the plane going forward, in the middle, we have a wall modelling
the cross section of the wing, and on the right we have the output flow. The
zone where the air can flow is a disc, so not to introduce artifacts in the air flow
caused by artificial angles.

166 F. Damiani et al.

Fig. 8. Topology of the 2D NACA 0012 Usecase

The results of our study are shown in Figs. 9 and 10. Figure 9 gives three
convergence criteria of the fixpoint loop obtained by running three different
configuration of our prototype: once configuring it to execute on a CPU, one on
a GPU and the last one on a VE. It might not be obvious to see, but in this
picture there are actually three red lines, three blue lines and three cyan lines,
corresponding to the three criteria of the three runs of the prototype: three runs
of our prototype, even if running on different hardware, are indistinguishable
between each other.

Figure 10 shows the actual result of the equilibrium state computation done
by our prototype. In particular, the picture on the left shows the equilibrium air
density on a scale from blue (not dense) to red (dense); and the picture of the
right shows the equilibrium air speed, with arrows to show direction, and colour
to show speed (blue being slow and red being quick).

Fig. 9. Convergence of our prototype CPU/GPU/VE (Color figure online)

Towards a Modular and Variability-Aware Aerodynamic Simulator 167

Fig. 10. Density on Vertex and Momentum on Vertex (Color figure online)

8 Conclusion and Future Work

This work presents an study into the requirements of CFD tools, some limita-
tions of the current tools available, elsA in particular. It then provided with an
approach to solve some of these limitations. Similarly to several existing tools,
this approach structures a CFD tool in three parts that distinguishes between:
i) the operators that implement all the core mathematical function used in any
computation; ii) the orchestrator that assemble the operators into a complete
dataflow that computes the required data; and iii) the HPC layer which manages
the distribution and concurrency during the computation of the dataflow. The
novelty of our approach lies in the definition of the orchestrator part, which is
based on tools originating from formal methods: terms and order-sorted Algebra
are used to specify the inputs and outputs of the available operators, and pat-
tern matching (a subcase of unification) is then used to identify dependencies
between operators and generate the dataflow; Delta-Oriented Programming is
used to model the variability of the available operators, i.e., depending on the
tool configuration, the inputs and outputs of the operators may change, which
means that the dependencies between operators and thus the generated dataflow
may change. Based on this approach, we implemented a prototype and tested it.

Going from a prototype to a useable tool still requires a lot of work. We need
to integrate hardware distribution, and in particular integrate the possibility
to manage heterogeneous hardware. A promising approach would be to use the
standard API of hwloc [7,20] that gives the topology of the hardware, with the
characteristics of the different memory and processing nodes.

Another issue to tackle is memory allocation. Indeed, array of the right size
must be allocated to host the data computed by the operators in the dataflow
generated by our orchestrator. Because the dataflow can vary, so does the mem-
ory allocation. However, memory is allocated by hand in our prototype, and
known approaches for memory allocation are not satisfactory: in pyFR and
Devito, the memory is managed by the user directly; on the other hand, elsA
does not have a general framework to model data and relies to enumerations to
list all the possible data it can handle.

Another interesting aspect of this work is the similarities of the problem of
generating the graph of operators and the problem of type inhabitance: as hinted
in Sect. 4, the term modelling the data to compute is similar to a type, and from
that point of view our generated graph is an expression that have that type.

168 F. Damiani et al.

We will investigate this relationship further and possibly see if interesting result
could be applied to our prototype. Moreover, this approach seems to integrate
well with product lines. Indeed classic approach for product line definition is
to add, remove or replace well identified code elements, but it is very difficult
to have an expression always computing the same data in all variants, using
however different methods to obtain it depending on the selected options.

References

1. Agosta, G., Fornaciari, W., Massari, G., Pupykina, A., Reghenzani, F., Zanella,
M.: Managing heterogeneous resources in HPC systems. In: Proceedings of the 9th
Workshop and 7th Workshop on Parallel Programming and RunTime Manage-
ment Techniques for Manycore Architectures and Design Tools and Architectures
for Multicore Embedded Computing Platforms, PARMA-DITAM 2018, pp. 7–12.
Association for Computing Machinery, New York (2018). https://doi.org/10.1145/
3183767.3183769

2. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Ulbrich, M. (eds.): Deductive Soft-
ware Verification: Future Perspectives - Reflections on the Occasion of 20 Years of
KeY. Lecture Notes in Computer Science, vol. 12345. Springer, Heidelberg (2020).
https://doi.org/10.1007/978-3-030-64354-6

3. Apel, S., Kästner, C., Lengauer, C.: FEATUREHOUSE: language-independent,
automated software composition. In: Proceedings of 31st International Conference
on Software Engineering, ICSE 2009, 16–24 May 2009, Vancouver, Canada, pp.
221–231. IEEE (2009). https://doi.org/10.1109/ICSE.2009.5070523

4. Aupoix, B., Spalart, P.: Extensions of the Spalart-Allmaras turbulence model to
account for wall roughness. Int. J. Heat Fluid Flow 24(4), 454–462 (2003). https://
doi.org/10.1016/S0142-727X(03)00043-2. Selected Papers from the Fifth Interna-
tional Conference on Engineering Turbulence Modelling and Measurements

5. Biedron, R.T., et al.: FUN3D manual: 13.7. National Aeronautics and Space
Administration, Langley Research Center (2020)

6. Bourgeois, K., Robert, S., Limet, S., Essayan, V.: GeoSkelSL: a Python high-level
DSL for parallel computing in geosciences. In: Shi, Y., et al. (eds.) ICCS 2018.
LNCS, vol. 10862, pp. 839–845. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-93713-7 83

7. Broquedis, F., et al.: hwloc: a generic framework for managing hardware affinities in
HPC applications. In: PDP 2010 - The 18th Euromicro International Conference on
Parallel, Distributed and Network-Based Computing. IEEE, Pisa, February 2010.
https://doi.org/10.1109/PDP.2010.67

8. Cambier, L., Heib, S., Plot, S.: The Onera elsA CFD software: input from research
and feedback from industry. Mech. Ind. 14(3), 159–174 (2013). https://doi.org/10.
1051/meca/2013056

9. Ciżnicki, M., Kurowski, K., eglarz, J.W.: Energy and performance improvements in
stencil computations on multi-node HPC systems with different network and com-
munication topologies. Future Gener. Comput. Syst. 115, 45–58 (2021). https://
doi.org/10.1016/j.future.2020.08.018

10. Clarke, D., et al.: Modeling spatial and temporal variability with the HATS abstract
behavioral modeling language. In: Bernardo, M., Issarny, V. (eds.) SFM 2011.
LNCS, vol. 6659, pp. 417–457. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-21455-4 13

https://doi.org/10.1145/3183767.3183769
https://doi.org/10.1145/3183767.3183769
https://doi.org/10.1007/978-3-030-64354-6
https://doi.org/10.1109/ICSE.2009.5070523
https://doi.org/10.1016/S0142-727X(03)00043-2
https://doi.org/10.1016/S0142-727X(03)00043-2
https://doi.org/10.1007/978-3-319-93713-7_83
https://doi.org/10.1007/978-3-319-93713-7_83
https://doi.org/10.1109/PDP.2010.67
https://doi.org/10.1051/meca/2013056
https://doi.org/10.1051/meca/2013056
https://doi.org/10.1016/j.future.2020.08.018
https://doi.org/10.1016/j.future.2020.08.018
https://doi.org/10.1007/978-3-642-21455-4_13
https://doi.org/10.1007/978-3-642-21455-4_13

Towards a Modular and Variability-Aware Aerodynamic Simulator 169

11. Clavel, M., et al.: All About Maude-A High-Performance Logical Framework: How
to Specify, Program, and Verify Systems in Rewriting Logic, vol. 4350. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-71999-1

12. Constantin, P., Foias, C.: Navier-Stokes Equations. University of Chicago Press
(1988)

13. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged configuration using feature mod-
els. In: Nord, R.L. (ed.) SPLC 2004. LNCS, vol. 3154, pp. 266–283. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-28630-1 17

14. Damiani, F., Hähnle, R., Kamburjan, E., Lienhardt, M.: A unified and formal
programming model for deltas and traits. In: Huisman, M., Rubin, J. (eds.) FASE
2017. LNCS, vol. 10202, pp. 424–441. Springer, Heidelberg (2017). https://doi.org/
10.1007/978-3-662-54494-5 25

15. Damiani, F., Hähnle, R., Kamburjan, E., Lienhardt, M., Paolini, L.: Variability
modules for java-like languages. In: Mousavi, M., Schobbens, P. (eds.) SPLC 2021:
25th ACM International Systems and Software Product Line Conference, Leicester,
UK, 6–11 September 2021, vol. A, pp. 1–12. ACM (2021). https://doi.org/10.1145/
3461001.3471143

16. Dick, A.J.J., Watson, P.: Order-sorted term rewriting. Comput. J. 34(1), 16–19
(1991). https://doi.org/10.1093/comjnl/34.1.16

17. Fay, M.: First-order unification in an equational theory. Technical report 78-5-002,
University of California at Santa Cruz (1978)

18. Flich, J., et al.: Exploring manycore architectures for next-generation HPC sys-
tems through the mango approach. Microprocess. Microsyst. 61, 154–170 (2018).
https://doi.org/10.1016/j.micpro.2018.05.011

19. Focht, E.: VEO and PyVEO: vector engine offloading for the NEC SX-Aurora
tsubasa. In: Resch, M.M., Kovalenko, Y., Bez, W., Focht, E., Kobayashi, H. (eds.)
Sustained Simulation Performance 2018 and 2019, pp. 95–109. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-39181-2 9

20. Goglin, B.: Towards the structural modeling of the topology of next-generation
heterogeneous cluster nodes with hwloc. Research report, Inria, November 2016.
https://hal.inria.fr/hal-01400264

21. Goguen, J., Kirchner, C., Kirchner, H., Mégrelis, A., Meseguer, J., Winkler, T.: An
introduction to OBJ 3. In: Kaplan, S., Jouannaud, J.-P. (eds.) CTRS 1987. LNCS,
vol. 308, pp. 258–263. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-
19242-5 22

22. Hähnle, R.: HATS: highly adaptable and trustworthy software using formal meth-
ods. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6416, pp. 3–8.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16561-0 2

23. Hähnle, R.: Task forces in the EternalS coordination action. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6416, pp. 20–22. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-16561-0 6

24. Hähnle, R.: The abstract behavioral specification language: a tutorial introduction.
In: Giachino, E., Hähnle, R., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2012.
LNCS, vol. 7866, pp. 1–37. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40615-7 1

25. Hähnle, R., Johnsen, E.B.: Designing resource-aware cloud applications. Computer
48(6), 72–75 (2015). https://doi.org/10.1109/MC.2015.172

26. Hähnle, R., Schaefer, I.: A Liskov principle for delta-oriented programming. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609, pp. 32–46.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34026-0 4

https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-28630-1_17
https://doi.org/10.1007/978-3-662-54494-5_25
https://doi.org/10.1007/978-3-662-54494-5_25
https://doi.org/10.1145/3461001.3471143
https://doi.org/10.1145/3461001.3471143
https://doi.org/10.1093/comjnl/34.1.16
https://doi.org/10.1016/j.micpro.2018.05.011
https://doi.org/10.1007/978-3-030-39181-2_9
https://hal.inria.fr/hal-01400264
https://doi.org/10.1007/3-540-19242-5_22
https://doi.org/10.1007/3-540-19242-5_22
https://doi.org/10.1007/978-3-642-16561-0_2
https://doi.org/10.1007/978-3-642-16561-0_6
https://doi.org/10.1007/978-3-642-40615-7_1
https://doi.org/10.1007/978-3-642-40615-7_1
https://doi.org/10.1109/MC.2015.172
https://doi.org/10.1007/978-3-642-34026-0_4

170 F. Damiani et al.

27. Han, Z., Devarajegowda, K., Werner, M., Ecker, W.: Towards a python-based
one language ecosystem for embedded systems automation. In: 2019 IEEE
Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International
Symposium of System-on-Chip (SoC), pp. 1–7 (2019). https://doi.org/10.1109/
NORCHIP.2019.8906949

28. He, P., Mader, C.A., Martins, J.R.R.A., Maki, K.J.: DAFoam: an open-source
adjoint framework for multidisciplinary design optimization with OpenFOAM.
AIAA J. 58(3), 1304–1319 (2020). https://doi.org/10.2514/1.J058853

29. Hink, R., Hannemann, V., Eggers, T.: Extension of the Spalart-Allmaras one-
equation turbulence model for effusion cooling problems. In: Deutscher Luft - und
Raumfahrtkongress 2013, September 2013. https://elib.dlr.de/84638/

30. Hoefler, T., Schneider, T.: Optimization principles for collective neighborhood com-
munications. In: SC 2012: Proceedings of the International Conference on High Per-
formance Computing, Networking, Storage and Analysis, pp. 1–10. IEEE (2012).
https://doi.org/10.1109/SC.2012.86

31. Jasak, H.: OpenFOAM: open source CFD in research and industry. Int. J. Naval
Archit. Ocean Eng. 1(2), 89–94 (2009). https://doi.org/10.2478/IJNAOE-2013-
0011

32. Jung, Y.S., Baeder, J.: γ − reθt Spalart–Allmaras with crossflow transition model
using Hamiltonian–strand approach. J. Aircr. 56(3), 1040–1055 (2019). https://
doi.org/10.2514/1.C035149

33. Kamburjan, E., Hähnle, R.: Deductive verification of railway operations. In: Fan-
techi, A., Lecomte, T., Romanovsky, A.B. (eds.) RSSRail 2017. LNCS, vol. 10598,
pp. 131–147. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68499-4 9

34. Kenway, G.K., Mader, C.A., He, P., Martins, J.R.: Effective adjoint approaches for
computational fluid dynamics. Prog. Aerosp. Sci. 110, 100542 (2019). https://doi.
org/10.1016/j.paerosci.2019.05.002

35. Khaleghzadeh, H., Manumachu, R.R., Lastovetsky, A.: A novel data-partitioning
algorithm for performance optimization of data-parallel applications on hetero-
geneous HPC platforms. IEEE Trans. Parallel Distrib. Syst. 29(10), 2176–2190
(2018). https://doi.org/10.1109/TPDS.2018.2827055

36. Knopp, T., Eisfeld, B., Calvo, J.B.: A new extension for k-ω turbulence models to
account for wall roughness. Int. J. Heat Fluid Flow 30(1), 54–65 (2009). https://
doi.org/10.1016/j.ijheatfluidflow.2008.09.009

37. Koscielny, J., Holthusen, S., Schaefer, I., Schulze, S., Bettini, L., Damiani, F.:
DeltaJ 1.5: delta-oriented programming for Java. In: International Conference on
Principles and Practices of Programming on the Java Platform Virtual Machines,
Languages and Tools, PPPJ 2014, pp. 63–74 (2014). https://doi.org/10.1145/
2647508.2647512

38. Ladyzhenskaya, O.A.: Sixth problem of the millennium: Navier-stokes equations,
existence and smoothness. Russ. Math. Surv. 58(2), 251–286 (2003). https://doi.
org/10.1070/rm2003v058n02abeh000610

39. Leicht, T., Jägersküpper, J., Vollmer, D., Schwöppe, A., Hartmann, R., Fiedler,
J., Schlauch, T.: DLR-project digital-X - next generation CFD solver ‘flucs’. In:
Deutscher Luft-und Raumfahrtkongress 2016, February 2016. https://elib.dlr.de/
111205/

40. Louboutin, M., et al.: Devito (v3.1.0): an embedded domain-specific language for
finite differences and geophysical exploration. Geosci. Model Dev. 12(3), 1165–1187
(2019). https://doi.org/10.5194/gmd-12-1165-2019

https://doi.org/10.1109/NORCHIP.2019.8906949
https://doi.org/10.1109/NORCHIP.2019.8906949
https://doi.org/10.2514/1.J058853
https://elib.dlr.de/84638/
https://doi.org/10.1109/SC.2012.86
https://doi.org/10.2478/IJNAOE-2013-0011
https://doi.org/10.2478/IJNAOE-2013-0011
https://doi.org/10.2514/1.C035149
https://doi.org/10.2514/1.C035149
https://doi.org/10.1007/978-3-319-68499-4_9
https://doi.org/10.1016/j.paerosci.2019.05.002
https://doi.org/10.1016/j.paerosci.2019.05.002
https://doi.org/10.1109/TPDS.2018.2827055
https://doi.org/10.1016/j.ijheatfluidflow.2008.09.009
https://doi.org/10.1016/j.ijheatfluidflow.2008.09.009
https://doi.org/10.1145/2647508.2647512
https://doi.org/10.1145/2647508.2647512
https://doi.org/10.1070/rm2003v058n02abeh000610
https://doi.org/10.1070/rm2003v058n02abeh000610
https://elib.dlr.de/111205/
https://elib.dlr.de/111205/
https://doi.org/10.5194/gmd-12-1165-2019

Towards a Modular and Variability-Aware Aerodynamic Simulator 171

41. Mader, C.A., Kenway, G.K.W., Yildirim, A., Martins, J.R.R.A.: ADflow–an open-
source computational fluid dynamics solver for aerodynamic and multidisciplinary
optimization. J. Aerosp. Inf. Syst. (2020). https://doi.org/10.2514/1.I010796

42. McAlister, K.W., Carr, L.W., McCroskey, W.J.: Dynamic stall experiments on the
NACA 0012 airfoil. Technical report, NASA (1978)

43. McCroskey, W.: A critical assessment of wind tunnel results for the NACA 0012
airfoil. Technical report, National Aeronautics And Space Administration Moffett
Field Ca Ames ... (1987)

44. Meseguer, J., Goguen, J.A., Smolka, G.: Order-sorted unification. J. Symb. Com-
put. 8(4), 383–413 (1989). https://doi.org/10.1016/S0747-7171(89)80036-7

45. Metcalf, M., Reid, J.K.: Fortran 90/95 Explained. Oxford University Press, Inc.
(1999)

46. Mofrad, M.H., Melhem, R., Ahmad, Y., Hammoud, M.: Graphite: a NUMA-aware
HPC system for graph analytics based on a new MPI * X parallelism model. Proc.
VLDB Endow. 13(6), 783–797 (2020). https://doi.org/10.14778/3380750.3380751

47. Nielsen, F.: Introduction to MPI: the message passing interface. In: Nielsen, F.
(ed.) Introduction to HPC with MPI for Data Science. Undergraduate Topics in
Computer Science, pp. 21–62. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-21903-5 2

48. NRC: Trace v5.0 theory manual - field equations, solution methods, and physical
models. Technical report, United States Nuclear Regulartory Commission (2012)

49. Palacios, F., et al.: Stanford university unstructured (SU2): An open-source inte-
grated computational environment for multi-physics simulation and design. In:
51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and
Aerospace Exposition 2013, January 2013. https://doi.org/10.2514/6.2013-287

50. Perraud, J., Durant, A.: Stability-based mach zero to four longitudinal transition
prediction criterion. J. Spacecr. Rock. 53(4), 730–742 (2016). https://doi.org/10.
2514/1.A33475

51. Poinot, M., Rumsey, C.L.: Seven keys for practical understanding and use of CGNS.
American Institute of Aeronautics and Astronautics (2018). https://doi.org/10.
2514/6.2018-1503

52. Poirier, D., Allmaras, S., McCarthy, D., Smith, M., Enomoto, F.: The CGNS sys-
tem. American Institute of Aeronautics and Astronautics (1998). https://doi.org/
10.2514/6.1998-3007

53. Schaefer, I., Bettini, L., Bono, V., Damiani, F., Tanzarella, N.: Delta-oriented pro-
gramming of software product lines. In: Bosch, J., Lee, J. (eds.) SPLC 2010. LNCS,
vol. 6287, pp. 77–91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-15579-6 6

54. Seidl, C., Schaefer, I., Aßmann, U.: DeltaEcore - a model-based delta language
generation framework. In: Fill, H., Karagiannis, D., Reimer, U. (eds.) Modellierung
2014, 19–21 March 2014, Wien, Österreich. LNI, vol. P-225, pp. 81–96. GI (2014).
https://dl.gi.de/20.500.12116/17067

55. Stroustrup, B.: A Tour of C++. Addison-Wesley Professional (2018)
56. Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., Leich, T.: Fea-

tureIDE: an extensible framework for feature-oriented software development. Sci.
Comput. Program. 79, 70–85 (2014). https://doi.org/10.1016/j.scico.2012.06.002.
Experimental Software and Toolkits (EST 4): A special issue of the Workshop on
Academic Software Development Tools and Techniques (WASDeTT-3 2010)

https://doi.org/10.2514/1.I010796
https://doi.org/10.1016/S0747-7171(89)80036-7
https://doi.org/10.14778/3380750.3380751
https://doi.org/10.1007/978-3-319-21903-5_2
https://doi.org/10.1007/978-3-319-21903-5_2
https://doi.org/10.2514/6.2013-287
https://doi.org/10.2514/1.A33475
https://doi.org/10.2514/1.A33475
https://doi.org/10.2514/6.2018-1503
https://doi.org/10.2514/6.2018-1503
https://doi.org/10.2514/6.1998-3007
https://doi.org/10.2514/6.1998-3007
https://doi.org/10.1007/978-3-642-15579-6_6
https://doi.org/10.1007/978-3-642-15579-6_6
https://dl.gi.de/20.500.12116/17067
https://doi.org/10.1016/j.scico.2012.06.002

172 F. Damiani et al.

57. Witherden, F., Farrington, A., Vincent, P.: PyFR: an open source framework for
solving advection-diffusion type problems on streaming architectures using the flux
reconstruction approach. Comput. Phys. Commun. 185(11), 3028–3040 (2014).
https://doi.org/10.1016/j.cpc.2014.07.011

58. Young, V., Jaleel, A., Bolotin, E., Ebrahimi, E., Nellans, D., Villa, O.: Combin-
ing HW/SW mechanisms to improve NUMA performance of multi-GPU systems.
In: 2018 51st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pp. 339–351 (2018). https://doi.org/10.1109/MICRO.2018.00035

59. Zhang, N., Driscoll, M., Markley, C., Williams, S., Basu, P., Fox, A.: Snowflake:
a lightweight portable stencil DSL. In: 2017 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), pp. 795–804 (2017).
https://doi.org/10.1109/IPDPSW.2017.89

https://doi.org/10.1016/j.cpc.2014.07.011
https://doi.org/10.1109/MICRO.2018.00035
https://doi.org/10.1109/IPDPSW.2017.89

Reasoning About Active Objects:
A Sound and Complete Assertional

Proof Method

Frank de Boer1,2 and Stijn de Gouw2,3(B)

1 Leiden Institute for Advanced Computer Science, Leiden, The Netherlands
f.s.de.boer@cwi.nl

2 Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands
stijn.degouw@ou.nl

3 Open University, Heerlen, The Netherlands

Abstract. We present a novel assertional proof method for reasoning
about global invariant properties of active objects in the context of the
Abstract Behavioral Specification (ABS) language. The main result of
this paper is a formal justification of the proof method which establishes
both its soundness and completeness with respect to a formally defined
operational trace semantics.

1 Introduction

Active objects provide a powerful conceptual model of distributed systems (see
[6] for a survey of active object languages). Active objects support a “program-
ming to interfaces” discipline by a strict encapsulation of their local state and
communication via asynchronous method calls. A fundamental problem in rea-
soning about active objects is the decoupling of the sender and receiver in asyn-
chronous method calls. This decoupling gives rise to a complex sequence of events
consisting of the call, reception of the message, execution of the method, and,
finally, asynchronous communication of the return value.

In this paper we generalize Floyd’s inductive assertions method to the ver-
ification of global user-defined invariant properties of concurrent systems con-
sisting of active objects, as described by the Abstract Behavioral Specification
(ABS) language [18]. We focus on active (or concurrent) objects which only
interact via asynchronous method calls and futures for returning values. The
methods are executed by an object one at a time in a co-routine manner.

The validation of a user-defined global invariant requires the use of program
annotations which associate with each class of the given program a class invari-
ant and with each occurrence of a substatement of a method body a precondi-
tion1. Class invariants specify the scheduling points which in ABS are described
1 Since we assume that every method body terminates with a return statement, the

postcondition of a statement coincides with the precondition of the statement that
follows, e.g., the postcondition of the method body itself is the precondition of the
return statement.

c© Springer Nature Switzerland AG 2022
W. Ahrendt et al. (Eds.): The Logic of Software. A Tasting Menu of Formal Methods,
LNCS 13360, pp. 173–192, 2022.
https://doi.org/10.1007/978-3-031-08166-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08166-8_9&domain=pdf
https://doi.org/10.1007/978-3-031-08166-8_9

174 F. de Boer and S. de Gouw

by explicit statements for suspending the execution of a method. The validation
of an annotated program consists of the validation of the local preconditions by
means of corresponding verification conditions. The validation of the precondi-
tion of a method call, method body, and a suspension statement involves the
global invariant, which provides information about the actual parameters and
the return values, and the class invariant, which provides information about the
local state. The following main question arises in the validation of the precon-
dition of a method. When exactly is the precondition of a method supposed to
hold?

There are two options: on call site, or when the method is selected for exe-
cution. The first option introduces the need for an interference freedom test to
ensure that the precondition still holds when the method is executed. Such a
test in general greatly increases the number of verification conditions. Therefore
we have investigated in this paper the second option, using global invariants to
describe user-defined properties of histories (also called traces) which record the
interactions via method calls and futures between active objects.

The main result of this paper is a formal justification of the proof method
which establishes both its soundness and (relative) completeness with respect to
a formally defined operational trace semantics.

Related Work. A first proof system for asynchronous method calls and futures
has been published in [8]. It is based on a local interference freedom test, as
initially proposed for reasoning about shared-variable concurrency in [22]. This
test ensures that the preconditions of await statements are not invalidated by
the execution of other method invocations. In general, such tests lead to a com-
binatorial explosion of the number of verification conditions. In this paper we
showed how to avoid such a test, and obtain a compositional method for the
verification of the individual methods of a class. Further, the global invariant in
[8] is used to reason about futures in terms of shared variables, exploiting that
futures are assigned only once. Instead, the proof system of this paper is based
on the compositional semantics described in [9], where both method calls and
returning values via futures is recorded by a global communication history. The
absence of an interference freedom test and the uniform explicit treatment of
both communication mechanisms in the proof system allows to reduce the veri-
fication of ABS programs to the sequential verification of the individual method
bodies. In this paper we further exploit the underlying compositional semantics
in a novel approach to proving completeness.

Ahrendt et al. introduce a formal semantics and proof system for Creol
in [2,3]. Creol is a predecessor to the ABS language used in this paper and, like
ABS, Creol supports aysnchronously communicating concurrent objects. Their
proof system is based on complex histories which record seven kinds of events
and proof obligations with complex well-formed conditions on histories. Com-
pleteness of the proof system is not considered. Zaharieva-Stojanovski [23] con-
tribute an approach to multi-threaded verification based on reasoning about class
invariants and ownership. Blom et al. [5] presents a verification technique based
on permission-based separation logic and involves several additional verification

Reasoning About Active Objects 175

conditions concerning well-formedness/consistency. Kamburjan and Chen [19]
present a top-down static analysis method for a similar langauge, but without
cooperative scheduling and for a restricted class of properties (in particular, ses-
sion types to specify protocols). Completeness is not considered. Din et al. [14–
16] present a semantics and a proof system for reasoning about asynchronously
communicating objects and futures. However, completeness is only established
in [15] for active objects which execute their methods in a run-to-completion
mode, i.e., without cooperative scheduling. Their general approach is based on
the abstraction from the behavior of the environment by the specification of the
local behavior and state of an individual object in terms of the non-deterministic
selection of its methods, as recorded by its local history. Global properties are
only supported indirectly in a bottom-up manner, by taking the conjunction of
all local class invariants together with complex well-formedness conditions which
ensure compatibility of the local histories. Consequently, only when composing
the local histories, the local state properties of the objects can be inferred. In
contrast, in our novel approach user-defined global properties ensure in a top-
down manner compatibility of the local histories and allow to infer local state
properties in the verification of a single class instance. Further, in [20], it is
argued that a bottom-up approach limits severely the kind of global properties
one can prove.

We prove completeness relative to all valid assertions of the underlying logic,
as introduced in [7]. The completeness proof presented in this paper general-
izes that of the seminal proof system for Communicating Sequential Processes
(CSP), as described in [4], to active objects. It boils down to showing that a pro-
gram annotated with so-called reachability predicates satisfies the verification
conditions. These reachability predicates are semantically defined in terms of an
operational trace semantics.

In our completeness proof, we distinguish two kinds of reachability predi-
cates: one, the global invariant, which expresses that a given global history can
be generated by a global computation, and one which expresses that a given local
state of an active object can be reached by a global computation. As a particular
case of the latter, we have class invariants which express that a given local state
of an active object can be reached as a scheduling point in a global computa-
tion. The crucial semantic property in the completeness proof for the validation
of the verification conditions is that local computations of an object are globally
indistinguishable when they give rise to the same local trace (or history). In [9]
we showed that for a compositional semantics of active objects we only need to
record for each object its outgoing calls and the future completions generated
by its own method invocations. In order to obtain by projection for each object
its local view of the global history, which is not affected by the behavior of other
objects (e.g., the calls of other objects), we also record in this paper the initial
scheduling for execution of the invoked methods of an object. This concept of
a global history allows for a clear separation of concerns between the external
behavior of an object and its internal co-routine execution of its method invoca-
tions, and as such allows for an elegant generalization of the completeness proof
for CSP [4].

176 F. de Boer and S. de Gouw

Plan of the Paper. In the following section we introduce the basic modeling
concepts of ABS and the proof methodology. We introduce the proof method
itself incrementally in terms of the following sublanguages. Section 3 describes
the proof method and its formal justification for the sublanguage of ABS which
only features asynchronous calls to methods which are executed in a run-to-
completion mode without return values. Section 4 then extends this basic lan-
guage with a statement for suspending a method execution, and resuming it
when the associated Boolean condition holds. Finally, Sect. 5 introduces futures.
Section 6 some possible further research directions.

2 Preliminaries

We focus in this paper on the main OO-imperative control structures of ABS [10]:
A program specifies a number of classes and each class defines a number of meth-
ods. The method bodies always end with a return statement and are constructed
by the usual sequential control structures from basic assignments (including
object creation), asynchronous method calls, and suspension statements (on
Boolean guards and futures). Actors in this (Turing-complete) language are (con-
currently) executing objects that only interact by asynchronous method calls,
i.e., ABS actors do not share state. Each asynchronous method call immediately
returns a future, which contains a unique reference to its return value (methods
are always specified by a return type, the return type Unit is used to specify that
no value is returned). The caller continues executing and the call is stored in the
FIFO queue of the callee. After the method is scheduled for execution and termi-
nated, the return value is computed and stored in the future uniquely associated
with the method invocation. Futures support two operations. First, the return
value of a future f can be retrieved by f.get, which blocks execution in the
actor until the future is resolved (i.e., until the called method has computed the
return value). Second, a future f can be polled whether it has been resolved by
the statement await f?, which suspends the process, if the future has not been
resolved (i.e. the condition is false), and resumes another suspended process (if
any) or starts executing the next call from its FIFO queue (if any). This is a form
of cooperative scheduling where the scheduling points are statically identified in
the code by the await-statements. A Boolean await-statement checks a local
Boolean condition, instead of a future.

We next introduce the following basic semantic notions. By V , with typical
element v, we denote the set of all possible values (abstracting from typing
information). By O ⊆ V we denote the (infinite) set of object identities, with
typical element o. For a given program P we assume a set OC of instances of
class C such that the sets OC , for each class C of P , form a partitioning of O.
The state-space Σ(C), with typical element σ, of a class C assigns values (of the
correct type) to its instance variables including the distinguished variable this
which denotes the object id. The state-space Σ(C.m) associated with a method
m of a class C consists of pairs (σ, τ), where σ ∈ Σ(C) and τ assigns values to
its local variables (including its formal parameters). For notational convenience,

Reasoning About Active Objects 177

when it is clear from the context to which class C the method m belongs, we
omit C and write Σ(m). As a particular case we denote by Σ(main) the state-
space of the main statement of a program which assigns value to its variables.
By Val(e)(σ, τ) we denote the value of the (side-effect free) expression e of the
programming language (w.r.t. the variable assignments σ and τ). By Ω, with
typical element ω, we denote the set of global environments which assign values
to the global variables (which are assumed not to appear in a program). Updates
of an assignment a of values to variables we denote a[x := v].

By Θ we denote the set of histories of a system of concurrent objects, with
typical element θ. In general, these histories record asynchronous method calls,
method selections and future completions. The distinguished global variable h
denotes the global history. In the following sections we define histories formally.
For each object o, its local history is denoted by θo (defined in the following
section).

As it has become common [13,17], we use the extensional approach (a shallow
embedding) for our specification language: we do not fix a specific syntax for
assertions, they are merely defined extensionally as functions from states to
truth values. We denote assertions by p, q We distinguish the following classes
of assertions. For a method m of a class C, we denote by Pred(m) the (local)
assertions of m. The truth of such a predicate p is defined with respect to a triple
σ, τ , and ω, and denoted by σ, τ, ω |= p. Local predicates only provide a local
view on the global history h: σ, τ, ω |= p iff σ, τ, ω′ |= p, whenever ω(h)o = ω′(h)o
and σ(this) = o. As a particular case, Pred(main) denotes the set of assertions
of the main statement, which also only have a local view (of the root object) on
the global history h. By Pred(C) we denote the set of assertions of class C which
do not refer to local variables. The truth of such a predicate p is defined with
respect to a pair σ and ω, and denoted by σ, ω |= p. As above, such predicates
only provide a local view on the global history h: σ, ω |= p iff σ, ω′ |= p, whenever
ω(h)o = ω′(h)o and σ(this) = o. Finally, by Pred(P) we denote the set of global
assertions of a program P which only refer to the global variables. The truth
of such a predicate p is defined with respect to a global environment which is
denoted by ω |= p. For notational convenience, we extend the truth definition
of any predicate p to triples σ, τ , and ω, e.g., σ, τ, ω |= p iff σ, ω |= p, for
p ∈ Pred(C). An assertion p is valid, denoted by |= p, iff σ, τ, ω |= p, for all σ, ω,
and τ .

An annotation A(P) of a program P consists of a global invariant A(I) ∈
Pred(P), and associates with each class C a class invariant A(C) ∈ Pred(C),
and with each occurrence of a substatement S of a method m or the main
statement it associates a precondition A(S) in Pred(m) or Pred(main). We denote
by |= A(P) that the annotation A(P) is valid, which will be defined formally in
the following section. For two annotations A(P) and A′(P) of a program P , we
denote by |= A(P) → A′(P) that |= A(S) → A′(S) for any each occurrence of a
substatement S of a method m or the main statement (in P).

In the following sections we focus on the verification conditions for the basic
statements which involve asynchronous method calls, object creation, returning a

178 F. de Boer and S. de Gouw

value, and await statements (the verification conditions for composite statements
like choice, sequential composition, etc., are standard). To reason about updates
of instance and local variables, and the global history h, we assume substitutions
p[e/x] which denote the result of replacing every occurrence of the variable x
by the side-effect free expression e. As a special case, the substitution p[new/x]
describes the effect of assigning to the variable x a new future or object id
(its definition depends on the actual syntax used, see for example [12]). We
assume that these substitutions satisfy the basic semantic property that if p[e/x]
(respectively p[new/x]) holds then p holds after the assignment x := e (x :=
new). We denote by |=vc A(P) that all the verification conditions of A(P) hold.
By � A(P) we denote that |=vc A′(P), for some annotation A′(P) of P such
that |= A′(P) → A(P). We have the standard notions of soundness, i.e., � A(P)
implies |= A(P), and completeness, i.e., |= A(P) implies � A(P).

3 Reasoning About Asynchronous Calls

In this section we focus on pure asynchronous method calls in the context of a
basic run-to-completion mode of method execution, i.e., no cooperative schedul-
ing or futures.

Semantics. A basic history for pure asynchronous method calls is a (finite)
sequence θ of asynchronous method calls (including calls to constructor methods)
and method selections. Semantically an asynchronous method call is of the form
o �→ o′.m(τ), where o denotes the caller, o′ denotes the callee, m denotes the
(constructor) method called, and τ denotes the local environment which assigns
the actual parameters to the formal parameters of m.

A method selection o.m(τ) indicates that the object o has selected a call
to the method m for execution in the local environment τ . Let θ!o denote the
subsequence of θ of calls to o, and θ?o denote the subsequence of θ of the method
selections of o. We restrict to histories θ such that for every object o, each call
appears before the corresponding selection. A call in θ!o is pending if there does
not exist a corresponding method selection in θ?o.

The local history of an object o is obtained by the projection θo from a global
history θ:

– (o �→ o′.m(τ) · θ)o = o′.m(τ) · θo
– (o′ �→ o′′.m(τ) · θ)o = θo, if o �= o′

– (o.m(τ) · θ)o = m(τ) · θo
– (o′.m(τ) · θ)o = θo, if o �= o′

This projection thus records all the method calls generated by the object as
caller and all its selected method invocations. It thus abstracts from incoming
calls (generated by other objects).

A global configuration (of a given program) consists of a set Γ of object
configurations and a global history θ. An object configuration is a tuple of the
form 〈σ, p〉, where σ assigns values to the instance variables of the object σ(this),
p either denotes the active process (τ, S) which executes statement S with respect

Reasoning About Active Objects 179

to the local environment τ or p denotes the empty process nil which indicates a
scheduling point2. We assume that for each object o there is at most one object
configuration (σ, (τ, S)) ∈ Γ such that o = σ(this). An initial global configuration
consists of a single object configuration (σ, (τ,main)), where main denotes the
main statement. The initial (or root) object is denoted by σ(this). However, we
assume that “this” does not appear in the main statement (it will be used to
identify in the history the communications of the root object).

The semantics is formally described by transitions (Γ, θ) → (Γ ′, θ′). In this
semantics both asynchronous method calls and their initial selection for execu-
tion by the callee are recorded by the global history, as described in Table 1.
We will focus on the concurrency and cooperative scheduling aspects of the
language and omit transition rules for constructs such as loops, conditional
statements, etc. as these are standard and can be adapted to our setting in a
straightforward manner. Here and in the sequel, Val(e0!m(ē))(σ, τ) denotes the
call σ(this) �→ o.m(τ ′), where o = Val(e0)(σ, τ) and τ ′ is the local environment
which assigns the values of the actual parameters ē (with respect to σ and τ) to
the formal parameters of m. Further, Sched(θ, o) denotes the method selection
o.m(τ) which corresponds to the first pending call o′ �→ o.m(τ) in θ!o.

Table 1. Semantics of pure asynchronous method calls and method selections

(Γ ∪ {(σ, (τ, eo!m(ē); S′))}, θ) → (Γ ∪ {(σ, (τ, S′))}, θ · α))
where α = Val(e0!m(ē))(σ, τ))

(Γ ∪ {(σ, nil)}, θ) → (Γ ∪ {(σ, (τ, S))}, θ · α)
where α = σ(this).m(τ) = Sched(θ, σ(this))and S = Body(m)

The above transition relation then allows the definition of a “big-step” seman-
tics (σ0, τ0)⇒(Γ, θ) which indicates the reachability of the global configuration
(Γ, θ) from the initial configuration which consists of the empty history ε and
(σ0, τ0) as the initial state of the root object.

We have the following basic property of the semantics which states that two
local configurations of an object are globally indistinguishable when generated
by the same local history. For notational convenience, we denote by Γ (o) the
object configuration of the object o in Γ and by Γ [o := γ] the result of updating
the configuration of o in Γ by the object configuration γ.

Lemma 1 (Substitutivity). For any computations (σ0, τ0) ⇒ (Γ, θ) and
(σ0, τ0) ⇒ (Γ ′, θ′) such that θo = θ′

o there exists a computation (σ0, τ0) ⇒
(Γ [o := Γ ′(o)], θ).

This lemma follows in a straightforward manner from the determination of
the local behavior of an object by its local history (the sequential control flow
structures used for describing the behavior of methods being deterministic).
2 Note that p is also used to denote assertions. From the context however it is clear

what is meant.

180 F. de Boer and S. de Gouw

Given the above semantics we next define the semantics of annotated pro-
grams.

Definition 1 (Semantics annotations). A set Γ of object configurations
satisfies an annotation A(P) with respect to a global environment ω, denoted by
Γ, ω |= A(P), if

– ω |= A(I),
– σ, ω |= A(C), for all (σ, (τ, nil)) ∈ Γ , where σ(this) is an instance of class C,
– σ, τ, ω |= A(S), for all (σ, (τ, S)) ∈ Γ .

We can now define formally |= A(P): for every computation (σ0, τ0) ⇒ (Γ, θ)
and global environment ω such that σ0, τ0, ω[h := ε] |= A(main) we have Γ, ω[h :=
θ] |= A(P).

Verification Conditions
The following verification conditions (VC’s) formalize the validation of asyn-
chronous method calls/returns and method selections.

Asynchronous Method Call. For a statement S ≡ eo!m(ē);S′ we have the VC:

|= (A(I) ∧ A(S)) → (A(I) ∧ A(S′))[h · e0!m(ē)/h]

Given that the global invariant (denoted by A(I)) and the precondition of
eo!m(ē) hold, this VC guarantees that the invariant and the post-condition of
eo!m(ē) hold after updating the global history with the call eo!m(ē).

Object Creation. For a statement S ≡ x := new C(ē);S′ we have the VC:

|= (A(I) ∧ A(S)) → (A(I) ∧ A(S′))[h · x!C(ē)/h][new/x]

This VC disentangles the statement x := new C(ē) into the object creation
x := new followed by the asynchronous call x!C(ē) in which the newly created
object appears as the callee of the (call to) the constructor method. Note that
as such the constructor method can also be used as the so-called run method,
which defines the behavior of an active object.

Method Selection. Let Val(m(ē))(σ, τ) denote the method selection σ(this).m(τ ′),
where τ ′ is the local environment which assigns the values of the actual param-
eters ē (with respect to σ and τ) to the formal parameters of m.

For a method m of a class C (excluding the constructor method) with body
S we have the VC:

|= (A(I) ∧ A(C) ∧ m(ū) = Sched(h, this)) → (A(S) ∧ A(I))[h · m(ū)/h]

where ū are the formal parameters of m. Here, σ, τ, ω |= m(ū) = Sched(h, this) iff
Val(m(ū))(σ, τ) = o.m(τ) = Sched(θ, o), where θ = ω(h) and o = σ(this). Note
that m(ū) thus corresponds to the first pending call to a method of o in ω(h)
(as defined above), and that this VC thus abstracts from the actual call site and
guarantees that the precondition A(S) and the global invariant A(I) hold when
the method is scheduled.

Reasoning About Active Objects 181

Selection of the constructor method requires the following adaptation:

|= (A(I) ∧ Init(C) ∧ C(ū) = Sched(h, this)) → (A(S) ∧ A(I))[h · C(ū)/h]

where Init(C) ∈ Pred(C) describes the initial values of the instance variables
of class C and it additionally states that the local history of the object this as
recorded by the global history h is empty.

Return. For a return statement S ≡ return (of a method in class C) we have the
following VC:

|= (A(I) ∧ A(S)) → A(C)

Given that the global invariant (denoted by A(I)) and the precondition of the
return statement hold, this VC establishes the class invariant A(C) after termi-
nation of the method body.

Initialization. Finally, the following VC initially establishes the global invariant.

|= (A(main) ∧ h = ε) → A(I)

As explained in the introduction the main contribution of this paper is a
novel sound and complete proof theory for the ABS language. But to provide
a general idea of how to prove correctness of ABS programs by means of user-
defined global invariants, we discuss below the toy example in Listing 1.1. The
class Toy defines two methods m1 and m2. The number of method selections is
recorded by the instance variables c1 and c2, respectively. The main statement
creates an instance of class Toy and invokes the m1 method.

Listing 1.1. Class Toy in ABS

c l a s s Toy {
Int c1 , c2 ;
Toy () { c1=0 ; c2=0 ; re turn }
Unit m1() { c1 = c1+1; re turn }
Unit m2() { c2 = c2+1; re turn }

}

Main {
toy = new Toy () ;
toy !m1()

}
Let #z.m1 and #z.m2 denote the number of calls of the methods m1 and m2

of the object (the callee) denoted by the variable z, as recorded by the global
history h, and #m1↓ z and #m2↓ z denote the number of selections of the
methods m1 and m2 by the object denoted by the variable z (again, as recorded
by the global history h). We will show how to validate the global invariant A(I)

A(I) ≡ ∀z : Toy(#m1 ↓ z ≤ #z.m1 ≤ 1 ∧ #m2 ↓ z = #z.m2 = 0)

182 F. de Boer and S. de Gouw

where the universal quantification ranges over all created instances of class Toy
(by a call of its constructor method), as recorded by the global history. We thus
abstract from the uniqueness of the created instance of class Toy. Note that for
any program and method we have that for any object the number of times it
has selected the method is smaller or equal to the number of calls of the method
of this object. This general (global) invariant is in fact provable in our proof
method, as we show in this particular case.

To prove the above global invariant, we introduce a local class invariant

A(Toy) ≡ #m1 ↓ this = c1 ≤ 1 ∧ #m2 ↓ this = c2 = 0

which states, among others, that c1 and c2 equal the number of selections of
the method m1 and m2, respectively, of the object this. Note that both #m1↓
this and #m2↓ this, as defined above, implicitly refer to the global history h.
However, since the method selections of an object as recorded by the global
history correspond with those recorded by its local history, A(Toy) is in fact a
local assertion (as defined in Sect. 2).

It is worthwhile to observe here that, in the standard bottom-up approach as
used in [15], class invariants have to take into account arbitrary environments,
which results in the following weakening

#m1↓ this = c1 ∧ #m2↓ this = c2

of the invariant of class Toy. Specific information about the values of c1 and
c2 then can only be derived when combining the local invariants (in our case,
combining the local invariant of class Toy with the local invariant of the main
statement). In general, this complicates reasoning both at the local and global
level.

Let S denote the body of the constructor method (of class Toy) and A(S)
denote its precondition #m1↓ this = 0∧ #m2↓ this = 0. The verification condi-
tion

|= (A(I) ∧ Init(Toy) ∧ Toy() = Sched(h, this)) → (A(S) ∧ A(I))[h · Toy()/h]

corresponding to the selection of the constructor method Toy validates this pre-
condition A(S). It holds trivially because Init(Toy) includes (by definition) the
information that the local history of the object denoted by this is empty and
the global history update with the selection of the constructor method does not
affect the number of selections of the method m1 and m2. Further, since the
global invariant A(I) does not refer to the constructor method, the global his-
tory update also does not affect the global invariant. A subtle point here is that
it also does not affect the scope of the quantification (such as in A(I), over Toy
objects) because it ranges over objects which have been already generated by a
call of their constructor method. Note that such calls do affect the scope of the
quantification which thus has to be accounted for in the verification condition
of the object creation statement toy=new Toy() (because of space limitations
omitted here).

Reasoning About Active Objects 183

Given this precondition A(S) of the constructor method it is straightforward
to validate as precondition of the return statement of the constructor method the
class invariant A(Toy) itself. This further trivializes the verification condition for
the return statement of the constructor method (which should validate the class
invariant).

Let S now denote the body c1 = c1+1; return of method m1 and A(S) denote
its precondition #m1 ↓ this = 1 ∧ #m2 ↓ this = 0 ∧ c1 = c2 = 0. As another
example, we show how to validate the verification condition

|= (A(I) ∧ A(Toy) ∧ m1() = Sched(h, this)) → (A(S) ∧ A(I))[h · m1()/h]

which corresponds to the selection of the m1 method (by the object this). To
validate that A(S) holds under the global history update (with the selection of
m1), we first observe that #m2 ↓ this is not affected by this update and A(Toy)
already implies #m2 ↓ this = c2 = 0. Next observe that #m1 ↓ this = 1 under
the global history update boils down to #m1 ↓ this + 1 = 1, where #m1↓ this
is thus evaluated with respect to the “old” history. From the global invariant
A(I) and m1() = Sched(h, this)) we infer that #m1↓ this < #this.m1=1, that is,
#m1↓ this = 0. From the class invariant A(Toy) we then derive that #m1↓ this
= c1 = 0. Further, to prove that A(I) holds under the global history update,
it suffices to observe that, as already argued above, #m1↓ this + 1 ≤ #this.m1
and that #this.m1≤ 1∧ #m2↓ this = #this.m2=0 is not affected by the global
history update. Neither is #m1↓ z ≤ #z.m1≤ 1∧ #m2↓ z = #z.m2 = 0, where
z refers to a (created) instance of class Toy different from (the object denoted
by) this.

As a last example we discuss the validation of the verification condition

|= (A(I) ∧ A(S)) → (A(I)[h · toy!m1/h])

where S denotes the call toy!m1 in the main statement and A(S) denotes its
precondition #m1↑this=0∧#m2↑this=0, where #m1↑ this and #m2↑ this denote
the number of (outgoing) calls of m1 and m2 by the root object. We thus use
the variable this to denote the root object executing the main statement. Note
that #m1↑ this and #m2↑ this both refer to the number of calls of the methods
m1 and m2 by the root object, as recorded by the global history. However, since
these method calls by the root object correspond with those recorded by its local
history, A(S) is in fact a local assertion. To validate that the global invariant
A(I) holds under the global history update with the call of m1 by the root
object, we need to validate that #toy.m1 = 0 holds before the update (that is,
in the “old” history). This requires a formalization of the absence of other objects
calling m1. We can do so by strengthening the global invariant A(I) with the
information that the methods m1 and m2 are (only) called by the root object.
It is easy to check that this additional information preserves the validation of
the above verification conditions since the corresponding global history updates
do not affect it (they do not involve any calls to the methods m1 and m2).

We conclude the discussion of this toy example with the observation that
our proof method supports a more expressive notion of modularity than the one

184 F. de Boer and S. de Gouw

supported by the bottom-up approach. In fact, we can derive global invariants
compositionally by, roughly, a conjunction of the behavioral interfaces of the
constituent classes. Such a behavioral interface (of a class) describes for each
instance of the class its local history as a projection of the global history extended
with the incoming calls of its methods. Like a pre/postcondition provides a state-
based contract of a method, such a behavioral interface provides a history-based
contract stating the expected interaction with the environment in terms of both
incoming and outgoing method calls. Validation of behavioral interfaces as global
invariants allows to resolve the non-determinism in the selection of the methods.

Soundness and Completeness. We have the following soundness theorem.

Theorem 1. If � A(P) then |= A(P).

Proof. We have to show for every computation (σ0, τ0) ⇒ (Γ, θ) and global
environment ω such that σ0, τ0, ω[h := ε] |= A(main), then Γ, ω[h := θ] |=
A(P). The proof proceeds by a straightforward induction on the length of the
computation (σ0, τ0) ⇒ (Γ, θ). We treat the case of the selection of a method. Let
(induction hypothesis) (σ0, τ0) ⇒ (Γ, θ) and ω be such that Γ, ω[h := θ] |= A(P).
Further, let (σ, nil) ∈ Γ and α = σ(this).m(τ) = Sched(θ, σ(this)), where σ(this)
is an instance of class C. By the induction hypothesis we have that ω[h := θ] |=
A(I) and σ, ω[h := θ] |= A(C). Further, α = Sched(θ, σ(this)) logically amounts
to σ, τ, ω[h := θ] |= m(ū) = Sched(h, this)), where ū are the formal parameters
of m. So we derive from the VC

|= (A(I) ∧ A(C) ∧ m(ū) = Sched(h, this)) → (A(S) ∧ A(I))[h · m(ū)/h]

that σ, τ, ω[h := θ] |= (A(S) ∧ A(I))[h · m(ū)/h], that is, σ, τ, ω[h := θ · α] |=
A(S) ∧ A(I). Further, since θo′ = (θ · α)o′ , for o′ �= σ(this), we have for any local
assertion p (of a method or specifying a class invariant) that σ′, τ ′, ω[h := θ] |= p
iff σ′, τ ′, ω[h := θ · α] |= p. In words, the update of the global history does not
affect the validity of the local assertions of the other objects. We conclude that
Γ ′, ω[h := θ · α] |= A(P), where (Γ, θ) → (Γ ′, θ′) results from executing the
method selection α.

Next we discuss completeness. We introduce for each variable x of the main
statement a fresh global variable x′ which will be used to store the initial value
of x. For any global environment ω we denote by ω(main) the pair (σ, τ) such that
σ(x) = ω(x′), for every instance variable x appearing in main, and τ(x) = ω(x′),
for every local variable x appearing in main.

Definition 2 (Reachability). We construct an annotation A′(P) which asso-
ciates with each statement S occurring in a method m the following reachability
assertions:

σ, τ, ω |= A′(S) iff there exists a computation ω(main) ⇒ (Γ, θ) such that
〈σ, (τ, S)〉 ∈ Γ and θo = ω(h)o, where o = σ(this).

Further, for each class C we introduce the following reachability assertion
A′(C) ∈ Pred(C) which characterizes the scheduling points:

Reasoning About Active Objects 185

σ, τ, ω |= A′(C) iff there exists a computation ω(main) ⇒ (Γ, θ) such that
〈σ, nil〉 ∈ Γ and θo = ω(h)o, where o = σ(this).

Finally, we have the following global invariant A′(I) ∈ Pred(P) which char-
acterizes the reachability of the global history.

σ, τ, ω |= A′(I) iff there exists a computation ω(main) ⇒ (Γ, ω(h)).

Next we have to prove the validity of the VC’s for the above reachability
assertions. We treat the following main cases.

Lemma 2 (Asynchronous method call). For a statement S ≡ eo!m(ē);S′

we have
|= (A′(I) ∧ A′(S)) → (A′(I) ∧ A′(S′))[h · e0!m(ē)/h]

Proof. Let σ, τ, ω |= A′(I) ∧ A′(S). Further, let ω(h) = θ and o = σ(this). By
the above definition of A′(I) there exists a computation ω(main) ⇒ (Γ, θ) (*),
and by the above definition of A′(S), there exists a computation ω(main) ⇒
(Γ ′, θ′) (**), such that (σ, (τ, S)) ∈ Γ ′ and θo = θ′

o. We have to show that
σ, τ, ω[h := θ · α] |= A′(I) ∧ A′(S), where α = Val(e0!m(ē))(σ, τ). By Lemma 1
we can replace the computation of o in (*) by that of o in (**), which gives us
a computation ω(main)⇒(Γ [o := Γ ′(o)], θ). Executing the call eo!m(ē) (accord-
ing to the above transition for asynchronous method calls) then gives rise to
a computation ω(main) ⇒ (Γ [o := (σ, (τ, S′))], θ · α), from which we conclude
σ, τ, ω[h := θ · α] |= A′(I) ∧ A′(S′).

Lemma 3 (Method selection). For a method m of a class C (excluding the
constructor method) with body S we have

|= (A′(I) ∧ A′(C) ∧ m(ū) = Sched(h, this)) → (A′(S) ∧ A′(I))[h · m(ū)/h]

where ū are the formal parameters of m.

Proof. Let σ, τ, ω |= A′(I) ∧ A′(C) ∧ m(ū) = Sched(h, this). We have to show
that σ, τ, ω[h := θ · α] |= A′(S) ∧ A′(I), where α = Val(m(ū)(σ, τ). Let ω(h) = θ
and o = σ(this). As in the proof of the above lemma, we obtain a computation
ω(main)⇒(Γ [o := (σ, nil)], θ). Since σ, τ, ω |= m(ū) = Sched(h, this), according
to the above transition for method selection, the object o can select the method
m for execution in the local environment τ , which gives rise to a computation
ω(main) ⇒ (Γ [o := (σ, (τ, S))], θ ·α), from which we conclude σ, τ, ω[h := θ ·α] |=
A′(I) ∧ A′(S).

Theorem 2 (Completeness). We have that |= A(P) implies � A(P).

Proof. Let |= A(P). Since the VC’s of A′(P) are valid, we have |=vc A′(P). Let
p be the precondition A(main) with all its instance and local variables replaced
by the global variables introduced above to store the initial state of the root
object. Let p[ε/h] ∧ A′(P) (ε denotes the empty history) denote the annotation
obtained by adding to each assertion of A′(P) the invariant assertion p[ε/h].
It is straightforward to check that |=vc A′(P) implies |=vc p[ε/h] ∧ A′(P). From

186 F. de Boer and S. de Gouw

|= A(P) it follows that |= (p[ε/h]∧A′(P)) → A(P), and so � A(P). For example,
let σ, τ, ω |= p[ε/h] ∧ A′(S), for some statement S appearing in method m. Let
ω(main) = (σ0, τ0). By definition of p[ε/h] and ω(main), it follows that σ, τ, ω |=
p[ε/h] iff σ0, τ0, ω[h := ε] |= A(main), By definition of A′(S), there exists a
computation (σ0, τ0) ⇒ (Γ, θ), such that (σ, (τ, S)) ∈ Γ (and θo = ω(h)o). So by
definition of |= A(P) (Definition 1) we obtain σ, τ, ω[h := θ] |= A(S), from which
in turn we derive σ, τ, ω |= A(S) (because θo = ω(h)o and A(S) ∈ Pred(m)).

4 Reasoning About Cooperative Scheduling

In this section we extend the language with statements which await on Boolean
conditions3. In order to reason about local interference between the different
processes of an object we need to distinguish between different method invo-
cations. We will do so by associating with each method invocation4 a unique
future of type Fut〈Unit〉, that is, a future with no return value. These futures are
generated by method calls x := e0!m(x, ē), where x is a future variable of type
Fut〈Unit〉 which is passed as parameter to the corresponding method invocation.
Each method definition is therefore extended with a formal parameter d (for
“destiny”) of type Fut〈Unit〉). In the following section we will study their actual
use at the programming level. Note that the futures in this section are only used
to identify different method invocations. In the next section we show how futures
can be used as a mechanism for communicating asynchronously return values.

Given the above identification scheme we can introduce a local scheduling
history s as a sequence of futures. Such a sequence indicates when which process
is scheduled for execution. We add to each class the instance variable s and spec-
ify the semantics and VC’s of programs which are augmented with the following
updates of s: Every method body starts with the update s := s · d and every
Boolean await statement is followed by the update s := s · d. Note that thus s
is only updated when a method invocation has been selected for execution, in
other words, release of control is not recorded.

Semantics. An object configuration (σ, p,Q) additionally includes a set Q of
suspended processes. We present the following transitions for the await statement
and the scheduling of a suspended process (Table 2).

Boolean await statements thus introduce non-determinism in the local behav-
ior of an object. However, the substitutivity Lemma 1 still holds because of
the compositionality result in [9]. The next lemma further states that the local
scheduling history of an object together with its local view of the global history
fully determine its local behavior (in the context of the standard deterministic
sequential programming statements).

Lemma 4 (Determinism). Let (σ0, τ0) ⇒ (Γ, θ) be a computation such that
Γ (o) denotes a scheduling point (i.e., its active process is nil). Further, let
3 For technical convenience only, we assume that such await statements do not occur

in constructor methods.
4 Excluding calls to constructor methods.

Reasoning About Active Objects 187

Table 2. Semantics Boolean await statement and process selection

(Γ ∪ {(σ, p, Q)}, θ) → (Γ ∪ {(σ, nil, Q ∪ {p})}, θ))
where p = (τ, await b; S′)

(Γ ∪ {(σ, nil, Q ∪ {p})}, θ) → (Γ ∪ {(σ, (τ, S′), Q)}, θ)
where p = (τ, await b; S′)and Val(b)(σ, τ) = true

(σ0, τ0) ⇒ (Γ ′, θ′) be a computation such that θ′
o and σ′(s) are prefixes of θo

and σ(s), respectively, where σ and σ′ denote the state of o in Γ (o) and Γ ′(o),
respectively. Then there exist a decomposition (σ0, τ0) ⇒ (Γ ′′, θ′′) →∗ (Γ, θ) of
(σ0, τ0) ⇒ (Γ, θ) such that Γ ′′(o) = Γ ′(o).

Proof. The proof proceeds by induction on the length of the computation
(σ0, τ0) ⇒ (Γ ′, θ′) and a case analysis of the transition relation.

Verification Conditions. In the verification conditions discussed below, for
each instance variable x of a class (excluding the variable this), we use a cor-
responding global variable x′ which will be used to store the old value of x
at a previous scheduling point. Similarly, the global variable h′ will be used to
store the old value of the global history h at a previous scheduling point. Global
variables are used only in the verification conditions, and do not appear in the
program code. For technical convenience only, we restrict the notion of validity
of assertions to assignments σ and ω such that ω(s′) and ω(h′) are prefixes of
σ(s) and ω(h), respectively.

We have the following adaptation of the VC for method calls which caters
for the creation of a new future uniquely identifying the call.

Asynchronous Method Call. For a statement S ≡ x := e0!m(x, ē);S′ we have the
VC:

|= (A(I) ∧ A(S)) → (A(I) ∧ A(S′))[h · e0!m(x, ē)/h][new/x]

Boolean Await Statement. For a statement S ≡ await b;S′ we have the VC’s:

|= A(S) → A(C)

which ensures that the class invariant A(C) holds before execution of the await
statement, and

|= (A(S)[x′/x] ∧ A(C) ∧ d �∈ s \ s′ ∧ b) → A(S′)

The assertion A(S)[x′/x] expresses that A(S) holds for the “old” values of the
instance variables and the global history, which are represented by the global
“freeze” variables x′ (which do not appear in A(S′)). The condition d �∈ s \ s′

expresses that the method invocation identified by the destiny variable d has not
been scheduled for execution since s′, i.e., it does not appear in the suffix s \ s′

of s determined by its prefix s′ (note that by the notion of validity we have that
s′ is a prefix of s).

188 F. de Boer and S. de Gouw

It is worthwhile to observe that an alternative approach to the verification of
Boolean await statements uses a local identification scheme for method invoca-
tions which generates such identifications upon the selection of a method (and
thus requires an adaptation of the corresponding VC instead of the above adap-
tation of the VC for method calls). However, this approach is not compatible
with the general use of futures described in the next section which requires a
global correspondence between futures and method invocations.

Soundness and Completeness. We extend the semantics of annotated pro-
grams (Definition 1) to the new semantics by simply abstracting from the set of
suspended processes. The following theorem generalizes Theorem 1 to programs
P of the language extended with Boolean await statements.

Theorem 3 (Soundness). Let |=vc A(P). For every computation (σ0, τ0) ⇒
(Γ, θ) and global environment ω such that σ0, τ0, ω[h := ε] |= A(main) we then
have that Γ, ω[h := θ] |= A(P).

Proof. The proof proceeds by induction on the length of the computation: Let
(induction hypothesis) (σ0, τ0) ⇒ (Γ, θ) and ω be such that Γ, ω[h := θ] |= A(P).
We treat the main case that there exists a scheduling point (σ, nil, Q) ∈ Γ such
that Val(b)(σ, τ ′) = true, for some process (τ ′, S) ∈ Q, where S denotes a state-
ment await b;S′. Let ω′ = ω[h := θ]. Since Γ, ω′ |= A(P), we have σ, ω′ |= A(C)
(assuming that σ(this) is an instance of class C), and so σ, τ ′, ω′ |= A(C) ∧ b.
Next, let (σ0, τ0) ⇒ (Γ ′, θ′) →∗ (Γ, θ) be a decomposition of the given computa-
tion such that for some σ′ and Q′ we have (σ′, (τ ′, S), Q′) ∈ Γ ′ and τ ′(d) does not
appear in the suffix of σ(s) determined σ′(s) (i.e., the process (τ ′, S) has not been
scheduled in the computation (Γ ′, θ′) →∗ (Γ, θ)). Applying the induction hypoth-
esis to the computation (σ0, τ0) ⇒ (Γ ′, θ′) we obtain σ′, τ ′, ω[h := θ′] |= A(S).
Let ω′′ be obtained from ω′ be assigning σ′(x) to the global freeze variable x′,
for each instance variable x, and assigning θ′ to the freeze variable h′. We then
derive that σ, τ ′, ω′′ |= A(S)[x′/x]. Since the freeze variables are assumed not to
occur in A(P), it follows that σ, τ ′, ω′ |= A(C) ∧ b implies σ, τ ′, ω′′ |= A(C) ∧ b.
Summarizing, we have obtained that σ, τ ′, ω′′ |= A(S)[x′/x]∧A(C)∧d �∈ s\s′∧b.
From

|= (A(S)[x′/x] ∧ A(C) ∧ d �∈ s \ s′ ∧ b) → A(S′)

then we derive σ, τ ′, ω′′ |= A(S′). Finally, we conclude that σ, τ ′, ω′ |= A(S′)
(since the freeze variables are assumed not to occur in A(P)).

We next discuss completeness. Definition 2 of the reachability assertions
is extended to programs P containing Boolean await statements by simply
abstracting from the set of suspended processes, i.e., σ, τ, ω |= A′(S) iff there
exists a computation ω(main) ⇒ (Γ, θ) such that 〈σ, (τ, S), Q〉 ∈ Γ , for some Q,
and θo = ω(h)o, where o = σ(this).

As in the previous section, in order to prove that � A′(P) we have to validate
the associated VC’s. We consider the following main case (the other cases are
treated as described previously).

Reasoning About Active Objects 189

Lemma 5 (Awaiting a Boolean condition). For a statement S ≡ await b;S′

we have
|= (A′(S)[x′/x] ∧ A(C) ∧ d �∈ s \ s′ ∧ b) → A′(S′)

Proof. Let
σ, τ, ω |= A′(S)[x′/x] ∧ A(C) ∧ d �∈ s \ s′ ∧ b

Further, let o = σ(this). By definition of A(C) there exists a computation
ω(main)⇒(Γ, θ) (*) such that 〈σ, nil, Q〉 ∈ Γ , for some set Q of suspended pro-
cesses, and θo = ω(h)o. Let σ′ be such that σ′(x) = ω(x′), for every instance
variable x, and σ′(this) = o. It follows that σ′, τ, ω |= A′(S), so there exists a
computation ω(main)⇒(Γ ′, θ′) (**) such that 〈σ′, (τ, S), Q′〉 ∈ Γ ′, for some set
Q′ of suspended processes, and θ′

o = ω(h′)o. By the validity of assertions we have
that ω(h′) is a prefix of ω(h), and ω(s′) is a prefix of σ(s). It follows that θ′

o is
a prefix of θo, and σ′(s) = ω(s′) is a prefix of σ(s). By Lemma 4 then we infer
that the computation of o in (**) is a prefix of the computation of o in (*). Next
observe that τ(d) has not been scheduled since (because σ, τ, ω |= d �∈ s \ s′), so
we have that (τ, S) ∈ Q. Thus, we can schedule the process (τ, S) in Γ because
σ, τ, ω |= b, from which we obtain by executing the await statement (according
to the above transition) that σ, τ, ω |= A′(S′).

Finally, it is straightforward to check that the proof of the completeness
Theorem 2 carries over to the language with Boolean await statements.

5 Reasoning About Futures

Finally, we consider reasoning about futures. We introduce return statements
return e, where e is a side-effect basic expression of some type T . Such a statement
returns a value of type Fut〈T 〉 which denotes a reference to a value of type T .
As in the previous section a future is generated by a call x := eo!m(x, ē) and
passed as parameter to the method invocation. The statement await x? and the
assignment y := x.get, respectively, suspend and block, as long as the future
denoted by the variable x has not been resolved.

Semantics. We extend global histories with future completions of the form
o �→ f !v which indicate that object o has completed future f with value v, and
future queries o �→ f?v which indicate that object o read value v stored by future
f . For f = Val(y)(σ, τ) we define Val(y.get)(σ, τ, ω) = v, if o �→ f !v, for some
object o, appears in ω(h), and Val(y.get)(σ, τ, ω) =⊥, otherwise.

Further, programs are augmented with updates s := s ·d to the local schedul-
ing history, as described in the previous section.

Table 3 presents the transitions for returning/getting a return value5, and
awaiting a future. For the Substitutivity Lemma 1 to hold, it is not difficult
to see that we only need to observe for each object o and future f the first
occurrence of a query o �→ f?v. Therefore, we define θ · o �→ f?v = θ, in case
o �→ f?v already appears in θ.
5 In the transition for the get operation we assume without loss of generality that the

variable x is a local variable.

190 F. de Boer and S. de Gouw

Table 3. Semantics return/get operation and awaiting return values

(Γ ∪ {(σ, (τ, return e; S, Q)}, θ) → (Γ ∪ {(σ, (τ, S), Q}, θ · σ(this) �→ f !v))
where f = τ(d)and v = Val(e)(σ, τ)

(Γ∪{(σ, (τ, x := y.get; S), Q}, θ) → (Γ∪{(σ, (τ [x := v], S), Q)}, θ·σ(this) �→ f?v)
where v = Val(y.get)(σ, τ, ω) �=⊥
(Γ ∪ {(σ, nil, Q ∪ {p})}, θ) → (Γ ∪ {(σ, (τ, S′), Q)}, θ · σ(this) �→ f?v)
where p = (τ, await x?; S′)and v = Val(y.get)(σ, τ, ω) �=⊥

Verification Conditions. We have the following verification conditions which
closely reflect the above semantics.

Returning a Value. For a return statement S ≡ return e (of a method in class
C) we have the following VC:

|= (A(I) ∧ A(S)) → (A(I) ∧ A(C))[h · this �→ d!e/h]

Given that the global invariant A(I) and the precondition of return e hold, this
VC guarantees that the global invariant A(I) and the class invariant A(C) hold
after updating the global history .

Getting a Return Value. For a statement S ≡ x := y.get;S′ we have the VC:

|= (A(I) ∧ A(S) ∧ z = y.get ∧ z �=⊥) → A(S′)[z/x][h · this �→ y?z/h]

Awaiting a Future. For a statement S ≡ await y?;S′ we have the VC’s (here z is
a fresh global variable):

|= A(S) → A(C)

and

|= (A(S)[x′/x] ∧ A(I) ∧ A(C) ∧ d �∈ s \ s′ ∧ z = y.get∧ z �=⊥) → A(S′)[h · this �→ y?z/h]

The global invariant A(I) here is used to import information about the future
queried.

It is not difficult to see that the semantics of the language extended with
futures satisfies both the above properties of (global) substitutivity and (local)
determinism. Consequently, soundness and completeness proofs follow the same
pattern as that of the previous sections.

6 Future Work

A major future effort concerns the implementation of the proof method in the
KeY theorem prover [1], and the application of this implementation to ABS
programs, e.g., the ABS model of railway operations described in [21]. This
involves the integration of a suitable assertion language, e.g., as described in

Reasoning About Active Objects 191

[12]. We refer to [11] for how to extend the completeness result by a logical
formulation of the reachability assertions defined in this paper.

Currently, we are also working on a formalisation of the soundness and com-
pleteness proof in a theorem prover, like Coq or Isabelle/HOL. To the best of
our knowledge such a formalization of the soundness and completeness proofs
would be the first for a concurrent language.

Acknowledgement. We thank Olaf Owe for some insightful discussions.

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification - The KeY Book - From Theory to Practice. Lec-
ture Notes in Computer Science, vol. 10001. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-319-49812-6

2. Ahrendt, W., Dylla, M.: A verification system for distributed objects with asyn-
chronous method calls. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS,
vol. 5885, pp. 387–406. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-10373-5 20

3. Ahrendt, W., Dylla, M.: A system for compositional verification of asynchronous
objects. Sci. Comput. Program. 77(12), 1289–1309 (2012). https://doi.org/10.
1016/j.scico.2010.08.003

4. Apt, K.R.: Formal justification of a proof system for communicating sequential
processes. J. ACM 30(1), 197–216 (1983). https://doi.org/10.1145/322358.322372

5. Blom, S., Huisman, M., Mihelcic, M.: Specification and verification of GPGPU
programs. Sci. Comput. Program. 95, 376–388 (2014). https://doi.org/10.1016/j.
scico.2014.03.013

6. De Boer, F., et al.: A survey of active object languages. ACM Comput. Surv. 50(5),
76:1–76:39 (2017). http://doi.acm.org/10.1145/3122848, https://doi.org/10.1145/
3122848

7. Cook, S.A.: Soundness and completeness of an axiom system for program verifica-
tion. SIAM J. Comput. 7(1), 70–90 (1978). https://doi.org/10.1137/0207005

8. de Boer, F.S., Clarke, D., Johnsen, E.B.: A complete guide to the future. In: De
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 316–330. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71316-6 22

9. Boer, F.S., Gouw, S.: Compositional semantics for concurrent object groups in
ABS. In: Müller, P., Schaefer, I. (eds.) Principled Software Development, pp. 87–
98. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98047-8 6

10. de Boer, F.S., et al.: A survey of active object languages. ACM Comput. Surv.
50(5), 76:1–76:39 (2017)

11. de Gouw, S., de Boer, F., Ahrendt, W., Bubel, R.: Weak arithmetic completeness
of object-oriented first-order assertion networks. In: van Emde Boas, P., Groen,
F.C.A., Italiano, G.F., Nawrocki, J., Sack, H. (eds.) SOFSEM 2013. LNCS, vol.
7741, pp. 207–219. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-35843-2 19

12. de Gouw, S., de Boer, F., Ahrendt, W., Bubel, R.: Integrating deductive verification
and symbolic execution for abstract object creation in dynamic logic. Softw. Syst.
Model. 15(4), 1117–1140 (2014). https://doi.org/10.1007/s10270-014-0446-9

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-642-10373-5_20
https://doi.org/10.1007/978-3-642-10373-5_20
https://doi.org/10.1016/j.scico.2010.08.003
https://doi.org/10.1016/j.scico.2010.08.003
https://doi.org/10.1145/322358.322372
https://doi.org/10.1016/j.scico.2014.03.013
https://doi.org/10.1016/j.scico.2014.03.013
http://doi.acm.org/10.1145/3122848
https://doi.org/10.1145/3122848
https://doi.org/10.1145/3122848
https://doi.org/10.1137/0207005
https://doi.org/10.1007/978-3-540-71316-6_22
https://doi.org/10.1007/978-3-319-98047-8_6
https://doi.org/10.1007/978-3-642-35843-2_19
https://doi.org/10.1007/978-3-642-35843-2_19
https://doi.org/10.1007/s10270-014-0446-9

192 F. de Boer and S. de Gouw

13. de Roever, W.P., et al.: Concurrency Verification: Introduction to Compositional
and Noncompositional Methods. Cambridge Tracts in Theoretical Computer Sci-
ence, vol. 54. Cambridge University Press, Cambridge (2001)

14. Din, C.C., Hähnle, R., Johnsen, E.B., Pun, K.I., Tapia Tarifa, S.L.: Locally
abstract, globally concrete semantics of concurrent programming languages. In:
Schmidt, R.A., Nalon, C. (eds.) TABLEAUX 2017. LNCS (LNAI), vol. 10501, pp.
22–43. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66902-1 2

15. Crystal Chang Din and Olaf Owe: A sound and complete reasoning system for
asynchronous communication with shared futures. J. Log. Algebr. Meth. Program.
83(5–6), 360–383 (2014)

16. Din, C.C., Owe, O.: Compositional reasoning about active objects with shared
futures. Formal Aspects Comput. 27(3), 551–572 (2014). https://doi.org/10.1007/
s00165-014-0322-y

17. Haslbeck, M.P.L., Nipkow, T.: Hoare logics for time bounds - a study in meta
theory. In: Beyer, D., Huisman, M. (eds.) TACAS 2018, Part I. LNCS, vol. 10805,
pp. 155–171. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89960-2 9

18. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6 8

19. Kamburjan, E., Chen, T.-C.: Stateful behavioral types for active objects. In: Furia,
C.A., Winter, K. (eds.) IFM 2018. LNCS, vol. 11023, pp. 214–235. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-98938-9 13

20. Kamburjan, E., Din, C.C., Hähnle, R., Johnsen, E.B.: Asynchronous cooperative
contracts for cooperative scheduling. In: Ölveczky, P.C., Salaün, G. (eds.) SEFM
2019. LNCS, vol. 11724, pp. 48–66. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-30446-1 3

21. Kamburjan, E., Hähnle, R., Schön, S.: Formal modeling and analysis of railway
operations with active objects. Sci. Comput. Program. 166, 167–193 (2018)

22. Owicki, S.S., Gries, D.: An axiomatic proof technique for parallel programs I. Acta
Inf. 6, 319–340 (1976)

23. Zaharieva-Stojanovski, M., Huisman, M.: Verifying class invariants in concurrent
programs. In: Gnesi, S., Rensink, A. (eds.) FASE 2014. LNCS, vol. 8411, pp. 230–
245. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54804-8 16

https://doi.org/10.1007/978-3-319-66902-1_2
https://doi.org/10.1007/s00165-014-0322-y
https://doi.org/10.1007/s00165-014-0322-y
https://doi.org/10.1007/978-3-319-89960-2_9
https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.1007/978-3-319-98938-9_13
https://doi.org/10.1007/978-3-030-30446-1_3
https://doi.org/10.1007/978-3-030-30446-1_3
https://doi.org/10.1007/978-3-642-54804-8_16

Improving Automatic Complexity
Analysis of Integer Programs

Jürgen Giesl(B) , Nils Lommen , Marcel Hark , and Fabian Meyer

LuFG Informatik 2, RWTH Aachen University, Aachen, Germany
{giesl,lommen,marcel.hark,fabian.meyer}@cs.rwth-aachen.de

Abstract. In [16], we developed an approach for automatic complexity
analysis of integer programs, based on an alternating modular inference
of upper runtime and size bounds for program parts. In this paper, we
show how recent techniques to improve automated termination analy-
sis of integer programs (like the generation of multiphase-linear ranking
functions and control-flow refinement) can be integrated into our app-
roach for the inference of runtime bounds. The power of the resulting
approach is demonstrated by an extensive experimental evaluation with
our new re-implementation of the corresponding tool KoAT.

1 Introduction

There are many techniques and tools for automated complexity analysis of pro-
grams, e.g., [2–6,8–10,16,17,22–24,29,32,33,40,43,46,47]. Most of them infer
variants of (mostly linear) polynomial ranking functions (see, e.g., [15,44])
which are then combined to get a runtime bound for the overall program.

Fig. 1. Loop without Linear
Ranking Function

However, approaches based on linear ranking func-
tions are incomplete for termination and thus also
for complexity analysis. For example, consider the
loop from [12,38] in Fig. 1, which terminates, but
does not admit a linear ranking function. Its run-
time is linear in the initial values of x and y, if they
are positive initially. The reason is that if y > 0,
then x grows first but it is decreased with the same “speed” once y has become
negative.

Recently so-called multiphase-linear ranking functions have gained interest
(see, e.g., [12,13,38,50]). For loops as in Fig. 1, ranking functions of this form
detect that the program has two phases: first y is decremented until it is negative.
Afterwards, x is decremented until it is negative and the loop terminates. In [12],
it is shown that the existence of a multiphase-linear ranking function for a loop
implies linear runtime complexity. In the current paper, we embed multiphase-
linear ranking functions into our modular approach for complexity analysis of

Funded by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) -
235950644 (Project GI 274/6-2) and DFG Research Training Group 2236 UnRAVeL.

c© Springer Nature Switzerland AG 2022
W. Ahrendt et al. (Eds.): The Logic of Software. A Tasting Menu of Formal Methods,
LNCS 13360, pp. 193–228, 2022.
https://doi.org/10.1007/978-3-031-08166-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08166-8_10&domain=pdf
http://orcid.org/0000-0003-0283-8520
http://orcid.org/0000-0003-3187-9217
http://orcid.org/0000-0001-5111-3177
http://orcid.org/0000-0003-1038-4944
https://doi.org/10.1007/978-3-031-08166-8_10

194 J. Giesl et al.

Fig. 2. Original Loop Fig. 3. After Control-Flow Refinement

integer programs from [16]. In contrast to [12], we infer multiphase-linear ranking
functions for parts of the program and combine the so-obtained bounds to an
overall runtime bound. In this way, we obtain a powerful technique which is able
to infer finite runtime bounds for programs that contain loops such as Fig. 1.

Moreover, different forms of control-flow refinement were used to improve
the automatic termination and complexity analysis of programs further, see, e.g.,
[20,22]. The basic idea is to gain “more information” on the values of variables to
sort out certain paths in the program. For example, the control-flow refinement
technique from [20] detects that the programs in Fig. 2 and Fig. 3 are equivalent.
Clearly, the program in Fig. 3 is easier to analyze as the two consecutive loops
do not interfere with each other: x and z are constants in its first loop, while y
and z are constants in its second loop. We show how to integrate the technique
for control-flow refinement from [20] into our modular analysis in a non-trivial
way. This increases the power of our approach further.

Structure: We first recapitulate our approach from [16] in Sect. 2. Afterwards, we
adapt it to multiphase-linear ranking functions in Sect. 3. In Sect. 4, we discuss
how to incorporate control-flow refinement from [20] into our analysis. We pro-
vide an extensive experimental evaluation of our corresponding new version of
the tool KoAT [42] and compare it with existing tools in Sect. 5. Finally, we dis-
cuss related work and conclude (Sect. 6). All proofs can be found in AppendixA.

2 Preliminaries

In this section we recapitulate our approach for complexity analysis from [16].
We first introduce constraints, which are used in the guards of programs.

Definition 1 (Constraints). Let V be a set of variables. The set of constraints
C(V) over V is the smallest set containing e1 ≤ e2 for all polynomials e1, e2 ∈
Z[V] and c1 ∧ c2 for all c1, c2 ∈ C(V).

In addition to “≤”, we also use relations like “>” and “=”, which can be sim-
ulated by constraints (e.g., e1 > e2 is equivalent to e2 + 1 ≤ e1 when regarding
integers).

Now we define the notion of integer programs which we use in this paper.
Instead of while loops as in Fig. 1, 2 and 3, we use a formalism based on tran-
sitions (which of course also allows us to represent while programs easily).

Definition 2 (Integer Program). An integer program P over a set of vari-
ables V is a tuple (PV,L, �0, T) of

Improving Automatic Complexity Analysis of Integer Programs 195

• a finite set of program variables PV ⊆ V,
• a finite set of locations L with a distinguished initial location �0 ∈ L, and
• a finite set of transitions T . A transition is a tuple (�, τ, η, �′) consisting of

1. the start location � ∈ L and the target location �′ ∈ L \ {�0},
2. the guard τ ∈ C(V) of t, and
3. the update function η : PV → Z[V] of t, mapping every program variable

to an update polynomial.

We call T V = V \ PV the set of temporary variables.

Note that the initial location has no incoming transitions. The transitions (�0, ...)
whose start location is �0 are called initial transitions.

Thus, integer programs contain two kinds of non-determinism. Non-determi-
nistic branching is realized by multiple transitions with the same start location
whose guards are non-exclusive. Non-deterministic sampling is modeled by tem-
porary variables (which can be restricted in the guard of a transition). Temporary
variables are not updated in the program. Intuitively, these variables are set by
an adversary trying to “sabotage” the program in order to obtain long runtimes.

Example 3. Consider the integer program in Fig. 4 over the program vari-
ables PV = {x, y, z}, the locations L = {�0, �1, �2}, and the transitions T =
{t0, t1, t2, t3}. In Fig. 4, we omitted trivial guards, i.e., τ = true, and trivial
updates, i.e., updates of the form η(v) = v. This integer program corresponds
to two nested loops: the inner loop is given by t2, the outer loop by t1 and t3.
Transition t0 just for-
wards the input val-
ues. If z > 0, t1 sets x
and y to z − 1. Then,
t2 decrements y by 1
and updates x to x+y
repeatedly as long as
x > 0 (i.e., it corre-
sponds to the loop in
Fig. 1). Transition t3
decrements z by 1

Fig. 4. Integer Program with Nested Loops

and leads back to the starting point of the outer loop.
Note that t2 and t3 correspond to a non-deterministic branching as their

guards are non-exclusive. If t0 had the update η(x) = u and the guard u > 0,
then this would correspond to a non-deterministic sampling of a positive value.

From now on, we fix an integer program P over the variables V. A mapping
σ : V → Z is called a state and Σ denotes the set of all states. We also apply
states to arithmetic expressions e and constraints c, where the number σ(e) resp.
the Boolean value σ(c) results from e resp. c by replacing each variable v by σ(v).

Definition 4 (Evaluation of Integer Programs). A configuration is an
element of L × Σ. For two configurations (�, σ) and (�′, σ′), and a transition
t = (�t, τ, η, �′

t) ∈ T , (�, σ) →t (�′, σ′) is an evaluation step by t if

196 J. Giesl et al.

• � = �t and �′ = �′
t,

• σ(τ) = true, and
• for every program variable v ∈ PV we have σ(η(v)) = σ′(v).

We denote the union of all relations →t for t ∈ T by →T . Whenever it is clear
from the context, we omit the transition t resp. the set T in the index. We also
abbreviate (�0, σ0) →t1 (�1, σ1) · · · →tk

(�k, σk) by (�0, σ0) →k (�k, σk).

Example 5. For the integer program in Fig. 4, when denoting program states σ
as tuples (σ(x), σ(y), σ(z)) ∈ Z

3, we have (�0, (0, 0, 2)) →t0 (�1, (0, 0, 2)) →t1

(�2, (1, 1, 2)) →t2 (�2, (2, 0, 2)) →t3 (�1, (2, 0, 1)).

For an integer program, the (worst-case) runtime complexity w.r.t. an initial
state σ0 is defined to be the length of the longest evaluation starting in σ0.

Definition 6 (Runtime Complexity). The (worst-case) runtime complexity
of P is the function rc : Σ → N with N = N ∪ {ω} and rc(σ0) = sup{k ∈ N |
�k ∈ L, σk ∈ Σ, (�0, σ0) →k (�k, σk)} for all σ0 ∈ Σ.

As in [16], our approach combines bounds for program parts. We restrict
ourselves to bounds that represent weakly monotonically increasing functions.
Such bounds have the advantage that they can easily be “composed”, i.e., if f
and g are both weakly monotonically increasing upper bounds, then so is f ◦ g.

Definition 7 (Bounds). The set of bounds B is the smallest set with N ⊆ B,
PV ⊆ B, b1 + b2 ∈ B, b1 · b2 ∈ B, and kb ∈ B for all k ∈ N and b, b1, b2 ∈ B.

A bound which is only constructed from N, PV, +, and · is called polynomial.
A polynomial bound of degree at most 1 is called linear.

For any σ ∈ Σ, |σ| denotes the state with |σ| (v) = |σ(v)| for all v ∈ V.
Clearly, a bound b ∈ B induces a weakly monotonic function on states by map-
ping any σ ∈ Σ to |σ| (b) ∈ N. Then, |σ| ≤ |σ′| implies |σ| (b) ≤ |σ′| (b). As usual,
we compare functions pointwise, i.e., |σ| ≤ |σ′| means that |σ| (v) ≤ |σ′| (v) for
all v ∈ V.

Example 8. For PV = {x, y}, we have ω, x2, x+y, 2x2+y ∈ B. Here, x2 and x+y
are polynomial bounds and x + y is linear. Consider the state σ with σ(x) = 1
and σ(y) = −2. Then, |σ| (x + y) = |1| + |−2| = 3.

To over-approximate the runtime complexity, we now introduce the concepts
of runtime and size bounds. A runtime bound for a transition t ∈ T over-
approximates the maximal number of occurrences of that transition in any eval-
uation starting with the initial state σ0 ∈ Σ. Here, →∗ ◦ →t denotes the relation
describing arbitrary many evaluation steps followed by a step with transition t.

Definition 9 (Runtime Bound). The function RB : T → B is a runtime
bound if for all t ∈ T and all states σ0 ∈ Σ we have

|σ0| (RB(t)) ≥ sup{k ∈ N | � ∈ L, σ ∈ Σ, (�0, σ0) (→∗ ◦ →t)k (�, σ)}.

Improving Automatic Complexity Analysis of Integer Programs 197

Note that we require the runtime bound to only contain program variables since
the values of temporary variables are “set by the adversary”.

Example 10. For the program in Fig. 4, the technique from [16] obtains the fol-
lowing runtime bound. Trivially, RB(t0) = 1, as t0 can only be applied once in
any evaluation. Since the outer loop is only executed if z > 0 and every iteration
of the outer loop decreases z by 1, we get RB(t1) = RB(t3) = z, i.e., these
transitions can occur at most |z0| times, if z has the value z0 ∈ Z initially. How-
ever, the implementation of [16] in the original version of the tool KoAT cannot
infer a finite runtime bound for t2 since this transition does not admit a linear
ranking function, i.e., a linear function which decreases by at least one and is
bounded from below for each iteration of the loop. Intuitively, the reason is that
x is bounded, but it does not decrease in every iteration. In contrast, y decreases
in every iteration, but it is not bounded. In Sect. 3, we will show how to improve
our approach for complexity analysis such that it obtains a finite runtime bound
for transitions like t2 (see Example 21).

The following corollary shows that every runtime bound RB directly
yields an upper bound for the program’s runtime complexity: Instead of over-
approximating the runtime complexity of the full program at once, one can
compute runtime bounds for each transition separately and simply add these
bounds.

Corollary 11 (Over-Approximating rc). Let RB be a runtime bound. Then
for all states σ0 ∈ Σ we have |σ0|

(∑
t∈T RB(t)

)
≥ rc(σ0).

The framework in [16] performs a modular analysis of the program, i.e., parts
of the program are analyzed as standalone programs and the results are then
lifted to contribute to the overall analysis. For example, for the integer program
in Fig. 4, the inner loop t2 is analyzed separately in order to compute its runtime
bound. But to lift a local runtime bound of t2 to a runtime bound of t2 in the
full program, one has to take into account that the values of the variables when
executing t2 are not the input values of the program, but the values that the
variables have after an execution of the previous transition t1.

So to compute the runtime bound of a transition t′, our approach considers
all transitions t that can occur directly before t′ in evaluations and it needs
size bounds SB(t, v) to over-approximate the absolute values that the variables
v ∈ PV may have after these “previous” transitions t. (This intuition will later
be formalized in Theorem 20). Here, we call RV = T × PV the set of result
variables.

Definition 12 (Size Bound). The function SB : RV → B is a size bound if
for all (t, v) ∈ RV and all states σ0 ∈ Σ we have

|σ0| (SB(t, v)) ≥ sup{|σ(v)| ∈ N | � ∈ L, σ ∈ Σ, (�0, σ0) (→∗ ◦ →t) (�, σ)}.

Example 13. Consider again the program in Fig. 4. Here, SB(t0, v) = v for v ∈
{x, y, z}, because t0 does not change any variable. So if (�0, σ0) →t0 (�1, σ1)

198 J. Giesl et al.

then |σ0| (SB(t0, v)) = |σ0| (v) = |σ1| (v). Moreover, SB(t1, z) = SB(t2, z) =
SB(t3, z) = z as z is never increased in the program. For the computation of
SB(t1, x) and SB(t1, y), the approach of [16] sums up the values of SB(t0, z) and
SB(t3, z) (since t0 and t3 are the only transitions that can occur directly before
t1) and uses this as the “incoming size” of z. Hence, it obtains SB(t1, x) =
SB(t1, y) = z + z = 2 · z. The approach of [16] cannot compute finite size
bounds for (t2, x), (t2, y), (t3, x), and (t3, y), since it needs a runtime bound for
t2 to over-approximate how often the “previous” transition t2 may have been
executed. In contrast, our results from Sect. 3 will enable the computation of
finite size bounds for all result variables of this program, see Example 21.

So size bounds on previous transitions are needed to compute runtime
bounds, and similarly, runtime bounds are needed to compute size bounds. The
algorithm for the computation of size bounds in [16] is not needed to understand
the techniques presented in the current paper and thus, we use it as a black box.

3 Runtime Bounds by Multiphase Ranking Functions

The approach for computing runtime bounds in [16] relies on polynomial ranking
functions (see, e.g., [15,44]). In this section, we extend this approach to so-
called multiphase-linear ranking functions (MΦRFs) (see, e.g., [12,13,38,50]).
Our experiments in Sect. 5 demonstrate that this improves its power significantly.

In [12] it was already shown how to obtain a runtime bound from an MΦRF
for a full integer program. We now adapt this result to our modular approach
which allows for the computation of MΦRFs for parts of the program (Theo-
rem 20).

3.1 Multiphase-linear Ranking Functions

As mentioned, the idea of ranking functions is to construct a function which
decreases by at least one in every evaluation step when a specific transition is
applied. Moreover, the ranking function has to be non-negative before we apply a
transition. Thus, if the function becomes negative, then the program terminates.

An MΦRF extends this idea and uses a ranking function fi for every “phase”
1 ≤ i ≤ d of a program. When the phases 1 to i − 1 are finished, the functions
f1, . . . , fi−1 remain negative and decreasing, but now the function fi becomes
decreasing as well. If all functions are negative, then the program terminates.

Definition 14 corresponds to so-called nested MΦRFs from [12,38]. Here, the
sum of fi−1 and fi must be larger than the updated function fi for all i. We
set f0 to 0. Then f0 + f1 = f1 must be decreasing with each update. If f1
becomes negative, then f1 + f2 < f2 and thus, f2 has to be decreasing with
every update, and so on until fd becomes decreasing. The program eventually
terminates, since fd must be non-negative whenever the program can be executed
further. We restrict ourselves to such “nested” MΦRFs, as they are particularly
easy to automate (i.e., one does not have to consider the mapping of evaluation

Improving Automatic Complexity Analysis of Integer Programs 199

steps to the different phases). As usual, we use an SMT solver to search for
MΦRFs automatically.

In contrast to [12,38], we define MΦRFs for sub-programs T ′
> ⊆ T ′ ⊆ T

which is crucial for our modular approach (see Theorem 20). Let Z[PV]lin denote
the set of linear polynomials (i.e., of degree at most 1) over Z in the variables
PV.

Definition 14 (MΦRFs for Sub-Programs). Let ∅
= T ′
> ⊆ T ′ ⊆ T and

d ≥ 1. A tuple f = (f1, . . . , fd) of functions f1, . . . , fd : L → Z[PV]lin is an
MΦRF of depth d for T ′

> and T ′ if for all evaluation steps (�, σ) →t (�′, σ′):

(a) If t ∈ T ′
>, then we have σ (fi−1(�))+σ (fi(�)) ≥ σ′ (fi(�′))+1 for all 1 ≤ i ≤ d

and σ (fd(�)) ≥ 0.
(b) If t ∈ T ′ \ T ′

>, then we have σ (fi(�)) ≥ σ′ (fi(�′)) for all 1 ≤ i ≤ d.

Here, we set f0(�)=0 for all �∈L. We say that T ′\T ′
> is the set of non-increasing

transitions and T ′
> is the set of decreasing transitions of the MΦRF f .

The definitions of MΦRFs and of linear ranking functions coincide in the
special case of a single phase (i.e., if d = 1). Note that for d > 1, the require-
ment for decreasing transitions in (a) does not imply the requirement for non-
increasing transitions in (b). The reason is that for decreasing transitions, fi

may increase in the beginning (if fi−1 is large enough), because eventually fi−1

will become negative. In contrast, for non-increasing transitions, (b) prohibits
any increase of fi, since the MΦRF does not represent any bound on the number
of applications of these non-increasing transitions. Thus, we cannot replace (b)
by σ (fi−1(�))+σ (fi(�)) ≥ σ′ (fi(�′)), because then such transitions might make
fi arbitrarily large if their repeated application does not change a positive fi−1.

Example 15. Consider again the integer program in Fig. 4 and let T ′
> = {t2}

and T ′ = {t2, t3}. (See Algorithm 1 for our heuristic to choose T ′
> and T ′.)

An execution of the loop T ′
> = {t2} has two phases: In the first phase, both x

and y are positive. In every iteration, x increases until y is 0. The second phase
starts when y is negative. This phase ends when x is negative, since then the
guard x > 0 is not satisfied anymore. We now show that the tuple (f1, f2) is
an MΦRF for T ′

> = {t2} and T ′ = {t2, t3} where f1(�1) = f1(�2) = y + 1 and
f2(�1) = f2(�2) = x.

Since t2 has the update function η with η(x) = x + y and η(y) = y − 1, for
any evaluation step (�2, σ) →t2 (�2, σ′), we have σ′(x) = σ(η(x)) = σ(x) + σ(y)
and σ′(y) = σ(η(y)) = σ(y) − 1. Hence, σ (f0(�2)) + σ (f1(�2)) = 0 + σ (y + 1) =
σ (y)+1 = σ′ (y + 1)+1 = σ′ (f1(�2))+1 and σ (f1(�2))+σ (f2(�2)) = σ (y + 1)+
σ (x) = σ (x) + σ (y) + 1 = σ′ (x) + 1 = σ′ (f2(�2)) + 1. Moreover, due to the
guard x > 0, σ (x > 0) = true implies σ (f2(�2)) = σ (x) ≥ 0. Note that neither
y + 1 (as y is not bounded) nor x (as x might increase) are ranking functions
for t2.

Similarly, since the update function η of t3 does not modify x and y, for
every evaluation step (�2, σ) →t3 (�1, σ′), we have σ′(x) = σ(η(x)) = σ(x) and
σ′(y) = σ(η(y)) = σ(y). Hence, σ (f1(�2)) = σ (y + 1) = σ (y) + 1 = σ′ (y + 1) =
σ′ (f1(�1)) and σ (f2(�2)) = σ (x) = σ′ (x) = σ′ (f2(�1)).

200 J. Giesl et al.

3.2 Computing Runtime Bounds

We now show how to compute runtime bounds using MΦRFs. As in [16], for a
sub-program T ′, the entry transitions of a location � are all transitions outside
T ′ which reach �. The entry locations of T ′ are all locations where an evaluation
of the sub-program T ′ can begin. Finally, the entry transitions of T ′ are all entry
transitions to entry locations of T ′.

Definition 16 (Entry Transitions and Entry Locations). Let ∅
= T ′ ⊆
T . We define the set of entry transitions of � ∈ L as T� = {t | t = (�′, τ, η, �)∧t ∈
T \T ′}. The set of entry locations is ET ′ = {�in | T�in
= ∅ ∧∃�′ : (�in, τ, η, �′) ∈
T ′}. Finally, the entry transitions of T ′ are ET T ′ =

⋃
�∈ET ′ T�.

Example 17. Again, consider the integer program in Fig. 4 and T ′ = {t2, t3}.
Then we have T�2 = {t1}, ET ′ = {�2}, and ET T ′ = {t1}.

In [12, Lemma 6], the authors considered programs consisting of a single
looping transition and showed that an MΦRF for the loop yields a linear bound
on the possible number of its executions. We now generalize their lemma to our
modular setting where we regard sub-programs T ′ instead of the full program
T .1 The sub-program T ′ may contain arbitrary many transitions and loops.

For a start configuration (�, σ) where � is an entry location of T ′ and an
MΦRF f = (f1, . . . , fd) for T ′

> and T ′, Lemma 18 gives a bound β ∈ N which
ensures that whenever there is an evaluation of T ′ that begins with (�, σ) and
where transitions from T ′

> are applied at least β times, then all ranking functions
in f have become negative. As f is an MΦRF (and thus, in every application
of a transition from T ′

>, some fi must be decreasing and non-negative), this
implies that in any evaluation of T ′ starting in (�, σ), transitions from T ′

> can
be applied at most β times. Since the bound β depends linearly on the values
σ (f1(�)) , . . . , σ (fd(�)) of the ranking functions in the start configuration (�, σ)
and since all ranking functions fi are linear as well, this means that we have
inferred a linear bound on the number of applications of transitions from T ′

>.
However, this is only a local bound w.r.t. the values of the variables at the start
of the sub-program T ′. We lift these local bounds to global runtime bounds for
the full program in Theorem 20. See Appendix A for the proofs of both Lemma18
and Theorem 20.

Lemma 18 (Local Runtime Bound for Sub-Program). Let ∅
= T ′
> ⊆

T ′ ⊆ T , � ∈ ET ′ , σ ∈ Σ, and let f = (f1, . . . , fd) be an MΦRF for T ′
> and T ′.

For all 1 ≤ i ≤ d, we define the constants γi ∈ Q and β ∈ N with γi, β > 0:

• γ1 = 1 and γi = 2 + γi−1
i−1 + 1

(i−1)! for i > 1
• β = 1 + d! · γd · max{0, σ(f1(�)), . . . , σ(fd(�))}

Then for any evaluation (�, σ) (→∗
T ′\T ′

>
◦ →T ′

>
)n (�′, σ′) with n ≥ β and any

1 ≤ i ≤ d, we have σ′(fi(�′)) < 0.
1 So in the special case where T ′

> = T ′ and T ′ is a singleton, our Lemma 18 corresponds
to [12, Lemma 6] for nested MΦRFs.

Improving Automatic Complexity Analysis of Integer Programs 201

Note that the constants γi do not depend on the program or the MΦRF, and
the factor d! · γd only depends on the depth d.

Example 19. Reconsider the MΦRF = (f1, f2) that we found for T ′
> = {t2} and

T ′ = {t2, t3} in Example 15. The constants of Lemma 18 are γ1 = 1 and γ2 = 2+
1
1 + 1

1 = 4. Thus, when T ′ is interpreted as a standalone program, then transition
t2 can be executed at most β = 1 + 2! · γ2 · max{0, σ (f1(�2)) , σ (f2(�2))} =
1 + 8 · max {0, σ (y + 1) , σ (x)} many times when starting in σ ∈ Σ.

Lemma 18 yields the runtime bound

1 + d! · γd · max{0, f1(�), . . . , fd(�)} (1)

for the transitions T ′
> in the standalone program consisting of the transitions T ′.

However, (1) is not yet a bound from B, because it contains “max” and because
the polynomials fi(�) may have negative coefficients. To transform polynomials
into (weakly monotonically increasing) bounds, we replace their coefficients by
their absolute values (and denote this transformation by �·). So for example we
have �−x + 2 = |−1| · x + |2| = x + 2. Moreover, to remove “max”, we replace
it by addition. In this way, we obtain the bound

β� = 1 + d! · γd · (�f1(�) + . . . + �fd(�)).

In an evaluation of the full program, we enter a sub-program T ′ by an entry
transition t ∈ T� to an entry location � ∈ ET ′ . As explained in Sect. 2, to lift
the local runtime bound β� for T ′

> to a global bound, we have to instantiate the
variables in β� by (over-approximations of) the values that the variables have
when reaching the sub-program T ′, i.e., after the transition t. To this end, we
use the size bound SB(t, v) which over-approximates the largest absolute value
of v after the transition t. We also use the shorthand notation SB(t, ·) : PV → B,
where SB(t, ·)(v) is defined to be SB(t, v) and for every arithmetic expression
b, SB(t, ·)(b) results from b by replacing each variable v in b by SB(t, v). Hence,
SB(t, ·)(β�) is a (global) bound on the number of applications of transitions from
T ′

> if T ′ is entered once via the entry transition t. Here, weak monotonic increase
of β� ensures that the over-approximation of the variables v in β� by SB(t, v)
indeed leads to an over-approximation of T ′

>’s runtime.
However, for every entry transition t we also have to take into account how

often the sub-program T ′ may be entered via t. We can over-approximate this
value by RB(t). This leads to Theorem 20 which generalizes a result from [16]
to MΦRFs. The analysis starts with a runtime bound RB and a size bound SB
which map all transitions resp. result variables to ω, except for the transitions
t which do not occur in cycles of mathcalT , where RB(t) = 1. Afterwards, RB
and SB are refined repeatedly. Instead of using a single ranking function for
the refinement of RB as in [16], Theorem 20 now allows us to replace RB by a
refined bound RB′ based on an MΦRF.

Theorem 20 (Refining Runtime Bounds Based on MΦRFs). Let RB be
a runtime bound, SB a size bound, and ∅
= T ′

> ⊆ T ′ ⊆ T such that T ′ does not

202 J. Giesl et al.

contain any initial transitions. Let f = (f1, . . . , fd) be an MΦRF for T ′
> and T ′.

For any entry location � ∈ ET ′ we define β� = 1+d! ·γd · (�f1(�)+ . . .+�fd(�)),
where γd is as in Lemma18. Then RB′ is also a runtime bound, where we define
RB′ by RB′(t) = RB(t) for all t /∈ T ′

> and

RB′ (t>) =
∑

�∈ET ′

∑

t∈T�

RB(t) · SB(t, ·) (β�) for all t> ∈ T ′
>.

Example 21. We use Theorem 20 to compute a runtime bound for t2 in Fig. 4.
In Example 17, we showed that E{t2,t3} = {�2} and T�2 = {t1}. Thus, we obtain

RB(t2) = RB(t1) · SB(t1, ·) (β�2) .

Using our calculations from Example 19 we have β�2 = 1 + 2! · γ2 · (�f1(�2) +
�f2(�2)) = 1 + 8 · (y + 1 + x) = 8 · x + 8 · y + 9.

We use the runtime bound RB(t1) = z and the size bounds SB(t1, x) =
SB(t1, y) = 2 · z from Example 10 and Example 13 and get RB(t2) = RB(t1) ·
(8 · SB(t1, x) + 8 · SB(t1, y) + 9) = z · (8 · 2 · z + 8 · 2 · z + 9) = 32 · z2 + 9 · z.

By Corollary 11 and Example 10, the runtime complexity of the program in
Fig. 4 is at most

∑3
j=0 RB(tj) = 1 + z + 32 · z2 + 9 · z + z = 32 · z2 + 11 · z + 1,

resp. rc(σ0) ≤ 32·|σ0(z)|2+11·|σ0(z)|+1, i.e., the program’s runtime complexity
is at most quadratic in the initial absolute value of z. Thus, in contrast to [16],
we can now infer a finite bound on the runtime complexity of this program.

3.3 Complete Algorithm

Based on Theorem 20, in Algorithm 1 we present our complete algorithm which
improves the approach for complexity analysis of integer programs from [16] by
using MΦRFs to infer runtime bounds. As mentioned in Sect. 2, the computation
of size bounds from [16] is used as a black box. We just take the alternating
repeated improvement of runtime and size bounds into account. So in particular,
size bounds are updated when runtime bounds have been updated (Lines 12 and
14).

First, we preprocess the program (Line 1) by eliminating unreachable loca-
tions and transitions with unsatisfiable guards, and infer program invariants
using the Apron library [34]. In addition, we remove variables which clearly do
not have an impact on the termination behavior of the program. Then, we set
all runtime bounds for transitions outside of cycles to 1, and all other bounds to
ω initially (Line 2).

For the computation of an MΦRF, the considered subset T ′ has to be chosen
heuristically. We begin with regarding a strongly connected component2 (SCC)
T̃ of the program graph in Line 3. Then we try to generate an MΦRF, and choose
T ′ to consist of a maximal subset of T̃ where all transitions are non-increasing

2 As usual, a graph is strongly connected if there is a path from every node to every
other node. A strongly connected component is a maximal strongly connected sub-
graph.

Improving Automatic Complexity Analysis of Integer Programs 203

Input: An integer program P = (PV, L, �0, T)
1 Preprocess P
2 Create an initial runtime bound RB and an initial size bound SB and set d ← 1

3 forall SCCs ˜T without initial transitions of P in topological order do
4 repeat

5 forall t> ∈ ˜T with RB(t>) = ω do
6 repeat

7 Search for an MΦRF with depth d for a maximal subset T ′ ⊆ ˜T
that has a subset T ′

> ⊆ T ′ with t> ∈ T ′
>

such that all transitions in T ′
> are decreasing

and all transitions in T ′ \ T ′
> are non-increasing

8 d ← d + 1

9 until MΦRF was found or d > mdepth
10 if MΦRF was found then
11 Update RB(t) for all t ∈ T ′

> using Theorem 20

12 Update all size bounds for transitions in ˜T and reset d ← 1

13 until No runtime or size bound improved
14 Update all size bounds for outgoing transitions of ˜T .

Output: Runtime Bound RB and Size Bound SB

Algorithm 1: Inferring Global Runtime and Size Bounds

or decreasing (and at least one of the unbounded transitions t> is decreasing).
So for the program in Fig. 4, we would start with T̃ = {t1, t2, t3}, but when
trying to generate an MΦRF for T ′

> = {t2}, we can only make t2 decreasing and
t3 non-increasing. For that reason, we then set T ′ to {t2, t3}.

We treat the SCCs in topological order such that improved bounds for previ-
ous transitions are already available when handling the next SCC. If an MΦRF
was found, we update the runtime bound for all t ∈ T ′

> using Theorem 20 (Line
11). If we do not find any MΦRF of the given depth that makes t> decreasing,
we increase the depth and continue the search until we reach a fixed mdepth.
We abort the computation of runtime bounds if no bound has been improved.
Here, we use a heuristic which compares polynomial bounds by their degrees.

Finally, let us elaborate on the choice of mdepth. For example, if mdepth is
1, then we just compute linear ranking functions. If mdepth is infinity, then we
cannot guarantee that our algorithm always terminates. For certain classes of
programs, it is possible to give a bound on mdepth such that if there is an MΦRF
for the program, then there is also one of depth mdepth [11,12,50]. However, it
is open whether such a bound is computable for general integer programs. As
the amount of time the SMT solver needs to find an MΦRF increases with the
depth, we decided to use 5 as a fixed maximal depth, which performed well in
our examples. Still, we provide the option for the user to change this bound.

204 J. Giesl et al.

4 Improving Bounds by Control-Flow Refinement

Now we present another technique to improve the automated complexity analysis
of integer programs, so-called control-flow refinement. The idea is to transform
a program P into a new program P ′ which is “easier” to analyze. Of course, we
ensure that the runtime complexity of P ′ is at least the runtime complexity of
P. Then it is sound to analyze upper runtime bounds for P ′ instead of P.

Our approach is based on the partial evaluation technique of [20]. For ter-
mination analysis, [20] shows how to use partial evaluation of constrained Horn
clauses locally on every SCC of the program graph. But for complexity analysis,
[20] only discusses global partial evaluation as a preprocessing step for complexity
analysis. In Sect. 4.1, we formalize the partial evaluation technique of [20] such
that it operates directly on SCCs of integer programs and prove that it is sound
for complexity analysis. Afterwards, we improve its locality further in Sect. 4.2
such that partial evaluation is only applied on-demand on those transitions of an
integer program where our current runtime bounds are “not yet good enough”.
Our experimental evaluation in Sect. 5 shows that our local partial evaluation
techniques of Sect. 4.1 and Sect. 4.2 lead to a significantly stronger tool than
when performing partial evaluation only globally as a preprocessing step.

As indicated in Sect. 1, the loop in Fig. 2 can be transformed into two con-
secutive loops (see Fig. 3). The first loop in Fig. 3 covers the case x < 0 ∧ y < z
and the second one covers the case x < 0 ∧ y ≥ z. These cases correspond to
the conjunction of the loop guard with the conditions of the two branches of the
if -instruction. Here, partial evaluation detects that these cases occur after each
other, i.e., if y ≥ z, then the case y < z does not occur again afterwards. In
Example 22, we illustrate how our algorithm for partial evaluation performs this
transformation. In the refined program of Fig. 3, it is easy to see that the runtime
complexity is at most linear. Thus, the original loop has at most linear runtime
complexity as well. Note that our tool KoAT can also infer a linear bound for
both programs corresponding to Fig. 2 and 3 without control-flow refinement.
In fact, for these examples it suffices to use just linear ranking functions, i.e.,
Theorem 20 with MΦRFs of depth d = 1. Still, we illustrate partial evaluation
using this small example to ease readability. We will discuss the relationship
between MΦRFs and partial evaluation at the end of Sect. 4.2, where we also
show examples to demonstrate that these techniques do not subsume each other
(see Example 26 and 27).

Improving Automatic Complexity Analysis of Integer Programs 205

Input: A program P = (PV, L, �0, T) and a non-trivial SCC TSCC ⊆ T
1 L1 ← {〈�′, true〉 | �′ ∈ ETSCC }
2 Tres ← {(�, τ, η, 〈�′, true〉) | �′ ∈ ETSCC ∧ (�, τ, η, �′) ∈ T \ TSCC}
3 L0 ← ∅, Ldone ← ∅

4 repeat
5 L0 ← L1, L1 ← ∅

6 forall 〈�, ϕ〉 ∈ L0 do
7 forall (�, τ, η, �′) ∈ TSCC do
8 Compute ϕnew from ϕ, τ , and η such that |= (ϕ ∧ τ) → η(ϕnew)
9 if 〈�′, α�′(ϕnew)〉 /∈ Ldone then

10 L1 ← L1 ∪ {〈�′, α�′(ϕnew)〉}
11 Tres ← Tres ∪ {(〈�, ϕ〉, ϕ ∧ τ, η, 〈�′, α�′(ϕnew)〉)}
12 forall (�, τ, η, �′) ∈ T \ TSCC do
13 Tres ← Tres ∪ {(〈�, ϕ〉, ϕ ∧ τ, η, �′)}
14 Ldone ← Ldone ∪ {〈�, ϕ〉}
15 until L1 = ∅

Output: P ′ = (PV, (L \ {� | � occurs as source or target in TSCC}) ∪ Ldone , �0,
(T \ {(�, τ, η, �′) | � or �′ occurs as source or target in TSCC}) ∪ Tres)

Algorithm 2: Partial Evaluation for an SCC

4.1 SCC-Based Partial Evaluation

We now formalize the partial evaluation of [20] as an SCC-based refinement tech-
nique for integer programs in Algorithm2 and show its correctness for complexity
analysis in Theorem 24. The intuitive idea of Algorithm2 is to refine a non-trivial3

SCC TSCC of an integer program into multiple SCCs by considering “abstract”
evaluations which do not operate on concrete states but on sets of states. These
sets of states are characterized by constraints, i.e., a constraint ϕ stands for all
states σ with σ(ϕ) = true. To this end, we label every location � in the SCC
by a constraint ϕ ∈ C(PV) which describes (a superset of) those states σ which
can occur in this location. So all reachable configurations with the location � have
the form (�, σ) such that σ(ϕ) = true. We begin with labeling the entry loca-
tions of TSCC by the constraint true. The constraints for the other locations in
the SCC are obtained by considering how the updates of the transitions affect the
constraints of their source locations and their guards. The pairs of locations and
constraints then become the new locations in the refined program.

Since locations can be reached by different paths, the same location may get
different constraints, i.e., partial evaluation can transform a former location �
into several new locations 〈�, ϕ1〉, . . . , 〈�, ϕn〉. So the constraints are not neces-
sarily invariants that hold for all evaluations that reach a location � but instead
of “widening” (or “generalizing”) constraints when a location can be reached by
different states, we perform a case analysis and split up a location � according
to the different sets of states that may reach �.

After labeling every entry location � of TSCC by the constraint true in Line 1
of Algorithm 2, we modify the entry transitions to � such that they now reach the
new location 〈�, true〉 instead (Line 2). The sets L0 and L1 (the new locations

3 As usual, an SCC is non-trivial if it contains at least one transition.

206 J. Giesl et al.

whose outgoing transitions need to be processed) and Ldone (the new locations
whose outgoing transitions were already processed) are used for bookkeeping. We
then apply partial evaluation in Lines 4 to 15 until there are no new locations
with transitions to be processed anymore (see Line 15).

In each iteration of the outer loop in Line 4, the transitions of the current
new locations in L1 are processed. To this end, L0 is set to L1 and L1 is set to
∅ in Line 5. During the handling of the locations in L0, we might create new
locations and these will be stored in L1 again.

We handle all locations 〈�, ϕ〉 in L0 (Line 6) by using all outgoing transitions
(�, τ, η, �′). We first consider those transitions which are part of the considered
SCC (Line 7), whereas the transitions which leave the SCC are handled in Line 12.

The actual partial evaluation step is in Line 8. Given a new location 〈�, ϕ〉
and a transition t = (�, τ, η, �′), we compute a constraint ϕnew which over-
approximates the set of states that can result from those states that satisfy
the constraint ϕ and the guard τ of the transition when applying the update η.
More precisely, ϕnew has to satisfy |= (ϕ∧ τ) → η(ϕnew), i.e., (ϕ∧ τ) → η(ϕnew)
is a tautology. For example, if ϕ = (x = 0), τ = true, and η(x) = x−1, we derive
ϕnew = (x = −1). However, if we now created the new location 〈�′, ϕnew 〉, this
might lead to non-termination of our algorithm. The reason is that if �′ is within
a loop, then whenever one reaches �′ again, one might obtain a new constraint.
In this way, one would create infinitely many new locations 〈�′, ϕ1〉, 〈�′, ϕ2〉,
For instance, if in our example the transition with the update η(x) = x − 1
is a self-loop, then we would derive further new locations with the constraints
x = −2, x = −3, etc.

To ensure that every former location �′ only gives rise to finitely many
new locations 〈�′, ϕ〉, we perform property-based abstraction as in [20,28]: For
every location �′ we use a finite so-called abstraction layer α�′ ⊆ {e1 ≤ e2 |
e1, e2 ∈ Z[PV]}. So α�′ is a finite set of atomic constraints (i.e., of polyno-
mial inequations). Then α�′ is extended to a function on constraints such that
α�′(ϕnew) = ϕ′

new where ϕ′
new is a conjunction of inequations from α�′ and

|= ϕnew → ϕ′
new. This guarantees that partial evaluation terminates, but it can

lead to an exponential blow-up, since for every location �′ there can now be
2|α�′ | many possible constraints. In our example, instead of the infinitely many
inequations x = 0, x = −1, x = −2, . . . the abstraction layer might just contain
the inequation x ≤ 0. Then we would only obtain the new location with the
constraint x ≤ 0.

Afterwards, in Lines 9 and 10 we add the new location 〈�′, α�′(ϕnew)〉 to L1

if it was not processed before. Moreover, the transition (�, τ, η, �′) which we used
for the refinement must now get the new location as its target (Line 11) and
〈�, ϕ〉 as its source. In addition, we extend the transition’s guard τ by ϕ.

Finally, we also have to process the transitions (�, τ, η, �′) which leave the
SCC. Thus, we replace the source transition � by 〈�, ϕ〉 and again extend the
guard τ of the transition by the constraint ϕ in Lines 12 and 13. Since we have
now processed all outgoing transitions of 〈�, ϕ〉 we can add it to Ldone in Line
14.

Improving Automatic Complexity Analysis of Integer Programs 207

In the end, we output the program where the considered SCC and all tran-
sitions in or out of this SCC were refined (and thus, have to be removed from
the original program). We now illustrate Algorithm 2 using the program from
Fig. 2.

Fig. 5. Integer Program Corresponding to Fig. 2

Example 22. Figure 5 repre-
sents the program from
Fig. 2 in our formalism for
integer programs. Here, we
used an explicit location �3
for the end of the program
to illustrate how Algorithm
2 handles transitions which
leave the SCC.

We apply Algorithm 2 to
the program in Fig. 5 and
refine the SCC TSCC =
{t1, t2, t3}. The entry location is ETSCC = {�1}. To increase readability, let τi

be the guard and ηi be the update of transition ti for all 0 ≤ i ≤ 3.
For the abstraction layers, we choose4 α�1 = α�2 = {x < 0, y ≥ z}. It is

not necessary to define abstraction layers for �0 and �3, as they are not part of
the SCC. So for any constraint ϕnew and i ∈ {1, 2}, α�i

(ϕnew) can only be a
conjunction of the inequations in α�i

(i.e., α�i
(ϕnew) is true, x < 0, y ≥ z, or

x < 0 ∧ y ≥ z, where true corresponds to the empty conjunction).
Since t0 is the only entry transition to the entry location �1, we initialize Tres

with {(�0, τ0, η0, 〈�1, true〉)} and L1 with {〈�1, true〉}.
In the first iteration L0 only consists of 〈�1, true〉. We have two possi-

ble transitions which we can apply in �1: t1 = (�1, τ1, η1, �2) ∈ TSCC or
t4 = (�1, τ4, η4, �3) ∈ T \ TSCC . We start with transition t1. Since the update η1
is the identity, from the guard τ1 = (x < 0) we obtain the resulting constraint
ϕnew = (x < 0). We apply the abstraction layer and get α�2(x < 0) = (x < 0)
because |= (x < 0) → (x < 0). Now we add the new transition

(〈�1, true〉, true ∧ τ1, η1, 〈�2, x < 0〉)

to Tres and 〈�2, x < 0〉 to L1. For transition t4 = (�1, τ4, η4, �3), we update its
source location and get the resulting transition

(〈�1, true〉, true ∧ τ4, η4, �3)

in Tres . We add 〈�1, true〉 to Ldone . Now L1 consists of 〈�2, x < 0〉. There are
two transitions t2 and t3 which can be applied in �2. For t2, from the previous
constraint x < 0 and the guard τ2 = (y < z) we can infer that after the update
η2(y) = y −x we have x < 0∧ y < z −x. As the abstraction layer α�1 consists of

4 In [20], different heuristics are presented to choose such abstraction layers. In our
implementation, we use these heuristics as a black box.

208 J. Giesl et al.

Fig. 6. Applying Partial Evaluation to Fig. 5

x < 0 and y ≥ z, we have α�1(x < 0 ∧ y < z − x) = x < 0, since
|= (x < 0 ∧ y <
z − x) → (y ≥ z). Thus, we add the new transition

(〈�2, x < 0〉, x < 0 ∧ τ2, η2, 〈�1, x < 0〉)

to Tres and 〈�1, x < 0〉 to the set L1. Similarly, for t3, from x < 0 and the guard
τ3 = (y ≥ z) we infer that after η3(x) = x + 1 we have x < 1 ∧ y ≥ z. Here,
α�1(x < 1 ∧ y ≥ z) = y ≥ z, since
|= (x < 1 ∧ y ≥ z) → (x < 0). Hence, we add

(〈�2, x < 0〉, x < 0 ∧ τ3, η3, 〈�1, y ≥ z〉)

to Tres and 〈�1, y ≥ z〉 to L1. So L1 now consists of 〈�1, x < 0〉 and 〈�1, y ≥ z〉. For
〈�1, x < 0〉, in the same way as before we obtain the following new transitions:

(〈�1, x < 0〉, x < 0 ∧ τ1, η1, 〈�2, x < 0〉)
(〈�1, x < 0〉, x < 0 ∧ τ4, η4, �3)

Note that the guard x < 0 ∧ τ4 of the last transition is unsatisfiable. For that
reason, we always remove transitions with unsatisfiable guard after partial eval-
uation was applied. For 〈�1, y ≥ z〉, we obtain the following new transitions:

(〈�1, y ≥ z〉, y ≥ z ∧ τ1, η1, 〈�2, x < 0 ∧ y ≥ z〉)
(〈�1, y ≥ z〉, y ≥ z ∧ τ4, η4, �3)

Thus, L1 now consists of the new location 〈�2, x < 0 ∧ y ≥ z〉. For this location,
we finally get the following new transitions:

(〈�2, x < 0 ∧ y ≥ z〉, x < 0 ∧ y ≥ z ∧ τ2, η2, 〈�1, x < 0 ∧ y ≥ z〉)
(〈�2, x < 0 ∧ y ≥ z〉, x < 0 ∧ y ≥ z ∧ τ3, η3, 〈�1, y ≥ z〉)

Improving Automatic Complexity Analysis of Integer Programs 209

Since the guard x < 0 ∧ y ≥ z ∧ τ2 of the penultimate transition is again
unsatisfiable, it will be removed. For that reason, then the location 〈�1, x <
0 ∧ y ≥ z〉 will be unreachable and will also be removed.

Figure 6 shows the refined integer program where we wrote �i,ϕ instead of
〈�i, ϕ〉 for readability. Moreover, transitions with unsatisfiable guard or unreach-
able locations were removed. The first SCC with the locations 〈�2, x < 0〉 and
〈�1, x < 0〉 is applied before the second SCC with the locations 〈�1, y ≥ z〉 and
〈�2, x < 0 ∧ y ≥ z〉. So we have detected that these two SCCs occur after each
other. Indeed, the integer program in Fig. 6 corresponds to the one in Fig. 3.

Algorithm 2 is sound because partial evaluation transforms a program P into
an equivalent program P ′. Therefore, it does not change the runtime.

Definition 23 (Equivalence of Programs). Let P = (PV,L, �0, T) and
P ′ = (PV,L′, �0, T ′) be integer programs over V. P and P ′ are equivalent iff
the following holds for all states σ0 ∈ Σ: There is an evaluation (�0, σ0) →k

T
(�, σ) for some σ ∈ Σ, some k ∈ N, and some � ∈ L iff there is an evaluation
(�0, σ0) →k

T ′ (�′, σ) for the same σ ∈ Σ and k ∈ N, and some location �′.

Theorem 24 (Soundness of Partial Evaluation in Algorithm 2). Let
P = (PV,L, �0, T) be an integer program and let TSCC ⊆ T be a non-trivial
SCC of the program graph. Let P ′ be the integer program resulting from applying
Algorithm 2 to P and TSCC . Then P and P ′ are equivalent.

4.2 Sub-SCC-Based Partial Evaluation

As control-flow refinement may lead to an exponential blow-up of the program,
we now present an algorithm where we heuristically minimize the strongly con-
nected part of the program on which we apply partial evaluation (Algorithm 3)
and we discuss how to integrate it into our approach for complexity analysis.
Our experiments in Sect. 5 show that such a sub-SCC-based partial evaluation
leads to significantly shorter runtimes than the SCC-based partial evaluation of
Algorithm 2.

The idea of Algorithm 3 is to find a minimal cycle of the program graph con-
taining the transitions Tcfr whose runtime bound we aim to improve by partial
evaluation. On the one hand, in this way we minimize the input set TSCC for the
partial evaluation algorithm. On the other hand, we keep enough of the original
program’s control flow such that partial evaluation can produce useful results.

Our local control-flow refinement technique in Algorithm 3 consists of three
parts. In the first loop in Lines 2 to 8, we find a minimal cycle Tt for each
transition t from Tcfr . Afterwards, Tt is extended by all transitions which are
parallel to some transition in Tt in Line 5. Otherwise, we would not be able to
correctly insert the refined program afterwards. We add a fresh initial location
�new , take all entry transitions to the previously computed cycle and extend Tt

by new corresponding entry transitions which start in �new instead (Lines 6 and
7). We collect all these programs in a set S, where the programs have �new as
their initial location.

210 J. Giesl et al.

Input: A program P = (PV, L, �0, T) and a non-empty subset Tcfr of a
non-trivial SCC from T .

1 S ← ∅

2 forall t = (�, τ, η, �′) ∈ Tcfr do
3 Tt ← a shortest path from �′ to �
4 Tt ← Tt ∪ {t}
5 Tt ← Tt ∪ {(�̂, , , �̂′) ∈ T | (�̂, , , �̂′) ∈ Tt}
6 forall entry transitions (�, τ , η, �

′
) ∈ ET Tt do

7 Add transition (�new , τ , η, �
′
) to Tt.

8 S ← S ∪ {(PV, L, �new , Tt)}
9 repeat

10 if there exist P ′ = (PV, L, �new , T ′) and P ′′ = (PV, L, �new , T ′′) with
P ′, P ′′ ∈ S, P ′
= P ′′, and a location �
= �new occurs in both T ′ and T ′′

then
11 S ← (S \ {P ′, P ′′}) ∪ {(PV, L, �new , T ′ ∪ T ′′)}
12 until S does not change anymore
13 forall P ′ = (PV, L, �new , T ′) ∈ S do
14 P ′′ = (PV, L′′, �new , T ′′) ← apply Alg. 2 to P ′ and the single non-trivial

SCC TSCC in T ′

15 Extend the transitions T of P by the transitions T ′′.
16 forall entry transitions t = (�, τ, η, �′) ∈ ET T ′ do
17 Replace t by (�, τ, η, 〈�′, true〉) in P.
18 forall outgoing transitions t = (�, τ, η, �′) ∈ ET T \T ′ do
19 Replace t by (〈�, ϕ〉, τ, η, �′) in P for all 〈�, ϕ〉 ∈ L′′.
20 Remove unreachable locations and transitions, and transitions with

unsatisfiable guard.
Output: Refined program P

Algorithm 3: Partial Evaluation for a Subset of an SCC

So for our example from Fig. 5 and Tcfr = {t3}, S only contains one program
with locations �1, �2, �new , transitions t1, t2, t3, and a transition from �new to �1.

As the next step, in the second loop in Lines 9 to 12, we merge those programs
which share a location other than �new . Again, this allows us to correctly insert
the refined program afterwards (see the proof of Theorem25).

The last loop in Lines 13 to 19 performs partial evaluation on each strongly
connected part of the programs in S, and inserts the refined programs into
the original one by redirecting the entry and the outgoing transitions. Here, an
outgoing transition is simply an entry transition of the complement.

At the end of Algorithm 3, one should remove unreachable locations and tran-
sitions, as well as transitions with unsatisfiable guard. This is needed, because the
refined transitions T ′ are simply added to the old transitions T , and entry and
outgoing transitions are redirected. So the previous transitions might become
unreachable.

Instead of implementing Algorithm 2 ourselves, our complexity analyzer
KoAT calls the implementation of [20] in the tool iRankFinder [19] as a backend

Improving Automatic Complexity Analysis of Integer Programs 211

for partial evaluation.5 So in particular, we rely on iRankFinder’s heuristics to
compute the abstraction layers α�′ and the new constraints ϕnew resp. α�′(ϕnew)
in Algorithm 2.

So in our example, partial evaluation on the program in S would result in
a program like the one in Fig. 6, but instead of the transition from �0 to �1,true

there would be a transition from �new to �1,true. Moreover, the location �3 and
the transitions to �3 would be missing. The redirection of the entry and the
outgoing transitions would finally create the program from Fig. 6.

The advantage of our technique in contrast to the näıve approach (i.e., apply-
ing partial evaluation on the full program as a preprocessing step) and also to the
SCC-based approach in Algorithm 2, is that Algorithm 3 allows us to apply par-
tial evaluation “on-demand” just on those transitions where our bounds are still
“improvable”. Thus, to integrate partial evaluation into our overall approach,
Algorithm 1 is modified such that after the treatment of an SCC T̃ in Lines 5
to 12, we let Tcfr consists of all transitions t ∈ T̃ where RB(t) is not linear (and
not constant). So this is our heuristic to detect transitions with “improvable”
bounds. If Tcfr
= ∅, then we call Algorithm 3 to perform partial evaluation and
afterwards we execute Lines 5 to 12 of Algorithm 1 once more for the SCC that
results from refining T̃ .

Theorem 25 (Soundness of Partial Evaluation in Algorithm 3). Let
P = (PV,L, �0, T) be a program and Tcfr ⊆ T a non-empty set of transitions
from some non-trivial SCC. Then P and the program computed by Algorithm 3
are equivalent.

Both MΦRFs and control-flow refinement detect “phases” of the program. An
MΦRF represents these phases via different ranking functions, whereas control-
flow refinement makes these phases explicit by modifying the program, e.g.,
by splitting an SCC into several new ones as in Example 22. Example 26 and
Example 27 show that there are programs where one of the techniques allows
us to infer a finite bound on the runtime complexity while the other one does
not. This is also demonstrated by our experiments with different configurations
of KoAT in Sect. 5.

Example 26. For the program corresponding to the loop in Fig. 1 we can only
infer a finite runtime bound if we search for MΦRFs of at least depth 2. In con-
trast, control-flow refinement via partial evaluation does not help here, because it
does not change the loop. The used MΦRF (f1, f2) with f1(�1) = f1(�2) = y + 1
and f2(�1) = f2(�2) = x (see Example 15) corresponds implicitly to the case
analysis y ≥ 0 resp. y < 0. However, this case analysis is not detected by Algo-
rithm 2, because y < 0 only holds after |y0|+1 executions of this loop if we have
y = y0 initially. Thus, this cannot be inferred when evaluating the loop partially
for a finite number of times (as this number depends on the initial values of the

5 To ensure the equivalence of the transformed program according to Definition 23,
we call iRankFinder with a flag to prevent the “chaining” of transitions. This ensures
that partial evaluation does not change the lengths of evaluations.

212 J. Giesl et al.

Fig. 7. Original Program Fig. 8. Result of Algorithm 3 with Tcfr = {t1}

variables). As Fig. 1 does not admit a linear ranking function, this means that
we fail to infer a finite runtime bound if we only use linear ranking functions
and control-flow refinement. The same argument explains why we cannot infer
a finite runtime bound for our running example in Fig. 4 (which contains the
loop in Fig. 1) with only linear ranking functions and control-flow refinement.
For this example, we again need MΦRFs of at least depth 2 (see Example 21).
So control-flow refinement via partial evaluation does not subsume MΦRFs.

Example 27. Now we show an example where MΦRFs are not strong enough
to infer a finite runtime bound, whereas this is possible using just linear rank-
ing functions (i.e., MΦRFs of depth 1) if we apply partial evaluation before.
Moreover, it illustrates Algorithm 3 which only performs partial evaluation on
a subset of an SCC.

Consider the program in Fig. 7 where PV = {x, y} are the program variables
and T V = {u,w} are the temporary variables. It has two independent compo-
nents (the self-loop t1 at location �1 and the cycle of t2 and t3 between �1 and
�2) which do not influence each other, since t1 operates only on the variable x
and the cycle of t2 and t3 depends only on y. The choice which component is
evaluated is non-deterministic since it depends on the value of the temporary
variable w. Since the value of x is between 1 and 3 in the self-loop, t1 is only
evaluated at most 3 times. Similarly, t2 and t3 are each executed at most y times.
Hence, the runtime complexity of the program is at most 1+3+2 · y = 4+2 · y.

However, our approach does not find a finite runtime bound when using only
MΦRFs without control-flow refinement. To make the transition t1 in the self-
loop decreasing, we need an MΦRF f where the variable x occurs in at least
one function fi of the MΦRF. So fi(�1) contains x and thus, β�1 (as defined in
Theorem 20) contains x as well. When constructing the global bound RB(t1)
by Theorem 20, we have to instantiate x in β�1 by SB(t0, x), i.e., by the size-
bound for x of the entry transition t0. Since x is set to an arbitrary integer
value u non-deterministically, its size is unbounded, i.e., SB(t0, x) = ω. Thus,
Theorem 20 yields RB(t1) = ω. The alternative solution of turning t0 into a
non-initial transition and adding it to the subset T ′ in Theorem 20 does not

Improving Automatic Complexity Analysis of Integer Programs 213

work either. Since the value of x after t0 is an arbitrary integer, t0 violates the
requirement of being non-increasing for every MΦRF where fi(�1) contains x.

In this example, only the self-loop t1 is problematic for the computation
of runtime bounds. We can directly infer a linear runtime bound for all other
transitions, using just linear ranking functions. Thus, when applying control-flow
refinement via partial evaluation, according to our heuristic we call Algorithm 3
on just Tcfr = {t1}. The result of Algorithm 3 is presented in Fig. 8. Since partial
evaluation is restricted to the problematic transition t1, the other transitions t2
and t3 in the SCC remain unaffected, which avoids a too large increase of the
program.

As before, in the program of Fig. 8 we infer linear runtime bounds for t0, t2, t3,
and t3a using linear ranking functions. To obtain linear bounds for t1a and t1, we
can now use the following MΦRF f of depth 1 for the subset T ′ = {t1, t1a, t3, t3a}
and the decreasing transition T ′

> = {t1a} resp. T ′
> = {t1}:

f(�1) = 3 f(�1a) = 3 − x f(�2) = 0

Thus, while this example cannot be solved by MΦRFs, we can indeed infer
linear runtime bounds when using control-flow refinement and just linear ranking
functions. Hence, MΦRFs do not subsume control-flow refinement.

5 Evaluation

As mentioned, we implemented both Algorithm 3 and the refined version of
Algorithm 1 which calls Algorithm 3 in a new re-implementation of our tool
KoAT which is written in OCaml. To find MΦRFs, it uses the SMT Solver Z3
[41] and it uses the tool iRankFinder [19] for the implementation of Algorithm 2
to perform partial evaluation.

To distinguish our re-implementation of KoAT from the original version of
the tool from [16], let KoAT1 refer to the tool from [16] and let KoAT2 refer
to our new re-implementation. We now evaluate KoAT2 in comparison to the
main other state-of-the-art tools for complexity analysis of integer programs:
CoFloCo [22,23], KoAT1 [16], Loopus [46], and MaxCore [6]. Moreover, we also
evaluate the performance of KoAT1 and KoAT2 when control-flow refinement
using iRankFinder [19] is performed on the complete program as a preprocessing
step. We do not compare with RaML [33], as it does not support programs
whose complexity depends on (possibly negative) integers (see [45]). We also
do not compare with PUBS [2], because as stated in [20] by one of the authors
of PUBS, CoFloCo is stronger than PUBS. Note that MaxCore is a tool chain
which preprocesses the input program and then passes it to either CoFloCo or
PUBS for the computation of the bound. As the authors’ evaluation in [6] shows
that MaxCore with CoFloCo as a backend is substantially stronger than with
PUBS as a backend, we only consider the former configuration and refer to it as
“MaxCore”.

For our evaluation, we use the two sets for complexity analysis of integer
programs from the Termination Problems Data Base (TPDB) [48] that are

214 J. Giesl et al.

used in the annual Termination and Complexity Competition (TermComp) [31]:
Complexity ITS (CITS), consisting of integer transition systems, and Complex-
ity C Integer (CINT), consisting of C programs with only integer variables. The
integers in both CITS and CINT are interpreted as mathematical integers (i.e.,
without overflows).

Both Loopus and MaxCore only accept C programs as in CINT as input. While
it is easily possible to transform the input format of CINT to the input format
of CITS automatically, the other direction is not so straightforward. Hence, we
compare with Loopus and MaxCore only on the benchmarks from the CINT col-
lection. Our tool KoAT2 is evaluated in 7 different configurations to make the
effects of both control-flow refinement and MΦRFs explicit:

1. KoAT2 denotes the configuration which uses Algorithm 1 with maximal depth
mdepth set to 1, i.e., we only compute linear ranking functions.

2. CFR + KoAT2 first preprocesses the complete program by performing control-
flow refinement using iRankFinder. Afterwards, the refined program is ana-
lyzed with KoAT2 where mdepth = 1.

3. KoAT2 + CFRSCC is the configuration where control-flow refinement is
applied to SCCs according to Algorithm 2 and mdepth = 1.

4. KoAT2 + CFR uses Algorithm 3 instead to apply control-flow refinement on
sub-SCCs and has mdepth = 1.

5. KoAT2 + MΦRF5 applies Algorithm 1 with maximal depth mdepth = 5, i.e.,
we use MΦRFs with up to 5 components, but no control-flow refinement.

6. KoAT2 + MΦRF5 + CFRSCC applies control-flow refinement to SCCs (Algo-
rithm 2) and uses mdepth = 5.

7. KoAT2 + MΦRF5 + CFR uses sub-SCC control-flow refinement (Algorithm
3) and MΦRFs with maximal depth mdepth = 5.

Furthermore, we evaluate the tool KoAT1 in two configurations: KoAT1 cor-
responds to the standalone version, whereas for CFR + KoAT1, the complete pro-
gram is first preprocessed using control-flow refinement via the tool iRankFinder
before analyzing the resulting program with KoAT1. The second configuration
was also used in the evaluation of iRankFinder in [20].

We compare the runtime bounds computed by the tools asymptotically as
functions which depend on the largest initial absolute value n of all program vari-
ables. All tools were run inside an Ubuntu Docker container on a machine with
an AMD Ryzen 7 3700X octa-core CPU and 32GB of RAM. The benchmarks
were evaluated in parallel such that at most 8 containers were running at once,
each limited to 1.9 CPU cores. In particular, the runtimes of the tools include
the times to start and remove the container. As in TermComp, we applied a
timeout of 5 min for every program. See [42] for a binary and the source code of
our tool KoAT2, a Docker image, web interfaces to test our implementation, and
full details on all our experiments in the evaluation.

5.1 Evaluation on Complexity ITS

The set CITS consists of 781 integer programs, where at most 564 of them might
have finite runtime (since the tool LoAT [26,27] proves unbounded runtime com-

Improving Automatic Complexity Analysis of Integer Programs 215

Fig. 9. Evaluation on Complexity ITS

plexity for 217 examples). The results of our experiments on this set can be found
in Fig. 9. So for example, there are 131 + 255 = 386 programs where KoAT2 +
MΦRF5 + CFR can show that rc(σ0) ∈ O(n) holds for all initial states σ0 where
|σ0(v)| ≤ n for all v ∈ PV. For 131 of these programs, KoAT2 + MΦRF5 + CFR
can even show that rc(σ0) ∈ O(1), i.e., their runtime complexity is constant.
In Fig. 9, “< ∞” is the number of examples where a finite bound on the run-
time complexity could be computed by the respective tool within the time limit.
“AVG+(s)” is the average runtime of the tool on successful runs in seconds, i.e.,
where the tool proved a finite time bound before reaching the timeout, whereas
“AVG(s)” is the average runtime of the tool on all runs including timeouts.

KoAT2 without MΦRFs and control-flow refinement infers a finite bound for
457 of the 781 examples, while CoFloCo solves 461 and KoAT1 solves 469 exam-
ples. In contrast to KoAT2, both CoFloCo and KoAT1 always apply some form
of control-flow refinement. However, KoAT1’s control-flow refinement is weaker
than the one in Sect. 4, since it only performs loop unrolling via “chaining” to
combine subsequent transitions. Indeed, when adding control-flow refinement as
a preprocessing technique (in CFR + KoAT1 and CFR + KoAT2), the tools are
almost equally powerful.

However, for efficiency it is much better to integrate control-flow refinement
into KoAT2 as in Algorithm 2 or Algorithm 3 (KoAT2 + CFRSCC resp. KoAT2
+ CFR) than to use it as a preprocessing step (CFR + KoAT2). This integra-
tion reduces the number of timeouts and therefore increases power. The corre-
sponding configurations already make KoAT2 stronger than all previous tools on
this benchmark. Nevertheless, while control-flow improves power substantially,
it increases the resulting runtimes. The reason is that partial evaluation can lead
to an exponential blow-up of the program. Moreover, we have to analyze parts
of the program twice: we first analyze parts where we do not find a linear or
a constant bound. Then, we apply control-flow refinement and afterwards, we
analyze them again.

If instead of using control-flow refinement, the maximum depth of MΦRFs
is increased from 1 to 5, KoAT2 can compute a finite runtime bound for 480
examples. As explained in Sect. 3, MΦRFs are a proper extension of classical

216 J. Giesl et al.

Fig. 10. Loop With Three Phases Fig. 11. Integer Program

linear ranking functions as used in KoAT1, for example. Thus, CoFloCo, KoAT1,
and KoAT2 + CFR fail to compute a finite bound on the runtime complexity of
our running example in Fig. 4, while KoAT2 + MΦRF5 succeeds on this example.
In particular, this shows that KoAT2 + CFR does not subsume KoAT2 + MΦRF5
but the two techniques presented in Sect. 3 and 4 can have orthogonal effects and
combining them leads to an even more powerful tool. Indeed, KoAT2 + MΦRF5
+ CFR proves a finite bound for more examples than KoAT2 + MΦRF5 and
KoAT2 + CFR, in total 506. The configuration KoAT2 + MΦRF5 + CFRSCC
has approximately the same power, but a slightly higher runtime.

5.2 Evaluation on Complexity C Integer

The benchmark suite CINT consists of 484 C programs, where 366 of them might
have finite runtime (since iRankFinder can show non-termination of 118 exam-
ples). To apply KoAT1 and KoAT2 on these benchmarks, one has to translate
the C programs into integer programs as in Definition 2. To this end, we use
the tool llvm2kittel [21] which performs this translation by using an intermediate
representation of C programs as LLVM bytecode [37], obtained from the Clang
compiler frontend [18]. The output of this transformation is then analyzed by
KoAT1 and KoAT2.

The results of our evaluation on CINT can be found in Fig. 12. Here, Loo-
pus solved 239 benchmarks, KoAT2 solved 281, KoAT1 solved 285, and CoFloCo
solved 288 out of the 484 examples. Additionally, both MaxCore and KoAT2 +
MΦRF5 solve 310 examples and KoAT2 + CFRSCC solves 320 examples. This
makes KoAT2 the strongest tool on both benchmark sets. Applying partial eval-
uation on sub-SCCs instead of SCCs improves the average runtime of successful
runs, without reducing the number of solved examples. When enabling both
control-flow refinement and multiphase-linear ranking functions then KoAT2 is
even stronger, as KoAT2 + MΦRF5 + CFR solves 328 examples. Moreover, it is
faster than the equally powerful configuration KoAT2 + MΦRF5 + CFRSCC.

In contrast to KoAT1 and CoFloCo, MaxCore also proves a linear runtime
bound for our example in Fig. 1, as it detects that y is eventually negative.
However, when generalizing Fig. 1 to three phases as in [12] (see Fig. 10 and 11),
KoAT2 with MΦRFs can infer the finite bound 27 · x + 27 · y + 27 · z + 56 on
the runtime by using the MΦRF (z + 1, y + 1, x), whereas the other tools fail.
Moreover, KoAT2 with MΦRFs is the only tool that proves a finite time bound
for the program in Fig. 4. To evaluate Loopus and MaxCore on this example, we
translated it into C. While these tools failed, KoAT2 also succeeded on the integer

Improving Automatic Complexity Analysis of Integer Programs 217

Fig. 12. Evaluation on Complexity C Integer

program that was obtained by applying llvm2kittel to the translated program.
This shows the robustness of MΦRFs for programs consisting of several phases.

For the example in Fig. 7 which demonstrates that MΦRFs do not subsume
control-flow refinement (Example 27), KoAT2 with its control-flow refinement
technique of Sect. 4 infers a linear runtime bound whereas KoAT1 fails, since its
loop unrolling technique is a substantially weaker form of control-flow refinement.
Besides our tool, only MaxCore was able to infer a finite runtime bound for the
C version of this program, where however this bound was quadratic instead of
linear.

To sum up, both multiphase-linear ranking functions and control-flow refine-
ment lead to significant improvements. Combining the two techniques, our tool
KoAT2 outperforms all existing state-of-the-art tools on both benchmark sets.

6 Related Work and Conclusion

Related Work. As mentioned in Sect. 1, many other techniques for automated
complexity analysis of integer programs have been developed. The approach
in [8] uses lexicographic combinations of linear ranking functions and Ehrhart
polynomials to over-approximate the runtime complexity of integer programs.
In [46], difference logic is used to analyze C programs. The works in [2–4,22,23]
over-approximate so-called cost relations which are closely related to recurrence
relations. In [6], a tool chain is presented which uses conditional termination
proofs as in [14] to guide the inference of complexity bounds via cost relations
by a complexity analyzer in the backend. Based on tools for complexity analysis
of integer programs, there also exist approaches to analyze complexity for full
programming languages like Java [24,40]. In this way, they complement success-
ful tools for functional verification of Java programs like [1]. Other approaches
use the potential method from amortized analysis or type systems to analyze
the complexity of C (see, e.g., [17]) or ML programs [32,33]. An approach to
verify whether a given resource bound for a program is valid is presented in [47].

218 J. Giesl et al.

While all of these works focus on over-approximating the worst-case runtime
complexity of programs, there is also work on the inference of lower bounds on
the worst-case runtime complexity, see, e.g., [7,27,49]. Moreover, our tool KoAT
also offers the possibility to analyze the expected runtime complexity of proba-
bilistic integer programs, because we also transferred the approach from [16] to
probabilistic integer programs [39] and we also integrated decision procedures
for the termination and complexity of restricted classes of probabilistic programs
in KoAT [30]. See [35] for an overview on runtime analysis for probabilistic pro-
grams.

A fundamentally different concept to integer programs are so-called term
rewrite systems. These systems model recursion and algebraic data structures,
but they do not have any built-in data type for integers. There is also a wealth of
techniques and tools to analyze the runtime complexity of term rewrite systems
automatically (see [9,10,25,29,43], for example).

Multiphase-linear ranking functions are studied in [12,13,38,50], but these
works mainly focus on termination instead of complexity analysis. Moreover,
[12] shows how to obtain a linear bound on the runtime complexity of a program
with a single MΦRF, while we developed a technique to combine MΦRFs on
program parts to obtain bounds on the runtime complexity of the full program.

Using control-flow refinement for inferring runtime bounds is studied in [20,
22]. Here, [22] focuses on cost relations, while we embed the approach of [20] into
our analysis of integer programs, where we do not apply this method globally
but only locally on parts where we do not yet have a linear runtime bound.

Conclusion. In this paper, we showed how to adapt the approach for the compu-
tation of runtime and size bounds for integer programs from [16] to multiphase-
linear ranking functions and to the use of control-flow refinement. As shown
by our experimental evaluation, due to these new improvements, the resulting
implementation in our new version of the tool KoAT outperforms the other exist-
ing tools for complexity analysis of integer programs.

KoAT’s source code, a binary, and a Docker image are available at https://
aprove-developers.github.io/ComplexityMprfCfr/. This web site also provides
details on our experiments and web interfaces to run KoAT directly online.

Acknowledgments. This paper is dedicated to Reiner Hähnle whose ground-breaking
results on functional verification and symbolic execution of Java programs with the KeY
tool [1], on automatic resource analysis [22], and on its combination with deductive
verification (e.g., [5]) were a major inspiration for us. Reiner’s work motivated us to
develop and improve KoAT such that it can be used as a backend for complexity analysis
of languages like Java [24].

We are indebted to Samir Genaim and Jesús J. Doménech for their help and advice
with integrating multiphase-linear ranking functions and partial evaluation into our
approach, and for providing us with a suitable version of iRankFinder which we could
use in KoAT’s backend. Moreover, we are grateful to Albert Rubio and Enrique Mart́ın-
Mart́ın for providing us with a static binary of MaxCore, to Antonio Flores-Montoya
and Florian Zuleger for their help in running CoFloCo and Loopus for our experiments,
and to Florian Frohn for help and advice.

https://aprove-developers.github.io/ComplexityMprfCfr/
https://aprove-developers.github.io/ComplexityMprfCfr/

Improving Automatic Complexity Analysis of Integer Programs 219

A Proofs

A.1 Proof of Lemma 18

We first present lemmas which give an upper and a lower bound for sums of
powers. These lemmas will be needed in the proof of Lemma 18.

Lemma 28 (Upper Bound for Sums of Powers). For any i ≥ 2 and k ≥ 1
we have

∑k−1
j=1 ji−2 ≤ ki−1

i−1 .

Proof. We have
∑k−1

j=1 ji−2 ≤
∑k−1

j=1

∫ j+1

j
xi−2 dx ≤

∫ k

0
xi−2 dx = ki−1

i−1 . ��

For the lower bound, we use the summation formula of Euler (see, e.g., [36]).

Lemma 29 (Summation Formula of Euler). We define the periodic func-
tion H : R → R as H(x) = x − �x� − 1

2 if x ∈ R \ Z and as H(x) = 0
if x ∈ Z. Note that H(x) is bounded by − 1

2 and 1
2 . Then for any continu-

ously differentiable function f : [1, n] → C with n ∈ N, we have
∑k

j=1 f(j) =
∫ k

1
f(x) dx + 1

2 · (f(1) + f(k)) +
∫ k

1
H(x) · f ′(x) dx.

This then leads to the following result.

Lemma 30 (Lower Bound for Sums of Powers). For any i ≥ 2 and k ≥ 1
we have

∑k−1
j=1 ji−1 ≥ ki

i − ki−1.

Proof. Consider f(x) = xi with the derivative f ′(x) = i · xi−1. We get

∑k

j=1
ji

=
∫ k

1

xi dx + 1
2 · (1 + ki) +

∫ k

1

H(x) · i · xi−1 dx (by Lemma 29)

= ki+1

i+1 − 1
i+1 + 1

2 · (1 + ki) +
∫ k

1

H(x) · i · xi−1 dx

= ki+1

i+1 + R (for R = − 1
i+1 + 1

2 · (1 + ki) +
∫ k

1
H(x) · i · xi−1 dx)

Since |H(x)| ≤ 1
2 , we have

∣
∣
∣
∫ k

1
H(x) · i · xi−1 dx

∣
∣
∣ ≤ 1

2 ·
∣
∣
∣
∫ k

1
i · xi−1 dx

∣
∣
∣ =

1
2 · i ·

∣
∣
∣ki

i − 1
i

∣
∣
∣ = ki−1

2 . Thus, we obtain

− 1
i+1 + 1

2 · (1 + ki) + ki−1
2 ≥ R ≥ − 1

i+1 + 1
2 · (1 + ki) − ki−1

2

or, equivalently − 1
i+1 + ki ≥ R ≥ − 1

i+1 + 1. This implies ki > R > 0. Hence,

we get
∑k

j=1 ji = ki+1

i+1 + R ≥ ki+1

i+1 and thus,
∑k−1

j=1 ji =
∑k

j=1 ji − ki ≥
ki+1

i+1 − ki. With the index shift i → i − 1 we finally obtain the lower bound
∑k−1

j=1 ji−1 ≥ ki

i − ki−1. ��

220 J. Giesl et al.

Proof of Lemma 18. To ease notation, in this proof �0 does not denote the initial
location of the program T , but an arbitrary location from L. Then we can write
(�0, σ0) instead of (�, σ), (�n, σn) instead of (�′, σ′), and consider an evaluation

(�0, σ0) (→∗
T ′\T ′

>
◦ →T ′

>
) (�1, σ1) (→∗

T ′\T ′
>

◦ →T ′
>
) . . . (→∗

T ′\T ′
>

◦ →T ′
>
) (�n, σn).

Let M = max{0, σ0 (f1(�0)) , . . . , σ0 (fd(�0))}. We first prove that for all 1 ≤ i ≤
d and all 0 ≤ k ≤ n, we have

σk(fi(�k)) ≤ −k if M = 0 and σk(fi(�k)) ≤ γi·M ·ki−1−ki

i! if M > 0. (2)

The proof is done by induction on i. So in the base case, we have i = 1. Since
γ1 = 1, we have to show that σk (f1(�k)) ≤ M · k0 − k1

1! = M − k.
For all 0 ≤ j ≤ k−1, the step from (�j , σj) to (�j+1, σj+1) corresponds to the

evaluation of transitions from T ′ \ T ′
> followed by a transition from T ′

>, i.e., we
have (�j , σj) →∗

T ′\T ′
>

(�′
j , σ

′
j) →T ′

>
(�j+1, σj+1) for some configuration (�′

j , σ
′
j).

Since f is an MΦRF and all transitions in T ′ \ T ′
> are non-increasing, we obtain

σj(f1(�j)) ≥ σ′
j(f1(�

′
j)). Moreover, since the transitions in T ′

> are decreasing, we
have σ′

j(f0(�
′
j))+σ′

j(f1(�
′
j)) = σ′

j(f1(�
′
j)) ≥ σj+1(f1(�j+1))+1. So together, this

implies σj(f1(�j)) ≥ σj+1(f1(�j+1))+1 and thus, σ0 (f1(�0)) ≥ σ1 (f1(�1))+1 ≥
. . . ≥ σk (f1(�k)) + k or equivalently, σ0 (f1(�0)) − k ≥ σk (f1(�k)). Further-
more, we have σ0 (f1(�0)) ≤ max{0, σ0 (f1(�0)) , . . . , σ0 (fd(�0))} = M . Hence,
we obtain σk (f1(�k)) ≤ σ0 (f1(�0))−k ≤ M −k. So in particular, if M = 0, then
we have σk(f1(�k)) ≤ −k.

In the induction step, we assume that for all 0 ≤ k ≤ n, we have
σk(fi−1(�k)) ≤ −k if M = 0 and σk(fi−1(�k)) ≤ γi−1 · M · ki−2 − ki−1

(i−1)!

if M > 0. To show that the inequations also hold for i, we first transform
σk(fi(�k)) into a telescoping sum.

σk (fi(�k)) = σ0 (fi(�0)) +
k−1∑

j=0

(σj+1 (fi(�j+1)) − σj (fi(�j)))

For all 0 ≤ j ≤ k − 1, the step from (�j , σj) to (�j+1, σj+1) again has
the form (�j , σj) →∗

T ′\T ′
>

(�′
j , σ

′
j) →T ′

>
(�j+1, σj+1) for some configuration

(�′
j , σ

′
j). Since f is an MΦRF and all transitions in T ′ \ T ′

> are non-increasing,
we obtain σj(fi−1(�j)) ≥ σ′

j(fi−1(�′
j)) and σj(fi(�j)) ≥ σ′

j(fi(�′
j)). Moreover,

since the transitions in T ′
> are decreasing, we have σ′

j(fi−1(�′
j)) + σ′

j(fi(�′
j)) ≥

σj+1(fi(�j+1)) + 1. So together, this implies σj(fi−1(�j)) + σj(fi(�j)) ≥
σj+1(fi(�j+1)) + 1 or equivalently, σj+1 (fi(�j+1)) − σj (fi(�j)) < σj (fi−1(�j)).
Hence, we obtain

σk (fi(�k)) = σ0 (fi(�0)) +
k−1∑

j=0

(σj+1 (fi(�j+1)) − σj (fi(�j)))

< σ0 (fi(�0)) +
k−1∑

j=0

σj (fi−1(�j)) .

Improving Automatic Complexity Analysis of Integer Programs 221

If M = 0, then we obviously have σ0(fi(�0)) ≤ 0 for all 1 ≤ i ≤ d. For k ≥ 1,
we obtain

σ0 (fi(�0)) +
k−1∑

j=0

σj (fi−1(�j))

≤ 0 +
k−1∑

j=0

−j (by the induction hypothesis)

≤ − k + 1.

Hence, we have σk (fi(�k)) < −k + 1 and thus, σk (fi(�k)) ≤ −k.
If M > 0, then we obtain

σ0 (fi(�0)) +
k−1∑

j=0

σj (fi−1(�j))

≤ 2 · M +
k−1∑

j=1

σj (fi−1(�j)) (as σ0 (fi(�0)) ≤ M and σ0 (fi−1(�0)) ≤ M)

≤ 2 · M +
k−1∑

j=1

(γi−1 · M · ji−2 − ji−1

(i−1)!) (by the induction hypothesis)

= 2 · M + γi−1 · M ·

⎛

⎝
k−1∑

j=1

ji−2

⎞

⎠ − 1
(i−1)! ·

⎛

⎝
k−1∑

j=1

ji−1

⎞

⎠

≤ 2 · M + γi−1 · M · ki−1

i−1 − 1
(i−1)! ·

(
ki

i − ki−1
)

(by Lemma 28 and 30)

= 2 · M + γi−1 · M · ki−1

i−1 + ki−1

(i−1)! − ki

i!

≤ 2 · M · ki−1 + γi−1 · M · ki−1

i−1 + ki−1

(i−1)! − ki

i!

≤ M · ki−1 ·

⎛

⎜
⎝2 + γi−1

i−1 + 1
(i−1)!︸ ︷︷ ︸

γi

⎞

⎟
⎠ − ki

i! (as M ≥ 1)

= M · ki−1 · γi − ki

i! .

Hence, (2) is proved.
In the case M = 0, (2) implies σn(fi(�n)) ≤ −n ≤ −β = −1 < 0 for all

1 ≤ i ≤ d which proves the lemma.
Hence, it remains to regard the case M > 0. Now (2) implies

σn(fi(�n)) ≤ γi · M · ni−1 − ni

i! . (3)

222 J. Giesl et al.

We now prove that for i > 1 we always have i! · γi ≥ (i − 1)! · γi−1.

i! · γi

= i! ·
(
2 + γi−1

i−1 + 1
(i−1)!

)

= i! · 2 + i · (i − 2)! · γi−1 + i

≥ (i − 1) · (i − 2)! · γi−1

= (i − 1)! · γi−1.

Thus,
d! · γd ≥ i! · γi for all 1 ≤ i ≤ d. (4)

Hence, for n ≥ β = 1 + d! · γd · M we obtain:

σn(fi(�n))

≤ γi · M · ni−1 − ni

i! (by (3))

= ni−1

i! · (i! · γi · M − n)

≤ ni−1

i! · (β − 1 − n) (by (4))
< 0 (since n ≥ β)

Finally, to show that β ∈ N, note that by induction on i, one can easily prove
that (i − 1)! · γi ∈ N holds for all i ≥ 1. Hence, in contrast to γi, the number
i! · γi is a natural number for all i ∈ N. This implies β ∈ N. ��

A.2 Proof of Theorem20

Proof. We prove Theorem 20 by showing that for all t ∈ T and all σ0 ∈ Σ we
have

|σ0|
(
RB′(t)

)
≥ sup{k ∈ N | � ∈ L, σ ∈ Σ, (�0, σ0) (→∗ ◦ →t)k (�, σ)}. (5)

The case t /∈ T ′
> is trivial, since RB′(t) = RB(t) and RB is a runtime bound.

Now we prove (5) for a transition t> ∈ T ′
>, i.e., we show that for all σ0 ∈ Σ

we have

|σ0|
(
RB′(t>)

)
=

∑
�∈ET ′

∑
t∈T�

|σ0| (RB(t)) · |σ0| (SB(t, ·)(β�))
≥ sup{k ∈ N | � ∈ L, σ ∈ Σ, (�0, σ0) (→∗ ◦ →t>

)k (�, σ)}.

So let (�0, σ0) (→∗ ◦ →t>
)k (�, σ) and we have to show |σ0|

(
RB′(t>)

)
≥ k. If

k = 0, then we clearly have |σ0|
(
RB′ (t>)

)
≥ 0 = k. Hence, we consider k > 0.

We represent the evaluation as follows:

(�0, σ0) →k̃0
T \T ′ (�̃1, σ̃1) →k′

1
T ′

(�1, σ1) →k̃1
T \T ′ (�̃2, σ̃2) →k′

2
T ′

. . .

(�m−1, σm−1) →k̃m−1

T \T ′ (�̃m, σ̃m) →k′
m

T ′

(�m, σm)

Improving Automatic Complexity Analysis of Integer Programs 223

So for the evaluation from (�i, σi) to (�̃i+1, σ̃i+1) we only use transitions from
T \ T ′, and for the evaluation from (�̃i, σ̃i) to (�i, σi) we only use transitions
from T ′. Thus, t> can only occur in the following finite sequences of evaluation
steps:

(�̃i, σ̃i) →T ′ (�̃i,1, σ̃i,1) →T ′ · · · →T ′ (�̃i,k′
i−1, σ̃i,k′

i−1) →T ′ (�i, σi). (6)

For every 1 ≤ i ≤ m, let ki ≤ k′
i be the number of times that t> is used in the

evaluation (6). Clearly, we have
m∑

i=1

ki = k. (7)

By Lemma 18, all functions f1, . . . , fd are negative after executing t> at least
1 + d! · γd · max{0, σ̃i(f1(�̃i)), . . . , σ̃i(fd(�̃i))} times in an evaluation with T ′. If
all the fi are negative, then t> cannot be executed anymore as f is an MΦRF
for T ′

> with t> ∈ T ′
> and T ′. Thus, for all 1 ≤ i ≤ m we have

1 + d! · γd · max
{

0, σ̃i

(
f1(�̃i)

)
, . . . , σ̃i

(
fd(�̃i)

)}
≥ ki. (8)

Let ti be the entry transition reaching (�̃i, σ̃i), i.e., �̃i ∈ ET ′ and ti ∈ T�̃i
. As

(�0, σ0) →∗
T ◦ →ti

(�̃i, σ̃i), by Definition 12 we have |σ0| (SB(ti, v)) ≥ |σ̃i(v)| for
all v ∈ PV and thus,

|σ0|
(
SB(ti, ·)(β�̃i

)
)

≥ |σ̃i|
(
β�̃i

)
(since β�̃i

∈ B)

≥ σ̃i(β�̃i
)

≥ 1 + d! · γd · max
{

0, σ̃i

(
f1(�̃i)

)
, . . . , σ̃i

(
fd(�̃i)

)}

(by definition of �· and β�̃i
)

≥ ki (by (8))

In the last part of this proof we need to analyze how often such evaluations
(�̃i, σ̃i) →∗

T ′ (�i, σi) can occur. Again, let ti be the entry transition reaching
(�̃i, σ̃i). Every entry transition ti can occur at most |σ0| (RB(ti)) times in the
complete evaluation, as RB is a runtime bound. Thus, we have

|σ0|
(
RB′ (t>)

)
=

∑

�∈ET ′

∑

t∈T�

|σ0| (RB(t)) · |σ0| (SB(t, ·)(β�))

≥
m∑

i=1

|σ0|
(
SB(ti, ·)(β�̃i

)
)

≥
m∑

i=1

ki (as shown above)

= k (by (7))

��

224 J. Giesl et al.

A.3 Proof of Theorem24

Let P ′ = (PV,L′, �0, T ′). First note that for every evaluation (�0, σ0) →k
T ′ (�′, σ)

there is obviously also a corresponding evaluation (�0, σ0) →k
T (�, σ). To obtain

the evaluation with T one simply has to remove the labels from the locations.
Then the claim follows because the guards of the transitions in T ′ always imply
the guards of the respective original transitions in T and the updates of the
transitions have not been modified in the transformation from T to T ′.

For the other direction, we show by induction on k ∈ N that for every eval-
uation (�0, σ0) →k

T (�, σ) there is a corresponding evaluation (�0, σ0) →k
T ′ (�′, σ)

where either �′ = � or �′ = 〈�, ϕ〉 for some constraint ϕ with σ(ϕ) = true.
In the induction base, we have k = 0 and the claim is trivial. In the induction

step k > 0 the evaluation has the form

(�0, σ0) →t1 (�1, σ1) →t2 · · · →tk−1 (�k−1, σk−1) →tk
(�k, σk)

with t1, . . . , tk ∈ T . By the induction hypothesis, there is a corresponding eval-
uation

(�0, σ0) →t′
1

(�′
1, σ1) →t′

2
· · · →t′

k−1
(�′

k−1, σk−1)

with t′1, . . . , t
′
k ∈ T ′ where �′

k−1 = �k−1 or �′
k−1 = 〈�k−1, ϕ〉 for some constraint

ϕ with σk−1(ϕ) = true. We distinguish two cases:

Case 1: tk
∈ TSCC . If �′
k−1 = �k−1 and �k /∈ ETSCC , then tk has not been

modified in the transformation from P to P ′. Thus, we have the evaluation
(�0, σ0) →t′

1
(�′

1, σ1) →t′
2

· · · →t′
k−1

(�′
k−1, σk−1) = (�k−1, σk−1) →tk

(�k, σk)
with tk ∈ T ′. If �′

k−1 = �k−1 and �k ∈ ETSCC , then for tk = (�k−1, τ, η, �k),
we set �′

k = 〈�k, true〉 and obtain that t′k = (�k−1, τ, η, �′
k) ∈ T ′. So

we get the evaluation (�0, σ0) →t′
1

(�′
1, σ1) →t′

2
· · · →t′

k−1
(�′

k−1, σk−1) =
(�k−1, σk−1) →t′

k
(�′

k, σk). Finally, we regard the case �′
k−1 = 〈�k−1, ϕ〉 where

σk−1(ϕ) = true. As tk = (�k−1, τ, η, �k) ∈ T \ TSCC , and TSCC is an SCC,
there is a t′k = (〈�k−1, ϕ〉, ϕ ∧ τ, η, �k) ∈ T ′. Then (�0, σ0) →t′

1
(�′

1, σ1) →t′
2

· · · →t′
k−1

(�′
k−1, σk−1) = (〈�k−1, ϕ〉, σk−1) →t′

k
(�k, σk) is an evaluation

with T ′. The evaluation step with t′k is possible, since σk−1(ϕ) = true and
σk−1(τ) = true (due to the evaluation step (�k−1, σk−1) →tk

(�k, σk)). Note
that the step with t′k also results in the state σk, because both tk and t′k have
the same update η.

Case 2: tk ∈ TSCC . Here, �′
k−1 has the form 〈�k−1, ϕ〉 where σk−1(ϕ) = true.

As �k is part of the SCC and hence has an incoming transition from TSCC , at
some point it is refined by Algorithm 2. Thus, for tk = (�k−1, τ, η, �k), there is
some t′k = (〈�k−1, ϕ〉, ϕ ∧ τ, η, 〈�k, α�k

(ϕnew)〉) ∈ T ′ where α�k
(ϕnew) is con-

structed as in Line 8. This leads to the corresponding evaluation (�0, σ0) →t′
1

(�′
1, σ1) →t′

2
· · · →t′

k−1
(〈�k−1, ϕ〉, σk−1) →t′

k
(〈�k, α�k

(ϕnew)〉, σk). Again, the
evaluation step with t′k is possible, since σk−1(ϕ) = true and σk−1(τ) = true
(due to the evaluation step (�k−1, σk−1) →tk

(�k, σk)). And again, the step
with t′k also results in the state σk, because both tk and t′k have the same
update η. Finally, note that we have σk(α�k

(ϕnew)) = true. The reason is

Improving Automatic Complexity Analysis of Integer Programs 225

that |= (ϕ ∧ τ) → η(ϕnew) and σk−1(ϕ ∧ τ) = true implies σk−1(η(ϕnew)) =
true. Hence, we also have σk(ϕnew) = σk−1(η(ϕnew)) = true. Therefore,
|= ϕnew → α�k

(ϕnew) implies σk(α�k
(ϕnew)) = true. ��

A.4 Proof of Theorem25

Let P ′ = (PV,L′, �0, T ′) result from P by Algorithm 3. As in the proof of
Theorem 24, for every evaluation (�0, σ0) →k

T ′ (�′, σ) there is also a corresponding
evaluation (�0, σ0) →k

T (�, σ), which is obtained by removing the labels from the
locations.

For the other direction, we show that for each evaluation (�0, σ0) →t1

(�1, σ1) →t2 · · · →tk
(�k, σk) with t1, . . . , tk ∈ T there is a corresponding evalua-

tion (�0, σ0) →k
T ′ (�′

k, σk) in P ′. To obtain this evaluation, we handle all evalua-
tion fragments separately which use programs Q from S. This is possible, since
different programs in S do not share locations, i.e., entry and outgoing transi-
tions of Q cannot be part of another Q′ from S. Such an evaluation fragment
has the form

(�i, σi) →ti+1 (�i+1, σi+1) →ti+2 · · · →tn−1 (�n−1, σn−1) →tn
(�n, σn) (9)

where ti+1 is an entry transition to Q, tn is an outgoing transition from Q, and
the transitions ti+2, . . . , tn−1 belong to Q. By Theorem 24 it follows that there is
a corresponding evaluation using the transitions t′i+2, . . . , t

′
n−1 from the refined

version of Q, such that with the new redirected entry transition t′i+1 and the
new redirected outgoing transition t′n we have

(�i, σi) →t′
i+1

(�′
i+1, σi+1) →t′

i+2
· · · →t′

n−1
(�′

n−1, σn−1) →t′
n

(�n, σn) (10)

Thus, by substituting each evaluation fragment (9) in an evaluation of P by
its refinement (10), we get a corresponding evaluation in P ′.

��

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M.:
Deductive Software Verification - The KeY Book - From Theory to Practice. LNCS,
vol. 10001. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-49812-
6

2. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Automatic inference of upper
bounds for recurrence relations in cost analysis. In: Alpuente, M., Vidal, G. (eds.)
SAS 2008. LNCS, vol. 5079, pp. 221–237. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-69166-2 15

3. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost analysis of
object-oriented bytecode programs. Theor. Comput. Sci. 413(1), 142–159 (2012).
https://doi.org/10.1016/j.tcs.2011.07.009

4. Albert, E., Genaim, S., Masud, A.N.: On the inference of resource usage upper
and lower bounds. ACM Trans. Comput. Log. 14(3), 22:1–22:35 (2013). https://
doi.org/10.1145/2499937.2499943

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-540-69166-2_15
https://doi.org/10.1007/978-3-540-69166-2_15
https://doi.org/10.1016/j.tcs.2011.07.009
https://doi.org/10.1145/2499937.2499943
https://doi.org/10.1145/2499937.2499943

226 J. Giesl et al.

5. Albert, E., Bubel, R., Genaim, S., Hähnle, R., Puebla, G., Román-Dı́ez, G.: A
formal verification framework for static analysis. Softw. Syst. Model. 15(4), 987–
1012 (2015). https://doi.org/10.1007/s10270-015-0476-y

6. Albert, E., Bofill, M., Borralleras, C., Mart́ın-Mart́ın, E., Rubio, A.: Resource
analysis driven by (conditional) termination proofs. Theory Pract. Log. Program.
19(5–6), 722–739 (2019). https://doi.org/10.1017/S1471068419000152

7. Albert, E., Genaim, S., Martin-Martin, E., Merayo, A., Rubio, A.: Lower-bound
synthesis using loop specialization and Max-SMT. In: Silva, A., Leino, K.R.M.
(eds.) CAV 2021. LNCS, vol. 12760, pp. 863–886. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-81688-9 40

8. Alias, C., Darte, A., Feautrier, P., Gonnord, L.: Multi-dimensional rankings, pro-
gram termination, and complexity bounds of flowchart programs. In: Cousot, R.,
Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 117–133. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15769-1 8

9. Avanzini, M., Moser, G.: A combination framework for complexity. In: van Raams-
donk, F. (ed.) RTA 2013. LIPIcs, vol. 21, pp. 55–70. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2013). https://doi.org/10.4230/LIPIcs.RTA.2013.55

10. Avanzini, M., Moser, G., Schaper, M.: TcT: Tyrolean complexity tool. In: Chechik,
M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 407–423. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9 24

11. Ben-Amram, A.M., Genaim, S.: Ranking functions for linear-constraint loops. J.
ACM 61(4), 26:1–26:55 (2014). https://doi.org/10.1145/2629488

12. Ben-Amram, A.M., Genaim, S.: On multiphase-linear ranking functions. In:
Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 601–620.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9 32

13. Ben-Amram, A.M., Doménech, J.J., Genaim, S.: Multiphase-linear ranking func-
tions and their relation to recurrent sets. In: Chang, B.-Y.E. (ed.) SAS 2019. LNCS,
vol. 11822, pp. 459–480. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-32304-2 22

14. Borralleras, C., Brockschmidt, M., Larraz, D., Oliveras, A., Rodŕıguez-Carbonell,
E., Rubio, A.: Proving termination through conditional termination. In: Legay,
A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 99–117. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5 6

15. Bradley, A.R., Manna, Z., Sipma, H.B.: The polyranking principle. In: Caires, L.,
Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS,
vol. 3580, pp. 1349–1361. Springer, Heidelberg (2005). https://doi.org/10.1007/
11523468 109

16. Brockschmidt, M., Emmes, F., Falke, S., Fuhs, C., Giesl, J.: Analyzing runtime
and size complexity of integer programs. ACM Trans. Program. Lang. Syst. 38(4),
13:1–13:50 (2016). https://doi.org/10.1145/2866575

17. Carbonneaux, Q., Hoffmann, J., Shao, Z.: Compositional certified resource bounds.
In: Grove, D., Blackburn, S.M. (eds.) PLDI 2015, pp. 467–478 (2015). https://doi.
org/10.1145/2737924.2737955

18. Clang Compiler. https://clang.llvm.org/
19. Doménech, J.J., Genaim, S.: “iRankFinder”. In: Lucas, S. (ed.) WST 2018, p. 83

(2018). http://wst2018.webs.upv.es/wst2018proceedings.pdf
20. Doménech, J.J., Gallagher, J.P., Genaim, S.: Control-flow refinement by partial

evaluation, and its application to termination and cost analysis. Theory Pract. Log.
Program. 19(5–6), 990–1005 (2019). https://doi.org/10.1017/S1471068419000310

https://doi.org/10.1007/s10270-015-0476-y
https://doi.org/10.1017/S1471068419000152
https://doi.org/10.1007/978-3-030-81688-9_40
https://doi.org/10.1007/978-3-030-81688-9_40
https://doi.org/10.1007/978-3-642-15769-1_8
https://doi.org/10.4230/LIPIcs.RTA.2013.55
https://doi.org/10.1007/978-3-662-49674-9_24
https://doi.org/10.1145/2629488
https://doi.org/10.1007/978-3-319-63390-9_32
https://doi.org/10.1007/978-3-030-32304-2_22
https://doi.org/10.1007/978-3-030-32304-2_22
https://doi.org/10.1007/978-3-662-54577-5_6
https://doi.org/10.1007/11523468_109
https://doi.org/10.1007/11523468_109
https://doi.org/10.1145/2866575
https://doi.org/10.1145/2737924.2737955
https://doi.org/10.1145/2737924.2737955
https://clang.llvm.org/
http://wst2018.webs.upv.es/wst2018proceedings.pdf
https://doi.org/10.1017/S1471068419000310

Improving Automatic Complexity Analysis of Integer Programs 227

21. Falke, S., Kapur, D., Sinz, C.: Termination analysis of C programs using compiler
intermediate languages. In: Schmidt-Schauss, M. (ed.) RTA 2011. LIPIcs, vol. 10,
pp. 41–50. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2011). https://doi.
org/10.4230/LIPIcs.RTA.2011.41

22. Flores-Montoya, A., Hähnle, R.: Resource analysis of complex programs with cost
equations. In: Garrigue, J. (ed.) APLAS 2014. LNCS, vol. 8858, pp. 275–295.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12736-1 15

23. Flores-Montoya, A.: Upper and lower amortized cost bounds of programs expressed
as cost relations. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.)
FM 2016. LNCS, vol. 9995, pp. 254–273. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-48989-6 16

24. Frohn, F., Giesl, J.: Complexity analysis for Java with AProVE. In: Polikarpova,
N., Schneider, S. (eds.) IFM 2017. LNCS, vol. 10510, pp. 85–101. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66845-1 6

25. Frohn, F., Giesl, J., Hensel, J., Aschermann, C., Ströder, T.: Lower bounds for
runtime complexity of term rewriting. J. Autom. Reason. 59(1), 121–163 (2016).
https://doi.org/10.1007/s10817-016-9397-x

26. Frohn, F., Giesl, J.: Proving non-termination via loop acceleration. In: Barrett,
C.W., Yang, J. (eds.) FMCAD 2019, pp. 221–230 (2019). https://doi.org/10.23919/
FMCAD.2019.8894271

27. Frohn, F., Naaf, M., Brockschmidt, M., Giesl, J.: Inferring lower runtime bounds
for integer programs. ACM Trans. Program. Lang. Syst. 42(3), 13:1–13:50 (2020).
https://doi.org/10.1145/3410331

28. Gallagher, J.P.: Polyvariant program specialisation with property-based abstrac-
tion. In: VPT@Programming. EPTCS, vol. 299, pp. 34–48 (2019). https://doi.org/
10.4204/EPTCS.299.6

29. Giesl, J., et al.: Analyzing program termination and complexity automatically with
AProVE. J. Autom. Reason. 58(1), 3–31 (2016). https://doi.org/10.1007/s10817-
016-9388-y

30. Giesl, J., Giesl, P., Hark, M.: Computing expected runtimes for constant proba-
bility programs. In: Fontaine, P. (ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp.
269–286. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29436-6 16

31. Giesl, J., Rubio, A., Sternagel, C., Waldmann, J., Yamada, A.: The termination and
complexity competition. In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.)
TACAS 2019. LNCS, vol. 11429, pp. 156–166. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-17502-3 10

32. Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate amortized resource analysis.
ACM Trans. Program. Lang. Syst. 34(3), 14:1–14:62 (2012). https://doi.org/10.
1145/2362389.2362393

33. Hoffmann, J., Das, A., Weng, S.-C.: Towards automatic resource bound analysis
for OCaml. In: Castagna, G., Gordon, A.D. (eds.) POPL 2017, pp. 359–373 (2017).
https://doi.org/10.1145/3009837.3009842

34. Jeannet, B., Miné, A.: Apron: a library of numerical abstract domains for static
analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–
667. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4 52

35. Kaminski, B.L., Katoen, J.-P., Matheja, C.: Expected runtime analysis by program
verification. In: Barthe, G., Katoen, J.-P., Silva, A. (eds.) Foundations of Proba-
bilistic Programming, pp. 185–220. Cambridge University Press (2020). https://
doi.org/10.1017/9781108770750.007

36. Königsberger, K.: Analysis 1, 6th edn. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-642-18490-1

https://doi.org/10.4230/LIPIcs.RTA.2011.41
https://doi.org/10.4230/LIPIcs.RTA.2011.41
https://doi.org/10.1007/978-3-319-12736-1_15
https://doi.org/10.1007/978-3-319-48989-6_16
https://doi.org/10.1007/978-3-319-48989-6_16
https://doi.org/10.1007/978-3-319-66845-1_6
https://doi.org/10.1007/s10817-016-9397-x
https://doi.org/10.23919/FMCAD.2019.8894271
https://doi.org/10.23919/FMCAD.2019.8894271
https://doi.org/10.1145/3410331
https://doi.org/10.4204/EPTCS.299.6
https://doi.org/10.4204/EPTCS.299.6
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/978-3-030-29436-6_16
https://doi.org/10.1007/978-3-030-17502-3_10
https://doi.org/10.1007/978-3-030-17502-3_10
https://doi.org/10.1145/2362389.2362393
https://doi.org/10.1145/2362389.2362393
https://doi.org/10.1145/3009837.3009842
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1017/9781108770750.007
https://doi.org/10.1017/9781108770750.007
https://doi.org/10.1007/978-3-642-18490-1
https://doi.org/10.1007/978-3-642-18490-1

228 J. Giesl et al.

37. Lattner, C., Adve, V.S.: LLVM: a compilation framework for lifelong program anal-
ysis & transformation. In: CGO 2004, pp. 75–88. IEEE Computer Society (2004).
https://doi.org/10.1109/CGO.2004.1281665

38. Leike, J., Heizmann, M.: Ranking templates for linear loops. Log. Methods Com-
put. Sci. 11(1) (2015). https://doi.org/10.2168/LMCS-11(1:16)2015

39. Meyer, F., Hark, M., Giesl, J.: Inferring expected runtimes of probabilistic integer
programs using expected sizes. In: TACAS 2021. LNCS, vol. 12651, pp. 250–269.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72016-2 14

40. Moser, G., Schaper, M.: From Jinja bytecode to term rewriting: a complexity reflect-
ing transformation. Inf. Comput. 261, 116–143 (2018). https://doi.org/10.1016/j.
ic.2018.05.007

41. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

42. KoAT: Web Interface, Experiments, Source Code, Binary, and Docker Image.
https://aprove-developers.github.io/ComplexityMprfCfr/

43. Noschinski, L., Emmes, F., Giesl, J.: Analyzing innermost runtime complexity
of term rewriting by dependency pairs. J. Autom. Reason. 51(1), 27–56 (2013).
https://doi.org/10.1007/s10817-013-9277-6

44. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear rank-
ing functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
239–251. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-
0 20

45. RaML (Resource Aware ML). https://www.raml.co/interface/
46. Sinn, M., Zuleger, F., Veith, H.: Complexity and resource bound analysis of imper-

ative programs using difference constraints. J. Autom. Reason. 59(1), 3–45 (2017).
https://doi.org/10.1007/s10817-016-9402-4

47. Srikanth, A., Sahin, B., Harris, W.R.: Complexity verification using guided theo-
rem enumeration. In: Castagna, G., Gordon, A.D. (eds.) POPL 2017, pp. 639–652
(2017). https://doi.org/10.1145/3009837.3009864

48. TPDB (Termination Problems Data Base). https://github.com/TermCOMP/
TPDB

49. Wang, D., Hoffmann, J.: Type-guided worst-case input generation. Proc. ACM
Program. Lang. 3(POPL), 13:1–13:30 (2019). https://doi.org/10.1145/3290326

50. Yuan, Y., Li, Y., Shi, W.: Detecting multiphase linear ranking functions for single-
path linear-constraint loops. Int. J. Softw. Tools Technol. Transfer 23(1), 55–67
(2019). https://doi.org/10.1007/s10009-019-00527-1

https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.2168/LMCS-11(1:16)2015
https://doi.org/10.1007/978-3-030-72016-2_14
https://doi.org/10.1016/j.ic.2018.05.007
https://doi.org/10.1016/j.ic.2018.05.007
https://doi.org/10.1007/978-3-540-78800-3_24
https://aprove-developers.github.io/ComplexityMprfCfr/
https://doi.org/10.1007/s10817-013-9277-6
https://doi.org/10.1007/978-3-540-24622-0_20
https://doi.org/10.1007/978-3-540-24622-0_20
https://www.raml.co/interface/
https://doi.org/10.1007/s10817-016-9402-4
https://doi.org/10.1145/3009837.3009864
https://github.com/TermCOMP/TPDB
https://github.com/TermCOMP/TPDB
https://doi.org/10.1145/3290326
https://doi.org/10.1007/s10009-019-00527-1

Alice in Wineland: A Fairy Tale
with Contracts

Dilian Gurov1, Christian Lidström1(B), and Philipp Rümmer2

1 KTH Royal Institute of Technology, Stockholm, Sweden
clid@kth.se

2 Uppsala University, Uppsala, Sweden

Abstract. In this tale Alice ends up in Wineland, where she tries to
attend the birthday party of one of its most beloved inhabitants. In order
to do so, she must learn about contracts and how important they are.
She gets exposed to several contract languages, with their syntax and
semantics, such as pre- and post-conditions, state machines, context-free
grammars, and interval logic. She learns for what type of properties they
are appropriate to use, and how to formally verify that programs meet
their contracts.

1 Down the Rabbit-Hole

It was a sunny summer afternoon and Alice was once again sitting on the bank;
this time she was alone, since her sister did not like much to sit in the sun. To
keep herself occupied, Alice had brought the book she had found in her father’s
workshop the other day: it was a curious book, thick and heavy, and so worn
from many years of study that it almost fell apart in her hands when she tried
to open it. What had caught her attention was the picture on the cover page,
showing a smiling keyhole in beautiful royal blue colour. ‘I didn’t even know that
keyholes could smile,’ thought Alice by herself, and started reading.

Even more curious than the outside was the inside of the book. Being a
modern child, Alice had a solid grasp of micro-, nano-, and pico-computers, and
had already written several programs herself—and a book about computers it
was, as Alice had realised quickly—but the words passing by, as she was going
from page to page, were so strange and unknown that she quickly started to feel
all numb. She read about syntax and semantics, about functions with three or
more possible values, she saw humongous trees growing to the sky, and many
weird symbols that seemed to be written upside-down. She came across pages
over pages filled with equations, sometimes in black and sometimes in grey colour
(or maybe the print had faded over the years), and on one page she even found an
egg that had the words ‘Real World’ written on it. Many times Alice stumbled
over prose seemingly familiar, but used in a way that was utterly confusing,

We wish to thank Lewis Carroll, whose books inspired us to write this paper. Also,
many thanks to Hurt Sandra Hedström for the wonderful state machine illustration.
c© Springer Nature Switzerland AG 2022
W. Ahrendt et al. (Eds.): The Logic of Software. A Tasting Menu of Formal Methods,
LNCS 13360, pp. 229–242, 2022.
https://doi.org/10.1007/978-3-031-08166-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08166-8_11&domain=pdf
https://doi.org/10.1007/978-3-031-08166-8_11

230 D. Gurov et al.

among those long and tedious considerations that involved banks and credit
cards; and several times even mentioned contracts!

‘Oh, there is no use in reading the book,’ thought Alice, increasingly desper-
ate, ‘this book is perfectly idiotic!’ when she suddenly noticed the White Rabbit
rushing past her, mumbling its usual ‘Oh dear! Oh dear! I shall be late!’ Alice,
knowing how fast the Rabbit used to walk, went instantly after it and asked,
‘Late for what?’ ‘Oh dear! Why, for Reiner’s birthday party, of course!’ And
down it went into the rabbit-hole, and down went Alice after the Rabbit.

2 Before and After the Footman

Alice was falling, and falling, and falling. That was not a very remarkable thing
by itself, as Alice was already used to the journey through the rabbit hole from
her previous adventures, and she was not in the least afraid—what caught Alice
unprepared were rather the strange writings she could glimpse flying by on the
tunnel wall, the likes of which she had never noticed before. In the beginning,
Alice’s fall was too fast to read any of the words, but as she started to pay closer
attention, Alice could make out individual letters; and soon she recognised the
sentences, symbols, and pictures she had seen in the book with the keyhole! ‘Oh
dear!’ thought Alice, ‘this will be a tricky adventure!’

Thump! As she was still contemplating about syntax, semantics, and most
of all about contracts and banks, the fall came to a sudden end, and Alice found
herself sitting on an open plain with a little house in it. THUMP! There was
a most extraordinary noise going on within—a constant howling and sneezing,
and every now and then a great crash, as if a dish or kettle had been broken to
pieces. This must be it, Alice thought, the place of Reiner’s birthday party!

Alice went timidly up to the door, and knocked, but there was no answer.
For a minute or two she stood looking at the house, and wondering what to
do next, when suddenly a footman in livery came running out of the wood. He
rapped loudly at the door with his knuckles, and a second later it was opened
by another footman. The first footman produced from under his arm a great
letter, nearly as large as himself, and this he handed over to the other, saying in
a solemn tone, ‘For the Professor. An invitation to wine tasting!’

The next time Alice looked, one of the footmen was gone, and the other one
was sitting on the ground near the door, staring stupidly up into the sky.

Alice really wanted to join the party, so she knocked a second time, but to no
avail. ‘There’s no sort of use in knocking,’ said the footman, idling beside her,
‘and for many reasons. First, as you can see, it is me who admits people to the
party, and I’m on the same side of the door as you are.’

‘Pray, how can I enter then?’ cried Alice, suddenly afraid she might have
arrived too late. ‘I will miss all the fun!’

‘There is much you have to learn first,’ said the footman, ‘before Reiner will
receive you. Few are deemed worthy, and you know next to nothing. At this
party, everything that is done or happens has a beginning and an end. It will

Alice in Wineland: A Fairy Tale with Contracts 231

happen only when the beginning is possible, and it can finish only when the
outcome is satisfactory.’

‘This was not an encouraging opening for a lecture.’ Alice replied, rather
shyly, ‘I—I don’t understand a word of what you said.’

The footman gave a deep sigh. ‘It is hard work teaching you humans even
the simplest things. You will make a complete fool of yourself at the party!’ He
hesitated, sighed again, and then started to explain.

‘The world is evolving as the result of operations or actions applied to it:
opening the door, entering the house, taking a seat, or emptying a glass of wine.
You might think of such operations as just names, but they carry some meaning
as well. We need to have a common understanding of the operations, lest we end
up emptying a bottle of wine when we really wanted to write a well-reasoned
research article.

We therefore describe the meaning of operations using contracts, which will
enable civilised people to converse without the danger of any misunderstanding.
As an example that even you, my child, will understand, consider the action of
sitting down:

Operation: Take a seat
Pre: Person is standing ∧ Person was offered seat ∧ Seat is free
Post: Person is sitting

This contract gives three pieces of information: the name of an operation, a
pre-condition that has to be satisfied before we can even consider starting the
operation, and a post-condition that describes what we can expect after the
operation has finished. The contract does not tell us how we can take a seat,
which will depend on whether you are a human, a caterpillar, or a tortoise, but
it will abstractly describe the assumptions and the result of sitting down.’

A question had formed in Alice’s head, and at this point she managed to
interrupt the monologue of the footman: ‘But I much prefer to sit down whenever
I want, not only when somebody has invited me to do so! What use has a contract
if the pre-condition is not satisfied?’

The footman felt uneasy, confronted with ignorance of this extent, and put
on an indignant face. ‘A contract will not tell you anything about the outcome of
an operation when you fail to take the pre-condition into account. Even though
it might appear, at face value, that you could take seat on every free chair, doing
so uninvited might have the most unintended side effects!

But your question has certain merits, as it highlights the slightly surprising
semantics of pre-conditions, an element of confusion that can be traced through
the literature. In the logic of Hoare [8], and in various methods for specifying
programs (for instance [11,17]), a post-condition applies when the pre-condition
is satisfied at the point when the operation occurs; nothing is said about cases in
which the pre-condition does not hold. In our case, if a person was never invited
to sit down, no conclusions can be made about the effect of taking a seat. The
outcome of sitting down is one of the possible effects, but neither mandated nor
forbidden. In other approaches, however, pre-conditions are interpreted differ-
ently and more strictly, namely as necessary conditions for being able to embark

232 D. Gurov et al.

upon an operation in the first place (for instance in the Design by Contract
setting of Meyer [12], and in [10]).’

Sensing insecurity on the side of the footman, Alice put forward a bold sug-
gestion: ‘If that is so, wouldn’t it be better to rename such conditions of the
second sort to ‘necessary pre-condition’ or ‘enabling condition’? Just imagine
what a mess you will otherwise get when you associate one operation with two
contracts? You will never know which pre-conditions you have to follow, and
which ones you are free to ignore!’

As upset as he was about the complete lack of respect shown by this student,
the footman couldn’t help but secretly agree, Alice had a point. Since he was
used to following rules, and not question them, he hastily changed the topic.

‘You might wonder, then, how operations relate to the software programs
you have read about in your book. In a program, we use functions or procedures
to capture the operations (you might also call them actions) taking place in the
real world. The effect of an operation can now, very concretely, be described
using the variables in the program. The pre-condition will be a condition about
the state variables, and the procedure inputs, whereas the post-condition will
relate the values of state variables before calling the procedure with the values of
the variables after the call (and with the inputs, and maybe the returned result).
Such pre-/post-condition contracts were proposed by Meyer [12] in the context
of Design by Contract, and represent the most common form of contract. Formal
syntax for contracts of this form is provided by several programming and spec-
ification languages, including Eiffel, JML, and ACSL. The distinction between
pre-conditions, which have to be ensured by the caller of an operation, and post-
conditions, which are the responsibility of the callee and describe the result and
effect of an operation, reflects the principle of modular design in which the differ-
ent components of a program collaborate on clearly stated terms. Modular design
enables us to use Hoare logic or Dynamic logic (and many other approaches) to
verify rigorously that each procedure, and the program altogether, satisfies its
contracts and therefore will be free of bugs!’

Having come to the end of this complicated explanation, the footman was
very satisfied with himself, and expectantly he looked at Alice. But Alice had
become confused long ago, and lost track of the many abbreviations used by
the footman; all the while a new question had come into her mind and kept her
occupied. Slowly, with a lot of pausing and thinking, she tried to explain her
doubts.

‘That is all fine, but must be an idea pursued by the academic gentry, which
has never written a program longer than ten lines. A real procedure will do
many things, it will read and update the values of hundreds of variables, and it
can itself call many other procedures; how could one ever describe the complete
effect of such a procedure using one post-condition? And what is worse, since
the contract of a procedure has to capture also the effects of all internally called
procedures, it will not at all be modular! If the procedure f calls procedure g,
then to write the contract of f we already have to know what g does!’

Alice in Wineland: A Fairy Tale with Contracts 233

The footman was taken even more aback than before by this blasphemy; and
at the same time did not fully grasp what Alice meant. Rather stiffly he retorted:
‘The intention of a contract is to specify the overall effect of an operation. Pre-
and post-conditions are a means for describing how, upon a procedure call, the
final values of the variables relate to their initial values. Contracts enable the
modular design of a program (or of the world around us), since we can now talk
about the effect of operations without having to consider their implementation.
If a procedure calls another procedure, this is an implementation detail that the
contract should abstract away from. We can build a system modularly by first
introducing its operations, then equip each of the operations with a contract
describing the intended behaviour, and later we can implement the operations
(as procedures) independently of each other. A contract does not have to fully
describe the effect of an operation either, it is enough if it mentions its essential
features, and leaves away the unnecessary details.’

Alice, who had in the meanwhile ignored the rambling of the footman as she
was absorbed in her own thoughts, continued her argument: ‘But now imagine
we want to write a contract for the task of organising Reiner’s party. This will be
a huge undertaking: we first have to select a good day and time, then send out all
the invitations, then organise all the wine (and other less important things), then
wait for all the people to arrive, then ask them to sit down, then pour wine, and
so on! The party will of course contain many instances of operations like ‘Take a
seat,’ ‘Pour wine,’ and ‘Empty glass,’, so that the pre- and post-condition of the
party will repeat the pre-/post-conditions of those sub-operations many times
over. The contract will be like a telescope that unfolds and becomes longer and
longer, until nobody can see its beginning and end anymore! And think of all
the empty bottles, how should we dispose of them?’

At this point, the footman decided that enough was enough, he had wasted
already too much time with this lecture. Sitting down on the grass again, he
merely mumbled: ‘Go and talk to the Caterpillar! You will find it where the
smoke is, and it will help you!’ With this, he resumed his study of the clouds,
leaving Alice alone in a rather confused state.

3 The State of the Caterpillar

As the footman had said, the Caterpillar was to be found exactly where the
smoke was. It was sitting on top of a large mushroom, with its eyes closed and
its arms folded, quietly smoking its long hookah. ‘Good day!’ Alice greeted the
creature. ‘I was told that you can tell me more about contracts. You see, I won’t
be invited to Reiner’s party with only what I know now.’ The Caterpillar did
not move. It only released yet another cloud of smoke. ‘If I want to specify,’
Alice went on, ‘that a computer program is to engage in certain sequences of
operations, or that only certain sequences are allowed, how shall I do that? It
seems to me cumbersome to use for this the pre- and post-conditions that the
footman is so fond of.’

The Caterpillar finally opened its eyes. ‘And because of this, little girl, you
disturb my peace?’ It cleared its throat and continued in a languid, sleepy voice.

234 D. Gurov et al.

‘Well, let me think... This means that when executing the program, whether
an operation is to be (or can be) executed next will depend on the history of
operations performed up to that point. In that case one needs a notion of state
as a means to organise the operations in the desired order, and so, it is only
natural to use Finite Automata for this, or more generally, State Machines (see
for instance [9] for an introduction). Due to their graphical representation, state
machines can be a useful visual specification language. But there also exist other
formalisms for specifying sequences of operations, such as process algebras (as
used, e.g., in [14]) and grammars (see Sect. 4 below), and hierarchical variants
of state machines such as Statecharts [7].’

Here, Alice raised her hand—upon which the Caterpillar raised its eyebrows.
It was not very fond of being interrupted, but it allowed Alice to ask her question
while it took a smoke. ‘Can I use a state machine to specify that guests should
only drink wine while seated? I wouldn’t like them to get drunk and stumble
over other guests, you know.’ ‘Oh, absolutely!’ the Caterpillar replied. ‘And here
is how such a state machine could look.’ And it drew, with the mouthpiece of
the hookah, a picture on the surface of the mushroom (see Fig. 1).

Fig. 1. A contract presented as a state machine, specifying that guests shall be sitting
while drinking.

‘How marvellous,’ exclaimed Alice, ‘that is so beautiful!’ (Maybe even more so
than the drawings of John Tenniel, she thought.) ‘But can’t this also be achieved
with pre- and post-conditions as the footman wanted, instead of drawing circles
and arrows?’ ‘One surely can, my child, one surely can,’ replied the Caterpillar.

Here, the Caterpillar made a long pause, exhaling a cloud of smoke. ‘You
see, a picture is just so much easier to understand. But once you have drawn
it, and you wish to use pre- and post-conditions, you simply have to introduce

Alice in Wineland: A Fairy Tale with Contracts 235

a new global variable1 to represent the state of the state machine. This state
variable is initialised at the start of program execution to the initial state of
the state machine. And then, you have to encode every transition of the state
machine into the contract of the procedure that implements the operation with
which the transition is labelled. You can achieve this by adding a conjunct to
the pre-condition, to capture when the operation is enabled, and a conjunct to
the post-condition, to capture how the state variable is changed.’

‘Hm,’ Alice mumbled, writing something in her notebook. ‘Would this then
be a good contract for the drink operation?’ And she showed her notes to the
Caterpillar.

Operation: Drink wine
Pre: Person is sitting ∧ Glass has wine
Post: Person is sitting

‘Yes, indeed,’ replied the Caterpillar. But Alice was still wondering. ‘If I
understand correctly,’ she said, ‘the state machine is for the whole program and
not just local to one procedure. And we also seem to assume that procedures and
operations are the same thing. But how about procedure contracts that prescribe
many operations to be performed, and in certain orders? Can I also use state
machines to write such contracts?’

‘Hm, hm.’ The Caterpillar was pleased to have such an astute student, but
was at the same time annoyed by her many questions. ‘Yes. Such a situation
would arise, for instance, when we have a main procedure, which is responsible
to order the operations, and we want to write a contract for this procedure.
You could then indeed use a state machine like the one in Fig. 1 to formulate the
contract. Or, if you prefer to write the contract in textual form, you could present
it in some contract specification language such as ConSpec [1] (see Fig. 2).’

Fig. 2. A state machine in textual form.
1 Or a so-called ghost variable, if your specification system supports them: these are

variables that are not part of the program, but are used for specification purposes.

236 D. Gurov et al.

‘I see,’ said Alice. (But the picture was indeed much nicer, she thought.)
‘So sitting is the state variable, and is initialised to false in the beginning. And
to take a seat, sitting must be false, but as a result of the operation it will
become true?’ ‘Yes, indeed,’ the Caterpillar replied. ‘But what if the operation
is attempted when sitting is true?’ . ‘Well, then the contract will be violated,
Alice.’ ‘Oh, yes, I remember! So then, drinking is only allowed when sitting is
true, and the operation does not change this.’

‘And still’ Alice kept wondering, ‘instead of using a state machine to specify
which other procedures are called and in what order, can’t I simply specify the
overall effect of calling the main procedure in terms of pre- and post-conditions?
The footman was insisting on this, you see!’

‘Hm, hm,’ mumbled the Caterpillar. ‘Yes, you can—and typically you would
do exactly this. But sometimes you want your contract to be more abstract,
as for instance when the very purpose of the procedure is to call certain other
procedures in a certain order, regardless of what exactly they do (i.e., how they
change the state). Another case is when the overall effect of calling the procedure
simply cannot be captured in terms of changing the values of the variables—for
example, when the effect concerns (interaction with) external entities.’

‘Right. But I do have one last question,’ said Alice. (Thank God, thought the
Caterpillar, as it was beginning to get tired from all the profound questions that
Alice was asking.) ‘Will the pictures of the state machines always be small enough
that we can draw them on a mushroom?’ ‘No, not always,’ the Caterpillar replied.
‘Sometimes the state machine may have a large or even an infinite state space.
Such state machines are best represented symbolically, e.g., as a symbolic Kripke
structure (see for instance [5]), by means of two predicates over states: a unary
predicate I(s) that captures the initial states, and a binary predicate T(s, s′)
that captures the transition relation. This is for instance how one represents
programs in the TLA framework [10] and the NuSMV model checker [4].

‘And finally,’ the Caterpillar continued after a brief pause, ‘there is the ques-
tion of how to formally verify that a given procedure meets its contract, when the
latter is stated as a state machine.’ Alice, who really wanted to make sure that
Reiner’s guests won’t drink excessively and make fools of themselves at the party,
looked very interested. ‘Yes!’ she exclaimed, ‘I suppose, if we encoded the state
machine with pre- and post-conditions, we could simply use procedure-modular
deductive verification?’

‘Indeed,’ replied the Caterpillar. ‘Another possibility would be to check stat-
ically that the state machine simulates the program’s execution. Essentially, this
amounts to conjoining the program with the state machine (i.e., forming their
automata-theoretic product) and checking that the state machine never blocks
(i.e., never has to take an operation that is not offered from its current state).’
Here, Alice looked puzzled. ‘Is this also a procedure-modular method?’ she asked.
But the Caterpillar could take no more. ‘End of class!’ it shouted grumpily, and
with this it turned its back to Alice.

Alice in Wineland: A Fairy Tale with Contracts 237

4 The March Hare Rules

After the lecture by the Caterpillar, Alice thought that, surely, she now knows
almost everything there is to know about contracts. Satisfied, she started heading
back to the party, but realised that it would probably be improper to show up
without some sort of gift—a bottle of wine, or perhaps two. She was reminded of
the March Hare, and the many parties with the Mad Hatter and the Dormouse.
Maybe he would be able to help, Alice thought, and started heading towards his
house to pay another visit.

When she arrived, she was immediately greeted by the March Hare, who
invited her in. ‘My dear friend’, Alice started, ‘I am attending a party, and I am
in need of wine, in haste.’ The March Hare led her down into the cellar, where,
sure enough, there was a giant wine rack on one of the walls. ‘I have enough wine
for any party’, the March Hare said, ‘but I cannot just give it away.’ ‘Please, I
promise you, for any bottle I take, I will put another one back, as soon as the
party is over,’ Alice replied.

Not convinced, the March Hare insisted that she make the promise formal,
and started lecturing Alice about context-free grammars (CFGs). ‘Context-free
languages are defined by context-free grammars. Such grammars consist of pro-
duction rules, which are sentences over terminating and non-terminating sym-
bols. The terminating symbols are symbols representing the basic units that we
want to reason about. This could be the program states, for example, or some
set of abstract actions. The non-terminating symbols refer to other production
rules, possibly even recursively, and are substituted when evaluating what pos-
sible sequences may occur. For this reason, context-free grammars can express
many properties that cannot be expressed in the other formalisms, some of which
you have already seen.’

As the March Hare went on and on, Alice grew impatient. Eventually, she
interrupted the monologue, and although not entirely sure she understood, pre-
sented to the March Hare the following contract, in the form of a CFG:

C → ε | TakeBottle C PutNewBottle

She explained her reasoning. The contract is denoted by the production
rule C. To make sure the production stops, either because party guests have
had just enough wine, or, perhaps more likely, because the shelf has run out
of bottles, we use the symbol ε to say that no action is taken. Alice’s contract
to the March Hare, C, then says that either she doesn’t take any bottle at all,
or at first she takes one bottle, in the end replaces it with a new bottle, and
in between she again fulfils the same contract, resulting in the same amount of
bottles being put back as was initially taken out.

‘That looks good,’ said the March Hare, ‘and I can agree to those terms. But
before you go, let me first tell you a bit more about such contracts.’

The March Hare continued: ‘It is often the case when specifying sequences
of operations, that contracts become unwieldy. Consider a procedure which per-
forms its task by calling several other procedures, which all have their own

238 D. Gurov et al.

contracts specifying the sequences of operations they will produce. The contract
for the top-level procedure will then, naturally, consist of some combination of
all those sequences produced by the called procedures. Instead of restating the
full sequences, or the formulas representing them, it would be preferable if we
had some way of directly referring to the contracts of the called procedures.

Now, for contracting purposes, the non-terminating symbols of the context-
free grammars may also serve the purpose of referring to the contracts of other
parties involved. For example, for two mutually recursive procedures a and b,
with contracts given by non-terminating symbols A and B, respectively. Mod-
elling only the events of calling and terminating the other procedure, we could
give their contracts by the following grammar:

A → ε | call(b) B term(b)
B → ε | call(a) A term(a)

We are thus able to specify contracts more concisely, when they depend on
results of other procedures. You may already be familiar with the concept of
function modularity for verification purposes (see Sect. 2), and by using CFGs
in this way we achieve a similar modularity in the contracts themselves.’

‘Okay,’ said Alice.
‘From an assume-guarantee viewpoint, the possible productions of terminat-

ing symbols of a contract are what is guaranteed, under the assumption that the
other procedures whose contracts are referred to, produce what is specified by
the grammar. In this way, assumptions are made explicit, whereas in other for-
malisms, such as pre- and post-conditions, similar assumptions implicitly exist
on called procedures, but are never explicitly stated. A drawback, however, of
directly referring to other contracts in this way, is that they are no longer inde-
pendent of each other, and changes in one contract, as may happen regularly
during development, will affect all contracts directly or indirectly referring to
that contract.’

‘Does this not also mean, then,’ Alice remarked, ‘that verifying the correct-
ness of such contracts is not an easy task?’

‘Why, yes...’ the March Hare said, ‘but I have some ideas.’ Listening to the
explanation, Alice learned of the concept of undecidability. Some problems are
in general infeasible to solve, and for two languages defined by CFGs, deciding
whether one is included in the other is precisely such a problem [9]. This did
not stop the March Hare from fleshing out the idea. ‘Let us say, that we are
only interested in certain actions. If we ignore the data of the program, then the
program could be translated, statement by statement, into a CFG producing all
those sequences of actions which the program could possibly produce, and then
some.’ Alice looked confused, but the March Hare continued. ‘You see, since we
do not take any data into account, our analysis of the control-flow will be an
overapproximation. But if the sequences produced by this grammar can also be
produced by the CFG of the contract, then we can still be sure that the program
satisfies the contract.’

Alice in Wineland: A Fairy Tale with Contracts 239

‘But,’ objected Alice, ‘you just said a moment ago that we cannot decide
whether one such language is a subset of another.’

‘While this will not be possible to verify every time, if we are lucky, often
it will.’ The March Hare went on to explain that if we do not limit ourselves
to automatic proofs, but allow humans (or other creatures) to interact with the
prover, many more possibilities arise, and that there already are ideas proposed
for solving the problem at hand in this way [16]. ‘Or...’ The March Hare looked
deflated. ‘Or we restrict ourselves to simpler classes of languagues.’ The March
Hare suggested the use of visibly pushdown languages [2]. For such languages,
Alice soon learned, inclusion is always decidable in exponential time. ‘Then you
will have your answer in the end, although it might take a very long time. Let’s
just not restrict ourselves too much, or we will end up back at finite state-
machines!’ The March Hare laughed, and ran away, leaving Alice alone in the
wine cellar.

5 The Logic of the Mad Hatter

Alice, equipped with both knowledge and wine, again started making her way
back to the party. As she was walking along a path in the forest, she happened
upon the Mad Hatter. Alice started telling him about everything she had learned.
The Mad Hatter soon stopped her, and said, ‘Yes, yes. That all seems very useful.
But how would you go about specifying that if a bottle of wine has been emptied,
eventually a new one will be brought to the table? Such a contract seems to me
to be of utmost importance!’ Alice thought for a minute, but could not find an
obvious answer in the logics she had gotten to know.

‘Or how about: there shall never be fewer than five full bottles of wine at
each table?’ the Mad Hatter continued. ‘An even more important property!’

The Mad Hatter started rambling about this thing called Interval Temporal
Logic (ITL) [6], and how it could be used to specify properties over intervals, or
finite sequences of states. ‘At the heart of this, is an operation called chop, and
much like when the Queen of Hearts applies it to heads and bodies, it separates
an interval into two!’

The Mad Hatter continued ‘Now, if E represents the fact that a bottle has
been emptied, and N that a new bottle is brought to the table, then the logical
formula ¬E ∨ (E�N) means that either no bottle is emptied, or it is, and if so,
a new bottle is eventually brought to the table.’

Alice had to stop to think. She understood the connectives of negation and
disjunction, since their meaning here was similar to how she had seen them used
before. She recalled what the Mad Hatter had said about the chop operator—
that it was a way of concatenating two separate intervals, such that the first
interval ends where the second begins. She also recalled that atomic formulas
are evaluated in the first state of an interval, and are true for the entire interval
if they hold in this state.

‘I see!’ Alice exclaimed. ‘If the interval starts with an emptied bottle, we
want there to be a second interval starting with a new bottle being brought, and
this should happen when the first interval ends.’ She thought a bit more. ’And

240 D. Gurov et al.

since the intervals are finite, in particular the first one, the state containing the
new bottle must eventually occur.’

‘Correct. Let’s now say, the state of our table consists of the number of wine
bottles on it. We can represent this by the variable bottles. At any point in time,
we thus want to assert that bottles ≥5.’

Alice also soon understood, that by using the operator ∗, she could specify
that an assertion shall repeatedly hold. ‘So by writing F ∗, I say that it should
be possible to divide the interval into smaller parts, such that each subinterval
ends in the state where the next one begins, and the formula F holds in each
part, right?’

‘That is correct. Now, let’s see if can use this to specify what we want.’
‘Oh, I know—I know!’ Alice exclaimed. ‘We simply write (bottles ≥5)∗. That

was too easy!’
‘Aha, not quite,’ the Mad Hatter grinned. ‘Would your formula not hold for

an interval where there are at least five bottles only in the first state?’
Alice thought for a bit, and realised her mistake. ‘You are right, since one

possible way to split the interval is into a single part.’
‘You see, there is one more operator that we need to talk about, called next—

and by the way, we will also need a formula that holds for all possible intervals,
let’s call it true. Now, about next, it is true if the formula that comes after holds
in the second state. We can use this to reason about the length of intervals...’
Alice was again becoming impatient—and it must have showed, because the Mad
Hatter interrupted himself mid-sentence. ‘But enough of that for now. In this
case, all we need is a simple little trick. Instead of saying something shall always
hold, we state that its negation must never hold. Using this equivalence, you
should be able to specify the property with what you already know.’

‘That is neat. How about this, then: ¬(true�¬(bottles ≥ 5))?’ Alice asked. ‘It
should not be the case that eventually, there is fewer than five bottles of wine.’

The Mad Hatter nodded. ‘Let me tell you one more thing, before you head
off,’ he said. ‘Since you know about pre- and post-conditions, this might be
familiar to you,’ (see Sect. 2). The Mad Hatter explained that ITL could be used
in a similar way, to get something more closely resembling a contract. ‘As with
other types of assertions, we would often like to specify that for our formula
to apply, some pre-condition must be met. But for this pre-condition, we are
not so interested in the full sequence of preceding states. Thus, in interval-
based contracts, the pre-condition can be an assertion over singleton states,
whereas the post-condition specifies the full traces to be produced.’ The Mad
Hatter explained that much like Hoare logic has been used to prove correctness
of contracts in the style of pre- and post-conditions, extensions of it can be used
to prove the correctness of contracts based on ITL [13].

As the Mad Hatter noticed that Alice was barely listening anymore, they
said their farewells, and went their separate ways.

‘And now it is high time for me to go to Reiner’s party,’ thought Alice.
‘Enough of all these contract languages. And I really want to finally meet Reiner!’
She then saw the White Rabbit rush past her. ‘Wait!’ she shouted after it, ‘I
can’t run as fast as you!’ And they disappeared one after the other in the forest.

Alice in Wineland: A Fairy Tale with Contracts 241

6 Epilogue

Alice was sound asleep on the bank, with the book [3] still in her hands, when
her sister came. ‘Alice, Alice, wake up, I brought you a marshmallow!’ Alice
promptly jumped on her feet. She then recalled her dream. ‘Sister, dear—you
will never believe what I just dreamt!’ And she told her sister about Wineland
and all the creatures she had met, about Reiner and the party she never got to.

‘First, there was this footman, you know,’ Alice started her story. ‘He knew
an awful lot about doing things. He said that to do something properly, you
first need to know when you can do it (he called it a pre-condition), and then
you need to know how things would change afterwards (he called it a post-
condition). These two conditions he called a Contract. We talked a lot about
these contracts. But I thought them rather limited. Then there was the grumpy
Caterpillar, who was sitting on a mushroom and smoking a long hookah. We
talked about contracts with states. It drew funny pictures on the mushroom,
with circles and arrows, and called them State Machines. And then there was
the March Hare. He told me about contracts written as grammars. But not
the English grammar we learn about in school, you know. These grammars are
called context-free, and with them you could talk about taking bottles and then
returning them, one-for-one. And finally, there was the Mad Hatter, who was
really quite mad, indeed! He told me about something very strange, he called it
Interval Logic. He used some funny letters to write contracts. With them you
could make sure that the guests at Reiner’s party will always have enough to
drink.’

Alice’s sister looked rather perplexed. She didn’t understand a word of what
Alice was saying. And then she suddenly got very agitated. ‘This is all very, very
strange,’ she said. ‘While you were asleep, Alice, I heard this funny song on the
wireless. It must have been about your dream! It went on like this:’

And if you go chasing rabbits
And you know you’re going to fall,
Tell ’em a hookah smoking caterpillar
Has given you the call.
Call Alice
When she was just small.

‘Yes, this is indeed very strange!’ Alice exclaimed. ‘Maybe I heard it too,
from a distance, and that’s why I dreamt all this? But after all,’ she continued,
thoughtfully, ‘I am really happy that you woke me up. I should think that apply-
ing all these contracts for Reiner’s party would have made a complete mess!’

And still, Alice wondered, in Wineland they all assumed that everything you
do, you do in a sequence. But how would the contracts be if we also consid-
ered things that we do simultaneously? This, and many other questions crossed
Alice’s mind. She had still to learn a lot about contracts, and such mysterious
languages as Separation Logic [15], in which one can write contracts for concur-
rent programs. Alice had even heard rumours about contracts that were smart,
although that was surely an exaggeration that the mad creatures in Wineland
must have come up with.

242 D. Gurov et al.

References

1. Aktug, I., Naliuka, K.: ConSpec - a formal language for policy specification. Sci.
Comput. Program. 74(1–2), 2–12 (2008). https://doi.org/10.1016/j.scico.2008.09.
004

2. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proceedings of ACM
Symposium on Theory of Computing (STOC 2004), pp. 202–211. Association for
Computing Machinery (2004). https://doi.org/10.1145/1007352.1007390

3. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware. The KeY Approach. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-69061-0

4. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: a new symbolic model
verifier. In: Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp. 495–
499. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48683-6_44

5. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.) Handbook of Model Che-
cking. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-10575-8

6. Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: Interval temporal
logics: a journey. Bull. Eur. Assoc. Theor. Comput. Sci. EATCS 3(105), 81–107
(2011)

7. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Pro-
gram. 8(3), 231–274 (1987). https://doi.org/10.1016/0167-6423(87)90035-9

8. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969). https://doi.org/10.1145/363235.363259

9. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation, 3rd edn. Pearson international edition, Addison-
Wesley, Boston (2007)

10. Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang. Syst.
16(3), 872–923 (1994). https://doi.org/10.1145/177492.177726

11. Leavens, G.T., et al.: JML reference manual (2008)
12. Meyer, B.: Applying “Design by Contract”. IEEE Comput. 25(10), 40–51 (1992).

https://doi.org/10.1109/2.161279
13. Nakata, K., Uustalu, T.: A hoare logic for the coinductive trace-based big-step

semantics of while. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 488–
506. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11957-6_26

14. Oortwijn, W., Gurov, D., Huisman, M.: Practical abstractions for automated ver-
ification of shared-memory concurrency. In: Beyer, D., Zufferey, D. (eds.) VMCAI
2020. LNCS, vol. 11990, pp. 401–425. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-39322-9_19

15. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
Proceedings of Logic in Computer Science (LICS 2002), pp. 55–74. IEEE Computer
Society (2002). https://doi.org/10.1109/LICS.2002.1029817

16. Rot, J., Bonsangue, M., Rutten, J.: Proving language inclusion and equivalence by
coinduction. Inf. Comput. 246, 62–76 (2016). https://doi.org/10.1016/j.ic.2015.11.
009

17. Wing, J.M.: A Two-Tiered Approach to Specifying Programs. Ph.D. thesis, Tech-
nical Report TR-299 (1983)

https://doi.org/10.1016/j.scico.2008.09.004
https://doi.org/10.1016/j.scico.2008.09.004
https://doi.org/10.1145/1007352.1007390
https://doi.org/10.1007/978-3-540-69061-0
https://doi.org/10.1007/3-540-48683-6_44
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/177492.177726
https://doi.org/10.1109/2.161279
https://doi.org/10.1007/978-3-642-11957-6_26
https://doi.org/10.1007/978-3-030-39322-9_19
https://doi.org/10.1007/978-3-030-39322-9_19
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1016/j.ic.2015.11.009
https://doi.org/10.1016/j.ic.2015.11.009

Teaching Design by Contract Using Snap!

Marieke Huisman and Raúl E. Monti(B)

Formal Methods and Tools, University of Twente, Enschede, The Netherlands
{m.huisman,r.e.monti}@utwente.nl

Abstract. With the progress in deductive program verification research,
new tools and techniques have become available to support design-
by-contract reasoning about non-trivial programs written in widely-
used programming languages. However, deductive program verification
remains an activity for experts, with ample experience in programming,
specification and verification. We would like to change this situation,
by developing program verification techniques that are available to a
larger audience. In this paper, we present how we developed program
verification support for Snap!. Snap! is a visual programming language,
aiming in particular at high school students. We added specification lan-
guage constructs in a similar visual style, designed to make the intended
semantics clear from the look and feel of the specification constructs.
We provide support both for static and dynamic verification of Snap!
programs. Special attention is given to the error messaging, to also make
this as intuitive as possible. Finally, we outline how program verifica-
tion in Snap! could be introduced to high school students in a classroom
situation.

Keywords: Verification · Software · Education

1 Introduction

Research in deductive program verification has made substantial progress over
the last years: tools and techniques have been developed to reason about non-
trivial programs written in widely-used programming languages, the level of
automation has substantially increased, and bugs in widely-used libraries have
been found [9,24,28]. However, the use of deductive verification techniques
remains the field of expert users, and substantial programming knowledge is
necessary to appreciate the benefits of these techniques.

We feel that it is important to change this situation, and to make deduc-
tive program verification techniques accessible to novice programmers, because
specifying the intended behaviour of a program explicitly (including the assump-
tions that it is making on its environment) is something that programmers
should learn about from the beginning, as an integral part of the process lead-
ing from design to implementation. Therefore, we feel that it is important that
the Design-by-Contract approach [23] (DbC), which lies at the core of deductive
program verification is taught in first year Computer Science curricula, as is

c© Springer Nature Switzerland AG 2022
W. Ahrendt et al. (Eds.): The Logic of Software. A Tasting Menu of Formal Methods,
LNCS 13360, pp. 243–263, 2022.
https://doi.org/10.1007/978-3-031-08166-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08166-8_12&domain=pdf
http://orcid.org/0000-0003-4467-072X
http://orcid.org/0000-0002-6964-1426
https://doi.org/10.1007/978-3-031-08166-8_12

244 M. Huisman and R. E. Monti

done already at several institutes, see e.g. CMU’s Principles of Imperative Com-
putation freshmen course, which introduces Design-by-Contract combined with
run-time checking [7,26]. In this paper, we take this even further, and make the
Design-by-Contract idea accessible to high school students, in combination with
appropriate tool support.

Concretely, this paper presents a Design-by-Contract approach for Snap!.
Snap! is a visual programming language targeting high school students. The
design of Snap! is inspired by Scratch, another widely-used visual programming
language. Compared to Scratch, Snap! has some more advanced programming fea-
tures. In particular, Snap! provides the possibility to create parametrised reusable
blocks, basically modelling user-defined functions. Also the look and feel of Snap!
aims at high school age, whereas Scratch aims at an even younger age group. Snap!
has been successfully integrated in high school curricula, by its integration in the
Beauty and Joy of Computing course [12]. This course combines programming
skills with a training in abstract computational thinking. We feel that the skills
taught in the Beauty and Joy of Computing also provide the right background
to introduce Design-by-Contract .

In an earlier paper [16], we already presented this position and approach
to teaching Design-by-Contract using Snap!. This paper further motivates and
explains our proposal. We also expand on the analysis of our Snap! extension
by presenting further alternatives to our block designs. Moreover, we propose a
series of lessons and exercises based on our Snap! extension and targeting school
curricula.

The first step to support Design-by-Contract for Snap! is to define a suitable
specification language. The visual specification language that we propose in this
paper is built as a seamless extension of Snap!, i.e. we propose a number of new
specification blocks and natural modifications of existing ones. These variations
capture the main ingredients for the Design-by-Contract approach, such as pre-
and postconditions. Moreover, we also provide blocks to add assertions in a
program, as well as the possibility to specify loop invariants (which are necessary
to support static verification of programs with loops). The choice of specification
constructs is inspired by existing specification languages for Design-by-Contract ,
such as JML [17], choosing the most frequently used constructs with a clear
and intuitive meaning. Moreover, all verification blocks are carefully designed
to reflect the intended semantics of the specifications in a visual way. Below, in
Sect. 3, we discuss pros and cons of different options for the visualisation of these
specification blocks, and motivate our choice. In addition, we have also extended
the standard expression pallets of Snap! with some common expressions to ease
specifications such as quantifications over lists and implications, and with the
specification-only expressions to refer to a return value of a function, and to the
value of a variable in the function’s pre-state.

A main concern for a programmer, after writing the specification of the
intended behaviour of their programs, should be to validate that these programs
behave according to their specification. Therefore, we provide two kinds of tool
support for Design-by-Contract in Snap!: (i) runtime assertion checking [8], which

Teaching Design by Contract Using Snap! 245

checks whether specifications are not violated during a particular program exe-
cution, and (ii) static verification (or deductive verification) [19], which verifies
that all possible program executions respect its specifications. The runtime asser-
tion checker is built as an extension of the standard Snap! execution mechanism.
As mentioned, it only checks for single executions, but has the advantage that it
can be used quickly and provides intuitive feedback. The deductive verification
support is built by providing a translation from a Snap! program into Boogie [2].
This requires more expertise to use it, and moreover, in the current set-up, the
verification is done inside Boogie, and the error messages are not translated back.
Improving this process will be a future challenge.

Another important aspect to take into account for a good learning experience
are the error messages that indicate that a specification is violated. This is an
important challenge, also because clear error messages are still a big challenge
for existing Design-by-Contract checking tools (both runtime and static). We
have integrated these messages in Snap!’s standard error reporting system, again
sticking to the look and feel of standard Snap!. Moreover, we have put in effort
to make the error messages as clear as possible, so that also a relative novice
programmer can understand why the implementation deviates from the specifi-
cation. Of course, improvements in error reporting in other verification tools can
also lead to further improvements in our tool.

Finally, we sketch how the specification language and corresponding tool
support could be introduced to high school students. Unfortunately, because of
the Covid-19 situation, we have not been able yet to try our plan in a high school
setting.

To summarise, this paper contributes the following:

– We propose a visual specification language, seamlessly integrated into Snap!,
which can be used to specify the behaviour of Snap! programs, including the
behaviour of user-defined blocks (functions).

– We provide tool support to validate whether a Snap! program respects its
specification. Our tool support enables both dynamic and static verification,
such that high school students immediately get a feeling for the different tech-
niques that exist to validate a specification (and the efforts that are required).

– Verification errors are reported as part of the standard Snap! error messaging
system.

– We outline a set of exercises and challenges that can be used to make high
school students with basic Snap! knowledge familiar with the Design-by-
Contract approach and the different existing validation techniques.

The remainder of this paper is organised as follows. Section 2 provides a bit
more background information on Snap! and Design-by-Contract . Section 3 then
discusses the visual specification language, and Sect. 4 the verification result
reporting mechanisms. Section 5 discusses the tool support we provide, whereas
our training plan for Design-by-Contract with Snap! is described in Sect. 6.
Finally, Sect. 7 concludes, including related and future work.

246 M. Huisman and R. E. Monti

2 Background

2.1 Snap!

Snap! is a visual programming language. It has been designed to introduce chil-
dren (but also adults) to programming in an intuitive way. At the same time, it
is also a platform for serious study of computer science[14]1. Snap! actually re-
implements and extends Scratch [27]. Programming in Snap! is done by dragging
and dropping blocks into the coding area. Blocks represent common program
constructs such as variable declarations, control flow statements (branching and
loops), function calls and assignments. Snapping blocks together, the user builds
a script and visualises its behaviour by means of turtle graphics visualisation,
called sprites. Sprites can change shape, move, show bubbled text, play music,
etc. For all these effects, dedicated blocks are available.

The Snap! interface divides the working area into three parts: the pallet area,
the scripting area, and the stage area, see Fig. 12. On the left, it shows the var-
ious programming blocks. Blocks are organised into pallets that describe their
natural use. For instance, the Motion pallet contains blocks that allow you to
define moves and rotations of your sprites, the Variables pallet contains blocks for
declaring and manipulating variables, and so on. In Snap!, variables are dynam-
ically typed; the main types supported in Snap! are Booleans, integers, strings
and lists.

Blocks are dragged and dropped from the pallets into the scripting area,
located at the centre of the working area. The script in the scripting area defines
the behaviour of a sprite, i.e. here the Snap! program is constructed. Blocks
can be arranged by snapping them together, or by inserting them as arguments
of other blocks. Blocks can only be used as arguments if their shapes match
with the shape of the argument slots in the target block. These shapes actually
provide a hint on the expected evaluation type of a block. For example, an
operation block corresponding to a summation shows rounded slots
for its summands (for integer values), while an operation block corresponding to
a conjunction shows diamond slots indicating that it expects
boolean operands.

The behaviour of the script is shown in the stage area located in the rightmost
part of the screen.

In addition, at the bottom of the pallet area, there is a “Make a block”
button. This allows the user to define his or her Build Your Own Block (BYOB)
blocks. When pressed, a new floating “Block Editor” window pops out with
a new coding area, in which the behaviour of the personalised block can be
defined (similar to how a script is made in the scripting area). Figure 2 shows
the definition of a BYOB block that will make the dog sprite jump and woof
for each cookie it is fed. Once defined, the BYOB block becomes available to be
used just as any other predefined block.

1 http://ddi-mod.uni-goettingen.de/ComputerScienceWithSnap.pdf.
2 Thanks Flor for the drawings!.

http://ddi-mod.uni-goettingen.de/ComputerScienceWithSnap.pdf

Teaching Design by Contract Using Snap! 247

Fig. 1. The Snap! working area.

2.2 Program Verification

The basis of the Design-by-Contract approach [21] is that the behaviour of all
program components is defined as a formally defined contract. For example,
at the level of function calls, a function contract specifies the conditions under
which a function may be called (the function’s precondition), and it specifies the
guarantees that the function provides to its caller (the function’s postcondition).
There exist several specification languages that have their roots in this Design-
by-Contract approach. For example the Eiffel programming language has built-in
support for pre- and postconditions [21], and for Java, the behavioural interface
language JML [18] is widely used. As is common for such languages, we use the
keyword requires to indicate a precondition, and the keyword ensures to indicate
a postcondition.

If a program behaviour is specified using contracts, various techniques can be
used to validate whether an implementation respects the contract. Here we dis-
tinguish in particular between runtime assertion checking and deductive program
verification, which we will refer to as static verification.

Runtime assertion checking validates an implementation w.r.t. a specification
at runtime. This means that, whenever during program execution a specification
is reached, it will be checked for this particular execution that the property
specified indeed holds. In particular, this means that whenever a function will
be called, its precondition will be checked, and whenever the function returns,
its postcondition will be checked. An advantage of this approach is that it is
easy and fast to use it: one just runs a program and checks if the execution does

248 M. Huisman and R. E. Monti

Fig. 2. A BYOB block editor.

not violate the specifications. A disadvantage is that it only provides guarantees
about a concrete execution.

In contrast, static verification aims at verifying that all possible behaviours
of a function respect its contract. This is done by applying Hoare logic proof
rules [15] or using Dijkstra’s predicate transformer semantics [10]. Applying these
rules results in a set of first-order proof obligations; if these proof obligations
can be proven it means that the code satisfies its specification. Advantage of this
approach is that it guarantees correctness of all possible behaviours. Disadvan-
tage is that it is often labour-intensive, and often many additional annotations,
such as for example loop invariants, are needed to guide the prover.

3 Visual Program Specifications

This section discusses how to add visual specification constructs to Snap!. Our
goal was to do this in such a way that (1) the intended semantics of the specifi-
cation construct is clear from the way it is visualised, and (2) that it smoothly
integrates with the existing programming constructs in Snap!

Often, Design-by-Contract specifications are added as special comments in
the code. For example, in JML a function contract is written in a special com-
ment, tagged with an @-symbol, immediately preceding the function declaration.
The tag ensures that the comment can be recognised as part of the specification.
There also exist languages where for example pre- and postconditions are part
of the language (e.g., Eiffel [22], Spec# [3]). We felt that for our goal, specifica-
tions should be integrated in a natural way in the language, rather than using
comments. Moreover, Snap! does not have a comment-block feature. Therefore,

Teaching Design by Contract Using Snap! 249

we introduce variations of the existing block structures, in which we added suit-
able slots for the specifications. This section discusses how we added pre- and
postconditions, and in-code specifications such as asserts and loop invariants to
Snap!. In addition, to have a sufficiently expressive property specification lan-
guage, we also propose an extension of the expression constructs. In particular,
we provide support for specification-only expressions to represent the result and
the old value of an expression, as well as quantified expressions. For all our
proposals, we discuss different alternatives, and motivate our choice.

3.1 Visual Pre- and Postconditions

To specify pre- and postconditions for a BYOB script, we identified the following
alternatives:

1. Individual pre- and postcondition blocks, which can be inserted in the script,
just as any other control block (see Fig. 3 for an example). The advantage
of this approach is that the user has flexibility in where to use the specifica-
tions, and the user explicitly has to learn where to position the pre- and the
postconditions. However, the latter could also be considered as a disadvan-
tage, because if the block is put in a strange position, the semantics becomes
unclear from a visual point of view. Moreover, it even allows the user to first
specify a postcondition, followed by a precondition.

2. Disconnected, dedicated pre- and postconditions blocks, defined on the side
(see Fig. 4). This resembles the special comment style as is used by many
deductive verification tools. Drawback is that it clutters up the code, and
the connection between the BYOB block and the specification block is lost.
Moreover, there is no clear visual indication of when the specified properties
should hold.

3. A variation of the initial block, with a slot for a precondition at the start of
the block, and a slot for a postcondition at the end of the block (Fig. 5). This
shape is inspired by the c-shaped style of other Snap! blocks, such as blocks
for loops. The main advantage is that it visualises at which points in the
execution, the pre- and the postconditions are expected to hold. In addition,
it also graphically identifies which code is actually verified. Moreover, the
shapes are already familiar to the Snap! programmer. If the slots are not
filled, default pre- and postconditions true can be used.

Taking into account all advantages and disadvantages of the different alter-
natives, we decided to implement this last option as part of our DbC-support
for Snap!.

Also for the shape of the pre- and postcondition slots, we considered two pos-
sible alternatives. A first alternative is to use a single diamond-shaped boolean
slot, using the shape of all boolean blocks in Snap!. An arbitrary boolean expres-
sion can be built and dragged into this slot by the user. A second alternative is

250 M. Huisman and R. E. Monti

Fig. 3. Separate pre- and postcondition blocks. (Snap! seems to implement mathemat-
ical real numbers.)

to add a multiple boolean-argument slot, where we define the semantics of the
property to be the conjunction of the evaluation of each of these slots. This is
similar to how Snap! extends a list or adds arguments to the header of a BYOB.
We opted for the last alternative, because it makes it more visible that we have
multiple pre- or postconditions for a block, and it also makes it easier to maintain
the specifications.

3.2 Visual Assertions and Loop Invariants

For static verification, pre- and postconditions are often not sufficient, and we
need additional in-code specifications to guide the prover. These can come in
the form of assertions, which specify properties that should hold at a particular
point in the program, and loop invariants. While adding assertions for static
verification to guide the prover might be a challenge for high school students,
they can also be convenient for runtime assertion checking to make it explicit
that a property holds at a particular point in the program. As such, intermediate
asserts have an intuitive meaning, and can help to “debug” specifications –
therefore, we have decided to support them in our prototype.

Visual Assertions. To specify assertions, both the property specified and the
location within the code are relevant. To allow the specification of assertions at
arbitrary places in a script, we define a special assertion block similar
to all other control blocks. The body of the assertion block consists of a multiple
boolean-argument slot, similar to how we did this for pre- and postconditions.

Teaching Design by Contract Using Snap! 251

Fig. 4. Detached contracts

Visual Loop Invariants. Loop invariants are necessary for static verification of
programs with loops [29]. A loop invariant should hold at the beginning and end
of every loop iteration. Typically, in textual Design-by-Contract languages, loop
invariants are specified just above the loop declaration.

We considered several options for specifying loop invariants in Snap!. One
option is to require that the loop invariant is the first instruction of the loop
body. However, this does not visually indicate that the invariant also has to hold
at the end of every iteration (including the last one). Therefore, we opted for
another variant, where we have a (multi-boolean argument) slot to specify the
loop invariant in the c-shaped loop block.

This slot is located just after the header where the loop conditions are defined.
In addition, the c-shaped loop block repeats the word invariant at the bottom
of the block (see Fig. 6) to visually indicate that the invariant is checked after
each iteration. We also considered to use an arrow for this purpose, emerging
from the invariant declaration and moving along the c-shape up to the bottom.
A final option we considered was to implement a ghost placeholder at the end of
the c-shaped block, which would be automatically filled with the loop invariant
declared at the top. However, we did not further explore this option because we
feared it could create confusion about where to enter the loop invariant and it
could also use a lot of space with redundant code if not carefully implemented.

252 M. Huisman and R. E. Monti

Fig. 5. Extended block with contracts

Fig. 6. Visual loop invariants.

3.3 Visual Expressions

As mentioned above, properties are expressed using Snap!’s visual expression
language, extended with several specification-specific constructs. Therefore we
have introduced some specification-only keywords, as commonly found in Design-
by-Contract languages.

– An old expression is used in postconditions to indicate that a variable/ex-
pression should be evaluated in the pre-state of the function, for example to
specify a relation between the input and output state of a function. To sup-
port this, we introduced an operator block with a slot for a variable
name.

– A result expression refers to the return value of a function inside its postcon-
dition, to specify a property about the result value of a reporter BYOB. This
is supported by the introduction of a constant operator.

Teaching Design by Contract Using Snap! 253

In addition, we also introduced syntax to ease the definition of complex
Boolean expressions, adding the operator blocks , ,

and , as well as syntax to write more advanced Boolean
expressions, introducing support for quantified expressions.

In Design-by-Contract languages, universally quantified expressions are typ-
ically written in a format similar to: ∀x ∈ Domain : filter(x) : assertion(x). For
example, to specify that an array ar is sorted, one would write something like
∀i ∈ Int : 0 < i ∧ i < |ar| : ar[i − 1] ≤ ar[i]. We find this notation very general
and not always suitable for runtime assertion checking: for instance, in many
language, it is allowed to leave the filter expression empty, i.e. quantify over an
unbounded range. However, experience shows that this is hardly ever needed,
and requiring an explicit range avoids many mistakes. Therefore, our quantified
expressions in Snap! require the user to explicitly specify the range (See Fig. 7).

Fig. 7. Global and Existential quantifiers templates, and an example application.

3.4 Discussion

Based on feedback from one of the reviewers of this paper, we realised that
we might have to deviate more from the standard terminology as is used in
the Design-by-Contract community, as this might be confusing for high school
students, without any former experiences in this area.

Some remarks that were made are the following:

– Consider renaming ensures to something more intuitive, such as promises
or checks.

– The loop block with invariant could be misinterpreted: students might think
that the loop should stop repeating if the invariant does not hold anymore.

– It might be unclear to what state old is referring, and it might be worth to
investigate if it is possible to make this more intuitive, for example by using
a naming convention to denote earlier program states, as in Kaisar [5].

– Rename quantifier blocks such as Forall .. from .. to .. happens .. to
something like All .. from .. to .. satisfy .. .

As future work, we plan to do some experiments with high school students
to understand what is the best and most intuitive terminology for them.

254 M. Huisman and R. E. Monti

4 Graphical Approach to Verification Result Reporting

Another important point to consider is how to report on the outcome of the
verification. We have to consider two aspects: (1) presenting the verdict of a
passed verification, and (2) in case of failure, giving a concrete and understand-
able explanation for the failure. The latter is especially important in our case,
as we are using the technique with unexperienced users. Snap! provides several
possibilities to present script output to the user, and we discuss how these can
be used to present the verification outcomes.

1. Print the value of a variable in the stage using special output blocks. This
has the advantage that the stage is the natural place to look at to see the
outcome of the script. A drawback is that you loose the connection with the
script, to indicate where the verification failed, and that it deviates from the
intended use of the stage. Therefore, we decided not to choose this option.

2. Use sounds, using special sound blocks. This is a quick way to indicate that
there is verdict, but does not provide any indication of the reason of ver-
ification failure. However, it might be an interesting option to explore for
vision-impaired users.

3. Use block glowing: when a script is run, the script glows with a green border,
when the script fails to execute due to some error the block glows with a red
border. This glowing can be reduced to a single block, that caused the failure.

4. Have speech bubbles emerge at specific points in the script that describe the
cause of failure. This has the advantage that the failing block can easily be
singled out by the location of the bubble, while the cause of failure is described
by the text inside the bubble.

5. Use pop-up notification windows. These windows are used by Snap! to show
help information about blocks for instance. They are also used as confirmation
windows for removing BYOB blocks. These windows have the advantage that
a failing block can be printed inside them even when the failing script is not
currently visible to the user.

We opted for a combination of alternatives:

1. In order to alert about a contract violation, or any assertion invalidated during
runtime assertion checking, we opted for option 5. This allows to be very
precise about the error, even when the BYOB body is not currently visible
to the user (See Fig. 8). A possible extension of this solution would be that
clicking ok would immediately lead the user to the corresponding code block.

2. In order to alert of errors while compiling to Boogie, such as making use
of dynamic typing or nested lists in your Snap! BYOB code, we opted for
option 4. We find this option less invasive than a pop-up window but still as
precise, and we can be sure that the blocks involved will be visible since static
verification is triggered from the BYOB editor window (See Fig. 9). Notice
that the identification of the results of static verification is not something we
do from within Snap!, since our extension only returns a compiled Boogie code
which has to be verified with Boogie separately.

Teaching Design by Contract Using Snap! 255

Fig. 8. Failure notification for runtime assertion checking.

Although not currently implemented, we think that verification options 2
and 3 would be interesting alternatives for reporting successful verification.

5 Tool Support

We have developed our ideas into a prototypal extension to Snap! which can
be found at https://gitlab.utwente.nl/m7666839/verifiedsnap/. A couple of run-
ning examples for verification, including the solutions to the exercise sheet from
Sect. 6, have been added to the lessons folder under the root directory. The
extension uses the same technology as the original Snap!. After downloading the
project to a computer, one can just run the “snap.html” file found at the root
directory by using most common web-browsers that support JavaScript.

Our extension supports both runtime assertion checking and static verifi-
cation of BYOB blocks. Runtime assertion checking is automatically triggered
when executing BYOB blocks in the usual way. For static verification, a dedi-
cated button located at the top right corner of the BYOB editor window allows
to trigger the compilation of the BYOB code into an intended equivalent Boogie

code. The compiled code can be then downloaded to verify it with Boogie. Boogie
can either be downloaded3 and run locally or can be run on the cloud at https://
rise4fun.com/Boogie/.

The newly introduced verification blocks were naturally distributed along
the existing block pallets. These blocks can be used for both types of verifica-
tion and consist of an implication block, less-or-equal, greater-or-equal,
and different than blocks, an assertion block, a result and an old block,
two types of looping blocks with invariants, and global and existential
quantification blocks.

Runtime assertion checking has been fully integrated into the normal execution
flow of a Snap! program, and thus there are no real restrictions on the BYOB that
can be dynamically verified. When any of the newly defined blocks is reached,
the block is loaded into the stack of the executing process and is evaluated just as

3 https://github.com/boogie-org/boogie.

https://gitlab.utwente.nl/m7666839/verifiedsnap/
https://rise4fun.com/Boogie/
https://rise4fun.com/Boogie/
https://github.com/boogie-org/boogie

256 M. Huisman and R. E. Monti

Fig. 9. Static verification compilation notification.

any other Snap! block. To make this evaluation possible, a considerable amount of
code was introduced to define each block’s behaviour. In some cases, such as the
implication or the assertion block, the implementation simply consists on a few
lines addition to the original scripts of the Snap! project. For other blocks, such
as the verifiable loops, the implementation effort was considerably bigger, since
it involved implementing the execution logic and evaluation flow of the body
of these blocks. Nevertheless, these cases only involved naturally introducing
new code in the existing code base. The implementation of the result and
old block, and the implementation of the pre- and postcondition evaluations,
turned to be more involved and required modifying the evaluation process of
the BYOB blocks. For instance the evaluation of report blocks, i.e., blocks that
return a value to the programmer of the calling block, was modified in order to,
on one hand catch the reported value of the block for the purpose of evaluating
result blocks in the postconditions, and on the other hand to make sure that
the postcondition is evaluated at every possible exit point of a BYOB block.

Static Verification. As we decided to develop only prototypal support, we restrict
the kind of BYOB blocks that can be verified with Boogie. We have restricted
data types to be integers, booleans and list of integers. In Snap! there is no such
concept as integers. The restriction is introduced on the verification level by
interpreting all Snap! real numbers as integers. Furthermore, we do not support
dynamic typing of variables in the sense that we statically check that the inferred
type of a variable does not change during the execution of a program. Finally,
we do not target to compile every available Snap! block into Boogie and focus
only on an interesting subset for the sake of teaching Design-by-Contract . The
encoding of the blocks into Boogie is fully implemented into the new verifica-
tion.js module at the src directory of the Snap! extension. A considerable part
of the encoding is straightforward since a direct counterpart for the construct

Teaching Design by Contract Using Snap! 257

Fig. 10. A BYOB block that sets all elements of a list to zero.

can be found in the Boogie language. Nevertheless, some special attention was
needed in the following situations:

1. There is no built-in support for lists, nor sequences in Boogie. Thus, we encode
lists of integers as maps from integers to integers, and their length as a sepa-
rate integer variable. Some operations on lists have a complex encoding. For
instance, inserting an element in a list is encoded as shifting the tail of the
list towards the end using a loop in order to make place for the new element.
Lists initialisation is encoded as successive assignments to the map.

2. For ranges, such as those used for global and existential quantification, we
also use maps. In this case, if the range bounds are statically known then the
initialisation is encoded as successive assignments to the map. If the bounds
are not known, then we use a loop and appropriate loop invariants for the
initialisation.

3. Parameters in Boogie’s procedures are immutable. This is not the case in Snap!

where for instance the content of a list can be modified within a BYOB block.
This required to encode the inputs parameters of BYOBs as global variables,
which Boogie allows to modify inside a procedure. To avoid checking whether
variables may be modified, we applied this transformation to global variables
to all parameters.

4. Local variables in Boogie are declared at the starting point of the function
and are statically typed. As a consequence, the compilation from the dynam-
ically typed Snap! language is not direct and even involves a type inference
mechanism.

258 M. Huisman and R. E. Monti

To illustrate, List.1.1 shows our Boogie compiled code for the BYOB block
of Fig. 10.

// This code has been compiled from a verifiable Snap!

project.

var ls_length : int;

var ls: [int]int;

procedure to_zero ()

modifies ls;

modifies ls_length;

requires (ls_length >= 0);

ensures (forall j : int ::

(1 <= j && j <= ls_length) ==> (ls[j-1] == 0));

{

var i: int;

i := 1;

while (!(i > ls_length))

invariant (forall j : int ::

(1 <= j && j <= (i-1)) ==> (ls[j-1] == 0));

{

ls[i-1] := 0;

i := (i+1);

}

}

Listing 1.1. Boogie compiled code from Snap! block 10

6 Sketch of Teaching Plan

The current situation due to the COVID-19 pandemic jeopardised our plans
to test our approach on teaching program verification in high-schools. We have
developed an initial lesson plan, containing a sequence of exercises and learning
goals to teach program verification to students while assisted by our Snap! with
verification extension. The intention of this section is to serve as initial guid-
ance to build more complete plans for teaching software verification that can
be integrated into the computer science curricula at high schools. To further
develop this lesson plan, we plan to collaborate with didactical experts, that
have experience with high school teaching of computer science. The exercises
sheet containing the exercises that we mention for each lesson, and the kick-off
Snap! projects for each exercise, can be found inside the lessons directory at [30].
Along with each lesson we specify which topics the teachers should introduce,
such that the students should be able to carry out the exercises.

We assume that students that take on this plan will already have some expe-
rience with Snap! and know their way around the coding area. In fact, we target

Teaching Design by Contract Using Snap! 259

students from the last years of high-school which are already following a lecture
assisted by Snap!.

Plan

We divide our teaching plan in lessons, starting from what we expect to be the
simplest and moving towards more involved or unintuitive aspects. We describe
each lesson by its goals and examples of Snap! verification exercises to assist the
learning.

Lesson 1. The goal of this first lesson is to understand the concept of runtime
assertion, as validating expectations that we have from the program at certain
points of its execution.

We propose two sets of exercise. The first one already contains assertions at
certain points of the code. The students are asked to modify the inputs to the
code in a way that they obtain cases where the assertions hold and cases where
they do not.

In the second set of exercises, the assertions are missing from the code, and
the students are asked to define them theirselves and to validate them with
different inputs.

Exercise I of the exercises sheet may serve as inspiration for preparing exer-
cises for this lesson.

We recommend that the teacher introduces the concept of predicate, presents
the assertion block to the students and compares its behaviour
against other blocks which do not stop the execution when the predicate does
not hold. It should be clear that not fulfilling the predicate will not be tolerated
by the code.

Lesson 2. The goal of this lesson is to introduce the concept of contract. The
student is expected to learn the difference between pre- and postconditions for
a method/function and how do these play the role of specifying the expected
behaviour of the block of code.

We also expect from this lesson that the student obtain some initial practice
and intuition on how to correctly translate a natural language specification into
corresponding pre- and postconditions formulae.

We propose to carry out this lesson in three steps: first introduce precondi-
tions as contracts with the caller which we can rely upon when developing our
code. Then we continue with postconditions showing how they can help to figure
out if the code behaves as specified. Then we integrate pre- and postconditions
as formal specifications of the code behaviour and we stress their importance by
examples where not defining them may result in unexpected behaviour.

Exercises II, III and IV of the exercises sheet may serve as inspiration for
each of the steps of this lesson.

We recommend that the teacher introduces the new initial look of a BYOB
block and explains how we can initially check for several predicates in the

260 M. Huisman and R. E. Monti

‘requires’ list of the block, while we may use the ‘ensures’ list to check for pred-
icates when leaving the block. The teacher should also introduce the special
blocks and assisted by examples.

Lesson 3. The goal of this lesson is that students realise that runtime assertion
is testing, and that this is different from static verification, which offers full
guarantees on the contract fulfilment.

We propose to make the students test BYOB examples where the error is
not easy to spot by assertion checking. Maybe offering misleading tests that do
not discover the mistake is another way of creating a false feeling of correctness.
The next step is to use static verification by compiling the same Snap! code to
Boogie. This should show them that their belief is mistaken and trigger them to
spot the error. It will also show them the limits of testing and the importance
of static verification.

You can use exercise V of the exercises sheet for inspiration on the type of
exercises to undertake this lesson.

It is important to introduce the students with the differences between asser-
tion checking and static verification. Most importantly, static verification should
not be seen as magic but as logical reasoning with formal guarantees. It is also
important to indicate the students where to find the new Boogie compilation but-
ton, located at the top-right corner of the scripting window and BYOB coding
window, and explain that this will translate the Snap! code into an equivalent
Boogie code that they can then verify. It is recommended to introduce Boogie

and a little bit of its language to show them that their specifications are indeed
present and verified in the compiled code. Of course the students will need guid-
ance to interpret Boogie’s output and map it to their original Snap! code.

Lesson 4. In this lesson we will introduce loop invariants. The goal is that stu-
dents learn where and when an invariant is validated during a loop verification,
and that they are necessary for static verification to succeed. Another goal is to
explain the students how to use quantifiers to specify properties about lists. In
fact, the use of quantifiers to define loop invariants is specially tricky and will
require some practice from the students.

Example exercise VI of the exercises sheet may inspire other exercises to
accompany this lesson.

This lesson is about an advanced verification topic. Students may need help
to understand the results of quantification on empty ranges, thus it is important
to introduce this while presenting the quantification blocks. Furthermore we
recommend presenting these blocks separately from the exercises, using single
block examples. We also recommend to show examples of loop invariants that fail
on entering the loop, along with examples that fail after looping some amount
of times, and finally examples of edge cases due to, for instance, mistakes on the
quantification bounds.

Lesson 5. For the last lesson we propose a bigger project involving a game,
such as for example Crisis, which is a multiplayer strategy game. The goal is to

Teaching Design by Contract Using Snap! 261

demonstrate the use of formal verification in the context of a project as well as
to motivate the students with something more fun than disconnected exercises.
Moreover, the difficulty of the verification tasks can be increased in comparison
with the previous lessons, taking advantage on the motivation of eventually
playing the game.

We propose to present the game with a careful description of its rules, trying
to remove ambiguities that may result in unnecessary difficulties to translate
into formal specifications. We also propose to hand the students an incomplete
Snap! implementation of the game. The incomplete parts may consist of BYOB
blocks which still need to be specified, developed, or fixed, in order to be able
to play the game.

Exercise VII of the exercises sheet may serve as inspiration for game-kind
projects.

7 Conclusions

In this paper we presented a prototypal program verification extension to the
Snap! tool. The extension is intended to support the teaching of Design-by-
Contract in the later years of high schools. For this reason, we payed consid-
erable attention to the didactic aspects of our tool: the looks and feel of the
extension should remain familiar to Snap! users, the syntax and structure of the
new blocks should give a clear intuition about their semantics, and the error
reporting should be precise and expressive. Whether we succeeded will have to
be evaluated in practice.

Our extension allows to analyse BYOB blocks both by runtime assertion
checking and static verification. Runtime assertion checking is fully integrated
into Snap! and there is no limitation on the kind of blocks that can be analysed.
Static verification compiles the Snap! code into a Boogie equivalent code and the
verification needs to be run outside of Snap!. Moreover, we make some restrictions
on the kind of BYOB blocks we can compile, in order to keep the complexity
of the prototype low. As future work we would like to lift these restrictions as
much as possible by integrating the remaining Snap! blocks into the compilation
and by allowing other data types to be used. Also, we would like to integrate
the verification into Snap!, translating Boogie messages back to the Snap! world,
to help student to interpret them.

We also plan to extend Snap! with a Sequence or Array library. This will
allow to teach students to verify codes that may commit an ‘index out of bound’
error. Currently, the implementation of lists in Snap! hides this kind of mistakes
and works around the problem by returning a special value whose behaviour is
not clearly specified. Nevertheless this behaviour gets around quite well, and the
student will usually not notice any mistake.

In the last section of our work we sketch a plan of lessons including goals
and exercises to teach Design-by-Contract to high-school students with some
previous knowledge of Snap!. We were not able to test this plan given the cur-
rent pandemic. As it is still preliminary, it should be improved with the help

262 M. Huisman and R. E. Monti

of a didactic expert on high school teaching of computer science. Moreover, a
considerable amount of extra teaching material and teacher guidance should be
developed to accompany this plan. Finally, in a follow up work, we expect to be
able to test the plan in classrooms and analyse if the learning goals are met.

Related Work. Computer science curricula that uses blocks programming are
widely and freely available [4,6,11,13,25]. Nevertheless, they don’t seem to
include any topics around design and verification of code. Also, the words ‘test’
or ‘testing’ are rare and, where mentioned, they are not sufficiently motivated.
The drawbacks of teaching coding with blocks without paying attention to design
nor correctness has already been analysed [1,20]. We have not found any work on
teaching these concepts in schools, nor implementations on block programming
that allow to support the teaching of design by contract.

References

1. Aivaloglou, E., Hermans, F.: How kids code and how we know: an exploratory
study on the Scratch repository. In: Proceedings of the 2016 ACM Conference on
International Computing Education Research, pp. 53–61 (2016)

2. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006). https://doi.org/10.1007/11804192 17

3. Barnett, M., Leino, K.R.M., Schulte, W.: The spec# programming system: an
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-30569-9 3

4. The Beauty and Joy of Computing. An AP CS Principles Course. https://bjc.edc.
org/, Accessed Feb 2022

5. Bohrer, B., Platzer, A.: Structured proofs for adversarial cyber-physical systems.
ACM Trans. Embed. Comput. Syst. 20(5s), 93:1–93:26 (2021)

6. The Creative Computing Curriculum. http://creativecomputing.gse.harvard.edu/
guide/, Accessed Feb 2022

7. Cervesato, I., Cortina, T.J., Pfenning, F., Razak, S.: An approach to teaching to
write safe and correct imperative programs – even in C (2019). https://www.cs.
cmu.edu/∼fp/papers/pic19.pdf

8. Cheon, Y.: A Runtime Assertion Checker for the Java Modeling Language. PhD
thesis, Department of Computer Science, Iowa State University, Ames. Technical
Report 03–09 (2003)

9. de Gouw, S., Rot, J., de Boer, F.S., Bubel, R., Hähnle, R.: OpenJDK’s
Java.utils.Collection.sort() is broken: the good, the bad and the worst case. In:
Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 273–289.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4 16

10. Dijkstra, E.: A Discipline of Programming. Prentice-Hall, Upper saddle River
(1976)

11. Factorovich, P., Sawady, F.: Actividades para aprender a Program. AR: Segundo
ciclo de la educación primaria y primero de la secundaria. Miller Ed Buenos Aires
(2015)

https://doi.org/10.1007/11804192_17
https://doi.org/10.1007/978-3-540-30569-9_3
https://doi.org/10.1007/978-3-540-30569-9_3
https://bjc.edc.org/
https://bjc.edc.org/
http://creativecomputing.gse.harvard.edu/guide/
http://creativecomputing.gse.harvard.edu/guide/
https://www.cs.cmu.edu/~fp/papers/pic19.pdf
https://www.cs.cmu.edu/~fp/papers/pic19.pdf
https://doi.org/10.1007/978-3-319-21690-4_16

Teaching Design by Contract Using Snap! 263

12. Garcia, D., Harvey, B., Barnes, T.: The beauty and joy of computing. Inroads 6(4),
71–79 (2015)

13. CS First. https://csfirst.withgoogle.com/s/en/home. Accessed Feb 2022
14. Harvey, B., Mönig, J.: Snap! reference manual (2017). http://snap.berkeley.edu/

SnapManual.pdf
15. Hoare, C.: An axiomatic basis for computer programming. Commun. ACM 12(10),

576–580 (1969)
16. Huisman, M., Monti, R.E.: Teaching design by contract using snap! In: 2021 Third

International Workshop on Software Engineering Education for the Next Genera-
tion (SEENG), pp. 1–5. IEEE (2021)

17. Leavens, G.T., Baker, A.L., Ruby, C.: JML: a notation for detailed design. In:
Kilov, H., Rumpe, B., Simmonds, I. (eds.) Behavioral Specifications of Businesses
and Systems, pp. 175–188. Springer, Boston (1999). https://doi.org/10.1007/978-
1-4615-5229-1 12

18. Leavens, G.T., Cheon, Y., Clifton, C., Ruby, C., Cok, D.R.: How the design of
JML accommodates both runtime assertion checking and formal verification. Sci.
Comput. Program. 55(1–3), 185–208 (2005)

19. Leino, K.R.M.: Towards reliable modular programs. Technical report, California
Institute of Technology (1995)

20. Meerbaum-Salant, O., Armoni, M., Ben-Ari, M.: Habits of programming in Scratch.
In: Rößling, G., Naps, T.L., Spannagel, C. (eds.) Proceedings of the 16th Annual
SIGCSE Conference on Innovation and Technology in Computer Science Educa-
tion, ITiCSE 2011, Darmstadt, Germany, 27–29 June 2011, pp. 168–172. ACM
(2011)

21. Meyer, B.: Eiffel: a language and environment for software engineering. J. Syst.
Softw. 8(3), 199–246 (1988)

22. Meyer, B.: Eiffel: The Language. Prentice-Hall, Upper Saddle River (1991)
23. Meyer, B.: Applying design by contract. Computer 25(10), 40–51 (1992)
24. Oortwijn, W., Huisman, M., Joosten, S.J.C., van de Pol, J.: Automated verification

of parallel nested DFS. In: TACAS 2020. LNCS, vol. 12078, pp. 247–265. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-45190-5 14

25. An Introduction to Programming. A Pencil Code Teacher’s Manual. https://
manual.pencilcode.net/, Accessed Feb 2022

26. Pfenning, F., Cortina, T.J., Lovas, W.: Teaching imperative programming with
contracts at the freshmen level (2011). https://www.cs.cmu.edu/∼fp/papers/pic11.
pdf

27. Resnick, M., et al.: Scratch: programming for all. Commun. ACM 52(11), 60–67
(2009)

28. Safari, M., Oortwijn, W., Joosten, S., Huisman, M.: Formal verification of parallel
prefix sum. In: Lee, R., Jha, S., Mavridou, A., Giannakopoulou, D. (eds.) NFM
2020. LNCS, vol. 12229, pp. 170–186. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-55754-6 10

29. Türk, T.: Local reasoning about while-loops. In: Joshi, R., Margaria, T., Müller,
P., Naumann, D., Yang, H. (eds.) VSTTE 2010. Workshop Proceedings, pp. 29–39.
ETH Zürich (2010)

30. Snap! extension for runtime assertion checking and static verification. https://
gitlab.utwente.nl/m7666839/verifiedsnap/. Accessed Feb 2022

https://csfirst.withgoogle.com/s/en/home
http://snap.berkeley.edu/SnapManual.pdf
http://snap.berkeley.edu/SnapManual.pdf
https://doi.org/10.1007/978-1-4615-5229-1_12
https://doi.org/10.1007/978-1-4615-5229-1_12
https://doi.org/10.1007/978-3-030-45190-5_14
https://manual.pencilcode.net/
https://manual.pencilcode.net/
https://www.cs.cmu.edu/~fp/papers/pic11.pdf
https://www.cs.cmu.edu/~fp/papers/pic11.pdf
https://doi.org/10.1007/978-3-030-55754-6_10
https://doi.org/10.1007/978-3-030-55754-6_10
https://gitlab.utwente.nl/m7666839/verifiedsnap/
https://gitlab.utwente.nl/m7666839/verifiedsnap/

On the Notion of Naturalness in Formal
Modeling

Eduard Kamburjan1(B) and Sandro Rama Fiorini2

1 University of Oslo, Oslo, Norway
eduard@ifi.uio.no

2 IBM Research, Rio de Janeiro, Brazil

srfiorini@ibm.com

Abstract. We investigate what it means for a formal model to be natu-
ral using theories from cognitive science and linguistics. Intuitively, nat-
uralness describes that the formal model fits the domain it is modeling
– it is not an intrinsic property of the formal model, but a property that
is assigned to it by some human interpreter who is making sense of it.
Our main observation is that for each formal model, two sense-making
processes are possible: First, the process that interprets the formal model
as a symbol in the application domain and assigns it a domain concept.
Second, the process that interprets the formal model as a symbol in the
engineering domain and assigns it a concept describing an engineering
view. Naturalness is described as the similarity of these two mental con-
cepts, i.e., the cognitive complexity to map the domain concept to the
engineering concept. We discuss these ideas and formalize then using con-
ceptual spaces, a similarity-based concept representation theory based on
cognitive semantics.

1 Introduction

Formal methods is a research field spanning programming languages, logics and
other formalisms. At its core, it provides tools for formal modeling, the develop-
ment of a formal representation of a system or a design, as well as tools for its
analysis. Despite the highly impressive machinery developed to analyze models,
there is little research on the modeling process itself. This is far from being an
irrelevant aspect – to-date, there is no way to precisely justify modeling decisions
and argue why one modeling language is more suited for one task over another.

Modeling studies are notoriously imprecise in this point, resorting on vague
descriptions that core concepts of the modeled domain are “naturally” expressed
in the chosen language or that the modeling language has a small “representa-
tional distance” [27,43] or “is a good match” [28] for the domain. The common
idea expressed is that the mental concept of the modeler and the concept as
formalized in the language are somehow similar. These arguments are not about
the mathematical structure – at their core they are arguments about cognition:
a formal model is “natural”, if the mental process to recognize the structure of
the domain in the formal model requires little cognitive effort.
c© Springer Nature Switzerland AG 2022
W. Ahrendt et al. (Eds.): The Logic of Software. A Tasting Menu of Formal Methods,
LNCS 13360, pp. 264–289, 2022.
https://doi.org/10.1007/978-3-031-08166-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08166-8_13&domain=pdf
https://doi.org/10.1007/978-3-031-08166-8_13

On the Notion of Naturalness in Formal Modeling 265

The contribution of this work is a cognitive view on formal modeling to
give a framework that allows us to reason about modeling decisions and about
cognitive processes during modeling. As our main focus, we make the notion of
naturalness more precise. To do so, we fix naturalness as the cognitive complexity
of the mapping from the mental concept that arises from interpreting the formal
model as an expression in the application domain to the mental concept that
arises from interpreting the formal model as an engineering artifact, i.e., based
on its functionality. For our framework we draw on three tools from cognitive
science and linguistics: (1) semiotics to describe the sense-making processes, (2)
conceptual spaces to represent mental concepts and (3) metaphorical mappings
to describe the relation of mental concepts.

After introducing the basic ideas behind semiotics in Sect. 2, we reflect in
Sect. 3 on the classical view on models as abstractions of reality. We then show
the inadequacy of the view that the essence of modeling is abstraction to explain
why formally equivalent models are perceived with different naturalness. We also
distinguish between non-perceptional and perceptional naturalness – the first is
concerned with the similarity of mental concepts, while the later is concerned
with more syntactic properties, such as code formatting. The focus here is on
non-perceptional naturalness.

We aim to provide a way to argue more precisely about modeling, based
on our experiences with formal methods – the choice of conceptual spaces is
due to their elegant mathematical structure, not a commitment to a model of
cognition. We introduce conceptual spaces and their use to describe metaphors
in Sect. 4. The Theory of Conceptual Spaces [17] is a concept representation
framework having conceptual similarity as its main feature. In Sect. 5 we then
use conceptual spaces to make the introduced notions more precise. Additionally,
we propose a framework for the mental processes when writing and reading
formal models and show where abstraction has its place during the modeling
process. Section 6 revisits the examples from previous section and discusses them,
and further examples, through the lens of newly introduced framework. Finally,
Sect. 7 concludes.

We do not target models in the broadest possible sense, but instead con-
centrate on a certain set of scenarios that form the core of use cases for formal
models: First, we assume that the formal model has a connection to a domain.
Such a connection can be direct, as in formalization of domains with ontologies,
or indirect, e.g., in a data model for a database or a programmed application.
Second, we distinguish between three roles in the modeling, i.e., the creation
of the formal model: (1) the domain expert who understands the domain, but
little of the formalism used for formal modeling; (2) the technical expert, who
understands the formalism, but little of the domain; and (3) the modeler whose
task is understanding both formalism and domain, as well as on communicating
with domain expert and technical expert.

A Note on Terminology. Due to the interdisciplinary nature of this work, some
of the terms are overloaded, most prominent “model” and “modeling”. To avoid
misunderstandings we use the term formal model for digital or physical artifacts

266 E. Kamburjan and S. R. Fiorini

in some formal language and the term formal modeling for the cognitive process
that produces this artifact. We use the word “concept” for mental models (in
contrast to, e.g., [20], where “model” is used instead). If “model” is used without
further specification, “formal model” is meant.

2 Background: A Very Short Primer on Semiotics

Semiotics is the study of signs: symbols, their meaning and the processes that
connect meaning and symbol. In this section, we give an overview over its main
notions, as far as we need them. More precisely, we adopt the triadic model going
back to Peirce [35], with the terminology by Ullmann [46] and some adaptations
to avoid name clashes with computer science notions. For a readable general
introduction we refer to Chandler [8].

For our purposes, a sign is something that is interpreted as signifying some-
thing else to somebody. It consists of three components (Fig. 1): (1) a symbol,
the form the sign takes, which can be, e.g., a word, a sound or an image; (2)
a concept, the sense made from the sign, in our case a mental concept; and (3)
a thing, something the sign refers to, which can be, e.g., another sign or some
physical domain entity. The sense making process that connects symbol, concept
and thing is cognitive and needs an interpreter: “Nothing is a sign unless it is
interpreted as a sign” [35, 2.172]. We stress two details about this model of signs:
First, signs are not necessarily psychological – while in this work the concept
will indeed be a mental concept, this is not true of general signs. Second, signs
are triadic – they are not the sum of the diadic relations, but arise from the
interactions of all three components.

As an example, the word Tree is a symbol, the mental representation of trees
is a concept and physical trees are a thing. Together, they form a sign. For formal
modeling, we can see this triad as follows: the (real or thought-of) system is the
thing, the symbol is the formal model of it, and the concept is the mental view
of the modeler or reader.

We introduce a more precise notion of concept in Sect. 4. For now we use them
as an intuitive term for “mental representation used in cognition”. Concepts may
have properties and have connections to other concepts. For example, the concept

Fig. 1. Adopted semiotic triangle.

On the Notion of Naturalness in Formal Modeling 267

“car” has the context of vehicles, the concept “Unit Test” is a concept in Java
programming, and the concept “guarded fragment” exists in first-order logic.

Things, i.e., the reality of domain entities, are not a central point in this
work. We assume that they exist and that agents can construct conceptual and
symbolic descriptions of domain entities. We will rather explore in more detail
the representation relation between symbol and concept. Similarly, we do not
discuss further that the mental concept is a sign in itself, beyond the observation
that the conceptual spaces we introduce in Sec. 4 are symbols on their own.

3 The Inadequacy of Abstraction for Explanation

A formal model is commonly defined along the lines of

A mathematical representation of a relevant part of a system, design or
domain, used for communication and/or a certain analysis.

For example, Peled [36] defines modeling as “representing a system in terms of
mathematical objects that reflect its observed properties. [...] Modelling usually
involves the process of abstraction, i.e., simplifying the description of the system,
while preserving only a limited number of the original details.” Definitions of
modeling are often mere accessory to the formal method and defined ad-hoc –
for a more systematic definition of general models we turn to philosophy, where
Stachowiak [41, p. 131–133]1 gives the following definition: A model stands for an
original (its Abbildungsmerkmal or mapping feature), a model is not covering all
attributes of the original (its Verkürzungsmerkmal or reduction feature, which
we identify with abstraction) and a model is standing for its original only for a
specific purpose (its Pragmatisches Merkmal or pragmatic feature).

In the rest of this work, we understand a formal model as a model in the
sense of Stachowiak, that is additionally expressed as some mathematical lan-
guage with formal syntax and an interpretation in terms of other mathematical
objects. For example, we consider both programming languages like Java or the
λ-calculus, as well as logics as mathematical languages.

Such definitions, which we call the abstraction-centered, are emphasizing the
the relation of a model to (a possibly perceived or thought-off) reality through
abstraction. A model is seen as a clear, partial representation of the world which
can be expressed using mathematics and used for a certain intent.

Abstraction-centered definitions are suited to describe what a formal model
is but are not able to explain why models are developed in the way they are in
practice. More often than not, models have elements that are unrelated to the
things being modeled. For example, consider the Java code in Fig. 2 that models
a car with some axles.2 The class is using a certain serialization framework to
read and write objects as XML. There are several points that are not explained
by abstraction-centered views:
1 We restrict ourselves to the above setting and do not investigate, e.g., epistemological

questions. English translations of the features are taken from Kühne [29].
2 We consider Java as being formalized to a sufficient degree to consider it formal.

268 E. Kamburjan and S. R. Fiorini

Fig. 2. A car with axles as a model in Java.

– The method drive takes as parameter a logging instance for debugging. Its
existence is not related to cars at all.

– The field nrAxles has a setter and is initialized with 0. Certainly a vehicle
with 0 axles is not a car, and once a car is build the number of axles does not
change3. Yet, marshaling in Java requires a default constructor and setters
for all fields.

There are modeling decisions in this code that we examine in detail in later
parts of this article. For now, it suffices to observe that the Java class Car is
related to the concept of a car through more than abstraction, as it has elements
that do not occur in the domain concept. Furthermore, we cannot separate them

3 We are sure the interested reader can find situations where the number of axles does
change in the lifetime of a car. We assume that this class is written for an application
that does not consider any of these situations.

On the Notion of Naturalness in Formal Modeling 269

clearly: the field nrAxles should be declared final, given our assumption that
the number of axles of a car does not change, but we cannot do that given the
marshalling requirements. In that case, a reader of this model might wonder
whether that is a feature of the domain or a feature of the language.

This brings us to the core of the problem: a model does not only have a
relation to our view on reality, it also has a relation to our view on the formalism.
The given code can be read in two ways: The first, which domain experts and
car enthusiasts would take, is the one of Car-as-cars, an expression of how the
modeler thinks about cars. The second, which technical experts would take, is
the one of Car-as-code, a construct that can be understood by examining how
the modeler thinks about Java (and further, technical context). If the technical
expert knows nothing about cars, it is as hard for him/her to judge its correct
abstraction just as it is hard for the domain expert to detect technical bugs in
it. The modeler, given the task to mediate between domain and formalism, is
caught in-between: to the modeler, the class is both Car-as-cars and Car-as-code.

This makes the modeling job more difficult: the domain expert is not famil-
iar with XML marshaling – communicating requires the modeler to think of
the model only as an expression of the relevant parts of the domain concept car.
However, the expression is partially formed by the requirements of the formalism
and the domain expert must accept that nrAxles cannot be final. Communicat-
ing with other technical experts requires to think of the model only as a concept
within the engineering/language domain. This too can be challenging: the mod-
eler may willingly break established design patterns within the formalism so the
model is conceptually nearer to the domain.

Let us next make these notions more formal by using the semiotic framework
established in the previous section. We introduce three entities: (a) the notion of
a symbolic, formal model M; (b) a conceptual, mental structure Mδ denoting the
domain aspects coded in M; and (c) a conceptual, mental structure Mα denoting
the engineering, technical aspects coded in M. For example, considering that
M = Car then Mδ refers to the conceptualization of notion such as that cars
have axles, position and velocity; and Mα refers to the conceptualization of a
Java class with four attributes, with a drive method and so on. The semiotic
view is given in Fig. 3: M is the symbol for both sense-making processes. The
first sense-making process (of the domain expert) has the concept Mδ and real
cars as things, while the second one (of the engineering expert) has the concept
Mα. The modeler must perform, depending on the current situation perform
one of these sense-making processes or possibly switch from one to another. The
theoretical question when analyzing this situation is to relate the two sense-
making processes.

3.1 The Concept-Centered View on Models

We introduce now the first part of our contribution. Both domain expert and
technical expert do not ignore the other’s view, but for them one of the views
dominates. For the modeler, the domination effect is either not strong, does not
exist at all, or shifts depending on the situation. In any case, it is out of the

270 E. Kamburjan and S. R. Fiorini

question to ignore one of them. This situation begs the question how the to two
sense-making processes of Fig. 3 interact within one agent. More precisely, with
this view on models, which we call concept-centered, the central question is:

Given a formal model M, how do M-as-a-domain-concept (Mδ) and M-
as-an-artifact-concept (Mα) relate to each other?

In this work, we explore what it means for M to be natural. As a start we say
that M is natural for a person if M-as-an-artifact-concept is easy to map on
M-as-a-domain-concept.

We stress that we indeed relate two concepts to each other and stress the dif-
ference between M-as-an-artifact-concept and M: The former describes the men-
tal representation of M by properties from the engineering/formalism domain.
The latter is just syntax.

Another aspect that is lost in abstraction-centered views is the choice of the
modeling language. This is especially true for programming languages, which are
(mostly) all Turing-complete and, thus, equally expressive and have the same
pragmatic feature (in the sense of Stachowiak). Abstraction is not able to act as
an explanation for the choice of the modeling language for a certain situation,
if several languages are able to support the needed analyses. We remind that
we understand abstraction as the relation between the model and the modeled
thing, not implementation-hiding constructs such as interfaces within parts of
the model.

3.2 Concepts and Syntax

The concept-centered view on models is not antithetical to other views but rather
stresses cognitive processes related to modeling. We distinguish between the
mental processes concerned with concepts and the mental processes concerned
with deriving these mental concepts from perception.

The first class of processes describes the representation of concepts and their
processing; e.g., what constitutes a car and what is the relation of the concept car

Fig. 3. The concept-centered view on models for two agents.

On the Notion of Naturalness in Formal Modeling 271

with other concepts. The second class connects these processes with perception;
e.g., is the thing that one perceives representing the concept of cars. The dis-
tinction is not sharp, but it is useful in our context as it allows us to specifically
target syntactic questions. As an example, we give several logic characterizations
of the following statement:

A car has 4 wheels.

First, consider the following first-order formula:

∀x.
(
Car(x) → ∃w1, w2, w3, w4.

(
hasPart(x,w1) ∧ hasPart(x,w2) ∧ hasPart(x,w3) ∧ hasPart(x,w4)
∧ Wheel(w1) ∧ Wheel(w2) ∧ Wheel(w3) ∧ Wheel(w4)

∧ w1 �= w2 ∧ w1 �= w3 ∧ w1 �= w4 ∧ w2 �= w3 ∧ w2 �= w4 ∧ w3 �= w4

))

There are several syntactical effects here that make it easy to grasp what
is modeled, before the stage where we can ask whether the model is natural or
not. I.e., syntactical effects describe how perceived structures give rise to the
model-as-a-concept:

– Conjuncts are grouped together in units that correspond to one statement,
e.g., “all parts are wheels” corresponds to the second line,

– the order of these units is almost the same as in the description,
– the literal 4 occurs in both natural language description and formalization,
– indentation gives a clear structure that partitions the unit visually, and
– the variable names clearly related to their intended meaning.

We assume that the predicate and relation symbols are inherently meaningful
and that it is not sensible to have the predicate that expresses “x is a car” have
any other name. Next, we turn to the units in more detail. The unit

w1 �= w2 ∧ w1 �= w3 ∧ w1 �= w4 ∧ w2 �= w3 ∧ w2 �= w4 ∧ w3 �= w4

describes that the four variables are different. We imagine that readers familiar
with fist-order logic have not read all clauses in detail. Instead the pattern of
pairwise inequality is recognized and the unit is perceived as one statement.

Now, consider the following, equivalent first-order formula:

272 E. Kamburjan and S. R. Fiorini

∀x.
(
Car(x) → ∃cake,Y6, x2,Schiff .

(
Wheel(Schiff) ∧ Y6 �= x2 ∧ Y6 �= Schiff

∧ hasPart(x,Schiff) ∧ cake �= Y6 ∧ Wheel(Y6) ∧ Wheel(x2)
∧ hasPart(x, x2) ∧ cake �= ship ∧ Wheel(cake) ∧ hasPart(x,Y6)

∧ hasPart(x, cake) ∧ x2 �= ship ∧ x2 �= cake
))

While one can see it represents the same concept once understood, it is
probably harder to derive the mental concept in the first place given how the
variables and restrictions are written. We call the distance of concept and formal
model perceptional naturalness. We will discuss this example in more details
when we have formalized perceptional naturalness. Next, we briefly discuss the
role of the language in more detail.

Formal models are expressed in some modeling language and the choice of
the language plays a role in how a concept is expressed. Thus, the choice of the
language has an influence on both the naturalness of the formal model and its
perceptional naturalness. We focus on naturalness here, for perceptional natural-
ness it suffices to note that formal languages such as Whitespace or Malbolge [34]
and C are all equally expressive languages, yet Whitespace or Malbolge are highly
unnatural in any sense of the word.

It is out of scope for this work to discuss computational thinking in detail
and to investigate the differences in programming paradigms; e.g., between func-
tional, declarative and imperative programming. Instead, we discuss in more
detail how the units introduced in the above example related to the role of lan-
guage. Returning to the four-wheeled car, we can give an alternative notation
for the same formula:

∀x. Car(x) → ∃w1, w2, w3, w4.
∧

i∈1..4

(
Wheel(wi) ∧ hasPart(x,wi)

) ∧
∧

i,j∈1..4
i�=j

wi �= wj

Is this formula a first-order logic formula? Syntactically it is not, but it is
straightforward to expand all the introduced shortcuts and retrieve a “pure”
first-order formula4. We argue that it is still a first-order logic formula, instead
the shortcuts form a conceptual library of patterns that are employed anyway.
E.g., the grouping into units. Similar conceptual libraries are known in other
minimal languages, e.g., the church encoding of the natural numbers in the
lambda-calculus. Similarly to programming language libraries, these conceptual
libraries are a summary of useful patterns that are repeated in many programs.

When the modeler starts to express a concept in a certain language, the
conceptual (and programming) libraries are included in the expression. I.e., when

4 Extensions of a simple formalism may be less straightforward than expected, as the
study of Quinlan et al. [37] on the use of BNF grammars in practice shows.

On the Notion of Naturalness in Formal Modeling 273

arguing about the naturalness of a formal model, the libraries must be included
in the discussion, as the concept must be adapted to both language and libraries.
In this sense, no programming or modeling language is truly minimal, it just gives
the user a bigger freedom in the choice of libraries in turn for a higher reliance
on these libraries.

3.3 A Complete View on Models

We have so far discussed two views on models: (1) The abstraction-centered view
emphasizes the relation of a formal model the thing it stands for. It emphasizes
the reduction feature. (2) The concept-centered view emphasizes the dual nature
of a formal method and the relation between M-as-a-domain-concept and M-
as-an-artifact. It emphasizes the mapping feature. For completeness’ sake, we
mention a third view that emphasizes the pragmatic feature, which we call
purpose-centered : A model is a mathematical expression made for a certain
(business-)purpose. In industrial practice, this view is more relevant than the
others: as businesses aim to make money, the availability of trained personal,
computational resources, etc. is critical in the choice of what language is cho-
sen and how a model is designed. I.e., one may have a model that is less natural
than possible and less abstract than possible, but no employee is able to produce
such a model in a reasonable amount of time and the model is good enough for
business-purposes.

4 Conceptual Spaces

To examine naturalness, we must be able to analyze the relationship between Mδ

and Mα; In search for tools to examine and describe these mental concepts we
turn to cognitive science. This research field is, among others and briefly summa-
rized, concerned with explaining and constructing cognitive activity. Cognitive
activity uses some information to reach some goals. While the nature of how
this information and these goals are represented mentally is an elusive mystery,
there are numerous theories of modeling representations. The following section,
and indeed this whole work, does, thus, not claim that the used notion of con-
cepts is “real”, in the sense that the cognitive activity uses conceptual spaces
for representation, they are a model for the representations.

The theory used here is the Theory of Conceptual Spaces of Gärdenfors
[17,18], which is based on geometric structures and motivated existing cogni-
tive phenomena, such as similarity5. In short, conceptual spaces (CS) are metric
spaces where concepts are represented as regions, objects as points and dimen-
sions are ways in which these can be compared. Similar concepts are grouped
closer together in a conceptual space. For example, the concept Apple could be
represented as a region in a CS where the dimensions are shape, color, and weight.
In this space, the region for Oranges would be closer to Apple than Pineapple,
5 This is in line with a tradition to describe concepts/categories not by common fea-

tures, but by distance between instances, following Wittgenstein’s family resem-
blance [49] and Rosch’ prototype theory [38].

274 E. Kamburjan and S. R. Fiorini

for example. The relevance of Conceptual Spaces to our discussion resides in
its proposal as a framework for cognitive semantics. In cognitive semantics, the
meaning of linguistic expressions is given by mental entities, which are grounded
in reality through perception. Conceptual spaces provides a structure for such
mental entities. That fits our view in which (symbolic) models, such as Java
classes, are interpreted as mental models of domain or technical entities.

A considerable part of what

L
ig

h
tn

es
s

SaturationHue

makes CS a powerful representa-
tion framework is the way in which
the dimensions of the metric space
are structured. Certain dimensions,
particularly perceptual ones, always
appear together, forming quality
domains. For example, hue, satura-
tion, and luminosity (HSL) are integral6 to each other, forming a color domain
(to the right). In addition to that, the Theory specifies that natural properties
are convex regions in quality domains. The notion of natural property is loosely
defined as those natural for the purpose of usual problem-solving tasks. So, for
example, the property Red in the HSL space should be convex. Indeed, studies
with color perception in different cultures showed that regions for basic colors
in HSL space are indeed approximate convex regions [40]. Studies with other
perceptual domains paint a similar picture [17].

Complex concepts, such as Apple, can be more precisely defined as collections
of regions in quality domains. Those include perceptual domains, but can also
include non-perceptual domains, such as price and shelf life.

The Theory is not intended to be complete. One important aspect for our
discussion and that is not well established is related to conceptual spaces unique-
ness: how many conceptual spaces there are in an agent’s mind? Some works
assume a single a conceptual space with a high number of dimensions in which
all concepts are represented (e.g., [1]). Some works assume smaller conceptual
spaces, sometimes one for each concept (e.g., [e.g., [15]]). Furthermore, distinct
agents are normally assumed to have distinct conceptual spaces, which can be
aligned by mapping conceptual spaces to symbolic structures and then by sym-
bolic communication [48]. In this paper, we assume each agent (e.g. modeler or
expert) has a collection of subjective conceptual spaces focused in specific topics,
which may or may not be result from the projection of a universal subjective
conceptual space. We also assume that structures of these conceptual spaces
are mapped to language structures, which can be communicated symbolically
through written artifacts. Furthermore, we assume that the decoding of these
artifacts induce a conceptual space.

Other cognitive phenomena can be explained in terms of operations in con-
ceptual spaces. For example, taxonomic reasoning can be defined in terms of
region embeddings/projections. Contextual effects can be explained in terms of
dimension weighting (see [17] for more details).
6 I.e., it is not possible to assign a value to an object in one dimension without assigning

one in the others.

On the Notion of Naturalness in Formal Modeling 275

Concept Composition. From the tools developed for Conceptual Spaces, we
require those related to concept composition and introduce these next.

Only in the most simple case can we model the composition of two concepts
as their product space, i.e., intersection of the regions in their properties, because
only the most simple composition shares properties. This is, for example, the case
for “red car“, which is composed from “red things” and “car“. Such compositions
are described by intersecting the region for “red” in the color property of “car”
and leaving the rest of the concept of “car” unchanged.

A more common case is that while intersection can be applied to some regions,
other regions are incompatible. The classical example here is “stone lion”. The
material property of “lion” has an empty intersection with “stone”, so instead
the property is replaced. However, some of the properties of “lion”, namely all
which are concerned with living things, are not compatible with things made
of stone and are consequently removed from the composed concept. Indeed, the
only remaining property of “lion” is its shape.

A similar situation arises in natural language with metaphors, where the
composition of concepts cannot be described by removal, addition and inter-
actions of properties, as the concepts share no properties [31]. Metaphors are
“mappings across conceptual domains” [30] that preserve some cognitive struc-
ture not directly accessible on a lexical level, instead they “preserve the cognitive
topology (...) of the source domain, in a way consistent with the inherent struc-
ture of the target domain.” [30].

The similarities between metaphors and models run deeper than their shared
property of mapping across domains. Both metaphors and models are, in the
words of Steen [42],“not a matter of language but of thought”. A model is a
model because it is thought of as such; there is nothing in a Java program or a
first-order formula that gives it its mapping feature without a mind to perform
the mapping. Similarly, the adequacy of a model is a property that is inherently
non-lexical and cannot be judged without a cognitive approach.

To handle such situations in the Conceptual Spaces framework, [18, Ch. 13]
describes two mechanisms: for shared domains, the concept is projected on the
shared dimensions (in the example above, the lion is projected on its “form”
dimension). This is not abstraction, which is removing properties based on the
context of the formal modeling. For non-shared domain, a metaphorical map-
ping is used: a homeomorphism between the regions of the two concepts, i.e., an
isomorphism preserving structural/topological properties. Through the homeo-
morphism, structures from one domain can be applied in the other one, which
may not posses such structures.

276 E. Kamburjan and S. R. Fiorini

5 Naturalness in Conceptual Spaces

We have so far established a semiotic view on models, argued that naturalness
must be explained as a relation between Mα and Mδ, and introduced Conceptual
Spaces and metaphors as a tool to describe such relations between concepts.

Now we can revisit the notions discussed in Sec. 3. To do so, we discuss mental
processes that relate artifacts and mental representations, which differ between
enmodeling as a mental process to generate a mental concept for a given context
(which, most likely, is more simple or suited) and encoding, for the process that
encodes this model in a formal model or symbol.

5.1 Redefining Mδ and Mα and Other Mental Models

As we stated earlier, both Mδ and Mα are mental representations that base
the production/understanding of artifacts M. Taking Conceptual Spaces as our
framework for mental representation, we must then define their nature in terms
of conceptual constructs.

We start by introducing Cδ as a region in a conceptual spaces denoting the
full conceptualization of a domain concept. It spans properties in perceptual
and non-perceptual quality domains representing the overall experience a person
might have with exemplars of such concept. For example, for a car expert, Cδ

captures aspects related to specialist and common-sense knowledge about cars.
In contrast, Mδ is a region in a conceptual space constructed by domains and

subproperties derived from Cδ that are relevant to the task at hand. In our Java
car example, Mδ include domains regions related to axles, position and velocity.

Similarly, we introduce Cα a region in conceptual spaces denoting one’s gen-
eral knowledge about the constructs and structures in the target formal model. In
our Java example, Cα equates to the general notion one has of Java classes. Points
in this conceptual space denote individual possible Java objects. Its domain
structure is more elusive, given its abstract nature. Examples of quality domains
include memory position, hash encoding and use of logging.

Finally, Mα represents the formalism and task-dependent mental model of
the M. While Mδ might be a property region on a domain denoting the range of
possible number of axles a car might have, Mα would have a counterpart region
on a integer domain with no region defined.

In the following, we use Cx/Mx when δ and α concepts are interchangeable.

5.2 The Place of Abstraction

We next discuss the relation of Mx and Cx and the process involved with their
construction. Modeling is a mental process that starts with a concept (i.e., a
region in a conceptual space) and ends with an (physical) artifact expressing this
concept in a certain context and a certain (formal) language. We hypothesize
that it consists of two main steps: enmodeling and encoding. In reverse, the
mental process that starts with an artifact and ends with a concept consists of
decoding and demodeling. Figure 4 depicts these processes for Mx and Cx.

On the Notion of Naturalness in Formal Modeling 277

Fig. 4. The mental processes and representations to produce and understand models.
The two right representations are cognitive spaces, denoted by blue axes. (Color figure
online)

Enmodeling. Enmodeling takes Cx and adapts it to the target context and target
language. Adaptation to the context is mainly abstraction: the removal and
rescaling of dimensions and properties that are not relevant for the context.
Adaption to the language is a more elusive process: we conjecture it to be similar
to the effects known in linguistics that language influences the way concepts are
formed and expressed in natural language. The result of enmodeling is again a
concept, a region in a conceptual space. Due to the adaption to the language, it
is not a subconcept of the one we started with.

Encoding. Encoding starts with the adapted concept and ends with the arti-
fact. It is the generation of artifacts from mental concepts after adaption of
the concepts. These two processes are not independent: obviously, enmodeling is
influenced by the target language and is guided by the expression of concepts in
this language. Their relation is also not necessarily sequential, but we conjecture
that enmodeling starts before encoding, and that encoding ends after enmodel-
ing. For our discussion, it suffices to regard them as separate and ordered.

Decoding. Decoding starts with the artifact and ends with a adapted concept
that is specific to its context (i.e., the application in question where the artifact
is used). It is the opposite of encoding and the resulting concept still contains
traces of the artifact, as it is done in a certain language and context (which
the ending concept is adapted to). Decoding contains numerous mechanisms,
for example it is the part that is concerned with perception. It also may involve
higher cognition mechanisms, like memory.

Demodeling. Demodeling is the opposite process of enmodeling, it starts with a
concept that contains traces of the artifact language and ends with a full, not
context-specific context. It relates Mδ to a Cδ and has, as one of its main parts,
the task to recognize the modeled concept in the artifact. For example, it is
during demodeling, when the car expert recognizes the Java class as a specific
concept from the car domain. The moment when the car enthusiast recognizes
the Java class as something from the car domain is during decoding. The main
difference of enmodeling and demodeling is their direction w.r.t. complexity of
the concept: enmodeling reduces complexity (e.g., by removing a dimension),
while demodeling increases it.

Demodeling and enmodeling are not monolithic processes and contain sub-
processes which may take the opposite direction w.r.t. complexity as the overall

278 E. Kamburjan and S. R. Fiorini

process. The exact subprocesses are, however, not of importance for the phenom-
ena we aim to describe here. The important detail is that (de/en)modeling and
(de/en)coding can be distinguished: (de/en)modeling is an internal transforma-
tion of mental concepts, while (de/en)coding is their relation with the artifact.

5.3 Formal Models as Metaphors

The end of the decode-demodeling process is a concept independent of the arti-
fact, but in our setting with domain view and engineering view, there are two
process with one beginning, namely the artifact, and two ends.

This means that each involved person, engineer and domain expert, have their
own decoding and demodeling process when examining a single formal modeling
artifact. Not only are the processes different: the concepts are different as well.
At the end of the engineer’s demodeling, the concepts describe the artifact in
purely technical term. For example, it describes the class in terms of properties
of Java classes (e.g., final or not, number of fields) and is, in the extreme case
where the engineer has no knowledge about the modeled domain, free of any
domain dimensions.

If the artifact is examined by an engineer and a domain expert, the artifact
essentially becomes a message. Here, we are however interested in our modeler,
for whom the artifact is a concept in both the domain context and the technical
context. For enmodeling, the modeler also starts with Cδ. It is not possible to
start with Cα, as the main task is to model a domain situation, not to produce
(some) working code. For encoding, the modeler needs to operate on Mα, as
for this task the technical knowledge is dominant. Thus, Mδ is an intermediate
concept, constructed during enmodeling.

We refine our view on enmodeling into two steps: (1) abstraction, a process
that generates Mδ from Cδ by adapting it to the application scenario and (2)
adaptation, a process that reformulates Mδ by relating it to the chosen language
and technical framework. Similarly, when reading a model, the modeler decodes
the artifact into Mα, then disperses the technical framework to arrive at the
abstracted domain concept Mδ and finally relates it to the final concept Cδ.

Note that Cα is not constructed in this process. However, the modeler is able
to suppress the domain side and construct Cα directly from Mα, i.e., act as a
technical expert.

As discussed, these extreme views of the technical expert and the domain
expert are unlikely to occur. Every domain expert has some basic linguistic
knowledge and must be able to construct some Mα. However, due to the lack of
technical knowledge, Mα is rudimentary – it is comparatively hard to disperse
the language specifics of the model to reveal the underlying domain structures.

Metaphors. We see that formal modeling requires to compare the structure of
different concepts. Following up on on Lakoff’s observation that metaphors are
mappings across conceptual domains that preserve cognitive topology, we also see
that formal models are merely metaphors themselves: The structure of Mδ must
be preserved in Mα. To define naturalness we can, thus, use the mechanisms

On the Notion of Naturalness in Formal Modeling 279

Fig. 5. The mental processes and representations for the formal method expert.

already discussed for concept composition and metaphors through conceptual
spaces (Fig. 5).

It is interesting to note that when we see models as metaphors, we use the
structure of the formal model to explain effects in the domain. This is the oppo-
site direction from metaphors in everyday use in computer science, which use
the structure of some “domain” to explain the formal model. For example, the
notion of a stack [9] uses the structure of the domain (being able to add on top)
to illustrate the computational concept.

Signs. We have now two mental concepts for each sense-making process: the
“raw” concept and the adapted concept. The semiotic triad we use to intro-
duce semiosis, however, has no place for the adapted concept. Our solution is
that adapted concepts play a role in two sense-making processes, as illustrated in
Fig. 6: the adapted concepts. Mα and Mδ are a concept for the first sense-making
process (the one for en-/decoding) and a symbol for the second sense-making pro-
cess (the one for en-/demodeling). Such a sequence of two sense-making processes
which share the same thing and where one concept is the symbol of the other,
can be seen as an instance of “successive interpretants”(successive concepts) in
the Peircean theory of signs.

Fig. 6. The semiotic relationships for formal models.

280 E. Kamburjan and S. R. Fiorini

5.4 Naturalness and Perceptional Naturalness

The previous section established a framework for the cognitive processes for
formal modeling. Now we use the ideas from cognitive linguistics on concept
composition to define of notions of naturalness and perceptional naturalness.
Intuitively, a model is natural if it is a good metaphor: there is a metaphorical
mapping from Mα to Mδ that requires little cognitive effort to map structures
from the artifact-view to the domain-view. We now make our notion of natural-
ness more precise:

Let M and N be two formal models for the same aspect of a domain, i.e.,
the same Mδ = Nδ. Let μ be a metaphorical mapping from Mα to Mδ

and ν the corresponding metaphorical mapping from Nα to Nδ.
We say that M is more natural than N if μ has a lower cognitive complexity
than ν.

In short: a model is more natural than another if it is easier to recover the domain
conceptual structure from the artifact conceptual structure. Cognitive complex-
ity denotes the effort needed to perform the metaphorical mapping, which in
our setting we interpret as the computational complexity of the metaphorical
mapping, if we see the metaphorical mapping as a function between two metric
spaces. Using the computational complexity in cognition has a certain appeal
when comparing the mind with computers [47], but here we do not use it for
general assumption about cognition, but to measure the complexity of a cer-
tain cognitive task. For a more detailed discussion on computational complexity
effects in cognition we refer to Isaac et al. [26].

In this setting, the complexity of the metaphorical mapping is harder to
grasp, as several components are moving: both conceptual spaces are influenced
by mental changes, i.e., they change their shape through learning. For exam-
ple, the space for the language gains more dimensions as the domain expert
gains more experience with it. Furthermore, operations within the mapping
become computationally cheaper if they are performed more often – analogously
to results in natural languages, where less frequent language fragments have
higher complexity (in terms of the logic needed to formalize it) [45]. Thus, the
computational model in terms of needed operations may also change over time.
Consider the example of the first-order logic formula formalizing a car with four
wheels. The unit describing that the four wheels are different requires conscious
reading of all conjuncts for the novice, i.e., a linear complexity in the length of
the formula, but after more exposure to the usual patterns in logical modeling,
this is reduced into one reasoning step, i.e., constant complexity.

If we fix a threshold for low cognitive complexity, then we can give a definition
of naturalness that does not require a second model to compare with.

Let M be a formal model. Let μ be the metaphorical mapping from Mα

to Mδ. We say that M is natural if μ has a low cognitive complexity.

If we accept the P-cognition thesis that “cognitive capacities are limited to those
functions that can be computed in polynomial time” [47], than, in our eyes, a

On the Notion of Naturalness in Formal Modeling 281

sensible assumption would be that μ is natural if it is even less complex than
polynomial. One obvious candidate would be linearity, but we leave this question
open.

Let us return to the example in Fig. 2, in particular the number of axles. Let
us assume that in Mα, the field of a Java class, is represented as a property with
the dimensions “type” = integers, “modifier”=private and “name”=nrAxles.
Note that nrAxles here is purely symbolic and not connected to the concept of
axles at all. In Mδ the number of axles is just a single dimension over an interval
in the natural numbers.

The mapping μ is of low cognitive complexity: exactly one property is mapped
onto directly one dimension and both the name and type of the field are directly
related to the domain dimension. In terms of concept composition, one can sim-
ply perform a property replacement. The additional dimension of the modifiers
in the engineering domain can just be removed in the mapping – it must not be
disentangled from the other dimensions.

Now consider a Java class where the number of axles is modeled as following:

private int wheels ;
private int wheelsPerAxis ;
. . .
public int getAxles () { return wheels /wheelsPerAxis ; }

This is less natural: Mα now has three different properties and Mδ must
include the notion of wheels, i.e., be more precise in its representation of axles.
The mapping is more complex: three properties are mapped onto one property.
The property of the method is furthermore more complex and involves arith-
metic.

Next, let us examine the use of int as a type for the number of axles. It
is rather unnatural, because it allows to create Car instances that cannot be
mapped to points in the conceptual space Mδ for car; e.g., those with a negative
number of axles. This is obviously not a metaphor: the structure provided by the
formal model does not carry over the application domain. It is a consequence
of a, possibly conscious, modeling decision to use integers, as these are easily
available in the language, while, for example, ranges are not (in Java). This is an
example of how none of the processes is performed in isolation – the choice of the
target language already influences the enmodeling process. The use of integers is
still relatively natural, as (a) integers are often used to overapproximate ranges
and (b) one dimension is mapped onto one other.

Finally, we discuss the serialization framework. It is completely foreign to the
domain of cars, but some parts are more unnatural than others. The annotations,
such as @XmlAttribute are unnatural, but they are easy to ignore – the cognitive
mapping just removes the dimensions related to annotations. It is also unnatural
that nrAxels can be changed. But while it is also effectively removed in the
cognitive mapping, this requires more cognitive complexity compared to the
removal of annotations, because it models possible behavior that cannot be fully
ignored. Indeed, it contradicts the domain – and the cognitive mapping must
thus involve more domain reasoning why this contradicting behavior can be

282 E. Kamburjan and S. R. Fiorini

ignored. We expect that over time, i.e., after working with the model for some
time, memory and association effects will make it more natural as the reason
becomes part of the memory.

Similarly, the cake variable in our FOL example increases complexity, as it
breaks the context: it implies that the context contains notions of baking, which
activates the wrong memories and makes it harder to understand what symbols
carry domain information and which do not. More generally, syntax highlighting
is a technique to increase perceptional naturalness by reducing the cognitive
burden required to build the concept Mα.

Perceptional Naturalness. While we support the idea that naturalness is mainly
associated with dispersion and adaption mappings, there are formal language
features that are more perceptual but that also influence how easily a formal
artifact can be understood. Consider the block structure in the first-order exam-
ple in Sect. 3 or the use of syntax highlighting. These are features of formal
models—some of them ad hoc—that helps decoding.

These effects are associated to what we call perceptional naturalness. In our
view, an artifact is perceptually natural if it has low decoding complexity. Since
decoding is outside the scope of our Conceptual Space-based framework (decod-
ing is not purely conceptual), we do not investigate decoding complexity further.

Note that the mutability of nrAxles above does not fall under perceptional
naturalness: the mutability of the field is unnatural, not the absence of a final
modifier and the presence of the setter. In general we consider most iconicity
effects to fall under perceptional resemblance, but iconicity plays little role for
the formal languages that we consider here. For example, the only iconicity in
the car formula is the occurrence of four different variables for the four wheels.

Further Details. Naturalness is defined in terms of understanding the model, i.e.,
how easy it is to disperse the language structure, but still related to adaption,
i.e., how easy it is to model something: natural pairs of concepts are easy to
compose (by replacing the domain properties by engineering properties) and
easy to decompose. It is able to explain why something is natural to express is a
certain way, as well as able to explain why something is natural to understand.

Naturalness is more important to the modeler than to the domain expert or
the technical expert: the technical expert is not interested in Mδ, except when it
relies on his common sense for explanations7. For the domain expert, the domain
view is dominant, so the domain expert decodes into Mδ almost directly, as the
domain expert has too few dimensions and properties to build a sensible concept
Mα. For the domain expert, there is no sharp difference between dispersal and
generalization – naturalness and perceptional naturalness merge.

6 Discussion

Consequences for Interdisciplinary Modeling Studies. We once again stress that
naturalness is a purely mental notion and, as such, different for every person: it
7 For example, we can assume any programmer to have some knowledge about cars.

On the Notion of Naturalness in Formal Modeling 283

is not possible to reason about the naturalness of an artifact per se, as without
an interpreter no sense-making processes occur.

However, we can reason about naturalness is a restricted context beyond a
specific person: given a certain domain and application, we can assume that the
domain concepts have similar structures for different people working in a field,
due to common education and experiences. Thus, if one such person perceives a
model as natural, it is likely that this generalizes within the target group.

We can, thus, also make assessments of naturalness of formal modeling lan-
guages: a language is more natural than another, if there is a more natural model
in it. We can approximate this by trying to map the core concepts of the domain
on constructs within the existing language. For example, consider a mail ser-
vice to send letters. It is more natural to model such a service using the actor
concurrency model than, let’s say, in a shared memory model with semaphores,
because the basic language feature of asynchronous messages shares structure
with sending a letter, because both may be reordered and require, in general, no
waiting for a response. In contrast, to model the same property requires a more
complex formulation when using semaphores.

This is, in essence, the underlying assumptions why domain-specific lan-
guages work in practice: if the vocabulary and constructs are fixed and the
target group shares education and experiences, then they find it natural to
express themselves in it, i.e., to write natural formal models, if the language
has primitives for common relations and actions.

It follows from the above that the modeler is not able to judge the natural-
ness of the formal model until the modeler is trained enough to align the domain
concepts with the one of established domain experts. This confirms our expe-
riences in the common setting where the modeler starts as a technical expert
and acquires domain knowledge until the modeler can take the role of the medi-
ating formal method expert: The first iterations of a formal model are mainly
useful to find out where the preliminary intuition of the formal method expert
is still wrong. Yet, we found early prototypical models of critical importance
to establish a successful interdisciplinary collaboration: these models train both
technical expert (i.e., the modeler to-be) and the domain expert to use models
for communication and, thus, lower the cognitive complexity needed for both
when working on common artifact. We conjuncture, based on these experiences,
that common decoding experiences are more important for formal modeling than
establishing common knowledge up front.

Lastly, we note that the metaphors established by the formal model can
transfer novel structures into the domain: For example, the notion of a logical
group is used recently for infrastructure in railways by Schön [39], but stems
from its formal modeling as a common object-oriented pattern to group objects
for communication [28].

Objective Naturalness. Our notion of modeling and naturalness is subjective,
relying on the inner workings of the mind, and we do not investigate objective
naturalness, which would directly connect the semiotic symbol with the semiotic
thing (Fig. 1). Indeed, it is questionable whether such a notion could exist. One

284 E. Kamburjan and S. R. Fiorini

can argue that domains have inherent structure, which should be natural to
any model and modeler acquainted with the domain. This brings our discussion
back to the above point about domain-specific languages, which aim to provide a
natural model for any mind, and we stress that this is not the same as a natural
model without an involved mind, which does not exist in our framework8.

Empirical Evaluation of Naturalness. As such, any precise, objective assessment
the naturalness would have to rely on direct measurement of cognitive complexity
of individual artifact-person (or artifact-mind) pairs. That would in turn require
direct access to mental representations, which is still beyond the present state
of the art. On the other hand, indirect characterizations of naturalness across
formalisms, artifacts and mind types might still be possible within the realm of
experimental Cognitive Sciences. We let this issue for future work.

User Studies in Formal Methods. Formal methods, as well as related disciplines,
rarely perform user studies that target understanding and tend to reuse theories
from human-computer interaction. Consequently, they are restricted to usability
questions. For example, Hentschel et al. [23] propose a new tool for interactive
theorem proving that is motivated by enabling the user to understand the formal
system better:

“To improve the efficiency of understanding intermediate proof situations,
therefore, promises considerable gains in the overall human user time
spend...”

However, their study is purely performative and only investigates whether the
tool increases the performance with respect to time and correctness. It does not
investigate whether the tool indeed improves understanding.

Similarly, Harkes [22] discusses the problems when evaluating domain-specific
languages, where the standard approach in that field is to discuss (1) performance
and (2) generality, because these are simple to measure and simple to argue over.
This problem of arguing about languages is particularly explicit in the work
of Myers et al. [33] on natural programming, which argues that programming
languages and environments should be “natural”:

“By natural, we mean faithfully representing nature or life”

We regard this definition as little useful in practice, as it gives no detail to
why a model is more natural than another and ignores that naturalness differs
between individuals. Note, however, that Myers et al. are interested in program
development and are “aiming for the language and environment to work the way
that nonprogrammers expect”. They are not considering single models/programs.

While not a user study, the presentation of Leuschel [32] is worth mentioning
in this context: it argues that the reason why the B-method is so successful in

8 In the semiotic framework there is no such thing as a model at all without an involved
mind, as a model is a sign and a sign needs an interpreter.

On the Notion of Naturalness in Formal Modeling 285

modeling railway systems is that railway systems are modeled as graph struc-
tures and the B-method is well-suited to operate on such graph structures. We
interpret this as a naturalness argument in our sense: given a B-model, it is easy
to retrieve the domain view from the computational structures.

Further Related Work. We are interested in formal models from the perspective
of cognitive linguistic and largely ignore the actual evaluation or runtime seman-
tics. Indeed, we do not require a computer or (runtime) semantics in the first
place. Tanaka-Ishii [44] gives a more detailed view on programs, where the sym-
bols signify their semantics, which are, in turn, again signs. The sense-making
process in that setting is not mental, but physical. Other works on semiotics
in computing, such as the one by Andersen [2], also focus on the relation of
the sign to the execution itself. In contrast, there is a tradition of Semiotic
Engineering in Human-Computer Interaction (HCI) [12] that sees computers as
devices for communication, not computation and draws some parallels between
the development of programming and the evolution of “natural” languages [5]9.
This research has also resulted in some cognitive guideline for dimensions for
usability of programming languages environments [6]. From these dimensions
Closeness of mapping comes closest to naturalness. Similarly, for business pro-
cessing modeling languages understandability has been investigated by Fahland
et al. [14].

[9] investigate metaphors for programming, which has a rich vocabulary of
metaphors such as thread or throw/catch. They observe that for programming,
the metaphors are, in the terms of [25], better explained through rather com-
parative theories. Comparative theories of metaphors see metaphors as ways
to emphasize and expose preexisting similarities between two domains. In con-
trast, we use an interactive theory of metaphors, where the metaphors creates
the similarity. Furthermore, Colburn and Shute discuss metaphors in the oppo-
site direction: While formal models are computer scientific structures that are
metaphors for some domain, their metaphors are terms from some domain for
computer scientific structures. In subsequent work, this approach is applied to
types [10]. Metaphors are also used widely in HCI [4].

Another connection between the philosophy of science and formal modeling
has been explored by Hähnle [21], who notes that black boxes have, in general,
a negative connotation in philosophy, as they prevent the investigation of its
content, while they have, again in general, a positive connotation in computer
science, because they hide complexity.

Works in in Ontology Engineering in Computer Science also touch in some
of the notions we discussed here. Guarino [19] proposed that ontologies specified
as logical theories should approximate the set of intended models (i.e. first-order
models) in the the domain, without investigating how the mismatch might occur.
Guizzardi [20] suggests a similar distinction between mental models of domain
concepts and artifacts, as well as their representation as symbolic specifications.

9 On the problems of applying the theory of evolution to developments of programming
languages we refer to [11].

286 E. Kamburjan and S. R. Fiorini

Also, he summarizes a collection of mappings to characterize how well a formal
model covers a domain. However, the work also does not investigate in more
detail how artifact-specific constructs affect ontologies. Furthermore, some works
in ontology also incorporate Conceptual Spaces as a representation construct
[1,20], however we go further in representing the formal artifact itself.

7 Conclusion

This article presents a cognitive view on formal modeling motivated by the
observation that several effects in formal modeling that cannot be analyzed by
focusing on abstraction, i.e., the reduction feature of models.

At the core are two proposals. (1) That there are two sense-making pro-
cesses associated with a formal model, one that interprets the formal model as
a concept in the application domain and one that interprets it as a concept in
the engineering domain. We represent these mental concepts using conceptual
spaces. (2) That a model is more natural than another, if it is a better metaphor,
i.e., it retains more structure from the engineering view in the domain view.

The notion of naturalness is our main contribution: a formal model is more
natural than another if it is cognitively easier to map the extracted artifact con-
cept on the extracted domain concept. As naturalness is concerned with mental
processes starting and ending with mental concepts, we also introduce percep-
tional naturalness as a notion of complexity to measure the difference between
the artifact itself and the artifact concept it is decoded into. This captures a
wide range of effects of more syntactical nature, e.g., formatting and naming.

Contrary to prior work, we do not focus on programming, i.e., execution, or
user interfaces, but on a single aspect of formal modeling. We hope that a cog-
nitive view on formal modeling can lead to better designed modeling languages,
better designed qualitative user studies and help to build a body of experiences
in formal modeling.

Future Work. The natural next step is to design user studies to empirically test
our view. A promising start to do so is to investigate are common modeling
experiences for interdisciplinary modeling efforts. Furthermore, as we are moti-
vated by the difficulties of justifying and precisely argue about modeling deci-
sions, we also plan to reinvestigate recent successful formal modeling projects,
namely FormbaR [28], the GeoAssistant [13], and the core ontology for robotics
and automations [16,24], in particular its positioning part [7], and present the
underlying modeling decisions using the framework presented here.

We conjecture that investigating the connection with semiotics in more detail
can give further insights into modeling. For example, the situation of the modeler
can be seen as multiple parallel signifying processes (cf. Bateman [3, Fig. 2]).
Furthermore, the relation of Mδ and Cδ has similarities to the relation of the
dynamic and final interpretant of Peirce [8].

On the Notion of Naturalness in Formal Modeling 287

Acknowledgement. This work was partially supported by the Research Council of
Norway via the SIRIUS Center (237898) and the PeTWIN project (294600). The authors
thank Lars Tveito and Michael Lienhardt for feedback on early drafts of this article.

References

1. Aisbett, J., Gibbon, G.: A general formulation of conceptual spaces as a meso level
representation. Artif. Intell. 133(1–2), 189–232 (2001)

2. Andersen, P.B.: A semiotic approach to programming. In: Learning in Doing:
Social, Cognitive and Computational Perspectives, pp. 16–67. Cambridge Univer-
sity Press, Cambridge (1994)

3. Bateman, J.A.: Peircean semiotics and multimodality: towards a new synthesis.
Multimodal Commun. 7(1), 20170021 (2018)

4. Blackwell, A.F.: The reification of metaphor as a design tool. ACM Trans. Comput.
Hum. Interact. 13(4), 490–530 (2006)

5. Blackwell, A.F.: 6,000 years of programming language design: a meditation on eco’s
perfect language. In: Diniz Junqueira Barbosa, S., Breitman, K. (eds.) Conversa-
tions Around Semiotic Engineering, pp. 31–39. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-56291-9 5

6. Blackwell, A.F., et al.: Cognitive dimensions of notations: design tools for cognitive
technology. In: Beynon, M., Nehaniv, C.L., Dautenhahn, K. (eds.) CT 2001. LNCS
(LNAI), vol. 2117, pp. 325–341. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-44617-6 31

7. Carbonera, J.L., et al.: Defining positioning in a core ontology for robotics. In:
IEEE/RSJ, pp. 1867–1872. IEEE (2013)

8. Chandler, D.: Semiotics: The Basics, 3rd edn. Routledge, Abingdon (2017)
9. Colburn, T., Shute, G.: Metaphor in computer science. J. Appl. Logic 6(4), 526–533

(2008)
10. Colburn, T.R., Shute, G.M.: Type and metaphor for computer programmers.

Techné Res. Phil. Technol. 21, 71–105 (2017)
11. Crafa, S.: Modelling the evolution of programming languages. CoRR,

abs/1510.04440 (2015)
12. de Souza, C.S., Leitão, C.F.: Semiotic engineering methods for scientific research

in HCI. Synth. Lect. Human-Center. Inf. 2, 1–122 (2009)
13. Din, C.C., Karlsen, L.H., Pene, I., Stahl, O., Yu, I.C., Østerlie, T.: Geological

multi-scenario reasoning. In: 32nd Norsk Informatikkonferanse, NIK. Bibsys Open
Journal Systems, Norway (2019)

14. Fahland, D., Lübke, D., Mendling, J., Reijers, H., Weber, B., Weidlich, M., Zugal,
S.: Declarative versus imperative process modeling languages: the issue of under-
standability. In: Halpin, T., et al. (eds.) BPMDS/EMMSAD -2009. LNBIP, vol.
29, pp. 353–366. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
01862-6 29

15. Fiorini, S.R., Abel, M.: Part-whole relations as products of metric spaces. In: 2013
IEEE 25th International Conference on Tools with Artificial Intelligence, pp. 55–
62. IEEE (2013)

16. Fiorini, S.R., et al.: A suite of ontologies for robotics and automation [industrial
activities]. IEEE Rob. Autom. Mag. 24(1), 8–11 (2017)

17. Gärdenfors, P.: Conceptual Spaces: The Geometry of Thought. MIT press, Cam-
bridge (2004)

https://doi.org/10.1007/978-3-319-56291-9_5
https://doi.org/10.1007/978-3-319-56291-9_5
https://doi.org/10.1007/3-540-44617-6_31
https://doi.org/10.1007/3-540-44617-6_31
https://doi.org/10.1007/978-3-642-01862-6_29
https://doi.org/10.1007/978-3-642-01862-6_29

288 E. Kamburjan and S. R. Fiorini

18. Gärdenfors, P.: The Geometry of Meaning: Semantics Based on Conceptual Spaces.
MIT press, Cambridge (2014)

19. Guarino, N.: Formal ontologies and information systems. In: Formal Ontology in
Information Systems, Proceedings of FOIS 1998. IOS Press (1998)

20. Guizzardi, G.: Ontological foundations for structural conceptual models. PhD the-
sis, University of Twente (2005)

21. Hähnle, R.: Colorful boxes. In: The 7th Biennial Conference of the Philosophy of
Science in Practice, pp. 147–148. University of Ghent, Faculty of Arts and Philos-
ophy (2018)

22. Harkes, D.: We should stop claiming generality in our domain-specific language
papers. In: The Art Science, and Engineering of Programming, p. 3 (2018)

23. Hentschel, M., Hähnle, R., Bubel, R.: An empirical evaluation of two user interfaces
of an interactive program verifier. In: ASE, pp. 403–413. ACM (2016)

24. Ora, I.E.E.E., WG,: IEEE standard ontologies for robotics and automation. IEEE
Std. 1872, 1–60 (2015)

25. Indurkhya, B.: Metaphor and cognition: an interactionist approach. In: Studies in
Cognitive System (1992)

26. Isaac, A.M.C., Szymanik, J., Verbrugge, R.: Logic and complexity in cognitive sci-
ence. In: Baltag, A., Smets, S. (eds.) Johan van Benthem on Logic and Information
Dynamics. OCL, vol. 5, pp. 787–824. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-06025-5 30

27. Johnsen, E.B., Steffen, M., Stumpf, J.B., Tveito, L.: Resource-aware virtually
timed ambients. In: Furia, C.A., Winter, K. (eds.) IFM 2018. LNCS, vol. 11023, pp.
194–213. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98938-9 12

28. Kamburjan, E., Hähnle, R., Schön, S.: Formal modeling and analysis of railway
operations with active objects. Sci. Comput. Program. 166, 167–193 (2018)

29. Kühne, T.: Matters of (meta-)modeling. Softw. Syst. Model. 5(4), 369–385 (2006)
30. Lakoff, G.: The Contemporary Theory of Metaphor, 2nd edn., pp. 205–251. Cam-

bridge University Press, Cambridge (1993)
31. Lakoff, G., Johnson, M.: Metaphors We Live By. University of Chicago Press,

Chicago (1980)
32. Leuschel, M.: The unreasonable effectiveness of B for data validation and modelling

railway systems. RSSRail, Keynote (2017)
33. Myers, B.A., Pane, J.F., Ko, A.J.: Natural programming languages and environ-

ments. Commun. ACM 47(9), 47–52 (2004)
34. Olmstead, B.: Reference Malbolge interpreter (1998). https://www.lscheffer.com/

malbolge interp.html, Accessed 29 oct 2021
35. Peirce, C.S.: The Collected Papers of Charles Sanders Peirce. Harvard University

Press, Harvard (1935)
36. Peled, D.A.: Software testing. In: Software Reliability Methods. TCS, pp. 249–278.

Springer, New York (2001). https://doi.org/10.1007/978-1-4757-3540-6 9
37. Quinlan, D., Wells, J.B., Kamareddine, F.: BNF-style notation as it is actually

used. In: Kaliszyk, C., Brady, E., Kohlhase, A., Sacerdoti Coen, C. (eds.) CICM
2019. LNCS (LNAI), vol. 11617, pp. 187–204. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-23250-4 13

38. Rosch, E., Mervis, C.B.: Family resemblances: studies in the internal structure of
categories. Cogn. Psychol. 7(4), 573–605 (1975)

39. Schön, S.: Formalisierung von betrieblichen Regelwerken. In: SRSS 2021 Tagungs-
band, TU Darmstadt (2021). (in German)

40. Sivik, L., Taft, C.: Color naming: a mapping in the IMCS of common color terms.
Scand. J. Psychol. 35(2), 144–164 (1994)

https://doi.org/10.1007/978-3-319-06025-5_30
https://doi.org/10.1007/978-3-319-06025-5_30
https://doi.org/10.1007/978-3-319-98938-9_12
https://www.lscheffer.com/malbolge_interp.html
https://www.lscheffer.com/malbolge_interp.html
https://doi.org/10.1007/978-1-4757-3540-6_9
https://doi.org/10.1007/978-3-030-23250-4_13
https://doi.org/10.1007/978-3-030-23250-4_13

On the Notion of Naturalness in Formal Modeling 289

41. Stachowiak, H.: Allgemeine Modelltheorie. Springer, Heidelberg (1972). (in Ger-
man). https://doi.org/10.1007/978-3-642-69706-7 56

42. Steen, G.J.: The contemporary theory of metaphor - now new and improved! Rev.
Cogn. Linguist. 9(1), 26–64 (2011)

43. Stehr, M.-O., Meseguer, J.: Pure type systems in rewriting logic: specifying typed
higher-order languages in a first-order logical framework. In: Owe, O., Krogdahl, S.,
Lyche, T. (eds.) From Object-Orientation to Formal Methods. LNCS, vol. 2635, pp.
334–375. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-39993-
3 16

44. Tanaka-Ishii, K.: Semiotics of Programming. Cambridge University Press, Cam-
bridge (2009)

45. Thorne, C.: Studying the distribution of fragments of English using deep semantic
annotation. In: 8th Workshop in Semantic Annotation ISA 8 (2012)

46. Ullmann, S.: Semantics: An Introduction to the Science of Meaning. Basil Black-
well, Oxford (1972)

47. van Rooij, I.: The tractable cognition thesis. Cogn. Sci. 32(6), 939–984 (2008)
48. Warglien, M., Gärdenfors, P.: Semantics, conceptual spaces, and the meeting of

minds. Synthese 190(12), 2165–2193 (2013)
49. Wittgenstein, L.: Philosophical Investigations. Basil Blackwell, Oxford (1953)

https://doi.org/10.1007/978-3-642-69706-7_56
https://doi.org/10.1007/978-3-540-39993-3_16
https://doi.org/10.1007/978-3-540-39993-3_16

The Karlsruhe Java Verification Suite

Jonas Klamroth1, Florian Lanzinger2 , Wolfram Pfeifer2 ,
and Mattias Ulbrich2(B)

1 FZI Research Center for Information Technology, Karlsruhe, Germany
klamroth@fzi.de

2 Karlsruhe Institute of Technology, Karlsruhe, Germany
{florian.lanzinger,wolfram.pfeifer,mattias.ulbrich}@kit.edu

Abstract. Thanks to the deductive verifier KeY, the formal verification
of Java programs has a long-standing tradition at Karlsruhe. The design
of KeY implies some properties that can restrict its use in real-world
application cases: (1) Verifying long, code-intensive methods with many
instructions or bit-wise operations is difficult even if their behaviour is
not overly complex, and (2) tracking formal guarantees through unveri-
fied code is difficult if not impossible using KeY.

To mitigate these weak spots, we introduce the Karlsruhe Java Ver-
ification Suite, a collection of formal Java verification tools that work
with the Java Modeling Language (JML). Complementing KeY, the suite
comprises JJBMC, a bounded model checker for Java and JML and the
Property Checker, a type checker for user-defined property types.

In this paper, we first discuss formally how tools sharing a common
specification language can share distributed obligations in a general set-
ting, and then specialise this to the case of Java and our tool suite.

In a case study, we show that the Karlsruhe Java Verification Suite can
verify a program that none of the three components could have proved
alone.

Keywords: Software verification · Modular design · Design by
contract · Software bounded model checking · Pluggable type systems ·
Deductive verification · Refinement types

1 Introduction

The KeY project [1] was initiated more than 20 years ago at Karlsruhe University,
with Reiner Hähnle one of the founders of the project. The deductive proof engine
for the formal verification of the correctness of formally specified Java code has
since been an important player in the world of formal analysis of Java programs.
KeY is still an active project that is now co-developed in Karlsruhe, Darmstadt
and Gothenburg.

Over the years we have observed that when applying formal Java verification
closer to practical application cases, there are properties of KeY which make it
hard to apply KeY easily in practical situations:

c© Springer Nature Switzerland AG 2022
W. Ahrendt et al. (Eds.): The Logic of Software. A Tasting Menu of Formal Methods,
LNCS 13360, pp. 290–312, 2022.
https://doi.org/10.1007/978-3-031-08166-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08166-8_14&domain=pdf
http://orcid.org/0000-0001-8560-6324
http://orcid.org/0000-0002-9478-9641
http://orcid.org/0000-0002-2350-1831
https://doi.org/10.1007/978-3-031-08166-8_14

The Karlsruhe Java Verification Suite 291

1. Some parts of a program to be verified may not fall into the fragment that
KeY can handle well.
While the symbolic execution of Java programs in KeY models the Java
semantics very precisely, it does not scale very well and verifying larger sec-
tions of code may hamper the verification significantly even if the code is
loop-free and has a simple specification. Since KeY models the bounded inte-
ger types in Java using unbounded mathematical integers and modulo oper-
ations, verification of programs using bit-wise operations (like XOR) are also
difficult.
It would be beneficial if the power of KeY could be complemented by verifi-
cation routines that are particularly good on these domains.

2. It may be necessary to track formal guarantees through code outside the veri-
fied core.
Usually one can identify a critical core of a program onto which formal verifi-
cation is applied to guarantee its correctness. However, it is not unusual that
data leaves this verified core, is processed in code areas with a lower criti-
cality level (like a user interface) and then, later, reenters the verified core.
Since KeY does not scale well enough to verify entire code bases, it would
be beneficial to complement KeY with approaches which scale well and allow
verified properties to be propagated through large code bases.

In this paper, we present how two approaches and their corresponding tools
complement KeY with functionalities that fill precisely these two gaps. It is a
deliberate decision that they are not tightly integrated into KeY, but collabo-
rate with KeY using the Java Modeling Language (JML) [19] as their common
specification language. The rationale behind this loose coupling is that thus no
technical tool-specific encoding or implementation details must be considered
outside each verification tool. Using the common specification language JML
as the interface makes it possible to easily incorporate other tools than ones
presented here into the approach.

JJBMC [2] complements the deductive verification engine in KeY by a
component for bounded model checking. It translates JML specifications into
assumptions and assertions in the code, which can then be analysed using
bounded model checking. While bounded model checking can in general not
fully prove properties about programs with loops or recursion, it is well-suited
to loop-free programs with many cases, which often slow KeY’s proof search
to a crawl. Unlike KeY, which models Java bounded integers using unbounded
mathematical integers, JJBMC can deal well with bit-wise operators.

The Property Checker [18] brings together the expressive power of formal
specification and verification with KeY and the scalability of lightweight verifi-
cation using decidable type systems by translating type qualifiers whose correct-
ness cannot be shown by the type system into JML annotations. We will show
how this combination can be used to reduce the specification and verification
overhead of proving program correctness.

292 J. Klamroth et al.

Since KeY and these two approaches are currently actively developed at KIT
in Karlsruhe, the combination of approaches and tools form the Karlsruhe Java
Verification Suite. The collaboration between the tools works by a distribution
of proof obligations among them. We discuss for a simple while language with
embedded assumptions and assertions, how the assertions to be proved can be
distributed between different approaches and when such a distribution is correct.
We formally prove this in Theorem 1 in Sect. 4. We then (in Sect. 5) informally
lift this result from the while language to JML-annotated Java and show how
the tool collaboration there can follow the same principles as in the simpler
language. We discuss a few points necessary for an application of the approach
in the field (semantic coherence, proof management).

We have implemented a small wine-store example illustrating the benefits of
the collaboration within the Karlsruhe Java Verification Suite. The critical core is
a sorting routine which is verified using KeY, supported by JJBMC for long linear
code and bit-level operations within it. The application has a graphical user
interface outside the verified core. The Property Checker is used to propagate
the sortedness property through the non-core code. By joining forces, the three
tools can together show that the contracts are satisfied. No tool would have been
able to show this alone.

The main contributions of this paper are the following:

– an approach to combine verification tools that follow different formal analysis
approaches but share a common specification language,

– a formalisation of this approach for a while language with embedded assump-
tions and assertions and a formal correctness proof,

– the description of an instantiation of the combination idea with three tools
(KeY, JJBMC, Property Checker) that collaborate using JML,

– a case study for the JML combination which the tools can only verify collab-
oratively.

2 The Java Modeling Language

The Java Modeling Language (JML) [19] serves as lingua franca for the different
tools in the Karlsruhe Java Verification Suite. Therefore, this section provides a
short introduction to its concepts. JML is a behavioural specification language
for sequential Java programs and the de facto standard in the Java verification
community. It is designed to be close to the Java language and thus compara-
tively easy to write and understand for Java developers. JML follows the prin-
ciple of design by contract [21]. This means that specifications are written at
the method level using contracts, which abstract from the method’s behaviour.
A contract in general consists of a precondition and a postcondition with the
semantics that if the precondition holds at the method call, the postcondition
must hold after returning from the method. The use of contracts allows one to
divide the complexity of large software into smaller parts, which can then be
reasoned about individually (modular reasoning). However, to be able to verify

The Karlsruhe Java Verification Suite 293

Fig. 1. A formally specified swap method as an example JML method contract.

the contracts using a deductive program verifier, it is often necessary to provide
additional helper specifications. The most prominent ones are loop invariants
and framing clauses: The former can be used to conduct induction proofs over
the number of loop iterations, while the latter are used to specify an upper bound
of the heap locations written by the method. These auxiliary specifications are
often difficult to write and error prone. In addition to contracts, JML also sup-
ports inlined specification statements like explicit assertions or assumptions.

To be transparent to Java compilers, all JML annotations are embedded into
Java comments that start with an ‘at’ sign after the comment delimiter (i.e.
//@ and /*@). JML intends to be precise on the one and concise on the other
hand; therefore it imposes some useful defaults for specification, for example
that fields, parameters and return values are non-null by default.

Figure 1 provides an example of a JML method contract. The keyword
normal behavior is used to specify that the method always terminates and
does not throw an exception. Under the precondition (requires) that the given
indices a and b are in the bounds of the array, the contract states that after
execution of the method the two elements will be swapped (ensures). The oper-
ator \old(...) is used inside the postconditions to evaluate an expression in the
method’s pre-state rather than in its post-state. Furthermore, a framing clause
(assignable) is given: The method is at most allowed to write to the heap
locations of the two elements of the array.

A number of formal tools to reason about JML specifications has been imple-
mented over the years, with KeY and OpenJML [8] the most actively developed
tools today. In addition to deductive verification, OpenJML also supports run-
time assertion checking. There are also other dynamic verification tools for JML
like for example JMLUnitNG [24], which allows users to create unit tests with
test oracles automatically generated from JML specifications.

To enable parts of the specification only for specific tools, JML brings the
feature of annotation markers: If an annotation contains the tool name prior to
the ‘at’ sign (e.g. //+KeY@), this annotation is only to be considered by the named
tool, other tools have to ignore it. Likewise, specific JML clauses can be explicitly

294 J. Klamroth et al.

disabled for some tools via //-<toolname>@. Therefore, some assertions can be
discharged by specific tools, while other tools may assume them afterwards. Of
course, one has to be careful not to conduct an unsound circular proof.

3 Tools in the Karlsruhe Java Verification Suite

The specification language JML is the common denominator and the commu-
nication means by which the components of the verification suite can inter-
act and combine and exchange their verification results. In the following we
represent the main three components of the suite (co-)developed in Karlsruhe:
KeY as a full fledged deductive verification tool at the heart of the tool suite,
JJBMC as a more versatile, flexible, well-scaling bounded verification tool for
more lightweight static checking and the Property Checker as a means to check
lightweight formal properties in a well-scaling type checker.

While the presentation in this paper and in the case study in Sect. 6 focus
on these tools developed at KIT, the described approach is by no means limited
to them. On the contrary, since the only requirement is support of the JML
language, other tools that operate using this language can be naturally incor-
porated as well. In particular, the deductive JML verification engine OpenJML
fits seamlessly into the tool suite.

3.1 KeY

KeY [1] is a tool for deductive verification of Java programs which are formally
specified in JML. At its core is a sequent calculus working on Java Dynamic
Logic (JavaDL) formulas. This logic features the modal operators [p] and 〈p〉
(‘box p’ and ‘diamond p’) parametrised by a Java program p. The formula [p]ψ
is valid iff starting in any pre-state, either the program p does not terminate or
it does terminate and ψ holds in the post-state of its execution. In contrast to
that, 〈p〉ψ is valid iff the program terminates and ψ holds in the state afterwards.
In dynamic logic, the Hoare triple {φ}p{ψ} with a precondition φ, a program
p, and a postcondition ψ can be expressed as φ → [p]ψ. In general, dynamic
logic is more expressive than Hoare logic, since the formulas can contain nested
modalities again, which enables the specification of, for instance, the equivalence
of two programs. In KeY, multiple modalities are used for example to formulate
proof obligations for information flow in a very intuitive and natural fashion,
whereas in Hoare logic additional constructs like Hoare Quadruples would have
to be introduced for this.

Besides modalities, JavaDL extends first order dynamic logic by a type hier-
archy suitable for Java. In particular, the types Heap, Object, Field, and Loca-
tionSet are included to be able to model and reason about memory properties
of Java programs using the theory of arrays [20] and dynamic frames [16].

The usual workflow in KeY is as follows: After loading the method contract
to be proven, KeY creates a JavaDL proof obligation whose validity entails the
correctness of the method wrt. the contract. Next, the program is symbolically

The Karlsruhe Java Verification Suite 295

executed by applying a series of sequent calculus rules that transform the code
inside modalities into substitutions outside of them. Eventually, symbolic exe-
cution terminates in a proof tree with one or more branches which contain only
first-order formulas without modalities. While in theory, the validity of formulas
already in first-order logic (and thus also in JavaDL) is undecidable, in practice,
it is possible to find a proof for many instances even automatically by using
well-designed heuristics built into KeY. However, in case the automatic proof
search fails, KeY provides the possibility to apply rules interactively, which fur-
ther increases the number of provable instances.

3.2 JJBMC

JJBMC [2] is a command-line tool for the verification of JML-annotated Java
code based on the bounded model checker JBMC [9]. The tool provides an auto-
matic translation of JML specifications to pure Java code with additional asser-
tions, assumptions and non-deterministic value assignments. This translation is a
purely syntactical replacement function trans (·) : JML ∪ Java → Java. It relies
on the base idea of translating a method contract as first assuming the precon-
dition, then executing the method body, and finally asserting the postcondition.
This can be formally expressed as follows:

trans

⎛
⎜⎜⎝

/*@ requires R;
@ ensures E; */

{ B }

⎞
⎟⎟⎠ =

trans(assume R);
trans(B);
trans(assert E);

The transformation trans is recursively defined on all statement and expres-
sion constructors. While some Java expressions are their own translation directly,
some JML-specific expressions like quantifiers require a more sophisticated trans-
lation which may involve additional code, like loops in the case of a quantification
over an integer range. The JML example presented in Fig. 1 gets translated into
the Java code in Fig. 2.

The bounded model checker JBMC is then able to analyse the result of the
translation and thus verify each method wrt. its contract. By using JBMC as a
back end, JJBMC inherits the bounded analysis semantics of JBMC:

The key idea of bounded verification is to consider only program runs which
are bounded by a given threshold in loop iterations and recursive method calls.
In particular, this allows the bounded analysis to unroll loops, inline method calls
and thus create a finite program. While this brings along several advantages like
the possibility to leave out auxiliary specification as well as being a fast and
fully automatic approach, this also means that results obtained in this manner
can only ever be valid up to the given threshold. If the program contains loops
which may have more iterations or contains arrays which are bigger than the
threshold, the result is only partial. By partial we mean that although the tool

296 J. Klamroth et al.

Fig. 2. Result of JJBMC’s JML-to-Java transformation for the swap method of Fig. 1.
assume refers to a static verification-only method declared by JBMC.

signals a successful verification, there may still be a violation of the specification
for runs of the program that exceed the threshold.

In JBMC (and, hence, also in JJBMC), all data is modelled in a bit-precise
fashion using bit vectors. This encoding has the advantage that bit-wise logical or
shift operations can easily be formulated and reasoned about. When representing
bounded Java integers using mathematical integers like in KeY, it is still possible
to encode such operations, but makes reasoning significantly more difficult.

JJBMC can be used to fully verify loop-free code. But it can also be used as
a means to gain confidence about a specification before conducting a full formal
proof. The fully automatic bounded model checking approach allows one to check
specifications early on even when auxiliary specifications like loop invariants or
method contracts of subroutines are still missing. This provides a early feedback
opportunity while engineering JML specifications.

3.3 Property Checker

Pluggable type systems [7] are type systems which extend a language’s exist-
ing type system without changing its run-time semantics. The Checker Frame-
work [10,22] is a framework for the creation of pluggable Java type systems using
Java’s annotation mechanism. For example, the annotation @NonNull and the
base type Object can be combined into the type @NonNull Object of all objects
which are not null. A type consisting of an annotation and a base type is called
a qualified type, and an annotation which occurs in a qualified type is called a
qualifier.

The advantages of pluggable type systems as a verification tool are that
they are simple to use and that the type checker’s run time generally scales
very well with program size. On the other hand, they only provide conservative
estimations of the property they are designed to show. So a nullness type checker
will reject all programs in which a NullPointerException may occur, but it
may also reject some NPE-free programs. Consider the excerpt in Fig. 3 from

The Karlsruhe Java Verification Suite 297

Fig. 3. Example of a false positive of the Checker Framework’s Nullness Checker.
(See the original file at https://github.com/codespecs/daikon/blob/a62c452bf4a5818
271f87bd0d2ba322a18e197ee/java/daikon/PptTopLevel.java\#L2087)

the Daikon Invariant Generator [11], which uses the Checker Framework to avoid
NullPointerExceptions at run time. Our presentation of this example is taken
from [18, Sec. 2]. The Checker Framework reports that the variable slice may
be null when slice.is inv true is called. This is a false positive, because the
implementation ensures that if the variable inv is non-null, the variable slice
is also non-null.

Deductive verification, as provided e.g. by KeY, has the exact opposite advan-
tages and disadvantages: It is rare that the correctness of a correct program
cannot be proven using KeY’s calculus. On the other hand, using KeY requires
more expertise than using a type checker and both KeY’s run time and the
time required to write a correct specification scale badly with program size and
complexity.

The Property Checker [18] is a generic framework for pluggable type sys-
tems with user-defined properties developed in the Checker Framework. This
checker can be instantiated with a hierarchy of property qualifiers, which are
qualifiers whose semantics is defined by a single Boolean expression, which
may depend on the typed variable (called the subject). For example, @Non-
Null could be made into a property qualifier via the property subject �= null .
More elaborate examples for property type qualifiers can be found in the case
study in Sect. 6.2. The Property Checker also supports qualifier hierarchies
and parametrised qualifiers. For instance, a qualifier @GreaterEq(int a) can be
defined by the property subject ≥ a. A suitable subtyping hierarchy can be
defined via @GreaterEq(a) � @GreaterEq(b) :⇐⇒ a ≥ b. However, these fea-
tures are not needed in the case study.

A type which is qualified with a property qualifier is called a property type.
Property types can thus be seen as a kind of refinement types, a refinement
type being a subtype which restricts its base type by demanding that all of its
instances fulfil some property [12,23].

https://github.com/codespecs/daikon/blob/a62c452bf4a5818271f87bd0d2ba322a18e197ee/java/daikon/PptTopLevel.java\#L2087
https://github.com/codespecs/daikon/blob/a62c452bf4a5818271f87bd0d2ba322a18e197ee/java/daikon/PptTopLevel.java\#L2087

298 J. Klamroth et al.

Fig. 4. (Simplified) translation of Fig. 3.

Defining qualifiers using Boolean expressions allows the Property Checker to
translate occurrences of qualifiers in a program to JML specifications, which in
turn allows us to combine the scalability of type systems with the power of deduc-
tive verification: The Property Checker checks for a conservative estimation of
the desired properties using simple subtyping rules over the declared hierarchy.
Any occurrences of property qualifiers whose correctness cannot be established
using this estimation are translated to JML assertions, to be discharged by some
other JML tool. In addition, any occurrences of property qualifiers whose cor-
rectness can be established are translated to JML assumptions to aid in the proof
search. The translation of our example from Fig. 3 is seen in Fig. 4: All qualifier
occurrences proven by the type checker have been translated into assumptions,
and all occurrences not proven into assertions. Thus, we can discharge most
proof obligations using the scalable, easy-to-use type checker, but still rely on
the full power of deductive verification for the trickier proof obligations.

4 Distributing Proof Obligations

For multiple verification tools to be able to collaboratively prove a program cor-
rect, we must first clarify how proof obligations for a program can be distributed
between different tools while keeping a sound verification approach.

To this end, in this section we will not work with Java and JML, but study
a simpler while language with assertion and assumption statements. For this
language, we will prove that it suffices for a program to be correct that any
assertion in the program be proven by any one tool while all other assertions
can be taken as assumptions (i.e. their statements can be used in the verification
process without having to be shown).

The Karlsruhe Java Verification Suite 299

Fig. 5. Grammar for the while language with assertions and assumptions.

The considered while language is according to the grammar in Fig. 5, in
which x ∈ Var is a placeholder for a variable name from the set of variables
Var . Assertions are garnished with a label L, which must be a unique character
string within the entire program. The set labels(P) collects all assertion labels
that occur in P . The set Programs is the set of all syntactically correct programs
that can be produced from the non-terminal C in the above grammar.

This deterministic language has the usual intuitive semantics with the set of
states of an execution being State = Z

Var , the set of all variable assignments.
Intuitively, whenever the execution reaches an assumption whose condition fails,
execution silently halts. Whenever the execution reaches an assertion whose
condition fails, it raises an error. A program is correct if it does not raise an
error for any initial state.

For the purposes of this paper, we only consider programs that always termi-
nate, but assume termination silently without showing it.1 We formally define the
semantics of such programs using assertion/assumption-traces (short aa-traces):
An aa-trace is a finite sequence of pairs in A = {assert, assume} × Bool. Each
element in the sequence denotes that an assertion/assumption has been reached
and whether its condition evaluated to true or false. This is encoded as a function
[[·]](·) : Programs × State → A∗ × State whose definition is shown in Fig. 6.

This definition is well-founded (despite the recursive definition for loops) since
we silently only consider terminating programs. Note that failing assertions and
assumptions do not end an aa-trace but let the execution continue. The formal
definition of a correct program capturing the intuitive notion takes this into
account by requiring that no assertion fails before an assumption has failed:

Definition 1 (Correct Program). A program P ∈ Programs is called correct
if the trace [[P]](σ) for each initial state σ ∈ State

1. does not contain the pair (assert , false) or
2. contains the pair (assert , false) only at a position after an occurrence of

(assume, false).

Remember that in this section, we want to show that it suffices that each
assertion is covered by one verification approach while all other verification
engines are allowed to consider it an assumption. Therefore, we introduce the
1 It would have been possible to extend the following definitions also to non-

terminating programs, but would have reduced readability without adding much
insight.

300 J. Klamroth et al.

Fig. 6. Definition of program semantics using assertion/assumption-traces.

concept of program variants. A variant P ′ of a program P ∈ Programs is a
program that can be produced from P by rewriting arbitrarily many assertions
into assumptions of the same conditions. For instance, assert a; assume b is
a variant of assert a; assert b (but not vice versa). Since executions in vari-
ants take the same path as in the original program, but encounter potentially
fewer assertions, every variant P ′ of a correct program P is also correct. In the
following, we also want to refer to a verification tool t, which we consider to be
a partial function t : Programs �→ Bool which returns whether the argument is a
correct program. We assume all tools are sound wrt. Definition 1.

Theorem 1 (Distributed Proof Obligations).
Given a program P ∈ Programs and a set of sound verification tools T , let for
any t ∈ T the program Pt denote the variant assigned to tool t.

If t(Pt) = true for all t ∈ T and
⋃

t∈T labels(Pt) = labels(P), then P is
correct.

This theorem formally captures the goal of this section: The condition⋃
t∈T labels(Pt) = labels(P) encodes that every assertion (identified by its label

in labels(P)) has not been rewritten into an assumption in at least one variant
Pt. If all variants can be proven correct by their respective sound tool t, the joint
verification effort proves that the input program is correct.

Proof (of Theorem 1). Let P be a program according to the requirements of
Theorem 1, i.e. every tool reports that its respective variant Pt is correct. Let
us assume that P is incorrect. There would then be an initial state σx ∈ State

The Karlsruhe Java Verification Suite 301

with trace s = [[P]](σx), which is a counterexample to the correctness of P , i.e.
the first failing verification statement is an assertion, not an assumption. Let us
call the label of that assertion Lx and its position in the trace x. All entries in
the trace before x are either (assert , true) or (assume, true).

Let us inspect a variant Pt with Lx ∈ labels(Pt) covering the assertion under
observation, and its trace st = [[Pt]](σx). (Variant Pt must exist as every label
must be covered by some tool.) We notice that throughout the execution of the
programs P and Pt, the same operations have been executed and the same path
has been taken. This implies that the conditions checked in assertions are the
same, the only possible difference between s and st is that some ‘assert’ elements
in the aa-trace s have been replaced by ‘assume’ in st. This implies that the xth
entry in st must also be the first failing entry in that aa-trace, the same as in
s. But failing this assertion entails that Pt is not a correct program which is a
contradiction against the assumed soundness of the tool t which reported Pt to
be correct. So, while Pt contains additional assumptions, all failing assertions
will still be reported, as the assumptions are justified by other tools and, thus,
do not restrict the traces of the program. �

This result allows us to distribute proof obligations in form of assertions in
a while program among a set of verification approaches. This principle of dis-
tributed assertions is not limited to while programs and it remains as future work
to extend the formal setting to (recursive) function invocations, their abstrac-
tion for a formal modular analysis following design-by-contract and to the more
sophisticated features of the Java language (exceptions, non-standard control
flow, etc.).

5 Tool Interaction and Integration

The central feature that allows the tools in the Karlsruhe Java Verification Suite
to be integrated is the use of a common specification language: JML. In Sect. 4,
we have seen how the proof obligations dispersed throughout a while program
in the form of assertions (in a common language) can be distributed among a
set of verification tools by building a variant for each tool. In a modular con-
text following the design-by-contract principle (e.g. when using JML), there are
fewer explicit assertions in the code and, usually, the specification goes into
method contracts. Clauses in method contracts can most naturally also serve as
such specification distribution points. This ties in with the concept of assump-
tion variants from Sect. 4, as the clauses in contracts between caller and callee
have both a nature of assertion and of assumption that go hand in glove. The
schematic sequence diagram in Fig. 8 sketches this relationship for a method call
to m() with a contract with precondition pre (asserted by caller, assumed by
callee) and postcondition post (asserted by callee, assumed by caller). If we now
verify the two methods n and m with separate tools we can see that the tool for
n assumes the conditions verified by the tool covering m and vice versa. Cover-
ing different methods modularly with different JML verification tools is thus a
special case of the proof obligation distribution sketched in Sect. 4.

302 J. Klamroth et al.

Fig. 7. Vision for interaction between the tools.

Fig. 8. Dual nature of specification clauses in design-by-contract.

Approaches for modular deductive verification often require extensive spec-
ifications, which in many cases is considered a major downside. But for once,
the specification overhead can also be considered an advantage, as the explicit
contracts allow one to distribute the verification overhead between different tools
without requiring even more specification.

There are two ways in which a formal verification tool can interact via its
specification language: either passively by interpreting specifications or actively
by emitting specifications. Figure 7 shows the basic workflow and interaction
between the tools. While JJBMC and KeY passively read and interpret JML
specifications, the Property Checker does not itself digest JML specifications,
but produces additional JML annotations to be verified or assumed by other
tools. In either case, the tools integrate by distributing the proof responsibilities
between them. In the passive case, it is the user who decides which tool has to

The Karlsruhe Java Verification Suite 303

cover which assertion of the specification. In the active case, it is the tool that
decides if other tools must verify a property (if it cannot be discharged) or may
assume it (if it can be discharged).

5.1 JML Semantics

One major challenge for the collaboration of the different tools in the suite is the
potentially different semantics that different tools might implement for annota-
tions in the common language JML. There are a few points in the semantics of
JML which have a canonical answer within each approach, but not necessarily
the same one for all systems. Two such semantics questions shall illustrate the
challenge:

When do which object invariants have to hold? This is still an active research
area and the answer to the question heavily depends on the technique the
tool implements to deal with heap framing (e.g. separation logic, region logic,
dynamic frames, ownership, . . .). While JML originally proposed an ownership
approach, KeY adopted dynamic frames. It is very difficult to bring these two
concepts together in general.

What is the meaning of arithmetic operations in specifications? Due to the
nature of encoding data using bit vectors, JJBMC naturally uses strict Java 32-
bit integer semantics for arithmetic operations in specifications while JML by
default assumes integer arithmetic to be performed on non-overflowing mathe-
matical integers. Fortunately, KeY has switches that allow it to treat integers
compatibly to the bounded model checker.

We have made sure (by manual review) that such differences do not compro-
mise the validity of our case study. It remains as future work to either base all
tools on the same semantic footing, even out differences in the specifications or
at least to detect and report discrepancies. The envisioned Proof Management
system (see Sect. 5.3) seems to be the ideal point to integrate this into the tool
suite.

5.2 Formulating Program Variants Using JML

While assigning method contracts to different tools provides a natural process
to distribute proof obligations between tools, it is also convenient to be able
to follow the idea of assertion distribution from Sect. 4 more closely in such a
setting.

Indeed, the JML annotation marker feature, which allows users to assign
a JML annotation to specific tools, serves as a perfect means to express this
distribution. If there are two JML-based verification tools A and B, then the
annotation /*+A@ assert φ;*//*+B@ assume φ;*/ makes sure that the same
condition φ is interpreted as an assertion by A and as an assumption by B.

In the case study in Sect. 6, we have used this feature to combine bit-
precise reasoning provided by JJBMC with more sophisticated reasoning in KeY.
Figure 12 shows the swap method that exchanges the ath and bth element of an

304 J. Klamroth et al.

Fig. 9. Example of a report generated by our proof management tool.

array, implemented using XOR operations. JJBMC considers the swapping prop-
erty in the JML annotation as an assertion, whereas KeY is allowed to assume
it. JJBMC can prove this property easily while proving it is out of scope for KeY
(which models Java integers using mathematical integers and cannot deal with
bit-level operations). But with KeY being allowed to assume this property, it
can then proceed and use it to prove a more sophisticated permutation property
which would have been out of scope for JJBMC.

5.3 Proof Management

In the current state of the Karlsruhe Java Verification Suite, it has to be ensured
by the user that the verification responsibilities are distributed soundly among
the tools according to Theorem 1. While for simple cases, the proof coverage
and the absence of cycles can still be checked manually, for large projects, it is
essential to have some kind of proof management. For multiple KeY proofs, this
gap is already closed by a command line tool which can be used to check that (a)
the proofs can be reloaded and checked, and also match the Java source code and
JML specifications, (b) there are no illegal2 cyclic dependencies in the proofs,
(c) all contracts a proof depends on are proven as well, and (d) the settings are
compatible. This last point ensures that the semantics, for instance the meaning
of arithmetic operations, is the same for each proof.

2 To be able to reason about (mutually) recursive methods, cyclic dependencies are
allowed as long as a termination witness is provided for each of them.

The Karlsruhe Java Verification Suite 305

The proof management tool generates an HTML report from a set of input
proofs that contains all the information described above. Figure 9 shows an exam-
ple of such a report for a source file containing 5 contracts, of which 4 are proven.
However, one contract still has open dependencies, which means that the proof
uses another contract that is still not discharged. In addition, there is an illegal
cycle detected; therefore the two contracts in the cycle are considered unproven.

At the moment, this tool manages only KeY proofs. For the future however,
we envision a proof management tool that also integrates results from JJBMC
and the Checker Framework and possibly other tools such as OpenJML, and
which therefore serves as a connection between the tools of the Karlsruhe Java
Verification Suite. The goal is that if the proof management report indicates
that all proofs have been done, then the proof obligations have been distributed
successfully and the project has been correctly verified.

6 Case Study

We implemented a small Java-based shop GUI (shown in Fig. 10) to illustrate
how the different components of the Karlsruhe Java Verification Suite can col-
laborate to prove a system correct. In the application, the user can buy different
types of wine. Whenever they click on the button beside a wine, a number repre-
senting its price is added to the shopping basket at the top of the GUI. The items
in the shopping basket are always kept in sorted order. The code contains a sort-
ing routine whose verification falls clearly in the domain of deductive verification
with KeY. However, there is a base case which is better handled using JJBMC.
The client program uses GUI-specific code and could not even be loaded into
KeY. Luckily, the sortedness property of the basket can be propagated through
the GUI code using property types. All components of the Karlsruhe Java Veri-
fication Suite have to join forces to prove this program correct.

Figure 11 shows a class diagram for the case study. In addition to the GUI
class, we have a Shop class containing the products and prices as well as a
Basket class which encapsulates the user’s shopping basket in an instance of
ImmutableArray. ImmutableArray uses a sorting algorithm provided by the
class Quicksort.

6.1 Library Code: Quicksort with Explicit Base Case

As a library function for the web shop, we provide a method to sort the elements
of an array. We follow a common practice in algorithm engineering by efficiently
sorting the given array with Quicksort until we reach a small enough array
(less than six elements) for which we employ a specialised sorting network. This
approach proves to be faster than Quicksort in practice. We also use the in-place
swap method using repeated XOR operations from Fig. 12 to swap elements in
the array. The interplay between KeY and JJBMC for this method has already
been explained in Sect. 5.2.

306 J. Klamroth et al.

Fig. 10. Graphical user interface for the case study.

Fig. 11. Class diagram for the case study.

The sorting network implementing the base case with at most 5 elements
(taken from [6]) is free of loops, but contains 12 consecutive if statements: It is
thus a natural fit for bounded model checking, whereas KeY chokes on the input
due to the large number of paths it has to traverse during symbolic execution.3

In contrast, the actual Quicksort implementation with several unbounded loops
and arrays is where KeY shines. This routine is a perfect example of how different
tools can play together in order to conduct proofs that neither of them would
be able to find alone.

3 There are verification tools which avoid this exponential blowup of proof obligations,
but other tools relying on symbolic execution would suffer under the same problem.

The Karlsruhe Java Verification Suite 307

Fig. 12. In-place swap of integers using XOR operations. (Its JML contract is the one
shown in Fig. 1.)

Fig. 13. Property qualifier definitions. The identifier subject refers to the variable
receiving the type annotation.

The base case verifies in JJBMC within 13 min.4 Sortedness is shown for
bound k = 6, the permutation property for k = 5 (greater bounds resulted in a
timeout). The analysis of the swap method is instantaneous. For the verification
of the different parts of the Quicksort algorithm, KeY runs in automatic proof
search mode for about 11 min in total (see footnote 4). For the permutation
property, a few manual rule applications (which can be captured in a proof
script) are needed to guide quantifier instantiation in the prover.

6.2 Library Code: Immutable Arrays with Sortedness
and Non-negativity

In the application, we want to be able to obtain immutable array instances which
are known to only contain non-negative numbers in sorted order. Since references
to arrays with such properties will also be handed around in GUI code, the plan
is to capture these conditions as property types to not have to load GUI code
into the deductive verifier. The required qualifiers are shown in Fig. 13, where the
qualifiers @Sorted and @NonNegArray can be applied to instances of the class
ImmutableArray, and @NonNeg can be applied to int values. The type property
definitions make use of the helper methods Utils.isSorted, which returns true
if and only if the array is sorted, and Utils.isNonNeg, which returns true iff
all elements in the array are ≥ 0.

Next, we use these qualifiers to specify the method insertSortedNon
Negative() (shown in Fig. 14) which takes a non-negative array and a non-
negative number, returns a new sorted non-negative array. Since the implemen-

4 On a PC with an AMD Ryzen 7 PRO 4750U (8x1.7 GHz) CPU and 32GB RAM.

308 J. Klamroth et al.

Fig. 14. The ImmutableArray methods which need to be proven in KeY.

Fig. 15. An assignment which passes along a type property and can be verified by the
Property Checker.

tation of property types is currently limited to immutable objects, the method
returns a new object instead of modifying the argument array.

To obtain the well-typedness of the method, its return type must be cor-
rect, i.e. the returned array must (a) be sorted, and (b) contain only non-
negative elements. The type-checking algorithm behind the Property Checker
cannot look inside the type qualifier definitions and take their semantics into
account. Instead, it only checks whether syntactic typing rules are respected;
e.g., the right-hand side of an assignment must evaluate to a subtype of the
left-hand side’s type. Thus, the Property Checker is unable to prove the well-
typedness of this method. The fact that the returned array is sorted could be
shown by the checker if Quicksort.sort() were specified using property types.
But since it was specified directly in JML instead, the checker cannot use its
specification. The fact that the returned array contains only non-negative ele-
ments follows from the fact that Quicksort.sort() returns a permutation of
the original array, and also cannot be established by the checker. Hence, it trans-
lates the type qualifiers of the returned value into JML assertions. The types of
the method parameters, on the other hand, are guaranteed and are translated
into JML assumptions. KeY is then able to discharge the proof obligations that
arise from the assertions. This requires 85 s in KeY’s automatic mode5 and two
manual quantifier instantiations.

6.3 Client Code: The Web Shop GUI

The method in the class Quicksort has now been formally verified, (Sect. 6.1)
and a formal connection between type qualifiers and their defining predicates has
5 On a PC with an AMD Ryzen 7 PRO 4750U (8x1.7GHz) CPU and 32GB RAM.

The Karlsruhe Java Verification Suite 309

been established (Sect. 6.2). The remaining classes in the case study do not estab-
lish any type properties, but only use them and pass objects having the property
along. The well-typedness of these classes can be proven by the Property Checker.
For example, consider the action listener in Fig. 15, which is executed whenever
the user presses a button. It updates the shopping basket with the price of the
newly chosen product. The fact that this assignment preserves the type proper-
ties of the shopping basket – i.e. that basket.prices is sorted and non-negative
– follows directly from the well-typedness of insertSortedNonNegative() and
is verified by the Property Checker. The total run time of the Property Checker
for this case study is 8 s (see footnote 5).

Unlike KeY, the Property Checker supports code using features of Java 8
and later like lambda functions, making it well-suited to this kind of client code,
which would otherwise have to be rewritten for KeY and specified in JML just
for this relatively superficial formal treatment.

6.4 Conclusion

This case study demonstrated how multiple verification tools can be combined
to prove the correctness of a program that is not wholly accessible to either of
the tools. While sorting routines generally fall in KeY’s domain, highly optimised
routines like the one analysed here often have base cases with long if cascades,
which are onerous to prove in KeY. JJBMC has no problem with this kind of
code, but can only show bounded correctness in code with loops. But since
the base case is only used for arrays with bounded size, JJBMC can give us
a total correctness guarantee. Our program also has a graphical user interface,
which we can only analyse in KeY or JJBMC after writing lots of boilerplate
JML specifications for the GUI code. Even then, we still have to do a lot of
work just to prove how the sortedness property is propagated through the GUI
methods. Using a pluggable type system and the Property Checker, this task is
less burdensome: We simply annotate all variables which should be sorted with
an appropriate qualifier and run the Property Checker. On the other hand, the
Property Checker is unable to reason about the methods which establish the
sortedness property, which we instead have to prove in KeY or JJBMC. Thus,
all components of the Karlsruhe Java Verification Suite have to join forces to
prove this program correct.

7 Related Work

An overview over existing approaches to combine multiple verifiers is discussed
by Beyer and Wehrheim [5]. In their classification system, our approach would
fit into the category ‘cooperation of tools viewed as black box objects’, since
our tools only communicate via an interface (JML in our case), do not need to
know anything about their internals, and cooperate on intermediate results of
the verification (for instance, well-typedness information from type checker is
passed via additional assumptions to KeY).

310 J. Klamroth et al.

In [14], Jacobs presents a technique to construct a correctness witness from
multiple partial analysis results. As opposed to our work for combining a type
system, an interactive deductive verifier, and a bounded model checker, the tech-
nique presented there is targeted towards model checkers and static analysers
which have an explicit notion of visited and checked states and record these
states via so called abstract reachability graphs. On a practical level, as they
implemented their technique using the CPAChecker framework [4], their tech-
nique works for programs written in C, while our approach works for Java.

There are many other deductive verification approaches which combine dif-
ferent tools to check the correctness of one program.

Type checkers for refinement type systems like LiquidHaskell [23] use SMT
solvers internally, which allows them to be more powerful than conventional
stand-alone type checkers. LiquidJava [13] applies this idea to Java: Refinements
similar to our property types are specified using Java annotations and the proof
obligations arising from them are translated to SMT.

Hybrid type checking [17] combines static type checks at compile time with
dynamic checks at run time. The static type checking process has three pos-
sible results: 1. definitely well-typed, where the program’s type safety was able
to be established at compile time, 2. definitely ill-typed, where the compile-time
checks found a definitive error, and 3. unknown, where some parts of the program
were proven to be type-safe, and the other parts had dynamic run-time casts
automatically inserted where necessary. JJBMC can distinguish between defini-
tive incorrectness and bounded correctness. KeY too can in some cases generate
counterexamples for incorrect programs using SMT. In contrast to hybrid type
checking, which combines a compile-time type checker with run-time checks, our
approach combines multiple compile-time tools, but it could also be extended to
include run-time tools where the compile-time verification fails.

RustBelt [15] is an approach which proves the soundness of Rust’s ownership
type system. Programs written in a safe subset of Rust are proven to always
be sound, and for library code using unsafe features, verification conditions for
Coq [3] are generated. Thus, the correctness of a Rust program using such a
library is proven by a combination of the Rust type checker and Coq. In contrast
to RustBelt, which is focused on ownership properties, our approach is based on
the Java Modeling Language, allowing us to prove general functional properties.

8 Conclusion and Future Work

We introduced the Karlsruhe Java Verification Suite, a collection of Java verifica-
tion tools (co)-developed in Karlsruhe built around the deductive verifier KeY,
which next to KeY includes the bounded model checker JJBMC and a type
checker called the Property Checker. We showed how proof obligations can be
soundly distributed between different verification tools and how this distribution
can be implemented for JML. We also demonstrated using a small case study
how the Karlsruhe Java Verification Suite can be used to verify the correctness
of a program which would have required a large refactoring and specification
overhead if we had only used KeY.

The Karlsruhe Java Verification Suite 311

In the future, we plan to investigate how other kinds of verification tools
can be used to expand the Karlsruhe Java Verification Suite. We also plan to
refine an existing proof management tool such that it can be used to orchestrate
proofs with proof obligations distributed over the tool suite. In particular, the
management tool has to be able to deal with differences in the interpretation of
JML between different verification tools.

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification - The KeY Book - From Theory to Practice.
LNCS, vol. 10001. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
319-49812-6

2. Beckert, B., Kirsten, M., Klamroth, J., Ulbrich, M.: Modular verification of JML
contracts using bounded model checking. In: Margaria, T., Steffen, B. (eds.) ISoLA
2020. LNCS, vol. 12476, pp. 60–80. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-61362-4 4

3. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development -
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series, Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-662-07964-5

4. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184–190. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
1 16

5. Beyer, D., Wehrheim, H.: Verification artifacts in cooperative verification: survey
and unifying component framework. In: Margaria, T., Steffen, B. (eds.) ISoLA
2020. LNCS, vol. 12476, pp. 143–167. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-61362-4 8

6. Bingmann, T., Marianczuk, J., Sanders, P.: Engineering faster sorters for small
sets of items. Softw. Pract. Exp. 51(5), 965–1004 (2021). https://doi.org/10.1002/
spe.2922. https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2922

7. Bracha, G.: Pluggable type systems. In: OOPSLA 2004 Workshop on Revival of
Dynamic Languages, October 2004

8. Cok, D.R.: OpenJML: JML for Java 7 by extending OpenJDK. In: Bobaru, M.,
Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp.
472–479. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5 35

9. Cordeiro, L., Kesseli, P., Kroening, D., Schrammel, P., Trtik, M.: JBMC: a bounded
model checking tool for verifying java bytecode. In: Chockler, H., Weissenbacher, G.
(eds.) CAV 2018. LNCS, vol. 10981, pp. 183–190. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96145-3 10

10. Dietl, W., Dietzel, S., Ernst, M.D., Muslu, K., Schiller, T.: Building and using
pluggable type-checkers. In: Proceedings of the 33rd International Conference on
Software Engineering, ICSE 2011, pp. 681–690. Association for Computing Machin-
ery (2011). https://doi.org/10.1145/1985793.1985889

11. Ernst, M.D., et al.: The Daikon system for dynamic detection of likely invari-
ants. Sci. Comput. Program. 69(1–3), 35–45 (2007). https://doi.org/10.1016/j.
scico.2007.01.015

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-030-61362-4_4
https://doi.org/10.1007/978-3-030-61362-4_4
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-030-61362-4_8
https://doi.org/10.1007/978-3-030-61362-4_8
https://doi.org/10.1002/spe.2922
https://doi.org/10.1002/spe.2922
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2922
https://doi.org/10.1007/978-3-642-20398-5_35
https://doi.org/10.1007/978-3-642-20398-5_35
https://doi.org/10.1007/978-3-319-96145-3_10
https://doi.org/10.1007/978-3-319-96145-3_10
https://doi.org/10.1145/1985793.1985889
https://doi.org/10.1016/j.scico.2007.01.015
https://doi.org/10.1016/j.scico.2007.01.015

312 J. Klamroth et al.

12. Freeman, T., Pfenning, F.: Refinement types for ML. In: Proceedings of the ACM
SIGPLAN 1991 Conference on Programming Language Design and Implementa-
tion, PLDI 1991, pp. 268–277. Association for Computing Machinery, New York
(1991). https://doi.org/10.1145/113445.113468

13. Gamboa, C., Santos, P.A., Timperley, C.S., Fonseca, A.: User-driven design and
evaluation of liquid types in Java. CoRR abs/2110.05444 (2021). https://arxiv.
org/abs/2110.05444

14. Jakobs, M.-C.: PARTPW: from partial analysis results to a proof witness. In:
Cimatti, A., Sirjani, M. (eds.) SEFM 2017. LNCS, vol. 10469, pp. 120–135.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66197-1 8

15. Jung, R., Jourdan, J.H., Krebbers, R., Dreyer, D.: RustBelt: securing the founda-
tions of the Rust programming language. Proc. ACM Program. Lang. 2(POPL),
1–34 (2017). https://doi.org/10.1145/3158154

16. Kassios, I.T.: Dynamic frames: support for framing, dependencies and sharing
without restrictions. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006.
LNCS, vol. 4085, pp. 268–283. Springer, Heidelberg (2006). https://doi.org/10.
1007/11813040 19

17. Knowles, K., Flanagan, C.: Hybrid type checking. ACM Trans. Program. Lang.
Syst. 32(2), 1–34 (2010). https://doi.org/10.1145/1667048.1667051

18. Lanzinger, F., Weigl, A., Ulbrich, M., Dietl, W.: Scalability and precision by com-
bining expressive type systems and deductive verification. Proc. ACM Program.
Lang. 5(OOPSLA), Article no: 143 (2021). https://doi.org/10.1145/3485520

19. Leavens, G.T., et al.: JML Reference Manual, May 2013. http://www.eecs.ucf.edu/
∼leavens/JML//refman/jmlrefman.pdf. Revision 2344

20. Mccarthy, J.: Towards a mathematical science of computation. In: In IFIP
Congress, pp. 21–28. North-Holland (1962). https://doi.org/10.1007/978-94-011-
1793-7 2

21. Meyer, B.: Applying “design by contract”. Computer 25(10), 40–51 (1992).
https://doi.org/10.1109/2.161279

22. Papi, M.M., Ali, M., Correa Jr., T.L., Perkins, J.H., Ernst, M.D.: Practical plug-
gable types for Java. In: International Symposium on Software Testing and Anal-
ysis, ISSTA, pp. 201–212. ACM, Association for Computing Machinery (2008).
https://doi.org/10.1145/1390630.1390656

23. Vazou, N., Seidel, E.L., Jhala, R., Vytiniotis, D., Peyton Jones, S.: Refinement
types for Haskell. In: Proceedings of the 19th ACM SIGPLAN International Con-
ference on Functional Programming, ICFP 2014, pp. 269–282. Association for Com-
puting Machinery, September 2014. https://doi.org/10.1145/2628136.2628161

24. Zimmerman, D.M., Nagmoti, R.: JMLUnit: the next generation. In: Beckert, B.,
Marché, C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 183–197. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-18070-5 13

https://doi.org/10.1145/113445.113468
https://arxiv.org/abs/2110.05444
https://arxiv.org/abs/2110.05444
https://doi.org/10.1007/978-3-319-66197-1_8
https://doi.org/10.1145/3158154
https://doi.org/10.1007/11813040_19
https://doi.org/10.1007/11813040_19
https://doi.org/10.1145/1667048.1667051
https://doi.org/10.1145/3485520
http://www.eecs.ucf.edu/~leavens/JML//refman/jmlrefman.pdf
http://www.eecs.ucf.edu/~leavens/JML//refman/jmlrefman.pdf
https://doi.org/10.1007/978-94-011-1793-7_2
https://doi.org/10.1007/978-94-011-1793-7_2
https://doi.org/10.1109/2.161279
https://doi.org/10.1145/1390630.1390656
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1007/978-3-642-18070-5_13

Further Lessons from the JML Project

Gary T. Leavens1(B), David R. Cok2, and Amirfarhad Nilizadeh1

1 University of Central Florida, Orlando, FL, USA
Leavens@ucf.edu, af.nilizadeh@knights.ucf.edu

2 Safer Software Consulting, Rochester, NY, USA
david.r.cok@gmail.com

http://www.cs.ucf.edu/~leavens

Abstract. JML is an ambitious project in formal specification and verification
that has aimed to bring value to Java programmers. As an international, cooper-
ative effort, JML has been a uniting force, bringing together tools such as KeY,
OpenJML, and many others. Specification language designers can learn much
from the experience gathered by the JML team. The lessons of the JML project
can be useful to others designing specification languages and tools, not only for
object-oriented languages such as Java, but more generally.

Keywords: JML · Behavioral interface specification language · Formal
specification language design · Formal methods

1 Introduction

The Java Modeling Language (JML) [93] project is an ambitious formal specification
language project, with continuing contributions since its beginning about 1997. JML
is a Behavioral Interface Specification Language (BISL) for Java. As a BISL [89,147]
[99, Sec. 1.1], JML can specify all of the details of a Java interface, including privacy,
exceptions, and the types of formal parameters; thus a user of a JML specification has all
the information needed to write (and verify) code that uses that interface. Consequently,
JML is most useful for recording detailed designs.

The JML project is more than language design. It includes research on specifica-
tion languages and verification techniques, tool development, applying the tools in aca-
demic and industrial settings, sharing educational materials, and encouraging broad use
through workshops.

This paper summarizes some of the lessons we have learned in the course of the
JML project. The lessons can be categorized in two groups: general lessons for projects
that aim to develop specification languages, discussed in Sect. 2, and lessons about the
details of JML itself, discussed in Sect. 3. The remainder of this introduction gives some
background on the goals and history of the project.

G. T. Leavens—Much of the early work on JML was supported by the US National Science
Foundation and carried out while Leavens was at Iowa State University.

c© Springer Nature Switzerland AG 2022
W. Ahrendt et al. (Eds.): The Logic of Software. A Tasting Menu of Formal Methods,
LNCS 13360, pp. 313–349, 2022.
https://doi.org/10.1007/978-3-031-08166-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08166-8_15&domain=pdf
https://doi.org/10.1007/978-3-031-08166-8_15

314 G. T. Leavens et al.

1.1 Goals of JML

As stated in the paper on the preliminary design of JML [93, p. 1], the main goal of
the JML project has been to understand how to design specification languages and tools
that are “practical and effective for production software environments.” In detail, this
means [93, p. 4] that JML should be able to:

1. document “the interfaces and behavior of existing software,” no matter how it was
designed,

2. be “easily understandable” by Java programmers, and
3. be given a “rigorous formal semantics.”

These goals are discussed in Sects. 2.3–2.5. The first two goals have been accom-
plished to some extent, but the last one has remained elusive.

In addition to these overall goals, the project also develops tools and works to dis-
seminate their use.

1.2 Project History

The JML project grew out of work on Larch/C++ [35,89], as Leavens and his research
group (at Iowa State) realized that creating tools and verifying C++ programs was very
difficult. Java, which started to appear around 1996 [67], was (at the time) a simple
alternative to C++ that offered many advantages for verification (such as type safety,
lack of pointer arithmetic, and array bounds checking) and simplicity (e.g., lack of
include files and macros). Java’s simplicity had definite advantages for tool support. At
Iowa State University, Leavens worked with professor Albert Baker and PhD student
Clyde Ruby on the initial design of JML [92,93].

Larch/C++ was a BISL for C++ in the Larch family, meaning that it described pro-
gram states using abstract (mathematical) values specified in the Larch Shared Lan-
guage (LSL) [70,71]. However, experience with Larch/C++ led to the conclusion that
understanding LSL was an impediment to wider use of such a Larch-style specification
language. The alternatives seemed to be to (a) use a standard mathematical vocabulary
for abstract values, as in VDM [86], or (b) use values from the programming language
itself in reasoning, as in Eiffel [112]. Since the Eiffel approach seemed to be easier
for programmers to learn and use, it was adopted for JML. However, to stay close to
the VDM (and Larch) approach, JML was initially designed with a library of modeling
types such as sets, sequences, and maps, which were implemented as pure (side-effect
free) types in Java. This turned out not to be a good decision for static verification, as
discussed below (see Sect. 3.3).

During Java’s early years, Leavens’s group at Iowa State was not the only research
group interested in formal methods for Java. An important influence was the group at
DEC Systems Research Center (SRC), which included Rustan Leino and Greg Nelson.
This group developed an “extended static checker” (ESC) tool for Java [50], with a
formal specification language. Leavens visited this group1 and discussed formal spec-
ification and verification with Leino and Nelson, and they suggested that, with some

1 The date of Leavens’s visit to DEC SRC is unclear, but was probably in 1998.

Further Lessons from the JML Project 315

changes, the ideas that Leavens was advocating for specification of Java programs could
be used to create a common specification language for their ESC tool as well as Iowa
State’s runtime assertion checker. An important syntactic change resulting from their
suggestions was that method specifications should appear before a method’s header,
since that is where Java programmers were already putting documentation comments
(which describe the functionality of a method).

Another influential group of researchers in the early days of JML was Bart Jacobs’s
Verificard group at Nijmegen in the Netherlands [85]. This group developed the first
verifier for Java programs, LOOP [83], using the PVS theorem prover. This group
adopted JML as their specification language [17], finding that it was an advantage to use
JML’s runtime assertion checker and ESC to debug their specifications and code before
attempting to verify the code. Members of this group, especially Erik Poll and Marieke
Huisman, made substantial contributions to JML [18,31]. The group’s initial motivation
for verification of Java programs was to verify smart cards in the JAVA CARD dialect
of Java, since once code is built into such a smart card, it could not easily be changed
[130].

Michael Ernst, who was at MIT in the early years of JML, was also interested in
tools for Java. He developed a dynamic invariant inference tool, later called Daikon,
which output invariants in JML notation [60,124]. Daikon is still available from its
website [61]; the tool has also been extended to apply to other languages, in addition to
Java.

Patrice Chalin, who was on the faculty at Concordia University in Montreal at the
time, was another early influence on JML, particularly in terms of runtime assertion
checking (RAC). With his students he recommended changes to the semantics of JML
so that references were non-null by default, arithmetic overflow was considered to be
incorrect in Java code, and exceptions in assertions should be regarded as errors [27–
30,32], arguing that the first two of these changes would make JML’s semantics easier to
understand and that the third change would make the semantics of RAC and ESC more
similar, and thus users would be less likely to have their specifications misinterpreted
by different tools.

Peter Müller, now a professor at ETH, made significant contributions to the seman-
tics of JML. While working on his PhD under Arnd Potezsch-Heffter at Fernuni-
versität Hagen in Germany, he spent the summer of 1998 at Iowa State University
and collaborated with Leavens on semantic issues in JML, particularly for framing.
His dissertation work on the Universe Type System [113], which allowed for mod-
ular reasoning about frame conditions with information hiding [114], was incorpo-
rated into JML and sparked a long line of research about the verification of invariants
[3,4,6,10,55,56,108,109,115].

David Cok joined the JML project as an open source developer in 2000 and con-
tinues as a contributor to JML’s design and semantics and to tools supporting the use
of JML. He contributed to the Iowa State suite of tools (notably jmldoc), worked with
Joseph Kiniry to extend the DEC ESC/Java tool (as ESC/Java2 [44,45]) to be fully inte-
grated with JML and Java 4, and he led the work to base tools for JML on the OpenJDK
compiler, producing the OpenJML [40,41,43,47] tool. His continued development of
the tools eventually made him the principal developer of OpenJML.

316 G. T. Leavens et al.

The KeY project was started in 1998 at the University of Karlsruhe in Germany
[2,16, p. XI]. The project was originally led by Drs. Rainer Hähnle, Peter Schmitt,
and Wolfram Menzel, with PhD students (at the time) Wolfgang Ahrendt and Bernhard
Beckert participating and continuing in project leadership roles afterwards. The original
goal was to apply logic to software engineering concerns with an initial focus on the
UML’s Object Constraint Language (OCL). Sometime in 2001, the KeY project started
work on using JML as a way to specify Java programs [138]. The KeY project found
that the main advantage of JML over OCL was that JML is more expressive, because,
as a BISL, it is more closely tied to Java: “we noticed that many requirements that we
wanted to express could not be formalized in OCL: frame and depends-on information
of methods, loop invariants, loop termination conditions, etc.” [138, p. 7].

1.3 Tools for JML

At present, two tools are the most prominent and well-supported for static verification
of Java code with JML:

– the KeY tool does static deductive verification of Java programs specified in (the
KeY dialect of) JML, though its support of the full Java language extends only to
about Java 4, as it was originally designed to be used for JAVA CARD programs, and

– the OpenJML tool which has mostly been supported by David Cok, but which han-
dles most of Java and attempts to keep up with the current Java language.

KeY only supports static verification, but has excellent documentation [2] and can
be used for interactive proofs (although it currently focuses on automated proofs).
OpenJML integrates both static verification (in the non-interactive style of ESC) with
RAC and other tools for JML.

An early summary of tool support for JML was presented in the paper “An Overview
of JML Tools and Applications” [25].

One of the goals of JML has been to serve as a specification language that coordi-
nates many different tools; the idea is that JML should serve as a common specification
language shared by many tools, so that both users and tool developers would benefit.
Several tools were implemented at Iowa State University (ISU) by Leavens’s PhD stu-
dents, including Clyde Ruby, Curtis Clifton, and Yoonsik Cheon, with contributions
from other students. David Cok was an important outside contributor to this software.
These ISU tools for JML were based on the MultiJava compiler [39], which itself was
based on the Kopi open source Java compiler. The main tool from ISU was the runtime
assertion checker (jmlc [36]). The ISU group also built a tool to display specifications
and javadoc comments together as web pages (jmldoc, originally written by David Cok,
but revised by Arun Raghavan [131]) and an influential unit testing tool that used spec-
ifications as test oracles during runtime assertion checking (jmlunit [37]).

The DEC SRC group’s Extended Static Checker for Java (ESC/Java) tool was re-
implemented for then current Java 4 and using JML as its input language as the tool
ESC/Java2 by Joseph Kiniry and David Cok [44,45]. ESC/Java2 performed automated
verification, using an SMT solver (replacing the Simplify solver), making it much easier
to use than interactive verification tools such as LOOP [83], which required expertise
both in JML and the PVS interactive theorem prover.

Further Lessons from the JML Project 317

As mentioned above, the KeY project [88] provides a solidly supported and docu-
mented tool for the deductive verification of JML-annotated Java programs. It aims for
automatic verification, but a user can apply interactive theorem-proving which may be
needed for the verification of more sophisticated heavyweight specifications.

KeY uses JML for formal specifications, but also supports some extensions going
beyond current JML. The KeY project, like the LOOP project, began as a tool for the
JAVA CARD language; however, now it handles Java through Java 4 (without generics)
and has an upgraded parser supporting more recent Java versions in progress. A unique
feature is that KeY encodes proof obligations in Java Dynamic Logic [15] and includes
facilities for logic-based symbolic execution. There is extensive documentation in the
KeY book [2,16].

The rapid evolution of Java, especially the addition of generics, annotations, and
other features in Java 5 made many of the early ISU tools, such as jmlc, out of date with
respect to Java. The Kopi project on which the Multijava compiler (and thus the ISU
tools) were based, was not revised to keep pace with Java. One strategy for keeping up
with Java was to use an extensible compiler, such as JastAdd [57]. Some explorations
of how to use JastAdd were done [73], but the JML developer community never really
bought into JastAdd, perhaps because there was no guarantee that the JastAdd system
would track Java’s evolution.2

To help the JML tools keep up with Java’s evolution, David Cok (and the JML
community) settled on the idea of extending OpenJDK [126], creating the OpenJML
suite of JML tools [40]. Although not designed as an extensible compiler framework,
OpenJDK serves as a suitable base for extension due to the considerable advantage that
it would necessarily track the evolution of Java, because it is the official compiler for
Java.

Most of the work on OpenJML has focused on the ESC tool, since that does static
verification. However, RAC is a useful complement to ESC and OpenJML does feature
a RAC tool.

Henrique Rebêlo, working at the Federal University of Pernambuco, Brazil, devel-
oped a RAC tool for JML [136] based on aspect-oriented programming tools (i.e.,
AspectJ) and the ISU RAC tool, jmlc. Rebêlo’s tool, ajmlc, featured good error mes-
sages for runtime assertion violations and client-side contract checking, in which pre-
conditions are checked at the call site of a method (instead of at the beginning of a
method body’s execution) [135]. Contract-aware checking allows the RAC to take pri-
vacy information into account at the call site, only checking the precondition(s) visible
to the client calling a method. The ajmlc tool is now incorporated into AspectJML
[133,134].

Considering this history leads to two initial lessons.

Lesson 1. Academics are only strongly motivated to work on tools if they can make
novel changes, but such changes make specifications less portable among tools.

Lesson 2. Supporting a current, industrially used language enables broader use, but
the cost of keeping the tools current with a rapidly evolving language is substantial.

2 In fact, the JastAdd Java compiler has not kept up with Java’s evolution, although JastAdd
itself provides the capability to do so.

318 G. T. Leavens et al.

As can be seen from these lessons, an effort like the JML project faces several
difficulties. To have industrial influence the tools need to be maintained to support the
rapidly evolving Java language, but academics often have other priorities. Nevertheless,
the JML project has had an influence. One example of academic work relevant to the
wider Java community is the use of KeY to identify an implementation flaw in Java’s
sorting algorithm [68]. Amazon Web Services (AWS) has used OpenJML for formal
verification of important customer-facing software [47]. Other international companies
have internal groups applying proof-based verification or have proprietary contracts
with researchers in the field.

1.4 Related Work on Assessing Specification Language Projects

An earlier paper on lessons from the JML project was presented at the VSTTE con-
ference in 2005 [94]. That paper focused on JML’s role as an integrator of tools, which
was promoted as a model for the verifying compiler grand challenge. The advantages of
BISLs were touted for unifying several different tools. The paper noted problems with
JML’s “draconian” rules for pure methods, citing the work on observational purity as a
possible way forward [9,116]. Other problems noted were these: the treatment of frame
axioms, specifying and verifying “callbacks” [94, Sec. 5] (which has now assumed
more importance due to Java’s inclusion of lambda expressions), specifying and verify-
ing concurrent programs, and the challenges of keeping pace with Java’s evolution (as
in Lesson 2).

Leavens, Leino, and Müller published a set of specification and verification chal-
lenges for sequential OO programs [95], which built on an earlier assessment by Jacobs
et al. [84]. This paper led to several other papers that tried to address some of these
challenges [95,106,109,143], while others remain challenges in JML (and similar lan-
guages) to this day (for example, see Lesson 9 and Sects. 3.5 and 3.6 below).

Hatcliff et al. [77] give a comprehensive overview of BISLs and highlight specifi-
cation challenges outstanding at the time of that paper (2012).

Boerman et al. evaluated the compatibility of OpenJML’s ESC tool and KeY’s static
verifier [21]. They reported both syntactic and semantic incompatibilities, and some
tendency for the different tools to generate new dialects of JML (as mentioned in Les-
son 1).

Cok has performed specification and verification of industrial code, which gave rise
to recommendations and implementations of new language features. It also identified
some outstanding language design problems, some of which are repeated here as still
outstanding [42,43,47].

2 Lessons About Developing Specification Languages and Tools

2.1 Effect on Other Specification Language Projects

JML has had a strong influence on subsequent specification languages. The languages
discussed below started development after JML and borrowed syntax and semantics
from JML. ACSL, ACSL++ and Spec# are BISLs that have adjusted JML’s ideas to be

Further Lessons from the JML Project 319

appropriate for their target programming languages. Given the subsequent concurrent
development of these languages, there has been significant cross-fertilization, with new
features, concepts, and techniques being borrowed in all directions. This interaction is
a significant successful contribution of the JML project. (Some additional specification
languages are described in Sect. 5.)

ACSL and Frama-C. ACSL is a BISL for C [13] and there is a C++ variant designed
for C++ (ACSL++), both part of the Frama-C ecosystem[14,66]. These languages and
tools are used for research and industrial application on C and C++ programs. The
Frama-C ecosystem includes many language analysis tools, going beyond the static and
runtime checking discussed in this paper.

Spec#. Microsoft developed the C# language as a combination of features from Java
and C++. Researchers (including Leino) at Microsoft Research defined the Spec# spec-
ification language as a BISL for C# and built powerful tools for static and runtime
checking [11]. Spec# featured excellent tool support and a novel ownership system
based on an owner ghost field, which allowed for ownership transfer and a flexible
treatment of invariants in what is known as the “Boogie methodology” [10,108].

2.2 The Costs and Benefits of Specification

The JML project aims to increase the value users obtain from formal specifications and
thereby improve safety and security of software through the use of formal specifica-
tions. An earlier position paper [94, p.137], stated that the main problem is to “give
users enough value to justify the cost of specification.” With the tremendous advances
in automated tools for verification and other quality enhancement and debugging tasks,
users obtain more benefits from verification, but the cost and effort of writing specifi-
cations is still high.

In our experience, formal specifications are roughly as long (say, in lines of text) as
the code that they specify. This suggests that the cost of writing a formal specification
is roughly the same as the cost of writing code, meaning that adding formal specifica-
tions roughly doubles the initial cost of software development. However, there is some
evidence [75, Myth 5] that the effort put into specification decreases the total cost of
software—in part because if specifications are created early in the development pro-
cess, they enforce careful thinking about the problem and thereby enable a cleaner and
quicker implementation with some problems avoided early in the software process.

Solutions to the perceived problem of the cost of specification are not easily found.
For specifying detailed designs with JML, the effort involves thinking about the way
that interfaces between software modules should work. Since specifications capture
the intent of software interfaces, there are cases where they cannot be inferred from
the behavior of code. However, we do believe that inferring specifications from code
(including tests) can be helpful in reducing the cost of specification, as in many cases
the inferred specification will be what is intended, and in other cases the specifier will
be able to edit or adjust the inferred specifications.

320 G. T. Leavens et al.

Lesson 3. Tools that infer specifications from code and defaults that match most com-
mon uses could reduce the length of and the burden of writing specifications.

On the other hand, we do not believe that making specifications shorter would sig-
nificantly decrease the effort or skill needed to write specifications, since good detailed
designs require thought and experience. Furthermore, formal specifications should be
read more often than they are written, as software modules usually have many clients
and the specification should only need to be written a few times, so ease of understand-
ing specifications is more important than ease of writing them.

2.3 Documenting Existing Java Programs (Goal 1)

Specifying and verifying programs as they are designed and written can be accom-
plished in two ways. One could write programs in a language designed for specification
and verification, such as Dafny [107,110], in which one verifies as one writes the pro-
gram, and then has Dafny automatically translate the program to an industrially used
language. Or one could start by designing and writing a program in an industrially used
language, writing specifications and verifying them more or less concurrently; however,
in practice, the verification lags a bit. In either case, the discipline of creating a design
that is verifiable requires a clarity of thought and modularity of design that is beneficial
for the software development endeavor overall [75].

However, JML can also be used to verify legacy programs. Here, the program was
designed and written, perhaps carefully, perhaps not, but certainly not with an eye
towards verification. As a result there are more side-effects, more connections between
otherwise independent modules, more implicit assumptions, unstated data invariants,
etc., than would be desirable for verification. The exercise of verifying a legacy pro-
gram can be very useful in identifying and documenting these implicit assumptions and
even in finding latent bugs.

JML was designed to support the verification of legacy programs. This implies that
the language must have enough features to be able to express the messiness of legacy
programs, and not just enough to work with correct-by-construction techniques.

Experience with verifying legacy programs shows that JML is largely up to the task,
but illustrates a few observations:

– Complexity of verification arises not from the details of verifying intricate mathe-
matical algorithms but from the scale of interactions across a program.

– Handling frame conditions well is important, since they are important in manag-
ing interactions. In particular, better solutions for handling obervational purity are
needed, as many situations arise where methods have side-effects on hidden state.

– Good defaults and specification inference are needed to reduce the burden of writing
specifications.

2.4 Being Easily Understood (Goal 2)

The goal of having JML be readily understood drove the design to use Java syntax and
semantics as much as possible. This goal was largely achieved; students easily grasp

Further Lessons from the JML Project 321

the main syntax and semantics of JML along with Java. This similarity caused two
problems however, which have led to some adjustment of this design decision.

First, Java’s semantics for two’s complement integer arithmetic operations are mod-
ulo operations that do not alert the user about overflow or underflow. If the specifica-
tions and the code have the same arithmetic semantics, then overflow bugs missed in the
code will be missed just as easily in the specifications. In fact, users more often read the
specifications as having mathematical (unbounded integer) semantics. Consequently,
JML’s default semantics for specifications is the mathematical (bigint) semantics and
the default semantics for Java code is “safe” semantics—standard Java arithmetic with
warnings about overflow and underflow [26].

Second, the focus on using Java syntax led to the use of Java classes to model math-
ematical concepts (such as sets and maps) in JML. As described in Sect. 3.3, even care-
fully written Java classes have complex semantics. Furthermore, some pure methods
of Java’s built-in types, like Object’s equals method are sometimes overridden by
code with benevolent side-effects [128, Sec. 5]; for example, string equality in (some
versions of) Java puts strings being compared into a table so that the string equals
method could compare indexes into the table instead of individual characters. There-
fore, we now believe that a better choice would be to use some mathematical types for
specification purposes.

2.5 Formally Defining JML’s Semantics (Goal 3)

The goal to document a “rigorous formal semantics” for JML, though conceptually
straightforward, has proved difficult, despite some efforts [2,16,80,85,98]. An impor-
tant problem with achieving a “rigorous formal semantics” is the problem of obtain-
ing agreement on JML’s semantics [99] from all groups of researchers involved. This
was the topic of several sessions at JML workshops, but due to lack of agreement and
differences in research needs, some different dialects of JML have arisen, tailored to
different tools such as OpenJML and KeY. The problem is that codifying the semantics
might come at the expense of flexibility in research directions. Furthermore, defining
the semantics formally has not been a high priority compared to tool development and
research questions.

In any case, the biggest impediment to having a complete formal semantics for
JML is that it includes all of (sequential) Java, which is a large and rapidly evolving
language. Efforts to formally specify JML have so far used a subset of Java. For exam-
ple, the CoreJML effort [98] formalized only a small subset of Java. Since JAVA CARD

is a subset of sequential Java with a set of features useful in Java smart cards, sev-
eral projects have formalized JML with respect to a semantics of JAVA CARD, notably
the VerifiCard project [80,85] (which produced the LOOP tool) and the KeY project
[2,138].

The rapid evolution of Java itself has made it difficult for tools to track the Java lan-
guage, so it is not surprising that formal semantics have lagged behind Java’s evolution.
This leads to an additional lesson from the project.

Lesson 4. Formalization of semantics is easier with a language that is not evolving
rapidly, but there is more interest in a popular programming language.

322 G. T. Leavens et al.

2.6 Tool Design with Intermediate Languages

An important innovation in tool architecture was incorporated into Spec# [11], namely
the use of an intermediate language, BoogiePL [9,49]. BoogiePL is similar to Dijk-
stra’s guarded command language [52] and has a simple and well-understood transla-
tion into logic. By using BoogiePL as an intermediate language in the Spec# tools, the
researchers were able to describe the verification conditions for Spec# programs at a
high level and have BoogiePL take care of the translation into the input language used
by an SMT solver. Moreover, they were able to change their specification language and
its translations quickly and with less effort than if they had directly translated Spec#
into the SMT input language. OpenJML’s ESC tool is more difficult to modify because
it uses its own internal intermediate language and its own translation to SMT. (Open-
JML started development before BoogiePL was defined.)

Several other specification language tools have used BoogiePL as an intermediate
language, including the verifier for Dafny [107,110].

Why3 [62] is a programming and specification language platform that uses an inter-
mediate language, WhyML, which can fill the same role in a verifier as BoogiePL. As
a platform, Why3 can transform verification conditions stated in WhyML into the input
language of many different theorem provers [20]. The Krakatoa system used Why (an
earlier version of Why3) to verify JAVA CARD programs annotated in a subset of JML
[111]. This is possible because WhyML includes features such as exceptions and heap
references. Why3 is used in the Frama-C collection of tools and in other tools originat-
ing in INRIA and CEA-LIST in France.

The KeY tool does not use BoogiePL or Why3, since Java Dynamic Logic seems to
be useful as an intermediate language [138].

A good tool will provide a user with detailed information about proof failures, such
as the source code location and character of failing assertions and the details of coun-
terexamples to proofs expressed in terms of source code names. The problem with an
architecture in which a tool uses an intermediate language to invoke a logical solver
is that the intermediate language may encode names and logical assertions in ways
unknown to the invoking tool. Thus a good intermediate language must also convert the
details of solver’s results back into information that the invoking tool can understand
and represent to the user.

2.7 Coordinating Different Kinds of Tools

We believe that an important contribution of JML is showing how a single specification
language can coordinate many different tools, in particular both static tools (such as
ESC, LOOP, and KeY) and dynamic checkers (i.e., RAC tools). For this to work, it is
important that the tool developers understand this goal and agree to parse and ignore
(or warn about) language features that their tool cannot handle. If this goal is not agreed
upon, then tool developers will be tempted to make changes to the specification lan-
guage to work better with their tool, eventually resulting in incompatible versions of
the language.

Technically, it is important to make the semantics of the specification language align
as closely as possible among all tools, to minimize the differences among them.

Further Lessons from the JML Project 323

One technical contribution in this area addresses the question of how undefined
expressions should be handled in specifications [12,34]. In JML, the solution adopted
is to consider such undefined expressions to be errors [28,30]. This semantics cor-
responds to allowing exceptions that occur during runtime checking of assertions to
propagate out of those assertion checks, which is easy in RAC. However, this solution
requires specifiers to write specifications so that undefined expressions do not occur. In
essence, specifiers are responsible for writing assertions that protect against undefined
expressions [102].

Lesson 5. Considering undefined expressions to be an error in assertions helps to unify
static verification and RAC.

Another technical contribution that aligns semantics among tools is client-aware
checking [135]. Client-aware checking is a technique for RAC that checks precondi-
tions at the point of a method call (i.e., by the caller), aligning the semantics used in
RAC with that used during static verification. To explain a bit, during static verifica-
tion a verifier checks the precondition of a method call at the call site, using the part
of the method’s specification (i.e., the specification cases) visible there; thus for consis-
tency, RAC should also make the same checks of the same specifications. Furthermore,
client-aware checking during RAC helps smooth over the differences between different
semantics of behavioral subtyping, as the notion of behavioral subtyping used by Find-
ler and Felleisen [63] and by Spec# [11], both align with JML’s more flexible semantics
for behavioral subtyping when client-aware checking is taken as the semantics of RAC.

Lesson 6. Client-aware checking helps reconcile static verification and RAC, as well
as some differences in semantics between specification languages.

From a project-wide perspective, however, the decision to coordinate multiple tools
is not without its drawbacks. For the specification language designers, there is a constant
tension on the design (from the needs of the different kinds of tools) that must be han-
dled; in essence this is a management problem. For example, RAC prefers executable
specifications, whereas deductive verification prefers provable formulations.

Another drawback is that the language tends to become too large, as the design
becomes a grab bag of features needed for each tool; and when the language is large,
giving it a formal semantics and documenting it becomes difficult. The problem of hav-
ing a large specification language has certainly affected JML. Feature interactions also
multiply as a specification language becomes larger, and discovering such unwanted
feature interactions becomes harder. Current work on a 2nd edition of JML [46] aims to
both codify language features that have shown their usefulness and to deprecate features
that have not.

Lesson 7. While it is useful for a specification language to coordinate several tools,
this exerts pressure on the specification language to become larger.

2.8 Specifying Java’s Libraries

Whenever one writes a program in Java, one uses many classes and interfaces from the
Java built-in libraries. For static verification it is necessary that these libraries have JML

324 G. T. Leavens et al.

specifications, otherwise calls to library methods will stop any proof from proceeding.3

Unfortunately, the Java class libraries are quite large, and sometimes change (slightly)
with releases of Java; this makes it difficult for an academic project like JML to both
specify these libraries and keep the specifications up to date [95, Sec. 6.1].

A solution to this problem of specifying the Java class libraries could involve tool
support. Several different kinds of tool could help. First, it might be possible to translate
the English documentation into JML, but in our experience, the natural language tech-
nology is not yet at that level of precision, nor is the natural language documentation
always sufficiently complete. Second, it might be possible to infer a specification that
the code implements. Such inferred specifications, while they would have to be adjusted
by a human in some cases, could reduce the time and effort needed to write specifica-
tions for the Java class libraries. In many cases, such as methods that set or get the value
of a field of a class, the inferred specification would be exactly what is desired, so infer-
ring such specifications could save specifiers a great deal of time. The main drawbacks
are the need for manual review and the possibility of inferring an incorrect specification
from code that is incorrect. (That is, if the code is incorrect, then one would infer an
incorrect specification from it, which would be easy to miss.)

Specifications could be inferred from code in one of several ways. First, one could
infer specifications using a dynamic tool, like Daikon [60], which mines execution
traces to suggest specifications. A tool such as OpenJML’s ESC could then be used
to check such specifications [65,124]. Second, one could infer specifications from the
implementation of the code, as discussed above. One approach, taken in the Houdini
tool [65], is to guess specifications and then check to see if they are satisfied by the
code. Another strategy for inferring specifications from code is to mine intended pre-
conditions for methods from uses of those methods [132], then, with the mined pre-
condition, one could infer the code’s strongest postcondition [141] using a strongest
postcondition program transformer [53]. Given a method postcondition and invariants
for any loops in the method, one can infer the strongest postcondition that the method’s
code ensures. Clearly this will not help with abstract methods (those that have no code),
but the join (with also) of the specifications for all of the implementations could be
used for those, or a user could be notified that such methods need to be specified man-
ually. That leaves the problem of inferring loop invariants.

To infer loop invariants, one could use various logical techniques [54,69,78,140].
Currently no JML tool statically infers invariants, although Daikon [61] can infer invari-
ants using its dynamic techniques.

Lesson 8. For static verification to be practical, it is necessary to have specifications of
commonly-used library functions. A specification inference tool would lessen the effort
involved.

3 Language Design Contributions and Remaining Issues

JML has made several contributions to specification language design, but some prob-
lems remain.

3 For validity, a library should also be verified against its specifications, but we are more con-
cerned with verifying client code in this section.

Further Lessons from the JML Project 325

3.1 Behavioral Subtyping and Supertype Abstraction

In the 1980s and 1990s, object-oriented (OO) programming was at the height of its
popularity and Java was designed as an OO programming language. The dynamic dis-
patch (message passing) mechanism of OO programming languages makes verification
of method calls, such as o.m(), more difficult, because the language will call the code
written for the dynamic type of the receiver object, o, which may even be a type that
is unknown when the program is being written or verified. This problem is solved by
supertype abstraction [97,100], which means reasoning about method calls using the
specifications associated with the static type of the receiver object (which should be
a supertype of the dynamic type of the receiver); such reasoning is valid if each sub-
type obeys the specifications of its supertype(s), that is, if all subtypes are behavioral
subtypes [97]. JML uses specification inheritance to force all subtypes to be behavioral
subtypes [51,97], thus making supertype abstraction valid.

JML’s semantics for behavioral subtyping [97] is explicitly different than Eiffel’s
semantics, and follows the work of Leavens’s dissertation [100] in using a more general
technique for proving behavioral subtyping [33,97] that aligns with specification inher-
itance [51]. JML’s specification inheritance forces subtypes to be behavioral subtypes,
making supertype abstraction valid, so one can statically reason about dynamically-
dispatched method calls using the specifications associated with the static type of the
receiver object [51,97,101]. However, Eiffel allows the arguments of overriding meth-
ods to be covariantly specialized (i.e., to be declared to have parameter types that are
subtypes of the corresponding parameter types of the method they override); thus Eiffel
allows programs to violate behavioral subtyping [51, p. 266].

One might think that supertype abstraction limits the ability of a program to take
advantage of more refined specifications in subtypes, however, one can still do that
and use supertype abstraction by down-casting (in the Java code) a receiver object to
the subtype(s) in question (which must necessarily be known to the program) and then
using supertype abstraction for the method calls on the subtype(s), which can thus take
advantage of the more refined specification. This is shown in Fig. 1, where it is assumed
that there is a type Staff that is a supertype of the types Doctor and Nurse and that
the methods getTitle and isChief are defined for the types Doctor and Nurse,
respectively, but have little in common. The code in Fig. 1 shows that the down-casts
would be needed in Java, and that once the down-cast is accomplished, one can use
supertype abstraction to reason about the corresponding method calls. If there were
other subtypes of Staff with similar methods, these could be handled in the same
way by down-casting and then using supertype abstraction on these subtypes.

A problem with supertype abstraction is that it interacts with other aspects of JML
in ways that may be too restrictive. One such aspect is JML’s notion of a pure method,
which prohibits all assignments to pre-existing storage in a method. However, there are
some methods, such as Object’s methods equals and toString, which need to
be pure, so that they can be used in specifications, but can usefully be implemented
with benevolent side effects. One solution to this problem is to weaken JML’s definition
of pure methods by using a notion of observational purity, allowing benevolent side
effects; such a solution has been worked out by Naumann [116]. Another solution,

326 G. T. Leavens et al.

Fig. 1. Java code with JML annotations showing how to take advantage of refined specifications
in a subtype.

which is perhaps simpler and also takes into account Lesson 9 (see Sect. 3.3), is to
change JML to use a collection of built-in types for specifications, so that such Java
methods would not need to be used in specifications.

3.2 Specification Cases and Specification Inheritance

A contribution related to OO programming is that JML uses specification inheritance
to force subtypes to be behavioral subtypes [51,90,97]. Method specifications from
supertypes are inherited as “specification cases” [91,145,147]. In JML a specification
case is a method specification consisting of requires and ensures clauses, along with
assignable clauses and other method specification features [99, Sec. 9.2]. For example,
consider the code in Figs. 2, 3, 4, and 5. The setAge method of Animal inherits
specification cases from both NormalSetAge and ExceptionalSetAge, and thus
the implementation must follow both specifications, changing the age to the argument
given when that is between 0 and 150 and leaving the age unchanged when the argument
is (strictly) less than 0.

Fig. 2. The interface Age that declares a model field age.

One way in which specification cases are used in JML is to write different specifica-
tion cases for a method’s normal and exceptional behavior. JML’s syntax separates spec-

Further Lessons from the JML Project 327

Fig. 3. The interface NormalSetAge.

Fig. 4. The interface ExceptionalSetAge.

Fig. 5. The class Animal.

328 G. T. Leavens et al.

ification cases with the keyword also. For example, Fig. 6 shows an equivalent specifi-
cation of setAge that combines the two specification cases that would be inherited (in
the class Animal from the interfaces NormalSetAge and ExceptionalSetAge.

Fig. 6. Explict specification of setAge using also. This is equivalent to the specification that
is inherited by setAge in Fig. 5.

From the client’s point of view, a combination of specification cases with also is
a join, as the client can use any (or all) of them [97]. From the implementation’s point
of view, this combination is a meet, as the implementation must satisfy all specification
cases.

To help visualize specification cases, imagine a single specification case with a sin-
gle pre- and postcondition. As shown in Fig. 7, the precondition determines a set of
states for which the method must be defined; one can visualize one pre-state as a point
in this set.4 For each specified pre-state, the postcondition determines a set of acceptable
post-states, which one can visualize as a set of points above each pre-state (visualized
in the figure as a vertical line of points). An implementation of the specified method,
m, must deliver a post-state in the specified area for each specified pre-state;5 thus the
graph shows that the method is correct, since it delivers one of the specified post-states
for each specified pre-state.

Figure 8 shows two specification cases joined with also (e.g., as in Fig. 6). For both
the red and blue specifications, each postcondition specifies an acceptable set of post-
states for each pre-state. What happens if the preconditions overlap? For each pre-state
that is allowed by both the red and blue specifications (and thus is shown as purple), a
correct implementation must deliver a post-state in both the red and blue sets of accept-
able post-states, thus it must deliver a post-state in the purple intersection area to sat-
isfy both postconditions. For example, consider the class Human, which is declared (in
Fig. 9) to be a subtype of Animal. For a call such as h.setAge(75), where h is an

4 The figure shows the sets of pre-states and post-states as connected, but that is just for conve-
nience in the figure; it is not necessary or required by JML.

5 The figure shows the method as delivering a connected set of post-states, but again that is not
necessary.

Further Lessons from the JML Project 329

Fig. 7. Visualizing the meaning of a single specification case and correctness of an implementa-
tion. The dot on the horizontal axis represents a specific pre-state, and the vertical line above it
represents the set of specified post-states allowed for that pre-state by the postcondition.

object of type Human the setAge method must obey the normal specification given in
NormalSetAge and also the added specification case in Human’s setAge method
specification (following also).

Fig. 8. A visualization of the meaning of the join (with also) of two specification cases.

JML uses also to combine inherited specification cases (possibly from multiple
supertypes) with any specifications given by an overriding method’s declaration. The
setAge method of Animal illustrates this, as it inherits specifications from both
NormalSetAge and ExceptionalSetAge. As in Fig. 8, a correct implementation
must satisfy each such specification case. Therefore, a client of a method can use any
specification case(s) available to reason about a method call, since all are satisfied by
the implementation. For example, if a method has both a normal and exceptional speci-
fication case, then the client can make sure that the call satisfies the precondition of the
normal specification case and can validly assume the postcondition of that specification
case after the call [97].

While this way of combining specification cases [144,145,147] is the least restric-
tive method that ensures plug-compatibility [33], it does have one significant drawback,

330 G. T. Leavens et al.

Fig. 9. The class Human that adds behavior to the setAge method it inherits from its superclass
Animal.

which is that it is easy to create method specifications that are unsatisfiable. In Fig. 10,
one can see that where the blue and red preconditions overlap, the intersection of their
sets of acceptable post-states is empty (as shown in Fig. 11), thus for states in the inter-
section of the two preconditions, it is impossible for an implementation to satisfy the
specification. Some JML tools now check for such problems, but the specifier needs to
take them into account when designing types that may eventually have subtypes.

Fig. 10. A visualization of the meaning of the join (with also) of two specification cases that
produces an unsatisfiable specification.

JML’s specification cases (which allow multiple sets of pre- and postconditions)
follow the work of Wing on Larch/CLU [147] and the capsules of the Fresco specifica-
tion language by Wills [144–146]. Although Fresco features specification inheritance,
it makes behavioral subtyping optional.

Further Lessons from the JML Project 331

Fig. 11. A visualization of the meaning of the join that has resulted in an unsatisfiable specifica-
tion.

The semantics of multiple specification cases in JML is not without controversy,
however—see Sect. 4.4.

3.3 Types Used in Specification

As noted above, in an effort to make JML easily understood by programmers, JML fol-
lowed Eiffel [112] by using a set of Java classes with pure methods to aid specification;
these included sets, sequences, and maps.

For static verification, several researchers have pointed out problems with JML’s use
of Java types with (pure) Java methods to specify programs. It could also be said that
JML’s definition of a “pure method” is not sufficiently restrictive, since such methods
are allowed to allocate storage (e.g., to create a string or array), which both modifies
the heap and complicates the semantics used in program verification. Another problem
with pure methods in JML is that they are not necessarily deterministic (i.e., functional)
[23]. Due to these problems, JML’s approach has not been followed by more recent
specification languages. A better alternative, found in VDM [64,87], the Larch family
of BISLs [71,72], and Dafny [105, ch. 10], is to have a set of built-in collection types
(e.g., for sets, sequences, and maps), which are purely mathematical, are operated on by
mathematical functions, and thus have a simple semantics; these collection types could
then be emulated during RAC.6

To examine the problems with JML’s approach more closely, first consider using
non-primitive types (i.e., reference types) from the Java program under consideration.
Doing so avoids creating a parallel set of specification types that replicate the informa-
tion stored in these Java types. However, using such types in assertions leads to changes
in the heap occurring during assertion evaluation, since JML’s definition of pure meth-
ods allows for allocation of new objects; such heap allocation considerably compli-
cates the semantics and thus makes developing tools for static verification more dif-
ficult. Most tellingly, all such types inherit java.lang.Object’s toString and
equals methods, which one might think should be pure, but cannot be pure according

6 An alternative solution, which could be used if one is designing a new programming language
from scratch [129], is to design all types to have a value semantics.

332 G. T. Leavens et al.

to JML’s definition. To see why, recall that JML requires overriding methods to obey
the specification of the methods they override; thus, if the toString and equals
methods are specified as pure methods, which they must be to allow use in specifica-
tion, then such benevolent side effects would need to be disallowed—and not just in
Object but in every class that derives from Object, namely every Java class. Some
library classes, such as Java’s String class, have used benevolent side effects in their
code (in some versions of Java); in any case, imposing a no-side-effect restriction on
all Java classes is unacceptable. The problem is that if these methods are not specified
as pure, then they cannot be used in JML specifications, but the equals method in
particular is definitely needed for specifications.

One solution to this problem would be to use actually pure Java classes for specifica-
tion. However, this would not help verify the existing Java code that has behavior (e.g.,
if-tests) that rely on Java’s equals method or Java’s built-in types, such as strings.

A better solution seems to be to build into JML some mathematical value types. The
semantics for such types could be designed to be mathematically simple, which would
aid in static verification and could also be simulated during RAC. An extra advantage
is that static verification tools could map such types directly into the corresponding
types of theorem provers (such as SMT solvers), which would ease the task of build-
ing such tools and might result in performance improvements. For example, built-in
types for maps and strings could be modeled directly in SMT solvers. The semantics of
such built-in types would be more like Java’s value types (i.e., primitive types such as
boolean) and thus would be simpler to model mathematically, since a faithful model
would not involve any heap allocation.

The syntax for operating on such built-in, mathematical types in assertions could
also be made to be more mathematical, which may be either an advantage or disadvan-
tage.

Lesson 9. For static verification that is also adaptable to RAC, it is best if the specifi-
cation language includes a built-in set of mathematical collection types and numerical
types.

3.4 Frame Conditions

A persistent semantic problem in reasoning about object-oriented (OO) programs is
how to deal with frame axioms, which say what locations a method may change dur-
ing its execution, and thus, implicitly, what locations must be preserved [22]. Müller
proposed an ownership type system (Universes) with a relevant invariant semantics
[113,115] that JML adopted. However, Universes made transfer of ownership some-
what difficult.

The designers of Spec# created a more flexible ownership methodology based on a
field in each object that indicated the object’s owner [10,108]. This “Boogie methodol-
ogy” made ownership transfer easier and more flexible than the Universe type system.
Spec# adopted the notion of behavioral subtyping, but in a way that was slightly less
flexible than JML, since an overriding method could not change the precondition of the

Further Lessons from the JML Project 333

method(s) being overridden; thus, inheritance of specifications boils down to conjunc-
tion of postconditions [11, pp. 56–57].7

Research in this area is ongoing, with several mechanisms proposed, including sepa-
ration logic [82,137] and region logic [4,5,7]. Region logic is better adapted to the SMT
theorem provers used in JML’s ESC. A flexible variant of region logic is the dynamic
frames approach, in which frame axioms are specified in terms of specification-only
state (ghost fields); this approach has been adopted by Dafny [103–105], the work of
Smans et al. [142], and also by the KeY tool [2].

3.5 Specifying Lambda Expressions

Java 8 introduced lambda expressions; anticipating this, JML had previously added
“model programs” to implement the grey-box approach [24] to specifying and verifying
such higher-order features [139]. However, applying the copy rule as advocated in the
original paper about model programs cannot be applied to recursive methods and the
grey-box approach has not seen significant use in JML’s tools.

Some researchers have advocated specifying higher-order functions using logics or
specification features that are themselves higher-order, such as the ability to refer to the
specifications of function parameters [48,59], but this leads to specifications that are
difficult to write and understand, and are also incompatible with the first-order theorem
proving technology used in ESC. There is continuing research in the formal methods
community on how to specify and verify such higher-order expressions. For example,
in recent work by Müller’s group at ETH, Rust’s ownership type system is used to help
deal with framing closures [148].

3.6 Class and Object Invariants

There has been a long line of work on the specification and verification of class and
object invariants [3,4,6,10,55,56,108,109,113,115]. The essential problem is that, in
JML’s semantics, class and object invariants are assumed at the beginning of every (non-
helper) method, but these invariants are not the responsibility of clients. Instead, there
must be some methodology that guarantees that invariants established by constructors
and at the end of each method are still valid when they are assumed at the start of each
(non-helper) method.

The key problems are representation exposure and argument exposure [38,113,
125]. Representation exposure occurs when references to mutable objects contained
in an object’s own fields are aliased by clients, as could happen when a reference to
an array that is used to store the elements of a set is returned by a method. Argument
exposure occurs when a method puts a reference to a mutable argument object into one

7 The reason given for not allowing a loosening of preconditions in an overriding method is
that “The run-time checks evoked by the method contract are thus also inherited.” [11, p. 56].
However with client-aware-checking of preconditions [135], the precondition of the receiver’s
static type are checked at call sites, which allows JML’s more flexible form of specification
inheritance to still enforce precondition checks based on static type information at call sites as
would be done in Spec#.

334 G. T. Leavens et al.

of its fields. In both of these situations, a client could hold a reference to an object A
that forms part of another object, o, allowing the client to change A without calling any
methods on o, thereby violating an invariant of o. Similar problems could occur if the
fields of o are not hidden from clients; that is, if a client can set a public field of o, then
the client can change the state of o in ways that might violate its invariants, but in that
case the invariant must be maintained by all code that has visibility to change it [109].

Callbacks can also raise problems with invariants: if a method operating on a
receiver object o temporarily violates an invariant of o, then calls another method, which
eventually calls back to a method on o, then that call would find that o’s invariant was
violated. One solution, adopted in JML, is to require that all invariants be re-established
when a method calls any other method [115], but this rule tends to be onerous, even
unworkable at times, in practice. A more flexible solution is adopted by the Boogie
methodology: not assuming object invariants on entry to every method, but specifying
when they need to hold and verifying that the invariant holds at each program point
where it is needed [10,108].

4 Controversies and Continuing Discussions

There are some features of JML that are controversial and/or have not been adopted
by later specification languages. The controversies and points of discussion listed in
this section describe some of the features of JML that some users and researchers have
objected to or that need more discussion.

4.1 Interface Specification

The idea of a BISL is found in Wing’s dissertation [147]. The advantage of a BISL is
that it allows precise documentation of an API in a particular programming language,
including such details as privacy, types, parameter passing modes, and exceptions. The
alternative is to have a more general specification language that is not tailored to a par-
ticular programming language. The advantage of such a specification language, such as
VDM, Z, or UML, is that it can be used without change for different kinds of programs,
and thus tools designed for that specification language also can be used with different
programming languages.

A related technique, adopted by Whiley [129] and Dafny, is to use different code
generators for a single specification language. Each such code generator would output a
verified program in a different programming language, though the code-generation step
itself is not verified, just the original program.

4.2 Visibility in Specifications

Java has a system of four levels of visibility for user-declared entities. As a BISL, JML
also has the same four levels with the same meanings. The idea is that, for example,
private specifications can be used to document design decisions within a class, which
can be hidden from all other classes. Similarly, protected specifications can be used
to document design decisions that are visible to subclasses (and other classes in the

Further Lessons from the JML Project 335

same package) but hidden from other clients. However, it makes no sense to have a
specification be more visible that its owning entity [96].

However, the visibility rules for specifications are controversial, as they add com-
plexity to JML; one can write several specifications for the same method, for example,
and the tools must enforce several rules related to visibility of these specifications. Most
other specification languages do not have such complex visibility rules; for example, “in
Spec# method specifications have the same visibility as the method itself, and invariants
are always private” [96, Sec. 6].

The original rules for visibility [96] stated that a specification with visibility V
could only mention names with visibility V . Leavens and Müller justified these rules
by showing how violating these rules could lead to problems. For instance, suppose
that an invariant with visibility V could refer to a name N with visibility greater than
V (i.e., that is visible to more parts of the program than the invariant), then N would
need to obey a hidden invariant. That is, clients could violate the invariant by initializ-
ing or changing N ; such invariants would destroy modularity and cause maintenance
problems. Conversely, if a specification with visibility V could refer to a name N that is
less visible than V , then parts of the program that could see the specification would not
be able to understand it [112], which would be a maintenance problem as clients could
depend on state that was intended to be hidden. For these reasons, specifications are not
allowed to refer to names that are either less visible or more visible than themselves
[96].

However, these rules cause complexity in JML specifications. Consider a simple
public getter method that returns the value of a private field, f. If JML had no visibility
rules, then the public postcondition could be ensures \result == f;. But JML’s
visibility rules do not allow this, as a private field cannot be used in a public specifica-
tion. However, JML does allow represents clauses such as the following

private represents f_pub = f;

where f_pub is a public model field; this represents clause says that the value of the
public field f_pub is the value of the private field f. To avoid this extra specification
overhead, JML includes the modifier spec_public, which can declare that a (Java)
private field, like f, is to be considered public for specification purposes. (In essence,
spec_public is sugar for the above workaround with a represents clause.)

In practice, JML users can easily become entwined in a tangle of visibility errors.
Thus many people will write specifications by declaring all fields to be spec_public.
It is unclear whether declaring fields to be spec_public gives the modularity and
maintainability guarantees desired [96] or is just an inconvenience. As mentioned
above, most specification languages do not allow writing so many different levels of
specifications, so perhaps simpler rules would give most of the benefits of JML’s rules.
We leave this question for future work.

4.3 Specification Placement Before Methods

JML follows Java’s documentation comment convention in placing method specifica-
tions in front of the method being specified. Unfortunately, this means that the declara-
tions of a method’s formal parameters, which can be used in that method’s specification,

336 G. T. Leavens et al.

follow the specification, which goes against normal practice in programming languages.
Thus the JML convention has been a continuing point of discussion, as some say that it
makes specifications difficult to read.

4.4 Semantics of Multiple Specification Cases

Programmers typically expect that multiple specification cases act like an if-then-else
or case statement in a programming language; that is, the specification case whose pre-
condition matches first is obeyed and all the rest do not matter. However, that is not the
semantics of multiple specification cases in JML. As explained in Sect. 3.2, all speci-
fication cases whose preconditions hold must be obeyed by the implementation. From
the client’s point of view this makes sense, as a client can pick any specification case
(e.g., from some supertype, due to specification inheritance) to use in reasoning about
a call (and the client does not need to worry about a specification case not applying
because of some ordering). As noted in that Sect. 3.2, this may lead to some specifica-
tions being unsatisfiable, e.g., if the postconditions for two specification cases conflict
when both preconditions hold (as shown in Fig. 11), but that would not be a problem
if JML’s semantics were more like the semantics of if-then-else statements. In addi-
tion, an if-then-else flavor of semantics for specification cases would require defining
a total order on all specification cases, even ones inherited from multiple supertypes.
JML’s current semantics does not require such an ordering, which simplifies the seman-
tics. However, JML’s semantics suffers from the complementary problem of creating
unsatisfiable specifications when specification cases conflict. This topic has been a con-
tinuing discussion item, especially with new users of JML.

4.5 Default Specifications

The design of user-friendly default specifications could lead to unsoundness. Default
specifications are those assumed for a method when the user writes no specifications. As
libraries typically have no specifications at the start of a project, the choice of defaults
can have a big effect on incremental progress in verification. Traditionally JML has
chosen very conservative defaults, ones that are known to be true, in order to ensure
soundness in the absence of specifications. For example, the default postcondition is
ensures true and the default frame condition is assigns \everything.

While these defaults are sound, they are also useless. A user must write specifi-
cations for any method that is actually used, or little will be provable. This has led
to calls for better defaults, for example, that methods be assumed pure (assigns
\nothing), even though this is in general unsound.

This tension is as yet unresolved. It is hoped, that at least for methods with source
code available, specification inference can provide better defaults, but for library meth-
ods the problem remains.

5 Related Work on Specification Languages

In addition to the specification languages (ACSL and Spec#—Section 2.1) and other
related work discussed above (Sect. 1.4), there have been several other formal specifi-
cation language efforts that can be compared with JML.

Further Lessons from the JML Project 337

Spark/Ada [8] is a BISL for Ada that restricts Ada to a safe subset and has tools
to support proof-based verification. Ada was developed (in the 1970s)s) as a safer pro-
gramming language than existing alternatives for systems programming. The SPARK

subset of Ada and its associated tools provide verification capability to its industrial
base. However, since the SPARK subset of Ada does not allow the use of dynamic dis-
patch, it does not concern itself with behavioral subtyping.

Dafny is a language designed to aid static verification [104,105,110]. It can then
be compiled (a non-verified step, as yet) to a variety of target languages, so that the
originally verified program can be compiled with other software or run in a variety of
environments. Because it is designed from scratch for verification, rather than being
designed to accommodate legacy code, the language and its semantics are simpler than
those of the other languages described here. It also serves as a test-bed for specifica-
tion language research and as a relatively simple language for education. Dafny was
begun at Microsoft and is now an open-source, GitHub-based project, but most current
development is sponsored by Amazon AWS.

Dafny, as noted above (see Sect. 3.3), has a major difference from JML in that Dafny
has several built-in types, such as sets, multisets, sequences, strings, and maps, that
can be used in specifications [105, ch. 10]. For behavioral subtyping, Dafny requires
that an overriding method have a specification that is stronger than the method that it
overrides, but the rule used for this is that the overriding method’s precondition “must
be implied by” the precondition of the method it overrides and the overriding method’s
postcondition “must imply” the postcondition of the method it overrides [105, Sec.
14.2], which is stronger (i.e., less flexible) than necessary for behavioral subtyping,
although it makes supertype abstraction valid.

Stainless [58,76] (previously Leon [19]) is a specification and verification tool for
Scala programs. It follows the Eiffel tradition of integrating the programming and spec-
ification languages, unlike JML. Stainless benefits from the expressiveness of Scala and
the mostly functional design of Scala’s built-in datatypes, which makes using Scala’s
built-in types more suitable for verification. Thus, compared with Lesson 9 there is less
need for a separate library of mathematical types for use in specifications. Stainless uses
a different verification technique from that used by JML and other verifiers based on
verification conditions; these techniques could possibly be adopted by JML’s static veri-
fication tools in the future. Stainless can also be used for RAC, and checks preconditions
at call sites (as in Lesson 6). The design of Stainless does not seem to consider dynamic
dispatch of object-oriented methods or make any provision for behavioral subtyping.

Whiley is an “open platform” [129, p. 238] for research on verifying compiler lan-
guages and tools. Originally the Whiley compiler was designed with its own interme-
diate language, and the programming language has been, like Dafny, designed from
scratch to ease static verification. Whiley is a hybrid language with an imperative outer
layer and a functional core that is pure (i.e., free of effects). Unlike Java, for built in
collection types Whiley uses a value semantics, so that the value of any expression
is copied during assignments and parameter passing (although Whiley also has refer-
ences); this reduces aliasing and makes the built in types suitable for specification (in a
way that is similar to Dafny’s collection types). In Whiley specifications are not subject
to behavioral subtyping.

338 G. T. Leavens et al.

6 Future Work for the JML Project

6.1 Tool Improvements

A priority for JML tools is to keep the OpenJML tool suite up to date with the latest
version of Java. This is especially important for teaching, as it helps motivate students
if the tool works with the version of Java used in industry.

To make the tools useful, they must be able to work with all of the built-in Java
types, including strings and floating point numbers, which are commonly used. This
goal has been the focus of some recent work on OpenJML.

As noted above, for broad use, the tools must also be able to verify programs that
use the Java class libraries (see Lesson 8). However, to specify the Java class libraries,
it would be helpful to have a tool that could infer specifications, which would also mean
a tool to infer loop invariants. A good first step would be to work with Daikon [61] to
see the extent to which it can handle loop invariant inference.

6.2 Semantic Extensions

As computers control more devices in the physical world, such as airplanes, medical
devices, and self-driving cars, more computing systems will become safety-critical.
Since safety-critical systems can more easily justify the cost of specification, it will
become more important to extend JML to such systems. Haddad previously did some
work extending JML to real-time systems [74], but certainly more remains to be done.

For control systems, concurrent programs, and systems built around state-machine
abstractions, it is important to easily specify finite state machines [79]. There has been
some work in adding temporal logic to JML [81], but certainly more could be done
along these lines.

Although the Nijmegen and KeY groups both worked on JAVA CARD and have been
concerned with the security of such programs, the area of computer security is another
area that would be fruitful for specification and verification.

6.3 Documentation and Outreach

It is clear to us that, for students and those new to JML, better documentation, including
examples and tutorials, is urgently needed. The modern way of making tutorial material
is to create videos. Wolfgang Ahrendt gives a recorded lecture in one of the few videos
available on YouTube about JML [1]. It would be helpful to provide a tutorial document
or a series of videos for educational purposes for students who are new to programming
or formal verification, to help them learn JML and its tools. Furthermore, this docu-
mentation can be used for teaching in formal verification schools that are held yearly,
similar to the tutorial on PVS [127] that is taught in the Summer School on Formal
Techniques every year and has had a significant impact for new researchers in formal
methods.

For students, it would also be useful to have a website to run the latest JML compiler
on a (small) program, and an IDE for JML. There was formerly a page for OpenJML’s
ESC on rise4fun.com, but that site is no longer active. There has been an Eclipse

Further Lessons from the JML Project 339

plugin for JML, but it is not up to date. Packaging releases of OpenJML (or other tools)
in a container might be something that would help students as well.

Another area of research is in measurement of the benefits of formal methods. His-
torically, most of the focus of JML teams at different times has been on improving the
language or building new tools. However, there are a few works that show the bene-
fits of using JML for helping to solve real-world and academic research problems. For
example, Nilizadeh et al. used different features of OpenJML to solve some problems in
automated program repair [117,118,120–122] and fuzzing [123]. Also, Nilizadeh et al.
investigated a tool to automatically translate counterexamples generated by OpenJML’s
ESC into unit tests [119]. These academic works may encourage other researchers to
learn and use JML and its tools.

For tool implementers, a formal definition of JML is needed (Lesson 4).

7 Conclusions

The easiest lessons from the JML project to apply are probably the technical ones.
These technical lessons include:

Lesson 5 Consider undefined expressions to be an error in assertions, which helps unify
static verification and RAC.

Lesson 6 Client-aware checking helps reconcile static verification and RAC, especially
with respect to behavioral subtyping.

Lesson 8 There should be a specification of the programming language’s built-in
libraries, and to do that a specification inference tool would be helpful.

Lesson 9 A specification language should include a built-in set of mathematical collec-
tion types and numerical types.

Less easily applied are the political and managerial lessons to be learned from JML.
The most important of these relates to a key characteristic of JML: that it coordinates
several different tools (Lesson 7). The trouble is that coordinating several tools tends
to make the specification language bigger. Adding to this problem is the motivation
of academic participants: they want to create novel results, and so try to extend the
language in new directions (Lesson 1), and they are more strongly motivated if the
programming language is popular, but working with a popular programming language
may mean that the language evolves too quickly for academics to track (Lesson 4).
These lessons are perhaps inherent tradeoffs in specification using a BISL and may
imply that a commercial entity needs to be involved. For reference, we include these
other lessons below.

Lesson 1 Academics are only strongly motivated to work on tools if they can make
novel changes, but such changes make specifications less portable among tools.

Lesson 2 Supporting a current, industrially used language enables broader use, but the
cost of keeping the tools current with a rapidly evolving language is substantial.

Lesson 3 Tools that infer specifications from code and defaults that match most com-
mon uses could reduce the length of and the burden of writing specifications.

340 G. T. Leavens et al.

Lesson 4 Formalization of semantics is easier with a language that is not evolving
rapidly, but there is more interest in a popular programming language.

Lesson 7 While it is useful for a specification language to coordinate several tools, this
exerts pressure on the specification language to become larger.

Acknowledgments. Thanks to David Pearce for comments on an earlier draft of this paper.
Thanks to all participants in the JML project (many of whom are named above). Thanks to the
US National Science Foundation for funding early work on JML through several grants (at Iowa
State University).

References

1. Ahrendt, W.: The Java Modeling Language - a basis for static and dynamic verification,
June 2018. https://youtu.be/9ItK0jxJ0oQ

2. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.): Deduc-
tive Software Verification - The KeY Book. LNCS, vol. 10001. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-49812-6

3. Banerjee, A., Naumann, D.A.: Local reasoning for global invariants, part ii: dynamic
boundaries. J. ACM 60(3), 19:1–19:73 (2013). https://doi.org/10.1145/2485981. http://doi.
acm.org/10.1145/2485981

4. Banerjee, A., Naumann, D.A., Rosenberg, S.: Local reasoning for global invariants, part
i: region logic. J. ACM 60(3), 18:1–18:56 (2013). https://doi.org/10.1145/2485982. http://
doi.acm.org/10.1145/2485982

5. Bao, Y.: Reasoning about frame properties in object-oriented programs. Technical report,
CS-TR-17-05, Computer Science, University of Central Florida, Orlando, Florida, Decem-
ber 2017. The author’s dissertation. https://goo.gl/WZGMiB

6. Bao, Y., Leavens, G.T.: A methodology for invariants, framing, and subtyping in JML. In:
Müller, P., Schaefer, I. (eds.) Principled Software Development, pp. 19–39. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-98047-8_2

7. Bao, Y., Leavens, G.T., Ernst, G.: Unifying separation logic and region logic to allow inter-
operability. Form. Asp. Comput. 30, 381–441 (2018). https://doi.org/10.1007/s00165-018-
0455-5

8. Barnes, J.: High Integrity Software: The SPARK Approach to Safety and Security. Addison
Wesley, New York (2003)

9. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a modular
reusable verifier for object-oriented programs. In: de Boer, F.S., Bonsangue, M.M., Graf, S.,
de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 364–387. Springer, Heidelberg
(2006). https://doi.org/10.1007/11804192_17

10. Barnett, M., DeLine, R., Fähndrich, M., Leino, K.R.M., Schulte, W.: Verification of object-
oriented programs with invariants. J. Object Technol. 3(6), 27–56 (2004). http://tinyurl.
com/m2a8j

11. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: an overview.
In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004.
LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-
540-30569-9_3

12. Barringer, H., Cheng, J.H., Jones, C.B.: A logic covering undefinedness in program proofs.
Acta Informatica 21(3), 251–269 (1984)

13. Baudin, P., et al.: ACSL: ANSI C Specification Language (2008ff). http://frama-c.com/
download/acsl_1.4.pdf

https://youtu.be/9ItK0jxJ0oQ
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1145/2485981
http://doi.acm.org/10.1145/2485981
http://doi.acm.org/10.1145/2485981
https://doi.org/10.1145/2485982
http://doi.acm.org/10.1145/2485982
http://doi.acm.org/10.1145/2485982
https://goo.gl/WZGMiB
https://doi.org/10.1007/978-3-319-98047-8_2
https://doi.org/10.1007/s00165-018-0455-5
https://doi.org/10.1007/s00165-018-0455-5
https://doi.org/10.1007/11804192_17
http://tinyurl.com/m2a8j
http://tinyurl.com/m2a8j
https://doi.org/10.1007/978-3-540-30569-9_3
https://doi.org/10.1007/978-3-540-30569-9_3
http://frama-c.com/download/acsl_1.4.pdf
http://frama-c.com/download/acsl_1.4.pdf

Further Lessons from the JML Project 341

14. Baudin, P., et al.: The dogged pursuit of bug-free C programs: the Frama-C software anal-
ysis platform. Commun. ACM 64(8), 56–68 (2021). https://doi.org/10.1145/3470569

15. Beckert, B.: A dynamic logic for Java Card. In: Drossopoulou, S., Eisenbach, S., Jacobs,
B., Leavens, G.T., Müller, P., Poetzsch-Heffter, A. (eds.) Workshop on Formal Techniques
for Java Programs (FTfJP). Technical report 269, Fernuniversität Hagen (2000)

16. Beckert, B., Hähnle, R., Schmitt, P.H.: Verification of Object-Oriented Software: The KeY
Approach. LNCS, vol. 4334. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-69061-0

17. van den Berg, J., Jacobs, B.: The LOOP compiler for Java and JML. In: Margaria, T., Yi, W.
(eds.) TACAS 2001. LNCS, vol. 2031, pp. 299–312. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-45319-9_21

18. van den Berg, J., Poll, E., Jacobs, B.: First steps in formalising JML: exceptions in predi-
cates. In: Drossopoulou, S., Eisenbach, S., Jacobs, B., Leavens, G.T., Müller, P., Poetzsch-
Heffter, A. (eds.) Formal Techniques for Java Programs. Proceedings of the ECOOP’00
Workshop. Technical report, Fernuniversität Hagen (2000). http://www.cs.ru.nl/~erikpoll/
publications/ftfjp00.ps.gz

19. Blanc, R., Kuncak, V., Kneuss, E., Suter, P.: An overview of the leon verification system:
verification by translation to recursive functions. In: Proceedings of the 4th Workshop on
Scala. SCALA 2013. Association for Computing Machinery, New York (2013). https://doi.
org/10.1145/2489837.2489838

20. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: shepherd your herd of provers.
In: Boogie 2011: First International Workshop on Intermediate Verification Languages, pp.
53–64. Wrocław, Poland (2011). https://hal.inria.fr/hal-00790310

21. Boerman, J., Huisman, M., Joosten, S.: Reasoning about JML: differences between KeY
and OpenJML. In: Furia, C.A., Winter, K. (eds.) IFM 2018. LNCS, vol. 11023, pp. 30–46.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98938-9_3

22. Borgida, A., Mylopoulos, J., Reiter, R.: On the frame problem in procedure specifications.
IEEE Trans. Softw. Eng. 21(10), 785–798 (1995). http://doi.ieeecomputersociety.org/10.
1109/32.469460

23. Breunesse, C.B., Poll, E.: Verifying JML specifications with model fields. In: Formal Tech-
niques for Java-like Programs (FTfJP), pp. 51–60. No. 408 in Technical report, ETH Zurich,
July 2003. http://www.cs.ru.nl/~erikpoll/publications/ftfjp03.pdf

24. Büchi, M., Weck, W.: A plea for grey-box components. In: Leavens, G.T., Sitaraman, M.
(eds.) Foundations of Component-Based Systems Workshop. University of Central Florida
(1997). https://www.cs.ucf.edu/~leavens/FoCBS/buechi.html

25. Burdy, L., et al.: An overview of JML tools and applications. In: Arts, T., Fokkink, W. (eds.)
Eighth International Workshop on Formal Methods for Industrial Critical Systems (FMICS
2003). Electronic Notes in Theoretical Computer Science (ENTCS), vol. 80, pp. 73–89.
Elsevier (2003). http://www.sciencedirect.com/science/journal/15710661

26. Chalin, P.: Back to basics: language support and semantics of basic infinite integer types
in JML and Larch. Technical report, CU-CS 2002–003.1, Computer Science Department,
Concordia University (2002). http://www.cs.concordia.ca/~faculty/chalin/papers/TR-CU-
CS-2002-003.1.pdf

27. Chalin, P.: Improving JML: for a safer and more effective language. In: Araki, K., Gnesi,
S., Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 440–461. Springer, Heidel-
berg (2003). https://doi.org/10.1007/978-3-540-45236-2_25 http://www.springerlink.com/
content/26cpmd9b3vbgd2et

28. Chalin, P.: Logical foundations of program assertions: What do practitioners want? In:
Proceedings of the 3rd International Conference on Software Engineering and Formal
Method (SEFM). IEEE Computer Society, Los Alamitos, California (2005). http://www.
cs.concordia.ca/~chalin/papers/TR-2005-002-r2.pdf

https://doi.org/10.1145/3470569
https://doi.org/10.1007/978-3-540-69061-0
https://doi.org/10.1007/978-3-540-69061-0
https://doi.org/10.1007/3-540-45319-9_21
https://doi.org/10.1007/3-540-45319-9_21
http://www.cs.ru.nl/~erikpoll/publications/ftfjp00.ps.gz
http://www.cs.ru.nl/~erikpoll/publications/ftfjp00.ps.gz
https://doi.org/10.1145/2489837.2489838
https://doi.org/10.1145/2489837.2489838
https://hal.inria.fr/hal-00790310
https://doi.org/10.1007/978-3-319-98938-9_3
http://doi.ieeecomputersociety.org/10.1109/32.469460
http://doi.ieeecomputersociety.org/10.1109/32.469460
http://www.cs.ru.nl/~erikpoll/publications/ftfjp03.pdf
https://www.cs.ucf.edu/~leavens/FoCBS/buechi.html
http://www.sciencedirect.com/science/journal/15710661
http://www.cs.concordia.ca/~faculty/chalin/papers/TR-CU-CS-2002-003.1.pdf
http://www.cs.concordia.ca/~faculty/chalin/papers/TR-CU-CS-2002-003.1.pdf
https://doi.org/10.1007/978-3-540-45236-2_25
http://www.springerlink.com/content/26cpmd9b3vbgd2et
http://www.springerlink.com/content/26cpmd9b3vbgd2et
http://www.cs.concordia.ca/~chalin/papers/TR-2005-002-r2.pdf
http://www.cs.concordia.ca/~chalin/papers/TR-2005-002-r2.pdf

342 G. T. Leavens et al.

29. Chalin, P.: Towards support for non-null types and non-null-by default in Java. In: Work-
shop on Formal Techniques for Java-like Programs (FTfJP) (2006). http://www.disi.unige.
it/person/AnconaD/FTfJP06/paper03.pdf

30. Chalin, P.: A sound assertion semantics for the dependable systems evoluation verifying
compiler. In: International Conference on Software Engineering (ICSE), Los Alamitos, Cal-
ifornia, pp. 23–33. IEEE, May 2007. http://dx.doi.org/10.1109/ICSE.2007.9

31. Chalin, P., Kiniry, J.R., Leavens, G.T., Poll, E.: Beyond assertions: advanced specification
and verification with JML and ESC/Java2. In: de Boer, F.S., Bonsangue, M.M., Graf, S.,
de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 342–363. Springer, Heidelberg
(2006). https://doi.org/10.1007/11804192_16 https://tinyurl.com/3z2vk55n

32. Chalin, P., Rioux, F.: Non-null references by default in the Java modeling language. In:
Proceedings of the Workshop on the Specification and Verification of Component-Based
Systems (SAVCBS 2005). ACM Software Engineering Notes, vol. 31, no. 2. ACM (2005)

33. Chen, Y., Cheng, B.H.C.: A semantic foundation for specification matching. In: Leavens,
G.T., Sitaraman, M. (eds.) Foundations of Component-Based Systems, pp. 91–109. Cam-
bridge University Press, New York (2000)

34. Cheng, J.H., Jones, C.B.: On the usability of logics which handle partial functions. In: Mor-
gan, C., Woodcock, J.C.P. (eds.) Proceedings of the Third Refinement Workshop. Work-
shops in Computing Series, pp. 51–69. Springer, Berlin (1991)

35. Cheon, Y., Leavens, G.T.: A quick overview of Larch/C++. J. Object-Oriented Program.
7(6), 39–49 (1994)

36. Cheon, Y., Leavens, G.T.: A runtime assertion checker for the Java modeling language
(JML). In: Arabnia, H.R., Mun, Y. (eds.) Proceedings of the International Conference on
Software Engineering Research and Practice (SERP 2002), Las Vegas, Nevada, USA, 24–
27 June 2002, pp. 322–328. CSREA Press (2002). ftp://ftp.cs.iastate.edu/pub/techreports/
TR02-05/TR.pdf

37. Cheon, Y., Leavens, G.T.: A simple and practical approach to unit testing: the JML
and JUnit way. In: Magnusson, B. (ed.) ECOOP 2002. LNCS, vol. 2374, pp. 231–255.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47993-7_10 https://tinyurl.
com/4tk2nzzd

38. Clarke, D.G., Noble, J., Potter, J.M.: Simple ownership types for object containment. In:
Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp. 53–76. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45337-7_4

39. Clifton, C.: MultiJava: design, implementation, and evaluation of a Java-compatible lan-
guage supporting modular open classes and symmetric multiple dispatch. Technical report,
01-10, Department of Computer Science, Iowa State University, Ames, Iowa, 50011,
November 2001. ftp://ftp.cs.iastate.edu/pub/techreports/TR01-10/TR.pdf. The author’s
masters thesis

40. Cok, D.R.: OpenJML: JML for Java 7 by extending OpenJDK. In: Bobaru, M., Havelund,
K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 472–479. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-5_35

41. Cok, D.R.: (2018). http://www.openjml.org
42. Cok, D.R.: Reasoning about functional programming in Java and C++. In: Companion Pro-

ceedings for the ISSTA/ECOOP 2018 Workshops, ISSTA 2018, pp. 37–39. Association for
Computing Machinery, New York (2018). https://doi.org/10.1145/3236454.3236483

43. Cok, D.R.: JML and OpenJML for Java 16. In: Proceedings of the 23rd ACM Interna-
tional Workshop on Formal Techniques for Java-like Programs, FTfJP 2021, pp. 65–67.
Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3464971.
3468417

http://www.disi.unige.it/person/AnconaD/FTfJP06/paper03.pdf
http://www.disi.unige.it/person/AnconaD/FTfJP06/paper03.pdf
http://dx.doi.org/10.1109/ICSE.2007.9
https://doi.org/10.1007/11804192_16
https://tinyurl.com/3z2vk55n
ftp://ftp.cs.iastate.edu/pub/techreports/TR02-05/TR.pdf
ftp://ftp.cs.iastate.edu/pub/techreports/TR02-05/TR.pdf
https://doi.org/10.1007/3-540-47993-7_10
https://tinyurl.com/4tk2nzzd
https://tinyurl.com/4tk2nzzd
https://doi.org/10.1007/3-540-45337-7_4
ftp://ftp.cs.iastate.edu/pub/techreports/TR01-10/TR.pdf
https://doi.org/10.1007/978-3-642-20398-5_35
http://www.openjml.org
https://doi.org/10.1145/3236454.3236483
https://doi.org/10.1145/3464971.3468417
https://doi.org/10.1145/3464971.3468417

Further Lessons from the JML Project 343

44. Cok, D.R., Kiniry, J.: ESC/Java2: uniting ESC/Java and JML. progress and issues in build-
ing and using ESC/Java2 and a report on a case study involving the use of ESC/Java2 to
verify portions of an internet voting tally system, May 2004. Presented at CASSIS 2004
and submitted for publication

45. Cok, D.R., Kiniry, J.R.: ESC/Java2: uniting ESC/Java and JML. In: Barthe, G., Burdy, L.,
Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS, vol. 3362, pp. 108–
128. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30569-9_6

46. Cok, D.R., Leavens, G.T., Ulbrich, M.: Java Modeling Language (JML) Reference Manual,
2nd edn (2022, in progress). https://www.openjml.org/documentation/JML_Reference_
Manual.pdf

47. Cok, D.R., Tasiran, S.: Practical methods for reasoning about java 8’s functional program-
ming features. In: Piskac, R., Rümmer, P. (eds.) VSTTE 2018. LNCS, vol. 11294, pp. 267–
278. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03592-1_15

48. Damm, W., Josko, B.: A sound and relatively complete Hoare-logic for a language with
higher type procedures. Acta Informatica 20(1), 59–101 (1983). http://dx.doi.org/10.1007/
BF00264295

49. DeLine, R., Leino, K.R.M.: BoogiePL: a typed procedural language for checking object-
oriented programs. Technical report, MSR-TR-2005-70, Microsoft Research (2005). ftp://
ftp.research.microsoft.com/pub/tr/TR-2005-70.pdf

50. Detlefs, D.L., Leino, K.R.M., Nelson, G., Saxe, J.B.: Extended static checking. SRC
Research Report 159, Compaq Systems Research Center, 130 Lytton Ave., Palo Alto,
December 1998

51. Dhara, K.K., Leavens, G.T.: Forcing behavioral subtyping through specification inher-
itance. In: Proceedings of the 18th International Conference on Software Engineering,
Berlin, Germany, pp. 258–267. IEEE Computer Society Press, Los Alamitos (1996). http://
doi.ieeecomputersociety.org/10.1109/ICSE.1996.493421. A corrected version is ISU CS
TR #95-20c. http://tinyurl.com/s2krg

52. Dijkstra, E.W.: Guarded commands, nondeterminancy and formal derivation of programs.
Commun. ACM 18(8), 453–457 (1975)

53. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall Inc, Englewood Cliffs (1976)
54. Dillig, I., Dillig, T., Li, B., McMillan, K.: Inductive invariant generation via abductive infer-

ence. In: Proceedings of the 2013 ACM SIGPLAN International Conference on Object Ori-
ented Programming Systems Languages and Applications, OOPSLA 2013, pp. 443–456.
Association for Computing Machinery, New York (2013). https://doi.org/10.1145/2509136.
2509511

55. Drossopoulou, S., Francalanza, A., Müller, P., Summers, A.J.: A unified framework for ver-
ification techniques for object invariants. In: Vitek, J. (ed.) ECOOP 2008. LNCS, vol. 5142,
pp. 412–437. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70592-5_18

56. Drossopoulou, S., Francalanza, A., Müller, P.: A unified framework for verification tech-
niques for object invariants. In: International Workshop on Foundations of Object-Oriented
Languages (FOOL 2008) (2008). http://fool08.kuis.kyoto-u.ac.jp/drossopoulou.pdf

57. Ekman, T., Hedin, G.: The JastAdd system – modular extensible compiler construction. Sci.
Comput. Program. 69(1–3), 14–26 (2007). https://doi.org/10.1016/j.scico.2007.02.003

58. EPFL, Lausanne, Switzerland: Stainless Verification Framework (2022). https://epfl-lara.
github.io/stainless/intro.html

59. Ernst, G.W., Navlakha, J.K., Ogden, W.F.: Verification of programs with procedure-type
parameters. Acta Informatica 18(2), 149–169 (1982)

60. Ernst, M., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically discovering likely pro-
gram invariants to support program evolution. IEEE Trans. Softw. Eng. 27(2), 99–123
(2001). http://doi.ieeecomputersociety.org/10.1109/32.908957

https://doi.org/10.1007/978-3-540-30569-9_6
https://www.openjml.org/documentation/JML_Reference_Manual.pdf
https://www.openjml.org/documentation/JML_Reference_Manual.pdf
https://doi.org/10.1007/978-3-030-03592-1_15
http://dx.doi.org/10.1007/BF00264295
http://dx.doi.org/10.1007/BF00264295
ftp://ftp.research.microsoft.com/pub/tr/TR-2005-70.pdf
ftp://ftp.research.microsoft.com/pub/tr/TR-2005-70.pdf
http://doi.ieeecomputersociety.org/10.1109/ICSE.1996.493421
http://doi.ieeecomputersociety.org/10.1109/ICSE.1996.493421
http://tinyurl.com/s2krg
https://doi.org/10.1145/2509136.2509511
https://doi.org/10.1145/2509136.2509511
https://doi.org/10.1007/978-3-540-70592-5_18
http://fool08.kuis.kyoto-u.ac.jp/drossopoulou.pdf
https://doi.org/10.1016/j.scico.2007.02.003
https://epfl-lara.github.io/stainless/intro.html
https://epfl-lara.github.io/stainless/intro.html
http://doi.ieeecomputersociety.org/10.1109/32.908957

344 G. T. Leavens et al.

61. Ernst, M., et al.: Daikon website. https://plse.cs.washington.edu/daikon/. Accessed Sept
2021

62. Filliâtre, J.-C., Paskevich, A.: Why3 — where programs meet provers. In: Felleisen, M.,
Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-37036-6_8

63. Findler, R.B., Felleisen, M.: Contract soundness for object-oriented languages. In: OOP-
SLA 2001 Conference Proceedings. Object-Oriented Programming, Systems, Languages,
and Applications, 14–18 October 2001, Tampa Bay, Florida, USA, pp. 1–15. ACM, New
York (2001)

64. Fitzgerald, J., Larsen, P.G.: Modelling Systems: Practical Tools in Software Development.
Cambridge University Press, Cambridge (1998)

65. Flanagan, C., Leino, K.R.M.: Houdini, an annotation assistant for ESC/Java. In: Oliveira,
J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 500–517. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45251-6_29 http://www.springerlink.com/content/
nxukfdgg7623q3a9

66. (2011ff). https://frama-c.com
67. Gosling, J., Joy, B., Steele, G.: The Java Language Specification. The Java Series. Addison-

Wesley, Reading (1996). http://www.aw.com/cp/javaseries.html
68. de Gouw, S., Rot, J., de Boer, F.S., Bubel, R., Hähnle, R.: OpenJDK’s

Java.utils.Collection.sort() is broken: the good, the bad and the worst case. In: Kroening,
D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 273–289. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21690-4_16

69. Gulwani, S., Srivastava, S., Venkatesan, R.: Program analysis as constraint solving. In: Pro-
ceedings of the 29th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2008, pp. 281–292. Association for Computing Machinery, New
York (2008). https://doi.org/10.1145/1375581.1375616

70. Guttag, J.V., Horning, J.J.: Report on the larch shared language. Sci. Comput. Program.
6(2), 103–134 (1986)

71. Guttag, J.V., Horning, J.J., Garland, S.J., Jones, K.D., Modet, A., Wing, J.M.: Larch: Lan-
guages and Tools for Formal Specification. Springer, New York (1993). https://doi.org/10.
1007/978-1-4612-2704-5

72. Guttag, J.V., Horning, J.J., Wing, J.M.: The Larch family of specification languages. IEEE
Softw. 2(5), 24–36 (1985)

73. Haddad, G., Leavens, G.T.: Extensible dynamic analysis for JML: a case study with loop
annotations. Technical report, CS-TR-08-05, School of Electrical Engineering and Com-
puter Science, University of Central Florida, Orlando, Florida, April 2008

74. Haddad, G., Leavens, G.T.: Specifying subtypes in safety critical Java programs. Concurr.
Comput. Pract. Exp. 25(16), 2290–2306 (2013)

75. Hall, A.: Seven myths of formal methods. IEEE Softw. 7(5), 11–19 (1990)
76. Hamza, J., Voirol, N., Kunčak, V.: System FR: formalized foundations for the Stainless

verifier. Proc. ACM Program. Lang. 3(OOPSLA) (2019). https://doi.org/10.1145/3360592
77. Hatcliff, J., Leavens, G.T., Leino, K.R.M., Müller, P., Parkinson, M.: Behavioral interface

specification languages. ACM Comput. Surv. 44(3), 16:1–16:58 (2012). https://doi.org/10.
1145/2187671.2187678. http://doi.acm.org/10.1145/2187671.2187678

78. Hoder, K., Kovács, L., Voronkov, A.: Invariant generation in vampire. In: Abdulla, P.A.,
Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 60–64. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19835-9_7

79. Hubbers, E., Oostdijk, M., Poll, E.: From finite state machines to provably correct JavaCard
applets. In: Workshop of IFIP WG 11.2 - Small Systems Security. IFIP (2003). http://www.
cs.ru.nl/~erikpoll/publications/sec03.pdf

https://plse.cs.washington.edu/daikon/
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/3-540-45251-6_29
http://www.springerlink.com/content/nxukfdgg7623q3a9
http://www.springerlink.com/content/nxukfdgg7623q3a9
https://frama-c.com
http://www.aw.com/cp/javaseries.html
https://doi.org/10.1007/978-3-319-21690-4_16
https://doi.org/10.1145/1375581.1375616
https://doi.org/10.1007/978-1-4612-2704-5
https://doi.org/10.1007/978-1-4612-2704-5
https://doi.org/10.1145/3360592
https://doi.org/10.1145/2187671.2187678
https://doi.org/10.1145/2187671.2187678
http://doi.acm.org/10.1145/2187671.2187678
https://doi.org/10.1007/978-3-642-19835-9_7
http://www.cs.ru.nl/~erikpoll/publications/sec03.pdf
http://www.cs.ru.nl/~erikpoll/publications/sec03.pdf

Further Lessons from the JML Project 345

80. Huisman, M., Jacobs, B.: Java program verification via a hoare logic with abrupt termina-
tion. In: Maibaum, T. (ed.) FASE 2000. LNCS, vol. 1783, pp. 284–303. Springer, Heidel-
berg (2000). https://doi.org/10.1007/3-540-46428-X_20

81. Hussain, F., Leavens, G.T.: temporaljmlc: a JML runtime assertion checker extension for
specification and checking of temporal properties. Technical report, CS-TR-10-08, UCF,
Department of EECS, Orlando, Florida, July 2010

82. Ishtiaq, S.S., O’Hearn, P.W.: BI as an assertion language for mutable data structures. In:
Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2001, pp. 14–26. ACM, New York (2001). http://doi.acm.org/10.
1145/360204.375719

83. Jacobs, B., van den Berg, J., Huisman, M., van Berkum, M., Hensel, U., Tews, H.: Reason-
ing about Java classes (preliminary report). In: OOPSLA 1998 Conference Proceedings.
ACM SIGPLAN Notices, vol. 33, no. 10, pp. 329–340. ACM, October 1998

84. Jacobs, B., Kiniry, J., Warnier, M.: Java program verification challenges. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2002. LNCS, vol. 2852, pp.
202–219. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39656-7_8

85. Jacobs, B., Meijer, H., Poll, E.: VerifiCard: a European project for smart card verification.
Newsletter 5 of the Dutch Association for Theoretical Computer Science (NVTI) (2001).
https://repository.ubn.ru.nl/bitstream/handle/2066/130369/130369.pdf

86. Jones, C.B.: Program specification and verification in VDM. Technical report, UMCS-86-
10-5, Department of Computer Science, University of Manchester, Manchester M13 9PL,
England, November 1986

87. Jones, C.B.: Systematic software development using VDM. International Series in Com-
puter Science, Prentice-Hall Inc., Englewood Cliffs (1986)

88. The KeY project. https://www.key-project.org. Accessed Sept 2021
89. Leavens, G.T.: An overview of Larch/C++: behavioral specifications for C++ modules.

In: Kilov, H., Harvey, W. (eds.) Specification of Behavioral Semantics in Object-Oriented
Information Modeling, chap. 8, pp. 121–142. Kluwer Academic Publishers, Boston (1996).
An extended version is TR #96-01d, Department of Computer Science, Iowa State Univer-
sity, Ames, Iowa, 50011

90. Leavens, G.T.: JML’s rich, inherited specifications for behavioral subtypes. In: Liu, Z., He,
J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 2–34. Springer, Heidelberg (2006). https://doi.
org/10.1007/11901433_2

91. Leavens, G.T., Baker, A.L.: Enhancing the pre- and postcondition technique for more
expressive specifications. In: Wing, J.M., Woodcock, J., Davies, J. (eds.) FM 1999. LNCS,
vol. 1709, pp. 1087–1106. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48118-4_8

92. Leavens, G.T., Baker, A.L., Ruby, C.: JML: a Java modeling language. In: Formal Under-
pinnings of Java Workshop (at OOPSLA 1998), October 1998. http://www-dse.doc.ic.ac.
uk/~sue/oopsla/cfp.html

93. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: a behavioral interface
specification language for Java. ACM SIGSOFT Softw. Eng. Notes 31(3), 1–38 (2006).
http://doi.acm.org/10.1145/1127878.1127884

94. Leavens, G.T., Clifton, C.: Lessons from the JML project. In: Meyer, B., Woodcock, J.
(eds.) VSTTE 2005. LNCS, vol. 4171, pp. 134–143. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-69149-5_15

95. Leavens, G.T., Leino, K.R.M., Müller, P.: Specification and verification challenges for
sequential object-oriented programs. Formal Aspects Comput. 19(2), 159–189 (2007).
http://dx.doi.org/10.1007/s00165-007-0026-7

https://doi.org/10.1007/3-540-46428-X_20
http://doi.acm.org/10.1145/360204.375719
http://doi.acm.org/10.1145/360204.375719
https://doi.org/10.1007/978-3-540-39656-7_8
https://repository.ubn.ru.nl/bitstream/handle/2066/130369/130369.pdf
https://www.key-project.org
https://doi.org/10.1007/11901433_2
https://doi.org/10.1007/11901433_2
https://doi.org/10.1007/3-540-48118-4_8
https://doi.org/10.1007/3-540-48118-4_8
http://www-dse.doc.ic.ac.uk/~sue/oopsla/cfp.html
http://www-dse.doc.ic.ac.uk/~sue/oopsla/cfp.html
http://doi.acm.org/10.1145/1127878.1127884
https://doi.org/10.1007/978-3-540-69149-5_15
https://doi.org/10.1007/978-3-540-69149-5_15
http://dx.doi.org/10.1007/s00165-007-0026-7

346 G. T. Leavens et al.

96. Leavens, G.T., Müller, P.: Information hiding and visibility in interface specifications. In:
International Conference on Software Engineering (ICSE), Los Alamitos, California, pp.
385–395. IEEE, May 2007. http://dx.doi.org/10.1109/ICSE.2007.44

97. Leavens, G.T., Naumann, D.A.: Behavioral subtyping, specification inheritance, and modu-
lar reasoning. TOPLAS 37(4), 13:1–13:88 (2015). https://doi.org/10.1145/2766446. http://
doi.acm.org/10.1145/2766446

98. Leavens, G.T., Naumann, D.A., Rosenberg, S.: Preliminary definition of Core JML. CS
Report 2006-07, Stevens Institute of Technology, September 2006. http://www.cs.stevens.
edu/~naumann/publications/SIT-TR-2006-07.pdf

99. Leavens, G.T., et al.: JML Reference Manual, May 2008. http://www.jmlspecs.org
100. Leavens, G.T., Weihl, W.E.: Reasoning about object-oriented programs that use subtypes

(extended abstract). In: Meyrowitz, N. (ed.) OOPSLA ECOOP 1990 Proceedings. ACM
SIGPLAN Notices, vol. 25, no. 10, pp. 212–223. ACM (1990). http://doi.acm.org/10.1145/
97945.97970

101. Leavens, G.T., Weihl, W.E.: Specification and verification of object-oriented programs
using supertype abstraction. Acta Informatica 32(8), 705–778 (1995). http://dx.doi.org/10.
1007/BF01178658

102. Leavens, G.T., Wing, J.M.: Protective interface specifications. Formal Aspects Comput.
10(1), 59–75 (1998). http://dx.doi.org/10.1007/PL00003926

103. Leino, K.R.M.: Specification and verification of object-oriented software (2008).
http://research.microsoft.com/en-us/um/people/leino/papers/krml190.pdf. Lecture notes
from Marktoberdorf Internation Summer School. http://research.microsoft.com/en-us/um/
people/leino/papers/krml190.pdf

104. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness. In: Clarke,
E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp. 348–370. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-4_20

105. Leino, K.R.M., Ford, R.L., Cok, D.R.: Dafny reference manual, July 2021. https://github.
com/dafny-lang/dafny/blob/master/docs/DafnyRef/out/DafnyRef.pdf

106. Leino, K.R.M., Monahan, R.: Reasoning about comprehensions with first-order SMT
solvers. In: Proceedings of the 2009 ACM Symposium on Applied Computing, SAC 2009,
pp. 615–622. Association for Computing Machinery, New York (2009). https://doi.org/10.
1145/1529282.1529411

107. Leino, K.R.M., Monahan, R.: Dafny meets the verification benchmarks challenge. In: Leav-
ens, G.T., O’Hearn, P., Rajamani, S.K. (eds.) VSTTE 2010. LNCS, vol. 6217, pp. 112–126.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15057-9_8

108. Leino, K.R.M., Müller, P.: Object invariants in dynamic contexts. In: Odersky, M. (ed.)
ECOOP 2004. LNCS, vol. 3086, pp. 491–515. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24851-4_22 http://www.springerlink.com/content/ttfnjg36yq64pah8

109. Leino, K.R.M., Müller, P.: Modular verification of static class invariants. In: Fitzgerald, J.,
Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp. 26–42. Springer, Heidelberg
(2005). https://doi.org/10.1007/11526841_4 https://tinyurl.com/4xfc2989

110. Leino, K.R.M., et al.: Dafny github site. https://github.com/dafny-lang/dafny. Accessed
Sept 2021

111. Marché, C., Paulin-Mohring, C., Urbain, X.: The KRAKATOA tool for certification of
JAVA/JAVACARD programs annotated in JML. J. Logic Algebraic Program. 58(1–2), 89–
106 (2004). http://dx.doi.org/10.1016/j.jlap.2003.07.006

112. Meyer, B.: Object-Oriented Software Construction, vol. 2. Prentice Hall, New York (1997)
113. Müller, P.: Modular Specification and Verification of Object-Oriented Programs. LNCS,

vol. 2262. Springer, Berlin (2002). https://doi.org/10.1007/3-540-45651-1 http://tinyurl.
com/jtwot

http://dx.doi.org/10.1109/ICSE.2007.44
https://doi.org/10.1145/2766446
http://doi.acm.org/10.1145/2766446
http://doi.acm.org/10.1145/2766446
http://www.cs.stevens.edu/~naumann/publications/SIT-TR-2006-07.pdf
http://www.cs.stevens.edu/~naumann/publications/SIT-TR-2006-07.pdf
http://www.jmlspecs.org
http://doi.acm.org/10.1145/97945.97970
http://doi.acm.org/10.1145/97945.97970
http://dx.doi.org/10.1007/BF01178658
http://dx.doi.org/10.1007/BF01178658
http://dx.doi.org/10.1007/PL00003926
http://research.microsoft.com/en-us/um/people/leino/papers/krml190.pdf
http://research.microsoft.com/en-us/um/people/leino/papers/krml190.pdf
http://research.microsoft.com/en-us/um/people/leino/papers/krml190.pdf
https://doi.org/10.1007/978-3-642-17511-4_20
https://github.com/dafny-lang/dafny/blob/master/docs/DafnyRef/out/DafnyRef.pdf
https://github.com/dafny-lang/dafny/blob/master/docs/DafnyRef/out/DafnyRef.pdf
https://doi.org/10.1145/1529282.1529411
https://doi.org/10.1145/1529282.1529411
https://doi.org/10.1007/978-3-642-15057-9_8
https://doi.org/10.1007/978-3-540-24851-4_22
https://doi.org/10.1007/978-3-540-24851-4_22
http://www.springerlink.com/content/ttfnjg36yq64pah8
https://doi.org/10.1007/11526841_4
https://tinyurl.com/4xfc2989
https://github.com/dafny-lang/dafny
http://dx.doi.org/10.1016/j.jlap.2003.07.006
https://doi.org/10.1007/3-540-45651-1
http://tinyurl.com/jtwot
http://tinyurl.com/jtwot

Further Lessons from the JML Project 347

114. Müller, P., Poetzsch-Heffter, A., Leavens, G.T.: Modular specification of frame properties
in JML. Concurr. Comput. Pract. Exp. 15(2), 117–154 (2003). https://doi.org/10.1002/cpe.
713. ftp://ftp.cs.iastate.edu/pub/techreports/TR02-02/TR.pdf

115. Müller, P., Poetzsch-Heffter, A., Leavens, G.T.: Modular invariants for layered object
structures. Sci. Comput. Program. 62(3), 253–286 (2006). http://dx.doi.org/10.1016/j.scico.
2006.03.001

116. Naumann, D.A.: Observational purity and encapsulation. Theor. Comput. Sci. 376(3), 205–
224 (2007)

117. Nilizadeh, A.: Test overfitting: challenges, approaches, and measurements. Technical
report, University of Central Florida, Computer Science (2021)

118. Nilizadeh, A.: Automated program repair and test overfitting: measurements and
approaches using formal methods. In: 2022 15th IEEE Conference on Software Testing,
Verification and Validation (ICST). IEEE (2022, in press)

119. Nilizadeh, A., Calvo, M., Leavens, G.T., Cok, D.R.: Generating counterexamples in the
form of unit tests from Hoare-style verification attempts. In: IEEE/ACM 10th Interna-
tional Conference on Formal Methods in Software Engineering (FormaliSE). IEEE (2022,
in press)

120. Nilizadeh, A., Calvo, M., Leavens, G.T., Le, X.B.D.: More reliable test suites for dynamic
APR by using counterexamples. In: 2021 IEEE 32nd International Symposium on Software
Reliability Engineering (ISSRE), Los Altos, pp. 208–219. IEEE (2021). https://doi.org/10.
1109/ISSRE52982.2021.00032

121. Nilizadeh, A., Leavens, G.T.: Be realistic: automated program repair is a combination of
undecidable problems. In: 2022 IEEE/ACM International Workshop on Automated Pro-
gram Repair (APR). IEEE (2022, in press)

122. Nilizadeh, A., Leavens, G.T., Le, X.B.D., Păsăreanu, C.S., Cok, D.R.: Exploring true test
overfitting in dynamic automated program repair using formal methods. In: 2021 14th IEEE
Conference on Software Testing, Verification and Validation (ICST), Los Altos, pp. 229–
240. IEEE (2021). https://tinyurl.com/bn3ecw98

123. Nilizadeh, A., Leavens, G.T., Păsăreanu, C.S.: Using a guided fuzzer and preconditions to
achieve branch coverage with valid inputs. In: Loulergue, F., Wotawa, F. (eds.) TAP 2021.
LNCS, vol. 12740, pp. 72–84. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
79379-1_5 https://tinyurl.com/4xzxxrn2

124. Nimmer, J.W., Ernst, M.D.: Static verification of dynamically detected program invariants:
integrating daikon and ESC/Java. In: Proceedings of RV’01, First Workshop on Runtime
Verification. Elsevier (2001). http://dx.doi.org/10.1016/S1571-0661(04)00256-7

125. Noble, J., Vitek, J., Potter, J.: Flexible alias protection. In: Jul, E. (ed.) ECOOP 1998. LNCS,
vol. 1445, pp. 158–185. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054091

126. Oracle: OpenJDK (2021). http://openjdk.java.net/. Accessed Sept 2021
127. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In: Kapur, D.

(ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg (1992). https://doi.
org/10.1007/3-540-55602-8_217

128. Pearce, D.J.: JPure: a modular purity system for java. In: Knoop, J. (ed.) CC 2011. LNCS,
vol. 6601, pp. 104–123. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
19861-8_7

129. Pearce, D.J., Groves, L.: Whiley: a platform for research in software verification. In: Erwig,
M., Paige, R.F., Van Wyk, E. (eds.) SLE 2013. LNCS, vol. 8225, pp. 238–248. Springer,
Cham (2013). https://doi.org/10.1007/978-3-319-02654-1_13

130. Poll, E., van den Berg, J., Jacobs, B.: Specification of the JavaCard API in JML. In:
Domingo-Ferrer, J., Chan, D., Watson, A. (eds.) Smart Card Research and Advanced Appli-
cation Conference (CARDIS 2000), pp. 135–154. Kluwer Academic Publishers (2000)

https://doi.org/10.1002/cpe.713
https://doi.org/10.1002/cpe.713
ftp://ftp.cs.iastate.edu/pub/techreports/TR02-02/TR.pdf
http://dx.doi.org/10.1016/j.scico.2006.03.001
http://dx.doi.org/10.1016/j.scico.2006.03.001
https://doi.org/10.1109/ISSRE52982.2021.00032
https://doi.org/10.1109/ISSRE52982.2021.00032
https://tinyurl.com/bn3ecw98
https://doi.org/10.1007/978-3-030-79379-1_5
https://doi.org/10.1007/978-3-030-79379-1_5
https://tinyurl.com/4xzxxrn2
http://dx.doi.org/10.1016/S1571-0661(04)00256-7
https://doi.org/10.1007/BFb0054091
http://openjdk.java.net/
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1007/978-3-642-19861-8_7
https://doi.org/10.1007/978-3-642-19861-8_7
https://doi.org/10.1007/978-3-319-02654-1_13

348 G. T. Leavens et al.

131. Raghavan, A.D.: Design of a JML documentation generator. Technical report, 00-12, Iowa
State University, Department of Computer Science, July 2000. ftp://ftp.cs.iastate.edu/pub/
techreports/TR00-12/TR.ps.gz

132. Rajan, H., Nguyen, T.N., Leavens, G.T., Dyer, R.: Inferring behavioral specifications from
large-scale repositories by leveraging collective intelligence. In: ICSE 2015: The 37th
International Conference on Software Engineering: NIER Track, pp. 579–582, May 2015.
https://tinyurl.com/jpemux34

133. Rebêlo, H.: AspectJML website (2021). https://www.cin.ufpe.br/~hemr/aspectjml/.
Accessed Sept 2021

134. Rebêlo, H., et al.: AspectJML: modular specification and runtime checking for crosscutting
contracts. In: Proceedings of the 13th International Conference on Modularity, MODU-
LARITY 2014, pp. 157–168. ACM, New York (2014). https://doi.org/10.1145/2577080.
2577084. http://doi.acm.org/10.1145/2577080.2577084

135. Rebêlo, H., Leavens, G.T., Lima, R.M.: Client-aware checking and information hiding in
interface specifications with JML/Ajmlc. In: Proceedings of the 2013 Companion Publi-
cation for Conference on Systems, Programming, & Applications: Software for Human-
ity, SPLASH 2013, pp. 11–12. ACM, New York (2013). https://doi.org/10.1145/2508075.
2514569.. http://doi.acm.org/10.1145/2508075.2514569

136. Rebêlo, H., Soares, S., Lima, R., Ferreira, L., Cornélio, M.: Implementing Java modeling
language contracts with AspectJ. In: SAC 2008: Proceedings of the 2008 ACM Symposium
on Applied computing, pp. 228–233. ACM, New York (2008). http://doi.acm.org/10.1145/
1363686.1363745

137. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In: Proceedings
of the Seventeenth Annual IEEE Symposium on Logic in Computer Science, Los Alami-
tos, California, pp. 55–74. IEEE Computer Society Press (2002). http://dx.doi.org/10.1109/
LICS.2002.1029817

138. Schmitt, P.H.: A short history of KeY. In: Ahrendt, W., Beckert, B., Bubel, R., Hähnle,
R., Ulbrich, M. (eds.) Deductive Software Verification: Future Perspectives. LNCS, vol.
12345, pp. 3–18. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64354-6_1
https://tinyurl.com/3xbrdwbr

139. Shaner, S.M., Leavens, G.T., Naumann, D.A.: Modular verification of higher-order meth-
ods with mandatory calls specified by model programs. In: International Conference on
Object-Oriented Programming, Systems, Languages and Applications (OOPSLA), Mon-
treal, Canada, pp. 351–367. ACM, New York (2007). http://doi.acm.org/10.1145/1297027.
1297053. http://doi.acm.org/10.1145/1297027.1297053

140. Sharma, R., Dillig, I., Dillig, T., Aiken, A.: Simplifying loop invariant generation using
splitter predicates. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 703–719. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_57

141. Singleton, J.L., Leavens, G.T., Rajan, H., Cok, D.: Poster: an algorithm and tool to infer
practical postconditions. In: 2018 ACM/IEEE 40th International Conference on Software
Engineering: Companion Proceedings, Gothenburg, Sweden, pp. 313–314. ACM (2018).
https://doi.org/10.1145/3183440.3194986

142. Smans, J., Jacobs, B., Piessens, F.: Implicit dynamic frames. In: Huisman, M. (ed.) Formal
Techniques for Java-like Programs (FTfJP 2008), pp. 1–12. Radboud University, Nijmegen,
Technical report ICIS-R08013, Radboud University (2008)

143. Svendsen, K., Birkedal, L., Parkinson, M.: Verifying generics and delegates. ECOOP 2010
- Object-oriented Programming, p. 175 (2010)

144. Wills, A.: Capsules and types in fresco: program validation in smalltalk. In: America, P.
(ed.) ECOOP 1991: European Conference on Object Oriented Programming. LNCS, vol.
512, pp. 59–76. Springer, New York (1991). http://dx.doi.org/10.1007/BFb0057015

ftp://ftp.cs.iastate.edu/pub/techreports/TR00-12/TR.ps.gz
ftp://ftp.cs.iastate.edu/pub/techreports/TR00-12/TR.ps.gz
https://tinyurl.com/jpemux34
https://www.cin.ufpe.br/~hemr/aspectjml/
https://doi.org/10.1145/2577080.2577084
https://doi.org/10.1145/2577080.2577084
http://doi.acm.org/10.1145/2577080.2577084
https://doi.org/10.1145/2508075.2514569.
https://doi.org/10.1145/2508075.2514569.
http://doi.acm.org/10.1145/2508075.2514569
http://doi.acm.org/10.1145/1363686.1363745
http://doi.acm.org/10.1145/1363686.1363745
http://dx.doi.org/10.1109/LICS.2002.1029817
http://dx.doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1007/978-3-030-64354-6_1
https://tinyurl.com/3xbrdwbr
http://doi.acm.org/10.1145/1297027.1297053
http://doi.acm.org/10.1145/1297027.1297053
http://doi.acm.org/10.1145/1297027.1297053
https://doi.org/10.1007/978-3-642-22110-1_57
https://doi.org/10.1145/3183440.3194986
http://dx.doi.org/10.1007/BFb0057015

Further Lessons from the JML Project 349

145. Wills, A.: Specification in fresco. In: Stepney, S., Barden, R., Cooper, D. (eds.) Object
Orientation in Z, chap. 11, pp. 127–135. Workshops in Computing, Springer, Cambridge
CB2 1LQ, UK (1992)

146. Wills, A.: Refinement in fresco. In: Lano, K., Houghton, H. (eds.) Object-Oriented Spec-
ification Case Studies, chap. 9, pp. 184–201. The Object-Oriented Series. Prentice-Hall,
Englewood Cliffs (1994)

147. Wing, J.M.: A two-tiered approach to specifying programs. Technical report, TR-299, Mas-
sachusetts Institute of Technology, Laboratory for Computer Science (1983)

148. Wolff, F., Bílý, A., Matheja, C., Müller, P., Summers, A.J.: Modular specification and ver-
ification of closures in Rust. Proc. ACM Program. Lang. 5(OOPSLA) (2021). https://doi.
org/10.1145/3485522

https://doi.org/10.1145/3485522
https://doi.org/10.1145/3485522

Inference in MaxSAT and MinSAT

Chu Min Li1,2 and Felip Manyà3(B)

1 MIS, Université de Picardie Jules Verne, Amiens, France
2 Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
3 Artificial Intelligence Research Institute (IIIA, CSIC), Bellaterra, Spain

felip@iiia.csic.es

Abstract. Logical calculi applied to solve SAT are unsound for MaxSAT and
MinSAT because they preserve satisfiability but not the minimum and the maxi-
mum number of unsatisfied clauses, respectively. This paper overviews the com-
plete resolution and tableau-style calculi that have been defined to solve MaxSAT
and MinSAT, as well as their variants with hard and weighted soft clauses. These
calculi provide an exact approach to solving MaxSAT and MinSAT problems.

1 Introduction

The Propositional Satisfiability problem (SAT) is the problem of deciding if there exists
a truth assignment for a given propositional formula in conjunctive normal form (CNF)
that evaluates the formula to true. This paper overviews inference systems of two opti-
mization variants of SAT: Maximum Satisfiability (MaxSAT), which is the problem of
finding a truth assignment that minimizes the number of unsatisfied clauses in a multi-
set of clauses, and Minimum Satisfiability (MinSAT), which is the problem of finding
a truth assignment that maximizes the number of unsatisfied clauses. Notice that min-
imizing (maximizing) the number of unsatisfied clauses is equivalent to maximizing
(minimizing) the number of satisfied clauses.

The inference rules applied in SAT are sound if they preserve satisfiability. Never-
theless, such rules are usually unsound in MaxSAT and MinSAT because they do not
preserve the minimum and the maximum number of unsatisfied clauses between the
premises and the conclusions, respectively. As a consequence, new complete inference
systems for MaxSAT and MinSAT have had to be defined (see e.g. [19,25,37,43]).

In SAT, the conclusions of an inference rule are commonly added to the formula
under consideration. In MaxSAT and MinSAT, after applying an inference rule, the
premises are replaced by the conclusions. This is so because, by adding the conclusions
to the formula under consideration, the number of unsatisfied clauses might increase and
so the minimum or maximum number of unsatisfied clauses could not be preserved.

Given a multiset of clauses φ and an inference system R, a refutation is a sequence
of multisets of clauses φ1, . . . , φn such that φ1 = φ, φi+1 has been derived from φi

(1 ≤ i < n) by applying an inference rule of R, and φn is formed by k occurrences

This work has been supported by the French Agence Nationale de la Recherche, reference
ANR-19-CHIA-0013-01, and Grant PID2019-111544GB-C21 funded by MCIN/AEI/10.13039/
501100011033. The last author was supported by mobility grant PRX21/00488 of the Spanish
Ministerio de Universidades.

c© Springer Nature Switzerland AG 2022
W. Ahrendt et al. (Eds.): The Logic of Software. A Tasting Menu of Formal Methods,
LNCS 13360, pp. 350–369, 2022.
https://doi.org/10.1007/978-3-031-08166-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08166-8_16&domain=pdf
https://doi.org/10.1007/978-3-031-08166-8_16

Inference in MaxSAT and MinSAT 351

of the empty clause. In MaxSAT, the soundness of R ensures that if there is a refuta-
tion from φ in which φn contains k empty clauses, then k is the minimum number of
clauses of φ that can be unsatisfied. The completeness of R ensures that if the minimum
number of clauses of φ that can be unsatisfied is k, then any refutation of φn contains
k empty clauses. In MinSAT, soundness and completeness are defined analogously but
considering the maximum number of unsatisfied clauses instead of the minimum.

This paper overviews the main complete inference systems that have been defined
for MaxSAT and MinSAT in recent years. It also updates the contents about MaxSAT
and MinSAT inference in our chapter of the Handbook of Satisfiability [36]. Firstly,
we present the existing resolution-style calculi and variable elimination algorithms for
MaxSAT and MinSAT [19,34,37]. Restrictions of these calculi are routinely applied in
MaxSAT and MinSAT branch-and-bound solvers [1,40,49]. Furthermore, they have
drawn the interest of the proof complexity community because they can become
stronger than general resolution [16,17,35]. Secondly, we present the existing tableau-
style calculi for MaxSAT and MinSAT [11,24,25,43]. They are interesting because
they solve non-clausal MaxSAT and MinSAT problems without requiring any clausal
form transformation that preserves the minimum or maximum number of unsatisfied
clauses [42,44].

Although this paper is mainly theoretical, it is worth mentioning that MaxSAT and
MinSAT offer a competitive generic problem solving formalism for combinatorial opti-
mization. For example, MaxSAT and MinSAT have been applied to solve optimization
problems in real-world domains as diverse as bioinformatics [26,52], circuit design and
debugging [59], combinatorial auctions [49], combinatorial testing [6,9], community
detection in complex networks [32], diagnosis [23], FPGA routing [62], planning [63],
scheduling [15] and team formation [50,51], among others.

We currently have highly optimized MaxSAT solvers, due in part to the existence of
an annual MaxSAT Evaluation (MSE) since 2006 [10,12]. The literature distinguishes
two types of exact MaxSAT algorithms: Branch-and-Bound (BnB) and SAT-based algo-
rithms. BnB algorithms apply restrictions of MaxSAT resolution and incorporate a
bounding procedure based on detecting disjoint inconsistent cores with unit propaga-
tion [36]. Recently, they also incorporate clause learning [46,47]. SAT-based algorithms
transform MaxSAT into a sequence of SAT instances that are solved with a Conflict-
Driven Clause Learning (CDCL) SAT solver [13]. Moreover, there are efficient local
search MaxSAT algorithms like SATLike 3.0 [20]. There has not been as much activity
in MinSAT as in MaxSAT, but there exist a few MinSAT solvers [2,8,48].

This paper is structured as follows. Section 2 introduces definitions and nota-
tions used through the document. Section 3 reviews the MaxSAT resolution rule and
describes variable elimination algorithms for MaxSAT and MinSAT. Section 4 reviews
tableau-style calculi for MaxSAT and MinSAT. Finally, Sect. 5 presents some conclud-
ing remarks.

2 Preliminaries

A propositional formula is an expression constructed from propositional variables by
means of the propositional connectives ∧,∨,→ and ¬ in accordance with the following

352 C. M. Li and F. Manyà

rules: i) each propositional variable is a propositional formula; and ii) if A and B are
propositional formulas, then so are (A∧B), (A∨B), (A → B), and ¬A. In the sequel,
¬A is also denoted by A.

A truth assignment is a mapping that assigns 0 (false) or 1 (true) to each proposi-
tional variable. A propositional formula is satisfied by an assignment if it is true under
the usual truth-functional interpretation of the connectives and the truth values assigned
to the variables. Given a multiset of propositional formulas φ, non-clausal MaxSAT
(MinSAT) is the problem of finding an assignment of φ that minimizes (maximizes) the
number of unsatisfied formulas. We use multisets of formulas instead of sets of formu-
las because duplicated formulas cannot be collapsed into a single formula because then
the minimum (maximum) number of unsatisfied formulas might not be preserved.

Clauses are a particular type of propositional formulas defined as follows. A clause
is a disjunction of literals, where a literal li is a variable xi or its negation xi. A clausal
MaxSAT instance is a multiset of clauses. Non-clausal MaxSAT (MinSAT) is called
clausal MaxSAT (MinSAT) when all the formulas in the multiset are clauses.

A weighted formula is a pair (A,w), where A is a propositional formula and w,
its weight, is a positive number. If A is a clause, (A,w) is a weighted clause. Given
a multiset of weighted formulas (clauses) φ, non-clausal (clausal) weighted MaxSAT
(MinSAT) is the problem of finding an assignment of φ that minimizes (maximizes) the
sum of weights of unsatisfied formulas (clauses).

We can distinguish between hard and soft formulas. Soft formulas can be consid-
ered as formulas with weight 1, and hard formulas can be considered as formulas with
infinite weight, and are usually represented with weight �. Given a multiset of hard and
soft formulas (clauses) φ, non-clausal (clausal) partial MaxSAT (MinSAT) is the prob-
lem of finding an assignment of φ that satisfies all the hard formulas and minimizes
(maximizes) the number of unsatisfied soft formulas (clauses).

The weighted partial MaxSAT (MinSAT) problem is the combination of partial
MaxSAT (MinSAT) and weighted MaxSAT (MinSAT). Given a multiset φ composed
of hard formulas (clauses) and weighted soft formulas (clauses), non-clausal (clausal)
weighted partial MaxSAT (MinSAT) is the problem of finding an assignment of φ that
satisfies all the hard formulas (clauses) and minimizes (maximizes) the sum of weights
of unsatisfied soft formulas (clauses).

3 Resolution-Style Calculi for MaxSAT and MinSAT

This section first presents the MaxSAT resolution rule and describes a variable elimina-
tion algorithm for MaxSAT. It also contains the extension of MaxSAT resolution to deal
with weighted and hard clauses. Then, it describes how the MaxSAT resolution rule can
be used to define a variable elimination algorithm for MinSAT.

It is important to highlight that the MaxSAT resolution rule is also sound for Min-
SAT because it preserves the number of unsatisfied clauses between the premises and
the conclusions. The rule would be unsound for MinSAT if it only preserved the maxi-
mum but not the minimum number of unsatisfied clauses. Actually, any transformation
that preserves the number of unsatisfied clauses is valid for both MaxSAT and MinSAT.

Inference in MaxSAT and MinSAT 353

3.1 Resolution for MaxSAT

The resolution rule of Robinson [58] is unsound for MaxSAT. Accordingly, Bonet
et al. [18,19] and Heras and Larrosa [29] defined, independently, the followingMaxSAT
resolution rule:

x ∨ a1 ∨ · · · ∨ as

x ∨ b1 ∨ · · · ∨ bt

a1 ∨ · · · ∨ as ∨ b1 ∨ · · · ∨ bt
x ∨ a1 ∨ · · · ∨ as ∨ b1
x ∨ a1 ∨ · · · ∨ as ∨ b1 ∨ b2
· · ·
x ∨ a1 ∨ · · · ∨ as ∨ b1 ∨ · · · ∨ bt−1 ∨ bt
x ∨ b1 ∨ · · · ∨ bt ∨ a1

x ∨ b1 ∨ · · · ∨ bt ∨ a1 ∨ a2

· · ·
x ∨ b1 ∨ · · · ∨ bt ∨ a1 ∨ · · · ∨ as−1 ∨ as

We say that the rule cuts the variable x. This inference rule concludes, apart from
the conclusion where a variable has been cut, some additional clauses that contain one
of the premises as subclause and are known as compensation clauses. Compensation
clauses ensure that the number of unsatisfied clauses is preserved between the premises
and the conclusions.

The tautologies concluded by the rule can be omitted and repeated literals in a clause
can be collapsed into one. For example, we derive the empty clause (�) from x1 and
x1, x2 from x1 ∨ x2 and x1 ∨ x2, and x2 ∨ x3, x1 ∨ x2 ∨ x3 and x1 ∨ x2 ∨ x3 from
x1 ∨ x3 and x1 ∨ x2.

In the sequel, we use the following more compact representation of the rule [34]:

x ∨ A
x ∨ B

A ∨ B
x ∨ A ∨ B
x ∨ A ∨ B

where A = a1 ∨ · · · ∨ as and B = b1 ∨ · · · ∨ bt are disjunctions of literals. Note that
A and B are not in clausal form [42]. In MaxSAT, the clausal forms of A and B are
A = {a1, a1∨a2, · · · , a1∨· · ·∨as−1∨as} andB = {b1, b1∨b2, · · · , b1∨· · ·∨bt−1∨bt}.

Note that an instance of MaxSAT resolution not only depends on the two premises
and the cut variable. It also depends on the order of the literals in the premises. More-
over, this rule concludes one new clause not containing the variable x, except when this
clause is a tautology.

The completeness of the calculus relies on the following notion of saturation: A
multiset of clauses C is saturated w.r.t. variable x if, for every pair of clauses c1 = x∨A
and c2 = x ∨ B of C, there is a literal l such that l is in A and l is in B. A multiset of
clauses C′ is a saturation of C w.r.t. x if C′ is saturated w.r.t. x and C′ can be obtained
from C by applying the inference rule resolving x finitely many times.

354 C. M. Li and F. Manyà

The application of MaxSAT resolution to two clauses of the form x ∨ A and x ∨ B
of a multiset of clauses C that is saturated w.r.t. x only introduces compensation clauses
because A ∨ B is a tautology. Note that the saturation of a multiset is not unique.
For instance, the multiset {x1, x1 ∨ x2, x1 ∨ x3} has two possibles saturations w.r.t.
variable x1: the multiset {x2, x2 ∨ x3, x1 ∨ x2 ∨ x3, x1 ∨ x2 ∨ x3}, and the multiset
{x3, x2 ∨x3, x1 ∨x2 ∨x3, x1 ∨x2 ∨x3}. Nevertheless, completeness is independent
of the saturation selected.

Bonet et al. [18,19] proved the completeness of MaxSAT resolution and proposed
an exact variable elimination algorithm for MaxSAT. Figure 1 shows the pseudo-code
of the algorithm: Given an input multiset of clauses C with n different variables, the
algorithm returns the minimum number m of clauses of C that can be unsatisfied, and
an optimal MaxSAT assignment I . Function saturation(C, x) computes a saturation
of C w.r.t. x. Function partition(C, xi) partitions C into two multiset, Ci and Di so
that Ci contains the clauses without occurrences of variable xi, and Di contains the
clauses with occurrences of xi. Function max extension(xi, I,Di) computes a truth
assignment for xi as follows: if I satisfies all the clauses in Di, including the case in
which Di = {}, then the function returns false (xi is set to false, but if xi is set to true,
it also works); otherwise, either all the clauses of the form xi ∨ A are satisfied or all the
clauses of the form xi ∨ B are satisfied. In this case, xi is set in such a way that all the
clauses in Di become satisfied.

Fig. 1. An exact variable elimination algorithm for MaxSAT

The algorithm has two parts. In the first part, the algorithm successively saturates
w.r.t. all the variables occurring in the input multiset. Once the current multiset is sat-
urated w.r.t. a variable xi, it partitions the resulting multiset into two multisets: Ci and
Di. The multiset Ci contains the clauses without occurrences of xi, and the multi-
set Di contains the clauses with occurrences of xi. The algorithm continues saturat-
ing Ci w.r.t. one of the remaining variables, and ignores Di. This process continues
until all the variables are eliminated. At the end, Cn does not contain any variable,
and the number of empty clauses in Cn is the returned minimum number of unsatis-
fied clauses. In the second part, the algorithm builds an optimal assignment as function
max extension(xi, I,Di) states.

Inference in MaxSAT and MinSAT 355

Example 1. Let φ = {x1, x1 ∨ x2, x1 ∨ x3, x3} be a multiset of clauses. Resolving
the first two clauses, we get {x2, x1 ∨ x2, x1 ∨ x3, x3}. Resolving the second and third
clause, we get a saturation of φ w.r.t. x1: {x2, x2 ∨ x3, x1 ∨ x2 ∨ x3, x1 ∨ x2 ∨ x3, x3}.
Hence, C1 = {x2, x2 ∨ x3, x3} and D1 = {x1 ∨ x2 ∨ x3, x1 ∨ x2 ∨ x3}. Resolving
the first two clauses of C1, we get {x3, x2 ∨ x3, x3}, which is a saturation of C1 w.r.t.
x2. Hence, C2 = {x3, x3} and D2 = {x2 ∨ x3}. Resolving {x3, x3}, we get the
empty clause. Hence, C3 = {�} and D3 = {}. So, the minimum number of unsatisfied
clauses is 1, and x3 �→ false, x2 �→ false, x1 �→ true is an optimal assignment.

The idea behind the previous variable elimination algorithm is the following: Each
clause x ∨ D in a saturation w.r.t. a variable x fulfills that, for each clause x ∨ D′, there
is a literal l in D′ such that l in D; and each clause x ∨ D′ fulfills that, for each clause
x ∨ D, there is a literal l in D such that l in D′. Thus, any assignment of a saturation
w.r.t. x can be transformed into an assignment that satisfies all the clauses containing x
and x if we assign correctly the value of x. In the case of MaxSAT, we saturate w.r.t. a
variable x and then remove the clauses containing x and x, because we know that any
truth assignment that does not satisfy the clauses containing x and x will satisfy such
clauses by flipping the value of x. In particular, any optimal MaxSAT assignment of
the clauses not containing x and x can become an optimal MaxSAT assignment of the
whole saturation w.r.t. x by assigning correctly the value of x. Because of that, after
saturating w.r.t. a variable x, all the clauses containing variable x can be ignored. At the
end, we obtain a multiset containing only empty clauses, and we have that the union of
all the ignored clauses is satisfiable.

The proof complexity of resolution has been deeply investigated. For example, we
know that there exists no polynomial-size resolution proof of the pigeon hole principle
(PHP) [28]. Nevertheless, Ignatiev et al. [31] showed that there exist polynomial-size
MaxSAT resolution proofs of PHP if PHP is encoded as a Partial MaxSAT instance
using the dual rail encoding. Indeed, the combination of the dual rail encoding and
MaxSAT resolution is a stronger proof system than either general resolution or conflict-
driven clause learning [16]. More recently, it has been shown that MaxSAT resolution,
when combined with certain rules, also produces polynomial-size MaxSAT resolution
proofs of PHP. For example, MaxSAT resolution with the split rule (replace clause C
with x∨C and x∨C) produces polynomial-size proofs of PHP, and this does not happen
if MaxSAT resolution is replaced with resolution [17,35]. Interestingly, the combination
of MaxSAT resolution with the split rule has also been used to create MaxSAT proofs
from SAT refutations [57]. The challenge is to apply all these results to solve SAT more
efficiently using MaxSAT approaches [7].

MaxSAT resolution has been extended to the multiple-valued clausal forms known
as signed CNF formulas [14]. The defined signed MaxSAT resolution rules are com-
plete and provide a logical framework for weighted constraint satisfaction problems
(WCSP) [4]. Besides, some restrictions of the rules enforce the defined local consis-
tency properties for WCSPs in a natural way [3,5]. A complete MinSAT resolution
calculus for signed CNF formulas was defined in [45].

From a practical point of view, restrictions of MaxSAT resolution are routinely used
in BnB MaxSAT and MinSAT solvers like ahmaxsat [1], akmaxsat [33], MaxSatz [40],
MiniMaxSat [30] and MinSatz [48,49] to simplify the formulas at each node of

356 C. M. Li and F. Manyà

the search tree and derive empty clauses. The application of MaxSAT resolution in
BnB MaxSAT solvers is commonly combined with a lower bounding procedure that
detects disjoint inconsistent subsets with unit propagation [38,39]. Narodytska and Bac-
chus [55] used MaxSAT resolution in SAT-based MaxSAT solvers, avoiding the use of
cardinality constraints and obtaining very competitive results on industrial instances.

For ease of presentation, we have presented above the resolution rule for the
unweighted case. The weighted version of the MaxSAT resolution rule is as follows:

(x ∨ A, u)
(x ∨ B,w)
(A ∨ B,min(u,w))
(x ∨ A ∨ B,min(u,w))
(x ∨ A ∨ B,min(u,w))
(x ∨ A ∨ B, u − min(u,w))
(x ∨ A ∨ B,w − min(u,w))

Conclusions with weight zero are omitted. A clause with weight w is equivalent to
having w copies of that clause, and the weighted rule collapses min(u,w) applications
of the unweighted rule.

In the partial case, we consider that hard clauses have weight � and apply the fol-
lowing rules:

(x ∨ A, u)
(x ∨ B,�)
(A ∨ B, u)
(x ∨ A ∨ B, u)
(x ∨ B,�)

(x ∨ A,�)
(x ∨ B,w)
(A ∨ B,w)
(x ∨ A,�)
(x ∨ A ∨ B,w)

(x ∨ A,�)
(x ∨ B,�)
(A ∨ B,�)
(x ∨ A,�)
(x ∨ B,�)

Note that the derivation of an empty clause from two hard unit clauses corresponds
to an unfeasible solution. This corresponds to the derivation of (�,�), which is com-
monly represented by �.

3.2 Resolution for MinSAT

MaxSAT resolution is sound for MinSAT because it preserves the number of unsatisfied
clauses between the premises and the conclusions. Nevertheless, the elimination of vari-
ables must be defined differently to get completeness [37]. After saturating a MinSAT
instance w.r.t. a variable xi, we partition the saturation into two multisets as in MaxSAT:
the multiset Ci of clauses without occurrences of xi, and the multiset Di of clauses
with occurrences of xi. In the next step, we consider the MinSAT instance φ′ formed
by both Ci and the multiset of clauses, say Fi, resulting of removing all the occurrences
of the literals xi and xi in Di; i.e., Fi := {A |xi∨A ∈ Di}∪{B |xi∨B ∈ Di}. It was
proved in [37] that the MinSAT problem for φ can be reduced to the MinSAT problem
for φ′ = Ci ∪ Fi. In this way, after saturating all the variables, the number of empty
clauses derived is equal to the maximum number of clauses that can be unsatisfied.

Inference in MaxSAT and MinSAT 357

Fig. 2. An exact variable elimination algorithm for MinSAT

Figure 2 shows the pseudo-code of the exact variable elimination algorithm for Min-
SAT proposed in [37]. Given an input multiset of clauses C with n different vari-
ables, the algorithm returns the maximum number m of clauses of C that can be
unsatisfied, and an optimal MinSAT assignment I . Functions saturation(C, x) and
partition(C, xi) are defined as in MaxSAT. Function min extension(xi, I,Di) com-
putes a truth assignment for xi as follows: if I unsatisfies a clause of Di by setting xi

to false, then the function returns false; otherwise it returns true.
There are two crucial differences between the proposed MaxSAT andMinSAT algo-

rithms: The first one is that, after saturating w.r.t. the variable under consideration, the
algorithm continues saturating using the multiset Ci∪Fi instead of the multiset Ci. The
second one is the way of computing an optimal assignment.

Example 2. We consider again the multiset of clauses φ = {x1, x1∨x2, x1∨x3, x3} of
Example 1. Resolving the first two clauses, we get {x2, x1∨x2, x1∨x3, x3}. Resolving
the second and third clause, we get a saturation of φ w.r.t. x1: {x2, x2 ∨ x3, x1 ∨ x2 ∨
x3, x1∨x2∨x3, x3}. Hence,C1 = {x2, x2∨x3, x3},D1 = {x1∨x2∨x3, x1∨x2∨x3},
and F1 = {x2 ∨ x3, x2 ∨ x3}. So, the problem reduces to find the maximum number of
unsatisfied clauses in C1 ∪ F1 = {x2, x2 ∨ x3, x2 ∨ x3, x2 ∨ x3, x3}.

We now resolve the second and fourth clause, and get {x2, x3, x2 ∨ x3, x3}. We
resolve the first and third clause, and get a saturation of C1 ∪ F1 w.r.t. x2: {x3, x2 ∨
x3, x3, x3}. Hence, C2 = {x3, x3, x3}, D2 = {x2 ∨ x3}, and F2 = {x3} So, the
problem reduces to find the maximum number of unsatisfied clauses in C2 ∪ F2 =
{x3, x3, x3, x3}.

Resolving the two first and the two last clauses of {x3, x3, x3, x3}, we get two
empty clauses. Hence, C3 = {�,�}, D3 = {}, and F3 = {}. So, the maximum
number of unsatisfied clauses is 2, and x3 �→ true, x2 �→ true, x1 �→ true is an
optimal assignment.

358 C. M. Li and F. Manyà

Table 1. α-formulas and β-formulas.

α α1 α2

A ∧ B A B

(A ∨ B) A B

(A → B) A B

β β1 β2

A ∨ B A B

(A ∧ B) A B

A → B A B

4 Tableau-Style Calculi for MaxSAT and MinSAT

This section first introduces basic concepts of tableaux for SAT, then presents the
tableau-style calculi for clausal and non-clausal MaxSAT defined so far and, finally,
describes how MaxSAT tableaux can be used to solve MinSAT.

4.1 Tableau Calculi for SAT

In the uniform notation, all propositional formulas of the form (A ◦ B) and (A ◦ B),
where A and B denote propositional formulas and ◦ ∈ {∨,∧,→}, are grouped into
two categories so that the presentation and proofs are simplified: Those that act con-
junctively, which are called α-formulas, and those that act disjunctively, which are
called β-formulas. The different formulas in each category are displayed in Table 1.
To complete a taxonomy of propositional formulas, excluding literals, we also need the

propositional formulas of the form A.
Note that α is logically equivalent to α1 ∧ α2, β is logically equivalent to β1 ∨ β2

and A is logically equivalent to A. In SAT tableaux, these equivalences are used to
reduce the problem of finding a satisfying assignment of α to that of finding a satisfying
assignment of both α1 and α2, of β to that of finding a satisfying assignment of β1 or β2

and of A to that of finding a satisfying assignment of A. Thus, using the expansion rules
of Table 2 we obtain a complete tableau calculus for non-clausal SAT. We introduced
the contradiction rule (�-rule), where l denotes a literal, because it will be necessary in
MaxSAT; in the literature, applying this rule is usually referred to as closing the branch.
Note that the uniform notation allows one to concisely define tableau rules for arbitrary
propositional formulas.

The tableau method is used to determine the satisfiability of a given set of propo-
sitional formulas [22,27,60]. It starts creating an initial tableau composed of a single
branch that has a node for each formula in the input set of formulas. Then, it applies the
expansion rules of Table 2 until a contradiction is derived in each branch (in this case,
the input set of formulas is unsatisfiable) or a branch is saturated without deriving a
contradiction (in this case, the input set of formulas is satisfiable). A branch is saturated
in a SAT tableau when all the possible applications of the expansion rules have been
applied in that branch.

Inference in MaxSAT and MinSAT 359

Table 2. Tableau expansion rules for SAT

α

α1

α2

α-rule

β

β1 β2

β-rule

A

A

¬-rule

l

l

�
�-rule

4.2 Tableau Calculi for Clausal MaxSAT

The first tableau calculus for MaxSAT defined in the literature [41] limits the input to
multisets of clauses; i.e., it is a clausal MaxSAT tableau calculus. Thus, it does not
contain the α- and ¬-rule. It consists of the β- and �-rule. In fact, as all the formulas
in the tableau are clauses and the formulas of type β are always disjunctions of literals
of the form l1 ∨ l2 ∨ · · · ∨ ln, the previous β-rule is replaced with the following n-ary
β-rule:

l1 ∨ l2 ∨ · · · ∨ ln

l1 l2 · · · ln

n-ary β-rule

Note that the n-ary β-rule collapses n − 1 applications of the β-rule over the clause
l1 ∨ l2 ∨ · · · ∨ ln.

The expansion rules are applied differently in MaxSAT: Firstly, the application of
expansion rules in a branch cannot stop once a contradiction is detected. Since the aim
of MaxSAT is to derive all the possible contradictions, the application of rules in a
branch must continue until no more expansion rules can be applied. Thus, we will say
that a tableau is completed when all the branches are saturated. Secondly, the applica-
tion of rules in SAT leads to accumulate the newly added unit clauses in the branch in
such a way that satisfiability is preserved in at least one branch when the input set of
clauses is satisfiable. However, the addition of unit clauses can lead to wrong MaxSAT
solutions. In clause MaxSAT tableaux, the goal should be to keep the minimum num-
ber of unsatisfied clauses in at least one branch and not to decrease that number in the
rest of branches. To this end, we must maintain active and inactive clauses in a branch.
Once a clause has been used as a premise of a rule in a branch, it cannot be used again in
that branch and becomes inactive. For example, thanks to distinguishing between active
and inactive clauses, we will detect one contradiction in the multiset of unit clauses
{x1,¬x1,¬x1} and two in {x1, x1,¬x1,¬x1}. Without that, we could detect two con-
tradictions in the first case, obtaining a wrong answer. Indeed, the inference rules for
MaxSAT can be seen as rewriting rules.

Figure 3 shows the differences between clausal SAT and clausal MaxSAT tableaux
using the multiset of clauses is φ = {x1, x2, x3, x1 ∨ x2, x1 ∨ x3}. In the SAT case,
it is enough with applying the β-rule to x1 ∨ x2. Since a contradiction is detected in
each branch, the input multiset of formulas is declared unsatisfiable. However, in the

360 C. M. Li and F. Manyà

MaxSAT case, the β-rule must also be applied to x1 ∨ x3 and all the possible contra-
dictions must be detected to complete the tableau. Note that in the leftmost branch of
the clausal MaxSAT tableau there is just one contradiction because we have just one
occurrence of x1, which became inactive after detecting the first contradiction. In other
words, every literal can only be used once to detect a contradiction.

Fig. 3. Completed clausal SAT tableau (left) and completed clausal MaxSAT tableau (right) when
the input multiset of clauses is φ = {x1, x2, x3, x1 ∨ x2, x1 ∨ x3}. The left tableau proves that
φ is unsatisfiable and the right tableau proves that the minimum number of unsatisfied clauses in
φ is 1.

The soundness of the previous clausal MaxSAT tableau calculus states that the
β- and �-rule preserve the minimum number of unsatisfied clauses between a tableau
and its extension; in particular, the β-rule preserves that number in at least one branch
and does not decrease it in the rest of branches. So, once all branches have been sat-
urated, the minimum number of contradictions derived among the branches of a com-
pleted tableau is the minimum number of unsatisfied clauses in the input multiset of
clauses. The completeness states that any completed tableau for a multiset of clauses φ,
whose minimum number of clauses that can be unsatisfied in it is k, has a branch with
k contradictions and the rest of branches contain at least k contradictions [41]. Thus, in
Fig. 3, the right tableau proves that the minimum number of unsatisfied clauses in φ is
1. This tableau calculus inspired the creation of a complete natural deduction calculus
for clausal MaxSAT [21].

4.3 Tableau Calculi for Non-clausal MaxSAT

If we move to deal with arbitrary propositional formulas (i.e., non-clausal MaxSAT),
the first drawback is that the α-rule does not preserve the minimum number of unsat-
isfied formulas as the β-rule does for clauses. Assume that we want to solve the non-
clausal MaxSAT instance {x1, x2, x1 ∧ x2}, whose single optimal assignment is the
one that sets x1 and x2 to true and only unsatisfies x1 ∧ x2. If we apply the α-rule to

Inference in MaxSAT and MinSAT 361

x1 ∧ x2, we add two nodes, labelled with x1 and x2, to the initial tableau. Then, we
can derive two contradictions by applying the �-rule to {x1, x1} and {x2, x2}, but the
minimum number of formulas unsatisfied by the optimal assignment is just one. This
counterexample shows that the α-rule is unsound in MaxSAT. So, we need to define a
new and sound α-rule as a first step towards getting a sound and complete non-clausal
MaxSAT calculus.

Table 3. Tableau expansion rules for non-clausal MaxSAT

α

� α1

α2

α-rule

β

β1 β2

β-rule

A

A

¬-rule

l

l

�
�-rule

The first defined complete non-clausal MaxSAT tableau calculus is formed by the
expansion rules in Table 3 [43]. Note that all the rules preserve the number of premises
unsatisfied by an assignment I in at least one branch and do not decrease that number in
the other branch (if any). In particular, in the α-rule, we have that if I unsatisfies α, the
left branch contains one contradiction and α1 and α2 cannot be used to derive any other
contradiction in that branch because they are not expanded; moreover, I unsatisfies α1

or α2 (or both) on the right branch. On the other hand, if I satisfies α, then I also
satisfies α1 and α2 on the right branch. A similar non-clausal MaxSAT tableau calculus
was later proposed by Fiorino [24].

Example 3. We can determine the minimum number of unsatisfied formulas in the mul-
tiset φ = {x1, x2, x1 ∧ x2} using the previous tableau calculus. Figure 4 displays how
the tableau is constructed. We start by constructing the initial tableau (the leftmost
tableau) and then apply the α-rule to x1 ∧ x2, getting as a result the second tableau
in the figure. The leftmost branch is saturated and we apply the �-rule to {x1, x1} on
the rightmost branch, getting as a result the third tableau. Finally, we apply the �-rule
to {x2, x2} on the same branch and get the rightmost tableau in the figure. Since the
minimum number of boxes among the branches of the last tableau is 1, the minimum
number of formulas that can be unsatisfied in φ is 1.

Table 4 displays the expansion rules for weighted partial MaxSAT formulas. In all
the rules, the premises with weight � remain active after the application of a rule
because hard formulas must be satisfied by any optimal assignment. For hard clauses,
the α-, β- and ¬-rule are the same as in SAT. The �-rule derives � when a contradic-
tion is derived from two hard formulas; in this case, an unfeasible solution has been
detected and the search is stopped in the current branch. For weighted soft clauses, the
α-, β- and ¬-rule have just one premise and the weight associated with the premise is
transferred to the conclusions. If the �-rule has two weighted soft premises, the con-
tradiction takes as weight the minimum of the weights associated with the premises
(min(w1, w2)). If the �-rule has a soft premise (A,w) and a hard premise (A,�), then

362 C. M. Li and F. Manyà

Fig. 4. A tableaux for the non-clausal MaxSAT instance {x1, x2, x1 ∧ x2}.

Table 4. Tableau expansion rules for weighted partial MaxSAT

(α, �)

(α1, �)

(α2, �)

(α, w)

(�, w) (α1, w)

(α2, w)

α-rule

(β, �)

(β1, �) (β2, �)

(β, w)

(β1, w) (β2, w)

β-rule

(A, �)

(A, �)

(A, w)

(A, w)

¬-rule

(A, �)

(A, �)

�

(A, �)

(A, w)

(�, w)

(A, �)

(A, w1)

(A, w2)

(�,min(w1, w2))

(A, w1 − min(w1, w2))

(A, w2 − min(w1, w2))

�-rule

(�, w) is derived, (A,w) becomes inactive and (A,�) remains active. In the weighted
case, when a branch has repeated occurrences of a formula A, say (A,w1), . . . , (A,ws),
such occurrences can be replaced with the single formula (A,w1+· · ·+ws). Moreover,
the cost of a saturated weighted branch is the sum of weights of the boxes that appear
in the branch, and the cost of a completed weighted tableau is the minimum cost among
all its branches.

Example 4. Let φ = H ∪ S be a non-clausal partial MaxSAT instance, where H is the
multiset of hard formulas and S is the multiset of soft formulas. Given the multiset of
propositional formulas {x1 ∧ x2 ∧ x3, x1, x2, x3}, we analyze the different tableaux
obtained when we vary the formulas declared as hard and soft.

The first tableau of Fig. 5 displays a completed tableau when all the formulas are
soft; in this case φ = H ∪ S = ∅ ∪ {x1 ∧ x2 ∧ x3, x1, x2, x3}.

The second tableau displays a completed tableau when x1 ∧ x2 ∧ x3 is hard and the
rest of formulas are soft; in this case φ = H ∪ S = {x1 ∧ x2 ∧ x3} ∪ {x1, x2, x3}. We
applied the α-rule of Table 2 because the premise is hard.

Inference in MaxSAT and MinSAT 363

Fig. 5. Examples of non-clausal partial MaxSAT tableaux.

The third tableau displays a completed tableau when x1, x2 and x3 are hard, and
x1 ∧ x2 ∧ x3 is soft; in this case φ = H ∪ S = {x1, x2, x3} ∪ {x1 ∧ x2 ∧ x3}. We
applied the α-rule of Table 3 because the premise is soft.

The fourth tableau displays a completed tableau when x1 ∧x2 ∧x3 and x1 are hard,
and x2 and x3 are soft; in this case φ = H ∪ S = {x1 ∧ x2 ∧ x3, x1} ∪ {x2, x3}.
Note that the single branch of the tableau is pruned as soon as the �-rule has two hard
premises (x1 and x1). We use a filled box to denote that there is no feasible solution.

In the first case, the minimum number of unsatisfied soft formulas is 1. In the second
case, the minimum number of unsatisfied soft formulas among the assignments that
satisfy the hard formulas is 3. In the third case, the minimum number of unsatisfied soft
formulas among the assignments that satisfy the hard formulas is 1. In the fourth case,
there is no optimal solution because the subset of hard formulas is unsatisfiable.

Example 5. Let φ = {(x1 ∧ x3,�), (x1 → x2, 3), (x1, 5), (x2, 1), (x3, 2)} be a non-
clausal weighted partial MaxSAT instance, where the first formula is hard and the rest
of formulas are soft. Figure 6 displays a completed tableau for φ. This tableau has been
obtained by applying the expansion rules for non-clausal weighted partial MaxSAT
explained above. The cost of the left branch is 10 and the cost of the right branch is 8.
Thus, the minimum sum of weights of unsatisfied soft formulas among the assignments
that satisfy the hard formula is 8.

364 C. M. Li and F. Manyà

Fig. 6. Example of non-clausal weighted partial MaxSAT tableau.

4.4 Tableau Calculi for MinSAT

Non-clausal MaxSAT tableaux can be used to solve MinSAT taking into account
the following property: Any optimal MaxSAT assignment of the multiset of propo-
sitional formulas φ = {φ1, . . . , φm} is an optimal MinSAT assignment of the mul-
tiset φ′ = {φ1, . . . , φm}. Indeed, if an optimal MaxSAT assignment I of φ =
{φ1, . . . , φm} unsatisfies k formulas, then I is an optimal MinSAT assignment of
φ′ = {φ1, . . . , φm} that satisfies k formulas. Thus, to find an optimal MinSAT solu-
tion of φ′ = {φ1, . . . , φm}, we must build a completed non-clausal MaxSAT tableau of
φ = {φ1, . . . , φm}. If the cost of the non-clausal MaxSAT tableau is k, the maximum
number of formulas that can be unsatisfied in φ′ is m − k.

Example 6. Let φ = {x1 ∧ x2, x3, x1 ∨ x2 ∨ x3} be a non-clausal MinSAT
instance. Figure 7 displays a completed non-clausal MaxSAT tableau for {x1 ∨
x2, x3, (x1 ∨ x2 ∨ x3)}. Since the cost of the non-clausal MaxSAT tableau is 1, the
maximum number of clauses that can be unsatisfied in φ is 3 − 1 = 2.

Fiorino [25] defined a non-clausal MinSAT tableau calculus that derives the mini-
mum number of satisfied formulas instead of the maximum number of unsatisfied for-
mulas. Interestingly, his α-rule for MinSAT is similar to our β-rule for MaxSAT and his
β-rule for MinSAT is similar to our α-rule for MaxSAT.

Inference in MaxSAT and MinSAT 365

Fig. 7. A tableau for the non-clausal MinSAT instance φ = {x1 ∧ x2, x3, x1 ∨ x2 ∨ x3}.

5 Conclusions

We presented an overview of the existing complete calculi for MaxSAT and MinSAT,
as well as for their variants with hard and (weighted) soft clauses. All these results
allow us to better understand the logic behind MaxSAT and MinSAT, and provide a
new approach to investigating these problems from a different perspective. The proof
complexity results achieved suggest that MaxSAT and MinSAT calculi might be useful
to create a SAT solver that exploits a proof system stronger than resolution.

A reviewer pointed out a curious reduction from the decision version of MaxSAT
to the SAT problem of the Łukasiewicz infinite-valued logic [53]. This reduction opens
the door to solve MaxSAT with solvers for the Łukasiewicz infinite-valued logic based
on resolution and tableau methods such as [54,56,61].

Other future lines of work are the extension to first-order logic of the described
calculi, and the implementation and empirical comparison of the described inference
methods to assess their performance in solving specific combinatorial optimization
problems.

Acknowledgments. We thank the reviewers for their valuable comments and suggestions, which
greatly improved this manuscript. We also want to congratulate Reiner Hähnle on his 60th birth-
day, as well as thank Bernhard Beckert, Einar Broch Johnsen, Richard Bubel, and Wolfgang
Ahrendt for organizing a symposium and Festschrift in honor of Reiner Hähnle.

366 C. M. Li and F. Manyà

References

1. Abramé, A., Habet, D.: Ahmaxsat: description and evaluation of a branch and bound Max-
SAT solver. J. Satisfiability Boolean Modeling Comput. 9, 89–128 (2014)

2. Abramé, A., Habet, D.: Local search algorithm for the partial minimum satisfiability prob-
lem. In: Proceedings of the 27th IEEE International Conference on Tools with Artificial
Intelligence, ICTAI, Vietri sul Mare, Italy, pp. 821–827 (2015)

3. Ansótegui, C., Bonet, M.L., Levy, J., Manyà, F.: Inference rules for high-order consistency
in weighted CSP. In: Proceedings of the 22nd AAAI Conference on Artificial Intelligence,
Vancouver, Canada, pp. 167–172 (2007)

4. Ansótegui, C., Bonet, M.L., Levy, J., Manyà, F.: The logic behind weighted CSP. In: Pro-
ceedings of the 20th International Joint Conference on Artificial Intelligence, IJCAI-2007,
Hyderabad, India, pp. 32–37 (2007)

5. Ansótegui, C., Bonet, M.L., Levy, J., Manyà, F.: Resolution procedures for multiple-valued
optimization. Inf. Sci. 227, 43–59 (2013)

6. Ansótegui, C., Izquierdo, I., Manyà, F., Jiménez, J.T.: A Max-SAT-based approach to con-
structing optimal covering arrays. In: Proceedings of the 16th International Conference of the
Catalan Association for Artificial Intelligence, CCIA 2013, Vic, Spain. Frontiers in Artificial
Intelligence and Applications, vol. 256, pp. 51–59. IOS Press (2013)

7. Ansótegui, C., Levy, J.: Reducing SAT to Max2SAT. In: Proceedings of the International
Joint Conference on Artificial Intelligence, IJCAI-2021, Montreal, Canada, pp. 193–198
(2021)

8. Ansótegui, C., Li, C.M., Manyà, F., Zhu, Z.: A SAT-based approach to MinSAT. In: Pro-
ceedings of the 15th International Conference of the Catalan Association for Artificial Intel-
ligence, CCIA-2012, Alacant, Spain, pp. 185–189. IOS Press (2012)

9. Ansótegui, C., Manyà, F., Ojeda, J., Salvia, J.M., Torres, E.: Incomplete MaxSAT approaches
for combinatorial testing. J. Heuristics (2022, in press)

10. Argelich, J., Li, C.M., Manyà, F., Planes, J.: The first and second Max-SAT evaluations. J.
Satisfiability Boolean Modeling Comput. 4(2–4), 251–278 (2008)

11. Argelich, J., Li, C.M., Manyà, F., Soler, J.R.: Clause tableaux for maximum and minimum
satisfiability. Logic J. IGPL 29(1), 7–27 (2021)

12. Bacchus, F., Berg, J., Järvisalo, M., Martins, R.: MaxSAT Evaluation 2020: Solver and
Benchmark Descriptions. University of Helsinki, Department of Computer Science (2020)

13. Bacchus, F., Järvisalo, M., Ruben, M.: Maximum satisfiability. In: Biere, A., Heule, M., van
Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, pp. 929–991. IOS Press, Amsterdam
(2021)

14. Beckert, B., Hähnle, R., Manyà, F.: The SAT problem of signed CNF formulas. In: Basin, D.,
D’Agostino, M., Gabbay, D., Matthews, S., Viganò, L. (eds.) Labelled Deduction. Applied
Logic Series, vol. 17, pp. 61–82. Kluwer, Dordrecht (2000)

15. Bofill, M., Garcia, M., Suy, J., Villaret, M.: MaxSAT-based scheduling of B2B meetings. In:
Proceedings of the12th International Conference on Integration of AI and OR Techniques in
Constraint Programming, CPAIOR, Barcelona, Spain, pp. 65–73 (2015)

16. Bonet, M.L., Buss, S., Ignatiev, A., Marques-Silva, J., Morgado, A.: MaxSAT resolution
with the dual rail encoding. In: Proceedings of the 32nd AAAI Conference on Artificial
Intelligence, AAAI, New Orleans, Louisiana, USA, pp. 6565–6572 (2018)

17. Bonet, M.L., Levy, J.: Equivalence between systems stronger than resolution. In: Pulina, L.,
Seidl, M. (eds.) SAT 2020. LNCS, vol. 12178, pp. 166–181. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-51825-7 13

18. Bonet, M.L., Levy, J., Manyà, F.: A complete calculus for Max-SAT. In: Biere, A., Gomes,
C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 240–251. Springer, Heidelberg (2006). https://
doi.org/10.1007/11814948 24

https://doi.org/10.1007/978-3-030-51825-7_13
https://doi.org/10.1007/978-3-030-51825-7_13
https://doi.org/10.1007/11814948_24
https://doi.org/10.1007/11814948_24

Inference in MaxSAT and MinSAT 367

19. Bonet, M.L., Levy, J., Manyà, F.: Resolution for Max-SAT. Artif. Intell. 171(8–9), 240–251
(2007)

20. Cai, S., Lei, Z.: Old techniques in new ways: clause weighting, unit propagation and
hybridization for maximum satisfiability. Artif. Intell. 287, 103354 (2020)

21. Casas-Roma, J., Huertas, A., Manyà, F.: Solving MaxSAT with natural deduction. In: Pro-
ceedings of the 20th International Conference of the Catalan Association for Artificial Intel-
ligence, Deltebre, Spain. Frontiers in Artificial Intelligence and Applications, vol. 300, pp.
186–195. IOS Press (2017)

22. D’Agostino, M.: Tableaux methods for classical propositional logic. In: D’Agostino, M.,
Gabbay, D., Hähnle, R., Posegga, J. (eds.) Handbook of Tableau Methods, pp. 45–123.
Kluwer (1999)

23. D’Almeida, D., Grégoire, É.: Model-based diagnosis with default information implemented
through MAX-SAT technology. In: Proceedings of the IEEE 13th International Conference
on Information Reuse & Integration, IRI, Las Vegas, NV, USA, pp. 33–36 (2012)

24. Fiorino, G.: New tableau characterizations for non-clausal MaxSAT problem. Logic J. IGPL
(2021). https://doi.org/10.1093/jigpal/jzab012

25. Fiorino, G.: A non-clausal tableau calculus for MinSAT. Inf. Process. Lett. 173, 106167
(2022)

26. Guerra, J., Lynce, I.: Reasoning over biological networks using maximum satisfiability. In:
Proceedings of the 18th International Conference on Principles and Practice of Constraint
Programming, CP, Québec City, QC, Canada, pp. 941–956 (2012)

27. Hähnle, R.: Tableaux and related methods. In: Robinson, J.A., Voronkov, A. (eds.) Handbook
of Automated Reasoning, pp. 100–178. Elsevier and MIT Press (2001)

28. Haken, A.: The intractability of resolution. Theoret. Comput. Sci. 39, 297–308 (1985)
29. Heras, F., Larrosa, J.: New inference rules for efficient Max-SAT solving. In: Proceedings

of the National Conference on Artificial Intelligence, AAAI-2006, Boston/MA, USA, pp.
68–73 (2006)

30. Heras, F., Larrosa, J., Oliveras, A.: MiniMaxSAT: an efficient weighted Max-SAT solver. J.
Artif. Intell. Res. 31, 1–32 (2008)

31. Ignatiev, A., Morgado, A., Marques-Silva, J.: On tackling the limits of resolution in SAT
solving. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp. 164–183.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66263-3 11

32. Jabbour, S., Mhadhbi, N., Raddaoui, B., Sais, L.: A SAT-based framework for overlapping
community detection in networks. In: Proceedings of the 21st Pacific-Asia Conference on
Advances in Knowledge Discovery and Data Mining, Part II, PAKDD, Jeju, South Korea,
pp. 786–798 (2017)

33. Kuegel, A.: Improved exact solver for the weighted MAX-SAT problem. In: Proceedings of
Workshop Pragmatics of SAT, POS-10, Edinburgh, UK, pp. 15–27 (2010)

34. Larrosa, J., Heras, F.: Resolution inMax-SAT and its relation to local consistency in weighted
CSPs. In: Proceedings of the International Joint Conference on Artificial Intelligence, IJCAI-
2005, Edinburgh, Scotland, pp. 193–198. Morgan Kaufmann (2005)

35. Larrosa, J., Rollon, E.: Towards a better understanding of (partial weighted) MaxSAT proof
systems. In: Pulina, L., Seidl, M. (eds.) SAT 2020. LNCS, vol. 12178, pp. 218–232. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-51825-7 16

36. Li, C.M., Manyà, F.: MaxSAT, hard and soft constraints. In: Biere, A., Heule, M., van
Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, pp. 903–927. IOS Press (2021)

37. Li, C.M., Manyà, F.: An exact inference scheme for MinSAT. In: Proceedings of the
24th International Joint Conference on Artificial Intelligence, IJCAI-2015, Buenos Aires,
Argentina, pp. 1959–1965 (2015)

https://doi.org/10.1093/jigpal/jzab012
https://doi.org/10.1007/978-3-319-66263-3_11
https://doi.org/10.1007/978-3-030-51825-7_16

368 C. M. Li and F. Manyà

38. Li, C.M., Manyà, F., Planes, J.: Exploiting unit propagation to compute lower bounds in
branch and bound max-SAT solvers. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp.
403–414. Springer, Heidelberg (2005). https://doi.org/10.1007/11564751 31

39. Li, C.M., Manyà, F., Planes, J.: Detecting disjoint inconsistent subformulas for computing
lower bounds for Max-SAT. In: Proceedings of the 21st National Conference on Artificial
Intelligence, AAAI-2006, Boston/MA, USA, pp. 86–91 (2006)

40. Li, C.M., Manyà, F., Planes, J.: New inference rules for Max-SAT. J. Artif. Intell. Res. 30,
321–359 (2007)

41. Li, C.M., Manyà, F., Soler, J.R.: A clause tableaux calculus for MaxSAT. In: Proceedings
of the 25th International Joint Conference on Artificial Intelligence, IJCAI-2016, New York,
USA, pp. 766–772 (2016)

42. Li, C.M., Manyà, F., Soler, J.R.: Clausal form transformation in MaxSAT. In: Proceedings
of the 49th IEEE International Symposium on Multiple-Valued Logic, ISMVL, Fredericton,
Canada, pp. 132–137 (2019)

43. Li, C.M., Manyà, F., Soler, J.R.: A tableau calculus for non-clausal maximum satisfiability.
In: Cerrito, S., Popescu, A. (eds.) TABLEAUX 2019. LNCS (LNAI), vol. 11714, pp. 58–73.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29026-9 4

44. Li, C.M., Manyà, F., Soler, J.R., Vidal, A.: From non-clausal to clausal MinSAT. In: Pro-
ceedings of the 23rd International Conference of the Catalan Association for Artificial Intel-
ligence, CCIA, Lleida, Spain, pp. 27–36. IOS Press (2021)

45. Li, C.M., Xiao, F., Manyà, F.: A resolution calculus for MinSAT. Logic J. IGPL 29(1), 28–44
(2021)

46. Li, C.-M., Zhenxing, X., Coll, J., Manyà, F., Habet, D., He, K.: Boosting branch-and-bound
MaxSAT solvers with clause learning. AI Commun. (2021). https://doi.org/10.3233/AIC-
210178

47. Li, C.-M., Xu, Z., Coll, J., Manyà, F., Habet, D., He, K.: Combining clause learning and
branch and bound for MaxSAT. In: Proceedings of the 27th International Conference on
Principles and Practice of Constraint Programming, CP, Montpellier, France. LIPIcs, vol.
210, pp. 38:1–38:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)

48. Li, C.M., Zhu, Z., Manyà, F., Simon, L.: Minimum satisfiability and its applications. In:
Proceedings of the 22nd International Joint Conference on Artificial Intelligence, IJCAI-
2011, Barcelona, Spain, pp. 605–610 (2011)

49. Li, C.M., Zhu, Z., Manyà, F., Simon, L.: Optimizing with minimum satisfiability. Artif. Intell.
190, 32–44 (2012)

50. Manyà, F., Negrete, S., Roig, C., Soler, J.R.: A MaxSAT-based approach to the team compo-
sition problem in a classroom. In: Sukthankar, G., Rodriguez-Aguilar, J.A. (eds.) AAMAS
2017. LNCS (LNAI), vol. 10643, pp. 164–173. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-71679-4 11

51. Manyà, F., Negrete, S., Roig, C., Soler, J.R.: Solving the team composition problem in a
classroom. Fundamamenta Informaticae 174(1), 83–101 (2020)

52. Marques-Silva, J., Argelich, J., Graça, A., Lynce, I.: Boolean lexicographic optimization:
algorithms & applications. Ann. Math. Artif. Intell. 62(3–4), 317–343 (2011)

53. Mundici, D.: Ulam game, the logic of MaxSAT, and many-valued partitions. In: Prade, H.,
Dubois, D., Klement, E.P. (eds.) Logics and Reasoning about Knowledge, pp. 121–137.
Kluwer (1999)

54. Mundici, D., Olivetti, N.: Resolution and model building in the infinitely-valued calculus of
Łukasiewicz. Theoret. Comput. Sci. 200(1–2), 335–366 (1998)

55. Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSAT resolu-
tion. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence, Québec City,
Canada, pp. 2717–2723 (2014)

https://doi.org/10.1007/11564751_31
https://doi.org/10.1007/978-3-030-29026-9_4
https://doi.org/10.3233/AIC-210178
https://doi.org/10.3233/AIC-210178
https://doi.org/10.1007/978-3-319-71679-4_11
https://doi.org/10.1007/978-3-319-71679-4_11

Inference in MaxSAT and MinSAT 369

56. Olivetti, N.: Tableaux for Łukasiewicz infinite-valued logic. Stud. Logica. 73(1), 81–111
(2003)

57. Py, M., Cherif, M.S., Habet, D.: A proof builder for max-SAT. In: Li, C.-M., Manyà, F. (eds.)
SAT 2021. LNCS, vol. 12831, pp. 488–498. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-80223-3 33

58. Robinson, J.A.: A machine oriented logic based on the resolution principle. J. ACM 12(1),
23–41 (1965)

59. Safarpour, S., Mangassarian, H., Veneris, A.G., Liffiton, M.H., Sakallah, K.A.: Improved
design debugging using maximum satisfiability. In: Proceedings of 7th International Con-
ference on Formal Methods in Computer-Aided Design, FMCAD, Austin, Texas, USA, pp.
13–19 (2007)

60. Smullyan, R.: First-Order Logic. Dover Publications, New York, second corrected edition
(1995). First published 1968 by Springer-Verlag

61. Warner, H.: A new resolution calculus for the infinite-valued propositional logic of
Łukasiewicz. In: Proceedings of the International Workshop on First order Theorem Proving,
pp. 234–243 (1998)

62. Xu, H., Rutenbar, R.A., Sakallah, K.A.: sub-SAT: a formulation for relaxed boolean satisfi-
ability with applications in routing. IEEE Trans. CAD Integr. Circuits Syst. 22(6), 814–820
(2003)

63. Zhang, L., Bacchus, F.: MAXSAT heuristics for cost optimal planning. In: Proceedings of the
26th AAAI Conference on Artificial Intelligence, Toronto, Ontario, Canada, pp. 1846–1852
(2012)

https://doi.org/10.1007/978-3-030-80223-3_33
https://doi.org/10.1007/978-3-030-80223-3_33

Implications of Deductive Verification
on Research Quality

Field Study

Wojciech Mostowski(B)

Computing and Electronics for Real-Time Embedded Systems, School of Information
Technology, Halmstad University, Halmstad, Sweden

wojciech.mostowski@hh.se

Abstract. This short paper discusses a handful of perhaps obvious,
but important observations about KeY, the state-of-the-art deductive
verification tool for Java programs. Two light research ideas surface out
during the admittedly divergent discussion, both of which seem to be
little explored, at least in the given context. Not all projects survive for
as long as KeY does, it takes a good idea and dedicated people for that
to happen. Hence, the paper also contributes with a formally proved
correspondence between using KeY and being a good researcher. Apart
from that, considering the occasion to which this paper is dedicated, a
handful of memories about Prof. Hähnle are also shared.

1 Introduction

When we were invited to contribute to this Lecture Notes in Computer Science
volume, there was absolutely no hesitation as to accept it or not. The problem of
what to contribute with did, however, produce itself immediately. A requirement
that it should be technical enough was given, but a relatively lightweight nature
was also considered for an angle. Namely, it should be something to read over a
glass of (obviously not any!) wine rather than in the office, library, or in front
of a whiteboard with a marker in hand. Still, an urge to wake up1 the computer
and check the validity of presented propositions should be triggered too.

As one of the meeting points for us with Prof. Hähnle is the KeY verification
system, so it made perfect sense to begin there and put KeY on the stage. Since
the amount of research and technical contributions directly involving KeY is
overwhelming2 [2], we focus on more high-level insights. Namely, what makes
KeY so special in our humble opinion and what are some implications of that.

In this paper we use the common method of plural personification of thoughts
and claims, it should be noted, however, that these are mostly the author’s
1 The fact that computers are hardly ever turned off these days, and hence the phrase

“turn on the computer” by now seems obsolete, would be one other observation
indicating the passing time.

2 The temptation to cite estimated 100 or more papers at this point was very strong,
but a decision was made to stick with the most prominent one.

c© Springer Nature Switzerland AG 2022
W. Ahrendt et al. (Eds.): The Logic of Software. A Tasting Menu of Formal Methods,
LNCS 13360, pp. 370–381, 2022.
https://doi.org/10.1007/978-3-031-08166-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08166-8_17&domain=pdf
https://doi.org/10.1007/978-3-031-08166-8_17

Implications of Deductive Verification on Research Quality Field Study 371

personal experiences, opinions, and observations, so we do not impose that all
readers, normally implicitly included in the plural first person style, should agree
with these.

2 The KeY System

For the unfamiliar reader, let us quickly recap what KeY is. A more detailed his-
tory of KeY, its assumptions and design principles are accounted for in [9]. From
the technical standpoint, a deductive verifier for Java programs specified with
Java Modelling Language (JML) [2, Chap. 7] would be one characterisation of
KeY. An interactive First-Order Logic and Dynamic Logic theorem prover would
be another. A general software verification platform particularly suitable for sci-
entific experimentation would be yet another. Indeed, the core design principle
of KeY is a powerful, user friendly, interactive theorem prover that explicitly
works with the program source code through proof trees and visually presented
logic sequents. The underlying logic, Dynamic Logic for Java [2, Chap. 3] that
inherently includes plain First-Order Logic [2, Chap. 2], targets the verification
of a large subset of Java programs. Only a small part of this logic (essentially
its signature) is hardwired into the tool, while the actual semantics is defined
externally through user alterable logic rules called taclets [2, Chap. 4]. This par-
ticular feature allows for the mentioned experimentation with a wide degree of
freedom3. Supporting only a certain subset of Java is more of a necessity dictated
by the open-language character of Java, namely, most limitations come from the
Java reflection mechanism and associated concepts. Such limitations are com-
mon to all verification tools, however, dialects of Java that are fully verifiable
by KeY do exist [2, Chap. 10]. Most other Java features are supported to one
degree or another, sometimes by using a suitable workaround4.

3 The Specialised Research Tool

The first observation about KeY is that it is somewhat of a specialised tool by
design. At the beginning times of KeY, building a verification tool from scratch
rather than adapting an existing general purpose theorem prover [8] triggered
scepticism in the community and was probably considered counterproductive.
Indeed, building something dedicated and specialised might be a little against
the scientific way of finding or reusing well established, generic solutions, and it
is also time consuming. Yes, it is a fact that now more than 20 years after the first
lines of code for KeY have been written the system is still going through active
development. But by now, KeY should be considered a generic and reusable
solution, as other projects were successfully built on it in the meantime [4].
3 The careful reader should immediately suspect the fact, that because of this “free-

dom” it is also relatively easy to introduce unsoundness at user will. Fortunately,
the tool provides means to detect this too, but unsoundness issues may go unnoticed
with careless use.

4 See e.g. https://git.key-project.org/key-public/key/-/tree/stable/Stubby.

https://git.key-project.org/key-public/key/-/tree/stable/Stubby

372 W. Mostowski

As a side personal note, it is important to say that there is nothing wrong
with developing specialised tools. We occasionally repair cars in our free time.
Figure 1 shows a picture of pliers to release or fasten a certain kind of a reusable
hose clamp (on the side of the figure) used by some car makers. With this tool,
each operation on the clamp is a couple of seconds, totally effortless procedure.
Without it, using generic pliers and a screwdriver, each clamp takes several
minutes (if one is lucky and acquainted with the procedure) to treat, it typically
results in damaged clamps, cut fingers, and other inconveniences. And, the shown
pliers do not serve any other purpose whatsoever.

Fig. 1. So called Click-R pliers, picture found on the Wish website.

In retrospect, for KeY, we think the culprit was not in whether a general pur-
pose theorem prover should be used or a dedicated one designed from scratch.
The challenge and difficulty lied in formalising the details of the semantics of the
programming language in question, and transforming these details into a working
tool, either by writing a complete set of suitable theories for a general purpose
theorem prover, or designing a suitable prover to begin with. We actually see
a strong resemblance in the challenges between developing a verification frame-
work of any kind to the process of developing a faithful emulator for a computer
system. Not looking too far and just sticking to entertainment5, the RetroPie
project6 struggles to emulate as many as possible legacy entertainment systems,
like arcade cabinets or home gaming consoles of the past century, on a modern,
but very affordable hardware. As in program verification, also here some details
of truly faithful emulation have to be traded off for efficiency in most part, but
also usability and maintainability of the underlying software. The core of the
resemblance between these two seemingly very distant worlds, is that in verifica-
tion one develops a reasoning system embracing another computing system, in
emulation one develops an implementation embracing another implementation.

5 Which for many is or was the first contact with computing machinery!
6 See https://retropie.org.uk.

https://retropie.org.uk

Implications of Deductive Verification on Research Quality Field Study 373

4 New Directions for KeY?

For us, this analogy and seeing where the emulation technology currently heads
(see down below) has actually sparked some ideas closer to research besides
spending time playing old computer games. We always had certain interest in
emulation technology, but this was never seriously pursued. But, close to this,
reverse engineering automotive embedded systems is an actual on-going side
interest, with very satisfying results7. The typical approach to reverse engineer-
ing such systems is using a disassembler and reconstructing the meaning of binary
code, in a manual, very slow, and very tedious process. In our opinion, this might
have been the actual reason why Diesel-gate8 managed to stay conceived for rel-
atively long time. Typically, the most interesting part of this process are the
actual calculation formulae used by the system, i.e., how exactly (not only if)
the outputs depend on the inputs. The other interesting parts are the depen-
dency and sequencing of procedures and events. Apart from viewing the source
code, static analysis, and symbolic execution in particular, can provide similar
answers, i.e., symbolic outputs. While typically applied to source code, nothing
prevents one to apply symbolic execution on the binary machine code. Why not
do it during the actual execution, as a side task? Obviously, it would not be
exhaustive, which is the whole point of static analysis, but by providing suffi-
ciently rich set of inputs, one could get quite high coverage of symbolic execution
traces this way. In fact, in reverse engineering one is not always concerned with
all possible scenarios, but the most common ones, or alternatively, some very
specific ones, neither of which require exhaustive analysis. There is an obvious
resemblance to concolic testing [10] or proof based test generation [2, Chap. 12]
in this idea, however, the direction is the total opposite. In these existing meth-
ods, the results of symbolic execution or proving are used to select inputs to
control actual execution or testing, while in our idea symbolic execution is done
in parallel to actual execution. As a result one would get, apart from concrete
program outputs, symbolic execution traces formalising the output based on the
given inputs, a very useful artefact for reversing engineers. One other view of
this would be execution-based de-compilation working on similar principles as
automata learning [6].

As embedded systems in their production form are not really that penetrable
to apply a technique like this directly, one would have to rely on an adequate emu-
lator complemented with a suitable symbolic execution engine. Lifting this idea
up to Java, however, should be more straightforward to realise. Namely, imagine
an instrumented Java Virtual Machine that aside from executing bytecode keeps
track of symbolic execution traces. There are obviously a lot of technical details
and limitations that would have to be solved on the way, nevertheless, the open
character of Java and its tooling should make this perfectly achievable.

7 Check this for a sample: http://nefariousmotorsports.com/forum/index.php?topic
=14417.0.

8 See https://lwn.net/Articles/670488/.

http://nefariousmotorsports.com/forum/index.php?topic=14417.0
http://nefariousmotorsports.com/forum/index.php?topic=14417.0
https://lwn.net/Articles/670488/

374 W. Mostowski

For the other, perhaps more worthwhile, research idea, let us take a step
back to the retro gaming again. In a project like the mentioned RetroPie, all
emulations are based in software, and by clever programming a lot of hardware
details of the emulated systems can be abstracted away, or in any other way
solved with tricks. For example, faithful emulation of a sound chip (even an
old one), is not that trivial. But, if one emulates a single game implemented
on an arcade cabinet hardware, and the amount of sounds generated by that
game is strictly bounded and actually small, why not pre-record these sounds
on the original hardware and replay them during simulation by simply detecting
that the original program attempts to play the given sound by trivial pattern
matching on the executing code? In fact, this is exactly how earlier versions
of the M.A.M.E. emulator9 solved the problem for some systems before the
emulator reached sophistication required to actually emulate the according sound
hardware faithfully (enough).

The existing knowledge base of old systems and huge number of enthusiasts
brought the number of emulated systems to thousands allowing one to essentially
replay ones whole young-hood. However, despite all those tricks and shortcuts
one can take when emulating hardware in software, software emulation inevitably
has its limitations. Each step of the way one approximation or another has
to be made or precise timing sacrificed due to synchronization with the host
system and its devices. The lack of real-time guarantees of the off-the-shelf host
operating system adds to this. In the end, all this results in visible imperfections,
only giving the feeling of the real thing rather than the real thing.10

There is a solution to this though, and one that has reached maturity in
recent years. Rather than to emulate, with the advent of high-performance Field
Programmable Gate Array (FPGA) boards it is now possible to replicate the
old hardware. For retro gaming, the MiSTer FPGA project11 brought this to
a smaller, but still quite large and comparable scale as RetroPie did for soft-
ware emulations. This approach is praised by many as the “real thing”, even
though the word replicate used earlier is also a bit on the too strong side. Prac-
tically, however, many issues caused by software emulation are eliminated. Such
systems are effectively real-time, clock precise, internally synchronised as the
original hardware, and totally immune to any unwanted interactions from the
host operating system.

One may ask what does all this have to do with program verification. Well,
it is a well-known fact that hardware solutions can be much more efficient than
software ones, and can have a whole different actual complexity class when some
application bounds can be established and some inputs are pre-compiled into
hardware [11]. Hence, the obvious question is why not employ FPGAs for pro-
gram verification? For generic SAT solving, the idea is certainly not new [1] and
very much alive with promising results [3,14]. Given the availability and low

9 See https://www.mamedev.org.
10 Individuals investing serious resources in faithful music reproduction can certainly

relate here.
11 See https://github.com/MiSTer-devel/Main MiSTer/wiki.

https://www.mamedev.org
https://github.com/MiSTer-devel/Main_MiSTer/wiki

Implications of Deductive Verification on Research Quality Field Study 375

price of very accessible FPGA boards one wonders why at least some program
verifiers are not equipped with hardware compilers to solve the difficult sub-
problems in hardware? That would probably be another example of a highly
specialised tool, but as we noted earlier, specialised tools are invaluable and can
go a very long way in some cases.

5 Actual Industrial Grade Software

KeY in itself is a complex software project. The implementation of KeY12 is
full of good programming practices, including very non-trivial applications of
the object-oriented design patterns. The maintenance of the KeY software base
has been a time consuming task, including the lengthy process of choosing the
right version control system in the past. Today it may seem astonishing that this
was an actual non-research related, problematic choice that had to be made and
one could wonder why it was something that had to be discussed at length.13
Nevertheless, the fact is, that among the other choices that were ever made for
KeY, choosing GIT (which was in its infancy at the time) for version control
was one of the very right ones, so the discussion time was well spent. To this
day, we use a snapshot of the KeY GIT branching history in one of our lectures
on object-oriented programming as an example of (brutal) reality of software
development, see Fig. 2.

For us, one implication of working with KeY as a piece of quite complex,
yet very good software is that after a while all other software validation tools
and methods seem somewhat inadequate and one cannot really spark a proper
interest in them, a kind of feeling “it is nice and all, but it is never going to be
as good and cool as KeY is”. This is very subjective, we admit, and despite the
fact that some of the other techniques, contrary to KeY, are much easier appli-
cable to industrial software and are not limited to a subset of one programming
language. Notable examples here are all kinds of Model-Based Testing [12] tools
that simply interact with an actual (not an abstraction or any other abbrevi-
ated representation) system being validated through the external interface that
it provides. As with deductive verification, there are cases of these methods dis-
covering subtle bugs [5,13]. Nevertheless, being in general black-box techniques,
they deprive the user of the close contact with the validated program, which
gives the feeling of actually understanding the process and the experience “Not
only I verified some properties, I also looked under the hood of the process and
I properly witnessed it.” For some people looking under the hood is an itch that
has to be scratched, and probably has something to do with limited trust. The
limited trust, we believe, is one of defining characteristics of a good researcher.

12 See https://git.key-project.org/key-public/key/-/tree/stable.
13 The older developers of KeY would confirm that this was a very much heated dis-

cussion.

https://git.key-project.org/key-public/key/-/tree/stable

376 W. Mostowski

Fig. 2. A historic snapshot of KeY GIT side branch strucutre.

6 Formal Relation Between KeY and Good Research

The last paragraph above actually suggests the following logical consequence.
Namely, that KeY allows one to be a good researcher! In fact, let us turn a
bit technical, formalise this (in KeY, what else) and prove it. Since this is not
provable in the general case (it would be too simple of a recipe for good research),
we limit ourselves to a small case study with two persons of different nationalities.
Thus, we need the corresponding sorts, then the said two persons R and W, and
their nationalities:

\sorts {
Person;
Nationality;

}

\functions {
Person R;
Person W;
Nationality German;
Nationality Polish;

}
We then need a couple of predicates binding persons to their nationalities and
expressing some traits of character and habits, as follows:

\predicates {
nationality(Person, Nationality);
organised(Person);

Implications of Deductive Verification on Research Quality Field Study 377

limitedTrust(Person);
goodResearcher(Person);
usesKeY(Person);
usesDeductiveVerification(Person);

}
The first predicate should be self explanatory, the second one establishes if the
given person is a well organised one. The third predicate tells us if the given
person shows signs of having limited trust towards the surrounding world, and
the fourth predicate is actually our target property stating that someone is in
fact a good researcher. The fifth and sixth predicates establish if the given person
uses KeY regularly, and if not, perhaps at least uses other non-KeY deductive
verification technique in their work.

To continue with the formalisation we need some axiomatisation of this sim-
plified reality. This is typically the moment in formal verification where every-
thing can go wrong and absurd facts could be derived, but let us give it a try.
First of, any person of German nationality should be perceived as organised:

\forall Person p; (nationality(p, German) -> organised(p))
Then, any person that uses KeY also uses deductive verification by definition:

\forall Person p;
(usesKeY(p) -> usesDeductiveVerification(p))

Then, people working with deductive verification are the ones that have trust
issues:

\forall Person p;
(usesDeductiveVerification(p) -> limitedTrust(p))

And, finally, for any person, trust issues coupled with being organised define a
good researcher:

\forall Person p;
(limitedTrust(p) & organised(p) -> goodResearcher(p))

We can now ask the question if R is a good researcher, knowing some facts
about R:

\problem {
nationality(R, German) & usesKeY(R) -> goodResearcher(R)

}
Asking KeY gives a very quick proof that this is indeed the case, see the left side
of Fig. 3. Asking if W is a good researcher under corresponding assumptions does
not give a successful proof though. The missing required fact for W to be a good
researcher, is that either W is German (which W is not) or that W can be proven
to be organised, see the right side of Fig. 3. For W being Polish, this may not be
a straightforward fact to prove,14 so let us leave this part for future research.

Apart from showing the great versatility of KeY by essentially being devel-
oped on-spot, this simple example also underlines some well-known facts about

14 In fact, the opposite may as well hold.

378 W. Mostowski

Fig. 3. Main proof results.

logical inference. For one, provability very much depends on the axiomatisation,
and the latter is the difficult part. The level of detail of the axiomatisation also
plays a role. At the same time, too much detail, or too large of an axiom base,
could easily lead to unsoundness issues. In our case, the axiom base could be,
e.g., expanded and twisted sufficiently in a covert way to prove that all good
researchers should use KeY, before anybody would notice:

\forall Person p; (goodResearcher(p) -> usesKeY(p))
In reality this is obviously not true, and it would be extremely controversial

to even try to claim this.

7 The Educational Tool

The last, but certainly not least, thing that we want to express here about KeY
is that it is a brilliant education tool and subject. The structure of how one layer
of the KeY method and design builds on the other is very straightforward. This
gives a very natural teaching sequence. Furthermore, very many concepts that
build up KeY are generic (most notably the type system lattice, or the First
Order Logic with its calculus) and are educationally very useful outside of the
KeY context. These are topics that should be taught to every single computer
science, or related subject, student. Moreover, the “open hood” character of the
KeY method and design allows one to vividly demonstrate the workings of all the
concepts, but without any additional hassle, all that can and should be shown to
students is just there. This is certainly not the case with many other automated
and opaque software validation techniques or tools. Perhaps a little bit of an
inappropriate comparison, but it could be considered the same way as an open
body dissection that medical students have to practice. With the main difference
that in case of KeY it is actually not unpleasant.

Back in 2011, we had the chance to teach one of the earlier editions of the
Software Engineering using Formal Methods course that Prof. Hähnle along with

Implications of Deductive Verification on Research Quality Field Study 379

Wolfgang Ahrendt and Richard Bubel developed at the time.15 This was taught
to a large group of Master students at the Chalmers University of Technology in
Göteborg, Sweden. So it happens that this experience was one of the first larger
steps to our current university teaching profession. Thus, the educational aspect
of KeY is personally invaluable to us.

8 Informal Methods

And now for something completely differentTM, i.e., the less formal part of the
paper. I always found it little bit difficult to spell, or perhaps just type in, the last
name,16 hence let us switch to Reiner. For transparency and better context for
the unfamiliar readers, Reiner was my PhD supervisor at Chalmers University
of Technology in Sweden between 2000 and 2005.

Reiner was the person that encouraged me to author papers on my own,
obviously selectively and when appropriate. Only later I found out that this is
not too common in PhD supervision. I counted 11 papers of this kind until now
(this one is the twelfth), and interestingly only one of them does not involve KeY
in any way. I think this is due to the fact that Reiner figured out early that I prefer
to work on my own. I am not exactly sure of why I have this preference, but one
of the reasons could be aversion to explaining my intermediate thoughts while I
develop something into shape. For me, explaining comes once things are worked
out to a sufficient degree (i.e., when they are effectively finished). Unfortunately,
this “aversion” (Reiner once diplomatically described it as healthy scepticism) is
also one of the reasons for having troubles in writing exciting project proposals.
Nevertheless, we worked together well and I finished my PhD in good time, this
certainly says something about Reiner and his judge of character.

For some reason, I always remember two specific events from my PhD studies
at Chalmers involving Reiner, both having very little to do with the actual
research. One of them is from the very beginning when Reiner walked into my
office and said that we should start the whole supervision thing by having dinner
at Stage Door (a pub in Göteborg). And I remember this because of his reply to
my question about the time we should meet for that – “7 or later, one can’t eat
too early”. For someone that just finished undergraduate studies in Poland with
rather early days – classes from 8 a.m. to 3 p.m. straight with no lunch break
and the main meal around 5 p.m. – pushing dinner towards what I considered
almost night was somewhat unusual. Or perhaps the real puzzlement for me was
that I did not really know what I was supposed to be doing in the office all the
way until 7 p.m., not sure any more.

The other memory is from the Fall of 2004 when I still had almost a full year
until the formal end of my studies. I was either in progress of finishing my “big”
FASE paper [7], or I just submitted it. I bumped into Reiner in our top-floor
15 There were surely also other teachers from the KeY group involved in this work, and

the development continued later with many others involved, we have no means to
name them all, unfortunately.

16 The experience is surely mutual.

380 W. Mostowski

lunch room, we were both getting coffee or equivalent (tea most probably, I was
off coffee at that time), and he said in passing “By the way, with this FASE paper
out of the way, I think you should wrap it up.” Then a short discussion of what
exactly he meant by that followed. Long story short, one introduction chapter
and 5 months later I had my PhD defence, and that was even before I got the
chance to actually present the said FASE paper at the ETAPS conference two
weeks later.

In conclusion, with this paper I would like to express my gratitude to Reiner
for everything he has done for me and wish him a Very Happy 60th Birthday!
And, I would also like to thank the editors for the invitation.

References

1. Abramovici, M., Sousa, J.: A SAT solver using reconfigurable hardware and vir-
tual logic. J. Autom. Reasoning 24(12), 5–36 (2000). https://doi.org/10.1023/A:
1006310219368

2. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification - The KeY Book - From Theory to Practice, vol.
10001, LNCS. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49812-6

3. Bousmar, K., Monteiro, F., Habbas, Z., Dellagi, S., Dandache, A.: A pure hardware
k-SAT solver architecture for FPGA based on generic tree-search. In: 2017 29th
International Conference on Microelectronics, pp. 1–5, (2017)

4. Hähnle, R.: HATS: highly adaptable and trustworthy software using formal meth-
ods. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6416, pp. 3–8.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16561-0 2

5. Hughes, J., Pierce, B.C., Arts, T., Norell, U.: Mysteries of DropBox: property-
based testing of a distributed synchronization service. In: 2016 IEEE International
Conference on Software Testing, Verification and Validation, pp. 135–145. IEEE
(2016)

6. Merten, M., Steffen, B., Howar, F., Margaria, T.: Next generation learnlib. In:
Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 220–223.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19835-9 18

7. Mostowski, W.: Formalisation and verification of Java Card security properties
in dynamic logic. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 357–371.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31984-9 27

8. Nawaz, M.S., Malik, M., Li, Y., Sun, M., Lali, M.: A survey on theorem provers in
formal methods. CoRR. https://arxiv.org/abs/1912.03028 (2019)

9. Schmitt, P.H.: A short history of KeY. In: Ahrendt, W., Beckert, B., Bubel, R.,
Hähnle, R., Ulbrich, M. (eds.) Deductive Software Verification: Future Perspec-
tives: Reflections on the Occasion of 20 Years of KeY, vol. 12345, LNCS, pp. 3–18.
Springer International Publishing, Cham (2020) https://doi.org/10.1007/978-3-
030-64354-6

10. Sen, K., Agha, G.: CUTE and jCUTE: concolic unit testing and explicit path
model-checking tools. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144,
pp. 419–423. Springer, Heidelberg (2006). https://doi.org/10.1007/11817963 38

11. Sourdis, I., Bispo, J., Cardoso, J.M.P., Vassiliadis, S.: Regular expression matching
in reconfigurable hardware. J. Signal Process. Syst. 51, 99–121 (2008). https://doi.
org/10.1007/s11265-007-0131-0

https://doi.org/10.1023/A:1006310219368
https://doi.org/10.1023/A:1006310219368
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-642-16561-0_2
https://doi.org/10.1007/978-3-642-19835-9_18
https://doi.org/10.1007/978-3-540-31984-9_27
https://arxiv.org/abs/1912.03028
https://doi.org/10.1007/978-3-030-64354-6
https://doi.org/10.1007/978-3-030-64354-6
https://doi.org/10.1007/11817963_38
https://doi.org/10.1007/s11265-007-0131-0
https://doi.org/10.1007/s11265-007-0131-0

Implications of Deductive Verification on Research Quality Field Study 381

12. Tretmans, J.: Model-based testing and some steps towards test-based modelling.
In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 297–326.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21455-4 9

13. Tretmans, J., van de Laar, P.: Model-based testing with torxakis: the mysteries
of dropbox revisited. In: Strahonja, V. (ed.) 30th Central European Conference
on Information and Intelligent Systems, October 2–4, 2019, pp. 247–258. Croatia,
Varazdin (2019)

14. Yuan, Z., Ma, Y., Bian, J.: SMPP: generic SAT solver over reconfigurable hardware
accelerator. In: 2012 IEEE 26th International Parallel and Distributed Processing
Symposium Workshops PhD Forum, pp. 443–448. IEEE (2012)

https://doi.org/10.1007/978-3-642-21455-4_9

Computing in �Lukasiewicz Logic
and AF-Algebras

Daniele Mundici(B)

Department of Mathematics and Computer Science “Ulisse Dini”,
University of Florence, Viale Morgagni 67/A, 50134 Florence, Italy

daniele.mundici@unifi.it

Abstract. Since the beginning of his career as a computer scientist,
Reiner Hähnle has made important contributions to the proof theory of
�Lukasiewicz logic �L∞, e.g., applying Mixed Integer Programming tech-
niques to the satisfiability problem for the �Lukasiewicz calculus. His
work in this area culminated in a monograph on automated deduction in
many-valued logic and other key contributions on this vibrating field of
research. The present paper discusses recent developments in �Lukasiewicz
logic �L∞, its associated algebraic semantics given by C.C.Chang MV-
algebras, and related computational issues concerning the approximately
finite-dimensional (AF) C*-algebras of quantum statistical mechanics.

Keywords: �Lukasiewicz logic · MV-algebra · Γ functor · implication
function · Elliott classification · C*-algebra · AF�-algebra · decision
problem

1 Introduction

Since the beginning of his career as a computer scientist, Reiner has made impor-
tant contributions to many-valued (notably �Lukasiewicz) logic and its applica-
tions. His work in this area fits into the general context of nonclassical reason-
ing, discussed in his monograph [18] and handbook chapter [31]. While being
a fragment of his copious production in computer science, Reiner’s papers on
many-valued logic deal with a variety of applications in automated deduction,
Artificial Intelligence and proof theory. See e.g., [15–34].

The present paper in honor of his sixtieth birthday is a concise survey of the
following recent developments of �Lukasiewicz logic:

– The derivation of the �Lukasiewicz axioms for infinite-valued logic �L∞ from
the continuity of any [0, 1]-valued implication operation defined on [0, 1]2. See
Theorem 1 in Sect. 2. By Theorem 5, �L∞-formulas code continuous [0, 1]-
valued random variables on any compact Hausdorff space—just as boolean
formulas code (automatically continuous) {0, 1}-valued random variables on
any totally disconnected compact Hausdorff space.

c© Springer Nature Switzerland AG 2022
W. Ahrendt et al. (Eds.): The Logic of Software. A Tasting Menu of Formal Methods,
LNCS 13360, pp. 382–396, 2022.
https://doi.org/10.1007/978-3-031-08166-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08166-8_18&domain=pdf
http://orcid.org/0000-0002-6779-3362
https://doi.org/10.1007/978-3-031-08166-8_18

Computing in �Lukasiewicz Logic 383

– The interpretation of �L∞-formulas as codes for Murray-von Neumann equiv-
alence classes of projections in any AF-algebra A whose Grothendieck group
K0(A) is lattice ordered, AF�-algebra for short. This application of Elliott’s
classification is the subject matter of Sect. 3.

– Applications of the deductive machinery of �L∞ to the algorithmic theory of
AF�-algebras. See Sect. 4.

The first part of the next section is aimed at readers who may have come
across nonclassical logics, but are not familiar with the most recent developments
of �Lukasiewicz infinite-valued logic and MV-algebras. The pace is slower than in
later sections, which are written in the standard definition-theorem style, in line
with Goethe’s popular aphorism about mathematicians and the French.

Due to lack of space, proofs are omitted, but references are given where the
interested reader can find all details.

2 A Characterization of �Lukasiewicz Logic and Its
Algebras

Let Q be an NP-problem. Cook and, independently, Levin constructed a polytime
reduction of Q to the boolean satisfiability problem SAT. Since Q is arbitrary,
this makes SAT an NP-complete problem, like Integer Programming, Knapsack,
Traveling Salesman, Clique, and many others. Unlike all these problems, the
boolean formulas describing the computation steps of a nondeterministic Turing
machine T running on an instance x of Q speak our (mathematical) language.
These formulas pertain to boolean “logic”.

The question whether x belongs to Q has the two possible answers, no or yes.
The random variable “T recognizes x as a member of Q” is a boolean function f
of the elementary random variables “T is in state s at time t”, “T is on square q
at time t”, and “the symbol a is printed on square q at time t”. Then x belongs
to Q iff 1 belongs to the range of f iff the Cook-Levin boolean formula coding
f is satisfiable.

The set {no, yes} = {0, 1} of “truth values” comes equipped with a rich
structure. The (truth-)functionality property of boolean logic states that the
truth-value v(φ) assigned to a boolean formula φ only depends on the truth-
values assigned to the immediate subformulas of φ. This gives syntax a key role
in logic. Thus for instance, for any two boolean formulas φ and ψ, v(φ → ψ) = 0
iff v(φ) = 1 and v(ψ) = 0. A moment’s reflection then shows:

v(φ → ψ) = 1 iff v(φ) ≤ v(ψ). Also, v(φ → (ψ → ρ)) = v(ψ → (φ → ρ)). (1)

Replacing {0, 1}-valued by [0, 1]-valued random variables, one may look for
(propositional) “logics” whose truth-values lie in the unit real interval [0, 1].
Probability does not help, because functionality fails: The probability of a

384 D. Mundici

disjunction of two events is the sum of the probabilities of the events—so long
as the two events are incompatible. Consequently, syntax plays virtually no role
in probability theory.

But what is a “logic”? Following (the essentials of) the Polish tradition, [49,
Part C], let A be an algebra on a universe U (of truth-values) with finitely many
operations and constants, coded by a set S of symbols. The constants of A are
supposed to include a special (distinguished) element 1 for “true”, sometimes
also denoted �. Given a set V of variable symbols, a nonambiguous syntax defines
the algebra F = FS,V of formulas on S and V by a familiar inductive procedure.
The semantics of the logic L = LA,1 is next introduced by stipulating that a
formula φ is a tautology if v(φ) = 1 for every homomorphism v of the algebra F
into the algebra A. Two formulas are logically equivalent if every homomorphism
gives them the same value1.

2.1 The Logic of a Continuous [0, 1]-Valued Implication

Having set up the general framework for our exploration of “logics”, recalling (1),
let � be a [0, 1]-valued operation on [0, 1]2 satisfying the following minimalist
conditions for any reasonable “implication” operation on an ordered set of truth-
values:

(i) x � y = 1 iff x ≤ y and (ii) x � (y � z) = y � (x � z) (2)

for all x, y, z ∈ [0, 1]. Let us further assume that the function � is continuous.
This is to ensure that small errors or perturbations in the evaluation of the vari-
able symbols have small repercussions on the truth-value of composite formulas2.
Then our search for [0, 1]-valued logics is rewarded with the following uniqueness
theorem:

Theorem 1. With the stipulations (2) for the continuous map �, for all x ∈
[0, 1] let ¬x be shorthand for x � 0. Then

(a) The algebra W = W� = ([0, 1], 1,¬,�) satisfies the following equations:

1 � x = x

(x � y) � ((y � z) � (x � z)) = 1
(¬x � ¬y) � (y � x) = 1

(x � y) � y = (y � x) � x.

For short, W is a Wajsberg algebra.

1 The attentive reader will have noted the key role of (truth-)functionality in this
definition, hinging upon the nonambiguity of the syntax of F .

2 Once {0, 1} is equipped with the discrete topology, boolean implication is trivially
continuous.

Computing in �Lukasiewicz Logic 385

(b) For all x, y ∈ [0, 1] let x ⊕ y be shorthand for ¬x � y. Then the algebra
A = A� = ([0, 1], 0,¬,⊕) satisfies the following equations:

x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z

x ⊕ 0 = x

x ⊕ ¬0 = ¬0
¬¬x = x

¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x.

For short, A is an MV-algebra.

Proof. See [43, Theorem 2.3]. For Wajsberg algebras see [8, 4.2.1]. In [6, p.468]
C.C. Chang gave a redundant list of equations for MV-algebras. His list was
reduced to six equivalent equations in [8, p.7]. Then Kolař́ık [35] proved that the
commutativity of ⊕ follows from the remaining five equations—the equations
listed in (b). �

Remark 1. The defining equations of Wajsberg algebras in Theorem 1(a) are
the counterpart of the time-honored �Lukasiewicz axioms for infinite-valued logic
�L∞. See [8, 4.2]. Since the first three equations are satisfied by any implication,
this theorem is to the effect that

the equation (x � y) � y = (y � x) � x stands for the continuity of �

Corollary 1. ([6, 1.16–1.17]) Adding to the five equations in Theorem 1(b) the
idempotence equation x ⊕ x = x we recover an equational definition of boolean
algebras.

Definition 1. ([8]) The standard MV-algebra [0, 1] = ([0, 1], 0,¬,⊕) is defined
by: ¬x = 1−x, x⊕y = min(1, x+y), together with the derived constant 1 = ¬0
and the derived operation x � y = max(0, x + y − 1) = ¬(¬x ⊕ ¬y).

From Theorem 1(b) one obtains:

Corollary 2. ([43] and references therein) For � a continuous function satis-
fying conditions (i)-(ii) in (2), let A = A� = ([0, 1], 0,¬,⊕) be the MV-algebra
of Theorem 1(b). Then A is uniquely isomorphic to the standard MV-algebra.
The logic L = LA,1 defined by A with the distinguished constant 1 has the same
tautologies as �L∞.

Theorem 2. If an equation holds in the standard MV-algebra then it holds in
all MV-algebras.

Proof. This is Chang’s completeness theorem [7]. See [8, §2] for a self-contained
proof. �

386 D. Mundici

2.2 Ideals, Spectral Spaces, and Quotients

The following elementary notions are the special case for MV-algebras of general
algebraic/topological concepts.

Definition 2. For all MV-algebras A,B and homomorphism ε : A → B, the
kernel ker(ε) is the set of elements x ∈ A such that ε(x) = 0. Ideals are
kernels of homomorphisms. We denote by μ(A) the set of maximal ideals of A.
An MV-algebra is semisimple if the intersection of all its maximal ideals is {0}.

The set μ(A) comes equipped with the spectral (also known as the hull-kernel)
topology. A subbasis of open sets is given by letting a range over all elements of
A and defining Oa as the set of maximal ideals m of A such that a /∈ m. We keep
the notation μ(A) for the resulting topological space, and call it the maximal
spectral space of A. When A is a boolean algebra the maximal spectral topology
of A is the Stone topology of A.

The radical Rad(A) of A is the intersection of all maximal ideals of A.

Proposition 1. ([8, Proposition 1.2.10]) For every MV-algebra A, the quotient
map yields a homeomorphism of the maximal spectral space of A onto the max-
imal spectral space of the semisimple MV-algebra A/Rad(A).

Theorem 3. ([41, §4]) Let A be an MV-algebra. For any m ∈ μ(A) there is
a unique pair (ωm, Ωm) with Ωm an MV-subalgebra of the standard MV-algebra
[0, 1], and ωm an isomorphism of the quotient MV-algebra A/m onto Ωm.

As a consequence, for every m ∈ μ(A) the quotient MV-algebra A/m may
be identified with its uniquely isomorphic copy Ωm ⊆ [0, 1]. This enables us to
define the evaluation map ∗ : A → [0, 1]μ(A) by the identification

a∗(m) = a/m ∈ [0, 1], for every a ∈ A and m ∈ μ(A). (3)

Definition 3. ([8, p.66]) Let B an MV-algebra of [0, 1]-valued functions on a
set X 	= ∅, with the pointwise operations of the standard MV-algebra [0, 1]. B is
said to be separating, if for any x 	= y ∈ X there is f ∈ B such that f(x) 	= f(y).

Theorem 4. ([41, §4]) (i) For any semisimple MV-algebra A the evaluation
map ∗ in (3) is an isomorphism of A onto a separating MV-subalgebra of the
MV-algebra C(μ(A), [0, 1]) of [0, 1]-valued continuous functions on the maximal
spectral space μ(A), with the pointwise operations of the standard MV-algebra
[0, 1].

(ii) Let X 	= ∅ be a nonempty compact Hausdorff space and B a separating
subalgebra of the MV-algebra C(X, [0, 1]). Then B is semisimple. Further, the
map J : x ∈ X �→ J(x) = {f ∈ B | f(x) = 0} is a homeomorphism of X onto the
maximal spectral space μ(B). The inverse map V = J−1 sends each m ∈ μ(B) to
the only element V(m) ∈ X of the set

⋂{f−1(0) | f ∈ m}.
(iii) As A ranges over all MV-algebras, the maximal spectral space μ(A)

ranges over all nonempty compact Hausdorff spaces.

Computing in �Lukasiewicz Logic 387

2.3 The Kroupa-Panti Theorem

Definition 4. ([41, and references therein]) For any elements x, y of an MV-
algebra A, we write x � y shorthand for ¬(¬x ⊕ ¬y).

We let hom(A, [0, 1]) denote the set of homomorphisms of A into the standard
MV-algebra.

A state of an MV-algebra A is a map σ : A → [0, 1] with σ(1) = 1, such that
σ(x⊕ y) = σ(x)+σ(y) whenever x� y = 0. We let S(A) denote the set of states
of A with the restriction topology of the Tychonoff cube [0, 1]A 3.

We refer to [47] for all unexplained notions of probability and measure theory.
The intuition that formulas in �Lukasiewicz logic code [0, 1]-valued random vari-
ables is made precise by the following MV-algebraic counterpart of the boolean
algebraic Carathéodory extension theorem4:

Theorem 5. (See [36,46], [41, 10.2]) For any MV-algebra A let P(A) denote
the space of regular Borel probability measures on the maximal spectral space
μ(A). Let us equip P(A) with the weak topology. We then have:

(i) The map η ∈ hom(A, [0, 1]) �→ Dirac pointmass at ker(η) uniquely extends
to an affine homeomorphism γA of the state space S(A) onto P(A).

(ii) For every nonempty compact Hausdorff space Ω and Kolmogorov probability
space (Ω,FΩ , P) with FΩ the sigma-algebra of Borel sets of Ω and P a
regular probability measure on FΩ, there is an MV-algebra A and a state σ
of A such that (Ω,FΩ , P) ∼= (μ(A),Fμ(A), γA(σ)).

2.4 Analogies Between Analogies

We have shown that {0, 1}-valued propositions are for boolean logic what con-
tinuous [0, 1]-valued propositions are for infinite-valued �Lukasiewicz logic. In
symbols,

{0, 1}-valued propositions
boolean logic = continuous [0, 1]-valued propositions

�Lukasiewicz logic

Specifically, Theorems 3–5 show:

{0, 1}-valued random variables
boolean algebras

=
continuous [0, 1]-valued random variables

MV-algebras

In the next section we will show:

Commutative AF-algebras
Countable boolean algebras

=
AF-algebras with lattice-ordered K0

Countable MV-algebras

3 When A is a boolean algebra, its states are also known as “finitely additive proba-
bility measures”.

4 see, e.g., Corollary 1 in T.Tao, https://terrytao.wordpress.com/2009/01/03/.

https://terrytao.wordpress.com/2009/01/03/

388 D. Mundici

3 AF-Algebras and MV-Algebras

In this section, isomorphism classes of countable MV-algebras will be shown to
be in a functorial one-one correspondence with a class of C*-algebras currently
used in the mathematical physics of quantum statistical systems. We refer to [2]
for partially ordered groups.

We prepare:

Definition 5. ([2]) By a unital �-group we mean a lattice-ordered abelian group
equipped with a distinguished strong unit.

Theorem 6. ([38, Theorem 3.9]) There is a categorical equivalence Γ trans-
forming every unital �-group (G, u) into the MV-algebra ([0, 1], 0,¬,⊕) given by:

1 = u, ¬x = u − x, and x ⊕ y = (x + y) ∧ u for all x, y ∈ [0, u].

Furthermore, for every unital �-homomorphism θ : (G, u) → (H, v), Γ (θ) =
θ |̀ [0, u] = the restriction of θ to the unit interval of (G, u).

Definition 6. ([5,10,11]) A *-algebra is an algebra B over C with a linear map
� satisfying x�� = x, (zy)� = y�z� and (λz)� = λz� for all λ ∈ C and
x, y, z ∈ B. A C*-algebra is a *-algebra B with a norm making B into a Banach
space such that ||1A|| = 1, ||yz| ≤ ||y|| ||z|| and ||zz�|| = ||z||2. An AF -algebra
is the norm closure of the union of an ascending sequence of finite-dimensional
C∗-algebras, all with the same unit.

3.1 Elliott Classification, [13]

Definition 7. ([10,11]) A projection p in a C*-algebra A is a self-adjoint idem-
potent p� = p = p2. Projections p, q of A are said to be (Murray-von Neumann)
equivalent, in symbols p ∼ q, if p = x�x and q = xx� for some x ∈ A. We write
p � q if p ∼ r for some projection r of A with rq = qr = r.

Proposition 2. ([10, Theorem IV.2.3]) For any AF-algebra A, ∼ is an equiv-
alence relation on the set of projections of A. For any projection p ∈ A we let
[p] denote the equivalence class of p, and L(A) be the set of these equivalence
classes. The �-relation in A is reflexive and transitive and is preserved under
equivalence. Since A is stably finite, � is antisymmetric: p � q � p ⇒ p ∼ q.

Definition 8. ([10,12,13]) The resulting partial order relation on L(A), also
denoted �, is known as the Murray-von Neumann order of A. One next equips
L(A) with Elliott’s partial addition by setting [p] + [q] = [p + q] whenever pro-
jections p and q are orthogonal.

Theorem 7. ([10,12,13]) L(A) has the partial structure a countable partially
ordered semigroup, known as Elliott’s “local” semigroup. L(A) is a complete
classifier of AF-algebras: A1

∼= A2 iff L(A1) ∼= L(A2). The �-relation equips
L(A) with a partial order such that Elliott’s partial addition is monotone.

Computing in �Lukasiewicz Logic 389

3.2 AF�-Algebras

Definition 9. ([42,44]) An AF�-algebra is an AF-algebra A whose Murray-von
Neumann order is a lattice. Equivalently, [10,12], the Grothendieck K0-group of
A is lattice-ordered.

Table 1. Some classes of AF�-algebras and their associated MV-algebras.

AF�-algebra A countable mv algebra Γ (K0(A))

C the two element boolean algebra

B(Cn), the n × n complex matrices �Lukasiewicz chain {0, 1/n, 2/n, . . . , 1}
finite dimensional finite

commutative boolean

C(2ω), 2ω = Cantor cube, [12, p.13] atomless boolean

with comparability of projections, [14] totally ordered

Glimm’s UHF algebra, [48, p.16] subalgebra of Q ∩ [0, 1]

CAR algebra, [10, III.2.4], [48, 1.2.6] dyadic rationals in [0, 1]

Glimm’s universal algebra, [48, p.13] Q ∩ [0, 1]

simple with comparability, [14] subalgebra of [0,1]

Effros-Shen algebra Fξ , [12, p.65] generated in [0, 1] by ξ ∈ [0, 1] \ Q

Blackadar algebra B, [3, p. 504] real algebraic numbers in [0,1]

Behncke-Leptin, two-point dual, [1] with two ideals

Behncke-Leptin A0,1, [1] Chang algebra C, [6, p.474]

liminary, T2 spectrum, [9] every prime quotient is finite

subhomogeneous, T2 spectrum, [9] finite-valued, [8, §8.2]

homogeneous of order n, [9] Post algebra of order n + 1, [8, p.198]

the universal AF�-algebra M, [38, §8] free on countably many generators [8]

the “Farey” algebra M1, [4,39,40] free on one generator, [37], [8, §3.2]

Mn, [44] free on n generators, [8,37,41]

finitely presentable, [42] finitely presentable, [41, §6.2]

Proposition 3. (Special case of Gelfand duality, [11]) Every commutative AF-
algebra B has the form C(X,C) for X a separable totally disconnected nonempty
compact Hausdorff space. It follows that B is an AF�-algebra. Moreover, com-
mutative AF-algebras are categorically equivalent to countable boolean algebras.

AF�-algebras are the AF-algebras most frequently found in the literature. (See
Table 1.) They are virtually all AF-algebras having an algorithmic theory, [38,
42,44]. This depends on the following strengthening of Proposition 3, (we refer
to [10] for the K0-theory of AF-algebras):

390 D. Mundici

Theorem 8. Let A be an AF-algebra.
(i) ([45]) Elliott’s partially defined addition + in L(A) has at most one exten-

sion to an associative, commutative, monotone operation ⊕ : L(A)2 → L(A) such
that for each projection p ∈ A, [1A − p] is the smallest element [q] ∈ L(A) with
[p] ⊕ [q] = [1A]. The uniquely determined semigroup (S(A),⊕) expanding L(A)
exists iff A is an AF�-algebra.

(ii) (From (i) as a special case of Elliott’s classification [13]) Let A1 and A2

be AF�-algebras. For each j = 1, 2 let ⊕j be the extension of Elliott’s addition
given by (i). Then the semigroups (S(A1),⊕1) and (S(A2),⊕2) are isomorphic
iff so are A1 and A2.

(iii) (From (i) as a special case of the K0-theoretic reformulation of Elliott’s
classification; see [14] and [12]) For any AF�-algebra A the partially ordered
Grothendieck group K0(A) (which is shorthand for (K0(A),K0(A)+, [1A])) is a
countable unital �-group. All countable unital �-groups arise in this way. Let
A and A′ be AF�-algebras. Then K0(A) and K0(A′) are isomorphic as unital
�-groups iff A and A′ are isomorphic.

(iv) ([45]) For any AF�-algebra A the semigroup (S(A),⊕) has the structure
of a monoid (E(A), 0,¬,⊕) with an involution operation ¬[p] = [1A − p]. The
Murray-von Neumann lattice order of equivalence classes of projections [p], [q]
is definable by the involutive monoidal operations of E(A), upon setting [p] ∨
[q] = ¬(¬[p] ⊕ [q]) ⊕ [q] and [p] ∧ [q] = ¬(¬[p] ∨ ¬[q]) for all [p], [q] ∈ E(A).
(E(A), 0,¬,⊕) is a countable MV-algebra.

(v) (From (ii) and (iii), see [38, 3.9]) Up to isomorphism, the map A �→
(E(A), 0,¬,⊕) is a bijection of AF�-algebras onto countable MV-algebras. Fur-
thermore, with Γ the categorical equivalence of Theorem 6, (E(A), 0,¬,⊕) is
isomorphic to Γ (K0(A)).

From this theorem and the fundamentals of the K0-theory of AF-algebras, [10,
12], we obtain:

Corollary 3. ([39, and references therein]) In any AF�-algebra A we have:
(i) K0 induces an isomorphism η : i �→ K0(i) ∩ E(A) between the lattice of

ideals of A and the lattice of ideals of the MV-algebra E(A).

(ii) Suppose I is an ideal of the countable MV-algebra B. In view of Theorem
8(v) let the AF�-algebra A be defined by E(A) = B. Let i be the ideal of A defined
by η(i) = I. Then B/I is isomorphic to E(A/i).

(iii) For every ideal i of A, the map [p/i] �→ [p]/η(i) , (p a projection of A),
is an isomorphism of E(A/i) onto E(A)/η(i).

(iv) The map J �→ J ∩ Γ (K0(A)) is an isomorphism of the lattice of �-ideals
of K0(A) (i.e., kernels of unit preserving �-homomorphisms of K0(A) into unital
�-groups) onto the lattice of ideals of E(A). Further,

Γ

(
K0(A)

J

)
∼= Γ (K0(A))

J ∩ Γ (K0(A))
.

Computing in �Lukasiewicz Logic 391

4 Computing on AF�-Algebras

The results of the foregoing section are applied in this section to compute on
equivalence classes of projections in AF�-algebras. The algorithmic-deductive
machinery of �Lukasiewicz logic will play a fundamental role.

4.1 �L∞-Coding of Projections of AF�-Algebras

As usual, the set A∗ of strings over the alphabet A = {0,¬,⊕,X1,X2, . . . ,), (, }
is defined by A∗ = {(s1, s2, ..., sl) ∈ Al | l = 0, 1, 2, . . . }.

Definition 10. ([8, 3.1]) A term in the variables X1, . . . , Xn, is a string φ ∈
A∗ obtainable by the following inductive definition: 0 and X1,X2, . . . , Xn are
terms; if α and β are terms, then so are ¬α and (α⊕β). We let TERMn denote
the set of terms in the variables X1,X2, . . . , Xn. Each φ ∈ TERMn is said to be
an n-variable �L∞-formula. We let TERMω =

⋃
n TERMn.

Free MV-algebras, [8, §§3–4], are algebras of logically equivalent formulas.
They are given a concrete geometrical realization by the following result. Here
the adjective “linear” is understood in the affine sense:

Proposition 4. (McNaughton’s representation theorem, ([37], [8, 9.1.5]) Fix
n = 1, 2, . . . and let M([0, 1]n) denote the MV-algebra of n-variable McNaughton
functions, i.e., continuous piecewise linear functions f : [0, 1]n → [0, 1] (with a
finite number of linear pieces) such that every piece of f agrees with a linear poly-
nomial with integer coefficients. Let πi, (i = 1, . . . , n), denote the ith coordinate
function on [0, 1]n. With the pointwise operations of the standard MV-algebra,
M([0, 1]n) is the free MV-algebra over the free generating set {π1, . . . , πn}.

�L∞-Coding of Projections of Mn. Recalling Theorem 8(v), the AF�-algebra
Mn is defined by E(Mn) ∼= M([0, 1]n). Let us fix, once and for all, projections
p1, . . . , pn ∈ Mn such that the equivalence classes [p1], . . . , [pn] ∈ E(Mn) cor-
respond to the free generators π1, . . . , πn via Elliott classification. We then say
that the variable symbol Xi codes both the coordinate function πi ∈ M([0, 1]n)
and its isomorphic image given by the equivalence class [pi] ∈ E(Mn). The
coordinate function πi is said to be the interpretation of Xi in (the Elliott
monoid M([0, 1]n) of) Mn, in symbols, XMn

i = πi. Next for every φ ∈
TERMn, the interpretation φMn of φ in Mn has the usual inductive defini-
tion: 0Mn = the constant zero function over [0, 1]n, and (¬ψ)Mn = ¬(ψMn),
(α ⊕ β)Mn = (αMn ⊕ βMn). We also say that φ codes φMn5.

�L∞-Coding of Projections of Mn/I. More generally, let A = Mn/I be an
AF�-algebra, for some ideal I of Mn. Let i = K0(I) ∩ E(Mn). be the ideal
of M([0, 1]n) corresponding to I by Corollary 3(iv). Identifying E(Mn/I) and
M([0, 1]n)/i, the interpretation φA of φ in A is defined by: 0A = {0} ⊆ A, XA

i =

5 By a traditional abuse of notation, the MV-algebraic operation symbols also denote
their corresponding operations.

392 D. Mundici

X
Mn/I
i = XMn

i /i = πi/i, and inductively, (¬ψ)A = ¬(ψA), (α ⊕ β)A =
(αA⊕βA). The following identities are easily verified by induction on the number
of symbols occurring in each term:

(¬ψ)A =
(¬ψ)Mn

i
= ¬

(
ψMn

i

)

=
¬(ψMn)

i

and

(α ⊕ β)A =
(α ⊕ β)Mn

i
=

αMn

i
⊕ βMn

i
=

αMn ⊕ βMn

i
.

We also say that φ codes φA in A.

�L∞-Coding of Projections of M. In [38, §8], the universal AF�-algebra M is
defined by E(M) ∼= M([0, 1]ω) = the free MV-algebra over countably many gen-
erators = the direct limit of the free MV-algebras M([0, 1]n). Then one defines
the interpretation φM of φ ∈ TERMω in M mimicking the definition of φMn . A
Bratteli diagram of M is constructed in [44]. By Corollary 3, every AF�-algebra
A is a quotient of M. The Bratteli diagram of A can be obtained as a subdiagram
of the diagram of M, [44].

4.2 Decision Problems for AF�-Algebras and Their Complexity

Fix a cardinal κ = 1, 2, . . . , ω. Let A = Mκ/I for some ideal I of Mκ. (Here
Mω = M.)

– The word problem Pword of A is defined by Pword = {(φ, ψ) ∈ A∗ | (φ, ψ) ∈
TERM2

κ and φA = ψA}. In down to earth terms, on input strings φ and ψ,
Pword checks if the strings φ and ψ are elements of TERMκ that code the
same equivalence class of projections of A.

– The order problem Porder of A checks if φ codes an equivalence class of pro-
jections φA in A that precedes ψA in the Murray-von Neumann order � of
projections in A.

– The zero problem Pzero = {φ ∈ TERMκ | φA = 0} of A checks if φA = 0.

– The central projection problem Pcentral of A checks if φA is an equivalence
class of a central projection p ∈ A, i.e., a projections such that pa = ap for
all a ∈ A.

– The nontrivial projection problem Pnontrivial of A checks if φA different from
0 and 1.

– The nontrivial central projection problem Pnontrivialcentral of A checks if φA is
an equivalence class of central projections of A other than 0 or 1.

We collect here a number of results on the complexity of computations on (equiv-
alence classes of) projections in many AF�-algebras listed in Table 1.

The “Farey” AF�-algebra M1 was first introduced in [39] and rediscovered
in [4] (see [40]). As already noted, in view of Theorem 8(v), M1 can be defined
by E(M1) ∼= M([0, 1]) = the free one-generator MV-algebra.

Computing in �Lukasiewicz Logic 393

We first record a result on Gödel incomplete (i.e., recursively enumerable
undecidable) problems.

Theorem 9. (See [42, §8]) There exists a quotient of M1 having a Gödel incom-
plete zero problem. No primitive quotient of M1, whence a fortiori, no simple
quotient of M1, has a Gödel incomplete zero problem. The same holds for all
problems Pword, Porder, Pzero, Pnontrivial.

We refer to [12] for the Effros-Shen algebras Fθ, to [1] for the Behncke-
Leptin algebras Am,n, to [48, p.16] for Glimm’s universal UHF algebra, and to
[10, III.2.4, III.5.4] or [48, 1.2.6] for the CAR algebra.

Extending results in [42] we have:

Theorem 10. Pword, Porder, Pzero, Pcentral, Pnontrivial, Pcentral nontrivial are
decidable in polynomial time for the following AF�-algebras:

(i) The Effros-Shen algebra Fθ for θ a quadratic irrational, or θ = 1/e, (with
e Euler’s constant) or θ ∈ [0, 1] \ Q a real algebraic integer.

(ii) The Effros-Shen algebra Fθ for any irrational θ ∈ [0, 1] having the following
property: There is a real κ > 0 such that for every n = 0, 1, . . . the sequence
[a0, . . . , an] of partial quotients of θ is computable (as a finite list of binary
integers) in less than 2κn steps.

(iii) Each Behncke-Leptin algebra Am,n.
(iv) Glimm’s universal UHF algebra.
(v) The CAR algebra.

The proof of the following result will appear elsewhere:

Theorem 11. (i) For the AF�-algebra M, each problem Pword, Porder, Pzero,
Pcentral is coNP-complete. On the other hand, Pnontrivial is NP-complete.

(ii) Each problem Pword, Porder, Pzero, Pcentral, Pnontrivial, Pcentral nontrivial for
the AF�-algebra Mn is decidable in polynomial time, (n = 1, 2, . . .).

5 Final Remarks: Closing a Circle of Ideas

As is well known, if SAT turns out to be decidable in polynomial time, many
other important computational problems will also be. No less importantly, the
very nature of mathematical proofs will change dramatically, as all proof methods
for boolean logic known today take exponential time.

Similar considerations apply to �L∞-satisfiability, another NP-complete prob-
lem, [8, §9.3 and references therein]. The results of this paper, in combination
with earlier work by the present author and by Reiner, show the wide scope of
�L∞-satisfiability, from Mixed Integer Programming to the algorithmic theory of
a class of C*-algebras currently used in quantum statistical mechanics.

394 D. Mundici

References

1. Behncke, H., Leptin, H.: C*-algebras with a two-point dual. J. Funct. Anal. 10(3),
330–335 (1972). https://doi.org/10.1016/0022-1236(72)90031-6

2. Bigard, A., Wolfenstein, S., Keimel, K.: Groupes et Anneaux Réticulés. LNM, vol.
608. Springer, Heidelberg (1977). https://doi.org/10.1007/BFb0067004

3. Blackadar, B.: A simple C*-algebra with no nontrivial projections. Proc. Amer.
Math. Soc. 78, 504–508 (1980). https://www.jstor.org/stable/2042420

4. Boca, F.: An AF algebra associated with the Farey tessellation. Canad. J. Math.
60, 975–1000 (2008). https://doi.org/10.4153/CJM-2008-043-1

5. Bratteli, O.: Inductive limits of finite-dimensional C*-algebras. Trans. Amer. Math.
Soc. 171 , 195–234 (1972). https://www.jstor.org/stable/1996380

6. Chang, C.C.: Algebraic analysis of many-valued logics. Trans. Amer. Math. Soc.
88, 467–490 (1958). https://www.jstor.org/stable/1993227

7. Chang, C.C.: A new proof of the completeness of the �Lukasiewicz axioms. Trans.
Amer. Math. Soc. 93, 74–90 (1959). https://www.jstor.org/stable/1993423

8. Cignoli, R., D’Ottaviano, I.M.L., Mundici, D.: Algebraic foundations of many-
valued reasoning. Trends in Logic, vol. 7, Kluwer, Dordrecht (2000). Reprinted,
Springer (2013). https://doi.org/10.1007/978-94-015-9480-6

9. Cignoli, R., Elliott, G.A., Mundici, D.: Reconstructing C*-algebras from their Mur-
ray von Neumann order. Adv. Math. 101, 166–179 (1993). https://doi.org/10.
1016/j.jpaa.2003.10.021

10. Davidson, K.R.: C*-Algebras by Example, Fields Institute Monographs. American
Mathematical Society, Providence, vol. 6 (1996). https://doi.org/10.1090/fim/006

11. Dixmier, J.: C*-algebras, North-Holland Mathematical Library. North-Holland,
Amsterdam, vol. 15(1977). https://www.sciencedirect.com/bookseries/north-
holland-mathematical-library/vol/15/suppl/C

12. Effros, E.G.: Dimensions and C*-algebras, CBMS Regional Conference Series in
Mathematics. American Mathematical Society, Providence, vol. 46 (1981). https://
bookstore.ams.org/cbms-46/20ISBN:78-0-8218-1697-4

13. Elliott, G.A.: On the classification of inductive limits of sequences of semisimple
finite-dimensional algebras. J. Algebra 38, 29–44 (1976). https://doi.org/10.1016/
0021-8693(76)90242-8

14. Elliott, G.A.: On totally ordered groups, and K0. In: Handelman, D., Lawrence, J.
(eds.) Ring Theory Waterloo 1978 Proceedings, University of Waterloo, Canada,
12–16 June 1978. LNM, vol. 734, pp. 1–49. Springer, Heidelberg (1979). https://
doi.org/10.1007/BFb0103152

15. Hähnle, R.: Tableaux-based theorem proving in multiple-valued logics, Ph.D. the-
sis, University of Karlsruhe, Department of Computer Science (1992). http://
tubiblio.ulb.tu-darmstadt.de/101360/

16. Beckert, B., Hähnle, R., Gerberding, S., Kernig, W.: The tableau-based theorem
prover 3T

AP for multiple-valued logics. In: Kapur, D. (ed.) CADE 1992. LNCS,
vol. 607, pp. 758–760. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-
55602-8 219

17. Hähnle, R.: Short CNF in finitely-valued logics. In: Komorowski, J., Raś, Z.W.
(eds.) ISMIS 1993. LNCS, vol. 689, pp. 49–58. Springer, Heidelberg (1993). https://
doi.org/10.1007/3-540-56804-2 5

18. Hähnle, R.: Automated Deduction in Multiple-Valued Logics. Oxford University
Press (1994). https://global.oup.com/academic/product/automated-deduction-
in-multiple-valued-logics-9780198539896?lang=en&cc=nl ISBN: 9780198539896

https://doi.org/10.1016/0022-1236(72)90031-6
https://doi.org/10.1007/BFb0067004
https://www.jstor.org/stable/2042420
https://doi.org/10.4153/CJM-2008-043-1
https://www.jstor.org/stable/1996380
https://www.jstor.org/stable/1993227
https://www.jstor.org/stable/1993423
https://doi.org/10.1007/978-94-015-9480-6
https://doi.org/10.1016/j.jpaa.2003.10.021
https://doi.org/10.1016/j.jpaa.2003.10.021
https://doi.org/10.1090/fim/006
https://www.sciencedirect.com/bookseries/north-holland-mathematical-library/vol/15/suppl/C
https://www.sciencedirect.com/bookseries/north-holland-mathematical-library/vol/15/suppl/C
https://bookstore.ams.org/cbms-46/20ISBN:78-0-8218-1697-4
https://bookstore.ams.org/cbms-46/20ISBN:78-0-8218-1697-4
https://doi.org/10.1016/0021-8693(76)90242-8
https://doi.org/10.1016/0021-8693(76)90242-8
https://doi.org/10.1007/BFb0103152
https://doi.org/10.1007/BFb0103152
http://tubiblio.ulb.tu-darmstadt.de/101360/
http://tubiblio.ulb.tu-darmstadt.de/101360/
https://doi.org/10.1007/3-540-55602-8_219
https://doi.org/10.1007/3-540-55602-8_219
https://doi.org/10.1007/3-540-56804-2_5
https://doi.org/10.1007/3-540-56804-2_5
https://global.oup.com/academic/product/automated-deduction-in-multiple-valued-logics-9780198539896?lang=en&cc=nl
https://global.oup.com/academic/product/automated-deduction-in-multiple-valued-logics-9780198539896?lang=en&cc=nl

Computing in �Lukasiewicz Logic 395

19. Hähnle, R.: Many-valued logic and mixed integer programming. Ann. Math. Artif.
Intell. 12, 231–263 (1994). https://doi.org/10.1007/BF01530787

20. Hähnle, R.: Automated deduction and integer programming. In: Collegium Log-
icum (Annals of the Kurt-Gödel-Society), vol. 1, pp. 67–77. Springer, Vienna
(1995). https://doi.org/10.1007/978-3-7091-9394-5 6

21. Hähnle, R.: Exploiting data dependencies in many-valued logics. J. Appl.
Non-Classical Logics 6(1), 49–69 (1996). https://doi.org/10.1080/11663081.1996.
10510866

22. Hähnle, R.: Proof theory of many-valued logic-linear optimization-logic design:
connections and interactions. Soft Comput. 1(3), pp. 107–119 (1997). https://link.
springer.com/content/pdf/10.1007%2Fs005000050012.pdf

23. Hähnle, R.: Commodious axiomatization of quantifiers in multiple-valued logic.
Stud. Logica 61(1), 101–121 (1998). https://doi.org/10.1023/A:1005086415447

24. Hähnle, R., Bernhard, B., Escalada-Imaz, G.: Simplification of many-valued logic
formulas using anti-links. J. Logic Comput. 8(4), 569–588 (1998). https://doi.org/
10.1093/logcom/8.4.569

25. Hähnle, R.: Tableaux for many-valued logics. In: D’Agostino, M., et al. (eds.)
Handbook of Tableau Methods, pp. 529–580. Kluwer, Dordrecht (1999). https://
link.springer.com/book/10.1007%2F978-94-017-1754-0

26. Hähnle, R., Beckert, B., Manyá, F.: Transformations between signed and classical
clause logic. In: Proceedings, 29th IEEE International Symposium on Multiple-
Valued Logic (ISMVL 1999), pp. 248–255. https://doi.org/10.1109/ISMVL.1999.
779724

27. Hähnle, R., Beckert, B., Manyá, F.: The 2-SAT problem of regular signed CNF
formulas. In: Proceedings 30th IEEE International Symposium on Multiple-Valued
Logic (ISMVL 2000), pp. 331–336. https://doi.org/10.1109/ISMVL.2000.848640

28. Hähnle, R., Beckert, B., Manyá, F.: The SAT problem of signed CNF formulas. In:
Basin, D., et al. (eds.) Labelled Deduction. Applied Logic Series, vol. 17. Springer,
Dordrecht (2000). https://doi.org/10.1007/978-94-011-4040-9 3

29. Hähnle, R.: Short conjunctive normal forms in finitely valued logics. J. Logic Com-
put. 4, 905–927 (2000). https://doi.org/10.1093/logcom/4.6.905

30. Hähnle, R.: Proof theory of many-valued logic and linear optimization. In: B.
Reusch et al. (eds.) Advances in Soft Computing. Computational Intelligence in
Theory and Practice. Advances in Soft Computing. Physica, Heidelberg, vol. 8, pp.
15–33 (2001). https://doi.org/10.1007/978-3-7908-1831-4 2

31. Hähnle, R.: Advanced Many-Valued Logics. In: Gabbay, D.M., et al. (eds.) Hand-
book of Philosophical Logic, vol. 2, pp. 297–395. Springer, Dordrecht (2001).
https://doi.org/10.1007/978-94-017-0452-6 5

32. Hähnle, R.: Tableaux and related methods. In: Handbook of Automated Reasoning
1, Elsevier Science Publishers B.V., pp. 101–178 (2001). https://doi.org/10.1016/
B978-044450813-3/50005-9

33. Hähnle, R.: Complexity of many-valued logics. In: Fitting, M., et al. (eds.) Beyond
Two: Theory and Applications of Multiple-Valued Logic, Studies in Fuzziness and
Soft Computing. Physica, Heidelberg, vol. 114, pp. 211–233 (2003). https://doi.
org/10.1007/978-3-7908-1769-0 9

34. Hähnle, R.: Many-valued logic, partiality, and abstraction in formal specification
languages. Logic J. IPGL 13(4), 415–433 (2005). https://doi.org/10.1093/jigpal/
jzi032

35. Kolař́ık, M.: Independence of the axiomatic system for MV-algebras. Math. Slovaca
63, 1–4 (2013). https://doi.org/10.2478/s12175-012-0076-z

https://doi.org/10.1007/BF01530787
https://doi.org/10.1007/978-3-7091-9394-5_6
https://doi.org/10.1080/11663081.1996.10510866
https://doi.org/10.1080/11663081.1996.10510866
https://springerlink.bibliotecabuap.elogim.com/content/pdf/10.1007%2Fs005000050012.pdf
https://springerlink.bibliotecabuap.elogim.com/content/pdf/10.1007%2Fs005000050012.pdf
https://doi.org/10.1023/A:1005086415447
https://doi.org/10.1093/logcom/8.4.569
https://doi.org/10.1093/logcom/8.4.569
https://springerlink.bibliotecabuap.elogim.com/book/10.1007%2F978-94-017-1754-0
https://springerlink.bibliotecabuap.elogim.com/book/10.1007%2F978-94-017-1754-0
https://doi.org/10.1109/ISMVL.1999.779724
https://doi.org/10.1109/ISMVL.1999.779724
https://doi.org/10.1109/ISMVL.2000.848640
https://doi.org/10.1007/978-94-011-4040-9_3
https://doi.org/10.1093/logcom/4.6.905
https://doi.org/10.1007/978-3-7908-1831-4_2
https://doi.org/10.1007/978-94-017-0452-6_5
https://doi.org/10.1016/B978-044450813-3/50005-9
https://doi.org/10.1016/B978-044450813-3/50005-9
https://doi.org/10.1007/978-3-7908-1769-0_9
https://doi.org/10.1007/978-3-7908-1769-0_9
https://doi.org/10.1093/jigpal/jzi032
https://doi.org/10.1093/jigpal/jzi032
https://doi.org/10.2478/s12175-012-0076-z

396 D. Mundici

36. Kroupa, T.: Every state on a semisimple MV-algebra is integral. Fuzzy Sets Syst.
157, 2771–2782 (2006). https://doi.org/10.1016/j.fss.2006.06.015

37. McNaughton, R.: A theorem about infinite-valued sentential logic. J. Symbolic
Logic, 16, 1–13 (1951). https://www.jstor.org/stable/2268660

38. Mundici, D.: Interpretation of AF C*-algebras in �Lukasiewicz sentential calculus.
J. Funct. Anal. 65, 15–63 (1986). https://core.ac.uk/download/pdf/81941332.pdf

39. Mundici, D.: Farey stellar subdivisions, ultrasimplicial groups, and K0 of
AF C*-algebras. Adv. Math. 68, 23–39 (1988). https://doi.org/10.1016/0001-
8708(88)90006-0

40. Mundici, D.: Recognizing the Farey-Stern-Brocot AF algebra. Rendiconti Lin-
cei Mat. Appl., 20, 327–338 (2009). https://ems.press/journals/rlm/articles/2994,
Dedicated to the memory of Renato Caccioppoli

41. Mundici, D.: Advanced �Lukasiewicz calculus and MV-algebras. Trends in Logic,
vol. 35. Springer, Berlin (2011). https://link.springer.com/book/10.1007%2F978-
94-007-0840-2

42. Mundici, D.: Word problems in Elliott monoids. Adv. Math. 335, 343–371 (2018).
https://doi.org/10.1016/j.aim.2018.07.015

43. Mundici, D.: What the �Lukasiewicz axioms mean. J. Symbolic Logic 85, 906–917
(2020). https://doi.org/10.1017/jsl.2020.74

44. Mundici, D.: Bratteli diagrams via the De Concini-Procesi theorem. Commun. Con-
temp. Math. 23(07), 2050073 (2021). https://doi.org/10.1142/S021919972050073X

45. Mundici, D., Panti, G.: Extending addition in Elliott’s local semigroup. J. Funct.
Anal. 117, 461–471 (1993). https://doi.org/10.1006/jfan.1993.1134

46. Panti, G.: Invariant measures in free MV-algebras. Commun. Algebra 36, 2849–
2861 (2009). https://doi.org/10.1080/00927870802104394

47. Parthasarathy, K.R.: Probability Measures on Metric Spaces. Academic Press, New
York (1967). https://doi.org/10.1016/C2013-0-08107-8

48. Rørdam, M., Størmer, E.: Classification of Nuclear C*-Algebras, Entropy in Oper-
ator Algebras, Encyclopaedia of Mathematical Sciences, Operator Algebras and
Non-Commutative Geometry, vol. 126. Springer-Verlag, Berlin, Heidelberg (2002).
https://doi.org/10.1007/978-3-662-04825-2 ISBN 978-3-540-42305-8

49. Wójcicki, R.: Lectures on Propositional Calculi. Publishing House of the Pol-
ish Academy of Sciences, Ossolineum (1984). http://sl.fr.pl/wojcicki/Wojcicki-
Lectures.pdf

https://doi.org/10.1016/j.fss.2006.06.015
https://www.jstor.org/stable/2268660
https://core.ac.uk/download/pdf/81941332.pdf
https://doi.org/10.1016/0001-8708(88)90006-0
https://doi.org/10.1016/0001-8708(88)90006-0
https://ems.press/journals/rlm/articles/2994
https://springerlink.bibliotecabuap.elogim.com/book/10.1007%2F978-94-007-0840-2
https://springerlink.bibliotecabuap.elogim.com/book/10.1007%2F978-94-007-0840-2
https://doi.org/10.1016/j.aim.2018.07.015
https://doi.org/10.1017/jsl.2020.74
https://doi.org/10.1142/S021919972050073X
https://doi.org/10.1006/jfan.1993.1134
https://doi.org/10.1080/00927870802104394
https://doi.org/10.1016/C2013-0-08107-8
https://doi.org/10.1007/978-3-662-04825-2
http://sl.fr.pl/wojcicki/Wojcicki-Lectures.pdf
http://sl.fr.pl/wojcicki/Wojcicki-Lectures.pdf

Speaking About Wine: Another Case
Study in Bridging the Gap Between
Formal and Informal Knowledge

Aarne Ranta(B)

Department of Computer Science and Engineering,
Chalmers University of Technology and University of Gothenburg, Gothenburg,

Sweden

aarne@chalmers.se

Abstract. This paper presents WineSpeak, a system that uses con-
trolled natural language for translation and information retrieval about
the topic of wine. WineSpeakcombines some recent work on natural
language interfaces to databases with other recent work on informa-
tion extraction from heterogeneous sources. It supports database queries
about wine in natural language, as well as the translation of questions,
comments, and short articles about wine in human-to-human communi-
cation. WineSpeakwill be available in English, German, French, Italian,
and Spanish, but also readily portable to other languages via the use of
Grammatical Framework and its Resource Grammar Library (The sys-
tem will be released in connection to the publication of this volume at
https://www.grammaticalframework.org/gf-winespeak/. The final name
of the system can be different, to avoid confusion with other similar
names).

Keywords: Grammatical Framework · Natural language queries ·
Wine information

1 Introduction

Speaking about wine can be at least as rigorous as speaking about software speci-
fications. Unlike software, wine has thousands of years of tradition of description,
classification, and legislation, much of it expressed in standardized vocabulary.
The first traces of wine cultivation are found in Georgia around 7000–5000 BC.
Ancient Roman literature contains several systematic treatises of viticulture and
wines, including classifications of grape varieties and growing areas, by authors
such as Cato the Elder, Columella, Pliny the Elder, and Galen [7]. For example,
one of the 37 books of Pliny’s encyclopedic work Naturalis Historia, book 14 on
fruit trees, is mostly about vines and wine. Its chapters has titles such as “Fifty
kinds of generous wines”, “Thirty-eight varieties of foreign wines”[9]. Today, the

To Reiner, my elder brother in wine and in science.

c© Springer Nature Switzerland AG 2022
W. Ahrendt et al. (Eds.): The Logic of Software. A Tasting Menu of Formal Methods,
LNCS 13360, pp. 397–407, 2022.
https://doi.org/10.1007/978-3-031-08166-8_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08166-8_19&domain=pdf
https://www.grammaticalframework.org/gf-winespeak/
https://doi.org/10.1007/978-3-031-08166-8_19

398 A. Ranta

body of knowledge about grape varieties, regions, classifications, producers, and
vintages is orders of magnitude larger and in constant need of extensions and
updates.

Even real experts, who know how to speak rigorously about wine in their own
language and a couple of others, may feel unsure when trying to communicate in
other languages, as they want to be sure to make the right choices and pose the
right questions when communicating with wine growers, merchants, and waiters
in different countries. They might find it challenging to be as rigorous when
speaking about wine as when using their own language.

Getting accurate information about wine and communicating it across lan-
guages is obviously a task where computers could help. It covers several subtasks
within the field of Natural Language Processing (NLP):

– translation: talking and writing about wine across language boundaries;
– queries: posing questions and getting answers in different languages;
– documentation: publishing product descriptions and encyclopaedic articles

about wines;
– reviews: giving comments on wine and sharing them with others;
– updates: collecting new information about both new and old wines from writ-

ten documents, databases, etc.

Each of these tasks is growingly popular as an issue in Artificial Intelligence
(AI). The most common techniques used in current AI are machine learning,
heuristic rules, and crowd sourcing. These techniques, however, are not the most
ideal ones for rigorous tasks such as speaking about wine. They could play a
useful role in gathering information and suggesting solutions, but what we want
in the end is reliable solutions that are explainable and controllable.

In NLP, as in much of AI, rigorous methods and reliable solutions are cur-
rently less popular than in the past, since they are regarded not to be scalable.
More of these techniques can be seen, for instance, in older volumes of Springer
Lecture Notes in Artificial Intelligence: logic, theorem proving, databases, formal
grammars, software models. In this paper, we will take a step backward—and
thereby probably also forward, as the development of AI has largely been cyclic—
and use some of the “old” techniques to build a system for speaking about wine.
We demonstrate the techniques by building a system called WineSpeak. Its main
components are
– a database to answer queries, store information, and control the soundness of

the information,
– a formal grammar to enable access to the information in natural languages

(English, German, Italian, French, Spanish) and to translate between these
languages,

– a web interface that enables tasks such as translation, queries, and document
generation, as well as updates by authorized users.

The concrete, practical purpose of WineSpeakis to help its users to speak about
wine, rigorously and across language barriers. But we also have a more general
purpose in mind: to experiment with an architecture and a reference implemen-
tation that can be adapted to other domains of knowledge.

Speaking About Wine: Another Case Study 399

2 Informal Specification: System Functionalities

WineSpeakis aimed to deal with accurate, objective, true information about
wines. It can answer both detailed and general questions:

– What grapes and in what proportions is Tignanello made of?
– Show me all information about Tignanello.
– Show me some white wines from Rhône.
– What red wines are recommended for lobster?
– What is the best DOC region of Piemonte?

The first three of these questions are clearly objective: they can be answered on
the basis of verifiable information. The last two sound more subjective, but even
they can get objective answers, if the answers are qualified with their sources:

– The Guide Orange recommends red Saumur for lobster.
– According to John Johnson, Pinerolese is the best DOC of Piemonte.

So much about queries. A wine information system can never be complete,
and it must therefore be modifiable by users, at least authorized users. We can
think of four levels of authorized users:

1. managers, who are allowed to change any information, including addition
and removal of lower level users;

2. experts, who are allowed to enter both objective and subjective information;
3. registered users, who are allowed to enter comments of the subjective kind,

such as recommendations;
4. unregistered users, who are only allowed to pose questions.

Since even managers and experts can make mistakes, the system needs to have
control mechanisms to verify the consistency of the objective information
added. For example,

– A red wine cannot be made from white grapes only.
– A wine from Bordeaux cannot be listed as as a Spanish wine, but only as

French.
– If a wine is given new properties, they must be consistent with the already

given ones.

The last-mentioned behaviour must still allow destructive updates, where
the old information is corrected. Since updates are only permitted from expert
users (level 2), conflicts between them can be solved by managers (level 1). An
interim solution is to store both versions of the information, with a mention of
what sources they come from.

With all of the above functionalities, the system works much like well-known
applications such as the Vivino discussion forum1. One difference is that ours
1 https://www.vivino.com/.

https://www.vivino.com/

400 A. Ranta

is completely open source, and all its design and implementation details will
be documented. But the main difference, from the user’s point of view, is the
role of natural language: we maintain the same information in English, French,
German, Italian, Spanish, and any other language that might be added.

The main language functionalities of WineSpeakare thus:

– ask questions and get answers in a natural language,
– add information and make comments in a natural language,
– translate questions and comments from any language to any other.

The natural language component is an integral part of the information system:
everything that is said is interpreted in terms of the data via a formal seman-
tics. This means that the use of “informal” language inherits the rigour of the
underlying formalized information.

As the data is open to new information, the language component must also
be open for new words and syntactic forms. The users (of appropriate levels)
must be able to add expressions to the language. For instance, the ground data
about Italian wines might use Italian names of the regions, such as Toscana,
which is initially used in all languages. But as the system develops, users may
add Tuscany to be used in English, Toskana in German, Toscane in French.
This is clearly a part of the objective information in the system.

A slightly different example is words that are used to describe taste. The
descriptions themselves might be subjective, but their translations can be objec-
tive information based on the standard terminology established among wine
experts in each language.

3 Database

WineSpeakuses a relational database, with several tables and associated con-
straints to eliminate redundancy and guarantee consistency. The schemas of
the tables specify what information is to be found where. Here is a list of the most
important tables and their attributes, with primary keys (uniquely identify-
ing attributes) in italics and foreign keys (attributes referring to other tables)
given with information about what other tables they are keys of:

– Countries: name, continent.
– Regions: name, country (from Countries), status (e.g. DOC).
– SubRegions: subregion, main region (both from Regions).
– Grapes: name, colour (red or white).
– Brands: name, colour (red, white, rosé, orange), region, producer.
– BrandGrapes: brand, colour (from Brands), year, grape (from Grapes), per-

centage, alcohol percentage.

We have here used natural keys instead of artificial keys such as product num-
bers used by wine shops (e.g., the Swedish monopoly shop Systembolaget). This
gives certain guarantees of consistency, but does not of course guard against

Speaking About Wine: Another Case Study 401

everything, such as spelling variations. There are also situations where the keys
do not really uniquely determine the other attributes—for instance, the conti-
nent where Turkey lies. As long as such situations are reasonably rare, they are
easy to solve by adding information to the names, e.g. Turkey (Europe).

More importantly, since the system is meant to be used via a natural language
interface, the parser can detect ambiguous references and ask for more informa-
tion, e.g. do you mean the European or Asian part of Turkey? It remains to
be seen how common such conflicts are in larger categories, in particular brand
names. We have already anticipated some of this by including both brand name
and colour in the primary key in Brands.

Adding the vintage year to brand name and colour is obviously needed in
BrandGrapes, as the percentages of grapes and alcohol by volume change from
year to year. A problem with this is that years are not always known, which
is not acceptable for a primary key attribute in a relational database. Hence
“unspecified” must be accepted as a value of “year”.

Notice that the word wine itself is too ambiguous to be used as a name of any
of the formalized types of data. Sometimes it stands for a whole region (Barolo
is a red wine from Piemonte), sometimes for a brand, sometimes for a vintage of
a brand or a region. But obviously it cannot be avoided in the natural language
interface. A query like Show me white wines from Rhône should not be replied
by a disambiguation question (do you mean regions or brands or vintages), but
a reasonable list that might mix objects from different formalized categories.

The database schemas above are used for storing objective information. Sub-
jective information, such as users’ comments, are also convenient to store in the
relational database, because they contain references to the objective data. A
subjective comment is typically included in the system because it is about some
wine in the objective database. In addition, it comes with a reference to some
user—gathered in a table of users and their privileges—and has a time stamp.

But how are comment texts stored? Free text is the most immediate alter-
native, chosen in most message boards. But we will provide an alternative:
abstract syntax trees, which support automatic translation and a formal
structure supporting fine-grained queries via a formal semantics. This enables
questions such as

– Which German wines does Hugh Hughson never want to drink again?

based on his subjective comments in the database2. This leads us naturally to
the most special feature of WineSpeak: the grammar.

4 Grammar

The grammar takes care of parsing user input to abstract representations, which
are converted to queries to the database. It also takes care of the opposite direc-
tion: generating answers to the user from abstract representations obtained from
database response.
2 It also makes sense to store the original free text comments, in particular, if they

have typos or are otherwise not fully covered by the grammar.

402 A. Ranta

In order to guarantee support for these functionalities, the grammar design
starts from abstract representations—with an abstract syntax. An abstract
syntax is a system of algebraic datatypes, consisting of constructor functions
of each datatype. Here are some examples of constructor functions:

QWhatValue : Attribute -> Object -> Query
AColour : Attribute
OGrape : Grape -> Object
GMalbec : Grape

From these functions, one can construct the abstract syntax tree

QWhatValue AColour (OGrape GMalbec)

representing the natural language query

What is the colour of Malbec?

The representation is abstract in the sense that it specifies the semantic compo-
nents of the query (the colour, the grape, and the question form “what value”)
but leaves out the tokens “is”, “the”, “of”, “?” in the same way as the abstract
syntax of a programming languages ignores its keywords and punctuation marks.
Even more importantly, the constructor functions themselves, QWhatValue etc.,
are abstract entities that can be realized in different ways in different lan-
guages. The realization is performad by linearization functions, which convert
abstract syntax trees into linear strings of tokens in concrete languages.

A linearization function, at its simplest, is just a template, in which the
linearizations of subtrees are inserted in strings with “holes”. Here is a simple
linearization function for the constructor QWhatValue:

QWhatValue <attr> <obj> = What is the <attr> of <obj>?

A set of such templates defines a context-free grammar, which, in addition to
linearization, can be used for parsing natural language input into abstract syntax
trees.

Different languages can have different templates for the same constructor
functions:

QWhatValue <attr> <obj> = Was ist der <attr> von <obj>?
QWhatValue <attr> <obj> = Quel est le <attr> de <obj>?

for German and French, respectively. This means that one and the same abstract
syntax works as an interface towards the database for any number of languages.
However, as readers familiar with German or French will notice, the simple-
minded templates do not work in all situations. The attribute can have different
genders, requiring different articles in both languages. The object may need a
conversion to the dative form in German, and the preposition de may need to
be converted to d’, du or des depending on the object.

Speaking About Wine: Another Case Study 403

In Grammatical Framework (GF) [11], string templates are generalized to
linearization functions that produce records and tables. Thus for instance the
German word for wine is a record with an inflection table (Wein, Weines, Weine,
etc., mapping combinations of case and number to a form of the word) and a
gender (masculine). The GF code for this is

{s = table {
Sg => table {Gen => "Weines" ; _ => "Wein"} ;
Pl => table {Dat => "Weinen" ; _ => "Weine"}
} ;

g = Masc
}

Linearization rules for functions that take arguments combine the components
of these data structures in different ways to guarantee grammatical correctness.
For instance, the piece of code corresponding to the English “of the X” for a
noun X in German is

von ++ defArt ! X.g ! Sg ! Dat ++ X.s ! Sg ! Dat

where the form of the definite article is selected from a table to match the gender
of X in the dative singular, and the noun form is also the dative singular. A more
sophisticated rule would also produce the contraction “vom” when the gender is
masculine or neuter.

While GF makes it possible to describe these structures and their combi-
nations accurately, they easily get complex and subtle, and therefore require
detailed linguistic knowledge to get right. Therefore, a huge community effort
has been made in GF to create a Resource Grammar Library (RGL, [10]), which
hides low-level linguistic details behind a high-level API. Thus the inflection of
the noun Wein can be given by the expression

mkN "Wein" "Weine" masculine

The RGL function mkN expands this expression to the record shown above. This
expression is easier to write than the full record, but it can also be extracted
automatically from some dictionary that contains nouns with their plural forms
and genders.

Going to the level of complete queries, we can use the syntactic functions of
the RGL API. The linearization function for QWhatValue can then be defined as

mkQCl (mkIComp what_IP) (mkNP the_Det (possessNP attr obj))

which hides all details about genders, cases, and prepositions. In fact, this expres-
sion is the same for all languages implementing the resource grammar API. Thus
the grammar can be written as a functor over the resource grammar API used as
interface, which makes the creation of multilingual grammars in GF and RGL
productive: a grammar written for one language can be (almost) automatically
ported to other ones.

404 A. Ranta

Linearization functions can generate variants, that is, alternative ways of
expressing the same abstract syntax. In a query language, it can be practical to
allow both full sentences and their shorthands for queries. Thus the constructor
QWhatValue can also allow a linearization dropping the words “what is”, the
definite article, the question mark, or any combination of these:

[What is] [the] colour of Malbec [?]

The parser returns the same abstract syntax tree for all of the eight result-
ing variants. Variants make it easier for the users to write input that can be
interpreted by the system. Input is moreover helped by the predictive parsing
functionality of the GF runtime, showing word completions compatible with the
grammar.

The library and its language-independent API make grammar writing both
productive and feasible for non-linguist programmers. A base grammar, with
syntactic combination rules, is initially implemented and later completed by lin-
guist programmers familiar with GF (on the manager level of WineSpeak). New
expressions can later be added by expert users who know how to express wine
concepts properly in their language and give minimal grammatical information,
such as the gender of nouns.

5 Semantics

The semantics of natural language directed to a relational database can be
expressed by a direct interpretation in relational algebra or, often more con-
veniently, as a translation to SQL. A common practice in semantics is to make
the translation compositional. This means that the translation of a syntax tree
is composed from the translations of its immediate subtrees—there is no need
to look deeper into the subtrees.

As natural language and SQL are, at least superficially, very different, com-
positionality is an interesting challenge. The simplest way to implement compo-
sitional translation is by using GF [4]. In GF, linearization functions are compo-
sitional by design, as forced by the very syntax of the formalism. Just like with
text templates, using simple context-free rules would not be powerful enough. A
more scalable way is to use records that have separate fields corresponding to
fields in SQL queries: SELECT, FROM, and WHERE. Then, for example, adding the
adjective Italian to a wine description means adding a condition to the WHERE
part, which may already contain other conditions.

At the time of writing, the semantics of WineSpeakis entirely based on lin-
earization in GF. The advantage of the approach is that the overall system is
simple and easy to extend, by only touching the grammar. But this requires
rather complicated encoding and may be changed to, or replaced by, an exter-
nal translation in a general purpose programming language. This will also make
non-compositional translation possible, by using techniques studied in [12].

Speaking About Wine: Another Case Study 405

6 Data Sources

WineSpeakis intended to be a living source of data built and extended by the
community. However, as a proof of concept, and also to attract users, we don’t
want to start with an empty shell. Thus we have used different sources to popu-
late WineSpeakwith available open-source data. We have not used—and do not
aim to use—commercial or otherwise proprietary data.

One obvious source is Wikipedia, which has comprehensive lists of estab-
lished facts such as European wine regions and their appellations or denomina-
tions. The main challenge is to extract the data in a precise way from HTML-
formatted text. There is no standard format even without single regions, let
alone between countries, so heuristic algorithms followed by manual editing is
the obvious method. The data is too scarce to support machine learning, but
the scarcity also makes it feasible to use manual methods.

Translations of wine terms and names of regions into different languages
is another task where Wikipedia helps, although in an even more fragmentary
way than the base data, because different languages in Wikipedia are seldom
in a clear correspondance. Thus we have also looked at specific terminology
databases meant for translators. In both cases, the terms that are found must
be equipped with grammatical information, so that they can be used correctly in
all syntactic contexts. This is a task where the GF Resource Grammar Library is
helpful—not as an automatic method but together with human interaction that
we want to minimize. One promising technique is Concept Alignment, which
uses machine-learned parsers together with GF-RGL to extract translation rules
from parallel texts [8].

Concepts and facts collected in WineSpeakare a general resource, which can
be used in other applications as well. A particular example we have in mind is the
Abstract Wikipedia, an initiative to generate Wikipedia articles from formal-
ized data [13]. The data is formalized as RDF triples (subject-predicate-object
formulas) in WikiData [14], from where it can be organized into more complex
sentences and texts by using abstract syntax functions of GF. It has turned out
that the current coverage of wine data is very fragmentary in WikiData, and one
of the intended by-products of the WineSpeakproject is to help this situation by
making both data, abstract syntax functions, and linearization rules available
for Abstract Wikipedia.

7 Related Work

Natural language interfaces to databases are an old topic, dating back at least to
the LUNAR system about moon stones [15]. The goal is to bridge between formal
and informal language, where WineSpeakuses essentially an approach similar to
[6], which became a part of the KeY system [2]. Similar approaches have been
used for information systems in different domains and formalisms, for instance,
[1,3–5].

406 A. Ranta

8 Conclusion

What we have presented above is the general structure of a system, for which
we have built a basic implementation in which all parts are in place: database,
grammar, and web interface. We are continuously extending it with more data,
with the goal of launching the system and publishing its source code will be in
connection to the publication of this volume.

Acknowledgements. I am grateful to the editors for their cooperative spirit and to
the anonymous referees for insightful suggestions.

References

1. Angelov, K., Enache, R.: Typeful ontologies with direct multilingual verbalization.
In: Rosner, M., Fuchs, N.E. (eds.) CNL 2010. LNCS (LNAI), vol. 7175, pp. 1–20.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31175-8 1

2. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware. The KeY Approach. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-69061-0

3. Dannélls, D., Damova, M., Enache, R., Chechev, M.: Multilingual online generation
from semantic web ontologies. In: Proceedings of the 21st International Conference
on World Wide Web, pp. 239–242. ACM (2012)

4. Davallius, D.: Natural-SQL translator a general natural language interface to
SQL using the grammatical framework programming language. Master’s the-
sis, Chalmers University of Technology, Gothenburg, Sweden (2021). https://odr.
chalmers.se/handle/20.500.12380/303909

5. Davis, B., Enache, R., van Grondelle, J., Pretorius, L.: Multilingual verbalisation
of modular ontologies using GF and lemon. In: Kuhn, T., Fuchs, N.E. (eds.) CNL
2012. LNCS (LNAI), vol. 7427, pp. 167–184. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-32612-7 12

6. Hähnle, R., Johannisson, K., Ranta, A.: An authoring tool for informal and for-
mal requirements specifications. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002.
LNCS, vol. 2306, pp. 233–248. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45923-5 16

7. Johnson, H.: The Story of Wine: From Noah to Now. Academie du Vin Library,
Ascot, Berkshire (1989)

8. Masciolini, A., Ranta, A.: Grammar-based concept alignment for domain-specific
machine translation. In: Proceedings of the Seventh International Workshop on
Controlled Natural Language (CNL 2020/21) (2021). https://aclanthology.org/
2021.cnl-1.2.pdf

9. Bostock, J., Riley, H.T.: Pliny the Elder: The Natural History of Pliny, vol. III. H.
G. Bohn, London (1855). https://www.gutenberg.org/files/59131/59131-h/59131-
h.htm

10. Ranta, A.: The GF resource grammar library. Linguistic Issues in Language Tech-
nology 2 (2009)

11. Ranta, A.: Grammatical Framework: Programming with Multilingual Grammars.
CSLI Publications, Stanford (2011)

https://doi.org/10.1007/978-3-642-31175-8_1
https://doi.org/10.1007/978-3-540-69061-0
https://odr.chalmers.se/handle/20.500.12380/303909
https://odr.chalmers.se/handle/20.500.12380/303909
https://doi.org/10.1007/978-3-642-32612-7_12
https://doi.org/10.1007/978-3-642-32612-7_12
https://doi.org/10.1007/3-540-45923-5_16
https://doi.org/10.1007/3-540-45923-5_16
https://aclanthology.org/2021.cnl-1.2.pdf
https://aclanthology.org/2021.cnl-1.2.pdf
https://www.gutenberg.org/files/59131/59131-h/59131-h.htm
https://www.gutenberg.org/files/59131/59131-h/59131-h.htm

Speaking About Wine: Another Case Study 407

12. Ranta, A.: Translating between language and logic: what is easy and what is dif-
ficult. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) Automated Deduction -
CADE-23, pp. 5–25. Springer, Berlin Heidelberg (2011)

13. Vrandečić, D.: Building a multilingual wikipedia, 64(4), 38–41 (2021). https://
cacm.acm.org/magazines/2021/4/251343-building-a-multilingual-wikipedia/
fulltext

14. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Com-
mun. ACM 57(10), 78–85 (2014). https://doi.org/10.1145/2629489

15. Woods, W.A.: Progress in natural language understanding: an application to lunar
geology. In: Proceedings of the June 4–8, 1973, National Computer Conference and
Exposition, pp. 441–450. AFIPS 1973, ACM (1973)

https://cacm.acm.org/magazines/2021/4/251343-building-a-multilingual-wikipedia/fulltext
https://cacm.acm.org/magazines/2021/4/251343-building-a-multilingual-wikipedia/fulltext
https://cacm.acm.org/magazines/2021/4/251343-building-a-multilingual-wikipedia/fulltext
https://doi.org/10.1145/2629489

Software & System Verification with KIV

Gerhard Schellhorn, Stefan Bodenmüller(B), Martin Bitterlich,
and Wolfgang Reif

Institute for Software and Systems Engineering, University of Augsburg,
Augsburg, Germany

{schellhorn,stefan.bodenmueller,martin.bitterlich,
reif}@informatik.uni-augsburg.de

Abstract. This paper gives an overview of the KIV system, which in
its long history has evolved from a prover for sequential programs using
Dynamic Logic to a general purpose theorem prover. Today, KIV’s main
focus is the refinement-based development of sequential and concurrent
software systems. In this paper we describe KIV’s logic, highlighting
recent developments such as support for polymorphism and for excep-
tions in programs. We show its proof engineering support that uses a
graphical user interface and explicit proof trees, as well as KIV’s sup-
port for the development of large-scale software systems using modular
components and for the verification of concurrent algorithms using a rely-
guarantee calculus. Finally, we give a short survey over the case studies
that have been conducted with KIV.

Keywords: Formal Methods · Interactive Theorem Proving ·
Polymorphic Higher-Order Logic · wp Calculus · Rely Guarantee
Calculus

1 Introduction

KIV was originally developed in the 80’s by Maritta Heisel, Wolfgang Reif and
Werner Stephan at the chair of Prof. Menzel in Karlsruhe [25]. The original focus
was on developing proof support for the verification and synthesis of sequential
programs using Dynamic Logic [17]. Underlying the work was the development of
a specific functional “proof programming language” (PPL), that replaced LISP’s
basic data structure of s-expressions with proof trees.

Reiner Hähnle was one of the first students involved in the implementation
of PPL (that used an instance of Cardelli’s SECD machine [9] to interpret PPL)
and the realization of first deduction concepts. He co-authored [19]. This work
later influenced the design of the Key System [1], which also uses a version of
Dynamic Logic to verify Java programs.

Since then KIV has evolved to a general-purpose theorem prover, however,
still with a focus on developing verified software. KIV supports the refinement-
based development of sequential as well as concurrent software systems. The logic

Partly supported by the Deutsche Forschungsgemeinschaft (DFG), “Verifikation von
Flash-Dateisystemen” (grants RE828/13-1 and RE828/13-2).

c© Springer Nature Switzerland AG 2022
W. Ahrendt et al. (Eds.): The Logic of Software. A Tasting Menu of Formal Methods,
LNCS 13360, pp. 408–436, 2022.
https://doi.org/10.1007/978-3-031-08166-8_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08166-8_20&domain=pdf
https://doi.org/10.1007/978-3-031-08166-8_20

Software & System Verification with KIV 409

has been extended to a higher-order temporal logic and recently polymorphism
has been added. The programming language now has exceptions and a code
generator supports generating Scala as well as C-Code.

The implementation language of KIV also changed a few years ago: KIV is
now programmed entirely in Scala [43].

This paper gives an overview of the current concepts supported in KIV. It is
organized as follows. Section 2 introduces polymorphic higher-order logic, which
is the basis of our specification language. Exemplary specifications of the free
data type of lists and the non-free data type of heaps with separation formulas
are given.

Section 3 describes the core features of KIV’s proof engineering. Explicit
proof trees are used, that can be saved and manipulated, AC rewriting and
heuristics are used to automate proving theorems. Interaction takes place via
a graphical interface that allows context-sensitive rewriting by clicking on sub-
expressions.

Section 4 introduces KIV’s program logic for sequential, abstract programs.
In contrast to many other theorem provers, which use (some variant of) higher-
order logic only and embed programs as data structures, KIV always had pro-
grams as a native concept together with a calculus for symbolic execution of
Dynamic Logic and wp-calculus formulas. The section then introduces KIV’s
concept of components, subcomponents, and refinement. Components are also
called abstract state machines (ASMs) since they are close to ASMs as defined
in [8]. Abstractly, a component can be viewed as an instance of an abstract data
type, i.e. a collection of operations working on a common state. When operations
are called sequentially, then refinement is essentially data refinement with the
contract approach [12].

Section Sect. 5 introduces KIV’s basic concepts for the verification of con-
current systems. This calculus has evolved over time. It started as a calculus
that views programs as formulas of interval temporal logic (ITL; an extension of
LTL) and is able to prove arbitrary temporal logic properties. Rely-Guarantee
(RG) formulas were initially defined as abbreviations [55]. They became native
concepts later on, with calculus rules that are stream-lined to the verification of
partial and total correctness of concurrent programs.

KIV also implements extensions of the component concept to concurrency.
Such components may either have concurrent internal threads (e.g. Garbage Col-
lection) or offer a thread-safe interface such that operations can be called by sev-
eral threads in parallel. They are proved to be linearizable [26] and deadlock-free
using proof obligations from RG calculus. A discussion of concurrent components
and the proof obligations that are necessary for their correctness is beyond the
scope of this paper, the interested reader should look at [4,52].

Section 6 gives an overview of some medium- to large-sized case studies
that have been verified with KIV. Finally, Sect. 7 gives some ongoing work and
concludes.

410 G. Schellhorn et al.

2 Basic Logic and Structured Specifications

The basic logic of the KIV system is higher order logic (HOL), recently extended
from monomorphic to polymorphic types. The definition of the set of types Ty
is based on a finite set of type constructors Tc with fixed arity l (we write
tc:l ∈ Tc) and a countable set of type variables ′a ∈ Tv. It is assumed that
the type constant bool is predefined, i.e. bool :0 ∈ Tc. We will usually leave the
arity of type constructors implicit when writing types. Hence, a type ty ∈ Ty is
an application of a type constructor, a type variable, a tuple type, or a n-nary
function type

ty := tc:l(ty) | ′a | (ty) | ty → ty ′

where ty denotes a sequence ty1 × . . . × tyn of types (we will use underlining to
denote sequences in general). The sequence must have l elements in the appli-
cation of a type constructor, at least two elements for tuples, and at least one
element for function types.

Expressions e ∈ Expr are defined over a set of (typed) variables x :ty ∈ X
and a signature Σ = (Tc,Op) which in addition to type constructors contains
(typed) operations op:ty ∈ Op. Op always includes the usual boolean operations
like true : bool , ¬ . : bool → bool (written prefix), or . ∧ . : bool × bool → bool
(written infix), equality . = . : ′a × ′a → bool , an if-then-else-operator ⊃:
bool × ′a × ′a → ′a, as well as tuple constructors (written (e1, . . . , en)) and tuple
selectors (written e.g. e. 3). The basic set of higher-order expressions, which will
be extended in Sect. 4 and Sect. 5, is defined by the grammar

e := x | op | e0(e) | λ x . e | ∀ x . ϕ | ∃ x . ϕ

Here, ϕ denotes a formula, i.e. an expression of type bool, and the variables
of x must be pairwise disjoint. In the following we will also use t to denote
terms, which are expressions without quantifiers, and ε to denote quantifier-
free formulas, which are used e.g. for conditions of programs (see Sect. 4.1).
The typing rules are standard, e.g. in an application the type of e0 must be a
function type, where the argument types are equal to those of e. Operations are
allowed to be used with an instantiated type in theorems, but not in axioms
(definitions). Most types can be inferred by type inference, so we will leave the
types of variables and the instance types of operations implicit in formulas.
Application of the if-then-else-operator is written as (ϕ ⊃ e1; e2). Its result is e1
if ϕ is true and e2 otherwise.

The semantics of an expression �e� essentially follows the semantics of HOL
defined in [18]. It is based on algebras A = (U , {tc:lA}, {op:tyA}).

The first component of an algebra is the universe U , which is a set of non-
empty (potential) carrier sets. The semantics tc:lA : U l → U of a type construc-
tor maps the carrier sets of its argument types to the one of the full type. The
semantics of booleans, functions and tuples is standard, i.e. U is assumed to con-
tain the set {tt, ff} that interprets booleans, and to be closed against forming
cartesian products and functions to interpret function and tuple types. Given a
type valuation w : Tv → U , that maps each type variable to a carrier set, an
algebra fixes the semantics �ty�(A, w) of a type as one of the carrier sets in U .

Software & System Verification with KIV 411

Fig. 1. KIV specification of the generic free data type list .

The interpretation op:tyA of an operation over an algebra then yields an
element of �ty�(A, w) for every possible type valuation w. Finally, the semantics
of an expression �e�(A, w, v) refers to an algebra A, to interpret type constructors
and operations, a type valuation w, and a valuation v (compatible with w) that
maps each variable x : ty to an element of �ty�(A, w). The result of �e�(A, w, v)
is an element of the carrier set �ty�(A, w). We write A, w, v |= ϕ when the
semantics of a formula evaluates to tt. An algebra is a model of an axiom ϕ
(A |= ϕ), iff the formula evaluates to true for all w and v.

In the following we are interested in valuations v that are used as (the chang-
ing) states of programs, while algebra A and type valuation w are fixed. In this
case we often drop these arguments and just write �e�(v).

2.1 Structured Specifications of Algebraic Data Types

In KIV we use structured algebraic specifications to build a hierarchy of data
type definitions, which may be generated freely or non-freely. Such data type
definition specifications can be augmented by additional functions and can be
combined using the usual structuring operations like enrichment, union, and
renaming. KIV also supports a generic instantiation concept. It allows to replace
an arbitrary subspecification P (the “parameter”) of a generic specification G
with an actual specification A using a mapping. A mapping is a generalized
morphism that renames types and operations of P to types and expressions over
A. Such an instantiation generates proof obligations that require to prove that
the axioms of P instantiated by the mapping are theorems over A.

An example of a free data type specification is given in Fig. 1 for lists. A
list list(′a) is defined using a constant constructor [] (representing the empty
list) and a non-constant infix constructor +. Non-empty lists consist of an head
element of generic type ′a and and a remaining tail list. These fields can be
accessed via the selector functions .head and .tail, respectively.

For a free data type specification KIV generates all necessary axioms: the
constructor functions are injective, different constructor functions yield differ-
ent results, selectors and update functions (written e.g. x.head:= newhead) get
definitions. Selector (and update) functions are not given axioms for all argu-
ments: [].head is left unspecified (as is [].tail). The semantic function in a
model then is still a total function, and [].head may be any value, following

412 G. Schellhorn et al.

the standard loose approach to semantics. However, for use in programs, KIV
attaches a domain to the function, here given as λ x. x �= []. Calling .head
outside of its domain in a program (here: with [], where it is “undefined”) will
raise an exception, explained in detail in Sect. 4.2.

A size function (# x counts the number of non-constant constructors in x,
i.e. it calculates list length) and an order predicate (x < y iff x is a suffix of y)
can be specified, for which axioms are generated as well. Note that we abbreviate
functions with result type bool by omitting the result type and declaring them
as predicates.

2.2 Modelling the Heap and Separation Logic

The specification of non-free data types requires more effort as axioms cannot
be generated automatically. For example, we use the polymorphic non-free data
type shown in Fig. 2 to reason about pointer structures in the heap. A heap
can be considered as a partial function mapping references r to objects obj of a
generic type ′a, where allocation of references is explicit. As stated by the “induc-
tion” clause, the heap(′a) data type is inductively generated by the constant ∅
representing the empty heap, by allocating an new reference r (written h ++ r),
or by updating an allocated location r with a new object obj (written h[r , obj]).

Fig. 2. KIV specification of the polymor-
phic non-free data type heap(′a).

For a non-free data type one has
to give an extensionality axiom: two
heaps are considered to be equal if
they have allocated the same loca-
tions and they store the same objects
under their allocated locations. This
definition requires two additional oper-
ations that also have to be axioma-
tized. A predicate r ∈ h is defined for
checking whether a reference is allo-
cated in a heap and a function h[r]
is used for looking up objects in the
heap (this corresponds to dereferenc-
ing a pointer). References can also be
deallocated by the function h -- r .

The constructor functions as well
as lookup and deallocation are declared
as partial functions in order to spec-
ify valid accesses to the heap. This
requires to give domains for the func-
tions (see lambda clauses in Fig. 2):
Accesses to the heap with the null
reference are always undefined (r �=
null) and allocation is only allowed
for new references (¬ r ∈ h). Lookups,
updates, and deallocations are defined
only for allocated references (r ∈ h).

Software & System Verification with KIV 413

This explicit specification of the heap is necessary since in KIV all parame-
ters of procedures are explicit. Hence, when reasoning about pointer-based pro-
grams, like a pointer-based implementation of red-black trees, the heap must
be an explicit parameter of the program as well. To facilitate the verification of
such programs we built a library for Separation Logic (SL) [48] in KIV. SL for-
mulas are encoded using heap predicates hP : heap(′a) → bool . A heap predicate
describes the structure of a heap h. At its simplest, h is the empty heap emp:

 emp(h) ↔ h = ∅
The maplet r �→ obj describes a singleton heap, containing only one reference

r mapping to an object obj . It is defined as a higher-order function of type
(ref × ′a) → heap(′a) → bool :

 (r �→ obj)(h) ↔ h = (∅ ++ r)[r , obj] ∧ r �= null

More complex heaps can be described using the separating conjunction
hP0 * hP1 asserting that the heap consists of two disjoint parts, one satisfying
hP0 and one satisfying hP1 , respectively. Since it connects two heap predicates,
it is defined as a function with type (heap(′a) → bool) × (heap(′a) → bool) →
(heap(′a) → bool):

 (hP0 * hP1)(h) ↔ ∃ h0, h1. h0 ⊥ h1 ∧ h = h0 ∪ h1 ∧ hP0 (h0) ∧ hP1 (h1)

Besides the basic SL definitions, the KIV library contains various abstractions
of commonly used pointer data structures like singly-/doubly-linked list or binary
trees. These abstractions allow to prove the functional correctness (incl. memory
safety) of algorithms on pointer structures against their algebraic counterparts.

3 Proof Engineering

Proof engineering (in analogy to software engineering) is the process of develop-
ing a verified software system. Since the goal is mechanized verification, the tool
support a verification system can provide for speeding up the process is very
important. The process includes various complex and time-consuming tasks.
Structured specifications containing axioms and definitions must be set up or
(better) reused from a library, properties must be formalized, and finally proved.
Many revisions are necessary when proofs fail or definitions are found to be
inadequate. Only a small part of the effort is verifying the final theorems with
the correct axioms, where flexible features to automate proofs are crucial to
avoid repeating the same interactive proof steps over and over. Most of the
effort is spent restructuring specifications, revising axioms and theorems, and
then particularly correcting proofs that become invalidated by these changes, so
that maintaining a large lemma base is a critical factor in developing a verified
system.

One key building block of KIV to address these challenges is the Graphical
User Interface (GUI), which provides intuitive and interactive support for the

414 G. Schellhorn et al.

proof engineer. Algebraic specifications and theorems can be managed via a
graphical representation of the specification hierarchy (see Sect. 3.1). Theorems
are proved semi-interactively in the GUI, where proof automation techniques
like heuristics or the automatic rewriting of expressions support the user (see
Sect. 3.2). Proofs are visualized explicitly as proof trees that give insight into
every proof step and offer direct manipulation of the proof (see Sect. 3.3).

The KIV system is publicly available as an IDE plugin developed in Scala.
More information about the setup can be found at [28].

3.1 Management of Specifications and Proofs

The basis of the development is a hierarchy of specifications that can contain data
type definitions, components (see Sect. 4), and structuring operations (union,
actualization, enrichment, etc.). This hierarchy is called the development graph
and shown graphically. It is the starting point when developing a software project
in KIV. A specification (a node in the graph) has a theorem base attached that
contains axioms and theorems (some of them may be proof obligations) together
with their proofs, as far as they have been done.

A specification can be in different states, depending on whether it has just
been created, is imported from a library, or is currently valid. Changing a sub-
specification may yield an invalid specification that must be fixed, e.g. when
some signature symbols used in axioms has changed. When all theorems over a
specification have been successfully proved, it can be put in proved state, which
asserts that all lemmas used in proofs that are from subspecifications are still
present in some subspecification. Deferring this check for entering proved state
allows to avoid invalidating proofs on restructuring specifications. It also avoids
the need to enforce a bottom-up strategy for proving theorems. In general, the
correctness management of KIV always minimizes the number of proofs that are
invalidated when specifications or theorems are changed. When all specifications
are in proved state, the correctness management guarantees that all theorems
are proved and do not have cyclic dependencies.

The development graph also offers access to work on a particular specifica-
tion. When selecting a specification, the theorem base is loaded and an overview
is shown that gives information about its axioms, and its proved, unproved,
and invalid lemmas. At this level, theorems can be added, edited, and deleted.
Axioms and theorems can be declared as simplifier rules, which are then used
automatically in proofs (see the following section). For the theorems of the spec-
ification, new proofs can be started, existing proofs can be deleted, and partial
proofs can be continued. KIV projects can be combined by importing (parts
of) other projects and using them as a library. The standard library included
in the KIV plugin provides specifications for common data structures like lists,
arrays, sets, and maps. Other libraries define support for separation logic (see
Sect. 2.2), or provide basic locking constructs (mutexes, reader-writer locks, and
conditions) to support concurrency. Providing an exhaustive library also has the
benefit of adding many useful simplifier rules to the theorem base, such that
verification effort will be reduced drastically.

Software & System Verification with KIV 415

Finally, the KIV application offers general features, like exporting projects to
an HTML representation (presentations of many projects can be found at [30])
or viewing proof statistics for projects or individual specifications.

3.2 Proving Theorems

Proving theorems in KIV is done using a sequent-based calculus. A sequent
Γ
 Δ abbreviates the formula ∀x .

∧
Γ → ∨

Δ where Γ (the antecedent) and
Δ (the succedent) are lists of formulas and x is the list of all free variables in
Δ and Γ . The rules of the calculus follow the structure of the formulas and are
applied backwards in order to reduce the conclusion to simpler premises, until
they can be closed using axioms.

KIV facilitates this process for proving theorems by using extensive automa-
tion combined with interactive steps performed by a proof engineer. Therefore
the interface must help the proof engineer to understand the automated steps
and to identify possible actions. The interface for proving consists of two parts:
one for the proof tree (see Sect. 3.3) and another for performing proof interac-
tions. The latter is the most important part of the GUI and is shown in Fig. 3.
The large area in the middle contains the sequent of the current goal, i.e. what
currently has to be proven. The left-hand side shows the list of calculus rules
that can be applied to the goal. A status bar under the menu bar provides infor-
mation about the proof: the name of the lemma, the number of open goals, the
number of the current goal, and the total number of proof steps.

Fig. 3. Sequent of a proof goal with context sensitive choice.

The proof engineer must choose the next proof step, if no rules are applicable
by the automation. This is usually done context-sensitively, as shown in Fig. 3.
When the user moves the mouse over the sequent, the KIV system permanently

416 G. Schellhorn et al.

determines the smallest (sub-)expression and highlights it. Right-clicking on a
formula opens a context menu with applicable rules. If the leading symbol is
a logical connective, the rules for dealing with this connective are offered, e.g.
“quantifier instantiation” for quantifiers. If the leading symbol is a predicate, a
list of applicable rules is shown.

Figure 3 shows the result of a click on the predicate ∈ in the expression
¬ r ∈ h0∪(∅ ++ r)[r , obj] in the antecedent. It shows the three rewrite lemmas
matching on the selected part of the expression out of the hundreds of lemmas in
the theorem base. When the user selects the rewrite lemma in-uni :
 h0 ⊥ h1 →
(r ∈ h0 ∪ h1 ↔ r ∈ h0 ∨ r ∈ h1) from the context menu, all occurrences of
the selected expression are rewritten to ¬r ∈ h0 ∨ r ∈ (∅ ++ r)[r , obj]. The
precondition generates a side goal where one has to prove h0 ⊥ (∅ ++ r)[r , obj].
The context-sensitive computation of applicable lemmas restricts the theorem
base to the relevant cases, so that even very large verification projects remain
manageable.

Fig. 4. Example of a proof tree.

Besides applying rules manually, KIV
offers different levels of automation: the user
can switch between different sets of heuristics
that automatically apply calculus rules. The
base heuristic that is used in every proof is
the simplifier The simplifier rewrites the cur-
rent goal by applying rules and lemmas that
simplify the sequent. This includes applying
all the propositional rules of sequent calcu-
lus with at most one premise as well as the
two rules that eliminate quantifiers (univer-
sal quantifier right and existential quanti-
fier left). The simplifier also applies simpli-
fier rules that are lemmas following the pat-
tern of conditional rewrite rules and of for-
ward rules if enabled by the user: Rewrite
rules replace terms with simpler terms, for-
ward rules are typically used to add transi-
tive information to the goal. Application of
these rules is performed modulo associativ-
ity and commutativity, the strategy is cur-
rently enhanced to include matches modulo
neutral elements as well. Additionally, spe-
cialized heuristics are available, depending on
the content of the sequent. E.g., for sequents
containing programs (see Sect. 4), different
heuristics performing symbolic execution can
be selected. Furthermore, KIV offers heuris-
tics that call the SMT solvers Z3 [10] and
CVC4 [2].

Software & System Verification with KIV 417

3.3 Proof Trees

A proof tree like the one shown in Fig. 4 is a graphical representation that
shows the applied rules in a particular proof step. Typically a proof tree consists
of 20 up to 300 steps. For every step of the proof, the current sequent, the
applied proof rule, used lemmas and simplifier rules, the used substitution for the
variable instantiation, the active heuristics, and a lot of internal information are
stored and accessible. Characteristic proof steps are easy to identify, similarities
between different parts of the proof can be recognized, and the proof can be saved
in any state and continued later. If a premise of a proof cannot be closed, the
proof tree allows to easily trace back the problem to its cause, e.g. a problematic
branch of a program present in the original conclusion.

The nodes of the proof tree have different forms and colors. Filled circles
represent steps performed by a heuristic; open circles represent interactive steps.
The color indicates the different kinds of steps. For instance, induction steps
are red. The edges of the proof also have different colors. Edges leading to an
incomplete subtree are red, the edges of completely proved subtrees are green.
At the nodes representing the interactive usage of a lemma, the name of the
lemma is added to the node.

Clicking on nodes allows to view information about the goal or to inspect
which simplifier rules have been used by the simplifier. When a premise is not
provable, tracing through the branch is regularly used to identify where or why
something went wrong.

Incorrect decisions can be undone by standard chronological backtracking.
But since the incorrect step is usually not the last one, it is typically done
by pruning the proof tree, i.e. removing the complete subtree above a selected
node. Often fixing the incorrect step allows to successfully reapply the steps of
the subtree (without its incorrect first step) that has been pruned away, since
the approach for proving the branch is not affected by the fix.

Such a reapplication is directly supported in KIV with the replay functional-
ity. The mechanism allows the user to reuse (parts of) proofs, even if the goal has
changed, using a sophisticated strategy to adjust proof steps. Thus, replaying is
also a powerful tool for re-validating invalid proofs: if a proof becomes invalid
due to a minor change in one (or some) of its used theorems, most of the time,
the old proof can be replayed automatically (the same applies if the theorem
goal itself has changed).

All in all, KIV offers helpful features to support the proof engineer in the
process of developing specifications and proofs. Among them are a direct interac-
tion with the proof structure through proof trees, assistance for automation using
heuristics, and context-sensitive rule selection. Finally, KIV’s correctness man-
agement supports maintaining many proofs split into theorem bases for many
specifications. More detailed information on the KIV GUI can be found in [20].

418 G. Schellhorn et al.

4 Components, Refinement and Program Logic

4.1 Sequential Programs

KIV features an imperative programming language with recursive procedures.
Recently, the programming language was extended by constructs for exception
handling. The syntax of sequential programs in KIV is given by the grammar

α := skip | abort | x := t | α1;α2 | if ε then α1 else α2

| let x = t in α | choose x with ϕ in α1 ifnone α2 | α1 or α2

| while ε do α | proc#(t ; x ; y) | throw op | try α catch η

The program skip does nothing and abort is the program that never ter-
minates. Assignments x := t assign each variable xi the value of term ti simul-
taneously. This allows for swaps of the form x , y := y , x in a single statement
with no additional variables necessary. Two programs α1 and α2 can be executed
in order by sequential composition (;). The if -then-else and while programs
function as usual.

The let program is used to introduce new variables x initialized with values
t . choose also introduces new local variables x but with a random valuation
that satisfies a condition ϕ. If such a valuation can be found, the program α1

is executed using these variables. If no values that satisfy ϕ exist, the program
α2 is executed. The or program makes an nondeterministic choice between two
programs α1 and α2.

For if -programs the else-branch can be omitted if α2 is the program skip.
Similarly, for choose-programs α2 can be dropped if it is the program abort.
A ‘with true’ clause in a choose can be omitted too.

A procedure proc# can be called with input arguments t , reference argu-
ments x , and output arguments y by the statement proc#(t ; x ; y), where the
different argument types are separated by semicolons. Input arguments may
be arbitrary terms while only variables are allowed to be passed as reference
and output arguments. Typically, a procedure has a declaration of the form
proc#(x ; y ; z){α} with disjoint formal parameters x , y , and z . α must set all
output parameters z , only the input parameters x and the reference parameters
y can be read in α. Updates to x and y are allowed, however, updates to x are
invisible to the caller of proc#.

The recently added try-catch and throw constructs enable exception han-
dling in KIV programs. A program statement may now raise an exception if
a partial function (see Sect. 2) is applied to arguments outside of its domain.
Each exception is thus coupled with an operation op. For example, the sub-
traction operation − on natural numbers throws its exception in the program
m := n0 − n1 when n0 < n1. Additionally, the exception of operation op can be
thrown explicitly by the throw program. try-catch blocks can be used to catch
exceptions within a program α by giving exception handlers

η ≡ case op1 :: α1; . . . ; case opn :: αn; default :: αdefault

Software & System Verification with KIV 419

η can contain exception handlers for any number of operations op1, . . . , opn as
well as an default exception handler (both are optional). If the leading statement
of α throws an exception opi for which a matching handler case opi :: αi ∈ η
exists, the remaining statements of α are discarded and αi is executed. If no
matching handler exists but there is a default handler, then αdefault is executed,
otherwise the exception is not caught.

A small-step semantics of concurrent programs is explained in Sect. 5. For
sequential programs the semantics can be abstracted to a relation �α� ⊆ ST ×
ST ×(Op ∪ {�}) between states ST (valuation of program variables), augmented
with Op and � to express termination with or without an exception. (v, v′, ζ) ∈
�α� iff there is a terminating execution of the program α starting in state v ∈ ST
and finishing in state v′ ∈ ST , without raising an exception (if ζ = �) or finishing
with an exception ζ ∈ Op.

4.2 Weakest Precondition Calculus with Exceptions in KIV

Reasoning about sequential programs in KIV is done with a weakest-precondition
calculus, borrowing notation from Dynamic Logic (DL) [24] including its two
standard modalities: formula [α]ϕ (box) denotes that for every terminating run
the final state must satisfy ϕ, corresponding to the weakest liberal precondition
wlp(α,ϕ). The formula 〈α〉ϕ (diamond) guarantees that there is a terminating
execution of α that establishes ϕ. Finally, the formula 〈|α|〉 ϕ (strong diamond)
states that the program α is guaranteed to terminate and that all final states
reached satisfy ϕ. This is equivalent to the weakest precondition wp(α,ϕ). For
deterministic programs the two formulas 〈α〉ϕ and 〈|α|〉 ϕ are equivalent. As a
sequent, partial and total correctness of α with respect to pre-/post-conditions
Pre/Post are written as Pre
 [α]Post and Pre
 〈|α|〉 Post. To handle excep-
tions the modalities are extended by exception specifications

ξ ≡ op1 :: ϕ1, . . . , opk :: ϕk, default :: ϕdefault

which yields program formulas of the form 〈|α|〉 (ϕ ; ξ), 〈α〉(ϕ ; ξ), and [α](ϕ ; ξ),
respectively. The exception specifications allow to give additional postconditions
for executions that terminate with a specific exception, e.g. ϕ1 must hold if
α terminates with exception op1, or to give a generic exception postcondition
ϕdefault for executions of α that terminate with an exception op /∈ op1, . . . , opk.
If one wants to show the absence of exceptions, the exception specifications
ξ ≡ default :: false can be chosen, which is the default and omitted from
program formulas.

The main proof technique for verifying program correctness in KIV is sym-
bolic execution. Basically, a symbolic execution proof step executes the first state-
ment of the program and calculates the strongest postconditions from the pre-
conditions. When the symbolic execution of the program is completed, the proof
of the postcondition is performed purely in predicate logic. In the following we
will present an excerpt of the calculus rules for program formulas in KIV, with
a focus on the recent addition of exceptions and exception handling.

420 G. Schellhorn et al.

Fig. 5. Calculus rule for assignments.

Figure 5 shows the rule for parallel assignments for total correctness (the rule
is identical for the other modalities). The rule uses a vector x ′ of fresh variables
to store the values of x before the assignment. The assignment is removed and
instead the formula x = tx

′
x is added to the antecedent (tx

′
x denotes the renaming

of x to x ′ in t). Note that renaming is possible on all program formulas, while
substitution of x by general terms t in 〈|α|〉 ϕ is not possible and just yields
〈|x := t ;α|〉 ϕ. Only when the assignment is the last statement of the program
and α is missing, the standard premise of Hoare calculus, which replaces the
program formula in the premise with ϕ

t
x , can be used.

Since the expressions t can contain partial operations, this is correct only
when the evaluation of t does not raise any exception: we use δ(e) to describe
the condition that the expressions e are defined, i.e. that all partial operations
in e are applied to arguments within their respective domain. For example, a
heap constructor term (h ++ r0)[r1, obj] (see Sect. 2.2) produces the definedness
condition

δ((h ++ r0)[r1, obj]) ≡ (r0 �= null ∧ ¬ r0 ∈ h) ∧ (r1 �= null ∧ r1 ∈ (h ++ r0))

Exception premises Exc(Γ,Δ, t , ϕ, ξ) need to be shown for all potential vio-
lations of δ(t), i.e. for all partial operations op1, . . . , opm in t , throw premises
are generated. For each partial operation an exception condition is calculated
following a bottom-up approach: the exception is thrown if and only if an appli-
cation of opi violates the domain of opi and the evaluation of its arguments does
not throw an exception. E.g. the assignment h := (h ++ r0)[r1, obj] would yield
the two exception premises

Exc(Γ,Δ, (h ++ r0)[r1, obj], ϕ, ξ) ≡
(1) Γ
 r0 = null ∨ r0 ∈ h → 〈|throw ++ |〉 (ϕ; ξ), Δ

(2) Γ
 (r0 �= null ∧ ¬ r0 ∈ h) ∧ (r1 = null ∨ ¬ r1 ∈ (h ++ r0))
→ 〈|throw []|〉 (ϕ; ξ), Δ

Computing exception clauses uses the standard left-to-right strategy for eval-
uating arguments, and a shortcut semantics for boolean connectives (like Java
and Scala). The test y �= 0∧x/y = 1 of a conditional will never throw an excep-
tion, while switching the conjunction will throw the division exception, when
y = 0.

The rules for throw are quite simple. If an operation is thrown for which a
specific exception specification op :: ϕξ is given in ξ, the program formula is dis-
carded and replaced by the exception postcondition ϕξ. If there is no exception
specification in ξ for the thrown operation op, the default exception postcondi-
tion ϕdefault must hold.

Software & System Verification with KIV 421

Fig. 6. Calculus rule for try-catch
programs.

Fig. 7. Invariant rule for while loops.

The try-catch-rule shown in Fig. 6 takes advantage of the fact that excep-
tion postconditions can also contain program formulas. The program α can be
executed symbolically with adjusted exception specifications ξ′ that include the
exception handling of η. ξ′ contains exception specifications for all operations
that have either already a specification in ξ or have a case in η. For an operation
op the adjusted exception postcondition ϕ′

ξ is defined as

ϕ′
ξ =

{
〈|α′|〉 (ϕ ; ξ) if case op :: α′ ∈ η

ϕξ if op /∈ η ∧ op :: ϕξ ∈ ξ

If an exception handler was given for op, ϕ′
ξ is set to a program formula

with the exception handler program α′ and the original postcondition ϕ and
exception specifications ξ. This has exactly the desired effect: if an op exception
is thrown within α, symbolic execution continues with α′ while the postcondition
is still ϕ. For operations without a case in η, the exception postcondition remains
unchanged (ϕ′

ξ = ϕξ). The adjusted default exception postcondition ϕ′
default is

constructed similarly. If there is a default exception handler default :: αdefault ∈
η, a program formula with αdefault is built, otherwise the default postcondition
ϕdefault from ξ is used.

Proofs about recursive procedures are typically done using (well-founded)
induction. For while-loops, typically the invariant rule shown in Fig. 7 is used,
though the more general induction rule occasionally leads to simpler proofs (see
e.g. the proof online at [30] for Challenge 3 at the VerifyThis2012 competition).

The rule requires an invariant formula INV as an input from the user from
which multiple premises need to be proven: the invariant must hold at the begin-
ning of the loop (1), INV must be stable over the loop body α (3), and INV
must be strong enough to prove the postcondition ϕ after the loop was exited
(4). Similar to the assignment rule, exception premises are generated for the loop
condition ε (2). These cannot include Γ or Δ as ε is evaluated again after each
iteration. Instead, the invariant INV can be assumed as well as δ(ε) for premises
(3) and (4). The figure shows the rule for total correctness which requires to give
a variant t that decreases with every iteration of the loop (t � z in premise (3)).
The rule functions analogously for diamond formulas, for partial correctness no
decreasing variant is necessary.

422 G. Schellhorn et al.

4.3 Hierarchical Components and Refinement

For the development of complex software systems in KIV we use the concept
of hierarchical components combined with the contract approach to data refine-
ment [12]. A component is an abstract data type (ST, Init, (Opj)j∈J) consisting
of a set of states ST , a set of initial states Init ⊆ ST , and a set of operations
Opj ⊆ Inj ×ST ×ST ×Outj . An operation Opj takes inputs Ini and outputs Outj
and modifies the state of the component. Operations are specified with contracts
using the operational approach of ASMs [6]: for an operation Opj , we give a pre-
condition prej and a program αj (that establishes the postcondition of the oper-
ation) in the form of a procedure declaration opj#(inj ; st; outj) pre prej {αj}.
Instead of defining initial states directly, we also give a procedure declaration
init#(ininit; st; outinit) {αinit} where ininit are initialization parameters, that
determine the intial state, and outinit is an error code, that may indicate that
initialization with these parameters failed.

Components are distinguished between specifications and implementations.
The former are used to model the functional requirements of a (sub-)system and
are typically kept as simple as possible by heavily utilizing algebraic functions
and nondeterminism. The approach is as general as specifying with pre- and
postconditions, since choose st′, out′ with post(st′, out′) in st, out := st′, out′

can be used to establish any postcondition post over state st and output out.
Implementations are typically deterministic and only use constructs that allow
to generate executable Scala- or C-code from them with our code generator.

The functional correctness of implementation components is then proven by a
data refinement of the corresponding specification components (we write C ≤ A if
C = (ST C, InitC, (OpCi)j∈J) is a refinement of A = (ST A, InitA, (OpAi)j∈J) where
C and A have the same set of operations J). Proofs for such a refinement are
done with a forward simulation R ⊆ ST A × ST C using commuting diagrams.
This results in correctness proof obligations for all j ∈ J (an extra obligation
ensures that InitA and InitC establish matching states).

R(stA, stC), preAj (st
A)

 〈|opC
j#(inj ; stC; outj)|〉 〈opA

j#(inj ; stA; out′j)〉(R(stA, stC) ∧ outj = out′j)

Informally, one has to prove that, when starting in R-related states, for each
run of an operation opC

j# of C there must be a matching run of opA
j# of A that

maintains R(stA, stC) with the same inputs and outputs. The obligations also
require to show that the precondition preAj (st

A) is strong enough to establish the
precondition preCj (st

C) if R(stA, stC) holds. This obligation is implicit as the call
rule creates this premise for a procedure with a precondition.

For each component invariant formulas inv(st) over the state st can be given,
which must be maintained by all (Opj)j∈J . This simplifies (or even makes it pos-
sible in the first place) to prove the correctness proof obligations of a refinement
as invariants invA(stA) and invC(stC) are added as assumptions. If an invariant
is given for a component, additional proof obligations for all its operations are
generated that ensure that the invariant holds. Additionally, one can give an

Software & System Verification with KIV 423

individual postcondition postj (st) for an operation which extends its invariant
contract.

prej (st), inv(st)
 〈|opj#(inj ; st ; outj)|〉 (inv(st) ∧ postj (st))

These invariant contracts can be applied when proving the refinement proof
obligations and may further simplify the proofs since symbolic execution of the
operation can be avoided. The theory has also been extended with proof obliga-
tions for crash-safety, see [16] for more details.

To facilitate the development of larger systems, we introduced a concept of
modularization in the form of subcomponents. A component (usually an imple-
mentation) can use one or more components as subcomponents (usually speci-
fications). The client component cannot access the state of its subcomponents
directly but only via calls to the interface operations of the subcomponents.
Using subcomponents, a refinement hierarchy is composed by multiple refine-
ments like the one shown in Fig. 8.

Fig. 8. Data refinement with
subcomponents.

A specification component Ai is refined by an
implementation Ci (dotted lines in Fig. 8) that uses
a specification Ai+1 as a subcomponent (in
Fig. 8, we write Ci(Ai+1) for this subcomponent
relation). This pattern then repeats in the sense
that Ai+1 is refined further by an implementation
Ci+1 that again uses a subcomponent Ai+2 and so
on. Ai may also be used as a subcomponent of an

implementation Ci−1 if it is not the toplevel specification. The complete imple-
mentation of the system then results from composing all individual implemen-
tation components C0(C1(C2(...))). In [16] we have shown that C ≤ A implies
M(C) ≤ M(A) for a client component M which ensures that the composed imple-
mentation is in fact a correct refinement of its toplevel specification A0, i.e.
C0(C1(C2(...))) ≤ A0. This allows us to divide a complex refinement task into
multiple, more manageable ones.

5 Concurrency, Temporal Logic and Rely-Guarantee
Calculus

5.1 Concurrent Programs and Their Semantics

KIV supports concurrency in the form of weak fair and non-fair interleaving
of sequential programs. Concurrent programs β extend the syntax of sequential
ones (α) by the following constructs

β := α | if∗ ε then β1 else β2 | atomic ε {β} | β1 ‖nf β2 | β1 ‖ β2

| forall‖ x with ϕ do β | forall‖nf x with ϕ do β | ψ

Programs execute atomic steps, consisting of one assignment, the evaluation
of the test of a condition, binding a variable with let or calling/returning from

424 G. Schellhorn et al.

a procedure. To enable thread-local reasoning, they are now assumed to execute
their steps in an environment that may modify the state in between program
steps. The environment may consist of other interleaved programs or a global
environment, e.g. a physical environment that changes sensor values read by the
program.

There are several new constructs that may be freely mixed with the sequential
constructs. The first is the variant if∗ of a conditional, which evaluates the test
together with the first step of the branch taken in one atomic step. It is used to
model test-and-set, or CAS (compare-and-swap) instructions.

The construct atomic ε {β} is assumed to (passively) wait for the envi-
ronment to make the test ε true. While ε is false, the program is blocked. A
program where the environment never enables the test is deadlocked. When the
test becomes true, the program β is executed in a single step. The typical use of
the construct is to model locking with atomic lock = free {lock := locked}.
Atomic programs are also used in Lipton’s reduction strategy [14,36], which
proves that program instructions can be combined to larger atomic blocks when
specific commutativity conditions hold.

Both β1 ‖nf β2 and β1 ‖ β2 interleave steps of β1 and β2 non-deterministically.
The interleaving is blocked only, when both programs are blocked. The first
assumes no fairness, so when β1 does not terminate and is never blocked, one
possible run executes steps of β1 only. The second β1 ‖ β2 has a weak fairness
constraint: if β2 is enabled continuously (i.e. is never blocked) then it will even-
tually execute a step, even if β1 is always enabled. Weak fairness is typically
assumed for programs which use locks while CAS-based programs often ensure
the progress condition of lock-freedom that does not assume fairness.

The programs forall‖ and forall‖nf generalize binary interleaving to inter-
leaving instances of β for all values that satisfy ϕ bound to local variables x.
The typical use would be forall‖ n with n < m do β where the body β uses
variable n as the thread identifier. Earlier versions of RG calculus in KIV used
an equivalent recursive spawn#-program (called with m and the variables x
used in β) which is defined as

spawn#(n;x){ if∗ n = 0 then skip else { β ‖ spawn#(n − 1;x) } }
They imported a theory which verified the correctness of the forall-rule given

at the end of the next section.
Finally, since the semantics of programs which will be explained next and

the semantics of temporal formulas ψ explained in Sect. 5.2 agree—both are a
set of intervals—it is possible to use a formula in place of a program.

Formally, the semantics of programs �β� is defined as a set of finite or infi-
nite state sequences also called intervals following the terminology of interval
temporal logic (ITL) [41]. Formally an interval is of the form

I = (I(0), I(0)b, I
′(0), I(1), I(1)b, I

′(1), I(2), . . . , ζ)

where every state I(k) and I ′(k) is a valuation which maps variables to values.
A finite interval ends with an unprimed state. The transitions from I(k) to I ′(k)

Software & System Verification with KIV 425

are program transitions and the transitions from I ′(k) to I(k+1) from a primed
to the subsequent unprimed state are environment transitions. Hence, intervals
alternate between program and environment transitions, similar to the reactive
sequence semantics in [11].

To model passive waiting, the boolean flag I(k)b denotes whether the program
transition from I(k) to I ′(k) is blocked, i.e. the program waits to continue its
execution. In this case, when I(k)b = tt, then I ′(k) = I(k).

To model exceptions when running a program, the final state of a finite run
carries information ζ whether an exception has happened. This may be either
� to indicate regular termination without exception or the information that an
operation op ∈ OP has thrown its exception. To have uniform notation, we
assume that ζ = ∞ for infinite (non-terminating) runs, so ζ ∈ OP ∪ {�,∞}.

The semantics of programs is compositional, i.e. the semantics of complex
programs can be constructed by combining intervals that are members of the
semantics of its parts. This has been explained in detail for programs without
exceptions in [55]. Adding exceptions for the sequential case is straightforward,
for interleaving the combined run ends with an exception if one of the interleaved
intervals does. Unlike in programming languages, where exceptions are thread-
local, we therefore have global exceptions, which abort the whole interleaved
program. If necessary, the global effect must be avoided by exception handlers
in the interleaved programs.

5.2 Temporal and Program Formulas

To verify concurrent programs, KIV’s logic is based on the idea of having pro-
grams as formulas. To do this, the semantics of expressions e is generalized from
�e�(v) to �e�(I) using an interval I instead of a single state v. The expressions
considered so far refer to the initial valuation I(0) of the interval only. The
extended semantics makes it possible to view a program β with free variables z
as a formula [: z | β] (expression with boolean result) which returns tt iff the
semantics of β includes the interval I. That β has a temporal property ψ is then
simply expressed as the implication [: z | β] → ϕ.

The resulting calculus is again based on symbolic execution of programs
as well as of temporal formulas. The resulting calculus has been described in
detail in [55]. The calculus is strong enough to define rely-guarantee formulas as
abbreviations of temporal logic formulas and to formally derive the rules of rely-
guarantee calculus. Since rely-guarantee calculus is the one we predominantly use
in the practical verification of programs, we have explicitly added rely-guarantee
formulas and derived rules for them.

The extended expression language partitions variables into flexible variables,
that may be modified by concurrent programs, and static ones, that always
have the same value in all states I(0), I ′(0), . . . of an interval. In KIV, flexible
variables start with uppercase letters, all others are static. The abstract syntax
definition uses y to denote a static and z for a flexible variable. Flexible variables
are allowed in quantifiers, but not as parameters of λ-expressions.

426 G. Schellhorn et al.

The extended language allows to use primed and double primed flexible vari-
ables y′ and y′′ in predicate logic expressions. �y′�(I) and �y′′�(I) are defined
as I ′(0)(y) and in I(1)(y), except for the case where the interval consists of a
single state. For such an empty interval the value of both is I(0)(y). Formulas
like y′ = y or y′′ ≥ y′ therefore talk about the relation of the first program step
(y is not changed) and about the first environment step (y is not decremented).
They are used as guarantee and rely formulas that constrain program and envi-
ronment steps. We use G to denote a predicate logic formula over unprimed and
primed variables and R to denote one over primed and double primed variables.
We write ϕ′ and ϕ′′ for predicate logic formulas where one resp. two extra primes
are added to every free variable that is flexible.

The extended syntax then extends higher-order and wp-calculus formulas
that may use any primed or double primed variables written χ (ϕ still denotes a
formula without primed variables) to temporal expressions ψ, including program
expressions. These have the following syntax:

ψ := χ | [: z | β] | � ψ | ♦ ψ | ψ1 until ψ2 | last | lastexc | lastexc(op)
| blocked | [: z | R,G,ϕ, β](ψ; ξ) | 〈: z | R,G,Runs, ϕ, β〉(ψ; ξ)

A formal semantics is given in [55], here we just give an informal explanation.

– [: z | β] is a program formula, where the used variables of β are required to
be a subset of z. The formula holds over an interval (i.e. the semantics eval-
uates to tt) if the program steps are steps of the program. The environment
steps between program steps are not constrained: they may arbitrarily change
the values of variables. The frame assumption z indicates that non-program
variables can change arbitrarily in program steps.

– � ψ, ♦ ψ and ψ1 until ψ2 are the standard formulas of linear temporal logic.
– last is true, if the interval is empty, i.e. consists of just the state I(0).
– lastexc(op) resp. lastexc is true on an empty interval where ζ = op resp.

ζ �= �. The formula ♦(last ∧ ¬ lastexc) therefore states, that the interval is
finite (terminates) without exception.

– blocked is true for non-empty intervals, where the first step is blocked, i.e.
I(0)b = tt. The formula � blocked is used to express a deadlock.

The last two formulas are used to express rely-guarantee (RG) properties of
programs, and we assume the reader to be familiar with the basic ideas. In [60]
such an RG assertion would be written as β sat {Pre,R,G, Post}, another com-
mon notation is as an extended Hoare-quintuple {Pre,R} β {G,Post}. Often,
whether partial or total correctness is intended, depends on the context. In KIV,
partial and total correctness are expressed as a sequents

Pre
 [: z |, R,G, β]Post Pre
 〈: z | R,G,Runs, α〉Post

Like for the wp-formulas we leave away the default exception condition ξ ≡
default :: false that forbids any exceptions for the final state.

Partial correctness asserts that if precondition Pre holds in the initial state,
then program steps will not violate the guarantee G and the final state will not

Software & System Verification with KIV 427

violate Post (and have no exception) unless an earlier environment step violated
R. The formula implies that partial correctness holds: if all environment steps
are rely steps then all program steps will be guarantee steps and in final states
the postcondition will hold.

Total correctness guarantees two additional properties. First, when the rely
is never violated, then the program is guaranteed to terminate. Second, in all
states, where predicate Runs holds, the next program step is guaranteed not to
be blocked. The additional Runs-predicate is used to verify deadlock-freedom:
when an interleaved program satisfies total correctness with Runs = true, then
the program is deadlock-free: there is always at least one of its threads that is
not currently waiting to acquire a lock.

At the end of this section we want to note that the interval semantics of
programs can be used to define the semantics of wp-calculus formulas as well by
abstracting to initial and final states of the interval and assuming an “empty”
environment that does not change program variables via the equivalences

[α]ϕ ≡ [: z | z′′ = z′, true, α]ϕ 〈|α|〉 ϕ ≡ 〈: z | z′′ = z′, true, α〉ϕ
In the formulas, z are the flexible variables that occur free in α (all variables,

except those bound by let, choose or forall) or free in ϕ.

5.3 Rely-Guarantee Calculus

Since rely-guarantee formulas can be viewed as abbreviations of temporal formu-
las, we could just use the calculus defined in [55] for deduction (and earlier case
studies have done so). Since rely-guarantee formulas are now available directly, it
is unnecessary for a user to get familiar with temporal logic formulas. Knowledge
of the calculus given in this section is sufficient to do partial or total correctness
proofs for concurrent programs. The embedding into temporal logic is useful
however to prove results about progress conditions such as lock-freedom [58] or
starvation-freedom [57], which would not be possible with pure RG calculus only.

Symbolic execution using the rely-guarantee calculus resembles symbolic exe-
cution in wp-calculus. The extra effort needed when proving RG formulas can
be seen when looking at the rule for assignment:

Pre(y
0
), y

1
= t(y

0
)
 G(y

0
, y

1
)

Pre(y
0
), y

1
= t(y

0
), R(y

1
, z)
 〈: z | R,G, β〉Post

Pre(z)
 〈: z | R(z′, z′′), G(z, z′′), z := t(z);β〉Post

For easier notation the rule assumes that all variables of the frame assumption
are assigned. We also leave away the side conditions for possible exceptions when
evaluating t. These are the same as in wp-calculus. The rule makes explicit that
Pre and t may contain variables from z by writing them as arguments in the
conclusion. Analogously, R and G may depend on z, z′, and z′′.

In the semantics, symbolic execution of the assignment reduces the interval
I = (I(0), I(0)b, I ′(0), I(1), . . .) to the one shorter interval (I(1), . . .). The values

428 G. Schellhorn et al.

of variables z in states I(0) and I ′(0) are now stored in two vectors y
0

and y
1

of fresh static variables, the remaining program β again starts with the values
of the variables in z. The old precondition now holds for y

0
, the values stored

in y
1

are equal to the ones of the terms t(y
0
). As the assignment rule shows,

the RG calculus has two differences to wp-calculus. First there is an additonal
premise that asserts that executing the assignment satisfies the guarantee (which
is simple usually). Second, the main premise needs two vectors of fresh variables
instead of one to store old values: one before the assignment and one after the
assignment but before the environment step.

The other rules of RG-calculus (e.g. the invariant rules for partial and total
correctness) look very similar to wp-calculus. The only difference is again that a
premise is generated that ensures that the step is a guarantee step. Finally, we
need a rule for parallel composition. We give the rule for one flexible variable u,
the generalization to several variables should be obvious.

The rule assumes that a lemma for the body β is available, that is applied
by the rule and shown as its first premise. The precondition Pre of the goal can
depend on z, and we write Pre(y) for the assertion, where z has been replaced by
y. Similar conventions apply for the other formulas. E.g. Rely R0 can depend on
u′, z′, u′′, z′′, so we write R0(u, y

0
, u, y

1
) for an instance. Formula ϕ may use u

and z. Since u is a local variable, the environment steps of β can not change its
value, so the lemma can (and should) include the rely condition u′′ = u′. Since
the program is also prohibited from modifying variable u (otherwise it could
not be used to identify the thread executing), instances of R0 (and similarly:
G0) always use the same static variable v to instantiate u′ and u′′. The possible
values for u are chosen in the inital state before the forall executes, using new
static variables y for this initial state and static variables v, v1, v2 for the values
that all satisfy Pre(u) ∧ ϕ(v, u).

(1) Pre0
 〈: u, z | R0, G0, Runs0, β〉Post0

(2) Pre(y), ϕ(v, y)
 G0(v, y
0
, v, y

0
)

(3) Pre(y), ϕ(v, y)
 R0(v, y
0
, v, y

1
) ∧ R0(v, y

1
, v, y

2
) → R0(v, y

0
, v, y

2
)

(4) Pre(y), ϕ(v1, y), ϕ(v2, y), v1 �= v2
 G0(v1, y0
, v1, y1

) → R0(v2, y0
, v2, y1

)

(5) Pre(y), ϕ(v, y)
 Pre0(v, y
0
) ∧ R0(v, y

0
, v, y

1
) → Pre0(v, y

1
)

(6) Pre(y), ϕ(v, y)
 Post0(v, y
0
) ∧ R0(v, y

0
, v, y

1
) → Post0(v, y

1
)

(7) Pre(y)
 APre(y)

(8) Pre(y), Rely(y0, y1)
 AR(y, y
0
, y

1
)

(9) Pre(y), EG(y, y
0
, y

1
)
 Guar(y

0
, y

1
)

(10) Pre(y), Runs(y
0
)
 ERuns(y, y

0
)

(11) Pre(y), APost(y, z)
 〈: z | R,G,Runs, β0〉Post

Pre
 〈: z | R,G,Runs, {forall‖ u with ϕ do β};β0〉Post

Software & System Verification with KIV 429

Conditions (1) to (6) ensure that the forall satisfies

Pre(z), APre(z)
 〈: z | AR,EG,ERuns, forall . . . 〉APost

where

APre(y) ≡ ∀ v. Pre(y) ∧ ϕ(v, y) → Pre0(v, y)

APost(y, z) ≡ ∀ v. Pre(y) ∧ ϕ(v, y) → Post0(v, z)

EG(y, z, z′) ≡ ∃ v. Pre(y) ∧ ϕ(v, y) ∧ G0(v, z, v, z′)

ERuns(y, z) ≡ ∃ v. Pre(y) ∧ ϕ(v, y) ∧ Runs0(v, z)

AR(y, z′, z′′) ≡ ∀ v. Pre(y) ∧ ϕ(v, y) → R0(v, z′, v, z′′)

The remaining conditions (7) to (11) ensure that the given predicates used
in the conclusion are weaker (for rely, precondition, and runs) resp. stronger (for
guarantee) than the most general ones defined above, and that the remaining
program β0 is correct with the established postcondition APost of the forall.

The rule for interleaving two programs β1 ‖ β2 is essentially the special case
we get from the equivalent program forall‖ b with true do if∗ b then β1 else β2

where b is a boolean variable. Two lemmas are now required, one for β1 and one
for β2 (corresponding to the two boolean values).

6 Applications

This section gives a short overview over applications that have been modeled and
verified using KIV. We start with a brief overview over historically important
case studies on sequential systems, described in the next subsection. Case studies
on concurrency are described in Sect. 6.2. Finally, Sect. 6.3 gives a brief overview
over concepts used in the development of a verified file system for flash memory,
developed in the Flashix project, which is by far the largest project we have
tackled so far.

6.1 Overview

Initially, KIV had a focus on verifying single programs with Dynamic Logic,
which is more flexible than just generating verification conditions from a stan-
dard Hoare-calculus [23] (see Challenge 3 of the VerifyThis competition 2012 in
[15] for a recent example).

The focus however shifted early on to the development of modular, sequen-
tial software. An early concept there were algebraic modules [46], which were
used to e.g. verify the correctness of Dynamic Hashtables or AVL trees [47].
Algebraic modules are stateless, and are nowadays integrated with the instanti-
ation concept: a parameter P may be instantiated by placing a restriction and
a congruence on the instance A. A simple example would be to use duplicate-
free (restriction) lists, where the order of elements is ignored (congruence), to

430 G. Schellhorn et al.

implement sets. This concept can be used to formally verify the consistency of
non-free data type specifications.

Later on the focus shifted to the verification of components with state. The
biggest case study in this area was the verification [51] of a compiler for Pro-
log, that compiles to the Warren Abstract Machine (WAM), formalizing the
development in [7] as a hierarchy of a dozen refinements. The case study uses
the complete theory of ASM refinement [50], which generalizes the theory of
data refinement: the main correctness condition for a 1:1 diagram involving one
abstract and one concrete operation (cf. Sect. 4.3) is generalized to using m:n
diagrams, which are useful in particular for compiler verification.

Another area where component-based development was important, was the
Mondex case study, which initially was about mechanizing a proof of a protocol
for the secure transfer of money between Mondex smartcards [59]. This case
study became a part of the development of a strategy of model-based develop-
ment for security protocols in general, starting with a UML model and ending
with verified Java Code. For Mondex the original single refinement was extended
to three refinements that end with verified Java code, see [21] for an overview.

6.2 Case Studies on Concurrency

Research in this area has focused on the verification of efficient low-level imple-
mentations of components, in particular on CAS-based implementations, which
are harder to verify and need different concepts for progress than standard lock-
based implementations. The most complex proof using extensions of RG calculus
to the thread-local verification of linearizability [26] and lock-freedom was a proof
of Treiber’s stack that used Hazard pointer with non-atomic reading and writing
[39,56,58]. A number of other examples, e.g. one with fine-grained locking and
formal proof obligations for starvation-freedom [57] can be found on [29]. The
Web page also shows proofs for two of Cliff Jones’ original examples that demon-
strate the use of RG calculus: FINDP [22] (a parallel search over an array) and
SIEVE [34] (parallel version of the Sieve of Erathostenes).

As part of the VerifyThis Competition 2021 [45], we used RG reasoning to
verify ShearSort, a parallel sorting algorithm for matrices. The case study uses
the forall‖ construct presented in Sect. 5.3 and also requires to solve the tricky
problem of how to formalize the 0–1-principle, which is often used in informal
proofs. A web presentation of the case study can be found at [32].

For some implementations thread-local verification of linearizability is diffi-
cult (including Herlihy and Wing’s simple, but hard to verify queue implemen-
tation [26]), since their linearization points (LPs) are not fixed to specific steps
of the thread itself, but are in steps of other threads and “potential”: whether an
LP has been passed depends on future execution. With colleagues we developed
a complete approach [53] that uses a formalization of IO Automata [37] (using
HOL only) in KIV that has recently been extended to an automatic transla-
tion of programs as steps of an IO automaton together with proof obligations
generated from assertions [13].

Software & System Verification with KIV 431

The formalization of IO Automata provided one of the main motivations for
adding polymorphism to KIV, IO-Automata are specified as data structures,
with states and actions as parameters. Though the content of proofs does not
change, using states and actions as type parameters instead of instantiating
specifications (with e.g. “concrete” and “abstract” states for refinement, more
instances are necessary to prove transitivity of refinement, or to define product
automata) roughly halved the number of specifications required.

The most complex case study verified in this setting was the Elimination
queue [40], an extension of the Michael-Scott queue [38] with an elimination
array, that has very complex potential LPs. This case study, several others and
a number of papers in this area can be found again online at [30].

Recently we also have looked at opacity [35] as the correctness criterion
for STMs (implementations of software transactional memory, formalizing the
theory as IO automaton refinement [3].

6.3 The Flashix Project

Flashix [4,54] has been proposed as a pilot project for Hoare’s Grand Chal-
lenge [27] with the goal to develop and verify a realistic file system for flash
memory. The project motivated many enhancements in KIV, especially in com-
ponent modularization and refinement methodology (cf. Sect. 4.3). To tackle the
complexity we decomposed the file system into a deep hierarchy of components
connected by 11 refinements. We generate C and Scala code from this hierar-
chy (we currently work on the generation of Rust code), the generated C code
is about 18 kLOC and can be integrated into the Linux kernel or run via the
FUSE interface.

A major focus in the project was to ensure crash-safety, i.e. the dealing with
arbitrary power cuts. In [16] we added crash behavior to the semantics of our
components and proposed a verification methodology to prove crash-safety for
modular refinement hierarchies.

The project required the use of our Separation Logic library (see Sect. 2.2)
on multiple occasions. In the lower levels of Flashix, a verified pointer-based
implementation of red-black trees is used (the KIV code and proofs can be
found online [31]). There, we combined Separation Logic with KIV’s concept of
components and refinement (see Sect. 4.3) to “separate Separation Logic”: the
proof is split into the verification of a version based on algebraic trees, where the
properties of red-black trees are verified, and a separate refinement that shows
that copying branches on modifications can be avoided by replacing the algebraic
tree with a pointer structure, that is updated in place. Only the latter, simple
refinement has to deal with pointer structures, aliasing, and the avoidance of
memory leaks by using Separation Logic formulas. Similarly, this concept was
applied to the top-level refinement of Flashix, where the abstract representation
of the file system as an algebraic tree is broken down to linked file and directory
nodes.

The last phase of the project was mainly about introducing performance-
oriented features like caching and concurrency. We added different caches to the

432 G. Schellhorn et al.

file system, proposed novel crash-safety criteria for cached file systems, extended
our refinement approach with corresponding proof obligations, and proved that
the crash-safety criteria apply to the Flashix file system (see [44] and [5]). To
add concurrency to the existing (purely sequential) refinement hierarchy, another
kind of refinement was introduced: atomicity refinement [52] allows to incremen-
tally reduce lock-based concurrent implementations to their sequential counter-
parts. This allowed to reuse large parts of the sequential proof work, in particu-
lar complex data refinements. The generation of proof obligations for atomicity
refinements was implemented in KIV, they are based on rely-guarantee formulas
(cf. Sect. 5.3), ownerships, and Lipton reductions [14,36]. With this methodol-
ogy, Flashix now allows concurrent calls to its toplevel interface and features
concurrent Wear Leveling [52] as well as concurrent Garbage Collection [4].

7 Conclusion

This paper has given an overview of the concepts that are used in KIV to model
and verify software systems. A lot of the support for software development was
overhauled since [15] was published in 2014, starting with switching to Scala as
KIV’s implementation language. The basic logic has been extended to support
polymorphism and exceptions in programs, rely-guarantee calculus has been
revised to have native formulas and rules in favor of using abbreviations and
general temporal rules. Support for components and for proof obligations has
been significantly enhanced, and a code generator has been added that supports
generation of Scala- and C-code.

Many of these developments have been motivated by the requirements to
develop a realistic, concurrent file system for flash memory in the Flashix project.
As an example, adding exceptions has uncovered several errors, that would have
gone unnoticed with the standard unspecified values semantics that is used in
HOL, and that would also have been likely escaped testing, as they happened
only on certain combinations of rare hardware errors (one was e.g. in formatting
a flash device). Others, like adding assertions to programs or the forall-rule,
have been motivated by the wish to be able to do smaller experiments, e.g. the
challenges of the VerifyThis competition series, more quickly than before.

There is still lots of room for improvement though. Support for automat-
ing separation logic proofs is still far less developed than in native separation
logic provers like Verifast [33] or Viper [42]. There is still lots of potential to
optimize code generation from KIVs programs, using a careful dataflow anal-
ysis, where destructive updates and aliasing can be allowed in the generated
C-code. The programming language is still (like Java) based on having programs
(“statements”) and expressions separately. We currently work on extending the
language to have program expressions, where programs are the special case of
program expressions of type unit. In the semantics this will generalize the void
result ζ = � on regular termination to a value of any type. This will allow
methods with results and returns, and the use of Scala syntax for KIV pro-
grams (using Scalameta [49] for parsing). This will hopefully lead to increased
expressiveness as well as an easier learning curve.

Software & System Verification with KIV 433

Acknowledgement. We would like to thank our student Kilian Kotelewski who has
added the forall-construct and its rules to the calculus.

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification - The KeY Book - From Theory to Practice. LNCS,
vol. 10001. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49812-6

2. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1 14

3. Bila, E., Doherty, S., Dongol, B., Derrick, J., Schellhorn, G., Wehrheim, H.: Defin-
ing and verifying durable opacity: correctness for persistent software transactional
memory. In: Gotsman, A., Sokolova, A. (eds.) FORTE 2020. LNCS, vol. 12136, pp.
39–58. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50086-3 3

4. Bodenmüller, S., Schellhorn, G., Bitterlich, M., Reif, W.: Flashix: modular verifi-
cation of a concurrent and crash-safe flash file system. In: Raschke, A., Riccobene,
E., Schewe, K.-D. (eds.) Logic, Computation and Rigorous Methods. LNCS, vol.
12750, pp. 239–265. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
76020-5 14

5. Bodenmüller, S., Schellhorn, G., Reif, W.: Modular integration of crashsafe caching
into a verified virtual file system switch. In: Dongol, B., Troubitsyna, E. (eds.) IFM
2020. LNCS, vol. 12546, pp. 218–236. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-63461-2 12

6. Börger, E.: The ASM refinement method. Formal Aspects Comput. 15(1–2), 237–
257 (2003)

7. Börger, E., Rosenzweig, D.: The WAM–definition and compiler correctness. In:
Logic Programming: Formal Methods and Practical Applications. Studies in Com-
puter Science and Artificial Intelligence, vol. 11, pp. 20–90. Elsevier (1995)

8. Börger, E., Stärk, R.F.: Abstract State Machines. A Method for High-Level System
Design and Analysis, Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
642-18216-7

9. Cardelli, L.: The functional abstract machine. AT&T Bell Laboratories Technical
Report. Technical report, TR-107 (1983)

10. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

11. de Roever, W.P., et al.:. Concurrency Verification: Introduction to Compositional
and Noncompositional Methods. Cambridge Tracts in Theoretical Computer Sci-
ence, vol. 54. Cambridge University Press (2001)

12. Derrick, J., Boiten, E.: Refinement in Z and in Object-Z: Foundations and
Advanced Applications. FACIT. Springer, Cham (2001). Second, revised edition
2014

13. Derrick, J., Doherty, S., Dongol, B., Schellhorn, G., Wehrheim, H.: Verifying cor-
rectness of persistent concurrent data structures: a sound and complete method.
Formal Aspects Comput. 33(4), 547–573 (2021)

14. Elmas, T., Qadeer, S., Tasiran, S.: A Calculus of atomic actions. In: Proceeding
POPL 2009, pp. 2–15. ACM (2009)

15. Ernst, G., Pfähler, J., Schellhorn, G., Haneberg, D., Reif, W.: KIV: overview and
VerifyThis competition. Int. J. Softw. Tools Technol. Transf. 17(6), 677–694 (2015)

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-030-50086-3_3
https://doi.org/10.1007/978-3-030-76020-5_14
https://doi.org/10.1007/978-3-030-76020-5_14
https://doi.org/10.1007/978-3-030-63461-2_12
https://doi.org/10.1007/978-3-030-63461-2_12
https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-3-540-78800-3_24

434 G. Schellhorn et al.

16. Ernst, G., Pfähler, J., Schellhorn, G., Reif, W.: Modular, crash-safe refinement for
ASMs with submachines. Sci. Comput. Program. 131, 3–21 (2016). Abstract State
Machines, Alloy, B, TLA, VDM and Z (ABZ 2014)

17. Goldblatt, R.: Axiomatising the Logic of Computer Programming. LNCS, vol. 130.
Springer, Berlin (1982). https://doi.org/10.1007/BFb0022481

18. Gordon, M.J.C., Melham, T.F.: Introduction to HOL: A Theorem Proving Envi-
ronment for Higher Order Logic. Cambridge University Press, Cambridge (1993)

19. Hähnle, R., Heisel, M., Reif, W., Stephan, W.: An interactive verification system
based on dynamic logic. In: Siekmann, J.H. (ed.) CADE 1986. LNCS, vol. 230, pp.
306–315. Springer, Heidelberg (1986). https://doi.org/10.1007/3-540-16780-3 99

20. Haneberg, D., et al.: The user interface of the KIV verification system – a system
description. In: Proceedings of UITP 2005 (2005)

21. Haneberg, D., Moebius, N., Reif, W., Schellhorn, G., Stenzel, K.: Mondex: engi-
neering a provable secure electronic purse. Int. J. Softw. Inform. 5(1), 159–184
(2011). http://www.ijsi.org

22. Hayes, I.J., Jones, C.B., Colvin, R.J.: Laws and semantics for rely-guarantee refine-
ment. Technical report CS-TR-1425, Newcastle University (2014)

23. Heisel, M., Reif, W., Stephan, W.: Program verification by symbolic execution
and induction. In: Morik, K. (ed.) GWAI-87 11th German Workshop on Artifical
Intelligence, vol. 152, pp. 201–210. Springer, Heidelberg (1987). https://doi.org/
10.1007/978-3-642-73005-4 22

24. Heisel, M., Reif, W., Stephan, W.: A dynamic logic for program verification. In:
Meyer, A.R., Taitslin, M.A. (eds.) Logic at Botik 1989. LNCS, vol. 363, pp. 134–
145. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51237-3 12

25. Heisel, M., Reif, W., Stephan, W.: Tactical theorem proving in program verifica-
tion. In: Stickel, M.E. (ed.) CADE 1990. LNCS, vol. 449, pp. 117–131. Springer,
Heidelberg (1990). https://doi.org/10.1007/3-540-52885-7 83

26. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. (TOPLAS) 12(3), 463–492 (1990)

27. Hoare, T.: The verifying compiler: a grand challenge for computing research. In:
Hedin, G. (ed.) CC 2003. LNCS, vol. 2622, pp. 262–272. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36579-6 19

28. Institut für Software & Systems Engineering - Universität Augsburg. Introduction
and Setup of KIV. https://www.uni-augsburg.de/en/fakultaet/fai/isse/software/
kiv/

29. Institut für Software & Systems Engineering - Universität Augsburg. KIV Proofs
of Starvation Freedom. https://kiv.isse.de/projects/Starvation-Free.html

30. Institut für Software & Systems Engineering - Universität Augsburg. Web Presen-
tation of KIV Projects. https://kiv.isse.de/projects/

31. Institut für Software & Systems Engineering - Universität Augsburg. KIV Proofs
of Red-Black Trees (2021). https://kiv.isse.de/projects/RBtree.html

32. Institut für Software & Systems Engineering - Universität Augsburg. KIV Proofs
of ShearSort (2021). https://kiv.isse.de/projects/shearsort.html

33. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and Java. NASA Formal
Methods 6617, 41–55 (2011)

34. Jones, C.B., Hayes, I.J., Colvin, R.J.: Balancing expressiveness in formal
approaches to concurrency. Formal Aspects Comput. 27(3), 465–497 (2015)

35. Lesani, M., Luchangco, V., Moir, M.: Putting opacity in its place (2012). http://
www.cs.ucr.edu/∼lesani/downloads/Papers/WTTM12.pdf

https://doi.org/10.1007/BFb0022481
https://doi.org/10.1007/3-540-16780-3_99
http://www.ijsi.org
https://doi.org/10.1007/978-3-642-73005-4_22
https://doi.org/10.1007/978-3-642-73005-4_22
https://doi.org/10.1007/3-540-51237-3_12
https://doi.org/10.1007/3-540-52885-7_83
https://doi.org/10.1007/3-540-36579-6_19
https://www.uni-augsburg.de/en/fakultaet/fai/isse/software/kiv/
https://www.uni-augsburg.de/en/fakultaet/fai/isse/software/kiv/
https://kiv.isse.de/projects/Starvation-Free.html
https://kiv.isse.de/projects/
https://kiv.isse.de/projects/RBtree.html
https://kiv.isse.de/projects/shearsort.html
http://www.cs.ucr.edu/~lesani/downloads/Papers/WTTM12.pdf
http://www.cs.ucr.edu/~lesani/downloads/Papers/WTTM12.pdf

Software & System Verification with KIV 435

36. Lipton, R.J.: Reduction: a method of proving properties of parallel programs. Com-
mun. ACM 18(12), 717–721 (1975)

37. Lynch, N., Vaandrager, F.: Forward and backward simulations. Inf. Comput.
121(2), 214–233 (1995)

38. Mellor-Crummey, J.M., Scott, M.L.: Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Trans. Comput. Syst. 9(1), 21–65 (1991)

39. Michael, M.M.: Hazard pointers: safe memory reclamation for lock-free objects.
IEEE Trans. Parallel Distrib. Syst. 15(6), 491–504 (2004)

40. Moir, M., Nussbaum, D., Shalev, O., Shavit, N.: Using elimination to implement
scalable and lock-free FIFO queues. In: Proceedings of the Seventeenth Annual
ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2005,
pp. 253–262. ACM (2005)

41. Moszkowski, B., Manna, Z.: Reasoning in interval temporal logic. In: Clarke, E.,
Kozen, D. (eds.) Logic of Programs 1983. LNCS, vol. 164, pp. 371–382. Springer,
Heidelberg (1984). https://doi.org/10.1007/3-540-12896-4 374

42. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure for
permission-based reasoning. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016.
LNCS, vol. 9583, pp. 41–62. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49122-5 2

43. Odersky, M., Spoon, L., Venners, B.: Programming in Scala, 3rd edn. Artima
Incorporation (2016)

44. Pfähler, J., Ernst, G., Bodenmüller, S., Schellhorn, G., Reif, W.: Modular verifica-
tion of order-preserving write-back caches. In: Polikarpova, N., Schneider, S. (eds.)
IFM 2017. LNCS, vol. 10510, pp. 375–390. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-66845-1 25

45. Programming Methodology Group - ETH Zürich. VerifyThis (2021). https://www.
pm.inf.ethz.ch/research/verifythis/Archive/20191.html

46. Reif, W.: Correctness of generic modules. In: Nerode, A., Taitslin, M. (eds.) LFCS
1992. LNCS, vol. 620, pp. 406–417. Springer, Heidelberg (1992). https://doi.org/
10.1007/BFb0023893

47. Reif, W., Schellhorn, G., Stenzel, K.: Interactive correctness proofs for software
modules using KIV. In: COMPASS 1995 - Tenth Annual Conference on Computer
Assurance. IEEE Press (1995)

48. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
2002 Proceedings of 17th Annual IEEE Symposium on Logic in Computer Science,
pp. 55–74. IEEE (2002)

49. scalameta - Library to Read, Analyze, Rransform and Generate Scala Programs.
https://scalameta.org/

50. Schellhorn, G.: Completeness of ASM refinement. Electron. Notes Theor. Comput.
Sci. 214, 25–49 (2008)

51. Schellhorn, G., Ahrendt, W.: The WAM case study: verifying compiler correctness
for prolog with KIV. In: Automated Deduction – A Basis for Applications, volume
III: Applications, Chapter 3: Automated Theorem Proving in Software Engineer-
ing, pp. 165–194. Kluwer Academic Publishers (1998)

52. Schellhorn, G., Bodenmüller, S., Pfähler, J., Reif, W.: Adding concurrency to a
sequential refinement tower. In: Raschke, A., Méry, D., Houdek, F. (eds.) ABZ
2020. LNCS, vol. 12071, pp. 6–23. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-48077-6 2

53. Schellhorn, G., Derrick, J., Wehrheim, H.: A sound and complete proof technique
for linearizability of concurrent data structures. ACM Trans. Comput. Log. 15(4),
31:1–31:37 (2014)

https://doi.org/10.1007/3-540-12896-4_374
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-319-66845-1_25
https://doi.org/10.1007/978-3-319-66845-1_25
https://www.pm.inf.ethz.ch/research/verifythis/Archive/20191.html
https://www.pm.inf.ethz.ch/research/verifythis/Archive/20191.html
https://doi.org/10.1007/BFb0023893
https://doi.org/10.1007/BFb0023893
https://scalameta.org/
https://doi.org/10.1007/978-3-030-48077-6_2
https://doi.org/10.1007/978-3-030-48077-6_2

436 G. Schellhorn et al.

54. Schellhorn, G., Ernst, G., Pfähler, J., Haneberg, D., Reif, W.: Development of a
verified flash file system. In: Ait Ameur, Y., Schewe, K.D. (eds.) ABZ 2014. LNCS,
vol. 8477, pp. 9–24. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-43652-3 2. Invited Paper

55. Schellhorn, G., Tofan, B., Ernst, G., Pfähler, J., Reif, W.: RGITL: a temporal logic
framework for compositional reasoning about interleaved programs. Ann. Math.
Artif. Intell. 71, 131–174 (2014)

56. Schellhorn, G., Tofan, B., Ernst, G., Reif, W.: Interleaved Programs and rely-
guarantee reasoning with ITL. In: Proceedings of the 18th International Sym-
posium on Temporal Representation and Reasoning (TIME), pp. 99–106. IEEE
Computer Society Press (2011)

57. Schellhorn, G., Travkin, O., Wehrheim, H.: Towards a thread-local proof technique
for starvation freedom. In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS,
vol. 9681, pp. 193–209. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
33693-0 13

58. Tofan, B., Schellhorn, G., Reif, W.: Formal verification of a lock-free stack with
hazard pointers. In: Cerone, A., Pihlajasaari, P. (eds.) ICTAC 2011. LNCS, vol.
6916, pp. 239–255. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-23283-1 16

59. Woodcock, J., Stepney, S., Cooper, D., Clark, J., Jacob, J.: The certification of the
Mondex electronic purse to ITSEC level E6. Formal Aspects Comput. 20, 5–19
(2008)

60. Xu, Q., de Roever, W.-P., He, J.: The rely-guarantee method for verifying shared
variable concurrent programs. Formal Aspects Comput. 9(2), 149–174 (1997)

https://doi.org/10.1007/978-3-662-43652-3_2
https://doi.org/10.1007/978-3-662-43652-3_2
https://doi.org/10.1007/978-3-319-33693-0_13
https://doi.org/10.1007/978-3-319-33693-0_13
https://doi.org/10.1007/978-3-642-23283-1_16
https://doi.org/10.1007/978-3-642-23283-1_16

A Note on Idleness Detection of Actor
Systems

Rudolf Schlatte(B)

Institute for Informatics, University of Oslo, Oslo, Norway

rudi@ifi.uio.no

Abstract. In an actor system, detecting global idleness is trivial if the
global state can be inspected synchronously. A distributed implementa-
tion, especially with asynchronous messages, poses more problems. This
paper discusses detecting idleness in actor systems with various char-
acteristics, among them topology and message passing semantics. We
present a TLA+ specification of a simple termination detection algo-
rithm, add necessary conditions missing in the original description, and
establish a correctness invariant to model-check the specification against.
We further show via model-checking that the algorithm only works with
synchronous messages but is robust against message reordering. We then
model and discuss a simplified version of the idleness detection imple-
mentation in the Erlang backend of the ABS modeling language.

Keywords: Actor systems · Termination detection · Model checking

1 Introduction

Detecting global idleness or termination is necessary to detect when it is safe to
shupt down a distributed actor system. Idleness detection is also used to initiate
other actions, such as advancing a logical clock during simulation. Termination
detection algorithms should be precise (i.e., give no false positives) and efficient
(work with a minimum of messages).

Following the taxonomy in [8], we define a distributed actor system as follows:

– A set of actors that share no state and are either running or idle. An actor
can change its state from running to idle at any time, but a change from idle
to running requires a message from another, running actor.

– A set of communication channels between actors, among which both activa-
tion messages and control messages are sent. Communication takes arbitrary
but finite time, and can be synchronous or asynchronous.

Any termination detection algorithm relies on certain properties of the under-
lying infrastructure: synchronous versus asynchronous message sending, the pos-
sibility of message loss, message duplication and reordering, fixed or arbitrary
channel topologies etc. An algorithm can only be correct with respect to these
basic assumptions.
c© Springer Nature Switzerland AG 2022
W. Ahrendt et al. (Eds.): The Logic of Software. A Tasting Menu of Formal Methods,
LNCS 13360, pp. 437–445, 2022.
https://doi.org/10.1007/978-3-031-08166-8_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08166-8_21&domain=pdf
http://orcid.org/0000-0001-5601-5517
https://doi.org/10.1007/978-3-031-08166-8_21

438 R. Schlatte

One method of validating a termination algorithm is to formally specify it
and use a theorem prover or a model checker to find violations of correctness
invariants. TLA+ [7] is a specification language designed for distributed con-
current systems; this paper uses TLA+ to formally specify algorithms. Section 2
presents a simple termination detection system, then Sect. 3 discusses quiescence
detection for a simulator of the ABS modeling language. Section 4 concludes the
paper.

2 A Formal Model of Dijkstra’s Termination Detection
Algorithm

E.W. Dijkstra presented an easy-to-understand termination detection algorithm
for actor systems [3]. This algorithm relies on synchronous message passing
among an ordered sequence of actors a0 .. an−1, with each actor knowing which
actor is their predecessor. Any active actor can send a message to any other
actor; the sending actor ai colors itself black (color i = black) and the receiving
actor aj becomes active (statej = active).

The actor a0 has no predecessor but knows an−1; a0 is responsible for ini-
tiating a round of the algorithm by sending a white token t to the last actor
(t = 0 ∧ t ′ = n − 1 ∧ c′ = white). During a round of the algorithm, the token
t is passed down from actor to actor (t = i ∧ t ′ = i − 1). An inactive actor
(statei = idle) passes on the token. If that actor sent an activation message
to another actor after the previous round (i.e., color i = black), it colors the
token black (c = black) and itself white (color i = white) before passing it on;
otherwise it leaves the token color unchanged.

The algorithm terminates when a white token arrives back at the initiating
actor (i.e., t = 0∧ c = white) and the initiating actor is itself inactive and white
(color0 = white ∧ state0 = idle). When reaching this state, all actors are deemed
to be idle. In other words, the correctness invariant is:

t = 0 ∧ c = white ∧ state0 = idle ∧ color0 = white
=⇒ ∀i ∈ 0..n − 1 : statei = idle ∧ color i = white (1)

We modeled Dijkstra’s algorithm in TLA+ (see Appendix A) and model-
checked the correctness invariant for five actors. During that process, we discov-
ered that the description of the algorithm in [3] is incomplete: the paper does
not specify the initial state and location of the token. Via model checking, we
can show that an initial state with t = 0 ∧ c = black is safe, while starting with
a white token (c = white) can lead to a faulty termination detection.

We also briefly investigated whether the algorithm depends on synchronous
and/or ordered message delivery. With a modified model that implements acti-
vation message sending as a two-step process of first placing the message into
an actor’s inbox and then handling it in a second step (see Appendix B for the
changes), model-checking produces traces with erroneous termination detection.

A Note on Idleness Detection of Actor Systems 439

A further modification of the model whereby actors only pass on the token when
their mailbox is empty (making message passing synchronous again since an
actor “knows” that it has incoming messages) does not lead to erroneous termi-
nation detection, meaning that Dijkstra’s algorithm is robust against message
reordering.

3 Quiescence Detection in the Erlang Backend of ABS

ABS [5] is an actor-based modeling language with executable semantics. ABS
processes are contained in and scheduled by cogs, which in turn are contained
in deployment components that distribute resources. Thus, the runtime state
hierarchy of a running ABS model forms a spanning tree that can be used for
idleness detection.

Models are executed via transpiling into Erlang [1], an actor-based language
with asynchronous messages. The Erlang backend uses a component called cog
monitor that communicates with all running cogs, and forms the root of the
spanning tree. This component was in the past subject to a lot of race conditions;
after vigorous debugging, an unknown number of those remain.

The original version of the Erlang backend, which did not include the timed
semantics of Real-Time ABS, implemented termination detection as follows [4,
p. 58]: “[a]fter all COGs stayed idle for configurable time span (default 1 s), [. . .]
the model is assumed to be terminated.” Each cog reported its status to the cog
monitor component, which had a (potentially outdated) overview of each cog’s
status. The spurious global idle conditions detected resulted from insufficient
coordination between cogs and processes. Specifically, the following invariants
were broken:

– A cog must not signal idleness when it has processes that are ready to execute.
– A process must synchronize with all processes that wait for its return value

before terminating.
– A process must synchronize with the cog of a new process it created before

terminating.

These conditions, taken together, form an invariant for the cog monitor: all
“active” signals must arrive before any “idle” signal that caused the “active”
signals. Figure 1 shows the original and fixed message sequence for a process
that creates a process on another cog and then terminates itself.

All these conditions were informally discovered via test cases, and the result-
ing buggy spurious clock advances fixed, while implementing the semantics of
Real-Time ABS, as described e.g. in [6]. A simplified version of the updated
protocol, with one process per actor and the cog monitor expressed implicitly as
part of the global state, is shown in Appendix C.

440 R. Schlatte

Fig. 1. Process creation followed by process termination in the Erlang backend: original
(left) and revised (right, slightly simplified). Note that in the original, Task A can send
both its messages without waiting, so the idle message can overtake the active message.

4 Conclusion and Future Work

As shown for example in [9], formal methods are a suitable tool for exhaustively
specifying distributed algorithms. This paper demonstrated how to specify a sim-
ple termination-detection algorithm, validate its correctness via model-checking,
and check its robustness against various changes in its operating environment.

We do want to apply these techniques against the Erlang-based actor imple-
mentation of the ABS modeling language simulator, which has been exhaustively
tested but never formally specified. The current quiescence detection implemen-
tation might be message-optimal, since the lower bound for M activation mes-
sages is Ω(M) control messages for actor systems with asynchronous message
passing [2]. But the cog monitor component must handle all activation and
deactivation messages synchronously, thereby forming a bottleneck, so a less
synchronous algorithm could lead to large performance improvements in prac-
tice with the same number of messages. The author would not attempt to imple-
ment such an algorithm without a formal specification, and the fact that ABS
features unbounded actor and process creation will pose interesting challenges
for any chosen formal approach.

In conclusion, the author wishes that the work presented and proposed in this
paper had been undertaken at the time the ABS simulator was first implemented.

Acknowledgements. The development of ABS was supported by the EU projects
HATS and Envisage. Reiner Hähnle participated in Envisage and coordinated HATS;
his influence on the development and developer of ABS is gratefully acknowledged.

A Dijkstra’s Algorithm

module TDijkstra

extends Naturals

A Note on Idleness Detection of Actor Systems 441

constant N The number of participating actors; each actor is identified by its number

variable state state[i] is the state of actor i

variable color white/black state of actor color[i]

variable tokenpos position of the token: 0..N-1

variable tokencolor white or black

Vars Δ= 〈state, color , tokenpos, tokencolor〉

AI Δ= 0 . . N − 1 The set of participating actors

TTypeOK Δ=
∧ state ∈ [AI → {“active”, “idle”}]
∧ color ∈ [AI → {“white”, “black”}]
∧ tokenpos ∈ AI
∧ tokencolor ∈ {“white”, “black”}

TInit Δ=
∧ state = [i ∈ AI �→ “active”]
∧ color = [i ∈ AI �→ “white”]
∧ tokenpos = 0
∧ tokencolor = “black” start with a probe ()

P0 Δ= ∀ i ∈ (tokenpos + 1) . . (N − 1) : state[i] = “idle”

P1 Δ= ∃ j ∈ 0 . . tokenpos : color [j] = “black”

P2 Δ= tokencolor = “black”

SystemTerminatedWF Δ=
let terminated Δ=

∧ tokenpos = 0
∧ tokencolor = “white” denotes a successful probe
∧ state[0] = “idle”
∧ color [0] = “white”

in terminated =⇒ ∀ i ∈ AI : state[i] = “idle” ∧ color [i] = “white”

TInv Δ=
∨ P0 Taken from Dijkstra’s paper

∨ P1 ditto

∨ P2 ditto

becomeIdle(i) Δ=
∧ state[i] = “active”
∧ state′ = [state except ! [i] = “idle”]
∧ unchanged 〈color , tokenpos, tokencolor〉

sendMsg(i , j) Δ=
∧ state[i] = “active”
∧ state′ = [state except ! [j] = “active”]
∧ color ′ = [color except ! [i] = “black”] Rule 1’
∧ unchanged 〈tokenpos, tokencolor〉

passToken Δ=

442 R. Schlatte

∧ tokenpos > 0
∧ state[tokenpos] = “idle” Rule 0
∧ tokenpos′ = tokenpos − 1
∧ tokencolor ′ = if color [tokenpos] = “black” then “black” else tokencolor Rule 2

∧ color ′ = [color except ! [tokenpos] = “white”] Rule 5
∧ unchanged 〈state〉

initiateProbe Δ=
∧ tokenpos = 0
∧ state[0] = “idle”
∧ ∨ color [0] = “black” Rule 3 (unsuccessful probe)

∨ tokencolor = “black”
∧ tokenpos′ = N − 1 Rule 4

∧ tokencolor ′ = “white” Rule 4
∧ color ′ = [color except ! [0] = “white”]
∧ unchanged 〈state〉

TNext Δ=
∨ ∃ i ∈ AI : becomeIdle(i)
∨ ∃ i , j ∈ AI : sendMsg(i , j)
∨ initiateProbe
∨ passToken

B Asynchronous Message Sending in the Dijkstra
Algorithm Model

Add the inbox variable and replace the rule sendMsg(i , j) of Appendix A with
the two rules sendMsg, becomeActive as follows:

variable inbox For each actor, a set of messages

TTypeOK Δ=
. . .
∧ inbox ∈ [AI → subset AI]

TInit Δ=
. . .
∧ inbox = [i ∈ AI �→ {}]

sendMsg(i , j) Δ=
∧ state[i] = “active”
∧ inbox ′ = [inbox except ! [j] = @ ∪ {i}]
∧ color ′ = [color except ! [i] = “black”] Rule 1’

∧ unchanged 〈state, tokenpos , tokencolor〉
becomeActive(i) Δ=

∧ state[i] = “idle”
∧ inbox [i] �= {}

A Note on Idleness Detection of Actor Systems 443

∧ state ′ = [state except ! [i] = “active”]
∧ inbox ′ = [inbox except ! [i] = @ ∩ {choose j ∈ @ : true}]
∧ unchanged 〈color , tokenpos , tokencolor〉

C Specification of the Erlang Backend Behavior

module TErlangBackend

extends Naturals

constant N the number of Cogs

variable CogState the state of each Cog

variable TaskState The state of each cog’s task (one per cog)

variable Messages The current in-flight messages

Vars Δ= 〈CogState, TaskState, Messages〉
AC Δ= 1 . . N All Cog and task identifiers (one task per cog)

AllMessages Δ= {“invoke”, “invoke ok”} × AC × AC

TypeOK Δ=
∧ CogState ∈ [AC → {“active”, “idle”}]
∧ TaskState ∈ [AC → {“none”, “running”, “blocked”}]
∧ Messages ∈ subset AllMessages

Init Δ=
∧ CogState = [i ∈ AC �→ if i = 1 then “active” else “idle”]
∧ TaskState = [i ∈ AC �→ if i = 1 then “running” else “none”]
∧ Messages = {}

sendInvocation(i , j) Δ=
∧ TaskState[i] = “running”
∧ Messages ′ = Messages ∪ {〈“invoke”, i , j 〉}
∧ TaskState ′ = [TaskState except ! [i] = “blocked”]
∧ unchanged CogState

acceptInvocation(j) Δ=
∧ TaskState[j] = “none”
∧ ∃ i ∈ AC :

∧ 〈“invoke”, i , j 〉 ∈ Messages
∧ Messages ′ = (Messages \ {〈“invoke”, i , j 〉}) ∪ {〈“invoke ok”, i , j 〉}
∧ CogState ′ = [CogState except ! [j] = “active”]
∧ TaskState ′ = [TaskState except ! [j] = “running”]

444 R. Schlatte

acceptConfirmation(i) Δ=
∧ TaskState[i] = “blocked”
∧ ∃ j ∈ AC :

∧ 〈“invoke ok”, i , j 〉 ∈ Messages
∧ Messages ′ = Messages \ {〈“invoke ok”, i , j 〉}
∧ TaskState ′ = [TaskState except ! [i] = “running”]
∧ unchanged CogState

endTask(i) Δ=
∧ TaskState[i] = “running”
∧ TaskState ′ = [TaskState except ! [i] = “none”]
∧ CogState ′ = [CogState except ! [i] = “idle”]
∧ unchanged Messages

Next Δ=
∨ ∃ i , j ∈ AC : sendInvocation(i , j)
∨ ∃ j ∈ AC : acceptInvocation(j)
∨ ∃ i ∈ AC : acceptConfirmation(i)
∨ ∃ i ∈ AC : endTask(i)

SystemTerminatedWF Δ=
let allIdle Δ= ∀ i ∈ AC : CogState[i] = “idle”
in allIdle =⇒

∧ ∀ i ∈ AC : TaskState[i] = “none”
∧ Messages = {}

References

1. Armstrong, J.: Erlang. Commun. ACM 53(9), 68–75 (2010). https://doi.org/10.
1145/1810891.1810910

2. Chandy, K.M., Misra, J.: How processes learn. Distrib. Comput. 1(1), 40–52 (1986).
https://doi.org/10.1007/BF01843569

3. Dijkstra, E.W., Feijen, W., van Gasteren, A.: Derivation of a termination detection
algorithm for distributed computations. Inf. Process. Lett. 16(5), 217–219 (1983).
https://doi.org/10.1016/0020-0190(83)90092-3

4. Göri, G.: Erlang-based Execution and Error Handling for Abstract Behavioural
Specifications. Master’s thesis, Graz University of Technology, Institute for Software
Technology (2015). https://diglib.tugraz.at/download.php?id=576a741586a71&loc
ation=search

5. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S., Bon-
sangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-25271-6 8

https://doi.org/10.1145/1810891.1810910
https://doi.org/10.1145/1810891.1810910
https://doi.org/10.1007/BF01843569
https://doi.org/10.1016/0020-0190(83)90092-3
https://diglib.tugraz.at/download.php?id=576a741586a71&location=search
https://diglib.tugraz.at/download.php?id=576a741586a71&location=search
https://doi.org/10.1007/978-3-642-25271-6_8

A Note on Idleness Detection of Actor Systems 445

6. Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: Integrating deployment architectures
and resource consumption in timed object-oriented models. J. Logical Algebraic
Methods Program. 84(1), 67–91 (2015). https://doi.org/10.1016/j.jlamp.2014.07.
001

7. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware and
Software Engineers. Addison-Wesley, Boston (2002)

8. Matocha, J., Camp, T.: A taxonomy of distributed termination detection algo-
rithms. J. Syst. Softw. 43(3), 207–221 (1998). https://doi.org/10.1016/S0164-
1212(98)10034-1

9. Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., Deardeuff, M.: How
Amazon web services uses formal methods. Commun. ACM 58(4), 66–73 (2015).
https://doi.org/10.1145/2699417

https://doi.org/10.1016/j.jlamp.2014.07.001
https://doi.org/10.1016/j.jlamp.2014.07.001
https://doi.org/10.1016/S0164-1212(98)10034-1
https://doi.org/10.1016/S0164-1212(98)10034-1
https://doi.org/10.1145/2699417

Symbolic Execution: Foundations,
Techniques, Applications, and Future

Perspectives

Dominic Steinhöfel(B)

CISPA Helmholtz Center for Information Security,
Stuhlsatzenhaus 5, Saarbrücken, Germany

dominic.steinhoefel@cispa.de

Abstract. Symbolic Execution (SE) enables a precise, deep program
exploration by executing programs with symbolic inputs. Traditionally,
the SE community is divided into the rarely interacting sub-communities
of bug finders and program provers. This has led to independent develop-
ments of related techniques, and biased surveys and foundational papers.
As both communities focused on their specific problems, the founda-
tions of SE as a whole were not sufficiently studied. We attempt an
unbiased account on the foundations, central techniques, current appli-
cations, and future perspectives of SE. We first describe essential design
elements of symbolic executors, supported by implementations in a digi-
tal companion volume. We recap a semantic framework, and derive from
it a—yet unpublished—automatic testing approach for SE engines. Sec-
ond, we introduce SE techniques ranging from concolic execution over
compositional SE to state merging. Third, we discuss applications of
SE, including test generation, program verification, and symbolic debug-
ging. Finally, we address the future. Google’s OSS-Fuzz project routinely
detects thousands of bugs in hundreds of major open source projects.
What can symbolic execution contribute to future software verification
in the presence of such competition?

This chapter comes with a digital companion vol-
ume [84] in form of a Jupyter notebook including
additional examples, visualizations, and the com-
plete code of all presented implementations. The
companion volume will be updated also after this
chapter has been published.

1 Introduction

It is no secret that every non-trivial software product contains bugs, and not just
a few: A data analytics company reported in 2015 [7] that on average, a developer

c© Springer Nature Switzerland AG 2022
W. Ahrendt et al. (Eds.): The Logic of Software. A Tasting Menu of Formal Methods,
LNCS 13360, pp. 446–480, 2022.
https://doi.org/10.1007/978-3-031-08166-8_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08166-8_22&domain=pdf
http://orcid.org/0000-0003-4439-7129
https://rindphi.github.io/se-book-festschrift-rh/
https://doi.org/10.1007/978-3-031-08166-8_22

Symbolic Execution 447

creates 70 bugs per 100 lines of code, of which 15 survive until the software is
shipped to customers. In a recent, global survey among 950 developers [74],
88% of the participants stated that bugs and errors are frequently detected and
reported by the actual users of the product, rather than being detected by tests
or monitoring tools. In the same survey, more than a third of developers (37%)
declared that they spend more than quarter of their time fixing bugs instead of
“doing their job.”

These numbers indicate that testing with manually written test cases alone
is insufficient for effective and sustainable software verification: First, it is noto-
riously hard to come up with the right inputs to ensure well-enough coverage of
all semantic features implemented in code. The fact that a test suite achieves a
high syntactic code coverage, which is hard enough to accomplish, does unfor-
tunately not imply that all bugs are found. Second, developers already spend
much of their time testing and fixing bugs. In the above survey, 43% of the
developers complained that testing is one of the major “pain points” in software
development.

Clearly, there is a need for automated bug finding strategies. A simple, yet
surprisingly effective, idea is to run programs with random inputs. When fol-
lowing this idea on the system level, it is called (blackbox) fuzz testing (or
fuzzing) [65], while on the unit level, the label Property-Based Testing (PBT) [24]
is customary.

Random approaches, however, struggle with covering parts of programs that
are only reachable by few inputs only. For example, it is hard to randomly
produce a structured input (such as an XML file or a C program), a magic value,
or a value for a given checksum. Furthermore, even if code is covered, we might
miss a bug: The expression a // (b + c) only raises a ZeroDivisionError if
both b and c are 0. Generally, it can be difficult to choose “suitable” failure-
inducing values, even when massively generating random inputs.

Symbolic Execution (SE) [2,8,19,58] provides a solution by executing pro-
grams with symbolic inputs. Since a (potentially constrained) symbolic value
represents many values from the concrete domain, this allows to explore the pro-
gram for any possible input. Whenever the execution depends on the concrete
value of a symbolic input (e.g., when executing an if statement), SE follows all
or only a subset of possible paths, each of which is identified by a unique path
condition.

The integration of SE into fuzzing techniques yields so-called white-box, or
constraint-based, fuzzers [20,38–40,69,87,93]. Especially at the unit level, SE
can even exhaustively explore all possible paths (which usually requires auxiliary
specifications), and prove that a property holds for all possible inputs [2,52].

Since its formation, the SE community has been split into two distinct sub
communities dedicating their work either to test generation or program proving.
The term “Symbolic Execution” has been coined by King [58] in 1976, who
applied it to program testing. Independently, Burstall [19] proposed a program
proving technique in 1974, which is based on “hand simulation” of programs—
essentially, nothing different than SE. This community separation still persists

448 D. Steinhöfel

today. In this chapter, we attempt a holistic approach to Symbolic Execution,
explaining foundations, technical aspects, applications, and the future of SE from
both perspectives.

This chapter combines aspects of a survey paper with a guide to implementing
a symbolic interpreter. Moreover, especially Sect. 6 on the future of SE is based
on personal opinions and judgments, which is more characteristic of an essay
than of a research paper. We hope to provide useful theoretical and practical
insights into the nature of SE, and to inspire impactful discussions.

We begin in Sect. 3 by addressing central design choices in symbolic execu-
tors. Especially for this chapter, we implemented a symbolic interpreter for
minipy, a Python subset. Section 2 introduces the minipy language itself. When
suitable, we enrich our explanations with implementation details. We continue
with a frequently neglected aspect: The semantic foundations of SE. Special
attention is paid to the properties an SE engine has to satisfy to be useful for its
intended application (testing vs. proving). We introduce all four existing works
on the topic, one of which we discuss in-depth. In the course of this, we derive
a novel technique for automated testing of SE engines which has not been pub-
lished before.

We discuss selected SE techniques in Sect. 4. For example, we derive a concolic
interpreter from the baseline symbolic interpreter in just eight lines of code. We
implemented most techniques as extensions of our symbolic interpreter.

In Sect. 5, we describe current trends in four application scenarios. Apart
from the most popular ones, namely test generation and program proving, we
also cover symbolic debugging and model checking of abstract programs.

Finally, we take a look at the future of SE. The probabilistic analysis in [13]
indicates that systematic testing approaches like SE need to become significantly
faster to compete with randomized approaches such as coverage-guided fuzzers.
Otherwise, we can expect to reach the same level of confidence about a program’s
correctness more quickly when using random test generators instead of symbolic
executors. What does this imply for the role of SE in future software verification?

2 Minipy

All our examples and implementations target the programming language minipy,
a statically typed, imperative, proper subset of the Python language. It sup-
ports Booleans, integers, and integer tuples, first-order functions, assignments,
and pass, if, while, return, assert, try-except, break, and continue state-
ments. Excluded are, e.g., classes and objects, strings, floats, nested function
definitions and lambdas, comprehensions and generators, for loops, and the
raise statement. Expressions are pure in minipy (without side effects other than
raised exceptions), since we have no heap and omitted Python’s global keyword.

An example minipy program is the linear search routine in Listing 1. The
values of x and y after execution are 2 and -1, respectively. The implementation
uses an else block after the while loop, which is executed whenever the loop
completes normally—i.e., not due to the break statement in Line 5, executed if

Symbolic Execution 449

Listing (minipy) 1 Linear search program.

1 def find(needle: int, haystack: tuple) -> int:
2 i = 0

3 while i < len(haystack):
4 if haystack[i] == needle:

5 break
6

7 i = i + 1

8 else:
9 return -1

10

11 return i

12

13 t = (1, 2, 3, 4,)

14 x = find(3, t)

15 y = find(5, t)

needle has been found. The type annotations in Line 1 are mandatory in minipy;
thus, the type of a variable can always be determined either from the type of
the right-hand side of an initial assignment, or from the annotations in function
signatures.

We constructed a concrete interpreter for minipy. It consists of functions
of the shape evaluate_exprType(expr, environment) for evaluating expres-
sions, and execute_stmtType(stmt, environment) for executing statements.
The environment consists of a store mapping variables to values and a reposi-
tory of function implementations (e.g., len). The evaluation functions return a
value and leave the environment unchanged; the execution functions only have
side effects: They may change the environment, and complete abruptly. Abrupt
completion due to returns, breaks, and continues is signaled by special excep-
tion types.

3 Foundations

We can focus on two aspects when studying the principles of SE. First, we con-
sider how SE engines are implemented. We distinguish static symbolic inter-
preters, e.g., angr [80], KeY [2], KLEE [20], and S2E [23], and approaches
dynamically executing the program.1 The PEF tool [10], e.g., extracts symbolic
constraints using proxy objects; QSYM [93] by a runtime instrumentation, and

1 This distinction is a simplification, as many dynamic SE tools belong two both cat-
egories. KLEE, for instance, statically interprets LLVM instructions and maintains
multiple branches in memory; yet, it also integrates elements of dynamic execution,
e.g., when interacting with external code such as the Linux kernel. We discuss this
style of selective SE in Sect. 4.

450 D. Steinhöfel

SYMCC [69] by compiling directives maintaining path constraints directly into
the target program.

The second aspect addresses the semantics of SE, i.e., what does and should
SE compute? Test generators compute an underapproximation of all possible
final program states. In case one of these is an error state, e.g., crashes or does
not satisfy an assertion, there is always a corresponding concrete, fault-inducing
input (a test case). Program proving tools, on the other hand, overapproximate
the state space. Thus, the absence of any erroneous state in the analysis result
implies the absence of such states in the reachable state space, which results in
a program proof.

We begin this section by providing a scheme to characterize SE engines.
At the same time, we describe how to implement a relatively simple symbolic
interpreter for minipy (Sect. 3.1). We decided on implementing a static executor
since this allows investigating both over- and underapproximating SE variants
(e.g., in Sect. 4 we integrate (overapproximating) loop invariants, and turn the
interpreter into an underapproximating concolic interpreter with only a few lines
of code). In Sect. 3.2, we then introduce a semantic framework for Symbolic
Execution. Finally, in Sect. 3.3, we derive an automatic testing technique for SE
engines from this formal framework. To the best of our knowledge, this is only
the second approach addressing the verification of SE engines using automated
testing, and the first which can address multi-path and overapproximating SE
in a meaningful way.

3.1 Designing a Symbolic Interpreter

To describe implementation aspects of an SE engine in a structured way, we
extracted characteristics for distinguishing them (displayed in Table 1) by com-
paring different kinds of engines from the literature. This catalog is definitely
incomplete. Yet, we think that it is sufficiently precise to contextualize most
engines; and we did not find any satisfying alternative in the literature.

In the following, we step through the catalog and briefly explain the individ-
ual characteristics. We describe how our implemented baseline symbolic inter-
preter fits into this scheme, and provide chosen implementation details.

Implementation Type. We distinguish SE engines that statically interpret
programs from those that dynamically execute them. Among the interpretation-
based approaches, we distinguish those that retain multiple paths in memory
and those that only keep a single path. An example for the latter would be an
interpretation-based concolic executor.

As a baseline for further studies, we implemented a multi-path symbolic
minipy interpreter, with the concrete interpreter serving as a reference. The inter-
preter keeps all execution tree leaves discovered so far in memory (which is not
necessarily required from a multi-path engine). What is more, it also retains all
intermediate execution states, such that the output is a full Symbolic Execution
Tree (SET). An example SET for the linear search program in Listing 1, auto-
matically produced by our implemented framework, is shown in Fig. 1. The nodes

Symbolic Execution 451

Table 1. Characteristics of SE engines.

Implementation Type

(1) Interpretation-Based

(1.1) / (1.2) Multi / Single-Path

(2) Execution-Based

(2.1) Compilation-Based

(2.2) Runtime Instr.-Based

(2.3) Using Proxy Objects

Constraint & Value Representation

(1) External Theories

(1.1) / (1.2) Shallow / Deep Embedding

(2) Internal Theories

Constraint Solving

(1) Off-the-shelf Solver

(1.1) With Reduction / Reuse

(1.2) Non-exhaustive Techniques

(2) Special Solver

Loop / Recursion Treatment

(1) Bounded Unrolling

(2) Invariants

(3) Concolic

Call Treatment

(1) Inlining

(2) Summaries / Contracts

(3) On-Demand Concretization

Path Explosion Countermeasures

(1) Summaries / Contracts

(2) Subsumption

(3) State Merging

of the tree are Symbolic Execution States (SESs) consisting of (1) a path condi-
tion, which is a set of closed formulas (path constraints) over program variables,
(2) a symbolic store, a mapping of program variables to symbolic expressions over
program variables, and (3) a program counter pointing to the next statement to
execute. Assignments update the store, while case distinctions (such as while
and if statements) update path constraints. Together, path condition, store,
and program counter determine the concrete states represented by an SES. We
formalize this semantics in Sect. 3.2.

The following definition assumes sets PVars of program variables, Expr of
(arithmetic, boolean, or sequence) expressions, and Fml of formulas over pro-
gram variables. We formalize symbolic stores as partial mappings PVars ↪→ Expr
and use the shorthand SymStores for the set of all these mappings.

Definition 1 (Symbolic Execution State). A Symbolic Execution State
(SES) is a triple (Constr, Store,PC) of (1) a set of path constraints Constr ⊆

Fml, the path condition, (2) a mapping Store ∈ SymStores of program vari-
ables to symbolic expressions, the symbolic store, and (3) a program counter
PC pointing to the next statement to execute. We omit PC if it is empty. SESs
is the set of all SEStates.

The structure of our symbolic interpreter aligns with the concrete minipy
interpreter. Environments are now symbolic environments, consisting of a set

452 D. Steinhöfel

Fig. 1. SET of the linear search program in Listing 1 with one loop unrolling.

of path constraints in addition to the (symbolic) store and built-in function
repository. Execution functions are side-effect free and produce SETs instead of
manipulating environments. Expressions evaluate to conditioned symbolic val-
ues, since the evaluation of the same expression, e.g., x // y, may result in a
value (e.g., 4 for x = 4 and y = 2) or in an exception (e.g., for y = 0). In Sect. 3.1,
we explain how we concretely represent symbolic expressions and constraints.

As an example, we discuss the symbolic execution of if statements. As usual,
the concrete code is available at [84]. First, we evaluate the guard expression.
Since this can result in multiple conditioned values, we loop over all values and
attached constraints. If an evaluation result is unsatisfiable with the current path
condition, it is not considered; if the evaluation resulted in an exceptional result,
we set the “abrupt completion” flag of the symbolic environment to the returned
exception.

If evaluating the guard resulted in a value, we compute the symbolic environ-
ments for the then and else branch. We only add the subtrees for these branches
if they are satisfiable to avoid the execution of infeasible paths. Finally, the then
and else blocks are executed and added to the result SET; if there is no else
branch, we add the corresponding environment without program counter.

An alternative to implementing symbolic transitions in code, as we did in our
symbolic interpreter, is encoding them as a set of small-step rules in a domain-
specific language. This is the approach followed by the KeY SE engine [2].

In Sect. 3.1, we discuss satisfiability checking for symbolic environments.
Next, we focus on the representation of constraints and symbolic values.

Representation of Constraints and Values. The choice of how to express
symbolic values and constraints in an SE engine usually goes hand in hand with

Symbolic Execution 453

the choice of the used constraint solver (which we discuss in the next section).
When using an off-the-shelf solver, one is ultimately bound to its available the-
ories. However, there are two styles of embedding the language of symbolic val-
ues and constraints, namely a deep and a shallow approach [35,88]. In a deep
embedding, one defines dedicated Abstract Syntax Trees (ASTs) for values and
constraints, and formalizes specialized operations on those in terms of the solver
theories. Shallow embeddings directly encode the embedded language in terms
of already available data structures. Both approaches have advantages and dis-
advantages: Deep embeddings offer more flexibility, but require the definition of
new theories, which can be non-trivial and give rise to inconsistencies. Shallow
embeddings, on the other hand, are simpler and allow re-using pre-defined theo-
ries, but can come at the cost of a reduced expressiveness. A different approach
followed, e.g., by the KeY [2] engine, is the development of a specialized solver
with home-grown theories. This approach offers most flexibility, but is costly to
implement and decouples the engine from advances of general-purpose solvers.

Our symbolic interpreter is based on a shallow embedding into the Z3 SMT
solver [66]. Integer types are mapped to z3.ArithRef expressions, constraints
and Booleans to z3.BoolRef, and tuples to sequences of sort z3.SeqRef. This—
easy to implement—approach restricts us to non-nested tuples, since nested
sequences are not supported in Z3. For a complete support of minipy’s language
features, we would have to resort to a deeper embedding into Z3.

Constraint Solving. Constraint solving plays a crucial role in SE engines [8]:
Constraints are checked when evaluating path feasibility, simplifying symbolic
stores, or verifying assertions. Usually, path constraints are eagerly checked to
rule out the exploration of infeasible paths. However, this can be expensive in
the presence of many complex constraints (e.g., nonlinear arithmetics). Engler
and Dunbar [30] propose a lazier approach to constraint solving. If a constraint
cannot be quickly solved, they defer its evaluation to a later point (e.g., when
an error has been found). Only then, feasibility is checked with higher timeout
thresholds.

Few systems (e.g., KeY) implement own solvers. Most symbolic executors,
however, use off-the-shelf solvers like Z3. To alleviate the overhead imposed
by constraint solving, some systems preprocess constraints before querying the
solver. KLEE [20], e.g., reduces expressions with rewriting optimizations, and
re-uses previous solutions by caching counterexamples. Systems like QSYM [93]
resort to “optimistic” solving, which is an unsound technique only considering
partial path conditions. Since QSYM is a hybrid fuzzer combining a random
generator and a symbolic executor, generating “unsound” inputs (which do not
conform to the path they are generated for) is not a big problem, since the
fuzzing component will quickly detect whether the input is worthwhile or not
by concrete execution (and, e.g., collecting coverage data). The Fuzzy-Sat sys-
tem [15] analyzes constraints collected during SE and, based on that, performs
smart mutations (a concept known from the fuzzing domain) of known solutions
for partial constraints to create satisfying inputs faster.

454 D. Steinhöfel

Frequently, SMT solvers time out, and fail to provide a definitive answer
at all. We use Z3 as a default solver, and discovered that its behavior can be
highly non-deterministic: For a given unsatisfiable formula, we either received a
timeout or a quick, correct answer, depending on the order of the constraints in
a formula, or the value of an initial seed value, or whether Z3 is run in parallel
mode.2

We follow a pragmatic approach to deal with Z3’s incompleteness: Whenever
a Z3 call returns “timeout,” we query another solver, in this case KeY, which
is run inside a small service to reduce bootstrapping costs. KeY is significantly
slower than Z3 in the average case (fractions of seconds vs. multiple seconds),
but is stable (behaves deterministically), and it features a powerful theory of
sequences, which behaves well together with arithmetic constraints.

Treatment of Loops and Recursion. Loops and recursion require special
attention in SE. Consider, e.g., the execution of the body of the find function
in Listing 1. If haystack is a symbolic value such that we do not know its length,
the number of times an engine should execute the body of the while loop until
the loop guard becomes unsatisfiable is unknown. There are three main ways
to address this issue (which also apply to recursive functions). First, we can
impose a fixed bound on the number of loop executions and unroll the loop
that many times. This is the procedure implemented in our baseline symbolic
interpreter. For example, in Fig. 1, we only unrolled the loop one time. If we
increase the threshold by one, we obtain two additional leaves in the SET, one
for the case where needle has been found, and one for the case where it has
not. Second, one can use loop invariants [49]. A loop invariant is a summary of
the loop’s behavior that holds independently from the number of loop iterations.
For example, an invariant for Listing 1 is that i does not grow beyond the size
of haystack. Instead of executing the actual loop body, one can then step over
a loop and add its invariant to the path condition. Although much research has
been conducted in the area of automatic loop invariant inference [17,31,33,60,
81], those specifications are mostly manually annotated, turning specification
into a main bottleneck of invariant-based approaches [2]. In Sect. 3.1, we show
how to integrate invariants into the baseline symbolic interpreter, turning it
into a tool that can be used for program proving. Finally, loops are naturally
addressed by concolic SE engines, where the execution is guided by concrete
inputs. Then, the loop is executed as many times as it would have been under
concrete execution. In Sect. 4.1, we derive a concolic tester from the baseline
interpreter with minimal effort.

Treatment of Calls. Analogously to loops, there are two ways of executing
calls in SE: Either, one can inline and symbolically execute the function body,
2 See https://github.com/Z3Prover/z3/issues/5559 for an issue we reported to the Z3

team. According to the answer of Z3’s main developer Nikolaj Bjørner, the “sequence
solver is rather unstable, especially when you mix integer constraints and sequence
constraints”.

https://github.com/Z3Prover/z3/issues/5559

Symbolic Execution 455

or take a summary (depending on the context also called contract) of the func-
tion’s behavior and add this abstraction to the path condition. If their code is
unavailable, we cannot inline function bodies (e.g., for a system call). Usually,
specifying a contract is one option. Yet, this is problematic when analyzing of
systems with many calls to unspecified libraries. Furthermore, it might not even
be possible. Godefroid [36] names as a simple example an if statement with
guard x == hash(y) containing an error location in its then branch. To reach
that location, we have to find two symbolic values x and y such that x is the hash
value of y. If hash is a cryptographic hash function, it has been designed exactly
to prevent such reasoning, and we cannot expect to come up with a contract for
hash (and even less to obtain a usable path constraint from SE without con-
tracts). Concolic execution does not provide a direct solution this time, either:
While we can concretely execute any function call, we will not obtain a constraint
from it.

A pragmatic approach in dynamic (i.e., integrating elements from concrete
execution) SE is to switch between concrete and symbolic execution whenever
adequate (see, e.g., [23,38]). When reaching the if statement of the program
above, for example, it is easy to decide whether the equation holds by choos-
ing random concrete values for x and y satisfying the above precondition, and
continue symbolically executing and collecting constraints from then on. What
is more, we can fix the value of y only, compute its hash, and choose the value
of x such that it does (not) satisfy the comparison. We discuss this approach in
Sect. 4.2.

The baseline symbolic interpreter inlines function calls. It does so in a “non-
transparent” way (inspired by the concrete minipy interpreter): Whenever we
reach a function definition, we add a continuation to the functions repository.
When evaluating a call, the continuation is retrieved and passed the current
symbolic environment and symbolic arguments, and returns an EvalExprResult.
In the computed SET, the execution steps inside the function body are thus not
communicated. In the digital companion volume [84], we extend the baseline
interpreter with a technique for transparent inlining ; in Sect. 3.1, we show how
to integrate function summaries.

Path Explosion Countermeasures. Path explosion is a major, if not the
most serious, obstacle for SE [8,22,91]. It is caused by an exponential growth
of feasible paths in particular in the presence of loops, but also of more innocu-
ous constructs like if statements (e.g., if they occur right at the beginning of
a substantially sized routine). Auxiliary specifications, i.e., loop invariants and
function summaries which we already mentioned before, effectively reduce the
state space. While loop invariants and full functional contracts generally have to
be annotated manually, there do exist approaches inferring function summaries
from cached previous executions in the context of dynamic SE (e.g., [5]).

Subsumption techniques drop paths that are similar (possibly after an
abstraction step) to previously visited paths. Anand et al. [6], e.g., summarize
heap objects (e.g., linked lists and arrays) with techniques known from shape

456 D. Steinhöfel

analysis to decide whether two states are to be considered equal. Another line
of work (see, e.g., [63]) distinguishes a subset of possible program locations con-
sidered “interesting,” e.g., because of the annotation with an assert statement.
When an execution does not reach an interesting location, intermediate locations
are tagged with path constraints. Whenever such a label is visited another time,
there are two options: Either, the current path condition is implied by the label.
In that case, this execution path is dropped, since we can be sure that it will not
reach an interesting location. In the other case, either an interesting location
is eventually reached, or the label is refined using an interpolation technique
summarizing previous unsuccessful paths at a position.

State merging [46,61,76,78,82] is a flexible and powerful technique for miti-
gating path explosion. The idea is to bring together SESs with the same program
counter (e.g., after the execution of an if statement) by computing a summary
of the path constraints and stores of the input states. This summary can be fully
precise, e.g., using If-Then-Else terms, underapproximating (omitting one input
state in the most extreme case), or overapproximating (e.g., using an abstract
domain).

Our baseline symbolic interpreter does not implement any countermeasure
to path explosion. However, we extend it with contracts and state merging in
Sect. 4.

3.2 Semantic Foundations of Symbolic Execution

Despite the popularity of SE as a program analysis technique, there are only few
works dedicated to the semantics and correctness of SE. This could be because
most SE approaches focus on test generation, and deep formal definitions and
proofs are less prevalent in that area than in formal verification. Furthermore,
every experienced user of SE has a solid intuition about the intended working of
the symbolic analysis, and thus might not have felt the need to make it formal.

We know of four works on the semantic foundations of SE: One from the
90s [59] and three relatively recent ones [12,62,82], published between 2017 to
2020.

Kneuper [59] distinguishes fully precise SE, which exactly captures the set
of all execution paths, and weak SE, which overapproximates it. Intuitively,
the weak variant can be used in program proving, and the fully precise one in
testing. Yet, fully precise SE is generally out of reach; Kneuper does not con-
sider underapproximation. The frameworks by Lucanu et al. [62] and de Boer
and Bonsangue [12] relate symbolic and concrete execution via simulation rela-
tions; they do not consider the semantics of individual SESs. Lucanu et al. [62]
define two properties of SE. Coverage is the property that for every concrete
execution, there is a corresponding feasible symbolic one. Precision means that
for every feasible symbolic execution, there is a corresponding concrete one. De
Boer and Bonsangue argue from a program proving point of view. Their prop-
erty corresponding to “coverage” of [62] is named completeness, and soundness
for “precision.”

Symbolic Execution 457

In [82], we provided a framework based on the semantics of individual SESs,
which represent many concrete states. A transition is precise if the output SESs
represent at most the concrete states represented by the input SESs, and exhaus-
tive if the outputs represent at least the states represented by the inputs. Other
than [12,62], this is a big-step system not considering paths and intermediate
states. We think that coverage/completeness from [12,62] imply exhaustiveness,
and precision/soundness “our” precision. Kneuper’s weak SE is exhaustive/com-
plete/has full coverage, while fully precise SE is additionally precise/sound.

In the following, we present a simplified account of the framework from [82].
Apart from personal taste, the focus on the input-output behavior of symbolic
transitions allows us to derive a novel technique for automatically testing SE
engines in Sect. 3.3. The only other work we know of on testing symbolic execu-
tors [56] only tests precision, and struggles (resorts to comparatively weak ora-
cles) with testing multi-path engines. We think that the focus on paths, and not
the semantics of states, binds such approaches to precision and single-path sce-
narios; the state-based big step semantics allows addressing these shortcomings.
The framework from [82] is based on the concept of concretizations of symbolic
stores and SESs. Intuitively, a symbolic store represents up to infinitely many
concrete states. For example, the store Store mapping the variable x to 2 · y

represents all concrete states where x is even. Given any concrete input, we can
concretize Store to a concrete state by interpreting variables in the range of
Store within the concrete state. If σ(y) = −3, e.g., the concretization of Store
w.r.t. σ maps x to −6.

Definition 2 (Concretization of Symbolic Stores). Let ConcrStates
denote all concrete execution states (sets of pairs of variables and concrete
values). The symbolic store concretization function concr store : SymStores ×

ConcrStates → ConcrStates maps a symbolic store Store and a concrete state
σ to a concrete state σ′

∈ ConcrStates such that (1) for all x ∈ PVars in the
domain of Store, σ′

(x) equals the right-hand side of x in Store when evaluating
all occurring program variables in σ, and (2) σ(y) = σ′

(y) for all other program
variables y not in the domain of Store.

The concretization of symbolic stores is extended to SESs by first checking
whether the given concrete store satisfies the path condition; if this is not the
case, the concretization is empty. Otherwise, it equals the concretization of the
store. Consider the constraint y > 0. Then, the concretization of ({y > 0}, Store)
w.r.t. σ (where Store and σ are as before) is ∅. For σ′

(y) = 3, on the other hand,
we obtain a singleton set with a concrete state mapping x to 6. Additionally,
we can take into account program counters by executing the program at the
indicated location starting in the concretization of the store. The execution result
is then the concretization.

Definition 3 (Concretization of SESs). Let, for every minipy program p,
ρ(p) be a (concrete) transition relation relating all pairs σ, σ′ such that executing
p in the state σ ∈ ConcrStates results in the state σ′

∈ ConcrStates. Then, the
concretization function concr : SEStates × ConcrStates → 2ConcrStates maps

458 D. Steinhöfel

an SES (Constr, Store,PC) and a concrete state σ ∈ ConcrStates (1) to the
empty set ∅ if either Constr does not hold in σ, or there is no σ′ such that
(concr store (Store, σ), σ′

) ∈ ρ(PC), or otherwise (2) the singleton set {σ′
} such

that (concr store (Store, σ), σ′
) ∈ ρ(PC).

Consider the SES s = ({1 ∈ t}, (n �→ 1), r = find(n, t)), where n and t are
variables of integer and tuple type, (n �→ 1) a symbolic store which maps n to
1 and is undefined on all other variables, and find the linear search function
from Listing 1. We write 1 ∈ t to express that the value 1 is contained in t. For
any σ where 1 is not contained in σ(t), we have concr (s, σ) = ∅. For all other
states σ′, concr store ((n �→ 1), σ′

) = σ′
[n �→ 1] (i.e., σ′, but with n mapped to 1).

The concretization concr (s, σ′
) is then a state resulting from running find with

arguments 1 and σ′
(t) (i.e., the values of n and t in concr store ((n �→ 1), σ′

)) and
assigning the result to r: concr (s, σ′

)(r) is the index of the first 1 in σ′
(t).

By considering all possible concrete states as initial states for concretization,
we obtain the semantics, i.e., the set of all represented states, of an SES.

Definition 4 (Semantics of SESs). The semantics �s� of an SES
s ∈ SEStates is defined as the union of its concretizations: �s� �
⋃

σ∈ConcrStates concr (s, σ).

Usually, SE systems take one input SES to at least one output. Systems with
state merging, however, also transition from several inputs states (the merged
states) to one output state. The notion of SE transition relation defined in [82]
goes one step further and permits m-to-n transition relations for arbitrary m
and n. In principle, this allows for merging techniques producing more than one
output state.

Definition 5 (SE Configuration and Transition Relation). An SE Con-
figuration is a set Cnf ⊆ SEStates. An SE Transition Relation is a relation
δ ⊆ 2SEStates

× (2SEStates
× 2SEStates

) associating to a configuration Cnf transi-
tions t = (I,O) of input states I ⊆ Cnf and output states O ⊆ 2SEStates . We call
Cnf \ I ∪O the successor configuration of the transition t for Cnf . The relation
δ is called SE Transition Relation with (without) State Merging if there is a
(there is no) transition with more than one input state, i.e., |I | > 1. We write
Cnf

t
−→δ Cnf ′ if (Cnf , t) ∈ δ and Cnf ′ is the successor configuration of t in Cnf .

The major contribution of the SE framework from [82] are the notions of
exhaustiveness and precision defined subsequently.

Definition 6 (Exhaustive SE Transition Relations). An SE transition
relation δ ⊆ 2SEStates

× (2SEStates
× 2SEStates

) is called exhaustive iff for each
transition (I,O) in the range of δ, i ∈ I and concrete states σ, σ′

∈ ConcrStates,
it holds that σ′

∈ concr (i, σ) implies that there is an SES o ∈ O s.t. σ′
∈

concr (o, σ).

Symbolic Execution 459

Definition 7 (Precise SE Transition Relations). An SE transition relation
δ ⊆ 2SEStates

×(2SEStates
×2SEStates

) is called precise iff for each transition (I,O)

in the range of δ, o ∈ O and concrete states σ, σ′
∈ ConcrStates, it holds that

σ′
∈ concr (o, σ) implies that there is an SES i ∈ I s.t. σ′

∈ concr (i, σ).

The following lemmas (proved in [82]) connect exhaustiveness and precision
with practice. Test generation requires precise SE to make sure that discovered
failure states can be lifted to concrete, fault-inducing test inputs. Conversely,
program proving requires exhaustive SE, s.t. a proof of the absence of assertion
violations in the output SESs corresponds to a proof of the absence of errors in
the inputs.

Lemma 1 (Bug Feasibility in Precise SE). Let δ be a precise SE transition

relation and Cnf
(I,O)

−−−−→δ Cnf ′. If an assertion ϕ ∈ Fml does not hold in some
state o ∈ Cnf ′, it follows that there is an i ∈ Cnf s.t. ϕ does not hold in i.

Lemma 2 (Validity of Assertions Proved in Exhaustive SE). Let δ be an

exhaustive SE transition relation and Cnf
(I,O)

−−−−→δ Cnf ′. If an assertion ϕ ∈ Fml
holds in all states o ∈ Cnf ′, it follows that ϕ holds in all i ∈ Cnf .

The nice feature of these definitions is that they can be turned into a powerful
automatic testing procedure for SE engines, as demonstrated subsequently.

3.3 An Oracle for Automatic Testing of SE Engines

From Definitions 6 and 7, we can derive an automated testing procedure for
precision and exhaustiveness. Listing 2 shows the code of our testing routine
for exhaustiveness; the version for precision works analogously. The algorithm
specializes Definition 6: It only considers a finite number of initial states for
concretization, does not account for state merging (i.e., only considers 1-to-
n transitions), and is not robust against diverging programs (which could be
mitigated by setting a timeout). We consider the most general input SES i (Line
5) for a given program counter test program, i.e., one with an empty path
condition and simple assignments x �→ x for each variable in the set variables,
which typically are the “free” program variables in test program. Then, we
take num runs concrete states σ (Lines 12 to 16), compute {concr (i, σ)} (Lines
22 and 23) and {concr (o, σ)|o ∈ O} (Lines 18 to 20), where O are all output
states produced by the symbolic interpreter (computed in Lines 7 to 10). We
verify that there is an output state o satisfying the condition in Definition 6
by asserting that the former set is a subset of the latter one (Line 25). If this
is not the case, we return the concrete input state used for concretization as
a counterexample (Line 26). If no counterexample was found, we return None
(Line 28).

Using the counterexample, we can examine the bug by comparing the outputs
of the concrete and the symbolic interpreter (the symbolic interpreter produces
only a single path since we start in a concrete state). Consider a simple while

460 D. Steinhöfel

Listing 2 Automatic search for counterexamples to exhaustiveness.

1 def find_exhaustiveness_counterexample(

2 symbolic_interpreter,

3 variables, test_program, num_runs=100):

4 input_state = SymbolicEnvironment(SymbolicStore(

5 {variable: variable.to_z3() for variable in variables}))

6

7 output_states = [

8 leaf.environment

9 for leaf, _ in get_leaves(symbolic_interpreter.execute(

10 test_program, input_state))]

11

12 for _ in range(num_runs):
13 sigma = Store({

14 variable: random_val(variable.type)
15 for variable in variables

16 })

17

18 concr_outputs = ConcrResultSet([

19 concr(output_state, None, sigma)

20 for output_state in output_states])

21

22 concr_input = ConcrResultSet([

23 concr(symbolic_input_state, test_program, sigma)])

24

25 if not concr_input.subset_of(concr_outputs)

26 return sigma # Counterexample found

27

28 return None # No counterexample found

loop decrementing a variable idx by one as long as idx >= x. The exhaustiveness
testing routine, for the baseline interpreter with a loop unrolling threshold of
2, produces an output like {x: -36, idx: 93}. Running the program in the
concrete interpreter yields a final value of −37 � 93 for idx: They are indeed
different! This is because the symbolic interpreter unrolled the loop only two
times, and not the necessary idx − x = 130 times. Note that loop unrolling
is precise, since there are always input states for which two times unrolling is
sufficient. If the lack of exhaustiveness in the baseline interpreter was unexpected,
a technique like [56] which only can detect precision problems would never have
been able to find the problem.

Using the precision check, we discovered two real bugs in the interpreter.
First, we did not consider negative array indices. In Python, t[-i] is equivalent
to t[len(t)-i]. The second bug was more subtle. Integer division in Python is
implemented as a “floor division,” such that 1 // -2 evaluates to -1, because
results are always floored. In Z3 and languages like Java, the result of the division
is 0. We thus had to encode floor division in our mapping to Z3 expressions.

Symbolic Execution 461

This approach has certain advantages over the technique proposed by Kapus
& Cadar [56], apart from also supporting exhaustiveness checking. They distin-
guish runs of the SE engine in single-path and multi-path modes. For single-path,
they uniquely constrain symbolic inputs to chosen concrete inputs (such that
only a single program path is followed). However, they obfuscate these bindings
by encoding them in sufficiently complicated ways to prevent the solver from
inferring those concrete values. This is to prevent the executor from falling back
to concrete execution, such that the actual SE engine would not be tested. For
the multi-path mode, they cannot use the test oracle comparing outputs, and
resort to the crash and “function call chain” oracles only. Our approach does
not require outwitting the solver, and naturally handles the multi-path mode.
Kapus & Cadar automatically generate test programs (program counters) using
the CSmith tool [92]. This should be integrated into our approach; otherwise,
test quality still depends on human judgment.

To the best of our knowledge, the technique we presented is only the second
approach to automatic testing of SE engines, and the first to test exhaustiveness
and apply an output-based oracle to multi-path executions.

4 Techniques

Previously, we described the characteristics of a baseline symbolic interpreter
without much fuzz, and introduced the central notions of exhaustiveness and
precision by which one can judge whether an SE engine is suitable for test gen-
eration or program proving. Now, we shed some light on different design alter-
natives and advanced techniques listed in Table 1. We consider both exhaustive
(loop invariants) and precise techniques (concolic and selective SE) as well as
orthogonal techniques (compositional SE, state merging). More technical details
are discussed in the SE surveys [8,91] (which almost exclusively focus on such
details). In particular, we omit areas such as the symbolic execution of concur-
rent programs and memory models for heap-manipulating programs. Concur-
rency adds to the path explosion problem, since different interleaving executions
have to be considered [67]. The challenge is therefore to reduce the search space.
This can be done, for instance, by restricting the class of checked properties
(e.g., specifically to concurrency bugs [32,89] or regressions [43]), or by excluding
irrelevant interleavings in the absence of potential data races [54,55]. Interesting
topics related to symbolic memory modeling include the integration of Separa-
tion Logic [52,73], and Dynamic Frames [57] and the Theory of Arrays [2,34]
into SE.

However, we think that the mentioned techniques are important design ele-
ments one should know and consider when analyzing and designing a symbolic
executor.

In some cases, we extend the minipy language with new statement types to
support a technique. Then, we also extend the concrete minipy interpreter to
allow for an automatic cross-validation using the method described in Sect. 3.3.

462 D. Steinhöfel

4.1 Advanced Loop Treatment

Any symbolic executor has to ensure termination for programs with loops (and
recursion). Our baseline interpreter implements bounded unrolling. This simple
measure is precise, but not exhaustive; even when using SE for test generation
and not program proving, that can be problematic if a bug hides beyond the
set threshold.

Concolic Execution. Concolic execution (short for “concrete and symbolic
execution,” coined in [77]) gracefully ensures termination. The idea is to let
a concrete input steer the symbolic execution, collecting constraints along the
way. Thus, the symbolic analysis terminates if, and only if, the concrete execution
terminates for the given inputs. This can be implemented in an interpretation-
based or execution-based way; for efficiency, most concolic engines are execution-
based. To extract constraints from the program under test, those engines usually
use runtime [93] or static instrumentation [21,69,77]. Another alternative is to
run the tested program with proxy objects [10].

The baseline symbolic interpreter can be turned into an interpretation-based
concolic executor in only eight lines of code (cf. [84]). We inherit from the base-
line interpreter, and override the method constraint unsatisfiable which is
called, e.g., by the functions executing if statements and, in particular, loops, to
check whether a path is feasible. Instead of directly calling Z3, we first instantiate
the passed constraint to a variable-free formula, using a concrete state passed to
the interpreter’s constructor. Consequently, the choice of which execution branch
to follow is uniquely determined. It is also much faster to check concrete than
symbolic constraints. This can be further optimized: The authors of [15], e.g.,
created an optimized Z3 fork for concrete constraints.

For the find function from Listing 1 and the concrete state setting needle to
2 and haystack to the tuple (1,), the concolic interpreter outputs an SET with a
single, linear path. The constraints in the leaf node are (1) 0 < len(haystack),
(2) haystack[0] � needle, and (3) 1 ≥ len(haystack). Concolic execution,
e.g., as implemented in SAGE [39], negates these constraints one by one, keeping
the constraints occurring before the negated one as they are; the constraints
occurring afterward are not considered. Negating the first constraint yields an
empty haystack; negating the second one, and keeping the first, some tuple
containing needle in its first element. If we negate the third constraint, we
obtain a haystack with more than one element, the first of which is needle.
With the initial input and the second new one, we already obtain full branch
coverage in find.

Symbolic Execution 463

Listing (minipy) 3 Incomplete loop invari-
ant encoding of find (from Listing 1).

1 i = 0

2 assert Inv(needle, haystack, i)

3

4 havoc i

5 assume Inv(needle, haystack, i)

6

7

8 if i < len(haystack):

9 if haystack[i] == needle:

10 break # ???

11

12 i = i + 1

13 assert Inv

14 assume False

15 else:

16 return -1

17

18

19 return i

Listing (minipy) 4 find method
with loop scope.

1i = 0

2assert Inv(i, needle, haystack)

3

4havoc i

5assume Inv(i, needle, haystack)

6

7loop-scope(inv=Inv(i, needle, haystack)):

8if (i < len(haystack)):

9if (haystack[i] == needle):

10break # OK now!

11

12i = i + 1

13continue # Signal next iteration

14

15else:

16return -1

17break # Signal loop left

18

19return i

Loop Invariants. A loop invariant [49] is a summary of a loop’s behavior
that holds at the beginning of any loop iteration. Thus, we can replace a loop
with its invariant, even if we do not know how many times a loop will be exe-
cuted (for recursion, recursive contracts take a similar role). In principle, loop
invariants can be fully precise, overapproximating, or underapproximating [82,
Sect. 5.4.2]. In practice, however, the underapproximating variant is rarely used.
Test case generation, which would be the use case for such a scenario, typically
uses specification-free approaches (e.g., concolic testing) to deal with loops. Fully
precise invariants are ideal, but frequently hard to come up with. Thus, loop
invariants, as used in program proving, are usually sufficiently strong (w.r.t. the
proof goal), but not necessarily precise, abstractions.

Loop invariants can be encoded using assertions, assumptions, and “havoc”
statements. This approach is followed, e.g., by the Boogie verifier [9]. We imple-
mented this by adding two new statement types to minipy: assume expr adds an
assumption expr to the path condition, and havoc x assigns a fresh, symbolic
value to variable x, effectively erasing all knowledge its previous value. Loop
invariants are based on an inductive argument: If a loop invariant holds initially
and is preserved by any loop iteration, is can be used to abstract the loop (use
case).

We apply this idea to the find function (Listing 1). An invariant for the loop
is that i stays positive and does never grow beyond len(haystack), and that
at all previously visited positions, needle was not found (otherwise, we would
have breaked from the loop). We extend the symbolic interpreter to take a list
of predicate definitions that can be used similarly to Boolean-valued functions in
minipy code. A predicate maps its arguments to a formula of type z3.BoolRef.
The definition of Inv(n, h, i) is 0 ≤ i ≤ len(h) ∧ (∀0 ≤ k ≤ i : h[i] � n).

464 D. Steinhöfel

We adapt the body of find to invariant-based SE in Boogie style. Listing 3
shows the result. In Line 2, we assert that the loop invariant Inv holds initially.
Then, to enable reasoning about an arbitrary loop iteration, we havoc all vari-
ables (here only i) that are assigned in the loop body (Line 4). We assume the
validity of the loop invariant (the induction hypothesis) in Line 5. The original
while statement is transformed to an if (Line 8). In Line 13, we show that
the loop invariant is preserved and still holds in the next iteration. If this check
was successful, we assume falsity (Line 14), which renders the path condition
unsatisfiable and causes SE to stop here.

Abrupt completion, such as the break statement in Line 10, complicates
applying this method. Since we eliminated the loop, the break is syntactically
illegal now. Addressing this requires a potentially non-trivial transformation of
the loop body.

A solution to this problem is provided by Steinhöfel and Wasser in [86]. They
propose so-called loop scope statements for invariant-based SE; in Listing 4 you
find the loop scope version of find. One replaces the while loop with an if state-
ment similarly to Listing 3. The if is put this inside a new loop-scope state-
ment, which is passed the loop invariant Inv. Note that the original continue
and break statements are preserved as is; indeed, the original loop body is not
touched at all. Instead, a new continue statement is added as a last statement
of the loop body, and a break statement is added as a last statement of the loop
scope. The additional continue and break statements ensure that the body of
the loop scope always completes abruptly. If it does so because of a continue,
Inv is asserted; if it completes because of a break, the loop scope completes
normally and execution is resumed. If the body completes for any other reason,
the loop scope completes for the same reason.

Our symbolic interpreter does not transform the executed program into loop
scope form on-the-fly as in [86] (which does not conform to our “interpreter
style”). Instead, we implemented a program transformer which automatically
turns loops into loop scope statements before they are symbolically interpreted.
The complete implementation of the transformer spans only 18 lines of code.

4.2 Advanced Call Treatment

Function calls can cause two different kinds of problems in SE: First, there are too
many feasible program paths in large, realistic programs. This leads to immense
SETs in the case of interpretation-based SE, and many long, complicated path
conditions to be processed in the case of concolic testing, both instances of path
explosion. Second, the code of called functions might be unavailable, as in the
case of library functions or system calls. There are two ways to address these
problems. One is to use summaries of function behavior. Those can be manu-
ally specified, but also, in particular for test generation, automatically inferred.
The other one is a non-exhaustive solution which, however, also works in the
rare cases where summarization is not possible (e.g., for cryptographic hash
functions): One concretizes function arguments to concrete values and simply

Symbolic Execution 465

executes the function non-symbolically. Existing constraints on variables not
affected by the execution are retained, and SE can resume.

Compositional SE. Compositional SE works by analyzing functions individ-
ually, as opposed to complete systems. This is accomplished by annotating
functions with summaries, which conjoin “constraints on the function inputs
observed during the exploration of a path (. . .) with constraints observed on
the outputs” [8]. Instead of symbolically executing a called function, we use its
summary to obtain the resulting symbolic state, which can drastically reduce
the overall search space.

Function summaries seem to have arisen independently in the areas of SE-
based test generation and program verification. In the former area, Godefroid [36]
introduces the idea, building on existing similar principles form interprocedural
static analysis (e.g., [72]). As is common in automated test case generation, sum-
maries are expected to be computed automatically; they are means for re-using
previously discovered analysis results. Anand et al. [5] extend the original idea
of function summaries to a demand-driven approach allowing lazy expansion of
incomplete summaries, which further improves the performance of the analysis.

We did not find an explicit reference to the first original work using function
summaries for modular, symbolic execution in the context of program verifica-
tion. However, function summaries are already mentioned as a means for mod-
ularization in the first paper reporting on the KeY project [1], which appeared
in 2000. Usually, function summaries are called “contract” in the verification
context, inspired by the “design-by-contract” methodology [64]. Contracts are
not only used for scalability, but additionally define the expected behavior of
functions.

We integrated the latter variant of compositional SE, based on manually
specified contracts, into our system by implementing a code transformer. The
transformer replaces function calls by assertions of preconditions, havoc state-
ments for assignment targets of function calls, and assumptions of postcondi-
tions. This resembles the “Boogie-style” loop invariant transformation described
in Sect. 4.1, only that we do not verify that a function respects its contract
when calling it. The verification can be done separately, for instance by assert
statements in function bodies. Recall that since we support calls to externally
specified predicates in assert statements, we can also assert properties that are
outside the minipy language.

On-Demand Concretization. Selective SE interleaves concrete and symbolic
execution on-demand. The authors of the S2E tool [23] motivate this with the
observation that there might be critical parts in a system one wants to analyze
symbolically, while not caring so much about other parts. Two directions of
context switches are supported: One can switch from concrete to symbolic (and
back) by making function arguments symbolic and, after returning from the call,
again concrete; and analogously switch from symbolic to concrete (and back).
In our interpreter, one can switch from concrete to symbolic by adding a havoc

466 D. Steinhöfel

statement, which makes a concrete assignment to a variable symbolic again. For
the other direction, we add a concretize statement assigning to a variable a
concrete value satisfying the current path condition by querying Z3.

To mitigate negative effects of concretization on exhaustiveness, S2E marks
concrete execution results as soft. Whenever a subsequent SE branch is made
inactive due to a soft constraint, the system backtracks and chooses a differ-
ent concretization. To increase the effect, constraints are also collected during
concrete execution (as in concolic testing), allowing S2E to infer concretizations
triggering different paths. Note that these optimizations are not possible if the
code of invoked functions is not available, or they cannot be symbolically exe-
cuted for other reasons.

4.3 State Merging to Mitigate Path Explosion

Loop invariants, function summaries, and on-demand concretization are all
instruments for mitigating the path explosion problem of SE. State merging
is another instrument for that purpose. It can be used together with the afore-
mentioned ones, and there are both exhaustive and precise variants. Further-
more, there are (even fully precise) state merging techniques that do not require
additional specification and work fully automatically. The idea is to take mul-
tiple SESs arising from an SE step that caused a case distinction (e.g., guard
evaluation, statements throwing exceptions, polymorphic method calls) to one
summary state. Different merge techniques have been proposed in literature
(e.g., [17,46,61,78]); a framework for (exhaustive) state merging techniques is
presented in [76] and subsumed by the more general SE theory proposed in [82]
and discussed in Sect. 3.2.

A popular state merging technique uses If-Then-Else terms to summarize
symbolic stores (e.g., [46,61,76]). Consider a simple program inverting a number
i if it is negative. It consists of an if statement with guard i < 0 and body
i = i * -1. Two SESs arise from the execution of this statement: ({i < 0}, (i �→

−i)) and ({i ≥ 0}, (i �→ i)). Merging those two states with the If-Then-Else
technique results in (∅, (i �→ ITE (i < 0,−i, i))). The right-hand side in the
symbolic store evaluates to −i if i was initially negative, and to the (nonnegative)
initial value otherwise. Path constraints are merged by forming the disjunction
of the inputs’ constraints, which in this case results in the empty (true) path
condition.

To support state merging with the If-Then-Else technique in our symbolic
interpreter, we add a merge statement to minipy. It is used like a try statement:
One writes “merge:” and puts the statements after which to merge inside the
scope of that statement. Conveniently, Z3 offers If-Then-Else terms, reducing
implementation effort. Otherwise, we could introduce a fresh constant for merged
values instead and define its value(s) in the path condition.

A fact not usually discussed in literature is that If-Then-Else-based state
merging can be imprecise if the path constraints in merged states are not mutu-
ally exclusive [83]. This can happen, e.g., if one tries to merge different states

Symbolic Execution 467

arising from unrolling a loop. An alternative are guarded value summaries as pro-
posed by [78]. If we allow overlapping guards, fully precise loop state merging is
possible.

Finally, one should consider that state merging generally increases the com-
plexity of SESs and thus the solver load, which has to be weighed up against the
benefits from saved symbolic branches. In our experience, state merging pays off
if one merges locally (i.e., the programs inside the merge statements should be
small) and early in SE. Kuznetsov et al. [61] systematically discuss this problem
and devise a metric by which one can automatically decide whether or not to
merge.

5 Applications

The strength of SE lies in its ability to deterministically explore many program
paths with high precision. This is in contrast to fuzzing [65], including language-
based [50,51] and coverage-based fuzzing [14], where it always depends on chance
and time whether a program path is reached. Only the integration of SE into
whitebox fuzzing approaches [38,39] enables fuzzers to enforce coverage of specific
paths. On the other side of the spectrum are static analysis techniques such as
Abstract Interpretation (AI) [25]. AI is fully automatic, but designed to operate
on an abstract domain, which is why full precision is generally out of reach.

While one could, in principle, regard SE as a specialization of AI, there are
striking differences. Amadini et al. [4] argue that SE is essentially a dynamic
technique, as it executes programs in a forward manner and generally under-
approximates the set of reachable states (unless supported by additional, costly
specifications). Intrinsically static techniques, on the other hand, produce (pos-
sibly false) alarms and generally focus on smaller code regions. In their work, the
authors provide a detailed discussion on the relation between the two techniques.

Consequently, SE is popular in the area of test generation, where high preci-
sion is vital. Yet, it has been successfully applied in program proving. Here, its
precise, dynamic nature is a problem: When one needs abstraction, especially
in the case of loops or recursive methods with symbolic guards or arguments,
manual specifications are required. As pointed out in [2], specifications are the
“new” bottleneck of SE-based program proving. On the other hand, SE-based
proofs can address strong functional properties, while abstract interpreters like
ASTRÉE [26] address coarser, general properties (e.g., division by zero or data
races).

5.1 Test Generation

Precise SE is a strong tool for automatically generating high-coverage test cases.
Frequently, the SE variant used to that end is referred to as Dynamic Symbolic
Execution (DSE). Baldoni et al. [8] define this term as an interleaving of concrete
and symbolic execution. Thus, DSE subsumes concolic and selective SE, which

468 D. Steinhöfel

we discussed in Sects. 4.1 and 4.2. Although each concrete input used for con-
colic execution corresponds to exactly one symbolic path, concolic SE still suffers
from path explosion. A symbolic path is associated to a set of atomic path con-
straints; one has to pick and negate one constraint, which may in turn result in a
new path explored and new constraints to be negated. DART [38], e.g., chooses
a depth-first strategy; SAGE [40], a tool which “has saved Microsoft millions of
dollars” [40], uses coverage information to rank new inputs generated from con-
straint negation. As in the case of mutation-based graybox fuzzers like AFL3, the
quality of the generated tests depends on the chosen initial input (which explains
why concolic test generators are frequently referred to as whitebox fuzzers [8]). If
this input, for example, is rejected as invalid by the program (e.g., by an input
parser), it may take many rounds of negation and re-exploration before the actual
program logic is reached. One way to address the problem of complex, structured
input strings is to integrate language specifications with whitebox fuzzing [37].

SAGE’s use of coverage information to rank candidate inputs can already be
seen as an integration of classic graybox fuzzing à la AFL. Driller [87] is a hybrid
fuzzer using selective SE to identify different program compartments, while inex-
pensive mutation-based fuzzing explores paths within those compartments. In
the QSYM [93] and FUZZOLIC [15] systems, the concolic component runs in
parallel with a coverage-guided fuzzer. Both systems loosen the usual sound-
ness requirements of SE: QSYM by “optimistic” solving (ignoring some path
constraints), and FUZZOLIC by approximate solving using input mutations.
For their benchmarks, the respective authors showed that QSYM outperforms
Driller in terms of generated test cases per time and achieved code coverage, and
FUZZOLIC outperforms QSYM (but less clearly). Both QSYM and FUZZOLIC
scale to real-world programs, such as libpng and ffmpeg, and QSYM found 13
new bugs in programs that have been heavily fuzzed by Google’s OSS-Fuzz4.

Interpretation-based SE engines can also be used for (unit) test generation.
The KeYTestGen [2,29] tool, for example, executes programs with bounded loop
unrolling, and obtains inputs satisfying the path conditions of the leaves in the
resulting SET. With the right settings, the tool can achieve full MC/DC cov-
erage [47] of the program under test [2]. As can be expected, however, this can
lead to an explosion of the analysis costs and numbers of generated test cases.

5.2 Program Proving

The goal of program proving is not to demonstrate the presence, but the absence
of bugs, for any possible input. In our impression, SE is less popular in program
proving than in test generation. One possible reason might be that exhaustive
SE, as required for program proofs (cf. Sect. 3.2), generally needs auxiliary speci-
fications. Yet, program provers based on Weakest Precondition (WP) [28] reason-
ing, such as Boogie [9] and Frama-C [27], are closely related. A WP is a formula

3 https://github.com/google/AFL.
4 https://github.com/google/oss-fuzz.

https://github.com/google/AFL
https://github.com/google/oss-fuzz

Symbolic Execution 469

implied by any precondition strong enough to demonstrate that a program sat-
isfies a given postcondition. Traditionally, WP-based systems compute WPs by
executing a program starting from the leaves of its Control Flow Graph (CFG),
specializing the postcondition in each step. SE, in turn, computes WPs by for-
ward execution. Both approaches require specifications of loops and recursive
functions.

To our knowledge, there are two actively maintained SE-based program
provers. VeriFast [52] is a verifier for single- and multithreaded C and Java
programs specified with separation logic assertions. The tool has been used in
four industrial case studies [68] to verify the absence of general errors such as
memory leaks. The authors discovered bugs in each case study. KeY [2] is a pro-
gram prover for single-threaded Java programs specified in the Java Modeling
Language. Several sorting algorithms have been verified using KeY: Counting
sort and Radix sort [42], the TimSort hybrid sorting algorithm [41], and Dual
Pivot QuickSort [11]. For TimSort and Dual Pivot QuickSort, the actual imple-
mentations in the OpenJDK have been verified; TimSort (which is also used in
Android and Python) is OpenJDK’s default sorting algorithm, and Dual Pivot
QuickSort the default for primitive arrays.

The TimSort case study gained particular attention. During the verification,
the authors of [41] discovered a bug present in the TimSort implementations from
Android’s and Sun’s, and the OpenJDK, as well as in the original Python version.
When one asks the (unfixed) algorithm to sort an array with sufficiently many
segments of consecutive elements, it raises an ArrayOutOfBoundsException.

Dual Pivot QuickSort was successfully proven correct; however, a loop invari-
ant specified in natural language was shown to be wrong.

Testing tools like QSYM and FUZZOLIC use “unsound” techniques to find
more bugs faster. SE-based program proving can go the other way and integrate
abstraction techniques inspired by Abstract Interpretation to increase automa-
tion. In [2, Chapter 6], several abstract domains for SE of Java programs, espe-
cially for heaps and arrays, are introduced. This approach retains full precision
in the absence of loops or recursion. Should it be necessary, abstraction is applied
automatically to find, e.g., the fixed point of a loop. However, only the changed
portion of the state inside the loop is abstracted. Integrating SE with reasoning
in abstract domains thus yields a program proving approach with the potential
of full automation and increased precision compared to Abstract Interpretation.
Unfortunately, to our knowledge, there exists no mature implementation of this
approach.

5.3 Symbolic Debugging

Several works independently introducing SE [16,19,58] were motivated by debug-
ging. Indeed, symbolic debugging has several advantages: (1) Dynamic debugging
requires setting up a failure-inducing state, which can be nontrivial especially if
one aims to debug individual functions deeply nested in the program. Using SE,
one can take an over-approximating symbolic state. (2) The SE variant we call

470 D. Steinhöfel

transparent, which maintains full SETs at the granularity of individual state-
ments, has the potential to implement an omniscient debugger, which is hard
to implement efficiently for dynamic debugging [71]. This enables programmers
to arbitrarily step back and forth during debugging as needed.

To implement a symbolic debugger, one does not necessarily need an exhaus-
tive SE engine. However, concolic approaches are unsuitable, since they do not
construct SETs and might not have a notion of symbolic stores. Thus, in our
opinion, an interpretation-based approach is required to implement symbolic
debugging.

The first implementations of symbolic debuggers were independently devel-
oped in 2010, in the context of the VeriFast and KeY program verifiers [44,53].
In [48], an improved implementation of KeY’s Symbolic Execution Debugger
(SED) was presented. Both tools allow forward and backward steps in execution
paths and inspection of path constraints and symbolic memory. The VeriFast
debugger supports the analysis of a single error path in the SET, while the SED
shows full SETs. This is also motivated by different application scenarios: Veri-
Fast offers debugging facilities for failed proof attempts, while the SED inventors
explicitly address the scenario of debugging in absence of a proof attempt. The
SED supports some extended features like visualization of different heap con-
figurations or highlighting of subformulas in postconditions whose verification
failed. In VeriFast, heaps are represented with separation logic assertions and
not visualized.

Our minipy symbolic interpreter supports a limited degree of symbolic debug-
ging. It visualizes SETs and explicitly represents path constraints and symbolic
stores in nodes. Leaves are highlighted using the following color scheme: Red
leaves represent raised exceptions (including failed assertions), green leaves rep-
resent nodes with unsatisfiable path conditions, and blue leaves all other cases.

5.4 Model Checking of Abstract Programs

Model checking usually abstracts the program under test into a graph-like struc-
ture and exhaustively searches this model to show the absence of (mostly generic)
errors. Although the areas of model checking and formal software verification
(including SE-based program proving) are slowly converging [79], one would usu-
ally not directly relate SE and model checking. Recently, however, a SE-based
technique named Abstract Execution (AE) was proposed [82,85], which allows
for a rigorous analysis of abstract program models. An abstract program model is
a program containing placeholder statements or expressions. These placeholders
represent arbitrary statements or expressions conforming to the placeholder’s
specifications. For example, one can restrict which locations a placeholder can
read from or write to, define under which conditions instantiations complete
abruptly, and impose postconditions for different (abrupt or normal comple-
tion) cases. AE is not intended to scale to big programs. Rather, it is used to
model program verification problems that universally quantify over statements
or expressions.

Symbolic Execution 471

An example are program transformations, represented by pairs of abstract
programs. In [82], we modeled nine Java refactoring techniques, and extracted
preconditions for semantics-preserving transformations. Usually, the require-
ments for a behavior-preserving refactoring application are incompletely
described in literature. A manual extraction of test cases from the models
unveiled several bugs in the Extract Method refactoring implementations in
IntelliJ IDEA and Eclipse. Our reports have been assigned “major” or “nor-
mal” priority and lead to bug fixes.5 Other applications of AE include cost
analysis of program transformations [3], parallelization of sequential code [45],
the delta-based verification of software product families [75], and “correct-by-
construction” program development [90].

We implemented AE within the KeY system. One noteworthy feature of KeY
is that it syntactically represents state changes within its program logic. This
made it easy to add abstract updates representing the abstract state changes
caused by placeholder statements or expressions. Indeed, we discovered that
it is not so straightforward to implement AE, especially when using dynamic
frames to represent underspecified memory regions, on top of our minipy symbolic
interpreter.

AE is a noteworthy showcase of interpretation-based, exhaustive SE: It does
not need to scale to large programs, since the goal is not program verification but,
e.g., the verification of transformations. Thus, it covers a niche that cannot be
adequately addressed by concolic testing or fuzzing, which can only ever consider
pairs of concrete programs resulting from the application of a transformation.

6 Future Perspectives

The success of modern automated testing techniques (most prominently
coverage-guided mutation-based fuzzers) cannot be denied. When writing this
sentence, Google’s oss-fuzz had discovered 34,313 bugs in 500 open source
projects. The 30 bugs in JavaScript engines discovered by the LangFuzz tool [51]
translate to about 50,000 US$ in bug bounties. There are two key advantages
of blackbox or graybox techniques over systematic testing approaches like SE:
(1) They require no or only little code instrumentation and are applicable to
any program for which a compiler or interpreter exists. (2) They are fast, with
the only threshold being the execution time of the program under test. Consid-
ering Item (1), SE either crashes or outputs useless results if a program uses
an unsupported statement or expression type. For that reason, many engines
operate on Intermediate Languages (ILs) like LLVM, which commonly comprise
a few dozen different instructions, while CPU instruction sets can easily reach
hundreds to thousands [69]. For this paper, we substantially restricted the fea-
tures of the minipy language to reduce the implementation effort. Not to mention
that implementing a symbolic executor on source level for a language like Python

5 For example, IDEA-271736: “‘Extract Method’ of ‘if-else if’ fragment with multi-
ple returns yields uncompilable code,” https://youtrack.jetbrains.com/issue/IDEA-
271736.

https://youtrack.jetbrains.com/issue/IDEA-271736
https://youtrack.jetbrains.com/issue/IDEA-271736

472 D. Steinhöfel

with many high-level (e.g., functional and object-oriented) abstractions is highly
nontrivial.

Let us assume that Item (1) has been adequately addressed (e.g., using a
stable IL, or, as in the case of the SymQEMU system [70], a CPU emulation
framework). Addressing the question of speed (Item (2)), it is tempting to say—if
you are a supporter of SE—that analysis speed does not matter so much, since SE
covers program paths systematically, while fuzzers rely mostly on chance. Instead
of the effectiveness of a verification strategy, i.e., its ability to inspire a maxi-
mum degree of confidence in the correctness of a program, Böhme and Paul [13]
suggest to put efficiency into the focus. In their words, an efficient verification
technique (1) generates a sufficiently effective test suite in minimal time or (2)
generates the most effective test suite in the given time budget. They address the
efficient verification problem with a probabilistic analysis. Assume that the cost
associated to the generation of one input by a random input generator R is 1. We
compare R to a systematic input generator S (e.g., a concolic tester) sampling
an input with cost c. Böhme and Paul prove that, for a desired confidence x, the
time taken by S to sample an input must not exceed (ex − ex2)−1 times the time
taken by R to sample an input. Otherwise, R is expected to achieve confidence x
earlier. If R, e.g., needs 10 ms to generate one test input, and we aim to establish
that a program works correctly for 90% of its inputs, then S must take less than
41 ms to come up with an input [13]. In the face of this observation, we must
ask ourselves the question: Is it worth investing in SE techniques, or should we
simply concentrate on improving randomized automated testing approaches?

Subsequently, we discuss scenarios where SE can assist or outperform ran-
domized approaches, demonstrating that it has a place in future software verifi-
cation.

Fast Sampling. As pointed out by Böhme and Paul, efficiency is key for a veri-
fication approach to be practically adopted. Recent work on compilation-based
SE [69,70] and “fuzzy” constraint solving [15,93] address the execution and
constraint solving components, which are the main bottlenecks of SE. Compro-
mising soundness is justified if the analysis discovers bugs fast, and stays within
the critical bound from [13].

Hybrid Fuzzing Tools like DRILLER [87], SAGE [40] and QSYM [93] combining
SE with coverage-guided fuzzing showed promising results. In their paper [13],
Böhme and Paul propose a hybrid approach switching from a random to a sys-
tematic tester when the expected time estimate of the random tester to detect
the next partition exceeds a threshold. They proved, and demonstrated in sim-
ulations, that the hybrid tester is at least as efficient as the most efficient com-
bination of the elementary testers. Finally, Bundt et al. [18] showed in a recent
measurement study that “Hybrid fuzzers such as QSYM that integrate concolic
execution to solve path constraints clearly outperform approaches that adopt a
brute-force strategy.”

Symbolic Execution 473

Verification of Critical Routines. Coverage alone would not have sufficed to
unveil the TimSort bug [41]: How should a concolic (not to mention a random)
tester come up with an array of 67,108,864 elements with sufficiently many short
consecutive sections to trigger the “out of bounds” exception in a method that
has been extensively used in practice for years? Interpretation-based, exhaustive
SE is still one of the best techniques to ensure that there is really no algorithmic
bug left even after heavy testing. Yet, we think that this will always require
much person-power: Abstraction techniques can help exhaustive SE to get more
automatic. This, however, comes at the cost of precision, such that ground is lost
to competing, (more) automatic static analysis techniques. The golden bullet of
fully precise (loop) summarization will probably be forever out of reach for realis-
tic programs. Thus, we think that the program proving community should invest
into better tooling for writing and fixing specifications, as well as into communi-
cating idioms and best practices for verification-friendly program development,
than to develop the next incomplete loop invariant inference approach.

SE for Model Checking. One way to remove the scalability issues of, in partic-
ular, interpretation-based SE, is to focus on small, yet meaningful, problems.
The work on Abstract Execution is such an example. AE builds a modeling lan-
guage on top of Java to express, e.g., program transformations. Using strong
contracts with a variable degree of abstraction, practically relevant correctness
properties of transformations are derived and proven correct. There are two ways
of applying these results. One is to prove that the derived properties hold for
actual transformations. This means that one has to show that an input to, e.g.,
a refactoring technique, satisfies a set of non-trivial preconditions, which can
require coming up with strong loop invariants. Instead, we suggest to automati-
cally derive test cases or assertions from the abstract model that are tailored to
the transformed, concrete program. This brings together strong “once-and-for-
all” results obtained from a heavyweight technique requiring annotations with
targeted automatic testing of realistic programs: The best of two worlds.

7 Conclusion

Symbolic Execution is a popular, precise program exploration technique that
can be lifted to an exhaustive approach to program proving. The SE community
is split into two rarely interacting sub-communities: One dedicated to finding
bugs, and one aiming to prove their absence. In this paper, we attempted an
application-agnostic analysis of the foundations of SE. We provided a framework
for classifying symbolic engines, and showed how to design and extend a symbolic
interpreter. For illustrative purposes and to foster a deeper understanding, we
implemented most aspects inside a new SE framework for a Python subset. We
recapitulated a semantics for SE applying to both test generation and program
proving, and derived from it a novel automated testing approach for SE engines.
Finally, we elaborated on chosen applications of SE, ranging from test generation
over symbolic debugging to model checking of abstract programs, and discussed
the role of SE in future software verification.

474 D. Steinhöfel

The digital companion volume including our implementations is available at

https://rindphi.github.io/se-book-festschrift-rh

References

1. Ahrendt, W., et al.: The approach: integrating object oriented design and formal
verification. In: Ojeda-Aciego, M., de Guzmán, I.P., Brewka, G., Moniz Pereira,
L. (eds.) JELIA 2000. LNCS (LNAI), vol. 1919, pp. 21–36. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-40006-0 3

2. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification - The KeY Book. LNCS, vol. 10001. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-49812-6

3. Albert, E., Hähnle, R., Merayo, A., Steinhöfel, D.: Certified abstract cost analysis.
In: FASE 2021. LNCS, vol. 12649, pp. 24–45. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-71500-7 2

4. Amadini, R., Gange, G., Schachte, P., Søndergaard, H., Stuckey, P.J.: Abstract
interpretation, symbolic execution and constraints. In: de Boer, F.S., Mauro, J.
(eds.) Recent Developments in the Design and Implementation of Programming
Languages, Gabbrielli’s Festschrift. OASIcs, Bologna, Italy, 27 November 2020,
vol. 86, pp. 7:1–7:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020).
https://doi.org/10.4230/OASIcs.Gabbrielli.7

5. Anand, S., Godefroid, P., Tillmann, N.: Demand-driven compositional symbolic
execution. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol.
4963, pp. 367–381. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78800-3 28

6. Anand, S., Pasareanu, C.S., Visser, W.: Symbolic execution with abstraction. Int. J.
Softw. Tools Technol. Transf. 11(1), 53–67 (2009). https://doi.org/10.1007/s10009-
008-0090-1

7. Assaraf, A.: This is what your developers are doing 75% of the time, and this is
the cost you pay (2015). https://tinyurl.com/coralogix. Accessed 08 Oct 2021

8. Baldoni, R., Coppa, E., D’Elia, D.C., Demetrescu, C., Finocchi, I.: A survey of sym-
bolic execution techniques. ACM Comput. Surv. 51(3), 50:1–50:39 (2018). https://
doi.org/10.1145/3182657

9. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006). https://doi.org/10.1007/11804192 17

10. Barsotti, D., Bordese, A.M., Hayes, T.: PEF: python error finder. In: Selected
Papers of the XLIII Latin American Computer Conference (CLEI). Electronic
Notes in Theoretical Computer Science, vol. 339, pp. 21–41. Elsevier (2017).
https://doi.org/10.1016/j.entcs.2018.06.003

11. Beckert, B., Schiffl, J., Schmitt, P.H., Ulbrich, M.: Proving JDK’s dual pivot quick-
sort correct. In: Paskevich, A., Wies, T. (eds.) VSTTE 2017. LNCS, vol. 10712,
pp. 35–48. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72308-2 3

12. de Boer, F.S., Bonsangue, M.: On the nature of symbolic execution. In: ter Beek,
M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019. LNCS, vol. 11800, pp. 64–80.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30942-8 6

https://rindphi.github.io/se-book-festschrift-rh
https://doi.org/10.1007/3-540-40006-0_3
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-030-71500-7_2
https://doi.org/10.1007/978-3-030-71500-7_2
https://doi.org/10.4230/OASIcs.Gabbrielli.7
https://doi.org/10.1007/978-3-540-78800-3_28
https://doi.org/10.1007/978-3-540-78800-3_28
https://doi.org/10.1007/s10009-008-0090-1
https://doi.org/10.1007/s10009-008-0090-1
https://tinyurl.com/coralogix
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3182657
https://doi.org/10.1007/11804192_17
https://doi.org/10.1016/j.entcs.2018.06.003
https://doi.org/10.1007/978-3-319-72308-2_3
https://doi.org/10.1007/978-3-030-30942-8_6

Symbolic Execution 475

13. Böhme, M., Paul, S.: A probabilistic analysis of the efficiency of automated software
testing. IEEE Trans. Softw. Eng. 42(4), 345–360 (2016). https://doi.org/10.1109/
TSE.2015.2487274

14. Böhme, M., Pham, V., Roychoudhury, A.: Coverage-based greybox fuzzing as
Markov chain. IEEE Trans. Softw. Eng. 45(5), 489–506 (2019). https://doi.org/
10.1109/TSE.2017.2785841

15. Borzacchiello, L., Coppa, E., Demetrescu, C.: Fuzzing symbolic expressions.
In: Proceedings of the 43rd IEEE/ACM International Conference on Software
Engineering (ICSE) 2021, pp. 711–722. IEEE (2021). https://doi.org/10.1109/
ICSE43902.2021.00071

16. Boyer, R.S., Elspas, B., Levitt, K.N.: SELECT - a formal system for testing and
debugging programs by symbolic execution. In: Proceedings of the International
Conference on Reliable Software, pp. 234–245. ACM, New York (1975)

17. Bubel, R., Hähnle, R., Weiß, B.: Abstract interpretation of symbolic execution with
explicit state updates. In: de Boer, F.S., Bonsangue, M.M., Madelaine, E. (eds.)
FMCO 2008. LNCS, vol. 5751, pp. 247–277. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-04167-9 13

18. Bundt, J., Fasano, A., Dolan-Gavitt, B., Robertson, W., Leek, T.: Evaluating syn-
thetic bugs. In: Proceedings of the ACM Asia Conference on Computer and Com-
munications Security (ASIACCS) (2021, to appear)

19. Burstall, R.M.: Program proving as hand simulation with a little induction. In:
Rosenfeld, J.L. (ed.) Proceedings of the 6th IFIP Congress 1974 on Information
Processing, pp. 308–312. North-Holland (1974)

20. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Draves, R., van Renesse,
R. (eds.) Proceedings of the 8th USENIX Symposium on Operating Systems Design
and Implementation, OSDI, pp. 209–224. USENIX Association (2008). http://
www.usenix.org/events/osdi08/tech/full papers/cadar/cadar.pdf

21. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: automat-
ically generating inputs of death. In: Juels, A., Wright, R.N., di Vimercati, S.D.C.
(eds.) 13th ACM Conference on Computer and Communications Security, (CCS),
pp. 322–335. ACM (2006). https://doi.org/10.1145/1180405.1180445

22. Cadar, C., Sen, K.: Symbolic execution for software testing: three decades later.
Commun. ACM 56(2), 82–90 (2013)

23. Chipounov, V., Kuznetsov, V., Candea, G.: S2E: a platform for in-vivo multi-
path analysis of software systems. In: Gupta, R., Mowry, T.C. (eds.) Proceedings
of the 16th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pp. 265–278. ACM (2011). https://
doi.org/10.1145/1950365.1950396

24. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
haskell programs. In: Odersky, M., Wadler, P. (eds.) Proceedings of the Fifth ACM
SIGPLAN International Conference on Functional Programming (ICFP), pp. 268–
279. ACM (2000). https://doi.org/10.1145/351240.351266

25. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Graham,
R.M., Harrison, M.A., Sethi, R. (eds.) Conference Record of the Fourth ACM
Symposium on Principles of Programming Languages (POPL), pp. 238–252. ACM
(1977). https://doi.org/10.1145/512950.512973

26. Cousot, P., et al.: The ASTREÉ analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS,
vol. 3444, pp. 21–30. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-
540-31987-0 3

https://doi.org/10.1109/TSE.2015.2487274
https://doi.org/10.1109/TSE.2015.2487274
https://doi.org/10.1109/TSE.2017.2785841
https://doi.org/10.1109/TSE.2017.2785841
https://doi.org/10.1109/ICSE43902.2021.00071
https://doi.org/10.1109/ICSE43902.2021.00071
https://doi.org/10.1007/978-3-642-04167-9_13
https://doi.org/10.1007/978-3-642-04167-9_13
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://doi.org/10.1145/1180405.1180445
https://doi.org/10.1145/1950365.1950396
https://doi.org/10.1145/1950365.1950396
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/512950.512973
https://doi.org/10.1007/978-3-540-31987-0_3
https://doi.org/10.1007/978-3-540-31987-0_3

476 D. Steinhöfel

27. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-C. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012.
LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33826-7 16

28. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Commun. ACM 18(8), 453–457 (1975). https://doi.org/10.1145/360933.
360975

29. Engel, C., Hähnle, R.: Generating unit tests from formal proofs. In: Gurevich, Y.,
Meyer, B. (eds.) TAP 2007. LNCS, vol. 4454, pp. 169–188. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73770-4 10

30. Engler, D.R., Dunbar, D.: Under-constrained execution: making automatic code
destruction easy and scalable. In: Rosenblum, D.S., Elbaum, S.G. (eds.) Proceed-
ings of the ACM/SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA), pp. 1–4. ACM (2007). https://doi.org/10.1145/1273463.1273464

31. Ernst, M.D., et al.: The Daikon system for dynamic detection of likely invari-
ants. Sci. Comput. Program. 69(1–3), 35–45 (2007). https://doi.org/10.1016/j.
scico.2007.01.015

32. Farzan, A., Holzer, A., Razavi, N., Veith, H.: Con2colic testing. In: Meyer, B.,
Baresi, L., Mezini, M. (eds.) Proceedings of the Joint Meeting of the European Soft-
ware Engineering Conference and the ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering (ESEC/FSE 2013), pp. 37–47. ACM (2013). https://
doi.org/10.1145/2491411.2491453

33. Furia, C.A., Meyer, B.: Inferring loop invariants using postconditions. In: Blass,
A., Dershowitz, N., Reisig, W. (eds.) Fields of Logic and Computation. LNCS,
vol. 6300, pp. 277–300. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-15025-8 15

34. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 519–531. Springer, Hei-
delberg (2007). https://doi.org/10.1007/978-3-540-73368-3 52

35. Gibbons, J., Wu, N.: Folding domain-specific languages: deep and shallow embed-
dings (functional pearl). In: Jeuring, J., Chakravarty, M.M.T. (eds.) Proceedings
of the 19th ACM SIGPLAN International Conference on Functional Programming,
pp. 339–347. ACM (2014). https://doi.org/10.1145/2628136.2628138

36. Godefroid, P.: Compositional dynamic test generation. In: Hofmann, M., Felleisen,
M. (eds.) Proceedings of the 34th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (POPL), pp. 47–54. ACM (2007). https://doi.
org/10.1145/1190216.1190226

37. Godefroid, P., Kiezun, A., Levin, M.Y.: Grammar-based whitebox fuzzing. In:
Gupta, R., Amarasinghe, S.P. (eds.) Proceedings of the ACM SIGPLAN 2008
Conference on Programming Language Design and Implementation (PLDI), pp.
206–215. ACM (2008). https://doi.org/10.1145/1375581.1375607

38. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
In: Sarkar, V., Hall, M.W. (eds.) Proceedings of the ACM SIGPLAN 2005 Confer-
ence on Programming Language Design and Implementation, Chicago, IL, USA,
12–15 June 2005, pp. 213–223. ACM (2005). https://doi.org/10.1145/1065010.
1065036

39. Godefroid, P., Levin, M.Y., Molnar, D.A.: Automated whitebox fuzz testing. In:
Proceedings of the Network and Distributed System Security Symposium, (NDSS)
2008. The Internet Society (2008). https://www.ndss-symposium.org/ndss2008/
automated-whitebox-fuzz-testing/

https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1145/360933.360975
https://doi.org/10.1145/360933.360975
https://doi.org/10.1007/978-3-540-73770-4_10
https://doi.org/10.1145/1273463.1273464
https://doi.org/10.1016/j.scico.2007.01.015
https://doi.org/10.1016/j.scico.2007.01.015
https://doi.org/10.1145/2491411.2491453
https://doi.org/10.1145/2491411.2491453
https://doi.org/10.1007/978-3-642-15025-8_15
https://doi.org/10.1007/978-3-642-15025-8_15
https://doi.org/10.1007/978-3-540-73368-3_52
https://doi.org/10.1145/2628136.2628138
https://doi.org/10.1145/1190216.1190226
https://doi.org/10.1145/1190216.1190226
https://doi.org/10.1145/1375581.1375607
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/1065010.1065036
https://www.ndss-symposium.org/ndss2008/automated-whitebox-fuzz-testing/
https://www.ndss-symposium.org/ndss2008/automated-whitebox-fuzz-testing/

Symbolic Execution 477

40. Godefroid, P., Levin, M.Y., Molnar, D.A.: SAGE: whitebox fuzzing for security
testing. Commun. ACM 55(3), 40–44 (2012). https://doi.org/10.1145/2093548.
2093564

41. de Gouw, S., de Boer, F.S., Bubel, R., Hähnle, R., Rot, J., Steinhöfel, D.: Verifying
OpenJDK’s sort method for generic collections. J. Autom. Reason. 62(1), 93–126
(2017). https://doi.org/10.1007/s10817-017-9426-4

42. de Gouw, S., de Boer, F., Rot, J.: Proof pearl: the KeY to correct and stable
sorting. J. Autom. Reason. 53(2), 129–139 (2014). https://doi.org/10.1007/s10817-
013-9300-y

43. Guo, S., Kusano, M., Wang, C.: Conc-iSE: incremental symbolic execution of con-
current software. In: Lo, D., Apel, S., Khurshid, S. (eds.) Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering (ASE)
2016, pp. 531–542. ACM (2016). https://doi.org/10.1145/2970276.2970332

44. Hähnle, R., Baum, M., Bubel, R., Rothe, M.: A visual interactive debugger based
on symbolic execution. In: Pecheur, C., Andrews, J., Nitto, E.D. (eds.) Proceed-
ings of the 25th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pp. 143–146. ACM (2010). https://doi.org/10.1145/1858996.
1859022

45. Hähnle, R., Heydari Tabar, A., Mazaheri, A., Norouzi, M., Steinhöfel, D., Wolf,
F.: Safer parallelization. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS,
vol. 12477, pp. 117–137. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-61470-6 8

46. Hansen, T., Schachte, P., Søndergaard, H.: State joining and splitting for the sym-
bolic execution of binaries. In: Bensalem, S., Peled, D.A. (eds.) RV 2009. LNCS,
vol. 5779, pp. 76–92. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-04694-0 6

47. Hayhurst, K.J., Veerhusen, D.S., Chilenski, J.J., Rierson, L.K.: A practical tuto-
rial on modified condition/decision coverage. Technical report, TM-2001-0057789,
NASA Technical Reports Server, May 2001. https://ntrs.nasa.gov/citations/
20010057789

48. Hentschel, M., Bubel, R., Hähnle, R.: Symbolic execution debugger (SED). In:
Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 255–262.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-3 21

49. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

50. Hodován, R., Kiss, Á., Gyimóthy, T.: Grammarinator: a grammar-based open
source fuzzer. In: Prasetya, W., Vos, T.E.J., Getir, S. (eds.) Proceedings of the 9th
ACM SIGSOFT International Workshop on Automating TEST Case Design, Selec-
tion, and Evaluation (A-TEST@ESEC/SIGSOFT FSE), pp. 45–48. ACM (2018).
https://doi.org/10.1145/3278186.3278193

51. Holler, C., Herzig, K., Zeller, A.: Fuzzing with code fragments. In: Kohno, T. (ed.)
Proceedings of the 21th USENIX Security Symposium. pp. 445–458. USENIX Asso-
ciation (2012). https://www.usenix.org/conference/usenixsecurity12/technical-
sessions/presentation/holler

52. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41–55. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5 4

https://doi.org/10.1145/2093548.2093564
https://doi.org/10.1145/2093548.2093564
https://doi.org/10.1007/s10817-017-9426-4
https://doi.org/10.1007/s10817-013-9300-y
https://doi.org/10.1007/s10817-013-9300-y
https://doi.org/10.1145/2970276.2970332
https://doi.org/10.1145/1858996.1859022
https://doi.org/10.1145/1858996.1859022
https://doi.org/10.1007/978-3-030-61470-6_8
https://doi.org/10.1007/978-3-030-61470-6_8
https://doi.org/10.1007/978-3-642-04694-0_6
https://doi.org/10.1007/978-3-642-04694-0_6
https://ntrs.nasa.gov/citations/20010057789
https://ntrs.nasa.gov/citations/20010057789
https://doi.org/10.1007/978-3-319-11164-3_21
https://doi.org/10.1145/3278186.3278193
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/holler
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/holler
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4

478 D. Steinhöfel

53. Jacobs, B., Smans, J., Piessens, F.: A quick tour of the VeriFast program verifier.
In: Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 304–311. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17164-2 21

54. Kähkönen, K., Saarikivi, O., Heljanko, K.: Using unfoldings in automated testing of
multithreaded programs. In: Goedicke, M., Menzies, T., Saeki, M. (eds.) Proceed-
ings of the IEEE/ACM International Conference on Automated Software Engi-
neering (ASE 2012), pp. 150–159. ACM (2012). https://doi.org/10.1145/2351676.
2351698

55. Kamburjan, E., Scaletta, M., Rollshausen, N.: Crowbar: behavioral symbolic exe-
cution for deductive verification of active objects. CoRR abs/2102.10127 (2021)

56. Kapus, T., Cadar, C.: Automatic testing of symbolic execution engines via program
generation and differential testing. In: Rosu, G., Penta, M.D., Nguyen, T.N. (eds.)
Proceedings of the 32nd IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE), pp. 590–600. IEEE Computer Society (2017). https://doi.
org/10.1109/ASE.2017.8115669

57. Kassios, I.T.: The dynamic frames theory. Formal Asp. Comput. 23(3) (2011).
https://doi.org/10.1007/s00165-010-0152-5

58. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976). https://doi.org/10.1145/360248.360252

59. Kneuper, R.: Symbolic execution: a semantic approach. Sci. Comput. Program.
16(3), 207–249 (1991). https://doi.org/10.1016/0167-6423(91)90008-L

60. Kovács, L., Voronkov, A.: Finding loop invariants for programs over arrays using
a theorem prover. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol.
5503, pp. 470–485. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-00593-0 33

61. Kuznetsov, V., Kinder, J., Bucur, S., Candea, G.: Efficient state merging in sym-
bolic execution. In: Vitek, J., Lin, H., Tip, F. (eds.) Proceedings of the ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI),
pp. 193–204. ACM (2012). https://doi.org/10.1145/2254064.2254088

62. Lucanu, D., Rusu, V., Arusoaie, A.: A generic framework for symbolic execution:
a coinductive approach. J. Symb. Comput. 80, 125–163 (2017). https://doi.org/
10.1016/j.jsc.2016.07.012

63. McMillan, K.L.: Lazy annotation for program testing and verification. In: Touili,
T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 104–118. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 10

64. Meyer, B.: Applying “design by contract”. Computer 25(10), 40–51 (1992).
https://doi.org/10.1109/2.161279

65. Miller, B.P., Fredriksen, L., So, B.: An empirical study of the reliability of UNIX
utilities. Commun. ACM 33(12), 32–44 (1990). https://doi.org/10.1145/96267.
96279

66. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

67. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of
multithreaded programs. In: Ferrante, J., McKinley, K.S. (eds.) Proceedings of the
ACM SIGPLAN 2007 Conference on Programming Language Design and Imple-
mentation (PLDI), pp. 446–455. ACM (2007). https://doi.org/10.1145/1250734.
1250785

68. Philippaerts, P., Mühlberg, J.T., Penninckx, W., Smans, J., Jacobs, B., Piessens,
F.: Software verification with VeriFast: industrial case studies. Sci. Comput. Pro-
gram. 82, 77–97 (2014). https://doi.org/10.1016/j.scico.2013.01.006

https://doi.org/10.1007/978-3-642-17164-2_21
https://doi.org/10.1145/2351676.2351698
https://doi.org/10.1145/2351676.2351698
https://doi.org/10.1109/ASE.2017.8115669
https://doi.org/10.1109/ASE.2017.8115669
https://doi.org/10.1007/s00165-010-0152-5
https://doi.org/10.1145/360248.360252
https://doi.org/10.1016/0167-6423(91)90008-L
https://doi.org/10.1007/978-3-642-00593-0_33
https://doi.org/10.1007/978-3-642-00593-0_33
https://doi.org/10.1145/2254064.2254088
https://doi.org/10.1016/j.jsc.2016.07.012
https://doi.org/10.1016/j.jsc.2016.07.012
https://doi.org/10.1007/978-3-642-14295-6_10
https://doi.org/10.1109/2.161279
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/96267.96279
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/1250734.1250785
https://doi.org/10.1145/1250734.1250785
https://doi.org/10.1016/j.scico.2013.01.006

Symbolic Execution 479

69. Poeplau, S., Francillon, A.: Symbolic execution with SymCC: don’t interpret, com-
pile! In: Capkun, S., Roesner, F. (eds.) Proceedings of the 29th USENIX Security
Symposium, pp. 181–198. USENIX Association (2020)

70. Poeplau, S., Francillon, A.: SymQEMU: compilation-based symbolic execution
for binaries. In: Proceedings of the 28th Annual Network and Distributed System
Security Symposium (NDSS). The Internet Society (2021). https://www.ndss-
symposium.org/ndss-paper/symqemu-compilation-based-symbolic-execution-for-
binaries/

71. Pothier, G., Tanter, É., Piquer, J.M.: Scalable omniscient debugging. In: Gabriel,
R.P., Bacon, D.F., Lopes, C.V., Jr., G.L.S. (eds.) Proceedings of the 22nd Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA), pp. 535–552. ACM (2007). https://doi.org/
10.1145/1297027.1297067

72. Reps, T.W., Horwitz, S., Sagiv, S.: Precise interprocedural dataflow analysis via
graph reachability. In: Cytron, R.K., Lee, P. (eds.) Conference Record of the 22nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL), pp. 49–61. ACM Press (1995). https://doi.org/10.1145/199448.199462

73. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
Proceedings of the 17th IEEE Symposium on Logic in Computer Science (LICS)
2002, pp. 55–74. IEEE Computer Society (2002). https://doi.org/10.1109/LICS.
2002.1029817

74. Rollbar: The State of Software Code Report (2021). https://content.rollbar.com/
hubfs/State-of-Software-Code-Report.pdf. Accessed 08 Oct 2021

75. Scaletta, M., Hähnle, R., Steinhöfel, D., Bubel, R.: Delta-based verification of soft-
ware product families. In: Proceedings of the 20th ACM SIGPLAN International
Conference on Generative Programming: Concepts and Experiences, GPCE 2021,
pp. 69–82. Association for Computing Machinery, New York (2021). https://doi.
org/10.1145/3486609.3487200

76. Scheurer, D., Hähnle, R., Bubel, R.: A general lattice model for merging symbolic
execution branches. In: Ogata, K., Lawford, M., Liu, S. (eds.) ICFEM 2016. LNCS,
vol. 10009, pp. 57–73. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
47846-3 5. The author Dominic Scheurer is the same person as the author of this
paper

77. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C.
In: Wermelinger, M., Gall, H.C. (eds.) Proceedings of the 10th European Soft-
ware Engineering Conference held jointly with 13th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pp. 263–272. ACM (2005).
https://doi.org/10.1145/1081706.1081750

78. Sen, K., Necula, G.C., Gong, L., Choi, W.: MultiSE: multi-path symbolic exe-
cution using value summaries. In: Nitto, E.D., Harman, M., Heymans, P. (eds.)
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineer-
ing (ESEC/FSE), pp. 842–853. ACM (2015). https://doi.org/10.1145/2786805.
2786830

79. Shankar, N.: Combining model checking and deduction. In: Clarke, E.M., Hen-
zinger, T.A., Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp. 651–
684. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8 20

80. Shoshitaishvili, Y., et al.: SOK: (state of) the art of war: offensive techniques in
binary analysis. In: IEEE Symposium on Security and Privacy, SP 2016, San Jose,
CA, USA, 22–26 May 2016, pp. 138–157. IEEE Computer Society (2016). https://
doi.org/10.1109/SP.2016.17

https://www.ndss-symposium.org/ndss-paper/symqemu-compilation-based-symbolic-execution-for-binaries/
https://www.ndss-symposium.org/ndss-paper/symqemu-compilation-based-symbolic-execution-for-binaries/
https://www.ndss-symposium.org/ndss-paper/symqemu-compilation-based-symbolic-execution-for-binaries/
https://doi.org/10.1145/1297027.1297067
https://doi.org/10.1145/1297027.1297067
https://doi.org/10.1145/199448.199462
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/LICS.2002.1029817
https://content.rollbar.com/hubfs/State-of-Software-Code-Report.pdf
https://content.rollbar.com/hubfs/State-of-Software-Code-Report.pdf
https://doi.org/10.1145/3486609.3487200
https://doi.org/10.1145/3486609.3487200
https://doi.org/10.1007/978-3-319-47846-3_5
https://doi.org/10.1007/978-3-319-47846-3_5
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1145/2786805.2786830
https://doi.org/10.1145/2786805.2786830
https://doi.org/10.1007/978-3-319-10575-8_20
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1109/SP.2016.17

480 D. Steinhöfel

81. Smallbone, N., Johansson, M., Claessen, K., Algehed, M.: Quick specifications
for the busy programmer. J. Funct. Program. 27 (2017). https://doi.org/10.1017/
S0956796817000090

82. Steinhöfel, D.: Abstract execution: automatically proving infinitely many pro-
grams. Ph.D. thesis, TU Darmstadt, Department of Computer Science, Darmstadt,
Germany (2020). https://doi.org/10.25534/tuprints-00008540

83. Steinhöfel, D.: Precise Symbolic State Merging (2020). https://www.dominic-
steinhoefel.de/post/precise-symbolic-state-merging/. Accessed 25 Nov 2021

84. Steinhöfel, D.: Symbolic Execution: Foundations, Techniques, Applications and
Future Perspective, Digital Companion Volume (2021). https://rindphi.github.io/
se-book-festschrift-rh. Accessed 10 May 2022

85. Steinhöfel, D., Hähnle, R.: Abstract execution. In: ter Beek, M.H., McIver, A.,
Oliveira, J.N. (eds.) FM 2019. LNCS, vol. 11800, pp. 319–336. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-30942-8 20

86. Steinhöfel, D., Wasser, N.: A new invariant rule for the analysis of loops with non-
standard control flows. In: Polikarpova, N., Schneider, S. (eds.) IFM 2017. LNCS,
vol. 10510, pp. 279–294. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66845-1 18

87. Stephens, N., et al.: Driller: augmenting fuzzing through selective symbolic exe-
cution. In: 23rd Annual Network and Distributed System Security Symposium
(NDSS). The Internet Society (2016)

88. Svenningsson, J., Axelsson, E.: Combining deep and shallow embedding for EDSL.
In: Loidl, H.-W., Peña, R. (eds.) TFP 2012. LNCS, vol. 7829, pp. 21–36. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40447-4 2

89. Wang, C., Kundu, S., Limaye, R., Ganai, M.K., Gupta, A.: Symbolic predictive
analysis for concurrent programs. Formal Aspects Comput. 23(6), 781–805 (2011).
https://doi.org/10.1007/s00165-011-0179-2

90. Winterland, D.: Abstract execution for correctness-by-construction. Master’s the-
sis, Technische Universität Braunschweig (2020)

91. Yang, G., Filieri, A., Borges, M., Clun, D., Wen, J.: Advances in symbolic execu-
tion. In: Memon, A.M. (ed.) Advances in Computers, Advances in Computers, vol.
113, pp. 225–287. Elsevier (2019). https://doi.org/10.1016/bs.adcom.2018.10.002

92. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding bugs in C
compilers. In: Hall, M.W., Padua, D.A. (eds.) Proceedings of the 32nd ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI),
pp. 283–294. ACM (2011). https://doi.org/10.1145/1993498.1993532

93. Yun, I., Lee, S., Xu, M., Jang, Y., Kim, T.: QSYM: a practical concolic execution
engine tailored for hybrid fuzzing. In: Enck, W., Felt, A.P. (eds.) Proceedings of
the 27th USENIX Security Symposium 2018, pp. 745–761. USENIX Association
(2018)

https://doi.org/10.1017/S0956796817000090
https://doi.org/10.1017/S0956796817000090
https://doi.org/10.25534/tuprints-00008540
https://www.dominic-steinhoefel.de/post/precise-symbolic-state-merging/
https://www.dominic-steinhoefel.de/post/precise-symbolic-state-merging/
https://rindphi.github.io/se-book-festschrift-rh
https://rindphi.github.io/se-book-festschrift-rh
https://doi.org/10.1007/978-3-030-30942-8_20
https://doi.org/10.1007/978-3-319-66845-1_18
https://doi.org/10.1007/978-3-319-66845-1_18
https://doi.org/10.1007/978-3-642-40447-4_2
https://doi.org/10.1007/s00165-011-0179-2
https://doi.org/10.1016/bs.adcom.2018.10.002
https://doi.org/10.1145/1993498.1993532

Locally Abstract Globally Concrete
Semantics of Time and Resource Aware

Active Objects

Silvia Lizeth Tapia Tarifa(B)

Department of Informatics, University of Oslo, Oslo, Norway

sltarifa@ifi.uio.no

Abstract. Active objects provide a powerful conceptual model of dis-
tributed systems. This paper presents an extension of a locally abstract,
globally concrete trace semantics of an active object language with time
and resources. The proposed extension keeps the flexibility of the frame-
work in which abstract traces are generated, one rule per each syntactic
construct of the language, to later be composed in a concrete global con-
text where symbolic values are resolved. The paper also includes a run-
ning example to show how abstract and concrete traces are constructed.

1 Introduction

Active objects provide a powerful conceptual model of distributed systems [10].
Active object languages combine the basic Actor model [1] with object-oriented
concepts. Communication between active objects is realized by means of asyn-
chronous method calls. The notion of method calls can further support return
values while maintaining a loose coupling between actors; by means of future
variables [9]. A future can be seen as a mailbox that will eventually contain the
return value from a method call. Therefore, the calling method may proceed
with its computation and pick up the reply later. Such synchronization mech-
anism can be combined with cooperative scheduling of the method activation
of an object, using an explicit statement to release control, allowing interleaved
execution inside an active object with its own thread of execution. To express
timed models, this paper integrates a global clock and local timers in the differ-
ent method calls to capture explicit passage of time [6]. To make a separation of
concern between cost and resource capacity, this paper considers cost statements
consuming restricted amount of resources that are available per time interval in
concrete cost centres, to capture implicit passage of time, as described in [18].

To establish formal properties of a language as well as for formal verification,
a formal semantics is required. This paper presents the trace semantics of an
active object language which is time- and resource-sensitive [6,18]. This paper
aims for the semantics to be locally abstract and globally concrete (LAGC), and
therefore uses LAGC semantics [12,13], a semantics that is intended to align
with contract-based deductive verification [16]. The semantics uses a generalized
version of program trace [17], capturing a sequence of transitions, starting in

c© Springer Nature Switzerland AG 2022
W. Ahrendt et al. (Eds.): The Logic of Software. A Tasting Menu of Formal Methods,
LNCS 13360, pp. 481–499, 2022.
https://doi.org/10.1007/978-3-031-08166-8_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08166-8_23&domain=pdf
http://orcid.org/0000-0001-9948-2748
https://doi.org/10.1007/978-3-031-08166-8_23

482 S. L. Tapia Tarifa

some initial local symbolic state, e.g., symbolic execution [7,19]. This semantics is
compositional and generates global traces from abstract (symbolic) local traces,
using a hybrid approach that combines states and events, and is is well-suited
to capture the concurrency model of active objects.

Symbolic states allow to evaluate local code independently of its call context.
For example, when evaluating the semantics of the explicit passage of time in a
global clock, executed locally in an object, such object cannot locally know the
explicit value of the global clock, since it is in its context. In this case the local
evaluation can be expressed in a trace with symbolic states and parameters.
Both, the symbolic states and the parameters are concretised when the global
context of the local computations (e.g., the global clock) is resolved, hence, the
resulting global traces are concrete.

The extension of the semantics with time and resources builds on recent work
with Reiner Hähnle, which proposes a framework for trace semantics [12,13], that
scales flexibly to a range of concurrent, imperative programming paradigms,
including active objects [10]. This paper keeps the modularity of this semantics
in which modular extensions of the language are added without the need to
revise the whole framework.

The paper is organised as follows: Sect. 2, introduces the syntax of a time-
and resource-sensitive active object language. Section 3 summarises the run-time
syntax of abstract traces. Sections 4–5 present the local and global semantics and
the trace composition of the language. Related work is discussed in Sect. 6, while
Sect. 7 summarises and concludes the paper. The paper also contains a running
example to illustrate the main building blocks of the proposed semantics.

2 A Core Active Object Language with Time
and Resources

Let us consider a mini active object language [10] which considers the
actor paradigm [1] integrated with object-oriented concepts, that behaves
autonomously and concurrently, and communicates with other actors without
transfer of control through asynchronous method calls and futures [9]. The lan-
guage in addition is time- and resource-sensitive. Resembling the Real-Time ABS
language [18,22]. We call this language mini Real-Time ABS.

The formal syntax of the language is given in Fig. 1, which highlights in grey
the statements and expressions related to time and resources and surrounds in
a white box the statements that are added at run-time. A program P consists
of a set of classes and a main block sc. The main block consists of variable dec-
larations x and a method body with statements s. A class CL has a name C, a
number of fields x, passed as parameters to the class and a set of methods. A
method M has a name m, a number of local variables x, passed as parameters
to the method, and a method body with statements s. Statements s are stan-
dard for sequential composition s1; s2, and for skip, if, and return constructs. In
addition to expressions e, the right hand side of an assignment x:=rhs includes
method calls o!m(e), future dereferencing e.get, object creation new C(e), and

LAGC Semantics for Time and Resources 483

Fig. 1. Syntax of mini-Real-Time ABS. Terms like e and x denote (possibly empty)
lists over the corresponding syntactic categories.

resource creation new res r(e). Expressions e include variables x, values v, stan-
dard operations op over expressions, the self-identifier for objects this, and the
expression now, which evaluates to the current value of the global clock.

Cooperative scheduling is achieved by explicitly suspending the execution of
the current active process, the statement await g conditionally suspends its exe-
cution, the guard g controls the suspension and consists of a Boolean condition
e or the return tests e? (explained in the next paragraph). The evaluation of a
guard g is side-effect free. However, if g evaluates to false, the current executing
process is suspended, letting other processes to be selected for execution from the
pool of suspended processes by means of a default scheduling policy (e.g., ran-
dom). Communication and synchronization are decoupled in active objects [9].
Communication is based on asynchronous method calls, denoted by assignments
f=e!m(e) to future variables f . Here, e is an object expression, m a method
name, and e are expressions providing actual parameter values for the method
invocation. After calling f=o!m(e), the future variable f refers to the return
value of the call, and the caller may proceed with its execution without blocking.
The language includes two operations on future variables to control synchro-
nization. First, the guard await f? suspends the active process unless a return
to the call associated with f has arrived, allowing other processes in the object
to execute. Second, the return value is retrieved by the expression f.get, which
blocks all executions in the object until the return value is available.

The local passage of time can be modelled both explicitly and implicitly.
With explicit time, the modeller inserts duration statements duration(e) with
an execution time e. This is the standard approach to model timed behaviour,
well-known from, e.g., timed automata in UPPAAL [20]. A special statement
is introduced at run-time rtDur(v, v) to capture ongoing executions of dura-
tion statements. The language also considers cost centres with resources [18],
which are created via new res r(e), with id r and a total amount of resources
e available per time interval. One can understand these kind of cost centres as
counting semaphores (cost statements) where the release is done implicitly when
time advances, making a separation of concern between the cost of performing
something (e.g., a computation), via cost statements, and the capacity of cost

484 S. L. Tapia Tarifa

Fig. 2. An example using mini-Real-Time ABS.

centres, which are renewed per time interval. This allows to capture observations
with implicit time execution (no assumptions about explicit duration are given
in the model), depending on the amount of resources available per time interval
and the amount of competing processes accessing such cost centres. In many
cases it is natural to use both explicit and implicit time in a model, so both are
supported in this core active object language.

2.1 Example: Cost-Sensitive Requests

Let us consider an example where objects workers are associated to cost centres
with computing capacity. Requests to such objects have a computing cost, and
the execution time of the request will vary depending on how many requests
are currently being sent to such objects. This is captured using the mini Real-
Time ABS language in Fig. 2. For simplicity the main block captures an explicit
passage of time for the creation of cost centres and objects, while a cost statement
is used to capture the among of network resources needed to send a method
invocation. The return value of the method call returns the amount of time that
has elapsed while executing the request. We will use this example to illustrate
the trace semantics used in this paper.

3 The Syntax of Abstract Traces

This section follows the syntax of conditional abstract traces as introduced
in [12,13]. The syntax is given in Fig. 3. Abstract traces have a path condition
pc, consisting of the conjunction of symbolic Boolean expressions sb or concrete
values tt or ff, and a sequence τ of terms γ, that are either symbolic states σ or
events ev(e), followed by a continuation marker K which is empty, denoted by
KF (�), or contains the sequence of statements that has not yet been executed.
Continuation markers K are parametric on the local future of the process, indi-
cating where the returned value should be stored. Traces can be finite or infinite.
For simplicity, let 〈σ〉 = ε � σ denote the initial singleton trace. Concatenation
is denoted by τ1 · τ2 and is only defined when τ1 is finite. When concatenating

LAGC Semantics for Time and Resources 485

Fig. 3. Syntax of symbolic traces

two traces τ1 and τ2 the first symbolic state of τ2 should be an extension of the
last symbolic state of τ1.

A symbolic state σ is a partial mapping x �→ se. In a symbolic state, a
symbolic variable is defined as a variable bound to an unknown value, represented
by the starred expression ∗. Symbolic variables act as parameters, relative to
which a local statement is evaluated. A symbolic state σ is well-formed if all
variables are mapped to ∗, values or to expressions which only contains symbolic
variables. This condition is captured as follows: wf(σ) = tt if ∀x ∈ (dom(σ) ∩
symb(σ)), vars(σ(x)) ⊆ symb(σ), where symb(σ) = {x ∈ dom(σ) | σ(x) = ∗}.

Events record specific information in a trace and as such they do not update
the values in a symbolic state, but they may extend a state with fresh symbolic
variables. To achieve this, an event ev(e) is inserted into a trace τ after a symbolic
state σ that is augmented later with some fresh symbolic variables. To capture
such actions, trace semantics introduces even traces evx

σ(e) ::= 〈σ〉 � ev(e) �

σ[x �→ ∗] of length three. If event traces do not introduce fresh variables, the
following notation is used evσ(e), as a short form of ev∅

σ(e).
Note that similar to well-formed states, the symbolic expressions in events

and path conditions of a well-formed trace should only contain symbolic vari-
ables. This requires all states in a trace to agree upon which variables are sym-
bolic. Further details of local abstract traces can be found in [12,13].

4 The Local Semantics of Mini Real-Time ABS

This section presents the local evaluation rules for expressions and for each
syntax construct of mini Real-Time ABS, extending the trace semantics pre-
sented in [12,13] with time and resources. The local evaluation is parametric
with respect to a symbolic state σ, and the execution context given by the
future Id F , object id O and global time T .

The evaluation of expressions uses a function that reduces an expression
as much as it is currently possible. In a parametric context, it reduces known
variables to their values and only keeps symbolic variables inside the expressions.
The evaluation function is given in Fig. 4.

The evaluation of statements uses a function that takes each syntax construct
of mini Real-Time ABS in a parametric context, and returns a set of abstract

486 S. L. Tapia Tarifa

Fig. 4. Local evaluation of expressions in the language. Here, op means that expres-
sions can be semantically reduced, while op means that expressions are syntactically
distributed.

traces. The evaluation function is given in Fig. 5. The evaluation of a main block
{x; s} generates one element in the set where the the path condition is the value
tt and τ extends σ with the declared variables initialized with fresh symbolic
variables, one per declared variable, the continuation K contains all the state-
ments in the main block. The evaluation of skip generates one element in the
set where the the path condition is the value tt and τ is a singleton trace, the
continuation is empty. The evaluation of return e generates one element in the
set where the the path condition is the value tt and τ is a completion trace event
comEv with a future and a return value as parameters. This event denotes that
value [[e]]O,F,T

σ is available for retrieval in the future F . The evaluation of the
conditional statement if e { s } generates two elements in the set, the first one
for e evaluating to the value true and the second one when e evaluates to false.
In both cases the trace τ is the singleton trace, if e is true then the continuation
contains the rest of statements s, otherwise the continuation is empty. The eval-
uation of the sequential composition s1; s2 returns the set of elements in which
s1 is partially evaluated and therefore the continuation contains the rest of the
statements in s1, denoted as s′

1 followed by s2 and the set of elements in which
s1 evaluates completely, and therefore the continuation only contains s2. Note
that statements can pattern match more than one element and the sequential
composition can be applied recursively. The evaluation of the suspension point
await g generates one element in the set and it can only proceed if the guard g
evaluates to true. There are two syntactic distinct cases. The first case is when
the guard is an expression e, which is checked in the path condition. The second
case is when the guard e? is checking if the future [[e]]O,F,T

σ has been resolved and
introduces a completion reaction event comREv with a future and return value
as parameters, which at the global level should match with a previous comEv,
with the same future and value, generated by the return statement in another
method, which will be ensured by well-formedness.

The evaluation of an assignment to an expression x := e generates one ele-
ment in the set where the the path condition is the value tt and τ extends the
symbolic state σ with an update to the variable x. The evaluation of a blocking
get statement x := e.get generates one element in the set and it can only proceed
if the future evaluated from the expression e has been resolved. It introduces a

LAGC Semantics for Time and Resources 487

Fig. 5. Local evaluation of statements.

completion reaction event comREv with a future and return value as parame-
ters, which at the global level should match with a previous comEv, with the
same future and value, via well-formedness, it also updates the symbolic state σ
with the assignment to the unknown return value, using a fresh symbolic vari-
able. The evaluation of a new object creation x := new C (e) generates one
element in the set where the the path condition is the value tt and τ is a new
object trace event newObEv, with an object id as parameter, and an extension
to the trace, updating the symbolic state σ with a fresh symbolic variable, for
the object id, and the fields of the new created object. Similarly, the evaluation
of a new resource creation x := new res r(e) generates one element in the set
where the the path condition is the value tt and τ is a new resource trace event
newResEv, with a resource id and total amount of available resources per time
interval as parameters. The trace also has an update to the symbolic state with
an assignment that points to the resource id. Note that for simplicity the state-
ment includes a resource id, however the id can be created dynamically (as shown
with object creation). The evaluation of an asynchronous call x := e1!m(e2) gen-

488 S. L. Tapia Tarifa

erates one element in the set where the the path condition is the value tt and τ
in an invocation trace event invEv, with object id, method name, future id and
actual parameters to the method call. It also updates the symbolic state σ with
a freshly symbolic variable for the future id f and the corresponding assignment
from x to f . The evaluation of the body of a method m(x){s} generates one
element in the set where the path condition is the value tt and τ starts with an
invocation reaction trace event invREv with object id, method name, future id
and actual parameters to the method. It also updates the symbolic state σ with
a fresh symbolic variable for each parameter and the corresponding assignment
from renamed parameter variables (x ←� x1) to the symbolic variables. The con-
tinuation forces a suspension by artificially adding an await true; followed by the
statements in the method body where parameter variables have been renamed.
The reason to add this artificial suspension point will be clarified in Sect. 5.1.
At the concrete global level, well-formedness conditions (over invocations and
invocation reaction events) will guarantee that calls to method bodies are only
instantiated if there is a previous corresponding method invocation.

The evaluation of a duration statement duration(e) generates one element in
the set where the path condition is the value tt and τ is a duration trace event
durEv with parameters object id, the global time and the duration value, that
can be understood as a local timer that will be decreased as time advances in the
global trace. At run-time there is an additional blocking statement rtDur(v1, v2)
that works together with a duration statement and keeps track of the decrements
in the local timer when time advances globally. Run-time duration statements
can only proceed if v2 = 0, which is checked in the path condition, and indicates
that the local timer has reached zero. A run-time duration statement generates
a duration reaction trace event durREv with an object id and a time as param-
eters. The evaluation of a cost statement cost(e1, e2) generates one element in
the set where the the path condition is the value tt and τ is a cost trace event
costEv with parameters resource id and the amount of resources to be consumed
by the cost statement.

4.1 Example: Local Semantics of Cost Sensitive Requests
in Mini-Real-Time ABS

This section shows the application of the abstract local trace semantics to the
example in Fig. 2. They are summarised in Fig. 6. The figure is organised accord-
ing to the code lines in Fig. 2, using the notation ln. The statements with notation
sn abbreviates the code from Line n until the end of the method body. The figure
shows first the local evaluation of the method request, starting in Line 2 and
later it shows the evaluation of the main block, starting in Line 7.

The evaluation of the method request in Line 2 generates a trace with an
invocation event, where the parameters cost and starting time are renamed and
initialised with symbolic variables. The continuation marker contains a suspen-
sion point, followed by the statements in the method body starting in Line 3
where the local variables have been renamed. The rest of the method body
is a cost statement and a return statement, which generate the corresponding

LAGC Semantics for Time and Resources 489

Fig. 6. Local evaluation of the example in Fig. 2.

abstract traces with events. The evaluation of the main block in Line 7 gener-
ates a trace where variables are updated in the symbolic state σ using symbolic
variables, one per each variable. The continuation contains the rest of the body
of the main block, starting in Line 8. The rest of the main block contains the
abstract traces of the duration statement, the creation of the resources r1 and r2
for cpu and net, the creation of the object worker, the cost of calling a method,
the asynchronous call to the method request, the awaiting of the method request
to be completed and finally the retrieval of the returned value of the call, using
a get statement.

490 S. L. Tapia Tarifa

Fig. 7. Runtime syntax of mini Real-Time ABS. Terms like e and x denote (possibly
empty) lists over the corresponding syntactic categories. Here sa (active statements)
are statements that do not necessarily start with await g.

5 Global Trace Semantics of Mini Real-Time ABS

This section contains the run-time syntax of global configurations and the global
composition rules for mini Real-Time ABS, extending the semantics presented
in [12,13] with time advance and resource refill, following the time to completion
operational semantics shown in [18]. The global run-time syntax is described in
Fig. 7. A global configuration Conf consists of a concrete trace τ̂ and a global map
Σ. A concrete trace τ̂ is sequence of concrete terms γ̂, that are either concrete
states σ̂ or concrete events êv. A concrete state σ̂ is map from variables to values.
Concrete events are events in which the parameters are values. A global map
Σ maps objects id to a set of continuations q, representing the set of processes
that are currently being executed in an active object. The pool of processes q
consists of suspended processes Q, which start with an await statement and a
process currently being executed, which do not necessarily start with await, e.g.,
if the object is idle, one of the suspended processes starting with await, where
either the guard evaluates to true or the future is already resolved (checked by
well-formedness), will be picked randomly. If the object is not idle, then one
of the processes do not start with an await statement and it is currently the
active process. Run-time configurations will use substitutions ρ̂, which are maps
from variables to values, to concretise symbolic traces. Configurations also use
a global table G mapping class names to fields and methods.

Auxiliary Functions Over Traces. Let us consider a concrete substitution ρ̂ such
that for a symbolic σ, symb(σ) ⊆ dom(ρ̂). The concretisation of pc � τ written
as ρ̂(pc � τ) := τ̂ if [[pc]]ρ̂ = true ∧ τ̂ = ρ̂(τ), where ρ̂(γ1 · · · γn) := ρ̂(γ1) · · · ρ̂(γn),
ρ̂(σ) := σ ◦ ρ̂ and ρ̂(ev(e)) := ev([[e]]ρ̂). The functions last(τ̂ � σ̂) := σ̂
and first(〈σ̂〉 · τ̂) := σ̂ return the last and first state of a trace, respectively
(defined for both symbolic and concrete traces). The function concrete(ρ̂, τ) :=

LAGC Semantics for Time and Resources 491

Fig. 8. Well-formedness of concrete traces

if symb(first(τ)) ⊆ dom(ρ̂) then tt else ff returns true if the domain of the sub-
stitution contains at least all the symbolic variables in a symbolic trace and false
otherwise. The lookup function over a concrete state σ ◦ ρ̂ is defined as follows:

σ ◦ ρ̂(x) :=

{

ρ̂(x) if x ∈ symb(σ)
[[σ(x)]]ρ̂ otherwise

Let us also define the chop operator between two concrete traces, which is used
to glue two traces: τ̂1 ∗∗ τ̂2 := τ̂1 · τ̂ ′ ∧ last(τ̂1) = σ̂ ∧ τ̂2 = 〈σ̂′〉 · τ̂ ′ ∧ σ̂ ⊆ σ̂′. The
function is only defined when τ̂1 is finite.

Well-formedness over traces give certain ordering restrictions. Well-
formedness is defined in Fig. 8. Events recording new object and new cost centres
with resources should guarantee that the ids are fresh. Invocation events to an
object should only occur after the object is created. An invocation reaction event
with some parameters should match to a previous invocation event with the same
parameters and the future should be fresh, indicating that one can only instan-
tiate a method if there is an exiting call to it. A completion reaction even with
some parameters should match to a previous completion events with the same
parameters, indicating that one can only retrieve a return value that has been
resolver with a completion event. A cost event to a cost centre with resources can
only be issued if the cost centre has been previously created and should record
consumptions that are less or equal to the current available resources in such
cost centre. A duration reaction event should match with a previous duration
event with the same object id and time stamp, and the time passed between
these two events should be greater or equal to the time stamp recorded in the
duration event. This will guarantee that a process is at least blocked as stated in
the original duration statement. Duration events are issue according to a current
global time. Finally, states in a well-formed trace are concrete.

Additional auxiliary functions used for time advance and resource refill are
defines in Fig. 9. The pending function returns true if there exist open invocation
events, which has not yet been instantiated. The function blocked is true if all the
continuations in Σ cannot proceed, either because timers in duration statements
are not yet 0, there is not resources to consume a cost statement, or futures are
not yet resolved or conditions are not true in await statements. The function mte,

492 S. L. Tapia Tarifa

Fig. 9. Auxiliary functions used for time advance and resource refill.

stands for maximum time elapse and calculates the time to the next observable
point, e.g., next time interval where the smallest timer in a duration statement
is 0 or next time interval to refill resource to proceed with a cost statement. The
function for time advance modifies the continuations in Σ by decreasing timers
in run-time duration statements according to a maximum time elapse, passed
as a parameter. The function resource refill returns a well-formed concrete trace
where all the cost centres in a configuration have been refilled with their total
amounts per time interval, as recorded when the cost centre was created, by

LAGC Semantics for Time and Resources 493

appending an available resource event per cost centre. The functions time and
available resources calculates the current global time and available resources of
a cost centre in a given well-formed and concrete trace, by finding the last event
with time advance or the last event with available resources for that cost centre,
respectively. All these auxiliary functions will be used in the composition rules
to generate concrete traces.

5.1 Global Trace Composition of Mini Real-Time ABS

This section explains the composition rules that combine local evaluation and
process creation into global traces. Random scheduling is expressed declara-
tively using well-formedness constraints over traces. Given the non-deterministic
nature of the semantics, many different traces can be obtained, depending on
the different scheduling of processes. Starting in a concrete initial configuration
Conf0 := 〈[]〉 � timeAdvEv(0) � [], [main �→ Kf0(sc)], the global composition
rules are applied recursively. If the current execution of the program produces a
final trace, the execution will continue until all the objects maps to empty sets
of continuations, generating the finite concrete trace τ̂ .

The rest of this section, explains the composition rules summarised in Fig. 10.
Rule Non-empty-continuation repeatedly evaluates one continuation at a
time and generates a new continuation with the remaining statements to be exe-
cuted, then stitch the resulting concrete trace together with a given a concrete
trace τ̂ , and update Σ with the new generated continuation. This rule can only
be applied if the evaluated symbolic trace can be concretised and path condition
pc evaluates to true according to a guessed substitution ρ̂, well-formedness condi-
tions are satisfied and the evaluated trace does no contain a new resource event, a
cost event or a duration event. Rule Mtd-binding generates a new process with
an exiting future id from σ̂. Note that this new process will start with an invoca-
tion reaction event and will be artificially suspended (see Fig. 5). This rule can
only be applied if there exist a previews invocation event which has introduced
the future id and well-formedness conditions are satisfied, meaning that no other
process has been created with the same future id. Since the newly created pro-
cess is artificially suspended, method binding can happen at any moment, pro-
vided that the method call has been already issued. Rule Empty-continuation
removes empty continuations in Σ. Rule New-Resource matches exactly the
local evaluation of a new cost centre with a total amount of resources (capac-
ity) per time interval. The rule refills the cost centre by adding an available
resource trace event. This rule can only be applied if the evaluated symbolic
trace can be concretised and path condition pc evaluates to true according to
a guessed substitution ρ̂ and well-formedness conditions are satisfied, meaning
that no other cost centre with the same id has been previously created. Rules
Cost1 and Cost2 match exactly the local evaluation of a cost statement. In
the case of Cost1, there is enough available resources, calculated by the func-
tion avRes in Fig. 9, therefore the cost statement is completely consumed and
the available resources in that cost centre is updated accordingly by adding a
additional available resources event. In the case of Cost2 there is not enough

494 S. L. Tapia Tarifa

Fig. 10. Trace composition rules for mini Real-Time ABS.

LAGC Semantics for Time and Resources 495

Fig. 11. Sample of the application of the trace composition rules in the example.

available resources to consume the cost statement, therefore a new cost state-
ment is added to the continuation with the resources that were not consumed
and an available resource event with zero resources is added, which will block
the object until new resources are refilled when time advances. Rule Duration
matches exactly the local evaluation of a duration statement and replaces it with
a run-time duration statement which will block execution in that process until
time advances and reduces the local timer in the run-time duration statement to
zero, at this point the Rule Non-empty-continuation can be applied. Dura-
tion rule can only be applied if the evaluated symbolic trace can be concretised
and path condition pc evaluates to true according to a guessed substitution ρ̂ and
well-formedness conditions are satisfied,meaning that the added duration event
should match the current time of τ̂ . Rule Time-Advance can only be applied
if all the continuations in Σ are blocked and there is not pending method calls.
This rule will advance the time by adding a time advance trace event, it will
also advance the time in all continuations in Σ by decreasing the local timers in
run-time duration statements, according to a calculated maximum time elapse
function mte, and it will refill all the cost centres that have been created.

5.2 Global Semantics of the Running Example

This section shows some of the applications of the composition rules to the
example in Fig. 2, using the local evaluation rules of the example in Fig. 6. Sam-
ples of such applications are shown in Fig. 11. Let us consider a global table
of classes G ::= [c �→ 〈[r], {request(c,start){cost(this.r,c); return (now−start);}}〉],
a concrete trace τ̂1 := 〈[]〉 � timeAdvEv(0) � [] � σ̂1, where σ̂1 :=

496 S. L. Tapia Tarifa

[cpu �→ nil,net �→ nil, w �→ nil, fut �→ fmain, resp �→ 0], recording execu-
tion of the example until variable declaration in Line 7. Let us assume a
ρ̂1 := []. The application of the Rule Duration, instantiated as Example-
Duration in Fig. 11, will generate τ̂2 := 〈[]〉 � timeAdvEv(0) � [] � σ̂1 �

durEv(main, 0, 1) � σ̂1 and Σ2 := [main �→ {Kfmain(rtDur(0, 1); s9)}] by replac-
ing the duration statement of the example in Line 8 with a run-time dura-
tion statement, and by adding a duration event to the concrete trace. Since
the only continuation in this configuration is blocked, then the only rule that
can be applied is Time-Advance, which is instantiated as Example-Time-
Advance in Fig. 11. It will generate τ̂3 := τ̂2 � timeAdvEv(1) � σ̂1 and
Σ3 := [main �→ {Kfmain(rtDur(0, 0); s9)}]. The next rule that can be applied after
time advance is Rule Non-empty-continuation, instantiated as Example-
Non-empty-continuation in Fig. 11. This rule matches the execution of Line 8
to Line 11 in the example. Let is assume ρ̂2 := [o0 �→ ow], the generated
symbolic trace will have pc1 := 0 = 0, ρ̂2(τ1) := σ̂1 � durREv(main, 0) �

σ̂1 � newResEv(r1, 50) � σ̂1 � σ̂2 � newResEv(r2, 10) � σ̂2 � σ̂3 �

newObEv(ow) � σ̂4 � σ̂5, where σ̂2 := σ̂1[cpu �→ r1], σ̂3 := σ̂2[net �→ r2],
σ̂4 := σ̂3[o0 �→ ow] and σ̂5 := σ̂4[w �→ ow, ow.r �→ r1]. Since the example pro-
duces final traces, the rest of the example will recursively apply the composition
rules until all the continuations in Σn are empty.

6 Related Work

Active objects are inherently concurrent, conceptually each object has a dedi-
cated processor, and there is at most one activity in an object at any time, with
cooperative scheduling of method activation inside each object. This concurrency
model is an alternative to multi-thread concurrency in object-orientation (e.g.,
[8]). Concurrent objects support compositional verification of concurrent soft-
ware [2,9]. Din et al. introduced a proof system based on four communication
events [11,14,15]. This four-event proof system, are the starting point for the
well-formedness conditions of events used in this paper. In contrast, the work
presented here uses events which are not only restricted to communication, but
also to object and cost centre creation and to duration statements, cost state-
ments and time advance.

The time and resource model presented in this paper is based on a maximal
progress semantics and follows the semantics ideas introduced in [6,18]. However,
this paper captures the interleaved execution by means of local continuations,
such that the global trace is obtained by gradually unfolding traces that corre-
spond to local symbolic executions with continuations. Early work of the author
modelled tightly coupled cost centres to objects [18]. The resource model pre-
sented in this paper is loosely coupled, which gives the freedom to the modeller
in expressing and combining different consumptions of various cost centres.

Cost centres with resources that are orthogonal to time and use take and
release [4,5], (similar to semaphores) can be easily integrated in this semantics,
e.g., memory resources, locations, etc. In this case, the local rule for take will

LAGC Semantics for Time and Resources 497

only proceed if the cost center has enough resources, which can be checked in the
path condition, while the release rule will always proceed and add the released
resources to the cost center. In this context, events with well-formlessness con-
ditions at the global level can guarantee that the total amount of resources in a
cost center is consistent.

Cost statements in this paper captures how the modeller specify dynamic
resource consumption that can be recharged, e.g., computation, energy, etc.
Note that the expressions in cost statements could be automatically derived
using static analysis techniques, if the code in the model is fully implemented.
One possibility will be to use COSTABS [3], a cost analysis tool for ABS which
supports concurrent object-oriented programs, based on the notion of cost cen-
tres. Previous work with Albert et al., has explored the use of cost analysis tools
for memory analysis of ABS models [4].

7 Conclusion and Future Work

This paper presents a compositional trace semantics for a time and resource
sensitive active object language, inspired by Real-Time ABS. This semantics
uses the trace semantics framework of [12,13] and contributes with a modular
extension of time and resources, following the ideas of the operational semantics
presented in [18]. As future work, it would be interesting to develop the full
LAGC semantics of Real-Time ABS and formally compare it with the existing
semantics presented in [18], which is the basis for the simulation tool of Real-
Time ABS [22]. It would also be interesting to develop a program logic and
a calculus for Real-Time ABS to be able to express time and resource related
properties, e.g., the response of a request with input e will be available in less
than 3 ∗ e time units. We can take as starting point results from e.g., [21].
Other interesting extension would be to develop a loosely coupled resource model
semantics for Real-Time ABS with independent cost centres, as the one presented
in this paper.

Acknowledgement. I would like to thank Einar Broch Johnsen and Rudolf Schlatte
for the interesting discussions while writing this paper.

References

1. Agha, G.A.: ACTORS: A Model of Concurrent Computations in Distributed Sys-
tems. The MIT Press, Cambridge (1986)

2. Ahrendt, W., Dylla, M.: A system for compositional verification of asynchronous
objects. Science of Computer Programming (2012). 2010 (in press)

3. Albert, E., Arenas, P., Genaim, S., Gómez-Zamalloa, M., Puebla, G.: COSTABS:
a cost and termination analyzer for ABS. In: Kiselyov, O., Thompson, S. (eds.)
Proceeding Workshop on Partial Evaluation and Program Manipulation (PEPM
2012), pp. 151–154. ACM (2012)

498 S. L. Tapia Tarifa

4. Albert, E., Genaim, S., Gómez-Zamalloa, M., Johnsen, E.B., Schlatte, R., Tapia
Tarifa, S.L.: Simulating concurrent behaviors with worst-case cost bounds. In: But-
ler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 353–368. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-21437-0 27

5. Rizwan Ali, M., Ka I Pun, V.: Towards a resource-aware formal modelling language
for workflow planning. In: Bellatreche, L., Chernishev, G., Corral, A., Ouchani, S.,
Vain, J. (eds.) MEDI 2021. CCIS, vol. 1481, pp. 251–258. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-87657-9 19

6. Bjørk, J., de Boer, F.S., Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: User-
defined schedulers for real-time concurrent objects. Innovations Syst. Softw. Eng.
9(1), 29–43 (2013). https://doi.org/10.1007/s11334-012-0184-5

7. Burstall, R.M.: Program proving as hand simulation with a little induction. In:
Information Processing 1974. Elsevier, North-Holland, Amsterdam (1974)

8. Caromel, D., Henrio., L.: A Theory of Distributed Object. Springer (2005). https://
doi.org/10.1007/3-540-27245-3 9

9. de Boer, F.S., Clarke, D., Johnsen, E.B.: A complete guide to the future. In: De
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 316–330. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71316-6 22

10. de Boer, F.S.: A survey of active object languages. ACM Comput. Surv. 50(5),
76:1-76:39 (2017)

11. Din, C.C., Dovland, J., Johnsen, E.B., Owe, O.: Observable behavior of distributed
systems: component reasoning for concurrent objects. J. Logic Algebraic Program.
81(3), 227–256 (2012)

12. Din, C.C., Hähnle, R., Johnsen, E.B., Pun, K.I., Tapia Tarifa, S.L.: Locally
abstract, globally concrete semantics of concurrent programming languages. In:
Schmidt, R.A., Nalon, C. (eds.) TABLEAUX 2017. LNCS (LNAI), vol. 10501, pp.
22–43. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66902-1 2

13. Din, C.C., Hähnle, R., Henrio, L., Johnsen, E.B., Pun, V.K.I., Tapia Tarifa, S.L.:
LAGC semantics of concurrent programming languages, February 2022. https://
arxiv.org/abs/2202.12195

14. Din, C.C., Owe, O.: A sound and complete reasoning system for asynchronous
communication with shared futures. J. Log. Algebraic Meth. Program. 83(5–6),
360–383 (2014)

15. Din, C.C., Owe, O.: Compositional reasoning about active objects with shared
futures. Formal Aspects Comput. 27(3), 551–572 (2014). https://doi.org/10.1007/
s00165-014-0322-y

16. Hähnle, R., Huisman, M.: Deductive verification: from pen-and-paper proofs to
industrial tools. In: Steffen, B., Woeginger, G. (eds.) Computing and Software Sci-
ence: State of the Art and Perspectives. LNCS, vol. 10000, pp. 345–373. Springer,
Cham, Switzerland (2019). https://doi.org/10.1007/978-3-319-91908-9 18

17. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning about
Systems, 2nd edn. Cambridge University Press, Cambridge (2004)

18. Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: Integrating deployment architec-
tures and resource consumption in timed object-oriented models. J. Log. Algebraic
Meth. Program. 84(1), 67–91 (2015)

19. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

20. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J. Softw. Tools
Technol. Transf. 1(1–2), 134–152 (1997)

https://doi.org/10.1007/978-3-642-21437-0_27
https://doi.org/10.1007/978-3-030-87657-9_19
https://doi.org/10.1007/s11334-012-0184-5
https://doi.org/10.1007/3-540-27245-3_9
https://doi.org/10.1007/3-540-27245-3_9
https://doi.org/10.1007/978-3-540-71316-6_22
https://doi.org/10.1007/978-3-319-66902-1_2
https://arxiv.org/abs/2202.12195
https://arxiv.org/abs/2202.12195
https://doi.org/10.1007/s00165-014-0322-y
https://doi.org/10.1007/s00165-014-0322-y
https://doi.org/10.1007/978-3-319-91908-9_18

LAGC Semantics for Time and Resources 499

21. Lepri, D., Ábrahám, E., Ölveczky, P.C.: Sound and complete timed CTL model
checking of timed kripke structures and real-time rewrite theories. Sci. Comput.
Programm. 99, 128–192 (2015)

22. Schlatte, R., Johnsen, E.B., Kamburjan, E., Tapia Tarifa, S.L.: Modeling and ana-
lyzing resource-sensitive actors: a tutorial introduction. In: Damiani, F., Dardha,
O. (eds.) COORDINATION 2021. LNCS, vol. 12717, pp. 3–19. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-78142-2 1

https://doi.org/10.1007/978-3-030-78142-2_1

Transparent Treatment of for-Loops
in Proofs

Nathan Wasser(B)

SharpMind, 60313 Frankfurt, Germany
nate@sharpmind.de

https://www.sharpmind.de/

Abstract. Indexed loop scopes have been shown to be a helpful tool in
creating sound loop invariant rules in dynamic logic for programming lan-
guages with abrupt completion, such as Java. These rules do not require
program transformation of the loop body, as other approaches to dealing
with abrupt completion do. However, indexed loop scopes were designed
specifically to provide a loop invariant rule for while loops and work rather
opaquely. Here we propose replacing indexed loop scopes with a more
transparent solution, which also lets us extend this idea from while loops
to for loops. We further present sound loop unrolling rules for while, do
and for loops, which require neither program transformation of the loop
body, nor the use of nested modalities. This approach allows for loops to
be treated as first-class citizens in proofs – rather than the usual approach
of transforming for loops into while loops – which makes semi-automated
proofs more transparent and easier to follow for the user, whose interac-
tions may be required in order to close the proofs.

Keywords: Theorem proving · Dynamic logic · Loop invariants

1 Introduction

Sound program transformation in real world programming languages such as
Java [8] is not easy, with potential pitfalls hiding in constructs such as Java’s
try-finally statement. Thus, when reasoning about programs it is useful to
avoid complex program transformations whenever possible.

Indexed loop scopes were introduced in [20] to allow a sound loop invari-
ant rule (which does not require program transformation of the loop body)
in dynamic logic [10] for while loops containing statements which complete
abruptly [8, Chapter 14.1]. In [18] it was shown that an implementation of this
new loop invariant rule in KeY1 [1] also decreases proof size when compared to
the existing rule.

However, indexed loop scopes were tailored specifically to treat the case of
applying a loop invariant to a while loop. While we made attempts to re-use

1 https://www.key-project.org/.

This work was funded by the Hessian LOEWE initiative within the Software-Factory
4.0 project.
c© Springer Nature Switzerland AG 2022
W. Ahrendt et al. (Eds.): The Logic of Software. A Tasting Menu of Formal Methods,
LNCS 13360, pp. 500–519, 2022.
https://doi.org/10.1007/978-3-031-08166-8_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08166-8_24&domain=pdf
https://www.key-project.org/
https://doi.org/10.1007/978-3-031-08166-8_24

Transparent Treatment of for-Loops in Proofs 501

indexed loop scopes for loop unrolling [20] and application to for loops [21],
these were suboptimal.

In this paper we refine the concept of the loop scope, splitting it into two
distinct parts: (1.) the attempt- continuation statement providing a non-active
prefix [1] for loop bodies; and (2.) the logic to determine whether the loop invari-
ant or the original formula should be proven, which was rather opaquely con-
tained in symbolic execution rules for loop scopes. Splitting these orthogonal con-
cerns allows using an attempt-continuation statement in simple loop unrolling
rules for while, do and for loops, which avoid program transformation of the
loop body and do not require the use of nested modalities, as the approach in [20]
did for while loop unrolling. It also allows for a more transparent loop invariant
rule for while loops and we can introduce a transparent loop invariant rule for
for loops, which also both avoid program transformation of the loop body.

With this, we can treat for loops fully as first-class citizens in proofs, without
the need to transform them into while loops, which involves non-trivial program
transformation.

Section 2 provides background on dynamic logic and JavaDL in particular, as
well as on indexed loop scopes and the loop invariant rule using them. In Sect. 3
we introduce the attempt-continuation statement and new specialized loop
unrolling rules for each loop type. We propose new specialized loop invariant
rules for while and for loops in Sect. 4, while Sect. 5 contains an evaluation of
previous work and the changes proposed in this paper. In Sect. 6 we compare
this approach with related work. Finally, we conclude and offer ideas for future
work in Sect. 7.

2 Background

One approach to deductive software verification [6] which has been quite use-
ful is dynamic logic [10]. The idea behind dynamic logic is to contain the
program under test within the logic itself by use of dynamic logic modalities.
Classically, for all formulae φ and all programs p the formula [p]φ holds iff φ
holds in all terminating states reachable by executing p. The dual is defined as:
〈p〉φ ≡ ¬([p](¬φ)). One advantage of dynamic logic is that many proofs can be
abstracted away from the semantics of the underlying programming language
and instead rely only on axioms expressed using the programming language’s
syntax within a dynamic logic modality. Initially proposed using Kleene’s regu-
lar expression operators [14] as programming language, it has been extended to
various other programming languages, in particular to Java [8] in Java dynamic
logic (JavaDL) [2]. While Kleene’s regular expression operators contain com-
plexities such as non-determinism, which makes reasoning about them far from
simple, there is no concept of abrupt completion2: either an operation completes
normally or blocks. Additionally, program elements in Java can “catch” these
2 In Java, statements can complete abruptly due to breaks, continues and returns,

while both statements and expressions can complete abruptly due to thrown excep-
tions [8, Chapter 14.1].

502 N. Wasser

abrupt completions and execute different code due to them, then either com-
plete normally or complete abruptly for the same or a different reason. Thus,
it is not as simple a matter to give meaning to [while (e) st]φ for the while
loop of a Java program, while the axiom for while in a simple WHILE language
can be expressed through loop unrolling :

[WHILE (e) st]φ ≡ [IF e { st WHILE (e) st }]φ

One solution, proposed for example in [16], would be to introduce new modalities
for each type of completion.

Definition 1 (Set of all labels, sets of completion types). L is an infi-
nite set of labels. The set of completion types T and its subsets N (normal),
A (abrupt), Bl (breaking) and Cl (continuing completion types) are given as:

N = {normal}, A = {break , continue} ∪
⋃

l∈L
{break l, continue l}, T = N ∪ A,

∀l ∈ L. Bl = {break , break l}, ∀l ∈ L. Cl = {normal , continue, continue l}

We write [p]S φ as short form for
∧

t∈S([p]t φ). The axioms given in this paper
hold for all l ∈ L. Figure 1 contains relatively straightforward axioms for some
simple Java statements, as well as the try-finally statement.

[;]N φ ≡ φ (1)
[break;]break φ ≡ φ (2)

[continue;]continue φ ≡ φ (3)
[break l;]breakl φ ≡ φ (4)

[continue l;]continuel φ ≡ φ (5)

[;]A φ (6)
[break;]T \{break} φ (7)

[continue;]T \{continue} φ (8)
[break l;]T \{breakl} φ (9)

[continue l;]T \{continuel} φ (10)

[st1 st2]N φ ≡ [st1]N [st2]N φ (11)
∀a ∈ A. [st1 st2]a φ ≡ [st1]a φ ∧ [st1]N [st2]a φ (12)

∀t ∈ T . [if (e) st1 else st2]t φ ≡ [b = e;]N ((b → [st1]t φ) ∧ (¬b → [st2]t φ))
(13)

[try { p } finally { q }]N φ ≡ [p]N [q]N φ (14)
∀a ∈ A. [try { p } finally { q }]a φ ≡ [p]a[q]N φ ∧ [p]T [q]a φ (15)

Fig. 1. Axioms for skip, breaks, continues, sequence, if and try-finally

We write “if (e) st” as short form for “if (e) st else ;”.
Figure 2 contains axioms for the while statement. The axiom (16) expresses

that the loop can: (1) continue normally, or by a matching continue statement;
and (2) be exited normally or by a matching break statement. Axiom (17)

Transparent Treatment of for-Loops in Proofs 503

expresses that the loop can complete abruptly by a labeled break or continue
that does not match the loop label. Axiom (18) expresses that a while loop can
never complete abruptly due to a matching break or continue statement.

[l: while (e) st]N φ ≡ [b = e;]N ((¬b → φ) ∧
(b → ([st]Bl φ ∧

[st]Cl [l: while (e) st]N φ))) (16)

∀t ∈
⋃

k∈L\{l}
{breakk, continuek}.

[l: while (e) st]t φ ≡ [b = e;]N (b → ([st]t φ ∧ [st]Cl [l: while (e) st]t φ))
(17)

[l: while (e) st]{break,continue,breakl,continuel} φ (18)

Fig. 2. Axioms for while

While this approach of adding many new modalities provides a sound theoreti-
cal grounding, a calculus directly using these axioms as rules is problematic in
practice (in particular when using symbolic execution [13]), as it becomes quite
complex very quickly. It should be pointed out that the axioms for the modali-
ties covering exception throwing and returning from a method are more involved
than the somewhat simpler modalities dealing with breaks and continues. Addi-
tionally, modalities need to be analyzed multiple times, as can be seen by apply-
ing (16) to [l: while (e) { st1 st2 }]normal φ and then simplifying with (11)
and (12), leading to three separate occurences of [b = e;]normal [st1]normal(·).
Using symbolic execution, this involves multiple symbolic executions of the exact
same program fragment in the same state with the same context, which is a waste
of resources.

For these and other reasons, the authors of JavaDL chose to instead keep
track of the context within the program part of the modality, rather than creating
additional modality types. To this end they defined legal program fragments [1],
which may occur in the program part of a modality:

Definition 2. Let Prg be a Java program. A legal program fragment p is a
sequence of Java statements, where there are local variables a1, . . . , an of Java
types T1, . . . , Tn such that extending Prg with an additional class C yields again a
legal program according to the rules of the Java language specification [8], except
that p may refer to fields, methods and classes that are not visible in C, and p
may contain extended Java statements in addition to normal Java statements;
where the class C is declared:

504 N. Wasser

public class C {
public static void m(T1 a1, . . ., Tn an) { p }

}

In [1] the only extended Java statement allowed was the method-frame, a
way to track the context of within which method call (of which object or class)
a program fragment was to be executed. This allows for method calls within a
program fragment to be replaced with method-frames containing their expanded
method bodies.

Definition 3. The set of all JavaDL formulae is defined as the smallest set
containing all:

– first-order formulae,
– [p]φ, where p is a legal program fragment and φ is a JavaDL formula, and
– {U}φ, where φ is a JavaDL formula and U is an update.

Definition 4. An update U expresses state changes. An elementary update
x := t represents the states where the variable x is set to the value of the term
t, while a parallel update U1 ‖ U2 expresses both updates simultaneously (with a
last-wins to resolve conflicts). Updates can be applied to terms ({U}t), formulae
({U}φ) and other updates ({U1}U2), creating new terms, formulae and updates
representing the changed state.

A legal program fragment has the form “π st ω”, where the non-active prefix π
initially consisted only of an arbitrary sequence of opening braces “{ ”, labels,
beginnings “method-frame(. . .) {” of method invocation statements, and begin-
nings “try {” of try-(catch)-finally statements; st is the active statement ;
and ω is the rest of the program, in particular including closing braces corre-
sponding to the opening braces in π. Certain active statements can interact with
the non-active prefix.

JavaDL uses a sequent calculus in which rules consist of one conclusion and
any number of premisses, and are applied bottom-up. In addition to first-order
logic rules, there are symbolic execution rules, which operate on the active state-
ment inside a legal program fragment.

Example 1. We consider: {x := 1}[l : { y = x; break l; y = 0; }](y 	= 0)
Here “l : { ” is the non-active prefix, while “y = x;” is the active state-

ment. JavaDL contains a symbolic execution rule to execute a simple assignment,
which leads to the formula {x := 1}{y := x}[l : { break l; y = 0; }](y 	=
0). Now the active statement “break l;” interacts with the non-active prefix,
removing the labeled block completely and leaving the formula {x := 1}{y :=
x}[](y 	= 0) which is equivalent to {x := 1}{y := x}(y 	= 0). Applying the updates
gives first {x := 1}(x 	= 0) and then 1 	= 0, which obviously holds. The update
x := 1 could have alternatively been applied to the update y := x, yielding the
parallel update x := 1 ‖ y := {x := 1}x, which simplifies to x := 1 ‖ y := 1.
Applying this update to (y 	= 0) also leads to the formula (1 	= 0).

Transparent Treatment of for-Loops in Proofs 505

assignment
Γ =⇒ {U}{x := se}[π ω]φ, Δ

Γ =⇒ {U}[π x = se; ω]φ, Δ

blockBreak
Γ =⇒ {U}[π ω]φ, Δ

Γ =⇒ {U}[π l1, . . . , l, . . . ln: { break l; p } ω]φ, Δ

Initially there was no designated non-active prefix that allowed interaction with
unlabeled breaks as well as labeled and unlabeled continues, which can occur in
loop bodies. This makes a simple loop unrolling rule impossible, therefore loop
bodies were transformed when unrolling the loop or when applying the loop
invariant rule directly to a while loop. With a for loop, the entire loop was
first transformed, creating a while loop, with a further program transformation
of the loop body when dealing with said while loop. However, sound program
transformation rules for a complex language such as Java lead to very opaque
program fragments, which have next to no relation to the original program, as
can be seen in Examples 2 and 3.

In [20] the concept of an indexed loop scope (a further extended Java statement
�x st x�) was proposed, allowing a designated non-active prefix for loop bodies
(although the semantics of the indexed loop scope were such that it is directly
useful only for a loop invariant rule for while loops). Symbolic execution rules
for continues and unlabeled breaks, as well as interaction between the various
completion statements and the loop scope were defined. This allowed for the
loop invariant rule below, which avoids program transformation of the loop body.
Additionally, it was shown in [18] that an implementation of this rule in KeY was
more efficient than the loop invariant rule relying on program transformation.

loopInvariantWhileWithLoopScopes
Γ =⇒ {U}Inv , Δ
Inv =⇒ [π �x if (nse) { p continue; } x� ω]((x .

= FALSE → Inv)
& (x .

= TRUE → φ))

Γ =⇒ {U}[π while (nse) p ω]φ, Δ

The first premiss ensures that the invariant holds in the program state before
the first iteration of the loop. The second premiss ensures both that normal

Example 2. Sound program transfor-
mation of the for loop in Listing 1.1
leads to the while loop in Listing 1.2.

for (; x > 1; x = x / 2) {
if (x % 2 == 0) continue;
if (x % 5 == 0) break;

}

Listing 1.1. Original for loop

b: {
while (x > 1) {

c: {
if (x % 2 == 0) break c;
if (x % 5 == 0) break b;

}
x = x / 2;

}
}

Listing 1.2. Transformed while loop

506 N. Wasser

Example 3. Consider the program
fragment in Listing 1.3. Sound pro-
gram transformation of this loop’s
body (in order to apply the loop
invariant rule) must track abrupt
completion within the body, but also
reset and restore this tracking when
encountering the finally block to
ensure that the semantics are not
altered. This leads to the program
fragment shown in Listing 1.4.

while (x != 0) {
try {

if (x > 0) return x;
x = x + 100;
break;

} finally {
if (x > 10) {

x = -1;
continue;

}
}

}

Listing 1.3. Original loop

After executing this transformed loop
body, the proof then continues on mul-
tiple branches for: (1.) the “preserves
invariant” case where brk and rtn are
false, and thrown is null; (2.) the
“exceptional use case” where thrown
is not null; (3.) the “return use case”
where rtn is true; and (4.) the “break
use case” where brk is true.

Throwable thrown = null;
boolean brk = false;
boolean cnt = false;
boolean rtn = false;
int rtnVal = 0;
try {

l: {
try {

if (x > 0) {
rtnVal = x;
rtn = true;
break l;

}
x = x + 100;
brk = true;
break l;

} finally {
boolean saveBrk = brk;
brk = false;
boolean saveCnt = cnt;
cnt = false;
boolean saveRtn = rtn;
rtn = false;
if (x > 10) {

x = -1;
cnt = true;
break l;

}
brk = saveBrk;
cnt = saveCnt;
rtn = saveRtn;

}
}

} catch (Throwable t) {
thrown = t;

}

Listing 1.4. Transformed loop body

and abrupt continuation of the loop body preserves the invariant; and that after
leaving the loop normally or abruptly and executing the remaining program the
original formula φ holds. As this must hold for any iteration, the assumptions
Γ ∪¬Δ and the update U expressing the program state before the first iteration
are removed, with only the invariant as an assumption for the second premiss.

However, loop scopes work in a fairly opaque way: as can be seen in the rule
above, the loop scope index x is never explicitly set anywhere in the rule, but
rather will implicitly be set by the symbolic execution rules operating on loop

Transparent Treatment of for-Loops in Proofs 507

scopes (with continue setting it to false, and everything else setting it to true).
In this paper we show how to create a more transparent solution.

3 New Loop Unrolling Rules for JavaDL

In order to introduce new loop unrolling rules specifically for while, do and
for loop, which do not require program transformation of the loop bodies, we
require a non-active prefix for loop bodies in JavaDL. To this end we introduce
the attempt-continuation statement:

3.1 Introducing the attempt-continuation Statement

Definition 5. An attempt-continuation statement is an extended Java state-
ment of the form “attemptl { p } continuation { q }” where l ∈ L is a
label, and p and q are (extended) Java statements. Non-active prefixes may
additionally contain beginnings “attemptl {” of attempt-continuation state-
ments.

If p does not contain any labeled break or continue statements matching the
label l, “attemptl { p } continuation { q }” is equivalent to its unlabeled
counterpart “attempt { p } continuation { q }”. Non-active prefixes may
therefore contain unlabeled attempt-continuation beginnings “attempt {”.

The semantic meaning of attemptl { p } continuation { q } is that p is
executed first, then there is a choice:

1. If p completes normally or completes abruptly due to a matching continue
statement (continue l; or continue;), q is executed and the statement
attemptl { p } continuation { q } completes for the same reason as q.

2. If p completes abruptly due to a matching break (break l; or break;), q is
not executed and attemptl { p } continuation { q } completes normally.

3. If p completes abruptly for any other reason (including due to a state-
ment continue l’; or break l’; where l 	= l’), q is not executed and
attemptl { p } continuation { q } completes abruptly for the same reason
p completed abruptly.

Axioms for attempt-continuation statements are shown in Fig. 3.
Correct unrolling of a while loop is now possible with the help of attempt-

continuation statements, as shown in Theorem 1.

Theorem 1 (Correctness of loop unrolling). [l: while (e) st]t φ is equiv-
alent to [if (e) attemptl { st } continuation { l: while (e) st }]t φ for all
completion types t ∈ T .

Proof. See appendix.

508 N. Wasser

[attemptl { p } continuation { q }]N φ ≡ [p]Cl [q]N φ ∧ [p]Bl φ (19)
∀t ∈ {break , continue, break l, continuel}.

[attemptl { p } continuation { q }]t φ ≡ [p]Cl [q]t φ (20)

∀t ∈
⋃

k∈L\{l}
{breakk, continuek}.

[attemptl { p } continuation { q }]t φ ≡ [p]Cl [q]t φ ∧ [p]t φ (21)

Fig. 3. Axioms for attempt-continuation

3.2 Symbolic Execution Rules for attempt-continuation

We introduce new symbolic execution rules for the attempt-continuation state-
ment into JavaDL as follows:

For an empty attempt block:

emptyAttempt
Γ =⇒ {U}[π q ω]φ, Δ

Γ =⇒ {U}[π attemptl? { } continuation { q } ω]φ, Δ

We combine two rules into one here, by writing “attemptl?” to express that
there is a rule for the labeled attempt-continuation statement and a rule for
the unlabeled attempt-continuation statement.
For an attempt block with a leading continue statement:

attemptContinueNoLabel
Γ =⇒ {U}[π q ω]φ, Δ

Γ =⇒ {U}[π attemptl? { continue; p } continuation { q } ω]φ, Δ

attemptContinue
Γ =⇒ {U}[π q ω]φ, Δ

Γ =⇒ {U}[π attemptl { continue l; p } continuation { q } ω]φ, Δ

l �= l′:
attemptContinueNoMatch

Γ =⇒ {U}[π continue l’; ω]φ, Δ

Γ =⇒ {U}[π attemptl? { continue l’; p } continuation { q } ω]φ, Δ

For an attempt block with a leading break statement:
attemptBreakNoLabel

Γ =⇒ {U}[π ω]φ, Δ

Γ =⇒ {U}[π attemptl? { break; p } continuation { q } ω]φ, Δ

attemptBreak
Γ =⇒ {U}[π ω]φ, Δ

Γ =⇒ {U}[π attemptl { break l; p } continuation { q } ω]φ, Δ

l �= l′:
attemptBreakNoMatch

Γ =⇒ {U}[π break l’; ω]φ, Δ

Γ =⇒ {U}[π attemptl? { break l’; p } continuation { q } ω]φ, Δ

Transparent Treatment of for-Loops in Proofs 509

For an attempt block with a leading throw statement:

attemptThrow
Γ =⇒ {U}[π throw se; ω]φ, Δ

Γ =⇒ {U}[π attemptl? { throw se; p } continuation { q } ω]φ, Δ

For an attempt block with a leading return statement:

attemptEmptyReturn
Γ =⇒ {U}[π return; ω]φ, Δ

Γ =⇒ {U}[π attemptl? { return; p } continuation { q } ω]φ, Δ

attemptReturn
Γ =⇒ {U}[π return se; ω]φ, Δ

Γ =⇒ {U}[π attemptl? { return se; p } continuation { q } ω]φ, Δ

Further symbolic execution rules in JavaDL for continue statements and unla-
beled break statements when encountering other non-active prefixes are iden-
tical to those given in [20]. These merely propagate the abruptly completing
statements upwards (executing the finally block first, in the case of a try-
(catch)-finally statement). As an example, where cs is a possibly empty list
of catch-blocks:

tryContinueNoLabel
Γ =⇒ {U}[π r continue; ω]φ, Δ

Γ =⇒ {U}[π try { continue; p } cs finally { r } ω]φ, Δ

3.3 JavaDL Loop Unwinding Rules Using attempt-continuation

We can also use attempt-continuation statements in a loop unwinding rule for
while loops in JavaDL. This does not require nested modalities as used in [20]:

unwindWhileLoop
Γ =⇒ {U}[π if (nse) attemptl? { p }

continuation { l?: while (nse) p } ω]φ, Δ

Γ =⇒ {U}[π l?: while (nse) p ω]φ, Δ

We unroll and execute one iteration of the loop, winding up back at the beginning
of the loop unless the loop body completes abruptly (not due to a matching
continue). This closely resembles the loop unrolling equivalence in Theorem 1.

The loop unwinding rule for do loops is almost the same, except that the
condition is not checked before the first iteration:

unwindDoLoop
Γ =⇒ {U}[π attemptl? { p } continuation { l?: while (nse) p }ω]φ, Δ

Γ =⇒ {U}[π l?: do p while (nse); ω]φ, Δ

As can be seen, a single loop unwinding turns a do loop into a while loop.
We can also introduce a loop unwinding rule for the for loop. As will be seen

later, we have a rule to pull out the initializer of the for loop, so the rule only
considers for loops with empty initializers:

510 N. Wasser

unwindForLoop
Γ =⇒ {U}[π if (g′) attemptl? { p }

continuation { upd ′ l?: for (; g; upd) p } ω]φ, Δ

Γ =⇒ {U}[π l?: for (; g; upd) p ω]φ, Δ

Here upd ′ is a statement list equivalent to the expression list upd , and g′ is an
expression equivalent to the guard g (if g is empty, g′ is true).

As in the rules for while and do loops, the loop body is executed in an
attempt block. But before re-entering the loop in the continuation, we exe-
cute the for loop’s update. This ensures that we execute the for loop’s update
whether the loop body completes normally or completes abruptly due to a match-
ing continue statement.

4 New Loop Invariant Rules for JavaDL

In order for the loop invariant rule based on loop scopes to be sound, when
a continue statement reached a loop scope the appropriate symbolic execu-
tion rule in JavaDL needed to opaquely do two things: (1.) set the loop scope
index to false and (2.) remove the entire surrounding legal program fragment.
Thanks to attempt-continuation statements we can explcitly set a variable in
the continuation in order to transparently solve the first of these issues. However
in order to solve the second issue transparently, we require the addition of a
further extended Java statement, which explicitly halts the program.

4.1 Introducing the Halt Statement

Definition 6. The halt statement (written ↓) is an extended Java statement
that, when executed, immediately halts the entire legal program fragment in which
it is contained, ensuring that no further statements are executed (not even state-
ments in finally blocks).

The dynamic logic with modalities for each type of completion can be extended
with new modalities [p]↓(·) for all legal program fragments p. Axioms for ↓
and the new modalities are shown in Fig. 4. In particular, loop unrolling using
attempt-continuation statements is also valid in the halt modalities:

Theorem 2 (Correctness of loop unrolling in the halt modalities).
[if (e) attemptl { st } continuation { l: while (e) st }]↓ φ is equivalent to
[l: while (e) st]↓ φ.

Proof. See appendix.

Halting in JavaDL

The single symbolic execution rule in JavaDL required for the halt statement is:

halt
Γ =⇒ {U}φ, Δ

Γ =⇒ {U}[π ↓ ω]φ, Δ

Transparent Treatment of for-Loops in Proofs 511

[;]↓ φ (22)
[break;]↓ φ (23)

[break l;]↓ φ (24)
[continue;]↓ φ (25)

[continue l;]↓ φ (26)
[↓]↓ φ ≡ φ (27)
[↓]T φ (28)

[st1 st2]↓ φ ≡ [st1]↓ φ ∧ [st1]N [st2]↓ φ (29)

[if (e) st1 else st2]↓φ

≡ [b = e;]↓φ ∧ [b = e;]N ((b → [st1]↓φ) ∧ (¬b → [st2]↓φ)) (30)
[l: while (e) st]↓φ

≡ [b = e;]↓φ ∧ [b = e;]N (b → ([st]↓φ ∧ [st]Cl [l: while (e) st]↓ φ)) (31)

[try { p } finally { q }]↓φ ≡ [p]↓φ ∧ [p]T [q]↓φ (32)
[attemptl { p } continuation { q }]↓φ ≡ [p]↓φ ∧ [p]Cl [q]↓φ (33)

Fig. 4. Axioms for the halt statement and halt modality

Provided correct modalities for throw and return, as well as further axioms
for missing Java statements (in particular throw, try-catch, return, assignment
and dealing with method calls), Conjecture 1 claims equivalence between JavaDL
and the dynamic logic with modalities for each type of completion.

Conjecture 1. The JavaDL formula [p]φ must hold iff φ holds in all normally
completing or halting states reachable by executing p:

[p]φ ≡ [p]normal φ ∧ [p]↓φ

4.2 Loop Invariant Rule for while Loops Using attempt-continuation

Thanks to attempt-continuation and halt statements we introduce the follow-
ing loop invariant rule for while loops, where x is a fresh boolean variable not
occuring anywhere in the legal program fragment “π l?: while (nse) p ω”:

loopInvariantWhile
Γ =⇒ {U}Inv , Δ
Inv =⇒ [π x = true;

if (nse)
attemptl? { p } continuation { x = false; ↓ }

ω]((x .
= FALSE → Inv) & (x .

= TRUE → φ))

Γ =⇒ {U}[π l?: while (nse) p ω]φ, Δ

As the continuation block is constructed only from a simple assignment and
the halt statement, if p completes normally or completes abruptly due to a
matching continue, it is guaranteed to set x to false and complete due to the
halt statement, leaving the invariant to be proven in the state reached after
execution of a single loop iteration.

In all other cases x retains its initial value true, leaving {U ′}[π abrupt ω]φ
to be proven, with U ′ expressing the state the program is in when the loop is left.

512 N. Wasser

If nse evaluates to false or p completes abruptly due to a matching break, then
abrupt is empty and it remains to prove {U ′}[π ω]φ. If p completes abruptly due
to any other statement, abrupt is equal to that abruptly completing statement.

4.3 Loop Invariant Rule for for Loops Using attempt-continuation

In order to prove that the loop invariant of a for loop initially holds, we must first
reach the “initial” entry point of the loop. This is the point after full execution
of the loop initializer. We therefore introduce the following rule to pull out the
loop initializer of a for loop, where init′ is a statement list equivalent to the
loop initializer init:

pullOutLoopInitializer
Γ =⇒ {U}[π (init ′ l?: for (; guard; upd) p } ω]φ, Δ

Γ =⇒ {U}[π l?: for (init; guard; upd) p ω]φ, Δ

The following loop invariant rule can then be applied to for loops without loop
initializers, where x is a fresh boolean variable not occurring anywhere in the
legal program fragment “ π l?: for (; guard; upd) p ω”, upd ′ is a statement
list equivalent to the expression list upd , and guard ′ is an expression equivalent
to the guard guard (true, if guard is empty):

loopInvariantFor
Γ =⇒ {U}Inv , Δ
Inv =⇒ [π x = true;

if (guard ′)
attemptl? { p } continuation { upd ′ x = false; ↓ }

ω]((x .
= FALSE → Inv) & (x .

= TRUE → φ))

Γ =⇒ {U}[π l?: for (; guard; upd) p ω]φ, Δ

As the continuation is constructed only from the modified for loop update upd ′,
a simple assignment and the halt statement, it cannot contain breaks, continues
or returns. It also cannot contain an explicit throw, but implicitly exceptions
can be thrown in upd ′. Thus if p completes normally or completes abruptly
due to a matching continue, causing symbolic execution of the continuation,
this will either set x to false and complete due to the halt statement, leaving
the invariant to be proven in the state reached after execution of a single loop
iteration; or it will complete abruptly due to a statement throw se; (keeping
x set to its initial value of true), leaving {U ′}[π throw se; ω]φ to be proven,
with U ′ expressing the state the program is in when the loop is left abruptly
due to the exception. All other cases are identical to those for the while loop
invariant above.

Theorem 3. The symbolic execution loop invariant rules loopInvariantWhile and
loopInvariantFor are sound.

Proof (Sketch). See the extended technical report [22].

Transparent Treatment of for-Loops in Proofs 513

As can be seen, introducing attempt-continuation and halt statements has
allowed us to have a loop invariant rule specifically for for loops, which does
not require program transformation of the loop body and only minimal pro-
gram transformation of the loop update. This allows for loops to be treated
as first-class citizens in proofs and lets user interactions occur on legal program
fragments which are still reasonably close to the original program, rather than
on those which have been transformed in such a way that it is unclear how they
relate to the original program. This increases the transparency of the proof.

4.4 Why No Loop Invariant Rule for do Loops?

One could imagine that a similar case could be made to treat do loops as first-
class citizens in proofs, by supplying a loop invariant rule specifically for do
loops. However, this is not really the case. As with the other loop types, the loop
invariant for a do loop needs to hold only just before the condition is checked.
However, unlike the other loop types, this is not the case for do loops until after
the first loop iteration. This makes a loop invariant rule for do loops actually
less transparent, than the reasonably simple steps of (1.) converting the do loop
into a while loop and (2.) applying the loop invariant rule for while loops on
the resulting while loop. This transformation of a do loop into a while loop can
happen in one of two ways: (i) by applying the unwindDoLoop rule to the do loop
and symbolically executing the unrolled body until the attempt-block is exited
and the while loop in the continuation-block becomes the active statement,
or (ii) by applying the program transformation rule from [9] to the do loop,
producing a while loop directly without needing to symbolically execute the
first loop iteration:

transformDoToWhile
Γ =⇒ {U || fst := TRUE}[l?: while (fst || nse) { fst = false; p } ω]φ, Δ

Γ =⇒ {U}[π l?: do p while (nse); ω]φ, Δ

Here fst is a fresh boolean variable. The loop invariant then applied to the
resulting while loop can use the value of fst if the invariant of the original do
loop is only established after at least one iteration of the loop has been executed.

5 Evaluation

Based on our previous work on providing a loop invariant rule specifically for for
loops using loop scopes [21], Benedikt Dreher implemented this loop invariant
in KeY and evaluated it in [5]. He found that the efficiency of the new rule was
similar to the pure program transformation rule and the rule using loop scopes on
while loops produced by program transformation of the for loop. The new rule
required only about 80% as many nodes and execution steps as the pure program
transformation rule, while creating slightly more branches (creating an average
of 27.86 to 27.5 branches in the examples). It was about 10% less efficient than
the rule using loop scopes on while loops produced by program transformation

514 N. Wasser

of the for loop. However, the new rule provided more transparency, as it was
easier to see in the proof tree which statement in the original for loop was being
processed, as well as seeing directly what the result of applying the loop invariant
rule to a for loop would produce.

The rules proposed in this paper should be slightly more efficient, as they
do not require the unnecessary steps of resetting the loop scope index before
symbolically executing the for loop’s update and then setting the loop scope
index afterwards, as the implemented rule from [21] does. Additionally, the trans-
parency of the rules proposed in this paper should be even greater, as the opac-
ity of the loop scope has been completely replaced with the transparency of
attempt-continuation and halt statements.

6 Related Work

We have already compared our approach to other JavaDL approaches using pro-
gram transformation of the loop body or indexed loop scopes, showing that our
approach here is much more transparent. We have also compared this approach
to using a dynamic logic with typed modalities for each completion type, which
has drawbacks in particular when using symbolic execution. We unfortunately
could not find any work formally explaining the handling of irregular control flow
in loops for VeriFast [11], a symbolic execution system for C and Java; the most
formal paper we could find [12] describes only a reduced language without breaks
and continues. The symbolic execution calculus for KIV [19] is also a dynamic
logic variant. However, they sequentially decompose (flatten) statements, such
that a non-active prefix is not needed. This is accomplished by including both
heavy program transformation and tracking of mode information, which has
similarities to using a dynamic logic with typed modalities for each completion
type. Additionally, their approach cannot deal directly with continues, as they
claim that these are problematic for loop unwinding; we have shown that this
is not the case with our approach, providing loop unwinding rules for not only
while, but also do and for loops. OpenJML [4] and other approaches using
verification condition generation work by translating the program into an inter-
mediate language. Abrupt completion is usually modelled by branches to basic
blocks. This might make these approaches efficient, but the treatment of all loop
types becomes completely opaque. While intermediate languages are less com-
plex (which can be helpful), the translation into them can require compromises
concerning soundness [7] and is a non-trivial and error-prone task [15] in any
case.

Finally, concurrently to this work we came up with Completion Scopes3 [17],
which are non-active prefixes that are powerful enough to express all other non-
active prefixes. There are both advantages and disadvantages to specialized solu-
tions versus generalized solutions, but we feel that there should be enough room
in this research area for both to coexist peacefully.
3 To clarify: Nathan Wasser came up with the general idea of completion scopes, while

Dominic Steinhöfel fleshed this idea out with some limited input from Nathan.

Transparent Treatment of for-Loops in Proofs 515

7 Conclusion and Future Work

We have introduced attempt-continuation and halt statements as extended
Java statements that allow more localized reasoning for loops and a way to
express immediately halting the Java program. Axioms for these statements
and the appropriately typed modalities have been given in a dynamic logic with
modalities for various completion types. These statements are of particular inter-
est in JavaDL, where we have supplied symbolic execution rules for them.

We have shown that using attempt-continuation statements rather than
indexed loop scopes lets us gain great potential:

1. We are able to express a loop invariant rule specifically for for loops which
does not require program transformation of the loop body and allows a trans-
parent treatment of for loops as first-class citizens in proofs.

2. We are able to express loop unrolling rules for while, do and for loops which
require neither program transformation of the loop body, nor the use of nested
modalities.

3. The rule for a continue reaching the attempt-block (the non-active prefix
responsible for loop bodies) is more transparent than the corresponding rule
for loop scopes, simply executing the continuation (whatever it may be),
rather than opaquely setting the loop scope index to false.

As future work we would like to implement these ideas into KeY, performing an
evaluation of the loop invariant rules for while and for loops with this approach
on the examples tested in [18] and [5], so as to compare them with the loop scope
approach. We would also like to evaluate the new loop unrolling rules and are
looking to find an appropriate benchmark for that.

Additionally, we would be interested in adding a halts clause to JML [3]
method contracts, in order to express what must hold if a method executes
the halt statement. While no Java method can syntactically contain the halt
statement, the Java virtual machine does provide the effect of halting, with the
methods Runtime.exit() and System.exit() [8, Chapter 12.8]. Providing a
way to express halting in a method contract is therefore somewhat of interest.

Finally, a comparison between implementations of this work and completion
scopes would be very insightful.

Acknowledgements. We thank Benedikt Dreher for his implementation and evalua-
tion of our previous attempt at using indexed loop scopes to create a loop invariant rule
specifically for for loops. We thank Richard Bubel for all his helpful comments and
the wonderful discussions these lead to. We owe a great debt of gratitude to Dominic
Steinhöfel for his help on the technical report which lead to this paper, as well as for
all the fruitful (and sometimes wine-ful) discussions on loop scopes and their offspring.

516 N. Wasser

Appendix

Proofs for the Theorems

Theorem 1 (Correctness of loop unrolling). [l: while (e) st]t φ is equiv-
alent to [if (e) attemptl { st } continuation { l: while (e) st }]t φ for all
completion types t ∈ T .

Proof. [if (e) attemptl { st } continuation { l: while (e) st }]t φ expands
to: [if (e) attemptl { st } continuation { l: while (e) st }else ;]t φ.

As A = {break , continue, breakl, continuel} ∪
⋃

k∈L\{l}{breakk, continuek}
and T = N ∪ A, by case distinction:

If t ∈ N :

[if (e) attemptl { st } continuation { l: while (e) st } else ;]N φ

≡ [b = e;]N
((b → [attemptl { st } continuation { l: while (e) st }]N φ)

∧ (¬b → [;]N φ)) by (13)
≡ [b = e;]N ((b → ([st]Cl [l: while (e) st]N φ ∧ [st]Bl φ)) ∧ (¬b → [;]N φ))

by (19)

≡ [b = e;]N ((b → ([st]Cl [l: while (e) st]N φ ∧ [st]Bl φ)) ∧ (¬b → φ))
by (1)

≡ [b = e;]N ((¬b → φ) ∧ (b → ([st]Bl φ ∧ [st]Cl [l: while (e) st]N φ)))
by commutativity of ∧

≡ [l: while (e) st]N φ by (16)
�

If t ∈ {break , continue, breakl, continuel}:

[if (e) attemptl { st } continuation { l: while (e) st } else ;]t φ

≡ [b = e;]N
((b → [attemptl { st } continuation { l: while (e) st }]t φ)

∧ (¬b → [;]t φ)) by (13)
≡ [b = e;]N ((b → [st]Cl [l: while (e) st]t φ) ∧ (¬b → [;]t φ)) by (20)
≡ [b = e;]N ((b → [st]Cl [l: while (e) st]t φ) ∧ (¬b → true)) by (6)
≡ [b = e;]N (b → [st]Cl [l: while (e) st]t φ) by definition of → and ∧
≡ [b = e;]N (b → [st]Cl true) by (18)
≡ [b = e;]N (b → true) by necessitation
≡ [b = e;]N true by definition of →
≡ true by necessitation
≡ [l: while (e) st]t φ by (18)
�

Transparent Treatment of for-Loops in Proofs 517

Otherwise, t ∈
⋃

k∈L\{l}{breakk, continuek}:

[if (e) attemptl { st } continuation { l: while (e) st } else ;]t φ

≡ [b = e;]N
((b → [attemptl { st } continuation { l: while (e) st }]t φ)

∧ (¬b → [;]t φ)) by (13)
≡ [b = e;]N ((b → ([st]Cl [l: while (e) st]t φ ∧ [st]t φ)) ∧ (¬b → [;]t φ))

by (21)

≡ [b = e;]N ((b → ([st]Cl [l: while (e) st]t φ ∧ [st]t φ)) ∧ (¬b → true))
by (6)

≡ [b = e;]N (b → ([st]Cl [l: while (e) st]t φ ∧ [st]t φ))
by definition of → and ∧

≡ [b = e;]N (b → ([st]t φ ∧ [st]Cl [l: while (e) st]t φ))
by commutativity of ∧

≡ [l: while (e) st]t φ by (17)
�

Theorem 2 (Correctness of loop unrolling in the halt modalities).
[if (e) attemptl { st } continuation { l: while (e) st }]↓ φ is equivalent to
[l: while (e) st]↓ φ.

Proof.

[if (e) attemptl { st } continuation { l: while (e) st } else ;]↓ φ

≡ [b = e;]↓φ ∧
[b = e;]N ((b → [attemptl { st } continuation { l: while (e) st }]↓φ)

∧ (¬b → [;]↓φ)) by (30)
≡ [b = e;]↓φ ∧ [b = e;]N ((b → ([st]↓φ ∧ [st]Cl [l: while (e) st]↓φ))

∧ (¬b → [;]↓φ)) by (33)
≡ [b = e;]↓φ ∧ [b = e;]N ((b → ([st]↓φ ∧ [st]Cl [l: while (e) st]↓φ))

∧ (¬b → true)) by (22)
≡ [b = e;]↓φ ∧ [b = e;]N (b → ([st]↓φ ∧ [st]Cl [l: while (e) st]↓φ))

by definition of → and ∧
≡ [l: while (e) st]↓ φ by (31)
�

Theorem 3. The symbolic execution loop invariant rules loopInvariantWhile and
loopInvariantFor are sound.

Proof (Sketch). See the extended technical report [22].

518 N. Wasser

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification - The KeY Book - From Theory to Practice. LNCS,
vol. 10001. Springer (2016)

2. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware. The KeY Approach, LNCS, vol. 4334. Springer (2007)

3. Chalin, P., Kiniry, J.R., Leavens, G.T., Poll, E.: Beyond assertions: advanced spec-
ification and verification with JML and ESC/Java2. In: de Boer, F.S., Bonsangue,
M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 342–363.
Springer, Heidelberg (2006). https://doi.org/10.1007/11804192_16

4. Cok, D.R.: OpenJML: software verification for Java 7 using JML, OpenJDK, and
Eclipse. In: Proceedings 1st Workshop on Formal Integrated Development Envi-
ronment, pp. 79–92 (2014)

5. Dreher, B.: Transparent treatment of loops in JavaDL. B.Sc. thesis, Darmstadt
University of Technology, Germany (2019)

6. Filliâtre, J.C.: Deductive software verification. Int. J. Softw. Tools Technol. Trans-
fer 13(5), 397 (2011)

7. Flanagan, C., Flanagan, C., Saxe, J.B.: Avoiding exponential explosion: generat-
ing compact verification conditions. In: Proceedings of the 28th ACM SIGPLAN-
SIGACT Symposium on POPL, pp. 193–205. ACM (2001)

8. Gosling, J., Joy, B., Steele, G.L.: The Java Language Specification, 1st edn.
Addison-Wesley Longman Publishing Co., Inc., Boston (1996)

9. de Gouw, S., de Boer, F.S., Bubel, R., Hähnle, R., Rot, J., Steinhöfel, D.: Verifying
OpenJDK’s sort method for generic collections. J. Autom. Reason. 62(1), 93–126
(2019)

10. Harel, D., Tiuryn, J., Kozen, D.: Dynamic Logic. MIT Press (2000)
11. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:

VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41–55. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5_4

12. Jacobs, B., Vogels, F., Piessens, F.: Featherweight VeriFast. Log. Methods Comput.
Sci. 11(3), 1–57 (2015)

13. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

14. Kleene, S.C.: Representation of events in nerve nets and finite automata (1951)
15. Marché, C., Paulin-Mohring, C., Urbain, X.: The KRAKATOA tool for certifica-

tion of JAVA/JAVACARD programs annotated in JML. J. Log. Algebr. Program.
58, 89–106 (2004)

16. Schlager, S.: Symbolic execution as a framework for deductive verification of object-
oriented programs. Ph.D. thesis, Karlsruhe Institute of Technology (2007)

17. Steinhöfel, D.: Abstract execution: automatically proving infinitely many pro-
grams. Ph.D. thesis, Darmstadt University of Technology, Germany (2020). http://
tuprints.ulb.tu-darmstadt.de/8540/

18. Steinhöfel, D., Wasser, N.: A new invariant rule for the analysis of loops with non-
standard control flows. In: 13th International Conference on Integrated Formal
Methods IFM, pp. 279–294 (2017)

19. Stenzel, K.: Verification of Java card programs. Ph.D. thesis, Universität Augsburg
(2005)

https://doi.org/10.1007/11804192_16
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
http://tuprints.ulb.tu-darmstadt.de/8540/
http://tuprints.ulb.tu-darmstadt.de/8540/

Transparent Treatment of for-Loops in Proofs 519

20. Wasser, N.: Automatic generation of specifications using verification tools. Ph.D.
thesis, Darmstadt University of Technology, Germany (2016)

21. Wasser, N., Steinhöfel, D.: Using loop scopes with for-loops. Tech. rep., Darmstadt
University of Technology, Germany (2019). https://arxiv.org/abs/1901.06839

22. Wasser, N., Steinhöfel, D.: Treating for-loops as first-class citizens in proofs. Tech.
rep., Darmstadt University of Technology, Germany (2020). https://arxiv.org/abs/
2002.00776

https://arxiv.org/abs/1901.06839
https://arxiv.org/abs/2002.00776
https://arxiv.org/abs/2002.00776

Author Index

Abusdal, Ole Jørgen 1
Albert, Elvira 19

Bainczyk, Alexander 38
Baumann, Christoph 54
Bitterlich, Martin 408
Bodenmüller, Stefan 408
Bordis, Tabea 80
Buiras, Pablo 54

Cleophas, Loek 80
Cok, David R. 105, 313
Crafa, Silvia 129

Dam, Mads 54
Damiani, Ferruccio 147
de Boer, Frank 173
de Gouw, Stijn 173
Din, Crystal Chang 1

Fiorini, Sandro Rama 264

Genaim, Samir 19
Giesl, Jürgen 193
Guanciale, Roberto 54
Gurov, Dilian 229

Hark, Marcel 193
Howar, Falk 38
Huisman, Marieke 243

Kamburjan, Eduard 264
Kittelmann, Alexander 80
Klamroth, Jonas 290

Laneve, Cosimo 129
Lanzinger, Florian 290
Leavens, Gary T. 313
Leino, K. Rustan M. 105

Li, Chu Min 350
Lidström, Christian 229
Lienhardt, Michael 147
Lommen, Nils 193

Manyà, Felip 350
Maugars, Bruno 147
Merayo, Alicia 19
Meyer, Fabian 193
Michel, Bertrand 147
Monti, Raúl E. 243
Mostowski, Wojciech 370
Mundici, Daniele 382

Nemati, Hamed 54
Nilizadeh, Amirfarhad 313

Pfeifer, Wolfram 290
Pun, Violet Ka I 1

Ranta, Aarne 397
Reif, Wolfgang 408
Román-Díez, Guillermo 19
Rümmer, Philipp 229
Runge, Tobias 80

Schaefer, Ina 80
Schellhorn, Gerhard 408
Schlatte, Rudolf 437
Steffen, Bernhard 38
Steinhöfel, Dominic 446
Stolz, Volker 1

Tapia Tarifa, Silvia Lizeth 481

Ulbrich, Mattias 290

Wasser, Nathan 500
Watson, Bruce W. 80

	Preface
	Organization
	Contents
	I Can See Clearly Now: Clairvoyant Assertions for Deadlock Checking
	1 Introduction
	2 The ABS Language and Deadlocks
	2.1 The ABS Language
	2.2 Deadlocks Introduced by Refactoring
	2.3 A Wait-For Relation Between Cogs

	3 Program Transformation for Deadlock Checking
	3.1 Assertion Transformation
	3.2 Example

	4 Clairvoyant Assertions
	5 KeY-ABS
	6 Related Work
	7 Conclusion
	References

	When COSTA Met KeY: Verified Cost Bounds
	1 Introduction and Overview
	2 Key+COSTA for Concrete Programs
	2.1 Resource Analysis: Upper Bounds
	2.2 Integer Java Programs
	2.3 Extension to Handle the Heap

	3 Verified Cost Bounds for Abstract Programs
	3.1 QAE Annotations
	3.2 Cost Postconditions
	3.3 Other Cost Models

	4 Related Work
	5 Conclusions
	References

	Lifelong Learning of Reactive Systems in Practice
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Lifelong Learning in Practice
	4.1 Phase 1
	4.2 Phase 2
	4.3 Phase 3
	4.4 Phase 4
	4.5 Phase 5
	4.6 Phase 6

	5 Learning an Adaptive Cruise Control System
	5.1 The Learning Setup
	5.2 The Iterative Learning Process
	5.3 Controlling the Evolution

	6 Conclusions and Future Work
	References

	A Case Study in Information Flow Refinement for Low Level Systems
	1 Introduction
	2 Models, Knowledge, and Ignorance
	3 Case Study: Processor Model and Separation Kernel
	3.1 A Simple Key Manager

	4 Refinement and Ignorance Preservation
	4.1 Ignorance Preservation

	5 Case Study: Adding a History Variable
	6 Case Study: Cache Aware Model
	6.1 Timing Channels in the Refined Model
	6.2 A Naive Countermeasure for the Key Manager

	7 Relational Verification
	8 Case Study: Verification of Constant Time Execution and Cache Coloring
	9 Related Work
	10 Concluding Remarks
	References

	Re-CorC-ing KeY: Correct-by-Construction Software Development Based on KeY
	1 Introduction
	2 Related Work
	3 Correctness-by-Construction in CorC
	3.1 Correctness-by-Construction
	3.2 CorC

	4 Object-Oriented Development in CorC 2.0
	4.1 Object-Oriented Concepts in CorC 2.0
	4.2 Development Process in CorC 2.0
	4.3 Implementation

	5 Evaluation
	5.1 RQ1 - Verification Time and Verification Steps
	5.2 RQ2 - Usability of CorC
	5.3 Threats to Validity

	6 Beyond Monolithic Program Construction with CorC
	7 Conclusion
	A Appendix
	References

	Specifying the Boundary Between Unverified and Verified Code
	1 Introduction
	2 Parameter Validation
	3 Method Specifications
	4 Language Discipline Versus Verifier Discipline
	5 Recommends Clauses
	6 Using Recommends Clauses with Standard Patterns
	7 Recommends Else
	7.1 Exception Designations
	7.2 Multiple Recommends Clauses
	7.3 Well-definedness

	8 Combining Recommends and Requires
	9 Prototype Implementations
	9.1 JML and OpenJML
	9.2 Dafny

	10 Related Work
	11 Concluding Remarks
	References

	Programming Legal Contracts
	1 Introduction
	2 Legal Contracts' Elements as Stipula Building Blocks
	3 Example: The Bet Contract
	4 Type Inference in Stipula
	5 An Analyzer of Liquidity
	6 Conclusions
	References

	Towards a Modular and Variability-Aware Aerodynamic Simulator
	1 Introduction
	2 Computational Fluid Dynamics Challenges
	2.1 Functional Characteristics
	2.2 Computational Challenges

	3 State of the Art
	3.1 elsA's Approach
	3.2 elsA's Approach Limitations

	4 Our Approach
	5 Data Model
	5.1 Implementation
	5.2 Application to CFD

	6 Variable Operators
	6.1 Implementation
	6.2 Application to CFD

	7 Initial Results
	8 Conclusion and Future Work
	References

	Reasoning About Active Objects: A Sound and Complete Assertional Proof Method
	1 Introduction
	2 Preliminaries
	3 Reasoning About Asynchronous Calls
	4 Reasoning About Cooperative Scheduling
	5 Reasoning About Futures
	6 Future Work
	References

	Improving Automatic Complexity Analysis of Integer Programs
	1 Introduction
	2 Preliminaries
	3 Runtime Bounds by Multiphase Ranking Functions
	3.1 Multiphase-linear Ranking Functions
	3.2 Computing Runtime Bounds
	3.3 Complete Algorithm

	4 Improving Bounds by Control-Flow Refinement
	4.1 SCC-Based Partial Evaluation
	4.2 Sub-SCC-Based Partial Evaluation

	5 Evaluation
	5.1 Evaluation on Complexity_ITS
	5.2 Evaluation on Complexity_C_Integer

	6 Related Work and Conclusion
	A Proofs
	A.1 Proof of Lemma18
	A.2 Proof of Theorem20
	A.3 Proof of Theorem24
	A.4 Proof of Theorem25

	References

	Alice in Wineland: A Fairy Tale with Contracts
	1 Down the Rabbit-Hole
	2 Before and After the Footman
	3 The State of the Caterpillar
	4 The March Hare Rules
	5 The Logic of the Mad Hatter
	6 Epilogue
	References

	Teaching Design by Contract Using Snap!
	1 Introduction
	2 Background
	2.1 Snap!
	2.2 Program Verification

	3 Visual Program Specifications
	3.1 Visual Pre- and Postconditions
	3.2 Visual Assertions and Loop Invariants
	3.3 Visual Expressions
	3.4 Discussion

	4 Graphical Approach to Verification Result Reporting
	5 Tool Support
	6 Sketch of Teaching Plan
	7 Conclusions
	References

	On the Notion of Naturalness in Formal Modeling
	1 Introduction
	2 Background: A Very Short Primer on Semiotics
	3 The Inadequacy of Abstraction for Explanation
	3.1 The Concept-Centered View on Models
	3.2 Concepts and Syntax
	3.3 A Complete View on Models

	4 Conceptual Spaces
	5 Naturalness in Conceptual Spaces
	5.1 Redefining `3́9`42`"̇613A``45`47`"603AM and `3́9`42`"̇613A``45`47`"603AM and Other Mental Models
	5.2 The Place of Abstraction
	5.3 Formal Models as Metaphors
	5.4 Naturalness and Perceptional Naturalness

	6 Discussion
	7 Conclusion
	References

	The Karlsruhe Java Verification Suite
	1 Introduction
	2 The Java Modeling Language
	3 Tools in the Karlsruhe Java Verification Suite
	3.1 KeY
	3.2 JJBMC
	3.3 Property Checker

	4 Distributing Proof Obligations
	5 Tool Interaction and Integration
	5.1 JML Semantics
	5.2 Formulating Program Variants Using JML
	5.3 Proof Management

	6 Case Study
	6.1 Library Code: Quicksort with Explicit Base Case
	6.2 Library Code: Immutable Arrays with Sortedness and Non-negativity
	6.3 Client Code: The Web Shop GUI
	6.4 Conclusion

	7 Related Work
	8 Conclusion and Future Work
	References

	Further Lessons from the JML Project
	1 Introduction
	1.1 Goals of JML
	1.2 Project History
	1.3 Tools for JML
	1.4 Related Work on Assessing Specification Language Projects

	2 Lessons About Developing Specification Languages and Tools
	2.1 Effect on Other Specification Language Projects
	2.2 The Costs and Benefits of Specification
	2.3 Documenting Existing Java Programs (Goal 1)
	2.4 Being Easily Understood (Goal 2)
	2.5 Formally Defining JML's Semantics (Goal 3)
	2.6 Tool Design with Intermediate Languages
	2.7 Coordinating Different Kinds of Tools
	2.8 Specifying Java's Libraries

	3 Language Design Contributions and Remaining Issues
	3.1 Behavioral Subtyping and Supertype Abstraction
	3.2 Specification Cases and Specification Inheritance
	3.3 Types Used in Specification
	3.4 Frame Conditions
	3.5 Specifying Lambda Expressions
	3.6 Class and Object Invariants

	4 Controversies and Continuing Discussions
	4.1 Interface Specification
	4.2 Visibility in Specifications
	4.3 Specification Placement Before Methods
	4.4 Semantics of Multiple Specification Cases
	4.5 Default Specifications

	5 Related Work on Specification Languages
	6 Future Work for the JML Project
	6.1 Tool Improvements
	6.2 Semantic Extensions
	6.3 Documentation and Outreach

	7 Conclusions
	References

	Inference in MaxSAT and MinSAT
	1 Introduction
	2 Preliminaries
	3 Resolution-Style Calculi for MaxSAT and MinSAT
	3.1 Resolution for MaxSAT
	3.2 Resolution for MinSAT

	4 Tableau-Style Calculi for MaxSAT and MinSAT
	4.1 Tableau Calculi for SAT
	4.2 Tableau Calculi for Clausal MaxSAT
	4.3 Tableau Calculi for Non-clausal MaxSAT
	4.4 Tableau Calculi for MinSAT

	5 Conclusions
	References

	Implications of Deductive Verification on Research Quality
	1 Introduction
	2 The KeY System
	3 The Specialised Research Tool
	4 New Directions for KeY?
	5 Actual Industrial Grade Software
	6 Formal Relation Between KeY and Good Research
	7 The Educational Tool
	8 Informal Methods
	References

	Computing in Łukasiewicz Logic and AF-Algebras
	1 Introduction
	2 A Characterization of Łukasiewicz Logic and Its Algebras
	2.1 The Logic of a Continuous [0,1]-Valued Implication
	2.2 Ideals, Spectral Spaces, and Quotients
	2.3 The Kroupa-Panti Theorem
	2.4 Analogies Between Analogies

	3 AF-Algebras and MV-Algebras
	3.1 Elliott Classification, ch18ell
	3.2 AF-Algebras

	4 Computing on AF-Algebras
	4.1 Ł-Coding of Projections of AF-Algebras
	4.2 Decision Problems for AF-Algebras and Their Complexity

	5 Final Remarks: Closing a Circle of Ideas
	References

	Speaking About Wine: Another Case Study in Bridging the Gap Between Formal and Informal Knowledge
	1 Introduction
	2 Informal Specification: System Functionalities
	3 Database
	4 Grammar
	5 Semantics
	6 Data Sources
	7 Related Work
	8 Conclusion
	References

	Software & System Verification with KIV
	1 Introduction
	2 Basic Logic and Structured Specifications
	2.1 Structured Specifications of Algebraic Data Types
	2.2 Modelling the Heap and Separation Logic

	3 Proof Engineering
	3.1 Management of Specifications and Proofs
	3.2 Proving Theorems
	3.3 Proof Trees

	4 Components, Refinement and Program Logic
	4.1 Sequential Programs
	4.2 Weakest Precondition Calculus with Exceptions in KIV
	4.3 Hierarchical Components and Refinement

	5 Concurrency, Temporal Logic and Rely-Guarantee Calculus
	5.1 Concurrent Programs and Their Semantics
	5.2 Temporal and Program Formulas
	5.3 Rely-Guarantee Calculus

	6 Applications
	6.1 Overview
	6.2 Case Studies on Concurrency
	6.3 The Flashix Project

	7 Conclusion
	References

	A Note on Idleness Detection of Actor Systems
	1 Introduction
	2 A Formal Model of Dijkstra's Termination Detection Algorithm
	3 Quiescence Detection in the Erlang Backend of ABS
	4 Conclusion and Future Work
	A Dijkstra's Algorithm
	B Asynchronous Message Sending in the Dijkstra Algorithm Model
	C Specification of the Erlang Backend Behavior
	References

	Symbolic Execution: Foundations, Techniques, Applications, and Future Perspectives
	1 Introduction
	2 Minipy
	3 Foundations
	3.1 Designing a Symbolic Interpreter
	3.2 Semantic Foundations of Symbolic Execution
	3.3 An Oracle for Automatic Testing of SE Engines

	4 Techniques
	4.1 Advanced Loop Treatment
	4.2 Advanced Call Treatment
	4.3 State Merging to Mitigate Path Explosion

	5 Applications
	5.1 Test Generation
	5.2 Program Proving
	5.3 Symbolic Debugging
	5.4 Model Checking of Abstract Programs

	6 Future Perspectives
	7 Conclusion
	References

	Locally Abstract Globally Concrete Semantics of Time and Resource Aware Active Objects
	1 Introduction
	2 A Core Active Object Language with Time and Resources
	2.1 Example: Cost-Sensitive Requests

	3 The Syntax of Abstract Traces
	4 The Local Semantics of Mini Real-Time ABS
	4.1 Example: Local Semantics of Cost Sensitive Requests in Mini-Real-Time ABS

	5 Global Trace Semantics of Mini Real-Time ABS
	5.1 Global Trace Composition of Mini Real-Time ABS
	5.2 Global Semantics of the Running Example

	6 Related Work
	7 Conclusion and Future Work
	References

	Transparent Treatment of for-Loops in Proofs
	1 Introduction
	2 Background
	3 New Loop Unrolling Rules for JavaDL
	3.1 Introducing the -continuation Statement
	3.2 Symbolic Execution Rules for -continuation
	3.3 JavaDL Loop Unwinding Rules Using -continuation

	4 New Loop Invariant Rules for JavaDL
	4.1 Introducing the Halt Statement
	4.2 Loop Invariant Rule for while Loops Using -continuation
	4.3 Loop Invariant Rule for for Loops Using -continuation
	4.4 Why No Loop Invariant Rule for do Loops?

	5 Evaluation
	6 Related Work
	7 Conclusion and Future Work
	References

	Author Index

